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by Matthew Peter Kellett

This work seeks to address the problem of quantum gravity from the point of view of
the renormalisation group. After the introduction of the needed concepts, it is seen
that a problem of quantum gravity that stems from the “conformal factor instability”,
if the consequences are fully explored, can open the door to a rich phenomenology. In
particular, it is seen that toric universes can be constrained to be highly symmetric
when sufficiently small, which is potentially applicable to the initial conditions for
inflation. The idea of regularising gravity via a supermanifold is covered, following
similar treatments of gauge theory in order to preserve the symmetry (diffeomorphism
invariance) at all points along the renormalization group flow. Furthermore, the
machinery provided by the conformal factor instability provides us with a genuinely
perturbative theory of quantum gravity, which can be calculated to have the same
effective action as one might expect, but the understanding of the QFT is very

different, with the Gaussian fixed point being defined “off space-time”.
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Chapter 1

Introduction, Background and

Motivation

The two parts of any undertaking in physics are the problem and the method. The
problem that this thesis seeks to address is an old (and popular) one: can we find a
consistent theory of quantum gravity? It is worth motivating this. One way to
motivate looking for such a theory is a purely aesthetic one: we would like to unify the
forces. The Standard Model has been incredibly successful in describing
electromagnetism and the strong and weak nuclear forces [8], and it would indeed be
nice if we could unify all of the forces at some high energy scale, which studies of
electroweak theory [9-11] and other more modern developments [12-14] seem to

indicate.

However, this raises a question: if the gravitational forces between elementary particles
are so weak, why do we care about quantum gravity? After all, we only really observe
gravity on large scales, and so we should not care about the quantum effects. Indeed,
for the most part, classical General Relativity (GR) will serve extremely well.
However, there are interesting cases where the gravitational fields are strong and the
distances involved are short. These are black holes, and the proposed singularity at the
beginning of the Universe. Perhaps the most famous recent example of evidence for the
existence of black holes is the observations of the Event Horizon Telescope [15], but
other evidence exists. In particular, the LIGO observations of gravitational waves are
thought to be sourced by a black hole merger [16]. An understanding of quantum
gravity may give in indication as to what the breakdown of the classical equations (the
“singularities”) is telling us. Now, perhaps one might say that these are only
conjectured to be singular regions of spacetime, however theorems of Hawking and
Penrose [17, 18] show that, rather generically, GR suffers from singularities, so at least

some modification seems to be in order.
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Another reason to attempt to quantize gravity comes from the simple observation that
matter is quantum mechanical, and gravity couples to matter. Indeed, we have the
Einstein equation

Gu =81, (1.1)

where the LHS describes the curvature (i.e., gravity), and the RHS describes the
energy and momentum of matter. Standard practice at this point is to average the
RHS to get a classical quantity. While this works for many purposes such as
gravitational waves, it is philosophically unsatisfactory since this introduces
non-locality into the theory and thus it is not clear whether this is entirely consistent.
This “semi-classical” theory is most often regarded as a good approximation in a
“weak field” approximation. There are several arguments and thought experiments
which suggest that the semi-classical theory cannot be consistent [19, 20], but these are

not without some controversy [21, 22].

We expect any theory of quantum gravity to be similar to GR at large distances - the
“Infra-red” (IR) regime - and something very different at small distances. The idea
that physics changes at differing scales is fundamental to the renormalization group,

which will be our aforementioned method.

In this chapter, some basics of the renormalization group will be reviewed, and some
background material for the remainder of this thesis will be introduced. In Section 1.1,
the ideas and origins of RG are recapitulated, starting with the work of Kadanoff [23]
and showing how these are generalised from the field of statistical mechanics to that of
QFT.

Section 1.2 describes how the RG is used to construct a continuum QFT. This is done
by linearising the flow around the Gaussian fixed point. The renormalized trajectory is

defined to give a path towards an interacting continuum limit.

Following this, Section 1.3 gives an explicit example of calculating eigenoperators used
in constructing a continuum limit. Although the example given here is a
well-understood, some of the aspects highlighted in this treatment serve as an

introduction to some details in Chapter 2.

Section 1.4 discusses the relationship between quantum gravity and the RG, and
outlines some ongoing work which attempts to construct a fully renormalizable and
phenomenologically consistent theory of gravity and finally Section 1.5 outlines the

goals for the remainder of this thesis.
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1.1 The renormalization group

The idea behind the renormalization group is rather simple: the underlying physics of
an object does not change depending on what scale we observe them. As an example, a
cup of tea is made of atoms. The laws governing atoms are the same no matter
whether we deal with a single atom or the many moles required to make a cup of tea.
However, using the atomic forces to describe a cup of tea would be confusing, difficult
and practically impossible. Fortunately, we can use fluid dynamics to describe the cup
of tea to great effect. However, the underlying physics has not changed. We know that
fluid dymanics is an “effective” description; it ignores many of the short distance - or

ultra-violet (UV) - effects in order to capture the macroscopic physics.

The idea of effective theories is prevalent in modern physics. One of the first was the
Fermi theory of interacting fermions [24]. More examples include the Standard Model
and many theorize that GR is also an effective theory due to its apparent
non-renormalizability [25]. The goal of quantum gravity is to find a theory that

includes quantum effects and reduces to GR as an effective theory.

Statistical mechanics has the idea of an “effective theory” at its heart - ignoring (or
simplifying) the underlying microscopic physics in order to concentrate on the
important macroscopic physics. The quantities we care about: temperature, entropy,
heat capacity etc., all come from dealing with the macroscopic properties of systems.
Studies of many different systems show exactly the same “critical exponents” (numbers
which govern the behaviour of various quantities near phase transitions) in different
situations. This again points to the notion that the exact details of the microscopic
physics are irrelevant to the macroscopic behaviour. In this context, we call it
universality. And it is in statistical mechanics that the renormalization group was
developed. It is worth reviewing this since many of the concepts are easier to have

intuition for here than in the field theory counterpart.

1.1.1 Kadanoff blocking

The basis of modern renormalization group methods is based on Kadanoff blocking in
statistical mechanics, where we move from one scale to another [23]. For concreteness,
we consider the Ising model. Consider a 2-dimensional lattice (for ease of illustration)
of spins {s;} which take values s; = £1. Suppose each spin can only interact with
adjacent spins (‘nearest-neighbour” interactions). Kadanoff blocking consists of
“coarse graining” these spins. That is, we consider a reduced set of spins with some
way of getting from old spins to new spins. One example is shown in Figure 1.1. This

is a “real space renormalization group” transformation.
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FIGURE 1.1: Visualisation of Kadanoff blocking. The original lattice of spins is broken

into 3 x 3 blocks, each of which is replaced by a single “effective” spin which is simply

whichever of up or down has the most representation in that block (red step). The

length scale is then changed to allow comparison to the orginal problem (blue step). In

this last step, the figure shows additional lattice sites from outside the original image.
Figure taken from [1].

The two systems should have different parameters for the nearest-neighbour coupling.
Furthermore, this coarse-graining also gives rise to additional interactions. More
importantly, however, if we consider quantities that are calculated on distances much
greater than the lattice spacing, then both ways of describing the system will give the
same answer. Note that this points towards to universality concept once again: we
have lost information about the short distance (UV) physics, but the long distance
(IR) physics has not changed at all.

It is worth noting that although we don’t explicitly state this, we expect the blocks
used in this coarse-graining procedure are in some way sensible. There are many ways
to draw them, however we expect them to be connected at the very least. This idea of

locality (or quasi-locality) will be used in the field theory case.

1.1.2 Flow equations

When looking at field theory, it will prove to be much more expedient to consider
momentum space renormalization, as opposed to the real space renormalization above.
The concept is much the same if we translate “short distance” to “high energy” and
“long distance” to “low energy”. We will simply refer to these as the UV and IR
regimes. From this point of view, the coarse-graining procedures above correspond to
reductions in a momentum “cutoff scale”. The crucial idea going forward is smoothly
changing cutoff scales, rather than the blocking of Kadanoff. This is mostly due to

Wilson [26]. More comprehensive reviews of what follows can be found, e.g. [1, 2].
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First, we note that we should work in Euclidean space. There are a few reasons for
this. One is due to the notion of locality of the blocking transformations - without this
Wick rotation we could have “sites” blocked together with arbitrary spatial separation
provided they were lightlike separated. Essentially it is easier to account for lightlike

behaviour in general with this modification.

We will use the compact DeWitt notation, which treats functions as vectors and their

arguments as indices. Thus we have, for example,

T 6= Judy = / a7 (2)p(x) = / J(2)é(z) (1.2)

but also, we have

d
7-0= [ Gharwen = [ 100 (13)

P
and so we do not have to specify whether we are working in real space or momentum
space (note the factors of 27 absorbed into the definition in the final equality).

Similarly, when dealing with propagators we treat these as matrices so that

6 A= / o)A (2, y)b(y) = / SP)A (PP (—p). (1.4)
€,y P

For simplicity, we will consider a single scalar field. The equivalent to a lattice spacing
is a momentum cutoff, Ag. With this cutoff, the path integral is

Ao tot
Z[J] = | Dpe Tl e (1.5)

We describe SR‘Z‘L as the “bare action”. This bare action is usually chosen to be very

simple. It turns out to be convenient to write

1
Siy[0] = 500" &+ Siol) (1.6)
so that Sy, contains only the interactions (including mass terms).

Changing the cutoff, we expect the action to change (like the couplings change in the
Kadanoff picture). But the physics is not expected to change. The Kadanoff blocking
involves increasing distances (before the rescaling) and this corresponds to a lowering
of the cutoff to a new scale, say A. Figure 1.2 schematically shows what we are doing.
To this end, we introduce a UV cutoff function C*(p) and its associated IR cutoff
function Cy(p). These are related by

CM(p) + Calp) = 1. (1.7)
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CA(p)

C*(p)
Physics

FIGURE 1.2: We see that we are integrating out the high momentum modes. Diagram
adapted from [2].

For C*(p) to be a UV cutoff, we insist that

cr0) =1, lim C*(p) =0. (1.8)

For our analogy with Kadanoff blocking to hold, we require these functions to be

smooth to preserve (quasi-)locality. We use these to modify the propagator by writing
1 A
2 A% (p) + Aa(p) (1.9)

where
AMp) = =, AA(p)chgm. (1.10)

Finally, we write ¢ = ¢~ + ¢~ where ¢ is defined to have propagator A* and ¢~ is
defined to have propagator Aj. Recall our generating functional is now (dropping the

limit of integration)

Z[J) :/D¢exp (—;¢-p2'¢—SAO[¢]+J~¢> (1.11)
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which, after discarding a field independent constant of proportionality (more details in

[2]) we can write as

Z[J] = /D¢<D¢> exp(—;¢< : (AA>71 “P< — %¢> : (AA)il AN
— Spold< + o]+ J - (o< + ¢>)>- (1.12)

Restricting the support of J to “low energy” modes® (those with |p|< A) it can be

shown that we can write
1
Z[J] = /D¢< exp <—2¢< (AN g — Salp] + T - ¢<) (1.13)

for some functional Sy[¢p~]. Looking at the form of the exponent here, we can see that
S\ is simply interacting part of the effective action at scale A. Note that both forms of
Z|J] represent the same physics, but are just a different description. Thus, we must

have that
0

O—AZ

and from this one can deduce Polchinski’s equation for the flow of the effective

[J] =0 (1.14)

interactions [27]:

9 168y OAM 5Sy 1, (OAD 528,
an M =55, T he _2“( N 6ddp ) (1.15)

We can interpret the first term as being the tree-level (“classical”) part, and the
second term as being the one-loop (“quantum”) part. To get more of an intuition for
this, we can write this in terms of vertices to get the following representation shown in

Figure 1.3.
(e
[.,' {I],IQ} j I] -

FIGURE 1.3: Visualisation of the flow equation for an n-point vertex. The black dot
represents the differentiated cutoff propagator, and {I, >} is some partition of n.
Diagram taken from [3].

IThis is not really necessary, and is only done here to simplify the analysis. The loose justification
one can make for this step is the fact that when we lower the cutoff, we’re only interested in low energy
observables, as we wouldn’t lower the cutoff otherwise.
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For many purposes it is easier to deal with the average effective action I'y, which is the

Legendre transform of the Wilsonian effective action:

SAl] = Talod + 5(6c = 60) - (An)" - (6 — 6 (1.16)
where 5
e = —In .
b= g2 (1.17)

is the classical field. Which of these actions is more useful will depend on the precise
situation (both are used in this thesis). The effective action also has a flow equation
[3, 28]:

0 1 1 0A, 82T A -1

It is worth noting the following: both of these flow equations are non-perturbative.
Indeed, they hold for very general actions. However, they are very complicated and
usually some approximation needs to be made to make these equations in any way
tractable. Where this approach has the advantage over standard perturbative
renormalization, however, is the fact that we have the choice of what approximation we
make - we are not restricted to insisting that the coupling is small (although this is
often done). Examples include truncations, where only certain operators that can
appear in the action are considered (often done in studies of asymptotic safety), or the
Local Potential Approximation, which ignores any derivative operators other than the

usual kinetic terms.

One final comment on this generalisation of Kadanoff blocking: so far, the analogy is
incomplete since we have not performed the final step corresponding to a re-sizing of
the lattice. In practice, the way we do this is to change all variables (couplings) for
dimensionless versions and correcting the mass dimension with powers of A. This then
rescales all couplings using the cutoff scale, and so the correspondence is complete.

This will be assumed to be done from now on.

1.2 Flows and the critical surface

As far as we’re aware, there is no overall scale at which physics itself fails. Therefore,
we’d be inclined to take Ag — oo to get a “continuum limit”. However, it is easier to

do this directly, using a “fixed point” of the RG flow?

OrS, = 0. (1.19)

2In this section, we will use the Wilsonian action Sy, but the same statements hold for the Legendre
effective action I'.
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Note that since we have replaced all dimensionful couplings with powers of A and
dimensionless couplings, this implies that there is no dependence on any dimensional
couplings. That is, we have a fixed point when our action describes a massless and free
field. This is known as the “Gaussian fixed point”, and always exists for any action.
However, physics at the Gaussian fixed point is extremely boring. The interesting case
is what happens away from the Gaussian fixed point. The first thing to note is that
renormalizability implies [2]

Sal¢] = S[9](g:(A)) (1.20)

that is, that under the RG flow, the form of the action does not change, only the
couplings. This “self-similar” evolution is what allows us to get a non-trivial continuum

limit in terms of “renormalized variables”. The process is illustrated in Figure 1.4.

ritical Mamnifol

Fixed Point
Bare

Actions

Renormalised

Trajectory

FIGURE 1.4: The critical manifold and renormalized trajectory. Diagram taken from

[2].

First we note that we can write
Salg] = Suld] + ) gi(u/M)O4[¢] (1.21)

to parametrize solutions in the vicinity of the Gaussian fixed point. Here, the g; are
dimensionless couplings, the A; are the RG eigenvalues of the operators O; and p is an
arbitrary mass scale. Note that in general we have an infinite number of these.
However, if we move away from the fixed point along those operators with A\; < 0, the

RG flow will send our action straight back to the fixed point. These “irrelevant”
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perturbations span the (infinite dimensional) critical manifold, on which any bare
action will flow to the Gaussian fixed point. If we move along one of the other,
“relevant” directions, the flow will move away from the critical manifold, typically not

giving a well-defined limit.

However, if we tune our bare action to be slightly off the critical manifold, then the
RG flow will head in the direction of the fixed point, before shooting away near the
“renormalized trajectory” (RT), which is achieved in the limit of tuning the bare
action back towards the critical surface. Unfortunately, in this limit the relevant
couplings diverge under RG flow. To remedy this, while tuning our bare action back to

the critical manifold, we also modify the couplings as A — oo to be (roughly)

i = §i(pu/A)N (1.22)

such that these renormalized couplings remain finite on the RT, and so the far end of

the RT corresponds to a non-trivial (i.e., interacting) continuum limit.

Since these couplings parametrize a solution to a first-order differential equation, they
each require one boundary value to specify them. For these reason, we generally only

consider theories with a finite number of relevant operators for the sake of predictivity.

1.3 Eigenoperators for the scalar field

It instructive to see how using the RG can give us the operators to construct a scalar
field theory. In this section, we follow the procedure in, e.g., [29]. This construction
will be modified in Chapter 2. Starting from the Polchinski equation (1.15), we

linearise around the Gaussian fixed point to get

. 1 A 5281\
OASA = —2t1“ <8AA . 5606 ) (1.23)

Although we are doing this near the Gaussian fixed point Sy = 0, this is sufficient to
get the form of the eigenoperators at all scales due to the self-similarity of the RG
transformation. We will consider non-derivative interactions (local potential

approximation) so we write

Sald] = ¢ / 'V (p(z), A), (1.24)

where € is a small parameter. This gives us

4 A
OAV = —;ad%d,va,\/ dp O°() (1.25)
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To make the final step of the RG transformation, we change to dimensionless variables
using powers of A:
&=z q@:? T (1.26)
’ A’ A4
and, in addition we define

t=1In (%) , (1.27)

the “RG time” (increasing towards the IR) where p is some arbitrary energy scale.
Expressed in these dimensionless variables, the only dependence on A that V can have

is due to the scaling of the couplings:
~ ~ W AL
V(g0 = (5) V() (1.28)

(note that we can treat each coupling separately since we are in the linear regime). We

also take the time to define the one-loop tadpole integral®

d'p C*(p)
o = [o@oel= [ 55 (1.29)
and the dimensionless version
1 1 d*p C(p)
PR Q = 1.
52~ aa oA / 2t p2 (1.30)

where p = A and C*(p) = C(p). Note that although a is a dimensionless constant, it
is clearly not universal due to its dependence on the cutoff. Making all of these
substitutions into (1.25) leads to the eigenoperator equation:

v

AV =V 4V = ———, 1.31
AV — oV +4V oz (1.31)

This equation is of Sturm-Liouville form and thus we know that its solutions form a

discrete set. The solutions in this case are (almost) the Hermite polynomials:

P — =5+ (1.32)

On(9) = [fzi‘;d)) =

—1
4a?
where A = 4 —n and n is a non-negative integer. Since equation (1.31) is of

Sturm-Liouville form, we know that the solutions are orthogonal with respect to an

appropriate weight function:

/ T 450 (H)Om(@) = Ll b (1.33)

a (2a?)"
and we know that this set of functions is complete in the Hilbert space of solutions to
equation (1.31). This space, which we call £, is the set of functions which are

square-integrable under the Sturm-Liouville measure e=a°%" . In particular, this means

3The modulus sign here is extraneous, but is included for consistency with Chapter 2.
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we can define couplings to be

_ (2a®)"a [ - BT ~
In = W . doe V(6)On(¢) (1.34)
and then the partial sums of the potential and the linear combination of the operator
defined by these couplings converges to the potential in the sense of this measure, that
is
o ) N
N
/ dpe @? (V(¢) — Zgnon) -0 asN — o0 (1.35)
- n=0
and thus we can parametrize perturbations around the fixed point by the countable

infinity of couplings gy,.

For this specific case, much of this is unnecessary. Note that for a well-defined
continuum limit, we only care about relevant operators. That is, those with A > 0.
Thus, Oy (vacuum energy - meaningless in the absence of gravity) and Oz (adding a
mass term) are the only operators that survive this process. Thus, for a single scalar
field, the only well-defined continuum field theories are those that are free and
(possibly) massive. While this is inconvenient for this case, the machinery of the above

can be applied for any fields, and a modification of the above is presented in Chapter 2.

1.4 Gravity and the RG

It is often stated in the literature that gravity is not renormalizable [25] (at least
perturbatively). It is instructive to see why this view is taken. The most simple
explanation given is that the only coupling, x = V327G, in the theory is irrelevant

with [k] = —1, and thus there can be no interacting fixed point.

There have been many attempts to reconcile gravity and the RG, and one of the most
notable is the idea of asymptotic safety, in which the view is taken that there is a
non-Gaussian UV fixed point. One review is [30], but there are many others. This has
been supported with evidence from polynomial truncations in the Ricci scalar R, up to
R™ [31]. Another example that has come up in recent years is causal dynamical
triangulations (CDT) [32] which seeks to build an inherently quantum picture of
spacetime itself, with a renormalization scale built in (the size of the triangulations
used).

There are many attempts to solve this problem currently, and as yet we have very little
other than aesthetic and mathematical principles to guide us. In some sense, we will
only truly be doing physics with quantum gravity once predictions are made that can
realistically be falsified. In this thesis, the view is taken that the Einstein-Hilbert

1@, is marginal to this order, as A = 0. One must go to higher orders to determine the behaviour of
Ja, but suffice to say that it is marginally irrelevant, so can be ignored in the continuum limit.
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action is, in fact perturbatively renormalizable with an appropriate shift in how one

defines the process of quantization.

1.5 Outlook and scope

The following chapters each describe aspects of quantum gravity and the
renormalization group. Chapter 2, based on the work in [5] describes the conformal
factor instability and a resolution which, on top of solving this problem, may yet open
the door to quantum gravity. In addition, it explores the topological effects of using
RG techniques on a non-trivial manifold, which may yet find application in lattice field

theory.

Chapter 3, describes the work of [6] in constructing a supermanifold in order to
introduce Pauli-Villars regulator fields, along the lines of what has already been done
in gauge theory [33]. The result is mathematically interesting yet somewhat
incomplete as the final step of introducing a symmetry breaking superscalar field has

not yet been done, having been left to future publications.

Chapter 4 draws from the work of [4, 7, 34, 35] and looks at how the RG equation and
a generalisation of the BRST quantization procedure, the Batalin-Vilkoviski (BV)
formalism, are compatible. This produces a way to construct the action of quantum
gravity order by order, with the only input being the fields and their symmetries at the
free level. In Chapter 5, we also look at the effect of adding a scalar field, and show
that the additional terms that this generates are precisely what one would expect when

coupling a scalar to gravity if one were to do so in a “naive” way.

Finally, we look at what avenues are left to explore in this formulation of quantum
gravity, and look at ways one might include Standard Model particles into this

formalism.
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Chapter 2

The Conformal Mode and The

Torus

2.1 Introduction

Much of this chapter is adapted from [5], with some additional material from [29].

In [29], it was shown that the conformal factor field ¢ has profoundly different RG
properties to a standard scalar field in QFT, and that these properties may be what
are required to construct a perturbatively renormalizable theory of quantum gravity.
These properties were shown to lead to a novel effect which links the size of a universe
to its inhomogeneity, at least for T4. Then, in [5], this was taken further to include

T3 x R (with the idea of identifying R with Euclidean time) and twisted tori. This work

is described in what follows, including some analytic results regarding global extrema.

2.1.1 The problem

The path integral for the Einstein-Hilbert action (in Euclidean space) has a number of
problems. Chief of which is the fact that the Euclidean action is unbounded from
below (in fact it is unbounded from above also, but this doesn’t cause any problems).
Note that

2,/gR
Spw = / d*zLpy,  Lpg=— \,{2 (2.1)
and so the Euclidean path integral
Z= [ Digujesen (2.2

diverges for metric configurations with large positive Ricci curvature.
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To see how this is related to the conformal factor, we write

Gy = (1 + gso) O + Khyw (2.3)

where hy,, is traceless (so we identify this as the graviton), ¢ is the conformal factor
and kK = V327G, where G is Newton’s constant. Upon substituting this into Sgyr, and

fixing to a Feynman - de Donder gauge we see that the Lagrangian is of the form
1 2 1 2
»CEH = _5((9#30) + 5(8ph;w) +... (2'4)

and therefore we see that the divergence of the path integral comes about for
spacetime configurations with a conformal factor that varies sufficiently quickly. This
is known as the “conformal factor instability” and there have been several attempts to
address this. One, by Hawking et. al. [36] suggests analytically continuing the
conformal factor ¢ — iy to change this minus sign to a plus sign, but we will take the

view that this sign is to be kept and taken seriously.

It is worth taking time to justify not using the treatment in [36] or other alternatives.
Indeed, the authors showed that the procedure of continuing the conformal factor to
the imaginary axis does not in fact affect perturbative results. However, it is not clear
whether this procedure makes sense non-perturbatively [37]. One approach considered
within the asymptotic safety scenario involves a truncation to a finite set of operators,
leading to a “—R + R?” action [38]. The opposing sign of the R? term serves to
stabilise the conformal sector, but also results in an unsuppressed non-perturbative
Planckian scale modulated phase which breaks Lorentz symmetry, which would clearly

pose phenomenological problems if physical [39—41].

2.1.2 A way out: Wilsonian RG

Now, it seems that this theory is doomed from the start, given that the Euclidean path
integral is (worse than usually) ill-defined. However, if one treats Z as a formal object,
then we can derive flow equations for this theory in exactly the same way as we would
otherwise. Furthermore, in both this and the usual case we can reverse the derivation
to get the path integral from the flow equation. Thus we take the view that the RG
equation is the way that we define the theory, as opposed to the path integral, which

we merely view as a formal object.

For the remainder of this chapter, the traceless part of the metric will be discarded. At
this point we are not really doing gravity, but rather simply QFT with a scalar that
has a negative kinetic term. The treatment here should be compared with that of

Section 1.3. What follows is also covered in [29, 42] Looking at the Wilsonian effective
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action, we can split the kinetic terms and the interactions as

1 _
Si'lpl = Salel = 5o (AN g (2.5)
where the propagator
CA
Ay = 2 (2.6)

is regulated by the UV cutoff function C*(p) = C(p?/A?), which satisfies

lim C(u) =1, lim C(u) =0 (2.7)

u—0 U—00

where convergence to the UV limit is sufficiently fast to regulate all momentum
integrals. Following the steps of Section 1.1.2 leads to a modification of the Polchinski

equation

0 _1(55/\ OAA 5SA+1t HAA 5QSA
200 0N op 27 ‘

o oalp] = N Spop

o (2.8)

Comparing with equation (1.15), we see that the only difference is an overall minus
sign on the right hand side. This looks innocent at first glance, but as we will see this

overall sign has important properties for the RG behaviour of the theory.

Since we are only interested in the form of the eigenoperators, we can linearise about
the Gaussian fixed point (Sx = 0) to yield

1 525,
== AN 2.
OASA 2t1‘ <3A 5()05()0) ( 9)

and as before, we use the LPA to get the flow equation for the potential
OV = Q02 V (2.10)

where we have defined
Qs = l{p(@)p(@) (2.11)

as before!. Note that equation (1.25) can be written like this only with a change in
sign on the RHS. This form shows how the change in sign has a drastic effect on the
behaviour of the RG flow. In the case of the positive sign, we have a heat diffusion
equation? with time increasing as we flow to the IR. This means that, given a solution
at Ag, we can always flow to a solution at A < Ay as we wish. However, with the
change in sign, then as we flow towards the IR then generically, at some point, the flow
will fail. That is, we are only guaranteed that a flow to the UV exists [43]. We will see

later that this can have profound consequences for the theory.

!Note that now the modulus sign is required for consistency with Section 1.3.
2 After a change of variables.
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To find the eigenoperators, we follow the steps of Section 1.3 to get the eigenoperator

equation:
V//

AV =3V 4V = —
V-V 44V 92

(2.12)
which again, is of Sturm-Liouville form, but now with measure e*4°#*. As seen in [29],
there are multiple sets of solutions, including a continuous family. This causes issues
with notions of completeness that we’re used to in QFT. However, we can restrict the

set of solutions (for V') to be spanned by

n 2
é(/?)(cp) = (9?07‘6(/8)(@)’ where é(/(\))(go) = \/27177(2,\ exp <_;0§Lx> (2.13)

by insisting that the potential is square-integrable under the Sturm-Liouville measure

00 902
/ dpV?(p, A) exp <> < 0o (2.14)
e 2Q

at the bare level (where A = Ag). Note that since the potential “smooths out” as RG
time goes backwards (c.f. time-reversed diffusion equation), then imposing this at the

bare level also ensures that it holds for A > Ag.

These eigenoperators satisfy [5% )(<p)] = —1 — n and span a Hilbert space of potentials
satisfying equation (2.14), which we call £_. Therefore, we can write the general

solution to the flow equation as
o]
Vip.A) =Y audile) (2.15)
n=0

where [g,] = 5+ n. We thus have an infinite tower of relevant operators. Normally this
would be disastrous from the point of view of predictivity, but this is resolved in
Section 2.1.3. If the couplings are chosen such that the flow exists to the IR, then we

can extract the physical potential
V = lim V(p, A). 2.1
() A (¢, ) (2.16)

Due to the backward-parabolic nature of the RG equation, we can extract the

potential at any A if we have the physical potential. Indeed, we have

o0 7r2 i
Vip,A) = / d—”vp(n)efﬂwﬂw (2.17)

oo 2T
where V), is the Fourier transform of the physical potential.

Now, solutions of (2.14) are characterized [29] by an amplitude suppression scale at
large field

2

A3 (2.18)

V() ~ e

> 6
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which is (up to a non-universal constant) the point at which the IR evolved potential

leaves L_.

2.1.3 Connection to quantum gravity

As stated earlier, we are not really doing gravity at this stage, just QFT with a scalar
that has a negative kinetic term. However, as seen in [34], the eigenoperators for the
conformal factor have a key role to play in constructing a theory of quantum gravity.

Indeed, the general interaction term (ignoring ghosts etc.) can be written as

fR(p)o(0,h,0p) + ... (2.19)

with o some Lorentz invariant monomial in the fields (the dots indicate tadpole
corrections) and
o0
K@) =Y giaie) (2.20)
n=neg
is the “coefficient function”. Thus these conformal factor eigenoperators are indeed
worth studying for the construction of a theory of quantum gravity, as well as being
sufficiently of interest and novel to be worth studying on their own. Note that since
\ has arbitrarily negative mass dimension, we can use it to render any monomial o

renormalizable.

