
1.1	Introduction
Seasonal	 forecasting	has	great	potential	 for	use	 in	a	wide	 range	of	planning	and	maintenance	activities	 that	are	strongly	dependent	on	seasonal	 to	 interannual	climate	variations.	Global	predictions	at	 this	 time	scale	are

routinely	 produced	by	 only	 a	 few	 centers	 around	 the	world	using	 coupled	 ocean-atmosphere	models,	 due	 to	 both	 the	 specialized	 knowledge	 and	 the	 computational	 resources	 required.	Although	 seasonal	 predictability	 over	most

extratropical	regions	is	still	limited	(Doblas-Reyes	et	al.,	2013),	more	skillful	predictions	are	expected	in	the	near	future	due	to	the	recent	advances	in	new	potential	predictability	sources	(Dunstone	et	al.,	2016;	Clark	et	al.,	2017).	The

recent	adoption	of	climate	services	(Hewitt	et	al.,	2013;	Bruno	Soares	et	al.,	2018)	has	boosted	the	development	of	tailored	products	for	decision	making	in	different	sectors	(see,	e.g.,	the	COPERNICUS	Sectoral	Information	System

over	Europe,	https://climate.copernicus.eu/sectoral-information-system).	Sectoral	applications	of	seasonal	forecasting	are	now	being	established	in	several	sectors,	such	as	agriculture,	energy	and	water	management	(Bruno	Soares	et

al.,	2018).	Other	 recently	discovered	applications	are	emerging,	 including	early-warning	 systems	 for	heat	wave-related	mortality	 (Lowe	et	al.,	 2016)	and	 fire	danger	 (Bedia	et	al.,	2018).	However,	 climate	 services	have	 yet	 to	 be

developed	in	other	areas,	such	as	the	marine	sector,	which	has	several	potential	applications	based	on	seasonal	wave	predictions	(significant	wave	height	and	others)	in	planning	for	the	construction,	maintenance	and	operations	of

coastal	(e.g.,	ports)	and	offshore	(e.g.,	wind	farms)	infrastructures.

Two	recent	studies	investigated	the	skills	of	global	models	in	predicting	significant	wave	height,	and	these	studies	focused	on	tropical	regions	(West	Pacific	and	Indian	Oceans)	where	moderate-to-high	skill	is	expected	(Lopez

and	Kirtman,	2016	and	Shukla	and	Kinter,	2016).	These	studies	showed	that	El	Niño-Southern	Oscillation	(ENSO)	has	a	nonlinear	influence	on	a	smaller	than	normal	wave	height	during	summers	after	the	ENSO	warm	phase.	This	wave
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Abstract

Despite	the	potential	applicability	of	seasonal	forecasting	for	decision	making	in	construction,	maintenance	and	operations	of	coastal	and	offshore	infrastructures,	tailored	climate	services	have	yet	to	be	developed	in	the

marine	sector.	In	this	work,	we	explore	the	potential	of	a	state-of-the-art	seasonal	forecast	systems	to	predict	wave	conditions,	particularly	significant	wave	height.	Since	this	information	is	not	directly	provided	by	models,	a

statistical	downscaling	method	is	applied	to	infer	significant	wave	height	based	on	model	outputs	such	as	sea	level	pressure,	which	drive	waves	over	large	wave	generation	areas	beyond	the	target	location	over	time.	This

method	may	be	beneficial	for	seasonal	forecasting	since	skill	from	wide	generation	areas	can	be	propagated	to	wave	conditions	in	(distant	and	smaller)	target	regions.	We	consider	seasonal	predictions	with	a	one-month	lead

time	of	the	CFSv2	hindcast	in	two	regions:	the	Western	Pacific	around	Indonesia	during	the	June‐–July‐–August	(JJA)	season	and	the	North	Atlantic	Ocean	during	the	January‐–February‐–March	(JFM)	season.	In	the	former	case,

skillful	predictions	are	found,	which	are	higher	during	decay	years	after	ENSO	warm	phases	when	a	negative	anomaly	of	the	significant	wave	height	is	expected.	In	contrast,	statistical	downscaling	in	the	North	Atlantic	Ocean

cannot	add	value	to	the	signal	given	by	the	predictor,	which	is	also	very	weak.

Keywords:	Seasonal	forecast;	sStatistical	downscaling;	sSignificant	wave	height;	Western	Pacific;	Atlantic	Ocean



height	variability	is	due	to	a	reduced	atmospheric	synoptic	activity	associated	with	a	strengthening	of	the	West	Pacific	subtropical	high,	which	is	also	related	to	an	ENSO	decay	(Yun	et	al.,	2015).		One	source	of	seasonal	forecasts	skill

in	the	tropics	is	the	finding	that	ENSO	teleconnections	are	generally	robust	to	internal	atmospheric	variability	in	this	region	(Brands,	2017).	The	ENSO	also	dominates	the	wind	variabilities	in	the	equatorial	region	and	swell	wave

variabilities	in	the	Southern	Hemisphere	of	the	Pacific	Ocean	(Stopa	and	Cheung,	2014).

In	the	North	Atlantic	region,	the	wintertime	mean	wind	and	wave	conditions	are	largely	driven	by	atmospheric	circulation	patterns	such	as	the	North	Atlantic	Oscillation	(NAO)	and	the	East	Atlantic	(EA)	and	Scandinavian

(SCAND)	patterns	(Trigo	et	al.,	2008).	The	moderate	skill	of	global	models	in	predicting	these	large-scale	patterns	has	motivated	the	development	of	alternative	empirical	techniques,	which	rely	on	the	lagged	relationships	between

slowly	varying	components	of	 the	climate	 system	and	 the	predictand	of	 interest.	Colman	et	al.	 (2011)	predicted	winter	ocean	wave	heights	 for	 the	preceding	month	of	May	 in	 the	North	Sea	based	on	North	Atlantic	Sea	 surface

temperatures	 (SSTs).	As	an	alternative	 to	 this	classic	predictor,	 the	October	Eurasian	snow	cover	 increase	was	recently	 found	to	highly	correlate	with	the	DJF	mean	Arctic	Oscillation	 (AO)	 (Cohen	and	Jones,	2011).	Based	on	 this

hypothesis,	Brands	(2014)	proposed	a	statistical	technique	for	forecasting	the	DJF	mean	wind	and	wave	conditions	in	the	North	Atlantic	based	on	the	Eurasian	snow	cover	increase	in	October.	Castelle	et	al.	(2017)	recently	defined	a

new	climate	index	called	the	Western	Europe	Pressure	Anomaly	(WEPA)	based	on	the	sea	level	pressure	gradient	between	the	Valentia	(Ireland)	and	Santa	Cruz	de	Tenerife	(Canary	Islands)	stations,	and	the	WEPA	explains	the	greater

winter	wave	height	variability	along	the	Atlantic	coast	of	Europe	better	than	other	leading	atmospheric	modes.

The	potential	value	added	by	using	dynamical	and	statistical	downscaling	methods	 to	 improve	 the	skill	of	global	 forecasts	over	particular	regions	of	 interest	was	recently	explored	 in	a	number	of	 intercomparison	studies.

