Supplementary appendix NAFLD as a metabolic disease in humans: A literature review Bertrand Cariou et al. ## Contents Page 2 – Search strategy Page 3 – Diagnosis and monitoring of NAFLD and NASH Page 5 – Insights into the relationship between metabolic dysfunction and NAFLD from genome-wide analyses in recent years Page 6 – Managing NASH by treating liver disease and targeting metabolic risk: Current and emerging strategies – *additional information* Page 8 – Table S1 Page 19 – Abbreviations Page 21 – References ## Search strategy ## Search string ((("nonalcoholic steatohepatitis" [Title] OR "non-alcoholic steatohepatitis" [Title] OR "non-alcoholic steatohepatitis" [Title] OR "non-alcoholic steatohepatitis" [Title] OR "non-alcoholic fatty liver disease" [Title] OR "non-alcoholic fatty liver disease" [Title] OR "NAFLD [Title] OR "liver steatosis" [Title] OR "non-alcoholic fatty liver" [Title]) #### AND (("global burden" [Title] OR epidemiology [Title] OR prevalence [Title] OR incidence [Title] OR mortality [Title]) OR ("metabolic syndrome" [Title] OR "metabolic risk factor" [Title] OR prediabetes [Title] OR T2D [Title] OR "Type 2 Diabetes" [Title] OR obesity* [Title] OR dyslipidemia* [Title] OR hyperlipidemia* [Title] OR "insulin resistance" [Title] OR predictor [Title] OR pathophysiology [Title] OR hypertension [Title] OR diabetes [Title] OR "insulin sensitivity" [Title] OR "cardiovascular disease" [Title] OR cirrhosis [Title] OR "advanced cirrhosis" [Title/Abstract] OR "advanced fibrosis" [Title/Abstract] OR "stroke" [Title] OR "heart failure" [Title/Abstract] OR "preserved ejection fraction" [Title/Abstract] OR "chronic kidney disease" [Title/Abstract] OR Cancer [Title] OR "liver cancer" [Title/abstract] OR "hepatic cancer" [Title/abstract] OR HCC [Title/Abstract] OR "hepatocellular carcinoma" [Title/Abstract]) OR (diagnosis [Title] OR diagnoses [Title] OR biomarker [Title] OR Fibroscan [Title/abstract] OR markers [Title] OR biopsy [Title]) OR (management [Title] OR treatment [Title] OR drug [Title] OR safety [Title] OR efficacy [Title]))) NOT (zebrafish OR transplants OR Hepatitis OR microbiota OR microbiome OR mice OR pediatric OR paediatric OR child OR children OR celiac OR coeliac OR SIBO OR "small intestinal bacterial overgrowth" OR sarcopenia OR Chornobyl OR "Netherton syndrome" OR diet OR gut OR micronutrients OR HIV OR nutraceutical OR curcumin OR "vitamin D" OR "free fatty acid" OR nutrition OR smoking OR HCV OR "Hepatitis C" OR virus OR marmoset OR lung OR thoracic OR epilepsy)) ## Filters in PubMed - Article type: Clinical Study, Clinical Trial, Comparative Study, Controlled Clinical Trial, Meta-Analysis, Observational Study, and Randomized Controlled Trial - Human studies only - English language ## Diagnosis and monitoring of NAFLD and NASH The American Diabetes Association (ADA) recommends that patients with type 2 diabetes mellitus (T2DM) be proactively monitored for signs of non-alcoholic fatty liver disease (NAFLD).¹ Therefore, accurate, non-invasive approaches for diagnosis and staging of NAFLD and non-alcoholic steatohepatitis (NASH), particularly for patients with T2DM and/or obesity, are urgently needed. Steatohepatitis is often identified by abdominal ultrasound during routine health checks.² Although invasive, costly, and associated with some risks, liver biopsies remain the only definitive technique to determine and then monitor the stage and severity of NAFLD. However, uneven distribution of histological NASH lesions in the liver parenchyma can result in biopsy sampling errors, leading to misdiagnoses and disease staging inaccuracies.³ Intraoperative liver biopsies have been suggested as a method of screening for NAFLD in patients with increased risk.⁴ A prospective observational study in which liver biopsies were taken during laparoscopic cholecystectomy (LC) found a high prevalence of NAFLD; 21.8% of those patients with symptomatic gallstones had asymptomatic NAFLD confirmed by liver biopsy. Singh *et al.* concluded that such screening of patients with gallstone disease undergoing LC may be a potential additional method for early diagnosis of NAFLD.⁴ A number of studies identified have assessed the potential diagnostic value of biomarkers or composites of clinical assessments for NAFLD.5-7 Commercial biomarker panels (SteatoTest, ActiTest, NashTest-2, and FibroTest) have been validated for diagnosis of NAFLD, NASH, and/or fibrosis, although they have questionable performance in patients with T2DM.8 The Enhanced Liver Fibrosis (ELF) score (consisting of tissue inhibitor of metalloproteinases 1 [TIMP-1], amino-terminal propeptide of type III procollagen, and hyaluronic acid) is recommended by the UK National Institute for Health and Care Excellence (NICE) for assessment of advanced fibrosis. 9 A wide range of other biomarkers and composite scores incorporating clinical and laboratory assessments have been proposed for detecting fibrosis in patients with NAFLD, including: NAFLD fibrosis score (NFS; a composite of age, hyperglycaemia, BMI, platelet count, albumin level, and aspartate aminotransferase [AST]/alanine aminotransferase [ALT] ratio; mean sensitivity and specificity for significant fibrosis of 65.5% and 82.5%), 10,111 fibrosis-4 index (FIB-4, a composite of age, platelet count, and levels of AST and ALT; mean sensitivity and specificity for significant fibrosis of 64.4% and 70.0%), 11 red cell volume distribution width-to-platelet ratio, 12 a panel comprising variables implicated in fibrogenesis and adipokines in combination with clinical and laboratory parameters, ¹³ Wisteria floribunda agglutinin-positive Mac-2-binding protein and type 4 collagen 7S, 14 MACK-3 (a composite of AST, homeostatic model assessment of insulin resistance and apoptotic caspase-3 generated cytokeratin-18 fragments), 15 Linköping University-Karolinska Institute (LINKI; based on hyaluronic acid, AST, glucose, and age), ¹⁶ and FibroMeter^{V2G/V3G} (fibrosis panel composites of age, sex, AST, platelet count, prothrombin index, alpha-2-macroglobulin, urea and hyaluronic acid or gamma glutamyl-transferase). ¹⁷ A study comparing AST-platelet ratio index (APRI), BARD score (comprising BMI, AST/ALT ratio, and presence of T2DM), FIB-4 score, NFS, and FibroMeter in 142 patients with NAFLD reported no significant differences in sensitivity and specificity between scores. 18 Another study concluded that APRI, BARD score, FibroMeter and non-invasive Koeln-Essen index were more accurate in diagnosing advanced fibrosis in NAFLD than Forns' index, S index, Hui model, NFS and FIB-4; stepwise combination of the models performed better than each single scoring system alone. 19 Non-invasive scores for advanced fibrosis (AST/ALT ratio, APRI, FIB-4, and NFS) were assessed in a large cohort of 1157 patients with T2DM and the authors concluded that all scores had reasonable specificity, but poor sensitivity in this population.²⁰ These findings are supported by a cross-sectional study in 213 patients with T2DM evaluating a range of clinical scores and biomarkers for NASH (ALT, cytokeratin-18, NashTest 2, the HAIR score [comprising hypertension, ALT, and IR], BARD, and OWLiver) and advanced fibrosis (AST, fragments of propeptide of type III procollagen, FIB-4, APRI, NFS, and FibroTest), reporting that none of the tests had optimal performance.²¹ Significantly increased TIMP-1 and -2 levels have been reported in patients with biopsy-confirmed NASH versus age-matched controls and patients with obesity and normal liver enzymes, and TIMP-1 (sensitivity 96.7%, specificity 100%) and TIMP-2 (sensitivity 93.3%, specificity 100%) have been proposed for consideration as non-invasive markers of NASH.²² Finally, mass spectroscopy profiling of plasma lipids and metabolites in combination with clinical data and the patatin-like phospholipase domain-containing 3 (PNPLA3) genotype has shown promise to accurately identify the risk of NASH in a population of which 83% had morbid obesity; however, the high pretest probability in this patient population limits the usefulness of these findings.²³ Non-invasive imaging methods have been assessed for diagnosis and staging of NAFLD, including: transient elastography, supersonic shear imaging, and acoustic radiation force impulse imaging (ARFI), 24-28 magnetic resonance elastography (MRE), 11,29-33 and shear-wave elastography. 11 Doppler ultrasound has been proposed for assessment of fibrosis in patients not suitable for transient elastography.³⁴ A study comparing detection of advanced fibrosis in patients with NAFLD using ARFI, FIB-4, NFS, and BARD reported inconsistent performance of all the techniques across the range of steatosis severity. 35 A similar study comparing diagnostic measurements of fibrosis grade reported superior diagnostic accuracy of ELF, FibroMeter and liver stiffness measurement (obtained by vibration-controlled transient elastography), over FIB-4 and NFS.¹⁷ In a study of 417 patients with NAFLD from two tertiary care centres in France, ELF and FibroMeter^{V2G} were again found to be superior to FIB-4 and NFS for diagnosis of advanced liver fibrosis, with no significant differences found in diagnostic accuracy between ELF and FibroMeter^{V2G}.³⁶ In a comparison of shear wave elastography and transient elastography, accuracy was reported to be significantly higher in transient elastography than shear wave elastography for diagnosis of fibrosis stage ≥F2 and ≥F3.³⁷ Both methods were found to have high reliability, as assessed by intra-operative and interoperative variability analysis.³⁷ A retrospective study assessed venous pulsatility index (VPI) for diagnosis of high-risk NAFLD in patients with biopsy-proven NAFLD who underwent duplex Doppler ultrasound assessment of the main portal vein within 1 year of liver biopsy. 38 VPI had higher optimism-corrected area under the curve values than NFS, FIB-4, APRI and BARD, and significantly improved the diagnostic value for high-risk