2.1.4 Outlook for this chapter

Having established the eigenoperators for the scalar field with a negative kinetic term,
Section 2.2 shows how these are modified when we are on a manifold other than R*.
Although the effects of this in generality necessarily must wait for a full theory of
quantum gravity (since they explicitly relate to the geometry of the manifold), we see
than in general, the failure of the RG flow to the IR implies a bound on a certain
function § of the geometry. Finally, we use this function to define a measure of

inhomogeneity, largely inspired by the work that follows.

In Section 2.3, deal with the the simplest manifolds we have the machinery to deal
with, T* and T? x R, and see how S changes as we vary the lengths of the fundamental
loops. As hoped, it is found that S decreases, and indeed becomes negative for
sufficiently inhomogeneous geometries. The numerical work in this section is
supplemented by analytic results in Section 2.4, both of which point to maximally

symmetric manifolds maximising S.

Finally, in Section 2.5, we generalise these results to twisted tori. We see that,

generally inhomogeneity reduces &, but with the addition of a twist parameter, a much
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more intricate set of phenomena is revealed. A small section of moduli space is

explored and numerical results presented.

2.2 RG evolution on manifolds

We wish to see how these 5(: ) evolve on a general manifold M. We expect the main
alterations compared to R* will be seen in the IR, since the UV is regulated by Ao,
which we expect to send to infinity and thus, by the definition of the local properties of

a manifold, M will be indistinguishable from R*.

To see how the difference arises, it will be useful to write, from equation (2.17)

2
520 = exb (3905 ) 87 (2.21)

where &™) is the nth derivative of the §-function, which is the physical limit of the
above eigenoperators. If one starts from these bare operators and solves equation (2.9)

down to some scale A = k£ then one obtains

/z () = exp <—;tr [AQO . &iz@D /g: ) (2.22)

where now, integrals over spacetime (including those implied in DeWitt notation) are

/x:/d%\/g. (2.23)

We have also defined a propagator that is regulated in both the UV and IR, where

to be read as

Ci(p) _ CMo(p) — CHp).

Abo — 2.24
=2k = 220
Combining the above, we see that we can write the evolved operators as
5 () = exp [ L0pp 22 ) 6
k,Ao(w) = exp B k,Aoaigpg (¢) (2.25)
where
Qg p0 () = [{p(z)0(2)) [Ra—[(2(@) (%)) | M- (2:26)

The first term on the RHS here is the one-loop tadpole at A = Ay, whereas the second
term is evaluated on the manifold and regulated by C,? . On R%, this term is Qp, — O,
and so A, = ;. By contrast, on M, we expect changes to this when the IR

evolution reaches k ~ 1/L, where L is some characteristic length scale for the manifold.
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Getting the physical €2 for a manifold is a simple matter of removing the regulators:

Q(x) = lim Qpp, (). (2.27)
12—>0

One can then use the evolution equation for the 56? ) to get the physical eigenoperators:

2

! L ) . (2.28)

n " 0)
§p) = ——6p),  where 5;0>(¢):7%exp <_2Qp

P Dy

In the case M = R*, we have ), = 0, and thus the eigenoperators return to being the

d-function and its derivatives. However, we can, on dimensional grounds write

W)= {7

(2.29)

with L a characteristic length scale of M, and § we expect to be a finite and universal

(independent of regularization details) function of the geometry?.

As seen in [29], Q,, can be negative, and in this case, the RG can fail at some point in

the IR. In particular, if the flow exists for k — 0, we have

Vo(p(),z) ~ exp (—A%Jrg;p(x)) (2.30)
for large ¢, and we have the constraint
S(z) > —2nL*A2 Vo € M. (2.31)
Now we define
Smin = inf S(x). (2.32)

zeM
If the manifold has Sy, < 0, then by our constraint the manifold must have a

minimum size given by

_Smin
2

2mA;

Lunin = (2.33)

and thus the amplitude suppression scale has a role in controlling the size of such
manifolds. Now we define Spax to be the maximum of Sy, over all manifolds with a
given topology. We will see in the remainder of this chapter that a larger S is

associated with more symmetric manifolds, and therefore we interpret
Iym = Smax — Smin (2.34)

as a measure of inhomogeneity in M*. We find that generally, Spay is O(1).

3The factor of 47 is merely there for convenience - it could just as well be subsumed into S.
Tt is worth remembering that Smin depends only on M, whereas Smax depends on its topological
class.
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With this definition, clearly a smaller Sy, corresponds to a more inhomogeneous
manifold, and this will be borne out in the examples that follow. To summarize,

however, we can now say that homogeneous universes are constrained to be small:
Iam < Smax + 21 L*A2 (2.35)

and this would have important and far-reaching implications in cosmology.

We would now like to use some examples to test out these ideas. However, it is unclear
exactly how to interpret the integrals in equation (2.25) without a fully developed
theory of quantum gravity. Thus we are restricted to those manifolds with g, = d,,.
This greatly restricts our options, but we can us tori, which have a rich moduli space

and are simple enough that calculations can be fruitfully performed.

2.3 Flat tori

2.3.1 Four-torus

In [29], 2, was calculated for the four-torus M = T*. An account of the derivation
follows. Suppose that the lengths of the non-contractible loops are L, (u=1,...,4).

Then we write N
Ck ¢ (pn)

> (2.36)

(ORI
n#0

where pl, = 2mn,,/L, (no sum), n € Z*\{0} and V = Hi:l L, is the volume of T*.
Note that in this case, S(x) = Spin since the manifold is translation invariant. Note
that we have removed the zero mode since in this configuration, ¢ = ¢g and thus near
the Gaussian fixed point, the integrand of the path integral does not depend on the
field value, and so these configurations must be divided out. This step also makes the
sum IR finite as k — 0. It turns out it will be convenient to add the zero mode back in

as an intermediary step:

tim @) _ c'(0) (1 . 1) . (2.37)

p—0 p2 Ag k‘2

With the zero mode included in the sum, we can use the Poisson summation formula

to write the sum as an integral, then we must subtract this zero mode contribution:
C'(0) N~ ity CO) (11
= [ £ P ——— = - 2.38
(rplm= [ 58 St - S0 (G- (239

where i =n,L, (no sum) and n € Z*\{0} is now the winding number. Clearly, when

n = 0, the first term is clearly the flat space propagator with the regulators: 5, — .
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With this, we have

c'o) (1 1 CR (D) ~— i,
Qk,no = U + v <A2 — k?) /p kp2 Z eilnp (2.39)
n#0

which, since the third term is a sum of propagators between distinct points, is finite as
Aoy — oo. Thus, since we have already noted that €, 5, is IR finite, the final result is

finite in the abscence of regulators and, in particular, we are free to choose our cutoff
2

profile. For what follows, we will take C(p?/A2) = 6’_%, and the take the Ay — oo and

k — 0 limits where it is safe to do so. Thus, we have

Q, = k2V / / dove™ Z ellnp, (2.40)

n#0

where we have expressed the IR cutoff in terms of a Schwinger parameter. Performing
the (Gaussian) integral over momentum and changing variables to a = L?t/47 where
L= Vi, we have

1 1 Wiz dt 12
= v 47rL2/ 2 H © ( t) ! (2:41)

pn=1
where [, = L,,/L and we’ve defined the third Jacobi theta function:
O(z) = Z e (2.42)

To deal with the remaining integral, we define

1 4 l2
sa(l,,) :/0 g IIe <;) -1 (2.43)

and to deal with the remainder of the integral, we make the substitution ¢ — 1/t. We
also make use of the formula O(z) = ﬁ@ (1). What remains is s4(1/1,), plus a
constant and an IR divergent part which cancels the divergence from the first term in
2,. Thus, we have

_ 84(lu>
Q=" (2.44)
where
S4(l‘u) =2 — S4(l“) — S4(1/lu). (2.45)

A few things to note about this. Firstly, as expected, S4 does not depend on the
overall sign of the manifold, just the relation of the lengths of the fundamental loops to
each other. In addition, it is invariant if we permute the lengths between each other.

Perhaps more surprisingly, there is an invariance when we send I, — 1/1,,, which is
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somewhat similar to T-duality in string theory. The significance of this is yet to be

determined, if indeed there is any.

Trying some numerical examples, we find that S5 = 1.765 at the symmetric point
(I, = 1), and can be made negative by deviating sufficiently far from this. In fact,

S = 0 at the following points:

[y = 2.709 and the other [, = 0.7173;

l1 = 0.3691 and the other [, = 1.394;

11 = l2 = 2.457 and lg = l4 = 0.4069;

L= 1487141 (n=1,2,3).

Note that the first two are dual to each other, whereas the other two are self-dual
(combined with permutation symmetry). When the lengths deviate more than this,
then Sy is negative, and thus the bound (2.33) applies, and in this case, this means

that, in terms of the spacetime volume

54(lu)2

V> 4772A§

(2.46)

and so we see in this case that small universes are constrained to be highly symmetric®.

2.3.2 Spatial three-torus

Now we look at a slightly more realistic model, T? x R, with the idea that the real line
corresponds to the time direction after undoing the Wick rotation. Just as the T* case
[44], we can relate this computation to those in the literature discussing finite size
effects in lattice quantum field theory [45]. We subtract the zero mode, which again
would render our expression IR divergent. The details of why this is valid are more
complicated, and would presumably go along the lines of [45], but a precise

justification would have to wait for a full theory of quantum gravity.

Suppose the lengths of the fundamental loops of T? are L;, and V3 = HZ 1 Li. We also
define L = V3 , and the dimensionless lengthths as [; = L; /L. We then have

Ao
(@)@ = 7 / 3 G (2.47)

where p = (p?,p4), p? = 2mn;/L; (no sum) and n € Z3\{0}.

5 Although it seems this formula can hold for S positive, the bound for Ly, was derived with the
assumption of negative S, so this has no meaning when Ss > 0.
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As with the T? case, this expression is UV and IR finite, and so we have our choice in
regularisation. Adding and subtracting the zero mode and applying the Poisson

summation formula as before, we can see that

1 [ O cio(p
Qkno = Qk+V3/ b §p4) / Ze”ﬂp (2.48)

by

Using the same regulator as before C*(p) = C(p?/A?), using the Schwinger parameter

trick and taking limits where it is safe to do so, we see that

4m 3
1 1 k2.2 dt l;
Q, = v 47rL2/0 7z (g@ <t> - 1) : (2.49)

Analogously to above, we define

s = [ (Tle () 1) 250

and we split the integral about ¢ = 1, take ¢ — 1/t and use O(z) = %@ (1). This

results in the IR divergences cancelling, and we are left with

Ss(1;)
A2

Q, = (2.51)

where S3(l;) = 3 — s3(l;) — 53(1/1;) and

53(1;) = /ij <£[®< ) ) (2.52)

Once again, we see that the result is symmetric under interchange of the lengths of the
fundamental loops, as would be expected from the symmetries of the torus. We also
note that since s3 # §3, the inversion symmetry [; — 1/l; is seen to be a quirk of the
fact that previously we had four compact dimensions. Also, we see that S3 does not

depend on the overall size of the manifold, as with Sy.

To get some intuition, we input some values:

o [ =la=13=1: S5 =2.8373;

li1=1,la=2and l3 = 5: 83 =0.8538;

I

l1 = 1, lQ =3 and l3 = 3! 83 = —4.2936;

ol

l1 = l2 = 2 and l3 = 3 = —8.95463;

1.
1

S3 =
i =lp=3and I3 = §: S3 = —73.1222;
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e /i1 =2 ls=3andl3 = %: S3 = —28.4098;

= %, lo = % and I3 = 6: S = —15.7999.
Note that the largest value was seen in the maximally symmetric case, and decreases
as anisotropy increases, becoming negative at some points. That last two provide an

explicit example that the inversion symmetry from before fails in this case. In the case
that S3 < 0, the bound (2.33) applies, and thus we have

3
—S3\ 2
Vs > (27”\%) (2.53)

indicating that once again, small universes are constrained to be highly symmetric.

2.4 Some analytic results

We wish to see how much our hypothesis regarding anisotropies are supported by
analytic results. First, we wish to show that the symmetric point is an extremum of Sy
(d =3,4). We write [, = e**. Any first-order perturbation 0z, = eq, gives a change in
84 proportional to ) Qe However, since [] L [, =1, we have the constraint that

> ,@u =0, and so the first order change vanishes.

We have shown that the symmetric point is a local extremum, but we wish to see
whether it is a global maximum. For simplicity (and at the cost of some generality),

we set only two of the [ # 1. Without loss of generality, we can then set I; = ,/x and

lo = ﬁ Then in both of the above cases, the only dependence on x comes from the
combination

o) =0(Y)e <1> . (2.54)

t tx

Now we note that this is invariant under y — 1/x, and so we can restrict our attention

to x € (0,1]. Now we use a result of Ramanujan (given in, e.g., Berndt [46]):

00 g2k
1 =2 2.55
n6( ; 2k—1 (1+ ¢2F+1) (2:55)
where ¢ = e™™®. From this we can see that
0,0(z) = —270(x Z (2.56)

— 1 4em 2k+1):c)

and thus we have

o 1+ (222) < 1 222

2
2t (1 + exp m(2k— 1)) (1 + exp m(2h=1)x 1)X>

D,6(x) = frx)  (257)
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where

fr(x) =1+ exp <7T(2kt_1)x> —X <1 + exp 77(2];;”) (2.58)

will determine the sign of each term, since every the other piece is always positive.

Now, we have that f;(1) =0, and we wish to have f/(x) > 0 for x € (0,1] so that
0y0 < 0 in this range. Since 2k — 1 > 1, we have

FL(y) = mexp (W(%_l)x> —1+exp (”(2]‘:_1)> <7T - 1) (2.59)

t Xt X

which is indeed positive in the required range. Thus, 0,6 < 0 for x € (0,1]. Therefore,
0(x) has a global minimum at x = 1, and so the symmetric point is a global maximum

for S, since extrema of 6 govern extrema of s4, s3 and §s.

2.5 Twisted tori

We are still restricted to using manifolds with g,,, = 6,,,, but we can still consider
manifolds with the same topology, that is, twisted tori. The twisted four-torus is
defined by the equivalence relation x, ~ x, + Lv,, where the v, defined by the lattice
A43

v, €N = {Znilf;n€Z4} (2.60)

where the primitive vecltors l; are not all orthogonal. Note that we have factored out
the length scale L = V,1, where Vj is the volume of the 4-torus. With this
normalization, we have det(ly,l2,13,1l4) = 1. If we wish to follow the derivation above,

we need to define the dual lattice A} with which we define the momentum modes:
Ay ={ueR 1 u-ve2rZ,Voe A} (2.61)

We then have p € A}/L. Removing the zero mode as before, we have

Co (p)
p?

(@)@ m=— D

4 Lpeas\{0}

(2.62)

Now it is a simple case of following the steps from before. To do so, we need the lattice

theta function, which is a well known subject in modular forms (for example, see [47]):

Oa(t) =Y e ™", (2.63)

vEA
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Performing the same steps as for the untwisted case, and using another application of

the Poisson summation formula®:

OA(t) =t 20,-(1/t) (2.64)
we arrive at s (A )
_ o4y

Q, = 12 (2.65)

where S4(Ay) =2 — s(Ay) — s(A}), where we've defined

s(A) = /Olff (@A (1) _ 1) . (2.66)

Similarly, in the twisted T2 x R case, we can similarly generalise to

=T (2.67)

where S3(Az) = 3 — s(Ag) — §(A3), with s as above, and

5(A) = /Olg (@A (1) _ 1) . (2.68)

It is easy to confirm that these results reduce to the previous results in the case of
orthogonal primitive lattice vectors. Note also that the inversion symmetry in the T4
case is a special case of the A — A* symmetry. In fact, this is somewhat similar to
symmetries in one-loop calculations in String Theory [48, 49], but the significance of
this is yet to be determined. Clearly, we also still have the symmetry of interchanging
the primitive vectors. In addition, we are free to redefine the primitive lattice vectors
by

L li+ Y ngly, n; €L (2.69)

J#i

since the new primitive vectors will have the same span as the old ones, and hence
define the same lattice. This is a PSL(d,Z) symmetry, which we will have to take
account of when finding the analytic properties of S since, for example in d = 2, if
li =(1,0), lo = (1,1), 15 = (1,0) and I = (0,1), then {l1,l2} and {l},1}} define the
same lattices, and hence, despite appearances, {l},15} does not correspond to a twisted

torus.

2.5.1 Analytic properties

The easiest realisation of the twisted torus is to start with orthogonal primitive vectors
l,,, and to twist Iy — [ + aly for a € R. In fact, due to the PSL(d,Z) symmetry, we

STf we hadn’t normalised the lattice (and its dual) there would be an inverse factor of volume on the
RHS.
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can restrict attention to a € [0,1), since a € Z corresponds to the same lattice. For
d > 2, we define A, to be the sublattice generated by {l1 + ala,l2}. In this case, the
dependence of S on a is only due to ©p, and ©,y. In these theta functions, we have

sums over ny,ng, and for v € A, we have
v? = 12n? + 13(nia + no)? (2.70)
and when v € A3, we have
v? = (nya — np)? /13 +n3/l3. (2.71)

Note that in both cases, if [; > l9, then the dependence on a is exponentially
suppressed, whereas it is exponentially enhanced for [; < l3. This may well be
expected as this means that adding a small vector to a large vector makes less
difference than adding a large vector to a small vector. We will see this explicitly in

some numerical examples.

It is also worth noting that the above are symmetric under a — —a (upon summation

over ny,ng) and therefore, a = 0 is a local extremum of §. Combining this with the

1

modular symmetry a — a + 1 shows that S is symmetric about a = 3, and so this is

also a local extremum of S.

When computing the numerical examples below, it is worth noting that the lattice
theta function is not in most algebraic computing packages. In these cases is easier to
note that
s(A)= > exp(-mv?) (2.72)
veA\{0}

and

5(A) = Z |3)|erfc ( 71'212) (2.73)

veA\{0}

thus, in both cases, if we organise the sum in order or increasing |v|, we can compute

these with exponentially fast convergence.

2.5.2 Four-torus

To display examples of twisted tori, we define A by a matrix M where the rows are the
primitive vectors. Figure 2.1 shows the effect of starting from a lattice with
orthonormal primitive vectors, and increasing a from 0 to 1. We see that a =0
(equivalently a = 1) is the minimum of S, at 1.765. We also see that the maximum is
at a = %, with § = 1.784. Figure 2.2 shows the effect of twisting a smaller vector
towards a larger one. We see that the minimum and maximum are in the same places
(a=0and a= %, respectively), but the difference in S between the two is much

greater than the previous case. When the difference between these vectors is greater,
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M =

o o O =
o o = 2
o = O O
_ o o o©

FI1GURE 2.1: Variation of & as we twist the torus away from orthonormal primitive
vectors.

1 00 0

01 0 0
M =

00 2 0

0 0 a %

FIGURE 2.2: Variation of S as we twist a smaller vector towards a larger vector.

we see larger plateaux around a = % This is largely due to the fact that the changing
a makes less difference since the length of the vector is already large compared to the

change from varying a.

In Table 2.1, we see the effect of twisting on this lattice in different directions. In all of
these we see that twisting a smaller vector towards a larger one causes the largest

change in S.

Now, at increased inhomogeneities, we see fascinating new effects. From this point on,

we use the parametrization of Section 2.5.1, and our general matrix will be

10 0 O
01 0

My(a,x) = 00 = 0 (2.74)
0 0 azx %

In addition, due to the modular symmetry of the lattice we may consider only
a € [0,0.5] without losing any generality. Figure 2.3 shows how S changes with a for

various values of z.

We see that when we reach x = 3, the stationary point at a = % has become a local

minimum, as opposed to a maximum when z = 2. In addition, when x increases
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Matrix \ S max \Range of 84‘
1 a 00
0100
00 2 0 -0.547798 | 0.0293644
000 %
1 0a 0 100 0
0100 0100
0092 ol=lo o2 ol | 0128869 | 0.706032
000 1 a 0 0 %
100 a 100 0
0100 0100 5
002 ol=la 02 ofl0577206| 56x10
000 3 000 2
1000
0100 10
00 2 a -0.577163 10
000 %
1000
0100
00 2 0 1.78352 2.36068
00 a 3

TABLE 2.1: All possible ways to twist M = diag(1,1,2, %), for which we have

Sy = —0.577163. For those rows with two matrices, they are related by the inver-

sion symmetry A <> A* (after relabelling), and those with one matrix are self-dual (up

to relabelling). Note that we have the greatest change when a small vector is twisted

towards a larger vector. In each case, the value S4ax comes from maximal twist, that
is when a is half the length of the vector we are twisting towards.

AAAAAAAAAAAAAAAAAAA

FIGURE 2.3: Variation of S as we vary a € [0,0.5] for x = 3,4 and 6 respectively.

further, new minima begin to appear, and the minimum at a = % becomes negative.
Increasing even further, not only do more minima appear, but also additional

disconnected regions of S < 0. It is worth noting that in the case x = 4, the minima
appear to be at a = %, %,
%, % Thus, we are led to conjecture (with supporting evidence from non-integer x)

that for a given x, we have minima at a = % with n < z. It is not clear whether there

and for x = 6, we appear to have these, and additionally

a =

is any physical significance to this pattern or whether this is simply a mathematical

curiosity.

Also of interest is fixing the twist and allowing the inhomogeneity to vary. Figure 2.4
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shows what happens when we fix a = % and allow z to vary. Here we note that,

FIGURE 2.4: Plot of S(%,z). The second panel is a close-up for z € [1,2]. We see a
local minimum at approximately z = /2.

broadly speaking, as inhomogeneity increases, S decreases and becomes negative, as
we’d expect from the untwisted case. However, as we see in the second panel in Figure
2.4, the maximum does not occur at x = 1. Going by our definition of Z, in Section
2.2, the theory appears to see the local maxima as the “most symmetric” points in this
space of manifolds. Also of note is the fact that the local minimum appears to be
around z = /2, and in fact if we fix a = %, the minimum appears around x = /3.

Again, it is unclear whether this has any physical significance.

2.5.3 Spatial three-torus

Numerically, the effect of twisting on T? x R seems to be much the same as that for
T4, except the changes seem to be damped somewhat. We see again that for mild

inhomogeneities, the manifold prefers a more twisted configuration, for example,

=
I
[ R e R
S NN =

0
0 gives &3 = 1.327 (2.75)
1
2

which should be compared to the untwisted S3 = 0.8538. Also, more dramatically, we

see

gives S = 2.8538, (2.76)

|
S O =
= NN O
o= O O

an even larger increase, as one would expect for a smaller vector twisting into a larger

vector. Taking our lead from the T* case, we define

(2.77)

=
—
8
8
~—
I
=]
8
gl= O O
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and find very similar behaviour to T4, but the effects seem more mild. Examples are

given in Figure 2.5. Most important to note is the once again, the minima seem to

FIGURE 2.5: Variation of S3 as we vary a € [0,0.5] for z = 4 and z = 6 respectively.

appear with the same arithmetic regularity as previously, however more inhomogeneity
is needed to achieve S3 < 0. Also interesting is the fact that the plot for 83(%, x) has a
very similar shape to that in Figure 2.4. These seem to indicate that in both cases, the

extrema that appear are due to extrema in ©, , as defined in Section 2.5.1.

2.6 Discussion

This chapter has focused on the renormalization group properties of the conformal
mode of the metric. Although we treat it in isolation, we also see that knowledge of
how the eigenoperators behave will be crucial in constructing an interacting theory of
quantum gravity. We see that the wrong sign of the kinetic term has a profound
impact on the theory, giving motivation for a modification of the definition of

quantization which in turn gives rise to eigenoperators with novel properties.

The key aspect developed here is that the wrong sign of the kinetic term alters the
direction in which the RG flow equation is well-posed. This means that, generically,
the flow to the IR fails at some scale. Specifically, this happens when a universal
function of the geometry S is negative and falls below some value set by the
characteristic length of the manifold L and the amplitude suppression scale A,. That
is, if S < 0, manifolds cannot be arbitrarily small (for finite A,). We have seen that

S < 0 is possible in explicit examples, even when restricted to manifolds with

9w = Oy Indeed, for T4 and T? x R, we see that this occurs when the lengths of the
fundamental loops are sufficiently different, i.e., when there is sufficient inhomogeneity.

Put another way, small universes are constrained to be highly symmetric.

In addition, we see that toric universes “prefer” to twist, in that this increases S, thus
avoiding the constraint of the size of the manifold. We see that varying each of these
leads to a rich variety of behaviours. This moduli space is vast, and here hardly any of

it is explored. For example, relatively little has been investigated about in what
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happens when more than 2 lengths are varied from the symmetric point, and nothing
has been made of multiple directions for twisting. It seems that there is a fascinating
interplay between varying the lengths of the fundamental loops and varying the
twisting between them. Thus, despite T% and T x R being the simplest examples

available to us, it is clear that there is much we don’t know about their behaviour.

Assuming that the inhomogeneity effects described here survive a full theory of
quantum gravity, we would have the beginnings of answers to questions about the
history of the universe. Examples are the initial conditions required for inflation (small
universes constrained to be symmetric) and the “Why now?” problem (why the energy
densities for dark energy and matter are of the same order of magnitude now). Clearly

these effects alone qualify this for further study.

Unfortunately, in [34], it is seen that to achieve diffeomorphism invariance, A, must be
sent to infinity. This removes the restriction on the overall size of the manifold.
Nonetheless, the effects shown may yet find application in lattice field theory, see e.g.,
[45]. To the current author’s knowledge, effects of twisting have not been examined in

this sphere, so the work above may yield fruit in this direction as well.
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Chapter 3

Parisi-Sourlas Supergravity

3.1 Introduction

This chapter is largely based on [6] and surrounding work.

We wish to construct an RG flow for gravity which is diffeomorphism invariant at all
stages of the flow. The first stage (at the classical level) was developed in [50]. This
chapter looks to take the first steps to extending this into a fully diffeomorphism RG
flow. In order to do this, we want to introduce UV degrees of freedom so that when
integrations are regulated at the effective cutoff scale A, diffeomorphism invariance is
preserved. This was done in gauge theory over a period of years [33, 51-75] by
extending the SU(N) symmetry group to the supergroup SU(N|N). This introduces
extra fermionic gauge degrees of freedom which are spontaneously broken at A and
then act as Pauli-Villars fields, and they regulate the gauge theory for all scales A. At
large scales, the bosonic and fermionic degrees of freedom cancel each other, as with

Parisi-Sourlas supersymmetry [76].

The natural way to implement this in the gravity case is therefore to extend the
diffeomorphism symmetry to a superdiffeomorphism symmetry, which is done by
extending the manifold to a supermanifold. Fortunately, supermanifolds have been
extensively developed in the mathematical literature, e.g. [77]. The key idea is the the

D bosonic coordinates of normal spacetime are extended to
= (a*,0%) (3.1)

where we’ve introduced D fermionic coordinates . These fermionic coordinates are
different to the standard supergravity case [78, 79] since the 6% are not treated as
spinors under the bosonic Lorentz group, but rather vectors in their own space (and

scalars under changes in bosonic coordinates). Crucially, as we have added new
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directions to the space, it makes sense that the metric is extended to a supermetric

g g
gaB = < " ““) (3.2)
9bv  Gab
where g4 = gap and gay = —gpe and all indices run from 1 to D. Now, there are D?
bosonic degrees of freedom (D(D +1)/2 from g, and D(D —1)/2 from ga) which at
UV scales we hope are cancelled by the D? wrong statistics' fermionic fields 9ua, Which

we thus expect to act as the Pauli-Villars fields in this case. We thus describe this as

Parisi-Sourlas supergravity in order to distinguish it from other types of supergravity.

Having extended the manifold to a supermanifold, we will see how the linearised
Einstein-Hilbert action is modified, and in particular we want to see what new degrees
of freedom have been introduced. To account for superdiffeomorphism invariance, we
will have to fix a gauge in order to calculate propagators, which will allow us to see
what physical degrees of freedom we have, and which are gauge artefacts. In
particular, we expect the “wrong statistics” terms to be spontaneously broken and
given a mass of scale A. This would require adding a symmetry breaking scalar, as in
the case of SU(N|N) [33].

There are, however, hints that symmetry breaking may occur already, since the kinetic
terms in our action are only diagonalisable with a mass scale M. However, this does
not behave as a mass in the usual way. In particular, it does not result in changes to
the position of poles in the propagators, and thus does not change the physical mass of

any physical field, but is instead more subtle.

3.2 A review of supermanifolds

In this section, we introduce notation and nomenclature largely taken from [77] and
define what we will need to construct a theory of gravity on a supermanifold. In
theory, we can define a supermanifold with any number of bosonic and fermionic
coordinates, but with the view to treating the new degrees of freedom as Pauli-Villars
fields, we will have D of each. Therefore, we will work on the superspace RY x RP. We
use greek indices to label the coordinates in RY (the commuting/bosonic coordinates)
and lower case latin indices to label those in RY (the anticommuting/fermionic
coordinates). It will also be convenient to work with general indices A = (u, a) that

run over the whole superspace.

'Indeed, from the point of view of the “base manifold” (essentially the bosonic manifold), g,. are
seen as fermionic vectors, in violation of the spin-statistics relation.
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3.2.1 Vectors, matrices and indices

Just as a vector is a map from functions to functions in normal geometry, a
supervector X does the same over a superspace. We define X to be “c-type” if it maps
c-functions to c-functions and a-functions to a-functions. Similarly, we define X to be
“a~type” if it maps c-functions to a-functions and vice versa. Using a “standard basis”,
a c-type supervector has c-numbers in the first D entries and a-numbers in the final D
entries. Similarly, an a-type supervector has a-numbers in the first D places and

c-numbers in the final D places.

