University of Southampton

Faculty of Arts and Humanities

School of Music and Web Science Institute

Micro Music

Exploring the Idiosyncratic Compositional Strategies
Encountered in 1-Bit, Limited Memory Environments

Blake ‘PROTODOME’ Troise
ORCID ID 0000-0002-6539-4253
Thesis for the degree of Doctor of Philosophy

July 2020 — Version 1.3

PROYO
DQAR

UNIVERSITY OF
Southampton

Written by Blake ‘PROTODOME’ Troise. Compiled using the MacTEX-2019 distribution.

A significant part of this submission is the companion media and code artefacts. Whilst referenced, these
are largely not included in this document and can be viewed at: https://doi.org/10.5258/S0TON/D1387.
Additional materials can be found at: https://github.com/protodomemusic/mmml and https://protodome.
bandcamp. com/album/4000ad and any queries can be sent to hello@protodome. corm.

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by
the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research
or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced
or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The
content of the thesis and accompanying research data (where applicable) must not be changed in any way or

sold commercially in any format or medium without the formal permission of the copyright holder/s.
When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.
Thesis: Blake Troise 2020 “Micro Music: Exploring the Idiosyncratic Compositional Strategies Encountered in

1-Bit, Limited Memory Environments”, University of Southampton, Department of Music, PhD Thesis. Data:
Blake Troise 2020 Title. URI: https://doi.org/10.5258/S0TON/D1387

https://doi.org/10.5258/SOTON/D1387
https://github.com/protodomemusic/mmml
https://protodome.bandcamp.com/album/4000ad
https://protodome.bandcamp.com/album/4000ad
hello@protodome.com
https://doi.org/10.5258/SOTON/D1387

Research Thesis:

Declaration of Authorship

Name:

Blake Troise

Title of thesis:

Micro Music: FExploring The Idiosyncratic Compositional Strategies Encountered in 1-Bit,

Limited Memory Environments

I declare that this thesis and the work presented in it is my own and has been generated by

me as the result of my own original research.

I confirm that:

1.

This work was done wholly or mainly while in candidature for a research degree at this

University;

. Where any part of this thesis has previously been submitted for a degree or any other

qualification at this University or any other institution, this has been clearly stated;
Where I have consulted the published work of others, this is always clearly attributed;

Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work;

. I have acknowledged all main sources of help;

. None of this work was published before submission, but an adaptation of sections

}2.1.]], @, b2j and }22ﬂ has subsequently been included in the Journal of Sound and
Music in Games (JSMG), published by University of California Press. Additionally, a
public release of the code has been published on my GitHub (https://github.com/

protodomemusic/mmml), alongside a public release of some of the musical materials
(https://protodome.bandcamp.com/album/4000AD).

Signature:

Date:

https://github.com/protodomemusic/mmml
https://github.com/protodomemusic/mmml
https://protodome.bandcamp.com/album/4000AD

% % 1-bit music, generally considered a
sub-division of chiptune, is the music
of a single square wave. The only
sonic operations possible in a 1-bit
environment are amplitude and time,
where amplitude is quantised to two,
binary states: high or low, on or

off. There are surprising techniques
and auditory tricks unique to 1-bit
practice: through layers of modulation,
abstraction and clever writing,
compositional methods can generate

/ANU-/ N /NN /N N /N N /N N

AV W /2 U W W W VO O W VR W W S U W WA WY
Y VU W W W W W W O VA VU W VO W W W W W \
\/_/ N/ NN/ / NI/ N /

NAN AN N

ANV CIVANE U WA WA VA WA WAV VU W O W W W W

% % music far more complex than the medium
| Exploring The Idiosyncratic Compositional | would, at first impressions, indicate.
| Strategies Encountered in 1-Bit, Limited Memory |

| Environments | This is an environment defined by

% % extreme limitation. Yet, belying these
| By Blake 'PROTODOME' Troise | restrictions, there is a surprisingly
% % expressive instrumental and

compositional versatility. This
research explores the theory behind the unique compositional techniques available to
composer-programmer in low-memory environments; those which are essential when designing
music to be as small as possible. These methodologies are considered in respect to their
compositional implications and applications.

Using the 8-bit AVR microcontroller range to enforce both absolute memory restriction and
hardware simplicity, and through custom synthesis software and algorithms, I have created a
series of musical investigations focused on the central research question: using 1-bit
synthesis, how does constructing music within one kilobyte (or a similarly limited memory
environment) inform or change compositional methodology?

| LIST OF ACCOMPANYING MATERIALS |

Two physical hardware synthesisers have been included as a companion to this commentary.
Embedded on one is the primary pMML pieces (as they are named and structured in the 4000AD
album release, found here: https://protodome.bandcamp.com/album/4000ad) and, on another, a
selection of bitbeat compositions.

A guide of operation can be found in the media library listed below. Please read this before
use.

The companion online media/code repository is an aggregation of various examples and
materials that support the research's written commentary.

This can be accessed by visiting:

| WEBSITE | https://doi.org/10.5258/S0TON/D1387 |

CONTENTS 5
Contents

IList of Figur94 6

List of Tables 8

:

|1 Introductiod 10

1.1 Overview and Research Questionsl 10

1.2 Project Motivations and Rationalel 12

lZ 1-Bit Theoryl 17

I2.1 Context and Culturej 17

D.1.1 A Short History of 1-Bit Musiq o v v vvie e 18

2.1.2 The Chipmusic and Demoscene Culturel 21

|2.2 Sonic Fundamentald 26

2.2.1 The Effects of Practical Implementatiod 28

2.2.2 Timbre & Volumel 31

D.2.3 POIYDhONY . « « « o v oo 36

|3 Implementatiod 47

8.1 The 1-Bit Sound Routing« v v v v oo 47

B.2 Micro Music Macro Languagel 55

3.2.1 Why Music Macro Languageﬂ 55

3.2.2 The uMML AVR Implementatioﬂ 58

k Compositional Approache4 69

1.1 Introduction|. L e e 69

1.2 Observations On The Nature Of Low-Memory Compositiod 71

1.3 Strategies For Reducing Compositional Footprinﬂ 76

1.4 Generative Approaches e 94

1.4.1 On The Nature Of Generative Compositiod 94

1.4.2 thebeaﬂ 95

1.4.3 Bitbeaﬂ 97

103

b Appendicesi 109

6.1 4000ad.mmm] 109

6.2 paganinis—been—at—the—bins.mmmi 120

6.3 goose—communications.mmmi 125

6.4 jupiter.mmmi 133

6.5 bitbeat.d .. 135

137

LIST OF FIGURES

List of Figures

il Oscilloscope view of a sine wavd 26
Y The topography of the pulse Wa,vd 26
3 An illustration of phase (polarity) inversiod 27
2 A diagram of possible distortions and deformations to the pulse component 011

b rectangle wave L L L L L 28
b The waveform and frequency spectrum view of three permutations of squard

WAVE] . o v v v o e e e e e e e e e e e e e e e e 29
b The resultant, graphed artefact of the square.c progrard 30
7 A spectrogram view of a pulse width of decreasing duty cyclel 32
S Amplitudes of 1-bit waveforms sampled at 214000Hz and converted to variousl

lower sample rates] L e e 33
b Spectrogram view of two, identical arpeggios halving in duty cycle over thel

huration of each note, one starting at 50%, the other at 6.25%) 35
10 Two spectrograms visually demonstrating 1-bit volume envelopingl 36
11 The traditional summation of square waves in a 1-bit environmentl 37
12 The summation of 1-bit signals via the pin pulse method| 38
13 A spectrogram view of two 1-bit waveforms combined using the pin pulsel

method) e 38
|14 A spectrogram view of five 1-bit waveforms combined using PPM and Widened

from 0% to 100% duty cyclel 39

15

A spectrogram view of two 1-bit waveforms combined using the pulsd

interleaving method| 41

16

A (software) oscilloscope view of a PIM waveform generated at 64100Hz and]

below, the same waveform downsampled to 44100Hz{ 43
|17 An illustration of temporal orders as individual pulse waves, modulating loweﬂ

Order WAVES o o e e e e e e e e e e e e 52
18 A flow diagram of the mmml.c program’s basic structurei 60
19 A comparison of integer and floating point data type precisions on twelve-tone]

cqual temperament tunings] L L. 64
20 Graph demonstrating the relationship between complexity against entropy| . . 70
21 A graph comparing the size of various uMML pieces with popular sampled

kormatsl .. 74
D2 A visual representation of the repeated material in 4000ad.mmmll 80
23 A graph plotting the total amount of reused material against the resultant B/ sI 81
P4 A visual demonstration of ‘Harmonic Neckering| 84
25 Visual Neckering in Super Mario Bros. (1985) 85
26 A scored demonstration of the transposed bassline in the spooky.c AVR programl 88
7 A short, scored piece demonstrating the crab canon techniquel 90
P8 Visualisation of the Jupiter uMML piece] 91
29 Visualisation of the bytebeat formula: t*((t>>12|t>>8)&42&t>>4)—1l 96
30 Visualisation of the bytebeat formula: ((t<<1)~((£t<<1)+(t>>7)&t>>12)) Id

B>(4-(1°7&E>>1OI) IE>>T . o o o o o 96
b‘l Visualisation of the bytebeat formula: t*(t>>((t>>9|t>>8))&63&t>>4)| 97

LIST OF FIGURES 7
b2 Visualisation of the bytebeat formula: ((t*((t>>v)&(t>>v)))&((t>>12|t>>8)|

BA28t>>4)-1) 5 v—==1000; 98

b3 Visualisation of the bitbeat piece Tiny Djeni 100

8 LIST OF TABLES

List of Tables

A table showing the resultant perceived loudness of signals mixed via the pulse]

interleaving method| 42

A reference table listing all possible commands in the mmml.c routine alongsidd

their evocation values) 61

A table showing which compositional techniques are used in the four, primaryl

supplementary compositional works|o Lo L oL 79

Possible unique configurations of overlapping, identical sequences in e &, offsed

by duration n) e 92

Two tables comparing the B/s of different pieces created using the mmml.cj

TOGTAIN« . o o i i e e e e e e e e e e e e e e 105

s o =1 o o1 [

A table comparing the B/s of different pieces created using the mmml.c programl 106

LISTINGS 9

Listings

i A square wave generator written in C pseudo—codel 28
D An example of a variable pulse width generator in C pseudo—code] 37
3 A demonstration of PPM mixing in C pseudo-codd 40
a A demonstration of PIM mixing in C pseudo-code, interleaved via the progralﬂ

control flow] 44
b A demonstration of PIM mixing in C pseudo-code, interleaved via a switchiné

|variabld .. 45
6 Simple AVR C square wave tone generator (square.c)l 51
7 Recursive square wave generator (fractal.c)| 53
S A puMML transcription of Steve Reich’s Piano Phasel 76
0 Possible types of single voice harmonisation/accompaniment of a simpld

descending Tonian bassline in uMMLI 86
10 A short canon written in uMMLJ 89
11 Simple square wave oscillator program (osc. c)l 94
12 Bytebeat piece listed in Heikkild’s seminal video demonstrationl 96
13 The AVR C program code for a simple bitbeat piecef 98
14 The AVR C program code for bitbeat piece, millipede—call—centre.cl 99
15 The AVR C program code for bitbeat piece, infinity—soup.cl 100
code/4000ad.mmml 109
code/paganinis—been—at—the—bins. mmmi 120
code/ goose—communications.mmmi 125
code/ jupiter.mmmi 133
code/bitbeat d 135

10 1 INTRODUCTION

1 Introduction

1.1 Overview and Research Questions

This document is a companion to the electronic ‘music boxes’ sitting beside you. It supports,
and comprehensively explains, a portfolio of over an hour of 1-bit compositions, represented
by nearly 40 kilobytes of program memory (roughly 400 times smaller than this PDF
document). With this project I have set out to compose the tiniest music I can using the
most minimal instrumentational environment possible. This project is an exploration of
conceptual purism: a personal exploration of the compositional voice in an increasingly
restricted environment. The danger with this process however, is aptly communicated by the

follovvingﬂ :

I thought using loops was cheating, so I programmed my own samples. I then thought
using samples was cheating, so I recorded real drums. I then thought that programming
it was cheating, so I learned to play drums for real. I then thought using bought drums
was cheating, so I learned to make my own. I then thought using pre-made skins was
cheating too, so I grew my own goat from a baby goat. I also think that is cheating, but
I'm not sure where to go from here. I haven’t made much music lately, what with the

goat farming and all.

Even so, the most compelling thing about this process is, in my experience, once you start
distilling your composition and stripping away superfluous components to produce musically
dense micro-constructions, you realise that you can keep going. The attraction of embedded
music, music hard-coded for a particular computational platform, is that the composer can
control all elements of the composition, its encapsulation and its environment. How many
composers can say that they constructed the platform, the synthesis, the instruments, the
score and the composition? The sonic landscape of microcontroller music is dictated entirely
by its creator. Using the 8-bit AVR microcontroller range to enforce both absolute memory
restriction and hardware simplicity, and through custom synthesis software and algorithms, I

have created a series of musical investigations focused on the central research question:

o Using 1-bit synthesis, how does constructing music within one kilobyte (or a similarly

limited memory environment) inform or change compositional methodology?
Furthermore, the following two questions arise in sympathy:

e Is it actually possible to create complex, engaging music in less than a kilobyte of
program space using 1-bit synthesis? (Including generation and synthesis code of

course; no hiding behind decoders and interpreters!)

e What is the most economical method of creating 1-bit complex musical compositions in

relation to memory footprint?

By the end of this commentary, the reader will understand:

LOften cited as an image macro, earliest example I could find and possible source here: http://www.mnml.
nl/phpBB3/viewtopic.php?f=17&t=62658&start=16

http://www.mnml.nl/phpBB3/viewtopic.php?f=17&t=62658&start=16
http://www.mnml.nl/phpBB3/viewtopic.php?f=17&t=62658&start=16

1.1

Overview and Research Questions

11

How this project fits within a wider context: the history of 1-bit music and the

chipmusic scene.

The sonic and musical properties of a 1-bit waveform.

How a 1-bit waveform might be synthesised in software.
Approaches to organise and structure 1-bit voices musically.

Potential compositional solutions to employ in low memory environments.

12 1 INTRODUCTION

1.2 Project Motivations and Rationale

Somewhat less cogent than the previous research questions, I initially approached this
project with two questions: “What cool music can I make using 1-bit synthesis?” and “In
just how few software instructions can I make it?”. Over the course of the project however,
these questions evolved and the criterion for success has become ever more ambitious.

This disposition is entirely reminiscent of the demoscene: the modem-networked, artistic
coding community producing audiovisual artefacts one might consider somewhere between
“poetry and graffiti” [Il]. The specific focus on the sizecoding [2] ethos in my endeavours is
a common motivation in many demoscene sub-cultures, where coding skill and proficiency
is the primary currency in a cyberpunk meritocracy [3]E One can see recurrent evidence
of this in the classification of events in demoparties (gatherings of ‘sceners’ often dedicated
to competitive demonstrations of coding expertise), where competitions are split into
computing platform and code size categories [4]. The miniaturist form correlates with my
own enterprise; the ever smaller instruction spaces in which to express my musical language
is incitement for inspiration. It is also consonant with demoscene practice that my process,
as an inexperienced programmer, has often been trial and error, rather than adhering to
rigorous mathematical or algorithmic models [Il]]. Essentially, elements of my approach to

software design has been somewhat of a hacker/enthusiast.

On the nature of the project’s methodology, it is useful to draw a comparison in literature.
There is a limit to the rate of compression of a series of events before there are no longer
coherent symbols to parse. This is best demonstrated with a simple thought experiment:
decrement the maximum word count of a written task until only a single character remains.

For example:

2 Although there are certainly other contributing factors, technical prowess is a significant variable
of success in a demoparty. One can often make submissions anonymously which are judged and ranked
by a panel of other scene members (not always though and, where this is not the case, one could make
a strong case that coding talent is *not* the primary factor of success.). Achievement is largely based
on the submitted artefact, suggesting coding talent, rather than existing rank or status within the scene.
This extends to chipmusic and similar online cultures somewhat, but one is never truly anonymous in any
community and other traits, those real, or perceived to be real by peers, do have an additional impact on
success. Recently, there has been some resistence to the idea of pure meritocracy in chiptune, perhaps because
the scene is becoming increasingly diverse and inequalities more apparent.

1.2 Project Motivations and Rationale 13

I think, therefore I am
I am thinking, so I am
I think, so I must be
I am because I think
I've thoughts: I am
I think so I exist
I think thus I am
Cogito, ergo sum
I think so I am
I think . I am
I think, I am
Think . I am
Think: I am
I am: I be
Thk . I'm
I'm real
I exist
I - am
1

H H H
o
=]

The forms and techniques required to communicate an intelligible message change as the
operable ceiling descends. At a certain point, a desired message is irrevocably altered
away from its original intention; concessions and alternate strategies must be devised

so that enough meaning is retained. One might find an emergent, unexpected beauty

in this reduction. In a computational architecture, this boundary is more transient and
indeterminate than it might be with text as there are various schemas and methodologies
by which data can be stored and interpreted. My primary fascination, and the goal of this
investigation, is to examine what happens to musical composition as the maximum semiotic
resolution decreases. To return to the thought experiment, one might achieve retention

of meaning through employment of linguistic strategies such as synonyms, rephrasing,
concatenation and truncation. In a compositional environment, it is the musical analogues

for these strategies I am most interested in developing.

If compositional reductionism is of most interest to me, why frame the project around
1-bit music? 1-bit music is certainly not required to explore compositional miniaturism,
however it is an appropriate companion to the process. The role of 1-bit music in this
project is to provide a simple, easily implementable set of instrumental forces with clearly
defined parameters. Moreover, the relationship between composition and instrumentation
is reciprocal and, in places, inextricably linked. As is mentioned in @, 1-bit music is
surprisingly expressive for a simple concept. As the research opts to keep both software
and hardware as simple as is reasonably practicable, 1-bit synthesis has proven itself to
be the best solution: it is exceedingly easy to implement in both software and hardware,

and almost no additional electronic components are required. Additionally, practically

14 1 INTRODUCTION

every microcontroller and processor on the market today (and since the dawn of electronic
computing, see) can generate a competent 1-bit signal, fit for audio playback. Moreover,
as the project is reductionistic and ruthlessly utilitarian in principle, software routines that
generate 1-bit signals can be expressed in, some cases, very few instructions, resulting in
minimal memory footprints. I recognise that not all instrumental, nor software, platforms
will share exactly the same compositional solutions as this project, however I consider this
admissible. Many of the solutions I have explored will be transferable and, where they

are not, should provide a unique insight in to one (my) approach of writing miniaturist
compositions. The same constraints may be placed on piano composition (for instance)

but the operational boundaries are more ephemeral and arbitrary than composing within

an enforced restriction, such as a microcontroller. Additionally, instruments with extensive
techniques for sonic nuance and instrumental expression may have innumerable methods of
composition; one could write expansively on different modifications to piano timbre and how
this might affect compositional approaches. The limited variables involved in 1-bit synthesis

constrains this freedom.

There is a subtle difference between compositional and instrumental techniques, although
there is often overlap. For example, the classic chipmusic ‘super-fast’ arpeggio is more
instrumental than compositional: if one were not limited by instrumentation (often, in the
case of chipmusic, where there are few monophonic voices), an arpeggio might be replaced
by a chord of simultaneous tones. I am more interested in the compositional function of such
a technique; e.g. if an arpeggio is required, how might it be employed so that it contributes
a minimal increase in program memory and effectively communicates musical intention.
There are many characteristically chipmusic instrumental tricks that I am, and wider musical
culture is, familiar with [§, §]. The peculiar ‘hacks’ and eccentric workarounds devised

to produce particular instrumental effects are one of the defining features of the culture

[7]. Therefore, whilst I started this research (and my previous chiptune experience) on

the Nintendo Entertainment System (NES), it quickly became evident that I was possibly
unoriginal in my musical approaches to the hardware. What I could potentially say using
the NES’ paradigmatic dialect had largely already been said [§]. As 1-bit music relies on
pulse WavesE, there is a significant overlap of instrumental techniques between not just the
NES, but also the Commodore 64, Game Boy, Atari 2600 and the ZX Spectrum; all popular
platforms for chipmusic with vast bodies of existing musical works. Thus, where the project
differs from the wider chipmusic ‘library’, is in the compositional construction. Keeping
within the minimalist framework, and influenced by the accomplished beeper routines of the
ZX Spectrum coding scene, this investigation looks for ways to find unique compositional
ideas within the restrictions of the AVR platform.

A similar approach has previously been taken by composer Tristian Perich [9], producing
forty minutes of 1-bit material on an Attiny85 microcontroller (an integrated circuit (IC)
with eight kilobytes of program storage space [10]). It is impressive, but with knowledge of
the numerous techniques and approaches established in wider chiptune practice, I feel that
there are many aspects that can be improved onE. In my doctoral work, the Attiny platform

has deliberately been chosen for the extremely limited program memory available; a mere

3See @

4Not that Perich was striving for the same goal as myself. As an exploration of 1-bit textures, 1-bit
Symphony it is indubitably entirely successful!

1.2 Project Motivations and Rationale 15

kilobyte of data for the Attiny13. The immutable headroom is a deliberate decision to enforce
strict memory limits and counteract potential ‘feature creep’, where one might be tempted

to “just fit in one more tiny function”, bloating the code and undermining the investigation’s
premise. Additionally, if using lower CPU frequencies, the microcontroller can be run on 1.5
VOltSEZ the voltage provided by a single AAA battery. The extremely low power requirement
forces slower CPU speeds, thus encouraging more optimised coding strategies. This engenders
similar effects to restricted program space and limits the synthesis to the characteristic 1-bit
aesthetica.

The 8-bit AVR microcontroller series has another advantage: they are remarkably
cost-effective. Whilst low-cost solutions are of no real consequence to the composition,
accessibility in music is democratising. Attiny music (when delivered in a format similar

to this submission’s companion electronic ‘music boxes’) may be the cheapest electronic
music one could possibly consumeﬁz no prerequisite hardware such as computers, phones,

or other media players are required. In fact, one could argue that the Attiny13 is one of the
most affordable digital musical instruments; the embodied nature of the platform cannot be
separated from the music in its psychological effect. For this reason any resultant artefacts of
the research will be distributed physically, programmed for the hardware. Digital recordings
seem periphrastic in comparison: literal expansions of program data orders of magnitude
larger in size. In regards to possible backwards compatibility, although the primary pMML
routine (see @) runs at a blistering 8MHz, with a bit of tweaking (and reprogramming in
AGC assembler), the whole project could be comfortably stored on, and potentially executed
by, the Apollo 11 Guidance CornputerE L]

I choose the term ‘instrument’ to describe the Attiny13 (or, more generally, the
microcontroller) due to two main analogues I see with ‘traditional’ musical instruments.
Firstly, the ability of the human composer to realise their compositional intentionality on
the device’s resultant output (the chosen purpose and function of the device is to create
music) and, secondly, the fact that this compositional intentionality is not always realised
perfectly; that there is some sonic stochasticity. For example, the trombonist can only

guide the instrument into approximating their intention, the instrument’s output has a
degree of randomness. I am not entirely convinced by the definition of a musical instrument
being something that only interprets, or approaches, absolute compositional ideas, as this
definition may exclude a potentially ‘perfect’ instrument: one which can realise the ideas of
the composer completely accurately. Even so, with most extant musical instruments, there
does exist a degree of separation between the brain, and agency, of the performer, from the
instrument’s resultant vibrations. Of course, the Attiny here functions more like a player
piano, in that it is both an instrument and its own performer. One must use caution when
using the term ‘performer’; as it implies agency; a microcontroller cannot have intentionality,

as this would require autonomy. The microcontroller will diligently enact whatever it has

51.8V officially [IL0] but, in the most unscientific of processes, I tried powering boards with a single
AAA battery and it worked, very well too. An AAA battery should power an Attinyl3 operating at 4AMHz
continuously for days! With consumption this low possible expansions might even see solar powered solutions.

SHigher speeds can allow for alternate, more ‘hi-fi’ strategies, somewhat undesirable for the research. See
section ‘Sonic Fundamentals’ and ‘Temporal Subdivisions’

7 As of writing, one can source the parts needed to build a ‘Micro Music Box’ (see https://doi.org/10.
5258/S0TON/D1387) for certainly no more than £10.

8 Assuming a clock speed of just over 1MHz, 36KB of “core rope” memory and 2KB of RAM. I realise that
the IPS might not be up to it though...

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

16 1 INTRODUCTION

been programmed to do, with no interpretation. Nevertheless, the 1-bit output of the
microcontroller (in this instance) is not always identical, it will very slightly fluctuate based
on environment, internal voltages and timing errors. If I roll a ball, covered in paint, down a
hill, is the Earth (by means of gravity) the artist? Or can that be attributed to the ball? The
microcontroller is an entity, acting freely from external input, that appears to have its own
interpretation of the compositions it recreates. I feel that, pragmatically, it is a performer

because it approximates one.

As it is not wholly in the spirit of the investigation, the research questions deliberately do
not refer to data compression of files, or use of compressed audio file forrnatsa. Reducing a
file’s footprint in flash memory by means of either minimizing the quality of the recording
(lower bit and sample rates), or utilising archive formats and techniques, does not radically
change the composer’s enterprise. Or, at least, this does change the composer’s practice in
ways that satisfactorily answer the primary research concern of exploring how working in

a 1-bit and low memory environment inform or change compositional methodology. I am
interested in finding the limits of music when composed and stored semiotically; a string

of symbols representative of atomised musical concepts (Kolmogorov encoded [12]), not
merely storage for waveform data. Creation of this information adheres to almost none of the
restrictions explored throughout the project as the composer is permitted to use almost any
known method of generating sound data. Investigation into this problem would be that of the
computer sciences, not music. It should be mentioned that, whilst the project is intimately
related to technology, the motivation is always in developing artistic and compositional
process, shaped by the code and platform architecture. Due to the subjective nature of this
enquiry the research questions can only be addressed through a synthesis of deconstruction of

existing materials, practice-led compositional exploration and physical implementation.

Computationally limited implementations of 1-bit music have had a comparatively brief
period of time to develop and explore technique compared to other instrumental models, such
as the orchestra or the classic rock outfit. 1-bit sonics have only been commercially relevant
for maybe a decade before relegation to obsolescence and relative obscurity. Investigating
and introducing this unusual methodology into modern musical practice may yield original
results. Inversely, approaching legacy 1-bit technique from the perspective of a 21st century
composer, influenced by the online ‘chipscene’, might have also affected results. I intend for
this work to serve as an introduction to those who have not yet encountered 1-bit musical
practice and, perhaps most importantly, serve as a comprehensive guide to composers who
wish to create their own 1-bit music - irrespective of chosen platform. I have learnt a lot from
the philanthropic efforts of online, anonymous 1-bit enthusiasts such as ‘utz’ and Alex ‘Shiru’
Semenov, both of whom have performed crucial roles in the documentation and propagation
of 1-bit music as well as also being talented musicians and coders. I certainly hope that this
investigation has furthered their efforts in the aggregation, engagement and expansion of the

existing online literature, as well creating some exciting new sounds in the process.

9From my experience, 1KB is too small to store most common audio file formats, let alone additional code
to decode an MP3, or uncompress a ZIP file, but the premise holds true nevertheless.

17

2 1-Bit Theory

2.1 Context and Culture

As evident from the chipmusic scene, it is an understatement to say that there is a lot

you can do with a simple square wave. 1-bit music, generally considered a sub-division of
chipmusic [[13], takes this one step further; it is the music of a single square wave. The only
operation possible in a 1-bit environment is the variation of amplitude over time, where
amplitude is quantized to two states: high or low, on or off. As such, it may seem intuitively
impossible to achieve traditionally simple musical operations such as polyphony and dynamic
control within a 1-bit environment. Despite these restrictions, the unique techniques and
auditory tricks of contemporary 1-bit practice exploit limits of human perception. Through
layers of modulation, abstraction and perspicacious writing, these compositional methods

generate music far more complex than the medium might, at first impressions, suggest.

Even if not originally conceived through ludic platforms (one can hear simple examples of
1-bit sonics in microwave interfaces and smoke alarms!) 1-bit music has, as it is understood
today, been developed and propagated through video games and the companion demoscene
culture [[14]. Where systems such as the ZX Spectrum and early desktop computers
contained severely limited audio capabilities, developers found creative solutions to do the
seemingly impossible; polyphony, timbral variation and alterable volume all using a single,
monophonic square wave. These tricks (often born through necessity) have established a
broad and expressive 1-bit instrumental idiolect to rival that of any acoustic instrument:
the idiosyncratic elements of its instrumental language that distinguishes 1-bit sonics from
other instruments or platforms. In this chapter, Section aims to place this practice in
its historical and cultural context, and Section @ outlines the theoretical basis of 1-bit audio

and explores the unique instrumental capabilities of the 1-bit instrument.

18 2 1-BIT THEORY

2.1.1 A Short History of 1-Bit Music

The history of 1-bit music is inexorably linked to the history of computational music; 1-bit
synthesis often presents itself as the simplest solution when generating digital audio (see
Section @) The earliest examples of computationally synthesized music emerge with the
advent of programmable, electronic computers in the post-war era of the 20th Centurym.
Consequently, the first recorded instance of a digital composition was a program written for
the BINAC computer in 1949 by Frances ‘Betty’Holberton (then Betty Snyder). Both Jack
Copeland and Jason Long’s claims [[1G], and 1-Bit Forum user utz’s (independent) research
[17], make a very compelling case for this assertion which changes the origin of computer
music from the often cited CSIRAC and Manchester Computer musical software of 1951,

to two years prior [18, 19, 20]). The very first sequenced music for an electronic computer
seems to have been Holberton’s rendition of For He's a Jolly Good Fellow to celebrate the
completion of the BINAC project [21]. In the 1950s, Alan Turing outlined the theoretical
basis for computational synthesis in the Programmers’Handbook for Manchester Electronic
Computer Mark IT where an audio routine is proposed [22]. The described application for
generating sound is pragmatic, rather than creative: Turing’s “Hooter” function generates
tones, clicks and pulses as a feedback system for computer-human interaction. The document
suggests that the generated tones might allow a computer’s operator to “listen in”to the
progress of a routine, somewhat similar in function to later technologies, such as the dial-up
modem. Despite Turing’s initial intentions, this routine was eventually employed to create
the earliest surviving computer music: a monophonic rendition of God Save The Queen
[23]@. Both the BINAC routine and the “Hooter”function would, most likely, have used 1-bit
synthesis; the method of generation described by BINAC engineer, Herman Lukoff, suggests

¢

a process similar to contemporary 1-bit routines: ‘.. by programming the right number of
cycles, a predictable tone could be produced. So BINAC was outfitted with a loudspeaker---’
[16]. Additionally, Turing’s “Hooter” employed a series of clicks, which suggests a method

similar to the very thin pulse widths used in ZX Spectrum sound routines (see section

10Contrastingly, the earliest citation I could find of computational music is much older: a speculative
musing by Ada Lovelace in the early nineteenth century —a century ahead of its actualization [[5]

M7 feel the selection of ‘God Save The Queen’ by the Mark II engineers for the BBC journalists has two
primary functions: firstly, this is a patriotic demonstration of British technological prowess (perhaps with the
subtext of domjinance) in a post-war era. Secondly, the song choice is an obvious consequence of Technique
4 in Section , especially when considering the two companion pieces: Baa Baa Black Sheep and Glen
Miller’s In The Mood. All three would be well known to the British population of the early 1950’s and have
clear melodies. Crucially, monophony can be used to communicate these pieces coherently, without the need
for further harmonic context via arpeggios, expanded melodic writing or additional channels. Additionally,
although modern computing has its genesis in the wartime militaries of Western powers, I'm not sure that this
sentiment has carried over to the modern chiptune scene. There are certain demographics that dominate the
compositional and cultural landscape of the current scene, but these are somewhat detached from this origin.
Chiptune is largely a Western phenomena (including Japan) and largely male. One might argue that this is
because of computing’s origins, but I think it has more to do with the home console/ home computing culture
of the 1980’s. This said, it does still raise the question, to what extent has computer music been shaped by
historical statements of power, politics and religion? Although examples of protest and politically charged
musics perhaps more overtly address this question, I think the most interesting examples in chiptune are
perhaps more subtle. For example, those chipmusicians from old member states of the USSR have a different
set of computational platforms that they grew up with and, thus, have entered chipmusic from a different
angle. Similarly, the traditional Japanese/Western divide in chiptune compositional style extends beyond
chiptune itself and is reflective of the differing cultures (broadly, Japanese musicians generally focused on
melody and counterpoint where Western composition was concerned with extended techniques such as super-
fast arpeggios). My work does not attempt to actively engage with these larger, socio-political topics — not
because they are not relevant to the discussion — but because it is beyond the scope of both the project and
my ability. Open-source cultures will always be political in themselves in that they negate geographical and
state divides making them, to some extent, anti-hierarchical.

2.1 Context and Culture 19

Timbre)E. There are numerous subsequent examples in the 1950s of music created using
research and military computers, the majority offering similar, monophonic lines of melody
expressed using square waves [24, 25, 26]. For example, in August 1951, Geoff Hill wrote a 1-
bit routine for the CSIR Mk1 which was performed publicly at the Conference of Automatic
Computing Machines in Sydney [27]; in 1955, Norman Hardy and Ted Ross rewired a console
control lamp to a speaker to perform a rendition of Bach’'s Partita No. 3 in E major BM
701 [28]; and, from 1958, service technicians wrote music programs for the German Zuse 722

computers, one of which was even distributed officially by Zuse [29].

In the 1960s and 1970s, as technology became both faster and more accessible, programmers
began to experiment with alternative approaches. An EP, released in 1970, was created using
the DATASAAB D21 and D22 [30]. These recordings demonstrate the use of super-fast
arpeggios to simulate polyphony (alongside other, perhaps more advanced, audio solutions
that were not strictly 1-bit) [29]. In 1970, Thomas Van Keuren, a programmer working for
the US military in Vietnam, independently employed rapid arpeggiation, programmed on a
UNIVAC 1050-IT US military computer [B1]. When home computers became readily available
to hobbyists, during the late 1970s, the more complex and widespread routines begin to
materialize. These routines explored more advanced techniques, such as true 1-bit polyphony
E, and heralded the age of the computer music enthusiast: a prelude to the subsequent
chipmusic and demoscene cultures. In order to keep the manufacturing costs low, and
maintain the affordability of home computers, functional concessions had to be made. Home
computers did not have the memory capability to store large amounts of sampled data, thus
alternative strategies were devised to include audio in software applications, most frequently
video games [33]. Dedicated sound hardware utilized a wide variety of methods, such as
frequency modulation and wavetable synthesis [34], however even these could be expensive.
As an alternative, PCs were frequently shipped with internal speakers that were attached
directly to a processor output pin [35]. Systems such as early models of the ZX Spectrum
initially provided the programmer no alternative but to use 1-bit music [36], and those who
did not wish to invest in a sound card for their desktop computer could still experience
audio in games and software via the internal speaker @ These requirements encouraged
games publishers to find the most interesting solutions possible to distinguish their product
from the competition and garner more sales [42]@. With this attitude of ‘progression’, the
industry ultimately discarded 1-bit audio in favour of greater sonic capability and versatility.
Development of 1-bit practice was then adopted by the hobbyist; those with nostalgia for
their 1-bit platform, or those fascinated by the medium. The computers (such as the ZX
Spectrum) that booted directly into a programming interface, commonly BASIC [43], allowed
the casual user immediate access to functions that could beep and, with a little clever

extrapolation, be coaxed into playing melodies. Those engaging in the emerging demoscene

120r, perhaps, these were actually saw-tooth generators. It does seem unlikely due to the nature of binary,
digital outputs (see section Fundamentals), but I could not find a definitive source documenting the actual
synthesis methods used.

13Such as The Music System, published by Software Technology Corporation in 1977, which employs true
1-bit polyphony [32].

4 There must have been a significant number of users without sound cards; many games were_written to
support the PC speaker. To name just a few: DOOM [37], Prince Of Persia [3§], SimCity 2000 [39], and Total
Eclipse [40]. The companion instruction booklet to the DOS game Crime Wave even has instructions on how
to connect the PC speaker directly to a stereo system [41].

15Fritsch discusses this in respect to arcade systems, not home video game systems. There exists the
societal attitude that each successive release of a technological platform/product is a ‘progression’; striving
for greater computing power, memory capacity or graphical ‘realism’.

20 2 1-BIT THEORY

and chipmusic cultures, often having experimented with these simple routines as children or
teenagers, pushed what was previously possible. They were aided by Internet collaboration,

through competitions, communal sharing of code and a general enthusiasm for the medium.

2.1 Context and Culture 21

2.1.2 The Chipmusic and Demoscene Culture

1-bit music is almost always associated with chipmusicE. The reason for this relationship
is related to contemporary 1-bit practice and chipmusic’s unwritten artistic ‘manifesto’.
Chipmusican Niamh “Chipzel” Houston perfectly summarises the idealogical change and
aesthetic difference between chipmusic and historical computer music efforts. In a 2014
interview with VICE UK [44], she states:

Some might say... [we] decided to quit keeping up with technology sometime around
1999. But I'd argue that’s symptomatic of the society we live in, where you’d sooner

throw out the old than properly appreciate and celebrate its quirks.

Houston is referring to the enjoyment of creating music by exploiting limited systems for
their idiosyncrasies and unique stylistic qualities. This is the process of making music with
legacy hardware for the joy of its aesthetic alone, as opposed to exploring the novelty of the
compositional process, or pursuing more traditional, human performed musics in software.
An article in the third volume of the 1980’s The Best of Creative Computing magazine [15]
demonstrates the historical eagerness to move away from “square wave” compositions and
to higher fidelity, computer aided audio. These attitudes are a clear divider between the
historical and modern contexts of chipmusic practice. Rather than possessing the ‘space age’
qualities of an unfamiliar sound-world, today the sound of 20th century computers and their
associated programmable sound generautorE paradigm have a retrofuturistic quality. In fact,
the term chipmusic, or chiptune, has only ever referred to the genre retrospectively, entering
the lexicon of Amiga musicians around 1990 [49]. Originally this referred to the tradition

of making music to appropriate and approximate that of Commodore 64 musical practice.
Carlsson therefore considers the genre as “permanently” retro, a sentiment that would
seemingly exclude video game music, or music made for historically contemporary systems
from the chiptune definition — by means of its intention. Brian Eno recognised this trend,
predicting that the signature characteristics of a medium would be replicated and emulated
as soon as they could be avoided [50]. It is perhaps not replication, but continuation and

evolution that defines chipmusic today.

At its most fundamental, chipmusic refers to music either written for, or in the paradigm
of, computational systems that do not rely on redbook audio (or similar, recorded formats)
for musical reproduction [51, [1]. The exact definition of chiptune is a somewhat contentious
issue amongst chipmusicians and fans; divisions occur in differing opinions as to whether
hardware authenticity is required for a piece to be truly ‘chip’ [62, p3]. Whilst there may
be disagreement, most sources are consonant in that there does exist some form of cohesive,

electronic aesthetic born from early, hobbyist online communities [3].

Anders “Goto80” Carlsson attempts to address this issue by reducing chipmusic ontology

16There are some who may disagree; I can find no evidence of Perich discussing the relationship between
his work, ZX Spectrum music and chipmusic. However, his work is occasionally mentioned in chiptune
discussions and literature, for example in Leonard Paul’s article For the Love of Chiptune [[i]

17 A programmable sound generator (PSG) is an integrated circuit (IC) with the ability to generate sound
by synthesizing basic waveforms.[46, 47, 1§]

22 2 1-BIT THEORY

to three of its most fundamental facets: medium, form and culture [51]5. Chipmusic as a
medium addresses the most prevalent interest of populist literature, the relationship between
chipmusic and its parent hardware [54, b5, 56, #4]. These sources seek to define chipmusic
through video gaming nostalgia [44], specific platforms and their individualistic array of
miniature, embedded synthesiser ‘sound chips’ The main impediment to accepting this
approach definitively is that establishing exactly which hardware constitutes valid ‘chiptune
paraphernalia’ is problematic. Most would argue that music written for the Sega Mega Drive
(or Sega Genesis) is chipmusic [, 57]; the Mega Drive had a Yamaha YM2612 PSG capable
of six monophonic FM channels with four operators per channel [68, b9]. Very similar chips
were employed in a range of Yamaha keyboards of the time, for example the popular TX81Z
rackmount synthesiser and DX21 keyboardE [60]. As most would argue that music made
with Yamaha FM keyboards does not fit the criterion@ [b1], this strictly materialistic view

cannot describe the phenomenon entirely.

Addressing chipmusic as form regards the defining characteristics of the ‘genre’ (another
contentious topic, addressed below) as compositional language: the common, distinguishing
musical voice of the practice. If one were to judge a piece of chipmusic on the artefact

alone, irrespective of technology and surrounding culture (the latter somewhat challenging
admittedly), it might be difficult for a listener to differentiate between music created with
hardware and music made in modern digital audio workstation (DAW) software. Moreover,
as Carlsson recognises, both analogue synthesisers and chiptune technology produce the
same, fundamental waveforms [p1], therefore the language of chipmusic must extend beyond
its basic timbres and synthesis. Logically, chipmusic must also be defined by structural,
organizational and architectural limitations. These constraints include, perhaps most notably,
restricted polyphony and super fast arpeggiation [61], but also extend to dynamic ranges [[],
tempi [62] metre [b2] and nearly all facets of musical practice. A brief online search with the
question “How to write 8-bit music” provides numerous sources addressing the compositional
impact of limited voices in chipmusic [63, 64, 65]. Additionally, as traditional platforms were
often limited by how frequently musical parameters, and PSG hardware registers, could be
updated (for consoles such as the NES, this limit was often the television’s vertical refresh
rate), strict quantisation of musical events is a common property in hardware chiptune.
Unquantised, humanised passages and extended polyphony often sound ‘inauthentic’, a lesser
approximate to the chipmusic aesthetic. Nevertheless, many of these defining characteristics
are found in other musical genres: creative use of limited polyphony in the small ensemble,
hard quantisation in electronic dance music (EDM) and even super fast arpeggios in Bach’s
Chaconne for Solo Violin. As this is the case, seemingly the only definition one could
ascribe to chipmusic is that there is no single, concise definition. The defining ingredients

of chipmusic might be visualised as a Venn diagram; existing as an intersection of numerous

properties.

To define chipmusic as culture may seem somewhat counter intuitive, especially as the genre
appears nominatively deterministic. Speaking now as an actor within the scene, there has

been a noticeable shift away from hardware and compositional authenticity (reflected in

18] have largely inhered my structure for this section from Anders Carlsson’s perceptive interpretation of
the scene, found at https://chipflip.wordpress.com/chipmusic/. I encourage the reader to read his words
on the subject for themselves.

L9Patches for both the Genesis and other Yamaha keyboards were even compatible [60].

20Bands such as Level 42 and Huey Lewis and the News certainly aren’t considered to be chiptune-fusion!

https://chipflip.wordpress.com/chipmusic/

2.1 Context and Culture 23

Carlsson’s experiences [19]). Genres such as EDM and video game music (of any genre)

can now comfortably fall under the increasingly nebulous chiptune umbrella — given the
right framing. Conversely, it is interesting to me that Perich does not describe his music as
chiptune, instead choosing “low-fi electronic”. Whilst 1-bit Symphony could easily define

its identity by chiptune and demoscene practice, Perich’s decision to distance his work

from the existing culture seems to reorient its appreciation. His audience approach his

work more cerebrally, enjoying the medium for its unique instrumentation and aesthetics,
seemingly free from the baggage of nostalgia and platform sentimentality [66, 9]. This is,
sociologically, an interesting period in the genre’s evolution and may indicate as to whether
nostalgia and hardware re-appropriation was a significant part of chipmusic’s original
appeal, especially as both online and offline culture increasingly replaces the practice as the
collective’s primary adhesion. Younger musicians who encounter the idiosyncratic ‘sound’

of chipmusic without the nostalgic bias of childhood video game experiences may not find
the same enjoyment and interest in the aesthetic. Born in 1990, growing up with DOS and
Windows, the only platform I was familiar with that created the characteristic chipmusic
‘bleeps’ was the Game Boy, one of the last platforms to rely on music generation in this way.
As Carlsson notes, hardware authenticity is of decreasing importance to the appreciation,

or understanding, of the scene — perhaps this will indeed be the final decade of chipmusic
as a distinct ‘genre’ [67]. My own generation may well be the last era where the ideals and
attitudes of the first chiptune generation are still reflected. This may read melancholic, but
is far from it. The scene is evolving and, if music made with old hardware is increasingly
separated from ‘game music’ in the minds of both composers and audience, appreciation of
the medium as a set of instrumental forces may lead to novel practice, free from the restraint
of nostalgia, instrumental convention and musical pigeonholing. There has been some recent
discussion over whether or not chipmusic is worse today as the core focus is shifting from
‘technical innovation’, or hardware purisim, to something diluted, videogame focused and
commercialised. Personally, I think the chipscene is stronger than ever musically. This
decade has seen some of the most innovative, technically competent releases yet; rivalling any
other ‘serious’ genre.@ In general, the chipscene is not as pretentious as this analysis — it
somewhat kills the vibe! T think the unwritten rule is, don’t worry about what is or is not

chiptune, just write some music and have fun!

Returning to Houston’s definition of the chipmusician’s mentality [44], chiptune could

be considered a musical counter-culture that, by embracing ‘obsolete’ hardware, is anti-
mainstream through its apathy to commercialism. This is true to a certain extent: whilst
repurposing discarded technology for artistic intentions is in direct opposition to commercial
trends such as planned obsolescence, the further the hardware manufacture date is from the
present, the more expensive it becomes to engage with as a ‘hardware purist’ In fifty years
time, due to the increased scarcity of working hardware@, will chiptune, as it exists today,
be recognisable? Perhaps the anti-commercial spirit of chiptune is not in the hardware itself,
or even the music created, but the approach. The chiptune/demoscene communities share

much in common with the current maker culture, which is perhaps where this project more

217’m not going to put all my favourite releases inline, but if you are inclined, please do listen to the
following: Chibitech’s Moe Moe Kyunstep [6§], FearOfDark’s Motorway, Shnabubula’s NES Jams, cTrix’s
A For Amiga and Seajeff’s Magenta.

22Fven though components will fail, there will be no shortage of shells and inoperable units: the Game Boy
sold around 118.69 million units [59]!

24 2 1-BIT THEORY

closely aligns. Maker musicians have created music using a wide variety of materials and
technologies, using, for example: 3D printing [[70], floppy disk drives [1] and marbles [[72].
Although these platforms are not traditionally considered chipmusic forces, the ethos and
motivation certainly is. There will (hopefully) always be musicians curious to see technology
coaxed into creating music and, even if compositions produced with these systems are not
novel, the practice drives innovation. This is not necessarily anti-capitalist; often the latest
hardware releases see hackers and musicians creating content using these systems@ but
through the subversion of popular, commercial, preconceived notions of function, comes

authenticity.

So finally, by what musical taxonomy can chipmusic be understood? Whilst chipmusic

is oft assigned genre status, I would argue (as have other chipmusicians [74, [75]) that it

is better described as, and has more comparable attributes to, a medium, rather than a
genre. Extending this sentiment, I feel similarly about 1-bit music; it seems to me that the
medium’s defining compositional characteristics are less arbitrary tropes, and more akin to
the mechanical limitations of acoustic instruments. Although particular instruments prove
more suited to certain genres (for either technical or associative rationale) the instrument is
generally the medium by which genre characteristics can be expressed. Gifted with a large
polyphony, variable volume, timbral flexibility and, if one considers the programmed nature
of the music intrinsic to the instrumental capability, able to recite pitch information as fast
as it can update a waveform, the 1-bit instrument can tackle most genres. Perhaps most
intriguingly (in the pursuit of authenticity), it is writing in those styles, those in which it is
hardest for 1-bit music to communicate concisely, its distinguishing characteristics become

most evident.

So, can we consider 1-bit instrumentalism to be virtuosic in the same way we might a
traditional instrumentalist? Because, through typical 1-bit music compositional methods, it
is relatively simple to perform widely recognised displays of virtuosity (fast passages of notes,
large leaps in octaves, gratuitous soloing, etc.) the nature of the virtuoso is communicated
by the programmer, or composer’s, intentionality. This is certainly not unique to chip, or 1-
bit, music and is true of much computer music@. Novelty, and instrumental accomplishment,
in 1-bit music (and chipmusic) is conveyed via two primary methods: authenticity and
application. Authenticity refers to both platform (is it emulated or using real hardware)

and intelligence of execution (does it use imaginative, original or unorthodox compositional
or programming techniques) [52]. Application is more compositional: essentially, how well

is the composition realised using the chosen soundworld? Originality of implementation

is not required in the same way, only mastery of the ‘standard techniques’ (those which

have been selected by process of memetic evolution and subsequently embedded in the
musical vocabulary) and the demonstration of this proficiency through liberal, competent
applicationﬁ. Jaelyn “Chibitech” Nisperos’ Moe Moe Kyunstep [6§] is a perfect example

of chiptune virtuosity. Whilst it is expertly composed, it is the instrumental proficiency,

unconventional timbres and display of mastery over the hardware (in this case, the Nintendo

23For example, RoBKTA’s album SwitchTunes [73], composed using a Nintendo Switch, a gaming console
released in 2017.

24For example, ad hoc genres such as Virtual Jazz, proposed by digital musician ‘Aivi’. See the discussion
here: https://twitter.com/waltzforluma/status/1159900481205878784

25T am drawn to parallels in jazz, where ability to comfortably improvise over Coltrane’s Giant’s Steps
expresses a similar sentiment [[76].

https://twitter.com/waltzforluma/status/1159900481205878784

2.1 Context and Culture 25

Entertainment System) that makes the piece so celebrated in the chiptune community
[F7]. The importance of technical realisation in the appreciation of this work is clearly of
significance to Nisperos, as she includes an overview of how the bass parts were created on
the song’s release page [6§].

So, where does my own work for Attiny fit within this model? If platform were not important
to the process, the compositional investigation could be completed on any system with a
negligible change in aesthetic: perhaps on an emulator or recreation in a DAW. Obviously
this is not the case, further supported by those whose primary interest in the practice is

in the re-purposing of old video game consoles for musical application [b4, 55, b6, 44]. The
attraction of many to Perich’s 1-Bit Symphony is the bespoke, real-time performance of
work by the microcontroller itself [78, [7], as is, I feel, the appeal of my own work. Despite
the elitism and hardware politics that emerge from the platform centric view of chipmusic,
there is novelty to the performative aspect of musical electronics and the definition should
encompass this to a certain extent. Where my own work and Perich’s diverge is in both form
and culture. Whilst 1-Bit Symphony is extraordinary in many ways, it fails to incorporate
some of the elements that makes classic 1-bit chipmusic so compelling: pulse width sweeps,

gratuitous pitch bends and faux ADSR enveloping, to name just a few.

26 2 1-BIT THEORY

2.2 Sonic Fundamentals

Instrumental technique in 1-bit music is shaped largely by its signal, perhaps to an extent
that other instrumental and musical platforms may not be. To maximize expression and
proficiency when using this environment, one must have a basic understanding of the theory
and its implementation. The relationship and discrepancies between an ideal, logical pulse
wave and its translation to analogue and acoustic domains can be exploited to musical
effect. As such, practical application and exploitation of these concepts result in unique
compositional techniques exclusive to 1-bit music, belying the nature of the environment.
Appreciation of how the 1-bit waveform acts conceptually (and psychoacoustically) is

necessary in understanding and implementing timbral and sonic interest in 1-bit music.

Frequency

One wave cycle

Amplitude

\/ Time

Figure 1: Oscilloscope view of a sine wave

Whilst the sine wawve is the most fundamental sonic component of the acoustic domain

[79, B0], in the digital world this is arguably the pulse wave. 1-bit music is the music of pulse
waves: simplistic waveforms with binary amplitudinal resolution. Fundamentally, a waveform
is the shape of an oscillation or vibration, moving through a medium, around a fixed point.
A waveform’s primary attributes are amplitude and frequency. Plotted on a two-dimensional
plane, amplitude is variance on the Y axis and frequency is the addition of time on the X
axis (Figure m) [B1]. Whilst a sine wave’s amplitude can be traced continuously across the Y
axis, in a 1-bit environment, for any given point in time, each step of the waveform can be

only one of two states: logical high or low.

