University of Southampton

Faculty of Engineering and Physical Sciences

Chemistry

Coordination Chemistry of High Valent Early Transition Metals with Neutral Donor Ligands:

Towards Precursors for the Electrodeposition and LPCVD of Molybdenum and Tungsten

Dichalcogenides

by

Danielle Emily Smith

Thesis for the degree of Doctor of Philosophy

October 2020

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences

Chemistry

Thesis for the degree of Doctor of Philosophy

Coordination Chemistry of High Valent Early Transition Metals with Neutral Donor Ligands:

Towards Precursors for the Electrodeposition and LPCVD of Molybdenum and Tungsten

Dichalcogenides

by

Danielle Emily Smith

The work in this thesis concerns the development of several new series of high valent Group VI (Mo, W) complexes and explores their application for the deposition of molybdenum and tungsten dichalcogenide thin films *via* electrodeposition and low-pressure chemical vapour deposition.

A review of the relevant background literature is presented in Chapter 1, while Chapter 2 presents an investigation to explore the chemistry of tungsten(VI) and develop the first systematic series of tungsten oxytetrachloride and thiotetrachloride coordination complexes, six-coordinate [WECl₄(L)] or [(WECl₄)₂(μ -L-L)] (E = O or S) or seven-coordinate [WECl₄(L-L)] and to explore their properties. The ligands used include phosphine oxides (dppeO₂, dppmO₂, OPPh₃ and OPMe₃) and N-heterocycles (2,2'-bipy, 1,10-phen and py).

Unusual seven-coordinate pentagonal bipyramidal tungsten(VI) oxo- and thio-tetrachloride complexes with a series of phosphine and arsine ligands to give complexes of the form [WECl₄(L-L)] (E = O or S), are reported in Chapter 3, together with investigation of monodentate ligands. The ligands used include o-C₆H₄(E'Me₂)₂ (E' = P or As), Me₂P(CH₂)₂PMe₂, PMe₃, AsEt₃ and o-C₆H₄(PPh₂)₂.

The coordination chemistry of a series of WSCl₄ complexes with thioethers and comparative WOCl₄ complexes are described in Chapter 4. Softer selenium donor ligands are also investigated and the properties of hard metal-soft ligand interactions explored. Potential precursors for low pressure chemical vapour deposition are identified on the basis of certain criteria i.e. butyl substituent ligands and M:E ratio.

Reported in Chapter 5, [(WSCl₄)₂(PrS(CH₂)₂SiPr)], [WSCl₃(PrS(CH₂)₂SiPr)] and [WSCl₄(SnBu₂)] were tested as single source LPCVD precursors. [(WSCl₄)₂(PrS(CH₂)₂SiPr)] and [WSCl₄(SnBu₂)] deposit 4H-WS₂ thin films, the two W(VI) precursors deposited continuous films with a W:S ratio of 1:2.2 consistent with WS₂. These are the first examples of single source LPCVD precursors to deposit WS₂ thin films and the films have been characterised by Raman spectroscopy, grazing incidence XRD and in-plane XRD, EDX, WDX, XPS and SEM.

Presented in Chapter 6, a family of MoOCl₃ complexes with a range of neutral donor ligands, with a particular emphasis on thio-, seleno- and telluro-ether ligands, allowing comparisons to be drawn to the coordination complexes of WECl₄ (E = O or S). The reaction of MoOCl₄ with various ligands is investigated and compared to the MoOCl₃ coordination complexes.

The development and synthesis of a series of potential precursors suitable for the electrodeposition of ME_2 (M = Mo or W; E = S or Se) thin films using non-aqueous solvents is discussed in Chapter 7, particularly including the synthesis of precursors for the electrodeposition of MoS_2 and WS_2 and their respective electrochemical studies. Deposited films have been characterised by Raman spectroscopy, grazing incidence XRD, EDX, WDX and SEM analysis.

Where possible, new complexes have been characterised by IR, Raman, multinuclear NMR (¹H, ³¹P{¹H}, ⁷⁷Se{¹H} and ⁹⁵Mo where appropriate), UV-Vis spectroscopy, magnetic measurements, elemental analysis and single crystal X-ray structures.

Table of Contents

Introduction	1
1.1 Hard Soft Acids and Bases	1
1.2 High Valent Complexes of Tungsten and Molybdenum	2
1.3 Ligand Types	3
1.3.1 Neutral Phosphine and Arsine Ligands	3
1.3.2 Neutral Phosphine Oxide Ligands	6
1.3.3 Chalcogenoether Ligands	7
1.4 Semiconductors	12
1.5 Thin Film Transition Metal Dichalcogenides	13
1.6 Chemical Vapour Deposition	15
1.7 Electrochemical Deposition	17
1.8 Analytical Techniques	19
1.8.1 Infrared Spectroscopy	19
1.8.2 Multinuclear NMR Spectroscopy	20
1.8.3 Single Crystal X-ray Diffraction	21
1.9 UV-Visible Spectroscopy	25
1.10 Materials Characterisation	26
1.10.1 Grazing Incidence X-ray Diffraction	26
1.10.2 Raman Spectroscopy	27
1.10.3 Scanning Electron Microscopy	27
1.10.4 Energy-Dispersive X-ray and Wavelength Dispersive X-ray Spectroscopy	28
1.10.5 X-ray Photoelectron Spectroscopy	28
1.10.6 Electrical Measurements	29
1.11 Cyclic Voltammetry	29
1.12 Project Aims	31
1.13 References	33
Complexes of WOCl ₄ and WSCl ₄ with Neutral Nitrogen and Oxygen Donor Ligands	39
2.1 Introduction	39
2.2 Tungsten(VI) and Molybdenum(VI) Coordination Chemistry	39
2.2.1 Synthesis of $[MO_2X_2(L)_2]$ or $[MO_2X_2(L-L)]$	40
2.2.2 Tungsten Oxytetrachloride and Thiotetrachloride	41
2.2.3 Aims	45
2.3 Results and Discussion	45
2.3.1 Complexes of WOCl ₄	45
2.3.2 Complexes of WOCl ₄ with Phosphine Oxide Ligands	45
2.3.3 Complexes of WOCl ₄ with Nitrogen Donor Ligands	53
2.3.4 Complexes of WSCl ₄	56
2.3.5 Complexes of WSCl ₄ with Phosphine Oxide Ligands	56
2.3.6 Complexes of WSCl ₄ with Nitrogen Donor Ligands	60
2.4 WCl ₆ Chemistry	61

2.4.1 Results and Discussion	62
2.5 Conclusions	65
2.6 Experimental	66
2.6.1 WOCl ₄ Species	66
2.6.2 WSCl ₄ Species	67
2.6.3 WCl ₆ Species	69
2.6.4 Crystallographic Tables	71
2.7 References	75
Complexes of WOCl ₄ and WSCl ₄ with Neutral Phosphine and Arsine Donor Ligands	79
3.1 Introduction	79
3.2 Tungsten(VI) and Molybdenum(VI) Coordination Chemistry with Phosphine and Arsine Donor Ligands	79
3.2.1 Tungsten(V) and Molybdenum(V) Coordination Chemistry with Phosphine and Arsi Ligands	ine 82
3.2.2 Tungsten Oxotetrachloride and Thiotetrachloride with Phosphine and Arsine donors	83
3.2.3 Aims	84
3.3 Results and Discussion	84
3.3.1 Complexes of WOCl ₄ and WSCl ₄ with o-C ₆ H ₄ (ER ₂) ₂	84
3.3.2 Reactions with Other Phosphine and Arsine Donors	93
3.4 Conclusions	94
3.5 Experimental	95
3.5.1 Crystallographic Tables	98
3.6 References	100
Coordination Chemistry of WOCl ₄ , WSCl ₄ and WSCl ₃ with Neutral Sulfur and Selenium Dono	or
Ligands	103
4.1 Introduction	103
4.2 Early Transition Metal Coordination Chemistry with Chalcogenoethers	103
4.2.1 Coordination Complexes with Chalcogenoethers and Transition Metals in Their High	hest
Oxidation State	104
4.2.2 Coordination Complexes of Metal(IV) Halides and Chalcogenoethers	106
4.2.3 Complexes of Metal Oxohalides with Chalcogenoethers	108
4.2.4 Complexes of Metal Thiohalides with Chalcogenoethers	110
4.2.5 Aims	111
4.3 Results and Discussion	111
4.3.1 Bidentate Thioether Complexes of Tungsten(VI)	111
4.3.2 Complexes with Monodentate Thioethers	120
4.3.3 Complexes with Selenoethers	121
4.3.4 Complexes with Triphenylphosphine Sulfide	123
4.4 Conclusions	125
4.5 Experimental	126
4.5.1 Crystallographic Tables	130
4 6 References	133

Single Source Precursors for the Low-Pressure Chemical Vapour Deposition of WS ₂ Films	135
5.1 Introduction	135
5.2 Transition Metal Dichalcogenides via Chemical Vapour Deposition	135
5.2.1 Group IV Transition Metal Dichalcogenides	136
5.2.2 Group V Transition Metal Dichalcogenides	137
5.2.3 Group VI Transition Metal Dichalcogenides	140
5.2.4 Aims	141
5.3 Results and Discussion	141
5.3.1 Low Pressure CVD using [(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)]	142
5.3.2 Low Pressure CVD using [WSCl ₄ (S ⁿ Bu ₂)]	144
5.3.3 Electrical Measurements	148
5.4 Conclusions	150
5.5 Experimental	151
5.6 References	152
Coordination Chemistry of MoOCl ₃ and MoOCl ₄ with Neutral Donor Ligands	157
6.1 Introduction	157
6.2 High Valent Early Transition Metal Coordination Complexes	157
6.2.1 Coordination Complexes of Transition metal(V) Oxohalides	160
6.2.2 Coordination Complexes of Transition Metal(V) Thiohalides	163
6.2.3 Aims	164
6.3 Results and Discussion	165
6.3.1 Complexes of MoOCl ₃ and Chalcogenoethers	166
6.3.2 MoOCl ₃ Complexes with Hard Donor Ligands	175
6.3.3 Reactions of MoOCl ₄ with Neutral Donor Ligands	179
6.4 Conclusions	185
6.5 Experimental	186
6.5.1 MoOCl ₃ Reactions	186
6.5.2 MoOCl ₄ Reactions	190
6.5.3 Crystallography Tables	192
6.6 References	198
Development of Precursors for Layered Transition Metal Dichalcogenides via Non-Aqueous	
Electrodeposition	201
7.1 Introduction	201
7.2 Transition Metal and p Block Metals via Non-Aqueous Electrodeposition	201
7.2.1 Electrodeposition of p Block Metals and Metalloids	202
7.2.2 Electrodeposition of Transition Metal Dichalcogenides	202
7.2.3 Thiometallates	204
7.2.4 Aims	205
7.3 Results and Discussion	205
7.3.1 Synthesis of Precursors for MoE ₂ Films	205
7.3.2 Electrochemistry of Precursors for MoS ₂ Films	206
7.3.3 Electrochemistry of Precursors for MoSe ₂ Films	210

7.3.4 Synthesis of Precursors for WE ₂ Films		211
7.3.5 Elec	etrochemistry of Precursors for WS ₂ Films	214
7.4 Conclusi	ions	217
7.5 Experim	ental	219
7.5.1 Elec	etrochemical Experiments	221
7.5.2 Crys	stallographic Tables	222
7.6 Reference	ces	223
Summary and	Outlook	225
Appendix A	General Experimental Techniques	229
Reference	es	230
Appendix B	Crystallographic Information Files	231

Table of Tables

Table 1.1: An example of the ring contribution of three different phosphine ligands of varying ri	ing
size.	6
Table 1.2: Selected properties of NMR nuclei utilised in this work.	20
Table 1.3: Crystal systems.	22
Table 2.1: Table of known oxohalides of molybdenum(VI) and tungsten(VI).	39
Table 2.2: Comparison of literature values for [WOCl ₄ (OPPh ₃)] against this study.	46
Table 2.3: Selected bond lengths and angles for [WOCl ₄ (OPPh ₃)].	47
Table 2.4: Selected bond lengths and angles for [WOCl ₄ (OPMe ₃)].	48
Table 2.5: Selected bond lengths and angles for [W ₃ O ₃ (μ-O) ₃ Cl ₆ (OPMe ₃) ₃]•2CH ₂ Cl ₂ .	49
Table 2.6: Selected bond lengths and angles for [WOCl ₃ (dppeO ₂)] and [WOCl ₂ (dppmO ₂)((μ-	
O)(WOCl ₄))].	51
Table 2.7: Selected bond lengths and angles for $[(WOCl_4)_2(dppmO_2)]$ and $[(WOCl_4)_2(dppeO_2)]$.	53
Table 2.8: Selected bond lengths and angles for [C ₅ H ₅ NH][WOCl ₅].	55
Table 2.9: Selected IR and ¹ H and ³¹ P{ ¹ H} NMR data for the compounds in this chapter.	56
Table 2.10: Selected bond lengths and angles for [WSCl ₄ (OPPh ₃)].	57
Table 2.11: Selected bond lengths and angles for [(WSCl ₄) ₂ (dppeO ₂)], [WSCl ₃ (dppmO ₂)] and	
[(WSCl4)2(dppmO2)].	59
Table 2.12: Selected bond lengths and angles for [WSCl ₃ (2,2'-bipy)].	60
Table 2.13: Selected bond lengths and angles for [((WOCl ₂)(1,10-phen))(μ-O)(WOCl ₄)].	63
Table 2.14: X-ray crystallography table.	71
Table 3.1: Selected bond lengths and angles for [WOCl ₄ (o-C ₆ H ₄ (AsMe ₂) ₂)].	85
Table 3.2: Selected bond lengths and angles for [WOCl ₃ (o-C ₆ H ₄ (PMe ₂) ₂)] and [WOCl ₃ (o-	
$C_6H_4(PMe_2)(P(O)Me_2))] \bullet 0.5CH_2Cl_2.$	87
Table 3.3: Selected bond lengths and angles for $[WCl_4(o-C_6H_4(PPh_2)_2)_2][WCl_6] \cdot 2.5(C_7H_8)$.	88
Table 3.4: Selected bond lengths and angles for [WSCl ₄ (o-C ₆ H ₄ (PMe ₂) ₂)].	90
Table 3.5: Selected bond lengths and angles for $[WCl_4(o-C_6H_4(PMe_2)_2)_2][WS_{0.5}O_{0.5}Cl_4]$.	91
Table 3.6: X-ray crystallography table.	98
Table 4.1: Comparison with the literature values for the complexes [(WSCl ₄) ₂ (MeS(CH ₂) ₂ SMe)]]
and [WSCl ₃ (MeS(CH ₂) ₂ SMe)] with this work.	112
Table 4.2: Selected bond lengths and angles for [WSCl ₃ (MeS(CH ₂) ₂ SMe)] and	
[(WSCl4)2(MeS(CH2)2SMe)].	113
Table 4.3: Selected bond lengths and angles for [WOCl ₃ (MeS(CH ₂) ₂ SMe)].	114
Table 4.4: Selected bond lengths and angles for [(WSCl ₄) ₂ (MeS(CH ₂) ₃ SMe)].	115
Table 4.5: Selected bond lengths and angles for [WOCl ₃ (MeS(CH ₂) ₃ SMe)] and	
[(WSCl4)2(PhS(CH2)2SPh)].	117
Table 4.6: Selected bond lengths and angles for [(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)].	118
Table 4.7: Selected bond lengths and angles for [(WCl ₂) ₂ (μ-S) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)][WSCl ₅]•CH ₂ C	1 ₂ .

Table 4.8: Selected IR and ¹ H NMR data for complexes in this work.	120
Table 4.9: Selected bond lengths and angles for $[(WCl_3)_2(\mu-S_2)(\mu-S)(SMe_2)_2]$.	122
Table 4.10: Selected bond lengths and angles for $[(WCl_3)_2(\mu-S_2)(\mu-S)(SPPh_3)_2] - 2CH_2Cl_2$.	124
Table 4.11: X-ray crystallography table.	130
Table 6.1: Selected bond lengths and angles for [MoOCl ₃ (THF) ₂].	166
Table 6.2: Selected bond lengths and angles for [MoOCl ₃ (MeS(CH ₂) ₃ SMe)] and	
[MoOCl3(iPrS(CH2)2SiPr)].	167
Table 6.3: Selected bond lengths and angles for [MoOCl ₃ (PhS(CH ₂) ₂ SPh)].	168
Table 6.4: Selected bond lengths and angles for [MoOCl ₃ (MeSe(CH ₂) ₂ SeMe)] and	
$[MoOCl_3(MeSe(CH_2)_3SeMe)].$	170
Table 6.5: Selected bond lengths and angles for [(MoOCl ₂ (SMe ₂)) ₂ (μ-Cl) ₂] and	
$[(MoOCl2(SeMe2))2(\mu-Cl)2].$	172
Table 6.6: Selected bond lengths and angles for [(MoCl(o-C ₆ H ₄ (TeMe) ₂) ₂)(μ-	
$O)(MoOCl_4)]$ • CH_2Cl_2 .	174
Table 6.7: Selected IR stretches and magnetic moments for complexes in this chapter.	175
Table 6.8: Selected bond lengths and angles for [MoOCl ₃ (2, 2' - bipy)] and [MoOCl ₃ (1, 10 -	
phen)].	176
Table 6.9: Selected bond lengths and angles for [MoOCl ₃ (dppe)] and [MoOCl ₃ (dmpe)].	177
Table 6.10: Selected bond lengths and angles for [(MoOCl(dmpe) ₂)(μ -O)(MoOCl ₄)] and	
$[MoOCl_3(PMe_3)_2].$	178
Table 6.11: Selected bond lengths and angles for [(MoOCl ₂ (MeCN)) ₂ (μ -Cl) ₂] and	
$[MoOCl_3(MeCN)_2].$	180
Table 6.12: Comparison of IR stretches obtained from reaction of MoOCl ₃ or MoOCl ₄ and 2,2	,'-
bipy or 1,10-phen.	181
Table 6.13: Selected bond lengths and angles for [MoOCl ₃ (OPPh ₃) ₂].	182
Table 6.14: Selected bond lengths and angles for $[Et_4N][WOCl_5]$ and $[EtN_4]_2[(MoOCl_3)(\mu-1)]$	
$Cl)_2(MoOCl_3)].$	183
Table 6.15: X-ray crystallography table.	192
Table 6.16: Showing the d-d and LMCT bands and their likely assignments for complexes in t	his
work.	197
Table 7.1: Table showing known tetrathio- and tetraseleno-metallates.	204
Table 7.2: ⁷⁷ Se{ ¹ H} and ⁹⁵ Mo NMR data for the [MoSe ₄] ²⁻ salts.	206
Table 7.3: Selected bond lengths and angles for ["Bu ₄ N] ₂ [WS ₄].	212
Table 7.4: ⁷⁷ Se{ ¹ H} NMR data and IR data for the [WSe ₄] ²⁻ salts.	212
Table 7.5: Selected bond lengths and angles for ["Bu ₄ N] ₂ [WSe ₄] and [PPh ₄] ₂][WSe ₄].	213
Table 7.6: X-ray crystallography table.	222

Table of Figures

Figure 1.1: A simplified Lewis acid and Lewis base using an electron poor acid (BH ₃) and an	
electron rich base (THF), to form a simple adduct.	1
Figure 1.2: Illustration of the solid-state structure of MX ₆ and MX ₅ metal halides.	3
Figure 1.3: Tolman's cone angle (θ) model.	4
Figure 1.4: Scheme showing the synthesis of o-C ₆ H ₄ (PMe ₂) ₂ and o-C ₆ H ₄ (AsMe ₂) ₂ in THF.	6
Figure 1.5: Scheme showing the synthesis of bis-(diphenylphosphino)ethane dioxide by dry	
oxidation catalysed by SnI ₄ .	7
Figure 1.6: The structure of [(NbCl ₂ (SMe ₂)) ₂ (μ-SMe ₂)(μ-Cl) ₂] showing an example of a bridging	g
thioether.	8
Figure 1.7: Illustration of meso (left) and DL isomers (right).	9
Figure 1.8: Crystal structures of [(TaCl ₅) ₂ (o-C ₆ H ₄ (CH ₂ SEt) ₂)] (left) an example of a bridging	
thioether and a meso chelated thioether, [NbCl ₄ (MeSe(CH ₂) ₃ SeMe)] (right).	9
Figure 1.9: Scheme of the synthesis of RS(CH ₂) ₂ SR from thiols.	10
Figure 1.10: Synthesis of o-C ₆ H ₄ (SMe ₂) ₂ in HMPA via a o-C ₆ H ₄ (S ⁱ Pr) ₂ intermediate.	10
Figure 1.11: Synthesis of mono- and bi-dentate selenoethers from the addition of RLi and seleni	um
with haloalkanes.	10
Figure 1.12: Synthesis of o-C ₆ H ₄ (SeMe) ₂ from o-benzyne and Se ₂ Me ₂ and from RLiSe solution.	. 11
Figure 1.13: Synthesis of TeMe ₂ and RTe(CH ₂) _n TeR ($n = 1$ or 3) from RLi and tellurium.	11
Figure 1.14: Synthesis of the ligands o-C ₆ H ₄ (TeMe) ₂ and o-C ₆ H ₄ (CH ₂ TeMe) ₂ from RLi and	
elemental tellurium.	12
Figure 1.15: Illustration of electronic states where light blue is the conductance band and blue is	the
valence band.	12
Figure 1.16: Illustration depicting direct band gap (left) and indirect bandgap (right) showing the	e
excitation of an electron into the conductance band.	13
Figure 1.17: Illustration showing the filling of d orbitals and the effect on the bonding and anti-	
bonding states, for groups 4-7, 10 and their associated point group, assuming ideal coordination.	. 14
Figure 1.18: Illustration of bonding and layer stacking in transition metal dichalcogenides for the	e
1T, 2H and 3R phases.	15
Figure 1.19: A typical set up for LPCVD experiments.	16
Figure 1.20: A diagram showing β-hydride elimination pathway.	16
Figure 1.21: Illustration of deposition of a thin film of a desired material onto a substrate via sin	gle
or dual source deposition.	17
Figure 1.22: Illustration showing Braggs law.	23
Figure 1.23: Crystal structure of [WSCl ₃ (dppmO ₂)] showing the atom numbering scheme, an	
example of S/Cl across two different sites.	25
Figure 1.24: Illustration of a standard three electrode electrochemical cell.	30
Figure 1.25: The potential-time profile employed in cyclic voltammetry.	31
Figure 2.1: Some examples of syntheses for the formation of MO ₂ X ₂ and MOX ₄ .	40

Figure 2.2: Some examples of $[MO_2X_2(L)_2]$ and $[MO_2X_2(L-L)]$ coordination complexes from the	ıe
literature.	41
Figure 2.3: Some examples of reactions with WCl ₆ and oxygen donor ligands and their products	. 42
Figure 2.4: Crystal structures of [WOF ₄ (OPPh ₃)] and [MoOF ₄ (OPPh ₃)].	43
Figure 2.5: A reaction scheme showing the synthesis of [WOCl ₄ (OPR ₃)] and [(WOCl ₄) ₂ (μ -L-L)] (R
= Ph or Me; $L-L = dppmO_2$ or $dppeO_2$).	45
Figure 2.6: The structure of [WOCl ₄ (OPPh ₃)] showing the atom numbering scheme.	46
Figure 2.7: The structure of [WOCl ₄ (OPMe ₃)] showing the atom numbering scheme.	47
Figure 2.8: The structure of $[W_3O_3(\mu-O)_3Cl_6(OPMe_3)_3]$ •2CH ₂ Cl ₂ (left) and $[W_6O_6(\mu-O)_3Cl_6(OPMe_3)_3]$	
O) ₆ Cl ₁₂ (OPPh ₃) ₄] (right) showing the atom numbering scheme.	48
$Figure~2.9:~Showing~[W_4O_4(\mu-O)_4Cl_8(THF)_4] \bullet 2CH_2Cl_2~crystal~structure~redrawn~from~literature.$. 50
Figure 2.10: The structure of [WOCl ₃ (dppmO ₂)] (left) and [WOCl ₂ (dppmO ₂)((μ -O)(WOCl ₄))]	
(right) showing the atom numbering scheme.	51
Figure 2.11: The structure of $[(WOCl_4)_2(dppmO_2)]$ (left) and $[(WOCl_4)_2(dppeO_2)]$ (right), showing	ing
the atom numbering scheme.	52
Figure 2.12: ¹ H NMR spectrum of [WOCl ₄ (2,2'-bipy)].	54
Figure 2.13: ¹ H NMR spectrum of [WOCl ₄ (C ₅ H ₅ N)].	54
Figure 2.14: The structure of [C ₅ H ₅ NH][WOCl ₅] showing the atom numbering scheme.	55
Figure 2.15: The structure of [WSCl ₄ (OPPh ₃)] showing the atom numbering scheme.	57
Figure 2.16: The structure of [(WCl ₃) ₂ (μ-S) ₂ (OPMe ₃) ₃]•CH ₂ Cl ₂ showing the atom numbering	
scheme.	58
Figure 2.17: The structures of [WSCl ₃ (dppmO ₂)] (left), [(WSCl ₄) ₂ (dppeO ₂)] (middle) and	
[(WSCl ₄) ₂ (dppmO ₂)] (right) showing the atom numbering scheme.	59
Figure 2.18: The structure of [WSCl ₃ (2,2'-bipy)] showing the atom numbering scheme.	60
Figure 2.19: The structure of [WSCl ₄ (C ₅ H ₅ N)] showing the atom numbering scheme.	61
Figure 2.20: Scheme of known complexes of WF ₆ with nitrogen donor ligands.	62
Figure 2.21: The structure of $[((WOCl_2)(1,10\text{-phen}))(\mu\text{-}O)(WOCl_4)]$ showing the atom number is	ng
scheme.	63
Figure 3.1: $[WF_4((o-C_6H_4(AsMe_2)_2)_2]^{2+}$ crystal structure obtained from reaction of WF ₆ and o-	
$C_6H_4(AsMe_2)_2$.	80
Figure 3.2: Reaction scheme showing complexes of WF ₆ , WOF ₄ and WO ₂ F ₂ .	81
Figure 3.3: Phosphine and arsine ligands reported to form [MoOCl ₃ (L-L)] complexes.	82
Figure 3.4: Phosphine, arsine and antimony ligands reported to form [WOCl $_3$ (L-L)] complexes.	83
Figure 3.5: Reaction scheme for the synthesis of [WOCl ₄ (o-C ₆ H ₄ (EMe ₂) ₂)] and [WSCl ₄ (o-	
$C_6H_4(EMe_2)_2)] (E = P \text{ or } As).$	84
Figure 3.6: The structure of [WOCl ₄ (o-C ₆ H ₄ (AsMe ₂) ₂)] showing the atom numbering scheme.	85
Figure 3.7: ³¹ P{ ¹ H} NMR spectrum of [WOCl ₄ (o-C ₆ H ₄ (PMe ₂) ₂)] in CD ₂ Cl ₂ .	86
Figure 3.8: The structure of [WOCl ₃ (o-C ₆ H ₄ (PMe ₂) ₂)] (left) and [WOCl ₃ (o-	
$C_6H_4(PMe_2)(P(O)Me_2))$]•0.5CH ₂ Cl ₂ (right) showing the atom numbering scheme.	86

Figure 3.9: The structure of $[WCl_4(o-C_6H_4(PPh_2)_2)_2][WCl_6] \cdot 2.5(C_7H_8)$, showing the atom	
numbering scheme.	88
Figure 3.10: ³¹ P{ ¹ H} NMR spectrum of [WSCl ₄ (o-C ₆ H ₄ (PMe ₂) ₂)] in CD ₂ Cl ₂ .	89
Figure 3.11: The structure of [WSCl ₄ (o-C ₆ H ₄ (PMe ₂) ₂)] showing the atom numbering scheme.	90
Figure 3.12: The structure of $[WCl_4(o-C_6H_4(PMe_2)_2)_2][WS_{0.5}O_{0.5}Cl_4]$ showing the atom number	ing
scheme.	91
Figure 3.13: The structure of $[WCl_4(o-C_6H_4(AsMe_2)_2)_2]^+$ showing the atom numbering scheme.	92
Figure 3.14: The structure of $[(WCl_2)_2(\mu-S)_2(o-C_6H_4(AsMe_2)_2)_2][WCl_6]$ \bullet CH_2Cl_2 showing the atomic structure of $[(WCl_2)_2(\mu-S)_2(o-C_6H_4(AsMe_2)_2)_2][WCl_6]$	om
numbering scheme.	92
Figure 4.1: Crystal structures of the cations $[NbF_4(SMe_2)_4]^+(left)$ and $[TaF_4(MeS(CH_2)_2SMe)_2]$	+
(right).	104
Figure 4.2: Reaction scheme showing complexes of MF ₅ (M = Ta or Nb) with thio- and seleno-	-
ethers.	105
Figure 4.3: Crystal structures of $[(TaCl_5)_2(MeSe(CH_2)_2SeMe)]$ (left) and $[NbBr_5(SMe_2)]$ (right)	.106
Figure 4.4: Reaction scheme for [MoCl ₄ (L) ₂] or [MoCl ₄ (L-L)] complexes.	107
Figure 4.5: Crystal structures of [MoCl ₄ (MeS(CH ₂) ₃ SMe)] (left) and [MoCl ₄ (SMe ₂) ₂] (right).	107
Figure 4.6: Crystal structures of $[NbCl_4(MeS(CH_2)_2SMe)_2]$ (left) and $[NbCl_4(MeSe(CH_2)_3SeMe)_2]$	e)]
(right).	108
Figure 4.7: Crystal structures of $[(MoO_2Cl_2)_2(\mu\text{-o-}C_6H_4(CH_2SMe)_2)_2]$ (left) and	
[MoO2Cl2(iPrS(CH2)2SiPr)] (right).	109
Figure 4.8: Crystal structures of $[(NbSCl_2)_2(\mu-Cl)_2(SMe_2)_2]$ (left) and $[TaSCl_3(MeSe(CH_2)_2SeMeSeMeSe(CH_2)_2SeMeSe(CH_2)_2SeMeSe(CH_2)_2SeMeSe(CH_2)_2SeMeSe(CH$	(e)]
(right).	110
Figure 4.9: Reaction scheme for the synthesis of [(WSCl ₄) ₂ (L-L)] and [WSCl ₄ (L)].	112
Figure 4.10: The structures of [WSCl ₃ (MeS(CH ₂) ₂ SMe)] (left) and [(WSCl ₄) ₂ (MeS(CH ₂) ₂ SMe))]
(right) showing the atom numbering scheme.	113
Figure 4.11: The structure of [WOCl ₃ (MeS(CH ₂) ₂ SMe)], showing the atom numbering scheme	. 114
Figure 4.12: Crystal structure of [(WSCl ₄) ₂ (MeS(CH ₂) ₃ SMe)], showing the atom numbering	
scheme.	115
Figure 4.13: The structures of [WOCl ₃ (MeS(CH ₂) ₃ SMe)] (left) and [(WSCl ₄) ₂ (PhS(CH ₂) ₂ SPh)]	
(right) showing the atom numbering scheme.	116
Figure 4.14: The structure of [(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)] showing the atom numbering scheme	. 118
Figure 4.15: The structure of $[(WCl_2)_2(\mu-S)_2(^iPrS(CH_2)_2S^iPr)][WSCl_5] \bullet CH_2Cl_2$ showing the ato	m
numbering scheme.	119
Figure 4.16: The structure of $[(WCl_3)_2 (\mu-S_2) (\mu-S) (SMe_2)_2]$, showing the atom numbering	
scheme.	120
Figure 4.17: The structure of $[(WCl_3)_2 (\mu-S_2) (\mu-S) (SeMe_2)_2]$, showing the atom numbering	
scheme.	122
Figure 4.18: The structure of [(WCl ₃) ₂ (S ₂)(μ-S)(SPPh ₃) ₂]•2CH ₂ Cl ₂ showing the atom numberin	g
scheme	124

Figure 5.1: Scheme showing single source precursors for the LPCVD of MSe ₂ and MTe ₂ (M =	Ti,
Zr or Hf) attempts.	137
Figure 5.2: Scanning electron microscope image of polycrystalline NbS ₂ films.	138
Figure 5.3: Scheme showing single source precursors for the LPCVD of NbE ₂ ($E = S$ or Se).	139
Figure 5.4: GIXRD and IPXRD (top) of 2H-MoSe ₂ .	140
Figure 5.5: Grazing incidence XRD pattern (top) from a WS ₂ thin film deposited by low pressure.	ıre
CVD using [(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)] at 700 °C.	142
Figure 5.6: SEM image showing a continuous WS ₂ thin film produced via low pressure CVD to	ısing
[(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)] at 700 °C.	143
Figure 5.7: EDX spectrum (top) and WDX spectrum (bottom) from WS ₂ thin film via low pres	ssure
CVD using [(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)] at 700 °C.	143
Figure 5.8: Representative XPS data for an as-deposited WS ₂ film thin film via low pressure C	VD
using [(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)].	144
Figure 5.9: Raman spectra for as-deposited WS ₂ thin films via low pressure CVD using	
$[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)]$ at 700 °C.	144
Figure 5.10: TGA profile for [WSCl ₄ (S ⁿ Bu ₂)] 0 – 600°C.	145
Figure 5.11: In-plane XRD pattern (top), grazing incidence XRD pattern (middle) from a WS ₂	thin
film deposited by low pressure CVD using [WSCl ₄ (S ⁿ Bu ₂)] at 700 °C.	146
Figure 5.12: SEM image of continuous WS ₂ thin film produced via low pressure CVD using	
[WSCl ₄ (S ⁿ Bu ₂)] at 700 °C.	146
Figure 5.13: EDX spectrum (top) showing overlap of the W and Si peaks and WDX spectrum	
(bottom) from WS ₂ thin film via low pressure CVD using [WSCl ₄ (S ⁿ Bu ₂)] at 700 °C.	147
Figure 5.14: Representative XPS data for an as-deposited WS2 thin film via low pressure CVD	
using [WSCl ₄ (S ⁿ Bu ₂)].	148
Figure 5.15: Raman spectra for as-deposited WS ₂ film thin film via low pressure CVD using	
[WSCl ₄ (S ⁿ Bu ₂)] at 700 °C.	148
Figure 5.16: Resistivity measurements from WS ₂ thin films produced from	
$[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)] \ (left) \ and \ [WSCl_4(S^nBu_2)] \ (right).$	149
Figure 5.17: Graph showing activation energy from WS ₂ thin films produced from	
$[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)] \ (left) \ and \ [WSCl_4(S^nBu_2)] \ (right).$	149
Figure 6.1: Scheme showing coordination complexes of tungsten fluoride complexes.	158
Figure 6.2: Crystal structures of $[NbF_4(py)_4]^+$ (left) and $[TaF_4(o-C_6H_4(PMe_2)_2)_2]^+$ (right).	158
Figure 6.3: Crystal structure of [NbCl ₄ (Me ₂ P(CH ₂) ₂ PMe ₂) ₂].	159
Figure 6.4: Crystal structures of [NbOF ₃ (OPMe ₃) ₂] (left) and [NbOCl ₃ (2,2'-bipy)] (right).	160
Figure 6.5: Crystal structures of [TaOCl ₃ (2,2'-bipy)] (left) and [TaOCl ₃ (PPO ₂)] (right)	161
Figure 6.6: Scheme showing the synthesis of six-coordinate MoOCl ₃ species with open chain	
thioethers.	162
Figure 6.7: Crystals structures of [MoOCl ₃ (OPPh ₂ Me) ₂] (left) and [WOCl ₃ (OMe ₂) ₂] (right).	162
Figure 6.8: Proposition of the structure of WOCl ₃ with MeS(CH ₂) ₂ S(CH ₂) ₂ S(CH ₂) ₂ SMe.	163

Figure 6.9: Crystal structure of [TaSCl ₃ (dppeO ₂)].	164
Figure 6.10: Reaction scheme of the synthesis of [MoOCl ₃ (L-L)] and [(MoOCl ₂ L) ₂ (μ -Cl) ₂]	
complexes from MoOCl ₃ .	165
Figure 6.11: Crystal structure of [MoOCl ₃ (THF) ₂] showing the atom numbering scheme.	166
$Figure~6.12:~Crystal~structures~of~[MoOCl_3(MeS(CH_2)_3SMe)]~(left)~and~[MoOCl_3(^iPrS(CH_2)_2S^i]_{12}) \\$	Pr)]
(right) showing the atom numbering scheme.	167
Figure 6.13: The structure of [MoOCl $_3$ (PhS(CH $_2$) $_2$ SPh)], showing the atom numbering scheme.	168
Figure 6.14: Crystal structures of [MoOCl ₃ (MeSe(CH ₂) ₂ SeMe)] (left) and	
[MoOCl ₃ (MeSe(CH ₂) ₃ SMe)] (right) showing the atom numbering scheme.	169
$Figure~6.15:~Crystal~structures~of~[(MoOCl_2(SMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~and~[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]~(left)~(le$	Cl) ₂]
(right) showing the atom numbering scheme.	171
Figure 6.16: Crystal structure of [(MoCl(o-C $_6$ H $_4$ (TeMe) $_2$) $_2$)(μ -O)(MoOCl $_4$)] •CH $_2$ Cl $_2$ showing the content of	ne
atom numbering scheme.	173
Figure 6.17: Crystal structures of [MoOCl ₃ (2,2'-bipy)] (left) and [MoOCl ₃ (1,10-phen)] (right)	
showing the atom numbering scheme.	175
Figure 6.18: Crystal structures of [MoOCl ₃ (dppe)] (left) and [MoOCl ₃ (dmpe)] (right) showing to	the
atom numbering scheme.	177
$Figure~6.19:~Crystal~structures~of~[(MoOCl(dmpe)_2)(\mu-O)(MoOCl_4)]~(left)~and~[MoOCl_3(PMe_3)]~(left)~and~[MoOCl_4]~(left)~(left)~and~[MoOCl_4]~(left)~(le$)2]
(right) showing the atom numbering scheme.	178
$Figure~6.20:~Crystal~structures~of~[(MoOCl_2(MeCN))_2(\mu-Cl)_2]~(left)~and~[MoOCl_3(MeCN)_2]~(right)~and~[MoOCl_2(MeCN)_2]~(r$	ght)
showing the atom numbering scheme.	180
Figure 6.21: Crystal structure of [MoOCl ₃ (OPPh ₃) ₂] showing the atom numbering scheme.	182
$Figure~6.22:~Crystal~structures~of~[Et_4N][WOCl_5]~(top)~and~[Et_4N]_2[(MoOCl_3)_2(\mu\text{-Cl})_2]~(bottom)_2(\mu\text{-Cl})_2(\mu\text$)
showing the atom numbering scheme.	183
Figure 7.1: Illustration of the ionic liquid PP ₁₃ -TFSI.	203
Figure 7.2: Reaction scheme for $[^{n}Bu_{4}N]_{2}[ME_{4}]$ (E = S or Se).	206
Figure 7.3: CV of 5 mM [NH ₄] ₂ [MoS ₄] (black) in ethylene glycol and background (red).	207
Figure 7.4: CV of 5 mM of $[^nBu_4N]_2[MoS_4]$ in CH_2Cl_2 without a proton source (top left) with 2	00
$mM\ [Me_3NH]Cl\ (top\ right).\ EQCM\ of\ 5\ mM\ of\ [^nBu_4N]_2[MoS_4]\ in\ CH_2Cl_2\ without\ a\ proton\ solutions and the solution of\ a proton\ solution\ soluti$	urce
(bottom left) with 200 mM [Me ₃ NH]Cl (bottom right).	208
Figure 7.5: Top-view of an annealed deposit obtained after potentiostatic deposition at -0.8 V for	or 1
hour from CH ₂ Cl ₂ containing 5 mM [ⁿ Bu ₄ N] ₂ [MoS ₄].	209
Figure 7.6: Raman spectra for an annealed MoS ₂ film deposit.	210
Figure 7.7: CV of 5mM [Bu ₄ N] ₂ [MoSe ₄] in CH ₂ Cl ₂ .	210
Figure 7.8: SEM for electrodeposited film on planar TiN from [ⁿ Bu ₄ N] ₂ [MoSe ₄].	211
Figure 7.9: Crystal structure of ["Bu ₄ N] ₂ [WS ₄] showing the atom numbering scheme.	212
$Figure~7.10:~Crystal~structures~of~[^nBu_4N]_2[WSe_4]~(left)~and~[PPh_4]_2[WSe_4]~(right)~showing~the$	
atom numbering scheme.	213
$Figure~7.11:~Cyclic~voltammogram~of~5~mM~[^nBu_4N]_2[WS_4]~on~TiN, [^nBu_4N]Cl~was~the~supported by the support of the contraction of the contra$	ting
electrolyte.	214

Figure 7.12: Cyclic voltammogram of 5mM [Et ₄ N] ₂ [WS ₂ Cl ₄] on TiN, in CH ₂ Cl ₂ , [ⁿ Bu ₄ N]Cl wa	ıS
the supporting electrolyte.	215
Figure 7.13: Grazing incidence XRD pattern (top) from WS ₂ electrodeposited from	
[Et ₄ N] ₂ [WS ₂ Cl ₄] in CH ₂ Cl ₂ . XRD pattern for bulk WS ₂ (bottom).	216
Figure 7.14: SEM image of continuous WS ₂ film electrodeposited from [Et ₄ N] ₂ [WS ₂ Cl ₄] (left) a	and
EDX spectrum of an annealed film, insert shows WDX spectrum for W M_{α} and Si K_{α} lines (right	ht)
onto TiN substrates.	216
Figure 7.15: Raman spectrum recorded from an annealed WS ₂ deposit using 532 nm laser	
excitation.	217

List of Accompanying Materials

DOI containing the Crystallographic Information Files (cifs) for the X-ray diffraction studies reported throughout this thesis and any non-published data: <u>10.5258/SOTON/D1591</u>.

Research Thesis: Declaration of Authorship

Print name: Danielle Emily Smith

Title of thesis: Coordination Chemistry of High Valent Early Transition Metals with

Neutral Donor Ligands: Towards Precursors for the Electrodeposition and

LPCVD of Molybdenum and Tungsten Dichalcogenides

I declare that this thesis and the work presented in it are my own and has been generated by me as the result of my own original research.

I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University;
- 2. Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated;
- 3. Where I have consulted the published work of others, this is always clearly attributed;
- 4. Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work;
- 5. I have acknowledged all main sources of help;
- 6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself;
- 7. Parts of this work have been published as:-

"Complexes of WOCl₄ and WSCl₄ with N- and O- donor ligands: Synthesis, spectroscopy and structures", Victoria K. Greenacre, Andrew L. Hector, William Levason, Gillian Reid, Danielle E. Smith, Laura Sutcliffe, *Polyhedron*, 2019, **162**, 14-19.

"Pentagonal bipyramidal complexes of WOCl₄ and WSCl₄ with diphosphine and diarsine ligands", William Levason, Gillian Reid, Danielle E. Smith, Wenjian Zhang, Polyhedron, 2020, **179**, 114372

"Thioether complexes of WSCl₄, WOCl₄ and WSCl₃ and evaluation of thiochloride complexes as CVD precursors for WS₂ thin films.", Danielle E. Smith, Victoria K. Greenacre, Andrew L. Hector, Roumeng Huang, William Levason, Gillian Reid, Fred Robinson, Shibin Thomas, *Dalton Trans*. 2020, **49**, 2496-2504.

"Electrodeposition of MoS₂ from Dichloromethane", Shibin Thomas, Danielle E. Smith, Victoria K. Greenacre, Yasir J. Noori, Andrew L. Hector, C. H. (Kees) de Groot, Gillian Reid, Philip N. Bartlett, *J. Electrochem. Soc.* 2020, **167**, 106511

a :	. .
Signature:	Date:
Signature.	Date.

Acknowledgements

During my Ph.D. I have been incredibly fortunate with the help I have received. I would firstly like to thank my supervisors Prof. Gill Reid and Prof. Andrew Hector for their time, patience and constant support. I would like to extend my thanks to Prof. Bill Levason for inexhaustible knowledge, enthusiasm and willingness to provide help.

Many thanks to Dr Victoria Greenacre who was always my willing second pair of hands in the laboratory and always provided new ideas when syntheses were not working. Also, from the Reid Group, Fred Robinson, whose experience and assistance in CVD experiments and endless help in characterisation of materials was invaluable. Also, Dr Robert Bannister for the limitless help in solving X-ray crystal structures and answering all of my never-ending questions. As well as the NCS staff, Dr Graham Tizzard and Dr Peter Horton, for their help and guidance for running single crystal experiments. From Electrochemistry I would like to thank Dr Shibin Thomas for completing all the electrochemistry experiments and Dr Roumeng Huang from ECS for his help with materials characterisation.

I would like to thank Laura Sutcliffe who started initial investigations into WOCl₄ complexes when working on her final year project in the Reid laboratory. My thanks also go to my project student James Powell who developed work on MoOCl₄ complexes and the initial investigation on MoOCl₃ complexes described herein.

Thank you to the Reid Group, both past and present, who have made my time at the University an incredible experience. I hope you all enjoy your time at the University and continue the tradition of cake Thursday.

I would like to thank the EPSRC for funding this work and the University of Southampton for providing wonderful facilities and support systems, it has been an amazing experience to study here.

Finally, I would like to thank my family for their continued support throughout my studies as I would not be here today without it. I am unbelievably grateful for Thomas who has provided all the support I would need and listened to me constantly talking about Chemistry, as well as completing the extortionate amount of proof-reading.

Definitions and Abbreviations

δ Chemical Shift (ppm)

AACVD Aerosol Assisted Chemical Vapour Deposition

APCVD Ambient Pressure Chemical Vapour Deposition

ⁿBu n-butyl

CV Cyclic Voltammogram

CVD Chemical Vapour Deposition

dee 1,2-diethoxyethane

DFT Density-Functional Theory

dme 1,2-dimethoxyethane

dmpe 1,2-bis(dimethylphosphino)ethane

dmso Dimethyl Sulfoxide

dppe 1,2-bis(diphenylphosphino)ethane

dppm 1,2-bis(diphenylphosphino)methane

E O, S or Se

EDX Energy-Dispersive X-ray Spectroscopy

[EMIM][TFSI] 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide

EQCM Electrochemical Quartz Crystal Microbalance

 ER_2 Chalcogenoether (E = S, Se or Te)

Et Ethyl

Fac Facial

GIXRD Grazing Incidence X-ray Diffraction

HMPA Hexamethylphosphoramide

IPXRD In-Plane X-ray Diffraction

IR Infrared

L General Ligand Group

L-L Bidentate Ligand

LPCVD Low-Pressure Chemical Vapour Deposition

Me Methyl

Mer Meridional

NMR Nuclear Magnetic Resonance

o- Ortho-

Oxt 1,4-dioxane

Ph Phenyl

PP₁₃-TFSI N-methyl-N-propyl-piperidinium bis(trifluoromethanesulfonyl) imide

ppm Parts Per Million

ⁱPr Isopropyl

PVD Physical Vapour Deposition

PXRD Powder X-ray Diffraction

Py Pyridine

SEM Scanning Electronic Microscopy

THF Tetrahydrofuran

Thiox 1,4-thioxane

THP Tetrahydropyran

tht Tetrahydrothiophene

TMDC Transition Metal Dichalcogenide

tmeda Tetramethylethylenediamine

WDX Wavelength Dispersive X-ray Spectroscopy

X Halide Ion

XPS X-ray Photoelectron Spectroscopy

1,10-phen 1,10-phenanthroline

2,2'-bipy 2,2'-bipyridine

Introduction

The work in this thesis is concerned with the development of new coordination chemistry of the hard high valent Group VI metals. Including, W(VI) oxo- and thio-halides with hard phosphine oxide and imine ligands (Chapter 2), soft phosphine and arsine ligands (Chapter 3), soft chalcogenoethers (Chapter 4) and of Mo(V) oxohalides (Chapter 6). The work also reports the investigation of precursors for the deposition of MoS₂ and WS₂ thin films *via* CVD (Chapter 5) and electrodeposition (Chapter 7). This introduction is provided to give a general background to some of the main aspects of the chemistry and techniques for the work described herein. A more specific review of background literature is presented at the start of each respective chapter and may refer to chemistry in this chapter where appropriate.

1.1 Hard Soft Acids and Bases

The hard soft acid base (HSAB) theory is one of the fundamental principles of inorganic and coordination chemistry. It categorises chemical elements and species into one of two types, hard or soft, depending on a number of criteria and states. Hard acids prefer to bond to hard bases and soft acids to soft bases.¹ The Lewis definition of acids and bases is used in HSAB theory, a Lewis acid is any substance which can accept a pair of non-bonding electrons (known as an acceptor) and a Lewis base is any substance which can donate a pair of non-bonding electrons (known as a donor).²

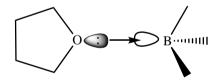


Figure 1.1: A simplified Lewis acid and Lewis base using an electron poor acid (BH_3) and an electron rich base (THF), to form a simple adduct.³

Hard acids and bases have a relatively small atomic or ionic radii, are high valent species which are not particularly polarisable and show a preference for electrostatic bonding. High valent early transition metals are hard Lewis acids as well as f and s block metals, conversely, hard Lewis bases include fluoride ions, water and ethers. ^{1,2} The strong interactions between Lewis acids and Lewis bases can often improve the stability of high valent metal centres and their subsequent complexes. ⁴

Soft Lewis acids and bases have larger atomic or covalent radii, tend to be low valent or neutral, prefer covalent bonding and are highly polarisable. Soft acids include late transition metals (gold(I), silver(I) and platinum(II)) and soft bases include chalcogenoethers, phosphines and arsines. ^{5,6} The hard and soft descriptions are independent of the relative strength of the acid or base; hard and soft acids and bases can be either weak or strong respective acids and bases. The HSAB theory is not a conclusive explanation of bonding as there are many examples of bonding between soft Lewis base donors and hard Lewis acid acceptors. ⁷⁻¹¹ However, bonding between a hard Lewis

Chapter 1

acid (high valent transition metals) and a softer Lewis base (sulfur and phosphorus) can make compounds unstable and particularly sensitive to moisture. The study of hard Lewis acids and soft Lewis bases has become an area of interest, with literature investigating the characteristics of bonds and the limits of this type of bonding.

This work will investigate the behaviour of the Lewis acidic high valent early transition metals, W(VI), Mo(VI) and Mo(V), with both hard Lewis bases (phosphine oxides and imines) and softer Lewis bases (phosphines and chalcogenoethers). The weak nature of these interactions can result in soft Lewis bases being out-competed by hard donor solvents and subsequently being displaced. Therefore, reactions need to be performed under rigorously dry and inert conditions, in weakly coordinating solvents, such as CH₂Cl₂ or toluene.

1.2 High Valent Complexes of Tungsten and Molybdenum

Molybdenum and tungsten's chemical behaviour is not significantly different from each other due to similar atomic radii, Mo (1.54 Å) and W (1.62 Å), as a result of the lanthanide contraction. Both metals exhibit a range of formal oxidation states -II to +VI, and when Group VI metals are in the +VI oxidation state they are highly reactive or strongly oxidising. Tungsten(VI) is more readily available compared to molybdenum(VI), which can be unstable and is more easily reduced; however tungsten(VI) compounds are still susceptible to reduction.

The coordination chemistry of molybdenum has attracted attention over the years as molybdenum is an important constituent in biological species, including metalloenzymes and molybdenum nitrogenase. 18,19 Molybdenum species such as $[MoS_4]^{2-}$ are used for the regulation of copper in cattle. 20 Both tungsten and molybdenum coordination compounds merit considerable interest due to their role in oxido-transfer reagents, metathesis catalysis precursors and in ring-opening catalysis. $^{18,21-23}$ The coordination chemistry of Group VI metals largely revolves around the metal halides and their derivatives due to commercial availability or metal carbonyls, $M^0(CO)_n$. The hexahalides are known for WX_6 (X = F, Cl or Br) and MoX_6 (X = F or Cl) although $MoCl_6$ is only known at low temperature. 24 MX_6 are formed via direct reaction of the metal and halogens and form octahedral monomers, whereas WX_5 (X = Cl or Br) and $MoCl_5$ form dimeric structures and MF_5 (M = W or Mo) form tetramers (Figure 1.2). 17 MX_5 are isostructural to NbX_5 and TaX_5 metal halides and their chemistries are similar. 25

$$X = F \text{ or } Cl \text{ or } WBr_{6}$$

$$X = F \text{ or } Cl \text{ or } WBr_{6}$$

$$X = F \text{ or } Cl \text{ or } WBr_{5}$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ in } M = Mo \text{ or } W$$

$$X = F \text{ or } Cl \text{ or } WBr_{5}$$

Figure 1.2: Illustration of the solid-state structure of MX_6 and MX_5 metal halides.

All the metal halides react readily with moisture commonly forming MO_3 or other oxohalide derivatives, MOX_4 or MO_2Cl_2 , or reduce to lower oxidation states. The metal halides are often the starting reagents for metal oxo- and thio-halides, MEX_n (E=O, S or Se; n=3 or 4) especially in the formation of MOX_n compounds, which have been shown to form readily with oxygen donor ligands. The traditional route for the synthesis of metal thiohalides is via solid-state methods, typically mixing MCl_n with a sulfur-containing compound, (elemental sulfur, Sb_2S_3 or B_2S_3) in an evacuated sealed tube and heating (further details in Chapter 2).

The polymeric units found in MX_5 are readily broken up upon the addition of a variety of ligands although $MoCl_5$ is shown to readily reduce or abstract oxygen from oxygen-donor ligands. ^{26,32,33} The metal fluorides are stronger Lewis acids than the chloro- and bromo- analogues, resulting in more stable complexes (with stronger Lewis bases) but limited stability with softer Lewis bases such as chalcogenoethers. ³⁴⁻³⁶

1.3 Ligand Types

1.3.1 Neutral Phosphine and Arsine Ligands

Like their lighter congeners (NR₃), neutral phosphines (PR₃) and arsines (AsR₃) are versatile ligands that can be finely sterically and electronically tuned by the choice of substituents (R groups), allowing the properties of the donor-acceptor complex to be modified.³⁷ Phosphines, PR₃, utilise a lone pair and can be used with a range of alkyl or aryl substituents. Tertiary alkyl phosphines are more readily oxidised than aryl phosphines making them more difficult to handle, although they are stronger σ -donors.³⁸ Tertiary phosphines exist as pyramidal structures and can undergo pyramidal inversion like NR₃, however it is a much higher energy process and so is rarely observed.³⁹ Phosphines readily form multidentate species, such as σ -

bis(dimethylphosphino)benzene or 1,2-bis(dimethylphosphino)ethane which allows further tuning

Chapter 1

of properties of the Lewis base. Using a bidentate ligand means the chelate effect aids the formation and stability of coordination complexes.

Phosphine ligands are classed as soft Lewis bases and therefore prefer coordinating to soft Lewis acids, however since many are strong σ -donors there are examples of phosphines forming bonds with hard Lewis acids. ^{36,40-42} For complexes involving phosphine ligands, ³¹P{¹H} NMR spectroscopy provides a highly convenient probe at the site of coordination, from the atom bonded directly to the Lewis acid.

Phosphine and arsine donor ligands follow the σ -donor π -acceptor model when bonding to d block transition metals and as the group descends, the energy separation between s and p orbitals increases. This increases s character on the lone pair making them less available, and coupled with increased orbital diffusivity, results in arsine ligands being weaker σ -donors than phosphines. The σ -donation power of Group XV ligands can be improved with electron donating substituents, thus alkyl ligands are better σ -donors than aryl ligands. This strong σ -donation allows a variety of complexes of hard metal acceptors with phosphine or arsine donor ligands to be stabilised. Only certain Group XV ligands will produce stable complexes as the orbital overlap can become too poor. Strong σ -donation from an alkyl phosphine ligand allows coordination to high valent metal centres, but in some conditions phosphines can reduce transition metals in a competing reaction. Softer Group VX ligands (arsines or stibines) with poor orbital overlap with the metal's d orbitals increase the likelihood of halogenating the ligands and reducing the metal centres.

The three R groups on tertiary phosphines play an important role in the electronic and steric properties of the ligand. Large and bulky R groups (aryls) can cause steric clash and prevent coordination, the method used to quantify the steric properties of phosphines is by its 'cone angle'.

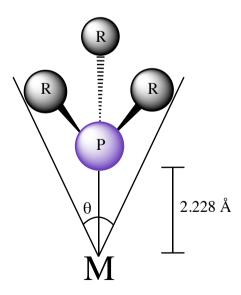


Figure 1.3: Tolman's cone angle (θ) model.⁴⁸

The Tolman's cone angle can easily be measured from crystallographic studies however it can also be calculated, to a reasonable degree of accuracy, when no crystallographic data is available. The cone angle is defined as the apex of a cylindrical cone formed by a point 2.228 Å (representing an idealised M-P bond length) away from the phosphorus atom and just touching the Van der Waals radii of the outermost atoms of the R group when folded up (Figure 1.3).⁴⁸ Wider cone angles indicate greater steric bulk (e.g. PMe₃ $\theta = 118^{\circ}$ and PPh₃ $\theta = 145^{\circ}$)^{48,49} whereas for bidentate ligands the cone angle is calculated from the outer non-bridging substituents and the bisector of the P-M-P angle (Me₂P(CH₂)₂PMe₂ $\theta = 107^{\circ}$).⁵⁰ The Tolman's cone angle model has been extended to include arsine and stibine ligands showing the cone angle decreasing as Group XV descends.¹¹

The model does have some limitations when compared to actual crystallographic data, it is shown to generally underestimate the steric demands of the phosphine ligands, and it is suggested to underestimate these demands by 15 to 25°, with increased differences in bidentate ligands.⁵¹ Tolman's cone angle model is now considered outdated with significant advancements in modelling steric bulk computationally. DFT optimised models have been used to calculate new cone angles with methodologies including AARON⁵² and Solid-G^{53,54} or alternatively mapping average local ionization energy of ligands.⁵⁵

Chelating diphosphines and diarsines have bite angles (E-M-E) which are important when choosing ligands. The bite angle is determined by constraints imposed by the backbone of the ligand, steric repulsion between substituents and the steric and electronic requirements of the Lewis acid (and any other ligands coordinated). Bidentate phosphines and arsines tend to form the most stable complexes when a five-membered ring is formed because the bite angle is close to 90° , which is beneficial to octahedral and square planar complexes. The d(M-E) bond length also strongly influences the observed bite angle.

It is shown for monodentate phosphines that the change in chemical shift upon coordination, Δ , compared to uncoordinated ligand in solution, δ , are directly related to Equation 1.1. Using this equation the predicted chemical shift can be determined with high accuracy, provided there is enough analogous data.⁵⁸

$$\Delta = A\delta + B$$

Equation 1.1: The prediction of chemical shift of a monodentate phosphine ligand upon coordination in ³¹P NMR spectroscopy. A and B are constants derived from the individual ligand. ^{58,59}

This prediction is extremely useful to help determine the structure of a species; however, it cannot be applied to bidentate phosphines. This is due to a ring contribution, Δ_R , which is defined as the difference between the coordination chemical shift, Δ , of a *cis*-disubstituted phosphine complex and the coordination chemical shift of the analogous phosphorus in a chelate complex. Table 1.1 shows an example of the contribution of the ring to the chemical shift of a number of bidentate phosphine and monodentate phosphine ligands.⁵⁹

Complex	Chelate Ring Size	Δ	$\Delta_{ m R}$
$[\mathrm{Me_2Pt}(\mathrm{PPh_2Me})_2]$	0	+34.4	-
$[Me_2Pt(Ph_2P(CH_2)PPh_2)]$	4	-17.4	-51.9
$[Me_2Pt(Ph_2P(CH_2)_2PPh_2)]$	5	+67.7	+33.3
$[Me_2Pt(Ph_2P(CH_2)_3PPh_2)]$	6	-20.5	-14.0

Table 1.1: An example of the ring contribution of three different phosphine ligands of varying ring size. 59

Complexes which have five-membered chelate rings show a large positive ring contribution and, as such, resonances are found much further downfield than four- and six-member ring analogues.⁶⁰ The exact origin of this ring contribution is unclear but the existence and subsequent downfield shift, particularly for the five-member ring systems, is a widely observed phenomena.^{36,61,62}

Many monodentate and bidentate phosphines and arsines are now commercially available, a small number still have to be synthesised in-house, such as the methyl substituted *o*-phenylene backbone ligands o-C₆H₄(EMe₂)₂, whereas o-C₆H₄(PPh₂)₂ can be purchased. The one common method is the reduction of a phosphine oxide, however given the strength of the P=O bond, powerful non-selective reagents are required, LiAlH₄, HSiCl₃ or Si₂Cl₆. ⁶³

Figure 1.4: Scheme showing the synthesis of o- $C_6H_4(PMe_2)_2$ and o- $C_6H_4(AsMe_2)_2$ in THF. ^{64,65}

1.3.2 Neutral Phosphine Oxide Ligands

Phosphine oxide (OPR₃) ligands are an important class of neutral ligands which are usually significantly easier to handle than their phosphine counterparts. The P=O bond is very stable (589 kJ/mol), ⁶⁶ resulting in phosphine oxides being very robust molecules and can be obtained from phosphines with a variety of oxidising agents; conversely the reverse reaction requires strong reducing agents (Figure 1.4). ⁶³ The behaviour of phosphine oxides is strikingly different to phosphines owing to the hard nature of the bonded oxygen, classing them as hard Lewis bases. Unlike amine oxides which are easily reduced, phosphine oxides are often unwanted side products from reactions with phosphines.

Phosphine oxides are in their own right a versatile and useful series of ligands, allowing the ability to change substituents. In bidentate ligands, the length of the backbone which provides greater control over the electronic and steric requirements of the ligand. Due to the extensive range of P=O

containing ligands this work will focus primarily on tertiary phosphine oxides and for monodentate phosphine oxide all substituents will be the same (to remove the possibility of chiral centres).

The nature of the phosphorus-oxygen bond has been the subject of much debate, it was first suggested as a dative bond, with the lone pair of electrons on the phosphorus filling the 'octet' of electrons on the oxygen. It was subsequently described as a formal double bond owing to the vacant d-orbitals on the phosphorus allowing π -back bonding from a pair of electrons on the oxygen. However, P=O bonds behave very differently to other double bonds, C=C or C=O and a theoretical study showed the d-orbitals had no role in bonding. Alternatively, the bond is described as a σ -bond which causes a strong ionic charge on each atom; this ionic component strengthens and subsequently shortens the bond. It also includes π -back bonding from the lone pairs on the oxygen and acceptor antibonding orbitals in the PR₃ moiety. It is still unclear the precise nature of the bond, however in most literature it is referred to as P=O with a caveat that the bonding is not fully understood. The P=O bond exhibits a large dipole moment and readily forms complexes with hard Lewis acids unlike soft neutral phosphines. 12,70,71

Phosphine oxides have smaller steric requirements around the metal centre compared to phosphine ligands but no longer possess the ability to form a five-member chelate ring. An ethylene backbone ligand would lead to a seven-member chelate ring, which can result in the formation of bridging complexes between two or more metals instead of chelation.⁷²

Phosphine oxides are commonly prepared from their respective phosphines, traditionally aqueous H₂O₂ was used as an oxidising agent to form aryl-phosphine oxides.^{73,74} The co-crystallisation of H₂O₂ with the phosphine oxide however can result in the violent detonation of the peroxide.⁷⁵ Transition metals have been shown to promote the oxidation of aryl-phosphines, likely through metal-dioxygen intermediates. Reaction of aryl phosphines, SnI₄ and dry O₂ has been shown to cleanly catalytically convert phosphines to phosphine oxides.⁷⁵

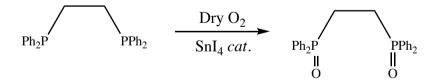


Figure 1.5: Scheme showing the synthesis of bis-(diphenylphosphino)ethane dioxide by dry oxidation catalysed by SnI₄.75

1.3.3 Chalcogenoether Ligands

Coordination chemistry of chalcogenoethers (ER₂, where E = S, Se or Te; R = alkyl or aryl) to transition metals has gained a considerable amount of interest in recent years. High oxidation state transition metals with neutral chalcogenoethers however are still relatively scarce. Thioethers are soft Lewis bases and the ligands get softer as the chalcogen gets heavier. While steric effects play a vital role in the coordination of Group XV ligands including phosphine and arsine ligands

Chapter 1

(as described by Tolman's cone angle), this is not the case for Group XVI ligands; as the chalcogen only has two substituents. Therefore, the electronic factors play a more substantial role than in phosphine and arsine ligands. In neutral chalcogenoether ligands, ER₂, the chalcogen has two available lone pairs for bonding, in most cases a single σ -bond is formed to a metal centre (σ -acceptor). Occasionally, the second set of paired electrons can contribute to a σ -bond to a second metal centre forming a bridged dimer as described by, [(WCl₃)₂(μ -SEt₂)₃] or [(NbCl₂(SMe₂))₂(μ -SMe₂)(μ -Cl)₂] (Figure 1.6).^{78,79}

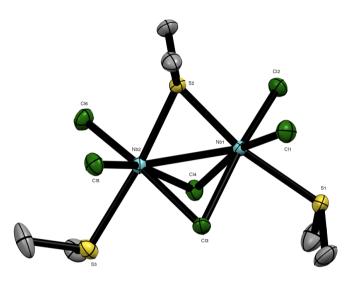


Figure 1.6: The structure of [(NbCl₂(SMe₂))₂(μ-SMe₂)(μ-Cl)₂] showing an example of a bridging thioether. Hydrogen atoms omitted for clarity, ⁷⁹

As Group XVI is descended there is increased shielding from the nucleus meaning the valence electrons of tellurium are more diffuse than the valence electrons on sulfur, resulting in tellurium being much softer. Tellurium orbitals have poor overlap with the valence shells of carbon resulting in many tellurium ligands being unstable and Te-C cleavage is common.^{34,80} The diffuse orbitals also interact poorly with contracted orbitals of high valent early transition metals, tellurium ligands (especially telluroethers) with high valent metals are therefore extremely rare.^{34,80}

Chalcogenoethers can have two different R groups which are not always the same, this can give rise to chirality upon coordination. The monodentate chalcogenoethers used in this project had the same R groups to prevent the formation of chiral centres on the chalcogen atoms. Bidentate chalcogenoethers, for example MeS(CH₂)₂SMe, have two different alkyl groups (terminal methyl and an ethylene linker) on the chalcogen atom. Upon coordination, this gives a *meso* form (an achiral compound with optically inactive stereocentres) and a pair of *DL* enantiomers (Figure 1.7). Conversion between diastereoisomers can occur within an NMR spectroscopy time scale by pyramidal inversion.^{34,81,82} A bidentate chalcogenoether such as MeSe(CH₂)₃SeMe can either chelate to a metal centre or act as a bridging ligand shown in [NbCl₄(MeSe(CH₂)₃SeMe)] or [(TaCl₅)₂(*o*-C₆H₄(CH₂SEt)₂)] (Figure 1.8).^{44,83}

Figure 1.7: Illustration of meso (left) and DL isomers (right).

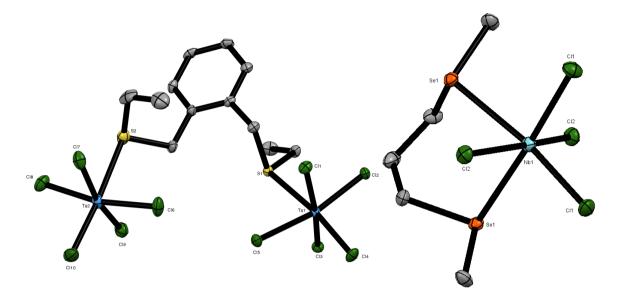


Figure 1.8: Crystal structures of [(TaCl₅)₂(o-C₆H₄(CH₂SEt)₂)] (left) an example of a bridging thioether and a meso chelated thioether, [NbCl₄(MeSe(CH₂)₃SeMe)] (right). Hydrogen atoms omitted for clarity.^{84,85}

In this research, the monodentate chalcogenoethers ER_2 (E = S, Se or Te; R = Me, nBu or Ph) were used. The Me-substituted ligands were chosen as the simplest chalcogenoethers and to encourage crystal growth, whereas nBu terminal groups were used to investigate the suitability of the products for the potential use in CVD applications. Ph substituents were selected when evidence of reduction was observed, these ligands are poorer σ -donors but less readily oxidized or chlorinated, making reduction of the metal centre less favourable. Bidentate chalcogenoethers, $RE(CH_2)_nER$ (E = S, Se; E = Me, Ph or E = S or 3) and E = S or Te), were used to attempt to form either chalcogenoether bridged dinuclear complexes or mononuclear chelate complexes.

Many simple chalcogenoethers are now commercially available (SMe₂, SPh₂, SeMe₂, SⁿBu₂, *etc.*), but given their volatility and niche use, dichalcogenoethers and tellurium ligands still need to be made in the laboratory. The bidentate thioethers with aliphatic backbones are typically prepared from thiols, 1,2-ethanedithiol, sodium and haloalkanes (RX) are used to prepare RS(CH₂)₂SR (Figure 1.9).⁷⁴

$$RSH + Na \xrightarrow{EtOH} RSNa \xrightarrow{X(CH_2)_2X} RS$$

Figure 1.9: Scheme of the synthesis of RS(CH₂)₂SR from thiols.^{74,86}

Alternatively, bidentate thioethers can be prepared from RSNa and $X(CH_2)_nX$ (X = Cl, Br or I) (Figure 1.9) to form $RS(CH_2)_nSR$. Most aliphatic backbone bidentate thioether ligands can be prepared with analogous starting materials, both routes use commercially available reagents and produce good yields.

Synthesis of *o*-phenylene backbone thioethers are slightly more complicated, initial methods used copper thiolate with *o*-dihalobenzene in pyridine.⁸⁷ This avoided the use of high temperatures and highly reactive reagents however yields were variable and copper reagents are challenging to handle.^{88,89} An alternative method uses *o*-dihalobenzene and ⁱPrSNa to form *o*-C₆H₄(SⁱPr)₂, subsequent reaction with MeI results in the formation of *o*-C₆H₄(SMe₂)₂ (Figure 1.10).⁹⁰ Direct reaction of RSNa and halobenzenes requires careful stoichiometric control and certain conditions as excess RSNa produces aromatic thiols.⁹¹

Figure 1.10: Synthesis of o-C₆H₄(SMe₂)₂ in HMPA via a o-C₆H₄(SⁱPr)₂ intermediate. ⁹⁰

Selenols, RSeH, are not commercially available as they are not particularly stable; therefore RSeLi reagents tend to be made *in-situ*. Reaction of elemental selenium and an alkyllithium in frozen THF prepares RSeLi which is subsequently reacted with a dihaloalkane in THF forming RSe(CH₂)_nSeR (Figure 1.11).⁹²

RLi + Se
$$\xrightarrow{THF}$$
 RSeLi \xrightarrow{RX} SeR₂

RLi + Se \xrightarrow{THF} RSeLi $\xrightarrow{X(CH_2)_2X}$ RSe \xrightarrow{SeR}

Figure 1.11: Synthesis of mono- and bi-dentate selenoethers from the addition of RLi and selenium with haloalkanes. 77,92

Although simple monodentate selenoethers are commercially available, those with less common R groups can be prepared in the same way as the bidentate selenoethers (Figure 1.11).⁷⁷ The preparation of the *o*-phenylene backbone selenoethers are significantly more complicated than their aliphatic counterparts. The RSe⁻ ions are not sufficiently nucleophilic to react directly with *o*-dihalobenzene, therefore *o*-C₆H₄(SeMe)₂ can be prepared from reaction of Me₂Se₂ and benzyne in

o-dichlorobenzene (Figure 1.12). However, this synthesis can be problematic as the intermediates are highly reactive and can be explosive when dried.

$$\begin{array}{c} O \\ OH \\ NH_2 \end{array} + \begin{array}{c} Cl_3CCOOH + \\ Bu \end{array} \\ O \\ O \\ O - C_6H_4Cl_2 \end{array} + \begin{array}{c} SeMe_2 \\ O - C_6H_4Cl_2 \end{array} \\ \begin{array}{c} SeMe_2 \\ O - C_6$$

Figure 1.12: Synthesis of o- $C_6H_4(SeMe)_2$ from o-benzyne and Se_2Me_2 and from RLiSe solution. 80,92

A second method can be used which utilises RSeLi and *o*-dibromobenzene with a second addition of alkyllithium, which eliminates the need for benzyne (Figure 1.12).⁸⁰

Tellurium ligands have been shown to be much more challenging to synthesise due to poor orbital overlap between tellurium and carbon. In addition, tellurium forms weak bonds with hydrogen meaning the resulting tellurols are poor reagents. Telluroethers are usually air sensitive unlike their seleno- and thio-ether analogues and their malodorous nature means they are not that extensively studied. 10,76

Dimethyl tellurium can be synthesised from MeLi, elemental tellurium and MeI to isolate [TeMe₃]I followed by reduction with PPh₃. 93 The synthesis of bidentate telluroethers, RTe(CH₂)_nTeR, are significantly more difficult than their lighter counterparts and only n = 1 or 3 backbone ligands have been successfully synthesised (Figure 1.13). They proceed through a similar reaction as their seleno- analogues but the addition of the dihaloalkane has to be completed in frozen THF. 94,95 Attempts to isolate MeTe(CH₂)₂TeMe have been unsuccessful resulting in Te₂Me₂ and olefin and longer backbones produce tellurocycles. 94,96 An alternative method is the cleavage of Te₂R₂ with a base and the addition of a dihaloalkane at low temperature although the Te₂R₂ requires presynthesis. 97

RLi + Te
$$\xrightarrow{\text{THF}}$$
 RTeLi $\xrightarrow{\text{3MeI}}$ [Te(Me₃)]I + PPh₃ \longrightarrow TeMe₂

RLi + Te $\xrightarrow{\text{THF}}$ RTeLi $\xrightarrow{\text{TeR}}$ RTeLi $\xrightarrow{\text{TeR}}$ TeR

Figure 1.13: Synthesis of TeMe₂ and RTe(CH₂)_nTeR (n = 1 or 3) from RLi and tellurium. ^{93,94,96}

Oddly, the *o*-phenylene backbone ligands are simpler to synthesise than their selenium analogues and follow a similar preparation to the tellurium ligands described above. Additionally, the *o*-xylyl backbone ligand, *o*-C₆H₄(CH₂TeMe)₂ can also be prepared this way (Figure 1.14). 98

RLi + Te
$$\frac{\text{THF}}{-198^{\circ}\text{C}}$$
 RTeLi + $\frac{\text{THF}}{-198^{\circ}\text{C}}$ RTeLi + $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$ $\frac{\text{THF}}{-198^{\circ}\text{C}}$

Figure 1.14: Synthesis of the ligands o-C₆H₄(TeMe)₂ and o-C₆H₄(CH₂TeMe)₂ from RLi and elemental tellurium. ^{80,98}

1.4 Semiconductors

Semiconductors are of huge importance across science and research, they are present in nearly all electronics and batteries, and have a wide range of properties. A semiconductor is a material which has a filled/mostly filled valence band and an empty conductance band, similar to an insulator. The valance and conductance bands are separated by an energy gap, E_g , (the energy required for an electron to jump from the valence band to the conductance band). In an insulator, this gap is too wide, and the electrons cannot move bands therefore the material cannot conduct (Figure 1.15). In most semiconductors their conductivity depends on temperature, as the closer to absolute zero they get the more they behave like insulators. This ability to regulate the amount of conductance in a material is vital to many applications including lasers and light emitting diodes. There are two types of semiconductors, intrinsic and extrinsic.

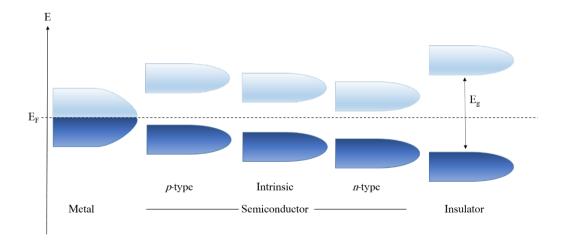


Figure 1.15: Illustration of electronic states where light blue is the conductance band and blue is the valence band.

Intrinsic semiconductors are chemically pure but their conductivity is poor due to equal numbers of electrons and holes and conductance is provided by excited electrons. Extrinsic semiconductors differ from intrinsic semiconductors as the charge carriers are provided from impurities in the material - this can be done deliberately in a process known as doping. ¹⁰⁰ Doping allows increased conductivity, depending on the type of impurity, *n*-type and *p*-type semiconductors can be produced. Silicon, for example, is a poor semiconductor in its pure form but if doped with

pentavalent impurities *i.e.* phosphorus or arsenic it produces an *n*-type semiconductor, the impurities are electron donors resulting in additional electrons in the conductance band. Conversely, if doped with trivalent boron which acts as an electron acceptor, the energy level of the impurity is closer to the valence band, so the electrons are excited, leaving the valence band, resulting in holes in the valence band which act as the charge carriers.¹⁰¹

The ability of an electron to jump to an excited state is governed by the energy between the valence and the conductance band, E_g , known as the bandgap; the smaller the bandgap, the higher the conductivity. Doped semiconductors have reduced bandgaps due to the impurities moving the energy levels closer to either the valence or the conductance bands. Semiconductors can either have a direct or indirect bandgap, both the valence and conductance band have an assigned k-vector for crystal momentum. If these vectors are equal then an excited electron jumps to the conductance band, which allows the formation of an electron-hole pair causing the electron to emit a photon (Figure 1.16). In semiconductors that have indirect bandgap, the maxima energy of the valence band and the minima of the conductance band do not occur at the same momentum. Therefore, they do not have the same k-vector and a photon cannot be directly emitted because the electron must undertake a significant change of direction to produce an electron-hole pair. As a result direct bandgap semiconductors are used to make optical devices whereas indirect bandgap materials are not suitable. 102

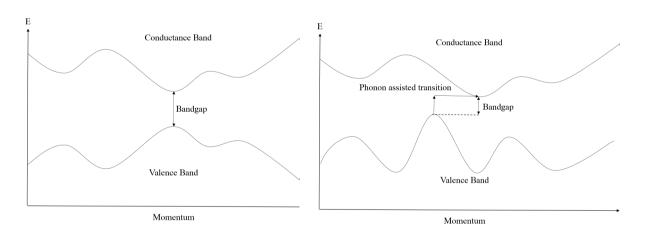


Figure 1.16: Illustration depicting direct band gap (left) and indirect bandgap (right) showing the excitation of an electron into the conductance band.

1.5 Thin Film Transition Metal Dichalcogenides

The production of layered transition metal dichalcogenide thin films is attracting huge interest due to the ability to tune various properties (importantly bandgap) and their structural relationship to graphene. These two-dimensional transition metal dichalcogenides (TMDC) have a general formula of ME₂ where M is a transition metal and E is a chalcogen (S, Se or Te). M–E bonds are mainly covalent, but the individual layers are held together by van der Waals forces, allowing easy cleavage between the layers, similar to graphene. Having been studied since the 1960s, 2D TMDCs

Chapter 1

have regained scientific interest since the characterization of graphene. ¹⁰³ In bulk, TMDC have a large range of properties, such as, semiconductors (MoS₂), semimetals (WTe₂) and insulators (HfS₂). Producing these materials as two dimensional films not only retains many of their original properties from bulk but can lead to additional desirable properties and characteristics (including direct bandgaps and increased conductivity). ¹⁰⁴

Each layer of the material consists of a transition metal sandwiched between two chalcogens; since the chalcogens are saturated, this results in the material being relatively inert due to the lone pair electrons on the chalcogen terminating on the surface, forming a protective layer. ¹⁰⁵ These sandwich layers form hexagonal planes of M-E-M, these planes can then stack in different orders giving rise to different polymorphs (Figure 1.18). ¹⁰⁶ This sandwiching also confines the charge carriers in the x and y directions, differing their properties from their bulk counterparts. ¹⁰⁷ These differing properties makes their potential for a wide range of applications very attractive, such as electro catalysis, photovoltaics and microelectronics. ^{104,108}

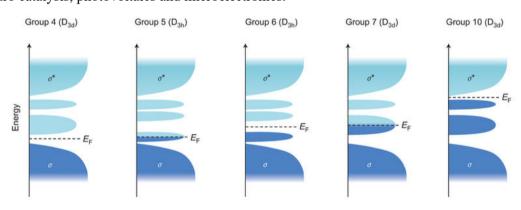


Figure 1.17: Illustration showing the filling of d orbitals and the effect on the bonding and anti-bonding states, for groups 4-7, 10 and their associated point group, assuming ideal coordination.¹⁰⁷

Thin ME₂ films which only contain a few layers can be in one of three phases, the most common polymorphs are 1T, 2H and 3R, where T, H and R, are tetragonal, hexagonal and rhombohedral respectively and the number refers to the number of layers in the stacking sequence. ¹⁰⁴ Monolayer TMDC only show two polymorphs; trigonal prismatic and an octahedral phase, D_{3h} and O_h point group, respectively. ¹⁰⁴ MoS₂ and WS₂ both exhibit 1T and 2H phases. Studies show that the two phases show lattice matching, forming domains between the phases. ¹⁰⁹ In MoS₂, the 2H phase is considered semiconducting and the 1T phase is considered metallic. ¹¹⁰ The majority of the electronic properties of a TMDC arise from the chalcogen, S > Se > Te (bandgap decreases with heavier chalcogens) the metal atom's *d* orbitals still have a small effect on the bandgap (Figure 1.17). ¹¹¹

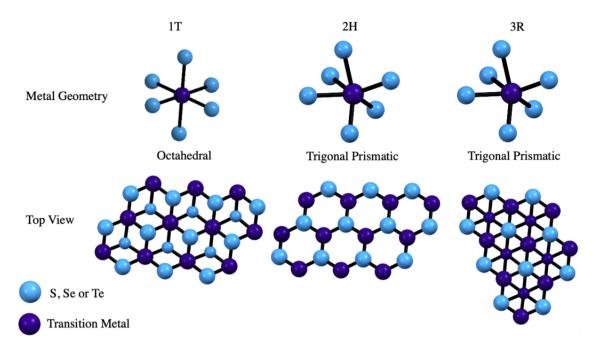


Figure 1.18: Illustration of bonding and layer stacking in transition metal dichalcogenides for the 1T, 2H and 3R phases.

When the thickness of Group VI TMDCs are reduced, the bandgap becomes larger and moves from indirect to direct band gap, which causes enhanced photoluminescence; 112 these properties in the 2D are desirable for thin film optoelectronics. 113 These properties can be desirable for specific applications, this has allowed significant developments in the TMDC field in recent years as interest has grown, shown in the range of methods and materials reported.

1.6 Chemical Vapour Deposition

Chemical vapour deposition is a technique used to coat usually an insulating substrate with a desired material, in this instance layered transition metal dichalcogenides, ME_2 (M = Ti, Hf, Nb, Ta, Mo or W; E = S, Se or Te). CVD is a thermally driven technique that utilises the formation of a stable solid product, as either a powder or thin film. A precursor(s) is heated (or activated with light or plasma) and decomposes onto a substrate, products are formed under a homogenous phase (e.g. vapour).

