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Abstract 

Human behaviours consist different types of motion; we show how they can be 

disambiguated into their components in a richer way than that currently possible. Studies on 

optical flow have concentrated on motion alone without the higher order components: snap, 

jerk and acceleration. We are the first to show how the acceleration, jerk, snap and their 

constituent parts can be obtained from image sequences, and can be deployed for analysis, 

especially of behaviour. We demonstrate the estimation of acceleration in sport, human 

motion, traffic and in scenes of violent behaviour to demonstrate the wide potential for 

application of analysis of acceleration. Determining higher order components is suited to the 

analysis of scenes which contain them: higher order motion is innate to scenes containing acts 

of violent behaviour, but it is not just for behaviour which contains quickly changing 

movement: human gait contains acceleration though approaches have yet to consider radial 

and tangential acceleration, since they concentrate on motion alone. The analysis of synthetic 

and real-world images illustrates the ability of higher order motion to discriminate different 

objects under different motion. Then the new approaches are applied in heel strike detection 

in the analysis of human gait. These results demonstrate that the new approach is ready for 

developing new applications in behaviour recognition and provides a new basis for future 

research and applications of higher-order motion analysis. 
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1. Introduction 

Human behaviours consist of many different types of motion. In the simplest 

sense, walking can be easily distinguished from running by acceleration and many behaviours 

have more complicated motion. There has been much sophisticated work on activities recognition 

based on optical flow. Chaudhry et al. proposed histograms of oriented optical flow for action 

recognition [2] . Kumar and John utilize optical flow vectors on the action edges to recognize 

human actions and interactions [3]. Kolekar and Dash fuse shape and optical flow together for 

activity recognition [4]. Wang et al. match feature points between frames using SURF descriptors 

and dense optical flow as their hand craft features [59]. More recently, Edison and Jiji have 

proposde two optical acceleration algorithms and utilize them to recognize action but do not extend 

beyond acceleration [58]. In this paper we extend higher-order motion analysis and parameterizes 

different types of motion for behaviour recognition based our previous work [5], [6]. The new 

contributions of this paper are:  

• Optical flow field is disambiguated systematically into acceleration, jerk and snap fields 

and their components. Our acceleration algorithm achieves superior performance to the state 

of art on efficiency and preciseness.  

• We show generalised application of higher-order motion detection in a richer selection of 

imagery for not only the new approach but also the new basis, on synthetic and on real 

image sequences. 

• Jerk and snap flow are applied for detecting heel strikes and the results demonstrates that 

jerk can be adapted in gait analysis or other applications on real images. 

• We demonstrate the capability to discriminate violence using velocity and acceleration flow 

and show the advantages of using analysis of acceleration.  
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This paper is arranged as follows: Section 2 gives a brief review of background gait analysis 

and optical flow. Section 3 describes the higher-order motion algorithms. Section 4 evaluates the 

algorithms on a rich selection of imagery for behaviour and then for heel strike detection in human 

gait. Section 5 gives the preliminary results on using acceleration components for violence 

detection. Discussion and future work for this new computer vision approach are in Section 6. 

 

2. Related Work 

2.1.   Activity Recognition  

Activity recognition has been subject to increasing research interest and extensively studied in 

recent years. The main applications are automated surveillance analysis including gait analysis [7] 

and anomaly behaviour detection [8],  ambient-assisted living such as gesture recognition [9] and 

medical assistant [10]. The techniques can be classified by sensor-based and video-based. Sensor-

based techniques obtain the information from accelerometer, gyroscope while video-based 

methods analysis the data from images. Liu et al. utilize the temporal relationships between actions 

to classify activities from sensor-based data [11]. Dollar et al. develop sparse spatio-temporal 

features for detecting and characterizing behaviour from video sequence [60]. Ma et al. propose a 

twin stream network to integrate hand appearance, object attribute and local hand motion to 

recognize activities [12]. Du et al. utilize metric learning to locate potential anomaly target in a 

scene [13]. 

Gait analysis is one of the main branches of activity recognition. In biometric gait can be 

obtained at a distance and hard to hide or disguise compare with face, fingerprint or iris [14]–[16]. 