One Cycle
Narrow
Pulse Width Wide Pulse Pulse
+V [—————— R
Wl W2
Ov Pulse Train

Figure 2: The topography of the pulse wave.

The pulse, or rectangle wave (described as such due to the geometry of the waveform’s
graphed appearance, see Figure E), is a non-sinusodial periodic waveform defined by series
of instantaneous switches between two distinct logic levels [82]. Often, these quanta are
electronic oscillations between two voltages (usually positive and ground), however pulse
waves can exist as a longitudinal pressure wave or as an abstract, mathematical function.
The period between two amplitudinal events is considered a pulse. Regular periodicity of

pulses (a pulse train), are known as its frequency: the rate of repetition in any periodic

2.2 Sonic Fundamentals 27

quantity [83]. Discernible frequency is required for texture and pitch coherency, whereas
random distributions of pulses result in unpitched audio noise, approximating white noise
[84]. This definition is important as it suggests the first instrumental capability of the 1-bit
pulse; the ability to produce both percussive (unpitched) and melodic (pitched) sonorities.
The 1-bit musician must simply change the order of pulses from regular to unordered to

generate two vastly different textures.

The duration of a pulse event’s mark (high) time is referred to as its pulse width (W1 in
Figure E; the space (low) time is indicated by Ws) [43]. The relationship between the pulse
width and the total cycle duration can be expressed as either a ratio, or a percentage, known
as the waveform’s duty cycle. A duty cycle of 50% (a ratio of 1:1) would indicate a pulse
width with equal mark and space time. Whilst there is technical differentiation between
the definitions of ‘pulse width’ and ‘duty cycle’, both terms are often used synonymously in
the chipmusic community, referring to the ratio between the waveform mark and space time
[85]. Whilst theoretically infinite in variation, the maximum number of unique duty cycles
is limited by both hardware fidelity and human inability to discern a waveform’s phase@. A
duty cycle of 75% (3:1) cannot be aurally distinguished between a duty cycle of 25% (1:3),
as these are considered phase inversions of one another [86]5. The mark time of the 75%
waveform corresponds to the space of the 25% waveform and, when these are inverted, are
perceptually identical (Figure E) Due to this effect all similar widths above and below 50%
are timbrally identical to the human ear (by means of: 50% + n,n < 50%).

25% Duty Cycle 75% Duty Cycle

Figure 3: Duty cycles of ratios 1:3 and 3:1. Notice the inverse polarity of the mark and space time.

As a practical example of how this might implemented in software, Listing m (written in C
pseudo-code) generates a single square wave, demonstrating perhaps the most elementary
1-bit tone generator and its composition. Here we can see a scripted version of the
aforementioned list of basic operations required for tone generation. The desired frequency
can be set with the frequency variable. The timer variable pitch_counter decrements
continuously within the main loop of the program, checking if zero at each evocation.

When this is valid, pitch_counter is set to the value of frequency to be compared against

0 indefinitely. This provides regularity and, when the if condition is true, I/O port logic
level (hence voltage, hence amplitude) is alternated to create frequency. As long as frequency
remains constant, the equal intervals between pin bitwise XOR operations produces a pulse

wave of equal high and low durations: a square wave.

26Phase is the position of a point of time on a waveform cycle, subdivided into 360 degrees of possible
offset from the origin [81].
27The waveforms are offset by 180 degrees.

28 2 1-BIT THEORY

if (pitch_counter-- == 0)

{
pitch_counter = frequency;
output "= 1;

}

Listing 1: A square wave generator written in C pseudo-code. Note that the pitch_counter and
frequency variables actually represent half the period; as decrementing to zero changes the amplitude, two
complete cycles are required to generate a complete waveform.

2.2.1 The Effects of Practical Implementation

Discussion and analysis of aural techniques in reference to 1-bit theory alone excludes the
dependencies between the theoretical and actual waveform; the 1-bit paradigm does not
perfectly translate from the conceptual to the acoustic domain. The digital to analogue
converter (DAC) and electronic circuitry can misrepresent signals, subjecting pulse waves

to deformations such as ringing, rounded leading edges and overshoot [87], demonstrated in
Figure H Even internally, a microcontroller may not update all bits in a register at the same
time, causing I/O pins to momentarily output an erroneous value [88]. These distortions alter
the intensity and weighting of the signal’s harmonics: component sinusoidal tones arranged in
successive integer multiples of the first harmonic (known as the fundamental) [89, 79]@. This
arrangement is known as the harmonic series and is responsible for the perception of timbre:

the identifying characteristics of a sound.

Overshoot
Ringing

Logic /(vl_\
High \/) Droop

Leading / — Falling /——

Rising Edge Trailing Edge
Logic
Low

> [>
Rise Time Fall Time

Backswing

Figure 4: A diagram of possible distortions and deformations to the pulse component of a rectangle wave.
Ringing is oscillation after the leading edge, often proceeded by overshoot, where the signal’s amplitude
increases beyond the logical high level. These distortions will indicate that the signal’s harmonic image
deviates from that of an ideal pulse wave. [89, 90]

Figure E illustrates relationships between timbre and waveform. The first waveform
demonstrates the ‘ideal’ square W&V€E7 with a (comparatively) excellent frequency response,
as indicated by the intensity of the dark bands in the spectrogram view [90]. A spectrogram is
a visual representation of the harmonic components of a sound. The pictured bands represent
individual harmonics, where the lowest band is the fundamental. The effect of rounded
leading edges to the second waveform has a very obvious timbral effect when compared to

the ideal waveform’s spectrogram image. Aurally, this will ‘dull’ or ‘muffle’ the sound, as

if heard through fabric or a wall. The third shows a deficiency of the lower frequencies,

280r, alternatively, deficiencies in the frequency spectrum may result in an alteration of the waveform.
291t should be mentioned that the term square wave refers specifically to a pulse wave with a duty cycle of
50%

2.2 Sonic Fundamentals 29

which will have ‘brighter’, yet ‘thinner’ quality due to a weaker bass response than the

other two examples. Therefore, when approaching practical 1-bit composition, one must
consider the method of physical implementation by which the listener will experience the
composition. Ultimately, any software generation routine will be subject to timbral alteration
by the physical method of sonic propagation, including electronics enclosures. As a practical
example, Tim Follin’s work for the ZX Spectrum game Chronos does not account for this,

sounding coherent in emulation but unintelligible on some systems@.

=

—“ ‘ —

Figure 5: The waveform (left) and frequency spectrum (right) view of three permutations of square wave
over time. From top to bottom: excellent response, poor low frequency response, poor high frequency
response. The scaling of the spectrogram is logarithmic; skewed to align closer with human perception of
pitch and severely thresholded to the loudest harmonics to clearly demonstrate the relationship between
waveform and timbre [92]. Generated at a sampling rate of 44100Hz with Image Line’s 3z Osc [93].

Despite this, variations of wave shape away from the mathematical ideal each have an
individual aesthetic appeal, some alterations more preferable than others. The Game Boy
Sound Comparison, written by chipmusic composer Herbert Weixelbaum, is an investigation
juxtaposing the discrepancies between square waves generated by ten different Nintendo
handheld games consoles [85]. All consoles are running the popular Game Boy software,
Little Sound DJ. Weixelbaum produces a square wave of identical duty cycle, amplitude
and frequency in software, then appraises the strengths and weaknesses of the hardware, in
respect to the resultant signal. The aesthetic importance Weixelbaum places on his chosen
analogue, the original Game Boy, is interesting as it is not the most perfect replication of
the square wave. In fact, it will have a poorer bass response than the Nintendo DS running
the same software, for instance. These micro variations in timbre become a significant
instrumental concern for the chipmusican. The sheer ubiquity of the Game Boy pro-

sound modification (by-passing the hardware amplifier to obtain a more desirable signal)

is evidence to this [94, 95]. These examples highlight the aesthetic consequences analogue

‘malformations’ can have on timbral qualities external to the software ideal environment.

Since this project utilizes Atmel’s AVR Attiny series of microcontroller [L0], a similar
process to Weixelbaum’s was undertaken. To identify the step response (and thus timbral

characteristics) of the Attiny13, the raw output was analysed via oscilloscope, demonstrated

30This is humorously observed in a 1987 review in Crash magazine, describing the music as “a strange bit
of title sound (rather than music)” [91].

30 2 1-BIT THEORY

in Figure B@ The signal was sampled from a single I/O pin, with only a few intermediate
components, to achieve as accurate a representation as possible@. The microcontroller was
flashed with the square.c program and clocked at roughly 4MHz. The investigation originally
examined the output of an Attiny13, Attiny45, Attiny85 and Atmegal68, however all had
identical results with the equipment used. There may well be minute variations caused by the
different architectures but, for this study, if the signal both sounds and acts the same, there

is functionally no difference.

o

Figure 6: The resultant, graphed artefact of the square.c program (https://doi.org/10.5258/S0TON/
D1387). Sampled from an Attiny13 at 44100Hz. The left-hand waveform is largely unfiltered; it was recorded
with only a 10k2 in series from the I/O pin. The right-hand waveform has a simple RC filter (passive low
pass), using a 2.2uf capacitor, to smooth the overshoot and wobble.

The waveform to the left represents the unaltered output. It is subject to fairly extreme
overshooting and, subsequent, ringing, as seen in the transitional periods of the individual
pulses. This could be a product of parasitic capacitance/inductance in the system, or
perhaps a ‘glitching’ of the output voltage [88]: as mentioned previously, digital data may
take time (microseconds in duration) to stabilise at the correct, internal levels. Either

way, this extra distortion to the signal manifests itself as an increase of intensity in higher
harmonics. The right-hand waveform does not have this erroneous signal. The voltage wobble
has been corrected with a simple RC low pass circuit [96]. The reader may also notice a
slight ‘rounding’ to the waveform’s leading edge, similar to the second example in Figure

a. The RC circuit works on this very same principle, performing a reduction in the higher
harmonics to return the frequency spectrum to the ideal, thus ‘smoothing’ the rising edge of
the waveform. The companion simple squareE video demonstrates the busy character of the

ringing as well as the sonic differences between the filtered and unfiltered waveforms.

As part of the investigation, I wrote a simple program (1-bit-generator.c@) that builds
wave files from the output microcontroller code in software, rather than synthesised in
real-time by the hardware. This allowed me to investigate some of the concepts (and
create visualisations) with a digital representation of a 1-bit signal. The comparison
between the output of this program and the actual hardware is significant: timing errors
in the code are ignored by 1-bit-generator.c, but colour the sound of the microcontroller

analogue with crackles, pops and non-regular tunings. Techniques such as pulse width

31See https://doi.org/10.5258/S0TON/D1387

32The analogue/digital converter (ADC) used to make this recording was a Roland Quad-Capture audio
interface. Unfortunately I cannot (and do not have the required expertise to) accurately ascertain the device’s
preamp frequency response, harmonic distortion, intermodulation distortion and other potential attributes
that will colour the sound and influence the captured waveform, as will the resistances of the cable and
breadboard.

33See https://doi.org/10.5258/S0TON/D1387.

34See: https://doi.org/10.5258/S0TON/D1387

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

2.2 Sonic Fundamentals 31

modulation playback of samples (see) are, comparatively, much ‘brighter’ with more
high frequency components when synthesised by the microcontroller. Additionally, analogue
circuitry deforms the resultant waveform, and thus timbre, away from a perfect, digital,
representation. My own preference is the sound of the raw waveform; additional noise is
generated in the upper frequency range, adding harmonic content where there would not be
otherwise. As an aural demonstration, compare the drum samples of the software generated
audio (the mmml-generator.c program) to the output of the microcontroller. The samples
appear ‘brighter’ due to additional emphasis at around 9kHz and 18kHz. This companion
high-frequency buzz is not unpleasant at lower volumes and produces a richer timbre.
Additionally, it may be that the presence of hypersonic frequencies (those above 20kHz and
outside the limits of direct human perception) has a positive, biological affect on textural
appreciation - though the exact cause of this effect is not entirely understood [97]. Moreover,
the ‘minimalist’ aesthetic (using as few additional components as is practicable) is both
conceptually appealing and consonant with the reductionist premise of the investigation. My
suggestion is that the code and structure of the 1-bit language should be communicated as
directly as possible, with no obfuscation or colouration from other sonic elements. Repeated
concessions may lead to increasingly more artistic ‘adjustments’ that do not directly originate
from the 1-bit technique, for example, using a resistor ladder for adjustable volume, panning

or other uses of multiple hardware channels, analogue reverberation, etc.

2.2.2 Timbre & Volume

In addition to the timbral artefacts of external circuitry, timbre can be more noticeably
and predictably altered in software by adjusting a pulse wave’s duty cycle. As the duty
cycle decreases, narrower pulse widths are progressively quieter in the lower harmonics than
wider widths, with 50% being the perceptually loudest width possible. Figure B depicts a
pulse wave, decreasing in pulse width from left to right, from 50% to 0% duty cycle. The
fundamental begins to decrease in intensity as the duty cycle decreases, demonstrating the
reduction of the apparent ‘high-pass’ effect and decreased emphasis of the signal’s ‘bass’

range. This change is continuous and is a product of the harmonic nature of the signal [98].

In fact, narrower pulses have incrementally less power overall to the listener; as the duty
cycle approaches 0% (or 100%) the perceptual volume decreases with it. Due to the ‘phase
symmetry’ of audio (polarity does not affect the informational, nor perceptual, properties

of the waveform) this effect is not a consequence of the reduction of the signal’s actual,
electronic or kinetic power @ The reduction in volume is a product of bandlimiting: the
limiting of a signal’s spectral density to zero beyond a specified frequency. Practically,
generating narrower pulse durations requires ever higher sampling rates — this is obvious,
the smallest point on a temporal grid becomes its quantum (known as the ‘sample’) which
would be the smallest duration an amplitude could occupy. The Nyquist—Shannon sampling
theorem dictates that the highest frequency in a sampled waveform must be half the
sampling rate (in our case, the rate of pulse wave generation) [100]. The shortest pulse must
be two samples long; a single sample is not a change in amplitude, which, in itself, cannot be
heard. We can see from Figure E that, at faster sampling speeds, amplitude does not decrease

when the pulse width is narrow, the amplitude is a constant, 1-bit waveform. When the

35Calculated via root mean square (RMS) amplitude [99]

32 2 1-BIT THEORY

sampling rate is decreased however, this same waveform appears to, sympathetically, decrease
in amplitude. As the sampling rate is lowered, there are two possible outcomes: either the
waveform is left unchanged, but drops in frequency (lower sampling rates translate to lower
cycles per second) or the frequency is retained but, in accordance with the Nyquist—Shannon
sampling theorem, the signal must be bandlimited to half the sampling rate to avoid errors
(‘aliasing’). As we saw in Figure a, thinner pulses are constructed from more powerful high
frequency harmonics than lower and, after bandlimiting, extremely small (or extremely large)
duty cycles, where the majority of the power is above the Nyquist frequency, are removed

from the spectral density, resulting in a reduction of the waveform’s overall power.

Frequency (Hz)

50 25 125 625 3125 1.5625 0
Duty Cycle (%)

Figure 7: A spectrogram view of the pulse width example, where a square wave is progressively narrowed

in pulse width over time. The duty cycle is decremented (non-linearly) from 50% through to 0%. Significant
widths are identified by the vertical makers. The illustration here demonstrates the changes to the frequency
components at duty cycles between 50% and 0% where brightness (or lack thereof) indicates the frequency’s
power; stronger frequencies are represented by darker lines. There is a particularly harsh cut-off threshold
applied to the intensities of harmonics to highlight the aural effects of this phenomena, however all frequencies
do remain present (though increasingly quieter) as the duty cycle tends to zero. The spectrogram was
generated using Image-Line’s Edison software [L01]. The generated sample rate was 214000Hz and was
created using the 1-bit-generator.c program . See pulse-width-sweep.wav for an audio example,
available at: https://doi.org/10.5258/S0TON/D1387.

Figure E has been downsampled in software, meaning it is a conceptually ‘perfect’
bandpass@, which does not translate to the chaotic, noisy and unpredictable natural world;
so how does the reduction in amplitude relate to perception? Filtering (in this case, lowpass
filtering [103]) is occurring as the waveform is both propagated and sensed; upper band
limited by real, physical media at every stage of transmission. Additionally, depending on
the nature of the system, physical systems will add distortion and resonances (see Figure B)

1-bit music is acousmatic: presented exclusively through speakers; it cannot be generated

36] have read, anecdotally, that software low-pass filters are often implemented imperfectly and can
actually boost around the cutoff frequency [102]. I have found this to be true with FL Studio’s Fruity EQ
2, so I cannot guarantee that, when downsampling in software, I am not inadvertently introducing errors.

https://doi.org/10.5258/SOTON/D1387

2.2 Sonic Fundamentals 33

naturally. As such, because the frequency response of a speaker is limited by how fast

the cone can physically move, higher frequencies will not be replicated by the diaphragm.
Additionally, even if the replication of higher frequencies were perfect and transmitted
through an ideal, theoretical medium of infinite bandwidth, the upper limits of human
perception is, unavoidably, around 20kHz [104]. Thus the appearance of amplitudinal change

is caused by a conceptually perfect model translated through an imperfect environment.

8000
N
=
£ 16000 g
&)
) =
=t =
= 44100 &
3
214000
50 25 12.5 6.25 3.125 1.5625 0
Duty Cycle (%)
(Non-linear)

Figure 8: Four waveforms of the pulse width example (pulse-width-sweep.wav) at different sampling
rates. Each has been ‘downsampled’ (using Image-Line’s Edison audio editor) from the raw file. Generated
at 214000Hz by the 1-bit-generator.c program. Downsampling cuts those harmonics faster than half the
sampling rate, thus reducing the power of waveforms with stronger high-frequency harmonics.

This phenomena has multiple, musical implications. Firstly, due to the distributions and
intensities of harmonics present in different pulse WidthS@, some widths are more suitable
in particular traditional instrumental roles than others. For example, as human hearing is
less sensitive to frequencies below (approximately) 1kHz [105] (and increasingly so as the
frequency decreases), those pulse widths with stronger low-frequency partials are better
suited to material that would conventionally employ bass instruments@. Furthermore, as it
is possible to change the perceptual loudness of a voice@ (even though only two amplitudinal
states are conceptually and abstractly possible), the composer has the surprising ability to
introduce dynamic variation into their composition. Of course, this comes with the sacrifice
that timbre and volume are concomitant — in that, if one wishes to alter dynamics, one
must also inextricably alter the timbre. This is less noticeable at larger widths, however it

becomes discernible at widths of 5% or lower, visually demonstrated in Figure H If one looks

3TNotice the striking comb filtering in Figure B (discussed later).

38Indeed, this is why thicker pulses are often found in the bass parts of 1-bit music and why one might
choose certain methods of synthesis over others [[L0€].

39Here the use of the word wvoice refers to a distinct instrumental line with its own sonic identity. As
virtually all applications of 1-bit music are generated in software, there are no fixed ‘channels’ as one might
expect from music drivers for programmable sound generators (PSGs) such as the Nintendo Entertainment
System or Commodore 64 [107, 108]. The entire system can therefore be considered the ‘instrument’, which is
be unhelpful when analyzing 1-bit music. Melodic lines are generally individually discernible as consequence
of common compositional practice, where voices are assigned instrumental roles reflective of traditional
ensembles (for example, SATB ensemble, or wind trio). We can consider these entities ‘voices’: instances of
sub-instruments that are given individuality by their musical application. Although no predefined channels
exist, often channels are implemented in software and addressed in a similar fashion one might PSG channel.
This approach has been taken in the various code examples used throughout this article.

34 2 1-BIT THEORY

at the center of the spectrogram, the tapering of intensity of the lowest harmonics should be
evident as the width approaches 0%. It is at these extremes that a reduction in volume is
perceptible. As the volume decreases, the bass harmonics perceptually recede first, sounding
ever more ‘reedy’ or ‘nasally’ in texture. In contrast, those duty cycles approaching 50%

sound progressively more ‘rounded’ and ‘Clarinet—like’@ (for lack of more specific terms).

How the synthesis is compositionally employed plays a significant role in how apparent

(and disparate) each voice’s timbre-volume pairing is. Those 1-bit compositions in which
thin pulse widths are exclusively utilised sound texturally homogeneous; the apparent
changes in amplitude are more convincing as genuine changes in volume. Figure aurally
demonstrates this effect. The example is split into two arpeggios, equal in both frequency
and time. Both arpeggios are composed of four dotted eighth notes, each of these subdivided
into sixteenth notes. Every sixteenth note is half the duty cycle of that before it. The first
sixteenth note starts at 50% (then 25% and 12.5%), the second at 6.25% (then 3.125% and
1.5625%). Despite both sets of duty cycles having identical ratios between elements (being
ratios of one another to the power of two) it is only the second set, at narrower widths,

that the timbre no longer appears to transform over the duration of the note, instead the
apparent volume decreases. Both annotations (a) and (b) in Figure H show the first six
partials above the fundamental for duty cycles 50%, 25% and 12.5%, and 6.25%, 3.125% and
1.5625%. The harmonics highlighted in (a) (those that have the greatest effect on the human
perception of timbre) alter dramatically between the duty cycles, thus, over the duration of
the note, these changes are heard as timbral — more a series of instrumental transformations.
Comparatively, those partials presented in (b) remain consistent between the pulse width
changes, but recede in intensity (at least in the lower harmonics), perceptually varying less
in timbre, but more in volume. This behavior is a product of the distribution of harmonics
in any given pulse wave; as we can see in Figure H, the spectral image can be described by

m = p%’ where pw is the given duty cycle (expressed as a percentage) and every nmth

harmonic (n =1...k) will be missed.

Therefore, as the duty cycle is halved, so too is the total number of missing harmonics; the
timbre becomes ever more timbrally congruous and sonically cohesive to the human listener.
A thin pulse is, practically, a high-passed saw wave: to the human observer, nearly all integer
harmonics are present, however, in the case of the pulse, with a progressively weaker bass
response [110, 103]. Consequently, the 1-bit composer cannot employ a quiet voice with a
strong bass component, as a reduction in volume will result in a considerable alteration of

timbre and a perceptual separation of instrumentation.

The phenomenon in Figure H allows the 1-bit composer access to volume enveloping, or
transforming a sound’s volume over its duration [111], increasing the pulse wave’s repertoire
of instrumental expression. Shaping the perceived loudness via ADSR [[112] enveloping is not
only theoretically possible, but implemented in early 1-bit soundtracks such as The Sentinel
[113] and Chronos [114] on the ZX Spectrum — as well as many 1-bit routines [115, 116].
Figure depicts a simple implementation of ADSR enveloping on a 1-bit pulse wave,
demonstrating a fast attack and decay, alongside a contrasting slower attack and decay. The

‘trick’ is to keep the maximum fade width to approximately 6.25%, where the initial missing

40T wonder if the perceived similarity between a 50% pulse wave and a clarinet is due to the similar
spectral images; both clarinets and square waves produce, overwhelmingly, odd harmonics [109].

2.2 Sonic Fundamentals 35

8000 —
1000 V—= /= [—= T+ T /= =/ =F—F—+ —F—+—
EN 2000
e — | -——
= 800—'—*‘-’ T O
Q nd [. $r | T
qg; === 1IN ol —_— —_—
E f — L L,f*’i—-—,—«— ——
00 (@) | g3 (b))
200 — Eandll
8 SRRE°RRE°RRE°RRE®
CEB OER OER ©38

Duty Cycle (%)

Figure 9: Spectrogram view of two, identical ascending sequences demonstrating how the timbral character
of a pulse wave, in relation to the duty cycle half its width, changes as the starting pulse width is reduced.
Each arpeggio consists of dotted eighth notes subdivided into four sixteenth notes of fixed frequency (one

of silence), differing only in duty cycle. Each sixteenth note is half the duty cycle of the one before it. The
first arpeggio starts each note at 50%, the second at 6.25%. The visualization was created using Image-
Line’s Edison audio editor, and the example was generated at 60000Hz by the mmml-generator.c program
https://doi.org/10.5258 /SOTON/D1387

. 6000Hz was chosen as the thinner widths afforded by higher sampling rates were not
required for a minimum width of 1.5625%. See https://doi.org/10.5258/S0TON/D1387 to
listen to the original audio.

harmonic is beyond the first ten or so in the harmonic series@, so that the fade is aurally
congruous and mutates more in perceptual power than timbre. Additionally, as halving
the duty cycle concomitantly doubles the change in perceptual volume, one may wish to

implement a non-linear fade so that the apparent volume change is perceptually linear [118].

The emphasis placed on narrow duty cycles does not imply that movement between wider
duty cycle is unpalatable. Envelopes that traverse wider widths modulate timbre instead, as
heard towards the beginning of the example in Figure B, between 50% and approximately
10%@. This effect can be employed to add further expression and individualism to discrete
voices, approximating how acoustic instruments may change their spectral image over

time [119]. These changing harmonics are considered transients and the entire envelope is
recognized as an instrumental gestalt by the human listener. The pwm—enveloping.wav@ and
pwm-enveloping-scale wavid audio examples are a modification of the routine used in Figure
. This implementation ignores the previously imposed maximum duty cycle, allowing the
envelope access to larger pulse widths. Each sound has its own individual characteristics; an
instrumentally distinct entity. Even though generated via identical 1-bit parameters, with
each sound the movement of pulse width over time forms the voice’s instrumental identity.

Musical examples of pulse width modulation (PWM), the alteration of duty cycle over time,

41'Where variations are most noticeable; higher harmonics do not have the same influential power on the
perceptual timbre [117]

420f course, it should be noted that, as duty cycles beyond 50% are phase inversions of those below,
sweeping to widths larger than 50% will aurally reverse the direction of modulation, appearing to ‘bounce’
back when reaching 50%.

43Gee here: https://doi.org/10.5258/S0TON/D1387.

44Gee here: https://doi.org/10.5258/S0TON/D1387.

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

36 2 1-BIT THEORY

Fast Attack & Decay Slow Attack & Decay

Nyquist
>
2
=
g
=

200Hz

Loudest
o
=8
S
o
&

m Quietest

Figure 10: Two spectrograms visually demonstrating 1-bit volume enveloping. The left-hand example
depicts a quick attack, starting at the maximum value, decaying to a medium, (very) brief sustain level and
then moving quickly to silence. The second shows a ramp from zero to sustain, then again a decay to silence.
These do not show true changes in amplitude but, instead, in pulse width. The example was generated at
214000Hz by the 1-bit-generator.c programhttps://doi.org/10.5258/SOTON/D1387

. See https://doi.org/10.5258/S0TON/D1387 to listen to the original audio.

for timbral effect are numerous and the approach is certainly not unique to 1-bit practice@.
1-bit is distinct however in its peculiar use of pulse width extremity; the utilization of
very thin widths during a PWM sweep, producing a continuous blend of timbre to volume

changes.

As pulse width does not affect pitch, any operation to alter duty cycle must occur within

the duration of a wave cycle. Using Listing E] as a starting point, the XOR operation can be
removed and, instead, two conditions can be added to toggle the output depending on the
value of the pitch_counter variable. In Listing B, this value is represented by the waveform
variable; waveform can be an arbitrary number (smaller than pitch_counter; larger values will
represent duty cycles larger than 100%) or, more usefully, calculated based on a division of
the frequency. Dividing pitch_counter by two will result in a pulse wave of 50% duty cycle,

dividing by four a duty cycle of 25%, dividing by eight yields 12.5% — and so on.

2.2.3 Polyphony

On first inspection, it would seem impossible for simultaneous voices to be expressed by a
1-bit waveform. For a signal to carry two frequencies, concurrently traveling through the
same medium, one would expect a superposition of one waveform on the other: a summation
resulting in phase addition (or subtraction) where the interacting waveforms constructively,
or destructively interfere [123, [124]. This cannot happen in a 1-bit environment; as the
waveform may exist in either of two, quantized states, additional signals will fail to be
represented. Figure [1] illustrates this effect with the addition of two 1-bit waveforms and

the subsequent conversion back to a 1-bit composite. The product of this combination will

45For example, the Commodore 64’s SID audio chip allowed composers access to continuous changes in
pulse width, demonstrated in pieces such as Peter Clarke’s famous Ocean Loader 8 music [120] or Fred Gray’s
soundtrack to Batman: The Caped Crusader. Some 1-bit examples include Brian Marshall’s somewhat crazy
soundtrack to Last Ninja 2 [121] and MISTER BEEP’s brilliant Chromospheric Flares [122]

https://doi.org/10.5258/SOTON/D1387

2.2 Sonic Fundamentals 37

waveform = frequency / 4;

if (--pitch_counter == 0)
pitch_counter = frequency;

else if(pitch_counter <= waveform)
output = 1;

else if (pitch_counter >= waveform)

output = 0;
Listing 2: An example of a variable pulse width generator in C pseudo-code. The waveform variable in
example could be simply modified by changing the divisor but, as it currently exists, the example will produce
a fixed duty cycle of 25%. The thinnest width possible is dependent on the size of the pitch_counter and
frequency variables, with higher values yielding thinner available widths. The thinnest width will always be
a waveform value of 1, however the proportion of 1 to the frequency value changes depending on the size of
frequency. For example, 1 is 10% of 10, but 0.5% of 200.

be noisy, incoherent and will not clearly resemble either of the original frequencies. One can
consider this merger equivalent to extreme distortion, or ‘clipping’ [[125], where 0dBFS is one
bit above —oodbF'S, or DC zero@.

{1 P orP,>0

0 P, andP,=0

1

P, +P,

Figure 11: The summation of 1-bit signals is not the same as that of sinusoids, for example. As 1-bit
waveforms are either of amplitude zero or one, they can be considered to be DC offset, where the amplitude
is displaced such that the trough is always DC zero. Resultantly, there is never any wave subtraction,

only addition. The reader may realize that this behaviour is equivalent to a logical OR operation — this
observation will come in useful later.

Figure @ is somewhat misleading however as it implies that the mixing behaviour at a 50%
duty cycle is applicable universally. In fact, if we frame the primary issue as one of clipping,
the solution to packing multiple frequencies into a binary, DC offset waveform is to reduce
the rate of peak interactions and minimize distortion. This can be achieved by reducing

the pulse width: as very thin pulses (2<10%) have a significantly greater space to mark

46Tt should be noted that, when employed practically, this makes little sense: 1-bit music obviously has
as large a dynamic range as the system generating the signal; intermediate amplitudinal states are naturally
rendered unavailable as they cannot be addressed.

38 2 1-BIT THEORY

ratio, the majority of waveform interactions will be trough to trough, or peak to trough,
which does not affect signal identity. When two peaks eventually do overlap, there will still
be unavoidable distortion, but the regularly of these interactions will be so infrequent as to
retain the identity of the union. Therefore, we can imagine successfully merged 1-bit signals
as the application of the logical OR operation on highly narrow pulse widths. This solution
is called by 1-bit composer-programmer Utz as the pin pulse method (PPM) (or pin pulse

technique) [106].

Clipping

- — — —
Figure 12: The summation of 1-bit signals via the pin pulse method. The identity of both P; and Py is
clearly retained in the aggregate. The highlighted area indicates where clipping has occurred (the peaks have

collided and exceeded the amplitudinal resolution); whilst this is unavoidable, it happens so rarely it does not
affect the synthesis.

P +P,

1 P orP,>0 T H —”

0 P,andP,=0

1

Nyquist : "“\
\

Perfect Union
10*

AL

108 —

Frequency (Hz)

102

0
100 92.75 87.5 75 50 25 125 625 0

Duty Cycle (%)

Figure 13: A spectrogram demonstration of two waveforms combined at an interval of a major third. In

the example, both voices are modulated from 100% through to 0% duty cycle. A perfect union (of saw waves
— a useful reference as they contain all the integer harmonics) is shown for reference; note how the final
combination of pulses at (=<6.25%) is almost identical to a true summation. The visualization was created
using Image-Line’s Edison audio editor and the example was generated at 64100Hz by the 1-bit-generator
.c program. See https://doi.org/10.5258/S0TON/D1387 for an audio example.

Figure @ is a visual representation of two 1-bit waveforms summed in this way, at an interval
of a major third. Towards the end of the modulation (between 12.5% and 6.25%), notice how
the harmonics become less ‘noisy’, more stable and accordant with the expected spectral
image (the image that would be seen if the combination were at a higher amplitudinal

resolution, shown to the right for reference). Surprisingly, the final combination of harmonics

https://doi.org/10.5258/SOTON/D1387

2.2 Sonic Fundamentals 39

are preserved across the entire image (see the two, bottommost lines at duty cycle 6.25%),
meaning that the combination is largely present across all pulse widths, just with varying
levels of additional noise. This ‘gritty’ texture, whilst not a perfect representation of the ideal
signal, can be employed to musical effect and, if the composer does not find a certain level of
distortion unpalatable, can still communicate coherent polyphony@. This noise can be used
to ‘thicken’ a 1-bit piece, busying the soundscape to apply texture. Figure @ utilizes this
gradual distortion to pleasing effect; sweeping a B(4-15¢)2d49 chord™ from duty cycles 0%

to 100% to produce a sound not dissimilar to incrementally increasing the input gain on an
overdrive guitar pedal [126]. Figure @ highlights another benefit of this technique: the pin
pulse method is so effective that numerous frequencies can squeezed into the same signal;
simply apply the logical OR operation to any new waveform onto the existing composite.

As a general rule, the more pulse ‘channels’; the thinner the pulse widths must be before
distortion; with every additional signal, the chance of a peak—to—peak interaction is ever
more likely. Note, this technique does necessitate high sample rates and, the higher the
sample rate, the thinner the pulses can be. This means that the chances of a peak interaction
event is increasingly reduced. Of course, there is a practical upper limit on this as, discussed

previously, as pulse widths decrease, the perceptual volume also decreases.

Nyquist

10

108 =

Frequency (Hz)

(1 RSNt A GRS I A

Figure 14: A spectrogram view of five 1-bit waveforms combined using PPM and widened from 0% to
100% duty cycle. The chord gradually becomes increasingly distorted as it decays. Interestingly, the example
has some noticeable periodic interference, known as beating, intermittently boosting the root of the chord
(B+15¢). This beating is more severe towards the end of the spectrogram, where there is oscillation between
‘silence’ (the voices at this point are at 100% duty cycle) and sound. The visualization was created using
Image-Line’s Edison audio editor, and the example was generated at 64100Hz by the 1-bit-generator.c
program. See https://doi.org/10.5258/S0TON/D1387 for an audio example.

To implement PPM in software, for each sample, one must execute a bitwise OR operation
(the ‘1’ character in C) on all software outputs, then update the hardware output with the

resultant value. Rather than updating the hardware output directly, in order to combine

47Tt should be noted that, if the waveform was inverted so that 0 was 1 and 1 was 0, Figure E would
reverse so that it became progressively more distorted. I assume in this article that 0 is off and 1 is on,
following general convention. There is no ‘chirality’ so to speak, the speaker may oscillate between any two
states and the theory would still hold. In the event of reversing the signal logic level, Figure E would sound
most consonant towards 100% and distorted approaching 0%.

48Because the relationship between notes is, musically, more important than their actual frequencies, I have
paid little attention to pitch standards. The reader may notice that all examples/pieces will be in different
keys and tunings. To guarantee a piece is at the 440Hz standard requires either clocking the routine against a
timer, or carefully calculating frequencies — which is certainly practicable, however I personally have not put
too much weight on ensuring that it is correct.

https://doi.org/10.5258/SOTON/D1387

40 2 1-BIT THEORY

multiple channels, a virtual output must be created for each voice. These virtual outputs are
never directly sonified, but are combined; it the resultant which is applied to the hardware
output, creating the final waveform. Listing E demonstrates how this might be implemented
in C. Although two channels have been used in this example, there is, theoretically, no limit
to the amount of software channels that can be combined using PPM; one can continue
append additional outputs with the bitwise OR operation. With each successive channel,
one must employ progressively thinner widths to mitigate the increased probability of pulse

collisions.

// process woice #1
if (--pitch_counter_1 == 0)
pitch_counter_1 = frequency_1;

else if (pitch_counter_1 <= waveform_1)
software_output_1 = 1;

else if (pitch_counter_1 >= waveform_1)
software_output_1 = 0;

// process woice #2
if (--pitch_counter_2 == 0)
pitch_counter_2 = frequency_2;

else if (pitch_counter_2 <= waveform_2)
software_output_2 = 1;

else if (pitch_counter_2 >= waveform_2)
software_output_2 = 0;

// combine software outputs
hardware_output = software_output_1 | software_output_2;

Listing 3: A demonstration of PPM mixing in C pseudo-code. Although all channels have been addressed
individually in this example, the companion 1-bit-generator.c program (https://doi.org/10.5258/
SOTON/D1387) employs a for loop to iterate through software channels and update outputs. This makes

it easier to add or remove additional channels without requiring additional code and variables. When
transcribing this example for other platforms (for example, ZX Spectrum machine code), one will probably
find the paradigm used above (explicit declaration of each channel’s processing code) more efficacious.

Whilst PPM is an effective method of crowding numerous frequencies into a single, 1-bit
waveform, the strict requirements of the technique sacrifices timbral variation for polyphony.
As shown previously, square waves — perceptually the loudest width possible with the
‘richest’” bass component — cannot be employed without heavy distortion; a square wave will
interfere for 50% of its signal high duration. When juxtaposed with analogue combinations
of square waves, music made via PPM will sound contrastingly thinner, quieter and lacking
timbral ‘substance’. One potential, beneficial consequence of this concession is enforced
aesthetic cohesion. The technique’s demand for narrow duty cycles means that the dilemma
presented in Figure (PWM between larger widths is perceived less as a change in
volume, but instead a change in timbre) is circumvented by the process; the PPM 1-bit

routine sounds like a single, cohesive instrument.

The second method of achieving polyphony does not suffer from a narrow timbral palette;
this method is known to the 1-bit community as the pulse interleaving method (PIM) [106].

One can imagine the implementation of this technique as, essentially, simultaneity by rapid

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

2.2 Sonic Fundamentals 41

arpeggiation. PIM operates on a fascinating premise: rather than mixing signals logically

to fit within amplitudinal limitation (as with PPM), the technique switches, or arpeggiates,
between voices at very high frequencies, so that only one, monophonic waveform is expressed
at any moment in time. The rapidity of oscillation between channels needed to achieve
convincing polyphony is not particularly fast, however a problem arises as a result of quickly
moving between two states: toggling a waveform from high to low (or vice versa) creates a
click, or pulse. As with any pulse wave, because alternation between voices must happen at
constant periodicity, this click produces a pulse train and, consequently, an audible, pitched
sonority at the rate of interchange. To disguise the additional, audible “parasite tone”, the
software mixing must happen either faster than human auditory perception, or higher than
the frequency response of the medium replicating the signal. This familiar requirement
suggests something intriguing: just as thin pulse widths, when bandlimited, become true
changes in amplitude, as long as frequencies beyond the parasite tone are removed, the union

can be considered perfect: true polyphony.

Audible Parasite Tone

Frequency (Hz)

2 16025 32050

Mixing Frequency (Hz)

Figure 15: A spectrogram view of two 1-bit waveforms gradually combined using the pulse interleaving
method. Pulses are mixed from 2Hz through to 32050Hz (Nyquist) to demonstrate how the parasite tone
is generated then pushed upwards, beyond audible frequencies. The mixing speed does not have to happen
at Nyquist, but it often will do so through implementation. Simply, with 1-bit music you will generally
want to ‘spit out’ samples as fast as practicable; if the switching is occurring at the maximum frequency
possible, there will be a change of output at every sample and, consequently, a waveform generated at the
Nyquist frequency. The visualization was created using Image-Line’s Edison audio editor, and the example
was generated at 64100Hz by the 1-bit-generator.c program https://doi.org/10.5258/SOTON/D1387

. See https://doi.org/10.5258/S0TON/D1387 for an audio example of the unison and
https://doi.org/10.5258/S0TON/D1387 for the isolated parasite tone (the waveform
generated by the mixing).

A bandlimited PIM waveform has a higher amplitudinal resolution than its carrier wave

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

42 2 1-BIT THEORY

but, rather than increasing volume when waveforms are merged, additional signals are
progressively, individually quieter. To explore this phenomenon, a similar thought experiment
can be applied to that mentioned previously when examining variability of volume. The
effect of bandlimiting, or more accurately in this scenario, low-passing, can be explained by
imagining how a speaker cone might move when a PIM signal is applied to it. A hypothetical
diaphragm with a maximum response time (moving from stationary to fully extended@)

of f—Hz, is unable to react instantaneously to changes in voltage faster than this response
time. If a signal’s frequency exceeds f (let us assume the transmitting function is square) the
diaphragm, after receiving a positive voltage, will move only a portion of its total distance
before the signal falls to zero and the cone sympathetically returns to rest. Therefore, if we
send two, concurrent 1-bit square waves to the speaker and oscillate between them faster
than f, the diaphragm is unable to complete a full extension. There is, to the speaker, no

parasite tone, instead we observe the following behaviour, shown in Table E

0 0 0
0 1 0.5
1 0 0.5
1 1 1

Table 1: A table showing the resultant, comparative perceived loudness of signals mixed via PIM. P; and P»
are 1-bit waveforms of arbitrary pulse width (though very thin duty cycles will lower the perceptual volume
of that voice, but not affect the ratio between the others) and the output values represents the mixed volume
level in response to different input states.

The signals P; and P5 are digital and can only exist in two states, 0 or 1. The output
position of the diaphragm is assigned 0 at rest and 1 at maximum extension. The diaphragm
will always attempt to act concordantly with the signal, however it can be ‘tricked’ into
generating a third state. This third position is an intermediate, caused by moving the
speaker cone faster than it can respond, leaving the diaphragm hovering at the average of the
two voltages. We can see from Figure @ that, when bandlimited in software, the behaviour
is identical to that of the thought experiment; a lé—bit signal emerges from ﬁltering@. The
benefit of performing this in software is that a frequency of arpeggiation can be arbitrarily
assigned as long as a low—pass filter at corresponding frequency is applied, completing the
union. It is important to remember that the thought experiment does not explain the most
common reason of bandlimiting in the real world: as many speakers will replicate signals
above the human, biological maximum, the frequency response of the ear is the only variable

that can must be mixed beyond to reliably ensure the parasite tone is removed.

The pulse interleaving method is not limited to two signals alone: depending on the
frequency (the rate of oscillation between all virtual 1-bit signals must exceed the
aforementioned f) more channels can be added with the trade-off that, with each channel,
each individual signal’s volume is ultimately quieter (and the computational demand
increases, making it harder to reach f). The total volume of each subsequent channel is a
subdivision of the maximum power equating to v = %, where v is the volume compared to the
maximum and c is the total number of channels. The ratio between elements can be altered,

however this will skew the relative loudness of outputs, as mixing priority will be assigned

49In either direction. 1-bit signals are conceptualized as DC offset, so that oscillations occur from
amplitude 0 to 1, where 1 is the maximum power possible in the system.
501%-bits representing three possible states.

2.2 Sonic Fundamentals 43

Figure 16: A (software) oscilloscope view of a PIM waveform generated at 64100Hz by the 1-bit
—-generator.c program (https://doi.org/10.5258/S0TON/D1387) and, below, the same waveform
downsampled (applied lowpass and resampled) to 44100Hz.

unequally. To achieve more complex ratios (not a simple %) requires higher sampling rates
where, rather than cycling equally between unique outputs, a singular channel is expressed

for more samples than another@.

For a complete description of PIM, we must explore the second, significantly faster, usage

of PWM. Using a pulse width modulated pulse train, it is possible to generate continuous
amplitudinal variation using a digital signal alone@. Pulse width modulation describes

the method by which a succession of pulses are deliveredE to regulate the voltage of a
signal. When this signal is applied to a speaker, or similar output device, it acts as if

it were receiving an analogue signala. Conceptually, it is not too far removed from the
previous 1-bit theory covered here, but requires faster rates of update to achieve: the
operable bandwidth is approximately ten times smaller than the switching frequency

[127]. The behavioral change from a digital to analogue signal can be described by the
signal’s root mean square amplitude [99]. The root mean square is the average power of the
waveform, proportional to the area under the waveform’s curve when transformed in this
way. Consequently, the emergent analogue signal is a product of the average value of the
waveform, when modulated on a fixed frequency, and appears, to the system receiving the
signal (this medium would be considered the ‘integrating’ mechanism), to be a true analogue
signal (if that signal responds the changes slower than the frequency of the carrier wave).
The pulse interleaving method can therefore be considered as a low resolution PWM. This is
much more computationally friendly to implement in software however, as the bit depth need
only be the desired number of voices. PIM employs each ‘bit’ of PWM resolution to convey

an individual 1-bit channel, capable of independent duty cycles.

There are two main approaches one might take to implement PIM in software. The first

of these methods is to simply update the hardware output directly (in a similar fashion to

51This can be a nuisance if clock cycles between updating outputs are unequal, for example the last
channel outputted in a loop might remain active for the remainder of the code making the perceptual volume
of this channel louder than the others. This can be avoided (or embraced) by careful CPU cycle management.

520r pulse density modulation (PDM) but, due to the relative similarity between the two approaches, this
investigation does not explore this method.

53 At certain frequencies.

54Do note, PWM is used for many applications other than audio (controlling motors, LED brightness,
telecommunications, etc.).

https://doi.org/10.5258/SOTON/D1387

44 2 1-BIT THEORY

listings ﬂ and E) but allow the mixing to be controlled by the program control flow. Listing
demonstrates how this might be achieved; the output is interleaved by the structure of
the program: after the first channel is calculated and its value written to the output, the
second is subsequently calculated and the current output is replaced with this new value.
The program then loops around to replace the second channel’s value with an updated value
from the first — and so on. The caveat to this approach is that the amount of time taken
to process the code between each output command must be identical to attain equivalent
time spent expressing each channel’s output value. If this is not achieved, the perceptual
volume of the channels will be unbalanceda. The second method is to manually control the
interleaving by using an incrementing variable to switch between software outputs, shown in
Listing E With this technique, the outputs are balanced by the fact that, each time the code

reaches an instruction to change the output, the channel to be expressed is switched.

// process wvoice #1
if (--pitch_counter_1 == 0)
pitch_counter_1 = frequency_1;

else if (pitch_counter_1 <= waveform_1)
output = 1;

else if (pitch_counter_1 >= waveform_1)
output = 0;

// process woice #2
if (--pitch_counter_2 == 0)
pitch_counter_2 = frequency_2;

else if (pitch_counter_2 <= waveform_2)
output = 1;

else if (pitch_counter_2 >= waveform_2)
output = 0;

Listing 4: A demonstration of PIM mixing in C pseudo-code, interleaved via the program control flow.
The interleaving occurs at the speed the program can process each command thus may cause inconsistent
comparative loudness between channels.

It should be added that I do not really consider high-rate PWM alone an aesthetic 1-

bit solution; I feel that it is distinct in that the goal of PWM as a technique is usually to
be imperceptible, existing only as the signal it is attempting to recreate. Although there
are examples of PWM samplers implemented in 1-bit audio routines (there are examples
of contemporary 1-bit routines which rely solely on this method, such as Utz’s stringks
engine [128]) these are always (technically) poor implementationsE, in that they produce
artefacts — the process is audible to the listener. Embracing a medium’s distinguishing
imperfections is part of the ethos of wider chipmusic practice, where platform authenticity
is contextually important to the artefact [52]. This may inform how the composer will wish
to design their software routine. The seeming process duality of PPM versus PIM is reliant

on two assumptions: firstly that the composer wishes to use polyphony at all (for example,

55We can cheat in the companion 1-bit-generator.c program. In this case, as samples are written
to a buffer (to eventually build a wave file), the time taken to execute code is meaningless as long as each
contiguous sample in the buffer represents a different channel’s amplitudinal state.

56 Although, personally, I find them far from timbrally poor — they are both musically interesting and
technically impressive!

2.2 Sonic Fundamentals 45

// process woice #1
if (--pitch_counter_1 == 0)
pitch_counter_1 = frequency_1;

else if(pitch_counter_1 <= waveform_1)
software_output_1 = 1;

else if(pitch_counter_1 >= waveform_1)
software_output_1 = 0;

// process woice #2
if (--pitch_counter_2 == 0)

pitch_counter_2 = frequency_2;

else if (pitch_counter_2 <= waveform_2)
software_output_2 = 1;

else if (pitch_counter_2 >= waveform_2)
software_output_2 = 0;

// switch software outputs

if (current_output == 0){
hardware_output = software_output_1;
++current_output;

}

else if (current_output == 1){
hardware_output = software_output_2;
current_output = O;

}

Listing 5: A demonstration of PIM mixing in C pseudo-code, interleaved via a switching variable. One
might also use software outputs and place hardware_output update commands throughout the code,
ensuring that the timing is at equal between each update — it is certainly a visually messy solution, but I
have found it to work rather well on embedded systems! The switching variable ensures that each output is
expressed for an equal amount of time, keeping loudness uniform across channels.

Rockman on the ZX Spectrum [[129] and the DOS version of The Secret Of Monkey Island
[130], both of which employ monophonic arpeggiation between ‘simultaneous’ voices to imply
polyphony), secondly that the composer is using embedded, or legacy, architectures (such as
the ZX Spectrum, or early IBM PC). The concessions and limitations described above are
considerations one must make when there is a technical restriction placed upon the music. If
the composer wishes to merely evoke 1-bit instrumental aesthetics, then one might opt for
the most idiosyncratic approach — or that which is most recognizably 1-bit. Brian Eno’s
observation that the signature imperfections of a medium become its defining characteristics,
is certainly apt in this situation [50]. I would personally argue that the instrumental 1-

bit idiolect, irrespective of chosen platform, is PPM. Although those 1-bit routines which
employ PIM are often imperfect in practice, when executed by a system capable of perfectly

executing commands at the correct frequency, PIM is indistinguishable from true polyphony.

There is certainly still room for innovation; contemporary 1-bit practice has had a
comparatively brief period time to develop and explore technique compared to other
instrumental models, such as the orchestra. 1-bit sonics were only commercially relevant for
perhaps a decade before relegation to obsolescence and relative obscurity. It seems a shame
to abandon what is a unique aesthetic environment with musically interesting instrumental

capabilities, presumably in the pursuit of increased realism. This said, contemporary routines

46 2 1-BIT THEORY

are still being developed and can be far more sophisticated than legacy implementations;

some boasting 15 concurrent voices and others sample playback [[131].

47

3 Implementation

3.1 The 1-Bit Sound Routine

The 1-bit palette is capable of communicating many of the chipmusic techniques typical

of the Nintendo Entertainment System, Game Boy and Commodore 6'4@ however, unlike
these systems, the limitations are not dictated by audio hardware, but by the software
implementation. 1-bit music is typically generated by the CPU alone, often requiring copious
amounts of calculation time. This is both the medium’s greatest weaknessa and greatest
strength, as the synthesis can be determined in software alone and dictated entirely by the

CcOMpOser-programimer.

I use the terminology “composer-programmer” to describe the individual who not only
creates music but also its software encapsulation, the sound routine@. A sound routine is

a program, function, or portion of executable code that generates audio, generally with a
focus on synthesising music. The term ‘routine’ is used synonymously with ‘software’ or
‘program’ due to demoscene and chipmusic nomenclature [[106, [137, 61]@. This expression
is derived from ‘subroutine’, probably owing to the fact that many of these programs were
created as smaller subroutines within a larger program [139]. This is an immensely exciting
medium for the musician; the key input of the composer-programmer in this framework is
their creative expression when designing routines for musical playback. The choices made

in the design of the routine dictate which musical possibilities are available in subsequent
compositions. There are multiple 1-bit routines for the ZX Spectrum that implement
identical concepts and synthesis techniques, yet each of these routines develop and expand
on different facets, making concessions on one feature for increased focus on another. For
example, Tim Follin’s early 3ch routine [135] forgoes accurate pitch replication and quantity
of channels for smaller filesizes, whereas Jan Deak’s ZX-7 engine implements eight software
channels with more accurate tunings, but makes concessions on RAM buffer space [140]. This
constant negotiation between driver features is a limitation of the trade-off between memory

and performance.

