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Abstract

Based on the energy flow theory of nonlinear dynamical system, the stabilities, bifurcations, possible periodical /
chaotic motions of nonlinear water-lubricated bearing-shaft coupled systems are investigated in this paper. It is
revealed that the energy flow characteristics around the equlibrium point of system behaving in the three types
with different friction-paramters. a) Energy flow matrix has two negative and one positive energy flow factors,
constructing an attractive local zero energy flow surface, in which free vibrations by initial disturbances show
damped modulated oscillations with the system tending its equlibrium state, while forced vibrations by external
forces show stable oscillations. b) Energy flow matrix has one negative and two positive energy flow factors,
spaning a divergence local zero energy flow surface, so that the both free and forced vibrations are divergence
oscillations with the system being unstable. c) Energy flow matrix has a zero energy flow factor and two opposite
factors, which constructes a local zero energy flow surface dividing the local phase space into stable, unstable and
central subspace, and the simulation shows friction self-induced unstable vibrations for both free and forced cases.
For a set of friction parameters, the system behaves a periodical oscillation, where the bearing motion tends zero
and the shaft motion reaches a stable limit circle in phase space with the instant energy flow tending a constant
and the time averaged one tending zero. Numerical simulations have not found any possible chaotic motions of
the system. It is discovered that the damping matrices of cases a), b) and c¢) respectively have positive, negative
and zero diagonal elements, resulting in the different dynamic behavour of system, which gives a giderline to
design the water-lubricated bearing unit with expected performance by adjusting the friction parameters for
applications.

Key Words: Nonlinear friction-induced vibrations, Nonlinear energy flows, Nonlinear water-lubricated bearing-
shaft systems, Bifucation friction parameters, Energy flow matrices, Periodical oscilation.

1. Introduction

Water-lubricated bearings have been more and more used in the marine and pump industries to eliminate the
pollution of metal bearings lubricated by oil and grease as well as to increase efficiency and reliability of marine
propulsion systems. The first effective water-lubricated bearing made of lignum vitae was invented by John Penn
in the 1840s while man-made plastic bearings and natural rubber bearings appeared in the 1920s, which had
gradually predominated in pumps, naval and many commercial ships by the 1940s. The need for improved water-
lubricated bearings was greatly recognised in 1942 when a number of U.S. ships suffered extensive combat
damage at the Battle of Midway, after which, USA navy department began to carry out an extensive research on
water-lubricated bearings and obtained a series of achievements and the only military specification of the water
lubricated rubber bearings was created by MIL-DTL-17901C (SH)(2005)[1]. Since the friction performance plays
a key role in bearing vibration or noise, this specification especially describes the requirements for the test rig and
scope of friction coefficients of bearing synthetic rubber facings.

Stern-tube bearing noise is associated with both the quantity of friction and the slope of friction —velocity curve
[2], which involves bearing materials. To reduce bearing noises, many historical experimental and analytical
investigations were reported [3-5]. For examples, Krauter and Brower [3-4] focused on a three-degree-of-freedom
system to incorporate with the essential elements of the friction and vibration phenomena in their experimental
model, in which a linear analysis was considered to determine the instability conditions of the system that may
lead to frictional vibrations. Sinou etal. [6] proposed a numerical model incorporating realistic laws of local
friction in base of experimental results to characterize the dynamics of a lubricated system and to study its complex
global responses triggered by the local interfacial behaviour. Graf and Ostermeyer [7] have shown how the
stability of an oscillator sliding on a belt will change, if a dynamic friction law with inner variable is considered
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instead of a velocity-dependent coefficient of friction, which demonstrates the unstable vibration can even be
found in the case of a positive velocity-dependency of friction coefficient. Baramsky etal. [8] contributed the
analytical and experimental results for the occurrence of friction-induced vibrations during tightening of bolted
joints of the most used machine elements. Niknam and Farhang [9] employed A two degrees-of-freedom single
mass-on-belt model to study friction-induced instability due to mode-coupling, in which numerical analyses are
used to tackle the effect of three parameters related to belt velocity, friction coefficient, and normal load on the
mass response. Ghorbel etal. [10] proposed a minimal 2-DOF disk brake model to investigate the effects of
different parameters on mode-coupling instability, which considers self-excited vibration, gyroscopic effect,
friction-induced damping, and brake pad geometry.

In designs of this type of berings, two research directions have been developing: one aims to obtain good
friction characteristics using suitable geometric parameters with different facing layers and lubrications [11-14],
and another is to create new bearing materials [15-18]. Recently, Smith [19] presented a paper on the design and
lubrication of water-lubricated, rubber, cutlass bearings systems, which gave a methodology to predict the
minimum film thickness between the journal and heavily loaded stave, including a 3D FE model to predict
generated pressures in cutlass bearings, and comparing with experimental data.

From the point view of sciences, the water-lubricated bearings system is a typical nonlinear system concerning
friction-induced vibration noises, so that for good noise performance of this type of bearing systems, it is essential
to investigate its integrated nonlinear characteristics. In the area on friction induced vibrations, Ibrahim [20-21]
contributed two important review papers, of which the first one concerns the mechanics of contact and friction
and the second one discusses the dynamics and modeling of friction induced vibrations. Both of papers provide
the comprehensive account of the main theorems and mechanisms developed in the historical literatures
concerning friction-induced noise and vibrations with a quite wide references listed. Furthermore, Ding and
Zhai[22] presented a review paper on the advances of friction dynamics in mechanics system, in which the
common used friction models, friction related self-excited vibrations and their controls were presented. The
interested readers may refer these three review papers for more information and references in this area.

More directly linking the topic of this paper, Simpson and Ibrahim[2] investigated the dynamic behaviour of
nonlinear friction-induced vibration in water-lubricated bearings based on the traditional method dealing with
nonlinear dynamical systems. Their paper developed an analytical nonlinear, two-degree-of-freedom model,
which emulates the stern-tube bearing. Typical friction-speed curves were adopted based on the experimental
results of Krauter [23]. The stability conditions of equilibrium were predicated. In the unstable cases, the nonlinear
response behavior was examined by using numerical integration of the coupled equations of motion. The
dependence of the relative sliding speed on time and its effect on the friction force was included in the numerical
simulation. A control parameter that combines the influence of the normal load and the slope of the friction-speed
curve was used to construct a bifurcation diagram which separated different response characteristics, including
squeal, limit cycle, and stable regions.