There has been some work achieved the purpose on detecting acceleration data by accelerometers 

and gyroscopes in gait analysis. Djurić-Jovičić et al. [17] use accelerometers to measure the angle 
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of leg and ankle, Rueterbories et al. [10] capture the angular displacement to detect gait events via 

gyroscopes. Yam et al. proposed an analytical gait model which extracts the angle of the thigh and 

lower leg rotation without parameter selection [18]. Świtoński extracted the velocity and 

acceleration of skeleton root element, feet, hands and head from gait path as the gait feature [19]. 

These study have been utilized physical-based acceleration information for gait analysis, optical 

flow-based acceleration is yet to be investigated.  

 

Fig. 1. The temporal components contained in a gait cycle and step and stride length during the cycle [20]. 

Gait is periodic and most analytic approaches rely on accurate gait phase detection. The 

components of one gait cycle are shown in Fig. 1: a gait cycle is defined as the interval between 

two consecutive heel strikes of the same foot therefore heel strike is one of the most important 

components which partition walking sequences into cycles composed of stance and swing phases 

[21]. A heel strike refers to the moment the heel first strikes the floor. Suppose one gait cycle starts 

from the heel strike of right foot, the right foot rotates on the heel to touch the floor (‘stance phase’) 

to support the body while the left foot is swinging forward (‘swing phase’) until the left heel strikes 

the floor. Then the roles of the two feet switch, the left foot remains flat on the floor whilst the 

right foot is swinging forward. When the right heel strikes the floor again, then a gait cycle is 

complete. Bouchrika and Nixon [22] extracted low-level features, corners, to estimate the strike 
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positions. Jung and Nixon use the movement of the head to detect the key frame (the frame in 

which the heel strike takes place) [23].  

 

2.2.   Optical Flow Estimation 

Optical flow estimation is one of the earliest and still active research topics in Computer Vision. 

Many methodological concepts have been introduced and the performances have been improved 

gradually since Horn and Schunck proposed the first variational optical flow estimation algorithm, 

however, the basic assumption has changed little [1]. Most state-of-art approaches estimate optical 

flow by optimising the weighted sum of two terms: a data term and a prior term [24].  

The most popular data term is brightness constancy, it constrains the intensity of one point on 

the image pattern to be constant between successive frames. The alternative forms of the data term 

are the correlation between frames [25] and colour space [26]. Apart from the intensity, robust 

pairwise features also can be used to construct the motion fields. Brox et al. combine gradient 

constancy with brightness [27]; DeepFlow [28] and SIFT flow [29] both use the Scale-Invariant 

Feature Transform (SIFT) as the pairing feature.  

For prior term smoothness is the most popular choice which assumes that the neighbouring 

pixels have a similar motion. Trobin et al. use a second-order prior to constrain the smoothness to 

achieve high-accuracy optical flow [30]. Wedel et al. adapt rigid motion as their prior [31]. 

Naturally, learning algorithms have started to feature in recent years. Sun et al. [32] learned a 

statistical model of both the error of brightness and smoothness constraints. FlowNet [33]use 

Convolutional Neural Networks (CNNs) to predict optical flow from a large quantity of training 

data. In the next section, we will review previous study of optical flow which has aimed to analyse 

acceleration. 
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2.3.  Previous Higher-order Motion Algorithms 

There was little work analysing higher-order motion before our work on determining gait 

events through acceleration flow [34]. Chen et al. [35] established an acceleration detection 

algorithm (without an implementation) based on Lucas-Kanade [36]: the brightness is constant in 

three consecutive frames and acceleration flow is smooth over a small patch, which turns the 

constrains into an over-determined equation. In the only other contemporaneous approach, Dong 

et al. [37] obtain acceleration fields by computing optical flow on optical flow yet it is difficult to 

obtain spatial partial derivatives in a smoothed area. Edison and Jiji proposed Horn Schunck 

Optical Acceleration (HSOA) [57] by applying brightness and smoothness constraints. Later, they 

optimized the algorithm by expanding each frame as a quadratic polynomial, namely Farneback 

optical flow (FBOA) [58]. However, the constraints are too strong once it extends to multiple 

frames in a highly dynamic environment. 

