

## Relationships between age, frailty, length of care home residence and biomarkers of immunity and inflammation in older care home residents in the UK

1        **Vivian M. Castro-Herrera<sup>1\*</sup>, Mark Lown<sup>2</sup>, Helena L. Fisk<sup>1</sup>, Eleri Owen-Jones<sup>3</sup>, Mandy Lau<sup>3</sup>,**  
2        **Rachel Lowe<sup>3</sup>, Kerenza Hood<sup>3</sup>, David Gillespie<sup>3,4</sup>, F.D. Richard Hobbs<sup>4</sup>, Paul Little<sup>2</sup>, Christopher**  
3        **C. Butler<sup>4</sup>, Elizabeth A. Miles<sup>1</sup> and Philip C. Calder<sup>1,5</sup>**

4        <sup>1</sup>School of Human Development and Health, Faculty of Medicine, University of Southampton,  
5        Southampton, United Kingdom

6        <sup>2</sup>School of Primary Care and Population Sciences, Faculty of Medicine, University of Southampton,  
7        Southampton, United Kingdom

8        <sup>3</sup>Centre for Trials Research, Cardiff University, Cardiff, United Kingdom

9        <sup>4</sup>Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, United Kingdom

10        <sup>5</sup>NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation  
11        Trust and University of Southampton, Southampton, United Kingdom

12        **\* Correspondence:**

13        Vivian M. Castro-Herrera  
14        [vmch1m14@soton.ac.uk](mailto:vmch1m14@soton.ac.uk)

15        **Keywords:** Care home residents, ageing, frailty, immunity, inflammation, immunosenescence,  
16        inflammageing

17        **Abstract**

18        Ageing is associated with changes to the immune system, collectively termed immunosenescence and  
19        inflammageing. However, the relationships among age, frailty and immune parameters in older  
20        people resident in care homes are not well described. We assessed immune and inflammatory  
21        parameters in 184 UK care home residents aged over 65 yr and how they relate to age, frailty index  
22        and length of care home residence. Linear regression was used to identify the independent  
23        contribution of age, frailty and length of care home residence to the various immune parameters as  
24        dependent variables. Participants had a mean age ( $\pm$  SD) of  $85.3 \pm 7.5$  yr, had been residing in the  
25        care home for a mean ( $\pm$  SD) of  $1.9 \pm 2.2$  yr at the time of study commencement, and 33.2% were  
26        severely frail. Length of care home residence and frailty index were correlated but age and frailty  
27        index and age and length of care home residence were not significantly correlated. All components of  
28        the full blood count, apart from total lymphocytes, were within the reference range; 31% of  
29        participants had blood lymphocyte numbers below the lower value of the reference range. Among the

30 components of the full blood count, platelet numbers were positively associated with frailty index.  
31 Amongst plasma inflammatory markers, C-reactive protein (CRP), interleukin-1 receptor antagonist  
32 (IL-1ra), soluble E-selectin and interferon gamma-induced protein 10 (IP-10) were positively  
33 associated with frailty. Plasma soluble vascular cell adhesion molecule 1 (sVCAM-1), IP-10 and  
34 tumor necrosis factor receptor II (TNFRII) were positively associated with age. Plasma monocyte  
35 chemoattractant protein 1 was positively associated with length of care home residence. Frailty was  
36 an independent predictor of platelet numbers, plasma CRP, IL-1ra, IP-10 and sE-selectin. Age was an  
37 independent predictor of activated monocytes and plasma IP-10, TNFRII and sVCAM-1. Length of  
38 care home residence was an independent predictor of plasma MCP-1. This study concludes that there  
39 are independent links between increased frailty and inflammation and between increased age and  
40 inflammation amongst older people resident in care homes in the UK. Since, inflammation is known  
41 to contribute to morbidity and mortality in older people, the causes and consequences of  
42 inflammation in this population should be further explored.

### 43 **Introduction**

44 The number and proportion of older people is increasing in many societies (1, 2). Ageing increases  
45 the risk of morbidity, bringing with it loss of independence, increased health and social care costs,  
46 and for many older people, the need to move to a care home. Ageing is also associated with changes  
47 to the immune system, collectively termed immunosenescence (3-7) and inflammageing (8-11).  
48 Immunosenescence involves changes in the numbers of different immune cells in the bloodstream  
49 and reductions in their function (3-7). For example, there is reduced production and export of naïve T  
50 lymphocytes into the blood (and lymphoid tissues) during ageing with a loss in T cell receptor  
51 diversity and an accumulation of memory T lymphocytes (3-6). The overall result of these changes  
52 are lowered numbers of T lymphocytes in the blood and impaired T lymphocyte responsiveness (3-  
53 7). Immunosenescence also affects B lymphocyte numbers and function and the function of antigen  
54 presenting cells and some components of innate immunity (3-7). Inflammageing is seen as an  
55 increase in blood plasma or serum concentrations of the acute phase protein C-reactive protein (CRP)  
56 and of inflammatory cytokines like interleukin (IL)-6 (8-11). This may reflect sensitized pro-  
57 inflammatory signaling pathways in older people. Together these changes contribute to the increased  
58 prevalence and severity of infections (12, 13), the poorer responses to vaccinations (13-16) and the  
59 increased likelihood to suffer illness and disability (17) that occur with ageing. However, ageing is  
60 heterogeneous and occurs at different rates in different individuals; different settings may influence  
61 the ageing process, for example by providing different access to a good diet, physical activity, mental  
62 stimulation and social interactions. It is described that free-living older individuals have a  
63 significantly better quality of life when compared with older people in institutional care homes (18-  
64 20). This may relate to the different experiences offered outside and inside care homes which may  
65 themselves contribute to the ageing process.

66 Frailty is currently recognized as a “geriatric syndrome” (21, 22). Categorization of frailty has  
67 traditionally been according to physical mobility and strength (23), although there is also a cognitive  
68 component to frailty as recognized in some scales for evaluating the extent of frailty among older  
69 people (24). Frail older adults are at increased risk of adverse health outcomes, including falls,  
70 hospitalization, and mortality (25, 26). It has been suggested that one of the important pathways of  
71 frailty development is the immune/inflammatory pathway (27). Inflammation has also been linked to  
72 a wide range of chronic diseases of common prevalence within older populations (8, 9, 28). Age,  
73 frailty and length of care home residence might be linked to adverse outcomes (29). In order to better  
74 understand the relationships of age, frailty and length of care home residence with  
75 immunosenescence and inflammageing, we measured a range of immune and inflammatory markers

76 in 184 UK care home residents aged over 65 yr and investigated the relevant associations. We  
77 assessed static measures in blood (full blood count, immune phenotypes, plasma immune mediator  
78 concentrations, plasma CRP) as well as blood immune cell responses after ex vivo challenge  
79 (phagocytosis, blood culture responses to immune stimulation) and included components of both  
80 innate and acquired immunity. Many of these markers have not been well explored in the context of  
81 ageing or frailty or in older people in the care home setting.

82 **Methods**

83 **Participants**

84 This cross-sectional study is embedded within the “Probiotics to reduce infections in care home  
85 residents” (PRINCESS) trial which is a two-arm double-blind individually-randomized controlled  
86 trial, involving three academic centres in the UK (Universities of Cardiff, Oxford and Southampton).  
87 The full protocol (30) and the main outcomes (31) of the PRINCESS trial have been published. The  
88 PRINCESS trial was approved by the Wales REC 3 (15/WA/0306) and is registered at  
89 [www.controlled-trials.com](http://www.controlled-trials.com) as ISRCTN16392920. Care home residents were eligible for participation  
90 if they were aged 65 yr or older and willing and able to give informed consent for participation; if  
91 they lacked capacity, a consultee could complete a consultee declaration for participation on their  
92 behalf. Exclusions were immunocompromise (ongoing immune-suppressants; long-term, high-dose,  
93 oral, intramuscular or intravenous steroids), lactose intolerance, taking ongoing regular probiotics, or  
94 temporary residence in the care home. Care homes were residential, nursing or mixed. Here we report  
95 frailty and immune parameters in a subset of participants whose data was available at study entry (n  
96 = 184, although not all immune parameters were available for all these participants). Data were not  
97 available for all participants in the main PRINCESS trial and in this sub-study because a) participants  
98 did not consent to take part in the immune sub-study of PRINCESS; or b) insufficient blood was  
99 collected to measure some or any of the immune parameters; or c) the blood arrived at the University  
100 of Southampton, where immune measurements were made, outside of a time window pre-determined  
101 based upon an earlier study (32).