Manzanas	et	al.	(2018a)	assessed	the	value	added	by	performing	dynamic	and	statistical	downscaling	for	seasonal	temperature	predictions	in	Europe.	Nikulin	et	al.	(2018)	performed	a	similar	study	for	East	African	precipitation.	The

added	value	of	dynamic	downscaling	was	shown	to	be	limited,	whereas	statistical	downscaling	methods	(building	on	the	link	between	large-scale	atmospheric	predictors	and	the	local	predictand	of	interest)	could	yield	significant	skill

improvements	in	those	cases	where	the	large-scale	variables	used	as	predictors	are	better	predicted	by	the	global	model	than	the	local	variable	of	interest	(see	Manzanas	et	al.,	2018b).	These	methods	are	also	suitable	for	predicting

variables	that	are	not	directly	provided	by	the	model	but	that	can	be	statistically	connected	to	some	model	variables.

The	potential	predictability	of	the	wave	climate	is	largely	linked	to	the	predictability	of	the	wind	or	sea	level	pressure	fields,	which	is	a	common	predictor	used	in	statistical	downscaling	approaches	(Wang	et	al.,	2014).	On	the

other	hand,	the	global	wave	field	is	found	to	be	dominated	by	swell,	even	along	extratropical	storm	areas,	where	the	relative	weight	of	the	wind-sea	part	of	the	wave	spectra	is	highest	(Semedo	et	al.,	2011).	Swells	are	generated

remotely	and	are	not	directly	coupled	to	the	 local	wind	field.	Therefore,	 local	 target	waves	are	strongly	connected	to	the	 large-scale	predictors	of	global	model	simulations.	 In	principle,	statistical	downscaling	methods	could	take

advantage	 of	 atmospheric	 teleconnections	 by	 extending	 the	 predictor	 region	well	 beyond	 the	 target	 region	 (Manzanas	 et	 al.,	 2018b).	 Therefore,	 there	 is	 the	 potential	 to	 improve	 the	 wave	 seasonal	 forecast	 skill	 as	 a	 result	 of

aggregating	predictability	of	distant	wave	generation	areas.	In	this	paper,	we	explore	this	possibility	by	adapting	a	statistical	downscaling	method	for	waves	recently	introduced	by	Camus	et	al.	(2017)	and	by	assessing	the	method’'s

added	value	for	seasonal	forecasting	using	the	retrospective	seasonal	forecasts	provided	by	the	publicly	available	CFSv2	seasonal	hindcast	(Saha	et	al.,	2011).	We	focus	on	two	regions:	1)	the	Western	Pacific	around	Indonesia	during

the	June‐–August	(JJA)	season	because	of	the	wave	climate	forecast	skill	associated	with	the	El	Niño-Southern	Oscillation	(ENSO)	variability,	which	was	previously	analyzed	in	Lopez	and	Kirtman	(2016)	and	Shukla	and	Kinter	(2016),

and	2)	 the	North	Atlantic	Ocean	during	 the	 January‐–March	 (JFM)	 season,	which	 is	 the	period	with	 the	highest	 interannual	 variability	mainly	 associated	with	NAO	pattern	 (Woolf	et	al.,	2002).	 The	experiments	 are	 limited	 to	 the

predictions	corresponding	to	lead	month	1	(May/December	initializations)	for	the	JJA/JFM	season	in	the	Western	Pacific	and	North	Atlantic.

This	 paper	 is	 organized	 as	 follows.	 In	Section	2,	 the	 data	 used	 for	 both	 the	 predictand	 and	 predictors	 and	 the	wave	 climate	 characterization	 of	 the	 two	 regions	 being	 studied	 are	 introduced.	 The	 statistical	 downscaling

methodology	applied	in	this	study	and	the	validation	of	the	statistical	model	are	described	in	Section	3.	The	forecast	quality	verification	is	presented	in	Section	4.	Finally,	the	relevant	conclusions	of	this	study	are	summarized	in	Section

5.

2.2	Data
Historical	 predictand	 (waves)	 and	 predictor	 (sea	 level	 pressure)	 information	 is	 required	 to	 calibrate	 the	 (perfect	 prog)	 statistical	 downscaling	 model.	 In	 addition,	 a	 retrospective	 forecast	 dataset	 is	 used	 to	 verify	 the

performance	of	the	seasonal	forecasts.	The	historical	wave	database	is	also	used	to	assess	the	forecast	quality	of	the	downscaled	wave	heights.	Historical	 information	from	the	El	Niño	and	NAO	indices	 is	also	used	to	analyze	the

connection	of	these	indices	to	the	summer	or	winter	wave	conditions	in	the	Western	Pacific	and	North	Atlantic,	respectively.

2.1.2.1	Historical	data
2.1.1.2.1.1	Historical	Wwave	Ddata

The	wave	hindcast	GOW2	was	developed	by	Perez	et	al.	(2017)	and	provides	historical	wave	data	(i.e.,	significant	wave	height,	Hs,	peak	wave	period,	Tp,	and	mean	wave	direction,	θ)	with	an	hourly	resolution	and	spatial	resolutions	of	0.5°	at	the

global	scale	and	0.25°	along	the	worldwide	continental	shelf	coast	from	1979	to	present.	This	hindcast	uses	the	wave	model	WaveWatch	III	(version	4.18,	Tolman	and	theWaveWatch	III®	Development	Group,	2014)	with	the	parameterization	TEST451



(Ardhuin	et	al.,	2010)	in	a	multigrid	configuration,	which	is	driven	by	the	wind	and	ice	coverage	fields	interpolated	from	historical	CFSR	and	CFSv2	data,	respectively	(Saha	et	al.,	2014).

Figure.	1	shows	the	mean	and	95th	percentiles	of	the	JJA	Hs	in	the	Western	Pacific	(upper	panels)	and	the	JFM	Hs	in	the	North	Atlantic	(lower	panels).	In	the	Western	Pacific,	differences	in	the	spatial	patterns	of	various	statistics	(mean,	and	95th

and	99th	percentiles)	reflect	the	differences	in	wave	generation	processes.	Most	extreme	events	are	concentrated	around	the	Philippine	Sea,	which	matches	the	high	percentile	plots	obtained	by	Stopa	et	al.	(2012)	and	Timmermans	et	al.	(2017)	and	the

seasonal	distribution	of	the	20-year	return	level	quantile	(Izaguirre	et	al.,	2011).	Mean	conditions	reflect	only	the	wave	generation	due	to	local	winds	(Indonesia)	or	distant	extratropical	storms	(eastern	Australia	and	eastern	Asia),	with	the	highest	mean

wave	height	of	approximately	2.0 m	in	eastern	Australia	and	1.6 m	in	the	Northwest	Pacific	Ocean.	The	extreme	wave	conditions	concentrated	in	the	Philippine	Sea	area	can	be	explained	by	the	larger	frequency	and	intensity	of	tropical	cyclones	(TCs)	in	this

region,	reaching	values	of	approximately	4.0 m	and	6.0‐–7.0 m	for	the	95th	and	99th	percentiles	(not	shown),	respectively.	The	tracks	of	the	extratropical	storms	in	the	North	Atlantic	determined	the	spatial	patterns	of	the	waves.	The	patterns	of	the	two

wave	statistics	(mean	and	95th	percentile,	99th	percentile	is	not	shown)	are	similar	in	the	North	Atlantic	(see	also	Stopa	et	al.,	2012),	with	the	highest	waves	at	approximately	40°N	and	65°N	and	values	reaching	5.0	and	9.0 m	for	the	mean	and	95th

percentile	conditions,	respectively	(11.0 m	for	the	99th	percentile).

