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Abstract

Be stars are dynamic systems even when completely isolated. Variabilities in the

emission of these stars across all wavelengths are observed with periods ranging from

a few minutes to many decades. Be stars are generally accepted to be surrounded by

a decretion disc that gives rise to a number of these observable variabilities. The fact

that this disc must be formed of material that is ejected from the surface of the star

requires a complex mechanism that is still not fully understood. Be stars coupled

with a compact object companion in a Be/X-ray binary have exhibited a large variety

of complex behaviour. As Be/X-ray binaries are also the largest population of high

mass X-ray binaries, they are a valuable resource for the investigation of the extreme

physics of compact objects.

In this thesis, a code that implements the computational method of smoothed

particle hydrodynamics (SPH) is used to model Be/X-ray binaries. SPH simulations

have a resolution that is dependent on the density of individual regions. Thus, SPH is

suited to modelling the circumstellar discs of Be stars because there is a considerable

range between the maximum and minimum densities. Such a model can describe the

properties of the disc in detail during binary interactions and allows a comparison to

observable Be/X-ray binaries.

This thesis builds upon the previous work that has been done to investigate the

properties of the circumstellar discs of Be stars. It begins with an investigation of a

broad range of disc properties. The same simulations are then shown to agree with

observationally determined relationships between the Be star’s disc size, the orbital

period and the semi-major axis of the binary. The Be/neutron star binary SXP 5.05

is then targeted with simulations attempting to reproduce the observations of the I-

band and X-ray flux during a large optical outburst that occurred in 2013. It is found

that the outburst can be replicated by a sudden and considerable increase in the mass

ejection of the Be star. Be/X-ray binaries with di↵erent compact object companions

are then modelled. The simulations agree with previous suggestions that Be stars

with black hole companions have smaller discs and are fainter X-ray sources. Finally,

the observational implications gleaned from these simulations and the possibilities of

future work are considered.
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Chapter 1

Introduction

The focus of a considerable amount of astronomical research is to understand the

extreme physics of compact objects (white dwarfs, neutron stars and black holes)

but observing them directly is very di�cult. Therefore, the best method to

investigate compact objects is to observe their interactions with infalling matter, i.e.

accretion. An X-ray binary is one of the most abundant kinds of system that

accommodates an accreting compact object.

Be/X-ray binaries are the largest population of high mass X-ray binaries and

consist of a B-type star and a compact object. The Be star possesses a circumstellar

disc that arises from the ejection of matter from the surface of the star. The disc is

dynamic in nature and thus provides an extensive assortment of possible

interactions with the compact object.

Computational methods have developed considerably in the last few decades to

include comprehensive means to model the dynamics, temperature and emission of

the Be star’s circumstellar disc. This has led to the development of a theory that

encapsulates the features of the disc. However, there is still more work to be done

in order to fully understand the wide variety of observed variabilities.

In this thesis, the behaviour of Be star discs are examined in a variety of cases. The

general properties of Be/neutron star binaries are considered with a focus on steady

state systems allowing for a broad comparison. A distinct Be/X-ray binary system,

SXP 5.05, is modelled during its particularly rare outburst event that occurred in

2013. Comparisons are then made between black holes and neutron stars when

coupled with Be stars in a binary, highlighting some of the features seen in the first

confirmed Be/black hole binary, MWC 656. All of the work builds on the previous

applications of hydrodynamical models to Be/X-ray binaries and provides further

evidence for the currently accepted disc theory for Be stars.
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1.1 Be stars

Be stars are non-supergiant B spectral type stars that have, or have had at some

time, one or more Balmer lines in emission (Jaschek and Egret, 1982). This

population of stars contains some of the brightest stars in the sky. For example, ↵

Eri (B3 V) is the tenth brightest star in the sky when ordering by V-band

magnitude, with an apparent magnitude of mV = 0.40� 0.46 (Samus et al., 2009).

In comparison to many other main sequence stars, Be stars have high rates of mass

outflow, with a median of ⇠ 10�10M�yr�1) estimated from simulations. They also

rotate very quickly (Slettebak, 1988), with critical fractions of W � 0.6 (Frémat et

al., 2005) and some even exceeding the critical limit entirely (Rivinius, Štefl and

Baade, 2006). The critical fraction, W , is defined as

W =
vrot

vkep
, (1.1)

where vrot is the rotational velocity at the equator and vkep is the Keplerian orbital

velocity at the equator. A star is rotating critically when vrot = vkep. This rapid

rotation, in addition to non-radial pulsations, is thought to lead to a di↵use and

gaseous circumstellar disc (Rivinius, 2000). This is commonly referred to as a

decretion disc. The disc is the dominant source of material for accretion onto a

binary companion, because the stellar wind of a Be star is generally weak. The

understanding of these systems has improved greatly over the last few decades due

to large public databases of photometry, polarimetry and spectroscopy,

complimented by the advancement of computational methods.

This section discusses the history and the distinct features of Be stars. Firstly, the

discovery and classification of Be stars is outlined. Then the emission of Be stars is

briefly discussed, including its dynamical behaviour. Finally, there is an

examination of both the mechanisms which are considered to give rise to the

ejection of matter from the surface of the Be star: rapid rotation and non-radial

pulsations.

1.1.1 Discovery and classification

Be stars were first discovered by Secchi (1866), with an observation of � Cas

(B0.5 IV) exhibiting a H� emission line that was brighter than expected of a B-type

spectrum. For the next 65 years, all stars with B-type spectra and Balmer line

emission were considered part of the same population of stars. Struve (1931) then

eliminated stars with P Cygni profiles and attributed the spectra of some stars to

binarity, such as � Lyr (B8). The upper main sequence objects (those in luminosity
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classes V to III) still conforming to the criteria were suggested by Struve to be

rapidly rotating stars. Struve suggested that this rotation leads to ejection of matter

from the star at the equator, thus forming a Keplerian disc that revolves around the

star. This disc is responsible for the Balmer emission lines seen in the spectrum.

Struve also noted that the rotation of the star would lead to it being warped into a

“lens-shaped” body. The suggestion of a circumstellar disc at the star’s equator led

to Be stars being unified with shell stars. Shell stars refer to stars that exhibit

Balmer lines with absorption cores much more sharp than one would expect from

the width of normal photospheric lines. Struve suggested that shell stars are simply

a Be star which is observed edge-on, or in other words, through the disc. When the

entire length of the disc is along the observer’s line of sight, one would see narrow

absorption lines (illustrated in Figure 1.1). This geometry was eventually confirmed

through interferometric observations (Quirrenbach et al., 1994).

A more formal definition of Be stars was proposed by Jaschek and Egret (1982) and

then modified by Collins (1987) thus replacing “hydrogen lines” with “Balmer lines”.

This minor modification is important because early main sequence B stars can

produce infrared hydrogen lines from photospheric emission alone (Zaal et al.,

1999). The classical definition is as follows:

Be stars are non-supergiant B spectral type stars that have, or have had

at some time, one or more Balmer lines in emission.

This definition is still commonly used despite being a very broad statement. The

aim of this definition is to capture only the stars that are capable of forming their

own discs but technically any B-type star with circumstellar material of a su�cient

density (� 10�13 gcm�3) falls within this classification. This is because

circumstellar gas above such a density (and thus of su�cient equilibrium

temperature) always exhibits Balmer line emission when orbiting a B-type star.

Be stars are capable of exhibiting both a standard photospheric emission spectrum

expected of a B-type star and a much broader emission spectrum with tens of

Angstroms in H↵ equivalent width. What is even more distinct about Be stars is

their ability to vary between these two states of emission over a matter of years.

This is why it is necessary to contain the statement “or have had” in the classical

definition because if a B-type star is not currently displaying Balmer lines in

emission, it does not mean that this star is not capable of forming a disc. Thus,

once a star is classified as a Be star, it remains one even if it ceases to exhibit the

defined features. This also means that a B-type star that has never been classified

as a Be star, could at any time become one (such as � Sco).

O-type stars exhibiting Balmer line emission are also classified equivalently to Be

stars because they are also upper main sequence stars and have morphologically

similar spectra. Most are of late O subtype and close to the B star range (Conti
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Figure 1.1: Figure 1 from Rivinius, Carciofi and Martayan (2013). It illustrates the e↵ect
of viewing a Be star and its disc at di↵erent viewing angles. The top image shows the
“lens-shaped” Be star in blue with the surrounding flared circumstellar disc in red. The
lower diagrams show examples for three line emission profiles when viewed at the four angles
specified, A through D.

and Leep, 1974; Negueruela et al., 2004). Technically, A and F-type shell stars exist

and some even show weak H↵ emission (Slettebak, 1986; Waters et al., 1988).

Hence, there are objects outside of the classical definition that may possess

circumstellar discs and other features similar to Be stars.

1.1.2 Spectral type and mass

Following the definition above, only stars with B-type spectra can be classified as a

classical Be star. In a catalogue given by Jaschek and Egret (1982), there are Be

stars of all subtypes from B0-B9. There are more Be stars of earlier spectral class

but this could be an observational bias as they are hotter stars. This implies that

classical Be stars have masses ranging from ⇠ 2� 20M� (Schmidt-Kaler, 1982).

As previously mentioned, Oe stars are often considered equivalently to Be stars, as

they behave very similarly. As Oe stars are typically of late O subtype, these stars

can be considered to have masses of ⇠ 20� 40M� (Silaj et al., 2014).

In binary systems the observed companions are more commonly late Oe stars (O7 -

O9) or early Be stars (B0 - B2) (Raguzova and Popov, 2005; Coe and Kirk, 2015).

These spectral types imply that the approximate masses of these stars lie between

9M� and 30M�. However, when they exist in a binary they are undermassive for

their spectral type (see Section 1.3.3).
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1.1.3 Emission

The observed spectral energy distribution (SED) of a Be star di↵ers from the

standard photospheric spectrum of a B-type star due to the presence of the

circumstellar disc. The disc both absorbs radiation from the central star and emits

radiation that is dependent on the properties of the disc. The relation between

these processes and the emergent spectrum is dependent on both the wavelength of

the emission and the viewing angle of the Be star. An example is ultraviolet

emission, where the light scatters o↵ the disc. Therefore when the Be star is viewed

pole-on, the UV emission is enhanced and it is depleted when looking along the

length of the disc.

There are three components to the emission of an isolated Be star system: the

central Be star, the stellar wind and the circumstellar disc. The central star

displays the same emission as a B-type star (see Section 1.1.1) which emits as a

black body. One of the brightest Be stars, ↵ Eri, has a luminosity of ⇠ 1037 erg s�1

(Carciofi et al., 2008).

In general, the stellar wind of Be stars is similar to a normal B-type star but Be

star winds should be stronger during mass outflow events (Grady et al., 1987,

1989). The variation in the strength of the wind is dependent on the rotation speed

of the Be star. The stellar wind’s X-ray emission in isolated Be star systems is

typically in the range 1030 � 1032 erg s�1 (Cassinelli et al., 1994; Naze et al., 2011).

The Be star’s circumstellar disc is the brightest component of the Be star system in

optical and infra-red wavelengths. To what extent is dependent on the size and

density of the disc. Two examples of this are the isolated Be star ! CMa with an

apparent V-band magnitude that has been observed to vary by ⇠ 0.5 (Ghoreyshi et

al., 2018) and the Be/X-ray binary SXP 5.05 that has an apparent I-band

magnitude observed to vary by ⇠ 0.4 (Coe et al., 2015). Hence, the disc can grow to

be at least as bright as the central Be star. This only occurs in certain wavelengths

such as the V-band and I-band as the disc mainly emits in the optical and infra-red

(Carciofi and Bjorkman, 2008).

A huge amount of work has gone into studying the emission of the disc but this is

largely out of the scope of the work in this thesis. An extensive review of Be stars

including a comprehensive introduction to the various aspects of Be star emission is

included in (Porter and Rivinius, 2003) and Rivinius, Carciofi and Martayan (2013).

As the focus of the work in this thesis is the behaviour of the disc, this section will

only cover topics involving observables that are related to the dynamics of the disc.
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Dynamic behaviour

The emission of Be stars varies on a broad range of timescales from a few minutes

to many decades. As mentioned in Section 1.1.1, a Be star can go from emitting a

normal B-type spectrum to an excess in a broad range of wavelengths (or vice

versa) in a matter of years. This is due to the growth and/or dissipation of the disc.

Both the density and size of the disc determine the observed emission (Faes et al.,

2013) and hence it can be assumed that the disc is responsible for most of the

variabilities observed in Be stars.

A distinctive trait of Be stars is the variation in the line emission, particularly the

fluctuations in the ratio between the peaks of the emission line. These are named

V/R variations (see Section 1.1.3) due to the relative changes in the violet and red

peaks. These variations have periods much longer than the rotation period of the

star and are thus ascribed to the circumstellar disc. They are also much longer than

the rotation period of the disc’s Keplerian motion and therefore must be due to

some evolving structure in the disc (see Section 1.1.3).

The shortest period line profile variabilities occur on timescales of between 0.5 and

2 days and are observable in virtually every single Be star system. A single Be star

can exhibit multiple of these rapid variabilities with di↵erent periods. These are

attributed to the Be star itself and arise due to non-radial pulsations (see Section

1.1.4).

V/R variations

A common variability in the emission of Be stars is the relative changes in the

redward and blueward peaks in the line profiles, and has been named V/R

variations. A number of the important observable properties are outlined by

Okazaki (1991) and were updated with more recent findings by Rivinius, Carciofi

and Martayan (2013). These are as follows:

1. The periods of V/R variations range from years to decades and are therefore

hundreds of times larger than the orbital period of the material in the disc

and thousands of times larger than the rotation period of the star.

2. There is no relation between the period of the V/R variations and the spectral

type of the central Be star.

3. The length of the V/R period can change from cycle to cycle (Štefl et al.,

2009; Ruždjak et al., 2009).

4. The entire line profile shifts redward when the blue peak is stronger and vice

versa.
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5. In binary systems containing a shell star, V/R variations are sometimes phase

locked to the orbital motion (Štefl et al., 2007).

6. Some shell stars exhibit a third peak during the variation of the H↵ profile

(Štefl et al., 2009).

7. Lags between the V/R variations of di↵erent optical emission lines and

infrared lines have been observed (Wisniewski et al., 2007)

8. A positive correlation between the V/R variability and the presence of

discrete absorption components has been found in studies of UV spectra

(Doazan et al., 1987; Telting and Kaper, 1994).

Okazaki (1991) and Papaloizou, Savonije and Henrichs (1992) provided theoretical

models to explain these variations that involve a precessing, one-armed density

wave. This density wave rotates much slower than the orbit of the material in the

disc and was shown to have a period consistent with V/R variations. In the case of

binarity, the most popular theory is currently the precession of an eccentric disc

(see Section 1.3.5).

1.1.4 The Be phenomenon

The presence of a disc surrounding the Be star is generally accepted but the actual

mechanism that gives rise to the outflowing material has been very di�cult to

determine. Stellar wind is not a large contributor in the ejection of the disc

material, because they are typically weak in B-type stars (Prinja, 1989; Krtička,

2014). Another suggested possibility is leverage due to the magnetic field of the Be

star but no su�ciently strong magnetic fields were found in a sample of 100 Be

stars, by the 2012 survey, “Magnetism in Massive Stars” (MiMeS) (Wade et al.,

2012). The most popular theory of the source of the disc-forming mass outflow is

the combination of rapid rotation and non-radial pulsations.

Stellar rotation

Be stars are some of the fastest rotating stars (aside from compact objects) in terms

of the projected rotational velocity or v sin i (Townsend et al., 2004). Hence, they

are excellent objects for testing theories about fast rotating stars. One such

example is testing the di↵erence between the pulsational properties of

rapid-rotating stars and non-rotating stars. This provides an insight into the

interior structure of rotating stars (Reese et al., 2009; Lee, 2012; Reese et al., 2013).

A star rotating greater than or equal to the critical rotation, is capable of ejecting

mass from the surface of the star into a Keplerian orbit. Here, critical rotation is

defined as the point where the rotational velocity at the equator is equal to the
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Keplerian orbital velocity of a particle at the equator. Despite the fact that Be

stars rotate so rapidly, it cannot be the only mechanism responsible for the

production of the disc. There are Be stars that have been shown not to rotate close

to the critical rotation (McSwain et al., 2008; Meilland et al., 2012) and there are

B-type stars that rotate faster than many Be stars and yet do not possess disc line

emission (McAlister et al., 2005). Hence, there must be some additional feature of

Be stars that provides additional angular momentum to the matter at the equator:

this is widely accepted to be non-radial pulsations.

Non-radial pulsations

As mentioned in Section 1.1.3, there are very short period (from 0.5 to 2 days)

variabilities in the emission of Be star systems that originate from the Be star itself.

However, there has been much debate in the past concerning the source of these

variables. It could be due to either rotation or pulsation (Porter and Rivinius,

2003). Rivinius, Baade and Štefl (2003) suggested that the mechanism is a specific

kind of pulsations, namely low order, g-mode (or “gravity”-mode) non-radial

pulsations (NRPs), with grouped multiperiodicity. The first confirmation of

multiperiodicity in the pulsations was made by Walker et al. (2005) whilst

observing the Oe star, ⇣ Oph. However, since the recent advances in

astroseismology (Aerts, Christensen-Dalsgaard and Kurtz, 2010), the

multiperiodicity of Be stars is often observed.

Pulsations as a contributing mechanism to the Be phenomenon was proposed

around 30 years ago by Baade (1988). Despite indications that outbursts and

changes in the pulsation behavior of Be stars may be correlated (Bolton, 1982;

Penrod, 1986), it has been shown that the amplitude of a single pulsational mode is

not su�cient to form a Be star disc (Owocki, 2006). Constructive interference

between multiple modes was first observed giving rise to mass ejection events in the

Be star system, µ Cen (Rivinius et al., 1998). Work is still continuing into the role

of NRP modes in relation to the Be phenomenon but recent work shows that

systems have a mass ejection rate controlled by a hierarchy of modes (Baade, 2018).

1.2 Decretion discs

It has become widely accepted that classical Be stars possess a circumstellar disc

formed from ejected matter. The rapid rotation and non-radial pulsations (see

Section 1.1.4) of the central star create an outwardly di↵using, gaseous disc. There

is a large variety of observational behaviour seen in Be stars and models including a

decretion disc have managed to explain a number of them. For example, recent

work has shown accurate modelling of the lightcurve of ! CMa (Ghoreyshi et al.,
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2018). Even more complicated features, such as V/R variations (see Section 1.1.3),

can be explained qualitatively using a disc (Okazaki, 1991).

This section will discuss the generally accepted disc model and how it can explain a

variety of the observational features of a Be star system. Firstly, the geometry of

the disc will be discussed, including the flaring of the disc and its density profile.

Secondly, the motion of the material in the disc will be outlined. Following this, the

dynamical behaviour of the disc is examined. Finally, the most popular method for

modelling the circumstellar discs of Be stars, the Viscous Decretion Disc model, is

described.

1.2.1 Geometry

To explain the large dependence of the SED on the inclination of the system and

the phenomenon of shell stars, the mass outflow of the Be star must be a flattened

disc-like structure. This general picture has been confirmed through optical long

baseline interferometry (Quirrenbach et al., 1994). Although this method was able

to unequivocally show the existence of a flattened envelope, it can only determine

either the thickness or the inclination of the disc. This is because the appearance of

the disc is dependent on both these quantities, with no way to disentangle them.

Disc flaring

It is not possible to specify whether the structure surrounding the Be star is a disc

or just an oblate envelope without determining its thickness. A few years after the

determination of the flattened envelope, Wood et al. (1997) showed that the

spectropolarimetric observations of ⇣ Tau could only be explained by either a thin

disc with an opening angle of 2.5� or a thick disc with an opening angle of 52�

(opening angle is measured from the equatorial plane of the disc). In the same year,

Quirrenbach et al. (1997) combined polarimetry with interferometric techniques,

and so determined an upper limit to the disc opening angle of 20� for the same

system. Thus, the envelopes of Be stars must be thin discs with small opening

angles.

For an isothermal, rotationally supported disc, there is a dependence of the disc

height on the radius from the central star. This dependence is only a↵ected by the

gas pressure and gravity of the star (Bjorkman, 1997). The scale height of the disc

is given by

H(r) =
cs

vorb

r
3/2

R
1/2
⇤

, (1.2)

9



where vorb is the Keplerian orbit velocity of a particle on a circular orbit at the

star’s equator and R⇤ is the radius of the star. cs is the isothermal speed of sound

on the disc given by

cs =

s
kBT

µmH
, (1.3)

where T is the isothermal electron temperature, µ is the mean molecular weight of

the gas. Thus, the height of the disc grows with radius and yields a flaring disc.

Density in the disc

The density profile of the disc has a large e↵ect on the results of any modelling and

thus initial attempts to model the disc were limited by the variety of suggested

concepts (Gehrz, Hackwell and Jones, 1974; Waters, 1986). Hence, it was helpful to

agree upon a satisfactory definition for the density profile of the disc. As mentioned

in Section 1.2.1, the most common view of the density of the disc is one supported

by the gas pressure in the vertical direction and held in a rotationally stable state

by the gravity of the central star. Radially, the density falls o↵ as a power law

⇢(r) = ⇢0

✓
r

R⇤

◆�n

, (1.4)

where n is the power law index and ⇢0 is the base gas density, i.e. the density of the

circumstellar material at the Be star’s surface.

Measurements of the size of a given band’s emission region provide information

about the bulk properties of the disc material. Both the size of the emission regions

and the continuum SED can be modelled using radiative transfer techniques to

determine the density of the disc. There have been many attempts to fit the power

law of the density profiles of Be star circumstellar discs. Table 1.1 shows the results

from seven fits to specific decretion discs. The works by Carciofi et al. (2006, 2007,

2009) use radiative transfer techniques and a fixed power law index to fit the SED,

polarization and line profiles. Tycner et al. (2008) and Jones, Sigut and Porter

(2008a) modelled and then analysed the interferometry and spectroscopy of the Be

star systems.

The value of n was more broadly investigated by Silaj et al. (2010) through the

fitting of the H↵ profiles of 56 Be stars. They found that the power law index lies in

the range 1.5  n  4 but provides the best fits at a value of n = 3.5. Touhami,

Gies and Schaefer (2011) were able to reproduce statistical properties of the colour
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Table 1.1: Examples of the base gas density, ⇢0, and power lax index, n for fits to the
density profile of Be star discs.

System ⇢0 n Reference
� Sco 4.5⇥ 10�10 3.5 (fixed) Carciofi et al. (2006)
↵ Eri 7⇥ 10�13 3.5 (fixed) Carciofi et al. (2007)
⇣ Tau 5.6⇥ 10�11 3.5 (fixed) Carciofi et al. (2009)
� Oph 2⇥ 10�11 2.5 Tycner et al. (2008)
 Dra 2⇥ 10�11 2.5 Jones, Sigut and Porter (2008a)
� Psc 1.5⇥ 10�10 4.2 Jones, Sigut and Porter (2008a)
⌫ Cyg 3⇥ 10�12 2.1 Jones, Sigut and Porter (2008a)

excesses of 130 Be stars by using a simple radiative transfer model. They added a

Gaussian dependence on the height of the disc as follows

⇢(r, z) = ⇢0

✓
r

R⇤

◆�n

exp

"
�
1

2

✓
z

H(r)

◆2
#
, (1.5)

where z is the vertical coordinate and H(r) is the scale height that is described by

Equation 1.2.

Size of the disc

It is di�cult to determine the physical size of the Be star’s disc through

observations to the point where only a few studies have made an attempt to create

a definition for this quantity (Rivinius, Carciofi and Martayan, 2013). A given line

or band is only emitted by a certain region of the disc (Faes et al., 2013) and hence

any observation can only estimate the size of a portion of the circumstellar

envelope. It is sometimes possible for an emitting area to span the entirety of the

disc when it is tidally truncated in a binary.

Predicting the size of any particular Be star’s disc is made even more di�cult due

to its dynamic nature. This would require a good understanding of the mechanism

that forms the disc, which is still not fully understood (see Section 1.1.4). However,

these discs have been shown to reach sizes of hundreds of stellar radii (Dougherty

and Taylor, 1992).

1.2.2 Disc rotation

The proposal of a circumstellar disc orbiting Be stars provided an explanation for

the observed double peaked line emission (see Figure 1.2). The motion of the disc

material towards and away from the observer Doppler shifts the observed

wavelength. This mechanism also imparts a dependence on the viewing angle of the
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system. However, it is important to understand the specific motion of the gas

because it provides information about the nature of the formation.

Initially, three cases for the azimuthal velocity of the disc, v�, were proposed

1. v� / r
�1 : stellar wind from a rotating star, where the dominant force is the

radial radiation pressure.

2. v� / r
�1/2 : a disc with standard Keplerian rotation for particles orbiting a

body due to gravitational forces.

3. v� / r : plasma trapped by strong magnetic fields and corotating with the

star.

Case 3 is immediately ruled out by the shape of the emission line profiles. For the

line shapes observed in Be star systems, it is required that the velocity decreases

with radius. Hummel and Vrancken (2000) showed more work is required to

eliminate either Case 1 or 2 because the emergent line shapes can be similar.

Theoretical models created to explain V/R variations (Okazaki, 1991; Papaloizou,

Savonije and Henrichs, 1992) suggested the existence of a precessing, one-armed

density wave. It is shown that non-Keplerian disc motion would cause these

oscillation modes to be unstable. Eventually, spectrally resolved interferometry and

spectroastrometry of emission lines finally confirmed the Keplerian nature of the

disc (Meilland et al., 2007b; Delaa et al., 2011; Kraus et al., 2012; Wheelwright et

al., 2012).

