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Prospects for near-field interferometric tests of Collapse Models
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Near-field interferometry with large dielectric nano-particles opens the way to test fundamental
modification of standard quantum mechanics at an unprecedented level. We showcase the capabil-
ities of such platform, in a state-of-the-art ground-based experimental set-up, to set new stringent
bounds on the parameters space of collapse models and highlight the future perspective for this class

of experiments.

I. INTRODUCTION

The problem of how the deterministic classical world
that we experience emerges from a probabilistic micro-
copic quantum world has puzzled physicists since the
early days of quantum mechanics. Several ideas have
been proposed to solve this conundrum, ranging from
the superposition of macroscopic systems being hard to
produce and maintain due to the unavoidable interaction
with the surrounding environment [IH6], to there being a
more fundamental mechanism which prevents the macro-
scopic world from behaving quantum mechanically.

One of the most significant of such proposals invokes
the so-called spontaneous localization models, also known
as collapse models (CM) [7H9]. In the collapse-model
framework, the unitary Schréodinger dynamics of close
quantum systems has to be modified by a stochastic col-
lapse of the wave-function. Such mechanism should be
such that the microscopic predictions of quantum me-
chanics are preserved, while macroscopic objects abide
classical physics. By promoting the collapse to a physical
process, and removing the need to introduce ad hoc pos-
tulates for measurement events, collapse models de facto
resolve the measurement problem of quantum mechanics.
However, they are phenomenological models and present
free parameters whose values should be constrained by
experiments. In order to do so, one needs to look at the
net effect of the stochastic collapse of the wave-function
postulated by CM, which is an extra source of decoher-
ence beyond the environmental ones.

As CMs imply that the quantum mechanical super-
position principle is not universally valid, matter-wave
interference experiments represent excellent candidates
for testing these ideas. On the one hand, they provide
a direct test of the quantum superposition principle. On
the other hand, their sensitivity allows to set bounds to
any alleged modification of quantum theory, including
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mechanisms such as CMs. This is at variance with non-
interferometric schemes (see [I0] and references therein)
which have been the power-horse for test of CMs to date
but cannot provide a direct test of the quantum super-
position principle.

Recently, Ref. [II] reported an experimental scheme,
based on a Talbot-Lau interferometer [12 [I3], testing
the superposition principle on a 25 amu (atomic mass
unit) mass and, at the same time, providing new bounds
on the mechanism for quantum-to-classical transition en-
tailed by CMs. Recent progress in near-field interferom-
etry with optical grating and in the trapping and cooling
of nanoparticles in optical cavities, have led to realistic
proposals for ground- [I4] (and space-based [15]) exper-
iments pushing the masses of the nanoparticles used for
such experiments up to 10%amu (10'amu in space), with
the perspective of exploring quantum superpositions of
objects of relatively large size and mass.

These advancements have placed interferometric ex-
periments at the frontier of experimental tests of CMs
and elevated matter-wave interferometry as a very
promising platform to directly test the superposition
principle at increasing scales.

In this paper, we aim to study the potential of table-
top near-field interferometry to constrain the parame-
ter space of the dynamics set by CMs, and with that
test the superposition principle of quantum mechanics.
We consider single-grating matter-wave Talbot interfer-
ometry set-ups [I4] for a ground-based experiment with
nanoparicles with mass of 10 amu , which are well within
current technological possibilities, and show the possible
stringent bounds on the CM parameter space that can
be achieved in such a way. We, furthermore, study the
case of nanoparticles with mass up to 107 amu, outside
of the Rayleigh approximation, employing the methods
developed in [16].

We perform our analysis by including all known sources
of environmental decoherence and spanning the relevant
parameter space of the continuous spontaneous localiza-
tion (CSL) model, which is one of the currently most
studied CM [I0]. In this way, we are able to provide
the first ab-initio estimate of the possibilities offered by
near-field interferometry ground-based experiments, em-
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FIG. 1. Setup of the near-field interferometer with a levitated
nanoparticle. The latter is initially trapped and cooled down
in an optical cavity. After the cavity is switched off, the parti-
cle freely falls for a time ¢; before reaching an optical grating
generated by a pulsed UV laser that is retro-reflected by a mir-
ror. The grating period is half the wavelength of the standing
wave. At the optical grating, the particle is required to have
a coherence length able to cover at least two adjacent “slits”
of the grating. After the grating, the particle freely falls for
a time t2 before being measured on the final screen.

ploying large dielectric nanoparticles, for testing devia-
tions from quantum mechanics. In particular, we show
that there is a window of opportunity to challenge CMs
up to the historical GRW parameter values. We also
present an in-depth discussion of current technological
challenges, and possible solutions, in this endeavour.