One of the key notations we use involves indices and geometric objects as powers of

(=1):
G N CS DA C Vi (3-3)

When written this way, A should not be seen as an index (in the sense of the Einstein
summation convention), but as a label for which (=1)4 =1 for A = p and (-1)4 = -1
for A = a. In addition, we say that (—1)* =1 for X c-type and (—1)* = —1 for X
a-type. Generally, any object or index appearing in a power of (—1) should be read as
a shorthand for the Zy Grassmann grading of the object (0 or 1)2. Note that if, for
example (—1)” multiplies an expression with A free, then this is to be read as a
multiplier that depends on whether A = u or A = a. However, if A is summed over,

then (—1)4 scans over its possible values. For example,

(—DAXA X, = XP X, — X X,. (3.4)

Note that the above is only defined for “pure” supervectors, those that are c-type or
a-type. However, any formulae involving these can be multilinearly extended for
general supervectors since we can write these (uniquely) as a linear combination of a

c-type supervector and an a-type supervector.

We will allow indices to be in four different positions: they can be left/right indices as
well as up/down indices. This will denote slightly different transformation properties
(see later). We also take the convention that in addition to only contracting indices
when one is up and the other is down, that the “natural” contraction is between
adjacent indices, with no object or other indices in between them, otherwise an

index-dependent sign will appear.

A supervector space is defined over R? x R? in the same manner as one would define
a normal vector space, only now left and right multiplication are different maps. From

now on, we will use what DeWitt [77] calls a “standard basis” {4e} which, under

2Sometimes this would be notated as, e.g., €(X), but since for our purposes we can proceed without
ambiguity, there is no need to introduce this here.
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complex conjugation, behaves as
et = (=1)4 e. (3.5)
Thus, a real supervector X = X4 4e = X* must have components which satisfy
XA" = (—1)XAx4 (3.6)
This may not seem immediately obvious, so is worth spelling out:
X* = (XA e)* = g XA = (—1) e XA = (—1)A(—1)AXFD XA e (3.7)

where equality with X implies (3.6) using that A + A is zero in Zy (equivalently
(—1)2 = 1) and A% = A. We have also used that the Grassmann grading of X4 is
X + A and that of 4e is A.

We are used to situations in which an index being up or down is sufficient to determine

its transformation properties. For example, for a vector we have

oxH

XH s X' = XVEKH, = XV
ox?

(3.8)

which is unambiguous in the case of all objects commuting. However, for a
supermanifold with non-commuting objects, we need to specify whether the Jacobian
matrix K acts from the left or right. Suppose we start with a basis { 4e} and wish to
change to a different basis (linearly). The index placement seems to indicate a

Jacobian acting from the left, that is
A€ = AKB Be€. (3.9)
Since X = X4 je = X 4& doesn’t depend on a basis, we are thus led to define

X4 = xBgKA. (3.10)

If {ae} and {4€} are standard bases, then it follows that K has the block diagonal

form
K = (A B> (3.11)
C D

where A and D are matrices of c-numbers and B and C' are matrices of a-numbers. So
we see that the degree of 4K is (—1)A+B. More generally, this is the case for c-type
matrices, which map c-type supervectors to c-type supervectors and a-type
supervectors to a-type supervectors and are the only type of matrix which we will

consider.
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Similarly to how, in normal differential geometry indices can be up or down regardless
of the “natural” placement provided we transform consistently, we wish to define 4X.
Clearly this would be done via transformation properties. Indeed, we would expect to

see
AX = 4K Bx (3.12)

for some matrix K~. Indeed, using the respective Zo gradings of the components of X

and K, we have

_ (_1)XA(_1)B(A+B)BKA(_1)XBXB (313)

and so we are led to define
AX = (=1)XAXA, and Ky = (—1)BAFB) g A (3.14)

so that (3.12) holds. We define K™ to be the supertranspose of K. Note that if we
want 4X to be components of a vector, we need a basis for vectors with indices
arranged like this, say {e4}. Since we’d like to have e44X = X e, we can use the
above and we find

eq = (—1)"4e. (3.15)

We have defined the supertranspose for one index placement, but we’d like to be able

to define it more generally. Using similar logic to above, we can define

ALY = (—)AMBIBL o M = (—1)ATBHAB Ly,

AN~B — (—1)ABBN4 (3.16)

Note that in all cases, K™~ = K and may be expected for a generalisation of

transposition. We define a supersymmetric matrix to be one for which K = K™.

Now we look at forms. Fortunately, given our basis for vectors { 4e}, we have a dual

A Jw where the degree

basis {€} which acts as a basis for forms. Thus we have w = e
of qwis (—1)**4 and we define w(X) = X4 qw. We could follow similar steps to above
to derive rules for manipulating forms, but these can all be deduced from those for

vectors. For instance, insisting on X4 4w = (—1)*Xw44X tells us that
wa = (=)D 4w, (3.17)

Note that equations (3.14) and (3.17) show that there are different rules for shifting
indices depending on whether they are upstairs or downstairs indices. One can show

through similar methods that this behaviour is carried to tensors. Since we only care
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about c-type matrices, we only show the index-shifting conventions for these. We have
KAP = (-1)*4KP, LAp="Lp, Map=(-1)"aMp, NAP=ANF (318

and this pattern can be extended for c-type tensors: moving an upstairs index is free,
whereas moving a downstairs index A comes with a factor of (—1)4. Note that we can
only move the leftmost right index and the rightmost left index in this way. For any

matrix with both of its indices on the right, we have
Kip=(-1)""Kpa (3.19)
as one would naively expect. In particular, a supersymmetric matrix must have

Sap = (—1)*8S5p4. (3.20)

Note that (3.18) requires us to be somewhat careful. As an example, let us look at the

Kronecker §. This can be represented by
(5AB, A5B, or B5A (3.21)

but not by
opt = (—1)B et (3.22)

In addition, we have to be careful about inverses. For example, if we say N is the

inverse of the matrix M, what we mean is
ANBp Mo = 46¢ (3.23)

and other expressions must all be derived from this using (3.18) or symmetries of the
matrices in question - we can’t simply shift indices in the answer and hope that it

works. In particular, in general (assuming M, N c-type)

NABMpe = (-1)BANB Mo # 64¢. (3.24)

For a matrix with index positions 4 K2, we can define the supertrace:
strK = (=14 K4 = K4 (3.25)

and similarly for 4L p:
strL = (—1)A 4Ly = (—=1)AL4,. (3.26)

Note that with these conventions, we have

str(MN) = (=1)MNstr(N M) (3.27)
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which does not hold for the trace when applied to matrices with non-commuting
elements. Note also that where the indices “naturally” live can have an effect on the

behaviour (as seen when the indices are shifted to the right).

Using this, we define the superdeterminant, or Berezinian, by analogy with the

relationship between the normal trace and determinant:

§InsdetM = str(M~15M) (3.28)

with the condition that sdetl = 1. This means that we have

A B
sdet ( ) = det(A — BD7'C) det(D)™! (3.29)
C D
and in particular
A 0 det(A)
sdet = . .
sde (0 D) ) (3.30)

3.2.2 Derivatives, the metric and curvature

As always, a vector field is defined by its action on functions:

Bl

-
X(f) = x4

f=X%%" (3.31)
Note that we’ve introduced the comma notation for derivatives. The generalisation is
hopefully obvious - any indices further from the object than the comma indicate
derivatives. In this instance, the derivative is acting from the left. We have to be

careful, since now a common notation f 4 means something slightly different:

9

o = (DTS (3:32)

fa=1rf

To define a metric on the supermanifold we require that it is a supersymmetric, real,
c-type, non-degenerate, rank (0,2) tensor. This defines a natural inner product, which

by supersymmetry satisfies

9(X,Y) = X4 4g58Y = (-1)*Yg(Y,X). (3.33)

AB \which satisfies

We also have the inverse metric ¢ = g
498 pge = "6¢ and agp"g© = 40°. (3.34)

Now we can raise and lower indices, as well as shift the left and right. However, we

must be careful to only use “natural” contractions, i.e., those between adjacent indices,
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to avoid any index-dependant signs. Thus we have
Xa=X"pga, X4 =Xph" aX=ag5"X, X ="gpX (3.35)

i.e., left indices are raised/lowered with the second metric index whereas right indices

are raised /lowered with the first index.

With a metric, we can define a line element. Since we have some non-commutativity,
we have to be careful about precisely how to define this. Using only natural

contractions is the way to go, and we get

ds?® = dxAAgBde = dxAAgBda:B = (—I)AdacAgAdeB. (3.36)

Now that we have a metric, we can define a connection. We will use the natural
generalisation of the Levi-Cevita connection, which is torsion free® and metric

compatible:

1P
Mpe = !g‘w (QDB,C +(=1)%%pc.p — (_1)D(B+C)QBC,D) - (3.37)

Using these, we can define the Riemann curvature tensor

R*cp = —T%0p + (-1)“PTEp o + (1) CEFBTAL1%),

_ (_1)D(E+B+C’)FAEDFEBC (338)
as well as the Ricci tensor and the Ricci scalar?
Rap = (—1)°“*VR%cp, R = Rapg”". (3.39)

Now we have all of the required pieces to construct the Einstein-Hilbert action for a

supermanifold.

3.3 The super-Einstein-Hilbert action

We start from an action that we know to be superdiffeomorphism invariant, the

super-Einstein-Hilbert action:

2
Sen = —— / dPzdP0 \/gR (3.40)

3That is to say, supersymmetric on the lower indices.

“Note that the Ricci scalar can be written as R = (—1)* 4Rpg®* = str(Ric g—'), so this arrangement
of indices is indeed the correct generalisation. Similar arguments hold for the connection coefficients and
Riemann tensor.
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where k£ = V327G, with G Newton’s gravitational constant. The factor —2 will be
ignored for now, and we have set the cosmological constant to zero. Since the metric is

supersymmetric, we write it as
g Gub
gap= """ " (3.41)
Gav  YGab

where g, = Guus Gua = Gap a0d gop = —gap, as assumed in Section 3.1. Note that from
the point of view of the base manifold, that spanned by the x,, g,, is a rank-2 tensor,
as normal. However, the g,, are seen as 4 fermionic vectors, and g, are seen as 6

scalars.

3.3.1 Expansion

We wish to find the propagating degrees of freedom, and so we want to expand around
a flat spacetime (that satisfies the vacuum equations). Normally, we’d like to use d4p,

but this is not allowed by supersymmetry of gap. Instead we define

. S O
SaB = ( . ) (3.42)
0  ew

with €., some antisymmetric matrix. Note €,, = —,€6,. We thus expand:

9AB =048 + khap (3.43)

and to find the propagating degrees of freedom, we expect to expand the

super-Einstein-Hilbert action to O(x"), that is up to the bilinear terms in h.

For what follows, we will lower indices with 465 = (—1)4d4p, and raise indices with its
inverse, 6048 = 458, We thus have, to O(k), that the inverse metric is

gAB — §AB _ o pAB. (3.44)

With these conventions, it is consistent to raise bosonic indices (u, v, ...) with
r§Y = §M and fermionic indices (a,b,...) with %’ = €, the matrix inverse of

a€h = —€gb-

From equation (3.28), we can see that, to O(k), we have

Ji=1+ g(AEBth) — 1+ g(—l)AhA =1+ g(h“u —h%). (3.45)
Note that both ¢4 and /9 are both only needed to O(x), despite us wanting the
O(k?) part of \/gR. First, we observe that R is O(k) anyway, so clearly /g is only

needed to O(k). For g8 we note that this appears in the connection coefficients
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(3.37) multiplying the differentiated metric, which is already O(k). g4Z also appears
in the Ricci scalar (3.39) multiplying the Riemann tensor, which again is O(k).

For book-keeping purposes, we talk about metric fluctuations as having “bosonic”
indices (hyy), “mixed” indices (h,q) or “fermionic” indices (hgp)°. With these 3 types
of fluctuations, there are 6 types of bilinears that can be built, and thus we write®

gR
\/H; = L4+ Lom + Lof + Lowm + Long + L1 + O(k). (3.46)

Now we need to unpack the connection coefficients (3.37). We see that there are 6
different index structures (naively 8, but I}y, = I, and I',, =T%,) and each of these
contains 6 terms. We substitute these into (3.39) which give around a hundred terms,
before collection. Note that for both the connection coefficients and the Riemann

tensor, care is needed for dealing with the derivatives that arise since we have
JAB,C = QAB% = (—1)9AH B D094

(3.47)
FABC,D _ FABC% _ (_1)D(A+B+C+1)8DFABC

and we use this to change all derivatives to “standard” derivatives acting from the left.
However, this comes with its own subtlety: although 04 looks like a right index, it is in

fact a left index 4. Therefore, we have to be careful with some contractions:
0,0 = —0%0,, as with h?, = —h,"*, but 9,V* = 9V,. (3.48)
Taking care of all of these details, our final answer is

1 1 1 1
Loy = J0pMP 0Py + S p0u0 N = 20y, OB + S0, h O Dy
]' ajp v ]' a v
= 500 hy + J Oalyu O R,
Ly = —h",0,0,h"" — 0" by, Oah™®,
1 1 1 1
Lop = 50,0 Wl + ShHu0" 0% — Sha0u Db — S h¥u0a0ph™, 9)
3.49
1 1 1 1
Loypm = —iayh,mayh“a - iauh““a”hm - Eabhuaabhua + §8ahuaabhub7
Los = h%0,05h"° + 9", 0ph,
1 1 1 1
Ly = J0u 00" Wy = S 0ch a0y + Sha0p0ch” + - Ouhard” W

1 1
— Zachaba'fiﬂb + 5abhabfmfw.

®Note that this does not imply anything about the statistics of the field. For example, the fluctuations
haeb have fermionic indices but are bosonic fields.

SNote that there are s~ ! terms, but these are necessarily total derivatives as there is only one
fluctuation field in these terms, so these are discarded - subject to suitable boundary conditions, which
are implicitly assumed.
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There are a few things to note here. Firstly, these terms are only defined up to
integration by parts. Indeed this has been used to simplify expressions in many cases.
Thus we have implicitly assumed something about the boundary conditions at infinity.
This is worth bearing in mind, but will not be addressed further in this thesis. Also, if
we delete all terms with fermionic indices (including derivatives) we recover the
standard Einstein-Hilbert action, as we might expect. We also note that not only is
every possible contraction represented, but there is a pleasing symmetry between types
of indices - e.g., compare Ly, and L¢; (up to some signs, which can be accounted for
by arranging terms/indices differently). These both point in the direction of this being
the correct answer, and we also have another check in the form the Lie derivative to

check that the correct linearised symmetries are in fact respected.

3.3.2 Super-diffeomorphism invariance

First, we must define the Lie derivative and its action on various fields. Indeed, we
have [77]

Lef =&(f) (3.50)
LeX = [, X] (3.51)
Le(T(X,Y)) = (L)X, Y) + (~D)T(LeX,Y) + (~1)STHOT(X LY)  (3.52)

where £, X and Y are vector fields, f is a function and 7' is a rank (0,2) tensor field.
From these rules (and a generalisation of the third) the Lie derivative for any tensor

field can be calculated.

We wish (3.49) to be invariant under linearised diffeomorpisms:
ahp — ahp + a(Le0) B (3.53)

for any c-type vector field &, as these generate the superdiffeomorphism algebra SDiff
[77]. In order to apply this to (3.49), we will need coordinate expressions for the action

of the Lie derivative. First we note that we have
(LeX)A = €Bp XA — XB pe? and (LX) = —A¢ pBX 44X pPe (3.54)
Using (3.50)—(3.52), we see that, for a c-type (0,2) tensor T,

o XA ATEPY + XA ¢CoaTeY + XA Tp Py =
XAA(LT)BPY + (€90 XA — XCo M ATEPY + XA Tp(—Pe oY + PY %), (3.55)
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Now, the terms with X differentiated evidently cancel. We can also show with our

index shifting rules is Section 3.2 that
Py =Py (3.56)

and so the terms in which Y is differentiated cancel. After this, both the LHS and
RHS are multiplied on the left by X4 and on the right by 2Y, with X, Y arbitrary.

Therefore, we can strip off these vector fields and we find that

A(LeT)p = E%caTp + 48 cTs + AT B (3.57)

and so we have that
A(6ch)B = a(Led)p = 4B + B Ea. (3.58)
Specialising to the different types of fluctuation, we have
65}1#” = a,ufu + &/EM
d¢hpa = Ou&a — Oalp (3.59)
dghab = —0a&p + Op&a-

Since at the linearised level, (3.58) is still a tensor, we can move the indices with &

(equivalently & and €) so that we get”

S = he” + OV er
Sehte = gre 4 goen (3.60)
5£hab — 8a€b . abga

and finally, for the trace terms we have

Sty = 20,8, §eh% = 20,6 (3.61)

"We could alternatively derive these expressions by considering the Lie derivative acting on a (2,0)
tensor. The answer obtained in this manner is identical.
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All of this put together means that we have (up to integration by parts) the following
variation of (3.49)

0¢ Loy = —0,1",070%E + Oghy, 0°0MEY,
0¢ Ly = —0,6"0,0,h"" — W',,0,0,(076* + 0°¢Y) — 0,0",,0,h"

— 0" Ry, 0 (0ME 4 07€M),
SeLys = 0,0° W, 046" + 0,610 Oph%y — 0a&0u 0, WM™ — 0, D, Oph,
¢ Lonm = —Ophyua0” (0" + 87€") — 8,h" 0" (0uba — Duky) (3.62)

_ abhuaab(f)uéa + 8“5“) + 3ah,m8b(8“§b + abgﬂ),
O¢Lons = 0a8 0uOph!" + 00, 05(E" + 0°€") — 0" hyuaDy0°€"
+ 0"(Ouéa + 0aEu) Oph™,
¢ Lyf = Opha0"0pE" + ) hayd"0“€".

and one can see that adding all of these together results in a total derivative, and so
(3.49) is invariant under linearised diffeomorphisms. It is worth noting that this
linearised super-diffeomorphism invariance is to expected already from the form of the
action that we started with, so this calculation mainly functions as a consistency check

of the calculation of the linearised action.

3.4 Field Decomposition

Even though we have been expecting from the start to specialise to D = 4, all of the
above is clearly valid in D dimensions, as can be seen by the fact that the Lie
derivative makes no assumptions on generality and hence (3.49) is diffeomorphism

invariant in D dimensions. From this point, we will be specialising to D = 4.

Up until this point, all of our fields have been dependent on both x and 8. However, if
we want to understand our theory from the perspective of the base manifold, we need
to perform the integral over the 6 coordinates in the action. To do this, it is convenient

to Taylor expand:

h(w,0) = h(z) + MO by (z)z + M?0*0° by ()
+ M30%0°0° T ape () + MH0*0°0°0 B gpea(z).  (3.63)

Note that the expansion terminates due to there only being 4 Grassmann-odd
coordinates (if we have 5 0’s, at least one is repeated and (6%)? = 0). Note that we
have also suppressed the spacetime indices on h, as this are not relevant here. Where

confusion between h(x, ) and h(x) is unlikely, the argument of h will not be specified.

Note also that we have introduced a scale M into our theory. This is because [0?] = —1

and, anticipating the need to diagonalise the resulting action, we wish to have all of
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our fields have [h|_ | = 1. In addition it is worth noting that we have absorbed some

numerical factors in comparison to the Taylor series coefficients:

1

0 -+ Dy hloo (3.64)

Mnh|a1...an =

and this difference is purely to make the numbers simpler in what follows.

In order to perform the d*@ integral, we need to establish a convention for doing so.
Indeed, integrating over a Grassmann variable is the same as differentiating with
respect to it up to some constant multiplier, which we are free to choose by convention.
Since #?0°0°9¢ must be totally antisymmetric with respect to its 4 indices, we know
that its integral must be proportional to €?*°?. The convention that is most convenient
for us is to choose

/ d*06°0°6°9% = M—2erbd, (3.65)

This factor ensures that the dimension one fields come out with correctly normalised

kinetic terms.

The final piece of machinery which will assist this decomposition is a Hodge dual over

the A-space®. The formulae that will be most useful to us will be
1
wh= ey, +h® = ey, xhI? = ie“deh|cd (3.66)
and we also define for completeness

*h|abc _ éeabcdhld’ *h|abcd _ 2714€abcdh' (367)

In addition, we define the dual with lower index expressions in the same way, just with

€abed Instead. What this means is that we have

*(*h)|a1...an = (_1)nh|a1...an (368)

as would be expected for Hodge dual in an even number of dimensions. We will also

need to make use of the following:

i1 niein — [l §ik-in (3.69)

€ iy g fht1--dn ke

where the generalised Kronecker 9 is the sums of products of (5;:1 along with sign to get

from the %, to the j,,. In particular, for our purposes we will use

el peg = 24, €eyp. = 662, €y s = 2(525? - 5;55),

abed bgse gd b cccd b sccd b e gd b ccgd bcced
€ eacg = 0c070g +0p00c + 0g0c0y — 0030 — 070c0e — 0g0c0y-

(3.70)

8Since the space of the 6 coordinates is trivial, there are therefore no topological issues that arise
from this.
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Using these, we see that for two metric components h and ', we have (discarding any

terms which are zero or give zero on integration)

M=9,h0, 0 = 8,h0%0°0°07D, By + 0% 0, hya0°0°07 0, iy + 0°0°0)u 1y 007D, B g
+ 0°6°0°0, 1 400 hyg + 0°0°0°0° 0, apead . (3.71)

Pulling the 6 factors outside so we can more easily perform the integration gives us

M=8,h,h' = 0°0°0°0%(8hdnh g + (= 1) 0uhyaOuhlpeg + 0ubyab Ol g
+ (=) 0uhyabe Dbl + Ouhiapeadh’). (3.72)

Note that (—1)" should be read as the grading of the component of h in question, and
not the grading of h itself (which would simply give (—1)" = 1). Now, performing the

integral and using the Hodge dual, we arrive at?

/ d*0 9, hd, b = Ouh %0, H + (=) 0y %0 H\* + 20,k %O, B
+ (=1)" %0,hI"0, 1, + <0, hO 1. (3.73)
Similarly we can derive similar formulae for the expansion of other types of terms:
/ d*0 9, hdah! = (1) MO, hyg #h' — 2M )b gy xh'P
+2(=1)"M %0, "1, + M 9, hhi, (3.74)
and the related formula which can be derived as above or by symmetry:
/d49 OahOuh! = Mg %01 + 2(=1)" Mhyqy, 0,01
—2M PO,y — (—1)" M xhOjuhy,.  (3.75)
Finally, we have

/ d*0 0uhdph! = 2(—1)"M>hyqy, xh' — M €qpeq *hl® 51/ + 2(=1)" M? xhhi,,. ~(3.76)

9We have implicitly assumed 8, *h = *9,,h.
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Using these, we can now expand our action in terms of fields which depend only on x

and not 6. Indeed, we have

Ly = 20up x0Mp — 20,4 %Ol 4 200|ab s« QM plab — Pla *8M8Vh,“,|a + 20)ap *8M8Vh|ab
1 1
+x01%9,0, W |, + %00, 0 W1 — 5 0ol <O N + S Ophya * P vl

1
— 50phyujab £ PRI 9V Ry, 50 — 0" By % OphHPI + O Dy %8k 01

1
- EabMQ (490|ab *@ — €abed *‘10‘6 *So‘d - hul/|ab *hH 4 Zeabcd *h“y‘c *huu|d>

(3.77)

where we’ve defined )
0= éhuu. (3.78)

Similarly, we have
Lpm = M<28Mg0|a *hH — 40,,0)ap whHalb — 4 *8M<p|bh“a|ab + 2 %0 phH%

— 0" Ryl *B + 20" g # P + 2507 Ry PRIy — *a”hm,h““a>, (3.79)

Lyy = 20 x0x — 29y, *Dx|a + 4¢ap *Dxlab +2 *SO‘QDXM + 2%y + dux *0, A"
— 0pX|a *a,,h‘“’la + 28, X ab *&/hﬂulab + *auxlaayh/w'a + %8, xO, "

+ M? <e”” |10 % — 2eatea +xX1° 16 + L X101

+ 290\ab *hab — €abed *@'c *habld +2 *Sphab|ab>

(3.80)
where we’ve defined )
X = §haa (381)
and we’ve used the fact that, in general
f\ab *g|ab = *f'abg|ab' (382)

Looking at the remaining parts of the action, we have

Lonm = =0y 0" W' — 9y hyq, 0" WY — b e % 0" R
— 0"y %0 hya — O hyapy *Oph" P — 0" by %8y, RV
1
— M (4 B Byelab — €abed * M1 xhyel® — ARy g < B + €qpea by *h“b|d>,

(3.83)
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Lo = M<28MXQ *hH 48,U«X|ab s hHald _ 4 *8ux‘bh“a‘ab -2 *auxh“am

+ O Py $B — 20 B gjpe DN — 2 501,10 1°h) + *8“hwh“b|b> , (3.84)

Lyp=20,x*0"x — 20uX|q *8")('“ + 20X ab *9" X|ab

1 1 1
+ 5 uhas * MR — 5 Ouhalc *OHpale 4 5 Ouhat]cd 5 O pobled

1
- M <4X|ab X — €abed * X1 #X!T + heglap *h — 4 Cabed ther” *h6f|d> (3.85)

+ M? <2X|ab *hab +2 *Xhab\ab — €abed *X‘C *hab|d

1
- 2hab|bc *h¢ + §€cdef >l<hac‘e *had|f> .

Clearly, as a result of this field decomposition, we have a lot of fields to deal with.
However, all is not lost, as many of them are gauge. In order to get a better feel for
the degrees of freedom that are genuine, and to be able to compute propagators, we

now wish to fix a gauge.

3.5 Gauge fixing

In order to see this system as that of a graviton plus extra fields which are part of the
regulator structure, we will hold off on fixing £, () for the time being, instead focusing
on using &,(x,#) and the other components of §,(x,0). In addition, we wish to use as
many “unitary gauge” style choices as we can, by way of analogy to spontaneous
symmetry breaking. This means we focus on local algebraic elimination, rather than

the inversion of differential operators. Using the results of Section 3.3.2 we have that

6£hab = 2M§[a|b]a 5£hab\c = 4M§[a|b]c7 5§hab|cd = 6M£[a|b]cd7 5§hab|cde = 8M€[a|b]cdea

5£hab|cdef =0.
(3.86)

Other than hgp|cqep, which usually appears as *hgp, and is gauge-invariant, each of the
terms on the RHS take then general form for a function that is antisymmetric in a, b.
Therefore, we can fix {4 so that each of hyy. = 0 (expect *hyp). Furthermore, since
there is no 3-index (or more) object with symmetry on its first two indices and

antisymmetry on its second 2 indices as we’d have
Tabc - _Tacb - _Tcab - cha - Tbca - _Tbac - _Tabc (387)

and hence Ty = 0, we have that (g|p).... = 0. Therefore we only have {, ) and &, left

to fix, as well as §,| . Looking at the gauge transformation for the mixed index fields,
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we have

5€hua = a/iga - M£u|a7 5€hua\b = a/Lga|b - 2M§u\ab7 6§hua|bc = a,LL§a|bc - 3M€u|abcv

5§hua\bcd = a,uga\bcd - 4M§,u\abcd7 5$hua\bcde = aﬂéaﬂ)cde
(3.88)

and so |, can be fixed to eliminate hy,. Similarly, we can fix {4, to eliminate
hufafp)... €xcept for hy 4 p)cdes €quivalently *h,,,. However, by the symmetry argument

above, we have that h = 0. Therefore, with the exceptions of */,, and hyq)p)

wu(alb)c...
have eliminated h,/... In addition, since &, pcqe is already fixed from above, xh, is

now gauge invariant. After all of this, we have the residual gauge invariance

5§hu(a\b) = 0#5((1“7). (3.89)

Now, &, has not been fixed and so will still generate a gauge invariance. However, we
see from above that, in order to preserve h,, = 0, any change in 6§, = &, requires a

corresponding change in 6§, = &, such that

!/
pla
/ 1 !

We are still yet to fix {,(z) and & (v) (equivalently §,,), but it is instructive at this
point to see the effect of this gauge fixing on our action. Clearly, Ly, is unaffected, but
we have L, = Ly = 0, since each bilinear has at least one part which now vanishes.
In addition, since now k%, = h“b|aeb‘1 = htp)q) €’ = 0, we also have L, ¢ =0. The

remaining parts are therefore Ly, as well as
Ly = M (20,90 D" — 0" hyyp ) xhH) (3.91)

and
Ly = 200 %X + %0 X0 " + AM2€™ X1 + 2M 2|1, +h1. (3.92)

Note that we still have the invariance (3.89), but at this level, h,,; plays no further
role with our gauge choice. At the interacting level, however, it may result in Lagrange
multipliers, leading to crucial constraints. Keeping &, () free, the only remaining

gauge invariance is
2
5§huy|a = /J,§V|ll + 6”£M|a = —Mﬁﬂ&,{a (393)

where we’ve used the condition (3.90). This means in particular that

2
O¢pla = 370 (3.94)

and so, by use of a Green’s function (which is inherently non-local), we can set ¢}, = 0.
Since we still have the usual £,(z) to play with, we can also specialise to the usual

transverse and traceless gauge for hy,,.
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This means that finally, we have our gauge fixed Lagrangian, split into

G(rassmann)-even and G-odd fields:
L=LA+L, (3.95)
where

1
Lo = 20, 0(ap *0"P1® + 20,4y %9, 0, W1 — 5 Dol % 0P

1
~ 50huslad xOP R 1 9V Ry % OphH P10 — AN %0 (3.96)

|

+ M26“bhlw|ab *xhHY 4 4M26“bgp|ab kY + 2M2g0‘ab xha®

is the Lagrangian for the bosonic (G-even) sector, and

1
Lo = 500" hyja + 50phyj xO° N1 — 0 hyjq %0, hH0

nvla uvla

(3.97)

1
o Mal/hmlla «hhae 4 M2€ab€abcd *(’0|c *gpld _ ZMQGabeabcd *h,uz/|c *hul/‘d‘

is the Lagrangian for the fermionic (G-odd) sector.

