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Abstract

Dimensionality reduction is crucial when dealing with data with very high dimension-

ality and low number of samples. This is the case with genomic data where sequencing

many genes is much easier than gathering many different samples. The main problem

with high-dimensional data is that statistical inference and traditional pattern recog-

nition techniques would break down or give misleading results. Therefore, we need to

reduce the dimensionality of the data before extracting any useful information from

it. A widely used dimensionality reduction technique is Principal Component Anal-

ysis (PCA). However, it is known from the literature that this method breaks down

in the presence of even a small number of outliers in the data. We have reason to

believe that outliers are present in genomic data due to shortcomings from the used

experimental equipments, sensor malfunctions, and mistakes in the sample gathering

processes. Moreover, outliers could be samples that are of interest in the problem

that is being investigated, and need to be retained for further investigation.

In this work we will investigate low rank approximation methods that are robust to

outliers, much of which have been already introduced in the machine learning commu-

nity, and they are formulated as convex optimization problems. The main advantage

of the convexity of this problems, is that it can be solved iteratively in an efficient way

using first order optimization algorithms. However, outlier robust low rank approx-

imation models, such as Outlier Pursuit (OP), that is optimal for high-dimensional

genomic datasets, assume that the data lies approximately along a low-dimensional

linear subspace; which is a strong assumption when dealing with gene expression or

any biological dataset. Inspired by previous work in the computer vision community,

we exploit the usefulness of adding a graph regularization term to OP, by building

a graph between the data points to model the local geometry structure of the input

data. This algorithm is called Graph regularized Outlier Pursuit (GOP), and it has

the beneficial advantage of being a convex optimization problem. We will show the

effectiveness in outlier detection and low-dimensional visualization of both techniques

on high-dimensional genomic datasets. Furthermore, we show here that GOP and OP

give better outlier detection results than traditional density based methods used for

anomaly detection. Moreover, we will show the enhanced visualization capability of

GOP when compared to OP, PCA, and t-distributed Stochastic Neighbour embed-

ii



ding (t-SNE).

Stemming from GOP, this work also proposes as novel method for multi-view cluster-

ing based on subspace learning, dubbed Convex Graph regularized Robust Multi-view

Subspace Learning (CGRMSL). CGRMSL is robust to outliers and incorporates the

non-linearities present in the different views. Moreover, the proposed multi-view

method is also based on a convex objective function which guarantees a global opti-

mal solution. We will investigate the power of this novel method on cancer multi-omic

datasets for applications such as: cancer subtype clustering and cancer subtype dis-

covery.
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Chapter 1

Introduction

High-dimensional datasets have significantly more dimensions compared to the num-

ber of available samples. With this type of dataset, statistical and machine learning

methods are not effective in giving reliable predictions and often not even applicable.

Therefore, machine learning methods that reduce the dimensionality of the data are

of crucial importance. They will reduce the dimensionality of the data making it fit

for clustering, visualization or any kind of statistical data analysis. One such example

of high-dimensional data is gene expressions. The gene expressions of a patient are

measured using high-throughput technologies; this gives an insight on the patient’s

specific genomic profile. Identifying clinically relevant disease subgroups are aided by

monitoring genomic measurements [6, 7]. Moreover, genomic profiling is one of the

key approaches used to find potential biomarkers and therapeutic targets for distinct

cancer types [8]. In the previous years the bioinformatics community have made a

huge effort in making available a large quantity of genomic data, such as the Gene

Expression Omnibus (GEO) [9] and the Cancer Genome Atlas(TCGA) [10]. They

provide easy access to thousands of normalized datasets for most cancer types.

Machine learning techniques, being supervised or unsupervised, can be applied effi-

ciently to genomic data to extract useful information, as an example, robust regres-

sion, which is a supervised learning technique, has been applied recently with much

success in [11,12]. This work shows that the concentrations of proteins in cells could

be predicted from mRNA levels; this was used to extract outliers and show that they

are post-transnationally regulated. However, this method based on regression will

break down if applied directly to the gene expression data because of its higher num-

ber features (genes) compared to its number of samples.

The reason for the high dimensionality in the genomic datasets is due to the fact that,

recently novel high-throughput technologies have emerged to sequence the human

genome. These high-throughput technologies are capable to sequence approximately

40 000 genes per sample. Moreover, gathering samples from different patients is a

time consuming and non-economic task. As a consequence most genomic datasets

1



have a sample size much smaller than the number of genes. Thus, simple statisti-

cal techniques, such as regression, where the analytical solution relies on taking the

inverse of a covariance matrix of a high-dimensional dataset, cannot be directly ap-

plied [13]. In addition, complex models that are heavily parametrised such as deep

learning models, can overfit the dataset’s high-dimensional space when not enough

samples are provided. Therefore, the dimensionality of the data needs to be reduced

before applying any inferential technique.

Available approaches which reduce dimensionality are: feature selection and feature

extraction. Feature selection consists in choosing a subset of genes that best describe

the effects of all genes. On the other hand feature extraction finds a low-dimensional

space. Each feature of the low-dimensional space is the extracted feature; it is con-

structed by a function of the datasets original features. In the case of linear feature

extraction, the extracted features are a linear combinations of all the original features.

Performance of feature extraction and feature selection are mainly data dependent,

this is discussed in [14] and several others.

In this work we will focus on a specific category of feature extraction methods, being

unsupervised low rank feature extraction. Low rank feature extraction is catego-

rized as a linear dimensionality reduction technique. The main advantage of linear

dimensionality reduction techniques are two-fold: (1) They are easily interpretable

models as the amount of parameters to be learned is small and the whole goal of

such technique is to find a compact representation of the original data. (2) The

low rank approximation recovered from such methods is the reconstruction of the

low-dimensional space in the original space. A widely known linear low rank feature

extraction method extensively used in genomics data analysis is Principal Compo-

nent Analysis (PCA) [13, 15]. However, there are two main problems with PCA: (1)

It does not capture the non-linear structure of the data. Thus, any non-linear struc-

ture inherent in the data will be lost in the recovered low rank approximation. (2) It

is fragile to even a small proportion of outliers.

In this thesis we aim at making two contributions summarised as follows:

1. The first is to address the aforementioned drawbacks of PCA without losing

the ease of interpretability. For this purpose, we have devised a novel low rank

approximation method that takes into account the non-linear structure of the

data, and is robust to outlier samples. It is formulated as a convex optimization

framework that is most suitable to high-dimensional genomic datasets. This

newly devised method will be referred to as Graph regularized Outlier Pursuit

(GOP).

2. The second contribution of our thesis is to extend the new convex low rank

approximation method to take into account datasets with multiple views, known
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as multi-view datasets, and in the case of genomic datasets these are known

as multi-omic datasets. The novel multi-omic low rank approximation model

shows promising results in cancer subtype discovery. This novel method is

Convex Graph regularised Subspace Learning (CGRMSL).

Before we explain the motivation behind both our contributions, we need to briefly

introduce the omic datasets which will be investigated in this thesis; and explain the

concept of linear low rank matrix approximation, as it is a building block that our

work stems from.

1.1 Omic Data Introduction

With the new advances in high-throughput technology large amounts of molecular

data measurements are available, this has helped the biomedical research field to

tackle different kinds of diseases. The suffix omic to a molecular term signifies the

study of that molecule in large quantities. The first omic field that has emerged is the

genomic field. Genomics is the study of the entire genome. A genome is the complete

set of genes of an organism; it is gathered using high-throughput DNA sequencing

techniques. It emerged in the 1980s and it has been prominent since then. The

advancements made in genomics have paved the way to other omics which are now

significantly found in the academic field [16]. Different aspects of the genome can be

measured by using different sequencing assays leading to different omic datasets [17].

The big data fields, that stem from sequencing assays measuring products of tran-

scription (transcripts) and translation (proteins), are referred to as transcriptomics

and proteomics respectively.

Transcriptomics is the genome-wide study of RNAs stemming from the biological

process of transcription. Transcription is the intermediate biological process of the

central dogma of molecular biology that codes a gene from DNA to RNA. The central

dogma of molecular biology is the two step process of transcription and translation,

that code a gene, in the form of DNA, to a protein as a sequence of amino acids.

The quantitative branch of transcriptomics measures how much of a transcript is

present, or in other words, how much of a gene is expressed. Collecting the expres-

sions of all the genes in a sample gives rise to the gene expression datasets. The large

number of transcripts in biological samples are sequenced using Next Generation Se-

quencing (NGS) technologies, such as: Microarray sequencing and RNA-sequencing

(RNA-seq). In addition to protein coding RNAs, the NGS technologies are capable

of sequencing even short RNAs, such as microRNAs. MicroRNAs regulate a number

of different target genes, hence participate in the regulation of biological processes.

Abnormalities in the regulation of microRNAs are often the cause of pathologies [18]:

one such example is cancer formation and development [19]. Thus, microRNAs can
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be used as biomarkers or drug targets.

Proteomics is the large scale study of proteins. Proteins are constructed by trans-

lating mRNA into a sequence of amino acids, which then fold to form functional

biological structures called proteins. Proteins are complex molecules that play a key

role in controlling the enzyme activity, protein renewal and transport, and maintain-

ing the cells structure. The proteome is sequenced using Mass Spectroscopy (MS)

technology. However, quantitative proteomics methods based on MS only measures

a small proportion of the proteome [20]. This makes it hard to be integrated with

other omics or used by itself to analyze biological or pathological processes.

Another important omics is Epigenomics, the genome wide study of reversible mod-

ifications to DNA, such as DNA methylation. DNA methylation can be caused by

both environmental and genetic factors; it can last for a long period of time, and when

caused by genetic factors these can be inherited [21]. More importantly, genome-wide

studies have shown that methylated regions of DNA can be indicators for cancer [22].

The sequencing technologies mentioned above are bulk sequencing technologies. They

take a sample which is comprised of a large number of cells, and the specific sequencing

assay measures the molecules of the whole group of cells. This averages the measure-

ment over the whole group of cells and can lose individual cell information. Recently

optimized Next Generation Sequencing (NGS) technologies have emerged that se-

quence information of each individual cell provides a higher resolution to capture

cellular differences; thus, giving a better understanding of the function of individual

cells [23]. For example, tumors samples are known to be heterogeneous, meaning that

different types of cells are present in one specific tumor. This ability to sequence each

tumor cell will help in understanding the tumor ecosystem. Many single-cell sequenc-

ing technologies have recently emerged across the different omics, such as single-cell

genomics, epigenomics, and transcriptomics. They have led to novel findings in the

cancer research field, specifically in that of: metastasis, cancer evolution, therapy

resistance, and tumor microenvironmen [24,25].

Both bulk and single-cell omic datasets are high-dimensional. As mentioned before,

this results from the ease of the new high-throughput technology to sequence the

whole genome and by the more costly procedure of gathering samples from patients.

If the genomic datasets is denoted by the matrix M , then is has dimensions p × n,

with p being the measured molecular feature and n is the number of samples; the

dataset is high-dimensional meaning that p� n.

1.2 Notation

Throughout this thesis we will follow a few conventions that are stated below. In

some sections the reader will be reminded of some of them. When needed, more

specific notation will be introduced.
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1. Vectors are represented as bold lower case letters, such as x. The vector of all

zeros is expressed as 0.

2. Matrices are represented as upper case letters, such as X. When data matrices

are mentioned the convention is that M ∈ Rp×n has n data samples with p

features. For any matrix X, Xi,j represents the (i, j)th entry, Xi,: is the ith row

vector, and X:,i denotes the ith column vector. The transpose of X is expressed

as XT .

3. Multi-view data is a collection of data matrices, with each view represented by

a data matrix. The vth view of a multi-view data structure is represented as Mv.

For the vth view of any multi-view data structure, the (i, j)th entry is denoted

as X i,j
v , the ith column vector is expressed as X :,i

v , and the ith row vector is

represented as X i,:
v .

4. Scalars are represented as lower case italic letters, such as α.

1.3 Linear Low Rank Matrix Approximation

Linear low rank matrix approximation methods seek to find the nearest low rank

approximation to the input data matrix. The general linear low rank approximation

model follows this decomposition:

M = L+N .

Where M ∈ Rp×n is the input data matrix with n samples that have p features,

L ∈ Rp×n is the low rank approximation, and N ∈ Rp×n is the noise matrix. The

assumption of linear low rank methods is that the given data matrix is inherently

low rank and is corrupted by a specific noise model. The difference between linear

low rank approximation methods is the noise matrix corruption model. In this thesis

three types of corruption models will emerge:

• Solving the decomposition with N being a dense matrix with entries sampled

from and i.i.d Gaussian random variable results in classical PCA (Refer to

Appendix A.3 for proof). Throughout this thesis the PCA low rank decom-

position will be known as:

M = L+N.

(Noise matrix for the PCA low rank decomposition will be denoted from now

on as N).

• Solving the decomposition with with N being a sparse matrix or Laplacian

distributed. Both conditions are equiavalent because when N is Laplacian dis-
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tributed the sparse structure is indirectly induced thorugh the minimzation of

the l1 norm. Maximizing the log likelihood of the data M with N being Lapla-

cian distirbuted is the same as minimizing the l1 norm of the noise matrix (Refer

to Appendix A.4 for proof). It is known, from the sparse coding literature,

that minmizing the l1 norm gives a sparse solution. The sparse structure on

N gives a low rank and sparse decomposition problem; well known as Robust

PCA (RPCA) [2]. Throughout this thesis the RPCA low rank decomposition

will be indicated as:

M = L+ E.

(Noise matrix for the RPCA low rank decomposition will be denoted from now

on as E).

• When N is a column sparse matrix, corruptions are column-wise. This gives

the known method Outlier Pursuit (OP) [3]. Throughout this thesis the OP

low rank decomposition will be known as:

M = L+ C.

(Noise matrix for the OP low rank decomposition will be denoted from now on

as C).

1.3.1 Classical Principal Component Analysis (PCA)

PCA has the aim to find directions that maximize the variance of projections of

the data points. One way to find them is by computing the empirical covariance

matrix of the data matrix, then finding its eigenvectors. PCA is also formulated

as a low rank approximation problem; where we need to find a low rank matrix

that best approximates the data, assuming that the data lies near a low-dimensional

subspace. More precisely, if we stack the data points as column vectors of a data

matrix M ∈ Rp xn with p dimensions and n samples, the column vectors of M should

approximately lie onto a low-dimensional subspace with dimension r � min(p, n).

This is expressed mathematically as:

M = L+N,

where L is low rank with rank-r, and N is a dense matrix with entries sampled

from i.i.d Gaussian random variables. Classical PCA estimates the best low rank

approximation (in the l2 sense ) of M. This can be formulated as an optimization
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problem :

minimize
L

||M − L||2F

subject to rank(L) ≤ k.

(Here, ||M ||2F =
∑n

i ||M:,i||22 =
∑n

ijM
2
i,j is the Frobenius norm of M ; that is the sum

of the l2 norm squared of all the columns of M, or the sum of all elements squared of

M ).

This problem can be solved efficiently and reliably by the Singular Value Decompo-

sition (SVD). If the SVD of M is M = USV T , where U and V are matrices with

orthonormal columns representing the column space and the row space respectively,

and S is a diagonal matrix with elements in its diagonal being positive and in decreas-

ing order called singular values. The low rank matrix L that satisfies the previous

minimization problem is expressed as follows

L = Um×k Sk×k V
T
n×k

where Um×k is the matrix with the first k columns of U , Vn×k is the matrix with the

first k columns of V , and Sk×k is the square diagonal matrix with the first k singular

values of S.

Although PCA is such a well-defined problem with an efficient tool to solve it, it also

carries the drawback that in the presence of a few outliers in the data matrix the low

rank estimate is highly corrupted. This is because the outliers will lie far away from

the low-dimensional subspace and their l2 norm squared will be very large compared

to non-outlier samples; this will force the low-dimensional subspace to fit closer to

the outliers. From Figure 1.1 the effect of as few as two outliers is seen on a synthetic

datasets with 50 samples generated from a 2-dimensional Gaussian distribution. From

the Figure the black vector is the first principal component which is heavily skewed

toward the outliers; and the blue one is the original principal component without the

outliers.

To solve this fragility to outliers, two different robust corruption models to outliers

have emerged in the machine learning community: sparse noise (E) used in RPCA [2],

and column sparse noise (C) [3] used in OP. Both RPCA and OP will be introduced

in more detail in Chapter 2.

1.4 Motivation: First Contribution

Principal Component Analysis (PCA) is a linear low rank feature extraction method

that is widely used for data compression [15]. PCA has been largely applied on ge-
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Figure 1.1: PCA fragility to outliers. Figure shows that the first principal component
(black vector) is skewed towards the outliers even though they are a much smaller
proportion compared to the normal data.

nomic data to reduce dimensionality, as an example in [26–28].

There are many applications of PCA in genomic data analysis that include the follow-

ing areas. (1) Data visualization [29]; when the data is in very high dimensionality,

as in the case of genomic data, this application comes of use. With PCA the data is

projected onto two or three dimensions, which makes visualization possible. Several

data examples are found in [27], where data is visualized in two dimensions. (2)

Clustering analysis; by projecting the data onto the first few PCs, most of the varia-

tion of the genomic data can be contained by these lower dimensions. Then the first

few PCs can be used instead of the whole data to cluster genes or samples [30]. (3)

Regression Analysis; predictive models for disease outcomes are widely used in phar-

macogenomics studies to predict response to treatments. As the genomic data has

much higher dimensionality than sample size, normal linear regression analysis will

result in erroneous estimates [13]. It has been shown in [31] and references therein,

that it is possible to first use PCA to find the first few PCs and then use standard

regression taking the first few PCs as predictors.

Although PCA is extensively used in Bioinformatics, it has some serious drawbacks

when the datasets contain outliers as seen in Figure 1.1. Even the presence of one

outlier can drastically affect the output of PCA [2, 32–34]. Such outliers may arise

from sensor failures, mislabelling of samples or malicious tampering. In general, out-

liers can be a small proportion of a dataset that is functionally different from the

majority of a population. Taking cancer for example, the outlier samples may result
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in some interesting special instance of the disease [35]. Hence, it is not always the

case that the outliers need to be removed. As a result, robust implementations of

PCA that detect outliers and (robustly) estimate PCs, become of great importance.

The early beginnings of robust PCA, started by using robust estimations of covariance

matrices [36–38]. But they had two main problems: the methods were not resistant

to a large number of outliers, and are limited to datasets of small to moderate dimen-

sionality [39]; therefore, not applicable to higher dimensions. A second approach to

robust PCA is to find directions that maximise a robust estimate of the variance, such

as Projection-Pursuit [40]. This can be applied to datasets of higher dimensionality,

but it suffers from the fact that it is a non-convex problem and can become compu-

tationally intractable with the increase in problem size [3]. Thus, two state-of-the-art

robust PCA methods that solve a low rank approximation problem are RPCA and

OP [2,3]. They were briefly introduced in Subsection 1.3 and will be further discussed

in Chapter 2. Both these methods solve convex optimization problems; guaranteeing

that first order optimization problems will find a global solution. Moreover, both

have computationally efficient solutions that work in high-dimensional settings.

1.4.1 Corruption Models on Synthetic Data

So far we have introduced three corruption models: dense noise (N), sparse noise (E)

and column sparse noise (C). The three different low rank dimensionality reduction

models that assume these noise structures are: PCA, RPCA and OP respectively.

The dense noise matrix, N , is assumed to have its entries sampled from a zero mean

Gaussian distribution with isotropic covariance, Ni,j ∼ N (0, σ2). The classical PCA

problem minimizes the l2 norm squared of the reconstruction error of each sam-

ple; which is equivalent to maximising the log likelihood of the data, assuming the

aforementioned Gaussian noise model (Refer to Appendix A.3 for proof). The

estimation of the mean of the Gaussian probability distribution is skewed consider-

ably to accommodate the outlier samples as the squared term will give the outlier

samples a much higher weight than the rest of the normal samples. A probability

distribution that is more robust to outliers is the Laplacian distribution, which is

the distribution assumed by the RPCA problem 2.13. By minimizing the l1 norm

of the reconstruction error of each sample, the model is assuming that the entries in

the noise matrix E are sampled from a zero median and b Mean Absolute Deviation

(MAD) Laplacian distribution, Ei,j ∼ Laplace(0, b) (Refer to Appendix A.4 for

proof ). The RPCA model assumes sparsity on all the entries of noise matrix E. On

the other hand, a more effective corruption model for outliers is the column sparse

model assumed by OP. The l1,2 norm of OP groups columns as one object and the

sparsity is induced on a whole column; this stems from the definition of the l1,2 norm.

To show the robustness of RPCA and OP to outliers, three synthetic datasets with
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different dimensions are set up. The three datasets are constructed with the same

sample size of n = 500 and with different dimensions of low, moderate, and high

dimensionality with p= 2, 40, and 800 respectively. Each dataset is generated by

first sampling the main 500 samples from a Gaussian distribution with zero mean

and positive definite covariance matrix C, M:,i ∼ N (0, C) for all samples i. Then,

nout outliers are sampled from a different Gaussian distribution with a mean vector

µ with large entries and isotropic covariance matrix, Y:,i ∼ N (µ, I) for all samples i.

For each dimensionality reduction method we are going to investigate how much the

reconstructions are skewed towards the outliers. The reconstructions of PCA, RPCA

and OP on the 1st principal component are computed for each dataset for a range of

six different number of outliers, nout = 5, 10, 15, 20, 25, 30. The angle θ between the

1st principal component of a given method and the 1st principal component of PCA

without outliers is used as metric to evaluate the deviation towards outliers for each

method. Figure 1.2 shows the illustration comparing the reconstructions of the three

different methods on the 2-dimensional synthetic data with 10 injected outliers. It

is seen that PCA is considerably skewed towards the outliers, whereas RPCA and

OP are not affected. Figure 1.3 shows the angular deviation θ in the 1st principal

component for the three methods at increasing numbers of injected outliers. We can

see that with increasing dimensions the 1st principal component of RPCA is being

skewed towards the outliers. Whereas, OP is robust in all three dimensions including

the high-dimensional case.

Figure 1.2: Comparison of three different corruption models: PCA, RPCA and OP
on a 2-dimensional synthetic dataset. It is seen that the reconstruction estimated by
PCA is skewed towards the outliers. Whereas, RPCA and OP are both robust to the
outliers.
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(a) Data matrix dimensionality; p =2. (b) Data matrix dimensionality; p =40.

(c) Data matrix dimensionality; p =800.

Figure 1.3: Comparison of three different corruption models: PCA, RPCA and OP
on three different dimensions. θ is the angle between the 1st principal component of
each method with the 1st principal component of PCA without the outliers. We can
see that PCA has the largest θ. Whereas, RPCA becomes less robust with increasing
dimensions, and OP is robust in in all dimensions including the high-dimensional
setting.

1.4.2 OP vs RPCA in High-Dimensional Spaces

In this thesis we are interested in high-dimensional datasets such as genomic datasets.

In high-dimensional spaces the column sparse corruption model is a more effective

model to detect outliers compared to the sparse corruption model of RPCA. We

show this by setting up a synthetic experiment to compare the outlier detection ca-

pability of both models. The clean part of the synthetic dataset, L ∈ Rp×nclean , is

constructed by L = AB, with A ∈ Rp×r and B ∈ Rr×nclean sampled from a standard

Gaussian distribution. With L constructed in this way it lies on an r-dimensional

subspace. The corrupted samples or outliers, are injected by concatenating matrix L

by C ∈ Rp×nout . C is constructed with every column being an identical copy of an

adversarially generated vector. For our high-dimensional synthetic dataset we choose

p = 2000, nclean = 95, nout = 5, and three different ranks of L: r = 2, 5, 10. After

applying RPCA and OP, the reconstruction error is computed for each sample by

11



ei = ||C:,i||2. Afterwards, samples are ranked in descending order of their reconstruc-

tion error; and the ones with high error, ei, are considered outliers. The metric used

to evaluate outlier detection performance is the false positives encountered before

detecting all of the known 5 outliers (in this case the positive class is the outlier

class, and the threshold of detection is set to the smallest reconstruction error of the

5 outliers). As seen from Figure 1.4, for the three different ranks of L, the column

sparse corruption model detects zero false positives after tuning the regularization

parameter λ (λ is a regularization parameter that needs to be tuned in RPCA and

OP). In contrast, the sparse corruption model detects many false positives even af-

ter sweeping though a suitable range of λ. This shows that the OP column sparse

corruption model is more efficient in detecting outliers in high-dimensional datasets

such as genomic datasets that are investigated in this thesis.

However, a crucial drawback of OP is that it cannot model the non-linearities of the

data, and it can not model datasets that lie on a manifold. This becomes a disad-

vantage when it comes to complex biological data, such as genomic datasets, where

the relationships between the variables can be non-linear [41].

In recent years graph regularized dimensionality reduction models have emerged, that

inject into the learning model the intrinsic manifold structure of the data in the form

of a spectral graph. This graph regularization will smooth the low-dimensional em-

bedding or low rank matrix that is to be learned onto the intrinsic manifold structure

of the data.
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(a) rank(L) = 2 (b) rank(L) = 2

(c) rank(L) = 5 (d) rank(L) = 5

(e) rank(L) = 10 (f) rank(L) = 10

Figure 1.4: Comparing column sparse and sparse corruption models on synthetic high-
dimensional dataset, with p = 2000 features and n = 100 samples, at three different
ranks of L; r = 2, 5, 10. Metric used to evaluate outlier detection performance is
false positives encountered before detecting all known outliers. λ is a regularization
parameter that needs to be tuned in both RPCA and OP algorithms. It is shown that
the OP corruption model is more effective in detecting outliers in high-dimensional
spaces compared to the RPCA corruption model.

13



1.4.3 Usefulness of the Graph Regularizer

Here we will show the effectiveness of our method, graph regularized OP (GOP),

to capture the non-linear structure of the data by constructing a synthetic exam-

ple. GOP seeks a graph structured linear low rank approximation to the data with

a column sparse corruption model. It applies a linear model to compute the low

rank decomposition of the data: M = L + C. However, the non-linear structure is

captured in the low rank matrix L by a spectral graph which models the geometric

structure inherently present in the data (refer to Subsection 2.2.1 for graph construc-

tion). A synthetic non-liner dataset is generated, Figure 1.5(a) shows the original

2-dimensional structure of the data which is a circular structure. Gaussian noise is

then added in the 3rd dimension (Figure 1.5)(b) to corrupt the original structure. The

aim here is to recover the original 2D non-linear structure of the data. As expected

OP, which is a linear subspace method, collapses all the data points into the center of

the space, failing to recover the underlying structure of the data (Figure 1.5(c)). In

contrast, our method recovers successfully the non-linear de-noised structure of the

data (Figure 1.5(d)), showing the effectiveness of incorporating a graph regularizer.

The topological circular structure of the data is maintained through the graph reg-

ularizer; and the low-rank approximation filters the Gaussian noise. Thus, GOP is

able to recover the clean 2-dimensional circular structure of the dataset. One could

argue that this can also be achieved by non-linear dimensionality reduction algo-

rithms, such as the Laplacian Eigenmap (LE) [42] and the Isometric feature Mapping

(ISOMAP) [43]. However, these methods can only find the low rank manifold struc-

ture of the data in a low-dimensional space. The difference is that graph regularized

linear low rank methods would find the principal component and principal directions

allowing the low rank manifold structure of the data to be represented in the original

space. This is crucial as it will allow reconstruction errors to be computed which is

are needed for identifying outliers.

In the light of the shown properties of the column sparse corruption model on high-

dimensional datasets (in Subsection 1.4.2), and the usefulness of a graph regularizer,

we will combine, in the first aspect of this thesis, these two properties. We will

show that this detects outliers effectively and recovers the underlying low rank man-

ifold structure of genomic data while retaining the interpretability of linear low rank

models.
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(a) Original 2D Circular Data.
(b) Circular Data with Added Noise in
3rd dimension.

(c) OP: Low rank matrix.
(d)Our method (Graph Regularized
OP): Low rank matrix.

Figure 1.5: Illustrating effectiveness of graph regularizer. (d) Shows that the graph
regularized linear low rank method, (GOP), is capable of capturing the non-linear
structure of the constructed 2D circular data shown in (b). By contrast (c) shows
that, with the absence of the graph regularizer, the linear low rank method by itself,
OP, fails to extract the non-linear structure of the data.

1.5 Motivation: Second Contribution

Several methods for supervised and semi-supervised learning are found in the biomed-

ical literature [44,45] that classify tumor samples either as benign or malignant or into

different molecular subgroups. To exploit the usefulness of such methods, reliability

and availability of labels is of great importance. In the case of omic data gathering

tissue samples and their labels is a high-cost process, thus limiting their availabil-

ity. Therefore, supervised and semi-supervised methods of cancer classification suffer
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from limited sample sizes and potentially missing labels.

Clustering techniques have proven useful with omic data, as it is unbounded by the

availability of labels. Moreover, clustering for bioinformatic data is a useful pat-

tern discovery technique, which is the initial step taken towards data exploring [46].

Clustering is especially of great use in the emerging field of precision medicine in

discovering disease subtypes [47].

Clustering single omic data separately has proven useful in exploring useful patterns

in the data. Nevertheless, exploring more than one omic data for the same set of sam-

ples has shown better capability in extracting more complex structures. Specifically,

molecular subtype discovery has been shown to greatly benefit from multi-view clus-

tering compared to the single-view counterpart [48]. Multi-omic clustering is more

advantageous than the single omic counterpart for several reasons. First, multi-omic

clustering can take into account multiple molecular levels, such as transcriptomic and

proteomic levels. Second, omic data can aggregate information from different organ-

ismal levels, such as gene expression and microRNA expression. Third, omic data

can filter the biological and experimental noise present in the data.