Completeness of musical representation is valued in a notation system. The more musically
flexible a routine/system becomes, the less succinct it becomes. What is left out of the
program is what gives the program its character. This section concerns itself with the
implementation of Section P and should provide the reader with a guide to the fundamentals
of writing 1-bit software routines, the rationale behind the primary routine utilised in the
project and a technical explanation of how the research’s music is both sequenced and

synthesised.

5TFor an audio example, I direct the reader to the musical language of the following ZX Spectrum pieces:
raphaelgoulart’s surprisingly NOT four twenty [132] and Brink’s M’Lady [133], both of which follow the
classic programmable sound generator (PSG) paradigm. In short, this is characterized by instrumental figures
such as super-fast arpeggios and the treatment of single oscillators as individual instruments [g].

580n slower systems 1-bit routines may leave too little processing time for other tasks, such as, in the case
of the ZX Spectrum, gameplay.

59There are many examples of this individual in 1-bit, and chipmusic, history. To name a just few: David
Warhol [134], Tim Follin [135] and Dave Wise [136].

60 Alternatively, driver is sometimes used — associated with music generation routines; commonly referring
to event sequencing programs written to interface with outboard PSGs [[138, [134].

48 3 IMPLEMENTATION

To better depict the relationship between the sound routine, the platform and the music
data, one might draw parallels with other, more conventional, instrumental practices. On
many legacy systems, one can consider the sound routine to be the performer. Computers,
such as the Commodore 64, have dedicated audio generation hardware that receives
instructions from the CPU [[108] and, subsequently, creates sound. Just as a guitar cannot
spontaneously pluck its own strings, this outboard hardware requires input to function.
Similarly to the guitar, the audio hardware has a potential dictated by its performer. One
can design a sound routine with nuanced and expansive techniques, or one can design
something relatively simple; the instrument is only as capable as its instrumentalist. The
data read by the sound routine would be analogous to the performer’s scorea and any
generative functions within the routineE might be considered extemporaneous material.
Where the audio hardware and CPU sit within the same unit (as opposed to a computer
controlling an outboard synthesiser, where the computer holds the music data and routine
and the synthesiser provides the audio generation), an analogy might be of the entire system
as a ‘venue’. The 1-bit routines written for platforms such as the ZX Spectrum [131], and
the microcontrollers of this project, are interesting in that the sound routines often form
both performer and instrument. The routine has a function to generate audio as well as
read music data to control this instrument. This type of routine is perhaps more similar to

a vocalist, where the performer is their own instrument.

Before we consider potential software implementations (and ultimately compositional
strategies), it is useful to examine exactly how 1-bit music (and indeed all music) is
ultimately constructed. Music can be imagined as a series of repetitions at different speeds:
a chord sequence may repeat every twenty seconds, an ostinato every two seconds, and

a beat every half-second. This extends ‘downwards’ (or faster) to the repetition of single
wave cycles. For example, the note A requires repetitions at four hundred and forty times a
second. This perspective is particularly useful when analysing software routines as it dictates
at what speeds different events must occur. For example, a system to repeat waveform events
must be created plus a further, additional system for note events. Due to the nature of a 1-
bit signal, the arrangement of amplitudinal events over time becomes a principle resource

for introducing sonic nuance in 1-bit music. The extent of this variance is dependent on the
temporal resolution, or sample rate, with lower sampling rates requiring radically different
treatment to higher rates. A deconstruction of temporal structures into discrete, time scales

of music, clearly demonstrates the function of this phenomenon.

In microsound [141], Curtis Roads divides the entire gamut of musical temporal spectra into
nine distinct ranges. Whilst comprehensive, in respect to 1-bit music, only the macro, meso,

Sound-Object, micro and sample ranges are required:

e Macro: Generally measured in minutes and hours, the macro scale is the duration
of musical form. Unlike the temporal phylum beneath it, the macro is perceived
intellectually as an aggregate of meso structures, building familiar musical architectures
such as sonata, ternary and rondo forms. Macro structures are understood
retrospectively; whilst they may be obviously delineated by starting and ending cues,

the interior of the object is not usually recalled in a strict, linear organisation.

61For this project, this would be the compiled pMML bytecode.
62For example, those techniques described in Section .

3.1

The 1-Bit Sound Routine 49

Meso: The meso scale is the domain of melodic and harmonic interaction, known

to Wishart as the sequence [142]. It is characterised by phrasings and groupings of
Sound-Objects. These are the constituent parts of melodies, chord progressions, metric
patterns and harmonic movements. Events at this level last between several seconds to
a few minutes and define a piece’s musical syntax: the grammar that allows coherency

at the macro level.

Sound-Object: The length of an individual note, the “elementary unit” of composition.
These are the discrete ‘words’, lasting a few tenths of a second to several seconds, that
make up the musical lexicon at the meso domain. A Sound-Object is the smallest sonic
entity whose order can be clearly differentiated. Repetition of events at the extreme
edge of this range perceptually blur into a continuous tone. As with the higher order
categories, the Sound-Object is constructed of a series of amplitudinal oscillations at

the order below it.

Micro: This class spans the boundaries of the audio frequency range, responsible

for all sonic events recognised as a pitch. It is the domain at which a single pulse of

a rectangle wave exists, or the complete wave shape of a sine wave. Events at the
micro speed do not have to be a repetition of regular tones, like the 1-bit square

wave. As Roads remarks, events can be unpitched, percussive or “bursts of infrasonic
flutterings”. Speeds here range from to hundreds of milliseconds through to hundreds of
microseconds in length. Streams of events become ‘visceral’ tones with texture rather
than rhythm. This is the scale at which PPM is mixed.

Sample: This is temporal grid to which the smallest events in digital music are
quantised. This sub-micro time scale is measured in microseconds and is defined as

the region where separate samples (an amplitudinal position at a fixed point in time)
are expressed. In computational systems, this is the speed at which each point on

the waveform’s Y axis requires updating to generate an audible signal. For individual
events, whilst still perceptible (a rapid change in amplitude will be perceived as a
click), temporality becomes confused. The sample scale is the most fundamental level
of 1-bit music (and any digital musical) and approaches the maximum obtainable speed

for many legacy computers and contemporary microcontroller architectures.

The range of possible sample rates dictate the type of synthesis possible: grids with
lower resolutions form the basis of aesthetic 1-bit music, the subcategory of chipmusic,
whereas higher rates allow for 1-bit DSP techniques such as delta sigma modulation
and pulse density modulation [143]. As mentioned in Section , whilst this is not
entirely beyond the scope of 1-bit music as sampling rates for PDM can drop within
the micro range (and the processors/microcontrollers usually generating this music have
the ability to push into the sample domain, even under load). Low sample rates when
playing back sampled audio results in low-passed, ‘muddy’ waveforms however so, for 1-
bit music on less capable platforms, a slower, oscillator-driven approach is usually more
palatable@.

These categories can be subdivided again using Akesson’s model of ‘stacked’ frequency

structures [62]. Whilst this model is implicit in Roads’ time scales, Roads does not

63Though it can sound pretty gnarly and works very well for percussion. Used in mmml.c, see Section @

50 3 IMPLEMENTATION

specifically make reference to the sonic repetitions at these scales. Akesson divides music
into four ranges of frequency perception, or frequency domains: Structural, Rhythmic, Effect
and Pitch. These are demarcated by their repetitions per second, rather than purely their
durations. Each structure can be seen as an emergent property of the supporting, higher
frequency structure below it. Akesson’s model is particularly useful (and appropriate to the
investigation) as it has been conceptualised to explain the rationale behind programmed

music in the chipmusic paradigm.

e Cyclic events at the Structural level take place at the meso scale, from roughly 0.1Hz to

0.001Hz, corresponding with repeating phrases of musical materials.

e The Rhythmic domain occurs at 10Hz to 0.1Hz; event repetitions at this speed are

perceived as rhythms and sit in Roads’ Sound-Object bracket.

e The Effect domain is a new event category, sitting between the Sound-Object and
micro domain. Repetitions here, at around 100Hz to 10Hz, generate many popular
chipmusic effects such as super-fast arpeggiation and PWM ‘sweeps’. Some analogues
in wider music practice are the speed of a low frequency oscillator (LFO) or a textural
modulation. This periodicity is important in Akesson’s model as it was historically
the maximum speed some early computational systems, relying on hardware function

generators, could manipulate their waveforms.

e Finally, the Pitch domain is equivalent to the micro scale. Repetitions here occur at
20kHz to 100Hz and result in ‘pitched’ sounds.@

In essence, the 1-bit sound routine can be fundamentally seen as a pragmatic application of
this framework. To demonstrate this, the anatomy of a playback routine is generally split

into four distinct sections and might be constructed as follows:
o Navigating blocks of musical data at the Structural Domain.
o Updating pitches at the Rhythmic Domain.
o Timbral and parametric manipulation (vibrato, sweeping pitch) at the effect range.

o Function generator at the frequency domain (mixing waveforms via PPM is here, one of
the benefits over PIM).

e Mixing waveforms via PIM, or implementing PDM, at the sample domain.

Whether pitches and structures are read from sequenced data, or defined generatively, all
routines will perform operations somewhere within these bands. 1-Bit Symphony composer
Tristan Perich gives a concise description of this process when interviewed about his

programming methodology [[144]:

First you have the code that generates a tone. Then you set up another piece of code

that can change that tone every once in a while.

640ne can hear an example of a pulse wave modulated through all these time domains here: https://doi.
org/10.5258/S0TON/D1387

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

3.1 The 1-Bit Sound Routine 51

Tautologically, the most fundamental (and integral) element in an audio routine is the audio.
On platforms that rely on 1-bit synthesis (for example, the ZX Spectrum), this is produced
by toggling an output pin to apply pulses to a diaphragm [[7], as outlined in Section @ To

produce a tone, all beeper routines will have to perform the following in software:
e Set a desired frequency.
e Set a timer.

e Check to see if the timer is equal to a proportion of the period equal to the desired

duty cycle.
e Change a pin’s output state (update the waveform).

Obviously, the above can be manipulated and interpreted in a variety of Ways@, but all
remain semantically congruent. As periodicity and regularity is required to create frequency
[83] there must exist an entity to regulate consistent intervals between amplitudinal events,
otherwise, as previously mentioned, irregular intervals will result in unpitched sonoritieSE.
This counter can be a custom implementation in software, or compared against a hardware
timer (‘clocked’ [145])@. The square.c program (Listing E) generates a single square wave,

demonstrating perhaps the most elementary 1-bit tone generator and its composition:

#include <avr/io.h>
#define DELAY 12

int main(void)

{
DDRB = 0b00000001; // Set PBO to output

uint8_t pitch_counter = O,
frequency 255;

while (1)
{

if (pitch_counter-- == 0)
{

pitch_counter = frequency;
PORTB "= 1;
}

for(uint8_t i = 0; i < DELAY; i++)
asm ()

}

Listing 6: Simple AVR C square wave tone generator (square.c: https://doi.org/10.5258/S0TON/D1387).

Here we can see a scripted version of the aforementioned list of basic operations required
for tone generation. The desired frequency can be set with the frequency variable. The

timer variable pitch_counter is regulated somewhat with the delay function, but decrements

651t gets a bit weird, see Section Q

66Which can be exploited to musical effect; unpitched sonorities work brilliantly when employed as
percussive instruments.

67 As seen in Alex ‘Shiruw’ Semenov’s Octode port to the Arduino platform where, from lines 108 - 118
(sample rate is dictated by timer interrupts [146]) OCR2A sets the frequency.

https://doi.org/10.5258/SOTON/D1387

52 3 IMPLEMENTATION

continuously within the main loop of the program@, checking if zero at each evocation.
When this is valid, it is set to the value of frequency to be compared against 0 indefinitely.
This provides regularity and, when the if condition is true, I/O port logic level (beget
voltage, beget amplitude) can be alternated to create frequency. As long as frequency is
not varied at the sampling rate, the equal intervals between pin XOR operations (line 42)

produces a pulse wave of equal high and low durations: a square wave.

1-bit music itself provides a striking platform to demonstrate the fundamental operations of
a 1-bit routine. When viewed as amplitudinal events of different temporal successions, 1-bit
music can be considered somewhat fractal in nature. For example, individual notes become
slow oscillations modulating repetitions of wave cycles at higher frequencies. Figure @ is a
visual representation of this interpretation built using Akesson’s model of musical temporal
ranges. The topmost waveform one would experience as a percussive pattern — a gate that,
when on, allows waveform activity on or off; the second waveform is perceived as a timbral
effect, aurally akin to ‘growling’ on a wind instrument; and the third waveform will be heard

as a tone (essentially, ring modulation).

Rhythmic Domain ’
Effect Domain }ill!"'l }i.' "lli}'.

Frequency Domain

Figure 17: An illustration of temporal orders as individual pulse waves, modulating lower order waves.
Functionally, these waveforms can be seen as mixed via a logical AND (&) operator. The duty cycle is 50%
to clearly demonstrate the seemingly fractal properties of this arrangement. Not to scale. An audio example
of this image can be heard at https://doi.org/10.5258/S0TON/D1387,.

Resultant Waveform

The previous square.c program outlines the basic foundation to generating 1-bit music,
however the implicit application of this routine belies its potential to describe the foundation
of structural musical operations (rhythm, metre, timbre) in a 1-bit sonic environment.

One can consider further structural additions to perform these same operations but at
progressively slower time domains. The fractal.c program (Listing H) is an expansion of this

exemplar and a practical implementation of Figure @

The program implements the simple, timer-driven oscillator model nested at each of
Akesson’s time domains. The reader will notice the multiple appendages to the basic timer
function defined in square.c are identical, however each now toggles a unique, enumerated
‘virtual’, or ‘software’, output rather than the I/O port directly. One might consider, at this
point, the numerous output variables to be conceptually polyphonic; every output keeps track
of a unique logic level. This is collapsed in the following, where each output is collectively
applied as a bitwise mask to the previous: PORTB = outputl & output2 & output3 & output4;.
The AND operator here extracts a subset of the bits in the state.

68Decrementing is always more efficient than incrementing on the AVR platform. [[147]

https://doi.org/10.5258/SOTON/D1387

3.1 The 1-Bit Sound Routine

#include <avr/io.h>

#define FREQUENCY 150
#define EFFECT 8
#define RHYTHMIC 1
#define STRUCTURAL 4

int main(void)

{
DDRB = 0b00000001;

uint8_t outputl =
output2 =
output3 =
outputéd =
pitch_counter =
effect_counter =
rhythmic_counter =
structural_counter

O OO O OO OO

while (1)
{

PORTB = outputl & output2 & output3 & outputé;

if (pitch_counter-- == 0)
{
pitch_counter = FREQUENCY;
outputl "= 1;
if (effect_counter-- == 0)
{
effect_counter = EFFECT;
output2 ~= 1;
if (rhythmic_counter-- == 0)
{

rhythmic_counter = RHYTHMIC;
output3 ~= 1;

if (structural_counter-- == 0)

{
structural_counter = STRUCTURAL;
output4 = 1;

}

Listing 7: Recursive square wave generator (fractal.c: https://doi.org/10.5258/S0TON/D1387).

https://doi.org/10.5258/SOTON/D1387

o4 3 IMPLEMENTATION

As every oscillator is embedded iteratively within a series of conditional branches, the
frequency of each oscillator gets progressively slower the deeper within the chain it resides.
This is further regulated by a predefined variable, in this case named after the temporal
domain it has been determined to operate at. The program does not necessarily have to be
structured in this way, however it is advantageous for optimising speed of code execution.
Rather than having to test multiple conditions frequently, operations that occur on a

much slower scale can be invoked only when a single condition is true. The result could be
considered a ‘micro-composition’: a growling tone repeats three times before pausing at equal
durations@.

This example is important as it succinctly demonstrates the topography of most routines,
their temporal arrangements and also forms the basis of all musical code I have written

thus far. It is noteworthy that these operations are not an artefact of technical requirement
but a correspondent to psychoacoustics; they are, from the microcontroller’s perspective,
entirely arbitrary. Transposing this program through time domains would not change the
relationships of resultant signals, nor the program’s operation, but would dramatically affect
the result to the human listener. Therefore, one might consider this paradigm to be ‘clocked’
two-dimensionally; dependent on both the speed of hardware and the persistence of human

perception.

69See https://doi.org/10.5258/S0TON/D1387

https://doi.org/10.5258/SOTON/D1387

3.2 Micro Music Macro Language 59

3.2 Micro Music Macro Language

3.2.1 Why Music Macro Language?

Micro Music Macro Language (MMML or, preferably, tMML, when the text-mode allows

it) is a musical description language, and reinterpretation of Music Macro Language (MML)
and drives the primary 1-bit sound routine (mmml.c) for this project@. The core, raison
d’étre, of pMML however, is that it is (as the name suggests) primarily intended for use with
microcontrollersﬁ. This particular manifestation is a distillation of numerous approaches

to low memory composition and a methodical ‘coagulation’ of strategies, fragments from

previous routines and experimentation.

MML is a music scripting language designed by SHARP Corporation in 1978 [149] often
embedded as a command in corporation, or platform specific, BASIC idiolects[[150]. The
entry for MML in the book Beyond MIDI, a compilation of languages and codes to represent
music digitally, dates MML to the early 1980s with its first iteration included in Yamaha
consumer computers [150]. This conflict may be symptomatic of the ad-hoc nature of MML;
instances of the earliest MML instructions in SHARP machines were referred to as simply
MUSIC [151] or MEDLY [152] commands, obfuscating the chronology.

MML is, principally, a method of sequencing higher-abstraction musical events, such as
pitch, rhythm and form, rather than concerning itself with synthesis and I/O operations.
MML is patently and centrally musical; that is it inherits its symbology from traditional
musical models, chiefly music notation. Interestingly, MML is remarkably similar to another
descriptive notation by Chris Walshaw called ABC or ABC Notation [153]. ABC is inspired
by the written traditions of Irish folk music and devised entirely independently of MML
[154]E. Although syntatically comparable, the semantics of the naming convention are
indicative of intention and, consequently, function. Simply, Music Macro Language is a
language, ABC Notation is a notation; ABC is designed to describe; MML is designed to

instruct.

Historically, MML was more commonly used by Japanese composers than their Western
contemporaries [[155, 156, 150], further evidenced by the Japanese origins of popular MML
software tools, such as the 3ML editor [157] and the PPMCK MML compiler for the
Nintendo Entertainment System [158]. Presumably, the endemicity is due to the prevalence
of SHARP [159] and NEC home computer systems in Japanese markets [[150] (the NEC line
of products being one of the best selling and numerous computers in 1980s Japan [151]). The
language has, however, seen recent popularity in the Western chipmusic scene [160, 161, 162]
likely due to the availability of accessible MML compilers for the NES and other legacy

video game hardware [163]; hardware which reached a global market. Much of the material
concerning MML is unfortunately in Japanese, inaccessible to a monoglot such as myself, and

I, like many other English speakers [158, 155] have relied on the few translated documents

"OTf one wishes, they can see a prototype of this approach in the companion spooky.c program (https:
//doi.org/10.5258/S0TON/D1387).

71 And, by extension, microcomputers. This term has, however, been disfavoured in computing
nomenclature for personal computer (PC) [14§]. Therefore using ‘micro’ to refer to a PC, implies that the
speaker is referring to machines of the 80s and early 90s. This inference is, coincidentally, well suited to
pwMML’s intended purpose; see Cross-Platform Implementations.

72Perhaps an example of ‘evolutionary convergence’ in software development?

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

56 3 IMPLEMENTATION

available in ageing Internet repositoriesﬁ. That said, the language has no authoritative texts,
nor any form of standardisation. Implementations of MML rely on common practice alone;
applications potentially presenting variations in syntax, commands and features. Despite the
confusion, this has positive consequences: the language can evolve to suit the needs of the
composer or, more commonly, the platform. Micro Music Macro Language is yet another of
these MML pidgin dialects.

During the development of uMML I have borrowed and synthesised ideas from a few key
sources: the aforementioned PPMCK [158], the MML entry by Matsushima in Beyond

MIDI [150] and the execution in the MML workstation, 3ML [157]@. The power of MML,
and thus pMML, comes from its interpreted nature. Unlike formats such as MIDI, which
requiresE explicit declaration of any command, valid MML can exist as a single note name
assuming durations, timbres and octaves from previous declarations or default parameters.
MML is in no way dependent on any systems that generate audio (and could be considered
a software scheduler) however, pragmatically, the language is defined by the instruments it is
intended to control. In the case of Micro Music Macro Language, this is a set of 1-bit, sonic

operations.

Ultimately, I have chosen to closely follow the MML paradigm as I have identified it to be a
more efficient solution to storing musical data than the typical pattern/chain structure often
found in software sequencers and routines [165, 166, 167]. Formats such as MOD expect four
bytes per note [L66], whereas pMML is less rigid, requiring only one byte per instruction

for the most frequently used commands. This means that identical data does not have to

be declared repeatedly, such as ‘volume’E or current octave and, where these values are
changed every note, is no larger than verbose declarations. I had initially taken the popular
pattern/chain approach in a variety of early test routines, all of which were unsuccessful,
either more limited or much larger in size than pMML. The spooky.c program, although less
than one kilobyte in size, is more inefficient and less flexible than mmml . cﬁ. Pattern lengths
are fixed, requiring declaration of data per musemeE which, in this case, would mean as
many bytes as there are semiquavers. The greatest strength of MML in this environment is
its flexibility. Whereas the spooky.c (and similar) routines Ed Jimit the user to a particular
style of composition, this approach is far more adaptable as there are comparatively fewer
limits to note duration, pulse width and, especially, metre. Routines like this that rely on
fixed array lengths allow ease of computation (as the program knows when to end a passage
and how to store them), but limit all music made within that program to a fixed event
length. If the user wanted 14 instead of 16 musical events per bar, two bytes would go wasted
per pattern. Over multiple channels and numerous patterns, one can quick extrapolate

and calculate how much memory this approach might consume. The data organization

73Most of the seminal English material on MML has been referenced in this paragraph; it is exceedingly
sparse when compared to MIDI, for example.

74This influence technically extends to Mabinogi [[164], the 2004, massively multiplayer online role-playing
game. The 3ML MML integrated development environment (IDE) has been designed to allow users to create
custom music for the game’s simple implementation of MML. I have not played Mabinogi, so I am not sure
how the language is expressed in-game.

75This could be construed as a false comparison; MIDI is not a language, but a data format. Even so, if
one were to write MIDI by hand, one would find that it is not fundamentally different in nature.

76In our case, volume is pulse width. See .

77See https://doi.org/10.5258/S0TON/D1387 for spooky.c program.

78The smallest declarable unit of any musical framework. See for a detailed definition.

79See: https://doi.org/10.5258/S0TON/D1387.

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

3.2 Micro Music Macro Language 57

methodology implemented here could be likened to the hypertracker[67] framework, allowing
for less literal playback of musical events and more structural nuance. Material can be looped
at any point in the sequence as metre is dependant on the user’s compositional language
entirely and can differ between channels. Essentially, parameters are waiting to be told what
they should do, rather than expecting to be told at every event. Consequently variables, such

as volume, can be set once and left many note events before being defined again.

58 3 IMPLEMENTATION

3.2.2 The utMML AVR Implementation

The uMML adaptation is born out of a personal love for the musicality, simplicity and
practicality of MML and its surprising efficiency when applied to low memory composition;
especially when comparing MML (and, by extension, uMML) to other file formats.
Additionally, due to the human readability of the source code (the syntax is similar to
traditional notation) and abstraction from the hardware, MML seems a very convenient way

to get others involved in the project.

Consider the following section as a debriefing on how data is processed and expressed by
the mmml.c program@, with examination of the rationale behind some of the more arbitrary
design choices. Developing a 1-bit routine is an imaginative endeavour; although there are
restrictions on what is both possible and practical, many, very musical, choices are left solely
to the programmer’s discretion: the number of software channels, the method of polyphony,
the level of control over pulse widths, the temporal resolution (or museme, see @) to name
just a few. These decisions affect the total possible compositions in any given routine: if one
designs a routine to be particularly individualistic, its products will sound of the same ilk,

if one designs a routine to accommodate a diverse, broad range of approaches, the code may
bloat with increased use-cases and sacrifice efficiency. This ‘tug-of-war’ between elements is
what makes the 1-bit routine as expressive as the music it produces — the discussion as to
whether different DAWs affect the composer’s process is trivial in comparison! Largely, it is

in the arbitrary that we can discern the most creative meaning.

This section is important in documenting how one might approach programming a routine,
by analysing each decision that has been made in the creation of mmml.c. Should the reader
wish to build their own I remind them that, as long as the basics outlined in Section @ form
the foundation of their approach, anything mentioned in Section M and is eminently
possible (and more). It cannot be emphasised enough that the composition process begins
here. Whilst anyone may compose using existing 1-bit routines, to some extent, any resultant
artefacts can be considered collaboration between programmer and composer. In summary,
the choices I have made at this stage of the project dramatically affect the resulting artistic

outcomes.

The mmml.c program is a four channel routine: three channels of melodic, 1-bit pulse waves
and a simple, percussive PWM sampler. Each channel is labelled A-D respectively and all
are mixed via the pulse interleaving method. The composer has the choice before compiling
to replace the sampler (channel D) with a percussive noise generator, which (currently)

cannot be dynamically toggled in software.

There are eight pulse waves available: 50%, 25%, 12.5%, 6.25%, 3.125%, 1.5625%, 0.78125%
and 0.390625%. These have been selected due to both simplicity of implementation (the
waveform peak is defined by enumerating the frequency, divided by powers of two: waveform
= frequency >> n;) and because they are the most dissimilar timbrally. As mentioned in
Section , the spectral image can be described by m = 1#’ where pw is the given pulse

width (expressed as a percentage) and every nmth harmonic (n = 1...k) will be missed.

80Microcontroller code is available here: https://doi.org/10.5258/S0TON/D1387, DOS port available here:
https://doi.org/10.5258/S0TON/D1387 and GCC wave builder available here: https://doi.org/10.5258/
SOTON/D1387.

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

3.2 Micro Music Macro Language 59

It presents the composer with the ability to perceptually vary volume as well as timbre.
The small number of duty cycles is also related to the datatype instructing the duty cycle
command (explained later on).

With this routine I have attempted to maximise stylistic flexibility as to allow multiple,
disparate compositional methodologies to be executed per microcontroller. This said, the four
channel approach is biased to a set of particular instrumental techniques, reminiscent of the
NES [107] (which I find most compelling). Whilst more channels are certainly possible, this
will be at an increasing cost: further chunks of data must be allocated for each new channel,
so must additional oscillator code which will expand the base memory footprint and slow the
routine. This would be less costly if the routine employed PPM, however I opted for PIM

so that the maximum range of timbres could be utilised. The inclusion of a PWM sample
channel (or percussive noise generator) is certainly a large down-payment of both memory
(samples must be stored in program memory) and computational time@, but drum writing is
typically dependent on repetition@ (or at least, reliance on repetition is not as noticeable or
detrimental to the composition as it might be melodically [[168]) so that, when composition

begins, the likelihood is that it will not expand as rapidly as melodic channels.

The basic operation is outlined in Figure @ There are two distinct sections: synthesis and
sequencing. The synthesis portion of code calculates four output samples before checking if
the ‘tick’ counter has reached zero. In this context, a tick (terminology borrowed from MIDI)
is considered to be the smallest unit of musical time, or the museme (see @) Perched at the
extremes of the Rhythmic Domain, a tick can last anywhere between 16320 to 64 samples
depending on the chosen tempoE. In pMML, this is considered a 128th note which is the
smallest, directly addressable duration. At very low tempi (equivalent to a very high BPM,
tempi in pMML is faster at lower values of t) a tick could easily migrate away from the

Rhythmic Domain completely, even into the Pitch Domain@.

The decision to set the minimal duration of accessible time to 128th notes influences which
type of compositional methodologies can, straightforwardly, be practised via the system. The
routine was not chiefly designed to modulate notes on the sub-Effect, Frequency or Sample
Domain scales. Although it is certainly possible, and this type of use-case was considered
when building the routine — it requires an out-of-paradigm approach@. When this is
considered, in tandem with the fact that notes must complete their specified duration before
the respective channel can be manipulated, the goal of the routine becomes clear, and thus
the intentions of the composerE. The routine is designed to compose from the ‘top-down’,
that is, abstract away the waveform generation (delegating as much of Frequency and Effect

Domain event processing as feasible to software) and orchestrate musical events from the

81PWM sampler code is not as efficient to implement as tone generation code — at least, I have not found
a solution that can be expressed as efficiently.

82Discussed further in Section .

83Calculated by logically bit-shifting left (little-endian) an 8-bit value by 4, as per line 327: tick_speed =

buffer3 << 4; (the four being a fixed value chosen to make best use of the 8-bit range), multiplied by the

number of samples generated in the synthesis loop (one per channel).

84 ower tempi translate to higher BPMs due to the increased proximity of smaller values to zero, thus
resetting at a higher rate when decremented.

85For example, one might decrease the tempo variable so that a tick occurs at the Frequency Domain.
This transforms MML notes commands so that durations might be doubled, trebled, or otherwise increased
in value, granting access to 256th notes. 512th notes and so on. This is addressed under the ‘Colour Within
The Lines’ heading, found in Section E

86 Me.

60

3 IMPLEMENTATION

calculate and

output four,
interleaved

samples

has a single
tick
elapsed?

update
channel
parameters

have all

channels
been

processed?

Sequencing

Figure 18: A flow diagram of the mmml.c program’s basic structure. The labelled areas demarcate at
which temporal resolution the enclosed operations occur: the synthesis is at the frequency domain and the
sequencing area is at the very edge of the Rhythmic Domain. The routine is clocked by whatever method is
best for the platform. To make the most of the microcontroller’s abilities, mmml . ¢ requires the entire SMHz
and is running as fast as the microcontroller - no clocking required!

Rhythmic Domain. There is no way to sequence sub-Rhythmic, timbral evolution without

‘cutting’ notes into command-value pairings and inserting a timbre command in-between (e.g.

dividing a crotchet into semiquavers and inserting commands between each respectively).

The compiled bytecode (read from the musicdata.h file — generated by the pMML

compiler@) is largely structured as follows:

BITS
FUNC

[0000]
[COMMAND]

[0000]
[VALUE]

Each byte is split into two ‘nibbles’: four bit values with a possible range of 0-16. Each

nibble requires a second, defining the value of the command. This is not entirely abstracted

from in the human readable language, but it is key to understanding why some variables are

limited to a maximum of 16 states. The language is structured so that the most frequent

commands required are represented by the smallest data type interpreted by mmml.c. In a few

cases, this structure is appended with an additional byte, as below:

87See: https://doi.org/10.5258/S0TON/D1387 for GCC/microcontroller version and https://doi.org/10.
5258/S0TON/D1387 for DOS version.

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

3.2 Micro Music Macro Language 61

BYTE __BYTE__

I [I I
BITS : [0000] [0000] [00000000]
FUNC : [COMMAND] [IDENTIFIER] [VALUE]

This behaviour is required by the Function command (see Table E), where there is always
a trailing byte (technically a two-byte value). Where higher precision is required, the
nibble datatype, capable of representing numbers from 0 - 15, is not sufficient. Thus the
Function command uses the structure of a general command as a generic ‘flag’, capable of
specifying sixteen additional functions and indicating whether the next byte in data should

be interpreted as a new command, or an extension of the previous.

There are four main chunks of data for each channel (a sequence of commands dictating
how each individual channel should behave, see Table E), plus an additional block of data
for each macro (channel agnostic sequences, referable in a channel’s ‘main chunk’ of data).
These are stored contiguously in a single, one-dimensional unsigned char array called data.
The structure of this array is stored in a companion, unsigned int array called data_index
which, as the name suggests, holds an index of where each chunk of data begins. The first
four chunks are always channels A, B, C and D respectively, then macros 1, 2, 3... etc. It
is unhelpful to imagine a specific maximum length of events for individual channels, it is
dependent on the global size of all channels and macros combined, where any data beyond

65535 cannot be indexed (due to limitations of the declared array datatype).

| pMML | BYTECODE | COMMAND | | pMML | BYTECODE | COMMAND |

| r | 0000 | rest I | g | 1000 | note - g |

| ¢ | 0001 | note - ¢ | | g+ | 1001 | note - g# |

| c+ | 0010 | note - c# | | a | 1010 | note - a

| d | 0011 | note - d | | a+ | 1011 | note - a# |

| d+ | 0100 | note - d# | | b | 1100 | note - b |

| e | o101 | note - e | | o0,<,> | 1101 | octave |

| £ | 0110 | note - f | | v | 1110 | volume |

| £+ | 0111 | note - f# | | [,],m,t,@ | 1111 | function | ===
___ [
__ [
| pMML | BYTECODE | READS NEXT BYTE? | COMMAND | €==---mmmmm -
| [| 0000 | yes | loop start |

|] | 0001 | yes | loop end |

| m | 0010 | yes | macro |

| t | 0011 | yes | tempo |

| | .. | n/a | 0100 - 1110 unused |

| @ | 1111 | no | channel/macro end |

Table 2: A table listing all possible commands in the core music data read by the mmml . c routine, alongside
their evocation values. The ‘value’ field lists the first nibble in each byte; the program then expects a further
trailing number between 0 — 15. In the case of the function command (1111, or OxF), this trailing value must
be one of those listed in the lower table. mmml.c then requires an additional byte, allowing values from 0 —
255.

The language interpreted by the uMML compiler deviates slightly from the nibble structure

62 3 IMPLEMENTATION

required by the mmml.c program and syntactically follows that of traditional MML very
closely. As uMML is essentially a more legible version of the music data interpreted by mmml
.c, it is possibly more useful to describe the behaviour of the commands outlined in Table B
via the human readable analogue. The following is a crash course in pMML which may not
be entirely comprehensive, but is required to understand the notation system that will be

used hereon.

Pitch/Rest & Duration (0000 — 1100)

The most elementary building blocks of puMML is the note-duration paring. Notes are
declared by specifying the pitch name in lowercauseE (r for a rest) with a trailing duration.
Duration is notated as the denominator of the note subdivision in common time. For
example, the note C lasting a crotchet in duration is written as: c4. Durations can be
‘dotted’, in a fashion identical to classical notation, continuing the duration by half of the
note’s original length. This is simply appended to the end of the note-duration paring as
such: c4.@. Stating a duration is not required for every note; once a duration has been
declared, the compiler will assume that every subsequent note without a duration declaration
is the same in length as the most recent duration declared. Thus, the passage: c4 e g b g16

e is equivalent to: c4 e4 g4 b4 g16 e16 (the bytecode will be the same either way).

To sharpen a note, either # or + may be appended to the pitch. For example, one would
notate an F#major scale as per the following: f+ g+ a+ b c+ d+ e+ f+. Notice that the

enharmonic e+ is a valid note.E

Octave (1101)

Unlike notation systems such as MIDI (where note values exist on a range between 0 and
127 [169]), uMML does not encode information about octave in the pitch declaration; it is
specified separately. As changes in octave are not as frequent as changes in pitch within a
single octave, memory can be saved by using a smaller datatype (in this case, nibbles, as
there are only twelve possible pitches in MMML@) to represent pitches, and a further nibble
to represent octave. In both cases, each declaration is actually a byte in length: the first

nibble dictates function (is note, is octave, etc.) and the second the value (between 0 —

1503,

88 Currently the compiler is case sensitive, I might change this in future.

89 Currently, this is functionally identical to c4 c8; as there are no note-on attack transients (unless
created manually with v commands) the waveform will continue unbroken across both note events.

90 As of writing there is no compiler support for flattening a note, therefore one must substitute an
enharmonic equivalent. For example, Dbmajor must be instead notated as Cmajor: c+ d+ f f+ g+ a+ b
+ c+.

91This technically correct, but suggests immutable tuning to the twelve tone scale. Whilst I have chosen to
tune mmml. c to equal temperament, there is nothing preventing the reader from changing the tuning of each
of these notes to whatever they wish. The reader should be aware, however, that tuning systems with more
than twelve notes will require omissions as these cannot be addressed. Perhaps in a future version of uMML I
might include microtonal notes - it would certainly be interesting!

92To get the same operable range as MIDI, the current 4-bit datatype would require an additional three
bits — which sounds like a trivial addition (a whole byte is seemingly saved) but, due to the frequency of
notes to octave changes, the memory increase is significant. Using 4000ad.mmml as an example, there are
990 octave commands and 4452 note commands, sizing equally as many bytes. If three additional bits were
appended to each note command, 990 bytes of octave commands would be replaced by an additional 37.5% of
all note commands, or 1669 bytes total. This trade-off increases program size by approximately 68.58%. To
get the same efficiency (again, using note frequencies in 4000ad.mmml), octaves must consume less than an
additional 22.24% of all note commands, which could only be achieved by adding a single extra bit, but would
only represent just over two octaves of notes. This is yet a further example of how intended compositional

3.2 Micro Music Macro Language 63

Octaves behave in a fashion similar to note durations, in that they only need to be defined
once; the compiler (and routine) will assume that each subsequent note is of the same octave.
Octaves can be defined in three ways: by stating the octave literally, as in 03, where the
third octave is picked@ or relative, using < for a relative octave decrease, and > for a relative
octave increase. For instance, in the above example, the > command ‘jumps’ up one octave
to o4 from o3, which was the last octave defined. The compiler converts relative octave
commands to literal octave declarations, so no memory is lost or saved by using any of the
commands. The relative jumps are there to aid composition in pMML and make code more
legible. Octaves currently may only range from 1 — 5; higher octaves have not been included

as they will incur tuning errors (as mentioned below). Thus, the uMML analogue for:

[S e a——— s R R

is notated as:

03cd eg> <c8defgab>

When writing low-memory, low-speed music, there is a key problem when synthesising
(western) pitched waveforms: consistent, equal tunings. Because a counter (more specifically:
‘countdown timer’) must either be decremented (or incremented) until it reaches a

precise value, the resolution of this counter is important. To generate higher notes, faster
amplitudinal changes are required, consequently software parameters must be updated more
frequently. The higher the frequency of software events, the smaller the number the timer
must count to. The Western twelve-tone system has some particularly specific relationships
between notes that require a high precision timer to accurately generate. As calculations
with large numbers is computationally intensive on slower systems with 8-bit architectures,
high fidelity timers will generate lower notes. Larger temporal resolutions require more
possible states per second. To get these notes into an operable range, smaller numbers and
data types must be employed; the Attiny simply cannot decrement a number from 60000 to
0 fast enough at 4MHz to produce an audible frequency. Unfortunately, as a consequence

of this, notes will be progressively further ‘out of tune’ as the frequency increases - that is,
they will deviate from their equality on a logarithmic scale. Figure @ illustrates how, with
smaller integers, tunings become progressively divergent from their absolute values due to an

increasing loss of precision.

Of course, the above is certainly not platform agnostic and, depending on architecture,
different problems will be encountered and alternate concessions must be made, but these
issues are still relevant to the investigation as the spirit of the practice holds true whatever
the implementation. Ultimately this notion of implementational limitation is important as
technical compromises will influence subsequent compositions. As a consequence of Figure @

for example, higher notes have been avoided (less obvious in 8MHz routines, as calculations

practice will dictate the best way to construct a routine. It also has some silly compositional consequences,
where picking a key that is less likely to require octave changes will actually save space (e.g. one might wish
to consider how frequently a melody or figure moves over the octave divide to reduce the number of bytes
needed to represent it).

93 ,MML is entirely dependent on the system running mmml.c and is not really clocked to any specific
tunings. This means octaves and notes are always relative to whatever the operational frequency of the
routine is. At 8MHz, the frequency of the project’s music boxes, 03 is around middle C.

64 3 IMPLEMENTATION

40 T T ——— — — —
35 —e— Float

—e— Integer
30

25

Lol il

20

L1l

15

T
|

10 - y

Countdown Timer Value

Note Number

Figure 19: A comparison of integer and floating point data type precisions on twelve-tone, equal
temperament tunings as the frequency increases. The X axis labels indicate successive octaves starting from
an arbitrary pitch. Note that the countdown timer does not indicate any particular frequency; resultant
frequency is contingent on the rate of decrementation. Pitches were generated using the notefreq.c

program, which is powered by the equation: f = , where, b is the base note counter value (in this case,

b
a'v?
41), d is_the distance to the base counter value in semitones, f is the frequency of the note d semitones away

from b[, }

have more temporal headroom, and more pronounced in those at 4MHz, such as the spooky
.c routine) and, where high notes have been used, these are not sustained to minimise

perceptibility.

Volume (1110)

Volume is the last of the core functions — those that require only a byte to be declared
including the accompanying value. Obviously in a 1-bit environment, volume refers to pulse
width, thus timbre and volume are conflated to the v command. As mentioned previously,
there are eight possible duty cycles which can be called by specifying a value between zero
and eight, where zero is silence and eight is a 50% duty cycle. Judicious use of this command
allows for a fantastic range of possible timbres and instrumental expression. For example,
Figure (shown in Section) might be created using the sequence 03 v5 ¢32 vic v3
c8 v2c vic r4 for the first sound, and o3 v1 ¢32 v2c v3c vdc v5c v4c8 v3c v2c vic for

the second. Notice the order in which the volume commands have been placed to create the

respective envelopes, or volume ‘ramps’.g

94This example highlights that the current version of uMML is far from perfect, there are a few key
modifications that would save a significant amount data in some use-cases. The most significant of this is
the planned ‘instrument macro’. Essentially this is a secondary macro function (operating mostly at the
Effect Domain), which instructs the program to apply a sequence of volume alterations over note durations.
This changes transients without having to split the note into multiple separate instances, interspersed with
volume commands. For example, the prolonged note in line 127 of goose-communications.mmml notated
as follows: vl €32 v2e v3e vde vbe v6e might instead have a macro definition at the beginning of the
document, such as this: @1 v1r32 v2r v3r v4r vbr v6r, then an in-line notation like this: i1 c8.
(where i represents ‘instrument’). Although longer to define initially, if there were multiple inline declarations
of this envelope, data savings would be cumulative. Essentially, one might imagine this as defining a set

3.2 Micro Music Macro Language 65

The actual numerical value of the volume command is reversed in software and a ‘1’ will
represent the loudest volume. This is because the number attached to the volume command
dictates how much the current frequency should be bitshifted to the right — or divided by
two. Dividing the frequency by two once will result in a square wave, dividing by two twice
results in a duty cycle of 25%, dividing by two three times, 12.5%, and so on. I realised
that, like human hearing, the perceptual change in volume due to a reduction in pulse-
width is approximately logarithmic. Intermediate volume commands seemed to add no real
sonic variation but those in powers of two did. Rather than design some complex, memory
intensive function to scale 0 — 15 to all interesting pulse widths, I settled for eight different

volumes/timbres and a small, easily implemented function.

Contiguous Material Loop (11110000 & 11110001)

The composer may loop contiguous material, specifically those commands that are in a
continuous, unbroken sequence, by inserting a loop start point, loop end point and number
of times the inner material should repeat. Looped material should be enclosed in square
brackets with the loop number immediately following the open bracket. For example, the
arpeggio in: [8 c8 e g >c <] will repeat eight times. The loop number may be a number
between 2 and 255. The comparatively larger range to those commands previously listed is
due to the command type; as described, the ‘function’ command (1111) allows for a trailing
8-bit Value@.

Loops may be nested; for example [2 [8 c4 1] will repeat c4 sixteen times. There is an
upper limit on how many repetitions are possible; this value is defined in the header of the

mmml.c program.

Macro (11110010), Channels & Channel End (11111111)

Music is typically repetitive in nature; it relies on the human tendency to recognise patterns.
Consequently, one may often wish to repeat sections of material multiple times within a
piece. The loop command does allow for this, but only when the material to be repeated is
contiguous, which is rare. Consequently, any material that returns in a piece verbatim, but

separated by unique information, cannot be reused. The macro command solves this problem

of ‘instruments’, akin to saving patches on a synthesiser. The instrument macro could also include octave
switches or relative pitch movements, allowing for automatic transposition (discussed below). As to why

this was not included in the current build, firstly an additional ‘slur’, or join, command would be required,
instructing the program to prolong the volume macro across two (or multiple) note commands. As there is a
fixed set of durations that can be literally declared, non-standard note durations (for example a double dotted
crotched) will be interpreted by mmml.c as two separate notes. This is not an issue in the current iteration as
notes cannot be affected over their duration, thus would be superfluous. (I somewhat anticipated that I might
include this feature, especially in later compositions, so I have left the & symbol where a note is held over a
non-standard duration). This also helps with legibility during subsequent analysis. This is not interpreted

by the compiler.) Furthermore, potential redundancy reduced the attractiveness of the feature. Those more
involved pieces (such as 4000ad.mmml, goose-communications.mmml or paganinis-been-at-the-bins
.mmml) change their instrumentation frequently, with very few repetitions of verbatim expressions. This may
lead to the proposed instrument macro being underused, or perhpas used too frequently (with too may unique
macros declared), thus consuming more space or (more likely) not saving enough memory to justify the initial
downpayment.

The value of a feature such as this is dependent on how much material will make use of it. uMML was
designed specifically with consideration to the program memory size of the Attiny45/85. With only four or
eight kilobytes (respectively) to store both routine and music, if a piece is unlikely to use a potential feature
then it should not be included; this data may be entirely wasted and might be better used for more musical
material.

95 A value of 1 would perform the material once, thus negate the need for a loop. A value of 0 would not
play the material at all, for which, again, a loop would not be required.

66 3 IMPLEMENTATION

by inserting a symbol where the material should be played. This symbol represents a string
of data outside of the four channel structure that the data pointer jumps to, plays, then
returns to read the next command in the original channel’s data. To select the desired macro,
two bytes are required: the first, instructs the program to treat the second as a number. This
number is a pointer to an index in the data_index[] table and the channel data pointer will

move to the defined location in the data[] array.

The layout of an uMML project should be structured as follows:

- oscillator A data
- oscillator B data
- oscillator C data
sampler data

- macro #1

- macro #2

@ © © © 6 © ©
|

- macro #3

and so on.

Each @ symbol declares the end of the previous chunk of data with a channel end command
(11111111). The first four @ symbols are the ‘home’ chunks of data and the last are
individual, voice agnostic nuggets of musical material that can be sequenced within the
‘home’ voice material. The channel command indicates which channel the following material
should be placed in. Unlike most MML implementations, material can’t be split across the
document. Once the end of a channel is specified, the next begins. The last channel declared
will always be a macro channel. The order in which material is placed in the first three
channels is somewhat irrelevant as the oscillator generation code is homogeneous. Channels
are stored contiguously in an array and are demarcated by the channel end command. This
is inserted automatically after each channel’s material has ended. As this is left up to the
compiler, it does not have to be declared in the composer’s uMML code. The compiler
counts the bytes and generates an index where the mmml.c program can find where each of

the respective materials begin.

In the current version, macros cannot be nested. Only one index is stored when jumping
out of the main routine. A new macro command encountered while venturing out of the
original channel’s data stream will overwrite the original saved position with a new one.
This means that, when this new material is finished, the data pointer will jump back to the
previous macro playing then, once it reaches the channel end command, it will interpret this
as the end of the original channel and loop back to the start of that channel’s material. This
could be avoided by using a two dimensional array for storing pointers: the X axis would

be channel and the Y would store the locations departed in successive macros. This might
be useful but, at the moment, I have had no real use for it. It seems that music is generally
repetitive, but only to a certain extent; too much variation arises to warrant the extra few

hundred or so bytes to implement such a system@.

One must be cognisant when using octaves within macros and remember that the octave
jump shorthand is a literal declaration of the current octave. Improper declaration of octaves

may result in passages where the octave jumps erratically. The compiler will treat this in

96 Although, it should be noted that this exact method to nest loops.

3.2 Micro Music Macro Language 67

relation to the last octave used — probably somewhere at the end of the third channel (as
the fourth is just a sampler). To avoid this, the desired octave should be stated at the start

of each macro’s materialg.

Tempo (11110011)

The tempo command is defined using t and sets the note playback speed only. These speeds
do not correlate to any specific BPM and are defined arbitrarily; both by the internal clock
and however long it takes to execute the code. As of writing I have not calculated BPMs,
and these will vary based on architecture and clock. When read by mmml.c, this value adjusts

the tick_speed variable.

Tips For Reducing Filesize In yMML

The compiler is not intelligent and does not have a ‘compress composition’ function. This
certainly would be a useful feature, especially if it intelligently employed those techniques
outlined in Section @ Until then, this must be performed manually. The information here

is related to that explored in ‘Colour Within The Lines’, found in Section @, where the
peculiarities of any system ultimately influence and subsequent compositions. Here are some

methods for dealing this particular system:

¢ Repeats should be used to save space only when the material to be repeated is larger
than four bytes. As the repeat function requires three bytes to implement, it is
uneconomical when the material to be looped is shorter when declared literally. For
example, the following: c8 c8 c¢8 (compiled to 0b00010011,0b00010011,0b00010011
) would be a byte larger when written like this: [3 ¢8] (compiled to 0b11110000,0
b00000011,0b00010011, Ob11111111).

e Similarly to the above, calling a macro has a minimum footprint of five bytes: two for
the declaration within the channel data, two for the sixteen bit number that indexes
its location and one for its channel end command. Additionally, it is almost guaranteed
that an octave command will be required at the start of the macro and when returning
to the main loop, adding a further two bytes. Therefore a macro will generally fill four

bytes for a declaration and three bytes for each invocation.

e Care should be taken to avoid redundant notation, for example repeated durations.
For example r16 r16 can be replaced with r8, or c4 c8 should be notated by a c4.

command.

These suggestions will save a few bytes at a time, but this is cumulative! The total savings
over a whole piece could allow for additional melodic/rhythmic variation, or instrumental

expression — so pedantry is eminently forgiveable!

Efficiency is imperative in this endeavour; uneconomical scripting on machines with lower
clock speeds directly translates to a more limited functional praxis. For all code listed
herein a significant amount of fine-tuning has been undertaken to try and find the most
efficacious solution. There have been many iterations of even single line functions to

maximise the microcontroller’s output, increasing memory and computational economy.

97Yes, you can share material between the sampler and the pulse channels. It’s utterly pointless but you
can do it.

68 3 IMPLEMENTATION

These optimisations range from managing the idiosyncrasies of Atmel’s AVR machine code
(decrementing variables rather than incrementing) to imaginatively negotiating hardware
limitations, often involving careful counting of clock cycles. This becomes somewhat
challenging when working in C; the AVR GCC compiler can seem to take on a life of its

own when compiling to machine code! When working close to the metal, saving even a single
clock cycle can potentially allow for more oscillator channels, higher attainable notes or more

‘palatable’ tunings.

69

4 Compositional Approaches

4.1 Introduction

The Internet is littered with fragmentary tips and suggestions on how to best optimise
composition for certain platforms. For example, the guide to the Cross Platform Music
Compiler Kit (XPMCK) includes tips on optimising code depending on compiled platform
[L71]. This said, I am yet to encounter a comprehensive guide to the compositional systems
and, ultimately, mindset required to successfully reduce file size and retain aesthetic

interest. The following section documents the techniques and strategies I have encountered,
employed, researched and developed in producing the companion portfolio of compositions for
Attiny13/45/85.

Practical experimentation, in the form of exploratory composition, has been an

integral part of the investigation process to address the primary research question of

how using 1-bit synthesis within a low memory environment can inform or change
compositional methodology. Whilst it may be possible to derive an answer to these problems
algorithmically@, without composition, there is not only creative value but efficacy in
heuristics. It is immensely difficult to identify the most efficient solution if no solution is ever
undertaken practically. Synthesising the tools, frameworks and concepts addressed in the first
part of this investigation, the following chapter documents the application of these concepts

through composition.

Importance is placed on achieving a low bytes per second (B/s): a simple calculation which
divides the total filesize by the duration of the resultant piece. This is certainly not a
comprehensive figure, it does not include piece complexity, nor musical interest, but it does
provide a criterion by which different approaches can be easily judged and contrasted for
relative success@. The nature of low memory composition is to keep the bytes per second

per piece as small as feasibly possible, but retain musical interest.

Compositional decisions undertaken when creating the music in this portfolio are inevitably
informed by my compositional inclinations, musical tastes and previous artistic experiences.
Musical interest, for me, is related to a piece’s complexity over time: if a piece is too simple
for too long, it rapidly becomes boring, if a piece is too complex for too long, it becomes
incoherent. The exact method by which this is evaluated is beyond the scope of this project
so, for now, I will use my compositional inclination and subjective taste. Cutchfield proposes
[172, 173] a relationship between complexity and ‘randomness’, plotted in Figure @ as

complexity against Shannon’s H (essentially randomness).

