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This work seeks to address the problem of quantum gravity from the point of view of

the renormalisation group. After the introduction of the needed concepts, it is seen

that a problem of quantum gravity that stems from the “conformal factor instability”,

if the consequences are fully explored, can open the door to a rich phenomenology. In

particular, it is seen that toric universes can be constrained to be highly symmetric

when sufficiently small, which is potentially applicable to the initial conditions for

inflation. The idea of regularising gravity via a supermanifold is covered, following

similar treatments of gauge theory in order to preserve the symmetry (diffeomorphism

invariance) at all points along the renormalization group flow. Furthermore, the

machinery provided by the conformal factor instability provides us with a genuinely

perturbative theory of quantum gravity, which can be calculated to have the same

effective action as one might expect, but the understanding of the QFT is very

different, with the Gaussian fixed point being defined “off space-time”.
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Chapter 1

Introduction, Background and

Motivation

The two parts of any undertaking in physics are the problem and the method. The

problem that this thesis seeks to address is an old (and popular) one: can we find a

consistent theory of quantum gravity? It is worth motivating this. One way to

motivate looking for such a theory is a purely aesthetic one: we would like to unify the

forces. The Standard Model has been incredibly successful in describing

electromagnetism and the strong and weak nuclear forces [8], and it would indeed be

nice if we could unify all of the forces at some high energy scale, which studies of

electroweak theory [9–11] and other more modern developments [12–14] seem to

indicate.

However, this raises a question: if the gravitational forces between elementary particles

are so weak, why do we care about quantum gravity? After all, we only really observe

gravity on large scales, and so we should not care about the quantum effects. Indeed,

for the most part, classical General Relativity (GR) will serve extremely well.

However, there are interesting cases where the gravitational fields are strong and the

distances involved are short. These are black holes, and the proposed singularity at the

beginning of the Universe. Perhaps the most famous recent example of evidence for the

existence of black holes is the observations of the Event Horizon Telescope [15], but

other evidence exists. In particular, the LIGO observations of gravitational waves are

thought to be sourced by a black hole merger [16]. An understanding of quantum

gravity may give in indication as to what the breakdown of the classical equations (the

“singularities”) is telling us. Now, perhaps one might say that these are only

conjectured to be singular regions of spacetime, however theorems of Hawking and

Penrose [17, 18] show that, rather generically, GR suffers from singularities, so at least

some modification seems to be in order.
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Another reason to attempt to quantize gravity comes from the simple observation that

matter is quantum mechanical, and gravity couples to matter. Indeed, we have the

Einstein equation

Gµν = 8πTµν (1.1)

where the LHS describes the curvature (i.e., gravity), and the RHS describes the

energy and momentum of matter. Standard practice at this point is to average the

RHS to get a classical quantity. While this works for many purposes such as

gravitational waves, it is philosophically unsatisfactory since this introduces

non-locality into the theory and thus it is not clear whether this is entirely consistent.

This “semi-classical” theory is most often regarded as a good approximation in a

“weak field” approximation. There are several arguments and thought experiments

which suggest that the semi-classical theory cannot be consistent [19, 20], but these are

not without some controversy [21, 22].

We expect any theory of quantum gravity to be similar to GR at large distances - the

“infra-red” (IR) regime - and something very different at small distances. The idea

that physics changes at differing scales is fundamental to the renormalization group,

which will be our aforementioned method.

In this chapter, some basics of the renormalization group will be reviewed, and some

background material for the remainder of this thesis will be introduced. In Section 1.1,

the ideas and origins of RG are recapitulated, starting with the work of Kadanoff [23]

and showing how these are generalised from the field of statistical mechanics to that of

QFT.

Section 1.2 describes how the RG is used to construct a continuum QFT. This is done

by linearising the flow around the Gaussian fixed point. The renormalized trajectory is

defined to give a path towards an interacting continuum limit.

Following this, Section 1.3 gives an explicit example of calculating eigenoperators used

in constructing a continuum limit. Although the example given here is a

well-understood, some of the aspects highlighted in this treatment serve as an

introduction to some details in Chapter 2.

Section 1.4 discusses the relationship between quantum gravity and the RG, and

outlines some ongoing work which attempts to construct a fully renormalizable and

phenomenologically consistent theory of gravity and finally Section 1.5 outlines the

goals for the remainder of this thesis.
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1.1 The renormalization group

The idea behind the renormalization group is rather simple: the underlying physics of

an object does not change depending on what scale we observe them. As an example, a

cup of tea is made of atoms. The laws governing atoms are the same no matter

whether we deal with a single atom or the many moles required to make a cup of tea.

However, using the atomic forces to describe a cup of tea would be confusing, difficult

and practically impossible. Fortunately, we can use fluid dynamics to describe the cup

of tea to great effect. However, the underlying physics has not changed. We know that

fluid dymanics is an “effective” description; it ignores many of the short distance - or

ultra-violet (UV) - effects in order to capture the macroscopic physics.

The idea of effective theories is prevalent in modern physics. One of the first was the

Fermi theory of interacting fermions [24]. More examples include the Standard Model

and many theorize that GR is also an effective theory due to its apparent

non-renormalizability [25]. The goal of quantum gravity is to find a theory that

includes quantum effects and reduces to GR as an effective theory.

Statistical mechanics has the idea of an “effective theory” at its heart - ignoring (or

simplifying) the underlying microscopic physics in order to concentrate on the

important macroscopic physics. The quantities we care about: temperature, entropy,

heat capacity etc., all come from dealing with the macroscopic properties of systems.

Studies of many different systems show exactly the same “critical exponents” (numbers

which govern the behaviour of various quantities near phase transitions) in different

situations. This again points to the notion that the exact details of the microscopic

physics are irrelevant to the macroscopic behaviour. In this context, we call it

universality. And it is in statistical mechanics that the renormalization group was

developed. It is worth reviewing this since many of the concepts are easier to have

intuition for here than in the field theory counterpart.

1.1.1 Kadanoff blocking

The basis of modern renormalization group methods is based on Kadanoff blocking in

statistical mechanics, where we move from one scale to another [23]. For concreteness,

we consider the Ising model. Consider a 2-dimensional lattice (for ease of illustration)

of spins {si} which take values si = ±1. Suppose each spin can only interact with

adjacent spins (‘nearest-neighbour” interactions). Kadanoff blocking consists of

“coarse graining” these spins. That is, we consider a reduced set of spins with some

way of getting from old spins to new spins. One example is shown in Figure 1.1. This

is a “real space renormalization group” transformation.
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Figure 1.1: Visualisation of Kadanoff blocking. The original lattice of spins is broken
into 3× 3 blocks, each of which is replaced by a single “effective” spin which is simply
whichever of up or down has the most representation in that block (red step). The
length scale is then changed to allow comparison to the orginal problem (blue step). In
this last step, the figure shows additional lattice sites from outside the original image.

Figure taken from [1].

The two systems should have different parameters for the nearest-neighbour coupling.

Furthermore, this coarse-graining also gives rise to additional interactions. More

importantly, however, if we consider quantities that are calculated on distances much

greater than the lattice spacing, then both ways of describing the system will give the

same answer. Note that this points towards to universality concept once again: we

have lost information about the short distance (UV) physics, but the long distance

(IR) physics has not changed at all.

It is worth noting that although we don’t explicitly state this, we expect the blocks

used in this coarse-graining procedure are in some way sensible. There are many ways

to draw them, however we expect them to be connected at the very least. This idea of

locality (or quasi-locality) will be used in the field theory case.

1.1.2 Flow equations

When looking at field theory, it will prove to be much more expedient to consider

momentum space renormalization, as opposed to the real space renormalization above.

The concept is much the same if we translate “short distance” to “high energy” and

“long distance” to “low energy”. We will simply refer to these as the UV and IR

regimes. From this point of view, the coarse-graining procedures above correspond to

reductions in a momentum “cutoff scale”. The crucial idea going forward is smoothly

changing cutoff scales, rather than the blocking of Kadanoff. This is mostly due to

Wilson [26]. More comprehensive reviews of what follows can be found, e.g. [1, 2].
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First, we note that we should work in Euclidean space. There are a few reasons for

this. One is due to the notion of locality of the blocking transformations - without this

Wick rotation we could have “sites” blocked together with arbitrary spatial separation

provided they were lightlike separated. Essentially it is easier to account for lightlike

behaviour in general with this modification.

We will use the compact DeWitt notation, which treats functions as vectors and their

arguments as indices. Thus we have, for example,

J · φ = Jxφx =

∫
ddxJ(x)φ(x) =

∫
x
J(x)φ(x) (1.2)

but also, we have

J · φ =

∫
ddp

(2π)d
J(p)φ(−p) =

∫
p
J(p)φ(−p) (1.3)

and so we do not have to specify whether we are working in real space or momentum

space (note the factors of 2π absorbed into the definition in the final equality).

Similarly, when dealing with propagators we treat these as matrices so that

φ ·∆−1 · φ =

∫
x,y
φ(x)∆−1(x, y)φ(y) =

∫
p
φ(p)∆−1(p2)φ(−p). (1.4)

For simplicity, we will consider a single scalar field. The equivalent to a lattice spacing

is a momentum cutoff, Λ0. With this cutoff, the path integral is

Z[J ] =

∫ Λ0

Dφ e−S
tot
Λ0

[φ]+J ·φ
. (1.5)

We describe StotΛ0
as the “bare action”. This bare action is usually chosen to be very

simple. It turns out to be convenient to write

StotΛ0
[φ] =

1

2
φ · p2 · φ+ SΛ0 [φ] (1.6)

so that SΛ0 contains only the interactions (including mass terms).

Changing the cutoff, we expect the action to change (like the couplings change in the

Kadanoff picture). But the physics is not expected to change. The Kadanoff blocking

involves increasing distances (before the rescaling) and this corresponds to a lowering

of the cutoff to a new scale, say Λ. Figure 1.2 schematically shows what we are doing.

To this end, we introduce a UV cutoff function CΛ(p) and its associated IR cutoff

function CΛ(p). These are related by

CΛ(p) + CΛ(p) = 1. (1.7)
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Figure 1.2: We see that we are integrating out the high momentum modes. Diagram
adapted from [2].

For CΛ(p) to be a UV cutoff, we insist that

CΛ(0) = 1, lim
p2

Λ2→∞
CΛ(p) = 0. (1.8)

For our analogy with Kadanoff blocking to hold, we require these functions to be

smooth to preserve (quasi-)locality. We use these to modify the propagator by writing

1

p2
= ∆Λ(p) + ∆Λ(p) (1.9)

where

∆Λ(p) =
CΛ(p)

p2
, ∆Λ(p) =

CΛ(p)

p2
. (1.10)

Finally, we write φ = φ< + φ> where φ< is defined to have propagator ∆Λ and φ> is

defined to have propagator ∆Λ. Recall our generating functional is now (dropping the

limit of integration)

Z[J ] =

∫
Dφ exp

(
−1

2
φ · p2 · φ− SΛ0 [φ] + J · φ

)
(1.11)
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which, after discarding a field independent constant of proportionality (more details in

[2]) we can write as

Z[J ] =

∫
Dφ<Dφ> exp

(
−1

2
φ< · (∆Λ)−1 · φ< −

1

2
φ> · (∆Λ)−1 · φ>

− SΛ0 [φ< + φ>] + J · (φ< + φ>)

)
. (1.12)

Restricting the support of J to “low energy” modes1 (those with |p|< Λ) it can be

shown that we can write

Z[J ] =

∫
Dφ< exp

(
−1

2
φ< · (∆Λ)−1 · φ< − SΛ[φ<] + J · φ<

)
(1.13)

for some functional SΛ[φ<]. Looking at the form of the exponent here, we can see that

SΛ is simply interacting part of the effective action at scale Λ. Note that both forms of

Z[J ] represent the same physics, but are just a different description. Thus, we must

have that
∂

∂Λ
Z[J ] = 0 (1.14)

and from this one can deduce Polchinski’s equation for the flow of the effective

interactions [27]:

∂

∂Λ
SΛ[φ] =

1

2

δSΛ

δφ
· ∂∆Λ

∂Λ
· δSΛ

δφ
− 1

2
tr

(
∂∆Λ

∂Λ
· δ

2SΛ

δφδφ

)
. (1.15)

We can interpret the first term as being the tree-level (“classical”) part, and the

second term as being the one-loop (“quantum”) part. To get more of an intuition for

this, we can write this in terms of vertices to get the following representation shown in

Figure 1.3.

Figure 1.3: Visualisation of the flow equation for an n-point vertex. The black dot
represents the differentiated cutoff propagator, and {I1, I2} is some partition of n.

Diagram taken from [3].

1This is not really necessary, and is only done here to simplify the analysis. The loose justification
one can make for this step is the fact that when we lower the cutoff, we’re only interested in low energy
observables, as we wouldn’t lower the cutoff otherwise.
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For many purposes it is easier to deal with the average effective action ΓΛ, which is the

Legendre transform of the Wilsonian effective action:

SΛ[φ] = ΓΛ[φc] +
1

2
(φc − φ<) · (∆Λ)−1 · (φc − φ<) (1.16)

where

φc =
δ

δJ
lnZ[J ]

∣∣∣∣
J=0

(1.17)

is the classical field. Which of these actions is more useful will depend on the precise

situation (both are used in this thesis). The effective action also has a flow equation

[3, 28]:

∂

∂Λ
ΓΛ[φc] = −1

2
tr

(
1

∆Λ

∂∆Λ

∂Λ
·
(

1 + ∆Λ ·
δ2ΓΛ

δφcδφc

)−1
)
. (1.18)

It is worth noting the following: both of these flow equations are non-perturbative.

Indeed, they hold for very general actions. However, they are very complicated and

usually some approximation needs to be made to make these equations in any way

tractable. Where this approach has the advantage over standard perturbative

renormalization, however, is the fact that we have the choice of what approximation we

make - we are not restricted to insisting that the coupling is small (although this is

often done). Examples include truncations, where only certain operators that can

appear in the action are considered (often done in studies of asymptotic safety), or the

Local Potential Approximation, which ignores any derivative operators other than the

usual kinetic terms.

One final comment on this generalisation of Kadanoff blocking: so far, the analogy is

incomplete since we have not performed the final step corresponding to a re-sizing of

the lattice. In practice, the way we do this is to change all variables (couplings) for

dimensionless versions and correcting the mass dimension with powers of Λ. This then

rescales all couplings using the cutoff scale, and so the correspondence is complete.

This will be assumed to be done from now on.

1.2 Flows and the critical surface

As far as we’re aware, there is no overall scale at which physics itself fails. Therefore,

we’d be inclined to take Λ0 →∞ to get a “continuum limit”. However, it is easier to

do this directly, using a “fixed point” of the RG flow2

∂ΛS∗ = 0. (1.19)

2In this section, we will use the Wilsonian action SΛ, but the same statements hold for the Legendre
effective action ΓΛ.
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Note that since we have replaced all dimensionful couplings with powers of Λ and

dimensionless couplings, this implies that there is no dependence on any dimensional

couplings. That is, we have a fixed point when our action describes a massless and free

field. This is known as the “Gaussian fixed point”, and always exists for any action.

However, physics at the Gaussian fixed point is extremely boring. The interesting case

is what happens away from the Gaussian fixed point. The first thing to note is that

renormalizability implies [2]

SΛ[φ] = S[φ](gi(Λ)) (1.20)

that is, that under the RG flow, the form of the action does not change, only the

couplings. This “self-similar” evolution is what allows us to get a non-trivial continuum

limit in terms of “renormalized variables”. The process is illustrated in Figure 1.4.

Figure 1.4: The critical manifold and renormalized trajectory. Diagram taken from
[2].

First we note that we can write

SΛ[φ] = S∗[φ] +
∑
i

ĝi(µ/Λ)λiOi[φ] (1.21)

to parametrize solutions in the vicinity of the Gaussian fixed point. Here, the ĝi are

dimensionless couplings, the λi are the RG eigenvalues of the operators Oi and µ is an

arbitrary mass scale. Note that in general we have an infinite number of these.

However, if we move away from the fixed point along those operators with λi < 0, the

RG flow will send our action straight back to the fixed point. These “irrelevant”
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perturbations span the (infinite dimensional) critical manifold, on which any bare

action will flow to the Gaussian fixed point. If we move along one of the other,

“relevant” directions, the flow will move away from the critical manifold, typically not

giving a well-defined limit.

However, if we tune our bare action to be slightly off the critical manifold, then the

RG flow will head in the direction of the fixed point, before shooting away near the

“renormalized trajectory” (RT), which is achieved in the limit of tuning the bare

action back towards the critical surface. Unfortunately, in this limit the relevant

couplings diverge under RG flow. To remedy this, while tuning our bare action back to

the critical manifold, we also modify the couplings as Λ→∞ to be (roughly)

gi = ĝi(µ/Λ)λi (1.22)

such that these renormalized couplings remain finite on the RT, and so the far end of

the RT corresponds to a non-trivial (i.e., interacting) continuum limit.

Since these couplings parametrize a solution to a first-order differential equation, they

each require one boundary value to specify them. For these reason, we generally only

consider theories with a finite number of relevant operators for the sake of predictivity.

1.3 Eigenoperators for the scalar field

It instructive to see how using the RG can give us the operators to construct a scalar

field theory. In this section, we follow the procedure in, e.g., [29]. This construction

will be modified in Chapter 2. Starting from the Polchinski equation (1.15), we

linearise around the Gaussian fixed point to get

∂ΛSΛ = −1

2
tr

(
∂Λ∆Λ · δ

2SΛ

δφδφ

)
. (1.23)

Although we are doing this near the Gaussian fixed point SΛ = 0, this is sufficient to

get the form of the eigenoperators at all scales due to the self-similarity of the RG

transformation. We will consider non-derivative interactions (local potential

approximation) so we write

SΛ[φ] = ε

∫
d4xV (φ(x),Λ), (1.24)

where ε is a small parameter. This gives us

∂ΛV = −1

2
∂2
φφV ∂Λ

∫
d4p

(2π)4

CΛ(p)

p2
. (1.25)
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To make the final step of the RG transformation, we change to dimensionless variables

using powers of Λ:

x̃ = xΛ, φ̃ =
φ

Λ
, Ṽ =

V

Λ4
(1.26)

and, in addition we define

t = ln
(µ

Λ

)
, (1.27)

the “RG time” (increasing towards the IR) where µ is some arbitrary energy scale.

Expressed in these dimensionless variables, the only dependence on Λ that Ṽ can have

is due to the scaling of the couplings:

Ṽ (φ̃, t) =
(µ

Λ

)λ
Ṽ (φ̃) (1.28)

(note that we can treat each coupling separately since we are in the linear regime). We

also take the time to define the one-loop tadpole integral3

ΩΛ = |〈φ(x)φ(x)〉|=
∫

d4p

(2π)4

CΛ(p)

p2
(1.29)

and the dimensionless version

1

2a2
=

1

2Λ
∂ΛΩΛ =

∫
d4p̃

(2π)4

C(p̃)

p̃2
(1.30)

where p = p̃Λ and CΛ(p) = C(p̃). Note that although a is a dimensionless constant, it

is clearly not universal due to its dependence on the cutoff. Making all of these

substitutions into (1.25) leads to the eigenoperator equation:

− λṼ − φ̃Ṽ ′ + 4Ṽ = − Ṽ
′′

2a2
. (1.31)

This equation is of Sturm-Liouville form and thus we know that its solutions form a

discrete set. The solutions in this case are (almost) the Hermite polynomials:

On(φ̃) =
Hn(aφ̃)

(2a)n
= φ̃n − n(n− 1)

4a2
φ̃n−2 + . . . (1.32)

where λ = 4− n and n is a non-negative integer. Since equation (1.31) is of

Sturm-Liouville form, we know that the solutions are orthogonal with respect to an

appropriate weight function:∫ ∞
−∞

dφ̃ e−a
2φ̃2On(φ̃)Om(φ̃) =

1

a

1

(2a2)n
n!
√
πδnm (1.33)

and we know that this set of functions is complete in the Hilbert space of solutions to

equation (1.31). This space, which we call L+, is the set of functions which are

square-integrable under the Sturm-Liouville measure e−a
2φ̃2

. In particular, this means

3The modulus sign here is extraneous, but is included for consistency with Chapter 2.
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we can define couplings to be

g̃n =
(2a2)na√

πn!

∫ ∞
−∞

dφ̃ e−a
2φ̃2
Ṽ (φ̃)On(φ̃) (1.34)

and then the partial sums of the potential and the linear combination of the operator

defined by these couplings converges to the potential in the sense of this measure, that

is ∫ ∞
−∞

dφ̃ e−a
2φ̃2

(
Ṽ (φ̃)−

N∑
n=0

g̃nOn

)
→ 0 as N →∞ (1.35)

and thus we can parametrize perturbations around the fixed point by the countable

infinity of couplings g̃n.

For this specific case, much of this is unnecessary. Note that for a well-defined

continuum limit, we only care about relevant operators. That is, those with λ > 0.4

Thus, O0 (vacuum energy - meaningless in the absence of gravity) and O2 (adding a

mass term) are the only operators that survive this process. Thus, for a single scalar

field, the only well-defined continuum field theories are those that are free and

(possibly) massive. While this is inconvenient for this case, the machinery of the above

can be applied for any fields, and a modification of the above is presented in Chapter 2.

1.4 Gravity and the RG

It is often stated in the literature that gravity is not renormalizable [25] (at least

perturbatively). It is instructive to see why this view is taken. The most simple

explanation given is that the only coupling, κ =
√

32πG, in the theory is irrelevant

with [κ] = −1, and thus there can be no interacting fixed point.

There have been many attempts to reconcile gravity and the RG, and one of the most

notable is the idea of asymptotic safety, in which the view is taken that there is a

non-Gaussian UV fixed point. One review is [30], but there are many others. This has

been supported with evidence from polynomial truncations in the Ricci scalar R, up to

R70 [31]. Another example that has come up in recent years is causal dynamical

triangulations (CDT) [32] which seeks to build an inherently quantum picture of

spacetime itself, with a renormalization scale built in (the size of the triangulations

used).

There are many attempts to solve this problem currently, and as yet we have very little

other than aesthetic and mathematical principles to guide us. In some sense, we will

only truly be doing physics with quantum gravity once predictions are made that can

realistically be falsified. In this thesis, the view is taken that the Einstein-Hilbert

4O4 is marginal to this order, as λ = 0. One must go to higher orders to determine the behaviour of
g̃4, but suffice to say that it is marginally irrelevant, so can be ignored in the continuum limit.
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action is, in fact perturbatively renormalizable with an appropriate shift in how one

defines the process of quantization.

1.5 Outlook and scope

The following chapters each describe aspects of quantum gravity and the

renormalization group. Chapter 2, based on the work in [5] describes the conformal

factor instability and a resolution which, on top of solving this problem, may yet open

the door to quantum gravity. In addition, it explores the topological effects of using

RG techniques on a non-trivial manifold, which may yet find application in lattice field

theory.

Chapter 3, describes the work of [6] in constructing a supermanifold in order to

introduce Pauli-Villars regulator fields, along the lines of what has already been done

in gauge theory [33]. The result is mathematically interesting yet somewhat

incomplete as the final step of introducing a symmetry breaking superscalar field has

not yet been done, having been left to future publications.

Chapter 4 draws from the work of [4, 7, 34, 35] and looks at how the RG equation and

a generalisation of the BRST quantization procedure, the Batalin-Vilkoviski (BV)

formalism, are compatible. This produces a way to construct the action of quantum

gravity order by order, with the only input being the fields and their symmetries at the

free level. In Chapter 5, we also look at the effect of adding a scalar field, and show

that the additional terms that this generates are precisely what one would expect when

coupling a scalar to gravity if one were to do so in a “naive” way.

Finally, we look at what avenues are left to explore in this formulation of quantum

gravity, and look at ways one might include Standard Model particles into this

formalism.
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Chapter 2

The Conformal Mode and The

Torus

2.1 Introduction

Much of this chapter is adapted from [5], with some additional material from [29].

In [29], it was shown that the conformal factor field ϕ has profoundly different RG

properties to a standard scalar field in QFT, and that these properties may be what

are required to construct a perturbatively renormalizable theory of quantum gravity.

These properties were shown to lead to a novel effect which links the size of a universe

to its inhomogeneity, at least for T4. Then, in [5], this was taken further to include

T3×R (with the idea of identifying R with Euclidean time) and twisted tori. This work

is described in what follows, including some analytic results regarding global extrema.

2.1.1 The problem

The path integral for the Einstein-Hilbert action (in Euclidean space) has a number of

problems. Chief of which is the fact that the Euclidean action is unbounded from

below (in fact it is unbounded from above also, but this doesn’t cause any problems).

Note that

SEH =

∫
d4xLEH , LEH = −

2
√
gR

κ2
(2.1)

and so the Euclidean path integral

Z =

∫
D[gµν ]e−SEH (2.2)

diverges for metric configurations with large positive Ricci curvature.
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To see how this is related to the conformal factor, we write

gµν =
(

1 +
κ

2
ϕ
)
δµν + κhµν (2.3)

where hµν is traceless (so we identify this as the graviton), ϕ is the conformal factor

and κ =
√

32πG, where G is Newton’s constant. Upon substituting this into SEH , and

fixing to a Feynman - de Donder gauge we see that the Lagrangian is of the form

LEH = −1

2
(∂µϕ)2 +

1

2
(∂ρhµν)2 + . . . (2.4)

and therefore we see that the divergence of the path integral comes about for

spacetime configurations with a conformal factor that varies sufficiently quickly. This

is known as the “conformal factor instability” and there have been several attempts to

address this. One, by Hawking et. al. [36] suggests analytically continuing the

conformal factor ϕ 7→ iϕ to change this minus sign to a plus sign, but we will take the

view that this sign is to be kept and taken seriously.

It is worth taking time to justify not using the treatment in [36] or other alternatives.

Indeed, the authors showed that the procedure of continuing the conformal factor to

the imaginary axis does not in fact affect perturbative results. However, it is not clear

whether this procedure makes sense non-perturbatively [37]. One approach considered

within the asymptotic safety scenario involves a truncation to a finite set of operators,

leading to a “−R+R2” action [38]. The opposing sign of the R2 term serves to

stabilise the conformal sector, but also results in an unsuppressed non-perturbative

Planckian scale modulated phase which breaks Lorentz symmetry, which would clearly

pose phenomenological problems if physical [39–41].

2.1.2 A way out: Wilsonian RG

Now, it seems that this theory is doomed from the start, given that the Euclidean path

integral is (worse than usually) ill-defined. However, if one treats Z as a formal object,

then we can derive flow equations for this theory in exactly the same way as we would

otherwise. Furthermore, in both this and the usual case we can reverse the derivation

to get the path integral from the flow equation. Thus we take the view that the RG

equation is the way that we define the theory, as opposed to the path integral, which

we merely view as a formal object.

For the remainder of this chapter, the traceless part of the metric will be discarded. At

this point we are not really doing gravity, but rather simply QFT with a scalar that

has a negative kinetic term. The treatment here should be compared with that of

Section 1.3. What follows is also covered in [29, 42] Looking at the Wilsonian effective
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action, we can split the kinetic terms and the interactions as

Stot
Λ [ϕ] = SΛ[ϕ]− 1

2
ϕ · (∆Λ)−1 · ϕ (2.5)

where the propagator

∆Λ(p) =
CΛ(p)

p2
(2.6)

is regulated by the UV cutoff function CΛ(p) = C(p2/Λ2), which satisfies

lim
u→0

C(u) = 1, lim
u→∞

C(u) = 0 (2.7)

where convergence to the UV limit is sufficiently fast to regulate all momentum

integrals. Following the steps of Section 1.1.2 leads to a modification of the Polchinski

equation
∂

∂Λ
SΛ[ϕ] = −1

2

δSΛ

δϕ
· ∂∆Λ

∂Λ
· δSΛ

δϕ
+

1

2
tr

(
∂∆Λ

∂Λ
· δ

2SΛ

δϕδϕ

)
. (2.8)

Comparing with equation (1.15), we see that the only difference is an overall minus

sign on the right hand side. This looks innocent at first glance, but as we will see this

overall sign has important properties for the RG behaviour of the theory.

Since we are only interested in the form of the eigenoperators, we can linearise about

the Gaussian fixed point (SΛ = 0) to yield

∂ΛSΛ =
1

2
tr

(
∂Λ∆Λ · δ

2SΛ

δϕδϕ

)
(2.9)

and as before, we use the LPA to get the flow equation for the potential

∂tV = −ΩΛ∂
2
ϕϕV (2.10)

where we have defined

ΩΛ = |〈ϕ(x)ϕ(x)〉| (2.11)

as before1. Note that equation (1.25) can be written like this only with a change in

sign on the RHS. This form shows how the change in sign has a drastic effect on the

behaviour of the RG flow. In the case of the positive sign, we have a heat diffusion

equation2 with time increasing as we flow to the IR. This means that, given a solution

at Λ0, we can always flow to a solution at Λ < Λ0 as we wish. However, with the

change in sign, then as we flow towards the IR then generically, at some point, the flow

will fail. That is, we are only guaranteed that a flow to the UV exists [43]. We will see

later that this can have profound consequences for the theory.

1Note that now the modulus sign is required for consistency with Section 1.3.
2After a change of variables.
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To find the eigenoperators, we follow the steps of Section 1.3 to get the eigenoperator

equation:

− λṼ − ϕ̃Ṽ ′ + 4Ṽ =
V ′′

2a2
(2.12)

which again, is of Sturm-Liouville form, but now with measure e+a2ϕ̃2
. As seen in [29],

there are multiple sets of solutions, including a continuous family. This causes issues

with notions of completeness that we’re used to in QFT. However, we can restrict the

set of solutions (for V ) to be spanned by

δ
(n)
Λ (ϕ) =

∂n

∂ϕn
δ
(0)
Λ (ϕ), where δ

(0)
Λ (ϕ) =

1√
2πΩΛ

exp

(
− ϕ2

2ΩΛ

)
(2.13)

by insisting that the potential is square-integrable under the Sturm-Liouville measure∫ ∞
−∞

dϕV 2(ϕ,Λ) exp

(
ϕ2

2ΩΛ

)
<∞ (2.14)

at the bare level (where Λ = Λ0). Note that since the potential “smooths out” as RG

time goes backwards (c.f. time-reversed diffusion equation), then imposing this at the

bare level also ensures that it holds for Λ > Λ0.