Multi-view clustering methods have been widely studied in the machine learning com-

munity; these methods can also be used on multi-omic data [49–55]. State-of-the-art

multi-view clustering techniques are formulated as non-convex optimization meth-

ods [50–53, 55, 56], which can only guarantee convergence to local optimal solutions

that are computationally expensive. There are a few multi-view methods formulated

as convex optimization problems; but these methods do not take into account the

non-linear manifold structure of the data and are not robust to outliers.

Therefore, we have formulated a robust to outliers convex multi-view subspace learn-

ing method that seeks to find a shared low-dimensional subspace; and that takes into

account the non-linear manifold structure of the different data views and is robust

to outlier samples in each view. This is all modelled in a single convex optimization

problem.

In the next subsection we motivate the application of multi-view methods as compared

with single-view methods in multi-view data cluster identification.

1.5.1 Synthetic Example: Multi-View Subspace Learning Com-

pared to Single-View Subspace Learning

Here we will show the effectiveness of our convex multi-view subspace learning method

compared to single-view subspace learning. We generate a synthetic multi-view high-

dimensional dataset. The dataset has two views with each view having p = 1000

features of the same set of n = 300 samples/instances. The samples are generated to

have three distinct clusters, with each cluster having 100 instances. Each view has

two of the three clusters overlapping and the third is clearly separate. The two views
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are constructed to have complementary information. Each view is synthesized using

the following procedure: a mixture of three 2-dimensional Gaussians is modelled with

three distinct means, µ1, µ2 and µ3, and with all three covariance matrices being the

identity matrix. Each Gaussian component has 100 samples which gives a total of

300 samples. Finally, the vth view is constructed by projecting the low-dimensional

dataset Qv ∈ R2×300 ( v can have a value of 1 or 2) into a 1000 dimensional space:

Xv = UvQv. With Uv ∈ R1000×2 being a randomly generated projection matrix, and

Xv ∈ R1000×300 being the vth synthesized view. The location parameters for the first

view are: µ1 = {1, 2}, µ2 = {1, 4} and µ3 = {6, 6} . For the second view they are:

µ1 = {6, 6}, µ2 = {1, 2} and µ3 = {1, 4}. The adjacency matrix of both views are

shown in Figure 1.6.

To demonstrate the usefulness of multi-view subspace learning, we compare it to

single-view subspace learning, on each view separately, and on the concatenation of

both views. The single-view subspace learning method we compare against is Graph

Laplacian PCA (GLPCA) [57] (It will be reviewed in Chapter 2). The 2-dimensional

subspace for each single-view using GLPCA is shown in the top of Figure 1.7. It

is seen that the subspace found on each view has two of the three clusters highly

overlapping. Afterwards, GLPCA is applied on the concatenation of both views. The

resulting subspace is shown in the center of Figure 1.7. It is seen that this naive way

of integrating views does not successfully integrate the complementary information of

each view. Then, we find the shared latent representation using our proposed multi-

view subspace learning method, this representation is shown in the bottom part of

Figure 1.7. It is seen that our convex multi-view method is capable of efficiently

integrating the complementary information within each view and clearly separate the

three clusters.

(a) Adjacency matrix (1st view). (b) Adjacency matrix (2nd view).

Figure 1.6: Adjacency matrix of both views of constructed synthetic dataset. X1 and
X2 have complementary information that should separate all three clusters.
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Figure 1.7: Comparing multi-view and single-view subspace learning on high-
dimensional synthetic dataset. Each view of the multi-view dataset has p = 1000
features and n = 300 samples with three clusters having 100 samples each. Clearly
the multi-view shared latent space is able to separate the three clusters while the
single-view method on each view and on the concatenation of both views has two of
three clusters overlapping.

1.6 Goals and Contributions of Thesis

1.6.1 Goals

The goal of this thesis is to devise convex subspace learning methods based on low

rank matrix approximation that are robust to outliers and takes non-linearities of the

data into account for both single and multi-view datasets.

Moreover, the goals of these methods is to discover in an unsupervised manner the
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hidden structures of high-dimensional genomic datasets, especially cancer genomic

datasets. The main tools for data pattern discovery that are addressed in this thesis

are: 1) Clustering, 2) Visualization, and 3) Outlier/Anomaly detection. Clustering

is achieved by applying k-means clustering on the low-dimensional subspace found

by our methods. Visualization is a by-product of subspace learning, when the low-

dimensional subspace is of two or three dimensions. Moreover, as the proposed sub-

space learning methods are designed to be robust to outliers, outlier detection is also

achieved by inspecting the reconstruction error of each sample. The devised subspace

learning methods take into account these three unsupervised data discovery aspects

in a single framework.

1.6.2 Contributions

To achieve the goals of this thesis, we propose two subspace learning methods based

upon graph regularized robust low rank matrix approximation. The contributions of

our work are:

1. A novel convex subspace learning method that is most suitable for high-dimensional

genomic datasets dubbed as Graph Regularized Outlier Pursuit (GOP). This

method solves two main drawbacks of linear low rank models, by being robust

to outliers, and modelling the nonlinearity of the data in the low rank approx-

imation without losing the interpretability of the linear methods (more about

this in Chapter 4). The novelty of our proposed technique is in formulating a

subspace learning method that has the previous properties and is optimal in de-

tecting outlier samples in high-dimensional data settings. Besides, our method

is formulated as a convex optimization problem, which enables simple first-order

convex optimization methods to converge to a global solution of the problem.

A method similar to ours, that takes into account drawbacks of linear methods,

is RPCA on graphs [58] (Reviewed in Chapter 2). This method is optimal for

image like corruptions which does not transfer to genomic data structures.

This work has been published; cited as:

Shetta, O. and Niranjan, M., 2020. Robust Subspace Methods for Outlier

Detection in Genomic Data Circumvents the Curse of Dimensionality. Royal

Society Open Science, 7(2).

2. The second contribution of this thesis is Convex Graph regularized Robust

Multi-view Subspace Learning (CGRMSL). It emerges from the previous con-

tribution and it is designed to find a shared low-dimensional space for multi-view

datasets. The novelty of this method in the context of other state-of-the-art
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multi-view subspace learning/clustering methods, is that it is formulated as a

convex optimization problem, that takes into account the non-linearity of the

different views of the data and it is robust to outlier samples. Thus, it can

detect outliers which can then be discarded or analyzed further.

This work is under revision:

Shetta, O., Niranjan, M., and Dasmahapatra, S. Convex Multi-View Cluster-

ing via Robust Low Rank Approximation with Application to Multi-Omic Data.

Submitted to IEEE Transactions on Computational Biology and Bioinformatics.

The two proposed methods are motivated by the problems encountered in genomics

data; being their high dimensionality and presence of outliers due to experimental

errors. In this thesis we will illustrate our work on genomic data. However, the meth-

ods are generic to high-dimensional datasets that require robustness to outliers. The

devised methods address the problem of pattern discovery in high-dimensional data

by integrating in a single framework the three aspects of: clustering, visualization and

outlier detection. Also, both methods are formulated as convex optimization meth-

ods, which guarantee a global solution and a computationally efficient algorithms.

1.6.3 Thesis Structure

The structure of this thesis is as follows:

• Chapter 1 (Introduction): It introduces omic datasets and the problem

of linear low rank matrix approximation. It discusses the motivation behind

the work for both robust single-view subspace learning (first contribution) and

robust multi-view subspace learning (second contribution).

• Chapter 2 (Literature Review): It reviews the following: 1) outlier detec-

tion methods that emerged in the statistical and machine learning literature.

2) Graph regualrized single-view linear low rank methods. 3) Multi-view and

multi-omic clustering and subspace learning methods.

• Chapter 3 (Gradient Based Methods): This chapter provides a detailed

background of gradient based methods that are used in robust subspace methods

and in the subspace methods that we propose.

The coming three chapters are the main contribution of this thesis.
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• Chapter 4 (Graph Regularized Outlier Pursuit (GOP)): It introduces

the proposed subspace learning method for genomic datasets. It is part of the

first contribution of this thesis.

• Chapter 5 (Robust Subspace Methods for Outlier Detection in Ge-

nomic Data Circumvents the Curse of Dimensionality): This chapter

highlights the importance of our proposed method (GOP) for genomic datasets

both on bulk and single cell measurements. It is part of the first contribution

of this thesis.

• Chapter 6 (Convex Multi-View Clustering via Robust Low Rank

Approximation with Application to Multi-Omic Data): This chap-

ter is part of the second contribution of this thesis and introduces the proposed

method for multi-view subspace learning (CGRMSL); showing its superiority

to other state-of-the-art multi-view subspace learning methods in terms of clus-

tering and potential cancer subtype discovery.

• Chapter 7 (Conclusion and Future Work): This final chapter includes

concluding remarks and ideas on extensions of our work.
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Chapter 2

Literature Review

In this chapter we will review three different groups of problems:

First : We review outlier detection in its three different aspects of supervised, semi-

supervised, and unsupervised. We introduce the problem of unsupervised outlier

detection, which the robust versions of PCA stem from: RPCA [2], and Outlier Pur-

suit (OP) [3]. The low rank matrix decomposition of these two robust PCA methods

are based on two tightly related lines of work. The first being rank minimization

problems such as matrix completion [59]; where a low rank matrix is exactly recov-

ered from a data matrix (that is assumed to be low rank) with few observations. The

second is finding a robust solution to linear systems of equations in the presence of

arbitrary and unknown corruptions [60]. Both these lines of work will be reviewed

before introducing RPCA and OP.

Second : We review single-view Graph Regularized linear low rank approximation

methods found in the literature.

Third : We review the different multi-view clustering, and multi-view subspace learn-

ing methods found in the literature.

2.1 Outlier Detection: Review

Outlier detection, is a class of problems aiming to find patterns in the data that do

not follow an expected behaviour. In general, these non-conforming patterns are usu-

ally referred to as anomalies, outliers, surprises or contaminates depending on the

application domain. In most application domains, the words outliers and anomalies

are used in the context of outlier detection, and these two terms are often used in

an interchangeable manner. Outliers in the data could be samples of interest, where

useful information can be extracted from, or can be samples that are corrupted and

thus can mislead the general trend of the data. In the latter case, the outliers will

disrupt the statistical methods used to extract patterns in the data.
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Outlier and anomaly detection have been researched in the statistics community start-

ing from the 19 th century [61]. Over the course of time, the study of outlier detection

techniques have spread to other research communities which gave a wide variety of

techniques.

The main categories of outlier and anomaly detection methods are:

• Supervised: Data labels are present. Normal and outliers samples are labelled.

• Semi-supervised: Only normal samples are labelled.

• Unsupervised: Data labels are absent.

These methods will be reviewed in the following subsections.

2.1.1 Supervised

Supervised outlier detection methods assume that a training dataset is available with

normal and outlier samples labelled as distinct classes. These type of methods are

first trained using the training datasets which contains the labelled normal and out-

lier samples. This gives a trained predictive model to distinguish between normal

versus outlier samples. Using the trained model, inferences can be made on unseen

test samples to determine which class they belong to.

In the supervised outlier detection literature, many machine learning classification

methods are used as predictive models, such as: Neural networks, SVMs, Linear Dis-

criminant Analysis (LDA), Bayesian classifiers and many more. Another flavour of

classification methods devised in the outlier detection literature are one-class classi-

fication methods.

Outlier detection methods based on one-class classification are trained using only

samples that are labelled normal. These methods learn a boundary surrounding the

normal samples; if a test sample is found to lie outside the learnt boundary it is clas-

sified as an outlier. Most famous examples of such methods are: one-class SVMs [62]

and one-class Kernel Fisher Discriminants [63,64]. In the literature, there also exists

work that uses neural networks to tackle the problem of one-class classification to

detect anomalies, such as: program intrusion detection [65, 66], fraud detection [67]

in mobile phone networks, detecting anomalies in jet engine vibrations [68].

There are two major problems with the supervised outlier detection approach. First,

the presence of much more normal samples than the outlier samples; this imbalance

in the class distributions creates issues, that are tackled in the machine learning com-

munity [69–74]. Second, obtaining accurate labels for the outlier class is usually a

difficult problem.
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2.1.2 Semi-Supervised

Semi-supervised outlier detection based methods rely on fitting a model on normal

data instances to learn a notion of normality. Then, test instances are compared

against the model to detect if they are normal or anomalous. As we have discussed

in the previous supervised subsection, some of supervised machine learning methods

can be adapted to work in a semi-supervised manner by only using the normal data

samples for training.

One popular category of methods that are distinct in the semi-supervised setting are

statistical anomaly detection methods, where probability density models are fitted to

the normal data; then, the reciprocal of the likelihood of a test sample is used as its

anomaly score. Statistical outlier detection methods act on the following assumption:

Assumption: Normal samples lie in high probability regions of a statistical model,

while outliers lie in low probability regions of the statistical model.

Statistical outlier detection methods come in two different configurations: paramet-

ric, and non-parametric statistical models. Both have been applied to detect out-

liers. Parametric methods make assumption about the distribution of the data, thus

estimate the parameters of the assumed distribution. In contrast, non-parametric

methods make no assumption about the distribution of the data.

Parametric Statistical Methods

Parametric methods assume that normal instances of the data are generated by a

parametric distribution with probability density function f(x,Θ) for each instance x,

parametrized by parameters Θ. The inverse of the probability density function f(x,Θ)

of instance x is used as the anomaly score. Parametric statistical outlier detection

methods can be divided into two categories: 1) Single Parametric Distribution, 2)

Mixture of Parametric Distributions.

1. (Single Parametric Distribution) They mainly assume that the data is generated

from a Gaussian distribution. The parameters of location (mean) and scatter

(standard deviation) are estimated by finding the maximum of the log likelihood

of the data. The anomaly score is the distance of a sample from the estimated

mean. Then samples that are greater than a threshold are considered to be

outliers. Depending on the type of distribution assumed different measure of

distances to the mean are used.

For multivariate datasets that assume a Gaussian distribution, the Mahalanobis

distance of a test sample x to the estimated mean µ is used as a measure of

distance [75].

Datasets that assume a t-distribution, the t-test is used to detect outliers. In

this test a normal sample is compared against a test sample using the t-test; if

the test measures a significant difference between the normal and test sample,
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then the test sample is labelled as an outlier. A multivariate form of the t-test

is the Hotteling t2-test [76], which has been used to detect outliers in several

bioavailability studies.

The use of a χ2 statistic has been used in the cyber security literature by [77] to

detect malicious attacks on operating systems. The normal data here is assumed

to be generated from a multivariate Gaussian distribution. The χ2 statistic is

expressed as follows:

χ2 =

p∑
i=1

(xi − µi)2

µi
.

Where xi is the value of the ith element of the test sample x, µi is the ith element

of estimated mean vector µ from the normal dataset, and p is the number of

variables. If the χ2 is greater than a threshold, then the observed sample x is

an outlier.

2. (Mixture of Parametric Distributions) This type of outlier detection methods

model the normal data as a mixture of parametric distributions. Then a test

sample x is considered to be an outlier if its likelihood f(x,Θ) is lower than a

specified threshold.

Mostly Gaussian mixture methods have been used for such category of tech-

niques [78]. They have been used in many applications such as: air-frame strain

detection [79,80], detecting masses in mammograms [81,82], detecting intrusion

in networks [83, 84], and detecting anomalies in biomedical signals [85]. More-

over, authors in [86] used a mixture of Poisson distributions to model the normal

data.

Non-Parametric Statistical Methods

Outlier detection methods in this category model the data using non-parametric sta-

tistical models. This type of models do not assume a specific distribution for the

probability density function of the data. However, the density of the data is esti-

mated from the available data itself. There are mainly two subcategories for this

group of methods: 1) histogram based, and 2) kernel function based.

1. (Histogram based) This type of methods simply model the density of the normal

data using histograms. For multivariate datasets a histogram is constructed for

each feature of the normal data. Then to test for the anomaly of a test sample,

an anomaly score is measured for each feature of the test sample. It is measured

as the inverse of the height of value of the feature for the specific instance that is

being tested. Then the anomaly score of each feature are accumulated to form

an anomaly score for the specific test instance. This type of method has been

used in practice to detect anomalies in many applications such as: detecting
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structural damages [87–89], detecting anomalous topics in text data [90], web

attack detection [91, 92], detecting network intrusions [83, 84, 93], and fraud

detection [94].

2. (Kernel Function Based) These methods use kernel functions to approximate

the probability density of the normal data. Samples that lie in the low like-

lihood region of the estimated density are considered outliers [95]. Such non-

parametric methods have been used to detect network intrusions [96], masses

in mammograms [82], and novelties in oil flow [97].

Summary

Semi-supervised outlier detection methods can only be used in applications where

normal data is reliable and available. Parametric statistical outlier detection meth-

ods can either fit a single distribution or mixture distributions. Single distribution

methods are the linear in computational complexity with respect to the number of

samples and the number of features. Mixture of distribution methods use an itera-

tive estimation algorithm: the Expectation Maximisation (EM) algorithm, which has

computational complexity linear in time per iteration of the EM. However, it could

have slow convergence as it depends on the problem and the convergence criterion.

Non-parametric methods suffer much more from the curse of dimensionality compared

to the parametric methods, as they make less assumption about the data. Also, they

need many more samples than dimensions to estimate accurately the density of the

normal data. Furthermore, kernel density methods can have quadratic computational

complexity with regard to the number of samples in the data.

2.1.3 Unsupervised

Unsupervised outlier detection methods are more popular as they do not need la-

belled samples as the supervised outlier detection methods. They can be divided into

the following categories: nearest-neighbour based, clustering based, dimensionality

reduction based, and robust statistics based.

Nearest-Neighbour Based Outlier Detection

These methods act based on a specific assumption.

Assumption: Normal samples lie close to each other in dense regions, while out-

liers lie far apart from their nearest neighbour.

For nearest-neighbour based methods a similarity metric needs to be defined to mea-

sure the distance between any two data samples. For continuous datasets mainly the

Euclidean distance is used as a similarity metric but other metrics can be used [98].

In the literature the k -nearest neighbour methods are widely used to detect outlier
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samples in the data. The k-nearest neighbour methods define an anomaly score to

each sample as its distance to its kth neighbour. These methods have been applied

in different domains to detect outliers, such as [86] to detect land mine from satellite

images and anomalies in DC field windings of large turbines [99]. Authors in [99] used

a threshold on the anomaly score to assign outliers. On the other hand one could

choose the n samples with largest anomaly score to be the outliers [100].

Clustering Based Outlier Detection

Clustering is a data mining and machine learning tool used to group similar data

samples into clusters [98, 101]. Although outlier detection and clustering seem to be

fundamentally different problems, many clustering based outlier detection techniques

can be found in the machine learning literature. Clustering based outlier detection

techniques can be divided into three different categories.

1. First category, is based on the following assumption:

Assumption: Normal data samples are able to be clustered, while outliers can

not be clustered.

Techniques belonging to this category apply clustering algorithms to the data,

and any samples that do not belong to any cluster are considered to be outliers.

This is achieved by clustering techniques that do not force every data sample

into a cluster. Examples of such methods are: DBSCAN [102], ROCK [103],

and SNN clustering [104]. Disadvantage of clustering methods following the

above mentioned assumption is that they are optimized to cluster the data;

thus, they are not optimal in finding anomalies.

2. Second category relies on the following assumption:

Assumption: Normal data samples are close to the nearest cluster centroid,

while outliers are far away from the nearest cluster centroid.

Clustering methods that follow this assumption detect outliers by using a two-

step procedure. The first step consists in applying a clustering algorithm to find

cluster centroids. The second step will measure the distance of each data sample

to its nearest cluster centroid; this is considered the anomaly score of each data

sample. Smith et al. in [105] studied popular clustering algorithms, such as K-

means clustering, Self organising maps (SOM), and Expectation Maximization

to detect anomalies, following the previously described two step procedure.

Methods that follow this particular assumption can be used in a semi-supervised

setting, where the training dataset is clustered and then each test sample is

compared against the clusters to get an anomaly score [90,106,107].

The problem with this category of clustering based outlier detection methods

is that they will fails to detect outliers that are clustered together. This brings

us to the third category.
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3. Third category assumes the following:

Assumption: Normal data samples belong to large clusters, while outliers belong

to small clusters

This category of clustering based methods works in the following way. A clus-

tering algorithm is applied to the data to detect clusters. The samples that

belong to the minority cluster are considered to be the outliers. Several forms

of this category have been developed [108–110]; they take into consideration

both the distance of a sample from the centroid of the cluster it belongs to and

the size of the cluster. The problem with these methods is that they are not

optimized to detect outliers as they are mainly focusing on clustering the data.

Robust Statistics Based Outlier Detection

Robust statistics methods are designed to have high breakdown value. The def-

inition of the breakdown value in robust statistics is the smallest proportion

of the samples in the dataset that need to be corrupted to skew the estimate

considerably. Thus, if an estimation method has a high breakdown value then

it is more robust against outliers in the data. Robust statistics methods can be

either univariate or multivariate.

The most common univariate methods of estimating location and scatter are:

the median and the Median Absolute Deviation (MAD). Although they both

act in the univariate case, they can still be used to detect outliers in multi-

variate datasets. Authors in [35] used both the Boxplot method which takes

the median as a robust estimate of location, and MAD to detect outliers in

genomic datasets. A sample is considered anomalous when it has more than a

pre-defined number of outlier features. Multivariate robust statistics methods

seek to robustly estimate the location vector and the scatter (covariance) ma-

trix. There are several methods, such as the Minimum Covariance Determinant

(MCD) [111,112], M-estimator [36], S-estimator [113], Ellipsoidal peeling [114],

and iterative deletion [115]. However, these methods suffer from the pitfall that

their breakdown value is inversely proportional to the dimensionality of the data,

making them unusable for high-dimensional datasets.

Dimensionality Reduction Based Outlier Detection

Dimensionality reduction methods are based on compressing the data from its

original space to a reduced subspace where the structure of the data is expressed.

Both linear and non-linear dimensionality reduction methods exist. Linear

methods capture the highest variability in the data, and non-linear methods
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capture the non-linear manifold structure of the data. Dimensionality reduc-

tion outlier detection methods can be used in two different modalities. The first

modality is based on finding a lower dimensional embedding/projection of the

data where the outlier and normal samples are separated. The second modality

is based on using the reconstruction error of the data samples as the anomaly

score, here the assumption is that outlier samples will have higher reconstruc-

tion errors than the normal samples.

An example of the first modality is found in [116]; it uses both linear and non-

linear dimensionality reduction methods to detect anomalies in transportation

corridors. Many other techniques use PCA to project the data into a lower

dimensional subspace. An example of such kind of techniques is [117], where

the authors analyze the projection of the data onto the low variance principal

components. Such method has been used to detect outliers in astronomical cat-

alogues [118].

For the second modality, methods such as PCA, Autoencoders(AE) and Varia-

tional Autoencoders have been used to detect outliers. PCA has been used to

detect intrusions in computer networks [119]. Both authors of [120, 121] have

studied AEs to detect outliers, and have shown that outliers have higher recon-

struction error than the normal samples. VAEs have been studied by [122] to

detect outliers, they used as an anomaly score the reconstruction probability as

opposed to the reconstruction error. This is due to the fact that VAEs optimize

a probabilistic objective function as opposed to the Euclidean reconstruction

error, as AE and PCA. However, dimensionality reduction outlier detection

methods used in the second modality are often semi-supervised; where normal

samples are only used in a training set so that the learned model can detect

anomalies more effectively. They are used in the semi-supervised setting, be-

cause often the applied dimensionality reduction methods are fragile to even

a small number of outliers. Thus, the learned subspace is skewed towards the

outliers giving them a misleading reconstruction error that makes them indis-

tinguishable to the reconstruction error of normal samples. Research has been

done in the robust statistics community to develop PCA that is robust to out-

liers. These robust PCA methods follow one of two categories: 1) Apply classical

PCA to a robust estimate of the covariance matrix, or 2) look for directions that

maximise a robust estimate of scale of the projected samples. Robust estimates

of the covariance matrix have high breakdown values when the dimensionality

of the data increases, as discussed in the previous subsection. Methods of the

second category breakdown values are not affected by high dimensionality, such

as Projection Pursuit (PP) [40]; however, they are non-convex and are combi-

natorial in their computational complexity, making them intractable when the

dimensionality of the data increases.
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One efficient way to solve this problem was introduced by Wright et al. in [1],

which formulated the low rank matrix recovery problem and dubbed it ’Robust

PCA’ (RPCA). Robust PCA will be described after introducing linear inverse

problems with arbitrary corruption and rank minimization problems, as it stems

from these two lines of work.

2.1.4 Linear Inverse Problems

Linear inverse problems arise in many applications such as signal and image process-

ing, astrophysics, optics and statistical inference, just to name few. The linear inverse

problem lets us study the discrete linear system in the form:

Ax = b + w, (2.1)

were A ∈ Rm xn and b ∈ Rm are known, w ∈ Rm is an unknown noise and x ∈ Rn is

an unknown signal or image that needs to be estimated [123]. The standard approach

to problem 2.1 is the least squares (LS) approach where the estimator x̂ is the one

that minimizes the error:

(LS): x̂ = argmin
x

1

2
||Ax− b||22. (2.2)

When A is a square matrix and non-singular, the LS estimator is the naive solution

given by A−1b. However, in the case where the solution is not so straight forward, it

is stated in the form

x = (ATA)−1ATb,

where (ATA−1)AT is the pseudo-inverse of A. in many cases it happens that the matrix

A is ill-conditioned, meaning that A will have a very large ratio between the largest

and smallest singular value. This will lead to amplifying any errors in the target b,

leading to poor estimation of the weight vector x. To solve this problem regularization

methods are used to get a more stable solution. The main idea of regularization is to

replace the ill-conditioned problem with a better conditioned problem, which has a

solution that approximates the required solution. There are different regularization

techniques, one of them being Tikhonov regularization [124] in which a quadratic

penalty is added to the objective function in 2.2:

x̂ = argmin
x
||Ax− b||22 + λ||Lx||22. (2.3)

The second term added in 2.3 is the regularization term which controls the l2 norm

of the estimate x. The regularization parameter λ > 0 sets the trade-off between

finding the required solution of 2.2 and having a small norm of the solution. L
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is commonly chosen as the identity matrix, or the first or second order derivative

operator [125,126]. Although 2.3 has a closed form solution because the second term

is a quadratic penalty which is differentiable, it does not give sparse solutions.

Another very important and widely used regularization method is the l1 regularization

method. Problem 2.2 is modified as:

x̂ = argmin
x
||Ax− b||22 + λ||x||1, (2.4)

where ||x||1 stands for the sum of the absolute values of the elements of x. The l1
norm regularization gathered much importance, because it promotes sparsity in the

solution of 2.4 as it is the tightest convex surrogate of the l0 norm (l0 norm being

the number of zero elements). Problem 2.2 with the l0 norm regularization term

is highly non-convex, which may lead to finding suboptimal solutions; therefore, its

convex surrogate (l1 norm) is used instead to solve this issue. The objective function

in problem 2.4 is not smooth; thus, not differentiable as in the case of 2.1 and 2.2.

However, it is a convex optimization problem that can be easily solved, with many

algorithms in hand [127,128]. In the following subsection we will introduce the general

form of rank minimization problems and the famous matrix completion, which is a

special case of these kind of problems.

2.1.5 Rank Minimization Problems

Let X ∈ Rp×n be in the space of p × n matrices. The affine rank minimization

problem consists of finding a matrix of minimum rank that needs to satisfy a system

of linear equality constraints; the optimization problem is given as:

min
X

{
rank(X) : A(X) = b

}
, (2.5)

where A : Rpxn → Rm is a linear map and b ∈ Rm. This problem in the form of 2.5

has been investigated before, in the machine learning field [129, 130]. Problem 2.5)

is a non-convex and computationally intractable optimization problem. However, a

convex relaxation of the rank function has been found to be the nuclear norm [131].

Now, the problem can be defined as a convex problem:

min
X

{
||X||∗ : A(X) = b

}
, (2.6)

where the nuclear norm of X, ||X||∗ is the sum of all singular values of X. A well

known problem that has its general form as in 2.6, is the matrix completion problem.

In the matrix completion problem, a random subset of matrix entries are given, and

its aim is to recover the missing entries, making sure that the recovered matrix has
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the lowest possible rank. It is written as:

min
X

{
||X||∗ : Xi,j = Mi,j, (i, j) ∈ Ω

}
, (2.7)

where M is the matrix with m available entries and Ω is the set of pairs of indices

of size m. Here A(X) = XΩ and b = MΩ, where XΩ is a vector in R|Ω| obtained by

selecting the elements of X whose indices are in Ω, same applies for MΩ.

The equality constraint in problem 2.6 is more of an ideal scenario; in practice there

is a noise term that is added to the observed variable b, as A(X) = b + w, w being

the noise term. Notice how this is similar to the linear inverse problem, if X is

restricted to be diagonal the equality constraint becomes Ax = b + w (introduced

in the previous subsection). To solve problem 2.6 with the noise term, we need to

minimize the error A(X)−b. By relaxing the equality constraint in 2.6 we can have a

formulation that is more resistant to noise, this leads to the nuclear norm regularized

linear least squares problem [132]:

min
X

{
||A(X)− b||22 + λ||X||∗

}
, (2.8)

where λ > 0 is a positive parameter. Also notice that if X in 2.8 is restricted to be

diagonal the problem will be same as l1 regularized linear least square (problem 2.4).