NAFLD when added to any of the other four scoring systems.³⁸ For patients with obesity undergoing bariatric surgery, visual appearance of liver colour, size, and surface has been reported to accurately identify patients who would benefit from a liver biopsy.³⁹ Among various imaging modalities, magnetic resonance imaging-derived proton density fat fraction (MRI-PDFF) has been recommended as most practical for liver fat quantification in clinical trial settings, 40 and MRE as most accurate in quantifying biomarkers for liver fibrosis. 30,41 FibroScan-AST (FAST) and the MRE combined with FIB-4 (MEFIB) index are discussed in the main manuscript text. FAST has recently shown good performance at identifying patients at risk of progressive NASH (NASH with NAFLD Activity Score ≥4 and fibrosis stage ≥2), with positive predictive values (PPV) of 69-83%. 42 Meanwhile, the MEFIB index demonstrated PPVs of 91-97% for detection of fibrosis stage ≥2.⁴³ ## Insights into the relationship between metabolic dysfunction and NAFLD from genomewide analyses in recent years Genome-wide analyses have provided insights into the relationship between metabolic dysfunction and NAFLD in recent years. Mutations that regulate lipid metabolism, glucose metabolism, and the reninangiotensin system have been implicated in NAFLD onset, steatosis, inflammation, fibrosis, and HCC,⁴⁴ particularly PNPLA3 I148M and transmembrane 6 superfamily member 2 (TM6SF2). PNPLA3 I148M (rs738409) is associated with greater risk of NAFLD and T2DM⁴⁵ and may be a contributing factor to the development of non-obese NAFLD. 46 A case-control genome-wide association study reported a significant association between PNPLA3 I148M (rs738409) and cirrhosis in patients with HCC; a 3-fold increased risk of HCC was observed in individuals with the rs738409 mutation.⁴⁷ In this study, Hassan et al. also identified an additive relationship between PNPLA3 I148M (rs738409) and presence of diabetes mellitus, in the risk of developing HCC (adjusted odds ratio 19.11).⁴⁷ Emerging evidence from recent Mendelian randomization studies (using risk alleles in PNPLA3, TM6SF2, and other NAFLD-related genetic variants) suggests that genetically driven NAFLD causally increases the risk of developing insulin resistance (IR) and new-onset T2DM. 48-50 A large exome-focused genotyping array study, using the UK Bio-Bank cohort, provides further support for the notion that higher levels of liver fat content (mediated by genotypic variations in PNPLA3 and TM6SF2) increase the risk of incident T2DM.⁵¹ A missense mutation in PNPLA3 L148M has also been shown to promote cellular triglyceride accumulation in mice.⁵² In hepatic steatosis, insulin receptor substrate (IRS)-2 expression is thought to be downregulated, contributing to hepatic IR. In a recent analysis of mRNA expression in patients with NAFLD and healthy controls, IRS-2 expression was decreased and enzymes involved in gluconeogenesis were upregulated in patients with NAFLD and NASH versus healthy controls, suggesting that selective IR occurs in human hepatocytes during NAFLD.⁵³ With the progression of NASH to cirrhosis, patients have lower serum triglycerides, low-density lipoprotein and very LDL as a result of decreasing *de novo* lipogenesis capacity, despite consistent hyperinsulinaemia.⁵⁴ # Managing NASH by treating liver disease and targeting metabolic risk: Current and emerging strategies – *additional information* NAFLD has been reported to significantly impact on patients' quality of life, particularly in parameters of physical function versus the general population and in domains such as fatigue, activity, emotions, and worry compared with patients with hepatitis B or C infection. Patients with NAFLD experience depression more frequently than the general population, which may be partly as a result of comorbidities such as T2DM and obesity. Patients with NASH have reported a good level of satisfaction with their care, they most commonly reported symptoms of fatigue, having overweight and abdominal discomfort, and they prioritized potential treatments that would impact on their liver status and improve symptoms. ## Guidelines As discussed in the main text, lifestyle modifications consisting of diet, exercise, and weight loss are advocated for patients with NAFLD.⁵⁸⁻⁶⁰ There are currently no FDA-approved pharmaceutical treatments for patients with NAFLD or NASH; however, some international guidelines do recommend some therapeutic approaches. 9,58-60 To date, none of the treatments assessed in NASH have provided efficacy across the heterogeneous patient population and the lack of simple inexpensive tests to assess treatment response and predictors of likelihood of response is a major challenge for drug development. The European Association for the Study of the Liver (EASL) – European Association for the Study of Diabetes (EASD) – European Association for the Study of Obesity (EASO) Clinical Practice Guidelines for the management of NAFLD (2016)⁶¹ do not recommend any specific therapy for the treatment of NASH. Off-label options, such as insulin sensitizers (e.g. pioglitazone), antioxidants, cytoprotective and lipid-lowering agents, and iron depletion, are suggested as a possibility.⁶¹ Of these, pioglitazone and/or vitamin E are most strongly recommended. 61 The 2018 AASLD58 and UK NICE9 guidelines state the benefits of pioglitazone in patients with biopsy-proven NASH with and without T2DM. AASLD,⁵⁸ Belgian Association for Study of the Liver (2018), ⁵⁹ Asia-Pacific Working Party on Non-alcoholic Fatty Liver Disease (2017), ⁶⁰ and NICE⁹ guidelines outline the benefits of Vitamin E in non-diabetic, non-cirrhotic adults with biopsy-proven NASH and suggest it as a treatment for NASH. Additionally, the Asia-Pacific⁶⁰ and Belgian⁵⁹ guidelines endorse liraglutide as a means to improve NASH, mainly through reduction of cardiovascular complications. ## Dietary supplements and homeopathic remedies Marine omega-3 polyunsaturated fatty acids (n-3 PUFA) are precursors to anti-inflammatory mediators and are known to reduce plasma triacylglycerol and fatty acid synthesis.⁶² n-3 PUFAs have been evaluated as a dietary supplement in the treatment of NAFLD. Reviews have found several studies reporting reduction in hepatic fat content, inflammatory markers, and liver enzymes after supplementation with n-3 PUFAs such as eicosapentaenoic acid or docosahexaenoic acid.^{62,63} Limonoids have shown anti-inflammatory, anti-oxidative and other beneficial effects. ⁶⁴ Kelley *et al*. reported that purified limonin glucoside (LG) reduced the inflammatory markers matrix metalloproteinase-9 and tumour necrosis factor α and that the significant reductions found in ALT, alkaline phosphatase, gamma-glutamyl transferase, and complement component 3, were likely liver-specific effects of LG. ⁶⁵ Regular consumption of polyphenols may prevent progression of NAFLD to NASH through reduction of *de novo* lipogenesis; increased FA oxidation; and improved insulin sensitivity and adipokine regulation.⁶⁶ Rodriguez-Ramiro *et al.* propose the 5' adenosine monophosphate-activated protein kinase/Sirtuin-1 axis as a likely mechanism in polyphenol modulation of metabolism, with further research required to confirm this.⁶⁶ A pilot study investigated the effects of a combination of plant extracts on insulin resistance and hepatic steatosis in 49 patients with NAFLD.⁶⁷ The mixture of berberine, tocotrienols and decaffeinated green coffee was reported to improve insulin receptor expression (P<0.05) and significantly reduce hepatic steatosis compared with the placebo group (measured by controlled attenuation parameter during transient elastography, P<0.01).⁶⁷ Acupoint embedding therapy is a modified acupuncture therapy involving insertion of dissolvable sutures at points of acupuncture in order to prolong stimulation.⁶⁸ A meta-analysis of the treatment of NAFLD with abnormal transaminase suggested that acupoint embedding alone or as a combination therapy has superior effects on ALT reduction compared to those of conventional methods (*P*<0.001) and beneficial effects on AST, cholesterol, and trigylcerides.⁶⁸ However, there was substantial heterogeneity between the included studies and more rigorous clinical trials are required.⁶⁸ ## Bariatric surgery While bariatric surgery is not currently indicated for NAFLD, recent reports suggest that many patients can achieve significant reductions in steatosis and fibrosis after intervention. ^{69,70} Bariatric surgery has a profound effect on T2DM, with a complete post-surgical resolution reported in 76.8% of patients with morbid obesity in a meta-analysis. ⁷¹ A metabolic response is observed immediately post-surgery so is thought to be independent of weight loss, including improved hepatic insulin sensitivity due to post-surgery calorie restriction and improved post-prandial insulin secretion as a result of a rise in GLP-1 that occurs in response to accelerated transport of nutrients into the small intestine. ⁷² Lassailly *et al.* recently reported encouraging long-term outcomes in a cohort of 180 patients with severe obesity and biopsy-confirmed NASH undergoing bariatric surgery. ⁷³ At 5-year post-surgical follow-up, NASH was resolved without worsening fibrosis in 84% of patients, fibrosis decreased versus baseline in 70.2% and was completely resolved in 56%. Well-designed clinical trials are needed to establish the place of surgical approaches, particularly those that are less invasive, in combination with other lifestyle interventions for patients with NAFLD and obesity. Table S1. Characteristics of included studies | Number | Source | Study design | Study population | Participants | | Objective/intervention | Duration of | Key finding | Category | |--------|--------------------------------|------------------------------|--|--------------|-------------
---|--------------------|---|--| | | | | | Total N | Male
(%) | | follow-up | | | | 1 | Aykut 2014 ^{27,a} | Cohort study | Patients with
NAFLD | 88 | 56.8 | Compare diagnostic performance of FibroMeter™ NAFLD score, NFS, and TE for the detection of liver fibrosis | N/A | Sensitivity/specificity of FibroMeter [™] NAFLD score, NFS, and TE for significant fibrosis were 38.6%/86.4%, 52.3%/88.6%, and 75.0%/93.2%, respectively | Diagnosis and
biomarkers | | 2 | Chwist 2014 ¹³ | Cohort study | Adult patients
with NAFLD | 70 | 57.1 | Investigate laboratory variables with potential to predict advanced fibrosis | N/A | Patients with NASH had
significantly higher HOMA-
IR values and serum levels
of visfatin, haptoglobin, and
zonulin vs those without
NASH | Diagnosis and
biomarkers | | 3 | Loomba
2014 ^{32,a} | Cross-
sectional
study | Patients with
NAFLD | 117 | 43.6 | Assess the diagnostics
accuracy of 2D-MRE, in
predicting advanced
fibrosis | N/A | MRE is accurate in predicting advanced fibrosis | Diagnosis and biomarkers | | 4 | Di Naso 2015 ⁷⁴ | Observational study | Patients with obesity undergoing bariatric surgery | 95 | 21 | Evaluate role of the
HSP70 pathway in
NAFLD progression | N/A | Negative correlation
between NAFLD progression
and expression/activation of
the HSF1/HSP72 pathway | Association
with metabolic
risk factors or
other diseases | | 5 | Gaharwar
2015 ⁷⁵ | Observational study | Patients with
NAFLD from India | 70 | 42.9 | Establish risk of MetS and its components | N/A | 51.4% of patients had MetS | Association
with metabolic
risk factors or
other diseases | | 6 | Subasi 2015 ^{18,a} | Retrospective
analysis | Patients with diagnosed NAFLD | 142 | 53 | Compare the diagnostic performance of five non-invasive scores for the assessment of advanced stages of fibrosis | N/A | Different non-invasive
scores have similar accuracy
for the diagnosis of
advanced hepatic fibrosis in
NAFLD | Diagnosis and
biomarkers | | 7 | Pang 2015 ⁷⁶ | Meta-analysis | Studies
estimating the
impact of central
obesity on NAFLD | 45,757 | 55 | Investigate if central obesity is associated with NAFLD | N/A | Central obesity may pose a greater threat to health than general obesity, although both are independently associated with increased risk of NAFLD | Association
with metabolic
risk factors or
other diseases | | 8 | Loomba 2015 ⁷⁷ | RCT | Patients with
biopsy-confirmed
NASH | 50 | 38 | Examine ezetimibe vs
placebo in reducing