To reveal nonlinear behavior of nonlinear dynamical systems, such as as discussed in the books by Guckenheimer
& Holmes [24], Thompson & Stewart [25], Chen etal. [26] and Liu and Chen [27], Xing [28] developed a genralised
energy flow theory to investigate nonlinear dynamical systems governed by ordinary differential equation in phase
space. Important nonlinear phenomena such as, stabilities, periodical orbits, bifurcations and chaos can be
revealed from the energy flow behavors of the systems [29]. The aim and motivation of this paper are to investigate
the two DOF nonlinear model of the stern-tube bearing proposed in [2] to reveal its energy flow characteristics
governing its nonlinear dynamical behavours, which is also as an example to further develop energy flow approach
based on two scalar varaibles, genralised potentional and kinetic energies, to tackle complex nonlinear dynamical
systems, especially in multi-dimensional phase spaces.

Bearing housing
Rubber stave
Gap filled with water

Fig.1. Typical grooved stern tube bearing structure.



1.1 Dynamic modelling and equations of water-lubricated bearings

The marine propeller shafts are supported in stern tube bearings, which are lubricated by water and are almost
all grooved, of which the scketched structure is shown in Fig.1. The two DOF analytical model used in [2] is
shown in Fig.2, where the mass, stiffness, and damping coefficient of the bearing (subscript 1) and the flexible
shaft (subscript 2) are dnoted by m1, mz, ku, kz, c1and cz, respectively. Here, the forces F and F,denote possible

prescribed external forces applied to the bearing and the shaft, respectively, while the force F, denotes the friction

force acted to the bearing by the shaft, which is assumed in the viscous type propotional to the relative sliding
speed of the friction pair with a viscous damping coefficient b, so that F, =h(%, - ).
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Fig.2. Analytical two-degree-of-freedom model of stern tube bearing

1.1.1 Viscous damping coefficient
Historically, the friction force was formulated by the friction model model developed by Smith etal.[5] and
used by Simpson and Ibrahim[2] in their 2-DOF analytical model, that is

Ff = N[,ul + (,uo - yl)e-aRé] ) (1)

where N denotes the normal bearing load; a is a constant with units of inverse velocity; u, and u,are the static
and dynamic coefficients of friction, respectively; R represents the disk radius and 6 is the torsional velocity of
the disk relative to the bearing. Considering only oscillatory motions of both the shaft and bearing, and
representing the motion by the linear displacement, we can denote the relative sliding speed of the friction pair in
the form

V:RH':)'(Z-)'(l:Zz—Zl, 2, =X, ZZ:XZ' #)

Substituting Eq. (2) into Eq. (1) and then taking the derivative of the resultant equation with respect to the relative
sliding speed, we obtain the visous damping coefficient as
dF

bzifsz - 7av, 3
I Nalis - ®

which, when the function e~ is expanded into a Taylor series, becomes
1 2,,2 3
b =—Na(, —/Jl{l—av+za V2 +0(v )}

(4)
=—Na(g, —M{l—a(z2 - zl)Jr%az(z2 -z, +o(z, - zl)g}

1.1.2 Dynamic equations of the friction pair system
Using the model shown in Fig. 2 and the second Newton’s law, we obtain the following two equations of motion
of the system

Mm%, +c,X +kx =b(X, —x)+F,

A ()

m,X, +C,X, +K,x, =-h(x, - %) +F,,



which can be rewritten in a matrix form
MX +CX + KX =F , (6)

where the mass, damping and stiffness matrices as well as the displacement and force vectors are resepctively
defined as follows

_ - |F
Mzml 0 , C:Cl+b b ’ K:kl 01 X=X1 CF=| . 0
0 m, -b c,+b 0 k, X, F,
Introducing the nondimensional parameters
C

i o k. m, Xi £ 'f . .
é/i: I ] }/ = : ] = | ] T’ = ] =L ’ fi: I y 1= :1,21 8
2 kimi A o, w; m 12 m, Yi R AN J 8

Na m,w?’R
T=omt , =4, a0=—— , p=—172_
A Hy = Hy = 1y ma, 7 N

. ¥ =aoff =aRaw,,

where ¢, denote dimensionless damping coefficients, . ratio of circular frequencies, @, natural frequencies of
the bearing and the shaft subsystems, 7,, mass ratio, y, dimensionless displacements, z dimensionless time, «
dimensionless friction coefficient, s~ dimensionless normal bearing load and y the dimensionless value of
constant « . Using these dimensionless parameters, the dynamic equation of system can be written as

A

my+cy+ky=f 9)
where
1 0 2¢, 0
1 0 } ) )
= : =g Yu| c=C+C, €=l 272142},
{O 1/7712 |: 7712‘| |: M
g =bl, y—{%}, f—{ti}, z=Y,
Y. f, (10-1)
g iz P T 1 -1
b=-aue™, T=[-1 1} |{_l 1}

ob /62, = au, e = —yb = —obléz,, b = au,pe i,

For the approximation as shown in Eq.(4) adopted by Simpson and Ibrahim[2], the parametr b and its derivatives
are given by the following approximated formulations

Ez—aym(l—t//fz+%y/2f 12), Ezay01w(f2 —yi'17),
ob 10z, =~y (1—ylz) =—ob / oz, (10-2)

0% 1022 = —au,w’ =-0b 1622, 8°bloz,61, = o,

implying that the parameter b is approximated by a quadratic function of the relative velocity (z,—z,), its first
derivatives are linear, and the second derivatives are constants.

1.2 Dynamic equations and equilibrium points

1.2.1 Equations in phase space
Using the state variables y and z , we can rewrite Eq. (9) in the form of the phase space, i.e.



{y— F,=z . . (12)
7=F,=m?[-(E+bl)z—ky+ f]

of which, the vector

o [ e A N P S S I 13)
F, z -m'k —m7(€+bl) m*f

is called the generalised force of system. Here, J denotes the coefficient matrix of the state variable vector
[y" z']" ,which involves the nonlinear damping parameter b . The solution of Eq. (12) with a prescribed initial
condition

yoO =9 20=2 r=[y '] (14)

gives an orbit starting from the position r, in the phase space as shown in Fig.3.

The parameters of system, such as k4, ¢; and c,, can be functions of normal load and temperature. Krauter and
Brower [4] developed empirical relationships for these parameters

k, —11652N +105354 at 35°C, ¢, = —0.618T +8.474 ¢, = m“’—l\:”z . (15)
T

Typical values of these parameters were selected for constant values of normal load and temperature, i.e.
N=120N(27 Ib) and T = 35°C, by Simpson and Ibrahim [2] to investigate the nonlinear dynamical behaviour of
system. We also use these chosen parameters to reveal the energy flow characteristics of system, and to rewrite
Eg. (12) and Eq. (13) in the form

m:a‘MJ:F, 7.3

10 ~26, 0 ] ~ = -1 1
y=|: 2:|7 é‘=|: g :|, be”’ ”=|: :|,
0 ~7a 0 _27214/2 o —Th,

from which in association with Eq. (10) we obtain

y_.,y =y < ;_;_OQ .:._.:.
Nl sl o

1.2.2 Equilibrium point and Jacobian matrix
The point at which F =0 is called the equilibrium point of system. Obviously, if there is no external force

( f =0), the origin (y=0=z) of phase space is an equilibrium point of system.

o
+
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=
o(—ll
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1
~ o
[
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I
— 1
o o
o) o
IJ—I

(16)

By using Egs. (16) and (17), the Jacobian matrix of the system can be derived as

J:FVT:(3r+F 0 6}:J~+5,

_6yT 6ZT

(18)

8, &, .o o

J=—2 br=w(l
{ayTr a7 Z){o b}
Here the gradient operator V is defined by

737 a/ay T 0 _ 0 0 [\ T 19
V_ar{a/az} v _arT{ayT azT} r=br 2T 5



Substituting Eq.(16) into Eq.(18), we finally obtain the Jacobian matrix
3=, +[+y (i), (20)
Here the matrices J, and J, are defined by Eq. (16).