In the next subsection we will introduce the concept of Robust PCA that takes into

account the concepts introduced in this subsection and subsection 2.1.4.

2.1.6 Robust Principal component Analysis (RPCA)

Robust PCA introduced by Candés et al. in [2], assumes that a data matrixM ∈ Rp xn

is generated by a low rank matrix L ∈ Rp xn, by corrupting some of its entries. This

corruption is represented by adding to L a corruption matrix E ∈ Rp xn, which is

sparse with non-zero entries that are of large values. The data matrix M is represented

by the following decomposition:

M = L+ E, (2.9)

Notice that this case is different from the classical PCA case where the corruption

matrix is dense with entries that are sampled from a Gaussian distribution.

The robust PCA problem consists in recovering L, given the data matrix M = L+E,

where L and E are unknowns, and L is known to be low rank and E is known to be

sparse. Conceptually meaning that we wish to recover the lowest rank matrix L that

may have generated the data, subject to satisfying the constraint that the errors are
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sparse ||E||0 ≤ k. The robust PCA problem can be formulated as:

min
L,E

rank(L) + λ||E||0 subject to : M = L+ E (2.10)

if problem 2.10 could be solved for an appropriate λ, we can hope to exactly recover the

pair L0, E0 that generated the data M [1,2]. Unfortunately, the objective function of

problem 2.10 is non-convex and its solution is not computationally feasible. However,

from the previous subsection we know that there is a convex relaxation for the rank

function; which is the count of the number of non-zero singular values of L; by using

the nuclear norm which is the sum of the singular values of L. Moreover, there the

convex relaxation of the l0 norm (the l0 norm is the count of the non-zero elements

of E ) is the l1 norm, which is the sum of all the elements of E. Thus, the convex

relaxation of problem 2.10 can be written as :

min
L,E
||L||∗ + λ||E||1 subject to : M = L+ E (2.11)

In this case ||E||1 is the sum of the absolute values of all the elements of E.

In [1, 2, 59] it has been proved that the pair L0, E0 can be exactly recovered under

very broad conditions. These conditions are mainly two: 1) the left and right singu-

lar vectors of L should not be aligned with ei, the basis vectors in Euclidean space

(the vector that has all entries equal to 0 except the ith equal to 1). As an example,

suppose that M is a rank-1 matrix constructed as M = e1e
T
n . This will result in a

matrix that has all entries as zeros except entry (1, n) will have a value of one. In this

case matrix M is both low-rank and sparse making its decomposition not feasible. To

make the problem more significant, Wright et al. in [59] imposed that the low-rank

matrix L needs not to be sparse. To impose this structure on the low-rank matrix,

Wright et al. in [59] introduced the random orthogonal model. This considers the

left are right singular vectors of the low rank matrix L as being selected uniformly

at random, among all sets of r orthonormal vectors (r being the rank of L). 2) The

non-zero entries of the error matrix E should be uniformly scattered through the

whole matrix. In [1, 2], Wright et al. and Candès et al. proved that if the previous

two conditions are satisfied one can recover the exact pair (L0, E0) which generated

a data matrix M , as M = L0 +E0, by solving the convex optimization problem 2.11.

The formulation of robust PCA in 2.11 has been widely used in many applications [2],

such as video surveillance to identify activities that stand out from the background,

face recognition, and collaborative filtering problems, just to name a few. Mainly in

these type of applications the exact recovery of the low rank and the sparse matrix

is crucial, therefore the robust PCA in 2.11) offers exact recovery and scalable opti-

mization algorithms to find the solution.

The corruption model of E in robust PCA (2.9) is not of interest, as our purpose is
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(a) (b)

Figure 2.1: Two different corruption models. (a): Robust PCA corruption model of
Wright et al. [1] and Candès et al. [2], where the corruption matrix E is a sparse matrix
with gross non-zero entries with indices chosen uniformly at random. This leads to
sparse corruptions, which will have many data points with few features corrupted.
(b): Represents the corruption model of Outlier Pursuit of [3], where the corruption
matrix C is a column sparse matrix which will switch-off entire columns. The shown
corruption model has a small fraction of outlier data points with features entirely
corrupted. (black entries considered to be large numbers and white entries as zeros.)

to detect outlier samples. This is because having E as a sparse matrix with indices

of the non-zeros entries being uniformly distributed through the matrix, means that

all sample points will have some corrupted components; thus, making it not optimal

for detecting outlier samples. This corruption model fits more the corruptions found

in images, such as image occlusions. For the genomic datasets that we investigate in

this thesis our purpose is to detect outlier samples. Therefore, a different corruption

model needs to be analyzed, where most of the sample points have no corrupted com-

ponents, and a few samples have most or all components corrupted. As such, we will

focus on the column-wise corruption model, as it is more suited to detect outlying

samples. Robust PCA with this type of corruption model has been investigated in [3]

and has been called Robust PCA via Outlier Pursuit (OP). It will be introduced in

the next subsection. An example of the corruption model of Robust PCA and Outlier

Pursuit is shown in Figure 2.1(a) and Figure 2.1 (b) respectively.

2.1.7 Outlier Pursuit (OP)

Outlier Pursuit, has been introduced by Xu et al. in [3]. Recalling that the columns

of the data matrix M represent samples and its rows represent dimensions, the aim
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of Outlier Pursuit is to decompose M as:

M = L+ C,

where L is low rank, and C is non-zero in only a small fraction of the columns,

satisfying the corruption model shown in Figure 2.1(b). Outlier Pursuit can be written

in the form of a optimization problem as simply as :

min
L,C

rank(L) + λ||C||0,c subject to : M = L+ C, (2.12)

where ||C||0,c stands for the number of non-zero columns of C. The non-zero columns

are corrupted in most or all of their dimensions. However the objective function

of problem 2.12 is non-convex and can not be solved efficiently. Therefore Outlier

Pursuit solves the convex relaxation of 2.12, written as:

min
L,C
||L||∗ + λ||C||1,2 subject to : M = L+ C, (2.13)

where ||C||1,2 stands for the sum of the l2 norms of the columns of C ; ||C||1,2 =∑
i ||C:,i||2.

The objective of Outlier Pursuit is to recover the low rank matrix L and the column

sparse matrix C.

However, in a realistic case the samples will not lie exactly on a low-dimensional

subspace as they will be corrupted by noise; so we need to consider the case where

the decomposition is M = L + C + N , where N is an additional noise matrix. We

can adapt optimization problem 2.13 to accommodate for approximate solutions, by

replacing the equality constraint with a more relaxed constraint. This is written in

an optimization form as:

min
L,E
||L||∗ + λ||C||1,2 subject to : ||M − (L+ C)||F ≤ k. (2.14)

As in the case of rank minimization with noise, one can solve for an approximate

solution by including a regularizing parameter µ to problem 2.14. This becomes an

unconstrained optimization problem as:

min
L,C

µ||L||∗ + µλ||C||1,2 +
1

2
||M − (L+ C)||2F . (2.15)

The form of all the problems 2.4, 2.8, and 2.15 is convex and can be solved using

proximal gradient methods [133].

The aim of OP is to solve for a low rank matrix approximation of the input data that

is robust to outliers. This is achieved by modelling the outliers in the matrix C. The
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benefits of OP are:

1. The low rank matrices, thus the low-dimensional representation of the data is

not affected by the outliers, hence making it robust to outliers.

2. The outliers are detected, which can be either discarded or can be of interest

to the application itself.

2.2 Graph Regularized Low Rank Approximation

Methods: Review

The problem of incorporating the non-linear topological structure of the data in clas-

sical PCA is achieved by graph regularization. State of the art graph regularized

PCA models can be divided into two different models:

• Factorized model: graph regularization is on factors.

• Non-factorized model: graph regularization is on low rank matrix.

All the methods we are reviewing below use a graph regularization with respect to

a graph of samples. If the data matrix is X ∈ Rp×n then the graph we regularize

the model with is the Laplacian matrix Φ ∈ Rn×n of the k-nearest neighbour graph,

constructed between the n samples of the data matrix X. Before reviewing state of

the art graph regularized PCA methods, in the next subsection we will describe how

to construct and compute the graph Laplacian Φ.

2.2.1 Graph Construction

To model the topological structure of the data the localities of each sample need to

be modelled. This is achieved by using a k-nearest neighbour graph [42,58,134]. The

graph which has nodes corresponding to samples, is constructed by first finding the

k-nearest neighbours of each sample. Then for each sample we weight the edges to

its k neighbours through the Gaussian kernel function Wi,j = exp(− ||M:,i−M:,j ||22
2σ2 ). All

other points that are not in the k-nearest neighbours of the sample are weighted as

zero. The matrix that incorporates this information is the affinity matrix W ∈ Rn × n .

Then the graph Laplacian matrix Φ ∈ Rn×n is defined by Φ = D −W, where D is a

diagonal matrix where each entry on its diagonal is the row sum of the corresponding

row in W, Di,i =
∑

jWi,j.

Proposition 1 The graph Laplacian matrix Φ is symmetric positive semi-definite.

(Proof )
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The symmetry of Φ follows from the symmetry of W and D. Φ is positive semi-

definite if it satisfies zTΦz ≥ 0 for any vector z ∈ Rn. We can rewrite zTΦz as
1
2

∑n
i,j=1 Wi,j(zi − zj)2:

zTΦz = zTDz − zTWz =
n∑
i=1

Di,iz
2
i −

n∑
i,j=1

Wi,jzizj

=
1

2

( n∑
i=1

Di,iz
2
i,i − 2

n∑
i,j=1

Wi,jzizj +
n∑
j=1

Dj,jz
2
j,j

)
=

1

2

n∑
i,j=1

Wi,j(zi − zj)2.

(2.16)

From the last expression in equation 2.16 and the way Wi,j is constructed we can see

that zTΦz ≥ 0 is satisfied.

2.2.2 Factorized Models

Factorized models have the same form of classical PCA. In these type of models

the low rank matrix approximation of the data matrix is determined by a matrix

factorization. The data matrix X ∈ Rp×n is factorized to X = UQT , where U ∈ Rp×r

and Q ∈ Rn×r, given that r << p. These methods have a graph regularization on the

low-dimensional embedding of the data [57,134,135].

Graph Laplacian PCA (GLPCA)

Graph Laplacian PCA (GLPA) [57] solves the following optimization problem:

min
U,Q
||X − UQT ||2F + α tr(QTΦQ)

subject to: QTQ = I,
(2.17)

where tr(Y ) is the sum all the diagonal elements of a square matrix Y . The graph

regularization is on Q, the principal components of the data matrix X. This problem

has a closed-form solution, where the columns of Q are computed by eigenvectors of

the generalized Laplacian matrix: XTX+αΦ. In addition, since Q is an orthonormal

matrix, the optimal column basis vectors U can be computed by U = XQ. Note

that problem 2.17 is non-convex with respect to U and Q, due to the orthonormality

constraints and the product of the matrix factors: UQT . Nonetheless, it has a unique

solution.

Robust Graph Laplacian PCA (RGLPCA)

GLPCA is sensitive to outlying samples. Therefore, the authors of [57] also devised

another version of GLPCA that is robust to outlying samples. The outlier robust
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problem is

min
U,Q
||X − UQT ||1,2 + α tr(QTΦQ)

subject to: QTQ = I.
(2.18)

The main difference between 2.17 and 2.18 is the reconstruction error term of the

objective function. The reconstruction term in 2.18 is more robust to outlier samples

as it does not square the error of the individual data sample. The problem with

RGLPCA is that it does not have a closed form solution as GLPCA. The solution to

the RGLPCA problem is found by an iterative update method. Therefore, due to the

non-convexity of the problem, the solution will be a local optimum of the objective

function. 2.18.

Manifold Matrix Factorization (MMF)

The method devised by Zhang et al. [134] solves the following optimization problem:

min
U,Q
||X − UQT ||2F + α tr(QTΦQ)

subject to: UTU = I,
(2.19)

this problem resembles more the classical PCA problem as it has the same orthonor-

mality constraint on the basis matrix U . Similar to PCA, this problem is also non-

convex, however is solved using a alternate iterative method.

Multiple Manifold Matrix Factorization

A direct modification to MMF described above is proposed by authors in [135], which

use an ensemble of graph regularization terms. This method is called multiple mani-

fold matrix factorization (MMMF); it solves the following optimization problem:

min
U,Q,α

||X − UQT ||2F + tr(QT (
∑
i

αiΦi)Q)

subject to: UTU = I,
∑
i

αi = 1.
(2.20)

Problem 2.20 takes into account multiple graphs constructed by using different pa-

rameters, or different methods; Φi represents the graph Laplacian of the ith graph.

This type of ensemble regularization makes the model more robust to noise in the

data. Note that this method finds the vector containing the sparse linear combina-

tion coefficients α of the graphs Laplacian matrices during the optimization process,

which adds to the non-convexity of the problem. Furthermore, problem 2.20 is solved

using an iterative solver, where at each iteration an MMF problem is to be solved, this
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convergence to a local optimum solution and has higher computational complexity

than MMF.

2.2.3 Non-Factorized Models

This type of models have a graph regularization on the low rank matrix approxima-

tion, in contrast to the factorized models that have a graph regularization on the

principal components of the data.

Manifold Matrix Factorization

This model can fall under both categories of factorized and non-factorized by only

a change of variables. Using the cyclic permutation invariance property of the trace

the graph regularization term of problem 2.19 can be rewritten as:

tr(QTΦQ) = tr(UQTΦQUT ) = tr(LΦLT )

.

Therefore problem 2.19 can be rewritten as:

min
L
||X − L||2F + α tr(LΦLT )

subject to: rank(L) ≤ r,
(2.21)

this problem is equivalent to the previous problem and it is convex with respect to

the variable L and it has a unique closed form solution.

Robust PCA on graphs (RPCAG)

Robust PCA on graphs is introduced by [58]. The problem is formulated in the

following way:

min
L,C
||L||∗ + λ||C||1 + α tr(LΦLT ) subject to: M=L+C. (2.22)

It has a convex objective function, therefore a global solution can be reached through

standard iterative optimization methods. The difference between problem 2.22 and

problem 2.21 is the model of the noise that is taken into account. In problem 2.21

the noise is modelled to be sampled from a Gaussian distribution, which makes it

sensitive to outlier samples in the dataset. On the other hand, in the RPCAG model,

like RPCA, the noise is modelled to be distributed by a Laplacian probability density

function. Furthermore, in RPCAG the low rank matrix L is modelled to be smooth

on a manifold described by the Laplacian matrix Φ.

Proof of convexity of the objective function of problem 2.22 is shown below.
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Proposition 2 The function f(L,C) = ||L||∗ + ||C||1 + α tr(LΦLT ) is convex w.r.t

both L,C.

(Definition) For a function f : Rn → R to be convex, then for every x, y and

0 ≤ λ ≤ 1 the inequality

f
(
λx+ (1− λ)y

)
≤ λf

(
x
)

+ (1− λ)f
(
y
)

(2.23)

holds.

Proof of Proposition 2

The first two functions of f(L,C) are the nuclear norm and l1 norm, ||L||∗ and ||C||1.

Vector norm functions have the following three properties:

1. ||x|| = 0 only is x = 0.

2. ||αx|| = |α|||x||. for all α ∈ R.

3. ||x+ y|| ≤ ||x||+ ||y|| for all x,y ∈ Rn (triangle inequality).

We use properties 2 and 3 for vector norms to prove that they are convex and satisfy

inequality 2.23

||λx+ (1− λ)y|| ≤ ||λx||+ ||(1− λ)y|| = λ||x||+ (1− λ)||y||. (2.24)

Therefore, the nuclear norm and l1 norm are convex functions.

The third function of f(L,C) is tr(LΦLT ) it can be rewritten as 1
2

∑N
i,j=1 ||L:,i −L:,j||22Wi,j

(refer to Chapter 4). The l2 norm squared, ||L:,i −L:,j||22 , is a strongly convex func-

tion and all Wi,j are positive scalars. Therefore, 1
2

∑N
i,j=1 ||L:,i −L:,j||22Wi,j is a convex

combination of convex functions, this gives also a convex function.

Definition g(x) = a1g1(x) + a2g2(x) with ai ≥ 0. g(x) is a convex combination of

convex functions g1 and g2 : Rn → R. Now, we prove that g(x) is a convex function

by showing that it satisfies inequality 2.23.

g
(
λx+ (1− λ)y

)
= a1g1

(
λx+ (1− λ)y

)
+ a2g2

(
λx+ (1− λ)y

)
≤ a1λg1(x) + a1(1− λ)g1(y) + a2λg2(x) + a2(1− λ)g2(y)

= λ
(
a1g1(x) + a2g2(x)

)
+ (1− λ)

(
a1g1(y) + a2g2(y)

)
= λg(x) + (1− λ)g(y).

(2.25)

This shows that

g
(
λx+ (1− λ)y

)
≤ λg(x) + (1− λ)g(y).

Which concludes the proof.
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Matrix Completion on Graphs

The authors of [136] proposed matrix completion on graphs. The objective function

of this problem is as follows:

min
L
||A ◦ (M − L)||2F + λ||L||∗ + αr tr(LTΦrL) + αc tr(LΦcLT ), (2.26)

where A is a binary mask matrix, with elements that are ones for the known entries

and zeros for the missing entries. Note that this problem we want to recover the

missing entries in L with graph Laplacian regularization. To model accurately the row

and column structure of the data, the authors regularizes L by its column structure

(Φc) and its row structure (Φr). Although problem 2.26 is a formulation of matrix

completion, it can also be considered a low rank matrix approximation in the same

essence of PCA; when A is the matrix of all ones.

2.3 Multi-view Clustering: Review

Multi-view clustering methods are widely available in the machine learning commu-

nity. They can be divided into four different categories:

• Co-training based: it uses an alternate optimization framework, where an opti-

mization step is taken in each iteration with respect to one of the views.

• Deep learning based: it adopts the knwon neural network architectures which

have shown promising results in the deep learning research field.

• Early integration: it consists in concatenating the features of the different views

into a single matrix, then a single-view clustering method is used onto the

obtained matrix. It is the simplest of all three categories.

• Late integration: it consists in separately clustering each view using a single-

view clustering algorithm, then the different clusters are integrated into one

global clustering solution.

• Intermediate integration: it consists in building a model that integrates all views

and can be subdivided into the following subcategories: i) Statistical modelling

based. ii) Sample similarity based. iii) Joint dimensionality reduction based.

Multi-view clustering methods belonging to these different categories will be reviewed

in the following subsections.
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2.3.1 Co-Training

Co-training is the earliest form of multi-view learning that attempted to integrate

two views [137]. Stemming from the improved accuracy that this method has shown

on semi-supervised classification tasks, authors have been inspired to investigate co-

training on multi-view data. One of the earliest methods that attempt to investigate

multi-view clustering is co-EM introduced by [49]. This method takes the Expectation

maximisation (EM) algorithm used for k-means clustering and adapts it to a multi-

view setting. It also uses the iterative EM algorithm in an alternate framework, where

an optimisation step is taken in each iteration for one of the views; then, on the next

iteration, an optimisation step regarding a different view is taken. This methods was

one of the first to show improvements in clustering each view alone and in clustering

the matrix of concatenated views [46].

2.3.2 Deep Learning Based

In the past decade, deep learning methods have shown promising results in challenging

tasks, such as image recognition [138] and text translation [139]. They have also been

widely used for analysing medical data [140]. Neural networks designed for multi-view

application have shown promising results [141]; especially for the unsupervised repre-

sentation learning setting. These representation learning methods are used to cluster

and discover potential novel structures in multi-view dataset settings [142, 143]. In

the multi-omic dataset case, authors in [144] use an auto encoder to find representa-

tions of liver cancer samples from different patients. The multi-omic dataset consist

of three views: gene expression, DNA methylation, and miRNA expression. The

three different views of the data where concatenated beforehand; then the autoen-

coder was used to find the low-dimensional representation of the samples. Afterwards,

the features of the low-dimensional representation, that are most correlated with the

survival times of the patients, are selected to be used for standard clustering. This

method showed significant difference in the survival times between clusters. Liang

et al. in [145] used a Deep Beleif Networks (DBN) [146] to cluster ovarian cancer

patients. The multi-omic dataset is comprised of three views: gene expression, DNA

methylation and miRNA expression. This network architecture consists in having

hidden layers from each view. Then, the three hidden layers are integrated by fully

connecting with the final hidden layer. Subsequently, a binary 3-dimensional repre-

sentation is learnt for all the samples, the 23 = 8 different possible positions in this

latent representative are used as cluster labels for 8 clusters. They showed improved

clustering performance compared to k-means clustering on the concatenation of the

three different views.

The main drawback of deep learning algorithms is that they are effective only with

datasets that have a large sample size, and a large sample size compared to the num-
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ber of dimensions. Deep learning algorithms have many parameters to be learned;

not having enough sample size would result in overfitting of the training data and

thus giving poor generalization. This is a major issue with the current multi-omic

datasets which are low in sample size and have much more dimensions than samples.

2.3.3 Early Integration

Early integration methods concatenate different views into one single matrix; then use

single-view clustering methods to obtain the clusters. Although this method is simple

to implement, it suffers from several major drawbacks. First, the dimensionality of the

concatenated matrix increases substantially and negatively affects the performance

of the clustering algorithms. Second, the different views will be treated as one. This

will ignore the structural diversities between views. Specific early integration methods

have been designed in the machine leaning community to address these drawbacks.

LRACluster [54] is an early integration technique that uses a regularized probabilistic

model. Each view is modelled to have a specific latent representation of its same size

using a specific probability density function depending on the type of feature present

in the view. Different types of modelled features are: real, count, binary using the

Gaussian, Poisson and Bernoulli. The objective function of LRACluster is described

as: argminΘ

∑K
v=1 L(Θv;Mv)+µ||Θ||∗. Where L(Θv;Mv) is the negative log-likelihood

of the vth view Mv, Θ is the concatenation of all the Θv matrices, µ is a regularization

parameter, and ||Θ||∗ is the nuclear norm of Θ. The nuclear norm regularization of Θ

will induce the low rank structure in the matrix Θ which will reduce the complexity of

the probabilistic model. The LRACluster objective function is convex, thus a global

optimal solution is achieved by using a simple gradient descent method.

Structured sparsity [147] is another multi-view clustering early integration method.

The different views Mv ∈ Rpv×n are concatenated to form a matrix X ∈ Rp×n (p =∑
v pv). The objective function of structured sparsity is: argminW,F ||XTW + 1nb

T −
F ||2F + ||W ||G1 . Where b is a c × 1 intercept vector and 1n is a n × 1 vector for all

ones. W is a p × c matrix which contains the weights of each feature for c different

clusters. F is a n × c cluster indicator matrix satisfying the constraint: F TF = I.

The aim for this algorithm is to find the closest projection of the data to the cluster

indicator matrix F . Then a sample is assigned to a specific cluster, by choosing the

position of the largest entry in the ith row of the cluster indicator matrix Fi: ∈ R1×c.

The regularization term uses the G1 norm on the weight matrix W . The G1 norms

of W is the sum of the l2 norm of the weights of the features in each view summed

over all clusters, ||W ||G1 =
∑c

i=1

∑K
v=1 ||W :,i

v ||2. This will induce a group sparsity.

Thus, if features of a specific view in W do not discriminate a specific cluster, then

the values of the features of that view for that specific cluster are assigned to low

values.
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2.3.4 Late Integration

Late integration methods cluster each view separately; then integrate the cluster so-

lutions to form a single consensus clustering solution. Different single-view clustering

algorithms can be used to cluster each view. This makes late integration methods

versatile in choosing the best clustering algorithm that best fits the structure each

view.

COCA [148] is a late integration method used to study how different tumor tissues

can share the same genomic signatures. The study consisted in clustering 12 cancer

types by using pan-cancer TCGA data. First, each view is clustered separately into

cv clusters, then the ith sample of the vth view M :,i
v is encoded by a binary vector

pv
i ∈ Rc×1, where pvi (j) = 1 when j corresponds to the cluster that the ith sample

is assigned to, otherwise the entries are 0. Then, for each sample the binary vectors

from each view are concatenated together forming the binary matrix B ∈ Rb×n, where

b =
∑V

v=1 c
v . The binary matrix B is then clustered using consensus clustering [149]

which will give the final overall clustering assignment of the samples.

Late integration methods that use soft clustering other than hard cluster assignments

have been studied. One such example is [150], where Probabilistic Latent Semantic

Analysis (PLSA) [151] is used to generate soft cluster assignments from the consensus

binary matrix B.

Another late integration method is PINS [152]. It takes into account a binary con-

nectivity matrix for each view Cv ∈ Rn×n, where Ci,j
v = 1 when sample i (M :,i

v ) and

sample j (M :,j
v ) are connected in the vth view. Then the connectivity matrices of each

view Cv are averaged together to form a single connectivity matrix representing an

integration of the clustering assignments of each view. The integrated connectivity

matrix is subsequently clustered using different methods chosen on the basis of how

much they agree with each other.

2.3.5 Statistical Modelling Based

Statistical methods rely on modelling the probability distribution of the data. The

most applied intermediate integration method that is based on statistical modeling

is iCluster [153].

iCluster assumes that each view of the data Mv is generated from a shared low-

dimensional latent representation Z ∈ Rc×n. Each view is modelled as Mv = WvZ +

Nv, where Wv ∈ Rpv×c is a view specific projection matrix, c is the number of clus-

ters and Nv is a noise matrix which is normally distributed. iCluster maximises the

negative log likelihood of the data with an additional sparsity inducing l1 norm reg-

ularizer on the projection matrices. The optimisation problem is solved using the

EM algorithm to solve for the Wv and Z. Then the shared low-dimensional latent

representation Z is clustered using k-means clustering to obtain the final clustering
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solution.

2.3.6 Similarity Based

Similarity based methods use sample similarities to cluster data. In this type of

multi-view clustering methods the sample similarities are determined for each view

separately then the similarities are integrated. Different methods in this category

integrate the view specific similarities in different ways. Three main methods have

been developed using this kind of approach: 1) Spectral clustering based methods.

2) Similarity Network Fusion (SNF) [154]. 3) regularized Multiple Kernel Learning

Local Preserving Projections (rMKL-LPP) [155].

Spectral Clustering Based Methods

They are generalizations of the well known spectral clustering method [156]. Single-

view spectral clustering optimizes the following objective function: argmaxU tr(UTΦU)

s.t UTU = I, where Φ ∈ Rn×n is the Laplacian matrix and U ∈ Rn×c is a matrix of

the low-dimensional representation of the samples, and c is the number of clusters.

The solution for this optimization problem is the c largest eigenvectors of Φ which

are concatenated to form the matrix U . Then matrix U is clustered using k-means

clustering to find c different clusters.

Authors in [56] generalized the spectral clustering objective function to work on mul-

tiple views. They propose two different objective functions with different regulariza-

tions. The first regularizes the eigenvectors of each view to be similar to a consensus;

the second regularizes them to be similar to each other. The first objective function

is as follows: argmaxUv∀v,U∗
∑V

v=1 tr(UT
v ΦvUv) +

∑V
v=1 λvtr(UvU

T
v U

∗U∗T ) s.t UT
v Uv =

I ∀v;U∗,TU∗ = I. This objective function tries to balance the individual spec-

tral clustering objective and the correlation of the eigenvectors of each view U v

with the consensus eigenvectors U∗ ∈ Rn×c. The second objective function has

the same spectral clustering objective as the first term but regularizes it as follows:∑
∀v 6=m tr(UvU

T
v UmU

T
m) .This objective function regularizes the eigenvectors of each

view to be correlated with each other.

Authors in [157], instead of separately finding the latent low-dimensional represen-

tation of each view (as [56]), they optimize a single shared latent space between all

views. The objective function is: argmaxU
∑V

v=1 tr(UTΦvU) s.t UTU = I. It is the

same as applying spectral clustering on the sum of the Laplacian matrices of each

view
∑V

v=1 Φv. Then, the resulting clusters are improved by assigning samples to

clusters in a greedy fashion while aiming to optimize the normalized cut objective

function.
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Similarity Network Fusion

SNF [154] is a similarity based multi-view clustering method. This method initially

constructs a network for each omic where the nodes correspond to samples. Then,

Wv the similarity of each network is computed. Afterwards, the iterative network

fusion step updates each Wv using knowledge from other networks, with the aim to

make them more similar to each other at each iterative step. At the end of the iter-

ative procedure the networks are averaged together to get a final network. The final

network is then clustered using spectral clustering.

In [154] SNF was used to detect cancer subtypes in five different TCGA cancer

datasets, with each cancer type having three measured molecular features: mRNA

expression, DNA methylation and miRNA expression.

rMKL-LPP

rMKL-LPP introduced in [155] takes the multiple kernel learning problem for data

integration and augments it to reduce the dimensionality of the data. The multiple

kernel learning problem integrates different kernel by learning the coefficients of their

linear combination. Different kernels here are the sample similarity matrices of each

view. rMKL-LPP reduces the dimensionality of the data into a shared representation

that maintains the sample similarities of each view. Then, k-means clustering is

applied in the learnt lower dimensional space to find sample partitions. In [155]

rMKLLPP is used on five TCGA cancer datasets, and it shows that the obtained

clusters have significantly different survival times.

2.3.7 Joint Dimensionality Reduction Based

Joint dimensionality reduction based multi-view methods assume that the views of

the data are each generated from a shared low-dimensional representation. Thus, the

aim of these methods is to find a shared latent representation between all the views.

In doing so, the learnt representation would combine complementary information that

is present within the different views. The general model of learning a shared latent

representation is introduced by [158].