liver fat and liver
histology | 24 weeks | Ezetimibe did not
significantly reduce liver fat
in NASH (mean difference
-1.3%) | Treatment | | 9 | Al Rifai 2015 ⁷⁸ | Observational
study | Adults without
known CV
disease at the
time of
enrolment | 3976 | 45 | Assess impact of the number of metabolic conditions on inflammation and subclinical atherosclerosis (assessed as CAC) | N/A | NAFLD is associated with
increased inflammation and
CAC independent of
traditional risk factors,
obesity and MetS | Association
with metabolic
risk factors or
other diseases | | 10 | Singh 2015 ⁷⁹ | Meta-analysis | Studies including
adults with
NAFLD and
paired liver
biopsies ≥1 year
apart | 411 | N/A | Estimating the rates of fibrosis progression in patients with NAFLD | N/A | Liver fibrosis progresses in patients with NAFLD | Association
with metabolic
risk factors or
other diseases | |----|----------------------------------|---|--|------|------|--|--------------------------|--|--| | 11 | Liu 2015 ²⁸ | Meta-analysis | Studies assessing
ARFI in patients
with NAFLD | 723 | N/A | Evaluate ARFI
elastography in
detecting hepatic
fibrosis in patients with
NAFLD | N/A | ARFI elastography was
modestly accurate in
detecting significant fibrosis
in patients with NAFLD | Diagnosis and
biomarkers | | 12 | Li 2015 ⁸⁰ | Cohort study | Patients without
T2DM from China | 4736 | 66.5 | Analyse effects of
obesity and NAFLD on
T2DM | Median
200.2
weeks | NAFLD could predict risk of T2DM, independent of weight/obesity | Association
with metabolic
risk factors or
other diseases | | 13 | Abdelaziz
2015 ²² | Prospective cohort study | Patients with
obesity and
normal or
elevated liver
enzymes | 90 | 40 | Evaluate TIMPs as non-
invasive predictors of
NASH | N/A | TIMP-1 and TIMP-2 may be considered non-invasive markers for diagnosis of NASH | Diagnosis and
biomarkers | | 14 | Santilli 2015 ⁸¹ | Cross-
sectional
study | Patients with familial combined hyperlipidaemia and/or MetS, with or without NAFLD | 110 | 55 | Investigate if the
advanced glycation end-
products pathway is
associated with
diagnosis of NAFLD with
and without MetS | N/A | Activation of the advanced glycation end-products pathway may contribute to progression of both liver and CV disease | Association
with metabolic
risk factors or
other diseases | | 15 | Singh 2015 ⁸² | Retrospective
cross-
sectional
study | Patients
diagnosed with
fatty liver in India | 336 | N/A | Compare anthropometric, metabolic, biochemical, ultrasonography, and histological profile of patients with NAFLD with and without IR | N/A | 46% of patients with NAFLD did not have IR, of which a third had significant fibrosis despite absence of IR | Association
with metabolic
risk factors or
other diseases | | 16 | VanWagner
2015 ⁸³ | Cross-
sectional
study | Young adults
from the USA
who underwent
CT | 2713 | 41.2 | Examining the association between NAFLD and early changes in left ventricular structure | N/A | NAFLD is independently
associated with subclinical
myocardial remodelling and
dysfunction | Association
with metabolic
risk factors or
other diseases | | 17 | Cengiz 2015 ^{12,a} | Cohort study | Adult patients
with NAFLD | 123 | 56.1 | Investigate the performance of RPR in predicting liver fibrosis vs other non-invasive fibrosis scores | N/A | RPR was able to predict liver fibrosis | Diagnosis and
biomarkers | | 18 | Praveenraj
2015 ⁸⁴ | Retrospective
analysis | Adults with
morbid obesity
from India
undergoing
elective bariatric
surgery with
concomitant liver
biopsy | 134 | 39.3 | Determine the prevalence and predictors of NAFLD in Indian patients with morbid obesity | N/A | 65.7% of patients had
NAFLD, 33.6% had NASH
and 31.3% had fibrosis | Burden of
disease | | 19 | Vassilatou
2015 ⁸⁵ | Cross-
sectional
study | Premenopausal
women with
BMI >25.0 kg/m ² | 110 | 0 | Investigate the prevalence of PCOS in premenopausal women with NAFLD who were | N/A | PCOS diagnosed in 43.7% of
women with vs 23.1%
without NAFLD | Burden of
disease | | | | | | | | overweight or had obesity | | | | |----|-----------------------------------|---------------------------------|--|--|------|---|---|---|--| | 20 | Carbone 2016 ⁸⁶ | Meta-analysis | Studies in adults
with NAFLD
receiving GLP-1
receptor agonists
or DPP-4i | 136 | N/A | Evaluate the efficacy of incretin-based therapies | N/A | Significant reduction in serum ALT following GLP-1/DPP-4i treatment (mean reduction of 14.1 IU/L, P<0.0001) | Treatment | | 21 | Armstrong
2016 ^{87,b} | RCT | Patients with
clinical signs of
NASH | 52 | 59.6 | Assessing liraglutide vs
placebo for patients
who are overweight and
have clinical evidence of
NASH | 60 weeks | 39% with liraglutide vs 9% with placebo has resolution of NASH at 48-week follow-up (<i>P</i> =0.019) | Treatment | | 22 | Cui 2016 ^{33,a} | Cross-
sectional
analysis | Patients with
NAFLD | 125 | 45.6 | Head-to-head
comparison of MRE vs
ARFI for diagnosing
fibrosis | N/A | MRE is more accurate than
ARFI for diagnosing any
fibrosis in NAFLD, especially
among patients with obesity | Diagnosis and biomarkers | | 23 | Tang 2016 ⁸⁸ | Meta-analysis | RCTs of anti-
diabetic agents in
patients with
T2DM | 961 | 63 | Provide an assessment
of the impact of anti-
diabetic agents on
NAFLD | N/A | Thiazolidinediones and GLP-
1 receptor agonists appear
to attenuate hepatic fat
content | Treatment | | 24 | Lu 2016 ⁸⁹ | Cross-
sectional
analysis | Adults in China
who underwent
routine health
examinations | 1948 | 66 | Investigate the prevalence of and risk factors for NAFLD in a Chinese population | 8 years | 35.47% of patients were diagnosed with NAFLD at baseline, but it can be reversed with weight loss and control
of hyperlipidaemia and hyperglycaemia | Burden of
disease | | 25 | Ballestri 2016 ⁹⁰ | Meta-analysis | Prospective
studies in
patients with
diagnosed NAFLD | 117,020
(T2DM);
81,411
(MetS) | N/A | Establish risk of T2DM
and MetS in patients
with NAFLD | 260 weeks
(T2DM)
and 234
weeks
(MetS) | NAFLD increases risk of
T2DM and MetS | Association
with metabolic
risk factors or
other diseases | | 26 | Li 2016 ⁹¹ | Meta-analysis | Cohort studies
assessing NAFLD
risk associated
with obesity | 381,655 | N/A | Investigate the risk of NAFLD associated with obesity | N/A | Patients with obesity have a 3.5-fold increased risk of developing NAFLD vs those without obesity | Association with metabolic risk factors or other diseases | | 27 | Cassinotto
2016 ²⁶ | Cohort study | Adult patients
with NAFLD who
underwent liver
biopsy | 291 | 59.1 | Compare liver stiffness
measurement
evaluated by SSI,
FibroScan, and ARFI | N/A | FibroScan, ARFI, and
especially SSI were all
valuable for diagnosis of
liver fibrosis in patients with
NAFLD | Diagnosis and
biomarkers | | 28 | Loomba 2016 ³¹ | Cross-
sectional
study | Patients with
NAFLD | 100 | 44 | Compare the diagnostic
accuracy of 3D-MRE and
2D-MRE for diagnosing
advanced fibrosis | N/A | 3D-MRE at 40 Hz has the
highest accuracy in
diagnosing advanced fibrosis | Diagnosis and
biomarkers | | 29 | Ergelen 2016 ³⁴ | Cohort study | Patients with
NASH | 63 | 61.9 | To assess the potential
for identifying fibrosis
using doppler
ultrasound vs TE and
liver biopsy | N/A | Doppler ultrasound has
moderate sensitivity and
specificity, which is lower
compared with TE for
diagnosis significant fibrosis | Diagnosis and
biomarkers | | 30 | Zhou 2016 ²³ | Cross-
sectional
study | Patients who underwent liver biopsy because | 318 | N/A | Investigate whether
mass spectrometry-
based plasma profiling
improves risk estimates | N/A | A score based on mass spectrometry, AST, fasting insulin, and <i>PNPLA3</i> genotype is significantly | Diagnosis and biomarkers | | | | | of suspected
NASH | | | of NASH vs routine
clinical parameters and
PNPLA3 genotype at
rs738409 | | better than clinical or
metabolic profiles alone in
determining risk of NASH | | |----|--------------------------------------|------------------------------|--|------|------|---|-----------|--|--| | 31 | Lykiardopoulos
2016 ¹⁶ | Cohort study | Patients with
NAFLD | 158 | 74 | Develop a novel
algorithm for detection
of advanced fibrosis
based on a combination
of serological markers | N/A | Novel LINKI algorithm for detection of advanced fibrosis in NAFLD showed better accuracy than established algorithms | Diagnosis and
biomarkers | | 32 | Pan 2017 ^{92,c} | Observational study | Patients who accepted colonoscopy | 1793 | 64.5 | Investigate the
combined effect of
NAFLD and MetS on
development of
colorectal neoplasm | N/A | NAFLD and MetS are risk
factors for colorectal
neoplasm and CRC | Association
with metabolic
risk factors or
other diseases | | 33 | Park 2017 ³⁰ | Cross-
sectional
study | Patients
undergoing
biopsy to assess
NAFLD | 104 | 43 | Compare the performance of MRE vs TE for diagnosis of fibrosis, and MRI-based proton density fat fraction analysis vs TE-based CAP for diagnosis of steatosis | N/A | MRE was more accurate than TE in identification of liver fibrosis. MRI-based proton density fat fraction is more accurate than CAP in detecting all grades of steatosis in patients with NAFLD | Diagnosis and
biomarkers | | 34 | He 2017 ⁶ | Meta-analysis | Studies assessing
serum
biomarkers in
patients with
NAFLD | 3431 | 49 | Evaluate the diagnostic
value of serum
biomarkers in the
diagnosis of NAFLD and
NASH | N/A | Increased serum cytokeratin-18 and FGF21 are associated with NASH, but are not sufficient for diagnosis. A combined biomarker panel may be useful as a diagnostic tool for NASH | Diagnosis and
biomarkers | | 35 | Petit 2017 ⁹³ | RCT | Patients with T2DM treated with metformin and/or sulfonylurea (or glinides) and/or insulin | 68 | 54 | Study impact of
liraglutide on liver fat
content in patients with
uncontrolled T2DM | 26 weeks | Liraglutide significantly reduced liver fat content in patients with inadequately controlled T2DM (31% decrease from baseline, <i>P</i> <0.0001) | Treatment | | 36 | Yoo 2017 ⁹⁴ | Cross-
sectional
study | Patients with and
without NAFLD
who completed a
health check-up | 320 | 65 | Examining plasma
LECT2 levels in the
subjects with NAFLD or
MetS | N/A | Plasma LECT2 was increased in individuals with NAFLD and those with MetS, but not in those with atherosclerosis | Association
with metabolic
risk factors or
other diseases | | 37 | Tokita 2017 ⁹⁵ | Observational study | Individuals who
had annual
health checks in
Japan | 2408 | 64 | Investigate if NAFLD
diagnosed by
ultrasonography could
predict risk of T2DM | 520 weeks | NAFLD was a significant predictor for future T2DM, especially in women | Association
with metabolic
risk factors or
other diseases | | 38 | Musso 2017 ⁹⁶ | Meta-analysis | RCTs assessing
thiazolidinedione
therapy in
biopsy-confirmed
NASH | 516 | N/A | Evaluate the association
between
thiazolidinedione
therapy and advanced
liver fibrosis in NASH | N/A | Pioglitazone use significantly
improves advanced fibrosis
in NASH, even in patients
without T2DM | Treatment | | 39 | Dulai 2017 ⁹⁷ | Meta-analysis | Adult patients
with NAFLD | 1495 | 54 | Quantify the fibrosis
stage-specific relative
risk of all-cause