2. Energy flow formulations of system

2.1 Generalised potential energy and kinetic energy
We define two scalar variables: the generalised potential energy and generalised kinetical energy of system in the
following forms.

Generalised potential energy and its time average

1 1 1 1
E=Zr"r=2(y'y+12"2), E)==[ Edt =—/[ rTrdt. 21
5 Sy +272) (E) =1 o h (21)
Generalised kinetical energy and its time average
1., 1, .. 1 1 .0,
K==¢fr==(y'y+2"2), K) == Kdt == [ F"idt. 22
5 STy, (K)=2 o b (22)

Physically, these two scalars may not practical potential and kinetical energies, therefore we use the word
generalised to distinguish them with practical physical quantities. Geometrically, as shown in Fig.3, the
generalised potential energy equals the half square of the distance of a point to the origin of phase space, i.e

E:|r|2/2, |r|2 =y'y+12'z, (23)
while the generalised kinetical energy equals the half square of the tangent vector, the velocity, at a point, i.e.

K=[f[/2,  |ff=yy+i2 (24)

orbit

Fig. 3 The orbit, position and tangent vectors at a point on the orbit of a dynamical system in phase space.

Therefore, these two non-negative real scalars can be used to describe the postion and velocity at a point on the
solution orbit of system in phase space, and to reveal related nonlinear dynamical behavours of system.

2.2 Energy flow equation and its time average
Pre-multiplicating Eq. (16) and Eq.(14) by a row vector r' :[yT ZT] and its initial value f'(0), respectively, we
obtain the energy flow equation



E=f"F+r'F=2K+r'F,
(25-1)

E(QQ)=E=Ff"f/2=(y"y+275)/2,

(E) = (1 Bde)T = (7 (" 3r + p)at)r T,

A

of which, P denotes the power done by the generalised force of system, p is the power of the external forces

and E represents the time change rate of generalised potential energy, called as the energy flow of system.
Physically, the energy flow equation in Eq. (25-1) implies that the energy flow of system equals the power done
by the generalised force.

The energy flow equation in Eq.(25-1) can be rewritten in the form

E=r"(E+U)r+p=r"Er+p,  r'Ur=0,
E=J+J37)/2, U=@-3")/2 (25-2)

()= (r"Er+ pyat)rT.
Here E is a real symmetrical matrix, while U is a real anti-symmetrical matrix.

2.3 Kinetic energy flow equation and its time average

Pre-multiplying Eq.17-1 by f"and using Eq.15-2 and Eq.17-3, we obtain the kinetic energy flow and its time
average

K=FTF=r"Jf+i7dr+¢ f=f"EF +2"hz+"f,

L 26
(K)=(gi"rdt) :(jg(r'TEr' +2D24 ¢ F)dtj/T. )

2.4 Zero-energy flow surfaces and equilibrium points
Generally, the energy flow of system is a function of time and the position of a point in phase space, which
generates a scalar field called as the energy flow field of the nonlinear dynamical system. Equation

E=0, (27)

defines a generalised surface or subspace in phase space, which is called as a zero-energy flow surface on which
the energy flow vanishes. If an orbit of the nonlinear dynamical system is on a zero-energy flow surface, the
distance of a point on the orbit is not changed with time.

Based on the theory of extreme values of a function and the geometrical meaning of generalised potential

energy E , we can conclude that the characteristics of orbit at a point on the zero energy flow surface as follows,

e E >0, the generalised potential energy takes a local minimum-extreme value at this point compared
with the points in the local domain around it. Therefore, with time going, the value of E increases and
the orbit backwards the origin of phase space.

e E =0, it cannot determine that generalised potential energy takes a local minimum- or maximum-
extreme value at this point, and higher time derivatives are needed to give a solution.

e E <0, the generalised potential energy takes a local maximum-extreme value at this point compared

with the points in the local domain around it. Therefore, with time going, the value of E decreases and
the orbit towards the origin of phase space.
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If no external force p = 0, there are the following three cases satisfying E = 0 in Eq.(27):

e Case 1: r =0, that represents the origin of phase space, at which the generalised potential energy is
defined as zero;

e Case 2. F=0, implying an equilibrium point of system, so that equilibrium points are on the zero
energy flow surface;

e Cased: P=0, r=0=F,correseponding a generalised zero energy flow surface.

Assume that r denotes a point on an orbit on a zero-energy flow surface, P(t,r)=r'F=rF, =0, and ¢ is an small
orbit variation around r , generally, the variation of energy flow caused by the orbit variation can be approximated
to the quantities of |s|Z in the form

AE=E(r+e)=(r+&) F(r+e&)=(r,+¢ )F(r, +¢,),
=(r+& XF +F &, +05F ,¢.¢ +0(£%)}

(28-1)

=gF +1F ¢, +¢F & +05rF  ¢,6

=¢'p+e' (E+U)e+e'Eg=¢"p+e& (E+E)e,
where the energy flow gradient vector p, the energy flow matrices E and E,, and spin matric U are given by

p=F+J7r, E=@+J7)/2, U=@0-J7)/2

1. 00
E,=fVV'F =0,,+0,,+B,  B= ,

0 b
ik b o (28-2)
- 07,02, 01,07, |~¢ 02,01, 0L07, |, ¢
b :(21_771222) 612 ! 52 z (blz):(z1_771222) 61261 6126'2 (IZ)
07,0z, 01,0z, 02,0z, 0z,0z