CVD allows deposition of very thin crystalline films and in some examples, selective deposition onto nano-patterned substrates has been reported. The method utilised in the project is low pressure chemical vapour deposition (LPCVD) where depositions are performed under vacuum and precursors are decomposed with heat, an example set up is shown below (Figure 1.19).

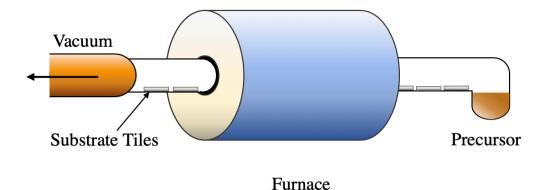
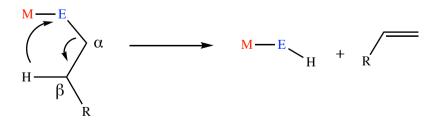



Figure 1.19: A typical set up for LPCVD experiments. The precursor is loaded into the tube on the right hand side bulb. Substrate tiles are place across the length of the tube, the arrow representing an active vacuum.

Chemical vapour deposition experiments can be performed using either a single source or dual source precursor (Figure 1.21). Single source precursors provide the ability to control more variables and therefore more influence over the films produced. Predetermining the stoichiometry of the metal and the chalcogen and the molecular weight allows greater control over the deposition conditions and subsequent film characteristics. In contrast, dual source or multisource precursors consist of separate molecules each providing one of the target elements.

As single source precursors have all the required elements, they tend to have higher molecular weights than dual source precursors. This results in greater stability but reduced volatility, especially when the target material contains heavy atoms (tungsten or tellurium for example). The reduced volatility means higher temperatures are required but precursors must also be stable at these higher temperatures.

The criteria of single source precursors mean they are tailored for each material and generally have to be synthesised as they are not commercially available. However, this allows the precursors to be individually tailored, depending on the material to be deposited. A drawback is some complexes are unstable, there are no examples of single source deposition of MTe₂ (M= Ti, Zr, Hf, V, Nb, Ta, Mo or W) films, as Te-C bonds are prone to cleavage.

Figure 1.20: A diagram showing β *-hydride elimination pathway.*

To minimise impurities in the films, precursors are designed to have a facile decomposition pathway; forming volatile by-products (Figure 1.20). Terminal alkyl chains are often employed to stabilise precursors and provide a low energy decomposition pathway *via* β-hydride

elimination. 116,117 Precursors which can undergo β-hydride elimination can facilitate the removal of gaseous by-products such as ethene or butene (Figure 1.21).

Dual source precursors tend to be commercially available with lower molecular weights, common reagents include metal halides, metal oxides and chalcogen sources tend to include elemental chalcogen, chalcogen containing oxides or thiols. The high ratio of oxygen can result in MO₂ or MO₃ incorporated into the deposited films and affect the film's properties. 122

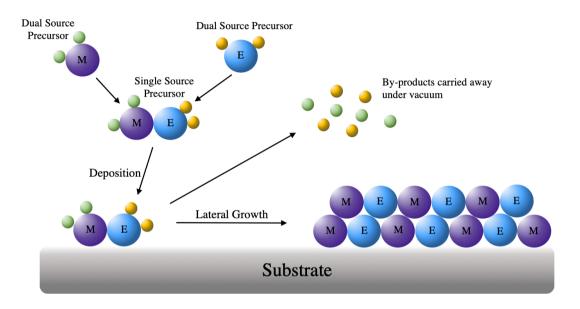


Figure 1.21: Illustration of deposition of a thin film of a desired material onto a substrate via single or dual source deposition. 123,124

1.7 Electrochemical Deposition

The possibility of being able to electrochemically deposit materials onto surfaces was first discovered in the late 1830s. However, the only application for electrodeposition at this time was likely to be electroforming, involving simple copper salts. The deposition of various metals in thin, dense coatings is linked to the development of cyanide plating baths, enabling the deposition of silver by John Wright in 1840. Following this, a number of examples for the deposition of gold, copper, lead and other metals from cyanide baths were causing new interest in the development of thin film materials which has continued to today. 125

Electrodeposition is an electrochemical process that usually involves the reduction of a metal species at an electrode from an electrolyte solution. The applied electrical current allows the formation of a desired material at the electrode, it then subsequently deposits onto a conductive substrate (electrode). This process is controlled mainly by the diffusion of the metal species to the surface of the electrode. The diffusion of the metal species is dependent on the size of the species and the electrolyte chosen for the solution *i.e.* how viscous it is. ¹²⁶ The potential used in the system can be just as important as the size and charge of the metal species, if the potential is less negative than the equilibrium potential, deposition occurs prior to equilibrium, resulting in non-favourable

deposition, a process known as under-potential deposition. However a larger potential can lead to little or no deposition at all, known as over-potential.¹²⁷

Traditionally, electrodeposition has been conducted using aqueous solutions as this allows the ability to control the pH of the bath and influence the chemistry of the metal ions and therefore the potential product. However there are some drawbacks of using aqueous solutions; it can promote hydrogen liberation, small electrical windows (~2V), low thermal stability and is not always suitable for some transition metals. Therefore, alternative electrochemical baths are required; organic solvents, molten salts and ionic liquids have all shown to be suitable baths for some depositions. 128-130

Typically, electrochemical solutions contain a solvent (i.e. water) containing a solvated salt, whose ions conduct electricity. Traditional salts can be melted down to form a molten solution that can conduct electricity. These salts have a relatively good heat capacity and can be heated to relatively high temperatures (>700 °C). The most commonly used salts are LiCl-KCl and NaCl-KCl, ¹²⁸ however they can be highly corrosive. ¹³¹ A subset of molten salts are room temperature ionic liquids (RTIL), viscous liquids at room temperature, where the cations are typically tetraalkylammonium, [R₄N]⁺, or cyclic amines. ¹²⁸ First generation ionic liquids were air and moisture sensitive until 1-ethyl-3-methylimidazolium (EMIM) and tetrafluoroborate were used as air and moisture stable electrolytes. ¹³² These ionic liquids are usually non-volatile, non-flammable and have a wide electrical window however, due to their high viscosity and high density, ionic liquids can have high conductivity but the diffusion of the metal species can be limited.

The use of conventional organic solvents is also common place in electrodeposition, which allows techniques that are easy to control, are cost effective and are proven to effectively deposit metals and compounds such as Lu-Ni alloys from dimethyl sulfoxide (dmso). Organic solvents do have some challenges such as evaporation of the solvent and flammability, however they do allow better solubility of electrolytes and materials, but compared to ionic liquids they have been given relatively little attention.

Electrodeposition offers some advantages that other methods do not, most notably control of the end product (thickness and deposition area). Material will only form if there is an electrical contact using relatively mild reaction conditions, allowing materials that would not be stable under harsh conditions to deposit. Processes like CVD require high temperatures in which to vaporise the precursors in contrast, electrodeposition is typically carried out at much lower temperatures (r.t. to ~150 °C). These lower temperatures, and the ability to control the potential of the system (and therefore the rate of deposition), in principle allows greater control of the deposits than other thin film techniques. Also, electrodeposition is a bottom up technique allowing a high density material to be formed and therefore offers efficient volume filling with fewer defects. Electrodeposition has many potential applications and is already used in industry, ¹³⁵ for integrated copper circuits known as the Damascene process ¹³⁶ and magnetic recording devices. ¹³⁷

1.8 Analytical Techniques

A number of analytical techniques have been used to characterise compounds that have been synthesised in this work. Solid state techniques, such as IR spectroscopy, X-ray diffraction and UV-vis spectroscopy, and solution techniques, including multinuclear NMR spectroscopy ¹H, ³¹P{¹H}, ⁷⁷Se{¹H}, ⁹⁵Mo, ¹⁸³W were used to fully characterise the complexes in solid and in solution. An important caveat to NMR spectroscopy is that it may not be representative of the compound in solid state (e.g. due to poor solubility or dissociation of the ligand and the metal centre owing to high lability of donor-acceptor interactions) making solid state analysis vital. Elemental analysis (C, H and N) has also been undertaken to confirm the chemical composition and verify purity of the bulk products. Analysis of thin films has also been completed using Raman spectroscopy, EDX/WDX, grazing incidence X-ray diffraction and XPS.

1.8.1 Infrared Spectroscopy

Infrared spectroscopy was performed, as Nujol mulls over the range 4000-200 cm⁻¹, to identify the bonds or functional groups within a compound, with an emphasis on M-X and M=E bands due to their characteristic stretching frequencies. Every bond has a vibrational energy and a number of vibrational transitions. When a compound is irradiated with energy that matches the vibrational transition, the energy is absorbed by the compound; these vibrational transitions must cause a change in a permanent dipole for the bond to be IR active. This absorption can be measured against a pre-recorded background resulting in the characteristic IR spectrum.

Key vibration bands lie in the 'fingerprint' region (1500-200 cm⁻¹). IR spectroscopy is particularly useful for coordination chemistry as functional groups such as P=O and P=S have well defined absorptions (P=O ~1100 cm⁻¹) that shift significantly upon coordination to a metal centre. It can also be useful in showing the absence of particular solvents, especially water which has a strong broad absorption at (3500-3300 cm⁻¹) and a bending mode (~1650 cm⁻¹). The presence of W=S (600-500 cm⁻¹), W=O (900-1000 cm⁻¹) and Mo=O (900-1000 cm⁻¹) stretches are important for showing the incorporation of a terminal bond and all show a shift upon coordination to neutral ligands (due to increased coordination number).

Group theory can be used to determine the molecular symmetry of a complex from the number of stretches observed for a particular bond. Typically, v(M-X) (M = metals; X = halides) of transition metal halide complexes lie between 600-200 cm⁻¹, providing information on the oxidation state of the metal centre and the geometry of these complexes. However, group theory assumes the compound is a molecular species and does not take into account solid state effects such as intermolecular interactions. This can cause broadening of peaks and fewer bands being observed due to reduced symmetry; peak splitting can also occur. IR spectroscopy also provides an insight into oxidation state and coordination number if a series of compounds can be compared.

1.8.2 Multinuclear NMR Spectroscopy

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique that exploits the magnetic properties of atomic nuclei, typically in the solution state. It can give information regarding structure and chemical environments, providing the molecule contains NMR active nuclei. It provides data on chemical shifts, multiplicities, coupling constants and coordination shifts, which are vital to identifying compounds and their behaviour in solution.

NMR Nucleus	Nuclear Spin (I)	Natural Abundance (%)	Quadrupole Moment (10 ⁻²⁸ m ²) (Q)	Resonance Frequency (at 2.35 T)	Reference Standard
¹H	1/2	99.9	-	100	Residual solvent protons
31 p	1/2	100	-	40.5	H ₃ PO ₄ , 85% aq
⁷⁷ Se	1/2	7.63	-	19.1	Me ₂ Se
⁹⁵ Mo	5/2	9.55	0.12	6.7	2M Na ₂ MoO ₄ aq
183W	1/2	14.31	-	4.2	1M Na ₂ WO ₂ aq

Table 1.2: Selected properties of NMR nuclei utilised in this work. 139

All reported parameters in Table 1.2 affect what is observed in an NMR spectrum. In a molecule or complex there is an electric field gradient (efg) at each nucleus, caused by asymmetry in the local charge distribution (from electrons of nearby nuclei). The nucleus always tries to orient itself to be in the lowest energy state, if a nucleus has I = 1/2 then the nucleus can remain in the lowest energy state. If a nucleus has I > 1/2 then it cannot be in the lowest energy state and it is constantly trying to orient to the lowest possible energy level. The electric field gradient couples with the quadrupole moment from the nucleus to provide an efficient relaxation pathway (quadrupolar relaxation). Quadrupolar relaxation is normally more dominant than other relaxation pathways which can result in line broadening. In some cases, the broadening is so significant that the resonance cannot be determined; it can also broaden nearby nuclei as a result of interactions with the quadrupolar nucleus. In some quadrupolar nuclei, NMR spectra can only be observed in highly symmetric molecules. Symmetrical molecules have a lower electric field gradient and therefore a slower relaxation time, which results in sharper resonances, sometimes couplings can be observed, but only over one bond. 139

The favourable nuclear properties of the ^{31}P NMR nucleus (I = 1/2) make it vital for characterising complexes involving phosphine or phosphine oxide ligands. The ^{75}As nucleus has a spin of I = 3/2 and a natural abundance of 100%, however it has a large quadrupole moment (Q = 0.29 x 10^{-28} m²) that leads to severe broadening and cannot be studied except in highly symmetrical environments.

1.8.2.1 Selenium NMR Spectroscopy

There are six naturally occurring isotopes of selenium, but only one, 77 Se, has a nuclear spin of I = 1/2, selected properties can be found in Table 1.2. The chemical shift range for 77 Se is

approximately 3000 ppm (2000 to -1000 ppm). ¹³⁹ In the NMR spectra of nuclei bonded to selenium, ⁷⁷Se satellites are easily recognisable with a simple coupling pattern. In similar ways to ¹H NMR spectra, a chemical shift can be observed upon coordination, which is indicative of the coordination of selenoether ligands.

1.8.2.2 Molybdenum NMR Spectroscopy

There are seven naturally occurring isotopes of molybdenum, two of which are NMR active nuclei, 95 Mo and 97 Mo; both are quadrupolar (I = 5/2). The 95 Mo nucleus has higher sensitivity than 97 Mo, 97 Mo has a larger quadrupole moment (1.1 Q) resulting in large line broadening. 140 The chemical shift range for 95 Mo is approximately 4300 ppm (2300 to -2000 ppm). With such large chemical shift values, solvent choice, concentration and temperature can have a major effect on the resonance, solvent can shift the resonances by ~ 100 ppm as seen in [MoS₄]²⁻ (2252 ppm in D₂O and 2176 ppm in Me₂SO). 141

1.8.2.3 Tungsten NMR Spectroscopy

There is only one NMR active nucleus of tungsten, 183 W, which is very insensitive, with I = 1 2. It shows large coupling constants to other nuclei (e.g. $J_{SeW} \sim 50$ Hz in $[Et_4N]_2[WSe_4]$). 142 Once again, the chemical shift range for 183 W is very large, approximately 6700 ppm (2050 to -4650 ppm) with large chemical window solvents can have a significant effect on the resonance value. Due to the inherent insensitivity and low resonance frequency, 183 W NMR spectroscopy has been of limited use however 183 W satellites are observed on other nuclei (31 P and 77 Se).

As previously stated, ³¹P, ⁷⁷Se, ⁹⁵Mo and ¹⁸³W have large chemical shift ranges, donor ligands, coordination geometry, temperature and solvent can all influence the resonance, this allows information regarding coordination around the metal centre to be obtained. While NMR spectroscopy provides a large array of information for complexes in solution, this relies on complexes being soluble and therefore NMR spectroscopy may not be representative of the bulk solid. Some complexes are dynamic in solution or have labile ligands which can cause line broadening, particularly in ¹H NMR spectroscopy, this can be reduced in some instances by cooling the solution therefore increasing the relaxation time. However, complexes with unpaired electrons cannot be studied by NMR, as they are paramagnetic and therefore spectra cannot be interpreted due to interference with the magnetic field.

1.8.3 Single Crystal X-ray Diffraction

Single crystal X-ray diffraction is an extremely powerful technique, once obtained, a structure can be determined by locating the position of atoms or ions in a crystalline solid. A single crystal is required to use this technique and it must be of suitable size and quality. Suitable crystals may be

obtained from slow evaporation of a saturated solution or by vapour diffusion. A crystal can be thought of as identical repeating units of the same structure, this can be atoms, ions or molecules. The extended crystal lattice is a pattern formed by points that represent repeating structural elements, one repeat of the pattern is called a unit cell; this is an imaginary volume from which a whole crystal can be recreated through a series of translations in the *x*-, *y*- or *z*-axes.

System	Unit Cell Parameters		
Triclinic	$a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$		
Monoclinic	$a \neq b \neq c$; $\alpha = \gamma = 90^{\circ}$, $\beta \neq 90^{\circ}$		
Orthorhombic	$a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$		
Rhombohedral	$a = b = c$; $\alpha = \beta = \gamma \neq 90^{\circ}$		
Tetragonal	$a = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$		
Hexagonal	$a = b \neq c$; $\alpha = \beta = 90^{\circ}$, $\gamma \neq 90^{\circ}$		
Cubic	$a = b = c$; $\alpha = \beta = \gamma = 90^{\circ}$		

Table 1.3: Crystal systems. 143

The unit cell is a parallelepiped and has a number of parameters; three sides (a, b and c) and three angles $(\alpha, \beta \text{ and } \gamma)$ that define the unit cell, and this gives rise to seven crystal systems (Table 1.3).

The asymmetric unit of a crystal is a section of the unit cell that contains the structural and symmetry information. The asymmetric unit can consist of one molecule or part of a molecule this basic unit can have symmetry operations applied, upon which the unit cell can be obtained, and space group discovered. Translational operations can then be applied to the unit cell to determine the packing of the extended crystal system.

In a single crystal X-ray experiment, X-rays hit a crystal at the angle of incidence, θ_I , and diffracts at the angle of reflection, θ_r , where θ_i is equal to θ_r (Figure 1.22). If Bragg's law is satisfied, then a spot is observed by the detector. Bragg's law is satisfied when the atoms are a certain distance apart that the X-rays diffract between them, in a single crystal these diffracted X-rays are constructive and therefore observed by the detector.

$$n\lambda = 2d_{hkl}\sin\theta$$

Equation 1.2: Bragg's law, n = integer, $\lambda = wavelength$, $\theta = angle$ of incidence.

Where λ is the wavelength of the X-ray beam, d is the distance between Miller planes, *hlk* are three integer numbers which define the direction of the symmetry planes with respect to the sides of the unit cell, and θ is the angle between the plane and the outgoing beam. The conditions in Bragg's law will only be satisfied by a few reflections in a randomly orientated crystal, hence the crystal must be rotated to obtain all the reflections which appear as a spot on the detector. Every crystal has different sets of Miller planes resulting in different spots and different atoms give rise to spots of varying intensity.

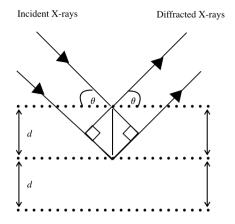


Figure 1.22: Illustration showing Braggs law.

Once all these images have been generated the pattern can be collated and undergoes data reduction. Since the intenisity of the X-ray beam, I(hkl), is proportional to the square of the wave amplitude, $|F_o|^2$, a number of corrections can be appiled to obtain the 'observed structure amplitudes'. Geometric corrections (known as Lorenz-polarization factors) are instrument dependent and therefore are well known and easily corrected for. Corrections are also made for variations in the incidence X-ray beam and scattering power of the crystal. Sometimes when there is significant absorption effects a correction is made, either by using the size and shape of the crystal or comparing symmetry equivalent reflections. Data reduction includes the merging and the averaging of repeated and symmetry equivalent measurements to produce a unique and scaled set of data.

To generate an electron density distribution map through the unit cell is a challenge because of what is known as the phase problem. Each wave has a phase, Φ , which cannot be measured and is therefore unknown, so direct calculation of electron density is impossible. There are a number of methods to solve a structure, the one used in this work is 'heavy atom methods' or Patterson Methods. The Fourier transform of the squared amplitudes, $|F_o|^2$, (where all phases are set to zero) produces what is known as a Patterson Synthesis. The map shows peaks of positive density for pairs of atoms, the peaks show where the atoms lie relative to each other. The Patterson peaks are proportional in size to the atomic numbers of the atoms concerned. Every pair of atoms has n^2 vectors which converge at the origin making this the largest peak and as the vectors between pairs are equal, the map will always have an inversion centre. Patterson peaks are broad and therefore there can be considerable peak overlap with no identifiable maxima. If a structure contains a few heavy atoms there will be a small number of peaks above the background level which are easily identified.

Once these heavy atoms are identified this gives a 'trial structure', using the forward Fourier transform equation a calculated diffraction pattern is produced and the calculated structure factors, F_c , can be compared to F_o . If the model is approximately correct there will be some resemblance between F_c and F_o . Using the calculated phases, Φ_c , as the observed phases are unknown, a new

model can be produced with more atoms. The new $|F_c|$ values are used in the next Fourier transform which gives improved Φ_c , this can be repeated until no further improvement in the model is observed. This repeated process is called a bootstrap procedure. Once all the atoms have been found the model is refined, which involves varying the numerical parameters to give the best agreement between $|F_c|$ and $|F_o|$. These parameters are known as the anisotropic displacement parameters (ADP) and are represented as thermal ellipsoids. Crystals are mounted on a support and the experiment is run at 100 K, this is to minimise thermal motion within the crystal and reduces the possibility of the crystal decomposing during collection. The thermal motion of the atoms in the structure is quantified graphically using an Oak Ridge Thermal Ellipsoid Plot (ORTEP) image.

From this technique, information about type and position of atoms, bond lengths and angles as well as intra and inter-molecular interaction may be obtained. The crystal is one or a few out of a bulk sample so may not be representative of the whole solid or the species in solution; also, multiple structures may be obtained from one attempt of growing crystals.

Disorder within crystals can make structural solution more difficult and even disorded solvent within the lattice can lead to inaccuracies in bond lengths and angles of the complex. Dynamic disorder is where bonds vibrate, bend and stretch (thermal motion) and is overcome by running experiments at low temperatures. Static disorder is caused by the random deviation of atom positions from the perfect single crystal, which results in partially occupied atom sites. In this project, the most prevalent disorder is S/Cl disorder, where M=S and M-Cl bond lengths are similar and difficult to distinguish from each other in the X-ray scattering pattern. It is common for [MECl₃(L-L)] complexes to exhibit this disorder as the chalcogen is usually *trans* to ligand, therefore it is equally likely to be in one of two positions (Figure 1.23). Complexes are modelled by making E/Cl free then using split atoms sites to ascertain the atom's respective occupancies. The atoms are then fixed at these occupancies and refined. In some instances, the bond lengths are indistinguishable and can falsely increase the symmetry in the unit cell which can result in the space group being misidentified.

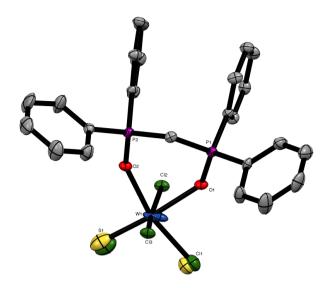


Figure 1.23: Crystal structure of [WSCl₃(dppmO₂)] showing the atom numbering scheme, an example of S/Cl across two different sites. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity.

In high valent metal complexes, Cl⁻ and S²⁻ bridged dimers can be common, but Cl⁻ and S²⁻ ligands are isoelectronic and very difficult to distinguish by X-ray crystallography without further spectroscopic data making structural refinement inaccurate.¹⁴⁴ However, differences in bond lengths between the metal and Cl/S can help differentiate the atoms by comparing them to literature values. Another common cause of disorder is the presence of disordered solvent which has crystallised in the lattice. In cases where the solvent is disordered over a large number of sites unfortunately it can be impossible to model accurately, in some instances the use of a solvent mask is vital.

1.9 UV-Visible Spectroscopy

Ultraviolet-visible spectroscopy is a simple method for observing the absorption of the electromagnetic radiation in the UV and visible regions. It is a quick and non-destructive technique and can be performed on gas, solution and solids. During an experiment, a beam is split into two, one passes through a sample and the other passes through a reference. The resulting beams are compared at a detector and the absorption displayed as function of wavelength. The intensity of absorption is measured as the absorbance and can be related to the molar concentration of the absorbing species using the Beer Lambert Law, Equation 1.3.⁶

$$A = -\log\left(\frac{I}{I_0}\right) = \varepsilon lc$$

Equation 1.3: Beer Lambert Law. A = absorbance, $\varepsilon = molar absorptivity$, l = path length and c = concentration.

UV-Vis spectroscopy is often used to probe ligand-ligand, metal-metal and charge transfer transitions. Ligand-ligand transitions are most common in organic ligands containing π systems. Metal transitions occur mostly in transition metals with partially filled d orbitals, in octahedral species d-orbitals split into t_{2g} and e_g orbitals. Excitation of an electron would promote it from the

 t_{2g} orbital to the e_g orbital; this d-d transition is spin forbidden by the Laporte Rule ($g \rightarrow u$) and often $\Delta I = \pm 1$ selection rule. Due to this, they are usually weak transitions but can be observed due to vibronic coupling, especially in distorted octahedral environments. Transition metals also benefit from charge transfer bands, either metal to ligand or ligand to metal and are often intense bands (depending on symmetry and selection rules) and can be observed in either the UV or visible range and give rise to intense colours.

Diffuse reflectance UV-Vis spectroscopy on solids is the main technique used in this work. In low symmetry complexes (which causes splitting of the *d* orbital energy levels) it can be challenging to definitively assign LMCT bands, but tentative assignments can be made using Equation 1.4.

$$v'_{CT} = 30,000 \left[\chi_{opt}(M) - \chi_{opt}(X) \right]$$

Equation 1.4: UV-Vis LMCT bands using optical electronegativity, $\chi_{opt} = optical$ electronegativity of specific atoms or compounds.

Equation 1.4 suggests the lowest energy for each ligand-metal charge transfer band, which can be applied to each individual spectrum. Although, when comparing a series of complexes more confident assignments can be made, but with the caveat that there are many charge transfer bands for the same transfers and they can overlap each other with different intensities.

1.10 Materials Characterisation

1.10.1 Grazing Incidence X-ray Diffraction

GIXRD follows the same principles as single crystal XRD but collects a 2D X-ray spectrum, compared to single crystal XRD which produces 3D electron density maps. While the incidence angle of the X-ray beam changes in a typical PXRD or single crystal XRD, it remains fixed in GIXRD (1° or lower) to minimise scattering and therefore suppress the effects of substrates on the pattern when examining thin films. ¹⁴⁵ During the experiment the detector moves across the sample at the angle of 2θ. The analysis of the diffraction pattern usually involves comparison to previously reported PXRD data. Crystalline thin films usually have a preferred orientation which can result in inconsistent intensities when comparing to powder diffraction patterns.

In-plane XRD can further suppress the reflections from the substrate by offsetting the angle of the detector by $2\theta_{\chi}$. This means the detector only collects scattered electrons rather than direct diffraction making the signal strength much weaker and collection times significantly longer. ¹⁴⁵

It is possible to calculate the crystallite size from an XRD pattern using the Scherrer equation for calculating crystallite size from line broadening (Equation 1.5). 146

$$t = \frac{K\lambda}{\beta cos\theta}$$

Equation 1.5: The Scherrer equation. t = is the crystallite size, λ the X-ray wavelength, θ the Bragg angle, K the shape factor, β the line broadening (FWHM).

The Williamson-Hall method uses the Scherrer equation and the equation for strain broadening to give Equation 1.6, where β (FWHM of peaks) can be plotted to give size and strain of the material.

$$\beta = C_{\varepsilon} \tan\theta \qquad \qquad \beta_{tot} \cos\theta = C_{\varepsilon} \sin\theta + \frac{\kappa\lambda}{L}$$

Equation 1.6: The strain broadening equation (left) and the equation used in the Williamson-Hall method (right). θ the Bragg angle, C_{ε} the strain component, β the line broadening (FWHM,). K the shape factor, , λ the X-ray wavelength.

1.10.2 Raman Spectroscopy

Raman spectroscopy is very similar to IR spectroscopy in that they both probe vibrational modes; IR spectra shows the absorption of light whereas Raman spectra show scattering. Normally Raman spectroscopy is complementary to IR spectroscopy, but Raman spectroscopy offers some benefits for characterising materials, since it is a surface technique. It is used extensively for characterising thin film materials produced, for example, from electrodeposition or CVD. In some cases, it even allows the determination of the film thickness as there are small shifts in peaks proportional to thickness, it is a very sensitive technique that can even detect monolayer films, e.g. in MoS₂. ¹⁴⁷ The detector is usually set at a 90 ° angle to avoid picking up signal from the beam source. ^{148,149} It also uses excitation wavelength to avoid generating fluorescence, if fluorescence is produced the only way to minimise this is to change excitation length (e.g. change the laser).

1.10.3 Scanning Electron Microscopy

In scanning electron microscopy a narrow beam of electrons are accelerated down a column through a lens and apertures to generate a focused electron beam which hits the surface of the sample. The electrons then interact with the surface producing backscattered electrons and secondary electrons. Secondary electrons show the topography of the surface and backscattered electrons show the spatial distribution of elements in the first few microns of the sample. Secondary and backscattered electrons are the main signals detected in SEM and these signals are transformed into images; both sets of electrons are emitted from the surface of the sample. To obtain an image, the sample must be metallic or a conducting material, insulators and semiconductors can cause irregular release of electrons, thus reducing the resolution of the image.

1.10.4 Energy-Dispersive X-ray and Wavelength Dispersive X-ray Spectroscopy

Often EDX is coupled with SEM in one system when the accelerated electrons strike an atom; some of the energy is transferred into the atom. This allows an electron within the atom to 'jump' to a higher energy shell or leave, ionising the sample. If this process occurs a hole is left behind. Due to this positive charge, a negatively charged electron from a higher energy shell drops down to fill the hole and the energy difference is emitted in the form of an X-ray. If an electron drops from an L shell to a K shell, it is known as K_{α} , if the electron drops from an M shell to an L shell, it is known as L_{α} . Each element has unique K_{α} and L_{α} energies which allows the elements to be distinguished from one another. These peaks can also be quantified to get a percentage composition of the sample. Lighter elements like Na can be qualitatively identified but cannot be quantified due to a low fluorescence yield and their K_{α} peaks overlapping with heavier elements. If peaks overlap it can be difficult to distinguish between the two elements, for example, the energy of Mo L_{α} (2.293 eV) is similar to the energy of S K_{α} (2.306 eV), thus making it difficult to determine the stoichiometry of a molybdenum sulfide material.

Wavelength dispersive X-ray (WDX) spectroscopy collects the same data as EDX but is more similar to X-ray diffraction. Electrons are accelerated at a sample, generating X-rays, these X-rays are then passed through a known crystal with certain lattice spacings. The sample generated X-rays encounter the known crystal at a specific angle, θ , only those that satisfy Bragg's law are reflected and passed to the detector. The wavelength the detector received can be changed by moving the known crystal, consequently only X-rays from one element at a time may be measured whereas EDX collects all signals at once. WDX can identify lighter elements that EDX cannot detect, (all apart from H, He and Li), also WDX has greater resolution increasing peak separation allowing easier identification and quantification.

1.10.5 X-ray Photoelectron Spectroscopy

XPS is a surface technique used for identifying composition, chemical and electronic states of the elements present within a material. XPS is a cross between EDX and WDX, X-rays are fired at a solid sample and measure the kinetic energy of the photoelectrons that are subsequently emitted. A spectrum is recorded by counting the photoelectrons at a range of energies, the characteristic energies can be assigned to particular elements; all assignable apart from hydrogen.

$$KE = hv - BE - \Phi$$

Equation 1.7: Photoelectric effect. KE = kinetic energy, hv = energy of the photon, BE = binding energy of the atomic orbital, $\Phi = spectrometer$ work function.

The binding energies are unique to each atomic orbital and can be regarded as the difference between the initial and final states after the photoelectron has left, (Equation 1.7). Because of the variety of final states there are different kinetic energies of the electrons and different probabilities

of each state. For emission from p, d and f orbitals two peaks (or energies) are observed, the separation is caused by spin orbital splitting and can be defined as $j = l \pm s$ the differences in energy is small but it can aid elemental determination.

1.10.6 Electrical Measurements

The sheet resistance of a thin film can be investigated using the Hall and van der Pauw method. This method uses a four-point probe and applies a current across the sample. The four probes are placed linearly and equally spaced and a current is induced through the two probes on the outside of the sample. The voltage is then measured between the two inner probes. Measuring the thickness of the samples (usual by cross-sectional SEM), allows for calculation of the resistivity of the sample. ^{154,155}

Application of a magnetic field perpendicular to the flow of electrons, results in the electrons experiencing a Lorentz force (F_L). This is proportional to the magnetic field strength (B) and the travelling velocity (v), see Equation 1.8. ¹⁵⁶

$$F_L = qvB$$

Equation 1.8: Lorentz force equation. F_L is Lorentz force, B is magnetic field strength, v is travelling velocity and q is the particle charge.

The Lorentz force (F_L) can be expressed in terms of current (I) and therefore Equation 1.9 can be used to quantify the carrier denisty of the sample.

$$F_L = \frac{IB}{\eta_m A}$$

Equation 1.9: Lorentz force equation for carrier density. F_L is Lorentz force, B is magnetic field strength, I is current and A is the area.

Subsquently, once carrier density and resistivity are known, the carrier mobility (μ_m) can be calculated using Equation 1.10. A low carrier density and high carrier mobility are an indication of high purity semiconductors. Materials with a high carrier density (i.e. more conductive) behave more like conductors or semi-metals and can be an indication of a high volume of defects in a semi-conductor.

$$\rho = \frac{1}{q\eta_m\mu_m}$$

Equation 1.10: Equation for resistivity. ρ is resistivity, η_m is carrier density, μ_m is carrier mobility.

1.11 Cyclic Voltammetry

One of the aims of this work was to design suitable precursors for non-aqueous electrodeposition of molybdenum and tungsten dichalcogenide thin films. Therefore, the electrochemical behaviour of the new precursors was initially studied by cyclic voltammetry. This technique was used as it

provides fast and efficient insight into the electrochemical behaviour of a precursor, including information on oxidation and reduction potentials, hence the compound deposition potential (E_{pe}) and the electrochemical window of the system.¹⁵⁷

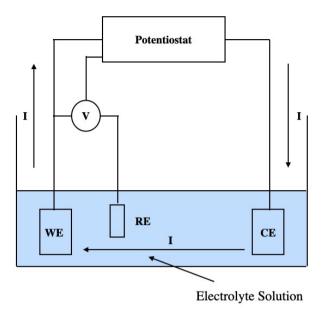


Figure 1.24: Illustration of a standard three electrode electrochemical cell. Where the working electrode (WE), counter electrode (CE) and reference electrode (RE) are immersed in an electrolyte solution.

To study electrochemical properties, a three electrode system (working, reference and counter) (Figure 1.24) is immersed in an electrolyte solution containing the electroactive species that is to be studied. The potential of the working electrode is controlled against a reference electrode, the current (I) flows between the counter and working electrodes. The working electrode is normally composed of a strongly conducting material, such as platinum, gold or glassy carbon, which is not reactive under the potential window and conditions used. If reduction occurs at the working electrode, then oxidation occurs at the counter electrode or *vice versa* to complete the circuit. Platinum is often used as the counter electrode to provide an electrochemically inert material; the reference electrode maintains a constant potential throughout the experiment. For the experiments in CH₂Cl₂, an Ag/AgCl reference electrode was submersed in 100 mM [ⁿNBu₄]Cl in CH₂Cl₂ (i.e. the same concentration of supporting electrolyte).

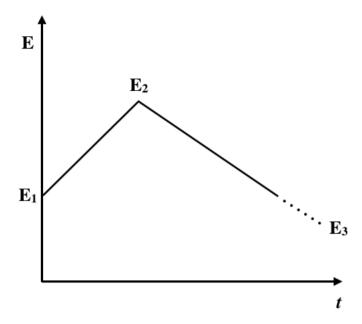


Figure 1.25: The potential-time profile employed in cyclic voltammetry.

When taking a cyclic voltammogram, the potential of the working electrode is varied with time, from the initial potential (E_1) by a fixed value known as the scan rate. Once it reaches the chosen potential, (E_2) the potential is then scanned back to E_1 or via a different chosen potential E_3 before returning to E_1 to complete the cycle. The current (I) is measured as a function of potential and the response is plotted as current vs. potential, which is known as the cyclic voltammogram. Typically, the open circuit potential (where the net current is zero) is chosen to be E_1 and the potential can be scanned either positively first or negatively first to study oxidation or reduction, respectively.

Cyclic voltammetry allows information on the precursor to be gained to help choose the parameters to use for electrodeposition including deposition potential. In electrodeposition, metal ions in solution are reduced to neutral species, whereby they form a new solid phase on the electrode surface. Potentiostatic electrodeposition involves applying and holding a constant potential, where the potential of the working electrode is stepped from a potential where no reaction is occurring to the desired deposition potential. The resulting current is monitored as a function of time, which can be plotted as a chronoamperogram. The deposition potentials and times can be tailored in order to obtain films of a desired thickness (typically a 1 to 2 µm thickness is sufficient for EDX and XRD analysis).

1.12 Project Aims

The objectives of this project are to investigate new coordination complexes of W(VI) oxo- and thio-halides and develop a systematic series of complexes with a range of hard donor ligands (Chapter 2) and softer phosphine and arsine donor ligands (Chapter 3) to form six-coordinate [WECl₄(L)], [(WSCl₄)₂(μ -L-L)] or the unusual seven-coordinate [WSCl₄(L-L)] systems. This will be followed by the chemistry of W(VI) oxo- and thio-halides with the softer moderate donors,

thioethers, (Chapter 4) and work to investigate their suitability as low pressure chemical vapour deposition precursors for the deposition of WS₂ thin films (Chapter 5) and their subsequent electrical measurements.

Further aims include synthesising a family of Mo(V) oxohalide complexes with thio-, seleno- and telluro-ethers, in the form $[MoOCl_3(L-L)]$ and $[(MoOCl_2L)_2(\mu-Cl)_2]$. In addition a range of known $[MoOCl_3(L-L)]$ complexes will subsequently be synthesised. These complexes will be used as comparators, for the products from reactions with $MoOCl_4$ and a variety of ligands to attempt to form Mo(VI) oxohalide complexes (Chapter 6).

In Chapter 7, I will look at the initial development of a series of tailored single source precursors for the electrodeposition of MoS₂ and WS₂ thin films including electrochemical studies. In addition metal-selenium containing salts will be synthesised for initial investigations of MSe₂ electrodeposition from non-aqueous media and subsequent material characterised (Chapter 7).

The compounds synthesised in this project will be fully characterised where appropriate by IR, ¹H, ³¹P, ⁷⁷Se{¹H}, ⁹⁵Mo NMR spectroscopy, elemental analysis, UV-vis spectroscopy, magnetic moment and X-ray crystal structures. Deposited thin films of ME₂ will be characterised by Raman spectroscopy, X-ray diffraction (grazing incidence or in-plane), XPS, SEM and EDX/WDX.

1.13 References

- (1) Pearson, R. G. J. Am. Chem. Soc., **1963**, 85, 3533-39
- (2) Lewis, G. N. *Valence and the Structure of Atoms and Molecules*; Chemical Catalog Company: New York, 1923.
- (3) Pearson, R. G. J. Chem. Educ., 1968, 45,
- (4) Greenacre, V. K.; Hector, A. L.; Levason, W.; Reid, G.; Smith, D. E.; Sutcliffe, L. *Polyhedron*, **2019**, *162*, 14-19
- (5) Miessler, G. L.; Fischer, P. J.; Tarr, D. A. *Inorganic Chemistry*; Pearson: London, 2014.
- (6) Atkins, P.; Overton, T. Shriver and Atkins' Inorganic Chemistry; OUP Oxford, 2003.
- (7) Levason, W.; Monzittu, F. M.; Reid, G. Coord. Chem. Rev., 2019, 391, 90-130
- (8) Burt, J.; Levason, W.; Reid, G. Coord. Chem. Rev., 2014, 260, 65-115
- (9) Benjamin, S. L.; Levason, W.; Reid, G. Chem. Soc. Rev., **2013**, *42*, 1460-99
- (10) Levason, W.; Orchard, S. D.; Reid, G. Coord. Chem. Rev., 2002, 225, 159-99
- (11) Levason, W.; Reid, G. Coord. Chem. Rev., 2006, 250, 2565-94
- (12) Bannister, R. D.; Levason, W.; Light, M. E.; Reid, G.; Zhang, W. *Polyhedron*, **2019**, *167*, 1-10
- (13) Davis, M. F.; Levason, W.; Light, M. E.; Ratnani, R.; Reid, G.; Saraswat, K.; Webster, M. *Eur. J. Inorg. Chem.*, **2007**, *13*, 1903-10
- (14) McCleverty, J. A. In *Molybdenum: Inorganic & Coordination Chemistry*, Eds.; John Wiley and Sons, 2006.
- (15) McCleverty, J. A. In *Tungsten: Inorganic & Coordination Chemistry*, Eds.; John Wiley and Sons, 2006.
- (16) Dori, Z. Comprehensive Coordination Chemistry I, 1987, 3, 973-1022
- (17) Greenwood, N. N.; Earnshaw, A. In *23. Chromium, Molybdenum and Tungsten*, Eds.; Butterworth-Heinemann: Oxford, 1997.
- (18) Tunney, J. M.; McMaster, J.; Garner, C. D. Comprehensive Coordination Chemistry II, **2004**, *8*, 359-477
- (19) Boyd, E. S.; Costas, A. M. G.; Hamilton, T. L.; Mus, F.; Peters, J. W.; Metcalf, W. W. *J. Bacteriol.*, **2015**, *197*, 1690-99
- (20) Laurie, S. H. Eur. J. Inorg. Chem., 2000, 2443-50
- (21) Holm, R. H. Chem. Rev., 1987, 87, 1401-49
- (22) Okamura, T.; Ueyama, N. Comprehensive Coordination Chemistry II, 2004, 4, 529-73
- (23) Young, C. G. Comprehensive Coordination Chemistry II, 2004, 4, 415-527
- (24) Tamadon, F.; Seppelt, K. Angew. Chem. Int. Ed., 2013, 52, 767-69
- (25) Greenwood, N. N.; Earnshaw, A. In *22. Vanadium, Niobium and Tantalum* Eds.; Butterworth-Heinemann: Oxford, 1997; Vol. 108.
- (26) Levason, W.; McAuliffe, C. A.; Sayle, B. J. J. Chem. Soc., Dalton Trans., 1976, 1177-81
- (27) Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem., 2016, 3169-77
- (28) Marchetti, F.; Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem., 2008, 453-62
- (29) Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1977, 53, 291-93
- (30) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1974, 2191-94
- (31) Page, E. M.; Rice, D. A.; Hagen, K.; Hedberg, L.; Hedberg, K. *Inorg. Chem.*, **1982**, *21*, 3280-83
- (32) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G.; Whittam, J. *Dalton Trans.*, **2018**, *47*, 2406-14
- (33) Levason, W.; McAuliffe, C. A.; McCullough, F. P. Inorg. Chim. Acta, 1977, 24, L13-L14
- (34) Benjamin, S. L.; Hyslop, A.; Levason, W.; Reid, G. J. Fluorine. Chem., 2012, 137, 77-84
- (35) Levason, W.; Reid, G.; Trayer, J.; Zhang, W. Dalton Trans., 2014, 43, 3649-59
- (36) Levason, W.; Reid, G.; Zhang, W. J. Fluorine. Chem., 2015, 172, 62-67
- (37) Bessac, F.; Frenking, G. *Inorg. Chem.*, **2006**, *45*, 6956-64
- (38) Kendall, A. J.; Tyler, D. R. Dalton Trans., 2015, 44, 12473-83
- (39) McAuliffe, C. A. Comprehensive Coordination Chemistry I, 1987, 2, 989-1066
- (40) Carravetta, M.; Concistre, M.; Levason, W.; Reid, G.; Zhang, W. *Chem. Commun.*, **2015**, *51*, 9555-58
- (41) Carravetta, M.; Concistre, M.; Levason, W.; Reid, G.; Zhang, W. *Inorg. Chem.*, **2016**, *55*, 12890-96
- (42) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W. Chem. Commun., 2018, 54, 11681-84

- (43) Davis, M. F.; Levason, W.; Reid, G.; Webster, M. Polyhedron, 2006, 25, 930-36
- (44) Arnaudet, L.; Bougon, R.; Ban, B.; Charpin, P.; Isabey, J.; Lance, M.; Nierlich, M.; Vigner, J. *Can. J. Chem.*, **1990**, *68*, 507-12
- (45) Arnaudet, L.; Bougon, R.; Buu, B.; Lance, M.; Nierlich, M.; Thuéry, P.; Vigner, J. *J. Fluorine. Chem.*, **1995**, *71*, 123-29
- (46) Crans, D. C.; Smee, J. J. Comprehensive Coordination Chemistry II, 2004, 4, 175-239
- (47) Rice, D. A. Coord. Chem. Rev., 1982, 45, 87-103
- (48) Tolman, C. A. Chem. Rev., 1977, 77, 313-48
- (49) Dias, P. B.; de Piedade, M. E. M.; Simões, J. A. M. Coord. Chem. Rev., 1994, 135-136, 737-807
- (50) Tolman, C. A.; Seidel, W. C.; Gosser, L. W. J. Am. Chem. Soc., 1974, 96, 53-60
- (51) Bilbrey, J. A.; Kazez, A. H.; Locklin, J.; Allen, W. D. *J. Comput. Chem.*, **2013**, *34*, 1189-97
- (52) Guan, Y.; Ingman, V. M.; Rooks, B. J.; Wheeler, S. E. *J. Chem. Theory Comput.*, **2018**, *14*, 5249-61
- (53) Niemeyer, Z. L.; Milo, A.; Hickey, D. P.; Sigman, M. S. Nat. Chem., 2016, 8, 610-7
- (54) Smith, J. M.; Coville, N. J. Organomet., 2001, 20, 1210-15
- (55) Coll, D. S.; Vidal, A. B.; Rodríguez, J. A.; Ocando-Mavárez, E.; Añez, R.; Sierraalta, A. *Inorg. Chim. Acta*, **2015**, *436*, 163-68
- (56) van Leeuwen, P. W.; Kamer, P. C.; Reek, J. N.; Dierkes, P. *Chem. Rev.*, **2000**, *100*, 2741-70
- (57) Dierkes, P.; van Leeuwen, P. W. N. M. J. Chem. Soc. Dalton Trans., 1999, 1519-30
- (58) Mann, B. E.; Masters, C.; Shaw, B. L. J. Chem. Soc. A, 1971, 1104-06
- (59) Garrou, P. E. Chem. Rev., 1981, 81, 229-66
- (60) Hietkamp, S.; Stufkens, D. J.; Vrieze, K. J. Organomet. Chem., 1976, 122, 419-28
- (61) Kapoor, P. N.; Kapoor, R. N.; Pathak, D. D.; Gaur, G. *Inorg. Chim. Acta*, **1986**, *112*, 153-57
- (62) Emsley, J. W.; Levason, W.; Reid, G.; Zhang, W.; De Luca, G. J. Fluorine. Chem., 2017, 197, 74-79
- (63) Quinn, L. D. A Guide to Organophosphorus Chemistry; John Wiley & Sons: New York, 2000.
- (64) Feltham, R. D.; Kasenally, A.; Nyholm, R. S. J. Organomet. Chem., 1967, 7, 285-88
- (65) Kyba, E. P.; Liu, S. T.; Harris, R. L. *Organomet.*, **1983**, *2*, 1877-79
- (66) Luo, Y. R. *Comprehensive Handbook of Chemical Bond Energies*; Taylor & Francis Group: Boca Raton, 2007.
- (67) Schmidt, M. W.; Yabushita, S.; Gordon, M. S. J. Phys. Chem., 1984, 88, 382-89
- (68) Gilheany, D. G. Chem. Rev., 1994, 94, 1339-74
- (69) Kutzelnigg, W. Angew. Chem. Int. Ed., 1984, 23, 272-95
- (70) Davis, M. F.; Levason, W.; Ratnani, R.; Reid, G.; Rose, T.; Webster, M. Eur. J. Inorg. Chem., **2007**, 306-13
- (71) Davis, M. F.; Levason, W.; Paterson, J.; Reid, G.; Webster, M. Eur. J. Inorg. Chem., 2008, 802-11
- (72) Spichal, Z.; Necas, M.; Pinkas, J. *Inorg. Chem.*, **2005**, *44*, 2074-80
- (73) Petersson, M. J.; Loughlin, W. A.; Jenkins, I. D. Chem. Commun., 2008, 4493-94
- (74) Schevenels, F. T.; Shen, M.; Snyder, S. A. J. Am. Chem. Soc., 2017, 139, 6329-37
- (75) Levason, W.; Patel, R.; Reid, G. J. Organomet. Chem., 2003, 688, 280-82
- (76) Chang, Y. P.; Levason, W.; Reid, G. Dalton Trans., 2016, 45, 18393-416
- (77) Levason, W.; Reid, G. Comprehensive Coordination Chemistry II, 2003, 1, 391-98
- (78) Boorman, P. M.; Gao, X.; Freeman, G. K. W.; Fait, J. F. *J. Chem. Soc., Dalton Trans.*, **1991**, 115-20
- (79) Kakeya, M.; Fujihara, T.; Nagasawa, A. Acta Cryst. E, 2006, 62, m553-m54
- (80) Kemmitt, T.; Levason, W. Organomet., 1989, 8, 1303-08
- (81) Hart, R.; Levason, W.; Patel, B.; Reid, G. J. Chem. Soc., Dalton Trans., 2002, 3153-59
- (82) Jura, M.; Levason, W.; Ratnani, R.; Reid, G.; Webster, M. Dalton Trans., 2010, 39, 883-91
- (83) Britnell, D.; Drew, M. G. B.; Fowles, G. W. A.; Rice, D. A. *Inorg. Nucl. Chem. Lett.*, **1973**, 9, 501-04
- (84) Benjamin, S. L.; Chang, Y. P.; Gurnani, C.; Hector, A. L.; Huggon, M.; Levason, W.; Reid, G. *Dalton Trans.*, **2014**, *43*, 16640-48

- (85) Chang, Y. P.; Levason, W.; Light, M. E.; Reid, G. Dalton Trans., 2016, 45, 16262-74
- (86) Brown, E. D.; Iqbal, S. M.; Owen, L. N. J. Chem. Soc. C, 1966, 415-19
- (87) Hartley, F. R.; Murray, S. G.; Levason, W.; Soutter, H. E.; McAuliffe, C. A. *Inorg. Chim. Acta*, **1979**, *35*, 265-77
- (88) Baleja, J. D. Synth. Commun., 2006, 14, 215-18
- (89) Oae, S.; Shinhama, K. i.; Kim, Y. H. Bull. Chem. Soc. Jpn., 1980, 53, 2023-26
- (90) Maiolo, F.; Testaferri, L.; Tiecco, M.; Tingoli, M. J. Org. Chem., 1981, 46, 3070-73
- (91) Testaferri, L.; Tingoli, M.; Tiecco, M. J. Org. Chem., 1980, 45, 4376-80
- (92) Gulliver, D. J.; Hope, E. G.; Levason, W.; Murray, S. G.; Potter, D. M.; Marshall, G. L. *J. Chem. Soc., Perkin Trans. II*, **1984**, *2*, 429-34
- (93) Kuhn, N.; Faupel, P.; Zauder, E. J. Organomet. Chem., 1986, 302, C4-C6
- (94) Hope, E. G.; Kemmitt, T.; Levason, W. Organomet., 1988, 7, 78-83
- (95) Selvakumar, D.; Singh, R.; Nasim, M.; Mathjr, G. N. *Phosphorus, Sulfur, Silicon and related Elements*, **2001**, *172*, 247-59
- (96) Hope, E. G.; Kemmitt, T.; Levason, W. Organomet., 1987, 6, 206-07
- (97) Irgolic, K. J. The Organic Chemistry of Tellurium; Gordon and Breach: New York, 1974.
- (98) Levason, W.; Patel, B.; Reid, G.; Ward, A. J. J. Organomet. Chem., 2001, 619, 218-25
- (99) Housecroft, C. E.; Sharpe, A. G. *Inorganic Chemistry*; Pearson: London, 2005.
- (100) Grahn, H. T. Introduction to Semiconductor Physics; World Scientific: Berlin, 1999.
- (101) Diffenderfer, R. *Electronic Devices: Systems and Applications*; Cengage Learning: New York, 2005.
- (102) Takahashi, K.; Yoshikawa, A.; Sandhu, A. Wide Bandgap Semiconductors: Fundermentals Properties and Modern Photonic and Eletronic Devices; Springer Science & Business Media: Berlin, 2007.
- (103) Neto, A. H. C.; Novoselov, K. Mater. Express, 2011, 1, 10-17
- (104) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. *Nat. Chem.*, **2013**, *5*, 263-75
- (105) Heine, T. Acc. Chem. Res., 2015, 48, 65-72
- (106) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. *Nat. Nanotechnol.*, **2012**, *7*, 699-712
- (107) Chhowalla, M.; Liu, Z.; Zhang, H. Chem. Soc. Rev., 2015, 44, 2584-86
- (108) Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. *Science*, **2007**, *317*, 100-02
- (109) Eda, G.; Fujita, T.; Yamaguchi, H.; Voiry, D.; Chen, M.; Chhowalla, M. *ACS Nano*, **2012**, *6*, 7311-17
- (110) Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M.; Chhowalla, M. *Nano Lett.*, **2011**, *11*, 5111-16
- (111) Wilson, J. A.; Yoffe, A. D. Adv. Phys., 1969, 18, 193-335
- (112) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. *Nano Lett.*, **2010**, *10*, 1271-75
- (113) Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. *Nano Lett.*, **2012**, *12*, 4013-17
- (114) Benjamin, S. L.; de Groot, C. H.; Gurnani, C.; Hawken, S. L.; Hector, A. L.; Huang, R.; Jura, M.; Levason, W.; Reid, E.; Reid, G.; Richards, S. P.; Stenning, G. B. G. *J. Mater. Chem. C*, 2018, 6, 7734-39
- (115) de Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R.; Jura, M.; Levason, W.; Reid, G. *Chem. Mater.*, **2012**, *24*, 4442-49
- (116) Reid, S. D.; Hector, A. L.; Levason, W.; Reid, G.; Waller, B. J.; Webster, M. *Dalton Trans.*, **2007**, 4769-77
- (117) Hector, A. L.; Jura, M.; Levason, W.; Reid, S. D.; Reid, G. New J. Chem., 2009, 33, 641-45
- (118) Zhao, S.; Hotta, T.; Koretsune, T.; Watanabe, K.; Taniguchi, T.; Sugawara, K.; Takahashi, T.; Shinohara, H.; Kitaura, R. *2D Mater.*, **2016**, *3*, 025027
- (119) Yanase, T.; Watanabe, S.; Weng, M.; Wakeshima, M.; Hinatsu, Y.; Nagahama, T.; Shimada, T. *Cryst. Growth Des.*, **2016**, *16*, 4467-72
- (120) Ge, W.; Kawahara, K.; Tsuji, M.; Ago, H. *Nanoscale*, **2013**, *5*, 5773-78
- (121) Carmalt, C. J.; Peters, E. S.; Parkin, I. P.; Manning, T. D.; Hector, A. L. *Eur. J. Inorg. Chem.*, **2004**, 4470-76

- (122) Boscher, N. D.; Blackman, C. S.; Carmalt, C. J.; Parkin, I. P.; Prieto, A. G. *Appl. Surf. Sci.*, **2007**, *253*, 6041-46
- (123) Jones, A. C.; L., H. M. *Chemical Vapour Deposition*; Royal Society of Chemistry: Cambridge, 2009.
- (124) Choy, K. Prog. Mater. Sci., 2003, 48, 57-170
- (125) Brenner, A. In *History and Literature of the Electrodeposition of Alloys*, Eds.; Academic Press: Washington, 1963.
- (126) Bard, A. J.; Faulkner, L. R. *Electrochemical Methods, Fundamentals and Applications*; 2 ed.; Wiley Global Education: New York, 2001.
- (127) Sudha, V.; Sangaranarayanan, M. V. J. Phys. Chem. B, 2002, 106, 2699-707
- (128) Simka, W.; Puszczyk, D.; Nawrat, G. Electrochim. Acta, 2009, 54, 5307-19
- (129) Bartlett, P. N.; Cook, D.; de Groot, C. H.; Hector, A. L.; Huang, R.; Jolleys, A.; Kissling, G. P.; Levason, W.; Pearce, S. J.; Reid, G. *RSC Adv.*, **2013**, *3*, 15645-54
- (130) Meng, L.; Cicvarić, K.; Hector, A. L.; de Groot, C. H.; Bartlett, P. N. *J. Electroanal. Chem.*, **2019**, *839*, 134-40
- (131) Endres, F. ChemPhysChem, 2002, 3, 145-54
- (132) Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc., Chem. Commun., 1992, 965-67
- (133) Li, G.; Tong, Y.; Liu, G. J. Electroanal. Chem., 2004, 562, 223-29
- (134) Li, G.; Tong, Y.; Wang, Y.; Liu, G. Electrochim. Acta, 2003, 48, 4061-67
- (135) Karatutlu, A.; Barhoum, A.; Sapelkin, A. In *Liquid-phase synthesis of nanoparticles and nanostructured materials*, Eds.; Elsevier: Amsterdam, 2018.
- (136) Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H. *IBM J. Res. Dev.*, **1998**, *42*, 567-74
- (137) Andricacos, P. C.; Romankiw, L. T. Adv. Electrochem. Sci. Eng., 1993, 227-321
- (138) Nakamoto, K. *Infrared and Raman Spectra of Inorganic and Coordination Compounds*; 4th ed.; Wiley-Interscience: New York, 1986.
- (139) Mason, J. Multinuclear NMR; Plenum Press: New York, 1987.
- (140) Narath, A.; Alderman, D. W. Phys. Rev., 1966, 143, 328-34
- (141) Gheller, S. F.; Hambley, T. W.; Rodgers, J. R.; Brownlee, R. T. C.; O'Connor, M. J.; Snow, M. R.; Wedd, A. G. *Inorg. Chem.*, **1984**, *23*, 2519-28
- (142) Wardle, R. W. M.; Mahler, C. H.; Chau, C. N.; Ibers, J. A. *Inorg. Chem.*, **1988**, *27*, 2790-95
- (143) Bennett, D. W. *Understanding Single-Crystal X-Ray Crystallography*; John Wiley & Sons: New York, 2010.
- (144) Babaian-Kibala, E.; Cotton, F. A.; Kibala, P. A. *Inorg. Chem.*, **1990**, *29*, 4002-05
- (145) Kobayashi, S. The Rigaku J., **2010**, *26*, 3-6
- (146) Suryanarayana, C.; Norton, M. G. *X-Ray Diffraction: A Practical Approach*; Springer Science: New York, 1998.
- (147) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. *Adv. Funct. Mater.*, **2012**, *22*, 1385-90
- (148) Marchetti, F.; Pampaloni, G.; Zacchini, S. J. Fluorine. Chem., 2010, 131, 21-28
- (149) Skoog, D. A.; Holler, F. J.; Crouch, S. R. *Principles of Instrumental Analysis*; Thomson Brooks/Cole: Belmont, CA, 2007.
- (150) Goldstein, J. I. Scanning Electron Microscopy and X-ray Microanalysis; Plenum Press: New York, 2003.
- (151) Thompson, A. C.; Vaughan, D. *X-ray data booklet*; Lawrence Berkeley National Laboratory, University of California: Berkely, CA, 2001.
- (152) Russ, J. C. Fundermentals of Energy Dispersive X-Ray Analysis; Butterworth-Hinemann, 2013.
- (153) Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. *Handbook of X-ray Photoelectron Spectroscopy*; Perkin-Elmer Corporation: Minnesota, 1992.
- (154) Van der Pauw, L. J. Phillps Tech. Rev., 1958, 20, 220-24
- (155) Van der Pauw, L. J. Phillps Res. Rep., 1958, 13, 1-9
- (156) Gaj, J. A. *Comprehensice Semiconductir Science and Technology*; Elsevier Science: Amsterdam, 2011.
- (157) Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L. *J. Chem. Educ.*, **2017**, *95*, 197-206

(158) Pletcher, D. *A First Course in Electrode Processes*; 2nd ed.; RSC Publishing: Cambridge, 2009.

Complexes of WOCl₄ and WSCl₄ with Neutral Nitrogen and Oxygen Donor Ligands

2.1 Introduction

Published literature on neutral complexes of tungsten in its highest oxidation state are rare, with a significant proportion of the reported compounds not fully characterised. Work on neutral WOCl₄ and WSCl₄ complexes is scarce due to the complexes being unstable and readily hydrolysed by trace moisture, often resulting in the reduction of the metal centre. This chapter details the synthesis and characterisation of a series of WOCl₄ complexes with hard donor ligands, including phosphine oxides and N-heterocyclic ligands, as well as comparisons with their WSCl₄ analogues and (unsuccessful) attempts to form neutral WCl₆ complexes.

2.2 Tungsten(VI) and Molybdenum(VI) Coordination Chemistry

Tungsten, in terms of coordination chemistry, is relatively underdeveloped compared to its 3*d* and 4*d* counterparts (Cr or Mo). Being in the third row means there is a wider range of oxidation states that are readily available; in tungsten's case W^{II-} to W^{VI}, allowing complexes to form with a wide variety of ligands and coordination numbers. Tungsten(VI) is a hard acceptor, therefore more receptive to hard ligands (e.g. nitrogen and oxygen donor ligands), forming relatively stable complexes. Tungsten(VI) is more readily available compared to molybdenum(VI), which can be highly unstable and more easily reduced; however tungsten(VI) compounds are still highly reactive. Owing to their similar chemistries, tungsten and molybdenum are often compared in literature; however, due to the inherent instability of molybdenum(VI), this can be challenging and comparisons limited. While the compound MoOCl₄ exists, it has no comparator coordination chemistry literature available and MoSCl₄ has not been reported.

The coordination chemistry of molybdenum has attracted attention over the years as it is an important constituent in biological species, including metalloenzymes.⁴ Both tungsten and molybdenum(VI) coordination compounds also merit considerable interest due to their role as oxido-transfer reagents, metathesis catalysis precursors and ring-opening catalysts.⁴⁻⁷

Known oxohalides of molybdenum(VI) and tungsten(VI)				
MoOF ₄	MoO_2F_2	WOF ₄	$\mathrm{WO}_2\mathrm{F}_2$	
MoOCl ₄	MoO ₂ Cl ₂	WOCl ₄	WO_2Cl_2	
	MoO_2Br_2	WOBr ₄	$\mathrm{WO_2Br_2}$	
			$\mathrm{WO}_{2}\mathrm{I}_{2}$	

Table 2.1: Table of known oxohalides of molybdenum(VI) and tungsten(VI). ^{1,8}

MoF₆
$$\xrightarrow{O(SiMe_3)_2}$$
 MoOF₄ $\xrightarrow{O(SiMe_3)_2}$ MoO₂F₂

MO₃ $\xrightarrow{HCl \text{ or } S_2Cl_2}$ MO₂Cl₂

WX₆ $\xrightarrow{O(SiMe_3)_2}$ WOX₄ $\xrightarrow{O(SiMe_3)_2}$ WO₂X₂
 $\xrightarrow{M = \text{ Mo or W}}$ X = F, Cl or Br

Figure 2.1: Some examples of syntheses for the formation of MO_2X_2 and MOX_4 .

The dioxo-dihalide compounds MoO_2X_2 and WO_2X_2 (X = F, Cl or Br) provide sufficient electron density to the metal centre to stabilise the +VI oxidation state, allowing coordination complexes to form. These compounds can be synthesised *via* both solution-based routes and using solid state methods.

Most compounds can be formed from their respective metal hexahalide, MX₆, by reacting with two equivalents of O(SiMe₃)₂. MoO₂Cl₂ and MoO₂Br₂ cannot be formed this way as MoCl₆ is unstable at room temperature⁹ and MoBr₆ is completely unknown. These reactions pass through an intermediate compound of MOX₄.

 $MoOF_4$ is a stable compound, but rather unreactive due to its polymeric structure. A useful intermediate is [MoOF₄(MeCN)], where a soluble monomer is stabilised by an MeCN ligand. An alternate method to produce MO_2X_2 is to use a chlorinating agent such as HCl or Cl_2 gas to chlorinate a metal oxide. II

Many of the parent metal oxohalides are polymeric with M=O-M bridges, which results in limited reactivity and solubility, but increases stability. Therefore, to get sufficient reactivity with ligands, compounds generally have to be made *in-situ* to prevent polymerisation. Alternatively, the reactions can be completed in coordinating solvents to block the polymerisation (i.e. THF, py or MeCN), followed by ligand metathesis.¹²

2.2.1 Synthesis of $[MO_2X_2(L)_2]$ or $[MO_2X_2(L-L)]$

High oxidation state early transition metals are hard Lewis acids, meaning that they favour bonding with hard Lewis bases; a substance with a pair of non-bonding electrons and relatively small covalent or ionic radii, for example, oxygen and nitrogen donor ligands (see Section 1.1). ^{13,14} These strong interactions between a Lewis acid and a Lewis base can often improve the stability of high oxidation state metal centres. ¹⁵ Conversely, bonding between a hard Lewis acid and softer Lewis

base (e.g. sulfur and phosphorus donor ligands) is typically much less favourable, making complexes unstable and particularly sensitive to moisture. In the case of $[MO_2X_2(L)_2]$ or $[MO_2X_2(L-L)]$, on contact with moisture, these complexes readily decompose releasing HX; therefore handling in inert conditions is paramount.

Relatively recent work on $[MO_2X_2(L)_2]$ or $[MO_2X_2(L-L)]$ coordination complexes has been completed, some examples are shown in Figure 2.2; all complexes reported have a coordination number of six.



Figure 2.2: Some examples of $[MO_2X_2(L)_2]$ and $[MO_2X_2(L-L)]$ coordination complexes from the literature. ^{10,12,18-23}

 MO_2X_2 (where M=Mo or W; X=F, Cl or Br) reacts readily with 1:2 equivalents of OPR_3 , as demonstrated by a number of structural determinations, $^{10,12,18,19,21,24-26}$ differences in M- O_P bond lengths are small and erratic across similar complexes. With N-heterocycles, $[MO_2Cl_2(L-L)]$ (L-L=2,2'-bipy or 1,10-phen) there are more obvious differences in M-N bond lengths. In the tungsten(VI) analogues $[WO_2X_2(L-L)]$, the W-N bond lengths are shorter than in the molybdenum structures, suggesting stronger bonding. 12,20,27,28 In the $[MoO_2X_2(2,2'$ -bipy)] complexes the Mo-N bond lengths increase as the halogen gets heavier. Both molybdenum(VI) and tungsten(VI) are hard Lewis acids, therefore the fluoride analogue would be expected to be a better acceptor than the bromide analogue towards hard donor ligands, resulting in shorter M-N bonds. 20,22,27,29

The compounds described in this chapter will allow for comparison between them and the [MO₂X₂(L-L)] complexes. Also, since literature has established that WOCl₄ is an intermediate for the synthesis of WO₂Cl₂, steps must be taken to ensure that [WO₂Cl₂(L-L)] complexes are not formed as side products.

2.2.2 Tungsten Oxytetrachloride and Thiotetrachloride

The compounds WECl₄ (E = O or S) are more sensitive and less readily available than their MO_2Cl_2 (M = Mo or W) counterparts, a likely reason as to why there is less coordination chemistry

reported in literature. MoSCl₄ as a neutral monomer has yet to be reported; MoOCl₄ can be isolated, but is highly reactive and often reduces to molybdenum(V), see Chapter 6. As described above, WOCl₄ can be an intermediate in the synthesis of WO₂Cl₂ and strictly anhydrous conditions and controlled stoichiometry are required for isolating [WOCl₄(L)] complexes.

Tungsten(VI) oxytetrachloride forms readily through the hydrolysis of WCl₆ when exposed to trace moisture. Further hydrolysis can form WO₂Cl₂. WOCl₄ can also be formed in a controlled manner by refluxing WO₃ or tungstic acid in thionyl chloride, releasing SO₂ gas.^{30,31} A more convenient method is to react WCl₆ with non-metal oxides, for example, using Cl/O exchange with siloxanes, O(SiMe₃)₂.³² In its solid form, WOCl₄ exists in the tetragonal space group I4, oxygen/chlorine corner shared octahedra are distorted around each tungsten atom and are linked by bridged W=O-W chains. The WOCl₄ fragment has a molecular symmetry of C_{4v}.^{33,34} Neutral ligand complexes of WOCl₄ are mostly prepared by the direct *in-situ* reaction of WOCl₄ with the ligands, but there are some examples of their formation *via* oxygen abstraction from ligands when reacting with WCl₆.^{1,6,35,36} For example, WCl₆ has been shown to ring-open THF to abstract the oxygen and form [WOCl₄(THF)] and MeO(CH₂)₂OH reacts with WCl₆ to form [(WOCl₄)₂(μ-κ²-1,4-dioxane)].³⁷ Extensive work by Marchetti and co-workers has shown that the formation of [WOCl₄(L)] from WCl₆ is highly dependent on the ligand in question and the reaction conditions, with examples of WCl₅, WOCl₃ complexes and mixed ligand fragments (Figure 2.3).³⁸⁻⁴¹

Figure 2.3: Some examples of reactions with WCl₆ and oxygen donor ligands and their products. ^{38,40-42}

There are a few reported complexes of WOCl₄ with neutral ligands made by direct reaction of WOCl₄ with the ligand; Funk and co-workers reported complexes with acetonitrile, diethyl ether,

pyridine and 1,4-dioxane, but with little structural or robust spectroscopic information. ^{43,44} This was added to by Frost and co-workers with the report of a 2,2'-bipy adduct, [WOCl₃(2,2'-bipy)], but they suggest the tungsten centre has been reduced, although the reason for this is unclear. ⁴⁵ There are some examples of WOCl₄ with phosphines and phosphine oxides, [WOCl₄(L)] (L = PPh₃, PPh₂Et, OPPh₃) and [WOCl₄(L₂)] (L = PPh₃, PEt₃, P ⁿPr₃ or OPPh₃); the seven coordinate monodentate phosphine and phosphine oxide complexes seem questionable, as the ligands would need to be strong enough σ-donors to force this reaction, especially since the phosphines are soft donor ligands. ⁴⁶

There are a small number of reports of coordination complexes with WOBr₄; Frost and Fowles have reported complexes of WOBr₄ with THF, THP, 1,4-dioxane and 2,2'-bipy. ^{45,47} The limited number of complexes of WOBr₄ is likely to do with WBr₆ not being as readily available as WCl₆ commercially and being a poorer acceptor and hence more easily reduced. ⁴⁸ Work on the fluoride analogues has mainly been undertaken by the Reid Group. [MoOF₄(L)] (L = MeCN, THF, OPR₃, 2,2'-bipy, dmf and dmso) compounds are scarce and limited to hard donor ligands, with only a few simple examples. ²¹ Complexes of WOF₄ have been studied in more detail than the molybdenum analogues; six coordinate complexes [WOF₄(L)] (L = MeCN, THF, OPR₃, py, PR₃ and dmso) have been described. ^{10,49-51} For further examples with softer donor ligands see Section 3.2.1.

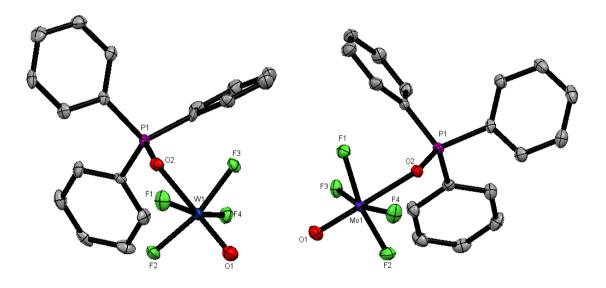


Figure 2.4: Crystal structures of [WOF₄(OPPh₃)] and [MoOF₄(OPPh₃)]. Hydrogen atoms omitted for clarity. ^{10,21}

[MoOF₄(OPPh₃)] is the only structurally characterised neutral MoOF₄ complex; it is isostructural with [WOF₄(OPPh₃)], see Figure 2.4. Interestingly, a small selection of seven coordinate systems have also been shown to exist, [WOF₄(L-L)] (L = 2,2'-bipy, o-C₆H₄(PMe₂)₂ and Me₂P(CH₂)₂PMe₂). The metal oxofluorides are harder Lewis acids than the oxochlorides, therefore the complexes have a lower affinity for bonding with softer or moderate donors, limiting the range of WOF₄ complexes reported.

In its solid form WSCl₄ has two polymorphs. The triclinic polymorph with a space group of $P\overline{1}$, where the tungsten can be considered as a five-coordinate (square pyramidal) monomer linked

together to form a six-coordinate (distorted octahedral) dimer. ⁵² The second polymorph is monoclinic with the space group $P2_1/n$. Unlike WOCl₄ and WOBr₄, which form W=O-W bridges, WSCl₄ forms dimeric units *via* weak W-Cl-W bridges in both polymorphs. ⁵³ In the triclinic form there are two chlorine bridges to form a dimer, [SCl₃W(μ -Cl)₂WCl₃S], whereas in the monoclinic structure the dimer core is linked by single chlorine bridges to two other WSCl₄ units.

WSCl₄ is slightly more challenging to synthesise than WOCl₄, and an analogous route using S(SiMe₃)₂ is reported, similar to the synthesis of WOCl₄.^{32,54} It has been suggested there is a solvent-assisted dismutation, see Equation 2.1, resulting in a brown solid forming (WS₃); therefore a sublimation step is required to obtain pure WSCl₄.⁵⁵

$$WSCl_4 \rightarrow WS_3 + WCl_6$$

Equation 2.1: Suggested solvent-assisted dismutation of WSCl₄.

This regenerated WCl₆ can lead to the formation of WOCl₄ upon contact with trace water, contaminating the compound. The traditional route for compounds of this nature is a solid-state method, typically mixing WCl₆ with a sulfur-containing compound, (elemental sulfur, Sb₂S₃ or B_2S_3) in an evacuated sealed tube and heating. This method can prove temperamental and challenging to isolate clean products and specialised equipment is often required. ^{32,56-59} Most synthetic routes start from WCl₆, although Fedorov and co-workers report reacting W(CO)₆ and sulfur monochloride in chlorinated solvents, to form WSCl₄. ⁶⁰

As previously mentioned, [WOCl₄(THF)] can be formed *via* reaction of WCl₆ and THF, however [WSCl₄(tht)] cannot be formed in the same way. Reaction of WCl₆ and tht gives [WCl₆(tht)₂], which is suggested to behave as an ionic salt [WCl₅(tht)₂]Cl.⁶¹ At elevated temperatures the reaction yields a variety of products, including salts and dimers, but no WSCl₄ derivatives.⁶² Investigations into the formation of the molybdenum(V) species, [MoSCl₃(tht)₂], *via* DFT calculations concluded that tht does not provide the ring opening mechanism that THF does.⁶³

The majority of literature on coordination complexes of WSCl₄ are direct *in-situ* reactions with a limited selection of hard ligands, [WSCl₄(L)] (L = THF, py, RCN, OPPh₃) and [(WSCl₄)₂(μ -1,4-dioxane)] have been prepared, but appear to be less stable than comparator complexes of WOCl₄. ^{1,36,64} There are very limited examples of WSBr₄, WSeCl₄ and WSeBr₄ complexes with a small selection of neutral coordinating solvents, (py, THF, MeCN, 1,4-dioxane). ⁶⁴ Additional complexes of WSeCl₄ are reported, [WSeCl₄(1,4-oxathiane)] and a bridged complex [(WSeCl₄)₂(MeO(CH₂)₂OMe)], which the ligand has been shown to abstract an oxygen and reduce the tungsten to form an alkoxide over a longer period of time. ^{64,65} Complexes of WSF₄ are very scarce, with only [WSF₄(L)] (L = py and MeCN) being reported, but both being structurally characterised. ^{55,66,67}

2.2.3 Aims

The aim of this chapter was to explore the chemistry of tungsten(VI), develop the first systematic series of tungsten oxytetrachloride and thiotetrachloride coordination complexes of the form, [WECl₄(L)] or [WECl₄(L-L)] (E = O or S) and to explore their properties. The ligands used include neutral O–donor phosphine oxide ligands (dppeO₂, dppmO₂, OPPh₃ and OPMe₃) and N-heterocycles (2,2'-bipy, 1,10-phen and py). Complexes have been characterised by IR spectroscopy, 1 H NMR spectroscopy, 31 P{ 1 H} spectroscopy, elemental analysis and X-ray crystal structure analyses.

2.3 Results and Discussion

2.3.1 Complexes of WOCl4

The compound WOCl₄ has been prepared from WCl₆ following the reported method.³² The IR data for WOCl₄ shows absorptions at 889 cm⁻¹ and 875 cm⁻¹ which indicates W=O-W bridging units, as a terminal W=O absorption would be much higher, ~970 cm⁻¹.³⁵ The W=O-W bridges are asymmetric causing the two W=O stretches observed.³³ Two bands are expected for W-Cl bonds (A₁ and E), shown as a broad peak at 381 cm⁻¹ (combination of A₁ at 399 cm⁻¹ and the E stretch at 379 cm⁻¹), and 327 cm⁻¹ is assigned to the E δ(O-W-Cl) mode.³⁵ Stretches around 845 cm⁻¹ (indicative of a W=O stretch from WO₂Cl₂) were not present in the spectrum.

$$WCl_{6} + O(SiMe_{3})_{2} \longrightarrow Cl \underset{Cl}{||M_{H_{1}}||} \\ VCl_{6} + O(SiMe_{3})_{2} \longrightarrow Cl \underset{Cl}{||M_{1}||} \\ VCl_{7} \longrightarrow Cl \underset{Cl}{||M_{1}||} \\ VC$$

Figure 2.5: A reaction scheme showing the synthesis of [WOCl₄(OPR₃)] and [(WOCl₄)₂(μ -L-L)] (R = Ph or Me; L-L = $dppmO_2$ or $dppeO_2$).

2.3.2 Complexes of WOCl4 with Phosphine Oxide Ligands

The complexes [WOCl₄(L)] or [(WOCl₄)₂(μ -L-L)] (L = OPPh₃ or OPMe₃; L-L = dppmO₂ or dppeO₂) were obtained as moisture sensitive yellow or orange powders in moderate to good yields

(30-83%). The compounds were synthesised by direct stoichiometric reactions of pre-formed WOCl₄ and the ligands in an appropriate solvent (CH₂Cl₂ or toluene). *In-situ* reactions with WCl₆, O(SiMe₃)₂ and the ligand resulted in impure products.

The complex [WOCl₄(OPPh₃)] has been re-prepared and characterised by IR spectroscopy (see Table 2.2); uncoordinated OPPh₃ exhibits a P=O stretch at 1195 cm⁻¹, which should shift to a lower frequency once coordinated, as the oxygen from the ligand is donating its electrons to the metal centre. The IR spectrum shows a shift in wavenumber from 1195 cm⁻¹ to 1135 cm⁻¹, which conflicts with one of the literature values of 1163 cm⁻¹.⁶⁸ Additionally, the W-Cl stretch at 338 cm⁻¹ corresponds with both literature values (340 cm⁻¹) and the W=O stretch at 981 cm⁻¹ matches the reported value. The point group of this molecule is C_{4v}, therefore there are two W-Cl IR active bands (A₁ and E) expected, however in this instance only one is seen. The W-Cl band observed (338 cm⁻¹) is the E band as the A₁ band would be considerably weaker. The ³¹P{¹H} NMR spectrum shows a sharp singlet at +46.2 ppm, which is not free ligand (expected at +24.9 ppm); this also does not correspond to the [WO₂Cl₂(OPPh₃)₂] analogue, which could form upon trace hydrolysis.¹² In conclusion, the spectroscopic data obtained in this work matches the reported literature by Behzadi *et al*.

Assigned Stretch	This Work	Behzadi et al.68	Agh-Atabay et al.46
ν(P=O)	1135 cm ⁻¹	1130 cm ⁻¹	1163 cm ⁻¹
v(W=O)	981 cm ⁻¹	984 cm ⁻¹	983 cm ⁻¹
v(W-Cl)	338 cm ⁻¹	340 cm ⁻¹	340 cm ⁻¹
³¹ P{ ¹ H} NMR	+46.2 ppm	-	+24.2 ppm

Table 2.2: Comparison of literature values for [WOCl4(OPPh3)] against this study.

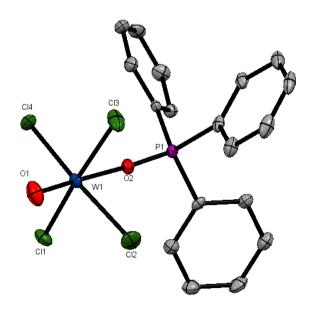


Figure 2.6: The structure of [WOCl4(OPPh3)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity. Two independent molecules are present in the asymmetric unit, only one is shown for clarity.

$[\mathrm{WOCl}_4(\mathrm{OPPh}_3)]$				
Bond Lengths/ Å		Bond Angles/ °		
W1-Cl1	2.3460(5)	Cl1-W1-Cl2	87.77(2)	
W1-Cl2	2.3015(6)	Cl1-W1-Cl3	169.82(2)	
W1-Cl3	2.2936(6)	Cl2-W1-Cl4	167.79(2)	
W1-Cl4	2.3151(6)	Cl2-W1-Cl3	92.65(2)	
W1-O1	1.6839(16)	Cl1-W1-Cl4	86.60(2)	
W1-O2	2.1047(14)	O1-W1-O2	178.33(8)	

Table 2.3: Selected bond lengths and angles for [WOCl4(OPPh3)].

Red crystals grown from chloroform solution by slow evaporation (Figure 2.6), show the structure of [WOCl₄(OPPh₃)], which is remarkably similar to that of [WOF₄(OPPh₃)], with the phosphine oxide ligand *trans* to the W=O bond and perpendicular to the WCl₄ plane; typical of this type of complex. The bond distances between W1-O1 are not significantly different to the fluoride analogue, 1.6839(16) Å in this complex and 1.682(5) Å in the fluoride complex. The W1-O1 and W1-O2 bond distances are very different, with W1-O1 being much shorter due to double bond character, compared with 2.1047(14) Å for the W1-O2 single bond. Due to higher electron density on O1, the chlorine atoms are distorted away from the W=O bond and out of the equatorial plane, shown by O=W-Cl angles >90°.

[WOCl₄(OPMe₃)] has also been synthesised as a yellow powder. There is no reported literature for this compound, but similarities can be drawn from [WOCl₄(OPPh₃)]. The data can be found in Table 2.9, showing all the same spectroscopic characteristics as [WOCl₄(OPPh₃)].

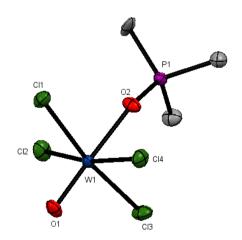


Figure 2.7: The structure of [WOCl₄(OPMe₃)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity.

[WOCl ₄ (OPMe ₃)]				
Bond Lengths/ Å		Bond Angles/°		
W1-Cl1	2.3460(5)	Cl-W1-Cl2	88.23(17)	
W1-C12	2.3015(6)	Cl1-W1-Cl3	169.39(17)	
W1-Cl3	2.2936(6)	Cl1-W1-Cl4	90.69(18)	
W1-Cl4	2.3151(6)	O1-W1-Cl	93.4(2) - 96.2(2)	
W1-01	1.6839(16)	O1-W1-O2	178.3(7)	
W1-O2	2.1047(14)			

Table 2.4: Selected bond lengths and angles for [WOCl4(OPMe3)].