102 **Assessment of frailty**

103 Frailty index was determined according to the scale described elsewhere (24). The scale has 9  
104 categories defined as: 1 = Very fit for their age (active, energetic and motivated); 2 = Well (absent  
105 symptomatology of disease but less active); 3 = Managing well (medical problems under control but  
106 not regularly active); 4 = Vulnerable (symptoms that limit activities but not dependent on others); 5 =  
107 Mildly frail (impairment of daily activities); 6 = Moderately frail (progressive impairment and  
108 declined activities); 7 = Severely frail (completely dependent cognitively or physically but not  
109 terminally ill); 8 = Very severely frail (completely dependent and approaching the end of life); 9 =  
110 Terminally ill (life expectancy < 6 mo).

111 **Measurement of immune parameters**

112 Blood was collected into EDTA or heparin at the care homes and was posted to the University of  
113 Southampton. Whole blood was used to determine full blood count, for immune phenotyping, for  
114 assessment of neutrophil and monocyte phagocytosis, and for cultures to determine production of  
115 immune mediators after stimulation. Plasma was prepared for measurement of CRP and immune  
116 mediator concentrations. Immune parameters were measured as described in detail previously (32).  
117 Briefly, full blood count was determined in blood collected into EDTA using an automated UniCel  
118 Beckman Coulter Dxl 800 (Beckman Coulter, High Wycombe, UK). Full blood collected into  
119 heparin was used for immune phenotyping using flow cytometry following staining with

120 fluorescently-labelled antibodies to immune cell surface structures. Blood (500  $\mu$ l) was placed in BD  
121 Trucount<sup>TM</sup> tubes (BD Pharmingen Oxford, UK). Antibodies were purchased from BD Pharmingen  
122 (Oxford, UK). Table 1 lists the details of the immune phenotyping. Staining was performed at room  
123 temperature for 20 minutes and protected from light. BD-FACS lysing solution (1 ml; BD  
124 Pharmingen Oxford, UK) was added and tubes were incubated for 20 minutes. Tubes were vortexed  
125 and placed at room temperature in a dark place. Tubes were analysed on a BD FACS LSRF Fortessa  
126 TM X-20 Special order (BD Biosciences, San Jose, CA). Isotype controls were run at a medium flow  
127 rate. 10,000 events were collected for all samples in tubes containing Trucount beads. Beads were  
128 gated and 5,000 events were collected within the bead region. Data analyses were performed with BD  
129 FACSDiva 8.0.1 software. Instrument stability was checked daily using the cytometer setup and  
130 tracking to evaluate performance with Research Beads<sup>TM</sup> (BD Biosciences, Oxford, UK).

131 Phagocytic activity of blood neutrophils and monocytes towards *E. coli* was assessed in heparinsed  
132 whole blood (200  $\mu$ l) using the commercially available Phagotest<sup>TM</sup> kit (Glycotope Biotechnology  
133 GmbH, Heidelberg Germany). Events (20,000) were collected using a BD FACSCalibur flow  
134 cytometer (BD Biosciences, San Jose, CA). Both the percentage of cells (neutrophils and monocytes)  
135 involved in phagocytosis and their geometric mean fluorescence intensity (reflecting the number of  
136 ingested bacteria per cell) were analysed.

137 For whole blood cultures, 500  $\mu$ l heparinised whole blood was diluted 1:10 in Roswell Park  
138 Memorial Institute 1640 culture medium supplemented with penicillin (50 U/ml), streptomycin (50  
139  $\mu$ g/ml) and L-glutamine (2 mM) (Sigma Aldrich, Gillingham, UK). Diluted blood (990  $\mu$ l) was added  
140 to the wells of a 24-well flat-bottomed cell culture plate. Then, 10  $\mu$ L of either medium,  
141 lipopolysaccharide (LPS; from *E. coli* K12 strain), peptidoglycan (PGN; from *Staphylococcus*  
142 *aureus*) or phytohaemagglutinin (PHA; from *Phaseolus vulgaris*) was added to the wells to obtain  
143 final concentrations of 10  $\mu$ g/ml LPS, 5  $\mu$ g/ml PGN or 5  $\mu$ g/ml PHA respectively. Cultures were  
144 incubated for 24 hr at 37°C in an atmosphere of 95% air and 5% CO<sub>2</sub>. Supernatants were collected by  
145 centrifuging the plate at 2000 rpm for 5 min and were then stored at -80°C for analysis. Once all  
146 supernatants were ready to be analysed, magnetic luminex assays (Bio-Techne, R&D Systems,  
147 Abingdon, UK) were used. Analytes were measured in negative controls and in the medium after  
148 stimulation with PGN or LPS and the assay limits of detection (pg/ml) were: tumour necrosis factor  
149 (TNF- $\alpha$ ) (0.62), interleukin (IL)-1 $\beta$  (0.25), IL-6 (0.38), IL-10 (2.93) and IL-12p70 (2.39). Analytes  
150 measured following stimulation with PHA were TNF- $\alpha$  (limit of detection (pg/ml) (1.2) and  
151 interferon (IFN- $\gamma$ ) (0.4). Assays were performed according to manufacturer's instructions.  
152 Microparticles were resuspended in buffer and read using a Bio-Rad-plex Luminex Analyzer.

153 Plasma was prepared from 1 ml of heparinised whole blood by centrifugation at 1500 rpm for 5 min  
154 and stored at -20°C prior to analysis. CRP, immune mediators and soluble receptors were measured  
155 by magnetic luminex assays (Bio-Techne, R&D Systems, Abingdon, UK). Analytes measured and  
156 the assay limits of detection (pg/ml) were CRP (116), TNF- $\alpha$  (0.54), IL-6 (0.31), IL-10 (0.24), IL-17  
157 (1.8), IL-12p70 (2.96), IL-1ra (18), TNF receptor II (TNFRII; 0.5), monocyte chemoattract protein  
158 (MCP-1; 9.9), soluble vascular cell adhesion molecule (sVCAM-1; 238), soluble E-selectin (sE-  
159 selectin; 18.8), soluble intercellular adhesion molecule (sICAM-1; 87.9), and interferon gamma-  
160 induced protein 10 (IP-10; 1.18). Assays were performed according to manufacturer's instructions.  
161 Microparticles were resuspended in buffer and read using a Bio-Rad-plex Luminex Analyzer.

## 162 Statistical analysis

163 As this is an exploratory study no power calculation was done. Normality of data was assessed by  
164 visual inspection of histogram distributions and by using the Shapiro Wilk and Kolmogorov-Smirnov

165 tests. Data were not normally distributed. Thus, data are presented using median, interquartile range  
166 and percentiles. Comparisons of outcomes between sexes were made using the Mann-Whitney U test.  
167 Correlations amongst age (as a continuous variable), frailty index and length of care home residence  
168 (as a continuous variable) were investigated using Spearman's test. Associations between age,  
169 frailty index, length of care home residence and each immune parameter were investigated using  
170 linear regression. Multivariate analysis using linear regression models was used to examine the  
171 independent influence of age, frailty and length of care home residence on each immune parameter.  
172 All data were log10 transformed prior to conducting these analyses. Data collation and analysis were  
173 performed in SPSS version 22, Microsoft Excel and PRISM software. In all cases a value for  $p <$   
174 0.05 was taken to indicate statistical significance; no correction for multiple testing was made.

## 175 **Results**

### 176 **Participants characteristics**

177 Table 2 shows the characteristics of the subset of participants studied here compared to those of the  
178 entire PRINCESS cohort; the characteristics are comparable. The age range of the included care  
179 home residents was 65 to 102 yr. They had a mean age ( $\pm$  SD) of 85.3 ( $\pm$  7.5) yr and had been  
180 residing in the care home for a mean ( $\pm$  SD) of 1.89 ( $\pm$  2.16) yr at the time of study commencement  
181 (Table 2), although it is not known if they had previously resided in another care home. There were  
182 more women than men (63.4% vs 36.6%). One-third (33.4%) of included participants were severely  
183 frail (category 7) and 34.3% were moderately or mildly frail (categories 6 and 5) (Table 2). Age,  
184 frailty and duration of care home residence did not differ between women and men (data not shown).  
185

### 186 **Association amongst age, frailty and length of care home residence**

187 There was a significant positive correlation between length of care home residence and frailty index  
188 (Spearman's correlation coefficient = 0.185;  $p = 0.023$ ) as shown in Figure 1a. Age and frailty index  
189 and age and length of care home residence were not significantly correlated (Figure 1b, 1c).