mortality and liver- | N/A | The risk of liver-related mortality increases exponentially with increase in fibrosis stage | Burden of
disease | | | | | | | | related mortality for
NAFLD | | | | |----|---------------------------------------|---------------------------------|---|--------|------|--|----------------------------|---|--| | 40 | Caussy 2017 ⁹⁸ | Cross-
sectional
analysis | Patients with
NAFLD-cirrhosis
and their first-
degree relatives | 203 | 28 | Assess the risk of
advanced fibrosis in
first-degree relatives of
patients with NAFLD-
cirrhosis | N/A | First-degree relatives of
patients with NAFLD-
cirrhosis have a 12x higher
risk of advanced fibrosis | Burden of
disease | | 41 | Zhang 2017 ⁹⁹ | Cross-
sectional
study | Steel company
employees aged
≥20 years from
China | 10,069 | 63 | Exploring the effects of
obesity on the
association between
uric acid, MetS, and
NAFLD | N/A | Obesity and elevated uric
acid have a pronounced
synergistic effect on the
development of NAFLD and
hypertriglyceridaemia | Association
with metabolic
risk factors or
other diseases | | 42 | Dong 2017 ¹⁰⁰ | Meta-analysis | Patients with
NAFLD or NASH
established by
liver biopsy or
imaging | 329 | N/A | Evaluate the efficacy
and safety of GLP-1
receptor agonists | N/A | GLP-1 receptor agonists significantly reduced steatosis, lobular inflammation, hepatocellular ballooning and fibrosis vs baseline | Treatment | | 43 | Jaruvongvanich
2017 ¹⁰ | Meta-analysis | Studies assessing
the association
between NFS and
mortality in
patients with
NAFLD | 5033 | 52.1 | Investigate the role of
NFS for prediction of
mortality from NAFLD | Median
60–174
months | High NFS is associated with
increased risk of mortality
among patients with NAFLD | Diagnosis and
biomarkers | | 44 | Yip 2017 ⁷ | Cross-
sectional
study | Patients with
NAFLD and
healthy
participants
without NAFLD | 922 | 42 | Develop and validate a
laboratory parameter-
based machine learning
model to detect NAFLD | N/A | NAFLD ridge score was a
simple and predictive score
for excluding NAFLD in
general population | Diagnosis and
biomarkers | | 45 | Feng 2017 ¹⁰¹ | RCT | Patients with
T2DM and NAFLD
from China | 87 | 69 | Comparing the effects of gliclazide, liraglutide, and metformin on hepatic fat | 24 weeks | Hepatic fat content was significantly reduced in all three treatment groups vs baseline (<i>P</i> <0.001) | Treatment | | 46 | Dai 2017 ¹⁰² | Meta-analysis | Patients with T2DM | N/A | N/A | Establish pooled prevalence of NAFLD in patients with T2DM | N/A | 59.67% pooled prevalence
of NAFLD in patients with
T2DM | Burden of disease | | 47 | Friedrich-Rust
2017 ¹⁰³ | Prospective cohort study | Patients
undergoing
elective coronary
angiography | 505 | 78 | Evaluate the association
between the presence
and severity of CAD and
NAFLD | N/A | CAD is frequently associated with presence of NAFLD | Association
with metabolic
risk factors
or
other diseases | | 48 | Lee 2017 ²⁵ | Cohort study | Patients with
NAFLD | 94 | 43.6 | Head-to-head comparison of the diagnostic performances of TE, ARFI, and SSI for staging fibrosis and identify clinical, anthropometric, biochemical, and histological features that might affect LSM | N/A | LSM methods had similar diagnostic performance for staging fibrosis in patients with NAFLD. Pre-LSM anthropometric evaluation may help predict the reliability of SSI | Diagnosis and
biomarkers | | 49 | Xiao 2017 ¹¹ | Meta-analysis | Patients with
diagnosed
NAFLD, viral | 13,294 | 54 | Compare the diagnostic performance of seven non-invasive scores for | N/A | MRE and SWE may have the
highest diagnostic accuracy
for staging fibrosis in
patients with NAFLD. NFS | Diagnosis and
biomarkers | | | | | hepatitis, and other diseases | | | the diagnosis of liver
fibrosis in NAFLD | | and FIB-4 may offer the best
diagnostic performance for
advanced fibrosis | | |----|--|---------------------------------|---|---|------|--|---------------------|--|--| | 50 | Wongjarupong
2017 ¹⁰⁴ | Meta-analysis | Patients with iCCA or eCCA | 5067
(iCCA);
4035
(eCCA);
129,111
(controls) | N/A | Determine a potential
association between
NAFLD and CCA,
stratifying by its
subtypes; iCCA and
eCCA | N/A | NAFLD may potentially
increase the risk of CCA
development and the
magnitude of NAFLD on CCA
risk is greater for iCCA than
eCCA subtype | Association
with metabolic
risk factors or
other diseases | | 51 | Costa-Silva
2018 ²⁹ | Observational study | Adult patients
with NAFLD and
healthy
volunteers | 90 | 25.6 | Evaluate MRE in
diagnosing and staging
hepatic fibrosis and in
distinguishing simple
steatosis from NASH | N/A | MRE was effective in detecting/staging fibrosis in NAFLD. Patients with NAFLD and inflammation without fibrosis have greater liver stiffness than those with simple steatosis | Diagnosis and
biomarkers | | 52 | Kamarajah
2018 ²⁴ | Longitudinal study | Patients with
NAFLD in Asia | 113 | 50 | Determine the value of repeated LSM in NAFLD | Median
37 months | Repeat LSM can predict
liver-related complications
and may identify patients at
risk of CV events | Diagnosis and biomarkers | | 53 | Joo 2018 ³⁵ | Cross-
sectional
analysis | Patients with
NAFLD | 315 | 51 | Assess the potential for
non-invasive tests to
predict advanced
fibrosis in patients with
NAFLD | N/A | Steatosis severity may affect
the diagnostic performances
of non-invasive fibrosis tests
in patients with NAFLD | Diagnosis and
biomarkers | | 54 | Romero-
Ibarguengoitia
2018 ¹⁰⁵ | Cross-
sectional
study | Normoglycaemic subjects | 137 | 30 | Addressing
relationships between
obesity, NAFLD, and
family history of obesity | N/A | Family history of obesity results in alterations in the regulation of key metabolic pathways and predicts inflammation, IR, obesity, and NAFLD | Association
with metabolic
risk factors or
other diseases | | 55 | Ooi 2018 ³⁹ | Prospective cohort study | Patients with obesity undergoing bariatric surgery | 152 | 24 | Evaluate the diagnostic accuracy and reproducibility of a simple intraoperative visual liver score to stratify the risk of NASH and NAFLD in obesity | N/A | Liver appearance can be a
useful and reliable tool for
NAFLD risk stratification and
identification of patients
who would benefit from
liver biopsy | Diagnosis and
biomarkers | | 56 | Alexander
2018 ¹⁰⁶ | Case-cohort
study | Patients with
NAFLD and risk of
stroke from the
USA | 1589 | 45 | Assess the relationship
between NAFLD,
hepatic biomarkers and
incident ischaemic
stroke | 5.8 years | NAFLD was inversely
associated with stroke risk
in men, but not women | Diagnosis and
biomarkers | | 57 | Harrison
2018 ¹⁰⁷ | RCT | Patients aged
18–75 years with
biopsy-confirmed
non-alcoholic
steatohepatitis | 82 | 42 | Assessing the safety and efficacy of NGM282 in non-alcoholic steatohepatitis | 4 weeks | Both doses (3 and 6 mg) of
NGM282 were well
tolerated and 74% and 79%
of these doses, respectively,
achieved at least a 5%
reduction in absolute liver
fat content from baseline | Treatment | | 58 | Kabir 2018 ¹⁰⁸ | Observational study | Patients with
T2DM from
Bangladesh | 258 | 56.9 | Determine the prevalence of NAFLD and identify | N/A | 64.7% of patients had fatty
liver | Burden of
disease | | | | | | | | predisposing factors for T2DM and NAFLD | | | | |----|----------------------------------|---|---|---------|------|--|----------------|--|--| | 59 | Boursier 2018 ¹⁵ | Retrospective analysis | Patients with
NAFLD | 846 | 37.9 | Develop a new blood
test for NASH and
advanced fibrosis | N/A | MACK-3 provided excellent accuracy for the diagnosis of fibrotic NASH | Diagnosis and biomarkers | | 60 | Lu 2018 ¹⁰⁹ | Meta-analysis | Studies in patients with diagnosed NAFLD | 11,043 | N/A | Comparison between non-obese and obese NAFLD | N/A | Obesity can predict a worse
long-term prognosis for
patients with NAFLD | Association
with metabolic
risk factors or
other diseases | | 61 | Friedman
2018 ¹¹⁰ | RCT | Adults with
histological
evidence of NASH | 289 | 47 | Evaluate cenicriviroc for treatment of NASH with liver fibrosis | 52 weeks | Similar proportion of patients achieved hepatic histological improvement with cenicriviroc vs placebo | Treatment | | 62 | Chalasani
2018 ¹¹¹ | RCT | Patients with clinical and laboratory criteria consistent with NAFLD | 70 | 44 | Evaluate the efficacy of NS-0200 (leucine—metformin—sildenafil fixed-dose combination) in reducing hepatic steatosis | 16 weeks | High-dose NS-0200
significantly reduced hepatic
fat by 15.7% in patients with
NAFLD and elevated ALT
(P<0.005) | Treatment | | 63 | Zhou 2018 ¹¹² | Meta-analysis | Patients with
T2DM | 8346 | N/A | Assessing the association between NAFLD and CV disease in patients with T2DM | N/A | NAFLD increases the risk of
CV disease in populations
with comparable T2DM
profiles | Association
with metabolic
risk factors or
other diseases | | 64 | Strey 2018 ¹¹³ | Retrospective
observational
study | Patients with
morbid obesity
undergoing
bariatric surgery | 219 | 21 | Effect of T2DM and
insulin therapy on
NAFLD | N/A | T2DM was an independent risk factor for severe steatosis and severe fibrosis | Association
with metabolic
risk factors or
other diseases | | 65 | Golabi 2018 ¹¹⁴ | Observational study | Liver transplant
candidates and
recipients with
primary diagnosis
of NASH or CC | 198,467 | 61.1 | Assess clinical presentation and outcomes for liver transplant candidates with NASH vs CC | N/A | Outcomes of patients
receiving a liver transplant
for CC or NASH were similar
to those of patients with
other chronic liver diseases | Treatment | | 66 | Kuchay 2018 ¹¹⁵ | RCT | Patients with
documented
NAFLD and
uncontrolled
T2DM from India | 42 | 60 | Examine the effect of empagliflozin on liver fat | 12 weeks | Liver fat was significantly decreased with empagliflozin vs standard T2DM treatment (mean difference 4.0%; P<0.0001) | Treatment | | 67 | Eriksson
2018 ¹¹⁶ | RCT | Patients with
T2DM and NAFLD | 84 | 70 | Investigate the effects
of dapagliflozin and
omega-3 carboxylic
acids on liver fat
content | 12 weeks | Combination of dapagliflozin and carboxylic acids significantly reduced liver fat content vs placebo (21% decrease, <i>P</i> =0.046) | Treatment | | 68 | Harrison
2018 ¹¹⁷ | RCT | Adults with NASH
and advanced
fibrosis | 30 | 56.7 | Determine change in
liver stiffness using iron-
corrected MRI, MRE
and shear-wave
ultrasonic elastography
in patients receiving
either 4-month
treatment with GR-MD-
02 or placebo | 17–19
weeks | No significant difference
between GR-MD-02 and
placebo groups by MRI,
MRE, or LSM | Diagnosis and
biomarkers | | 69 | Stine 2018 ¹¹⁸ | Meta-analysis | Studies in patients with | 168,571 | N/A | Characterize the pooled risk of HCC | N/A | Patients with NASH have a higher risk of HCC compared | Association with metabolic | | | | NASH without cirrhosis | | | | | with other aetiologies of liver disease | risk factors or other diseases | |--------------------------------------|--
--|---|--|---|--|--|---| | Hu 2018 ¹¹⁹ | Cohort study | Middle-aged and
elderly patients
with and without
NAFLD | 984 | 67.5 | Investigate the correlation between CAP and MetS and its components | N/A | CAP values are closely
correlated with MetS and its
components in middle-aged
and elderly patients with