3.6 Degrees of freedom

3.6.1 Bosonic sector

First, we note that *h,;, appears only linearly in our Lagrangian (to this order), so can
be seen as a Lagrange multiplier enforcing the constraint (ensuring we recall that sy is
part of xhe®)

Plab + €abe“Pjeq = 0. (3.98)

Contracting this with €®® and using eqe®® = 410 tells us that
€1 =0 (3.99)

and feeding this into (3.98) tells us that ¢|,, = 0, and as such we can also take h, |4

as being traceless on its first two indices. Therefore, we have

1 1
Ee = _§8ph,uy x OPRHY — §aph;w|ab * aphuulab + ayh;whzb * 8Ph“plab + M2€abhlﬂ’\ab * I

(3.100)
In order to diagonalise the remaining terms, it will be helpful to write
Lonl ooyt
h‘ul/\ab = ieabhlﬂ’ -+ h‘uu\ab (3.101)

ONote that €®eqy = —%€Pepq = %€’peq = %J4 = 4, not —4 as one might expect from “normal” matrices.
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where

iy =0 = €hyy = 2h),. (3.102)

Now, we can see from (3.100) that this will result in the appearance of

1
ab _ 7Eabcd€

*€ 2 cd»

(3.103)

the dual of €,5,. However, this potential complication is simplified by the fact that the

dual is in fact proportional to the inverse of e:

%€l = se? (3.104)
where s is the Pfaffian of e:
1
5= geadeeabecd. (3.105)
Indeed, (3.104) holds for any 4 x 4 invertible antisymmetric matrix ,€, = —€4 and its

inverse €?’. This can be most easily seen by rotating to a basis in which € is

block-diagonal:
€ = Aiog ® Ngiog = Ss= MM and el = iUQ//\l D iUQ//\Q (3.106)

where o9 is the second Pauli matrix, and hence io9 is the totally antisymmetric symbol
in 2 dimensions. The final property we will note is that since, for any antisymmetric
matrix €, s> = det e, we have s = +1 since we normalised det e = 1 when defining our

background metric.

The above can be combined to give us
b_ S ab L |ab
shy, | = o hll, + s @ (3.107)
and therefore, contracting with €4, gives
*hiy‘abeab =0 and *hwmbeab = 25hllw (3.108)

and thus our action becomes

1 4 S 4 174 174
Lo= =5 0phy x0°h — 5a,)hl‘waﬂhllﬂ +50"h), 0,h1H° + 2N2R), < b

1
~ 50hja QPRI L L DRI (3.109)
Now we see from the second line that the perpendicular components hi‘wlab propagate
amongst themselves, so can be treated separately. In order to diagonalise these terms,
it is useful to define

1 a
Wi =5 (hL + xhy,) b) . (3.110)

uv|ab = uv|ab
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Note that we have identified the covariant and contravariant indices in the f-space, so
this statement depends on the basis chosen. Nevertheless, any change in basis would
simply lead to a re-labelling of the same fields, and so the physics will not change.

With this definition, we see that the perpendicular components have the Lagrangian

1

_ iaphL-i- 8phl+uu|ab_‘_8uhl+ 8phJ_+/$p\ab+ %aphL— aphj_f,uwab_ath— aphlfypmb

Luv|ab (uv|ab yuv|ab 1uv|ab

(3.111)
and so we see that we have a set of fields propagating normally, and the same number
of fields propagating with the wrong sign kinetic term. We would not expect any of
these to be physical, and hence we would expect these to gain a regulator mass when

spontaneous symmetry breaking is implemented.

Looking at the remainder of (3.109), we see that varying %h,, results in the equation
of motion

Oh,, +4M2Rll =0 3.112
I v

and therefore, since h,, was gauge fixed to be transverse and traceless, we can deduce
that hl'w is transverse and traceless also. Then we see that the only piece of xh,, that
is left in our action is therefore the transverse traceless piece *hffl, since it only couples
to other fields which are also transverse and traceless. We then diagonalise the kinetic
terms by writing

1
hE, = 3 (huw £ %hi%) (3.113)

so that the first line of (3.109) becomes
1 1
- §aph;aph+w + 50 hy, O°h T — gaphﬂyaphllw +2M2R), (KT — hH)(3.114)

In Section 3.3, we assumed a certain normalisation for the super-Einstein-Hilbert
action. However, it is not entirely clear what the correct normalisation should be,
especially since we could modify our definition of Berezin integration to change this.
As such, it is not clear which of hj,/ or h,, propagates with the correct sign, just that
exactly one of them will. In addition, we could also fix s to make hl'u, propagate with
either sign. Which of these fills the role of the graviton would be expected to depend

on the precise symmetry-breaking mechanism.

The fields XE,, = (hju, P, h‘;‘w) are coupled together with what appears to be a mass
term. Writing UT = (1,—1,0), VT = (0,0,1) and D = diag(1, —1,s) we can write
(3.114) as

1
§XEVDDX‘“’ + MPX], AXM (3.115)

where A = UVT + VUT. The M? term could be diagonalised if we had all kinetic
terms with the correct sign, however it is the presence of ghosts which prevents this. In

fact, if we set the overall normalisation of the action to —1/a, (so that in (3.40),
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o= %), the propagator takes the form
(X (p) X777 (=p)) = allfg A (3.116)

where II/);, is the transverse traceless projector on the space of symmetric tensor fields,

and we have

DAD
Pl

+ 4M4LAD)2
p6

D

A= (XXT)=(p’D —2M?A)! (3.117)
where the expansion terminates since (AD)? = 0 (or equivalently (DA)? = 0). Thus we
see that the mass-like term in (3.115) does not in fact result in a physical mass (by
shifting the pole in the propagator) but instead leads to further massless
propagator-like contributions with improved UV behaviour (i.e., p~* and p~©). If we
write W7 = (1,1,0), then we have that DAD = s(WVT 4+ VWT) and

D(AD)? = sWW7 and therefore we have

1 M* 1 M4 s
hAthTY = = + 4s——, h™h™)=——,+4s— h”h” =,
( ) pe G ( ) o P (h'A) e
_ Wk M? B M?
(h"h™) = 45?6, (h*hly = 2574, (h~hly = 25?4. (3.118)

The fact that M does not result in a physical mass is not in fact surprising. It was
introduced manually in order to ensure that all of the fields have the same mass
dimension and to aid in the diagonalisation. In fact, we can completely eliminate M by
redefining

Dlay.ay = M Phig, q, o — M. (3.119)

This now means that our fields have different dimensions. In particular, [h] = 1,

[Al] = 3 and [¥h] = 5. Since we no longer have M to fix dimensions, we must deal with
the powers of p that are fixed by the field dimensions. Therefore, we expect each of
these fields to have propagators that differ from the usual 1/p? behaviour. In addition,

hffy are no longer well-defined, so we must work in our original basis of fields. We then

have
A
(hh) = % — 16, (shxh) = MUTAU =0, (@Il =vTAy =2
b p
2 TA

(3.120)

We see now that M has indeed been eliminated, and note that these propagators are

indeed dimensionally correct once we account for the fact that now [a] = 4.
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3.6.2 Fermionic sector

Finally we deal with the fermionic fields described by (3.97). First, we note that at

this level, xh#*® acts as a Lagrange multiplier enforcing the transversality constraint

8”hW‘a =0. (3.121)
We also define .
*€aqb = §€abcd50d = S€ab (3122)

by analogy with *e®. Since this is also what we get from lowering indices on the latter,
this is completely unambiguous. It is useful at this point to write our now-transverse

fields as a transverse traceful part and a transverse traceless part:

h/u/|a(p) = hfltl/\a(p) + gnzu(p)@\a(p) (3123)

and similarly for *h#*1%. Here, we have the transverse traceful projector

PuPv
p2

11, (p) = 0w — (3.124)
and the coefficient of 2/3 simply follows from taking the trace and comparing with
h* o = 2q- We then find that

1 s
Lo = =5 0phy, “eap 0P 110 — CMP bl ey « 110
2 4

~3 pgplaeab «0Pl® + gsM2 xpl%qp xl®  (3.125)
and so the traceful and traceless modes decouple. Note that these fields are scalars (¢)
and tensors (h,,,) which have fermionic statistics. Therefore, they have the wrong
statistics and thus they must gain a mass via some symmetry breaking mechanism. As
in the bosonic case, we will see that M does not play this role, despite appearances.

Writing Y7 = (¢l%, %l®), we can write the transverse traceful part of the action as

1
gYTaeab(mD +2sM?0_)Y? (3.126)
where o+ = %(]I + 03) and the o; are the Pauli matrices. With the action normalised to

—1/a as above, we see that

3 3
(YY" (—p)) = —Jac (pPor — 2sM%0) T = — e <;§ + 25M2(;Z> (3.127)

where the 1/p expansion terminates because o1(o_01)? = 0. We thus have that

6ab

(") = —BasM—, (rpl o) =0, (" xpl) = - (3.128)
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Similarly to the bosonic case, we see again that M does not act as a physical mass, but
instead appears in propagators with improved UV properties. Again, this can be
understood by dimensions and the fact that M is arbitrary. Indeed, we can see that
once again, (3.119) removes all references to M. We can see that the pattern is very

similar for hffl,|“, and we find that

ab

b €
<hzty|ahttpa\b> _ aSMQHZ?,pT, <hzty|a *http0|b> — _204Hzip—2 (3.129)

and (*hffym s« httPolby = 0.

3.7 Discussion

As seen in [33], the Parisi-Sourlas regularization works in gauge theory by adding the
original gauge field AL, a pair of complex fermion fields B, B, and a ghost copy Ai.
In pure SU(N|N) gauge theory, only the two transverse polarizations propagate and

they are decoupled from each other.

The above work on the analogous situation in gravity shows that the solution at the
free level is already more complex and more subtle. We have to expand around a
non-vanishing background (3.42) which can lead to some spontaneous symmetry
breaking. However, we found that the resulting mass-like terms do not actually
provide masses by modifying the position of the poles in the propagator, but instead

provide further massless propagators with improved ultraviolet behaviour (terms with
1/p* and 1/pf).

The propagating modes at the free level are not simply the transverse traceless ones

that we would expect from the graviton. The bosonic transverse traceless modes form

+
o

and h')U,, the part of h,,q, proportional to €. We see that exactly one

a multiplet, consisting of ht,, which are self-dual anti-self-dual linear combinations of

tt
by and xhy,,,

of hfy propagates with the correct sign (depending on the overall normalisation of the

action) and by choosing s, hlﬂw can propagate with either sign. The remaining piece of

1
h/“’|ab7 h;w|ab’
self-dual and anti-self-dual pieces h

is traceless but not transverse. We saw that we can also split this into
1+

pv|ab
signs; one propagates as a real field while the other propagates as a ghost field.

which do not mix and propagate with opposite

The propagating fermionic modes, h and xh*l% have the wrong statistics, so clearly

uvla
cannot be physical. In fact they are intended to be Pauli-Villars fields. These split into
transverse traceless and transverse traceful sectors, each of which forms a doublet with
1/p? and 1/p* propagators, similarly to the bosonic case. This summarizes all of the

propagating modes.
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Looking now at the non-propagating modes, hqp(z,6) (a set of scalars) was
algebraically eliminated using linearised superdiffeomorphisms (3.86), except for #hgp,
which is gauge invariant but at this level becomes a Lagrange multiplier enforcing

¢lap = 0. Similarly, hq(z,0) is eliminated using gauge transformations, with the
exception of *h,,, which is gauge invariant but behaves as a Lagrange multiplier
enforcing the transversality of the propagating fermionic modes. A remaining gauge
invariance &, (z) is then used to fix a radiation gauge ¢|, = 0 as seen in (3.94). In
addition, we have the usual bosonic gauge invariance generated by &, (z) (i.e., the more
familiar diffeomorphisms on the base manifold), and so we can fix hy,(z) to be

transverse and traceless.

Finally, we are left with the vector field h,(4)5), which does not play a role in the action
at the free level, and the corresponding gauge invariance ) is not fixed. At the
interacting level we’d expect this field to have a role, most likely as a Lagrange
multiplier, potentially giving important constraints on the specific form of the

expected spontaneous symmetry breaking.

Finding this symmetry breaking is clearly the next step required in this construction.
We can expect to be required to induce all modes, except for the graviton, analogously
to what was achieved in U(1]1) gauge theory in [80], since the kind of decoupling seen
in gauge theory in [33] is unlikely to work in this case. Due to the similarity of the
cosmological constant term to a mass term for the graviton when expanded around flat
space, this seems to be promising. However, it is clearly the case that in normal
Finstein gravity, the cosmological constant does not provide a mass term for the

graviton since diffeomorphism invariance is unbroken, the linearised piece
Lec ~ Kp (3.130)

is more important, since it shows that flat space is no longer a solution to the
equations of motion. Since in the supermanifold case the equivalent term is ~ kstr(h),
we see that after integrating over 6 the cosmological constant only induces curvature in
*hy,, and xhg,. In the cosmological constant term, hl'w appears first only to second

order where it already takes the form of a mass term.

It is worth reiterating the differences between the Parisi-Sourlas supergravity
construction and more familiar notions of supergravity. In standard (N =1, D = 4)
supergravity there are four fermionic coordinates but, contrary to our approach, these
are cast as a complex conjugate pair of two-component coordinates #% and 6<.
Crucially, we set the torsion field to vanish, so that the regularising structure can
maintain the close similarity to the graviton interactions in the Einstein-Hilbert action.

In the standard realisation of supergravity, the torsion field is non-vanishing even in

i

flat space, being related to the Pauli matrices o/ , ~ (i,0), and the tangent space

symmetry of §% and 69 is then tied to the bosonic vectorial Lorentz representation, as
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in [79]. The Parisi-Sourlas supergravity presented here could therefore be viewed as a
deformation of standard supergravity. Since the expansion over the 6 leads to
component fields carrying antisymmetric vectorial indices (the fermionic a,b, ... )
reminiscent of forms, and this also leading to fields with mixed representations, it has
some superficial resemblance to Generalized Geometry [81, 82]. However, in our case,
the indices a, b, ... are not associated to the cotangent bundle but belong to a new
space. This latter property gives the theory an apparent resemblance to Double Field
Theory [83, 84], although there is no doubling of the bosonic coordinates here or
relation to T-duality.
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Chapter 4

Pure Gravity in the BV

Formalism

4.1 Introduction

This chapter will develop the perturbative theory of quantum gravity which began in
[5, 29, 34, 42] and relies heavily on [4, 7, 35]. The theory is perturbative in x ~ VG
(where G is Newton’s gravitiational coupling), but non-perturbative in . The theory
presented is a logical consequence of combining the Wilsonian RG with the action for
free gravitons, while being sure to respect the wrong-sign kinetic term of the conformal
factor, as explored in Chapter 2. This leads to a well-defined QFT, which nonetheless

leads to a conceptually different theory to many other approaches to quantum gravity.

Figure 4.1 shows the conceptual difference. Normally, we would expect the presence of
a cutoff A to break diffeomorphism invariance. However, the Slavnov-Taylor identities
are replaced with modified Slavnov-Taylor identities (mST) which reduce to the usual
ones in the physical limit A — 0. The difference when compared to the usual approach
is that the UV fixed point exists outside of the diffeomorphism-invariant subspace, and
it is only the choice of couplings which allows the trajectory to enter the subspace
when A < A, where A, is a dynamically generated scale determined by the couplings.
At this point, the limit A, — oo is taken and as we will see, diffeomorphism invariance

is recovered.

Due to many of the properties seen is Chapter 2, many of the things one might usually
take for granted now need more careful treatment. In particular, the direction in which
the RG flow is well-posed for ¢ is the opposite direction to that of h,,, and so care

must be taken with the limiting procedures so as not to introduce new divergences.

Section 4.2 introduces the BRST algebra and the Quantum Master Equation (QME),

which give a new way of parametrizing diffeomorphism invariance. We see that we are
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FIGURE 4.1: The renormalized trajectory emnating from the Gaussian fixed point can-

not respect diffeomorphism invariance for A > aA,, where a and A, are as discussed in

Chapter 2. By appropriate choices of couplings, diffeomorphism invariance is recovered
at required scales. Figure taken from [4].

specifically interested in the BRST cohomology, which involves removing field

reparametrisations as a quotient, and thus we can ignore certain operators which may
appear in the action. We also see how the QME is consistent with the Wilsonian RG,
in particular introducing cutoffs in order to appropriately define objects in the BRST

algebra.

In Section 4.3, we see how, even though many the concepts are most easily explained
using the Wilsonian effective action, the Legendre average effective action is in fact
more convenient for making calculations. One of the effects of making this change is
the fact that the QME now becomes a modified Slavnov-Taylor identity (mST), which
can be seen as parametrising the extent to which diffeomorphism invariance is broken
by the presence of the cutoff. Then in Section 4.4 we see how the general formalism

relates to the case of our interest, quantum gravity.

Section 4.5 then relates some of the results from Chapter 2 to this new framework, and
in particular shows how diffeomorphism invariance is recovered at linear order when
certain coefficient functions “trivialise”. Section 4.6 then discusses the free quantum
BRST algebra and the gradings which make our life easier when constructing
solutions. Then Section 4.7 finally constructs the quantum gravity action to first order

using this new formalism.

The next few sections will then concentrate on the second order solution. Section 4.8
constructs the second order solution in the classical regime. Section 4.9 next discusses
how solutions are best constructed in the diffeomorphism invariant subspace (with

large amplitude suppression scale) and uses a different parametrisation in order to
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solve the second order equations. Section 4.10 finally uses these equations, which
provide one-loop Feynman integrals, to calculate the quantum corrections from the

classical solution.

Finally, Sections 4.11, 4.12 and 4.13 discuss all of the above, including limitations and
of the framework and future possible directions for extension, in particular focusing on

the properties of the differential flow equations themselves (and their parabolic nature).

4.2 BRST and QME

4.2.1 Quantum Master Equation

In order set up the framework, we will follow [34] to see how BRST and Wilsonian RG
fit together. To construct the BRST algebra, we need a Grassmann odd derivation! @
which we call the “BRST charge”. Then we have the BRST transformation

504 = QDA (4.1)

where € is some Grassmann number. Here, the ®* are the quantum fields, which
includes ghost fields and auxiliary fields required to realise BRST invariance off-shell.
In order to renormalize a theory with BRST invariance, we need to supplement the
bare action S[®] with source terms ®* for the BRST transformations, and so total

action is

S[®, d*] = S[®] — (QP)D*,. (4.2)

These @ have opposite statistics to d4 and are called “antifields”. Note that we are
using the DeWitt notation, so A scans over the fields, but also spacetime position and

indices. With this action, the partition function is then

Z[®*] = / DP e I®27], (4.3)

We now define the Quantum Master Functional (QMF)
1
XS] = 5(5‘, S)—AS (4.4)

where we have defined the antibracket [85, 86] and the measure operator A, which on

general functionals X and Y take the form

— = = =
xy)—x(2 2 _ 2 7Y,
B4 0D*, 9P 0DA

(4.5)

!This effectively means a Grassmann odd operator which follows the Leibniz rule. That is, acts “like
a derivative”.
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and NN
AX = (—1)Ai 0 x (4.6)
DDA DD*, '

This notation probably bears some explanation. Similarly to Chapter 3, the
appearance of an index in a power of (—1) should be read as the Grassmann grading of
the associated field, that is 0 (so that (—1)4 = 1) for a bosonic field and 1 (so that
(=1)4 = —1) for a fermionic field. In addition, we have defined left- and right- acting

derivatives. These are distinguished by their Leibniz properties:

— - -
9 (ig) - achg: ST - W
0 0 g,y O '
(fg)a(}ﬁ:f I5pA +(=1) f@g
and they have the same action on single fields:
— —
9 B B 0 B

Sometimes in the literature one can find 9,X = X % and 0, X = 5)X = 90X, and which
is used is down to taste. It is also worth pointing out that since we are using the
DeWitt notation, these “partial” derivatives are in fact functional derivatives, and we
will often not write integrals for action functionals, instead understanding them to be

integrated over spacetime.

If we restore factors of A, it is clear to see that AS is the quantum part of the QMF.
However, without regularisation this term is not well-defined. As we will see, the
Wilsonian RG provides a natural regularisation. The QMF is used to test whether the
gauge symmetry is successfully incorporated. This is the case if the action is invariant
under (4.1). This is true if and only if

$[9] = 0, (4.9)

and this is the Quantum Master Equation (QME). Indeed, the vanishing of ¥ follows

from the observation

/ DOYe ™ = / DOA(e®) (4.10)

which vanishes since it is the integral over ® of a total ® derivative.

4.2.2 BRST cohomology

We will start from a solution of the QME (in our case, the free graviton action) .S, and
perturbing it to get another solution. That is, considering some quasi-local operator

integrated over spacetime O, we want S + €O to also be a solution for the QME.
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Substituting this perturbed action into the QME tells us that this is a solution if and
only if
sO=0 (4.11)

where s is the full quantum BRST operator, defined by
sO = (5,0) — AO. (4.12)
Algebraically, we write
O € kers (4.13)
that is, O is in the “kernel” of s, which is the set of functionals mapped to 0 under s.

Note that s is distinguished from the previously introduced BRST transformation,

which can simply be shown to satisfy?
QI = (S, %) (4.14)

We also define the (Grassmann-odd) Koszul-Tate differential Q— by its action on
antifields
Q% = (S, 0%). (4.15)

For consistency and simplicity, we also note that
QP =0=Q o4 (4.16)

and we also note that s®4 = Q®4 and 5®% = Q@7 since clearly A vanishes on these.
Combining (4.14) and (4.15) results in

(@+Q7)0=(5,0) (4.17)

which in turn implies that

s=Q+Q —A. (4.18)

Now, it is not immediately obvious that s? = 0, as we’d like in order to construct the
cohomology. Indeed,
520 = (%,0). (4.19)

However, our requirement that the QME is satisfied (¥ = 0) means that for our
purposes, s> = 0. Therefore, if the action S satisfies the QME, operators O which are

“s-exact”, that is
O=sK=(5K)—-AK (4.20)

2Note that in the DeWitt notation, the loose index indicates that the expression only makes sense
when treated as part of an integrated operator, similarly to how the Dirac delta and its derivatives are
only defined under an integral.
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where K is some quasi-local functional, then satisfy (4.11). Algebraically, we write
O €ims (4.21)

that is, O is in the “image” of s, simply meaning it can be written in the form (4.20)
for some K. From the definition of the antibracket we can see that such an operator

O = sK corresponds to the infinitesimal field and source redefinitions

— —
0 g 5% = _ 9k (4.22)

A
0P 554

T 09,
with —AK corresponding to the Jacobian change of variables in the partition function.
Indeed, if O is s-exact and equals sK and O ...0, are BRST-invariant operators

(and all operators have disjoint spacetime support) then their correlator vanishes:

(00;...00) = (SKO: ...00) = (s(KOs ... 0n)) = —% /D@A(K(Ql O S
(4.23)
which is zero since it is the integral of a total ®-derivative. Therefore, we regard the
addition of any O = sK as uninteresting, and thus we are only interested in

functionals which live in the quotient

ker s

. 4.24
ims ( )
Note that since s> = 0, we have ims < ker s, and so this quotient is well-defined. All
this means is that we are interested only in operators which are annihilated by s,

making sure that we treat operators which differ only by a piece sK to be physically

the same. This is what is meant by the cohomology of s.

4.2.3 Wilsonian RG

A full derivation the compatibility of the QME and RG is seen in [34], but here the
results are presented. As one might expect, the effect of introducing the RG is to

regularise the terms in the free action
1 _ —1 g%
So = Z®HAN TEBT — (Qud*)(CA(p)) 0%, (4.25)

where A? is the regularised propagator proportional to C*. For example, for a scalar
field we have A™(p) = CA(p)/p?. In addition, the QMF is regularised by inserting the

cutoff into the antibracket and the measure operator:

— - — — — -
B 0 0 0 o, 0 IV AN
(X, V)reg = X (achC 0%, aq>j40 8<I>A> Yo BreX = (-1)7552C 6<I>f4X

(4.26)
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Note that with these definitions, the free BRST transformations and Koszul-Tate
differentials
Qo®” = (S0, @ )regs Qo BTt = (S0, P )reg (4.27)

are independent of the cutoff. Thus the only piece of the free BRST cohomology which

depends on the cutoff is A, which is now well-defined due to the regularisation.

Now, we suppose that the action can be expanded in a small parameter, and we call

this parameter « (looking ahead somewhat). We write
o an
S = Z% —5n (4.28)
n—=

and substituting this into (4.12) results in a similar expansion for s, and we have the

relation

5051 = 0, (4.29)

the non-trivial solutions of which define all possible interactions to first order which
are consistent with BRST invariance®. Note that field redefinition ambiguities are

defined in terms of the free BRST cohomology. In addition, we similarly find
. 1 .
5052 = —5(51, S1),  §0S53 = —(51,952),... (4.30)

and so we can iteratively construct the action order-by-order to be consistent with

BRST invariance.

In order to be consistent with RG, we require in addition that the interacting part of

the action S7, where S = Sy + S satisfies the Polchinski flow equation

— — - =
. 1 o . 0 1 . g 0
i 7AA AB_ Y - AA AB_ Y Y ) 4.31
1= 3515a (A) " 55551 — 3 (A 55 gga (431)
Writing this in terms of linear functionals ag and a1, we have
. 1
St = 5a0lSr, 1] — a1[51] (4.32)
and in [34] it is shown that
¥ = ao[S1, Y] — a1[Y] (4.33)

and so, if ¥ = 0 (i.e., the QME is satsified) at some A, then ¥ = 0 at all A. We say
that the QME is compatible with the flow equation.

3For consistency with the literature, specifically [4], we reserve sg for the free classical BRST trans-
formation, so = Qo + @y -
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4.3 Legendre effective action and mST

In this section, we follow [4]. We will use the infrared cutoff Legendre effective action
I'*ot, This loses elegance in many ways compared to using the continuum Wilsonian
action effective action, but will be more convenient for explicit calculations since the
limit limp_,o I gives direct access to physical amplitudes. It will also mean that
instead of the QME, the diffeomorphism invariance is broken and expressed through
the modified Slavnov-Taylor identities (mST), and nilpotency of the BRST charge at
the interacting level is recovered only in the limit A — 0. The free charges are still
nilpotent, however, and it is their cohomology which is important to solve for the

effective action.
For much of what follows, it is convenient to write
1
et = 4 §<I>AR 1508 (4.34)

where R 2 is the infrared cutoff expressed in additive form. We are mainly interested

in the “effective average action” part I', which we express as
F=Tg+1T17; (4.35)
where I'g is the free part
Ty = 5425507 — (Qua)ay (4.36)

and I'; is the interacting part. Note in particular that the free part contains no
regularisation, in contrast to the Wilsonian case. The flow equation for the interactions
then takes the form (1.18)%

i 1 . -1
Iy = —gstr (AAAXI 1+ Aar] ) . (4.37)
Under the Legendre transformation to get from S to I', we see that the QMF becomes
1 2 2)] 1
S=(0T) -t <0AF§,) [1 + AATY )} ) : (4.38)

the vanishing of which is the modified Slavnov-Taylor identity (mST) and (loosely
speaking) describes the extent to which the presence of a cutoff breaks diffeomorphism
invariance. In particular, diffeomorphism invariance is restored in the limit A — 0 and
the mST reduces to the Zinn-Justin equation %(I‘, I') = 0 [87, 88], which gives the
usual realisation of BRST invariance the Slavnov-Taylor identities for the

corresponding vertices.

4The supertrace instead of the trace is related to the fact that we now have Grassmann-odd fields.
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Note that in the above we have introduced the notation

- — N i
@y _ 9 09 @\A _ J 0
(Ff )AB N 8<I>AFI OPB’ <F1*> B 8(I>f4rf oDB (4.39)

and we use strM = (—1)AM 4, similarly to Chapter 3, in addition to the usual

trM = M* 4, with the usual conventions for “indices” in the DeWitt notation.

We now express the free BRST transformation and Koszul-Tate operator as
Qod" = (T, ®4), Qy®% = (Lo, %) (4.40)

and note that this is now completely free of regularisation. In addition, when using the
formulation in terms of the average effective action, our bracket s are completely free
of regularisation, however the BV measure operator is still regularised. We wish to

expand our effective action I' in terms of a formal expansion parameter e:

oo
ry=>Y
n=1

Note that we are working at all orders in A, so there is no loop expansion. In this, € is

n

‘ m

T (4.41)

3

a formal order-counting parameter which we envisage setting to unity at the end of our

procedure. The eventual physical coupling comes about in a more complicated manner.

Expanding to first order, we see that the flow equation (4.37) and the mST (4.38)

become

I = %str AT (4.42)

0= (To,Ty) — tr AT, (4.43)
and we note that the linearised mST (4.43) can be written as
0=(Qo+ Q)" — AT'1 = 3oI'1. (4.44)

The flow equation (4.42) tells us that the RG time derivative of the eigenoperators is
given by a tadpole operator, and the linearised mST (4.43) tells us that the BV
measure operator A generates A-dependent terms to the terms that we would get in
the classical BRST cohomology. In fact, since the flow equation and mST are
compatible, these corrections are exactly what is required for the eigenoperators to be

simultaneous solutions for these.
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4.4 Application to Quantum Gravity

From this point, any expression for an action functional should be understood as being

integrated over all of spacetime. The free action is chosen to be®
1 *
Ty = 5(apHW)2 —2(0u)? — (OpHuw)? + 20,00, H,upy — 20,0, H, (4.45)

i.e., the action for the free graviton H,, , where ¢ = %H uu, and the graviton antifield

H},,, which sources the free BRST transformation of the graviton

QoHw = Oucy + Ouey. (4.46)

We also note that the free action is what we get from expanding the Einstein-Hilbert
Lagrangian

2
Lon =~ 5VIR (4.47)

by writing
G = O + KH . (4.48)

Similarly, we see that the BRST transformation for H,, is equivalent to the Lie

derivative L.H in linearised gravity.