-1 -1] . ~ 1 -
:(21_771222)1//2b|:_1 1 :|(IZ):V/2bZT’Iz|:_ i|
Here, we have used Eq. (10-1) and Eq. (16) and noticed that the components F, and F, of the vector F are linear
functions of y and z, so that their second derivatives vanish.
For an equilibrium point satisfying F(r) =0, EQ.(28-1) becomes
ME=E(r,e)=d"r+¢ (E+E)e (29-1)
which is further reduced to
AE=E(e)=¢'Ee (29-2)

for an equilibrium point r =0, and so that E, =0. At the equilibrium point r =0, the second time derivative of the

generalised energy in Eq. (25-1) vanishes, so that we need to consider the variation of E around the point r =0
to investigate the orbit behaviour. From Eq.(29) and the geometrical meaning in Eq.(23), we consider the variation

of energy flow E to determine the characteristics of orbit as follows,



o |If |r +8| < |r|,then E(r +¢£) < E(r),s0 that 4E >0 implies the flow towards the zero-energy flow surface,
while AE < 0indicates the flow backwards the zero-energy flow surface;
o |If |I’ +£| > |r|, then E(r+£) > E(r), S0 that 4AE <0implies the flow towards the sero-energy flow surface,

while AE > 0 indicates the flow backwards the zero-energy flow surface;
o Ifthe flows from both sides of the zero-energy flow surface tend to it, this surface is an attracting surface.
e The local ability of equilibrium point r =0 can be determined by the behaviour of energy flow matrix E
as follows:
definitely - negative, asymptoticstable,
E :{semi - definitely - negative, stable, (30)
definitly or semi - definitly - positive, unstable.

Figure 4 shows a case where the orbit intersects at a point r on the energy flow surface. Since 4 >0 above
the surface and AE <0 under the surface, so that the flow along the orbit backwards this point and this point is
an unstable point.

orbit
AE >0

AE <0
@] Y

Fig.4 The zero energy flow surface and an unstable point r determined by AE .

2.5 Energy flow matrix and energy flow characteristic factor

Both of matrices E and E are real symmetrical matrices, called as the energy flow matrices, the former is for the
total energy flow in Eq. (25), while the later for the incremental energy flow relative to the zero-energy flow
surface in Eq. (27). The real symmetrical matrix has its real eigenvalues 4, and corresponding eigenvector ¢&,

satisfying the orthogonal relationships, such as for matrix E in Eq. (25-2), we have

Gb=1,  SEb-dag(i), o= & & & (31)
These eigenvectors span an energy flow space in which the vector r can be represented by
r=og, (32)
which, when substituted into Eq.(25-2), gives
E=pldeg()o-540" o' =l 4. 4 4] (33)

Therefore, }{I represents the energy flow variation caused by a unit disturbance ¢'5,2 =1in the I-th principal

direction ng of the energy flow matrix. Therefore, we call ZI as the energy flow characteristic factors and we can
conclude for a point of the orbit of nonlinear system,

e the positive, zero and negative value of the factors A, respectively implies the energy flow increase,

unchanged and decrease caused by the disturbance ¢|2 in the I-th principal direction, from which the

behaviour of energy flow increments at this point can be identified to judge the local dynamical behaviour,
such as for local stability of orbits around an equilibrium point r =0, we have
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negative, Stable subspace,
factors4, : < zero, Central flow subspace, (34)

positive, Unstdle subspace.

o ifits energy flow characteristic factors are not all semi-negative or not all semi-positive, there will exist
a small subdomain around this point in the phase space determined by E = 0, from which a zero energy
flow surface can be obtained.

2.6 Spin matrices and periodical orbit
The matrices U in Eq. (25-2) and U in Eq. (28-2) are two real skew-symmetrical matrices, called as spin matrices.

For periodical orbits, it is neccesary that there exsist a time period T and its corrsponding closed orbit 7~ such
that the following integrations along the closed orbit hold, i.e.

<E‘>=%{,I*‘E’dt:o, (E)=%fr?" Edt=E,
(35-1)
ALy 1, . R
K)=={ "Kdt= K)y=={ "Kdt=K
(K)=7d.7"Kdt=0,  (K)=f, ["Kdt=K,
where E and K are two positive constants. The stability of this periodical orbit can be determined by the values
of the energy flow AE around each point of the orbit as discussed for the zero energy flow surface.

The time averaged kinetic energy can be re-written as

Tdr _ 1 (35-2)

_i T4 2T edt
<K>_2T §- T rdt o

=
2T
Physically, this integration denotes the circulation integral of velocity field f along the closed orbit and involves
the skew-symmetrical spin matrix. To clarify this, we consider a 3-D vector field y= f ,thecurlf ,orVx f ata

point O is explained in Fig.5. Here v is a unit vector, the projection of the curlf onto v is defined as the limit
of a closed line integral along the curve C in a plane orthogonal to v , that is

. 1 . 1, . . . 2
(V> ), =(curlf), =tim {zfc f .dy} = um{xfc y- ydt} = 'A'Eo‘{ﬂc Kdt}, (35-3)
where A is the area enclosed by curve C. The curlf can be denoted in a tensor form [30][31]
(VX f)i :eijkfk‘j' (35-4)

where eijk is the permutation tensor. The vector curlf is a dual vector of a skew-symmetrical matrix U , spin

matrix, satisfying the following relationship
-1 -1
(U)ij :Uij :?eijk(vx f)k :7(3 e f

ijkkrs "s,r

(35-5)

— f —f. _qT
Lo 55yt <ttt (33
2 J i X 2 5 ij

Therefore, a positive time-averaged kinetic energy implies there must be a non-zero spin matrix for periodical
orbits.
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Fig. 5 The circulation integration along a path C, of which the positive direction obeys the right-hand rule, to define the curl f.

2.7 Bifurcation and chaos

The energy flow of a nonlinear dynamical system is affected by the bifurcation parameters to reveal the
birfurcation characteristics of orbits. For example, different parameters result in different equilibrium points, zero
energy flow surfaces and energy flow characteristic factors etc.

Xing [28,29] has discovered that a chaotic motion of nonlinear dynamical system can be considered as a
periodical motion with an infinte long time period and the following integrations hold.

<E>=Iim{%jr}“’ Edt}:o, <E>:Uﬂl{%fr? Edt}:é,

T

(36)
; . 1 T+ 1o _ T l T+f — z
<K>_|T|£D{?” Kdt}_o, <K>—|T|m{_|_ B Kdt} K,

This implies that the time averaged mechanical energy <E + K> tends a constant when the average time tends to

infinite. Also, for a chaotic motion, flows are restricted in a finite volume, so that the space averaged rate of
volume strain of phase space must not be positive, i.e.

o1 1.2
0, _VLUdV _Vjvéﬂldv <0. (37)

3. Investigations of nonlinear water-lubricated bearing system

3.1 Zero energy flow surface (f,=0=f,)
Using Eq. (25-2), we obtain the energy flow surface E =r"Er =0 of the system, i.e.