NAFLD | Association
with metabolic
risk factors or
other diseases | | Ogawa 2018 ¹⁴ | Cohort study | Patients with
NAFLD from
Japan | 165 | 58 | Investigate the usefulness of liver fibrosis markers, clinical scoring systems, and elastography for the staging of liver fibrosis | N/A | Serum WFA*-M2BP and type IV collagen 7S together increased the sensitivity and negative predictive value for the diagnosis of liver fibrosis | Diagnosis and
biomarkers | | Wijarnpreecha
2018 ¹²⁰ | Meta-analysis | Adult patients
with and without
NAFLD | 280,645 | N/A | Investigate the
association between
NAFLD and diastolic
cardiac dysfunction | N/A | A significant association
between diastolic cardiac
dysfunction and NAFLD was
observed | Association
with metabolic
risk factors or
other diseases | | Loomba
2018 ¹²¹ | RCT | Patients with
biopsy-confirmed
NASH | 126 | 35 | Evaluate GS-0976
(acetyl-coenzyme A
carboxylase inhibitor)
on liver fat and stiffness | 12 weeks | Significantly greater decrease in liver fat with GS-0976 20 mg vs placebo (P=0.004) | Treatment | | Herath 2019 ¹²² | Cohort study | Patients with
T2DM in Sri
Lanka | 233 | 47 | Investigate the prevalence of NAFLD | N/A | Use of pioglitazone, higher
BMI, and waist
circumference were
independently and
significantly associated with
NAFLD | Association
with metabolic
risk factors or
other diseases | | Lin 2019 ¹²³ | Retrospective
analysis | Patients with
biopsy-confirmed
NASH from
Taiwan | 10 | 70 | Investigate progression of NASH in patients receiving paired liver biopsies | Median
20.5
months | 60% of patients had disease
progression on second
biopsy | Burden of
disease | | Feng 2019 ⁵ | Cohort study | Patients with
NAFLD and
healthy
volunteers | 171 | N/A | Integration of clinical
and laboratory NAFLD
indicators (BMI, ALT,
AST and uric acid) in a
non-invasive diagnostic
formula for NAFLD | N/A | The proposed formula demonstrated both high sensitivity and specificity, with accuracy significantly higher than FibroScan | Diagnosis and
biomarkers | | Chen 2019 ¹²⁴ | Meta-analysis | Population-based
studies in
subjects with or
without NAFLD
followed up with
colonoscopy | 124,206 | N/A | Determine association
between NAFLD and
risk of incident and
recurrence of CRA/CRC | N/A | NAFLD was associated with increased incident of CRA/CRC | Association
with metabolic
risk factors or
other diseases | | Feng 2019 ¹²⁵ | RCT | Patients with
T2DM and NAFLD
from China | 85 | 69 | Comparing the effects of gliclazide, liraglutide and metformin on weight, BMI and body composition | 24 weeks | Liraglutide and metformin
provided greater weight
loss, reductions in body fat
mass, and better blood
glucose control vs gliclazide | Treatment | | Yang 2019 ¹⁹ | Cohort study | Patients with
NAFLD | 453 | 59 | Evaluate the diagnostic performance of clinical non-invasive fibrosis models in NAFLD, to provide an optimal | N/A | APRI, BARD, FibroMeter NAFLD and NIKEI had better diagnostic accuracy, and could be preferred for diagnosing NAFLD fibrosis | Diagnosis and
biomarkers | | | Ogawa 2018 ¹⁴ Wijarnpreecha 2018 ¹²⁰ Loomba 2018 ¹²¹ Herath 2019 ¹²² Lin 2019 ¹²³ Feng 2019 ⁵ Chen 2019 ¹²⁴ | Ogawa 2018 ¹⁴ Cohort study Wijarnpreecha 2018 ¹²⁰ Meta-analysis Loomba 2018 ¹²¹ Cohort study Lin 2019 ¹²³ Retrospective analysis Feng 2019 ⁵ Cohort study Chen 2019 ¹²⁴ Meta-analysis Feng 2019 ¹²⁵ RCT | Hu 2018 ¹¹⁹ Cohort study Middle-aged and elderly patients with and without NAFLD Ogawa 2018 ¹⁴ Cohort study Patients with NAFLD from Japan Wijarnpreecha 2018 ¹²⁰ Meta-analysis Adult patients with and without NAFLD Loomba 2018 ¹²¹ Patients with biopsy-confirmed NASH Herath 2019 ¹²² Cohort study Patients with T2DM in Sri Lanka Lin 2019 ¹²³ Retrospective analysis Patients with hiopsy-confirmed NASH from Taiwan Feng 2019 ⁵ Cohort study Patients with NAFLD and healthy volunteers Chen 2019 ¹²⁴ Meta-analysis Population-based studies in subjects with or without NAFLD followed up with colonoscopy Feng 2019 ¹²⁵ RCT Patients with T2DM and NAFLD from China | Cohort study Middle-aged and elderly patients with and without NAFLD | Cirrhosis Cirrhosis | Cohort study Middle-aged and elderly patients with and without NAFLD | Hu 2018 ¹¹⁰ Cohort study Middle-aged and elderly patients with and without NAFLD Ogawa 2018 ¹⁴ Cohort study Patients with NAFLD from Japan Ogawa 2018 ¹⁴ Cohort study Patients with NAFLD from Japan Wijarmpreecha Meta-analysis Adult patients with NAFLD from Japan ANAFLD from Japan ANAFLD from Japan Adult patients with NAFLD from Japan Wijarmpreecha Meta-analysis Adult patients with NAFLD from NAFLD and diastolic cardiac dysfunction Loomba 2018 ²¹² Patients with blopsy-confirmed NASH and diastolic cardiac dysfunction Loomba NASH NASH Patients with T2DM in Sri Lanka Lin 2019 ¹²³ Cohort study Patients with Japan analysis Patients with NASH NASH Chort study Patients with Patients with NASH NASH NASH NASH NASH NASH NASH NASH | Hu 2018 ¹¹¹ Cohort study Middle-aged and | | | 1 | | T | 1 | 1 | T | ı | I | T | |----|-----------------------------------|------------------------------|---|------|-----
--|----------|--|--| | | | | | | | diagnostic method for advanced fibrosis | | | | | 80 | Traussnigg
2019 ¹²⁶ | RCT | Patients with
NAFLD, with or
without diabetes | 198 | 62 | Assess the efficacy of
two doses of
norursodeoxycholic acid
vs placebo for the
treatment of NAFLD | 4 weeks | Norursodeoxycholic acid at
1500 mg resulted in a
significant reduction of
serum ALT within 12 weeks
of treatment when
compared with placebo | Treatment | | 81 | Staufer 2019 ¹⁷ | RCT | Patients with
NAFLD with or
without NASH | 186 | 57 | Compare the diagnostic accuracy of several widely available non-invasive tests for fibrosis | N/A | Proprietary fibrosis panels
and VCTE show superior
diagnostic accuracy for non-
invasive diagnosis of fibrosis
stage in NAFLD as compared
to FIB-4 and NFS | Diagnosis and
biomarkers | | 82 | Pockros
2019 ¹²⁷ | RCT | Patients with
NASH | 84 | 39 | To evaluate how statins can regulate lipoprotein metabolism with OCA treatment in patients with NASH | N/A | OCA-induced increases in
LDLc in patients with NASH
were mitigated with
atorvastatin | Treatment | | 83 | Singh 2020 ⁴ | Prospective
observational | Patients who underwent LC for symptomatic gallstones | 101 | 25 | To identify the prevalence of asymptomatic NAFLD or NASH in liver biopsy and also to identify the association of hypercholesterolemia with NAFLD in patients undergoing LC | N/A | Dyslipidaemia was present in 49.5% of patients. There was no association between NAFLD and serum cholesterol, triglycerides or LDLc (<i>P</i> =0.428, 0.848, 0.371, respectively). NAFLD was confirmed in liver biopsy in 21.8% of patients | Association
with metabolic
risk factors or
other diseases | | 84 | Harrison
2019 ¹²⁸ | RCT | Patients with
NASH and
hepatic fat
fraction of at
least 10% | 84 | 45 | To assess the safety and efficacy of resmetirom in patients with NASH | 2 weeks | Resmetirom-treated patients showed a relative reduction of hepatic fat compared with placebo at Week 12 (LS mean difference –22.5%, P<0.0001) and Week 36 (LS mean difference –28.8%, P<0.0001) | Treatment | | 85 | Guillaume
2019 ³⁶ | Cohort study | Patients with
NAFLD | 417 | 59 | To compare ELF and FibroMeter ^{V2G} for the non-invasive diagnosis of liver fibrosis in NAFLD | N/A | The diagnostic accuracy of FibroMeter ^{V2G} and ELF test is not significantly different in a population of patients with NAFLD from tertiary care centres | Diagnosis and
biomarkers | | 86 | Cossiga 2019 ⁶⁷ | RCT | Patients with
NAFLD | 49 | 66 | To evaluate the effects of Berberis aristata, Elaeis guineensis and decaffeinated green coffee on the improvement of glycaemic profile in patients with NAFLD | 6 months | Patients treated with plant extracts displayed a significant reduction of serum glucose (P<0.001), insulin levels (P<0.01), HOMA-IR (P<0.001), and CAP value (P<0.01) compared with placebo | Treatment | | 87 | Dai 2020 ⁶⁸ | Meta-analysis | Adult patients
with NAFLD with
abnormal liver | 1349 | N/A | To evaluate the effectiveness and safety of acupoint embedding | N/A | There was substantial heterogeneity between the included studies and more | Treatment | | | | | aminotransferase
s | | | alone or in combination
for NAFLD with
abnormal transaminase | | rigorous clinical trials are required | | |----|---------------------------------|---|--|-----|-----|---|---------------------|---|--| | 88 | Leong 2020 ³⁷ | Prospective
study | Patients with
NAFLD scheduled
for liver biopsy | 100 | 46 | To compare the accuracy of TE and pSWE to diagnose fibrosis stage in NAFLD and to study the intra-observer and inter-observer variability | N/A | Transient elastography was significantly better than pSWE for the diagnosis of fibrosis stage ≥F2 and ≥F3. Both TE and pSWE had excellent intra-observer and inter-observer variability | Diagnosis and
biomarkers | | 89 | Sinha 2020 ¹²⁹ | Prospective,
cross-
sectional and
control-
matched
study | Patients with
NAFLD | 120 | 55 | To investigate and compare the clinical characteristics, metabolic associations and cardiovascular risk factors among patients having NAFLD with or without obesity | N/A | The components of MetS such as systolic blood pressure, diastolic blood pressure, fasting blood sugar and serum triglyceride were comparable among patients with lean and obese NAFLD | Association
with metabolic
risk factors or
other diseases | | 90 | Baikpour
2020 ³⁸ | Retrospective
study | Patients with biopsy-proven NAFLD who underwent duplex Doppler ultrasound assessment of the main portal vein within 1 year of liver biopsy | 123 | N/A | To assess the accuracy of portal vein pulsatility for non-invasive diagnosis of high-risk NAFLD compared with NFS, FIB-4, BARD score, and APRI | N/A | Venous pulsatility index had
the highest optimism-
corrected AUC; addition of
venous pulsatility index to
any of the four scoring
systems significantly
improved the diagnostic
value of the score for high-
risk NAFLD | Diagnosis and
biomarkers | | 91 | Jarvis 2020 ¹³⁰ | Meta-analysis | Patients with
NAFLD | N/A | N/A | To synthesize evidence on metabolic risk factors and prognostic value for liver disease outcomes in populations at risk of or diagnosed with NAFLD | N/A | T2DM is associated with a greater than 2-fold increase in the risk of developing severe liver disease | Association
with metabolic
risk factors or
other diseases | | 92 | Ye 2020 ¹³¹ | Meta-analysis | Patients with
non-obese or
lean NAFLD | N/A | N/A | To characterize prevalence, incidence, and long-term outcomes of non-obese or lean NAFLD at a global level | N/A | Overall, around 40% of the global NAFLD population was classified as non-obese and almost a fifth was lean. Both non-obese and lean groups had substantial long-term liver and non-liver comorbidities | Burden of
disease | | 93 | Kogiso 2020 ¹³² | Observational retrospective | Patients with
NAFLD | 365 | 51 | To evaluate the long-
term outcomes of
mortality and HCC
within Japanese
patients with NAFLD | Median
7.1 years | The rates of liver-related and non-liver-related deaths and HCC development were significantly prominent in patients with advanced fibrosis | Burden of