These eigenoperators satisfy [δ
(n)
Λ (ϕ)] = −1− n and span a Hilbert space of potentials

satisfying equation (2.14), which we call L−. Therefore, we can write the general

solution to the flow equation as

V (ϕ,Λ) =

∞∑
n=0

gnδ
(n)
Λ (ϕ) (2.15)

where [gn] = 5 + n. We thus have an infinite tower of relevant operators. Normally this

would be disastrous from the point of view of predictivity, but this is resolved in

Section 2.1.3. If the couplings are chosen such that the flow exists to the IR, then we

can extract the physical potential

Vp(ϕ) = lim
Λ→0

V (ϕ,Λ). (2.16)

Due to the backward-parabolic nature of the RG equation, we can extract the

potential at any Λ if we have the physical potential. Indeed, we have

V (ϕ,Λ) =

∫ ∞
−∞

dπ

2π
Vp(π)e−ΩΛ

π2

2
+iπϕ (2.17)

where Vp is the Fourier transform of the physical potential.

Now, solutions of (2.14) are characterized [29] by an amplitude suppression scale at

large field

Vp(ϕ) ∼ e
−ϕ

2

Λ2
p (2.18)
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which is (up to a non-universal constant) the point at which the IR evolved potential

leaves L−.

2.1.3 Connection to quantum gravity

As stated earlier, we are not really doing gravity at this stage, just QFT with a scalar

that has a negative kinetic term. However, as seen in [34], the eigenoperators for the

conformal factor have a key role to play in constructing a theory of quantum gravity.

Indeed, the general interaction term (ignoring ghosts etc.) can be written as

fσΛ(ϕ)σ(∂, h, ∂ϕ) + . . . (2.19)

with σ some Lorentz invariant monomial in the fields (the dots indicate tadpole

corrections) and

fσΛ(ϕ) =
∞∑

n=nσ

gσnδ
(n)
Λ (ϕ) (2.20)

is the “coefficient function”. Thus these conformal factor eigenoperators are indeed

worth studying for the construction of a theory of quantum gravity, as well as being

sufficiently of interest and novel to be worth studying on their own. Note that since

δ
(n)
Λ has arbitrarily negative mass dimension, we can use it to render any monomial σ

renormalizable.

2.1.4 Outlook for this chapter

Having established the eigenoperators for the scalar field with a negative kinetic term,

Section 2.2 shows how these are modified when we are on a manifold other than R4.

Although the effects of this in generality necessarily must wait for a full theory of

quantum gravity (since they explicitly relate to the geometry of the manifold), we see

than in general, the failure of the RG flow to the IR implies a bound on a certain

function S of the geometry. Finally, we use this function to define a measure of

inhomogeneity, largely inspired by the work that follows.

In Section 2.3, deal with the the simplest manifolds we have the machinery to deal

with, T4 and T3 ×R, and see how S changes as we vary the lengths of the fundamental

loops. As hoped, it is found that S decreases, and indeed becomes negative for

sufficiently inhomogeneous geometries. The numerical work in this section is

supplemented by analytic results in Section 2.4, both of which point to maximally

symmetric manifolds maximising S.

Finally, in Section 2.5, we generalise these results to twisted tori. We see that,

generally inhomogeneity reduces S, but with the addition of a twist parameter, a much
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more intricate set of phenomena is revealed. A small section of moduli space is

explored and numerical results presented.

2.2 RG evolution on manifolds

We wish to see how these δ
(n)
Λ evolve on a general manifold M. We expect the main

alterations compared to R4 will be seen in the IR, since the UV is regulated by Λ0,

which we expect to send to infinity and thus, by the definition of the local properties of

a manifold, M will be indistinguishable from R4.

To see how the difference arises, it will be useful to write, from equation (2.17)

δ
(n)
Λ0

(ϕ) = exp

(
1

2
ΩΛ0

∂2

∂ϕ2

)
δ(n)(ϕ) (2.21)

where δ(n) is the nth derivative of the δ-function, which is the physical limit of the

above eigenoperators. If one starts from these bare operators and solves equation (2.9)

down to some scale Λ = k then one obtains∫
x
δ
(n)
k (ϕ) = exp

(
−1

2
tr

[
∆Λ0
k ·

δ2

δϕδϕ

])∫
x
δ
(n)
Λ0

(ϕ) (2.22)

where now, integrals over spacetime (including those implied in DeWitt notation) are

to be read as ∫
x

=

∫
d4x
√
g. (2.23)

We have also defined a propagator that is regulated in both the UV and IR, where

∆Λ0
k =

CΛ0
k (p)

p2
=
CΛ0(p)− Ck(p)

p2
. (2.24)

Combining the above, we see that we can write the evolved operators as

δ
(n)
k,Λ0

(ϕ) = exp

(
1

2
Ωk,Λ0

∂2

∂ϕ2

)
δ(n)(ϕ) (2.25)

where

Ωk,Λ0(x) = |〈ϕ(x)ϕ(x)〉|R4−|〈ϕ(x)ϕ(x)〉|M. (2.26)

The first term on the RHS here is the one-loop tadpole at Λ = Λ0, whereas the second

term is evaluated on the manifold and regulated by CΛ0
k . On R4, this term is ΩΛ0 −Ωk,

and so Ωk,Λ0 = Ωk. By contrast, on M, we expect changes to this when the IR

evolution reaches k ∼ 1/L, where L is some characteristic length scale for the manifold.
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Getting the physical Ω for a manifold is a simple matter of removing the regulators:

Ωp(x) = lim
Λ0→∞
k→0

Ωk,Λ0(x). (2.27)

One can then use the evolution equation for the δ
(n)
Λ to get the physical eigenoperators:

δ(n)
p (ϕ) =

∂n

∂ϕn
δ
(0)
Λ (ϕ), where δ(0)

p (ϕ) =
1√

2πΩp

exp

(
− ϕ2

2Ωp

)
. (2.28)

In the case M = R4, we have Ωp = 0, and thus the eigenoperators return to being the

δ-function and its derivatives. However, we can, on dimensional grounds write

Ωp(x) =
S(x)

4πL2
(2.29)

with L a characteristic length scale of M, and S we expect to be a finite and universal

(independent of regularization details) function of the geometry3.

As seen in [29], Ωp can be negative, and in this case, the RG can fail at some point in

the IR. In particular, if the flow exists for k → 0, we have

Vp(ϕ(x), x) ∼ exp

(
− ϕ2

Λ2
p + 2Ωp(x)

)
(2.30)

for large ϕ, and we have the constraint

S(x) > −2πL2Λ2
p ∀x ∈M. (2.31)

Now we define

Smin = inf
x∈M

S(x). (2.32)

If the manifold has Smin < 0, then by our constraint the manifold must have a

minimum size given by

Lmin =

√
−Smin

2πΛ2
p

(2.33)

and thus the amplitude suppression scale has a role in controlling the size of such

manifolds. Now we define Smax to be the maximum of Smin over all manifolds with a

given topology. We will see in the remainder of this chapter that a larger S is

associated with more symmetric manifolds, and therefore we interpret

IM = Smax − Smin (2.34)

as a measure of inhomogeneity in M4. We find that generally, Smax is O(1).

3The factor of 4π is merely there for convenience - it could just as well be subsumed into S.
4It is worth remembering that Smin depends only on M, whereas Smax depends on its topological

class.
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With this definition, clearly a smaller Smin corresponds to a more inhomogeneous

manifold, and this will be borne out in the examples that follow. To summarize,

however, we can now say that homogeneous universes are constrained to be small:

IM < Smax + 2πL2Λ2
p (2.35)

and this would have important and far-reaching implications in cosmology.

We would now like to use some examples to test out these ideas. However, it is unclear

exactly how to interpret the integrals in equation (2.25) without a fully developed

theory of quantum gravity. Thus we are restricted to those manifolds with gµν = δµν .

This greatly restricts our options, but we can us tori, which have a rich moduli space

and are simple enough that calculations can be fruitfully performed.

2.3 Flat tori

2.3.1 Four-torus

In [29], Ωp was calculated for the four-torus M = T4. An account of the derivation

follows. Suppose that the lengths of the non-contractible loops are Lµ (µ = 1, . . . , 4).

Then we write

|〈ϕ(x)ϕ(x)〉|M=
1

V

∑
n 6=0

CΛ0
k (pn)

p2
n

(2.36)

where pµn = 2πnµ/Lµ (no sum), n ∈ Z4\{0} and V =
∏4
µ=1 Lµ is the volume of T4.

Note that in this case, S(x) = Smin since the manifold is translation invariant. Note

that we have removed the zero mode since in this configuration, ϕ = ϕ0 and thus near

the Gaussian fixed point, the integrand of the path integral does not depend on the

field value, and so these configurations must be divided out. This step also makes the

sum IR finite as k → 0. It turns out it will be convenient to add the zero mode back in

as an intermediary step:

lim
p→0

CΛ0
k (p)

p2
= C ′(0)

(
1

Λ2
0

− 1

k2

)
. (2.37)

With the zero mode included in the sum, we can use the Poisson summation formula

to write the sum as an integral, then we must subtract this zero mode contribution:

|〈ϕ(x)ϕ(x)〉|M=

∫
p

CΛ0
k (p)

p2

∑
n

eiln·p − C ′(0)

V

(
1

Λ2
0

− 1

k2

)
(2.38)

where lµn = nµLµ (no sum) and n ∈ Z4\{0} is now the winding number. Clearly, when

n = 0, the first term is clearly the flat space propagator with the regulators: ΩΛ0 − Ωk.
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With this, we have

Ωk,Λ0 = Ωk +
C ′(0)

V

(
1

Λ2
0

− 1

k2

)
−
∫
p

CΛ0
k (p)

p2

∑
n6=0

eiln·p (2.39)

which, since the third term is a sum of propagators between distinct points, is finite as

Λ0 →∞. Thus, since we have already noted that Ωk,Λ0 is IR finite, the final result is

finite in the abscence of regulators and, in particular, we are free to choose our cutoff

profile. For what follows, we will take C(p2/Λ2) = e−
p2

Λ2 , and the take the Λ0 →∞ and

k → 0 limits where it is safe to do so. Thus, we have

Ωp =
1

k2V
−
∫
p

∫ 1
k2

0
dα e−αp

2
∑
n6=0

eiln·p. (2.40)

where we have expressed the IR cutoff in terms of a Schwinger parameter. Performing

the (Gaussian) integral over momentum and changing variables to α = L2t/4π where

L = V
1
4 , we have

Ωp =
1

k2V
− 1

4πL2

∫ 4π
k2L2

0

dt

t2

 4∏
µ=1

Θ

(
l2µ
t

)
− 1

 (2.41)

where lµ = Lµ/L and we’ve defined the third Jacobi theta function:

Θ(x) =
∞∑

n=−∞
e−πn

2x. (2.42)

To deal with the remaining integral, we define

s4(lµ) =

∫ 1

0

dt

t2

 4∏
µ=1

Θ

(
l2µ
t

)
− 1

 (2.43)

and to deal with the remainder of the integral, we make the substitution t 7→ 1/t. We

also make use of the formula Θ(x) = 1√
x
Θ
(

1
x

)
. What remains is s4(1/lµ), plus a

constant and an IR divergent part which cancels the divergence from the first term in

Ωp. Thus, we have

Ωp =
S4(lµ)

4πL2
(2.44)

where

S4(lµ) = 2− s4(lµ)− s4(1/lµ). (2.45)

A few things to note about this. Firstly, as expected, S4 does not depend on the

overall sign of the manifold, just the relation of the lengths of the fundamental loops to

each other. In addition, it is invariant if we permute the lengths between each other.

Perhaps more surprisingly, there is an invariance when we send lµ 7→ 1/lµ, which is
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somewhat similar to T-duality in string theory. The significance of this is yet to be

determined, if indeed there is any.

Trying some numerical examples, we find that S4 = 1.765 at the symmetric point

(lµ = 1), and can be made negative by deviating sufficiently far from this. In fact,

S = 0 at the following points:

� l1 = 2.709 and the other lµ = 0.7173;

� l1 = 0.3691 and the other lµ = 1.394;

� l1 = l2 = 2.457 and l3 = l4 = 0.4069;

� lµ = 1.487lµ+1 (µ = 1, 2, 3).

Note that the first two are dual to each other, whereas the other two are self-dual

(combined with permutation symmetry). When the lengths deviate more than this,

then S4 is negative, and thus the bound (2.33) applies, and in this case, this means

that, in terms of the spacetime volume

V >
S4(lµ)2

4π2Λ4
p

(2.46)

and so we see in this case that small universes are constrained to be highly symmetric5.

2.3.2 Spatial three-torus

Now we look at a slightly more realistic model, T3 × R, with the idea that the real line

corresponds to the time direction after undoing the Wick rotation. Just as the T4 case

[44], we can relate this computation to those in the literature discussing finite size

effects in lattice quantum field theory [45]. We subtract the zero mode, which again

would render our expression IR divergent. The details of why this is valid are more

complicated, and would presumably go along the lines of [45], but a precise

justification would have to wait for a full theory of quantum gravity.

Suppose the lengths of the fundamental loops of T3 are Li, and V3 =
∏3
i=1 Li. We also

define L = V
1
3

3 , and the dimensionless lengthths as li = Li/L. We then have

|〈ϕ(x)ϕ(x)〉|M=
1

V3

∫
p4

∑
n6=0

CΛ0
k (p)

p2
(2.47)

where p = (pni , p4), pni = 2πni/Li (no sum) and n ∈ Z3\{0}.
5Although it seems this formula can hold for S positive, the bound for Lmin was derived with the

assumption of negative S, so this has no meaning when S4 > 0.
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As with the T4 case, this expression is UV and IR finite, and so we have our choice in

regularisation. Adding and subtracting the zero mode and applying the Poisson

summation formula as before, we can see that

Ωk,Λ0 = Ωk +
1

V3

∫
p4

CΛ0
k (p4)

p2
4

−
∫
p

CΛ0
k (p)

p2

∑
n6=0

ei
~ln·~p. (2.48)

Using the same regulator as before CΛ(p) = C(p2/Λ2), using the Schwinger parameter

trick and taking limits where it is safe to do so, we see that

Ωp =
1

k
√
πV3
− 1

4πL2

∫ 4π
k2L2

0

dt

t2

(
3∏
i=1

Θ

(
li
t

)
− 1

)
. (2.49)

Analogously to above, we define

s3(li) =

∫ 1

0

dt

t2

(
3∏
i=1

Θ

(
li
t

)
− 1

)
(2.50)

and we split the integral about t = 1, take t 7→ 1/t and use Θ(x) = 1√
x
Θ
(

1
x

)
. This

results in the IR divergences cancelling, and we are left with

Ωp =
S3(li)

4πL2
(2.51)

where S3(li) = 3− s3(li)− s̃3(1/li) and

s̃3(li) =

∫ 1

0

dt

t
3
2

(
3∏
i=1

Θ

(
li
t

)
− 1

)
. (2.52)

Once again, we see that the result is symmetric under interchange of the lengths of the

fundamental loops, as would be expected from the symmetries of the torus. We also

note that since s3 6= s̃3, the inversion symmetry li 7→ 1/li is seen to be a quirk of the

fact that previously we had four compact dimensions. Also, we see that S3 does not

depend on the overall size of the manifold, as with S4.

To get some intuition, we input some values:

� l1 = l2 = l3 = 1: S3 = 2.8373;

� l1 = 1, l2 = 2 and l3 = 1
2 : S3 = 0.8538;

� l1 = 1, l2 = 3 and l3 = 1
3 : S3 = −4.2936;

� l1 = l2 = 2 and l3 = 1
4 : S3 = −8.95463;

� l1 = l2 = 3 and l3 = 1
9 : S3 = −73.1222;
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� l1 = 2, l2 = 3 and l3 = 1
6 : S3 = −28.4098;

� l1 = 1
2 , l2 = 1

3 and l3 = 6: S3 = −15.7999.

Note that the largest value was seen in the maximally symmetric case, and decreases

as anisotropy increases, becoming negative at some points. That last two provide an

explicit example that the inversion symmetry from before fails in this case. In the case

that S3 < 0, the bound (2.33) applies, and thus we have

V3 >

(
−S3

2πΛ2
p

) 3
2

(2.53)

indicating that once again, small universes are constrained to be highly symmetric.

2.4 Some analytic results

We wish to see how much our hypothesis regarding anisotropies are supported by

analytic results. First, we wish to show that the symmetric point is an extremum of Sd
(d = 3, 4). We write lµ = ezµ . Any first-order perturbation δzµ = εαµ gives a change in

Sd proportional to
∑

µ αµ. However, since
∏
µ lµ = 1, we have the constraint that∑

µ αµ = 0, and so the first order change vanishes.

We have shown that the symmetric point is a local extremum, but we wish to see

whether it is a global maximum. For simplicity (and at the cost of some generality),

we set only two of the l 6= 1. Without loss of generality, we can then set l1 =
√
χ and

l2 = 1√
χ . Then in both of the above cases, the only dependence on χ comes from the

combination

θ(χ) = Θ
(χ
t

)
Θ

(
1

tχ

)
. (2.54)

Now we note that this is invariant under χ 7→ 1/χ, and so we can restrict our attention

to χ ∈ (0, 1]. Now we use a result of Ramanujan (given in, e.g., Berndt [46]):

ln Θ(x) = 2

∞∑
k=1

q2k−1

(2k − 1)(1 + q2k+1)
(2.55)

where q = e−πx. From this we can see that

∂xΘ(x) = −2πΘ(x)

∞∑
k=1

1(
1 + eπ(2k+1)x

)2 (2.56)

and thus we have

∂χθ(χ) =
2πθ(χ)

tχ2

∞∑
k=1

1 + exp
(
π(2k−1)χ

t

)
+ χ

(
1 + exp π(2k−1)

χt

)
(

1 + exp π(2k−1)
χt

)2 (
1 + exp π(2k−1)χ

t

)2 fk(χ) (2.57)
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where

fk(χ) = 1 + exp

(
π(2k − 1)χ

t

)
− χ

(
1 + exp

π(2k − 1)

χt

)
(2.58)

will determine the sign of each term, since every the other piece is always positive.

Now, we have that fk(1) = 0, and we wish to have f ′k(χ) > 0 for χ ∈ (0, 1] so that

∂χθ < 0 in this range. Since 2k − 1 > 1, we have

f ′k(χ) = π exp

(
π(2k − 1)χ

t

)
− 1 + exp

(
π(2k − 1)

χt

)(
π

χ
− 1

)
(2.59)

which is indeed positive in the required range. Thus, ∂χθ ≤ 0 for χ ∈ (0, 1]. Therefore,

θ(χ) has a global minimum at χ = 1, and so the symmetric point is a global maximum

for Sd, since extrema of θ govern extrema of s4, s3 and s̃3.

2.5 Twisted tori

We are still restricted to using manifolds with gµν = δµν , but we can still consider

manifolds with the same topology, that is, twisted tori. The twisted four-torus is

defined by the equivalence relation xµ ∼ xµ + Lvµ, where the vµ defined by the lattice

Λ4:

vµ ∈ Λ4 =

{∑
i

nilµi ;n ∈ Z4

}
(2.60)

where the primitive vectors li are not all orthogonal. Note that we have factored out

the length scale L = V
1
4

4 , where V4 is the volume of the 4-torus. With this

normalization, we have det(l1, l2, l3, l4) = 1. If we wish to follow the derivation above,

we need to define the dual lattice Λ∗4 with which we define the momentum modes:

Λ∗4 = {u ∈ R4 : u · v ∈ 2πZ, ∀v ∈ Λ4}. (2.61)

We then have p ∈ Λ∗4/L. Removing the zero mode as before, we have

|〈ϕ(x)ϕ(x)〉|M=
1

V4

∑
Lp∈Λ∗

4\{0}

CΛ0
k (p)

p2
. (2.62)

Now it is a simple case of following the steps from before. To do so, we need the lattice

theta function, which is a well known subject in modular forms (for example, see [47]):

ΘΛ(t) =
∑
v∈Λ

e−πtv
2
. (2.63)
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Performing the same steps as for the untwisted case, and using another application of

the Poisson summation formula6:

ΘΛ(t) = t−
d
2 ΘΛ∗(1/t) (2.64)

we arrive at

Ωp =
S4(Λ4)

4πL2
(2.65)

where S4(Λ4) = 2− s(Λ4)− s(Λ∗4), where we’ve defined

s(Λ) =

∫ 1

0

dt

t2

(
ΘΛ

(
1

t

)
− 1

)
. (2.66)

Similarly, in the twisted T3 × R case, we can similarly generalise to

Ωp =
S3(Λ3)

4πL2
(2.67)

where S3(Λ3) = 3− s(Λ3)− s̃(Λ∗3), with s as above, and

s̃(Λ) =

∫ 1

0

dt

t
3
2

(
ΘΛ

(
1

t

)
− 1

)
. (2.68)

It is easy to confirm that these results reduce to the previous results in the case of

orthogonal primitive lattice vectors. Note also that the inversion symmetry in the T4

case is a special case of the Λ 7→ Λ∗ symmetry. In fact, this is somewhat similar to

symmetries in one-loop calculations in String Theory [48, 49], but the significance of

this is yet to be determined. Clearly, we also still have the symmetry of interchanging

the primitive vectors. In addition, we are free to redefine the primitive lattice vectors

by

li 7→ li +
∑
j 6=i

njlj , nj ∈ Z (2.69)

since the new primitive vectors will have the same span as the old ones, and hence

define the same lattice. This is a PSL(d,Z) symmetry, which we will have to take

account of when finding the analytic properties of S since, for example in d = 2, if

l1 = (1, 0), l2 = (1, 1), l′1 = (1, 0) and l′2 = (0, 1), then {l1, l2} and {l′1, l′2} define the

same lattices, and hence, despite appearances, {l′1, l′2} does not correspond to a twisted

torus.

2.5.1 Analytic properties

The easiest realisation of the twisted torus is to start with orthogonal primitive vectors

lµ, and to twist l1 7→ l1 + al2 for a ∈ R. In fact, due to the PSL(d,Z) symmetry, we

6If we hadn’t normalised the lattice (and its dual) there would be an inverse factor of volume on the
RHS.
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can restrict attention to a ∈ [0, 1), since a ∈ Z corresponds to the same lattice. For

d ≥ 2, we define Λ2 to be the sublattice generated by {l1 + al2, l2}. In this case, the

dependence of S on a is only due to ΘΛ2
and ΘΛ∗

2
. In these theta functions, we have

sums over n1, n2, and for v ∈ Λ2 we have

v2 = l21n
2
1 + l22(n1a+ n2)2 (2.70)

and when v ∈ Λ∗2, we have

v2 = (n1a− n2)2/l21 + n2
2/l

2
2. (2.71)

Note that in both cases, if l1 � l2, then the dependence on a is exponentially

suppressed, whereas it is exponentially enhanced for l1 � l2. This may well be

expected as this means that adding a small vector to a large vector makes less

difference than adding a large vector to a small vector. We will see this explicitly in

some numerical examples.

It is also worth noting that the above are symmetric under a 7→ −a (upon summation

over n1, n2) and therefore, a = 0 is a local extremum of S. Combining this with the

modular symmetry a 7→ a+ 1 shows that S is symmetric about a = 1
2 , and so this is

also a local extremum of S.

When computing the numerical examples below, it is worth noting that the lattice

theta function is not in most algebraic computing packages. In these cases is easier to

note that

s(Λ) =
∑

v∈Λ\{0}

exp(−πv2) (2.72)

and

s̃(Λ) =
∑

v∈Λ\{0}

1

|v|
erfc

(√
πv2
)

(2.73)

thus, in both cases, if we organise the sum in order or increasing |v|, we can compute

these with exponentially fast convergence.

2.5.2 Four-torus

To display examples of twisted tori, we define Λ by a matrix M where the rows are the

primitive vectors. Figure 2.1 shows the effect of starting from a lattice with

orthonormal primitive vectors, and increasing a from 0 to 1. We see that a = 0

(equivalently a = 1) is the minimum of S, at 1.765. We also see that the maximum is

at a = 1
2 , with S = 1.784. Figure 2.2 shows the effect of twisting a smaller vector

towards a larger one. We see that the minimum and maximum are in the same places

(a = 0 and a = 1
2 , respectively), but the difference in S between the two is much

greater than the previous case. When the difference between these vectors is greater,
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Figure 2.1: Variation of S as we twist the torus away from orthonormal primitive
vectors.

Figure 2.2: Variation of S as we twist a smaller vector towards a larger vector.

we see larger plateaux around a = 1
2 . This is largely due to the fact that the changing

a makes less difference since the length of the vector is already large compared to the

change from varying a.

In Table 2.1, we see the effect of twisting on this lattice in different directions. In all of

these we see that twisting a smaller vector towards a larger one causes the largest

change in S.

Now, at increased inhomogeneities, we see fascinating new effects. From this point on,

we use the parametrization of Section 2.5.1, and our general matrix will be

M4(a, x) =


1 0 0 0

0 1 0 0

0 0 x 0

0 0 ax 1
x

 (2.74)

In addition, due to the modular symmetry of the lattice we may consider only

a ∈ [0, 0.5] without losing any generality. Figure 2.3 shows how S changes with a for

various values of x.

We see that when we reach x = 3, the stationary point at a = 1
2 has become a local

minimum, as opposed to a maximum when x = 2. In addition, when x increases
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Matrix S4 max Range of S4
1 a 0 0
0 1 0 0
0 0 2 0
0 0 0 1

2

 -0.547798 0.0293644


1 0 a 0
0 1 0 0
0 0 2 0
0 0 0 1

2

 '


1 0 0 0
0 1 0 0
0 0 2 0
a 0 0 1

2

 0.128869 0.706032


1 0 0 a
0 1 0 0
0 0 2 0
0 0 0 1

2

 '


1 0 0 0
0 1 0 0
a 0 2 0
0 0 0 1

2

 -0.577106 5.6× 10−5


1 0 0 0
0 1 0 0
0 0 2 a
0 0 0 1

2

 -0.577163 ∼ 10−10


1 0 0 0
0 1 0 0
0 0 2 0
0 0 a 1

2

 1.78352 2.36068

Table 2.1: All possible ways to twist M = diag(1, 1, 2, 12 ), for which we have
S4 = −0.577163. For those rows with two matrices, they are related by the inver-
sion symmetry Λ↔ Λ∗ (after relabelling), and those with one matrix are self-dual (up
to relabelling). Note that we have the greatest change when a small vector is twisted
towards a larger vector. In each case, the value S4max comes from maximal twist, that

is when a is half the length of the vector we are twisting towards.

Figure 2.3: Variation of S as we vary a ∈ [0, 0.5] for x = 3, 4 and 6 respectively.

further, new minima begin to appear, and the minimum at a = 1
2 becomes negative.

Increasing even further, not only do more minima appear, but also additional

disconnected regions of S < 0. It is worth noting that in the case x = 4, the minima

appear to be at a = 1
2 ,

1
3 , and for x = 6, we appear to have these, and additionally

a = 1
4 ,

1
5 . Thus, we are led to conjecture (with supporting evidence from non-integer x)

that for a given x, we have minima at a = 1
n with n < x. It is not clear whether there

is any physical significance to this pattern or whether this is simply a mathematical

curiosity.

Also of interest is fixing the twist and allowing the inhomogeneity to vary. Figure 2.4
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shows what happens when we fix a = 1
2 and allow x to vary. Here we note that,

Figure 2.4: Plot of S( 1
2 , x). The second panel is a close-up for x ∈ [1, 2]. We see a

local minimum at approximately x =
√

2.

broadly speaking, as inhomogeneity increases, S decreases and becomes negative, as

we’d expect from the untwisted case. However, as we see in the second panel in Figure

2.4, the maximum does not occur at x = 1. Going by our definition of IM in Section

2.2, the theory appears to see the local maxima as the “most symmetric” points in this

space of manifolds. Also of note is the fact that the local minimum appears to be

around x =
√

2, and in fact if we fix a = 1
3 , the minimum appears around x =

√
3.

Again, it is unclear whether this has any physical significance.

2.5.3 Spatial three-torus

Numerically, the effect of twisting on T3 × R seems to be much the same as that for

T4, except the changes seem to be damped somewhat. We see again that for mild

inhomogeneities, the manifold prefers a more twisted configuration, for example,

M =

1 1 0

0 2 0

0 0 1
2

 gives S3 = 1.327 (2.75)

which should be compared to the untwisted S3 = 0.8538. Also, more dramatically, we

see

M =

1 0 0

0 2 0

0 1 1
2

 gives S3 = 2.8538, (2.76)

an even larger increase, as one would expect for a smaller vector twisting into a larger

vector. Taking our lead from the T4 case, we define

M3(a, x) =

1 0 0

0 x 0

0 ax 1
x

 (2.77)
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and find very similar behaviour to T4, but the effects seem more mild. Examples are

given in Figure 2.5. Most important to note is the once again, the minima seem to

Figure 2.5: Variation of S3 as we vary a ∈ [0, 0.5] for x = 4 and x = 6 respectively.

appear with the same arithmetic regularity as previously, however more inhomogeneity

is needed to achieve S3 < 0. Also interesting is the fact that the plot for S3(1
2 , x) has a

very similar shape to that in Figure 2.4. These seem to indicate that in both cases, the

extrema that appear are due to extrema in ΘΛ2
, as defined in Section 2.5.1.

2.6 Discussion

This chapter has focused on the renormalization group properties of the conformal

mode of the metric. Although we treat it in isolation, we also see that knowledge of

how the eigenoperators behave will be crucial in constructing an interacting theory of

quantum gravity. We see that the wrong sign of the kinetic term has a profound

impact on the theory, giving motivation for a modification of the definition of

quantization which in turn gives rise to eigenoperators with novel properties.

The key aspect developed here is that the wrong sign of the kinetic term alters the

direction in which the RG flow equation is well-posed. This means that, generically,

the flow to the IR fails at some scale. Specifically, this happens when a universal

function of the geometry S is negative and falls below some value set by the

characteristic length of the manifold L and the amplitude suppression scale Λp. That

is, if S < 0, manifolds cannot be arbitrarily small (for finite Λp). We have seen that

S < 0 is possible in explicit examples, even when restricted to manifolds with

gµν = δµν . Indeed, for T4 and T3 × R, we see that this occurs when the lengths of the

fundamental loops are sufficiently different, i.e., when there is sufficient inhomogeneity.

Put another way, small universes are constrained to be highly symmetric.

In addition, we see that toric universes “prefer” to twist, in that this increases S, thus

avoiding the constraint of the size of the manifold. We see that varying each of these

leads to a rich variety of behaviours. This moduli space is vast, and here hardly any of

it is explored. For example, relatively little has been investigated about in what
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happens when more than 2 lengths are varied from the symmetric point, and nothing

has been made of multiple directions for twisting. It seems that there is a fascinating

interplay between varying the lengths of the fundamental loops and varying the

twisting between them. Thus, despite T4 and T3 × R being the simplest examples

available to us, it is clear that there is much we don’t know about their behaviour.