In [158] the low-dimensional projections Zv ∈ Rrv×n ( rv << p, ∀v) of each view Mv

are assumed to be given beforehand, and the aim of their work is to devise a general

framework to find a shared low-dimensional representation Z∗ ∈ Rr×n. The general

framework is:

argmin
Z∗,F

V∑
v=1

λvl(Zv, fi(Z
∗)).

Where {λv}Vv=1 is a set of non-negative weights, l is a distance function, and F =

{fv}V1 is a set of functions that map Z∗ to Zv. The aims to find an optimal shared

46



latent space Z∗ and the mapping functions fv. Then, multi-view clustering is achieved

by using a single-view clustering method on the optimal shared subsapce Z∗. Authors

in [158] derived an algorithm to optimize the aforementioned general framework when

using the well known Euclidean distance function; giving the multi-view subspace

learning framework:

argmin
Z∗,B

V∑
v=1

λv||Zv −BvZ
∗||2F .

Where {Bv ∈ Rrv×r}Vv=1 is the set of linear transformations that transform the dimen-

sionality of the low-dimensional representations of each view Zv to the same space of

the shared low-dimensional subspace.

Several multi-view subspace learning based methods have been introduced in the

literature; we will review below the most relevant ones.

Canonical Correlation Analysis (CCA)

CCA is the earliest of multi-view subspace learning methods. It is regarded as

the multi-view version of PCA. Given a dataset with two views; M1 ∈ Rp1×n and

M2 ∈ Rp2×n, the aim of CCA is to find two projection directions w1 ∈ Rp1 and

w2 ∈ Rp2 , so that the correlation of the projection of each view is maximised; the

projection directions are called canonical transformations, and the projections are

called canonical variates. The first canonical variate of the first view is z1 = M1
Tw1

and that of the second view is z2 = M2
Tw2. CCA seeks to maximise the correlation

coefficient ρ of both view:

ρ =
zT1 z2

||z1||2||z2||2
=

wT
1 C12w2√

(wT
1 C11w1)(wT

2 C22w2)
,

where Cij = MiMj
T is the cross-covariance matrix between view i and j. w1 and w2

are the directions that give the maximal correlations between the views. Then, the

kth pair of projected directions wk
1 and wk

2 are found, so that the corresponding pair

of canonical variates M1
Twk

1 and M2
Twk

2 are maximally correlated, given that wk
1

and wk
2 are orthogonal to wk−1

1 and wk−1
2 respectively. ρ is invariant to the scaling of

the canonical transformations w1 and w2, thus they are normalised, with the result

that the variance of the first canonical variates are equal to one. The CCA objective

function can be written as:

argmax
w1,w2

wT
1 C12w2

s.t wT
1 C11w1 = 1, wT

2 C22w2 = 1.
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applying the Lagrange multiplier techniques on the previous problem one can solve

for w1 and w2 by solving a generalized eigenvalue problem each. Solution for w1 is:

C12(C22)−1C21w1 = ηC11w1. (2.27)

where η is the eigenvalue corresponding to w1. Solution for w2 is:

C21(C11)−1C12w2 = ηC22w2. (2.28)

w1 and w2 are the first eigenvectors of problems 2.27 and 2.28, The steps to obtain

the generalized eigenvalue problems 2.27,2.28 are shown in the Appendix. Note that

this method works only if covariance matrices C11 and C22 are non-singular. This

assumption will not be true if the multi-view data is high-dimensional.

In [55] an extension to CCA to multi-view clustering is introduced. Their work utilizes

CCA to find a subspace that is spanned by the means of the mixture components

generating the views. This subspace has a special property: when data is projected

onto it, the means of the mixing distributions will be well separated, and the data

within the same generating mixture will be closer than the original space. To this

extent, in [55] the projected data onto the obtained subspace is clustered using a

single-view clustering algorithm. Moreover, their algorithm for finding the subspace

boils down to computing the top left singular vectors of the cross-covariance matrix

C12. Then, to find the shared latent representation, the data in the first view is

projected onto the computed left singular vectors.

CCA can only take into account two views, extensions of CCA have been formulated

to take into account multiple views.

Multi-View CCA

A direct extension of CCA is Multi-view CCA (MCCA). MCCA is able to analyze

the linear relationships between V different views. The objective of MCCA is to find

a set of canonical transformations {wv}Vv=1 that maximise the sum of the correlation

of all pairs of the canonical variates {Mv
Twv}Vv=1. The MCCA objective functions is

expressed as follows:

argmax
{wv}Vv=1

V∑
v=1

V∑
k=1

wT
v Cvkwk

s.t wT
v Cvvwv = 1, for v = {1, 2, ..., V }.

Note that this objective function uses the same concept of CCA showed earlier; how-

ever, it takes into account the correlation of all pairs of canonical variates, therefore
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extending CCA to more than two views. Using the Lagrange multiplier method on the

MCCA objective, we get a multivariate generalized eigenvalue problem (MEP) [159],

show as follows:

Ĉŵ = ΛHŵ. (2.29)

ŵ is a p-dimensional vector (p =
∑

v pv), Ĉ is a block matrix with each (i, j)th bock

being matrix cross-covariance matrix Cij, H and Λ are both block diagonal matrices;

shown as:

Ĉ =

C11 . . . C1V

...
. . .

...

CV 1 CV V

 , ŵ =

w1

...

wV

 , Λ =

λ1Ip1 . . . 0
...

. . .
...

0 . . . λV Ipv

 . H =

C11 . . . 0
...

. . .
...

0 . . . CV V

 ,

Where Ipi is the identify matrix with dimensions pi×pi, and 0 is the zero matrix. The

steps going from the MCCA objective to the MEP is show in the Appendix (A.6).

The main drawback of MCCA is that it only takes into account linear relationships

of the data; therefore fails to model non-linearities in the data. Moreover, it is non-

trivial to find an exact analytical solution to an MCP problem [160]; only approximate

solutions can be found.

Graph Regularized MCCA

The drawbacks of MCCA previously mentioned are addressed by Graph regularized

MCCA (GrMCCA) [52]. To model non-linearities in the data, GrMCCA makes use of

a graph regularizer for every view which induces smoothness over the manifold of each

view. The canonical variates are smoothed over the corresponding Laplacian matrix

of every view Φv. Thus, the graph regularizer for each view is: wT
vMvΦvM

T
v wv. The

GrMCCA objective function combines the sum of the graph regularizers of every view

to the MCCA objective function:

argmax
{wv}Vv=1

V∑
v=1

V∑
k=1

wT
v Cvkwk − η

V∑
v=1

wT
vMvΦvM

T
v wv

s.t wT
v Cvvwv = 1, for v = {1, 2, ..., V }.

(2.30)

The first term in 2.30 induces maximal correlation among all the canonical variates,

and the second term makes sure that all the local geometric structure of the original

data is enforced into the canonical variates.

Similar to MCCA, a MEP is obtained from problem 2.30 by applying the Lagrange

multiplier method. The problem with the MEP is that a global solutions is hard to

find, only an approximation of the global solution is feasible [160]. Therefore, in [52]
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the authors solve this issue by rewriting problem 2.30 in a different form that groups

all the V different constraints. It is rewritten as follows:

argmax
{wv}Vv=1

V∑
v=1

V∑
k=1

wT
v Cvkwk − η

V∑
v=1

wT
vMvΦvM

T
v wv

s.t
V∑
v=1

wT
v Cvvwv = V.

(2.31)

Problems 2.30 and 2.31 are equivalent to each other. However, problem 2.31 can now

be solved using a simple generalized eigenvalue problem which gives a global solution.

To solve problem 2.31 the Lagrange multiplier method is used. The Lagrange function

is:

L({wv}Vv=1, λ) =
V∑
v=1

V∑
k=1

wT
v Cvkwk − η

V∑
v=1

wT
vMvΦvM

T
v wv − λ

( V∑
v=1

wT
v Cvvwv − V

)
.

Where λ is the Lagrange multiplier. The gradient of the Lagrange multiplier function

L({wv}Vv=1, λ) with respect to a specific wv is:

δL
δwv

= 0; 2
V∑
k=1

Cvkwk − 2ηMvΦvM
T
v wv − 2λCvvwv = 0,

this gives V different equations:

V∑
k=1

Cvkwk − ηMvΦvM
T
v wv = λCvvwv. ∀v (2.32)

Now the V equations can be rewritten in terms of block matrices as: Ĉ11 . . . C1V

...
. . .

...

CV 1 ĈV V


w1

...

wV

 = λ

C11 . . . 0
...

. . .
...

0 . . . CV V


w1

...

wV

 . (2.33)

Where Ĉvv is:

Cvv − ηMvΦvM
T
v .

Now problem 2.33 is a generalized eigenvalue problem. The concatenated canonical

transformation vectors are the eigenvectors of the generalized eigenvalue problem 2.33

corresponding the eigenvalue λ. Therefore, we choose a set of r eigenvectors {ŵi}ri=1

corresponding to the r largest eigenvalues of problem 2.33, where ŵT = (wT
1 , ...,w

T
V ) is

the concatenated vector of canonical transformations of each view. Now the projection
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matrices for each view are constructed as: P v = (wv
1, ...,w

v
r) for v = {1, 2, ..., V }.

Once the projection matrices are constructed each view can be projected onto its

r-dimensional subspace as Zv = Pv
TMv. Now that the r-dimensional projections are

found the shared latent subspace is constructed by summing all the projections as:

Z∗ =
∑V

v=1 Zv.

Non-Negative Matrix Factorization Based

The aim of Non-negative Matrix Factorization (NMF) is to decompose the input

data matrix into a low rank matrix constructed by the product of two non-negative

matrices. NMF is based on the following objective function:

argmin
P,Q

||M − PZ||2F ,

s.t P ≥ 0, Z ≥ 0,
(2.34)

where P ∈ Rp×r is a non-negative basis matrix and Z ∈ Rr×n is the non-negative low-

dimensional representation of the input data matrix. Note that the product PZ gives

and r rank matrix. Moreover, the NMF objective function is solved by alternating

updates between P and Z, with multiplicative update rules that ensure that both

P and Z remain non-negative [161]. After the low-dimensional representation Z is

found any traditional clustering method can be used to partition the samples.

An extension to the standard single-view NMF model is Multi-NMF [51]. It applies

NMF to each view (Mv) and then integrates all the low-dimensional representations

(Zv) by inducing similarity to a consensus matrix (Z∗). Multi-NMF minimizes the

following objective function:

argmin
{Pv ,Zv}Vv=1

V∑
v=1

||Mv − PvZv||2F + λv||Zv − Z∗||2F

s.t Pv, Zv, Z
∗ ≥ 0,

(2.35)

where Z∗ ∈ Rr×n is the shared low-dimensional representation or consensus matrix

of the multi-view data. Single-view clustering techniques are then applied on the

consensus matrix to obtain sample partitioning. λv are mixture coefficients to weight

the effect of each view on the shared latent representation.

The problem with this type of factorized model is that the objective function is

non-convex, therefore only sub-optimal solutions can be obtained. Moreover, the

non-linear structure of the data is ignored as problem 2.35 only models the linear

structure of the data.
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Convex Multi-View Subspace Learning

All previously mentioned multi-view clustering methods, except for LRACluster are

based on non-convex objectives. This means that optimization procedure for those

methods do not reach a global optimum, and the solution obtained is highly vari-

able and depends on the initialization of the algorithm. Convex Multi-view Subspace

Learning (CMSL) [162] is a convex formulation of dimensionality reduction. CMSL

objective stems from CCA; it devises a convex variation of it. CMSL solves for a

shared latent low-dimensional representation Z∗ using a convex objective function.

After Z∗ is found, single-view clustering can be applied to it. This method just like

CCA can only take into account two views of the data.

Another convex multi-view subspace learning method is Convex Subspace Represen-

tation Learning (CSRL) [163]. CSRL can take into account multiple data views.

CSRL minimizes a convex formulation of the general multi-view subspace learning

framework with an additional regularizer:

argmin
Z∗,{Bv}Vv=1

V∑
v=1

λv||Zv −BvZ
∗||2F + ||Z∗||1,2. (2.36)

Where ||Z∗||1,2 is the l1,2 norm of Z∗, it is the sum of the l2 norms of the rows of Z∗;

defined by: ||Z∗||1,2 =
∑r

i=1 ||Z∗i,:||2.

Both CMSL and CSRL are convex methods that can be solved using optimizers

converging to global solutions. However, both these methods fail to model the intrinsic

non-linearities present in the data.

2.4 Literature Review Summary

In this chapter we have reviewed the different methods of outlier detection, graph

regularized linear low rank methods, and multi-view clustering methods. Before mov-

ing onto the proposed subspace learning methods and their applications on genomic

datasets and multi-omic datasets, we introduce as background the gradient based

methods used to solve the robust subspace methods; RPCA and OP.
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Chapter 3

Gradient Based Methods

This chapter introduces the gradient based methods used in this thesis, in addition

to relevant background that motivates and leads to each method. Proximal gradient

methods and dual methods arise during the thesis as optimization algorithms. Prox-

imal gradient methods are used by Xu et al. [3] to optimize OP, and Candès et al. [2]

to optimize RPCA. Dual methods are used by Shahid et al. [58] to optimize RPCAG,

and will be used to optimize our proposed methods: GOP and CGRMSL.

Proximal gradient methods are part of the family of first-order optimization methods,

which date back to the 1950’s. However only recently there has been renewed interest

in them in the field of large scale optimization. This is due to the simple computation

of only first-derivatives, in contrast to second order optimization methods where the

computational expense becomes too high in large scale problems due to the compu-

tation of the Hessian matrix,(∇2f(x)).

We will first present the simpler gradient descent method to set the path for the more

elaborate proximal gradient methods. Then we will put into picture the general form

of the proximal gradient method and its accelerated version known as accelerated

proximal gradient method. After introducing the general form of both methods we

will introduce the accelerated proximal gradient algorithm used to solve the Outlier

Pursuit problem.

Dual methods are also gradient based optimization methods that use gradient ascent

to optimize the dual problem. We will provide background about the dual ascent

method and the augmented Lagrangian method, which will serve as precursors to the

Alternating Direction Method of Multipliers (ADMM). ADMM will be then used in

later chapters to optimize our proposed methods of GOP and CGRMSL.
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Figure 3.1: red line represents quadratic approximation at point x and blue line
represents f(y),

3.1 Gradient Descent

Consider the unconstrained smooth convex optimization problem:

min
x

f(x), (3.1)

where f is convex and differential with x ∈ Rn. The gradient descent algorithm is as

follows:

Algorithm 1 Gradient Descent

1: choose initial value as x0 ∈ Rn

2: xk+1 = xk − t∇f(xk)

3: repeat until convergence

where k is the iteration index and t is the step size. Note that any initial point will

give a global solution, because f is a convex function, this statement will be untrue

if f was non-convex.

Gradient descent can be interpreted as choosing xk+1 as the minimum of a quadratic

approximation at xk. Moreover, consider the Taylor expansion around a point x by

replacing the usual ∇2f(x) by 1
t
I, where I is the identity matrix,

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
||y − x||22,

here the term f(x) +∇f(x)T (y − x) can be seen as a linear approximation term of

f , and the term 1
2t
||y− x||22 is seen as a proximity term to x with weight 1

2t
. Now by

choosing next point xk+1 as x+ and x as current point xk, the next point x+ can be
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chosen to be the minimizer of the quadratic approximation as shown in Figure 3.1

and is defined by the following minimization problem:

x+ = argmin
y

f(x) +∇f(x)T (y − x) +
1

2t
||y − x||22. (3.2)

The parameter t in the previous equation sets the step size of gradient descent, choos-

ing the correct step size is of crucial importance in first order optimization algorithms

such as gradient descent and proximal gradient methods. One way to tackle this prob-

lem, is to have an extra assumption on the function f , this assumption is that ∇f is

Lipschitz continuous with Lipschitz constant L > 0. The Lipschitz constant needs to

satisfy the following inequality

||∇f(x)−∇f(y)||2 ≤ L||x− y||2 ∀x,y.

With this additional assumption on f , gradient descent with fixed step size t ≤ 1/L

satisfies,

f(xk)− f ∗ ≤ ||x
0 − x∗||22
2tk

, (3.3)

where f ∗ is an optimal solution to 3.1 and f(xk) is the value of f at iteration k. From

inequality 3.3 we can say that gradient descent has a convergence rate of O(1/k).

Inequality 3.3 can be easily proved through the convergence analysis by taking into

account the Lipschitz assumption and the convexity of f , outline of proof can be

found in [164].

3.2 Proximal Gradient Descent

Proximal gradient methods solve the following unconstrained problem with the ob-

jective function split into two components:

minimize
x

f(x) = g(x) + h(x), (3.4)

where g is a scalar function g : Rn → R, that is convex and differentiable with x ∈ Rn.

h is also a scalar function that is convex and possibly non-differentiable. In the case

were g and h are differentiable, then f would also be differentiable, the gradient

descent update would be used to solve 3.4 (recalling the motivation of the gradient

descent update that is to minimize the quadratic approximation of f around x as

shown in equation 3.2). In our case f is not differentiable, however g is differentiable,

the idea of proximal gradient descent is to have a quadratic approximation on g

55



around x and keeping h unchanged. The update would be,

x+ = argmin
y

g(x) +∇g(x)T (y − x) +
1

2t
||y − x||22 + h(y) (3.5)

by ignoring the constant terms the minimization problem 3.5 can be rewritten as,

x+ = argmin
y

1

2t
||y − (x− t∇g(x))||22 + h(y). (3.6)

The first term in equation 3.6 ( 1
2t
||y − (x− t∇g(x))||22) can be interpreted as a term

that induces the solution to stay close to the gradient update of g and the second

term being h(y) induces the minimization of h.

Before defining proximal gradient descent we need to define the proximal mapping or

sometimes called the proximal operator. It is defined as,

proxht (x) = argmin
y

1

2t
||x− y||22 + h(y) (3.7)

where proxht is the proximal operator of the function h with parameter t. Then the

proximal gradient descent algorithm is as follows:

Algorithm 2 Proximal Gradient Descent

1: choose initial value as x0 ∈ Rn

2: xk+1 = proxh
tk

(xk − tk∇g(xk))

3: repeat until convergence

It has been proved by the convergence analysis of the proximal gradient descent

in [165] that proximal gradient descent with fixed step size t ≤ 1/L satisfies the

following inequality

f(xk)− f ∗ ≤ ||x
0 − x∗||22
2tk

. (3.8)

Which shows that proximal gradient descent has a convergence rate of O(1/k), the

same as gradient descent.

However, the convergence rate can still be improved to an optimal convergence rate by

adding a momentum term that is cleverly chosen, this approach is called accelerated

proximal gradient which will be introduced in the next section.

3.3 Accelerated Proximal Gradient (APG)

Accelerated Proximal Gradient(APG) descent is an efficient algorithm used to solve

the unconstrained problem 3.4; it has an optimal convergence rate of O(1/k2), and
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the only difference from the normal proximal gradient method is that the proximity

operator update is not applied to x but it is applied to a cleverly chosen intermediate

variable. The general algorithm for APG is as follows,

Algorithm 3 Accelerated Proximal Gradient (General form)

1: choose initial value as x0 = x−1 ∈ Rn, t0 = t−1 = 1

2: repeat until convergence the following

3: set vk = xk + tk−1−1
tk

(xk − xk−1)

4: set xk+1 = proxh
tk

(vk − tk∇g(vk))

5: choose tk+1 satisfying

(tk+1)2 − tk+1 ≤ (tk)2 (3.9)

In the smooth setting when h is equal to zero in 3.4, Nesterov [166] introduced an

algorithm that has only one gradient evaluation per iteration, using only an interpo-

lation strategy to achieve a convergence rate of O(1/k2). After some years, Beack

and Teboulle [167] extended Nesterov’s algorithm in [166] to solve the general non-

smooth problem 3.4 when h is non-differentiable. They have shown that APG has

the following convergence,

f(xk)− f ∗ ≤ 2||x0 − x∗||22
t(k + 1)2

. (3.10)

This proves the convergence rate of APG being O(1/k2). For fastest convergence the

sequence tk needs to increase as fast as possible [132]. The choice tk = k+2
k

satisfies

inequality 3.10. An alternative is to change the inequality in 3.9 to an equality and

solve for tk+1 yielding,

tk+1 =
1 +

√
1 + 4(tk)2

2
, (3.11)

and is used in [167].

Here we have introduced the general formulation of APG. In the next section we will

introduce the APG algorithm for Outlier Pursuit. We can express its optimization

problem as in 3.4 with a convex, smooth part f and convex, non smooth g. Moreover,

Outlier Pursuit has a nice closed form solution for its proximity operator that is

computationally non-expensive.
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3.4 APG for Outlier Pursuit

In the Outlier Pursuit problem the function that is needed to be minimized is the

objective function of 2.15

µ||L||∗ + µλ||C||1,2︸ ︷︷ ︸
h(L,C)

+
1

2
||(L+ C)−M ||2F︸ ︷︷ ︸

g(L,C)

, (3.12)

notice that h in this case is a function on an ordered pair h : Rn×m × Rn×m → R
that is separable, with h(L,C) = h1(L) + h2(C). It is known form the separable sum

property of proximal operators that the following is true

proxh(L,C) =
(
proxh1(L), proxh2(C)

)
.

With this property we can solve with respect to L and C independently as

f(L) = µ||L||∗︸ ︷︷ ︸
h1(L)

+
1

2
||(L+ C)−M ||2F︸ ︷︷ ︸

g(L)

, assuming C is constant (3.13)

f(C) = µλ||C||1,2︸ ︷︷ ︸
h2(C)

+
1

2
||(L+ C)−M ||2F︸ ︷︷ ︸

g(C)

. assuming L is constant (3.14)

Note that the derivative of g(L,C) with respect to L keeping C constant (∇Lg(L,C)),

and the derivative of g(L,C) with respect to C keeping L constant (∇Cg(L,C)), are

both equal to each other and are equal to (L+C−M). Now we can start by defining

the proximal gradient update for problem 3.13. We know that∇Lg(L,C) = L+C−M
the proximal update step becomes

L+ = proxh1t
(
L− t(L+ C −M)

)
, (3.15)

the proximity function of h1 replaced by h1 = µ||L||∗ is

proxh1
t (L) = argmin

Y

1

2t
||L− Y ||2F + µ||Y ||∗. (3.16)

The proximity function 3.16 has closed form solution being proxh1
t (L) = Dµt(L) (this

is proved in the Appendix). Where Dµt(L) is the singular value soft thresholding

operator applied to L. Where Dµt(L) is

Dµ(L) = Uξµ(Σ)V T , (3.17)
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where L = UΣV T is the SVD of L, and ξµ(Σ) is the soft-thresholding operator applied

to the diagonal elements of Σ with parameter µ

Σi,i := max
(
Σi,i − µ, 0

)
. (3.18)

The proximal gradient update of 3.13 can now be expressed as

L+ = Dµt
(
L− t(L+ C −M)

)
. (3.19)

Next, to compute the proximal gradient update to minimize 3.14 we need to find the

proximity operator of h2 = µλ||C||1,2, which is given by

proxh2
t (C) = argmin

Y

1

2t
||C − Y ||2F + µλ||Y ||1,2. (3.20)

This also has a closed form solution, proxh2
t (C) = Cµλt(C), where Cµλt(C) is the

column-wise soft-thresholding operator (it is applied to each column of C) with pa-

rameter µλt. Its general form with parameter t, Ct(C), is defined as:

C:,i :=

[
0 if ||C:,i|| ≤ t

C:,i − t C:,i

||C:,i||2 if ||C:,i||2 > t
, (3.21)

where C:,i is the ith column of C, (Refer to Appendix for derivation). Now the

Proximal gradient update to minimize 3.14 becomes

C+ = Cµλt
(
C − t(L+ C −M)

)
. (3.22)

The APG algorithm for the Outlier Pursuit problem becomes as follows
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Algorithm 4 Accelerated Proximal Gradient (Outlier Pursuit)

input: M ∈ Rm×n ,λ, δ,µ0,η

1: choose initial value of C0, C−1, L0, L−1 ∈ Rm×n; t0, t−1 ← 1;

µ̄← δµ0

2: repeat the following until convergence

3: set V k
L = Lk + tk−1−1

tk
(Lk −Lk−1) ; V k

C = Ck + tk−1−1
tk

(Ck −Ck−1)

4: set

5: Lk+1 = Dµktk
(
V k
L + tk(V k

L + V k
C −M)

)
;

6: Ck+1 = Cµkλtk
(
V k
C + tk(V k

L + V k
C −M)

)
7: µk+1 = max

(
ηµk, µ̄

)
8: choose tk+1 satisfying

(tk+1)2 − tk+1 ≤ (tk)2 (3.23)

output: L̂ = Lk, Ĉ = Ck when k is last iteration.

Algorithm 4 is different from the general APG formulation in that it has an added

step 7, which performs a continuation technique that has been previously employed

by other studies [3,168], stating that practically this step greatly reduces the number

of iterations. More precisely the sequence Lk, Ck, generated by Algorithm 4, gets

closer to the optimal solution set of 3.12. Moreover, the smaller the µ̄ the closer is the

solution to the optimal solution set of the linearly constrained Outlier Pursuit problem

that we wished to solve before relaxing linearity 2.13. The same authors [3,168] have

chosen µ0 = 0.99||M ||2,δ ≤ 10−5 from empirical results, stating that it is a good

choice for most practical purposes. Also they claim that the convergence is slow for

η ∈ (0, 0.5); therefore choosing 0.5 < η < 1 is a feasible choice for η (η needs to be

smaller than 1 because the sequence µk needs to be a decreasing sequence.)

3.5 Dual Methods

In this section we provide some useful background to the Alternating Direction

Method of Multipliers (ADMM), by introducing the Dual Ascent method and the

Augmented Lagrangian method. Both these dual optimization algorithms are pre-

cursors to ADMM.
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3.5.1 Dual Ascent Method

Consider the convex optimization problem

minimize
x

f(x)

subject to: Ax = b,
(3.24)

its Lagrangian function is

L(x,u) = f(x) + uT (Ax− b), (3.25)

thus, the dual function is

g(u) = min
x
L(x,u) = −f ∗(−ATu)− bTu, (3.26)

with u being the dual variable, and f ∗ is the conjugate function of f(x) (for detailed

individual steps of equation 3.26 refer to Appendix A.7). Now the dual problem of

3.24 is

maximize
u

g(u). (3.27)

In the dual ascent method, the dual problem is solved using gradient ascent. The

method first finds x+ ∈ argminx L(x,u), then computes the subgradient (not the

gradient because g is assumed to be convex; not strictly convex) of the dual function

δg(u) = Aδf ∗(−ATu) − b . After the gradient is computed, it takes a step towards

the direction of the gradient. A nice property that stems from conjugate functions is

that x ∈ δf ∗(−ATu). Thus, the subgradient is computed by δg(u) = Ax − b; it is

equal to the residual of the equality constraint (this is proved in Appendix A.8). The

dual ascent method for the general problem 3.24 is as follows,

Algorithm 5 Duals Ascent Method

1: start by initializing dual variable u0

and step-size tk > 0.

2: repeat following until convergence

3: xk+1 ∈ argminx f(x) + (uk)TAx

4: uk+1 = uk + tk(Axk+1 − b)

where tk > 0 is the step size. The step 3 is the x-minimization step, and step 4 is the

dual variable update.

A nice property of dual ascent is that if the function f(x) is separable with respect
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to partitioning the input vector x into N separate subvectors xi; meaning

f(x) =
N∑
i=1

fi(xi).

Then the x-minimization step splits into N separate problems that could be solved

in parallel [169]. The disadvantage of dual ascent is that f can not be unbounded

and needs to strictly convex to ensure convergence. These are strong conditions that

are usually not met in many applications. A method that corrects this disadvantage

is the Augmented Lagrangian method.

3.5.2 Augmented Lagrangian Method

The Augmented Lagrangian method was mainly developed to improve on the harsh

convergence assumptions that are required by the dual ascent method. The aug-

mented Lagrangian of problem 3.24 is

Lρ(x,u) = f(x) + uT (Ax− b) +
ρ

2
||Ax− b||22, (3.28)

where ρ is a positive regularization parameter of the penalty term. The augmented

dual function is denoted as gρ(u). The augmented Lagrangian can be seen as the

non-augmented Lagrangian of

minimize
x

f(x) +
ρ

2
||Ax− b||22

subject to: Ax = b.
(3.29)

This problem and problem 3.24 are identical, in the sense that any optimal x would

add a penalty term of zero to the objective. By including the penalty term, it shows

that gρ(u) can now be differentiable under mild conditions on the original problem

3.24. The gradient of gρ(u) can be computed in the same way as the dual ascent

method. That is, by first computing the x-minimization step followed by the dual

variable update. The Augmented Lagrangian method for solving problem 3.24 is

shown in Algorithm 6.

Algorithm 6 Augmented Lagrangian
Method

1: start by initializing dual variable u0

and step-size p > 0.

2: repeat following until convergence

3: xk+1 ∈ argminx Lρ(x,uk)
4: uk+1 = uk + ρ(Axk+1 − b)
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Algorithm 6 is similar to the dual ascent method but with the x-minimization step

on the augmented Lagrangian, and the regularization parameter ρ is used as the step

size. An advantage of the augmented Lagrangian method is that it converges under

much more general conditions than the dual ascent method, such as cases when f is

unbounded and is not strictly convex. A downside of this method is that when the

function f is separable, the augmented Lagrangian Lρ is not separable. Hence, the

x-minimization step cannot be decomposed into separate problems.