disease | | 94 | Al-Qarni
2020 ¹³³ | Observational
Study | Patients with
obesity and
NAFLD who
underwent
bariatric surgery | 26 | 42 | Evaluate the expression of four candidate NAFLD biomarkers, assessing the applicability to classify and treat the disease | N/A | COL1A1 (P=0.03) and
PNPLA3 (P=0.03) protein
levels significantly increased
amongst patients with
fibrosis-stage NAFLD | Diagnosis and
biomarkers | | | | | | | | | | compared with patients with steatosis-stage NAFLD | | |----|---------------------------------------|-----|------------------------|----|----|--|---|--|-----------| | 95 | Cevik Saldiran
2020 ¹³⁴ | RCT | Patients with
NAFLD | 31 | 39 | Examine the effectiveness of adding WBV exercises to aerobic training in terms of metabolic features and quality of life | · | Insulin resistance was markedly reduced (–2.36; 95% CI: –4.96 to –0.24; P=0.049) with addition of WBV. WBV did not provide further benefits in metabolic properties or quality of life | Treatment | Abbreviations: ALT, alanine aminotransferase; APRI, AST-to-platelet ratio index; ARFI, acoustic radiation force impulse; AST, aspartate aminotransferase; AUC, area under curve; BARD, body mass index, AST-to-ALT ratio, diabetes mellitus; BMI, body mass index; CAC, coronary artery calcium; CAD, coronary artery disease; CAP, controlled attenuation parameter; CC, cryptogenic cirrhosis; CCA, cholangiocarcinoma; COL1A1, collagen type 1 alpha 1; CRA, colorectal adenoma; CRC, colorectal cancer; CT, computed tomography; CV, cardiovascular; DPP-4i, dipeptidyl peptidase-4 inhibitor; eCCA, extrahepatic CCA; ELF, enhanced liver fibrosis; FGF, fibroblast growth factor; FIB-4, fibrosis-4 index; GLP-1, glucagon-like peptide-1; GR-MD-02, galactoarabino-rhamnogalaturonate; HCC, hepatocellular carcinoma; HOMA-IR, homeostatic model assessment of insulin resistance; HSF, heat shock factor, HSP, heat shock protein; iCCA, intrahepatic CCA; IR, insulin resistance; LC, laparoscopic cholecystectomy; LDLc, low-density lipoprotein cholesterol; LECT2, leukocyte cell-derived chemotaxin-2; LINKI, Linköping University-Karolinska Institute; LS, least squares; LSM, liver
stiffness measurement; MACK-3, hoMa, Ast, CK18 composite; MetS, metabolic syndrome; MRE, magnetic resonance elastography; MRI, magnetic resonance imaging; N/A, not applicable; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NFS, NAFLD fibrosis score; NIKEI, non-invasive Koeln-Essen index; OCA, obeticholic acid; PCOS, polycystic ovary syndrome; PNPLA3, patatin-like phospholipase domain-containing 3; pSWE, point shear wave elastography; RCT, randomized controlled trial; RPR, red cell volume distribution width-to-platelet ratio; SSI, supersonic shear imaging; SWE, shear wave elastography; T2DM, type 2 diabetes mellitus; TE, transient elastography; TIMP, tissue inhibitor of metalloproteinase; VCTE, vibration-controlled transient elastography; WBV, whole-body vibration; WFA*-M2BP, Wisteria floribunda agglutinin-positive Mac-2-binding protein. ^aReference contained within Xiao (2017) meta-analysis. ^bReference contained within Dong (2017) meta-analysis. ^cReference contained within Chen (2019) meta-analysis. ## **Abbreviations** AASLD, American Association for Study of Liver Diseases ACC, acetyl-CoA carboxylase ALT, alanine aminotransferase APRI, AST-to-platelet ratio index ARFI, acoustic radiation force impulse AST, aspartate aminotransferase AUC, area under the curve BARD, body mass index, AST-to-ALT ratio, diabetes mellitus BID, twice daily BMI, body mass index CAD, coronary artery disease CI, confidence interval COL1A1, collagen type 1 alpha 1 CRA, colorectal adenoma CRC, colorectal cancer CV, cardiovascular DAG, diacylglycerol DNL, de novo lipogenesis ELF, enhanced liver fibrosis FAST, FibroScan-AST FDA, Food and Drug Administration FGF, fibroblast growth factor FIB-4, fibrosis-4 index FPG, fasting plasma glucose FXR, farnesoid X receptor GGT, gamma glutamyl-transferase GLP-1, glucagon-like peptide-1 HCC, hepatocellular carcinoma HOMA-IR, homeostatic model assessment of insulin resistance HR, hazard ratio hsCRP, high-sensitivity C-reactive protein HSF, heat shock factor HSP, heat shock protein IR, insulin resistance LECT2, leukocyte cell-derived chemotaxin-2 LC, laparoscopic cholecystectomy LDL, low-density lipoprotein LDLc, low-density lipoprotein cholesterol LINKI, Linköping University-Karolinska Institute LS, least squares LSM, liver stiffness measurement MACK-3, hoMa, Ast, CK18 MAFLD, metabolic dysfunction-associated fatty liver disease MEFIB, MRE combined with FIB-4 MetS, metabolic syndrome MRE, magnetic resonance elastography NAFLD, non-alcoholic fatty liver disease NASH, non-alcoholic steatohepatitis NFS, NAFLD fibrosis score NIKEI, non-invasive Koeln-Essen index OCA, obeticholic acid OR, odds ratio PKC, protein kinase C PNPLA3, patatin-like phospholipase domain-containing 3 PPAR, peroxisome proliferator-activated receptor PPV, positive predictive value pSWE, point shear wave elastography RR, relative risk SGLT, sodium-glucose co-transporter SWE, shear wave elastography T2DM, type 2 diabetes mellitus TAG, triacylglycerol TIMP, tissue inhibitor of metalloproteinase UA, uric acid VCTE, vibration-controlled transient elastography VLDL, very low-density lipoprotein WFA⁺-M2BP, Wisteria floribunda agglutinin-positive Mac-2-binding protein ## References - American Diabetes Association. 4. Comprehensive Medical Evaluation and Assessment of Comorbidities: Standards of Medical Care in Diabetes-2020. *Diabetes Care*. 2020;43(1 Suppl):S37-S47. - 2. Hashimoto E, Taniai M, Tokushige K. Characteristics and diagnosis of NAFLD/NASH. *J Gastroenterol Hepatol.* 2013;28(4 Suppl):64-70. - 3. Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. *Gastroenterology*. 2005;128(7):1898-1906. - 4. Singh K, Dahiya D, Kaman L, Das A. Prevalence of non-alcoholic fatty liver disease and hypercholesterolemia in patients with gallstone disease undergoing laparoscopic cholecystectomy. *Pol Przegl Chir.* 2019;92(1):18-22. - 5. Feng G, He N, Zhou YF, et al. A simpler diagnostic formula for screening nonalcoholic fatty liver disease. *Clin Biochem.* 2019;64:18-23. - 6. He L, Deng L, Zhang Q, et al. Diagnostic Value of CK-18, FGF-21, and Related Biomarker Panel in Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. *Biomed Res Int.* 2017;2017:9729107. - 7. Yip TC, Ma AJ, Wong VW, et al. Laboratory parameter-based machine learning model for excluding non-alcoholic fatty liver disease (NAFLD) in the general population. *Aliment Pharmacol Ther*. 2017;46(4):447-456. - 8. Bril F, McPhaul MJ, Caulfield MP, et al. Performance of the SteatoTest, ActiTest, NashTest and FibroTest in a multiethnic cohort of patients with type 2 diabetes mellitus. *J Investig Med.* 2019;67(2):303-311. - National Institute for Health and Care Excellence. Non-alcoholic fatty liver disease (NAFLD): assessment and management. 2016; https://www.nice.org.uk/guidance/ng49/chapter/Recommendations. Accessed April, 2020. - 10. Jaruvongvanich V, Wijarnpreecha K, Ungprasert P. The utility of NAFLD fibrosis score for prediction of mortality among patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis of cohort study. *Clin Res Hepatol Gastroenterol*. 2017;41(6):629-634. - 11. Xiao G, Zhu S, Xiao X, Yan L, Yang J, Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: A meta-analysis. *Hepatology*. 2017;66(5):1486-1501. - 12. Cengiz M, Ozenirler S. Comparative diagnostic accuracy of red cell distribution width-to-platelet ratio versus noninvasive fibrosis scores for the diagnosis of liver fibrosis in biopsy-proven nonalcoholic fatty liver disease. *Eur J Gastroenterol Hepatol.* 2015;27(11):1293-1299. - 13. Chwist A, Hartleb M, Lekstan A, Kukla M, Gutkowski K, Kajor M. A composite model including visfatin, tissue polypeptide-specific antigen, hyaluronic acid, and hematological variables for the diagnosis of moderate-to-severe fibrosis in nonalcoholic fatty liver disease: a preliminary study. *Pol Arch Med Wewn.* 2014;124(12):704-712. - 14. Ogawa Y, Honda Y, Kessoku T, et al. Wisteria floribunda agglutinin-positive Mac-2-binding protein and type 4 collagen 7S: useful markers for the diagnosis of significant fibrosis in patients with non-alcoholic fatty liver disease. *J Gastroenterol Hepatol.* 2018;33(10):1795-1803. - 15. Boursier J, Anty R, Vonghia L, et al. Screening for therapeutic trials and treatment indication in clinical practice: MACK-3, a new blood test for the diagnosis of fibrotic NASH. *Aliment Pharmacol Ther.* 2018;47(10):1387-1396. - 16. Lykiardopoulos B, Hagstrom H, Fredrikson M, et al. Development of Serum Marker Models to Increase Diagnostic Accuracy of Advanced Fibrosis in Nonalcoholic Fatty Liver Disease: The New LINKI Algorithm Compared with Established Algorithms. *PLoS One.* 2016;11(12):e0167776. - 17. Staufer K, Halilbasic E, Spindelboeck W, et al. Evaluation and comparison of six noninvasive tests for prediction of significant or advanced fibrosis in nonalcoholic fatty liver disease. *United European Gastroenterol J.* 2019;7(8):1113-1123. - 18. Subasi CF, Aykut UE, Yilmaz Y. Comparison of noninvasive scores for the detection of advanced fibrosis in patients with nonalcoholic fatty liver disease. *Eur J Gastroenterol Hepatol*. 2015;27(2):137-141. - 19. Yang M, Jiang L, Wang Y, et al. Step layered combination of noninvasive fibrosis models improves diagnostic accuracy of advanced fibrosis in nonalcoholic fatty liver disease. *J Gastrointestin Liver Dis.* 2019;28(3):289-296. - 20. Singh A, Gosai F, Siddiqui MT, et al. Accuracy of noninvasive fibrosis scores to detect advanced fibrosis in patients with type-2 diabetes with biopsy-proven nonalcoholic fatty liver disease. *J Clin Gastroenterol.* 2020;ePub ahead of print; DOI: 10.1097/MCG.000000000001339. - 21. Bril F, McPhaul MJ, Caulfield MP, et al. Performance of plasma biomarkers and diagnostic panels for nonalcoholic steatohepatitis and advanced fibrosis in patients with type 2 diabetes. *Diabetes Care*. 2020;43(2):290-297. - 229. Abdelaziz R, Elbasel M, Esmat S, Essam K, Abdelaaty S. Tissue inhibitors of metalloproteinase-1 and 2 and obesity related non-alcoholic fatty liver disease: Is there a relationship. *Digestion*. 2015;92(3):130-137. - 23. Zhou Y, Oresic M, Leivonen M, et al. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. *Clin Gastroenterol Hepatol.* 2016;14(10):1463-1472.e1466. - 24. Kamarajah SK, Chan WK, Nik Mustapha NR, Mahadeva S. Repeated liver stiffness measurement compared with paired liver biopsy in patients with non-alcoholic fatty liver disease. *Hepatol Int.* 2018;12(1):44-55. - 25. Lee MS, Bae JM, Joo SK, et al. Prospective comparison among transient elastography, supersonic shear imaging, and ARFI imaging for predicting fibrosis in nonalcoholic fatty liver disease. *PLoS One*. 2017;12(11):e0188321. - 26. Cassinotto C, Boursier J, de Ledinghen V, et al. Liver stiffness in nonalcoholic fatty liver disease: A comparison of supersonic shear imaging, FibroScan, and ARFI with liver biopsy. *Hepatology*. 2016;63(6):1817-1827. - 27. Aykut UE, Akyuz U, Yesil A, et al. A comparison of FibroMeter NAFLD Score, NAFLD fibrosis score, and transient elastography as noninvasive diagnostic tools for hepatic fibrosis in patients with biopsy-proven non-alcoholic fatty liver disease. *Scand J Gastroenterol.* 2014;49(11):1343-1348. - 28. Liu H, Fu J, Hong R, Liu L, Li F. Acoustic radiation force impulse elastography for the non-invasive evaluation of hepatic fibrosis in non-alcoholic fatty liver disease patients: a systematic review & meta-analysis. *PLoS One.* 2015;10(7):e0127782. - 29. Costa-Silva L, Ferolla SM, Lima AS, Vidigal PVT, Ferrari TCA. MR elastography is effective for the non-invasive evaluation of fibrosis and necroinflammatory activity in patients with nonalcoholic fatty liver