### 190 **Full blood count and immune parameters**

191 Data for the components of the full blood count were mainly within the reference range, apart from  
192 lymphocyte numbers (Table 3). Many participants had low blood lymphocyte numbers, with 31% ( $n$   
193 = 49) having numbers below the lower value of the reference range. The percentage of women and  
194 men with lymphocyte numbers below the lower value of the reference range did not differ. Age,  
195 frailty and length of care home residence were not different between those with blood lymphocyte  
196 numbers below or within the reference range. A small proportion of participants ( $n = 12$ ; 7.6%) had  
197 platelet numbers above the upper value of the reference range. Platelet numbers were higher in  
198 women than men (median (10th and 90th centile) 293 (211, 389) vs 251 (168, 386)  $10^9/l$ ;  $p = 0.039$ ).  
199 Data for immune phenotypes, neutrophil and monocyte phagocytosis, plasma CRP and immune  
200 mediator concentrations, and concentrations of immune mediators in stimulated whole blood cultures  
201 are shown in Tables 4, 5, 6 and 7, respectively. There are no reference values for these immune  
202 outcomes, but Table 4 lists a selection of previously reported values for immune phenotypes in older  
203 individuals (33-35). Participants in the current study had lower numbers of T lymphocytes and  
204 natural killer cells and a lower ratio of CD4 $^+$  to CD8 $^+$  T lymphocytes than reported in these other  
205 studies of older adults. Ten percent of participants had a ratio of CD4 $^+$  to CD8 $^+$  T lymphocytes less  
206 than 1 (Table 4). The only immune outcome that differed between sexes was plasma IL-10  
207 concentration, which was higher in men than women (median (10<sup>th</sup> and 90<sup>th</sup> centile) 0.66 (0.25, 3.59)  
208 vs 0.56 (0.12, 1.64) pg/ml;  $p = 0.039$ ).

209 **Relationship between immune markers and age, frailty and length of care home residence**210 **Univariate analysis**

211 Associations of each immune marker with age, frailty and length of care home residence were investigated.  
 212 In most cases there was no statistically significant association (supplementary tables S1 to S7). Exceptions  
 213 were:

- 214 • Platelet numbers were positively associated with frailty index ( $p = 0.003$ ).
- 215 • Plasma CRP, IL-1ra, sE-selectin and IP-10 were positively associated with frailty index ( $p = 0.014$ ,  
 216 0.023, 0.015 and 0.016, respectively) (Figure 2).
- 217 • PGN-stimulated IL-10 production was inversely associated with frailty index ( $p = 0.031$ ).
- 218 • Plasma sVCAM-1, IP-10 and TNFRII were positively associated with age ( $p = 0.023$ , 0.002  
 219 and 0.002, respectively) (Figure 3).
- 220 • Plasma MCP-1 was positively associated with length of care home residence ( $p = 0.012$ ).

221 **Multivariate analysis**

222 A linear regression model was used to identify the independent contribution of age, frailty and length  
 223 of care home residence to the various immune parameters as dependent variables (supplementary  
 224 tables S1 to S7). Among the parameters included as part of the full blood count, frailty was a  
 225 significant predictive factor for platelet numbers (adjusted coefficient 0.23 (95% CI: 0.08, 0.37),  $p =$   
 226 0.002; Table S1). Among the immune phenotypes, age was a significant predictive factor for  
 227 activated monocytes as determined by CD86 expression (adjusted coefficient 2.78 (95% CI: 0.87,  
 228 4.70),  $p = 0.005$ ; Table S2). Apart from these, none of the covariates was found to contribute  
 229 significantly to the individual components of the full blood count (Table S1) or the immune cell  
 230 phenotypes (Table S2). There were also no predictive associations between the covariates and  
 231 neutrophil or monocyte phagocytosis (Table S3). For immune mediators after stimulation of whole  
 232 blood cultures, the only predictive association was between frailty and PGN-stimulated IL-10  
 233 (adjusted coefficient -0.79 (95% CI: -1.54, -0.04),  $p = 0.038$ , Table S5). Frailty index, age and length  
 234 of care home residence each independently predicted some plasma immune mediators (Table S4).  
 235 Age was a significant predictor of plasma IP-10 (adjusted coefficient 1.77 (95% CI: 0.61, 2.93),  $p =$   
 236 0.003), TNFRII (adjusted coefficient 1.76 (95% CI: 0.60, 2.92),  $p = 0.003$ ) and sVCAM-1 (adjusted  
 237 coefficient 1.19 (95% CI: 0.13, 2.26),  $p = 0.029$ ). Frailty index was an independent predictor of CRP  
 238 (adjusted coefficient 1.18 (95% CI: 0.34, 2.01),  $p = 0.006$ ), IL-1ra (adjusted coefficient 0.43 (95% CI:  
 239 0.00, 0.87),  $p = 0.050$ ), sE-selectin (adjusted coefficient 0.35 (95% CI: 0.05, 0.66),  $p = 0.024$ ) and IP-  
 240 10 (adjusted coefficient 0.32 (95% CI: 0.32, 0.64),  $p = 0.042$ ). Lastly, length of care home residence  
 241 was an independent predictor of MCP-1 (adjusted coefficient 0.10 (95% CI: 0.01, 0.19),  $p = 0.026$ ).  
 242

243 **Discussion**

244 Few studies have described immune parameters in older people resident in care homes. Here we  
 245 describe a selection of immune and inflammatory markers in blood and ex vivo immune cell  
 246 functions in a sample of 184 older people resident in care homes aged 65 to 102 yr and their  
 247 association with frailty, age and length of care home residence. Almost a third of the participants had  
 248 low total lymphocyte numbers. Moreover, participants had lower numbers of T lymphocytes and  
 249 natural killer cells and a lower ratio of CD4 $^{+}$  to CD8 $^{+}$  T lymphocytes than reported in other studies of  
 250 older adults (33, 34). These findings are consistent with the hallmarks of immunosenescence (13, 36,  
 251 37) and would indicate an increased risk of infections and poor vaccination responses (12-16, 38).  
 252 Lymphocyte numbers were not associated with age or frailty. This contrasts with the report of  
 253 Collerton et al. (39) who found an inverse association of lymphocyte numbers with frailty, assessed

254 using two different models, in 845 85 yr olds in the UK. Furthermore, Bernabeu-Wittell et al. (40)  
255 identified that low lymphocyte numbers were associated with frailty in hospitalised older people with  
256 poly-pathologies; they also identified that frailty was a risk factor for mortality at 12 months. In  
257 another study, there was an inverse association between frailty score and lymphocyte count in  
258 institutionalised older people, but lymphocyte count did not predict hospitalisations or mortality,  
259 although frailty did predict mortality (41). Recently, low lymphocyte counts were shown to associate  
260 with frailty in patients with cardiovascular disease (42) .

261 Other associations identified in the current study indicate links between greater frailty and increased  
262 inflammation and between increasing age and increased inflammation. The association between  
263 frailty and inflammation is consistent with the proposal that frailty is an inflammatory condition (43,  
264 44), while the associations between age and inflammatory markers or responses are consistent with  
265 the concept of inflammageing (45, 46).

266 A proportion of participants (7.6%) had a platelet count above the upper limit of the reference range.  
267 The exact threshold at which platelet numbers become a marker of chronic inflammation has not  
268 been clearly defined, but high platelet numbers are related to inflammatory conditions, cancer and  
269 infection as well as endothelial dysfunction (47, 48) and atherosclerotic plaque formation (49).  
270 Moreover, platelet numbers increased across categories of frailty, findings also confirmed through  
271 modelling, where frailty emerged as a significant independent predictor of platelet numbers.  
272 Recently, Bodolea et al. (42) found that platelet numbers associate with frailty in patients with  
273 cardiovascular disease. Fuentes et al. report that platelet oxidative stress is a novel marker of  
274 cardiovascular risk in frail older people (50) and Starr and Deary observed increased platelet numbers  
275 over a time-frame of 8 yr in individuals initially aged over 79 yr (51). The current study did not  
276 reveal a significant association of platelet numbers with age. Nevertheless, increased platelet  
277 numbers could be a marker of mortality risk through increased frailty. Platelets trigger leukocyte  
278 adhesion which favours their aggregation. The mechanism seems to be linked to platelet-induced  
279 production of adhesion molecules (52, 53).