Music at the peak of this curve is complicated, but self-referential. Music tends to have

an internal ‘dictionary’ embedded within the structure of a compositional work. This

98This is rather the musicologist’s ‘philosopher’s stone’; a piece of software that might describe a piece’s
harmony, melody and construction so that an automatic analysis can be generated. It seems so simple in
conception, but in practice it is somewhat difficult!

99The routine size has been explicitly ignored from all B/s quoted in this section, referring to the compiled
size of the uMML code alone. This is because, once the initial routine down-payment has been made, any
further expansion is_based on the size of subsequent uMML code. I shall consider the B/s with routine
included in Section

70 4 COMPOSITIONAL APPROACHES

Statistical Complexity

Informational Randomness

Figure 20: Crutchfield’s demonstration of the relationship between complexity against entropy. This is a
crude reduction, but is sufficient to adequately demonstrate the core concept. As the informational system
gets more entropic, the complexity increases before waning and returning to zero. On the far left of the graph
would sit a composition of a few notes repeated infinitely, and on the far right might be the product of a
simple ‘randomize’ note function.

reference is built from repetition of musical ideas; as Ball explains “we make sense of

what we hear by framing it in the context of what we have heard already” [174]. The
audience is made familiar with structures presented to them (built from components such

as harmony, genre and context) and, to a pleasurable effect, these structures are altered once
established, defying expectation and expanding the working grammar of the internal logic

of the composition. Music that defies repetition, either completely, or relies heavily on the
listener’s pre-existing understanding of theory alone (however casual this may be), may sound
confusing and inherently less ‘musical’ [175]@ The top of Crutchfield’s curve is practically
rather hard to compress, yet it seems to be where the most interesting music lies. For
example, music located on the far left of the complexity curve is relatively straightforward
to compress; a simple piece consisting exclusively of a repeated short phrase, or tone, can be
executed in just a few bytes. Equally, music located on the far right of the curve, that which

is most musically complex, might be generated with a short randomise function@.

Curiously the relationship between complexity and musical enjoyment shares the same
‘inverted U’ function [176]. Therefore, if we are to write interesting music that belies the
medium, we must find intelligent compositional strategies that communicate an intermediate
musical complexity (even an illusion of such is adequate) for as long as possible within

minimal program memory.

Ultimately, for me, artistic expression should surmount technical ‘pedantry’. There is always,
however, a negotiation between memory costs and aesthetic benefit; a piece consisting of a
single note is a complete technical success in terms of B/s, but (arguably) a failure when
considering compositional sophistication and sustained listener interest over an extended
duration. This section provides the reader with an explanation of how one might resolve
these dilemmas and ensure that each piece is as small as possible, all whilst retaining novelty

and eluding musical lethargy.

1001t might be interesting to compose a piece that relies on as little pre-existing semantic inferences or
semiology as possible, meaning instead contingent on tautological, internal definitions and rules.

1013ome randomise functions can be quite complicated, but something akin to noise = noise ~ noise
>> 1; noise++; (the noise generator used in mmml.c) would suffice.

4.2 Observations On The Nature Of Low-Memory Composition 71

4.2 Observations On The Nature Of Low-
Memory Composition

The following concepts are important in explaining the creative motivations (and dogmas)
of the low-memory composer (and help to contextualise those solutions proposed in Section
@) It is important that the reader understands the framing and informal rules by which
one generally abides when constructing music in this fashion. These observations do not
apply to 1-bit music in particular, but chipmusic composition in general. This said, 1-

bit music is a sub-genre of chiptune for a reason; the ethos is closely aligned and the
compositional techniques have considerable overlap. 1-bit music is a good solution for
low-memory musical frameworks, but does not have to be low-memory in its execution.

For example, Benjamin Oliver’s 1-bit piece Mr. Turquoise Synth uses a 1-bit synthesiser
controlled by a computer via MIDI [177]. When executed in this way, the composition can
be as large, complex and non-repetitious as the composer desires, despite retaining a similar
sonic aesthetic. Furthermore, with this approach, all techniques described in Section B can be

employed without application of the strategies listed hereupon.

Forced Cohesion

Although there are methods of making pulse waves sound more, or less, palatable, the
constraints placed on the low-memory composer engenders (oxymoronically) both timbral
homogeneity and idiosyncrasy. Where the composer, unfettered by technological limitations,
is afforded multiple instruments, synthesisers and sampled sounds, they may be entirely (and
infinitely) liberal with their spectral palette. It requires either an enforced restraint (for
example, only having clarinettists available for a recording session/performance), or arbitrary
restriction (for example, choosing to write for clarinets exclusively) to curtail timbral
breadth. The low-memory composer, on the other hand, must best (and perspicaciously) use
whatever sounds are available, which results in recycling as often as possible (see Recycling
And Re-purposing below). This is especially noticeable on systems that depend on sampled
audio, such as the Super Nintendo Entertainment System (SNES) and Nintendo 64, where
audio routines are generally reliant on short instrumental 1oops@. Memory restrictions

on these systems limit the possible instrumental scope, forcing unusual ensembles and
soundworlds. The SNES game The Legend Of Zelda: A Link To The Past [L78] makes use
of only thirteen samples,@ which are used repeatedly throughout the game’s soundtrack.
Memory limitations demanded that the composer could not to wander and slip to new,
disparate soundscapes over the duration of a soundtrack — enforcing homogeneity through
memory limitation. This may appear creatively stifling, but may actually aid a piece —
especially in the context of an album or soundtrack. By the use of a particular platform, the
composer has automatic timbral cohesion. Humans are remarkably good at recognising and
identifying pieces when presented with excerpts only a few tenths of a second in length [179].

This ability is not related to a piece’s melody or hamony, but its timbre.

102gingle wavetable samples that are looped, as opposed to loops of pre-recorded material a few bars in
length (though this was possible and occasionally used).

103 Twitter users @KungFuFurby and @jen_imago kindly examined the ROM for me (shout-outs to both of
them; especially @jen__imago!) and found eighteen distinct samples, see the thread here: https://twitter.
com/jen_imago/status/1129052709930307584. Within those eighteen sounds there are thirteen that are
employed instrumentally: three brass-like instruments, two sounds approximating strings, a short sine-like
waveform, a harp, a piano, a choir, a flute, a snare, a cymbal and a timpani.

https://twitter.com/jen_imago/status/1129052709930307584
https://twitter.com/jen_imago/status/1129052709930307584

72 4 COMPOSITIONAL APPROACHES

Whilst this effect is certainly true of sampled audio can the same be said for 1-bit pulse
waves? Whilst 1-bit music certainly benefits from forced cohesion, there is an upper limit

to the decidedly unique articulations possible with 1-bit instrumental practice. That said,
where sampled audio is used, or a repeated use of a particular instrumental technique, it
does seem to grant the piece an individualistic timbral identity by simple repetition. The
sound of Tim Follin’s 1-bit ZX Spectrum routines are that of polyphony, extremely thin pulse
waves, alterable ‘volume’ and noisy PIM mixing [114, 180, 181, 182]. Furthermore, as larger
polyphonies grant Follin the ability to use block chords, alongside fluid decay transients,
these techniques become ubiquitous, defining and consequently all compositions aesthetically
cohere. For this, one might consider Follin’s ZX Spectrum work as a ‘micro-genre’ — indeed
this may extend to any set of works written in a particular routine. This is a huge creative
advantage for those building their own music software, and certainly part of the personal
allure of programming music routines for microcontroller. Pieces created with mmml.c have an
aesthetic distinct from that of other 1-bit works. Although crude, the PWM sampler permits
more prominent percussive material than other routines might. As there are few samples
(due to memory restrictions) I do not doubt that the drum sounds used in pMML will be
familiar to the listener by the end of this project — so much so that they would recognise
them when presented alongside other 1-bit drum samples. The pulse widths addressable

in mmml.c enable access to both timbral heterogeneity through larger pulse widths, as well

as timbral homogeneity (and companion alterable volumes) bestowed by very thin widths.
However, as only eight possible widths can be invoked, changes between them are quantised
and can sound disjointed, unlike Follin’s routines, for example. Furthermore, as mmml.c lacks
the ability to continuously change pitch, glissandos and vibratos must be notated manually,
thus, for this to sound convincing, these passages must always occur too rapidly for the
listener to identify individual notes. Additionally, as there is no transpose function (due to
the nature of how notes are stored), key changes are infrequent@. Although these ‘features’
may seem limiting, it is these deficiencies and imperfections, forcing idiosyncratic solutions

that may not otherwise have been adopted through choice, that define sound of the medium.

Maximalism

One might consider chiptune (and this investigation) as minimalistic; this term referring not
to the specific genre, or movement, in music, but to the ethos of simplification; the idea of
“as simple as possible”; “as little as possible” or “as small as possible” (the latter in software
development). Seemingly in direct contrast to this ‘minimalist’ ethos, mazimalism curiously
emerges in the fundamentals of limited memory compositional practice. Maximalism is
perfectly communicated by the “more is more” philosophy; an embracing of the excess [183].
My proposed expression of maximalism is perhaps a softer version of the composer Milton
Babbit’s, whose maximalist music includes (pretty wild) “all-combinatorial hexachords”

and “all-interval rows” [184]. Even so, his definition non-intuitively applies here: “to make
music as much as it can be, rather than as little as one can get away with”. One might
imagine maximalism as minimalism’s antonym but, from my experience, when artistic
foundations are cast in minimalist ideologies, the artist is free to push this framework

to its limits. The examples are numerous: demoscene culture often favours aesthetically

104 A5 they do not allow for easy recycling and Neckering, see Recycling and Re-Purposing and Harmonic
Neckering in Section .

4.2 Observations On The Nature Of Low-Memory Composition 73

excessive, esoteric visuals to demonstrate coding capacity and the claustrophobic sound
world of black MIDI compositions feed a single, wavetable sample@ as much data as
possible, making use of every available parameter [185]. Whilst minimalism is indeed a
large part of chipmusic — and low-memory composition as a whole — I would argue that
minimalism describes only ‘the container’. The endeavour is fundamentally maximalist: filling
the metaphorical container with as much ostentatious, impactful and impressive content as
possible to confute the common understanding of the container’s limits. These limits may be
a memory constraint, as with demoscene artefacts, or understood capabilities of platform,

as demonstrated by Nancarrow’s Studies for Player Piano [186]. So, while black MIDI

may produce large file sizes (compared to a more ‘typical’ MIDI file), it has significantly
more in common with this investigation than traditional definitions of musical minimalism.
Additionally, most chipmusic is not necessarily celebrated for its small filesizes, instead

successes in the face of constrained, seemingly rudimentary, aesthetic limitations.

Thus, the disposition of the maximalist sees unused memory as squandering potential: why
forgo an extra few minutes of material, or the (ordinarily wasteful) addition of gratuitous
variation, for memory that is not used? The character of perpetual minimum I have
(potentially) obtruded upon this exploration — “as small as possible” — rewards brevity,
encouraging the composer to complete their work at every point of potential expansion. The
imposition instead of a mazimum is far more constructive, dictating the hard boundaries

in which to creatively expand. This is the usual scenario when writing in this manner;

the limit is rarely fluid, more often strict and known in advance (sizecoding categories [2],
removable storage media size, microcontroller program space [[187], etc). This model allows
the composer to more effectively budget; that is, critically evaluate which parts of their piece

may consume more space than others.

Synthesised Versus Sampled

If spectacle was the primary element of consideration when producing low memory
compositions, perhaps one might use all (or a significant portion of) available space to store
sampled audio for playback. Indeed, this was occasionally the case for video games in the
80s and early 90s, where any sampled audio provided novelty (such as the soundtracks for
Skate Or Die II [188] or Blades Of Steel [189] on the NES). However technically impressive
a composition using this technique might be, a few seconds of compressed audio would not
make a satisfying listening experience in the context of a larger work. It seems that humans
want to be engaged by music for a significant period of time (i.e. longer than a few seconds)
(190, 191, 192]@. Therefore, this suggests a criteria of success related to the efficacy of

the routine’s bytes per second (B/s). Sampled audio will have a notably higher B/s than
synthesised audio (if the initial memory down-payment of the sound routine is to be ignored),

see Figure @ Nevertheless, hypothetically, if the size of the sound routine is included, and

105Colloquially, black MIDI uses ‘MIDI Piano’ sounds. This is largely meaningless as MIDI defines no
sampled audio, nor waveform generation, by itself. Often the term ‘MIDI sounds’ refer to the Microsoft
Wavetable Synthesizer employed by Microsoft Windows to sonify MIDI files in the operating system’s file
explorer.

106 Usually in the standard MIDI message paradigm: note, velocity, channel [[L69]

107Interestingly, these sources seem to suggest that the preferred popular song/album length may be
related to the storage medium, seemingly related to maximalism? Or perhaps popular music is shaped by
its commodification and commercialisation thus intimately related to its method of propagation? Maybe there
is simply an upper limit on human attention spans for both the composer and the listener?

74 4 COMPOSITIONAL APPROACHES

the sampled audio had a smaller footprint, the pre-recorded material would be aesthetically
immutable. When relying on such a technique, any additional sonic variation must be
performed either generatively, via manipulation of existing sampled data, or simply the
addition of data (uneconomical with respect to B/s). This suggests a crucial rationality

for the synthesised solution: aesthetic plasticity. Flexibility and versatility in musical
communication are the most important elements for sustained interest. The low-memory
composer’s dichotomy is the negotiation between compositional conservatism (reliance on

simple, small sequences or looped passages) and introducing novel materials.

O song data Uroutine ‘

20,000 - _
15,000 | i
8
& 10,000 17,640 |
E 16000 e
H
5,000 |- i
6,495
1458
| | | |
A B C D
Audio File

Figure 21: A graph comparing the size of various uMML pieces to popular sampled formats: A) 1
millisecond of 16bit Stereo 44.1kHz WAVE Audio, B) 1 second of MP3 audio at 128Kbps, C) 4000ad . mmm1
(513 seconds), D) jupiter.mmml (730 seconds). For C) and D) the routines have not been directly included
in the filesize calculation but appended as, when combining multiple .mmm1 documents, the routine size

will only be included once. Additionally, technically sampled audio requires an interpreter for sonification,
the equivalent of the mmml.c software. For example, one second of MP3 will require additional 30KB
(approximately) for a minimal decoder [193]. With this in mind, if we compare jupiter .mmml to the CD-
quality WAVE format, we can see that the uMML file is 99.9995% more effective.

Unless algorithmically generating audio (see @), once song data has been compressed

using the most efficient algorithms, it can be squashed no further. Where technology and
mathematics fails to provide any further assistance, the composer may step in. The art of
writing small music requires an intimate understanding of music theory and the judiciousness

to know when to repeat (or remove unnecessary, periphrastic) materials.

Cheating The Medium

One can interpret “Cheating the medium” as exploiting the listener’s expectations to hide a
medium’s technical limitations. The previous claims that interesting music must be complex,
or inherently maximalist, could be met with disagreement and, instead, one may draw my
attention to those minimalist pieces which rely on extremely gradual mutations or extreme
repetition. This would certainly be a valid criticism and presents another, somewhat obvious,

solution: hide behind genre limitations and compose unashamedly minimalist music for the

1080One might create a routine that manipulated sampled data, as with many Amiga trackers [166], and even
some ZX Spectrum 1-bit routines [12§], but this would still be an example of a synthesised approach.

4.2 Observations On The Nature Of Low-Memory Composition 75

sake of minimalism! As the goal of writing constrained music is to belie the host medium’s
limitations, decisions that fundamentally alter compositional practice, but appear entirely
arbitrary, distract the listener away from their potential purpose. The low-memory composer
does not wish to labour the composition with flags to obvious concessions; a completely
transparent process will confirm the listener’s presuppositions and provide no expectational
subversion. Whilst the platform (whatever this may be) is inseparable from the artefact,

the mystery of the relationship between presupposed media capabilities, its limitations and

a sophisticated artefact, has a somewhat performative element. Anecdotally, I find that

in the demonstration of low-memory compositions, when explaining the compositional or
technical tricks required to realise a piece, the piece is no longer judged on the merits of the
composition, but instead by the process; any coherent music that emerges from this process is

simply a bonus.

This suggests something intriguing and contradictory to the investigation’s original premise.
Although I am a strong believer that chipmusic can be separated from hardware — that
the music can be enjoyed for the aesthetic qualities alone — it seems that, in the explicit
endeavour of programming music where data is limited, one simply cannot isolate the
product from platform. All techniques herein (both technical and compositional) are,
pragmatically, memory saving techniques, but, in the context of this investigation, this

may be an unintentional pretence. Perhaps the core difference between historical low-
memory compositions and the current project is that working in these environments
presents the auxiliary exercise of intentionally belying popular understanding of limitations,
thus subverting expectations. The goal of much music is to present the listener with

a compositional framework (either within the composition itself, or existing, cultural
compositional tropes) then subvert those expectations to pleasurable effect [194]. There is

a strong analogue in general sizecoding practice: perhaps one might imagine this process of
belying limitations as a meta-music, or meta-composition, encapsulating the piece, providing

an extra layer of interest.

The key difference between pieces such as goose-communications.mmml and greatest-hat.

mmml is not just their compositional complexity, but the complexity of the .mmm1 file itself.
The goose-communications.mmml file is packed full of volume changes, enveloping, super-

fast arpeggios and attack transient octave jumps — extended chipmusic instrumental
techniques, whereas greatest-hat.mmml focuses very much on counterpoint, three-part

writing to adequately communicate intended harmony and, perhaps, more traditional,
general compositional concerns. Although there is clearly a compositional benefit to adding
instrumental ornamentation and expanding timbre, the primary reason for this practice is to
make the piece more ‘impressive’. The greater the instrumental repertoire, the more the piece

appears to belie its medium.

Listing E is a transcription of Steve Reich’s ‘Piano Phase’ in about 65 bytes of pMML
(depending on whether the unused channels are included in the calculation). Other than
adding some timbral effects, there is nothing more one could add to this composition to
realise it any ‘better’. It is entirely accurate in its translation from score to uMML and, thus,
successful in attaining the original piece’s compositional intentions. The minuscule resultant

filesize demonstrates the immense efficacy of such a technique.

76 4 COMPOSITIONAL APPROACHES

% channel a
@ t45 [99 m1] r2.

% channel b
@ mi [96 ml1 r128] mi1 r2.

% channel c (unused)
% channel d (unused)

% macro #1
Q@ o3e32rf#rbr>cH#rdr<f#rer>cH#r<brf#r>drc#r

Listing 8: An pMML transcription of Steve Reich’s Piano Phase (piano-phase.mmml), totalling only 65
bytes of program memory for around two minutes of music. Slightly shorter in duration than original piece,
this adaptation could be extended by increasing the number of repetitions of a pattern before shifting phase
(for example @ t45 [99 [8 m1 J]r2. @ ml [96 [8 ml r128]Ilml r2.). AsI am offsetting material by
the smallest duration possible in pMML, I felt it disingenuous (and slightly boring) not to include a unique
state per permutation. Listen here: https://doi.org/10.5258/S0TON/D1387.

4.3 Strategies For Reducing Compositional
Footprint

This section documents the key techniques I have researched, developed and employed in my
uMML work to reduce filesizes but retain compositional sophistication; ensuring that each
piece sits towards the peak of Section @’s complexity curve. The aim is to make the low-
memory compositional process transparent in order to demonstrate the construction (and

rationale) of each of the works created as part of this research project.

It is useful to imagine the following approaches as organised musematically, or by musemes
[195]. A museme, devised by Charles Seeger, is the smallest meaningful component of

any musical syntactic framework, which Seeger defines as a single note or beat: the tone-
beat. This definition works well in the traditional, top-down compositional approach (I use
the terminology ‘top-down’ to refer to the pursuit of composition by traditional musical
abstractions at the Rhythmic Domain — as opposed to bottom-up: concerning composition
as a function of frequency over time) where the smallest unit of meaning is the pitch-duration
pairing. The definition is seemingly simple but, from the musical architecture explored in
Section @, it suggests some challenging questions: what is the true museme, the musical-
linguistic atomus? At what temporality does this framework cease to hold actual meaning
(are there meaningful musemes at the sub-Sample Domain)? Defining the tone-beat as this
smallest unit, implies a traditional, tonal compositional approach, where instrumentalists

are instructed by rhythmic symbols, deputising more fundamental operations, such as

timbre and waveform, to instrument and instrumentalist. Computational music allows for
intentional organisation of meaningful musemes at ever smaller units of time. Conceivably,
one might build a piece of timbral fragments, indeed Roads’ Microsound [141] concerns the
constructions of sound-worlds from sonic ‘grains’ — the purposeful arrangement of individual
wavecycles at the Micro Domain. The etymological fog renders ‘museme’ as a fluid concept

and, this flexibility, allows the museme’s scale to change depending on the temporal scope

https://doi.org/10.5258/SOTON/D1387

4.3 Strategies For Reducing Compositional Footprint 77

of the composition. This approach neatly frames the enquiry into efficacy and success (the
smallest, most interesting music possible) by exploring strategies at different resolutions of

museme.

I conceive of a process duality in computational music: raster and generative. In opposition
to the forthcoming Section @, in this section I am primarily concerned with raster
composition: the placement of discrete, quantised data in a ‘matrix structure’. Raster is used
here as a metaphor; the terminology is borrowed from computer graphics, representing a
(generally) rectangular grid of pixels. This methodology requires the intentional deceleration
of quanta (in this case, placement of musemes on a grid) which is read by an interpreter.
Products of this system will be a verbatim realisation of data declared in the matrix. We
can consider this approach to be almost entirely musematically deterministic, as it has

been pre-composed. ‘Musematically’ is important here as the indeterminacy is contingent

on the resolution of museme. Higher abstracted musemes, such as the tone-beat, will
surrender precise control of lower level functions to some auxiliary process (such as a human

performer’s instrumental technique, or a synthesizer’s timbral programming).

Techniques for tone-beats rely heavily on traditional music theory (and wider musical
practice) to make compositional ‘shortcuts’ — inferences of musical objects such as chords,
scales and traditional melodic patterns. Although this is largely unavoidable when writing
music, mutating textures or pitches in non-classical (or expected) ways may make creating
more interesting low memory music more challenging. Composing with musemes at the sub-
rhythmic level allows the composer access to sonic operations that can only be indirectly
instructed in systems such as traditional score@. Concerning memory footprint, as the
time-window has decreased, there are now more possible operations per second, requiring
either a lot of data, or heavy reliance on generative functions and expansions of compressed
sequences (not necessarily both). It is an intriguing world in which to compose, sitting
somewhere between (human) composer autonomy and delegated control to a computational,

compositional system.

This section aims to contextualise the compositional process of the uMML pieces through
outlining specific techniques and strategies. I have, wherever possible, used these ideas within
my music and, concomitantly, the pieces have informed the compositional strategies. There

are four principal pMML pieces this project:
. 4000ad.mmm1
e paganinis-been-at-the-bins.mmml
e goose-communications.mmml
e jupiter.mmml

The supplementary works provide examples of possible approaches, explore one particular
facet of low-memory composition or serve to document progression. There are situations

where I have not subscribed entirely to my own constraints-focused dogma — to the

1090ne may instruct a performer to use vibrato, but the exact sequence of micro pitch changes is left to
the instrumentalist, or instrument. If one could sequence smaller steps of that vibrato’s character, then the
instructions would be entering the sub-Rhythmic Domain

110See: https://doi.org/10.5258/S0TON/D1387

https://doi.org/10.5258/SOTON/D1387

78 4 COMPOSITIONAL APPROACHES

detriment of filesize! There are many instances of memory gluttony, or gratuitous material
expansion simply because I wished to investigate unfamiliar compositional ideas. goose
-communications.mmml is an example of where I unrestrainedly, inefficiently allowed new
material to enter the piece so that 1-bit techniques could be explored. Resultantly,
compositions have frequently exceeded the aforementioned 1KB limit (ignoring the mmml.

c routine size), but are instrumental in ascertaining those compositional techniques that
dramatically reduce filesize and work musically, versus those which are either too inefficient,

or simply too dull!

Consider the following strategies a practical manual for composing music suitable for low
memory environments. Nearly all of these techniques are implementable by varying degrees
of extremity: for example, one can observe Technique 2: Recycling And Re-Purposing and
repeat musical materials infrequently, or base an entire piece around a single loop. Therefore,
the sum total reliance on the techniques presented in this section is contingent on the
use-case; if one has ample space in which to construct a piece, the below can be used to
simply curb unnecessary expansion, if constraints are tight, one can adhere to the below
uncompromisingly. It should be emphasised that these techniques, although they may have
additional instrumentational influence, are focused on compositional construction. The

explored techniques are:

1. Slowing Down: The result of reductive gamification of the low-memory endeavour —

decreasing the tempo to increase B/s.

2. Recycling and Re-Purposing: The verbatim restatement of material and its

effectiveness in saving space.

3. Musical Decoys: Distracting the listener from obvious concessions using prominent

attentional lures such as a prominent melody or gratuitous solos.

4. Melodies: In addition to their function as decoy, how melodies can imply harmonic

movement, taking some of the harmonic responsibility from other channels.

5. Harmonic Neckering: The use of musical superpositions: allowing a material to

change its function based on that of companion materials.

6. Colour Within The Lines: Following best practice and making use of the functions
available in a musical system. Moulding compositional ideas to fit snugly within the

paradigm.
7. Transposition: Reusing materials at different pitches.

8. Canons: Imitative melodies that are offset by an arbitrary amount allowing for

complex counterpoint with verbatim repetition.

9. Phase Shifting: Or tiny canons. Offsetting identical materials to create complex

rhythmic interactions and new combinatory patterns.

The four major supporting pieces are a practical product of all of the techniques listed
herein, executed to varying degrees. Although discussed within each section, the below

roughly shows the various techniques each makes prominent use of:

4.3 Strategies For Reducing Compositional Footprint 79

4000ad.mmml | paganinis-been-at-the-bins.mmml goose-communications.mmml jupiter.mmml

Slowing Down

Recycling and Re-Purposing
Musical Decoys

Melodies and Musical Presumptions
Harmonic Neckering

Colour Within The Lines
Transposition

Canons

Phase Shifting

NAVEARAN
NEARAN

ANANERANERANANAN

v’

Table 3: A table showing which compositional techniques are used in the four, primary supplementary
compositional works.

Technique 1: Slowing Down

A somewhat spurious solution presents itself as a consequence of the conclusions drawn in
Synthesised Versus Sampled: if keeping data transfer as low as possible is imperative, then
simply reducing the tempo will nearly always achieve greater memory economy. Faster
tempi are often less efficient as data will be processed at a greater rate There are more
generalised, less restrictive mechanisms by which memory can be saved, as numerous,
slower pieces may fatigue the listener, but this strategy is still worth consideration. One
possible response to this problem is to intersperse slower sections with faster to increase
total runtime. Changing tempi in this way has the additional benefit of introducing musical
variation; masking the composer’s ulterior motive behind deliberate choice. The material
labelled % movement II intro (4/4), % movement II main (4/4) and % movement II solo
(4/4) in 4000ad.mmml extends the piece by around 30 seconds, decreasing the bytes per
second from 13.45B/s (without changes of tempo) to 12.66B/s. This increase in efficacy can,

concomitantly, increase aesthetic diversity.

As a decrease in data size, or increase of duration, will positively affect bytes per second, the
inverse will logically cause any piece to be less efficient. Considering the previous, where
faster metres must be employed, reducing total duration, it can be surmised that more

repetition (decreasing data size) would be required to get the same efficiency.

Technique 2: Recycling and Re-Purposing

Looping, composing a sequence so that the start and end of the material can be repeated
without noticeable gaps, is possibly one of the oldest, and most prevalent method of

saving memory in computational music [196]. Where systems such as the Commodore

64 had limited capacity to store data (with game cartridges as small as 10KB) the

primary compositional method video game composers would utilise to mitigate limitations

is repetition. Perhaps the reason this technique is so prevalent (and presents itself so
immediately as a solution) is due to the fundamental repetitive nature of music [197]. Whilst
the listener, in the context of video games, may be aware of the rational behind an endlessly
looping piece, due to the use of the technique in wider music, an effectively written loop does
not attract the listener’s attention. If loops are not presented contiguously and infinitely, i.e.
materials are presented again, reused internally within the wider composition, looping can be

disguised as an aesthetic choice, distracting from the true intention for the repetition.

H10bviously, this is relative to the denominator of the metre. Simply, all durations of a piece could be
halved (e.g. all crotchets translated to quavers) which would increase the tempo (achieving the same playback
speed), but keep the data transfer identical.

12There is no strict tempo in uMML, because the routine is not clocked, the actual BPM depends on the
hardware.

80 4 COMPOSITIONAL APPROACHES

Examples of reused or re-purposed material in the investigation’s compositional portfolio
are too numerous, and fundamental to each piece’s architecture, to comprehensively cite
(as a demonstration, Figure @ depicts the structure of 4000ad.mmm1, colouring all recycled
material). Tt is simply a necessity in low memory music, so much so that two commands
in uMML are dedicated to looping and recycling. The disposition is best communicated

as thus: when composing, it is important for one to reflect on new materials and consider
what a unique bar of material might add to the composition that could not be said with a
straight copy of existing material. If the musical impact is not significant, then it does not
need to consume memory. The piece goblin-shark.mmml is an example of poor low-memory
composition. The piece’s interest is reliant on unique variations on a theme, thus only 35.44%
of the piece is recycled material. Consequently, goblin-shark.mmml has the worst B/s of all

uMML pieces written for this investigation.

|

|

|

Channel A Channel B

||
il

Channel C Channel D

Figure 22: A visual representation of the repeated material in 4000ad.mmml. The images are divided into
four channels, depicting mmml . c channels A — D. Each pixel signifies every fourth 128th note, ordered top to
bottom, left to right. Green pixels represent 128th notes that are looped, red pixels represent 128th notes that
are part of a macro, yellow pixels represent 128th notes nested within both loops and macros, and grey pixels
represent material that occurs only once (black pixels indicate that no data is present). In total (across all
channels), the amount of reused material makes up 84.17% of the piece. Generated by the 1-bit-generator

.c program (https://doi.org/10.5258/S0TON/D1387).

One can see just how effective this technique is by comparing the total material recycled
against the resultant piece’s B/s, graphed in Figure @ With an, albeit limited, set of data,
there is an apparent negative correlation between how much of a piece is recycled versus
its memory efficacy. This suggests that, the more a piece repeats its materials, the more

efficiently it uses its data.

Technique 3: Musical Decoys

Overuse of recycled material will, eventually, foster musical inertia and, ultimately, tedium.
Although repetition is a vital part of sustaining interest, after exposure to an extended

period of identical cycles, the listener becomes desensitised, encouraging the brain to seek

https://doi.org/10.5258/SOTON/D1387

4.3 Strategies For Reducing Compositional Footprint 81

I
)
20 |- o 9 7
@ 0 o
(@]
2 15| ° .
i o
Q
g
®n 10} i
2
[aY
s 5 ° 1
m
of °o
| | | |
40 60 80 100

Total Recycled Material (%)

Figure 23: A graph plotting the total amount of material that is reused in a piece (calculated by checking,
for each ‘tick’ (128th note in uMML), whether the channel pointer is within a loop or macro) against the
resultant bytes per second (compiled size in bytes divided by duration in seconds). The B/s used does not
include the routine, but including this will not affect the relationship between the data points as the compiled
routine size is fixed (1458 bytes for the final mmml.c). Additionally, as multiple uMML pieces can be included
in a program with only a single instance of the routine code, it is often unhelpful to add the extra kilobyte
and a half to each piece’s total size. The data is sourced from Table fJ. The top-left point is goblin-shark.

mmml (most inefficient) and the bottom-left, jupiter .mmml and piano-phase.mmml (most efficient).

new materials [198]. This human inclination works against the low-memory composer’s
principal tool of efficacy, instead promoting the introduction of novel materials and thus an
increase in program size. One tactic of mitigation is to employ ‘channel decoys’ Decoying in
this context refers to attentional diversion — implementing prominent changes in one channel
(or musical voice) to distract the listener’s focus away from extreme repetition in another.
More negotiation than complete negation, channel decoying affords the opportunity to extend

the usefulness of materials through unadulterated, direct recycling.

In applications beyond saving memory, this technique is reminiscent of the interplay
between vocalist and accompaniment in hip-hop, where the vocalist provides much of the
musical variation against (often) a single, short instrumental loop. Whilst instrumental
methods of distraction in hip-hop (variation of lyrics) are not literally possible in a low-
memory environment, the fundamental concept is applicable. Moreover, the simplest method
of executing this is by way of the notion of a ‘beat’; a core rhythmic idea conveyed by
percussive voices, effectuated in a manner similar to that of hip-hop. A repeated drum beat,
or established groove, is extremely agreeable to the human listener [168], more so when it is
played alongside additional variation in the wider arrangement. This behaviour is recurrent
in constrained music, where single percussive figures can span the entire length, or majority,
of a piece. This can only be possible when the listener’s attention is diverted by materials
in other voices. For example, the reader may not have noticed that the drum solo at the
beginning of 4000ad.mmml (line 473, labelled % drum solo Cmin7 (4/4)) is re-purposed towards
the end of the piece (line 552, labelled % final stretch (4/4)) as accompaniment. In the

113See soundtracks to Super Mario Bros. (NES) [[199], Legacy of the Wizard (NES) [200] and Pokemon
Trading Card Game (GB) [201] for an audio example, however there are numerous examples of this in early
video game music.

82 4 COMPOSITIONAL APPROACHES

second instance of the ‘solo’, the listener’s attention is deliberately diverted from channel D

to elaborate materials proffered in channels A, B and C.

A diversion works well if particularly novel, or frequently mutating; providing constant
unfamiliarity. As such, an ‘improvisatory’ style solo, or virtuosic passage, can ultimately
save space. Although this technique may require additional memory, any new material will
be added to a single channel only, where it might otherwise expand data usage in multiple.
Additionally, traditional compositional techniques such as a focus on melody may also
provide an adequate distraction, encouraging the listener to engage with melodic changes,
distracting from potential verbatim repetition in the accompaniment. This technique is
employed repeatedly in 4000ad.mmml, where materials for channels B, C and D are recycled
(with some changes in channel B) in sections % solo A (4/4), % solo B (4/4) and % solo C
(4/4) over which channel A introduces a new ‘improvisation’ with each invocation. Equally,
til-there-was-you.mmml uses the same technique, improving B/s by reusing materials in
channels B, C and D as accompaniment for channel A’s solo material (in the section labelled
% solo).

Technique 4: Melodies and Musical Presumptions

A solution prevalent, and preexisting, in wider musical practice, melody is a simple method
of providing musical interest expanding only a single channel while material in others can
be either looped or foregone altogether (see the intro to paganinis-been-at-the-bins.mmml

). When paired with an accompaniment, melody can be considered a form of musical decoy,
distracting the listener with unfamiliar material to mitigate musical malaise, accommodating
repetition. Melody is a common solution to low-memory composition as even the simplest
melody can simultaneously communicate harmony whilst providing musical form, thus
prolonging interest. One can imply verticality with the horizontal: for example, a
horizontal sequence of c8 e8 g8 >c8 communicates the same harmonic idea as g , a C major
chord. Many of the approaches taken in this investigation are built around melodies, as are
most chipmusic works . Monophonic voices seem to encourage compositional employment
as ‘leads’, especially when the total number of voices are restricted. Indeed, one can fall
back on the techniques of choral, and other small ensemble, composers; tried-and-tested
approaches that remain popular compositional processes. Two, or three-part, writing is an
apt solution for uMML, to the degree that works by Bach can easily be expressed by the
language; a minimal transcription of Preludium I from J.S. Bach’s Das Wohltemperierte
Klavier I (bach-prelude.mmml) sizes only 661 bytes for 120 seconds of material (5.51B/s).

Monophonic musical excerpts from classical, or public domain, works were common in many
early video games (for example, the soundtracks to Manic Miner [203] and Donkey Kong
[204]); this is an effective strategy for the smallest musical implementations as invoking a
well-known melody grants the piece harmonic context by listener association alone. Whilst

this is a low-memory solution, one can imaging the storage as relocated from program

14The numerous monophonic works by J.S. Bach (BWV 1001-1006), Paganini (24 Caprices for Solo
Violin) and many others are a testament to this technique’s success.

115This claim is difficult to support concisely as there is no database of chipmusic pieces organised by
whether or not they feature prominent melodies. In my experience however, it is usually the case that
chipmusic pieces are reliant on melody — it is possibly the most immediate solution to writing music with
monophonic voices. One can listen through the entirety of ZXART’s music library [202] and will hear many
compositions that are reliant on melody.

4.3 Strategies For Reducing Compositional Footprint 83

memory to the listener’s musical experience. The following example demonstrates this effect
practically (if the reader wishes to try this for themselves, see the footnote for answers). If
I were to ask a musician to complete the chords to the following (missing chords are indicated

by question marks):

/1 1 1 | 1 1 I | 1 | | | I
SV o T I 1 | - T I 1 | T I
D) T T i i T

They will, most likely, correctly identify the piece and complete the passage. However, if one

were to notate chords to the following, they would most likely struggle:

There is simply too little harmonic information provided for the listener to ascertain an
absolute harmony. To ameliorate this, the composer must supply context by either expanding
the melody, or by adding an accompaniment, giving the listener more explicit harmonic cues.

Obviously this comes with a collateral memory expansion.

Technique 5: Harmonic Neckering

‘Neckering’ here refers to the Necker cube optical illusion, where two simultaneous, valid
interpretations of a cube’s orientation can be inferred due to ambiguous depth cues [205].
In this case, these interpretations are harmonic in nature; materials are written to be as
tonality agnostic as possible so that, with a small melodic cue, the supposition of key/chord
is altered. This increases the possible use cases for the material, concomitantly increasing
memory economy. For example, a guitar, in standard tuning, played entirely open produces
a clear set of pitches, but an ambiguous harmony. The resultant chord E, A, D, G, B and
E could be interpreted as an E minor 11 chord, or a G major six-nine chord (with the sixth
in the bass), or perhaps a C major thirteenth, omitting the root (C). As if in harmonic
superposition, all interpretations are equally valid (although some are, admittedly, more

likely) until the chord is given harmonic context and the functionality becomes evident.

The simplest example of this can be seen in section % theme A1 (3/4) of goose-communications
.mmm1 where the piece is deliberately composed to accommodate a pedal bass (label % macro
#06 - channel C: bass pedal C #1 (3/4)). Pedals are easily repeatable and, due to their

prevalence in wider music practice, do not draw attention to the low-memory composer’s

ulterior motive.

4000ad .mmm1 uses a more sophisticated Harmonic Neckering for the arpeggios in macros m9
and m10, where the perceived harmony of the arpeggios is changed in their second evocation
by the contrast against new material in channel C. Where m9 and m10, played against
material in channel C at line 319, create a C#m?!! chord, the introduction of m17 (under label

% solo A (4/4)) changes the apparent tonality of these macros to an F#'3. Not only is this

116 Chords for piece #1: C F C F C G7 C. Chords for piece #2: C2dd® 13 F§ Fmf
117Unless familiar with the classic chipmusic album BLUESHIFT.

84 4 COMPOSITIONAL APPROACHES

Gma J 1 3sus4 Cadd9

oY —
e

Figure 24: A visual demonstration of ‘Harmonic Neckering’. Just as the orientation of the cube (top) is
rendered unambiguous by further visual cues (bottom), the harmonic image can behave the same. Two,
identical chords of D, E and G can become a pleasant cadence with further musical context.

aesthetically pleasing (harmonic expectations have been subverted) but it is also good low-
memory practice. The introduction of a bass pattern in m17 could simply restate the C#m?!!
chord, however, because new data is being added anyway, the composer might as well use this
opportunity to break from the established musical framework and introduce further variation

(if relying on repetition to save space, occasions such as these can be rare!).

Mooning is terminology I apply to a specific flavour of Harmonic Neckering, conflated with
channel decoying. Specifically, it refers to the use of especially long passages of perpetuum
mobile ostinati and owes its (somewhat tongue-in-cheek) terminology to the infamous (at
least, in the chipscene) Nintendo Entertainment piece The Moon (from the game Ducktales
[206]), which featured the technique prominently. Specifically, repeated sequences are
designed to busy a (usually) single voice with constant, easily repeatable harmonic content
with the aim of producing alternate, extended, or completely different harmonies when
contrasted against melodic content in other, simultaneous voices. Textural complexity can be
largely delegated to the repeated figure, then simple movements of few musical instructions
shift the apparent harmony and establish new tonalities. Consequently, as the alternative
would be stating these chord changes verbatim in all channels, large amounts of memory can
be saved under the guise of aesthetic choice. To be of greatest value, mooning will mostly
employ Harmonic Neckering; ostinati that are too transparent or literal in their harmonic

declaration will limit their possible application.

Mooning is used heavily in goose-communications.mmml where channel B is largely occupied
by the ostinato in m1. The sequence: @ o5v6 e64 v5e32. v4<b64 v3b32. v6>a64 v5a32.

v4e64 v3e32. v6b64 vEb32. v4a64 v3a3d2. v6e64 vbe32. v4b64 v3b32. v6<a64 vba32. v4>

e64 v3e32. v6<b64 v5b32. v4ab4 v3a32. is ostensibly a ES"* arpeggio but takes the role

of different harmonic extensions depending on the material it is contrasted against. For
example, when played against material under label % theme A1 (3/4), the chord sequence
becomes E, Db§, A2, A2/G. However, when presented in section % theme B1 (4/4) this
arpeggio becomes: E, EMaj®/D¢, E7/D, A2 /A Am§/C, E/G¢, F47/A4, B4 B (largely

due to the descending chromatic movement from E to Agin the bass). Finally, it is presented

4.3 Strategies For Reducing Compositional Footprint 85

MARTO HORLD TIME
025550 L0 L q=-1 266

8 i

o

Figure 25: Examples of Neckering are not limited to music and are good practice for other low-memory
artforms, such as graphics. In Super Mario Bros. (1985) [@], to save space, both the bushes and clouds
share the same graphic, but different palettes are applied. Whilst the image is identical in shape, the
perception of identity is altered by both position (proximity to the ground for bushes, height on screen for
clouds) and colour - it has been visually Neckered in an analogous fashion to the musical materials described
here. The screenshot is taken from: https://en.wikipedia.org/wiki/Lakitu#/media/File:Lakitu_in_Super |
Mario_Bros._(1985) .png

again over E, F#°/E, Am in section % ending melody (3/4). The reader may notice that I
have omitted to spell chords where these extensions would be dissonant; technically any
statement of F#” underneath m1 would result in Fﬁn#g. Simply, I do not hear that dissonance
as part of the tonality. It is interesting to me that this is even the case; if one removes the
Neckering channel, the aforementioned chords do not appear with such viscerality. It seems
that the brain is acting as a harmonic sieve, ignoring where the ostinato disagrees with

the harmonic narrative and allowing the extension to contribute to the harmony when it is
consonant. Whatever the underlying mechanisms, this is certainly exploitable by the low-

memory composer!

Listing E demonstrates why Harmonic Neckering is such an powerful solution. Four methods
of single channel accompaniment have been written to harmonise the following bassline: 02
c2<bagfedg. I have chosen a predicable chord sequence primarily for harmonic legibility;
extended, unusual harmonies can be difficult to imply with two voices and relying on
convention (the tropes of genre and wider music theory) can offset some of the responsibility
placed on the composer to communicate musical objectives effectively. This is also true of
the bassline; this endeavour may have been significantly more challenging if the bassline
were a static pedal. The solutions somewhat delegate their own harmonic responsibilities

to the movement of contrasting voices; without it, Neckering certainly would not work.

https://en.wikipedia.org/wiki/Lakitu#/media/File:Lakitu_in_Super_Mario_Bros._(1985).png
https://en.wikipedia.org/wiki/Lakitu#/media/File:Lakitu_in_Super_Mario_Bros._(1985).png

86 4 COMPOSITIONAL APPROACHES

% channel a
@ t50 % set tempo

% harmonisation technique #1: arpeggio - 190 bytes
v7 o4 e64d v6 <g>c v5 [3 ed<g>c] v4 [4 ed<g>c]
v7 d<b v6 gd> v5 [3 d<bgd>] v4 [4 d<bgd>]

v7 c<g v6 ed> v5 [3 c<ged>] v4 [12 c<ged>]

v7 o3 af v6 dc v5 [3 afdc] v4 [4 afdc]

v7 bg v6 ed vb [3 bged 1 v4 [4 bged]

v7 04 c<a v6 f+d> v5 [3 c<af+d>] v4 [4 c<af+d>]
v7 o4 c<a v6 fd> v5 [3 c<afd>] v4 [4 c<afd>]

% harmonisation technique #2: harmonic neckering - 45 bytes
[8 03 v5 ¢32 v3 d> v56 ¢c< v3 ¢ vb g> v3 ¢c< vb ¢ v3 g< vb £> v3 c< vb g
v3 f> v5 ¢c< v3 g> vb6 d v3 ¢]

% harmonisation technique #3: melody - 38 bytes
v56 04 e8degd4 | c8ce<b4g | aBga>c<glb6rg8>celbr | e8fdcd2

% harmonisation technique #4: simple harmonisation - 12 bytes
v4 o4 e2dcl<a2g>c<b

% channel b (bassline)
@ v4 [4 o2c2<bagfedg]

Listing 9: Possible types of single voice harmonisation/accompaniment of a simple descending Ionian(ish)
bassline in pMML, ordered by memory cost. Memory could be saved further in technique #3 by removing the
‘echo’ effect interleaved with the melody. See https://doi.org/10.5258/S0TON/D1387 for an audio example.

Although the techniques are ordered by size of compiled code, they are also ordered by

their timbral and harmonic interest. The correlation is not a coincidence; generally, the

more commands added to alter timbre or nuance melodic content, the greater the aesthetic
repayment, but the greater the ﬁlesize. The first example (labelled % harmonisation
technique #1: arpeggio - 190 bytes) is a near verbatim statement of the harmony by means
of rapid arpeggiation. It is indubitably the most transparent method of communicating

the composer’s harmonic intention, but requires nearly sixteen times the memory than

the simplest solution presented. In contrast, the simple harmonisation (% harmonisation
technique #3: melody - 38 bytes) and melody (% harmonisation technique #4: simple
harmonisation - 12 bytes) solutions are, although small, quite frankly, dull. Returning to
the fundamentals of effective low-memory music, these solutions do not belie limitations
(they sound both simple and uninvolved), they do not embrace maximalism and maximalist
techniques (they present simple, sustained notes with no timbral variation), nor do they
make best use of the 1-bit platform. For only seven more bytes than technique #3, the
Neckering material has a more interesting compositional identity, creates extended harmonies
in contrast with the bassline and pushes the timbre to the limits of the 1-bit platform.

18 At least in uMML. Some systems may utilise commands that invoke more complicated patterns.
Generally though, unless deliberately mitigated by the routine, this holds true.

19 A rather absurd thought has occurred to me: it might be possible to make a musical score Turing-
complete through the use of loops and harmonic neckering. These harmonically ambiguous materials could
to act as logic gates in a manner similar to that proposed in Changizi’s paper on Turing-complete visual
illusions [] For example, exploiting the fact that, when the listener is presented with a major or minor
third, subsequent chords consisting of only the root and the fifth are interpreted as if they were the tonality of
the initially stated note (A chord of just C and G will sound major if an E was played beforehand, or minor if
an Ebwas played). A NOT would be a parallel minor modulation, for instance. There are certainly potential
problems with this approach, but it is an interesting thought!

https://doi.org/10.5258/SOTON/D1387

4.3 Strategies For Reducing Compositional Footprint 87

Technique 6: ‘Colour Within The Lines’

Colour within the lines, or: don’t compose outside of the implementational paradigm. Using
uMML as an example, a dotted crotched (c4.) requires a single byte to declare, whereas a
double-dotted crotchet is not defined. It is possible to represent the double-dotted crotchet in
pMML, however this necessitates an additional semiquaver command (c4.c16). Consequently,
any instance of a double-dotted crotchet always requires two bytes to represent. The low-
memory composer may wish to reconsider their compositional decisions to best fit the model;
how important is the extra semiquaver? Might a dotted crotchet contraction, or minim
extension, be a suitable exchange? If one were to transplant a MIDI file, with unquantised
durations, verbatim into pMML, the memory footprint will almost certainly be significantly
larger than that of a similar sounding composition which makes use of judicious note
substitutions. These decisions are obviously not unique to note durations and may be more,
or less, restrictive depending on the system. In short, one must endeavour to make best use

of explicit commands and the features available.

This is not to say that one cannot operate outside the paradigm, in fact this may produce
interesting results, but knowing when to ‘bend the rules’, and where one might compensate
for any subsequent, potential memory increase, is important. Essentially, damage control
for when non-standardised techniques are employed. As an example, to save space on the
initial memory ‘down-payment’, potential functions were removed from the mmml.c routine,
keeping the software as small as possible. The initial specification included an arpeggio,
pitch sweep and vibrato function. Rather than exclude all undefined musical ornaments
from future compositions, techniques can be incorporated using the existing commands.
This will necessitate operations outside of the framework and will require extra memory.
Most instances of vibrato I have used in uMML are essentially fast musical ‘turns’, where
the semitone above, the note itself and the semitone below are played repeatedly and
contiguously, notated as per the following: c64 c+64 c64 <b64 >c64. Examples of this
approach can be seen in line 273 of puppy-slug.mmml, line 213 of fly-me-to-the-moon.mmml
and line 39 of 4000ad.mmm1. In all listed occurrences, the vibrato has been extended so that
it can be looped — a loop costs only three bytes to express. This is the aforementioned
“compensation”: if one wishes to tersely execute a vibrato, it should be ensured that the
declaration is as small and repeatable as possible. One might wish to use: c64 c+64 c64 <
b64 >c64 c+64 c64 r32, however this passage might be better written as: [2 c64 c+64 c64

<b64 >]. In this instance, only a single byte has been saved, even so, this is a good habit
for the low-memory composer; the savings can be much more dramatic in other cases. This
behaviour is another example of ‘colouring within the lines’, using the looping function to
best effect.

Technique 7: Transposition

One technique that was not used in MMML but prevalent in low-memory composition
in general, is transposition [196, 165]. As notes are often synthesised in low-memory
music (as opposed to sampled), they can be modified before, on, or after, playback. This

flexibility allows musical fragments, or entire passages, to be transposed to new keys, thus

120Dye to the method by which mmml.c interprets data, transposition requires interpreting the desired pitch
shift in respect to both the current note and current octave. Additionally, there must be some mechanism by
which transpositions can be sequenced (see the proposed instrument macro in Section B.2).

88 4 COMPOSITIONAL APPROACHES

prolonging a material’s usefulness. One might imagine this to be another form of Neckering;
materials that work best with this method are those which are as harmonically agnostic

as possible. Basslines that hold a static note can be translated to consonance in any key
and simple arpeggios can be transposed to create any chord of the same tonality — indeed,
one can see how adding progressively more harmonic cues will gradually ossify a material’s

harmonic/melodic role.

This technique is employed in the spooky.c program. This routine is distinct from pMML as
note data is represented by values 1 — 60, hence a simple additive (or subtractive) operation
can be applied to note data, transposing patterns to different keys. The material labelled //
rhythm section main 0000 in spooky.c includes a simple bassline, moving in octaves, which

is continuously reused throughout the piece and transposed underneath the melody, creating
alternative harmonies in the process. As the notes are stored in binary (and thus difficult to

read), to more clearly demonstrate, this technique is notated in Figure @

o r 3 - -
T inw inw inw
T o B 43 v > > — 7 . - - —
Je 7 bu | 7 = 7 = 1 | 7 = 2 | | N & | 7 | | N & |RY L2 N
> 8 o 7 7 o v .’ . r —— r .
5 o
1 I\ 1 T # h
i N NT N T Py) - T —]
hdll X/ I'V‘ 7 |”V o || 7 |”V 7 | Ny = o 1 | 2 . 4 o | | AP 4 & = |
1 7 A 4 Y Y r 4 Y r 4 U 4 4
= — - he
10 b
he . e NS ®
(% (% (%]
7 | | VA | |
P h N N lb N—D . NN];D jl:\rl
15
-
e Yo o > I i — T > i |
Je1 7 | | |t P | | | A o] = o [1 |
v | v =y | | Y Vi VA) VA VA 1 |
—»LP—b—bd¥ T @ =| |.|r ’|/ 1 |

Figure 26: A scored demonstration of the transposed bassline in the spooky.c AVR program (https://
doi.org/10.5258/S0TON/D1387).