3.6 Alternating Direction Method of Multipliers

The Alternating Direction Method of Multipliers (ADMM) is an algorithm that is

designed to combine the decomposability of the dual ascent method with the mild

convergence assumptions of the augmented Lagrangian method. It is an optimization

method that solves problems in the general form of:

min
x,z

f(x) + g(z) subject to : Ax +Bz = c, (3.30)

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m, and c ∈ Rp. We

define the augmented Lagrangian function with parameter p > 0 as

Lp(x, z,u) = f(x) + g(z) + uT (Ax +Bz− c) +
p

2
||Ax +Bz− c||22, (3.31)

where u is the vector of Lagrange multipliers, each element in the vector corresponds

to the Lagrange multiplier for one of the linear constraints. ADMM iterations for the

general problem 3.6.1 is as follows:

Algorithm 7 Alternating Direction
Method of Multipliers (ADMM)

1: choose initial value for variables:

x0, z0,u0, and step-size p > 0.

2: repeat following until convergence

3: xk+1 = argminx Lp(x, zk,uk)
4: zk+1 = argminz Lp(xk+1, z,uk)

5: uk+1 = uk + p(Axk+1 +Bzk+1 − c)

The ADMM algorithm is proven to converge to a global solution for convex objective

functions [169]. In practice, ADMM converges to modest accuracy within a few tens

of iterations; this is sufficient for most problems, including the convex optimisation

ones that will be solved in this thesis.
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3.6.1 Convergence of ADMM

ADMM in Algorithm 7 is called a two-block ADMM because it alternatively updates

two separate blocks of variables. Convergence in the two-block case is guaranteed

when both functions f and g in problem are convex [169], for any step size p > 0. In

the three-block and multi-block case of ADMM, convergence is not always guaranteed

and in some cases diverges, as shown by Chen et al. in [170]. Moreover, Chen et al.

in [170] also proved that the presence of a mild condition guarantees the convergence

of the extension of ADMM to a multi-block form. The general form of a multi-block

ADMM is as follows:

min
xi∀i

N∑
i=1

fi(xi)

subject to:
N∑
i=1

Aixi = b.

(3.32)

The condition proved by [170] is the following.

Condition 1 [170]: Convergence of multi-block ADMM (problem 3.32) is guaranteed

when any two coefficient matrices, Ai, are orthogonal to each other. Therefore, if

N = 3, then if any of the following conditions is true: AT1A2 = I, AT2A3 = I, or

AT3A1 = I, then convergence is guaranteed.

3.7 Summary

In this chapter we have introduced the Proximal Gradient method (PG) and its accel-

erated version APG in their general form; then we have presented the APG algorithm

for Outlier Pursuit. In the next chapter we will introduce our method: Graph regular-

ized Outlier Pursuit (GOP), and how to optimize it using the Alternating Direction

Method of Multipliers (ADMM) [169].
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Chapter 4

Robust Subspace Methods for

Outlier Detection in Genomic Data

Circumvents the Curse of

Dimensionality

In the previous chapters we discussed Outlier Pursuit and how it can be solved al-

gorithmically. However, we need to emphasize that this model does not take into

account the non-linear structure of the data. This is usually a strong drawback when

it comes to real datasets where the samples will most likely lie approximately on a

non-linear subspace, or in other words, a manifold. This can lead to misleading or

unsatisfactory results when it comes to highly non-linear datasets such as Transcrip-

tomic and Protemoic data where features and samples can have complex relationships

between each other.

As we focus on genomic data, which has a highly complex structure, we will incorpo-

rate a term in the objective function of OP, that keeps the convexity of the problem

and also incorporates the complex manifold structure of the input data. Inspired by

work in computer vision by Shahid et al. [58], which added a graph regularization

term to the objective function of RPCA [2] to incorporate the geometric structure of

the data in the recovered low-dimensional space. We introduce in this chapter Graph

regualrized Outlier Pursuit (GOP), where we add a graph regularization term to the

objective function of OP, with the aim to find a low-dimensional representation which

respects the intrinsic geometric structure of the data. The main difference between

the proposed model, GOP, and the sparse model of: RPCAG [58] and RPCA [2], is

that they assumed the error matrix to be sparse, with arbitrary support, meaning

that any entry in the matrix can be non-zero. This corruption model is more intuitive

in an image setting where corruptions are most likely spread all around the image.

However, in the case of genomic data an intuitive corruption model would be for the
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error matrix C to be column sparse; meaning that few samples are heavily corrupted

in most features.

4.1 Introduction

The problem of cancer classification, and identifying clinically relevant tumor sub-

groups are aided by monitoring gene expression [6, 7]. Moreover, gene expression

profiling is one of the key approaches used to find potential biomarkers and thera-

peutic targets for distinct cancer types [8]. However, these large datasets are often

affected by outliers. In common language, outliers are a small fraction of samples

that deviate considerably from other samples in the population. Outliers can arise

from errors in the experimental procedure or can be samples that are functionally

different from the majority of the population. In the former case, they are discarded

to prevent them from affecting downstream statistical analysis [35], and in the latter

case, outliers can be further analyzed to find that they belong to a rare cell type or

to a functionally distinct group of cells [171]. Therefore, machine learning techniques

that are robust to outliers are of great interest, as they will be able to compute models

that are not affected by abnormalities, and will be able to detect outliers. As an ex-

ample, robust regression has been applied recently with much success in [11,12]. This

work shows that in some cases concentration of proteins in yeast cells could be pre-

dicted from mRNA abundance in addition with sequence derived features. Extracted

outliers from their model were recognized as being subject to post-translational mod-

ifications. Another approach for outlier and anomaly detection is to fit a probability

density function on the data. Methods such as Gaussian mixture models and kernel

density estimation have been used by [82,172] to detect novelties in different applica-

tions. However, more recently [173] has discussed that using a mixture of Gaussian

components can overfit a cluster of outliers. This configuration happens frequently

in real settings where the outliers have a high similarity between each other. Using

a single Gaussian component works surprisingly well in practice for outlier detection

tasks [173]. However, probability density fitting methods will break down, if applied

directly to gene expression datasets, because they suffer from high dimensionality, as

their number of features (genes) is much greater when compared to their number of

samples. The problem with high-dimensional datasets is that when the number of

features increases the volume of the space increases in such a rapid manner that the

available samples are not sufficient to get statistically significant results. By reducing

the dimensionality of the data, and keeping the same number of samples it will be

possible to apply statistical techniques to extract useful information. This will solve

the issues caused by the curse of dimensionality. Therefore, it is of great interest to

reduce the dimensionality of gene expression datasets without losing too much useful

biological information. A widely used dimensionality reduction technique is Principal
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Component Analysis (PCA), which showed its importance during the past years in

data analysis, especially on high-dimensional transcriptomic datasets [13]. PCA seeks

to find a low-dimensional subspace that has the smallest least squares reconstruction

error [15]. However, it is known to be heavily affected by outliers in the data. Even in

the presence of one outlier [2,32]. This is mainly because the least-squares error that

is minimized in the PCA objective function has a quadratic term which will amplify

the errors produced by the outliers in the data. This motivated many researchers over

the past years to find formulations of PCA that are robust to outliers. However, many

robust PCA algorithms suffer from two main drawbacks: computational intractabil-

ity and degradation of performance when the dimensionality of the data increases [3].

A robust PCA method that considers these two drawbacks is Outlier Pursuit (OP)

which is introduced by Xu et al. in [3]. OP considers the problem of recovering the

column space of the uncorrupted points and the index of the outlier points that are

present in the data by minimizing a convex objective function. This convexity makes

the problem solvable by simple optimization methods that can find a global minimum

of the objective function. On the contrary, the state of the art Robust PCA methods

are non-convex and optimization methods will converge to local minima. However,

OP does not take into account the inherent manifold structure of the data; this is also

a known drawback of standard PCA. This gives misleading or unsatisfactory results

when it comes to highly non-linear datasets such as Transcriptomic and Proteomic

datasets where features and samples can have complex relationships between each

other.

In this chapter, we focus on gene expression data which will naturally have a highly

complex structure. To solve this issue, we will introduce Graph regularized Outlier

Pursuit (GOP), that has a graph regularization term incorporated in its objective

function 4.1, with the aim to find a low-dimensional representation that respects the

intrinsic geometric structure that the data lives in. In this chapter we will evaluate

how the proposed GOP performs on high-dimensional genomic datasets. It will be

put in context with other methods, such as traditional probabilistic outlier detection

methods that will be negatively affected in high-dimensional spaces, and with tradi-

tional dimensionality reduction techniques for subspace recovery. Results on publicly

available genomic data will show that GOP robustly detects outliers whereas a density

based method fails even at moderate dimensions. Moreover, we will show that GOP

has better clustering and visualization performance on the recovered low-dimensional

representation when compared to popular dimensionality reduction techniques.

This chapter is organised as follows: Section 4.2 introduces GOP and how it can

be solved algorithmically using the ADMM optimization method. Section 4.3, intro-

duces all the outlier detection methods used as a comparison to GOP. These are the

OP algorithm, Gaussian density estimation method, and traditional non-parametric

methods based on robust metrics; the last two are used as a comparing benchmark
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for outlier detection. Section 4.4, shows the practicality of how to detect outliers

using the robust low rank approximation methods of: GOP and OP, and how to tune

the parameters of both methods. Section 4.5, introduces the high-dimensional gene

expression datasets used in this study. Section 4.6, shows the outlier detection results

of all methods. Section 4.7, shows that the outlier detection performance of GOP

is more suitable to high-diemsnioanl genomic datasets as comapred to RPCAG of

Shahid et al. [58]. Section 4.8, shows the convergence of our method, GOP, and OP

on the genomic datasets. 4.9, highlights the importance of our method compared to

other types of outlier detection methods. Finally, we end with concluding remarks in

4.10.

4.2 Graph Regularized Outlier Pursuit

Graph regularized Outlier Pursuit (GOP) is an outlier detection and low-dimensional

subspace recovery method based on structured low rank approximation. GOP in-

corporates in its objective function the intrinsic manifold structure of the data in

the form of a graph. The Graph regularized Outlier Pursuit problem optimizes the

following objective function:

min
L,C
||L||∗ + λ||C||1,2 + α tr(LΦLT ) subject to: M=L+C. (4.1)

The equality constraint in problem 4.1 is a harsh condition to be met exactly, in fact

the solution to problem 4.1 with the ADMM algorithm (Algorithm 8) converges when

||M − L − C||2F ≤ δ (this is one of the convergence criterion of Algorithm 8), where

δ is set to a number in the interval (10−8, 10−6). GOP seeks to find the best linear

embedding of the data that is robust to outliers, while enhancing the embedding

through the graph regularizer. It achieves this by pushing points closer together in

the low-dimensional space if they have high affinity Wi,j in the original input space.

This preserves the intrinsic non-linear structure present in the data while finding the

best robust low rank approximation to the data matrix. To best interpret the function
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of the graph regularization term tr(LΦLT ) we can rewrite it in the following way:

1

2

N∑
i,j=1

||L:,i −L:,j||22Wi,j

=
1

2

N∑
i,j=1

(LT:,iL:,i − 2LT:,iL:,j +LT:,jL:,j)Wi,j

=
1

2

N∑
i,j=1

(2LT:,iL:,i − 2LT:,iL:,j)Wi,j

=
N∑
i=1

LT:,iL:,i

N∑
j=1

Wi,j −
N∑

i,j=1

LT:,iL:,jWi,j

=
N∑
i=1

LT:,iL:,iDi,i −
N∑

i,j=1

LT:,jL:,jWi,j = tr(LDLT )− tr(LWLT )

= tr(L(D −W )LT ) = tr(LΦLT ).

(4.2)

The graph regularization term expressed as 1
2

∑n
i,j=1 ||L:,i −L:,j||22Wi,j can be better

interpreted. This function will impose structure in the recovered low rank matrix

L, in the sense that if two points have high affinity in the original input space the

distance of the corresponding columns in L needs to be small. Moreover, the graph

regularization term would enhance separability of outliers in the L matrix, when this

separable structure is found by the affinity matrix W . We also need to emphasize that

problem 4.1 is a convex problem, and it can be solved using Alternation Direction

Method of Multipliers (ADMM) [169].

We also need to emphasize that GOP is used in this work to detect outlier samples.

However, this method can further be used to detect outlier genes if only all the

matrices in problem 4.1 are transposed. The ADMM algorithm for solving GOP is

shown in the next subsection.

4.2.1 ADMM Algorithm for Solving Graph Regularized Out-

lier Pursuit

To solve GOP using ADMM we need to introduce an auxiliary variable, so that we

can divide the objective function into three separate blocks. We rewrite the GOP

objective function as follows:

min
L,C,Q

||L||∗ + λ||C||1,2 + α tr(QΦQT )

subject to: M = L+ C, L = Q,
(4.3)
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where Q is an auxiliary variable. Now we can define the augmented Lagrangian

function of 4.3:

Lp(L,C,Q,Z1, Z2) = ||L||∗ + λ||C||1,2 + α tr(QΦQT )

+ 〈Z1,M − L− C〉+
p1

2
||M − L− C||2F

+ 〈Z2, Q− L〉+
p2

2
||Q− L||2F .

Where 〈., .〉 denotes the Frobenius inner product of two matrices, if 〈X, Y 〉 then it

is defined as tr(XTY ). Here we need to minimize the augmented Lagrangian with

respect to each of the five variables sequentially. The general form of the ADMM

algorithm to solve GOP is shown in Algorithm 8, where Zk
1 and Zk

2 are the Lagrange

multipliers and k is the iteration index.

Step 4, 5 and 6 of Algorithm 8 have closed form solutions and they are derived in the

following paragraph.

We divide the solution of the augment Largrangian of problem 4.3 by solving three

subproblems sequentially, with each one being the minimization of the augment La-

grangian L with respect to one of the matrix variables: L, C and Q. The three

subproblems are solved in the following order:

1. Lk+1 = argmin
L
L(L,Ck, Qk, Zk

1 , Z
k
2 ),

2. Ck+1 = argmin
C
L(Lk+1, C,Qk, Zk

1 , Z
k
2 ),

3. Qk+1 = argmin
Q
L(Lk+1, Ck+1, Q, Zk

1 , Z
k
2 ).

However, before showing the updates of the primal variables L, C and Q the reader

is reminded about the definition of the proximity operator [174]. The proximity

operator is defined by:

proxh(X) = argmin
Y

h(Y ) +
1

2
||Y −X||2F , (4.4)

where h : Rp × n → R is a convex function that takes as input a matrix with dimensions

p x n and outputs a real valued number. The closed form solutions of the updates

are shown as follows:

1. Updating L (finding Lk+1):

Lk+1 = argmin
L
L(L,Ck, Qk, Zk

1 , Z
k
2 ). Terms that are not related to L are con-
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stants and thus are discarded. This gives us:

Lk+1 = argmin
L
||L||∗ + 〈Zk

1 ,M − L− Ck〉+
p1

2
||M − L− Ck||2F + 〈Zk

2 , Q
k − L〉

+
p2

2
||Qk − L||2F .

= argmin
L
||L||∗ +

p1

2

∣∣∣∣∣∣L− (M − Ck +
Zk

1

p1

)
∣∣∣∣∣∣2
F

+
p2

2

∣∣∣∣∣∣L− (Qk +
Zk

2

p2

)
∣∣∣∣∣∣2
F
.

= argmin
L

||L||∗
p1 + p2

+
1

2

∣∣∣∣∣∣L− p1R
k
1 + p2R

k
2

p1 + p2

∣∣∣∣∣∣.
= prox ||L||∗

p1+p2

(
p1R

k
1 + p2R

k
2

p1 + p2

),

where Rk
1 = M − Ck +

Zk1
p1

and Rk
2 = Qk +

Zk2
p2

. The proximity operator of the

nuclear norm function is the singular value soft-thresholding operator as derived

in Appendix A.2, which is defined as Dε(X) = Uξε(Σ)V T , where X = UΣV T

is the SVD of X, and ξε(Σ) is the soft-thresholding operator on the diagonal

elements of Σ (as expressed in equation 3.18), with parameter ε. Now let H =
p1Rk1+p2Rk2
p1+p2

and p = p1+p2
2

. The update for Lk+1 becomes

Lk+1 = D 1
p
(H) = Pξ 1

p
(Ω)W T ,

where H = PΩW T is the SVD of H.

2. Updating C:

Using the same procedure as done before we have,

Ck+1 = argmin
C

λ||C||1,2 + 〈Zk
1 ,M − L− C〉+

p1

2
||M − L− C||2F .

= argmin
C

λ

p1

||C||1,2 + ||C − (M − L+
Zk

1

p1

)||2F .

= prox λ
p1
||C||1,2(M − L

k+1 +
Zk

1

p1

).

The proximity operator of the ||C||1,2 function is the column-wise soft-thresholding

operator as derived in Appendix A.1. Which is defined by ζε(C), such that if

||C:,i||2 ≤ ε set C:,i = 0, otherwise set C:,i = C:,i − ε · C:,i/||C:,i||2. Now the

update for Ck+1 becomes

Ck+1 = ζ λ
p1

(M − Lk+1 +
Zk

1

p1

).
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3. Updating Q:

Qk+1 = argmin
Q

γ tr(QΦQT ) + 〈Z2, Q− L〉+
p2

2
||Q− L||2F .

= argmin
Q

γ tr(QΦQT ) +
p2

2
||Q− (Lk+1 − Zk

2

p2

)||2F .

This is a differentiable and convex function; thus finding the first derivative and

equating it to zero finds a closed form solution for Qk+1:

Qk+1 = p2(Lk+1 − Zk
1

p2

)(αΦ + p2I)−1. (4.5)

Algorithm 8, although it is a 3-block ADMM it is guaranteed to converge because

it satisfies Condition 1 (In section 3.6.1). When problem 4.3 is compared to the

general from of multi-block ADMM 3.32, it is seen that it has coefficient matrices

A1,A2,A3 = I. This means that any two coefficient matrices are orthogonal to each

other, which satisfies Condition 1 (Section 3.6.1).

Algorithm 8 Alternating Direction Method of Multipliers (Graph
Regularized Outlier Pursuit)

input: M ∈ Rm×n ,λ,α, Φ, p1 = 1, p2 = 1

1. Initialise L0, C0, Q0 to random matrices.

2. Z0
1 = M − L0 − C0 and Z0

2 = Q0 − L0.

3. repeat following until convergence

4. Lk+1 = argmin
L
L(L,Ck, Qk, Zk

1 , Z
k
2 )

5. Ck+1 = argmin
C
L(Lk+1, C,Qk, Zk

1 , Z
k
2 )

6. Qk+1 = argmin
Q
L(Lk+1, Ck+1, Q, Zk

1 , Z
k
2 )

7. Zk+1
1 = Zk

1 + p1(M − Lk+1 − Ck+1)

8. Zk+1
2 = Zk

2 + p2(Qk+1 − Lk+1)

output: L̂ = Lk, Ĉ = Ck when k is last iteration.
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4.3 Comparing Methods

4.3.1 Outlier Pursuit

Recalling that our input data matrix M ∈ Rp×n has n samples arranged in columns

with each sample having p features, M = [M:,1,M:,2, ...,M:,n]. Where M:,i ∈ Rp

denotes the ith column of matrix M . We consider the outliers to be fully corrupted

columns. The OP objective is to decompose the data matrix M as M = L + C,

where L is a low rank matrix and C is a column sparse matrix which has a small

fraction of its columns that are non-zero. This method is modelling outlier samples

as the non-zero columns in C, where they are considered the corrupted points of the

data matrix. Moreover, OP models the uncorrupted column space that needs to be

recovered as the column space of the low rank matrix L. OP introduced by [3] seeks

to minimize the following function:

min
L,C
||L||∗ + λ||C||1,2 subject to: M=L+C, (4.6)

where ||L||∗ is the nuclear norm of L and it is defined as the sum of its singular values.

||C||1,2 is the sum of the l2 norm of the columns of C. λ is a regularization parameter

which needs to be tuned; this will be addressed in Subsection 4.4.1. Problem 4.6

is convex, thus it is efficiently solved using first order optimization methods. The

algorithm to solve this problem is given in Algorithm 9,

Algorithm 9 Accelerated Proximal Gradient (Outlier Pursuit)

input: M ∈ Rp×n, λ, δ = 10−5, η = 0.9, µ0 = 0.99||M ||F .

1. choose initial value of C0, C−1, L0, L−1 ∈ Rp×n; t0, t−1 ← 1; µ̄← δµ0

2. repeat the following until convergence

3. Y k
L = Lk + tk−1−1

tk
(Lk − Lk−1) ; Y k

C = Ck + tk−1−1
tk

(Ck − Ck−1);

4. (U, S, V ) = svd
(
Y k
L + 1

2
(Y k

L + Y k
C −M)

)
;

5. Lk+1 = Uξµk
2

(S)V T ;

6. Ck+1 = ζµkλ
2

(
Y k
C + 1

2
(Y k

L + Y k
C −M)

)
7. µk+1 = max

(
ηµk, µ̄

)
8. tk+1 =

1+
√

4t2k+1

2
; k + +

output: L̂ = Lk, Ĉ = Ck when k is last iteration.
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where Lk stands for L at iteration k, and ||M ||F is the Frobenius norm of matrix

M defined by ||M ||F =
√∑n

i=1 ||M:,i||22. In step 5, ξµk
2

(S) is the soft-thresholding

operator, which acts on the diagonal elements of S (as expressed in equation 3.18),

with parameter µk

2
. Furthermore, step 6, ζµkλ

2

(C) is the column wise soft-thresholding

operator of C (expressed in equation 3.21), with parameter µkλ
2

.

4.3.2 Outlier Pursuit Algorithm

We have already introduced OP (problem 4.6) in Section 3.4 and how it can be

solved using the Accelerated Proximal gradient (APG) method (Section 3.4), which

benefits from an optimal convergence rate of O(1/k2) [175] (where k is the number

of iterations). APG method is the accelerated version of the more general Proximal

Gradient method which has a convergence rate of O(1/k). The improvement in

convergence rate is achieved by the momentum steps devised by [166, 167, 175], in

steps 3 and 8 of Algorithm 9 (refer to Section 3.3).

4.3.3 Detecting Outliers with Gaussian Density Estimation

As a benchmark method for outlier detection we will fit a single Gaussian density

to the data. We choose a single Gaussian density instead of a mixture of Gaussian

densities to detect outliers, as the latter is known to overfit a cluster of closely knit

outliers, which will make them hard to detect [173]. The single Gaussian density

estimation method models the dataset to be normally distributed about its means

in the form of a multivariate Gaussian distribution. The probability distribution

function is described as follows:

f(x) =
1

(2π)m/2|Σ|
exp

[
− 1

2
(x− µ)Σ−1(x− µ)

]
, (4.7)

where |Σ| denotes the determinant of the covariance matrix, µ is the m-dimensional

sample mean vector, and Σ is the m×m sample covariance matrix. The term in the

exponential is half the squared Mahalanobis distance of the sample x to the mean µ.

The Mahalanobis distance can be used as the outlier score of each observation x and

it is computed as follows:

MD(x,µ,Σ) =
√

(x− µ)TΣ−1(x− µ). (4.8)

Then the Gaussian density estimation method for outlier detection consists of finding

the Mahalanobis distance to the sample mean for each observation in the dataset.

Then the points that have the highest distance will have the lowest likelihood f(x)

and these samples are considered to be outliers. The Mahalanobis distance to the
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mean has shown promising results in intrusion and outlier detection by [176] and [75].

4.3.4 Traditional Outlier Detection Methods

Methods such as Median Absolute Deviation (MAD) and Boxplot (BP) have been

applied successfully to gene expression datasets to detect outliers [35]. Such methods

are non-parametric and can detect outliers in absence of any assumptions about the

distribution of the data. BP method needs to find the lower quartile (25th percentile)

and the upper quartile (75th percentile) of a specific sample which consists of a

collection of gene expressions. Outlier genes of a specific sample are the data points

that are above the upper fence or the data points below the lower fence. The upper

fence is 1.5 times the inter quartile range (IQR) above the upper quartile and the

lower fence is 1.5 the IQR lower than the lower quartile. The IQR is defined by the

difference between the upper and lower quartile. The BP method assigns a sample

as an outlier when the number of outlier genes for that sample are greater than a

pre-defined threshold. The MAD outlier detection method is implemented by first

finding the median of all genes of a sample then the median absolute deviation of all

the genes from the median is calculated by:

MADi = median
(∣∣M:,i −median(M:,i)

∣∣)
this is found for each sample i. The MAD can be thought of an outlier score for

each sample. Therefore, samples with MAD higher than a pre-defined threshold are

assigned to be outliers.

4.4 Detecting Outliers Using OP and GOP

The objective of both OP and GOP is to decompose the input data matrix into a low

rank plus a column sparse matrix. In the real dataset case, we need to consider that

noise will be present, and that the recovered low rank matrix L̂ and column sparse

matrix Ĉ will be corrupted by noise. This will result in a Ĉ matrix that is not strictly

column sparse, but will have high l2 norm for columns that are considered outliers [3].

Therefore, for both OP and GOP we use two methods to detect the outliers:

1) Ĉ method: Rank l2 norms of columns of Ĉ in descending order and choose

outliers to be the points with l2 norm higher than a threshold.

2) L̂ method: First, find the Singular Value Decomposition (SVD) of the recovered

L̂ matrix, L̂ = UΣV T . Then, find the low-dimensional embedding Z by projecting L̂

onto its column space U , Z = UT L̂. Finally, perform k-means clustering onto Z to

fit two clusters. The minority cluster is chosen to be the outliers.

For the first method, we can only choose a small fraction of highest points as being the
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outlier. This method suffers from the drawback that choosing a fraction of outliers

needs prior knowledge of the domain. For the second method, k-means clustering will

decide which points correspond to which cluster by giving cluster labels, showing a

cut-off between outlier and main samples without deciding an outlier fraction a priori.

The F-score of two cluster k-means on the low-dimensional embedding Z is used to

quantify the performance of outlier detection of the L̂ method. The F-score is a

measure of accuracy and will give a higher score if the outlier and main samples are

better separated in the low-dimensional embedding. The F-score is defined by:

F-score = 2
precision · recall

precision + recall
,

where, Precision = True Positives/(True Positives + False Positives) and Recall =

True Positives/Positives. Here the Positives class is defined as the known outliers

present in the datasets that we use.

4.4.1 Parameter Setting for OP and GOP

Tuning parameters for unsupervised problems such as GOP and OP is more challeng-

ing than for supervised problems where the true labels are available. The presence

of labels for supervised problems allows to measure the accuracy of detection, which

can be used as a metric to choose optimal regularization parameters. In the case

of outlier detection algorithms, using the knowledge of true outliers in the tuning

process would not be practical, as users will not know the true outliers beforehand.

In the case of GOP and OP, the two factors affected by the regularization parameters

are the rank of L̂ and the number of outliers detected. Therefore, we can only use

both of them to tune the regularization parameters λ and α. The outliers during the

tuning process will be detected using the L̂ method explained in Section 4.4. The

tuning process consists of solving the problem for each value of λ in a specific range,

and looking for stable regions of the rank of L̂. We then refine the λ search space to

the stable region and record the number of outliers. A suitable value of λ needs to

be chosen in such a way that the number of detected outliers are less than or equal

to an expected fraction of outliers. From our studies we expect a fraction of outliers

that is less than 25 % of the data. Moreover, we found that practically the number

of outliers and the rank of L̂ are not affected by the value of α; thus, we choose its

value to be one. An illustration of this parameter setting procedure is shown in the

next subsection.
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4.4.2 Tuning λ for OP and GOP for the Colon Cancer Dataset

We will show how λ is tuned for the colon cancer dataset. The procedure is the same

as the other datasets used in this study. To tune λ for OP we perform a parameter

search to find the optimal value of λ. For each λ value we solve the OP problem,

and we use the L̂ method to detect outliers as explained in Section 4.4. A parameter

search is performed on λ from 0.1 to 0.8, and the rank of L̂ is recorded at each step.

Figure 4.1(a) shows that the most stable rank for L̂ is one and three. Therefore, we

refine the range of λ from 0.2 to 0.5, and we take the number of outliers recorded

using the L̂ method, as shown in Figure 4.1(b). We need to state that outliers need

to be a small fraction of the total dataset it is best chosen to be less than 25 % of the

data. Therefore, we choose a suitable λ to be 0.46 as it gives the smallest number of

outliers in the refined range. This gives 9 outlier points, after inspecting their labels,

4 are true outliers and 5 are false positives. To tune λ for GOP we follow the same

procedure as done for OP. We solve the GOP problem for a range of λ, from 0.1 to 3,

and find the number of outliers for each λ. Figure 4.1(c) shows that 4 and 2 outliers

are detected over this range of λ. The most stable rank of L̂ is 1 and it detects 4

samples, which means that they can be confidently chosen as being outliers. To be

able to visualize in a two-dimensional space, we choose the suitable λ value as being

equal to 1.168, which gives 4 outliers and a rank of L̂ being equal to 2. After finding

optimal λ, we notice that both the number of outliers and the rank of L̂ are robust

to the value of α. As a result, we can choose for simplicity α being equal to 1.