280 CD80 and CD86 were used as markers of activated blood monocytes. The linear regression model  
281 showed that age was a significant independent predictor of CD86<sup>+</sup> monocytes over frailty and length  
282 of care home residence. Busse et al. demonstrated that monocytes expressing CD86 were increased in  
283 elderly individuals (54) and concluded this to be a consequence of  
284 immunosenescence/inflammageing, as this trait appeared in both a cohort of elderly individuals with  
285 dementia and in healthy age-matched controls (54).

286 Phagocytic function has been reported to decline with age leading to a failure to remove foreign  
287 antigenic particles and autologous senescent cells (55, 56). In the current study, phagocytic function  
288 of neutrophils and monocytes was not significantly associated with age, frailty or length of care home  
289 residence. These findings do not confirm what has been shown by others where phagocytic function,  
290 especially of neutrophils, declined with age (57, 58). However, this may be because the current study  
291 only investigated older participants. A previous comparison of neutrophil phagocytosis among three  
292 age groups (21-36, 38-56 and 62-83 yr) found a significant age-dependent reduction in the number of  
293 phagocytosed *E. coli* (59). Thus, that study investigated a much wider age range than in the current  
294 study. It is possible that beyond 65 yr of age, the alteration in phagocytic activity of neutrophils and  
295 monocytes becomes less dramatic than the change between young and older or middle-aged and  
296 older individuals.

297 Previous studies have associated markers of inflammation with different chronic and age-related  
298 conditions (e.g. cardiovascular disease and dementia (60, 61)). Others have reported that age and  
299 frailty are factors associated with inflammatory biomarkers (43, 44, 62). Indeed, researchers have  
300 reported that there is a characteristic “cytokinome” (63) in older people with physical frailty and  
301 sarcopenia (64), suggesting IP-10 to be a marker of frailty and sarcopenia. The current study  
302 identified that IP-10 was associated with frailty. In the current study frailty was also an independent  
303 predictor of CRP, IL-1ra and sE-selectin. Previous studies have shown that ageing is associated with  
304 increased concentrations of sICAM-1 and sVCAM-1 (8,61). The current study found that sVCAM-1  
305 concentration had an association with age, as did IP-10 and TNFRII. These findings support the idea  
306 that inflammatory pathways are upregulated in ageing and in age-related diseases (65).

307 Beyer et al. suggest that inflammation is related to muscle wasting, facilitating progression of frailty:  
308 in a population of 33 geriatric individuals, those with higher MCP-1 showed a significantly lower  
309 grip strength and lower lean body mass (66). Animal research has suggested that MCP-1 is a  
310 potential biomarker of biological ageing (67). However, one study reported lower plasma MCP-1 in  
311 frail compared with non-frail older care home residents (64), while in the current study frailty was  
312 not a predictor of MCP-1 concentration.

313 Other inflammatory markers where frailty appeared as a significant contributory factor over age and  
314 length of stay at care home - identified through the regression model - were IL-1ra and the soluble  
315 adhesion molecule sE-selectin. IL-1ra opposes the action of pro-inflammatory IL-1 and may be  
316 released in an effort to mitigate inflammation. Nevertheless, IL-1ra has been linked as an  
317 independent risk factor of morbidity and mortality in the older people resident in care homes (44).  
318 Upregulation of the expression of adhesion molecules with frailty has been reported (68, 69).

319 Inflammageing, either low grade or chronic, is commonly linked to morbidity and mortality (70, 71).  
320 Our findings support an association of inflammation with frailty in older people resident in care  
321 homes. Inflammageing is a predictor of frailty in elderly (72). Edvardsson et al. have demonstrated  
322 that inflammatory markers are related to reduced survival in a follow-up study for one year with frail  
323 older people resident in care homes (73).

324 Experiments to assess cellular responses ex vivo were performed through whole blood cultures.  
325 These experiments allowed assessment of inflammatory and immune mediator production via  
326 stimulation of toll-like receptor (TLR)2 and TLR4 with PGN and LPS, respectively, as well as T cell  
327 stimulation with PHA. The activation of TLR2 and TLR4 leads to increased production of multiple  
328 cytokines (74, 75). Findings herein presented showed that IL-10, TNF- $\alpha$  and IL-1 $\beta$  were potently  
329 induced by LPS in comparison to PGN. LPS induced median production values 5-fold higher for IL-  
330 10, 3.9-fold higher for TNF- $\alpha$  and almost 12-fold higher for IL-1 $\beta$  when compared with PGN.  
331 Furthermore, a superior production of IL-12p70 was induced by LPS when compared with PGN, but  
332 the difference was less (two-fold). Lastly, IL-6 was similarly induced by both PGN and LPS. PHA  
333 stimulates T cells. The production of TNF- $\alpha$  following PHA stimulation was lower than with LPS  
334 and PGN. The potent effects exerted by LPS agree with what has been shown by others (76). The  
335 association of health and TLR responsiveness, particularly TLR4, in older people resident in care  
336 homes has not been widely explored. McFarlin et al. have suggested that TLR4 appears to have a role  
337 in regulating the linkage between cytokine production (IL-1 $\beta$  and TNF- $\alpha$ ) and physically active  
338 lifestyle regardless of age. In that study, a group of older (60-80 yr) and young (18-30 yr) adults were  
339 categorised as “active” or “inactive”. There were significantly higher production of IL-1 $\beta$  and TNF- $\alpha$   
340 in the inactive group in both young and older people (77). McFarlin et al. also reported lower  
341 expression of TLR4 in the active group (77). Similar observations were reported in a group of older

342 women exposed to regular training (78). Current findings certainly suggest an active TLR4 pathway  
343 in the older people resident in care homes according to the cytokine production detected in the  
344 cultures following LPS stimulation. A predisposition to active responses of innate immune cells via  
345 TLR4, and perhaps other pattern recognition receptors, may be one reason for higher circulating  
346 concentrations of inflammatory cytokines in older people, one of the hallmarks of inflammageing.

347 IL-10 induced by PGN was significantly inversely associated with frailty. IL-10 is an anti-  
348 inflammatory cytokine that counterbalances pro-inflammatory responses (79). The older people  
349 resident in care homes appeared to show an imbalance in IL-10 and TNF- $\alpha$ .

350 Our findings may be compared with those of Collerton et al. (39) who measured a range of immune  
351 and inflammatory parameters in 845 85 yr olds in the UK and related these to frailty assessed with  
352 two different models. As mentioned earlier, that study reported an inverse association between frailty  
353 and lymphocyte numbers which was not observed in the current study. This may represent  
354 differences in the characteristics of the participants included in the two studies (all were resident in  
355 care homes in the current study whereas this was not the case in Collerton et al.; age range was 66 to  
356 102 yr in the current study but all participants were aged 85 yr in Collerton et al.) or the smaller  
357 sample size of the current study. Collerton et al. also reported positive associations of frailty with  
358 total leukocyte and neutrophil counts, which we did not observe. Collerton et al. (39) reported a  
359 positive association between frailty and CRP concentrations, as observed in the current study. They  
360 also identified a lack of association of frailty with monocyte, basophil and eosinophil counts, ratio of  
361 CD4 $^{+}$  to CD8 $^{+}$  lymphocytes, and LPS-stimulated TNF- $\alpha$  and IL-6 production; our observations are  
362 consistent with this. Collerton et al. (39) did not report platelet numbers or plasma concentrations of  
363 inflammatory mediators, which were associated with frailty in the current study.

