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Abstract Estimating the size of a hard-to-count population is a challenging
matter. In particular, when only few observations of the population to be es-
timated are available. The matter gets even more complex when one-inflation
occurs. This situation is illustrated with the help of two examples: the size of
a dice snake population in Graz (Austria) and the number of flare stars in the
Pleiades. The paper discusses how one-inflation can be easily handled in likeli-
hood approaches and also discusses how variances and confidence intervals can
be obtained by means of a semi-parametric bootstrap. A Bayesian approach is
mentioned as well and all approaches result in similar estimates of the hidden
size of the population. Finally, a simulation study is provided which shows
that the unconditional likelihood approach as well as the Bayesian approach
using Jeffreys’ prior perform favorable.

Keywords capture-recapture · zero-truncation · one-inflation

1 Introduction and motivation

The objective here is to determine the size N of an elusive target population.
To accomplish the purpose some mechanism (life trapping, register, surveil-
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lance system) is available which identifies a unit of the target population re-
peatedly. Hence, there is a count X informing about the number of identifi-
cations of each unit in the target population. Furthermore, suppose a sample
X1, X2, . . . , XN of size N is available which leads to the empirical count dis-
tribution as presented in Table ??.

Table 1 Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 · · · population size
fx f0 f1 f2 f3 f4 · · · N

There is, however, the well-known complication (Böhning et al., 2018; Mc-
Crea and Morgan, 2015) that any sample units with Xi = 0 would not be
observed leading to a reduced observable sample

X1, X2, . . . , Xn ,

where – w.l.g. – we assume that

Xn+1 = Xn+2 = · · · = XN = 0 .

Table 2 Frequency distribution of count X of repeated identifications

x 0 1 2 3 4 · · · observed size
fx − f1 f2 f3 f4 · · · n

In conclusion, we have that f0 = N−n is unknown. f0 is also known as the
dark or hidden figure and is the prime interest in this paper. In the following
we illustrate the situation with two applications.

Estimating the size of a dice snake population in Graz. Tranninger
and Friedl (2018) tried to estimate the size of a dice snake population in a
closed area at the river Mur in Graz (Austria). The work was motivated by
a resettlement project of the population due to the development of a water
power plant in the vicinity of the living ground of the dire snakes. The major
questions here was: how many dice snakes are there? We focus here on the
year 2014 in which there were 31 capture occasions during the year. As above,
X denotes the identification count per dice snake. The empirical distribution
of X is provided in Table ??.

Table 3 Frequencies of the number of times dice snakes have been identified in the target
area in 2014

frequency of count of f0 f1 f2 f3 f4 f5 n
sightings per dice snake − 59 8 1 1 1 70
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The number of flare stars in the Pleiades. Shortly after the appear-
ance of two recent books on capture-recapture methods by McCrea and Mor-
gan (2015) and Böhning, van der Heijden and Bunge (2018), it was pointed
out to the authors by Akopian (2019) that capture-recapture methods are
also used in astro-physics to estimate the size of star clusters. Indeed, Am-
bartsumyan et al. (1970) published work where the number of stars in the
Plaiades is estimated using capture-recapture techniques. The Pleiades is a
star cluster about 444 light years away from planet Earth and consists of 100s
of stars, only some of these are visible at certain times, the flare stars. In
Table ??, we see the empirical distribution of X representing the number of
flares seen per star, for example, 123 stars were only seen once, 16 twice etc..

Table 4 Frequency distribution of the count (per star) of flares (Ambartsumyan et al.,
1970)

frequency of count f0 f1 f2 f3 f4 f5 f6 f9 n
of flares − 123 16 2 1 1 1 1 145

Both data situations have in common that there is perhaps sparsity exhib-
ited by an abundance of unobserved zeros and relatively small non-zero counts.
The second salient feature of both data sets is the occurrence of a relative
large number of ones, indicating potential one-inflation. One-inflation models
have recently experienced some attention in capture-recapture modelling; see
Böhning and van der Heijden (2019), Böhning et al. (2019), Farcomeni (2020),
Godwin (2017, 2019), or Godwin and Böhning (2017). In Böhning and Og-
den (2020) a more general investigation of inflation models is delivered and
their close connection to truncation models established.

We see two major objectives for our paper:

1. With the motivation of the two case studies as background we are interested
in raising the awareness of one-inflation in the capture-recapture context
and its overestimation bias as consequence,

2. we are interested in illustrating some of the available approaches in esti-
mating population size, with an emphasis on target populations that are
small in size.