4.5 Datasets and Data Preparation

We demonstrate our results on three gene expression datasets, which are all publicly

available. They are introduced as follows:

1. Colon cancer dataset from [4]. It consists of a normalized dataset that contains

62 samples with gene expression levels of the 2000 genes with highest minimal

intensity across the samples. The 62 samples are comprised of 40 tumor samples

and 22 normal samples. A total of 40 patients are considered in their study and

each tumor sample is taken from a different patient. In this study we will only

take into consideration the 40 tumor samples. The author of the data has shown

that tumor samples of patients number: 2, 30, 33, 36 and 37 are outliers. They

proved this by finding a muscle index for each of the 40 tumor samples and the

22 normal samples, taken from normal non-cancerous tissue. By taking into

consideration that colon cancer samples mostly contain epithelial cells, which

contain no muscle tissue, a high muscle index suggests a tissue being highly

heterogeneous, thus being a misleading tumor sample. Samples of patients: 2,

30, 33, 36 and 37 have muscle index that lies in the range of the muscle index

77



(a) (b)

(c)

Figure 4.1: (a) Rank of recovered low rank matrix by OP versus regularization pa-
rameter λ. Figure shows that the most stable rank for L̂ is 1 and 3. Therefore, we
can refine the λ search space. (b) Refined λ search space from 0.2 to 0.5. The labels
on the circles are the rank of L̂ for a specific λ. We choose optimal λ to be 0.46
which gives the smallest number of outliers, in this case 9 outliers. (c) λ vs number of
outliers detected. The rank of recovered L̂ for each λ is shown as the number above
each circle. We choose λ that gives 4 outliers and a rank of 2.

of normal samples, thus being considered as outliers. In our work, we want to

retain the genes that contain most of the information. Thus, we pre-process the

data by retaining only the 700 most variable genes across samples. The number

of most variable genes to keep is chosen to retain more than 85 % of the total

variance (sum of the variance of each gene in the dataset). The data is quantile

normalized in the same way as [177], to reduce the skew of the microarray data

to high expression levels, as recommended by [178].

2. TCGA breast cancer dataset, gathered from UCSC Xena browser [179]. Dataset

consists of gene expression at transcription level, expressed as log2(x+1) trans-
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formed RSEM normalized RNA-sequencing counts. The TCGA dataset con-

tains 20530 genes with 1218 samples, 600 of which are patients with Estrogen

Receptor (ER) positive status and 179 with ER negative status, the remaining

439 samples do not have labels for ER, thus are discarded. We sample 100 ER

positive samples from the 600 and 5 ER negative samples from the 179. We

repeat the random sampling process 30 times, to have 30 datasets that will be

used for outlier detection. For each of the datasets the 5 ER negative samples

are considered to be the outliers. The choice of 100 ER+, 5 ER- and 30 random

sampling repetitions does not affect the conclusions we get from our results.

Conclusions will be consistent as long as the datasets are constructed with the

reasoning that outlier samples need to be a small fraction of the overall dataset,

and that we need to repeat the random sampling process, so that we test the

used methods on datasets with the same structure but with potentially different

samples.

Since the number of genes is considerably large (>20000), it is necessary to

diminish the dimensionality of the data to reduce the time of computation of

the robust subspace methods and to get more stable results. Therefore, the

data is filtered to retain the most variable genes. This is a commonly used

pre-processing procedure for machine learning algorithms applied to genomic

datasets [180], to choose the most informative genes. The number of genes to

retain is chosen to trade-off between the time of computation and the fraction

of the total variance explained by the chosen genes. For each of the 30 datasets,

the 2000 most variable genes are retained. Note that choosing a number of genes

greater than 2000 does not change the conclusion deduced from the results; it

only increases the time needed for computation.

3. Single cell dataset consisting of single cell measurements of mouse embryonic

stem cells at 3 different stages of the cell cycle (G1,S,G2M) gathered from

[181]. The dataset consists of log transformed normalized count values of gene

expressions measured by single-cell RNA-seq for 8989 genes. There is a total of

182 cells, of which 59 in G1, 58 in S, and 65 in G2M. We build a dataset that

consists of both the 59 G1 cells and 6 randomly sampled cells from the 65 G2M

population. We repeat this random sampling process to gather 30 datasets that

have 6 different G2M cells in each instance. For each of the datasets the 6 G2M

cells are taken to be the outliers. For each of the 30 constructed datasets the

1000 most variable genes are retained following the same reasoning explained

for the breast cancer dataset.
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4.6 Results

4.6.1 Outlier Detection on Colon Cancer Dataset

After finding a suitable λ with the procedure shown in Subsection 4.4.2, outliers are

detected by inspecting the l2 norms of the columns of Ĉ. We expect that the columns

of Ĉ corresponding to outliers to have higher l2 norm than the non-outlier samples.

From Figure 4.2 we can see that the 4 highest points are actually 4 out of the 5 known

outliers. Using the L̂ method for outlier detection, we detect 9 outliers in the minority

cluster, 4 of which are the same true outlier samples detected by the Ĉ method and

5 are false positives.

Figure 4.2: Inspecting l2 norm of columns of Ĉ. The labelled samples are the out-
lier samples found by the authors of the data in [4]. Figure shows that patients
(2,33,36,37) are detected as outlier, except patient 30. This method differs from the
L̂ method for outlier detection, in that we need to choose the threshold by having
prior knowledge of the fraction of outliers.

We apply GOP to the colon cancer dataset to detect outlier samples. Outliers are

detected using the L̂ method as explained in Section 4.4. The regularization param-

eters λ and α are tuned as explained in Section 4.4.1. Using α as 1 and optimal λ, 4

outliers are detected and they are part of the 5 known outliers from the author of the

data [4]. This gives better outlier detection than OP, which finds the same 4 outliers

but has 5 false positives. GOP performs the same as OP when the Ĉ matrix is used,

but we did not have to choose a suitable fraction of outliers. It should be noted that

the same 4 out of the 5 known outliers are picked up by average hierarchical clustering

used in [35]. To further compare the outlier detection capability of OP and GOP, we

project L̂ (recovered from each method using optimal regularization parameters) on

its first two principal directions, and we find the Mahalanobis distance (MD) between
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the two cluster centres found by k-means on the projection. Furthermore, the capa-

bility of capturing the outliers visually is compared for GOP, OP, PCA and t-SNE

by finding their 2-dimensional embedding. We get an MD of 2.806 for L̂ from GOP,

and 1.8973 for L̂ from OP and an MD of 1.7839 and 1.6777 for PCA and t-SNE

respectively. We can see the greater separation between outlier and main samples

from GOP in Figure 4.3. In conclusion, L̂ recovered by GOP gives better separation

between main samples and outlier samples; and this gives fewer false positives when

detecting outliers. Although, GOP gives less false positives than OP, it still missed

the same outlier that OP missed.

Figure 4.3: 2-dimensional visualization found by GOP, OP, PCA and t-SNE. For
GOP and OP we project L̂ onto its first two principal directions. PCA and t-SNE
are applied directly to the colon cancer dataset. Figure shows that the separation
between main and outlier samples is greater in the subspace found by GOP.

4.6.2 Outlier Detection Capability on Breast Cancer Dataset

Given the 30 sampled datasets with 105 samples, we need to detect the 5 ER negative

as outliers using the five methods: OP, GOP, Gaussian density, MAD and BP. Each

of the 30 datasets will be supplied as input for the aforementioned methods. We

detect outliers for OP and GOP using the l2 norms of the Ĉ matrix, and will record
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the number of false positives encountered before finding all the 5 outlier samples. For

the Gaussian density method, we will use the Mahalanobis distance to the sample

mean as an outlier score for each sample and record the number of false positives

needed to recover all the 5 outliers. For the MAD method the outlier score will be

the MAD of each sample, and we record the number of false positives to detect all the

5 known outliers. For the BP method, we will use the number of outlier genes as an

outliers score for each sample, and we record the false positives encountered to detect

all the 5 known outliers. False positives from the five methods will be recorded for

all the 30 randomly sampled datasets. This experiment will be repeated by changing

the dimensionality of the 30 datasets. The dimensionality will be changed by using

the most variable genes across samples. The false positives for the 30 datasets will

be recorded for GOP, OP and the Gaussian density method at 25, 50, 80, 95, 100

and 200 dimensions. At 200 dimensions MAD and BP are added to validate the

performance of GOP and OP. The results are shown in Figure 4.4. We can see that

for 25 dimensions the number of false positives is high for all three methods, and it

decreases when the number of dimensions increases to 50 and 80. This is due to the

fact that there is more useful information injected by the added dimensions. At 95,

100 and 200 dimensions the performance of the Gaussian density method is degraded

as there are not enough samples compared to the number of dimensions. However,

we can see that for both OP and GOP the outlier detection keeps improving by

increasing the dimensions of the input dataset. Furthermore, we note that GOP has

a smaller median of false positives encountered to detect all 5 outliers on each chosen

dimension when compared to OP. Finally, we can see at 200 dimensions that MAD

and BP record a much higher median percentage of false positives compared to GOP

and OP.

Low-Dimensional Embedding Outlier Detection and Visualization

In the previous subsection we showed that the graph regularizer can enhance the

outlier detection performance using the Ĉ matrix. In this subsection we demonstrate

that the same can be achieved for the separation of outlier and main samples in the

recovered low rank matrix L̂, and how this better separation can be visualized in

two dimensions. We recover L̂ for each of the 30 randomly sampled datasets. Next,

we perform k-means clustering with two clusters on the projection of L̂ and find the

F-score. This is performed on all the low-dimensional embeddings of GOP, OP, PCA

and t-SNE. We supply the same input to all the dimensionality reduction methods

which is the 105 samples after filtering its genes to the 2000 most variable genes across

samples. From Figure 4.5(a) it is observed that the F-score found on the GOP low

dimensional embedding is greater than all other methods. In this case the F-score of

GOP is highest because it detects more true positives and less false positives than
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Figure 4.4: Boxplots comparing the number of false positives encountered to detect all
5 outliers in the 30 instances of the breast cancer dataset. Each of the 6 subdivisions
of the figure represent running GOP, OP, and the Gaussian density method for all 30
datasets at a specific dimension. The dimension used is indicated at the bottom of
each subdivision. The horizontal line in each boxplot corresponds to the median of
false positives. We find that the Gaussian density method finds on average more false
positives than both OP and GOP. Moreover, we can see that the Gaussian density
method suffers from the curse of dimensionality, whereas the subspace methods are
robust to high-dimensional datasets. Furthermore, we note that GOP detects less
false positives on average than both methods, showing that the outlier detection has
benefited from the graph regularization.

all other methods. This greater capability to detect outliers in the low-dimensional

embedding can be further seen visually by projection L̂ onto its first two principal

directions.

The visualization in two dimensions is shown in Figure 4.6. We can observe that

GOP gives better separation of the 5 ER- samples and the 100 ER+ samples in its

two-dimensional projection. In the t-SNE two-dimensional embedding the separation

is also seen clearly. However, we note from the F-score that two cluster k-means on

this space fails to find the outliers and main samples accurately. In the case of GOP

we can visually observe the separation and quantitatively measure this separation

using a standard clustering technique such as k-means.

4.6.3 Outlier Detection Capability on Single Cell Dataset

In this subsection we compare the outlier detection performance of GOP, OP, Gaus-

sian density, MAD and BP methods on the 30 randomly sampled single cell datasets
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Figure 4.5: (a) (Breast Cancer Dataset) F-score of k-means clustering for all
dimensionality reduction methods, found on the 30 instances of the breast cancer
dataset. Each boxplot shows the F-score for all 30 randomly sampled datasets by
the corresponding dimensionality reduction method. We can see that GOP has a
considerably higher median F-score compared to all other methods. (b) (Single
Cell Dataset) F-score of k-means for all dimensionality reduction methods applied
to the 30 instances of the single cell dataset. We can see that GOP gives the best
F-score in its low-dimensional embedding compared to all other methods.

constructed as discussed in Section 4.5. The task consists of finding the 6 G2M cells

in the population of 59 G1 cells as outliers in each of the 30 datasets. As in the breast

cancer dataset, we record the number of false positives to detect all the known 6 out-

liers using the aforementioned methods. This is repeated for 6 different dimensions by

retaining the most variable genes across samples. The different dimensions are: 2, 20,

30, 50, 60, 70. Figure 4.7 shows the outlier detection results for the single cell dataset.

We can see that the outlier detection performance of the Gaussian density method

improves when increasing the dimensionality from 2 to 20. Also, the number of false

positives start to increase monotonically by increasing the dimensions from 20 to 70.

Moreover, we note that the performance of the robust subspace methods improves

with the increase in dimensionality, showing that they are effective in filtering out the

noise and extracting useful information from high-dimensional datasets. They avoid

falling into the curse of dimensionality because the data matrix is modelled to be a

low rank matrix that is corrupted by a column sparse matrix modelling the outliers.

Thus, the robust subspace methods work in a reduced dimensional space, which help

to circumvent the curse of dimensionality. Furthermore, we note that GOP outper-

forms OP on all dimensions, showing that the graph regularizer is also beneficial on

the single cell dataset. Finally, we can see that at 70 dimensions MAD and BP record

a considerably higher percentage of false positives when compared to GOP and OP.
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Figure 4.6: Visualization of 2-dimensional embedding for each dimensionality reduc-
tion method on a chosen instance of the breast cancer dataset. Figure shows the
enhanced separation of main and outlier samples in the GOP embedding compared
to OP, PCA and t-SNE

Low-Dimensional Embedding Outlier Detection and Visualization

Here, we show the F-score of k-means with two cluster centres on the low-dimensional

projections of GOP, OP, PCA and t-SNE. We give as input to each dimensionality

reduction technique, an instance of the single cell data after filtering it to its 1000

most variable genes. We find the F-score for all the 30 different instances of the single

cell data. As seen from Figure 4.5(b), the greater F-score of GOP indicates that the

outlier samples are better separated from the main samples in the lower dimensional

embedding of GOP. In this case, the F-score of GOP is highest because it detects

less false positives than all other methods. All the methods generally detect all the

known 6 outliers. From Figure 4.8 we can see that GOP separates the outlier and

main samples better than the other dimensionality reduction methods. This gives

GOP an enhanced visualization property compared to other methods.
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Figure 4.7: Boxplots comparing the number of false positives encountered to detect
all 6 outliers in the 30 instances of the single cell dataset. We inspect the number
of false positives at 6 different dimensions. We note that the performance of the
Gaussian density method improves by increasing the dimensions from 2 to 20, as
this adds more useful information to the dataset. However, it starts to degrade when
increasing further. Moreover, we can see that the outlier detection performance of the
robust subspace methods improves with the increase in dimensionality. Furthermore,
we can see that GOP detects less median of false positives than OP at every dimension
chosen.

4.7 Comparing Outlier Detection Performance of

GOP and RPCAG

We should emphasize that there is a method closely related to GOP, which is Robust

PCA on graphs (RPCAG) by [58]. The main difference between these two methods

is the model of sparsity of the reconstruction matrix C. In [58] the reconstruction

matrix is modelled by a l1 norm which induces overall sparsity of the whole matrix.

This model is more suitable to images which is what they demonstrate their results

on. In the case of gene expression data a model of column sparsity fits more efficiently

the model of outliers. The main algorithmic difference between GOP and Shahid’s

robust PCA model is in the update of the C matrix, step 5 of Algorithm 8. We show

here the enhanced outlier detection performance of Graph regualrized Outlier Pursuit

(GOP) and the Robust PCA on Graphs (RPCAG) formulated by [58]. We use the

30 randomly sampled instances of the breast cancer data and the single cell dataset.

We compare the outlier detection performance using the Ĉ method, by sorting the l2
norms of the columns of Ĉ and record the number of false positives before all known

86



Figure 4.8: 2-dimensional visualization of the dimensionality reduction methods for
a specific instance of the single cell dataset. Figure shows the enhanced visualization
property of GOP compared to OP, PCA and t-SNE.

outliers are found. For both datasets the genes are filtered to retain the 200 most

variable genes across samples. Figure 4.9 shows that GOP finds less false positives

compared to RPCAG on both datasets.

4.8 GOP and OP Convergence

For both GOP and OP algorithms we inspect the convergence of their objective

functions. Figure 4.10 and Figure 4.11 show the convergence of GOP and OP on

the colon cancer, breast cancer, and single cell datasets. In Figure 4.10 it is evident

that the ADMM algorithm (Algorithm 8) formulated to minimize the GOP objective

function takes steps in the direction that reduces the objective function value. In

Figure 4.11 it is also seen that the APG algorithm (Algorithm 9) formulated to

minimize the OP objective function succeeds in reducing the objective function value

at each iteration of the algorithm. Both figures prove experimentally that the chosen

algorithms converge.
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Figure 4.9: Comparison of outlier detection performance of GOP against RPCAG.
Boxplots comparing the number of detected false positives recorded to detect all
outliers in the 30 instances of both the breast cancer and single cell dataset. We can
see that the GOP boxplot has less median false positives and a much narrower range
when applied to the single cell dataset.

4.9 Discussion

The graph regularized method introduced in this work, to detect outlying samples,

has more features compared to similar work found in the literature. With GOP we

can detect outliers in two distinct ways: outlier ranking through the Ĉ matrix and

clustering through the L̂ matrix. Moreover, GOP is also a dimensionality reduction

technique which makes it visualizable in a 2-dimensional space. Other methods such

as [182] and [183] only devised an outlier ranking procedure by taking measures of

global similarity between samples. This makes their method only capture outliers,

but makes it harder to identify different subgroups. The identification of subgroups

is leveraged by clustering techniques more than outlier ranking techniques. There

are previous papers that used clustering techniques to identify similarity of samples

in gene expression data, which are reviewed in [184]. However, they do not give

the capability to visualize the data, and do not give an outlyingness ranking of the

samples. To the best of our knowledge, GOP in the only method that combines both

outlier ranking of samples with clustering and visualization.

4.10 Conclusion

In this chapter, we have developed an outlier detection framework for functional ge-

nomics data using structured low rank matrix approximation methods. We have
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Figure 4.10: GOP objective function value with respect to number of iterations. The
figure shows that the ADMM algorithm formulation for GOP is able to minimize the
objective function.

explored two ways of extracting outliers from the decomposition of the data matrix

into a low rank and column sparse matrix. Furthermore, we have shown that a better

outlier detection is gained by including a regularizer based on the graph Laplacian of

the data. Using transcriptomic data from bulk and single-cell measurements, we show

that GOP reliably detects injected outliers, particularly when the graph regularizer

is used. Most importantly, when compared to a density-based method of thresh-

olding the Mahalanobis distance, and to traditional methods of measuring location

and scatter (such as MAD and BP), the proposed method GOP does not fail with

increasing dimensions. Thus finding the low rank subspace, in this case it has shown

to circumvent the curse of dimensionality.

The graph regularizer used in this study is based on affinity (or neighbourhood) of

the samples. However, this can be a convenient handle to inject prior knowledge into

the problem domain. Thus, future work in this topic can be focused on the use of

archived prior knowledge (interaction networks of the resulting proteins, for example)

as regularizers.

In this chapter we only looked at genomic datasets with a single-view. In the next

chapter we will expand this work by extending the GOP model to be able to take
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Figure 4.11: OP objective function value versus number of iterations. We can see
from the figure that the OP objective function is minimized by the APG algorithm.

into account genomic datasets with multiple views.
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Chapter 5

Convex Multi-View Clustering via

Robust Low Rank Approximation

with Application to Multi-Omic

Data

Recent advances in high throughput technologies have made large amounts of biomed-

ical omics data accessible to the scientific community. Single-omic data clustering

has proved its impact in the biomedical and biological research fields. Multi-omic

data clustering and multi-omic data integration techniques have shown improved

clustering performance and biological insight. Cancer subtype clustering is an impor-

tant task in the medical field to be able to identify a suitable treatment procedure

and prognosis for cancer patients. State of the art multi-view clustering methods

are based on non-convex objectives, which only guarantee non-global solutions that

are high in computational complexity. Only a few convex multi-view methods are

present. However, their models do not take into account the intrinsic manifold struc-

ture of the data. In this chapter, we introduce a convex graph regularized multi-view

clustering method that is robust to outliers. We compare our algorithm to state of

the art convex and non-convex multi-view and single-view clustering methods, and

show its superiority in clustering cancer subtypes on publicly available cancer datasets

from the TCGA repository. We also show our method’s better ability to potentially

discover cancer subtypes compared to other state of the art multi-view methods.

5.1 Introduction

Recent advances in high throughput sequencing technologies have made available large

amounts of biomedical data consisting of measurement of genomic features across mul-
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tiple omic scales. The different measurements across omic features, when combined

together, form multi-omic datasets. Multi-omic data has been recently used to effi-

ciently visualize and cluster cancer subtypes [48]. Clustering for biomedical data is a

useful pattern discovery technique, which is the initial step taken in data exploration.

Clustering is especially of great use in the emerging field of precision medicine in dis-

covering cancer subtypes [47]. Separately clustering each omic has the capability of

finding patterns in the data. However, using several omics for integrative clustering

on the same group of samples, has the prospect to expose more detailed structures,

that are not revealed by examining only a single-omic measurement. For example,

it has been shown that cancer subtypes can be better defined when integrating both

DNA methylation and gene expression [46,185]. Cancer is a group of diseases caused

by DNA alterations that change cell behaviour, which causes malignancy and un-

controlled growth. General treatments are challenging to develop due to the high

genetic heterogeneity of this disease [186]. The field of cancer multi-omics has the

aim to discover potential subtypes and their affiliated molecular biomarkers, that can

be used for more individualised treatment and prognosis. Cancer multi-omic datasets

consist of measuring different molecular parameters which include RNA expression,

microRNA expression, DNA methylation and Protein expression, etc. These are ex-

amples of expression datasets taken at different omic levels, such as: (transcriptomics,

epigenomics, and proteomics). While inference of cellular function or state from any

one of these omics is easy to carry out, and dominates much of research reported in

literature, cellular regulation is complex and combined analysis can reveal more in-

formation. For example, genes that are transcribed (DNA to mRNA) are not always

translated into protein. The mRNA is held (for example, in structures like P-bodies)

and is translated only when it is needed. Similarly, proteins may be synthesized at

different rates from the corresponding mRNA by different numbers of ribosomes bind-

ing to them. Where disruptions to such regulation is the cause of disease, analysis at

any one level can lead to misleading pictures.

In the machine learning community the problem of integrating information from dif-

ferent data types to achieve a joint clustering solution is called multi-view cluster-

ing. Multi-view clustering acts on multi-view data, where multi-omic datasets are

a specific type of this general category of datasets. The problem of unsupervised

multi-view clustering has gained much interest in the machine learning research com-

munity. Multi-view clustering methods found in the literature encompass: canonical

correlation analysis (CCA) [55], Co-Training Expectation Maximization (co-EM) [49],

multi-view normalized cut [187], co-regularized multi-view spectral clustering [56],

multi-view neighbouring preserving projections [188], CCA regularized with com-

mon source graph [50] and Multi-view Non-Negative Matrix Factorization (Multi-

NMF) [51]. CCA method in [55] and multi-view spectral clustering of [56], showed

that finding a common latent representation between different views can enhance the
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clustering performance. Moreover, Multi-NMF showed that learning a latent rep-

resentation for each view, by constraining these representations to be similar to a

’consensus’ representation, results in an improved clustering performance. The prob-

lem with these multi-view clustering methods is that they either work only with data

that has two views [50,55], or they optimize non-convex objective functions, that can

only be solved by alternating optimization methods that converge to arbitrary local

minima [49,51,56,188].

In contrast, convex methods are found in the literature for the single-view case, where

methods for subspace learning make use of convex loss functions [2, 189, 190]. These

papers exploit a convex regularizer that reduces rank in place of constraining the

dimension of the latent representation with a hard lower bound. Moreover, some au-

thors [54, 162, 163] have approached the problem of multi-view subspace learning by

using convex loss function formulations that look to find a common latent represen-

tation, which is then subsequently used for clustering. [54] finds a shared latent rep-

resentation by minimizing a low rank regularized likelihood of a probabilistic model,

which assumes a Gaussian distribution for real valued data. [163] finds a common

latent representation by minimizing a regularized l2 norm squared reconstruction er-

ror over the multiple views. Similarly, [162] minimizes a regularized reconstruction

loss over the data views. Their reconstruction loss function is generic and can be

any convex loss function; however it can only take into account two views. Both [54]

and [163] are sensitive to outliers, as their loss functions minimize the l2 norm squared

and the Gaussian density function respectively, which are known to be fragile to even

one outlier [2, 32]. All the previously mentioned convex multi-view methods do not

take into account the local geometric structure of the data; a shortcoming that has

been recently addressed by methods involving graph regularizers.

Graph regularizers have recently emerged in both the dimensionality reduction and

data clustering areas of applied machine learning. That encode the geometric struc-

ture of the data in the form of a graph to be exploited by the learning models as an

injection of structural knowledge [5,50,52,53,57,58,191,192]. More specifically, multi-

view subspace learning methods of Graph regularized Multiset Canonical Correlation

Analysis (GrMCCA) [52] and Graph Multi-view Canonical Correlation Analysis (GM-

CCA) [53] are able to take into account more than two views. Both are formulated as

optimizing a non-convex objective function and have closed form solutions that are

computed by eigendecompositions. In the case of GMCCA [53] the graph regulariza-

tion consists of a common source graph, meaning that it can not model the graph

of each view separately; this is a limitation, as it can only be used for applications

where common source graphs are available. Moreover, in GrMCCA [52] each view

uses a separate graph regularizer. Furthermore, all previously mentioned multi-view

subspace learning methods are fragile to even a small number of outliers. This is

mainly because they minimize loss functions that have a quadratic term which will
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amplify the errors produced by the outliers in the data [32].

In this chapter we address the above limitations by introducing Convex Graph regular-

ized Robust Multi-view Subspace Learning (CGRMSL) for the problem of multi-view

clustering. It is formulated with a convex objective function, that separately takes

into account the manifold structure of each view of the data, is robust to outliers,

and finds a shared latent representation of the data. We show that our method has

superior clustering performance and is better able to visualize the data than other

convex and non-convex multi and single-view subspace learning methods. We also

demonstrated the ability of our model to detect potential subtypes more significantly

than other state of the art multi-view methods. This is shown on genomic cancer

datasets from the Cancer Genome Atlas (TCGA) repository [10].

5.2 Material and Methods

5.2.1 Convex Graph Regularized Robust Multi-View Sub-

space Learning

The algorithm we introduce in this chapter is called Convex Graph regularized Ro-

bust Multi-view Subspace Learning (CGRMSL). It utilizes more than one view to find

a common latent representation, and takes into account complementary information

from the different views to find a shared low-dimensional latent representation that

will enhance clustering. The dataset to be considered has V views, with each view

being represented by a matrix Mv ∈ Rpv×n, with n being the number of samples that

are common to the different views, and pv is the number of features present in each

view v. Mv consists of n samples arranged in columns with each sample having pv
features, expressed as: Mv = [M :,1

v ,M
:,2
v , ...,M

:,n
v ]. The objective of this method is

to decompose each view Mv into a low rank matrix Lv, that gives a low-dimensional

representation for the given view, and a column sparse matrix Cv that has non-zero

columns in the samples that have high reconstruction errors, thus outliers. By mod-

elling the reconstruction matrix Cv to be column sparse, our method detects (thus is

robust to) outlier samples. Because, in the case of omic data, samples are more likely

to be corrupt than a particular genomic feature across all data samples. The common

latent representation is found by constraining the low rank matrices Lv to be similar

to a shared matrix between all views, L∗. The graph which has nodes corresponding

to samples, is constructed by first finding the K nearest neighbours of each sample,

measured in Euclidean distance. Then for each sample we weight the edges to its

K neighbours through the Gaussian kernel function W i,j
v = exp(− ||M

:,i
v −M :,j

v ||22
2σ2 ). All

other points that are not in the K nearest neighbours of the sample are weighted

as zero. The matrix that incorporates the neighbouring and similarity information
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for each view is the affinity matrix Wv ∈ Rn × n . Then, the graph Laplacian matrix

Φv ∈ Rn × n is defined by Φv = Dv −Wv. Dv is a diagonal matrix where each entry

on its diagonal is the row sum of the corresponding row in Wv, D
i,i
v =

∑
jW

i,j
v . The

CGRMSL optimization problem is as follows:

min
Lv ,L∗,Cv

V∑
v=1

(
||Lv||∗ + λv||Cv||1,2 + γv||Lv − L∗||2F

+ α tr(LvΦvL
T
v )
)
. s.t: Mv = Lv + Cv.

(5.1)

Where λv, γv, and α are real valued regularization parameters. The first term in the

objective function, ||Lv||∗ is the nuclear norm of Lv, which is the sum of its singular

values. It induces low rankness in the matrix Lv. Minimizing the nuclear norm of

a matrix is the closest convex surrogate of the (intractable and combinatorial) rank

minimization problem [3,174]. The second term ||Cv||1,2 is the sum of the l2 norms of

the columns of Cv. It will induce column sparseness in the matrix Cv. The l1,2 norm

is the nearest convex surrogate to the number of non-zero columns in a matrix [3].

From the constraint of Problem 5.1, Mv = Lv + Cv, we can note that Cv = Mv − Lv
is the reconstruction error matrix for view v. Therefore, CGRMSL aims to model the

outliers by inducing a column sparse structure to the reconstruction error matrix Cv,

so that they are filtered out from the low rank matrix Lv. Both the nuclear norm

and the l1,2 norm have been used in the literature to induce low rankness and column

sparseness respectively [2, 3, 58]. Both these norms have been used in our precursor

work [5] to induce the structures of the low rankness and column sparseness of the

single-view matrix decomposition (M = L+C), with an additional graph regularizer

(same as the fourth term of Problem 5.1), to detect outliers and improve clustering

quality of the recovered subspace. It has been demonstrated on single-view data of

single cell genomics and cancer genomic data. Here, CGRMSL builds on and goes

beyond our previous work [5] in being able to model multiple data views to find a

shared latent space and is robust to outliers in each view. The third term constrains

the low rank matrices of each view to be similar to a shared matrix L∗. The third term,

for a specific view v can be rewritten as:
∑n

i=1 ||L:,i
v −L∗:,i||22; this constraints each of

the column vectors of the low rank matrix of a view, Lv, to be as close as possible

in Euclidean distance to each corresponding column vector of L∗. Summing this over

all views (as in Problem 5.1) will integrate the complementary information for all

the available views to extract the common latent representation. To extract this we

first compute the truncated Singular Value Decomposition (SVD) of L∗, L∗ = UΣV T .