Assuming that the inhomogeneity effects described here survive a full theory of

quantum gravity, we would have the beginnings of answers to questions about the

history of the universe. Examples are the initial conditions required for inflation (small

universes constrained to be symmetric) and the “Why now?” problem (why the energy

densities for dark energy and matter are of the same order of magnitude now). Clearly

these effects alone qualify this for further study.

Unfortunately, in [34], it is seen that to achieve diffeomorphism invariance, Λp must be

sent to infinity. This removes the restriction on the overall size of the manifold.

Nonetheless, the effects shown may yet find application in lattice field theory, see e.g.,

[45]. To the current author’s knowledge, effects of twisting have not been examined in

this sphere, so the work above may yield fruit in this direction as well.
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Chapter 3

Parisi-Sourlas Supergravity

3.1 Introduction

This chapter is largely based on [6] and surrounding work.

We wish to construct an RG flow for gravity which is diffeomorphism invariant at all

stages of the flow. The first stage (at the classical level) was developed in [50]. This

chapter looks to take the first steps to extending this into a fully diffeomorphism RG

flow. In order to do this, we want to introduce UV degrees of freedom so that when

integrations are regulated at the effective cutoff scale Λ, diffeomorphism invariance is

preserved. This was done in gauge theory over a period of years [33, 51–75] by

extending the SU(N) symmetry group to the supergroup SU(N |N). This introduces

extra fermionic gauge degrees of freedom which are spontaneously broken at Λ and

then act as Pauli-Villars fields, and they regulate the gauge theory for all scales Λ. At

large scales, the bosonic and fermionic degrees of freedom cancel each other, as with

Parisi-Sourlas supersymmetry [76].

The natural way to implement this in the gravity case is therefore to extend the

diffeomorphism symmetry to a superdiffeomorphism symmetry, which is done by

extending the manifold to a supermanifold. Fortunately, supermanifolds have been

extensively developed in the mathematical literature, e.g. [77]. The key idea is the the

D bosonic coordinates of normal spacetime are extended to

xA = (xµ, θa) (3.1)

where we’ve introduced D fermionic coordinates θa. These fermionic coordinates are

different to the standard supergravity case [78, 79] since the θa are not treated as

spinors under the bosonic Lorentz group, but rather vectors in their own space (and

scalars under changes in bosonic coordinates). Crucially, as we have added new
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directions to the space, it makes sense that the metric is extended to a supermetric

gAB =

(
gµν gµa

gbν gab

)
(3.2)

where gµa = gaµ and gab = −gba and all indices run from 1 to D. Now, there are D2

bosonic degrees of freedom (D(D + 1)/2 from gµν and D(D − 1)/2 from gab) which at

UV scales we hope are cancelled by the D2 wrong statistics1 fermionic fields gµa, which

we thus expect to act as the Pauli-Villars fields in this case. We thus describe this as

Parisi-Sourlas supergravity in order to distinguish it from other types of supergravity.

Having extended the manifold to a supermanifold, we will see how the linearised

Einstein-Hilbert action is modified, and in particular we want to see what new degrees

of freedom have been introduced. To account for superdiffeomorphism invariance, we

will have to fix a gauge in order to calculate propagators, which will allow us to see

what physical degrees of freedom we have, and which are gauge artefacts. In

particular, we expect the “wrong statistics” terms to be spontaneously broken and

given a mass of scale Λ. This would require adding a symmetry breaking scalar, as in

the case of SU(N |N) [33].

There are, however, hints that symmetry breaking may occur already, since the kinetic

terms in our action are only diagonalisable with a mass scale M . However, this does

not behave as a mass in the usual way. In particular, it does not result in changes to

the position of poles in the propagators, and thus does not change the physical mass of

any physical field, but is instead more subtle.

3.2 A review of supermanifolds

In this section, we introduce notation and nomenclature largely taken from [77] and

define what we will need to construct a theory of gravity on a supermanifold. In

theory, we can define a supermanifold with any number of bosonic and fermionic

coordinates, but with the view to treating the new degrees of freedom as Pauli-Villars

fields, we will have D of each. Therefore, we will work on the superspace RDc ×RDa . We

use greek indices to label the coordinates in RDc (the commuting/bosonic coordinates)

and lower case latin indices to label those in RDa (the anticommuting/fermionic

coordinates). It will also be convenient to work with general indices A = (µ, a) that

run over the whole superspace.

1Indeed, from the point of view of the “base manifold” (essentially the bosonic manifold), gµa are
seen as fermionic vectors, in violation of the spin-statistics relation.
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3.2.1 Vectors, matrices and indices

Just as a vector is a map from functions to functions in normal geometry, a

supervector X does the same over a superspace. We define X to be “c-type” if it maps

c-functions to c-functions and a-functions to a-functions. Similarly, we define X to be

“a-type” if it maps c-functions to a-functions and vice versa. Using a “standard basis”,

a c-type supervector has c-numbers in the first D entries and a-numbers in the final D

entries. Similarly, an a-type supervector has a-numbers in the first D places and

c-numbers in the final D places.

One of the key notations we use involves indices and geometric objects as powers of

(−1):

(−1)A, (−1)X, (−1)XA. (3.3)

When written this way, A should not be seen as an index (in the sense of the Einstein

summation convention), but as a label for which (−1)A = 1 for A = µ and (−1)A = −1

for A = a. In addition, we say that (−1)X = 1 for X c-type and (−1)X = −1 for X

a-type. Generally, any object or index appearing in a power of (−1) should be read as

a shorthand for the Z2 Grassmann grading of the object (0 or 1)2. Note that if, for

example (−1)A multiplies an expression with A free, then this is to be read as a

multiplier that depends on whether A = µ or A = a. However, if A is summed over,

then (−1)A scans over its possible values. For example,

(−1)AXAXA = XµXµ −XaXa. (3.4)

Note that the above is only defined for “pure” supervectors, those that are c-type or

a-type. However, any formulae involving these can be multilinearly extended for

general supervectors since we can write these (uniquely) as a linear combination of a

c-type supervector and an a-type supervector.

We will allow indices to be in four different positions: they can be left/right indices as

well as up/down indices. This will denote slightly different transformation properties

(see later). We also take the convention that in addition to only contracting indices

when one is up and the other is down, that the “natural” contraction is between

adjacent indices, with no object or other indices in between them, otherwise an

index-dependent sign will appear.

A supervector space is defined over RDc × RDa in the same manner as one would define

a normal vector space, only now left and right multiplication are different maps. From

now on, we will use what DeWitt [77] calls a “standard basis” {Ae} which, under

2Sometimes this would be notated as, e.g., ε(X), but since for our purposes we can proceed without
ambiguity, there is no need to introduce this here.
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complex conjugation, behaves as

Ae
∗ = (−1)AAe. (3.5)

Thus, a real supervector X = XA
Ae = X∗ must have components which satisfy

XA∗ = (−1)XAXA. (3.6)

This may not seem immediately obvious, so is worth spelling out:

X∗ = (XA
Ae)∗ = Ae

∗XA∗ = (−1)AAeX
A∗ = (−1)A(−1)A(X+A)XA∗

Ae (3.7)

where equality with X implies (3.6) using that A+A is zero in Z2 (equivalently

(−1)2 = 1) and A2 = A. We have also used that the Grassmann grading of XA is

X +A and that of Ae is A.

We are used to situations in which an index being up or down is sufficient to determine

its transformation properties. For example, for a vector we have

Xµ 7→ X ′µ = XνKµ
ν = Xν ∂x

µ

∂xν
(3.8)

which is unambiguous in the case of all objects commuting. However, for a

supermanifold with non-commuting objects, we need to specify whether the Jacobian

matrix K acts from the left or right. Suppose we start with a basis {Ae} and wish to

change to a different basis (linearly). The index placement seems to indicate a

Jacobian acting from the left, that is

Ae = AK
B
B ē. (3.9)

Since X = XA
Ae = X̄A

Aē doesn’t depend on a basis, we are thus led to define

X̄A = XB
BK

A. (3.10)

If {Ae} and {Aē} are standard bases, then it follows that K has the block diagonal

form

K =

(
A B

C D

)
(3.11)

where A and D are matrices of c-numbers and B and C are matrices of a-numbers. So

we see that the degree of AK
B is (−1)A+B. More generally, this is the case for c-type

matrices, which map c-type supervectors to c-type supervectors and a-type

supervectors to a-type supervectors and are the only type of matrix which we will

consider.



3.2. A review of supermanifolds 39

Similarly to how, in normal differential geometry indices can be up or down regardless

of the “natural” placement provided we transform consistently, we wish to define AX.

Clearly this would be done via transformation properties. Indeed, we would expect to

see
AX̄ = AK∼B

BX (3.12)

for some matrix K∼. Indeed, using the respective Z2 gradings of the components of X

and K, we have

X̄A = XB
BK

A = (−1)(X+B)(A+B)
BK

AXB

= (−1)XA(−1)B(A+B)
BK

A(−1)XBXB (3.13)

and so we are led to define

AX = (−1)XAXA, and AK∼B = (−1)B(A+B)
BK

A (3.14)

so that (3.12) holds. We define K∼ to be the supertranspose of K. Note that if we

want AX to be components of a vector, we need a basis for vectors with indices

arranged like this, say {eA}. Since we’d like to have eA
AX = XA

Ae, we can use the

above and we find

eA = (−1)AAe. (3.15)

We have defined the supertranspose for one index placement, but we’d like to be able

to define it more generally. Using similar logic to above, we can define

AL
∼B = (−1)A(A+B)BLA, AM

∼
B = (−1)A+B+AB

BMA,

AN∼B = (−1)ABBNA. (3.16)

Note that in all cases, K∼∼ = K and may be expected for a generalisation of

transposition. We define a supersymmetric matrix to be one for which K = K∼.

Now we look at forms. Fortunately, given our basis for vectors {Ae}, we have a dual

basis {eA} which acts as a basis for forms. Thus we have ω = eAAω where the degree

of Aω is (−1)ω+A and we define ω(X) = XA
Aω. We could follow similar steps to above

to derive rules for manipulating forms, but these can all be deduced from those for

vectors. For instance, insisting on XA
Aω = (−1)ωXωA

AX tells us that

ωA = (−1)A(ω+1)
Aω. (3.17)

Note that equations (3.14) and (3.17) show that there are different rules for shifting

indices depending on whether they are upstairs or downstairs indices. One can show

through similar methods that this behaviour is carried to tensors. Since we only care
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about c-type matrices, we only show the index-shifting conventions for these. We have

KA
B = (−1)AAK

B, LAB = ALB, MAB = (−1)AAMB, NAB = ANB (3.18)

and this pattern can be extended for c-type tensors: moving an upstairs index is free,

whereas moving a downstairs index A comes with a factor of (−1)A. Note that we can

only move the leftmost right index and the rightmost left index in this way. For any

matrix with both of its indices on the right, we have

K∼AB = (−1)ABKBA (3.19)

as one would naively expect. In particular, a supersymmetric matrix must have

SAB = (−1)ABSBA. (3.20)

Note that (3.18) requires us to be somewhat careful. As an example, let us look at the

Kronecker δ. This can be represented by

δAB,
AδB, or Bδ

A (3.21)

but not by

δB
A = (−1)BBδ

A. (3.22)

In addition, we have to be careful about inverses. For example, if we say N is the

inverse of the matrix M , what we mean is

ANB
BMC = AδC (3.23)

and other expressions must all be derived from this using (3.18) or symmetries of the

matrices in question - we can’t simply shift indices in the answer and hope that it

works. In particular, in general (assuming M,N c-type)

NABMBC = (−1)B ANB
BMC 6= δAC . (3.24)

For a matrix with index positions AK
B, we can define the supertrace:

strK = (−1)AAK
A = KA

A (3.25)

and similarly for ALB:

strL = (−1)A ALA = (−1)ALAA. (3.26)

Note that with these conventions, we have

str(MN) = (−1)MN str(NM) (3.27)
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which does not hold for the trace when applied to matrices with non-commuting

elements. Note also that where the indices “naturally” live can have an effect on the

behaviour (as seen when the indices are shifted to the right).

Using this, we define the superdeterminant, or Berezinian, by analogy with the

relationship between the normal trace and determinant:

δ ln sdetM = str(M−1δM) (3.28)

with the condition that sdetI = 1. This means that we have

sdet

(
A B

C D

)
= det(A−BD−1C) det(D)−1 (3.29)

and in particular

sdet

(
A 0

0 D

)
=

det(A)

detD
. (3.30)

3.2.2 Derivatives, the metric and curvature

As always, a vector field is defined by its action on functions:

X(f) = XA

−→
∂

∂xA
f = XA

A,f. (3.31)

Note that we’ve introduced the comma notation for derivatives. The generalisation is

hopefully obvious - any indices further from the object than the comma indicate

derivatives. In this instance, the derivative is acting from the left. We have to be

careful, since now a common notation f,A means something slightly different:

f,A = f

←−
∂

∂xA
= (−1)A(f+1)

A,f. (3.32)

To define a metric on the supermanifold we require that it is a supersymmetric, real,

c-type, non-degenerate, rank (0,2) tensor. This defines a natural inner product, which

by supersymmetry satisfies

g(X,Y) = XA
AgB

BY = (−1)XYg(Y,X). (3.33)

We also have the inverse metric AgB = gAB which satisfies

AgBBgC = AδC and AgB
BgC = Aδ

C . (3.34)

Now we can raise and lower indices, as well as shift the left and right. However, we

must be careful to only use “natural” contractions, i.e., those between adjacent indices,
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to avoid any index-dependant signs. Thus we have

XA = XB
BgA, XA = XB

AgB, AX = AgB
BX, AX = AgBBX (3.35)

i.e., left indices are raised/lowered with the second metric index whereas right indices

are raised/lowered with the first index.

With a metric, we can define a line element. Since we have some non-commutativity,

we have to be careful about precisely how to define this. Using only natural

contractions is the way to go, and we get

ds2 = dxAAgB
Bdx = dxAAgBdx

B = (−1)AdxAgABdx
B. (3.36)

Now that we have a metric, we can define a connection. We will use the natural

generalisation of the Levi-Cevita connection, which is torsion free3 and metric

compatible:

ΓABC =
(−1)D

2
gAD

(
gDB,C + (−1)BCgDC,B − (−1)D(B+C)gBC,D

)
. (3.37)

Using these, we can define the Riemann curvature tensor

RABCD = −ΓABC,D + (−1)CDΓABD,C + (−1)C(E+B)ΓAECΓCBD

− (−1)D(E+B+C)ΓAEDΓEBC (3.38)

as well as the Ricci tensor and the Ricci scalar4

RAB = (−1)C(A+1)RCACB, R = RABg
BA. (3.39)

Now we have all of the required pieces to construct the Einstein-Hilbert action for a

supermanifold.

3.3 The super-Einstein-Hilbert action

We start from an action that we know to be superdiffeomorphism invariant, the

super-Einstein-Hilbert action:

SEH = − 2

κ2

∫
dDxdDθ

√
gR (3.40)

3That is to say, supersymmetric on the lower indices.
4Note that the Ricci scalar can be written as R = (−1)AARBg

BA = str(Ric g−1), so this arrangement
of indices is indeed the correct generalisation. Similar arguments hold for the connection coefficients and
Riemann tensor.
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where κ =
√

32πG, with G Newton’s gravitational constant. The factor −2 will be

ignored for now, and we have set the cosmological constant to zero. Since the metric is

supersymmetric, we write it as

gAB =

(
gµν gµb

gaν gab

)
(3.41)

where gµν = gνµ, gµa = gaµ and gab = −gab, as assumed in Section 3.1. Note that from

the point of view of the base manifold, that spanned by the xµ, gµν is a rank-2 tensor,

as normal. However, the gµa are seen as 4 fermionic vectors, and gab are seen as 6

scalars.

3.3.1 Expansion

We wish to find the propagating degrees of freedom, and so we want to expand around

a flat spacetime (that satisfies the vacuum equations). Normally, we’d like to use δAB,

but this is not allowed by supersymmetry of gAB. Instead we define

δ̄AB =

(
δµν 0

0 εab

)
(3.42)

with εab some antisymmetric matrix. Note εab = −aεb. We thus expand:

gAB = δ̄AB + κhAB (3.43)

and to find the propagating degrees of freedom, we expect to expand the

super-Einstein-Hilbert action to O(κ0), that is up to the bilinear terms in h.

For what follows, we will lower indices with Aδ̄B = (−1)Aδ̄AB, and raise indices with its

inverse, δ̄AB = Aδ̄B. We thus have, to O(κ), that the inverse metric is

gAB = δ̄AB − κhAB. (3.44)

With these conventions, it is consistent to raise bosonic indices (µ, ν, . . . ) with
µδν = δµν and fermionic indices (a, b, . . . ) with aεb = εab, the matrix inverse of

aεb = −εab.

From equation (3.28), we can see that, to O(κ), we have

√
g = 1 +

κ

2
(Aδ̄BBhC) = 1 +

κ

2
(−1)AhAA = 1 +

κ

2
(hµµ − haa). (3.45)

Note that both gAB and
√
g are both only needed to O(κ), despite us wanting the

O(κ2) part of
√
gR. First, we observe that R is O(κ) anyway, so clearly

√
g is only

needed to O(κ). For gAB, we note that this appears in the connection coefficients
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(3.37) multiplying the differentiated metric, which is already O(κ). gAB also appears

in the Ricci scalar (3.39) multiplying the Riemann tensor, which again is O(κ).

For book-keeping purposes, we talk about metric fluctuations as having “bosonic”

indices (hµν), “mixed” indices (hµa) or “fermionic” indices (hab)
5. With these 3 types

of fluctuations, there are 6 types of bilinears that can be built, and thus we write6

√
gR

κ2
= Lbb + Lbm + Lbf + Lmm + Lmf + Lff +O(κ). (3.46)

Now we need to unpack the connection coefficients (3.37). We see that there are 6

different index structures (naively 8, but Γνµa = Γνaµ and Γbµa = Γbaµ) and each of these

contains 6 terms. We substitute these into (3.39) which give around a hundred terms,

before collection. Note that for both the connection coefficients and the Riemann

tensor, care is needed for dealing with the derivatives that arise since we have

gAB,C = gAB
←−
∂C = (−1)C(A+B+1)∂CgAB

ΓABC,D = ΓABC
←−
∂D = (−1)D(A+B+C+1)∂DΓABC

(3.47)

and we use this to change all derivatives to “standard” derivatives acting from the left.

However, this comes with its own subtlety: although ∂A looks like a right index, it is in

fact a left index A,. Therefore, we have to be careful with some contractions:

∂a∂
a = −∂a∂a, as with haa = −haa, but ∂aV

a = ∂aVa. (3.48)

Taking care of all of these details, our final answer is

Lbb =
1

4
∂ρh

µ
µ∂

ρhνν +
1

2
hρρ∂µ∂νh

µν − 1

4
∂ρhµν∂

ρhµν +
1

2
∂νh

µν∂ρhµρ

− 1

4
∂ah

µ
µ∂

ahνν +
1

4
∂ahµν∂

ahµν ,

Lbm = −hµµ∂ν∂ahνa − ∂νhµν∂ahνa,

Lbf =
1

2
∂ν∂

νhµµh
a
a +

1

2
hµµ∂

b∂bh
a
a −

1

2
haa∂µ∂νh

µν − 1

2
hµµ∂a∂bh

ab,

Lmm = −1

2
∂νhµa∂

νhµa − 1

2
∂µh

µa∂νhνa −
1

2
∂bhµa∂

bhµa +
1

2
∂ahµa∂bh

µb,

Lmf = haa∂µ∂bh
µb + ∂µhµa∂bh

ab,

Lff =
1

4
∂µh

a
a∂

µhbb −
1

4
∂ch

a
a∂

chbb +
1

2
haa∂b∂ch

bc +
1

4
∂µhab∂

µhab

− 1

4
∂chab∂

chab +
1

2
∂bhab∂ch

ac.

(3.49)

5Note that this does not imply anything about the statistics of the field. For example, the fluctuations
hab have fermionic indices but are bosonic fields.

6Note that there are κ−1 terms, but these are necessarily total derivatives as there is only one
fluctuation field in these terms, so these are discarded - subject to suitable boundary conditions, which
are implicitly assumed.
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There are a few things to note here. Firstly, these terms are only defined up to

integration by parts. Indeed this has been used to simplify expressions in many cases.

Thus we have implicitly assumed something about the boundary conditions at infinity.

This is worth bearing in mind, but will not be addressed further in this thesis. Also, if

we delete all terms with fermionic indices (including derivatives) we recover the

standard Einstein-Hilbert action, as we might expect. We also note that not only is

every possible contraction represented, but there is a pleasing symmetry between types

of indices - e.g., compare Lbb and Lff (up to some signs, which can be accounted for

by arranging terms/indices differently). These both point in the direction of this being

the correct answer, and we also have another check in the form the Lie derivative to

check that the correct linearised symmetries are in fact respected.

3.3.2 Super-diffeomorphism invariance

First, we must define the Lie derivative and its action on various fields. Indeed, we

have [77]

Lξf = ξ(f) (3.50)

LξX = [ξ,X] (3.51)

Lξ(T (X,Y )) = (LξT )(X,Y ) + (−1)ξTT (LξX,Y ) + (−1)ξ(T+X)T (X,LξY ) (3.52)

where ξ, X and Y are vector fields, f is a function and T is a rank (0,2) tensor field.

From these rules (and a generalisation of the third) the Lie derivative for any tensor

field can be calculated.

We wish (3.49) to be invariant under linearised diffeomorpisms:

AhB 7→ AhB + A(Lξ δ̄)B (3.53)

for any c-type vector field ξ, as these generate the superdiffeomorphism algebra SDiff

[77]. In order to apply this to (3.49), we will need coordinate expressions for the action

of the Lie derivative. First we note that we have

(LξX)A = ξBB,X
A −XB

,Bξ
A and A(LξX) = −Aξ,BBX + AX,B

Bξ (3.54)

Using (3.50)−(3.52), we see that, for a c-type (0, 2) tensor T ,

ξCC,X
A
ATB

BY +XA ξCC,ATB
BY +XA

ATB ξ
C
C,
BY =

XA
A(LξT )B

BY + (ξCC,X
A −XC

C,ξ
A)ATB

BY +XA
ATB(−Bξ,CCY + BY,C

Cξ). (3.55)
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Now, the terms with X differentiated evidently cancel. We can also show with our

index shifting rules is Section 3.2 that

ξCC,
BY = BY,C

Cξ (3.56)

and so the terms in which Y is differentiated cancel. After this, both the LHS and

RHS are multiplied on the left by XA and on the right by BY , with X,Y arbitrary.

Therefore, we can strip off these vector fields and we find that

A(LξT )B = ξCC,ATB + A,ξ
C
CTB + ATC

Cξ,B (3.57)

and so we have that

A(δξh)B = A(Lξ δ̄)B = A,ξB + B,ξA. (3.58)

Specialising to the different types of fluctuation, we have

δξhµν = ∂µξν + ∂νξµ

δξhµa = ∂µξa − ∂aξµ
δξhab = −∂aξb + ∂bξa.

(3.59)

Since at the linearised level, (3.58) is still a tensor, we can move the indices with δ̄

(equivalently δ and ε) so that we get7

δξh
µν = ∂µξν + ∂νξµ

δξh
µa = ∂µξa + ∂aξµ

δξh
ab = ∂aξb − ∂bξa

(3.60)

and finally, for the trace terms we have

δξh
µ
µ = 2∂µξ

µ, δξh
a
a = 2∂aξ

a. (3.61)

7We could alternatively derive these expressions by considering the Lie derivative acting on a (2,0)
tensor. The answer obtained in this manner is identical.
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All of this put together means that we have (up to integration by parts) the following

variation of (3.49)

δξLbb = −∂ahµµ∂ν∂aξν + ∂ahµν∂
a∂µξν ,

δξLbm = −∂µξµ∂ν∂ahνa − hµµ∂ν∂a(∂νξa + ∂aξν)− ∂ν∂νξµ∂ahµa

− ∂νhµν∂a(∂µξa + ∂aξµ),

δξLbf = ∂ρ∂
ρhµµ∂aξ

a + ∂µξ
µ∂b∂bh

a
a − ∂aξa∂µ∂νhµν − ∂µξµ∂a∂bhab,

δξLmm = −∂νhµa∂ν(∂µξa + ∂aξµ)− ∂νhνa∂µ(∂µξa − ∂aξµ)

− ∂bhµa∂b(∂µξa + ∂aξµ) + ∂ahµa∂b(∂
µξb + ∂bξµ),

δξLmf = ∂aξ
a∂µ∂bh

µb + haa∂µ∂b(∂
µξb + ∂bξµ)− ∂µhµa∂b∂bξa

+ ∂µ(∂µξa + ∂aξµ)∂bh
ab,

δξLff = ∂µh
a
a∂

µ∂bξ
b + ∂µhab∂

µ∂aξb.

(3.62)

and one can see that adding all of these together results in a total derivative, and so

(3.49) is invariant under linearised diffeomorphisms. It is worth noting that this

linearised super-diffeomorphism invariance is to expected already from the form of the

action that we started with, so this calculation mainly functions as a consistency check

of the calculation of the linearised action.

3.4 Field Decomposition

Even though we have been expecting from the start to specialise to D = 4, all of the

above is clearly valid in D dimensions, as can be seen by the fact that the Lie

derivative makes no assumptions on generality and hence (3.49) is diffeomorphism

invariant in D dimensions. From this point, we will be specialising to D = 4.

Up until this point, all of our fields have been dependent on both x and θ. However, if

we want to understand our theory from the perspective of the base manifold, we need

to perform the integral over the θ coordinates in the action. To do this, it is convenient

to Taylor expand:

h(x, θ) = h(x) +Mθah|a(x)x+M2θaθbh|ab(x)

+M3θaθbθch|abc(x) +M4θaθbθcθdh|abcd(x). (3.63)

Note that the expansion terminates due to there only being 4 Grassmann-odd

coordinates (if we have 5 θ’s, at least one is repeated and (θa)2 = 0). Note that we

have also suppressed the spacetime indices on h, as this are not relevant here. Where

confusion between h(x, θ) and h(x) is unlikely, the argument of h will not be specified.

Note also that we have introduced a scale M into our theory. This is because [θa] = −1

and, anticipating the need to diagonalise the resulting action, we wish to have all of
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our fields have [h|...] = 1. In addition it is worth noting that we have absorbed some

numerical factors in comparison to the Taylor series coefficients:

Mnh|a1...an =
1

n!
∂an . . . ∂a1h|θ=0 (3.64)

and this difference is purely to make the numbers simpler in what follows.

In order to perform the d4θ integral, we need to establish a convention for doing so.

Indeed, integrating over a Grassmann variable is the same as differentiating with

respect to it up to some constant multiplier, which we are free to choose by convention.

Since θaθbθcθd must be totally antisymmetric with respect to its 4 indices, we know

that its integral must be proportional to εabcd. The convention that is most convenient

for us is to choose ∫
d4θ θaθbθcθd = M−4εabcd. (3.65)

This factor ensures that the dimension one fields come out with correctly normalised

kinetic terms.

The final piece of machinery which will assist this decomposition is a Hodge dual over

the θ-space8. The formulae that will be most useful to us will be

∗h = εabcdh|abcd, ∗h|a = εabcdh|bcd, ∗h|ab =
1

2
εabcdh|cd (3.66)

and we also define for completeness

∗h|abc =
1

6
εabcdh|d, ∗h|abcd =

1

24
εabcdh. (3.67)

In addition, we define the dual with lower index expressions in the same way, just with

εabcd instead. What this means is that we have

∗(∗h)|a1...an = (−1)nh|a1...an (3.68)

as would be expected for Hodge dual in an even number of dimensions. We will also

need to make use of the following:

εi1...ik...inεii...ikjk+1...jn = k! δik...injk...jn
(3.69)

where the generalised Kronecker δ is the sums of products of δinjm along with sign to get

from the in to the jm. In particular, for our purposes we will use

εabcdεabcd = 24, εabcdεabce = 6δde , εabcdεabef = 2(δceδ
d
f − δcfδde ),

εabcdεaefg = δbeδ
c
fδ
d
g + δbfδ

c
gδ
d
e + δbgδ

c
eδ
d
f − δbeδcgδdf − δbfδceδde − δbgδceδdf .