The remainder of this paper is organized as follows. In
Sec. [T we describe the near-field interferometric setting
that we analyze. Sec. [[I]] provides an analytic study of
the possibilities offered by such setting to test the CSL
model. In Sec. [[V]we provide a careful assessment fo the
experimental route towards the implementation of such
test. Finally, in Sec. [V] we draw our conclusions.

II. SCHEMATIC NEAR-FIELD
INTERFEROMETER SET-UP

Let us consider the interferometric set-up firstly pro-
posed in Ref. [T4] a sketch of which is presented in Fig.
At variance with interferometric experiments with lighter
particles, where particles beams are engineered, each
nanoparticle in the experiment is individually addressed.
In each run of the proposed experiment: (i) The nanopar-
ticle is firstly trapped and cooled down in an optical cav-
ity, which prepares the particle in a thermal state of its
center of mass degree of freedom at ~ 20mK; (ii) Af-
ter the cooling period (¢.), the cavity is turned off and
the particle freely falls for a time t; before reaching an
optical grating; (iii) The grating, provided by a stand-
ing wave of wavelength A, is formed by a retro-reflected
pulsed UV laser. The matter-light interaction at the op-
tical grating has been shown to be equivalent to a pure
phase-grating [I7]. (iv) After the grating, the particle

freely evolves again for a time to before getting captured
on a screen, which records its position.

By repeating this protocol several times, an interfer-
ence pattern can be formed on the screen. Note that,
even by neglecting all decoherence effects, the building
up of an interference pattern is possible only if two con-
ditions are satisfied:

(a) The post-cooling state of the particle is such that
free evolution for a time ¢; results in a coherence-
length sufficient to cover at least two adjacent
"slits" of the optical grating.

(b) The free evolution time t; is long enough for inter-
ference to take place.

Furthermore, an additional complication arises in near-
field interferometry. Indeed, a sample of particles follow-
ing ballistic trajectories would form, in a near-field inter-
ferometer such as the one described above, a seemingly
interferometric pattern due to classical deflection at the
optical grating. It is thus crucial to work in a regime in
which the predicted quantum interference figure, consid-
ering all decoherence sources, is clearly distinguishable
from the classical shadow pattern.

The specifics reported in Table [l and used through-
out this work, guarantee both meeting conditions (a)
and (b), and the distinguishability of the quantum me-
chanical pattern from the classical shadow one (see also
Fig. [3), for silicon (Si) and glass silica (SiO2) spherical
nanoparticles with a mass of 106 amu and 10" amu. Note
that, while challenging, these working points are within
reach of current technology [14].

Finally, it should be noted that, for the case of
nanoparticles with masses around 10° amu, the wave-
length of the grating laser in Table [I] is such that
2R/ < 1. This allows to treat the particle-light inter-
action in the Rayleigh limit [I7]. Conversely, the same is
not true for particle with mass 107 amu for which we need
to apply the formalism recently developed in Ref. [I6] to
correctly account for the grating interaction.

III. TESTS OF CSL COLLAPSE MODELS

Collapse models introduce a stochastic collapse of the
wave function into the Schrédinger equation driven by
a fundamental noise field, usually assumed to be white-
noise (see [I8-21] for generalization to colored-noises).
However, the stochastic Schrédinger equation is not di-
rectly addressable and the net result of the CM is the
presence of a decoherent dynamics of the closed quan-
tum system, that, in the case of study, is described by
the following center of mass master equation [7]
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Symbol Name Value

or Expression
Nanosphere
properties:
psi Si density 2329 kg/m?
psio2 Glass SiO2 density 1850 kg/m?
Cm Specific heat 700 J/(kg K)
1 Ionization energy 5x 107197
m Mass 105 — 107 amu
O Position variance % coth (Bovm)

post-cooling
Op Momentum variance
post-cooling

v/ hy coth (Bovim)

Trapping

parameters:

Ae Trap’s laser wavelength 1550 nm

te Trapping and cooling time 1s

Tirap Trap’s laser intensity 90 x 10° VV/m2

Um, Trap mechanical frequency 200 Hz

Tinto C.o.m. temperature 20 mK
post-cooling

Optical grating

parameters:

A Grating laser wavelength 355 nm

Er/aL Pulse-energy per spot-area cf. Egs. (20)-(22)

in Ref. [16]

Environment

parameters:

Tenv Environmental temperature 4 -300 K

ag/(4meg) Residual gas polarizability 1.74 x 1073° m?