2.1.2.2.1.2	Historical	Aatmospheric	Ddata
Historical	sea	level	pressure	(SLP)	is	obtained	from	the	Climate	Forecast	System	Reanalysis	(CFSR	and	CFSRv2,	Saha	et	al.,	2014),	which	is	the	reanalysis	corresponding	to	the	seasonal	forecasting	systems	that	are	considered	in	this	study	(see

Sec.tion	2.2).	The	temporal	coverage	spans	from	1979	to	present	with	an	hourly	temporal	resolution	and	0.5°	spatial	resolution.

2.1.3.2.1.3	Climate	Iindices
The	Oceanic	Niño	Index	(ONI),	defined	as	the	3-month	running	mean	of	ERSST.v5	SST	anomalies	in	the	Niño	3.4	region	(5°N-5°S,	120°-170°W),	which	is	centered	on	30-year	base	periods	that	are	updated	every	5 years	(Huang	et	al.,	2017),	is	used

as	a	measure	of	the	ENSO	in	this	work.	The	Climate	Prediction	Center	(CPC),	part	of	the	National	Ocean	and	Atmospheric	Administration	of	the	United	States	(NOAA),	has	adopted	a	new	updating	strategy	for	the	base	period	to	define	El	Niño	and	La	Niña

episodes	and	remove	warming	trends	in	the	Niño-3.4	region	(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_change.shtml).	Warm	(El	Niño)	and	cold	(La	Niña)	periods	are	identified	based	on	a	threshold	of	+/‐	±0.5 °C	for	the

ONI	and	when	the	threshold	is	met	for	a	minimum	of	5	consecutive	overlapping	seasons.	As	a	result,	El	Niño	events	for	the	1982‐–2010	period	are	1982,	1986,	1987,	1991,	1994,	1997,	2002,	2006	and	2009.	The	ENSO	usually	begins	to	increase	in	spring,

peaks	during	boreal	winter	and	decreases	afterward,	becoming	much	weaker	in	the	following	summer.	For	this	reason,	the	NDF	(November‐–December‐–January)	ONI	 is	used	to	analyze	the	summer	wave	climate	variability	 in	the	Western	Pacific.	The

correlation	of	the	wave	climate	 in	JJA	 in	the	Western	Pacific	with	the	NDJ	ONI	for	the	1979‐–2016	period	is	shown	in	the	upper	panels	of	Figure.	2.	The	spatial	patterns	of	 the	correlation	with	 the	wave	statistics	parameters	 (mean	and	95th	and	99th

Figure	1Fig.	1	JJA	Hs	(m)	in	the	Western	Pacific	(a)	and	JFM	Hs	in	the	North	Atlantic	(b):	1)	Mmean;	2)	95th	percentile	as	computed	from	the	GOW2	dataset	over	the	1979‐–2016	period.

alt-text:	Fig.	1



percentiles;	only	the	first	two	are	shown)	are	quite	similar.	A	high	positive	correlation	is	found	in	nearly	the	whole	area,	while	a	significant	negative	correlation	is	found	around	New	Guinea.

The	North	Atlantic	Oscillation	(NAO)	is	traditionally	defined	as	the	normalized	pressure	difference	between	two	stations:	one	is	in	the	Azores	and	the	other	is	in	Iceland.	An	extended	version	has	been	used	in	this	study	based	on	one	station	in	the

SW	part	of	the	Iberian	Peninsula	(Hurrell,	1995),	Gibraltar,	and	the	other	station	is	in	SW	Iceland	(Jones	et	al.,	1997),	which	are	derived	for	the	winter	half	of	the	year	and	calculated	by	the	Climatic	Research	Unit	(CRU)	of	the	University	of	East	Anglia.	The

correlation	between	the	JFM	Hs	and	NAO	Index	is	shown	in	the	lower	panels	of	Figure.	2.	A	positive	correlation	at	the	highest	latitudes	and	a	negative	correlation	at	the	lowest	latitudes	can	be	observed,	which	is	consistent	with	prior	studies	(Dodet	et	al.,

2010;	Bromirski	and	Cayan,	2015).	Note	than	the	correlation	in	some	grid	nodes	over	the	Gulf	of	Saint	Lawrence	and	the	western	part	of	Labrador	Sea	is	not	represented	because	the	ocean	is	sometimes	frozen	during	winter.	The	developed	downscaling

technique	is	not	suitable	for	areas	with	sea	ice	cover	as	the	predictor	definition	only	considers	the	sea	level	pressure	fields	and	none	information	about	 ice	 is	 introduced.	Moreover,	seasonal	sea	ice	cover	predictions	are	not	available	from	the	CFSv2

retrospective	database.

2.2.2.2	Seasonal	forecast	data	(hindcast)
The	NCEP	CFSv2	seasonal	forecasting	system	is	used	in	this	study	to	evaluate	wave	climate	predictability	at	the	seasonal	scale.	The	28-year	(1982‐–2009)	ensemble	retrospective	forecast,	known	as	the	quahindcast,	dataset	from

CFSv2	with	24	members	is	provided	by	NCEP	(Saha	et	al.,	2011).	The	CFSv2	used	in	the	reforecast	consists	of	the	NCEP	Global	Forecast	System	at	T126	(∼0.937°	resolution),	the	Geophysical	Fluid	Dynamics	Laboratory	Modular	Ocean

Model	version	4.0	at	0.25‐–0.5°	grid	spacing	coupled	with	a	two-layer	sea	ice	model,	and	the	four-layer	NOAH	land	surface	model.

The	NCEP-CFSv2	 forecast	database	 is	 consistent	with	 the	 reanalysis	 atmospheric	database	 (NCEP	Global	Forecast	System)	used	 to	 calibrate	 the	 statistical	downscaling	model.	This	 forcing	 is	used	 to	generate	 the	GOW2

database	and	is	publicly	available.

This	information	is	retrieved	from	the	ECOMS	User	Data	Gateway	(ECOMS-UDG),	which	is	developed	by	the	Meteorology	Group	of	the	Universidad	de	Cantabria	(Cofiño	et	al.,	2018),	in	the	framework	of	the	European	Climate

Observations,	Modelling	 and	Services	 initiative	 (ECOMS)	 projects.	 ECOMS	 coordinates	 the	 activities	 of	 three	 on-going	European	 projects	 (EUPORIAS,	 SPECS	 and	NACLIM),	with	 a	 focus	 on	 seasonal	 to	 decadal	 predictions.	 The

ECOMS-UDG	facilitates	harmonized	multimodel	seasonal	forecast	data.	This	information	can	be	obtained	directly	from	the	data	providers,	but	this	activity	is	error-prone	and	time-consuming	because	the	resulting	formats,	temporal

aggregations	and	vocabularies	may	not	be	homogeneous	across	datasets.