Looking ahead, this means that we know a priori from the geometry what the classical
contributions should be, however, it would be good if we could reconstruct this from

the BRST algebra, allowing for more confidence in this approach.

Note that we have introduced c,,, the fermionic ghost fields. For consistency, we also
need the (bosonic) ghost antifields cj,. There are other fields required in order to
construct propagators, and this construction is detailed in [4]. For our purposes,
however, it will suffice to know that these additional fields are the (fermionic)
antighost ¢, the (bosonic) antighost antifield ¢}, and the (bosonic) auxiliary field b,.
Not including these in the free action is the same as saying we are using the minimal
gauge fized basis, and the only field not in the free action which appears at the

interacting level is cj,.

The non-vanishing Koszul-Tate differentials in this basis are given by

QQ_H,U,V = _QG/(Lly)a Qacu = _QaVH;I/ (449)

where GE}V) is the linearised Einstein tensor

1
G =—-R() + §5WR(1) (4.50)

SFor our purposes, raising/lowering indices will be done with §, so has no effect. Therefore, subscripts
and superscripts will be used entirely interchangeably.
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where we have defined the linearised curvatures

1
R3) = —0,0,0 + 0(,0° Hy)o, — 5O RW =9,0,H,, — 20¢. (4.51)

After gauge fixing, the propagators can be calculated. Writing H,,, in terms of its
SO(d) irreducible parts

2
Hp,y = g(suyw + huy (452)

where h,,, = 0, the propagators in d-dimensions are then

Su(adp)w = 30udap

(hyw (P)hap(—p)) = e (4.53)
(e(p)p(—p)) = _2(;12);2 (4.54)
(culplen—p) = (e p)en(-p) = 2 (4.55)

where we have defined
A A A iz o A dp
AP — (@A), eip) = [erreta), [ = [ SR s
» » (2m)

as one might expect. At some points, it may also be useful to have to hand the

propagator for the full graviton

_ Ou(ad8) o L dudap
p2 d—2 p2 '

(Hyw(p)Hap(—p)) (4.57)

4.5 Solutions to the linearised equations

This section follows closely the treatment in [7]. The flow equation (4.42) is the
equations satisfied by eigenoperators. Due to the conformal factor instability, which is

discussed at length in Chapter 2, the eigenoperators we expand in are given by
8 () (8,00, by, @*) + ..., (4.58)

where o is some Lorentz-invariant A-independent monomial involving some or all of
the fields indicated, [ > 0 is an integer, and € = 0(1) according to the even(odd)
p-amplitude parity [4, 29, 34]. Here we have used notation from Chapter 2, which is

re-stated for convenience

on 1 2
5 (p) = 250 59 () = _r 4.59

where

A 2
o = [(ple)e@l= [ < 9 _ A (4.60)
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is the modulus of the regularised tadpole integral, and we have also defined the
non-universal dimensionless constant a. Since €25 is proportional to &, this means that
the 61(\n) are non-perturbative in 4. Note that the expansion over the operators (4.58)

only converges in the sense of square integrability under the Sturm-Liouville measure

2;2/\ exp (p° — hiy — CuCy) (4.61)
in the UV, for A > aA,, where A, is an amplitude suppression scale®. Below this scale,
as we will see, we recover a solution which is in some sense perturbative in h. Now we
note the ellipsis in (4.58). The flow equation (4.42) has a tadpole operator, which
produces A-dependent UV regulated tadpoles, with fewer fields in . These are the
terms which are denoted by the ellipsis, and the term shown is described as the “top

term”.
The general solution of (4.42) can be written as I'; = I'(u), where

—2

D) = [ 5 aM T | Do) = Y0 =) (462)

[

which is a linear combination of the eigenoperators (4.58) with constant coefficients

99+ (1), which are subsumed into coefficient functions f3:

o *® dm - _1 i
{CADES / P MUIDE 3 atiny (4.63)
where -
F(m, ) = i) (=1) g8y (m)m e, (4.64)
=0

The tadpole corrections are those generated by attaching propagators to (4.62). It can
be shown that the Taylor series of §7(7t, 1) converges absolutely for all 7t. In addition,
§7(7t, ) decays exponentially for 7t > 1/A,. This solution makes sense for any A > 0.

Thus we see that every monomial ¢ has associated to it an infinite number of
couplings. At first order, these couplings can be treated at u independent, and all of
them are relevant, with the exception of one marginal coupling [4, 34]. At higher order,
new higher dimension monomials o appear through quantum corrections. Infinitely
many of these couplings are also relevant, but the first few are irrelevant. These
irrelevant couplings are not freely variable but are fixed by the requirement that we
have a well-defined renormalized trajectory, in keeping with standard RG techniques
[29, 89]. At second order there are no new marginal couplings, the first order couplings
still do not run, and the new irrelevant couplings that appear are determined by the

first order couplings [89].

Indeed, this is the definition of A,.
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At first glance, this would seem to be problematic, as the infinite number of relevant
couplings seems to destroy any hope of predictivity in the theory. However, this can be
restored, and the mST (4.43) satisfied if it the relevant couplings are chosen such that
each ff (¢, ) has a common amplitude suppression scale A,, independent of . In
addition, we arrange for them to “trivialise” in the large A, limit [4]. By this we mean,

for v a non-negative integer

AN ai
fR(pop) = Ag (22&> Hy <A¢> , as Ay — 00 (4.65)
where A, is some (possibly zero) constant, and H,, is the Hermite polynomial of degree
a, so that
A OéH atp a+1 ( 1)Q a_2+ (4 66)
Py — | = —a(a — e )
2ia) "\ A ) ¥ T2 AP

This is the unique form for the coefficient functions f§ (¢, ) such that the linearised
flow equation (4.42) is satisfied and which becomes ¢® in the A — 0 limit.

Since the coefficients in (4.58) are now polynomial, the whole linearised solution is now
polynomial. In particular, it is a sum over polynomial operators, which are made up of
the A-independent o along with the A-dependent tadpole corrections generated by
the RG flow. The solutions are thus practically polynomial in &, with its power being
given by the loop order of the tadpole corrections. They are effectively no different to

what we would write down as the solutions to (4.42) in the standard quantization.

Now, the mST (4.43) says that a linearised solution must be closed under the free
quantum BRST charge 3g. In this framework, BRST invariance is only recovered after

the trivialisation above, and hence we take
Iy — K(fl + f‘lql)a (467)

(see below sections for notation) which is the result of taking A, = k and now

I+ I'141 is a free quantum BRST cohomology representative, i.e., it is closed under 3¢
but not exact. Thus, the gravitation coupling x, only appears as the collective result of
all of the underlying couplings, and only makes an appearance when we are in the
diffeomorphism invariant subspace that we entered with the trivialisation above in the
large A, regime. Indeed, in this subspace we can in fact consider the perturbation

series of I'; as a series in k, as one might expect normally.

4.6 Free quantum BRST cohomology

As seen in, e.g., [90], finding the $p-cohomology is easier if we split the action by
various gradings. The main one we will be interested in is the antighost grading, but it

will also be useful to know the ghost number and mass (engineering) dimension. A
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table of all of the relevant weights is shown in Table 4.1. In this table, we have split

the BV measure operator into

A=A +A™ (4.68)
where
Ax =9 A i X, ATX = —ECA 0 (4.69)
~ 0H,, 0H:, - Oy Oc, '

are the pieces that lower the antighost number by one or two, respectively’. In
addition, we have anticipated this grading in our notation for Qo and @, since Qo

leaves the antighost grading unchanged and (), lowers it by one.

’ ‘ € ‘ gh # ‘ agh # ‘ Dimension ‘

H, 0] 0 0 (d—2)/2
¢ | 1| 1 0 (d—2)/2
H,[-1] 0 1 /2
¢, |0 =2 2 /2
Q [1] 1 0 1
Q [1] o 1 1
A 1] 1 1 1
A= 1] 1 2 1

TABLE 4.1: Various weights of fields, antifields and operators. These will be useful

since we will construct the action from pieces of definite weights, and so this will tell us

which terms are allowed. We include the Grassmann grading (e) for convenience. The

mass dimension and ghost number (also “total ghost number”) are respected in the

action, whereas the antighost number allows for the action to be split by this grading,
which also splits the BRST operator.

At a given over in the perturbation series, I'), will have a definite mass dimension, so
for constructing these we need only consider operators of the appropriate mass
dimension. In addition, the action has a whole has a definite ghost number (0), and so
we know that all composite operators must be put together in such a way to make this
so. However, antighost number is not respected by the action. Thus, we split '), into

pieces of definite antighost number:

m
T, = Z rk (4.70)
k=0

for some maximum antighost number m. With this split, and recalling that our free

quantum BRST operator is now

50=Qo+Qy — (A™ + A7), (4.71)

"Note that where a derivative is taken with respect to a bosonic field, we have not specified whether
it is a right or left derivative since these will have the same action either way and so it is entirely
unambiguous.
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we note that any (integrated) operator with maximum antighost number m

O =Y7' , OF that satisfies 300 = 0 now satisfies “descent” equations

QO™ =0, QO™ = (A" —Qy)0™, QO™ 2= (A" —Qy)0" ! + A=O™
(4.72)
which arise from grading 500 = 0 by antighost number. One might reasonably ask
why it is simpler to deal with many equations rather than few. The answer is that Qg
is much easier to “invert”® than 5g, and so by seeing what operators have antighost
number m and are annihilated by g, the remaining parts of the operator are defined
by this “top term”, up to cohomology ambiguities. Grading (39)? = 0 yields the useful

identities?

(Q)*=(Q)=(A")=(A%) =0
{QO,QE} = {QO’A_} = {Q67A:} = {A_vA:} =0 (4'73)
{Qy, A7} +{Qo, A7} =0.

4.7 First order gravitational action

Now we wish to construct the action for gravity at first order. In order to follow the
procedure above, we need to find a top term from which we can begin the descent
equation. It is also convenient to set A = 0 temporarily in order to find the solution at

the classical level, T'y. Thus our descent equations are now
QoI+ QyIt = 0. (4.74)

It can be shown that all solutions to (4.74) for n > 2 are cohomologically trivial
[91, 92], and so our top term will be T'?, satisfying QoI'? = 0. Clearly, there are many

solutions to this, but the most useful for our purposes will be
I = —(cduc’)c; (4.75)

which represents using the Lie derivative of ¢* (in brackets) without use of a metric to
raise/lower indices. Since we envisage higher-order terms being the “covariantised”
versions of the free/linearised terms being expanded to higher orders, the need for a
metric to raise indices, such as in [34] this will lead to antighost level 2 pieces at higher
orders. This parametrization therefore, is more useful as these terms will not be

present. Now, using the descent equations results in

QOF% = _Qaf‘Q = _2Ca8ac,uauHZy (476)

8Clearly, since (Qo)? = 0 it is not invertible, but by this it is just meant that the pre-image is easier
to find.

9Note there is a slight abuse of “=” here, since these expressions do not all have the same mass
dimension and other gradings, however it is hoped that the intention is clear nonetheless.
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and it can be shown that this is solved by
[} = —(c"0aHyu + 2¢*0,How ) H,, (4.77)

and once again we see that the term in brackets, combined with the H},, term in the
free action gives exactly the Lie derivative form we might expect. Again, the benefits
of treating ¢ as a contravariant vector field manifest in the lack of a requirement to
raise/lower indices with a metric to express things in terms of a Lie derivative, and so
we do not see analogous terms at higher orders. For the antighost number 0 piece, we

again use our descent equations
Qolf = -Qp T4 (4.78)
and we can see that this is solved by

f(l) = 2908;1H;w61/§0 - 2@(au§0)2 — QHH,,ﬁpHpua,,gp + 2HW6M081,90 — 2HVP8PHW8H¢
1 1
+ 5@(3PHW)2 — §HPU8PHW80HW — H,p05 HypOo Hyy + 2H 1,05 Hyy pOy H pir

+ HyupOy HypOy Hyy — 90, H 0 Hyyp — HyuypHyuy O Hpor + 2H,,0,H, 0,00
(4.79)

which is the same as the 3-graviton vertex one would get from expanding the
Einstein-Hilbert action to this order. It is worth noting at this stage that the above

formulae are valid in d dimensions.

Our problem now is that the classical action I'; does not satisfy the linearised flow
equation (4.42) or mST (4.43). In order to solve this, we write!'®

Iy = 1:11 + flql- (480)

Geometrically, we know that the answer is. In Einstein gravity, the only possible terms
at first order are the Einstein-Hilbert terms ,/gR, and the cosmological constant term
\/9, which to this order is ~ . Thus we expect a A-dependant quantum correction
proportional to ¢. This is found by writing out the linearised flow equation in full,
being sure compute the tadpole corrections in the gauge-invariant basis. As seen in [4],

the result of this procedure is to introduce a cosmological constant term

7

[ = 56A4g0, (4.81)

where we have defined the non-universal dimensionless constant

b= % /pCA(p). (4.82)

10Here 1¢ stands for being part of the solution to the linearised flow equation, and the remaining 1 is
due to the order in the perturbation series in k.
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4.8 Second order classical solution

From now until the end of the chapter we will be following [7]. It will be useful to us to
somewhat generalise some of the above procedure. Suppose I" solves the Classical

Master Equation!! (or Zinn-Justin equation)

1 0
o loa A .
0= 2(F,I‘) (QP )—(%)AF, (4.83)
and takes the standard form
I =1°— (Qa4)dr,. (4.84)

Then we expand this as

. ° K«
r=Y =T, (4.85)

so that I'; is unchanged from the above. Similarly, we can expand the one-loop
quantum piece, while noting that the quantum piece only contributes at antighost level

zZero
00

0 K™ 0
0,=> —Dlgn- (4.86)

n=1
Indeed, since the one-loop quantum part is only level zero, we note that it does not
interfere with the parametrization (4.84), and thus the Zinn-Justin identity (4.83) tells

us that -

S 0 -
0 A 0
0=(1",17,) = (Q® )W]‘_‘lq‘ (4.87)
In addition, and as noted previously, our choice in cohomology representative means
that @ is given exactly: there are no further corrections. This observation can also be

deduced by expanding the Zinn-Justin identities (4.83) and (4.87) to tell us
(F2,12) =0, 2(F% 00 + (FLI1) =0 (4.88)
and we also see how the diffeomorpism invariance is expressed on fg and flqg:
QoY =— (I, 1Y), Qol'ge =— (I'1,T1q1)- (4.89)

Now, since f‘? turned out to be the linearised Einstein-Hilbert action, and since f1q1 is
the O(k) A-dependent cosmological constant term, it is natural to guess an all-orders

solution ) .
= ~ VIR, Y, = 5bA‘*\/g. (4.90)

HThat is, it is invariant under the classical BRST charge Q.
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In keeping with this guess, we see that expanding both of these to O(x2) leads to

- 1 3 1 1
Fg = 802 <48uh/w8v@ - T6(8M¢)2 + g(aphﬁw)Q - 4aphlw8uhw»>

1 1
+¢ (hwa,,hway<p — Zauhipamo = 1w 0up00p + Dphpo i 0o by
1
+ 500w Oy o = 20uhp Do hip + OuhurpOuhuohpo = aﬂhy,,athhpa>

1 1 1
- iaphmhaﬁaﬁhiy + OphpaOahpuh by, + Zaphpgaggohfw — g(aphaﬁ)zhﬁy

1 4.91
+ iauhagayhaghuphyp + Bahugc‘)ah,,ghuph,,p + Bahupéghyphaﬁhw ( )

3
— ahypOuhphashy — 20ahus0shashuohy — 5 0uhupOphaphuahys
1 1 1
+ 5 0phapOphuuhyolis + Zaphagaahpﬁhzy + 5haﬁaahgpaphiy
1
— OapOuhvolyuphup = OahupOshohuphup — 5 0ahiupOphushashy

1 2 3
+ aahauauS@huphl/p - g (Bphiy) - Tﬁhiu(ap90>2

for the classical part, and the 1-loop quantum part is
0 704 2 2

Both of these would be awkward to derive using (4.89), but it can be shown that these
do indeed satisfy the required equations for BRST invariance. If we wanted to derive
these with (4.89), we would have to write T') and f‘(l)qQ as general linear combinations of
the allowed functionals (i.e., those with correct mass dimension, ghost number etc.)
and then use (4.89) along with the known actions that we have to end up with a set of
simultaneous equations. Clearly this would be needlessly convoluted when we have a
“trial” functional that we know from the geometry and can check very simply.
Essentially, it is easier to make an educated guess and apply the BRST transformation

and antibracket than it is to attempt to invert these operations.

4.9 Inside the diffeomorphism invariant subspace

At second order, we can write the flow equation (4.37) and mST (4.38) as

. 1 . 1
Iy — str AaT?) = 5t AT AT (4.93)

0Ty = —=(T'1,Ty) — tr CATP AT (4.94)

1
2
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In [89], the general continuum limit to (4.93) was constructed, that is the solution

which realises the full renormalized trajectory for A > 0. It takes the form

1
Ty =5 |1+ P~ (1+Pu)e™ | 1Ty + Ta(u) (4.95)

where
gL R
Pl = AHAB —_ Z
A A 9dp 0Dy

where the L indicates that the derivative acts only on the left-hand factor, and the R

(4.96)

similarly indicates that the derivative acts only on the right-hand factor. In addition,
Pp and P, are defined similarly by changing the cutoffs on the propagator to match

those attached to P. Clearly, these operators connect two copies I';.

In (4.95), the first term on the RHS is the particular integral and the second term is
the complementary solution. The complementary solution takes exactly the form
(4.62), except now u has meaning as the (arbitrary) initial point on the renormalized
trajectory 0 < 1 < aA,. Importantly, the solution in (4.95) is finite with all of the

divergences absorbed into the underlying couplings, as described in [89].

In what follows, we will assume we are in the diffeomorphism invariant subspace.
Thus, we can use k as our expansion parameter, and the solution (4.67) applies in this
case. In particular, this solution can be substituted into the second-order mST (4.94)
and into the particular integral, since these are well-defined in the IR and UV thanks
to their regularisation, and remain so in the limit of large A,. Since I'; contains a
maximum of three fields, the particular integral collapses to a one-loop integral (in
particular, the exponential simplifies) so that the renormalized trajectory (4.95) can
now be written as

Ty = To(u) + K2 (Ian — I2,) (4.97)

where

1 . .
I2k = —ZStI‘ [AkF§2)AkF§2) . (498)

Note that in principle, flql appears in (4.98), but since the action that appears here is
differentiated twice, this term drops out since this part of the action is linear in . In
fact, (4.98) is identical to a standard 1-loop contribution in the standard quantization.
In addition, since we are now in the diffeomorpism-invariant subspace, we re-label I'y

and I'y(p) with factors of k2 so that the x dependence entirely drops out of (4.97).

Note that the particular integral is now polynomial in the fields. In the large A, limit,
we also arrange for I'o(u) to trivialise (become polynomial) as in Section 4.5. Thus,
from a practical standpoint, we see that the calculation will be very similar to the
standard quantization. There is, however, a conceptual difference. The coupling « is,
on the face of it, an irrelevant coupling which cannot be used to construct a continuum

QFT. In our construction, however, the continuum limit (and renormalized trajectory)
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is expressed through the underlying couplings g5, . and it is these (marginally)

relevant couplings which are renormalized.

From the viewpoint of the standard quantization, the large A, limit of the renormalized
trajectory (4.97) still looks odd due to the difference of two terms in the particular
integral Iop — I2;,. These parts are IR regulated but are seperately UV divergent. It is
the case, however, that the difference is UV finite, and thus we regulate each one by,
for example, dimensional regularization with d =4 — 2¢, as done in [35]. In addition,
we can subtract the UV divergences using a gauge-invariant and cutoff independent

scheme, such as MS, since the UV divergences will cancel in difference anyway.

Since T'; contains only three-point vertices, the particular integral contains only
two-point vertices. When derivative-expanded, I, trivially results in polynomial (in
the fields) solutions to the linearised flow equation (4.42). These carry no
A-dependence and the tadpole corrections, where they exist, are field-independent and
thus, although they can be calculated, are discarded as they contain no physics. It is
tempting, therefore, to dispense with I, by absorbing it into the definition of the
complementary solution I'a(p) — I'a (1) + I2,,. Doing this however, leaves Ioy on its
own, which is ambiguous on its own due to the UV divergence - it is the difference that

is well-defined in the large-A, limit.

Writing the solution to (4.93) in terms of its classical and one-loop parts

'y = T'9e1 + I'yy, we now write

F2c1 = ng(,u) (499
1, =
Sgrgcl = —5 (I‘l,Fl) (4100

Dog =Toq(p) + Ion — T2y (4.101

)
)
)
soTag — A9 = — (I, T1y) — tr AT AT (4.102)
where we’ve similarly split the complementary solution in terms of its classical and
one-loop parts I'a(u) = T'aa(p) + I'2q(1t). Note that in addition, we have split the free
quantum BRST operator 35 = so — A into its classical part so = Qo + @, and its
quantum part A = A~ + A=. As discussed in [7], (4.99)-(4.102) are a complete set of

equations for O(k?).

The classical flow equation (4.99) says that I'yq) must be A-independent. If Iy, is
absorbed into I'y(p) as discussed above, then the remaining equations are simply what
we’d get from the standard quantization at one-loop [35]. Now, since I5 is defined
using dimensional regularization and a gauge invariant subtraction scheme, such as
MS, it will have a In iz ambiguity, where pp is the mass scale which is introduced due
to the analytic continuation of mass dimension in the couplings. The insertion of the
cutoff A leads to the mST (4.102), but for a gauge-invariant subtraction scheme, this

will already be automatically satisfied.
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These ambiguities, however are cancelled in the combination Izp — I3, which is simply
a reflection of the fact that the quantum part of the solution (4.101) is a well-defined
expression. Thus, the mass parameter y fulfils the role of being the arbitrary initial
point on the renormalized trajectory. We can therefore choose to absorb Iy, except for
exchanging pup for p. Then the MS scheme essentially amounts to imposing a

renormalization condition at u = pg.

The failure point of the standard quantization is usually seen as having the need to
introduce new bare couplings in order to absorb UV divergences. In the standard
quantization, these new couplings multiply new non-trivial BRST cohomology
representatives order by order in perturbation theory, and so new couplings are needed
at each order. But we do not need access to the UV divergences to see the problem.
The freedom to change the scheme from MS to any other gauge invariant scheme is
contained in the freedom to add suitable local terms in the finite parts of these
divergences. These finite scheme ambiguities would force the introduction of new
couplings on their own in standard quantization. Phrased in this way, however, the
new couplings are finite. Even if we remain with the MS scheme, imposing up

independence would force the introduction of new couplings.

In this quantization, the UV divergences have already been absorbed into the
underlying couplings g3, ., and the ambiguities which arise from defining integrals
cancel since we use the difference Iop — I3,. However, the equivalent freedom still
exists order by order in . Indeed, the requirement that our solution for the
renormalized trajectory (4.95) is independent of the initial point p will force the
existence of new effective couplings in the same way. More generally, we have the
freedom to add a function to I's as long as it satisfies the LHS of the flow equation and
mST (4.93,4.94), that is essentially the linearised equations. This corresponds to a
change in complementary solution I'(x), which simply represents a change in our
quantum BRST cohomology representative. Thus, once we have one solution for I's,
we know that other solutions will only differ by a change in the BRST cohomology
representative. Since o on its own (defined with a suitable gauge-invariant scheme)
will solve the equations, then we know that scheme ambiguities will be contained in

changes to the complementary solution.

4.10 Vertices at second order

4.10.1 Antighost level one

We now wish to see how the vertices are calculated in practice. As already noted,
(4.99) is A-independent, and the BRST invariance (4.100) then implies that the
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solution is
oo = Daar(p) = 19, (4.103)

which is in fact independent of p. There is only a one-loop tadpole (as anticipated),

which is generated by the exponential in (4.62), which gives I'gq (1) 3 T'242, where

3 3
Pago = Qa <2(au§0)2 — 20uhy0vp — (aphuu)Q + 2(8uhuu)2> - 1bA4(‘P2 +h;2w)' (4.104)
Note that if we had absorbed Iy, into I'aq(s), this would be the full expression for
[a,(12), being the unique O(x?) tadpole formed from the classical action.

Now we turn our attention to the particular integral. It is clear by inspection that the
particular integral (4.97) and the RHS of the mST (4.102) cannot contribute above
antighost level 2. In addition, it is possible to show that there is no contribution even
at this level. In the particular integral, an antighost level 2 contribution would require
either propagators from f‘% to f‘%, or between two copies of lv“% with both antifields
intact, but it is not possible to join the propagators in this way. Now, since flq only
has a level zero contribution, the antibracket in (4.102), while the correction term
(trace term) at level two would require T'3(?), and there is no way to join this by a
propagator to f‘ﬁ). Thus we have FSQZZ = FSqZQ(,u,) = 0. This can also be seen by
simply expanding out the relevant traces and seeing that no contributions of this type

are possible.

Similarly, it can be shown that, at level one, the mST (4.102) collapses to
Qol'3, =0 (4.105)

since the correction term requires f%@) with its antifield intact, but no such

contributions are possible. The particular integral at this level becomes
1 . .
I}y = —gstr (AAH@)AAP%(?)) . (4.106)

Now we note that, as discussed in [4], quantum correction should be computed in the

gauge-fixed basis, which is related to the gauge invariant basis that we’ve been using by
* * = 1 —
H/ux’gi = H;w‘gf +8(}LCV) - §5ul/8pcp- (4107)

In this basis, we see from the expression for I'l (4.42) that the non-zero second
derivatives (recalling that these must be with respect to fields, not antifields) are

(f%) 7. and (f %) 17z Thus an example non-zero term in the particular integral is

(AA)HH (f%)HC (AA)CE (f%)aH : (4-108)
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Note the rules for contracting indices are the same as those for “normal” matrices, and
that the (super)trace ensures that the first and last indices match. In addition, the
remaining terms are reached from this due to swapping c for ¢ and from swapping the

order of derivatives. Thus, the particular integral at level one is given by

oy =i / BL (0, A)cal(—p) (4.109)

where, in d = 4, we have

Ca(9)Calp+4q) (3 3
B,Llwa( ) = /q 2+ q)? <2paQ(MQV) + ipMpVQa + 3P(19) 0

+ pgp(udu)a + (p + Q)Q [25a(upu) + 26a(uqu) + 5,qua]> (4110)

which is a formal expression in d = 4, since there are both quadratic and logarithmic
divergences. It is convenient to set the complementary solution to have the same form
as (4.109), with kernal B(p, p), since this means that T'5, also has this form, with

kernal
B#Vﬂé<p7A) B;Va( ) +Bp1/oz(p7 A) B,{;Va( ) (4111)

We define (4.109) using dimensional regularisation which automatically subtracts the
quadratic divergence, and using MS, we subtract the logarithmic divergence, leaving
only the usual log up ambiguity. Expanding the momentum integral (equivalent to a

derivative expansion) up to O(p*) results in

&0 1 1
(4m)213\ = A2/0 duC(C —2) (290 § (c;cu)> - §¢*D8 c

d-c 830
A * 5 1 > N2 A * 5 *
+ 50 4HW6 Oy 16 c,Oey | + 3 ), duu(C")* 50 ( H,,,0.0,p — ZC“DCM

(10g (ljéz>+/0 d5<1_c) +/0 ‘Z‘C(C )) (H 8,0, 2MD0M)

(4.112)

up to O(0°) terms. Here, C = C(u) is the cutoff function. Recall that C*(p) = C(u)
where u = p?/A?, and we also have Cj(p) = 1 — C(p) = C(u). Note that we also have

instances of 25 and b, which in these terms are given by

2 00 .
(ﬁr)2/0 du C(u), 52(4;)2/0 duuC(u). (4.113)

A method for the derivation of this is sketched in Chapter 5, along with explicit

0y =

examples, since these will be easier to present. As previously noted, if we absorbed I,
into I'a(u), then F%q = I21A would already be a solution. In addition, the A-independent
Sp-exact pieces could be discarded by changing I's(u), but we keep them for

consistency with MS. Recognising that the final result must be independent of pp, we
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set the one-loop complementary solution to be

. " c . N 3
) = [ B 0B ea(—5) = B+ 230050 (0,00 + 36300, )

P
(4.114)
which is independent of /g, since this cancels between I, and
K 1
Z3(pn) = log — + 23. 4.115
5 (1) )z %8, T2 (4.115)

We there see that k2221 (1) induces a change in BRST cohomology represented, much
as had been anticipated. In this case, the change is §p-exact and thus corresponds to a
canonical reparametrization, as discussed in [7], and so ZJ is a wavefunction-like
parameter. Its presence is necessary as it ensures F% is independent of the initial point
o of the renormalized trajectory, since a change of p — ap in Byua(p, A) can be
absorbed by a change §Z3 = —loga/(47). Finally, the one-loop solution all put
together is

(47r)21“%q = A2/ duC(C —2) < ©*0-c— % 0(cucﬂ)> — %@*Da c
0
. (1 5 S N )
+ So ZH‘“’a 8,,90—1— ¢, Hey, duu 50 ( H,,0u00p — 1 ¢, Hey,

% ((47r) ZHA) 4+ /0 Czi(l _ o) +/O djc(C )> (H 0,0 + 2CZDCH> )
(4.116)

If we work with scaled variables, where A is absorbed according to dimensions, then
I%q depends on A only indirectly through Z2. The scaled result is thus of the same
self-similar form one would expect of a renormalized trajectory [2]. Renormalization
schemes then follow from renormalization conditions (initial conditions) on Z1. For

example, MS is recovered using the condition
Z(p) =0 at pu=pr (4.117)

which sets z3 = 0.