364 The current study has several strengths. There were few restrictions on participant inclusion. A broad  
365 range of immune and inflammatory outcomes were measured, representing several different  
366 components of the immune system; these included static measures in blood (full blood count,  
367 immune phenotypes, plasma mediators, CRP) as well cell responses after challenge (phagocytosis,  
368 blood culture responses to LPS, PGN and PHA) and components of innate (phagocytosis, blood  
369 culture responses to LPS and PGN) and acquired immunity (blood culture responses to PHA).  
370 Finally, linear regression modelling was used to identify independent effects of age, frailty and time  
371 of care home residence on the outcomes reported. However, the study also has some limitations.  
372 Firstly, not all immune outcomes were available for all 184 participants; this is mainly because some  
373 blood samples did not arrive at the laboratory within a predetermined time to assure the viability of  
374 the immune assay (32). Secondly, the samples were from participants in a randomised controlled trial  
375 (30, 31) and this required exclusion of some of the care home residents; thus the findings are not  
376 generalisable to all care home residents. Thirdly, we did not collect data on co-morbidities (other than  
377 frailty index) or medication use, which might be relevant to immune and inflammatory biomarkers.  
378 Finally, since the study was exploratory no power calculation was done, and so non-significant  
379 findings must be interpreted with caution, and significant findings interpreted cautiously since we did  
380 not correct for the multiple statistical comparisons performed.

### 381 **Conflict of Interest**

382 The authors declare that the research was conducted in the absence of any commercial or financial  
383 relationships that could be construed as a potential conflict of interest.

### 384 **Author Contributions**

385 MLown, MLau, RL, KH, DG, FDRH, PL, CCB, and PCC conceptualized and designed the  
386 PRINCESS trial; EO-J and RL provided support for the PRINCESS trial; CCB oversaw the conduct  
387 of the PRINCESS trial; VMC-H conducted all laboratory research supported by HLF under the  
388 supervision of EAM and PCC; VMC-H, KH and DG conducted the statistical analysis; VMC-H and  
389 PCC drafted the manuscript; all authors commented on the manuscript and agreed the final version.

390 **Funding**

391 This research was supported by the Efficacy and Mechanism Evaluation Programme which is funded  
392 by the Medical Research Council (MRC) and National Institute for Health Research (NIHR), with  
393 contributions from CSO in Scotland, HCRW in Wales and the HSC R&D, Public Health Agency in  
394 Northern Ireland (Efficacy and Mechanism Evaluation (EME), grant number 13/95/10). VMC-H is  
395 supported by Colciencias, Colombia. FDRH acknowledges part-funding from the NIHR School for  
396 Primary Care Research, the NIHR Collaboration for Leadership in Health Research and Care  
397 (CLARHC) Oxford, the NIHR Oxford Biomedical Research Centre, and the NIHR Oxford Medtech  
398 and In-Vitro Diagnostics Co-operative. PCC is supported by the NIHR Southampton Biomedical  
399 Research Centre. The views expressed in this publication are those of the authors and not necessarily  
400 those of the MRC, the National Health Service, the NIHR or the Department of Health.

401 **Acknowledgments**

402 We thank the Centre for Trials Research, Cardiff University and the University of Oxford Primary  
403 Care and Vaccines Clinical Trials Collaborative for providing support in the conduct of the trial, and  
404 the staff of participating care homes.

405 **References**

- 406 1. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific  
407 mortality for 264 causes of death, 1980-2016: a systematic analysis for the Global Burden of Disease  
408 Study 2016. *Lancet* 2017;390:1151-210.
- 409 2. GBD 2016 DALYs and HALE Collaborators. Global, regional, and national disability-  
410 adjusted life-years (DALYs) for 333 diseases and injuries and healthy life expectancy (HALE) for  
411 195 countries and territories, 1990-2016: a systematic analysis for the Global Burden of Disease  
412 Study 2016. *Lancet* 2017;390:1260-344.
- 413 3. Castelo-Branco C, Soveral I. The immune system and aging: a review. *Gynecol Endocrinol*  
414 2014;30:16-22.
- 415 4. Bektas A, Schurman SH, Sen R, Ferrucci L. Human T cell immunosenescence and  
416 inflammation in aging. *J Leuk Biol* 2017;102:977-88.
- 417 5. Pawelec G, Larbi A, Derhovanessian E. Senescence of the human immune system. *J Comp  
418 Pathol* 2010;142 Suppl 1:S39-44.
- 419 6. Agarwal S, Busse PJ. Innate and adaptive immunosenescence. *Ann Allergy Asthma Immunol*  
420 2010;104:183-90.
- 421 7. De Martinis M, Modesti M, Ginaldi L. Phenotypic and functional changes of circulating  
422 monocytes and polymorphonuclear leucocytes from elderly persons. *Immunol Cell Biol*  
423 2004;82:415-20.

424

425 8. Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Dore J, et al. Health  
426 relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of  
427 nutrition. Ageing Res Rev 2017;40:95-119.

428 9. Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or  
429 cured? Nutr Rev 2007;65:S173-6.

430 10. Atienza M, Zontz J, Cantero JL. Low-grade inflammation in the relationship between sleep  
431 disruption, dysfunctional adiposity, and cognitive decline in aging. Sleep Med Rev 2018;171-83.

432 11. Ventura MT, Casciaro M, Gangemi S, Buquicchio R. Immunosenescence in aging: between  
433 immune cells depletion and cytokines up-regulation. Clin Mol Allergy 2017;15:15-21.

434 12. Yoshikawa TT. Epidemiology and unique aspects of aging and infectious diseases. Clin Infect  
435 Dis 2000;30:931-3.

436 13. Pera A, Campos C, Lopez N, Hassouneh F, Alonso C, Tarazona R, et al. Immunosenescence:  
437 Implications for response to infection and vaccination in older people. Maturitas 2015;82:50-5.

438 14. Derhovanessian E, Pawelec G. Vaccination in the elderly. Microb Biotechnol 2012;5:226-32.

439 15. Trzonkowski P, Mysliwska J, Pawelec G, Mysliwski A. From bench to bedside and back: the  
440 SENIEUR Protocol and the efficacy of influenza vaccination in the elderly. Biogerontol 2009;10:83-  
441 94.

442 16. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the  
443 elderly: a quantitative review. Vaccine 2006;24:1159-169.

444 17. Onder G, Carpenter I, Finne-Soveri H, Gindin J, Frijters D, Henrard JC, et al. Assessment of  
445 nursing home residents in Europe: the Services and Health for Elderly in Long TERM care  
446 (SHELTER) study. BMC Health Serv Res 2012;12:1-10.

447 18. Olsen C, Pedersen I, Bergland A, Enders-Slegers MJ, Joranson N, Calogiuri G, et al.  
448 Differences in quality of life in home-dwelling persons and nursing home residents with dementia - a  
449 cross-sectional study. BMC Geriatr 2016;16:137.

450 19. Sampson EL, Feast A, Blighe A, Froggett K, Hunter R, Marston L, et al. Evidence-based  
451 intervention to reduce avoidable hospital admissions in care home residents (the Better Health in  
452 Residents in Care Homes (BHiRCH) study): protocol for a pilot cluster randomised trial. BMJ Open  
453 2019;9:e026510.

454 20. Montoya A, Mody L. Common infections in nursing homes: a review of current issues and  
455 challenges. Aging Health 2011;7:889-99.

456 21. Chen LK, Hwang AC, Liu LK, Lee WJ, Peng LN. Frailty Is a Geriatric Syndrome  
457 Characterized by Multiple Impairments: A Comprehensive Approach Is Needed. J Frailty Aging  
458 2016;5:208-13.

459 22. Laksni PW. Frailty syndrome: an emerging geriatric syndrome calling for its potential  
460 intervention. Acta Med Indones 2014;46:173-4.

461 23. Dent E, Kowal P, Hoogendoijk EO. Frailty measurement in research and clinical practice: A  
462 review. Eur J Intern Med 2016;31:3-10.

463 24. Morley JE, Vellas B, van Kan GA, Anker SD, Bauer JM, Bernabei R, et al. Frailty consensus:  
464 a call to action. J Am Med Dir Assoc 2013;6:392-7.

465 25. Beck-Sague C, Villarino E, Giuliano D, Welbel S, Latts L, Manangan L, et al. Infectious  
466 diseases and death among nursing home residents: results of surveillance in 13 nursing homes. *Infect*  
467 *Control Hosp Epidemiol* 1994;15:494-6.

468 26. Ahmed N, Mandel R, Fain MJ. Frailty: an emerging geriatric syndrome. *Am J Med*  
469 2007;120:748-53.

470 27. Wilson D, Jackson T, Sapey E, Lord JM. Frailty and sarcopenia: The potential role of an aged  
471 immune system. *Ageing Res Rev* 2017;36:1-10.

472 28. Bauer ME, Fuente M. The role of oxidative and inflammatory stress and persistent viral  
473 infections in immunosenescence. *Mech Ageing Dev* 2016;158:27-37.