Ig Residual gas ioniz. energy 15.6 x 10719 J

mg Residual gas mass 28 amu

Vg Residual gas mean velocity +/2kgTeny / my

Py Residual gas pressure 1071° mbar

TABLE 1. Specifics of all the parameters entering the simu-
lation of the near-field interferometric experiments with di-
electric nanospheres. The residual gas in the vacuum cham-
ber is assumed to be composed mostly by nitrogen, of which
we use the physical properties. The refractive index, as a
function of the frequency, for Si and SiO2 can be found tabu-
lated in the supplementary material of [14] (see also references
therein). The pulse energy to spot area ratio of the grating
laser is related to the eikonal phase by Egs. (20-22) in [16] to
which we refer the reader for additional details. We have set
Bo = h/(2kpTinto) and v = mmup,.

where we have introduced the CM-induced non-unitary
term

D(ﬁCM) — A(47rr§)g/dqll(q) 6_7':2%7;12 [e—%q& [e%Q'f( ﬁCMi|:|
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with mg the nucleon mass, A and r. the rate and local-
ization distance of the CM respectively, and

fiq) = / dx e FIp(x) 3)

the Fourier transform of the particle mass distribution
w(x). Both r¢ and A\ are free parameters of the CM.

According to Eq. , decoherence occurs in the position
basis and it is stronger the more massive the system be-
comes, giving rise to spatial localization of macroscopic
quantum systems and thus suppressing macroscopic spa-
tial superposition [7].

In the case of interest, the nanoparticles in the inter-
ferometric experiments are not completely isolated from
the external environment. Indeed, they are subject to
several decoherence channels in addition to, and in com-
petition with, the alleged CM noise. In practice, the
experiment can “only” aim at casting upper bounds on
the parameters of the CM by looking at excess decoher-
ence with respect to the predicted one from the envi-
ronment. While any excess decoherence, with respect to
the theoretical prediction, cannot be interpreted straight
away as evidence of the occurrence of CM, we would like
to emphasize that a consistent observation of such ex-
tra decoherence with different experimental parameters
— or in several different experimental platforms — and
in agreement with the predicted scaling with the param-
eters of the system, could be claimed to be a righteous
verification of CM theory.

In our simulation of the near-field interferometer, we
have modelled several sources of decoherence, including
mechanisms due to collision with the residual gas in the
vacuum chamber, black-body radiation, emission, scat-
tering, and absorption, taking into account the heating
of the particle (photonic environment) during the trap-
ping period and the subsequent cooling during free-fall.
Moreover, we take into account the scattering and ab-
sorption of grating photons by employing the formalism
developed in Ref. [I6], i.e., without resorting to Rayleigh
approximation. The resulting equation for the interfer-
ence figure is given by

P(SE) > ndts QN 72<n7ra‘7;t2)2
=1+2 R, B, | — Dt )
s + 1;) LTD cos| —— e 1
(4)
with 5 = m . Here, the functions BTL [y] s are

the generalized Talbot coefficients that account for the
coherent and incoherent effects of the grating laser (cf.
Ref. [22] for their explicit expression and Ref. [16] for
their derivation), d = A/2 is the grating period, tr =
md? /h is the so called Talbot time and D = d(t; +t2)/t;.
The initial thermal state, obtained after the cooling time
t., is characterised by its thermal position and momen-
tum standard deviations, o, and o, respectively. The
effect of environmental decoherence, other than scatter-
ing and absorption of grating photons, is accounted for
by the kernels R,, which describe decoherence due to
absorption, emission, and scattering of thermal radiation
as well as collisional decoherence due to residual gas [14],
i.e., the most relevant decoherence sources acting during
the free-fall times.