It should be noted that although the disc material may often be expected to flow on

circular Keplerian orbits, there are cases where the motion must be non-circular

orbits. One such case is in discs exhibiting V/R variations, where there is always a

non-zero velocity component projected along the observer’s line of sight. Another

example is where the binary companion’s orbit is misaligned to the plane of the disc

(see Section 1.3.5).

1.2.3 Dynamics of the disc

Possibly the most di�cult thing to understand about Be star systems, is the growth

and decay of the disc which is currently impossible to predict. Some systems have

been observed to remain stable for very long times, such as ⇣ Tau. Others, e.g. ⇡

Aqr, exhibit a gradual disappearance of observational features due to the

dissipation of the disc (Wisniewski et al., 2010; Draper et al., 2011). ! Ori is an

example of a Be star developing a circumstellar disc from scratch (Guinan and

Hayes, 1984; Sonneborn et al., 1988). All these cases can only be explained through

changes in the rate of the mass ejection from the Be star’s surface. Clearly, it can

only increase, decrease and stay approximately steady. A number of systems exhibit
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Figure 1.2: Figure 1 from Horne and Marsh (1986). (a) A Keplerian accretion disc in a
binary shown from a top-down view. (b) The velocity profile of an emission line profile from
the disc. Emission in the shaded areas of the line profile correspond to the similarly shaded
areas of the Keplerian disc.

both irregular and regular variability such as ! CMa, which displays the latter

nature in the form of quasi-cyclic variability (Štefl et al., 2003). It has been shown

recently that the variabilities in the light curve are well modelled by di↵erent

regimes of high and low mass ejection (Ghoreyshi et al., 2018).

When monitored during dissipation, the high velocity components of the line profile

begin to disappear. This was suggested to be due to a depleted inner region of the

disc (Rivinius et al., 2001). This occurs because the Be star continues to accrete

infalling material when the mass ejection ceases. This has been supported by

viscous disc models Haubois et al. (2012). In fact, viscous disc models (see Section

1.2.4) have been able to explore many dynamical aspects of the discs of Be stars,

such as expected mass ejection rates during disc growth and disc dissipation

(Ŕımulo et al., 2018).

1.2.4 Viscous Decretion Disc model

A consensus has been reached that the viscous decretion disc (VDD) model, first

suggested by Lee et al. (1991) and subsequently developed by Bjorkman (1997),

Okazaki (2001) and others, is the best candidate to explain the observed properties

of Be discs (Carciofi, 2011; McGill, Sigut and Jones, 2011). The decretion disc of a

Be star has been shown to be Keplerian from spectro-interferometry (Meilland et

al., 2007a; Kraus et al., 2012) and hence, the developed hydrodynamical VDD
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models conform to this criterion (Okazaki, 2001; Jones, Sigut and Porter, 2008a).

More recent results from simulations using this model are currently able to explain

most of the observable properties of Be stars (Klement et al, 2015).

The basic hydrodynamics of the VDD model are identical to viscous accretion disc

models for young stellar objects (Shakura and Sunyaev, 1973; Pringle, 1981) (see

Section 1.4.2) aside from one key factor - the flow of matter in the disc can go both

outwards and inwards. Keplerian disc material is introduced to the simulation just

outside the Be star’s surface. When material is supplied to the disc, the new matter

increases the total angular momentum of the disc and hence, the disc can grow in

size. On the other hand, when no material is supplied to the disc the model

simplifies to the case of an accretion disc (provided there is already an existing

disc). A lot of the initial work with the VDD model assumed a constant rate of

mass injection and an isothermal disc (Bjorkman, 1997; Porter, 1999; Okazaki,

2001). These models were able to reproduce the majority of the key theoretical

features expected of Be star discs in a steady state.

Radiative transfer techniques were then applied to the resultant density profiles

determined from simulated steady state discs to investigate the behaviour of the

temperature (Carciofi et al., 2006; Sigut and Jones, 2007; Carciofi and Bjorkman,

2008; McGill, Sigut and Jones, 2011). Figure 1.3 shows two figures from Carciofi et

al. (2006). The first is an illustration of the temperature within the disc, showing a

cool, inner region and a hot, outer region. This is expected given the emission lines

that arise from the disc. The second part of Figure 1.3 shows how the temperature

varies with radius for four models (Model 1 has the lowest base gas density and

Model 4 has the highest). The inner disc is shown to be non-isothermal: the

temperature initially falls rapidly and reaches a minimum that is dependent on the

density of the model. The temperature rises to ⇠ 60% of the e↵ective temperature

of the star.

As discussed in Sections 1.1.3 and 1.2.3, the circumstellar discs of Be stars are

dynamic in nature and so the next logical step was to use the VDD model to

simulate the evolution of the disc over time. Haubois et al. (2012) studied the

growth and dissipation of the disc using hydrodynamical simulations. When the

disc is fed at a constant rate, the disc grows and asymptotically approaches the

theoretically determined density profile. But when the simulation begins with a

pre-existing disc and the mass ejection rate is reduced to zero, the disc assumes two

separate behaviours. The inner part of the disc is accreted back onto the Be star

and the outer region continues to di↵use outward. Haubois et al. (2012) name the

separation between the two regions the “stagnation point” which moves away from

the star with time. The radial velocity at the stagnation point is zero. It was noted

that the viscosity parameter (see Section 1.4.2), ↵, a↵ects the time it takes for the

disc to evolve. A growing disc with ↵ = 1 grows ten times faster than one with
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Figure 1.3: Figure 6 and 7 from Carciofi et al. (2006). Top: An illustration of the tem-
perature structure for model 2 at three radial scales. Bottom: The radial dependence of the
equatorial temperature for models 1, 2, 3, and 4 (increasing base gas density, respectively).
The thick curve is a fit to a flat blackbody reprocessing disc (Adams et al., 1987). Base gas
densities for the models are as follows (in units of 10�11 gcm�3): 1: 1.66, 2: 4.15, 3: 8.39, 4:
16.6. Density at each point in the disc is calculated using a similar expression to Equation
1.5.
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↵ = 0.1.

Only recently have VDD models and radiative transfer methods been combined

because they are both computationally expensive. Ŕımulo et al. (2018) used the 3D

NLTE radiative transfer code, HDUST (Carciofi et al., 2006; Carciofi and

Bjorkman, 2008), and the 1D thin-disc code SINGLEBE (Okazaki, 2007) to explore

the parameter space of viscosity and mass ejection for a sample of 54 observable Be

stars. It was found that the typical mass and angular momentum loss rates

associated with the disc events are of the order of ⇠ 10�10 M�yr�1 and ⇠ 5⇥ 1036

gcm2 s�2, respectively. It was also found that, for the entire sample, the median

values for the viscosity parameter during disc growth and dissipation are

↵growth = 0.63 and ↵diss = 0.26, respectively.

Ghoreyshi et al. (2018) convincingly modelled the light curve of the isolated Be star

system, ! CMa, using the same two codes. ! CMa is one of the brightest Be stars

that can be observed (mV ⇡ 3.6 to 4.2) and so has often been a target for

observations. The viscosity parameter, mass ejection and angular momentum loss

rates are all determined through analysis of the simulation data. It is shown that

the disc’s viscosity and the Be star’s mass ejection must vary with time to reproduce

the light curve. This is in agreement with the predicted dynamic nature of the disc.

A three-dimensional SPH code (Okazaki et al., 2002) was used in conjunction with

HDUST by Panoglou et al. (2018). Convincing evidence is provided for the

phase-locked variations in the emission lines from the disc. As one of the earliest

attempts to combine a three-dimensional VDD model and three-dimensional

radiative transfer, this is an indicator of the power of combining these two methods.

1.2.5 Horne and Marsh line profiles

Be stars are well known for the H↵ emission produced by their discs (Rivinius,

Carciofi and Martayan, 2013). These profiles are one of the most direct methods of

observing the behaviour of the circumstellar disc. H↵ profiles provide information

about the inclination of the system via the prominence of a double-peaked structure

that arises due to Doppler e↵ects. The relative size of the disc can be inferred from

the equivalent width of the H↵ profile (Hanuschik, 1989) or the separation of the

peaks (Huang, 1972).

Horne and Marsh (1986) applied a simplification of radiative transfer techniques to

accretion discs to formulate line emission shapes for optically thin and optically

thick cases (also see Marsh (1987); Horne (1995) for further details). This method

has since been applied to Be star decretion discs by Okazaki (1996) and Hummel

and Vrancken (2000). The method is unreliable for extreme inclination angles

(�80�).
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Horne and Marsh (1986) suggested a basic expression for the broadening of the line

emission by Doppler shifts. These Doppler shifts are due to the orbital motion of

the material in the disc along the line of sight. This shear broadening is expressed as

Vshear = �
H

2R
VK sin i tan i sin� cos�, (1.6)

where i is the inclination of the disc, � is the azimuthal angle in the disc plane, H is

the disc height, R is the radius and VK is the local value of the Keplerian velocity.

The line optical depth is given by

⌧⌫ =
W (R)

cos i

�0
p
2⇡�V

exp

"
�
1

2

✓
V � VD(0)

�V

◆2
#
, (1.7)

where �0 is the rest wavelength and �V is given by

�V =
q
�V

2
th + V

2
shear (1.8)

where �Vth is the thermal broadening. W (R) is given by

W (R) =
⇡e

2

mc
f⌃(R), (1.9)

where f is the absorption oscillator strength and ⌃(R) is the surface density. In the

previously mentioned treatments of shear broadening, the disc density is provided

by a theoretical function and in the case of the Be star, Equation 1.5 is used as a

description of the density of the disc. Okazaki (1996) assumes a

(continuum-subtracted) line intensity emerging from the emission layer of a Be

star’s circumstellar disc that is given by

I⌫ = S(1� e
�⌧⌫ ), (1.10)

where S is the source term, i.e. the function that describes the emission at every

point in the disc.
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1.3 Be/X-ray binaries

Be/X-ray binaries are the largest population of observable High Mass X-ray

Binaries (HMXBs) (Rappaport and van de Heuvel, 1982; van de Heuvel and

Rappaport, 1987; Coleiro et al., 2013). The varying size of the disc, coupled with

the interaction of a compact object leads to a variety of observable e↵ects. Some of

these, such as giant outbursts (see Section 1.3.5) and superorbital modulation of

X-ray lightcurves, are not well understood. Superorbital modulation is when the

X-ray flux of the system varies on periods longer than one orbit and hence requires

physical mechanisms in addition to accretion. Comprehending these phenomena

can lead to a better understanding of the extreme physics of neutron stars and

black holes (see Reig (2011) for a comprehensive review).

Now that the features of the central star have been covered in Section 1.1, the

features that arise due to binarity are discussed in this section. Firstly, typical

properties of Be/X-ray systems are discussed. Secondly, a definition of X-ray

binaries is provided and their key features are outlined. Then, the possible compact

objects that can exist in a binary with a Be star are identified. Finally, the

interactions between the binary companion and the disc are examined, including

the tidal truncation and misaligned orbits. This section is particularly relevant to

Chapter 4, where simulations are used to investigate the general properties of

Be/X-ray binaries.

1.3.1 Be/X-ray binary properties

The orbits of Be/X-ray binaries are generally wide, i.e. from ten to hundreds of

days. However, there are systems that have much larger orbital periods such as

PSR J2032+4127 that has a binary period of ⇠ 50 years (Coe et al., 2019).

Observed Be/X-ray binaries are also largely eccentric (0.1  e  0.9) (Okazaki and

Negueruela, 2001) but the majority of system with known eccentricities lie between

0 < e  0.6 (Brown et al., 2018).

The optical and infrared flux of a Be/X-ray binary is completely dominated by the

Be star companion (Reig, 2011). Given that the two main observational

characteristics of Be stars are the emission lines (such as H↵) and an excess of IR

emission (see Section 1.1.3), observations of these wavelengths allows for the

understanding of the Be star alone. The X-ray emission provides information on the

surroundings of the compact object and thus it is possible for both binary

components to be considered simultaneously. The only e↵ect on the optical

emission that occurs from binarity is V/R variations that are driven by the compact

object (see Section 1.1.3).

Due to the nature of accretion in Be/X-ray binaries (i.e. from the circumstellar disc
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Table 1.2: Typical values for Be/X-ray binary properties.

Orbital period 10 days - 1 yr
Eccentricity 0.1  e  0.6
X-ray luminosity 1034 � 1038 erg s�1

H↵ Equivalent Width � �50 Å
Base gas density 10�12

� 10�9 g cm�3

Size of Be star’s disc < 200R�
Neutron star spin period 1 - 1000 s

of the Be star), the X-ray flux of these systems is heavily dependent on the orbit of

the compact object. Typically observed Be/X-ray binaries have an X-ray flux that

increases by a large factor (> 10) at one or more points during the orbit of the

compact object (see Section 1.4 for more details on such outbursts) (Okazaki and

Negueruela, 2001). This is because the majority of observed Be/X-ray binaries are

eccentric and the compact object passes close to the disc at periastron. There are

some systems that have been observed to emit a low X-ray luminosity persistently

(LX ⇠ 1034 erg s�1) due to the compact object spending it’s time in close proximity

to the disc for the entire orbit (Reig and Roche, 1999). Persistent sources are

known to contain neutron stars with much slower spin periods (> 200s) than the

transient sources (La Palombara et al., 2009).

1.3.2 X-ray binaries

X-ray astronomy is a field that has taken great strides since it became possible to

use telescopes outside the Earth’s atmosphere. Unlike larger systems containing

compact objects (such as Active Galactic Nuclei) there are many X-ray binaries

(XRBs) that are close to Earth, i.e. in the Milky Way. As the smallest systems

containing compact objects, they also vary on the shortest timescales, possessing

orbits with periods that can be shorter than a day. This allows for observations of

the entirety of the orbital dynamics.

XRBs are systems that contain a compact object (a neutron star, black hole or

white dwarf) that is accreting matter from a gravitationally bound star. The

gravitational potential energy of the infalling matter is converted into heat and

hence the inner parts of the accreting regions around the compact objects are

extremely hot. Some of this thermal energy is converted into X-ray photons. These

X-rays provide the only method of probing the extreme physics close to black holes

and neutrons stars.

It can often be di�cult to determine the nature of the compact object in an XRB.

The compact object itself is often not bright enough (aside from in X-ray emission)

to be seen when close to another star. It can be possible to determine the mass of

the object by fitting an orbital model to the dynamics of the system. As neutron
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Figure 1.4: Figure 1 from Sheikh et al. (2006). A diagram of a pulsar i.e. a neutron star
with its rotation axis misaligned with respect to its magnetic field axis.

stars, black holes and white dwarfs are all expected to be in di↵erent mass ranges,

this can determine the compact object’s nature. Another method of identification is

the existence of pulsations, which only occur in neutron star systems. The axis of

rotation of a neutron star is often misaligned to its magnetic axis. Hence, when

matter falls along the magnetic field lines, the resultant beam of emission will

rotate about the spin axis. This leads to a time-dependent variation in the emission

that we observe: that has a period dependent on the spin of the neutron star (see

Figure 1.4).

There are multiple mechanisms that lead to the accretion of matter onto the

compact object and these separate XRBs into two populations. Low-Mass X-ray

Binaries (LMXBs) are systems that accrete via Roche lobe overflow as the stellar

wind of the donor stars are insu�cient to power a bright X-ray source. Mass

transfer via Roche lobe overflow occurs at rates of ⇠ 10�11
� 10�7

M�yr�1 (Iben,

Tutukov and Fedorova, 1997). In HMXBs, the companion star has far more

substantial stellar winds or other methods of mass loss that remove between

10�10
� 10�6

M�yr�1 (Kudritzki and Puls, 2000). A nearby black hole, neutron star

or white dwarf will capture a large enough fraction of this to produce X-ray

emission (typically  1038 erg s�1) (Negueruela, 2010). In the case of HMXBs, the

donor star is a OB star. These stars can be roughly ten to a hundred times more

massive than the Sun.
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1.3.3 Evolution of X-ray binaries

It is pertinent to first discuss the evolution of isolated stars before binary evolution

because it determines key steps in the evolution of binary star systems. A star’s

evolution is driven by the fusion of materials inside it, where one of the products of

the fusion is radiation. The radiation causes the gas to contract that, in turn, heats

the gas due to the release of gravitational potential energy. A star will undergo

fusion until there is insu�cient fuel to balance the gravitational forces. At this

point, it will become a compact object (a white dwarf, neutron star or black hole).

The nature of the compact object that a star will evolve into is dependent on its

initial mass. For a more complete review of the evolution of single stars, see Cox

and Giuli (1968) and Kippenhahn and Weigert (1990).

White dwarfs

White dwarfs are formed from stars with a mass of M < 10M�, they are roughly

the size of the Earth and have a mass similar to the Sun. The collapse of white

dwarfs is prevented by the electron degeneracy pressure of the internal matter -

quantum mechanical pressures become important at high densities (because of the

mechanism described by the Pauli exclusion principle) (Fontaine, Brassard and

Bergeron, 2001). This pressure is actually only capable of stabilising the white

dwarf up to the Chandrasekhar limit when it will then collapse into a neutron star

through a Type Ia supernova (Mazzali et al., 2007) (see Section 1.3.3). This can

only happen when the white dwarf accretes matter from some other source, i.e.

when it is in a binary. A Type Ia supernova occurs when a white dwarf raises its

core temperature enough to begin carbon fusion. Do to the large amount of carbon

this creates a disruptive runaway fusion. However, the dominant mechanism for the

production of Type Ia still remains unclear (Piro, Thompson and Kochanek, 2014).

Cataclysmic Variable (CV) is the name given to a particular kind of binary star

system that includes an accreting white dwarf (Hameury and Lasota, 2002). When

the density and temperature of the accreted hydrogen reaches a certain threshold, a

runaway fusion reaction occurs which rapidly converts the layer into helium. This

“nova” increases the brightness of the system considerably.

Neutron stars

Neutron stars are one evolutionary end-point of high mass stars (M > 10M�) and

they have a radius and mass of RNS ⇠ 10km and MNS � 1.4M� (Özel and Freire,

2016). Similar to white dwarfs, the collapsing forces are balanced by a quantum

mechanical degeneracy pressure, but in this case by neutrons, not electrons. The

higher overall mass of the initial star means that the electron degeneracy pressure is
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not su�cient to resist collapse and the electrons and protons in the matter get

squeezed together to form neutrons and neutrinos, with the neutrinos escaping the

star. Neutron stars are known for their magnetic fields and spin - many neutron

stars are even classified through the means of pulsating emission. X-ray pulsars

accrete matter along the magnetic field lines and the resultant beam of emission will

rotate about the spin axis, giving rise to a precisely periodic variation in brightness

with time. These pulsations vary from 1 ms to 15 s (Manchester, 2017). Although

this is often a good method to determine that the nature of a compact object is a

neutron star, systems with long pulse periods could possibly be magnetic CVs.

Black holes

A black hole is the result of a star, neutron star or white dwarf no longer having

su�cient pressure forces to balance gravitational forces (Carroll, 2004). For the

cases of neutron stars, it requires that they accrete matter over time. When a star

collapses further, the entirety of the mass forms a central singularity. Black holes

therefore do not have a physical radius like any other star, but a radius at which

the gravitational forces are so extreme that even light cannot escape, called the

Schwarzschild radius (Schwarzschild, 1916). This radius is given by

rS =
2GM

c2
, (1.11)

where M is the mass of the black hole. The mass of a black hole quite possibly has

no limits with supermassive black holes lying at the centre of galaxies with

dynamically measured masses of up to billions of solar masses.

Be/X-ray binary compact object candidates

It is theoretically possible for the compact object companion in a Be/X-ray binary

to be a black hole, neutron star or a white dwarf. There are systems where a black

hole or white dwarf is a candidate but the vast majority of Be/X-ray binaries have

been confirmed to contain a neutron star. Binary evolution models suggest a small

number of Be/black hole (Be/BH) binaries (Belczynski and Ziolkowski, 2009;

Ziolkowski and Belczynski, 2011) (⇠ 2 in total) should exist but there should be a

large population of white dwarfs (⇠ 70%) (Raguzova, 2001). However, there have

only been a handful of Be/white dwarf systems detected (Sturm et al., 2012; Li et

al., 2012) and a single confirmed Be binary with a black hole companion (Casares et

al., 2014). The single confirmed Be/BH binary, MWC 656, will be discussed further

in Chapter 6 along with comparisons between black holes and neutron stars as

binary partners.
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Figure 1.5: Figure 16.9 from Tauris and van den Heuvel (2006). A cross-section in the
equatorial plane of the critical equipotential surfaces in a binary. The thick curve crossing
through L1 is the Roche-lobe.

Roche Lobe overflow

The two stars in the binary di↵er from isolated systems because during their

evolution as a pair, mass will be transferred between the two. The mass transfer

between the two stars occurs through Roche Lobe Overflow (RLO). The

gravitational forces of the two stars create a number of equipotential surfaces (van

de Heuvel, 1994) which is demonstrated in Figure 1.5. A star that expands during

its evolution can grow to fill the “pear-shaped” Roche Lobe illustrated by the thick

line (or the surface, L1). Any matter leaving this surface will fall onto the other

star in the binary system.

When the donor in a binary star system grows during its evolution, it fills its Roche

Lobe and matter falls onto the accretor star. RLO continues until the hydrogen-rich

envelope of the donor star has been stripped as it no longer fills its Roche Lobe. A

star that has only lost its hydrogen envelope and retains its helium envelope is

called a “helium star”. If a star also has its helium envelope stripped then it is

referred to as a “CO star”.

Studies from more than 30 years ago (Conti, 1978; Rappaport, Verbunt and Joss,

1983) suggested that the OB supergiants in HMXBs are too luminous for their

mass. This is because when an OB star transfers mass via Roche Lobe overflow, the

outer layer of the star is peeled o↵. However, the luminosity of the star is

determined by its core and not the mantle, and hence the donor star in a Be/X-ray

binary will be undermassive for its observed spectral type (Kaper, 2001). This is
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the case for SXP 5.05, the system discussed in Chapter 5. Table 1.3 gives a few

examples of HMXBs that have stars that are undermassive for their spectral type.

The di↵erence between the expected and observed mass varies for each individual

system and does not even seem to be related to the spectral type.

Table 1.3: Examples of HMXB systems that contain a star that is undermassive for its
spectral type.

System Spectral type Expected mass1 (M�) Binary mass (M�)

SXP 5.05 B0.2 V 16 13 2

4U1538-52 B0 Iab 17.5 16.4 3

LMC X-4 O7 III-IV ⇠ 35 15.8 3

Cen X-3 O6.5 II-III ⇠ 41 18.4 3

1 Values for expected mass taken from Silaj et al. (2014), 2 Coe and Kirk (2015), 3 van Kerkwijk,

van Paradijs and Zuiderwijk (1995).

However, the response of the donor star to its mass loss has important implications

for the evolution of the binary. Donor stars with radiative envelopes (where the

primary method of heat transport is radiation) will usually shrink or remain

constant in size (Tauris and Savonije, 1999). When the envelope is convective, the

star expands instead due to the greater than adiabatic temperature gradient. In

some systems, the orbit shrinks fast enough to allow the growing envelope of the

donor star to encompass both stars.

Common envelope

The Common Envelope (CE) phase leads to a drag-force that is exerted on the

accretor companion in the binary system. This drag arises from the motion of the

companion star through the expanded envelope of the donor star, which causes the

binary separation to decrease. The loss of orbital angular momentum by the binary

often causes the common envelope to be ejected. Reviews on common envelopes are

given by Iben and Livio (1993) and Taam and Sandquist (2000).

Supernova explosions

Both RLO and a CE phase can strip the hydrogen envelope of the donor star and

possibly its helium envelope. If the star is then massive enough, the star will

collapse and then explode. This explosion is called a supernova. For a helium star

to collapse into a neutron star, it’s mass must be above 2.8M� (or a mass of greater

than ⇠ 10M�). If the helium star’s mass is less than 2.8M�, the star contracts and

forms a white dwarf. It can also collapse into a black hole if the mass is greater

than ⇠ 8M� (Kaper and van der Meer, 2007). Due to the virial theorem, the orbit
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of the system will be disrupted if more than half of the binary mass is ejected

during this process (Blaauw, 1961).

A supernova occurs because the gravitational collapse of the star releases a large

amount of energy that causes the explosion (Heger et al., 2003). This can also be

caused by a white dwarf in a binary system that accretes material, increasing its

core temperature until runaway nuclear fusion is triggered (known as a Type Ia

supernova). Supernovae are classified according to their observed light curves and

the absorption lines that appear in their spectra (Cappellaro and Turatto, 2001).

The most general grouping, supernovae with spectra that exhibit Balmer emission

lines, are Type II and those that do not are Type I.

The supernova’s explosion provides a kick to the newly formed compact object that

determines the orbit of the new binary system (Lai, Wang and Han, 2006). This

implies some asymmetry in the supernova process but the exact mechanism

responsible for this has not been fully determined. Suggestions include large-scale

convection above the core (Fryer, 2004) and a post-natal electromagnetic boost

(Janka et al., 2005). Such an asymmetric supernova can cause a Be star’s disc to be

misaligned with respect to the orbital plane (see Section 1.3.5).

Future evolution

As shown in Figure 1.6, a Be/X-ray binary will continue to evolve through the steps

described above but with the unexploded star as the new donor. The Be star will

expand to encompass the compact object in a CE phase and then after a second

supernova, the system will end up as a binary neutron star system.