The rest of the paper is organized as follows: a probabilistic class of models
that is based on zero-truncation and one-inflation is introduced in Section 2.
In Section 3 goodness-of-fits of the case studies with respect to various count
distributions are provided and it is found that the relatively simple geomet-
ric model seems to show up the best fit. Thus Horvitz-Thompson estimates
based on zero-truncated one-inflated models are discussed in Section 4. Un-
conditional profile likelihood estimators under a geometric and a one-inflated
geometric model are derived in Section 5. Section 6 is dedicated the idea to
estimate the population size under a Bayesian setting. The performance of
all estimating techniques discussed so far is evaluated by means of a Monte
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Carlo simulation study in Section 7. Section 8 presents ideas on how a semi-
parametric bootstrap algorithm can be applied in order to find variance esti-
mates and confidence intervals. The paper concludes with a short discussion
that is provided in Section 9. The analysis has been performed within the R
environment and exploits various functions written by the authors that are
available on request.

2 Modelling

For predicting f0 some sort of modelling is unavoidable as the nonparametric
estimates fx, x = 1, . . . ,m carry no information for f0. Hence, we need to find
a base model for P (X = x) = bx(θ) so that an estimate θ̂ for θ can be achieved.
This leads to fitted probabilities bx(θ̂) for x = 0, 1, . . . ,m, where m denotes
the largest number of identifications. In particular, we can use for x = 0 the
Horvitz-Thompson-type estimator for estimating f0

f̂0 = n
b0(θ)

1− b0(θ)
,

from which, ultimately, the population size estimator N̂ = n + f̂0 follows. For
justified inference, the valid specification of the model bx(θ) is crucial.

For both case studies mentioned in the previous section, we see a large
number of counts of ones, the singletons. Hence, we are concerned about one-
inflation, a situation where more counts of ones occur than compatible with
the baseline model b1(θ) as this can lead to a highly inflated estimate of f0 as
the following example shows. See also Godwin (2017) for further illustrations
of this point.

A synthetic example. The empirical distribution of 500 counts sampled
from a Poisson distribution with parameter 1 and 500 extra-counts of 1 so that
N = 1000 is shown in Table ??.

Table 5 One-inflated Poisson data from a population with N = 1000

f0 f1 f2 f3 f4 f5 n
166 696 105 18 12 3 834

If we ignore the zeros and estimate θ by means of zero-truncated maximum
likelihood we find θ̂ = 0.42344 and

f̂0 = n
exp(−θ̂)

1− exp(−θ̂)
= 1582 ,

clearly overestimating f0 almost by a factor of 10.
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To accommodate one-inflation we need to include it into the modelling.
Hence we will focus on one-inflation modelling

p′x(θ) =

{
(1− α) + αpx(θ), x = 1
αpx(θ), x 6= 1 ,

(1)

where px(θ) = bx(θ)/(1 − b0(θ)) is a zero-truncated base distribution and
α ∈ [0, 1]. As also mentioned in the synthetic example above, for the Poisson
case we generally set

px(θ) =
exp(−θ)

1− exp(−θ)
θx

x!

in model (??).
The modelling is greatly simplified using the following general result from

Böhning and van der Heijden (2019). Consider an arbitrary inflation point x1

and an arbitrary count density px(θ) with associated x1-inflation as

p′x(θ) =

{
(1− α) + αpx(θ), x = x1

αpx(θ), x 6= x1 .

Then the likelihood and log-likelihood functions are

L(θ, α|x) = [(1− α) + αp1(θ)]f1
∏

x6=x1

[αpx(θ)]fx ,

log L(θ, α|x) = f1 log[1− α + αp1(θ)] +
∑

x6=x1

fx log px(θ) + (n− f1) log α ,(2)

respectively, where p1(θ) = px1(θ), f1 = fx1 , and n is the sample size. There-
fore the profile log-likelihood in θ is

log PL(θ|x) = sup
α

log L(θ, α|x) (3)

and

α̂ =
1− f1/n

1− p1(θ)
(4)

maximizes (??) for fixed θ. It follows that

1− α̂ + α̂p1(θ) = 1− 1− f1/n

1− p1(θ)
+

1− f1/n

1− p1(θ)
p1(θ) = f1/n

and the profile log-likelihood (??) becomes

log PL(θ|x) = f1 log[1− α̂ + α̂p1(θ)] +
∑

x6=x1

fx log px(θ) + (n− f1) log α̂

= f1 log(f1/n) + (n− f1) log
1− f1/n

1− p1(θ)
+
∑

x6=x1

fx log px(θ)

