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Abstract. Acoustic Black Holes (ABHs) are structural features that are

typically realised by introducing a tapering thickness profile into a structure

that results in local regions of wave-speed reduction and a corresponding

enhancement in the structural damping. In the ideal theoretical case, where

the ABH tapers to zero thickness, the wave-speed reaches zero and the wave

entering the ABH can be perfectly absorbed. In practical realisations, however,

the thickness of the ABH taper and thus the wave-speed remain finite. In

this case, to obtain high levels of structural damping, the ABH is typically

combined with a passive damping material, such as a viscoelastic layer. This

paper investigates the potential performance enhancements that can be achieved

by replacing the complementary passive damping material with an Active

Vibration Control (AVC) system in a beam-based ABH, thus creating an Active

ABH (AABH). The proposed smart structure thus consists of a piezo-electric

patch actuator, which is integrated into the ABH taper in place of the passive

damping, and a wave-based, feedforward AVC strategy, which aims to minimise

the broadband flexural wave reflection coefficient. To evaluate the relative

performance of the proposed AABH, an identical AVC strategy is also applied

to a beam with a constant thickness termination. It is demonstrated through

experimental implementation, that the AABH is able to achieve equivalent

broadband performance to the constant thickness beam-based AVC system, but

with a lower computational requirement and a lower control effort, thus offering

significant practical benefits.
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1. Introduction

The ‘Acoustic Black Hole’ (ABH) effect is a mechanism for attenuating flexural

vibrations in structures, such as beams [1, 2, 3, 4, 5, 6, 7, 8, 9] or plates

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and inherently provides a lightweight

vibration control solution. Although the term ‘Acoustic Black Hole’ has a number

of definitions in different fields, this paper focuses on the structural design feature

that aims to control flexural structural waves. The ABH effect is achieved by

introducing a smooth impedance change into a structure and this introduces a

local reduction in the flexural wave speed. This has typically been realised using

a power law taper [1], which governs the thickness of the beam within the ABH

section and can be described as

h(x) = ε
( ltaper − x

ltaper

)µ
+ htip, (1)

where x is the coordinate position, ltaper is the length of the taper, µ is the power

law and htip is the tip height. Figure 1 shows a diagram of an example power

law taper terminating a beam. Theoretically, if the taper were to decrease to

an infinitely small tip height, then the wave speed would reduce to zero and

there would be no reflection from the beam termination [21]. In practice, an

infinitely small tip height is unachievable and so the wave speed does not reach

zero. However, the reduced wave speed results in a reduced flexural wavelength

and it has been shown that it is thus possible to achieve a very low level of reflection

from the beam termination by adding a thin layer of passive damping material to

the taper [1, 12, 17, 22].

ABH	Junction ABH	Tip
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ℎ(𝑥)

Figure 1. A diagram of an ABH termination on the end of a beam. h(x) is the

height function, ltaper is the taper length, b is the taper width and htip is the

tip height.

Due to the lightweight nature of ABHs and the high levels of vibration

control that they can achieve, there have been many studies into their design
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and optimisation, which have been reviewed in [23]. It has been shown through

both simulation and experimental studies that ABHs can be tuned by changing the

geometrical properties of the taper, such as the tip height, taper gradient and taper

length [19, 24, 25, 26, 27, 28, 29]. It has also been shown that these parameters

are interdependent and they can thus be optimised when considering different

practical limits due to manufacturing or the intended application [6, 30, 31]. An

alternative method of tuning the behaviour of an ABH was proposed in [18], in

which a thermally controlled damping layer was utilised. Although this method

enabled the properties of the ABH to be effectively tuned, it required the system

to be located in a thermal chamber to allow the temperature to be adjusted and,

therefore, further work is required to enable utilisation in practical applications.

In general, ABHs have a low frequency cut-on limit, below which their

performance has been shown to significantly degrade [14]. The frequency above

which the ABH becomes effective can be linked to the frequency at which the

flexural wavelength becomes comparable to the taper length [10]. Although it is

possible to increase the taper length to lower the cut-on frequency, this is not

always achievable in practical applications where space is limited. Attempts to

overcome the low-frequency limit using alternative designs have been proposed,

such as using a spiral ABH [3, 32]. However, such designs are more complex to

manufacture and integrate into existing structures. Alternatively, it has been

shown that the low frequency performance of an ABH can be enhanced by

exploiting geometrical nonlinearities, which serve to induce energy transfer from

low to high frequencies [33]. This behaviour, however, is inherently amplitude

dependent and relies on the introduction of higher harmonic content, both of

which may not be suitable for all applications.

An alternative and highly flexible approach to extending the low frequency

performance of an ABH is to integrate Active Vibration Control (AVC) technology

into the ABH and an initial simulation-based investigation into this smart

structures concept has been presented in [34] and some details have been described

in [35]. AVC is an effective solution for the control of structural vibration when

there are restrictions on the size and weight of the control treatment [36], and thus

presents a complimentary solution to the passive ABH. The current paper presents

a full experimental investigation into the realisation of an Active ABH (AABH) for

the termination of a beam and provides new insight into the potential advantages

that are obtained by this smart structure over a purely active control system

realisation by combining the passive and active control system components. In

order to control the reflection from the end of the beam, a feedforward wave-based
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control strategy is adopted, as previously developed for the realisation of an active

anechoic termination in a constant thickness beam [37, 38, 39, 40]. Following a

detailed review of the wave-based control strategy in Section 2, Section 3 describes

the realisation of the AABH terminated beam, as well as a standard constant

thickness beam with an active termination. The design and performance of the

AABH and active beam are then also compared in Section 3. This experimental

investigation compares the performance of the two strategies, as well as their

requirements in terms of both electrical power and the computational demand,

which governs the required Digital Signal Processing (DSP) capacity. Section 4

presents a real-time experimental assessment of the performance of the AABH in

comparison to the active beam and conclusions are drawn in Section 5.