Figure	2Fig.	2	Correlation	between	the	Western	Pacific	JJA	Hs	and	NDJ	ONI:	a1)	Mmean	and	a2)	95th	percentile	of	the	JJA	Hs.	Correlation	between	the	North	Atlantic	JFM	Hs	and	NAO	Index:	b1)	Mean	and	b2)	95th	percentile	of	JFM	Hs.	Stippling	represents	areas	where	the	correlation

is	statistically	significant	at	5%	level.

alt-text:	Fig.	2



Historical	 reanalysis	 and	 retrospective	 CFSR	 SLP	 data	 are	 converted	 to	 a	 common	 2.0°x × 2.0°	 latitude-longitude	 grid.	 Daily	 predictor	 fields	 are	 standardized	 to	 avoid	 biased	 results	 due	 to	 differences	 in	 climate	model

climatology	and	variability.	In	the	case	of	GCMs,	standardization	is	applied	using	the	simulated	seasonal	climatological	mean	and	seasonal	standard	deviation	of	the	retrospective	seasonal	forecast	database	for	the	historical	period

covering	1982‐–2009.

3.3	Seasonal	Fforecast	Ddownscaling	Mmethodology
3.1.3.1	Statistical	downscaling	approach

This	study	was	built	on	the	statistical	downscaling	(SD)	method	developed	by	Camus	et	al.	(2017)	based	on	weather	types	(WTs)	under	the	so-called	perfect	prog	approach,	adapting	the	method	to	the	particularities	of	seasonal

forecasting.	This	downscaling	approach	relies	on	a	relationship	established	between	observed	large-scale	predictors	and	observed	local-scale	predictands.	The	predictor	defined	by	the	daily	sea	level	pressure	(SLP)	fields	from	the

reanalysis	CFSR	atmospheric	database	over	the	local	wave	(predictand)	generation	area	is	classified	into	a	reduced	number	of	WTs	(100	in	this	work).	The	GOW2	dataset	is	used	as	predictand	data.	A	regression	guided	classification	is

applied	to	a	combination	of	the	weighted	predictor	and	predictand	estimations	from	a	regression	model,	which	links	the	SLP	fields	with	the	local	marine	climate.	First,	the	statistical	relationship	is	established	by	identifying	hourly	sea

state	parameters	at	each	location	of	interest	in	each	daily	predictor	field	within	the	corresponding	cluster.	Then,	the	empirical	probability	distribution	of	each	sea	state	parameter	(e.g.,	significant	wave	height)	associated	with	each	WT

is	calculated.	Finally,	the	complete	distribution	of	this	variable	for	a	particular	time	period	can	be	estimated	as	the	probability	sum	of	each	WT	during	that	period	multiplied	by	the	corresponding	empirical	distribution.	As	a	result,

different	statistics	(e.g.,	mean,	95th	percentile)	can	be	derived	from	the	estimated	distribution.

Daily	SLP	and	daily	squared	SLP	gradients	(SLPG)	are	usually	taken	as	atmospheric	variables	to	define	the	wave	predictor,	since	SLPG	fields	are	proven	to	improve	the	statistical	relationship	with	waves	(Wang	et	al.,	2014).	A

performance	verification	of	 the	 retrospective	SLP	and	SLPG	seasonal	 forecasts	was	carried	out	 (not	 shown)	before	establishing	 the	 final	 version	of	 the	predictor	 for	 the	 statistical	downscaling	model	at	 the	 seasonal	 scale.	A	 low

predictability	of	SLPG	is	found,	which	could	deteriorate	the	forecast	quality	of	the	seasonal	wave	climate.	Therefore,	this	variable	is	eliminated	as	a	predictor	from	the	statistical	downscaling	model.

The	predictor	spatial	domain	for	each	area	of	study	is	based	on	the	wave	generation	patterns	obtained	in	Camus	et	al.	(2017).	The	domain	for	the	Western	Pacific	Ocean	covers	a	great	part	of	the	Pacific	Ocean	from	120°E	to

150°W	and	from	60°N	to	54°S.	The	predictor	domain	for	the	North	Atlantic	extends	from	64°W	to	16°E	and	from	0°N	to	76°N.	The	predictor	 is	defined	as	 the	 leading	principal	components	 (PCs),	which	explain	95%	of	 the	entire

predictor	variance	of	the	m-daily	mean	SLP,	with	m = 7 days	for	the	Western	Pacific	and	m = 3 days	for	the	North	Atlantic.	These	values	were	obtained	on	the	same	day	and	the	previous	m-1 days	as	the	SLP	average	throughout	the

historical	time	period.	PCs	are	calculated	for	the	seasonal	forecasts	by	projecting	the	corresponding	standardized	fields	onto	the	empirical	orthogonal	functions	obtained	from	the	reanalysis,	which	are	used	for	the	calibration	of	the

method.

Following	Manzanas	(2016),	who	obtained	a	more	skillful	statistical	downscaling	model	for	seasonal	precipitation	forecasting	using	season-specific	data	in	the	model	calibration,	a	particular	regression-guided	classification	is

performed	at	every	wave	GOW2	grid	node	at	a	1.00	resolution,	considering	the	multivariate	wave	conditions	(Hs,	Tp,	θ)	independently	in	each	season.	One-hundred	SLP	field	WTs	are	obtained	for	every	GOW2	grid	node.	The	seasonal

empirical	distribution	of	hourly	significant	wave	height	associated	with	each	WT	at	every	grid	node	of	the	GOW2	wave	database	is	calculated.

The	most	similar	semiguided	WT	is	identified	for	each	m-daily	mean	SLP	field	from	the	hindcast	database	CFSRv2-NCEP	to	calculate	the	probability	of	WTs	and	infer	the	seasonal	empirical	distribution	of	the	significant	wave

height	at	each	grid	node	during	the	target	season.	The	seasonal	predictions	of	the	mean	and	the	95th	and	99th	percentiles	of	the	significant	wave	height	are	obtained	to	assess	the	seasonal	forecast	quality.

3.2.3.2	Statistical	model	cross-validation
The	SD	model	performance	must	be	evaluated	to	obtain	an	upper	bound	for	the	model’'s	generalization	capability	when	applied	to	new	predictor	data	(large-scale	variables	from	GCM).	The	most	popular	approach	used	in

climate	applications	to	validate	an	SD	model	 for	the	historical	period	 independent	of	the	training	period	 involves	data	splitting.	 In	particular,	 in	this	work,	a	k-fold	cross-validation,	which	uses	multiple	calibration/validation	period

combinations	to	produce	a	more	rigorous	validation	(see,	e.g.,	Kohavi,	1995	for	a	general	discussion	or	Gutiérrez	et	al.,	2013	for	an	application	in	statistical	downscaling),	was	performed	considering	k = 5	to	obtain	a	calibration/test	period

covering	80%/20%	of	the	full	period	for	each	fold	(Casanueva,	2016).	As	a	result,	five	independent	and	stratified	folds	(7/8 years	each)	covering	the	full	period	have	been	defined	by	selecting	1	per	5 years,	i.e.,	the	first	fold	would	be

formed	in	years	1979,	1984,	1989,	1994,	1998,	2004,	2009	and	2014.	Using	this	option,	the	same	distributions/climatologies	are	sampled	for	all	folds,	and	each	fold	covers	a	more	representative	range	of	years	(Gutiérrez	et	al.,	2013).