1.3.4 Tidal interactions

As described in Section 1.2.1, the circumstellar disc of the Be star can grow to

hundreds of stellar radii. This lies far outside the neutron star’s orbit in most

observed Be/X-ray binaries (most Be/X-ray binaries have an orbital period of less

than 150 days and hence a semi-major axis of a < 50 stellar radii) . The proximity

of an orbiting compact object to the decretion disc gives rise to a wide variety of

observable e↵ects. Figure 1.7 shows a schematic diagram of a Be/X-ray binary

where the neutron star’s orbit passes directly through the Be star’s disc.

One of these observable e↵ects is V/R variations induced by the binary partner, as

mentioned briefly in Section 1.1.3. This phase-locked variability has been seen in a

few Be/X-ray binary systems, including ⇡ Aqr (Pollmann, 2012). V/R variations

arising due to the orbital motion can be suppressed by the inherent dynamics of the

disc, such as any strong V/R variations already present in the disc.
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Figure 1.6: Figure 16.15 from Tauris and van den Heuvel (2006). Cartoon depicting the
formation of a Be-star/HMXB and then evolving into a double neutron star system. Such a
binary will experience two supernova explosions.
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Figure 1.7: An adapted version of Figure 1 from van de Heuvel (2004) taken from
http://skinakas.physics.uoc.gr/en/research/xray binaries.html. Diagram of a Be/X-ray bi-
nary containing a neutron star with a descriptions of the typical scales involved.

Tidal truncation

The orbit of the compact object has not only been shown to induce variability in the

disc but also to curtail the disc’s size. Tidal truncation was first detailed by Okazaki

et al. (2002) when modelling Be/NS binaries using a VDD model. However, the

results apply to any binary system containing a Be star. This study shows that the

truncation radius is at the point where the tidal torque balances the viscous torque.

Hence, this radius depends on the properties of the disc and binary companion.

More recently it has been shown that the tidal truncation is heavily dependent on

the mass of the compact object companion (Brown et al., 2018) (see Chapter 6).

The tidal forces of the compact object have been shown to change the density of the

disc. The density inside the truncation radius becomes larger than would be the

case for the exact same Be star without a compact object. The density outside of

the truncation radius drops o↵ faster than the power law seen in the rest of the

disc. Figure 1.8 illustrates this e↵ect. The panel on the left shows the gradual build

up of the disc over time and it is clear that there is a radius where the density drops

o↵ much more rapidly. The right panel shows three disc properties at equilibrium.

The density profile (solid line) is the same as the final curve in the left panel. The

dashed line shows the azimuthal velocity normalised by the critical velocity of the

Be star, v�. The profile of v� behaves identically to the same quantity for an

isolated Be star’s disc up until a radius of r ⇠ 0.7a. This is to say that the curve is

proportional to r
�1/2.

Tidal truncation is more complex when the orbit is not circular; in this case the

interaction with the disc becomes a function of orbital phase. The disc is allowed to
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Figure 1.9: Figure 11 from Okazaki et al. (2002). Snapshots of the high resolution system
shown in Figure 1.8. The grayscale shows the logarithm of the surface density. The dark
spot near the origin is the Be star and the other dark spot orbiting the disc represents the
neutron star. Annotated at the top of each panel is the Shakura-Sunyaev parameter, ↵SS,
and the elapsed simulation time in units of orbital period. The number of SPH particles,
NSPH, and the integrated number of particles captured by the neutron star, Nacc, are shown
at the bottom of each panel.

grow whilst the compact object is further away, but is truncated at a smaller radius

due to a smaller binary separation at periastron. A spiral structure is excited by

the binary partner near periastron and it dissipates due to viscous and Keplerian

shear during the rest of the orbit (see Figure 1.9). This e↵ect does occur in circular

orbits but exists as a single, less-pronounced arm that tracks the binary partner.

Boyle and Walker (1986) made the first attempt to model a Be/X-ray binary with

an eccentric orbit, targeting A0538-66. They were able to describe the general

characteristics of the interactions between the disc and neutron star but stated that

many more particles would be required to produce a detailed model.

All of the work discussed so far is for systems where the orbital plane is the same as

the disc plane. There are a wider variety of e↵ects that occur when the disc is

misaligned to the orbit of the compact object and this will be discussed in Section

1.3.5.

1.3.5 Misaligned orbits in Be/X-ray binaries

If an asymmetric supernova explosion (see Section 1.3.3) occurs in a binary star

system containing a Be star, the explosion can cause the binary orbit to be

misaligned with respect to the spin of the unexploded Be star. Should the spin of

the Be star be misaligned for any reason, its circumstellar disc will form at an angle

to the orbital plane (Martin et al., 2009, 2010). Be stars are thought to commonly

possess decretion discs that are misaligned to the binary orbit (Martin et al., 2011).
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This is the case for the system modelled in Chapter 5, SXP 5.05, where the disc has

an approximate inclination angle of 90�.

Consider a particle orbiting the primary component in a binary system (see Figure

1.10 for an illustration). The particle has negligible mass relative to each star in the

binary. The orbit-averaged equations of motion for the particle have a conserved

quantity, which is the component of the particle’s orbital angular momentum

parallel to the angular momentum of the disc-forming star. This conserved quantity

can be expressed as follows

Lz /

q
(1� e2p) cos ip = constant, (1.12)

where ep is the eccentricity of the particle’s orbit and ip is the inclination of the

particle’s orbital plane to the orbital plane of the binary. Hence, a particle that is

initially on a highly misaligned and an initially circular orbit undergoes oscillations

to and from more eccentric orbits at smaller inclinations, i.e. closer to the orbital

plane. This three-body phenomenon is known as Kozai-Lidov (KL) oscillations

(Kozai, 1962; Lidov, 1962).

For KL oscillations to occur, the initial inclination of the particle’s orbit must be

above a critical value of cos2 ip0 < cos2 icrit =
3
5 , or equivalently 39� / ip / 141�.

Note that due to the direction of the motion and the position of the ellipse, such a

system is not symmetric about 90 degrees. The inclination angle is also bound by

the initial and critical inclinations, i.e. cos2 ip0  cos2 ip  cos2 icrit. Using Equation

1.12, the maximum eccentricity for a particle that has an initially circular orbit is

given by

emax =

r
1�

5

3
cos2 ip0 (1.13)

(Innanen et al., 1997). The period for KL cycles, ⌧KL, as derived by Kiseleva et al.

(1998), is given by

⌧KL

Porb
⇡

M1 +M2

M2

Porb

Pp
(1� e

2)
3
2 (1.14)

where e is the eccentricity of the binary and Porb and Pp are the orbital periods of

the binary and the particle, respectively. M1 and M2 are the masses of the primary

and secondary of the binary, respectively. For the cases of this thesis, the primary

and secondary are the Be star and compact object, respectively.
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Figure 1.10: Diagram of a particle of mass Mp undergoing Kozai-Lidov oscillations in
a binary system. The primary and secondary of the binary have masses of M1 and M2,
respectively. The orbital plane of the particle is shown at an angle of ip to the binary orbital
plane.

Martin et al. (2014) used three dimensional hydrodynamical simulations to show

that highly misaligned accretion discs around one element of a binary system exhibit

KL oscillations. They use the SPH, PHANTOM (Price and Federrath, 2010; Lodato

and Price, 2010). They implement a standard Shakura-Sunyaev model for the disc

as described in Section 1.4.2. In the test particle simulations, it was found that the

analytic period for KL cycles (Equation 1.14) should include a dependence on the

initial inclination of the orbit. Due to this lack of dependence, Equation 1.14 is only

valid up to a factor of a few. They show that the KL mechanism arises in both

their test particle simulations and the simulations of an entire disc of hydrodynamic

fluid (with no self-gravity). It should be noted that if the self-gravity of the disc is

su�ciently strong, the KL oscillations may be suppressed (Batygin, 2012).

Martin et al. (2014) continued this work by applying the simulations to Be/X-ray

binaries with the aim of explaining the di↵erence between Type I and Type II

outbursts (see Section 1.4). They target the Be/X-ray binary 4U 0115+63 by

modelling a system with a binary period of Porb = 24 days and an eccentricity of

e = 0.34. Simulations of all disc inclinations, including coplanar, show regular

accretion that occurs every orbit and is likened to Type I outbursts. The

simulations with a su�ciently misaligned disc (i � 60�) form a much larger disc

because of the weaker tidal torque. This allows a strong growth of eccentricity in

the outer regions of the disc. Thus, the disc becomes eccentric on a faster timescale,

i.e. ⇠ 10 binary orbits. A highly misaligned disc exhibits an additional regime of

accretion onto the neutron star. The neutron star accretion rate increases by an
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order of magnitude after ⇠ 21 orbital periods due to the extreme eccentricity of the

disc. It is suggested that this is a Type II outburst.

1.4 Accretion

The term accretion refers to the gradual deposition of matter onto the surface of an

object under the influence of gravity. As discussed in Section 1.3.2, there are

multiple means through which an astrophysical object can accrete matter: Roche

Lobe overflow, stellar winds and circumstellar discs. When matter falls onto a

massive object, such as a star, the gravitational potential of the matter is converted

into other forms of energy such as heat and radiation. In this thesis, Roche Lobe

overflow is not relevant because it occurs predominantly in LMXBs and the focus of

this thesis is to examine the decretion disc as the dominant source of accretion. In

this thesis, accretion is assumed to be the same as the number of particles that fall

inside the compact object’s radius under gravity. In other words, more complicated

accretion mechanisms, such as accretion discs, are neglected.

In its simplest form, accretion is the conversion of the infalling mass directly into a

luminosity. For a compact object of mass, M and radius, R the gravitational

potential energy released by the accretion of an amount material of mass, m, onto

its surface is

E =
GMm

R
. (1.15)

The luminosity of any given accreting object can only be, at maximum, equal to the

rate of this change in energy due to the infalling material. Energy can be lost

through others means such as viscous heating of an accretion disc. Thus, it is

conventional to include an e�ciency term, ⌘, that represents the fraction of the

energy that is converted into radiation (Frank et al., 2002). This yields the

following description of luminosity

Lacc = ⌘
GMṁ

R
. (1.16)

where, ṁ is the rate of accretion. For a black hole, where the radius is given by

Equation 1.11, this simplifies to

Lacc = ⌘ṁc
2
. (1.17)
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Sometimes material falling onto a massive object under the influence of gravity

forms an accretion disc to conserve angular momentum. In many cases, the disc

flow is confined very close to the disc’s orbital plane, so close that the disc can be

approximated as two-dimensional. Under the assumption that the disc height is

much smaller than its radial size, the properties of the disc can be parameterised

entirely by the cylindrical coordinates r, � and z. This is called the thin disc

approximation and has been very successful as a basis for a wide variety of models,

such as the VDD model (see Section 1.2.4).

There are a number of systems that exhibit large increases (that can be up to an

order of magnitude in size) in X-ray luminosity with rise times of 1 ⇠ 10 seconds

(Lewin and Joss, 1983). These X-ray bursts are only seen in accreting neutron star

systems. Such X-ray bursts are separated into two populations: Type I and Type II

bursts. Type I bursts are thought to occur when a thin layer of helium, generated

from the fusion of accreted hydrogen, is ignited. This thermonuclear flash deposits

a huge amount of energy at the surface of the neutron star, heating it and releasing

X-rays. Type I bursts are known for having a FRED profile (fast rise, exponential

decay): the rise of the peak X-ray luminosity during the burst is very quick and

then the brightness decays slowly (⇠minutes). Type II bursts are much more

erratic, they show no slow decay and can sometimes show rapid successions of

bursts separated by a few minutes. The physical mechanism behind Type II bursts

has not yet been confirmed and there could be more than one process responsible.

The key feature that is agreed upon is that they are due to dramatic changes in the

accretion rate of the system.

In Be/X-ray binaries, Type I and Type II outbursts refer to two di↵erent

mechanisms (Negueruela and Okazaki, 2000) and are sometimes referred to as

normal and giant outbursts, respectively, to reduce confusion. Normal outbursts

occur once per orbit and typically have an X-ray luminosity of LX ⇠ 1036�37 erg s�1

but there have been systems observed with higher X-ray luminosities during normal

outbursts. These outbursts occur due to the regular accretion of the compact object

as it passes close to the disc.

Giant outbursts possess luminosities of LX > 1037 erg s�1 and can last up to several

weeks. They occur less frequently and do not correlate with the orbital parameters.

The magnetic field of the neutron star is known to create variations in X-ray flux,

because the magnetic pressure can stem the accretion flow until a su�cient mass is

supplied. This is suggested to occur in 4U0115 + 63 (Campana et al., 2001).

However, the neutron star in A0535 + 262 has been shown to have an insu�cient

magnetic field to cause the variabilities in the X-ray flux (Okazaki, 2013). Thus

magnetic pressure this cannot be the only mechanism responsible for giant

outbursts. Giant outbursts are generally considered to occur due to large increases

in the accreted material during disc warping events (Martin et al., 2014) (see
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Section 1.3.5).

1.4.1 Eddington limit

An accreting compact object will radiate energy with the strength of the emission

being dependent on the amount of infalling matter. As the photons leaving the

surface of the compact object exert a force, there is a point where the infalling

matter is obstructed by radiation pressure. This maximum accretion rate is called

the Eddington limit (Heinzeller and Duschl, 2007).

Consider a particle with mass, mp, and a Thomson cross section of �T. The

Eddington limit occurs at the point where the luminosity force is equal to the

gravitational force on the particle

L�T

4⇡cr2
=

GMXmp

r2
. (1.18)

Hence, the Eddington luminosity is given by

Ledd =
4⇡Gcmp

�T
MX ⇡ 3.3⇥ 104

✓
MX

M�

◆
L� (1.19)

and the Eddington accretion limit is given by

Ṁedd =
4⇡cmp

�T
RX ⇡ 1.5⇥ 10�8

✓
RX

10km

◆
M�yr�1

. (1.20)

Most systems that exhibit luminosities greater than the Eddington limit are known

for their extreme mass-loss rates such as the O-type star ⌘ Car. It underwent

outbursts over 150 years ago that suggest mass loss rates of 0.5M�yr�1 (Smith and

Owocki, 2006). Some systems, such as novae and supernovae, have been observed to

exceed the Eddington luminosity for short periods of time (Shaviv, 2002).

Ultraluminous X-ray sources (ULXs) is the term used for objects that are

particularly bright X-ray sources (LX > 1039 erg s�1) but are still less luminous

than active galactic nuclei (Roberts et al., 2017). These systems are notable

because they exceed the Eddington luminosity for neutron stars and even stellar

black holes. This is particularly strange because the X-ray emission arises from

accretion which is prohibited by the resultant radiation pressure. There are a few

suggestions as to what could explain this such as beamed X-ray emission and X-ray
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binaries containing black holes with a greater mass than typical stellar black holes

(Miller, Fabian and Miller, 2004).

1.4.2 Shakura-Sunyaev viscosity

As one of the most prolific phenomena seen in astrophysics, accretion discs required

models that could explain the inward motion of matter orbiting a star or compact

object. Shakura and Sunyaev (1973) suggested such a model that caused a step

change in the theoretical treatment of all discs. This was generalised to the

Kerr-metric by Novikov and Thorne (1973). Even 45 years later, their model (or a

modification thereof) is used as a basis for the vast majority of computational discs.

All the work in this thesis is performed using a code that implements a

Shakura-Sunyav disc model, which we discuss here.

The aim of the model that Shakura and Sunyaev introduced was to describe a

geometrically thin non-self gravitating disc using hydrodynamical equations. A

number of assumptions are made in the ↵-model suggested by Shakura and

Sunyaev (1973) that are as follows:

• The disc is non-self gravitating: the mass of the disc is much smaller than the

mass of the central object, such that the gravitational forces from the disc can

be neglected

• The disc is geometrically thin: the height of the disc is much less than the

radial distance.

• The disc is steady and does not change significantly with time.

• The disc is axisymmetric and is the same in any given radial direction.

• The azimuthal motion of the material in the disc is much greater than any

radial motion.

• The vertical direction maintains hydrostatic equilibrium.

• The disc is optically thick in the vertical direction.

• The disc is radiatively e�cient: the viscous heating of the disc is immediately

radiated away.

• There are no magnetic fields in the disc.

Angular momentum is transported outwards in accretion discs, allowing for the disc

material to flow towards the accreting object. Viscous forces allow both the

transport of angular momentum and the radiation of heat away from the disc. In

the ↵-model, viscosity is generated by turbulent motion that is on the same length

scales as the height of the disc. The viscosity, ⌫, is defined as
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⌫ = ↵csH, (1.21)

where cs is the speed of sound in the disc, H is the height of the disc and ↵ is a

variable parameter that describes the strength of the viscous forces. The creation of

this viscosity term does not actually provide any explanation as to where the viscous

forces arise from but simply groups all of the sources into one resultant term. What

this does allow is a means to model observed systems and constrain the value of ↵.

The work outlined by Shakura and Sunyaev (1973) specifically involves black holes

but the disc theory is applicable to any disc, provided the disc satisfies the above

assumptions. For example, the emission properties of X-ray binaries (Cannizzo,

1993) and UV/soft X-ray emission of AGNs (Sun and Malkan, 1986) have been

successfully fitted by this model. New models have been developed from the

↵-model that allow for the explanation of more complex discs - such as the use of

the VDD model to simulate Be star discs (see Section 1.2.4). The inclusion of

viscosity in the code used in this thesis is discussed further in Chapter 2.

1.5 Thesis outline

In this thesis, the behaviour of the circumstellar discs of Be stars in Be/X-ray

binaries is investigated. The SPH technique is used to model these discs and largely

follows the practices of the extensive work of A. T. Okazaki on the same systems,

for example in Okazaki et al. (2002). The science in this thesis aims to build on the

previous knowledge of the circumstellar discs of Be stars by constraining their

properties.

In Chapter 2, the computational method of smoothed particle hydrodynamics is

introduced, as well as details of the implementation of the code used throughout the

work in this thesis. It begins with a derivation of the basic principles of SPH and

the benefit of using a variable smoothing length. Following that, more specific

aspects of the SPH code are discussed, such as the assumed interpolation kernel and

artificial viscosity. Then the method used for individual particle timesteps is

described. Finally, the use of sink particles for the stars is outlined.

Chapter 3 further discusses the details of the SPH code used and the model it

implements. Firstly, the model used by the code is covered. The speed up of the

code is then tested on both High Performance Computing clusters that were

available during the project; Southampton’s Iridis 4 and Portsmouth’s Sciama

cluster. The code implements the shared memory multiprocessing method,

OpenMP, and therefore it is important to understand the optimum settings to save
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on computational time. General properties of the simulated disc are then presented

and compared to the currently accepted model of Be star circumstellar discs.

Finally, some early work into line profiles is discussed.

In Chapter 4 an investigation into the general properties of Be/X-ray binaries is

performed. Five simulation parameters are varied: the viscosity of the disc, the

mass ejection of the Be star, the orientation of the disc relative to the orbital plane

and the orbital period and eccentricity of the binary. This is done with the aim to

see how certain characteristics (the base gas density, the accretion onto the neutron

star and the size of the Be star’s disc) of the Be/X-ray binary change with the

aforementioned simulation parameters. Then a subset of the simulations that were

performed in the earlier parts of the chapter are used to test two observational

relations that were found by Coe and Kirk (2015).

Chapter 5 provides an in-depth study into the observable behaviour of a specific

Be/neutron star (Be/NS) binary, SXP 5.05. This system underwent an optical

outburst in 2013 that is unique to the entirety of its observed behaviour to date.

Simulations are performed that target this system during its outburst, requiring a

detailed evolution of the mass ejection and viscosity of the Be star’s circumstellar

disc. The aim is to reproduce the observed I-band data, obscuring column density

of neutral hydrogen, X-ray data and H↵ line emission. Firstly, the most complete

set of data, the OGLE I-band observations, are used as a basis to narrow down the

appropriate simulations. As an optical outburst can only be caused by growth in

the disc, the visible area of the disc is used as a comparison to the optical data. The

column density of neutral hydrogen that obscures the neutron star is used to find

the best-fitting simulation and then is used to calculate the X-ray data. Finally, H↵

emission line profiles shapes are calculated and compared to the observations.

In Chapter 6, the di↵erences between neutron star and a black hole companions in

Be/X-ray binaries are investigated. To date, there has only been one Be/X-ray

binary that has been confirmed to contain a black hole, MWC 656 (Casares et al.,

2014). Previous work suggests that the truncation of the disc is greater in Be/BH

binaries and that this leads to a fainter X-ray source. The aim of this chapter is to

provide evidence for the previous two statements. Firstly, the size of the disc is

presented for varying compact object mass and varying eccentricity. Then the

maximum, average and orbital evolution of the X-ray luminosity is investigated for

the same set of simulations.

Finally, Chapter 7 summarises the work in this thesis, gives some concluding

discussions and considers further work for the computational modelling of

circumstellar discs and their behaviour in Be/X-ray binaries.

37



38



Chapter 2

Smoothed Particle

Hydrodynamics

The Smoothed Particle Hydrodynamics (SPH) method for describing fluids was first

outlined by Lucy (1977) with the intent for use in astrophysical problems. Lucy

applies the method to fission in optically thick protostars and it is shown that the

technique behaves well at low spatial resolution and can therefore be applied to

three-dimensional problems. It also considerably reduces the computational power

required to simulate hydrodynamic phenomena. It was also developed

independently by Gingold and Monaghan (1977) for polytropic stellar modelling,

noting the ability to add rotational and magnetic fields with little di�culty. SPH

has since been developed considerably, with the theory of kernel estimation being

discussed in Gingold and Monaghan (1982). Monaghan and Gingold (1983) then

investigated the simulation of shocks via SPH, showing the need for a new

description of artificial viscosity.

This chapter begins by briefly covering the basic principles of SPH and discusses

some of its advantages and drawbacks. Then there is a description of the

implementation of the code used for the work in this thesis, including the use of

varying timesteps for individual particles. Finally, the use of sink particles in the

code is elaborated upon.

2.1 Derivation

The original derivation of the principles of SPH was as a Monte-Carlo method to

solve the hydrodynamic equations (Lucy, 1977). Following this, functions that

interpolate the properties of the fluid were applied to the technique (Gingold and

Monaghan, 1982; Monaghan and Gingold, 1983), providing a better estimation of

the scaling of the method.
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Consider a function f(r) that is defined in a space, ⇠(r). A smoothed

approximation can be obtained using a kernel function, W (r, h), as follows

hf(r)i =

Z

⇠
f(r0)W (r� r0, h)dr0. (2.1)

W must satisfy the condition

Z

⇠
W (r0, h)dr0 = 1. (2.2)

This kernel function is parametrised by the smoothing length, h, and in the case

that h ! 0,

hf(r)i ! f(r). (2.3)

For Equation 2.3 to hold, the kernel is usually strongly peaked at r = 0. Hence, the

kernel often becomes a delta function of r, �(r), as h ! 0. Provided that the kernel

is indeed strongly peaked, f(r) can be expanded in a Taylor series about r. If it is

also an even function then the leading term in h vanishes and the following is

recovered

hf(r)i = f(r) +O(h2). (2.4)

In the additional case, that the kernel is a function of r alone (i.e. it is spherically

symmetric), then

hf(r)i = f(r) + c
h
2

6
5

2
f(r) +O(h3), (2.5)

where c is independent of h. A function f(r) can always be replaced by a smoothed

equivalent to within the accuracy of the smoothing process and means that for any

2 functions A(r) and B(r)

⌧
A(r)

B(r)

�
=

hA(r)i

hB(r)i
+O(h2). (2.6)
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Consider that there are N discrete points of information about the system and the

points are distributed as

n(r) =
NX

j=1

�(r� rj), (2.7)

then it is possible to multiply the integrand in Equation 2.1 by n(r0)/hn(r0)i whilst

preserving the accuracy of the method. Doing so reduces the integrand to

hf(r)i =
NX

j=1

f(rj)

hn(rj)i
W (r� rj , h). (2.8)

SPH describes the system by using points to represent fluid elements and hence,

each point has an associated mass, mj . Therefore, the number density at a given

position, rj , can be written as

hn(rj)i =
⇢(rj)

mj
. (2.9)

We can also update Equation 2.8 with the substitution of Equation 2.9

hf(r)i =
NX

j=1

mj

⇢(rj)
f(rj)W (r� rj , h). (2.10)

This equation is the starting point for SPH as it leads to smoothed approximations

of all the physical quantities of the fluid. The most evident example of this is

density, where f(r) ⌘ ⇢(r) and thus the smoothed approximation is

h⇢(r)i =
NX

j=1

mjW (r� rj , h). (2.11)

Replacing the physical quantities of a fluid with summations over weighted particles

allows for each quantity to be described by a continuous function. When no

particles are lost from a SPH simulation, the continuity equation is satisfied by

Equation 2.11 (Benz, 1990).

It is also important to determine the smoothed versions of the gradients of the
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physical properties. Following the definition of a smoothed quantity in Equation 2.1

the gradient of a fluid property is given by

h5f(r)i =

Z

⇠
5f(r0)W (r� r0, h)dr0. (2.12)

Using integration by parts, it can be rewritten as

h5f(r)i =

Z

S
f(r0)W (r� r0, h) n da+

Z

⇠
f(r0)5W (r� r0, h)dr0. (2.13)

Provided the solution space extends far enough such that either the kernel or the

function, f(r), vanishes then the first term can be neglected. Then the second term

in Equation 2.13 can be rewritten as a summation as follows

h5f(r)i =
NX

j=1

mj

⇢(rj)
f(rj)5W (r� rj , h). (2.14)

Equation 2.10 and Equation 2.14 provide a method to determine the smoothed

versions of a simulated fluid’s quantities and the local gradient of any quantity.