2. Wave-Based Active Control

AVC is an effective and versatile solution for the control of structural disturbances

when there are restrictions on the size and weight of the control treatment. AVC

uses a control force to generate additional vibration that destructively interferes

with the primary disturbance. If time-advanced information about the disturbance

is known, then the AVC system can be implemented using a feedforward control

architecture and this can be realised as a digital controller that can be adapted

in real-time to reduce the primary disturbance [41]. In the beam-based ABH

literature, the performance of an ABH is generally assessed in terms of its reflection

coefficient and an ideal ABH performs as an anechoic termination, absorbing

the incident energy so that there is no reflection. Similarly, AVC systems can

be used to absorb incident or reflected waves propagating along a beam and,

as introduced above, a wave-based feedforward AVC control strategy has been

proposed to generate an anechoic beam termination [37, 38, 39, 40]. Wave-based

control can provide broadband attenuation and requires no prior knowledge about

the modal behaviour of the system [40]. As a result, when compared with a global

control strategy the number of error sensors required to control high order modes

is lower and wave-based control can, therefore, reduce both the space and weight

required by the AVC system. In order to investigate the potential advantages of

integrating an active solution into the design of an ABH, this section will describe

a wave-based feedforward AVC strategy. Previous versions of this control strategy

have been described in [37, 38, 39, 40], but were only applied to a constant thickness

beam profile. Section 2.1 first describes the real-time wave decomposition process

and then Section 2.2 describes the controller formulation.
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2.1. Wave Decomposition

To perform wave-based active control, the primary disturbance must first be

decomposed into the incident and reflected wave components. This can be achieved

by expressing the flexural acceleration at a point on the beam at a single frequency

in terms of the incident and reflected, or positive and negative propagating and

near-field wave components as

A(x, t) = −ω2(φ+e−ikx + φ+
Ne−kx + φ−eikx + φ−

Nekx)eiωt, (2)

where ω is the angular frequency, k is the flexural wavenumber, x is the position

along the beam relative to a user-defined origin, φ+ is the incident propagating

wave, φ+
N is the incident near-field wave, φ− is the reflected propagating wave and

φ−
N is the reflected near-field wave [36, 40]. In the following, the time dependence

term in Equation (2), eiωt, will be suppressed for clarity. In order to extract the

individual wave components from the acceleration response of the beam described

by Equation (2), it is necessary to utilise an array of sensors, with the number

of sensors required being equal to the number of wave components [36]. Thus,

according to Equation (2), it would be necessary to employ an array of four

structural sensors to extract the four wave components. However, by placing the

sensor array sufficiently far from structural excitations or impedance changes, such

as the tapering thickness profile in the ABH terminated beam, the near-field terms

in Equation (2) will be small in magnitude compared to the far-field terms, such

that they can be neglected [37, 38]; this assumption and the resulting limitations

are discussed further in Section 2.1.1. Assuming that the near-field components

can be neglected, the two propagating wave components can be decomposed using

two sensors, which in this case are realised as accelerometers. Figure 2 shows the

two accelerometers located on a beam, which are used to decompose the measured

response into the positive and negative propagating wave components. By referring

to Equation (2) and neglecting the near-field components, the response measured

at each accelerometer can be expressed at each frequency as[
A1(ω)

A2(ω)

]
= −ω2

[
eik∆/2 e−ik∆/2

e−ik∆/2 eik∆/2

] [
φ+(ω)

φ−(ω)

]
, (3)

where A1 and A2 are the complex amplitudes of the acceleration measured at each

of the two sensors, and ∆ is the accelerometer spacing shown in Figure 2. The

2 × 2 matrix of exponential terms in Equation (3) can be inverted so that φ+ and

φ− can be expressed as a function of the accelerations measured at the two points.
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With some re-arrangement [40], the wave components can then be expressed at

each frequency as[
φ+(ω)

φ−(ω)

]
=

[
H1(ω) H2(ω)

H2(ω) H1(ω)

] [
A1(ω)

A2(ω)

]
, (4)

where

H1(ω) = − 1

4ω

(
1

sin(k∆/2)
+

i

cos(k∆/2)

)
(5a)

H2(ω) =
1

4ω

(
1

sin(k∆/2)
− i

cos(k∆/2)

)
. (5b)

2.1. Wave Decomposition46

When the control force is placed near to the end of a finite beam, the reflected
wave can be absorbed and the termination can be considered an active anechoic
termination. This form of wave based active control can be used to reduce the
modal behaviour of a beam, which reduces the structural resonances [21]. To per-
form wave based active control, the primary disturbance must first be decomposed
into the individual wave components. The acceleration at a point in the beam can
be expressed as

ẅ(x, t) = −ω2(φ+
e
−ikx + φ+

N
e
−kx + φ−

e
ikx + φ−

N
e
kx), (1)

where ω is the angular frequency, φ+ is the incident propagating wave, φ+
N
is the in-

cident near-field wave, φ− is the reflected propagating wave and φ−
N
is the reflected

near-field wave [22, 21]. The time dependence term in Equation 1, eiωt, is assumed
but has been suppressed for clarity. The two near-field terms in Equation 1 are rep-
resentative of the evanescent waves produced by the primary disturbance and the
impedance change of the AABH. If these terms are small in magnitude compared
to the propagating waves, they can be assumed negligible and the two propagating
wave components can be decomposed using two accelerometers. Figure 1 shows

A1

!"
!#

A2

∆

Figure 1: Two accelerometers placed on a beam, separated by distance ∆. These can be used to

decompose within the beam into two components.

two accelerometers on a beam that are used to decompose the disturbance into a
positive and negative travelling wave component. By referring to Equation 1 and
neglecting the near-field components, the response measured at each accelerometer
can be expressed as

!
A1(ω)
A2(ω)

"
= −ω2

#
e
ik∆/2

e
−ik∆/2

e
−ik∆/2

e
ik∆/2

$!
φ+(ω)
φ−(ω)

"
. (2)

3

Figure 2. Two accelerometers placed on a beam, separated by distance

∆. These can be used to decompose the flexural propagating wave into two

components.