0 0 0 0
|0 0 0 (L-72)12
0 0 -2¢,-b  (@+np,)b/2
0 (A-7)/2 Q+nbl2 -2y,8,-n.b
(38-1)
=—(26,+D)2 = (27,8, + 002 + (L b2z, + U722,y =0,
where the nonlinear friction parameter
b =—au e @™, (38-2)
or its approximation to a second order of sliding speed
~ ~ 1 o
b~ —au,(L-ylz +EW z2'12). (38-3)

The zero energy flow surface in Eqg. (38-1) is independent on the variable Y, , therefore, the axis 0—Y, is a zero
energy line of the system. On this line defined by the position vector r=[y, 0 0 0], the energy flow E =0. For
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the prescribed parameters in Eq. (42), Eq. (38) governs the forms of zero energy surfaces of system with the
different values of « and ¢, listed in Tables 1-3, which will be given in subsection 3.2.

3.1.1 Linearazation at the fixed point (f,=0=f,)
Vanishing the generalised kinetical energy in Eq.(22) and using Eq.(16), we have

0 O 1 0 Y,
0 0 0 _ 1 Y2|_g (39)
-1 0 -2{,-b b z,
0 - 7/221 7712b - 27214,2 - 7712b Z,
which gives an equilibrium point r =0. From Egs. (10, 20, 28-2), at this point b =—aqu,,J = 30 +3b, E, =0,
so that the energy flow matrix and the spin matrix in Eq. (28-2) become
0 o 0 0 Q-y2)12
E= 0o EI E= 0 Oply, — 26, —(Z,Ll01(l+7712)/2 | (40-1)
- (1_ ;/221) 12 - a/u01(1+ 7712) /12 1,0ty — 2721412
[0 0 1 0
2
u-| O 0 0 Wiz | 40-2)
-1 0 0 —aﬂm(l—ﬂu)/z
|0 —(@+72)2 auy(t-n,)i2 0

3.1.2  Energy flow characteristic factors and vectors

For the approximated energy flow matrix E , using Egs. (31)-(33), we can solve its energy flow characteristic
factors and vectors. Obviously, we have a zero characteristic factor and its vector in the form

4=0, &= 0 0 0. (41-1)

The rest three energy flow characteristic factors and vectors are obtained by solving the eigenvalue problem

(E-AF=0, F=ly, z 1] (41-2)
of which the characteristic equation is

[E-a1|=0. (41-3)

The solutions of Eq.(41-2,3) are three eigenvalues and eigenvectors 4, &, (1=234),

A, &=p &, =239 (41-4)

3.2 Bifurcation of zero energy flow surfaces around the fixed point
The dimensionless parameters studied in [2] are listed as follows

t, =0.11% ¢, =0.1116, 0.111245 0.111% ¢, =0.008325 ,, =0.01;
(42)
n,=75x10" B=30402 a=20, 25, 3.0, 35 40;

based which the obtained energy flow characteristic factors around the fixed point are given in Tables 1-3, which
shows the bifurcation of zero energy flow surface affected by the bifurcation parameters: the dimensionless
friction coefficient « and the dimensionless damping coefficients ¢, and ¢, .

Table 1. The energy flow characteristic factors at the equilibrium point of the system (£, = 0.008325 )

13



c, 0.1116 00111245 o.1111 0.1110
o " - N - - Py
Ay Ay Ay A, Ay Ay A, Ay A, A, A, x,

1.5 -0.507725 -0.055150 0.506133 -0.507713 -0.054460 0.506141 -0.507708 -0.054178 0.506144 -0.507705 -0.053983 0.506146
2.0 -0.512170 -0.001144 0.512114 -0.512154 -0.000467 0.512131 -0.512147 -0.000191 0.512137 -0.512142 0 0512142
2.2 -0.514088 0.019815 0.515290 -0.514069 0.0204843 0.515312 -0.514062 0.020758 0.515320 -0.514057 0.020947 0.515327
2.5 -0.517085 0.050374 0.521052 -0.517064 0.0510321 0.521083 -0.517055 0.051301 0.521096 -0.517049 0.051486 0.521105
2.6 -0.518113 0.060295 0.523267 -0.518091 0.0609483 0.523302 -0.5 18082 0.061215 0.523317 -0.518076 0.061399 0.523327
2.7 -0.519153 0.070069 0.525642 -0.519131 0.0707175 0.525682 -0.519122 0.070982 0.525698 -0.519115 0.071165 0.525709
3.0 -0.522349 0.098427 0.533805 -0.522324 0.0990577 0.533859 -0.522314 0.099315 0.533881 -0.522307 0.099493 0.533897
3.5 -0.527885 0.141957 0.551352 -0.527856 0.1425522 0.551439 -0.527845 0.142795 0.551475 -0.527837 0.142963 0.551499
4.0 -0.533642 0.179975 0.574634 -0.533611 0.1805229 0.574764 -(.533598 0.180747 0.574817 -0.533589 0.180901 0.574854
4.5 -0.539584 0.211801 0.604291 -0.539550 0.2122948 0.604474 -0.539536 0.21249 0.604548 -0.539527 0.212635 0.604600

Table 2. The energy flow characteristic factors at the equilibrium point of the system (&, = 0.009 )

;\ 01116 0.111245 0. 0.1
“ A ) 2 2 ) 2 2 ) 2 78 ) )
b Ay 4 he) Ay 4 2 Ay 4 2 Ay '}
0 -0.512177 -0.001144 0.512107 -0.512160 -0.000467 0.512124 0.512154 -0.000191 0.512131 -0.512149 o 0.512135
2.2 -0.514095 0.019815 0.515283 -0.514076 0.020484 0.515305 -0.514068 0.020758 0.515314 -0.514063 0.020947 0.515320
Table 3. The energy flow characteristic factors at the equilibrium point of the system (&, = 0.009 )
[ 20 212 15
a -
4, i, A, A, A, , A, x, A,
01197258 -0.512573 -0.016628 0.511738 -0.513740 -0.003913 0.513519 -0.517586 0.035312 0.520352

Itis found that the all energy flow characteristic factors 2,, (1 =2,3,4), for the investigated parameters, include

negative, positive and zero real numbers, so that the small local domain around the equilibrium point can be
divided into a stable (4, < 0), an unstable (1, > 0) and a central flow subspace, (A, = 0), to reveal the

local dynamic behaviour around the equilibrium point.

In the subspace span by the corresponding energy flow characteristic vectors ¢ , around the equilibrium point,

the energy flow at point ¢ = [¢2 ¢3 ¢4] can be formulated by Eq. (29), i.e.

E = /ﬁtz¢22 + ﬁ'3¢32 + /14¢42' (43'1)
and the zero-energy flow surface is governed by
E= ﬂ'z¢22 + 13¢32 + ﬂ'4¢42 =0. (43-2)

Based on the results listed in Tables 1-3, in a linearised approximation of system around the equilibrium point,
there are following three local structures of zero energy flow surfaces with its local dynamic behaviour.