disease. *Eur J Radiol.* 2018;98:82-89. - 30. Park CC, Nguyen P, Hernandez C, et al. Magnetic Resonance Elastography vs Transient Elastography in Detection of Fibrosis and Noninvasive Measurement of Steatosis in Patients With Biopsy-Proven Nonalcoholic Fatty Liver Disease. *Gastroenterology*. 2017;152(3):598-607.e592. - 31. Loomba R, Cui J, Wolfson T, et al. Novel 3D magnetic resonance elastography for the noninvasive diagnosis of advanced fibrosis in NAFLD: A prospective study. *Am J Gastroenterol.* 2016;111(7):986-994. - 32. Loomba R, Wolfson T, Ang B, et al. Magnetic resonance elastography predicts advanced fibrosis in patients with nonalcoholic fatty liver disease: a prospective study. *Hepatology*. 2014;60(6):1920-1928. - 33. Cui J, Heba E, Hernandez C, et al. Magnetic resonance elastography is superior to acoustic radiation force impulse for the Diagnosis of fibrosis in patients with biopsy-proven nonalcoholic fatty liver disease: A prospective study. *Hepatology*. 2016;63(2):453-461. - 34. Ergelen R, Yilmaz Y, Asedov R, et al. Comparison of Doppler ultrasound and transient elastography in the diagnosis of significant fibrosis in patients with nonalcoholic steatohepatitis. *Abdom Radiol (NY)*. 2016;41(8):1505-1510. - 35. Joo SK, Kim W, Kim D, et al. Steatosis severity affects the diagnostic performances of noninvasive fibrosis tests in nonalcoholic fatty liver disease. *Liver Int.* 2018;38(2):331-341. - 36. Guillaume M, Moal V, Delabaudiere C, et al. Direct comparison of the specialised blood fibrosis tests FibroMeter(V2G) and Enhanced Liver Fibrosis score in patients with non-alcoholic fatty liver disease from tertiary care centres. *Aliment Pharmacol Ther.* 2019;50(11-12):1214-1222. - 37. Leong WL, Lai LL, Nik Mustapha NR, et al. Comparing point shear wave elastography (ElastPQ) and transient elastography for diagnosis of fibrosis stage in non-alcoholic fatty liver disease. *J Gastroenterol Hepatol.* 2020;35(1):135-141. - 38. Baikpour M, Ozturk A, Dhyani M, et al. Portal Venous Pulsatility Index: A Novel Biomarker for Diagnosis of High-Risk Nonalcoholic Fatty Liver Disease. *AJR Am J Roentgenol.* 2020;214(4):786-791. - 39. Ooi GJ, Burton PR, Earnest A, et al. Visual liver score to stratify non-alcoholic steatohepatitis risk and determine selective intraoperative liver biopsy in obesity. *Obes Surg.* 2018;28(2):427-436. - 40. Caussy C, Reeder SB, Sirlin CB, Loomba R. Noninvasive, quantitative assessment of liver fat by MRI-PDFF as an endpoint in NASH trials. *Hepatology (Baltimore, Md)*. 2018;68(2):763-772. - 41. Hsu C, Caussy C, Imajo K, et al. Magnetic resonance vs transient elastography analysis of patients with nonalcoholic fatty liver disease: A systematic review and pooled analysis of individual participants. *Clin Gastroenterol Hepatol.* 2019;17(4):630-637.e638. - 42. Newsome PN, Sasso M, Deeks JJ, et al. FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a - prospective derivation and global validation study. *Lancet Gastroenterol Hepatol.* 2020;5(4):362-373. - 43. Jung J, Loomba RR, Imajo K, et al. MRE combined with FIB-4 (MEFIB) index in detection of candidates for pharmacological treatment of NASH-related fibrosis. *Gut.* 2020. doi:10.1136/gutjnl-2020-322976. - 44. Miyaaki H, Nakao K. Significance of genetic polymorphisms in patients with nonalcoholic fatty liver disease. *Clin J Gastroenterol.* 2017;10(3):201-207. - 45. Liu DJ, Peloso GM, Yu H, et al. Exome-wide association study of plasma lipids in >300,000 individuals. *Nat Genet*. 2017;49(12):1758-1766. - 46. Kantartzis K, Peter A, Machicao F, et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. *Diabetes*. 2009;58(11):2616-2623. - 47. Hassan MM, Kaseb A, Etzel CJ, et al. Genetic variation in the PNPLA3 gene and hepatocellular carcinoma in USA: risk and prognosis prediction. *Mol Carcinog.* 2013;52(1 Suppl):E139-147. - 48. Liu Z, Zhang Y, Graham S, et al. Causal relationships between NAFLD, T2D and obesity have implications for disease subphenotyping. *J Hepatol.* 2020;73(2):263-276. - 49. Eslam M, George J. Genetic contributions to NAFLD: leveraging shared genetics to uncover systems biology. *Nature reviewsGastroenterology & hepatology*. 2020;17(1):40-52. - 50. Dongiovanni P, Stender S, Pietrelli A, et al. Causal relationship of hepatic fat with liver damage and insulin resistance in nonalcoholic fatty liver. *J Intern Med.* 2018;283(4):356-370. - 51. Liu DJ, Peloso GM, Yu H, et al. Exome-wide association study of plasma lipids in >300,000 individuals. *Nature genetics*. 2017;49(12):1758-1766. - 52. He S, McPhaul C, Li JZ, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. *J Biol Chem.* 2010;285(9):6706-6715. - 53. Honma M, Sawada S, Ueno Y, et al. Selective insulin resistance with differential expressions of IRS-1 and IRS-2 in human NAFLD livers. *Int J Obes (Lond)*. 2018;42(9):1544-1555. - 54. Siddiqui MS, Fuchs M, Idowu MO, et al. Severity of nonalcoholic fatty liver disease and progression to cirrhosis are associated with atherogenic lipoprotein profile. *Clin Gastroenterol Hepatol.* 2015;13(5):1000-1008 e1003. - 55. Younossi Z, Tacke F, Arrese M, et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. *Hepatology*. 2019;69(6):2672-2682. - 56. Younossi ZM. Patient-reported outcomes and the economic effects of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: The value proposition. *Hepatology.* 2018;68(6):2405-2412. - 57. Cook N, Geier A, Schmid A, et al. The patient perspectives on future therapeutic options in NASH and patient needs. *Front Med (Lausanne)*. 2019;6:61. - 58. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. *Hepatology*. 2018;67(1):328-357. - 59. Francque S, Lanthier N, Verbeke L, et al. The Belgian Association for Study of the Liver Guidance Document on the Management of Adult and Paediatric Non-Alcoholic Fatty Liver Disease. *Acta Gastroenterol Belg.* 2018;81(1):55-81. - 60. Chitturi S, Wong VW-S, Chan W-K, et al. The Asia—Pacific Working Party on Non-alcoholic Fatty Liver Disease guidelines 2017—Part 2: Management and special groups. *J Gastroenterol Hepatol*. 2018;33(1):86-98. - 61. EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. *J Hepatol.* 2016;64(6):1388-1402. - 62. de Castro GS, Calder PC. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. *Clin Nutr.* 2018;37(1):37-55. - 63. Kelley NS. Treatment of nonalcoholic fatty liver disease with long-chain n-3 polyunsaturated fatty acids in humans. *Metab Syndr Relat Disord*. 2016;14(9):417-430. - 64. Shi YS, Zhang Y, Lia HT, et al. Limonoids from citrus: chemistry, anti-tumor potential, and other bioactivities. *J Funct Foods*. 2020;75:104213. - 65. Kelley DS, Adkins YC, Zunino SJ, et al. Citrus limonin glucoside supplementation decreased biomarkers of liver disease and inflammation in overweight human adults. *J Funct Foods*. 2015;12:271-281. - 66. Rodriguez-Ramiro I, Vauzour D, Minihane AM. Polyphenols and non-alcoholic fatty liver disease: impact and mechanisms. *Proc Nutr Soc.* 2016;75(1):47-60. - 67. Cossiga V, Lembo V, Guarino M, et al. *Berberis aristata*, *Elaeis guineensis* and *Coffea canephora* extracts modulate the insulin receptor expression and improve hepatic steatosis in NAFLD patients: a pilot clinical trial. *Nutrients*. 2019;11(12):3070. - 68. Dai L, Ooi VV, Zhou W, Ji G. Acupoint embedding therapy improves nonalcoholic fatty liver disease with abnormal transaminase: A PRISMA-compliant systematic review and meta-analysis. *Medicine* (*Baltimore*). 2020;99(3):e18775. - 69. Bazerbachi F, Vargas EJ, Rizk M, et al. Intragastric balloon placement induces significant metabolic and histologic improvement in patients with nonalcoholic steatohepatitis. *Clin Gastroenterol Hepatol.* 2020;ePub ahead of print. DOI: 10.1016/j.cgh.2020.04.068. - 70. Salman AA, Sultan A, Abdallah A, et al. Effect of weight loss induced by laparoscopic sleeve gastrectomy on liver histology and serum adipokine levels. *J Gastroenterol Hepatol.* 2020;ePub ahead of print. DOI:10.1111/jgh.15029. - 71. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: A systematic review and meta-analysis. *JAMA*. 2004;292(14):1724-1737. - 72. Laursen TL, Hagemann CA, Wei C, et al. Bariatric surgery in patients with non-alcoholic fatty liver disease from pathophysiology to clinical effects. *World J Hepatol.* 2019;11(2):138-149. - 73. Lassailly G, Caiazzo R, Ntandja-Wandji LC, et al. Bariatric surgery provides long-term resolution of nonalcoholic steatohepatitis and regression of fibrosis. *Gastroenterology*. 2020;ePub ahead of print. DOI: 10.1053/j.gastro.2020.06.006 - 74. Di Naso FC, Porto RR, Fillmann HS, et al. Obesity depresses the anti-inflammatory HSP70 pathway, contributing to NAFLD progression. *Obesity (Silver Spring)*. 2015;23(1):120-129. - 75. Gaharwar R, Trikha S, Margekar SLa, Jatav OPr, Ganga PD. Study of clinical profile of patients of non alcoholic fatty liver disease and its association with metabolic syndrome. *J Assoc Physicians India*. 2015;63(1):12-16. - 76. Pang Q, Zhang JY, Song SD, et al. Central obesity and nonalcoholic fatty liver disease risk after adjusting for body mass index. *World J Gastroenterol*. 2015;21(5):1650-1662. - 77. Loomba R, Sirlin CB, Ang B, et al. Ezetimibe for the treatment of nonalcoholic steatohepatitis: Assessment by novel magnetic resonance imaging and magnetic resonance elastography in a randomized trial (MOZART trial). *Hepatology*. 2015;61(4):1239-1250. - 78. Al Rifai M, Silverman MG, Nasir K,