The	estimates	from	the	statistical	downscaling	model	are	compared	against	the	parameters	obtained	from	the	observations	(GOW	wave	data)	at	a	monthly	scale	during	the	JJA	season	in	the	Western	Pacific	and	during	the	JFM

season	in	the	North	Atlantic.	The	monthly	mean	and	95th	and	99th	percentiles	of	Hs	are	validated	using	the	corresponding	sea-state	parameter	distribution	associated	with	each	WT	during	the	calibration	period	of	each	k = 5	 test

subset.	The	Pearson	correlation	coefficient,	normalized	root	mean	square	error	 (NRMSE),	which	 is	defined	as	the	root	mean	square	error	divided	by	the	mean	observed	value	(expressed	 in	%),	and	bias	are	computed	for	each	Hs



parameter	using	the	entire	1979‐–2015	period	by	joining	the	test	subsets	into	a	single	prediction.

3.2.1.3.2.1	Western	Pacific
The	validation	scores	are	shown	in	Figure.	3	for	the	mean	and	95th	percentile	of	the	significant	wave	height	(mean	in	the	left	column,	95th	percentile	in	the	right	column).	The	skill	of	the	SD	model	is	considerably	high	but	worsens	as	the	Hs

percentile	increases.	for	higher	Hs	percentiles.	The	correlation	coefficients	are	approximately	0.8‐–0.95	for	the	mean	Hs	in	nearly	the	whole	area,	except	in	the	most	sheltered	part,	such	as	the	coast	of	the	China	Sea	and	north	of	New	Guinea,	where	the

value	decreases	to	0.5.	The	correlation	decreases	for	extreme	wave	heights,	and	there	are	restricted	areas	with	coefficients	of	approximately	0.8.	Regarding	the	NRMSE,	the	values	increase	from	approximately	10%	for	the	mean	Hs	to	20%	for	the	95th

percentile	and	between	30%	and	50%	for	the	99th	percentile	(not	shown)	in	the	area	with	the	highest	extreme	waves	generated	by	TCs.	The	bias	(not	shown)	is	nearly	negligible	for	the	mean	significant	wave	height	and	small	for	the	extreme	percentiles.

3.2.2.3.2.2	North	Atlantic
Figure.	4	shows	the	correlation	coefficient	and	NRMSE,	which	are	computed	for	the	two	statistics	of	JFM	Hs	(in	columns)	for	the	entire	1979‐–2015	period	using	a	5-fold	cross-validation.	The	skill	of	the	SD	model	is	considerably	high	for	the	mean

conditions	but	worsens	as	 the	Hs	percentile	 increases.	The	correlation	coefficients	are	approximately	0.9‐–0.95	 for	nearly	 the	 entire	 area	 (decreasing	 to	 values	 of	 approximately	0.5	 in	 the	western	part	 of	 the	Mediterranean	Sea	and	Caribbean	Sea).

Regarding	the	NRMSE,	the	values	increase	from	approximately	5%	for	the	mean	Hs	to	10%	for	the	99th	percentile.	The	bias	(not	shown)	does	not	suggest	a	clear	trend	to	over	or	underestimate	Hs.

Figure	3Fig.	3	Validation	of	the	SD	model	during	the	JJA	season	for	the	monthly	mean	(left	column1)	and	95th	percentile	(right	column2)	of	Hs	in	the	Western	Pacific	Ocean	by	means	of	the	correlation	coefficient	(upper	rowa)	and	normalized	root	mean	square	error	(lower	rowb).	Stippling

represents	areas	where	the	correlation	is	statistically	significant	at	5%	level.
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4.4	Seasonal	Fforecast	quality
4.1.4.1	Verification	metrics

An	assessment	of	quality	based	on	past	performance	 is	required	to	give	value	to	 the	prediction	 itself	 (Doblas-Reyes	et	al.,	2013).	A	 range	of	additional	verification	measures	are	applied	 to	provide	a	complete	description	of

different	quality	aspects	relevant	to	users	(Jolliffe	and	Stephenson,	2003).	In	this	work,	the	correlation	coefficient	and	the	bias	are	used	for	a	deterministic	verification	(ensemble	mean).	The	Ranked	Probability	Score	(RPS),	the	Ranked

Probability	Skill	Score	(RPSS)	and	the	Relative	Operating	Characteristic	Skill	Score	(ROCSS)	are	used	for	probabilistic	verification.

The	bias	 is	a	metric	of	 the	mean	forecast	deviation	from	the	observations.	On	the	other	hand,	 the	correlation	coefficient	measures	the	temporal	correspondence	between	the	forecast	and	observational	reference,	which	 is

insensitive	to	linear	transformations	of	the	data	and	thus	complementary	to	the	bias.	In	this	study,	an	ensemble	mean	interannual	series	of	the	mean	and	95th	and	99th	percentiles	of	the	seasonal	Hs	forecasts	is	calculated	from	the

predicted	time	series	for	each	of	the	24	CFSv2	members	at	each	grid	GOW2	node	of	the	two	study	areas.

In	 addition,	 a	 tercile-based	 approach	 is	 used	 for	 the	 probabilistic	 verification	 of	 the	 prediction	 quality	 (Frías	 et	 al.,	 2010).	 The	 interannual	 series	 of	 seasonal	 predictions	 of	 the	mean	 and	 95th	 and	 99th	 percentiles	 of	 the

significant	wave	height	are	classified	into	three	categories	(above,	near	or	below-normal),	according	to	the	respective	climatological	terciles.	The	categories	were	calculated	for	each	particular	grid	node	and	each	particular	member

(24	in	the	case	of	NCEP	CFSv2).	A	probabilistic	forecast	is	computed	annually	(1982‐–2009)	by	considering	the	number	of	members	falling	within	each	category	(a	dataset	of	28	probabilistic	forecasts	for	the	below,	near	and	above-

normal	categories).

The	ranked	probability	score	(RPS)	is	a	measure	of	forecast	quality	based	on	the	squared	forecast	probability	error,	which	is	cumulative	across	the	three	forecast	categories	from	lowest	to	highest	(3	in	a	tercile-based	system).

The	error	(see	equation.	1)	is	the	squared	difference	between	the	cumulative	forecast	probability	up	to	category	icat	(Pcumfcticat),	where	icat	is	the	category	number	(1	for	below	normal,	2	for	near	normal,	and	3	for	above	normal)	and

the	corresponding	cumulative	observed	“probability”	(Pcumobs),	where	1	is	assigned	to	the	observed	category	and	0	is	assigned	to	the	other	categories.	Note	that	a	higher	RPS	indicates	a	greater	forecast	probability	error.	RPS	is

defined	as	follows:

where	ncat	is	the	number	of	categories	(3	in	a	tercile-based	approach).

The	ranked	probability	skill	score	(RPSS)	is	based	on	a	comparison	of	the	ranked	probability	score	(RPS)	for	an	actual	set	of	forecasts	(RPSfct),	where	the	RPS	corresponds	to	constant	climatology	(0.333/0.333/0.333)	forecasts

Figure	4Fig.	4	Validation	of	the	SD	model	in	the	JFM	season	for	the	monthly	mean	(left	column1)	and	95th	percentile	(right	column2)	of	Hs	in	the	North	Atlantic	by	means	of	the	correlation	coefficient	(upper	panela)	and	normalized	root	square	mean	error	(lower	panelb).	Stippling

represents	areas	where	the	correlation	is	statistically	significant	at	5%	level.
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(RPSclim).	A	positive	RPSS	implies	that	the	RPS	is	lower	for	the	forecasts	than	it	is	for	the	climatology	forecasts.	Higher	scores	indicate	forecasts	with	higher	skill	levels.