However, it is required that the gradient of the kernel function does not vanish.

Calculating gradients is important for pressure and viscous forces which is, in turn,

vital to evaluate the motion of the particles.

SPH is a Lagrangian method, meaning that it uses information on the dynamics of

the system, i.e. the SPH particles are the equivalent of the grid in other numerical

methods. They form a moving grid with the forces between them evaluated via the

interpolating kernel. As the particles mirror the density distribution, spatial

resolution issues are straightforwardly solved with SPH as regions requiring higher

spatial resolution will naturally be populated by more particles.

2.1.1 Variable smoothing lengths

To fully utilise the dynamic spatial resolution of SPH, a variable smoothing length

must be implemented. Consider a particle in a system modelled by SPH that lies a

distance greater than the smoothing length from any other particle. Smoothed

quantities for this particle cannot be evaluated as it has no neighbours. Hence, it

does not make sense to prescribe the same smoothing length, h, to every single

particle in a system modelled by SPH. In other words, the smoothing length must
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be dependent on the spatial resolution that is required. As the particles in SPH can

move to regions of di↵erent particle density, smoothing length must be dependent

on space and time.

However, when the smoothing length varies spatially, the errors derived in Equation

2.5 and Equation 2.6 must be reconsidered. Equation 2.1 is now

hf(r)i =

Z

⇠
f(r0)W (r� r0, h(r0))dr0. (2.15)

It has been shown that the additional errors caused by a spatially dependent

smoothing length are of second order (Monaghan, 1985; Hernuist and Katz, 1989).

Therefore, the errors remain of the same order of those that are inherent to SPH.

However, the gradient of the fluid properties does not remain the same due to the

new dependence of the smoothing length on r. With the spatially dependent

smoothing length, the gradient of the kernel is given by

5rW (r� r0, h(r)) = �
1

|r� r0|

@W

@(r� r0)
(r� r0) +

@W

@h
5r h(r). (2.16)

The second term exists if the smoothing length is dependent on r and was found to

be important only in the case where the smoothing length varies on a smaller scale

than itself (Evrard, 1988). Hence, as the quantities in SPH tend to be evaluated on

a similar scale to the smoothing length, this term is reasonable to neglect. However,

Nelson and Papaloizou (1994) showed that including the extra term leads to a

marginally improved energy conservation.

The calculation of the force on a particle obviously requires the subsequent opposite

force to be exerted on another particle. However, if the smoothing length is di↵erent

for the two SPH particles, then momentum is not conserved. Thus, a spatially

varying smoothing length, unless considered carefully, can violate the law of

conservation of momentum. There have been multiple suggestions for the solution

of this issue (Gingold and Monaghan, 1982; Evrard, 1988; Hernuist and Katz, 1989).

The method used in the code is one that replaces h in the above equations with

h(r, r0) =
h(r) + h(r0)

2
, (2.17)

or for discrete particles
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hij =
hi + hj

2
. (2.18)

This is the method described by Evrard (1988) and subsequently, described by Benz

(1990). The implementation of a spatially varying smoothing length maximises the

ability of SPH to resolve both high and low-density regions simultaneously. The

method of updating the smoothing length is discussed later in Section 2.2.6.

2.2 Code specific implementation

Using the principles outlined above, specific SPH equations for a gaseous disc will

now be presented. The interpolation kernel will be discussed first and then the fluid

equations will be derived. Finally, individual particle time steps, the time

integration and the method of updating the smoothing length will be discussed.

For the remainder of this chapter, all quantities are smoothed and the angled

brackets that denote smoothed fluid properties are dropped. All smoothed disc

quantities used in this section are still subject to the errors discussed in Section 2.1.

2.2.1 The interpolation kernel

Due to the importance of interpolation in SPH, there have been many suggestions

for appropriate kernels. Initially, Gingold and Monaghan (1977) used Gaussian,

spherical kernels for three-dimensional problems, of the following form

W (r, h) =
1

⇡3/2h3
exp�v

2 (2.19)

where r = |r� r0| and v = r/h. Note that this treatment and other early forms of

interpolation kernel include all the simulation particles in the summation. As the

fluid forces, density and pressure are all local quantities, it is a waste of

computational time to sum over all particles.

It is therefore pertinent to use a kernel that only includes contributions from

particles that lie within a given distance and that is related to the smoothing

length. The spline kernel developed by Monaghan and Lattanzio (1985) is used

within the code and is given by
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W (r, h) =
�

h⌫

8
>>><

>>>:

1� 3
2v

2 + 3
4v

3 if 0  v  1,

1
4(2� v)2 if 1  v  2,

0 otherwise,

(2.20)

where ⌫ is the number of dimensions and � is the normalisation with values of 2/3,

10/7⇡ and 1/⇡ for one, two and three dimensions, respectively. This kernel is much

less computationally expensive than the one shown in Equation 2.19, requiring only

a small number of neighbouring SPH particles to determine the smoothed

quantities.

2.2.2 Equation of state

Now that the interpolation kernel has been determined, the equations describing

the properties of the fluid can be rewritten. Note that the kernel is finite and

extends only to a radius of 2h. Density can now be written in terms of the masses

of the respective particle and its neighbours as follows

⇢i = miW (0, hi) +
NnX

j=1

mjW (rij, hij), (2.21)

where Nn is the number of neighbours of particle i and rij = | ri � rj|.

It is also important to define the pressure of the fluid, P . The circumstellar disc is,

for the most part, modelled well as isothermal (with a temperature of T = 0.6Teff

(Poeckert and Marlborough, 1982; van Kerkwijk et al., 1995; Carciofi and Bjorkman,

2006). Hence, only the isothermal equation of state is necessary. It is given by

P = c
2
s⇢, (2.22)

where cs is the speed of sound in the isothermal gas. Due to the isothermal

treatment of the equation of state, energy conservation is inherently satisfied.

Modelling the Be star’s circumstellar disc as anything other than isothermal

requires considerably more work because the disc reprocesses the emission from the

star leading to a complex temperature and ionisation structure in the disc. This is

out of the scope of this thesis.
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2.2.3 Momentum equation

In the absence of gravity, conservation of momentum for an inviscid fluid is given by

@v

@t
+ (v ·5)v = �

5P

⇢
. (2.23)

If both sides are multiplied by the interpolation kernel and integrated over the

solution space, we get

Z

⇠
W (r0, h)

@v

@t
dr0 +

Z

⇠
W (r0, h)(v ·5)vdr0 = �

Z

⇠
W (r0, h)

5P

⇢
dr0. (2.24)

Finally, the following is obtained

dv

dt
= �5r

✓
P

⇢

◆
�

✓
P

⇢2

◆
5r ⇢. (2.25)

This equation can then be converted into a summation over the SPH particles, as

described in Section 2.1. The SPH momentum equation is therefore given by

dvi

dt
= �

NnX

j=1

mj

 
Pi

⇢
2
i

+
Pj

⇢
2
j

!
5i W (rij, hij), (2.26)

where 5i takes the gradient with respect to the coordinates of particle i. Not only

does this equation conserve momentum, it also conserves local angular momentum

because all the forces are directed along a line joining the centres of the particles.

2.2.4 Artifical viscosity

Up until this point, all the derived equations for SPH have been for a fluid with

negligible or no viscosity. Energy contained in shocks can always be converted to

heat in a viscous fluid regardless of the strength of the viscous forces. Viscosity in

real fluids allows for the dissipation of heat and without this consideration in the

model there is no process by which kinetic energy can be converted into thermal

energy. Thus, without introducing an artificial viscosity, the above equations cannot

correctly model shocks. In most astrophysical fluids, the viscosity is small.

46



There are two forms of viscosity that are implemented in the code. Both are

equivalent to viscosity pressures and are given by

P↵ = ⇧↵⇢
2 = �↵⇢lcs 5 ·v, (2.27)

and

P� = ⇧�⇢
2 = ��⇢l

2(5 · v)2, (2.28)

where ↵ and � are free parameters that determine the strength of each viscosity

term and l is a typical length scale over which the shock is spread. Both of these

viscosity terms behave as bulk viscosities. Note that ↵ is the Shakura-Sunyaev

viscosity parameter (see Section 1.4.2). Equation 2.27 is designed primarily to

eliminate subsonic velocity oscillations. Equation 2.28 is a second-order, Von

Neumann-Richter viscosity. Since it is dependent on the square of the divergence,

this form of viscosity becomes more important in the supersonic regime to prevent

the particles from passing through each other when very fast shocks occur, i.e. at

high Mach numbers. The values for ↵ and � depend largely on the type of

astrophysical fluid being modelled but often they are set to ↵ ⇡ 1 and � ⇡ 2. For

the circumstellar discs of Be stars, ↵ is typically varied between 0.1 and 1.5

depending on the state of the disc and the rate of mass ejection of the Be star

(Ŕımulo et al., 2018). The velocity of the material in the Be star’s decretion disc is

rarely supersonic so � can safely be set to zero.

The methods used for these two of viscosities are the ones prescribed by Monaghan

and Gingold (Monaghan and Gingold, 1983; Benz, 1990; Monaghan, 1992).

Although these formulations are now quite old, they have been shown to model

shocks well (Monaghan and Gingold, 1983) and are certainly su�cient for the

purposes of simulating the decretion discs of Be stars. The artificial viscosity as

used in the code, is given by

⇧ij =

8
<

:
(�↵csµij + �µ

2
ij)/⇢ij if vij · rij  0,

0 if vij · rij > 0,
, (2.29)

where ⇢ij = 0.5⇥ (⇢i + ⇢j) and
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µij =
hvij · rij
rij + ⌘2

, (2.30)

where vij = vi � vj and ⌘ = 0.1h. The quantity ⌘ is included to prevent the

divergence of µij for small separations between particles.

The viscosity is then added to the momentum equation (see Equation 2.26) in the

following way

dvi

dt
= �

NnX

j=1

mj

 
Pi

⇢
2
i

+
Pj

⇢
2
j

+⇧ij

!
5i W (rij, hij). (2.31)

2.2.5 Time integration

When performing simulations, it is vital to have computational time steps that are

smaller than any important physical timescale. Failing to do so leads to

inaccuracies and often a completely unphysical model. As it takes longer to

simulate a system using smaller time steps, it is good practice to utilise the largest

time steps possible whilst maintaining the physics.

The base method used for the time integration of the SPH equations in the code is

a second order, Runge-Kutta-Fehlberg technique (Albrecht, 1996) with an adaptive

time step. The time step for the integration in this method is determined by

constraining the changes of certain physical quantities within a given tolerance.

This tolerance determines the accuracy of the method. Velocity, acceleration,

internal energy and smoothing length are the important variables to consider when

determining the time integration step of the simulation. Each time step in the

method is followed by a time step determined using the following condition

�tRKF =

s
512 �told �

|Qnew �Qold|
, (2.32)

where Q is each physical quantity in turn, and � is the given tolerance. This

method in its basic form constrains all the simulation particles to move with one

integration step. The global time step is the minimum of this condition for each

physical quantity and for every simulation particle.

In many astrophysical systems, the circumstellar disc of a Be star included, the

particles that lie in the regions of highest and lowest density are orders of magnitude

di↵erent in their spacing. This means that the minimum time step required to
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Figure 2.1: An example of the time steps of particles in an individual-time-steps program.
Here, there are four levels of time step allowed. The largest time step is the top level, and
also corresponds to the synchronisation time at which all the particles are evolved together.
The smallest time step is a factor of 23 smaller than the largest time step. Clearly, any
particle can reduce its time step at any time, as it is always being evolved at the same time
as particles with shorter time steps. However, for a particle to increase its time step, it must
be being evaluated at the same time as a particle which has a larger time step, otherwise it
is not synchronised at the next synchronisation step.

preserve the physics is drastically di↵erent. Rather than evolve the entire

simulation at the small intervals required by the dense regions, the code implements

individual time steps for each SPH particle. A great deal of computational expense

is saved by using this method and it was the first major modification made by M.

Bate upon receiving the code from W. Benz (Bate et al, 1995).

The code calculates an individual time step for each particle and then they are

grouped into bins that are multiples of two times the minimum time step for the

simulation. This means that some particles are evaluated at time steps larger than

required but it allows for entire groups of particles to be evolved at appropriate

time steps. Figure 2.1 illustrates the advantage of the bins being multiples of two -

it allows for a hierarchy of grouping in time. Every two time steps, the particles

being evaluated at the smallest interval are evolved at the same time as those

particles binned at the time step twice the size. This is the same for all groupings of

particles up to the largest time step. The method also means that forces between

particles only need to be calculated once for each group rather than every

individual time step. This leads to considerably reduced computation.

The Runge-Kutta-Fehlberg is no longer su�cient when implementing individual

time steps because it is dependent on the properties of the fluid as a whole. Two

extra conditions are then required in the determination of the particle time steps:

the Courant condition and the force condition, both given in Monaghan (1992).

The first of these two conditions is found by considering a characteristic length scale

divided by a characteristic velocity. It is given by
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�tcv =
0.3h

cs + h|5 ·v|+ 1.2(↵cs + �h|5 ·v|)
(2.33)

where ↵ and � are the two viscosity parameters (from Equations 2.27 and 2.28) and

the final term in the denominator is only included if 5 · v < 0. The condition is

labelled �tcv because it includes both the Courant condition and the viscous

di↵usion condition of the fluid (Monaghan, 1989).

The second of these conditions is given by

�tf = 0.3

s
h

|F|
(2.34)

where F is the net acceleration on the particle. These two conditions allow for the

method of individual time steps to behave the same as a method using a single time

interval for all particles.

The time step for each particle is determined by finding the minimum of the three

above conditions (i.e. Equations 2.32, 2.33, 2.34) and then they are all binned in

multiples of two. It is important to allow particles to change the time interval at

which they are evaluated because it can further save computational expense and

particles may move to denser regions that require higher time resolution. Particles

in the simulation are allowed to move to larger or smaller time steps but when

moving to a larger one, it must fulfil the condition that

(dtsync � t) mod dt = 0, (2.35)

where t is the current time, dt is the time step the particle is transitioning to (that

is larger) and dtsync is the time at which the particles are synchronised. In addition

to this, particles can only increase their time step a maximum of once every two

consecutive steps to avoid synchronisation errors. However, particles can reduce

their time step as much as is needed.

2.2.6 Varying the smoothing length

As discussed earlier in Section 2.1.1, it is desirable to have a smoothing length that

varies spatially to allow regions of di↵erent densities to be properly resolved. This

means it is important to have an appropriate number of neighbours to perform the

SPH summations over. A small number of neighbours can lead to large statistical
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Table 2.1: Table of the lower and upper boundaries for the number of neighbours in each
dimension, Nlower and Nupper. Also included is the dimension dependent constant, nrange,
that is used in Equation 2.40.

Dimensions Nlower Nupper nrange

1 5 10 1
2 20 35 5
3 30 70 12

errors when calculating any smoothed properties. If there are no neighbouring

particles at all, the forces and pressure of the fluid simply cannot be calculated at

that point, causing the failure of the entire program. In contrast, a very large

number of neighbouring particles is more computationally expensive. Hence, it is

desirable to have the minimum number of neighbouring particles (to reduce

computation time) while retaining a su�ciently large number to keep errors low.

The code aims to provide ⇠ 10� 70 neighbours for each SPH particle, where the

number required is proportional to the number of dimensions (see Table 2.1). As all

the work presented in this thesis is in three dimensions, the number of neighbouring

particles is kept close to ⇠ 50.

Not only can any SPH particle move to a region with a di↵ering density but the

density field of the fluid is free to vary. Therefore, it is necessary for the smoothing

length to vary with time so that the number of neighbours can remain near

constant. To find the new smoothing length whilst keeping the number of

neighbours the same, the following must be adhered to

h = hold

✓
⇢old

⇢

◆1/⌫

(2.36)

where hold and ⇢old are the smoothing length and density before the particle moves

to a new region and h and ⇢ are the new values for smoothing length and density. ⌫

is the number of dimensions. Note that the determination of ⇢ requires the

smoothing length (Equation 2.21). As shown in Benz (1990), the derivative of this

can be taken to acquire the following (assuming ⌫ = 3)

dh

dt
= �

1

3

h

⇢

d⇢

dt
. (2.37)

The time derivative of density can then be replaced using the continuity equation,

yielding the following
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dhi
dt

=
1

3
h5 ·vi. (2.38)

This is the equation used for varying the smoothing length and is integrated in time

alongside all the other SPH equations. Sometimes, this equation fails to keep the

number of neighbours constant and approaches the upper or lower band. Should

this occur, Equation 2.38 is replaced by

dhi
dt

=
1
3e

x(h5 ·vi)± e
�x2hi

ex + e�x
, (2.39)

where + is chosen if the smoothing length needs to increase and � is chosen if the

reverse is true. The parameter, x, is given by

x =

8
>>><

>>>:

(Nupper �Nn)/(0.3nrange) if(Nupper �Nn) < nrange,

(Nn �Nlower)/(0.3nrange) if(Nn �Nlower) < nrange,

1 otherwise,

(2.40)

where Nupper and Nlower are the upper and lower bands on the number of neighbours

a SPH particle should have and nrange is an integer dependent on the number of

dimensions (for values of both see Table 2.1). This equation causes the number of

neighbours to converge to the desired range should Equation 2.38 ever fail to do so.

2.3 Sink particles

An important aspect of computational modelling is providing simplifications to

allow the model to explain physical systems at a reasonable computational expense.

In the case where systems reach a large range between the maximum and minimum

densities, such as the formation of stars, it is helpful to find methods to

accommodate it. The Lagrangian method, SPH, is one such way of alleviating some

of these di�culties but an additional simplification that can be made is to use “sink

particles”. Accreting objects in simulations can be replaced by a single non-gaseous

particle that has di↵erent properties from the SPH gas particles, such as a

polytropic equation of state for a star.

The concept of accreting non-gaseous particles were considered outside of

Lagrangian methods by Boss and Black (1982) to investigate the collapse of

rotating, isothermal interstellar clouds. They use a finite-di↵erence code with a
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central cell designated as a sink cell with a mass and angular momentum of the

particles that it replaces. The angular momentum of the sink particle is used to

check for global conservation of angular momentum and has no e↵ect on the

dynamics of the simulation. This sink cell can then accrete gaseous particles when

appropriate, avoiding the need for committing computational time to modelling the

central object itself. However, it is fixed in place and so is insu�cient for modelling

binaries or multiple astrophysical objects with relative motion.

Sink particles in the acquired code were used to aid in the modelling of multiple

star formation by Bate et al (1995). Accreting protostars are very computationally

expensive to model because a large number of particles become dedicated to the

high density regions within each protostar. However, the internal evolution is not of

interest in determining where material from the star-forming cloud ends up. Hence,

such objects can be replaced with a non-gaseous particle with a mass, linear

momentum and angular momentum of the particles that it replaces. Much like the

sink cell, these sink particles can then accrete infalling matter simply.

Both the aforementioned applications of sink particles are used to remove massive

objects that are not of specific interest in the simulations. Both Boss and Black

(1982) and Bate et al (1995) were interested in the evolution of the collapsing

clouds of matter rather than the central object that was accreting the material.

This is similarly the case for the simulations performed in the work throughout this

thesis: the circumstellar disc of the Be star is of interest and not the interior of the

Be star itself nor its binary companion. Hence, both components of the binary are

modelled using sink particles.

This section will briefly cover the two most important features of the

implementation of sink particles in the code. The first is the method of accretion of

matter onto the sink particle. The second is the boundary conditions between the

sink particle and the surrounding gas particles. The code does contain the

additional capability to dynamically create new sink particles but this is not

necessary to model Be/X-ray binaries.

2.3.1 Accretion onto sink particles

As the sink particle possesses no properties other than mass and momentum, it

interacts with other particles only through gravity. Particles that enter a certain

radius can be accreted by the sink particle. There are two accretion radii

implemented in the code: an inner and outer accretion radius. The inner accretion

radius is an absolute boundary of the star, i.e. any gas particle moving inside this

radius is accreted with no exception. The sink particle largely functions as a single

point in the simulations but this accretion radius acts as the radius of the star,

providing a surface for the SPH particles to interact with.
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The outer accretion radius is more complex. Any gas particle that comes within the

accretion radius must satisfy several criteria to confirm if it should be accreted.

Firstly, the particle must be gravitationally bound to the sink particle. Then the

angular momentum of the particle about the sink particle must be less than that

required to form a circular orbit. Finally, the gas particle must be more tightly

bound to the candidate sink particle than any other sink particle. This outer

accretion radius was implemented in the initial code to ensure that particles that

would leave the accretion radius would not be accreted and also to ensure that gas

particles are not accreted prematurely by another sink particle lying close to the

candidate. Bate et al (1995) used an outer accretion radius that is 10-100 times

larger than the inner radius. This is because when modelling collapsing clouds and

the formation of protostars, it is important to make sure that the correct sink

particle accretes the SPH particle first. For the simulations of Be/X-ray binaries, it

is still implemented but at a size slightly larger than the actual radius of the star

(⇠ 1.1). This acts as a means to minimise the large number of interactions that

occur at the Be star’s surface but is otherwise not very important as the Be star

and compact object are in close proximity.

When a gas particle is accreted, the sink particle acquires its mass, linear

momentum and angular momentum. The sink particle’s position is then moved to

the centre of mass of the accreted particle and the sink particle. The gas particle is

then labelled as accreted and is removed or repurposed as a newly injected particle

at the Be star’s surface (this will be discussed in greater detail in Chapter 3). There

is an absence of an accretion disc surrounding the sink particle modelling the

neutron star which is a major simplification. The consequences of this will be

further considered in Chapter 3.

2.3.2 Boundaries for sink particles

As with any simplification, the replacement of stars with a single point has

inaccuracies that need to be accounted for. A large problem is the discontinuity in

the number of SPH particles that occurs at the accretion radius of the sink particle.

The nature of SPH is that it determines the properties of the fluid from

neighbouring particles and so such a discontinuity is obviously a problem. Here the

corrections to boundary conditions are briefly discussed but for further details on

these corrections and the testing of sink particles in the code, see Bate et al (1995).

There are four aspects of the simulation that need to be altered to accommodate

this issue. The first of these is the fact that the density of particles close to the

accretion radius are underestimated because of these missing neighbours in the

summation in Equation 2.21. To correct for this, the neighbouring particles are

separated into two groups: those in between the SPH particle and the sink particle
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Figure 2.2: An illustration of the sink particle implementation with an SPH gas particle
close to the accretion radius. The sink particle and SPH particle are represented by the red
cross and solid black circle, respectively. The sink particle is surrounded by a circle that
demonstrates its assumed accretion radius. The SPH particle’s kernel cuto↵ (at 2h) is shown
by the smaller circle and is separated into two sections: the inner and outer halves of the
circle. The inner half overlaps with the accretion radius and so is missing some neighbouring
particles. The outer half, however, is una↵ected by the proximity to the accretion radius.

and the neighbours lying outside of both (see Figure 2.2). For a gas particle that is

close to the accretion radius of the sink particle, the inner group of neighbours is

depleted by the accretion radius. A linear fit of the density gradient is made for

both the inner and outer group and the comparison between these two fits allows

for a correction to density to be determined.

Secondly, the smoothing lengths of the particles close to any sink particle’s

accretion radius also need to be larger. As mentioned before in Section 2.2.6, it is

desirable to keep the number of neighbours roughly constant and a particle at the

accretion radius can be missing up to half the neighbouring particles it should have.

The smoothing length is altered at the same time as density. When the inner and

outer groups are compared, the number of missing neighbouring particles is

calculated from the density correction. It is assumed that the neighbours are

somewhat equally spaced in both groups. This number of missing neighbours allows

the smoothing length to be changed accordingly.

The third issue is that the particles at the edge of the boundary of accretion

experience a lack of pressure forces due to the absence of SPH particles. Hence,

they are more likely to fall into the sink particle’s accretion for the radius. The

pressure correction is calculated using the same method as density but it is only

necessary to change the radial pressure forces. This is because any missing pressure

force due to the accretion radius can only be along a radial line from the sink

particle to the SPH particle. An equal and opposite force is applied to the sink
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particle to conserve linear momentum.

Finally, the viscosity boundary conditions must be considered. Standard SPH

artificial viscosity implementation incorporates two kinds of viscosity: a bulk

viscosity and a shear viscosity component (Meglicki, Wickramasinghe and Bicknell,

1993). Bulk viscosity is contained as a term in Equation 2.31 but shear viscosity

arises due to the interaction of particles with each other across a shear flow over a

finite distance of the order of h. Technically, in the limit where the simulation

becomes continuous (h ! 0), this shear viscosity ceases to exist. The viscosity

boundaries must be accounted for or the angular momentum transport is much

greater than it should be. Any particle near the accretion boundary should be

gaining angular momentum (through viscosity) from particles closer to the sink

particle and transferring it to particles further out. The inner particles become

depleted due to the accretion radius and no longer supply angular momentum to

particles in the disc. To solve this, the components of acceleration due to viscosity in

two directions are calculated: the component tangential to the accretion radius and

the component in the direction the SPH particle is travelling. These components

are calculated using the corrected viscous accelerations from the previous time step.

An estimate for the acceleration of the particle is then calculated using the mean of

the neighbours’ accelerations further away from the sink particle. The value of the

correction is the di↵erence between this estimate and the values of viscous

acceleration calculated for the current timestep using SPH methods. Again, an

equal and opposite force is applied to the sink particle to conserve momentum.

However, a constraint must be added for this boundary correction to viscosity. The

net correction to acceleration cannot be in the direction of motion for the particle.