et al. The association of nonalcoholic fatty liver disease, obesity, and metabolic syndrome, with systemic inflammation and subclinical atherosclerosis: the Multi-Ethnic Study of Atherosclerosis (MESA). *Atherosclerosis*. 2015;239(2):629-633. - 79. Singh S, Allen AM, Wang Z, Prokop LJ, Murad MH, Loomba R. Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies. *Clin Gastroenterol Hepatol.* 2015;13(4):643-654. - 80. Li W-DF, Fu K-F, Li G-M, Lian Y-S, Ren A-M, Chen Y-J, Xia J-R. Comparison of effects of obesity and non-alcoholic fatty liver disease on incidence of type 2 diabetes mellitus. *World J Gastroenterol*. 2015;21(32):9607-9613. - 81. Santilli F, Blardi P, Scapellato C, et al. Decreased plasma endogenous soluble RAGE, and enhanced adipokine secretion, oxidative stress and platelet/coagulative activation identify non-alcoholic fatty liver disease among patients with familial combined hyperlipidemia and/or metabolic syndrome. *Vascul Pharmacol.* 2015;72:16-24. - 82. Singh SP, Misra B, Kar SK, et al. Nonalcoholic fatty liver disease (NAFLD) without insulin resistance: Is it different? *Clin Res Hepatol Gastroenterol.* 2015;39(4):482-488. - 83. VanWagner LB, Wilcox JE, Colangelo LA, et al. Association of nonalcoholic fatty liver disease with subclinical myocardial remodeling and dysfunction: A population-based study. *Hepatology*. 2015;62(3):773-783. - 84. Praveenraj P, Gomes RM, Kumar S, et al. Prevalence and Predictors of Non-Alcoholic Fatty Liver Disease in Morbidly Obese South Indian Patients Undergoing Bariatric Surgery. *Obes Surg.* 2015;25(11):2078-2087. - 85. Vassilatou E, Vassiliadi DA, Salambasis K, et al. Increased prevalence of polycystic ovary syndrome in premenopausal women with nonalcoholic fatty liver disease. *Eur J Endocrinol*. 2015;173(6):739-747. - 86. Carbone LJA, Peter. W.; Yeomans, Neville. D. Incretin-based therapies for the treatment of non-alcoholic fatty liver disease: A systematic review and meta-analysis. *J Gastroenterol Hepatol.* 2015;31:23-31. - 87. Armstrong MJ, Gaunt P, Aithal GP, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. *Lancet*. 2016;387(10019):679-690. - 88. Tang W, Xu Q, Hong T, et al. Comparative efficacy of anti-diabetic agents on nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: a systematic review and meta-analysis of randomized and non-randomized studies. *Diabetes Metab Res Rev.* 2016;32(2):200-216. - 89. Lu ZY, Shao Z, Li YL, Wulasihan M, Chen XH. Prevalence of and risk factors for non-alcoholic fatty liver disease in a Chinese population: An 8-year follow-up study. *World J Gastroenterol*. 2016;22(13):3663-3669. - 90. Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis. *J Gastroenterol Hepatol.* 2016;31(5):936-944. - 91. Li L, Liu DW, Yan HY, Wang ZY, Zhao SH, Wang B. Obesity is an independent risk factor for non-alcoholic fatty liver disease: evidence from a meta-analysis of 21 cohort studies. *Obesity Rev.* 2016;17(6):510-519. - 92. Pan S, Hong W, Wu W, et al. The relationship of nonalcoholic fatty liver disease and metabolic syndrome for colonoscopy colorectal neoplasm. *Medicine*. 2017;96(2):e5809. - 93. Petit J-M, Cercueil J-P, Loffroy R, et al. Effect of liraglutide therapy on liver fat content in patients with inadequately controlled type 2 diabetes: The Lira-NAFLD study. *J Clin Endocrinol Metab*. 2017;102(2):407-415. - 94. Yoo HJ, Hwang SY, Choi JH, et al. Association of leukocyte cell-derived chemotaxin 2 (LECT2) with NAFLD, metabolic syndrome, and atherosclerosis. *PLoS One.* 2017;12(4):e0174717. - 95. Tokita Y, Maejima Y, Shimomura K, et al. Non-alcoholic fatty liver disease is a risk factor for type 2 diabetes in middle-aged japanese men and women. *Intern Med.* 2017;56(7):763-771. - 96. Musso G, Cassader M, Paschetta E, Gambino R. Thiazolidinediones and advanced liver fibrosis in nonalcoholic steatohepatitis: A meta-analysis. *JAMA Intern Med.* 2017;177(5):633-640. - 97. Dulai PS, Singh S, Patel J, et al. Increased risk of mortality by fibrosis stage in nonalcoholic fatty liver disease: Systematic review and meta-analysis. *Hepatology*. 2017;65(5):1557-1565. - 98. Caussy C, Soni M, Cui J, et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. *J Clin Invest.* 2017;127(7):2697-2704. - 99. Zhang S, Du T, Li M, Lu H, Lin X, Yu X. Combined effect of obesity and uric acid on nonalcoholic fatty liver disease and hypertriglyceridemia. *Medicine (Baltimore)*. 2017;96(12):e6381. - 100. Dong Y, Lv Q, Li S, et al. Efficacy and safety of glucagon-like peptide-1 receptor agonists in non-alcoholic fatty liver disease: A systematic review and meta-analysis. *Clin Res Hepatol Gastroenterol*. 2017;41(3):284-295. - 101. Feng W, Gao C, Bi Y, et al. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease. *J Diabetes*. 2017;9(8):800-809. - 102. Dai W, Ye L, Liu A, et al. Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus: A meta-analysis. *Medicine (Baltimore)*. 2017;96(39):e8179. - 103. Friedrich-Rust M, Schoelzel F, Maier S, et al. Severity of coronary artery disease is associated with non-alcoholic fatty liver disease: A single-blinded prospective mono-center study. *PLoS One*. 2017;12(10):e0186720. - 104. Wongjarupong N, Assavapongpaiboon B, Susantitaphong P, et al. Non-alcoholic fatty liver disease as a risk factor for cholangiocarcinoma: a systematic review and meta-analysis. *BMC Gastroenterol*. 2017;17(1):149. - 105. Romero-Ibarguengoitia ME, Vadillo-Ortega F, Caballero AE, et al. Family history and obesity in youth, their effect on acylcarnitine/aminoacids metabolomics and non-alcoholic fatty liver disease (NAFLD). Structural equation modeling approach. *PLoS One.* 2018;13(2):e0193138. - 106. Alexander KS, Zakai NA, Lidofsky SD, et al. Non-alcoholic fatty liver disease, liver biomarkers and stroke risk: The Reasons for Geographic and Racial Differences in Stroke cohort. *PLoS One*. 2018;13(3):e0194153. - 107. Harrison SA, Rinella ME, Abdelmalek MF, et al. NGM282 for treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet*. 2018;391(10126):1174-1185. - 108. Kabir MA, Uddin MZ, Siddiqui NI, et al. Prevalence of non-alcoholic fatty liver disease and its biochemical predictors in patients with type-2 diabetes mellitus. *Mymensingh Med J.* 2018;27(2):237-244. - 109. Lu FB, Hu ED, Xu LM, et al. The relationship between obesity and the severity of non-alcoholic fatty liver disease: systematic review and meta-analysis. *Expert Rev Gastroenterol Hepatol.* 2018;12(5):491-502. - 110. Friedman SL, Ratziu V, Harrison SA, et al. A randomized, placebo-controlled trial of cenicriviroc for treatment of nonalcoholic steatohepatitis with fibrosis. *Hepatology*. 2018;67(5):1754-1767. - 111. Chalasani N, Vuppalanchi R, Rinella M, et al. Randomised clinical trial: a leucine-metformin-sildenafil combination (NS-0200) vs placebo in patients with non-alcoholic fatty liver disease. *Aliment Pharmacol Ther.* 2018;47(12):1639-1651. - 112. Zhou YY, Zhou XD, Wu SJ, et al. Synergistic increase in cardiovascular risk in diabetes mellitus with nonalcoholic fatty liver disease: a meta-analysis. *Eur J Gastroenterol Hepatol.* 2018;30(6):631-636. - 113. Strey CBM, de Carli LA, Fantinelli M, et al. Impact of diabetes mellitus and insulin on nonalcoholic fatty liver disease in the morbidly obese. *Ann Hepatol.* 2018;17(4):585-591. - 114. Golabi P, Bush H, Stepanova M, et al. Liver Transplantation (LT) for Cryptogenic Cirrhosis (CC) and Nonalcoholic Steatohepatitis (NASH) Cirrhosis: Data from the Scientific Registry of Transplant Recipients (SRTR): 1994 to 2016. *Medicine*. 2018;97(31):e11518. - 115. Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver disease: a randomized controlled trial (E-LIFT Trial). *Diabetes Care*. 2018;41(8):1801-1808. - 116. Eriksson JW, Lundkvist P, Jansson PA, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in people with type 2 diabetes: a double-blind randomised placebo-controlled study. *Diabetologia*. 2018;61(9):1923-1934. - 117. Harrison SA, Dennis A, Fiore MM, et al. Utility and variability of three non-invasive liver fibrosis imaging modalities to evaluate efficacy of GR-MD-02 in subjects with NASH and bridging fibrosis during a phase-2 randomized clinical trial. *PLoS One.* 2018;13(9):e0203054. - 118. Stine JG, Wentworth BJ, Zimmet A, et al. Systematic review with meta-analysis: risk of hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis compared to other liver diseases. *Aliment Pharmacol Ther.* 2018;48(7):696-703. - 119. Hu YY, Dong NL, Qu Q, Zhao XF, Yang HJ. The correlation between controlled attenuation parameter and metabolic syndrome and its components in middle-aged and elderly nonalcoholic fatty liver disease patients. *Medicine*. 2018;97(43):e12931. - 120. Wijarnpreecha K, Lou S, Panjawatanan P, et al. Association between diastolic cardiac dysfunction and nonalcoholic fatty liver disease: A systematic review and meta-analysis. *Dig Liver Dis* 2018;50(11):1166-1175. - Loomba R, Kayali Z, Noureddin M, et al. GS-0976 Reduces hepatic steatosis and fibrosis markers in patients with nonalcoholic fatty liver disease. *Gastroenterology*. 2018;155(5):1463-1473. - 122. Herath HMM, Kodikara I, Weerarathna TP, Liyanage G. Prevalence and associations of non-alcoholic
fatty liver disease (NAFLD) in Sri Lankan patients with type 2 diabetes: A single center study. *Diabetes Metab Syndr.* 2019;13(1):246-250. - 123. Lin TY, Yeh ML, Huang CF, et al. Disease progression of nonalcoholic steatohepatitis in Taiwanese patients: a longitudinal study of paired liver biopsies. *Eur J Gastroenterol Hepatol.* 2019;31(2):224-229. - 124. Chen J, Bian D, Zang S, et al. The association between nonalcoholic fatty liver disease and risk of colorectal adenoma and cancer incident and recurrence: a meta-analysis of observational studies. *Expert Rev Gastroenterol Hepatol.* 2019;13(4):385-395. - 125. Feng WH, Bi Y, Li P, et al. Effects of liraglutide, metformin and gliclazide on body composition in patients with both type 2 diabetes and non-alcoholic fatty liver disease: A randomized trial. *J Diabetes Investig.* 2019;10(2):399-407. - 126. Traussnigg S, Schattenberg JM, Demir M, et al. Norursodeoxycholic acid versus placebo in the treatment of non-alcoholic fatty liver disease: a double-blind, randomised, placebo-controlled, phase 2 dose-finding trial. *Lancet Gastroenterol Hepatol.* 2019;4(10):781-793. - 127. Pockros PJ, Fuchs M, Freilich B, et al. CONTROL: A randomized phase 2 study of obeticholic acid and atorvastatin on lipoproteins in nonalcoholic steatohepatitis patients. *Liver Int.* 2019;39(11):2082-2093. - 128. Harrison SA, Bashir MR, Guy CD, et al. Resmetirom (MGL-3196) for the treatment of non-alcoholic steatohepatitis: a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. *Lancet*. 2019;394(10213):2012-2024. - 129. Sinha N, Mukhopadhyay S, Sau M. Metabolic syndrome is not uncommon among lean non-alcoholic fatty liver disease patients as compared with those with obesity. *Indian J Gastroenterol*. 2020;39(1):75-83. - 130. Jarvis H, Craig D, Barker R, et al. Metabolic risk factors and incident advanced liver disease in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis of population-based observational studies. *PLoS Med.* 2020;17(4):e1003100. - 131. Ye Q, Zou B, Yeo YH, et al. Global prevalence, incidence, and outcomes of non-obese or lean non-alcoholic fatty liver disease: a systematic review and meta-analysis. *Lancet Gastroenterol Hepatol.* 2020;5(8):739-752. - 132. Kogiso T, Sagawa T, Kodama K, Taniai M, Hashimoto E, Tokushige K. Long-term outcomes of non-alcoholic fatty liver disease and the risk factors for mortality and hepatocellular carcinoma in a Japanese population. *J Gastroenterol Hepatol*. 2020;35(9):1579-1589. - 133. Al-Qarni R, Iqbal M, Al-Otaibi M, et al. Validating candidate biomarkers for different stages of non-alcoholic fatty liver disease. *Medicine (Baltimore)*. 2020;99(36):e21463. - 134. Çevik Saldiran T, Mutluay FK, Yağci I, Yilmaz Y. Impact of aerobic training with and without whole-body vibration training on metabolic features and quality of life in non-alcoholic fatty liver disease patients. *Ann Endocrinol (Paris)*. 2020;81(5):493-499.