Bright yellow crystals of [WOCl₄(OPMe₃)] (Figure 2.7) were isolated from chloroform and the structure is very similar to [WOCl₄(OPPh₃)] described above. The W1-O1 distance is slightly longer in this structure compared to [WOCl₄(OPPh₃)], 1.700(14) Å and 1.6839(16) Å, respectively. A small number of pale yellow decomposition crystals were also isolated and shown to be [WO₂Cl₂(OPMe₃)₂], which has been reported previously.¹²

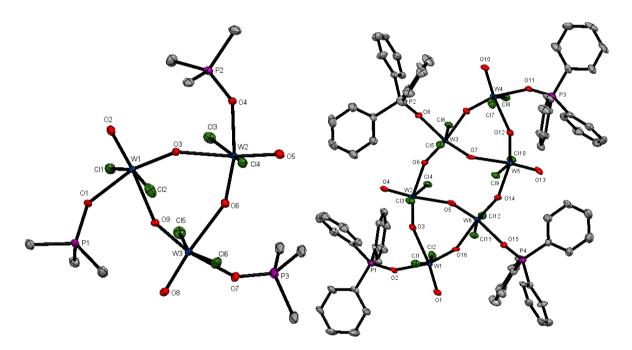


Figure 2.8: The structure of $[W_3O_3(\mu-O)_3Cl_6(OPMe_3)_3]$ •2 CH_2Cl_2 (left) and $[W_6O_6(\mu-O)_6Cl_{12}(OPPh_3)_4]$ (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms and the solvent molecules are omitted for clarity. The Me groups on P3 show disorder over two sites, only one is shown.

$[W_3O_3(\mu\text{-}O)_3Cl_6(OPMe_3)_3]\text{-}2CH_2Cl_2$					
	Bond Lengths/ Å				
W1-Cl2	2.3491(8)	W2-O6	1.7669(19)		
W1-Cl1	2.3397(8)	W2-O3	2.301(18)		
W1-O9	2.2211(18)	W2-O5	1.7167(19)		
W1-O1	2.0817(18)	W3-C15	2.3522(8)		
W1-O3	1.7651(18)	W3-Cl6	2.3549(8)		
W1-O2	1.710(2)	W3-O9	1.7539(18)		
W2-C14	2.3528(7)	W3-O7	2.0681(19)		
W2-C13	2.3522(8)	W3-O8	1.715(2)		
W2-O4	2.0715(18)				
Bond Angles/ °					
W-O _h -W	152.97(11)	O _h -W-O _h	86.07(8)		
W-O _h -W	154.90(11)	O _h -W-O _h	85.01(8)		
W-O _h -W	154.52(11)	O _h -W-O _h	86.07(8)		

Table 2.5: Selected bond lengths and angles for $[W_3O_3(\mu-O)_3Cl_6(OPMe_3)_3]$ •2CH₂Cl₂.

Decomposition of some WOCl₄ complexes can occur, resulting in the formation of $[WO_2Cl_2(L)_2]$ complexes, as revealed by crystallographically. However, under more harsh conditions reduction to tungsten(V) species can occur. 36,45,64

During attempts to grow crystals of [WOCl₄(OPPh₃)] and [WOCl₄(OPMe₃)] by slow evaporation from chloroform, a small amount of colourless crystals were collected, which were discovered to be cyclic $\{W_n(\mu\text{-}O)_n\}$ species. The compound grown from [WOCl₄(OPMe₃)] solution shows tungsten(VI) in a distorted octahedral environment consisting of three $\{WO_2Cl_2(OPMe_3)\}$ units linked by asymmetric oxido-bridges to form a six-membered ring. In this system the W=O bonds are *trans* to the bridging oxygen, not the oxygen from the OPMe₃ ligand, as seen in mononuclear phosphine oxide complexes. ^{10,12,21} The W=O bond (W1-O3) is 1.7651(18) Å, comparable to terminal W=O bonds in other tungsten(VI) complexes; this oxygen then forms a weak oxido bridge to another tungsten(VI), W2-O3 = 2.2301(18) Å. A similar trimetric structure has been reported in 2016 by Bortoluzzi *et al.* using trimethylurea as a ligand, ³⁹ the only other similar complex is a tetramer with coordinated THF on each tungsten centre (Figure 2.9). ⁶⁹

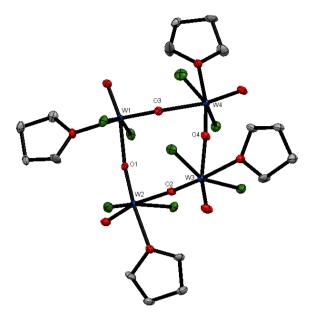


Figure 2.9: Showing $[W_4O_4(\mu-O)_4Cl_8(THF)_4]$ •2CH₂Cl₂ crystal structure redrawn from literature.⁶⁹

A crystal grown from [WOCl₄(OPPh₃)] solution formed a similar cyclic ring (shown in Figure 2.8), but due to the steric bulk of the phenyl rings, it has forced the structure to adopt a larger ring. Like the trimeric structure, there are asymmetric oxido bridges around the outer ring and across the structure (due to the quality of the data bond lengths cannot be compared). Like the trimer, the W=O bonds are *trans* to the bridging oxygens and *cis* to the chlorine atoms. Attempts to synthesise these complexes in bulk *in situ* directly from WO₂Cl₂ and from WOCl₄ by varying the conditions were unsuccessful, resulting in different impure products. These degradation compounds seem to require trace water/oxygen to form, but there appears to be no obvious way to control their formation.

The synthesis of the complex [WOCl₄(dppmO₂)] using 2:1 metal centre to ligand was tried, resulting in the formation of a six-coordinate bridged complex, [(WOCl₄)₂(dppmO₂)], presumably this complex is more favourable than a seven-coordinate monomer (which had no evidence of formation). The IR spectrum for the bridged complex shows the P=O stretch at 1076 cm⁻¹, shifted from 1183 cm⁻¹.⁷⁰ The single W=O stretch is observed at 981 cm⁻¹ and is close to the W=O stretch from [WOCl₄(OPPh₃)] at 983 cm⁻¹. Finally, the W-Cl stretch is observed at 338 cm⁻¹. The ¹H NMR data shows multiplets from the phenyl rings and a sharp triplet for the methylene linker at 4.62 ppm, which shows a large shift from free ligand (2.41 ppm).⁷⁰ The ³¹P{¹H} NMR spectrum shows a sharp singlet at +44.6 ppm, which is also similar to [WOCl₄(OPPh₃)] and bulk composition confirmed by elemental analysis.

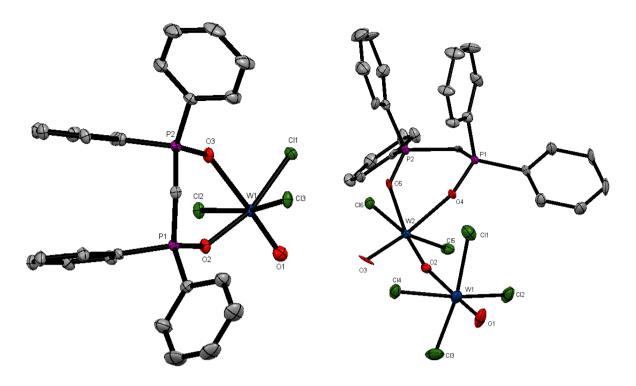


Figure 2.10: The structure of [WOCl₃(dppmO₂)] (left) and [WOCl₂(dppmO₂)((µ-O)(WOCl₄))] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms and solvent are omitted for clarity. Note that the O/Cl in [WOCl₃(dppmO₂)] exhibited disorder, which was modelled with split atom sites and refined to occupancies of 0.39:0.61. Only the major form is shown.

[WOCl ₃ (dppmO ₂)]					
Bond I	Lengths/ Å	Bond Angles/°			
W1-Cl	2.343(3) - 2.395(1)	Cl1-W1-O1	98.4(3)		
W1-O1	1.69(1)	Cl2-W1-O1	95.00(3)		
W1-O2	2.022(2)	Cl3-W1-O1	82.67(6)		
W2-O3	2.234(2)				
	[WOCl ₂ (dppmO ₂)((μ-O)(WOCl ₄))]			
Bond I	Lengths/ Å	Bond Ang	gles/°		
W1-Cl(1-4)	2.297(2) - 2.315(2)	O1-W1-Cl	95.5(2)-98.3(2)		
W1-O1	1.675(5)	O2-W2-C1	93.5(1) – 95.6(1)		
W1-O2	2.207(5)				
W2-Cl(5-6)	2.348(2) – 2.364(2)				

 $Table~2.6:~Selected~bond~lengths~and~angles~for~[WOCl_3(dppeO_2)]~and~[WOCl_2(dppmO_2)((\mu-O)(WOCl_4))].$

A few crystals, of a number of decomposition structures, have been obtained from a solution of [(WOCl₄)₂(dppmO₂)] in CH₂Cl₂. A large number of orange crystals, of [(WOCl₄)₂(dppmO₂)] were collected, confirming the formation of a bridged dimer (Figure 2.11). The W=O and W-Cl bond lengths in this complex and [WOCl₄(OPPh₃)] are not dissimilar. The W-O_p in this complex is longer than in [WOCl₄(OPPh₃)], however W1-O2 and W2-O3 in the dimer structure distances are surprisingly not equal, a possible explanation is due to some effect of crystal packing.

The first decomposition structure obtained, [WOCl₂(dppmO₂)((μ -O)(WOCl₄))], is a minor hydrolysis product (Figure 2.10), showing the formation of an asymmetric oxido bridge and the loss of chlorine from one of the metal centres. The structure shows one {WOCl₄} unit and one {WO₂Cl₂} unit. A second hydrolysis structure of [WO₂Cl₂(dppmO₂)] has also been isolated as a further minor decomposition product, which has previously been identified.⁷¹

In addition to these two decomposition structures, a reduction product was also obtained after crystallisation over an extended period, [WOCl₃(dppmO₂)] (Figure 2.10); despite the considerable amount of work on neutral hard donor WOCl₃ complexes,⁷² this compound has not been reported previously. Due to the loss of one chloride, the dppmO₂ ligand has chelated to the tungsten(V) centre reducing the molecular symmetry (to C_s). This structure has O/Cl disorder *trans* to ligand, which is not uncommon for complexes of this type, the W=O bond length is not considerably different to the W=O bonds in other tungsten complexes.

The complex $[(WOCl_4)_2(dppeO_2)]$ also formed as a bridged complex, similar to $[(WOCl_4)_2(dppmO_2)]$ (Figure 2.11). The IR spectrum is almost identical to that of $[(WOCl_4)_2(dppmO_2)]$ - see data in Table 2.9, while the $^{31}P\{^1H\}$ NMR spectrum shows a singlet at +53.2 ppm, which again has shifted from uncoordinated ligand at +33.2 ppm. The structure of $[(WOCl_4)_2(dppeO_2)]$ shows a centrosymmetric crystal, in the space group $P\overline{1}$. Once again, the neutral ligand is lying *trans* to the oxygen with the chlorines slightly out of the equatorial plane, as shown in Figure 2.11.

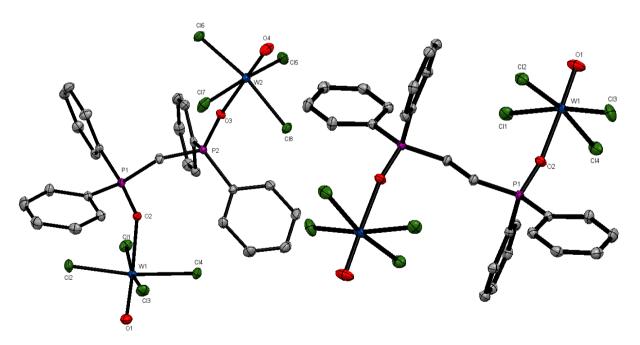


Figure 2.11: The structure of $[(WOCl_4)_2(dppmO_2)]$ (left) and $[(WOCl_4)_2(dppeO_2)]$ (right), showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity.

$[(WOCl_4)_2(dppmO_2)]$					
Bond I	Lengths/ Å	Bond A	Angles/°		
W1-Cl	2.3092(5) - 2.3190(5)	Cl-W1-Cl (cis)	88.129(18) – 90.672(19)		
W1-O1	1.6861(14)	O _P -W-Cl	83.60(4) - 87.35(4)		
W1-O2	2.1886(12)	O–W–Cl	93.36(5) – 96.94(6)		
W2-O3	2.1224(13)	O1-W1-O2	176.96(6)		
W2-O4	1.6846(14)	O4-W2-O3	179.31(7)		
W2-Cl	2.3119(5) – 2.3198(5)				
	[(WOCl ₄) ₂ (d	ppeO ₂)]			
Bond I	Lengths/ Å	Bond A	Angles/°		
W1-Cl	2.304(1) - 2.343(1)	O _P -W-Cl	83.72(9) - 85.51(9)		
W1-O1	1.693(4)	O–W–Cl	93.9(1) – 96.8(1)		
W1-O2	2.115(3)				
W2-O3	2.1224(13)				

Table 2.7: Selected bond lengths and angles for $[(WOCl_4)_2(dppmO_2)]$ and $[(WOCl_4)_2(dppeO_2)]$.

2.3.3 Complexes of WOCl4 with Nitrogen Donor Ligands

Precision over the ratio of metal centre to nitrogen donor ligand and the use of rigorously dried solvent is imperative for the successful formation of these compounds. The imine complexes are readily hydrolysed in solution with formation of protonated imine, which was commonly observed as a minor species during NMR analysis.

The seven-coordinate complex, [WOCl₄(2,2'-bipy)], has been synthesised. This compound has a point group of C_s, the IR spectrum shows a W=O stretch at 954 cm⁻¹, comparable to [WOF₄(2,2'-bipy)] at 968 cm⁻¹. It is expected the W=O stretch will be lower in frequency than the other six-coordinate complexes due to the higher coordination number;⁷³ this is consistent with our findings. There are two expected IR active stretching modes for W-Cl (A', A''), and in practise a broad peak is observed at 329 cm⁻¹, which is likely the unresolved overlapping vibrations. The ¹H NMR spectrum shows four unique proton environments, meaning the ligand is symmetrically coordinated – also shown by four equal integrals. There is also a shift of +0.4 ppm in all peaks compared to 'free' ligand, confirming there is coordination through both nitrogen atoms. If only one nitrogen was coordinated there would be eight environments as the symmetry in the ligand would be lost. There is a very small amount of protonated 2,2'-bipy present in the NMR spectrum, probably due to trace water in the NMR solvent.

Figure 2.12: ¹H NMR spectrum of [WOCl₄(2,2'-bipy)]. Showing four equal proton environments consistent with coordination through both nitrogen atoms. In addition, there is a small shift in ppm showing coordination to the metal centre. * = protonated 2,2-bipy.

Fowles and co-workers reported that the complex [WOCl₃(2,2'bipy)] formed upon reaction of WOCl₄ and excess 2,2'-bipy in benzene and propionitrile,⁴⁵ however this investigation shows no evidence of this compound forming under the conditions used here.

The synthesis of [WOCl₄(1,10-phen)] has been attempted, but no clean complex was isolated. The IR spectrum of the product does not correspond with that of [WO₂Cl₂(1,10-phen)], which has been previously reported.¹² In the ¹H NMR spectrum, there is a shift in ppm compared to free ligand implying the ligand has coordinated. However, only part of the bulk product is soluble in dichloromethane, leaving behind a reasonable amount of brown solid, therefore the ¹H NMR spectrum may not be representative of the bulk. All attempts to obtain crystals for X-ray structure analysis resulted in formation of [WO₂Cl₂(1,10-phen)]. It should be noted that the fluorine analogue [WOF₄(1,10-phen)] could not be isolated and the major product was [WO₂F₂(1,10-phen)].¹⁰

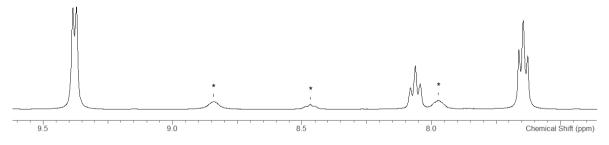


Figure 2.13: 1 H NMR spectrum of [WOCl₄(C_5H_5N)]. Showing major 3 proton environments in a 2:1:2 integration, representing pyridine's 5 hydrogen atoms. In addition, there is a small shift in ppm showing coordination to the metal centre through the nitrogen atom. * Trace [WO₂Cl₂(py)₂)].

The last nitrogen-donor complex is [WOCl₄(C_5H_5N)]. Unlike [WOCl₄(2,2'-bipy)] this complex is six-coordinate. This complex has the point group C_{4v} , the same as the monodentate phosphine oxide complexes. The IR spectrum shows a W=O stretch at 987 cm⁻¹. There are two expected W-Cl

stretches (A₁ and E), a strong absorption at 338 cm⁻¹ and then a smaller shoulder. There is no observed W-N stretch in [WOCl₄(C_5H_5N)]; it is suggested to be expected at 375 cm⁻¹, ⁷⁴ but could be hidden in this complex under the W-Cl stretch. The ¹H NMR spectrum, as seen in Figure 2.13, shows three proton environments consistent with pyridine with the correct integrals.

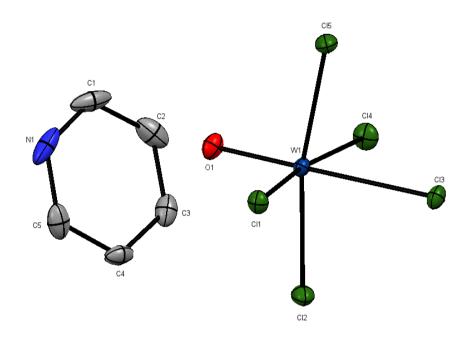


Figure 2.14: The structure of $[C_5H_5NH][WOCl_5]$ showing the atom numbering scheme. Ellipsoids are shown at 50% probability, H atoms are omitted for clarity.

$[(C_5H_5NH)][WOCl_5]$				
Bond I	Bond Lengths/ Å		gles/°	
W1-Cl1	2.3172(6)	Cl1-W1-Cl2	90.46(2)	
W1-Cl2	2.3144(5)	Cl1-W1-Cl3	84.67(2)	
W1-Cl3	2.5704(6)	Cl1-W1-Cl5	89.71(2)	
W1-Cl4	2.3182(6)	O1-W1-Cl1	94.12(5)	
W1-C15	2.3182(6)			
W1-O1	1.689(1)			

Table 2.8: Selected bond lengths and angles for [C₅H₅NH][WOCl₅].

Attempts to crystallise this complex have been unsuccessful, but a protonated decomposition compound [C₅H₅NH][WOCl₅] has been isolated on extended standing (Figure 2.14). The protonation of pyridine results in the formation of the [WOCl₅] anion, the addition of a chloride to the metal centre has shortened the W-Cl bonds compared to neutral WOCl₄ complexes. The fifth W-Cl bond *trans* to oxygen is longer than typical, but not unexpected in complexes of this nature, see [Et₄N][WOCl₅] in Chapter 6.^{75,76}

Compound		IR		³¹ P{¹H} NMR / ppm
	ν(P=O)	ν(W=E)	ν(W-Cl)	
WSC1 ₄	-	555 cm ⁻¹	370/346 cm ⁻¹	-
[WSC1 ₄ (OPPh ₃)]	1136 cm ⁻¹	a	329 cm ⁻¹	+45.9
[WSCl ₄ (OPMe ₃)]	1075 cm ⁻¹	522 cm ⁻¹	322 cm ⁻¹	+63.8
[WSC1 ₄ (2,2'-bipy)]	-	521 cm ⁻¹	316 cm ⁻¹	-
[WSCl ₄ (C ₅ H ₅ N)]	-	533 cm ⁻¹	334 cm ⁻¹	-
[(WSCl ₄) ₂ (dppmO ₂)]	1074 cm ⁻¹	530 cm ⁻¹	338 cm ⁻¹	+45.4
[(WSCl ₄) ₂ (dppeO ₂)]	1077 cm ⁻¹	536 cm ⁻¹	330 cm ⁻¹	+49.2
WOC14	-	875 cm ⁻¹	381/326 cm ⁻¹	-
[WOCl ₄ (OPPh ₃)]	1135 cm ⁻¹	983 cm ⁻¹	343 cm ⁻¹	+46.6
[WOC14(OPMe3)]	1090 cm ⁻¹	957 cm ⁻¹	335 cm ⁻¹	+64.2
[WOCl ₄ (2,2'-bipy)]	-	970 cm ⁻¹	332 cm ⁻¹	-
[WOCl ₄ (C ₅ H ₅ N)]	-	987 cm ⁻¹	338 cm ⁻¹	-
[(WOCl ₄) ₂ (dppmO ₂)]	1076 cm ⁻¹	980 cm ⁻¹	338 cm ⁻¹	+44.6
[(WOCl ₄) ₂ (dppeO ₂)]	1091 cm ⁻¹	985 cm ⁻¹	337 cm ⁻¹	+53.2

Table 2.9: Selected IR and ${}^{1}H$ and ${}^{31}P\{{}^{1}H\}$ NMR data for the compounds in this chapter. a W=S band not observed, obscured by P-C band. E = O or S.

2.3.4 Complexes of WSCl₄

The compound WSCl₄ had initially been prepared from WCl₆ and S(SiMe₃)₂ in CH₂Cl₂ following the reported method,³² however this method gave erratic results and low yields due to the formation of some WOCl₄, which could not be separated. A second method was tried and gave much more consistent results and yield, by using toluene as the solvent and including a sublimation step.⁵⁴ The W=S bond shows a single absorption (due to the C_{4v} symmetry) at 556 cm⁻¹ assigned to the A₁ stretch, which corresponds to the literature values.^{32,59} Two bands are expected for W-Cl bonds (A₁ and E), bands at 371 cm⁻¹ and 346 cm⁻¹ are assigned to A₁ and E respectively. WSCl₄ and WCl₆ are extremely moisture sensitive, which can lead to the formation of WOCl₄ and further hydrolysis products of WO₂Cl₂ and WOSCl₂; if this had occurred the IR spectrum would show a strong sharp stretch around 980-990 cm⁻¹ for a W=O bond, which is not present in the spectrum of the WSCl₄ used in this study.

2.3.5 Complexes of WSCl₄ with Phosphine Oxide Ligands

The complex [WSCl₄(OPPh₃)] has been synthesised by direct reaction of WSCl₄ and OPPh₃ in CH₂Cl₂. In the IR spectrum, the P=O stretch is at 1137 cm⁻¹ showing a coordination shift which is

also consistent with the literature value, 1136 cm⁻¹.⁷⁷ Additionally, the two W-Cl stretches, (A₁ and E), 329 cm⁻¹ and 310 cm⁻¹ also correspond with the literature values. However, no W=S stretch is reported, a single W=S stretch is expected but is most likely hidden by the peak at 537 cm⁻¹ from the OPPh₃. The ³¹P{¹H} NMR data also shows a single peak at +45.9 ppm and the composition was confirmed by elemental analysis.

A number of attempts to make the [WSCl₄(OPPh₃)] complex *in-situ* directly from WCl₆ have been unsuccessful, the P=O stretch in the products has shifted to 1157 cm⁻¹, which is reported as the complex [WSCl₃(OPPh₃)₂] by Behzadi and co-workers.⁷⁷ The ³¹P{¹H} NMR spectrum shows a singlet at +66.4 ppm likely to be PPh₃Cl₂,⁷⁸ however if the main compound is tungsten(V), it is paramagnetic and not NMR active.

Red crystals were isolated from a solution of [WSCl₄(OPPh₃)] in CH₂Cl₂ (Figure 2.15), showing the formation of a mononuclear tungsten(VI) complex with OPPh₃. This structure is very similar to [WOCl₄(OPPh₃)] but is not isomorphous, the ligand lies *trans* to the W=S bond, as expected.

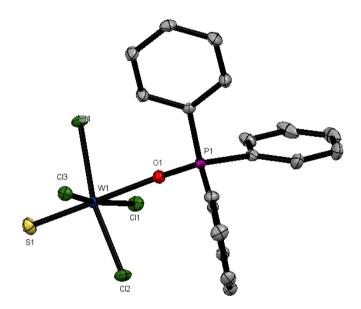


Figure 2.15: The structure of [WSCl4(OPPh3)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity.

[WSCl ₄ (OPPh ₃)]				
Bond I	Bond Lengths/ Å		Angles/ °	
W1-Cl1	2.3196(6)	Cl1-W-S	95.21(2)	
W1-Cl2	2.3142(6)	Cl2-W-S	97.32(2)	
W1-Cl3	2.23488(5)	Cl3-W-S	96.83(2)	
W1-Cl4	2.3447(7)	Cl4-W-S	96.88(2)	
W1-O1	2.163(2)	O-W-Cl 82.20(4) – 84.4		
W1-S1	2.0938(6)			

Table 2.10: Selected bond lengths and angles for [WSCl4(OPPh3)].

[WSCl₄(OPMe₃)], like the oxide analogue, has not been reported previously. The compound has a P=O stretch at 1075 cm⁻¹ in the IR spectrum, again, lower than the OPPh₃ analogue. The W=S stretch is at 522 cm⁻¹ and W-Cl stretch at 322 cm⁻¹, consistent with the values observed for [WOCl₄(OPMe₃)] and [WSCl₄(OPPh₃)]. The W=S stretching vibration appears in the correct range, so it is assumed that the W=S peak in [WSCl₄(OPPh₃)] is hidden by a P-C band. The ³¹P{¹H} NMR spectrum shows a singlet at +63.8 ppm, very similar to [WOCl₄(OPMe₃)] at +64.2 ppm, suggesting the terminal sulfur and oxygen have little effect on the deshielding of the phosphorus on the ligand.

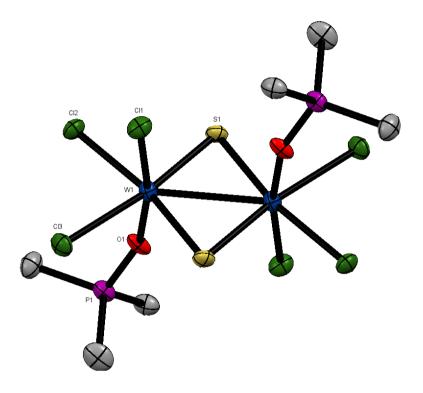


Figure 2.16: The structure of $[(WCl_3)_2(\mu-S)_2(OPMe_3)_3]$ • CH_2Cl_2 showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity.

A few orange crystals were isolated from a CH_2Cl_2 solution of [WSCl₄(OPMe₃)] and were identified as the neutral tungsten(V) dimer, [(WCl₃)₂(μ -S)₂(OPMe₃)₃]•CH₂Cl₂ (Figure 2.15). These crystals were isolated after the compound was >6 months old and are likely the result of degradation over time, even in inert conditions. The bridging sulfurs coming from rearrangement from WSCl₄ (see Section 3.3.1 and 4.3.1 for other examples).

The bidentate phosphine oxide complexes of WSCl₄ behave extremely similarly to the WOCl₄ analogues, forming bridging dimers. Neither the mono- nor the bi-dentate phosphine oxides are strong enough donors to force the tungsten centre to go seven-coordinate. Some crystal structures have also been obtained showing a loss of chloride to form W(V) species, for example, [WECl₃(dppmO₂)] compounds, as a degradation route. For these examples, some show the metal thiohalide compounds have also been hydrolysed to form the oxide species. The compounds [(WSCl₄)₂(dppmO₂)] and [(WSCl₄)₂(dppeO₂)] show W=S stretches around ~530 cm⁻¹ and W-Cl stretches ~340 cm⁻¹ (Table 2.9) with bulk composition confirmed by elemental analysis.

A few orange crystals of the tungsten(V) complex [WSCl₃(dppmO₂)] and red crystals of [(WSCl₄)₂(dppmO₂)] were isolated from CH_2Cl_2 (Figure 2.16), showing similar structures to those of [WOCl₃(dppmO₂)] and [(WOCl₄)₂(dppmO₂)], respectively. These reduction products (which were obtained when compounds were >6 months old) seem to suggest that the tungsten(VI) complexes are not indefinitely stable in solution or solid-state over time.

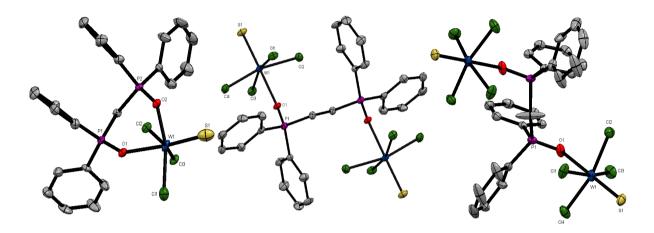


Figure 2.17: The structures of [WSCl₃(dppmO₂)] (left), [(WSCl₄)₂(dppeO₂)] (middle) and [(WSCl₄)₂(dppmO₂)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms and solvent are omitted for clarity. Note that the axial S/Cl exhibited disorder in the tungsten(V) complex, which was modelled with split atom sites and refined to occupancies of 0.25:0.75. Only the major form is shown.

$[(WSCl_4)_2(dppeO_2)]$				
Bond	Bond Lengths/ Å		gles/°	
W1-Cl	2.3126(8) - 2.34848(8)	Cl-W-Cl (cis)	87.80(3) - 90.29(3)	
W1-S1	2.1059(9)	Cl-W-S	95.99(3) - 97.99(3)	
W1-O1	2.159(2)	O-W-Cl	82.33(6) - 83.74(6)	
	[WSCl ₃ (dp ₁	pmO ₂)]		
Bond	Lengths/ Å	Bond Angles/°		
W1-Cl	2.269(4) – 2.386(1)	O1-W1-Cl	83.6(1) – 84.3(2)	
W1-O _p	2.076(3) – 2.198(4)	S1-W1-Cl	95.5(2) – 101.1(2)	
W1-S1	2.060(7)			
	[(WSCl ₄) ₂ (d ₁	ppmO ₂)]		
Bond	Lengths/ Å	Bond Ang	gles/°	
W1-Cl	2.291(1)-2.365(1)	Cl-W-Cl (cis)	87.14(5) - 91.59(5)	
W1-O	2.179(4)	Cl-W-S	96.27(5) - 97.09(5)	
W1-S1	2.109(1)	O-W-Cl	81.7(1) - 83.8(1)	

Table 2.11: Selected bond lengths and angles for $[(WSCl_4)_2(dppeO_2)]$, $[WSCl_3(dppmO_2)]$ and $[(WSCl_4)_2(dppmO_2)]$.

Orange crystals of [(WSCl₄)₂(dppeO₂)], isolated from a CH₂Cl₂ solution, the structure is again similar to the other similar compounds. The X-ray crystal structure of this complex shows a centrosymmetric dimer with the sulfur lying *trans* to the oxygen from the ligand, similar to the structures of [(WOCl₄)₂(dppmO₂)] and [WOCl₄(OPPh₃)]. The tungsten(VI) atoms lie out of the

equatorial WCl₄ plane away from the sulfur, as it does in the complex [(WOCl₄)₂(dppmO₂)], but to a lesser extent (as sulfur is less electronegative).

2.3.6 Complexes of WSCl₄ with Nitrogen Donor Ligands

The reaction between WSCl₄ and 2,2'-bipy forms the complex [WSCl₄(2,2'-bipy)], which is probably seven-coordinate, as suggested by the ¹H NMR data. The ¹H NMR data shows four different environments with chemical shifts consistent with chelated 2,2'-bipy; this is also indicated in the IR spectrum as there is a shift to a lower frequency of the W=S band at 521 cm⁻¹, compared to its six-coordinate counterparts. Attempts to crystallise this complex have been unsuccessful, but crystals of the previously reported W(V) complex, [WSCl₃(2,2'-bipy)] have been grown (Figure 2.18).⁶⁴ This is most likely a degradation product formed by crystallisation over an extended period of time, as the seven-coordinate W(VI) complex is relatively stable compared to the other six-coordinate sulfide complexes, but not very soluble in organic solvents.

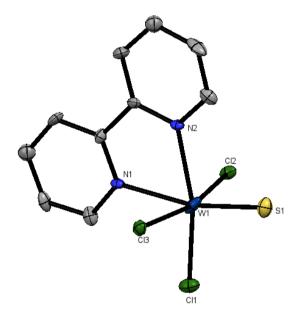


Figure 2.18: The structure of [WSCl₃(2,2'-bipy)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity. Two molecules were present in the asymmetric unit, but only one is shown here for clarity.

[WSCl ₃ (2,2'-bipy)]				
Bond 1	Lengths/ Å	Bond Ang	gles/ °	
W1-Cl1	2.284(4)	Cl2-W1-Cl3	166.21(11)	
W1-Cl2	2.356(3)	S1-W1-Cl2	96.40(13)	
W1-Cl3	2.3636(3)	S1-W1-N1	166.1(3)	
W1-S1	2.206(4)	S1-W1-N2	93.3(3)	
W1-N1	2.268(11)	S1-W1-Cl3	95.79(13)	
W1-N2	2.215(11)	N1-W1-Cl2	83.5(3)	

Table 2.12: Selected bond lengths and angles for [WSCl₃(2,2'-bipy)].

Finally, the compound [WSCl₄(C₅H₅N)] has been prepared from a 1:1 metal to ligand ratio at room temperature. There is a report of [WSCl₄(C₅H₅N)₃] being synthesised after a 3 week reaction time, but characterisation was extremely limited.⁶⁴ All the data collected in the present work indicates a 1:1 ratio, including elemental analysis. A crystal structure has also been obtained (Figure 2.19), although a large amount of residual electron density is present due to unresolved twinning, precluding detailed analysis of the geometric parameters.

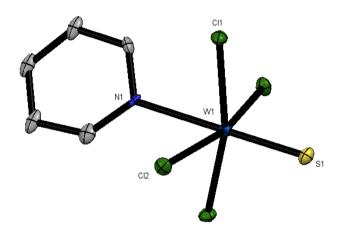
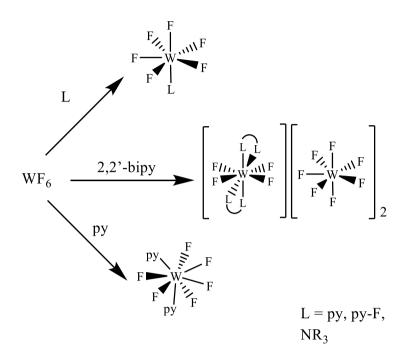


Figure 2.19: The structure of [WSCl₄(C_5H_5N)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity. Two molecules were present in the asymmetrical unit cell; one is shown here for clarity.


2.4 WCl₆ Chemistry

The coordination chemistry of WCl₆ is complex as it is highly reactive and moisture sensitive, often resulting in a large number and variety of products (see Section 2.2.2). Following the formation of [WECl₄(2,2'-bipy)], efforts to form other seven-coordinate complexes of the type [WCl₆(L)] were attempted. Reports of complexes of this nature are extremely limited, with ligands often causing the reduction of the metal centre to tungsten(V), ^{38,79,80} although there are also a number of examples of WCl₆ being reduced to [W^{IV}Cl₄(L)₂] when using excess ligand over an extended period of time. ^{81,82} A general consensus is that it is challenging to maintain the +VI oxidation state upon the addition of ligands, with only a few reported examples.

Boorman *et al.* have reported the formation of [WCl₆(tht)₂], [WCl₆(MeS(CH₂)₂SMe)] and [WCl₆(SMe₂)]; these complexes are formed under harsh conditions over extended periods of time.⁶¹ However, it is not clear if these species are neutral mononuclear complexes as neutral 8-coordinate compounds are extremely rare. It has also been reported that under similar conditions, the reduction of WCl₆ to tungsten(V) occurs for nitrogen ligands.⁸⁰ Reaction attempts of WCl₆ with NEt₃, PPh₃ or THF are reported to have formed intractable products.⁸⁰

Similar work on coordination complexes of WF₆ has been more successful, fluoride is strongly bound to high oxidation state metal ions, which often results in different behaviour to analogous

compounds with heavier halogens.^{83,84} A larger amount of literature has been reported for complexes of WF₆ with nitrogen donors, including some 8-coordinate systems, [WF₆(py)₂].^{50,85-89} A limited number of neutral WF₆ complexes with soft ligands (AsEt₃ and PMe₃) have been shown, however other arsine or phosphine ligands form rare cationic W(VI) species (further details in Chapter 3).^{88,90}

*Figure 2.20: Scheme of known complexes of WF*₆ with nitrogen donor ligands.

The aim of this work was to replicate known literature and potentially to expand on the WCl₆ coordination chemistry, to create species analogous to known WF₆ complexes. The ligands used include OPPh₃, 2,2'-bipy, 1,10-phen, py, tht and SMe₂. Products have been characterised by IR spectroscopy, ¹H NMR spectroscopy, ³¹P{¹H} spectroscopy and elemental analysis.

2.4.1 Results and Discussion

Attempts to replicate literature compounds of seven coordinate WCl₆ complexes proved challenging with most compounds being unable to be isolated cleanly. A variety of ligand types and conditions were attempted in efforts to understand the chemistry involved. Due to the nature of the complexes there are limited spectroscopic techniques available compared to the WECl₄ complexes. Boorman *et al.* have that shown WCl₆ with a 1:1 equivalent of 2,2'-bipy at room temperature produces the complex [WCl₅(2,2'-bipy)]. This was reproduced in the present work, confirmed by IR spectroscopy and elemental analysis.⁸⁰ Following this, 1,10-phen was used to see if the analogue could be prepared in the same way, however the spectroscopy did not support this. The IR spectra for both complexes looked similar, both having a W-Cl stretch ~ 316 cm⁻¹, however the NMR spectra were different, [WCl₅(2,2'-bipy)] showed no peaks (indicative of paramagnetism), whereas the 1,10-phen complexes showed at least two 1,10-phen species. It is

likely that one species is protonated ligand, which is common in N- donor ligands; the identity of the other complex is unknown. The products from the reaction with pyridine also produced similar spectra to those with 1,10-phen.

Figure 2.21: The structure of $[((WOCl_2)(1,10-phen))(\mu-O)(WOCl_4)]$ showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity.

$[((WOCl2)(1,10-phen))(\mu-O)(WOCl4)]$				
Bond Lengths/ Å Bond Angles/ °				
W1-Cl(1-4)	2.299(4) - 2.325(5)	(4) - 2.325(5) O1–W1–Cl 95.5(5)-98		
W1-O1	1.70(1)	O2-W2-C1	93.6(6) – 97.3(1)	
W1-O2	W1-O2 2.219(1)			
W2-Cl(5-6)	2.331(4) – 2.348(4)			

Table 2.13: Selected bond lengths and angles for $[((WOCl_2)(1,10-phen))(\mu-O)(WOCl_4)].$

A few orange crystals were isolated from a solution of the solid isolated from the reaction between WCl₆ and 1,10-phen, which revealed a tungsten(VI) oxide bridged dimer (Figure 2.21). The structure is similar to $[((WOCl_2)(dppmO_2))(\mu-O)(WOCl_4)]$ with both structures being oxide bridged, linking two tungsten(VI) centres. The oxygen present is likely coming from adventitious oxygen or trace water in the atmosphere.

To get an understanding of these systems OPPh₃ was also tried as a ligand, the ³¹P{¹H} NMR spectrum of the product showed two equal intensity peaks at 66.6 and 47.61 ppm. The peak at 66.6 ppm is indicative of chlorinated phosphine.⁷⁸ The second peak is close to the value of [WOCl₄(OPPh₃)]. This is supported by the evidence of a W=O stretch observed by IR spectrum (978 cm⁻¹), presumably resulting from trace hydrolysis.

Softer sulfur donors were used to try to replicate the reported literature, [WCl₆(L)] (L = SMe₂ or tht) which have been isolated using a 1:2 metal to ligand ratio. In this work, attempts were made

using a 1:1 ratio, but clean products could not be isolated. NMR spectra either showed no peaks (tht) or many (SMe₂). Due to the limited characterisations and difficulty to produce clean products this work was not continued further.

2.5 Conclusions

The main aim of this chapter was to synthesise a range of neutral complexes of WOCl₄ and WSCl₄ with phosphine oxides and N-heterocycles under mild reaction conditions. All compounds are hydrolytically unstable and must be handled and stored under anhydrous conditions at all stages. Excluding the 2,2'-bipy complexes, which are seven-coordinate, all other complexes are six-coordinate. Comparison of all the data collected suggests that the sulfide chlorides are slightly less Lewis acidic than the oxide chlorides. The products are characterised by infrared spectroscopy, ¹H and ³¹P{¹H} NMR spectroscopy, elemental analysis and some examples are characterised by X-ray structures. A number of examples of decomposition and degradation products/pathways have also been shown by X-ray crystal structures, but spectroscopic data confirms these degradation products are not the bulk compounds.

A short investigation into complexes of WCl₆ to produce analogues of WF₆ has proven unsuccessful, with data indicating reduction to tungsten(V) complexes (and potentially others). The complex [WCl₅(2,2'-bipy)] was isolated and characterised, but 1,10-phen analogues could not be isolated. Therefore, it can be assumed that complexes of WCl₆ are less stable than their WF₆ analogues and cannot be formed under mild conditions.

2.6 Experimental

Syntheses were performed by using standard Schlenk and glove-box techniques under a dry N_2 atmosphere. Solvents were dried by distillation from CaH_2 (CH_2Cl_2) or Na/benzophenone ketyl (toluene, n-hexane). WCl₆, O(SiMe₃)₂, S(SiMe₃)₂, SMe₂ and tht were obtained from Sigma-Aldrich and used as received. Ligands (2,2'-bipy, 1,10-phen, OPPh₃, OPMe₃) were obtained from Sigma-Aldrich and dried by heating *in vacuo*. The diphosphine dioxides, dppmO₂ and dppeO₂ were made by dry air oxidation of the corresponding diphosphines in CH_2Cl_2 solution, catalysed by SnI_4 , ⁹¹ and were checked for purity by $^{31}P\{^{1}H\}$ NMR spectroscopy (δ = 25.1 and 33.1 ppm, respectively). Before use, pyridine was dried over sodium and freshly distilled. For further details regarding the instrumentation see Appendix A.

2.6.1 WOCl₄ Species

[WOCl₄]

Following a reported literature method,³² a solution of $O(SiMe_3)_2$ (0.818 g, 5.04 mmol) in dichloromethane (5 mL) was added to a stirred solution of WCl_6 (2.00 g, 5.04 mmol) in dichloromethane (5 mL). The orange solution was stirred for 1 h. then the orange precipitate was filtered and washed with cold hexane (2 x 1 mL). Yield: 1.445 g, 84%. IR data (Nujol, v / cm^{-1}): 889sh, 875s W=O, 381s, 326s W-Cl.

[WOCl4(OPPh3)]

A solution of OPPh₃ (0.105 g, 0.44 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). The clear orange solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the orange solid washed with hexane (2 x 1 mL), and dried *in vacuo*. Yield: 0.130 g, 48 %. Required for $C_{18}H_{15}Cl_4O_2PW$ (619.9): C: 34.85, H: 2.44 %. Found: C: 35.01, H: 2.44 %. IR spectrum (Nujol, v / cm^{-1}): 1135s P=O, 981s W=O, 338s W-Cl. ¹H NMR (CDCl₃): $\delta = 7.88$ (m, [2H], aromatic CH), 7.70 (m, [H], aromatic CH), 7.58 (m, [2H], aromatic CH). ³¹P{¹H} NMR (CDCl₃): $\delta = +46.6$ (s).

[WOCl₄(OPMe₃)]

A yellow powder, made in an analogous way to [WOCl₄(OPPh₃)]. Yield: 0.140 g, 73%. Required for C₃H₉Cl₄O₂PW (433.7): C: 8.31, H: 2.09 %. Found: C: 8.55, H: 2.02 %. IR spectrum (Nujol, v / cm^{-1}): 1089s, br P=O, 957s W=O, 337s W-Cl. ¹H NMR (CDCl₃): $\delta = 1.88$ (d, J_{HP} 13 Hz, CH₃). ³¹P{¹H} NMR (CDCl₃): $\delta = +64.2$ (s).

 $[(WOCl_4)_2(dppmO_2)]$

A solution of dppmO₂ (0.120 g, 0.29 mmol) in dichloromethane (5 mL) was slowly added to an orange suspension of WOCl₄ (0.200 g, 0.58 mmol) in dichloromethane (5 mL). The clear

orange/brown solution formed was stirred for 1 h., then concentrated to ~ 5mL, filtered and the orange powder washed with hexane (2 x 1 mL) and dried *in vacuo*. Yield: 0.264 g, 83 %. Required for $C_{25}H_{22}Cl_8O_4P_2W_2$ (1099.7): C: 27.30, H: 2.02 %. Found: C: 27.42, H: 2.14 %. IR spectrum (Nujol, v / cm^{-1}): 1076m, br P=O, 981s W=O, 338s, br W-Cl. ¹H NMR (CDCl₃): δ = 7.81(m, [2H], aromatic CH), 7.61 (m, [2H], aromatic CH), 7.43 (m, [4H], aromatic CH), 4.62 (t, [H], J_{HP} 15.5 Hz, CH_2). ³¹P{¹H} NMR (CDCl₃): δ = +44.6 (s).

$[(WOCl_4)_2(dppeO_2)]$

Was made similarly to $[(WOCl_4)_2(dppmO_2)]$ as a yellow powder. Yield 0.100 g, 31 %. Required for $C_{26}H_{24}Cl_8O_4P_2W_2$ (1113.7): C: 28.09, H: 1.99 %. Found: C: 27.96, H: 2.12 %. IR spectrum (Nujol, v / cm^{-1}): 1091s P=O, 985s W=O, 337s W-Cl. ¹H NMR (CDCl₃): $\delta = 7.86$ (m, [4H], aromatic CH), 7.70 (m, [H], aromatic CH), 7.59 (m, [2H], aromatic CH), 3.15 (s, [H], CH₂). ³¹P{¹H} NMR (CDCl₃): δ ppm: +53.2 (s).

[WOCl₄(2,2'-bipy)]

2,2'-bipy (0.068 g, 0.44 mmol) in dichloromethane (5 mL) was slowly added to an orange suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). A green solution formed and was stirred for 1 h. at room temperature and then concentrated to ~ 3 mL *in vacuo*. The green solid was isolated by filtration, washed with hexane (2 x 1 mL) and dried *in vacuo*. Yield: 0.067 g, 30 %. Required for $C_{10}H_8Cl_4N_2OW$ (499.85): C: 24.11, H: 1.62, N: 5.63 %. Found: C: 24.33, H: 1.73, N: 5.84 %. IR spectrum (Nujol, v / cm^{-1}): 970s W=O, 329s, br W-Cl. ¹H NMR (CDCl₃): δ = 8.99 (d, [H], J_{HH} 8.1 Hz, aromatic CH), 8.85 (d, [H], J_{HH} 4.4 Hz, aromatic CH), 8.22 (t, [H], J_{HH} 7.8 Hz, aromatic CH), 7.66 (t, [H], J_{HH} 4.0 Hz, aromatic CH).

$[WOCl_4(C_5H_5N)]$

Pyridine (0.050 g, 0.58 mmol) in toluene (2 mL) was added to a red suspension of WOCl₄ (0.20 g, 0.58 mmol). The red solution formed was stirred for 1 h. and then taken to dryness *in vacuo* to obtain a yellow powder. Yield: 0.120 g, 49 %. Required for $C_5H_5Cl_4NOW$ (420.75): C: 14.27, H: 2.20, N: 3.33 %. Found: C: 14.23, H: 2.15, N: 3.31 %. IR spectrum (Nujol, v / cm^{-1}): 987m W=O, 338s W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 9.37$ (dd, [2H], J_{HH} 6.6, 1.5 Hz, aromatic CH), 8.06 (tt, [H], J_{HH} 7.7, 1.5 Hz, aromatic CH), 7.65 (td, [2H], J_{HH} 6.6, 1.2 Hz, aromatic CH).

2.6.2 WSCl₄ Species

[WSCl₄]

Following the literature method,⁵⁴ tungsten hexachloride (2.5 g, 6.3 mmol) in toluene (5 mL) was chilled to 0°C, hexamethyldisilathiane (1.35 g, 6.3 mmol) in toluene (2 mL) was added dropwise over 15 minutes. The red/brown solution was stirred for 30 minutes and taken to dryness *in vacuo*

collecting a brown powder. The brown powder was sublimed *in vacuo* (*ca.* 100 °C, 0.01 mmHg) collecting a red powder from the finger. Yield: 1.742 g, 78 %. IR data (Nujol, v / cm^1): 556m W=S, 372s, 344s W-Cl.

[WSCl₄(OPPh₃)]

OPPh₃ (0.078 g, 0.28 mmol) in dichloromethane (2 mL) was slowly added to a red solution of WSCl₄ (0.100 g, 0.28 mmol) in dichloromethane (5 mL). The solution was then stirred for 1 h., concentrated *in vacuo* to ~ 4 mL. The brown solid was filtered, washed with hexane (2 x 1 mL) and dried *in vacuo*. Yield: 0.120 g, 69 %. Required for $C_{18}H_{15}Cl_4OPSW$ (636.0): C: 33.99, H: 2.38 %. Found: C: 34.14, H: 2.45 %. IR spectrum (Nujol, v / cm^{-1}): 1137m P=O, 329s, 310sh W-Cl. ¹H NMR (CD₂Cl₂): δ = 7.81 (m, [2H], aromatic CH), 7.68 (t, [H], aromatic CH), 7.55 (m, [2H], aromatic CH). ³¹P{¹H} NMR (CD₂Cl₂): δ = +45.9 (s).

[WSCl₄(OPMe₃)]

A brown powder, made in an analogous way to [WSCl₄(OPPh₃)]. Yield: 0.080 g, 43 %. Required for C₃H₉Cl₄OPSW (449.8): C: 8.01, H: 2.00 %. Found: C: 8.14, H: 2.14 %. IR spectrum (Nujol, ν / cm⁻¹): 1075s, br P=O, 522m W=S, 322s, br W-Cl. ¹H NMR (CD₂Cl₂): δ = 1.81 (d, J_{PH} = 13 Hz, CH₃). ³¹P{¹H} NMR (CD₂Cl₂): δ = +63.8 (s).

$[(WSCl_4)_2(dppmO_2)]$

A solution of dppmO₂ (0.086 g, 0.21 mmol) in dichloromethane (5 mL) was slowly added to a red suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The resulting brown solution was then stirred for 1 h., concentrated in *vacuo* and the brown solid filtered off and rinsed with hexane (2 x 1 mL), and dried *in vacuo*. Yield: 0.115 g, 48 %. Required for $C_{25}H_{22}Cl_8O_2P_2S_2W_2$ (1131.8): C: 26.53, H: 1.96 %. Found: C: 26.52, H: 2.06 %. IR spectrum (Nujol, v / cm^{-1}): 1074m P=O, 530m W=S, 338sh, 327s W-Cl. ¹H NMR (CD₂Cl₂): δ = 7.76 (br [4H], aromatic CH), 7.56 (br [2H], aromatic CH), 7.43 (br [4H], aromatic CH), 3.82 (br [H], CH₂). ³¹P{¹H} NMR (CD₂Cl₂): δ = +45.4 (s).

$[(WSCl_4)_2(dppeO_2)]$

A solution of dppeO₂ (0.090 g, 0.21 mmol) in dichloromethane (5 mL) was slowly added to a red suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL), where a brown solution was formed. After 1 h. the solution was concentrated in *vacuo*, the brown solid filtered off and washed with hexane (2 x 1 mL). Yield: 0.190 g, 79 %. Required for C₂₆H₂₄Cl₈O₂P₂S₂W₂ (1145.85): C: 27.25, H: 2.11 %. Found: C: 27.00, H: 2.02 %. IR spectrum (Nujol, v / cm^{-1}): 1077s P=O, 536s W=S, 330s W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 7.93$ (br, [2H], aromatic CH), 7.66 (br, [H], aromatic CH), 7.59 (br, [2H], aromatic CH), 2.78 (s, [H], CH₂). ³¹P{¹H} NMR (CD₂Cl₂): $\delta = +49.2$ (s).

 $[WSCl_4(2,2'-bipy)]$

2,2'-bipy (0.065 g, 0.42 mmol) in dichloromethane (5 mL) was slowly added to a red suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The purple/red solution was stirred for 1 h. concentrated to ~3 mL and the red-pink powder filtered off, washed with hexane (2 x 1 mL), and dried *in vacuo*, collecting a red/pink powder. Yield: 0.165 g, 76 %. Required for $C_{10}H_8Cl_4N_2SW$ (513.9): C: 23.37, H: 1.57, N: 5.45 %. Found: C: 23.36, H: 1.59, N: 5.50 %. IR spectrum (Nujol, ν / cm⁻¹): 521s W=S, 316s W=Cl. ¹H NMR (CD₂Cl₂): δ = 8.97 (d, [H], J_{HH} 8.3 Hz, aromatic CH), 8.89 (d, [H], J_{HH} 5.1 Hz, aromatic CH), 8.27 (t, [H], J_{HH} 7.6 Hz, aromatic CH).

 $[WSCl_4(C_5H_5N)]$

Pyridine (0.050 g, 0.58 mmol) in toluene (2 mL) was added to a dark red solution of WSCl₄ (0.200 g, 0.58 mmol). The brown solution formed was stirred for 1 h. and then taken to dryness *in vacuo* to yield a brown/grey powder. Yield: 0.160 g, 87 %. Required for $C_5H_5Cl_4NSW$ (436.8): C: 13.75, H: 1.15, N: 3.21 %. Found: C: 14.06, H: 1.20, N: 3.29 %. IR spectrum (Nujol, v / cm^{-1}): 533s W=S, 334s, br W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 8.78$ (br, [2H], aromatic CH), 8.56 (br, [H], aromatic CH),

2.6.3 WCl₆ Species

The products isolated from the WCl₆ reactions were not satisfactorily characterised (see above) but are reported for completeness of work.

Reaction of WCl₆ and OPPh₃

OPPh₃ (0.140 g, 0.504 mmol) in dichloromethane (2 mL) was slowly added to a dark red solution of WCl₆ (0.200 g, 0.504 mmol) in dichloromethane (5 mL). The solution was then stirred overnight, the light orange solution was layered in hexane (4 mL). A sticky orange oil was isolated *via* filtration and dried *in vacuo*. IR spectrum (Nujol, v / cm⁻¹): 978s W=O, 322s W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 8.10$ -7.55 (m). ³¹P{¹H} NMR (CD₂Cl₂): $\delta = +66.6$ (s, PPh₃Cl₂), 47.6 (s).

[WCl₅(2,2'-bipy)]

2,2-bipy (0.079 g, 0.504 mmol) in dichloromethane (2 mL) was slowly added to a red solution of WCl₆ (0.200 g, 0.504 mmol) in dichloromethane (5 mL). The solution was left to stir for 2 h., a green precipitate had formed, which was isolated *via* filtration and dried *in vacuo*. Yield: 0.197 g, 76 %. Required for C₁₀H₈Cl₅N₂W (517.29): C: 23.22, H: 1.56, N: 5.42 %. Found: C: 22.91, H: 1.58, N: 4.75 %. IR spectrum (Nujol, v / cm⁻¹): 315s, br W-Cl.

Reaction of WCl₆ and 1,10-phen

1,10-phen (0.091 g, 0.504 mmol) in dichloromethane (2 mL) was slowly added to a red solution of WCl₆ (0.200 g, 0.504 mmol) in dichloromethane (5 mL). The solution was left to stir for 2 h., a beige precipitate had formed which was isolated *via* filtration and dried *in vacuo*. IR spectrum (Nujol, v / cm^{-1}): 320s, br W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 8.10$ -7.55 (m).

Reaction of WCl₆ and pyridine

Pyridine (0.040 g, 0.504 mmol) in dichloromethane (2 mL) was slowly added to a red solution of WCl₆ (0.200 g, 0.504 mmol) in dichloromethane (5 mL). The solution was left to stir for 2 h., a green precipitate had formed which was isolated *via* filtration and dried *in vacuo*. IR spectrum (Nujol, v / cm^{-1}): 322s, br W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 10.95$ (m), 9.37 (dd), 7.55 (m, J_{HH} 1.47, 6.60 Hz), 8.79 (d, J_{HH} 4.40 Hz), 8.38 (t, J_{HH} 7.70 Hz), 7.94 (t, J_{HH} 6.72 Hz), 7.65 (m).

Reaction of WCl₆ and SMe₂.

SMe₂ (0.031 g, 0.504 mmol) in dichloromethane (2 mL) was slowly added to a red solution of WCl₆ (0.200 g, 0.504 mmol) in dichloromethane (5 mL). The solution was left to stir for 2 h.: a green precipitate had formed which was isolated *via* filtration and dried *in vacuo*. IR spectrum (Nujol, v / cm^{-1}): 310s, br W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 2.56$ (s br, CH₃).

2.6.4 Crystallographic Tables

Compound	[WOCl ₄ (OPPh ₃)]	[WOCl ₄ (OPMe ₃)]	$[W_3O_3Cl_6(\mu-O)_3$ $(OPMe_3)_3]\cdot 2CH_2Cl_2$	[W ₆ O ₆ Cl ₁₂ (μ-O) ₆ (OPPh ₃) ₄]·4CHCl ₃
Formula	$C_{18}H_{15}Cl_4O_2PW$	C ₃ H ₉ Cl ₄ O ₂ PW	$C_{11}H_{31}Cl_{10}O_{9}P_{3}W_{3}$	$C_{76}H_{64}Cl_{24}O_{16}P_4W_6$
M	1239.84	433.73	1306.32	6144.62
Crystal system	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group (n°)	P1 (2)	P2 ₁ /c (14)	P2 ₁ /c (14)	P1 (2)
a /Å	9.36630(10)	11.0381(5)	19.1399(5)	17.2594(4)
b/Å	15.4398(2)	8.5387(3)	11.2360(2)	22.0524(5)
c/Å	16.0484(2)	11.8399(4)	18.2845(5)	27.0009(5)
α /°	109.4180(10)	90	90	106.738(2)
β /°	97.1570(10)	92.1275(3)	116.616(3)	93.940(2)
γ /°	105.4190(10)	90	90	107.216(2)
$U/\mathrm{\AA}^3$	2051.31(5)	1111.12(7)	3515.49(17)	9266.4(4)
Z	2	4	4	2
$\mu(\text{Mo-K}_{\alpha})/\text{mm}^{-1}$	6.241	11.417	10.724	8.066
F(000)	1184.0	800.0	2424.0	5776.0
Total number reflns	53470	12618	37791	133745
$R_{ m int}$	0.0239	0.0758	0.0297	0.0418
Unique reflns	8081	2575	6842	47595
No. of params, restraints	469/0	103/0	336/0	2119/0
GOF	1.035	1.032	1.028	1.133
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0141, 0.0326	0.0441, 0.0938	0.0159, 0.0297	0.0667, 0.1381
R_1 , wR_2 (all data) ^b	0.0158, 0.0331	0.0529, 0.0965	0.0195, 0.0304	0.1037, 0.1588

Table 2.14: X-ray crystallography table. a: common data: wavelength (Mo-K_a) = 0.71073 Å; θ (max) = 27.5°; ${}^bR_I = \Sigma ||Fo|-|Fc||/\Sigma |Fo|$; $wR_2 = [\Sigma w(Fo^2-Fc^2)^2/\Sigma wFo^4]^{1/2}$

Chapter 2

Compound	[(WOCl ₄) ₂ (dppmO ₂)]	[WOCl ₂ (dppmO ₂) (µ-O)(WOCl ₄)]	[C ₅ H ₅ NH][WOCl ₅]	[(WSCl ₄) ₂ (dppeO ₂)]
Formula	$C_{25}H_{22}Cl_8O_4P_2W_2$	$C_{26}H_{24}Cl_6O_5P_2W_2$	C ₅ H ₆ Cl ₅ NOW	$C_{26}H_{24}Cl_{8}O_{2}P_{2}S_{2}W_{2} \\$
M	1099.66	1145.69	457.21	572.91
Crystal system	Triclinic	Monoclinic	Orthorhombic	Triclinic
Space group (n°)	P1 (2)	P2 ₁ /n (14)	Pbca (61)	P1 (2)
a /Å	10.3428(2)	10.6984(5)	12.5650(3)	9.1134(5)
b/Å	11.0799(2)	23.4594(14)	11.1389(3)	9.3623(3)
c/Å	15.3764(2)	15.1239(8)	16.1782(4)	11.7376(4)
α /°	81.7770(10)	90	90	97.087(3)
β /°	70.3800(10)	106.970(6)	90	106.333(4)
γ /°	80.1300(10)	90	90	112.441(4)
$U/{ m \AA}^3$	1628.27(5)	3630.5(4)	2264.31(10)	857.70(7)
Z	2	4	8	2
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	7.846	7.046	11.342	7.565
F(000)	1036.0	2168.0	1680.0	542.0
Total number reflns	44544	7079	43355	23334
$R_{ m int}$	0.0281	0.0516	0.0499	0.0549
Unique reflns	9901	7097	2929	5298
No. of params, restraints	370/0	361/0	122/0	190/0
GOF	1.081	1.031	1.052	1.083
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0173, 0.0355	0.0360, 0.0824	0.0139, 0.0279	0.0263, 0.0629
R ₁ , wR ₂ (all data) ^b	0.0219, 0.0363	0.0460, 0.0849	0.0161, 0.0285	0.0313, 0.0644

Table 2.14: Continued.

Compound	[(WOCl ₄) ₂ (dppeO ₂)]	[WSCl ₄ (OPPh ₃)]	[WOCl ₃ (dppmO ₂)]· CH ₂ Cl ₂	[WSCl ₃ (dppmO ₂)]· CH ₂ Cl ₂
Formula	$C_{26}H_{24}Cl_{8}O_{4}P_{2}W_{2} \\$	C ₁₈ H ₁₅ Cl ₄ OPSW	$C_{26}H_{24}Cl_5O_3P_2W$	C ₂₆ H ₂₄ Cl ₅ O ₂ P ₂ SW
M	1113.69	635.98	807.49	823.55
Crystal system	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space group (n°)	P1 (2)	P2 ₁ /n (14)	P2 ₁ /n (14)	P2 ₁ /n (14)
a /Å	9.1755(4)	12.48950(10)	16.5408(2)	16.5665(2)
b/Å	9.5095(3)	10.99140(10)	8.38430(10)	8.39180(4)
c/Å	11.2258(4)	15.04610(10)	21.8513(4)	21.9258(4)
α /°	67.129(3)	90	90	90
β /°	83.443(3)	96.1620(10)	105.797(2)	106.089(2)
γ /°	71.395(3)	90	90	90
$U/{ m \AA}^3$	855.28(6)	2053.55(3)	2915.95(8)	2928.79(8)
Z	1	4	4	4
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	7.470	6.331	4.557	4.605
F(000)	526.0	1216.0	1572.0	1604.0
Total number reflns	23001	76498	61871	95407
$R_{ m int}$	0.0377	0.0346	0.0364	0.0461
Unique reflns	5325	6508	9078	9760
No. of params, restraints	190/0	235/0	362/15	343/15
GOF	1.085	1.154	1.170	1.183
R_1 , w R_2 $[I \ge 2\sigma(I)]^b$	0.0324, 0.0736	0.0228, 0.0403	0.0340, 0.0608	0.0573, 0.1149
R ₁ , wR ₂ (all data) ^b	0.0365, 0.0748	0.0258, 0.0409	0.0436, 0.0627	0.0684, 0.1183

Table 2.14: Continued.

Chapter 2

Compound	[(WSCl ₄) ₂ (dppmO ₂)]	[WSCl ₄ (C ₅ H ₆ N)]	[WSCl ₃ (2,2'-bipy)]	[WOCl ₂ (1,10- phen)(μ-O)(WOCl ₄)]
Formula	$C_{25}H_{22}Cl_8O_2P_2S_2W_2$	C ₅ H ₆ Cl ₄ NSW	$C_{10}H_8Cl_3N_2SW$	$C_{12}H_8Cl_6N_2O_3W_2$
M	1131.78	436.81	478.44	808.60
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group (n°)	P2 ₁ /n (14)	P2 ₁ /m (11)	P1 (1)	$P\overline{1}$ (2)
a /Å	12.7268(2)	11.9648(2)	6.6843(2)	8.5583(3)
b/Å	10.29240(10)	6.97110(10)	8.1998(2)	8.9998(3)
c/Å	13.0039(2)	12.5550(2)	12.3744(4)	12.8051(3)
α /°	90	90	74.743(2)	88.706(2)
β /°	101.6530(10)	104.643(2)	89.939(2)	76.429(2)
γ /°	90	90	89.988(2)	80.619(2)
$U/{ m \AA}^3$	1668.26(4)	1013.17(3)	654.34(3)	945.80(5)
Z	2	4	2	2
$\mu(\text{Mo-}K_{\alpha}) / \text{mm}^-$	7.777	12.604	9.575	13.015
F(000)	1068.0	800.0	446.0	736.0
Total number reflns	40337	32456	19122	22371
$R_{ m int}$	0.0560	0.0508	0.0283	0.0504
Unique reflns	5530	3605	5139	5595
No. of params, restraints	186/0	113/0	278/3	142/0
GOF	1.132	1.252	1.131	1.243
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0416, 0.1041	0.0667, 0.1604	0.0296, 0.0704	0.0673, 0.2123
R ₁ , wR ₂ (all data) ^b	0.0489, 0.1072	0.0691, 0.1611	0.0302, 0.0706	0.0709, 0.2131

Table 2.14: Continued.

2.7 References

- (1) Dori, Z. Comprehensive Coordination Chemistry I, 1987, 3, 973-1022
- (2) Greenwood, N. N.; Earnshaw, A. In *23. Chromium, Molybdenum and Tungsten*, Eds.; Butterworth-Heinemann: Oxford, 1997.
- (3) Nielson, A. J.; Andersen, R. A. In *Tungsten and Molybdenum Tetrachloride Oxides*, Eds.; McGraw-Hill Book Company, 1990; Vol. 28.
- (4) Tunney, J. M.; McMaster, J.; Garner, C. D. Comprehensive Coordination Chemistry II, **2004**, *8*, 359-477
- (5) Holm, R. H. Chem. Rev., 1987, 87, 1401-49
- (6) Okamura, T.; Ueyama, N. Comprehensive Coordination Chemistry II, 2004, 4, 529-73
- (7) Young, C. G. Comprehensive Coordination Chemistry II, 2004, 4, 415-527
- (8) Stiefel, E. I. *Prog. Inorg. Chem.*, **1977**, *22*, 1-223
- (9) Tamadon, F.; Seppelt, K. Angew. Chem. Int. Ed., 2013, 52, 767-69
- (10) Levason, W.; Reid, G.; Zhang, W. J. Fluorine. Chem., 2016, 184, 50-57
- (11) McCullough, L. G.; Schrock, R. R.; Dewan, J. C.; Murdzek, J. C. J. Am. Chem. Soc., 1985, 107, 5987-98
- (12) Davis, M. F.; Levason, W.; Ratnani, R.; Reid, G.; Rose, T.; Webster, M. Eur. J. Inorg. Chem., 2007, 306-13
- (13) Lewis, G. N. *Valence and the Structure of Atoms and Molecules*; Chemical Catalog Company: New York, 1923.
- (14) Pearson, R. G. J. Am. Chem. Soc., **1963**, 85, 3533-39
- (15) Greenacre, V. K.; Hector, A. L.; Levason, W.; Reid, G.; Smith, D. E.; Sutcliffe, L. *Polyhedron*, **2019**, *162*, 14-19
- (16) Bannister, R. D.; Levason, W.; Light, M. E.; Reid, G.; Zhang, W. *Polyhedron*, **2019**, *167*, 1-10
- (17) Davis, M. F.; Levason, W.; Light, M. E.; Ratnani, R.; Reid, G.; Saraswat, K.; Webster, M. *Eur. J. Inorg. Chem.*, **2007**, *13*, 1903-10
- (18) Fronczek, F. R.; Luck, R. L.; Wang, G. Inorg. Chem. Commun., 2002, 5, 384-87
- (19) Hursthouse, M. B.; Levason, W.; Ratnani, R.; Reid, G. Polyhedron, 2004, 23, 1915-21
- (20) Kühn, F. E.; Groarke, M.; Bencze, É.; Herdtweck, E.; Prazeres, A.; Santos, A. M.; Calhorda, M. J.; Romão, C. C.; Gonçalves, I. S.; Lopes, A. D.; Pillinger, M. *Chem. Eur. J.*, **2002**, *8*, 2370-83
- (21) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W.; Hope, E. G. J. Fluorine. Chem., 2017, 200, 190-97
- (22) Sens, I.; Stenger, H.; Mller, U.; Dehnicke, K. Z. anorg. allg. Chem., 1992, 610, 117-20
- (23) Wang, W.; Zhang, Y.; Jin, X.; Du, X. Acta Cryst. E, 2009, E65, m1094-m95
- (24) Butcher, R. J.; Penfold, B. R.; Sinn, E. J. Chem. Soc., Dalton Trans., 1979, 668-75
- (25) de Wet, J. F.; Caira, M. R.; Gellatly, B. J. Acta Cryst. B, 1978, 34, 762-66
- (26) Marom, H.; Antonov, S.; Popowski, Y.; Gozin, M. J. Organomet. Chem., 2011, 76, 5240-46
- (27) Herrmann, W. A.; Thiel, W. R.; Herdtweck, E. Chem. Ber., 1990, 123, 271-76
- (28) Viossat, B.; Rodier, N. Acta Cryst. B, 1979, 35, 2715-18
- (29) Fenn, R. H. J. Chem. Soc. A, **1969**, 1764-69
- (30) Crabtree, R. H.; Hlatky, G. G. *Polyhedron*, **1985**, *4*, 521-22
- (31) Kovalenko, Y. V.; Abramenko, V. L.; Sergienko, V. S. Zh. Neorg. Khim., 1994, 39, 1653-56
- (32) Gibson, V. C.; Kee, T. P.; Shaw, A. *Polyhedron*, **1990**, *9*, 2293-98
- (33) Gabrusenoks, J. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 77, 012032
- (34) Hess, H.; Hartung, H. Z. anorg. allg. Chem., 1966, 344, 157-66
- (35) Adams, D. M.; Churchill, R. G. J. Chem. Soc. A, 1968, 2310-12
- (36) Walton, R. A. Prog. Inorg. Chem., 1972, 16, 1-194
- (37) Bianchi, S.; Bortoluzzi, M.; Castelvetro, V.; Marchetti, F.; Pampaloni, G.; Pinzino, C.; Zacchini, S. *Polyhedron*, **2016**, *117*, 769-76
- (38) Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem., 2016, 3169-77
- (39) Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. New J. Chem., **2016**, 40, 8271-81
- (40) Dolci, S.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans., 2013, 42, 5635-48

- (41) Dolci, S.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans., 2010, 39, 5367-76
- (42) Bortoluzzi, M.; Evangelisti, C.; Marchetti, F.; Pampaloni, G.; Piccinelli, F.; Zacchini, S. *Dalton Trans.*, **2016**, *45*, 15342-49
- (43) Funk, H.; Mohaupt, G. Z. anorg. allg. Chem., 1962, 315, 204-12
- (44) Funk, H.; Weiss, G.; Mohanraj, K. Z. anorg. allg. Chem., 1960, 304, 238-40
- (45) Fowles, G. W. A.; Frost, J. L. J. Chem. Soc. A, 1967, 671-75
- (46) Agh-Atabay, N.; Ashmawy, F. M.; McAuliffe, C. A.; Hill, W. E. *Inorg. Chim. Acta*, **1985**, *104*, 73-76
- (47) Zhang, C.; Schlemper, E. O.; Schrauzer, G. N. Organomet., 1990, 9, 1016-20
- (48) Ward, B. G.; Stafford, F. E. Inorg. Chem., 1968, 7, 2569-73
- (49) Arnaudet, L.; Bougon, R.; Ban, B.; Charpin, P.; Isabey, J.; Lance, M.; Nierlich, M.; Vigner, J. *Can. J. Chem.*, **1990**, *68*, 507-12
- (50) Arnaudet, L.; Bougon, R.; Ban, B.; Lance, M.; Nierlich, M.; Vigner, J. *Inorg. Chem.*, **1993**, *32*, 1142-46
- (51) Emsley, J. W.; Levason, W.; Reid, G.; Zhang, W.; De Luca, G. J. Fluorine. Chem., 2017, 197, 74-79
- (52) Drew, M. G. B.; Mandyczewsky, R. J. Chem. Soc. A, 1970, 2815-18
- (53) Cotton, F. A.; Kibala, P. A.; Sandor, R. B. W. Inorg. Chem., 1989, 28, 2485-87
- (54) Dietz, S.; Allured, V.; DuBois, M. R. *Inorg. Chem.*, **1993**, *32*, 5418-20
- (55) Nieboer, J.; Hillary, W.; Yu, X.; Mercier, H. P. A.; Gerken, M. *Inorg. Chem.*, **2009**, *48*, 11251-58
- (56) Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1977, 53, 291-93
- (57) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1974, 2191-94
- (58) Gibson, V. C.; Shaw, A.; Williams, D. N. *Polyhedron*, **1989**, *8*, 549-50
- (59) Page, E. M.; Rice, D. A.; Hagen, K.; Hedberg, L.; Hedberg, K. *Inorg. Chem.*, **1982**, *21*, 3280-83
- (60) Fedorov, V. E.; Fedin, V. P.; Kuz'mina, O. A.; Semyannikov, P. P. Rus. J. Inorg. Chem., **1986**, *31*, 2523-26
- (61) Boorman, P. M.; Islip, M.; Reimer, M. M.; Reimer, K. J. *J. Chem. Soc., Dalton Trans.*, **1972**, 890-93
- (62) Boorman, P. M.; Chivers, T.; Mahadev, K. N. Can. J. Chem., 1977, 55, 869-77
- (63) Favero, L.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans., 2014, 43, 495-504
- (64) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1975, 213-15
- (65) Britnell, D.; Drew, M. G. B.; Fowles, G. W. A.; Rice, D. A. *Inorg. Nucl. Chem. Lett.*, **1973**, 9, 501-04
- (66) Atherton, M. J.; Holloway, J. H. J. Chem. Soc., Chem. Commun., 1977, 424-25
- (67) Nieboer, J.; Yu, X.; Chaudhary, P.; Mercier, H. P. A.; Gerken, M. Z. anorg. allg. Chem., **2012**, 638, 520-25
- (68) Behzadi, K.; Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1978, 57, 103-10
- (69) Ma, X.; Yang, Z.; Schulzke, C.; Noltemeyer, M.; Schmidt, H.-G. *Inorg. Chim. Acta*, **2009**, 362, 5275-77
- (70) Boulos, L. S.; Ewies, E. F.; Ibrahim, N. M.; Mohram, M. E. *Phosphorus Sulfur*, **2014**, *189*, 1706-17
- (71) Jimtaisong, A.; Luck, R. L. Inorg. Chem., 2006, 45, 10391-402
- (72) Levason, W.; McCullough, F. P.; McAuliffe, C. A. *Inorg. Nucl. Chem. Lett.*, **1976**, *12*, 843-47
- (73) Sathyanarayana, D. N. *Vibrational Spectroscopy: Theory and Applications*; New Age International (P) Limited: New Delhi, 2004.
- (74) Dabas, P.; Rastogi, M. K. *Asian J. Chem.*, **1997**, *9*, 445-52
- (75) Bortoluzzi, M.; Guarra, F.; Marchetti, F.; Pampaloni, G.; Zacchini, S. *Polyhedron*, **2015**, 99, 141-46
- (76) Bortoluzzi, M.; Marchetti, F.; Murrali, M. G.; Pampaloni, G.; Zacchini, S. *Dalton Trans.*, **2015**, *44*, 8729-38
- (77) Behzadi, K.; Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1987, 128, 195-206
- (78) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M.; Thompson, G. M. J. Chem. Soc., Dalton Trans., 1997, 4823-28
- (79) Boorman, P. M.; Chivers, T.; Mahadev, K. N.; O'Dell, B. D. *Inorg. Chim. Acta*, **1976**, *19*, L35-L37

- (80) Boorman, P. M.; Greenwood, N. N.; Hildon, M. A.; Parish, R. V. J. Chem. Soc. A, 1968, 2002-04
- (81) Allen, E. A.; Brisdon, B. J.; Edwards, D. A.; Fowles, G. W. A.; Williams, R. G. *J. Chem. Soc.*, **1963**, 4649-57
- (82) McCarley, R. E.; Brown, T. M. Inorg. Chem., 1964, 3, 1232-36
- (83) Benjamin, S. L.; Levason, W.; Reid, G. Chem. Soc. Rev., 2013, 42, 1460-99
- (84) Levason, W.; Monzittu, F. M.; Reid, G. Coord. Chem. Rev., 2019, 391, 90-130
- (85) Arnaudet, L.; Bougon, R.; Ban, B.; Lance, M.; Navaza, A.; Nierlich, M.; Vigner, J. *J. Fluorine. Chem.*, **1992**, *59*, 141-52
- (86) Arnaudet, L.; Bougon, R.; Ban, B.; Lance, M.; Navaza, A.; Nierlich, M.; Vigner, J. *J. Fluorine. Chem.*, **1994**, *67*, 17-25
- (87) Arnaudet, L.; Bougon, R.; Buu, B.; Lance, M.; Nierlich, M.; Thuéry, P.; Vigner, J. *J. Fluorine. Chem.*, **1995**, *71*, 123-29
- (88) El-Kurdi, S.; Al-Terkawi, A.-A.; Schmidt, B. M.; Dimitrov, A.; Seppelt, K. *Chem. Eur. J.*, **2010**, *16*, 595-99
- (89) Tebbe, F. N.; Muetterties, E. L. *Inorg. Chem.*, **1968**, *7*, 172-74
- (90) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W. Chem. Commun., 2018, 54, 11681-84
- (91) Levason, W.; Patel, R.; Reid, G. J. Organomet. Chem., 2003, 688, 280-82

Complexes of WOCl₄ and WSCl₄ with Neutral Phosphine and Arsine Donor Ligands

3.1 Introduction

The behaviour of softer donor ligands is often very different to that of hard donor ligands; high oxidation state early transition metal complexes with soft donor ligands are relatively rare and often unstable. Work with softer ligands with WECl₄ is very limited and underdeveloped. The aim of this chapter was to take a systematic approach to synthesise and characterise a series of novel phosphine and arsine tungsten(VI) complexes, in order to draw comparisons to known WOF₄ analogues.

3.2 Tungsten(VI) and Molybdenum(VI) Coordination Chemistry with Phosphine and Arsine Donor Ligands

Phosphine and arsine donor ligands follow the σ -donor π -acceptor model when bonding to d block transition metals and on descending Group XV, the energy separation between s and p orbitals increases, consequently the lone pair on the arsine ligand has more s character than lone pairs on phosphine ligands. This increased s character means the lone pair is less available and, coupled with increased diffusivity, results in arsine ligands being weaker σ -donors than phosphines. The σ -donation power of PR₃ or AsR₃ ligands can be improved with electron donating substituents, thus alkyl ligands are better σ -donors than aryl ligands. This strong σ -donation allows a variety of complexes of high oxidation state early transition metals with phosphine or arsine donor ligands to be stabilised. These are rare and interesting systems, only certain ligands will produce stable complexes as the orbital overlap can become too poor; resulting in different behaviour. The strong σ -donation from phosphine ligands allows coordination to high valent metal centres, but in some conditions phosphines can reduce transition metals in a competing reaction. The reaction which is favourable is often condition dependent and is directly linked to the metal: ligand ratio.

Comparing other high oxidation state tungsten and molybdenum compounds and their reactions with phosphine and arsine donor ligands will help conclusions to be drawn in this section of work. The previous chapter describes reported hard donor complexes of $[MO_2X_2(L)_2]$ and $[MO_2X_2(L-L)]$ (M = Mo or W; X = F, Cl or Br), at present there are no reports on these types of neutral complexes with phosphine or arsine donor ligands. Similar complexes with phosphines and arsine ligands will be looked at; the simplest complexes are MX_6 (M = Mo or W; X = F or Cl), but as stated in the previous chapter, WCl_6 chemistry is convoluted and $MoCl_6$ is not stable in ambient conditions. MoF_6 is a moisture sensitive liquid below 35 $^{o}C^{12}$ but no ligand complexes have been reported with neutral MoF_6 maintaining the +VI oxidation state, and MoF_6 is instead often reduced to lower oxidation states. 13

In contrast, WF₆ is less oxidising than MoF₆ and is known with a variety of neutral ligands, including a small subset of phosphine and arsine ligands. $^{8,13-15}$ Reactions of WF₆ with tertiary phosphines (PMe₃ and PPhMe₂) produced seven-coordinate neutral complexes, [WF₆(PR₃)], 14 yellow crystals of [WF₆(PMe₃)] were identified showing a capped trigonal prism geometry. Conversely, red crystals of [WF₆(PPhMe₂)] 14 show a capped octahedral structure as seen in Cs[WF₇]; 16 suggesting little difference in energy between structures. Attempts to isolate similar complexes with PPh₃ and PEt₃ could not be spectroscopically verified, with evidence of PR₃F₂ compounds having formed. 14 Arsine analogues [WF₆(AsR₃)] (R = Me or Et) have been obtained more recently, but readily decompose within a few days at ambient tempertures. 8 They are also very susceptible to trace hydrolysis with some products being identified as [W₂O₂F₉] and [WOF₅] salts.

Reactions of WF₆ with the strong σ -donor ligands σ -C₆H₄(EMe₂)₂ (E = P or As) gave orange [WF₄(σ -C₆H₄(EMe₂)₂)₂][WF₇]₂ salts, with their crystal structures revealing dodecahedral cations.⁸ Similarly, the flexible ligand Me₂P(CH₂)₂PMe₂ (dmpe) produced a pale orange solid containing two compounds, [WF₄(dmpe)₂][WF₇]₂ and a tentatively assigned bridged dimer [(WF₆)₂(dmpe)] which could not be separated from the reaction mixture.⁸ Reactions with WF₆ and the poorer σ -donor AsPh₃ or the heavier SbEt₃ yielded unidentifiable products.