= f1 log(f1/n) + (n− f1) log(1− f1/n) +
∑

x6=x1

fx log
(

px(θ)
1− p1(θ)

)
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as
∑

x6=x1

fx = n − f1. Thus, this x1-inflated profile log-likelihood equals the

x1-truncated log-likelihood∑
x6=x1

fx log
(

px(θ)
1− p1(θ)

)
plus

f1 log(f1/n) + (n− f1) log(1− f1/n) ,

which is independent of θ. This result implies that x1-inflation models can be
simply fitted by x1-truncated models.

To diagnose x1-inflation we may fit the x1-truncated log-likelihood

log T1(θ̂) =
∑

x6=x1

fx log

(
px(θ̂)

1− p1(θ̂)

)
,

construct the fitted x1-inflated profile log-likelihood

log PL1(θ̂|x) = f1 log(f1/n) + (n− f1) log(1− f1/n) + log T1(θ̂) ,

and finally form the likelihood ratio statistic λ = 2 log(PL1(θ̂|x)/L0(θ̂|x))
where

log L0(θ̂|x) =
∑

x

fx log px(θ̂)

is the non-inflated log-likelihood using all data.
We apply these ideas to zero-truncated distributions. For an arbitrary

count density bx(θ), the base density, consider the associated zero-truncated
count density

px(θ) =
bx(θ)

1− b0(θ)
, x = 1, 2, . . . .

According to the previous result, for the one-inflated density we can restrict
inference on the zero–one-truncated density

p++
x (θ) =

bx(θ)
1− b0(θ)− b1(θ)

, x = 2, 3, . . . ,

which then provides the one–inflated, zero–truncated density.

3 Finding the base distributions in the case studies

An important issue is the choice of the base distribution in the case stud-
ies. Graphical analysis using ratio plotting has been previously suggested; see
Böhning et al. (2013, 2018) or Böhning (2016). However, these techniques re-
quire large samples sizes to avoid misleading conclusions, and in the cases
discussed here we have clearly small sizes. Hence we base our analysis on like-
lihood methods including information criteria such as the Akaike information
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criterion (AIC) and the Bayesian information criterion (BIC). To cope with
small samples we specifically use the modified version of the AIC in which the
penalty for the model complexity, say 2k, is further increased by the factor
1 + (k + 1)/(n− k − 1) (see also McCrea and Morgan, 2014).

Table ?? provides a comparative analysis including the Poisson and ge-
ometric distribution as well as the negative-binomial distribution. For both
data situations the best model is the geometric model since it shows up the
smallest AICc and BIC values.

Table 6 Comparative distributional analysis for the two case studies based on the zero-
truncated-one-inflated log-likelihood

case study distribution 0/1 log-lik AICc BIC
dice snakes Poisson −41.856 87.890 96.208

geometric −41.480 87.140 91.458
NB −41.485 89.324 95.706

NB dispersion: 0.9999 (0.9995 – 1.0005)
flare stars Poisson −93.226 190.536 196.405

geometric −89.250 182.585 188.454
NB −88.335 182.840 191.600

log–NB dispersion: 11.16 (−85.66 – 107.98)

For completeness, we mention the probability mass function of the negative-
binomial with θ = (µ, δ):

bx(θ) =
Γ (x + 1/δ)

Γ (x + 1)Γ (1/δ)

(
1/δ

µ + 1/δ

)1/δ (
µ

µ + 1/δ

)x

, x = 0, 1, 2, . . .

using the mean parameterization, so that E(X) = µ and Var(X) = (1 + δµ)µ,
where µ > 0 is the mean and δ > 0 is the dispersion parameter. This yields
the geometric distribution for δ = 1 and the Poisson as the limiting case when
δ → 0. Table ?? gives evidence for both case studies that the geometric is a
reasonable distribution here.