In order to properly include the effect of CMs, we rely
on Eq. (S7). Once specified for a spherical homogeneous
particle of radius R, this master equation allows to obtain



an extra decoherence kernel to be included into the R,,’s.
Such extra kernel is written as

ROSL — elostlf (R52) —1] (i) (5)

where we have defined
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and fi(q) = (47h/|q])J1 (#) is the Fourier transform

of the spherical mass distribution, with SI the sine inte-
gral.

In order to analyze the sensitivity of the Talbot—Lau
interferometer to CSL noise we define the following figure
of merit

/L/2 |Pom () — Pos ()
L2 [Pou(z) + Pest(2)]

dx (7)

where L = 10~7 m is the spatial window in which the
position measurement is performed and Pcsy, (Pgum) is
the interference figures obtained by assuming the pres-
ence (absence) of CSL. Furthermore, we assume in our
analysis to be able to discriminate a difference between
the two interference pattern bigger than 5%, i.e. for val-
ues of X > 0.05, which is an experimentally justifiable
choice [23]. The results of such analysis are presented in
Fig.[2|from which one can clearly see the great sensitivity
of the single-grating Talbot interferometer for nanopar-
ticle with mass 10° amu as proposed in Ref. [I4] (red
shaded area) to CM-based mechanisms. Indeed, from our
analysis, this interferometric scheme for 10 amu parti-
cles would be able to completely rule out Adler’s pro-
posed values for CSL’s parameters [24] 25] and further-
more test CM in an unexplored region of their parameter
space.

In the next Section, we delve into the experimental
feasibility of ground-based near-field interferometric ex-
periments and we show the current limitations — in terms
of size and mass of nanoparticles — to test collapse models
via near-field interferometric setups.

IV. EXPERIMENTAL PERSPECTIVES

The near-field Talbot effect of coherent wave propaga-
tion offers the extraordinary advantage of reducing the
required level of the initial matter-wave coherence. How-
ever, for large particles, the general feasibility of the in-
terferometric scheme, as well as the challenges in terms
of technical details are equally important.

Wavefunction evolution, free or not free — The main
challenge for (near-field) interferometric experiments
with large particles is to allow for a long enough free

CSL noise rate 4 (s™")

10710 107 107 107 10~ 10°
CSL correlation length r- (m)

FIG. 2. Exclusion plots for the CSL parameters with respect
to the GRW’s and Adler’s theoretical values [9] 21], 24]. The
red line denotes the upper bound that can be obtained by the
experiment proposed in Ref. [14] with Si particles of mass of
10 amu at room temperature. The light blue line denotes
the upper bound that can be obtained by using a mass of 107
amu and times t; = 2t2 and t2 = 0.181s at cryogenic temper-
ature. The green line represents the upper bound that can be
obtained by using a mass of 107 amu, times t; = t2 = 9.95s,
and cryogenic temperature. The dot-dashed lines correspond
to the upper bound that can be obtained replacing the Si par-
ticle with a SiO2 particle and working at cryogenic tempera-
ture. The grey area at the bottom of the plot represents the
theoretical bound given in Refs. [I1] [26] 27], the dashed cyan
excluded areas represents the bounds given by the present
non-interferometric tests [28431], and the dashed black line
represents the bounds given by current interferometric tests.

evolution time of the prepared quantum superposition
state in order to be sensitive to the CMs effects and,
even more crucially, to probe the superposition principle
of quantum mechanics. The free evolution — the spatial
spreading of the wavefunction ¥(r, t) with time — accord-
ing to the time-dependent Schrédinger equation

Q\Il(r,t) =

Cho o
oy —Z%V U(r,t), (8)

describes a diffusive process for probability amplitudes
similar to a typical diffusion equation with the imagi-
nary diffusion coefficient —ifi/2m. Therefore, the spread-
ing of ¥(r,t) scales inverse with particle mass m. It
should be noted that, for the specific Talbot interfero-
metric scheme considered in this work, there are two free
evolution times, t; and t5, where the first one is necessary
for the coherence length of the particle’s wave function
to cover at least two "slits" of the optical grating. In
this setup, considering for instance a 108 amu particle, it
would already take so long to show the interference pat-
tern in a matter-wave experiment that the particle would
significantly drop in the Earth’s gravitational field.
Different solutions are thinkable. One can of course en-
visage building a 10-100 m fountain, and similar projects
are underway for interferometry with ultra-cold atoms.
Needless to say, cold atom technologies have matured