3.2.1 Case 1: two negative and one positive characteristic factor («=2.0,¢, =0.1116, ¢, =0.009)
In this case, such as for parameters &« =2.0, ¢,=0.1116 and £, =0.009, the equation of zero energy flow surface
in Eq. (43-2) becomes

0.51217742 +0.0011444° = 051210747, (44-1)

which is rewritten in the form

14
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a a a’ RZ Rz ™'

S S SR S SO SN S (44-2)
Ja| V0512177 Ja| 0001144 J24. 0512107
_a_ A _a A

a T Al

of which the zero energy flow surface and energy flow variations in the small domain around the equilibrium
point is sketched in Fig.6 a), and the computer simulating surface is drawn in Fig.6 b), while the zero energy
surface based on Eq. (38) for nonlinear case is given in Fig. 6 c).

o

E<0
Lines ¢, = =R, ¢, ' E=0surface g

A/

a) b) c)
Fig.6 Zero energy flow surface around equilibrium point for Case 1 (¢ = 2.0, £, =0.1116,

&, =0.009 ) based on linearized Eq. (44-1): a) sketched one; b) calculated one based on Eq. (44-1) , and c)
one based on nonlinear Eq. (38).

In Fig. 6 a), the three characteristic vectors ¢ ,,€;and ¢ , respectively with the three factors span a subspace in
phase space 0 — y,z,z, . This local linearized zero energy flow surface is symmetrical to the coordinate plane
0-¢,¢, and axis-symmetrical to the axis 0-¢,, so that a plane perpendicular to axis 0-¢, intersects the zero

4R, >[4, é|=1.

R,, as shown in Fig.6 for the ones at

energy flow surface in an elliptical curve of semi-axis

The plane 0—¢,¢, intersects the zero-energy flow surface in the straight lines of ¢, =+¢, R, . Based on Eq. (43-

1), at a disturbed point outside the zero-energy flow surface on the plane @, =constant, the energy flow E <0,
so that it intends to reduce the distance to the origin of space, implying the flow towards the zero-energy surface.

For a disturbed point inside the zero-energy flow surface on the plane @, =constant, the energy flow E >0 and
it intends to increase the distance to the origin of space implying the flow also towards the zero-energy surface.
Therefore, the zero-energy surface is an attracting surface. In this case, from Eq. (10-1), the damping matrix of
system at the fixed point takes

(44-4)

0.0012 0.2220
0.2220 0.0180(

with the positive diagonal damping coefficients in the system, so that the motions caused by initial conditions will
be damped.

By using the MATLAB program in [28] and the nonlinear friction parameter in Eq. (38-2), the results of

numerical simulations with the initial conditions y=10’6[1 11 1]T for this case are given in Fig. 7-9. Fig. 7
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gives the time histories of displacement and velocity of the bearing and the shaft, which shows the damped
oscillations. Fig. 8 presents the phase diagram y(1)~y(3) of bearing unit and the one y(2)~y(4) of shaft unit, as
well as the time histories of generalized potential energy and the distance of phase point to the origin, which
indicates the orbit points in both phase diagrams move from outside to the origin, and the generalized potential
energy and the distance of orbit point to the origin tend to zero with time increasing. Fig. 9 shows the instant
energy flow behaving a damped oscillation and the time history of phase space volume strain decreasing with

i

Wi Wi

Fig. 7 Time histories of dlsplacement and velouty of bearing and shaft (a 2.0,¢,=0.1116, £, = 0.009 )

MMMH HH\ | HH “ ..umunumwn Iy

:@Q (T

Fig. 8 Phase diagram y(1) ~y(3) of bearing and the one y(2)~y(4) of shaft, and time histories of generalized
potential energy and distance of phase point to origin. (e =2.0,¢, =0.1116, £, = 0.009 )

WMWMMMMMWMMWMWWHMWWWMM WWWMM — WWM

25

Fig.9 Time history of instant energy flow, and phase space volume strain (o = 2.0, ¢, =0.1116, £, = 0.009 )

3.2.2 Case 2: one negative and two positive characteristic factors (o« =2.2,¢, =0.111245 , £, =0.008325 )
Case 2 corresponds a zero-energy flow surface in Eq. (43-2) governed by equation

0.5140694, = 0.02048434 +0.5153124,2, (45-1)

which is rewritten in the form

16



bbb G b W
a: a a’’ * allal allal’
:_:; :_:; 1 (45-2)
4,| /0514069’ A, +0.020483 *Ja  JJos15312°
ST R N

The sketched zero energy flow surface and energy flow variations around the equilibrium point is shown in Fig.10
a), while the computer drawn surface based on Eq. (45-1) is given in Fig. 10 b). The one for the nonlinear equation
is similar to the one shown in Fig.6 c), so neglected. The local linearised surface is symmetrical about the

coordinate plane o-¢&,¢, and axis-symmetrical to the axiso-¢,, so that a plane perpendicular to axisO—f2 intersects
the surface in an elliptical curve of semi-axis ‘;{2‘& > ‘é‘Rz , s shown in Fig.10 a) for the ones at |g2| —=1. The plane

0-¢&,¢&, intersects the surface in the two straight lines of ;53 = i&z R, - At a disturbed point outside the zero-energy

flow surface on the plane perpendicular to the axis 0—52, the energy flow E >0 by Eq. (43-1), so that this
disturbance intends to increase the distance to the origin of space, implying the flow backwards the zero energy
surface. For a disturbed point inside the zero-energy flow surface, the energy flow E <0 and the disturbance
intends to reduce the distance to the origin of space implying the flow also backwards the zero-energy surface.

Therefore, this zero-energy surface is a divergence surface. In fact, for this case, the damping matrix of the system
in Eq. (10-1) becomes

_ [— 0.0217 0.2442 } (45-3)

02442 -0.0222|

that shows the negative diagonal damping coefficients for both bearing and shaft, so that the motions caused by
initial conditions will be divergence.

Lim:s_e;J = :RNE;

| £ =0 Surface -

a) b)
Fig.10 Zero energy flow surface around equilibrium point for case 2 (o = 2.2, ¢, =0.111245 , ¢, =0.008325 )

based on Eq. (45-1): a) sketched one; b) calculated one.

The results of numerical simulations with the initial conditions y=10°L 1 1 1] for this case are given in Fig.