Technique 8: Canons

With a comprehensive definition in the Ozford Dictionary of Music, canons are possibly

the most effective of the straightforwardly traditional techniques discussed here. A canon

is, in its strictest sense, musical imitation; material in one voice is repeated verbatim in
another [208]. This repetition is often delayed by a bar, or any other duration, and can be
translated to different octaves or starting on different intervals. When passages are reused
literally, there only needs to be a single declaration for material that can populate the data
for two voices; creating polyphony from monophony. To make this endeavour compositionally
simpler, the use of short, repeated chord sequences ensures that material can be overlapped
more frequently. Listing @ is a short, two channel canon, 275 bytes in length. If we were

to imagine that writing unique material for both channels would equate to, approximately,

double the length of m1, then 246 bytes is saved by reusing material.

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

4.3 Strategies For Reducing Compositional Footprint 89

% channel a
@ [255 m1] % loop main melody

% channel b
@ r1 [255 m1] % loop main melody, but offset initially by a bar

% channel c (unused)
% channel d (unused)

% macro #1
@ % bar #1

03 v6g8viagl6v2gl6v6>cl6v2<gl6v6>d16v2cl16v6<f8v4af16v2f16v6>cl6v2<f16v6>
d32e32d16

% bar #2

v4<cl6v2cl6vid<el6vlel6>cl6<elbvia>clb6v2clbvia<glbv2gl6vafi6v2fl6vialbvalévd
>d16v2d16

% bar #3

v6>d32e16.c16v2el6v6<gl6v2>cl6v6<elbv22gl6v6fl6v2elbvbglov2fl6v6>cl6v2<gl6
v6>d16v2cl6

% bar #4

v4<cl6v2cl6vi4<el6v2el6>cl6<elbvia>clb6v2clbvia<g+16v2g+16v4f16v2fi16vi>elbv2
el6v4ddil6v2dile

% bar #5

v6>el6vdel6v6clbv2elbvb6el6v2clbvbglbv2gl6v6f32g16.£16v2gl6v6cl6v2f16v6dl6
v2d16

% bar #6

v6<gl6vdglév6f16v2gl6vEglév2f16v6>clb6v2<glévba+l6v2>cl6vb6<albéva+l6v6£16v2
alév6al6v2fl6

% bar #7

v4cl6v2cl6v4<cl6v2clbribviclévd>cl6v2clbva<fl6v2fl6vd4alév2alévdglév2gleva<
glév2gl6

Listing 10: A short canon written in uMML. Only a single channel of information is provided (m1) and
staggered by rl to create polyphony from monophony. See https://doi.org/10.5258/S0TON/D1387 for an
audio example.

If the technique is so effective, why have canons not been included in the four primary
supplementary pieces? Simply, writing canons that are both interesting and effective is a
somewhat difficult, slow process which becomes an increasingly challenging as more voices are
added. This endeavour is further demanding in pMML as there are no semitone, nor octave,

transposition functions, thus each canon must use identical materials.

However, strict canons can additionally make for an excellent delay, or ‘reverb’ effect. In
lines 19, 88 and 144 of paganinis-been-at-the-bins.mmml, m25 is played simultaneously, the
latter two channels offset by a semiquaver and quaver, and reduced in volume to v3 and

v2 respectively, creating a hall-like reverberation effect. Additionally lines 38 and 110 of

the same file, delay identical material in two voices by a hemidemisemiquaver, producing a
chorus/phaser. Although not in the spirit of the classical canon, it is practically identical and

proves a good method of busying an unused channel with minimal data impact.

121The relative octave jump would seemingly work, but compiles to an absolute octave value, see Section
. I will probably change this in future.

https://doi.org/10.5258/SOTON/D1387

90 4 COMPOSITIONAL APPROACHES

Rather than delaying the onset of material, what if two channels used the same materials,
but different read directions? Essentially, the product of this is known as a crab canon

[209, 210], where musical material in once voice is repeated in the second, only backwards.
The savings for such a technique are essentially identical to the traditional canon, if not
slightly larger, as a routine must be created to allow a second pointer to be reversed in
transport direction. Figure @ is a small composition demonstrating this technique across two

channels.

% f S T T Il —T }\ N T]
e =] : = b —F———
!J‘i‘#'.‘l..l d & e .I #\ & ——— [A 1
4 /\'

h ABAS, Fre C o
e e e e e s s o e s e |
&——— | e e e s |
o 14 14 U

p———f mp S

n _ o PE .#-#(—_f‘fh’f‘tr- P lerte
bll%.— | ||r/ IV T T ﬁll!l
8

[
¥ . !] = . e 1
&] o = = | == |
S = o = =t o

Figure 27: A short, scored piece demonstrating the crab canon technique. A crab canon is a compositional
technique where two voices use the same material, only one voice presents this material backwards.
Essentially, this is a musical reflection, or palindrome. See: https://doi.org/10.5258/S0TON/D1387 for an
audio example.

Technique 9: Phase shifting

‘Phase shifting’, or ‘phase offsetting’ is possibly the most powerful, economic tool I have
employed; extracting the maximum amount of musical interest from short phrases of material
via simple manipulations. Phase music is often considered a subgenre of minimalism though,
strictly, it is not necessarily related [211]. Specifically, phase music refers to the compositional
technique by gradually offsetting two simultaneous, identical ostinati so that parts lose
synchronicity over time [212]. This operation results in emergent rhythmic, harmonic and
timbral variation exclusively generated by the process. There could be potential distinction
between phase music and polyrhythms (the first, parts differing in tempi, the second,
contrasting metres — in this case, the same material with an additional prolongation, or
subtraction to engender phasing) but I would argue that both approaches are practically
congruent. Gradual offsets of a 1024th note will be perceived as subtle and timbral and

will not be, pragmatically, different to true phasing. Thus if we are to conflate the two

https://doi.org/10.5258/SOTON/D1387

4.3 Strategies For Reducing Compositional Footprint 91

approaches, phase shifting can be subject to quantisation: shifting by more prominent,

noticeable and rhythmic durations to ‘skip to the interesting parts’.

To increase the number of possible patterns, more voices can be added, however there is

an upper limit to how much variation this provides. As shown in Figure H, the maximum
number of voices is contingent on the metric quotient; any number of voices larger than the
value of the quotient will fail to create any new patterns through duplication. Therefore, the

most musically lucrative strategy is to increase the number of beats in each sequence.

Although when participating voices are considered individually, materials have very low
complexity (they are short repetitions), the instrumental gestalt has comparatively high
complexity; with each offset, a new rhythmic pattern occurs in the combinatory image. In

short, phase shifting communicates an illusion of complexity via the gestalt.

Figure 28: A selection of visualisations of short sections of the Jupiter uMML piece. The map is created
by plotting each sample’s amplitude from the minimum 0 (black) to the maximum 255 (white) from left-to-
right, top-to-bottom. Each pixel represents 511 samples; the final brightness of the image is calculated by
averaging the amount of waveform high events over the sampling duration. Generated at 212500Hz by the
1-bit-generator.c program (https://doi.org/10.5258/S0TON/D1387)).

Table H demonstrates the sequence of unique phase combinations possible when employing
phase shifting in time signatures § for ¢ voices (or channels), where each e is offset by

duration n (n is any metric denominator and e is the metric quotient). The pattern is as

Metric Quotient 123456 7 8 9 10
Unique Combinations 1 2 3 57 13 19 35 59 107

the The On-Line Encyclopedia of Integer Sequences (OEIS), which can be described by the
following equation[213):

follows: and matches sequence number ‘A008965’ in

E>1

I stumbled upon this sequence when trying to predict the number of unique patterns
generated when employing phase shifting across multiple voices for a sequence of e elements.
For v voices and e elements (elements are the considered the smallest possible offset in
duration, or the metric denominator) how many unique patterns exist? More specifically, in

a matrix of v rows and e columns, how many unique column combinations exist, regardless

https://doi.org/10.5258/SOTON/D1387

4 COMPOSITIONAL APPROACHES

92

© O —~ o N Neliar] © —~ N O — ™M © N < R=} lael O — ™M O~ M0 =) [ar] O —~ [apl © —~ AN M <t
0 0 O w0 = [inla] [IniN=R n O AN 0 — [in) [a] n O~ AN [InJNaR B S fin} [a] n O [a\] 0 O~ M <
<t =+ 0 -+ © <t~ = 0 O = 0 o~ + © N <t — = 10 O —~ 0~ ™M <t — =0 — 0 O = M
™ o < o™ 0 ™ o o <t ™ < © ™m0 —~ e © ™M 0 O ™M F O N o) © o <t © M 0 © —~ AN
[a] a ™ [[A\ i) N o <A a0 N = © (o 0 N <o [AR Tl] [a\] 0 o ™ 0 AN M 0 O~
— — N - ™M — <t — AN — A= — M0 — < — A = — < O — < - < — A M 0 O
©°

([. o o) ©

o> > > > > >

0 10— 0 o 10— 0 — ™ 0 — ™ 10— ™ ~t

< < 0 <+ - <t 0 <t 0 N = 0 [0 o~ o™

e o™ <t ™m0 o™ <t o™ < - ™ < — ™ < [a\]

[a\] a ™ o = a ™ a0 a ™ jin] a o <t —

— — ™ - ™ — — <t — <t — ™ 0

0

:1 N el < 0

ol > > > >

= <t —~ =+ N <t —~ ™M

o) o < o o < M <~ A

[a] o™ [o™ N <t~

— — — ™ — — o =

<t

L @ 5

(SN > > >

oe] ™ ™M — N

[a] o™ oM o~

— — ™ — ™

[ael

L »

[Sd > >

[a] []

— — ™

[a\]

([.

o> >

—

—

I

o>

=)
D~ |
o
O [
10 |~
<t O
elae)
(SR
|
n
\'/n
.S
(Lnlu@
=2
Ll
i R=
=0
oo
2|8
21T
Q1=
=2

Table 4: Possible unique configurations of overlapping, identical sequences in time signatures £ for c¢ voices

(or channels), where each e is offset by duration n (n is any metric denominator and e is the metric quotient).
Voices are indicated by v and, as more voices are added (as long as v is below e), there will be additional

unique variations.

4.3 Strategies For Reducing Compositional Footprint 93

of row order? Row order is inconsequential as, for the sequence C, E and G, a combination
of (g) is musically equivalent to (8), the notes are expressed by different voices, but the
configuration is identical to the listener. It is obvious that, for v > e, there will be no
additional unique patterns beyond v = e; there must be duplication. Furthermore, there
will only ever exist one possible pattern for one voice as unique interactions are relative to
contrasting voices, not relative to, or against the beat: for example, the sequence: 1 2 3 4
is the same as: 234 1, or: 34 1 2. This is because, when these permutations are created
by offsetting a single voice alone, it will sound identical to the listener (unless the listener
provides their own beat, which I consider to be a contrasting voice!), albeit with a possible
crotchet pause as the sequence is ‘shifted’. As for this sequence’s application and utility in
the compositional process, the composer only needs to know that the total possible unique

patterns increases non-linearly as e gets bigger.

Although not strictly phase shifting, paganinis-been-at-the-bins.mmml uses the inherent
metre informality of kMML (metre is indefinite and decided by the composer, not by the
system) to generate interest by contrasting looped materials of different lengths in a manner

very similar to that described above.

Final Thoughts

There is no doubt that there are further, perhaps less intuitive approaches, that have

been omitted here. The techniques that have been explored in this section are biased to

a particular form of raster composition, often found in wider chipmusic practice. Those

that are employed most often are those which communicate more classical, popular musical
tropes effectively. This type of composition is a reasonably safe method of retaining listener
interest over an extended duration as it engages with a musical language in which most are
familiar. If one relaxes this pre-conceived, perhaps unconscious, limitation that low-memory
composition is attempting to replicate something from a different paradigm, then a new
kind of music emerges. This is one that still operates in the pursuit of low B/s (and the
investigation’s overall premise), but also one that embraces what the medium easily creates;
or rather, what readily emerges from this practice. For example, rather than using phase
shifting as a feature within a wider composition (as is heard in paganinis-been-at-the-bins
.mmm1), why not use this technique as the primary compositional device (for example jupiter
.mmm1)? In this project I have made a concious choice to prominently display examples of
both styles as to explore a wide gamut of compositional options available to the low-memory

musician.

In focusing less on raster composition and, ultimately, further removing agency, one’s
predisposition to use traditional compositional objects (for example, harmony, melody and, as
we’ll see in the following chapter, the concept of notes and rhythm) is somewhat moderated.

As such, new kinds of music are allowed to emerge.

122Unless played on very different instruments with differing timbres, but the assumption is that these are
to be expressed by square waves — or at least the same set of instruments. Even so, the rule still holds if we
concern ourselves with purely musically theoretical properties, not the resultant soundworld.

94 4 COMPOSITIONAL APPROACHES

4.4 Generative Approaches

4.4.1 On The Nature Of Generative Composition

Where pre-composed material is almost entirely constructed by the composer’s intentionality,
in a generative piece, the composer sacrifices some agency to the process. This is not to say
that the piece is truly aleatoric, it is dictated by a strictly deterministic system, only the
precise results of this system may not easily, nor entirely, be prognosticated by its author.
Predictability in generative music is obfuscated away from the composer by an inability

to entirely determine how a set of rules will unfold [214], the extent of this indeterminacy

is contingent on the creative decisions delegated to the system. An example of a ‘soft’

indeterminacy is demonstrated in the Simple Oscillator program.

if (fxCounter-- == 0){
fxCounter = FX_SPEED;
waveform--;

}

Listing 11: Simple square wave oscillator program (osc.c).

In Listing El, the value of the waveform variable is not explicitly defined, but described
algorithmically. The variable is continuously decremented, recurrently underflowing.

Here, the procedure is obvious, little thought is required to predict the next state, yet the
sequence cannot be determined without a deconstruction of the function. In a compositional
environment, generative functions can be seen as compressed decelerations of their literal,
raster equivalents. For example, the object waveform[255] = {255,254,253, ... 0} is a
literal expansion of the statement for (waveform = 255; waveform > 0; waveform--). In this
context, functions that describe analogous raster arrays in equal to, or more bits, than their

literal analogues can be considered circumlocutory.

No matter how simple and perspicuous the initial instruction set, there is a veil of
incomprehension between the process and the product. The outcome is an exemplar of
emergent phenomena [215, [172] plainly demonstrating how a series of very simple operations
can generate complex behaviours in higher order abstractions. This raises an interesting
dilemma: to whom can authorship be ascribed? We can immediately disregard the
microcontroller as composer. The constituent instructions are inherently ‘portable’: enactable
no matter the process by which they are conceived or enacted. As already discussed, 1-bit
music is fundamentally platform agnostic. Furthermore, if one argues that the potential for
sonification (or that, for any waveform, there exists a perfect, mathematical description)
may be considered, in itself, a valid piece of music, this composition could be constructed

by any entity that can perform the necessary calculations - by means of electron or by ink.
The microcontroller here is unequivocally an agent in realisation, though more akin to a

performer.

The logical conclusion to the problem of authorship attribution is the notion of composer as
curator. In this case, the generative musician relies on a process of trial and error; a series of
scripts are written, their product expanded, made accessible to human ears, then only those

that cohere with the artist’s value judgements are archived and presented as music. When

4.4 Generative Approaches 95

I come to analyse the project’s generative products, I do so under the influence of survivor
bias; I have chosen which experiments are of interest. I feel this arbitration is the primary
voice of the musician in the generative process. In my mind, it operates in a paradigm similar

to collecting stones at a beach: the selection is a reflection of the collector’s idea of desirable.

On first inspection, a generative process seems to best satisfy the research criterion (as

to whether it is possible to fit complex music in less than 1KB) as one does not need to

store extra information beyond the routine. If raster, pre-composed, data is periphrastic,
consuming space with superfluous literal declarations, why entertain any other strategy

but generative? Many programs that algorithmically compose can be memory intensive;

any neural network/machine learning implementation is largely infeasible within the spaces
outlined in the project manifesto. Additionally many techniques, such as the software
examples of Markov chains and musical sieves in Xenakis’ Formalized Music [217], are

at least a few kilobytes in size, ignoring required libraries. Simply, even if an economical
generative implementation is possible, the memory footprint for this program must be smaller
than raster approaches (more straightforward sound routines total a few hundred kilobytes in
size, outlined in @, additional clever, strategic musical writing can cause small additions
to make a large musical impact, see @) to be considered a valid solution. As the product of
simple generative processes are likely to hold less interest (and produce more homogeneous
material) to the listener than that produced by humans, to be considered a valid alternative,
a terse, epigrammatic method of algorithmic generation (no more than a few tens of bytes)

must be found. It seems that a solution (at least in my own practice) is bytebeat.
4.4.2 Bytebeat

Formalised in September 2011, by Ville-Matias Heikkild in a video titled Ezperimental music
from very short C progmms@ [218], bytebeat is music created with no instruments nor score,
but algorithmically, as a function of time [219]. Bytebeat operates at the sample domain,
retaining compositional authority at the smallest level of musical time. At this speed, if
one were to compose in raster, huge volumes of data would be required — in the hundreds,
or thousands, of kilobytes — as every sample need be stored for playback. Instead,
bytebeat is purely generative: short statements in code perform a series of operations on a
single variable, traditionally labelled t for time, which is incremented endlessly; repeating on
variable overflow. The benefit of this practice is that only a few tens of bytes are required

in source code, in many cases, a single line of code potentially producing minutes of unique

music. An example of the format is as follows:

The code in Listing @ is short, concise and generates unique content for around a minute

of music. Variable t (presumably 32-bit here) is incremented by the for loop indefinitely.

123 As evidence, the reader may examine any library mentioned in the cited list, they are all far beyond a
few kilobytes [21€].

1241f that; this project has used a C to AVR. ASM compiler, one can create much smaller applications with
assembler [[131]].

1251 use ‘formalised’ rather than ‘created’ here as there has been discussion that these kind of techniques
existed before Heikkild’s video, but the recent interest and subsequent categorisation most certainly dates to
this event.

126 The practice of ‘sub-sample’ composition (e.g. that smaller than an individual sample) is unintelligible as
it does not refer to any sonified products.

127Essentially, crafting a wave file by hand.

96 4 COMPOSITIONAL APPROACHES

1x X 4x 8x

Figure 29: Product of the formula: t*((t>>12]t>>8)&42&t>>4)-1 discovered/created by Heikkila []
Images are created by plotting each sample’s amplitude from the minimum 0 (black) to the maximum 255
(white) from left-to-right, bottom-to-top. Each image is ‘zoomed out’ by the labelled scaling factor by
sampling amplitude at specified intervals. Generated at 8000Hz by the bytebeat.c program. See https:
//doi.org/10.5258/S0TON/D1387 for an audio example.

int t = 0; for(t=0;;t++){
putchar (t*((£t>>12]t>>8) &42&t>>4) -1);
}

Listing 12: Bytebeat piece listed in Heikkild’s seminal video demonstration.

Within this loop, a set of calculations is performed on t. This final result is sent to the
output as raw, PCM data for playback, dictating an expressed, 8-bit, amplitudinal value.
The process is then repeated for t now at an incrementally higher integer, providing
different results with each calculation. The music generated by this process is chaotic, noisy
and intricate, loosely resembling the textural landscape of chipmusic. This association is
possibly due the prevalence of saw and pulse patterns in the final waveform. These are a
consequence of bytebeat’s particular transformations: gradually incrementing a counter is
likely to engender ‘ramps’ of amplitude, resulting in saw-like timbres and overflowing (or
underflowing) of variables will ‘jump’ amplitudes to their maximum or minimum states,

causing pulse-like behaviour.

h
I,

P rrryy oy

TR

Figure 30: Product of the formula: ((£t<<1)~((t<<1)+(t>>7)&t>>12)) [t>>(4-(177&(£>>19))) [t>>7
discovered/created by Kragen [] Each image is ‘zoomed out’ by the labelled scaling factor. Generated at
8000Hz by the bytebeat.c program. See https://doi.org/10.52568/S0TON/D1387 for an audio example.

Academic materials concerning bytebeat, or bytebeat application, are currently limited,
however a whitepaper published in 2011 by Heikkild formally documents the phenomenon
and, alongside a detailed deconstruction on his blog [], outlines techniques discovered
collaboratively, by the wider community [] The paper catalogues a set of parameters that
can be altered to predictably influence how emergent structures might unfold. Consequently,

bytebeat composition becomes more than pure ‘discovery’, as Heikkilé lists each composition

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

4.4 Generative Approaches 97

in his videos, but, instead, a mixture of experimentation and deliberate composer
interventions coaxing, actuating and moulding the output in predictable orientations.
Bytebeat is, inarguably, elegant and beautifully simple — especially when considering its
incredible memory to product ratio; seemingly a perfect solution to the research’s proposed
questions. Unfortunately, many of the techniques outlined in this material do not translate

neatly to purely 1-bit environments.

8x

Figure 31: Product of the formula: t*(t>>((t>>9]|t>>8))&63&t>>4), titled: Space Invaders VS Pong,
discovered /created by Visy [21§]. Each image is ‘zoomed out’ by the labelled scaling factor. Generated at
8000Hz by the bytebeat.c program. See https://doi.org/10.5258/S0TON/D1387 for an audio example.

4.4.3 Bitbeat

Bitbeat is a derivation of bytebeat and my solution to creating generative music with a
minimal memory footprint using a 1-bit output. The core principle behind bytebeat and
bitbeat algorithms is largely the same; both methods use a series of simple operations to
create music from short programs, but there is a significant difference: bitbeat produces a
1-bit signal. This means that any product of the bitbeat process will conform to the same
restrictions and behaviours described in sections E, and . Bitbeat appears to have
‘fractal’ properties, in that, over time, it is (musically) self similar. The same compositional
ideas return repeatedly, often with variation. The impressive thing is that, when one
considers how many samples must be created to generate a tone, bitbeat algorithms will
oscillate between extreme repetition (generation of a square wave of constant pitch) to bursts
of noise, pitch sweeps and complex timbral modulations. This surprising musical diversity

makes it the most efficient low-memory 1-bit music solution I have explored.

Listing @ demonstrates a simple example of a bitbeat algorithm. We can concern ourselves
with the following line of material: PORTB = (t >> PORTB | PORTB >> 1)~ 1; which is
responsible for the structure and timbre of the resultant piece. In bitbeat, the variable
PORTB is iteratively processed, the resultant is used as the input value for the next iteration.
This is distinct from typical bytebeat practice where the input to the function is a linearly
incrementing t. One might expect that existing bytebeat formulas would be able to be
transferred across to a 1-bit environment and produce comparable results, interestingly this
is not usually true. The standard bytebeat approach (a series of manipulations to a single,
accumulating counter (usually t)) only provides limited timbral interest when applied to a
binary output. The main difference between bitbeat and bytebeat therefore, is that bitbeat

seemingly requires more stochasticity. The iterative behaviour provides this, generating up to

https://doi.org/10.5258/SOTON/D1387

98 4 COMPOSITIONAL APPROACHES

tens of minutes of novel material.

#include <avr/io.h>

int main(void)

{
DDRB = 0b00000001;
for(uint32_t t = 0 ;; t++)
{
PORTB = (t >> PORTB | PORTB >> 1) ~ 1;
for(uintl16_t i = 0; i < 100; i++) asm()
}
}

Listing 13: The AVR C program code for a simple bitbeat piece. Interestingly, whilst this code continues to
generate novel variations of the ‘theme’ for the duration of the algorithm, periodically it will pause, creating
a piece not unlike Figure [L7. It is baffling to me that such a simple algorithm creates such variation and
complexity! An audio file of this algorithm can be generated using the bytebeat.c program (see: https:
//doi.org/10.5258/S0TON/D1387 to download the program).

There is a (related) problem I encountered when experimenting with bytebeat: any algorithm
will produce novel material for as long as there continues to be unique states of t. Most
bytebeat is effective for only a minute or so of material. One can increase the datatype

for t, allowing for more unique results but, ultimately, the same patterns begin to emerge
repeatedly. For example, although Figure @, produces continual variations, these are subtle
and the piece’s main framework — the prominent rhythmic and melodic arrangement — does
not vary. If one were to expand these techniques into complete pieces (rather than sonic
canapés) by adding more code, the footprint would become progressively less economical

as more lines of bytebeat were added. In typical sound routines, once the core routine has
been written and main memory down-payment made, subsequent raster material is likely to
expand more efficiently than this initial chunk of code; especially so if observing techniques
covered in Section @ Additionally, if one wishes to increase the sampling rate to something
higher than 8kHz, as a new state for t is generated every sample, bytebeat will ‘burn’ too
quickly through samples; there must be more data per second otherwise repetitions, caused

by t overflow, occur too rapidly.

b'd C2x 4x 8x

Figure 32: Product of the formula: ((t*((t>>vV)&(t>>v)))&((t>>12]|t>>8)&42&t>>4)-1); v-=1000;,
discovered/created by me! Uses an additional line of code to modulate variable v, which results in a ‘phasing’
effect. Each image is ‘zoomed out’ by the labelled scaling factor. Generated at 8000Hz by the bytebeat.c
program. See https://doi.org/10.5258/S0TON/D1387 for an audio example.

128Your mileage for any given piece may vary. Although bitbeat technically creates novel material for hours,
I have found each piece to be interesting for only a certain amount of time. Sometimes this can be tens of
minutes, other times, seconds.

https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387
https://doi.org/10.5258/SOTON/D1387

4.4 Generative Approaches 99

Therefore, to squeeze as much content as possible into a single line, one must find a way to
get even more unique material out of a the bytebeat algorithm. The initial strategy may

not be in the spirit of the original premise, but further code can added to achieve this.
Figure @ is a traditional bytebeat algorithm however extended by an additional counter.
The secondary variable introduces another modulation source, allowing for more complex
manipulations. One can imagine this as a similar effect to phase shifting, where two, high
resolution counters, decrementing by different values, will rarely repeat in synchronicity, thus
producing further complexity by their contrasting cycles. This technique can be taken further
to generate gradual, structural manipulations, extending interest over longer durations; a
perfect solution to the 1-bit problem. This is why PORTB is used recursively; it effectively
adds an additional variable alongside t further modulating the signal, introducing additional
stochasticity. It is these additional, nested modulations that makes bitbeat interesting.
Consider Listing B in comparison to Listing @ Listing @ is identical to Listing @, however
with a modification to the second for loop. In Listing @, temporal resolution (sampling
rate) is mediated with the inline assembler asm() command, embedded in the for

loop. Simply, the nop command ‘wastes’ a clock cycle. The function moves the timer away
from operating against the Attiny’s internal RC oscillator and into software, reducing the
maximum attainable instructions per second (IPS). This serves to bring the generated tone
into both audible and comfortable frequencies for humans and creates a buffer, allowing the
routine’s operational speed to be adjusted. Simply, this whole loop could be ignored if the
microcontroller clock speed matched the desired sampling rate. However Listing @ exploits
this short loop by introducing a second source of modulation; time between amplitudinal
events. Whilst the main melodic contour and phrasing of the piece is largely the same
between the two programs, the result in Listing @ has significantly more timbral variation;

if Listing @ was the piece’s outline, Listing @ populates this sketch with timbral ‘colour’.

#include <avr/io.h>

int main(void)

{
DDRB = 0b00000001;
for(uint16_t 1 = 150 ;; 1+=50)
{
for(uintl6_t t = 0; t < 65535; t++)
{
PORTB = (t >> PORTB | PORTB >> 1) ~ 1;
for(uint16_t i = 0; 1 < (1 & t); i++) asm()
}
}
}
Listing_14: The AVR C program code for bitbeat piece, millipede-call-centre.c; an expansion of
Listing [LJ. The piece is built around a distinct rhythmic and melodic phrase that is mutated with each

restatement, gradually ‘decaying’ in tempo and pitch.

One may also notice that, in Listing @ a further modulation source has been added in the
form of variable 1, incrementing for each instance the primary loop concludes (t reaches
65535). This variable is used as an additional stochastic source in the delay for loop, however
additionally provides a slow-evolving macro structure beyond that provided by incrementing
t. Although the sonic results of adding further modulation sources can be, inherently,

unpredictable and chaotic, one can make deliberate modifications to bitbeat algorithms,

100 4 COMPOSITIONAL APPROACHES

based on the temporal categories explored in Section @, and produce predictable changes.
The speed at, or temporal domain, which a variable is incremented will produce changes that

are perceived to be in an identical phenomenal group to the products of traditional routines.

Figure 33: Visualised product of the Tiny Djent bitbeat piece. As the output is 1-bit, pixel brightness is
calculated by averaging the total number of positive waveform samples over the image sampling duration.
Generated at 4MHz by the bytebeat.c program.

As an additional boon, one can incorporate 1-bit techniques typically employed in raster
routines. For example, at high sample rates, short, inline bitbeat formulas can be mixed via
the pulse interleaving method (Section) to ‘fill’ soundscapes with multiple, parallel lines
of material at varying levels of volume. Listing @ demonstrates how this might be achieved
in software. Each contiguous bitbeat algorithm updates PORTB in sequence, approximating
PIM mixing. The different software channels all semantically cohere due to sharing the same
delay for loop. As each algorithm will take varying amounts of time, thus the output of each
will be expressed for different durations, some channels will be louder than others. As the
compositional process is largely a random process of sifting through permutations, this is not

as much of an issue as it might be for raster approaches.

#include <avr/io.h>

int main(void)

{
uintl6_t t,1;
DDRB = 0b00000011;

while (1)
{
for(l = 0 ;; 1+=50){
for(t = 0; t < (1024 << 1); t++)
{
PORTB = PORTB | (PORTB >> 1) ~ 1;
PORTB = (t >> PORTB) | (PORTB >> 1) ~ 1;
PORTB = (t >> PORTB | PORTB >> 1) ~ 1;
for(uint16_t i = 0; i < (1 & (t * 1)); i++) asm("nop");
}
}
}
}

Listing 15: The AVR C program code for bitbeat piece, infinity-soup.c.

As, on many systems, the smallest addressable memory element size is usually one byte
large [,], often the bitbeat output variable is still an 8-bit number. This means
that manipulations to the output will apply to all bits in a byte, even if only a single bit

is sonified. If, for example, the output controls a register which affects the logic level of a

4.4 Generative Approaches 101

microcontroller I/O port, each bit of this register could refer to an individual 1-bit output.
Consequently, multiple simultaneous, semantically related lines of material are generated
synchronously, with the same code. Because bitbeat relies on a binary output, manipulating
the 8-bit PORTB I/O register in equations gives a total of one channel per bit, eight channels
in total. These channels can be either mixed in software (see)7 or simply wired to a
separate output electronically. This makes bitbeat more economical than bytebeat: more

content is created with each algorithm and, most crucially, each sounds homogeneous.

Additionally, as bitbeat is embedded, there are only a limited set of operators and functions
permissible. In bytebeat, the composer-programmer’s intention is to reduce the number of
characters in the source code, in bitbeat it is to reduce the compiled size. This may not seem
significant, however this restriction makes previously trivial operations costly to implement.
For example, the modulo function in AVR C requires an additional kilobyte of program space
and even the multiplication and divisor operators will add an additional fifty (or so) bytes

to the compiled size [147]. Therefore, to keep filesize to a minimum, one must rely on those
operations which are compiled smallest; in AVR C these are, primarily: addition, subtraction

and bitwise operations.

Bitbeat might be somewhat unpalatable to the average listener; it does not adhere to
standardised tunings and rarely produces consonant intervals, but it is undeniably musical.
Pieces often have a regular rhythm and are subdivided into common time (like Listing @)
I consider this to be somewhat of a victory, it does seem possible to produce something at
least resembling music in very low memory environments. The smallest, coherent bitbeat
algorithm in this project (Listing B) continues to extrapolate on a core idea for tens of

minutes (despite lengthy pauses between seconds) and sizes just 104 bytes.

129The reader should be aware that fewer channels may be generated if there is an destructive bitwise shift
left (or right) before expressing outputs.

103

5 Conclusion

Whilst it is certainly possible to create music within a single kilobyte of Attiny
microcontroller flash memory, the limit on how engaging this might be is dependent on the
method of generation. Whilst pMML is undoubtedly not the most efficient raster solution
possible, it is difficult to imagine how one might fit a piece like 4000AD into 1KB. Even if the
initial routine was refactored, or rewritten in AVR assembler, the data array would remain
the same size. To mitigate this, one might delegate certain compositional elements to simple
in-line, user addressable functions (such as automatic arpeggios, or melody generators, for
example) however, for the composer to communicate their ideas unabridged (lossless), there
will remain as many symbols as there are events required to replicate the idea. The number
of required symbols may be reduced using data compression methods, but this expands the
routine size in order to make savings in the song data. This is only sensible if one will see

a return on this memory down-payment by means of reduced expansion in future, which is
unlikely true in 1KB. Essentially, what I am describing is a form of the space-time tradeoff
(or time-memory tradeoff) [224, [147]. Although one could consequently consider this problem
as the concern of computer science, perhaps the most interesting thing about this endeavour
is that, as composition is creative, there is no pre-existing object to compress; one may

build within the data boundaries. The composer can completely yield to the limitations

and expand where the system is most forgiving. They may select only those creative choices
which work best, thus producing artefacts that seemingly belie the constraints via intimate
knowledge of the system itself@. Simply, as a creative, one can change their intention to

work with the system.

To demonstrate, if we were to imagine the data limits of low-memory composition as a
limited pool of hexadecimal characters instead (A, B, C, D, E and F, including punctuation),

the approach produces an equally effective result:

Before ‘compression’:
a run-down restaurant

a faded, defaced cafe

After ‘compression’ (removing all letters that are not hexadecimal characters):
a -d eaa
a faded, defaced cafe

Whilst the second sentence is not semantically identical to the first, and adds a few

creative substitutions (for example, ‘restaurant’ and ‘cafe’ are not directly synonymous), it
forces alternate solutions and seems to contradict the six character limitation; it subverts
expectations as to what is possible within the framework. In short, if the composer does not

endeavour to create generalised solutions (as the computer scientist or mathematician might),

130Effectuated in a manner similar to technique seven in Section @

104 5 CONCLUSION

the composer has liberty to create smaller, more perspicacious, more idiosyncratic products.
This is why low-memory composition is worth exploring, it both challenges and changes
compositional models in a new way — not like serialism, new complexity or spectralism
where traditional, theoretical models are challenged — but semiotically, where the traditional
management of musical instructions are challenged. I would go as far as to suggest as low
memory composition can be an exaggeration and amplification of instrumental composition.
As the maximum permitted filesize decreases, the various creative concessions one might
occasionally expect to negotiate instead consume the composer’s decisions, to such an extent

that effective composition becomes a puzzle.

So, if we are to evaluate the success of this project by the ‘bytes-per-second’ criteria
presented in Section H, for each of the pieces in the portfolio, we must ascertain which has
the smallest B/s — indicative of the most effective low-memory compositional technique. I
find it difficult to decide which of my devised solutions and memory optimisation techniques
is the winner, bitbeat or uMML, as each has individualistic strengths and, within those

two methods, there are many approaches of varying effectiveness. Table B lists each of the
project’s uMML pieces, ordered by B/s. Bitbeat pieces have not been included as they

are somewhat problematic to evaluate using the same criteria as the uMML pieces, with
particular respect to maintaining musical interest. Technically one can argue that each
bitbeat algorithm has the potential to create unique material for hours (perhaps even days),
however these variations can be either quite subtle or, more often, simply uninteresting after
a few minutes, as the emergent arrangements do not deviate too far from a few core musical
‘ideas’. As I have no established model by which I can objectively evaluate the musical
complexity, and subsequently interest, of any given piece (or taken an average complexity

over a period time), these are excluded from the analysis.

As is evident from Table E, the only uMML pieces that answer the question as to whether

is it actually possible to create complex, engaging music in less than a kilobyte of program
space, are the Piano Phase (piano-phase.mmml) and Bach (prelude.mmml) transcriptions,
along with the Jupiter suite (jupiter.mmml). However, this is only if one excludes the

uMML routine, which sizes 1458 bytes in total. Although this means that any piece made
using pMML will exceed the research’s memory limitations, with significant refactoring,
removing superfluous functions and converting mmml.c to AVR assembler, it may be possible
to squeeze some of these pieces into a single kilobyte. Interestingly, two of these pieces

use phase shifting as their primary compositional technique; it is clearly the most efficient
approach to raster composition explored. In fact, file sizes are so small that they rival that of
bitbeat (shown in Table E) I think that, if one considers timbral complexity, compositional
interest and B/s, jupiter.mmml is by far the most successful composition. Although perhaps
not as conventionally interesting as 4000ad.mmml, or goose-communcations.mmml, it is more
engaging than the bitbeat compositions over a longer period of time. The Bach transcription
falls below a kilobyte for two reasons: firstly, timbral variation has been sacrificed for
memory savings and secondly, I deliberately selected a piece that had a significant amount
of repetition and would work well with the pMML language (perhaps another example of

‘colouring within the lines’).

131 Currently anyway; I would like to develop something to allow more objective evaluations in future.
Beyond musicological applications, this could also enable more sophisticated, computational methods of low-
memory composition.

105

Without compiled mmml. c routine size:
Size (Bytes) Duration (Seconds) Bytes Per Second (B/s)

Piano Phase 85 143 0.59

Jupiter 646 676 0.96

Bach Prelude 661 120 5.51

4000AD 6495 489 13.28
Greatest Hat 1590 102 15.59
Paganini’s Been At The Bins 3410 209 16.32
Sunglasses Snake 3246 191 16.99
Puppy Slug 2016 118 17.08
Til There Was You 2338 130 17.98
Goose Communications 5377 281 19.14
Fly Me To The Moon 2029 105 19.32
Shrub Club 3291 168 19.59
Goblin Shark 3574 174 20.54

With compiled mmml.c routine size:

Title Size (Bytes) Duration (Seconds) Bytes Per Second (B/s)
Jupiter 2104 676 3.11
Piano Phase 1543 143 10.79
4000AD 7953 489 16.26
Bach Prelude 2119 120 17.66
Paganini’s Been At The Bins 4868 209 23.29
Goose Communications 6853 281 24.32
Sunglasses Snake 4704 191 24.63
Shrub Club 4749 168 28.27
Goblin Shark 5032 174 28.92
Til There Was You 3796 130 29.2
Puppy Slug 3474 118 29.44
Greatest Hat 3048 102 29.88
Fly Me To The Moon 3487 105 33.21

Table 5: Two tables comparing the B/s of different pieces created using the mmml.c program. The first
lists piece sizes without the routine included, the second lists the compiled size of both routine and piece.
Compiled routine sizes will be subject to the version of compiler but, as the datasize is fixed whatever the
platform of compilation, the B/s without the routine is global.

Whilst 4000AD.mmml, paganinis-been-at-the-bins.mmml and goose-communications.mmml do not
meet the originally proposed 1KB total limit, I feel these are the most classically interesting
pieces I have produced for microcontroller. These may not be as conceptually intriguing

as bitbeat, nor as efficient as jupiter.mmml, however they demonstrate sophisticated
compositional compressional practice utilising (and inspired by) classical chiptune
instrumental writing. These pieces play with the techniques discussed in Section H to push
the 1-bit palette, the Attiny85 and explore the limitations of the uMML language. In fact,
there are no existing low-powered, embedded 1-bit music suites in existence that take the
same counterpoint focused approach. I have a personal affection for this kind of practice as

I find it is the most enjoyable and rewarding way to write low memory music, even if the
works do not contain the most progressive methodologies explored. Still, 4000AD.mmm1 has

an impressive B/s; the third most efficient when the routine size is considered (beating the
heavily compressed bach-prelude.mmml) and suggests potential evolutions and extrapolations
of the practice (see below). This kind of composition requires a larger file size before memory

savings begin to be noticeable.

This research may be of interest to ludomusicologists, as the compositional motivations

of low-memory video game composers working in the 1980’s and 1990’s are similar to my
own, but have often gone undocumented. The process of building music routines for Attiny
documented herein is analogous to designing routines for almost any electronic computational

system, additionally, any platforms employing 1-bit sonics must use those techniques

106 5 CONCLUSION

Millipede Call Centre 116
Ghost Pony 142
Modem Exorcism Pt.1 156
Small Ahh 180
Upstairs Neighbours 184
Snooping 186
Modem Exorcism Pt.2 190
Typewriter Tantrum 190
Helicopter Mating Season 196
The Squeak Squad 202
Infinity Soup 204
Inkjet House Party 204
Sludge Bugs 210
Howl Owl 218
Fax Attack 230
Ghoul School 238
Tiny Djent 354

Table 6: A table comparing the B/s of different pieces created using bitbeat. Like Table a, compiled sizes
will be subject to the version of compiler, but will still stay largely consistent between toolchains.

described in sections @, and to some extent. Moreover, the ideas presented
in this document provide a novel perspective on the practice of low memory composition,
bolstering a sparsely populated academic bibliography on the subject. Additionally, I feel this

an esoteric look at compositional process in general.

Although the primary research of this investigation has been highly empirical, it is, at its
foundation, personal experimentation. Such an approach may undermine the validity of the
project as the criterion of success will be ultimately derived, and subsequently evaluated,
entirely subjectively. The problem is that, if the criteria is to be minimal program size with
maximal piece duration, the most successful low-memory composition are surely a single note
stretched over an infinite duration. As most would not consider this to be interesting,
there must be something inherently subjective in the evaluation of successful parameters

in music — or at least the solution is far more nuanced. To expand on, and synthesise the
ideas explored in, Section @ and pMML, if one were able to achieve an objective measure
of compositional success, perhaps those low-memory compositional techniques outlined in
Section H might be automated and implemented in software. Perhaps a program can be built
that obeys those strategies for reducing compositional footprint explored in Section @? The
proposed solution would be a lossy, ‘content-aware’ compositional system of compression.
Some of the strategies would certainly be easier to implement than others; Technique 6:
Colour Within The Lines might be effectuated by simply ‘quantising’ a rhythm, however
others would be much more nuanced — and far more interesting! For example, in accordance
with Technique 2: Recycling And Re-Purposing any two musical materials that are similar in
functionality, yet written slightly differently, might be substituted for each other. This could
a simple matter of identifying a few different notes between two passages (for example c8 e8
g8 c8 e8 g8 and c8 g8 e8 c8 g8 e8) and replacing one instance with the other, or something
more complex, where the program must understand the harmonic role of two (or multiple)
materials and substitute based on compositional function (for example c8 e8 g8 c8 e8 g8

and c4 e4 g4). Of course, this could change a vital harmonic relationship between other

132 A couple of bytes of assembler could achieve this. The infinite duration would require the hardware to
resist entropy and the ultimate heat death of the universe, though often batteries do not last this long.

107

voices and deform the original piece in the process, but, depending on how much the material

is employed, this might be a beneficial saving.

Bitbeat is the primary area that would benefit from ongoing exploration, with a number of
interesting avenues that might be worth investigating. Firstly, as ‘panning’ for viable bitbeat
algorithms via C is time intensive, it seems feasible that one might devise a programmatic
system to determine any given algorithm’s success. This is reliant on an absolute criterion
for musical success. One might use reinforcement learning: evaluate an output waveform’s
complexity over a given period of time and assign a complexity value for that period.
Ideally the segment would sit within the ‘sweet spot’ of a Crutchfield complexity curve, or
Vitz’s inverted U function [176, 172]. The listener might enjoy short periods of very high
complexity (bursts of percussive noise), or periods of very low complexity (a single, repeating
wavecycle), but the average complexity over a ‘macro’ duration (which might be an average
of a series of these small periods of time) should be not too complex, or too simple. An
interpreted bitbeat language, where algorithms can be manipulated programmatically, would
allow for mutation and self-modification of algorithms and the clear definitions of complexity
would provide an objective parameter of success — without dictating the actual musical
content. A series of machines dedicated to finding musical solutions might discover some
exiting possibilities — perhaps, with a strict, decreasing word limit, one could discover the

shortest, most interesting musical sequences possible.

Bitbeat is most exciting when one approaches the process in reverse: there exists a solution
for any bitbeat recording that can be expressed in just a few lines of code. Why are some
bitstreams reducible in this way, but others seemingly are not? Thus, for a bitstream n bits
in length, is there a corresponding, generative algorithm of a few bytes? If not, could there
be a sequence that creates an approzimate (which there will be infinitely many more)? How
might one find this approximate? This reminds me of the Library Of Babel [226]; if there
was an algorithm that could create every permutation of a bitstream of n bits, could one
simply calculate where a set of desired patterns appear then store pointers to those locations,
or is there some ‘law’ that forbids this? Again, perhaps the goal of the composer could help
defy this problem? One might find pieces within the function that can be easily addressed?
Furthermore, could the bitbeat and raster routines be synthesised? Perhaps bitbeat routines
could ‘fill’ gaps between raster materials, or perhaps a function, accessible to the composer-
programmer via a command, could allow sequencing of inline bitbeat algorithms. These
bitbeat algorithms could have their own interpreted language and be stored in a lookup table

— somewhat similar to pMML’s macro function.

Although 1-bit composition continues, and chiptune itself will certainly continue to be a
compositional curiosity for some time, the pursuit of composing sophisticated music in
small spaces to explore the emergent techniques is certainly diminishing. Submitted as
part of this project is all the software I have written to create 1-bit, low memory music.
The reader has everything required to recreate my music from first principles, or create

new. Additionally, this commentary aligns the software toolchain with the sonic theory, the

133Having recently played with Google’s Parsey McParseface [225], it might be valuable to exploring
whether a musical equivalent of Google’s SyntazNet (the open-source neural network framework with which
Parsey McParseface has been trained) would be possible for music, instead of language. It could prove useful
in the automation of low-memory music: compressing MML, MIDI or musical score (symbolic formats) using
intelligent, compositional means.

134perhaps using Shannon entropy?

108 5 CONCLUSION

required instrumental techniques and effective compositional approaches. Your compositional
voice will, most likely, be significantly different to mine and, if you are new to low-memory
composition (or new to composition in general) you will certainly have something unique

to say using the medium. I do hope that this project has intrigued and encouraged further
exploration of this world; perhaps it has inspired to write more 1-bit music, or develop new
low-memory platforms. In a world where prohibitively expensive contemporary sample
libraries and digital audio workstations significantly contribute to professional success,
accessible, low-cost and open source alternatives remain a relevant antithesis and esoteric
antidote. So, experiment with the included code, expand the functionality, open a blank .

mmml document and start composing!

109

6 Appendices

6.1 4000ad.mmml

% TITLE : 4000AD

% COMPOSER : Blake 'PROTODOME' Troise

% PROGRAMMER : Blake 'PROTODOME' Troise

% DATE : 14th June 2018

% NOTES : Computer music of the far future... 8 minutes of

YA gratuitous 1-bit wankery.
Y===
Y e % CHANNEL A J-~-~-~-~o~—~owom—m—m—mm e %
@ r4

% stutter intro (4/8)
r2 [5 m1]

% Cmin7 arp intro (3/8), drum solo (4/4)
[561 m4]

% C#min7 arp intro (7/8)
[17 m9]
r8.

% Cmin7 bass groove (4/4), F#13 bass groove (4/4)
[21 m4] r8 [14 m9]

% transition A (4/4)
04 v5 r64c#32.<<r64c#32.>r64c#32.
v6 03 bl6al6f+16e32f+32c+16f+16c32e32<b16a16f64f+32.>

[2 e64c+64<b64>] v4d [2 e64c+64<b64>]
v6 [2 £64d64c64] v4d [2 £64d64c64]
ve [2 f+64d+64c+64] v4 [2 f+64d+64c+64]
v6 [2 g64e64d64] v4 [2 g64e64d64]

v6 [2 g+64f64d+64] v4 [2 g+64f64d+64]
v6 [2 a64f+64e64] v4 a64f+64
[4 m1]

% solo A (4/4)

r8v6>a+64>d64c8&c32 [3 c+64c64<b64>c64] d+64
f+64g64d+64c64<a+64>c64<g64a+64g64f64f+64g64d+64c64<a+64g64f64g64d+64
f64d+64f64a64>c32f32a+32>d32
£32d+32c32<a+32>d+32c32<a+32g32>c32<a+32g32f32a+32g32f32d+32g32£32d+32
c32£32d+32c32<a+32>d+32c32<a+32g32>c32<a+32g32d+32

c8.&c32 [4 c+64c64<b64>c64] v4 <b64

a+64a64g+64g64f+64f64e64r8r32 v6 d+16f16gl6a+16

>d+16 v4 d+16 v6 c16g32g+32gl6 v4 gl6 v6 a+16 v4 a+16 v6 gl6>d8 v4 di16 v6 d+16e32
£32c16<gl6

£f8 v4 f16 v6 g8.&g32 [4 g+64g64f+64g64]

r32a+16b32r32>c16d+32.r64£f16

[4 f+64g32.>c32r32<] £32f+64

£32.>c32<f32f+64g32.>c32 [4 <f64f+64g64>c64]
d+32c32<a+32>c32<g32f+32£32d+32f32d+32c32d+32f+32d+32c16d+32f32d+16g16
d+16£32f+32d+32c32<a+16.>c32

v4 <b64a+64a64g+64g64f+64f64e64r2r8 v6 g+64a64a+64b64>c8.
g+16.a64a+8a64g+8.&g+32. [2 a64g+64g64g+64] a64>c+16r8.<b16r8
a+16g+16a+16f+16d+16c+32d+32<b16>c+16r8<f+16r2

ri6b16ri6

>d+16e16f+16a+16g+16c+16d+16f+16>d+8&

d+32 v4 d+16. v6 £32f+8

r32c+8. v4 c+16.r8r32. v6 <£f32.f+32a+32>c+16
£32.r64f+16r64f16d+32.c+32.1r32c32.<b32.r32>d+32.<a+16r64g+32r64b32>c+16.
<a+16f+16g+32a32a+16

g+16f+16d+16g+16£f+16d+16c+32r32f+16f64 v4 e64d+64d64c+64c64r2

r32

v6 <c+16d+16f32r32f+16g+16a+16b16>c32r32¢c+16d+16f+16g+32r32a+16>c+16

% transition B (7/4)
m21

% four-to-the-floor A (4/4)

110 6 APPENDICES

r64 [3 m27 m28] m27

% transition C (4/4)

04 vb [3 e64<gb64b64>c64] e64<gb64b64r8> [4 c+64f64<g+64>c64] r8 [4 d64f+64<ab4>c+64] r8 [4 d+64
g64<a+64>d64] ri6

v6 >d+64<f+64d+64<b64>g+64b64>d+64<f+64r16>e64<g6d4e64cb64a64>c64e64<gb4r16>f64<g+64£f64c+64b64>c+64
£64<g+64f64c+64b64>c+64

% solo B (4/4)

04 r64 [2 m29 rl1 r1]

v6 o5 r32.f+64g32.cl6<a+16al16f+64g32.f16g16d+32.d64cl16<a+16>c32<a+32gl6
e64f32.d+16c16
a32a+32>c16<g32r32>a64<a32.>f64<£32.>f+64<f+32.>g64<g32.>d+64<d+32.>c64
<c32.>d64<d32.a+64<a+32.>g64<g32.>d+64<d+32.>e64<e32.>f64<£32.>d+64<d+32.
cl16r2r8>>d+16£f16gl6a+16b32>c16

v4 <b64a+64r8 v6 >f+16r8f+32g32a+32g32a+32f+32f32d+32c16f16d+16cl6<a+16
b64>c32.

v5 <b64a+64r8.r32 v6 <c32f32d32g32d+32a+32£32>c32<f+32>d32<g32>d+32<a+32
>£32g32a32a+32>c32d32d+32£32g32a+32a32
£32d+32£32g32c32<a+32>d32d+32c32<a+32a32g+32g32f+32g32£32d+32d32c32<a+32
>d32c32<g32a+32a32f32f+32g32d+32d32<a+32>d+32

d8&d32d+32e32f4&£f32 [4 f+64f64e64f64] d+16d16c16f16
d+16d16r16c8c+64c64<b64>c64d16d+16r16a+32g32a32a+32>c32c+32d16d+16£16
glé

g+32a+32g+32a+32g+4kg+32a32a+8.La+32a32g+32g32r8>eB64£64F +16.
e8<b16>d+16<g+16a+32b32f+16g+16d+16f+16c+16d+16<bl6a+16f+16d+16
<b8.g+32b32>c+8.<a+32>d+32e8&e32b32f +32g32g+8>d32d+32g+32f+32
<b16gl6f+16e16d+16f+16d16c+16<b16>f+16b16>d+16f+16a+32b32>d+16f+16
r16d+32d32c+16r16<b16r16>g32g+32e32d+32d32c+32d+32<b32>c+32<g+32f+32
d+32<b32>c+32<g+32a+32>d+32f+32g+32a+32
b16>c+16d+32r32f+16c+16<b16>c+16<g+16b16£f32f+8&f+32>c+32d+8.&d+32
d64c+64c64<b64r16<c+16d+16£32r32f+16g+16a+16b16>c32r32c+16d+16f+16g+32
r32a+16>c+16

% transition B (7/4)
m21

% four-to-the-floor A (4/4)
r64 [3 m27 m28] m27
r2.r8.r32.