Without this constraint, the particle may gain angular momentum and transfer it

to the neighbouring particles further out in the disc. This then increases the

estimations of the viscous acceleration due to those partners which further increases

the angular momentum of the original particle.

All these corrections are gradually applied as the SPH particle approaches the sink

particle. There are multiplied by smoothly varying functions varying from 0 to 1.

This function has a di↵erent dependence on the distance from the sink particle for

each corrected property. This dependence is determined by the length-scales over

which the property becomes important in the summation of neighbouring particles.
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Chapter 3

SPH Code Implemetation

The code was originally developed by W. Benz (Benz, 1990; Benz et al., 1990) with

minor modifications made by I. A. Bonnell starting from the principles developed

by Lucy (1977) and Gingold and Monaghan (1977). M. Bate received the code and

used it to model the formation of multiple protostar systems (Bate et al, 1995). A.

T. Okazaki then acquired the code from M. Bate and implemented the VDD model

(see Section 1.2.4), thus allowing the code to simulate Be/X-ray binaries (Okazaki et

al., 2002; Hayasaki and Okazaki, 2004). The code is a three-dimensional SPH (see

Chapter 2) FORTRAN program that employs the parallelisation software, OpenMP.

3.1 Properties of the disc model

The Be star’s decretion disc is modelled by an ensemble of particles of equal mass.

Unless specified otherwise, the mass of every particle is ⇠ 10�15M�. The

temperature profile of the disc is complex in nature but requires an equally complex

radiative transfer code to correctly model (see Section 1.2.4). Hence, the model disc

is assumed to be isothermal with a temperature of T = 0.6Teff which has been

found to be a largely acceptable approximation (Poeckert and Marlborough, 1982;

van Kerkwijk et al., 1995; Carciofi and Bjorkman, 2006). In reality, the inner region

(⇠ 5� 10R�) of an isolated Be star’s disc has a rather complex temperature profile

and only outside of this is the disc close to isothermal (see Figure 1.3). When the

Be star is coupled with a compact object in a Be/X-ray binary the disc is far more

dynamic and the temperature profile of the disc will be further complicated.

Despite the fact that detailed mechanics of the disc could be a↵ected by the

isothermal simplification, the largest problem with the assumption is that any

emission from the disc is di�cult to model accurately. In the work in this thesis,

any disc emission is calculated through relative disc size or the Horne and Marsh

method for computing line profiles (see Section 1.2.5).
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The particles are injected into the disc with Keplerian velocity at a random

azimuthal angle at 1.05 stellar radii from the centre of the Be star. They are placed

at a random small distance from the equatorial plane that lies between ±0.03R⇤.

Both the Be star and the neutron star are modelled using sink particles (see Section

2.3).

The most important aspect of the code is its ability to reproduce the properties of

the Be star’s circumstellar disc. This section will consider the state of the disc

produced in the simulations, showing the code’s capability. See Chapter 1 for the

properties of the disc inferred from observations and theoretical calculations. The

simulations shown in this chapter contain a Be star of radius M = 18M� and mass

R = 7R� to target a B0 star (Schmidt-Kaler, 1982).

It should be noted that the presence of an accretion disc that surrounds the

compact object is neglected in this model. Hence, all accretion onto the neutron

star or black hole is determined simply by the particles that fall into the radius of

the neutron star. A compact object with a given rate of mass capture may well

have a very di↵erent accretion rate due to the creation of a surrounding disc.

Radiation pressure is also neglected in the model because aside from extreme cases

(see Section 5.5.1) the distances over which the radiation pressure interacts with the

disc are much smaller than the size of the disc.

This model also does not take into account the radiation pressure from the emitting

compact object. The pressure caused by the emitted photons can also a↵ect the

rate at which matter is accreted onto the compact object. It can also a↵ect the

surrounding circumstellar material, should the compact object be moving through

the disc. However, as the scale of the Be star’s circumstellar disc is so large,

radiation pressure e↵ects from the compact object may be small.

3.1.1 Density profile

Each SPH particle has an associated density that is calculated from nearby

particles (see Chapter 2) and this associated density should be related directly to

the spacing and mass of the simulation particles. Figure 3.1 shows a comparison

between two methods of calculating disc density for an isolated Be system. The first

of these is the value of density assigned to each simulation particle and is shown by

the blue data points. The second method (shown by the red line) is the calculation

of the average density of annular rings at successive radial points in the disc. It is

calculated as follows

⇢approx =
npmp

⇡(r22 � r
2
1)z

, (3.1)
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Figure 3.1: The relationship between the logarithm of the density of the decretion disc and
radius for a simulated and isolated Be star. The blue scatter points show the density value
associated with each SPH particle in the disc. The red line shows the average density at
annular rings using Equation 3.2.

where np is the number of particles, mp is the mass of the particles, z is the full

height of the disc and r1 and r2 are two radial points that define the annular ring in

the disc. These two methods are shown to be virtually identical but the red line

behaves sporadically at large radii due to a decreasing number of SPH particles.

The density profile of the Be star’s disc is expected to be a radial power law and a

vertical Gaussian. The power law index should lie between 1.5 and 4 (Silaj et al.,

2010) and the base gas density, should lie between 10�12gcm�3
⇠ 10�10gcm�3

(Carciofi et al., 2006, 2007, 2009; Tycner et al., 2008; Jones, Sigut and Porter,

2008a). Figure 3.2 demonstrates the power law density profile of the disc with a

linear fit shown by the red line. The equation of the fit is given by

log ⇢ = �3.15⇥ logR� 10.6 (3.2)

where ⇢ is the density of the disc in gcm�3 and R is the radius from the Be star in

stellar radii. Both the base gas density and the power law index lie within expected

values. Using a least squares fitting method and the model for the density profile in

Touhami, Gies and Schaefer (2011), the power law index is 3.5. However, the curve

shown in Figure 3.2 is clearly a broken power law with the density in the outer

regions of the disc dropping o↵ more rapidly. Figure 3.3 shows the vertical density

profile of the Be star’s disc at three di↵erent radii. All three curves show a

Gaussian relation with the maximum of the curve decreasing with radius.
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Figure 3.2: The relationship between the logarithm of the disc’s density and the logarithm
of the disc’s radius for an isolated Be star. The blue scatter points show the density associated
with SPH particles that lie within a short distance of the equatorial plane of the Be star. The
red line shows a linear fit to the data using a simple polynomial fit routine. The gradient
and y-intercept for the fit is given by Equation 3.1.

Figure 3.3: The relationship between the density of the disc and the vertical distance from
the equatorial plane of the isolated Be star. The di↵erent colours show the relationship for
three di↵erent radii.
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3.1.2 Keplerian motion

Another confirmed characteristic of the Be star’s disc is the Keplerian motion of the

disc material. Figure 3.4 shows the speed of the particles in the disc in three

di↵erent cases. The first panel is for an isolated Be star and the motion of the

particles is shown to be Keplerian. The second and third plot in Figure 3.4 show

the distribution of speeds for particles in a Be/NS system, when the neutron star is

at apastron and periastron, respectively. When the neutron star is at apastron, the

disc is still Keplerian. The spread of speeds is larger than the isolated Be star’s disc

and the disc is smaller due to the neutron star’s truncation (see Section 1.3.4). The

final panel in Figure 3.4 reveals the complex behaviour of the disc just after

periastron. Many particles in the disc are either sped up or slowed down and there

are three distinct groupings of speed in the outer regions of the disc. This is due to

the spiral structure that is excited in the disc by the neutron star’s passage and will

be discussed further in Section 3.2.

3.1.3 Disc flare

The final key property of the disc is flaring, i.e. the disc growing in vertical height

with radius. Figure 3.5 shows how the height of the disc increases with radius. The

variations in the curve increase with radius because the number of particles and, in

turn, the resolution of the disc decreases with radius. The opening angle of the disc

from the equatorial plane is found to be ⇠ 9� and thus, is in keeping with the

suggestion that Be stars possess a small opening angle (Quirrenbach et al., 1997).

3.2 Velocity profiles

Initial work with the code aimed to produce structures in the disc that can explain

H↵ variations seen in observations. This work was performed without using

radiative transfer methods and so only the velocity profiles of the disc can be

analysed. For all the line profiles presented, the velocities of the SPH particles

along the assumed line of sight are used to calculate the Doppler-shifted

wavelength. These are then separated into arbitrary wavelength bins and hence the

counts are only relative.

During the course of producing simulations for various binary Be/NS systems, a

spiral structure in the disc was observed, as mentioned in Okazaki et al. (2002).

Figure 3.6 shows the spiral structure that forms at the neutron star’s closest

approach. One spiral arm tracks the compact object and another arm is induced on

the opposite side of the disc. In a circular orbit, a single spiral arm tracks the
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Figure 3.4: The speed of the particles in the disc with radius from the Be star for three
di↵erent cases. The upper blue line and lower red line show the escape velocity and Keplerian
velocity with radius, respectively. Top: An isolated Be star. Middle: A Be/NS binary with a
binary period of Porb = 40 days and an eccentricity of e = 0.4. The neutron star is positioned
at apastron. Bottom: The same as the middle plot but the neutron star is at a position just
after periastron.
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Figure 3.5: The relationship between the height of the disc and radius for the isolated Be
star. The scatter points show the radial positions and heights of every SPH particle.

neutron star constantly. After being excited at periastron, this structure dissipates

during the remainder of the orbit.

This spiral initially follows the pattern of a logarithmic spiral which is appropriately

the most common to occur in natural systems. A logarithmic spiral varies as

r = ae
b✓. However, after a maximum of 180�, this structure no longer follows such a

pattern and the decrease in radius with angle slows. The fact that the spirals do

not follow this pattern exactly could be due to the Keplerian motion or continuous

interaction of the neutron star with the disc.

It is clear that this spiral pattern creates visible changes in the velocity profile: the

bottom right plot shows two additional peaks. If any observations show similar

peaks, this would confirm that the interaction of the neutron star with the disc at

periastron is accurate. However, with the current resolution in line emission

observations, it may well be very di�cult to resolve such small features. The

feature may also be less pronounced in the emission of a Be star disc and should be

investigated using radiative transfer methods.

3.3 Speed-up

Modelling the dynamics of the Be star’s circumstellar disc using a three-dimensional

SPH code requires a considerable amount of computational resources. It is therefore

important to consider how to most e�ciently run simulations to complete the

maximum amount of work possible. This is one of the reasons that OpenMP is

implemented within the code, as it can greatly reduce the amount of required time

for a single simulation.
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Figure 3.6: Four plots of a Be/NS system at successive points in time. The binary has an
orbital period of Porb = 40 days and an eccentricity of e = 0.4. The neutron star is shown by
the red point and the Be star is represented by white space inside the disc. The left panels in
each plot show snapshots of the system from above. The right panels show the wavelength,
Doppler-shifted from the H↵ rest wavelength, 6562.8Å. Doppler shifts are calculated using
the velocities of the disc when it is viewed at an inclination of 45�. The y scale for the right
panels is arbitrary.
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Figure 3.7: Illustration of the process of multi-threading. In the image, there are three
serial sections of code, separated by two parallel sections with a di↵ering number of threads.
Source: https://www.dartmouth.edu/⇠rc/classes/intro openmp/.

OpenMP is a multi-threading software which means that sections of the program

can be distributed across a number of processors in multiple threads (see Figure

3.7). This method requires shared memory between any processors used. The

application of multi-threading to a program can be straightforward but it requires

caution. One cannot reliably expect the processors to run at the same speed, nor

identically every time the code runs. Hence, one thread may interact with the

simulation variables at the same time as another thread. This causes inconsistencies

and yields incorrect results. One must therefore make sure to separate the sections

of the code correctly into parallel and serial sections, so that no errors occur. The

code used in this thesis has been tested extensively to make sure that no errors are

caused by the parallelisation. This testing consisted of checking vital parts of the

code, making sure that the code produced the same results when given identical

parameters and reproducing results from previous work including Okazaki et al.

(2002) (including the results shown in this chapter).

The “speed up”, S, of a program is a measure of the improvement of its runtime

with the number of processors used and is given by the following

S(N) =
TN

T1
, (3.3)

where T1 is the time for the code to run on one processor and TN is the time for the

code to run on N processors. The case where S(N) is equal to N is called ideal

speed-up. Typically, only parts of a code can be parallelised and hence the speed-up

is rarely ideal. It is actually possible to achieve a greater than ideal case depending

on the parallelisation method and the architecture of the code. For all parallel
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Figure 3.8: The speed-up of Iridis 4 and the Sciama Cluster with increasing number of
processors. The solid green line shows the ideal speed-up, i.e y = x.

codes, there is always a number of processors after which no speed-up is gained.

This can occur for a number of reasons but is most commonly due to the serial

aspects of the code becoming much more computationally expensive than the

multi-threaded parallel sections.

For the work in this thesis, two computing clusters were used for simulations:

Southampton University’s Iridis 4 and Portsmouth Institute of Cosmology and

Gravitation’s (ICG) Sciama Cluster. Due to OpenMP’s requirement of shared

memory, speed-up can only be tested for a maximum number of processors equal to

those available on a single node.

Iridis 4 was, according to the November 2012 TOP500 Supercomputers issue

(http://www.top500.org/list/2012/11/100/), the most powerful academic

supercomputer in the UK and one of the top 30 academic computational facilities in

the World. It has 2.6GHz on every core and has 12320 cores overall in the cluster.

Iridis 4 has 16 cores per node and thus the code can use up to that many cores for

parallelisation. The Sciama Cluster is a supercomputer dedicated mainly to

astrophysical computation and is run by the Institute of Cosmology and

Gravitation. It also has cores with a speed of 2.6GHz, has 2742 cores overall in the

cluster and similarly has a maximum of 16 cores per node.

As the code runs indefinitely, a specific stage in the evolution of the program must

be defined as an end point. Thus, the code is run for 10 hours on one processor and

the resultant state of the disc is used to benchmark all further simulations. It should

be noted that randomness does exist within the code: the particles are injected at

random vertical distances from the equatorial plane of the disc (see Section 3.1).

The speed-up of the code when using Iridis 4 and Sciama are shown in Figure 3.8,
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with a line along y = x that illustrates ideal speed-up. Iridis 4 shows an impressive

improvement in the runtime of the code, up to a maximum of ⇠ 5 at 8 processors.

Any further increase in the number of processors does not improve the speed-up.

Sciama behaves similarly, with a slightly smaller speed-up, but continues to change

after 9 processors. After this point, the speed-up behaves erratically and no one

specific value is found for the runtime of the code. This is likely due to the usage of

the processors on each node: if a processor involved in running the simulation is

used by another project, they will both be slowed. From these results, 8 processors

is the optimal number to use. An additional reason to use 8 processors is that each

node has 16 cores and hence, two jobs can fit on one, reducing queue times.
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Chapter 4

Decretion discs in Be/X-ray

binaries

Coe and Kirk (2015) (hereafter referred to as CK15) investigated a sample of

approximately 70 X-ray emitting binary systems containing a Be star in the Small

Magellanic Cloud (SMC). All these Be/X-ray binaries show clear X-ray pulse

signatures from a neutron star. In the paper, they list all the known orbital periods,

eccentricities and neutron star spin periods. Also included is the Be star’s spectral

type, the size of the circumstellar disc and evidence for non-radial pulsations. The

relationship between orbital period and circumstellar disc size seen in galactic

sources (Reig, Fabregat and Coe, 1997) is shown to be clearly present in the SMC

systems. Figures 8 and 10 in CK15 show two correlations that will be investigated

in Section 4.5.

In this chapter, simulations are used to probe fundamental characteristics of Be/NS

binaries. In Section 6.2, the methods used to model Be/NS binaries are discussed.

Sections 4.2, 4.3 and 4.4 detail the investigations into the disc’s base gas density,

the disc’s size and the neutron star’s accretion rate, respectively. The relationships

between the disc’s characteristics (the base gas density, the accretion rate of the

neutron star companion and the disc’s size) and the simulation parameters (the

viscosity, the mass ejection rate of the Be star, the orientation of the disc, the

orbital period and eccentricity) are presented. In Section 4.5 the simulations are

used to test the relationships shown in Figures 8 and 10 of CK15. Section 6.4

discusses the results shown in the chapter and compares the findings to previous

works.
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4.1 Simulations

For the simulations in this chapter, the Be star mass and radius are assumed to be

18M� and 7R�, respectively, to target a B0V star (Schmidt-Kaler, 1982; Cox,

2000). A mass of 1.4M� and radius of 10km is adopted for the neutron star. For

further details on the implementation of the code, see Section 3.1.

There are a number of simulation parameters that are varied individually to explore

the aforementioned characteristics of Be/NS binaries. These include the inclination

of the disc to the orbital plane, the mass ejection rate of the Be star, the viscosity

of the disc, the binary period and the orbital eccentricity. The behaviour and

structure of the disc is dependent on all these parameters. Ŕımulo et al. (2018)

found that the viscosity parameter in the discs of Be stars could be anywhere from

a few tenths to more than one. Ghoreyshi et al. (2018) similarly used viscosity

parameters from ↵ = 0.1 to ↵ = 1 to model the Be star ! CMa. Hence, the

viscosity explored here is in the range 0.1  ↵  1.5. The mass ejection rate of the

Be star is varied from 10�11 to 10�5M�yr�1 to encompass the large mass ejection

rates used by Ghoreyshi et al. (2018) and to include ejection rates inside the range

suggested by Vieira et al. (2015). The sample of Be/NS binaries used by CK15

possess orbital periods of up to ⇠ 500 days. The orbital period of the simulations is

varied from 40 days to 400 days in steps of 40 days with the aim to broadly cover

this range. Although many interesting systems have orbital periods of less than 40

days, the aim of this chapter is to perform a general examination of the properties

of the Be star’s decretion disc and extending the simulations to lower orbital

periods would not contribute much to this. A more specific investigation of systems

at low orbital periods could produce some interesting results and would be a good

continuation of the work in this chapter. Eccentricity is tested at e = 0.0, 0.2, 0.4

and 0.6 for the systems of varying orbital period and e = 0.0, 0.2 and 0.4 when

varying disc orientation (see Section 4.1.1). For the simulations where the viscosity

of the disc and the mass ejection rate of the Be star are varied, the eccentricity is

only tested at e = 0.0 and 0.4. This range is chosen because over 90% of Be/NS

binaries of known eccentricity have e  0.6 (Brown et al., 2018).

When the viscosity and mass ejection rate are not specified, these two quantities are

assumed to be ↵ = 0.63 and Ṁ = 10�10 M�yr�1, respectively. These are typical

values for observable Be stars as determined through simulations by Ŕımulo et al.

(2018). When the period of the simulation is unspecified, an orbital period of 40

days is assumed. This is because the majority of the systems in the observational

sample contained in CK15 have orbital periods of Porb  150 days. Given the

masses of the Be star and neutron star, the semi-major axis of these systems is ⇠ 19

stellar radii. The Be star’s disc lies in the orbital plane unless it is stated otherwise.

The simulations in this chapter are all considered in a steady state (see Section 3.1)
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Figure 4.1: An illustration of the geometry used in this chapter. The Be star’s circumstellar
disc is shown in red and the neutron star is represented by the solid blue circle. The orbit
of the neutron star is in the x-y plane. The two angles, ✓ and �, show the inclination
and azimuthal angles, respectively. The inclination and azimuthal angle are defined as the
rotation about the x axis and z axis, respectively. Periastron and apastron both lie along the
y axis.

because it allows for the best comparison of Be/X-ray binaries across the

parameters investigated. However, few Be/X-ray binaries exist in a steady state due

to the dynamic nature of the Be star and hence, observable systems cannot be

compared to each other so simply. The maximum X-ray luminosity for an

observable system is most likely to occur when the disc is not in a steady state and

hence the values for luminosity here are best considered as relative.

4.1.1 Misaligned discs

There is a subset of the simulations shown in this chapter that investigate the e↵ect

of changing the orientation of the disc relative to the orbital plane. The disc

inclination is investigated because there are a number of Be/X-ray binary systems

that have had notable observational features that are thought to arise due to large

misalignments between the disc and the orbital plane. Examples of these include

GX 304-1 (Postnov et al., 2014) and SXP 5.05 (Coe et al., 2015; Brown et al.,

2019). Asymmetric supernova explosions can leave the Be star with a disc that is

misaligned to the orbital plane (see Section 1.3.5). Figure 4.1 demonstrates the

definition of the two orientation angles in this chapter, inclination angle, ✓, and

azimuthal angle, �. A disc at an inclination angle of 0� lies in the orbital plane and

the azimuthal rotation is arbitrary. The x-y plane in the diagram is identical to the

orbital plane.

When the circumstellar disc of a Be star is highly misaligned to the orbital plane,

the three-body phenomenon known as the Kozai-Lidov mechanism becomes

important (Kozai, 1962; Lidov, 1962; Martin et al., 2014). This mechanism causes
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Table 4.1: Average disc eccentricities for some of the simulations with discs misaligned to
the orbital plane.

orbital e initial inclination angle (�) 1 mean disc e

0.0 0 0.11
0.0 30 0.15
0.0 60 0.29
0.0 90 0.34
0.2 0 0.15
0.2 30 0.19
0.2 60 0.32
0.2 90 0.43
0.4 0 0.17
0.4 30 0.22
0.4 60 0.36
0.4 90 0.44

the disc’s misalignment to oscillate, trading its inclination for an increase in the

eccentricity of the disc. The period of Kozai-Lidov cycles for a particle orbiting the

primary of a binary, as derived by Kiseleva et al. (1998), is given by Equation 1.14.

All the simulations in this chapter that contain a misaligned disc have the same

orbital period and thus have an identical Kozai-Lidov period for the same

eccentricity.

Table 4.1 shows the average disc eccentricity of twelve simulations with di↵erent

disc inclinations and orbital eccentricities. The initial inclination angle is the angle

between the equatorial plane of the Be star (the same plane that the disc material

is ejected into) and the orbital plane. Disc eccentricity shown is averaged over the

final five orbits of the simulation. The simulations have been run for similar times

and thus, all the systems of equal eccentricity are at the same approximate point in

the Kozai-Lidov cycle. Up until the time the simulations have been evolved, the

average disc eccentricity is greater for systems with larger initial misalignments

between the disc and the orbital plane. This is expected as the systems with a

larger initial inclination angle are capable of achieving larger disc eccentricities.

When orbital eccentricity is increased, the Kozai-Lidov period is decreased (see

Equation 1.21) meaning that the simulation ends at a later stage of the Kozai-Lidov

cycle and hence the modelled disc is, on average, more eccentric. The disc is not

completely circular even in binaries with a coplanar disc because of the interaction

of the neutron star with the disc. The inclination of the disc does not oscillate in

coplanar systems.

1Initial inclination angle refers to the angle at which the disc material is injected at, and is not
the current inclination of the disc.

72



4.2 Base gas density

The unperturbed density profile of a Be star’s circumstellar disc can be described

by a Gaussian-modified power law (Touhami, Gies and Schaefer, 2011; Rivinius,

Carciofi and Martayan, 2013). The density at the surface of the Be star, i.e. base of

the circumstellar decretion disc, is defined as the base gas density. For the

simulations discussed in this chapter, base gas density is determined by the mean

density of an equatorial ring of simulation particles at the Be star’s surface,

averaged over five orbits.

Figure 4.2 shows that the base gas density decreases exponentially with viscosity.

The viscosity of the disc matter leads to the transfer of angular momentum, i.e.

matter travels outwards due to the angular momentum gained from the particles

falling back onto the star. Hence, as viscous forces are di↵usive, a larger viscosity

leads to a lower base gas density. The base gas density varies by a factor of ⇠ 10

due to viscosity.

Base gas density increases linearly with the Be star’s mass ejection rate as

demonstrated by Figure 4.3. The base gas density at equilibrium arises from the

balance between the amount of material being ejected into the disc and the matter

falling back onto the Be star. Therefore, the base gas density of the disc is heavily

dependent on the mass ejection rate, varying by ⇠ 4 orders of magnitude over the

range shown.

Base gas density is not related to orbital period, eccentricity or the orientation of

the disc. These quantities only alter the neutron star’s interaction with the disc and

thus do not a↵ect the innermost regions.

4.3 Disc size

Observations have shown that the circumstellar discs of Be stars can be up to

hundreds of stellar radii in size (Dougherty and Taylor, 1992). The size of the

circumstellar disc in Be/X-ray binaries is dependent on the tidal truncation caused

by the binary partner (Okazaki et al., 2002). In equilibrium, the disc is limited to a

radius where the tidal forces balance the viscous forces that is defined as the

truncation radius. In this chapter, the size of the Be star’s circumstellar disc is

defined as the radius that contains 90% of the simulation particles. Note that this

definition means that the size of an eccentric disc will be defined by its semi-major

axis. Minimum and maximum disc sizes are calculated for individual orbits and

then averaged over five orbits. In all plots in this section, solid lines and dashed

lines represent the maximum and minimum values of disc size, respectively.

Figure 4.4 shows the variation of the Be star’s disc size with viscosity. Minimum
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Figure 4.2: The relationship between the base gas density and the viscosity parameter of
the disc. The bars show the minimum and maximum values of the base gas density around
an orbital cycle. The bars are comparable to or smaller than the size of the symbols. This is
for systems with a 40 day period and eccentricities of e = 0 and 0.4.

Figure 4.3: The relationship between the base gas density and the mass ejection rate of the
Be star. The bars show the minimum and maximum values of the base gas density around
an orbital cycle. The bars are comparable to or smaller than the size of the symbols. This is
for systems with a 40 day period and eccentricities of e = 0 and 0.4.
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and maximum disc size both increase with viscosity for all eccentricities. Both the

rate that disc size increases and the range from minimum to maximum are larger

for higher eccentricities. For the viscosity parameters shown, the disc size increases

by ⇠ 60%.