 

3. Disambiguating Optical Flow into Higher-order Components 

3.1.   Estimating Acceleration Flow 

New algorithms for optical flow estimation continue to emerge, and the performance has 

significantly improved since the first variational algorithm by Horn and Schunck [38]. Rather than 

obtaining flow from its basis we use a state-of-art algorithm, DeepFlow [28], as our basis approach 

to approximate the acceleration flow. This applies the brightness constancy assumption in small 

deformable patches, which improves the performance of large displacement estimation and non-

rigid matching significantly. The basic approach can be replaced with any new optical flow 

algorithms, and could thus improve the performance of our higher-order motion algorithms in the 
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future. The acceleration field 𝐀̂𝜖ℝ2  can be estimated by the difference of the neighbouring 

velocity fields: 

𝐀̂(𝑡) =
𝑑𝐕(𝑡)

𝑑𝑡
= 𝐕(𝑡, 𝑡 + ∆𝑡) − 𝐕(𝑡 − ∆𝑡, 𝑡) (1) 

where 𝐕(𝑡, 𝑡 + ∆𝑡)𝜖ℝ2 denotes velocity field, it contains the horizontal and vertical components 

between 𝑡  and 𝑡 + ∆𝑡 . 𝐕(𝑡 − ∆𝑡, 𝑡)  is the velocity field between 𝑡 − ∆𝑡  and 𝑡 . In the 

implementation, optical flow field is considered as the velocity field due to the fixed frame rate, 

with units of pixels/frame.  

 

Fig. 2. Computing acceleration field by referring to the middle frame as the start. 

To avoid the noise caused by inconsistent referencing in time axis, the start frame in other 

word, Differential-Acceleration refers to the middle frame as the initial time in temporal template 

as explained in Fig. 2 [34], the acceleration field 𝐀̂(𝑡) is approximated by: 

𝐀̂(𝑡) = 𝐕(𝑡, 𝑡 + ∆𝑡) − (−𝐕(𝑡, 𝑡 − ∆𝑡)) = 𝐕(𝑡, 𝑡 + ∆𝑡) + 𝐕(𝑡, 𝑡 − ∆𝑡) (2) 

where 𝐕(𝑡, 𝑡 + ∆𝑡) denotes the velocity filed estimated by DeepFlow [28] from frame 𝑡 to 𝑡 + ∆𝑡, 

and 𝐕(𝑡, 𝑡 − ∆𝑡) is the velocity field from 𝑡 to 𝑡 − ∆𝑡. 

 

3.2.   Beyond Acceleration 

It is well known that velocity measures the change in position over time, and acceleration is 
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the change of velocity, jerk describes the change of acceleration [39]. Acceleration links a force 

acting on a mass from Newton’s Second Law: 

𝐹⃗ = 𝑚𝑎⃗ (3) 

 

 

Fig. 3. The relationship between motion profiles in a straight linear motion [45]. 

Hence in kinematics, assuming constant mass, jerk describes the change of force; and snap 

describes the change of jerk. In calculus, snap is the derivative of acceleration with respect to time, 

the fourth order derivative of position [39]. The relationship between the motion components is 

given in Equation (4), based on the time evolution of position 𝑟: 

𝑠(𝑡) =
𝑑𝑗(𝑡)

𝑑𝑡
=

𝑑2𝑎⃗(𝑡)

𝑑𝑡2
=

𝑑3𝑣(𝑡)

𝑑𝑡3
=

𝑑4𝑟(𝑡)

𝑑𝑡4
(4) 

where 𝑠 represents snap, 𝑗 denotes jerk, and 𝑎⃗, 𝑣, 𝑟, 𝑡 are acceleration, velocity, position and time 

respectively. The change of 𝑛𝑡ℎ-order flow under limited snap is shown in Fig. 3 illustrating the 

relationship between them. 
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The conventional application of jerk and snap is in motion control since humans have limited 

tolerance to change of force. Motion limitation is therefore needed to avoid users losing control 

during transportation; 2.0 𝑚/𝑠−3 in a straight-line transportation is an acceptable limit for most 

people. The most common examples are in elevator and vehicle design. Now acceleration and jerk 

have been widely used to analyse the driving behaviours in intelligent driving evaluation: 

predicting potential risks and guarantee the passengers’ comfort in the autonomous driving system  

[40], [41]. Bagdadi and Varhelyi found that the breaking jerk of vehicles measured by 

accelerometer is highly related to accidents, their evaluation system based on jerk is 1.6 times 

better than the longitudinal acceleration methods [42]. 