% four-to-the-floor B (4/4)
[3 m33 m34] m33 ri1

% bass solo (4/4)
[8 m33 m34]

% stutter transition (4/8)
[4 m1] o4 v3 [16 r64 c32.]

% movement II intro (4/4)
o4 [80 v3 e32 v2 e32 v3 c¢32 v2 c32 v3 d32 v2 d32< v3 gl6]

% movement II main (4/4)
[2 [2 [2 r64 m45 r4.r32.] [2 r64 m46 r4.r32.]] m42 r64 m46 r4.r32. m42 r64 m46 r4.r32. m43 m44
]

% movement II solo (4/4)

o5 v6 r2f64f+64g64a64g8.[2 g+64g64f+64g64] f+16£f16
e16<b16>c16d32e32<al6f16gl6g+16a16>c16<gl6f16e32f32c16d16el6
c32d8&d32 v5 d8. v6 gl6rl6g8rl6 v4 g8rl6 v3 g8

r2 v6 e32g32a32a+32b16gl6elbriba+16f+16
r4>c32<a32f32c32d16a16f16>c16<al6>d16d+16e16cl6<al6

£32g16. v5 g8 v6 f8 v f8 v6 d32e8&e32r16g8 v4 g8

v6 d8.el16r8 v5 el6r2ri6

v6 a32g32£32d32c32<a+32g32e32f32d32<a+32>c32d32e32£32d32f32g32a+32>d32
£32g32a+32a32g+32g32>c32<a+32b32>c32d32e32
f16e64d64c64<b64<fl6al6>elb6cl6<alb6>c16g32a32e16c16g16b32>c32d16e16£16
e8c16<al16£32f+32g32e32d32c32<b32>c32<a32f32g32e32f32f+32g32a32b32>c32
d32e32f32g32a32a+32

b16>c16d16£32g16.c16<bl6>c16<alb6blbég+16al6b4d.
>c8.c+64c64<b64>c64<gl16d16<b32>c+16.<a8>d8e8

f4e8cl16 v5 cl16 v4 cl1l6rl6 v6 <al6 v5 al6é v4 al6rl6 v6 >c4d

v5 ¢8 v4 ¢8 v3 c¢8 v6 d8 v5 d8 v4 d8 v3 d8

% transition D
mb1
03 v6 [4 f+64a+64d+64] rl6

6.1 4000ad.mmml

111

[4 g64b64e64] ri6

[4 >c64<f64g+64 Irl6

[4 f+64a64>c+64<] rl16 o2
[3 a+64>d64<g64] r32.

[3 b64>d+64<g+64] r32.
[3 >c64e64<ab4] r32.

[3 >c+64f64<a+64] r32.
[3 >d64f+64<b64] r32.>
[3 d+64g64c64] r32.

[18 e64g+64c+64] eb4g+64
r8 [19 f64a64d64] r8.r32.

% solo C (4/4)

03 v6 >a+64b64>c32c+32d32c32<a+32>c4&cl6c+64c64<b64>c64c+64c64<b64>c64d+32
[6 c32d+32] [4 c32f32] [3 c32f+32] c¢32g32c32d+32f32d+32c32<a+32
>c32<g32a+32g32f32f+32£32d+32c32d+32<a+32
b32>c32d+32f32f+32g32a+32g32a+32f+32£32d+32c16.£32d+16.c32<a+16.r32al16.
r32g16c32d+16.

[2 e64d+64d64d+64] £f8& [2 f64f+64f64e64] f+16gl6a+16
>c16d+32f32g32a32a+16al6g+16

g4 vb g8 v4 gl6. v6 g+32a4d v5 a8 v4d a8

v6 a+16>c16d16d+16f16gl6al6g+16gl6e16£f16d32d+32c32<b32a+16a16f16

g8 .4g32d64<a64g8 .4g32e64<b64g8.&g32f64c64<gh
r8>gl6al6a+16>c16d16d+16£f32gl6al6a+32>c32d32d+16f16g16g+32a32

a+2.b8. v5 a+8

r16b8r16 v4 a+8r16b8rl6 v3 a+8r16b8

ri6 v2 a+8r16b8r8 v6 g+l6a+16f+16d+16c+16f+16<b16f+16

a+4 v5 a+4 v3 a+8 v6 >>d+16f+16d+32e32d+32d32c+16<bl6

>c+2&c+8 v5 c+4.

v4d c+4. v3 ct+4. v2 ct+4

rl

% main theme reprise (4/4, 7/8)
[2 m42 v4 r64 [3 04c32f32g+32>c32e32g32] v5 04c32f32 v6 g+32>c32e32g64] m43

% final stretch (4/4)

m51 mb4

m51 o5 v6 d+16d16<a+16gl6f16d+16d16<a+16g16f16d+16d16<a+16gl6£f16d+16
m51 mb4

mb51 o5 el6d16<al6gl6fl6el6dl6<albgléfi6el6dl6<albgl6flbelt

m51 mb54

m51

% ending stutter (4/8)
[4 m1]
04 v5 cl1 cl v4 cl1 t63 v3 cl t69 v2 cl t74 cl ci

Yoo % CHANNEL B Y-~=~=~=m=~—m—~om—~omo~omo~e %

% stutter intro (4/8)
[6 m2]

% Cmin7 arp intro (3/8), drum solo (4/4)
[61 m5]

% C#min7 arp intro (7/8)
[17 m10]
mil

% Cmin7 bass groove (4/4), F#13 bass groove (4/4)
[21 m5] r8 [14 m10]

% transition B (4/4)

04 v4 c#16el16>c#16

03 r2r8 v5 [2 e32<f+32b32>] [2 £32<g32>c32]

[2 £+32<g+32>c+32] [2 g32<al32>d32] [2 g+32<a+32>d+32]
a32<b32>e32a32

[4 m2]

% solo A (4/4)
[21 m5] r8 [16 m10]

% transition B (7/4)
m22

% four-to-the-floor A (4/4)

112 6 APPENDICES

[3 m27 m28] m27

% transition C (4/4)

v6 03 e64g64>c64e64g64b64>e64g32e64<b64g64e64c64<g64e64r8f64g+64>c+64£64
g+64>c64f64g+32f64c64<g+64f64c+64<g+64f64r8f+64a64>d64f+64a64>c+64f+64
a32f+64c+64<a64f+64d64<a64f+64
r8g64a+64>d+64g64a+64>d64g64a+32g64d64<a+64g64d+64<a+64g64r16>f+16>d+16
r16<gl6>el16r16<b32>d+32<g32b32>d+32<g32

% solo B (4/4)
[8 03 m29]
[3 m30] m31

% transition B (7/4)
m22

% four-to-the-floor A (4/4)
[3 m27 m28] m27
ril

% four-to-the-floor B (4/4)
[7 m35] r1

% bass solo (4/4)
[16 m35]

% stutter transition (4/8)
[4 m2] 03 [16 v3 £32>f64< v2 f64]

% movement II intro (4/4)
[6 [42 v3 04 e64<d64g64] r32 [42 v3 o4 £f64<d64g+64] r32]

% movement II main (4/4)

[2 [4 [2 [3 o4 v6 d64<g64e64 v5 >d64<gb6le64 v4 >d64<gb64e64 v3 >d64<g64e64] ri6 mél] [2 [3 o4 v6
d64<g+64f64 v5 >d64<g+64f64 v4 >d64<g+64f64 v3 >d64<g+64f64] r16 mél]]

[2 [3 04 v6 d64<f+64a64 v5 >d64<f+64a64 v4d >d64<f+64a64 v3 >d64<f+64a64] r16 md4l] [2 o4 v6 c64<
d64g+64] o4 v5 c64<d64g+64 v4 [39 o4 c64<d64g+64] r32]

% movement II solo (4/4)

m48 o3

[2 m49 rd]

m50 r4

[2 v6 b64f64d64 v5 b64f64d64 v4 b64f64d64 v3 [5 b64f64d64]] rd
m49 r4

04 v6 c64<a+64g64> v5 [19 c64<a+64g64>] rié
m48

m49 o3

04 v6 c64<gb64e64> v5 [14 c64<g64e64>] r32.
v6 c+64<g64e64> v5 [9 c+64<g6de64>] r32

03 m50 r8

v f4. v4 £8 v3 f8

v6 f4 v4 £8 v3 £8

% transition D

[6 mb2] ri6

03 v6c+8.r16d8.r16d+8.r16e8.<a+64b64>c64c+64
d32g32a+32>d32r16<d+32g+32b32>d+32r16<e32a32>c32e32r16<£f32a+32>c+32£32
r16<£f+32b32>d32f+32r16<g32>c32d+32g32r16

[5 <c+32e32g+32>c+32e32g+32 1 r16

[5 <d32f32a32>d32£32a32] r8.

% solo C (4/4)
[4 03 m29]
[3 m30] m31

% main theme reprise (4/4, 7/4)

[2 [11 04 v4 c64 v5 c64 v4 e64 v5 e64 v4 g64 vb5 gb4> v4 c64 v5 c64 v4 eb64 v5 e64 v4 gb64 v5 gb64]
[9 o4 c32f32g+32>c32e32g32]]

[21 o4 d64f+64a64>c64f+64a64] r32

% final stretch (4/4)

[11 m52]

[10 o4 v6 £128< v5 f64.> v6 gl128< vb5 gb64.> v6 a+128< v5 a+64. o5 v6 £128< v5 f64.> v6 gl28< v5 g64
.> v6 a+128< v5 a+64.]

[11 m52]

[10 o4 v6 £128< v5 f64.> v6 gl128< vb5 gb64.> v6 al28< v5 a64. o5 v6 £128< v5 f64.> v6 gl128< v5 g64.>
v6 al28< v5 a64.]

[11 m52] 03 d+32f32

6.1 4000ad.mmml 113

[21 03 f64a64>d64] o3 f64

% ending stutter

[4 m2] o3

v4 [32 d32>e64<e64]
v3 [16 d32>e64<e64]
v2 [16 d32>e64<e64]
vl [32 d32>e64<e64]
rl

% stutter intro (4/8)
ri [8 m3]

% Cmin7 arp intro (3/8), drum solo (4/4)
[61 03 v3 g32> v4 g32< v3 d+32> v4 d+32< v3 £32> v4 £32< v3 c32> v4 c32 v3 c32> v4d c32<< v3 a+32>
v4 a+32]

% C#min7 arp intro (7/8)

[17 03 v3 e32> v4 e32< v3 £+32> v4 £+32< v3 c+32> v4 c+32< v3 e32> v4 e32 v3 c+32> v4 c+32<< v3
b32> v4 b32 v3 g+32> v4 g+32]

m12

% Cmin7 bass groove (4/4)
mi4 mi15 mi14 m16

% F#13 bass groove (4/4)
mi7 m18 m17 m19 ml7 mi8

% transition A (4/4)

v6 ol f+16>>f+32r32<<f+16r2.f+8
>f+32r32<g8>g16<g+8>g+32r32<al6>a32r32<a32r32a+32.r64d32.r64>c+32r32<b16d+16
>c4 v5 ¢c8 v4 c8 v3 c8 v2 c8 [5 m3]

% solo A (4/4)
mi4 mi15 mi4 mié6
ml7 m18 m17 m19 ml17 mi8 mi7

% transition B (7/4)
m23

% four-to-the-floor A (4/4)
[14 m26]

% transition C (4/4)
v6 ol c8.>c16r16<c32r32c+8.>c+16<f+16g32r32d8.>d16<
g32a32g32£32d+8.a+16r16e8>c32r32<£8>d+32e32<gl16.>g+64gb64f+64gb64g+64g64

% solo B (4/4)
[3 m14 m15] ml14 mi16
mi17 mi18 ml17 m19 ml17 mi18 mi7

% transition B (7/4)
m23

% four-to-the-floor A (4/4)
[14 m26]
m32

% four-to-the-floor B (4/4)

[3 m26 m36]

ol v6 c16>c32r32<c16£32r32a+32r32>c16<£f16>d+16e16c32r32<g16£32r32>d+32r32c16el16>cl6
[3 m26 m36]

ri

% bass solo (4/4)

m37

v6 ol c16.r32e16r16£f16>d+32r32<f+8g32r32g32r32a16>f+16<a+8bl6a+64a64g+64g64
f+64f64e64d+64>g64r32.c16<c16r16c16>c64r32.<c16>c64r32.
a+32r32<al6>g32a32<a+32r32>d+16<d+16£32g32

m37

v6 ol c16r16c16>g32r16.c16g64r32.<c16>al6r16<cl16>a+16r16c16>c16<<cl6
>a32g32f32f+32gl6f+16gl6f+16gl6a32r32<al6>g32r32al6<a+16>>d+32r32<a+16
<b16>b16
<cl1l6r8a+64>c32.r16<a+64>c32.<a32r32a+16r16a+32r32>c16<a+32r32d+16e16

114

6 APPENDICES

a+32r32d+16
r8cl16>c16r16cl16f+16g16>c32r32d+16e16<a+16c32r32d+32£32ri16<a+16
c8>c32r32<e8>e32r32<f16>f16f+32r32<f+16>al6gl6<gl6>a+16<a+16b16
cl6r64>gb64g+64a64a+32>c32<a+32g32f16g16c16<a+16>d16d+32.r64e32.1r64c16
<a32a+16f+32g32.r64d+16
a+32.r64a+32.r64a32.r16r64a+32.r16r64a32r32a+16>c32.r64<a+32r32>c16<a+32
r32d+16e16a+32r32d+16
a+16c32r32a+16>d+32r32>c32r32<<a+32r16.gl6r16a+32r32>c32.r64<f16g+16
al6el6d+16
e32.1r64f32.r64f+32.1r64g32.r16r64a32.1r64a+32.1r64>g32r16.<b32.1r64>c32.
r16r64<a+16>d16d+16e16
r16<c16>f16r16<c32r32>f+16r16g16<g32r32>g+16<g+32r32>al6<a+16>a+16<b32
r32>b16>

% stutter transition (4/8)
v6 c8. vb c8. v4 c8. v3 c8. v2 c4
[6 m3] v3 [8 o4c64e64<d64g64]

% movement II intro (4/4)

v2 [128 02c64>c64<c64>c64]

v4 b32>c2&c8.&c32 [4 c+64c64<b64>c64]
d2d+32e8.&e32c4

<f64f+64g2&g8.4g32 [4 g+64g64f+64g64]
e32f2&£8.4£32c4

v3 <<c2. v2 c2.

v4 >>c4c+32d8.&d32

v3 <c2. v2 c2.

v4 >c4c+32d8.&d32

e2 [4 f64e64d+64e64] g4
>c4<f16g8.>£32g8.&£g32>d32e8 . Le32
<a64g64f2&f8.&4£32 [4 f+64f64e64f64]
v2 f2 v6 <<g32g+32g16c+32d32c16<£f32.r64g16d16e32r32

% movement II main (4/4)
[2 [18 m40] r8 [5 m41]]

% movement II solo (4/4)

m47 m47

v6 ol el6rd4rl6elbrdelbr16>c64r32.<el6>c64r32.
<el6r4r16el16ri16b16>c16d16<gl6el6a+16d+8
d16r4r16d16r8.>c64r16.r64c16<£f16d16c16
g8r16>g64r8r32.<gl6r16>f16g32r32<g8>f16<£f16>d32r32f16
<c8r16>c16r8<cl16r8.>c8<blb6riba+4.

g8 v5 g8 v6 a+8 v5 a+8 v6 >c8 v5 c8

m47 m47

v6 ol el16r8el6r8bl16r8.>e8<a4d

v a4 v6 e8 v5 e8 v6 >g+16 v5 a8. v4 a8 v3 a8

v6 d8 vb5 d8r8 v6 di16r4.r16<g8

v5 g4 v4 g4 v5 >>g32 v6 g+16. v5 g+8 v4 g+8 v3 g+8

% transition D

ol v6 c#1l
g+8>g+16ri6<a8>al6f+16g+16a+32r32<a+16a16b8.a64f+64d+64c+64
c8r16c+8r16d8r16d+8r16e8r16£f8

r16f+24f+8>a+32r32b16e16<b16

>f16g16<g2.&g8r4

% solo C (4/4)
mi4 m15 m14 mi6
mi7 m18 mi17 mi19 ml17 mi8 mil7

% main theme reprise (4/4, 7/4)

[2 rir2.

o5 v6 g32<g32<g32<g32<g32f+64f64e64d+64d64c+64
>c64<c32.r8>c64<c32.r8>c64<c32.r16>>c64<c32.r8c64<c32.r8>c64<c32.r8
>c64<c32.1r8>c64<c32.r16>>g+64<g+16.4g+64>c64<c32.1r16f64<f16.&f64]
m40 m40

% final stretch (4/4)

m53

dl [8 di6 ri6]

m53

al [8 al6 ri6]

mb53

v6 ol g8. vb g2&g32a64>ebigi

% ending stutter
vd g8 v3 g8 v2 g4

6.1 4000ad.mmml 115

[6 m3] o3

v4 [32 g32>g32<
v3 [16 g32>g32<
v2 [16 g32>g32<
vi [16 g32>g32<
riril

Y=o % CHANNEL D Y=~—~==—~=r—w—r—~——m—mom—n %
@ t46 r4

% stutter intro (4/8)
ririri

% Cmin7 arp intro (3/8)

[19 r4.]

d4.d4.e8el6el6

el6e32e32d4.d8e8d+64d+16.r64d+16d+32d4+32

d4.d8r4.e32e32e32e32
d8el6rl6el6e64e64e64e64d8d+16d+16c+16d+64d+64d+16.d16d+16d4d+16

% drum solo Cmin7 (4/4)
mé m7 m8

% drum solo C#min7 (7/8)
d16e16c16d16d+16e16e16d+64d+32.e16d+16d16e16d+16c16d16e16
cl16d16d+16e16e16d+64d+32.e64e64e64e64d+16d16e16d+64d+32.e32e32d16e16c16d16
c+32c+32e16e16d+64d+32.e16d16d+16e16d+16c16d16d16d64d32.d64d32.d+16e16
d16d+64d+32.e16d+16d16d+16d+64d+32.d+16d+16d+64d+32.

mé m7

% Cmin7 bass groove (4/4), F#13 bass groove (4/4)
[7 m13]

% transition A (4/4)

dl6el16d16el6d+16r2r16e64e64e64e64d16
el6d+16d16e32e32d+16d16c+16d+16d16e64e64e64e64d+64d+32.d16d+16c16d16d+64d+32.
d+1r2.

dl6e64e64e64e64d+16e32e32

% solo A (4/4)
[7 m13] m20

% transition B (7/4)
m24

% four-to-the-floor A (4/4)
[14 m25]

% transition C
d8e8e8d16e8el16e8d+8el6e8.
d4d16d+8.d+8.d+8.

% solo B (4/4)
[11 m13] m20

% transition B (7/4)
m24

% four-to-the-floor A (4/4)
[14 m25]
ri

% four-to-the-floor B (4/4)
[14 m25]
t53 d+16e32e32c+16d+64d+32.e16d+16c+16d+16d+16d16d+16e32c+32e16d+64d+32.c16d+16

% bass solo (4/4)
[8 m13]

% stutter transition (4/8)
t46 r1 r1 ri1

% movement II intro (4/4)
t56 [19 r1] m38

% movement II main (4/4)
[2 [18 m39] r1l m38]

116 6 APPENDICES

% movement II solo (4/4)

t56 [12 m39]
d16r8e32e32d16e16d16r16e16e16d16r8.d+64d+32.r16
rl

% transition D

t46

m38
d8e8d8d16d16d16e16e16d+64d+32.d16e32e32d+64d+32.d+16
[6 d8el6] d8

r16d8r4d8r8d8r8

d+16d+16d8r4d8r8d8r8

d16d+32d+32d+64d+32.c16

% solo C (4/4)
[7 m13 1 m20

% main theme reprise (4/4, 7/4)
[2 r1 r1 d8.d16e8d8d+64d+16.&r+64e16d16e8d8
c16d8.d+64d+16.&r+64e8d8d+644+16.&r+64] mi13

% final stretch (4/4)
mé m7 m8 mé6
t66 di

% ending stutter (4/8)
t46
[9 r1]

Yy % MACRO Ymwmmmmmmmmmm %

% macro #01 - channel A: stutter Csus (4/8)
@ o4 v5 [8 r64 c32.]

% macro #02 - channel B: stutter Csus (4/8)
@ o3 [8 v4 £32>f64< v3 f64]

% macro #03 - channel C: stutter Csus (2/8)
@ o3 [4 v3 g32> v4 g32<]

% macro #04 - channel A: arp Cminiil (3/8)
@ 03 v4 f16c16>c16<< v3 a+16> v4 gléd+16

% macro #05 - channel B: arp Cminiil (3/8)
@ o4 v6 c32< v3 c32< v4 a+32>> v3 c32< vb g32< v3 a+32> vb5 d+32 v3 g32 v5 £32 v3 d+32 v5 c32 v3
£32

% macro #06 - channel D: kit solo #1 (4/4)
@ dl6e16c16d16d+16e16e16d+64d+32.e16d+16d16e16d+16c16e16d+64d+32.
dl16d+16el16d+16el6e64e64e64e64c+16elb6c+16e16cl16d+16e16d16d+16e32e32

=

macro #07 - channel D: kit solo #2 (4/4)
@ e16d16e32e32c16d+16e16d16d16e16e16d16d16e32e32d+64d+32.e16d+32d+32
d16e16d16e16d+16e16e16d+16c16d+16d+64d+32.e16e32e32d+64d+32.e16d+64d+64d+64d+64

=

macro #08 - channel D: kit solo #3 (4/4)

Q@ d16e16c16d16c16d+16d16d+64d+32.e16d+16d16e16d+16c16e16d+64d+32.

[4 d32e32] d+16d16d+64d+32.c+64c+64c+64c+64 [4 d32e32] d+16 [3 c64c64c+64c+64]

el6d+16e32e32c16d+16e16e32e32d+16c64c64cb64c64c+64c+64c+64c+64d16d+64d+64d+64d+64e32e32d+64d+32.
el16d+32d+32

[2 d64d64d64d64e64eb64e64e64] d+64d+32.e64e64e64e64e16d+16c16d+16d+16c16d+64d+32.c+64c+64c+64c
+64d64d64d64d64d+64d+64d+64d+64

% macro #09 - channel A: arp C#minil (7/16)
@ 03 v4 c+16e16>c+16<< v3 bl6> v4 g+16el16f+16

% macro #10 - channel B: arp C#minil (7/16)
@ o4 v6 c+32< v3 e32< v4 b32>> v3 c+32< v5 g+32< v3 b32> v5 e32 v3 g+32 v5 f+32 v3 e32 v5 c+32 v3
f+32 vb e32 v3 c+32

% macro #11 - channel B: sweep (3/16)
@ o3 v6 b64a+64a64g+64g64f+64f64e64d+64d64c+64c64

% macro #12 - channel C: sweep (3/16)
@ 02 v6 c64<b64a+64a64g+64g64f+64£f64e64d+64d64c+64

% macro #13 - channel D: main groove (4/4)

6.1 4000ad.mmml 117

@ d16e16d16e16d+16e16 [2 e16d+64d+32.e16d+16d16e16d+16e16] e16d16e16e16d16e16d+16d16d+16d+16

% macro #14 - channel C: bass groove Cmin7 #1 (4/4)
@ ol v6 c16r16cl6 [3 r8>cl6ri6<cl6r8cl6]
>c32r32d+32r32<cl16a+16>cl6

% macro #15 - channel C: bass groove Cmin7 #2 (4/4)
@ ol v6 c16r16cl16 [2 r8>c16ri16<c16r8cl6]
r8cl6ri6gl6a+32r32a+32r32al6ri6a+16>d+16<d+8

% macro #16 - channel C: bass groove Cmin7 #3 (4/4)
@ ol v6 c16r16cl6 [2 r8>cl16ri6<cl6r8cl6]
d+8c16f8c16f+8c16g8a+16>c16

% macro #17 - channel C: bass groove F#13 #1 (4/4)
@ ol v6 f+16 03 £f+32r32 ol f+16r16 03 f+32r32<f+16r16 [2 ol f+16 03 f+32r16.] <elb6f+16<f+16

==

macro #18 - channel C: bass groove F#13 #2 (4/4)
@ 03 v6 r16f+32r32 ol f+16r16 03 f+32r32<f+16r16<f+16 03 f+32r32<e32r32<f+16>f+32r32a32r32<f+16>
el6f+16

=

macro #19 - channel C: bass groove F#13 #3 (4/4)
@ 03 v6 r16f+32r32 ol f+16r16 o3 f+32r32<f+16r16<f+16 03 f+32r32<e32r32d+16r16e32r32d+16e16f+16

=

macro #20 - channel D: main groove ending (4/4)
@ d16e16d16el6d+16e16e16d+64d+32.e16d+16d16e16d+16e16e16d+64d+32.

=

macro #21 - channel A: transition B (7/4)

@ o5 d32.r1r64f+32.1r64d32.1r64c16.&c64r64<a+32.r64>c+32.1r64f32.1r64c+32.
r64<b16 .&b64r64a32.r8r64>c32.r64e32.1r64

c32.r64<a+16.&a+64r64g+32.r64 03 [8 v2 g128>g128<] [8 v4 g128>g128<]
[8 vb g128>g128<] v7 [6 g128>gl128<] f+128f128e+128d+128

% macro #22 - channel B: transition B (7/4)
@ 03 v6 [2 f+64d64<b64>] v4d [2 f+64d64<b64>]
ve [2 f64d64<a+64>] v4 [2 f64d64<a+64>]
v6 [2 f64c+64<a+64>] v4 [2 f64c+64<a+64>]
v6 [2 e64c+64<ab4>] v4d eb4c+64<ab4>e64c+64<ab4r8
v6 [2 >e64c64<abd] v4 [2 >e64c64<abd]
v6 [2 >d+64c64<g+64] v4 [2 >d+64c64<g+64]
r64 v3 o4 [8 v2 g128>gl128<] [8 v4 g128>g128<]
[8 v5 g128>g128<] v7 [6 gl28>g128<] r64

=

macro #23 - channel C: transition B (7/4)

@ ol v6 [2 gl6r16>g32r32<] f+16r16>f+32r32<f+16r16>>cl16<f16f+16<f16rl6
>£32r32<£16r8r64. o4 [8 v3 gl28>g128<] [8 v4 g128>g128<]

[8 vb g128>g128<] v6 [6 g128>g128<] r128

% macro #24 - channel D: transition B (7/4)
@ d16e32e32d+16d16e16e16d16e16d+16d16e16d16d+64d+32.d+16d16e16
d+16d16e16d+16rd. [16 e128]

% macro #25 - channel D: four-to-the-floor kit (4/4)
@ dl6el6c+16e16d+16el16c+16el6

% macro #26 - channel C: four-to-the-floor bass (4/4)
@ ol vb c16> v6 c32r32 v7 <c16£f32r32 v5 a+32r32> v6 cl1l6 v7 <f16cl6

% macro #27 - channel A + B: arp C7sus4 (4/4)
@ 03 [4 v2 >c64<gb4>f64<a+64 v3 >c64<gb4 v4 >f64<a+64 v5 >c64<gbd v6 >f64<a+64 ri6]

% macro #28 - channel A + B: arp C7 (4/4)
@ 03 [4 v2 >c64<gbi>eb4<a+64 v3 >c64<gb4 v4 >eb4<a+64 v5 >c64<gbd v6 >eb4<a+64 ri6]

% macro #29 - channel A + B: arp Cm/Fmaj/D#maj (4/4)

@ v6 c64d+64g64 v5 [4 c64d+64g64] v3 [3 c64d+64g64]
v6 c64f64a64 v5 [4 c64f64a64] v3 [8 c64f64a64] r64
v6 g64a+64d+64 v5 [4 g64a+64d+64] v3 [3 gb64a+64d+64]
v6 f64a64c64 v5 [4 f64a64c64] v3 [8 f64a64c64] r64

==

macro #30 - channel B: arp F#9/F#maj/F#2sus4 (4/4)

Q@ v6 c+64e64g+64 v5 [4 c+64e64g+64] v3 [3 c+64e64g+64]

v6 c+64f+64a+64 v5 [4 c+64f+64a+64] v3 [8 c+64f+64a+64] r64
v6 g+64b64e64 v5 [4 g+64b64e64] v3 [3 gt+64b64e64]

v6 f+64a+64c+64 v5 [4 f+64a+64c+64] v3 [8 f+64a+64c+64] r64

==

macro #31 - channel B: arp chromatic rise (4/4)
@ 03 v6 c+64e64g+64 v5 [4 c+64e64g+64] r64

118 6 APPENDICES

v6 d64f64a64 v5 [4 d64f64a64] r64
v6 d+64f+64a+64 v5 [4 d+64f+64a+64] r64
v6 e64g64b64 v5 [4 e64g64b64] r64

% macro #32 - channel C: bass fill transition (4/4)
@ 03 v6 c16<c32r32<c16£32>c32a16a+16>d+32r32c16<f+32£32d+16gl6<a+16>c32r32<f16>g64a+32.<b32.r64

% macro #33 - channel A: C7 (F) funk Chord (4/4)
@ o4 [2 v4 £64r32.f64r32. v5 £32r32] v4 £64r32.f64r32.f64r32. v5 £32r32 v4 f64r32. v5 £32r32 v4d
f64r32.£f64r32. v5 £32r32 v4 £f64r32.

% macro #34 - channel A: C7 (E) funk Chord (4/4)
@ o4 [2 v4 e64r32.e64r32. v5 e32r32] v4 e64r32.e64r32.e64r32. v5 e32r32 v4 e64r32. v5 e32r32 vé
e64r32.e64r32. v5 e32r32 v4 e64r32.

% macro #35 - channel B: C7 (A#) funk Chord (4/4)
@ 03 [2 v4 a+64r32.a+64r32. v5 a+32r32] v4 a+64r32.a+64r32.a+64r32. v5 a+32r32 v4 a+64r32. v5 a
+32r32 v4 a+64r32.a+64r32. v5 a+32r32 v4 a+64r32.

% macro #36 - channel C: C7 (C) funk Chord (4/4)
@ o4 [2 v4 c64r32.c64r32. v5 c32r32] [4 v4 c64r64]

% macro #37 - channel C: bass solo lick (4/4)
@ ol v6 c16r8.c16r16>c16<cl6r16>d+16<cl6glba+16>c16<c32r32>>c32r32
<d+16e16<cl6ri16>a+64r32.cl6a+64r32.<c16>d+32r32a+16<c16>c32r32d+32r32<c16a+16>cl16

% macro #38 - channel D: short fill (4/4)
Q@ e4ed4eB8d16c16d+16e16e32e32d+16

% macro #39 - channel D: chill groove (4/4)
@ di16el6c+16d16el16el6dlbc+16el16elb6el6elb6d+16el16el16elb

% macro #40 - channel C: movement II bass pedal (4/4)
@ 02 v6 c64<cl6.r16r64>c64<c32r8r64>c64<c32r8r64>c64<c32r16r64>>c64<c32r16r64c64<c32r64>b64<b32.>>
c64<c32.

% macro #41 - channel B + C: movement II arp C2 (4/4)
@ o4 vb e32 v3 e32 v5 c32 v3 c¢32 v5 d32 v3 d32 vb5 <g32 v3 g32 v5 >e32 v3 e32 v5 ¢32 v3 c32

% macro #42 - channel A: main melody #1 (4/4)

@ 03 v6 g+64g8.4&g32.v4 g8 v3 g8 v6 f64e8.&%e32. v4 e8 v3 e8
v6 >c+64c8.&c32. v4 c8 v3 c8 v6 d+64d8.&d32. v4 d8 v3 d8
v6 <£32f+64g32.£+64f8&f64 v4 f4 v3 f4 v2 f4

% macro #43 - channel A: main melody #2 (4/4)
@ o3 v6 a+64a8.%a32. v4 a8 v3 a8 v6 g64f+8.&f+32. v4 f+8 v3 f+8
v6 >f64e8.4%e32. v4 e8 v3 e8 v6 d+64d8.&d64eb64g64ad

% macro #44 - channel A: main melody #3 (4/4)
@ o3 v6 f£32f+64g32.f+64f8&f64 v4 f4 v3 f4 v2 f4
ol v3 g4 v4 g4 v5 g4 v6 g4

% macro #45 - channel A: movement II arp C2 (3/16)
@ [3 o5 v6 d64<g64e64 v4 >d64<gb4eb64 v3 >d64<gbBle64 v2 >d64<gb64e64]

% macro #46 - channel A: movement II arp Fmin6 (3/16)
@ [3 o5 v6 d64<g+64f64 v4 d64<g+64f64 v3 d64<g+64f64 v2 d64<g+64f64]

% macro #47 - channel C: bass Fmaj (4/4)
@ ol v6 f16r4r16f16r4.£16>d64r32.c16

% macro #48 - channel B: chord #1 (4/4)
Q@ 03 [2 [2 v6 >e64<ab4f64 v5 >e64<abdf64 v4 >e64<ab4f64 v3 [5 >e64<ab4f64]] r4d]

% macro #49 - channel B: chord #2 (4/4)
@ 03 [2 v6 b64g64eb64 v5 b64gble64 v4 b64g64e64 v3 [5 b64g64e64]]

% macro #50 - channel B: chord #3 (4/4)
@ 03 [2 v6 a64f64d64 v5 a64f64d64 v4 a64f64d64 v3 [5 a64f64d64]]

% macro #51 - channel A: main melody #4 (4/4)
@ 03 v6 a+64b64>c4.&cl6. [8 c+64c64<b64>c64]

% macro #52 - channel B: arp c#maj9 (3/16)
@ o4 v6d+128<v5d+64.>v6f128<v5f64.>v6g+128<v5g+64.05 v6d+128<v5d+64.>v6£128<v5f64.>v6g+128<v5g+64.

% macro #53 - channel C: bass C#maj9 (4/4)
@ ol v6 c#4 v5 c#2. v6 [8 c#16 ri16]

6.1 4000ad.mmml 119

% macro #54 - channel A: C#Maj9 Run (4/4)
@ o5 v6 c+16c16<g+16f16d+16c+16c16<g+16f16d+16c+16c16<g+16f16d+16c+16

120

6 APPENDICES

6.2 paganinis-been-at-the-bins.mmml

Y==s====s=s=s=s====s=s=sss==s=s
% TITLE : Paganini's Been At The Bins

% COMPOSER : Blake 'PROTODOME' Troise

% PROGRAMMER : Blake 'PROTODOME' Troise

% DATE : 3rd February 2019

% NOTES : Oh come on, not again Paganini. If you keep leaving

% the bags on the side of the road, he's going to get

A in there...

A

% A cool little piece exploring unusual time signatures,
% classical writing and 1-bit instrumental techniques.
Y======sssssssssasss)
Y e % CHANNEL A J-~-~—~—~—~—w—w—m—m—mororon e %
Q r4

% paganini-esque introduction
v4 m25 r8 t45

% fade-in
[4 03v2c32rvi[3cr]lv2crvicrv2[3cr] [2vicrcrv2cr]lcr]
v3c32rcrv2[9cr]v3crvécrvbcrvbervicr

% proper introduction
m2 m2

% section A (arp)

[2
[4 m2]
[3 03v4d+32v2d+véc+v2c+vagtv2g+va<g+v2g+va>d+v2d+vafv2fvigtv2g+va<g+v2g+]
03v4d+32v2d+véc+v2c+vigtv2gt+vi<g+v2g+ m2

]

m2

% section B1

mi4 mi4

ml5 r64 7 solo echo
mi4 mi4

% section B2

[2
v705c64<b64g64e64c64<b64g64e64c64r32.>e64c64<b64g64r8>e64c64<b64g64
v5[604e64c64<b64g64]1rl6

v704e64d64<b64g64r8>e64d64<b64g64r8
>e64d64<b64g64v5[304e64d64<b64g64]
v705c32<b32g32e32d32c32<b32a32

v7>£64d+64c64<g64r8>£64d+64c64<g64rs>£64d+64c64<g64
v5[604f64d+64c64<g64]rl6

v704g64d+64c64<a+64r8>gb64d+64c64<a+64r8>f64d64c64<gb4
v5[504£64d64c64<g64]
v8[204£64d64<b64g64]

vi[204b64d+64<b64g+64v2] J .'.'.
v3[204b64d+64<b64g+64v4] 7, blblb
v5[204b64d+64<b64g+64v6] 7 bLbLb
v7[204b64d+64<b64g+64v8] 7 BLBLB

% section B3

[2 % wow, this 4 bar segment wasn't worth the memory cost
v7[2m17r16v5]
v3[2m17r16v2] mil7
v7[2m18r16v5]
v3[2m18r16v2] m18
v7[2m19r16v5]
v3[2m19r16v2] m19
v7 [2m20r16v5]
v3m20
[2v704[2f64e64c64g64]1r16vE]

6.2 paganinis-been-at-the-bins.mmml

121

% ending
03g32g+32£1605c16<g+16<b16g16>d64>d32.b64<b32.>c32r32<g32r32d+16<g16
v8[2m17r16v7]v6[2m17r16v5]v4 [2m17r16v3]v2[2m17ri6vi]olcl6c2

% shh
r4

% paganini-esque introduction
ri6 v3 m25 rié

% fade-in
rir

[2 v204d32[2vio3fv2gvi>dv2cvi<gv2fvi>cv2d]vi<fv2gvi>dv2gvi<gv2>fvigv2evifv2cvliev2<gvi>cv2<fvig]
v204d32vi<fv2gvi>dv3cv2<gv3fv2>cvadv2<fvagv2>dvicv2<gvafv2>cvadv2<fvidgv2>dvigv2<gvd>fv2gvdev2fvic

v2ev5<gv3>cv5<fv3g

% proper introduction
m3

% section A (bass)
[2
[3 m3]

[4 olvba+16v3a+16 [2 v4o4cl6v2cl6v4<dl6v2dl6vE<<a+32v3a+32] v4o4cl6<cl6]

m3

[2 02v5c+16v3c+16 [2 v4o04c+16v2c+16v4<d+16v2d+16v5<c+32v3c+32] v4>>c+16<c+16]

[2 m3]

% section B1
mi3 mi3

r64 mi5 7 solo
mi3 mi3

% section B2
[2 mb v6 [2 03 f64g>dfg>dfg32f64d<gfd<gf] 1]
r2

% section B3
[2 % another massive waste of space
v8[2m21r16ve]
v4[2m21r16v3]
vim21
v8[2m22r16veE]
v4[2m22r16v3]
vim22
v8[2m23r16veE]
v4[2m23r16v3]
vim23
v8[2m24r16ve]
v4m24
v8[203e64f64a64>c64e64g64>c64f64r16v7]

% ending
r2.v8[2m21r16v7]v6 [2m21r16v5]v4 [2m21r16v3]v2[2m21r16vi]ri6r2

% paganini-esque introduction

r8 v2 m25
% fade-in
rirr

[3 o3v2d32vidv2cvicv2gvigv2<gvigv2>dvidv2eviev2gvigv2<gvig]

% proper introduction
[156 m1]

122 6 APPENDICES

% section Al (melody)
[2 m5 m1] m6 mb ml m4d
ml ml o3v4d32v2dvécv2cvigv2gvi<gv2g

v7 [2 m7 m8 v6] v5 m7 m8 v4 m7 7 arp

% section A2 (melody)

[2 m6 m1] m6 m5 mi
03v6c8.v4c8.v2c8v6f8v2f16v6g+8v2g+16v6a+8.
v4a+8.v2a+8v6g+8.ab6da+b>cct+dd+eff+gg+

v6[18 03c64e64g64>£+64d64<b64] cB4e64g64>f+64
[18 04d64c64<d+64f64g+64>g64 | d64c64<d+64164
[18 03a64f+64d64>a64f+64d64] £+64d64>a64

v7[10 04g64d64<a+64g64d64>a+64] g64d64<a+64g64d64

v8[7 04b64g64d+64<b64g64d64] b64g64d+64<b64g32

% section B1

[4 m10]

[2
01c8>c64r32.<c16r8>c8<v8[6c32r32]v7g8
r8>c64r16.r64g8<v8[6g32r32] v7c+8>c64r32.<c+16
r8>c+8<v8[6c+32r32]v7g+8r16>c64ri16.r64c64r32.
g+16.g64d64<g16a32r32£32r32g16>c16g16

% section B2
mi0 m10
r2

% section B3
[2 v702¢c32<c16.1r2>c32<c16.1r8>g32<gl6.r2.>c+32<c+16.r2>c+32<c+16.r8>g+32<g+16.r4.>g32<gl6.1r4]

% ending
r2.r16v8[2m21r16v7]v6 [2m21r16v5]v4 [2m21r16v3]v2[2m21r16vi]r2

% shh
ré4

Gpmmm oo % CHANNEL D Y-~=~-~=w—~ow—~om—smmoomono %

% paganini-esque introduction & fade-in & proper introduction & section Al
[68 r1]
d+64d+32.r16d16d+16e16d+64d+32.d16r16d+16d+16

% section A2

[4 m9]
dl6érerdrerd+rererdreed+64d+32.r16dd+ed+64d+32.d16rd+d+
m9 m9

% section B1
[8 m11 m12]
[2[3 d16el6el16d16c+16e16d+64d+32.r16[6 c+64e32. 1] mi12]

% section B2
[2
mié
mil mi2
]
d+16c16e32e32c+64c+64c+64c+64d+64d+32.e16c+16d+64d+32.

% section B3
[4 mi6]

% ending
r2.ririri16

% shh
r4

% ml: C arp #1
@ o3v4d32v2dvicv2cvigvgvd<gvlgvi>dv2dviev2evigvgvd<gvlg

% m2: A arp #1

6.2 paganinis-been-at-the-bins.mmml 123

[7 o3v4c32v2cvigv2gvi<gv2gv4>dv2dviev2evigv2gvi<gv2gv4>dv2d]

m3: B bass #1

[3 02v6c16v3cl16 [2 v4o4cl6v2cl6v4<dl6v2dl6v5<c32v3c32] v4>>cl16<cl6]

02v5¢c16v3cl16v5>>c16v3cl16v5<d16v3d16v5<c32v3c32v5>>c16v3cl6v5<<gl6v3b64v5>c32.<c16>d32e32<<b32v3
b32

md: C tune #3
04v6c64<c8&c32.v4c8.v2c8v6>f64<f16.4f64v2f16v6>g+64<g+16.4g+64v2g+16v6>a+64<a+8&
a+32.v4a+8.v2a+8v6>g+64<g+8&g+32.v4g+8.v6>g64<g8.4&g32.v4gl

m5: C (& B) tune #1
04v6c64<c8&c32.v4c8.v2c8v6>e64<el6.&4e64v2el6v6>g64<gl6.&gb4v2gl6v6>b64<b8&
b32.v4b8.v2b8v6>c32>d64<d8&d64v4d8.v6>c64<c8.&c32.

vbc4vidcdv3c2

m6: C tune #2
04v6c64<c8&c32.v4c8.v2c8v6>f64<f16.4f64v2f16v6>g64<gl6.4g64v2g16v6>>c64<c8&
c32.v4c8.v2c8v6>d64<d84&d32.v2d8.v6e32>f64<f8.&4f64
v2f8v6d32>e64<e8.&eb64v2e8v6>c64<c8.&c32.v4cd4v3cdv2chd

m7: C arp #2a
[205g64edc<gedc]

m8: C arp #2b
[204g64edc<gedc]

m9: D kit #1
dl6rec+d+rererc+ed+rerdrec+d+rerec+red+eed
r8el6c+d+rereected+redd+d+64d+32.el6c+d+ed+d+

m10: C bass #1

v701c8>c64r32.<c16r8>c8r16c64r32.<c8>c16.<b64ab64g8
r8>c64r16.r64g8r16c64r32.<g8>£32g16.<c+8>c64r32.<c+16
r8>c+8r16c64r32.<c+16>g+16<c+16d64e64f64g64g+8r16>c64r16.r64c64r32.
g+16.g64d64<g16a32r32f32r32g16>c16gl6

mil: D kit #2
dl6eedc+ed+64d+32.el6eedede

mi2: D kit #3
dl6eedeed+64d+32.el6eeded+64d+32.d16

mi3: B arp #1

[2 v703d+64g64>c64d+64g64>c64d+64g32d+64c64<gb64d+64c64<g64d+64] r4.
[2 02b64>d64g64b64>d64g64b64>d32<b64g64d64<b64g64d64<b64] rd.

[2 03f64g+64>c+64f64g+64>c+64f64g+32f64c+64<g+64f64c+64<g+64f64] r4d.
[2 03c64d+64g+64>c64d+64g+64>c64d+32c64<g+64d+64c64<g+64d+64c64]

[2 o5f64e64c64<ab4g64f64e64c64<abigbifb64e64]

mil4: A arp #2
v8o4c64d+64<g6da+64 v6[704c64d+64<g64a+64]

v8ob5g64a+64r32 v6 [6g64a+64r32]
v803g64b64>d64£64 v6[703g64b64>d64£64]
v805g64b64r32 v6 [6g64b64r32]
v8o4c+64f64<g+64>c64 v6[T7To04c+64f64<g+64>c64]
v805f64g+64r32 v6 [6£64g+64r32]
v803g+64>c64d+64g64 v6[703g+64>c64d+64g64]
v8f64e64c64gb4 v6[56f64e64c64g64]

mi5: A (& B) solo
v7o04a+64>c32.<gl6d+16<gl6d+16f16g16>c32r32d+16c16<gl6v8d+32r32c16<gl6
v7b16>g16
d16b32.>c64c+64d32.g16b16>d16g16b16g16d16<b32r32f64g32.f16c+16<g+16f16
>>c64£32.c+16<g+16£32.r64c+16<g+32r32f16g+32r32c+32.r64f16g+32r32>c16
d64d+32.g+16>c16d+16
g1l6£16c16<gl16d+64£f32.c16<gl16f16v8c32d+32g32>c32d+32g32>c32d+32g32d+32
c32<g32d+32c32<g32d+32
v7c¢32r32d32r32d+32r32£32r32g32r32b32r32v8<g32b32>d32g32b32>d32g32b32
>d32<b32g32d32<b32g32d32<b32v7>gb64<g32r64>a64<a32r64
>b64<b32r64>>c64<c32r64>d64<d32r64>d+64<d+32r64v8c+32£32g+32>c+32£32
g+32>c+32£32g+32£32c+32<g+32£32c+32<g+32£f32v7c+16d+16£32r32a+16
g+16>c+16£f64g32.d+16c32r32<g+16g16d+16c16g16a32>c32d32d+32v8>e64<e32
r64>f64<f32r64>g64<g32r64>c32.

mi6: D kit #4
d8.c16e8d8d+64d+16.r64e16d16e8d8
c16d16e8d+64d+16.r64e8d16e16d+64d+16.1r64

124

6 APPENDICES

mi7: A arp #3a
[204c64d+64<g64a+64]

mi8: A arp #3b
[203g64b64>d64£64]

mi9: A arp #3c
[204c+64f64<g+64>c64]

m20: A arp #3d
[203g+64>c64d+64g64]

m21: B arp #la
03d+64g64>c64d+64g64>c64d+64g64

m22: B arp #1b
02b64>d64g64b64>d64g64b64>d64

m23: B arp #lc
03f64g+64>c+64f64g+64>c+64f64g+64

m24: B arp #1d
03c64d+64g+64>c64d+64g+64>c64d+64

m25: paganini-esque solo (intro taken from the movie crossroads)
02t90c16t70d+g>t60cd+t56g>cd+gd+t55c<gd+c<d+c
t80dft70gb>t60dt50fgb>d<bt55gfd<bt60gt70f
t70cet65ga+>tb6cega+>c<atgec<atge
t60cft55g+>cftb3g+>cfg+tb56fc<g+fc<g+f

dfg+b>dfg+b>d<bg+fd<bg+f
t50cgd+>c<t55g>d+cgd+>t80c<g>d+t90cgd+t100b

t200>c4t40r1

% let's gooooo!

t60c16t50<g16t48d+16<g16d+16£f16t44gl16>c+16d16<b16g16d+16d16t40<b16>d16f16

d+16gl6a+16>d+16gl6a+16>d+16gl6a+16f16d16<a+16f16d16<a+16f16
>>el16c16<gl6el16c16<gl6elb6gl6cl6f16g+16>c16f16g+16>c16f16
a+16f16d16<a+16f16d16<a+16f16<a+16>d+16gl6a+16>d+16gl6a+16>d+16
£16d16<b16g+16f16d16<b16g+16>d+16c16<gl6d+16c16<gl6d+16g16
>g+16£16>>c16<g+16<b16g16>>d16<b16>c16<gl6d+16<gl6cl16r8.
>c32d+32g32>c32d+32r16.<<g32b32>d32g32b32>d32r16<<c32d+32g32>c32d+32g32
>c32<g32d+32c32<g32d+32c32r16.
>>c16<g16d+16c16g16d+16c16<f+16g16<b16>d16f+16g16b16>d16£16
c32d+32g32>c32d+32r16.<<g32b32>d32g32b32>d32r16<<c32d+32g32>c32d+32g32
>c32<g32d+32c32<g32d+32c32r16.
cl6el6g16>c16<d16f16a+16>f16<gl6a+16>d+16g16<b16>d16gl6b16
<c32e32g32>c32e32g32>c32e32c32<g32e32c32<g32e32c32e32£32g+32>c32£32g+32
>c32f32g+32g32g+32f32c32<g+32f32c32<g+32
<a+32>d32f32a+32>d32f32a+32>d32<a+32£32d32<a+32f32d32<a+32>d32d+32g32
a+32>d+32g32a+32>d+32g32a+32g32d+32<a+32g32d+32<a+32g32
<g+32>c32d+32g+32>c32d+32g+32>c32<g+32d+32c32<g+32d+32c32<g+32>c32d32
£+32a32>d32f+32a32>d32f+32a32f+32d32<a32f+32d32<a32f+32
g+16£16>>c16<g+16<b16g16>>d16<b16>c16<gl6d+16<gl6c16r8.
>>d+16c16<g16d+16c16g16d+16c16>d16<b16g16d16b16g16d16<b16
>>d+16c16<g16d+16c16g16d+16c16>d16<b16g16d+16d16d+32d32d+32d32d+32d32
>gl6el6cl6<glbelbcl6<a+16gl6>>f16c16<g+16£16c16<g+16f16e16
>>f16d16<a+16g+16f16d16<a+16g+16>>d+16<a+16gl6d+16<a+16>d+16<gl6a+16
>>d16c16<bl6g+16g16f16d+16d16c16<a+16g+16gl6f16f+16gl6cl6
g+16£16>>t50c16<g+16<b16t60g16>>d16<b16>t70c16<g16t80e16<t90g16t200c4

6.3 goose-communications.mmml

125

6.3 goose-communications.mmml

Y=================m==mmmmmmmmmmmmmsmm—mmomsommomsomsomoomoomomsomaos
% TITLE : Goose Communications

% COMPOSER : Blake 'PROTODOME' Troise

% PROGRAMMER : Blake 'PROTODOME' Troise

% DATE : 1st September 2018

% NOTES HE N T

% - - - e —-

% _
Y===),
Sy — v —v o % CHANNEL A J—~—~—~—w—w—~or—m—m—m—m—v oo %
Q@ o4 ré4

% introduction (3/4)
[14 r2.] r2

% theme A1l (3/4)
m2 m3 m2 m4

% theme A2 (3/4)
mb6 riré

% theme A1l (3/4)
m2 m3 m2 m4

% theme A2 (3/4)
mb ré

% theme B1 (4/4)

mi5 03 v6 c+8rl6 v3 c+16 v6 e8rl6 v3 el6 v6 f+8r16 v3 f+16 v6 e8ri6
v3 el6 v6 e8. v e8. v6 f+16e16d+8. v5 d+16

mi5 mi8

v7 [2 02 ab4>c+64e64ab64>c+64e64a64>c+32<abdeb4c+64<ablebdc+64<abd]
[2 o5c+64<b64ab4f+64e64c+64<b64ab4f+64e64c+64<b64]
>a64b64>c+64e64f+64g+64b64>c+64

% theme B2 (4/4)

m21

[10 03 v5 d64g+64 v7 >c+64]
[11 v5 <d64g+64 v7 >e64] r64<
[6 v5 c+64a64 v7 b64]

[6 03 v5 c+64a64 v7 >e64] <
[11 v5 e64c+64 v7 a64] r64
[10 v5 c64e64 v7 a6d]

[6 vE 03 c64e64 v7 >e64]

[6 03 v5 c64e64 v7 >f+64] r64
[6 03 v5 g+64<b64 v7 >>g+64]
[6 03 v5 g+64<b64 v7 >>e64] <
[6 v g+64<b64 v7 >b64]

[6 v e64<b64 v7 >g+64] r64
[21 v5c+64e64 v7 g+64] r64
[10 v5 d+64<b64 v7 >f+64]

[11 v5 d+64<b64 v7 >g64] v5 r64
m21

[10 v5 03 d64g+64 v7 >e64]
[11 v5 <d64g+64 v7 >f+64] r64
[6 v5 <c+64a64 v7 >f+64]

[5 v5 <c+64a64 v7 >g+64]

[11 v5 03 g+64c+64 v7 >e64] r64
[11 v5 03 c64g+64 v7 >e64]
[10 v5<c64a64 v7 >e64] r64

[6 vb <g+64<b64 v7 >>f+64]

[6 v5 <g+64<b64 v7 >>e64] <
[6 v5 g+64<b64 v7 >b64]

[6 v5 e64<b64 v7 >g+64] r64
mi8

% theme C (4/4)

ve >f+4g32g+32 v5 g+16r8 v6 el6 v5 el6 v6 <bl6é v5 blé v4 bl6é v3 bilé
v2 blé vl bl6 v6 >g+32e32c+32<b32a32r16. v4 >g+32e32c+32<b32a32ri16.
v2 >g+32e32c+32<b32a32r16. v6 bl6r8b16>f+4£32g32 v5 gl6ér8 v6 f£+16 v5
f+16 v6 el6 v5 el6 v4 el6 v3 el6 v2 el6 vl el6 v6 g32e32c32<b32a32
ri6. v4 >g32e32c32<b32a32r16. v2 >g32e32c32<b32a32r4r16. v6 >a+4b32>

126

6 APPENDICES

c+32 vb c+16r8 v6 <f+16 v5 f+16 v6 c+16 v5 c+16 v4 c+16 v3 c+16r8 v6
f+32d+32c+32<b32a+32r16. v4 >f+32d+32c+32<b32a+32r16. v2 >f+32d+32
c+32<b32a+32r4r16. v6 >g4g+32a32 v5 al6r8 v6 f16 v5 f16 v6 cl6 v5

cl6 v4 c16 v3 cl16 v2 c16 vl cl16 v6 £32d32c32<a+32a32r16. v4 >£32d32
c32<a+32a32r16. v2 >£32d32c32<a+32a32r16. v6 bl6r8b16>f+4g32g+32 v5
g+16r8 v6 el6 v5 el6 v6 <bl6é v5 bl6é v6 >c+16 v5 c+16 v6 el6 v5 el6 v6
alér16g+32a32g+16f+8a8f+32g+16.r16 v3 g+16 v6 d+32el16.r16 v3 el6 v6 <
b4 v5 b4 v4 b4 v3 b4 v6 >>b4d v5 bd v4 b4 v3 bl

% ending melody (3/4)

[65 r1] r2.