(3.70)

8Since the space of the θ coordinates is trivial, there are therefore no topological issues that arise
from this.
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Using these, we see that for two metric components h and h′, we have (discarding any

terms which are zero or give zero on integration)

M−4∂µh∂νh
′ = ∂µhθ

aθbθcθd∂νh
′
|abcd + θa∂µh|aθ

bθcθd∂νh
′
bcd + θaθb∂µh|abθ

cθd∂νh|cd

+ θaθbθc∂µh|abcθ
d∂νh|d + θaθbθcθd∂µh|abcd∂νh

′ (3.71)

Pulling the θ factors outside so we can more easily perform the integration gives us

M−4∂µh∂νh
′ = θaθbθcθd(∂µh∂nh

′
|abcd + (−1)h+1∂µh|a∂νh

′
|bcd + ∂µh|ab∂νh

′
|cd

+ (−1)h+1∂µh|abc∂νh
′
|a + ∂µh|abcd∂νh

′). (3.72)

Note that (−1)h should be read as the grading of the component of h in question, and

not the grading of h itself (which would simply give (−1)h = 1). Now, performing the

integral and using the Hodge dual, we arrive at9

∫
d4θ ∂µh∂νh

′ = ∂µh ∗∂νh′ + (−1)h+1∂µh|a ∗∂νh′|a + 2∂µh|ab ∗∂νh′|ab

+ (−1)h ∗∂µh|a∂νh′|a + ∗∂µh∂νh′. (3.73)

Similarly we can derive similar formulae for the expansion of other types of terms:∫
d4θ ∂µh∂ah

′ = (−1)h+1M∂µh|a ∗h′ − 2M∂µh|ab ∗h′|b

+ 2(−1)hM ∗∂µh|bh′|ab +M ∗∂µhh′|a (3.74)

and the related formula which can be derived as above or by symmetry:∫
d4θ ∂ah∂µh

′ = Mh|a ∗∂µh′ + 2(−1)hMh|ab ∗∂µh′|b

− 2M ∗h|b∂µh′|ab − (−1)hM ∗h∂µh|a. (3.75)

Finally, we have∫
d4θ ∂ah∂bh

′ = 2(−1)hM2h|ab ∗h′ −M2εabcd ∗h|c ∗h′|d + 2(−1)hM2 ∗hh′|ab. (3.76)

9We have implicitly assumed ∂µ ∗h = ∗∂µh.
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Using these, we can now expand our action in terms of fields which depend only on x

and not θ. Indeed, we have

Lbb = 2∂µϕ ∗∂µϕ− 2∂µϕ|a ∗∂µϕ|a + 2∂µϕ|ab ∗∂µϕ|ab − ϕ|a ∗∂µ∂νhµν |a + 2ϕ|ab ∗∂µ∂νh|ab

+ ∗ϕ|a∂µ∂νhµν |a + ∗ϕ∂µ∂νhµν −
1

2
∂ρhµν ∗∂ρhµν +

1

2
∂ρhµν|a ∗∂ρhµν|a

− 1

2
∂ρhµν|ab ∗∂ρhµν|ab + ∂νhµν ∗∂ρhµρ − ∂νhµν|a ∗∂ρhµρ|a + ∂νhµν|ab ∗∂ρhµρ|ab

− εabM2

(
4ϕ|ab ∗ϕ− εabcd ∗ϕ|c ∗ϕ|d − hµν|ab ∗hµν +

1

4
εabcd ∗hµν |c ∗hµν|d

)
(3.77)

where we’ve defined

ϕ =
1

2
hµµ. (3.78)

Similarly, we have

Lbm = M

(
2∂µϕ|a ∗hµa − 4∂µϕ|ab ∗hµa|b − 4 ∗∂µϕ|bhµa|ab + 2 ∗∂µϕhµa|a

− ∂νhµν|a ∗hµa + 2∂νhµν|ab ∗hµa|b + 2 ∗∂νhµν |bhµa|ab − ∗∂νhµνhµa|a
)
, (3.79)

Lbf = 2ϕ ∗�χ− 2ϕ|a ∗�χ|a + 4ϕ|ab ∗�χ|ab + 2 ∗ϕ|a�χ|a + 2 ∗ϕ�χ+ ∂µχ ∗∂νhµν

− ∂µχ|a ∗∂νhµν|a + 2∂µχ|ab ∗∂νhµν|ab + ∗∂µχ|a∂νhµν |a + ∗∂µχ∂νhµν

+M2

(
εab
[
4χ|ab ∗ϕ− 2εabcd ∗χ|c ∗ϕ|d + 4 ∗χϕ|ab

]
+ 2ϕ|ab ∗hab − εabcd ∗ϕ|c ∗hab|d + 2 ∗ϕhab|ab

)
(3.80)

where we’ve defined

χ =
1

2
haa (3.81)

and we’ve used the fact that, in general

f|ab ∗g|ab = ∗f |abg|ab. (3.82)

Looking at the remaining parts of the action, we have

Lmm = −∂νhµa ∗∂νhµa − ∂νhµa|b ∗∂νhµa|b − ∂νhµa|bc ∗∂νhµa|bc

− ∂µhµa ∗∂νhνa − ∂µhµa|b ∗∂νhνa|b − ∂µhµa|bc ∗∂νhνa|bc

− 1

2
M2εab

(
4 ∗hµchµc|ab − εabcd ∗hµe|c ∗hµe|d − 4hµ

a
|ab ∗hµb + εabcd ∗hµa|c ∗hµb|d

)
,

(3.83)
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Lmf = M

(
2∂µχ|a ∗hµa + 4∂µχ|ab ∗hµa|b − 4 ∗∂µχ|bhµa|ab − 2 ∗∂µχhµa|a

+ ∂µhµa|b ∗hab − 2∂µhµa|bc ∗hab|c − 2 ∗∂µhµa|chab|bc + ∗∂µhµahab|b
)
, (3.84)

Lff = 2∂µχ ∗∂µχ− 2∂µχ|a ∗∂µχ|a + 2∂µχ|ab ∗∂µχ|ab

+
1

2
∂µhab ∗∂µhab −

1

2
∂µhab|c ∗∂µhab|c +

1

2
∂µhab|cd ∗∂µhab|cd

−M2εab
(

4χ|ab ∗χ− εabcd ∗χ|c ∗χ|d + hcd|ab ∗hcd −
1

4
εabcd ∗hef |c ∗hef |d

)
+M2

(
2χ|ab ∗hab + 2 ∗χhab|ab − εabcd ∗χ|c ∗hab|d

− 2ha
b
|bc ∗hac +

1

2
εcdef ∗hac|e ∗had|f

)
.

(3.85)

Clearly, as a result of this field decomposition, we have a lot of fields to deal with.

However, all is not lost, as many of them are gauge. In order to get a better feel for

the degrees of freedom that are genuine, and to be able to compute propagators, we

now wish to fix a gauge.

3.5 Gauge fixing

In order to see this system as that of a graviton plus extra fields which are part of the

regulator structure, we will hold off on fixing ξµ(x) for the time being, instead focusing

on using ξa(x, θ) and the other components of ξµ(x, θ). In addition, we wish to use as

many “unitary gauge” style choices as we can, by way of analogy to spontaneous

symmetry breaking. This means we focus on local algebraic elimination, rather than

the inversion of differential operators. Using the results of Section 3.3.2 we have that

δξhab = 2Mξ[a|b], δξhab|c = 4Mξ[a|b]c, δξhab|cd = 6Mξ[a|b]cd, δξhab|cde = 8Mξ[a|b]cde,

δξhab|cdef = 0.

(3.86)

Other than hab|cdef , which usually appears as ∗hab and is gauge-invariant, each of the

terms on the RHS take then general form for a function that is antisymmetric in a, b.

Therefore, we can fix ξ[a|b] so that each of hab|... = 0 (expect ∗hab). Furthermore, since

there is no 3-index (or more) object with symmetry on its first two indices and

antisymmetry on its second 2 indices as we’d have

Tabc = −Tacb = −Tcab = Tcba = Tbca = −Tbac = −Tabc (3.87)

and hence Tabc = 0, we have that ξ(a|b)c... = 0. Therefore we only have ξ(a|b) and ξa left

to fix, as well as ξµ|.... Looking at the gauge transformation for the mixed index fields,
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we have

δξhµa = ∂µξa −Mξµ|a, δξhµa|b = ∂µξa|b − 2Mξµ|ab, δξhµa|bc = ∂µξa|bc − 3Mξµ|abc,

δξhµa|bcd = ∂µξa|bcd − 4Mξµ|abcd, δξhµa|bcde = ∂µξa|bcde

(3.88)

and so ξµ|a can be fixed to eliminate hµa. Similarly, we can fix ξµ|ab... to eliminate

hµ[a|b]... except for hµ[a|b]cde, equivalently ∗hµa. However, by the symmetry argument

above, we have that hµ(a|b)c... = 0. Therefore, with the exceptions of ∗hµa and hµ(a|b),

have eliminated hµa|.... In addition, since ξa|bcde is already fixed from above, ∗hµa is

now gauge invariant. After all of this, we have the residual gauge invariance

δξhµ(a|b) = ∂µξ(a|b). (3.89)

Now, ξa has not been fixed and so will still generate a gauge invariance. However, we

see from above that, in order to preserve hµa = 0, any change in δξa = ξ′a requires a

corresponding change in δξµ|a = ξ′µ|a such that

ξ′µ|a =
1

M
∂µξ
′
a. (3.90)

We are still yet to fix ξµ(x) and ξa(x) (equivalently ξµ|a), but it is instructive at this

point to see the effect of this gauge fixing on our action. Clearly, Lbb is unaffected, but

we have Lmm = Lff = 0, since each bilinear has at least one part which now vanishes.

In addition, since now hµa|a = hµb|aε
ba = hµ[b|a]ε

ba = 0, we also have Lmf = 0. The

remaining parts are therefore Lbb as well as

Lbm = M
(
2∂µϕ|a ∗hµa − ∂νhµν|a ∗hµa

)
(3.91)

and

Lbf = 2ϕ� ∗χ+ ∗∂µχ∂νhµν + 4M2εab ∗χϕ|ab + 2M2ϕ|ab ∗h|ab. (3.92)

Note that we still have the invariance (3.89), but at this level, hµa|b plays no further

role with our gauge choice. At the interacting level, however, it may result in Lagrange

multipliers, leading to crucial constraints. Keeping ξµ(x) free, the only remaining

gauge invariance is

δξhµν|a = ∂µξν|a + ∂νξµ|a =
2

M
∂µ∂νξa (3.93)

where we’ve used the condition (3.90). This means in particular that

δξϕ|a =
2

M
�ξa (3.94)

and so, by use of a Green’s function (which is inherently non-local), we can set ϕ|a = 0.

Since we still have the usual ξµ(x) to play with, we can also specialise to the usual

transverse and traceless gauge for hµν .
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This means that finally, we have our gauge fixed Lagrangian, split into

G(rassmann)-even and G-odd fields:

L = Le + Lo (3.95)

where

Le = 2∂µϕ|ab ∗∂µϕ|ab + 2ϕ|ab ∗∂µ∂νhµν|ab −
1

2
∂ρhµν ∗∂ρhµν

− 1

2
∂ρhµν|ab ∗∂ρhµν|ab + ∂νhµν|ab ∗∂ρhµρ|ab − 4M2εabϕ|ab ∗ϕ

+M2εabhµν|ab ∗hµν + 4M2εabϕ|ab ∗χ+ 2M2ϕ|ab ∗hab

(3.96)

is the Lagrangian for the bosonic (G-even) sector, and

Lo = ∗ϕ|a∂µ∂νhµν|a +
1

2
∂ρhµν|a ∗∂ρhµν|a − ∂νhµν|a ∗∂ρhµρ|a

−M∂νhµν|a ∗hµa +M2εabεabcd ∗ϕ|c ∗ϕ|d −
1

4
M2εabεabcd ∗hµν |c ∗hµν|d.

(3.97)

is the Lagrangian for the fermionic (G-odd) sector.

3.6 Degrees of freedom

3.6.1 Bosonic sector

First, we note that ∗hab appears only linearly in our Lagrangian (to this order), so can

be seen as a Lagrange multiplier enforcing the constraint (ensuring we recall that ∗χ is

part of ∗hab)
ϕ|ab + εabε

cdϕ|cd = 0. (3.98)

Contracting this with εab and using εabε
ab = 410 tells us that

εabϕ|ab = 0 (3.99)

and feeding this into (3.98) tells us that ϕ|ab = 0, and as such we can also take hµν|ab

as being traceless on its first two indices. Therefore, we have

Le = −1

2
∂ρhµν ∗ ∂ρhµν −

1

2
∂ρhµν|ab ∗ ∂ρhµν|ab + ∂νhµν|ab ∗ ∂ρhµρ|ab +M2εabhµν|ab ∗ hµν .

(3.100)

In order to diagonalise the remaining terms, it will be helpful to write

hµν|ab =
1

2
εabh

‖
µν + h⊥µν|ab (3.101)

10Note that εabεab = −aεbεba = aεbbεa = aδa = 4, not −4 as one might expect from “normal” matrices.



54 Chapter 3. Parisi-Sourlas Supergravity

where

εabh⊥µν|ab = 0 ⇐⇒ εabhµν|ab = 2h‖µν . (3.102)

Now, we can see from (3.100) that this will result in the appearance of

∗εab =
1

2
εabcdεcd, (3.103)

the dual of εab. However, this potential complication is simplified by the fact that the

dual is in fact proportional to the inverse of ε:

∗εab = sεab (3.104)

where s is the Pfaffian of ε:

s =
1

8
εabcdεabεcd. (3.105)

Indeed, (3.104) holds for any 4× 4 invertible antisymmetric matrix aεb = −εab and its

inverse εab. This can be most easily seen by rotating to a basis in which ε is

block-diagonal:

ε = λ1iσ2 ⊕ λ2iσ2 ⇒ s = λ1λ2 and ε−1 = iσ2/λ1 ⊕ iσ2/λ2 (3.106)

where σ2 is the second Pauli matrix, and hence iσ2 is the totally antisymmetric symbol

in 2 dimensions. The final property we will note is that since, for any antisymmetric

matrix ε, s2 = det ε, we have s = ±1 since we normalised det ε = 1 when defining our

background metric.

The above can be combined to give us

∗hµν |ab =
s

2
εabh‖µν + ∗h⊥µν |ab (3.107)

and therefore, contracting with εab gives

∗h⊥µν |abεab = 0 and ∗hµν |abεab = 2sh‖µν (3.108)

and thus our action becomes

Le = −1

2
∂ρhµν ∗∂ρhµν −

s

2
∂ρh
‖
µν∂

ρh‖µν + s ∂νh‖µν∂ρh
‖µρ + 2M2h‖µν ∗hµν

− 1

2
∂ρh
⊥
µν|ab ∗∂

ρh⊥µν|ab + ∂νh⊥µν|ab∂ρh
⊥µρ|ab. (3.109)

Now we see from the second line that the perpendicular components h⊥µν|ab propagate

amongst themselves, so can be treated separately. In order to diagonalise these terms,

it is useful to define

h⊥±µν|ab =
1

2

(
h⊥µν|ab ± ∗hµν

|ab
)
. (3.110)
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Note that we have identified the covariant and contravariant indices in the θ-space, so

this statement depends on the basis chosen. Nevertheless, any change in basis would

simply lead to a re-labelling of the same fields, and so the physics will not change.

With this definition, we see that the perpendicular components have the Lagrangian

− 1

2
∂ρh
⊥+
µν|ab∂

ρh⊥+µν|ab+∂νh⊥+
µν|ab∂ρh

⊥+µρ|ab+
1

2
∂ρh
⊥−
µν|ab∂

ρh⊥−µν|ab−∂νh⊥−µν|ab∂ρh
⊥−µρ|ab

(3.111)

and so we see that we have a set of fields propagating normally, and the same number

of fields propagating with the wrong sign kinetic term. We would not expect any of

these to be physical, and hence we would expect these to gain a regulator mass when

spontaneous symmetry breaking is implemented.

Looking at the remainder of (3.109), we see that varying ∗hµν results in the equation

of motion

�hµν + 4M2h‖µν = 0 (3.112)

and therefore, since hµν was gauge fixed to be transverse and traceless, we can deduce

that h
‖
µν is transverse and traceless also. Then we see that the only piece of ∗hµν that

is left in our action is therefore the transverse traceless piece ∗htt
µν since it only couples

to other fields which are also transverse and traceless. We then diagonalise the kinetic

terms by writing

h±µν =
1

2

(
hµν ± ∗htt

µν

)
(3.113)

so that the first line of (3.109) becomes

− 1

2
∂ρh

+
µν∂

ρh+µν +
1

2
∂ρh
−
µν∂

ρh−µν − s

2
∂ρh
‖
µν∂

ρh‖µν + 2M2h‖µν(h+µν − h−µν) (3.114)

In Section 3.3, we assumed a certain normalisation for the super-Einstein-Hilbert

action. However, it is not entirely clear what the correct normalisation should be,

especially since we could modify our definition of Berezin integration to change this.

As such, it is not clear which of h+
µν or h−µν propagates with the correct sign, just that

exactly one of them will. In addition, we could also fix s to make h
‖
µν propagate with

either sign. Which of these fills the role of the graviton would be expected to depend

on the precise symmetry-breaking mechanism.

The fields XT
µν = (h+

µν , h
−
µν , h

‖
µν) are coupled together with what appears to be a mass

term. Writing UT = (1,−1, 0), V T = (0, 0, 1) and D = diag(1,−1, s) we can write

(3.114) as
1

2
XT
µνD�Xµν +M2XT

µνAX
µν (3.115)

where A = UV T + V UT . The M2 term could be diagonalised if we had all kinetic

terms with the correct sign, however it is the presence of ghosts which prevents this. In

fact, if we set the overall normalisation of the action to −1/α, (so that in (3.40),
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α = 1
2), the propagator takes the form

〈Xµν(p)XT ρσ(−p)〉 = αΠρσ
µν∆ (3.116)

where Πρσ
µν is the transverse traceless projector on the space of symmetric tensor fields,

and we have

∆ = 〈XXT 〉 = (p2D − 2M2A)−1 =
D

p2
+ 2M2DAD

p4
+ 4M4D(AD)2

p6
(3.117)

where the expansion terminates since (AD)3 = 0 (or equivalently (DA)3 = 0). Thus we

see that the mass-like term in (3.115) does not in fact result in a physical mass (by

shifting the pole in the propagator) but instead leads to further massless

propagator-like contributions with improved UV behaviour (i.e., p−4 and p−6). If we

write W T = (1, 1, 0), then we have that DAD = s(WV T + VW T ) and

D(AD)2 = sWW T and therefore we have

〈h+h+〉 =
1

p2
+ 4s

M4

p6
, 〈h−h−〉 = − 1

p2
,+4s

M4

p6
〈h‖h‖〉 =

s

p2
,

〈h+h−〉 = 4s
M4

p6
, 〈h+h‖〉 = 2s

M2

p4
, 〈h−h‖〉 = 2s

M2

p4
. (3.118)

The fact that M does not result in a physical mass is not in fact surprising. It was

introduced manually in order to ensure that all of the fields have the same mass

dimension and to aid in the diagonalisation. In fact, we can completely eliminate M by

redefining

h|a1...ap 7→M−ph|a1...ap , α 7→M−4α. (3.119)

This now means that our fields have different dimensions. In particular, [h] = 1,

[h‖] = 3 and [∗h] = 5. Since we no longer have M to fix dimensions, we must deal with

the powers of p that are fixed by the field dimensions. Therefore, we expect each of

these fields to have propagators that differ from the usual 1/p2 behaviour. In addition,

h±µν are no longer well-defined, so we must work in our original basis of fields. We then

have

〈hh〉 =
W T∆W

M4
= 16

s

p6
, 〈∗h ∗h〉 = M4UT∆U = 0, 〈h‖h‖〉 = V T∆V =

s

p2
,

〈h ∗htt〉 = W T∆U =
2

p2
, 〈hh‖〉 =

W T∆V

M2
= 4

s

p4
, 〈∗hh‖〉 = M2UT∆V = 0.

(3.120)

We see now that M has indeed been eliminated, and note that these propagators are

indeed dimensionally correct once we account for the fact that now [α] = 4.
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3.6.2 Fermionic sector

Finally we deal with the fermionic fields described by (3.97). First, we note that at

this level, ∗hµa acts as a Lagrange multiplier enforcing the transversality constraint

∂νhµν|a = 0. (3.121)

We also define

∗εab =
1

2
εabcdε

cd = sεab (3.122)

by analogy with ∗εab. Since this is also what we get from lowering indices on the latter,

this is completely unambiguous. It is useful at this point to write our now-transverse

fields as a transverse traceful part and a transverse traceless part:

hµν|a(p) = httµν|a(p) +
2

3
Πt
µν(p)ϕ|a(p) (3.123)

and similarly for ∗hµν|a. Here, we have the transverse traceful projector

Πt
µν(p) = δµν −

pµpν
p2

(3.124)

and the coefficient of 2/3 simply follows from taking the trace and comparing with

hµµ|a = 2ϕ|a. We then find that

Lo = −1

2
∂ρh

tt
µν
|aεab ∗∂ρhtt µν|b −

s

2
M2 ∗httµν |aεab ∗htt µν|b

− 2

3
∂ρϕ

|aεab ∗∂ρϕ|b +
4

3
sM2 ∗ϕ|aεab ∗ϕ|b (3.125)

and so the traceful and traceless modes decouple. Note that these fields are scalars (ϕ)

and tensors (hµν) which have fermionic statistics. Therefore, they have the wrong

statistics and thus they must gain a mass via some symmetry breaking mechanism. As

in the bosonic case, we will see that M does not play this role, despite appearances.

Writing Y T a = (ϕ|a, ∗ϕ|a), we can write the transverse traceful part of the action as

1

3
Y T aεab(σ1� + 2sM2σ−)Y b (3.126)

where σ± = 1
2(I + σ3) and the σi are the Pauli matrices. With the action normalised to

−1/α as above, we see that

〈Y a(p)Y T b(−p)〉 = −3

2
αεab(p2σ1 − 2sM2σ−)−1 = −3

2
εab
(
σ1

p2
+ 2sM2σ+

p4

)
(3.127)

where the 1/p expansion terminates because σ1(σ−σ1)2 = 0. We thus have that

〈ϕ|aϕ|b〉 = −3αsM2 ε
ab

p4
, 〈∗ϕ|a ϕ|b〉 = 0, 〈ϕ|a ∗ϕ|b〉 = −3α

2

εab

p2
. (3.128)
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Similarly to the bosonic case, we see again that M does not act as a physical mass, but

instead appears in propagators with improved UV properties. Again, this can be

understood by dimensions and the fact that M is arbitrary. Indeed, we can see that

once again, (3.119) removes all references to M . We can see that the pattern is very

similar for httµν
|a, and we find that

〈httµν |ahtt ρσ|b〉 = αsM2Πρσ
µν

εab

p4
, 〈httµν |a ∗htt ρσ|b〉 = −2αΠρσ

µν

εab

p2
(3.129)

and 〈∗httµν |a ∗htt ρσ|b〉 = 0.

3.7 Discussion

As seen in [33], the Parisi-Sourlas regularization works in gauge theory by adding the

original gauge field A1
µ, a pair of complex fermion fields Bµ, B̄µ and a ghost copy A2

µ.

In pure SU(N |N) gauge theory, only the two transverse polarizations propagate and

they are decoupled from each other.

The above work on the analogous situation in gravity shows that the solution at the

free level is already more complex and more subtle. We have to expand around a

non-vanishing background (3.42) which can lead to some spontaneous symmetry

breaking. However, we found that the resulting mass-like terms do not actually

provide masses by modifying the position of the poles in the propagator, but instead

provide further massless propagators with improved ultraviolet behaviour (terms with

1/p4 and 1/p6).

The propagating modes at the free level are not simply the transverse traceless ones

that we would expect from the graviton. The bosonic transverse traceless modes form

a multiplet, consisting of h±µν , which are self-dual anti-self-dual linear combinations of

hµν and ∗httµν , and h
‖
µν , the part of hµν|ab proportional to εab. We see that exactly one

of h±µν propagates with the correct sign (depending on the overall normalisation of the

action) and by choosing s, h
‖
µν can propagate with either sign. The remaining piece of

hµν|ab, h
⊥
µν|ab, is traceless but not transverse. We saw that we can also split this into

self-dual and anti-self-dual pieces h⊥±µν|ab which do not mix and propagate with opposite

signs; one propagates as a real field while the other propagates as a ghost field.

The propagating fermionic modes, hµν|a and ∗hµν|a have the wrong statistics, so clearly

cannot be physical. In fact they are intended to be Pauli-Villars fields. These split into

transverse traceless and transverse traceful sectors, each of which forms a doublet with

1/p2 and 1/p4 propagators, similarly to the bosonic case. This summarizes all of the

propagating modes.
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Looking now at the non-propagating modes, hab(x, θ) (a set of scalars) was

algebraically eliminated using linearised superdiffeomorphisms (3.86), except for ∗hab,
which is gauge invariant but at this level becomes a Lagrange multiplier enforcing

ϕ|ab = 0. Similarly, hµa(x, θ) is eliminated using gauge transformations, with the

exception of ∗hµa, which is gauge invariant but behaves as a Lagrange multiplier

enforcing the transversality of the propagating fermionic modes. A remaining gauge

invariance ξ′a(x) is then used to fix a radiation gauge ϕ|a = 0 as seen in (3.94). In

addition, we have the usual bosonic gauge invariance generated by ξµ(x) (i.e., the more

familiar diffeomorphisms on the base manifold), and so we can fix hµν(x) to be

transverse and traceless.

Finally, we are left with the vector field hµ(a|b), which does not play a role in the action

at the free level, and the corresponding gauge invariance ξ(a|b) is not fixed. At the

interacting level we’d expect this field to have a role, most likely as a Lagrange

multiplier, potentially giving important constraints on the specific form of the

expected spontaneous symmetry breaking.

Finding this symmetry breaking is clearly the next step required in this construction.

We can expect to be required to induce all modes, except for the graviton, analogously

to what was achieved in U(1|1) gauge theory in [80], since the kind of decoupling seen

in gauge theory in [33] is unlikely to work in this case. Due to the similarity of the

cosmological constant term to a mass term for the graviton when expanded around flat

space, this seems to be promising. However, it is clearly the case that in normal

Einstein gravity, the cosmological constant does not provide a mass term for the

graviton since diffeomorphism invariance is unbroken, the linearised piece

Lc.c. ∼ κϕ (3.130)

is more important, since it shows that flat space is no longer a solution to the

equations of motion. Since in the supermanifold case the equivalent term is ∼ κstr(h),

we see that after integrating over θ the cosmological constant only induces curvature in

∗hµν and ∗hab. In the cosmological constant term, h
‖
µν appears first only to second

order where it already takes the form of a mass term.

It is worth reiterating the differences between the Parisi-Sourlas supergravity

construction and more familiar notions of supergravity. In standard (N = 1, D = 4)

supergravity there are four fermionic coordinates but, contrary to our approach, these

are cast as a complex conjugate pair of two-component coordinates θα and θ̄α̇.

Crucially, we set the torsion field to vanish, so that the regularising structure can

maintain the close similarity to the graviton interactions in the Einstein-Hilbert action.

In the standard realisation of supergravity, the torsion field is non-vanishing even in

flat space, being related to the Pauli matrices σµαα̇ ∼ (i,σ), and the tangent space

symmetry of θα and θ̄α̇ is then tied to the bosonic vectorial Lorentz representation, as
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in [79]. The Parisi-Sourlas supergravity presented here could therefore be viewed as a

deformation of standard supergravity. Since the expansion over the θα leads to

component fields carrying antisymmetric vectorial indices (the fermionic a, b, . . . )

reminiscent of forms, and this also leading to fields with mixed representations, it has

some superficial resemblance to Generalized Geometry [81, 82]. However, in our case,

the indices a, b, . . . are not associated to the cotangent bundle but belong to a new

space. This latter property gives the theory an apparent resemblance to Double Field

Theory [83, 84], although there is no doubling of the bosonic coordinates here or

relation to T -duality.
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Chapter 4

Pure Gravity in the BV

Formalism

4.1 Introduction

This chapter will develop the perturbative theory of quantum gravity which began in

[5, 29, 34, 42] and relies heavily on [4, 7, 35]. The theory is perturbative in κ ∼
√
G

(where G is Newton’s gravitiational coupling), but non-perturbative in h̄. The theory

presented is a logical consequence of combining the Wilsonian RG with the action for

free gravitons, while being sure to respect the wrong-sign kinetic term of the conformal

factor, as explored in Chapter 2. This leads to a well-defined QFT, which nonetheless

leads to a conceptually different theory to many other approaches to quantum gravity.

Figure 4.1 shows the conceptual difference. Normally, we would expect the presence of

a cutoff Λ to break diffeomorphism invariance. However, the Slavnov-Taylor identities

are replaced with modified Slavnov-Taylor identities (mST) which reduce to the usual

ones in the physical limit Λ→ 0. The difference when compared to the usual approach

is that the UV fixed point exists outside of the diffeomorphism-invariant subspace, and

it is only the choice of couplings which allows the trajectory to enter the subspace

when Λ� Λp, where Λp is a dynamically generated scale determined by the couplings.

At this point, the limit Λp →∞ is taken and as we will see, diffeomorphism invariance

is recovered.

Due to many of the properties seen is Chapter 2, many of the things one might usually

take for granted now need more careful treatment. In particular, the direction in which

the RG flow is well-posed for ϕ is the opposite direction to that of hµν , and so care

must be taken with the limiting procedures so as not to introduce new divergences.

Section 4.2 introduces the BRST algebra and the Quantum Master Equation (QME),

which give a new way of parametrizing diffeomorphism invariance. We see that we are
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Figure 4.1: The renormalized trajectory emnating from the Gaussian fixed point can-
not respect diffeomorphism invariance for Λ > aΛp, where a and Λp are as discussed in
Chapter 2. By appropriate choices of couplings, diffeomorphism invariance is recovered

at required scales. Figure taken from [4].

specifically interested in the BRST cohomology, which involves removing field

reparametrisations as a quotient, and thus we can ignore certain operators which may

appear in the action. We also see how the QME is consistent with the Wilsonian RG,

in particular introducing cutoffs in order to appropriately define objects in the BRST

algebra.

In Section 4.3, we see how, even though many the concepts are most easily explained

using the Wilsonian effective action, the Legendre average effective action is in fact

more convenient for making calculations. One of the effects of making this change is

the fact that the QME now becomes a modified Slavnov-Taylor identity (mST), which

can be seen as parametrising the extent to which diffeomorphism invariance is broken

by the presence of the cutoff. Then in Section 4.4 we see how the general formalism

relates to the case of our interest, quantum gravity.

Section 4.5 then relates some of the results from Chapter 2 to this new framework, and

in particular shows how diffeomorphism invariance is recovered at linear order when

certain coefficient functions “trivialise”. Section 4.6 then discusses the free quantum

BRST algebra and the gradings which make our life easier when constructing

solutions. Then Section 4.7 finally constructs the quantum gravity action to first order

using this new formalism.

The next few sections will then concentrate on the second order solution. Section 4.8

constructs the second order solution in the classical regime. Section 4.9 next discusses

how solutions are best constructed in the diffeomorphism invariant subspace (with

large amplitude suppression scale) and uses a different parametrisation in order to
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solve the second order equations. Section 4.10 finally uses these equations, which

provide one-loop Feynman integrals, to calculate the quantum corrections from the

classical solution.

Finally, Sections 4.11, 4.12 and 4.13 discuss all of the above, including limitations and

of the framework and future possible directions for extension, in particular focusing on

the properties of the differential flow equations themselves (and their parabolic nature).

4.2 BRST and QME

4.2.1 Quantum Master Equation

In order set up the framework, we will follow [34] to see how BRST and Wilsonian RG

fit together. To construct the BRST algebra, we need a Grassmann odd derivation1 Q

which we call the “BRST charge”. Then we have the BRST transformation

δΦA = εQΦA (4.1)

where ε is some Grassmann number. Here, the ΦA are the quantum fields, which

includes ghost fields and auxiliary fields required to realise BRST invariance off-shell.