In road and track design, unbounded radial jerk needs to be avoided on curved parts: the 

theoretical optimum strategy is to linearly increase the radial acceleration. Another application 

using acceleration and jerk is the evaluation of operational path of numerical control machines 

[43]. In 2006, Caligiuri et al. used jerk to monitor how drug-induced side effect affect patients’ 

handwriting [44]. More recently, a detection algorithm for manoeuvring targets using radar has 

considered analysing jerk [46, 47].  

Most previous approaches derive jerk from the trajectories of moving objects. Datta et al. [47] 

computed acceleration and jerk vectors from the trajectory of objects’ head for person-on-person 

violence detection. Zaki et al. [48] determine vehicles’ jerk from the trajectory extracted by 

Kanade-Lucas-Tomasi Feature Tracker algorithm [49]. Following our Differential-Acceleration, 

jerk field 𝐉̂(𝑡) is computed by differencing the neighbouring acceleration fields:  

𝐉̂(𝑡) = 𝐀(𝑡, 𝑡 + ∆𝑡) − 𝐀(𝑡 − ∆𝑡, 𝑡) (5) 

where 𝐀(𝑡, 𝑡 + ∆𝑡) and 𝐀(𝑡 − ∆𝑡, 𝑡) denote the acceleration flow fields from frame 𝑡 to 𝑡 + ∆𝑡 

and 𝑡 − ∆𝑡 to 𝑡 respectively by Eq. (2). 
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Differential-Acceleration refers to the middle frame to avoid the inconsistent start positions 

since it requires three points to obtain acceleration flow. Estimating snap requires five points 

which makes referring the middle frame as the start possible (in a similar manner with acceleration 

flow). The snap field 𝐒̂(𝑡) therefore is computed in a format similar to Differential-Acceleration: 

𝐒̂(𝑡) = 𝐉(𝑡, 𝑡 + ∆𝑡) + 𝐉(𝑡, 𝑡 − ∆𝑡) (6) 

where 𝐉(𝑡, 𝑡 + ∆𝑡) and 𝐉(𝑡, 𝑡 − ∆𝑡) are the estimated jerk fields between frame 𝑡 to 𝑡 + ∆𝑡 and 𝑡 

to 𝑡 − ∆𝑡. 

 

3.3.   Decomposing the Resultant Flow into Radial and Tangential Components 

Presenting acceleration, jerk and snap using their radial and tangential components can help 

understanding. Acceleration flow was decomposed in our previous work [5]. Further, jerk and 

snap flow are now resolved as well: the definition of tangential and radial components of jerk are 

the linear changes of tangential and radial components of acceleration, they are computed in a 

manner similar to Equation (5) and (6):  

𝐉̂𝒕𝒂𝒏(𝑡) = 𝐀𝑡𝑎𝑛(𝑡, 𝑡 + ∆𝑡) − 𝐀𝑡𝑎𝑛(𝑡 − ∆𝑡, 𝑡)

𝐉̂𝒓𝒂𝒅(𝑡) = 𝐀𝑟𝑎𝑑(𝑡, 𝑡 + ∆𝑡) − 𝐀𝑟𝑎𝑑(𝑡 − ∆𝑡, 𝑡)
(7) 

where 𝐉̂𝒕𝒂𝒏 and 𝐉̂𝒓𝒂𝒅 represent the estimated tangential and radial jerk fields, 𝐀𝑡𝑎𝑛  and 𝐀𝑟𝑎𝑑 are 

the tangential and radial acceleration fields. Snap fields are decomposed in a manner similar to 

Equation (7). Now we have the algorithms to determine the change of acceleration and jerk, and 

their tangential and radial components. In the next section these shall applied to synthetic and real 

images to determine whether they can be used to reveal different motion features reliably. 
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4. Experiments  

4.1.   Demonstrating Acceleration and Higher-order of Motion Flow on Synthetic Image Sequence 

A set of synthetic images was created to simulate the motion of Newton’s cradle (a device 

consisting of a set of swinging spheres, it is used for demonstrating conservation of momentum 

and energy). The simple motion of Newton’s cradle is a good for demonstrating the difference 

between various flow fields due to the different order in which components change over time.  