The wave decomposition operators given by Equations (5a) and (5b) could

be implemented directly in the frequency domain to decompose the acceleration

signals into the incident and reflected wave components, however, this would only

be suitable for use in a tonal control strategy. In this work, the aim is to implement

a broadband control solution and, therefore, it is necessary to approximate the

wave decomposition operators using broadband filters. This can be achieved in a

digital control system by approximating H1 and H2 using Finite Impulse Response

(FIR) filters, as previously proposed in [42]. The accuracy of these filters is

dependent on the filter length, sampling frequency and the spacing between the

accelerometers [37, 38, 40, 42]. The filter impulse responses h1 and h2 can be

found by taking the inverse Fourier transform of H1(ω) and H2(ω), however, to

ensure that the impulse responses are causal, a modelling delay must first be added

to H1(ω) and H2(ω) before approximating them as FIR filters [37]. This can be

achieved by multiplying each frequency response by eiωns , so that the corresponding

impulse response is an estimate of the wave amplitude ns samples earlier [37, 40].
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The effect of this delay on the performance of the control system can be reduced

if the propagation time between the accelerometers and the control actuator is

greater than ns [39], but the introduction of this additional delay does deteriorate

the control performance, particularly at higher frequencies [40]. Interestingly, the

performance of a wave-based control system has been shown to be fairly robust

to inaccuracies in the wave decomposition filter responses [37] and so a relatively

small number of coefficients can be used in practice. The positive and negative

propagating wave components can then be calculated in the discrete time domain

via convolution between the FIR filters and the time domain accelerometer outputs

as [
φ+(n)

φ−(n)

]
=

[
h1 h2

h2 h1

]
∗
[
a1(n)

a2(n)

]
, (6)

where a1(n) and a2(n) are the outputs of the two accelerometers at the n-th time

step.

2.1.1. Wave Decomposition Limitations As noted above, and previously

discussed in [37, 40, 42], the wave decomposition approach described here is only

accurate over a finite frequency range. At low-frequencies the accuracy of the wave

decomposition is limited by the length of the filters, h1 and h2, the sampling rate

and the distance between the sensors and sources of near-field wave components

[37, 40, 42]. In this investigation, due to the relatively compact nature of the

system being considered, the low-frequency limit is related to the assumption

that the near-field components can be neglected. The near-field waves have been

considered negligible once they have decayed to 10% of their original value, which

is consistent with the limits utilised in the ABH literature [2, 6], and this leads to

the relation

e−kl ≤ 0.1. (7)

This equation describes the decay of the evanescent wave amplitude over a distance

of l, and can therefore be used to calculate the lowest frequency at which the near-

field components have sufficiently decayed for a given spacing between the sensors

and any sources of near-field wave components. For a rectangular beam section,

the wavenumber can be calculated analytically as [36]

k =
(

12ρ

Eh2

) 1
4

ω
1
2 , (8)
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where ρ is the density of the material, E is the Young’s modulus of the material

and h is the height of the beam. By substituting Equation (8) into Equation (7)

and re-arranging, the low frequency limit can be calculated as

fmin =

(
Eh2[ ln(0.1)]4

48π2ρl4

) 1
2

. (9)

The high frequency limit of the wave decomposition method is imposed by

the sampling frequency, anti-aliasing filters and re-construction filters and the

modelling delay used to design the wave decomposition filters, h1 and h2. In

addition, the spacing between the two sensors should be less than half the minimum

wavelength of interest. These limits will be addressed in the context of this

investigation in Section 3.1.

2.2. Controller Formulation

As noted above, the aim of the ABH terminated beam is to minimise the reflection

coefficient and thus generate an anechoic termination. This has previously been

achieved for a standard beam using a wave-based feedforward control strategy, as

outlined in [37, 38, 39, 40]. This strategy utilises the wave decomposition method

described in Section 2.1 to provide the positive and negative propagating wave

components, the latter of which is used as the error signal in a feedforward control

architecture. Figure 3 shows a block-diagram of the wave-based feedforward

control system, which utilises the Filtered-Reference Least Mean Squares (FxLMS)

architecture.

The wave-based feedforward control system considered here consists of a single

control actuator, a pair of accelerometer error sensors, as described in Section

2.1 and Figure 2, and a reference signal, which in this case is provided by the

signal driving the primary structural disturbance. As can be seen from the block-

diagram shown in Figure 3, the control filter, w, is adapted to minimise the error

signal corresponding to the negative propagating wave, eφ−(n). This signal is

obtained using the wave decomposition method described in Section 2.1 and can

be expressed following equation (6) as

eφ−(n) = hT2 e1(n) + hT1 e2(n), (10)

where h1 and h2 are the wave decomposition FIR filters with Ih coefficients and

e1(n) and e2(n) are the vectors of current and past samples of the error signals

measured at the two accelerometers mounted on the beam, as shown in Figure 2,

such that multiplication with the wave decomposition filter describes a convolution
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Figure 3. A block-diagram showing a wave-based active control system. The

digital controller, w, is adapted to minimise the error signal, eφ− . d is the

disturbance signal that is measured at the accelerometer array, ĝ is an estimation

of the plant response that is implemented as an FIR filter and r̂ is the filtered

reference signal.

operation. The error signal vector corresponding to the l-th sensor can be written

as

el(n) = [el(n), el(n− 1), · · · , el(n− Ih + 1)]T . (11)