Then, the common low-dimensional latent representation is the projection of L∗ onto

its truncated column space U , i.e. Z = UTL∗. The fourth term is a graph regularizer

on the low rank matrices. It preserves the intrinsic manifold information of the input

data in the form of a graph. To best interpret the function of the graph regularization
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term for a specific view v, tr(LvΦvL
T
v ), we can rewrite it in the following way:

tr(LvΦvL
T
v ) =

1

2

n∑
i,j=1

||L:,i
v −L:,j

v ||22Wi,j,

The graph regularization term can be better interpreted now as 1
2

∑n
i,j=1 ||L:,i

v −L:,j
v ||22Wi,j.

This function will impose structure in the recovered low rank matrix Lv, in the sense

that if two points have high affinity in the original input space, the distance of the

corresponding columns in Lv needs to be small. Problem 5.1 is a convex problem; it

can be solved to find a stable global solution using the Alternating Direction Method

of Multipliers (ADMM) optimization method [169].

5.2.2 CGRMSL Algorithm

Here we use ADMM to optimize the objective function in Problem 5.1. ADMM has

been used to optimize problems in similar contexts of low rank and sparse matrix

decompositions with an additional graph regularizer; in [5, 58]. The main difference

between CGRMSL and our previous work [5] is the summation of the graph regular-

ized decomposition of the input matrix (M = L + C) over all the available views,

and the third term of Problem 5.1, that integrates the subspaces recovered from the

different views. To solve CGRMSL using ADMM, we need to introduce an auxiliary

variable, so that we can divide the objective function into four separate blocks. We

rewrite the objective function of problem 5.1 as follows:

min
Lv ,L∗,Cv

V∑
v=1

(
||Lv||∗ + λv||Cv||1,2 + γv||Qv − L∗||2F

+ α tr(QvΦvQ
T
v )
)
.

s.t: Mv = Lv + Cv , Lv = Qv.

(5.2)

Where Qv with v from 1 to V are the auxiliary variables. Now we can define the

augmented Lagrangian function of 5.2:

L(Lv, L
∗, Cv, Qv, Z1v, Z2v) =

V∑
v=1

(
||Lv||∗ + λv||Cv||1,2

+ γv||Qv − L∗||2F + α tr(QvΦvQ
T
v ) + 〈Z1v,Mv − Lv − Cv〉

+
p1

2
||Mv − Lv − Cv||2F + 〈Z2v, Qv − Lv〉

+
p2

2
||Qv − Lv||2F

)
.
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Where the Frobenius inner product between two matrices 〈X, Y 〉 is defined as tr(XTY ).

To minimize the augmented Lagrangian with respect to each of the six variables, we

use ADMM. The general form of the ADMM algorithm to solve CGRMSL is shown

in Algorithm 10,

Algorithm 10 ADMM Convex Graph Regularized Robust Multi-View Sub-
space Learning (CGRMSL)

input: Mv ∈ Rpv×n, λv, α, γv, Φv ∀ v)

1. initialize L0
v, L

∗,0, C0
v , Q

0
v ∀ v to random matrices.

2. Z0
1v = Mv − L0

v − C0
v , Z0

2v = Q0
v − L0

v. p1 = 1 and p2 = 1.

3. repeat following until convergence

4. for v=1 to v=V

5. Lk+1
v = argmin

Lv

L(Lv, L
∗k, Ck

v , Q
k
v , Z

k
1v, Z

k
2v)

6. Ck+1
v = argmin

Cv

L(Lk+1
v , L∗k, Cv, Q

k
v , Z

k
1v, Z

k
2v)

7. Qk+1
v = argmin

Qv

L(Lk+1
v , L∗k, Ck+1

v , Qv, Z
k
1v, Z

k
2v)

8. L∗k+1 = argmin
L∗
L(Lk+1

v , L∗, Ck+1
v , Qk+1

v , Zk
1v, Z

k
2v)

9. Zk+1
1v = Zk

1v + p1(Mv − Lk+1
v − Ck+1

v )

10. Zk+1
2v = Zk

2v + p2(Qk+1
v − Lk+1

v )

output: L̂v = Lk+1
v , Ĉv = Ck+1

v , L̂∗ = L∗,k+1 when k is last iteration.

where Zk
1v and Zk

2v are the Lagrange multiplier matrices corresponding to the vth view,

and k is the iteration index. Steps 5 to 8 in Algorithm 10 have closed form solutions,

derivations of which are shown below. The ADMM algorithm has been proven to

converge to a global solution for convex objective functions [169].

CGRMSL ADMM Algorithm Derivation

Algorithm 10 requires to solve four sub-problems sequentially for each of the views v

of the data from 1 to V .

1. Lk+1
v = argmin

Lv

L(Lv, L
∗k, Ck

v , Q
k
v , Z

k
1v, Z

k
2v) .

2. Ck+1
v = argmin

Cv

L(Lk+1
v , L∗k, Cv, Q

k
v , Z

k
1v, Z

k
2v).
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3. Qk+1
v = argmin

Qv

L(Lk+1
v , L∗k, Ck+1

v , Qv, Z
k
1v, Z

k
2v).

4. L∗k+1 = argmin
L∗

L(Lk+1
v , L∗, Ck+1

v , Qk+1
v , Zk

1v, Z
k
2v).

The four sub-problems have closed form solutions. Their derivation is shown below.

Updating Lv (finding Lk+1
v ):

Lk+1
v = argmin

Lv

L(Lv, L
∗k, Ck

v , Q
k
v , Z

k
1v, Z

k
2v). Terms that are not related to Lv are

constants and thus are discarded. This gives us:

Lk+1
v = argmin

Lv

||Lv||∗ +
p1

2

∣∣∣∣∣∣Lv − (Mv − Ck
v +

Zk
1v

p1

)
∣∣∣∣∣∣2
F

+
p2

2

∣∣∣∣∣∣Lv − (Qk
v +

Zk
2v

p2

)
∣∣∣∣∣∣2
F
.

= argmin
Lv

||Lv||∗
p1 + p2

+
1

2

∣∣∣∣∣∣Lv − p1R
k
1v + p2R

k
2v

p1 + p2

∣∣∣∣∣∣.
= prox ||Lv ||∗

p1+p2

(
p1R

k
1v + p2R

k
2v

p1 + p2

).

Where Rk
1v = Mv − Ck

v +
Zk1v
p1

and Rk
2v = Qk

v +
Zk2v
p2

. The proximity operator of the

nuclear norm function is the singular value soft-thresholding operator (this is derived

in the Appendix A.2), which is defined as Dε(X) = Uξε(Σ)V T , where X = UΣV T

is the singular value decomposition (SVD) of X, and ξε(Σ) is the soft-thresholding

operator on the diagonal elements of Σ (as expressed in 3.18), with parameter ε. Now

let Hv =
p1Rk1v+p2Rk2v

p1+p2
and p = p1+p2

2
. The update for Lk+1

v becomes: Lk+1
v = D 1

p
(Hv).

Updating Cv:

Ck+1
v = argmin

Cv

λv
p1

||Cv||1,2 + ||Cv − (Mv − Lv +
Zk

1v

p1

)||2F .

= proxλv
p1
||Cv ||1,2(Mv − Lk+1

v +
Zk

1v

p1

).

The proximity operator of the ||Cv||1,2 function is the column-wise soft-thresholding

operator (defined in equation 3.21). Now the update for Ck+1
v becomes:

Ck+1
v = ζλv

p1

(Mv − Lk+1
v +

Zk
1v

p1

).
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Updating Qv:

Qk+1
v = argmin

Qv

α tr(QvΦvQ
T
v ) + 〈Z2v, Qv − Lv〉

+
p2

2
||Qv − Lv||2F + γv||Qv − L∗||2F .

= argmin
Qv

α tr(QvΦvQ
T
v ) +

p2

2
||Qv − (Lk+1

v − Zk
2v

p2

)||2F

+ γv||Qv − L∗||2F .

Find first derivative and set to zero to find closed form solution for Qk+1
v .

Qk+1
v =

(
p2(Lk+1

v − Zk
2v

p2

) + γvL
∗
)(
αΦv + (p2 + γv)I

)−1

.

Updating L∗:
L∗k+1 = argmin

L∗

V∑
v=1

γv||Qv − L∗||2F .

Find derivative and set to zero. L∗k+1 =
V∑
v=1

γv
θ
Qk+1
v ,

where θ =
V∑
v=1

γv.

Algorithm 10, although it is a 4-block ADMM it is guaranteed to converge because

it satisfies Condition 1 (In section 3.6.1). When problem 5.2 is compared to the

general from of multi-block ADMM 3.32, it is seen that it has coefficient matrices

A1,A2,A3, A4 = I. This means that any two coefficient matrices are orthogonal to

each other, which satisfies Condition 1 (Section 3.6.1).

5.2.3 Non-Robust version of CGRMSL

Here a version of CGRMSL which is not robust to outliers is introduced to evaluate

the contribution of such robustness to the clustering task. Thus we introduce an-

other multi-view subspace learning algorithm, Convex Graph regularized Multi-view

Subspace Learning (CGMSL). In CGMSL the l1,2 norm for computing the recon-

struction errors is replaced by the standard Frobenius norm squared : ||Mv − Lv||2F .

The squared term present in this reconstruction error amplifies the outlier samples

giving them much larger weight than non-outlier samples. This in turn skews the

low-dimensional subspace towards the outliers making the CGMSL model not robust
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to outliers. The optimization problem of CGMSL is as follows:

min
Lv ,L∗,Cv

V∑
v=1

(
||Lv||∗ + λv||Mv − Lv||2F + γv||Lv − L∗||2F

+ α tr(LvΦvL
T
v )
)
.

(5.3)

This objective function too is convex, thus a global solution can be found using

ADMM. To optimize 5.3 with ADMM, we need to separate the objective function

into three separate blocks by introducing auxiliary variables:

min
Lv ,L∗,Qv

V∑
v=1

(
||Lv||∗ + λv||Mv −Qv||2F + γv||Qv − L∗||2F

+ α tr(QvΦvQ
T
v )
)
. s.t: Lv = Qv.

(5.4)

Where Qv for v from 1 to V are the auxiliary variables. Now we can define the

augmented Lagrangian function of 5.4:

L(Lv, L
∗, Qv, Z1v) =

V∑
v=1

(
||Lv||∗ + λv||Mv −Qv||2F

+ γv||Qv − L∗||2F + α tr(QvΦvQ
T
v ) + 〈Z1v, Qv − Lv〉

+
p1

2
||Qv − Lv||2F

)
.

We then minimize the augmented Lagrangian with respect to the three variables

separately. The ADMM algorithm for CGMSL is shown in Algorithm 11.
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Algorithm 11 ADMM Convex Graph Regularized Multi-View Subspace
Learning (CGMSL)

input: Mv ∈ Rpv×n, λv, α , γv, Φv ∀ v)

1. initialize L0
v, L

∗,0, Q0
v ∀ v to random matrices.

2. Z0
1v = Q0

v − L0
v. p1 = 1.

3. repeat following until convergence

4. for v=1 to v=V

5. Lk+1
v = argmin

Lv

L(Lv, L
∗k, Qk

v , Z
k
1v)

6. Qk+1
v = argmin

Qv

L(Lk+1
v , L∗k, Qv, Z

k
1v)

7. L∗k+1 = argmin
L∗

L(Lk+1
v , L∗, Qk+1

v , Zk
1v)

8. Zk+1
1v = Zk

1v + p1(Qk+1
v − Lk+1

v )

output: L̂v = Lk+1
v , L̂∗ = L∗,k+1 when k is last iteration.

Steps 5 to 7 in Algorithm 11 have closed form solutions. Step 7 (Updating L∗) has

the same closed form solution as CGRMSL (algorithm 10), steps 5 and 6 are different

and their derivations are shown below.

CGMSL ADMM Derivation

Algorithm 2 requires to solve three sub-problems sequentially for each of the views v

of the data from 1 to V .

1. Lk+1
v = argmin

Lv

L(Lv, L
∗k, Qk

v , Z
k
1v) .

2. Qk+1
v = argmin

Qv

L(Lk+1
v , L∗k, Qv, Z

k
1v).

3. L∗k+1 = argmin
L∗

L(Lk+1
v , L∗, Qk+1

v , Zk
1v).

The 3rd sub-problem, updating L∗, has the same closed form solution as CGRMSL.

The derivation of the first two sub-problems are shown below.

Updating Lv (finding Lk+1
v ):

Lk+1
v = argmin

Lv

L(Lv, L
∗k, Qk

v , Z
k
1v). Terms that are not related to Lv are constants
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and thus are discarded. This gives us:

Lk+1
v = argmin

Lv

||Lv||∗ +
p1

2

∣∣∣∣∣∣Lv − (Qk
v +

Zk
1,v

p1

)
∣∣∣∣∣∣2
F
.

= argmin
Lv

||Lv||∗
p1

+
1

2

∣∣∣∣∣∣Lv − (Qk
v +

Zk
1v

p1

)
∣∣∣∣∣∣2
F
.

= prox ||Lv ||∗
p1

(Qk
v +

Zk
1v

p1

).

Now let Hv = Qk
v +

Zk1v
p1

and p = 1
p1

. The update for Lk+1
v becomes: Lk+1

v = D 1
p
(Hv).

Updating Qv:

Qk+1
v = argmin

Qv

α tr(QvΦvQ
T
v ) +

p1

2
||Qv − (Lk+1

v − Zk
1v

p1

)||2F

+ γv||Qv − L∗v||2F + λv||Mv −Qv||2F .

Find first derivative and set to zero to find closed form solution for Qk+1
v .

Qk+1
v =

(
p1(Lk+1

v − Zk
1v

p1

) + γvL
∗ + λvMv

)(
αΦv + (p1 + γv + λv)I

)−1

.

5.3 Simulation Study

5.3.1 Data Simulation

In this subsection we evaluate our model CGRMSL on two synthetic datasets by

comapring against GrMCCA [52] and CGMSL. The first synthetic datasets is gen-

erated by a mixture of Gaussians (convex shapes). The second synthetic dataset

comprises of a mixture of non-convex shapes, namely a mixture of ‘moons’. We will

show that our model is capable of finding a shared latent space that takes into account

all complementary information from the different data views. Furthermore, we will

show that our model is robust to outliers by finding a shared latent space that is not

affected by their presence.

The structure of the first synthetic dataset is comprised of two 3-dimensional views

with each view containing three different classes, each view is generated by a mixture

of three Gaussian densities. Both views are generated by p(Mv)=
∑3

i=1
1
3
N (µiv,Σ

i
v),

v = 1, 2, where µi and Σi are the mean vector and Covariance matrix of the ith Gaus-

sian. Each Gaussian generates 500 samples for one class. For the 1st view the three

classes: C1, C2, and C3 have Gaussian density parameters set as follows: µ1
1 = (1 2)T ,
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µ2
1 = (1 4)T and µ3

1 = (6 6)T . For the 2nd view the three classes: C1, C2, and C3

are parametrized by: µ1
2 = (1 2), µ2

2 = (6 6)T and µ3
2 = (1 4)T . For both views all

covariance matrices are set to the identity matrix, and the third dimension is gener-

ated by concatenating to the samples from the 2-dimensional Gaussians a standard

uniform random variable in the interval (0,0.5). Furthermore, for both views we inject

two outliers deeper in the third dimension with coordinate vectors: (2 4 1.5)T and

(3 4 -1.5)T . Figure 5.1 shows the input dataset structure of both views generated

from a mixture of bivariate Gaussian densities.

The second dataset is also comprised of two 3-dimensional views with each view hav-

ing a mixture of three classes with each class containing 500 samples. Each view is

generated as follows. First, Three 2-dimensional ‘moons’ are generated. Then, the

third dimension is formed by concatenating to the samples from the 2-dimensional

‘moons’ a standard uniform random variable in the interval (0,0.5). The two views

are constructed to have complementary information to separate all the three classes,

as done for the first synthetic dataset. For this dataset, fractions of the whole 1500

samples of the dataset are corrupted to generate the outliers. The fraction of outliers

generated are : 0.1 %, 1%, 3 %, 5%, 7%, 10%, 12 %, 15%. The outlier samples are

generated by following a ”salt and pepper” corruption model.

For both datasets we demonstrate the synthetic example in a 3-dimensional setting.

This is to illustrate visually that or method is succeeding in being robust to outliers

and is able to extract the complementary information between views. However, our

method in a realistic scenario is used on high-dimensional datasets. Such as cancer

genomic datasets which will be investigated in this chapter.

5.3.2 Experimental setting and results

We first construct a K Nearest Neighbour graph for each view. Then, we compute

the Gaussian kernel function Wv for each view by setting σ as the squared mean of

the euclidean distances between all samples. Finally, the graph Laplacian matrices Φ1

and Φ2 are constructed from their corresponding Wv as described in Subsection 2.2.1.

The shared latent space for both CGRMSL and CGMSL is found by computing Z as

explained in Subsection 2.2.1. For GrMCCA the shared latent space is computed as

described in [52], where Yshared is computed as Yshared = Y1 +Y2, and Yv is the projec-

tion of Mv onto the eigenvectors solving the eigendecomposition problem formulated

in [52]; Yv = P T
v Mv. The reconstruction error of each sample is computed to show

how the outliers affect each method. For CGRMSL and CGMSL, the reconstruction

error for each sample is computed by the l2 norm of the error between the ith sam-

ple M :,i
v of the vth view and its corresponding reconstruction from the shared latent

space L̂∗:,i: e
i
v = ||M :,i

v − L̂∗:,i||2 for i = 1, 2..., n. However, for GrMCCA finding the

reconstructions of the shared latent space in the original data space is not feasible.
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Figure 5.1: Synthetic example to compare the three algorithms: CGRMSL, CGMSL
and GrMCCA. For each method the shared latent space and the reconstruction error
for each sample are shown. We can see that CGRMSL shows robustness to outliers as
expected. Whereas, CGMSL and GrMCCA are skewed to accommodate the outliers.

This is because it does not solve directly for a shared latent representation; instead

it first solves for the projection vectors Pv of each view, then sums the projections

of each view to create a shared latent representation. Hence, finding the reconstruc-

tion errors to investigate outliers can only be achieved by investigating reconstruction

errors of each projected view. For GrMCCA the reconstruction for the vth view is

computed by Rv = PvYv and the reconstruction error for the vth view is expressed

by eiv = ||M :,i
v −R:,i

v ||2. Both synthetic datasets have been constructed to have three

classes with information in both views, to be able to separate all three classes. How-

ever, each view alone has two out of the three classes with significant overlap and the

third class being separate from the first two, as shown in Figure 5.1 (Input Data).

Therefore, if the method used is capable of integrating the complementary informa-

tion in both views, then the three classes should be all separated from each other in

the shared latent space.
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For the Gaussian mixture dataset, Figure 5.1 shows the shared lower dimensional

latent space of the synthetic data and the reconstruction error of each sample on the

1st view for CGRMSL, CGMSL and GrMCCA ( 2nd view draws the same conclusion,

only one is shown for simplicity). From Figure 5.1 we can see that the shared latent

space of CGRMSL effectively separates the three different classes present in the two

views. Whereas the shared latent space from GrMCCA shows less separability. We

can also see from the reconstruction error of CGRMSL that the outliers have con-

siderably higher reconstruction errors compared to all other samples. This indicates

that the subspace of the shared latent space is not skewed to accommodate the out-

liers, thus proving the robustness of our method to outliers. On the other hand, for

GrMCCA and CGMSL, the reconstruction error of the outliers are in the range of

the other samples, showing that the outliers have skewed the shared latent subspace

to accommodate them.

For the mixture of ‘moons’ dataset, we evaluate each method’s ability to separate

clusters in the recovered latent space, and the ability to detect the generated outliers

by inspecting the reconstruction errors. This is done for the different outlier fractions

mentioned in Subsection 6.3.1. The first step to evaluate the ability of a method

to separate the three different classes is to compute cluster assignments on the ex-

tracted shared latent representation by using k-means clustering. Then, to evaluate

the obtained clusters the silhouette score is computed, which is the mean of the sil-

houette values of each sample. The silhouette value of each sample is a measure of

how similar a sample is to its own cluster compared to the other clusters. For the

ith sample, the smallest average distance of the ith sample to all points in any other

cluster is denoted as ai, and the average dissimilarity between the ith sample to all

other data points in the same cluster is denoted as bi. The silhouette value for the

ith sample is defined as si = (ai − bi)/(max(ai, bi)). The silhouette ranges from -1 to

1. A silhouette score close to 1 indicates that clusters are well separated. Figure 5.2

(a) shows the errorbar of the silhouette scores of 50 runs of k-means computed on the

shared latent spaces extracted from CGRMSL, CGMSL and GrMCCA. It is seen in

the Figure that CGRMSL has the highest silhouette scores for all fraction of outliers

compared to the other two non-robust methods.

The outlier detection performance is computed by the False Negative Rate (FNR).

This computes the amount of outliers that have reconstruction errors overlapping with

the reconstruction errors of the uncorrupted samples. Therefore, the reconstruction

error threshold that is chosen to compute the FNR is the maximum of the recon-

struction errors of the uncorrupted samples. Figure 5.2 (b) shows the FNR for all

the three methods for the different outlier fractions. It is seen from the Figure that

CGRMSL has the best outlier detection performance with and FNR starting at zero

and remaining close to zero. Moreover, CGMSL and GrMCCA have an increasing

overall trend of FNR when greater outlier fractions being generated.
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(a) (b)

Figure 5.2: Performance of the three different Algorithms on the mixture of ‘moons’
dataset. (a) Displays the silhouette score of clusters computed on the shared latent
representation of each method. (b) Shows the ability of detecting all the injected
outliers by inspecting the reconstruction errors.

5.4 Comparisons

We compare CGRMSL to other convex methods, both single and multi-view. An-

other set of methods that we compare against are single and multi-view non-convex

methods that have analytical solutions.

Single-view Subspace Learning (SSL). The aim of single-view learning is to find

a low-dimensional latent representation of the input dataset, by taking into account

only a single-view. We will compare against [189] which finds a sparse low-dimensional

latent representation by minimizing a convex objective function.

Single-view non-convex. These methods act on a single-view and their objective

functions are non-convex, but have closed form solutions based on eigendecomposi-

tions. These are Principal Component Analysis (PCA) [193] and Graph-Laplacian

PCA (GPCA) [57].

Multi-view Subspace Learning. The aim of these methods is to find a com-

mon low-dimensional latent representation by using information from multiple views.

The methods we compare against are the following convex methods: LRA Cluster

from [54], Convex multi-view subspace learning (CMSL) from [162].

Multi-view non-convex. These methods are non-convex multi-view methods but

have closed form solutions; they are: multi-view clustering via canonical correlation
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analysis (CCA) [55] and GrMCCA [52].

Convex Graph regularized Robust Single-view Subspace Learning (CGRSSL).

This method is a single-view subspace learning counterpart of our proposed method

CGRMSL. It uses the L̂v found from Algorithm 1 and from there finds the latent

representation of the vth view by projecting L̂v onto its truncated column space:

Zv = UT
v L̂v. With the truncated SVD of L̂v being, L̂v = UvΣvV

T
v .

Convex Graph regularized Multi-view Subspace Learning (CGMSL). This

is the non-robust version of CGRMSL described in Subsection 6.2.3. It replaces the

robust l2,1 norm of CGRMSL with the standard Frobenius norm squared for the

reconstruction error.

5.5 Experimental Results Relevant to Cancer

In this section we validate our method against the other state-of-the-art multi-view

and single-view methods described in Section 6.4. To evaluate our method we conduct

experiments on five different TCGA cancer data types [10]: breast cancer (BRCA),

esophageal cancer (ESCA), endometrioid cancer (UCEC), kidney renal clear cell car-

cinoma (KRCCC) and lung squamous cell carcinoma (LSCC). For BRCA, ESCA and

UCEC pre-processed data is gathered from the UCSC Xena browser [179]. For KR-

CCC and LSCC the pre-processed data is provided by Wang et al. [154].

We first validate the clustering performance by finding a clustering assignment on the

projection of the samples on the obtained subspace of all benchmark multi-view and

single-view methods. Subsequently, the clustering assignments are compared to the

given subtype labels from the TCGA clinical data for three of the five cancer types

due to availability of subtype labels (Subsection 5.5.2). The three different cancer

types are: BRCA, ESCA and UCEC. For the remaining LSCC and KRCCC cancer

subtype labels are not present; therefore the objective is to find clusters that can be

potential subtypes. Potential subtypes are discovered by performing a survival anal-

ysis and comparing how significantly survival times differ between samples in each

cluster (Subsection 5.5.3). In Subsection 5.5.3 we compare only against the bench-

mark multi-view methods. Table 5.1 summarizes the different datasets used in this

study.

In Table 5.1 the column ‘features per view’ describes the number of features retained

per view for a specific cancer type. The number of features per view is chosen to

be the smallest between the number of features of all views, because our method

needs to have the same number of features for all the views. The features with the

highest variability across samples are retained for each view. Features in the case

of the five TCGA datasets can be: mRNAs for gene expression, DNA methylation
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Patients features per view views subtype labels subtypes
BRCA 292 250 2 YES 3
ESCA 194 300 2 YES 2
UCEC 112 1000 2 YES 2

KRCCC 122 329 3 NO to be found
LSCC 106 352 3 NO to be found

Table 5.1: Summary of the five TCGA cancer datasets used in this chapter.

sites for DNA methylation, and miRNAs for miRNA expression. BRCA, ESCA and

UCEC have two different views that consist of measurements at two omic scales: gene

expression (transcriptome) and DNA methylation (epigenome). KRCCC and LSCC

have three views spanning two different omic scales: gene expression (transcriptome),

DNA methylation (epigenome), and miRNA expression (transcriptome).

5.5.1 Parameter settings

We tuned parameters for all methods by conducting a parameter search. Afterwards,

in the following subsections, the values with the best performance are recorded. For

all methods with graph regularizers the value of K is chosen to be the one that gives

the best cluster purity or p-value in the range [1, number of samples]. For GPCA α

is chosen in the range [0.01,2]. η for GrMCCA is chosen in the range [0.5e-4,1e-2]. α

for SSL and CMSL is chosen in the range [1, 100]. For CGRMSL α is chosen in the

range of [0.1,100], γv ∀v are in the range of [0.1,8] and λv ∀v = λ with λ chosen in the

range of [0.1,10]. For CGMSL the optimal α, γv ∀v of CGRMSL are used and then λ

is tuned in the range [0.1,10].

5.5.2 Clustering

Here we compare the proposed CGRMSL method against the benchmark single and

multi-view methods described in Section 6.4. We compute the clustering performance

on the learned representations found from each method. The clustering performance

is evaluated on the three TCGA cancer types described previously. The problem that

is investigated is cancer subtype clustering. For BRCA the three most common breast

cancer subtypes are: Luminal, Basal, and Her2-enriched. For ESCA the subtypes are:

Adenocarcinoma and squamous cell carcinoma. For UCEC the subtypes are: Serous

and Endometrioid. For each cancer type we only retain the most variable genes across

samples for each view as described in Table 5.1 third column; and after finding the

common samples between both views the resulting datasets comprise of n =292, 194,

112 patients for BRCA, ESCA and UCEC respectively.

For our method and all of the benchmark methods described above, we evaluate
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the clustering performance by measuring cluster purity. This has been used before

in [194] to measure the performance of their multi-view clustering method for cancer

subtype clustering. Cluster purity is a measure of how much the clusters contain a

single class. It is calculated by first counting the number of data points from the

most common class in each cluster. Then, the average is taken over all clusters. It is

defined mathematically as:

Purity =
1

N

C∑
i=1

maxj|ci ∩ tj|,

where ci is the ith cluster, tj is the jth class, C is the number of clusters and N

is the number of data points. Cluster purity takes a value from 0 to 1, a value of 1

means that all the different classes present in the data have been perfectly identified as

separate clusters. The higher the cluster purity the better the clustering has identified

the different classes. Clustering is performed by k-means clustering which is run 50

times on the latent representation of each method; the average clustering purity of all

50 runs is reported in Tables 5.2 and 5.3 (clustering purity is multiplied by a 100 to

give values from 0 to 100). The clustering purity of our method (CGRMSL) against

all the benchmark single-view methods is shown in Table 5.2. We can see from Table

5.2 that CGRMSL gives higher clustering purity compared to all benchmark single-

view methods applied to each view separately. It is also evident from Table 5.3 that

CGRMSL gives better cluster purity compared to all other benchmark multi-view

methods.