474 29. Carneiro JA, Cardoso RR, Duraes MS, Guedes MCA, Santos FL, Costa FMD, et al. Frailty in  
475 the elderly: prevalence and associated factors. *Rev Bras Enferm* 2017;70:747-52.

476 30. Owen-Jones E, Lowe R, Lown M, Gillespie D, Addison K, Bayer T, et al. Protocol for a  
477 double-blind placebo-controlled trial to evaluate the efficacy of probiotics in reducing antibiotics for  
478 infection in care home residents: the Probiotics to Reduce Infections iN CarE home reSidentS  
479 (PRINCESS) trial. *BMJ Open* 2019;9:e027513.

480 31. Butler C, Lau M, Gillespie D, Owen-Jones E, Lown M, Wootton M, et al. Effect of probiotic  
481 use on antibiotic administration among care home residents: a randomized clinical trial. *JAMA*  
482 2020;324:47-56.

483 32. Castro-Herrera V, Lown M, Lewith G, Miles EA, Calder PC. Influence of delayed sample  
484 processing on blood immune cell phenotypes, immune cell responses and serum anti-influenza  
485 vaccine antibody titres. *J Immunol Meth* 2018;458:8-14.

486 33. Tavares SM, Junior Wde L, Lopes ESMR. Normal lymphocyte immunophenotype in an  
487 elderly population. *Rev Bras Hematol Hemoter* 2014;36:180-3.

488 34. Qin L, Jing X, Qiu Z, Cao W, Jiao Y, Routy JP, et al. Aging of immune system: Immune  
489 signature from peripheral blood lymphocyte subsets in 1068 healthy adults. *Aging (Albany NY)*.  
490 2016;8:848-59.

491 35. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations  
492 of monocyte subsets and monocyte-related chemokine pathways in healthy adults. *BMC Immunol*  
493 2010;11:30.

494 36. Weyand CM, Goronzy JJ. Aging of the immune system. mechanisms and therapeutic targets.  
495 *Ann Am Thorac Soc* 2016;13 Suppl 5:S422-S8.

496 37. Boraschi D, Aguado MT, Dutel C, Goronzy J, Louis J, Grubbeck-Loebenstein B, et al. The  
497 gracefully aging immune system. *Sci Transl Med* 2013;5:185ps8.

498 38. Cretel E, Veen I, Pierres A, Bongrand P, Gavazzi G. [Immunosenescence and infections,  
499 myth or reality?]. *Med Mal Infect* 2010;40:307-18.

500 39. Collerton J, Martin-Ruiz C, Davies K, Hilkens CM, Isaacs J, Kolenda C, et al. Frailty and the  
501 role of inflammation, immunosenescence and cellular ageing in the very old: Cross-sectional findings  
502 from the Newcastle 85+ Study. *Mech Ageing Dev* 2012;133:456-66.

503 40. Bernabeu-Wittel M, González-Molina Á, Fernández-Ojeda R, Díez-Manglano J, Salgado F,  
504 Soto-Martín M, et al. Impact of sarcopenia and frailty in a multicenter cohort of poly-pathological  
505 patients. *J Clin Med* 2019;4:1-13.

506 41. Fernandez-Garrido J, Ruiz-Ros V, Navarro-Martínez R, Buigues C, Martínez-Martínez M,  
507 Verdejo Y, et al. Frailty and leucocyte count are predictors of all-cause mortality and hospitalization  
508 length in non-demented institutionalized older women. *Exp Gerontol* 2018;103:80-6.

509 42. Bodolea C, Hiriscau EI, Buzdugan EC, Grosu AI, Stoicescu L, Vesa S CO. The ases. *Endocr  
510 Metab Immune Disord Drug Targets* 2020;9:1419-33.

511 43. Angulo J, El Assar M, Rodriguez-Manas L. Frailty and sarcopenia as the basis for the  
512 phenotypic manifestation of chronic diseases in older adults. *Mol Aspects Med* 2016;50:1-32.

513 44. Bruunsgaard H, Pedersen BK. Age-related inflammatory cytokines and disease. *Immunol  
514 Allergy Clin North Am* 2003;23:15-39.

515 45. Ferrucci L, Fabbri E. Inflammageing: chronic inflammation in ageing, cardiovascular disease,  
516 and frailty. *Nat Rev Cardiol* 2018;15:505-22.

517 46. Breitbart E, Stollar BD. Aging and the human immune system. *Isr Med Assoc J* 2000;2:703-  
518 7.

519 47. Haynes A, Linden MD, Robey E, Naylor LH, Cox KL, Lautenschlager NT, et al. Relationship  
520 between monocyte-platelet aggregation and endothelial function in middle-aged and elderly adults.  
521 *Physiol Rep* 2017;5:1-10.

522 48. Jones CI. Platelet function and ageing. *Mammal Genome* 2016;27:358-66.

523 49. Stolla M, Grozovsky R, Lee-Sundlov MM, Falet H, Hoffmeister KM. Effects of platelet  
524 circulatory age on platelet function. *Blood* 2016;128:413-22.

525 50. Fuentes F, Palomo I, Fuentes E. Platelet oxidative stress as a novel target of cardiovascular  
526 risk in frail older people. *Vasc Pharmacol* 2017;93-95:14-9.

527 51. Starr JM, Deary IJ. Sex differences in blood cell counts in the Lothian Birth Cohort 1921  
528 between 79 and 87 years. *Maturitas* 2011;69:373-6.

529 52. Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity.  
530 *Int J Lab Hematol* 2013;35:254-61.

531 53. Garraud O, Hamzeh-Cognasse H, Cognasse F. Platelets and cytokines: How and why?  
532 *Transfus Clin Biol* 2012;19:104-8.

533 54. Busse S, Steiner J, Alter J, Dobrowolny H, Mawrin C, Bogerts B, et al. Expression of HLA-  
534 DR, CD80, and CD86 in healthy aging and Alzheimer's Disease. *J Alz Dis* 2015;47:177-84.

535 55. Goronzy JJ, Weyand CM. Immune aging and autoimmunity. *Cell Mol Life Sci* 2012;69:1615-  
536 23.

537 56. Li W. Phagocyte dysfunction, tissue aging and degeneration. *Ageing Res Rev* 2013;12:1005-  
538 12.

539 57. Butcher S, Chahel H, Lord JM. Ageing and the neutrophil: no appetite for killing? *Immunol*  
540 2000;100:411-6.

541 58. Butcher SK, Chahal H, Nayak L, Sinclair A, Henriquez NV, Sapey E, et al. Senescence in  
542 innate immune responses: reduced neutrophil phagocytic capacity and CD16 expression in elderly  
543 humans. *J Leuk Biol* 2001;70:881-6.

544 59. Wenisch C, Patruta S, Daxbock F, Krause R, Horl W. Effect of age on human neutrophil  
545 function. *J Leuk Biol* 2000;67:40-5.

546 60. Assar ME, Angulo J, Rodriguez-Manas L. Diabetes and ageing-induced vascular  
547 inflammation. *J Physiol* 2016;594:2125-46.

548 61. Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, et al. Aging and Parkinson's  
549 Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis.  
550 *Free Radic Biol Med* 2018;115:80-91.

551 62. Branas F, Azcoaga A, Garcia Ontiveros M, Antela A. Chronicity, ageing and multimorbidity.  
552 *Enferm Infect Microbiol Clin* 2018;36 Suppl 1:15-8.

553 63. Costantini S, Castello G, Colonna G. Human Cytokinome: a new challenge for systems  
554 biology. *Bioinformation* 2010;5:166-7.

555 64. Marzetti E, Picca A, Marini F, Biancolillo A, Coelho HJ, Gervasoni J, et al. Inflammatory  
556 signatures in older persons with physical frailty and sarcopenia: The frailty "cytokinome" at its core.  
557 *Experimental Gerontol* 2019;122:129-38.

558 65. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA, et al.  
559 Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related  
560 diseases. *Ageing Res Rev* 2018;47:214-77.

561 66. Beyer I, Njemini R, Bautmans I, Demanet C, Bergmann P, Mets T. Inflammation-related  
562 muscle weakness and fatigue in geriatric patients. *Exp Gerontol* 2012;47:52-9.

563 67. Yousefzadeh MJ, Schafer MJ, Hooten NN, Atkinson EJ, Evans MK, Baker DJ, et al.  
564 Circulating levels of monocyte chemoattractant protein-1 as a potential measure of biological age in  
565 mice and frailty in humans. *Aging Cell* 2018;17:1-21.