 Acceleration Jerk Snap 

𝑡
=

−
1

 

 
 

  

𝑡
=

0
 

 
 

  

𝑡
=

1
 

 
 

  

        Fig. 4. Flow fields of synthetic cradle sequence. 

The results of 𝑛th order motion flow of 𝑡 = −1, 0, 1 with particular detail are presented in Fig. 

4. When 𝑡 = −1 , the sphere is swinging to the left until reaches the highest position 

(deaccelerating) and remains there for one frame (𝐯 = 0, 𝑡 = 0), then it swings back at 𝑡 = 1 

(accelerating). The acceleration flow shows similar character in all three frames where the sphere 

is accelerating to the lower right with a similar magnitude. On the other hand, jerk and snap flow 

give different perspectives. When 𝑡 = −1, jerk and snap flow point to the same direction with 

acceleration and the magnitudes of snap are much larger which reveals that the acceleration is 

increasing. Both jerk and snap have noticeable reduction when 𝑡 = 1. In the last row the cradle is 
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swinging back to the centre. The directions of jerk and snap are opposite to the acceleration proves 

that now the acceleration is decreasing. 

 

4.2.   Results on the Middlebury Benchmark  

 Table 1 shows a performance comparison with Dong’s acceleration algorithm [37], HSOA 

[57], FBOA [58] and ours (Differential-Acceleration). It reports the Average End-point Error 

(AEPE) between the estimated flow vector and the pseudo ground truth. The pseudo ground truth 

is obtained by MDP-Flow2 [50] since the ground truth on the evaluation website only contain 

optical flow field between two consecutive frames for preventing the upcoming new algorithms 

to overfit the test images. AEPE is chosen here to evaluate the performance as the ground truth 

motion in Middlebury image sequences is relatively large. Chen’s algorithm [35] is not included 

in the results due to the lack of implementations for the other algorithms. Table 2 reports the mean 

runtime (100 runs) of each algorithm on a single CPU for 640×480 images, our acceleration 

algorithm is twice faster than Dong’s [37]. It also includes the time cost of Jerk and Snap flow. 

Table 1 AEPE of estimation algorithms. 

Algorithm Dong [37]  HSOA [57] FBOA [58] Differential-Acceleration 

AEPE (pixels) 3.2 4.58 0.67 0.34 

 

Table 2 The runtime (mean of 100 runs) of each algorithm for 640×480 images. 

Method Runtime (seconds) 

Dong [37] 37.618 

Differential-Acceleration 16.001 

Jerk 16.003  

Snap 16.008 
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Some details of the results are shown in Fig. 5. In the first column Beanbags, the optical flow 

field contains all the types of motion so they appear chaotic lacking any sensitivity to different 

types of motion. In contrast the tangential and radial acceleration fields indicate the change of the 

direction and magnitude of each component. The tangential jerk field has more dense flow than 

radial jerk on the left arm which reveals that the main change of acceleration is magnitude rather 

than direction. In Basketball, the left man is passing the ball to another person. The ball has not 

started spinning so the acceleration is mainly tangential. Although the radial acceleration is sparse, 

the majority directions of the flow on the ball and its shadow on the wall point to the centre of the 

trajectory. The direction of radial jerk is opposite to the radial acceleration indicates that the 

spinning acceleration of the basketball is decreasing. The results suggest that higher-order motion 

flow can help distinguish objects undergoing different types of motions. Again, there is a lot of 

flow although sometimes it is hard to interpret due to the complexity of real motion. 
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Fig. 5. Discriminatory capability of different estimates of acceleration vs optical flow. 