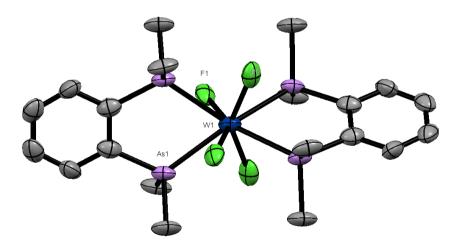


Figure 3.1: $[WF_4((o-C_6H_4(AsMe_2)_2)_2]^{2+}$ crystal structure obtained from reaction of WF₆ and o-C₆H₄(AsMe₂)₂. Hydrogen and the $[WF_7]$ anions omitted for clarity.⁸

Despite MoF₆ having no known coordination complexes, MoOF₄ and MoO₂F₂ both form neutral complexes with hard donor ligands, as shown in Chapter $2.^{17}$ The reaction between [MoOF₄(MeCN)] and neutral ligands (OPPh₃, OPMe₃, dmso and dmf) gives complexes in the form [MoOF₄(L)]. Softer Group XV ligands (PMe₃, dmpe and AsMe₃) produce unidentified paramagnetic species indicating reduction of the metal centres. Complexes of MoOF₄ have been shown to be highly moisture sensitive with some, upon trace hydrolysis, producing MoO₂F₂ complexes. Hard donor complexes [MoO₂F₂(L)₂] (L = OPPh₃, OPPh₂Me, OPMe₃) are readily made by adding the ligand to a solution of MoO₃ in aqueous HF. An alternative method showed Cl/F exchange from [MoO₂Cl₂(OPPh₃)₂] and Me₃SnF in CH₂Cl₂, since MoO₂F₂ does not directly react

with ligands as it is extremely polymeric. There are no reports of Group XV ligands with MoOF₄ or MoO_2F_2 .¹⁷

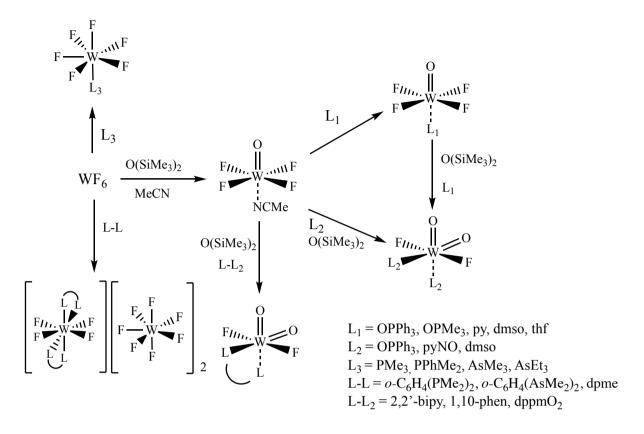


Figure 3.2: Reaction scheme showing complexes of WF₆, WOF₄ and WO₂F₂. ^{11,24,25}

In contrast to MoOF₄ and MoO₂F₂ complexes, WOF₄ and WO₂F₂ have been investigated to a greater extent, as discussed in the previous chapter. The complex [WOF₄(MeCN)] has been shown to react with *o*-C₆H₄(PMe₂)₂ and dmpe to form seven-coordinate neutral complexes with their crystal structures showing pentagonal bipyramidal geometry with axial oxygen.¹¹ Attempts with softer and weaker *σ*-donors including *o*-C₆H₄(PPh₂)₂, *o*-C₆H₄(AsMe₂)₂ and *o*-C₆H₄(SMe)₂ proved unsuccessful with no evidence of formation. Treating pre-formed [WOF₄(*o*-C₆H₄(PMe₂)₂] with an equivalent of O(SiMe₃)₂ to try and form [WO₂F₂(*o*-C₆H₄(PMe₂)₂)], in a similar way to [WO₂Cl₂(L)₂] complexes, showed no change, potentially suggesting the metal centre is too sterically crowded.^{11,26} Therefore, phosphine and arsine ligand complexes of [WO₂F₂(L-L)] and [WO₂F₂(L)₂] remain unknown but should be relatively stable if they could be accessed.¹⁵

The limited amount of literature on complexes of tungsten(VI) and molybdenum(VI) oxo-halides with phosphine and arsine ligands has shown a wide variety instability across these compounds. There are no reported complexes of MO_2Cl_2 (M = Mo or W) with phosphine or arsine ligands. WF₆ and WOF₄ both form relatively stable seven-coordinate complexes with phosphines, in contrast to the molybdenum analogues, meaning this chemistry is on the limit of whether the complexes will form and be stable under mild conditions.

3.2.1 Tungsten(V) and Molybdenum(V) Coordination Chemistry with Phosphine and Arsine Ligands

The literature for phosphine and arsine ligand complexes of molybdenum and tungsten in the +VI oxidations state is rather sporadic, whereas extensive work has been carried out on similar complexes in the +V oxidation state. Monodentate and bidentate ligands form a large array of complexes with both MoOCl₃ and WOCl₃ (see Section 6.2.1), however there are no neutral MoOF₃ or WOF₃ complexes known and evidence for the existence of the fluoride parent compounds has not been supplied.¹⁵ Initially MoOCl₃ has been shown to form six-coordinate complexes with mono- and bi-dentate Group XV ligands, [MoOCl₃(PPh₃)₂], ^{27,28} [MoOCl₃(dppe)], ²⁹ [MoOCl₃(PMe₃)₂]³⁰ and [MoOCl₃(o-C₆H₄(AsMe₂)₂)]. Following these early reports, an in-depth study of a series of complexes with bidentate and tridentate ligands has been reported including the use of mixed ligand types. ^{32,33} The complexes are in the form [MoOCl₃(L-L)] (L-L see Figure 3.3), all complexes are mildly moisture sensitive and poorly soluble in organic solvents. All these ligands have phenyl rings as their R- groups which results in the ligands being poorer σ -donors and less basic than their methyl substituent counterparts but decreases the chance of reduction. Attempts to isolate complexes with softer antimony containing ligands, (o-C₆H₄(SbPh₂)(EPh₂), E = P or As), produced intractable black oils.³² This was also the case for the ligand Me₂P(CH₂)PMe₂ likely due to a tight bite angle required for the formation of a four-membered ring due to the shorter methylene backbone. 32,34 The parent complex in this study is [MoOCl₃(THF)₂] so it is possible the complexes would be stable if formed but the ligands cannot displace the THF. In addition, refluxing [MoOCl₃(L-L)] in methanol reduced the molybdenum and the mixed valent compounds formulated as [Mo^{IV}OCl(L-L)₂][Mo^VOCl₄] formed.³²

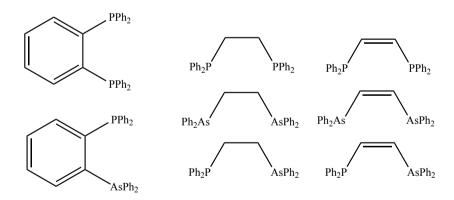


Figure 3.3: Phosphine and arsine ligands reported to form [MoOCl₃(L-L)] complexes.³²

There is an example of [MoOCl₃(THF)₂] reacting with the tridentate ligand PhAs((CH₂)₃AsMe₂)₂ where the structure is suggested as seven-coordinate species, [MoOCl₃(PhAs((CH₂)₃AsMe₂)₂], with three coordinated arsine donors, however with the absence of a crystal structure this is unclear.³³

There are examples of neutral complexes of MoOBr₃ with hard donors, but no examples with phosphine or arsine ligands.^{35,36} MoOBr₃ is more likely to be reduced by phosphines than the chloride analogues and is more challenging to synthesise.

The tungsten(V) analogue, WOCl₃, has also been extensively investigated and behaves in a similar fashion to MoOCl₃. A limited selection of monodentate ligands were tested, PPh₂Me, PPhMe₂ and EPh₃ (E = P, As or Sb) to form [WOCl₃(ER₃)₂]; only the PPh₂Me and the PPh₃ complex were isolated, however the ligands are quite poor donors and have high steric demands, hence once again, if the ligands did not need to displace the THF they may form stable complexes.³⁷ Bidentate ligands have increased affinity to form complexes due to the chelate effect increasing stability, shown by a larger range on ligand types forming stable compounds. Reactions of [WOCl₃(THF)₂] and bidentate phosphines (see Figure 3.4) produced grey or green moisture sensitive powders that exhibit a W=O stretch in their IR spectra ~955 cm⁻¹.³⁷

Figure 3.4: Phosphine, arsine and antimony ligands reported to form [WOCl₃(L-L)] complexes.³⁷

A range of arsine ligands have been shown to coordinate as well as an unusual mixed arsine/antinomy ligand, o-C₆H₄(AsMe₂)(SbMe₂), which is extremely rare, however the affinity for phenyl substituted ligands is significantly less as many Ph- substituted ligands failed to coordinate. The tungsten complexes are reported to be harder to cleanly isolate and in solution are more moisture sensitive than the molybdenum analogues.³⁷

3.2.2 Tungsten Oxotetrachloride and Thiotetrachloride with Phosphine and Arsine donors

There is a small amount of work on WOCl₄ complexes with phosphines, although it is rather complicated and there are some conflicting reports. The complex $[WOCl_4(PPh_3)]^{38}$ has been reported, suggested to form when WOCl₄ and PPh₃ were reacted in a 1:1 ratio. However, if the ligand is added in excess it seems to reduce the metal centre (AsPh₃ also reduces the metal centre).³⁹ Some seven-coordinate complexes have been proposed, $[WOCl_4(L)_2]$ (L = PPh₃, PEt₃ or PⁿPr₃) formed with stoichiometric 1:2 metal to ligand ratios and long reaction times at low temperature.³⁸ Similar reactions between WECl₄ (E = O, S or Se) and a five-fold excess of PPh₃ yields $[W^{IV}Cl_4(EPPh_3)(PPh_3)]$,⁴⁰ clearly indicating the products are highly dependent on the reaction conditions or some are incorrectly characterised. The complex $[WOCl_4(o-C_6H_4(AsMe_2)_2)]^{31,41}$ has been isolated and structurally characterised showing a pentagonal

bipyramid geometry, the complex [WOCl₄(o-C₆H₄(AsPh₂)₂)]³⁸ is also suggested to exist, but with little supporting spectroscopic data.

In summary, there are sporadic reports for tungsten and molybdenum complexes in high oxidation states with neutral phosphine and arsine ligands, many have limited spectroscopic characterisation and there are conflicting reports for some complexes. The literature suggests a high tendency for the ligands to reduce the metal centre and the R- substituents play a significant role in affecting the coordination and stability of complexes.

3.2.3 Aims

The aim of this chapter was to continue the chemistry of tungsten(VI) oxo- and thio-tetrachlorides and develop a systematic series of phosphine and arsine complexes. To synthesise complexes in the form [WECl₄(L-L)] (E = O or S), together with some monodentate ligand complexes of the form [WECl₄(L)₂] or [WECl₄(L)] and to investigate their properties. The ligands used include o-C₆H₄(E'Me₂)₂ (E' = P or As), Me₂P(CH₂)₂PMe₂, PMe₃, AsEt₃ and o-C₆H₄(PPh₂)₂. Complexes have been characterised by IR, ¹H NMR and ³¹P{¹H} NMR spectroscopy, elemental analysis and by single crystal X-ray diffraction.

3.3 Results and Discussion

3.3.1 Complexes of WOCl₄ and WSCl₄ with o-C₆H₄(ER₂)₂

The seven-coordinate complexes [WOCl₄(o-C₆H₄(EMe₂)₂)] and [WSCl₄(o-C₆H₄(EMe₂)₂] (E = P or As) were isolated as green or brown solids in moderate yields, 49-74%. The complexes were synthesised by direct stoichiometric reaction of pre-formed WOCl₄ or WSCl₄ with o-C₆H₄(EMe₂)₂ (E = P or As) in an appropriate solvent (CH₂Cl₂ or toluene) (Figure 3.5).

Figure 3.5: Reaction scheme for the synthesis of [WOCl₄(o-C₆H₄(EMe₂)₂)] and [WSCl₄(o-C₆H₄(EMe₂)₂)] (E = P or As).

The first compound isolated was [WOCl₄(*o*-C₆H₄(AsMe₂)₂)], which has been reported previously.^{31,41} This complex was re-prepared and the data are consistent with the reported literature. The IR spectrum showed a W=O and W-Cl stretch at 555 and 332 cm⁻¹, respectively. The ¹H NMR data show two methyl resonances at 2.46 and 2.51 ppm, compared to a singlet at 1.2 ppm in the 'free' ligand. This is due to the methyl protons being in different environments (above and below the WAs₂Cl₂ plane) in the coordinated complex. Green crystals were isolated from a solution

of CH₂Cl₂, the structure of which confirmed the pentagonal bipyramidal geometry determined from the solution NMR data (Figure 3.6).

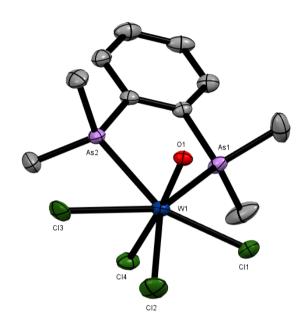


Figure 3.6: The structure of [WOCl4(o-C₆H₄(AsMe₂)₂)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity. Note that the axial O/Cl were disordered, this was modelled using split site occupancies which refined to 0.23: 0.77. Only the major form is shown.

[WOCl4(o-C6H4(AsMe2)2)]						
Bond Lengths/ Å		Bond Angles/°				
W1-Cl	2.38184 - 2.5809	Cl2-W1-O1	107.5(5)			
W1-O1	1.706(5)	Cl3-W1-O1	101.(2)			
W1-As1	2.679(8)	Cl1-W1-O1	93.63(4)			
W1-As2	2.708(2)	Cl4-W1-O1	164.3(4)			

Table 3.1: Selected bond lengths and angles for [WOCl₄(o-C₆H₄(AsMe₂)₂)].

This structure has been previously reported, 41 but a more precise structure has been obtained in this work (due to improvement in diffractometer capability in the intervening period). The original report did not identify any axial disorder, however, the reported W=O (1.89 Å) and W-Cl_{ax} (2.26 Å) bond lengths differ considerably from those reported in this work (1.706(5) Å and 2.445(3) Å, respectively), but there is good agreement with W-As and W-Cl bond lengths. The axial units are bent away from linearity (O1-W1-Cl4 = $164.3(4)^{\circ}$), not uncommon in pentagonal bipyramidal structures.

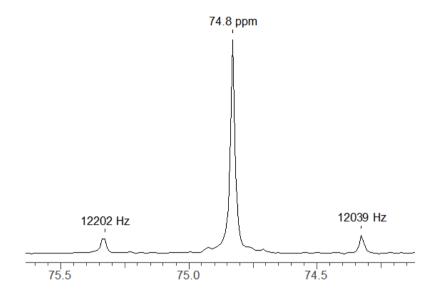


Figure 3.7: ${}^{31}P\{^{1}H\}$ NMR spectrum of [WOCl₄(o-C₆H₄(PMe₂)₂)] in CD₂Cl₂.

The phosphine analogue, [WOCl₄(o-C₆H₄(PMe₂)₂)], was synthesised in a similar way to [WOCl₄(o-C₆H₄(AsMe₂)₂)] in CH₂Cl₂ and revealed an almost identical IR spectrum. The ¹H NMR spectrum shows two sets of triplets, caused by two proton environments (*syn* and *anti* to the W=O) on the methyls and secondary splitting from the NMR active phosphorus nuclei. The ³¹P{¹H} NMR spectrum shows a single resonance at +74.8 ppm, a very large coordination shift ($\Delta \sim +130$ ppm), Figure 3.7, but not dissimilar to related compounds, ([WOF₄(o-C₆H₄(PMe₂)₂)] and [WF₄(o-C₆H₄(PMe₂)₂)₂]²⁺). ^{8,17} The ³¹P{¹H} NMR spectrum has satellite resonances from ¹⁸³W nuclei, the ¹J_{W-P} coupling constant is large, 173 Hz, but categorically proves coordination between the tungsten and phosphorus atoms.

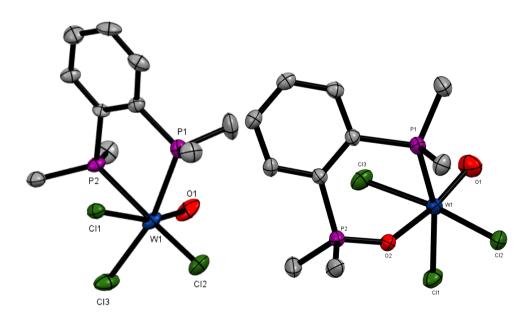


Figure 3.8: The structure of $[WOCl_3(o-C_6H_4(PMe_2)_2)]$ (left) and $[WOCl_3(o-C_6H_4(PMe_2)(P(O)Me_2))]$ •0.5CH₂Cl₂ (right) showing the atom numbering scheme. Note that the axial O/Cl were disordered in $[WOCl_3(o-C_6H_4(PMe_2)_2)]$ and only the major form is shown. Ellipsoids shown at 50% probability, H atoms and solvent molecule are omitted for clarity.

$[\mathrm{WOCl}_3(o\text{-}\mathrm{C}_6\mathrm{H}_4(\mathrm{PMe}_2)_2)]$				
Bond I	Bond Lengths/ Å		gles/ °	
W1-Cl	2.369(4) - 2.510(3)	Cl1-W1-O1	162.9(4)	
W1-O1	1.72(1)	Cl2-W1-O1	101.8(4)	
W1-P1	2.513(4)	Cl3-W1-O1	103.1(4)	
W1-P2	2.509(4)			
	[WOCl ₃ (o-C ₆ H ₄ (PMe ₂)	(P(O)Me ₂))]•0.5CH ₂ Cl ₂		
Bond I	Lengths/ Å	Bond A	Angles/ °	
W1-Cl	2.367(2) - 2.378(2)	Cl1-W1-O1	106.1(2)	
W1-O1	1.702(6)	Cl2-W1-O1	95.1(2)	
W1-P1	2.562(2)	Cl3-W1-O1	94.2(2)	
W1-O _p	2.145(4)			

Table 3.2: Selected bond lengths and angles for [WOCl₃(o-C₆H₄(PMe₂)₂)] and [WOCl₃(o-C₆H₄(PMe₂)(P(O)Me₂))] •0.5CH₂Cl₂.

Attempts to grow crystals of the green seven-coordinate complex, [WOCl₄(*o*-C₆H₄(PMe₂)₂)], were unsuccessful due to poor solubility in organic solvents, however a few different crystals of previously unknown decomposition structures have been isolated. A yellow crystal was isolated and was identified as the tungsten(V) complex, [WOCl₃(*o*-C₆H₄(PMe₂)₂)], which has previously been reported, but not structurally characterised (Figure 3.8).³⁷ The six-coordinate tungsten sits in a distorted octahedral environment with the ligand *trans* chlorine and with axial O/Cl disorder, modelled and refined with occupancies 0.17:0.83. In Chapter 2, a crystal of [WOCl₃(dppmO₂)] was reported where the W=O bond was *trans* to the neutral ligand, the W=O bond lengths ([WOCl₃(*o*-C₆H₄(PMe₂)₂] 1.72(1) Å, [WOCl₃(dppmO₂)] 1.69(1) Å) are not significantly different.

A second, deep blue crystal was also isolated from a [WOCl₄(*o*-C₆H₄(PMe₂)₂)] solution, this was also a tungsten(V) complex, [WOCl₃(*o*-C₆H₄(PMe₂)(P(O)Me₂))] (Figure 3.8). The diphosphine monoxide ligand has not previously been identified, however the diphosphine dioxide *o*-C₆H₄(P(O)Me₂)₂ is known.^{2,42} The oxygen is likely a result of trace hydrolysis or atmospheric O₂. The structure again shows the tungsten in a distorted octahedral geometry with *mer* chlorines, the W=O bond is *trans* to the phosphoryl oxygen as seen in [WOCl₃(dppmO₂)]. In [WOCl₃(dppmO₂)] the W-O_p bond lengths are asymmetrical (2.022(2) Å and 2.323(2) Å) and are *trans* O/Cl, the W-O_p bond in [WOCl₃(*o*-C₆H₄(PMe₂)(P(O)Me₂))] is 2.145(4) Å in between the W-O_p bond lengths for [WOCl₃(dppmO₂)].

As previously stated, [WOCl₄(o-C₆H₄(AsMe₂)₂)] is known, including structural characterisation.^{31,41} The complex, [WOCl₄(o-C₆H₄(AsPh₂)₂)] has also been reported, but with little characterisation.³⁸ In the present work, attempts to isolate [WOCl₄(o-C₆H₄(PPh₂)₂)] with the weaker σ -phosphine ligand were unsuccessul.^{32,37} The green solid isolated was clearly impure, shown by IR spectroscopy which revealed a large number of W-Cl stretches, while the ³¹P{¹H} NMR spectrum

showed no resonances, suggesting the products may be paramagnetic (tungsten(V) or tungsten(IV)). The IR spectrum showed a single W=O stretch at 968 cm⁻¹, consistent with the W=O stretch for [WOCl₃(o-C₆H₄(PPh₂)₂)] (965 cm⁻¹)³⁷ and number of broad W-Cl stretches, suggesting multiple complexes present. Green crystals were isolated from a toluene solution and were identified as [WCl₄(o-C₆H₄(PPh₂)₂)₂][WCl₆]·2.5C₇H₈ (Figure 3.9), which could be one of the species in the original solid. The cation contains a tungsten(V) species and a [W^VCl₆]⁻ anion.

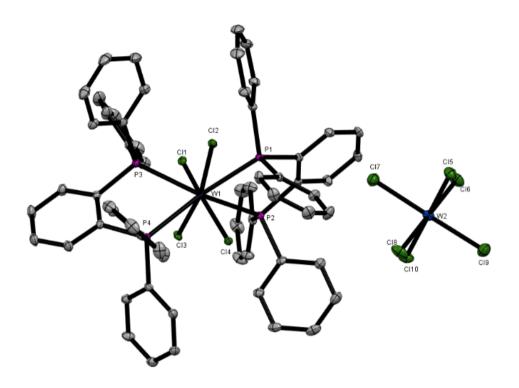


Figure 3.9: The structure of $[WCl_4(o-C_6H_4(PPh_2)_2)_2][WCl_6] \bullet 2.5(C_7H_8)$, showing the atom numbering scheme. Ellipsoids shown at 50% probability, the toluene solvent and H atoms omitted for clarity.

$[\mathrm{WCl}_4(o\text{-}\mathrm{C}_6\mathrm{H}_4(\mathrm{PPh}_2)_2)_2][\mathrm{WCl}_6]\cdot 2.5(\mathrm{C}_7\mathrm{H}_8)$				
Bond Lengths/ Å Bond Angles/ °				
W1-Cl _{Cation}	2.3877(6) – 2.4156(6)	Cl1-W1-Cl2	101.02(2)	
W1-P	2.6424(5) – 2.6607(7)	Cl1-W1-Cl3	88.11(2)	
W2-Cl _{Anion}	2.3162(5) – 2.3299(5)	Cl7-W1-Cl _{Axial}	89.81(2) – 90.24(2)	

Table 3.3: Selected bond lengths and angles for $[WCl_4(o-C_6H_4(PPh_2)_2)_2][WCl_6] \cdot 2.5(C_7H_8)$.

The crystal structure of the cation is very similar to the $[WF_4(o-C_6H_4(AsMe_2)_2)_2]^{2+}$ cation with two chelating ligands and in the chloride system the monocationic charge indicates reduction of the tungsten(VI) to tungsten(V). Both species have a dodecahedral cation and $[WCl_4(o-C_6H_4(PPh_2)_2)_2][WCl_6]\cdot 2.5(C_7H_6)$ has an octahedral W(V) anion.

It appears there is quite different affinity for Me-substituted ligands *verses* the Ph-substituted analogues; the methyl ligands form more stable complexes and are less likely to reduce the tungsten centre due to the pre-defined chelation and its stronger σ -donor capacity. As well as being

poorer donors, the Ph-substituted ligands also increase the steric bulk around the metal centre. This trend also suggests the reported [WOCl₄(*o*-C₆H₄(AsPh₂)₂)]³⁸ complex likely does not form and potentially could be a lower oxidation state species, especially as there is no NMR data reported.

The complexes [WSCl₄(o-C₆H₄(EMe₂)₂)] (E = P or As) were made in an analogous way to the oxido complexes using toluene. Attempts in CH₂Cl₂ produced impure products, apparently encouraging chlorination of the ligands, particularly with o-C₆H₄(AsMe₂)₂, and therefore potentially reduction of the tungsten. Both sulfide-chloride complexes are significantly less stable, especially in solution, than their oxido counterparts, [WSCl₄(o-C₆H₄(AsMe₂)₂)] considerably so.

All data collected for [WSCl₄(o-C₆H₄(EMe₂)₂)] were consistent with seven-coordinate tungsten(VI) complexes, including elemental analysis. The IR spectra showed W=S stretches at ~550 cm⁻¹, lower than in six-coordinate analogues (Chapter 2 and 4), suggesting a higher coordination number. The ³¹P{¹H} NMR spectrum for [WSCl₄(o-C₆H₄(PMe₂)₂)] shows a single resonance at +74.8 ppm, the same shift as [WOCl₄(o-C₆H₄(PMe₂)₂)], suggesting the chalcogen has little effect on the deshielding on the ³¹P nuclei, not surprising as the chalcogen is axial to the pnictine ligand.

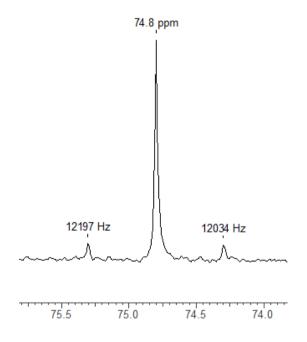


Figure 3.10: ${}^{31}P\{^{1}H\}$ NMR spectrum of [WSCl₄(o-C₆H₄(PMe₂)₂)] in CD₂Cl₂.

Once again, a large coordination shift is observed, this is exaggerated by the formation of a five-membered ring upon coordination.⁴³ Coupling between ³¹P and ¹⁸³W is seen with a similar large coupling constant to that in the oxido-complex, 168 Hz, confirming coordination between WSCl₄ and the phosphine ligand. Red crystals were isolated from a toluene solution and identified as [WSCl₄(*o*-C₆H₄(PMe₂)₂)] (Figure 3.11), showing a pentagonal bipyramidal geometry as seen in [WOCl₄(*o*-C₆H₄(AsMe₂)₂)].

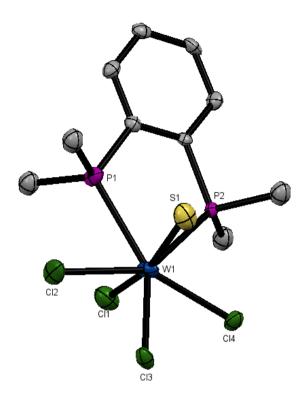


Figure 3.11: The structure of [WSCl₄(o-C₆H₄(PMe₂)₂)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity. Note that the axial S/Cl were disordered, which was modelled as split sites and refined to occupancies of 0.29: 0.71. Only the major form is shown.

$[\mathrm{WSCl_4}(o\text{-}\mathrm{C_6H_4}(\mathrm{PMe_2})_2)]$				
Bond Lengths/ Å Bond Angles/ °				
W1-Cl	2.36(1) – 2.439(6)	Cl2-W1-S1	107.9(3)	
W1-S1	2.12(1)	Cl3-W1-S1	100.4(3)	
W1-P1	2.614(6)	Cl1-W1-S1	87.6(3)	
W1-P2	2.595(6)			

Table 3.4: Selected bond lengths and angles for [WSCl₄(o-C₆H₄(PMe_2)₂)].

The complexes, [WSCl₄(o-C₆H₄(PMe₂)₂)] and [WOCl₄(o-C₆H₄(AsMe₂)₂)], are isomorphous and both exhibit axial disorder, which is also seen in [WOF₄(o-C₆H₄(PMe₂)₂)].¹¹ During multiple attempts to grow crystals, a small number of some tungsten(V) crystals were also isolated, including, [WCl₄(o-C₆H₄(PMe₂)₂)₂][WS_{0.5}O_{0.5}Cl₄] - there is some O/S disorder in the anion, but the structure of the cation is robust and not in doubt.

Figure 3.12: The structure of $[WCl_4(o-C_6H_4(PMe_2)_2)_2][WS_{0.5}O_{0.5}Cl_4]$ showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms are omitted for clarity. Note that the S/O on the anion were disordered which was modelled as split sites and refined to occupancies of 0.5 : 0.5. Both forms are shown.

$[\mathrm{WCl_4}(o\text{-}\mathrm{C_6H_4}(\mathrm{PMe_2})_2)_2][\mathrm{WS_{0.5}O_{0.5}Cl_4}]$				
Bond Lengths/ Å Bond Angles/ °				
W1-Cl _{Cation}	2.428(2) – 2.439(3)	Cl-W1-Cl2	94.33(8)	
W1-P1	2.593(3)	Cl1-W1-Cl3	144.34(9)	
W1-P2	2.589(2)	Cl1-W1-Cl4	95.49(8)	

Table 3.5: Selected bond lengths and angles for $[WCl_4(o-C_6H_4(PMe_2)_2)_2][WS_{0.5}O_{0.5}Cl_4]$.

This structure is similar to that of [WCl₄(o-C₆H₄(PPh₂)₂)₂][WCl₆]·2.5(C₇H₈) showing a dodecahedral cation and a singly charged anion. There is little difference in W-Cl_{Cation} bond lengths between the structures. The W-P bond lengths are slightly shorter in the methyl-diphosphine complex (~2.59 Å) compared to that of the phenyl-substituted ligand (~2.65 Å) probably due to the phenyl ligand (o-C₆H₄(PPh₂)₂) being more sterically demanding and a poorer σ -donor. In the fluoride analogue, [WF₄(o-C₆H₄(PMe₂)₂)₂][WOF₅], the W-P bonds are ~2.58 Å, slightly shorter than in the chloro analogue (although the fluoro species is in the W(VI) oxidation state), but both are significantly shorter than in [WF₄(o-C₆H₄(PPh₂)₂)₂]⁺.8

The complex, [WSCl₄(*o*-C₆H₄(AsMe₂)₂)], behaves in a very similar fashion to the other compounds in this series, but is the most unstable in solution. Spectroscopic data suggest the ligand readily chlorinates or most readily reduces the metal centre and the complex was the most difficult to isolate cleanly. Attempts to grow crystals of [WSCl₄(*o*-C₆H₄(AsMe₂)₂)] failed as the compound was only slightly soluble and its longevity is poor in solution. However, some orange crystals were collected which showed a tungsten(V) species, which showed the cation [WCl₄(*o*-C₆H₄(AsMe₂)₂)₂]⁺, a number of crystals were isolated and they all showed a large amount of disorder in the anion, so a definitive assignment could not be made. The cation structure is not in

doubt and has been repeatedly identified, although bond lengths cannot be compared due to the rather poor-quality data. The structure of the cation is very similar to the fluoro analogue, $[WF_4(o-C_6H_4(AsMe_2)_2)_2]^{2+}$, although the latter contains tungsten(VI).

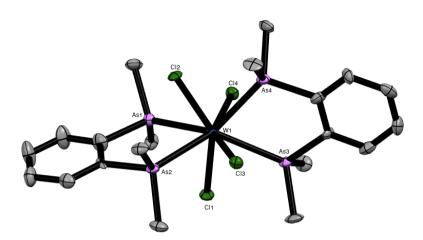


Figure 3.13: The structure of $[WCl_4(o-C_6H_4(AsMe_2)_2)_2]^+$ showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms and disordered anion are omitted for clarity.

During the repeated attempts to isolate crystals of [WSCl₄(o-C₆H₄(AsMe₂)₂)] a few crystals of an ionic bridged species were isolated. The bridging atoms are most likely S²⁻, rearrangement from WSCl₄, however they could also be Cl⁻ ions. The anion is likely [WSCl₅]²⁻ or [WCl₆]²⁻ therefore the cation is either sulfur bridged and both the cation and anion would be tungsten(V). Alternatively, the dimer could be chloride bridged making the cation tungsten(IV) and mixed valance which is less likely. A similar structure, [(WCl₂)₂(μ -E)₂(i PrS(CH₂)₂SⁱPr)][WSCl₅]•CH₂Cl₂ has been reported in Chapter 4, there is no ambiguity that the anion is [WSCl₅]²⁻ and it is highly likely that this is the anion here. Unfortunately, due to similar W-Cl and W=S bond lengths they cannot be distinguished from each other in this structure due to high symmetry.

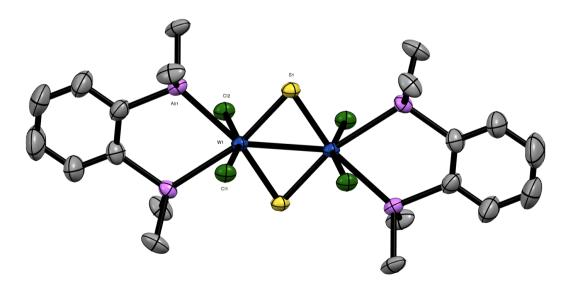


Figure 3.14: The structure of $[(WCl_2)_2(\mu-S)_2(o-C_6H_4(AsMe_2)_2)_2][WCl_6]$ •CH₂Cl₂ showing the atom numbering scheme. Ellipsoids shown at 50% probability, H atoms and anion are omitted for clarity.

3.3.2 Reactions with Other Phosphine and Arsine Donors

Following the successful isolation of [WOCl₄(*o*-C₆H₄(EMe₂)₂)] and [WSCl₄(*o*-C₆H₄(EMe₂)₂)] (E = P or As), other tertiary phosphine and arsine ligands were attempted (PMe₃, AsEt₃ and dmpe). The flexible ligand dmpe was used to try and isolate [WOCl₄(dmpe)] or [(WOCl₄)₂(dmpe)], but no clean products could be isolated. There was no evidence of the formation of the bridged dimer when using 1:2 metal to ligand.

A short investigation into tertiary alkyl substituted phosphine and arsine ligands was undertaken, all reactions were carried out with a 1:1 metal to ligand ratio to attempt to isolate [WECl₄(E'R₃)] (E' = P or As, E = O or S and R = Me or Et). Spectroscopic data for WECl₄ and PMe₃ attempts does not support this conclusion. Attempts with both WOCl₄ and WSCl₄ show a sharp resonance in the $^{31}P\{^{1}H\}$ NMR spectra at \sim +92 ppm, this could be attributed to Me₃PCl₂ and is much higher than expected resonance, ([WOF₄(PMe₃)], ∂ = +44.8 ppm). 11,44

The attempts to isolate [WECl₄(AsEt₃)] were equally unsuccessful, both showed evidence of Et₃AsCl₂ in the ¹H NMR spectra. ⁴⁵ The reaction with WOCl₄ seemed to show a mixture of products, there is a strong stretch at 857 cm⁻¹ which can be tentatively assigned to a coordinated As=O stretch suggesting chalcogen abstraction or a tungsten-oxide bridge. ⁴⁶⁻⁴⁸ In the IR spectra from WSCl₄ and AsEt₃, there is no evidence of any W=S stretch and there is a stretch at 422 cm⁻¹ which can be tentatively assigned to coordinated As=S. ^{49,50} Since arsine ligands are soft and poor σ-donors failure is not unexpected, especially considering [WECl₄(*o*-C₆H₄(AsMe₂)₂)] are not that stable. Although it should be noted that AsEt₃ formed complexes with WF₆ although it is much harder to reduce and a better Lewis acceptor. ⁸

3.4 Conclusions

The main aim of the chapter was to continue the chemistry of tungsten(VI) oxo- and thio-tetrachlorides and develop a short series of neutral phosphine and arsine complexes under mild and ambient conditions. All compounds isolated were extremely hydrolytically unstable and were handled and stored under anhydrous conditions at all stages. Four examples of rare seven-coordinate complexes have been isolated and all fully characterised; two have been structurally characterised revealing pentagonal bipyramidal geometries. A number of W(V) reduction products have also been structurally characterised, including cationic salts and compared to the products of the failed attempt to isolate [WOCl4(o-C6H4(PPh2)2)] and known [WF4(o-C6H4(EMe2)2)2] $^{n+}$ species.

A small number of other complexes with the ligands PMe₃, dmpe and AsEt₃ were also attempted, but proved unsuccessful, with some side products shown to be chlorinated ligand and potentially some tungsten(V) reduction species. Spectroscopic data also showed chalcogen abstraction by the ligands to form possible reduced species. The reaction with WOCl₄ and PMe₃ showed that the complex [WOCl₄(PMe₃)₂] could potentially be formed under the right conditions but is likely to be extremely sensitive to trace moisture.

3.5 Experimental

Syntheses were performed by using standard Schlenk and glove-box techniques under a dry N₂ atmosphere. Solvents were dried by distillation from CaH₂ (CH₂Cl₂) or Na/benzophenone ketyl (toluene, n-hexane). AsEt₃, 1,2-bis(dimethylphosphine)ethane and PMe₃ obtained from Strem and used as received. *o*-phenylenebis(diphenylphosphine) from Sigma-Aldrich and dried by heating *in vacuo* before use. *o*-phenylenebis(dimethylarsine) and *o*-phenylenebis(dimethylphosphine) were prepared *via* the literature methods,^{51,52} and WSCl₄ and WOCl₄ were prepared *via* literature methods.^{53,54} For further details regarding the instrumentation see Appendix A.

```
[WOCl_4(o-C_6H_4(AsMe_2)_2)]
```

o-phenylenebis(dimethylarsine) (0.083 g, 0.29 mmol) in dichloromethane (2 mL) was added slowly to a solution of WOCl₄ (0.100 g, 0.29 mmol) in dichloromethane (4 mL). The solution was allowed to stir for 1 h., concentrated *in vacuo* to 2 mL, the green precipitate was filtered and dried *in vacuo*. Yield: 0.90 g, 49 %. Required for C₁₀H₁₆As₂Cl₄OW (627.73): C: 19.13, H: 2.57 %. Found: C: 19.02, H: 2.46 %. IR spectrum (Nujol, v / cm⁻¹): 955s W=O, 332s W-Cl. ¹H NMR (CD₂Cl₂): δ = 7.86 (m, [H], aromatic CH), 7.74 (m, [H], aromatic CH), 2.51 (s, [3H], CH₃), 2.42 (s, [3H], CH₃).

$$[WSCl_4(o-C_6H_4(AsMe_2)_2)]$$

o-phenylenebis(dimethylarsine) (0.080 g, 0.28 mmol) in dichloromethane (2 mL) was added slowly to a solution of WSCl₄ (0.100 g, 0.28 mmol) in dichloromethane (4 mL). The solution was allowed to stir for 1 h., concentrated *in vacuo* to 2 mL, the red/brown precipitate was filtered and dried *in vacuo*. Yield: 0.230 g, 81 %. Required for C₁₀H₁₆Cl₄As₂SW (643.79): C: 18.66, H: 2.50 %. Found: C: 18.52, H: 2.47 %. IR spectrum (Nujol, v / cm^{-1}): 548s W=S, 330s W-Cl. ¹H NMR (CD₂Cl₂): δ = 7.71 (m, [2H], aromatic CH), 2.73 (s, [3H], CH₃), 2.39 (s, [3H], CH₃).

$$[WOCl_4(o-C_6H_4(PMe_2)_2)]$$

o-phenylenebis(dimethylphosphine) (0.087 g, 0.44 mmol) in dichloromethane (2 mL) added slowly to a solution of WOCl₄ (0.150 g, 0.42 mmol) in dichloromethane (4 mL). The solution was allowed to stir for 1 h., concentrated *in vacuo* to 2 mL, the green precipitate was filtered and dried *in vacuo* Yield: 0.170 g, 71 %. Required for C₁₀H₁₆Cl₄OP₂W (539.83): C: 22.25, H: 2.99 %. Found: C: 22.31, H: 3.16 %. IR spectrum (Nujol/ cm⁻¹): 954s W=O, 319s, 302s W-Cl. H NMR (CD₂Cl₂): δ = 7.95 – 7.51 (m, [2H], aromatic CH), 2.61 (t, [3H], 2 J+ 5 J_{HH} = 8 Hz, CH₃), 2.53 (m, [3H] 2 J+ 5 J_{HH} = 8 Hz, CH₃). 31 P{ 1 H} NMR (CD₂Cl₂): +74.8 (s, 1 J_{WP} = 173 Hz).

$$[WSCl_4(o-C_6H_4(PMe_2)_2)]$$

o-phenylenebis(dimethylphosphine) (0.083 g, 0.42 mmol) in dichloromethane (2 mL) added slowly to a solution of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (4 mL). The solution was allowed to stir for 1 h., concentrated *in vacuo* to 2 mL, the red/brown precipitate was filtered and dried *in*

vacuo. Yield: 0.172 g, 74 %. Required for $C_{10}H_{16}Cl_4P_2SW$ (555.90): C: 21.61, H: 2.90 %. Found: C: 21.72, H: 2.99 %. IR spectrum (Nujol, ν / cm⁻¹): 561s W=S, 313s, 297s W-Cl. ¹H NMR (CD₂Cl₂): δ = 8.92 (br, [H], aromatic CH), 8.72 (br [H], aromatic CH), 2.62 (m, [3H], CH₃), 2.54 (m, [3H], CH₃). ³¹P{¹H} NMR (CD₂Cl₂): +74.8 (s, ¹J_{WP} = 168 Hz).

The products isolated from the following reactions were not satisfactorily characterised (see above) but are reported for completeness of work.

Reaction of WOCl₄ and PMe₃

A solution of trimethylphosphine (0.034 g, 0.44 mmol) in CH₂Cl₂ (5 mL) was added slowly to a suspension of WSCl₄ (0.150 g, 0.44 mmol) in CH₂Cl₂ (5 mL). The cherry red solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the red sticky solid dried *in vacuo*. IR spectrum (Nujol, ν / cm⁻¹): 954s, 898s br W=O, 351s W-Cl. ¹H NMR (CD₂Cl₂): δ = 2.54 (s, br), 1.94 (s, br). ³¹P{¹H} NMR (CD₂Cl₂): +93.12 (s).

Reaction of WSCl4 and PMe3

A solution of trimethylphosphine (0.032 g, 0.42 mmol) in CH_2Cl_2 (5 mL) was added slowly to a suspension of WOCl₄ (0.150 g, 0.42 mmol) in CH_2Cl_2 (5 mL). The brown solution was then stirred for 1 h., concentrated to ~3 mL, filtered, and the brown solid dried *in vacuo*. IR spectrum (Nujol, ν / cm⁻¹): 528m, br W=S, 314s W-Cl. ³¹P{¹H} NMR (CD₂Cl₂): +91.61 (s).

Reaction of WOCl4 and dmpe

A solution of dmpe (0.033 g, 0.22 mmol) in CH_2Cl_2 (5 mL) was added slowly to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in CH_2Cl_2 (5 mL). The orange solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the orange solid dried *in vacuo*. IR spectrum (Nujol, ν / cm⁻¹): 950s, 894s br W=O, 350s W-Cl. ¹H NMR (CD_2Cl_2): δ = 2.35 (s, br), 1.26 (s). ³¹P{¹H} NMR (CD_2Cl_2): +74.4 (s).

Reaction of WOCl₄ and AsEt₃

A solution of triethylarsine (0.071 g, 0.44 mmol) in toluene (5 mL) was added slowly to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in toluene (5 mL). The dark green solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the green solid dried *in vacuo*. IR spectrum (Nujol, v / cm^{-1}): 956s W=O, 857s, br As=O, 349s, 334s W-Cl. ¹H NMR (CD₂Cl₂): δ = 3.03 (s, br), 1.63 (s).

Reaction of WSCl₄ and AsEt₃

A solution of triethylarsine (0.068 g, 0.42 mmol) in toluene (5 mL) was added slowly to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in toluene (5 mL). The dark brown solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the dark brown solid dried *in vacuo*. IR spectrum (Nujol, v / cm^{-1}): 422m, br As=S, 303s W-Cl. ¹H NMR (C₆D₆): δ = 2.68 (q, [2H], J_{HH} 7.7 Hz, CH₂), 1.2 (t, [3H], J_{HH} 7.6 Hz, CH₃).

Chapter 3

3.5.1 Crystallographic Tables

Compound	[WOCl ₄ (o- C ₆ H ₄ (AsMe ₂) ₂)]	[WSCl ₄ (o-C ₆ H ₄ (PMe ₂) ₂)]	[WOCl ₃ (o- C ₆ H ₄ (PMe ₂) ₂)]
Formula	$C_{10}H_{16}As_{2}Cl_{4}OW$	$C_{10}H_{16}Cl_4P_2SW$	$C_{10}H_{16}Cl_3OP_2W$
M	627.72	555.88	504.37
Crystal system	Orthorhombic	Orthorhombic	Orthorhombic
Space group (no)	Pbca (61)	Pbca (61)	$P2_12_12_1(19)$
a /Å	15.6918(3)	13.1473(4)	16.4487(3)
b/Å	13.7435(2)	15.8140(5)	13.9540(2)
c /Å	15.9443(3)	16.1052(6)	14.4660(2)
α /°	90	90	90
β /°	90	90	90
γ /°	90	90	90
$U/Å^3$	3438.55(10)	3348.48(19)	3320.31(9)
Z	8	8	8
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	1.114	7.834	7.617
F(000)	2336.0	2112.0	1912.0
Total number reflns	70940	27246	37813
R _{int}	0.0739	0.0562	0.0695
Unique reflns	5431	5218	9786
No. of params, restraints	194/132	165/18	325/20
GOF	1.275	1.091	1.050
R_1 , $wR_2 [I > 2\sigma(I)]^b$	0.0510, 0.0794	0.0582, 0.1073	0.0657, 0.1512
R ₁ , wR ₂ (all data) ^b	0.0596, 0.0814	0.0843, 0.1137	0.0812, 0.1613

Table 3.6: X-ray crystallography table. a: common data: wavelength (Mo-K_q) = 0.71073 Å; θ (max) = 27.5°; ${}^bR_I = \Sigma ||Fo| - |Fc||/\Sigma |Fo|$; $wR_2 = [\Sigma w(Fo^2 - Fc^2)^2/\Sigma wFo^4]^{1/2}$

Compound	$[WOCl_3(o-C_6H_4(PMe_2)(P(O)Me_2))]\\ \cdot 0.5CH_2Cl_2$	[WCl ₄ (o- C ₆ H ₄ (PPh ₂) ₂) ₂][WCl ₆]· 2.5(C ₇ H ₈)	[WCl ₄ (o- C ₆ H ₄ (PMe ₂) ₂) ₂][WS _{0.5} O _{0.5} Cl ₄]
Formula	$C_{10.5}H_{17}Cl_4O_2P_2W$	$C_{77.5}H_{68}Cl_{10}P_4W_2$	$C_{20}H_{32}Cl_8O_{0.5}P_4S_{0.5}W_2\\$
M	562.83	1845.40	1071.66
Crystal system	Orthorhombic	Monoclinic	Triclinic
Space group (no)	Pbcn (60)	$P2_1/c$ (14)	P1 (2)
a /Å	15.5425(2)	12.68450(10)	12.0846(4)
b/Å	17.6076(2)	22.62209(2)	12.4096(5)
c /Å	13.1080(2)	26.0710(2)	13.1385(4)
α /°	90	90	112.547(4)
β /°	90	100.0200(10)	107.746(3)
γ /°	90	90	99.743(3)
$U/Å^3$	3587.22(8)	7366.57(11)	1638.89(11)
Z	8	4	2
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	7.210	3.614	7.907
F(000)	2144.0	3644.0	1016.0
Total number reflns	38057	203082	35281
R _{int}	0.0567	0.0271	0.0631
Unique reflns	5453	23949	9848
No. of params, restraints	181/0	877/122	327/0
GOF	1.110	1.027	1.050
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0565, 0.1146	0.0196, 0.0370	0.0674, 0.1460
R_1 , w R_2 (all data) ^b	0.0622, 0.1175	0.0250, 0.0381	0.0795, 0.1515

Table 3.6: Continued.

3.6 References

- (1) Burt, J.; Levason, W.; Reid, G. Coord. Chem. Rev., 2014, 260, 65-115
- (2) Davis, M. F.; Levason, W.; Reid, G.; Webster, M. *Polyhedron*, **2006**, *25*, 930-36
- (3) McAuliffe, C. A. Comprehensive Coordination Chemistry I, 1987, 2, 989-1066
- (4) Kendall, A. J.; Tyler, D. R. Dalton Trans., 2015, 44, 12473-83
- (5) Arnaudet, L.; Bougon, R.; Ban, B.; Charpin, P.; Isabey, J.; Lance, M.; Nierlich, M.; Vigner, J. *Can. J. Chem.*, **1990**, *68*, 507-12
- (6) Arnaudet, L.; Bougon, R.; Buu, B.; Lance, M.; Nierlich, M.; Thuéry, P.; Vigner, J. *J. Fluorine. Chem.*, **1995**, *71*, 123-29
- (7) Greenacre, V. K.; Hector, A. L.; Levason, W.; Reid, G.; Smith, D. E.; Sutcliffe, L. *Polyhedron*, **2019**, *162*, 14-19
- (8) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W. Chem. Commun., 2018, 54, 11681-84
- (9) Crans, D. C.; Smee, J. J. Comprehensive Coordination Chemistry II, 2004, 4, 175-239
- (10) Rice, D. A. Coord. Chem. Rev., 1982, 45, 87-103
- (11) Emsley, J. W.; Levason, W.; Reid, G.; Zhang, W.; De Luca, G. J. Fluorine. Chem., 2017, 197, 74-79
- (12) Young, C. G. Comprehensive Coordination Chemistry II, 2004, 4, 415-527
- (13) Benjamin, S. L.; Levason, W.; Reid, G. Chem. Soc. Rev., 2013, 42, 1460-99
- (14) El-Kurdi, S.; Al-Terkawi, A.-A.; Schmidt, B. M.; Dimitrov, A.; Seppelt, K. *Chem. Eur. J.*, **2010**, *16*, 595-99
- (15) Levason, W.; Monzittu, F. M.; Reid, G. Coord. Chem. Rev., 2019, 391, 90-130
- (16) Giese, S.; Seppelt, K. Angew. Chem. Int. Ed., 1994, 33, 461-63
- (17) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W.; Hope, E. G. *J. Fluorine. Chem.*, **2017**, 200, 190-97
- (18) Butcher, R. J.; Penfold, B. R.; Sinn, E. J. Chem. Soc., Dalton Trans., 1979, 668-75
- (19) Kergoat, R.; Calves, J. Y.; E, G. J.; Lenzi, M. Compt. Rend., Ser. C 1971, 276, 306-10
- (20) Buslaey, Y. A.; Petrosyants, S. P. Zh. Neorg. Khim., 1971, 16, 1330-34
- (21) Wang, G.; Chen, G.; Luck, R. L.; Wang, Z.; Mu, Z.; Evans, D. G.; Duan, X. *Inorg. Chim. Acta*, **2004**, *357*, 3223-29
- (22) Sens, I.; Stenger, H.; Mller, U.; Dehnicke, K. Z. anorg. allg. Chem., 1992, 610, 117-20
- (23) Arnaiz, F. J.; Aguado, R.; Martinez de Ilarduya, J. M. Polyhedron, 1994, 13, 3257-59
- (24) Davis, M. F.; Levason, W.; Ratnani, R.; Reid, G.; Rose, T.; Webster, M. Eur. J. Inorg. Chem., 2007, 306-13
- (25) Levason, W.; Reid, G.; Zhang, W. J. Fluorine. Chem., 2016, 184, 50-57
- (26) Davis, M. F.; Levason, W.; Light, M. E.; Ratnani, R.; Reid, G.; Saraswat, K.; Webster, M. *Eur. J. Inorg. Chem.*, **2007**, *13*, 1903-10
- (27) Edwards, D. A. J. Inorg. Nucl. Chem., 1965, 27, 303-07
- (28) Saha, H. K.; Ray Chaudhuri, T. K. J. Inorg. Nucl. Chem., 1977, 39, 698-700
- (29) Butcher, A. V.; Chatt, J. J. Chem. Soc. A, 1971, 2356-58
- (30) Limberg, C.; Büchner, M.; Heinze, K.; Walter, O. *Inorg. Chem.*, **1997**, *36*, 872-79
- (31) Blight, D. G.; Kepert, D. L.; Mandyczewsky, R.; Trigwell, K. R. J. Chem. Soc., Dalton Trans., 1972, 313-16
- (32) Levason, W.; McAuliffe, C. A.; Sayle, B. J. J. Chem. Soc., Dalton Trans., 1976, 1177-81
- (33) Levason, W.; McAuliffe, C. A.; McCullough, F. P. Inorg. Chim. Acta, 1977, 24, L13-L14
- (34) Chow, K. K.; McAuliffe, C. A. *Inorg. Chim. Acta*, **1974**, *10*, 197-202
- (35) Carmichael, W. M.; Edwards, D. A. J. Inorg. Nucl. Chem., 1968, 30, 2641-46
- (36) Lewis, J.; Whyman, R. J. Chem. Soc., **1965**, 6027-31
- (37) Levason, W.; McAuliffe, C. A.; McCullough, F. P. Inorg. Chem., 1977, 16, 2911-16
- (38) Agh-Atabay, N.; Ashmawy, F. M.; McAuliffe, C. A.; Hill, W. E. *Inorg. Chim. Acta*, **1985**, *104*, 73-76
- (39) Fowles, G. W. A.; Frost, J. L. J. Chem. Soc. A, 1967, 671-75
- (40) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1975, 213-15
- (41) Drew, M. G. B.; Mandyczewsky, R. J. Chem. Soc. D, 1970, 292-93
- (42) Gray, B. M.; Hector, A. L.; Levason, W.; Reid, G.; Webster, M.; Zhang, W.; Jura, M. *Polyhedron*, **2010**, *29*, 1630-38
- (43) Garrou, P. E. Chem. Rev., 1981, 81, 229-66
- (44) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M.; Thompson, G. M. J. Chem. Soc., Dalton Trans., 1997, 4823-28

- (45) Verdonck, L.; Van Der Kelen, G. P. Spectrochim. Acta A, 1977, 33, 601-05
- (46) Merijanian, A.; Zingaro, R. A. *Inorg. Chem.*, **1966**, *5*, 187-91
- (47) Horner, S. M.; Tyree, S. Y. *Inorg. Chem.*, **1962**, *I*, 122-27
- (48) Horner, S. M.; Tyree, S. Y. *Inorg. Chem.*, **1963**, *2*, 568-71
- (49) Ablonin, B. E.; Lokhot-Skaya, L. A.; Shagidullin, R. R. Zh. Obshch. Khim., **1991**, *61*, 1150 54
- (50) Il'in, E. G.; Ignatov, M. E.; Buslaev, Y. A. Dokl. Akad. Nauk SSSR, 1979, 247, 113 15
- (51) Feltham, R. D.; Kasenally, A.; Nyholm, R. S. J. Organomet. Chem., 1967, 7, 285-88
- (52) Kyba, E. P.; Liu, S. T.; Harris, R. L. Organomet., 1983, 2, 1877-79
- (53) Gibson, V. C.; Kee, T. P.; Shaw, A. *Polyhedron*, **1990**, *9*, 2293-98
- (54) Dietz, S.; Allured, V.; DuBois, M. R. Inorg. Chem., 1993, 32, 5418-20

Coordination Chemistry of WOCl₄, WSCl₄ and WSCl₃ with Neutral Sulfur and Selenium Donor Ligands

4.1 Introduction

In recent years there has been increasing interest in the development of early transition metal dichalcogenide semiconductor thin films, ME₂ (E = S, Se or Te) as discussed in Chapter 1; new methods to grow these films are becoming ever more important given their wide-ranging technological applications (Section 1.5). Chemical vapour deposition (CVD) is a versatile and cheap method for accessing a variety of these thin films. The primary focus of this chapter is to establish a systematic series of novel chalcogenoether complexes of tungsten(VI), to study the behaviour between the soft thio- and seleno-ether ligands and the hard tungsten(VI) centre. Complexes with suitable ligands will be identified as potential precursors for the production of WS₂ thin films *via* chemical vapour deposition. This chapter details the synthesis and characterisation of these complexes and the comparison between similar high oxidation state transition metal complexes.

4.2 Early Transition Metal Coordination Chemistry with Chalcogenoethers

Examples of soft donor coordination with high oxidation state early transition metals are less ubiquitous than their hard donor counterparts, as previously described (see Chapter 2). Properties of transition metal compounds that contain soft Group XVI donor ligands (thio-, seleno- or telluro-ethers) can differ quite drastically from hard donor and even phosphine donor complexes. Due to the sporadic and limited reports of chalcogenoether complexes with high valent with Group VI metals, it is necessary to compare a range of early metals in a variety of oxidation states (including $W^{VI/V/IV}$, $Mo^{VI/V/IV}$, Ta^V and $Nb^{IV/V}$). All these high valent hard metal-soft donor systems are prone to both oxidation of the ligand and hydrolysis with adventitious water, ²⁻⁴ therefore the use of rigorously dried solvents and inert atmosphere is vital.

There is a large body of work on soft donor interactions with some high valent early transition metals, including TiX_4 (X = Cl, Br or I)^{5,6} and MX_4 (M = Zr or Hf; X = Cl or Br)⁷ and MX_5 (M = Nb or Ta; X = F, Cl or Br) discussed below. General trends show there are significant differences between the fluoride complexes and those of the other halides, with the fluoride analogues being difficult to isolate due to instability or strong fluoride bridges in the parent metal fluorides. The hard Lewis acidic nature of the metal fluorides means that efforts to make complexes with soft chalcogenoether donors is challenging, with many attempts leading to fluorination of the donor atom. ^{8,9} Some metal chloride complexes, $[MoCl_4(E^nBu_2)_2]$ or $[NbCl_5(E^nBu_2)]$, with terminal butyl substituents on the chalcogenoethers were identified as potential single-source precursors for the growth of metal dichalcogenide thin films, as the precursors had relatively high volatility and a low

energy decomposition pathway through $\ potential \ \beta$ -hydride elimination and subsequent reduction. ^{4,6,10}

4.2.1 Coordination Complexes with Chalcogenoethers and Transition Metals in Their Highest Oxidation State

As stated in Chapter 3, there are no known neutral coordination complexes of MoF_6 , ¹¹ and early studies of WF_6 established the formation of $[WF_6(SMe_2)_n]$ (n = 1 or 2)^{12,13} as white crystals and $[WF_6(SEt_2)_2]$, although characterisation is limited for $[WF_6(SEt_2)_2]$. ¹⁴ Subsequent studies with $RS(CH_2)_2SR$ (R = Me or ⁱPr) and WF_6 showed a colour change upon addition of the ligand to WF_6 in CH_2Cl_2 solution at 180 K, but the colour faded away when brought to room temperature. ^{11,15} It is unlikely that WF_6 chalcogenoether complexes will be stable in ambient conditions; those reported are isolated at low temperatures and are unstable at room temperature. ^{11-13,15} Attempts using $[M'OF_4(MeCN)]$ (M' = Mo or W) as the metal source and some chalcogenoethers (SMe_2 , $SeMe_2$, $MeS(CH_2)_2SMe$ or $MeS(CH_2)_2SeMe$) failed, as the ligands either could not displace the coordinated MeCN or brought about the reduction of the metal centre. ^{11,16} There are no reports of neutral $M'O_2F_2$ (M' = Mo or W) complexes with soft S- or Se- donor ligands, although accessing the parent compound is challenging. Thioether complexes of WCl_6 have been discussed previously in Chapter 2.

Corresponding metal pentafluorides, MF_5 (M = Nb or Ta), behave in a similar manner to $M'F_6$ (M' = Mo or W) analogues, with reactions between MF_5 and SR_2 (R = Me or Et) in the absence of solvent giving colourless [$MF_5(SR_2)$] solids.^{3,8,17} In contrast, MF_5 and excess SMe_2 in CH_2Cl_2 gave extremely moisture sensitive [$MF_4(SMe_2)_4$][MF_6] crystals containing distorted dodecahedral cations (Figure 4.1).⁸

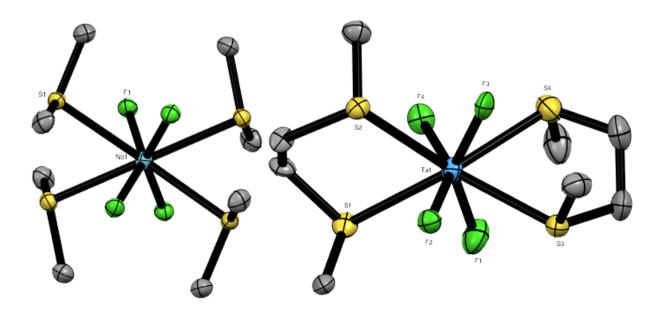


Figure 4.1: Crystal structures of the cations [NbF₄(SMe₂)₄]⁺ (left) and [TaF₄(MeS(CH₂)₂SMe)₂]⁺ (right). Hydrogen atoms and anions omitted for clarity.^{3,8}

More stable complexes, $[MF_4(L-L)_2][MF_6]$ with dithioethers, L-L (L-L= RS(CH₂)₂SR; R = Me, Et or ${}^{i}Pr$) have also been formed as white powders from reaction with both NbF₅ and TaF₅ (see Figure 4.1). All of these compounds show rapid reversible dissociation or pyramidal inversion in solution even at low temperatures (190 K).^{3,8} The xylyl ligand o-C₆H₄(CH₂SMe)₂ reacts with NbF₅ to form two structurally characterised products, an infinite chain cationic species in the complex, $[NbF_4(o$ -C₆H₄(CH₂SMe)₂)₂] $[Nb_2F_{11}]$, with two bridging thioether ligands between the Nb centres, and a very rare sulfonium salt [(o-C₆H₄(CH₂SMe)₂)H] $[NbF_6]$, likely from trace moisture. ¹⁸ Highly sensitive $[MF_5(SeMe_2)]^{3,8}$ complexes have been isolated, but decompose rapidly within hours at ambient temperatures. Initial reactions with MF₅ and telluroethers gave insoluble black tarry materials, ^{3,8} but from TaF₅ and TeMe₂ at 0 °C, $[TaF_5(TeMe_2)]$ was subsequently isolated, although this also decomposed rapidly.⁴ Further examples of MF₅ complexes with neutral hard donors and phosphines are described in Chapter 6.

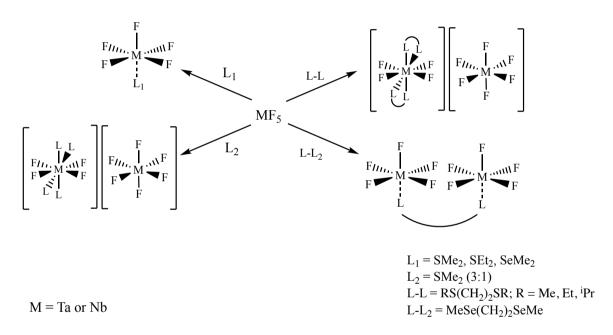


Figure 4.2: Reaction scheme showing complexes of MF_5 (M = Ta or Nb) with thio- and seleno-ethers.^{3,8,18}

The majority of the complexes derived from MF₅ are extremely sensitive to trace moisture and decompose readily. Investigations into comparable complexes derived from MX₅ (X = Cl or Br) have shown complexes with heavier halides behave very differently to the fluoride analogues.^{3,4,18} All the reactions between MF₅ and bidentate thioethers produced eight-coordinate salts (Figure 4.2). In contrast, only MeS(CH₂)₂SMe produced this type of complex when reacted with MX₅ (X = Cl or Br), no matter the stoichiometry used.^{3,8} Instead, MX₅ and bidentate chalcogenoether ligands formed bridged dimer complexes, [(MX₅)₂(μ -L-L)], where each donor heteroatom is coordinating with a different metal centre to give a distorted octahedral metal environment (Figure 4.3). The only examples of this occurring with the metal pentafluoride analogues are with the heavier chalcogen ligands RSe(CH₂)₂SeR (R = Me or ⁿBu), which form [(MF₅)₂(μ -L-L)].^{3,8}

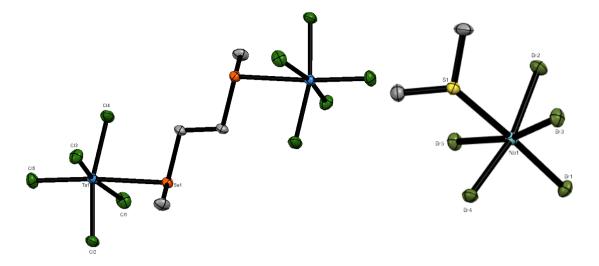


Figure 4.3: Crystal structures of [(TaCl₅)₂(MeSe(CH₂)₂SeMe)] (left) and [NbBr₅(SMe₂)] (right).. Hydrogen atoms omitted for clarity.^{3,8}

The Group V pentahalides, MX_5 (X = Cl or Br), also form these bridged dimer complexes with oxylyl backboned ligands containing either sulfur or selenium donor atoms (o-C $_6$ H $_4$ (CH $_2$ ER) $_2$; E = S
or Se; R = Me or Et), again showing the metal centre in a six-coordinate distorted octahedral
environment. There are a very small number of examples of TaX $_5$ with telluroethers, [TaX $_5$ (TeR $_2$)]
(X = Cl or Br; R = Me or n Bu), being the first examples of the highest oxidation state transition
metal complexes with telluroethers which are structurally characterised. High valent complexes
with telluroethers are highly unusual as Te-C cleavage is common and the telluroether is also
susceptible to oxidative halogenation. 19

There is very little work on $M'X_5$ (M' = Mo or W) in the +V oxidation state and consequently few neutral complexes with chalcogenoethers. [WBr₅(MeS(CH₂)₂SMe)] has been reported, but there are no structurally characterised examples.²⁰

4.2.2 Coordination Complexes of Metal(IV) Halides and Chalcogenoethers

There are a few early reports of MoCl₄ complexes with mono-, di-, poly-thioethers and thiamacrocycles. ^{1,21} Subsequent work has included structural characterisation of [MoCl₄(SEt₂)₂]²²⁻²⁴ and [MoCl₄(tht)₂]. ²⁵ A series of mildly moisture sensitive [MoCl₄(L)₂] and [MoCl₄(L-L)] complexes synthesised from MoCl₅ under ambient conditions have been described. ¹⁰ The easy reduction of the molybdenum centre by a variety of ligands under ambient conditions is likely to be the main reason why there is little or no MoCl₅ coordination chemistry that maintains the +V oxidation state.

Monodentate ligands (tht, SMe₂, SⁿBu₂, SeMe₂ and SeⁿBu₂) react in excess with MoCl₅ to produce the paramagnetic complexes *trans*-[MoCl₄(ER₂)₂]. These complexes can also be formed *via* a Mo(IV) precursor, [MoCl₄(MeCN)₂], where the chalcogenoether ligand displaces the MeCN ligand. Bidentate chalcogenoether ligands (MeE(CH₂)_nEMe; E = S or Se; n = 2 or 3) form *cis*-[MoCl₄(MeE(CH₂)_nEMe)] (Figure 4.5). All complexes are coordinatively saturated and are only

mildly hydrolytically sensitive. The crystal structures show the expected octahedral geometries with the chelating bidentate ligands causing a slight distortion from a perfect octahedron.¹⁰

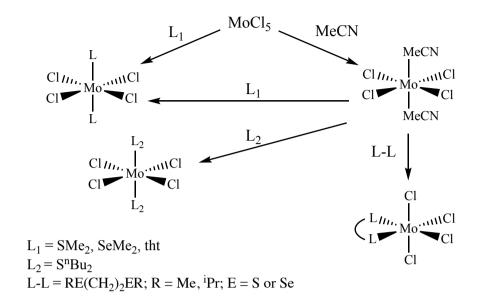


Figure 4.4: Reaction scheme for $[MoCl_4(L)_2]$ or $[MoCl_4(L-L)]$ complexes. ¹⁰

The corresponding WCl₄ complexes are much rarer. But there are some examples of WCl₄ complexes with thioethers, [WCl₄(SEt₂)₂]²⁵ and [WCl₄(MeS(CH₂)₂SMe)].²⁴ However these are early reports, so spectroscopic characterisation is limited, although [WCl₄(SEt₂)₂] has been structurally characterised. These complexes are synthesised either by refluxing WCl₄ or [WCl₄(MeCN)₂] in excess ligand, which also acts as a solvent. It is possible that because [WCl₄(SEt₂)₂] has been isolated, other thioether complexes would be stable if they could be isolated, but since WCl₄ is strongly polymeric this could be challenging.

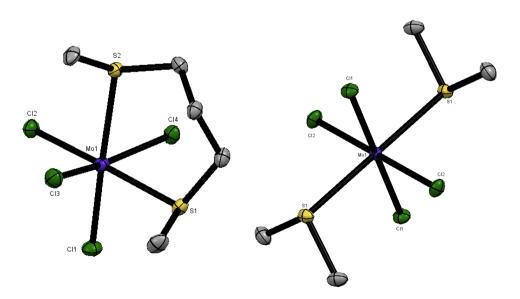


Figure 4.5: Crystal structures of [$MoCl_4(MeS(CH_2)_3SMe)$] (left) and [$MoCl_4(SMe_2)_2$] (right). Hydrogen atoms are omitted for clarity. ¹⁰

Work on NbX₄ and TaX₄ is equally scarce, with only one tantalum(IV) literature report, where the complexes $[TaX_4(L)_2]$ (X = Cl or Br; R = tht or SMe₂) are described.²⁶ Work on niobium(IV)

complexes is more detailed; early reports show [NbX4(L)2] (X = Cl, Br or I; R = tht or SMe2), but [NbCl4(SMe2)2] rapidly loses an equivalent of SMe2. An example of eight-coordinate niobium(IV), [NbCl4(MeS(CH2)2SMe)2], was proposed, with the structure later confirmed as a distorted square antiprism (Figure 4.6). The six-coordinate complex [NbCl4(MeS(CH2)2SMe)] was also isolated from NbCl4 and a stoichiometric amount of ligand, but always had traces of the eight-coordinate species (shown by microanalysis and spectroscopic evidence). A series of six-coordinate NbCl4 complexes with thioethers has been reported, [NbCl4(RS(CH2)nSR)] (R = Me or P(R) = 100 and [NbCl4(P(R) = 1000 and [

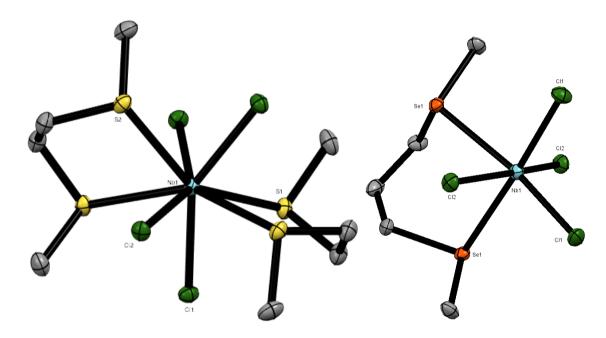


Figure 4.6: Crystal structures of [NbCl₄(MeS(CH₂)₂SMe)₂] (left) and [NbCl₄(MeSe(CH₂)₃SeMe)] (right). Hydrogen atoms omitted for clarity. ¹⁹

4.2.3 Complexes of Metal Oxohalides with Chalcogenoethers

MOF₃ (M = Nb or Ta) do not react with thioethers, suggesting the ligands cannot bind strongly enough to prevent dissociation and polymerisation of the metal oxyfluoride. ^{29,30} An early example of $[NbOBr_3(tht)_2]^{31}$ was reported *via* direct reaction between NbOBr₃ and tht. Despite examples of $[NbOCl_3(L-L)]$ and $[NbOCl_3(L)_2]$ with hard donors and softer phosphine donor ligands (see Chapter 6), there are no complexes with thioethers from direct reactions between NbOCl₃ and thioether ligands. ^{30,32} The complexes $[NbOCl_3(MeS(CH_2)_2SMe)]$ and $[NbOCl_3(SMe_2)]$ were

identified as hydrolysis products and isolated as crystals; these are the only known thioether complexes, not surprising as NbOCl₃ is highly polymeric and needs a stable adduct to block the coordination sites.^{19,33} In a similar vein, there are no known neutral complexes of TaOX₃ with thioethers, with only hard donor complexes known (see Chapter 6).³⁴

As stated in Chapter 2, molybdenum in its highest oxidation state is highly reactive and often easily reduced; a detailed investigation of MoO_2X_2 (X = Cl or Br) and their reactions with thioethers has been reported.³⁵ Highly moisture sensitive complexes [$MoO_2X_2(RS(CH_2)_2SR)$] (R = Me or Et) have been isolated and structurally characterised, but attempts with other ligands ($MeS(CH_2)_nSMe$, n = 1 or 3, SMe_2 , $PhS(CH_2)_2SPh$) proved unsuccessful, reducing the molybdenum centre. This indicates that only ligands where a five-membered chelate ring is formed and with terminal alkyl substituents (which increase σ -donor power) can form coordination complexes with MoO_2X_2 . The thermally unstable complex [$MoO_2Cl_2(MeSe(CH_2)_2SeMe)$] has also been isolated (decomposing at ambient temperatures), but the bromide analogue was not formed. Further studies expanded the thioether ligands used to include ${}^iPrS(CH_2)_2S^iPr$, 1,4-dithiane and [14]aneS₄. 36 Interestingly, the ligand o- $C_6H_4(CH_2SMe)_2$ does not chelate, but forms a bridged dimer structure, [(MoO_2Cl_2) $_2(o$ - $C_6H_4(CH_2SMe)_2$) $_2$ (Figure 4.7). 36

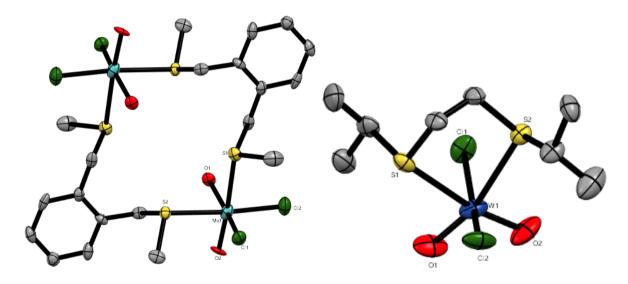


Figure 4.7: Crystal structures of $[(MoO_2Cl_2)_2(\mu-o-C_6H_4(CH_2SMe)_2)_2]$ (left) and $[MoO_2Cl_2(^iPrS(CH_2)_2S^iPr)]$ (right). Hydrogen atoms omitted for clarity. ³⁶

Within the same study, WO_2X_2 complexes were also investigated and complexes in the form $[WO_2X_2(L-L)]$ (X = Cl or Br; $L-L = MeS(CH_2)_2SMe$, ${}^iPrS(CH_2)_2S^iPr$ and dithiane) were isolated. The tungsten(VI) complexes are more reactive than their molybdenum(VI) counterparts, consistent with WO_2X_2 being harder than MoO_2X_2 . There is only one literature report that attempted to coordinate a thioether to $WOCl_4$, where SMe_2 is used in excess as the ligand, the report suggested SMe_2 reduced the tungsten centre. The same study of the same stud

4.2.4 Complexes of Metal Thiohalides with Chalcogenoethers

Early work into NbSCl₃ complexes showed examples of [NbSCl₃(SPPh₃)]³⁸ and [NbSCl₃(SEt₂)₂].³⁹ In other systems, rearrangements can occur to form compounds with dichalcogenide bridges including [Nb₂Cl₄(μ -Se₂)₂(L)₄] (L = SMe₂ or tht) and [Nb₂Cl₄(μ -S)(μ -S₂)(tht)₄].⁴⁰⁻⁴² This work was followed by a series of complexes formed by reacting NbCl₅, S(SiMe₃)₂ and thioether, [NbSCl₃(ER₂)] (E = S or Se; R = Me or ⁿBu) and [NbSCl₃(L-L)] (L-L = MeS(CH₂)₂SMe, ⁱPrS(CH₂)₂SⁱPr, MeS(CH₂)₃SMe, MeSe(CH₂)₃SeMe and ⁿBuS(CH₂)₃SⁿBu), which were isolated as green solids.⁴³ Crystals isolated from a solution of [NbSCl₃(SMe₂)] were identified as [(NbSCl₂)₂(μ -Cl)₂(SMe₂)₂], showing highly asymmetric bridging chlorides (Figure 4.8). Unusually, the SMe₂ ligands lie *syn* rather than in the more common *anti* arrangement found in many *d* block dimers. Attempts to displace MeCN from [NbSeCl₃(MeCN)₂] with thioether ligands were unsuccessful, while *in-situ* attempts from NbCl₅, Se(SiMe₃)₂ and SeⁿBu₂ produced a black solid tentatively assigned as [NbSe₂Cl₃(SeⁿBu₂)], which could contain Se₂²- bridging groups.⁴³

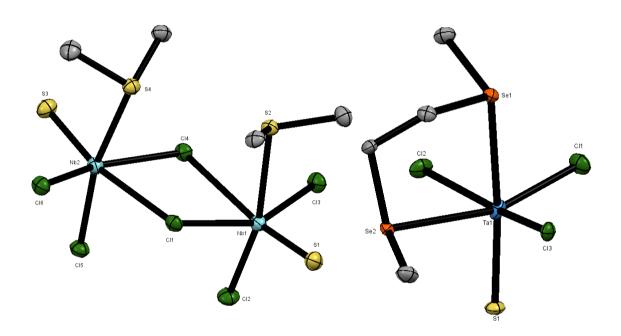


Figure 4.8: Crystal structures of [(NbSCl₂)₂(μ-Cl)₂(SMe₂)₂] (left) and [TaSCl₃(MeSe(CH₂)₂SeMe)] (right). Hydrogen atoms omitted for clarity. ^{2,43}

Comparative work on TaSCl₃ complexes has also been undertaken, with complexes [TaSCl₃(SMe₂)₂] and [TaSCl₃(PhS(CH₂)₂SPh)] being described in the early 1980s.⁴⁴ Attempts to isolate [TaSCl₃(EⁿBu₂)₂] were unsuccessful, producing unidentifiable products.² A range of bidentate thioether complexes, [TaSCl₃(RS(CH₂)₂SR)] (R = Me, ⁱPr or Ph) and [TaSCl₃(RS(CH₂)₃SR)] (R = Me, ⁿBu) were shown to readily form and were isolated as dark coloured solids. Most of the bidentate thioether complexes have been structurally characterised, showing six-coordinate tantalum with *mer* chlorines and the thioether ligand lying *trans* to S/Cl, with some showing S/Cl disorder *trans* to ligand.² In addition, two selenoether complexes were also isolated, [TaSCl₃(MeSe(CH₂)₂SeMe)] and [TaSCl₃(ⁿBuSe(CH₂)₃Se ⁿBu)], where the ligands were shown to be relatively labile in solution.² Attempts to isolate [TaSCl₃(MeSe(CH₂)₃SeMe)]

were unsuccessful. All successful bidentate thioether complexes of the form [MEX₃(L-L)] have been shown to have a six-coordinate distorted octahedral geometry where the neutral ligands lie *trans* to the M=E bond (see Figure 4.8 for example). A review of complexes of MSCl₃ (M = Nb, Ta or W) with hard donor ligands is presented in Chapter 6.

Complexes with WSCl₄ and thioethers are extremely rare; the bridged dimer [(WSCl₄)₂(MeS(CH₂)₂SMe)], which was structurally characterised, being the first and only example to-date. ^{45,46} The ratio of the ligand to metal is shown to play a vital role in the complex that forms; if the ligand ratio is >1:1 then reduction to tungsten(V) occurs, resulting in isolation of the mononuclear compound, [WSCl₃(MeS(CH₂)₂SMe)]. ^{46,47} There is a similar report using the ether ligand MeO(CH₂)₂OMe (dme) with WSeCl₄, which forms [(WSeCl₄)₂(dme)]. If it remains in solution for an extended time, isolated crystals show that [WSeCl₃(OCH₂CH₂OMe)] forms, where cleavage of one of the ether linkages has occurred. ^{46,48}

High valent early transition metal halides and metal oxo- and thio-halides show a range of behaviours when reacting with chalcogenoethers. General trends seem to suggest that the complexes with monodentate ligands are less stable than their bidentate counterparts. Bidentate chalcogenoethers that have a C_2 backbone generally provide extra stability to complexes due to the formation of a five-membered chelate ring. Although, sometimes can make the ligand itself unstable and the C_2 linker can be eliminated and REER (E = S, Se or Te) is formed.⁴⁹ It is also clear the R substituents on the bidentate ligands play a role, not only sterically, but Me substituents seem to have a higher tendency to reduce metal centres.^{47,48} These trends will be investigated when examining WSCl₄ complexes isolated in this work.

4.2.5 Aims

The aim of this chapter is to establish a systematic series of new WSCl₄ complexes with thioethers and compare these with the analogous WOCl₄ complexes. Softer selenium donor ligand complexes will also be investigated and their properties explored to allow comparisons with known literature. Complexes will be characterised by IR, ¹H NMR, ⁷⁷Se{¹H} NMR and UV-Vis spectroscopy, elemental analysis and single crystal X-ray diffraction. Potential precursors for chemical vapour deposition of WS₂ thin films will be identified based upon certain criteria i.e. neutral tungsten sulfide complexes containing thioether ligands bearing n-butyl substituents.

4.3 Results and Discussion

4.3.1 Bidentate Thioether Complexes of Tungsten(VI)

The six-coordinate bridged dimer complexes of tungsten(VI), $[(WSCl_4)_2(RS(CH_2)_2SR)]$ (R = Me, iPr or Ph), $[(WSCl_4)_2(MeS(CH_2)_3SMe)]$ and $[(WOCl_4)_2(RS(CH_2)_2SR)]$ ($R = ^iPr$ or Ph) were obtained as dark coloured, highly moisture sensitive powders in moderate yields, ~45%, as shown

in Figure 4.9. All complexes were synthesised by direct reaction of pre-formed WECl₄ with stoichiometric amounts of ligands in an appropriate solvent (CH₂Cl₂ or toluene) in rigorously dry conditions.

Figure 4.9: Reaction scheme for the synthesis of $[(WSCl_4)_2(L-L)]$ and $[WSCl_4(L)]$.

The complex, $[(WSCl_4)_2(MeS(CH_2)_2SMe)]$, 45,46 has been previously reported and was isolated from direct stoichiometric reaction of WSCl₄ with MeS(CH₂)₂SMe in a 2:1 ratio in benzene; when a 1:1 ratio is used the W(V) complex, $[WSCl_3(MeS(CH_2)_2SMe)]$, 46,47 is isolated. The tungsten(V) complex was isolated after three weeks, whereas, in the present study it was isolated in a moderate yield after one hour (the yield could also be increased by using excess ligand as MeS(CH₂)₂SMe would be lost as a ligand due to chlorination from the tungsten(VI) centre during reduction).

Complex	IR assignment		¹H NMR Data		
	ν(W=S)	ν(W-Cl)			
[(WSCl ₄) ₂ (MeS(CH ₂) ₂ SMe)]	534 cm ⁻¹	335 cm ⁻¹	3.1(s), 2.4(s) ppm		
[WSCl ₃ (MeS(CH ₂) ₂ SMe)]	528 cm ⁻¹	329 cm ⁻¹	-		
	Literature data ⁴⁶				
[(WSCl ₄) ₂ (MeS(CH ₂) ₂ SMe)]	541 cm ⁻¹	345 cm ⁻¹	-		
[WSCl ₃ (MeS(CH ₂) ₂ SMe)]	535 cm ⁻¹	315 cm ⁻¹	-		

Table 4.1: Comparison with the literature values for the complexes $[(WSCl_4)_2(MeS(CH_2)_2SMe)]$ and $[WSCl_3(MeS(CH_2)_2SMe)]$ with this work.

The complex [WSCl₃(MeS(CH₂)₂SMe)] is a paramagnetic solid with a reported magnetic moment of 1.45 B.M., whereas [(WSCl₄)₂(MeS(CH₂)₂SMe)] is a diamagnetic solid, like all tungsten(VI) complexes. The IR data shows a small shift to a lower wavenumber for the W=S stretch in the tungsten(V) complex (see Table 4.1) compared to the tungsten(VI) complex; this is expected when they have the same coordination number. The 1 H NMR data for [(WSCl₄)₂(MeS(CH₂)₂SMe)] also

shows a small shift, +0.4 ppm, from uncoordinated ligand (2.67 and 2.09 ppm) due to deshielding of the protons upon coordination.