Figure 4.5 shows the relationship between the disc’s size and its orientation.

Simulations were performed whilst varying both the inclination angle, ✓ and the

azimuthal angle, �. Disc size increases with the inclination to the orbital plane and

at e = 0.4; the disc is ⇠ 40% larger when the disc is perpendicular to the orbital

plane than when it is coplanar. For e = 0.0 and e = 0.2, the azimuthal angle has

negligible e↵ect on the size of the disc and hence the top panel of Figure 4.5 shows

the minimum and maximum values of disc size for simulations of any azimuthal

angle at each eccentricity. There is a relationship with azimuthal angle at higher

eccentricities, as shown by the bottom panel of Figure 4.5. The disc is at its largest

at � = 90�, where the disc is perpendicular to the plane of the orbit but parallel to

the semi-major axis. This is where the disc has minimum interaction with the

neutron star, i.e. the neutron star passes close to the disc once at periastron. The

disc is smaller when it is both perpendicular to the orbital plane and the

semi-major axis (� = 0�). In this case, the neutron star interacts twice with the Be

star’s circumstellar disc: once before periastron and once after. Like viscosity, the

range from minimum to maximum disc size increases with eccentricity.

Figure 4.6 demonstrates the relationship between the orbital period of the Be/NS

binary and the size of the Be star’s circumstellar disc. The size of the disc increases

by a factor of ⇠ 7 with orbital period. The periastron distance of the neutron star

and, in turn, the truncation radius of the Be star’s disc increases with orbital

period, allowing for a larger maximum disc radius. The di↵erence between

minimum and maximum disc size increases with eccentricity.

Disc size is independent of the mass ejection rate of the Be star. A higher mass

ejection rate increases the density of the disc but the radius of the tidal truncation

remains the same and therefore so does the size of the disc.

4.4 Neutron star accretion rate

The X-ray emission from Be/NS binaries is a defining feature. The compact object

is often only detectable by X-ray telescopes, and thus the X-ray flux is a vital

quantity to understand in Be/NS binaries. In this chapter, the neutron star mass

capture rate is calculated directly from the number of simulation particles falling

onto the neutron star. The accretion rate of the neutron star is assumed to be

identical to the mass capture rate. The maximum accretion rate is shown because,

unlike the average accretion rate, it is independent of the fraction of the orbit that
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Figure 4.4: The relationship between the time-averaged size of the disc and viscosity pa-
rameter for systems with an orbital period of 40 days and eccentricities of e = 0 and 0.4. The
solid and dashed lines show the maximum and minimum disc sizes, respectively.

the neutron star spends interacting with the Be star’s circumstellar disc. Maximum

accretion rate is calculated for individual orbits and then the median of five orbits

is taken.

The neutron star’s accretion rate increases linearly with the mass ejection rate of

the Be star. A higher mass ejection rate yields a generally higher density of the disc

(see Figure 4.3). When the truncation radius remains the same, the neutron star

interacts at the same distance with a higher density disc.

The relationship between the accretion rate of the neutron star and the orbital

period of the Be/X-ray binary is shown in Figure 4.7. The periastron distance of

the neutron star is dependent on the orbital period and eccentricity of the binary.

The density of the disc falls radially as a power law and thus the amount of

accreted matter is dependent on the distance from the Be star. Therefore, neutron

stars with larger orbital periods accrete less matter and the most eccentric systems

have a higher maximum neutron star accretion rate.

The accretion rate of the neutron star has little to no dependency on the viscosity

and the orientation of the disc. The orientation of the disc does not greatly alter

the neutron star’s closest passage to the disc and thus has a small e↵ect on the

maximum accretion rate. Larger viscosities both decrease the density of the disc

(see Figure 4.2) and increase the size of the disc (see Figure 4.4). This leads to a

negligible change in the accretion rate of the neutron star.
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Figure 4.5: Top: Time-averaged size of the disc for various orientations. The systems shown
have an orbital period of 40 days and eccentricities of e = 0.0 and 0.2. The solid and dashed
lines show the maximum and minimum disc sizes, respectively. The values of maximum and
minimum disc size are for simulations of any � at each eccentricity. Bottom: Time-averaged
size of the disc for various disc orientations. � indicates the azimuthal rotation, i.e. rotation
in the plane of the orbit. This is for systems with a 40 day period and 0.4 eccentricity. The
solid and dashed lines show the maximum and minimum disc sizes, respectively.
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Figure 4.6: The relationship between the time-averaged size of the disc and the orbital
parameters of the Be/NS binaries. The data points have a range of eccentricities from e = 0.0
to 0.6. The solid and dashed lines show the maximum and minimum disc sizes, respectively.

Figure 4.7: The relationship between the maximum accretion rate of the neutron star and
the orbital period.
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Table 4.2: The gradients and y-intercepts for the linear fits shown in Figure 4.8. The three
samples refer to the simulation data, the observational data with orbital periods of less than
150 days and the entire set of observational data. The data for the observed binaries is taken
from CK15.

sample gradient y-intercept (days)
simulations 0.51 20.99
binaries with Porb  150 days 0.51 88.90
complete observational sample 0.27 107.70

4.5 Comparison to observations

CK15 presented two relationships involving the size of the Be star’s circumstellar

disc in Be/X-ray binaries (see Figures 8 and 10 in their paper). The first is a

relationship between the H↵ equivalent width and the orbital period. They show

two linear fits that utilise the sample of Be/NS binaries contained in the paper.

One is a fit to the systems that possess an orbital period of Porb  150 days and the

other is a fit to the entire observational sample. The former linear fit has a much

larger gradient than the latter (see Table 4.2). The second relationship they

describe is a quadratic relationship between the semi-major axis of the binary and

the size of the disc. The disc size is determined using the following equation found

in Hanuschik (1989):

log

 r
ROB

Rcs

!
= [�0.32⇥ log(�EW )]� 0.2, (4.1)

where Rcs is the size of the circumstellar disc, EW is the H↵ equivalent width and

ROB is the radius of the Be star that is determined from the individual spectral

types recorded for each Be star. In this section, these relationships are investigated

using simulations with orbital periods ranging from 40 to 400 days and

eccentricities of e = 0.0, 0.2, 0.4 and 0.6. The linear fits to the simulations, the

observational data with Porb  150 days and the complete observational dataset will

be referred to as Rsim, R150 and Rall, respectively.

Figure 4.8 shows the relationship between the size of the Be star’s circumstellar and

orbital period. The data and fits shown in Figure 8 of CK15 are included. The

observational disc sizes are converted from the H↵ equivalent widths given in CK15

using Equation 4.1. Values for the Be star radii are taken from Schmidt-Kaler

(1982). The gradient of Rsim is equal to the gradient of R150. However, the

y-intercept di↵ers by a factor of ⇠ 4. Both the gradient and the y-intercept di↵er

considerably between Rall and Rsim.

Figure 4.9 shows the relationship between the semi-major axis and the disc’s size.
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Figure 4.8: The relationship between disc size and orbital period. The black squares show
the observational data from CK15. The coloured bars represent the simulation data and have
a range of eccentricities from e = 0.0 to 0.6. The bars show the maximum and minimum
values of disc size. The dot-dashed purple line shows the fit to all the simulation data. The fits
from CK15 to systems with Porb  150 days (dashed black line) and systems with Porb  500
days (solid black line) are included in the plot. The parameters of the fits are described in
Table 4.2.

For the simulations, disc size is calculated as described in Section 4.3 and

semi-major axis is known from the assumed orbital period of each simulation. CK15

present the following quadratic fit

a = (7⇥ 10�12)R2
cs + 0.4524Rcs + (4.3⇥ 1010)m. (4.2)

where a is the semi-major axis and Rcs is the radius of the circumstellar disc in

metres. The simulation data agrees with the observational relationship between the

disc’s size and the semi-major axis of the orbit.

The simulation data in Figures 4.8 and 4.9 have an equal number of binaries at each

tested eccentricity (e = 0.0, 0.2, 0.4 and 0.6). The sample used by CK15 is missing a

large number of the orbital eccentricities and hence there could be an unknown

bias. This bias could be the cause of the di↵erences between the observational and

predicted relationships shown in this chapter. The di↵erences in the fits could also

be related to the fact that there are only a few systems at higher orbital periods.

In Figure 4.8, Rsim and R150 have the same gradient. This implies that the

observed binaries with low orbital periods possess a similar distribution of

eccentricities to the simulation data. This is supported by the seven observationally

determined eccentricities that are distributed over the range 0  e  0.5 (see Table

80



Figure 4.9: The relationship between the Be star’s circumstellar disc size and semi-major
axis of the neutron star’s orbit. The black squares show the observational data from CK15.
The coloured bars represent the simulation data and have a range of eccentricities from
e = 0.0 to 0.6. The bars show the minimum and maximum values of disc size. The quadratic
fit from CK15 (dashed black line) is given by Equation 4.2.

4.3). Rall has a considerably smaller gradient than Rsim and R150. Removing all the

simulations with larger orbital periods (i.e. Porb > 150 days) that have eccentricities

of e < 0.6 lowers the gradient of the model fit to 0.41. Hence, the simulations

suggest that the eccentricities of the observational sample are higher at larger

orbital periods. Figure 4.10 shows that the distribution of eccentricities increases

with orbital period for observed Be/X-ray binaries. Despite 80% of the systems

having an orbital period of less than 150 days, the only two systems with a

confirmed eccentricity greater than 0.6 comprise two of the six binaries of larger

orbital period. This supports the suggestion that the systems with higher orbital

periods have a larger eccentricity on average.

Of the Be/X-ray binaries with known eccentricities, ⇠ 80% have an eccentricity of

e  0.45 (Brown et al., 2018). CK15 present the eccentricity of seven systems in

their sample and all of them are below 0.45 (see Table 4.3). It should be noted that

these systems have orbital periods of Porb < 40 days. In Figure 4.9, the simulation

data lies increasingly far away from the quadratic fit as the eccentricity grows.

Therefore, it is suggested that the observational sample is more likely to contain

binaries with low eccentricity.

4.6 Discussion and Conclusions

In this chapter, simulations are used to investigate three characteristics (the base

gas density of the Be star’s circumstellar disc, the accretion rate of the neutron star
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Figure 4.10: The relationship between eccentricity and orbital period for Be/X-ray binaries
in the Milky Way, LMC and SMC. The only confirmed Be/BH system, MWC 656, is also
included. Arrows demonstrate the lower limit on eccentricity for the 3 systems with e > 0.5.
The values used for this figure are contained in Brown et al. (2018).

Table 4.3: The orbital period and eccentricity of the seven systems with known eccentricities
in the sample contained in CK15.

system orbital period (days) eccentricity
SXP 2.37 9.30 0.07 ± 0.02
SXP 5.05 17.20 0.16 ± 0.02
SXP 6.85 22.00 0.26 ± 0.03
SXP 8.80 33.40 0.41 ± 0.04
SXP 11.5 36.30 0.28 ± 0.03
SXP 18.3 17.79 0.43 ± 0.03
SXP 74.7 33.30 0.40 ± 0.23
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and the size of the disc) of Be/NS binaries. Five parameters are varied (the

viscosity and orientation of the Be star’s circumstellar disc, the mass ejection rate

of the Be star and the period and eccentricity of the neutron star’s orbit) and the

e↵ect on the aforementioned characteristics is presented.

The base gas density is both dependent on the mass ejection rate of the Be star and

the viscosity of the material in the disc. Using simulations, the density of the inner

region of the disc has been shown to drop rapidly when the ejection rate of the Be

star is decreased (Haubois et al., 2012). Our simulations also display this

dependence of the base gas density on mass ejection rate. When the disc is in a

steady state, the base gas density remains in equilibrium due to the balance between

the ejection of matter into the disc and the accretion of matter back onto the Be

star. Larger viscosities decrease the base gas density of the disc because viscous

forces are di↵usive. There is little to no dependence of the base gas density on the

orientation of the disc or the orbital parameters of the binary. These findings agree

with previous work that suggests that the orbital parameters of the binary only

a↵ect the truncation of the disc and not the inner regions (Okazaki et al., 2002).

The disc’s size in Be/X-ray binaries is limited by tidal truncation that arises from

the presence of a compact object. Hence, any properties that a↵ect the interaction

between the neutron star and the disc are important - this includes the orbital

parameters and the orientation of the disc. Both orbital period and eccentricity

vary the periastron distance of the neutron star’s orbit and, in turn, increase (or

decrease in the case of eccentricity) the size of the disc. The size of the disc

increases with misalignment, in agreement with previous work that suggests a

smaller tidal torque in binary systems with misaligned discs (Martin et al., 2014).

The disc’s size increases with viscosity, in agreement with previous work that shows

that the truncation radius is the distance where the tidal torque balances the

viscous torque (Okazaki et al., 2002). The size of the Be star’s disc is not dependent

on the mass ejection rate of the Be star as the disc is truncated at the same radius

regardless of the density of the disc.

The maximum accretion rate of the neutron star is dependent on the mass ejection

rate of the Be star, the orbital period and the orbital eccentricity. The density of

the disc at the neutron star’s closest passage to the Be star’s disc determines the

amount of material accreted. Given that the density in the disc falls o↵ rapidly

with increasing radius (Touhami, Gies and Schaefer, 2011), the neutron star’s

maximum accretion rate is heavily dependent on the periastron distance of its orbit.

Thus, the neutron star’s maximum accretion rate is higher for systems with a

smaller orbital period and higher eccentricity. The mass ejection rate of the Be star

varies the overall density of the disc and thus it controls the density of the matter

that the neutron star accretes. Thus, there is a linear relationship between the Be

star’s mass ejection rate and the neutron star’s maximum accretion rate. The
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dependence of the maximum accretion rate on the orientation and viscosity of the

disc is negligible. It should be noted however that observable systems will exhibit a

maximum X-ray luminosity during particularly dynamic disc events. As all the

simulations are in a steady state, the accretion rates here are best considered

relative.

The relationship between the size of the Be star’s circumstellar disc, the orbital

period and the semi-major axis were tested using simulations. The relationship

between disc size and semi-major axis was similarly tested. In both cases, the

simulation data agrees with the observational fits. The simulations suggest that the

observational sample of Be/NS binaries with periods of Porb  150 days possess

eccentricities that are distributed in the range 0.0  e  0.5. It is also suggested

that the binaries with larger orbital periods have a wider distribution of

eccentricities and a larger average eccentricity. The observational data has a much

smaller sample of systems at higher orbital periods which could be contributing to

the di↵erences in the fits.
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Chapter 5

Modelling the observable

behaviour of SXP 5.05

SXP 5.05 was first detected via INTErnational Gamma-Ray Astrophysics

Laboratory (INTEGRAL) observatory (Coe et al., 2013) as a bright X-ray source

based in the Small Magellanic Cloud (SMC). Due to the eclipsing nature of the

binary, its orbital period was accurately measured as 17.13 days.

Coe et al. (2015) considered the X-ray behaviour of SXP 5.05 in further detail,

allowing for the determination of an accurate orbital model solution. The orbital

eccentricity is found to be 0.155 and the orbital period is confirmed to be 17.13

days. It is calculated by fitting to a simple spin-up model and a radial velocity

model simultaneously using Doppler-shifted X-ray pulsations. The initial attempts

resulted in poor fits. A highly variable accretion rate caused by a clumpy wind was

suggested to be the cause. The neutron star is occulted not by the Be star but by

some extended structure which is interpreted as the circumstellar disc of the Be

star. A simple 2-dimensional model is proposed that involves the neutron star

ploughing through the circumstellar disc that is perpendicular to the orbital plane.

Figure 5.1 shows simultaneous optical and X-ray observations of SXP 5.05 over a

200 day period (see Section 5.2). Note that in the optical band, there is often a

minimum before periastron and often a maximum following it. There is a large

increase in the size of the disc that takes place over ⇠3-4 orbits. The X-ray data

show an extreme minimum following every periastron for approximately one fifth of

an orbital period (see Section 5.5). The maximum value of X-ray flux occurs shortly

before periastron.

In this chapter, the e↵ects of a neutron star travelling directly through the disc are

investigated. Simulation results are used to explain the behaviour of the

observational data shown in Figure 5.1. Section 5.1 states the properties of all the

simulations discussed within the chapter. In Section 5.2, the visible area of the disc
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Figure 5.1: Observational data of SXP 5.05 over a period of 200 days. Red dashed lines
indicate the neutron star’s periastron. Top: OGLE I-band measurements. Bottom: Swift
X-ray flux measurements.
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is compared to the observed optical data, with the aim of matching the timescales

over which the I-band magnitude rises and falls during the outburst. This part of

the chapter is used to restrict the parameters and determine the best fitting

systems. Section 5.4 discusses the column density of neutral hydrogen that obscures

the neutron star for the restricted sample of simulations. The fitting of both the

optical timescales in the previous section and the obscuration allows for one

simulation to be chosen as the best match to the observational data. Section 5.5

uses the predicted obscuration to determine the X-ray behaviour of the neutron star

from an observer’s point of view. Section 5.6 shows the evolution of the H↵ line

emission shape for the Be star’s circumstellar disc. Section 5.7 discusses the

comparison between the simulation and observational data and it is considered

whether the passage of the neutron star through the disc is an explanation for the

X-ray occultations in SXP 5.05.

5.1 Simulations

The simulations have an initial mass ejection of 10�11 M�yr�1 and are evolved until

they reach equilibrium, i.e. when the number of particles in the disc around an

orbit changes by less than 1% for more than 5 orbits. The simulations shown in this

chapter contain 20,000 to 50,000 particles at equilibrium. Following this, the mass

ejection is increased and the system evolved further. Simulations are performed

with increased mass ejections of 10�10
, 10�9

, 10�8
, 10�7, 10�6 and 10�5 M�yr�1.

When the mass ejection of the Be star is increased, the disc grows in size

temporarily and then shrinks until it reaches a state of equilibrium. During this

process, the disc grows larger than the orbit of the neutron star (see Figure 5.2).

This causes the neutron star to pass directly through the disc at ⇠ 10 stellar radii

away from the centre of the Be star.

The Shakura-Sunyaev viscosity parameter of the simulation is also varied to best fit

the data. The assumed values lie between ↵ = 0.1 and 1.5. Note that ↵ = 0.63 and

↵ = 0.26 have been theoretically determined as the median values of the viscosity

parameter during build up and dissipation respectively (Ŕımulo et al., 2018) and

Ghoreyshi et al. (2018) use viscosities varying between ↵ = 0.1 and ↵ = 1.0 to

successfully model the lightcurve of ! CMa.

All systems have a Be star of mass 13M� and radius 7R�, as determined in Coe et

al. (2015), and a neutron star of mass 1.4M� and radius 10km. The Be star’s

circumstellar disc is at a 45� angle to periastron (illustrated in Figure 5.2) and is

perpendicular to the orbital plane, thus making the rotation of the disc arbitrary

when considering accretion onto the neutron star. For further details on the

implementation of the code, see Section 3.1.
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Figure 5.2: Left: An illustration of the proposed geometry of the Be/X-ray binary SXP
5.05. The red circle is the Be star and the connected red lines indicate the flaring circumstellar
disc. The blue circle is the orbiting neutron star. Dashed lines depict the 45� angle of the
disc to periastron. Right: An illustration of the suggested observer’s view of SXP 5.05.
The red circle surrounded by a disc and the blue circle represent the Be star and neutron
star respectively. The neutron star orbits anti-clockwise, as shown by the arrows, and is at
periastron.

5.1.1 Changes in mass ejection

When the mass ejection rate of a Be star is modified, the material in the disc shifts

to assume a new density profile that remains in equilibrium with the new mass

ejection rate. One such example of this has been shown by Okazaki et al. (2002)

where a Be star with no circumstellar disc is given a constant mass ejection rate.

The disc is shown to grow into a state of equilibrium. The time it takes for the

density to reach equilibrium increases with radius. Haubois et al. (2012) showed

that two di↵erent regions are created when the mass ejection rate of the Be star

(with a built up circumstellar disc) is reduced to zero. The first of these is an inner

region of material flowing towards the Be star due to the material being accreted

back onto the Be star. The other outer region continues to flow outwards and

behaves as if the ejection rate of the Be star is unchanged. The radius that

separates these two regions is known as the stagnation point and moves outwards

with time until the entire disc is flowing inwards.

In this chapter, the mass ejection rate of the Be star is increased instantaneously by

at least an order of magnitude. This creates a region of higher density at the

equator of the Be star that propagates outwards. Much like the stagnation point,

there is a radial separation between the two regions that moves away from the

central star. However, unlike the case where the ejection rate is reduced, both

regions are moving outwards. This leads to an increase in the size of the disc that is

proportional to the size of the change in mass ejection. The inner and outer regions

are separated by a large gradient in density.
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In the case of a Be star with a binary companion, the disc can grow larger than the

radius at which it would usually be limited to, i.e. the truncation radius (Okazaki

et al., 2002). The disc can initially grow rapidly due to the phenomena described

above but when the overall density profile of the disc comes closer to equilibrium,

the disc shrinks quickly again due to the truncation of the binary partner. This

means that the Be star’s circumstellar disc can initially grow and then shrink to its

original size even when the mass ejection rate remains constant (see Figure 5.3).

5.2 Optical behaviour

Variations in the optical brightness of SXP 5.05 are related to the properties of the

circumstellar disc. Hence, the visible area of the disc is calculated and the

behaviour of this quantity is used as a preliminary fit to the observational data.

The aim is to reproduce the rate of increase and decrease of I-band flux, as shown

in Figure 5.1. Variation over time of both mass ejection and artificial viscosity is

investigated. Note that there are only observational X-ray data for the final part of

the OGLE data.

The visible area of the disc is calculated straightforwardly by placing a grid on the

system oriented to the observer’s line of sight. The addition of the number of grid

squares that contain disc matter provides the resultant area. As this is a simplified

method and the emission of the disc is not being modelled accurately, the maximum

and minimum of the visible disc area is scaled to the observed I-band flux. Thus,

absolute values of flux are not comparable, only the times of the changes.

This treatment assumes that the entirety of the disc is optically thick. Vieira et al.

(2015) show that the Be star’s disc is optically thick up to a given radius that is

wavelength dependent. This region is known as the pseudo-photosphere and its

radius, R, is a function of the stellar parameters as follows

R / ⇢
2/(2n��)
0 �

(2+u)/(2n��)
, (5.1)

where ⇢0 is the base gas density of the Be star’s circumstellar disc, � is the given

wavelength, � is the disc flaring exponent and u is given by

u =
d ln(g↵ + gbf)

d ln�
. (5.2)

g↵ and gbf are free-free and bound-free gaunt factors, respectively. Vieira et al.

(2015) show that a disc with a base gas density of ⇢0 = 8.4⇥ 10�11 gcm�3 has a
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pseudo-photosphere that extends to ⇠ 3.5 stellar radii for a wavelength of � = 2µm

(the I-band includes ⇠ 0.1� 1µm). The base gas density of the simulations during

the event are orders of magnitude higher than this (up to ⇠ 10�7 gcm�3) and hence

a scaled R is certainly larger than the maximum radius that the disc reaches (⇠ 20

stellar radii). However, there are two issues with this assumption. Firstly, the

starting point of the simulation has a base gas density comparable to 8.4⇥ 10�11

gcm�3 and hence R does not extend to the edge of the disc in this case. The other

issue is that during the event, the density profile of the disc is not well behaved and

so it is di�cult to consider exactly where the pseudo-photosphere ends. The

assumption that the entirety of the disc is equally emissive in the I-band is a

simplification and using radiative transfer methods would yield more accurate

results.

5.2.1 E↵ect of viscosity

The left plot in Figure 5.3 shows the visible disc area for four simulations of varying

↵. The values shown are relative to the visible disc area at the moment the Be

star’s mass ejection is increased and hence do not represent the size of each

individual disc at equilibrium. The area of the disc with a viscosity parameter of

↵ = 0.1 is almost two times larger than the disc with ↵ = 1.

The rate of disc growth decreases with larger viscosity parameters. However, discs

with larger viscosity are found to decrease in size faster after reaching a maximum,

implying the need for a lower viscosity when the disc is shrinking. The rate of disc

recession remains very close to the rate of growth for all values of ↵. Reducing the

viscosity alone is not su�cient to reproduce the slower decline of the second half of

the data.

There is a delay between the increase in ejection and the growth of the visible area

of the disc. This is due to the viscosity timescale of the disc, i.e. the time it takes

for the region of higher density to propagate through the disc (King et al., 2013).

The viscosity timescale of the disc is given by

⌧visc =
r
2

⌫
, (5.3)

where r is the distance the higher density region has travelled. The viscosity of the

fluid, ⌫, is given by

⌫ =
↵c

2
s

⌦K(r)
, (5.4)
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Figure 5.3: Left: The visible area of the disc against time for four systems with viscosities
parameters of ↵ = 0.1, 0.3, 0.63 and 1. It is relative to the visible area at the time when the
mass ejection is increased (the initial point of each line). All four systems have had the mass
ejection of the Be star increased from 10�11 to 10�5 M�yr�1. Right: The visible area of the
disc against time for systems with increased Be star mass ejection of 10�10

, 10�9
, 10�8

, 10�7,
10�6 and 10�5 M�yr�1. It is relative to the visible area at the time when the mass ejection is
increased (the initial point of each line). All systems have a viscosity parameter of ↵ = 0.63.

where ↵ is the Shakura-Sunyaev viscosity parameter, cs is the speed of sound in the

fluid and ⌦K is the Keplerian velocity at radius r. The decretion disc in the

simulations extends to 5-10R⇤ and ↵ varies from 0.1 to 1. The speed of sound

calculated from the simulations is ⇠ 10km s�1. Thus, the time taken for a feature

to propagate from the Be star surface to the disc edge is of the order of hundreds of

days for systems with ↵ ⇠ 1. This timescale is closer to a thousand days for the

lower values of ↵. However, the growth of the disc is faster than the viscosity

timescale because the newly ejected material displaces the outer disc. Therefore, by

the time the higher density region reaches the edge of the initial disc, it has already

grown considerably.