The elements of this vector, which correspond to the signals measured at the l-th

sensor at the n-th time step, can be expressed in terms of the summation of the

disturbance signal at the sensor, dl(n), and the contribution due to the control

signal, u(n), which operates via the secondary path, to give

el(n) = dl(n) +
J−1∑
j=0

glju(n− j), (12)

where the secondary path between the control source and the l-th error sensor

has been represented by a J-th order FIR filter with coefficients glj. As shown in

Figure 3, the control signal is generated by filtering the reference signal, x(n), via

the control filter, w, which is implemented as an FIR filter with Iw coefficients,

wi, which gives the control signal as

u(n) =
Iw−1∑
i=0

wix(n− i). (13)

Substituting equation (13) into (12) then gives the error signal at the l-th sensor
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as

el(n) = dl(n) +
J−1∑
j=0

Iw−1∑
i=0

gljwix(n− i− j), (14)

and by making the assumption that the control filter is time-invariant [41], this

can be rewritten as

el(n) = dl(n) +
Iw−1∑
i=0

wirl(n− i), (15)

where the reference signal filtered by the l-th secondary path response is

rl(n) =
J−1∑
j=0

gljx(n− j). (16)

Equation (15) can be more succinctly expressed using vector notation as

el(n) = dl(n) + wT rl(n), (17)

where

rl(n) = [rl(n), rl(n− 1), · · · , rl(n− Iw + 1)]T . (18)

Following this same approach, the error signal corresponding to the negative

propagating wave given by equation (10) can be expressed as

eφ−(n) = dφ−(n) + wT rφ−(n), (19)

where rφ−(n) is the vector of current and past samples of the reference signal

filtered by the plant response corresponding to the negative propagating wave and

dφ−(n) is the disturbance signal associated with the negative propagating wave.

The individual elements of rφ−(n) can be expressed using the wave decomposition

filters as

rφ−(n) = hT2 r1(n) + hT1 r2(n), (20)

where rl in this case is the vector of the current and previous (Ih − 1) samples of

the filtered reference signals described by equation (16). Similarly, the disturbance

signal associated with the negative propagating wave can be expressed as

dφ−(n) = hT2 d1(n) + hT1 d2(n), (21)

where dl(n) is the vector of the current and previous (Ih − 1) samples of the

disturbance signal at the l-th sensor.

With the error signal corresponding to the negative propagating wave

expressed according to equation (19), it is possible to derive the optimal broadband

control filter that minimises the cost function defined as the weighted summation of
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the mean-square error signal and the sum of the squared control filter coefficients.

This cost function can be expressed as

J = E
[
(eφ−(n))2

]
+ βwTw. (22)

where E denotes the expectation operator and β is a positive control effort

coefficient-weighting parameter. The inclusion of the second term in the cost

function has a number of practical benefits, as discussed in [41], however, it has

been included here to enable a constraint to be imposed on the magnitude of

the control signals. Substituting equation (19) into equation (22) gives the cost

function as

J = wTE
[
rφ−(n)rφ−(n)T

]
w + 2wTE [rφ−(n)dφ−(n)] · · ·

+ E
[
(dφ−(n))2

]
+ βwTw. (23)

The optimal vector of control filter coefficients can then be calculated by setting

the derivative of equation (23) with respect to the control filter coefficients to zero

and this leads to the optimal solution

wopt = −
{

E
[
rφ−(n)rφ−(n)T

]
+ βI

}−1
E [rφ−(n)dφ−(n)] , (24)

which assumes that the inverted matrix is positive definite and can, therefore,

be inverted. From equation 24 it can be seen that the control effort coefficient-

weighting parameter, β, regularises the solution to the inverse problem, as

discussed in [41]. It is relatively straightforward from this point to derive the

adaptive version of the FxLMS algorithm that could be used to implement a

controller with filter coefficients that converge towards the optimal solution given

by equation (24), as described for example in [41]. However, in the following

investigation the optimal solution given by equation (24) will be utilised to

ensure that the limitations on the maximum control performance are clearly

demonstrated.

3. Experimental Investigation

In this section, an investigation into the optimum performance of an AABH is

presented via a comparison with a standard beam with an active termination. In

addition to the control performance, a comparison is also made in terms of the

electrical power requirement and the computational demand, which governs the

required DSP power. This section begins with a description of the experimental

setup and this is followed by an investigation into the plant modelling requirements

for the FxLMS controllers used by the two systems. The control performance
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for the two active terminations is then assessed via offline predictions using the

measured responses and this is accompanied by a discussion of the results.

3.1. Experimental Setup

The experimental setup used to investigate the performance of the AABH beam

termination is shown in Figure 4; an identical setup is used for the constant

thickness beam termination. From this diagram it can be seen that the beams

were instrumented with two accelerometers, which provide the error sensors for

the wave decomposition described in Section 2.1, and a single piezoelectric patch

actuator, which provides the secondary control force, as utilised by the controller

described in Section 2.2. Piezoelectric materials have been widely employed in the

active control of noise, vibration and flow, as reviewed in [43] and have previously

been integrated with ABHs for energy harvesting applications [44, 5], but have not

previously been used to combine active control with ABH structural features as

proposed here. The control actuator in the study presented here was realised using

a PI ceramic P-876.A11 piezoelectric patch actuator [45] and, as shown in Figure

5, it was attached to the flat side of the ABH taper and to the end of the standard

beam using adhesive; this arrangement avoids the introduction of different levels

of pre-stress into the piezoelectric patch for the two beam terminations. The

operating voltage range of the piezo patch is -50 V to 200 V and the patch has a

length of 61 mm, a width of 35 mm, a height of 0.4 mm and a mass of 2 g. The

two accelerometers were positioned ∆ = 2 cm apart and the centre point between

them was located at lp = 21 cm from the primary disturbance, which was provided

by a standalone shaker. By referring to the control system limits in Section 2.1.1,

the sensor placement gives a low frequency limit of approximately 400 Hz. The

controller described in Section 2.2 was implemented on a dSpace real-time rapid

control prototyping system [46]. The sampling frequency of the control system

utilised in the experimental setup was set to 24 kHz and the anti-aliasing low-pass

filters were accordingly set to give a cut-off frequency of 10 kHz. The frequency

range of this investigation was, therefore, limited to between 400 Hz and 10 kHz.