Dumptruck gives another encouraging example in Fig. 6. The silver car and the red dump truck 

are both moving in constant velocity (approximately), and the other two cars are both accelerating 

after passed the intersection. In contrast optical flow in (a) cannot distinguish between the 

accelerating objects, it detects all the moving cars whereas acceleration flow is able to recognize 

the accelerating objects (the cars in front of the red truck). The results demonstrate that our 

algorithm can differentiate the accelerating objects from those which are simply moving. The 

results demonstrate the power and ability of our Higher-order Motion Flow decomposition 

algorithms. In the next section, they are applied to detect heel strikes for gait analysis.  

 

Fig. 6. The flow fields of Dumptruck. 

 

4.3.   Heel Strike Detection via Multi-order Flow 

During walking the human torso moves like several connected pendula and researchers have 

successfully simulated pathological gait by using a liner inverted pendulum model [52,53]. A 

pendulum has a regular acceleration pattern, which implies that gait can be described by the 

acceleration pattern of the video-based data. In our previous work [6], the key frame of heel strike 

can be determined by the quantity of acceleration flow within the ROI. The strike positions can be 

found from the centres of rotation caused by radial acceleration. In this work, we show normalized 

 

(a) Optical flow 

 

(b) Acceleration 
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radial jerk flow field of a walking cycle sampled every 7 frames by our new higher-order motion 

flow algorithms in Fig. 7. There is a considerable amount of flow on the leading foot periodically 

when the heel strikes on the floor although snap is relatively noisy. Logically, we wonder whether 

jerk and snap are able to detect and localize the heel strikes or improve the performance than 

acceleration. 

   

 (a) Jerk 

    

 (b) Snap 

Fig. 7.  Patterns of higher order acceleration exist within a gait cycle. 

 

Algorithm 1. Heel strike detection system via radial jerk flow. 

for frame in video: 

acc_1 = acc_algorithm(frame_1, frame_2, frame_3) 

acc_2 = acc_algorithm(frame_2, frame_3, frame_4) 

 

rad_acc_1, centre_map_1 = decomp_components(acc_1) 

rad_acc_2, centre_map_2 = decomp_components(acc_2) 
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rad_jerk = rad_acc_2 – rad_acc_1 

centre_map = k1*centre_map_1 + k2*centre_map_2 

 

ROI = extract_region(silhouette) 

for each_pixel in ROI: 

    if rad_jerk[each_pixel] > magnitude_thres: 

        rad_amount += 1 
    else: 

        pass 

end for 

 

while rad_amount is peak: 

    "KEY FRAME!" 

    strike_position = desity_accumulation(centre_map[ROI]) 

end while 

end for 

return key_frames_num, strike_positions 

 

The framework of our heel strike detection system is given in Algorithm 1. In the pseudo code, 

the radial jerk field is derived from radial acceleration field based on Equation (5), radial snap 

flow following the similar manner with Equation (6). The detection system are evaluated on the 

Large Gait Database (SOTON) [53]  and The OU-ISIR Gait Database (OU-ISIR) [54], [55]. 

SOTON was built in 2002 by the University of Southampton, Shutler et al. [53] collected walking 

sequences from over 100 subjects, including indoor (controlled lighting) and outdoor 

(uncontrolled lighting). Since the database focused on the key factors that affect gait recognition 

other than background segmentation, Chroma-keying was applied in indoor data recording, which 

is used in the experiments. OU-ISIR is another benchmark dataset for gait recognition, it upgraded 

the scale of subjects in a gait database significantly. Currently it is the largest gait database in the 

world: it contains 10,307 subjects (5,114 males and 5,193 females) in total. Their ages range from 

4 to 89 years [55], which is two times larger than their earlier version in 2012 [54]. More than 100 

heel strikes in each scenario and the test data incorporates multiple viewing angles and walking 

directions with gait sequences recorded indoors and outdoors. 



18 
 

 
               (a) Jerk and snap for key frame detection                        (b) Jerk and snap for heel positioning 

Fig. 8.F1 score of heel strike detection via jerk and snap. 