5.2.2 E↵ect of mass ejection

The right plot in Figure 5.3 shows the visible disc area with time for six simulations

that have had their mass ejections increased from 10�11 M�yr�1. Greater increases

in mass ejection lead to a faster rise and fall in the visible area of the disc, similar

to viscosity. Smaller increases of mass ejection require a much longer time for the

visible disc area to fall than the time for it to rise. None of the systems shown in

the right of Figure 5.3 exhibit both the rapid increase and slower decline that were

observed in SXP 5.05. Hence, a more complex variation of mass ejection over time

is necessary.

The behaviour of the disc is extremely sensitive to both the duration and

magnitude of any mass ejection variation. Maintaining an increased mass ejection

for more than two orbits leads to the approximately symmetric behaviour seen in

the left of Figure 5.3. We find the only way to replicate the times of both the rise
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Figure 5.4: OGLE flux (black points) and estimated I-band flux (blue line) for best-fitting
simulation as function of time. The mass ejection of the system is initially increased from
10�11 M�yr�1 to 10�5 M�yr�1 and then decreased by an order of magnitude every ⇠ Porb

until the ejection rate has returned to 10�11 M�yr�1. This is illustrated by the solid red line.
The vertical dashed red line indicates when the viscosity parameter is changed from ↵ = 1.5
to ↵ = 0.1.

and fall of the optical data is to have a short and large initial increase in mass

ejection, after which, the mass ejection falls again.

5.2.3 Combining viscosity and mass ejection

One would reasonably expect the mass ejection to decrease as a function of time

after a large outburst. Thus, the mass ejection of the Be star is decreased in steps

until it reaches the original rate of 10�11 M�yr�1. The time between steps is

assumed to be approximately a binary period and the steps are each an order of

magnitude in M�yr�1. This is combined with a single change in the viscosity

parameter from ↵ = 1.5 to ↵ = 0.1 during the event. In order to recover the rapid

rise to maximum visible disc area, the viscosity is changed approximately five orbits

after the mass ejection is increased.

Figure 5.4 shows the visible disc area compared against the observational optical

data for the best fitting simulation. The system begins at equilibrium, with a Be

star mass ejection of 10�11 M�yr�1. The Be star’s mass ejection is then increased

to 10�5 M�yr�1 and the viscosity parameter is set to ↵ = 1.5. After approximately

one orbit the mass ejection is then decreased by an order of magnitude every orbit

until it reaches the original rate of 10�11 M�yr�1. Approximately five orbits after

the initial increase in mass ejection, viscosity is changed to ↵ = 0.1 (the same time

that ejection is changed to 10�10 M�yr�1).
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Figure 5.5: Snapshots of the disc and neutron star for the best fitting system shown in Figure
5.4. The left plot shows the system at the moment when the mass ejection is increased and
the plot on the right shows the system four orbits after that. Red points shows the inner,
higher density region of the disc created by the increased mass ejection and purple points
show the lower density region that remains from the initial disc. The solid black circle shows
the position of the neutron star that lies in front of the disc. This plot is shown in the
assumed observer’s line of sight.

Figure 5.5 is an illustration of the best fitting system, shown in Figure 5.4, at two

times. The first plot shows the moment the Be star’s mass ejection is increased and

the second is four orbits after. As the disc grows in size, the outer regions interact

more closely with the neutron star. Due to the disc’s misalignment to the orbital

plane, the outer regions bend out of the plane of the disc. This gives rise to a

greater rate of increase in visible disc area. The larger disc also yields a thicker edge

and, as the disc is ⇠ 30� away from edge on, is another contributing factor to the

increasing visible area.

The expected range of mass ejection for Be stars is 10�12
� 10�9

M�yr�1 (Vieira et

al., 2015), with typical values for the mass ejection of observable stars being 10�10

M�yr�1 (Ŕımulo et al., 2018). The outburst that SXP 5.05 undergoes is dependent

on both viscosity and mass ejection, and thus, there is more than one possible

combination of these quantities that can explain it. However, it is required that

either viscosity, mass ejection or both are higher than theory suggests for the

observed optical timescales to occur. The system shown in Figure 5.4 is used for the

data in the remainder of this chapter.

5.3 Disc eccentricity

The Kozai-Lidov mechanism is important to consider because of the large

inclination of the disc to the orbital plane (Martin et al., 2014). This means that

the disc could be largely eccentric and even undergo fragmentation in extreme

circumstances (Fu, Lubow and Martin, 2017). Using Equation 3 from Martin et al.

(2014), the period of the Kozai-Lidov mechanism for this system is of the order of

⇠ 100 Porb and the requirement for equilibrium is <10 Porb.
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Figure 5.6: The eccentricity of the Be star’s circumstellar disc with time for the best fitting
system shown in Figure 5.4. The red dashed lines denote periastron.

Figure 5.6 shows the eccentricity of the Be star’s circumstellar disc with time.

Before the mass ejection of the Be star is increased, the eccentricity of the disc is

very high, reaching a maximum of ⇠ 0.8 and then it decreases over the event. Due

to the extreme inclination of the disc, the maximum eccentricity possible is e ⇠ 1.

The eccentricity is close to 0.8 when the mass ejection is increased and thus, the

Kozai-Lidov mechanism has started to take e↵ect. When the mass ejection is

increased, a large number of new particles flow outward from the star with circular

orbits around the Be star. This suppresses the eccentricity of the disc as seen in

Figure 5.6.

The variation in eccentricity is demonstrated visually in Figure 5.7. The change in

eccentricity is greater for discs with a smaller viscosity parameter and hence the

system shown has a viscosity parameter of ↵ = 0.1. The shape of the disc at the

moment the mass ejection is changed is extremely eccentric and within four orbits

has circularised considerably. This e↵ect is much less visible in the best fitting

system shown in Figure 5.4.

5.4 Neutron star obscuration

The X-ray behaviour of SXP 5.05 can be explained by a disc that grows larger than

the neutron star’s orbit. If the neutron star passes directly through the disc, any

X-ray emission that is visible to an observer will be obscured by the material along

the line of sight. The column density of neutral hydrogen, NH, is shown in Figure

19 of Coe et al. (2015). To mimic these observations, the simulation data should

show a peak in obscuration at a binary phase of ⇠ 0.1 with values in the range
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Figure 5.7: Snapshots of the disc and neutron star in the Be/X-ray binary with a viscosity
of ↵ = 0.1, which has had its mass ejection changed from 10�11 M�yr�1 to 10�5 M�yr�1

(a system contained in Figure 5.3). The left plot shows the system at the moment when the
mass ejection is increased and the plot on the right shows the system four orbits after that.
Red points show the inner, higher density region of the disc created by the increased mass
ejection and purple points show the lower density region that remains from the initial disc.
The solid black circle shows the position of the neutron star and the Be star is reprensented
by the white space at the centre of the disc. The plots are in the plane of the disc.

NH ⇠ 1021 � 1024cm�2.

The column density of neutral hydrogen atoms is calculated using the Saha

ionisation equation in the following form

x
2

1� x
=

1

n

✓
2⇡mekT

h2

◆3/2

e
�13.6eV/kT

, (5.5)

where x is the fraction of ionised hydrogen, n is the column density of gas particles

and T is the temperature of the gas. The column density is calculated by

integrating in a cylinder along line of sight to the neutron star. As the neutron star

is only obscured by elements of the disc at ⇠ 10 stellar radii or greater, a

temperature of T = 0.6Teff is adopted. A column density of NH ⇠ 1021.5 is used for

the interstellar medium, to match the data in Coe et al. (2015).

The disc is assumed to be composed entirely of hydrogen and a

Figure 5.8 shows the amount of disc material that obscures the neutron star along a

viewing angle illustrated in Figure 5.2. There are two occultations per orbit, one

just after periastron at a binary phase of ⇠ 0.1 and one preceding periastron which

is negligible in comparison. The duration of the larger obscuration after periastron

is approximately one fifth of an orbit. Therefore, the time and duration of the peak

obscuration in Figure 5.8 agrees with the observed values shown in Coe et al.

(2015). NH in the simulation remains inside the observational data’s range of

⇠ 1021 � 1024cm�2.
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Figure 5.8: The column density of neutral hydrogen obscuring the neutron star against
time for the best-fitting system shown in Figure 5.4. The red dashed lines denote periastron.

5.5 Neutron star X-ray luminosity

The X-ray luminosity of the neutron star is calculated from its captured mass as

follows

LX =
GMXṀ

RX
, (5.6)

where Ṁ is the rate of mass capture and MX and RX are the compact object’s

mass and radius respectively. This is converted into an observed flux by assuming a

distance of 60 kpc (Scowcroft, 2016). Using the amount of obscuring matter (as

calculated in Section 5.4) the expected counts per second can be computed using

WebPIMMS (found at

https://heasarc.gsfc.nasa.gov/cgi-bin/Tools/w3pimms/w3pimms.pl). The

energy range for WebPIMMS is set to 1-10 keV and the Galactic column density of

hydrogen is assumed to be ⇠ 1021.5cm�2. A photon index of 1.53 is used, as

determined in Coe et al. (2015). Although the obscuring interstellar medium will be

dominated by material with Galactic abundances, the obscuring material from the

disc is dependent on the abundances in the SMC. The metallicity of the obscuring

material from the Be star’s disc is assumed to be [Fe/H] = -0.94 dex to match the

average metallicity of the SMC (Choudhury et al., 2018). However, the abundances

in the disc are likely even lower than those in the SMC because it consists of the

material that was present on the surface of the Be star. Hence, the attenuation

from the material is overestimated but only twice per orbit as shown in Figure 5.8.
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Figure 5.9: The predicted X-ray counts per second of the neutron star calculated for the
best fitting system shown in Figure 5.4. The observational X-ray data are shown by the black
points. Red dashed lines indicate the time of the neutron star’s periastron.

Figure 5.9 shows the neutron star’s mass capture converted into a luminosity and

then attenuated by the additional local column density of neutral hydrogen

associated with the circumstellar disc (see Figure 5.8). The counts per second

predicted by the simulations assumes instantaneous accretion of all matter captured

by the neutron star. The simulation data replicates the times and magnitudes of

the X-ray outbursts. It shows the X-ray count rate dropping to zero between the

interactions of the neutron star with the Be star’s circumstellar disc, whereas the

observational X-ray data show non-zero count rates that steadily decrease over

time. Thus, there is a reservoir of mass that fuels the X-ray flux of the neutron star

around its orbit (i.e. an accretion disc), which is fed by the Be star’s decretion disc

during interaction. The interaction with the disc causes an increase of X-ray flux

twice per orbit. As the disc shrinks, less matter is captured, leading to the

decreasing trend in X-ray flux with time. The peaks in the simulation data seem to

often precede those seen in the observational data which would also suggest a delay

between mass capture and accretion, which has been suggested previously (Okazaki

and Hayasaki, 2004; Brown et al., 2018).

5.5.1 Radiation pressure

The high X-ray luminosities that are observed for SXP 5.05 mean that there is a

significant accretion disc surrounding the neutron star which the model in this

thesis does not take into account. It should also be expected that the radiation

leaving the surface of the neutron star exerts a large pressure on the surrounding

material. In this section, the interaction between the radiation pressure and the
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circumstellar disc is considered very simply. Calculating the interactions fully would

require the use of radiative transfer methods to model the propagation of the

photons through the disc. Modelling is particularly important due to the dynamics

of the disc when the neutron star is accreting from it. Here it is assumed that the

neutron star is emitting isotropically, and that the radiation pressure, Prad, can be

calculated as follows

Prad =
LX

4⇡cr2
, (5.7)

where LX is the X-ray luminosity of the neutron star, r is the distance from the

neutron star. This treatment of radiation pressure assumes a large distance from

the surface of the neutron star.

Using Equation 5.7, the radiation pressure is compared to the gas pressure of the

disc at a given distance. The pressure is calculated directly from the code. This

pressure is heavily dependent on the time during the simulation as the mass ejection

of the star is varying and the disc is dynamic during the orbit. Thus, the values for

pressure that are used are those that occur when the disc is at its densest. These

values of pressure are also taken along the equatorial plane (the parameters of the

disc vary both radially and along the height of the disc). The neutron star lies

approximately 11 stellar radii from the Be star when it emits the maximum X-ray

flux. The distance where the gas pressure is equal to the radiation pressure provides

an idea of the maximum length scale for which the radiation pressure is important.

Assuming the maximum X-ray luminosity of ⇠ 4⇥ 1037 erg s�1, the pressure

exerted by the radiation matches the gas pressure in the disc at ⇠ 2 stellar radii

from the neutron star (and thus 9 stellar radii from the Be star). This calculation

assumes that there is no interaction between the radiation and the disc but the

radiation pressure would be diminished with distance when travelling through the

circumstellar disc. The photons would also interact with the surrounding accretion

disc. Hence, the distance over which the radiation pressure falls o↵ will certainly be

smaller.

This approximate calculation implies that the radiation pressure interacts heavily

with the outer parts of the Be star disc. This could be the reason for the large

amplitude variations in the second half of Figure 5.5 that the model cannot

reproduce.
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5.6 H↵ profiles

Be stars are well known for the H↵ emission produced by their discs (Rivinius,

Carciofi and Martayan, 2013). These profiles are the most direct method of

observing the behaviour of the circumstellar disc. H↵ profiles provide information

about the inclination of the system via the prominence of a double peaked structure

that arises due to Doppler e↵ects. The size of the disc can be inferred from the

equivalent width of the H↵ profile.

Horne and Marsh (1986) applied a simplification of radiative transfer techniques to

model accretion discs, formulating the line emission shapes for optically thin and

optically thick cases. This method has since been applied to Be star accretion discs

by Okazaki (1996) and Hummel and Vrancken (2000). The method is unreliable for

extreme inclination angles (�80�).

Horne and Marsh (1986) provided a simplified expression for the broadening of the

line emission by Doppler shifts. These Doppler shifts are due to the orbital motion

of the material in the disc along the line of sight. This shear broadening is

expressed as

Vshear(R) = �
H

2R
VK(R) sin i tan i sin� cos�, (5.8)

where i is the inclination of the disc, � is the azimuthal angle in the disc plane, H is

the disc height, R is the radius and VK is the local value of the Keplerian velocity.

The line optical depth is given by

⌧⌫ =
W (R)

cos i

�0
p
2⇡�V
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#
, (5.9)

where �0 is the rest wavelength, VD is the Doppler velocity shift produced by

Keplerian motion and �V is given by

�V =
q
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2
th + V

2
shear (5.10)

and �Vth is the thermal broadening. W (R) is given by

W (R) =
⇡e

2

mc
f⌃(R), (5.11)
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where f is the absorption oscillator strength and ⌃(R) is the surface density. In the

previously mentioned treatments of shear broadening, the disc density is provided

by a theoretical function. In this chapter, the density is calculated at each

integration step from the simulation particles.

Figure 5.10 shows emission line profiles predicted by the simulation using the

method described above. They are compared in the figure to the observational data

from Coe et al. (2015) which have been corrected for the redshift of the SMC

(Harris and Zaritsky, 2006). The key features of the observational data are

replicated by the simulations. The H↵ profiles from the simulations exhibit a

double peaked structure where the red (right) peak is larger, lies closer to the H↵

rest wavelength and has a shoulder on the redward side. This asymmetry can be

attributed to the eccentricity of the disc, as discussed in Section 5.3. The profile has

the worst fit at apastron (binary phase of 0.5) and the reverse is true for periastron.

5.7 Discussion and Conclusions

In this chapter, a large optical outburst of the Be/X-ray binary, SXP 5.05, is

investigated. Simulations are performed using the orbital solution derived in Coe et

al. (2015). As the most comprehensive set of observational data, the optical

behaviour of SXP 5.05 was used to narrow down the suitable simulations. The only

way to fully replicate the observed behaviour of the optical data is to have a short

and large increase in mass ejection initially, which then falls. The viscosity is also

very high during the build up of the disc and lower during the dissipation - as

described in Ŕımulo et al. (2018). A mass ejection rate that rapidly decreases to the

initial rate is assumed. The maximum value of the mass ejection is much larger

than the expected range for mass ejection of Be stars and the assumed viscosity is

larger than previously suggested, but are similar to those used in Ghoreyshi et al.

(2018) to model ! CMa.

The disc eccentricity is high at the beginning of the outburst and decreases over

time. Di↵erent results would be obtained depending on when the outburst occurs

during the Kozai-Lidov mechanism, due to the variation in the inclination and

eccentricity of the Be star’s circumstellar disc. As the eccentricity is close to 0.8 at

the beginning of the outburst, the Kozai-Lidov mechanism has taken e↵ect.

Investigating the possible role the K-L e↵ect might play in such Type II outbursts

is left for future work.

The increase in mass ejection causes the disc to increase in size, allowing it to grow

larger than the truncation radius of the neutron star. Thus the neutron star is

occulted twice per orbit: once as it passes behind the disc and once as it passes

directly through it. The measured column density of neutral hydrogen that obscures
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Figure 5.10: Successive H↵ line emission shapes for the simulation data (in solid blue)
compared against the observational line profiles (in dotted red) taken from Coe et al. (2015).
The profiles are produced for 2013 Nov 5, 20 and Dec 5. The black dashed line indicates
the H↵ rest wavelength, 6562.8Å. The binary phase is shown for each profile, where a binary
phase of 0.0 is periastron.
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the neutron star allows the appropriate simulations to be constrained further.

The X-ray flux of the simulations can be approximated by calculating the amount of

mass captured by the neutron star and then applying a simple extinction function

that is dependent on the aforementioned density of obscuring matter. The neutron

star accretes twice per orbit with the time of the accretion and the attenuation of

the X-ray flux matching the X-ray data from SXP 5.05. Hence, the X-ray behaviour

of SXP 5.05 can be described well by the suggested model in this chapter. The

feature that the simulations do not model su�ciently, is the underlying X-ray flux

seen between outbursts in the observational data. In the model, only the mass

capture is used to calculate an instantaneous X-ray flux and so between accretion

events, mass accretion drops to zero. The di↵erence in behaviour could be

explained by an accretion disc forming around the neutron star in SXP 5.05.

A simple treatment of the H↵ line profiles is applied to the modelled disc and yields

all the general features of the profiles seen in Coe et al. (2015). The red peak lies

close to the rest wavelength and is much larger than the blue. The asymmetry of the

predicted H↵ profiles is due to the large eccentricity of the Be star’s circumstellar

disc. There is even a shoulder to the right of the red peak. However, this method

does not recover the variations with time seen in the observational data.

Optical variations in Be star systems are be due to changes in the structure and size

of the disc. The evolution of the disc is itself dependent on the mass ejection which

is, in turn, dependent on the non-radial pulsations of the star. These non-radial

pulsations are inherent to the star and do not change. They typically possess

periods of the order of days. Thus, the large optical event seen in SXP 5.05 could

be the result of the overlap of a number of the non-radial pulsations and hence, this

event has a periodicity to it.

The results in this chapter imply a very specific nature to optical outbursts that

occur in Be stars; a very sharp and large increase in the amount of matter ejected

followed by a rapid decline over time. Although, it is a specific case it can provide

more information about the complex nature of these systems. Understanding such

extreme cases is important to determine the complete physics of Be star systems.

The simulation data implies that any system with a disc heavily inclined to the

orbital plane and undergoing a su�ciently large outburst will possess a disc that

grows outside of the orbit of the compact object. This can be tested by the presence

of an additional occultation of the X-ray source during the outburst. In the case of

SXP 5.05, which possesses one obscuration of the neutron star per orbit and an

additional one during outburst, it is possible to constrain the inclination angle to

the observer. Therefore, this should be possible for similar Be/X-ray binaries.
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Chapter 6

Decretion discs in Be/X-ray

binaries: black holes versus

neutron stars

Binary evolution models have predicted the existence of Be-black hole X-ray

binaries, with Raguzova and Lipunov (1999) proposing the detection of such

systems. They used Monte Carlo simulations to determine that there is an

evolutionary track that leads to formation of Be/BH binaries. They tracked the

evolution of 106 zero age main sequence binary systems with initial masses 10 to

120M�. A logarithmic distribution for initial binary separation was used. The

simulations were run with and without kick velocity. Systems that evolved had a

wide range of both orbital period and eccentricity. Orbital period varies from less

than ten to thousands of days with a peak at tens of days in every dataset.

Eccentricity can have any value between 0 and 1 with a maximum between 0.2 and

0.4 for all the simulations. One black hole binary system for every 20-30 neutron

star systems was estimated.

More recent stellar population synthesis models by Ziolkowski and Belczynski

(2011) also used varying kick velocities but modelled common envelope evolution

and non-conservative mass transfer via Roche lobe overflow. A solar metallicity

(Z = 0.02) for galactic binaries and a low metallicity (Z = 0.008) for Magellanic

Clouds binaries were adopted. The Milky Way and Magellanic Clouds also had

di↵ering stellar initial mass functions. These initial conditions lead to a ratio in the

galaxy of 30-50 neutron stars per black hole and a ratio in the Magellanic Clouds of

⇠10. Therefore the expected number of Be X-ray binaries with black hole

companions in the Galaxy should be ⇠0 - 2 (Belczynski and Ziolkowski, 2009) and

the lack of Be/BH binaries is not surprising. However, in the Magellanic Clouds,

there should be ⇠6 of these systems.
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Zhang, Li and Wang (2004) proposed a greater truncation of the circumstellar disc

in systems with shorter orbital periods. Given that some synthesis models predict

black hole binaries will form with binary periods of less than ⇠30 days

(Podsiadlowski et al., 2003), it was proposed that all black holes truncate the Be

star disc more e↵ectively than neutron star companions. A smaller disc means

interaction and accretion is less likely. Hence all black hole systems would be fainter

X-ray objects.

The first confirmed Be-black hole binary system, MWC 656, was found by Casares

et al. (2014). Its luminosity is less than 1.6⇥10�7 times the Eddington luminosity

implying extremely ine�cient accretion. This further enforces the link between the

lack of known black hole binaries and low X-ray luminosity. Ribó et al. (2017) have

shown that it has become ⇠7 times fainter since it was observed in 2014. They also

found that the observable quiescent behaviour is fully compatible with low mass

X-ray binaries (LMXBs) with black hole companions. This suggests that black hole

accretion is independent of the donor star. Casares et al. (2014) state that the Be

star has a mass in the range of 10-16 M�. Their observations yield a mass ratio of

0.41±0.07. It has an orbital period of 60.37 days and an eccentricity of 0.1,

implying a periastron distance of ⇠28R�. From archival data of ROSAT over 7-11

July 1993 and Swift on 8 March 2011, they set an upper limit on the X-ray

luminosity of LX < 1032erg s�1. As the only known Be/BH system, we will use

MWC656 as the reference object in our simulations. We also assume that it has the

same mass (13M�) as used in our simulations, and that the BH mass is 5.3M�.

More recently, Grudzinska et al. (2015) investigated the evolution that led to the

formation of MWC656, finding that it must involve a common envelope phase

followed by a supernova explosion. Given their results, they state that there must

be ⇠ 3� 30 Be/X-ray binaries containing a black hole in the Galactic disc. It is also

suggested that if MWC656 is representative of the Be/BH binaries in the Milky

Way, then it may indicate that standard stellar evolutionary theory needs to be

revised.

6.1 The distribution of eccentricity in Be/NS systems

Given the importance of eccentricity in accretion in interacting binary systems, it is

pertinent to discuss the eccentricity of observed Be/X-ray binaries. Be/NS binaries

with known eccentricities in the Milky Way, LMC and SMC are shown in Table 6.1.

Orbital period and maximum observed X-ray luminosity, Lmax, are also included.

This table is for demonstrating the low X-ray luminosity of MWC 656 and therefore

some values may not be the most recent ones. Figure 6.1 illustrates the distribution

of these eccentricities. Almost half of Be/NS systems have an eccentricity between

0.25 and 0.45. The second largest population is systems with circular orbits, the
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Figure 6.1: A histogram showing the distribution of Be/NS binaries with known eccentricity
in the Milky Way and SMC (values from Table 6.1). The bars for the SMC are placed on top
of those for the Milky Way. Therefore each bin shows the total number of systems with the
given range of eccentricities. Three Be/NS binary systems have a lower limit on eccentricity
of e > 0.5 and thus are not included.

significance of which is shown in Pfhal et al. (2002). In this sample, ⇠82% of

Be/NS binaries have an eccentricity of e < 0.5.

The relationship between eccentricity and maximum X-ray luminosity is shown in

Figure 6.2. The single confirmed Be/BH binary, MWC 656, is included in addition

to the Be/NS binaries. There is no clear relation between maximum luminosity and

eccentricity for the Be/NS binaries (with a correlation coe�cient of 0.02 and a

significance of 0.92). MWC 656 has a considerably lower maximum X-ray

luminosity than all the Be/NS binaries and is more than two orders of magnitude

fainter than the faintest Be/NS system in this sample.