02 v6 bl6r8b16>

[2 e4 v4 ed4 v3 ed v2 ed. v4 e64 v6 e32. v4 d+64 v6 d+32. v4 eb4 v6
e32. v4 <b64 v6 b32. v4 >e64 v6 e32. v4 g+64 v6 g+32. v3 f+32 v4d f+32
v f+32 v6 f+8&f+32 v4 f+4 v6 g+8 vb5 g+8 v6 e4 v4 e4 v6 d+8 v5 d+8]

% C#maj13, Amaji13 (4/4)
v4 o5 [128 e64<ab4f64>] [86 d64<ab4e64>] r64

% Gmaji13#11/A, Amaji13#11, A#maji13#11/A
v56 o5 [128 f64c+64<a+64>]

[64 g64c+64<a+64>]

[64 g+64d64<a64>]

% Dmaj9, Fmaj9 (6/8)
[3 [16 c+32<g+32£32>]
[16 e32<b32g+32>]]

[16 c+32<g+32f32>]
[8 e32<b32g+32>]
r2 r8. ré64

% theme E

m29 m30 m30

m29 m30

v4 o4 [8 c+32g+32d+32]

m31

v6 f+16 v8 g+32 v7 g+8&g+32 v5 g+8
f+16 v7 g+32 v6 g+8&g+32 v4 g+8
f+16 v6 g+32 v5 g+8&g+32 v3 g+8
f+16 vb g+32 v4 g+8&g+32 v2 g+8

rd

m31

04 v7 £+32g8.84g32 v5 g8 v7 a64b16&b64r32 v7 gl6al6gl6éf+16g16d16 v6 glEbl6
v8 a32 v7 a8.%a32 v ad v7 <c+64e64g+64b64>c+64e64f+64g64g+64a32.g+16a16

el16b64>c+32.£+16

% true ending

m32 rl1 r2.

r16 o5 vl e32 v2 e32 v3 e32 v4 e32 v5 e32 v6 e32 m32
r4

fpmmmm oo % CHANNEL B Y=~=~=~=~=~om—~om—romoomon %
@ o3 r4

% introduction & theme A (3/4)
[40 m1] m37

% theme A1l (3/4)

[2 m9

04 vb [3eb64<f+64a64>]

v >a32. v4 e64 v3 e32. v6 b64 v5 b32. v4 a64 v3 a32.<

v5 [3e64<f+64a64>]

v a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 a64 v3 a32. v6 >eb64 v5
e32. v4 <b64 v3 b32.

v5 [3e64<f+64a64>]

v56 >b32. v4 a64 v3 a32.<

v5 [3e64<f+64a64>] v5 a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 ab4d
v3 a32.

v5 [3 03 e64ab64>c+64]
o5 vb a32. v4 e64 v3 e32. v6 b64 v5 b32. v4 a64 v3 a32.
v5 [3 03 e64a64>c+64]

6.3 goose-communications.mmml 127

vb a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 a64 v3 a32. v6 >e64 v5
e32. v4 <b64 v3 b32.

v5 [3e64<abdc+64>]

vb >b32. v4 a64 v3 a32.<

v5 [3e64<ab64c+64>] v5 al32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 ab64d
v3 a32.

m9]

% theme A2 (3/4)

r8 [2 03 v6 ab4>c+64<abd>c+64rl6 v3 <ab4>c+64<ab4>c+64r8.]
[2 v6 <aB4>c64<ab4>c64rl6 v3 <ab4>c64<ab4>c64r8.]

[2 03 v6 g+64b64g+64b64ri6 v3 g+64b64g+64b64r8.]

[2 03 v6 a+64>c+64<a+64>c+64r16 v3 <a+64>c+64<a+64>c+64r8.]
[3 v6 <b64>e64<b64>e64r16 v3 <b64>e64<b64>e64r8.]

v6 <b64>e64<b64>e64r16 v3 <b64>e64<b64>e64r16

ml2 r4

% theme B1 (4/4)

[18 m1] m19

02 v5 a8rl6 v2 al6é v b8rl6 v2 bl6é vb6 >c8rl6 v2 cl6 vb c+8rl6 v2 c+16
mi2 r4

% theme B2 (4/4)

[18 m1]

03 v7 b64a64gb64f64d+64c+64<b64ab64g+8albri6b8

vb 02 a+8rl6 v2 a+16 v5 >c+8r16 v2 c+16 v5 <a8rl6 v2 alé v5 b8rl6 v2
b16 v6 g+32a+32g+8. v5 g+4 vd g+d v3 g+d

% theme C (4/4)

v6 m22 o3

[2 [3 <b64>g64e64] r8.r32. [3 <b64>gb64e64] r4.r16.r64]
[2 [3 f+64d+64a+64] r8.r32. [3 f+64d+64a+64] r4.r16.r64]
[2 [3 a64f64d64] r8.r32. [3 a64f64d64] r4.r16.r64]

m22

v6 o5 albrl16g+32a32g+16f+8a8f+32g+16.r16 v3 g+16 v6 d+32el6.r16 v3
el6
04 a64 v5 a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 ab64 v3 a32.

% ending melody (3/4)
[17 m1]

% C#maj13, Amajl13 (4/4)

[16 v5 04 e64>eb4 v3 <<d64>d64 v5 <abd>ab4 v3 eb64>e64 v5 <c64>c64 v3
<<a64>a64 v5 <f64>f64 v3 c64>c64 v5 <<gb64>gb64 v3 <f64>f64 v5 <d64>d64
v3 <g64>g64]

[10 v5 04 e64>e64 v4 <<d64>d64 v5 <b64>b64 v4 eb64>eb64 v5 <c+64>c+64
v4 <<b64>b64 v5 <f+64>f+64 v4 c+64>c+64 v5 <<ab4>ab4 vid <f+64>f+64 v5
< d64>d64v4<abd>abd]

vE 04 e64>e64 v4 <<d64>d64 v5 <b64>b64 v4 e64>e64 v5 <c+64>c+64 v4
<<b64>b64 v5 <f+64>f+64 v4 c+64>c+64 v5 <<abd>ab4 v4 <f+64>f+64

% Gmaji13#11/A, Amaji3#11, A#maji3#11/A

[16 v6 o4 £32 v4 <f+32 v6 a+32 v4 >f32 v6 c+32 v4 <a+32 v6 g+32 v4 >
c+32 v6 <d+32 v4 g+32 v6 £+32 v4 d+32]

[8 v6 04 g32 v4 <f32 v6 a+32 v4d >g32 v6 c32 v4 <a+32 v6 g+32 v4 >c32
v6 <d+32 v4 g+32 v6 £32 v4 d+32]

[8 v6 04 g+32 v4 <b32 v6 f+32 v4 >g+32 v6 e32 v4 <f+32 v6 >c+32 v4
e32 v6 <a32 v4 >c+32 v6 <b32 v4 a32]

% Dmaj9, Fmaj9 (6/8)
[3 m23 m24 m24]

m23 m24

r2 r8.

% theme E

[2 [3 05 v6 c+32 v4 <<a+32 v6 >£f32 v4 >c+32 v6 <g+32 v4 £32 v6 <f+32 v4 >g+32 v6 <a+32 v4d £+32]
vé >c+32g+32

m34

[3 05 v6 d32 v4 <<b32 v6 >f+32 v4 >d32 v6 <a32 v4 f+32 v6 <g32 v4 >al32 v6 <b32 v4 g32]

v6 >d32a32

[3 o5 v6 €32 v4 <c+32 v6 g+32 v4 >e32 v6 <b32 v4 g+32 v6 <a32 v4 >b32 v6 c+32 v4 <a32]

v6 >e32b32

[2 [3 v6 o5 g+32 v4 <a+32 v6 >c+32 v4 g+32 v6 d+32 v4 c+32 v6 <c32 v4 >d+32 v6 <a+32 v4 c32]
v6 d+32>g32]]

128 6 APPENDICES

m33 m34 m35 m33 m33
m33 m34 m35

[3 v6 o5 g32 v4 <f+32 v6 b32 v4 >g32 v6 d32 v4 <b32 v6 d32 v4 >d32 v6 <f+32 v4 d32] v6 g32>d32
v6 03 [2 c+64e64g+64b64>c+64e64a64>c+32<ab4e64c+64<b64g+64e64c+64]
[2 o5 f+64<a64e64c+64<b64g+64e64c+64 v5] o4 v6 f+16c+16g+64a32.>c+16

% true ending

vb <g+2 vd g+4. v5>c64<<c64>c+64>c+64<<d64>d64>d+64<<d+64
v6 m36

[6 04 g+64<g+64<b64>>e64<e64b64]
g+64<g+64

[5 03 d64>g64<g64>d64b64<b64]
d64>g64

m36

[6 o5 c64<c64<d+64>g+64<g+64>d+64]
c64<c64

[5 03 c+64>f+64<f+64>c+64a+64<a+64]
c+64>f+64

[5 03 a64>eb64>c+64<c+64<e64>ab4]
a64>e64

[5 05 d+64<d+64<f+64>>c64<c64f+64]
d+64<d+64

[3 m1] m37

r4

oo % CHANNEL C f=~-==-=-===-~=~—~o~o~o~o~ono %
@ ol rd

% introduction & theme A (3/4)

[4 r2.]

[2 03 v4 e4r8 v3 e4r8 v2 e4r8 vl edr8]

[31 v4 el6 v3 >el6 v4 <al6 v3 el6 v4 >el6 v3 <al6 v4d el6 v3 >el6 v4
<al6 v3 el6 v4 >el6 v3 <al6]

rir2

% theme A1 (3/4)
[2 [6 m6] m7 m6 m6]

% theme A2 (3/4)
m10 m10 mi1l1 mil mi0 mi10
ol v7 b4 v6 b4 v5 b4 v4d b4 v3 bd v2 bér2

% theme B1 (4/4)

mi3 mil6é

02 v7 el6 v6 el6rl6 v8 >>e64r32. v6 <bl6rl6 v7 <el6 v6 >bl6>ed vid ed
v7 <<d+16 v6 d+16>>el16d+16e16<bl6 v7 <d+16 v6 d+16>>el6f+8. v4d f+4

v7 <<d16 v6 d16rl6 v8 >>e64r32. v6 <bl6rl6 v7 <d16 v6 d16>>g+d v4 g+4d
v7 <<c+16 v6 c+16r16>>glég+16el6 v7 <<c+16 v6 c+16>>ad v4 a4

v7 <<cl1l6 v6 cl16rl6 v8 >>e64r32.<e64r16.r64 v7 <cl6 v6 c1l6 v5 o5 cl16
r1l6 v6 <b32>c32<bl6 v5 a8>c8<a32bl6.>elbrl16<g+8

ol v7 bl6 v6 bl6 o4 e8 v5 d+64d64c+64c64 v4 <b64a+64a64

g+64 v8 e64r8.r32.

v6 <f+8r16 v3 f+16 v6 g+8rl6 v3 g+16 v6 a8rl6 v3 al6é v6 a+8rl6 v3
a+16 v6 b64>c64<b32b2.&bl6a+64a64g+64g64d+64d64c+64c64
<b2.&b8.>c64c+64d64d+64

% theme B2 (4/4)

mi3 m16 mi3

v7 ol f+16 v6 f+16r4. v7 bl6é v6 blér4d.
v7 el6 v6 el6r2r8 v7 >>b16r8b16

% theme C (4/4)

v7 ol a8r16 v8 o4 e64r32.<e64r16.r64 v7 <<aB8r8. v8 o4 e64r32.<e64
r32. v7 <<a32r32>b16a32r32<a8r16 v8 o4 e64r32.<e64r16.r64 v7 <<a8r8
a32r32 v8 o4 e64r32.<e64 v7 <g+32.al6<albr16>c8rl6 v8 >>eb64r32.<eb64
r16.r64 v7 <c8r8. v8 >>e64r32.<e64r32. v7 <gl6c32r32<al6>c8rl6 v8
>>e64r32.<e64r16.r64 v7 <c8 v8 e64 v7 e32r64 v8 f64 v7 £32r64 v8 g64
v7 g32. v8 a64 v7 a32r64 v8 >c64 v7 c32. v8 <a+64 v7 a+32r64 v8 b64
v7 b32. v8 g64 v7 g32r64c+8r16 v8 >>d+64r32.<e64r16.r64 v7 <c+8r8
c+32r32 v8 >>d+64r32.<eb64r32. v7 <c+32r32>c+16<b32r32c+8ri6 v8 >>
d+64r32.<e64r16.r64 v7 <c+8r8. v8 >>d+64r32.<e64 v7 <<b32.>a+16c+32
r32d+32r32c8r16 v8 >>d64r32.<e64r16.r64 v7 <c8r8b32r32 v8 >>d64r32.
<e64 v7 <<b32.>c16>c32r32e32r32<c8r16 v8 >>d64r32.<e64r16.r64 v7

6.3 goose-communications.mmml

129

<c8 v8 >>c+64c64r32<ab4g+64r32a64g+64r32>d64r32.<e64r16.r64a64g+64
g64f+64f64e64r32 v7 <<b8rl6 v8 >>b64r32.e64r16.r64 v7 <<b8r8b32r32
v8 >>b64r32.e64 v7 <g+32.r16g+16a16<b8r16 v8 >>b64r32.e64r16.r64 v7
<<b8r8>el6 v8 >b64r32.e64 v7 <f+32.r16a32b16.<b8 v6 b8 v5 b8 v4 b8

>>[11 e64c+64a64]

r64 v4 e64r64 v7 ab64r64 v4 a64r64 v7 b64r64 v4 b64r64 v6 e64r64 vé
e64r64 v6 a64r64 v4 a64r64 v6 b64r64 v4 b64r64 v5 eb64r64 v3 e64r64 v5
a64r64 v3 ab64r64 v5 b64 r64 v3 b64r64 v4 e64r64 v2 eb64r64 v4 ab4r64d
v2 a64r64 v4 b64r64 v2 b64r64 v3 <el6al6bl6>d+16

% ending melody (3/4)

v4 [4 o3 [32 eb64g+64b64]
[16 e64a+64>c+64<]

[16 e64a64>c64<]]

% C#majl3, Amaj13 (4/4)

03 v6 d64d+64ed&e32 v5 ed&el6 v4 ed&el6 v3 e4d. v2 ed. rd ri6

[2 v8 ol g64 v7 g4kgl6.%g64ri6>gl6rs v3 gl6r8 v3 gl6 v8 <£64 v7
f16.4f64 v8 gb64 v7 gl6.&g64r16>gl6r8 v3 gl6 v8 <g64 v7 gl6.&g64 v3 >
gl6r8 v7 gl6rl6 v8 <f64 v7 £16.&f64]

[2 v8 o1l e64 v7 e4&el6.&eb4r16>el6r8 v4 el6 v8 >>e64r32.<e64r32. v3
<el6 v8 <f64 v7 f16.&f64 v8 eb64 v7 el6.&e64r16>el6r8 v4 el6 v8 <eb4
v7 el6.&e64 v3 >el6rl6 v8 >>e64r32.<e64 v7 <e32.r16 v8 <f64 v7 £f16.&
£64]

% Gmaj13#11/A, Amaji13#11, A#maji13#11/A & Dmaj9, Fmaj9 (6/8)

[8 v8 o1 c+32 v7 c+4.&c+16.r8 v7 >c+8 v8 >eb4r16.r64 v7 <g+8>c+8<g+8
c+8g+8 v8 <c+32 v7 c+4.&c+16.r8 v7 >c+8 v8 >eb64rd4rl6.r64e64r8.r32.e64
ri16r32.]

% theme E

m27 m28

ol [8 v7 c+32.r64 v6 c+32.r64]

[7 v7 d+32.r64 v6 d+32.r64] v7 d+32.r64 v6 d+64f64g+64a+64
[8 v7 b32.r64 v6 b32.r64]

[8 v7 a32.r64 v6 a32.r64]

m28

m27 [16 v7 c+32.r64 v6 c+32.1r64]
m27

[8 v7 g32.r64 v6 g32.r64] t58
[4 v7 a32.r64 v6 a32.r64] t78
[2 v7 b32.r64 v6 b32.r64]

>f+64b64>e64g+64a16>c+16al6 t58

% true ending
v >ed v3 ed v2 ed&el6 r64 v6 <<c64<bb64a+64a64g+16.4g+64 t42

v6 ol g4 vb g4 v6 f+4 t37 v5 f+4

v6 a4 v5 a4 v6 t32 g4 v5 g4

v6e >c4 v5 c4 v6 <a+4d t48 v5 a+4

v6 >c+4 tb8 vb5 c+4 v6 t78 <b4 v5 b4
ve e2 v4 e2

v2 e2 vl el&e2.

Ypmmmm e % CHANNEL D Y=~—~==—~=r—w—r—w——m—m—mooo %
e t42 r4

% introduction & theme Al / A2 (3/4)
[30 r1] r2.

% theme A & B (3/4)
[22 m8]
riri

% theme B1 (4/4)

[7 m14] m17

[6 m14] m20
d+64d+16.&r64r2.r8
e4e4e8d8d+64d+32.d+16d+16e16

% theme B2 (4/4)

130 6 APPENDICES

[7 m14 1 m17
[6 m14] m20 mi17

% theme C (4/4)
[7 m14] ml17 m14 mil4

% ending melody (3/4)
[12 r1] r2 t58 r2. t78 r2.

% C#maj13, Amajl13 (4/4)

t50 [6 r1]

[3 dil6c+eeecc+de32ec+16ded+64d+32.cl6de]
el6ebdeececlbcteded+64d+32.e16cded+64d+16.&r64d+16d+

% Gmaj13#11/A, Amaj13#11, A#maji3#11/A & Dmaj9, Fmaj9 (6/8)

t34 [7 m25 d+64d+16.r64e8elb6ed+64d+16.r64c+8d+]

m25

t42 d+64d+16.r64e32e32d+16d+16e16d+64d+16.r64c+16d+32d+32d+64d+16.1r64

% theme E
[3 m26 d+64d+32.c+16d16d+64d+32.e16c16d16d+16e32e32d+16d16e16d+64d+32.c16d16d+16]
m26

% nothing else
[9 r1] r4

r4
A et et D L L % MACRO e il %

% macro #01 - channel B: arp Csus4 #1 (main riff) (3/4)

@ o5 v6 e64 v5 e32. v4 <b64 v3 b32. v6 >ab4 v5 a32. v4 e64 v3 e32. v6
b64 v5 b32. v4 a64 v3 a32. v6 e64 v5 e32. v4 b64 v3 b32. v6 <ab64 v5
a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 a64 v3 a32.

macro #02 - channel A: theme al #1 (3/4)

@ 03 v6 bl6r16 v4 blé v6 bl6>e8. v e8. v4 e8. v3 e8. v2 e8&e32 v6
f+32e32¢c+32<b16 v4 bl6 v6 >d16 v4 di6 v6é f+16 v4 f+16 v6 a8g+8. vb
g+8.a64a+64 v6 b8&b32 v5 b8. v4 b8.&b32a+64a64 v6 g+16 v5 g+l6 v6
el6 v5 el6 v6 g+16 v5 g+16 v6 blé v5 bl6é v6 a8. vb a8. v6 g+8. vb
g+8. v6 f+8. v5 f+8. v6 <b8.>d64f+64g+8&g+32

=

% macro #03 - channel A: theme al #2 (3/4)
@ o4 v6 e8. v5 e8. v6 <b8. v5 b8. v4 b8. v3 b8. v2 b8

% macro #04 - channel A: theme al #3 (3/4)
@ o4 v6 e8. v5 e8. v4 e8. v3 e8. v2 e8. vl e4&elb

% macro #05 - channel A: theme a2 (3/4)

@ o4 v6 el6rl6 v4 el6 v6 el6b32>c+8&c+32 v5 c+8. v4 c+8. v3 c+8.r4 v6
c+32e32 v5 el6 v6 <bl6 v5 bl6 v6 al6é v5 alé v6 >cl6 v5 cl1l6 v6 <b8.
v b8. v6 >e8. v5 e8. v4 e4 v6 f+8rl16 v5 f+16 v6 g+8rl6 v5 g+16 v6
ad4rl16 v5 al6é v6 g+4rl6 v5 g+16 v6 d+16e4d+32d32c+4rl6 v5 c+16 v6 <
b4&b16 v5 b4&bl6 v4 b4&bl6 v3 b4&bl6 v2 b4

% macro #06 - channel C: bass pedal C #1 (3/4)
@ ol v6 el6 v5 el6rd v6 el6 v5 el6r8 v6 el6 v5 el6

% macro #07 - channel C: bass pedal G (3/4)
@ ol v6 blé v5 bl6r4d v6 bl6é v5 bl6r8 v6 blé v5 bl6

% macro #08 - channel D: kit pattern a (3/4)
@ d8ec+ded+64d+16.&r64

% macro #09 - channel B: arp Cmaj (interleaved with macro #01) (3/4)
Q@ 04 vb5 [3e64<g+64b64>]
v >a32. v4 e64 v3 e32. v6 b64 v5 b32. v4 a64 v3 a32.<
v56 [3e64<g+64b64>]
vb a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 a64 v3 al32. v6 >eb64 v5
e32. v4 <b64 v3 b32.
v56 [3e64<g+64b64>]
v6 >b32. v4 a64 v3 a32.<
v5 [3e64<g+64b64>] v5 a32. v4d >e64 v3 e32. v6 <b64 v5 b32. v4 ab4d
v3 a32.

=

macro #10 - channel C: bass pedal F (3/4)
Q@ ol v7 al6 v6 al6 v7 >>el6r8.<<al6 v6 al6 v7 >>el6ri6<<al6 v6 al6

6.3 goose-communications.mmml

131

% macro
@ ol v7

% macro
e v7 [2
v5 [2
v3 [2
v3 [2
v5 [2
v7 [2

#11 - channel C: bass pedal C #2 (3/4)
el6 v6 el6 v7 >>el6r8.<<el6 v6 el6 v7 >>elbrl6<<el6 v6 el6

#12 - channel B: arp Cmajl3 transition (3/4)

03
03
03
ob
o5
o5

a64>c+64e64g+64b64>c+64e64a64 v6]
a64>c+64e64g+64b64>c+64e64a64 v4]
a64>c+64e64g+64b64>c+64e64a64 v2]
e64r64<b64r64f+64r64<a6dr64 vid]
e64r64<b64r64f+64r64<abdr64 vé]
e64r64<b64r64f+64r64<abdr64 v8]

v4 >>e64c+64<b64 v5 ab4g+64f+64 v6 e64c+64<b64
v7 a64g+64f+64 v8 eb64c+64<b64abd

==

macro #13

- channel C: bass theme b #1 (4/4)

@ 02 v7 el6 v6 el6rl6 v8 >>e64r32.<eb64r16.r64 v7 <el6 v6 el6r8. v8
>>e64r32.<e64r8.r32.
v7 <d+16 v6 d+16r16 v8 >>eb4r32.<eb64r16.r64 v7 <d+16 v6 d+16r8. v8
>>e64r32.<e64r8.r32.
v7 <d16 v6 d16rl6 v8 >>e64r32.<e64r16.r64 v7 <d16 v6 d16r8. v8
>>e64r32.<e64r8.r32.
v7 <c+16 v6 c+16r16 v8 >>e64r32.<eb64r16.r64 v7 <c+16 v6 c+16r8. v8
>>e64r32.<e64r8.1r32.
v7 <cl1l6 v6 cl6rl6 v8 >>e64r32.<eb4rl16.r64 v7 <cl6 v6 c16r8. v8
>>e64r32.<e64r8.r32.
v7 <<bl16 v6 bl6rl6 v8 04 e64r32.<eb64rl16.r64 v7 <<bl6 v6 bl6r8. v8
04 e64r32.<e64r8.r32.

==

macro #14 - channel D: kit b (4/4)

@ d8e32eeed+8c+edd+64d+16.&r64c8

=

macro #15

- channel A: theme b1l #1 (4/4)

@ 02 v6 bl6r8bl6>ed v4 ed v3 e8 v6 el6d+16
el6<bl6>elbg+16el16f+8. v4 f+4 v3 f+4
v6 <bl6rl6 v3 bl6é v6 blé>g+4 v4 g+4 v3 g+8 v6 g+16gl6
gt+tl6el6g+16bl6ad v4 a4 v3 a4
v6 c+16rl6 v3 c+16 v6 c+16a8. v4 a8.r8 v6 alérl6g+32a32g+16
f+8a8f+32g+16.r16 v3 g+16 v6 d+32e16.r16 v3 el6 v6 <b8rl6 v3 bl6
v6 bl6r16 v3 bl6é v6 blé

=

v8 o04e64r32.<e64r8.r32.

macro #16
@ ol v7 a+16 v6 a+16rl6 v8 04 e64r32.<eb4r16.r64 v7 <<a+1l6 v6 a+16r8.
v7 <<bl16 v6 bl6rl6 v8 04 e64r32.<e64rl16.r64

- channel C: bass theme b #2 (4/4)

v7 <<bl6 v6 bl6 v8 04 c+64c64r32<abd
g+64r32a64g+64r32>e64r32.<e64r16.1r64a64g+64g64f+64£f64e64r32

=

macro #17

- channel D: kit b fill #1 (4/4)

@ d8e32eeed+8c+d+16d+d8d+64d+16.&r64d+8

=

macro #18 - channel A: theme b ending (4/4)

@ 03 v6 c+8rl6 v3 c+16 v6 e8rl6 v3 el6 v6 e32f+16.r32 v3 e32f+16 v6
£f+32g+16.r32 v3 f+32g+16 v6 e32f+32e8. v5 ed v4d ed v3 ed

==

macro #19
@ o5 v6 e64 v5 e32. v4 <b64 v3 b32. v6 >ab64 v5 a32. v4 e64 v3 e32. v6

- channel B: arp Csus4 #1 stub (3/4)

b64 v5 b32. v4 a64 v3 a32. v6 e64 v5 e32. v4 b64 v3 b32.

==

macro #20

- channel D: kit b fill #2 (4/4)

@ d4dde32eeec8

==

macro #21

- channel A: theme b2 #1 (4/4)

@ [16 03 v5 e64g+64 v7 b64]
[6 03 v5 eB4g+64 v7 >eb4] r64
[16 03 v5 d+64g+64 v7 b64]
[6 vb d+64g64 v7 a+64] r64

% macro
@ o3 [2

% macro

@ [4 v6

% macro
@ [2 o5
c+32 v4

% macro

#22

- channel A: arp theme c C#maj7 (4/4)

[3 g+64e64c+64] r8.r32. [3 g+64e64c+64] rd.r16.r64]

#23

- channel B: arp theme d Dmaj9 (6/8)

05 c+32 v4 <<f32 v6 >f32 v4 >c+32 v6 <g+32 v4 £32 v6 <f+32
v4 >g+32 v6 <a+32 v4 f+32 v6 £32 v4 a+32 v6]

#24 - channel B: arp theme d Fmaj9 (6/8)

e32 v4 <<e32 v6 >g+32 v4 >e32 v6 <b32 v4 g+32 v6 <a32 v4d >b32 v6

<a32 v6 e32 v4 >c+32 v6]

#25 - channel D: kit d fragment (6/8)

132 6 APPENDICES

@ d8c+eeec+d+64d+16.r64e8c+edd+64d+16.r64d8c+eeed

% macro #26 - channel D: kit e pattern (4/4)
@ [5 d16c+16e16e16d+64d+32.cl6c+16d+16e32e32c16d16e16d+64d+32.c16e16d+16]

% macro #27 - channel C: theme e bass rise (4/4)
@ o1 [8 v7 c+32.1r64 v6 c+32.r64]

[8 v7 d+32.r64 v6 d+32.r64]

[8 v7 e32.r64 v6 e32.r64]

[8 v7 £+32.r64 v6 f+32.1r64]

% macro #28 - channel C: theme e bass pedal #1 (4/4)
@ o1 [16 v7 g+32.1r64 v6 g+32.1r64]

% macro #29 - channel A: theme e arp #1 (4/4)
@ v4 [10 o4 c+32<g+32f+32] g+32>c+32

[10 o4 d+32<a+32g+32] a+32>d+32

[10 o4 d32<a32g32] a32>d32

[10 o4 e32<b32a32] a32>b32

% macro #30 - channel A: theme e arp #2 (4/4)
@ v4 o4 [10 c+32g+32d+32] c+32d+32

% macro #31 - channel A: main theme e #1 (4/4)

@ 03 v7 g+16r8g+16 v8 >c+32 v7 c+8.&c+32 v4 c+4 v3 c+8 v7 >c+64<c+32.>c64<c32.
>c+64<c+32.g+64<g+32.>>c+64<c+32.>f64<£f32.>c+64<c+32. v8 d+32 v7 d+8&d+32

v4 d+8. v3 d+4&d+16

v7 <a+16r16 v3 a+16 v7 a+16 v8 >e32 v7 e8.&e32 v4 ed4 v3 e8 v7 >eb4<e32.>d+64<d+32.
>e64<e32.b64<b32.>>e64<e32.>g+64<g+32. v8 f+32 v7 f+8.&f+32 v4 f+8. v3 f+8.

v7 >f+64<f+32.>f64<£f32.

>f+64<f+32.>c+64<c+32.>f+64<f+32.>a+64<a+32.

% macro #32 - channel A: true ending held note (4/4)
@ o5 v7 e2 v6 e2 v5 e2 v4d e2 v3 e2 v2 e2

% macro #33 - channel B: theme e arp #1 (4/4)
@ [3 o5 v6 c+32 v4 <c32 v6 £32 v4 >c+32 v6 <g+32 v4 £32 v6 <g+32 v4d >g+32 v6 c32 v4 <g+32]
v6 >c+32g+32

% macro #34 - channel B: theme e arp #2 (4/4)
@ [3 o5 v6 d+32 v4 <c32 v6 g32 v4 >d+32 v6 <a+32 v4 g32 v6 <g+32 v4 >a+32 v6 c32 vd <g+32]
v6 >d+32a+32

% macro #35 - channel B: theme e arp #3 (4/4)

@ [3 o5 v6 e32 v4 <d+32 v6 g+32 v4 >e32 v6 <b32 v4 g+32 v6 <b32 v4 >b32 v6 d+32 v4 <b32]
v6 >d+32b32
[3 o5 v6 f+32 v4 <g+32 v6 a+32 v4 >f+32 v6 c+32 v4d <a+32 v6 c+32 v4 >c+32 v6 <g+32 vd c+32]
v6 >g+32c+32

% macro #36 - channel B: theme e arp #4 (4/4)
@ [5 03 f64>c64a64<ab4c64>f64]
f64>c64

% macro #37 - channel B: arp Csus4 echo (3/4)

Q@ o4 v6 a64 v5 a32. v4 >e64 v3 e32. v6 <b64 v5 b32. v4 a64 v3 a32.
v4 a64 v3 a32. v2 >e64 vl e32. v4 <b64 v3 b32. v2 a64 vl a32.
v3 a64 v2 a32. vl >cl6 v4 <b64 v2 b32. vl clé

6.4 jupiter.mmml

133

6.4 jupiter.mmml

f========================ssssssssssssssssssssssssssssssssssss=s=====]
% TITLE Jupiter

% COMPOSER Blake 'PROTODOME' Troise

% PROGRAMMER Blake 'PROTODOME' Troise

% DATE 3rd August 2018

% NOTES 'Jupiter' is a suite of minimalist, 1-bit sonic

% textures representing the environments, topographies
% and unique characteristics of the Jovian moons.

%

% Written for three, pin-pulse mixed, 1-bit pulse waves.
%

% Through the use of phase shifting, each piece is

% extrapolated from a few, simple lines of musical

% material, producing kaleidoscopic, aural moiré

% patterns.

%

% When compiling, make sure the SYNTH_TYPE definition
% is commented out.
fh==================================== ===========|
pmmm % CHANNEL A Ymwmw—wmmmmmmm o mvmwm oo %
@ r4

% ganymede

t255 % set section I (intro) tempo

ol [9 [65m3] t1] % section I

t180 % set section II (main) tempo

[4 m1] [4 m2] % section II

[6 m3] % section III (sync w/ channel c)
% europa

t34 % set section I tempo

o4 [16 m4] [8 mb5] % section I

4. % sync w/ channel c

[4 r1] t68 [4 r] t136 [2 r] % transition (slow tempo)

[4 m6] [2 m4] % section II

ri6. % sync w/ channel c

v2 cl % transition to io

% io

t110 % set global tempo

m6 % section I

[64 m7] % section II

ol v8 cl&c64. % sync w/ channel c¢ + distortion
[4 r64. v8 c1 v5 gl] % section III

220 % slow tempo

v [2 [2 m8] v8] % section VI

% jupiter

v8 ¢l v7 ¢ v6 ¢ v5 ¢

vi c v3 ¢c v2 c vl ¢

[255 r1] % shh

fm o m % CHANNEL B Y=~=w s~ mmmmmmmmmm e m e mm o %
@ r4

% ganymede

o4 [9 r1 [4 m3]] % section I

[8 r4 m1] % section II

[3 m3] % section III (sync w/ channel c)
% europa

[16 r128 m4] [8 r m5] % section I

r8. % sync w/ channel c

[6 m6] % transition

[4 r128 m56] [2 r m4] % section II

r32. % sync w/ channel c

rl % transition to io

% io

ri28 % offset material from channel a

[3r1] mé

% section I

134

6 APPENDICES

[50 m7 r128]

ol v8 c#1l&c#8

[4 v8 c#1 v5 g#l]

ril6.

02 v6 [2 [2 r128 m8] v8]

A

jupiter

v8 gl v7 g v6 g v g
vd g v3 g v2 g vl g2.r8.r32.

[255 r1]

)

ganymede

03 [9 rir m3 ml r8]
[4 r2 m1] [4 r m2]
t255

m3

)
L
L

europa
16 r64 m4] [8 r mb5]
10 r1]

[4 r64 m5 1 [2 r m4]

r

%

1

io

04 r64.
[65 r1] mé
[5 v8 m8 v6 m8 v4 m8 v2 m8]

r

16.

03 v8 [4 m7]

)

jupiter

v8 el v7 e v6 e v5 e
vd e v3 e v2 e vl e

A

section II

sync w/ channel ¢ + distortion
section III

sync w/ channel a

section VI

shh

section I

section II

set section III (outro) tempo
section III

section I
transition
section II
transition to io

offset material from channel a
section I

section II & jupiter section I
sync w/ channel a

section I

end of io & section I

[4 r1] % sync w/ channels a & b

[255 r1] % shh

Gpmmm % CHANNEL D f-~-~===m-~—~omom—~osomoeono
@ r4 % nothing to do

Jom e oo~ mms e oo % MACROD J—~-~-~-~ormomososomosocomoao
% ml : ganymede eminor, duration: ri r2 ré4.

@ [8v4el28vbelvbe8vdev3ev2e v4g8v5[8v3gl128vaglg8vigvlg

v3d32v4dv5dv6dv5d8v4dv3dv2d

m2 : ganymede cadd9, duration: rl r2 r4.
[8v4c128v5c]v5c8vicv3cv2c v4d8v5[8v3d128v4d]d8v3dv2d

v3e32vievbev6evbe8viev3ev2e

m3 : ganymede c¢ pulsing pedal, duration: ri
[64vic128v3c]

m4 : europa cmajl3, duration: rl ri

[16 v3c64véegvbbvbdviav3dev2g]

mb6 : europa g#majl3, duration: rl ri

[16 v3g#64via#cvb6d#vbgvia#v3icvig#]

mé : io c#minor7 #1

v2 [192 c#128df#a] v3 [192 c#df#a] v4 [192 c#df#a]

v6 [192 c#df#a] v8 [192 c#df#a]

m7 : io c#minor7 #2

v3 [2 c#128df#a] v4 [2 c#Hdf#a] v6 [2 c#Hdf#a] v8 [2 c#Hdf#a]

m8 : io c#minor7 #3
[32 o5 f#128 o4 f# 03 f# 02 f#]

6.5 bitbeat.c

135

6.5 Dbitbeat.c

VA Ty

FILENAME :
DESCRIPTION :

NOTES :

AUTHOR :
PLATFORM :
DATE :

*
*
*
*
*
*
*
*
*
*
* SIZE:
*

bitbeat.c
Bitbeat Suite

A selection of bitbeat pieces squeezed
into 915 bytes.
simply switch the Attinyl3 on and off!

To cycle through pieces,

Blake Troise
Attinyl3 4MHz
17th August 2019
915 bytes

H oA KK KA A KKK A A A KK KA A A KKK KA A A KK KK A A A KKK KA AR KKK AN KKK KKK)

#include <avr/io.h>

#include <avr/eeprom.h>

// wariables
uint8_t
uint8_t
uint8_t
uint8_t

outl;
out?2;
out3;

int main(void){

current_piece;

// configure output for mono

DDRB =

0b00000001;

// read song position from EEPROM

uint8_t current_piece =

eeprom_read_byte ((uint8_t*)0);

// change track for nexzt startup
if (current_piece < 3)
eeprom_write_byte(0,current_piece + 1);

else

eeprom_write_byte (0,0);

while (1){
// millipede call centre
if (current_piece == 0){
for(uint16_t 1 = 150 ;; 1+=50)
{
for(uintl16_t t = 0; t < 65535; t++)
{
PORTB = (t >> PORTB | PORTB >> 1) 1;
for(uinti16_t i = 0; i < (1 & t); i++) asm("nop");
}
}
}
// modem exworcism pt.1
if (current_piece == 1){
for(uint8_t v = 1; v < 255; v++){
for(uinti6_t t = 0; t < 65535; t++){

out2
PORTB
out3
PORTB
outl
PORTB

for(uint16_t i =

// faz attack

if (current_piece
for(uintl6_t v =
for(uint16_t t =

PORTB
PORTB
PORTB

for(uintl6_t i =

}

(t << out2) |

(out2 >> 1);

out?2;
(t << out3) | t;
out3;
(t >> out1l) | (outl >> v);
outl;
0; i < (250 ~ PORTB); i++) asm("nop");
== 2){
200 ;; v+=16){

0; t < 2300; t++){
(t << PORTB) | (t >> PORTB);
(t << PORTB) ~ (t << v);
(t >> v) ~ (PORTB >> t);

0; i < ((v & (t << PORTB)) + (132 & (t << PORTB)));

i++) asm("nop");

136

6 APPENDICES

// tiny djent
if (current_piece
for(uint16_t 1
for(uint16_t

== 3){
= 550; 1 < 1150; 1+=50){
t = 0; t < 32767; t++){

out2 = (t << out2) | (out2 >> 1) ~ 1;
PORTB = out2;

outl = (t >> outl) | (outl >> 1) ~ 1;
PORTB = out1l;

outl = (t >> outl | outl >> 1) ~ 1;
PORTB = outl;

for(uint16_

}
for(uintl16_t 1
for(uint16_t

t i =0; 1< (1L & t); i++) asm()

=1 ; 1< 7; 1++){
t = 0; t < 65535; t++){

out3 = (t << out3) | (t >> 1);

PORTB = out3;

out2 = (t << out2) | (out2 >> 1);

PORTB = out2;

outl = (t >> outl) | (outl >> 1);

PORTB = out1l;

for(uint16_t i = 0; i < (150 ~ PORTB); i++) asm()

137

7

[1]

[10]

[13]

References

A. Carlsson, “DEMOSCENE,” ChipFlip, 2017. [Online]. Available: https:
//chipflip.wordpress.com/demoscene/ (Accessed 03/05/2017).

utz, “Sizecoding,” Ancient Wonderland. [Online]. Available: https://irrlichtproject.
blogspot.co.uk/search/label /sizecoding (Accessed 05/04/2017).

M. Reunanen, “How Those Crackers Became Us Demosceners,” April 2014. [Online].
Available: http://widerscreen.fi/numerot/2014-1-2/crackers-became-us-demosceners/
(Accessed 03/05/2017).

“Revision 2017: Results,” Rewvision, April. [Online]. Available: https://2017.
revision-party.net /history /2017 (Accessed 03/05/2017).

“Composition Techniques Specific to Chiptune?” FamiTracker Forum, September
2012. [Online|. Available: http://famitracker.com/forum/posts.php?id=3908 (Accessed
04/05/2017).

Vhiiula/Analogik, “Techniques of Chipping - A detailed tutorial on how to create
chiptunes,” Milkytracker Documents. [Online]. Available: http://milkytracker.titandemo.
org/docs/Vhiiula-TechniquesOfChipping.txt (Accessed 04/05/2017).

L. Paul, For the Love of Chiptune, ser. Oxford Handbooks, K. Collins, B. Kapralos, and
H. Tessler, Eds. Oxford University Press, 2014.

C. Hopkins, “Chiptune Music: An Exploration of Compositional Techniques Found in
Sunsoft Games for the Nintendo Entertainment System and Famicom from 1988 - 1992,
Ph.D. dissertation, Five Towns College, March 2015.

T. Perich, “1-Bit Symphony, by Tristan Perich,” Tristan Perich, March 2015. [Online].
Available: https://tristanperich.bandcamp.com /album /1-bit-symphony (Accessed
28,/12/2018).

Atmel, “ATtiny25/V / ATtiny45/V / ATtiny85/V,” Atmel 8-bit AVR Microcontroller
with 2/4/8K Bytes In-System Programmable Flash. [Online]. Available: http://www.
atmel.com /images /atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_
datasheet.pdf (Accessed 07/04/2017).

R. Burkey, “Virtual AGC —AGS —LVDC —Gemini,” Programmer’s Manual Block
2 AGC Assembly Language, July 2018. [Online]. Available: https://www.ibiblio.org/
apollo/assembly_language manual.html#The_Interpreter_vs. the CPU

J. Lazzaro and J. Wawrzynek, “MPEG-4 Structured Audio: Developer Tools,” mp4-sa,
2000. [Online]. Available: https://john-lazzaro.github.io/sa/index.htm] (Accessed
26/09/2018).

YERZMYEY, “1-BIT CHIPTUNES / BEEPER MUSIC,” CMO.org, 2013. [Online].
Available: http://chipmusic.org/forums/topic/12566 /1bit-chiptunes-beeper-music/
(Accessed 09/04/2017).

https://chipflip.wordpress.com/demoscene/
https://chipflip.wordpress.com/demoscene/
https://irrlichtproject.blogspot.co.uk/search/label/sizecoding
https://irrlichtproject.blogspot.co.uk/search/label/sizecoding
http://widerscreen.fi/numerot/2014-1-2/crackers-became-us-demosceners/
https://2017.revision-party.net/history/2017
https://2017.revision-party.net/history/2017
http://famitracker.com/forum/posts.php?id=3908
http://milkytracker.titandemo.org/docs/Vhiiula-TechniquesOfChipping.txt
http://milkytracker.titandemo.org/docs/Vhiiula-TechniquesOfChipping.txt
https://tristanperich.bandcamp.com/album/1-bit-symphony
http://www.atmel.com/images/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet.pdf
http://www.atmel.com/images/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet.pdf
http://www.atmel.com/images/atmel-2586-avr-8-bit-microcontroller-attiny25-attiny45-attiny85_datasheet.pdf
https://www.ibiblio.org/apollo/assembly_language_manual.html#The_Interpreter_vs._the_CPU
https://www.ibiblio.org/apollo/assembly_language_manual.html#The_Interpreter_vs._the_CPU
https://john-lazzaro.github.io/sa/index.html
http://chipmusic.org/forums/topic/12566/1bit-chiptunes-beeper-music/

138

7 REFERENCES

[14]

[20]

[22]

[23]

[25]

A. Silvast, M. Reunanen, and G. Albert, “Demoscene Research.” [Online]. Available:
http://www.kameli.net /demoresearch2/ (Accessed 04/04/2017).

“Ada Lovelace,” The Babbage Engine, Computer History Museum. [Online]. Available:
http://www.computerhistory.org/babbage/adalovelace/ (Accessed 05/04/2017).

Jack Copeland and Jason Long, “Christmas carols from turing’s computer,” Sound and
vision blog, December 2017. [Online]. Available: https://blogs.bl.uk/sound-and-vision/
2017/12/christmas-carols-from-turings-computer.htm] (Accessed 02/06/2019).

utz, “Computer Music in 1949?77 Ancient Wonderland, irrlicht project,
November 2015. [Online]. Available: http://irrlichtproject.blogspot.co.uk/2015/11/
computer-music-in-1949.html (Accessed 05/04/2017).

A. Carlsson, “TIMELINE,” ChipFlip, 2017. [Online]. Available: https://chipflip.
wordpress.com /timeline/ (Accessed 03/05/2017).

J. Fildes, “‘Oldest’ computer music unveiled,” Technology, BBC News, June 2008.
[Online]. Available: http://news.bbe.co.uk/1/hi/technology/7458479.stm (Accessed
05/04/2017).

“First digital music made in Manchester,” Technology, The University of Manchester,
June 2008. [Online]. Available: http://www.manchester.ac.uk/discover /news/
first-digital-music-made-in-manchester (Accessed 05/04/2017).

K. Kleiman, “Singing BINAC - 1948, CYHIST Community Memory: Discussion
list on the History of Cyberspace, November 1997. [Online]. Available: https:

/ / groups.yahoo.com /neo/groups/cyhist /conversations /messages /1271 (Accessed
05/04/2017).

A. Turing, “Programmers’ Handbook for Manchester Electronic Computer Mark II,”
The Manchester Computer, AlanTuring.org, p. 24, 1950-1952. [Online]. Available:
http://www.alanturing.net /turing_archive/archive/m/m01/M01-030.html (Accessed
06/04/2017).

Jack Copeland and Jason Long, “Restoring the first recording of computer
music,” Sound and vision blog, September 2016. [Online]. Available: https://blogs.
bl.uk /sound-and-vision /2016 /09 /restoring-the-first-recording-of-computer-music.html
(Accessed 02/06/2019).

”

“Nellie: School Computer,” Tomorrow’s World, Series 4, BBC Broadcasting Service,
February 1969. [Online]. Available: http://www.bbc.co.uk/programmes/p0154hns

(Accessed 06/04/2017).

D. Hartley, “EDSAC 1 and after - a compilation of personal reminiscences,” EDSAC 99,
1999. [Online]. Available: https://www.cl.cam.ac.uk/events/EDSAC99/reminiscences/
(Accessed 06/04/2017).

D. Sordillo, “Music Playing on the PDP-6,” Project MAC, August 1966. [Online].
Available: [ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-107.pdf (Accessed
06/04/2017).

http://www.kameli.net/demoresearch2/
http://www.computerhistory.org/babbage/adalovelace/
https://blogs.bl.uk/sound-and-vision/2017/12/christmas-carols-from-turings-computer.html
https://blogs.bl.uk/sound-and-vision/2017/12/christmas-carols-from-turings-computer.html
http://irrlichtproject.blogspot.co.uk/2015/11/computer-music-in-1949.html
http://irrlichtproject.blogspot.co.uk/2015/11/computer-music-in-1949.html
https://chipflip.wordpress.com/timeline/
https://chipflip.wordpress.com/timeline/
http://news.bbc.co.uk/1/hi/technology/7458479.stm
http://www.manchester.ac.uk/discover/news/first-digital-music-made-in-manchester
http://www.manchester.ac.uk/discover/news/first-digital-music-made-in-manchester
https://groups.yahoo.com/neo/groups/cyhist/conversations/messages/1271
https://groups.yahoo.com/neo/groups/cyhist/conversations/messages/1271
http://www.alanturing.net/turing_archive/archive/m/m01/M01-030.html
https://blogs.bl.uk/sound-and-vision/2016/09/restoring-the-first-recording-of-computer-music.html
https://blogs.bl.uk/sound-and-vision/2016/09/restoring-the-first-recording-of-computer-music.html
http://www.bbc.co.uk/programmes/p0154hns
https://www.cl.cam.ac.uk/events/EDSAC99/reminiscences/
ftp://publications.ai.mit.edu/ai-publications/pdf/AIM-107.pdf

139

[27]

P. Doornbusch, “Computer sound synthesis in 1951: The music of csirac,” Computer
Music Journal, vol. 28, 03 2004.

N. Hardy, “Music,” Stories, 2005. [Online]. Available: http://www.cap-lore.com/stories/
music.html] (Accessed 06/04,/2017).

Zuse. (1970) Programm 47. [Online]. Available: http://www.so0l20.org/manuals/music,
pdf (Accessed 30/04/2019).