The two beams, which are shown in the photographs of the two setups in

Figure 5, have been manufactured from a 10 mm thick sheet of aluminium alloy

6061-T6. Two identical beams, with a length of 370 mm and width of 40 mm,

were cut from the sheet and then the ABH taper was cut into the end of one of the

beams using a water jet cutter. The length of the ABH taper was set to 70 mm

and based on the parametric design study presented in [6] was implemented with
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High voltage 
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Control 
System
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ABH	/	Beam

Piezo	Patch1 2

Figure 4. A diagram showing the experimental setup used to realise the active

terminations for the AABH and standard constant thickness beam.

(a) (b)

Figure 5. Pictures of the experimental setup used to measure the responses of

the beams with the ABH (a) and constant thickness (b) terminations.

a power law of 4 and a tip height of 0.5 mm to maximise the passive performance

of the taper. The dimensions of the two beams are summarised in Table 1.

3.2. Plant Modelling

As shown in Section 2.2, the proposed wave-based feedfoward active control system

is implemented using the FxLMS algorithm and this requires an accurate model

of the plant response to generate the filtered reference signal, rφ−(n). The plant

model is derived via a system identification procedure [47], where the response

is first measured between the input to the control actuator and output from

the error sensors and then approximated by an FIR filter model. To develop

an understanding of the requirements of the plant model used to implement the
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Parameter ABH Termination Constant Thickness Termination

Beam height (h(0)) 10 mm 10 mm

Beam length (lbeam) 300 mm 370 mm

Beam width (b) 40 mm 40 mm

Tip height (htip) ∼0.5 mm 10 mm

Taper length (labh) 70 mm 0 mm

Taper power law (µ) 4 n/a

Table 1. The geometrical parameters of the beams with both an ABH and a

constant thickness termination.

controllers for the AABH and the active beam, a study that investigates how the

plant modelling error varies with the number of filter coefficients in the plant model

has been carried out.

In the first instance, the plant responses between the voltage input to the

piezoelectric patch and the two accelerometers were measured for the two beams

by driving the piezoelectric patch actuator with white noise, band-limited between

400 Hz and 10 kHz. The frequency responses were then calculated using the H1-

estimator and corresponding FIR filters were calculated with between 10 and 5000

coefficients (or durations of between 0.4 and 200 ms at the 24 kHz sample rate)

using the Matlab function invfreqz, which uses a least-squares approach based

on [48]. The normalised mean-squared error (NMSE) between the modelled plant

responses and the measured responses was then calculated for each filter length

and averaged over both accelerometers as

NMSE =
1

2

2∑
l=1

[(gl − ĝl)
H(gl − ĝl)]

(gHl gl)
, (25)

where gl is the column vector containing the frequency response of the identified

plant and ĝl is the column vector containing the frequency response of the

plant model FIR filter, both between the single control actuator and the l-th

accelerometer.

Figure 6 shows how the NMSE, calculated according to equation (25),

decreases with increasing number of coefficients in the plant model FIR filter

for both the AABH and constant thickness beam. From the results presented

in Figure 6 it can be seen that the AABH system requires fewer filter coefficients

than the constant thickness active beam system to achieve the same NMSE in the

plant model, or, alternatively, can achieve a lower level of NMSE for the same

plant model filter length. This is a potentially significant advantage because it
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can be used to reduce the computational requirements of implementing the active

feedforward control strategy outlined in Section 2.2 on a DSP system. For example,

in the case of the AABH if the plant model FIR filter was implemented with 400

coefficients the NMSE would be −28 dB, however, to achieve the same NMSE for

the constant thickness beam termination would require 1430 FIR filter coefficients

in the plant model. This means that the AABH termination potentially allows a

more computationally efficient implementation of the FxLMS controller.
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Figure 6. The NMSE between the frequency responses corresponding to the

identified plant and the plant model FIR filters for an increasing number of FIR

coefficients for the AABH (black thick line) and the constant thickness beam

(thin red line).

To help explain why the standard beam termination requires a longer FIR

filter to accurately model the plant response than that required by the AABH

termination, Figure 7 shows the magnitude of the identified plant frequency

response for the two terminations. From the presented results it can be seen that

the plant response for the constant thickness beam is characterised by 3 lightly

damped resonances at 2.4, 3.7 and 7.8 kHz. These resonances significantly exceed

the magnitude of any of the resonances present in the plant response for the AABH

terminated beam and this is consistent with the expected passive performance of

the AABH termination, which will be discussed further in Section 3.3.2. It is

worth noting that the passive damping is being provided here by the presence of the

piezoelectric patch. The lightly damped resonances in the constant thickness beam

will have an inherently slower decay rate than the resonances that characterise the

AABH terminated beam and, therefore, require a longer FIR plant modelling filter.
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Figure 7. The magnitude of the plant response measured between the voltage

input to the piezoelectric patch actuator and the negative propagating wave

generated by the actuator calculated according to Equation (6) using the

accelerations measured at the two accelerometers mounted on the beam section,

as shown in Figure 4, for the constant thickness beam (thin red line) and the

AABH beam (black thick line).

3.3. Control Performance

Having established the requirements in terms of the plant modelling filters for

the two beam terminations in the previous section, this section will firstly

investigate the requirements in terms of the control filter length for the two

different configurations. Subsequently, a comparison between the broadband

control performance for the two active terminations will be presented.