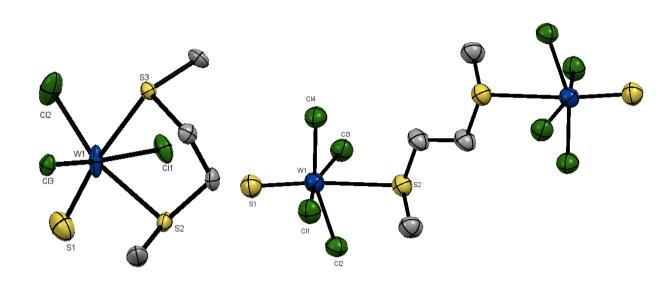


Figure 4.10: The structures of [WSCl₃(MeS(CH₂)₂SMe)] (left) and [(WSCl₄)₂(MeS(CH₂)₂SMe)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity. Note that the S/Cl were disordered in [WSCl₃(MeS(CH₂)₂SMe)], and were modelled using split atoms occupancies then refined to 0.25:0.75. Only the major form is shown.

[WSCl ₃ (MeS(CH ₂) ₂ SMe)]				
Bond I	Lengths/ Å	Bond Angles/ °		
W1-Cl1	2.345(3)	Cl1-W1-Cl2	92.8(1)	
W1-C12	2.279(3)	Cl1-W1-S1	96.4(1)	
W1-C13	2.351(2)	Cl2-W1-Cl3	92.1(1)	
W1-S1	2.075(4)	Cl2-W1-S3	86.34(8)	
W1-S2	2.546(2)	S2-W1-S3	79.55(4)	
W1-S3	2.704(2)			
	[(WSCl ₄) ₂ (MeS(CH ₂) ₂ SMe)]		
Bond I	Lengths/ Å	Bond A	Angles/ °	
W1-Cl1	2.296(3)	S1-W1-Cl1	98.98(9)	
W1-C12	2.310(2)	S1-W1-Cl2	101.0(1)	
W1-C13	2.306(2)	S1-W1-Cl3	99.6(1)	
W1-Cl4	2.299(2)	S1-W1-Cl4	97.8(1)	
W1-S1	2.094(2)	Cl-W-Cl (cis)	88.74(9) - 90.24(9)	
W1-S2	2.834(2)			

Table 4.2: Selected bond lengths and angles for [WSCl₃(MeS(CH₂)₂SMe)] and [(WSCl₄)₂(MeS(CH₂)₂SMe)].

Both structures above have been reported previously, but have been obtained with higher precision in this work (Figure 4.10). The complex [WSCl₃(MeS(CH₂)₂SMe)] was previously solved in the monoclinic space group P2₁/c, whereas the structure in this work was solved in the monoclinic

space group P2₁/n. The W=S bond is *trans* to the W-S bond from the thioether ligand, a similar arrangement to other structures of this nature. The structure of [(WSCl₄)₂(MeS(CH₂)₂SMe)] crystallised in the monoclinic space group P2₁/c, compared to P2₁/n in the reported structure, the chlorides sit slightly out of the equatorial plane, away from W=S bond, as is usual. Both complexes are in good agreement with the reported structures in terms of the W=S, W-Cl and W-S bond lengths. However, the W=S bond length in the previously reported structure of [WSCl₃(MeS(CH₂)₂SMe)] has no mention of S/Cl disorder, a likely cause of the disparity between W=S bond distance in present structure (2.075(4) Å) and that reported (2.146 Å).⁴⁶

The same reaction with WOCl₄ produced impure products from using both 1:1 and 2:1 M: ligand ratios. The major product is likely [WOCl₃(MeS(CH₂)₂SMe)] and an unidentified minor species (potentially chlorinated ligand). A W=O stretch was observed in the IR spectrum, although at a lower frequency than observed for similar tungsten(VI) complexes, but there is no evidence of the bridged W(VI) dimer in the ¹H NMR spectrum.

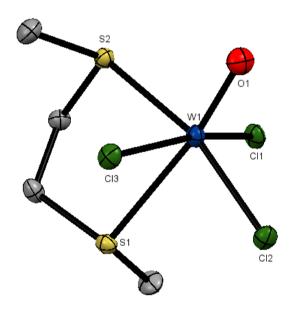


Figure 4.11: The structure of [WOCl₃(MeS(CH₂)₂SMe)], showing the atom numbering scheme. Ellipsoids shown at 50% probability hydrogen atom are omitted for clarity.

[WOCl ₃ (MeS(CH ₂) ₂ SMe)]				
Bond Lengths/ Å		Bond Angles/ °		
W1-Cl1	2.259(4)	Cl1-W1-Cl2	90.0(2)	
W1-Cl2	2.338(7)	Cl1-W1-O1	90.0(2)	
W1-Cl3	2.357(5)	Cl2-W1-Cl3	91.7(2)	
W1-O1	1.72(2)	Cl2-W1-S2	82.1(2)	
W1-S1	2.761(5)	Cl1-W1-S2	82.2(2)	
W1-S2	2.520(6)	Cl3-W1-S1	77.1(2)	

Table 4.3: Selected bond lengths and angles for [WOCl₃(MeS(CH₂)₂SMe)].

Crystallisation attempts from a CH₂Cl₂ solution of the product isolated from this reaction yielded green crystals, which were identified as the previously unknown paramagnetic tungsten(V) complex, [WOCl₃(MeS(CH₂)₂SMe)] (Figure 4.11). The thioether ligand lies *trans* to the W=O bond as is common and both the oxide and the analogous sulfide structures show slightly asymmetric W-S bonds with a difference of approximately ~0.2 Å, due to the *trans* influence. The W=O bond (1.72(2) Å) is slightly longer than the W=O bond in [WOCl₃(dppmO₂)] (1.69(1) Å), but not significantly different.

The W(VI) complex, [(WSCl₄)₂(MeS(CH₂)₃SMe)], has similar properties to [(WSCl₄)₂(MeS(CH₂)₂SMe)], but has increased solubility in organic solvents, possibly caused by the C₃ backbone having more flexibility, which may influence the packing of the molecules in the solid state. The ¹H NMR spectrum shows three broad singlets, 2.72, 2.20 and 2.03 ppm, which indicates the compound may be dynamic in solution, whereas the resonances are sharp in the C₂ backboned complex.

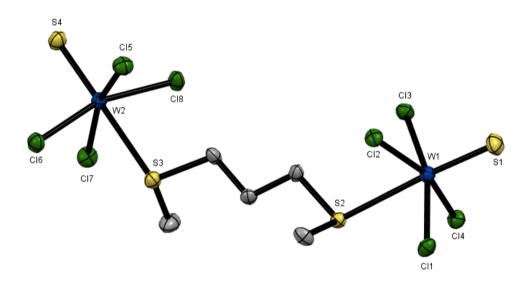


Figure 4.12: Crystal structure of $[(WSCl_4)_2(MeS(CH_2)_3SMe)]$, showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity.

[(WSCl ₄) ₂ (MeS(CH ₂) ₃ SMe)]				
Bond	Lengths/ Å	Bond An	gles/°	
W1-Cl1	2.295(2)	S1-W1-Cl1	98.84(9)	
W1-Cl2	2.307(2)	S1-W1-Cl2	98.54(9)	
W1-Cl3	2.329(2)	S1-W1-Cl3	99.51(9)	
W1-Cl4	2.320(2)	S1-W1-Cl4	100.30(9)	
W1-S1	2.102(3)	Cl-W-Cl (cis)	87.03(7) – 90.66(7)	
W1-S2	2.816(2)			

Table 4.4: Selected bond lengths and angles for [(WSCl₄)₂(MeS(CH₂)₃SMe)].

The structure of [(WSCl₄)₂(MeS(CH₂)₃SMe)] also shows the tungsten(VI) in a distorted octahedral environment with the WCl₄ unit bent away from planarity (Figure 4.12). The W=S bond length in

[(WSCl₄)₂(MeS(CH₂)₃SMe)], 2.102(3) Å, is not significantly different to that in [(WSCl₄)₂(MeS(CH₂)₂SMe)], 2.094(2) Å.

Reaction between WOCl₄ and MeS(CH₂)₃SMe behaved in the same way as with MeS(CH₂)₂SMe; it is reasonable to suggest that the ligand reduces the metal centre to tungsten(V) (with chlorination of the thioether), then the remaining thioether ligand chelates to form a six coordinate complex. Crystals of the tungsten(V) complex, [WOCl₃(MeS(CH₂)₃SMe)] have been identified (Figure 4.13). The structure is similar to [WOCl₃(MeS(CH₂)₂SMe)], showing six-coordinate tungsten(V) species where the dithioether is chelating. Interestingly, the two structures show different geometric isomers; [WOCl₃(MeS(CH₂)₂SMe)] has the dithioether *trans* O/Cl, whilst [WOCl₃(MeS(CH₂)₃SMe)] the dithioether is *trans* Cl/Cl. The isomers found in many [MEX₃(L)₂] and [MEX₃(L-L)] (E = O or S; X = halide) have the neutral ligand(s) *trans* E/X and frequently show disorder in this plane; unusually there is no evidence of disorder in either of the structures reported here.^{2,43,50}

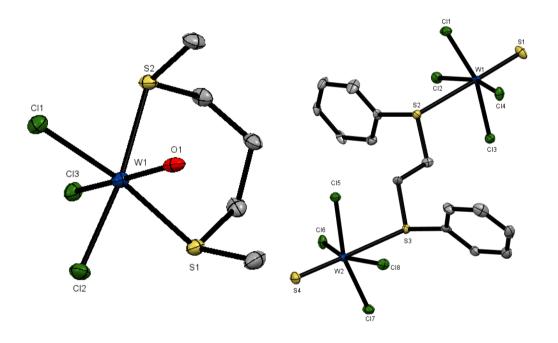


Figure 4.13: The structures of [WOCl₃(MeS(CH₂)₃SMe)] (left) and [(WSCl₄)₂(PhS(CH₂)₂SPh)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity.

[WOCl ₃ (MeS(CH ₂) ₃ SMe)]				
Bond Lengths/ Å		Bond Angles/ °		
W1-Cl1	2.360(2)	Cl1-W1-Cl2	92.18(7)	
W1-C12	2.331(2)	Cl1-W1-O1	91.61(6)	
W1-Cl3	2.464(2)	Cl2-W1-Cl3	91.7(2)	
W1-O1	1.721(6)	Cl2-W1-S2	82.1(2)	
W1-S1	2.518(2)	Cl1-W1-S2	85.14(7)	
W1-S2	2.521(2)	Cl3-W1-S1	77.20(6)	
		S1-W1-S2	97.42(6)	

[(WSCl ₄) ₂ (PhS(CH ₂) ₂ SPh)]			
Bond Lengths/ Å		Bond Angles/ °	
W1-Cl1	2.315(2)	S1-W1-Cl1	99.88(7)
W1-Cl2	2.285(2)	S1-W1-Cl2	100.37(7)
W1-Cl3	2.304(2)	S1-W1-Cl3	99.51(7)
W1-Cl4	2.321(2)	S1-W1-Cl4	99.80(7)
W1-S1	2.100(2)	Cl-W-Cl (cis)	87.39(6) – 89.55(6)
W1-S2	2.864(1)		

Table 4.5: Selected bond lengths and angles for [WOCl₃(MeS(CH₂)₃SMe)] and [(WSCl₄)₂(PhS(CH₂)₂SPh)].

The complexes, [(WECl₄)₂(PhS(CH₂)₂SPh)], have been prepared from direct reaction of WECl₄ and PhS(CH₂)₂SPh. Due to PhS(CH₂)₂SPh being a poorer σ-donor compared to its methyl substituted analogue, the complexes have the potential to be more unstable compared to those described above. This was confirmed as [(WOCl₄)₂(PhS(CH₂)₂SPh)] decomposes within a few days to a black sticky solid, even under inert atmospheric conditions. There are some examples of ligand bridged complexes using PhS(CH₂)₂SPh with niobium(V) and tantalum(V), [(MCl₅)₂(PhS(CH₂)₂SPh)], and the methyl complex, [(MeMCl₄)₂(PhS(CH₂)₂SPh)], where M = Nb or Ta.⁵¹⁻⁵³ In the ¹H NMR spectra of [(WECl₄)₂(PhS(CH₂)₂SPh)] two broad resonances are observed, indicating the complexes are dynamic in solution. For E=S, red crystals were isolated from a CH₂Cl₂ solution of the complex and were identified as [(WSCl₄)₂(PhS(CH₂)₂SPh)] (Figure 4.13); there are no significant differences in bond lengths between this structure and the other bridged thioether dimers described above.

The ligand ${}^{i}PrS(CH_{2})_{2}S^{i}Pr$ was used to identify the boundaries of dichalcogenoether ligands with WOCl₄, as the data suggested that MeS(CH₂)₂SMe and MeS(CH₂)₃SMe produced impure products that contained tungsten(V) species (shown by crystallographic studies), but PhS(CH₂)₂SPh seemed to have coordinated, albeit forming a very unstable ligand-bridged complex of W(VI), [(WOCl₄)₂(PhS(CH₂)₂SPh)]. The ligand ${}^{i}PrS(CH_{2})_{2}S^{i}Pr$ is a stronger σ -donor than PhS(CH₂)₂SPh, but behaves subtly different from MeS(CH₂)₂SMe. In practice, the isolated complex, [(WOCl₄)₂(${}^{i}PrS(CH_{2})_{2}S^{i}Pr$)], is extremely unstable, turning blue readily, and is more unstable than [(WOCl₄)₂(PhS(CH₂)₂SPh)], which is somewhat surprising, although ${}^{i}PrS(CH_{2})_{2}S^{i}Pr$ is more susceptible to oxidisation.

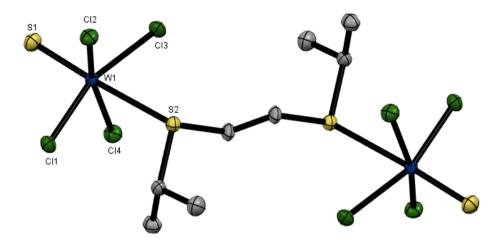


Figure 4.14: The structure of [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity.

$[(\mathrm{WSCl_4})_2(^{\mathrm{i}}\mathrm{PrS}(\mathrm{CH_2})_2\mathrm{S^{\mathrm{i}}\mathrm{Pr}})]$			
Bond Lengths/ Å		Bond Angles/ °	
W1-Cl1	2.210(2)	S1-W1-Cl1	99.27(7)
W1-Cl2	2.323(2)	S1-W1-Cl2	97.87(7)
W1-Cl3	2.310(2)	S1-W1-Cl3	100.12(7)
W1-Cl4	2.315(2)	S1-W1-Cl4	98.85(7)
W1-S1	2.097(2)	Cl-W-Cl (cis)	87.59(6) – 89.10(6)
W1-S2	2.864(2)		

Table 4.6: Selected bond lengths and angles for [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)].

In contrast, the tungsten(VI) sulfide complex, [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)], behaves like the other compounds in this series (data in Table 4.8) and is significantly more stable than the oxide analogue. The crystal structure is not significantly different to those described above (Figure 4.14).

The related tungsten(V) monomer, $[WSCl_3(^iPrS(CH_2)_2S^iPr)]$, was synthesised by using the 1:1 ratio of $WSCl_4$: dithioether and the spectroscopic data were shown to be consistent with those observed for $[WSCl_3(MeS(CH_2)_2SMe)]$.

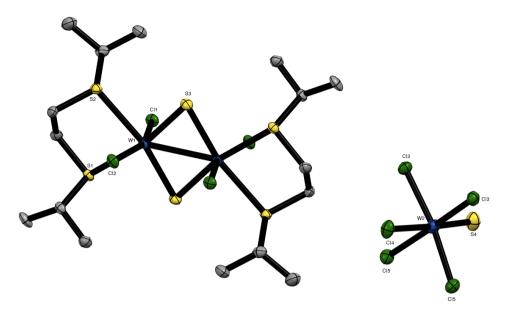


Figure 4.15: The structure of $[(WCl_2)_2(\mu-S)_2(^iPrS(CH_2)_2S^iPr)][WSCl_5]$ **CH_2Cl_2 showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms and solvent are omitted for clarity.

[(WCl ₂) ₂ (μ-S) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)][WSCl ₅]• CH ₂ Cl ₂			
Bond Lengths/ Å		Bond Angles/ °	
W1-Cl1	2.335(2)	Cl1-W1-Cl2	158.33(8)
W1-Cl2	2.326(2)	Cl1-W1-S3	96.89(8)
W1-S1	2.599(2)	W1-S3-W1	74.13(6)
W1-S2	2.601(2)	S4-W2-Cl _{cis}	93.9(2) – 96.1(3)
W1-S3	2.281(2)	Cl-W-Cl (cis)	90.29(3) – 90.73(4)
W2-S4	2.125(1)		
W2-Cl	2.329(3) – 2.486(4)		

Table 4.7: Selected bond lengths and angles for $[(WCl_2)_2(\mu-S)_2(^iPrS(CH_2)_2S^iPr)][WSCl_5] \bullet CH_2Cl_2$.

While attempting to isolate crystals of [WSCl₃(iPrS(CH₂)₂SiPr)] from a solution of CH₂Cl₂, a few crystals formed that were shown to be an ionic salt (Figure 4.15). However, determining the specific nature of the bridging atoms has proved challenging. The bridging atoms are in doubt since Cl⁻ and S²⁻ are isoelectronic and therefore very difficult to distinguish by X-ray crystallography. The anion is [WSCl₅]²⁻, therefore if the cation is sulfide bridged, then both the cation and anion would be tungsten(V), or alternatively, the dimer could be chloride bridged, making the cation tungsten(IV) and mixed valence – this seems less likely. Without further spectroscopic data it is not possible to confidently assign the structure. A similar structure was isolated with *o*-C₆H₄(AsMe₂)₂, which was equally ambiguous (Chapter 3).

Compound	IR Data		¹ H NMR Data (δ / ppm)
	ν(W=E)	v(W-Cl)	
[WSCl ₃ (MeS(CH ₂) ₂ SMe)]	528 cm ⁻¹	329 cm ⁻¹	-
$[(WSCl_4)_2(MeS(CH_2)_2SMe)]$	534 cm ⁻¹	335 cm ⁻¹	3.07s, 2.40s
[(WSCl ₄) ₂ (PhS(CH ₂) ₂ SPh)]	539 cm ⁻¹	336 cm ⁻¹	7.33s br, 3.20s br
[(WSCl ₄) ₂ (MeS(CH ₂) ₃ SMe)]	529 cm ⁻¹	332 cm ⁻¹	2.72s br, 2.20s br, 2.03s br
[(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)]	543 cm ⁻¹	341 cm ⁻¹	3.15dt, 2.86d, 1.32d
[WSCl ₃ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)]	527 cm ⁻¹	323 cm ⁻¹	-
[WSCl ₄ (SMe ₂)]	537 cm ⁻¹	327 cm ⁻¹	2.32s br
$[WSCl_4(S^nBu_2)]$	537 cm ⁻¹	348 cm ⁻¹	2.74s br, 2.68s br, 1.52s, 0.96s
[WSCl ₄ (SeMe ₂)]	525 cm ⁻¹	331 cm ⁻¹	2.23s br
[WSCl ₄ (SPPh ₃)]	520 cm ⁻¹	339 cm ⁻¹	-
[(WOCl ₄) ₂ (PhS(CH ₂) ₂ SPh)]	982 cm ⁻¹	356 cm ⁻¹	7.39s br, 3.41s br
[(WOCl4)2(iPrS(CH2)2SiPr)]	998 cm ⁻¹	332 cm ⁻¹	3.20dt, 2.90d, 1.34d
[WOCl ₄ (SMe ₂)]	993 cm ⁻¹	345 cm ⁻¹	2.54s br

Table 4.8: Selected IR and ¹H NMR data for complexes in this work.

4.3.2 Complexes with Monodentate Thioethers

Monodentate chalcogenoethers were reacted in a 1:1 ratio in a non-coordinating solvent (CH₂Cl₂ or toluene) in an attempt to form complexes of type [WECl₄(L)] (L = SMe₂, SⁿBu₂, SPh₂ or SeMe₂). The SMe₂ ligand is a moderately strong donor and coordinated with both WOCl₄ and WSCl₄, forming [WECl₄(SMe₂)]. The spectroscopic data for both compounds are comparable to that of the bidentate complexes (see Table 4.8) and bulk composition confirmed by elemental analysis. The ¹H NMR spectra for [WECl₄(SMe₂)] shows a very broad singlet, which suggests the ligand is dynamic (reversibly dissociating) in solution. Attempts to isolate crystals of the W(VI) species were unsuccessful, however a few yellow crystals of a reduced tungsten dimer were isolated from the [WSCl₄(SMe₂)] system (Figure 4.16).

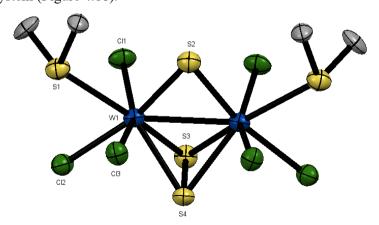


Figure 4.16: The structure of $[(WCl_3)_2 (\mu-S_2) (\mu-S)]$, showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity.

There is some ambiguity for the determination of the bridging atoms as Cl⁻ and S²⁻ are isoelectronic, however, the most probable structure is shown in Figure 4.16. The structure is S_2^{2-} bridged, the S3-S4 bond length 2.00(3) Å is consistent with similar S_2^{2-} bridged coordination complexes. It is not uncommon for high valent metal thiohalides to rearrange to form S_2^{2-} bridges. Therefore, it is likely the structure contains two tungsten(V) centres with a S_2^{2-} , a sulfide bridge and a single W-W bond. This assignment is highly probable, but there are no other reported structures of this nature and single metal-metal bonds for high valent 5*d* metals are rare due to poor orbital overlap. Further spectroscopic investigation could categorically confirm the structure, but this is not currently possible in the absence of a bulk sample.

Since the binuclear compounds [(WECl₄)₂(PhS(CH₂)₂SPh)] have been fully characterised, attempts to use the related ligand SPh₂ were investigated. The phenyl groups on the chalcogen were expected to help prevent reduction at the metal centre as the ligand is less basic and less susceptible to chlorination than alkyl ligands. However, it appears for both WOCl₄ and WSCl₄ that SPh₂ is not a strong enough donor and does not react with the WECl₄ in solution.

Following the successful isolation of the tungsten(VI) thioether bridged dimers, the ligand SⁿBu₂ was used as it contains a low energy β-hydride elimination pathway making complexes potential LPCVD precursors. If successful the precursor is likely to produce volatile by-products (butene and Cl₂) which would increase the chance of depositing clean film. An attempt to synthesise [WOCl₄(SⁿBu₂)] resulted in a deep green coloured oil, which is likely [WOCl₄(SⁿBu₂)], although very unstable. The compound decomposed within a few hours even under an inert atmosphere to leave yellow/brown oil. The extreme instability is probably due to the fact that the complex was an oil and therefore is intrinsically more susceptible to decomposition and hydrolysis than a solid. The reaction between WSCl₄ and SⁿBu₂ produced [WSCl₄(SⁿBu₂)] as a deep red oil, which proved to be stable in an inert and rigorously dry atmosphere for ~2 weeks. Raman spectroscopy showed two strong peaks, a W=S peak at 538 cm⁻¹, which is coincident to the W=S peak in the IR spectrum at 535 cm¹. Group theory predicts two W-Cl bands, A₁ and E, with the A₁ band strong in the Raman spectrum and E strong in the IR spectrum. A band is observed at 379 cm⁻¹ in the Raman spectrum (A₁) and 348 cm⁻¹ in the IR spectrum (E). In some of the previous WSCl₄ complexes described above, the A_1 band is also observed in the IR spectrum, but is significantly weaker. Due to the oil's instability towards trace moisture, no elemental analysis could be obtained (as it is completed offsite), but all spectroscopic data are consistent with those of the other complexes in this work.

4.3.3 Complexes with Selenoethers

There are a few reported compounds of high valent early transition metal halides with dimethyl selenide including [MCl₅(SeMe₂)] (M = Ta or Nb)^{3,8} and the compound [MoCl₄(SeMe₂)₂] but the molybdenum centre is in the +IV oxidation state. ¹⁰ However, there are no reports of dimethyl selenide coordinated to Group VI transition metals in the +VI oxidation state. There are some

bidentate selenoethers coordinated to MO_2X_2 (M = Mo or W; X = Cl or Br), but these are thermally unstable. The compound [WSCl₄(SeMe₂)] has been successfully synthesised by reaction of WSCl₄ and SeMe₂ in toluene. A room temperature $^{77}Se\{^1H\}$ NMR experiment was attempted but showed no resonance. The sample was rerun at -90 °C, which showed a strong resonance at +81.3 ppm, showing a clear and large coordination shift, (uncoordinated SeMe₂, 0 ppm). The broad peak clearly indicates the complex is dynamic in solution even at low temperature, within the appropriate NMR timescale. No 183 W satellites were observed, but the resonance was ~80 Hz wide so it is likely that the satellite coupling is masked by the peak width of the main resonance. 1 H NMR data showed a single resonance that was relatively broad and exhibited a coordination shift.

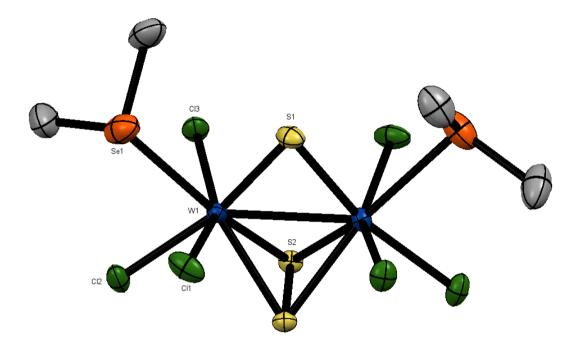


Figure 4.17: The structure of $[(WCl_3)_2 (\mu-S_2) (\mu-S) (SeMe_2)_2]$, showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity.

[(WCl ₃) ₂ (μ-S ₂)(μ-S)(SeMe ₂) ₂]			
Bond Lengths/ Å		Bond Angles/ °	
W1-Cl1	2.399(2)	S1-W1-S2	103.4(2)
W1-Cl2	2.424(4)	Cl1-W1-Cl2	85.2(1)
W1-Cl3	2.386(4)	Cl1-W1-Cl3	151.2(1)
W1-S1	2.280(2)	W1-S1-W1	74.0(2)
W1-S2	2.434(3)	W1-S2-W1	68.63(8)
S3-S3	2.012(4)		
W1-W1	2.7444(8)		

Table 4.9: Selected bond lengths and angles for $[(WCl_3)_2(\mu-S_2)(\mu-S)(SMe_2)_2]$.

Attempts to isolate crystals also returned a structure which was identified as $[(WCl_3)_2(\mu-S_2)(\mu-S)(SeMe_2)_2]$ (Figure 4.17). Although similar to $[(WCl_3)_2(\mu-S_2)(\mu-S)(SMe_2)_2]$, they are not isomorphous. Interestingly, the complexes crystallise with different relative orientations of the

chalcogenoether ligands, resulting in different mirror planes. These dimer structures are clearly favourable decomposition products that occur across a variety of complexes with different ligands, with the S_2^{2-} most likely to be derived from WSCl₄ in this instance.

The synthesis of [WOCl₄(SeMe₂)] was also investigated in a similar manner. The solution turned green immediately after addition of ligand, suggesting coordination. However, within ~30 minutes or when the reaction flask was placed under vacuum, the solution/solid turned purple and the isolated purple product was very stable but is unidentified. The IR data are not consistent with similar tungsten(VI) thioether compounds. There is a strong peak at 832 cm⁻¹ likely to be W=O-W and due to the very poor solubility of the purple solid in organic solvents, NMR data could not be obtained. This insolubility may suggest that the product is dimeric or polymeric.

Investigation into the formation of bidentate selenoether complexes was also undertaken, but the reaction between MeSe(CH₂)₂SeMe and WOCl₄ seemed to be unsuccessful, with the IR spectrum showing that the isolated product is impure with WOCl₄ still present. The same reaction with WSCl₄ was also intractable, a W=S stretch was observed in the IR spectrum at 528 cm⁻¹ and a W-Cl stretch at 315 cm⁻¹ (similar to stretch observed in [WSCl₃(MeS(CH₂)₂SMe)]) but no solution spectroscopy could be obtained due to very limited solubility and elemental analysis is inconclusive. Without a crystal structure it is impossible to confidently say whether the bridged dimer or a reduced species formed.

4.3.4 Complexes with Triphenylphosphine Sulfide

Attempts to synthesise [WOCl₄(SPPh₃)] and [WSCl₄(SPPh₃)] have been investigated to compare behaviour observed between phosphine oxide complexes, explored in Chapter 2, and thioether complexes and SPPh₃ provides a convenient ³¹P{¹H} NMR handle, and the lone pairs on the sulfur behave very differently. Both compounds are unknown and there are few simple high oxidation state early transition metal complexes using SPPh₃ as a ligand, with the most similar being [MoOCl₃(SPPh₃)] and [WCl₅(SPPh₃)₂]. ⁵⁸⁻⁶⁰ The complex [WSCl₄(SPPh₃)] was obtained by reaction of WSCl₄ and SPPh₃ in CH₂Cl₂ and shows a P=S stretch in the IR spectrum at 598 cm⁻¹, shifted from 638 cm⁻¹ in the uncoordinated ligand, consistent with the trends seen in the phosphine oxide complexes in Chapter 2. The IR spectra also shows a W=S stretch at 521 cm⁻¹ and a W-Cl stretch at 339 cm⁻¹. However, the ¹H and ³¹P{¹H} NMR data both show uncoordinated ligand only, even at -90 °C, suggesting either the compound is extremely labile in solution even at low temperatures or the complex is unstable in solution, as all the solid-state data (IR spectroscopy and elemental analysis) suggests the complex [WSCl₄(SPPh₃)].

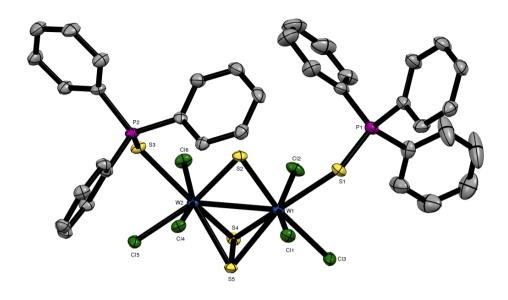


Figure 4.18: The structure of $[(WCl_3)_2(S_2)(\mu-S)(SPPh_3)_2]$ •2 CH_2Cl_2 showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms and solvent are omitted for clarity.

[(WCl ₃) ₂ (μ-S ₂)(μ-S)(SPPh ₃) ₂]•2CH ₂ Cl ₂					
Bond Lengths/ Å		Bond Angles/ °			
W1-Cl	2.368(1) – 2.421(1)	S2-W1-S4	102.53(4)		
W1-S2	2.486(1)	S2-W1-S5	103.38(4)		
W1-S4	2.419(1)	Cl1-W1-Cl2	152.82(4)		
W1-S5	2.430(1)	Cl1-W1-Cl3	87.29(4)		
S4-S5	1.997(2)	W1-S2-W2	74.21(3)		
W1-W2	2.7582(7)	W1-S4-W2	69.50(3)		

Table 4.10: Selected bond lengths and angles for $[(WCl_3)_2(\mu-S_2)(\mu-S)(SPPh_3)_2] \cdot 2CH_2Cl_2$.

The crystals of $[(WCl_3)_2(\mu-S_2)(\mu-S)(SPPh_3)_2]$ •2CH₂Cl₂ were obtained from a saturated CH₂Cl₂ solution of $[WSCl_4(SPPh_3)]$, (Figure 4.18), the structural determination presented is the most probable. All three structures $[(WCl_3)_2(\mu-S_2)(\mu-S)(SPPh_3)_2]$ •2CH₂Cl₂, $[(WCl_3)_2(\mu-S_2)(\mu-S)(EMe_2)_2]$ (E = S or Se) have similar W-S_{bridge} and W-S₂²-bond lengths, suggesting that they all have the same bridging atoms and the metals are in the same oxidation state further indicating they are all sulfur bridged. Usually, SPPh₃ behaves very differently to the sulfur donor in thioethers so it is interesting they form the same decomposition systems.

In contrast, the product isolated from an attempt to prepare [WOCl₄(SPPh₃)] shows a resonance in the ³¹P{¹H} NMR spectrum at +66.4 ppm, which can be assigned as PPh₃Cl₂.⁶¹ Therefore, it can be concluded that the product has reduced and chlorinated SPPh₃, which was also seen in WCl₆ chemistry in Chapter 2.

4.4 Conclusions

The aim of this work was to probe the boundaries of tungsten(VI) coordination chemistry by building on the hard N- and O-donor ligand complexes (Chapter 2), and the soft phosphine and arsine work described in Chapter 3. A systematic series of WSCl₄ complexes with monodentate and bidentate thioethers has been established and comparative analogues of WOCl₄ have also been isolated. Complexes with softer selenoether donor ligands were attempted, but [WSCl₄(SeMe₂)] was the only stable complex that could be isolated.

Complexes were characterised by IR, ¹H NMR, ⁷⁷Se{¹H} NMR spectroscopy and solid-state UV-Vis spectroscopy, elemental analysis, single crystal X-ray diffraction and [WSCl₄(SⁿBu₂)] characterised by Raman spectroscopy. All the complexes isolated were six-coordinate and controlling the W: ligand stoichiometry is paramount for the isolation of tungsten(VI) species, as excess ligand reduces the metal centre. A number of reduced tungsten (V) decomposition products have also been identified by X-ray crystallography.

Thioether complexes with terminal substituents bearing β-hydrogens have the possibility to be single-source precursors for the production of WS₂ thin films *via* LPCVD providing the potential of a low energy decomposition pathway. The complexes [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)], [WSCl₃(ⁱPrS(CH₂)₂SⁱPr)] and [WSCl₄(SⁿBu₂)] all meet this criterion, while also containing the 1:2 W:S ratio required for WS₂ formation. The suitability of these compounds as CVD precursors will be investigated in the following chapter.

4.5 Experimental

Syntheses were performed by using standard Schlenk and glove-box techniques under a dry N_2 atmosphere. Solvents were dried by distillation from CaH_2 (CH_2Cl_2) or Na/benzophenone ketyl (toluene, n-hexane). SPPh₃ was obtained from Sigma-Aldrich and dried by heating *in vacuo*. Dichalcogenoethers, $RE(CH_2)_nER$ (n=2 or 3; E=S or Se; R=Me, Ph, iPr) were prepared *via* literature methods. 62,63 Me_2S , Ph_2S and nBu_2S were purchased from Sigma-Aldrich and Me_2Se from Strem and used as received. $WSCl_4$ and $WOCl_4$ were prepared *via* literature methods. 64,65 For further details regarding the instrumentation see Appendix A.

$[(WSCl_4)_2(MeS(CH_2)_2SMe)]$

A solution of MeS(CH₂)₂SMe (0.030 g, 0.21 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark red solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the red/brown solid dried *in vacuo*. Yield: 0.050 g, 28 %. Required for C₄H₁₀Cl₈S₄W₂ (837.7): C: 5.96, H: 1.25 %. Found: C: 5.85, H: 1.19 %. IR spectrum (Nujol, v / cm^{-1}): 534s W=S, 376m, 335s W-Cl. ¹H NMR (CD₂Cl₂): δ = 3.07 (s, [2H], CH₂), 2.40 (s, [3H], CH₃). UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 35,500, 32,250 sh, 20,200.

$[(WSCl_4)_2(MeS(CH_2)_3SMe)]$

A solution of MeS(CH₂)₃SMe (0.029 g, 0.21 mmol) in dichloromethane (2 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark red solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the red/brown solid dried *in vacuo*. Yield: 0.096 g, 54 %. Required for C₅H₁₂Cl₈S₄W₂ (851.7): C: 7.05, H: 1.42 %. Found: C: 7.24, H: 1.53 %. IR spectrum (Nujol, ν / cm⁻¹): 529s W=S, 360m, 332s W-Cl. ¹H NMR (CD₂Cl₂): δ = 2.72 (s br, [2H], CH₂), 2.20 (s br, [H], CH₂), 2.03 (s br, [3H], CH₃). UV/Vis spectrum (diffuse reflectance) ν / cm⁻¹: 34,750, 32,200sh, 20,000.

$[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)]$

Was prepared similarly to [(WSCl₄)₂(MeS(CH₂)₂SMe)] and isolated as a red/brown solid. Yield: 0.101 g, 54 %. Required for $C_8H_{18}Cl_8S_4W_2$ (893.8): C: 10.75, H: 2.03 %. Found: C: 10.90, H: 1.95 %. IR spectrum (Nujol, v / cm^{-1}): 543s W=S, 370m, 341s W-Cl. ¹H NMR (CD₂Cl₂): δ = 3.15 (sep, [H], CH, ³J_{HH}, 8 Hz), 2.86 (s, [2H], CH₂), 1.32 (d, [6H], ³J_{HH} 6.6 Hz, CH₃). UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 36,500, 32,250 sh, 20,800.

$[(WSCl_4)_2(PhS(CH_2)_2SPh)]$

Was prepared similarly to $[(WSCl_4)_2(MeS(CH_2)_2SMe)]$ and isolated as a dark red solid. Yield: 0.090 g, 45 %. Required for $C_{14}H_{14}Cl_8S_4W_2$ (961.82): C: 17.48, H: 1.47 %. Found: C: 17.52, H:

1.60 %. IR spectrum (Nujol, v / cm^{-1}): 539s W=S, 355m, 337s W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 7.33$ (s br, [5H], aromatic CH), 3.20 (s br, [2H], CH₂).

 $[WSCl_3(MeS(CH_2)_2SMe)]$

A solution of MeS(CH₂)₂SMe (0.051 g, 0.42 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark red solution was then stirred for 1 h., concentrated to \sim 3 mL, layered with hexane, filtered, and the red/brown solid dried *in vacuo*. Yield: 0.070 g, 37 %. Required for C₄H₁₀Cl₃S₃W (444.5): C: 10.81, H: 2.27 %. Found: C: 11.07, H: 2.26 %. IR spectrum (Nujol, v / cm^{-1}): 528m W=S, 329s, br W-Cl.

 $[WSCl_3(^iPrS(CH_2)_2S^iPr)]$

A solution of ${}^{i}PrS(CH_2)_2S^{i}Pr$ (0.112 g, 0.42 mmol) in dichloromethane (2 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark red/brown solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the red/brown solid dried *in vacuo*. Yield: 0.101 g, 54 %. Required for $C_8H_{18}Cl_3S_3W$ (500.62): C: 19.19, H: 23.62 %. Found: C: 19.50, H: 3.77 %. IR spectrum (Nujol, v / cm⁻¹): 527s W=S, 340m, 323s W-Cl. UV/Vis spectrum (diffuse reflectance) v / cm⁻¹: 34,000, 27,200, 20,400

 $[WSCl_4(SMe_2)] \bullet CH_2Cl_2$

A solution of dimethyl sulfide (0.026 g, 0.42 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark red solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the brown/red solid dried *in vacuo*. Yield: 0.101 g, 57%. Required for $C_2H_6Cl_4S_2W$ • CH_2Cl_2 (504.78): C: 7.14, H: 1.60 %. Found: C: 7.26, H: 1.73 %. IR spectrum (Nujol, v / cm⁻¹): 538s W=S, 347s W-Cl. ¹H NMR (CD₂Cl₂): δ = 5.32 (s, CH₂Cl₂), 2.32 (s, br, SMe₂).

 $[WSCl_4(S^nBu_2)]$

A solution of dibutyl sulfide (0.041 g, 0.28 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WSCl₄ (0.100 g, 0.28 mmol) in dichloromethane (5 mL). The dark red solution was then stirred for 1 h., reduced to dryness, collecting a dark red oil. IR spectrum (Nujol, v / cm^{-1}): 538 W=S, 348s W-Cl. Raman spectrum (v / cm^{-1}): 535s W=S, 379s W-Cl. ¹H NMR (CD₂Cl₂): 2.74 (s br, [2H], CH₂), 2.68 (s br, [2H], CH₂), 1.52 (s, [2H], CH₂), 0.96 (s, [3H], CH₃). UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 32000, 26900, 22700.

 $[(WOCl_4)_2(^iPrS(CH_2)_2S^iPr)]$

A solution of ${}^{i}PrS(CH_{2})_{2}S^{i}Pr$ (0.039 g, 0.22 mmol) in dichloromethane (2 mL) was slowly added to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). The dark green solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the green solid dried *in vacuo*. Yield:

Chapter 4

0.089 g, 47 %. Required for $C_8H_{18}Cl_8O_2S_2W_2$ (861.6): C: 11.15, H: 2.11 %. Found: C: 11.24, H: 2.14 %. IR spectrum (Nujol, ν / cm⁻¹): 998s W=O, 325s W-Cl. ¹H NMR (CD₂Cl₂): δ = 3.20 (sep, [H], ³J_{HH} 13.5, 6.8, CH), 2.90 (s, [2H], CH₂), 1.34 (d, [6H], ³J_{HH} 6.9, CH₃)

$[(WOCl_4)_2(PhS(CH_2)_2SPh)]$

A solution of PhS(CH₂)₂SPh (0.054 g, 0.22 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). The dark brown solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the dark pink solid dried *in vacuo*. Yield: 0.070 g, 34 %. Required for $C_{14}H_{14}Cl_8O_2S_2W_2$ (929.69): C: 18.09, H: 1.52 %. Found: C: 18.18, H: 1.60 %. IR spectrum (Nujol, v / cm^{-1}): 982s W=O, 356s W-Cl. ¹H NMR (CD₂Cl₂): δ = 7.39 (s br, [5H], aromatic CH), 3.43 (s br, [2H], CH₂).

$[WOCl_4(SMe_2)]$

A solution of dimethyl sulfide (0.027 g, 0.44 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). The dark orange solution was then stirred for 1 h., concentrated to ~ 3 mL, filtered, and the brown/yellow solid dried *in vacuo*. Yield: 0.096 g, 54 %. Required for C₂H₆Cl₄OSW (419.85): C: 5.95, H: 1.50 %. Found: C: 5.86, H: 1.39 %. IR spectrum (Nujol, v / cm^{-1}): 979s W=O, 352s W-Cl. ¹H NMR (CD₂Cl₂): δ = 2.54 (s, br, SMe₂).

$[WSCl_4(SeMe_2)]$

A solution of dimethyl selenide (0.046 g, 0.42 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark red solution was then stirred for 1 h., and brought to dryness *in vacuo* collecting a brown solid. Yield: 0.134 g, 68 %. Required for C₂H₆Cl₄SSeW (466.75): C: 5.15, H: 1.30 %. Found: C: 5.22, H: 1.36 %. IR spectrum (Nujol, v / cm^{-1}): 525s W=S, 331m W-Cl. ¹H NMR (CD₂Cl₂): δ = 2.23 (s, br, SeMe₂). ⁷⁷Se{¹H} NMR (CD₂Cl₂, 295 K): no resonance; (183 K): δ = +81.3.

[WSCl₄(SPPh₃)]

SPPh₃ (0.082 g, 0.28 mmol) in dichloromethane (2 mL) was slowly added to a red solution of WSCl₄ (0.100 g, 0.28 mmol) in dichloromethane (5 mL). The solution was then stirred for 1 h., concentrated in *vacuo* to \sim 3 mL. The brown precipitate was filtered, washed with hexane (2 x 1 mL) and dried *in vacuo*. Yield: 0.120 g, 65 %. Required for C₁₈H₁₅Cl₄PS₂W (652.1): C: 33.15, H: 2.32 %. Found: C: 32.98, H: 2.39 %. IR spectrum (Nujol, v / cm^{-1}): 598s P=S, 337s W-Cl.

The products isolated from the following reactions were not satisfactorily characterised (see above) but are reported for completeness of work.

Reaction of WOCl₄ and MeS(CH₂)₂SMe

A solution of MeS(CH₂)₂SMe (0.026 g, 0.22 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). The dark solution was then stirred for 1 h., concentrated to \sim 3 mL, filtered, and the green solid dried *in vacuo*. IR spectrum (Nujol, ν / cm⁻¹): 956m W=O, 325s W-Cl.

Reaction of WOCl4 and SeMe2

A solution of dimethyl selenide (0.048 g, 0.44 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WOCl₄ (0.150 g, 0.44 mmol) in dichloromethane (5 mL). The dark green solution was then stirred for 1 h, which had turned purple, and brought to dryness *in vacuo* collecting a purple solid. IR spectrum (Nujol, ν / cm⁻¹): 976m, 832s W=O, 329s, 306s W-Cl. ¹H NMR (CD₂Cl₂): δ = 2.54 (s, br).

Reaction of WSCl₄ and MeSe(CH₂)₂SeMe

A solution of MeSe(CH₂)₂SeMe (0.023 g, 0.21 mmol) in dichloromethane (5 mL) was slowly added to a suspension of WSCl₄ (0.150 g, 0.42 mmol) in dichloromethane (5 mL). The dark brown solution was then stirred for 1 h., concentrated to \sim 3 mL, filtered, and the beige solid dried *in vacuo*. IR spectrum (Nujol, v / cm^{-1}): 528s W=S, 315s W-Cl.

Reaction of WOCl₄ and SPPh₃

SPPh₃ (0.082 g, 0.28 mmol) in toluene (2 mL) was slowly added to a red solution of WOCl₄ (0.100 g, 0.28 mmol) in toluene (5 mL). The solution was then stirred for 1 h., concentrated *in vacuo* to \sim 3 mL. The brown precipitate was filtered off, washed with hexane (2 x 1 mL) and dried *in vacuo*. ³¹P{ 1 H} NMR (CD₂Cl₂): $\delta = +66.4$ (PPh₃Cl₂).

Chapter 4

4.5.1 Crystallographic Tables

Compound	[WSCl ₃ (MeS(CH ₂) ₂ SMe)]	[(WSCl ₄) ₂ (MeS(C H ₂) ₂ SMe)]	[WOCl ₃ (MeS(CH ₂) ₂ SMe)]	[WOCl ₃ (MeS(CH ₂) ₃ SMe)]
Formula	C ₄ H ₁₀ Cl ₃ S ₃ W	C ₄ H ₁₀ Cl ₈ S ₄ W ₂	C ₄ H ₁₀ Cl ₃ OS ₂ W	C ₅ H ₁₂ Cl ₃ OS ₂ W
M	444.50	837.66	428.44	442.47
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic
Space group (no)	P2 ₁ /n (14)	$P2_1/c$ (14)	P1 (1)	P1 (2)
a /Å	6.87590(10)	7.6847(2)	6.7344(3)	6.7576(4)
b/Å	13.2594(2)	10.5083(3)	6.9606(3)	7.3941(4)
c /Å	12.5785(2)	11.8250(4)	7.1931(4)	12.4200(5)
α /°	90	90	108.979(4)	78.514(4)
β /°	94.540(2)	91.882(3)	98.852(4)	81.724(4)
γ /°	90	90	114.329(4)	72.508(5)
U /ų	1143.19(3)	954.39(5)	273.84(3)	577.68(5)
Z	4	2	1	2
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	11.296	13.580	11.606	11.008
F(000)	828.0	764.0	199.0	414.0
Total number reflns	30789	13759	5307	15490
R _{int}	0.0259	0.1334	0.0731	0.0692
Unique reflns	3660	1870	2895	3458
No. of params, restraints	102/0	83/0	102/3	111/0
GOF	1.204	1.116	1.042	1.097
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0648, 0.1340	0.0615, 0.1582	0.0546, 0.1272	0.0501, 0.1169
R ₁ , wR ₂ (all data) ^b	0.0699, 0.1366	0.0639, 0.1622	0.0555, 0.1281	0.0558, 0.1207

Table 4.11: X-ray crystallography table. a: common data: wavelength (Mo-K_a) = 0.71073 Å; θ (max) = 27.5°; b $R_I = \Sigma ||Fo|-|Fc||/\Sigma |Fo|$; $wR_2 = [\Sigma w(Fo^2-Fc^2)^2/\Sigma wFo^4]^{1/2}$

Compound	[(WSCl ₄) ₂ (MeS(CH ₂) ₃ SMe)]	[(WSCl ₄) ₂ (PhS(CH ₂) ₂ S Ph)]	[(WSCl ₄) ₂ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)]
Formula	$C_5H_{12}Cl_8S_4W_2$	$C_{14}H_{14}Cl_8S_4W_2$	$C_8H_{18}Cl_8S_4W_2$
M	851.69	961.79	893.76
Crystal system	Triclinic	Monoclinic	Monoclinic
Space group (no)	P1 (2)	P2 ₁ /n (14)	$P2_{1}/c$ (14)
a /Å	6.6665(2)	10.5790(2)	10.7903(2)
b/Å	11.1479(2)	13.9272(3)	8.89710(10)
c /Å	13.8916(3)	17.2182(4)	12.1898(2)
α /°	101.979(2)	90	90
β /°	100.011(2)	96.368(2)	106.732(2)
γ /°	95.717(2)	90	90
$U/Å^3$	984.61(4)	2521.21(9)	1120.70(3)
Z	2	4	2
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	2.873	10.300	2.649
F(000)	780.0	1784.0	828.0
Total number reflns	15275	17788	18750
R_{int}	0.0394	0.0698	0.0613
Unique reflns	5051	6811	2199
No. of params, restraints	174/0	253/0	102/0
GOF	1.177	0.968	1.180
$R_1, wR_2 [I > 2\sigma(I)]^b$	0.0495, 0.1182	0.0420, 0.0711	0.0391, 0.0869
R ₁ , wR ₂ (all data) ^b	0.0580, 0.1279	0.0625, 0.0816	0.0413, 0.0884

Figure 4.11: X-ray crystallography table continued.

Chapter 4

Compound	[(WCl ₃) ₂ (μ-S ₂)(μ- S)(SPPh ₃) ₂]•2CH ₂ Cl ₂	[(WCl ₃) ₂ (μ-S ₂)(μ- S)(SeMe ₂) ₂]	$[(WCl_{2})_{2}(\mu-S)_{2}(^{i}PrS(CH_{2})_{2}S^{i}Pr)][WSCl_{5}]$ $\bullet CH_{2}Cl_{2}$
Formula	$C_{38}H_{34}Cl_{10}P_{2}S_{5}W_{2} \\$	$C_4H_{12}Cl_6S_3Se_2W_2$	$C_{17}H_{38}Cl_{13}S_5W_3$
M	1435.09	894.64	1415.17
Crystal system	Monoclinic	Monoclinic	Orthorhombic
Space group (no)	$P2_1/n$ (14)	C2/c (15)	Pnma (62)
a /Å	10.03090(10)	18.3641(5)	10.8463(2)
b/Å	26.3151(3)	9.1641(5)	31.8463(7)
c /Å	18.2867(2)	10.5536(3)	11.5026(2)
α /°	90	90	90
β /°	97.7900(1)	101.238(3)	90
γ /°	90	90	90
$U/Å^3$	4782.43(9)	1742.13(8)	3973.31(13)
Z	4	4	4
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	5.681	18.629	9.815
F(000)	2760.0	1608.0	2652.0
Total number reflns	75427	22340	75427
R _{int}	0.0450	0.0775	0.0879
Unique reflns	15411	2696	6254
No. of params, restraints	514/0	80/0	188/22
GOF	1.113	1.058	1.295
R_1 , $wR_2 [I > 2\sigma(I)]^b$	0.0410, 0.0782	0.0726, 0.1937	0.0682, 0.1242
R ₁ , wR ₂ (all data) ^b	0.0528, 0.0811	0.0815, 0.1983	0.0761, 0.1267

Figure 4.11: X-ray crystallography table continued.

4.6 References

- (1) Young, C. G. Comprehensive Coordination Chemistry II, 2004, 4, 415-527
- (2) Bannister, R. D.; Levason, W.; Reid, G.; Robinson, F. *Polyhedron*, **2019**, *169*, 129-34
- (3) Benjamin, S. L.; Hyslop, A.; Levason, W.; Reid, G. J. Fluorine. Chem., 2012, 137, 77-84
- (4) Benjamin, S. L.; Chang, Y. P.; Gurnani, C.; Hector, A. L.; Huggon, M.; Levason, W.; Reid, G. *Dalton Trans.*, **2014**, *43*, 16640-48
- (5) Levason, W.; Patel, B.; Reid, G.; Tolhurst, V.-A.; Webster, M. J. Chem. Soc., Dalton *Trans.*, **2000**, 3001-06
- (6) Reid, S. D.; Hector, A. L.; Levason, W.; Reid, G.; Waller, B. J.; Webster, M. *Dalton Trans.*, **2007**, 4769-77
- (7) Hart, R.; Levason, W.; Patel, B.; Reid, G. J. Chem. Soc., Dalton Trans., 2002, 3153-59
- (8) Jura, M.; Levason, W.; Ratnani, R.; Reid, G.; Webster, M. Dalton Trans., 2010, 39, 883-91
- (9) Davis, M. F.; Levason, W.; Paterson, J.; Reid, G.; Webster, M. Eur. J. Inorg. Chem., 2008, 802-11
- (10) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G.; Whittam, J. *Dalton Trans.*, **2018**, *47*, 2406-14
- (11) Levason, W.; Monzittu, F. M.; Reid, G. Coord. Chem. Rev., 2019, 391, 90-130
- (12) Tebbe, F. N.; Muetterties, E. L. *Inorg. Chem.*, **1968**, *7*, 172-74
- (13) Brownstein, S.; Christian, B. H.; Latremouille, G.; Steigel, A. Can. J. Chem., 1976, 54, 2343-48
- (14) Noble, A. M.; Winfield, J. M. Inorg. Nucl. Chem. Lett., 1968, 4, 339-42
- (15) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W. Chem. Commun., 2018, 54, 11681-84
- (16) Benjamin, S. L.; Levason, W.; Reid, G. Chem. Soc. Rev., 2013, 42, 1460-99
- (17) Fairbrother, F.; Grundy, K. H.; Thompson, A. J. Chem. Soc., 1965, 765-70
- (18) Jura, M.; Levason, W.; Reid, G.; Webster, M. Dalton Trans., 2009, 7610-12
- (19) Chang, Y. P.; Levason, W.; Light, M. E.; Reid, G. Dalton Trans., 2016, 45, 16262-74
- (20) Boorman, P. M.; Islip, M.; Reimer, M. M.; Reimer, K. J. J. Chem. Soc., Dalton Trans., **1972**, 890-93
- (21) Dori, Z. Comprehensive Coordination Chemistry I, 1987, 3, 973-1022
- (22) Westland, A. D.; Uzelac, V. Can. J. Chem., 1970, 48, 2871-76
- (23) Sevdić, D.; Fekete, L. *Inorg. Chim. Acta*, **1982**, *57*, 111-17
- (24) Levason, W.; McAuliffe, C. A.; McCullough, F. P.; Murray, S. G.; Rice, C. A. *Inorg. Chim. Acta*, **1977**, *22*, 227-31
- (25) Dierkes, P.; Frenzen, G.; Wocadlo, S.; Massa, W.; Berger, S.; Pebler, J.; Dehnicke, K. Z. Naturforsch. B, 1995, 50, 159-67
- (26) Fowles, G. W. A.; Tidmarsh, D. J.; Walton, R. A. J. Inorg. Nucl. Chem., 1969, 31, 2373-79
- (27) Hamilton, J. B.; McCarley, R. E. *Inorg. Chem.*, **1970**, *9*, 1333-39
- (28) Hamilton, J. B.; McCarley, R. E. Inorg. Chem., 1970, 9, 1339-43
- (29) Levason, W.; Reid, G.; Zhang, W. J. Fluorine. Chem., 2015, 172, 62-67
- (30) Levason, W.; Reid, G.; Trayer, J.; Zhang, W. Dalton Trans., 2014, 43, 3649-59
- (31) Behzadi, K.; Iran, A. I. T. A.; Thompson, A. J. Less Common Met., 1986, 124, 135-39
- (32) Levason, W.; Light, M. E.; Reid, G.; Zhang, W. Dalton Trans., 2014, 43, 9557-66
- (33) Hubert-Pfalzgraf, L. G.; Postel, M.; Reiss, J. G. Comprehensive Coordination Chemistry I, 1987, 3, 585-698
- (34) Bannister, R. D.; Levason, W.; Light, M. E.; Reid, G.; Zhang, W. *Polyhedron*, **2019**, *167*, 1-10
- (35) Brown, M. D.; Hursthouse, M. B.; Levason, W.; Ratnani, R.; Reid, G. *Dalton Trans.*, **2004**, 2487-91
- (36) Davis, M. F.; Levason, W.; Light, M. E.; Ratnani, R.; Reid, G.; Saraswat, K.; Webster, M. *Eur. J. Inorg. Chem.*, **2007**, *13*, 1903-10
- (37) Fowles, G. W. A.; Frost, J. L. J. Chem. Soc. A, 1967, 671-75
- (38) Drew, M. G. B.; Hobson, R. J. *Inorg. Chim. Acta*, **1983**, 72, 233-37
- (39) Behzadi, K.; Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1987, 128, 195-206
- (40) Drew, M. G. B.; Rice, D. A.; Williams, D. M. J. Chem. Soc., Dalton Trans., 1984, 1087-90
- (41) Drew, M. G. B.; Rice, D. A.; Williams, D. M. J. Chem. Soc., Dalton Trans., 1983, 2251-56
- (42) Drew, M. G. B.; Rice, D. A.; Williams, D. M. Acta Cryst. C, 1984, 40, 1547-49
- (43) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G. Dalton Trans., 2017, 46, 9824-32
- (44) Drew, M. G. B.; Rice, D. A.; Williams, D. M. J. Chem. Soc., Dalton Trans., 1984, 845-48

133

- (45) Britnell, D.; Drew, M. G. B.; Fowles, G. W. A.; Rice, D. A. *Inorg. Nucl. Chem. Lett.*, **1973**, 9, 501-04
- (46) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1975, 213-15
- (47) Drew, M. G. B.; Griffin, G. F.; Rice, D. A. Inorg. Chim. Acta, 1979, 34, L192
- (48) Britnell, D.; Drew, M. G. B.; Fowles, G. W. A.; Rice, D. A. *Inorg. Nucl. Chem. Lett.*, **1973**, *9*, 415-17
- (49) Hope, E. G.; Kemmitt, T.; Levason, W. Organomet., 1988, 7, 78-83
- (50) Walton, R. A. Prog. Inorg. Chem., 1972, 16, 1-194
- (51) Fowles, G. W. A.; Rice, D. A.; Wilkins, J. D. J. Chem. Soc., Dalton Trans., 1972, 2313-18
- (52) Fowles, G. W. A.; Rice, D. A.; Wilkins, J. D. J. Chem. Soc., Dalton Trans., 1973, 961-65
- (53) Wilkins, J. D. J. Inorg. Nucl. Chem., 1975, 37, 2095-97
- (54) Müller, U.; Klingelhöfer, P.; Friebel, C.; Pebler, J. *Angew. Chem. Int. Ed.*, **1985**, *24*, 689-90
- (55) Fedin, V. P.; Sokolov, M. N.; Myakishev, K. G.; Geras'ko, O. A.; Fedorov, V. Y.; Maciček, J. *Polyhedron*, **1991**, *10*, 1311-17
- (56) Rabe, S.; Müller, U. Z. anorg. allg. Chem., 1999, 625, 1367-70
- (57) Fenske, D.; Czeska, B.; Schumacher, C.; Schmidt, R. E.; Dehnicke, K. *Z. anorg. allg. Chem.*, **1985**, *520*, 7-17
- (58) Boorman, P. M.; Garner, C. D.; Mabbs, F. E.; King, T. J. J. Chem. Soc., Chem. Commun., 1974, 663-64
- (59) Boorman, P. M.; Reimer, K. J. Can. J. Chem., 1971, 49, 2926-30
- (60) Garner, C. D.; Howlader, N. C.; Mabbs, F. E.; McPhail, A. T.; Onan, K. D. *J. Chem. Soc., Dalton Trans.*, **1978**, 1848
- (61) Godfrey, S. M.; McAuliffe, C. A.; Pritchard, R. G.; Sheffield, J. M.; Thompson, G. M. J. Chem. Soc., Dalton Trans., 1997, 4823-28
- (62) Hartley, F. R.; Murray, S. G.; Levason, W.; Soutter, H. E.; McAuliffe, C. A. *Inorg. Chim. Acta*, **1979**, *35*, 265-77
- (63) Gulliver, D. J.; Hope, E. G.; Levason, W.; Murray, S. G.; Potter, D. M.; Marshall, G. L. *J. Chem. Soc., Perkin Trans. II*, **1984**, *2*, 429-34
- (64) Gibson, V. C.; Kee, T. P.; Shaw, A. *Polyhedron*, **1990**, *9*, 2293-98
- (65) Dietz, S.; Allured, V.; DuBois, M. R. *Inorg. Chem.*, **1993**, *32*, 5418-20

Single Source Precursors for the Low-Pressure Chemical Vapour Deposition of WS₂ Films

5.1 Introduction

Layered transition metal dichalcogenides have been the focus of much interest in recent years, due to their desirable properties and structural relationship as inorganic analogues of graphene. Common methods of forming ME₂ (E = S, Se or Te) 2D films are mechanical and liquid exfoliation¹ from bulk crystalline samples or heating metal oxides with elemental chalcogens for the vapour to deposit onto substrates.²⁻¹⁰ Chemical vapour deposition (CVD) is a versatile and a cheap method for accessing a variety of these thin films. Complexes with suitable ligands have been identified as potential precursors for the production of WS₂ thin films *via* low-pressure chemical vapour deposition (LPCVD). This chapter details the low-pressure chemical vapour deposition of WS₂ from a selection of complexes (synthesised in Chapter 4) and subsequent materials characterisation.

5.2 Transition Metal Dichalcogenides via Chemical Vapour Deposition

The use of CVD for the production of transition metal dichalcogenide thin films has advanced significantly in recent years. 11,12 Traditionally, CVD uses two chemicals, each containing one of the elements, and passing them over heated substrates, where the vapour decomposes depositing ME₂ films onto the substrate. 13 Typically, chemicals with low molecular weights and high volatility are used; such as NbCl₅ and SeⁿBu₂ to produce NbSe₂ thin films or WOCl₄ and HS(CH₂)₂SH for WS₂ films. 14,15 Single source low-pressure CVD uses a single reagent that contains all the elements required to deposit ME₂ films (experiments need to be carried out at low pressure to increase vaporisation of the less volatile precursor). Single source precursors provide the ability to control more variables and therefore have more influence over the films produced. In some cases, predetermining the stoichiometry of the metal, the chalcogen and the molecular weight allows greater control over the deposition conditions and subsequent film characteristics, including film phase, dopant concentration and orientation of crystals within the film. In addition there are examples of LPCVD enabling highly substrate-selective deposition onto micro- or nano-patterned substrates. 16,17 Metal halide complexes with chalcogenoether ligands and metal chalcogenide halides possess many properties that are desirable to make suitable CVD precursors, including having suitable volatility and removal of Cl₂ in-vacuo as a by-product. Coordination of chalcogenoethers ligands with alkyl substituents provides a low energy decomposition pathway via β-hydride elimination and subsequent release of alkenes. 18,19

5.2.1 Group IV Transition Metal Dichalcogenides

Titanium dichalcogenides are reported as semiconducting diamagnetic materials. 20,21 their layered structure also makes them suitable for a range of applications, including but not limited to cathode materials for Li ion batteries, 11,22-24 as well as for the removal of impurities from crude oil as some examples.²⁵ Reaction of elemental titanium with elemental sulfur or hydrogen sulfide under vacuum in sealed ampoules (625 or 800 °C) has been shown to deposit TiS₂ films of varying thickness. 26,27 Dual source CVD has been used for the successful preparation of TiS₂ using TiCl₄ and S₂^tBu₂ at 300 °C for 2 hours in ultra-high vacuum.²⁸ TiCl₄ has also been used with hydrogen sulfide at 350 °C via plasma enhanced CVD, however, this produced a non-continuous film. ^{29,30} Further examples from Parkin and co-workers demonstrated the use of ambient pressure CVD with [Ti(NMe₂)₄] and ^tBuSH or ^tBu₂S₂, using ^tBuSH as the sulfur source allowed deposition of TiS₂ films at lower temperatures (200 °C).²⁵ Following this, the compounds [Ti(NMe₂)₄] and ^tBuSH were mixed in solvent and it is suggested the complex [Ti(S^tBu₂)₄] forms *in-situ* and is subsequently used in aerosol assisted CVD (AACVD) between 150-300 °C.31 Initial work into single source precursors for the deposition of TiS_2 using $[TiCl_4(L)_2]$ (L = thiane or tht) concluded that the precursors were not suitable as the cyclic group slows down the rate of C-S cleavage.³² Following the in-situ work using [Ti(NMe₂)₄] and ^tBuSH, complexes of [Ti(S^tBu₂)₄] and [Ti(S'Bu₂)₃(NEt₂)] were isolated and then used as precursors to deposit gold coloured TiS₂ thin films.33

Titanium diselenide and ditelluride are both studied for their superconductive properties either at low temperature with Cu intercalation³⁴ or high pressure,³⁵ with TiTe₂ also a candidate for field-effect transistors.³⁶ Preparations of TiSe₂ are much less numerous than TiS₂, elemental titanium and selenium have been shown to react and deposit 1T-TiSe₂ thin films onto graphene/SiC substrates.³⁷ Thin film studies have been carried out, exfoliation from bulk 1T-TiSe₂ crystals and the films' properties investigated as the films move from tri- to bi- to mono-layer.³⁸ Examples of dual source CVD include using TiCl₄ and SeEt₂ or Se₂^tBu₂, at ambient pressure, to deposit blue TiSe₂ onto glass substrates with plate-like crystallites orientated parallel to the substrate.³⁹ Single source precursors [TiCl₄(SeR₂)₂] (R = Et or ⁿBu),⁴⁰ [(Cp)₂Ti(Se^tBu₂)₂]⁴¹ or [TiCl₄(*o*-C₆H₄(CH₂SeMe)₂)]¹⁸ have been used in LPCVD and shown to deposit 1T-TiSe₂ thin films at 500-600 °C onto SiO₂ substrates. The complex [TiCl₄(SeⁿBu₂)₂] is shown to deposit 1T-TiSe₂ selectively onto the TiN regions of photolithographically micropatterned TiN/SiO₂ substrates with recesses of 2 μm.

Attempts to isolate [(Cp)₂Ti(Te^tBu₂)₂] for a potential TiTe₂ precursor were unsuccessful⁴¹ and currently TiTe₂ thin films are only reported *via* exfoliation from bulk TiTe₂ crystals.³⁶

$$\begin{array}{c} [\text{TiCl}_{4}(\text{SeR}_{2})_{2}] \\ \\ [\text{TiCl}_{4}(o\text{-}\text{C}_{6}\text{H}_{4}(\text{CH}_{2}\text{SeMe})_{2})] \end{array} \end{array} \begin{array}{c} \text{LPCVD} \\ \\ \hline 450^{\circ}\text{C}\text{-}600^{\circ}\text{C} \end{array} \end{array} \begin{array}{c} \text{1T-TiSe}_{2} \\ \\ [(\text{Cp})_{2}\text{Ti}(\text{Se}^{t}\text{Bu}_{2})_{2}] \end{array} \begin{array}{c} \text{LPCVD} \\ \hline \hline 450^{\circ}\text{C}\text{-}600^{\circ}\text{C} \end{array} \end{array} \begin{array}{c} \text{1T-MSe}_{2} \\ \\ [(\text{Cp})_{2}\text{M}(\text{Te}^{t}\text{Bu}_{2})_{2}] \end{array} \begin{array}{c} \text{LPCVD} \\ \hline \hline \\ 450^{\circ}\text{C}\text{-}600^{\circ}\text{C} \end{array} \begin{array}{c} \text{R} = {}^{n}\text{Bu or Et M} = \text{Zr or Hf} \end{array}$$

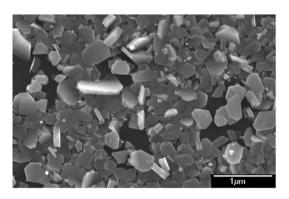
Figure 5.1: Scheme showing single source precursors for the LPCVD of MSe₂ and MTe₂ (M = Ti, Zr or Hf) attempts. ^{19,41-}

Other Group IV transition metal dichalcogenides ME₂ (M = Zr or Hf) are studied for electrical transport properties⁴⁴⁻⁴⁶ and are potential materials for large scale solar cells with high short circuit currents. ⁴⁷ Synthesis of ZrS₂ and HfS₂ has been shown from the elemental metal or the metal iodide (MI₄) and elemental sulfur under vacuum²⁷ or using MCl₄ and sulfur *via* CVD depositing onto *h*-BN or Si/SiO₂ substrates. ⁴⁸⁻⁵³ Under similar conditions, MSe₂ films can be produced with metal powder and elemental selenium with iodine as a transporting agent when heated to high temperatures (700-900°C). ⁵⁴⁻⁵⁶ Analogous to [(Cp)₂Ti(Se^tBu₂)₂], the single source precursors [(Cp)₂M(Se^tBu₂)₂] (M = Zr or Hf) can produce thin 1T films *via* LPCVD. ⁴¹ The complexes [(Cp)₂M(Te^tBu₂)₂] (M = Zr or Hf) were the first tellurolate complexes of their type, however were unsuccessful as LPCVD precursors as the weak Te-alkyl bonds led to facile Te elimination and deposited only elemental Te. ⁴¹ The only reports of MTe₂ films are from heating metal powders, tellurium and iodine, and using CBr₄ as a transporting agent. ⁵⁷⁻⁵⁹

5.2.2 Group V Transition Metal Dichalcogenides

Thin films of ME₂ (M = V, Nb or Ta; E = S, Se or Te) are of interest due to their superconducting properties⁶⁰ which makes them potential materials for charge density wave transitors⁶¹⁻⁶³ and their intercalation properties.⁶⁴ VS₂ was first reported using LiCO₃, V₂O₅ and H₂S using CVD⁶⁵⁻⁶⁸ following this, washing LiVS₂ with deionised water and ethanol results in the formation of VS₂.⁶⁹ There are currently no reported single source precursors for the CVD of 1T-VS₂ although there is an example of dual source ambient pressure CVD using VCl₃ and elemental sulfur at 500°C.⁶³

Vanadium diselenide thin films can be produced with elemental vanadium and selenium at 700-800°C and crystals have been grown with iodine as a transporting agent. Dual source precursors (VOCl₃ or [V(NMe₂)₄] and Se^tBu₂) for APCVD at 250-600 °C were shown to produce films 1T-VSe₂ with a range of stoichiometric ratio (0.7-2.1) however using VOCl₃ as the vanadium source caused impurities of VO_x in the films and low Se content. Using [V(NMe₂)₄] as


Chapter 5

the vanadium source produced films much closer to VSe_2 shown by EDX (1:2.1). A recent report demonstrates heating VCl_3 and Se together using $10\%~H_2/Ar$ as a carrier gas deposits $1T-VSe_2$ thin films onto sapphire substrates.⁷⁰

A series of VCl₄ and VCl₃ diselenoether complexes [VCl_x(L-L)] have been prepared, but they were not sufficiently volatile to produce VSe₂ thin films. ¹⁹ Within the same study, the complexes [VCl₃(SeMe₂)₂] and [(Cp)₂V(Se^tBu₂)₂] were isolated and shown to be suitable as single source precursors to deposit 1T-VSe₂ thin films at 500-600 °C. ¹⁹ Recently, nanoplates of 1T-VTe₂ have been deposited from sublimed salt-assisted atmospheric pressure CVD using V₂O₅, NH₄Cl and Te at 750 °C, however, there are no single source precursors for the deposition of VTe₂. ⁷¹

The production of NbE₂ thin films *via* CVD has been studied more extensively than other transition metal dichalcogenides. Crystals of NbS₂ suitable for X-ray diffraction have been grown by vapour transport methods.^{72,73} 2H-NbS₂ thin films have only been reported when using dual source precursors [Nb(NMe₂)₅] and [†]BuSH using AACVD from CH₂Cl₂ or *n*-hexane solution.⁷⁴ Whereas, 1T-NbS₂ thin films have been prepared from NbCl₅ and S(SiMe₃)₂ or [†]Bu₂S₂ at 500°C onto float glass.^{75,76} The more common 3R-polymorph has been shown *via* the reaction of elemental niobium and sulfur and using dual source APCVD with NbCl₅ and HS(CH₂)₂SH or [†]BuSH.⁷⁷⁻⁸⁰

3R-NbS₂ thin films have also been deposited from a variety of single source precursors, the first report was using [NbCl₄(S₂R₂)₂][NbCl₆] in LPCVD at 500 °C as confirmed by XRD and XPS. ⁸¹ Following this, reflective brown 3R-NbS₂ thin films were deposited *via* LPCVD from [NbCl₅(SⁿBu₂)] onto silica. ⁸² Subsequently a series of coordination complexes with NbCl₄ and thioethers with the desired 1:2 ratio were isolated, however attempts to use them for LPCVD failed, with failure attributed to insufficient volatility and loss of thioether at elevated temperatures, leaving NbCl₄ residue. ⁸³ The metal chalcogenide halide, NbSCl₃, is shown to vaporise upon heating ⁸⁴ but CVD attempts using this directly failed to produce any deposit. ⁸⁵ A series of niobium sulfide halides with thioethers was therefore established and precursors with β-hydrogens, [NbSCl₃(SⁿBu₂)₂] and [NbSCl₃(ⁿBuS(CH₂)₃SⁿBu)], were shown to deposit 3R-NbS₂ thin films with <00*l*> preferred orientation. ⁸⁵

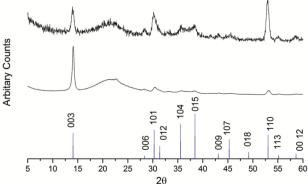


Figure 5.2: Scanning electron microscope image of polycrystalline NbS₂ films. Deposited by low pressure CVD from [NbSCl₃(SⁿBu₂)] at 700 °C (left). Section Right: IPXRD (top), GIXRD (middle) from NbSe₂ deposited by LPCVD of [NbCl₅(SeⁿBu₂)] at 650 °C and literature pattern for NbSe₂ bulk (bottom). Section Right: Provided Heading Provided Right: Research Right: Provided Right: Research Right: Res

In contrast, NbSe₂ thin films favour the polymorph 2H over 3R, there is only one report of 3R-NbSe₂ deposition, which used the single source precursor [NbCl₅(SeⁿBu₂)] in LPCVD at 650 °C to produce dark brown 3R-NbSe₂ thin films.⁸² 2H-NbSe₂ thin films have been deposited *via* chemical vapour transport and dual source APCVD using NbCl₅ and Se^tBu₂.^{74,86-89} As with the attempts to produce NbS₂ films from NbCl₄ complexes with thioether complexes, the corresponding Nb(IV) selenoether complexes also did not produce thin films.⁸³ However 2H-NbSe₂ thin films were deposited *via* LPCVD at 650 °C using [NbSe₂Cl₃(SeⁿBu₂)] onto silica, but show significantly less preferred orientation compared to the 3R-NbS₂ thin films.⁸⁵ The complex [NbCl₅(TeⁿBu₂)] was prepared but decomposed within a few hours therefore was not tested for LPCVD for the production of NbTe₂.

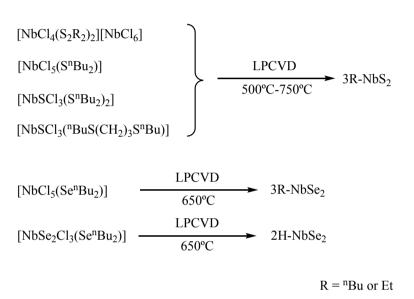


Figure 5.3: Scheme showing single source precursors for the LPCVD of NbE₂ (E = S or Se). 82,85

Films of tantalum dichalcogenides are considerably rarer compared to their 4*d* counterparts, NbE₂ films. The crystal structures of TaS₂ and TaSe₂ have been obtained using a temperature gradient and sintered powder at 900 °C under vacuum. Complexes analogous to the niobium counterparts [TaCl₅(E'ⁿBu₂)] (E' = S, Se or Te) all failed to produce any deposit by CVD. ⁸² This is also the case with [TaSCl₃(ⁿBuE'(CH₂)₃E'ⁿBu)] (E' = S or Se) complexes, the relatively high molecular weights may be a factor, although the lower stability of the tantalum complexes is also likely to hinder film growth by CVD. ⁹⁰ The only successful deposition of TaS₂ reported used [Ta(NMe₂)₅] and ¹BuSH in AACVD with CH₂Cl₂ or *n*-hexane⁷⁴ and the only 2H-TaSe₂ thin film is from the chemical vapour transport method. ^{91,92} A recent report has shown 3R-TaSe₂ thin films deposited from APCVD using TaCl₅, Ta and Se in a 10:1 ratio of halide to metal under H₂/Ar flow. ⁹³ Currently there are no reports of MTe₂ (M = Nb or Ta) deposited thin films and LPCVD attempts using [TaCl₅(TeⁿBu₂)] deposited a small amount of crystallised tellurium. ⁸²

5.2.3 Group VI Transition Metal Dichalcogenides

MoE₂ (E = S or Se) thin films are probably some of the most explored and most interesting 2D transition metal dichalcogenides, they are promising materials for a variety of applications including spintronics, ⁹⁴ electrocatalysts for hydrogen evolution, ^{95,96} optoelectronics ⁹ and environmental sensors. ⁹⁷ Increasingly, MoS₂ is also being investigated for its thermoelectric properties, ⁹⁸ traditionally MoE₂ films or powders were prepared by heating MoO₃ with elemental sulfur or selenium at 800 °C under vacuum. ^{3-8,99-115} Some of these reports have claimed to have deposited films <1 nm thick ^{3,5} or monolayer MoE₂; these ultra-thin 2D films are extremely desirable due to the transition from indirect to direct bandgap material. ^{4,102} There are reports of using [NH₄]₂[MoS₄] with H₂ gas in the gas phase to deposit MoS₂ films, as well as using [NH₄]₂[MoS₄] in DMF *via* AACVD at 400 °C. ^{10,110} Reports of using molybdenum halides for CVD are rare; an initial example of using [Mo(S¹Bu)₄] has been shown to deposit MoS₂ at moderate temperatures (110-350 °C). ¹¹⁶ Following this early report, a series of MoCl₄ complexes with thioethers of the form [MoCl₄(L)₂] and [MoCl₄(L-L)] were synthesised. Using the terminal butyl complex [MoCl₄(SⁿBu₂)₂] in LPCVD at 750 °C thin films of 2H-MoS₂ were deposited. These were too thin to generate an XRD pattern, but were identified as 2H-MoS₂ by Raman spectroscopy. ¹¹⁷

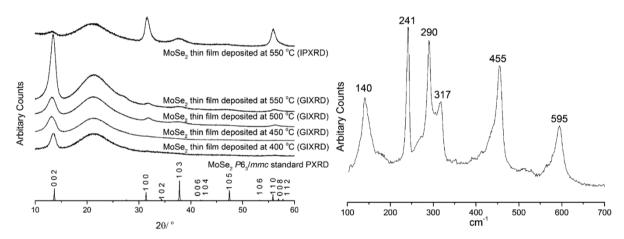


Figure 5.4: GIXRD and IPXRD (top) of 2H-MoSe₂. Deposited by LPCVD at 400 °C-550 °C from [MoCl₄(SeⁿBu₂)₂] (left) and Raman spectrum of MoSe₂ deposited by LPCVD at 550 °C from [MoCl₄(SeⁿBu₂)₂] (right). ¹¹⁷

Within the same report, using the analogous complex [MoCl₄(SeⁿBu₂)₂] at 550 °C produced 2H-MoSe₂ thin films, which showed strong preferred orientation for the <00*l*> plane with platelets growing parallel to the substrate and with a film thickness of 130 nm. ¹¹⁷ The only other report of using CVD to deposit MoSe₂ is using MoCl₅ and either SeEt₂ or ⁿBu₂Se at 200 °C *via* APCVD, with XRD data suggesting mixed polymorphs of 3R and 2H. ¹¹⁸

Similarly to MoE_2 thin films, WE_2 (E = S or Se) thin films have commonly been made by heating WO_3 and elemental chalcogen at 925 °C under vacuum. 6,114,115,119,120 Compared to MoE_2 films, the WE_2 films are underdeveloped; there is only a single report of using AACVD for the deposition of $2H-WS_2$ from the dithiocarbamate complex $[WS(S_2)(S_2CNEt_2)_2]$ at 350 °C. 121

The deposition of MTe₂ (M = Mo or W) thin films has received little attention, probably as the precursors are less stable and the materials decompose rapidly to release tellurium vapour.¹²² A few examples of heating the metal with tellurium using CVD at 650-700 °C (MoTe₂)^{123,124} and 1000 °C (WTe₂) are known.¹²⁵ Recently a dual source precursor using metal oxides (MoO₃ or WO₃), metal halides (MoCl₅ or WCl₆) and tellurium powder in a 1:1:1 ratio deposited MTe₂ thin films at 700-800 °C, confirmed by Raman spectroscopy.¹²² An example of 1T'-WTe₂ thin films has been demonstrated by using WCl₆ and Te in a three zone furnace depositing onto SiO₂/Si substrates under N₂/H₂.¹²⁶

The application of various CVD methods has been of particular interest in the last 20 years, with significant advances in the variety of materials deposited and complexes used as precursors. It is not yet entirely clear what makes a 'good' single source LPCVD precursor, but complexes with a low energy decomposition pathway (β-hydride elimination) seem to play a vital role. However, other factors, including the molecular weight of precursors and the stability of the molecules is particularly problematic for deposition of heavier transition metals, as the metal generally becomes harder going down the group, meaning M-E bonds become weaker. Also, some precursors allow the incorporation of impurities into the deposited films, common impurities are Cl, O and C but a 'good' precursor facilitates the removal of these impurities *in vacuo*.

5.2.4 Aims

This chapter investigates and details the potential of single source LPCVD precursors identified and synthesised in Chapter 4 for the deposition of WS₂ thin films. The precursors have been fully characterised in the previous chapter and the deposited WS₂ thin films will be characterised by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, SEM and their electrical properties investigated.

5.3 Results and Discussion

The complexes [(WSCl₄)₂(iPrS(CH₂)₂SiPr)], [WSCl₃(iPrS(CH₂)₂SiPr)] and [WSCl₄(SnBu₂)] were tested as single source low pressure chemical vapour deposition precursors at 550-700 °C, *ca.* 0.1 mmHg. No significant deposits were obtained at lower temperatures and the complex [WSCl₃(iPrS(CH₂)₂SiPr)] did not produce any deposits across the range 600-700 °C. Material analyses were performed by Dr Roumeng Huang (XPS, SEM and Raman spectroscopy) and Dr Shibin Thomas (EDX and WDX) from ECS and the School of Chemistry at the University at Southampton, respectively.

5.3.1 Low Pressure CVD using [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)]

The complex $[(WSCl_4)_2({}^iPrS(CH_2)_2S^iPr)]$ would not be considered to be a 'traditional' single source LPCVD precursor due to its high molecular weight. However, the terminal isopropyl groups may still provide a suitable β -hydride elimination pathway. Despite the high molecular weight, the precursor produces bronze films with uniform coverage across a number of SiO_2 tiles. The films were identified as 4H-WS $_2$ and were deposited at 590-620 °C/0.1 mmHg , although the precursor does leave a large amount of (unidentified) amorphous black residue in the precursor bulb.