The	relative	operating	characteristic	(ROC)	curve	measures	forecast	quality	in	terms	of	discrimination	ability.	The	ROC	is	constructed	by	plotting	the	hit	rate	against	the	false	alarm	rate	using	a	set	of	increasing	probability

thresholds	 (e.g.,	0.05,	015,	0.25),	which	define	 the	probability	bins.	A	hit	 implies	an	accurate	 forecast	 (true	positive)	of	a	particular	event,	 such	as	below	normal	wave	severity,	while	a	 false	alarm	 implies	a	 false	positive	 for	 the

nonoccurrence	of	such	an	event.	The	ROC	curve	involves	subdividing	the	probabilistic	forecast	dataset	(i.e.,	28	seasonal	predictions	for	the	1982‐–2009	period)	into	separate	probabilistic	bins	(defined	by	the	probability	thresholds).	The

points	on	the	ROC	curve	are	initially	created	using	only	those	predictions	within	the	bin	with	highest	forecast	probabilities	and	sequentially	adding	predictions	in	successively	decreasing	forecast	probabilities.	A	hit	implies	an	accurate

forecast	(true	positive)	of	a	particular	event,	such	as	below	normal	wave	severity,	while	a	false	alarm	implies	a	false	positive	for	the	nonoccurrence	of	such	an	event.	A	ROC	curve	is	calculated	individually	for	each	forecast	tercile.

The	 ROC	 skill	 score	 (ROCSS,	 the	 area	 under	 the	 ROC	 curves)	 characterizes	 the	 system’'s	 ability	 to	 correctly	 anticipate	 the	 occurrence	 or	 nonoccurrence	 of	 predefined	 events.	 An	 ROCSS	 above	 0.5	 reflects	 a	 positive

discrimination	skill,	and	1.0	represents	a	perfect	forecast	system.	A	value	of	zero	indicates	no	skill	with	respect	to	a	climatological	prediction.	This	skill	measure	is	independent	of	the	model	bias.

4.2.4.2	Forecast	verification
4.2.1.4.2.1	Western	Pacific

The	correlation	coefficient	 is	a	simple	metric	 that	 is	used	 to	assess	 the	ability	of	 the	downscaled	24-member	ensemble	 JJA	wave	height	 to	reproduce	 the	observed	 interannual	variability	of	 the	significant	wave	height	over	 the	28 year	 period

(1982‐–2009).	The	correlation	coefficient	 is	shown	in	the	upper	panels	of	Figure.	5	for	the	mean	and	95th	percentile	significant	wave	height.	In	general,	the	correlation	coefficients	are	found	to	be	significant	(values	of	approximately	0.4‐–0.6).	The	TC

frequency	is	related	to	the	ENSO,	and	therefore,	the	JJA	interannual	variability	in	terms	of	higher	wave	heights,	which	increases	the	predictability	of	these	extremes.	The	JJA	climatology	bias	of	the	mean	and	95th	percentile	wave	height	is	depicted	in	the

lower	panels	of	Figure.	5.	The	bias	is	negligible	for	the	mean	Hs,	slightly	negative	(5%)	for	the	95th	percentile,	and	mostly	limited	to	the	TC	region.

(2)



As	an	illustrative	example	of	the	tercile-based	probabilistic	validation	approach,	Figure.	6	shows	the	1979‐–2010	standardized	historical	time	series	of	the	95th	percentile	of	the	JJA	Hs	observations	and	NDJ	ONI	with	correlation	coefficients	and

tercile	validation	plots	for	several	grid	points	with	different	wave	climate	and	forecast	skills	(see	Frías	et	al.,	2018	for	a	detailed	description	of	the	tercile	plot).	The	standardized	Hs	time	series	provides	information	about	the	high	interannual	variability	in

the	seasonal	wave	climate	in	this	area.	Higher	waves	are	observed	during	strong	warm	ENSO	phases	(high	values	of	the	NDJ	ONI)	and	a	wave	height	decrease	is	seen	the	following	summer	season.	The	tercile	plot	represents	the	interannual	(1982‐–2009)

time	 series	 of	 probabilistic	 predictions	 from	 the	 24	 members	 of	 the	 CFSR-v2	 seasonal	 database	 as	 the	 number	 of	 members	 falling	 in	 each	 tercile,	 which	 are	 arranged	 by	 rows	 with	 the	 probability	 represented	 in	 grayscale,	 and	 the	 binary

occurrence/nonoccurrence	calculated	from	the	observations	is	shown	for	the	three	terciles	(marked	by	a	dot	inside	the	box).

The	best	relationship	with	ONI	is	found	at	location	[Lon = 132.0°;	Lat = 9.0°]	(panel	a),	with	the	smallest	waves	are	usually	found	in	the	summer	following	El	Niño	years	(1982,	1986,	1987,	1991,	1994,	1997,	2002,	2006	and	2009	with	the	highest

NDJ	ONI	values	marked	in	pink).	The	forecast	resolution	generally	increases	during	El	Niño	years	(see	lower	tercile	with	the	highest	forecast	probabilities	and	the	observed	occurrence	marked	with	a	green	dot	in	panel	2	of	Figure.	6),	especially	after	the

strongest	El	Niño	events	(1987	and	1997).	Most	of	the	years	with	high	negative	wave	anomalies	(1983,	1988,	1995,	1998,	2007,	and	2010)	are	connected	to	the	QB-type	ENSO	cases.	These	types	of	ENSO	events	are	characterized	by	a	rapid	change	from	El

Niño	 in	 the	preceding	winter	 to	La	Niña	 in	 the	 following	 summer	or	SST	differences	 that	are	greater	 than	>2.0 °	C	between	 the	preceding	winter	 and	ensuing	 summer	 (i.e.,	 1982/1983).	 The	QB-type	ENSO	 is	 also	 related	 to	 the	 strengthening	of	 the

subtropical	highs	located	in	the	western	North	Pacific	(Yun	et	al.,	2015).	These	results	suggest	that	the	predictability	signal	in	this	region	and	season	is	linked	to	this	variability	mode.	Years	with	observed	upper	terciles	(i.e.,	1997,	2002,	2006	and	2009,

marked	with	blue	dots)	are	well	predicted,	indicating	a	certain	predictability	of	the	SLP	fields	transferred	to	downscaled	wave	heights.	These	years	with	waves	within	the	above-normal	category	coincide	with	El	Niño	years.	The	TC	genesis	tends	to	have

longer	lifetimes,	be	more	intense	and	form	in	greater	numbers	over	the	central	Pacific	region	during	warm	ENSO	phases	(Camargo	et	al.,	2007),	which	begins	to	increase	during	the	spring	of	those	years.	In	addition,	this	higher	TC	activity	is	reflected	in

higher	waves,	mainly	in	the	area	of	the	Philippine	Sea,	where	the	wave	severity	is	associated	with	TCs.