3.3.1. Control Filter Length To initially assess how many coefficients are required

for the optimum control filter, w in Figure 3, the total broadband averaged

attenuation in the reflection coefficient has been calculated for a range of control

filter lengths. The broadband averaged attenuation is defined as

R̄atten = −20 log10

(
R̄

R̄0

)
, (26)

where R̄0 is the reflection coefficient for the constant thickness beam without

control averaged over frequency and R̄ is the reflection coefficient of the controlled

system averaged over frequency. The broadband average attenuation was

calculated using a range of between 0 and 500 control filter coefficients for both

the AABH and constant thickness active beam terminations. The optimal control

filter in each case has been calculated using equation (24) with the control effort



Active Acoustic Black Hole terminated beam 17

weighting coefficient β set to zero for the AABH and, for the constant thickness

beam configuration, set to constrain the peak-to-peak input voltage to be equal to

that required to drive the piezoelectric patch actuator for the optimal AABH

configuration. There are a variety of methods of selecting the regularisation

parameter discussed in the literature, including Generalised Cross Validation

[49], the L-curve method [50], and Morozov discrepancy principle [51]. However,

the required value of β for the constant thickness beam configuration has been

determined here by iteratively increasing β from zero until the peak-to-peak input

voltage is equal to that required in the AABH configuration. This has been done

to provide a direct comparison between the performance of the two system designs

when they are each utilising the same electrical drive signal requirements. For each

termination configuration, the plant model has been implemented to achieve the

same NMSE, as defined by equation (25), such that the AABH implementation

uses 400 coefficients and the standard active beam uses 1430 coefficients. Figure

8 shows for each of these cases the broadband average attenuation (a) and the

maximum peak-to-peak input voltage to the piezoelectric actuator (b) for various

control filter lengths.
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Figure 8. The broadband averaged attenuation (a) and corresponding peak-

to-peak voltage (b) for different configurations of the AVC termination with

different control filter lengths. The thick black lines show the results for the

AABH terminated beam, the thin red lines show the results for the constant

thickness beam termination both without regularisation (dashed) and with

regularisation to constrain the peak-to-peak voltage to match the requirements

of the AABH (solid).

From the results presented in Figure 8(a), it can be seen that in all cases
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the broadband performance increases as the number of control filter coefficients is

increased. The increase in broadband attenuation is initially quite rapid, however,

for control filter lengths greater than 350 coefficients the broadband attenuation

increases by less than 1 dB for all of the controllers. Therefore, in the following

section the performance of the different beam terminations is compared for a

control filter length of 350 coefficients. In addition to demonstrating how the

performance varies with the number of control filter coefficients, Figure 8(a) shows

that the AABH provides more attenuation than either of the constant thickness

beam configurations for the same control filter length up to 500 coefficients. This is

because the AABH combines the performance of the active control system with the

passive performance of the ABH. On this note, it is important to highlight that the

AABH without control (i.e. when the control filter length is zero) achieves 4 dB

more broadband attenuation than the constant thickness beam, which corresponds

to the passive performance achieved via the ABH effect. For a control filter length

of 500 coefficients, it can be seen from the results presented in Figure 8(a) that

the AABH and the unregularised constant thickness active beam termination

achieve the same broadband attenuation. However, it is important to highlight

using the results presented in Figure 8(b), which show the maximum peak-to-

peak voltage required by the controller in each case, that the constant thickness

beam configuration requires almost 13 times the peak-to-peak voltage required by

the AABH system. This means that the constant thickness beam configuration

is less efficient than the AABH and, in practice, would require actuators and

amplifiers rated to a significantly higher peak operating level. In fact, the peak-

to-peak voltage required by the constant thickness beam configuration using the

unregularised optimal control filter significantly exceeds the input voltage limits

of the piezoelectric patch actuator utilised for this study. Therefore, the plots in

Figure 8 also show the performance when the optimal control filter solution for

the constant thickness beam is regularised such that the required peak-to-peak

voltage is equal to that required by the optimal AABH solution. In this case it

can be seen that the AABH exceeds the broadband performance achieved by the

regularised active constant thickness beam configuration by around 10 dB. It is

important to note that this performance advantage is greater than that provided

by the passive ABH effect alone, which provides a broadband attenuation of 4 dB.

It is interesting to observe that a similar advantage was observed when combining

active control elements with a Helmholtz resonator based metamaterial in [52] and

the results presented here thus begin to demonstrate the advantage of the AABH

termination compared to a constant thickness active beam termination.
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3.3.2. Broadband Performance To provide a more detailed comparison of the

different active beam terminations, the broadband reflection coefficient for each

termination has been calculated over frequency with and without control. The

performance has also been calculated for the constant thickness active beam where

the optimal control filter has been regularised to constrain the peak-to-peak input

voltage to be equal to that required by the optimal AABH solution, therefore

providing a consistent comparison between the two terminations for a practically

realisable beam controller. Once again, the number of coefficients in the plant

models has been set to give the same NMSE for both the AABH and the constant

thickness beam termination and the number of coefficients in the control filter has

been set to 350, based on the results presented in Section 3.3.1. Figure 9 shows the

resulting reflection coefficients and control effort, defined as wTw, required for each

of the 3 controller configurations. In addition, the performance of an equivalent

fully passive ABH termination has also been measured for reference, where the

passive damping has been provided by a thin layer of viscoelastic material, as

previously described in [6].
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Figure 9. (a) The reflection coefficient of the AABH without control (solid

black line) and with control using 400 coefficients in the plant model (dashed

black line); the constant thickness active beam without control (solid red

line), and with control using 1430 coefficients in the plant model both without

regularisation (dashed red line) and with regularisation (dotted red line); and

the passive ABH with a thin viscoelastic damping layer (thick blue line). In

all active control cases the number of coefficients in the control filter is set to