considerably more than their analogues for manipulation
of large-mass particles. Alternatively, one can consider
to levitate the particle by a force field to compensate for
the drop in gravity, but here we face the problem of mini-
mizing the additional decoherence effect that such a force
field would introduce. A viable solution is to coherently
accelerate the spread of the wavefunction by the action
of suitable potentials. The proposals in Refs. [32H35] are
along these lines. They use a magnetic field gradient
to rapidly separate the two amplitudes of a spin super-
position state in space [35], or alternatively to acceler-
ate the spread of the wave function before and after the
splitting, obtained by the action of a double well poten-
tial [33}[34]. One of the major obstacles in this endeavour
is represented by the additional decoherence introduced
by stochastic forces due to vibrations. These ideas are
still awaiting their technical realisation for large masses.

Since in the specific setup that we are considering the
nanoparticle is optically interacting, we cannot use mag-
netic gradients as in Ref. [34, B5] , but we would need to
resort to an optical field to increase the spread of the wave
function. Also here the main limiting factor is the addi-
tional decoherence which would need to be kept under
control to avoid losing all quantum interference effects.

Alternatively, a more realistic implementation of the
near-field experiment, given current technical capabili-
ties, is to allow for long enough free evolution times by
freely fall the whole interferometer apparatus in a co-
moving reference frame with the particle. This is the
idea of a recent proposal for a dedicated satellite mission
in space to perform large-mass matter-wave interference
experiments with micro- and nano-particles [I5]. A fur-
ther option is to consider to throw upwards and catch
the very same particle multiple times and use the foun-
tain trajectory to perform interferometry. For all those
options, it becomes obvious that it is required to dramat-
ically change the way in which large-mass matter-wave
interferometry experiments are performed — compared to
existing technology [23] — in order to enable such exper-
iments beyond masses of about 107 amu.

Table-top interferometric experimental tests of collapse
models — Let us now consider again the experiment pro-
posed in [I4]. In particular, we consider the same mate-
rial parameters as in Table [[| but allow for different free
falling times t; and t5 and different masses. In order to
estimate the potential of such experiments we use the R
figure of merit as discussed before and we refer to Fig.
In Figure 2] we report the exclusion plots obtained by
simulating the experiment with Si and SiO2 nanoparti-
cles having masses of 10° and 107 amu. It should be
noted that, for masses of the order of 107 amu, and for
the specifics of the experiment that we are considering,
2rR/X ~ 0.2 which clearly does not allow to use the
point-particle approximation. As already discussed, this
is not an issue for our simulations since we adopt the
formalism developed in [I6]. These results are thus the
first comprehensive account of the potential of near-field
interferometry with large masses beyond the Rayleigh ap-

proximation for fundamental physics studies.

The red-shaded area in Fig. [2] is the result obtained
by using Si particles with mass 106 amu and shows how
a table-top, room temperature experiment like the one
proposed in [I4] could rule out a part of the parame-
ter space including Adler’s values of the free parame-
ters for the CSL. It should be noted that, this result is
comparable with the very recent one of Ref. [36] where
the authors considered bounds on CSL free parameters
coming from BEC interferometry. In particular, the red-
shaded region in Fig. [2|is comparable with the exclusion
plots that Ref. [30] argue to be achievable with state-of-
the-art BEC interferometry. The light-blue shaded area
shows the improvement that can be obtained increasing
the mass to 107 amu, overpassing the results obtained
from X-ray emission from a Germanium sample [29] (left
dashed line). In this case, we assume the experiment to
be performed in a cryogenic environment at 4 K. This
is due to the fact that, at room temperature, increas-
ing the mass (and so the size) of the particles leads to
an increase in environmental decoherence affecting the
performances of the experiment. In the case we are con-
sidering, t; = 0.362 s corresponding to the time needed
for the wave function to cover exactly four slits [37] and
to = t1/2 which implies a drop length of around 1.5 m
making the experiment not excessively demanding.