The	correlation	with	ONI	the	Niño	3.4	index	is	smaller	for	location	[Lon = 114.0°;	Lat = 9.0°]	(see	panel	b).	However,	the	relationship	between	the	high	index	values	and	small	waves	(below	tercile)	can	still	be	detected,	with	significant	forecasting

skill	after	El	Niño	years	(1982,	1988,	1995	and	1998).	Regarding	the	upper	tercile	(above-normal),	the	forecast	predictions	reached	values	of	approximately	0.5‐–0.6,	especially	during	the	1999‐–2002	period.	In	the	case	of	location	[Lon = 129.0°;	Lat = 9.0°],

shown	in	panel	c	of	Figure.	6,	almost	no	skill	(ROCSS	is	near	zero)	is	found.	This	grid	is	located	in	an	area	with	high	differences	between	spatial	patterns	of	the	mean	and	high	percentiles	because	of	high	extreme	waves	resulting	from	TC	generation.

Therefore,	the	lack	of	forecast	quality	at	this	location	may	be	related	to	errors	in	GCMs	when	simulating	TCs.	Despite	the	generally	nonsignificant	skill	throughout	the	historical	years	(1982‐–2009),	the	observed	below-normal	terciles	after	the	strongest	QB-

type	ENSO	cases	are	well	predicted	(1987/1988,	1994/1995,	and	1997/1998).

Figure.	7	shows	the	ROCSS	for	the	mean	(upper	panels)	and	the	95th	percentile	(lower	panels)	 for	 the	 three	categories:	below-normal	 in	 the	 left	column,	normal	 in	 the	middle	column	and	above-normal	 in	 the	right	column.	ROCSS	scores	of

approximately	0.4‐–0.6	suggest	skillful	predictions	for	the	lower	and	upper	categories.	The	lack	of	skill	for	the	normal	category	agrees	with	previous	studies	(Manzanas,	2016).	The	significant	ROCSS	indicates	that	forecasts	in	the	highest	probability	bin

Figure	5Fig.	5	Upper	panels:	Correlation	coefficient	between	the	observed	and	predicted	JJA	Hs	in	the	Western	Pacific	Ocean:	a1)	mean	and	a2)	95th	percentile.	Lower	panels:	Bias	(in	%)	of	the	predicted	JJA	significant	wave	height	climatology:	b1)	mean	and	b2)	95th	percentile.

Stippling	represents	areas	where	the	correlation	is	statistically	significant	at	5%	level.
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Figure	6Fig.	6	Detail	of	forecast	skill	for	the	following	locations:	a)	[Lon = 132.0°;	Lat = 9.0°];	b)	[Lon = 114.0°;	Lat = 9.0°];	and	c)	[Lon = 129.0°;	Lat = 24.0°].	1)	Historical	standardized	time	series	of	Hs	observations	and	ONINiño	3.4	index.	2)	Tercile	validation	plot	of	the	95th	percentile

of	JJA	Hs	with	terciles	arranged	by	row.	The	number	on	the	right	shows	the	ROCSS	for	each	tercile.	Blue	(green)	dots	mark	the	observed	tercile	during	El	Niño	(La	Niña)	years.	Red	dots	are	the	observed	terciles	for	the	rest	of	the	years	during	the	1982‐–2009	period.	(For	interpretation

of	the	references	to	colour	in	this	figure	legend,	the	reader	is	referred	to	the	web	version	of	this	article.)
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have	a	greater	hit	rate	than	those	in	the	lower	probability	bin,	which	can	be	observed	in	the	above	and	below-normal	categories	in	the	tercile	plot	shown	in	panel	a2	of	Figure.	6.

Figure.	8	shows	the	maps	of	 the	ROCSS	for	El	Niño	events	 in	 the	below-normal	category.	Negative	anomalies	are	expected	after	 the	peak	phase	of	NDJ	ONI	as	a	result	of	 reduced	atmospheric	synoptic	activity	associated	with	an	anomalous

anticyclone	that	strengthens	the	West	Pacific	subtropical	high	(Lopez	and	Kirtman,	2016).	An	increase	in	the	skill	of	these	wave	predictions	is	obtained,	where	the	ROCSS	is	close	to	1	over	a	wider	area,	and	this	result	confirms	that	the	warm	phase	of	ENSO

(El	Niño	events)	is	a	source	of	skill	for	the	JJA	Hs	anomalies	(Lopez	and	Kirtman,	2016).

4.2.2.4.2.2	North	Atlantic
The	correlation	coefficient	is	shown	in	the	left	column	of	Figure.	9	for	the	mean	and	95th	percentile	of	the	JFM	Hs.	In	general,	correlation	coefficients	are	smaller	than	0.4	with	an	analogous	spatial	pattern	for	the	different	wave	statistics.	The	bias

(not	shown)	is	negligible	for	the	mean	Hs	and	the	95th	percentile,	and	the	bias	is	slightly	positive	(<5%)	for	the	99th	percentile.	The	forecast	probability	error,	quantified	by	means	of	the	RPS,	is	shown	in	the	middle	column	of	Figure.	9.	The	RPS	value	is

Figure	7Fig.	7	ROC	Skill	Score	of	the	seasonal	JJA	wave	height	predictions	in	the	Western	Pacific	Ocean:	(a)	mean	in	the	upper	panels	and	b)	95th	percentile	in	the	lower	panels)	for	the	below	normal,	normal	and	above-normal	terciles	(left,	middle	and	right	column1,	2	and	3,	respectively).

alt-text:	Fig.	7

Figure	8Fig.	8	ROC	Skill	Score	of	the	seasonal	JJA	wave	height	predictions	in	the	Western	Pacific	Ocean:	a)	(mean	in	the	left	panel,	b)	95th	percentile	in	the	middle,	and	c)	99th	percentile	in	the	right	panel)	for	the	below-normal	category.

alt-text:	Fig.	8



approximately	0.2‐–0.3,	indicating	a	small	probability	error	for	the	two	wave	height	statistics.	This	finding	could	mean	that	the	JFM	forecast	can	discriminate	among	outcomes.	However,	the	RPS	strongly	depends	on	the	probability	distribution	among

categories,	which	is	lower	when	adjacent	categories	(e.g.,	normal	and	high)	receive	higher	probabilities	than	when	this	occurs	for	the	opposite	categories	(e.g.,	low	and	high).	The	analysis	of	the	tercile	plot	in	several	locations	along	the	North	Atlantic

Ocean	(not	shown)	reveals	that	the	ensemble	mean	predicted	time	series	lies	mostly	in	the	normal	normal	category,	with	no	category	with	a	probability	significantly	larger	than	the	rest.	As	a	result,	when	above	or	below-normal	categories	occur,	the	opposite

category	is	not	predicted	with	high	probability	by	the	seasonal	forecast,	so	the	RPS	is	not	penalized,	which	partially	explains	the	obtained	results.	The	RPSS	is	compared	to	the	actual	forecasts	to	the	constant	climatology	forecasts.	The	RPSS	is	the	opposite

of	RPS,	where	higher	scores	mean	forecasts	having	higher	skill	levels.	The	RPSS	is	presented	in	the	left	panels	of	Figure.	9.	The	values	obtained	are	nonsignificant,	ranging	between	‐−0.2	and	0.2	for	almost	the	whole	North	Atlantic	Ocean,	except	in	the

western	part,	where	this	verification	score	presents	a	higher	negative	value;	this	finding	indicates	an	unsuccessful	ability	of	the	forecasts	to	differentiate	among	dissimilar	observed	outcomes	compared	to	constant	climatology	forecasts	(0.333/0.333/0.333).