350. (b) The control effort required in each control case with consistent line

types. The control effort has been normalised so that a constant level at 0 dB

corresponds to the maximum broadband input to the piezo.
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Figure 9(a) shows the reflection coefficient for the different beam termination

configurations over frequency. From these results it is interesting to first highlight

that the reflection coefficient for the constant thickness beam termination without

control is close to 1 for most frequencies, while the reflection coefficient for the

AABH without control features the bands of low reflection that are typical of a

passive ABH termination; the passive damping in this case is being provided by

the undriven piezoelectric patch. It is also interesting to compare the performance

of the AABH without control to the performance of the passive ABH termination

with a thin layer of viscoelastic damping applied to the taper. In this case it

can be seen that the dips in the reflection coefficient are lower for the purely

passive ABH than the uncontrolled AABH due to the greater level of damping

provided by the viscoelastic material. It can also be seen that the nulls are shifted

down in frequency compared to the uncontrolled AABH, which is in part due to

the additional mass of the applied viscoelastic material (12 g) compared to the

piezoelectric patch (2 g). These differences aside, it is clear that the passive ABH

has limited low frequency performance and is relatively consistent in behaviour to

the uncontrolled AABH.

From the active control results presented in Figure 9(a) it can be seen that

all three configurations (the AABH and the constant thickness beam with and

without regularisation) achieve almost perfect control of the reflection coefficient

above around 3 kHz. However, at lower frequencies it can be seen that the control

performance shows some clear limitations for the three configurations. For the

AABH it can be seen that the reflection control is limited at around 600 Hz,

which corresponds to a dominant structural resonance that can be seen in the

AABH plant response presented in Figure 7. Similar limitations can also be seen

for the constant thickness active beam termination, but occur at around 420 Hz,

1.1 kHz and 2.4 kHz, which correspond to significant structural resonances in the

constant thickness beam response, as shown in Figure 7. These peaks in the

response largely account for the difference in the broadband averaged attenuation

achieved by the unregularised active beam termination compared to the AABH,

as shown in Figure 8(a). Finally, it can be seen from the reflection coefficient for

the regularised active beam configuration that the regularisation largely limits the

control performance at frequencies below around 2 kHz and it is clear that the

performance is comparable to the uncontrolled AABH.

Figure 9(b) shows the control effort for the three active configurations; the

results in Figure 9(b) are presented in decibels with reference to the control effort

corresponding to the maximum broadband input to the piezoelectric actuator.
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From these results it can be seen that the unregularised constant thickness beam

configuration requires up to 30 dB more control effort than the AABH and whilst

this difference is largest at frequencies below around 2 kHz, the control effort

requirements are notably larger even at higher frequencies. It can also be seen from

the results presented in Figure 9(b) that while the high levels of control effort that

occur at low frequencies for the constant thickness beam termination are limited

by the employed level of regularisation, the regularised constant thickness beam

controller still requires a higher level of effort compared to the AABH at higher

frequencies. These results demonstrate more clearly the advantages of the AABH

termination over the constant thickness active beam termination that have already

been noted in reference to the broadband averaged results presented in Section

3.3.1. That is, the AABH is able to achieve improved control performance with a

lower power requirement than the constant thickness active beam configuration.

In addition, it is interesting to once again note that this enhanced performance

goes beyond that provided by the passive ABH performance. That is, while the

uncontrolled performance of this particular AABH is limited below around 1.2 kHz,

the AABH with control is still able to achieve significant performance with a

lower control effort than the constant thickness active beam configuration. This

implies that the AABH not only offers the advantages of the additional passive

performance, shown by the thin solid black line in Figure 9(a), but also enables

improved active control performance.

It is has been shown by the presented results that the AABH is able

to outperform the constant thickness active beam termination in terms of the

broadband attenuation in the reflection coefficient. It has also been shown that the

control efficiency of the AABH is greater than the constant thickness active beam

termination, with the AABH requiring a significantly reduced control effort. The

AABH thus offers a number of advantages over the constant thickness active beam

termination, however, it is interesting to also understand how the AABH influences

the response of the termination section of the beam. Therefore, Figure 10 shows

the response measured at the centre of the termination section both with and

without control for the AABH and constant thickness active beam terminations.

By comparing the uncontrolled responses in Figure 10(a) and 10(b) it can be

seen that, on average, the uncontrolled AABH response is around 10 dB greater

than the response of the constant thickness beam termination. This result is as

expected given the reliance of the ABH effect on focusing energy into the taper,

as previously observed for passive ABHs [11, 17, 23]. However, it is interesting to

observe here the effect of control on the response of the two different terminations
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and it can be seen from the presented results that the AABH significantly enhances

the response in the termination section across the majority of the presented

bandwidth, whereas the constant thickness active beam termination introduces

relatively modest variations in the response, with the main enhancement occurring

between 3 and 5 kHz where the uncontrolled response is low. These results indicate

that it is clearly important when considering the practical utilisation of the AABH

to consider the trade-off between enhancing the stress concentration in the taper

and improving the vibration control of the structure overall, as considered for

passive ABHs in [44]. Further work is clearly required to investigate this trade-off

for the AABH.
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Figure 10. The response measured at the centre of the termination section for

(a) the AABH without control (solid line) and with control (dashed line); and

(b) the active beam without control (solid line) and with control (dashed lines)

without regularisation (red) and with regularisation (black).