566 68. Jenny NS. Inflammation in aging: cause, effect, or both? *Discov Med* 2012;13:451-60.

567 69. Licastro F, Candore G, Lio D, Porcellini E, Colonna-Romano G, Franceschi C, et al. Innate  
568 immunity and inflammation in ageing: a key for understanding age-related diseases. *Immun Ageing*  
569 2005;2:8.

570 70. Ahmad A, Banerjee S, Wang Z, Kong D, Majumdar AP, Sarkar FH. Aging and inflammation:  
571 etiological culprits of cancer. *Curr Aging Sci* 2009;2:174-86.

572 71. Ahmadi-Abhari S, Kaptoge S, Luben RN, Wareham NJ, Khaw KT. Longitudinal association  
573 of C-reactive protein and lung function over 13 years: The EPIC-Norfolk study. *Am J Epidemiol*  
574 2014;179:48-56.

575 72. Zhang X, Meng X, Chen Y, Leng SX, Zhang H. The biology of aging and cancer: frailty,  
576 inflammation, and immunity. *Cancer J* 2017;23:201-5.

577 73. Edvardsson M, Sund-Levander M, Milberg A, Ernerudh J, Grodzinsky E. Elevated levels of  
578 CRP and IL-8 are related to reduced survival time: 1-year follow-up measurements of different  
579 analytes in frail elderly nursing home residents. *Scand J Clin Lab Invest* 2019;79:288-92.

580 74. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan- and  
581 lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. *J Biol Chem*  
582 1999;274:17406-9.

583 75. Skinner NA, MacIsaac CM, Hamilton JA, Visvanathan K. Regulation of Toll-like receptor  
584 (TLR)2 and TLR4 on CD14dimCD16+ monocytes in response to sepsis-related antigens. *Clin Exp*  
585 *Immunol* 2005;141:270-8.

586 76. Andersson J, Bjork L, Dinarello CA, Towbin H, Andersson U. Lipopolysaccharide induces  
587 human interleukin-1 receptor antagonist and interleukin-1 production in the same cell. *Eur J Immunol*  
588 1992;22:2617-23.

589 77. McFarlin BK, Flynn MG, Campbell WW, Craig BA, Robinson JP, Stewart LK, et al. Physical  
590 Activity status, but not age, influences inflammatory cytokine production and toll-like receptor 4.  
591 *Med Sci Sports Exerc* 2006;38:S308-S.

592 78. McFarlin BK, Flynn MG, Campbell WW, Stewart LK, Timmerman KL. TLR4 is lower in  
593 resistance-trained older women and related to inflammatory cytokines. *Med Sci Sports Exerc*  
594 2004;36:1876-83.

595 79. Iyer SS, Cheng GH. Role of interleukin 10 transcriptional regulation in inflammation and  
596 autoimmune disease. *Crit Rev Immunol* 2012;32:23-63.

597

598

599

600 **Figure captions**

601 Figure 1. Relationships between a) frailty index and length of care home residence, b) frailty index  
602 and age, and c) age and length of care home residence. The relationship between frailty index and  
603 length of care home residence was significant ( $p = 0,023$ )

604 Figure 2. Relationships between frailty index and plasma concentration of a) CRP, b) IL-1ra, c) sE-  
605 selectin, and d) IP-10. All were significant.

606 Figure 3. Relationships between age and plasma concentration of a) IP-10, and b) TNF-RII. Both  
607 were significant.

608

609

610 **Tables**

611 Table 1. Details of immune phenotyping.

| Immune cell population      | CD or CD combination used to identify the population                                                           | Fluorochrome used                     | µl of antibody used/test |
|-----------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|
| T cells                     | CD45 <sup>+</sup> CD3 <sup>+</sup>                                                                             | PE-Cy5/AF647                          | 20/5                     |
| Helper T cells              | CD45 <sup>+</sup> CD3 <sup>+</sup> CD4 <sup>+</sup>                                                            | PE-Cy5/AF647/AF488                    | 20/5/5                   |
| Cytotoxic T cells           | CD45 <sup>+</sup> CD3 <sup>+</sup> CD8 <sup>+</sup>                                                            | PE-Cy5/AF647/BV605                    | 20/5/5                   |
| Activated cytotoxic T cells | CD45 <sup>+</sup> CD3 <sup>+</sup> CD8 <sup>+</sup> CD25 <sup>+</sup>                                          | PE-Cy5/AF647/BV605/PE                 | 20/5/5/20                |
| Regulatory T cells          | CD45 <sup>+</sup> CD3 <sup>+</sup> CD4 <sup>+</sup> CD8 <sup>-</sup><br>CD25 <sup>HI</sup> CD127 <sup>LO</sup> | PE-Cy5/AF647/AF488/<br>BV605/PE/BV421 | 20/5/5/20/5              |
| Monocytes                   | CD45 <sup>+</sup> CD14 <sup>+</sup>                                                                            | PE-Cy5/PE-Cy7                         | 20/5                     |
| Activated monocytes         | CD45 <sup>+</sup> CD14 <sup>+</sup> CD80 <sup>+</sup>                                                          | PE-Cy5/PE-Cy7/BV421                   | 20/5/20                  |
| Activated monocytes         | CD45 <sup>+</sup> CD14 <sup>+</sup> CD86 <sup>+</sup>                                                          | PE-Cy5/PE-Cy7/PE                      | 20/5/20                  |
| B cells                     | CD45 <sup>+</sup> CD3 <sup>+</sup> CD19 <sup>+</sup>                                                           | PE-Cy5/AF647/AF488                    | 20/5/5                   |
| Activated B cells           | CD45 <sup>+</sup> CD3 <sup>-</sup><br>CD19 <sup>+</sup> CD80 <sup>+</sup>                                      | PE-<br>Cy5/AF647/AF488/BV421          | 20/5/5/20                |
| Activated B cells           | CD45 <sup>+</sup> CD3 <sup>-</sup><br>CD19 <sup>+</sup> CD86 <sup>+</sup>                                      | PE-Cy5/AF647/AF488/PE                 | 20/5/5/20                |
| Natural killer cells        | CD45 <sup>+</sup> CD3 <sup>+</sup> CD16 <sup>+</sup>                                                           | PE-Cy5/AF647/BV605                    | 20/5/20                  |

612 AF, Alexa Fluor; BV, Brilliant violet; Cy5, Cyanine 5; PE, phycoerythrin

613

614

615

616

617

618

619

620

621

622

623

624

625

626 Table 2. Characteristics of participants in this study and those of the full PRINCESS cohort at  
627 commencement of study and enrolment

| Variable                           | Full PRINCESS cohort |            |               |          | Subset participating in this study |             |                |          |
|------------------------------------|----------------------|------------|---------------|----------|------------------------------------|-------------|----------------|----------|
|                                    | n                    | Mean (SD)  | Median (IQR)  | Min, Max | n                                  | Mean (SD)   | Median (IQR)   | Min, Max |
| Age (yr)                           | 310                  | 85.3 (7.4) | 86 (81 to 91) | 65, 102  | 184                                | 83.1 (15.7) | 86 (80 to 91)  | 65, 102  |
| Length of care home residence (yr) | 307                  | 1.7 (2.4)  | 1 (0 to 2)    | 0, 15    | 184                                | 1.8 (2.2)   | 1 (0.4 to 2.4) | 0, 15    |
|                                    |                      | Frequency  |               | %        |                                    | Frequency   |                | %        |
| Sex:                               | 310                  |            |               |          | 183                                |             |                |          |
| Male                               |                      |            | 103           | 33.2     |                                    |             | 67             | 36.6     |
| Female                             |                      |            | 207           | 66.8     |                                    |             | 116            | 63.4     |
| Frailty index:                     | 310                  |            |               |          | 140                                |             |                |          |
| 1 (Very fit)                       |                      |            | 4             | 1.3      |                                    |             | 1              | 0.7      |
| 2 (Well)                           |                      |            | 8             | 2.6      |                                    |             | 5              | 3.6      |
| 3 (Managing well)                  |                      |            | 19            | 6.1      |                                    |             | 13             | 9.3      |
| 4 (Vulnerable)                     |                      |            | 11            | 3.5      |                                    |             | 7              | 5.0      |
| 5 (Mildly frail)                   |                      |            | 20            | 6.5      |                                    |             | 13             | 9.3      |
| 6 (Moderately frail)               |                      |            | 84            | 27.1     |                                    |             | 50             | 35.7     |
| 7 (Severely frail)                 |                      |            | 158           | 51.0     |                                    |             | 61             | 43.6     |
| 8 (Very severely frail)            |                      |            | 6             | 1.9      |                                    |             | 0              | 0        |
| 9 (Terminally ill)                 |                      |            | 0             | 0        |                                    |             | 0              | 0        |