In order to renormalize a theory with BRST invariance, we need to supplement the

bare action S[Φ] with source terms Φ∗A for the BRST transformations, and so total

action is

S[Φ,Φ∗] = S[Φ]− (QΦA)Φ∗A. (4.2)

These Φ∗A have opposite statistics to ΦA and are called “antifields”. Note that we are

using the DeWitt notation, so A scans over the fields, but also spacetime position and

indices. With this action, the partition function is then

Z[Φ∗] =

∫
DΦ e−S[Φ,Φ∗]. (4.3)

We now define the Quantum Master Functional (QMF)

Σ[S] =
1

2
(S, S)−∆S (4.4)

where we have defined the antibracket [85, 86] and the measure operator ∆, which on

general functionals X and Y take the form

(X,Y ) = X

( ←−
∂

∂ΦA

−→
∂

∂Φ∗A
−
←−
∂

∂Φ∗A

−→
∂

∂ΦA

)
Y (4.5)

1This effectively means a Grassmann odd operator which follows the Leibniz rule. That is, acts “like
a derivative”.
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and

∆X = (−1)A
−→
∂

∂ΦA

−→
∂

∂Φ∗A
X. (4.6)

This notation probably bears some explanation. Similarly to Chapter 3, the

appearance of an index in a power of (−1) should be read as the Grassmann grading of

the associated field, that is 0 (so that (−1)A = 1) for a bosonic field and 1 (so that

(−1)A = −1) for a fermionic field. In addition, we have defined left- and right- acting

derivatives. These are distinguished by their Leibniz properties:

−→
∂

∂ΦA
(fg) =

−→
∂ f

∂ΦA
g + (−1)Aff

−→
∂ g

∂ΦA

(fg)

←−
∂

∂ΦA
= f

(
g

←−
∂

∂ΦA

)
+ (−1)Agf

←−
∂

∂ΦA
g

(4.7)

and they have the same action on single fields:

−→
∂

∂ΦA
ΦB = ΦB

←−
∂

∂ΦA
= δBA . (4.8)

Sometimes in the literature one can find ∂rX = X
←−
∂ and ∂lX =

−→
∂ X = ∂X, and which

is used is down to taste. It is also worth pointing out that since we are using the

DeWitt notation, these “partial” derivatives are in fact functional derivatives, and we

will often not write integrals for action functionals, instead understanding them to be

integrated over spacetime.

If we restore factors of h̄, it is clear to see that ∆S is the quantum part of the QMF.

However, without regularisation this term is not well-defined. As we will see, the

Wilsonian RG provides a natural regularisation. The QMF is used to test whether the

gauge symmetry is successfully incorporated. This is the case if the action is invariant

under (4.1). This is true if and only if

Σ[S] = 0, (4.9)

and this is the Quantum Master Equation (QME). Indeed, the vanishing of Σ follows

from the observation ∫
DΦΣe−S =

∫
DΦ∆(e−S) (4.10)

which vanishes since it is the integral over Φ of a total Φ derivative.

4.2.2 BRST cohomology

We will start from a solution of the QME (in our case, the free graviton action) S, and

perturbing it to get another solution. That is, considering some quasi-local operator

integrated over spacetime O, we want S + εO to also be a solution for the QME.
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Substituting this perturbed action into the QME tells us that this is a solution if and

only if

sO = 0 (4.11)

where s is the full quantum BRST operator, defined by

sO = (S,O)−∆O. (4.12)

Algebraically, we write

O ∈ ker s (4.13)

that is, O is in the “kernel” of s, which is the set of functionals mapped to 0 under s.

Note that s is distinguished from the previously introduced BRST transformation,

which can simply be shown to satisfy2

QΦA = (S,ΦA) (4.14)

We also define the (Grassmann-odd) Koszul-Tate differential Q− by its action on

antifields

Q−Φ∗A = (S,Φ∗A). (4.15)

For consistency and simplicity, we also note that

QΦ∗A = 0 = Q−ΦA (4.16)

and we also note that sΦA = QΦA and sΦ∗A = QΦ∗A since clearly ∆ vanishes on these.

Combining (4.14) and (4.15) results in

(Q+Q−)O = (S,O) (4.17)

which in turn implies that

s = Q+Q− −∆. (4.18)

Now, it is not immediately obvious that s2 = 0, as we’d like in order to construct the

cohomology. Indeed,

s2O = (Σ,O). (4.19)

However, our requirement that the QME is satisfied (Σ = 0) means that for our

purposes, s2 = 0. Therefore, if the action S satisfies the QME, operators O which are

“s-exact”, that is

O = sK = (S,K)−∆K (4.20)

2Note that in the DeWitt notation, the loose index indicates that the expression only makes sense
when treated as part of an integrated operator, similarly to how the Dirac delta and its derivatives are
only defined under an integral.
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where K is some quasi-local functional, then satisfy (4.11). Algebraically, we write

O ∈ im s (4.21)

that is, O is in the “image” of s, simply meaning it can be written in the form (4.20)

for some K. From the definition of the antibracket we can see that such an operator

O = sK corresponds to the infinitesimal field and source redefinitions

δΦA =

−→
∂

∂Φ∗A
K, δΦ∗A = −

−→
∂

∂ΦA
K (4.22)

with −∆K corresponding to the Jacobian change of variables in the partition function.

Indeed, if O is s-exact and equals sK and O1 . . .On are BRST-invariant operators

(and all operators have disjoint spacetime support) then their correlator vanishes:

〈OO1 . . .On〉 = 〈sKO1 . . .On〉 = 〈s(KO1 . . .On)〉 = − 1

Z

∫
DΦ∆(KO1 . . .On)e−S

(4.23)

which is zero since it is the integral of a total Φ-derivative. Therefore, we regard the

addition of any O = sK as uninteresting, and thus we are only interested in

functionals which live in the quotient

ker s

im s
. (4.24)

Note that since s2 = 0, we have ims ≤ ker s, and so this quotient is well-defined. All

this means is that we are interested only in operators which are annihilated by s,

making sure that we treat operators which differ only by a piece sK to be physically

the same. This is what is meant by the cohomology of s.

4.2.3 Wilsonian RG

A full derivation the compatibility of the QME and RG is seen in [34], but here the

results are presented. As one might expect, the effect of introducing the RG is to

regularise the terms in the free action

S0 =
1

2
ΦA(∆Λ)−1

ABΦB − (Q0ΦA)(CΛ(p))−1Φ∗A, (4.25)

where ∆Λ is the regularised propagator proportional to CΛ. For example, for a scalar

field we have ∆Λ(p) = CΛ(p)/p2. In addition, the QMF is regularised by inserting the

cutoff into the antibracket and the measure operator:

(X,Y )reg = X

( ←−
∂

∂ΦA
CΛ

−→
∂

∂Φ∗A
−
←−
∂

∂Φ∗A
CΛ

−→
∂

∂ΦA

)
Y, ∆regX = (−1)A

−→
∂

∂ΦA
CΛ

−→
∂

∂Φ∗A
X

(4.26)
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Note that with these definitions, the free BRST transformations and Koszul-Tate

differentials

Q0ΦA = (S0,Φ
A)reg, Q−0 Φ∗A = (S0,Φ

∗
A)reg (4.27)

are independent of the cutoff. Thus the only piece of the free BRST cohomology which

depends on the cutoff is ∆, which is now well-defined due to the regularisation.

Now, we suppose that the action can be expanded in a small parameter, and we call

this parameter κ (looking ahead somewhat). We write

S =

∞∑
n=0

κn

n!
Sn (4.28)

and substituting this into (4.12) results in a similar expansion for s, and we have the

relation

ŝ0S1 = 0, (4.29)

the non-trivial solutions of which define all possible interactions to first order which

are consistent with BRST invariance3. Note that field redefinition ambiguities are

defined in terms of the free BRST cohomology. In addition, we similarly find

ŝ0S2 = −1

2
(S1, S1), ŝ0S3 = −(S1, S2), . . . (4.30)

and so we can iteratively construct the action order-by-order to be consistent with

BRST invariance.

In order to be consistent with RG, we require in addition that the interacting part of

the action SI , where S = S0 + SI satisfies the Polchinski flow equation

ṠI =
1

2
SI

←−
∂

∂ΦA
(∆̇Λ)AB

−→
∂

∂ΦB
SI −

1

2
(∆̇Λ)AB

−→
∂

∂ΦB

−→
∂

∂ΦA
SI . (4.31)

Writing this in terms of linear functionals a0 and a1, we have

ṠI =
1

2
a0[SI , SI ]− a1[SI ] (4.32)

and in [34] it is shown that

Σ̇ = a0[SI ,Σ]− a1[Σ] (4.33)

and so, if Σ = 0 (i.e., the QME is satsified) at some Λ, then Σ̇ = 0 at all Λ. We say

that the QME is compatible with the flow equation.

3For consistency with the literature, specifically [4], we reserve s0 for the free classical BRST trans-
formation, s0 = Q0 +Q−

0 .
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4.3 Legendre effective action and mST

In this section, we follow [4]. We will use the infrared cutoff Legendre effective action

Γtot. This loses elegance in many ways compared to using the continuum Wilsonian

action effective action, but will be more convenient for explicit calculations since the

limit limΛ→0 Γ gives direct access to physical amplitudes. It will also mean that

instead of the QME, the diffeomorphism invariance is broken and expressed through

the modified Slavnov-Taylor identities (mST), and nilpotency of the BRST charge at

the interacting level is recovered only in the limit Λ→ 0. The free charges are still

nilpotent, however, and it is their cohomology which is important to solve for the

effective action.

For much of what follows, it is convenient to write

Γtot = Γ +
1

2
ΦARABΦB (4.34)

where RAB is the infrared cutoff expressed in additive form. We are mainly interested

in the “effective average action” part Γ, which we express as

Γ = Γ0 + ΓI (4.35)

where Γ0 is the free part

Γ0 =
1

2
ΦA∆−1

ABΦB − (Q0ΦA)Φ∗A (4.36)

and ΓI is the interacting part. Note in particular that the free part contains no

regularisation, in contrast to the Wilsonian case. The flow equation for the interactions

then takes the form (1.18)4

Γ̇I = −1

2
str

(
∆̇Λ∆−1

Λ

[
1 + ∆ΛΓ

(2)
I

]−1
)
. (4.37)

Under the Legendre transformation to get from S to Γ, we see that the QMF becomes

Σ =
1

2
(Γ,Γ)− tr

(
CΛΓ

(2)
I∗

[
1 + ∆ΛΓ

(2)
I

]−1
)
, (4.38)

the vanishing of which is the modified Slavnov-Taylor identity (mST) and (loosely

speaking) describes the extent to which the presence of a cutoff breaks diffeomorphism

invariance. In particular, diffeomorphism invariance is restored in the limit Λ→ 0 and

the mST reduces to the Zinn-Justin equation 1
2(Γ,Γ) = 0 [87, 88], which gives the

usual realisation of BRST invariance the Slavnov-Taylor identities for the

corresponding vertices.

4The supertrace instead of the trace is related to the fact that we now have Grassmann-odd fields.
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Note that in the above we have introduced the notation

(
Γ

(2)
I

)
AB

=

−→
∂

∂ΦA
ΓI

←−
∂

∂ΦB
,
(

Γ
(2)
I∗

)A
B

=

−→
∂

∂Φ∗A
ΓI

←−
∂

∂ΦB
(4.39)

and we use strM = (−1)AMA
A, similarly to Chapter 3, in addition to the usual

trM = MA
A, with the usual conventions for “indices” in the DeWitt notation.

We now express the free BRST transformation and Koszul-Tate operator as

Q0ΦA = (Γ0,Φ
A), Q−0 Φ∗A = (Γ0,Φ

∗
A) (4.40)

and note that this is now completely free of regularisation. In addition, when using the

formulation in terms of the average effective action, our bracket s are completely free

of regularisation, however the BV measure operator is still regularised. We wish to

expand our effective action Γ in terms of a formal expansion parameter ε:

ΓI =
∞∑
n=1

εn

n!
Γn. (4.41)

Note that we are working at all orders in h̄, so there is no loop expansion. In this, ε is

a formal order-counting parameter which we envisage setting to unity at the end of our

procedure. The eventual physical coupling comes about in a more complicated manner.

Expanding to first order, we see that the flow equation (4.37) and the mST (4.38)

become

Γ̇1 =
1

2
str ∆̇ΛΓ

(2)
1 (4.42)

0 = (Γ0,Γ1)− trCΛΓ
(2)
1∗ . (4.43)

and we note that the linearised mST (4.43) can be written as

0 = (Q0 +Q−0 )Γ1 −∆Γ1 = ŝ0Γ1. (4.44)

The flow equation (4.42) tells us that the RG time derivative of the eigenoperators is

given by a tadpole operator, and the linearised mST (4.43) tells us that the BV

measure operator ∆ generates Λ-dependent terms to the terms that we would get in

the classical BRST cohomology. In fact, since the flow equation and mST are

compatible, these corrections are exactly what is required for the eigenoperators to be

simultaneous solutions for these.
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4.4 Application to Quantum Gravity

From this point, any expression for an action functional should be understood as being

integrated over all of spacetime. The free action is chosen to be5

Γ0 =
1

2
(∂ρHµν)2 − 2(∂µϕ)2 − (∂µHµν)2 + 2∂µϕ∂νHµν − 2∂µcνH

∗
µν (4.45)

i.e., the action for the free graviton Hµν , where ϕ = 1
2Hµµ, and the graviton antifield

H∗µν , which sources the free BRST transformation of the graviton

Q0Hµν = ∂µcν + ∂νcµ. (4.46)

We also note that the free action is what we get from expanding the Einstein-Hilbert

Lagrangian

LEH = − 2

κ2

√
gR (4.47)

by writing

gµν = δµν + κHµν . (4.48)

Similarly, we see that the BRST transformation for Hµν is equivalent to the Lie

derivative LcH in linearised gravity.

Looking ahead, this means that we know a priori from the geometry what the classical

contributions should be, however, it would be good if we could reconstruct this from

the BRST algebra, allowing for more confidence in this approach.

Note that we have introduced cµ, the fermionic ghost fields. For consistency, we also

need the (bosonic) ghost antifields c∗µ. There are other fields required in order to

construct propagators, and this construction is detailed in [4]. For our purposes,

however, it will suffice to know that these additional fields are the (fermionic)

antighost c̄µ, the (bosonic) antighost antifield c̄∗µ, and the (bosonic) auxiliary field bµ.

Not including these in the free action is the same as saying we are using the minimal

gauge fixed basis, and the only field not in the free action which appears at the

interacting level is c∗µ.

The non-vanishing Koszul-Tate differentials in this basis are given by

Q−0 Hµν = −2G(1)
µν , Q−0 cµ = −2∂νH

∗
µν (4.49)

where G
(1)
µν is the linearised Einstein tensor

G(1)
µν = −R(1)

µν +
1

2
δµνR

(1) (4.50)

5For our purposes, raising/lowering indices will be done with δ, so has no effect. Therefore, subscripts
and superscripts will be used entirely interchangeably.
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where we have defined the linearised curvatures

R(1)
µν = −∂µ∂νϕ+ ∂(µ∂

αHν)α −
1

2
�Hµν , R(1) = ∂µ∂νHµν − 2�ϕ. (4.51)

After gauge fixing, the propagators can be calculated. Writing Hµν in terms of its

SO(d) irreducible parts

Hµν =
2

d
δµνϕ+ hµν (4.52)

where hµµ = 0, the propagators in d-dimensions are then

〈hµν(p)hαβ(−p)〉 =
δµ(αδβ)ν − 1

dδµνδαβ

p2
(4.53)

〈ϕ(p)ϕ(−p)〉 = − d

2(d− 2)

1

p2
(4.54)

〈cµ(p)c̄ν(−p)〉 = −〈c̄µ(p)cν(−p)〉 =
δµν
p2

(4.55)

where we have defined

∆AB = 〈ΦAΦB〉, ΦA(p) =

∫
p
e−ip·xΦA(x),

∫
p

=

∫
ddp

(2π)d
, (4.56)

as one might expect. At some points, it may also be useful to have to hand the

propagator for the full graviton

〈Hµν(p)Hαβ(−p)〉 =
δµ(αδβ)ν

p2
− 1

d− 2

δµνδαβ
p2

. (4.57)

4.5 Solutions to the linearised equations

This section follows closely the treatment in [7]. The flow equation (4.42) is the

equations satisfied by eigenoperators. Due to the conformal factor instability, which is

discussed at length in Chapter 2, the eigenoperators we expand in are given by

δ
(2l+ε)
Λ (ϕ)σ(∂, ∂ϕ, h, c,Φ∗) + . . . , (4.58)

where σ is some Lorentz-invariant Λ-independent monomial involving some or all of

the fields indicated, l ≥ 0 is an integer, and ε = 0(1) according to the even(odd)

ϕ-amplitude parity [4, 29, 34]. Here we have used notation from Chapter 2, which is

re-stated for convenience

δ
(n)
Λ (ϕ) =

∂n

∂ϕn
δ

(0)
Λ (ϕ), δ

(0)
Λ (ϕ) =

1√
2πΩΛ

exp

(
− ϕ2

2ΩΛ

)
(4.59)

where

ΩΛ = |〈ϕ(x)ϕ(x)〉|=
∫
q

CΛ(q)

q2
=

Λ2

2a2
(4.60)
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is the modulus of the regularised tadpole integral, and we have also defined the

non-universal dimensionless constant a. Since ΩΛ is proportional to h̄, this means that

the δ
(n)
Λ are non-perturbative in h̄. Note that the expansion over the operators (4.58)

only converges in the sense of square integrability under the Sturm-Liouville measure

1

2ΩΛ
exp

(
ϕ2 − h2

µν − cµc̄µ
)

(4.61)

in the UV, for Λ > aΛp, where Λp is an amplitude suppression scale6. Below this scale,

as we will see, we recover a solution which is in some sense perturbative in h̄. Now we

note the ellipsis in (4.58). The flow equation (4.42) has a tadpole operator, which

produces Λ-dependent UV regulated tadpoles, with fewer fields in σ. These are the

terms which are denoted by the ellipsis, and the term shown is described as the “top

term”.

The general solution of (4.42) can be written as Γ1 = Γ(µ), where

Γ(µ) =

−1

2
∆ΛAB

−→
∂

2

∂ΦB∂ΦA

Γphys(µ) =
∑
σ

(σfσΛ(ϕ, µ) + . . . ) (4.62)

which is a linear combination of the eigenoperators (4.58) with constant coefficients

gσ2l+ε(µ), which are subsumed into coefficient functions fσΛ :

fσΛ(ϕ, µ) =

∫ ∞
−∞

dπ

2π
fσ(π, µ)e−

1
2
π2ΩΛ+iπϕ (4.63)

where

fσ(π, µ) = iε
∞∑
l=0

(−1)lgσ2l+ε(µ)π2l+ε. (4.64)

The tadpole corrections are those generated by attaching propagators to (4.62). It can

be shown that the Taylor series of fσ(π, µ) converges absolutely for all π. In addition,

fσ(π, µ) decays exponentially for π > 1/Λp. This solution makes sense for any Λ ≥ 0.

Thus we see that every monomial σ has associated to it an infinite number of

couplings. At first order, these couplings can be treated at µ independent, and all of

them are relevant, with the exception of one marginal coupling [4, 34]. At higher order,

new higher dimension monomials σ appear through quantum corrections. Infinitely

many of these couplings are also relevant, but the first few are irrelevant. These

irrelevant couplings are not freely variable but are fixed by the requirement that we

have a well-defined renormalized trajectory, in keeping with standard RG techniques

[29, 89]. At second order there are no new marginal couplings, the first order couplings

still do not run, and the new irrelevant couplings that appear are determined by the

first order couplings [89].

6Indeed, this is the definition of Λp.
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At first glance, this would seem to be problematic, as the infinite number of relevant

couplings seems to destroy any hope of predictivity in the theory. However, this can be

restored, and the mST (4.43) satisfied if it the relevant couplings are chosen such that

each fσΛ(ϕ, µ) has a common amplitude suppression scale Λp, independent of σ. In

addition, we arrange for them to “trivialise” in the large Λp limit [4]. By this we mean,

for α a non-negative integer

fσΛ(ϕ, µ)→ Aσ

(
Λ

2ia

)α
Hα

(
aiϕ

Λ

)
, as Λp →∞ (4.65)

where Aσ is some (possibly zero) constant, and Hα is the Hermite polynomial of degree

α, so that (
Λ

2ia

)α
Hα

(
aiϕ

Λ

)
= ϕα +

1

2
α(α− 1)ΩΛϕ

α−2 + . . . . (4.66)

This is the unique form for the coefficient functions fσΛ(ϕ, µ) such that the linearised

flow equation (4.42) is satisfied and which becomes ϕα in the Λ→ 0 limit.

Since the coefficients in (4.58) are now polynomial, the whole linearised solution is now

polynomial. In particular, it is a sum over polynomial operators, which are made up of

the Λ-independent σϕα along with the Λ-dependent tadpole corrections generated by

the RG flow. The solutions are thus practically polynomial in h̄, with its power being

given by the loop order of the tadpole corrections. They are effectively no different to

what we would write down as the solutions to (4.42) in the standard quantization.

Now, the mST (4.43) says that a linearised solution must be closed under the free

quantum BRST charge ŝ0. In this framework, BRST invariance is only recovered after

the trivialisation above, and hence we take

Γ1 → κ(Γ̌1 + Γ̌1q1), (4.67)

(see below sections for notation) which is the result of taking Aσ = κ and now

Γ̌1 + Γ1q1 is a free quantum BRST cohomology representative, i.e., it is closed under ŝ0

but not exact. Thus, the gravitation coupling κ, only appears as the collective result of

all of the underlying couplings, and only makes an appearance when we are in the

diffeomorphism invariant subspace that we entered with the trivialisation above in the

large Λp regime. Indeed, in this subspace we can in fact consider the perturbation

series of ΓI as a series in κ, as one might expect normally.

4.6 Free quantum BRST cohomology

As seen in, e.g., [90], finding the ŝ0-cohomology is easier if we split the action by

various gradings. The main one we will be interested in is the antighost grading, but it

will also be useful to know the ghost number and mass (engineering) dimension. A
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table of all of the relevant weights is shown in Table 4.1. In this table, we have split

the BV measure operator into

∆ = ∆− + ∆= (4.68)

where

∆−X =
∂

∂Hµν
CΛ

−→
∂

∂H∗µν
X, ∆=X = −

−→
∂

∂cµ
CΛ ∂

∂c∗µ
X (4.69)

are the pieces that lower the antighost number by one or two, respectively7. In

addition, we have anticipated this grading in our notation for Q0 and Q−0 , since Q0

leaves the antighost grading unchanged and Q−0 lowers it by one.

ε gh # agh # Dimension

Hµν 0 0 0 (d− 2)/2

cµ 1 1 0 (d− 2)/2

H∗µν -1 0 1 d/2

c∗µ 0 -2 2 d/2

Q 1 1 0 1

Q− 1 0 -1 1

∆− 1 1 -1 1

∆= 1 1 -2 1

Table 4.1: Various weights of fields, antifields and operators. These will be useful
since we will construct the action from pieces of definite weights, and so this will tell us
which terms are allowed. We include the Grassmann grading (ε) for convenience. The
mass dimension and ghost number (also “total ghost number”) are respected in the
action, whereas the antighost number allows for the action to be split by this grading,

which also splits the BRST operator.

At a given over in the perturbation series, Γn will have a definite mass dimension, so

for constructing these we need only consider operators of the appropriate mass

dimension. In addition, the action has a whole has a definite ghost number (0), and so

we know that all composite operators must be put together in such a way to make this

so. However, antighost number is not respected by the action. Thus, we split Γn into

pieces of definite antighost number:

Γn =
m∑
k=0

Γkn (4.70)

for some maximum antighost number m. With this split, and recalling that our free

quantum BRST operator is now

ŝ0 = Q0 +Q−0 − (∆− + ∆=), (4.71)

7Note that where a derivative is taken with respect to a bosonic field, we have not specified whether
it is a right or left derivative since these will have the same action either way and so it is entirely
unambiguous.
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we note that any (integrated) operator with maximum antighost number m

O =
∑m

k=0Ok that satisfies ŝ0O = 0 now satisfies “descent” equations

Q0Om = 0, Q0Om−1 = (∆− −Q−0 )Om, Q0Om−2 = (∆− −Q−0 )Om−1 + ∆=Om

(4.72)

which arise from grading ŝ0O = 0 by antighost number. One might reasonably ask

why it is simpler to deal with many equations rather than few. The answer is that Q0

is much easier to “invert”8 than ŝ0, and so by seeing what operators have antighost

number m and are annihilated by Q0, the remaining parts of the operator are defined

by this “top term”, up to cohomology ambiguities. Grading (ŝ0)2 = 0 yields the useful

identities9

(Q0)2 = (Q−0 )2 = (∆−)2 = (∆=)2 = 0

{Q0, Q
−
0 } = {Q0,∆

−} = {Q−0 ,∆
=} = {∆−,∆=} = 0

{Q−0 ,∆
−}+ {Q0,∆

=} = 0.

(4.73)

4.7 First order gravitational action

Now we wish to construct the action for gravity at first order. In order to follow the

procedure above, we need to find a top term from which we can begin the descent

equation. It is also convenient to set ∆ = 0 temporarily in order to find the solution at

the classical level, Γ̌1. Thus our descent equations are now

Q0Γ̌n−1
1 +Q−0 Γ̌n1 = 0. (4.74)

It can be shown that all solutions to (4.74) for n > 2 are cohomologically trivial

[91, 92], and so our top term will be Γ̌2
1, satisfying Q0Γ̌2

1 = 0. Clearly, there are many

solutions to this, but the most useful for our purposes will be

Γ̌2
1 = −(cµ∂µc

ν)c∗ν (4.75)

which represents using the Lie derivative of cµ (in brackets) without use of a metric to

raise/lower indices. Since we envisage higher-order terms being the “covariantised”

versions of the free/linearised terms being expanded to higher orders, the need for a

metric to raise indices, such as in [34] this will lead to antighost level 2 pieces at higher

orders. This parametrization therefore, is more useful as these terms will not be

present. Now, using the descent equations results in

Q0Γ̌1
1 = −Q−0 Γ̌2

1 = −2cα∂αcµ∂νH
∗
µν (4.76)

8Clearly, since (Q0)2 = 0 it is not invertible, but by this it is just meant that the pre-image is easier
to find.

9Note there is a slight abuse of “=” here, since these expressions do not all have the same mass
dimension and other gradings, however it is hoped that the intention is clear nonetheless.
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and it can be shown that this is solved by

Γ̌1
1 = −(cα∂αHµν + 2cα∂µHαν)H∗µν (4.77)

and once again we see that the term in brackets, combined with the H∗µν term in the

free action gives exactly the Lie derivative form we might expect. Again, the benefits

of treating cµ as a contravariant vector field manifest in the lack of a requirement to

raise/lower indices with a metric to express things in terms of a Lie derivative, and so

we do not see analogous terms at higher orders. For the antighost number 0 piece, we

again use our descent equations

Q0Γ̌0
1 = −Q−0 Γ̌1

1 (4.78)

and we can see that this is solved by

Γ̌0
1 = 2ϕ∂µHµν∂νϕ− 2ϕ(∂µϕ)2 − 2Hµν∂ρHρµ∂νϕ+ 2Hµν∂µϕ∂νϕ− 2Hνρ∂ρHµν∂µϕ

+
1

2
ϕ(∂ρHµν)2 − 1

2
Hρσ∂ρHµν∂σHµν −Hµρ∂σHνρ∂σHµν + 2Hµν∂σHνρ∂µHρσ

+Hµρ∂σHνρ∂νHµσ − ϕ∂ρHµν∂µHνρ −Hµν∂ρHµν∂σHρσ + 2Hµν∂ρHµν∂ρϕ

(4.79)

which is the same as the 3-graviton vertex one would get from expanding the

Einstein-Hilbert action to this order. It is worth noting at this stage that the above

formulae are valid in d dimensions.

Our problem now is that the classical action Γ̌1 does not satisfy the linearised flow

equation (4.42) or mST (4.43). In order to solve this, we write10

Γ1 = Γ̌1 + Γ̌1q1. (4.80)

Geometrically, we know that the answer is. In Einstein gravity, the only possible terms

at first order are the Einstein-Hilbert terms
√
gR, and the cosmological constant term

√
g, which to this order is ∼ ϕ. Thus we expect a Λ-dependant quantum correction

proportional to ϕ. This is found by writing out the linearised flow equation in full,

being sure compute the tadpole corrections in the gauge-invariant basis. As seen in [4],

the result of this procedure is to introduce a cosmological constant term

Γ̌1q1 =
7

2
bΛ4ϕ, (4.81)

where we have defined the non-universal dimensionless constant

b =
1

Λ4

∫
p
CΛ(p). (4.82)

10Here 1q stands for being part of the solution to the linearised flow equation, and the remaining 1 is
due to the order in the perturbation series in κ.
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4.8 Second order classical solution

From now until the end of the chapter we will be following [7]. It will be useful to us to

somewhat generalise some of the above procedure. Suppose Γ̌ solves the Classical

Master Equation11 (or Zinn-Justin equation)

0 =
1

2
(Γ̌, Γ̌) = (QΦA)

−→
∂

∂ΦA
Γ̌, (4.83)

and takes the standard form

Γ̌ = Γ̌0 − (QΦA)Φ∗A. (4.84)

Then we expand this as

Γ̌ =
∞∑
n=0

κn

n!
Γ̌n (4.85)

so that Γ̌1 is unchanged from the above. Similarly, we can expand the one-loop

quantum piece, while noting that the quantum piece only contributes at antighost level

zero

Γ̌0
1q =

∞∑
n=1

κn

n!
Γ̌0

1qn. (4.86)

Indeed, since the one-loop quantum part is only level zero, we note that it does not

interfere with the parametrization (4.84), and thus the Zinn-Justin identity (4.83) tells

us that

0 = (Γ̌1, Γ̌
0
1q) = (QΦA)

−→
∂

∂ΦA
Γ̌0

1q. (4.87)

In addition, and as noted previously, our choice in cohomology representative means

that Q is given exactly: there are no further corrections. This observation can also be

deduced by expanding the Zinn-Justin identities (4.83) and (4.87) to tell us

(
Γ̌2

1, Γ̌
2
1

)
= 0, 2

(
Γ̌2

1, Γ̌
1
1

)
+
(
Γ̌1

1, Γ̌
1
1

)
= 0 (4.88)

and we also see how the diffeomorpism invariance is expressed on Γ̌0
2 and Γ̌1q2:

Q0Γ̌0
2 = −

(
Γ̌1

1, Γ̌
0
1

)
, Q0Γ̌1q2 = −

(
Γ̌1

1, Γ̌1q1

)
. (4.89)

Now, since Γ̌0
1 turned out to be the linearised Einstein-Hilbert action, and since Γ̌1q1 is

the O(κ) Λ-dependent cosmological constant term, it is natural to guess an all-orders

solution

Γ̌0 = − 2

κ2

√
gR, Γ̌0

1q =
7

2
bΛ4√g. (4.90)

11That is, it is invariant under the classical BRST charge Q.
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In keeping with this guess, we see that expanding both of these to O(κ2) leads to

Γ̌0
2 = ϕ2

(
1

4
∂µhµν∂νϕ−

3

16
(∂µϕ)2 +

1

8
(∂ρhµν)2 − 1

4
∂ρhµν∂µhνρ

)
+ ϕ

(
hµν∂ρhρµ∂νϕ−

1

4
∂µh

2
νρ∂µϕ−

1

4
hµν∂µϕ∂νϕ+ ∂ρhρσhµν∂σhµν

+
1

2
∂ρhµν∂σhµνhρσ − 2∂µhνρ∂σhµνhρσ + ∂µhνρ∂µhνσhρσ − ∂µhνρ∂νhµσhρσ

)
+

1

2
∂ρhραhαβ∂βh

2
µν + ∂ρhρα∂αhβµhβνhµν +

1

4
∂ρhρσ∂σϕh

2
µν −

1

8
(∂ρhαβ)2h2

µν

+
1

2
∂µhαβ∂νhαβhµρhνρ + ∂αhµβ∂αhνβhµρhνρ + ∂αhµρ∂βhνρhαβhµν

− ∂αhµρ∂νhβρhαβhµν − 2∂αhµβ∂νhαβhµρhνρ −
3

2
∂µhνρ∂ρhαβhµαhνβ

+
1

2
∂ρhαβ∂ρhµνhµαhνβ +

1

4
∂ρhαβ∂αhρβh

2
µν +

1

2
hαβ∂αhβρ∂ρh

2
µν

− ∂αϕ∂µhναhµρhνρ − ∂αhµβ∂βhανhµρhνρ −
1

2
∂αhµρ∂ρhνβhαβhµν

+ ∂αhαµ∂νϕhµρhνρ −
1

8

(
∂ρh

2
µν

)2 − 3

16
h2
µν(∂ρϕ)2

(4.91)

for the classical part, and the 1-loop quantum part is

Γ̌0
1q2 =

7

2
bΛ4(ϕ2 − h2

µν). (4.92)

Both of these would be awkward to derive using (4.89), but it can be shown that these

do indeed satisfy the required equations for BRST invariance. If we wanted to derive

these with (4.89), we would have to write Γ̌0
2 and Γ̌0

1q2 as general linear combinations of

the allowed functionals (i.e., those with correct mass dimension, ghost number etc.)

and then use (4.89) along with the known actions that we have to end up with a set of

simultaneous equations. Clearly this would be needlessly convoluted when we have a

“trial” functional that we know from the geometry and can check very simply.