However, the question arises if there is any evidence of one-inflation as
the mere existence of many ones does not necessarily mean that there is one-
inflation. Table ?? provides a diagnostic analysis of one-inflation. Note that
we are testing here H0 : α = 1 vs. H1 : α < 1, so that the null-hypothesis
is in the boundary of the alternative hypothesis and non-standard inference
applies. In this case, the asymptotic distribution of the likelihood ratio test
statistic 2 log(λ) is a χ̄2-distribution, namely

1
2
χ2

0 +
1
2
χ2

1 ,

where χ2
k is the χ2-distribution with k degrees of freedom (Self and Liang,

1987). χ2
0 is the singular distribution putting all its mass at 0. In practice, this

means that conventional χ2-values need to be halved. For example, for the
dice snake data we have a value of the likelihood ratio statistic of 3.0 which
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would give a conventional p-value of 0.084 under a χ2-distribution with 1 df.
Halving this leads to the correct p-value of 0.042. For the Pleiades data we
have a clear indication of one-inflation, whereas this is borderline for the dice
snake data. As the overestimation effect of the population size is severe when
ignoring one-inflation, we will use the one-inflation model when estimating
population size.

Table 7 Zero-truncated-one-inflated and zero-truncated geometric log-likelihood with like-
lihood ratio statistic and associated p-value

case study 0/1 log-lik 0 log-lik 2 log λ (p-value)
dice snakes −41.480 −42.975 3.000 (0.042)
flare stars −89.250 −96.584 14.668 (0.000)

4 Horvitz-Thompson estimation

The conventional Horvitz-Thompson estimator

f̂0 = n
b0(θ)

1− b0(θ)
(5)

has the property E(f̂0) = Np0(θ), if there is no inflation. The estimator (??)
needs to be modified here as n contains the one-inflated part. This leads to

f̂0 = (n− f1)
b0(θ)

1− b0(θ)− b1(θ)
,

which again has the property E(f̂0) = Np0(θ) and, ultimately, we can define
the modified Horvitz-Thompson estimator

N̂ = n + (n− f1)
b0(θ)

1− b0(θ)− b1(θ)
, (6)

which is unbiased in the sense that E(N̂) = N .
As θ is unknown, a plug-in estimate is used based on the 0-1-truncated geo-

metric as evidenced in the previous analysis. In Table ?? we see the estimated
population sizes for the two case studies. The conventional Horvitz-Thompson
estimator (cHTE) uses the 0-truncated geometric distribution whereas the
modified Horvitz-Thompson estimator (mHTE) uses the 0-1-truncated geo-
metric as described above.
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Table 8 Population size estimated using the zero-truncated-one-inflated model (mHTE)
and the zero-truncated geometric model (cHTE)

N̂
case study n mHTE cHTE
dice snakes 70 127 358
flare stars 145 205 671

5 Unconditional maximum likelihood estimation

So far we maximized the conditional (zero-truncated) likelihood of the ob-
served counts. In the following we discuss the general sampling mechanism
that has generated these observations. In particular we will discuss the uncon-
ditional maximum likelihood approach which has a long history in capture-
recapture modelling. Chao and Bunge (2002) give a nice discussion on the
conditional and unconditional approach and how they connect. Sanathanan
(1972, 1977) provides a comprehensive analysis of their statistical properties.
The unconditional likelihood approach leads naturally, as we will see below,
to a profile likelihood in N . The latter suggests also a generic way of con-
structing confidence intervals as outlined in Venzon and Moolgavkar (1998).
Cormack (1992) provides an application to capture-recapture settings as well
as do Lebreton et al. (1992).

Let m denote the largest number of sightings, then the joint pmf of the
sample is a multinomial model defined on the counts 0, 1, . . . ,m coming from
the population of size N . Since we only observe the counts of 1, . . . ,m, the
conditional model used is a zero-truncated multinomial for the n observed
counts. This conditioning process is described by a binomial variable that is
responsible for splitting the population into an observed part (of size n) and
an unobserved part (of size N − n = f0). Together we have

multinom(b0(θ), b1(θ), . . . , bm(θ)|N) = multinom
( b1(θ)

1− b0(θ)
, . . . ,

bm(θ)
1− b0(θ)

∣∣∣n)
×binom(1− b0(θ)|N) ,

or equivalently

N !
f0!f1! · · · fm!

m∏
x=0

bx(θ)fx =
n!

f1! · · · fm!

m∏
x=1

( bx(θ)
1− b0(θ)

)fx

× N !
f0!n!

b0(θ)f0(1− b0(θ))n ,

which allows now to check the validity of this factorization.
Since f1, . . . , fm are fixed given the observed counts, the relevant part of

the unconditional likelihood is

L(f0, θ|f1, . . . , fm) =
N !
f0!

m∏
x=0

bx(θ)fx .
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Fig. 1 Unconditional profile log-likelihood functions under a geometric model for the dice
snakes (left) and for the flare stars (right)

Therefore, we have to maximize the unconditional log-likelihood function

`(f0, θ|f1, . . . , fm) =
m∑

x=0

fx log bx(θ) + log(N !/f0!) . (7)

For a given value of f0, the θ-score function is

∂

∂θ
`(f0, θ|·) =

m∑
x=0

fx
∂bx(θ)/∂θ

bx(θ)
.