628

629

630

631

632

633

634

635

636

637

638

639 Table 3. Full blood count results for older people resident in care homes

| Variable                     | Reference range<br>( $10^9/l$ ) | n   | Median | 10 <sup>th</sup><br>percentile | 90 <sup>th</sup><br>percentile |
|------------------------------|---------------------------------|-----|--------|--------------------------------|--------------------------------|
| Number of cells ( $10^9/l$ ) |                                 |     |        |                                |                                |
| Neutrophils                  | 2.0 - 7.5                       | 151 | 4.5    | 2.90                           | 7.2                            |
| Lymphocytes                  | 1.5 - 5.0                       | 157 | 1.6    | 0.9                            | 2.5                            |
| Monocytes                    | 0.2 - 1.0                       | 158 | 0.6    | 0.3                            | 0.9                            |
| Eosinophils                  | 0.0 - 0.5                       | 153 | 0.1    | 0.1                            | 0.3                            |
| Basophils                    | 0.0 - 0.1                       | 153 | 0.1    | 0                              | 0.1                            |
| Total leukocytes             | 4 - 11                          | 109 | 7.4    | 5.1                            | 10.5                           |
| Platelets                    | 140 - 400                       | 158 | 268    | 191                            | 390                            |

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657 Table 4. Blood immunophenotypes in older people resident in care homes along with a comparison  
658 of values from the literature

| Variable                                 | n   | Number of cells/ $\mu$ l |                 |                 | Tavares et al. (33)<br>> 60 y (n=35) | Qin et al. (34)<br>>65 y (n=41) | Seidler et al. (35)<br>>50 y (n=60) |
|------------------------------------------|-----|--------------------------|-----------------|-----------------|--------------------------------------|---------------------------------|-------------------------------------|
|                                          |     | Median                   | 10th percentile | 90th percentile | Mean (SD) cells/ $\mu$ l             | Mean (SD) cells/ $\mu$ l        | Median (range) cells/ $\mu$ l       |
| T cells                                  | 148 | 1249                     | 875             | 1726            | 1336 (630)                           | 1946 (505)                      | -                                   |
| Helper T cells                           | 148 | 859                      | 304             | 1391            | 780 (436)                            | 699 (281)                       | -                                   |
| Cytotoxic cells                          | 148 | 648                      | 402             | 1005            | 417 (313)                            | 448 (235)                       | -                                   |
| Activated cytotoxic T cells              | 142 | 224                      | 126             | 367             | -                                    | 191 (115)                       | -                                   |
| Regulatory T cells                       | 148 | 40                       | 16              | 191             | -                                    | -                               | -                                   |
| Ratio CD4 <sup>+</sup> :CD8 <sup>+</sup> | 148 | 1.3                      | 1.0             | 1.8             | 1.8 (1.3)                            | 1.5 (1.2)                       | -                                   |
| Monocytes                                | 148 | 500                      | 255             | 820             | -                                    | -                               | 420 (165 – 903)                     |
| Activated monocytes (CD80 <sup>+</sup> ) | 148 | 152                      | 36              | 379             | -                                    | -                               | -                                   |
| Activated monocytes (CD86 <sup>+</sup> ) | 148 | 106                      | 20              | 275             | -                                    | -                               | -                                   |
| NK cells                                 | 98  | 81                       | 49              | 116             | -                                    | 448 (223)                       | -                                   |
| B cells                                  | 148 | 221                      | 102             | 342             | 191 (122)                            | 198 (112)                       | -                                   |
| Activated B cells (CD80 <sup>+</sup> )   | 148 | 119                      | 68              | 213             | -                                    | -                               | -                                   |
| Activated B cells (CD86 <sup>+</sup> )   | 148 | 118                      | 72              | 220             | -                                    | -                               | -                                   |

659

660

661 Table 5. Phagocytosis of *E. coli* by blood neutrophils and monocytes from older people resident in  
662 care homes

| Variable                                                             | n   | Median | 10 <sup>th</sup><br>percentile | 90 <sup>th</sup><br>percentile |
|----------------------------------------------------------------------|-----|--------|--------------------------------|--------------------------------|
| Neutrophils with phagocytic activity (%)                             | 147 | 83.9   | 64.6                           | 91.6                           |
| Geometric median fluorescence intensity (GMFI) of active neutrophils | 142 | 256.8  | 158.6                          | 378.5                          |
| Monocytes with phagocytic activity (%)                               | 147 | 29.9   | 13.6                           | 47.9                           |
| Geometric median fluorescence intensity (GMFI) of active monocytes   | 147 | 182.1  | 105.9                          | 295.9                          |

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681 Table 6. Concentrations of CRP and immune mediators in plasma from older people resident in care  
682 homes

| Variable              | n  | Median | 10 <sup>th</sup><br>percentile | 90 <sup>th</sup><br>percentile |
|-----------------------|----|--------|--------------------------------|--------------------------------|
| CRP (mg/l)            | 85 | 2.7    | 0.5                            | 16.3                           |
| sICAM-1 (ng/ml)       | 95 | 386    | 208                            | 764                            |
| IL-1ra (pg/ml)        | 95 | 1559   | 705                            | 4644                           |
| sE-Selectin (ng/ml)   | 95 | 22.8   | 11.3                           | 39.8                           |
| sVCAM-1 (ng/ml)       | 95 | 791    | 432                            | 1391                           |
| MCP-1 (pg/ml)         | 95 | 356    | 165                            | 691                            |
| IP-10 (pg/ml)         | 95 | 152    | 75                             | 285                            |
| IL-17A (pg/ml)        | 95 | 0.9    | 0.6                            | 6.9                            |
| TNFRII (pg/ml)        | 95 | 4072   | 2119                           | 7963                           |
| IL-6 (pg/ml)          | 96 | 4.4    | 1.7                            | 20.4                           |
| IL-10 (pg/ml)         | 96 | 0.6    | 0.1                            | 1.8                            |
| TNF- $\alpha$ (pg/ml) | 96 | 17.7   | 9.2                            | 26.4                           |

683

684

685

686

687

688

689

690 Table 7. Immune mediator concentrations in stimulated cultures of whole blood from older people  
691 resident in care homes

| Variable                                | n  | Median | 10 <sup>th</sup><br>percentile | 90 <sup>th</sup><br>percentile |
|-----------------------------------------|----|--------|--------------------------------|--------------------------------|
| Lipopolysaccharide-stimulated cultures  |    |        |                                |                                |
| IL-10 (pg/ml)                           | 86 | 2428   | 473                            | 10780                          |
| TNF- $\alpha$ (pg/ml)                   | 86 | 13231  | 3358                           | 32884                          |
| IL-6 (ng/ml)                            | 86 | 47.6   | 15.7                           | 87.2                           |
| IL-12p70 (pg/ml)                        | 86 | 24.9   | 11.6                           | 118.7                          |
| IL-1 $\beta$ (pg/ml)                    | 86 | 4090   | 1476                           | 14588                          |
| Peptidoglycan-stimulated cultures       |    |        |                                |                                |
| IL-10 (pg/ml)                           | 86 | 468    | 90                             | 2049                           |
| TNF- $\alpha$ (pg/ml)                   | 86 | 3391   | 564                            | 11334                          |
| IL-6 (ng/ml)                            | 86 | 42.4   | 11.9                           | 100.6                          |
| IL-12p70 (pg/ml)                        | 86 | 14.3   | 5.3                            | 64.0                           |
| IL-1 $\beta$ (pg/ml)                    | 86 | 318    | 29                             | 1448                           |
| Phytohaemagglutinin-stimulated cultures |    |        |                                |                                |
| IFN- $\gamma$ (pg/ml)                   | 86 | 5.2    | 0.2                            | 55.1                           |
| TNF- $\alpha$ (pg/ml)                   | 86 | 1846   | 658                            | 3472                           |

692

693

694