4. Real-Time Experimental Validation

In this section, in order to validate the practicability of the systems investigated

in the previous section via offline predictions using measured responses, the

performance achieved by real-time experimental implementations is presented for

both the AABH and the constant thickness active beam termination. The plant

models for the two configurations have again been set to give the same NMSE,

with 400 coefficients used for the AABH plant model and 1430 coefficients used

for the constant thickness beam termination. In both cases, 350 coefficients
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have been used in the control filters, as defined according to the investigation

presented in Section 3.3.1, and the optimal control filters have been calculated

using equation (24). Due to the practical limits of the piezoelectric actuator, it

is not possible to experimentally evaluate the unconstrained constant thickness

active beam configuration and, therefore, the results are only presented for the

AABH and the constant thickness active beam with regularisation set so that

the peak-to-peak voltage is consistent with that required by the optimal AABH

configuration.

Figure 11(a) shows the reflection coefficient measured both with and without

control for the constant thickness active beam termination and the AABH; the

corresponding control efforts are shown in Figure 11(b). From these results

it can be seen that the real-time results are consistent with the results of the

offline predictions presented in Section 3.3.2. It is once again clear that the

AABH outperforms the regularised constant thickness active beam termination

in terms of the control achieved in the reflection coefficient, whilst requiring the

same peak-to-peak drive voltage. The control effort also shows the same trend

observed in Section 3.3.2, with the active beam requiring a generally higher level

of control effort, except most notably at frequencies below around 1 kHz where

the regularisation used in the active beam termination limits the requirements. A

general observation that can be made in comparing the real-time measurements

to the offline results presented in Figure 9, is that the peaks in the controlled

responses, which are most noticeable for the standard beam termination, are more

significant in the real-time results. These peaks in the reflection coefficient are

related to the rapid phase change associated with lightly damped resonances in the

structure leading to narrowband errors between the plant model and the physical

plant; the effects of this are exacerbated in the real-time results due to finite

precision effects. Despite these narrowband differences between the predictions

and measurement results, the broadband reflection coefficient differs by only 0.1

in the case of the constant thickness beam results and 0.06 in the case of the AABH,

therefore demonstrating that the offline predictions provide a reliable estimation

of the real-time performance. Nevertheless, it is clear from the real-time results

presented in Figure 11 that the AABH offers potentially significant advantages

in terms of control performance compared to the constant thickness active beam

termination.



Active Acoustic Black Hole terminated beam 24

2000 4000 6000 8000 10000

Frequency (Hz)

0

0.2

0.4

0.6

0.8

1

1.2

R
e

fl
e
c
ti
o

n
 C

o
e
ff

ic
ie

n
t

(a)

2000 4000 6000 8000 10000

Frequency (Hz)

-60

-50

-40

-30

-20

-10

0

C
o

n
tr

o
l 
E

ff
o

rt
 (

d
B

)

(b)

Figure 11. (a) The reflection coefficient of the AABH without control (solid

black line) and with control using 400 coefficients in the plant model (dashed

black line), and the standard active beam without control (solid red line), and

with regularised control using 1430 coefficients in the plant model (dotted red

line). (b) The control effort required in each control case with consistent line

types. The control effort has been normalised so that a constant level at 0 dB

corresponds to the maximum broadband input to the piezo.

5. Conclusions

This paper has proposed and presented an investigation into the Active Acoustic

Black Hole (AABH), which combines the ABH effect with active control technology

in order to enhance the achievable levels of vibration control via a smart structure.

An AABH beam termination has been described, in which a single piezoelectric

patch actuator is applied to the tapered ABH termination and driven to minimise

the flexural wave reflected from the beam termination. The characteristic

behaviour of the AABH termination has then been compared to a constant

thickness active beam termination, which does not feature the tapering thickness

profile of the ABH.

In the first instance, the presented comparison has demonstrated that the

plant model required by the feedforward wave-based active control strategy

can be implemented with less filter coefficients for the AABH than for the

constant thickness active beam termination. This means that the AABH can be

implemented with a lower computational requirement than the constant thickness

active beam termination, whilst achieving the same level of NMSE in the plant

model. In terms of the control performance, it has been shown through both offline
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predictions using measured responses and through real-time implementations, that

the AABH termination is able to achieve a higher level of reflection control, whilst

requiring a generally lower level of control effort. This means that the AABH can

be implemented using hardware with a lower power rating and, therefore, lower

cost than that required by the constant thickness active beam termination to reach

the same level of control performance.

When the AABH and constant thickness active beam terminations are

constrained to use the same peak-to-peak control voltage, it has been shown that

the AABH provides a 10 dB broadband control performance advantage for the

considered configuration. It has also been shown that this performance advantage

is significantly greater than the level of control provided by the passive ABH effect

alone, which is 4 dB for the investigated configuration. Therefore, the AABH

offers a performance advantage above that expected from simply combining the

levels of control offered by the constant thickness active beam termination and

the ABH effect. Finally, the effects of active control on the response within the

beam terminations has been investigated and it has been shown that the AABH

significantly enhances the vibration in the termination compared to the constant

thickness active beam configuration. This has been linked to the focusing effect

observed in passive ABHs and it has been highlighted that the resulting structural

fatigue issues should be considered when applying the AABH in practice.

This paper has focused on the realisation and evaluation of a one-dimensional

AABH to a beam. In other work, the passive ABH concept has been extended

to two-dimensional structures, such as plates, by rotating the one-dimensional

taper by 360o to form a power law pit or dish, as described for example in

[11, 13, 17, 20]. The AABH concept can potentially be extended to a two-

dimensional ABH through the integration of an appropriate actuator, such as a

circular piezoelectric patch actuator and a wider distribution of sensors. However,

it is anticipated that a modified control strategy compared to that proposed in this

paper would be required since the concept of reflection control does not readily

extend to a two-dimensional structure, such as a plate. It is proposed that a more

viable approach would result if the controller instead aimed to control a proxy for

the kinetic energy in the plate, such as the sum of the squared velocities measured

at a number of structural sensors.
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