We can evaluate the physical limit lima_,0 Buva(p, A) = Buva(p) by evaluating (4.110)
with the cutoffs set to 1 and dealing with this in the same manner as a standard
Feynman integral to give us (in the above scheme)

3 1 P 2 5 1
(477)2Bu1/o¢ (p) = 7p2pu5ua — 5PuPvPa log + SPuPvPo — *pzp,u(suoa + *6uup2pa

4 2 w? 3 6 6

(4.118)

where the net effect of the complementary solution and renormalization condition is to

replace pug by pu.
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4.10.2 Antighost level zero
At level zero, we write the one-loop solution (4.101) as
ng = fqu + 5F(2)q(:u) + ISA - ISN? (4119)

where the first two terms are the complementary solution where we have split off the

one-loop tadpole. Using a similar notation to above, we write

By =5 [ Hou0) A0 N) Hs (). (4.120)

| =

Here, AIIW B (p, A) has two contributions: one from two copies of IV“% connected by ghost
propagators and one from two copies of I') connected by graviton propagators. In the
following we will understand A, to be symmetrised on (x,v) and on (a, 3), and
indeed symmetrised under the interchange of these pairs. In d = 4, the formal integral

we get is

A/.u/aﬁ(p7 ) =

Ca(9)Calp +q)
_ / . (p n q) PuPvPaPp + 2Pap,8pqu + QPQPBQMQV + PaPBavqs + 2PaQﬂquq,,
q

2 1

+ 409399y — P 6a,up1/pﬁ - 5
Ca(@)Calp+4q) (1 » 5

~ 026,50, + >

+/q & SV OO * g

1 1
p25uu(papﬁ + BPQQB + 3‘]01‘]6) + Ep46uu5a,8 + 25,ua5y5>

D qéaﬂéuu —Dp- (p + Q)(s;wc(suﬁ

1
+ 25au(p + Q)ﬁ(p + Q)V - 5pu(pap,8 + 3paQﬂ + QQQB)) + Zéuuéaﬂ /CA(Q)CA(p + Q)-
q

(4.121)

Once again, this is defined using dimensional regularization and MS. We thus find

that, Taylor expanding in p,

& 1
4
(4m)219, = A / duuC(C — 2) <24h;2w 8g02>

0

19

o0 5 5
+ A2 /U duC(C —2) < ©0u0uh + = (a huw)? — 473(6,,@? — 32@@)2>

o0 1
0 [T O (L0 + O+ 5 Oph + 150 ) + O

16
(4.122)
This is a unique result, but acquires a log iz dependence in the O(9*) terms, which

are not shown here as there are too many of them. As before, the complementary

solution is chosen such that this is a solution (ignoring the tadpole) up to converting



86 Chapter 4. Pure Gravity in the BV Formalism

the log ur dependence to log i dependence. Similarly to above, we find
2 2
oS, (1) = 15, + 28, (Riys) + 785 (RV) (4.123)

where, to one loop we have

1 61, p 1 23,

Z9,(p) = — —log — + 29, Z3(u) =— —log — L (4124
QG(ILL) (47’(‘)2 120 og LR + Z2a) 26(:“) (477')2 120 og LR + 22b ( )

As before, /@2Zga7b ensure that the full solution is independent of y at this order, and
also ensures that the scaled result is a self-similar solution [2]. Since the only other
log 1+ dependence, which is in F%q(,u), is Sp-closed, this addition must also be $g-closed
(since the total must be), but it clearly is by virtue of being invariant under linearised

diffeomorphisms. Indeed, they are also cohomologically trivial:

2
S0(¢* RY) = Qg (¢ RM) = — (RY) (4.125)
« RUY — o) — L (p) Y21 (pay)?
S0(H;, R)) = 2G )R, 2<Rwﬂ) 5 (BD) (4.126)

and thus, due to the action of the Koszul-Tate differential, these terms vanish when
the free equations of motion are satisfied (i.e., on-shell) and so the Z o,p AT€ again
wavefunction-like [25]. Indeed, this could be seen directly, using the Gauss-Bonnet
identity
2 2 2

4 (Rf})) - (RSV)Q/B) v (R(1>) (4.127)
to eliminate the square of the linearised Riemann tensor, and noting that the free
equations of motion read R, = 0'2. As previously, the MS scheme is recovered by
choosing zga’b = 0 as our renormalization condition. In the physical limit, the tadpole
correction I'pgo vanishes, so once again the net effect of the renormalization condition
is to swap up for u. For the physical (A — 0) T') two-point vertex we have (where

A,vap is understood to be appropriately symmetrized)

7 23 61 23
(477)2Auua6 (p) = (10papﬁp,upu - @]925046}7;4?1/ - @p25a,up,3pu + rp45a65;w

61 , p? 19 1229 ,
TAan 504 5 14 1 Y - Pa « T T oANn 5a v
T ggP Oands ) ©8 </ﬂ> + 75PaPBPaPs ~ gq4P" OapPuP
283 L 1829 4 283
T T SANn (5a v 601 5 v 5(1 (5 v
18007 OonPBPy + 3e5P Casum + 3e5P Oands

(4.128)

where the quartic multiplying the log term is the same as appears in (4.123).

12Note that our coefficients do not agree with those in [25], which are computed using the background
field method. Indeed, agreement is only required on-shell, which is trivial in this case since all of the
terms vanish.
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Finally, we look at the one-loop second order mST (4.102) at antighost level zero. We

can write this as, using (4.89) to eliminate the antibracket,
3 3 _ (o [0
Qo (ng o Ftl)qZ) + QEF%q =—tr CAFg)AAFgQ) (4.129)

since AT'y trivially vanishes. This last term has three contributions: one with I'? and
I'l differentiated with respect to (anti)ghosts, and the other two using I'} differentiated
with respect to H*. One of these has a second copy of f‘% differentiated with respect to
H and ¢, or f‘(l) where the differentials are both with respect to H. The result is then

. o110
— tr CAFﬁ)AAF?)‘ = / H,u () Fuver(p, Mo (—D), (4.130)
p
where
Calq)CMp +
]:,uz/a(pa A) = / A(Q) q2 (p q) <6uuq2pa + 35;;1/(]26104 + 2C.7,uqy(p + Q)a + 4p,upl/(_Ia
q

=2p-q(P+ Q) vy + P WP+ Qo — 45uuqap2> :
(4.131)

The above A, B and F vertices are analogous to vertices in Yang-Mills theory, which
were labelled similarly in [35]. Note that since F,,q is regulated in both the UV and
IR (and hence has no 1/¢ divergences), it is unaffected by MS.

(1)

If we write G,y in momentum space as

G W (p) = =G, (0) Hap(p), (4.132)

we now see that (4.129) is a modified Slavnov-Taylor identity for two-point vertices:

7 1
Auwapps + G)ooBpoa = §5A4 (BjwPa — 2P(u00)a) + 5 Fava: (4.133)

Note that in the physical limit A — 0, the RHS vanishes, and this equation simply
because the normal (unmodified) Slavnov-Taylor identity: it simply says that, on-shell
(GE}V) = 0), the amplitude A is gauge invariant. One can check that the physical
vertices do indeed satisfy the A — 0 limit of this equation. Further manipulation
(involving the identity Cy = 1 — C*, similar to those seen in [35] then shows that
(4.133) also holds at general A. In fact, the Bianchi identity pMG,(},,), ensures that only
the last term in the physical B vertex (4.118) makes a contribution. Thus, (4.133)
states that the part of the physical A vertex which is dependent on renormalization

conditions, that is the log p?/u? part of (4.128), is transverse, which in fact was also
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seen in (4.123). The derivative expansion of F gives us

. . 0
— (4m)2 tr cArf)AArg?)’

> 1 1
A4/ duu C(C — 2) <2hu,,8uc,, + nga . c> — bA* (Zhwaﬂcu + 15908 . c>
0
> 1 11 11
+ A2 /Ov du C(C — 2) <3hw,D3uC,, + g(pma +C— mhﬂyaﬂayap6p>

+A? / duu?(C")> (;lhwauayapcp + ;imaucu> +0(0)
0
(4.134)

and thus we can see that the mST (4.129) is satisfied up to this order. In particular we
see that the tadpole contributions are exactly such that the O(d") and O(9?) terms

match.

4.11 Discussion

We have seen that, at second order in perturbation theory, the end result is the
standard one for the one-particle irreducible effective action at O(x?), which is
therefore a one loop contribution. Since so far we have dealt with pure gravity with
vanishing cosmological constant, the logarithmic running within the
diffeomorphism-invariant subspace is due to wavefunction-like reparametrisations. This
is true in the standard quantisation [25] but is also seen in the new quantisation, as we
might expect within the diffeomorphism-invariant subspace. Outside of this subspace,
however, these reparametrisations are not purely wavefunction-like, but are

accompanied by coefficient functions, which at antighost level zero take the form

§Huw = R (0, 1) + 8,0 RY R (10, 1) (4.135)
where
filp, ) = cik*logpu as A, —0 (4.136)

with ¢; (i = a,b) being numerical constants. There are also infinitely many

perturbative reparameterisations possible of the form

6o = falhuw: ). (4.137)

Some combinations will correspond to redundant operators [93, 94], which will lead to
the kinds of reparametrisations that would lead to a demonstration of the quantum
equivalence of unimodular gravity and ordinary gravity [34, 95] within the new

quantisation.
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Note that the logarithmic running encapsulated by Z21(u) and ngb(,u) is not the only
logarithmic running in the theory. Infinitely more cases will be generated in the
derivative expansion of the general solution for the second-order renormalized
trajectory (4.95) [89]. However, all of these other cases vanish as a power of A, in the

amplitude suppression scale limit.

We would expect that once we add matter and/or a cosmological constant, it would no
longer be the case that the logarithmic running within the diffeomorphism invariant
subspace is attributable to a reparametrisation. Instead we would expect them to be
attributed to new diffeomorphism invariant effective couplings. The reason for this is
simply because, in 6I'y4(1), we now have that R, # 0 on-shell due to now having a
non-zero energy-momentum tensor. These new couplings are precisely the same

couplings as those which need to be introduced in the standard quantisation [25].

Indeed, these similarities between the new and old quantisation are inevitable. Once
we are in the diffeomorphism invariant subspace, we are obeying both the RG flow
equation and the mST, and so the solution in fact must correspond to an RG flow in
the standard quantisation. The difference is purely in how one views the couplings, i.e.,
whether we define the theory using x as a coupling or not. The problem in standard
quantisation is that the flows have an infinite number of parameters, with new ones
appearing at each loop order. In the standard quantisation they are identified with
renormalized couplings, and the corresponding bare couplings are required to absorb
the UV divergences. Thus we cannot construct a reormalized trjactory. This is as one

might expect in the Wilsonian framework for the irrelevant coupling x, with [k] = —1.

In the new quantisation we have found a way around this and constructed a genuine
perturbative renormalized trajectory. It has been shown (in the above and [4, 34, 89])
that this works at both first and second order. It emnates from the Gaussian fixed
point along directions provided by the (marginally) relevant couplings g3, and it is
these which absorb the UV divergences. Once inside the diffeomorphism invariant
subspace, this renormalized trajectory must coincide with a subset of the RG flows
derived within the standard quantisation. The only question is which subset this will
be. Since we send A, — 0o to recover diffeomorphism invariance, we know that these
flows must exist to A — oo within the diffeomorphism invariant subspace, despite the
fact that within this subspace they do not qualify as part of a perturbative

renormalized trajectory.

Once inside the diffeomorphism invariant subspace, the underlying couplings g5,
disappear and the trajectory is then parametrised by diffeomorphism invariant
effective couplings. One possibility is that there is no restriction: the subset in is the
whole set and the effective couplings are in one-to-one correspondence with the

couplings required in standard quantization. Clearly, this would be disastrous for the
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predictivity of the theory, however there is currently nothing to suggest that there are

any inconsistencies with such a scenario.

Even if this is indeed the outcome, the new quantisation nevertheless provides a
different perspective. For example, it is not true that the introduction of these higher
order couplings require a loss of unitarity, provided that their signs are chosen to avoid
wrong sign poles in the full propagators. In standard quantisation, the assumption is
that once couplings are introduced for e.g. the curvature-squared terms, these
couplings must be part of some “fundamental” bare action, and thus from the
beginning turn the theory into one with higher derivatives even at the free (bilinear)
level. Here, however, the bare action lies outside the diffeomorphism invariant
subspace. The higher derivative interactions there must always be accompanied by a
5/(\n)(g0) operator, and thus cannot alter the kinetic terms. In other words, the bilinear

action maintains its two-derivative form [34].

It still remains the case that the perturbative development of the theory is organised in
powers of k and therefore by dimensions, accompanied by increasing numbers of
spacetime derivatives at higher order. But since we are dealing with a theory with a
genuine continuum limit, the fact that perturbation theory breaks down when k9 > 1
(0 here stands for the typical magnitude of spacetime derivatives) simply indicates
that the theory becomes non-perturbative in this regime and is not a signal of the

breakdown of an effective quantum field theory description.

It is clear that it is the logarithmically running terms and the finite part ambiguities
(necessarily BRST invariant) that demand the introduction of new couplings order by
order in perturbative quantum gravity. In contrast, the power-law A-dependence is
computed unambiguously. Nothing in perturbation theory demands that any new
couplings be associated to such A?" terms (with n > 0 an integer). We also note that
the field dependence associated to A?" is intimately related to the modifications of the
Slavnov-Taylor identities, which tell us to what extent BRST invariance is violated.
Thus the problem in quantum gravity is to find the mechanism, if there is one, that
determines (all or some of) the finite parts associated to the log(A/u) terms that
appear at the perturbative level. If, for example, all these parameters are fixed by such
a mechanism, we would be left with only one new parameter at the quantum level: the
mass scale that arises by dimensional transmutation from the very existence of the RG
(the equivalent to Aqcp in QCD).

In fact we know that at third order, the first-order couplings will run with A [89]. It is
conceivable that this running and the required subsequent matching into the
diffeomorphism invariant subspace plays a role in providing this missing mechanism.
Below, another possibility is discussed, which hints that this mechanism arises solely
from insisting that the RG flow within the diffeomorphism invariant subspace remains

non-singular all the way to A — co. One well-studied possibility is a non-perturbative
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UV fixed point: the asymptotic safety scenario [96-98]. However note that the current
construction was born of attempts to solve issues with the degeneration of the fixed
points and eigenoperator spectrum that are seen in that scenario if one goes
(sufficiently carefully) beyond truncations involving just a finite number of operators
(see, e.g., [4, 99]). Below a mechanism for fixing the parameter is explored which
follows from the same mathematical properties of the partial differential flow equations

that lead to these problems in the first place.

4.12 A possible non-perturbative mechanism

In the conformal sector, the infinite number of couplings g3, . lead to a new effect,
namely the fact that almost always, even at the linearised level, RG flows towards the
IR become singular and then cease to exist [5, 29]. The subsequent development, seen
above and in [4, 34, 89] makes use of this in a fundamental way. Indeed it is for this
reason that the construction requires the initial point p for the renormalized trajectory
(4.95) to lie below A, with most of the trajectory then being safely developed from
the IR to the UV. This is due to the fact that we are dealing with solutions of a
parabolic differential equation that are non-polynomial in the amplitude: such

solutions are only guaranteed when flowing from the IR to the UV.

Of course, these comments apply equally to the h,, sector but with the crucial
difference that there the equation is reverse parabolic, with solutions only guaranteed
when flowing from the UV to the IR. The problem is not seen for polynomial linearised
solutions, because these solutions are a finite sum of eigenoperators (Hermite
polynomials) with constant coefficients. However, diffeomorphism invariance, which is
imposed in the IR (i.e., in the diffeomorphism invariant subspace) requires us to use
solutions which are non-polynomial in the amplitude of A, , since there are terms
which depend on both g,,, and g"V. Thus diffeomorphism invariance forces us to
consider solutions which are non-polynomial in h,,,, evolving from the IR to the UV.
Such solutions almost always fail at some critical scale A before we reach A — oo, in

exactly the same way that the flows in the conformal sector fail in the IR.

In reality the solution must exist simultaneously in both the h,, and ¢ sectors.
Looking again at the linearised flow equation (4.42), we consider a solution oT'.
Isolating the h,, and ¢ amplitude dependence, we can expand JI' over monomials

Cul...un3

00 =3 ¢(8,00,0h,¢, @) f5 . . (hap @) + - . (4.138)
¢

where once again we use the ellipsis to denote tadpole corrections to ensure that the
above is indeed a solution of the flow equation. These new coefficient functions fﬁ are

necessarily non-polynomial in its arguments as argued above. Now, using the linearised
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flow equation (4.42) it can be shown that the coefficient functions have a flow equation

i PN\«
fAm...un =y <8h/%u - 8902> fAm-..un (4.139)

and hence the problem is clearly on display. The equation in either the ¢ or the h,,
sectors are parabolic, but in opposite directions. Therefore, the Cauchy initial value
problem is not well-defined for either direction. Evidently, one or the other sector will
generically develop singularities (cusps) in finite time, unless very special initial
conditions are used. In our language, this means that the RG flows will be a heavily
restricted subspace of all possible flows one could construct within the diffeomorphism
invariant subspace. It is worth noting that in this property is not solved by moving to
the full non-linear flow equations, it merely obscures this property. In this section,
hints are uncovered that the only independent couplings that are allowed to exist are s

and the cosmological constant.

It is worth noting that this issue only applies to the fields which are differentiated in
the flow equation, i.e., the quantum fields, whose second order derivatives together
with the RG time derivative make the equations (reverse) parabolic. It does not apply
to the antifields, nor does it apply to background fields if the background field method
is used. Indeed, it also does not apply to the ghost fields, since these are
Grassmann-odd and therefore their dependence is necessarily polynomial. Thus the

issue only arises for the quantum fluctuation fields A, and .

To take this further, we recall that the finite part ambiguity JI'(;) that appears at [-loop

order is a local A-independent operator, and its dimension is determined by factors of x
[6F(l)] = 2(l + 1). (4.140)

We note that for the mST (4.38) to be satisfied within the diffeomorphism invariant
subspace, we require (I, 5F(l)) = 0 (since all the other parts are higher loop order).
Thus, at [-loop order the ambiguous parts 0I'(;) must be invariant under the full
classical BRST transformations, reflecting standard treatments [87, 88, 100]. In
particular, the level zero part 6I'° must be diffeomorphism invariant, and thus at
one-loop are curvature-squared terms, as seen in (H‘gq (4.123). At two-loop, they must
be k2 times curvature squared or higher-derivative terms such as k? RV2R, and so on.
Thus they are indeed non-polynomial in h,, (and indeed ¢ as imposed by the new

quantisation).

At higher loop orders than [, 6T'(;) gets altered by the flow equation (4.37) and mST
(4.38) in non-straightforward ways. If we model the situation by simply using the
linearised flow equation (4.42) and imposing 0I' = 0I'(;y at A = 0, then the
perturbation will no longer satisfy BRST invariance or the mST when A > 0. However,

we will still find restrictions that arise from the fact that the flows are typically
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singular. We see that the equation (4.139) is formally solved by Fourier transform:

d97'[ dm 1 2 2\ : :
fl%m---un(hoéﬁ’@) :/(%;")Bu)fil._.“n(ﬁaﬁ,ﬂ)ezm(mu 72) it oy T (4.141)

where 71, and 7 and the conjugate momenta to h,, and ¢ respectively (hence 7,

traceless). Note that ffu-..un is the Fourier transform of

.
P = 00 fX 0 (4.142)

as can be seen by setting A = 0 in the above. However, for the above to be more than
a formal solution, we need the Fourier integral to converge. Note that as A increases
from zero, convergence in the ¢ sector only improves, as it is weighted by e_L;QA,
reflecting the fact that the Cauchy initial value problem is well defined for this sector
when we flow from the IR to the UV. By contrast, the h,, sector has an exponentially
growing weight, and thus we see that, at fixed 7, f* must decay faster than an
exponential of niw or the solution will be singular at some critical scale A = A, > 0,
above which the flow will cease to exist.

We thus see that the flows will only exist for carefully chosen parametrisations of the
metric in terms of h,, and ¢. Now we show that solutions of the form (4.141) cannot
exist simultaneously for all of the 6I' that match the diffeomorphism invariant 6T'(;) at
A = 0. If we take the Einstein-Hilbert action as an example and expand over
monomials as in (4.138), the required strong suppression of 7, in f¢ means the for the
above to be a solution, there must be no rapid variation of the Einstein-Hilbert action
under changes in the h,, amplitude. At a minimum, we need a parametrisation that
exists for all amplitudes. This is not true of the standard linear split of g,,,, which is
not positive definite for all h,, and ¢, and is singular at xKp = —2 and whenever xh,,,
has —1 as an eigenvalue. This can be cured by parametrising the metric in terms of an
exponential of kh,"” (seen as a matrix), which would also ensure that the measure /g
does not lead to any branch cuts [101-105].

Such a parametrisation is not yet enough to allow a solution of the form (4.141). Note
that we already require faster than exponential decay, we thus have |fi1,,,#n |2
integrable. Therefore, we know that, by Parseval’s theorem, the squared coefficient
functions fﬁ 1oty TIUSE also be integrable over dghagdga. This therefore means that
the coefficient functions flim,mun vanish as hqg — oo. Now, since \/gR — a,/gR
under scaling g, — ag,, (where « is some constant), we see that this final condition

will hold for the Einstein-Hilbert action if and only if g,, itself vanishes in this limit.

A Fourier solution of the form (4.141) for the cosmological constant term is then not
ruled out by this condition, since /g — aQ\/g and thus will also vanish in the limit

hag — oo. However, all higher derivative terms are then ruled out from having such
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solutions, since curvature squared terms go like a”, while higher orders behave as

negative powers of a and thus diverge in the limit h,g — oo.

Note that despite the fact we are modelling using only linearised solutions, these
argument are non-perturbative in x, because the breakdown in the solutions happens
at finite or diverging xhy,. In general, the level zero part satisfies 6I'(y — al_léf(l),
and thus if these perturbations had to extend to solutions 6I" of Fourier type (4.141),
we would have shown that, despite the apparent freedom to change individually the
new effective couplings that appear at each loop order, non-perturbatively in x the
requirement that the renormalized trajectory is non-singular actually rules out all such
infinitesimal changes 0I';). We would therefore like to conclude that the only freely

variable couplings are in fact x itself and the cosmological constant.

However, such a dramatic conclusion cannot be drawn from this. These arguments can
only really be interpreted as hints. Firstly, we note that there are solutions to the
linearised flow equation (4.139) that are not of the Fourier form (4.141). For example,
there are solutions which are polynomial in the graviton, but ¢ is then distributional.
That is, a sum §(7,p) and its derivatives. In addition, 6T';y do not in fact satisfy the
linearised equation (4.139), but instead

. 1 ) B 1 1
o = gstr (AANA Dl anr?] T agery) 1+ ar?] ) (4.143)

which is evidently much more involved than the simple linearised equations. However,
it does share the property that the Cauchy initial value problem is not well defined in

either direction.

Indeed, if we were to expect any other terms to arise from a more complete analysis,
we would guess that some curvature-squared terms are also present. These are almost
always seen in other studies of quantum gravity, and were only “marginally excluded”
using our crude analysis above (i.e., they scaled like a® or logarithmically). A more

detailed calculation should shed light on whether the coefficient of R? is freely variable.

4.13 Summary, conclusions and outlook

Everything in this chapter relates back to the observations of Chapter 2, and noting
that flows close to the Gaussian fixed point which involve the conformal factor ¢
remain well-defined only if they are expanded over a countably infinite set of
increasingly relevant operators 5/(\n)(go). The conceptual result is best summarized in
Figure 4.1. The key difference between this and the standard quantisation is that the
UV part of the trajectory is outside the diffeomorphism invariant subspace. Thus, the
quantisation is defined “off space-time”. In the UV, the traceless fluctuations h,, and

conformal factor ¢ act as separate fields. The dynamical metric g,,,, which combines
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these as required by diffeomorphism invariance then only comes to be within the

diffeomorphism invariant subspace.

The other key difference is that the renormalized trajectory is now parametrised in
terms of an infinite set of couplings g, , .. These parametrise the flow outside the
diffeomorphism invariant subspace. Within this subspace, we see that diffeomorphism
invariance is recovered if we insist that certain “trivialisation” conditions hold. In this
case, we see that the infinite number of couplings collapse to form one effective
coupling, k. Thus, within the diffeomorphism invariant subspace, the QFT can be
constructed using x despite the fact that [k] = —1, simply because k does not exist

near the Gaussian fixed point, where the power counting arguments are usually made.

This dependence on an infinite set of couplings somewhat resembles the split Ward
identity. This is an identity used in many studies of background independence and
more complete discussions can be found in [105-118]. The split Ward identity arises
simply from the observation that when a metric is split into a background and

fluctuation

G = Guv + Py, (4.144)

then all physical quantities cannot depend on g and h individually, but must depend
on their sum. This is what is meant by background independence. Essentially, the split
Ward identity is to background independence as the mST is to diffeomorphism

invariance.

The breaking of the mST is somewhat similar to the breaking of the split Ward
identity, in that it results in a diffeomorphism invariant operator splitting into an
infinitely many terms, each of which has couplings which flow independently. However,
there are some crucial differences. Firstly, there is the fact that the split Ward identity
is broken by gauge-fixing terms, at which point the correct thing to use is the
Slavnov-Taylor identity, i.e., the identity which ensures BRST invariance for the
quantum fields (that is, the appropriate generalisation of diffeomorphism invariance).
This is then broken by the cutoff, at which point we use the mST which, as we have
seen, ensures that BRST invariance is respected in the limit in which the cutoff is

removed.

More strikingly, although the breaking of both the split Ward identity and the mST
result in operators splitting into infinitely many parts, only in the current formalism
are infinitely many of these are relevant near the Gaussian fixed point. In the standard
treatment using the split Ward identity however, only the h, h? and h3 terms are

relevant, arising from the splitting of the cosmological constant term.

It is worth emphasising here why the use of £_ and allowing flows to exist off the
diffeomorphism subspace are both required for this construction to work. Without the

requirement that functions of ¢ lie in £_ (and its generalization when other fields are
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included), the eigenoperator spectrum degenerates and becomes continuous, and it is
no longer possible to unambiguously divide a perturbation into its relevant and
irrelevant parts [99]. This problem went unnoticed for a long time simply because of
the fact that to see it, one must work with solutions that involve an infinite number of
operators. However, since truncations have long been a large part of studying
behaviour of theories under Wilsonian RG, investigations into quantum gravity
involving the RG have involved truncations with only a finite number of operators
retained, with few exceptions [43, 119, 120].

One may expect that restricting flows to the diffeomorphism invariant subspace (in
contrast to Figure 4.1) may help matters since diffeomorphism invariance at the
classical level restricts the functional dependence of the conformal factor to just a few
operators at any given order in the derivative expansion. However, upon a more
careful analysis, the f(R) approximations [105, 106, 121-129], which are
diffeomorphism invariant and keep an infinite number of operators, also display the

degeneration of the eigenoperator spectrum.

Using the BRST formalism to express the diffeomorphism invariance, this chapter has
outlined how to construct the first and second order gravitational action. It was shown
in [89] that the renormalized trajectory can be solved at second order, and indeed that
the required trivialisation can take place. In [7] it was shown that it is indeed possible
for the renormalized trajectory to enter the diffeomorphism invariant subspace. The
subsequent evolution was then solved, in particular in the physical limit A — 0 where
one obtains the physical amplitudes. It is worth noting that the result is equivalent to
solving for quantum gravity at one loop and O(x?) in standard perturbation theory.
Therefore, as in the standard case, we find that the effective parameters left behind are
associated to logarithmically running terms at this order, and that for pure quantum

gravity these are not physical because they can be absorbed by reparametrisations.

Finally, we note that the flow equations for h,, and ¢ sectors are parabolic in opposite
directions (towards IR and UV, respectively). This means in particular that when we
want a solution that involves both (and of course, physically we do) that the Cauchy
initial value problem for the flow equation is not well-posed. In particular, if we use
solutions which are non-polynomial in h,, and ¢ (which is required by diffeomorphism
invariance) then the flows are typically singular. Some hints were found that this
property would give a mechanism by which the free parameters in the theory are just s
and the cosmological constant. However, this would require a much more careful
treatment, and indeed more study of how the presence of a cosmological constant

affects the quantum properties of gravity within this new quantisation.
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Chapter 5

Coupling a Scalar to Gravity

5.1 Introduction

Following Chapter 4, we wish to extend the formalism by including matter in the
theory. As such, we will consider the simplest form of matter, a complex scalar x. In
addition, this chapter will include more detailed calculations than in the pure gravity
case, since the methods used are easier to show in this case since the expressions tend
to be somewhat simpler. We do note however, that the treatment in this chapter is
rather simplistic and takes place entirely within the diffeomorphism invariant subspace
of the theory. In order to gain a full understanding of the effects of adding matter to
the theory, one would have to construct the theory off space-time, and then show that

the required trivialisation can take place with a scalar present.

In addition, the notion of a perturbation series itself is potentially a problem.
Previously, the perturbation series was ordered by powers of k, and this made things
easier since the terms at each order have definite mass dimension. However, once one
includes other dimensionful couplings, such as a mass term, then Mk is a
dimensionless combination, and many of our notions of ordering in the perturbation
series become significantly less powerful as an organisational tool. Furthermore, with
additional couplings comes additional power series, and this leads to significant
complications when trying to construct such theories. Nevertheless, we will look at
some of the results within the diffeomorphism invariant subspace in the most “naive”
way, and see what alterations this makes to the theory when constructed entirely

within the diffeomorphism invariant subspace.