In this chapter, simulations are used to determine the reaction of the Be star’s

decretion disc to compact objects of di↵erent mass. The results predict that Be/BH

binaries are fainter X-ray sources than Be/NS binaries. In Section 6.2, results from

SPH (see Chapter 2) simulations of Be/X-ray binaries are shown. Systems of

varying compact object mass and eccentricity are investigated, and the e↵ects on

base gas density, disc size and X-ray luminosity are discussed. Section 6.4 discusses

1http://xray.sai.msu.ru/ raguzova/BeXcat/title.html
2Reig and Nespoli (2013)
3Reig et al. (2016)
4Liu, van Paradijs and van den Heuvel (2006)
5Rajoelimanana et al. (2017)
6Coe and Kirk (2015)
7Coe et al. (2015)
8Townsend et al. (2011)
9Townsend et al. (2011)

10Schurch et al. (2008)
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Table 6.1: Table of eccentricity and maximum observed X-ray luminosity for Be/X-ray
systems in the Milky Way, LMC and SMC.

Milky Way e Lmax (1036 erg s�1) Reference
� Cas⇤ 0.26 0.039 1

V635 Cas 0.34 30 1
V615 Cas⇤⇤ 0.537 0.02 1
X Per 0.11 0.3 1
V725 Tau 0.47 20 1
GS 0834-430 0.12 11 1
GRO J1008-57 0.68 20 1, 2

V801 Cen >0.5 0.074 1
GX 304-1 >0.5 1 1
2S 1417-624 0.446 8 1
XTE J1543-568 <0.03 >10 1
2S 1553-542 <0.09 7 1
2S 1845-024 0.88 6 1
4U 1901+03 0.036 110 1
XTE J1946+274 0.33 5.4 1
GRO J1948+32 0.03 21 1
EXO 2030+375 0.41 100 1
SAX J2103.5+4545 0.40 3 1
2S 0114+65 0.16 0.49 3 , 4

V 0332+53 0.42 340 2, 3
AX J1845.0-0433 0.34 1.4 3, 4
4U 1907+09 0.28 23 3, 4
KS 1947+300 0.03 88 3, 4
4U 2206+54 0.30 0.088 3, 4
MWC 656 (BH) 0.1 3.7 ⇥ 10�5 1
LMC
A0538-66 0.72 1000 1, 5

SMC
SXP 2.37 0.07 210 6 , 7
SXP 5.05 0.16 50 6, 7

SXP 6.85 0.26 33 6, 8

SXP 8.80 0.41 73 6, 7
SXP 11.5 0.28 10 6, 9

SXP 18.3 0.43 30 6, 10

SXP 74.7 0.4 35 6, 7
⇤ � Cas has a considerably lower X-ray luminosity due to the tidal/resonant interaction with the
neutron star and hence it never remains in a steady state. This restricts the accretion of the

neutron star (Negueruela and Okazaki, 2001).
⇤⇤ V615 Cas is also di↵erent to the other Be/NS binaries in the table because it is possibly another

Be/BH system (Massi, Migliari and Chernyakova, 2017).
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Figure 6.2: The relationship between maximum observed X-ray luminosity, Lmax, and
eccentricity for Be/X-ray binaries in the Milky Way, LMC and SMC. The only Be/BH system,
MWC 656, is also included. Arrows demonstrate the lower limit on eccentricity for the 3
systems with e > 0.5. The values used for this figure are contained in Table 6.1.

the implications of these results, which are then compared with previous work,

allowing predictions to be made for the possibility of future detections.

6.2 Simulations

All systems were evolved until they reached equilibrium. If the number of particles

in the disc around an orbit changes by less than 1% for more than 5 orbits, the

system is considered to be in equilibrium. The number of particles in the disc at

equilibrium ranges from ⇠20,000 to ⇠200,000 and is dependent of the orbital period

of the system. For further details on the implementation of the code, see Section 3.1.

6.2.1 Properties of simulated systems

All systems have a Be star of mass 13M� and radius 7R�, to match a main

sequence star with a B1V spectral type (Silaj et al., 2014). The expected range of

mass ejection for Be stars is 10�12
� 10�9

M�yr�1 (Vieira et al., 2015), and a

constant mass ejection of ⇠10�11
M�yr�1 is assumed.

All orbits are coplanar and the periastron distance is kept at ⇠80R� because the

truncation of the disc is heavily dependent on this value, which we take as the

semi-major axis for a NS in a circular orbit with an Porb of 20 days. Porb for every

simulation is shown in Table 6.2.

The density profile of a Be star’s decretion disc is well modelled by the following
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Figure 6.3: Images of the circumstellar disc normalised by the semi-major axis, a. Three
di↵erent compact object masses are shown (increasing from top to bottom) and four di↵er-
ent eccentricities (increasing from left to right). The parameters of the systems shown are
M=1.4M�, 6M�, 10M� and e=0.0, 0.2, 0.4 and 0.6. The colorbar shows the equatorial
density within the disc. The compact object is marked with a red cross and lies close to
apastron (top 4x3 grid) or periastron (bottom 4x3 grid). Periastron distance is the same for
all the simulations.
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Table 6.2: Table of assumed orbital periods for all neutron star and 10 M� black hole
systems used as input for our simulations.

e Porb (MX=1.4 M�) Porb (MX=10 M�)
0.0 20 days 15.8 days
0.1 23.4 days 18.5 days
0.2 28 days 22.1 days
0.3 34.1 days 27 days
0.4 43 days 34.1 days
0.5 56.6 days 44.8 days
0.6 79.1 days 62.6 days

equation (Touhami, Gies and Schaefer, 2011)
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where ⇢0 is the base gas density and n is the radial density exponent that is

variable between 2.5 and 4 (Rivinius, Carciofi and Martayan, 2013). H(r) is the

disc’s vertical scale height and is given by
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where VK is the Keplerian velocity at the stellar equator and cs is the speed of

sound in the disc, which is temperature dependent.

The base gas density of the disc can approximate the overall density profile as

shown by Equation 6.1. For e  0.1, base gas density increases with MX . The disc

is compacted by the black hole or neutron star that spends all of its time in close

proximity to the disc. For higher eccentricities, it has the opposite relationship.

These systems have longer orbital periods and the compact object spends a smaller

amount of time near the decretion disc. This is less disruptive and allows the disc

to increase in size and decrease in density.

6.2.2 Truncation of the disc

The truncation of the Be star’s disc is an established feature of Be/X-ray binaries

(Štefl et al., 2007). Figure 6.3 illustrates the size of the disc for 12 of the systems

presented in this chapter and Figure 6.4 shows the numerical relationship between

disc size and MX . The size of the disc is defined as the radius that contains 90% of

the simulation particles. The length scale has been normalised by the semi-major
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Figure 6.4: The size of the Be star’s decretion disc normalised by the semi-major axis, a,
for all systems. Disc size is taken to be the radius within which 90% of all the particles are
contained. Periastron distance is the same for all the simulations.

axis, a, as this removes dependence on the size of the orbit. The Be star’s disc is

truncated at smaller (non-dimensional) radii for higher orbital eccentricities.

Figure 6.5 shows the base gas density for all systems. For the simulations of

e  0.2, base gas density increases with MX . Base gas density decreases by less

than a factor of two as MX increases for 0.2 < e < 0.4. For e > 0.4, base gas density

is almost constant.

6.2.3 X-ray luminosity

The relative di↵erence in X-ray luminosity between Be/BH binaries and Be/NS

binaries can be estimated using the mass capture of the compact object. For

simplicity, it is assumed that all particles captured by the compact object are

accreted instantaneously. This yields X-ray luminosities per unit time. It should be

noted that all luminosities in this chapter are calculated from steady state discs and

thus, if there were any kind of increase in mass ejection in such a system the X-ray

luminosity would be higher. In the case of a giant outburst (see Section 1.4), the

system would become considerably brighter than what is considered in this chapter.

X-ray luminosity is calculated using

LX =
GMXṀ

RX
(6.3)

for neutron star binaries and
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Figure 6.5: Base gas density of the disc as a function of MX . Vertical bars show the range
of density around an orbit, and points show the average over the orbit.

LX = ⌘Ṁc
2 (6.4)

for black hole binaries. Here, Ṁ is the rate of accretion and ⌘ is the conversion

e�ciency of the rest mass energy of accreted matter into radiation, where ⌘ = 0.1 is

adopted in this chapter (Frank et al., 2002). The number of captured particles is

converted into solar masses using M/M� = 2.867⇥ 10�15
⇥N , where N is the

number of particles. Assuming that all matter is converted into an X-ray luminosity

instantaneously is a considerable simplification. There is almost certainly an

accretion disc involved in accreting Be/X-ray binary systems. Not only would an

accretion disc alter the rate at which matter falls onto the compact object but it

would interact with any matter in the Be star’s disc at periastron.

The maximum measured value of LX over 5 orbits is defined as the peak luminosity.

The average luminosity is the median value of the same 5 orbits. Figures 6.6 and

6.7 show the peak and average LX for all simulations. The bars on the plots show
p
N where N is the number of captured particles converted into a luminosity. For

the binaries with e < 0.2, LX falls with increasing MX . For systems of e  0.2, the

number of captured particles is small. Thus, although LX varies with MX , the

variations are up to 5000 times smaller than those for higher eccentricities. Peak

and average luminosity have a similar dependence on MX . There is up to an order

of magnitude di↵erence between the peak luminosity of a neutron star and a 10M�

black hole simulation of equal eccentricity. When comparing simulations of di↵ering

eccentricity, this disparity is three orders of magnitude.
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Figure 6.6: The peak daily X-ray luminosity around an orbit. Errorbars show
p
N where

N is the number of particles captured and converted into an X-ray luminosity (see text).

Figure 6.7: The average daily X-ray luminosity around an orbit. Errorbars show
p
N where

N is the number of particles captured and converted into an X-ray luminosity (see text).
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Stellar wind accretion

The model in this chapter does not include accretion from the stellar wind of the Be

star. In Be/X-ray binaries, it is typically expected that the Be star’s circumstellar

disc will be the dominant source of matter for accretion onto the compact object.

However, if the mass ejection rate of the star is low enough the disc may be more

sparse than the stellar wind.

In this section, the Bondi-Hoyle accretion rate (Hoyle and Lyttleton, 1939; Bondi,

1952; Bondi and Hoyle, 1944) is used to calculate an approximate accretion rate

and luminosity for the systems in this chapter. This rate is given by

Ṁ ⇡
2⇡G2

M
2
⇢

(c2s + v
2
CO)

3/2
, (6.5)

where ⇢ is the density of the material that surrounds the compact object, cs is the

speed of sound of the surrounding material and vCO is the compact object’s

velocity. Shima et al. (1985) suggested this should be a factor of two greater as

determined by numerical calculations. This treatment is used when considering a

compact object that is travelling through the interstellar medium and assumes that

the material enters free-fall at a given radius from the compact object.

The calculation of density should be done using models that include thermal or

radiation pressure and hydrodynamics (Johnstone et al., 2015). Winds can vary

over the surface of the star and can even clump, leading to large fluctuations in the

density. For a simple calculation, the base density at the surface of the star is

assumed to be 10�13 g cm�3 (Puls, Vink and Najarro, 2008) and then falls with

radius as (r/R⇤)�3.

Assuming a distance of 80 solar radii (the approximate periastron distance of the

systems in this chapter) and a stellar wind outflow rate of 10�7
M�yr�1, the

Bondi-Hoyle accretion rate is ⇠ 8⇥ 10�15
M�yr�1. Using equations 6.3 and 6.4, the

corresponding luminosities are ⇠ 8⇥ 1031 erg s�1 and ⇠ 4⇥ 1031 erg s�1 for

neutron stars and black holes, respectively.

Note that for MWC 656, the periastron distance is larger and therefore the

predicted luminosity from the stellar wind is ⇠ 3 times smaller. This is ten times

smaller than the maximum X-ray luminosity observed for MWC 656. However, the

stellar wind can be stronger than assumed here and the density of the stellar wind

is simplified considerably here.
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Figure 6.8: The logarithm of X-ray luminosity around an orbit for the neutron star and the
10M� black hole with eccentricities e = 0.2, 0.4, and 0.6. Periastron is at a binary phase of
0.0. The peak mass capture for all systems lies at a binary phase ⇠0.15.

6.2.4 Binary phase of accretion

It is often assumed that the maximum X-ray luminosity occurs at periastron.

However, there may be a delay between these two events. Previous work on neutron

star mass capture by Okazaki and Hayasaki (2004) shows there is a delay between

periastron and peak mass capture. Figure 6.8 shows the relation between X-ray

luminosity and binary phase. The peak X-ray luminosity occurs at a binary phase

of ⇠0.15. Note that accretion onto the compact object is not modelled accurately,

and therefore, a precise estimate of timing of peak X-ray luminosity cannot be

made. Nevertheless, this result confirms the delay found in previous work and

reveals that there is no dependence on MX .

Increasing eccentricity results in higher X-ray luminosities over shorter ranges of

orbital phase. This can be understood from the discussion of truncation in Section

6.2.2. The smaller gap between the truncated disc and periastron in systems of

higher eccentricity leads to a higher rate of mass capture. Because more massive

compact objects produce more significant truncation of the decretion disc, there is a

shorter period during which accretion takes place.

6.3 Modelling MWC 656

The maximum observed X-ray luminosity of MWC 656 is 500 times smaller than

the faintest Be/NS binary in the sample shown in Table 6.1 and Figure 6.2. It is

almost 10,000 times fainter than Be/NS binaries of similar eccentricity. We see from

Figure 6.6 that, for a given eccentricity, a change in MX can only produce a change
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Table 6.3: Properties of the MWC 656 simulation.

Disc size / a 0.28 ± 0.1
⇢0 (gcm�3) (8.4 ± 1.4) ⇥ 10�12

Lmax (erg s�1) (3.0 ± 0.7) ⇥ 1032

Lave (erg s�1) (5.1 ± 0.6) ⇥ 1031

in Lmax of ⇠20-30.

A simulation of MWC 656 was performed to use as a comparison between the

simulations and the sample data. Note that the periastron distance of MWC 656 is

⇠2 times larger than the periastron distance for simulations shown in Section 6.2.

The base gas density, normalised disc size, peak and average X-ray luminosity are

shown in Table 6.3.

The base gas density is comparable to the highest values seen in the other

simulations. The normalised size of the disc is smaller than would be expected for a

5M� black hole with an eccentricity of 0.1 and thus does not remain constant when

varying periastron distance. In dimensional units, however, the disc of MWC 656 is

still larger. Both peak and average X-ray luminosity are higher than would be

expected for a 5M� black hole with an eccentricity of 0.1. X-ray luminosity

increases with periastron distance when using constant mass ejection rate.

Further evidence for the ine�cient accretion suggested by Casares et al. (2014) is

shown by these simulation data. The peak luminosity is greater than the observed

maximum for MWC 656. This is despite the mass ejection being less than average

for a Be star. A larger periastron distance and, in turn, a less e�cient truncation of

the disc, leads to a denser disc which allows the accretion of more matter onto the

compact object.

This simulation of MWC 656 still has a lower X-ray luminosity than the majority of

the other simulated accreting neutron stars. However, the results cannot explain

the huge di↵erence between the observed LX of MWC 656 and the known NS

systems. This implies the need for some other explanation as to why MWC 656 is

extremely faint. A di↵erence in accretion e�ciency is the most likely explanation.

While the standard type of accretion was assumed in this chapter, a Radiatively

Ine�cient Accretion Flow, or RIAF, is likely to occur for such a low accretion rate

regime, where the e�ciency of accretion has been shown to be as low as ⌘ ⇠ 0.0045

(Abramowicz et al., 2001). The X-ray luminosity from a RIAF with the simulated

accretion rate for MWC 656 would therefore be ⇠ 1030erg s�1, which leads to a

similar discrepancy between the X-ray luminosity of MWC 656 and the brightest

neutron stars for the simulations and observations.
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6.4 Conclusions

In this chapter, a possible di↵erence in X-ray luminosity between Be/NS and

Be/BH binaries was investigated. Simulations of Be/X-ray binaries with varying

compact object mass, MX , were performed. It is shown that disc size, base gas

density and X-ray luminosity are dependent on the mass of the compact object.

The normalised disc size decreases by up to a factor of 1.5 with MX , confirming the

more e�cient truncation of the Be star disc black holes in Be/X-ray binaries. Base

gas density increases with MX by a factor of ⇠2.5 for systems of e  0.2. For

systems of 0.2 < e < 0.4, variations are of the same order but decrease with MX .

Above e = 0.4, the relation is closer to constant.

The simulations discussed above predict that the most luminous X-ray systems are

ones with high eccentricity and a Be star circumstellar disc that extends to or

outside the periastron distance. However, black hole binaries that fulfill both these

criteria may still be fainter than neutron star systems that satisfy only one.

With the results in this chapter and in the absence of X-ray pulsations, it is

extremely di�cult to distinguish between a black hole and a neutron star in a

Be/X-ray binary with X-ray observations alone. However, with knowledge of the

orbital parameters and the size of the disc it is plausible. Be/X-ray binaries with a

10M� black hole can be more than 10 times fainter than a neutron star system with

the same accretion e�ciency and periastron distance.
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Chapter 7

Conclusions

The aim of this thesis is to use computational techniques to investigate the

dynamical evolution of the decretion disc of the Be star in Be/X-ray binaries. It is

found that there are still some discrepancies between some of the physical

parameters inferred from observations and those seen in theoretical simulations.

The work in this thesis was performed using a three-dimensional smoothed particle

hydrodynamics (SPH) code. The disc itself is made up of a sea of SPH particles

with individual timesteps that are varied depending on the required time resolution

at the particle’s position in the disc. The code implements the viscous decretion

disc (VDD) model that extends the standard Shakura-Sunyaev ↵-model by

assuming a source of disc material at the Be star’s surface. This model has been

shown to be capable of reproducing the dynamical properties of decretion discs.

Chapter 4 considers some of the important characterstics of the Be star’s

circumstellar disc and how they vary under the alteration of a number of simulation

parameters. A number of relations between three disc properties (the base gas

density of the Be star’s disc, the neutron star’s accretion rate and the size of the

disc) and five simulation parameters (the viscosity of the disc, the mass ejection

rate of the Be star, the orientation of the disc and the orbital period and

eccentricity of the binary) are presented. The same simulations are applied to test

the observational relationships between the disc’s size, the orbital period and the

semi-major axis. The simulations agree with the observations.

The Be/NS binary, SXP 5.05, was then targeted using the same computational

methods. In 2013, SXP 5.05 underwent a large optical outburst that is unlike any

other behaviour that has been seen in the object to date. The I-band magnitude of

the system varies by ⇠ 0.4 which implies a relative increase in the disc that is rare

amongst Be systems in general. It is found that the observational features of the

system can be broadly reproduced in multiple wavelengths by assuming large

changes in the mass-loss of the Be star and the viscosity in the disc. Although the
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simulations are capable of explaining the observational features by evolving the

mass-loss and viscosity, this cannot explain the source of the high rate of mass

ejection from the Be star. As the variations in mass-loss are considered to arise

from constructive interference between pulsation modes of the star, any outbursts

should be periodic. Thus, either there is some other physical mechanism playing a

role in this event or another such outburst should be expected from the Be star in

the future.

Another discrepancy between the theory and observations of Be/X-ray binaries is

the number of observed Be/black hole binaries. There is only one confirmed binary

system containing a Be star and a black hole, MWC 656. Theory predicts the

evolution of a small number of these systems but it is unlikely that none of them

have been observed without some other contributing reason. It has been suggested

that this additional reason is the faintness of black hole binaries relative to neutron

star binaries and this is supported by the low luminosity of MWC 656. Simulating

these systems confirms this suggestion; black holes cause greater tidal truncation of

the Be star’s disc and hence these systems have smaller discs relative to neutron

stars. The smaller disc causes less material to be accreted at periastron and yields a

fainter X-ray source. Thus, to detect more of these systems, we must look at lower

luminosity ranges.

7.1 Future work

The future of the research in this field is in the combination of multiple

computational techniques. There are codes that exist, such as the code used for the

work in this thesis (Brown et al., 2018), that are capable of dynamically evolving

the Be star’s disc and can reproduce a large number of observable e↵ects. There are

also available radiative transfer techniques that are capable of calculating the

internal properties of the gas, such as the temperature distribution and hydrogen

levels. The code most widely used for this is the Monte Carlo radiative transfer

code, HDUST (Carciofi et al., 2006; Carciofi and Bjorkman, 2008).

Despite the dependence of the dynamics of the disc on its properties, many

hydrodynamical models assume an isothermal disc (Bjorkman, 1997; Porter, 1999;

Okazaki, 2001) for simplicity. Ideally, the internal properties of the circumstellar

disc would be determined at each timestep and then used for the calculation of the

next step of the hydrodynamical evolution.

The combination of a 1D hydrodynamical code and radiative transfer code has been

applied to isolated Be star discs by Ŕımulo et al. (2018) allowing constraints to be

put on the viscosity of decretion discs and the mass and angular momentum loss of

the Be star. Ghoreyshi et al. (2018) applied indentical methods to the isolated Be
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star system ! CMa and managed to successfully fit the V-band light curve.

Implementing both methods in three dimensions is computationally expensive but

has been performed by Panoglou et al. (2018) showing good evidence for

phase-locked variations of emission lines. These are some of the earliest attempts to

form a complete model of the decretion disc. The success of these three works

indicates how powerful these techniques can be and further work needs to be done

to develop them.

With a three-dimensional code that implements both of these techniques, many

specific Be/X-ray binaries should be targeted. It will then be possible to further

understand a large number of events, such as giant outbursts, that occur from

interactions between the decretion disc and compact object in Be/X-ray binaries.

Finally, models that simulate the NRPs of the central star itself should be added,

integrating the mass ejection mechanism into the simulation. This would yield a

code that can simulate the entirety of any Be star system.

The resources required to power such a program would depend heavily on the

desired runtime and accuracy, the computing power available, the level of

optimisation within the code and the e↵ectiveness of the parallelisation in the code.

Firstly, consider the code used in this thesis, a 3D SPH code that has OpenMP

implementation and an above average optimisation within the code. A simulation

with 8 processors and 10,000 particles will take a few hours to run from no disc to a

disc in a steady state. In Chapter 3, the speed-up of the code was considered for

this code and is shown in Figure 3.8. The runtime’s dependence on the number of

simulation particles, N , used (particles are equivalent to resolution) is, at worst,

N
2. Note there are a number of algorithms implemented in the code that reduce

this increase in runtime. Just considering these two factors, a simulation with 8

processors and 10,000 particles can run up to two thousand times faster than a

simulation with 1 processor and 200,000 particles. The use of Message Passing

Interface (MPI) can extend the parallelisation of the code to a much larger number

of processors. The exact speed-up of this is not clear without extensive testing,

especially as it can be used in conjunction with OpenMP.

The real di�culty is the implementation of a radiative transfer code as it has to be

run at multiple times throughout the simulation. Once again, this part of the

program would be dependent on the five aforementioned parameters (runtime,

accuracy, computing power, optimisation and parallelisation) but it would be

additionally be dependent on how often it is required to be run in between

timesteps of the SPH code. The dependence of the dynamics of the disc on the

temperature profile determines how frequently the radiative transfer code must be

used. This would have to be investigated through testing. Assuming the accuracy

used for recent work in the field of radiative transfer modelling of Be star discs

(Ghoreyshi et al., 2018), HDUST can be expected to take hours to a day which is
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heavily dependent on the number of wavelengths which are modelled. Given that

there can be hundreds of thousands of timesteps for the simulation to reach a steady

state from no disc, it can be assumed that there will be a large number of radiative

transfer simulations. If one run is required per every 100 timesteps, a minimum of

1000 more hours is added by implementing this code. This means that it requires a

comparable computational time to the SPH code but as radiative transfer methods

are much more capable of parallelisation there is more opportunity to speed it up.

Adding code that would model the Be phenomenon is di�cult to benchmark as it is

still not completely certain how it works. However, it would be required to run at

every timestep during the simulation as it defines the dynamics of the disc in the

inner regions and regulates the mass ejection rate of the Be star.

The targets of such a code should include primarily systems that have a large

amount of information known about them and thus, the fewest unknowns must be

accounted for. It is also important to contain some isolated Be star systems so that

any observable e↵ects that arise due to the Be star itself can be separated and

compared to binary systems. The isolated Be star that I think would be best to use

is ! CMa. A great deal of work has been done on it already as its parameters are

well known (Ghoreyshi et al., 2018). This previous work would be very useful in

comparing the accuracy of the new code and it would prove that it can reproduce

the results. As for Be/X-ray binaries I would choose SXP 5.05 as one possiblity. A

lot is known about this system and completely replicating the extremely dynamic

event discussed in Chapter 5 would provide confidence in any model. V635 Cas is a

well known system and has also been modelled repeatedly in the past, for example

by Negueruela and Okazaki (2001) and hence would be a great target. A

particularly good system for investigating giant outbursts (a very important aspect

of Be/X-ray binaries) is A0535 + 262 because its magnetic field is insu�cient to

steam the flow of matter being accreted (Okazaki, 2013). This removes the need to

disentangle e↵ects caused by the magnetic field from those created by the warped

disc. However, the power of a complete model lies in its ability to correctly explain

the entirety of what we can observe and hence the aim would be to eventually

model the entire population of Be/X-ray binaries.
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Appendix A

Constants

Table A.1: Table of constants used in this thesis in order of appearance.

Symbol Description Value SI Units
kB Boltzmann constant 1.38 ⇥ 10�23 m2 kg s�2 K�1

mH mass of a hydrogen atom 1.67 ⇥ 10�27 kg
c speed of light 2.99 ⇥ 108 m s�1

G universal gravitational constant 6.67 ⇥ 10�11 m3 s�2 kg�1
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