Essentially, it is easier to make an educated guess and apply the BRST transformation

and antibracket than it is to attempt to invert these operations.

4.9 Inside the diffeomorphism invariant subspace

At second order, we can write the flow equation (4.37) and mST (4.38) as

Γ̇2 −
1

2
str ∆̇ΛΓ

(2)
2 = −1

2
str ∆ΛΓ

(2)
2 ∆ΛΓ

(2)
2 (4.93)

ŝ0Γ2 = −1

2
(Γ1,Γ1)− trCΛΓ

(2)
1∗ ∆ΛΓ

(2)
1 . (4.94)
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In [89], the general continuum limit to (4.93) was constructed, that is the solution

which realises the full renormalized trajectory for Λ ≥ 0. It takes the form

Γ2 =
1

2

[
1 + PΛ − (1 + Pµ)eP

µ
Λ

]
Γ1Γ1 + Γ2(µ) (4.95)

where

PµΛ = ∆µ
Λ
AB

−→
∂ L

∂ΦB

−→
∂ R

∂ΦA
(4.96)

where the L indicates that the derivative acts only on the left-hand factor, and the R

similarly indicates that the derivative acts only on the right-hand factor. In addition,

PΛ and Pµ are defined similarly by changing the cutoffs on the propagator to match

those attached to P. Clearly, these operators connect two copies Γ1.

In (4.95), the first term on the RHS is the particular integral and the second term is

the complementary solution. The complementary solution takes exactly the form

(4.62), except now µ has meaning as the (arbitrary) initial point on the renormalized

trajectory 0 < µ < aΛp. Importantly, the solution in (4.95) is finite with all of the

divergences absorbed into the underlying couplings, as described in [89].

In what follows, we will assume we are in the diffeomorphism invariant subspace.

Thus, we can use κ as our expansion parameter, and the solution (4.67) applies in this

case. In particular, this solution can be substituted into the second-order mST (4.94)

and into the particular integral, since these are well-defined in the IR and UV thanks

to their regularisation, and remain so in the limit of large Λp. Since Γ̌1 contains a

maximum of three fields, the particular integral collapses to a one-loop integral (in

particular, the exponential simplifies) so that the renormalized trajectory (4.95) can

now be written as

Γ2 = Γ2(µ) + κ2(I2Λ − I2µ) (4.97)

where

I2k = −1

4
str
[
∆kΓ̌

(2)
1 ∆kΓ̌

(2)
1

]
. (4.98)

Note that in principle, Γ̌1q1 appears in (4.98), but since the action that appears here is

differentiated twice, this term drops out since this part of the action is linear in ϕ. In

fact, (4.98) is identical to a standard 1-loop contribution in the standard quantization.

In addition, since we are now in the diffeomorpism-invariant subspace, we re-label Γ2

and Γ2(µ) with factors of κ2 so that the κ dependence entirely drops out of (4.97).

Note that the particular integral is now polynomial in the fields. In the large Λp limit,

we also arrange for Γ2(µ) to trivialise (become polynomial) as in Section 4.5. Thus,

from a practical standpoint, we see that the calculation will be very similar to the

standard quantization. There is, however, a conceptual difference. The coupling κ is,

on the face of it, an irrelevant coupling which cannot be used to construct a continuum

QFT. In our construction, however, the continuum limit (and renormalized trajectory)
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is expressed through the underlying couplings gσ2l+ε and it is these (marginally)

relevant couplings which are renormalized.

From the viewpoint of the standard quantization, the large Λp limit of the renormalized

trajectory (4.97) still looks odd due to the difference of two terms in the particular

integral I2Λ − I2µ. These parts are IR regulated but are seperately UV divergent. It is

the case, however, that the difference is UV finite, and thus we regulate each one by,

for example, dimensional regularization with d = 4− 2ε, as done in [35]. In addition,

we can subtract the UV divergences using a gauge-invariant and cutoff independent

scheme, such as MS, since the UV divergences will cancel in difference anyway.

Since Γ̌1 contains only three-point vertices, the particular integral contains only

two-point vertices. When derivative-expanded, I2µ trivially results in polynomial (in

the fields) solutions to the linearised flow equation (4.42). These carry no

Λ-dependence and the tadpole corrections, where they exist, are field-independent and

thus, although they can be calculated, are discarded as they contain no physics. It is

tempting, therefore, to dispense with I2µ by absorbing it into the definition of the

complementary solution Γ2(µ) 7→ Γ2(µ) + I2µ. Doing this however, leaves I2Λ on its

own, which is ambiguous on its own due to the UV divergence - it is the difference that

is well-defined in the large-Λp limit.

Writing the solution to (4.93) in terms of its classical and one-loop parts

Γ2 = Γ2cl + Γ2q, we now write

Γ2cl = Γ2cl(µ) (4.99)

s0Γ2cl = −1

2

(
Γ̌1, Γ̌1

)
(4.100)

Γ2q = Γ2q(µ) + I2Λ − I2µ (4.101)

s0Γ2q −∆Γ2cl = −
(
Γ̌1, Γ̌1q

)
− trCΛΓ̌

(2)
1∗ ∆ΛΓ̌

(2)
1 (4.102)

where we’ve similarly split the complementary solution in terms of its classical and

one-loop parts Γ2(µ) = Γ2cl(µ) + Γ2q(µ). Note that in addition, we have split the free

quantum BRST operator ŝ0 = s0 −∆ into its classical part s0 = Q0 +Q−0 and its

quantum part ∆ = ∆− + ∆=. As discussed in [7], (4.99)-(4.102) are a complete set of

equations for O(κ2).

The classical flow equation (4.99) says that Γ2cl must be Λ-independent. If I2µ is

absorbed into Γ2(µ) as discussed above, then the remaining equations are simply what

we’d get from the standard quantization at one-loop [35]. Now, since I2Λ is defined

using dimensional regularization and a gauge invariant subtraction scheme, such as

MS, it will have a lnµR ambiguity, where µR is the mass scale which is introduced due

to the analytic continuation of mass dimension in the couplings. The insertion of the

cutoff Λ leads to the mST (4.102), but for a gauge-invariant subtraction scheme, this

will already be automatically satisfied.
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These ambiguities, however are cancelled in the combination I2Λ − I2µ, which is simply

a reflection of the fact that the quantum part of the solution (4.101) is a well-defined

expression. Thus, the mass parameter µ fulfils the role of being the arbitrary initial

point on the renormalized trajectory. We can therefore choose to absorb I2µ except for

exchanging µR for µ. Then the MS scheme essentially amounts to imposing a

renormalization condition at µ = µR.

The failure point of the standard quantization is usually seen as having the need to

introduce new bare couplings in order to absorb UV divergences. In the standard

quantization, these new couplings multiply new non-trivial BRST cohomology

representatives order by order in perturbation theory, and so new couplings are needed

at each order. But we do not need access to the UV divergences to see the problem.

The freedom to change the scheme from MS to any other gauge invariant scheme is

contained in the freedom to add suitable local terms in the finite parts of these

divergences. These finite scheme ambiguities would force the introduction of new

couplings on their own in standard quantization. Phrased in this way, however, the

new couplings are finite. Even if we remain with the MS scheme, imposing µR

independence would force the introduction of new couplings.

In this quantization, the UV divergences have already been absorbed into the

underlying couplings gσ2l+ε, and the ambiguities which arise from defining integrals

cancel since we use the difference I2Λ − I2µ. However, the equivalent freedom still

exists order by order in κ. Indeed, the requirement that our solution for the

renormalized trajectory (4.95) is independent of the initial point µ will force the

existence of new effective couplings in the same way. More generally, we have the

freedom to add a function to Γ2 as long as it satisfies the LHS of the flow equation and

mST (4.93,4.94), that is essentially the linearised equations. This corresponds to a

change in complementary solution Γ(µ), which simply represents a change in our

quantum BRST cohomology representative. Thus, once we have one solution for Γ2,

we know that other solutions will only differ by a change in the BRST cohomology

representative. Since I2Λ on its own (defined with a suitable gauge-invariant scheme)

will solve the equations, then we know that scheme ambiguities will be contained in

changes to the complementary solution.

4.10 Vertices at second order

4.10.1 Antighost level one

We now wish to see how the vertices are calculated in practice. As already noted,

(4.99) is Λ-independent, and the BRST invariance (4.100) then implies that the
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solution is

Γ2cl = Γ2cl(µ) = Γ̌0
2, (4.103)

which is in fact independent of µ. There is only a one-loop tadpole (as anticipated),

which is generated by the exponential in (4.62), which gives Γ2q(µ) 3 Γ2q2, where

Γ2q2 = ΩΛ

(
3

2
(∂µϕ)2 − 2∂µhµν∂νϕ− (∂ρhµν)2 + 2(∂µhµν)2

)
− 3

4
bΛ4(ϕ2 +h2

µν). (4.104)

Note that if we had absorbed I2µ into Γ2q(µ), this would be the full expression for

Γ2q(µ), being the unique O(κ2) tadpole formed from the classical action.

Now we turn our attention to the particular integral. It is clear by inspection that the

particular integral (4.97) and the RHS of the mST (4.102) cannot contribute above

antighost level 2. In addition, it is possible to show that there is no contribution even

at this level. In the particular integral, an antighost level 2 contribution would require

either propagators from Γ̌2
1 to Γ̌1

1, or between two copies of Γ̌1
1 with both antifields

intact, but it is not possible to join the propagators in this way. Now, since Γ̌1q only

has a level zero contribution, the antibracket in (4.102), while the correction term

(trace term) at level two would require Γ̌2
1

(2), and there is no way to join this by a

propagator to Γ̌
(2)
1∗ . Thus we have Γn≥2

2q = Γn≥2
2q (µ) = 0. This can also be seen by

simply expanding out the relevant traces and seeing that no contributions of this type

are possible.

Similarly, it can be shown that, at level one, the mST (4.102) collapses to

Q0Γ1
2q = 0 (4.105)

since the correction term requires Γ̌1
1

(2) with its antifield intact, but no such

contributions are possible. The particular integral at this level becomes

I1
2Λ = −1

4
str
(

∆ΛΓ̌1
1

(2)∆ΛΓ̌1
1

(2)
)
. (4.106)

Now we note that, as discussed in [4], quantum correction should be computed in the

gauge-fixed basis, which is related to the gauge invariant basis that we’ve been using by

H∗µν |gi = H∗µν |gf +∂(µc̄ν) −
1

2
δµν∂ρc̄ρ. (4.107)

In this basis, we see from the expression for Γ̌1
1 (4.42) that the non-zero second

derivatives (recalling that these must be with respect to fields, not antifields) are(
Γ̌1

1

)
Hc

and
(
Γ̌1

1

)
Hc̄

. Thus an example non-zero term in the particular integral is

(∆Λ)HH
(
Γ̌1

1

)
Hc

(∆Λ)cc̄
(
Γ̌1

1

)
c̄H
. (4.108)
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Note the rules for contracting indices are the same as those for “normal” matrices, and

that the (super)trace ensures that the first and last indices match. In addition, the

remaining terms are reached from this due to swapping c for c̄ and from swapping the

order of derivatives. Thus, the particular integral at level one is given by

I1
2Λ = i

∫
p
H∗µν(p)BIµνα(p,Λ)cα(−p) (4.109)

where, in d = 4, we have

BIµνα(p,Λ) = −
∫
q

CΛ(q)CΛ(p+ q)

q2(p+ q)2

(
3

2
pαq(µqν) +

3

2
pµpνqα + 3p(µqν)qα

+ p2p(µδν)α + (p+ q)2
[
2δα(µpν) + 2δα(µqν) + δµνqα

])
(4.110)

which is a formal expression in d = 4, since there are both quadratic and logarithmic

divergences. It is convenient to set the complementary solution to have the same form

as (4.109), with kernal Bc(p, µ), since this means that Γ1
2q also has this form, with

kernal

Bµνα(p,Λ) = Bcµνα(p, µ) + BIµνα(p,Λ)− BIµνα(p, µ). (4.111)

We define (4.109) using dimensional regularisation which automatically subtracts the

quadratic divergence, and using MS, we subtract the logarithmic divergence, leaving

only the usual logµR ambiguity. Expanding the momentum integral (equivalent to a

derivative expansion) up to O(p4) results in

(4π)2I1
2Λ = Λ2

∫ ∞
0

duC(C − 2)

(
1

2
ϕ∗∂ · c− 9

8
ŝ0(c∗µcµ)

)
− 1

2
ϕ∗�∂ · c

+ ŝ0

(
1

4
H∗µν∂µ∂νϕ+

5

16
c∗µ�cµ

)
+

1

2

∫ ∞
0

duu(C ′)2 ŝ0

(
H∗µν∂µ∂νϕ−

5

4
c∗µ�cµ

)
+

1

2

(
log

(
µ2
R

Λ2

)
+

∫ 1

0

du

u
(1− C)2 +

∫ ∞
0

du

u
C(C − 2)

)
ŝ0

(
H∗µν∂µ∂νϕ+

3

4
c∗µ�cµ

)
(4.112)

up to O(∂5) terms. Here, C = C(u) is the cutoff function. Recall that CΛ(p) = C(u)

where u = p2/Λ2, and we also have CΛ(p) = 1−CΛ(p) = C(u). Note that we also have

instances of ΩΛ and b, which in these terms are given by

ΩΛ =
Λ2

(4π)2

∫ ∞
0

duC(u), b =
1

(4π)2

∫ ∞
0

duuC(u). (4.113)

A method for the derivation of this is sketched in Chapter 5, along with explicit

examples, since these will be easier to present. As previously noted, if we absorbed I2µ

into Γ2(µ), then Γ1
2q = I1

2Λ would already be a solution. In addition, the Λ-independent

ŝ0-exact pieces could be discarded by changing Γ2(µ), but we keep them for

consistency with MS. Recognising that the final result must be independent of µR, we
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set the one-loop complementary solution to be

Γ1
2q(µ) = i

∫
p
H∗µν(p)Bcµνα(p, µ)cα(−p) = I1

2µ + Z1
2 (µ)ŝ0

(
H∗µν∂µ∂νϕ+

3

4
c∗µ�cµ

)
,

(4.114)

which is independent of µ/µR, since this cancels between I2µ and

Z1
2 (µ) =

1

(4π)2
log

µ

µR
+ z1

2 . (4.115)

We there see that κ2Z1
2 (µ) induces a change in BRST cohomology represented, much

as had been anticipated. In this case, the change is ŝ0-exact and thus corresponds to a

canonical reparametrization, as discussed in [7], and so Z1
2 is a wavefunction-like

parameter. Its presence is necessary as it ensures Γ1
2 is independent of the initial point

µ of the renormalized trajectory, since a change of µ 7→ αµ in Bµνα(p,Λ) can be

absorbed by a change δZ1
2 = − logα/(4π). Finally, the one-loop solution all put

together is

(4π)2Γ1
2q = Λ2

∫ ∞
0

duC(C − 2)

(
1

2
ϕ∗∂ · c− 9

8
ŝ0(c∗µcµ)

)
− 1

2
ϕ∗�∂ · c

+ ŝ0

(
1

4
H∗µν∂µ∂νϕ+

5

16
c∗µ�cµ

)
+

1

2

∫ ∞
0

duu(C ′)2 ŝ0

(
H∗µν∂µ∂νϕ−

5

4
c∗µ�cµ

)
+

1

2

(
(4π)2Z1

2 (Λ) +

∫ 1

0

du

u
(1− C)2 +

∫ ∞
0

du

u
C(C − 2)

)
ŝ0

(
H∗µν∂µ∂νϕ+

3

4
c∗µ�cµ

)
.

(4.116)

If we work with scaled variables, where Λ is absorbed according to dimensions, then

Γ1
2q depends on Λ only indirectly through Z1

2 . The scaled result is thus of the same

self-similar form one would expect of a renormalized trajectory [2]. Renormalization

schemes then follow from renormalization conditions (initial conditions) on Z1
2 . For

example, MS is recovered using the condition

Z(µ) = 0 at µ = µR (4.117)

which sets z1
2 = 0.

We can evaluate the physical limit limΛ→0 Bµνα(p,Λ) = Bµνα(p) by evaluating (4.110)

with the cutoffs set to 1 and dealing with this in the same manner as a standard

Feynman integral to give us (in the above scheme)

(4π)2Bµνα(p) =

(
3

4
p2pµδνα −

1

2
pµpνpα

)
log

(
p2

µ2

)
+

2

3
pµpνpα −

5

6
p2pµδνα +

1

6
δµνp

2pα

(4.118)

where the net effect of the complementary solution and renormalization condition is to

replace µR by µ.
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4.10.2 Antighost level zero

At level zero, we write the one-loop solution (4.101) as

Γ0
2q = Γ̌0

2q2 + δΓ0
2q(µ) + I0

2Λ − I0
2µ, (4.119)

where the first two terms are the complementary solution where we have split off the

one-loop tadpole. Using a similar notation to above, we write

I0
2Λ =

1

2

∫
p
Hµν(p)AIµναβ(p,Λ)Hαβ(−p). (4.120)

Here, AIµναβ(p,Λ) has two contributions: one from two copies of Γ̌1
1 connected by ghost

propagators and one from two copies of Γ̌0
1 connected by graviton propagators. In the

following we will understand Aµναβ to be symmetrised on (µ, ν) and on (α, β), and

indeed symmetrised under the interchange of these pairs. In d = 4, the formal integral

we get is

AIµναβ(p,Λ) =

−
∫
q

CΛ(q)CΛ(p+ q)

q2(p+ q)2

(
pµpνpαpβ + 2pαpβpµqν + 2pαpβqµqν + pαpβqνqβ + 2pαqβqµqν

+ qαqβqµqν − p2δαµpνpβ −
1

2
p2δµν(pαpβ + 3pαqβ + 3qαqβ) +

1

16
p4δµνδαβ +

1

2
δµαδνβ

)
+

∫
q

CΛ(q)CΛ(p+ q)

q2

(
1

8
p2δαβδµν +

5

4
p · qδαβδµν − p · (p+ q)δµαδνβ

+ 2δαµ(p+ q)β(p+ q)ν − δµν(pαpβ + 3pαqβ + qαqβ)

)
+

1

4
δµνδαβ

∫
q
CΛ(q)CΛ(p+ q).

(4.121)

Once again, this is defined using dimensional regularization and MS. We thus find

that, Taylor expanding in p,

(4π)2I0
2Λ = Λ4

∫ ∞
0

duuC(C − 2)

(
5

24
h2
µν +

1

8
ϕ2

)
+ Λ2

∫ ∞
0

duC(C − 2)

(
5

24
ϕ∂µ∂νhµν +

5

8
(∂µhµν)2 − 19

48
(∂ρhµν)2 − 5

32
(∂µϕ)2

)
+ Λ2

∫ ∞
0

duu2(C ′)2

(
1

12
ϕ∂µ∂νhµν +

1

8
(∂µhµν)2 +

7

96
(∂ρhµν)2 +

1

16
(∂µϕ)2

)
+O(∂4).

(4.122)

This is a unique result, but acquires a log µR dependence in the O(∂4) terms, which

are not shown here as there are too many of them. As before, the complementary

solution is chosen such that this is a solution (ignoring the tadpole) up to converting



86 Chapter 4. Pure Gravity in the BV Formalism

the log µR dependence to log µ dependence. Similarly to above, we find

δΓ0
2q(µ) = I0

2µ + Z0
2a

(
R

(1)
µναβ

)2
+ Z0

2b

(
R(1)

)2
(4.123)

where, to one loop we have

Z0
2a(µ) = − 1

(4π)2

61

120
log

µ

µR
+ z0

2a, Z0
2b(µ) = − 1

(4π)2

23

120
log

µ

µR
+ z0

2b. (4.124)

As before, κ2Z2a,b ensure that the full solution is independent of µ at this order, and

also ensures that the scaled result is a self-similar solution [2]. Since the only other

logµ dependence, which is in Γ1
2q(µ), is ŝ0-closed, this addition must also be ŝ0-closed

(since the total must be), but it clearly is by virtue of being invariant under linearised

diffeomorphisms. Indeed, they are also cohomologically trivial:

ŝ0(ϕ∗R(1)) = Q−0 (ϕ∗R(1)) = −
(
R(1)

)2
(4.125)

ŝ0(H∗µνR
(1)
µν ) = 2G(1)

µνR
(1)
µν =

1

2

(
R

(1)
µναβ

)2
− 1

2

(
R(1)

)2
(4.126)

and thus, due to the action of the Koszul-Tate differential, these terms vanish when

the free equations of motion are satisfied (i.e., on-shell) and so the Z0
2a,b are again

wavefunction-like [25]. Indeed, this could be seen directly, using the Gauss-Bonnet

identity

4
(
R(1)
µν

)2
=
(
R

(1)
µναβ

)2
+
(
R(1)

)2
(4.127)

to eliminate the square of the linearised Riemann tensor, and noting that the free

equations of motion read Rµν = 012. As previously, the MS scheme is recovered by

choosing z0
2a,b = 0 as our renormalization condition. In the physical limit, the tadpole

correction Γ2q2 vanishes, so once again the net effect of the renormalization condition

is to swap µR for µ. For the physical (Λ→ 0) Γ0
2 two-point vertex we have (where

Aµναβ is understood to be appropriately symmetrized)

(4π)2Aµναβ(p) =

(
7

10
pαpβpµpν −

23

60
p2δαβpµpν −

61

60
p2δαµpβpν +

23

120
p4δαβδµν

+
61

120
p4δαµδβν

)
log

(
p2

µ2

)
+

19

75
pαpβpαpβ −

1229

1800
p2δαβpµpν

− 283

1800
p2δαµpβpν +

1829

3600
p4δαβδµν +

283

3600
p4δαµδβν

(4.128)

where the quartic multiplying the log term is the same as appears in (4.123).

12Note that our coefficients do not agree with those in [25], which are computed using the background
field method. Indeed, agreement is only required on-shell, which is trivial in this case since all of the
terms vanish.
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Finally, we look at the one-loop second order mST (4.102) at antighost level zero. We

can write this as, using (4.89) to eliminate the antibracket,

Q0

(
Γ0

2q − Γ̌0
1q2

)
+Q−0 Γ1

2q = − trCΛΓ̌
(2)
1∗ ∆ΛΓ̌

(2)
1

∣∣∣0 (4.129)

since ∆Γ2 trivially vanishes. This last term has three contributions: one with Γ̌2
1 and

Γ̌1
1 differentiated with respect to (anti)ghosts, and the other two using Γ̌1

1 differentiated

with respect to H∗. One of these has a second copy of Γ̌1
1 differentiated with respect to

H and c̄, or Γ̌1
0 where the differentials are both with respect to H. The result is then

− trCΛΓ̌
(2)
1∗ ∆ΛΓ̌

(2)
1

∣∣∣0 = i

∫
p
Hµν(p)Fµνα(p,Λ)cα(−p), (4.130)

where

Fµνα(p,Λ) =

∫
q

CΛ(q)CΛ(p+ q)

q2

(
δµνq

2pα + 3δµνq
2qα + 2qµqν(p+ q)α + 4pµpνqα

− 2p · q(p+ q)(µδν)α + p · qδµν(p+ q)α − 4δµνqαp
2

)
.

(4.131)

The above A, B and F vertices are analogous to vertices in Yang-Mills theory, which

were labelled similarly in [35]. Note that since Fµνα is regulated in both the UV and

IR (and hence has no 1/ε divergences), it is unaffected by MS.

If we write G
(1)
µν in momentum space as

G(1)
µν (p) = −G(1)

αβµν(p)Hαβ(p), (4.132)

we now see that (4.129) is a modified Slavnov-Taylor identity for two-point vertices:

Aµναβpβ +G(1)
µνρσBρσα =

7

8
bΛ4

(
δµνpα − 2p(µδν)α

)
+

1

2
Fµνα. (4.133)

Note that in the physical limit Λ→ 0, the RHS vanishes, and this equation simply

because the normal (unmodified) Slavnov-Taylor identity: it simply says that, on-shell

(G
(1)
µν = 0), the amplitude A is gauge invariant. One can check that the physical

vertices do indeed satisfy the Λ→ 0 limit of this equation. Further manipulation

(involving the identity CΛ = 1− CΛ, similar to those seen in [35] then shows that

(4.133) also holds at general Λ. In fact, the Bianchi identity pµG
(1)
µν , ensures that only

the last term in the physical B vertex (4.118) makes a contribution. Thus, (4.133)

states that the part of the physical A vertex which is dependent on renormalization

conditions, that is the log p2/µ2 part of (4.128), is transverse, which in fact was also
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seen in (4.123). The derivative expansion of F gives us

− (4π)2 trCΛΓ̌
(2)
1∗ ∆ΛΓ̌

(2)
1

∣∣∣0 =

Λ4

∫ ∞
0

duuC(C − 2)

(
5

6
hµν∂µcν +

1

4
ϕ∂ · c

)
− bΛ4

(
7

6
hµν∂µcν +

15

4
ϕ∂ · c

)
+ Λ2

∫ ∞
0

duC(C − 2)

(
1

3
hµν�∂µcν +

11

8
ϕ�∂ · c− 11

12
hµν∂µ∂ν∂ρcρ

)
+ Λ2

∫ ∞
0

duu2(C ′)2

(
1

24
hµν∂µ∂ν∂ρcρ +

13

24
�∂µcν

)
+O(∂5)

(4.134)

and thus we can see that the mST (4.129) is satisfied up to this order. In particular we

see that the tadpole contributions are exactly such that the O(∂0) and O(∂2) terms

match.

4.11 Discussion

We have seen that, at second order in perturbation theory, the end result is the

standard one for the one-particle irreducible effective action at O(κ2), which is

therefore a one loop contribution. Since so far we have dealt with pure gravity with

vanishing cosmological constant, the logarithmic running within the

diffeomorphism-invariant subspace is due to wavefunction-like reparametrisations. This

is true in the standard quantisation [25] but is also seen in the new quantisation, as we

might expect within the diffeomorphism-invariant subspace. Outside of this subspace,

however, these reparametrisations are not purely wavefunction-like, but are

accompanied by coefficient functions, which at antighost level zero take the form

δHµν = R(1)
µν f

a
Λ(ϕ, µ) + δµνR

(1)f bΛ(ϕ, µ) (4.135)

where

f iΛ(ϕ, µ)→ ciκ
2 logµ as Λp → 0 (4.136)

with ci (i = a, b) being numerical constants. There are also infinitely many

perturbative reparameterisations possible of the form

δϕ = fΛ(hµν , ϕ). (4.137)

Some combinations will correspond to redundant operators [93, 94], which will lead to

the kinds of reparametrisations that would lead to a demonstration of the quantum

equivalence of unimodular gravity and ordinary gravity [34, 95] within the new

quantisation.
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Note that the logarithmic running encapsulated by Z1
2 (µ) and Z0

2a,b(µ) is not the only

logarithmic running in the theory. Infinitely more cases will be generated in the

derivative expansion of the general solution for the second-order renormalized

trajectory (4.95) [89]. However, all of these other cases vanish as a power of Λp in the

amplitude suppression scale limit.

We would expect that once we add matter and/or a cosmological constant, it would no

longer be the case that the logarithmic running within the diffeomorphism invariant

subspace is attributable to a reparametrisation. Instead we would expect them to be

attributed to new diffeomorphism invariant effective couplings. The reason for this is

simply because, in δΓ2q(µ), we now have that Rµν 6= 0 on-shell due to now having a

non-zero energy-momentum tensor. These new couplings are precisely the same

couplings as those which need to be introduced in the standard quantisation [25].

Indeed, these similarities between the new and old quantisation are inevitable. Once

we are in the diffeomorphism invariant subspace, we are obeying both the RG flow

equation and the mST, and so the solution in fact must correspond to an RG flow in

the standard quantisation. The difference is purely in how one views the couplings, i.e.,

whether we define the theory using κ as a coupling or not. The problem in standard

quantisation is that the flows have an infinite number of parameters, with new ones

appearing at each loop order. In the standard quantisation they are identified with

renormalized couplings, and the corresponding bare couplings are required to absorb

the UV divergences. Thus we cannot construct a reormalized trjactory. This is as one

might expect in the Wilsonian framework for the irrelevant coupling κ, with [κ] = −1.