Surprisingly, the W(V) complex, $[WSCl_3({}^iPrS(CH_2)_2S^iPr)]$, did not produce any deposit despite its molecular weight being almost half that of $[(WSCl_4)_2({}^iPrS(CH_2)_2S^iPr)]$. It also seemed to decompose into an amorphous black powder in the precursor bulb upon heating. The very different behaviour of these two very similar complexes highlights that the factors that make an effective precursor are not yet well understood.

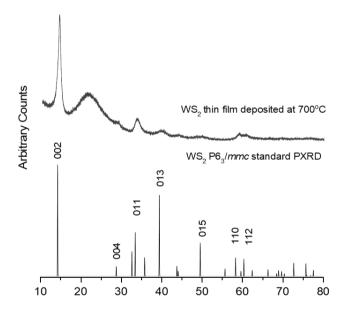


Figure 5.5: Grazing incidence XRD pattern (top) from a WS₂ thin film deposited by low pressure CVD using [(WSCl₄)₂(PrS(CH₂)₂SiPr)] at 700 °C. The broad feature at $2\theta = 20$ -25° is from the SiO₂ substrate, XRD pattern for bulk WS₂ (bottom). ¹²⁷

Analysis of the films deposited from [(WSCl₄)₂(i PrS(CH₂)₂S i Pr)] are consistent with polycrystalline 4H-WS₂ in the space group P6₃/*mmc* and the lattice parameters were refined as a = 3.1523(11), c = 12.381(4) Å ($R_{wp} = 7.67\%$, literature: a = 3.1532(4), c = 12.323(5) Å). The grazing incidence XRD pattern is dominated by the 002 reflection, suggesting preferred orientation in the <00*l*> direction. This is not unusual in 2D layered materials as they typically grow initially along the c axis parallel to the substrate, resulting in flat platelets, 85,117 although this preferred orientation is commonly suppressed as the films get thicker. Attempts to obtain an in-plane XRD pattern, even over an extended period, were unsuccessful as the films were unfortunately too thin. The average crystallite size was calculated from the grazing incidence XRD data (Figure 5.5) using the Williamson-Hall method (see Section 1.10.1), giving an estimated size of 9.1(3) nm.

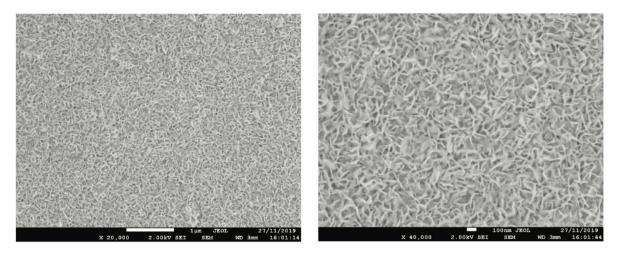


Figure 5.6: SEM image showing a continuous WS₂ thin film produced via low pressure CVD using [(WSCl₄)₂(PrS(CH₂)₂S(Pr)] at 700 °C.

Scanning electron microscopy (SEM) showed uniform and continuous coverage of the substrate by small hexagonal platelet crystallites (Figure 5.6). Accurate determination of composition was attempted using EDX analysis, however, due to overlap of the emission peaks from tungsten and silicon within the substrate (W M α_1 : 1.775 keV and Si K α_1 : 1.740 keV), ¹²⁸ this was not possible. However, the EDX spectrum has no C or Cl impurity peaks indicating a clean deposition. A subsequent attempt using WDX (which has higher resolution) confirmed the presence of both tungsten and sulfur, but a reliable ratio could not be obtained as films were too thin.

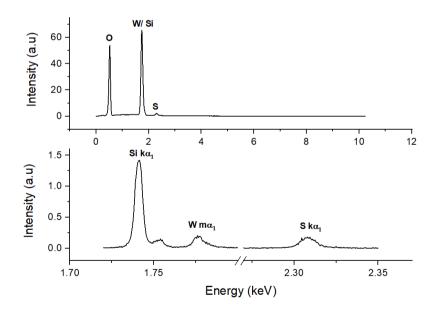


Figure 5.7: EDX spectrum (top) and WDX spectrum (bottom) from WS₂ thin film via low pressure CVD using [(WSCl₄)₂(PrS(CH₂)₂SⁱPr)] at 700 °C.

To obtain accurate determination of composition X-ray photoelectron spectroscopy (XPS) was carried out on the as-deposited films (Figure 5.8). The W peaks at 32.6, 34.7, 28.2 eV can be assigned to W $4f_{7/2}$, W $4f_{5/2}$, W $5p_{3/2}$ from which it can be concluded that the films are not oxidised. The S peaks at 162.2 and 163.4 eV are attributed to S $p_{1/2}$ and $Sp_{3/2}$ and are characteristic of S^{2-} in WS₂. ¹²⁹ The W: S ratio (1:2.2) was estimated by integrating the W 4f and the S 2p peaks.

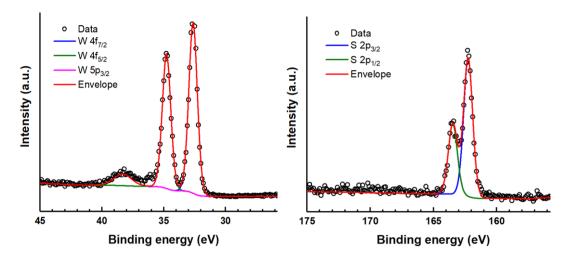


Figure 5.8: Representative XPS data for an as-deposited WS₂ film thin film via low pressure CVD using $[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)]$. Showing the peaks associated with tungsten (left) and sulfur (right).

Raman spectra were collected using a 532 nm excitation laser and the spectra show the two main peaks at 352 and 419 cm⁻¹, which are assigned to the E_{2g} and A_{1g} vibrational modes of WS₂, respectively; the weaker features present in the spectra are also consistent with WS₂ peaks.¹³⁰

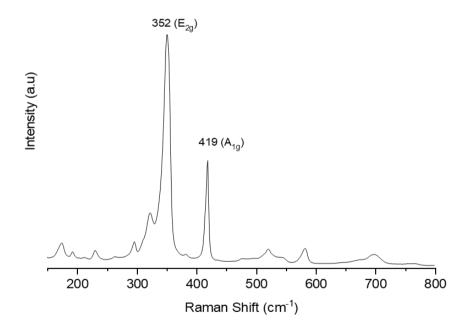


Figure 5.9: Raman spectra for as-deposited WS₂ thin films via low pressure CVD using [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] at

5.3.2 Low Pressure CVD using [WSCl₄(SⁿBu₂)]

Following the success of the precursor, [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)], for WS₂ film growth, it was decided to investigate the simpler mononuclear W(VI) complex, [WSCl₄(SⁿBu₂)], for LPCVD. Initially this precursor was overlooked due to its extreme sensitivity to moisture, but if the complex was isolated and used immediately it was possible to perform a series of LPCVD experiments.

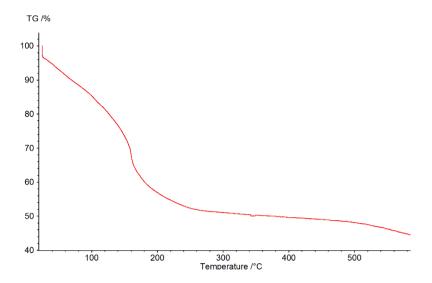


Figure 5.10: TGA profile for [WSCl₄(S^nBu_2)] 0 - 600°C.

Thermogravimetric analysis (TGA) was undertaken in order to gain an insight into the decomposition pathway of the precursor. The TGA profile shows an initial weight loss step (25 to 125 °C) then a significant loss (130 to 180 °C). Followed by a plateau between 350 to 425 °C at ~50 % weight loss, WS₂ would be expected to correspond to 49.2 % of the original mass. A further gradual weight loss from 450 °C to 600 °C is observed which could be further loss of sulfur. This precursor was therefore considered to merit testing *via* LPCVD. Although deposition temperatures would not be comparable as TGA is undertaken at ambient pressure. The precursor [WSCl₄(SⁿBu₂)] successfully deposited WS₂ thin films as described below.

When using small amounts of [WSCl₄(SⁿBu₂)] (ca. 30-80 mg), low pressure CVD onto SiO₂ substrates at 700 °C (0.1 mmHg) resulted in dark almost black thin films across a number of tiles (624 to 652 °C). Coverage of tiles was uniform and with increased amounts of precursor thicker matte films were produced. Unlike [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)], [WSCl₄(SⁿBu₂)] does not leave any significant residue in the precursor bulb, suggesting a better LPCVD precursor. Grazing incidence X-ray analysis of these films (Figure 5.11) is consistent with 4H-WS₂ in space group P6₃/mmc (lattice parameters were refined as: a = 3.1185(16), c = 12.771(8) Å $R_{wp} = 8.10\%$, literature: a =3.1532(4), c = 12.323(5) Å). The grazing incidence pattern is dominated by the 002 reflection, suggesting platelets lying flat and parallel to the substrate (with the c-axis normal to the substrate). An in-plane XRD measurement shows the suppression of the 002 reflection and has enhanced the 011, 110 and 112 reflections, supporting this conclusion. The crystallite size in the WS₂ film produced at 650 °C was calculated from the grazing incidence XRD data using the Williamson-Hall method, which resulted in crystals of 3.8(2) nm. These crystallites are significantly smaller than for the WS₂ deposits from [(WSCl₄)₂(iPrS(CH₂)₂SiPr)], possibly due to increased volatility of [WSCl₄(SⁿBu₂)]. Increased volatility results in higher vapour concentration, meaning there is an increased number of nucleation sites above the substrate and therefore faster deposition resulting in smaller crystals.

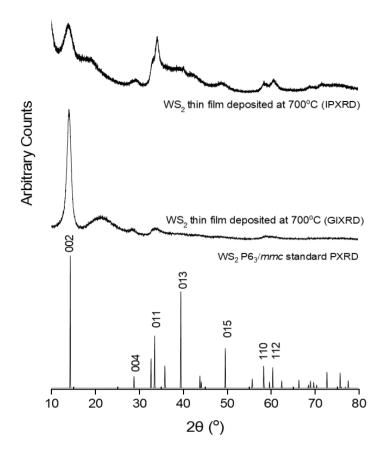
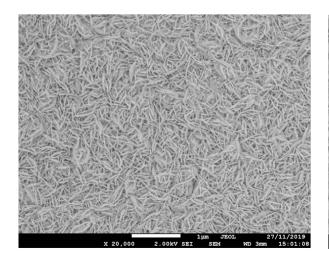



Figure 5.11: In-plane XRD pattern (top), grazing incidence XRD pattern (middle) from a WS₂ thin film deposited by low pressure CVD using [WSCl₄(S^nBu_2)] at 700 °C. The broad feature at $2\theta = 20$ -25° is from the SiO₂ substrate, XRD pattern for bulk WS₂ (bottom). ¹²⁷

Scanning electron microscopy (SEM) showed uniform and continuous coverage over the entire substrate (2 cm x 0.8 cm, deposited at 639 °C) by small hexagonal crystallites (Figure 5.12). The calculated crystallite size from the GIXRD pattern is significantly smaller than the largest dimensions of the platelets observed in Figure 5.12 (*ca.* 100 nm) suggesting a dense underlying material. The GIXRD pattern suggests the platelets are parallel to the substrate, with a small crystallite size. The SEM images show the top layer has different directional growth to the underlying film, this is quite a common observation for TMDC materials.¹¹⁷

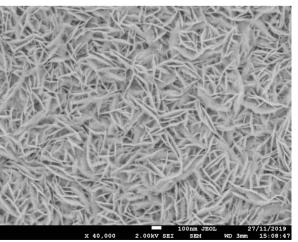


Figure 5.12: SEM image of continuous WS₂ thin film produced via low pressure CVD using [WSCl₄(SⁿBu₂)] at 700 °C.

Attempts to quantify the W:S ratio by EDX or WDX analysis were unsuccessful, due to the overlap of emission peaks (W $M\alpha_1$: 1.775 keV and Si $K\alpha_1$: 1.740 keV) in EDX.¹²⁸ WDX confirmed the presence of W and S but the ratio was estimated W:S (1.2:1) which is contradictory to all other collected data. The high errors of WDX is likely from the films being too thin (estimated to be <1 μ m) to obtain an accurate W: S ratio.

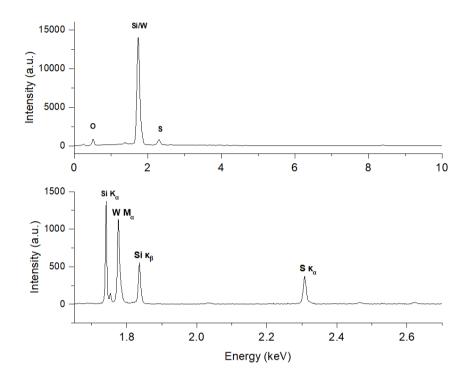


Figure 5.13: EDX spectrum (top) showing overlap of the W and Si peaks and WDX spectrum (bottom) from WS₂ thin film via low pressure CVD using [WSCl₄(SⁿBu₂)] at 700 °C.

To obtain accurate determination of composition X-ray photoelectron spectroscopy (XPS) was carried out on the as-deposited films (Figure 5.8). XPS is a surface technique and only samples 5-10 nm of the sample. The W peaks at 32.5, 35.0, 28.1 eV can be assigned to W $4f_{7/2}$, W $4f_{5/2}$, W $5p_{3/2}$ from which it can be concluded that the films were not oxidised. The S peaks at 162.5 and 163.8 eV are attributed to S $p_{1/2}$ and S $p_{3/2}$ and are characteristic of S²⁻ in WS₂. The W: S ratio (1:2.2) was estimated by integrating the W 4f and the S 2p peaks.

Chapter 5

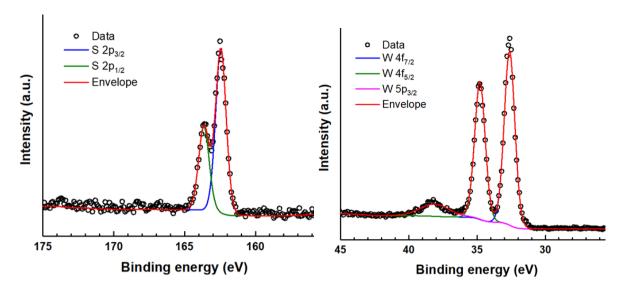


Figure 5.14: Representative XPS data for an as-deposited WS₂ thin film via low pressure CVD using [WSCl₄(SⁿBu₂)].

Showing the peaks associated with tungsten (right) and sulfur (left).

Raman spectra were collected using a 532 nm excitation laser and the spectra show the two main peaks at 351 and 418 cm⁻¹, which are assigned to the E_{2g} and A_{1g} vibrational modes of WS₂, respectively; the weaker features present in the spectra are also consistent with WS₂ peaks.¹³⁰ This spectrum is practically identical to the spectra obtained for WS₂ deposited from $[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)]$, as are the other data, suggesting the films deposited from the two precursors are very similar.

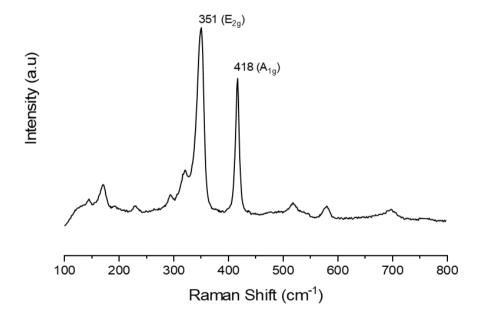


Figure 5.15: Raman spectra for as-deposited WS₂ film thin film via low pressure CVD using [WSCl₄(SⁿBu₂)] at 700 °C.

5.3.3 Electrical Measurements

Structural and compositional analysis on the films produced from both [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] and [WSCl₄(SⁿBu₂)] showed the WS₂ thin films produced *via* LPCVD were very similar. However,

electrical measurements, carried out by Dr Roumeng Huang, showed the films from the different precursors behaved differently.



Figure 5.16: Resistivity measurements from WS_2 thin films produced from $[(WSCl_4)_2(^{\dagger}PrS(CH_2)_2S^{\dagger}Pr)]$ (left) and $[WSCl_4(S^nBu_2)]$ (right).

Films from $[(WSCl_4)_2({}^iPrS(CH_2)_2S^iPr)]$ exhibited typical semiconducting behaviour, showing that the resistivity decreases significantly with increasing temperature. In contrast, the WS₂ films produced from the $[WSCl_4(S^nBu_2)]$ precursor showed significantly lower resistivity (much higher conductivity), more consistent with a conductor or semi-metal. Figure 5.16 shows both films have increasing charge carriers as the temperature increases, however films from $[WSCl_4(S^nBu_2)]$ show increased electron scattering effects (Figure 5.17) compared to WS₂ films from $[(WSCl_4)_2({}^iPrS(CH_2)_2S^iPr)]$, which is typical for a semi-metal/conductor..

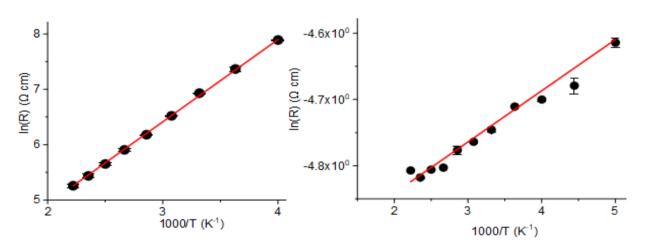


Figure 5.17: Graph showing activation energy from WS₂ thin films produced from $[(WSCl_4)_2(^{\dagger}PrS(CH_2)_2S^{\dagger}Pr)]$ (left) and $[WSCl_4(S^nBu_2)]$ (right).

This behaviour is also confirmed with the calculated activation energy values with films from $[(WSCl_4)_2(^iPrS(CH_2)_2S^iPr)] \ having an activation value of \sim 100 \ meV \ and those from \\ [WSCl_4(S^nBu_2)] \ having an activation energy \sim 6 \ meV. \ Again, this is consistent with semiconductor and semi-metal WS_2 films, respectively.$

The differences in behaviour from the films from different precursors is unusual given the similarity between precursors and experimental conditions employed. The deposition temperature

Chapter 5

does not seem to influence the electrical properties of the films, as the temperature range used was consistent for both precursors. It is likely that the differences in electrical properties stem from different defects within the films, most probably sulfur deficiencies. Thus, films with higher S deficiency would be expected to exhibit increased conductivity due to the increased number of holes in the film. The potential cause of this sulfur deficiency could be the time required for the deposition as [WSCl₄(SⁿBu₂)] is much more volatile and may therefore need a shorter deposition time. The increased deposition times could cause small amounts of volatile sulfur to be lost during the deposition experiment.

5.4 Conclusions

Complexes of [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)], [WSCl₃(ⁱPrS(CH₂)₂SⁱPr)] and [WSCl₄(SⁿBu₂)] were tested as single source low pressure chemical vapour deposition precursors at 550-700 °C. The complex [WSCl₃(ⁱPrS(CH₂)₂SⁱPr)] was found to be unsuitable for LPCVD and did not deposit any material onto the substrates. [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] and [WSCl₄(SⁿBu₂)] were found to deposit 4H-WS₂ thin films successfully between 650 °C and 700 °C. The two novel single source precursors deposited continuous uniform coverage of the substrate and the films have been shown to have a W:S ratio of 1:2.2 consistent with WS₂.

These are the first examples of single source LPCVD precursors to deposit WS₂ thin films and the films have been characterised by Raman spectroscopy, grazing incidence XRD and in-plane XRD, EDX, WDX, XPS and SEM. The films have preferred orientation in <00*l*> direction with SEM confirming the crystallites parallel to the substrate surface. These precursors potentially provide a viable route for the growth of thin films of this important semiconducting material if conditions and optimisation of reagent can be achieved.

Surprisingly, the two precursors produce films with different electrical behaviour with [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] behaving as a typical semiconductor and [WSCl₄(SⁿBu₂)] behaving as a semi-metal/conductor. The difference probably stems from defects, likely sulfur deficiency which is not due to the deposition temperature, but may be caused by evaporation of some sulfur during the deposition experiment. This can be investigated by running a series of CVD experiments with the same conditions but varying the deposition time.

5.5 Experimental

In an N₂ purged glove box the precursor (20-30 mg) was loaded into the precursor bulb at the closed end of a silica tube, silica substrates (ca. 1 x 8 x 20 mm³) were then positioned end-to-end lengthways along the tube outwards from the precursor. The tube was then set in a furnace so that the substrates were in the heated zone and the precursor protruded ca. 1 cm out of the furnace. The tube was evacuated to 0.1 mmHg and the furnace heated to 700 °C and left for 10 minutes to allow for the temperature to stabilise. The tube was gradually moved towards the hot zone until evaporation of the precursor was observed. The position was maintained until no further evaporation occurred, leaving a black solid in the precursor bulb for [(WSCl₄)₂(i PrS(CH₂)₂S i Pr)]; no residue remained from the [WSCl₄(S n Bu₂)]. A brown/bronze film was observed at the opposite end of the tube. After ca. 20 min. the tube was cooled to room temperature and the tiles were unloaded in the glove box where they were stored for characterisation. Brown/bronze films were observed on the second and third substrates (actual T range = 590-625 °C, determined by temperature profiling) using [(WSCl₄)₂(i PrS(CH₂)₂S i Pr)], and brown films were obtained across all of the substrates using [WSCl₄(S n Bu₂)] (actual T range = 624-650 °C).

5.6 References

- (1) Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. *Science*, **2011**, *331*, 568-71
- (2) Rhyee, J. S.; Kwon, J.; Dak, P.; Kim, J. H.; Kim, S. M.; Park, J.; Hong, Y. K.; Song, W. G.; Omkaram, I.; Alam, M. A.; Kim, S. *Adv. Mater.*, **2016**, *28*, 2316-21
- (3) Chang, Y. H.; Zhang, W.; Zhu, Y.; Han, Y.; Pu, J.; Chang, J. K.; Hsu, W. T.; Huang, J. K.; Hsu, C. L.; Chiu, M. H.; Takenobu, T.; Li, H.; Wu, C. I.; Chang, W. H.; Wee, A. T.; Li, L. J. *ACS Nano*, **2014**, *8*, 8582-90
- (4) Wang, X.; Gong, Y.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E.; Tay, B. K.; Ajayan, P. M. *ACS Nano*, **2014**, *8*, 5125-31
- (5) Lu, X.; Utama, M. I.; Lin, J.; Gong, X.; Zhang, J.; Zhao, Y.; Pantelides, S. T.; Wang, J.; Dong, Z.; Liu, Z.; Zhou, W.; Xiong, Q. *Nano Lett.*, **2014**, *14*, 2419-25
- (6) Pawbake, A. S.; Pawar, M. S.; Jadkar, S. R.; Late, D. J. *Nanoscale*, **2016**, *8*, 3008-18
- (7) Chen, J.; Zhao, X.; Tan, S. J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; Liu, W.; Tang, W.; Li, L.; Zhou, W.; Sum, T. C.; Loh, K. P. J. Am. Chem. Soc., 2017, 139, 1073-76
- (8) Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Adv. Mater., **2012**, *24*, 2320-25
- (9) Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. *Nano Lett.*, **2012**, *12*, 4013-17
- (10) Liu, K. K.; Zhang, W.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y.; Zhang, H.; Lai, C. S.; Li, L. J. *Nano Lett.*, **2012**, *12*, 1538-44
- (11) Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. *Nat. Chem.*, **2013**, *5*, 263-75
- (12) Chhowalla, M.; Liu, Z.; Zhang, H. Chem. Soc. Rev., 2015, 44, 2584-86
- (13) Ji, Q.; Zhang, Y.; Zhang, Y.; Liu, Z. Chem. Soc. Rev., 2015, 44, 2587-602
- (14) Boscher, N. D.; Blackman, C. S.; Carmalt, C. J.; Parkin, I. P.; Prieto, A. G. *Appl. Surf. Sci.*, **2007**, *253*, 6041-46
- (15) Carmalt, C. J.; Parkin, I. P.; Peters, E. S. *Polyhedron*, **2003**, *22*, 1499-505
- (16) Benjamin, S. L.; de Groot, C. H.; Gurnani, C.; Hawken, S. L.; Hector, A. L.; Huang, R.; Jura, M.; Levason, W.; Reid, E.; Reid, G.; Richards, S. P.; Stenning, G. B. G. *J. Mater. Chem. C*, **2018**, *6*, 7734-39
- (17) de Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R.; Jura, M.; Levason, W.; Reid, G. *Chem. Mater.*, **2012**, *24*, 4442-49
- (18) Reid, S. D.; Hector, A. L.; Levason, W.; Reid, G.; Waller, B. J.; Webster, M. *Dalton Trans.*, **2007**, 4769-77
- (19) Hector, A. L.; Jura, M.; Levason, W.; Reid, S. D.; Reid, G. New J. Chem., 2009, 33, 641-45
- (20) Xu, M.; Liang, T.; Shi, M.; Chen, H. Chem. Rev., 2013, 113, 3766-98
- (21) Mas-Balleste, R.; Gomez-Navarro, C.; Gomez-Herrero, J.; Zamora, F. *Nanoscale*, **2011**, *3*, 20-30
- (22) Kanehori, K. J. Electrochem. Soc., 1989, 136, 1265-70
- (23) Whittingham, M. S. Chem. Rev., 2004, 104, 4271-301
- (24) Trevey, J. E.; Stoldt, C. R.; Lee, S.-H. J. Electrochem. Soc., 2011, 158, A1282-A89
- (25) Peters, E. S.; Carmalt, C. J.; Parkin, I. P. J. Mater. Chem., 2004, 14, 3474-77
- (26) Perry, P. B. *Phys. Rev. B*, **1976**, *13*, 5211-13
- (27) Conroy, L. E.; Bouchard, R. J. *Inorg. Synth.*, **1970**, *12*, 158 65
- (28) Tonti, D.; Pettenkofer, C.; Jaegermann, W. *Ionics*, **2000**, *6*, 196-202
- (29) Kikkawa, S.; Miyazaki, M.; Liu, Y.; Kanamaru, F. Solid State Ionics, 1990, 40-41, 553-56
- (30) Shimanouchi, R.; Yamamoto, T.; Kikkawa, S.; Koizumi, M. *Chem. Lett.*, **1985**, *14*, 1323-26
- (31) Carmalt, C. J.; O'Neill, S. A.; Parkin, I. P.; Peters, E. S. J. Mater. Chem., 2004, 14, 830-34
- (32) Suren Lewkebandara, T.; McKarns, P. J.; Haggerty, B. S.; Yap, G. P. A.; Rheingold, A. L.; Winter, C. H. *Polyhedron*, **1998**, *17*, 1-9

- (33) Carmalt, C. J.; Dinnage, C. W.; Parkin, I. P.; White, A. J. P.; Williams, D. J. *J. Chem. Soc.*, *Dalton Trans.*, **2001**, 2554-58
- (34) Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. *Nat. Phys.*, **2006**, *2*, 544-50
- (35) Xiao, R. C.; Lu, W. J.; Shao, D. F.; Li, J. Y.; Wei, M. J.; Lv, H. Y.; Tong, P.; Zhu, X. B.; Sun, Y. P. *J. Mater. Chem. C*, **2017**, *5*, 4167-73
- (36) Khan, J.; Nolen, C. M.; Teweldebrhan, D.; Wickramaratne, D.; Lake, R. K.; Balandin, A. A. Appl. Phys. Lett., 2012, 100, 043109
- (37) Sugawara, K.; Nakata, Y.; Shimizu, R.; Han, P.; Hitosugi, T.; Sato, T.; Takahashi, T. *ACS Nano*, **2016**, *10*, 1341-45
- (38) Duong, D. L.; Ryu, G.; Hoyer, A.; Lin, C.; Burghard, M.; Kern, K. ACS Nano, 2017, 11, 1034-40
- (39) Boscher, N. D.; Carmalt, C. J.; Parkin, I. P. Chem. Vap. Deposition, 2006, 12, 54-58
- (40) Benjamin, S. L.; de Groot, C. H.; Gurnani, C.; Hector, A. L.; Huang, R.; Ignatyev, K.; Levason, W.; Pearce, S. J.; Thomas, F.; Reid, G. *Chem. Mater.*, **2013**, *25*, 4719-24
- (41) Hector, A. L.; Levason, W.; Reid, G.; Reid, S. D.; Webster, M. Chem. Mater., 2008, 20, 5100-06
- (42) Levason, W.; Patel, B.; Reid, G.; Tolhurst, V.-A.; Webster, M. J. Chem. Soc., Dalton Trans., 2000, 3001-06
- (43) Hart, R.; Levason, W.; Patel, B.; Reid, G. J. Chem. Soc., Dalton Trans., 2002, 3153-59
- (44) Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. *Nat. Nanotechnol.*, **2014**, *9*, 768-79
- (45) Li, L.; Fang, X.; Zhai, T.; Liao, M.; Gautam, U. K.; Wu, X.; Koide, Y.; Bando, Y.; Golberg, D. *Adv. Mater.*, **2010**, *22*, 4151-56
- (46) Li, Y.; Kang, J.; Li, J. RSC Adv., **2014**, *4*, 7396-401
- (47) Blochl, P. E. Phys. Rev. B 1994, 50, 17953-79
- (48) Zhu, Y.; Wang, X.; Zhang, M.; Cai, C.; Xie, L. *Nano Res.*, **2016**, *9*, 2931-37
- (49) Zhang, M.; Zhu, Y.; Wang, X.; Feng, Q.; Qiao, S.; Wen, W.; Chen, Y.; Cui, M.; Zhang, J.; Cai, C.; Xie, L. *J. Am. Chem. Soc.*, **2015**, *137*, 7051-54
- (50) Zhang, W.; Huang, Z.; Zhang, W.; Li, Y. *Nano Res.*, **2014**, *7*, 1731-37
- (51) Wang, X.; Huang, L.; Jiang, X.-W.; Li, Y.; Wei, Z.; Li, J. J. Mater. Chem. C, **2016**, 4, 3143-48
- (52) Leem, M.; Lee, H.; Park, T.; Ahn, W.; Kim, H.; Lee, E.; Kim, H. *Appl. Surf. Sci.*, **2020**, 509, 144701
- (53) Zheng, B.; Wang, Z.; Qi, F.; Wang, X.; Yu, B.; Zhang, W.; Chen, Y. *Appl. Surf. Sci.*, **2018**, 435, 563-67
- (54) Zheng, X.-g.; Kuriyaki, H.; Hirakawa, K. J. Phys. Soc. Jpn., **1989**, 58, 622-26
- (55) Amberg, M. Solid State Ionics, **1996**, 84, 313-21
- (56) Mleczko, M. J.; Zhang, C.; Lee, H. R.; Kuo, H. H.; Magyari-Kope, B.; Moore, R. G.; Shen, Z. X.; Fisher, I. R.; Nishi, Y.; Pop, E. *Sci. Adv.*, **2017**, *3*, e1700481
- (57) Aoki, Y.; Sambongi, T.; Levy, F.; Berger, H. J. Phys. Soc. Jpn., **1996**, 65, 2590-93
- (58) Harbrecht, B.; Conrad, M.; Degen, T.; Herbertz, R. J. Alloys Compd., 1997, 255, 178-82
- (59) Bhavsar, D. N.; Jani, A. R. Optoelectronics Adv. Mater., 2014, 16, 215-20
- (60) Feng, J.; Sun, X.; Wu, C.; Peng, L.; Lin, C.; Hu, S.; Yang, J.; Xie, Y. *J. Am. Chem. Soc.*, **2011**, *133*, 17832-38
- (61) Terashima, K.; Sato, T.; Komatsu, H.; Takahashi, T.; Maeda, N.; Hayashi, K. *Phys. Rev. B*, **2003**, *68*, 155108
- (62) Eaglesham, D. J.; Withers, R. L.; Bird, D. M. *J. Phys. C: Solid State Phys.*, **1986**, *19*, 359-67
- (63) Giambattista, B.; Slough, C. G.; McNairy, W. W.; Coleman, R. V. *Phys. Rev. B* **1990,** *41*, 10082-103
- (64) Brauer, H. E.; Ekvall, I.; Olin, H.; Starnberg, H. I.; Wahlström, E.; Hughes, H. P.; Strocov, V. N. *Phys. Rev. B*, **1997**, *55*, 10022-26
- (65) DiSalvo, F. J.; Waszczak, J. V. Phys. Rev. B, 1981, 23, 457-61
- (66) Therese, H. A.; Rocker, F.; Reiber, A.; Li, J.; Stepputat, M.; Glasser, G.; Kolb, U.; Tremel, W. *Angew. Chem. Int. Ed.*, **2004**, *44*, 262-65
- (67) Homyonfer, M.; Alperson, B.; Rosenberg, Y.; Sapir, L.; Cohen, S. R.; Hodes, G.; Tenne, R. J. Am. Chem. Soc., 1997, 119, 2693-98

- (68) Murphy, D. W.; Cros, C.; Di Salvo, F. J.; Waszczak, J. V. Inorg. Chem., 2002, 16, 3027-31
- (69) Feng, J.; Peng, L.; Wu, C.; Sun, X.; Hu, S.; Lin, C.; Dai, J.; Yang, J.; Xie, Y. *Adv. Mater.*, **2012**, *24*, 1969-74
- (70) Xue, Y.; Zhang, Y.; Wang, H.; Lin, S.; Li, Y.; Dai, J. Y.; Lau, S. P. *Nanotechnology*, **2020**, *31*, 145712
- (71) Liu, H.; Xue, Y.; Shi, J. A.; Guzman, R. A.; Zhang, P.; Zhou, Z.; He, Y.; Bian, C.; Wu, L.; Ma, R.; Chen, J.; Yan, J.; Yang, H.; Shen, C. M.; Zhou, W.; Bao, L.; Gao, H. J. *Nano Lett.*, **2019**, *19*, 8572-80
- (72) Dash, J. K.; Chen, L.; Dinolfo, P. H.; Lu, T.-M.; Wang, G.-C. *J. Phys. Chem. C*, **2015**, *119*, 19763-71
- (73) Morosin, B. Acta Cryst. B, 1974, 30, 551-52
- (74) Peters, E. S.; Carmalt, C. J.; Parkin, I. P.; Tocher, D. A. Eur. J. Inorg. Chem., 2005, 4179-85
- (75) Carmalt, C. J.; Manning, T. D.; Parkin, I. P.; Peters, E. S.; Hector, A. L. *J. Mater. Chem.*, **2004**, *14*, 290-91
- (76) Carmalt, C. J.; Manning, T. D.; Parkin, I. P.; Peters, E. S.; Hector, A. L. *Thin Solid Films*, **2004**, *469*, 495-99
- (77) Zhao, S.; Hotta, T.; Koretsune, T.; Watanabe, K.; Taniguchi, T.; Sugawara, K.; Takahashi, T.; Shinohara, H.; Kitaura, R. *2D Mater.*, **2016**, *3*, 025027
- (78) Yanase, T.; Watanabe, S.; Weng, M.; Wakeshima, M.; Hinatsu, Y.; Nagahama, T.; Shimada, T. *Cryst. Growth Des.*, **2016**, *16*, 4467-72
- (79) Ge, W.; Kawahara, K.; Tsuji, M.; Ago, H. *Nanoscale*, **2013**, *5*, 5773-78
- (80) Carmalt, C. J.; Peters, E. S.; Parkin, I. P.; Manning, T. D.; Hector, A. L. *Eur. J. Inorg. Chem.*, **2004**, 4470-76
- (81) McKarns, P. J.; Heeg, M. J.; Winter, C. H. *Inorg. Chem.*, **1998**, *37*, 4743-47
- (82) Benjamin, S. L.; Chang, Y. P.; Gurnani, C.; Hector, A. L.; Huggon, M.; Levason, W.; Reid, G. *Dalton Trans.*, **2014**, *43*, 16640-48
- (83) Chang, Y. P.; Levason, W.; Light, M. E.; Reid, G. Dalton Trans., 2016, 45, 16262-74
- (84) Nowak, I.; Page, E. M.; Rice, D. A.; Richardson, A. D.; French, R. J.; Hedberg, K.; Ogden, J. S. *Inorg. Chem.*, **2003**, *42*, 1296-305
- (85) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G. Dalton Trans., 2017, 46, 9824-32
- (86) Boscher, N. D.; Carmalt, C. J.; Parkin, I. P. Eur. J. Inorg. Chem., 2006, 6, 1255-59
- (87) Huang, Y. H.; Chen, R. S.; Zhang, J. R.; Huang, Y. S. *Nanoscale*, **2015**, *7*, 18964-70
- (88) Hitz, E.; Wan, J.; Patel, A.; Xu, Y.; Meshi, L.; Dai, J.; Chen, Y.; Lu, A.; Davydov, A. V.; Hu, L. *ACS Appl. Mater. Interfaces*, **2016**, *8*, 11390-95
- (89) Boscher, N. D.; Carmalt, C. J.; Parkin, I. P. Appl. Surf. Sci., 2010, 256, 3178-82
- (90) Bannister, R. D.; Levason, W.; Reid, G.; Robinson, F. Polyhedron, 2019, 169, 129-34
- (91) Renteria, J.; Samnakay, R.; Jiang, C.; Pope, T. R.; Goli, P.; Yan, Z.; Wickramaratne, D.; Salguero, T. T.; Khitun, A. G.; Lake, R. K.; Balandin, A. A. *J. Appl. Phys.*, **2014**, *115*, 034305
- (92) Papageorgopoulos, D. C.; Saltas, V.; Papageorgopoulos, C. A.; Tonti, D.; Pettenkofer, C.; Jaegermann, W. *Appl. Surf. Sci.*, **2000**, *161*, 347-54
- (93) Deng, Y.; Lai, Y.; Zhao, X.; Wang, X.; Zhu, C.; Huang, K.; Zhu, C.; Zhou, J.; Zeng, Q.; Duan, R.; Fu, Q.; Kang, L.; Liu, Y.; Pennycook, S. J.; Wang, X. R.; Liu, Z. *J. Am. Chem. Soc.*, **2020**, *142*, 2948-55
- (94) Zeng, H.; Dai, J.; Yao, W.; Xiao, D.; Cui, X. Nat. Nanotechnol., 2012, 7, 490-93
- (95) Xiang, Q.; Yu, J.; Jaroniec, M. J. Am. Chem. Soc., 2012, 134, 6575-78
- (96) Wang, J.; Liu, J.; Zhang, B.; Ji, X.; Xu, K.; Chen, C.; Miao, L.; Jiang, J. *Phys. Chem. Phys.*, **2017**, *19*, 10125-32
- (97) Lee, K.; Gatensby, R.; McEvoy, N.; Hallam, T.; Duesberg, G. S. *Adv. Mater.*, **2013**, *25*, 6699-702
- (98) Zhang, G.; Zhang, Y.-W. J. Mater. Chem. C, 2017, 5, 7684-98
- (99) Bachmatiuk, A.; Abelin, R. F.; Quang, H. T.; Trzebicka, B.; Eckert, J.; Rummeli, M. H. *Nanotechnology*, **2014**, *25*, 365603
- (100) Jung, C.; Kim, S. M.; Moon, H.; Han, G.; Kwon, J.; Hong, Y. K.; Omkaram, I.; Yoon, Y.; Kim, S.; Park, J. *Sci. Rep.*, **2015**, *5*, 15313
- (101) Shaw, J. C.; Zhou, H.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. *Nano Res.*, **2015**, *7*, 511-17

- (102) Krustok, J.; Raadik, T.; Jaaniso, R.; Kiisk, V.; Sildos, I.; Marandi, M.; Komsa, H. P.; Li, B.; Zhang, X.; Gong, Y.; Ajayan, P. M. *Appl. Phys. Lett.*, **2016**, *109*, 253106
- (103) Mitioglu, A. A.; Galkowski, K.; Surrente, A.; Klopotowski, L.; Dumcenco, D.; Kis, A.; Maude, D. K.; Plochocka, P. *Phys. Rev. B*, **2016**, *93*, 165412
- (104) Wang, B. B.; Ostrikov, K.; van der Laan, T.; Zheng, K.; Shao, R.; Zhu, M. K.; Zou, S. S. *RSC Adv.*, **2016**, *6*, 37236-45
- (105) Umrao, S.; Jeon, J.; Jeon, S. M.; Choi, Y. J.; Lee, S. Nanoscale, 2017, 9, 594-603
- (106) Wang, B. B.; Zheng, K.; Zhong, X. X.; Gao, D.; Gao, B. J. Alloys Compd., **2017**, 695, 27-34
- (107) Park, W.; Baik, J.; Kim, T. Y.; Cho, K.; Hong, W. K.; Shin, H. J.; Lee, T. *ACS Nano*, **2014**, 8, 4961-68
- (108) van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. *Nat. Mater.*, **2013**, *12*, 554-61
- (109) Schmidt, H.; Wang, S.; Chu, L.; Toh, M.; Kumar, R.; Zhao, W.; Neto, A. H.; Martin, J.; Adam, S.; Ozyilmaz, B.; Eda, G. *Nano Lett.*, **2014**, *14*, 1909-13
- (110) Shi, Y.; Zhou, W.; Lu, A. Y.; Fang, W.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J.; Idrobo, J. C.; Kong, J. *Nano Lett.*, **2012**, *12*, 2784-91
- (111) Wu, J.; Schmidt, H.; Amara, K. K.; Xu, X.; Eda, G.; Ozyilmaz, B. *Nano Lett.*, **2014**, *14*, 2730-34
- (112) Zafar, A.; Nan, H.; Zafar, Z.; Wu, Z.; Jiang, J.; You, Y.; Ni, Z. Nano Res., 2016, 10, 1608-17
- (113) Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X.; Shi, G.; Lei, S.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. *Nat. Mater.*, **2013**, *12*, 754-59
- (114) Zhang, W.; Li, X.; Jiang, T.; Song, J.; Lin, Y.; Zhu, L.; Xu, X. *Nanoscale*, **2015**, *7*, 13554-60
- (115) O'Brien, M.; McEvoy, N.; Hanlon, D.; Hallam, T.; Coleman, J. N.; Duesberg, G. S. *Sci. Rep.*, **2016**, *6*, 19476
- (116) Cheon, J.; Gozum, J. E.; Girolami, G. S. Chem. Mater., **1997**, *9*, 1847-53
- (117) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G.; Whittam, J. *Dalton Trans.*, **2018**, *47*, 2406-14
- (118) Boscher, N. D.; Carmalt, C. J.; Palgrave, R. G.; Gil-Tomas, J. J.; Parkin, I. P. *Chem. Vap. Deposition*, **2006**, *12*, 692-98
- (119) Gao, Y.; Liu, Z.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z.; Ma, X. L.; Peng, L. M.; Cheng, H. M.; Ren, W. *Nat. Commun.*, **2015**, *6*, 8569
- (120) Huang, J. K.; Pu, J.; Hsu, C. L.; Chiu, M. H.; Juang, Z. Y.; Chang, Y. H.; Chang, W. H.; Iwasa, Y.; Takenobu, T.; Li, L. J. *ACS Nano*, **2014**, *8*, 923-30
- (121) Richey, N. E.; Haines, C.; Tami, J. L.; McElwee-White, L. *Chem. Commun.*, **2017**, *53*, 7728-31
- (122) Zhou, J.; Liu, F.; Lin, J.; Huang, X.; Xia, J.; Zhang, B.; Zeng, Q.; Wang, H.; Zhu, C.; Niu, L.; Wang, X.; Fu, W.; Yu, P.; Chang, T. R.; Hsu, C. H.; Wu, D.; Jeng, H. T.; Huang, Y.; Lin, H.; Shen, Z.; Yang, C.; Lu, L.; Suenaga, K.; Zhou, W.; Pantelides, S. T.; Liu, G.; Liu, Z. Adv. Mater., 2017, 29, 1603471
- (123) Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D.-H.; Sung, H.-J.; Kan, M.; Kang, H.; Hwang, J.-Y.; Kim, S. W.; Yang, H.; Chang, K. J.; Lee, Y. H. *Nat. Phys.*, **2015**, *11*, 482-86
- (124) Park, J. C.; Yun, S. J.; Kim, H.; Park, J. H.; Chae, S. H.; An, S. J.; Kim, J. G.; Kim, S. M.; Kim, K. K.; Lee, Y. H. *ACS Nano*, **2015**, *9*, 6548-54
- (125) Naylor, C. H.; Parkin, W. M.; Ping, J.; Gao, Z.; Zhou, Y. R.; Kim, Y.; Streller, F.; Carpick, R. W.; Rappe, A. M.; Drndic, M.; Kikkawa, J. M.; Johnson, A. T. *Nano Lett.*, **2016**, *16*, 4297-304
- (126) Li, J.; Cheng, S.; Liu, Z.; Zhang, W.; Chang, H. J. Phys. Chem. C, 2018, 122, 7005-12
- (127) Schutte, W. J.; De Boer, J. L.; Jellinek, F. J. Solid State Chem., 1987, 70, 207-09
- (128) Thompson, A. C.; Vaughan, D. *X-ray data booklet*; Lawrence Berkeley National Laboratory, University of California: Berkely, CA, 2001.
- (129) Huang, J.; Wang, X.; Li, J.; Cao, L.; Xu, Z.; Wei, H. J. Alloys Compd., 2016, 673, 60-66
- (130) Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M. *Sci. Rep.*, **2013**, *3*, 1755

Chapter 5

(131) Nayak, A. P.; Yuan, Z.; Cao, B.; Liu, J.; Wu, J.; Moran, S. T.; Li, T.; Akinwande, D.; Jin, C.; Lin, J. F. *ACS Nano*, **2015**, *9*, 9117-23

Coordination Chemistry of MoOCl₃ and MoOCl₄ with Neutral Donor Ligands

6.1 Introduction

Following the investigation into the coordination complexes of WECl₄ (E = O or S) with a range of neutral ligands (see Chapters 2 to 4), the chemistry of the molybdenum(VI) analogue, MoOCl₄, with a range of comparative neutral donor ligands is described in this Chapter. A series of analogous molybdenum(V) complexes, MoOCl₃, with hard donors will be isolated and compared to products from reactions of MoOCl₄. Coordination complexes of MoOCl₄ have not been reported in the literature, as the metal centre is less stable than the tungsten(VI) analogue and is very susceptible to reduction upon addition of ligands.

A subsequent series of MoOCl₃ complexes with bi- and mono-dentate chalcogenoether ligands will also be explored, including the aim to isolate the first molybdenum(V) telluroether complexes. This chapter details the attempted synthesis of the first examples of coordination complexes of MoOCl₄, along with characterisation of a systematic series of MoOCl₃ coordination complexes with a range of neutral hard and soft donor ligands and comparisons with their tungsten analogues.

6.2 High Valent Early Transition Metal Coordination Complexes

Much of the coordination chemistry of early transition high valent coordination complexes originates pre-1980, meaning there are few systematic studies that investigate the behaviour of these metal species towards particular ligand classes. Coordination complexes of WX_6 (X = F, Cl or Br) with chalcogenoethers, phosphine and arsine donors have been discussed in Chapters 2, 3 and 4, some further examples are included here.

The pentafluorides, MF_5 (M = Nb or Ta), are very hydroscopic powders and their respective coordination chemistry has been quite extensively investigated and summarised in a recent review. MF_5 reactions with chalcogenoethers has been reviewed in Chapter 4.

$$F = \begin{bmatrix} F_{II} & F_{I$$

Figure 6.1: Scheme showing coordination complexes of tungsten fluoride complexes. WF₆, ²⁻⁶ WOF₄, ^{7,8} and WO₂F₂, ^{7,9,10}

Reactions of MF₅ and neutral donor ligands typically form complexes of either six-coordinate $[MF_5(L)]$, seven-coordinate $[MF_5(L)]$ or eight-coordinate $[MF_4(L_4)][MF_6]$. Neutral complexes, $[MF_5(L)]$ and $[MF_5(L-L)]$ (L = dmf, dmso, OPR₃; L-L = 2,2'-bipy, 1,10-phen and 4,4'-bipy), have all been reported, although much of the literature is early and spectroscopic characterisation is limited. Nore recently, $[MF_4(py)_4][MF_6]$ have been isolated and structurally characterised, with structures revealing a distorted square antiprismatic geometry; also reported is $[MF_4(2,2'-bipy)_2][MF_6]$. The same study described complexes with the softer phosphine ligand, dppe, which forms $[MF_4(dppe)_2][MF_6]$, also showing an eight-coordinate cation with a octahedral anion. 18

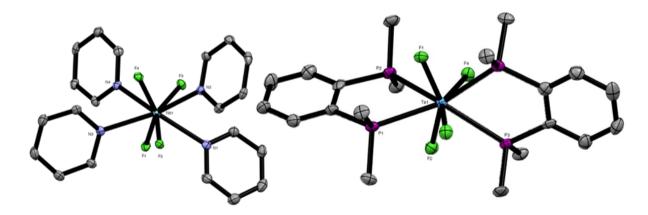


Figure 6.2: Crystal structures of $[NbF_4(py)_4]^+$ (left) and $[TaF_4(o-C_6H_4(PMe_2)_2)_2]^+$ (right). Anions and hydrogen atoms omitted for clarity. 18,19

Further reports in the literature include the complexes $[MF_4(R_2P(CH_2)_2PR_2)_2][MF_6]$ and $[MF_4(o-C_6H_4(EMe_2)_2)_2][MF_6]$ (M = Nb or Ta; R = Me or Et; E = P or As), which were isolated as orange or white solids and crystal structures revealed the cation in a dodecahedral geometry. As discussed in Chapter 3, the reaction of WF₆ and o-C₆H₄(EMe₂)₂ forms $[WF_4(o$ -C₆H₄(EMe₂)₂)₂]²⁺ cations² and

similar cations, $[WCl_4(o-C_6H_4(EMe_2)_2)_2]^+$, have been crystallographically characterised, formed from reaction of WECl₄ and o-C₆H₄(EMe₂)₂ in this work (Chapter 3). A subsequent study showed examples of MF₅ with monodentate phosphine and arsine donor ligands in the form of $[MF_5(L)]$ ($L = AsR_3$, PPh₃ and PMe₃), all of which were extremely moisture sensitive; attempts using the pnictogen ligand SbMe₃ with a heavier donor atom were unsuccessful.²⁰ The complexes were shown to only form under specific reaction conditions and were very solvent dependent (only diethyl ether being successful). Reactions in MeCN found the ligands were not competitive enough to displace the MeCN and in CH₂Cl₂ the major products were $[PR_3H][MF_6]$. Chloride analogues, $[MCl_4(R_2P(CH_2)_2PR_2)_2][MCl_6]$ and $[MCl_4(o-C_6H_4(EMe_2)_2)_2][MCl_6]$ (R = Me or Et; E = P or As), have been isolated and showed little difference in behaviour compared to the fluorides.²⁰ The complex $[TaCl_5(PPh_3)]^{21}$ has been reported to form under mild conditions and has recently been structurally characterised, while harder ligand complexes $[MCl_5(E'PPh_3)]$ (E' = O, S or Se) are known and some structurally characterised.²²⁻²⁴

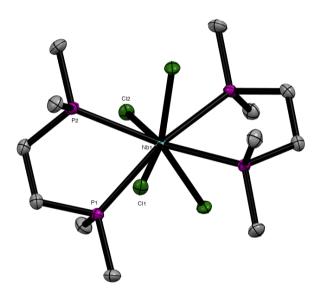


Figure 6.3: Crystal structure of [NbCl₄(Me₂P(CH₂)₂PMe₂)₂]. Hydrogen atoms omitted for clarity. ²⁵

A series of NbCl₄ and NbBr₄ complexes with bidentate phosphines and thioethers (Chapter 4) have been isolated and the eight-coordinate complexes [NbCl₄(L-L)₂] (L-L = o-C₆H₄(PMe₂)₂, R₂P(CH₂)₂PR₂; R = Me or Et) were isolated as green powders.²⁵ The compounds with ethylene backbone ligands were shown as having a distorted square antiprism geometry, whereas [NbCl₄(o-C₆H₄(PMe₂)₂)₂] is distorted dodecahedral. Within the same study unstable 1:1 metal to ligand complexes were isolated, but could not be structurally characterised. It is tentatively suggested that the complexes are the chloride bridged dimers, [(NbCl₂)₂(μ -Cl)₄(L-L)₂] based on elemental composition, magnetic behaviour and structural analgoues.²⁵⁻²⁸ There are a small number of NbCl₄ complexes with monodentate phosphines, six-coordinate [NbCl₄(PEtPh₂)₂]²⁶ and seven-coordinate [NbCl₄(PMe₃)₃]²⁹ and [NbBr₄(PMe₂Ph)₃]³⁰ have been isolated. The dinuclear complex [(NbCl₂)₂(μ -Cl)₂(μ -Cl)₂(μ -Cl)₄(PMe₃)₃]²⁹ and [NbBr₄(PMe₂Ph)₃]³⁰ have been isolated. The dinuclear complex [(NbCl₂)₂(μ -Cl)₂(μ -Cl)₄(PMe₃)₃]²⁹ and [NbBr₄(PMe₂Ph)₃]³⁰ have been isolated.

Cl)₄(PMe₃)₄] has a crystalographically confirmed Nb-Nb bond and dissociates into a six-coordinate monomer in solution. Reported literature of MX_5 and MX_4 (M = Nb or Ta) complexes with chalcogenoethers were reviewed in Chapter 4.

6.2.1 Coordination Complexes of Transition metal(V) Oxohalides

There are no known neutral coordination complexes of TaOF₃, MoOF₃ or WOF₃, however, NbOF₃ has been shown to form neutral complexes with a selection of hard donor ligands.³¹ The complex [NbOF₃(OPPh₃)₂] was shown to form *via* reaction of [NbF₅(OPPh₃)] and O(SiMe₃)₂ in CH₂Cl₂, resulting in a white precipitate. Subsequent reactions with NbF₅, O(SiMe₃)₂ and ligands produced a more extended series, including [NbOF₃(L)₂] or [NbOF₃(L-L)] (L = OPMe₃, dmso; L-L = dppmO₂, 2,2°-bipy, 1,10-phen and tmeda), which were isolated as white, mildly hydrolytically sensitive powders.³¹ A full range of chloride analogues, [NbOCl₃(L)₂] or [NbOCl₃(L-L)], were also isolated under similar conditions and structural investigations showed little difference in the Nb=O bond lengths between different halides. All structures show six-coordinate niobium in distorted octahedral geometry with the ligand *trans* to the Nb=O bond. The main difference between the halides is how NbOF₃ and NbOCl₃ behave as acceptors towards weaker donor ligands, with complexes of NbOCl₃ and ethers or nitriles (THF, MeCN and MeO(CH₂)₂OMe) forming stable complexes, while NbOF₃ analogues producing intractable ligand-free products, assumed to be mainly polymeric NbOF₃.³²⁻³⁴

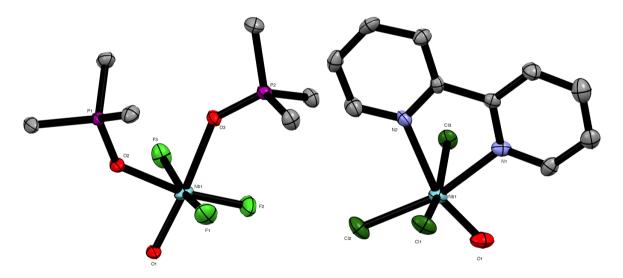


Figure 6.4: Crystal structures of [NbOF₃(OPMe₃)₂] (left) and [NbOCl₃(2,2'-bipy)] (right). Hydrogen atoms and solvent omitted for clarity.³¹

NbOCl₃ has been reported to form complexes with tertiary mono- and bi-dentate phosphines; a series of six-coordinate complexes [NbOCl₃(L)₂] (L = PPh₃, PMePh₂, PMe₃ or PEt₃) have been isolated using stoichiometric amounts of ligand.³⁵ Interestingly, when using less sterically demanding and strong σ -donors (PMe₃ and PMe₂Ph), seven-coordinate complexes [NbOCl₃(L)₃] form, ^{35,36} with the

crystal structures revealing a distorted capped octahedral with a *fac* arrangement of chlorides; this is a similar coordination environment to that seen in [NbCl₄(PMe₃)₃].²⁹ Two pairs of apparently isomorphous/isostructural crystals of [NbECl₃(PMe₃)₃] (E = O or S) have been reported (green and yellow; orange and green) as examples of "bond-length isomerism", but subsequently it was suggested to result from co-crystallised [NbCl₄(PMe₃)₃], which could explain the different colours and the differences in reported bond lengths.^{37,38} Many examples of "bond-length isomerism" have now been disproved and the concept is now disregarded by most.³⁷

In contrast to NbOCl₃, TaOCl₃ has been shown to be considerably less stable³⁹ and forms readily from trace hydrolysis of TaCl₅ or by oxygen abstraction from oxo-ligands.^{16,40,41} Crystallographic examples of mononuclear TaOCl₃ complexes are limited, with considerably more examples of dinuclear oxide bridged structures, [LCl₄Ta(μ-O)TaCl₄L]²² or [(L-L)Cl₃Ta(μ-O)TaCl₅].⁴² A systematic series of [TaOCl₃(L)₂] and [TaOCl₃(L-L)] complexes with a range of hard donor ligands (1,10-phen, 2,2'-bipy, OPPh₃, dppmO₂, dppeO₂ and PPO₂) has been reported, all of which were shown to be six-coordinate, crystallographic studies showed the hard donor ligands positioned *trans* to the Ta=O bond and with most structures exhibiting O/Cl disorder.⁴³

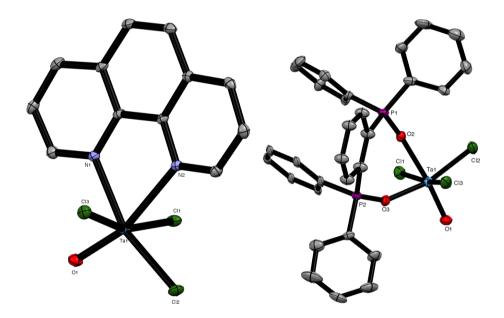


Figure 6.5: Crystal structures of [TaOCl₃(2,2'-bipy)] (left) and [TaOCl₃(PPO₂)] (right) Hydrogen atoms omitted for clarity.⁴³

The compound MoOCl₃ has been investigated quite extensively in the early literature. ⁴⁴ Initial reports of simple complexes of MoOCl₃ with ethers showed the formation of [MoOCl₃(L)] and [MoOCl₃(L')₂] (L = 1,4-diox, 1,4-thiox, OR₂; L' = THF, tht, THP and thiane), all isolated from the reaction of MoCl₅ and excess ligand. ⁴⁵ It is likely the 1:1 adducts are chloride bridged dimers, [(LMoOCl₂)₂(μ -Cl)₂], and the 2:1 adducts are six-coordinate monomers. Following this, MoOCl₃ was reacted with aliphatic nitriles, and subsequently [MoOCl₃(MeCN)₂] was reacted with 2,2'-bipy or

1,10-phen, which displaced the MeCN, forming the six-coordinate [MoOCl₃(L-L)]. ⁴⁶ [MoOCl₃(OPPh₃)₂] has been isolated, as well as a range of [MoOBr₃(L)₂] (L = OPPh₃, OAsPh₃, MeCN) analogues. ^{47,48} A short investigation into the reaction of [MoOCl₃(THF)₂] and $R_2P(S)(CH_2)_2P(S)R_2$ (R = Me or Et) showed the formation of two different types of complex; the first, [MoOCl₃(Et₂P(S)(CH₂)₂P(S)Et₂)], forming a six-coordinate chelated species, ⁴⁹ the second, a seven-coordinate bridged species, [(MoOCl₃(dmpeS₂))₂(μ -dmpeS₂)]. The difference in behaviour can be attributed to the steric requirements of the ligand. ⁴⁹ An investigation into the use of open-chain tetrathioether ligands with MoOCl₃ showed the formation of a six-coordinate species similar to the isolated structure of [MoOCl₃(MeS(CH₂)₂SMe)] (Figure 6.6). ⁵⁰

Figure 6.6: Scheme showing the synthesis of six-coordinate MoOCl₃ species with open chain thioethers.⁵⁰

Two of the sulfur donors have coordinated to one MoOCl₃, forming the six-coordinate species. The alkyl backbone forms a bridge, whereas the other two donor atoms coordinate to a different molybdenum(V) centre.⁵⁰ A small number of bidentate thioether complexes with MoOCl₃ have been reported, [MoOCl₃(RS(CH₂)₂SR)] (R = Me or Et), isolated from reaction of [MoOCl₃(THF)₂] and ligand.⁵¹ Prior to this work, there was a single report of a selenoether complex, [MoOCl₃(MeSe(CH₂)₃SeMe)] although characterisation is limited.⁵² Complexes of MoOCl₃ with mono- and bi-dentate phosphine and arsine ligands has been reviewed in Chapter 3.⁵³

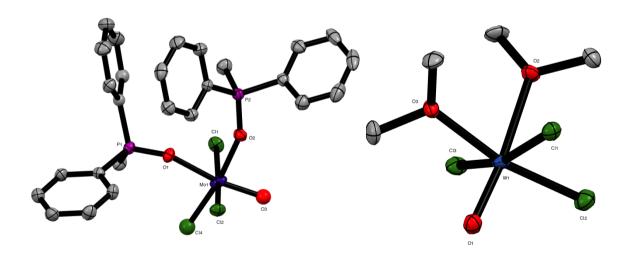


Figure 6.7: Crystals structures of [MoOCl₃(OPPh₂Me)₂] (left) and [WOCl₃(OMe₂)₂] (right). Hydrogen atoms omitted for clarity.^{54,55}

Complexes of WOCl₃ have been equally extensively investigated despite WOCl₃ being more difficult to synthesise. WOCl₃ complexes with nitrile donors or ethers in both 1:2 and 1:1 ratios were isolated

initially. WOCl₃(2,2'-bipy)]; reaction of [WOCl₃(2,2'-bipy)]; reaction of [WOCl₃(THF)₂] and 2,2'-bipy in benzene or 2,2'-bipy and WOCl₄ in benzene/propionitrile, with both reports having concurring data. Opplexes of [WOCl₃(L)₂] have been shown as some of the products from reactions of WCl₆ and ethers. He complex, [WOCl₃(OPPh₃)₂], has been reported from stoichiometric reaction of WCl₅ and OPPh₃ in MeCN, confirmed by a crystal structure and elemental analysis. However, it is unlikely that WCl₅ abstracted an oxygen from OPPh₃ and it more likely originates from adventitious oxygen in the atmosphere or partial hydrolysis. Like MoOCl₃, WOCl₃ formed two different types of complex when reacting with R₂P(S)(CH₂)₂P(S)R₂ (R = Me or Et), [WOCl₃(Et₂P(S)(CH₂)₂P(S)Et₂)] and [(WOCl₃(dmpeS₂))₂(μ -dmpeS₂)].

Open chain thioethers have also been reacted with WOCl₃, when using MoOCl₃ a six-coordinate thioether bridged complex was reported, whereas WOCl₃ is reported as either a seven-coordinate tristhioether mononuclear complex or a six-coordinate bis-thioether complex (Figure 6.8).⁵⁰ It was tentatively assigned as the seven-coordinate species based on the UV-Vis spectra and magnetic moment measurements.

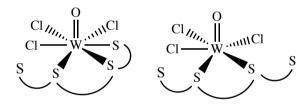


Figure 6.8: Proposition of the structure of WOCl₃ with MeS(CH₂)₂S(CH₂)₂S(CH₂)₂SMe.

An investigation into the reaction of WOCl₄ and a range of bidentate oxygen donor ligands $(RO(CH_2)_2OR; R = Me, Et, ^nPr \text{ or Ph; } o\text{-}C_6H_4(OMe_2)_2)$ showed all reactions with a 1:1 ratio produced $[WOCl_3(O(CH_2)_2OR)]$ or $[WOCl_3(o\text{-}C_6H_4(OMe)(O))]$ by cleavage of one R-O link, except the phenyl substituted ligand, which formed $[(WOCl_4)_2(PhO(CH_2)_2OPh)]$. For Complexes of WOCl₃ with monoand bi-dentate phosphine, arsine and stibine donors have also been reviewed in Chapter 3.

6.2.2 Coordination Complexes of Transition Metal(V) Thiohalides

Investigations into metal(V) thiohalide coordination complexes are much less detailed; coordination complexes of MSCl₃ (M = Nb or Ta) with chalcogenoethers has been reviewed in Chapter 4. The complexes, [NbSCl₃(L)₂] (L = OPPh₃, MeCN, OP(NMe₂)₃ or OSPh₂), have been shown to form from stoichiometric reaction of NbSCl₃ and ligand. 59,60

Similar tantalum analogues, $[TaSCl_3(L)_2]$ (L = MeCN or OPPh₃), have been isolated as six-coordinate species. Bidentate ligands also formed stable complexes, $[TaSCl_3(L-L)]$ (L-L = 2,2'-bipy, 1,10-phen, dppmO₂, dppeO₂ or PPO₂). ⁴³ Crystallographic investigations show mononuclear octahedral tantalum

with Ta=S *trans* to the neutral ligand, and many of the structures show S/Cl disorder *trans* ligand due to sulfur and chloride being difficult to distinguish *via* X-ray diffraction.⁴³ MSCl₃ (M = Nb or Ta) complexes with thioethers are reviewed in Chapter 4.

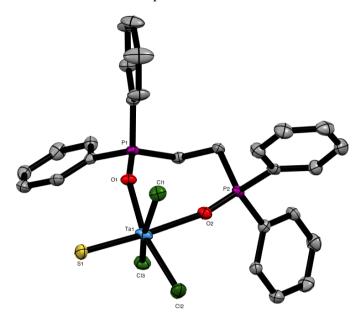


Figure 6.9: Crystal structure of [TaSCl₃(dppeO₂)]. Hydrogen atoms omitted for clarity.⁴³

In contrast to MoOCl₃ (which is chloride bridged) MoSCl₃ contains $S_2^{2^-}$ units, which are difficult to cleave. This has resulted in no crystallographically-verified [MoSCl₃(L)₂] or [MoSCl₃(L-L)] complexes.⁶¹ Prolonged refluxing of strongly coordinating solvents with MoSCl₃ is suggested to form either [MoSCl₃(L)₂] or [MoSCl₃(L)] (L = MeCN or py), but spectroscopic characterisation is extremely limited as there are not many spectroscopic handles.⁶² The Mo(VI) species, MoSCl₄, is not known.

Reports of WSCl₃ complexes are more numerous than those of molybdenum analogues, but most form from the reduction of WSCl₄. The complex [WSCl₃(OPPh₃)₂] was isolated from reaction of WSCl₄ and OPPh₃ from a MeCN/benzene solution. There are no reports of direct synthesis of [WSCl₃(L)₂] from WSCl₃ and ligands, even with strongly coordinating ligands, as WSCl₃ is strongly polymeric and inert. See the second strongly coordinated are not reports of direct synthesis of [WSCl₃(L)₂] from WSCl₃ and ligands, even with strongly coordinating ligands, as WSCl₃ is strongly polymeric and inert.

6.2.3 Aims

The aim of this chapter is to develop a systematic series of MoOCl₃ complexes with a range of neutral donor ligands with a particular emphasis on thio-, seleno- and telluro-ether ligands, allowing comparisons to be drawn to the coordination complexes of WECl₄ (E = O or S) isolated in Chapters 2 to 4 and reported literature. The reaction of MoOCl₄ with various ligands will also be investigated and compared to MoOCl₃ complexes, although molybdenum(VI) will likely reduce to paramagnetic

molybdenum(V). Complexes will be characterised by IR spectroscopy, UV-Vis spectroscopy, elemental analysis, magnetic moments and X-ray crystal structures.

6.3 Results and Discussion

The six-coordinate complexes [MoOCl₃(L-L)] or [MoOCl₃(L)₂] have been isolated in moderate to good yields, 34-87 %, from direct stoichiometric reaction of either [MoOCl₃(THF)₂] or MoOCl₃ (isolated from reaction of MoCl₅ and THF or O(SiMe₃)₂, respectively) and ligand in an appropriate non-coordinating solvent (CH₂Cl₂ or toluene).

Figure 6.10: Reaction scheme of the synthesis of [MoOCl₃(L-L)] and [(MoOCl₂L)₂(µ-Cl)₂] complexes from MoOCl₃.

Initially, [MoOCl₃(THF)₂] was re-prepared and used as the parent precursor, and the spectroscopic data were consistent with literature reports.⁶⁶ A number of green crystals were isolated from a CH₂Cl₂ solution of [MoOCl₃(THF)₂] (Figure 6.11); the unit cell and space group (P2₁2₁2₁) match the previously reported structure, but the new structure has slightly higher precision.⁶⁷

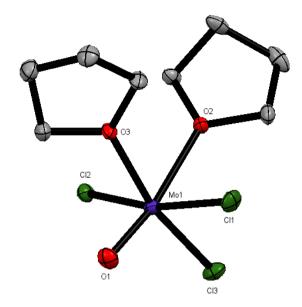


Figure 6.11: Crystal structure of [MoOCl₃(THF)₂] showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms are omitted for clarity. Note that the O/Cl exhibited disorder which was modelled with split atom sites and refined to occupancies of 0.10:0.90. Only the major form is shown.

[MoOCl ₃ (THF) ₂]			
Bond Lengths/ Å		Bond Ang	gles/ °
Mo1-Cl1	2.3541(6)	Cl1-Mo1-Cl3	89.08(4)
Mo1-Cl2	2.3746(6)	Cl1-Mo1-O1	99.4(4)
Mo1-Cl3	2.342(1)	Cl2-Mo1-Cl3	89.86(4)
Mol-Ol	1.79(2)	Cl2-Mo1-O2	89.03(4)
Mo1-O2	2.126(2)	Cl1-Mo1-O3	99.4(4)
Mo1-O3	2.294(2)		

Table 6.1: Selected bond lengths and angles for [MoOCl₃(THF)₂].

6.3.1 Complexes of MoOCl₃ and Chalcogenoethers

Reaction of [MoOCl₃(THF)₂] and ⁱPrS(CH₂)₂SⁱPr in CH₂Cl₂ resulted in the formation of [MoOCl₃(ⁱPrS(CH₂)₂SⁱPr)], which was isolated as a moisture sensitive, yellow solid. Under the same conditions the complex [MoOCl₃(MeS(CH₂)₃SMe)] was isolated from [MoOCl₃(THF)₂] and MeS(CH₂)₃SMe. The IR spectra showed both thioether ligands had fully displaced the coordinated THF (determined by the lack of C-O stretches in the IR spectra). Crystals were obtained for both complexes from a saturated solution of CH₂Cl₂/hexane, both the structures revealed six-coordinate molybdenum(V) with a distorted octahedral geometry (Figure 6.12).

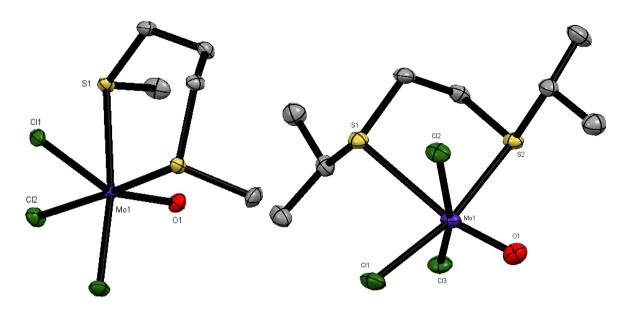


Figure 6.12: Crystal structures of [MoOCl₃(MeS(CH₂)₃SMe)] (left) and [MoOCl₃(PrS(CH₂)₂SⁱPr)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity.

[MoOCl ₃ (MeS(CH ₂) ₃ SMe)]			
Bond I	Bond Lengths/ Å		gles/°
Mo1-Cl1	2.4541(2)	Cl1-Mo1-Cl2	94.52(2)
Mo1-Cl2	2.3451(2)	Cl2-Mo1-O1	101.87(4)
Mo1-Cl3	2.3451(4)	Cl2-Mo1-Cl3	92.55(3)
Mol-Ol	1.674(3)	Cl3-Mo1-O1	101.87(4)
Mo1-S1	2.5388(3)	S1-Mo1-S1	97.95(2)
Mo1-S2	2.5388(2)		
	[MoOCl ₃ (iPrS(CH ₂) ₂ S ⁱ Pr)]	
Bond I	Lengths/ Å	Bond A	Angles/ °
Mo1-Cl1	2.3578(8)	Cl1-Mo1-Cl2	91.25(3)
Mo1-Cl2	2.3378(8)	Cl1-Mo1-O1	98.99(8)
Mo1-Cl3	2.3618(7)	Cl1-Mo1-Cl3	89.69(3)
Mo1-O1	1.671(2)	Cl2-Mo1-O1	98.99(8)
Mo1-S1	2.8298(8)	S1-Mo1-S2	78.83(2)
Mo1-S2	2.5665(8)		

Table 6.2: Selected bond lengths and angles for $[MoOCl_3(MeS(CH_2)_3SMe)]$ and $[MoOCl_3(^iPrS(CH_2)_2S^iPr)]$.

The structure of [MoOCl₃(MeS(CH₂)₃SMe)] shows the Mo=O bond is *trans* to chlorine and *cis* to the thioether ligand, this is slightly unusual for these types of complex, however this geometric isomer is also seen for the structure [WOCl₃(MeS(CH₂)₃SMe)] (Chapter 4) which is isostructural. The structure of [MoOCl₃(iPrS(CH₂)₂SiPr)] shows the thioether ligand lying *trans* to the Mo=O and one W-Cl bond with *mer* chlorines as is typical, this isomer is seen with most 5-membered ring chelate complexes.

There is no significant difference in Mo=O bond lengths between the two structures, indicating the different geometric isomers have little effect on the Mo=O bond lengths and the Mo-Cl and Mo-S bond lengths are also similar. Upon coordination of the thioethers, there is the possibility of the formation of a *meso* isomer and a pair of DL isomers. The structure of [MoOCl₃(MeS(CH₂)₃SMe)] exhibits the optically inactive *meso* form, whereas [MoOCl₃(i PrS(CH₂)₂S i Pr)] has a pair of DL isomers.

Following the successful isolation of [MoOCl₃(MeS(CH₂)₃SMe)] and [MoOCl₃(i PrS(CH₂)₂S i Pr)], the weaker σ -donor ligand PhS(CH₂)₂SPh was reacted with [MoOCl₃(THF)₂], however the thioether could not displace the THF, confirmed by the retention of THF in the IR spectroscopy, and crystals of unreacted [MoOCl₃(THF)₂] were identified from the solution of the product. Subsequently, MoOCl₃ itself was reacted with PhS(CH₂)₂SPh in CH₂Cl₂, producing the complex [MoOCl₃(PhS(CH₂)₂SPh)] as a yellow/brown coloured solid. Although the ligand is a considerably weaker σ - donor than the methyl substituted ligands and therefore cannot displace the THF, steric crowding around the molybdenum centre may also play a part in its failure to displace the THF.

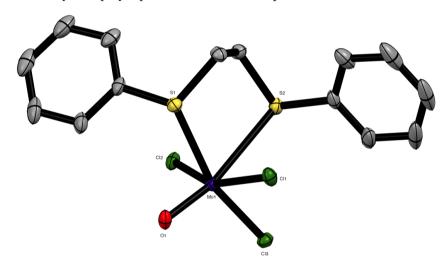


Figure 6.13: The structure of [MoOCl₃(PhS(CH₂)₂SPh)], showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity. Note that the O/Cl exhibited disorder which was modelled with split atom sites and refined to occupancies of 0.53:0.43. Only the major form is shown.

[MoOCl ₃ (PhS(CH ₂) ₂ SPh)]			
Bond Lengths/ Å		Bond Angles/ °	
Mo1-Cl1	2.324(1)	Cl1-Mo1-Cl3	89.93(7)
Mo1-Cl2	2.394(1)	Cl1-Mo1-O1	102.2(5)
Mo1-Cl3	2.312(3)	Cl2-Mo1-Cl3	91.28(7)
Mol-Ol	1.704(2)	Cl2-Mo1-S1	88.40(4)
Mo1-S1	2.532(1)	Cl1-Mo1-S2	81.49(4)
Mo1-S2	2.911(1)	S1-Mo1-S2	78.55(3)

Table 6.3: Selected bond lengths and angles for [MoOCl₃(PhS(CH₂)₂SPh)].

Orange crystals of [MoOCl₃(PhS(CH₂)₂SPh)] were isolated from a CH₂Cl₂ solution (Figure 6.13). The six-coordinate structure shows the same geometry as [MoOCl₃(ⁱPrS(CH₂)₂SⁱPr)] and [WOCl₃(MeS(CH₂)₂SMe)]. Strangely, the Mo-S bonds in [MoOCl₃(PhS(CH₂)₂SPh)] are very different (2.532(2) Å, 2.911(1) Å). Although asymmetry is seen in similar complexes, it is not usually this extreme.

Prior to this work there is a single report of MoOCl₃ and a selenoether ligand, [MoOCl₃(MeSe(CH₂)₃SeMe)],⁵² but with limited spectroscopic data, similar complexes were attempted in this work. Reaction of [MoOCl₃(THF)₂] and MeSe(CH₂)₂SeMe formed [MoOCl₃(MeSe(CH₂)₂SeMe)] which is surprising as selenoethers are considerably softer donors than thioethers so should be less competitive and struggle to displace the THF. However, using the *o*-phenylene backbone ligand *o*-C₆H₄(SeMe)₂ does not displace the THF under similar conditions. The IR spectrum reveals that the Mo=O stretch has shifted to a lower wavenumber but the C-O stretch from THF remains. Repeating the experiment with MoOCl₃ and *o*-C₆H₄(SeMe)₂ produced a pink/brown solid in the absence of THF, tentatively assigned [MoOCl₃(*o*-C₆H₄(SeMe)₂)]. The IR spectrum revealed a small coordination shift for Mo=O, while the UV-Vis spectrum confirms the molybdenum centre is still in the +V oxidation state, with two observed *d-d* bands.

The complex [MoOCl₃(MeSe(CH₂)₃SeMe)] was obtained from direct reaction of MoOCl₃ and MeSe(CH₂)₃SeMe and was isolated as a red/brown solid. The same reaction with MeSeCH₂SeMe produced an unidentifiable black oil, the failure to produce a chelate complex is likely owing to the fact that the bite angle would be too strained due to the short ligand backbone.

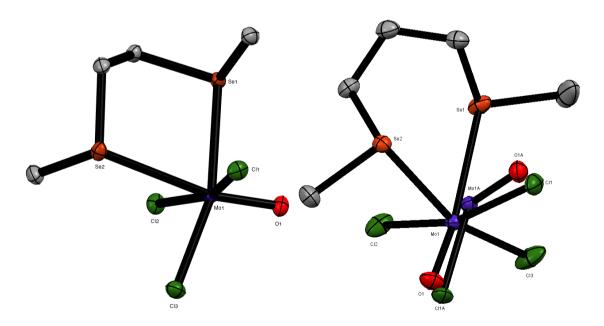


Figure 6.14: Crystal structures of [MoOCl₃(MeSe(CH₂)₂SeMe)] (left) and [MoOCl₃(MeSe(CH₂)₃SMe)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity. Note that in [MoOCl₃(MeSe(CH₂)₃SMe)] there are two geometric isomers present which was modelled with split atom sites and refined to occupancies of 0.60:0.40. Both forms are shown.

[MoOCl ₃ (MeSe(CH ₂) ₂ SeMe)]				
Bond	Bond Lengths/ Å		gles/ °	
Mo1-Cl1	2.3553(5)	Cl1-Mo1-Cl3	90.35(2)	
Mo1-Cl2	2.3517(5)	Cl1-Mo1-O1	98.98(5)	
Mo1-Cl3	2.3453(5)	Cl2-Mo1-Cl3	90.65(2)	
Mol-Ol	1.673(1)	Cl3-Mo1-O1	107.36(5)	
Mo1-Se1	2.6564(2)	Se1-Mo1-Se2	79.76(1)	
Mo1-Se2	2.8937(3)			
	[MoOCl ₃ (MeSe(CH ₂) ₃ SeMe)]		
Bond	Lengths/ Å	Bond A	Angles/ °	
Mo1-Cl1	2.346(2)	Cl1-Mo1-Cl2	87.72(7)	
Mo1-Cl2	2.312(1)	Cl1-Mo1-O1	98.5(4)	
Mo1-Cl3	2.372(1)	Cl2-Mo1-Cl3	92.47(4)	
Mol-Ol	1.66(1)	Cl2-Mo1-O1	100.9(4)	
Mo1-Se1	2.9704(8)	Se1-Mo1-Se2	79.80(2)	
Mo1-Se2	2.6768(8)			

Table 6.4: Selected bond lengths and angles for [MoOCl₃(MeSe(CH₂)₂SeMe)] and [MoOCl₃(MeSe(CH₂)₃SeMe)].

Dark green crystals of [MoOCl₃(MeSe(CH₂)₂SeMe)] were isolated, showing the molybdenum centre in a distorted octahedral geometry (Figure 6.14). The Mo=O bond is *trans* to selenoether ligand with *mer* chlorides and there is no evidence of O/Cl disorder *trans* to ligand. The structure has a R_1 = 1.98 % and all bond lengths are consistent with similar structures.

Dark orange crystals of [MoOCl₃(MeSe(CH₂)₃SeMe)] (Figure 6.14) were collected, it also shows the molybdenum centre in a distorted octahedral geometry. The structure has disorder in the {MoOCl₃} unit but there is no evidence of disorder in the ligand (Figure 6.14). Typically, these types of structure exhibit O/Cl disorder *trans* ligand, however this is not the case, instead the structure shows two different geometric isomers which have co-crystallised. It is highly unusual for geometric isomers to co-crystallise, although there are crystallographic examples of both geometric isomers occurring separately, see Figure 6.12 and Chapter 2.

In the first isomer (modelled at 40 % occupancy), the Mo=O bond is *cis* to the selenoether ligand with *fac* chlorines, the same geometric isomer as seen in [MoOCl₃(MeS(CH₂)₃SMe)] and [WOCl₃(MeS(CH₂)₃SMe)]. In the second isomer (modelled at 60 % occupancy) the Mo=O bond is *trans* to the selenoether ligand with *mer* chlorines. The modelled Mo=O bond lengths in both geometric isomers are similar (*trans*-Mo1-O1 = 1.66(1) and *cis*-Mo1A-O1A = 1.70(1) Å) and are consistent with non-disordered Mo=O bond lengths. The molybdenum atom is also spilt over two

sites as it would sit in slightly different positions in each geometric isomer. The structure was considered as a potential example of "bond length isomerism" where a small amount of [MoCl₄(MeSe(CH₂)₃SeMe)] could have co-crystallised resulting in the disparity in bond lengths. An attempt to model one {MoCl₄} unit and one {MoOCl₃} unit as having co-crystallised was unsuccessful. Additionally, if it was "bond length isomerism" it is likely that there would only be a small amount of disorder, not the 40/60 atom occupancies modelled. Co-crystallisation of geometric isomers is highly unusual, but the structure has been satisfactorily modelled with a $R_1 = 2.09$ %. The reason for the co-crystallisation is unclear and may be a result of crystal packing or there being little energy difference between isomers. It is possible that in the solution state there is rapid exchange between isomers, unfortunately these compounds were paramagnetic, if the compounds were diamagnetic this could be probed by variable temperature NMR spectroscopy.