If we specify the base distribution to be the geometric, i.e. bx(θ) = θ(1− θ)x,
then

∂bx(θ)/∂θ

bx(θ)
=

(1− θ)− xθ

θ(1− θ)
and the maximum likelihood estimator becomes

θ̂ =
1

1 + 1
N

m∑
x=1

xfx

.

This estimator depends on the value of N and thus on the unknown f0. We
propose to evaluate the profile log-likelihood `(f0, θ̂|·) for a grid of f0 values
to find the maximizer f̂0. This is shown in Figure ??.

Since f̂0 = 286 with 95% profile confidence interval (159, 527) for f0, the
total size of the population is estimated to be 356 snakes, which seems to be a
reasonable number. This unconditional estimate can now be compared to the
respective conditional estimate N̂c = 358 given in Table ??.

We also apply this model to estimate the size of the flare stars. From the
right panel of Figure ?? we get f̂0 = 523 with 95% profile confidence interval
(353, 782). The respective estimate of the population size N̂ = 668 is again
slightly smaller compared with N̂c = 671 from Table ??.

Under an arbitrary one-inflated count model the respective unconditional
log-likelihood function (??) is

`(f0, θ, α|f1, . . . , fm) = f1 log(1−α+αb1(θ))+
∑
x6=1

fx log[αbx(θ)]+log(N !/f0!)
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for x = 0, 2, . . . ,m. Since for any fixed value of f0 the derivation of the max-
imizer of this function w.r.t. α is the analogue to finding the maximizer (??)
of the respective conditional log-likelihood (??), we immediately have

α̂ =
1− f1/N

1− b1(θ)

and define the profile log-likelihood function as

log PL(θ, f0|f1, . . . , fm) = f1 log
f1

N
+ (N − f1) log

(
1− f1

N

)
+
∑
x6=1

fx log
bx(θ)

1− b1(θ)
+ log(N !/f0!) .

Notice that in this unconditional log-likelihood the total population size N
takes over the role of the observed sample size n in its conditional version and
the sum also includes the additional term for x = 0.

Under the one-inflated geometric situation the relevant term depending on
θ becomes∑

x6=1

fx log
bx(θ)

1− b1(θ)
=
∑
x6=1

fx log
θ(1− θ)x

1− θ(1− θ)

= log
θ

1− θ(1− θ)

∑
x6=1

fx + log(1− θ)
∑
x6=1

fxx

where x = 0, 2, . . . ,m. With

N(−1) =
∑
x6=1

fx and S(−1) =
∑
x6=1

fxx =
m∑

x=2

fxx

the above profile log-likelihood simplifies to

log PL(θ, f0|f1, . . . , fm) = f1 log
f1

N
+ N(−1)

(
log
(
1− f1

N

)
+ log

θ

1− θ(1− θ)

)
+S(−1) log(1− θ) + log(N !/f0!)

with corresponding θ-score function

∂

∂θ
log PL(θ, f0|f1, . . . , fm) = N(−1)

(1
θ

+
1− 2θ

1− θ(1− θ)

)
− S(−1)

1
1− θ

.

Since N(−1) is a sum over all frequencies except f1, this score function actually
depends on both, θ and the unobserved f0. Thus, it is natural to find the
maximizer of this profile log-likelihood using a grid of f0 values and maximize
the corresponding likelihood function in θ conditional on each f0 value.

For the snake data f̂0 = 45 maximizes the profile likelihood as shown in
the left panel of Figure ??. The respective population size estimate N̂ = 115 is
therefore rather small. The reason for this surprising result might be the fairly
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Fig. 2 Unconditional profile log-likelihood functions under a one-inflated geometric model
for the dice snakes (left) and for the flare stars (right)

wide 95% profile confidence interval (7, 399), reflecting the large variance of
the estimator f̂0.