G. Sundqvist, “D21 - In Memoriam - D22,” Vinyl, EP, Sweden: KDA -RM 5301, 2016.

T. Van Keuren, “Ebb Tide played by 1970 Univac Computer (No Sound Card),”
January 2015. [Online]. Available: https://www.youtube.com/watch?v=X6F7qwa5TZg
(Accessed 06/04/2017).

S. T. Corporation, “The Music System,” Music System User’s Manual, 1977. [Online].
Available: http://www.s0120.org/manuals/music.pdf (Accessed 06/04/2017).

M. Fritsch, “History of Video Game Music”, pp. 11—41, 08 2012.

J. Latimer, “Hit It, Maestro!” Compute! Magazine, April 1990. [Online]. Available: https:
/ /web.archive.org/web/20140906061745 /http: //www.joeylatimer.com /pdf/Compute!
%20April%201990%20P C%20Sound %20Gets%20Serious %20by %20Joey %20 Latimer. pd{
(Accessed 29/03/2019).

Joakim Ogren. (1997) The Hardware Book. [Online]. Available: http://www.acc.umu.
se/~stric/tmp/hwb13pdf/hwbook.pdf#page=290 (Accessed 30/04/2019).

S. Vickers, ZX Spectrum BASIC Programming, R. Bradbeer, Ed. Sinclair Research,
1982.

id Software, “Doom,” MS-DOS, 1993.

Brgderbund, “Prince of persia,” MS-DOS, 1989.
Maxis, “Simcity 2000,” MS-DOS, 1993.

Incentive Software, “Total eclipse,” MS-DOS, 1988.

Access Software Inc., Crime Wave Instruction Manual. Holford, Birmingham, United
Kingdom: US. Gold Ltd, 1990.

M. Fritsch, "History of Video Game Music”, pp. 11—41, 08 2012.

G. Herman, Micromusic for the Commodore 64 and BBC Computer, pp. 22-23.
London: PAPERMAC, 1985.

N. Houston, “Music Made on Game Boys Is a Much Bigger Deal Than
You'd Think,” VICE vs Video Games, November 2014. [Online]. Available: https:
/ /www.vice.com/en_uk/article/chipzels-complete-history-of-chiptune-939 (Accessed
06/04/2017).

http://www.cap-lore.com/stories/music.html
http://www.cap-lore.com/stories/music.html
http://www.sol20.org/manuals/music.pdf
http://www.sol20.org/manuals/music.pdf
https://www.youtube.com/watch?v=X6F7qwa5TZg
http://www.sol20.org/manuals/music.pdf
https://web.archive.org/web/20140906061745/http://www.joeylatimer.com/pdf/Compute!%20April%201990%20PC%20Sound%20Gets%20Serious%20by%20Joey%20Latimer.pdf
https://web.archive.org/web/20140906061745/http://www.joeylatimer.com/pdf/Compute!%20April%201990%20PC%20Sound%20Gets%20Serious%20by%20Joey%20Latimer.pdf
https://web.archive.org/web/20140906061745/http://www.joeylatimer.com/pdf/Compute!%20April%201990%20PC%20Sound%20Gets%20Serious%20by%20Joey%20Latimer.pdf
http://www.acc.umu.se/~stric/tmp/hwb13pdf/hwbook.pdf#page=290
http://www.acc.umu.se/~stric/tmp/hwb13pdf/hwbook.pdf#page=290
https://www.vice.com/en_uk/article/chipzels-complete-history-of-chiptune-939
https://www.vice.com/en_uk/article/chipzels-complete-history-of-chiptune-939

140

7 REFERENCES

[45]

[48]

[49]

[56]

[57]

M. Wright, “New Horizons for Microcomputer Music,” The Best of Creative Computing,
1980. [Online]. Available: http://www.atariarchives.org/bcc3/showpage.php?page=_82
(Accessed 06/04/2017).

M. Z, Arnauld, and Kyle, “PSG,” IntelliWiki, September 2011. [Online]. Available:
http://ozzed.net /how-to-make-8-bit-music.shtml (Accessed 15/05/2017).

G. Instruments, “AY-3-8910/8912 Programmable Sound Generator Data Manual,”
February 1979. [Online]. Available: http://dev-docs.atariforge.org/files/GI_AY-3-8910_
Feb-1979.pdf (Accessed 15/05/2017).

B. Troise, “Compositional Strategies For Programmable Sound
Generators With Limited Polyphony,” Ludomusicology, July 2015.
[Online]. Available: http://www.ludomusicology .org /2015 /07 /16 /
compositional-strategies-for-programmable-sound-generators-with-limited-polyphony /
(Accessed 15/05/2017).

A. Carlsson, “Post-Chiptune is All About Culture?” ChipFlip, 2016. [Online]. Available:
https: / /chipflip.wordpress.com /2016 /11 /29 / post-chiptune-is-all-about-culture/
(Accessed 25/12/2018).

B. Eno, A Year With Swollen Appendices. London: Faber and Faber, 1996.

A. Carlsson, “CHIPMUSIC,” ChipFlip, 2007. [Online]. Available: https:
//chipflip.wordpress.com/chipmusic/ (Accessed 03/05/2017).

S. Tomczak, “Authenticity and Emulation: Chiptune in the Early Twenty-
First Century,” Conference Paper at the International Computer Music Conference,
August 2008. [Online]. Available: https://quod.lib.umich.edu/cgi/p/pod/dod-idx/
authenticity-and-emulation-chiptune-in-the-early-twenty.pdf?c=icmc;idno=bbp2372,
2008.035 (Accessed 03/05/2017).

B. Hood, “WHAT *IS* CHIPTUNE?” The ChipWin Blog, May 2016. [Online]. Available:
http://chiptuneswin.com/blog/what-is-chiptune/ (Accessed 03/05/2017).

“Chiptune,” Wikipedia. [Online]. Available: https://en.wikipedia.org/wiki/Chiptune
(Accessed 03/05/2017).

L. Ohanesian, “What, Exactly, is 8-Bit Music?” LA Weekly, August 2011. [Online].
Available: http://www.laweekly.com /music/what-exactly-is-8-bit-music-2409754
(Accessed 03/05/2017).

G. Lynch, “From 8-bit to Chiptune: the music that changed gaming forever,”
techradar., March 2017. [Online]. Available: http://www.techradar.com/news/
8-bit-music-the-soundtrack-to-a-gaming-revolution-that-resonates-today (Accessed
03/05/2017).

J. List, “Sega Genesis Chiptunes Player Uses Original Chips,” HACKADAY,
February 2017. [Online]. Available: http://hackaday.com /2017/02/17/
sega-genesis-chiptunes-player-uses-original-chips/ (Accessed 03/05/2017).

http://www.atariarchives.org/bcc3/showpage.php?page=82
http://ozzed.net/how-to-make-8-bit-music.shtml
http://dev-docs.atariforge.org/files/GI_AY-3-8910_Feb-1979.pdf
http://dev-docs.atariforge.org/files/GI_AY-3-8910_Feb-1979.pdf
http://www.ludomusicology.org/2015/07/16/compositional-strategies-for-programmable-sound-generators-with-limited-polyphony/
http://www.ludomusicology.org/2015/07/16/compositional-strategies-for-programmable-sound-generators-with-limited-polyphony/
https://chipflip.wordpress.com/2016/11/29/post-chiptune-is-all-about-culture/
https://chipflip.wordpress.com/chipmusic/
https://chipflip.wordpress.com/chipmusic/
https://quod.lib.umich.edu/cgi/p/pod/dod-idx/authenticity-and-emulation-chiptune-in-the-early-twenty.pdf?c=icmc;idno=bbp2372.2008.035
https://quod.lib.umich.edu/cgi/p/pod/dod-idx/authenticity-and-emulation-chiptune-in-the-early-twenty.pdf?c=icmc;idno=bbp2372.2008.035
https://quod.lib.umich.edu/cgi/p/pod/dod-idx/authenticity-and-emulation-chiptune-in-the-early-twenty.pdf?c=icmc;idno=bbp2372.2008.035
http://chiptuneswin.com/blog/what-is-chiptune/
https://en.wikipedia.org/wiki/Chiptune
http://www.laweekly.com/music/what-exactly-is-8-bit-music-2409754
http://www.techradar.com/news/8-bit-music-the-soundtrack-to-a-gaming-revolution-that-resonates-today
http://www.techradar.com/news/8-bit-music-the-soundtrack-to-a-gaming-revolution-that-resonates-today
http://hackaday.com/2017/02/17/sega-genesis-chiptunes-player-uses-original-chips/
http://hackaday.com/2017/02/17/sega-genesis-chiptunes-player-uses-original-chips/

141

[58]

[59]

[60]

[61]

[67]

[68]

[69]

[71]

[72]

G. Wittel, “SEGA Genesis Specs,” dEX, 2000. [Online]. Available: http:
//dextremes.com/genesis/gen-spec.html (Accessed 07/05/2017).

“Sega Mega Drive,” SEGA Retro, May 2017. [Online]. Available: http:
//segaretro.org/Sega_ Mega_ Drive (Accessed 07/05/2017).

Yamaha, “Yamaha TX81Z FM Tone Generator Owner’s Manual,” Hamamatsu, Japan,
May 1987.

K. Driscoll and D. Joshua, “Endless loop: A brief history of chiptunes,”
Transformative Works and Cultures, vol. 2, 2009. [Online]. Available: http:
/ /journal.transformativeworks.org/index.php /twc/article /view /96 /94 (Accessed
04/04/2017).

L. Akesson, “Elements of Chip Music,” Revision Party, linusakesson.net, 2011. [Online].
Available: http://www.linusakesson.net/music/elements/ (Accessed 29/03/2017).

“How to Make 8 Bit Music?” gamedev.net, May 2011. [Online]. Available: https:
//www.gamedev.net/topic/602786-how-to-make-8-bit-music/ (Accessed 12/05/2017).

J. Allen, “How To Make 8-Bit Music: An Introduction To FamiTracker,” Synthtopia,
May 2015. [Online]. Available: http://www.synthtopia.com/content/2015/05/01/
how-to-make-8-bit-music-an-introduction-to-famitracker/ (Accessed 12/05/2017).

Ozzed, “How to Make 8-bit Music,” ozzed.net, May 2015. [Online]. Available:
http://ozzed.net /how-to-make-8-bit-music.shtm] (Accessed 12/05/2017).

S. Sandhu, “Tristan Perich: he’s a one-bit wonder,” The Telegraph, November 2010.
[Online]. Available: https://www.telegraph.co.uk/culture /music/rockandpopfeatures/
8163589/ Tristan- Perich-hes-a-one-bit-wonder.htm] (Accessed 28/12/2018).

A. Carlsson, “What’s Chipmusic in 2015?” ChipFlip, 2015. [Online]. Available:
https: //chipflip.wordpress.com /2015/11/13 /whats-chipmusic-in-2015/ (Accessed
95/12,/2018).

J. Nisperos, “Moe Moe Kyunstep,” Bandcamp, October 2012. [Online]. Available:
https://chibitech.bandcamp.com/album/moe-moe-kyunstep (Accessed 22/12/2018).

“Nintendo game boy (ch4033),” Centre For Computing History, Apr 2020. [Online].
Available: https://www.computinghistory.org.uk/det /4033 /Nintendo-Game-Boy/
(Accessed 07/04/2020).

P. Tiefenbacher, “Parametric Music Box,” Thingiverse, March 2013. [Online]. Available:
https://www.thingiverse.com/thing:53235 (Accessed 07,/04/2020).

P. Zadrozniak, “The Floppotron,” July 2016. [Online]. Available: https:
/ /www.youtube.com/watch?v=0ym7B7YidKs (Accessed 07/04/2020).

Wintergatan, “Wintergatan - Marble Machine (music instrument using 2000 marbles),”
March 2016. [Online]. Available: https://www.youtube.com/watch?v=X6F7qwa5TZg
(Accessed 07/04/2020).

http://dextremes.com/genesis/gen-spec.html
http://dextremes.com/genesis/gen-spec.html
http://segaretro.org/Sega_Mega_Drive
http://segaretro.org/Sega_Mega_Drive
http://journal.transformativeworks.org/index.php/twc/article/view/96/94
http://journal.transformativeworks.org/index.php/twc/article/view/96/94
http://www.linusakesson.net/music/elements/
https://www.gamedev.net/topic/602786-how-to-make-8-bit-music/
https://www.gamedev.net/topic/602786-how-to-make-8-bit-music/
http://www.synthtopia.com/content/2015/05/01/how-to-make-8-bit-music-an-introduction-to-famitracker/
http://www.synthtopia.com/content/2015/05/01/how-to-make-8-bit-music-an-introduction-to-famitracker/
http://ozzed.net/how-to-make-8-bit-music.shtml
https://www.telegraph.co.uk/culture/music/rockandpopfeatures/8163589/Tristan-Perich-hes-a-one-bit-wonder.html
https://www.telegraph.co.uk/culture/music/rockandpopfeatures/8163589/Tristan-Perich-hes-a-one-bit-wonder.html
https://chipflip.wordpress.com/2015/11/13/whats-chipmusic-in-2015/
https://chibitech.bandcamp.com/album/moe-moe-kyunstep
https://www.computinghistory.org.uk/det/4033/Nintendo-Game-Boy/
https://www.thingiverse.com/thing:53235
https://www.youtube.com/watch?v=Oym7B7YidKs
https://www.youtube.com/watch?v=Oym7B7YidKs
https://www.youtube.com/watch?v=X6F7qwa5TZg

142

7 REFERENCES

[73]

[81]

[82]

Robkta, “Switchtunes,” GameChops, September 2019. [Online]. Available:
http://gamechops.com/switchtunes/ (Accessed 08/04/2020).

T. Farah, “Anamanaguchi: "Chiptune Isn’t Really A Genre, It’s A Medium”,” Phoeniz
New Times, May 2016. [Online]. Available: https://www.phoenixnewtimes.com/music/

anamanaguchi-chiptune-isnt-really-a-genre-its-a-medium-6609601

A. Yabsley, “The Sound of Playing: A Study into the Music and Culture of Chiptunes,”
Ph.D. dissertation, Queensland Conservatorium Griffith University, October 2007,
chiptune isn’t a genre like rock for instance, where the characteristic lines of the genre is
drawn from the arrangement and construction of the music, as well as the instruments.
No, ”chip” is the instrument itself, and with it (or should I say ”them”) you can make
music from all kind of genres, like rock, pop, dnb [drum and bass|, house or dub (para.
2).

Vox, “The most feared song in jazz, explained,” Farworm, November 2018. [Online].
Available: https://www.youtube.com/watch?v=62tIviP9A2w (Accessed 22/12/2018).

J. Nisperos, “Chibi-Tech - Moe Moe Kyunstep,” chipmusic.org, October 2012. [Online].
Available: https://chipmusic.org/forums/topic/8899 /chibitech-moe-moe-kyunstep/
(Accessed 22/12/2018).

T. Perich, “1-Bit Symphony,” Physical Editions, 2010. [Online]. Available:
http://www.1bitsymphony.com/ (Accessed 09/04/2017).

G. Oldham et al., “Harmonics,” The Ozford Companion to Music, Oxford University
Press. [Online]. Available: http://www.oxfordmusiconline.com/subscriber/article/grove/
music/50023 (Accessed 25/03/2017).

E. Prestini, The Evolution of Applied Harmonic Analysis: Models of the Real World.,
p- 62. Boston: Birkhauser, 2004.

“Phase,” National Institute of Standards and Technology, September 2016. [Online].
Available: https://www.nist.gov/time-and-frequency-services/p (Accessed 25/03/2017).

G. Herman, Micromusic for the Commodore 64 and BBC Computer, pp. 28-29.
London: PAPERMAC, 1985.

J. Borwick, “Frequency,” The Ozxford Companion to Music, Oxford University Press.
[Online]. Available: http://www.oxfordmusiconline.com /subscriber /article/opr/t114/
2693 (Accessed 25/03/2017).

“White Noise,” The Ozford Companion to Music, Oxford University Press. [Online].
Available: http://www.oxfordmusiconline.com /subscriber /article /opr/t114 /e8240
(Accessed 25/03/2017).

H. Weixelbaum, “Game Boy Sound Comparison,” Game Boy Music. [Online]. Available:
http://www.herbertweixelbaum.com/comparison.htm (Accessed 25/03/2017).

S. Lakawicz, “The Difference Between Pulse Waves and Square
Waves,” Research in Game Music, Classical ~ Gaming, May 2012.
[Online]. Available: https: / / classicalgaming . wordpress.com /2012 /05 /

http://gamechops.com/switchtunes/
https://www.phoenixnewtimes.com/music/anamanaguchi-chiptune-isnt-really-a-genre-its-a-medium-6609601
https://www.phoenixnewtimes.com/music/anamanaguchi-chiptune-isnt-really-a-genre-its-a-medium-6609601
https://www.youtube.com/watch?v=62tIvfP9A2w
https://chipmusic.org/forums/topic/8899/chibitech-moe-moe-kyunstep/
http://www.1bitsymphony.com/
http://www.oxfordmusiconline.com/subscriber/article/grove/music/50023
http://www.oxfordmusiconline.com/subscriber/article/grove/music/50023
https://www.nist.gov/time-and-frequency-services/p
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e2693
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e2693
http://www.oxfordmusiconline.com/subscriber/article/opr/t114/e8240
http://www.herbertweixelbaum.com/comparison.htm
https://classicalgaming.wordpress.com/2012/05/15/research-in-game-music-the-difference-between-pulse-waves-and-square-waves/

143

[90]

15 /research-in-game-music-the-difference-between-pulse-waves-and-square-waves /
(Accessed 24/03/2017).

R. Middleton, Know Your Square Wave and Pulse Generators, pp. 21,29,49. H.
W. Sams, 1965. [Online]. Available: https://books.google.co.uk/books?id=
cCtTAAAAMAAJ

K. C. Pohlmann, Principles of Digital Audio, 6th ed., p. 86. New York City: McGraw-
Hill, 2011.

L. Butler, “Waveforms Using The Cathode Ray Oscilloscope,” Waveform and Spectrum
Analysis, June 1989. [Online]. Available: http://users.tpg.com.au/users/ldbutler/
Waveforms.htm (Accessed 26/03/2017).

E. G. Louis, “Practical Techniques of Square-Wave Testing,” Radio & TV News,
RF Cafe, July 1957. [Online]. Available: http://www.rfcafe.com /references/

radio-news / practical-techniques-square-wave-testing-july-1957-radio-tv-news.htm
(Accessed 28/03/2017).

Paul, “Chronos,” Crash, vol. 41, p. 21, June 1987.

Sweetwater, “Pink Noise Versus White Noise,” nSync, August 2000. [Online].
Available: https: / /www.sweetwater.com /insync / pink-noise-versus-white-noise/
(Accessed 9/12/2018).

D. Didier, “3x Osc,” FL Studio 20 Reference Manual. [Online]. Available: http:
/ /www.image-line.com /support/flstudio_ online__manual /html/plugins/3x%200SC.htm
(Accessed 5/12/2018).

L. Erickson, “Nintendo Game Boy DMG-01: "Line Out Mod”,” GB Classic Audio Mod,
Low-Gain. [Online]. Available: http://lowgain-audio.com/GBclassicmod.htm (Accessed
29/03/2017).

J. Kotlinski, “Game Boy Color ProSound Modification,” Little Sound DJ. [Online].
Available: http://www.littlesounddj.com/Isd/prosound/ (Accessed 29/03/2017).

R. Nave, “RC Low Pass Filter,” Electricity and Magnetism, August 2010. [Online].
Available: http://hyperphysics.phy-astr.gsu.edu/hbase/electric/filcap2.html (Accessed
07/04/2017).

T. Oohashi, E. Nishina, M. Honda, Y. Yonekura, Y. Fuwamoto, N. Kawai, T. Maekawa,
S. Nakamura, H. Fukuyama, and H. Shibasaki, “Inaudible High-Frequency Sounds

Affect Brain Activity: Hypersonic Effect,” Journal of Neurophysiology, vol. 83, no. 6,
pp. 3548-3558, 2000. [Online]. Available: http://jn.physiology.org/content,/83/6/3548

S. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, pp. 243-260.
San Diego, CA, USA: California Technical Publishing, 1997.

A. S. Nastase, “How to Derive the RMS Value of
Pulse and Square Waveforms,” MasteringFElectronicsDesign.com,
2012. [Online]. Available: https: / / masteringelectronicsdesign.com /

how-to-derive-the-rms-value-of-pulse-and-square-waveforms/ (Accessed 5/12/2018).

https://classicalgaming.wordpress.com/2012/05/15/research-in-game-music-the-difference-between-pulse-waves-and-square-waves/
https://classicalgaming.wordpress.com/2012/05/15/research-in-game-music-the-difference-between-pulse-waves-and-square-waves/
https://books.google.co.uk/books?id=cCtTAAAAMAAJ
https://books.google.co.uk/books?id=cCtTAAAAMAAJ
http://users.tpg.com.au/users/ldbutler/Waveforms.htm
http://users.tpg.com.au/users/ldbutler/Waveforms.htm
http://www.rfcafe.com/references/radio-news/practical-techniques-square-wave-testing-july-1957-radio-tv-news.htm
http://www.rfcafe.com/references/radio-news/practical-techniques-square-wave-testing-july-1957-radio-tv-news.htm
https://www.sweetwater.com/insync/pink-noise-versus-white-noise/
http://www.image-line.com/support/flstudio_online_manual/html/plugins/3x%20OSC.htm
http://www.image-line.com/support/flstudio_online_manual/html/plugins/3x%20OSC.htm
http://lowgain-audio.com/GBclassicmod.htm
http://www.littlesounddj.com/lsd/prosound/
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/filcap2.html
http://jn.physiology.org/content/83/6/3548
https://masteringelectronicsdesign.com/how-to-derive-the-rms-value-of-pulse-and-square-waveforms/
https://masteringelectronicsdesign.com/how-to-derive-the-rms-value-of-pulse-and-square-waveforms/

144

7 REFERENCES

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]
[112]
[113]
[114]
[115]

[116]

[117]

[118]

K. C. Pohlmann, Principles of Digital Audio, 6th ed., pp. 20—23. New York City:
McGraw-Hill, 2011.

Image-Line, “Edison,” FL Studio 20 Reference Manual. [Online]. Available: https:
/ /www.image-line.com /support /flstudio__online_ manual /html/plugins /Edison.htm
(Accessed 5/12/2018).

“Why not always cut the 20-30 Hz range?” KVR Audio, 2009-2011. [Online].
Available: https://www.kvraudio.com /forum /viewtopic.php?f=62&t=313807&sid=
7da7241355268614d8690cad3702890b (Accessed 9/12/2018).

S. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, pp. 261-276.
San Diego, CA, USA: California Technical Publishing, 1997.

S. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, pp. 351-353.
San Diego, CA, USA: California Technical Publishing, 1997.

E. C. Everbach, “Noise Quantification and Monitoring: An Overview,” The Science
Building Project, 2000. [Online]. Available: http://www.swarthmore.edu/NatSci/
sciproject /noise /noisequant.html (Accessed 25/11/2018).

utz, “Tutorial: How to Write a 1-Bit Music Routine,” 1-Bit Forum, July 2015. [Online].
Available: http://randomflux.info/1bit/viewtopic.php?id=21 (Accessed 04/04/2017).

blargg, “NES APU Sound Hardware Reference,” nesdev.com, 2004. [Online]. Available:
http://nesdev.com/apu_ref.txt (Accessed 29/03/2019).

“Commodore MOS Technology IMMOS.” [Online]. Available: http://archive.6502.org/
datasheets/mos 6581 sid.pdf (Accessed 29/03/2019).

C. R. Nave, “Clarinet Waveform,” 1998. [Ounline]. Available: http://hyperphysics.
phy-astr.gsu.edu/hbase/Music/clarw.htm] (Accessed 14/12/2018).

B. Bland, “Making Complex Waves,” 1999. [Ounline]. Available: http://hep.physics.
indiana.edu/~rickv/Making_ complex_ waves.htm] (Accessed 16/12/2018).

T. Rutherford-Johnson, Ed., p. 268. Oxford University Press, 2013.

D. Strange, “ADSR Envelope Generator,” vol. 2, February 1984, (Accessed 19/02/2017).
Software Creations, “The Sentinel,” ZX Spectrum, 1987.

M. Ltd, “Chronos,” ZX Spectrum, 1987.

Proxima Software, “Orfeus Music Assembler,” ZX Spectrum, 1990.

J. Deak, “ZX-3,” World of Spectrum, 1991. [Online|. Available: http://www.
worldofspectrum.org/infoseekid.cgi?id=0027576 (Accessed 29/03/2019).

P. Ball, The Music Instinct, p. 69. London, UK: The Bodley Head, 2010.

D. Levitin, This is Your Brain on Music: The Science of a Human Obsession, pp. 69—
70. Dutton, 2006.

https://www.image-line.com/support/flstudio_online_manual/html/plugins/Edison.htm
https://www.image-line.com/support/flstudio_online_manual/html/plugins/Edison.htm
https://www.kvraudio.com/forum/viewtopic.php?f=62&t=313807&sid=7da7241355268614d8690cad3702890b
https://www.kvraudio.com/forum/viewtopic.php?f=62&t=313807&sid=7da7241355268614d8690cad3702890b
http://www.swarthmore.edu/NatSci/sciproject/noise/noisequant.html
http://www.swarthmore.edu/NatSci/sciproject/noise/noisequant.html
http://randomflux.info/1bit/viewtopic.php?id=21
http://nesdev.com/apu_ref.txt
http://archive.6502.org/datasheets/mos_6581_sid.pdf
http://archive.6502.org/datasheets/mos_6581_sid.pdf
http://hyperphysics.phy-astr.gsu.edu/hbase/Music/clarw.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Music/clarw.html
http://hep.physics.indiana.edu/~rickv/Making_complex_waves.html
http://hep.physics.indiana.edu/~rickv/Making_complex_waves.html
http://www.worldofspectrum.org/infoseekid.cgi?id=0027576
http://www.worldofspectrum.org/infoseekid.cgi?id=0027576

145

[119]

[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]
[130]

[131]

[132]

[133]

[134]

[135]

[136]

D. Levitin, This is Your Brain on Music: The Science of a Human Obsession, pp. 53—
54. Dutton, 2006.

P. Clarke, “Ocean Loader 3,” Commodore 64 Loading Software, 1987.
B. Marshall, “Last Ninja 2,” ZX Spectrum, 1988.

Raphaelgoulart, “Chromospheric Flares,” ZXART, 2014. [Online]. Available:
https://zxart.ee/eng/authors/m/mister-beep/chromospheric-flares/

D. A. Russell, “Acoustics and Vibration Animations,” The Pennsylvania State
University, July 1996. [Online|. Available: https://www.acs.psu.edu/drussell/demos/
superposition/superposition.htm] (Accessed 9/12/2018).

H. E. Haber, “How to add sine functions of different amplitude and phase,”
2009. [Online|. Available: http://scipp.ucsc.edu/~haber/ph5B/addsine.pdf (Accessed
9/12/2018).

J. Corey, Audio Production and Critical Listening: Technical Far Training, ser. Audio

Engineering Society Presents, pp. 104—105. Taylor & Francis, 2016.

G. Davis, G. Davis, R. Jones, and Y. Corporation, The Sound Reinforcement Handbook,
ser. Recording and Audio Technology Series, pp. 81—86. Hal Leonard, 1989.

“MSD 101: Pulse-Width Modulation,” Motion System Design, October 2000.

Utz, “utz82/ZX-Spectrum-1-Bit-Routines,” GitHub, November 2018. [Online|. Available:
https://github.com/utz82/ZX-Spectrum- 1- Bit-Routines/tree /master /stringks (Accessed
92/12/2018).

D. T. Carter, “Rockman,” ZX Spectrum, 1987.
L. Games, “The Secret Of Monkey Island,” DOS Computer Game, 1990.

Utz, “Sound Routines,” irrlicht project - code. [Online]. Available: http://irrlichtproject.
de/code.php (Accessed 22/12/2018).

Raphaelgoulart, “surprisingly NOT four twenty,” ZXART, 2014. [Online]. Available:
https://zxart.ee/eng/authors/r /raphaelgoulart /surprisingly-not-four-twenty/ (Accessed
29/03/2019).

Brink, “M’Lady,” ZXART, 2014. [Online]. Available: https://zxart.ee/eng/authors/b/

johan-elebrink /mlady/ (Accessed 29/03/2019).

P. B. Todd and S. A. Lakawicz, “Interview with David Warhol (composer,
programmer),” Video Game History, December 2016. [Online]. Available: http:
/ /www.vgarc.org/vgarc-originals/interview-with-david-warhol/ (Accessed 24/04/2017).

T. Follin, “Star Tip 2,” Your Sinclair, vol. 20, pp. 201-213, August 1987.

“Interview with David Wise (December 2010),” Square Eniz Music Online, 2010.
[Online]. Available: https://www.squareenixmusic.com/features/interviews/davidwise.
shtml (Accessed 30/03/2019).

https://zxart.ee/eng/authors/m/mister-beep/chromospheric-flares/
https://www.acs.psu.edu/drussell/demos/superposition/superposition.html
https://www.acs.psu.edu/drussell/demos/superposition/superposition.html
http://scipp.ucsc.edu/~haber/ph5B/addsine.pdf
https://github.com/utz82/ZX-Spectrum-1-Bit-Routines/tree/master/stringks
http://irrlichtproject.de/code.php
http://irrlichtproject.de/code.php
https://zxart.ee/eng/authors/r/raphaelgoulart/surprisingly-not-four-twenty/
https://zxart.ee/eng/authors/b/johan-elebrink/mlady/
https://zxart.ee/eng/authors/b/johan-elebrink/mlady/
http://www.vgarc.org/vgarc-originals/interview-with-david-warhol/
http://www.vgarc.org/vgarc-originals/interview-with-david-warhol/
https://www.squareenixmusic.com/features/interviews/davidwise.shtml
https://www.squareenixmusic.com/features/interviews/davidwise.shtml

146

7 REFERENCES

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

148

[149]

[150]

[151]

[152]

P. Phelps, “A modern implementation of chiptune synthesis,” University of
the West of England, 2007. [Online]. Available: https://woolyss.com/chipmusic/
chipmusic-discovery /PhillPhelps-ChiptuneSynth.pdf (Accessed 04/04/2017).

N. Baldwin, “NES Audio Tools,” 2011. [Online]. Available: http://nes-audio.com/
(Accessed 24/04/2017).

J. Cauldwell, “Loudspeaker Sound Effects,” How To Write ZX Spectrum Games
—Chapter 3, Bytes: Chuntey, February 2013. [Online]. Available: https:

/ /chuntey.wordpress.com/2013/02 /28 /how-to-write-zx-spectrum-games-chapter-3/
(Accessed 04/04/2017).

J. Deak, “ZX-3,” ZX Spectrum, 1991.

C. Roads, Microsound, paperback ed., pp. 1-43. Cambridge, Massachusetts: MIT Press,
2004.

T. Wishart, Audible Design, 6th ed. York: Orpheus the Pantomime, 1994.

K. C. Pohlmann, Principles of Digital Audio, 6th ed., pp. 693-729. New York City:
McGraw-Hill, 2011.

D. Dodson, “Composing for 1-bit Microchip: Tristan Perich,” The
1-Bit Forum, August 2010. [Online]. Available: http://cdm.link/2010/08/
composing-for-1-bit-microchip-tristan-perich/ (Accessed 07/04/2017).

STMicroelectronics, “General-purpose timer cookbook,” ANJ776 Application note,
June 2016. [Online]. Available: http://www.st.com/content/ccc/resource/technical/
document /application_ note/group0/91,/01/84/3f/7¢c/67/41/3f/DM00236305 /files/

DM00236305.pdf/jcr:content /translations/en.DM00236305.pdf (Accessed 07/04/2017).

Shiru, “Tritone on Arduino,” The I1-Bit Forum, February 2017. [Online]. Available:
http://randomflux.info/1bit /viewtopic.php?id=126 (Accessed 07/04/2017).

Atmel, “Atmel AVRA4027: Tips and Tricks to Optimize Your C Code for 8-bit
AVR Microcontrollers,” 8-bit Atmel Microcontrollers: Application Note, p. 6. [Online].
Available: http://www.atmel.com/images/doc8453.pdf (Accessed 01/04/2017).

O. Online, “Microcomputer, n.” Oxford University Press, June 2018. [Online|. Available:
www.oed.com/view/Entry/117935 (Accessed 20/06/2018).

Oh ! fa, “MZ-80K,” RetroPC.net, 2009. [Online]. Available: http://www.retropc.net/
ohishi/museum /mz80k.htm (Accessed 29/04/2018).

T. Matsushima, Beyond MIDI: The Handbook of Musical Codes, E. Selfridge-Field, Ed.,
pp. 143-145. Cambridge, MA, USA: MIT Press, 1997.

Computing Japan. LINC Japan, 1999, no. v. 54-59. [Online]. Available:
https://books.google.co.uk/books?id=oP61AAAATAA]

Karl-Heinz, “The monitor program SP-1002,” www.sharpmz.org, September 2002.
[Online]. Available: https://www.sharpmz.org/mz-80k /monisubprg.htm (Accessed
30/04/2018).

https://woolyss.com/chipmusic/chipmusic-discovery/PhillPhelps-ChiptuneSynth.pdf
https://woolyss.com/chipmusic/chipmusic-discovery/PhillPhelps-ChiptuneSynth.pdf
http://nes-audio.com/
https://chuntey.wordpress.com/2013/02/28/how-to-write-zx-spectrum-games-chapter-3/
https://chuntey.wordpress.com/2013/02/28/how-to-write-zx-spectrum-games-chapter-3/
http://cdm.link/2010/08/composing-for-1-bit-microchip-tristan-perich/
http://cdm.link/2010/08/composing-for-1-bit-microchip-tristan-perich/
http://www.st.com/content/ccc/resource/technical/document/application_note/group0/91/01/84/3f/7c/67/41/3f/DM00236305/files/DM00236305.pdf/jcr:content/translations/en.DM00236305.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/group0/91/01/84/3f/7c/67/41/3f/DM00236305/files/DM00236305.pdf/jcr:content/translations/en.DM00236305.pdf
http://www.st.com/content/ccc/resource/technical/document/application_note/group0/91/01/84/3f/7c/67/41/3f/DM00236305/files/DM00236305.pdf/jcr:content/translations/en.DM00236305.pdf
http://randomflux.info/1bit/viewtopic.php?id=126
http://www.atmel.com/images/doc8453.pdf
www.oed.com/view/Entry/117935
http://www.retropc.net/ohishi/museum/mz80k.htm
http://www.retropc.net/ohishi/museum/mz80k.htm
https://books.google.co.uk/books?id=oP61AAAAIAAJ
https://www.sharpmz.org/mz-80k/monisubprg.htm

147

[153]

[154]

[155]

[156]

[157]

[158]

[159)

[160]

[161]

[162]

[163]

[164]

[165]

[166]

C. Walshaw, “The ABC Music Standard 2.1,” abcnotation.com, July 2015. [Online].
Available: http://abcnotation.com/wiki/abe:standard:v2.1 (Accessed 18/05/2018).

C. Walshaw, “A Brief History Of ABC,” abcnotation.com, 2017. [Online]. Available:
http://abcnotation.com/history (Accessed 18/05/2018).

Manbow-J and J. 'Virt’ Kaufman, “MCKC: MML > MCK Converter Ver 0.14,” 2002.
[Online]. Available: http://www.geocities.co.jp/Playtown-Denei/9628 /mck /mcke-e.txt
(Accessed 29/04/2018).

Woolyss, “MML,” 2016. [Online]. Available: https://woolyss.com/chipmusic-mml.php#
mm] (Accessed 29/04/2018).

ALOE, “= ¥/ ¥ MML {E#i Y — 3ML EDITOR 2 Webpage,” 2008. [Online]. Available:
http://3ml.jp/ (Accessed 29/04/2018).

D. Farler, “Ultimate PPMCK MML Reference,” August 2007. [Online].
Available: http://www.shauninman.com /assets /downloads/ppmck__guide.htm]
(Accessed 29/04/2018).

Oh ! &, %, and (hally) et al., “ v — 7F¥fii,” RetroPC.net, 2009. [Online]. Available:
http://www.retropc.net/ohishi/museum/ (Accessed 30/04/2018).

J. O’Doherty, “MMLShare,” MMLShare, 2018. [Online]. Available: https:
//www.mmlshare.com/ (Accessed 30/04/2018).

“Getting started with MML (mck, ppmck),” nesdev.com, 2016. [Online]. Available:
https://forums.nesdev.com/viewtopic.php?f=6&t=14774 (Accessed 30/04/2018).

“GETTING STARTED WITH MML (MCK,PPMCK),” Chipmusic.org,
2016. [Online]. Available: https: / /chipmusic.org /forums / topic /18991 /
getting-started-with-mml-mckppmck/ (Accessed 30/04/2018).

micol972; “xpmck,” June 2011. [Online]. Available: http://jiggawatt.org/muzak /xpmck/
(Accessed 29/04/2018).

“MML,” Mabinogi World Wiki, August 2017. [Online]. Available: https:
//wiki.mabinogiworld.com/view /MML (Accessed 30/04/2018).

J. Kotlinski, “Little Sound DJ,” Game Boy Software. [Online]. Available:
http://www.littlesounddj.com (Accessed 01/04/2019).

Thunder, “MODFIL10.TXT,” File Formats Reverse Engineering. [Online]. Available:
http://lclevy .free.fr/mo3/mod.txt (Accessed 01/04/2019).

[167] jsr, “Famitracker,” Sequencer Software, 2005—2015. [Online]. Available: http:

[168]

[169]

//famitracker.com/# (Accessed 01/04/2019).

M. W. Butterfield, “The Power of Anacrusis: Engendered Feeling in Groove-Based
Musics,” Music Theory Online, vol. 12, no. 4, 2006.

E. Selfridge-Field, Ed., Beyond MIDI: The Handbook of Musical Codes. ~Cambridge,
MA, USA: MIT Press, 1997.

http://abcnotation.com/wiki/abc:standard:v2.1
http://abcnotation.com/history
http://www.geocities.co.jp/Playtown-Denei/9628/mck/mckc-e.txt
https://woolyss.com/chipmusic-mml.php#mml
https://woolyss.com/chipmusic-mml.php#mml
http://3ml.jp/
http://www.shauninman.com/assets/downloads/ppmck_guide.html
http://www.retropc.net/ohishi/museum/
https://www.mmlshare.com/
https://www.mmlshare.com/
https://forums.nesdev.com/viewtopic.php?f=6&t=14774
https://chipmusic.org/forums/topic/18991/getting-started-with-mml-mckppmck/
https://chipmusic.org/forums/topic/18991/getting-started-with-mml-mckppmck/
http://jiggawatt.org/muzak/xpmck/
https://wiki.mabinogiworld.com/view/MML
https://wiki.mabinogiworld.com/view/MML
http://www.littlesounddj.com
http://lclevy.free.fr/mo3/mod.txt
http://famitracker.com/#
http://famitracker.com/#

148

7 REFERENCES

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]
[181]
182
[183]

[184]

[185]

[186]

H. Hinrichsen, “Revising the Musical Equal Temperament,” Universit“at W urzburg,
Fakult"at f'ur Physik und Astronomie, November 2015. [Online]. Available:
https://arxiv.org/pdf/1508.02292.pdf (Accessed 29/09/2018).

micol972, “XPMCK - Cross Platform Music Compiler Kit,” XPMCK manual, 2011.
[Online]. Available: http://jiggawatt.org/muzak/xpmck/manual.html

J. P. Crutchfield, “The Calculi of Emergence: Computation, Dynamics, and
Induction,” Physica D, vol. 75, mno. 6, pp. 11—54, 1994. [Online]. Available:
http://jn.physiology.org/content/83/6/3548

R. Lopez-Ruiz, H. Mancini, and X. Calbet. (2010, September) A Statistical Measure
of Complexity. [Online]. Available: https://arxiv.org/pdf/1009.1498.pdf (Accessed
17/08/2019).

P. Ball, The Music Instinct, p. 119. London, UK: The Bodley Head, 2010.

S. Rickard, “The Beautiful Math Behind The World’s Ugliest Music,” TEDxMIA, 2011.
[Online]. Available: https://www.ted.com /talks/scott_rickard_the beautiful math_|
behind _the ugliest musiq (Accessed 30/09/2018).

J. Davies, The Psychology of Music. ~Stanford University Press, 1978. [Online].
Awvailable: https://books.google.co.uk/books?id=4cFBV9cykHsC

B. Oliver, “Mr. turquoise synth,” March 2017. [Online]. Available: https:
//eprints.soton.ac.uk/406534/

N. C. Department, “The Legend of Zelda: A Link to the Past,” Super Nintendo
Entertainment System Software, 1991.

D. Levitin, This is Your Brain on Music: The Science of a Human Obsession, p. 155.
Dutton, 2006.

M. Ltd, “Agent X,” ZX Spectrum, 1987.
M. Ltd, “Raw Recruit,” ZX Spectrum, 1987.
1. Software, “Vectron,” ZX Spectrum, 1985.

D. A. Jaffe, “Orchestrating the Chimera: Musical Hybrids, Technology and the
Development of a "Maximalist” Musical Style,” Leonardo Music Journal, vol. 5, pp.
11-18, 1995. [Online]. Available: http://www.jstor.org/stable/1513155

R. Kurth, “An Introduction to the Music of Milton Babbitt,” Intégral, vol. 8, pp.
147-182, 1994. [Online]. Available: http://www.jstor.org/stable/4021395&

M. Connor, “The Impossible Music of Black MIDI,” Rhizome, September 2013. [Online].
Available: http://rhizome.org/editorial /2013 /sep /23 /impossible-music-black-midi/
(Accessed 01/04/2019).

J. Hocker, “List of Works,” Der Komponist Conlon Nancarrow. [Online]. Available:

http://www.nancarrow.de/list_of _works_ english_ version.htm

https://arxiv.org/pdf/1508.02292.pdf
http://jiggawatt.org/muzak/xpmck/manual.html
http://jn.physiology.org/content/83/6/3548
https://arxiv.org/pdf/1009.1498.pdf
https://www.ted.com/talks/scott_rickard_the_beautiful_math_behind_the_ugliest_music
https://www.ted.com/talks/scott_rickard_the_beautiful_math_behind_the_ugliest_music
https://books.google.co.uk/books?id=4cFBV9cykHsC
https://eprints.soton.ac.uk/406534/
https://eprints.soton.ac.uk/406534/
http://www.jstor.org/stable/1513155
http://www.jstor.org/stable/40213958
http://rhizome.org/editorial/2013/sep/23/impossible-music-black-midi/
http://www.nancarrow.de/list_of_works_english_version.htm

149

[187]

[188]
[189]

[190]

[191]

[192]

(193]

[194]

[195]

[196]

[197]

[198]
[199)]
[200]
[201]

[202]

[203]
[204]

[205]

[206]

Atmel, “tinyAVR Microcontrollers,” atmel.com. [Online]. Available: http:
/ /www.atmel.com/products/microcontrollers/avr/tinyavr.aspx (Accessed 04/05/2017).

Konami, “Skate Or Die II,” Nintendo Entertainment System Software, 1988.
Novotrade, “Blades Of Steel,” Nintendo Entertainment System Software, 1988.

R. Allain, “Why Are Songs on the Radio About the Same Length?”
Wired, June 2017. [Online]. Available: https://www.wired.com/2014/07/
why-are-songs-on-the-radio-about-the-same-length/ (Accessed 19/05/2019).

K. McKinney, “A hit song is 3 to 5 minutes long. Here’s why.” Voz, January 2015. [Online].
Available: https://www.vox.com/2014/8/18/6003271/why-are-songs-3-minutes-long
(Accessed 19/05/2019).

“KVR Forum: Length of "Average” Full-length Music CD/Album(LP),” KVR Audio,
September 2006. [Online|. Available: https://www.kvraudio.com/forum/viewtopic.php?
t=151744 (Accessed 19/05/2019).

Lieff, “lieff/minimp3,” GitHub, March 2019. [Online]. Available: https:
//github.com/lieff/minimp3

J. Powell, Why You Love Music: From Mozart to Metallica—The Emotional Power of
Beautiful Sounds, pp. 64—67. Little, Brown, 2016.

C. Seeger, “On the Moods of a Music-Logic,” Journal of the American Musicological
Society, vol. 13, mno. 1/3, pp. 224-261, 1960. [Online]. Available: http:
//www.jstor.org/stable/830257

M. Fritsch, ”History of Video Game Music”, pp. 11—41, 08 2012.

J. Powell, Why You Love Music: From Mozart to Metallica—The Emotional Power of
Beautiful Sounds, pp. 54—=64. Little, Brown, 2016.

E. Margulis, On Repeat: How Music Plays the Mind. OUP USA, 2014.

N. C. Department, “Super Mario Bros.” Nintendo Entertainment System Software, 1985.
N. Falcom, “Legacy Of The Wizard,” Nintendo Entertainment System Software, 1989.
H. S. . Creatures, “Pokémon Trading Card Game,” Game Boy Software, 1998.

“ZXART Music,” ZXART, 2019. [Online]. Available: https://zxart.ee/eng/music/
(Accessed 2019).

M. Smith, “Manic Miner,” ZX Spectrum, 1983.
Nintendo R&D1, “Donkey Kong,” Arcade Cabinet, 1981.

J. Kornmeier and M. Bach, “The Necker cube—an ambiguous figure disambiguated in
early visual processing,” vol. 8, no. 45, pp. 955—960, 2005, (Accessed 19/02/2017).

Capcom, “Ducktales,” Nintendo Entertainment System Software, 1989.

http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
http://www.atmel.com/products/microcontrollers/avr/tinyavr.aspx
https://www.wired.com/2014/07/why-are-songs-on-the-radio-about-the-same-length/
https://www.wired.com/2014/07/why-are-songs-on-the-radio-about-the-same-length/
https://www.vox.com/2014/8/18/6003271/why-are-songs-3-minutes-long
https://www.kvraudio.com/forum/viewtopic.php?t=151744
https://www.kvraudio.com/forum/viewtopic.php?t=151744
https://github.com/lieff/minimp3
https://github.com/lieff/minimp3
http://www.jstor.org/stable/830257
http://www.jstor.org/stable/830257
https://zxart.ee/eng/music/

150

7 REFERENCES

207]

208]

209

[210]

[211]

212)

213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

M. Changizi, “Harnessing vision for computation,” Perception, vol. 37, pp. 1131-1134,
2008.

T. Rutherford-Johnson, Ed., p. 141. Oxford University Press, 2013.

B. Newbould. (2001) Palindrome. [Online]. Available: https://www.
oxfordmusiconline.com /grovemusic /view /10.1093 /gmo /9781561592630.001.0001 /
0mo-9781561592630-e-0000041238 (Accessed 19/09/2019).

B. Newbould. (2001) Mirror forms. [Online]. Available: https:
/ /www.oxfordmusiconline.com /grovemusic/view /10.1093 /gmo /9781561592630.001.
0001/0mo-9781561592630-e-0000041239 (Accessed 19/09/2019).

S. Kostka, Materials and Techniques of Twentieth-century Music, p. 316. Pearson
Prentice Hall, 2006. [Online]. Available: https://books.google.co.uk/books?id=
5YQJAQAAMAAJ

J. Colannino, F. Gémez, and G. Toussaint, “Analysis of emergent beat-class sets in steve

reich’s clapping music and the yoruba bell timeline,” p. 2, 02 2019.

P. Flajolet and M. Soria, “The cycle construction,” SIAM J. Discrete Math., vol. 4, pp.
58-60, 1991.

B. Eno, “Generative Music,” In Motion Magazine, July 1996. [Online]. Available:
http://www.inmotionmagazine.com/enol.html (Accessed 19/02/2017).

J. Goldstein, “Emergence as a Construct: History and Issues,” Emergence, vol. 1, no. 1,
pp. 49-72, 1999.

Josephmisiti, “Awesome Machine Learning,” GitHub, January 2019. [Online]. Available:
https://github.com/josephmisiti/awesome-machine-learning (Accessed 19/1/2019).

1. Xenakis, Formalized Music: Thought and Mathematics in Composition, ser.
Harmonologia series. ~ Pendragon Press, 1992. [Online]. Available:
https://books.google.co.uk /books?id=y61L3I0vmMwC

V.-M. Heikkilé, “Experimental music from very short C programs,” YouTube, September
2011. [Ounline]. Available: https://www.youtube.com/watch?v=GtQdIYUtAHg&t=137s
(Accessed 19/1/2019).

Kragen, “Bytebeat,” The Canonical Hackers. [Online]. Available: http://canonical.org/
~kragen/bytebeat/ (Accessed 19/1/2019).

V. Heikkild, “Some Deep Analysis Of One Line Music,” Some deep analysis of one-line
music programs. [Online]. Available: http://countercomplex.blogspot.com/2011/10/

some-deep-analysis-of-one-line-music.html

V. Heikkild, “Discovering novel computer music techniques by exploring the space
of short computer programs,” CoRR, vol. abs/1112.1368, 2011. [Online]. Available:
http://arxiv.org/abs/1112.1368

B. Carnahan and J. Wilkes, Digital Computing, FORTRAN IV, WATFIV, and
MTS (with *FTN and *WATFIV) /by Brice Carnahan, James O. Wilkes, ser. Digital

https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000041238
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000041238
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000041238
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000041239
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000041239
https://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000041239
https://books.google.co.uk/books?id=5YQJAQAAMAAJ
https://books.google.co.uk/books?id=5YQJAQAAMAAJ
http://www.inmotionmagazine.com/eno1.html
https://github.com/josephmisiti/awesome-machine-learning
https://books.google.co.uk/books?id=y6lL3I0vmMwC
https://www.youtube.com/watch?v=GtQdIYUtAHg&t=137s
http://canonical.org/~kragen/bytebeat/
http://canonical.org/~kragen/bytebeat/
http://countercomplex.blogspot.com/2011/10/some-deep-analysis-of-one-line-music.html
http://countercomplex.blogspot.com/2011/10/some-deep-analysis-of-one-line-music.html
http://arxiv.org/abs/1112.1368

151

[223]

[224]

[225]

[226]

Computing, FORTRAN IV, WATFIV, and MTS (with *FTN and *WATFIV) /by
Brice Carnahan, James O. Wilkes. Chemical Engineering Department, University of
Michigan, 1978, no. v.1. [Online]. Available: https://books.google.co.uk/books?id=
tvinuAAAAMAAJ

B. W. Kernighan and D. M. Ritchie. PRENTICE HALL, Englewood Cliffs, New Jersey
07632, 1988.

M. Stamp. (2003, July) Once Upon a Time-Memory Tradeoff. [Online]. Available:
http://www.cs.sjsu.edu/faculty /stamp/RUA/TMTO.pd{ (Accessed 17/08/2019).

Google. (2016, May) SyntaxNet. [Online]. Available: https://ai.googleblog.com/2016/
05/announcing-syntaxnet-worlds-most.htm] (Accessed 10/09/2019).

J. L. Borges, “The Library of Babel,” in in Borges J.L. Collected Fictions (Penguin),
1999.

https://books.google.co.uk/books?id=tvnuAAAAMAAJ
https://books.google.co.uk/books?id=tvnuAAAAMAAJ
http://www.cs.sjsu.edu/faculty/stamp/RUA/TMTO.pdf
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
https://ai.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

	List of Figures
	List of Tables
	Listings
	Introduction
	Overview and Research Questions
	Project Motivations and Rationale

	1-Bit Theory
	Context and Culture
	A Short History of 1-Bit Music
	The Chipmusic and Demoscene Culture

	Sonic Fundamentals
	The Effects of Practical Implementation
	Timbre & Volume
	Polyphony

	Implementation
	The 1-Bit Sound Routine
	Micro Music Macro Language
	Why Music Macro Language?
	The m AVR Implementation

	Compositional Approaches
	Introduction
	Observations On The Nature Of Low-Memory Composition
	Strategies For Reducing Compositional Footprint
	Generative Approaches
	On The Nature Of Generative Composition
	Bytebeat
	Bitbeat

	Conclusion
	Appendices
	4000ad.mmml
	paganinis-been-at-the-bins.mmml
	goose-communications.mmml
	jupiter.mmml
	bitbeat.c

	References