The synthesis of complexes of MoOCl₃ with monodentate chalcogenoethers, EMe₂ (E = S, Se or Te), proved challenging as the products were highly soluble in most organic solvents. Initial investigations with EMe₂ (E = S or Se) and [MoOCl₃(THF)₂] showed that the EMe₂ ligands could not displace the THF. However, reaction with MoOCl₃ directly, led to the formation of the chloride-bridged dimers, [(MoOCl₂(EMe₂))₂(μ -Cl)₂]. There was no evidence for the presence of mononuclear complexes, [MoOCl₃(EMe₂)₂], in the spectroscopic data. The formation of dimers is not unusual for molybdenum(V) complexes or other transition metals, in the absence of any chelate effect, the six-coordinate monomer with two thioether ligands is likely to be less stable than the Cl-bridged dimer. ^{60,68,69}

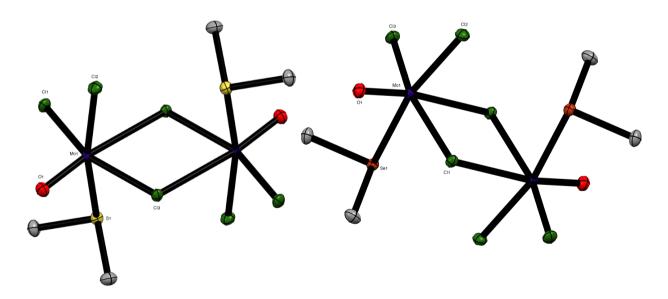


Figure 6.15: Crystal structures of [(MoOCl₂(SMe₂))₂(μ-Cl)₂] (left) and [(MoOCl₂(SeMe₂))₂(μ-Cl)₂] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity.

$[(MoOCl_2(SMe_2))_2(\mu\text{-}Cl)_2]$			
Bond 1	Bond Lengths/ Å		gles/°
Mo1-Cl1	2.3264(3)	Cl1-Mo1-O1	102.48(1)
Mo1-Cl2	2.3341(3)	Cl2-Mo1-O1	102.08(3)
Mo1-Cl3	2.3953(3)	Cl3-Mo1-O1	99.55(3)
Mol-Ol	1.6515(8)	Cl2-Mo1-Cl3	85.77(1)
Mo1-S1	2.5537(3)		
	[(MoOCl ₂ (SeM	e ₂)) ₂ (μ-Cl) ₂]	
Bond 1	Lengths/ Å	Bond A	Angles/ °
Mo1-Cl1	2.4024(4)	Cl1-Mo1-O1	98.89(4)
Mo1-Cl2	2.338(5)	Cl2-Mo1-O1	103.10(4)
Mo1-Cl3	2.3298(5)	Cl3-Mo1-O1	102.38(4)
Mo1-O1	1.653(1)	Cl2-Mo1-Cl3	92.32(2)
Mo1-Se1	2.6647(3)		

Table 6.5: Selected bond lengths and angles for $[(MoOCl_2(SMe_2))_2(\mu-Cl)_2]$ and $[(MoOCl_2(SeMe_2))_2(\mu-Cl)_2]$.

The chloride-bridged dimers (Figure 6.15) are isomorphous and adopt a distorted bioctahedral geometry, the Mo=O bonds are *trans* to the bridging chlorides, as is typical in dimers of this type. ⁷⁰⁻⁷² The chloride bridges are asymmetric and the EMe₂ ligands lie *anti* to each other. Other than the Mo-E bond distances, there is little difference in the bond lengths between structures, suggesting the neutral ligand has little influence. The presence of molybdenum(V) in these species is confirmed in the bulk by UV-vis spectroscopy, with the presence of two *d-d* bands, while the magnetic moments are consistent with a single unpaired electron.

Following successful formation of the products from the reaction with EMe₂ (E = S or Se), MoOCl₃ was reacted with TeMe₂ using similar ambient conditions. The product was isolated as a fine brown powder. The IR spectrum showed a strong Mo=O stretch at 985 cm⁻¹ consistent with the other chalcogenoether complexes in this series. In the solid state UV-vis spectrum two *d-d* bands are observed at 14,400 and 19,500 cm⁻¹, with the lowest LMCT band for Te \rightarrow Mo(4*d*) assigned as 21,000 cm⁻¹ (similar to the bands seen in thio- and seleno-ether complexes). It should be noted that the LMCT band for Te \rightarrow Mo(4*d*) could be the band at 19,500 cm⁻¹, with the second *d-d* transition band hidden. In conjunction with the IR and UV-vis spectra, elemental analysis is also consistent with the formation of the complex, [(MoOCl₂(TeMe₂))₂(μ -Cl)₂]. It is clear the monodentate ligands (and likely softer donors) are more stable as chloride-bridged dimers with a 1:1 metal to ligand ratio.

Following the successful isolation of [(MoOCl₂(TeMe₂))₂(μ -Cl)₂], the bidentate telluroethers, o-C₆H₄(TeMe)₂ and MeTe(CH₂)₃TeMe were each reacted with MoOCl₃ in CH₂Cl₂ under similar

conditions, leading to the isolation of dark brown solids. Spectroscopic data for both products are consistent with the formation of molybdenum(V) complexes, shown by magnetic moments (Table 6.6). Both products show a Mo=O stretch in the IR spectra (992 and 988 cm⁻¹) and a number of Mo-Cl stretches. The UV-vis spectrum from the product isolated from MoOCl₃ and *o*-C₆H₄(TeMe)₂ shows two *d*-*d* bands (14,500 and 19,200 cm⁻¹) and a LMCT band for Te→Mo(4*d*) at 21,000 cm⁻¹ (likely assignment of LMCT bands are presented in Table 6.16). Spectroscopic data reveals the expected functional groups (Mo=O and Mo-Cl), oxidation state (Mo^V) and Te→Mo(4*d*) transition band however the exact formulation is yet to be positively determined.

The product from MoOCl₃ and MeTe(CH₂)₃TeMe seemed slightly less stable than the other telluroether complexes, turning black after a couple of days, even under inert conditions. The spectroscopic data is also consistent with similar thio- and seleno-ether complexes isolated in this work and the telluroether complex assigned as $[(MoOCl_2(TeMe_2))_2(\mu-Cl)_2]$. The product exhibits the expected functional groups (Mo=O and Mo-Cl), oxidation state (MoV) and Te \rightarrow Mo(4d) transition band however the exact formulation is yet to be positively determined.

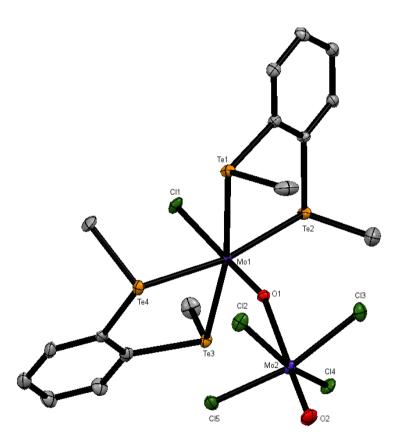


Figure 6.16: Crystal structure of $[(MoCl(o-C_6H_4(TeMe)_2)_2)(\mu-O)(MoOCl_4)]$ *CH₂Cl₂ showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms and solvent omitted for clarity.

[(<u>MoCl</u> (o-C ₆ H ₄ (TeMe) ₂) ₂)(μ-O)(MoOCl ₄)]•CH ₂ Cl ₂			
Bond Lengths/ Å		Bond An	gles/ °
Mo1-Cl1	2.449(1)	O2-Mo2-Cl	78.4(1)-82.2(1)
Mo2-Cl	2.363(2)-2.393(2)	Te-Mo1-Te	85.27(2)-86.18(2)
Mo1-Te	2.7440(6)-2.7836(6)	Te2-Mo1-Cl1	79.67(4)
Mo1-O1	1.705(4)	Tel-Mol-Cll	83.36(4)
Mo2-O1	2.368(4)		
Mo2-O2	1.659(5)		

Table 6.6: Selected bond lengths and angles for $[(MoCl(o-C_6H_4(TeMe)_2)_2)(\mu-O)(MoOCl_4)] \circ CH_2Cl_2$.

There is precedence of bidentate chalcogenoether ligands forming bridged species between transition metals when the alkyl backbone is long enough. $^{69,73-75}$ This type of system could form to stabilise the high valent molybdenum(V) as shown in anti-[(MoOCl₂(EMe₂))₂(μ -Cl)₂] (E = S or Se). A possible formulation could be syn-[(MoOCl₂)₂(μ -Cl)₂(μ -MeTe(CH₂)₃MeTe)] which would be supported by the spectroscopic data but not conclusively proven. This potential formulation can be applied to syn-[(MoOCl₂)₂(μ -Cl)₂(μ -o-C₆H₄(TeMe)₂)] as there are examples of bridging chalcogenoethers with C₂ backbones.

A number of crystallisation attempts were unsuccessful (but the product was very insoluble) but a small number of green crystals were isolated from the brown solution. The crystals were subsequently identified as $[(Mo^{IV}Cl(o-C_6H_4(TeMe)_2)_2)(\mu-O)(Mo^VOCl_4)]$ •CH₂Cl₂, which is a mixed valent system. This is not the first example of this type of dimer, see Section 6.3.2, although this is the first crystallographically characterised example (along with another example Section 6.3.2) and the first and only telluroether coordinated to Mo(IV). Both molybdenum centres are in a distorted octahedral geometry, linked by an oxide bridge with asymmetrical Mo=O-Mo bonds. It is likely this structure originates from partial decomposition of $[MoOCl_3(o-C_6H_4(TeMe)_2]$ as the spectroscopic data does not support this crystal structure as the bulk, and analogous bulk $[(MoCl(L-L)_2)(\mu-O)(MoOCl_4)]$ complexes have been isolated from refluxing methanol with $[MoOCl_3(L-L)]$.

Compound	IR Data		Magnetic Moment (µeff)
	v(Mo=O)	v(Mo-Cl)	
[MoOCl ₃ (THF) ₂]	982 cm ⁻¹	342, 315 cm ⁻¹	1.71
[MoOCl ₃ (MeS(CH ₂) ₃ SMe)]	955 cm ⁻¹	348, 327, 306 cm ⁻¹	1.71
[MoOCl ₃ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)]	979 cm ⁻¹	349, 312 cm ⁻¹	1.69
[MoOCl ₃ (PhS(CH ₂) ₂ SPh)]	966 cm ⁻¹	354, 319 cm ⁻¹	1.71
[MoOCl ₃ (MeSe(CH ₂) ₂ SeMe)]	956 cm ⁻¹	342, 310 cm ⁻¹	1.70
$[MoOCl_3(MeSe(CH_2)_3SeMe)] \\$	954 cm ⁻¹	346, 296 cm ⁻¹	1.70

[MoOCl ₃ (o-C ₆ H ₄ (SeMe) ₂]	999 cm ⁻¹	351, 302, 292 cm ⁻¹	1.69
[MoOCl3(o-C6H4(TeMe)2]	992 cm ⁻¹	343, 328, 302 cm ⁻¹	1.70
$[MoOCl_3(\underline{MeTe}(CH_2)_3TeMe)]$	988 cm ⁻¹	392, 303 cm ⁻¹	1.68
$[(MoOCl_2(SMe_2))_2(\mu\text{-}Cl)_2]$	984 cm ⁻¹	356, 319, 268 cm ⁻¹	1.72
$[(MoOCl_2(SeMe_2))_2(\mu\text{-}Cl)_2$	956 cm ⁻¹	367, 351, 313 cm ⁻¹	1.68
$[(MoOCl_2(TeMe_2))_2(\mu\text{-}Cl)_2]$	985 cm ⁻¹	327, 302, 292 cm ⁻¹	1.68
[MoOCl ₃ (2,2'-bipy)]	970 cm ⁻¹	355, 348, 315 cm ⁻¹	
[MoOCl ₃ (1,10-phen)]	971 cm ⁻¹	360, 348, 309 cm ⁻¹	1.71
[MoOCl ₃ (PMe ₃) ₂]	957 cm ⁻¹	352, 324, 305 cm ⁻¹	
[MoOCl ₃ (dppe)]	954 cm ⁻¹	337 cm ⁻¹	1.70
[MoOCl ₃ (dmpe)]	951 cm ⁻¹	362, 325, 306 cm ⁻¹	1.72

Table 6.7: Selected IR stretches and magnetic moments for complexes in this chapter.

6.3.2 MoOCl₃ Complexes with Hard Donor Ligands

A small range of complexes, most previously known, were isolated to investigate the behaviour of [MoOCl₃(THF)₂] and to use them as comparators for reactions of MoOCl₄. The six-coordinate complexes [MoOCl₃(L-L)] (L-L = 2,2'-bipy or 1,10-phen) were isolated from a stoichiometric reaction of ligand and [MoOCl₃(THF)₂]. Both complexes have been previously reported and spectroscopic data are in good agreement with the literature. ^{46,76} Despite a number of reports of these complexes, no crystallographic data are available, possibly as they are poorly soluble in organic solvents.

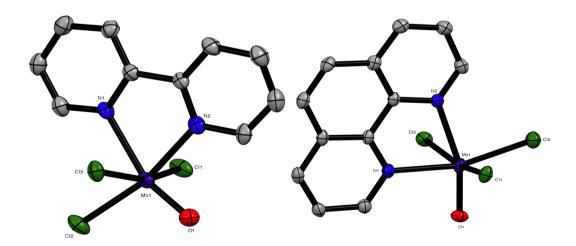


Figure 6.17: Crystal structures of [MoOCl₃(2,2'-bipy)] (left) and [MoOCl₃(1,10-phen)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity. Note that in [MoOCl₃(2,2'-bipy)] there are three molecules in the asymmetric unit, two molecules exhibited whole molecule disorder which was modelled with split atom sites and refined to occupancies of 0.60:0.40 and 0.86:0.14. The non-disordered molecule is shown. [MoOCl₃(1,10-phen)]

phen)] exhibits O/Cl disorder which was modelled with split atom sites and refined to occupancies of 0.1:0.9 only the major form is shown.

[MoOCl ₃ (2,2'-bipy)]			
Bond I	Bond Lengths/ Å		gles/°
Mo1-Cl1	2.346(2)	Cl1-Mo1-Cl2	90.61(6)
Mo1-Cl2	2.347(2)	Cl1-Mo1-O1	99.4(2)
Mo1-Cl3	2.358(1)	Cl2-Mo1-Cl3	89.17(6)
Mol-Ol	1.665(5)	Cl3-Mo1-O1	98.2(2)
Mo1-N1	2.325(5)		
Mo1-N2	2.191(6)		
	[MoOCl ₃ (1,1	0-phen)]	
Bond I	Lengths/ Å	Bond A	Angles/ °
Mo1-Cl1	2.3655(7)	Cl1-Mo1-Cl3	89.66(2)
Mo1-Cl2	2.3839(7)	Cl1-Mo1-O1	98.4(1)
Mo1-Cl3	2.3348(6)	Cl2-Mo1-Cl3	92.11(2)
Mol-Ol	1.629(3)	Cl2-Mo1-O1	97.30(6)
Mo1-N1	2.201(2)		
Mo1-N2	2.350(2)		

Table 6.8: Selected bond lengths and angles for [MoOCl₃(2, 2' - bipy)] and [MoOCl₃(1, 10 - phen)].

Dark pink crystals of [MoOCl₃(2,2'-bipy)] and [MoOCl₃(1,10-phen)] were each isolated from a diethyl ether solution (Figure 7.17); both structures show the expected distorted octahedral geometry with *mer* chlorines. [MoOCl₃(1,10-phen)] is isomorphous with [TaOCl₃(1,10-phen)], whereas [MoOCl₃(2,2'-bipy)] is not isomorphous with [NbOCl₃(2,2'-bipy)]. Both molybdenum structures have the Mo=O bond *trans* to the diimine ligand and both exhibit O/Cl disorder and asymmetric Mo-N bonds.

A small number of MoOCl₃ complexes with phosphine donor ligands were also prepared, including the six-coordinate [MoOCl₃(dppe)] whose spectroscopic data were in good agreement with reported literature.⁵³ Spectroscopic data for the new complex, [MoOCl₃(dmpe)], were consistent with similar complexes. The complexes yielded crystals (red, [MoOCl₃(dppe)] or yellow, [MoOCl₃(dmpe)]) from CH₂Cl₂ solution, the structure of [MoOCl₃(dppe)] has been reported previously (Figure 6.18).⁷⁷

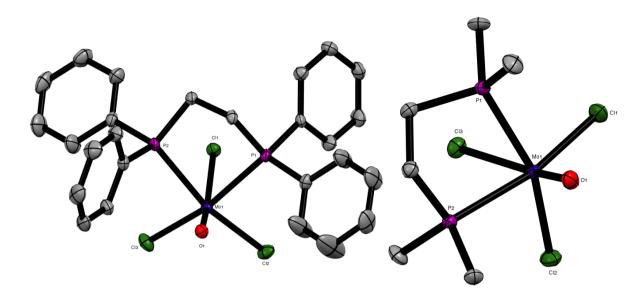


Figure 6.18: Crystal structures of [MoOCl₃(dppe)] (left) and [MoOCl₃(dmpe)] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atom and solvent omitted for clarity.

[MoOCl ₃ (dppe)]			
Bond I	Bond Lengths/ Å		gles/ °
Mo1-Cl1	2.4638(7)	Cl1-Mo1-Cl2	92.25(3)
Mo1-Cl2	2.3655(6)	Cl2-Mo1-O1	100.91(8)
Mo1-Cl3	2.363(1)	Cl2-Mo1-Cl3	97.17(3)
Mol-Ol	1.691(2)	Cl3-Mo1-O1	100.98(8)
Mo1-P1	2.5726(8)	P1-Mo1-P2	80.27(2)
Mo1-P2	2.5649(6)		
	[MoOCl ₃ (d	lmpe)]	
Bond I	Lengths/ Å	Bond A	Angles/ °
Mo1-Cl1	2.3824(9)	Cl1-Mo1-Cl2	96.98(3)
Mo1-Cl2	2.383(1)	Cl1-Mo1-O1	100.19(8)
Mo1-Cl3	2.5011(8)	Cl2-Mo1-Cl3	88.76(3)
Mol-Ol	1.680(2)	Cl2-Mo1-O1	104.66(8)
Mo1-P1	2.5260(2)	P1-Mo1-P2	78.84(3)
Mo1-P2	2.5250(8)		

Table 6.9: Selected bond lengths and angles for [MoOCl₃(dppe)] and [MoOCl₃(dmpe)].

The structure of [MoOCl₃(dppe)] is in good agreement with the previously reported structure, interestingly both structures exhibit the Mo=O bond *cis* to the phosphine ligand, whereas in the majority of corresponding thio- and seleno-ether complexes discussed earlier, the Mo=O bond is *trans* to ligand.⁷⁷ The axial Mo-Cl bonds are longer than typical, due to being *trans* to the oxide.

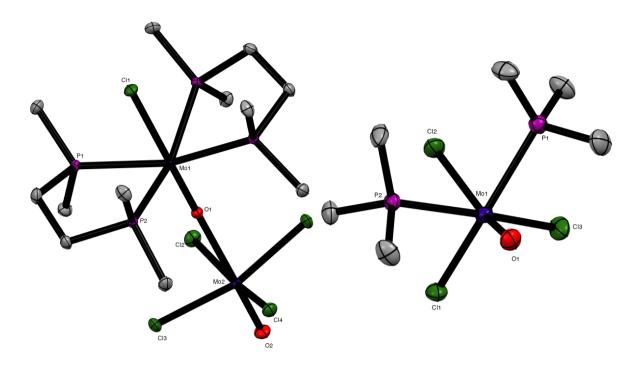


Figure 6.19: Crystal structures of $[(MoOCl(dmpe)_2)(\mu-O)(MoOCl_4)]$ (left) and $[MoOCl_3(PMe_3)_2]$ (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atom and solvent omitted for clarity.

[(MoCl(dmpe) ₂)(μ-O)(MoOCl ₄)]			
Bond I	Bond Lengths/ Å		gles/ °
Mo1-Cl1	2.5186(2)	Cl1-Mo1-P1	78.92(2)
Mo2-Cl _{cis}	2.3573(4) – 2.3824(3)	Cl1-Mo1-P2	83.26(4)
Mol-Ol	1.703(4)	O2-Mo2-Cl	97.57(2) – 98.89(4)
Mo2-O1	2.394(2)	P1-Mo1-P2	80.16(4)
Mo2-O2	1.657(8)		
Mo1-P1	2.5131(2)		
Mo1-P2	2.5139(3)		
	[MoOCl ₃ (P	PMe ₃) ₂]	
Bond I	Lengths/ Å	Bond Angles/°	
Mo1-Cl1	2.367(1)	Cl1-Mo1-Cl2	91.99(3)
Mo1-Cl2	2.3507(1)	Cl1-Mo1-O1	103.81(9)
Mo1-Cl3	2.384(1)	Cl2-Mo1-Cl3	93.60(3)
Mol-Ol	1.689(3)	Cl3-Mo1-O1	102.39(9)
Mo1-P1	2.568(1)		
Mo1-P2	2.56339(9)		

Table 6.10: Selected bond lengths and angles for $[(MoOCl(dmpe)_2)(\mu-O)(MoOCl_4)]$ and $[MoOCl_3(PMe_3)_2]$.

Attempts to grow crystals of [MoOCl₃(dmpe)], resulted in a few separate purple crystals being isolated that were revealed to be [(MoCl(dmpe)₂)(μ -O)(MoOCl₄)] analogous to [(MoCl(o-C₆H₄(TeMe)₂)₂)(μ -O)(MoOCl₄)]•CH₂Cl₂ discussed earlier. Both molybdenum ions are in a distorted octahedral geometry and linked by an oxide bridge. The Mo=O-Mo bond lengths are asymmetric and the Mo-Cl_{axial} bonds are bent away from planarity by the terminally bonded oxygen.

A series of complexes with bidentate phosphine ligands of the form [MoOCl(L-L)₂][MoOCl₄] have been reported as mauve solids. However, following the structural identification of [(MoCl(dmpe)₂)(μ-O)(MoOCl₄)], it is possible that the suggested formulation was incorrect in the solid state. ⁴⁹ The complexes formulated as [MoOCl(L-L)₂][MoOCl₄], the spectroscopic data reported would also be consistent with the crystal structure isolated. The complexes were reported to behave as 1:1 electrolytes in solution, so could dissociate in solution and be a dimer in the solid state. The crystal structure of [MoOCl₃(PMe₃)₂] has been reported previously and is in good agreement with this structure.⁷⁸

6.3.3 Reactions of MoOCl₄ with Neutral Donor Ligands

There are no reported coordination complexes that maintain the +VI oxidation state for MoOCl₄. This indicates that MoOCl₄ most likely reduces upon addition of ligand and will be investigated in this section.

Initially, MoOCl₄ was dissolved in MeCN to attempt to isolate [MoOCl₄(MeCN)], however, a paramagnetic species was isolated instead. Crystallisation attempts produced two sets of crystals (yellow and green), which were identified as molybdenum(V) species, [MoOCl₃(MeCN)₂] and [(MoOCl₂(MeCN))₂(μ-Cl)₂] (Figure 6.20). The IR spectrum for the bulk shows a single dominant peak at 986 cm⁻¹, assigned to Mo=O, but it is unclear which of the two structures identified below is the major product.

Both structures show distorted octahedral molybdenum(V), with the Mo=O bond *trans* to MeCN in [MoOCl₃(MeCN)₂] and *trans* to chloride in [(MoOCl₂(MeCN))₂(μ -Cl)₂]. In the dimer the MeCN ligands are *anti* to each other as is more commonly found in the literature (Figure 6.15), the structures are in good agreement with similar structures.

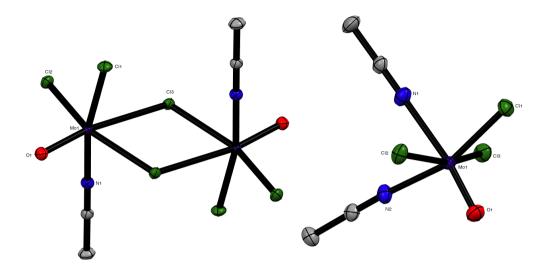


Figure 6.20: Crystal structures of $[(MoOCl_2(MeCN))_2(\mu-Cl)_2]$ (left) and $[MoOCl_3(MeCN)_2]$ (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atom for clarity. Note $[MoOCl_3(MeCN)_2]$ exhibits O/Cl disorder which was modelled with split atom sites and refined to occupancies of 0.30:0.70 only the major form is shown.

[(MoOCl ₂ (MeCN)) ₂ (µ-Cl) ₂]			
Bond I	Bond Lengths/ Å		gles/°
Mo1-Cl1	2.3082(4)	O1-Mo1-Cl1	100.82(4)
Mo1-Cl2	2.3199(3)	O1-Mo1-Cl2	102.70(3)
Mo1-Cl3	2.4142(3)	Cl1-Mo1-Cl3	88.38(1)
Mol-Ol	1.6502(9)	Cl2-Mo1-Cl3	81.19(1)
Mo1-N1	2.151(1)		
	[MoOCl ₃ (M	[eCN) ₂]	
Bond I	Lengths/ Å	Bond A	Angles/ °
Mo1-Cl1	2.311(1)	Cl1-Mo1-Cl2	91.91(4)
Mo1-Cl2	2.3633(7)	Cl1-Mo1-O1	103.5(1)
Mo1-Cl3	2.3453(7)	Cl1-Mo1-Cl3	87.73(4)
Mol-Ol	1.653(4)	Cl3-Mo1-O1	100.1(1)
Mo1-N1	2.136(2)		
Mo1-N2	2.140(2)		

Table 6.11: Selected bond lengths and angles for $[(MoOCl_2(MeCN))_2(\mu-Cl)_2]$ and $[MoOCl_3(MeCN)_2]$.

Subsequently, MoOCl₄ was reacted with stoichiometric amounts of either 2,2'-bipy or 1,10-phen to compare with [MoOCl₃(L-L)] complexes isolated above. It was clear that seven-coordinate molybdenum(VI) complexes did not form. In both reactions paramagnetic species were formed and the IR spectra were effectively identical to those of [MoOCl₃(L-L)] (L-L = 2,2'-bipy or 1,10-phen).

IR Data	MoOCl ₄ + 2,2'-bipy	MoOCl ₄ + 1,10-phen
v(Mo=O)	968 cm ⁻¹	971 cm ⁻¹
v(Mo-Cl)	348 cm ⁻¹	338 cm ⁻¹
UV (<i>d-d</i> transitions)	13,800	13,400
	[MoOCl ₃ (2,2'-bipy)]	[MoOCl ₃ (1,10-phen)]
v(Mo=O)	[MoOCl ₃ (2,2'-bipy)] 970 cm ⁻¹	[MoOCl ₃ (1,10-phen)] 971cm ⁻¹
v(Mo=O) v(Mo-Cl)		

Table 6.12: Comparison of IR stretches obtained from reaction of MoOCl₃ or MoOCl₄ and 2,2'-bipy or 1,10-phen.

The solid-state UV-vis spectra for [MoOCl₃(L-L)] (L-L = 2,2'-bipy or 1,10-phen) shows two d-d transitions (B₂ \rightarrow B₁; B₂ \rightarrow E) and a number of ligand-to-metal charge transfer bands. The corresponding UV-vis spectra from the product isolated from the reaction of MoOCl₄ and the diimine also shows the lowest energy d-d band and additional LMCT bands; confirming reduction to molybdenum(V). Therefore, it is concluded that the ligands cause reduction of MoOCl₄ to MoOCl₃, which can then form stable complexes. Both products from MoOCl₄ and ligand (2,2'bipy and 1,10-phen) were isolated as green solids, whereas direct reactions between MoOCl₃ and ligand produced pink compounds. Both colours (green and pink) have been previously reported and shown to be spectroscopically identical and it was suggested the compounds could be isomers. 46,79,80 This work has shown two different geometric isomers in [MoOCl₃(L-L)] complexes (fac and fac and fac chlorines) revealed by crystallography, so it could be possible this isomerism has caused the difference in colours. However, the colour difference could also stem from minor impurities but the colour difference is well documented so co-crystallisation is less likely.

Similar behaviour is observed when reacting MoOCl₄ and OPPh₃, where a light blue powder was isolated that exhibited a P=O stretch at 1159 cm⁻¹ and a Mo=O stretch at 972 cm⁻¹ in the IR spectrum, consistent with the molybdenum(V) species, [MoOCl₃(OPPh₃)₂] (1157 cm⁻¹, 968 cm⁻¹).⁴⁷ This was also supported with the diffuse reflectance UV-vis spectrum, which exhibited two *d-d* transitions (22,300, 13,400 cm⁻¹), consistent with reported literature (22,300, 13,400 cm⁻¹), as well as a magnetic moment of 1.71 B.M.⁸¹

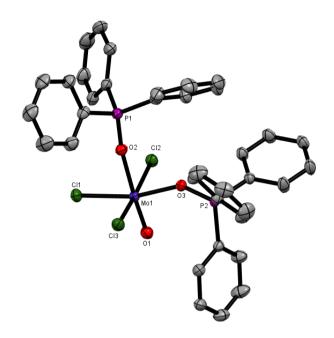
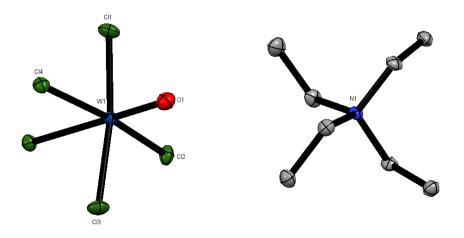



Figure 6.21: Crystal structure of [MoOCl₃(OPPh₃)₂] showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atom for clarity.

[MoOCl ₃ (OPPh ₃) ₂]				
Bond Lengths/ Å		Bond Angles/ °		
Mo1-Cl1	2.3616(8)	Cl1-Mo1-Cl2	91.62(3)	
Mo1-Cl2	2.3959(7)	Cl1-Mo1-O1	98.93(7)	
Mo1-Cl3	2.3913(8)	Cl1-Mo1-Cl3	90.73.(3)	
Mol-Ol	1.672(2)	Cl1-Mo1-O2	84.62(5)	
Mo1-O3	2.145(2)			
Mo1-O3	2.063(2)			

Table 6.13: Selected bond lengths and angles for [MoOCl₃(OPPh₃)₂].

Blue crystals of [MoOCl₃(OPPh₃)₂] were isolated from CH_2Cl_2 solution and the structure was consistent with previous reports. 81,82

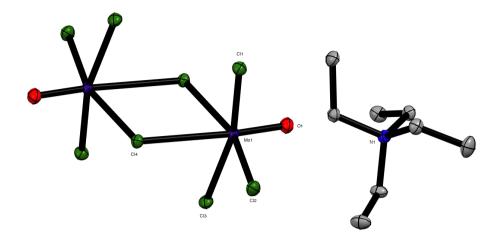


Figure 6.22: Crystal structures of [Et₄N][WOCl₅] (top) and [Et₄N]₂[(MoOCl₃)₂(μ-Cl)₂] (bottom) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atom for clarity. Please note [Et₄N][WOCl₅] exhibits O/Cl disorder which was modelled with split atom sites and refined to occupancies of 0.11:0.89 only the major form is shown.

[Et ₄ N][WOCl ₅]					
Bond Lengths/ Å		Bond Angles/ °			
W1-C11	2.3266(9)	O1-Mo1-Cl1	94.51(9)		
W1-Cl2	2.3054(8)	O1-Mo1-Cl2	95.18(9)		
W1-Cl3	2.3145(9)	O1-Mo1-Cl3	94.04(9)		
W1-Cl4	2.3439(8)	O1-Mo1-Cl4	93.65(9)		
W1-C15	2.4848(8)				
W1-O1	1.729(2)				
	$[\mathrm{E}t_{4}\mathrm{N}]_{2}[(\mathrm{MoOCl_{3}})_{2}(\mu\text{-Cl})_{2}]$				
Bond Lengths/ Å		Bond Angles/ °			
Mo1-Cl1	2.3710(4)	O1-Mo1-Cl1	98.39(3)		
Mo1-Cl2	2.3454(4)	O1-Mo1-Cl2	102.96(3)		
Mo1-Cl3	2.3605(4)	O1-Mo1-Cl3	97.60(3)		
Mo1-Cl4	2.4159(3)	O1-Mo1-Cl4	98.29(3)		
Mol-Ol	1.6563(8)				

 $Table~6.14:~Selected~bond~lengths~and~angles~for~[Et_4N][WOCl_5]~and~[EtN_4]_2[(MoOCl_3)(\mu-Cl)_2(MoOCl_3)].$

It is clear that MoOCl₄ reduces readily upon addition of neutral ligands, producing a range of Mo(V) species, [MoOCl₃(L-L)], [MoOCl₃(L)₂] or [(LMoOCl₂)₂(μ -Cl)₂]. A final reaction to attempt to isolate a salt which would be more stable was undertaken. The tungsten(VI) salt [Et₄N][WOCl₅] can be isolated by reacting stoichiometric amounts of WOCl₄ and [Et₄N]Cl, and therefore the analogous reaction was performed to attempt to form [Et₄N][MoOCl₅]. However, the IR spectrum of the green product from MoOCl₄ and [Et₄N]Cl is consistent with the formation of the dimeric anion,

 $[(MoOCl_3)_2(\mu-Cl)_2]^{2-}$. It is clear that $MoOCl_4$ reduces readily at ambient conditions and it is highly unlikely that any molybdenum(VI) complexes can be formed.

[Et₄N][WOCl₅] (Figure 6.22) shows tungsten in a distorted octahedral environment as is typical, the structure is very similar to [C₅H₅NH][WOCl₅] described in Chapter 2. The molybdenum(V) dimer (Figure 6.22) also shows a distorted octahedral geometry, the Mo=O bonds are *trans* to the bridging chlorides resulting in asymmetric chloride bridges. The [(MoOCl₃)₂(μ -Cl)₂]²⁻ anion is known and has been crystallographically authenticated; ^{83,84} the new data are in good agreement with the literature report.

6.4 Conclusions

A systematic series of MoOCl₃ complexes with a range of neutral soft donor ligands (thio-, seleno- and teluro-ethers) has been developed and comparisons drawn to coordination complexes of WECl₄ (E = O or S) discussed in Chapters 2 to 4 and reported literature. Bidentate thio- and seleno-ether complexes, [MoOCl₃(RE(CH₂)_nER)] (E = S or Se; R = Me, i Pr or Ph, n = 2 or 3) have been isolated and characterised. Monodentate thio-, seleno- and telluro-ether complexes were also isolated which formed chloride bridge dimers in the form [(MoOCl₂)₂(μ -Cl)₂(EMe)₂]. The telluroether complexes are the first and only with molybdenum(V). Reactions of MoOCl₃ and (o-C₆H₄(E'Me)₂)] (E' = Se or Te) and MeTe(CH₂)₃TeMe have been spectroscopically characterised but have yet to be have their actual formula confirmed. A single X-ray crystal structure of [(MoCl(o-C₆H₄(TeMe)₂)₂)(μ -O)(MoOCl₄)]•CH₂Cl₂ has been obtained, as the only example of a telluroether complex of molybdenum that is not Mo(0) as a partial reduction product. A number of MoOCl₃ complexes with nitrogen, phosphine and oxygen donor ligands were also isolated and characterised for comparison.

The stability of the Mo(V) seleno- and telluroether compounds compared to WECl₄ complexes (where only [WSCl₄(SeMe₂)] was stable), clearly confirms that MoOCl₃ is a softer Lewis acid than WECl₄, as expected. The metal oxidation state in the bulk samples was confirmed as molybdenum(V) by both UV-vis spectroscopy and magnetic moment measurements.

The reaction of MoOCl₄ with various neutral ligands (N- and O-donors) was also investigated and confirmed that all ligands caused immediate reduction of the molybdenum(VI) to form molybdenum(V) species. IR spectra and UV-vis spectra for the products from the MoOCl₄ reactions and their comparative MoOCl₃ complexes were effectively identical. Attempts to isolate the anion [MoOCl₅]⁻ were also unsuccessful, but the known chloride bridged Mo(V) anion, [(MoOCl₃)(μ-Cl))₂]²⁻, was identified. Results show MoOCl₄ is much less stable compared to MoOF₄ and MoO₂Cl₂ as both form relatively stable complexes. ⁸⁵⁻⁸⁷ Most of the products were identified by single crystal X-ray diffraction and compared to related compounds found in literature. Complexes were characterised by IR spectroscopy, UV-Vis spectroscopy, elemental analysis and X-ray crystal structures.

6.5 Experimental

Syntheses were performed by using standard Schlenk and glove-box techniques under a dry N_2 atmosphere. Solvents were dried by distillation from CaH_2 (CH_2Cl_2 , MeCN) or Na/benzophenone ketyl (toluene, n-hexane, THF). Ligands (dppe, OPPh₃, 2,2'-bipy and 1,10-phen) were obtained from Sigma-Aldrich and dried by heating *in vacuo*. Dichalcogenoethers, $RE(CH_2)_nER$ (n=2 or 3; E=S or Se; R=Me, Ph, Pr) and $O-C_6H_4(E'Me)_2$ (E'=Se or Te), Pr0 and Pr0 and Pr1 and Pr2 were prepared Pr2 was purchased from Sigma-Aldrich and Pr3. Pr4 were prepared Pr6 and Pr8 from Strem and used as received. Pr9 was prepared Pr9 and Pr9 from Strem and used as received. Pr9 was prepared Pr9 for further details regarding the instrumentation see Appendix A.

6.5.1 MoOCl₃ Reactions

[MoOCl₃(THF)₂]

Following a reported literature method,⁵³ MoCl₅ (1.50 g, 5.5 mmol) was dissolved in CH₂Cl₂ (5 mL) and THF (5 mL) was slowly added. The solution was left to stir for 1h., the green solution was concentrated to ~3 mL *in vacuo* and filtered isolating a green solid and drying *in vacuo*. Yield: 1.77 g, 87%. Required for C₈H₁₆Cl₃MoO₃•0.25C₄H₈O (380.53): C: 28.41, H: 4.77 %. Found: C: 28.21, H: 4.45 %. IR spectrum (Nujol, v / cm^{-1}): 982s Mo=O, 1117s, 833s br C-O, 342s, 315m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 32,550, 26,200, 22,000, 13,250. μ_{eff} : 1.71 B.M.

 $[MoOCl_3(2,2'-bipy)]$

[MoOCl₃(THF)₂] (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of 2,2'-bipy (0.065 g, 0.41 mmol) in CH₂Cl₂ (3 mL) was slowly added and the solution left to stir for 1h. The dark red solution was concentrated to 3 mL *in vacuo*, filtered then the solid dried *in vacuo* isolating a red solid. Yield: 0.087 g, 56%. Required for C₁₀H₈Cl₃MoN₂O (374.48): C: 32.07, H: 2.15, N: 7.48 %. Found: C: 32.07, H: 2.28, N: 7.28 %. IR spectrum (Nujol, v / cm^{-1}): 970s Mo=O, 365m, 348s, 316m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 30,900, 27,000, 25,100, 22,000, 18,800, 13,800.

 $[MoOCl_3(1,10-phen)]$

[MoOCl₃(1,10-phen)] was prepared similarly to [MoOCl₃(2,2'-bipy)] isolated as a pink solid. Yield: 0.110 g, 66 %. Required for $C_{12}H_8Cl_3MoN_2O$ (398.50): C: 36.17, H: 2.02, N: 7.03 %. Found: C: 36.04, H: 1.85, N: 6.90 %. IR spectrum (Nujol, ν / cm⁻¹): 971s Mo=O, 360m, 342s, 309m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν / cm⁻¹: 31,100, 27,000, 25,800, 23,300, 18,700, 13,400. μ_{eff} : 1.69 B.M.

[MoOCl₃(dppe)]

Following reported literature method,⁵³ [MoOCl₃(THF)₂] (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of dppe (0.165 g, 0.41 mmol) in CH₂Cl₂ (3 mL) was slowly added and the solution left to stir for 1h. The dark red solution was concentrated to 3 mL *in vacuo*, filtered then the solid dried *in vacuo* isolating a red solid. Yield: 0.206 g, 81 %. Required for C₂₆H₂₄Cl₃MoOP₂ (616.71): C: 50.64, H: 3.92 %. Found: C: 50.78, H: 3.77 %. IR spectrum (Nujol, ν / cm⁻¹): 954s Mo=O, 337s, 324m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν / cm⁻¹: 37,300, 31,000, 27,200, 26,200, 20,700, 19,400, 15,100. μ _{eff}: 1.70 B.M.

$[MoOCl_3(PMe_3)_2]$

[MoOCl₃(THF)₂] (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of PMe₃ (0.063 g, 0.82 mmol) in CH₂Cl₂ (3 mL) was slowly added and the dark green solution left to stir for 1h. The red solution was concentrated to 3 mL *in vacuo* and filtered then the solid dried *in vacuo* isolating a red solid. Yield: 0.047 g, 31 %. Required for C₆H₁₈Cl₃MoOP₂ (370.45): C: 19.45, H: 4.90 %. Found: C: 19.28, H: 4.74 %. IR spectrum (Nujol, v / cm^{-1}): 957s Mo=O, 352m, 324s, 305m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 29,400, 27,000sh, 22,500, 19,500, 14,200.

[MoOCl₃(dmpe)]

[MoOCl₃(dmpe)] was prepared similarly to [MoOCl₃(dppe)], isolated as a yellow solid. Yield: 0.131 g, 81 %. Required for $C_6H_{16}Cl_3MoOP_2$ (368.44): C: 19.56, H: 2.38 %. Found: C: 19.83, H: 4.26 %. IR spectrum (Nujol, v / cm⁻¹): 951s Mo=O, 362m, 325s, 306s Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm⁻¹: 29,600, 27,000sh, 21,600, 20,000, 15,500. μ_{eff} : 1.72 B.M.

$[MoOCl_3(MeS(CH_2)_3SMe)]$

[MoOCl₃(THF)₂] (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of MeS(CH₂)₃SMe (0.056 g, 0.41 mmol) in CH₂Cl₂ (2 mL) was slowly added and the green solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* and filtered then the solid dried *in vacuo* isolating a green solid. Yield: 0.070 g, 40 %. Required for C₅H₁₂Cl₃MoOS₂ (354.58): C: 16.94, H: 3.41 %. Found: C: 17.02, H: 3.39 %. IR spectrum (Nujol, v / cm^{-1}): 955s Mo=O, 348s, 327s, 306m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 27,400, 26,000, 21,700, 20,000, 13,700. μ_{eff} : 1.71 B.M.

$[MoOCl_3(^iPrS(CH_2)_2S^iPr)]$

[MoOCl₃(i PrS(CH₂)₂S i Pr)] was prepared similarly to [MoOCl₃(MeS(CH₂)₃SMe)] isolated as a green solid. Yield: 0.101 g, 62 %. Required for C₈H₁₈Cl₃MoOS₂ (396.66): C: 24.22, H: 4.57 %. Found: C:

24.45, H: 4.15 %. IR spectrum (Nujol, v / cm^{-1}): 979s Mo=O, 349s, 312m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 29,000sh, 27,000, 23,000sh, 21,500sh, 13,600. μ_{eff} : 1.69 B.M.

$[MoOCl_3(PhS(CH_2)_2SPh)]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of PhS(CH₂)₂SPh (0.170 g, 0.69 mmol) in CH₂Cl₂ (2 mL) was slowly added and the green solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* and filtered, then the solid dried *in vacuo* isolating a brown solid. Yield: 0.244 g, 76 %. Required for C₁₄H₁₄Cl₃MoOS₂ (464.69): C: 36.19, H: 3.04 %. Found: C: 35.97, H: 3.18 %. IR spectrum (Nujol, v / cm^{-1}): 966s Mo=O, 354s, 319m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 26,900, 22,600, 21,300, 13,000. μ_{eff} : 1.71 B.M.

$[(MoOCl_2)(\mu-Cl)_2(SMe_2)_2]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of SMe₂ (0.085 g, 1.38 mmol) in CH₂Cl₂ (2 mL) was slowly added and the green solution left to stir for 1h. The clear green solution was concentrated to 3 mL *in vacuo* and layered with hexane (3 mL) then green crystals were isolated *via* filtration and dried *in vacuo*. Yield: 0.73 g, 38 %. Required for C₄H₁₂Cl₆Mo₂O₂S₂ (560.86): C: 8.57, H: 2.16 %. Found: C: 8.98, H: 2.37 %. IR spectrum (Nujol, v / cm^{-1}): 969s Mo=O, 367sh, 351s, 312m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 21,600, 19,700, 13,000. μ_{eff} : 1.72 B.M.

$[(MoOCl_2)(\mu-Cl)_2(SeMe_2)_2]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of SMe₂ (0.150 g, 1.38 mmol) in CH₂Cl₂ (2 mL) was slowly added and the green solution left to stir for 1h. The red solution was concentrated to 3 mL *in vacuo* and layered with hexane (3 mL) then dark crystals were isolated *via* filtration, and dried *in vacuo*. Yield: 0.154 g, 68 %. Required for C₄H₁₂Cl₆Mo₂O₂S₂ (654.65): C: 7.34, H: 1.85 %. Found: C: 7.43, H: 1.93 %. IR spectrum (Nujol, v / cm^{-1}): 984s Mo=O, 368s, 356s, 319m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 26,500, 22,300, 20,700, 14,100. μ_{eff}: 1.68 B.M.

$[MoOCl_3(MeSe(CH_2)_2SeMe)]$

[MoOCl₃(THF)₂] (0.150 g, 0.41 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of MeSe(CH₂)₃SeMe (0.089 g, 0.41 mmol) in CH₂Cl₂ (2 mL) was slowly added and the green solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* and filtered, then the solid dried *in vacuo* isolating a beige solid. Yield: 0.160 g, 90 %. Required for C₄H₁₀Cl₃MoOSe₂ (434.34): C: 11.06, H: 2.32 %. Found: C: 11.60, H: 2.50 %. IR spectrum (Nujol, v / cm⁻¹): 956s Mo=O, 342s,

310m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν / cm⁻¹: 27,600, 21,000, 19,300, 14,000. μ_{eff} : 1.71 B.M.

 $[MoOCl_3(MeSe(CH_2)_3SeMe)] \bullet CH_2Cl_2$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of MeSe(CH₂)₃SeMe (0.158 g, 0.69 mmol) in CH₂Cl₂ (2 mL) was slowly added and the red/brown solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* and filtered and the solid dried *in vacuo* isolating a brown solid. Yield: 0.178 g, 58 %. Required for C₅H₁₂Cl₃MoOSe₂•CH₂Cl₂ (533.30): C: 13.51, H: 2.65 %. Found: C:13.96, H: 2.95 %. IR spectrum (Nujol v / cm⁻¹): 954s Mo=O, 346s br, 285m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm⁻¹: 21,200, 19,500, 13,900. μ_{eff}: 1.70 B.M.

Attempted synthesis of $[MoOCl_3(o-C_6H_4(SeMe)_2)]$ – see discussion (Section 6.3.1)

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in dichloromethane (3 mL) and a solution of o-C₆H₄(SeMe)₂ (0.226 g, 0.69 mmol) in dichloromethane (2 mL) was slowly added and the dark red/brown solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* producing a brown precipitate which was wash with OEt₂ (3 x 5 mL), then the solid dried *in vacuo* isolating a pink/brown solid. Required for C₈H₁₀Cl₆Mo₂O₂Se₂ (700.68): C: 13.71, H: 1.44 %. Found: C: 13.43, H: 1.53 %. IR spectrum (Nujol, v / cm^{-1}): 999s br Mo=O, 351w, 302s, 292sh, Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 29,500sh, 24,900, 20,900, 14,300. μ_{eff} : 1.69 B.M.

 $[(MoOCl_2)(\mu-Cl)_2(TeMe_2)_2]$

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in toluene (3 mL) and a solution of TeMe₂ (0.217 g, 1.38 mmol) in toluene (2 mL) was slowly added and the purple solution left to stir for 1h. The deep purple solution was concentrated to 3 mL *in vacuo* and filtered, then the solid dried *in vacuo* isolating a dark brown solid. Yield: 0.203 g, 78 %. Required for C₄H₁₂Cl₆Mo₂O₂Te₂ (751.93): C: 6.39, H: 1.61%. Found: C: 6.76, H: 2.06 %. IR spectrum (Nujol, ν / cm⁻¹): 985s br Mo=O, 327, 302s br, 256m Mo-Cl. UV/Vis spectrum (diffuse reflectance) ν / cm⁻¹: 34,500, 29,700sh, 26,100, 20,900, 19,400, 14,300. μ _{eff}: 1.68 B.M.

Attempted synthesis of $[MoOCl_3(MeTe(CH_2)_3TeMe)]$ - see discussion (Section 6.3.1)

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in dichloromethane (3 mL) and a solution of MeTe(CH₂)₃TeMe (0.217 g, 0.69 mmol) in dichloromethane (2 mL) was slowly added and the brown solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* producing a brown precipitate which was wash with OEt₂ (3 x 5 mL), then the solid dried *in vacuo* isolating a dark brown solid. Required for C₅H₁₂Cl₆Mo₂O₂Te₂ (763.95): C: 7.86, H: 1.58 %. Found: C: 7.20, H: 1.38 %. IR

spectrum (Nujol, v / cm⁻¹): 988m Mo=O, 303s, 292m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm⁻¹: 25,300, 20,800, 18,900. μ eff: 1.68 B.M.

Attempted synthesis of $[MoOCl_3(o-C_6H_4(TeMe)_2)]$ - see discussion (Section 6.3.1)

MoOCl₃ (0.150 g, 0.69 mmol) was suspended in dichloromethane (3 mL) and a solution of o-C₆H₄(TeMe)₂ (0.249 g, 0.69 mmol) in dichloromethane (2 mL) was slowly added and the dark brown solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* producing a brown precipitate which was wash with OEt₂ (3 x 5 mL), then the solid dried *in vacuo* isolating a dark brown solid. Required for C₈H₁₀Cl₆Mo₂O₂Te₂ (797.96): C: 12.04, H: 1.26%. Found: C: 12.27, H: 1.43 %. IR spectrum (Nujol, v / cm^{-1}): 992s br Mo=O, 343m, 328m, 302s Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 32,500, 25,000sh, 21,000, 19,200, 14,500. μ_{eff} : 1.70 B.M.

6.5.2 MoOCl₄ Reactions

Reaction of MoOCl₄ and MeCN

MoOCl₄ (0.150 g, 0.59 mmol) was suspended in CH₂Cl₂ (5 mL) and MeCN (1 mL) was added slowly turning the red solution brown. The solution was left to stir for 1 h. then brought to dryness *in vacuo* isolated a green solid. IR spectrum (Nujol, v / cm^{-1}): 987s Mo=O, 371m, 348s, 320m Mo-Cl. μ_{eff} : 1.71 B.M.

Reaction of MoOCl₄ and 2,2'-bipy

MoOCl₄ (0.150 g, 0.59 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of 2,2'-bipy (0.092 g, 0.59 mmol) in CH₂Cl₂ (3 mL) was slowly added and the solution left to stir for 1h. The dark green solution was concentrated to 3 mL *in vacuo* and filtered, then the solid dried *in vacuo* isolating a green solid. IR spectrum (Nujol, v / cm^{-1}): 968s Mo=O, 364m, 348s, 315m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 31,000, 25,000, 13,800. μ_{eff} : 1.71 B.M.

 $[MoOCl_3(1,10-phen)] \bullet 0.5CH_2Cl_2$

MoOCl₄ (0.150 g, 0.59 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of 1,10-phen (0.106 g, 0.59 mmol) in CH₂Cl₂ (3 mL) was slowly added and the solution left to stir for 1h. The dark green solution was concentrated to 3 mL *in vacuo* and filtered, then the solid dried *in vacuo* isolating a green solid. Yield: 0.87 g, 37 %. Required for C₁₂H₈Cl₃MoN₂O•0.5CH₂Cl₂ (440.95): C: 34.05, H: .06, N: 6.35. Found: C: 33.95, H: 1.77, N: 6.31. IR spectrum (Nujol, v / cm^{-1}): 971s Mo=O, 360m, 338s, 309m Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 30,500, 27,500sh, 13,400.

Reaction of MoOCl₄ and OPPh₃

MoOCl₄ (0.150 g, 0.59 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of OPPh₃ (0.328 g, 1.18 mmol) in CH₂Cl₂ (3 mL) was slowly added and the solution left to stir for 1h. The purple green solution was concentrated to 3 mL *in vacuo* and filtered, and the solid then dried *in vacuo* isolating a blue solid. IR spectrum (Nujol, v / cm^{-1}): 1159s P=O, 972s Mo=O, 320s Mo-Cl. UV/Vis spectrum (diffuse reflectance) v / cm^{-1} : 33,000, 28,200, 22,300, 13,400. μ_{eff} : 1.71 B.M.

Reaction of MoOCl₄ and Et₄NCl

MoOCl₄ (0.150 g, 0.59 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of [Et₄N]Cl (0.097 g, 0.59 mmol) in CH₂Cl₂ (3 mL) was slowly added and the solution left to stir for 1h. The brown solution was concentrated to 3 mL *in vacuo* and filtered, and the solid then dried *in vacuo* isolating a brown solid. IR spectrum (Nujol, v / cm^{-1}): 998s Mo=O, 383m, 352s, 334m Mo-Cl.

[Et₄N][WOCl₅]

WOCl₄ (0.150 g, 0.44 mmol) was suspended in CH₂Cl₂ (3 mL) and a solution of [Et₄N]Cl (0.072 g, 0.44 mmol) in CH₂Cl₂ (2 mL) was slowly added and the orange solution left to stir for 1h. The orange solution was concentrated to 3 mL *in vacuo* and filtered then dried *in vacuo* isolating an orange solid. Yield: 0.117 g, 42%. Required for C₈H₂₀Cl₅NOW (507.35): C: 18.94, H: 3.97, N: 2.76 %. Found: C: 17.19, H: 3.80, N: 2.44 %. IR spectrum (Nujol/cm⁻¹): 955s W=O, 355sh, 339s, 345sh W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 3.25$ (q, J_{HH} 7.34 Hz, [2H], CH₂), 1.36 (tt, J_{HH} 7.24 Hz, [3H], CH₃).

Chapter 6

6.5.3 Crystallography Tables

Compound	[MoOCl ₃ (MeCN) ₂]	[(MoOCl ₂ (MeCN)) ₂ (μ-Cl) ₂]	[Et ₄ N] ₂ [(MoOCl ₃) ₂ (μ-Cl) ₂]	[Et ₄ N][WOCl ₅]
Formula	C ₄ H ₆ Cl ₃ MoN ₂ O	$C_4H_6Cl_6Mo_2N_2O_2$	$C_8H_{40}C_{16}Mo_2N_2O_2$	C ₈ H ₂₀ Cl ₅ NOW
M	300.40	518.69	767.98	507.35
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group (no)	P2 ₁ /c (14)	P2 ₁ /c (14)	P2 ₁ /c (14)	P1 (2)
a /Å	5.79300(10)	6.7943(1)	9.8073(2)	7.00730(10)
b/Å	13.3033(3)	8.9915(1)	11.2086(2)	14.5559(3)
c /Å	12.7461(3)	11.7775(1)	14.2779(3)	15.6183(3)
α /°	90	90	90	80.175(2)
β /°	90.889(2)	95.4310(1)	109.989(2)	89.868(2)
γ /°	90	90	90	89.9690(10)
U /ų	975.20(4)	716.269(2)	1474.96(5)	1569.66(5)
Z	4	2	2	4
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	2.115	2.405	1.592	8.192
F(000)	580.0	492.0	772.0	968.0
Total number reflns	31937	22409	47926	33845
R _{int}	0.0225	0.0178	0.0256	0.0478
Unique reflns	3207	2372	4960	9585
No. of params, restraints	130/10	74/0	140/0	331/15
GOF	1.056	1.287	1.045	1.057
R_1 , w R_2 [I > $2\sigma(I)$] ^b	0.0197, 0.0451	0.0138, 0.0317	0.0163, 0.0376	0.0299, 0.0776
R ₁ , wR ₂ (all data) ^b	0.0241, 0.0466	0.0142, 0.0318	0.0189, 0.0385	0.0347, 0.0850

Table 6.15: X-ray crystallography table. a: common data: wavelength (Mo-K_a) = 0.71073 Å; θ (max) = 27.5°; ${}^bR_I = \Sigma ||Fo| - |Fc||/\Sigma |Fo|$; $wR_2 = [\Sigma w(Fo^2 - Fc^2)^2/\Sigma wFo^4]^{1/2}$

Compound	[MoOCl ₃ (THF) ₂]	[MoOCl ₃ (OPPh ₃) ₂]	[MoOCl ₃ (2,2'-bipy)]	[MoOCl ₃ (1,10-phen)]
Formula	C ₈ H ₁₆ Cl ₃ MoO ₃	$C_{36}H_{30}Cl_3MoO_3P_2$	$C_{10}H_8Cl_3MoN_2O$	$C_{12}H_8Cl_3MoN_2O$
M	362.50	774.83	374.47	398.49
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Monoclinic
Space group (no)	P2 ₁ 2 ₁ 2 ₁ (19)	P2 ₁ /c (14)	Ia (9)	P2 ₁ /c (14)
a /Å	7.7693(1)	18.7734(1)	17.9139(5)	7.8218(2)
b/Å	12.1985(1)	16.7552(1)	12.4890(3)	17.8021(3)
c /Å	13.6748(1)	21.9336(1)	18.1127(5)	10.0811(2)
α /°	90	90	90	90
β /°	90	96.3960(1)	107.314(3)	106.197(2)
γ /°	90	90	90	90
$U/Å^3$	1296.01(2)	6856.32(6)	3868.68(19)	1348.02(5)
Z	4	8	12	4
$\mu(\text{Mo-K}_{\alpha})$ $/\text{mm}^{-1}$	1.615	0.745	1.621	1.557
F(000)	724.0	3144.0	2196.0	780.0
Total number reflns	23817	148617	40829	48679
R_{int}	0.0281	0.0470	0.0493	0.0522
Unique reflns	3933	20954	11794	4578
No. of params, restraints	145/0	839/15	558/110	182/15
GOF	1.074	1.183	1.066	1.068
R_1 , w R_2 [I > $2\sigma(I)$] ^b	0.0174, 0.0408	0.0562, 0.1330	0.0430, 0.0967	0.0337, 0.0824
R_1 , w R_2 (all data) ^b	0.0177, 0.0409	0.0664, 0.1401	0.052, 0.1048	0.0415, 0.0861

Table 6.15: Continued.

Chapter 6

Compound	[MoOCl ₃ (dmpe)]	[MoOCl ₃ (dppe)]• 0.5CH ₂ Cl ₂	[MoOCl ₃ (PMe ₃) ₂]	[(MoOCl)(dmpe) ₂ (μ- O)(MoOCl ₄)]
Formula	$C_6H_{16}Cl_3MoOP_2$	C _{26.5} Cl ₄ H ₂₅ MoOP ₂	C ₆ H ₁₈ Cl ₃ MoOP ₂	$C_{12}H_{32}Cl_5Mo_2O_2P_4$
M	368.42	659.14	370.43	701.38
Crystal system	Monoclinic	Triclinic	Monoclinic	Orthorhombic
Space group (no)	P2 ₁ /n (14)	P1 (2)	P2 ₁ /n (14)	Cmc2 ₁ (36)
a /Å	7.3716(1)	11.3059(2)	6.4676(1)	14.8497(1)
b/Å	29.8674(6)	14.3559(3)	12.6620(3)	12.54652(1)
c /Å	12.4489(2)	18.9775(4)	17.6653(4)	13.80599(1)
α /°	90	103.785(2)	90	90
β /°	93.989(2)	95.6440(1)	92.468(2)	90
γ /°	90	110.163(2)	90	90
$U/Å^3$	2734.24(8)	2752.54(1)	1445.32(5)	2572.22(4)
Z	8	4	4	4
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	1.745	1.591	1.651	1.621
F(000)	1464.0	1328.0	740.0	2196.0
Total number reflns	24936	76598	31349	48483
R _{int}	0.0532	0.0401	0.0569	0.0221
Unique reflns	8018	17392	4654	4447
No. of params, restraints	253/15	632/25	170/39	128/1
GOF	1.035	1.025	1.037	1.122
R_1 , $wR_2 [I > 2\sigma(I)]^b$	0.0399, 0.1024	0.0465, 0.1164	0.0458, 0.1120	0.0095, 0.0248
R ₁ , wR ₂ (all data) ^b	0.0467, 0.1066	0.0568, 0.1221	0.0592, 0.1218	0.0103, 0.0256

Table 6.15: Continued.

Commound	[MoOCl ₃ (MeS(CH ₂	[MoOCl ₃ (ⁱ PrS(CH ₂) ₂	[MoOCl ₃ (PhS(CH ₂) ₂	[(MoOCl ₂ (SMe ₂))
Compound) ₃ SMe)]	S ⁱ Pr)]	SPh)]	₂ (μ-Cl) ₂]
Formula	C ₅ H ₁₂ Cl ₃ MoOS ₂	$C_8H_{18}Cl_3MoOS_2$	$C_{14}H_{14}Cl_3MoOS_2$	$C_4H_{12}Cl_3Mo_2O_2S_2$
M	354.56	396.63	464.66	560.84
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group (no)	Pnma (62)	Pbca (62)	P2 ₁ /c (14)	P2 ₁ /c (14)
a /Å	12.2610(2)	12.4629(2)	19.6139(2)	7.81110(10)
b/Å	12.7705(2)	13.7536(2)	6.80640(10)	9.50630(10)
c /Å	7.6085(1)	17.5032(6)	12.9677(2)	11.2487(2)
α /°	90	90	90	90
β /°	90	90	96.1600(1)	105.1720(1)
γ /°	90	90	90	90
U/ų	1191.33(3)	3000.00(1)	1721.19(4)	806.15(2)
Z	4	8	4	2
$\mu(\text{Mo-K}_{\alpha})/\text{mm}^{-1}$	2.080	1.756	1.464	2.791
F(000)	700.0	1592.0	924.0	540.0
Total number reflns	18361	24043	64024	21532
R_{int}	0.0365	0.0587	0.0524	0.0175
Unique reflns	1948	4429	5833	2693
No. of params, restraints	62/0	140/0	217/2	75/0
GOF	1.105	1.072	0.795	1.208
R_1 , w R_2 [I > $2\sigma(I)$] ^b	0.0399, 0.1024	0.0461, 0.1003	0.0542, 0.1252	0.0119 0.0276
R_1 , w R_2 (all data) ^b	0.0184, 0.0428	0.0600, 0.1075	0.0580, 0.1271	0.0122, 0.0277

Table 6.15: Continued.

Chapter 6

Compound	[(MoOCl ₂ (SeMe ₂)) ₂ (μ-Cl) ₂]	[MoOCl ₃ (MeSe(C H ₂) ₂ SeMe)]	[MoOCl ₃ (MeSe(C H ₂) ₃ SeMe)]	$[(MoOCl(o-C_6H_4(TeMe)_2)_2)(MoOCl_4)]$ $•CH_2Cl_2$
Formula	$C_4H_{12}Cl_3Mo_2O_2Se_2$	C ₄ H ₁₀ Cl ₃ MoOSe ₂	$C_5H_{12}Cl_3MoOSe_2$	$C_{17}H_{22}Cl_7Mo_2O_2Te_4$
M	654.64	434.33	448.36	1208.77
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group (no)	P2 ₁ /c (14)	P2 ₁ /n (14)	Pn (7)	P2 ₁ /n (14)
a /Å	7.8374(2)	7.45509(5)	6.5580(0)	13.4608(2)
b/Å	9.6744(2)	12.18741(7)	7.7672(0)	16.6232(2)
c /Å	11.2666(3)	12.5333(8)	12.1025(2)	14.2143(2)
α /°	90	90	90	90
β /°	105.647(3)	96.6596(6)	94.9310(1)	93.5460(1)
γ /°	90	90	90	90
U /ų	822.60(4)	1131.074(1)	614.187(2)	3174.53(8)
Z	2	4	2	4
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	6.907	8.254	7.604	4.997
F(000)	612.0	812.0	422.0	2204.0
Total number reflns	11835	36105	15476	55806
R_{int}	0.0261	0.0585	0.0339	0.0534
Unique reflns	2616	3593	3630	9941
No. of params, restraints	75/0	102/0	138/2	320/23
GOF	1.035	1.162	1.049	1.218
R_1 , w R_2 [I > $2\sigma(I)$] ^b	0.0167, 0.0348	0.0198, 0.0462	0.0209, 0.0531	0.0447, 0.0982
R ₁ , wR ₂ (all data) ^b	0.0194, 0.0354	0.0209, 1.0466	0.0212, 0.0533	0.0479, 0.0992

Table 6.15: Continued.

Compound	(Ligand) → Mo(4d)	π-π* (rings)	$\pi(\mathrm{Cl}) \to \mathrm{Mo}(4\mathrm{d})$	d-d Transitions $(B_2 \rightarrow B_1, B_2 \rightarrow E)$
MoOCl ₄ +(2,2'-bipy)		31,056	25,000	13,812,
MoOCl ₄ + 1,10-phen		30,488	27,475sh	13,404
MoOCl ₃ (THF) ₂	32,500sh		25,300	19,600, 13,200
MoOCl ₃ (2,2'-bipy)	21,000	31,000	25,000	18,800, 13,800
MoOCl ₃ (1,10-phen)	23,300sh	30,700	26,300, 27,800	18,700, 13,400
MoOCl ₃ (MeS(CH ₂) ₃ SMe)	21,700		26,000, 27,400	20,000, 13,700
MoOCl ₃ (ⁱ PrS(CH ₂) ₂ S ⁱ Pr)	23,000sh		27,700, 30,400sh	21,500sh, 13,600
MoOCl ₃ (SMe ₂)	22,300		27,000	19,600, 13,800
MoOCl ₃ (SeMe ₂)	22,300		26,500	20,700, 14,100
MoOCl ₃ (PhS(CH ₂) ₂ SPh)	22,600		26,600, 27,000	21,300, 13,000
MoOCl ₃ (MeSe(CH ₂) ₂ SeMe)	21,500		25,800	19,300, 14,600
MoOCl ₃ (MeSe(CH ₂) ₃ SeMe)	21,400		26,000sh	19,500, 14,200
MoOCl ₃ (o-C ₆ H ₄ (SeMe ₂) ₂	20,900		24,900, 29,500sh	19,800sh, 14,300
MoOCl ₃ (TeMe ₂)	21,000		27,150sh, 26,100	19,500, 14,400
MoOCl ₃ (MeTe(CH ₂) ₃ TeMe)	20,600		25,300	18,600
MoOCl ₃ (o-C ₆ H ₄ (TeMe ₂) ₂	21,000	32,500sh	~25,000sh	19,200, 14,500
MoOCl ₃ (dppe)	20,100	32,000	27,200, 26,200	19,400, 15,100
MoOCl ₃ (PMe ₃) ₂	22,300		29,300, 27,000sh	19,600sh, 14,200
MoOCl ₃ (dmpe)	21,600		29,600, 26,500	20,500sh, 15,500
MoOCl ₃ + OPPh ₃		32,900	28,200	21,900, 13,500

Table 6.16: Showing the d-d and LMCT bands and their likely assignments for complexes in this work.

6.6 References

- (1) Benjamin, S. L.; Levason, W.; Reid, G. Chem. Soc. Rev., 2013, 42, 1460-99
- (2) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W. Chem. Commun., 2018, 54, 11681-84
- (3) El-Kurdi, S.; Al-Terkawi, A.-A.; Schmidt, B. M.; Dimitrov, A.; Seppelt, K. *Chem. Eur. J.*, **2010**, *16*, 595-99
- (4) Turnbull, D.; Kostiuk, N.; Wetmore, S. D.; Gerken, M. J. Fluorine. Chem., 2018, 215, 1-9
- (5) Arnaudet, L.; Bougon, R.; Ban, B.; Lance, M.; Navaza, A.; Nierlich, M.; Vigner, J. *J. Fluorine. Chem.*, **1994**, *67*, 17-25
- (6) Arnaudet, L.; Bougon, R.; Buu, B.; Lance, M.; Nierlich, M.; Thuéry, P.; Vigner, J. *J. Fluorine. Chem.*, **1995**, *71*, 123-29
- (7) Levason, W.; Reid, G.; Zhang, W. J. Fluorine. Chem., 2016, 184, 50-57
- (8) Emsley, J. W.; Levason, W.; Reid, G.; Zhang, W.; De Luca, G. J. Fluorine. Chem., 2017, 197, 74-79
- (9) Davis, M. F.; Levason, W.; Ratnani, R.; Reid, G.; Rose, T.; Webster, M. Eur. J. Inorg. Chem., **2007**, 306-13
- (10) Arnaudet, L.; Bougon, R.; Ban, B.; Charpin, P.; Isabey, J.; Lance, M.; Nierlich, M.; Vigner, J. *Can. J. Chem.*, **1990**, *68*, 507-12
- (11) Marchetti, F.; Pampaloni, G.; Zacchini, S. Inorg. Chem., 2008, 47, 365-72
- (12) Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans., 2009, 6759-72
- (13) Marchetti, F.; Pampaloni, G. *Inorg. Chim. Acta*, **2011**, *376*, 123-28
- (14) Ignatov, M. E.; Grebeshkov, D. B.; Il'in, E. G. Zh. Neorg. Khim., 1983, 28, 617-20
- (15) Marchetti, F.; Pampaloni, G.; Zacchini, S. J. Fluorine. Chem., 2010, 131, 21-28
- (16) Fairbrother, F.; Grundy, K. H.; Thompson, A. J. Less Common Met., 1966, 10, 38-41
- (17) Buslayev, Y. A.; Ilyin, E. G.; Ignatov, M. E.; Butorina, L. S.; Mastryukova, T. A. *J. Fluorine*. *Chem.*, **1978**, *12*, 387-95
- (18) Haiges, R.; Deokar, P.; Christe, K. O. Z. anorg. allg. Chem., 2014, 640, 1568-75
- (19) Levason, W.; Light, M. E.; Reid, G.; Zhang, W. Dalton Trans., 2014, 43, 9557-66
- (20) Levason, W.; Reid, G.; Zhang, W. J. Fluorine. Chem., 2015, 172, 62-67
- (21) Rahman, M. M.; Smith, M. D.; Amaya, J. A.; Makris, T. M.; Peryshkov, D. V. *Inorg. Chem.*, **2017**, *56*, 11798-803
- (22) Marchetti, F.; Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem., 2008, 453-62
- (23) Stumpf, K.; Blachnik, R.; Roth, G.; Kastner, G. Z. Kristallogr., 2000, 215, 589-90
- (24) Brown, D.; Hill, J.; Rickard, C. E. F. J. Less Common Met., 1970, 20, 57-65
- (25) Benjamin, S. L.; Chang, Y. P.; Hector, A. L.; Jura, M.; Levason, W.; Reid, G.; Stenning, G. *Dalton Trans.*, **2016**, *45*, 8192-200
- (26) Cotton, F. A.; Duraj, S. A.; Roth, W. J. Inorg. Chem., 1984, 23, 3592-96
- (27) Boyd, P. D. W.; Nielson, A. J.; Rickard, C. E. F. J. Chem. Soc., Dalton Trans., 1987, 307-14
- (28) Cotton, F. A.; Roth, W. J. *Inorg. Chem.*, **1984**, *23*, 945-47
- (29) Cotton, F. A.; Diebold, M. P.; Roth, W. J. Polyhedron, 1985, 4, 1103-08
- (30) Cotton, F. A.; Diebold, M. P.; Roth, W. J. *Inorg. Chim. Acta*, **1985**, *105*, 41-49
- (31) Levason, W.; Reid, G.; Trayer, J.; Zhang, W. Dalton Trans., 2014, 43, 3649-59
- (32) Gibson, V. C.; Kee, T. P.; Shaw, A. *Polyhedron*, **1988**, 7, 2217-19
- (33) Chavant, C.; Daran, J. C.; Jeannin, Y.; Constant, G.; Morancho, R. *Acta Cryst. B* **1975**, *31*, 1828-32
- (34) Herrmann, W. A.; Thiel, W. R.; Herdtweck, E. Chem. Ber., 1990, 123, 271-76
- (35) Gibson, V. C.; Kee, T. P. J. Chem. Soc., Dalton Trans., 1993, 1657-59
- (36) Gibson, V. C.; Kee, T. P.; Sorrell, R. M.; Bashall, A. P.; McPartlin, M. *Polyhedron*, **1988**, 7, 2221-23
- (37) Parkin, G. Chem. Rev., 1993, 93, 887-911
- (38) Bashall, A.; Gibson, V. C.; Kee, T. P.; McPartlin, M.; Robinson, O. B.; Shaw, A. *Angew. Chem. Int. Ed.*, **1991**, *30*, 980-82
- (39) Fairbrother, F. The Halides of Niobium and Tantalum; Academic Press: New York, 1967.
- (40) Hubert-Pfalzgraf, L. G.; Postel, M.; Reiss, J. G. Comprehensive Coordination Chemistry I, 1987, 3, 585-698

- (41) Copley, D. B.; Fairbrother, F.; Thompson, A. J. Less Common Met., 1965, 8, 256-61
- (42) Benjamin, S. L.; Hyslop, A.; Levason, W.; Webster, M. Acta Cryst. C, 2011, 67, m221-m23
- (43) Bannister, R. D.; Levason, W.; Light, M. E.; Reid, G.; Zhang, W. *Polyhedron*, **2019**, *167*, 1-10
- (44) Walton, R. A. Prog. Inorg. Chem., 1972, 16, 1-194
- (45) Feenan, K.; Fowles, G. W. A. Inorg. Chem., 1965, 4, 310-13
- (46) Edwards, D. A. J. Inorg. Nucl. Chem., 1965, 27, 303-07
- (47) Carmichael, W. M.; Edwards, D. A. J. Inorg. Nucl. Chem., 1968, 30, 2641-46
- (48) Crouch, P. C.; Fowles, G. W. A.; Marshall, P. R.; Walton, R. A. J. Chem. Soc. A, 1968, 1634-838
- (49) Levason, W.; McCullough, F. P.; McAuliffe, C. A. *Inorg. Nucl. Chem. Lett.*, **1976**, *12*, 843-47
- (50) Levason, W.; McAuliffe, C. A.; McCullough, F. P.; Murray, S. G.; Rice, C. A. *Inorg. Chim. Acta*, **1977**, *22*, 227-31
- (51) McAuliffe, C. A.; Sayle, B. J. *Inorg. Chim. Acta*, **1978**, *30*, 35-43
- (52) McAuliffe, C. A.; Werfalli, A. *Inorg. Chim. Acta*, **1982**, *64*, L19-L20
- (53) Levason, W.; McAuliffe, C. A.; Sayle, B. J. J. Chem. Soc., Dalton Trans., 1976, 1177-81
- (54) Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem., 2016, 3169-77
- (55) Hill, L. H.; Howlader, N. C.; Mabbs, F. E.; Hursthouse, M. B.; Malik, K. M. A. *J. Chem. Soc.*, *Dalton Trans.*, **1980**, 1475-81
- (56) Fowles, G. W. A.; Frost, J. L. J. Chem. Soc. A, 1967, 671-75
- (57) Fowles, G. A. W.; Rice, D. A.; Shanton, K. J. J. Chem. Soc., Dalton Trans., 1978, 1658-61
- (58) Levason, W.; McAuliffe, C. A.; McCullough, F. P. Inorg. Chem., 1977, 16, 2911-16
- (59) Behzadi, K.; Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1978, 57, 103-10
- (60) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G. Dalton Trans., 2017, 46, 9824-32
- (61) Islam, S. M.; Subrahmanyam, K. S.; Malliakas, C. D.; Kanatzidis, M. G. *Chem. Mater.*, **2014**, *26*, 5151-60
- (62) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1974, 2191-94
- (63) Britnell, D.; Fowles, G. W. A.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1975, 213-15
- (64) Drew, M. G. B.; Griffin, G. F.; Rice, D. A. *Inorg. Chim. Acta*, **1979**, *34*, L192
- (65) Baghlaf, A. O.; Thompson, A. J. Less Common Met., 1977, 53, 291-93
- (66) McAuliffe, C. A.; Werfali, A.; Hill, W. E.; Minahan, D. M. A. *Inorg. Chim. Acta*, **1982**, *60*, 87-91
- (67) Vitzthumecker, C.; Robinson, F.; Pfitzner, A. Monatsh. Chem., 2017, 148, 629-33
- (68) Chang, Y. P.; Levason, W.; Light, M. E.; Reid, G. Dalton Trans., 2016, 45, 16262-74
- (69) Benjamin, S. L.; Chang, Y.-P.; Huggon, M.; Levason, W.; Reid, G. *Polyhedron*, **2015**, *99*, 230-37
- (70) Dolci, S.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Eur. J. Inorg. Chem., **2013**, 2013, 1371-80
- (71) Favero, L.; Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans., 2014, 43, 495-504
- (72) Marchetti, F.; Pampaloni, G.; Zacchini, S. Dalton Trans., 2013, 42, 2477-87
- (73) Kacholdt, H.; Berges, P.; Klar, G.; Hinrichs, W. Transition Met. Chem., 1987, 12, 515-20
- (74) Kemmitt, T.; Levason, W.; Spicer, M. D.; Webster, M. Organomet., 1990, 9, 1181-84
- (75) Poropudas, M. J.; Rautiainen, J. M.; Oilunkaniemi, R.; Laitinen, R. S. *Dalton Trans.*, **2016**, 45, 17206-15
- (76) Hull, C. G.; Stiddard, M. H. B. J. Chem. Soc. A, 1966, 0, 1633-35
- (77) Isovitsch, R. A.; Fronczek, F. R.; Maverick, A. W. *Polyhedron*, **1998**, *17*, 1617-20
- (78) Limberg, C.; Büchner, M.; Heinze, K.; Walter, O. *Inorg. Chem.*, **1997**, *36*, 872-79
- (79) Taylor, R. D.; Todd, P. G.; Chasteen, N. D.; Spence, J. T. *Inorg. Chem.*, 1979, 18, 44-48
- (80) Scullane, M. I.; Taylor, R. D.; Minelli, M.; Spence, J. T.; Yamanouchi, K.; Enemark, J. H.; Chasteen, N. D. *Inorg. Chem.*, **1979**, *18*, 3213-19
- (81) Garner, C. D.; Howlader, N. C.; Mabbs, F. E.; McPhail, A. T.; Onan, K. D. *J. Chem. Soc., Dalton Trans.*, **1978**, 1848
- (82) Jensen, L. M. R.; Abrahams, B. F.; Young, C. G. J. Coord. Chem., 2013, 66, 1252-63

- (83) Bartalucci, N.; Bortoluzzi, M.; Marchetti, F.; Pampaloni, G.; Schoch, S.; Zacchini, S. *New J. Chem.*, **2017**, *41*, 4329-40
- (84) Marchetti, F.; Pampaloni, G.; Zacchini, S. Polyhedron, 2015, 85, 369-75
- (85) Hursthouse, M. B.; Levason, W.; Ratnani, R.; Reid, G. Polyhedron, 2004, 23, 1915-21
- (86) Brown, M. D.; Hursthouse, M. B.; Levason, W.; Ratnani, R.; Reid, G. *Dalton Trans.*, **2004**, 2487-91
- (87) Levason, W.; Monzittu, F. M.; Reid, G.; Zhang, W.; Hope, E. G. *J. Fluorine. Chem.*, **2017**, 200, 190-97
- (88) Hartley, F. R.; Murray, S. G.; Levason, W.; Soutter, H. E.; McAuliffe, C. A. *Inorg. Chim. Acta*, **1979**, *35*, 265-77
- (89) Gulliver, D. J.; Hope, E. G.; Levason, W.; Murray, S. G.; Potter, D. M.; Marshall, G. L. *J. Chem. Soc., Perkin Trans. II*, **1984**, *2*, 429-34
- (90) Kemmitt, T.; Levason, W. Organomet., 1989, 8, 1303-08
- (91) Kuhn, N.; Faupel, P.; Zauder, E. J. Organomet. Chem., 1986, 302, C4-C6
- (92) Hope, E. G.; Kemmitt, T.; Levason, W. Organomet., 1987, 6, 206-07
- (93) Hope, E. G.; Kemmitt, T.; Levason, W. Organomet., 1988, 7, 78-83
- (94) Gibson, V. C.; Kee, T. P.; Shaw, A. Polyhedron, 1990, 9, 2293-98

Development of Precursors for Layered Transition Metal Dichalcogenides *via* Non-Aqueous Electrodeposition

7.1 Introduction

As discussed in Chapters 4 and 5, interest in early transition metal dichalcogenides has increased in recent years and having a variety of methods to produce ME_2 (M = Mo or W; E = S or Se) thin films is important for electronic devices. While CVD provides a cheap and versatile method to produce a range of thin film materials, electrodeposition allows control over where the material is deposited (only onto conducting surfaces) and offers a greater amount of control over the film's properties; including thickness. This section of work focuses on the development of a series of potential single source precursors suitable for the electrodeposition of ME_2 thin films using non-aqueous solvents. This chapter is split into two sections covering the synthesis of precursors and subsequent electrodeposition of MoS_2 and MS_2 , respectively.

7.2 Transition Metal and p Block Metals via Non-Aqueous Electrodeposition

The use of non-aqueous solvents in electrodeposition has advanced significantly and it has been shown to facilitate the deposition of a large variety of d and p block metals.¹⁻³ Traditionally, electrodeposition used aqueous baths, which allows fast deposition rates, but can pose a problem of hydrolysis of metal reagents, subsequently incorporating undesirable metal oxides into the deposited materials. In addition, aqueous baths can have quite narrow electrochemical windows and promote hydrogen evolution from the competing reduction of water, which is usually undesirable. Conventional organic solvents such as MeCN, dmso and ethers are also common electrodeposition media which provide sufficient electrochemical windows and diffusivity of electrolytes. This allows depositions that are easy to control, are cost effective and have been proven to effectively deposit metals and materials such as Lu-Ni alloys from dmso, for example. 4,5 The lower temperatures required compared to vapour deposition methods, and the ability to control the potential of the system (and therefore the growth rate), in principle allows greater control of the films. Since electrodeposition is a 'bottom-up' technique it allows a high-density material to be formed and offers efficient volume filling with fewer defects. Electrodeposition has many potential applications and is used in industry for integrated copper circuits, known as the dual Damascene process, and for the read-write heads in magnetic recording devices. Compared to other methods such as CVD, transition metal dichalcogenide fabrication via electrodeposition is much less developed.