In the new quantisation we have found a way around this and constructed a genuine

perturbative renormalized trajectory. It has been shown (in the above and [4, 34, 89])

that this works at both first and second order. It emnates from the Gaussian fixed

point along directions provided by the (marginally) relevant couplings gσ2l+ε and it is

these which absorb the UV divergences. Once inside the diffeomorphism invariant

subspace, this renormalized trajectory must coincide with a subset of the RG flows

derived within the standard quantisation. The only question is which subset this will

be. Since we send Λp →∞ to recover diffeomorphism invariance, we know that these

flows must exist to Λ→∞ within the diffeomorphism invariant subspace, despite the

fact that within this subspace they do not qualify as part of a perturbative

renormalized trajectory.

Once inside the diffeomorphism invariant subspace, the underlying couplings gσ2l+ε
disappear and the trajectory is then parametrised by diffeomorphism invariant

effective couplings. One possibility is that there is no restriction: the subset in is the

whole set and the effective couplings are in one-to-one correspondence with the

couplings required in standard quantization. Clearly, this would be disastrous for the
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predictivity of the theory, however there is currently nothing to suggest that there are

any inconsistencies with such a scenario.

Even if this is indeed the outcome, the new quantisation nevertheless provides a

different perspective. For example, it is not true that the introduction of these higher

order couplings require a loss of unitarity, provided that their signs are chosen to avoid

wrong sign poles in the full propagators. In standard quantisation, the assumption is

that once couplings are introduced for e.g. the curvature-squared terms, these

couplings must be part of some “fundamental” bare action, and thus from the

beginning turn the theory into one with higher derivatives even at the free (bilinear)

level. Here, however, the bare action lies outside the diffeomorphism invariant

subspace. The higher derivative interactions there must always be accompanied by a

δ
(n)
Λ (ϕ) operator, and thus cannot alter the kinetic terms. In other words, the bilinear

action maintains its two-derivative form [34].

It still remains the case that the perturbative development of the theory is organised in

powers of κ and therefore by dimensions, accompanied by increasing numbers of

spacetime derivatives at higher order. But since we are dealing with a theory with a

genuine continuum limit, the fact that perturbation theory breaks down when κ∂ > 1

(∂ here stands for the typical magnitude of spacetime derivatives) simply indicates

that the theory becomes non-perturbative in this regime and is not a signal of the

breakdown of an effective quantum field theory description.

It is clear that it is the logarithmically running terms and the finite part ambiguities

(necessarily BRST invariant) that demand the introduction of new couplings order by

order in perturbative quantum gravity. In contrast, the power-law Λ-dependence is

computed unambiguously. Nothing in perturbation theory demands that any new

couplings be associated to such Λ2n terms (with n > 0 an integer). We also note that

the field dependence associated to Λ2n is intimately related to the modifications of the

Slavnov-Taylor identities, which tell us to what extent BRST invariance is violated.

Thus the problem in quantum gravity is to find the mechanism, if there is one, that

determines (all or some of) the finite parts associated to the log(Λ/µ) terms that

appear at the perturbative level. If, for example, all these parameters are fixed by such

a mechanism, we would be left with only one new parameter at the quantum level: the

mass scale that arises by dimensional transmutation from the very existence of the RG

(the equivalent to ΛQCD in QCD).

In fact we know that at third order, the first-order couplings will run with Λ [89]. It is

conceivable that this running and the required subsequent matching into the

diffeomorphism invariant subspace plays a role in providing this missing mechanism.

Below, another possibility is discussed, which hints that this mechanism arises solely

from insisting that the RG flow within the diffeomorphism invariant subspace remains

non-singular all the way to Λ→∞. One well-studied possibility is a non-perturbative
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UV fixed point: the asymptotic safety scenario [96–98]. However note that the current

construction was born of attempts to solve issues with the degeneration of the fixed

points and eigenoperator spectrum that are seen in that scenario if one goes

(sufficiently carefully) beyond truncations involving just a finite number of operators

(see, e.g., [4, 99]). Below a mechanism for fixing the parameter is explored which

follows from the same mathematical properties of the partial differential flow equations

that lead to these problems in the first place.

4.12 A possible non-perturbative mechanism

In the conformal sector, the infinite number of couplings gσ2l+ε lead to a new effect,

namely the fact that almost always, even at the linearised level, RG flows towards the

IR become singular and then cease to exist [5, 29]. The subsequent development, seen

above and in [4, 34, 89] makes use of this in a fundamental way. Indeed it is for this

reason that the construction requires the initial point µ for the renormalized trajectory

(4.95) to lie below Λp, with most of the trajectory then being safely developed from

the IR to the UV. This is due to the fact that we are dealing with solutions of a

parabolic differential equation that are non-polynomial in the amplitude: such

solutions are only guaranteed when flowing from the IR to the UV.

Of course, these comments apply equally to the hµν sector but with the crucial

difference that there the equation is reverse parabolic, with solutions only guaranteed

when flowing from the UV to the IR. The problem is not seen for polynomial linearised

solutions, because these solutions are a finite sum of eigenoperators (Hermite

polynomials) with constant coefficients. However, diffeomorphism invariance, which is

imposed in the IR (i.e., in the diffeomorphism invariant subspace) requires us to use

solutions which are non-polynomial in the amplitude of hµν , since there are terms

which depend on both gµν and gµν . Thus diffeomorphism invariance forces us to

consider solutions which are non-polynomial in hµν , evolving from the IR to the UV.

Such solutions almost always fail at some critical scale Λcr before we reach Λ→∞, in

exactly the same way that the flows in the conformal sector fail in the IR.

In reality the solution must exist simultaneously in both the hµν and ϕ sectors.

Looking again at the linearised flow equation (4.42), we consider a solution δΓ.

Isolating the hµν and ϕ amplitude dependence, we can expand δΓ over monomials

ζµ1...µn :

δΓ =
∑
ζ

ζ(∂, ∂ϕ, ∂h, c,Φ∗)f ζΛµ1...µn
(hαβ, ϕ) + . . . (4.138)

where once again we use the ellipsis to denote tadpole corrections to ensure that the

above is indeed a solution of the flow equation. These new coefficient functions f ζΛ are

necessarily non-polynomial in its arguments as argued above. Now, using the linearised
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flow equation (4.42) it can be shown that the coefficient functions have a flow equation

ḟ ζΛµ1...µn
= ΩΛ

(
∂2

∂h2
µν

− ∂2

∂ϕ2

)
f ζΛµ1...µn

(4.139)

and hence the problem is clearly on display. The equation in either the ϕ or the hµν

sectors are parabolic, but in opposite directions. Therefore, the Cauchy initial value

problem is not well-defined for either direction. Evidently, one or the other sector will

generically develop singularities (cusps) in finite time, unless very special initial

conditions are used. In our language, this means that the RG flows will be a heavily

restricted subspace of all possible flows one could construct within the diffeomorphism

invariant subspace. It is worth noting that in this property is not solved by moving to

the full non-linear flow equations, it merely obscures this property. In this section,

hints are uncovered that the only independent couplings that are allowed to exist are κ

and the cosmological constant.

It is worth noting that this issue only applies to the fields which are differentiated in

the flow equation, i.e., the quantum fields, whose second order derivatives together

with the RG time derivative make the equations (reverse) parabolic. It does not apply

to the antifields, nor does it apply to background fields if the background field method

is used. Indeed, it also does not apply to the ghost fields, since these are

Grassmann-odd and therefore their dependence is necessarily polynomial. Thus the

issue only arises for the quantum fluctuation fields hµν and ϕ.

To take this further, we recall that the finite part ambiguity δΓ(l) that appears at l-loop

order is a local Λ-independent operator, and its dimension is determined by factors of κ

[δΓ(l)] = 2(l + 1). (4.140)

We note that for the mST (4.38) to be satisfied within the diffeomorphism invariant

subspace, we require (Γ0, δΓ(l)) = 0 (since all the other parts are higher loop order).

Thus, at l-loop order the ambiguous parts δΓ(l) must be invariant under the full

classical BRST transformations, reflecting standard treatments [87, 88, 100]. In

particular, the level zero part δΓ0 must be diffeomorphism invariant, and thus at

one-loop are curvature-squared terms, as seen in δΓ0
2q (4.123). At two-loop, they must

be κ2 times curvature squared or higher-derivative terms such as κ2R∇2R, and so on.

Thus they are indeed non-polynomial in hµν (and indeed ϕ as imposed by the new

quantisation).

At higher loop orders than l, δΓ(l) gets altered by the flow equation (4.37) and mST

(4.38) in non-straightforward ways. If we model the situation by simply using the

linearised flow equation (4.42) and imposing δΓ = δΓ(l) at Λ = 0, then the

perturbation will no longer satisfy BRST invariance or the mST when Λ > 0. However,

we will still find restrictions that arise from the fact that the flows are typically
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singular. We see that the equation (4.139) is formally solved by Fourier transform:

f ζΛµ1...µn
(hαβ, ϕ) =

∫
d9παβdπ

(2π)10
fζµ1...µn(παβ,π)e

1
2

ΩΛ(π2
µν−π2)+iπµνhµν+iπϕ (4.141)

where πµν and π and the conjugate momenta to hµν and ϕ respectively (hence πµν

traceless). Note that fζµ1...µn is the Fourier transform of

f ζµ1...µn = lim
Λ→0

f ζΛµ1...µn
(4.142)

as can be seen by setting Λ = 0 in the above. However, for the above to be more than

a formal solution, we need the Fourier integral to converge. Note that as Λ increases

from zero, convergence in the ϕ sector only improves, as it is weighted by e−
π2

2
ΩΛ ,

reflecting the fact that the Cauchy initial value problem is well defined for this sector

when we flow from the IR to the UV. By contrast, the hµν sector has an exponentially

growing weight, and thus we see that, at fixed π, fζ must decay faster than an

exponential of π2
µν , or the solution will be singular at some critical scale Λ = Λcr ≥ 0,

above which the flow will cease to exist.

We thus see that the flows will only exist for carefully chosen parametrisations of the

metric in terms of hµν and ϕ. Now we show that solutions of the form (4.141) cannot

exist simultaneously for all of the δΓ that match the diffeomorphism invariant δΓ(l) at

Λ = 0. If we take the Einstein-Hilbert action as an example and expand over

monomials as in (4.138), the required strong suppression of πµν in fζ means the for the

above to be a solution, there must be no rapid variation of the Einstein-Hilbert action

under changes in the hµν amplitude. At a minimum, we need a parametrisation that

exists for all amplitudes. This is not true of the standard linear split of gµν , which is

not positive definite for all hµν and ϕ, and is singular at κϕ = −2 and whenever κhµν

has −1 as an eigenvalue. This can be cured by parametrising the metric in terms of an

exponential of κhµ
ν (seen as a matrix), which would also ensure that the measure

√
g

does not lead to any branch cuts [101–105].

Such a parametrisation is not yet enough to allow a solution of the form (4.141). Note

that we already require faster than exponential decay, we thus have |fζµ1...µn |2

integrable. Therefore, we know that, by Parseval’s theorem, the squared coefficient

functions f ζΛµ1...µn
must also be integrable over d9hαβdϕ. This therefore means that

the coefficient functions f ζΛµ1,...µn
vanish as hαβ →∞. Now, since

√
gR 7→ α

√
gR

under scaling gµν 7→ αgµν (where α is some constant), we see that this final condition

will hold for the Einstein-Hilbert action if and only if gµν itself vanishes in this limit.

A Fourier solution of the form (4.141) for the cosmological constant term is then not

ruled out by this condition, since
√
g 7→ α2√g and thus will also vanish in the limit

hαβ →∞. However, all higher derivative terms are then ruled out from having such
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solutions, since curvature squared terms go like α0, while higher orders behave as

negative powers of α and thus diverge in the limit hαβ →∞.

Note that despite the fact we are modelling using only linearised solutions, these

argument are non-perturbative in κ, because the breakdown in the solutions happens

at finite or diverging κhµν . In general, the level zero part satisfies δΓ(l) 7→ α1−lδΓ(l),

and thus if these perturbations had to extend to solutions δΓ of Fourier type (4.141),

we would have shown that, despite the apparent freedom to change individually the

new effective couplings that appear at each loop order, non-perturbatively in κ the

requirement that the renormalized trajectory is non-singular actually rules out all such

infinitesimal changes δΓ(l). We would therefore like to conclude that the only freely

variable couplings are in fact κ itself and the cosmological constant.

However, such a dramatic conclusion cannot be drawn from this. These arguments can

only really be interpreted as hints. Firstly, we note that there are solutions to the

linearised flow equation (4.139) that are not of the Fourier form (4.141). For example,

there are solutions which are polynomial in the graviton, but fζ is then distributional.

That is, a sum δ(παβ) and its derivatives. In addition, δΓ(l) do not in fact satisfy the

linearised equation (4.139), but instead

δΓ̇(l) =
1

2
str

(
∆̇Λ∆

(−1)
Λ

[
1 + ∆ΛΓ

(2)
I

]−1
∆ΛδΓ

(2)
(l)

[
1 + ∆ΛΓ

(2)
I

]−1
)

(4.143)

which is evidently much more involved than the simple linearised equations. However,

it does share the property that the Cauchy initial value problem is not well defined in

either direction.

Indeed, if we were to expect any other terms to arise from a more complete analysis,

we would guess that some curvature-squared terms are also present. These are almost

always seen in other studies of quantum gravity, and were only “marginally excluded”

using our crude analysis above (i.e., they scaled like α0 or logarithmically). A more

detailed calculation should shed light on whether the coefficient of R2 is freely variable.

4.13 Summary, conclusions and outlook

Everything in this chapter relates back to the observations of Chapter 2, and noting

that flows close to the Gaussian fixed point which involve the conformal factor ϕ

remain well-defined only if they are expanded over a countably infinite set of

increasingly relevant operators δ
(n)
Λ (ϕ). The conceptual result is best summarized in

Figure 4.1. The key difference between this and the standard quantisation is that the

UV part of the trajectory is outside the diffeomorphism invariant subspace. Thus, the

quantisation is defined “off space-time”. In the UV, the traceless fluctuations hµν and

conformal factor ϕ act as separate fields. The dynamical metric gµν , which combines
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these as required by diffeomorphism invariance then only comes to be within the

diffeomorphism invariant subspace.

The other key difference is that the renormalized trajectory is now parametrised in

terms of an infinite set of couplings gσ2l+ε. These parametrise the flow outside the

diffeomorphism invariant subspace. Within this subspace, we see that diffeomorphism

invariance is recovered if we insist that certain “trivialisation” conditions hold. In this

case, we see that the infinite number of couplings collapse to form one effective

coupling, κ. Thus, within the diffeomorphism invariant subspace, the QFT can be

constructed using κ despite the fact that [κ] = −1, simply because κ does not exist

near the Gaussian fixed point, where the power counting arguments are usually made.

This dependence on an infinite set of couplings somewhat resembles the split Ward

identity. This is an identity used in many studies of background independence and

more complete discussions can be found in [105–118]. The split Ward identity arises

simply from the observation that when a metric is split into a background and

fluctuation

gµν = ḡµν + hµν , (4.144)

then all physical quantities cannot depend on ḡ and h individually, but must depend

on their sum. This is what is meant by background independence. Essentially, the split

Ward identity is to background independence as the mST is to diffeomorphism

invariance.

The breaking of the mST is somewhat similar to the breaking of the split Ward

identity, in that it results in a diffeomorphism invariant operator splitting into an

infinitely many terms, each of which has couplings which flow independently. However,

there are some crucial differences. Firstly, there is the fact that the split Ward identity

is broken by gauge-fixing terms, at which point the correct thing to use is the

Slavnov-Taylor identity, i.e., the identity which ensures BRST invariance for the

quantum fields (that is, the appropriate generalisation of diffeomorphism invariance).

This is then broken by the cutoff, at which point we use the mST which, as we have

seen, ensures that BRST invariance is respected in the limit in which the cutoff is

removed.

More strikingly, although the breaking of both the split Ward identity and the mST

result in operators splitting into infinitely many parts, only in the current formalism

are infinitely many of these are relevant near the Gaussian fixed point. In the standard

treatment using the split Ward identity however, only the h, h2 and h3 terms are

relevant, arising from the splitting of the cosmological constant term.

It is worth emphasising here why the use of L− and allowing flows to exist off the

diffeomorphism subspace are both required for this construction to work. Without the

requirement that functions of ϕ lie in L− (and its generalization when other fields are
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included), the eigenoperator spectrum degenerates and becomes continuous, and it is

no longer possible to unambiguously divide a perturbation into its relevant and

irrelevant parts [99]. This problem went unnoticed for a long time simply because of

the fact that to see it, one must work with solutions that involve an infinite number of

operators. However, since truncations have long been a large part of studying

behaviour of theories under Wilsonian RG, investigations into quantum gravity

involving the RG have involved truncations with only a finite number of operators

retained, with few exceptions [43, 119, 120].

One may expect that restricting flows to the diffeomorphism invariant subspace (in

contrast to Figure 4.1) may help matters since diffeomorphism invariance at the

classical level restricts the functional dependence of the conformal factor to just a few

operators at any given order in the derivative expansion. However, upon a more

careful analysis, the f(R) approximations [105, 106, 121–129], which are

diffeomorphism invariant and keep an infinite number of operators, also display the

degeneration of the eigenoperator spectrum.

Using the BRST formalism to express the diffeomorphism invariance, this chapter has

outlined how to construct the first and second order gravitational action. It was shown

in [89] that the renormalized trajectory can be solved at second order, and indeed that

the required trivialisation can take place. In [7] it was shown that it is indeed possible

for the renormalized trajectory to enter the diffeomorphism invariant subspace. The

subsequent evolution was then solved, in particular in the physical limit Λ→ 0 where

one obtains the physical amplitudes. It is worth noting that the result is equivalent to

solving for quantum gravity at one loop and O(κ2) in standard perturbation theory.

Therefore, as in the standard case, we find that the effective parameters left behind are

associated to logarithmically running terms at this order, and that for pure quantum

gravity these are not physical because they can be absorbed by reparametrisations.

Finally, we note that the flow equations for hµν and ϕ sectors are parabolic in opposite

directions (towards IR and UV, respectively). This means in particular that when we

want a solution that involves both (and of course, physically we do) that the Cauchy

initial value problem for the flow equation is not well-posed. In particular, if we use

solutions which are non-polynomial in hµν and ϕ (which is required by diffeomorphism

invariance) then the flows are typically singular. Some hints were found that this

property would give a mechanism by which the free parameters in the theory are just κ

and the cosmological constant. However, this would require a much more careful

treatment, and indeed more study of how the presence of a cosmological constant

affects the quantum properties of gravity within this new quantisation.
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Chapter 5

Coupling a Scalar to Gravity

5.1 Introduction

Following Chapter 4, we wish to extend the formalism by including matter in the

theory. As such, we will consider the simplest form of matter, a complex scalar χ. In

addition, this chapter will include more detailed calculations than in the pure gravity

case, since the methods used are easier to show in this case since the expressions tend

to be somewhat simpler. We do note however, that the treatment in this chapter is

rather simplistic and takes place entirely within the diffeomorphism invariant subspace

of the theory. In order to gain a full understanding of the effects of adding matter to

the theory, one would have to construct the theory off space-time, and then show that

the required trivialisation can take place with a scalar present.

In addition, the notion of a perturbation series itself is potentially a problem.

Previously, the perturbation series was ordered by powers of κ, and this made things

easier since the terms at each order have definite mass dimension. However, once one

includes other dimensionful couplings, such as a mass term, then Mκ is a

dimensionless combination, and many of our notions of ordering in the perturbation

series become significantly less powerful as an organisational tool. Furthermore, with

additional couplings comes additional power series, and this leads to significant

complications when trying to construct such theories. Nevertheless, we will look at

some of the results within the diffeomorphism invariant subspace in the most “naive”

way, and see what alterations this makes to the theory when constructed entirely

within the diffeomorphism invariant subspace.

We first see in Section 5.2 how the BRST operator behaves for the scalar and how the

free action is required to be modified. Then in Section 5.3 we see how this is used to

construct the first order action, and we see how the “standard” classical solution (as

one would get from an appropriately covariantised kinetic term) is modified by
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quantum corrections to ensure that the action is a solution of both the flow equation

and mST to this order. Sections 5.4 & 5.5 show this process in action for the second

order part of the action, which is where the logarithmic divergences start to appear

and we follow the pure gravity example to absorb these with wave-function like

corrections to the complementary function. Finally, Section 5.6 shows how the action

derived in previous sections is compatible with the expression of diffeomorphism

invariance in the mST, and how the tadpole corrections are required to make it so.

5.2 Free action and BRST algebra

We start with the free action for the graviton, and then we add the kinetic term for a

complex scalar field χ. Note that in the BRST formalism, we also need to add an

antifield with a BRST source term −(Qχ)χ∗. Using our conventions from the previous

chapter, we treat cµ as a contravariant vector field and we will use upstairs/downstairs

indices interchangeably. Now, since we treat κcµ as the small diffeomorphism when

defining the transformation of the graviton, we are required by consistency to also do

so here. As before, we are treating δµν as our background metric, and therefore we will

not draw a distinction between upstairs and downstairs indices. Thus we have, from

the standard transformation of a scalar field under diffeomorphisms,

Qχ = κcµ∂µχ (5.1)

and similarly for the complex conjugate χ̄. In particular, we note that this term is

O(κ), and thus must not appear in the free action. Thus the free action for a graviton

plus a complex scalar is

Γ0 =
1

2
Hµν(∆µν,αβ)−1Hαβ − 2∂µcνH

∗
µν + ∂µχ∂µχ̄ (5.2)

where ∆µν,αβ is the graviton propagator. Even though Γ0 is well-defined in its own

right (i.e., without reference to a metric or gravity), the interpretation we have in mind

is that Hµν is the metric fluctuation1

gµν = δµν + κHµν (5.3)

and we will bear this in mind when we check our algebraic answers using the geometry.

All of the previous free BRST transformations and Koszul-Tate differentials are

unchanged, but we repeat them here for convenience including the new

transformations of the scalar:

Q0cµ = 0, Q0Hµν = 2∂(µcν), Q0χ = 0, Q0χ̄ = 0 (5.4)

1Note that this also explains interchanging upstairs and downstairs indices: we have δµν as a back-
ground metric.
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Q−0 c
∗
µ = 2∂νH

∗
µν , Q−0 H

∗
µν = −2G(1)

µν , Q−0 χ
∗ = −�χ̄, Q−0 χ̄

∗ = −�χ (5.5)

where we’ve defined the linearised Einstein tensor

G(1)
µν =

1

2
�Hµν − δµν�ϕ+ ∂µ∂νϕ+

1

2
∂α∂βHαβ − ∂(µ∂

αHν)α. (5.6)

One important thing to note is that for a general field Φ with antifield Φ∗, we have

Φ̄∗ = −Φ∗ (5.7)

in order to make the action real. This will be a useful fact to consider when

constructing the action at first order.

5.3 First order action

We write the first order classical action as

Γ̌1 = Γ̌H1 + Γ̌χ1 (5.8)

where Γ̌H1 is the action that appears in Section 4.7. In general, the H superscript will

mean the pure gravity action and the χ superscript will mean the additional terms

that arise from the presence of a scalar. We also assume that the full action due to the

scalar Γχ has been expanded in κ and graded by antighost number in a notation which

is hopefully clear. Now, since Γ̌2
1 was found uniquely, there is no contribution from the

χ sector. Thus the BRST descent equations for this part of the action reduce to

Q0Γ̌χ1
1 = 0, Q0Γ̌χ0

1 +Q−0 Γ̌χ1
1 = 0. (5.9)

Now we search for terms with which to build Γ̌χ1
1. Clearly the terms allowed must

contain χ or χ∗ (and/or complex conjugates thereof), have mass dimension 5,

vanishing total ghost number and antighost number 1. The most general form that is

annihilated by Q0 is

Γ̌χ1
1 = α ([∂µχcµχ

∗ + ∂µχ̄cµχ̄
∗]− [χcµ∂χ

∗ + χ̄cµ∂µχ̄
∗]) (5.10)

where α is some constant. Note that we have excluded symmetric combinations of the

terms in square brackets since these would be equivalent (after integration by parts) a

piece which is Q0-exact, and thus ignored since we are dealing with the cohomology2.

In fact, after integration by parts, we can remove another Q0-exact piece and have

Γ̌χ1
1 = β(∂µχcµχ

∗ + ∂µχ̄cµχ̄
∗) (5.11)

2In principle there are terms linear in χ such as cµ∂νχH
∗
µν which can be made real by adding the

complex conjugate, but it can be shown that these terms cannot by consistent with the descent equations.
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for some other constant, β. This constant will not be fixed until second order, and

represents the relative strength of the gravitational coupling of the scalar compared to

the graviton. In addition, we see that this form is as expected, since

κΓ̌χ1
1 = β(Qχ)χ∗ + β(Qχ̄)χ̄∗ (5.12)

which corresponds to the BRST source term if β = −1. We will see various hints to

this value of β at first order, even if the value is not yet fixed.

Next we use (5.9) to find the antighost level zero part. We find that

Q0Γ̌χ0
1 = −β (∂µχcµ�χ̄+ ∂µχ̄cµ�χ) . (5.13)

Now, since χ is inert under Q0, it follows that each term in Γ̌χ0
1 must have exactly one

χ and one χ̄. Since Hµν is the only other field allowed, then it follows that our general

ansatz (which allows for integration by parts) is

Γ̌χ0
1 = A∂µχ∂νχ̄Hµν +B∂µ∂µχ̄Hνν + C∂µ(χχ̄)∂νHµν +D∂µ(χχ̄)∂µHνν (5.14)

for constants A, B, C and D that we expect to find in terms of β. One can then see

that this is solved by A = β, B = −β
2 , C = 0 and D = 0, and thus we have

Γ̌χ0
1 = β∂µχ∂νχ̄Hµν −

β

2
∂µχ∂µχ̄Hνν . (5.15)

Note that once again, we have uncovered a hint of β = −1, since in this case we would

have exactly the O(κ) piece of
√
g∂µχg

µν∂νχ̄. (5.16)

As before, we note that Γ1 = Γ̌1 is not a solution to the linearised flow equation

(repeated here for convenience)

Γ̇1 = −1

2
str ∆̇ΛΓ

(2)
1 . (5.17)

Similarly to the pure gravity case, we know that the only possible tadpole corrections

have single fields, and thus these do not contribute to the RHS. Thus we have

Γ̇χ1 = −β
∫
p

ĊΛ(p)

p2

δ2

δχ(p)δχ̄(−p)

(
∂µχ∂νχ̄Hµν −

1

2
∂µχ∂µχ̄Hνν

)
. (5.18)

Also similarly to the pure gravity case, we reason that the classical part of the solution

does not run, and therefore, evaluating the functional derivatives, we have

Γ̌χ1q1 =
β

2
bΛ4ϕ (5.19)
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where, as before, ϕ = 1
2Hµν and

bΛ4 =

∫
p
CΛ(p). (5.20)

5.4 Second order classical action

To deal with the second order contributions, we refer to the formulae in Section 4.9.

These are repeated below for convenience

Γ2cl = Γ2cl(µ), (5.21)

s0Γ2cl = −1

2

(
Γ̌1, Γ̌1

)
, (5.22)

Γ2q = Γ2q(µ) + I2Λ − I2µ, (5.23)

s0Γ2q −∆Γ2cl = −
(
Γ̌1, Γ̌1q

)
− trCΛΓ̌

(2)
1∗ ∆ΛΓ̌

(2)
I , (5.24)

recalling that s0 = Q0 +Q−0 is the free classical BRST charge.

We have (in hopefully obvious notation) from (5.22)

s0

(
ΓH2cl + Γχ2cl

)
= −1

2

(
Γ̌H1 + Γ̌χ1 , Γ̌

H
1 + Γ̌χ1

)
(5.25)

but we also know that (5.22) must hold for the gravitational action alone, and thus we

have

s0Γχ2cl = −1

2

(
Γ̌χ1 , Γ̌

χ
1

)
−
(
Γ̌H1 , Γ̌

χ
1

)
. (5.26)

Grading by antighost number, we get Γχ2
2cl = 0 as a consistent solution (this is also

zero by arguments in Chapter 4), and at antighost level one gives us

Q0Γχ1
2cl = −(β2 + β) (∂µχχ

∗cν∂νcµ + ∂µχ̄χ̄
∗cν∂νcµ) (5.27)

but the only way that the RHS can by in the image of Q0 is if the derivatives are

symmetrised, but this can’t be done without removing the terms entirely. Thus we

need β2 + β = 0. This means that the only consistent choices are β = 0, which is pure

gravity, and β = −1, as the hints from first order suggested, and has now been proven.

We thus take β = −1 from now on, and we choose

Γχ1
2cl = 0 (5.28)
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so that Γχ2cl = Γχ0
2cl. Finally, we have

Q0Γχ2cl = ∂(µχ∂ν)χ̄ (cα∂αHµν + 2∂µcαHαν)− 1

2
∂µχ∂µχ̄ (cα∂αHνν + 2∂νcαHαν)

− cµ∂µχ∂ρ(∂σχ̄Hρσ) +
1

2
cµ∂µχ∂ρ(∂ρχ̄Hσσ)

− cµ∂µχ̄∂ρ(∂σχHρσ) +
1

2
cµ∂µχ̄∂ρ(∂ρχHσσ) (5.29)

which, after integrating by parts and making use of the fact that Q0 is a left

derivation, we find

Γχ2cl =

(
HµρHρν −

1

2
HµνHρρ + δµν

(
1

8
H2
ρρ −

1

4
HρσHρσ

))
∂µχ∂νχ̄ (5.30)

which can be shown to be the second order part of
√
g∂µχg

µν∂νχ̄, as we again would

expect. Thus at both first and second order we see that the classical action is exactly

the same as what one would obtain from the perturbative expansion of the covariant

kinetic term for χ.

5.5 Quantum corrections at second order

In order to calculate the second order quantum corrections, we will need to use (5.23),

where

I2k = −1

4
str ∆kΓ̌

(2)
1 ∆kΓ̌

(2)
1 . (5.31)

It can be shown that the only new contributions arise when both of the copies of the

action come from the new scalar sector, since there is no way to have one differentiated

with respect to χ without the other being differentiated with respect to χ̄, and since all

new terms are ∼ χχ̄H, there must be at least one χ derivative to make this contribute.

In addition, the only way to join propagators consistently between the two copies of the

action is in the level zero piece; there is no level one correction. The contributions are

of two types. One involves both copies being differentiated with respect to H and then

χ or χ̄ which will lead to corrections to the χ propagator, and the other involves both

copies being differentiated with respect to both χ and χ̄, which will lead to corrections

to the graviton propagator. We note that since we use the dimensional regularisation

to define our integrals, we must take care to ensure that we work in d dimensions.