The situation is similar with the flare stars data shown in the right panel
of Figure ??. Since f̂0 = 53 with 95% profile confidence interval (17, 165), the
estimate N̂ = 198 is fairly small compared to the results under the previously
considered models.

6 Bayesian analysis

We use the geometric density in the form

1
exp(α) + 1

exp(α)x

(exp(α) + 1)x
= θ(1− θ)x

with θ = 1/(exp(α) + 1) and for x = 0, 1, . . . . Now, as we have 0-1-truncated
data the associated 0-1-truncated density is

1
exp(α) + 1

exp(α)x−2

(exp(α) + 1)x−2
= θ(1− θ)x−2

which is the form we use for the analysis. A non-informative normal prior
(mean zero and standard deviation 100) is used for α and the Bayesian analysis
is implemented using 10 parallel Markov chains, each run to produce a sample
size of 10000 after 2500 burn-in iterations. A nonparametric density estimate
(Epanechnikov kernel with optimal bandwidth) for the posterior distribution
of α is given in Figure ?? for the dice snake data (left panel) and the flare
stars data (right panel). To find the posterior distribution of N we use (??)
for the geometric pmf, i.e. the transformation

N̂ = n + (n− f1)
θ

1− θ − θ(1− θ)
.

Note that the latter is a monotone increasing function in the interval (0, 1).
The associated values for the median as well as for the 95% HPD credible
interval are given in Table ??.
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Fig. 3 Posterior distributions of the α parameter of the 0-1-truncated geometric distribution
for the dice snake data (left) and the flare stars data (right); the smooth curves represent
the normal densities with parameters replaced by respective posterior sample estimates

Table 9 Population size estimates based on the posterior distribution with 95% HPD in-
tervals

case study n median N̂ 95% HPD credible interval
dice snakes 70 131 (83, 444)
flare stars 145 196 (166, 284)

As an alternative we might consider a Bayesian analysis using Jeffreys’ in-
variance prior. This leads here to a prior distribution proportional to 1/θ

√
(1− θ)

which corresponds to an improper beta prior. The posterior distribution is pro-
portional to

θn−1(1− θ)s−1/2 ,

which corresponds to a beta distribution with parameters a = n and b = s+1/2
where s =

∑
i(xi − 2). The corresponding values for median, 0.025-quantile,

and 0.975-quantile of this posterior are provided in Table ??.

Table 10 Population size estimates based on the posterior distribution with 95% credible
intervals based upon a beta posterior distribution

case study n median N̂ 95% credible interval
dice snakes 70 122 (82, 393)
flare stars 145 203 (168, 305)

7 Monte Carlo simulation

To allow a comparison on the performance of all suggested estimators we are
including some simulation work to provide a more in-depth study of these
suggestions. We have considered the following population sizes for N : 50, 100,
200, 500, 1000. We did not consider any sizes larger than 1000 as this deemed
not appropriate for our setting and also most differences between estimators
can be expected for smaller sizes. We have chosen the geometric distribution
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as baseline distribution with parameter values θ = 0.3, 0.4, 0.5. We studied
three settings: no, 10% and 30% one-inflation. N units were sampled under
the respective setting and zero-counts removed. Then six estimators were con-
sidered: the modified Chao estimator (1) discussed in Böhning et al. (2019),
the estimator based on the conditional likelihood with no one-inflation (2),
the estimator based on the conditional likelihood with one-inflation modelled
(3), the estimator based on the unconditional likelihood with no one-inflation
(4), the estimator based on the unconditional likelihood with one-inflation
modelled (5) and the Bayes estimator using Jeffreys’ prior (6).

We like to provide results as relative bias and relative standard deviation
defined as

rb =

(
1
R

R∑
r=1

N̂r −N

)
/N

and

rsd =

√√√√ 1
R

R∑
r=1

(N̂r − N̄)2/N ,

respectively. Here R is the number of replications and N̂r is the estimate of
interest in the r−th simulation run while N̄ is the mean estimate of interest
over all simulation runs. These relative definition forms are required to allow
comparisons across different population sizes and also to permit meaningful
asymptotic statements. Note that the usual relationship rb2 + rsd2 = rmse
holds where

rmse =
1
R

R∑
r=1

(N̂r −N)2/N2

is the relative mean squared error.
The results for R = 1000 are presented visually in Figures ??, ?? and ??

and show a clear picture. Estimators (2) and (4) show high overestimation
bias under one-inflation, all other estimators behave reasonable in all settings
with respect to bias and appear to be asymptotically unbiased. The modified
Chao estimator shows larger variance than the conditional and unconditional
estimators as well as the Bayes estimator. However, it should be kept in mind
that the modified Chao estimator does allow heterogeneity under the geometric
sampling distribution. In summary, the unconditional and Bayes estimator
seem to perform best among the considered estimators.