11-13. Fig. 11 gives the time histories of displacement and velocity of the bearing and shaft, which shows the
divergence oscillations. Fig. 12 presents the phase diagram y(1) ~ y(3) of bearing and the one y(2)~y(4) of shaft,
as well as the time histories of generalized potential energy and the distance of phase point to the origin, which
indicates the orbit points in both phase diagrams move far away to the origin, and the generalized potential energy
as well as the distance of orbit point to the origin increase. Fig. 13 shows the instant energy flow and the time
history of phase space volume strain, of which both positively increase very fast at about non-dimension time 350.
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s The bearing displacement with time. ‘ 10 The bearing velocity with time.
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10210 The shaft nt with time. | 100 The shaft velocity with time.
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Fig. 11 Time histories of displacement and velocity of bearing and shaft (=22, ¢, =0.111245 ¢, =0.008325)

10 The bearing with the velocity. w107 (a) Generalised Energy Potential

¥(3)
I R S Y
B =

15 2 25 0 50 100 150 200 250 300 350

t
The shat displacement with the velocity. 10 (b) Distance to Origin
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Fig. 12 Phase diagram y(1)~y(3) of bearing and the one y(2)~y(4) of shaft, and time histories of generalized
potential energy and distance of phase point to origin («=2.2, ¢, =0.111245 ¢, =0.008325).

instant Total Energy Flow

Fhase Space Volume Seain

‘.(a) o w W  m  m W ® o

Fig.13 Time histories of instant energy flow (a) and phase space volume strain (b) (o =2.2,¢, =0.111245 ,
&, =0.008325 )-

3.2.3 Case 3: one zero and two opposite factors (a =2.0, £, =0.111,¢, =0.008325 )

In this case, since there exsists a zero energy flow characteristic factor, the dynamic behavour of the system
may not be determined only based on linearised approximation as discussed below. In this case, the central energy
flow investigation by considering higher-order terms is needed [28].

The zero energy flow serface around the origin becomes
0512142 4,2 =0.512142 $2, 4, =+, , (46-1)

corresponding two orthogonal planes perpendicular to the coordinate place o-E¢ with the intersect lines q?z :54
and ¢, =4, , respectively, as shown in Fig. 14. In the domain containing axiso-¢,, the energy flow E <0, so that
the orbit disturbance along o-¢, axis will be towards the zero energy flow surface, while in the domain containing

0-¢, axis, E >0, the disturbance along o-¢, axis will be backwards the zero energy surface. Therefore, the

dynamic behaviour of the system cannot be predicted only based on linear approximation. The theoretical analysis
relies on central energy flow theorem, which is more complex, so that here we will reveal the solution by
numerically simulating the case with above parameters. Also, from linearised approximation, the summation of
diagonal elements of the energy flow matrix E vanish, so that its time change rate of phase volume strain
approximately vanishes, i.e.
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A, =0, (46-2)

M-

X

1

implying the volume of phase diagram should not change, which might not be true for the nonlinear equation with
no linearazation.
Now, we show the numerical simulation results to explain above discussion. The damping matrix at fixed point

takes value
3 :{ 0 o.2220} (46-3)
0.2220 0

of which the diagonal damping coefficients of system vanish.
[}

Lines g, = +g, E

E>0

a) b)

Fig.14 Zero energy flow surface Eq. (46-1) around equilibrium point for case 3: a) sketched one, b) calculated
one (x¢=20,4, =0.111, ¢, =0.008325 ).

Fig. 15 shows the time histories of displacement and velocity for both bearing and shaft units, from which it
has been found that before the time 9.4 x10"s, the displacement and velocity of bearing increase, while the
ones of shaft show oscillations, and both are in modulated style as indicated by enlarged picture in Fig.18 . The
generalised potential energy and the orbit point distance to the origin of phase space are modulated oscillations
with no obviously-change, and the phase diagram of shaft tends a periodical orbit as shown in Fig. 16. The energy
flow shown in Fig. 17 a) has small values with no obviously change. When the simulation time reaches about
9.4x10*s, the displacement and velocity of bearing are extreme large so that the simulation is stopped. Fig. 17 b)
shows the time history of phase space volume strain, indicating it increases with time and takes extreme large
value at after the stop time. To explain this phenomenon, we check the friction damping matrix in Eqg. (10.1),
which is propotional the factor b =-au, e . Referring to the Fig. 15, since the amplitude of bearing velocity

z, = y(3) increases while the amplitude of shaft velocity z, = y(4) is nearly unchanged, so that the power of

friction function e* =e*®™ will takes increased positive value, because of this, nonlinear friction force
extremely increased, which causes a self-excited oscillation of the nonlinear bearing-shaft friction system.

From the discussion on the zero energy flow surfaces of three cases and the corresponding numerical
simulations based on the nonlinear friction function in Eq. (38-2), but not the approximated one in Eq. (38-3) used
by [2], we may conclude the stablity of system about the equlilibrium point y =0 as follows:

e As shown for Case 1, when the energy flow matrix at the equilibrium point has two negative and one
positive characteristic factor, the local zero energy flow surface in the small domain around the
equilibrium point behaves an attractive surface, and the system is stable to initial disturbance. We also
simulated some cases reported in [2], which further confirm this conclusion is correct. For example, the
three cases with ¢ =2.0, £, =0.1116, 0.1111, 0.111245 studied based on the friction force approximation

in Eq. (38-3) in [2] were reported the stable case for ¢, =0.1116 but unstable cases for the last two values
of £,=0.1111, 0.111245. We re-check these three cases by using the friction force Eq. (38-2), and the

simulation results confirm that for each case, the energy flow matrix has two negative and one positive
characteristic factor given in Tables 1-3, respectively, and the equilibrium point is stable.
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e As shown for Case 2, when the energy flow matrix at the equilibrium point has one negative and two
positive characteristic factors, the local zero energy flow surface in the small domain around the
equilibrium point behaves a divergence surface, and the system is unstable.

e Asshown for Case 3, when the energy flow matrix at the equilibrium point has one zero factor and two
same absolute value factors, one negative and another positive, the local zero energy flow surface in the
small domain around the equilibrium point behaves divergence in a sub-domain and attractive in another
sub-domain as shown in Fig. 14. The dynamical behaviour about this case requires to undergo a higher
order approximation analysis. The numerical simulation result shows a divergence self-excited
oscillation, which might be miss-judged as a stable oscillation if the simulation time is not enough large.
For example, Fig. 18, cut out from Fig. 15 (« = 2.0, ¢, =0.111), shows the enlarged time histories of

displacement and velocity of both bearing and shaft in the initial time before the simulation breaking,
which seems a stable picture but unstable indicated by Fig.15.
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Fig. 15 Time histories of displacement and velocity of bearing and shaft (¢ =2.0,¢, =0.111, ¢, = 0.008325 )

Fig. 16 Phase diagram y(1)~y(3) of bearing and the one y(2)~y(4) of shaft, and time histories of generalized
potential energy and distance of phase point to origin (o = 2.0, ¢, =0.111, £, = 0.008325 ).
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Fig.17 Time histories of instant energy flow (a) and phase space volume strain (b) (« =2.0,¢, =0.111,
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Fig. 18 Enlarged time histories of displacement and velocity in modulated styles for bearing and shaft in
initial time-period before breaking time shown in Fig. 15 (« = 2.0, ¢, =0.111, ¢, = 0.008325 ).