One can finally wonder what would happen by allow-
ing longer times for the wave-function spreading in the
experiment. It is indeed encouraging that in the field of
atom interferometry it has been recently shown that opti-
cal suspension can be maintained for 20 s coherently [38].
This is a new experimental result which was not thought
to be easily achievable beforehand and justify further in-
vestigation towards extending such results to large di-
electric particles. Motivated by these results, let us then
assume an overall wave-function spread time of 20 s for
a 107 amu Si particle in a cryogenic environment at 4 K.
Based on our analysis, this would suffice to achieve the
results shown by the light-green shaded area in Fig. [3]
This shows that a large section of the CSL parameter
space could be ruled out, even arriving to rule out the
extremely challenging to probe values proposed by Ghi-
rardi Rimini and Weber (GRW) [9]. Once again, this
result is comparable with the ones shown in [36] for the
ultimate test with BEC interferometry.

Our results apply, strictly speaking, to the case in
which the nanoparticles are in free fall. However, in the
Earth’s gravitational field, a free fall time of 20 s would
correspond to a drop length of over a kilometer. One
possible solution is to move the experiment in space [15],
where there is the realistic possibility to achieved free
falling times of the order of 100 s and push the mass
limit up to 10'' amu.

Alternatively, one could consider to somehow suspend-
ing the particles, drawing inspiration from the results
in [38]. This could be achieved by optically levitat-
ing the particles in a wide trap which is not confin-
ing/constraining the free evolution of the wave-function



on the order of the size of the trapped particle. As dis-
cussed before, the main limitation here would be given
by the additional decoherence effects introduced by the
scattering and absorption of the trap laser photons. To
circumvent such problems, a possible alternative is the
use of electric or magnetic field configurations to com-
pensate the gravitational force which would thus allow to
overcome most of the decoherence and heating problems
of a standard optical trap [32], [34]. Nevertheless, a de-
tailed analysis of an experiment with suspended particles
would require to properly account for the extra decoher-
ence introduced by such mechanisms, a point that goes
beyond the scopes of the current work.

Technical challenges — In order to reduce the deco-
hering effects of gas collisions, experiments have to be
performed in ultra-high vacuum. In our simulations, we
have modelled collisional decoherence by assuming the
gas pressure reported in Table[] Such vacuum is routine
in surface science experiments and considerably higher
vacuum conditions have reportedly been achieved by
cryogenic ion trapping experiments, initially for antimat-
ter [39], and currently routinely in atomic ion traps [40].

In addition to ultra-high vacuum conditions, the use
of cryogenic technology has the advantage of automat-
ically reducing all of the thermal radiation decoherence
effects as all parts of the experiment and the particle it-
self will eventually thermalise to low temperature. In our
simulations, decoherence effects related to thermal radi-
ation have been modelled for both a room temperature
environment and in the case of environmental tempera-
ture around 4 K, which is typical in experiments cooled
by liquid helium. However, in the considered set-up,
the strongest heating effect is due to the absorption of
photons from the optical trapping laser.[41] The related
decoherence processes, due to thermal photon emission,
have been estimated based on absorption cross section
for the materials of the particle proposed for use. Our
study shows that decoherence effects due to thermal pho-
ton emission are almost negligible in a 20 s experiment
at cryogenic temperature but relevant in a room tem-
perature environment [42]. This suggests that a good
strategy to mitigate photon emission decoherence could
be to work at cryogenic temperature, if a not too long
preparation time is required.

While silica and silicon particles are the work horse in
all levitated optomechanics experiments, and absorption
is small for such particles, the particle absorption chal-
lenge can be further addressed by material science into
reducing absorption at the trapping laser wavelength or
by using a refrigerating scheme able to reduce the effects
of the absorption during the trapping time and keep the
internal particle temperarature low or, more radically, by
removing all lasers from the interferometric scheme and
start with a non-optical trap, e.g. a magnetic trap as
recently proposed [34].

Particle counting statistics represents a further chal-
lenge, as experiments based on trapped nanoparticles are
single-particle experiments the interferometer sequence

has to be repeated many time — at least 1,000 to 10,000
times to achieve particle number or counting statistics in
form of an interference pattern showing the typical struc-
ture of delocalised states. Beside the option to consider
multiple particle traps to start with , and the promises of
alternative quantum figures of merit such as by dynam-
ical model or hypothesis testing [43] [44], the most prag-
matic approach might be to consider a fast reloading or
recycling technique to use the same particle (throw and
catch) [45] over and over again. Another option to recycle
the same particle would be a co-moving interferometer in
a one meter high Einstein elevator type setup. Such an
experimental platform has been achieved recently [46] to
test cold atom interferometers in a 0-g simulator in the
lab, but it is a serious engineering task to develop a sta-
ble elevator which simulates an almost perfect parabolic
up-and-down motion.