Fig. 8 reports the F1 score of detecting heel strike through jerk and snap. The criterion for a 

true positive key frame detection is if the detected frames are within ±2 frames from the manually 

labelled ground truth. For heel positioning a distance within ±10 pixels (along both axes) from the 

ground truth is considered as a true positive. Jerk shows competitive ability on key frame detection 

and slightly lower on positioning. This indicates that jerk can be adapted for gait analysis or other 

applications on real images. On the other hand, as a higher order of motion snap underperforms 

than jerk, also the relatively small ROI in OU-ISIR increases the detection difficulty for jerk. The 

PR curves in Fig. 9 suggest that jerk has a high area under the curve, which indicates it hits both 

a high recall and a high precision. It performs considerably better than snap on the balance between 

precision and recall rate. 
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          Fig. 9. Key frame detection PR curves of Jerk and Snap. 

 

5. Detecting Violent Behaviour 

When people fight, their bodies tend to have large acceleration (in many places and with large 

magnitudes) on their bodies because their arms are swinging and their feet are kicking. As such, 

acceleration appears more suited to the detection of rapid change, consistent with scenes of 

violence. Chen et al. [35] apply acceleration flow to detect abnormal behaviours, Dong et al. [37] 

feed optical flow and acceleration flow into a network, both in combination and individually, to 

detect the violence in scenes. They illustrate that the most reliable feature is individual acceleration 

flow. 

Velocity fields Acceleration fields Velocity fields Acceleration fields 
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Calm scenes Scenes of violence 

Fig. 10. The difference between velocity and acceleration within scenes of calm and violence. 

We show the acceleration fields with the optical flow on some raw videos from YouTube and 

Hockey Fight Dataset [56]. There is no fighting and the scenes are mundane in the left two columns 

in Fig. 10. We only present single images here, though these are derived from image sequences. 

In the prison surveillance video (the first row), there is little acceleration detected revealing only 

the swinging arm of a uniformed guard in the mundane episode. In comparison there is more 

optical flow, consistent with more leisurely movement as prisoners receive their visitors from the 

left. This is motion consistent with a tranquil scene; velocity is much smoother than acceleration 

of which there is none. In the ice hockey video, optical flow shows on the background rather than 

the skating athlete since the camera is tracking him and the acceleration field is clear. The third 
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row shows the early stage of an assault before violence, the fourth row is a subway scene before 

an assault and the last row concerns a robbery. In all these examples velocity exceeds the 

acceleration and in most cases the acceleration is little. 

The right two columns in Fig. 10 incorporate various scenes of violence which are the other 

parts of the image sequences shown in the first two columns. Optical flow fields are illustrated for 

contrast. In the episodes of violence there is considerable detected acceleration and much less 

focus on irrelevant subjects. The first row shows an assault in a prison scene and there is 

considerably more acceleration than velocity and the acceleration appear to be consistent with 

kicking and punching. In the second row, acceleration only focus on the people who involve 

fighting (the two athletes rather than the referee), whereas the velocity flow cannot distinguish 

them. The assault in the third row shows the velocity and the acceleration appear to be of similar 

magnitude, but the acceleration is concentrated around the limbs. In the last episode the criminal 

flees after the crime, their body also tends to make more acceleration. Thus, by detecting 

acceleration we might be able to determine an approach suited to the detection of violent crime in 

the future. 

 

6. Conclusions and Future Work 

An image sequence compounds many different orders of motion. Considering the diversity of 

motion, this paper systematically classifies motion fields into different levels for computer vision. 

As the frame sampling rate in video sequence is fixed the motion fields between neighbouring 

frames is usually considered as velocity. Acceleration flow was derived from the basis of Horn-

Schunk in our earlier work [5] and now it has been extended into the detection of jerk and snap 

(and in their vector format). The new algorithms are investigated both on synthetic and real images, 



22 
 

providing a new angle to understand and disambiguate dynamic relationships in image sequences. 

The synthetic cradle demonstrates the difference between higher-order motion characters at its 

critical status. Furthermore, the experiments of test image sequences from Middlebury dataset and 

heel strike detection show that the new extensions have the power to further discriminate higher 

orders of acceleration successfully. The nature of higher order motion detection suggests that the 

techniques might be more susceptible to noise, as this can be exacerbated when detecting higher 

order motion. Clearly the new approaches are ripe for further evaluation and application, perhaps 

in video inpainting, activity recognition or video classification, or in more general image sequence 

analysis.  
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