3.3 Periodical oscillation (f o)

From section 2.6, we know that for a possible periodical orbit, a necessary condition is that the spin matrix U of
the system must not vanish. From Egs. (16), (20) and (28-2), we obtain the spin matrix at the equilibrium point

U=[ 0 '_7’}&0, (47)

y—-1 0

implying possible periodical orbits of the system. We simulate a case with parameters (o =2.0,¢, =0.111245 ,
&, =0.008325 ), of which there are two negative and one positive energy flow characteristic factors and a damping

matrix at equilibrium point

(48)

_[0.0012 0.2220
102220 0

Fig. 19 shows that the displacement and velocity of bearing decrease with time, while the shaft ones are in a
periodical motion. The phase diagram of bearing tends to the origin while the one of shaft shows a closed orbit,
and the generalised potential energy as well as the distance of phase point to the origin behave modulated
oscillation without obviously amplitude variations, as shown in Fig. 20. The instant energy flow curve behaviours
a stable oscillation in Fig. 21 a), and its time averaged one tends to zero with average time increasing as shown in
Fig. 22. The phase space volume train descreases with time shown in Fig.21 b). According to the energy flow
theory discussed in section 2.6, this is a stable periodical motion of the system excited by initial conditions.

%108 The bearin, g with time. %10 The bearing velocity with time.
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Fig. 19 Time histories of displacement and velocity of bearing and shaft (o =2.0,¢, =0.111245¢, =0.008325)
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Fig. 20 Phase diagrams y(1)~y(3) of bearing and y(2)~y(4) of shaft, and time histories of generalized
potential energy and distance of phase point to origin (o =2.0,¢, =0.111245¢, =0.008325).
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Fig. 21 Time histories of instant energy flow (a) and phase space volume strain (b) (& =2.0,¢, =0.111245,
&, =0.008325).
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Fig.22 Time histories of time-averaged energy flow (o =2.0,¢, =0.111245¢, = 0.008325).

We have simulated the cases with parameters: (=20, ¢, =0.1111, £, =0.008325) and («=2.12,
¢, =0.119725, £, =0.0009) [2], of which the energy flow matrix has two negative and one positive energy flow

characteristic factors and both systems also behave the similar stable periodical oscillations as the one presented
herein.

3.4 Forced oscillations (f # 0)
We respectively add an excitation force of amplitude 10, frequency 0.5 and phase angle 0, i.e. f =10° cos(0.57),

on the bearing mass and the shaft mass to investigate the forced dynamic response of the system. The simulated
results are given as follows.

3.4.1 Case 1 with parameters «=2.0,¢,=0.1116, &, = 0.009

Figs 23-26 give the simulation results, in which, with time increasing, the time histories of displacements and
velocities shown in Fig. 23 tend stable forced modulated oscillations, the generalised potential energies and the
distances of phase points to the origin tend stable pictures and the phase diagrams tend periodical orbits in Fig.
24, as well as the instant energy flows and the phase space volume strains in Fig 25 also tend stable curves. Fig.
26 confirms that the time-averaged energy flows tend zero with average time increasing. These typical results
demonstrate that the forced vibrations are periodical motions of the system although the different curve styles due
to different force added potions. Since the positive damping of the system, the free vibration components due to
initial conditions are gradually damped, and a stable forced vibration is obtained. However, since the system is
nonlinear, the frequency of the forced vibration does not equal the force frequency, so that the response curves
behave modulated pictures compositing of two frequencies response.
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Fig. 23 Dynamic response time histories of displacements and velocities of bearing and shaft of the system
subject an external force: I) on bearing f = [o o f oT ; 1) on shaft f = [o 00 f]’ .
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3.4.2 Case 2 with parameters ¢ = 2.2, ¢, = 0.111245 , £, = 0.008325

In this case with main negative damping coefficients, the system behaves divergence oscillations, of which the
dynamic response time histories of displacements and velocities in Fig. 27, the generalised potential energies and
the distances of phase point to origin as well as the phase space volume strains in Fig. 28 increase very fast with

time going.
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3.4.3 Case 3 with parameters ¢ = 2.0,¢, =0.111, £, = 0.008325

The forced vibration in this case is like the free vibration discussed for case 3 in section 3.3, as shown in Fig. 29,
the dynamic responses of displacements and velocities of both bearing and shaft increase until about time
3.3x10*when the responses sharply increased and simulations stopped. To show the response curve details,
Fig. 30 provides local enlarged curves before breaking time in Fig. 29, from which it is observed the dynamic
responses behave the modulated vibrations before the simulation breaking. The curves of generalised potential
energy, the phase diagram, etc. also show the characteristics, so they are neglected herein.
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Fig.30 Enlarged response time histories, before simulation breaking, of displacements and velocities of the
system subject an external force: 1) on bearing f = [o o f o]T; I1) on shaft f - [o 00 f"T

3.5 Chaotic motions

With different friction parameters, we have tested several cases for free vibrations induced by given initial
disturbances and for forced vibrations excited by external forces acted on the bearing and shaft masses in order to
see if chaotic motions may be found. The simulations results have not shown any chaotic motions of this system.

4. Conclusion

Following the detailed describption of this investigation given above, we may conclude the main contributions as
follows. The paper is a first one to study a nonlinear water-lubricated bearing-shaft coupled system using the
energy flow approach, which practices and further confirmed an efective energy-flow means to tackle varous
complex nonlinear systems and to investigate their nonlinear characteristics: stability, periodical motion,

25



birfurcation and possible chaos.The results obtained for the investigated system have revealed that the dynamic
behaviour about its equilibrium point is fully determined by the energy flow matrix and its characteristic factors.
Three cases with different energy flow charactristic factors affected by the friction-parameters are discovered: a)
two negative and one positive factors, constructing an attractive local zero energy flow surface, in which free
vibrations show damped modulated oscillations allowing the system returning to its equlibrium state, while forced
vibrations show stable oscillations; b) one negative and two positive factors, spanning a divergence local zero
energy flow surface, so that the both free / forced vibrations are in divergence resulting an unstable system; c¢) one
zero and two opposite factors, constructing a local zero energy flow surface dividing the phase space into stable,
unstable and central subspace, and the simulation shows friction self-induced unstable vibrations in both free and
forced cases. For a set of friction parameters, the system behaves a periodical oscillation, in which the bearing
motion tends zero and the shaft motion tends a stable limit circle in phase space with the instant energy flow tends
a constant and its time averaged one tends zero. Numerical simulations have not found any possible chaotic
motions of the system. It is discovered that the damping matrices of cases a), b) and c) respectively have positive,
negative and zero diagonal elements, dominating the dynamic behavour in different cases of the system, which
provides an approach to design the water-lubricated bearing unit with expecting performance in marine
engineering applications by choosing suitable friction parameters to generate the expected damping matrix.
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