We first see in Section 5.2 how the BRST operator behaves for the scalar and how the
free action is required to be modified. Then in Section 5.3 we see how this is used to
construct the first order action, and we see how the “standard” classical solution (as

one would get from an appropriately covariantised kinetic term) is modified by
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quantum corrections to ensure that the action is a solution of both the flow equation
and mST to this order. Sections 5.4 & 5.5 show this process in action for the second
order part of the action, which is where the logarithmic divergences start to appear
and we follow the pure gravity example to absorb these with wave-function like
corrections to the complementary function. Finally, Section 5.6 shows how the action
derived in previous sections is compatible with the expression of diffeomorphism

invariance in the mST, and how the tadpole corrections are required to make it so.

5.2 Free action and BRST algebra

We start with the free action for the graviton, and then we add the kinetic term for a
complex scalar field y. Note that in the BRST formalism, we also need to add an
antifield with a BRST source term —(Qx)x*. Using our conventions from the previous
chapter, we treat ¢* as a contravariant vector field and we will use upstairs/downstairs
indices interchangeably. Now, since we treat kc* as the small diffeomorphism when
defining the transformation of the graviton, we are required by consistency to also do
so here. As before, we are treating d,, as our background metric, and therefore we will
not draw a distinction between upstairs and downstairs indices. Thus we have, from

the standard transformation of a scalar field under diffeomorphisms,

Qx = ke, 0ux (5.1)

and similarly for the complex conjugate y. In particular, we note that this term is
O(k), and thus must not appear in the free action. Thus the free action for a graviton

plus a complex scalar is

1 _ * v
Ly = iH/ﬂ/(Auu,aﬁ) 1Hocﬁ - QONCVH;W + aHXaMX (5.2)

where A, g is the graviton propagator. Even though I'g is well-defined in its own
right (i.e., without reference to a metric or gravity), the interpretation we have in mind

is that H,,, is the metric fluctuation!
Juv = 5;w + kHy, (5.3)

and we will bear this in mind when we check our algebraic answers using the geometry.
All of the previous free BRST transformations and Koszul-Tate differentials are
unchanged, but we repeat them here for convenience including the new

transformations of the scalar:

Qocy =0, QoHuw =200, Qox =0, Qox=0 (5.4)

!Note that this also explains interchanging upstairs and downstairs indices: we have 6, as a back-
ground metric.
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Qoch=20,H},, QuH;, = —2G§}V>, Qox'=-0x, Qpx*= -0y (5.5)

where we’ve defined the linearised Einstein tensor

am 1

1 o
e §DHMV — 5WDg0 + 8H8ch + iaaﬁgHaB — 8(#8 Hy)a. (56)

One important thing to note is that for a general field ® with antifield ®*, we have
OF = —P* (5.7)

in order to make the action real. This will be a useful fact to consider when

constructing the action at first order.

5.3 First order action

We write the first order classical action as
Iy =T 4+ 1Y (5.8)

where f‘{{ is the action that appears in Section 4.7. In general, the H superscript will
mean the pure gravity action and the y superscript will mean the additional terms
that arise from the presence of a scalar. We also assume that the full action due to the
scalar I'X has been expanded in x and graded by antighost number in a notation which
is hopefully clear. Now, since f% was found uniquely, there is no contribution from the

x sector. Thus the BRST descent equations for this part of the action reduce to
Qo™i =0, Qo)+ QyTX] =0. (5.9)

Now we search for terms with which to build I'X]. Clearly the terms allowed must
contain x or x* (and/or complex conjugates thereof), have mass dimension 5,
vanishing total ghost number and antighost number 1. The most general form that is
annihilated by Qq is

Xl =a ([aMXCuX* + 5u>‘<0u>2*] - [XcuaX* + Xcuaux*]) (5.10)

where « is some constant. Note that we have excluded symmetric combinations of the
terms in square brackets since these would be equivalent (after integration by parts) a
piece which is Qg-exact, and thus ignored since we are dealing with the cohomology?.

In fact, after integration by parts, we can remove another (Jg-exact piece and have

DX} = BOuxeux” + 9uxcuX”) (5.11)

2In principle there are terms linear in y such as cuOvxHp,, which can be made real by adding the
complex conjugate, but it can be shown that these terms cannot by consistent with the descent equations.
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for some other constant, 5. This constant will not be fixed until second order, and
represents the relative strength of the gravitational coupling of the scalar compared to

the graviton. In addition, we see that this form is as expected, since

KDY = BQ)X" + BQOX” (5.12)

which corresponds to the BRST source term if § = —1. We will see various hints to

this value of 8 at first order, even if the value is not yet fixed.

Next we use (5.9) to find the antighost level zero part. We find that
QoY = —B (8 xc,Ox + duxe,x) - (5.13)

Now, since x is inert under @y, it follows that each term in fX? must have exactly one
X and one Y. Since H,, is the only other field allowed, then it follows that our general

ansatz (which allows for integration by parts) is
%Y = 40,0, XHw + B0, 0, XHyy + COu(xX) 0y Hy + DOu(xX) 0, Hyw (5.14)

for constants A, B, C' and D that we expect to find in terms of 5. One can then see
that this is solved by A = 3, B = —g, C =0and D =0, and thus we have

< _ B _
FX? = BOuxOuXHyu — Eauxa,uXHuy- (5.15)
Note that once again, we have uncovered a hint of 8 = —1, since in this case we would

have exactly the O(k) piece of
V9Ouxg" Oy X (5.16)

As before, we note that I'y = 'y is not a solution to the linearised flow equation

(repeated here for convenience)
' L o AAR@)
= —§strA 7. (5.17)

Similarly to the pure gravity case, we know that the only possible tadpole corrections
have single fields, and thus these do not contribute to the RHS. Thus we have

. Mp) & < 1 )
Y= / 0uxO0uxH,w — =0,x0,XxHyy ) - 5.18

1=-F L P ox(p)ox(—p) \ PO T OO (5.18)
Also similarly to the pure gravity case, we reason that the classical part of the solution

does not run, and therefore, evaluating the functional derivatives, we have

- B
Iy, = §bA4g0 (5.19)
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where, as before, p = %H wv and

bAt = / CA(p). (5.20)

p
5.4 Second order classical action

To deal with the second order contributions, we refer to the formulae in Section 4.9.

These are repeated below for convenience

I‘201 = FQCI(#)a
1 ,. .
sol'2cl = —3 (I',Ty),
FQCI = FQQ(:U’) + Iop — -[2/1,7
SoFQq — Argcl = — (fl, flq) — tr CAfﬁ)AAf?),
recalling that so = Qo + @) is the free classical BRST charge.

We have (in hopefully obvious notation) from (5.22)

—_

so (TH +T%,) = —= (D + T, T 4+ 1) (5.25)

[\

but we also know that (5.22) must hold for the gravitational action alone, and thus we
have .
sol3q = —5 (M1, 1Y) = (T7, 1Y) (5.26)

Grading by antighost number, we get I'X2 | = 0 as a consistent solution (this is also

zero by arguments in Chapter 4), and at antighost level one gives us

QOF%CI = —(ﬁz + B) (Ouxx"c0vey + 0ux X" cOucy) (5.27)

but the only way that the RHS can by in the image of Qg is if the derivatives are
symmetrised, but this can’t be done without removing the terms entirely. Thus we
need 32 4+ = 0. This means that the only consistent choices are 3 = 0, which is pure
gravity, and 8 = —1, as the hints from first order suggested, and has now been proven.

We thus take 5 = —1 from now on, and we choose

i, =0 (5.28)
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so that I'y; = I'X9 . Finally, we have

1
Qol'y, = (X0 X (€aOaHuy 4 20ucoHan) — 58“)(8#2 (caOaHyy + 20,c0Huy)

_ 1 _
— cu0uX0p (05X Hpo) + 50#67#)(8,,(8pr00)

1
— €0 X0, (05X Hpo) + §cu8u)28p(8prm) (5.29)

which, after integrating by parts and making use of the fact that Qg is a left

derivation, we find

1

1 1,
Féd = (HupHpV - §H;prp + O <8pr 1

HPUHp(,)) 0uXxOuX (5.30)
which can be shown to be the second order part of /g0, xg""0, X, as we again would
expect. Thus at both first and second order we see that the classical action is exactly
the same as what one would obtain from the perturbative expansion of the covariant

kinetic term for y.

5.5 Quantum corrections at second order

In order to calculate the second order quantum corrections, we will need to use (5.23),
where

Iy = —%str AT AP (5.31)

It can be shown that the only new contributions arise when both of the copies of the
action come from the new scalar sector, since there is no way to have one differentiated
with respect to x without the other being differentiated with respect to x, and since all
new terms are ~ yxH, there must be at least one x derivative to make this contribute.
In addition, the only way to join propagators consistently between the two copies of the
action is in the level zero piece; there is no level one correction. The contributions are
of two types. One involves both copies being differentiated with respect to H and then
x or ¥ which will lead to corrections to the x propagator, and the other involves both
copies being differentiated with respect to both y and y, which will lead to corrections
to the graviton propagator. We note that since we use the dimensional regularisation

to define our integrals, we must take care to ensure that we work in d dimensions.

5.5.1 Corrections to the scalar propagator

Terms which contribute to the scalar propagator have the form

(An)y g (T1) oy (An) gy (T1) (5.32)
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and the related terms with y <> x and the order of derivatives changed. Thus we have

By =~ [ XG4 A (5.33)
P
where
X Ca(@)Calp+4q) (1 1
At =~ q2 §5MV(p ' Q) — P(udv) A,uy,ozﬁ(p + Q) 5(5&5(]) . q) = P(a4p)
q
(5.34)
and .
A/Wﬂﬁ(p) = ﬁ <5u(a5ﬁ)u d—_ 25uu5aﬁ> (5.35)

is the graviton propagator. Therefore, after some manipulations we obtain

P [ Cal9)Calp +q)
q* '

AX =

(5.36)

Clearly, in the physical limit this will be automatically subtracted as part of the
dimensional regularisation. Proceeding as previously, we Taylor expand

Ca(p) = C(p?/A?) = 1 — C(p*/A?) up to second order (in order to get the derivative
expansion to order O(9%), for consistency with the previous work):

Ca(p+aq) = C(u) + () (2(p-q) +p°) + ¢ (u)

A2 AL 2(p-q) + 1)’ (5.37)

where u = ¢?/A%. Now, we use a general result which proves useful in calculating many

of these integrals. If f(q) is a spherically symmetric function, then we have
n
/f(q)qﬂl o q,U«Qn = / H _ 1 Z 5#01/1402 . ,UfO'Qn 1Mooy, (538)
q k=1 palrs
where the sum is over the ways of dividing the 2n indices into pairs. Thus, for example
it allows us to make replacements such as
1 2
AQuiy ' — g5uuq (5.39)

QuQvpQo ' — 0 0po + 5,“,5,,0 + 5u05yp)q4. (5.40)

1
i+

In addition, whenever there is a product of an odd number of ¢, the integral is zero

(odd integrand over symmetric region). Thus we have

2 e U 2 4 S m ! U 4 B B
AX(p, A) ——])2/0512) - 2]12/(}( ;f( ) _ dIZXZL/C’(u)C”(u). (5.41)

Note that these are all IR regulated, since C(u) is the IR regulator. In addition, since

C'(u) = —C"(u) this means that any expression with a differentiated cutoff is also UV
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regulated. Thus the only types of integrals that require a touch of care are the integrals

of C(u)?. To see how this is done, we first need to cast these integrals in terms of u.

Since all of the integrals involved are spherically symmetric, we have

/q: 7{‘( )1(477)3Ad /OOO duu? ™t (5.42)

where the prefactor comes from the integration over the d — 1 dimensional sphere. In

[fsH

the dimensional regularization we will take d = 4 — 2¢, and at one-loop we will have at
worst a 1/e pole, and so we are safe to limit ourselves to O(e) expansions. To this

order, we have

/q_ (M%)e(ﬁ)g <1+e (1 — 5 —log <M2}§;)>>> /OOO duu' ™ (5.43)

where 7 is the Euler-Mascheroni constant and pp the scale included as standard to

ensure that the argument of the logarithm is dimensionless. With this, we have, after

writing the part in brackets as (u%)°R(e):

272 00 4 [e%s)
(472 AX(p, A) = L 2A R(e) /0 duu=Cu)* ~ 2R(o /O duu=<C(u)C" (u)

4 oo
—%R(e) /0 dunw ™ C(u)C" (u). (5.44)

First we see how the C'(u)? terms are regulated. Taking direction from the Appendix

in [7], we write, for n an integer

/ duu™“C(u /duu” ‘Clu duu “(C(u —1 / duu"™ ¢

:/Oduu /duu —-2)— 771_1_1_64'0(6)

where we’ve taken the e — 0 limit in the first and second terms since they are already
IR and UV finite (recall C = 1 — C is the UV cutoff). Note that we have also
discarded the upper limit of the final integral by analytic continuation of e.
Importantly we see that for n # —1, we can safely take the e — 0 limit at this point
and cancel the last part with a contribution from the first integral by writing it in a

way such that it can be combined with the second integral:

/OO duu""C(u)? = /OO duu"C(C —2)+ O(e), n#—1. (5.45)
0 0
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For n = —1, we simply don’t take the ¢ — 0 in the third integral above, and thus we

have

> —1—e A 2 _ ldﬁ o 2 Oodiu - 1 €
/Oduu C'(u) _/0 " C)+/1 LO(C -2+ 400, (5.46)

To remove ambiguity as much as possible, all integrands with a differentiated cutoff
will be manipulated via integration by parts until they are the sum of terms where

both cutoffs have the same number of derivatives. Thus, for example

/ duu™C(u)C" (u) = —/ duu™¢(C"(u))? — (n — 6)/ duu"1¢C(u)C" (u)
0 0 0
=— /OO duu""¢(C")? — 1(n —€) /OO duu”fl%i(c_’z)
0 2 0 du
and thus, integrating by parts on the final term again, and taking ¢ — 0 since as stated

earlier the integral is automatically regulated in the UV and the IR:

> n—€ /Y 1 _lnn_ oounf2 _ 9\ _ > wu N\ 2 €
/0 dun"~C(u)C"(u) = n 1)/0 c(C—2) /0 duu™(C")? +O(e) (5.47)

unless n = 1, but in this case the answer is still finite, but requires a touch more care

to reach it (see above).

With all of these rules in place, we see that there is no 1/e divergence from the
integrals we have (at least, none which are not subsequently multiplied by €) and thus
in AX, we can set R(e) = 1. In particular, this means that there will be no logarithmic
divergence, as we might expect from an expression which gives zero in the physical

limit. Thus, we have

2 A2 o0 4 4 [e%s}
(472 AX(p, A) = —p2A /0 duC(C-2)-L T <—; —/O duu(C")2> (5.48)

and finally, we find that
A? > 1 1 >
(4m)* Ly = —2§o(xx*)/ duC(C = 2) + 280(xBX") — 4§o(xDX*)/ duu(C")

" " (5.49)
so there are no logarithmic divergences leading to new couplings, and the terms which
do contribute are all §y exact, and in addition do not contribute to the mST, so we will
pay no further attention to them. It is worth noting at this point that this will in fact
be the case in general. With our BRST transformation as defined, the corrections to
the x two-point function will always be §g exact to all orders in the derivative

expansion, simply due to the observation that

xp?"'x = x3"x = so(x3" ). (5.50)
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5.5.2 Corrections to the graviton propagator

The terms in the trace (5.31) which contribute to the graviton propagator must leave

the H terms in fof intact, and therefore take the form

(An)y 5 (Fl) CAYN (fl)m (5.51)

and there is an additional contribution from x < ¥, so that
o 1
By = =5 | Huw(P)Awas(p, ) Has(—p) (5.52)
P

where

q)Ca(p +q)
2

b+ a? (;q (P4 @)dap — qa(p + Q>ﬁ)>

(4 Al ) = [

< (50 0 8 - a0y ) 65)

Taylor expanding this to O(p*) and using the dimensional regularization, we have

X o0
( ) Ap,l/aﬁ(pv ) ﬁ (5uyéaﬂ + 6ua5yﬂ + 5}4351/@) /O du UC(C — 2)

1 1 1 =
+ A2 <—p25 w008 — 7p25 a6 v+ =P (51/ aP ) / duC(C -2
247 a8 = 5 P Ouads)y + P | | duC(C—2)

b 1 1 o0
2 ? 2 2 2
+A <— 96]9 Oudag — 48p 5M(a55)ﬂ — 12p(u5y)(apﬂ)> /0 duu (O/)

2 o)
(pupuéaﬁ +pap55;tu)A duu ( ) + A;waﬁ( )quart

16
+ A8 (D)og [ 1 M + d“(1—0) + d“C(C 2) + T (C")?
,u,uaﬁ log og A2 u . » ; uUu
(5.54)
where we’ve defined
1 P p?
Afuaﬁ(p)log 30p,upl/pap6 40 (pupl/(s B +pap65ul/) - @p(uéy)(apﬂ)
pt '
(5uy(5a5 +—4 (a 56)1/ (5.55)

40 120 pe
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and
47 1 31
H 2 2
Auvap(P)avart = 7o56PuPvPaPs — 15557 PuPrOas + PaPpdur) = 70565 P(udv)(aPs)
17 a7,
~ To00? a8 T agP Outads)y

1
+ 2 PP(u0)(aPs)

(- 2 (0,DuSas + Papaym)
120pupl/pocp6 60 PuPv9ap T PaPpOuv 60

171 4 L 4 > 3/ N2
+ 960p 5#1/5046 + 480p 5M(a55)y>/0 duu (C ) . (5.56)

Therefore, our our integral is given by

A o0
(47r)2I§<f =51 (2(,0 + HWHW) /0 duuC(C —2)

1 1 1 >
+ A2 (_12¢D¢ _ 48HHV|:|H/J‘V — aﬂHHVaPHVP) / du C(C — 2)
0

5
A% | ——¢0O
* (4890@ 96

+ O(dY).

og HwOHuw + 5 a H0,H,, + wa 0 HW) / duu?(C")?
0

(5.57)

The O(9*) terms are not shown here since there are too many (although they can be

clearly worked out from the above). The only piece that is of interest at this order is

(- () 35 () o (5). o

Taking the lead from the previous chapter, we write

Ty, =X + 0%, () + D4 — I (5.59)
and we write
OT%, (1) = Loy + 23, (R(1)>2 + 2y, (R}}V))2 (5.60)
where ) L1 . ) 1 1 y
%= (i) B mre(n) 69

and so we can once again remove the ur dependence and replace it with u using
wavefunction-like parameters. Note that we have already used a renormalization
condition of the same form as used in Section 4.10. Looking at the physical limit, we

have

2
P 47 2
Auyaﬂ A,uzzaﬁ( )log log ( ) goopupupapﬁ 75]7 (pupu(;aﬂ +pap55/u/)

23 2 4 23 4
~ 150 —p 5uy5a5 + —p 5u(a(55)y (562)

=P p(M6 )(apﬁ) + 75 900
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which results in a physical vertex of

o = (35 (1) + g5 (352) 10w () = 5 (20)" = 35 ()

(5.63)

5.6 Tadpole corrections and mST

Returning to (5.59), we see that we need to calculate the 2nd-order one-loop tadpole.

Since this is given by the linear equation
X 1 Ax(2)
F2q2 = —EstrA F2 (564)

it is regulated in the UV, and thus can be calculated in d = 4 (without dimensional

regularization), where
- 1 _
I'S = huphpw — thghpo(sw, 0uX Oy X- (5.65)

Therefore, the tadpole in fact vanishes, as can be readily seen fro m the expressions for
the h propagator in d = 4. However, this is not the only propagator which contributes.
Indeed, recall that the mST can be written as
. B . (9 - (9]0

Qo(T9, — T9) + QpTh, = — tr AT AL | (5.66)
Since the LHS is linear, we can consider only the contributions due to x (i.e., the ones
in this chapter only) and the trace on the RHS can be seen to only contribute new
terms when both copies of the action involve the new x terms. In addition, since I%(q
has only antighost level zero pieces, we can drop one of the terms from the mST. Now,

using the covariantisation of (5.19), we write
=\ 1 A
Iy, = —5bA%Vg (5.67)

and therefore, we have

- 1

Y, = —ﬁbA‘l (> —h2,). (5.68)
Note that as previously, this is in fact a guess at this point and it is the mST that will

verify that it is indeed the correct contribution. Now we wish to evaluate the trace:

—tr CAF)lc*(Q)AAfi(@) - _Zi/HNV(p)‘F,ELCVa(pvA)Ca(_p) (569)
p
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where

A
Fova(p, A) = / St +q§’)CA<q> <(p + ) (1) — %(p +q) - qduu) G (5.70)

which, when expanded in powers of momentum leads us to

1 1
_ 4
]:;)fl/a(pa A) =-—A" <4p(udu)a - 8pa5>

1 1 >
4
—A (12}?(#51,)& + 24;0&5,“,> /0 duuC(C —2)
! 1 > (5.71)
2 (L 2 L B .
+A (24]7(15;“/]? 24pupypa> /0 duC(C —2)
1 p2 1 o)
2 =2 _ 2 = 2 A2
+ A (16p p(udy)a 96]9045;”/ 48pupypa> /0 duu®(C")
+0(p°)

and this can easily be shown to give the required RHS to make the mST true. In
particular, note that the b-dependent terms come entirely from our guess for Iv”qu,

which has now been vindicated.

The mST can be recast in terms of these vertices:

4

bA
A;Z/aﬁpﬁ = 7 (5,ul/pa - 2p(u5y)a) - ]:,ul/oz (572)

which, in the physical limit, simply states that

PuAlnas() =0 (5.73)

i.e., that the physical vertex must be transverse. This is indeed seen to be the case
since the physical graviton correction can be written exclusively as the square of

linearised curvature invariants.

5.7 Discussion

There is a lot which is not explored in this chapter. One of the more obvious avenues
of generalisation would be to give the scalar a mass term by adding this to the free
action. However, this is potentially dangerous. While it is true that if one does this,
the appropriate terms for ,/gM 2xX appear, it is clear that adding such a term to the
free action will both change the free BRST cohomology, and we see that in fact we

would no longer be working from the Gaussian fixed point.

This brings up another potential issue. The Gaussian fixed point in our framework is

outside the diffeomorphism invariant subspace. All of the analysis of this chapter takes
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place within the diffeomorphism invariant subspace with the associated perturbation
series in x being assumed to be valid. While this appears safe for now, further analysis
along the lines of that in [89] in needed to ascertain whether or not the trajectory in
gravity-scalar theory enters the diffeomorphism invariant subspace, and what
conditions are required to make it so. Thus the inclusion of a mass (and further
couplings) must await further analysis. As noted in the introduction, the presence of
other couplings makes it so that if we wish to keep the perturbation series order by

order in k, then we must consider any other couplings to all orders.

That is not to say that the above chapter is entirely useless. It shows that should a
theory exist involving both the graviton and a scalar, then we know exactly what it
must look like within the diffeomorphism invariant subspace. Similar calculations have
already been carried out [25], but it is useful to see that the established results are
reproduced in the BRST formalism, and thus can be carried over should it be shown
that there is a renormalized trajectory from the Gaussian fixed point into the

diffeomorphism invariant subspace.

In addition to a mass or quartic couplings one may wish to add at O(x"), one may also

wish to introduce a conformal coupling term

EVgRXX- (5.74)

This first appears at O(x!) as ¢RMWx, which is a Qo-exact piece which we are free to
add to I'Y%. Adding this results in an analogous term being added to I'y,, and this
does not seem to interfere with the results thus far. In addition, there appears to be no

preferred value for £ as yet, but analysis to further orders may change this.

All in all, the above chapter has shown that the formalism used to develop a
continuum limit for gravity still has a chance of working when (scalar) matter is
involved. That is to say, once in the diffeomorphism invariant subspace it was in fact
required that the known diffeomorphism invariant possibilities were reproduced for the
sake of consistency. What remains to be seen however, is whether, and under what
conditions the renormalized trajectory from the Gaussian fixed point enters the
diffeomorphism invariant subspace, and this would hopefully also have something to
say about the way in which we extend the above to include interacting and massive

scalars, as well as vector fields.
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Chapter 6
Summary and outlook

This thesis is the product of an attempt to understand quantum gravity. At its heart,
a redefinition of what is meant by quantisation. Chapter 1 reviews where we start
from, which is an understanding of the Wilsonian renormalization group. Clearly, there
are many more comprehensive reviews, e.g. [1-3] but the content in Chapter 1 is
intended to be as “bare bones” as possible. The most novel part here is the treatment
of the scalar field potential, as done in [29], which exposes the RG flow equation as
having similarities to diffusion in RG time. In addition, the eigenoperators satisfy a
Sturm-Liouville equation, the mathematical properties of which are widely known.
This provides a way in which to deal with the major scalar field one is interested in

when it comes to studies of quantum gravity: the conformal factor.

In Chapter 2 the conformal factor is studied in detail. This material is based on [5, 29].
By expanding the Einstein-Hilbert action, we see that the kinetic term (in an
appropriate gauge) for the conformal factor is exactly as for a “normal” scalar field,
but with the wrong sign of the kinetic term. This leads to the path integral being
ill-defined due to a growing exponential for sufficiently rapidly varying kinetic terms.
However, the RG flow equation is still well-defined, and we take this, rather than the
path integral, to define the theory. For simplicity, Chapter 2 takes the scalar field in
isolation for the remainder in order to study its properties and eigenoperators, which
will prove useful when dealing with the full quantum theory of gravity. The
Sturm-Liouville form is somewhat altered to give a weight function that is a growing
exponential, and as such the space of solutions is hugely restricted, and is shown to be
spanned by the (countably) infinite set of operators 5/(3)((,0). Note that this is an
alternative treatment to that given in [36], in which the conformal factor is analytically
continued to the imaginary axis in order to restore the “correct” sign of the kinetic

term.

The properties of these operators are then explored. Defining the QFT of a scalar with

a negative kinetic term on a manifold with a non-trivial metric proves rather difficult
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and potentially futile without a full theory of gravity to work with, so tori are chosen
as the playground to explore the properties of the regularized tadpole operator €2, and,
more specifically, the shape function S. Both the case of T* [29] and T? x R [5] were
studied, and in both cases it was seen that the further the fundamental lengths of the
tori differed (i.e., the more inhomogeneous the manifold), the larger the universe was
allowed to be. Phrased differently (and for a better catchphrase), small universes are
constrained to be highly symmetric. Twisted tori had a far richer structure, but the
general trend is very much the same. Indeed, the positions of local extrema of S for
twisted tori seemed to indicate a somewhat different definition of “most symmetric”,

but that is largely a semantic point.

Clearly this would be an excellent phenomenology if the trend of small universes being
symmetric were to carry over into, for example, FLRW universes as it could then
explain various cosmological questions. Most obviously, it provides a mechanism for
the extremely homogeneous initial conditions for inflation, and could explain the “why
now?” problem. However it is evidently far too early to make sweeping claims of this
sort, since the mechanism has only really been studied for flat, toric universes. More
pertinently to this particular thesis, however, is that many of these effects are
predicated on a finite amplitude suppression scale A,, and this is required to diverge in
order to restore diffeomorphism invariance when the conformal factor is considered as
part of a metric as opposed to a scalar field in isolation. Nevertheless, there are
examples of similar calculations in lattice field theory [45], and to the present author’s
knowledge they have not been done for twisted tori, so the work may still bear fruit in

this direction.

Chapter 3 represents something of a change in direction. It follows ideas from [33] and
the work of [6]. The idea is somewhat simple. To take a regularisation structure that
works for gauge theory, in the sense that it both regularises gauge theory and preserves
the gauge invariance at all times, and apply the same framework to gravity. Of course,
the history of physics is littered with examples of the phrase “...just do that, but for
gravity” being met with failure, but theoretical physicists are evidently gluttons for

punishment.

For gauge theory, the SU(N) algebra is extended to a SU(N|N) superalgebra
(although, for technical reasons not specified here, even this is non-trivial, see [33]). In
addition to the standard gauge field A}u there is a bosonic copy with the wrong sign
kinetic term Ai and a complex pair of fermionic fields B, Bu' Note that the fermionic
vector fields are in violation of the spin-statistics relation, and thus cannot be physical
at the end of the regularisation process. The SU(N|N) is then broken by a scalar field
which results in the fermionic fields gaining a mass and thus decoupling from the
theory. Then, the Ai couples to the physical vector field only by irrelevant operators,
and so in the physical limit, we are left with SU (V) gauge theory, with gauge

invariance preserved at all points on the RG flow.
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To extend this to gravity, one must extend the manifold to a supermanifold by adding
4 fermionic coordinates to the 4 standard (bosonic) coordinates that we are already
familiar with. This in itself is non-trivial, but fortunately the topic of supermanifolds
is well-known to mathematicians, for example the conventions in this thesis come from
[77]. The introduction of non-commuting coordinates and geometric objects means
that notions of coordinate transformations, vector fields, derivatives and tensors must
be re-examined. In particular, indices can now be left or right as well as up or down,
to indicate whether the Jacobian (or its transpose) multiplies the object from the left
or the right under a coordinate transformation. Despite this apparently difficult

set-up, many of the formulae are generalised in a very natural way.

We then see that the Einstein-Hilbert action can be suitably generalised. In order to
get access to the propagating degrees of freedom, the action is expanded to O(x?) and
is seen to be invariant under the suitable generalisation of linearised diffeomorphism
invariance. The gauge is then fixed in order to get a handle on the propagating fields.
In order to diagonalise the kinetic terms that arise from integration over the
Grassmann coordinates, a mass parameter M is introduced in the Taylor expansion of
hap(x,0) over 0. Despite appearances, however, this does not play to role of a physical
mass as it does not result in any shift in the poles of the propagators. In retrospect,
this could have been seen simply from the fact it was introduced by hand and is

somewhat arbitrary.

There is clearly a lot to be done before the work [6] and Chapter 3 can lead to a
regularisation structure for gravity. Indeed, these should be seen as a starting point.
The key part that is missing is a method by which the fermionic degrees of freedom
gain a mass analogously to the situation for gauge theory. In particular, this likely
involves a symmetry-breaking scalar. Finding the form of the symmetry breaking
which leads to unbroken bosonic diffeomorphism invariance at all points of the RG flow

is therefore the name of the game for all future work.