A	similar	forecast	probability	for	all	three	categories	is	most	likely	to	occur	in	the	Western	North	Atlantic	Ocean.

ROCSS	spatial	maps	of	the	JFM	Hs	and	SLP	means	are	shown	in	Figure.	10	for	the	below-normal,	normal	and	above-normal	categories	(left,	central	and	right	columns	1,	2	and	3,	respectively).	The	area	[40°W-20°W;	20°N-40°N]	shows	the	highest

predictability,	especially	 for	 the	 lower	tercile.	Other	 locations	 in	the	North	Sea	and	Western	Mediterranean	Sea	also	show	high	predictability.	A	similar	ROCSS	spatial	distribution	 is	obtained	for	 the	95th	percentile	and	nearly	disappears	 for	 the	99th

percentile	(not	shown).	The	ROCSS	analysis	of	the	JFM	SLP	predictions	(input	variable)	shows	a	skillful	area	centered	between	the	latitudes	of	35°N	and	55°N	and	the	longitudes	of	15°W	and	55°W,	which	is	reflected	in	the	areas	with	higher	JFM	Hs

prediction	skill.

Figure	9Fig.	9	Verification	of	the	JFM	Hs:	(a)	mean	and	(b)	95th	percentile	in	the	North	Atlantic	Ocean	using	the	1)	correlation	coefficient;	2)	RPS;	and	3)	RPSS.

alt-text:	Fig.	9

Figure	10Fig.	10	ROCSSs	of	the	seasonal	mean	of	JFM	Hs	predictions	(a)	in	the	North	Atlantic	Ocean	for	the	below	normal,	normal	and	above-normal	terciles	(left,	central	and	right	column,	respectively)	in	the	upper	panels	and	of	the	mean	winter	sea	level	pressure	fields	(b)	in	the	North	Atlantic	Ocean

for	the	below	normal,	normal	and	above-normal	terciles	(l,	2	and	3,	respectively)in	the	lower	panels.

alt-text:	Fig.	10



5.5	Conclusions
The	marine	sector	has	not	yet	made	use	of	climate	services	despite	the	broad	range	of	potential	applications	in	this	sector,	which	includes	but	is	not	limited	to	seasonal	forecasts.	In	this	work,	we	have	adapted	the	statistical

downscaling	 framework	 proposed	 by	 Camus	 et	 al.	 (2017)	 for	 application	 to	 seasonal	 forecasting.	 The	 downscaled	 wave	 climate	 is	 obtained	 from	 the	 seasonal	 CFSv2	 hindcast,	 which	 was	 analyzed	 and	 verified	 using	 the	 quasi-

observational	GOW2	wave	database	and	a	variety	of	deterministic	and	probabilistic	metrics.

First,	the	suitability	of	a	statistical	downscaling	approach	to	generate	seasonal	wave	forecasts	of	the	mean	and	95th	and	99th	percentiles	of	Hs	for	the	JJA	season	in	the	Western	Pacific	Ocean	and	for	the	JFM	season	in	the

Northern	Atlantic	Ocean	were	tested	in	perfect-prog	conditions	(i.e.,	using	reanalysis	data	in	the	test	period).	With	this	aim,	the	quality	of	the	NCEP-CFSv2	ensemble	retrospective	forecast	(1982‐–2009)	was	assessed	by	validating	the

performance	of	the	seasonal	wave	forecasting	in	the	past,	which	was	completed	one	month	before	the	beginning	of	the	validation	period.

The	statistical	downscaling	model	in	the	Western	Pacific	shows	a	certain	lack	of	skill	due	to	differences	in	wave	generation	processes	in	this	tropical	area.	This	model	configuration	is	considered	to	be	as	representative	as

possible	of	the	main	wave	characteristics	(swell	component	generated	from	distant	storms	that	determinate	the	spatial	domain	of	the	predictor).	The	downscaled	wave	estimates	in	this	region	can	be	improved	locally	using	particular

predictors	to	represent	wave	generation	from	local	winds	or	distant	storms.	Despite	these	limitations,	downscaled	seasonal	JJA	wave	predictions	in	the	Western	Pacific	show	some	predictability	skill	when	assessed	with	the	ROCSS

probabilistic	metric.	The	skill	is	higher	during	the	decay	years	following	the	ENSO	warm	phases	when	a	negative	significant	wave	height	anomaly	is	expected.	Although	years	with	large	wave	heights	are	related	to	ENSO	because	of	the

increase	in	TCs,	a	restricted	performance	of	the	statistical	relationship	is	found.	Scarce	extreme	events	associated	with	TCs	and	the	intrinsic	limitations	of	the	GCMs	to	reproduce	the	intensity	of	these	atmospheric	conditions	lead	to

prediction	failures	in	terms	of	detecting	the	positive	wave	height	anomalies	during	these	ENSO	phases.

Statistical	downscaling	 in	 the	North	Atlantic	Ocean	can	capture	 the	predictive	signal	 in	 the	global	hindcast	CFSR,	but	no	relevant	added	value	 is	 found	 in	 terms	of	aggregating	 the	predictability	of	 the	 input	atmospheric

variable.	The	JFM	wave	forecast	quality	shows	a	similar	performance	to	that	of	the	SLP	predictor.	The	low	skill	in	this	area	is	conditioned	to	the	limited	seasonal	predictability	over	Europe	in	the	retrospective	database	used.	The	skill

pattern	(evaluated	by	means	of	the	ROCSS)	of	the	seasonal	wave	forecast	resembles	the	skill	pattern	of	the	seasonal	SLP	predictions.	By	applying	the	statistical	downscaling	model,	the	(low)	predictor	predictive	skill	is	not	lost.

Although	the	skill	determined	by	the	North	Atlantic	results	was	low	to	moderate	(Kim	et	al.,	2012),	this	experimental	development	opens	the	possibility	of	new	applications	to	marine	sectors.	The	new	seasonal	forecast	system

from	the	UK	Met	Office,	GloSea5,	has	shown	promising	skill	in	predicting	the	NAO	due	to	a	considerable	increase	in	resolution	(Scaife	et	al.,	2014).	The	emerging	Copernicus	Climate	Change	Service	is	expected	to	provide	reliable	and

credible	sources	of	free	climate	information	in	Europe	in	the	coming	years	(EC,	2015),	and	therefore,	this	forecasting	improvement	combined	with	increased	access	to	seasonal	forecast	data	may	lead	to	the	application	of	these	climate

products	within	an	operational	framework	in	the	near	future.

The	conclusions	obtained	in	this	work	are	only	for	summer	wave	heights	in	the	Western	Pacific	and	winter	wave	heights	in	the	North	Atlantic	and	may	not	be	extended	to	other	regions	of	the	global	ocean	or	seasons.	Further

investigation	is	still	required	to	provide	a	more	conclusive	overview	of	the	merits	and	limitations	of	statistical	downscaled	seasonal	wave	predictions.
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