8 Variance and bootstrap

For finding a variance and confidence interval estimate of the population size
estimate under the zero-truncated one-inflated model we use the bootstrap
approach. The conventional, nonparametric bootstrap works as follows:

1) Draw a sample of size N from the observed distribution defined by the
relative frequencies f0/N, f1/N, . . . , fm/N .
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2) Derive θ̂ and N̂ for the bootstrap sample in 1).
3) Repeat step 1) and 2) B times, leading to a sample of estimates N̂ (1), . . . , N̂ (B).
4) Calculate the bootstrap standard error as

SE∗ =

√√√√ 1
B

B∑
b=1

(
N̂ (b) − N̂∗

)2

,

where N̂∗ = 1
B

B∑
b=1

N̂ (b).

The problem with this bootstrap algorithm is that neither f0 nor N are
known. This has been acknowledged in the capture-recapture community for
some time. Norris and Pollock (1996) suggest three bootstrap methods to
account for the uncertainty involved in estimating N . One method bases the
bootstrap only on the observed sample size n and estimates the remaining
uncertainty analytically. Another method uses a bootstrap based on a complete
modelling approach. The third method they suggest is also used here. This
method is also discussed favorably in Anan et al. (2017).

We call this method a semi-parametric bootstrap and it can be described
as follows:

1) Draw a sample of size ||N̂ || from the observed distribution defined by the
relative frequencies f̂0/N̂, f1/N̂ , . . . , fm/N̂ . Here ||x|| denotes the rounding
of x to the nearest integer.

2) Derive θ̂ and N̂ for the bootstrap sample in 1).
3) Repeat step 1) and 2) B times, leading to a sample of estimates N̂ (1), . . . , N̂ (B).
4) Calculate the bootstrap standard error as

SE∗ =
√

median{R(b)|b = 1, . . . , B} , (8)

where R(b) = (N̂ (b)−N̂∗)2 for b = 1, . . . , B and now with N̂∗ = median{N̂ (b)|b =
1, . . . , B}.

We call this bootstrap semi-parametric as it is non-parametric conditional
on ||N̂ || and parametric as it uses the estimated model to find N̂ . Note that
we have chosen a robust estimator for the mean and for the variance.

We now apply this bootstrap procedure to all estimators studied in the
simulation work of the previous section. These are the modified Chao es-
timator (1) discussed in Böhning et al. (2019), the estimator based on the
conditional likelihood with no one-inflation (2), the estimator based on the
conditional likelihood with one-inflation modelled (3), the estimator based on
the unconditional likelihood with no one-inflation (4), the estimator based on
the unconditional likelihood with one-inflation modelled (5) and the Bayes es-
timator using Jeffreys’ prior (6). The results of the bootstrap procedure are
provided in Table ??. Due to the small sample size, the confidence intervals
are rather wide. The upper interval end provides for both case studies valuable
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information on an upper bound for the hidden population units. Due to the
sparsity of the data the bootstrap samples generate occasionally very large
population size estimates. Typical, we would expect the bootstrap mean to
be close to the population size estimate. However, this is not the case due
to the occasional occurrence of spurious large size estimates. The bootstrap
median does get close to the sample population size estimate. This aspect is
of interest in practice as we might want to check if the bootstrap median is
in agreement with the population size estimate for the given sample as this
could indicate that the latter is spurious. It can be expected that also the
conventional bootstrap standard deviation experiences a similar inflation and
estimating the true variation by means of (??) is likely more useful. Note that
the ranking of estimators according to BTse(??) is in line with the results of
the simulation study. We can ignore the two estimators under no inflation as
these are using a wrong model which contributes to their large variance in this
case. Under the remaining estimators, Chao’s modified estimator has by far
the largest standard error. Jeffreys’ Bayes estimator and the conditional under
one-inflation are on par whereas the unconditional under one-inflation seems
to perform best.