Based on [4, 7, 34, 35], Chapter 4 includes some of the concepts from Chapter 2 and
includes them in a fully perturbative theory of quantum gravity. The key is the fact
that the Quantum Master Equation (QME) ¥ = 0, which is the requirement that
gauge symmetry is preserved in the BRST formalism, is compatible with the RG flow
equation. That is, the QME being satisfied at some scale A is sufficient for it to be
satisfied for the RG flow.

After introducing the BRST algebra in relation to the Wilsonian effective action S, the
step is taken to trade off the conceptual simplicity and elegance that comes with it for
the practical simplicity of the Legendre average effective action I'. One of the key

)

issues is that fact that the conformal factor operators (5/(\n result in any perturbation
from the Gaussian fixed point being parametrized by an infinite number of couplings.

In particular, each monomial o(0, dyp, h, c) comes with an infinite number of couplings,
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and each has its own amplitude suppression scale A,. The expression of
diffeomorphism invariance, the QME, becomes the modified Slavnov-Taylor identity
(mST) when we pass the the Legendre average effective action description of the QFT,
and it turns out that to satisfy this (and hence diffeomorphism invariance) in the
physical limit it is convenient to set A, = A, (i.e., the same for all monomials) and the
coefficients are then arranged in such a way that they “trivialize” in the large A, limit.
Thus we see that it is in this limit, and this limit only, that diffeomorphism invariance

is in fact respected.

Indeed, Figure 4.1 now shows the conceptual difference between this quantisation and
the standard procedure. We see that the renormalized trajectory near the Gaussian
fixed point is outside the diffeomorphism invariant subspace, and is parametrised by an
infinite number of underlying couplings. As the amplitude suppression scale is taken to
the UV, we not only retrieve diffeomorphism invariance, but we also have all of the
couplings subsumed into a single, effective, diffeomorphism invariant coupling k. It is
worth reminding ourselves that in the standard quantisation, many of the problems of
renormalisability come from the fact that [k] = —1. However, we have circumvented
this issue since the argument that causes the negative mass dimension to cause a
problem is based on proximity to the Gaussian fixed point. However, in this case, the
trajectory near the Gaussian fixed point is parametrised by only relevant couplings,
albeit an infinite number of them. Thus we see that in the diffeomorphism invariant

subspace, we are free to organise a perturbation series order by order in k.

We then saw how the first and second order classical gravitational action exactly
coincided with what one would expect from expanding the Einstein-Hilbert action
—2,/9R/ k2 to the appropriate order. In addition, it was found that, in keeping with
the compatibility of the RG flow equation and mST, the tadpole corrections required
to make the interacting action an eigenoperator of the flow equations are precisely the
same as those required to satisfy the mST. In addition, we see that the one-loop

corrections can be absorbed by wavefunction-like parameters which vanish on-shell.

The conclusion of Chapter 4 discusses the fact that the properties of the differential
equations which cause the problems of renormalising gravity may also be the key to
solving them. In particular, the fact that the linearised flow equation is parabolic for
both ¢ and hy,, but in different directions. Since we must solve for both of these
sectors simultaneously, we have that the Cauchy initial value problem is generically not
well-defined. In addition, there appears to be a problem in the sense that as we enter
the diffeomorphism invariant subspace, there appears to be nothing to stop any
number of higher order or higher derivative couplings being added. A possible
mechanism for excluding all operators but the cosmological constant and the
Einstein-Hilbert term is discussed, but clearly requires a more detailed analysis before

any firm conclusions can be drawn.
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It is worth comparing this approach to work done in asymptotic safety. As we have the
seen, this treatment of the negative sign kinetic term in this thesis leads to a natural
reversal of the direction in which the RG flow in this sector is well-posed. In [97], it
can be seen that in the standard approach to asymptotic safety, one is required to take
the (additive) cutoff for the conformal mode as having the opposite sign to that in the
graviton sector. Failure to do this will result in spurious poles in the propagator. This
change in sign results again in the reversal of the natural direction of the flow, as can
be seen in equations (2.32) and (4.16) of [97], where we can clearly see a change in sign
between the two sectors. We see here that since the sign of the second derivative is
what determines the natural direction of the RG flow (c.f. diffusion), then any
implementation of the flow equations will show this change of direction in the

conformal sector.

In addition, the issue with the conformal sector being well-posed only towards the UV
was noted in [43]. Here, it was found that one runs into numerical difficulties when
attempting to solve the RG flow equation in the conformal sector towards the IR. As
noted in [43], the issue is somewhat obscured in the literature as it does not become

apparent until one attempts to move beyond polynomial truncations.

Finally, Chapter 5 (which is not based on any published work) shows how ne might
add a scalar interacting with the graviton field in the BRST formalism. Clearly the
treatment contained here is somewhat simplistic as it does not treat the theory as
emanating from the Gaussian fixed point, but rather we treat it simply as already
being within the diffeomorphism invariant subspace. It is found that, in the free
massless scalar case at least, that the extra terms we get in the classical action are
what we would get from a covariant kinetic term for the scalar. Even though the same
can be said if mass and conformal coupling terms are added (in the sense that the
extra terms are given by an appropriate covariantisation), it is also clear that the

treatment is incomplete.

One thing in particular to note is the question of how one treats the mass term. The
terms that match the covariant mass term arise when the bare mass term is added to
the free action, but clearly at such a point we are deviating from the Gaussian fixed
point. On the other hand, the theory of a scalar coupled to gravity has (up to now)
not been connected with a trajectory which begins at the Gaussian fixed point and
flows into the diffeomorphism invariant subspace. It is hoped that such a treatment
may give hints on how to deal with a mass term, quartic coupling and conformal
couplings. Note in addition that if we wish to keep the perturbation series for x intact,

then we must consider all orders of all other couplings.

Evidently, there is a lot of work to do with regards to the topics covered. The aesthetic
advantages of the approaches above are simply that the Einstein-Hilbert action (which

has been phenomenologically very accurate) is the starting point, and that the avenue
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for quantisation was in fact always there, hidden in the conformal factor instability
which, if taken seriously, opens the door for a new method of quantising gravity. This
is in no way proof that the above is the way forward, and there are a huge number of
other approaches, many of which also show promise. However, until theories are
developed to the point of making falsifiable predictions (and the technology required to
test these is developed) we are only guided by aesthetic and mathematical arguments.
The only thing to be said with any confidence is that quantum gravity, at least for the
time being, is inextricably linked to the renormalization group, and so any approach

would have to address the problems that each of these poses.



117

Bibliography

Oliver J. Rosten. Fundamentals of the Exact Renormalization Group. Phys.
Rept., 511:177-272, 2012.

Tim R. Morris. Elements of the continuous renormalization group. Prog. Theor.
Phys. Suppl., 131:395-414, 1998.

Tim R. Morris. The Exact renormalization group and approximate solutions.
Int. J. Mod. Phys. A, 9:2411-2450, 1994.

Alex Mitchell and Tim R. Morris. The continuum limit of quantum gravity at
first order in perturbation theory. JHEP, 06:138, 2020.

Matthew P. Kellett and Tim R. Morris. Renormalization group properties of the
conformal mode of a torus. Class. Quant. Grav., 35(17):175002, 2018.

Matthew Kellett and Tim R. Morris. Parisi-Sourlas supergravity. Class. Quant.
Grav., 37(19):195018, 2020.

Matthew Kellett, Alex Mitchell, and Tim R. Morris. The continuum limit of
quantum gravity at second order in perturbation theory. arXiv:2006.16682 2020.

S.F. Novaes. Standard model: An Introduction. In 10th Jorge Andre Swieca
Summer School: Particle and Fields, pages 5-102, 1 1999.

Sheldon L. Glashow. The renormalizability of vector meson interactions. Nucl.
Phys., 10:107-117, 1959.

Abdus Salam and John Clive Ward. Weak and electromagnetic interactions.
Nuovo Cim., 11:568-577, 1959.

Steven Weinberg. A Model of Leptons. Phys. Rev. Lett., 19:1264-1266, 1967.

Jogesh C. Pati and Abdus Salam. Lepton Number as the Fourth Color. Phys.
Rev. D, 10:275-289, 1974. [Erratum: Phys.Rev.D 11, 703-703 (1975)].

Graham G. Ross. Grand Unified Theories. Westview Press, 1 1985.



118

BIBLIOGRAPHY

[14]

[15]

[27]

[28]

[29]

Stuart Raby. Grand Unified Theories. In 2nd World Summit: Physics Beyond
the Standard Model, 8 2006.

Kazunori Akiyama et al. First M87 Event Horizon Telescope Results. 1. The
Shadow of the Supermassive Black Hole. Astrophys. J., 875(1):L1, 2019.

B.P. Abbott et al. Observation of Gravitational Waves from a Binary Black Hole
Merger. Phys. Rev. Lett., 116(6):061102, 2016.

Stephen Hawking. Occurrence of singularities in open universes. Phys. Rev.
Lett., 15:689-690, 1965.

Roger Penrose. Gravitational collapse and space-time singularities. Phys. Rev.
Lett., 14:57-59, 1965.

Kenneth Eppley and Eric Hannah. The necessity of quantizing the gravitiational
field. Found. Phys., 7:51-68, 1977.

Don N. Page and C. D. Geilker. Indirect evidence for quantum gravity. Phys.
Rev. Lett., 47:979-982, Oct 1981.

Mark Albers, Claus Kiefer, and Marcel Reginatto. Measurement Analysis and
Quantum Gravity. Phys. Rev. D, 78:064051, 2008.

Adrian Kent. Simple refutation of the Eppley—-Hannah argument. Class. Quant.
Grav., 35(24):245008, 2018.

L.P. Kadanoff. Scaling laws for Ising models near T(c). Physics Physique Fizika,
2:263-272, 1966.

Enrico Fermi. Tentativo di una teoria dell’emissione dei raggi beta. Ric. Sci.,
4:491-495, 1933.

Gerard 't Hooft and M.J.G. Veltman. One loop divergencies in the theory of
gravitation. Ann. Inst. H. Poincare Phys. Theor. A, 20:69-94, 1974.

K.G. Wilson and John B. Kogut. The Renormalization group and the epsilon
expansion. Phys. Rept., 12:75-199, 1974.

Joseph Polchinski. Renormalization and Effective Lagrangians. Nucl. Phys. B,
231:269-295, 1984.

Christof Wetterich. Exact evolution equation for the effective potential. Phys.
Lett. B, 301:90-94, 1993.

Tim R. Morris. Renormalization group properties in the conformal sector:

towards perturbatively renormalizable quantum gravity. JHEP, 08:024, 2018.



BIBLIOGRAPHY 119

[30]

[31]

[41]

[42]

Astrid Eichhorn. An asymptotically safe guide to quantum gravity and matter.
Front. Astron. Space Sci., 5:47, 2019.

Kevin G. Falls, Daniel F. Litim, and Jan Schréder. Aspects of asymptotic safety
for quantum gravity. Phys. Rev. D, 99(12):126015, 2019.

R. Loll. Quantum Gravity from Causal Dynamical Triangulations: A Review.
Class. Quant. Grav., 37(1):013002, 2020.

Stefano Arnone, Yuri A. Kubyshin, Tim R. Morris, and John F. Tighe. Gauge
invariant regularization via SU(N—N). Int. J. Mod. Phys. A, 17:2283-2330, 2002.

Tim R. Morris. Quantum gravity, renormalizability and diffeomorphism
invariance. SciPost Phys., 5(4):040, 2018.

Yuji Igarashi, Katsumi Itoh, and Tim R. Morris. BRST in the exact
renormalization group. PTEP, 2019(10):103B01, 2019.

G.W. Gibbons, S.W. Hawking, and M.J. Perry. Path Integrals and the
Indefiniteness of the Gravitational Action. Nucl. Phys. B, 138:141-150, 1978.

Job Feldbrugge, Jean-Luc Lehners, and Neil Turok. No rescue for the no
boundary proposal: Pointers to the future of quantum cosmology. Phys. Rev. D,
97(2):023509, 2018.

Alfio Bonanno and Martin Reuter. Modulated Ground State of Gravity Theories
with Stabilized Conformal Factor. Phys. Rev. D, 87(8):084019, 2013.

M. Pospelov and M. Romalis. Lorentz invariance on trial. Phys. Today,
5TN7:40-46, 2004.

T. Pruttivarasin, M. Ramm, S.G. Porsev, L.I. Tupitsyn, M. Safronova, M.A.
Hohensee, and H. Haeffner. A Michelson-Morley Test of Lorentz Symmetry for
Electrons. Nature, 517:592, 2015.

Nick Evans, Tim R. Morris, and Marc Scott. Translational symmetry breaking in
field theories and the cosmological constant. Phys. Rev. D, 93(2):025019, 2016.

Tim R. Morris. Perturbatively renormalizable quantum gravity. Int. J. Mod.
Phys. D, 27(14):1847003, 2018.

Alfio Bonanno and Filippo Guarnieri. Universality and Symmetry Breaking in
Conformally Reduced Quantum Gravity. Phys. Rev. D, 86:105027, 2012.

P. Hasenfratz and H. Leutwyler. Goldstone Boson Related Finite Size Effects in
Field Theory and Critical Phenomena With O(N) Symmetry. Nucl. Phys. B,
343:241-284, 1990.



120

BIBLIOGRAPHY

[45]

[50]

[51]

[52]

Masashi Hayakawa and Shunpei Uno. QED in finite volume and finite size
scaling effect on electromagnetic properties of hadrons. Prog. Theor. Phys.,
120:413-441, 2008.

Bruce C. Berndt and Aiyangar Srinivasa Ramanujan. Ramanujan’s notebooks.
Part 3. Springer, 1991.

J.P. Serre. A Course in Arithmetic. Graduate Texts in Mathematics. Springer
New York, 2012.

Joel A. Shapiro. Loop graph in the dual tube model. Phys. Rev. D, 5:1945-1948,
1972.

Joseph Polchinski. Evaluation of the One Loop String Path Integral. Commun.
Math. Phys., 104:37, 1986.

Tim R. Morris and Anthony W. H. Preston. Manifestly diffeomorphism invariant
classical Exact Renormalization Group. JHEP, 06:012, 2016.

Tim R. Morris. Noncompact pure gauge QED in 3-D is free. Phys. Lett. B,
357:225-231, 1995.

Tim R. Morris. A Manifestly gauge invariant exact renormalization group. In

Workshop on the Ezxact Renormalization Group, pages 1-40, 10 1998.

Stefano Arnone, Tim R. Morris, and Oliver J. Rosten. Manifestly gauge
invariant QED. JHEP, 10:115, 2005.

Tim R. Morris and Oliver J. Rosten. Manifestly gauge invariant QCD. J. Phys.
A, 39:11657-11681, 2006.

Oliver J. Rosten. A Resummable beta-Function for Massless QED. Phys. Lett.
B, 662:237-243, 2008.

Tim R. Morris. A Gauge invariant exact renormalization group. 1. Nucl. Phys.
B, 573:97-126, 2000.

Tim R. Morris. A Gauge invariant exact renormalization group. 2. JHEP,
12:012, 2000.

Tim R. Morris. An Exact RG formulation of quantum gauge theory. Int. J.
Mod. Phys. A, 16:1899-1912, 2001.

S. Arnone, Yu.A. Kubyshin, T.R. Morris, and J.F. Tighe. Gauge invariant
regularization in the ERG approach. In 15th International Workshop on
High-Energy Physics and Quantum Field Theory (QFTHEP 2000), pages
297-304, 9 2000.



BIBLIOGRAPHY 121

[60]

[66]

[69]

[70]

S. Arnone, Yu.A. Kubyshin, T.R. Morris, and J.F. Tighe. A Gauge invariant
regulator for the ERG. Int. J. Mod. Phys. A, 16:1989, 2001.

Stefano Arnone, Antonio Gatti, and Tim R. Morris. Exact scheme independence
at one loop. JHEP, 05:059, 2002.

Stefano Arnone, Antonio Gatti, and Tim R. Morris. Towards a manifestly gauge
invariant and universal calculus for Yang-Mills theory. Acta Phys. Slov.,
52:621-634, 2002.

Stefano Arnone, Antonio Gatti, and Tim R. Morris. A Manifestly gauge
invariant exact renormalization group. In 5th International Conference on
Renormalization Group 2002 (RG 2002), 7 2002.

Stefano Arnone, Antonio Gatti, Tim R. Morris, and Oliver J. Rosten. Exact

scheme independence at two loops. Phys. Rev. D, 69:065009, 2004.

Stefano Arnone, Tim R. Morris, and Oliver J. Rosten. A Generalised manifestly
gauge invariant exact renormalisation group for SU(N) Yang-Mills. FEur. Phys. J.
C, 50:467-504, 2007.

Tim R. Morris and Oliver J. Rosten. A Manifestly gauge invariant, continuum
calculation of the SU(N) Yang-Mills two-loop beta function. Phys. Rev. D,
73:065003, 2006.

Stefano Arnone, Antonio Gatti, and Tim R. Morris. Manifestly gauge invariant
computations. In 5th International Conference on Renormalization Group 2002
(RG 2002), 7 2002.

Antonio Gatti. A Gauge invariant flow equation. Phd thesis, Southampton U.,
10 2002.

Oliver J. Rosten, Tim R. Morris, and Stefano Arnone. The Gauge invariant ERG.
In 18th International Seminar on High-Energy Physics: Quarks 2004, 9 2004.

Oliver Jacob Rosten. The Manifestly gauge invariant exact renormalisation
group. Phd thesis, Southampton U., 3 2005.

Oliver J. Rosten. A Primer for manifestly gauge invariant computations in
SU(N) Yang-Mills. J. Phys. A, 39:8699-8726, 2006.

Oliver J. Rosten. Scheme independence to all loops. J. Phys. A, 39:8141-8156,
2006.

Oliver J. Rosten. A Manifestly gauge invariant and universal calculus for SU(N)
Yang-Mills. Int. J. Mod. Phys. A, 21:4627-4762, 2006.

Oliver J. Rosten. General Computations Without Fixing the Gauge. Phys. Rewv.
D, 74:125006, 2006.



122

BIBLIOGRAPHY

[75]

[76]

[84]

[85]

[36]

[87]

[38]

Oliver J. Rosten. Universality From Very General Nonperturbative Flow
Equations in QCD. Phys. Lett. B, 645:466-469, 2007.

G. Parisi and N. Sourlas. Random Magnetic Fields, Supersymmetry and
Negative Dimensions. Phys. Rev. Lett., 43:744, 1979.

Bryce DeWitt. Supermanifolds. Cambridge Monographs on Mathematical
Physics. Cambridge University Press, 2 edition, 1992.

Daniel Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara. Progress Toward a
Theory of Supergravity. Phys. Rev. D, 13:3214-3218, 1976.

S.J. Gates, Marcus T. Grisaru, M. Rocek, and W. Siegel. Superspace Or One

Thousand and One Lessons in Supersymmetry, volume 58. 1983.

Kevin Falls and Tim R. Morris. Conformal anomaly from gauge fields without
gauge fixing. Phys. Rev. D, 97(6):065013, 2018.

N. Hitchin. Generalized calabi-yau manifolds. The Quarterly Journal of
Mathematics, 54(3):281-308, Sep 2003.

Marco Gualteri. Generalized Complex Geometry. Phd thesis, Oxford U., 2004.

W. Siegel. Superspace duality in low-energy superstrings. Phys. Rev. D,
48:2826-2837, 1993.

Chris Hull and Barton Zwiebach. Double Field Theory. JHEP, 09:099, 2009.

I.A. Batalin and G.A. Vilkovisky. Gauge Algebra and Quantization. Phys. Lett.
B, 102:27-31, 1981.

I.A. Batalin and G.A. Vilkovisky. Quantization of Gauge Theories with Linearly
Dependent Generators. Phys. Rev. D, 28:2567—-2582, 1983. [Erratum:
Phys.Rev.D 30, 508 (1984)].

Jean Zinn-Justin. Renormalization of Gauge Theories. Lect. Notes Phys.,
37:1-39, 1975.

Jean Zinn-Justin. Renormalization Problems in Gauge Theories. In 12th Annual
Winter School of Theoretical Physics, pages 433-453, 1 1975.

Tim R. Morris. The continuum limit of the conformal sector at second order in
perturbation theory. 6 2020.

Glenn Barnich and Marc Henneaux. Consistent couplings between fields with a
gauge freedom and deformations of the master equation. Phys. Lett. B,
311:123-129, 1993.



BIBLIOGRAPHY 123

[91]

[92]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

Glenn Barnich, Friedemann Brandt, and Marc Henneaux. Local BRST
cohomology in the antifield formalism. 1. General theorems. Commun. Math.
Phys., 174:57-92, 1995.

Nicolas Boulanger, Thibault Damour, Leonardo Gualtieri, and Marc Henneaux.
Inconsistency of interacting, multigraviton theories. Nucl. Phys. B, 597:127-171,
2001.

F J Wegner. Some invariance properties of the renormalization group. Journal of
Physics C: Solid State Physics, 7(12):2098-2108, jun 1974.

Juergen A. Dietz and Tim R. Morris. Redundant operators in the exact
renormalisation group and in the f(R) approximation to asymptotic safety.
JHEP, 07:064, 2013.

R. Percacci. Unimodular quantum gravity and the cosmological constant. Found.
Phys., 48(10):1364-1379, 2018.

Steven Weinberg. ULTRAVIOLET DIVERGENCES IN QUANTUM
THEORIES OF GRAVITATION, pages 790-831. 1 1980.

M. Reuter. Nonperturbative evolution equation for quantum gravity. Phys. Rev.
D, 57:971-985, 1998.

Alfio Bonanno, Astrid Eichhorn, Holger Gies, Jan M. Pawlowski, Roberto
Percacci, Martin Reuter, Frank Saueressig, and Gian Paolo Vacca. Critical

reflections on asymptotically safe gravity. Front. in Phys., 8:269, 2020.

Juergen A. Dietz, Tim R. Morris, and Zoe H. Slade. Fixed point structure of the
conformal factor field in quantum gravity. Phys. Rev. D, 94(12):124014, 2016.

Jean Zinn-Justin. Quantum field theory and critical phenomena. Int. Ser.
Monogr. Phys., 113:1-1054, 2002.

Hikaru Kawai, Yoshihisa Kitazawa, and Masao Ninomiya. Ultraviolet stable
fixed point and scaling relations in (2+epsilon)-dimensional quantum gravity.
Nucl. Phys. B, 404:684-716, 1993.

Astrid Eichhorn. On unimodular quantum gravity. Class. Quant. Grav.,
30:115016, 2013.

Andreas Nink. Field Parametrization Dependence in Asymptotically Safe
Quantum Gravity. Phys. Rev. D, 91(4):044030, 2015.

Roberto Percacci and Gian Paolo Vacca. Search of scaling solutions in
scalar-tensor gravity. Eur. Phys. J. C, 75(5):188, 2015.

Roberto Percacci and Gian Paolo Vacca. The background scale Ward identity in
quantum gravity. Eur. Phys. J. C, 77(1):52, 2017.



124

BIBLIOGRAPHY

[106]

[107]

[108]

109

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

Tim R. Morris. Large curvature and background scale independence in

single-metric approximations to asymptotic safety. JHEP, 11:160, 2016.

Juergen A. Dietz and Tim R. Morris. Background independent exact
renormalization group for conformally reduced gravity. JHEP, 04:118, 2015.

I. Hamzaan Bridle, Juergen A. Dietz, and Tim R. Morris. The local potential
approximation in the background field formalism. JHEP, 03:093, 2014.

Jan M. Pawlowski. Aspects of the functional renormalisation group. Annals
Phys., 322:2831-2915, 2007.

Daniel F. Litim and Jan M. Pawlowski. Wilsonian flows and background fields.
Phys. Lett. B, 546:279-286, 2002.

M. Reuter and C. Wetterich. Gluon condensation in nonperturbative flow
equations. Phys. Rev. D, 56:7893-7916, 1997.

Daniel F. Litim and Jan M. Pawlowski. On gauge invariant Wilsonian flows. In

Workshop on the Exact Renormalization Group, pages 168-185, 9 1998.

Daniel F. Litim and Jan M. Pawlowski. Renormalization group flows for gauge
theories in axial gauges. JHEP, 09:049, 2002.

Elisa Manrique and Martin Reuter. Bimetric Truncations for Quantum Einstein
Gravity and Asymptotic Safety. Annals Phys., 325:785-815, 2010.

Elisa Manrique, Martin Reuter, and Frank Saueressig. Matter Induced Bimetric
Actions for Gravity. Annals Phys., 326:440-462, 2011.

Elisa Manrique, Martin Reuter, and Frank Saueressig. Bimetric Renormalization
Group Flows in Quantum Einstein Gravity. Annals Phys., 326:463-485, 2011.

Daniel Becker and Martin Reuter. En route to Background Independence:
Broken split-symmetry, and how to restore it with bi-metric average actions.
Annals Phys., 350:225-301, 2014.

Peter Labus, Tim R. Morris, and Zoé H. Slade. Background independence in a
background dependent renormalization group. Phys. Rev. D, 94(2):024007, 2016.

Martin Reuter and Holger Weyer. Background Independence and Asymptotic
Safety in Conformally Reduced Gravity. Phys. Rev. D, 79:105005, 2009.

Juergen A. Dietz and Tim R. Morris. Asymptotic safety in the f(R)
approximation. JHEP, 01:108, 2013.

Pedro F. Machado and Frank Saueressig. On the renormalization group flow of
f(R)-gravity. Phys. Rev. D, 77:124045, 2008.



BIBLIOGRAPHY 125

[122] Alessandro Codello, Roberto Percacci, and Christoph Rahmede. Investigating
the Ultraviolet Properties of Gravity with a Wilsonian Renormalization Group
Equation. Annals Phys., 324:414-469, 2009.

[123] Dario Benedetti and Francesco Caravelli. The Local potential approximation in
quantum gravity. JHEP, 06:017, 2012. [Erratum: JHEP 10, 157 (2012)].

[124] Maximilian Demmel, Frank Saueressig, and Omar Zanusso. RG flows of
Quantum Einstein Gravity in the linear-geometric approximation. Annals Phys.,
359:141-165, 2015.

[125] Maximilian Demmel, Frank Saueressig, and Omar Zanusso. A proper fixed
functional for four-dimensional Quantum Einstein Gravity. JHEP, 08:113, 2015.

[126] Nobuyoshi Ohta, Roberto Percacci, and Gian Paolo Vacca. Flow equation for
f(R) gravity and some of its exact solutions. Phys. Rev. D, 92(6):061501, 2015.

[127] Nobuyoshi Ohta, Roberto Percacci, and Gian Paolo Vacca. Renormalization
Group Equation and scaling solutions for f(R) gravity in exponential
parametrization. Fur. Phys. J. C, 76(2):46, 2016.

[128] Kevin Falls and Nobuyoshi Ohta. Renormalization Group Equation for f(R)
gravity on hyperbolic spaces. Phys. Rev. D, 94(8):084005, 2016.

[129] Nobuyoshi Ohta. Background Scale Independence in Quantum Gravity. PTEP,
2017(3):033E02, 2017.



	List of Figures
	List of Tables
	Declaration of Authorship
	Acknowledgements
	1 Introduction, Background and Motivation
	1.1 The renormalization group
	1.1.1 Kadanoff blocking
	1.1.2 Flow equations

	1.2 Flows and the critical surface
	1.3 Eigenoperators for the scalar field
	1.4 Gravity and the RG
	1.5 Outlook and scope

	2 The Conformal Mode and The Torus
	2.1 Introduction
	2.1.1 The problem
	2.1.2 A way out: Wilsonian RG
	2.1.3 Connection to quantum gravity
	2.1.4 Outlook for this chapter

	2.2 RG evolution on manifolds
	2.3 Flat tori
	2.3.1 Four-torus
	2.3.2 Spatial three-torus

	2.4 Some analytic results
	2.5 Twisted tori
	2.5.1 Analytic properties
	2.5.2 Four-torus
	2.5.3 Spatial three-torus

	2.6 Discussion

	3 Parisi-Sourlas Supergravity
	3.1 Introduction
	3.2 A review of supermanifolds
	3.2.1 Vectors, matrices and indices
	3.2.2 Derivatives, the metric and curvature

	3.3 The super-Einstein-Hilbert action
	3.3.1 Expansion
	3.3.2 Super-diffeomorphism invariance

	3.4 Field Decomposition
	3.5 Gauge fixing
	3.6 Degrees of freedom
	3.6.1 Bosonic sector
	3.6.2 Fermionic sector

	3.7 Discussion

	4 Pure Gravity in the BV Formalism
	4.1 Introduction
	4.2 BRST and QME
	4.2.1 Quantum Master Equation
	4.2.2 BRST cohomology
	4.2.3 Wilsonian RG

	4.3 Legendre effective action and mST
	4.4 Application to Quantum Gravity
	4.5 Solutions to the linearised equations
	4.6 Free quantum BRST cohomology
	4.7 First order gravitational action
	4.8 Second order classical solution
	4.9 Inside the diffeomorphism invariant subspace
	4.10 Vertices at second order
	4.10.1 Antighost level one
	4.10.2 Antighost level zero

	4.11 Discussion
	4.12 A possible non-perturbative mechanism
	4.13 Summary, conclusions and outlook

	5 Coupling a Scalar to Gravity
	5.1 Introduction
	5.2 Free action and BRST algebra
	5.3 First order action
	5.4 Second order classical action
	5.5 Quantum corrections at second order
	5.5.1 Corrections to the scalar propagator
	5.5.2 Corrections to the graviton propagator

	5.6 Tadpole corrections and mST
	5.7 Discussion

	6 Summary and outlook
	Bibliography