5.5.1 Corrections to the scalar propagator

Terms which contribute to the scalar propagator have the form

(∆Λ)χχ̄
(
Γ̌1

)
χ̄H

(∆Λ)HH
(
Γ̌1

)
Hχ

(5.32)
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and the related terms with χ↔ χ̄ and the order of derivatives changed. Thus we have

Iχχ2Λ = −
∫
p
χ(p)Aχ(p,Λ)χ̄(−p) (5.33)

where

Aχ = −
∫
q

CΛ(q)CΛ(p+ q)

q2

(
1

2
δµν(p · q)− p(µqν)

)
∆µν,αβ(p+ q)

(
1

2
δαβ(p · q)− p(αqβ)

)
(5.34)

and

∆µν,αβ(p) =
1

p2

(
δµ(αδβ)ν −

1

d− 2
δµνδαβ

)
(5.35)

is the graviton propagator. Therefore, after some manipulations we obtain

Aχ = −p
2

2

∫
q

CΛ(q)CΛ(p+ q)

q2
. (5.36)

Clearly, in the physical limit this will be automatically subtracted as part of the

dimensional regularisation. Proceeding as previously, we Taylor expand

CΛ(p) = C̄(p2/Λ2) = 1− C(p2/Λ2) up to second order (in order to get the derivative

expansion to order O(∂4), for consistency with the previous work):

CΛ(p+ q) = C̄(u) +
C̄ ′(u)

Λ2

(
2(p · q) + p2

)
+
C̄ ′′(u)

2Λ4

(
2(p · q) + p2

)2
(5.37)

where u = q2/Λ2. Now, we use a general result which proves useful in calculating many

of these integrals. If f(q) is a spherically symmetric function, then we have∫
q
f(q)qµ1 . . . qµ2n =

∫
q
f(q)q2n

n∏
k=1

1

d+ 2(k − 1)

∑
pairs

δµσ1µσ2
. . . δµσ2n−1µσ2n

(5.38)

where the sum is over the ways of dividing the 2n indices into pairs. Thus, for example

it allows us to make replacements such as

qµqν 7 −→
1

d
δµνq

2 (5.39)

qµqνqρqσ 7 −→
1

d(d+ 2)
(δµνδρσ + δµρδνσ + δµσδνρ)q

4. (5.40)

In addition, whenever there is a product of an odd number of qµi , the integral is zero

(odd integrand over symmetric region). Thus we have

Aχ(p,Λ) = −p
2

2

∫
q

C̄(u)2

q2
− p4

2Λ2

∫
q

C̄(u)C̄ ′(u)

q2
− p4

dΛ4

∫
q
C̄(u)C̄ ′′(u). (5.41)

Note that these are all IR regulated, since C̄(u) is the IR regulator. In addition, since

C̄ ′(u) = −C ′(u) this means that any expression with a differentiated cutoff is also UV
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regulated. Thus the only types of integrals that require a touch of care are the integrals

of C̄(u)2. To see how this is done, we first need to cast these integrals in terms of u.

Since all of the integrals involved are spherically symmetric, we have∫
q

=
1

Γ
(
d
2

)
(4π)

d
2

Λd
∫ ∞

0
duu

d
2
−1 (5.42)

where the prefactor comes from the integration over the d− 1 dimensional sphere. In

the dimensional regularization we will take d = 4− 2ε, and at one-loop we will have at

worst a 1/ε pole, and so we are safe to limit ourselves to O(ε) expansions. To this

order, we have∫
q

= (µ2
R)−ε

Λ4

(4π)2

(
1 + ε

(
1− γ − log

(
Λ2

µ2
R(4π)

)))∫ ∞
0

duu1−ε (5.43)

where γ is the Euler-Mascheroni constant and µR the scale included as standard to

ensure that the argument of the logarithm is dimensionless. With this, we have, after

writing the part in brackets as (µ2
R)εR(ε):

(4π)2Aχ(p,Λ) = −p
2Λ2

2
R(ε)

∫ ∞
0

duu−εC̄(u)2 − p4

2
R(ε)

∫ ∞
0

duu−εC̄(u)C̄ ′(u)

− p4

d
R(ε)

∫ ∞
0

duu1−εC̄(u)C̄ ′′(u). (5.44)

First we see how the C̄(u)2 terms are regulated. Taking direction from the Appendix

in [7], we write, for n an integer∫ ∞
0

duun−εC̄(u)2 =

∫ 1

0
duun−εC̄(u)2 +

∫ ∞
1

duun−ε(C̄(u)2 − 1) +

∫ ∞
1

duun−ε

=

∫ 1

0
duunC̄(u)2 +

∫ ∞
1

duunC(C − 2)− 1

n+ 1− ε
+O(ε)

where we’ve taken the ε→ 0 limit in the first and second terms since they are already

IR and UV finite (recall C = 1− C̄ is the UV cutoff). Note that we have also

discarded the upper limit of the final integral by analytic continuation of ε.

Importantly we see that for n 6= −1, we can safely take the ε→ 0 limit at this point

and cancel the last part with a contribution from the first integral by writing it in a

way such that it can be combined with the second integral:∫ ∞
0

duun−εC̄(u)2 =

∫ ∞
0

duunC(C − 2) +O(ε), n 6= −1. (5.45)
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For n = −1, we simply don’t take the ε→ 0 in the third integral above, and thus we

have ∫ ∞
0

duu−1−εC̄(u)2 =

∫ 1

0

du

u
(1− C)2 +

∫ ∞
1

du

u
C(C − 2) +

1

ε
+O(ε). (5.46)

To remove ambiguity as much as possible, all integrands with a differentiated cutoff

will be manipulated via integration by parts until they are the sum of terms where

both cutoffs have the same number of derivatives. Thus, for example∫ ∞
0

duun−εC̄(u)C̄ ′′(u) = −
∫ ∞

0
duun−ε(C̄ ′(u))2 − (n− ε)

∫ ∞
0

duun−1−εC̄(u)C̄ ′(u)

= −
∫ ∞

0
duun−ε(C ′)2 − 1

2
(n− ε)

∫ ∞
0

duun−1−ε d

du
(C̄2)

and thus, integrating by parts on the final term again, and taking ε→ 0 since as stated

earlier the integral is automatically regulated in the UV and the IR:∫ ∞
0

duun−εC̄(u)C̄ ′′(u) =
1

2
n(n−1)

∫ ∞
0

un−2C(C−2)−
∫ ∞

0
duun(C ′)2 +O(ε) (5.47)

unless n = 1, but in this case the answer is still finite, but requires a touch more care

to reach it (see above).

With all of these rules in place, we see that there is no 1/ε divergence from the

integrals we have (at least, none which are not subsequently multiplied by ε) and thus

in Aχ, we can set R(ε) = 1. In particular, this means that there will be no logarithmic

divergence, as we might expect from an expression which gives zero in the physical

limit. Thus, we have

(4π)2Aχ(p,Λ) = −p
2Λ2

2

∫ ∞
0

duC(C − 2)− p4

4
− p4

4

(
−1

2
−
∫ ∞

0
duu(C ′)2

)
(5.48)

and finally, we find that

(4π)2Iχχ2Λ = −Λ2

2
ŝ0(χχ∗)

∫ ∞
0

duC(C − 2) +
1

8
ŝ0(χ�χ∗)− 1

4
ŝ0(χ�χ∗)

∫ ∞
0

duu(C ′)2

(5.49)

so there are no logarithmic divergences leading to new couplings, and the terms which

do contribute are all ŝ0 exact, and in addition do not contribute to the mST, so we will

pay no further attention to them. It is worth noting at this point that this will in fact

be the case in general. With our BRST transformation as defined, the corrections to

the χ two-point function will always be ŝ0 exact to all orders in the derivative

expansion, simply due to the observation that

χp2nχ̄ = χ�nχ̄ = ŝ0(χ�n−1χ∗). (5.50)
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5.5.2 Corrections to the graviton propagator

The terms in the trace (5.31) which contribute to the graviton propagator must leave

the H terms in Γ̌χ1 intact, and therefore take the form

(∆Λ)χχ̄
(
Γ̌1

)
χ̄χ

(∆Λ)χχ̄
(
Γ̌1

)
χ̄χ

(5.51)

and there is an additional contribution from χ↔ χ̄, so that

IχH2Λ = −1

2

∫
p
Hµν(p)AHµναβ(p,Λ)Hαβ(−p) (5.52)

where

(4π)2AHµναβ(p,Λ) =

∫
q

CΛ(q)CΛ(p+ q)

q2(p+ q)2

(
1

2
q · (p+ q)δαβ − q(α(p+ q)β)

)
×
(

1

2
q · (p+ q)δµν − q(µ(p+ q)ν)

)
. (5.53)

Taylor expanding this to O(p4) and using the dimensional regularization, we have

(4π)2AHµναβ(p,Λ) =
Λ4

24
(δµνδαβ + δµαδνβ + δµβδνα)

∫ ∞
0

duuC(C − 2)

+ Λ2

(
− 1

24
p2δµνδαβ −

1

24
p2δµ(αδβ)ν +

1

12
p(µδν)(αpβ)

)∫ ∞
0

duC(C − 2)

+ Λ2

(
− 5

96
p2δµνδαβ −

1

48
p2δµ(αδβ)µ −

1

12
p(µδν)(αpβ)

)∫ ∞
0

duu2(C ′)2

+
Λ2

16
(pµpνδαβ + pαpβδµν)

∫ ∞
0

duu2(C ′)2 +AHµναβ(p)quart

+AHµναβ(p)log

(
log

(
µ2
R

Λ2

)
+

∫ 1

0

du

u
(1− C)2 +

∫ ∞
1

du

u
C(C − 2) +

∫ ∞
0

duu(C ′)2

)
(5.54)

where we’ve defined

AHµναβ(p)log =
1

30
pµpνpαpβ −

p2

40
(pµpνδαβ + pαpβδµν)− p2

60
p(µδν)(αpβ)

+
p4

40
δµνδαβ +

p4

120
δµ(αδβ)ν (5.55)
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and

AHµναβ(p)quart =
47

1800
pµpνpαpβ −

1

1200
p2(pµpνδαβ + pαpβδµν)− 31

1800
p2p(µδν)(αpβ)

− 17

1600
p4δµνδαβ +

47

7200
p4δµ(αδβ)ν

+

(
1

120
pµpνpαpβ −

1

60
p2(pµpνδαβ + pαpβδµν) +

1

60
p2p(µδν)(αpβ)

+
11

960
p4δµνδαβ +

1

480
p4δµ(αδβ)ν

)∫ ∞
0

duu3(C ′′)2. (5.56)

Therefore, our our integral is given by

(4π)2IχH2Λ = −Λ4

24

(
2ϕ2 +HµνHµν

) ∫ ∞
0

duuC(C − 2)

+ Λ2

(
− 1

12
ϕ�ϕ− 1

48
Hµν�Hµν −

1

24
∂µHµν∂ρHνρ

)∫ ∞
0

duC(C − 2)

+ Λ2

(
− 5

48
ϕ�ϕ− 1

96
Hµν�Hµν +

1

24
∂µHµν∂ρHνρ +

1

8
ϕ∂µ∂νHµν

)∫ ∞
0

duu2(C ′)2

+O(∂4).

(5.57)

The O(∂4) terms are not shown here since there are too many (although they can be

clearly worked out from the above). The only piece that is of interest at this order is(
− 1

120

(
R(1)

)2
− 1

60

(
R(1)
µν

)2
)

log

(
µ2
R

Λ2

)
. (5.58)

Taking the lead from the previous chapter, we write

Γχ2q = Γχ2q2 + δΓχ2q(µ) + IχH2Λ − I
χH
2µ (5.59)

and we write

δΓχ2q(µ) = I2µ + Zχ2a

(
R(1)

)2
+ Zχ2b

(
R(1)
µν

)2
(5.60)

where

Zχ2a = − 1

(4π)2

1

60
log

(
µ

µR

)
, Zχ2b = − 1

(4π)2

1

30
log

(
µ

µR

)
(5.61)

and so we can once again remove the µR dependence and replace it with µ using

wavefunction-like parameters. Note that we have already used a renormalization

condition of the same form as used in Section 4.10. Looking at the physical limit, we

have

AHµναβ = −Aµναβ(p)log log

(
p2

µ2

)
+

47

900
pµpνpαpβ −

2

75
p2(pµpνδαβ + pαpβδµν)

− 23

450
p2p(µδν)(αpβ) +

2

75
p4δµνδαβ +

23

900
p4δµ(αδβ)ν (5.62)
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which results in a physical vertex of

Γχ2qphys =

(
1

120

(
R(1)

)2
+

1

60

(
R(1)
µν

)2
)

log

(
p2

µ2

)
− 1

1800

(
R(1)

)2
− 23

450

(
R(1)
µν

)2
.

(5.63)

5.6 Tadpole corrections and mST

Returning to (5.59), we see that we need to calculate the 2nd-order one-loop tadpole.

Since this is given by the linear equation

Γχ2q2 = −1

2
str ∆ΛΓ̌χ2

(2) (5.64)

it is regulated in the UV, and thus can be calculated in d = 4 (without dimensional

regularization), where

Γ̌χ2 =

(
hµρhρν −

1

4
hρσhρσδµν

)
∂µχ∂νχ̄. (5.65)

Therefore, the tadpole in fact vanishes, as can be readily seen fro m the expressions for

the h propagator in d = 4. However, this is not the only propagator which contributes.

Indeed, recall that the mST can be written as

Q0(Γ0
2q − Γ̌0

1q2) +Q−0 Γ1
2q = − trCΛΓ̌

(2)
1∗ ∆ΛΓ̌

(2)
1

∣∣∣0 . (5.66)

Since the LHS is linear, we can consider only the contributions due to χ (i.e., the ones

in this chapter only) and the trace on the RHS can be seen to only contribute new

terms when both copies of the action involve the new χ terms. In addition, since Γχ2q
has only antighost level zero pieces, we can drop one of the terms from the mST. Now,

using the covariantisation of (5.19), we write

Γ̌χ1q = −1

2
bΛ4√g (5.67)

and therefore, we have

Γ̌χ1q2 = −1

2
bΛ4

(
ϕ2 − h2

µν

)
. (5.68)

Note that as previously, this is in fact a guess at this point and it is the mST that will

verify that it is indeed the correct contribution. Now we wish to evaluate the trace:

− trCΛΓ̌χ1∗
(2)∆ΛΓ̌χ1

(2) = −2i

∫
p
Hµν(p)Fχµνα(p,Λ)cα(−p) (5.69)
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where

Fχµνα(p,Λ) =

∫
q

CΛ(p+ q)CΛ(q)

q2

(
(p+ q)(µqν) −

1

2
(p+ q) · qδµν

)
qα (5.70)

which, when expanded in powers of momentum leads us to

Fχµνα(p,Λ) = −Λ4b

(
1

4
p(µδν)α −

1

8
pαδ

)
− Λ4

(
1

12
p(µδν)α +

1

24
pαδµν

)∫ ∞
0

duuC(C − 2)

+ Λ2

(
1

24
pαδµνp

2 − 1

24
pµpνpα

)∫ ∞
0

duC(C − 2)

+ Λ2

(
1

16
p2p(µδν)α −

p2

96
pαδµν −

1

48
pµpνpα

)∫ ∞
0

duu2(C ′)2

+O(p5)

(5.71)

and this can easily be shown to give the required RHS to make the mST true. In

particular, note that the b-dependent terms come entirely from our guess for Γ̌χ1q2,

which has now been vindicated.

The mST can be recast in terms of these vertices:

AHµναβpβ =
bΛ4

2

(
δµνpα − 2p(µδν)α

)
−Fµνα (5.72)

which, in the physical limit, simply states that

pµAHµναβ(p) = 0 (5.73)

i.e., that the physical vertex must be transverse. This is indeed seen to be the case

since the physical graviton correction can be written exclusively as the square of

linearised curvature invariants.

5.7 Discussion

There is a lot which is not explored in this chapter. One of the more obvious avenues

of generalisation would be to give the scalar a mass term by adding this to the free

action. However, this is potentially dangerous. While it is true that if one does this,

the appropriate terms for
√
gM2χχ̄ appear, it is clear that adding such a term to the

free action will both change the free BRST cohomology, and we see that in fact we

would no longer be working from the Gaussian fixed point.

This brings up another potential issue. The Gaussian fixed point in our framework is

outside the diffeomorphism invariant subspace. All of the analysis of this chapter takes
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place within the diffeomorphism invariant subspace with the associated perturbation

series in κ being assumed to be valid. While this appears safe for now, further analysis

along the lines of that in [89] in needed to ascertain whether or not the trajectory in

gravity-scalar theory enters the diffeomorphism invariant subspace, and what

conditions are required to make it so. Thus the inclusion of a mass (and further

couplings) must await further analysis. As noted in the introduction, the presence of

other couplings makes it so that if we wish to keep the perturbation series order by

order in κ, then we must consider any other couplings to all orders.

That is not to say that the above chapter is entirely useless. It shows that should a

theory exist involving both the graviton and a scalar, then we know exactly what it

must look like within the diffeomorphism invariant subspace. Similar calculations have

already been carried out [25], but it is useful to see that the established results are

reproduced in the BRST formalism, and thus can be carried over should it be shown

that there is a renormalized trajectory from the Gaussian fixed point into the

diffeomorphism invariant subspace.

In addition to a mass or quartic couplings one may wish to add at O(κ0), one may also

wish to introduce a conformal coupling term

ξ
√
gRχχ̄. (5.74)

This first appears at O(κ1) as ξR(1)χχ̄, which is a Q0-exact piece which we are free to

add to Γ̌χ1
0. Adding this results in an analogous term being added to Γχ2cl, and this

does not seem to interfere with the results thus far. In addition, there appears to be no

preferred value for ξ as yet, but analysis to further orders may change this.

All in all, the above chapter has shown that the formalism used to develop a

continuum limit for gravity still has a chance of working when (scalar) matter is

involved. That is to say, once in the diffeomorphism invariant subspace it was in fact

required that the known diffeomorphism invariant possibilities were reproduced for the

sake of consistency. What remains to be seen however, is whether, and under what

conditions the renormalized trajectory from the Gaussian fixed point enters the

diffeomorphism invariant subspace, and this would hopefully also have something to

say about the way in which we extend the above to include interacting and massive

scalars, as well as vector fields.
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Chapter 6

Summary and outlook

This thesis is the product of an attempt to understand quantum gravity. At its heart,

a redefinition of what is meant by quantisation. Chapter 1 reviews where we start

from, which is an understanding of the Wilsonian renormalization group. Clearly, there

are many more comprehensive reviews, e.g. [1–3] but the content in Chapter 1 is

intended to be as “bare bones” as possible. The most novel part here is the treatment

of the scalar field potential, as done in [29], which exposes the RG flow equation as

having similarities to diffusion in RG time. In addition, the eigenoperators satisfy a

Sturm-Liouville equation, the mathematical properties of which are widely known.

This provides a way in which to deal with the major scalar field one is interested in

when it comes to studies of quantum gravity: the conformal factor.

In Chapter 2 the conformal factor is studied in detail. This material is based on [5, 29].

By expanding the Einstein-Hilbert action, we see that the kinetic term (in an

appropriate gauge) for the conformal factor is exactly as for a “normal” scalar field,

but with the wrong sign of the kinetic term. This leads to the path integral being

ill-defined due to a growing exponential for sufficiently rapidly varying kinetic terms.

However, the RG flow equation is still well-defined, and we take this, rather than the

path integral, to define the theory. For simplicity, Chapter 2 takes the scalar field in

isolation for the remainder in order to study its properties and eigenoperators, which

will prove useful when dealing with the full quantum theory of gravity. The

Sturm-Liouville form is somewhat altered to give a weight function that is a growing

exponential, and as such the space of solutions is hugely restricted, and is shown to be

spanned by the (countably) infinite set of operators δ
(n)
Λ (ϕ). Note that this is an

alternative treatment to that given in [36], in which the conformal factor is analytically

continued to the imaginary axis in order to restore the “correct” sign of the kinetic

term.

The properties of these operators are then explored. Defining the QFT of a scalar with

a negative kinetic term on a manifold with a non-trivial metric proves rather difficult
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and potentially futile without a full theory of gravity to work with, so tori are chosen

as the playground to explore the properties of the regularized tadpole operator Ωp and,

more specifically, the shape function S. Both the case of T4 [29] and T3 × R [5] were

studied, and in both cases it was seen that the further the fundamental lengths of the

tori differed (i.e., the more inhomogeneous the manifold), the larger the universe was

allowed to be. Phrased differently (and for a better catchphrase), small universes are

constrained to be highly symmetric. Twisted tori had a far richer structure, but the

general trend is very much the same. Indeed, the positions of local extrema of S for

twisted tori seemed to indicate a somewhat different definition of “most symmetric”,

but that is largely a semantic point.

Clearly this would be an excellent phenomenology if the trend of small universes being

symmetric were to carry over into, for example, FLRW universes as it could then

explain various cosmological questions. Most obviously, it provides a mechanism for

the extremely homogeneous initial conditions for inflation, and could explain the “why

now?” problem. However it is evidently far too early to make sweeping claims of this

sort, since the mechanism has only really been studied for flat, toric universes. More

pertinently to this particular thesis, however, is that many of these effects are

predicated on a finite amplitude suppression scale Λp, and this is required to diverge in

order to restore diffeomorphism invariance when the conformal factor is considered as

part of a metric as opposed to a scalar field in isolation. Nevertheless, there are

examples of similar calculations in lattice field theory [45], and to the present author’s

knowledge they have not been done for twisted tori, so the work may still bear fruit in

this direction.

Chapter 3 represents something of a change in direction. It follows ideas from [33] and

the work of [6]. The idea is somewhat simple. To take a regularisation structure that

works for gauge theory, in the sense that it both regularises gauge theory and preserves

the gauge invariance at all times, and apply the same framework to gravity. Of course,

the history of physics is littered with examples of the phrase “...just do that, but for

gravity” being met with failure, but theoretical physicists are evidently gluttons for

punishment.

For gauge theory, the SU(N) algebra is extended to a SU(N |N) superalgebra

(although, for technical reasons not specified here, even this is non-trivial, see [33]). In

addition to the standard gauge field A1
µ, there is a bosonic copy with the wrong sign

kinetic term A2
µ and a complex pair of fermionic fields Bµ, B̄µ. Note that the fermionic

vector fields are in violation of the spin-statistics relation, and thus cannot be physical

at the end of the regularisation process. The SU(N |N) is then broken by a scalar field

which results in the fermionic fields gaining a mass and thus decoupling from the

theory. Then, the A2
µ couples to the physical vector field only by irrelevant operators,

and so in the physical limit, we are left with SU(N) gauge theory, with gauge

invariance preserved at all points on the RG flow.
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To extend this to gravity, one must extend the manifold to a supermanifold by adding

4 fermionic coordinates to the 4 standard (bosonic) coordinates that we are already

familiar with. This in itself is non-trivial, but fortunately the topic of supermanifolds

is well-known to mathematicians, for example the conventions in this thesis come from

[77]. The introduction of non-commuting coordinates and geometric objects means

that notions of coordinate transformations, vector fields, derivatives and tensors must

be re-examined. In particular, indices can now be left or right as well as up or down,

to indicate whether the Jacobian (or its transpose) multiplies the object from the left

or the right under a coordinate transformation. Despite this apparently difficult

set-up, many of the formulae are generalised in a very natural way.

We then see that the Einstein-Hilbert action can be suitably generalised. In order to

get access to the propagating degrees of freedom, the action is expanded to O(κ2) and

is seen to be invariant under the suitable generalisation of linearised diffeomorphism

invariance. The gauge is then fixed in order to get a handle on the propagating fields.

In order to diagonalise the kinetic terms that arise from integration over the

Grassmann coordinates, a mass parameter M is introduced in the Taylor expansion of

hAB(x, θ) over θ. Despite appearances, however, this does not play to role of a physical

mass as it does not result in any shift in the poles of the propagators. In retrospect,

this could have been seen simply from the fact it was introduced by hand and is

somewhat arbitrary.

There is clearly a lot to be done before the work [6] and Chapter 3 can lead to a

regularisation structure for gravity. Indeed, these should be seen as a starting point.

The key part that is missing is a method by which the fermionic degrees of freedom

gain a mass analogously to the situation for gauge theory. In particular, this likely

involves a symmetry-breaking scalar. Finding the form of the symmetry breaking

which leads to unbroken bosonic diffeomorphism invariance at all points of the RG flow

is therefore the name of the game for all future work.

Based on [4, 7, 34, 35], Chapter 4 includes some of the concepts from Chapter 2 and

includes them in a fully perturbative theory of quantum gravity. The key is the fact

that the Quantum Master Equation (QME) Σ = 0, which is the requirement that

gauge symmetry is preserved in the BRST formalism, is compatible with the RG flow

equation. That is, the QME being satisfied at some scale Λ is sufficient for it to be

satisfied for the RG flow.

After introducing the BRST algebra in relation to the Wilsonian effective action S, the

step is taken to trade off the conceptual simplicity and elegance that comes with it for

the practical simplicity of the Legendre average effective action Γ. One of the key

issues is that fact that the conformal factor operators δ
(n)
Λ result in any perturbation

from the Gaussian fixed point being parametrized by an infinite number of couplings.

In particular, each monomial σ(∂, ∂ϕ, h, c) comes with an infinite number of couplings,
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and each has its own amplitude suppression scale Λσ. The expression of

diffeomorphism invariance, the QME, becomes the modified Slavnov-Taylor identity

(mST) when we pass the the Legendre average effective action description of the QFT,

and it turns out that to satisfy this (and hence diffeomorphism invariance) in the

physical limit it is convenient to set Λσ = Λp (i.e., the same for all monomials) and the

coefficients are then arranged in such a way that they “trivialize” in the large Λp limit.

Thus we see that it is in this limit, and this limit only, that diffeomorphism invariance

is in fact respected.

Indeed, Figure 4.1 now shows the conceptual difference between this quantisation and

the standard procedure. We see that the renormalized trajectory near the Gaussian

fixed point is outside the diffeomorphism invariant subspace, and is parametrised by an

infinite number of underlying couplings. As the amplitude suppression scale is taken to

the UV, we not only retrieve diffeomorphism invariance, but we also have all of the

couplings subsumed into a single, effective, diffeomorphism invariant coupling κ. It is

worth reminding ourselves that in the standard quantisation, many of the problems of

renormalisability come from the fact that [κ] = −1. However, we have circumvented

this issue since the argument that causes the negative mass dimension to cause a

problem is based on proximity to the Gaussian fixed point. However, in this case, the

trajectory near the Gaussian fixed point is parametrised by only relevant couplings,

albeit an infinite number of them. Thus we see that in the diffeomorphism invariant

subspace, we are free to organise a perturbation series order by order in κ.

We then saw how the first and second order classical gravitational action exactly

coincided with what one would expect from expanding the Einstein-Hilbert action

−2
√
gR/κ2 to the appropriate order. In addition, it was found that, in keeping with

the compatibility of the RG flow equation and mST, the tadpole corrections required

to make the interacting action an eigenoperator of the flow equations are precisely the

same as those required to satisfy the mST. In addition, we see that the one-loop

corrections can be absorbed by wavefunction-like parameters which vanish on-shell.

The conclusion of Chapter 4 discusses the fact that the properties of the differential

equations which cause the problems of renormalising gravity may also be the key to

solving them. In particular, the fact that the linearised flow equation is parabolic for

both ϕ and hµν , but in different directions. Since we must solve for both of these

sectors simultaneously, we have that the Cauchy initial value problem is generically not

well-defined. In addition, there appears to be a problem in the sense that as we enter

the diffeomorphism invariant subspace, there appears to be nothing to stop any

number of higher order or higher derivative couplings being added. A possible

mechanism for excluding all operators but the cosmological constant and the

Einstein-Hilbert term is discussed, but clearly requires a more detailed analysis before

any firm conclusions can be drawn.
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It is worth comparing this approach to work done in asymptotic safety. As we have the

seen, this treatment of the negative sign kinetic term in this thesis leads to a natural

reversal of the direction in which the RG flow in this sector is well-posed. In [97], it

can be seen that in the standard approach to asymptotic safety, one is required to take

the (additive) cutoff for the conformal mode as having the opposite sign to that in the

graviton sector. Failure to do this will result in spurious poles in the propagator. This

change in sign results again in the reversal of the natural direction of the flow, as can

be seen in equations (2.32) and (4.16) of [97], where we can clearly see a change in sign

between the two sectors. We see here that since the sign of the second derivative is

what determines the natural direction of the RG flow (c.f. diffusion), then any

implementation of the flow equations will show this change of direction in the

conformal sector.

In addition, the issue with the conformal sector being well-posed only towards the UV

was noted in [43]. Here, it was found that one runs into numerical difficulties when

attempting to solve the RG flow equation in the conformal sector towards the IR. As

noted in [43], the issue is somewhat obscured in the literature as it does not become

apparent until one attempts to move beyond polynomial truncations.

Finally, Chapter 5 (which is not based on any published work) shows how ne might

add a scalar interacting with the graviton field in the BRST formalism. Clearly the

treatment contained here is somewhat simplistic as it does not treat the theory as

emanating from the Gaussian fixed point, but rather we treat it simply as already

being within the diffeomorphism invariant subspace. It is found that, in the free

massless scalar case at least, that the extra terms we get in the classical action are

what we would get from a covariant kinetic term for the scalar. Even though the same

can be said if mass and conformal coupling terms are added (in the sense that the

extra terms are given by an appropriate covariantisation), it is also clear that the

treatment is incomplete.

One thing in particular to note is the question of how one treats the mass term. The

terms that match the covariant mass term arise when the bare mass term is added to

the free action, but clearly at such a point we are deviating from the Gaussian fixed

point. On the other hand, the theory of a scalar coupled to gravity has (up to now)

not been connected with a trajectory which begins at the Gaussian fixed point and

flows into the diffeomorphism invariant subspace. It is hoped that such a treatment

may give hints on how to deal with a mass term, quartic coupling and conformal

couplings. Note in addition that if we wish to keep the perturbation series for κ intact,

then we must consider all orders of all other couplings.

Evidently, there is a lot of work to do with regards to the topics covered. The aesthetic

advantages of the approaches above are simply that the Einstein-Hilbert action (which

has been phenomenologically very accurate) is the starting point, and that the avenue



116 Chapter 6. Summary and outlook

for quantisation was in fact always there, hidden in the conformal factor instability

which, if taken seriously, opens the door for a new method of quantising gravity. This

is in no way proof that the above is the way forward, and there are a huge number of

other approaches, many of which also show promise. However, until theories are

developed to the point of making falsifiable predictions (and the technology required to

test these is developed) we are only guided by aesthetic and mathematical arguments.

The only thing to be said with any confidence is that quantum gravity, at least for the

time being, is inextricably linked to the renormalization group, and so any approach

would have to address the problems that each of these poses.
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