Table 11 Population size estimates (N̂) with their bootstrapped means (BTmean), medi-
ans (BTmed), standard deviations (BTsd), standard errors (BTse(??)), and 95% bootstrap
confidence intervals based on respective quantiles (BTciv)

case study n Estimator N̂ BTmean BTmed BTsd BTse(??) 95% BTciv
dice snakes 70 mod. Chao (1) 126 201.5 129.0 198.6 47.0 72–735

geometric (2) 358 383.9 362.2 120.7 68.9 218–682
1inf-geom (3) 127 213.8 129.4 319.6 33.5 79–948
marg. geom (4) 356 380.5 357.0 118.7 67.5 220–680
marg. 1inf. geom (5) 115 175.9 117.0 179.7 27.0 76–958
Bayes (6) 122 182.8 123.8 205.7 30.4 78–713

flare stars 145 mod. Chao (1) 425 749.8 439.0 883.7 200.0 169–3552
geometric (2) 671 716.3 684.5 185.3 108.5 455–1160
1inf-geom (3) 205 297.1 209.8 597.0 30.8 160–809
marg. geom (4) 668 713.0 683.0 181.9 107.0 450–1157
marg. 1inf. geom (5) 198 256.9 203.0 196.5 28.0 158–776
Bayes (6) 203 278.2 207.2 442.1 29.5 159–766

9 Discussion and conclusion

It is widely known that parameter heterogeneity which is not accounted for
in the modelling can lead to severe bias in the estimation of population size.
However, it is mostly assumed that the bias occurs in a form of underestima-
tion. IWGDMF (1995) provide a generic argument for this fact. In particular,
this is justified in zero-truncated count models as any heterogeneity which
can be modelled as a mixture of parametric densities leads to an underesti-
mation bias if the mixture is ignored and only a homogeneous model is fitted
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(Böhning and Schön 2005, van der Heijden et al. 2003). Here we have seen that
in the case of one-inflation heterogeneity serious overestimation of population
size can occur. This is particularly disturbing if Chao’s lower bound estimator
(Chao 1987, 1989) is used which seemingly provides a lower bound estimate
for population size whereas under one-inflation the opposite is true.

We have seen that under sparsity modelling of the remaining counts (after
truncating inflated counts) is crucial for the predictive value. Of course, having
a well-fitting model for the observed data does not automatically apply it is
also a good fit for the unobserved part as the model might not be valid for
this part. This assumption needs to be made and it is untestable given the
data constellation for this paper. The inclusion of covariates (if available) will
always help to improve the fit of the model and increase the likelihood of valid
predictions of population size. This aspect needs to be investigated in future
research.

All estimation methods provide similar results. The modified Chao estima-
tor is least favourable as its standard error is relatively large when compared
to the others, but has the benefit of avoiding distributional assumptions. The
unconditional and the Bayesian approach both seem to perform better than
the conditional one. Most important is, and this cannot be emphasized enough,
that one-inflation is not ignored, as, if it is, it leads not only to large bias in
the estimate but also inflates standard errors considerably.

Clearly, due to the small sample sizes, confidence intervals based on profile
log-likelihoods are rather wide, but we like to notice, however, that standard
errors of estimators based on the appropriate one-inflated model are remark-
ably smaller than those ignoring one-inflation (see Table 11).
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Fig. 4 Relative bias (upper panel) and relative standard deviation (lower panel) of estima-
tors of N for the setting with no 1-inflation: 1 = modified Chao, 2 = CMLE no 1-inflation,
3 = CMLE under 1-inflation, 4 = UMLE no 1-inflation, 5 = UMLE under 1-inflation, 6 =
Bayes with Jeffreys’ prior under 1-inflation
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Fig. 5 Relative bias (upper panel) and relative standard deviation (lower panel) of estima-
tors of N for the setting with 10% 1-inflation: 1 = modified Chao, 2 = CMLE no 1-inflation,
3 = CMLE under 1-inflation, 4 = UMLE no 1-inflation, 5 = UMLE under 1-inflation, 6 =
Bayes with Jeffreys’ prior under 1-inflation
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Fig. 6 Relative bias (upper panel) and relative standard deviation (lower panel) of estima-
tors of N for the setting with 30% 1-inflation: 1 = modified Chao, 2 = CMLE no 1-inflation,
3 = CMLE under 1-inflation, 4 = UMLE no 1-inflation, 5 = UMLE under 1-inflation, 6 =
Bayes with Jeffreys’ prior under 1-inflation


