READ ME File For 'Data for Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry' Dataset DOI: 10.5258/SOTON/D1755 ReadMe Author: Helgi Sigurdsson This dataset supports the publication: Sigurdsson, H., Lagoudakis, P., Kokhanchik, P., Szczytko, J., & Piętka, B. (Accepted/In press). Photonic Berry curvature in double liquid crystal microcavities with broken inversion symmetry. Physical Review B. Date of data collection: 1/4/2020 - 10/2/2021 Licence: CC BY Related projects: EU H2020 (899141), EPSRC (EP/M025330/1) This dataset contains: for calculation parameters of Berreman method see Ref. [34] in the main text of paper the number at the end of each file name corresponds to the number of parameter set THE FIRST (1) SET: Figs 2(a-g) in the main text of paper as well as all figures of Supplemental material THE SECOND (2) SET: Fig 2(h) in the main text of paper for each file we mark the system of interest in file name: OSHE_cavity -- separate single cavity possesing OSHE Hamiltonian RD_cavity -- separate single cavity possesing RD Hamiltonian double_cavity -- double cavity system which hybridizes two aforementioned cavities -- BM__I_r__energy-k_y__OSHE_cavity.txt -- -- BM__I_r__energy-k_y__RD_cavity.txt -- -- BM__I_r__energy-k_y__double_cavity.txt -- normalized reflection intensity of diagonally polarized incident light; results are obtained by means of Berreman method (151, 151) real value array; delimiter=',' ; rows -- energy \in [1.64;1.70]; columns -- k_y \in [-2.1683;2.1683] -- QGT__double_cavity.txt -- Quantum geometric tensor T^{n}_{\alpha \beta}; reshaped (numpy.reshape) (22801, 16) complex value array; before using it, you need to restore the shape by numpy.reshape((151, 151, 4, 2, 2)) axes: 1 -- k_x \in [-2.1683;2.1683]; 2 -- k_y \in [-2.1683;2.1683]; 3 -- number \n of band from bottom energy to top \in {1,2,3,4}; 4 -- \alpha component of tensor \in {x,y}; 5 -- \beta component of tensor \in {x,y}. -- BM__E_x__k_x-k_y__OSHE_cavity.txt -- -- BM__E_x__k_x-k_y__RD_cavity.txt -- -- BM__E_x__k_x-k_y__double_cavity.txt -- -- BM__E_y__k_x-k_y__OSHE_cavity.txt -- -- BM__E_y__k_x-k_y__RD_cavity.txt -- -- BM__E_y__k_x-k_y__double_cavity.txt -- Amplitudes of the transmitted electrical field components E_x and E_y along x and y axes respectively normalized to the incident light electrical field amplitude; incident light is diagonally polarized; results are produced by means of Berreman method. (250, 250) complex value array; rows -- k_x \in [-2.1683;2.1683]; columns -- k_y \in [-2.1683;2.1683] -- BM__S_1__k_x-k_y__RD_cavity.txt -- -- BM__S_1__k_x-k_y__OSHE_cavity.txt -- -- BM__S_1__k_x-k_y__double_cavity.txt -- -- BM__S_2__k_x-k_y__RD_cavity.txt -- -- BM__S_2__k_x-k_y__OSHE_cavity.txt -- -- BM__S_2__k_x-k_y__double_cavity.txt -- -- BM__S_3__k_x-k_y__RD_cavity.txt -- -- BM__S_3__k_x-k_y__OSHE_cavity.txt -- -- BM__S_3__k_x-k_y__double_cavity.txt -- Stokes parameters S_1, S_2 and S_3 of the transmitted cavity light in reciprocal space; incident light is diagonally polarized; results are produced by means of Berreman method. (250, 250) real value array; delimiter=','; rows -- k_x \in [-2.1683;2.1683]; columns -- k_y \in [-2.1683;2.1683] -- BM__S_1__energy-k_y__RD_cavity.txt -- -- BM__S_1__energy-k_y__OSHE_cavity.txt -- -- BM__S_1__energy-k_y__double_cavity.txt -- -- BM__S_2__energy-k_y__RD_cavity.txt -- -- BM__S_2__energy-k_y__OSHE_cavity.txt -- -- BM__S_2__energy-k_y__double_cavity.txt -- -- BM__S_3__energy-k_y__RD_cavity.txt -- -- BM__S_3__energy-k_y__OSHE_cavity.txt -- -- BM__S_3__energy-k_y__double_cavity.txt -- Stokes parameters S_1, S_2 and S_3 of the transmitted cavity light in (energy -- k_y) space; incident light is diagonally polarized; results are produced by means of Berreman method. (151, 151) real value array; delimiter=','; rows -- energy \in [1.64;1.70]; columns -- k_y \in [-2.1683;2.1683] %%%%%%%%%% For Figs.3(a-c) the following files provide the data respectively: fig3_panel_a.dat fig3_panel_b.dat fig3_panel_c.dat Date that the file was created: 2021, February