Material challenges — Another benefit of using the
same particle for multiple experimental runs is that this
would reduce the spread in particle parameters such as
mass/size, chemical composition, electrical charges and
optical properties (polarizabilties, moments and dielec-
tric function, and the refractive index). As worked out in
detail recently, large particles have non-trivial interaction
with the grating laser standing-wave [I6]. If the particle
was used over and over again, then the ensemble would
be one of truly mono-disperse particles. Nonetheless, the
Talbot near-field scheme is known to tolerate dispersion
in de Broglie wavelength of the test particles, and there-
fore mass, to some degree: A/\i‘lf = 15% [23], assuming
a small (longitudinal and transverse) velocity distribu-
tions after initial cooling and equal drop distance. Thus,
some particle related challenges can be handled by the in-
terferometer itself. Another factor to be controlled is the
electrical charge of the particles. Ideally a zero net charge
should to be achieved. Multiple studies have investigated
the charge challenge and solutions exist [47, 48]. Finally,
recent studies show that silica particles are not stable
in the optical trap, where they experience a large laser
intensity, but see a change of their mass density. This
has been attributed to the evaporation of water out of
the structure of the nanoparticle originated in the par-
ticle synthesis [49]. While the light-matter interaction
of dielectric nanoparticles remains an interesting field of
scientific research with many effects yet to be discovered,
already acquired knowledge about nanoparticles optical
properties gives reason to be optimistic to use them as
candidates for matter-wave interferometry experiments
such a the ones discussed here.

V. CONCLUSION

We have shown the possibility for a ground-based Tal-
bot interferometric scheme with large particles to directly
test CMs and the validity of the superposition princi-
ple at the large-scale limit. In particular, with new
technological advancements, this kind of direct test is
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FIG. 3. Interference pattern for the proposed near field interferometric experiments with nanoparticle of mass 107 amu.
Panel (a) shows the interference pattern obtained using Si particles at cryogenic temperature Ten, = 4K and with Er/ar, =
0.003 Jm™2. Panel (b) shows instead the analogue result for SiO2 particles, with Fr,/ar, = 0.009 J m~2. In both cases the free
fall times are such that ¢; = 2¢t2 = 0.36 s and the pulse energy to spot-area ratio is determined at the same value of the eikonal
phase ¢o = 1.4 (cf. Refs [I4] [I6] for further details on the connection between the eikonal phase and the energy to spot-area
ratio). The blue-dashed curves represent the “classical” shadow effect image, i.e., the figure that would be obtained from
the deviation of the ballistic trajectory of classical particles; the black-continuous curves represent the prediction of standard
quantum mechanics; and the red-dotted curves show the effect of accounting for CSL with A = 1072 s7! and r¢ = 1077 m.

becoming competitive to the most used, indirect, non-
interferometric experiments and comparable to very re-
cent advancements in BEC interferometry [36].

While we have shown that feasible table-top experi-
ments with 107 amu particles in cryogenic environments
promise to put stringent constraints on the CSL parame-
ter space, the challenges and possible solutions discussed
aim to use technologies fit for an even larger leap in mass.
We have shown that there is a window of opportunity for
testing a large part of the CSL parameter space down
to the challenging historical values of GRW. Indeed, the
technology of (levitated) optomechanics has progressed
very well in the past ten years or so, that the Talbot
schemes can be realistically approached now.

In conclusion, the multiple challenges addressed in this
work lead to the realization that increasing the extent of
the wavefunction beyond the size of the particle, namely
at around 100 nm, is a formidable research challenge
which is however possible to tackle with present day tech-
nology. We hope that these results will motivate the
theoretical and experimental community to engage in a
joint effort to further investigate these architectures in

the near future.
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Supplemental Materials:Prospects for near-field interferometric tests of Collapse
Models

In this supplemental material we give additional details on the derivation of the interference pattern probability
in Eq. of the main text. In particular, we report the expressions for the generalized Talbot coefficients (B,,), the
free-fall environemnetal decoherence kernels R,,, and the kernels describing the action of the CSL fundamental noise
during the free evolution of the nanoparticles. For additional details, we refer the reader to Refs. |14}, [16].