Another result worth highlighting is the capability of our method to visualize the three

cancer types. We can see from Figure 5.3 that CGRMSL tightly places the different

subtypes in distinct regions of the two-dimensional latent space. Moreover, Figure

5.3 also shows the misclassified samples when clustering on the CGRMSL subspace,

and misclassified samples by k-means on the original space before dimensionality

reduction.

k-means v1 k-means v2 PCA v1 PCA v2 GPCA v1 GPCA v2 SSL v1 SSL v2 CGRSSL v1 CGRSSL v2 CGRMSL

BRCA 89.14±1.62 84.49 ±5.84 88.36 79.18±0.52 88.03±0.28 73.47 ±0.43 88.60 ±1.22 80.84 ±0.07 96.92 91.79±3.78 97.26

ESCA 93.68 ±0.22 91.18 ±0.28 93.75 ±0.17 91.25 ±0.26 93.50±0.25 90.72 93.30 90.21 96.90 93.81 97.94

UCEC 86.89±1.6 85.71 86.53±1.48 85.71 87.32±2.17 85.71 88.39 85.71 91.96 87.21 ±0.026 96.43

Table 5.2: cluster purity (average ±std) for single-view subspace learning methods,
k-means on original space and CGRMSL. Readings with absent error bars have a std
of zero for all 50 k-means runs. v1 is the gene expression view and v2 is the
DNA methylation view.
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CMSL LRA Cluster CCA GrMCCA CGMSL CGRMSL
BRCA 88.36 88.36 88.35 96.92 97.05 ±0.17 97.26
ESCA 95.36 95.88 94.85 95.36 95.57 ±0.24 97.94
UCEC 85.94 85.71 90.58±0.44 92.36 ±3.65 95.39 ±0.85 96.43

Table 5.3: cluster purity for multi-view subspace learning methods and our method
(CGRMSL).

Figure 5.3: Visualization of CGRMSL for BRCA, ESCA and UCEC. Different sub-
types are labelled by: green, red, and yellow ’o’. Misclassified samples by k-means on
the CGRMSL subspace are labelled by a black ‘+’. Misclassified samples by k-means
on the original space is labelled by a black ‘x’. Samples that are both misclassified
by k-means on the original space and the CGRMSL subspace are labelled by a blue
‘?’.

5.5.3 Survival Analysis and Subtype Identification

Different cancer subtypes are expected to have significantly different survival times

[48]. Here we apply our model to identify potential cancer subtypes by performing a

survival analysis on the obtained clusters. This is performed on kidney renal clear cell

110



(a) KRCCC, p-value = 3.13e-4 (b) LSCC, p-value = 3.27e-5

Figure 5.4: Kaplan-Meier survival curves for KRCCC and LSCC. Shows distinct
survival times of identified subtypes.

carcinoma (KRCCC) and lung squamous cell carcinoma (LSCC), described in Sec-

tion 6.5. To measure how significantly the methods have identified different subtypes,

the Cox survival p-value is used; it is computed using the Cox Wald test to measure

whether the subtypes have significantly different survival times. A lower Cox p-value

indicates that survival profiles among subtypes are more significantly different, and

consequently potential subtypes might be discovered.

After projecting the samples onto the subspace given by CGRMSL we perform k-

means clustering 50 times and report the lowest Cox Wald test p-value. The lowest

p-value over the parameters of each method is reported. Here we cluster into three

clusters as it gives the lowest p-value when compared to clustering into two and four

clusters. We compare our method to other state of the art multi-view methods that

can take into account more than two views; these results are shown in Table 5.4. It

is seen from Table 5.4 that our method, CGRMSL, scores a more significant p-value

compared to the other multi-view methods and the single-view version of our algo-

rithm CGRSSL (for each view). Moreover, the table shows that the outlier fragile

version of our algorithm, CGMSL, performs better than the other multi-view clus-

tering methods. In addition, to show the distinct survival curves between identified

subtypes, we display in Figure 5.4 the Kaplan-Meier survival curves for both cancer

types using the subtypes identified by our method. From Figure 5.4 (a) and (b) it

is evident that for both cancer types the three identified subtypes have significantly

different survival profiles, a property that was not labelled.
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LRA Cluster GrMCCA CGMSL CGRSSL v1 CGRSSL v2 CGRSSL v3 CGRMSL
KRCCC 1.47e-2 1.2e-3 9.48e-04 4.30e-4 6.30e-2 2.36e-2 3.13e-4
LSCC 8.21e-4 2.71e-4 4.46e-5 5.1e-3 4.62e-2 1.1e-3 3.27e-5

Table 5.4: Cox Wald test p-value for all different multi-view methods. Parameters
for each method are tuned and the best p-value is reported.

5.6 Conclusion

In this chapter we proposed an efficient convex multi-view clustering method that

learns a common latent representation which takes into account the complementary

information found in the separate views of the data. It is robust to outliers in the data

and takes into account the intrinsic manifold structure of the data. We have shown

that our method, CGRMSL, is superior to other convex and non-convex multi-view

methods found in the literature, and also to single-view methods applied to each view

separately. We have also shown that CGRMSL takes advantage of learning a shared

matrix L∗ as compared to only the single-view version of our method. We have

demonstrated better clustering performance on an important biomedical problem:

cancer subtype clustering, and the ability of our method to potentially discover new

subtypes.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis presents two low rank matrix decomposition frameworks that are both

robust to outliers, and take into account the intrinsic non-linear structure present

in high-dimensional data. The matrix decomposition models are based on the de-

composition of the high-dimensional data matrix into a low rank and column sparse

matrix, also know as Outlier Pursuit (OP) by Xu et al. in [3]. In this thesis, starting

from Chapter 1 Subsection 1.4.2, we show that the column sparse corruption model

of OP is optimal for high-dimensional genomic data structures, as compared to the

sparse corruption model (RPCA) of Candes et al. in [2], which is designed to effi-

ciently model image data corruptions. The non-linear geometric structure of the data

is modelled in the low rank approximation of the data, by adding a regularization to

the decomposition model that smooths the low rank matrix onto the graph of data

similarity. Thus, if the data lies on a low-dimensional manifold the continuity in the

manifold would be preserved in the recovered L̂ (low rank) matrix.

The two novel robust low rank decomposition methods proposed in this work are: 1)

Graph Regularized Outlier Pursuit (GOP), and 2) Convex Graph regularized Multi-

view Subspace Learning (CGRMSL).

Both of these methods are constructed as convex optimization problems, which gives

guarantees of obtaining a global solution and computationally efficient algorithms.

We summarize the conclusion of both methods as follows:

1. GOP conclusions : GOP acts on single-view genomic datasets. We have

tested GOP and OP on three high-dimensional gene expression datasets: colon

cancer dataset, breast cancer dataset, and single-cell cell-cycle dataset. We have

seen from our results that adding a graph regularizer enhances the separation

in term of clustering performance between the outlier and normal samples in

the recovered low rank matrix L̂ compared to the recovered L̂ from OP, and
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traditional dimensionality reduction methods, such as PCA and t-SNE. This

better clustering ability in the low rank matrix L justifies the better visualiza-

tion property of GOP compared to other dimensionality reduction methods, as

shown in Chapter 5. Moreover, with the addition to the graph regularizer, we

get on average less number of false positives recorded before finding all outliers,

compared to OP and traditional outlier detection framework based on density-

based method; the latter are shown to fail with increasing dimensions.

We can see from the results in Chapter 5, that the similarity matrix can find the

intrinsic structure in the data that would separate points belonging to different

classes in the recovered low rank matrix L̂, even when the number of points in

each class is heavily imbalanced (in our case the minority class are set to be the

outliers).

We can conclude from this report the following points:

• GOP and OP are suitable methods for high-dimensional datasets, as shown

on the gene expression datasets.

• There are fast and efficient computational algorithms that can solve both

problems in an efficient way.

• GOP has shown its effectiveness in outlier detection compared to the tra-

ditional density based methods that are affected by the high-dimensional

data setting.

• GOP gives better separability in the recovered matrix L̂, thus also better

clustering and visualization capability when compared to: OP, standard

PCA, and t-SNE.

2. CGRMSL conclusions: CGRMSL is optimal for high-dimensional multi-

view datasets. It has been applied on cancer genomic datasets gathered from

TCGA to learn a common latent representation which takes into the account

the complementary information found in separate views of the multi-omic data.

It is robust to outliers in each view of the data, and models the manifold struc-

ture of each view using a graph regularization similar to GOP. We have shown

in Chapter 6 that the proposed CGRMSL is superior to other convex and non-

convex multi-view methods found in the literature and also to single-view meth-

ods applied to each view separately. We have also shown that CGRMSL takes

advantage of learning a shared latent representation as compared to the single-

view counterpart of the proposed CGRMSL method. Moreover, we have shown

better clustering performance on cancer multi-omic datasets compared to state-

of-the-art multi and single-view clustering methods. Finally, we demonstrate

that our proposed method can more significantly discover new cancer subtypes

compared to other state-of-the-art multi-view clustering methods.
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6.2 Future Work

Possible directions of future work:

1. A direct improvement that can be done to the graph regulaized Outlier Pur-

suit model is in the graph construction itself. We can construct the affinity

graph W from Protein-Protein Interaction (PPI) networks, and build a graph

of gene-gene similarity. This will take the advantage of the similarity matrix to

inject apriori biological knowledge which would find a better low-dimensional

subspace of the gene expression data. Where clustering data, visualization,

and outlier detection would take place. The expected results would be that

injecting biological knowledge in the form of PPI networks would give a better

representation of the underlying manifold that the data would live in. Some

initial inspiration on how to build the gene-gene similarity matrix from the PPI

data, is found in the following paper [195].

2. Another direction would be to use multi-omic manifold learning techniques

such as CGRMSL proposed in this thesis to find a low-dimensional manifold of

single cell multi-omic data that can capture cell differentiation. The manifold

assumption tends to hold to a large extent with single-cell data, since cellular

state spaces typically consists of smooth transitions which can be captured in the

low-dimensional manifold [196]. Single cell RNA sequencing captures a snapshot

of single-cells during this smooth transitions. This would motivate the use of

manifold like algorithms other than algorithms that have linear assumptions of

low dimensions.

3. Another extension of this work is inspired by Robust Deep Autoencoders (RDA)

[197] and Graph regualrized Deep Autoencoders (GDA) [198]. RDA introduced

by Zhou in [197] changes Robust PCA with column sparse corruptions (OP) in

such a way that the nuclear norm of L is replaced by a deep autoencoder objec-

tive function. This augmentation would learn a non-linear manifold structre for

the low rank matrix. In [198] the traditional autoencoder function is augmented

by adding a graph regularizer which is used in image representation learning. A

possible improvement is to combine the RDA framework with adding a graph

regularizer to the autoencoder objective function. This can be applied to bulk

genomic and single-cell data.

4. Another direction is to devise an on-line version of the robust PCA method with

column sparse corruptions (OP). As we have shown in this thesis the column

sparse corruption is optimal in detecting outlier samples in high-dimensional

spaces. An on-line algorithm for Non-Negative Matrix Factorization (NMF),

sparse coding, and general dictionary learning has been developed by Mairal et
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al. in [199]. Thus following from their work, an on-line version of OP can be

implemented.

5. Another promising direction of our work would be in precision medicine, or

more specifically, precision oncology. An increasing amount of evidence in re-

cent studies suggests that ageing diseases, such as cancer, Parkinsons, and many

more can be better understood through mutated or dysregulated gene pathways

or networks rather than individual mutations. Thus, publicly available biologi-

cal networks can be integrated with the patient’s genomic profiles to personalize

treatments and to potentially discover new drug targets. Many machine learn-

ing methods that integrate biological networks as graphs within their model

have emerged recently; they are extensivley reviewed in [200]. However, these

methods can only model one genomic profile and can not integrate multiple

views.

A promising and obvious extensions from our work, is to extend CGRMSL

(proposed in this thesis in Chapter 6) by injecting biological knowledge ex-

tracted from a biological network in the form of a graph between genes. Then, a

graph regularizer based on the biological network can be added to the CGRMSL

model. In this case, not only is information in different genomic views being

integrated but also prior gene regulatory knowledge is being injected in the

model. This method could potentially aid in drug target discovery for complex

diseases.
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[92] Christopher Krügel, Thomas Toth, and Engin Kirda. Service specific anomaly

detection for network intrusion detection. In Proceedings of the 2002 ACM

Symposium on Applied Computing, pages 201–208, 2002.

[93] Lawrence L. Ho, Christopher J. Macey, and Ronald Hiller. A distributed and

reliable platform for adaptive anomaly detection in IP networks. In Interna-

tional Workshop on Distributed Systems: Operations and Management, pages

33–46. Springer, 1999.

[94] Tom Fawcett and Foster Provost. Activity monitoring: noticing interesting

changes in behavior. In Proceedings of the Fifth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 53–62, 1999.

[95] MJ. Desforges, PJ. Jacob, and JE. Cooper. Applications of probability density

estimation to the detection of abnormal conditions in engineering. Proceed-

ings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical

Engineering Science, 212(8):687–703, 1998.

[96] Dit-Yan Yeung and Calvin Chow. Parzen-window network intrusion detectors.

In Object Recognition Supported by User Interaction for Service Robots, vol-

ume 4, pages 385–388. IEEE, 2002.

[97] Christopher M. Bishop. Novelty detection and neural network validation. IEEE

Proceedings Vision, Image and Signal processing, 141(4):217–222, 1994.

[98] Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar. Intro-

duction to data mining. Addison-Wesley, 2 edition, 2005. Chapter 2.

[99] Sigurour E. Guttormsson, RJ. Marks, MA. El-Sharkawi, and I. Kerszenbaum.

Elliptical novelty grouping for on-line short-turn detection of excited running

rotors. IEEE Transactions on Energy Conversion, 14(1):16–22, 1999.

[100] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algorithms

for mining outliers from large data sets. In Proceedings of the 2000 ACM SIG-

MOD International Conference on Management of Data, pages 427–438, 2000.

[101] A. Kumar Jain and Dubes. algorithms for clustering data. Prentice-Hall Inc.,

1988.

125



[102] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-

based algorithm for discovering clusters in large spatial databases with noise.

In KDD, volume 96, pages 226–231, 1996.

[103] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: a robust clustering

algorithm for categorical attributes. In Proceedings 15th International Confer-

ence on Data Engineering, pages 512,529, 1999.
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Appendix A

A.1 Column-Wise Soft-Thresholding Operator Deriva-

tion

(Column-Wise Soft-Thresholding Operator derivation): Given X ∈ Rm×n,

we derive here the proximal operator proxht (X), when the function h(X) : Rm×n → R
is the l1,2 norm; h(X) = ||X||1,2 =

∑n
i=1 ||X:,i||2.

Proof

The separable sum property of proximal operators states that: if a function

h(x1,x2) is separable as, h(x1,x2) = h1(x1) + h2(x2) then

proxht (x1,x2) =
(
proxh1t (x1), proxh2t (x2)

)
.

In the case of h(X) = ||X||1,2 =
∑n

i=1 ||X:,i||2, h1, h2, ....hn are all the l2 norm function

||.||2, hence we rewrite the proximity operator of the l1,2 norm as

prox
||.||1,2
t (X) =

(
prox

||.||2
t (X:,1), prox

||.||2
t (X:,2), .....prox

||.||2
t (X:,n)

)
then we can write this as, [

prox
||.||1,2
t (X)

]
i

= prox
||.||2
t (X:,i)

The proximity operator of the l2 norm function, prox
||.||2
t (X:,i), is given as:

prox
||.||2
t (X:,i) =

[
0 if ||X:,i||2 ≤ t

X:,i − t X:,i

||X:,i||2 if ||X:,i||2 > t
, (1)

this is the column-wise thresholding operator. The proximity operator prox
||.||2
t (X:,i)

of the l2 norm can be derived from the Moreau Decomposition, which states that

135



for any vector x:

x = proxht (x) + tproxh
∗

t−1(x/t)

were h∗ is the conjugate function of h. in the case where h is a norm its conjugate

function is the indicator function of the dual norm-ball:

h(x = ||x||), h∗(x) = δB(x) with B = {x|||x||∗ ≤ 1}

(||x||∗in this case is the dual norm ) the indicator function is defined as:

δB(x) =

[
0 if x ∈ B
∞ if x2 /∈ B

.

In the case were h is the l2 norm its dual norm is also the l2 norm. Therefore, from

the Moreau Decomposition we can find the proximity operator of the l2 norm

prox
||.||2
t (x) = x− tproxδBt−1(x/t) (A.1)

Now we need to find the proximity operator of the indicator function δB(x), it is

defined as

proxδBt−1(x/t) = argmin
u

(
δB(u) +

t

2
||u− x/t||22

)
= argmin

u∈B

( t
2
||u− x/t||22

)
,

getting rid of constant t
2

does not change minimization problem giving

argmin
u∈B

(
||u− x/t||22

)
= PB(x/t),

where PB(x/t) is the projection of x/t onto closed convex set B. In the case where

B is the unit norm ball, {x|||x||2 ≤ 1}, PB(x) is defined as

PB(x) =

[
x if ||x||2 ≤ 1
x
||x||2 if ||x||2 > 1

.

Note that PB(x/t) is the projection onto B = {x : ||x/t||2 ≤ 1}. Set B can be

rewritten as the t-norm ball B = {x : ||x|2 ≤ t}, therefore we can say PB(x/t) =

PtB(x). Where PtB is the projection onto the t-norm ball whcih is defined as,

PtB(x) =

[
x if ||x||2 ≤ t
x
||x||2 if ||x||2 > t

.

Now substitution proxδBt−1(x/t) = PtB(x) into A.1 we get,

136



prox
||.||2
t (x) =

[
0 if ||x||2 ≤ t

x− t x
||x||2 if ||x||2 > t

by recalling that we want to find the proximity operator for all the columns of X

which are X:,i, the above definition is applied to all X:,i , giving the expression for

column-wise thresholding operator (1).

A.2 Singular Value Soft-Thresholding operator Proof

(Singular Value Soft-Thresholding operator proof): Given a data matrix

X ∈ Rm×n and parameters µ, t > 0, we prove here that the singular value soft-

thresholding operator Dµt is the minimizer of

Dµt = argmin
Y

1

2t
||X − Y ||2F + µ||Y ||∗. (A.2)

Proof

Multiplying A.2 by a constant does not change the minimizer, we can rewrite it as

Dµt = argmin
Y

1

2
||X − Y ||2F + µt||Y ||∗ (A.3)

A.3 is strictly convex we can state that it has an existing unique minimizer , thus we

need to prove that it is equal to Dµt(X). To do this we need to recall the subgradient

optimality condition which states that, Ŷ is a minimizer to A.3 if 0 is a subgradient

of the subdifferential of A.3

0 = ∂Y
(1

2
||X − Ŷ ||2F + µt||Ŷ ||∗

)
(A.4)

0 =
(
Ŷ −X

)
+ µt∂||Ŷ ||∗ (A.5)
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Where ∂||Ŷ ||∗ is the set of subgradients of the nuclear norm. Now let Y ∈ Rm×n be

an arbitrary matrix and UΣV T be its SVD. it is known [59,201] that

∂||Y ||∗ =
(
UV T +W : W ∈ Rm×n, UTW = 0,WV = 0, ||W ||2 ≤ 0

)
(A.6)

set Ŷ = Dµt(X) in order to show that Ŷ minimizes A.3, Decompose X as X =

U0Σ0V
T

0 +U1Σ1V
T

1 , where U0, V0 are the singular vectors associated with the singular

values that are greater than µt. U1, V 1 are the singular vectors associated with the

singular values that are smaller than or equal to µt. We have from the definition of

the Singular Value Soft Thresholding operator,

Ŷ = U0

(
Σ0 − (µt)I

)
V T

where I is the identity matrix. Therefore, rearranging A.5 as

X − Ŷ ∈ µt∂||Ŷ ||∗ (A.7)

and substitution X and Ŷ gives

U0Σ0V
T

0 + U1Σ1V
T

1︸ ︷︷ ︸
X

−U0

(
Σ0 − (µt)I

)
V T

0︸ ︷︷ ︸
Ŷ

∈ µt∂||Ŷ ||∗ (A.8)

U0Σ0V
T

0 + U1Σ1V
T

1︸ ︷︷ ︸
X

−U0Σ0V
T

0 + (µt)U0V
T

0︸ ︷︷ ︸
Ŷ

∈ µt∂||Ŷ ||∗ (A.9)

1

µt

(
U1Σ1V

T
1

)
+ U0V

T
0 ∈ ∂||Ŷ ||∗ (A.10)

Comparing A.10 to the definition of the subdifferential of the nuclear norm A.6. We

have W = 1
µt

(
U1Σ1V

T
1

)
. Now check if conditions inA.6 are met. by definition we can

see that U0W = 0 and WV = 0 and we know that the diagonal elements of Σ1 have

elements that are smaller than or equal to µt therefore, ||W ||2 ≤ 1. this proves that

X − Ŷ ∈ µt∂||Ŷ ||∗ which concludes the proof.
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A.3 Gaussian Noise Model for Classical PCA

Statement: The noise model of PCA is Gaussian distributed. In other words, we

prove here that minimizing the l2 norm squared of the reconstruction error of each

sample is equivalent to maximising the log likelihood of the data, when the noise

matrix N is sampled from a Gaussian distribution.

Proof

Classical PCA linear problem:

M = L+N,

We can think of this instance wise by taking each column separately. Then the linear

problem becomes:

M:,i = L:,i +N:,i ∀i,

where i = [1, 2, ...n] and vector N:,i is sampled from a multivariate Gaussian distribu-

tion with dimensionality p, N:,i ∼ N (0, σ2I). Then the distribution of M:,i becomes

M:,i ∼ N (Li, σ
2I). Now we can write the log likelihood of the data M as:

L(M ;L) = log
∏
i

p(M:,i|L:,i)) =
∑
i

log(p(M:,i|L:,i)).

Probability distribution of M:,i is multivariate Gaussian with isotropic covariance:

p(M:,i|L:,i) =
1√

((2π)pσ2p)
exp
(
− 1

2σ2
(M:,i −L:,i)

T (M:,i −L:,i)
)
.

We want to maximize the log likelihood with respect to the parameter that we ant

to estimate, in this case it is L. The objective function is written as:

L̂ = argmax
L

∑
i

(
log(K)− 1

2σ2
(M:,i −L:,i)

T (M:,i −L:,i)
)
,

where K is a constant term. By getting rid of the constants the argmax is unchanged.

We can rewrite the previous expression as:

L̂ = argmax
L
−
∑
i

(
(M:,i −L:,i)

T (M:,i −L:,i)
)
,

which is equivalent to minimizing the reconstruction error:

L̂ = argmin
L

∑
i

(
||M:,i −L:,i||22

)
= argmin

L
||M − L||2F .

This concludes the proof.
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A.4 Laplacian Noise Model for Robust PCA

Statement: The noise model of Robust PCA is Laplacian distributed. In other words,

we prove here that minimizing the l1 norm of the reconstruction error of each sample

is equivalent to maximising the log likelihood of the data, when the noise matrix N
is sampled from a Laplacian distribution.

Proof

Robust PCA linear model:

M = L+ E,

We can think of this element-wise by taking each element separately. Then the linear

problem for every element becomes:

Mi,j = Li,j + Ei,j ∀i,

where i = [1, 2, ...n] and entries in E are sampled from a Laplace distribution, Ei,j ∼
Laplace(0, b). Then the distribution of Mi,j becomes Mi,j ∼ Laplace(Li,j, b).

Now we can write the log likelihood of the data M as:

L(M ;L) = log
∏
i,j

p(Mi,j|Li,j)) =
∑
i,j

log(p(Mi,j|Li,j)).

The probability distribution of Mi,j is a univariate Laplacian distribution:

p(Mi,j|Li,j) =
1√
2b

exp
(
− 1

b
(|Mi,j − Li,j|),

)
now we maximize the log likelihood with respect to L. The objective function is

written as:

L̂ = argmax
L

∑
i,j

(
log(K)− 1

b
(|Mi,j − Li,j|)

)
,

where K is a constant term. By getting rid of the constants the argmax is unchanged.

We can rewrite the previous expression as:

L̂ = argmax
L
−
∑
i,j

(
|Mi,j − Li,j|

)
,

which is equivalent to minimizing the l1 reconstruction error:

L̂ = argmin
L

∑
i,j

(
|Mi,j − Li,j|

)
= argmin

L
||M − L||1.

This concludes the proof.
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A.5 CCA; Deriving Eigenvalue Problem

The CCA objective function is:

argmax
w1,w2

w1C12w2

s.t wT
1 C11w1 = 1, wT

2 C22w2 = 1.

The Lagrange multiplier of this problem is:

L(w1,w2, λ1, λ2) = w1C12w2 − λ1(wT
1 C11w1 − 1)− λ2(wT

2 C22w2 − 1).

The Lagrange multiplier method takes the derivative of the Lagrange multiplier func-

tion with respect to each variable and equates it to 0. The derivative of the Lagrange

multiplier function with respect to both w1 and w2 is:

δL
δw1

= 0; C12w2 − λ1C11w1 = 0. (A.11)

δL
δw2

= 0; C21w1 − λ2C22w2 = 0. (A.12)

From A.11 and A.12 we obtain:

C12w2 = λ1C11w1. (A.13)

C21w1 = λ2C22w2. (A.14)

To obtain the generalized eigenvalue problem to solve for w1, we rearrange equation

A.14 to obtain the expression for w2 = 1
λ2

(C22)−1C21w1. We substitute in equation

A.13 to obtain:

C12(C22)−1C21w1 = ηC11w1. (A.15)

solving this is the generalized eigenvalue problem will give the optimal projection

direction w1.

To obtain the generalized eigenvalue problem to solve for w2, we rearrange equation

A.13 to obtain the expression for w1 = 1
λ1

(C11)−1C12w2. We substitute in equation

A.14 to obtain:

C21(C11)−1C12w2 = ηC22w2. (A.16)

solving this is the generalized eigenvalue problem will give the optimal projection

direction w2. For both equations A.15 and A.16, η = λ1λ2.
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A.6 MCCA; Deriving Solution

The MCCA objective function is as follows:

argmax
{wv}Vi=1

V∑
v=1

V∑
k=1

wT
v Cvkwk

s.t wT
v Cvvwv = 1, for v = {1, 2, ..., V }.

The Lagrange multiplier of this problem is:

L({wv}Vi=1, {λv}Vv=1) =
V∑
v=1

V∑
k=1

wT
v Cvkwk −

V∑
v=1

λv(w
T
v Cvvwv − 1).

Then the derivative of the Lagrange multiplier function is taken with respect to each

of the wv ∈ Rpv×1 vectors and equated to the zero vector 0 ∈ Rpv×1. The derivative

of the Lagrange multiplier function with respect to a specific wv is:

δL
δwv

= 0; 2
V∑
k=1

Cvkwk − 2λvCvvwv = 0,

this gives V different equations:

V∑
k=1

Cvkwk = λvCvvwv.

We can collect the left and right side of the previous equation as vectors; show as:
∑V

k=1C1kwk

...∑V
k=1CV kwk

 =

 λ1C11w1

...

λVCV V wV

 ,
This can be rewritten in terms of block matrices and by grouping all the wi vectors

into a single vector. This gives:C11 . . . C1V

...
. . .

...

CV 1 CV V


w1

...

wV

 =

C11 . . . 0
...

. . .
...

0 . . . CV V


λ1Ip1 . . . 0

...
. . .

...

0 . . . λV Ipv


w1

...

wV

 . (A.17)

A.17 is a multivariable generalized eigenvalue problem (MEP). Now the set of canon-

ical transformations {wv}Vv=1 can be found by solving this MEP.

142



A.7

Defining the conjugate of function f(x):

f ∗(u) = max
x
uTx− f(x). (A.18)

Recall that the Lagrangian function of problem 3.24 is

L(x,u) = f(x) + uT (Ax− b), (A.19)

now, its dual function is expressed as:

g(u) = min
x
L(x,u) = min

x
f(x) + uT (Ax− b)

= −uTb+ min
x

(
f(x) + uTAx

)
= −uTb−max

x

(
(−ATu)Tx− f(x)

)
= uTb− f ∗(−ATu).

(A.20)

A.8

Statement: If a function f is closed and convex, then x ∈ δf ∗(u) ⇐⇒ u ∈
δf(x) ⇐⇒ x ∈ argminz f(z)− uTz.

Proof

Recall the conjugate of function f(x):

f ∗(u) = max
x
uTx− f(x). (A.21)

Proving: u ∈ δf(x)⇒ x ∈ δf ∗(u).

Assume that u ∈ δf(x) is known. Recall

−f ∗(u) = min
z
f(z)− uTz, (A.22)

then from first order optimality condition of A.22, optimal z satisfies the subgradient

optimality condition:

0 ∈ δf(z)− u =⇒ u ∈ δf(z).

Therefore, following from the assumption that u ∈ δf(x) is true, we now know that

x must minimize f(z)− uTz or equivalent must maximize uTz − f(z).
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The conjugate function with z as the variable is

f ∗(u) = max
z
uTz − f(z)︸ ︷︷ ︸

fz(u)

.

Then, the subgradient of f ∗(u) is the union of the subgraidents fz(u) w.r.t u for all

z that maximize fz(u). It is written mathematically as the closure of the convex hull

of such as set of subgradients:

δf ∗(u) = cl(conv(∪z∈Mu{δfz(u)})) = cl(conv(∪z∈Mu{z})),

where Mu is the set of maximizers of fz(u), and δfz(u) = z. Thus, this concludes

that proof that x ∈ δf ∗(u).

Proving: other direction x ∈ δf ∗(u)⇒ u ∈ δf(x).

Assuming that x ∈ δf ∗(u) is known. Stemming from previous proof we an state that

u ∈ δf ∗∗(u), which equals to u ∈ δf(u), because a property of conjugates is that

f ∗∗ = f .

Proving: u ∈ δf(x) ⇐⇒ x ∈ argminz f(z)− uTz.

Referring to first proof, this stems from the first order optimality condition of A.22.
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