7.2.1 Electrodeposition of p Block Metals and Metalloids

Electrodeposition, like CVD, has certain desirable properties from a successful precursor and it is common for precursors to be ionic salts to increase solubility in the electrolyte solutions. A range of chlorometallate salts, $[^nBu_4N][MCl_3]$ (M = Ge or Sn), $[^nBu_4N][MCl_4]$ (M = Ga, In, Sb or Bi) and $[^nBu_4N]_2[MCl_6]$ (M = Se or Te) have been shown to deposit pure elemental metals onto TiN electrodes from either CH_2F_2 or CH_2Cl_2 .^{2,8,9} The chlorometallate salts were shown to form stable, reproducible electrochemical systems from which the elemental metals can be deposited. The haloplumbate salts $[PPh_4][PbCl_3]$ or $[^nBu_4N][PbCl_3]$ were shown to deposit elemental Pb and combining $[^nBu_4N][SnCl_3]$ and $[^nBu_4N][BiCl_4]$ allows deposition of Sn-Bi alloys with the ratio directly controlled by potential. 10,11 Using $[^nBu_4N][BiCl_4]$ and $[^nBu_4N]_2[TeCl_6]$ in CH_2Cl_2 produces the thermoelectric material Bi_2Te_3 , with evidence of preferred orientation in the <110> plane. 12 A similar example using $[^nBu_4N]_2[TeCl_6]$ and $[^nBu_4N]_2[HgCl_4]$ in CH_2Cl_2 also deposits the crystalline HgTe onto Pt substrates, with no evidence of elemental tellurium. 13 Using dual precursors to deliver the required materials is typical, but finding suitable reagents for early transition metals can prove challenging and most are hydrolytically unstable.

The use of chlorometallate salts can be expanded to introduce the ability to deposit ternary systems such as germanium antimony telluride, leading to functional and switchable phase change memory nanocells. ¹⁴⁻¹⁶ Thus, by using [ⁿBu₄N]₂[TeCl₆], [ⁿBu₄N][SbCl₄] and [ⁿBu₄N][GeCl₅], the phase change memory material, Ge₂Sb₂Te₅, can be deposited. Varying either the concentration of the precursors in the electrochemical bath or the deposition potential can directly alter the material composition. ¹⁴⁻¹⁶

The use of ["Bu₄N]" salts increases the solubility of the metal anions in weakly coordinating solvents such as CH₂Cl₂. The cations are electrochemically inert and contain the same cation as the supporting electrolyte used, ["Bu₄N]Cl. It is also demonstrated that chlorometallate salts can be synthesised with suitable purity and are stable in solution.

7.2.2 Electrodeposition of Transition Metal Dichalcogenides

There are very few reports of electrodepositing transition dichalcogenides from either aqueous or non-aqueous baths. Using aqueous baths also limits the range of suitable reagents. Hexagonal ZrSe₂ films have been electrochemically deposited from an aqueous bath using ZrO(NO₃)₂•H₂O or Zr(SO₄)₂ and SeO₂ onto stainless steel or fluorine doped tin oxide glass (FTO) substrates.^{17,18} The deposition of ZrSe₂ is one of the few examples of transition metal dichalcogenides electrochemically deposited.

MoS₂ films are by far the most studied transition metal dichalcogenide. MoS₂ is a diamagnetic semiconductor with an indirect band gap similar to that of silicon, 1.7 eV, making it a possible alternative to silicon in solar cells. MoS₂ has also been studied for electrochemical applications and

microelectronics.¹⁹ Due to the two dimensional stacking (layered structure), it shows a diverse range of optical and electronic properties that differ from bulk. The bulk material has an indirect band gap of 1.2 eV, whereas the two dimensional monolayer has a direct band gap of 1.8 eV making it suitable for switchable transistors and typically exhibits *n*-type semiconducting behaviour.^{19,20} As the thickness of films decreases this causes strong photoluminescence in 2H-MoS₂, which is not present in the bulk, allowing the possibility of using MoS₂ for visible light photocatalytic reactions.^{20,21}

Amorphous MoS₂ films have been shown to deposit from [NH₄]₂[MoS₄] in ethylene glycol at 165 °C. Subsequent annealing at 550 °C formed polycrystalline 2H-MoS₂ films ~150 nm thick.^{22,23} From an aqueous electrolyte bath MoS₂ has deposited onto indium tin oxide coated glass (ITO) using H₂MoO₄ and Na₂S₂O₃•5H₂O,²⁴ [NH₄]₂[MoS₄] has also been used in an aqueous bath to deposit MoS₂.²⁵

Following this, MoS₂ has been deposited onto glassy carbon substrates from a room-temperature ionic liquid (RTIL), [PP₁₃][TFSI] with the dual source precursors, molybdenum glycolate and HS(CH₂)₄SH.²⁶

Figure 7.1: Illustration of the ionic liquid PP_{13} -TFSI.

Another report of the electrodeposition of amorphous MoS_x using a RTIL ([EMIM][TFSI]) electrolyte bath used the single source precursor [PPh₄]₂[MoS₄], but film characterisation is limited.²⁷ XPS analysis showed the presence of Mo and S but O is also incorporated into the amorphous films. As the films have not been annealed the material characterisation is not conclusive and the Mo: S ratio is suggested to be 1:>2.²⁷

MoSe₂ is homologous to MoS₂ and has potential properties for photochemical applications and energy storage, it shows higher electrical conductivity than MoS₂ due to selenium's more metallic nature, which improves its performance in photoelectrochemical devices.^{28,29} Similar to MoS₂, MoSe₂ has 2 phases, 2H and 1T, but the 1T phase is thermodynamically unstable and degrades into the 2H phase over time, making it unsuitable for many applications.³⁰ There are a few reports of MoSe₂ being deposited from dual source aqueous chemical baths using H₂MoO₄ and SeO₂³¹ or Na₂MoO₄ and H₂SeO₃ with mixed success, due to MoO₃ incorporation.³² The MoSe₂ films deposited from H₂MoO₄ and SeO₂ were annealed at 150 °C and shown to be polycrystalline with preferred orientation in the <102> plane.³¹ Also, there is a report of MoSe₂ being deposited using electrochemical atomic layer deposition (E-ALD) using [HMoO₄] and SeO₂ using [NH₄]Cl as a supporting electrolyte.³³ The amorphous MoSe₂ films were then annealed at 300 °C to produce

polycrystalline films and to remove unreacted MoO₂. There is one report of single source deposition of amorphous MoSe_x from [PPh₄]₂[MoSe₄] in [EMIM][TFSI], although the characterisation of the deposited film is limited to XPS and Raman spectroscopy.²⁷

There are fewer reports of the electrodeposition of tungsten dichalcogenides than molybdenum dichalcogenides. WS₂ has a slightly larger indirect bandgap than the molybdenum analogue. There are some reports of hydrogen evolution reactions occurring when depositing WS₂ from $[WS_4]^{2^-}$ in aqueous solutions as the deposit potential can overlap with the hydrogen evolution reaction. WS₂ films were reported using H_2WO_4 and Na_2SO_3 in aqueous solution from galvanostatic methods. Single source electrodeposition of WS₂ thin films onto ITO substrates from an acetonitrile bath using $[NH_4]_2[WS_4]$ and $LiClO_4$ has been reported. They describe the annealed film as the polycrystalline 2H-phase of WS₂, however evidence of WO₃ incorporation is not clear. A similar report using $[NH_4]_2[WS_4]$ in aqueous KCl solution is shown to deposit WS₂ onto glassy carbon electrodes and it is suggested that the as-deposited films have the ratio W: S (1:2.64) consistent with other reports of depositing WS_x (x = 2-3) films.

Again there is very little reported literature for the electrodeposition of WSe₂, but there are a few reports using galvanostatic methods from aqueous baths with H₂WO₄ and SeO₂.^{39,40} There is one other report using an aqueous bath of Na₂WO₄, tartaric acid and Na₂SSeO₃.¹⁷

The majority of electrochemical depositions of transition metal dichalcogenides are from aqueous baths, however, the water stable precursors (commonly metal oxides) can cause the inclusion of oxide. The aqueous baths also promotes hydrogen evolution, the release of hydrogen gas can result in films having a rough morphology with pinholes, which is not suitable for device quality materials. The hydrogen evolution can also interfere with the electrochemistry of solutions making it difficult to assess the suitability of precursors; this can be minimised by using non-aqueous solvents with wider potential windows.

7.2.3 Thiometallates

Thiometallates have been of interest since studies in the 19th century due to their strong colours and more recently have been building blocks for the formation of metal chalcogen-clusters. 42,43

Tetrathio- and tetraseleno-metallates are extensively studied for a range of metals and all metals are in their highest oxidation state. 42,44

Known tetrathio- and tetraseleno-metallates				
$[VS_4]^{3-}$	$[MoS_4]^{2-}$	[ReS ₄]		
$[VSe_4]^{3-}$	$[MoSe_4]^{2-}$			
[NbS ₄] ³⁻	$[WS_4]^{2-}$			
$[TaS_4]^{3-}$	$[WSe_4]^{2-}$			

Table 7.1: Table showing known tetrathio- and tetraseleno-metallates.

The most common way to synthesise $[MoS_4]^{2-}$ salts is to pass H_2S through a $[NH_4]_x[MO_4]^{x-}$ solution, however many ammonium thiometallate salts are now commercially available. The alkylammonium and phosphonium salts can be readily prepared from aqueous solutions of the ammonium salts *via* metathesis of the cation. The tetraselenometallates are more complicated to synthesise but are commonly prepared from Na_2Se_3 or K_2Se_3 and $M(CO)_x$.

Thiometallates can act as ligands forming sulfide bridges with up to four other metal centres, forming simple chains or more complex cubane structures. These clusters can exhibit redox behaviour which has become important in biological systems including removing copper from the blood stream. More recently, they have been identified as potential single source precursors for the electrodeposition of transition metal dichalcogenide thin films due to suitable solubility, stability and the incorporation of both metal and chalcogen in the anion.

7.2.4 Aims

This chapter focuses on the development and synthesis of a series of potential precursors suitable for the electrodeposition of ME_2 (M = Mo or W; E = S or Se) thin films using non-aqueous solvents. The chapter is split into two parts covering the synthesis of precursors for the electrodeposition of MoS_2 and WS_2 and their respective electrochemical studies. The precursors will be fully characterised by IR, 1H NMR, $^{77}Se\{^1H\}$ NMR, ^{95}Mo NMR spectroscopy where possible, elemental analysis and X-ray crystal structures. Deposited thin films of ME_2 will be characterised by Raman spectroscopy, grazing incidence X-ray diffraction, SEM and EDX/WDX.

7.3 Results and Discussion

7.3.1 Synthesis of Precursors for MoE₂ Films

The compound, ["Bu₄N]₂[MoS₄] was prepared from stoichiometric reaction of [NH₄]₂[MoS₄] and ["Bu₄N]Cl in deionised water in good yields. The IR spectrum shows a strong T₂ stretch at 468 cm⁻¹ which can be assigned to a Mo=S stretch. The ⁹⁵Mo NMR spectrum shows a sharp singlet at +2234 ppm, which corresponds with the reported literature.⁴⁸

Additional ⁹⁵Mo NMR experiments were also carried out in acetonitrile and dichloromethane with added electrochemical electrolytes (tetrabutylammonium chloride and tetrabutylammonium tetrafluoroborate), causing no significant shift. This shows that these supporting electrolytes do not interact with the [MoS₄]²⁻ anion in solution and could be suitable for electrodeposition in organic solvents.

$$\begin{bmatrix} H \\ H \\ H \end{bmatrix}_{2} \begin{bmatrix} S \\ S \\ S \end{bmatrix} + \begin{bmatrix} B u \\ B u \\ B u \end{bmatrix}_{Cl} \longrightarrow \begin{bmatrix} B u \\ B u \\ B u \end{bmatrix}_{2} \begin{bmatrix} S \\ S \\ S \end{bmatrix}$$

Figure 7.2: Reaction scheme for $[^nBu_4N]_2[ME_4]$ (E = S or Se).

The selenium analogues [MoSe₄]²⁻ were more complex to syntheses as [NH₄]₂[MoSe₄] is not commercially available, therefore [MoSe₄]²⁻ has to be prepared in house. Fresh K₂Se₃ was prepared in liquid ammonia and then heated to reflux with Mo(CO)₆ in DMF to form K₂[MoSe₄], before the appropriate alkylammonium or phosphonium salt is then added. Two salts were isolated, [PPh₄]₂[MoSe₄] and ["Bu₄N]₂[MoSe₄], which exhibit different solubilities in organic solvents. The highly soluble ["Bu₄N]₂[MoSe₄] proved challenging to isolate in a pure form. The IR spectra for both [PPh₄]₂[MoSe₄] and ["Bu₄N]₂[MoSe₄] show a single T₂ stretch at 340 and 341 cm⁻¹, respectively, showing that the cation has no effect on the Mo=Se bond and the data are consistent with reported literature. ⁴⁹ Both compounds show a single peak in both the ⁷⁷Se₄¹H₃ and ⁹⁵Mo NMR spectra. The ⁹⁵Mo NMR spectrum for ["Bu₄N]₂[MoSe₄] also shows ⁷⁷Se satellites (13 Hz) consistent with the [MoSe₄]²⁻ ion. Attempts to find the ⁷⁷Se satellites in the ⁹⁵Mo NMR spectrum for [PPh₄]₂[MoSe₄] were unsuccessful. Possible due to its poorer solubility in CH₂Cl₂, however the main resonance is 120 Hz wide at the base, so it is likely to obscure the coupling, as the ¹J coupling is only 13 Hz.⁵⁰

Compound	95Mo NMR Shifts	⁷⁷ Se{¹H} NMR Shifts
$[^{n}Bu_{4}N]_{2}[MoSe_{4}]$	+3088 ppm	+ 1652 ppm
$[PPh_4]_2[MoSe_4]$	+3094 ppm	+ 1656 ppm

Table 7.2: $^{77}Se\{^1H\}$ and ^{95}Mo NMR data for the [MoSe₄]²⁻ salts.

7.3.2 Electrochemistry of Precursors for MoS₂ Films

The electrochemical studies of the precursors have been undertaken by Dr S. Thomas at the University of Southampton, along with the EDX/WDX and Raman spectroscopic analysis of the deposited films. Cyclic voltammetry was first performed on the precursors in CH₂Cl₂ to evaluate their electrochemical behaviour, thus providing a quick screening process. The supporting electrolyte used was either ["Bu₄N]Cl or [NH₄]Cl in order minimise additional ions in the system to

reduce potential complications with speciation and ensuring both the supporting electrolyte and precursors were completely dissolved.

Initially, experiments to replicate the results from Albu-Yaron and co-workers using ethylene glycol and [NH₄]₂[MoS₄] were attempted.²² A solution containing 5 mM [NH₄]₂[MoS₄] with 0.57 M [NH₄]Cl as the proton source and 100 mM KCl as supporting electrolyte in ethylene glycol was prepared and a CV conducted.

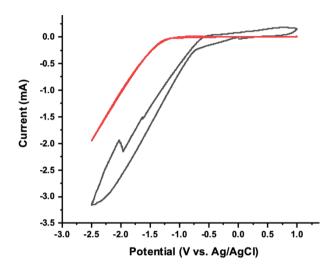


Figure 7.3: CV of 5 mM [NH₄]₂[MoS₄] (black) in ethylene glycol and background (red).

As shown in Figure 7.3, the cathodic scan shows a reduction at increasing negative potential with the cathodic peak potential (E_{pa}) at ~-2.5 V. The deposition onset peak, peak deposition current and stripping onset occur at -1.0 V, -2.5 V and -0.5 V, respectively. Subsequent deposition experiments showed the deposition of MoS_x (x = 2-3) and post-annealing MoS₂.

Cyclic voltammetry was also performed in CH_2Cl_2 solution containing 5 mM [nBu_4N] $_2$ [MoS₄] with 100 mM [nBu_4N]Cl as the supporting electrolyte and 200 mM [Me₃HN]Cl as a proton source. Previous voltammetric studies of CH_2Cl_2 have demonstrated that [nBu_4N]Cl provides a good potential window and conductivity ($\sigma = \sim 1$ mS cm⁻¹ for 100 mM [nBu_4N]Cl), comparable to 10 mM KCl solution. The electrochemical window for 100 mM [nBu_4N]Cl in CH_2Cl_2 was found to be between -1.85 V and +1 V. A proton source is required for deposition of MoS₂ as without it the deposition current does not exceed -0.6 mA and there is very little deposition, whereas with a proton source the deposition current is \sim -8.2 mA.

The reasoning behind such a low current without a proton source is that four protons are required for the reduction of $[MoS_4]^{2-}$.

$$[MoS_4]^{2-} + 4H^+ + 2e^- \rightarrow MoS_2 + 2H_2S$$

Equation 7.1: Suggest electrochemical reaction for the deposition of MoS_2 from $\lceil {}^nBu_4N \rceil_2 \lceil MoS_4 \rceil$.

Without sufficient protons the reduction cannot be completed, resulting in an extremely small current which is not strong enough to allow deposition to proceed. MoS₃ has been shown to deposit

on the anodic scan on the counter electrode and is then subsequently stripped as the potential is swept more negative, reproducing the $[MoS_4]^{2-}$ ion back into the electrochemical solution.⁵¹

To investigate the anodic deposition, the experiment was completed with an EQCM (Figure 7.4). This allows changes in mass at the electrode to be observed, without the proton source there is no mass change on the cathodic scan confirming that the current is too low to produce deposition. There is anodic deposition at ~ 0.4 V, which is then stripped and $[MoS_4]^{2-}$ is returned to the solution; with the proton source added, the EQCM characteristics are very different. Once again, during the anodic scan there is deposition of MoS_3 , which is then stripped away, reducing the relative mass. During the cathodic scan there is deposition of MoS_2 , which increases the relative mass. The deposited MoS_2 does not get stripped away during the anodic scan, therefore increasing the effective mass with each sweep.

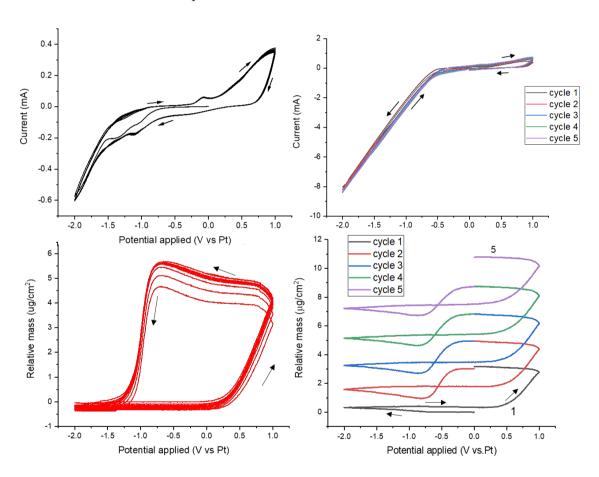


Figure 7.4: CV of 5 mM of [nBu_4N]₂[MoS_4] in CH₂Cl₂ without a proton source (top left) with 200 mM [Me_3NH]Cl (top right). EQCM of 5 mM of [nBu_4N]₂[MoS_4] in CH₂Cl₂ without a proton source (bottom left) with 200 mM [Me_3NH]Cl (bottom right).

From the CV experiments a potential of -0.8 V was identified as a suitable deposition potential, when using CH₂Cl₂, after the onset of the reduction peak, but well before the solvent breakdown, to reduce contamination in the films.

MoS₂ was deposited potentiostatically on to a planar TiN electrode using [ⁿBu₄N]₂[MoS₄] containing [ⁿBu₄N]Cl and [Me₃NH]Cl as the supporting electrolyte and proton source, respectively, in CH₂Cl₂. The electrodes were held at constant potential, -0.8 V for CH₂Cl₂, vs Ag/AgCl which

provided enough overpotential to obtain films of suitable thickness, whilst falling within the available electrochemical window and minimising the effects of the electrolyte. After the deposition had finished, the films were gently washed in fresh CH₂Cl₂ to dissolve any residual salts. In order to crystallise the films, they were annealed at 100°C for 10 minutes under vacuum then 500 °C for 2 hours with sulfur under N₂.

As-deposited films gave none of the expected peaks of MoS_2 in grazing incidence XRD due to the films being amorphous. Subsequent acquisitions on the annealed films showed a very broad single peak at 14.4° attributed to the <002> plane from 2H-MoS₂ suggesting crystallites parallel to the crystallographic plane. The SEM image (Figure 7.5) shows a very flat and continuous layered deposit with few cracks. It is likely the cracks occur from internal stress due to long deposition times to obtain bulk films, the flat structure indicates a laminar like structure typical of these types of layered materials.

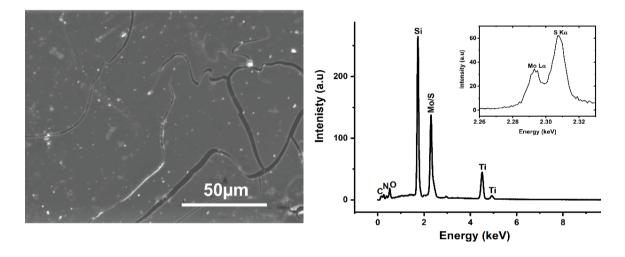


Figure 7.5: Top-view of an annealed deposit obtained after potentiostatic deposition at -0.8 V for 1 hour from CH₂Cl₂ containing 5 mM [n Bu₄N]₂[MoS₄]. 0.2 M [Me₃HN]Cl with 0.1 M [n Bu₄N]Cl as the supporting electrolyte (left). EDX spectrum of an annealed film, insert shows WDX spectrum for Mo L_a and S K_a lines (right).

The EDX spectrum of the annealed film confirmed the presence of molybdenum and/or sulfur (2.3 keV), but their respective emission peaks overlap (Mo $L_{\alpha l}$: 2.29 keV and S $K_{\alpha l}$: 2.31 keV) so a ratio cannot be quantified.⁵² WDX data was obtained which has better resolution and shows two clearly separate peaks and quantification of the ratio confirmed Mo : S (1:1.9-2.1) against a standard commercial MoS₂ sample.

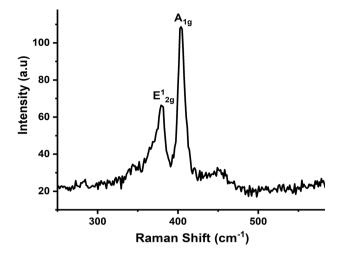
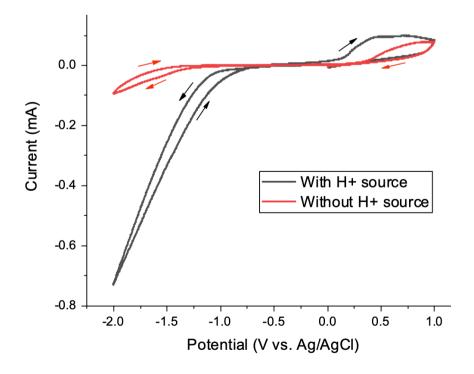


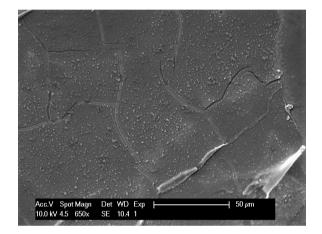
Figure 7.6: Raman spectra for an annealed MoS₂ film deposit.

Raman spectra were collected using a 532 nm excitation laser and the spectra show the two main peaks at 380 cm⁻¹ and 404 cm⁻¹, which were assigned to the E_{2g} (in-plane) and A_{1g} (out of plane) vibrational modes of MoS₂, respectively.⁵³

7.3.3 Electrochemistry of Precursors for MoSe₂ Films

Cyclic voltammetry was completed on a CH_2Cl_2 solution containing 5 mM [nBu_4N] $_2$ [MoSe₄] with 200 mM [nBu_3HN]Cl as the proton source and 100 mM [nBu_4N]Cl as supporting electrolyte. The cyclic voltammogram is similar to [nBu_4N] $_2$ [MoS₄], suggesting similar electrochemical properties. The cyclic voltammogram shows that reduction is occurring in the cathodic scan, with the deposition onset peak, peak deposition and stripping onset occurring at -0.8 V, -2.0 V and -1.1 V respectively.




Figure 7.7: CV of 5mM [Bu₄N]₂[MoSe₄] in CH₂Cl₂.

As with MoS₂, a proton source is required for deposition, as without it the deposition current does not exceed -0.1 mA which is not sufficient for deposition, whereas with a proton source the deposition current is \sim -7.5 mA. Again it is suggested that [MoSe₄]²⁻ undergoes similar chemistry to [MoS₄]²⁻ that upon sweeping to positive potentials the reaction below occurs.²⁷

$$[MoSe_4]^{2-} + 4H^+ + 2e^- \rightarrow MoSe_2 + 2H_2Se$$

Equation 7.2: Suggest electrochemical reaction for the deposition of MoS₂ from [ⁿBu₄N]₂[MoSe₄].

Films were deposited potentiostatically on to planar TiN slide electrodes using [${}^{n}Bu_{4}N$]₂[MoSe₄] containing [${}^{n}Bu_{4}N$]Cl as the supporting electrolyte in CH₂Cl₂. The electrodes were held at constant potential, -1.2 V vs Ag/AgCl which provided enough overpotential to obtain films of suitable thickness, whilst falling within the available electrochemical window. After the deposition had finished, the films were gently washed in fresh CH₂Cl₂ to dissolve any residual salts.

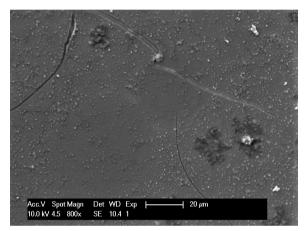


Figure 7.8: SEM for electrodeposited film on planar TiN from [*Bu4N]2[MoSe4].

The SEM images (Figure 7.8) of the deposited films show relatively uniform morphology across the surface of the electrode. EDX analysis of the deposited film shows both Mo and Se but significantly more Se than Mo, suggesting the possibility of elemental Se being co-deposited. There is also C and Cl present, most likely from the electrochemical breakdown of the electrolyte salts, also observed are emission peaks from Ti, Si and N from the electrode. Raman spectroscopy shows a broad peak at 259 cm⁻¹ which is close to the A_{1g} vibrational mode of crystalline MoSe₂ (~242 cm⁻¹), however it can also be assigned to ν (Se-Se) common in amorphous Se.^{54,55} An attempt to anneal the films was unsuccessful, it was attempted at 550 °C under N₂ but the selenium appears to have distilled off, confirmed by EDX. Further annealing attempts will be tried at lower temperatures, possibly with an additional selenium source in the annealing tube as well.

7.3.4 Synthesis of Precursors for WE₂ Films

Synthesis of $[WE_4]^{2-}$ salts (E = S or Se) were analogous to the $[MoE_4]^{2-}$ salts described above. The IR spectrum for $[^nBu_4N]_2[WS_4]$ shows a strong T_2 absorption at 449 cm⁻¹ which corresponds with a W=S stretch and the 1H NMR data shows 4 peaks corresponding to the tetrabutylammonium

cation. An attempt to obtain ¹⁸³W NMR spectroscopic data was tried but due to the tungsten nucleus' insensitivity, the compound degrades before a spectrum could be obtained (only stable for a few hours), so no spectrum could be recorded despite the high symmetry of the anion and possible instrumental problems with low resonance probes.

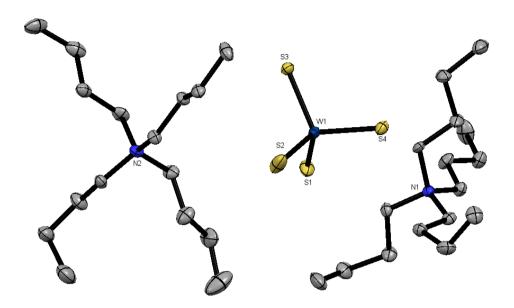


Figure 7.9: Crystal structure of ["Bu₄N]₂[WS₄] showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity.

[nBu ₄ N] ₂ [WS ₄]			
Bond Lengths/ Å Bond Angles/ °			gles/ °
W1-S1	2.200(2)	S1-W1-S2	110.09(9)
W1-S2	2.192(2)	S1-W1-S3	110.52(9)
W1-S3	2.182(2)	S1-W1-S4	110.19(9)
W1-S4	2.193(3)		

Table 7.3: Selected bond lengths and angles for ["Bu₄N]₂[WS₄].

The yellow crystals obtained from slow evaporation from water showed $[^nBu_4N]_2[WS_4]$, the $[WS_4]^{2-}$ anion is in tetrahedral geometry which is what is expected based on to the single T_2 peak observed in the IR spectrum. The compound has crystallised in the orthorhombic space group, Fdd2, and the structure is relatively simple.

The $[WSe_4]^{2-}$ salts show a single T_2 stretch from W=Se in the IR spectra and both compounds exhibit a single peak in $^{77}Se\{^1H\}$ NMR spectra which had ^{183}W satellites, +1239 ppm and +1238 ppm for $[^nBu_4N]_2[WSe_4]$ (J_{WSe} 53 Hz) and $[PPh_4]_2[WSe_4]$ (J_{WSe} 50 Hz), respectively.

Compound	W=Se	⁷⁷ Se NMR Shifts
$[^{n}Bu_{4}N]_{2}[WSe_{4}]$	305 cm ⁻¹	+1238 ppm
$[PPh_4]_2[WSe_4]$	304 cm ⁻¹	+1239 ppm

Table 7.4: ⁷⁷Se{¹H} NMR data and IR data for the [WSe₄]²⁻ salts.

Both salts yielded dark red crystals from saturated MeCN/THF solutions, the structure of [PPh₄]₂[WSe₄] has been previously reported but [ⁿBu₄N]₂[WSe₄] is not currently known.⁴⁹

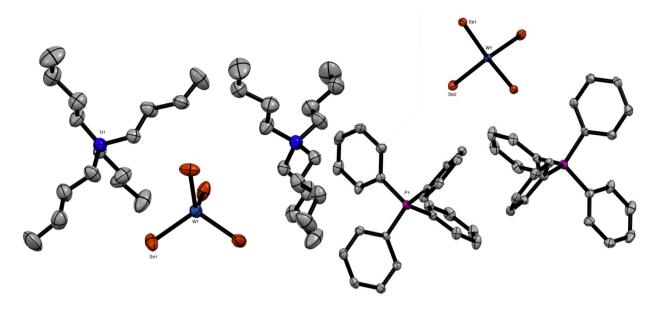


Figure 7.10: Crystal structures of [ⁿBu₄N]₂[WSe₄] (left) and [PPh₄]₂[WSe₄] (right) showing the atom numbering scheme. Ellipsoids shown at 50% probability, hydrogen atoms omitted for clarity.

	["Bu ₄ N] ₂ [WSe ₄]			
Bond I	Lengths/ Å	Bond An	gles/ °	
W1-Se1	2.3106(2)	Sel-W1-Sel	109.35(4)	
	$[PPh_4]_2[WSe_4]$			
Bond 1	Lengths/ Å	Bond A	Angles/ °	
W1-Se1	2.369(2)	Se1-W1-Se1	109.21(2)	
W1-Se2	2.360(4)	Se1-W1-Se2	108.40(2)	

Table 7.5: Selected bond lengths and angles for ["Bu₄N]₂[WSe₄] and [PPh₄]₂][WSe₄].

The complex ["Bu₄N]₂[WSe₄] has crystallised in the highly symmetrical tetragonal space group $I\bar{4}2d$ (Figure 7.11), its W=Se bond lengths are not significantly different to those in [PPh₄]₂[WSe₄]. The crystals of [PPh₄]₂[WSe₄] were grown from MeCN/THF and the structure is previously known. It has the space group C2/c; the W=Se bonds are 2.369(2) and 2.360(4) Å, which are comparable to the reported bond lengths, 2.314(1), 2.316(1) Å.⁴⁹

Following work on WSCl₄ coordination chemistry, tungsten(VI) thiohalide salt derivatives were synthesised to attempt to isolate a precursor with the correct stoichiometric ratio of tungsten and sulfur so that a proton source would not be required, simplifying the electrochemistry. Reaction of pre-made WSCl₄ and one equivalent of [ⁿBu₄N]Cl or [PPh₄]Cl in CH₂Cl₂ led to the isolation of green solids of [ⁿBu₄N][WSCl₅] or [PPh₄][WSCl₅], respectively. The compound [ⁿBu₄N][WSCl₅] exhibits a W=S stretch at 508 cm⁻¹ in the IR spectrum, consistent with the range of WSCl₄ coordination complexes isolated in previous chapters (albeit lower in wavenumber). These compounds have not been previously characterised, but there are examples of other salts with the same anion, [PPh₃(CH₂Ph)][WSCl₅]⁵⁶ and [AsPh₄][WSCl₅], which have been structurally chacterised.⁵⁷

After the successful isolation of [WSCl₅] salts, an attempt to prepare [WS₂Cl₄]²⁻ following a reported method failed.⁵⁸ Pre-made WSCl₄ was reacted with S(SiMe₃)₂ to form isolated WS₂Cl₂, which was subsequently reacted with two equivalents of [PPh₄]Cl. However WS₂Cl₂ showed no evidence of reacting as it is highly polymeric and inert. A new method was therefore developed, in which pre-made WSCl₄ was reacted with two equivalents of [PPh₄]Cl to form [PPh₄][WSCl₅] as an intermediate *in situ*, and then treated with an equivalent of S(SiMe₃)₂, allowing isolation of the target [PPh₄]₂[WS₂Cl₄]. Attempts to make the analogous compound [ⁿBu₄N]₂[WS₂Cl₄] proved challenging as it was a very sticky red oil that was difficult to purify. Since the cation [PPh₄]⁺ is not electrochemically inert, the compound [Et₄N]₂[WS₂Cl₄] was prepared, as the [NEt₄]⁺ cation provided enough solubility in CH₂Cl₂, was electrochemically inert and this salt easier to purify than the [NⁿBu₄]⁺ analogue.

7.3.5 Electrochemistry of Precursors for WS₂ Films

Attempts to deposit WS₂ and WSe₂ from $[WE_4]^{2-}$ salts have been unsuccessful as the potential required to bring about reduction of the $[ME_4]^{2-}$ salt does not appear to be in the available electrochemical window and is in the same range as the solvent/electrolyte breakdown.

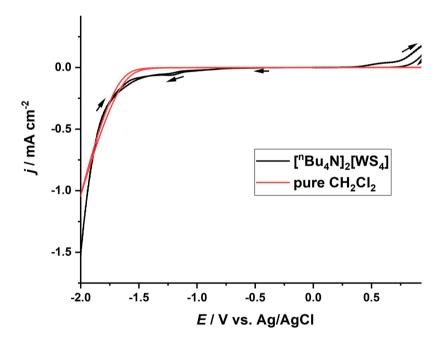


Figure 7.11: Cyclic voltammogram of 5 mM [nBu_4N]₂[WS₄] on TiN, [nBu_4N]Cl was the supporting electrolyte.

Figure 7.12 shows the cyclic voltammogram of [ⁿBu₄N]₂[WS₄] in CH₂Cl₂ (with a proton source), it is clear there is no reduction of [ⁿBu₄N]₂[WS₄] before the solvent breakdown. Therefore [ⁿBu₄N]₂[WS₄] is not a suitable precursor, it can be expected that tungsten(VI) would be harder to reduce than molybdenum(VI), hence the reduction potential is more negative. Following the unsuccessful electrodeposition from [ⁿBu₄N]₂[WS₄], [Et₄N]₂[WS₂Cl₄] was isolated as a potential precursor (see Section 7.3.4).

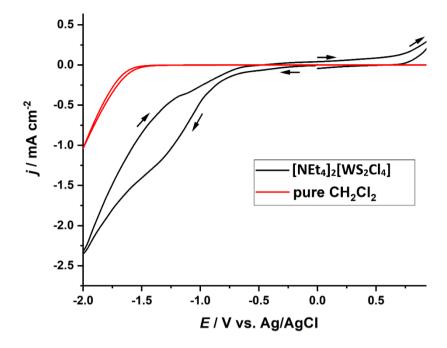


Figure 7.12: Cyclic voltammogram of 5mM [Et₄N]₂[WS₂Cl₄] on TiN, in CH₂Cl₂, [ⁿBu₄N]Cl was the supporting electrolyte.

The cyclic voltammogram of [Et₄N]₂[WS₂Cl₄] in CH₂Cl₂ with [ⁿBu₄N]Cl as the supporting electrolyte, without the addition of any proton source, shows a reduction starting at -0.7 V on the forward scan with a shoulder around -1.3 V. Compared to the CV of [ⁿBu₄N]₂[WS₄] the reduction current was much larger and corresponds to the reduction of [WS₂Cl₄]²⁻ ions.

$$[WS_2Cl_4]^{2-} + 2e^- \rightarrow WS_2 + 2Cl_2$$

Equation 7.3: Suggested electrochemical mechanism from the deposition of WS₂ from [Et₄N]₂[WS₂Cl₄].

Equation 7.3 is the suggested mechanism for the deposition of WS₂ from [WS₂Cl₄]²⁻ ions and it is clear there is no need for a proton source due to the stoichiometric ratio of W: S (1:2). There is no requirement for a proton source with this precursor as the protons were there to react with the excess sulfur in the system from [MS₄]²⁻, this resulted in the films being slightly sulfur rich. Potentiostatic deposition at 1.2 V for 1 hour deposited amorphous WS₂ onto TiN, the films were then annealed under N₂ with S₈ as a source of sulfur at 500 °C for 2 hours. The polycrystalline films were shown to be 4H-WS₂ *via* grazing incidence XRD.

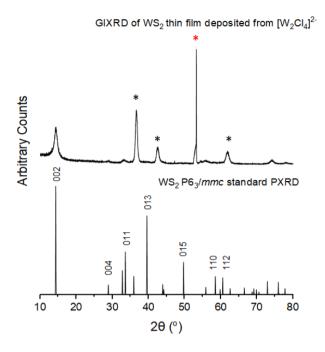


Figure 7.13: Grazing incidence XRD pattern (top) from WS₂ electrodeposited from [Et₄N]₂[WS₂Cl₄] in CH₂Cl₂. XRD pattern for bulk WS₂ (bottom).⁵⁹ * peaks from TiN and *(red) from crystalline Si.

Analysis of the films deposited from [Et₄N]₂[WS₂Cl₄] are consistent with polycrystalline 4H-WS₂ in the space group P6₃/*mmc* and the lattice parameters were refined as a = 3.133(7), c = 12.41(4) Å (R_{wp} = 29.24%, literature: a = 3.1532(4), c = 12.323(5) Å).⁵⁹ The grazing incidence XRD pattern is dominated by the <002> reflection, suggesting highly preferred orientation in the <00*l*> direction. This is not unusual in 2D layered materials as they typically grow perpendicular to the substrate, resulting in flat platelets;^{60,61} although this preferred orientation is commonly suppressed as the films get thicker. The sharp peak at ~55° can be assigned to crystalline Si and peaks at ~37°, 42° and ~60° are from the TiN electrode.

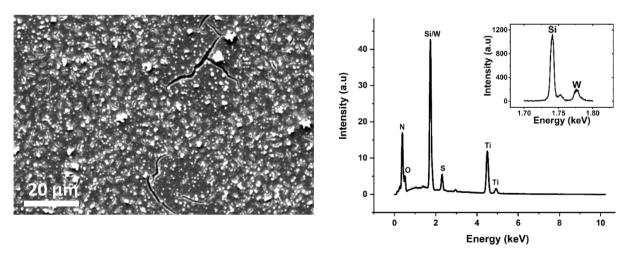


Figure 7.14: SEM image of continuous WS₂ film electrodeposited from $[Et_4N]_2[WS_2Cl_4]$ (left) and EDX spectrum of an annealed film, insert shows WDX spectrum for W M_a and Si K_a lines (right) onto TiN substrates.

Scanning electron microscopy (SEM) shows a continuous and reasonably flat deposit with evenly distributed particulates across the surface. The film is homogenously covering the electrode with few cracks. Accurate determination of composition was attempted using EDX analysis, however

due to the overlap of emission peaks from tungsten and silicon within the substrate (W M α_1 : 1.775 keV and Si K α_1 : 1.740 keV)⁵² this was not possible. A subsequent attempt using WDX (which has higher resolution) confirmed the presence of both tungsten and sulfur (Figure 7.15). The peaks in the EDX spectrum from O, N and Ti originate from the electrode. Unfortunately, an accurate W: S ratio has yet to be obtained *via* XPS which is a surface technique and should provide more accurate results as there will be no interference from the substrate.

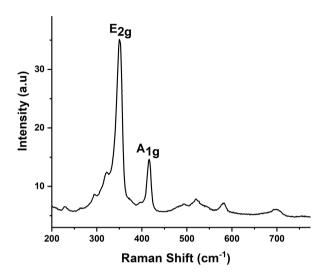


Figure 7.15: Raman spectrum recorded from an annealed WS₂ deposit using 532 nm laser excitation.

Raman spectra were collected using a 532 nm excitation laser and the spectra show the two main peaks at 352 and 419 cm⁻¹, which are assigned to the E_{2g} and A_{1g} vibrational modes of WS₂, respectively; the weaker features present in the spectra are also consistent with WS₂ peaks.⁶²

7.4 Conclusions

This chapter focused on the development and synthesis of a series of potential precursors suitable for the electrodeposition of ME_2 thin films using non-aqueous solvents. A series of molybdenum(VI) and tungsten(VI) salts in the form $[ME_4]^{2-}$ (M = Mo or W; E = S or Se) were isolated and their suitability for electrodeposition of ME_2 thin films evaluated. Successful deposition of $2H-MoS_2$ films from $[^nBu_4N]_2[MoS_4]$ in CH_2Cl_2 was shown and deposits were shown to be very smooth and uniform, as confirmed by SEM. The deposition of $MoSe_2$ films from $[^nBu_4N]_2[MoSe_4]$ is unclear, material is deposited onto the electrode, but characterisations suggest co-deposition of amorphous selenium and so a further detailed investigation is required.

The tungsten salts $[WE_4]^{2^-}$ did not lead to deposition of any material as the reduction potential was too negative and occurred after the solvent breakdown. Following this, the successful electrodeposition of $[Et_4N]_2[WS_2Cl_4]$ did allow the electrodeposition of $4H-WS_2$ thin films without the aid of a proton source. This is first example for truly single-source electrodeposition of WS_2 thin films from a tailored precursor.

All precursors were fully characterised by IR, ^{1}H NMR, $^{77}Se\{^{1}H\}$ NMR, ^{95}Mo NMR spectroscopy where possible, elemental analysis and X-ray crystal structures. All deposited thin films of ME₂ were characterised by Raman spectroscopy, X-ray diffraction, SEM and EDX/WDX.

7.5 Experimental

Syntheses were performed using standard Schlenk and glove-box techniques under a dry N₂ atmosphere. Solvents were dried by distillation from CaH₂ (CH₂Cl₂, MeCN) or Na/benzophenone (*n*-hexane, THF, toluene), DMF was dried by molecular sieve. Compounds [PPh₄]Cl, [Et₄N]Cl, ["Bu₄N]Cl, [PPh₄]Br, ["Bu₄N]Br, Mo(CO)₆ and W(CO)₆ were obtained from Sigma-Aldrich and dried by heating *in vacuo*. [NH₄]₂[MoS₄] was obtained from Arcos Organics, [NH₄]₂[WS₄] was obtained from Alfa Aesear, S(SiMe₃)₂ was obtained from Sigma Aldrich and used as received. WSCl₄ and K₂Se₃ were made by literature methods. ^{49,63} For further details regarding instrumentation see Appendix A.

$\int_{0}^{\infty} Bu_4N_{12}[MoS_4]$

Following reported literature, ⁴⁶ ammonium tetrathiomolybdate (0.367 g, 1.41 mmol) was dissolved in deionised water (10 mL) to form a red solution. A solution of tetrabutylammonium chloride (0.784 g, 2.82 mmol) was slowly added dropwise; a red solid immediately precipitated. The solution was filtered, and the red solid washed with water (1x 2 mL) and ⁱPrOH (1 x 2 mL) and dried *in vacuo*. Yield: 0.728 g, 90 %. Required for $C_{32}H_{72}N_2MoS_4$ (709.12): C: 54.20, N: 3.95, H: 10.23 %. Found: C: 53.92, N: 4.05, H: 10.14 %. IR spectrum (Nujol, v / cm^{-1}): 468s Mo=S. ¹H NMR (CDCl₃): $\delta = 0.99$ (t, [3H], J_{HH} 7.3 Hz, CH₃), 1.46 (sxt, [2H], J_{HH} 1.0 Hz, CH₂), 1.6 - 1.7 (m, [2H], CH₂), 3.34 (m, [2H], CH₂). ⁹⁵Mo NMR (CD₂Cl₂): $\delta = +2213$ (s).

$\int_{0}^{\infty} Bu_4N I_2 [WS_4]$

Following reported literature method,⁶⁴ ammonium tetrathiotungstate (0.490 g, 1.41 mmol) was dissolved in deionised water (10 mL) to form a yellow solution. A solution of tetrabutylammonium hydroxide (40% wt., 1.83 g, 2.82 mmol) in water (10 mL) was slowly added dropwise, a yellow solid immediately precipitated. The solution was filtered and the solid washed with water (1 x 2 mL) and cold ⁱPrOH (1 x 2 mL) and dried *in vacuo*. Yield: 0.513 g, 45 %. Required for $C_{32}H_{72}N_2WS_4$ (797.02): C: 48.22, N: 3.51, H: 9.11 %. Found: C: 48.17, N: 3.55, H: 9.18 %. IR spectrum (Nujol, v / cm⁻¹): 448s W=S. ¹H NMR (CDCl₃): δ = 1.0 (t, [3H], J_{HH} = 7.34 Hz, CH₃), 1.44 (sxt, [2H], J_{HH} = 7.38 Hz, CH₂), 1.6 - 1.7 (m, [2H], CH₂), 3.2 - 3.4 (m, [2H], CH₂).

[PPh₄][WSCl₅]

Tetraphenylphosphonium chloride (0.105 g, 0.28 mmol) in dichloromethane (5 mL) was slowly added to a red solution of WSCl₄ (0.100 g, 0.28 mmol) in dichloromethane (5 mL). The green solution was stirred for 1 h., concentrated to a half and filtered to isolate a green solid which was dried *in vacuo*. Yield: 0.106 g, 52 %. Required for $C_{24}H_{20}Cl_5PSW$ (732.56): C: 39.35, H: 2.75 %. Found: C: 39.13, H: 2.74 %. IR spectrum (Nujol, v / cm^{-1}): 332s, W-Cl. ¹H NMR (CD₂Cl₂): δ = 7.63 (m, [2H], aromatic CH), 7.71 - 7.82 (m, [H], aromatic CH), 7.82 - 8.04 (m, [2H], aromatic CH).

$\lceil Bu_4N \rceil \lceil WSCl_5 \rceil$

Tetrabutylammonium chloride (0.078 g, 0.28 mmol) in dichloromethane (5 mL) was slowly added to a red solution of WSCl₄ (0.100 g, 0.28 mmol) in dichloromethane (5 mL). The green solution was stirred for 1 h., concentrated to a half and filtered to isolate a green solid which was dried *in vacuo*. Yield: 0.090 g, 51 %. Required for C₁₆H₃₆Cl₅NSW (635.63): C: 30.23, H: 5.04, N: 2.20 %. Found: C: 30.54, H: 5.33, N: 2.34 %. IR spectrum (Nujol, v / cm^{-1}): 508s W=S, 320s W-Cl. ¹H NMR (CD₂Cl₂): $\delta = 1.04$ (br s, [3H], CH₃), 1.46 (br s, [2H], CH₂), 1.81 (m, [2H], CH₂), 3.10 (br s, [2H], CH₂).

$[Et_4N]_2[WS_2Cl_4]$

A solution of tetraethylammonium chloride (0.185 g, 1.12 mmol) was dissolved in dichloromethane (3 mL) and slowly added to a solution of WSCl₄ (0.200 g, 0.56 mmol) in dichloromethane (5 mL). The green solution was stirred for 30 minutes, then a solution of hexamethyldisilathiane (0.100 g, 0.56 mmol) in dichloromethane (1 mL) was slowly added and the reaction was left to stir for 1 h. A brown precipitate was observed and supernatant filtered and the beige solid isolated and dried *in vacuo*. Yield: 0.250 g, 68 %. Required for $C_{16}H_{40}Cl_4N_2S_2W$ (650.28): C: 29.55, H: 6.20, N: 4.31 %. Found: C: 29.19, H: 6.06, N: 4.33 %. IR spectrum (Nujol, v / cm⁻¹): 498s W=S, 289s W-Cl. ¹H NMR (CD₂Cl₂): δ = 1.30 (br s, [3H], Me), 3.23 (br s, [2H], CH₂). UV/Vis (diffuse reflectance)/cm⁻¹: 27,770, 24,630, 20,000sh.

$[PPh_4]_2[MoSe_4]$

K₂Se₃ (0.578 g, 1.83 mmol) and Mo(CO)₆ (242 mg, 0.92 mmol) were suspended in DMF (15 mL) the green solution turned purple after being heated to 90°C for 2 h. A solution [PPh₄]Br (0.769 g, 1.83 mmol) in DMF (3 mL) was added and the solution stirred for 15 mins. The solution was then filtered and was placed at 4°C overnight to produce a precipitate; this was filtered off and the solid dried *in vacuo*. Then the solid was dissolved in MeCN, the purple solution filtered and brought to dryness *in vacuo*. Yield: 0.110 g, 11 %. IR spectrum (Nujol, v / cm^{-1}): 340s Mo=Se. ⁹⁵Mo NMR (CD₃CN): $\delta = +3094$. ⁷⁷Se{¹H} NMR (CD₃CN): $\delta = +1656$.

$[PPh_4]_2[WSe_4]$

K₂Se₃ (0.578 g, 1.83 mmol) and W(CO)₆ (322 mg, 0.92 mmol) were suspended in DMF (15 mL) the green solution turned red after being heated to 90°C for 2 h. A solution [PPh₄]Br (0.769 g, 1.83 mmol) in DMF (3 mL) was added and the solution stirred for 15 mins. The solution was then filtered, an equal volume of THF was added and was placed at 4°C overnight to produce a precipitate; this was filtered and the solid dried *in vacuo*. Then the solid was dissolved in MeCN, the red solution filtered and brought to dryness *in vacuo*. Yield: 0.111 g, 11 %. Required for C₄₈H₄₀P₂Se₄W (1090.56): C: 48.92, H: 3.42 %. Found: C: 48.86, H: 3.56 %. IR spectrum (Nujol, ν / cm⁻¹): 304s W=Se. ⁷⁷Se{¹H} NMR (CD₃CN): δ = +1239 (J_{SW}, 53 Hz.).

$\lceil ^{n}Bu_{4}N \rceil_{2} \lceil MoSe_{4} \rceil$

K₂Se₃ (2.500 g, 19.90 mmol) and Mo(CO)₆ (1.18 mg, 5.46 mmol) were suspended in DMF (20 mL) the green solution turned purple solution after being heated to 90°C for 2 h. A solution [n Bu₄N]Br (2.500 g, 10.90 mmol) in DMF (6 mL) was added and the solution stirred for 15 mins. The DMF was removed *in vacuo*, then the solid was dissolved in MeCN, filtered, the filtrate layered with toluene and placed at 4°C overnight. The dark precipitate was filtered and the solid dried *in vacuo*. Yield: 1.765 g, 36 %. Required for C₃₂H₇₂MoN₂Se₄•0.5C₇H₈ (942.77): C: 42.23, H: 8.12, N: 2.97 %. Found: C: 45.50, H: 6.98, N: 2.85 %. IR spectrum (Nujol, v / cm^{-1}): 341s Mo=Se. ⁹⁵Mo NMR (CD₃CN): $\delta = +3088$, (J_{MoSe} 13 Hz). ⁷⁷Se{¹H} NMR (CD₃CN): $\delta = +1652$.

$\lceil ^n Bu_4 N \rceil_2 \lceil WSe_4 \rceil$

 K_2Se_3 (1.28g, 4.06 mmol) and W(CO)₆ (0.715 g, 2.03 mmol) were suspended in DMF (10 mL) the green solution turned red solution after being heated to 90°C for 2 h. A solution [nBu_4N]Br (1.25 g, 4.06 mmol) in DMF (4 mL) was added and the solution stirred for 15 mins. The DMF was removed *in vacuo*, then the solid was dissolved in MeCN, filtered, the solution layered in toluene and placed at 4°C overnight. The red precipitate was filtered and the solid dried *in vacuo*. Yield: 0.606 g, 29 %. Required for $C_{32}H_{72}N_2Se_4W$ (1032.65): C: 41.87, H: 7.03 %. Found: C: 40.70, H: 7.44 %. IR spectrum (Nujol, v / cm^{-1}): 305s W=Se. $^{77}Se\{^1H\}$ NMR (CD₃CN): $\delta = +1238$ (J_{SW} 50 Hz.).

7.5.1 Electrochemical Experiments

All electrochemical experiments were performed by Dr Shibin Thomas, and carried in a N₂ filled glove box including supporting electrolyte and precursor preparation, using freshly dried CH₂Cl₂ (distilled from CaH₂) or ethylene glycol (distilled from Na) to ensure exclusion of air and moisture. The experiments in CH₂Cl₂ were performed at room temperature using a three electrode system in a one compartment electrochemical cell. A Pt electrode was used as the counter electrode and Ag/AgCl electrode (in 0.1M [ⁿBu₄N]Cl in CH₂Cl₂) was used as the reference electrode. A freshly polished Pt electrode was used as working electrode for cyclic voltammetry experiments. In ethylene glycol, [NH₄]Cl was used as the supporting electrolyte due to insolubility of the tetrabutylammonium salt, films of MoS₂ were deposited potentiostatically onto TiN or Pt slide electrodes.

7.5.2 Crystallographic Tables

Compound	$[^{n}Bu_{4}N]_{2}[WS_{4}]$	[PPh ₄] ₂ [WSe ₄]	$[^{n}Bu_{4}N]_{2}[WSe_{4}]$
Formula	$C_{32}H_{72}N_{2}S_{4}W \\$	$C_{48}H_{40}P_2Se_4W$	$C_{32}H_{72}N_2Se_4W$
M	797.00	1178.43	993.46
Crystal system	Orthorhombic	Monoclinic	Tetragonal
Space group (no)	Fdd2 (43)	C2/c (15)	I42d (122)
a /Å	35.5582(6)	11.1576(2)	14.2137(1)
b/Å	28.7216(5)	19.5668(4)	14.2137(1)
c /Å	15.5658(4)	20.2404(3)	24.2056(3)
α /°	90	90	90
β /°	90	91.4470(10)	90
γ /°	90	90	90
$U/Å^3$	15897.2(6)	4417.45(14)	4890.24(9)
Z	16	4	4
$\mu(\text{Mo-K}_{\alpha}) / \text{mm}^{-1}$	3.138	6.016	5.371
F(000)	6656.0	2272.0	1969.0
Total number reflns	24116	24315	51338
R_{int}	0.0402	0.0601	0.0538
Unique reflns	10952	6249	3860
No. of params, restraints	355/1	249/0	91/0
GOF	1.054	1.095	1.084
R_1 , w $R_2 [I > 2\sigma(I)]^b$	0.0572, 0.1407	0.0435, 0.1076	0.0444, 0.1258
R ₁ , wR ₂ (all data) ^b	0.0623, 0.1446	0.0515, 0.1118	0.0503, 0.1318

Table 7.6: X-ray crystallography table.a: common data: wavelength (Mo- K_a) = 0.71073 Å; θ (max) = 27.5°; ${}^bR_I = \Sigma ||Fo|-|Fc||/\Sigma |Fo|$; $wR_2 = [\Sigma w(Fo^2 - Fc^2)^2/\Sigma wFo^4]^{1/2}$

7.6 References

- (1) Simka, W.; Puszczyk, D.; Nawrat, G. *Electrochim. Acta*, **2009**, *54*, 5307-19
- (2) Bartlett, P. N.; Cook, D.; de Groot, C. H.; Hector, A. L.; Huang, R.; Jolleys, A.; Kissling, G. P.; Levason, W.; Pearce, S. J.; Reid, G. RSC Adv., 2013, 3, 15645-54
- (3) Zhang, Q.; Wang, Q.; Zhang, S.; Lu, X.; Zhang, X. ChemPhysChem, 2016, 17, 335-51
- (4) Li, G.; Tong, Y.; Liu, G. J. Electroanal. Chem., **2004**, 562, 223-29
- (5) Li, G.; Tong, Y.; Wang, Y.; Liu, G. Electrochim. Acta, 2003, 48, 4061-67
- (6) Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H. *IBM J. Res. Dev.*, **1998**, *42*, 567-74
- (7) Andricacos, P. C.; Romankiw, L. T. Adv. Electrochem. Sci. Eng., 1993, 227-321
- (8) Cummings, C. Y.; Bartlett, P. N.; Pugh, D.; Reid, G.; Levason, W.; Hasan, M. M.; Hector, A. L.; Spencer, J.; Smith, D. C. *J. Electrochem. Soc.*, **2015**, *162*, D619-D24
- (9) Bartlett, P. N.; Burt, J.; Cook, D. A.; Cummings, C. Y.; George, M. W.; Hector, A. L.; Hasan, M. M.; Ke, J.; Levason, W.; Pugh, D.; Reid, G.; Richardson, P. W.; Smith, D. C.; Spencer, J.; Suleiman, N.; Zhang, W. *Chem. Eur. J.*, **2016**, *22*, 302-09
- (10) Bartlett, P. N.; Burt, J.; Hasan, M. M.; Hector, A. L.; Levason, W.; Reid, G.; Richardson, P. W. *RSC Adv.*, **2016**, *6*, 73323-30
- (11) Vieira, L.; Burt, J.; Richardson, P. W.; Schloffer, D.; Fuchs, D.; Moser, A.; Bartlett, P. N.; Reid, G.; Gollas, B. *Chem. Open,* **2017**, *6*, 393-401
- (12) Meng, L.; Cicvarić, K.; Hector, A. L.; de Groot, C. H.; Bartlett, P. N. *J. Electroanal. Chem.*, **2019**, *839*, 134-40
- (13) Kissling, G. P.; Aziz, M.; Lodge, A. W.; Zhang, W.; Alibouri, M.; Huang, R.; Hector, A. L.; Reid, G.; de Groot, Cornelis H.; Beanland, R.; Bartlett, P. N.; Smith, D. C. *J. Electrochem. Soc.*, **2018**, *165*, D802-D07
- (14) Huang, R.; Kissling, G. P.; Kashtiban, R.; Noori, Y. J.; Cicvaric, K.; Zhang, W.; Hector, A. L.; Beanland, R.; Smith, D. C.; Reid, G.; Bartlett, P. N.; de Groot, C. H. K. Faraday Discuss., 2019, 213, 339-55
- (15) Kissling, G. P.; Huang, R.; Jolleys, A.; Benjamin, S. L.; Hector, A. L.; Reid, G.; Levason, W.; de Groot, C. H.; Bartlett, P. N. *J. Electrochem. Soc.*, **2018**, *165*, D557-D67
- (16) Bartlett, P. N.; Benjamin, S. L.; de Groot, C. H.; Hector, A. L.; Huang, R.; Jolleys, A.; Kissling, G. P.; Levason, W.; Pearce, S. J.; Reid, G.; Wang, Y. *Mater. Horiz.*, **2015**, *2*, 420-26
- (17) Hankare, P. P.; Manikshete, A. H.; Sathe, D. J.; Chate, P. A.; Rathod, K. C. *Mater. Chem. Phys.*, **2009**, *113*, 183-86
- (18) Rakkini, A. P. V.; Mohanraj, K. *Ionics*, **2017**, *24*, 1243-52
- (19) Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. *Nat. Nanotechnol.*, **2011**, *6*, 147-50
- (20) Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. *Nano Lett.*, **2010**, *10*, 1271-75
- (21) Liu, C.; Kong, D.; Hsu, P.-C.; Yuan, H.; Lee, H.-W.; Liu, Y.; Wang, H.; Wang, S.; Yan, K.; Lin, D.; Maraccini, P. A.; Parker, K. M.; Boehm, A. B.; Cui, Y. *Nat. Nanotechnol.*, **2016**, *11*, 1098-104
- (22) Albu-Yaron, A. Electrochem. Solid-State Lett., 1999, 2, 627-30
- (23) Ponomarev, E. A. J. Electrochem. Soc., 1997, 144, L277-L79
- (24) Shariza, S.; Anand, T. J. S. *Chalcogenide Lett.*, **2011**, *8*, 529-39
- (25) Albu-Yaron, A.; Lévy-Clément, C.; Katty, A.; Bastide, S.; Tenne, R. *Thin Solid Films*, **2000**, *361-362*, 223-28
- (26) Murugesan, S.; Akkineni, A.; Chou, B. P.; Glaz, M. S.; Vanden Bout, D. A.; Stevenson, K. J. ACS Nano, 2013, 7, 8199-205
- (27) Redman, D. W.; Rose, M. J.; Stevenson, K. J. Langmuir, 2017, 33, 9354-60
- (28) Pathak, V. M.; Patel, K. D.; Pathak, R. J.; Srivastava, R. Sol. Energy Mater. Sol. Cells, **2002**, 73, 117-23
- (29) Kautek, W.; Gerischer, H. Electrochim. Acta, 1981, 26, 1771-78
- (30) Eftekhari, A. Appl. Mater. Today, 2017, 8, 1-17
- (31) Delphine, S. M.; Jayachandran, M.; Sanjeeviraja, C. Mater. Res. Bull., 2005, 40, 135-47
- (32) Dukstiene, N.; Kazancev, K.; Prosicevas, I.; Guobiene, A. *J. Solid State Electrochem.*, **2004**, *8*, 330-36
- (33) Tsang, C. F.; Ledina, M. A.; Stickney, J. L. J. Electroanal. Chem., 2017, 793, 242-49

- (34) Delphine, S. M.; Jayachandran, M.; Sanjeeviraja, C. Crystallogr. Rev., 2011, 17, 281-301
- (35) Pu, Z.; Liu, Q.; Asiri, A. M.; Obaid, A. Y.; Sun, X. Electrochim. Acta, 2014, 134, 8-12
- (36) Devadasan, J. J.; Sanjeeviraja, C.; Jayachandran, M. J. Cryst. Growth, 2001, 226, 67-72
- (37) Fan, L.; Suni, I. I. J. Electrochem. Soc., 2017, 164, D681-D86
- (38) Tan, S. M.; Pumera, M. ACS Appl. Mater. Interfaces, 2016, 8, 3948-57
- (39) Delphine, S. M.; Jayachandran, M.; Sanjeeviraja, C. Mater. Chem. Phys., 2003, 81, 78-83
- (40) Devadasan, J. J.; Sanjeeviraja, C.; Jayachandran, M. *Mater. Chem. Phys.*, **2003**, 77, 397-401
- (41) Aliyev, A. S.; Elrouby, M.; Cafarova, S. F. Mater. Sci. Semicond. Process., 2015, 32, 31-39
- (42) Laurie, S. H. Eur. J. Inorg. Chem., 2000, 2443-50
- (43) Zhang, Q.; Hong, M.; Su, W.; Cao, R.; Liu, H. Polyhedron, 1997, 16, 1433-37
- (44) Dori, Z. Comprehensive Coordination Chemistry I, 1987, 3, 973-1022
- (45) Mellor, J. W. A comprehensive treatise on inorganic and theoretical chemistry, **1943**, 11, 650
- (46) Alonso, G.; Aguirre, G.; Rivero, I. A.; Fuentes, S. *Inorg. Chim. Acta*, **1998**, 274, 108-10
- (47) Alonso, G.; Berhault, G.; Chianelli, R. R. *Inorg. Chim. Acta*, **2001**, *316*, 105-09
- (48) Kroneck, P.; Lutz, O.; Nolle, A. Z. Naturforsch. A, 1980, 35, 226-29
- (49) O'Neal, S.; Kolis, J. W. J. Am. Chem. Soc., 1988, 110, 1971-73
- (50) Hong, M.; Zhang, Q.; Cao, R.; Wu, D.; Chen, J.; Zhang, W.; Liu, H.; Lu, J. *Inorg. Chem.*, **1997**, *36*, 6251-60
- (51) Bélanger, D.; Laperriére, G.; Marsan, B. J. Electroanal. Chem., 1993, 347, 165-83
- (52) Thompson, A. C.; Vaughan, D. *X-ray data booklet*; Lawrence Berkeley National Laboratory, University of California: Berkely, CA, 2001.
- (53) Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. *Adv. Funct. Mater.*, **2012**, *22*, 1385-90
- (54) Redman, D. W.; Murugesan, S.; Stevenson, K. J. Langmuir, 2014, 30, 418-25
- (55) Tonndorf, P.; Schmidt, R.; Bottger, P.; Zhang, X.; Borner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R.; Michaelis de Vasconcellos, S.; Bratschitsch, R. *Opt. Express*, **2013**, *21*, 4908-16
- (56) Drew, M. G. B.; Fowles, G. W. A.; Page, E. M.; Rice, D. A. J. Chem. Soc., Dalton Trans., 1981, 2409-13
- (57) Weller, F.; Ruschke, P.; Dehnicke, K. Z. anorg, allg. Chem., 1980, 467, 89-94
- (58) Klingelhöfer, P.; Müller, U. Z. anorg. allg. Chem., **1988**, 556, 70-78
- (59) Schutte, W. J.; De Boer, J. L.; Jellinek, F. J. Solid State Chem., 1987, 70, 207-09
- (60) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G. Dalton Trans., 2017, 46, 9824-32
- (61) Chang, Y. P.; Hector, A. L.; Levason, W.; Reid, G.; Whittam, J. *Dalton Trans.*, **2018**, *47*, 2406-14
- (62) Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C.-I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J.-C.; Terrones, H.; Terrones, M. *Sci. Rep.*, **2013**, *3*, 1755
- (63) Gulliver, D. J.; Hope, E. G.; Levason, W.; Murray, S. G.; Potter, D. M.; Marshall, G. L. *J. Chem. Soc., Perkin Trans. II,* **1984,** *2*, 429-34
- (64) Hanewald, K.; Gattow, G. Z. anorg. allg. Chem., 1981, 476, 159-70

Summary and Outlook

The work described in this thesis has considerably advanced the coordination of tungsten(VI) oxoand thio-halides and molybdenum(V) oxohalides. This advancement has led to the development of new synthetic routes to produce 2D metal dichalcogenides.

The successful synthesis of a range of neutral complexes of WOCl₄ and WSCl₄ with phosphine oxides and N-heterocycles under mild reaction conditions has been completed. Excluding the 2,2'-bipy complexes, which are seven-coordinate, all other complexes are six-coordinate. The bidentate phosphine oxides formed six-coordinate bridged dimers in the form [(WSCl₄)₂(µ-Ph₂(O)P(CH₂)_nP(O)Ph₂)], the bridge dimers more favourable than the seven-coordinate systems. Comparison of all the data collected suggests that the sulfide chlorides are slightly less Lewis acidic than the oxide chlorides.

A short investigation into complexes of WCl₆ analogous to complexes of WF₆ proved unsuccessful, with data indicating reduction to tungsten(V) complexes (and potentially others). The complex [WCl₅(2,2'-bipy)] was isolated and characterised, but 1,10-phen analogues could not be isolated. Therefore, it can be assumed that complexes of WCl₆ are significantly less stable than their WF₆ analogues and cannot be formed under mild conditions, no further work required.

Further studies to continue the chemistry of tungsten(VI) oxo- and thio-tetrachlorides were completed to develop a short series of neutral phosphine and arsine complexes under mild and ambient conditions. Four examples of rare seven-coordinate complexes have been isolated, $[WECl_4(o-C_6H_4(E'Me_2)_2)] \ (E=O \ or \ S; \ E'=P \ or \ As); \ two \ have been structurally characterised revealing pentagonal bipyramidal geometries. A number of W(V) reduction products have also been structurally characterised, including cationic salts and compared to the products of the failed attempt to isolate <math display="block">[WOCl_4(o-C_6H_4(PPh_2)_2)] \ and \ known \ [WF_4(o-C_6H_4(EMe_2)_2)_2]^{n^+} \ species.$

A small number of other complexes with the ligands PMe₃, dmpe and AsEt₃ were also attempted, but proved unsuccessful, with some side products shown to be chlorinated ligand and potentially some tungsten(V) reduction species. The reaction with WOCl₄ and PMe₃ showed that the complex [WOCl₄(PMe₃)₂] could potentially be formed under the right conditions but is likely to be extremely sensitive to trace moisture.

This investigation was continued to probe the boundaries of tungsten(VI) coordination chemistry. A systematic series of WSCl₄ complexes with monodentate and bidentate thioethers has been established and comparative analogues of WOCl₄ have also been isolated. Complexes with softer selenoether donor ligands were attempted, but [WSCl₄(SeMe₂)] was the only stable complex that could be isolated. All the complexes isolated were six-coordinate and controlling the W: ligand stoichiometry is paramount for the isolation of tungsten(VI) species, as excess ligand reduces the

metal centre. A number of reduced tungsten (V) decomposition products have also been identified by X-ray crystallography.

Thioether complexes with terminal substituents bearing β-hydrogens have the possibility to be single-source precursors for the production of WS₂ thin films *via* LPCVD providing the potential of a low energy decomposition pathway. Complexes of [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)], [WSCl₃(ⁱPrS(CH₂)₂SⁱPr)] and [WSCl₄(SⁿBu₂)] were tested as single source low pressure chemical vapour deposition precursors at 550-700 °C. The complex [WSCl₃(ⁱPrS(CH₂)₂SⁱPr)] was found to be unsuitable for LPCVD and did not deposit any material onto the substrates. [(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] and [WSCl₄(SⁿBu₂)] were found to deposit 4H-WS₂ thin films successfully between 650 °C and 700 °C. The two novel single source precursors deposited continuous uniform coverage of the substrate and the films have been shown to have a W:S ratio of 1:2.2 consistent with WS₂.

These are the first examples of single source LPCVD precursors to deposit WS₂ thin films and the films have been characterised by Raman spectroscopy, grazing incidence XRD and in-plane XRD, EDX, WDX, XPS and SEM. The films have preferred orientation in <00*l*> direction with SEM confirming the crystallites parallel to the substrate surface. These precursors potentially provide a viable route for the growth of thin films of this important semiconducting material if conditions and optimisation of reagent can be achieved.

Surprisingly, the two precursors produce films with different electrical behaviour with [(WSCl₄)₂(iPrS(CH₂)₂SiPr)] behaving as a typical semiconductor and [WSCl₄(SⁿBu₂)] behaving as a semi-metal/conductor. The difference probably stems from defects, likely sulfur deficiency which is not due to temperature. Following the successful deposition of WS₂ thin films *via* LPCVD from [WSCl₄(SⁿBu₂)] and the successful isolation of [WSCl₄(SeMe₂)], it is highly likely that [WSCl₄(SeⁿBu₂)] would also be stable. Potentially it would be a suitable precursor to deposit the mixed chalcogen thin films WSSe.

A systematic series of MoOCl₃ complexes with a range of neutral donor ligands (sulfur, selenium, tellurium donors) has been developed. Bidentate thio- and seleno-ether complexes have been isolated and characterised as well as monodentate thio-, seleno- and telluro-ether complexes which formed chloride bridge dimers; the telluroether complex [(MoOCl₂(TeMe₂))₂(µ-Cl)₂] is the first telluroether complex with high valent molybdenum. A number of MoOCl₃ complexes with nitrogen, phosphine and oxygen donors was isolated for comparison.

The reaction of MoOCl₄ with various neutral ligands (N- and O- donors) was also investigated and all reactions reduced the molybdenum(VI) centre to form molybdenum(V) species. Attempts to isolate the anion [MoOCl₅]⁻ were also unsuccessful but the chloride bridged anion [(MoOCl₃)(μ -Cl))₂]²⁻ was identified. Results show MoOCl₄ is much less stable compared to MoOF₄ and MoO₂Cl₂ as both form relatively stable complexes.

The initial development and synthesis of a series of potential precursors suitable for the electrodeposition of ME_2 thin films using non-aqueous solvents has been completed. A series of molybdenum(VI) and tungsten(VI) salts in the form $[ME_4]^{2-}$ (M = Mo or W; E = S or Se) were isolated and suitability for electrodeposition evaluated. Successful deposition of 2H- MoS_2 films from $[^nBu_4N]_2[MoS_4]$ in CH_2Cl_2 was shown and deposits were shown to be very smooth and uniform confirmed by SEM. The deposition of $MoSe_2$ films from $[^nBu_4N]_2[MoSe_4]$ is unclear, material is deposited onto the electrode, but characterisations suggest co-deposition of amorphous selenium and further investigation is required.

The tungsten salts which contained the $[WE_4]^{2^-}$ anions did not deposit material as the reduction potential was too negative and occurred after the solvent breakdown. Following this, the successful isolation of $[WSCl_5]^-$ and $[WS_2Cl_4]^{2^-}$ salts and $[Et_4N]_2[WS_2Cl_4]$ proved successful at depositing 4H-WS₂ thin films without the aid of a proton source. This is first example for truly single-source electrodeposition of WS₂ thin films from a tailored precursor. There is potential for $[Et_4N]_2[WSSeCl_4]$ to be isolated as a future precursor for the electrodeposition of WSSe thin films.

Appendix A General Experimental Techniques

Syntheses were performed by using standard Schlenk and glove-box techniques under a dry N₂ atmosphere (where required). Solvents were dried by distillation from CaH₂ (CH₂Cl₂, MeCN, CHCl₃) or Na/benzophenone ketyl (toluene, n-hexane, THF, OEt₂), DMF dried *via* molecular sieve.

Complexes Characterisation: Infrared spectra were recorded on a Perkin-Elmer Spectrum 100 spectrometer in the range 4000–200 cm⁻¹, with samples prepared as Nujol mulls between CsI plates. Raman spectra were collected by a Renishaw InVia Raman Microscope with a 100 mW He-Ne 785 nm Laser. UV-Vis spectra were recorded from sealed PTFE cells with a silica window on neat samples or diluted with BaSO₄, using the diffuse reflectance attachment, in Perkin Elmer 750S spectrometer. Magnetic measurements were made on a Johnson Matthey magnetic balance. ¹H NMR spectra were recorded using a Bruker AV 400 or Bruker DPX400 spectrometer and referenced to the residual protio-resonance of the solvent. ³¹P{¹H}, ⁹⁵Mo, ⁷⁷Se{¹H}, ¹²⁵Te{¹H} NMR spectra were obtained from CD₂Cl₂ solutions using a Bruker AV 400 spectrometer see Table A.1 for reference. Spectra were recorded at 295 K unless indicated otherwise. Microanalyses on new compounds were undertaken by London Metropolitan University or Medac Ltd.

NMR Nucleus	Resonance Frequency (at 9.4 T)	Reference Standard
¹ H	400.0	Residual solvent protons
31 p	162.0	H ₃ PO ₄ , 85% aq
⁷⁷ Se	76.4	Me ₂ Se
⁹⁵ Mo	26.8	2M Na ₂ MoO ₄ aq
¹²⁵ Te	126.0	Me ₂ Te
183W	16.8	1M Na ₂ WO ₂ aq

Table A.1: Showing resonance frequency of NMR active nuclei studied in the work and their reference standards.

X-ray single crystal experimental: Data collections used a Rigaku AFC12 goniometer equipped with an enhanced sensitivity (HG) Saturn724+ detector mounted at the window of an FR-E+ SuperBright molybdenum (λ = 0.71073) rotating anode generator with VHF Varimax optics (70 micron focus) with the crystal held at 100 K (N₂ cryostream). Structure solution was performed using SHELX(T)-2018/2 (heavy atom methods), and refinement SHELX-2018/3 through Olex₂¹⁻³ and were mostly straightforward, H atoms were added and refined with a riding model. Where additional restraints were required, details are provided in the cif file for each structure, or are discussed in the text. Many of the structures showed significant residual electron peaks near to the heavy metals (tungsten/molybdenum), which are attributed to absorption correction problems.

Appendix A

Film characterisation: X-ray diffraction (XRD) patterns were collected in grazing incidence mode ($\theta1=1^{\circ}$) or in-plane mode ($\theta1=0.5^{\circ}$, $2\theta\chi$ scan with the detector scanning in the film plane) using a Rigaku SmartLab diffractometer (Cu-K α , $\lambda=1.5418$ Å) with parallel X-ray beam and a DTex Ultra 250 1D detector. Phase matching, lattice parameter calculations used the PDXL2 software package27 and diffraction patterns from ICSD. Scanning electron microscopy (SEM) was performed on samples at an accelerating voltage of 10 or 15 kV using a Philips XL30 ESEM. Energy dispersive X-ray spectroscopy (EDX) spectra were obtained coupled to SEM, using a Thermo Scientific NORAN System 7 X-ray Microanalysis System. Raman spectra were obtained using Horiba Xplora System equipped with a 532nm laser excitation. WDX were collected using Thermo Magnaray WDX spectrometer. XPS spectra were collected using Theta probe PARXPS system.

References

- (1) Sheldrick, G. M. Acta Cryst. C, 2015, 71, 3-8
- (2) Sheldrick, G. M. Acta Cryst. A, 2008, 64, 112-22
- (3) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. *J. Appl. Crystallogr.*, **2009**, *42*, 339-41

Appendix B Crystallographic Information Files

Cif files located on CD attached to back of the thesis

The filenames correspond to the complexes as follows

Chapter 2

[WOCl₄(OPPh₃)] LHS WOCl4-OPPh3

[WOCl₄(OPMe₃)] LHS-WOCl4-OPR3

 $[W_3O_3(\mu-O)_3Cl_6(OPMe_3)_3] \bullet 2CH_2Cl_2$ WOCl4-Trimer

[(WOCl₄)₂(dppmO₂)] DES WOCl4 dppmO2

[(WOCl₂(dppmO₂))(μ-O)(WOCl₄)] DES WOCl4 dppmO2-Bridge

 $[C_5H_5NH][WOCl_5]$ EX DS WOCl4 py

[(WSCl₄)₂(dppeO₂)] DS EX77

[(WOCl₄)₂(dppeO₂)] WOCl₄(dppeO₂)

[WSCl₄(OPPh₃)] WOCl₄(OPPh₃)

 $[WOCl_3(dppmO_2)] \cdot CH_2Cl_2$ WOCl3-dppmo2

 $[WSCl_3(dppmO_2)] \bullet CH_2Cl_2$ WSCl3(dppmO2)

[(WSCl₄)₂(dppmO₂)] (WSCl₄)₂(dppmO₂)

[WSCl₄(C₅H₅N)] WSCl₄(py)

[WSCl₃(2,2'-bipy)] DS EX74

 $[(WOCl_2(phen))(\mu-O)(WOCl_4)]$ DES WCl5-Phen

Chapter 3

 $[WOCl_4(o-C_6H_4(AsMe_2)_2)]$ WOCl4(diarsine)

[WSCl₄(o-C₆H₄(PMe₂)₂)] WSCl₄(diphos)

[WOCl₃(o-C₆H₄(PMe₂)₂)] WOCl₃(diphos)

 $[WOCl_3(\textit{o}\text{-}C_6H_4(PMe_2)(P(O)Me_2))] \bullet 0.5CH_2Cl_2 \qquad WOCl3(diphos)\text{-}Blue$

 $[WCl_4(o-C_6H_4(PPh_2)_2)_2][WCl_6] \cdot 2.5(C_7H_8)$ WOCl4 dppBz

 $[WCl_4(o-C_6H_4(PMe_2)_2)_2][WS_{0.5}O_{0.5}]$ $[WSCl_4][WCl_4(diphos)_2]$

Appendix B

Chapter 4

[(WSCl₄)₂(MeS(CH₂)₂SMe)] (WSCl₄)₂(mte)

[WSCl₃(MeS(CH₂)₂SMe)] (WSCl₃)(MeS(CH₂)₂SMe)

 $[WOCl_3(MeS(CH_2)_2SMe)] \\ WOCl_3(MeS(CH_2)_2SMe)$

[WOCl₃(MeS(CH₂)₃SMe)] WOCl₃-MeS(CH₂)₃SMe

[(WSCl₄)₂(MeS(CH₂)₃SMe)] (WSCl₄)₂-Heptane-2

[(WSCl₄)₂(PhS(CH₂)₂SPh)] (WSCl₄)₂PhS(CH₂)₂Ph)

[(WSCl₄)₂(ⁱPrS(CH₂)₂SⁱPr)] (WSCl₄)₂(PrS(CH₂)₂SPr)

 $[(WCl_3)_2(\mu-S_2)(\mu-S)(SPPh_3)_2] \cdot 2CH_2Cl_2$ WSCl4(SPPh3)-1

 $[(WCl_3)_2(\mu-S_2)(\mu-S)(SeMe_2)_2]$ WSCl4(SeMe2)

 $[(WCl_2)_2(\mu-S)_2(^iPrS(CH_2)_2S^iPr)_2][WSCl_5] \bullet CH_2Cl_2 \quad WSCl_3(PrS(CH_2)2SPr)_2[WSCl_5] \bullet CH_2Cl_2 \quad WSCl_5(PrS(CH_2)2SPr)_2[WSCl_5] \bullet CH_2Cl_5 \quad WS$

Chapter 6

 $[MoOCl_3(MeCN)_2] \\ MoOCl_4(MeCN) - Yellow$

 $[(MoOCl₂(MeCN))₂(\mu-Cl)₂] MoOCl₄+MeCN (green)$

 $[Et_4N]_2[(MoOCl_3)_2(\mu\text{-}Cl)_2] \eqno(Et4N)(MoOCl_5)$

 $[Et_4N][WOCl_5]$ $[Et_4N][WOCl_5]$

[MoOCl₃(THF)₂] MoOCl₃(THF)₂

[MoOCl₃(OPPh₃)₂] MoOCl₄(OPPh₃)

[MoOCl₃(2,2'-bipy)] MoOCl3bipy-1

 $[MoOCl_3(1,10\text{-phen})] \\ MoOCl_3(phen)$

[MoOCl₃(dmpe)] MoOCl₃dmpe

 $[MoOCl_3(dppe)] \bullet 0.5CH_2Cl_2 \qquad \qquad MoOCl_3dppe$

[MoOCl(PMe₃)₂] MoOCl3 PMe3 - Red

 $[(MoOCl)(dmpe)_2(\mu-O)(MoOCl_4)] \\ MoOCl3dmpe-purple$

 $[\text{MoOCl}_3(^i\text{PrS}(\text{CH}_2)_2\text{S}^i\text{Pr})] \\ \qquad \qquad \text{MoOCl}_3(\text{PrS}(\text{CH}_2)_2\text{SPr})$

 $[MoOCl_3(PhS(CH_2)_2SPh)] \\ MoOCl_3(PhS(CH_2)_2SPh)$

 $[(MoOCl_2(SMe_2))_2(\mu\text{-}Cl)_2] \\ \hspace*{1.5cm} MoOCl_3(SMe_2)_2$

 $[(MoOCl_2(SeMe_2))_2(\mu\text{-}Cl)_2] \\ \qquad MoOCl_3(SeMe_2)2$

[MoOCl₃(MeSe(CH₂)₂SeMe)] MoOCl₃(MeSe(CH₂)2SeMe)

 $[MoOCl₃(MeSe(CH₂)₃SeMe)] \\ MoOCl₃(MeSe(CH₂)₃SeMe)$

 $[(MoOCl(o-C_6H_4(TeMe)_2)_2)(MoOCl_4)] \bullet CH_2Cl_2 \qquad MoOCl3(o-C_6H_4(TeMe)_2-bridge)$

Chapter 7

 $[^{n}Bu_{4}N]_{2}[WS_{4}]$ TBA WS4

 $[PPh_4]_2[WSe_4] \hspace{1.5cm} (PPh_4)2WSe_4$

 $[^{n}Bu_{4}N]_{2}[WSe_{4}]$ DS EX79