I. GENERALIZED TALBOT COEFFICIENTS

Here we report the expression for the generalized Talbot coefficients used in our simulations. We do not go in to
the details of their derivation and refer to [16] and reference therein for an exhaustive analysis of the Talbot effect.
The generalized Talbot coefficients characterizing the interference pattern produced by the interaction of a dielectric
spherical particle with a laser grating are given by

> con abs 2 nTM .
with
Cabs = 427@;8%(1 — cos(ms/d)
_ 16F,(—\/8)E; . (ms
o= ity (7)
87TEL
a(s) = dTW /dQ Re(f*(lmkn)f(—k,kn))[cos(lmzs) — cos(ks)],
b(s) = /milfj /dQIm(f*(k:, kn) f(—k, kn)) sin(kn.s),
F(s) = [ arit [ a0 (i kn) Pleos((1 ~ ne)ks) 1) (s2)

where A = 27 /k = 27 /we is the light wavelength, E7, is the laser pulse’s energy, Iy and a, are respectively the intensity
parameter and the spot area of the laser, F,(z) is the longitudinal light-induced force on the dielectric sphere, oqps s
the photon absorption cross section, and f(k, kn) the photon scattering cross section.

II. ENVIRONMENTAL DECOHERENCE

As discussed in the main text, our simulations account for several sources of environmental decoherence acting
during the free fall times in the experiment. In particular, we account for decoherence due to collision with the
residual gas in the vacuum chamber; black-body radiation, emission, scattering, and absorption — taking into account
the heating of the particle (photonic environment) during the trapping period and the subsequent cooling during
free-fall. Here we report the expression for the kernel R,, in Eq. (3) in the main text that account for all these
decoherence sources.

- 1] (t; +t2) + /dmsca(w) [Sl(m’) —sinc®(an) — 1| (t; —ta)

n

Si(an)

n

hl(Rn) = - Fcoll(tl + t2) + /dw')/abs(w) l:
1

/dw/ dO{t1Yemi[w, Tine (t1 — t10)] + toYomi[w, Tine(t,+,0)) [sinc(an0) — 1] (S3)
0

with a, = nhwtat;/((ta + t1)mecd), and Si the sine integral. The collision rate oy is given by

4710(9/10) [ 37C6*° pyu, ()
5sin(mw/5) 2h kB Tenv

Fcoll =



while the scattering, emission and absorption rates by

(/70 2 () y W) -
L) peanl) vemi[w,Tim](m)zaabsexp<k:;"m>lm{§§w§ +;} (55)

where v, and p, are the mean velocity and pressure of the gas, Tey, the environmental temperature, o,ps/sca the
photon scattering/absorption cross section, e(w) the electric permittivity, and

Vsca/abs (w) =

_ 3a(w = 0)aglyl

Cs = 32m2e2(I, + 1) (56)

the van der Waals coupling constant where «, a4 are the static polarizabilities and I, I, the ionization energies of the
nanosphere and the gas particle, respectively.

We refer the reader to the supplemental information of [I4] and the reference therein for a detailed derivation of
these expressions.

IIT. CSL-DECOHERENCE

The dissipative term describing the effective decoherence of the center-of-mass wavefunction — for the reduced
one-dimensional state of motion of a nanoparticle — due to the CSL reads

Aogr(4mrd)3/2 i(q)? ; ,
Losp(x,x') = — cs (e /dq fla)” e rea’/m (675‘12(1”3 ) — 1) (S7)
m

(2mh)? 0

in position representation. Here mg the nucleon mass , Acgr and 7. the rate and the localization length of the CSL
model, and p(q) the Fourier transform of the nano-particle mass density u(x) ,i.e.

ji(q) == / e” FI%p(x). (S9)
that in the case of a homogeneous and spherical mass distribution of radius R is given by

B AThR?

f(q) Ji(qR/h) (89)

where Ji(q) denotes the spherical Bessel function of the first kind. Exploiting this equation, rewriting the integral
in Eq. (S7) in spherical coordinates, and performing the integration over the solid angle the CSL dissipative term
simplifies to

6471'3/2 >\CSL T’CSR4

2
hmg

Losi(x,x') = /OOO dge /" Iy (qR/R)? (sine(gla’ — w[)/h) = 1) . (S10)

This results in the following, additional kernels entering the expression for the interference pattern probability:

RSSL = exp {FCSL <fCSL (WM) — 1) (tl -+ tg)} (Sll)

where d is again the grating period and
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