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On Distinctiveness and Symmetry in Ear 
Biometrics 

Di Meng, Mark S. Nixon, and Sasan Mahmoodi 

Abstract—Previous works show that human ears can be used for identification, gender classification, and kinship verification 
and have investigated whether there is a symmetry between a person’s ears; however, the symmetry performances have been 
less than satisfactory. Our paper extends the analysis of gender classification on ear images and analyses bilateral symmetry of 
human ears, in both cases aiming to determine the ear parts from which recognition is derived. We use model-based analysis 
and deep learning methods to capitalize on structure and performance, respectively. We consider the rotation of ear images 
under an affine transformation, by modelling the ear as a flat plane attached to the head. We address the question as to 
whether it is possible that given an image of one ear, a person can then be recognized from their other ear. Such a symmetry-
based strategy could reduce constraints on applications of ear biometrics. We show that it is possible to recognise the gender 
with a 90.9% success rate and that the ear rim (the upper helix and lobe) dominates performance. To investigate symmetry, we 
compare one ear with a mirrored version of the other ear and achieve 93.1% CCR, which is the current state-of-the-art, with 
important regions different from those determined for gender. To extend the analysis we construct two groups of images, one of 
which contains both ears from the same subject and the other contains two ears from different subjects. The 100% CCR 
confirms the existence of symmetry between a subject’s ears. By these approaches we show that there is actually a high 
chance that there exists symmetry between a person’s ears and that it would be prudent for recognition systems to concentrate 
on the inner ear rather than the outer ear. 

Index Terms—gender classification, ear symmetry, deep learning, model-based, heatmaps  

—————————— —————————— 

1 INTRODUCTION 
ars have long been considered unique to their owners 
and therefore constitute a reliable biometric. Ear 

recognition has been based on holistic and model-based 
approaches, with more recent work using deep learning. 
There are clear advantages to using an ear for biometric 
systems since it is immune to expression, though ears can 
be obscured by hair. Many approaches have been targeted 
at, and evaluated on, standardized datasets where the ear 
position is controlled (including early datasets like 
XM2VTS [29] and later and larger ones like SC face [23]). 
This is a necessary step in any biometric, since the prime 
consideration in biometrics is uniqueness to a subject. In 
order to translate ear biometrics to real world applications, 
we need to demonstrate and understand the capability on 
unconstrained ear images, where the ear is not necessarily 
in a plane orthogonal to the camera's view. It is not yet 
known in the literature, whether there is bilateral 
symmetry between ears, and whether any parts might best 
be focused on for recognition, if at all. This paper describes 
work aimed to investigate these issues, as a part of the 
development of ear biometrics for applications beyond the 
laboratory. 

The recent Covid-19 outbreak and the increased 
wearing of masks might hinder the development of using 
the face for recognition. Two examples for ear identification 
are demonstrated in Fig. 1. As shown in Fig. 1(a) a rioter 
might conceal his/her face, but not their ear and a mask 
obscures much of the face but not the ear. Fig. 1(b) shows 
different surveillance images recorded at a crime scene 

with low quality suggesting a need for the capability to 
handle noisy images. In all of these images, it might be 
preferable to use the ear for identification, since it is the 
only biometric that can be seen clearly. To achieve that, we 
need to reduce constraints on the deployment of 
surveillance/security systems to be able to handle images 
where the ear is not presented normal to a camera view and 
might also be rotated. Given that one ear often only can be 
seen, it is also prudent to investigate symmetry. Though it 
will always be best to store two images per subject It is 
conceivable that a match might be required when only one 
ear can be seen in different situations. 

Fig. 1 (a) face concealed

Fig. 1 (b) different views of a subject
Fig. 1 Examples where ear biometrics might be preferred for 
recognition 
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The external anatomy of the human ear has been studied 
for many years, and Fig. 2 shows the structure of outer ears. 
Each ear should have the same external anatomy, whether 
left ear or right. Naturally there might be covariate factors 
like injury or jewellery, but the underlying structure is 
presumed to be the same, by human vision.  Also, it is 
often considered that the left ear is similar to the right ear, 
but this has yet to be established empirically. 

Compared with face biometrics, ears appear to change 
little with age (8-70 years old) [2]; compared with 
fingerprints ear images can be collected without a subject’s 
consent and can be captured from a greater distance. 
Historically the first person recognizing biometric on 
human ears was the French criminologist Alphonse 
Bertillon in 1890 [3]. Iannarelli later examined 10,000 ear 
samples to prove that ears are unique to their owner and 
developed a manual system for ear identification [2].  
Burge and Burger were the first to introduce an automated 
ear biometric approach [4], and Hurley et al. [5] were the 
first to demonstrate recognition. The complete information 
of identity from ear images, utilizing soft biometric traits 
[6], such as gender, can be supplementary. Ear images have 
previously been used for identifying humans 
[5][11][24][25][26], classifying gender [7][8][9][10], and 
verifying kinship [13]. 

1. (a-d) helix; 
2. lobe; 
3. antihelix; 
4. cavum 

conchae; 
5. tragus; 
6. antitragus; 
7. helix; 
8. triangular 

fossa; and 
incisura;

 

 

 

 

 

 
 

Fig. 2 Anatomy of the Human Ear [1] 

Ears are rarely recorded in identification documents and 
even with the heightened concerns on privacy, there is 
often little consideration given to obscuring a subject's ears. 

There are many studies for ear recognition. Hurley et al. 
[36]  presented one popular holistic approach to ear 
recognition, which was Force Field Transform and the 
recognition accuracy has achieved 99.2%. Banerjee and 
Chatterjee [37] also use Force Field Transform, with ERJU 
dataset to achieve a recognition rate of 97.71%. Considering 
occlusion of the ears by hair, local approaches can have a 
better performance than holistic approaches. Because the 
local approaches are based on the description of local parts. 
Arbab-Zavar et al. [11] utilizes SIFT for ear recognition 
with accuracies of 91.5% and 80.4% for non- occluded ear 
images and 20% for occluded ear images. Compared with 
a holistic approach (PCA), the accuracy of non-occluded 
ear images for ear recognition has been around 98.4%. 
However, the ear recognition accuracy with 20% occlusion 
in ear images has been only 12.7%. Deep learning has also 
been used for ear recognition in recent years, motivated by 
its advantageous performance. However, the deep learning 
methods can often be limited by a lack of training data. 
Eyiokur et al. [39] studies the unconstrained ear 

recognition problem. A deep convolution neural network 
(CNN) model is used for ear recognition to show the 
capability for domain adaption. Sinha et al. [40] discuss the 
feasibility of deep neural networks (DNNS) in ear 
biometrics. They use Histogram of Gradient (HOG) and 
support vector machines (SVMs) for ear localization, 
followed by a CNN for ear recognition. This approach has 
achieved 97.9% recognition accuracy. Almisreb et al. [41] 
applies Transfer Learning to the AlexNet Convolution 
Neural Network (AlexNet CNN). Because deep learning 
needs much data, the Transfer Learning is used to solve 
classification problems where there is little data available. 
The validation accuracy has achieved 100% in this study. 
Emersic et al. [42] builds a CNN model for ear recognition 
in the wild. They explore different strategies towards 
model training with limited amounts of training data and 
show that by selecting an appropriate model architecture, 
using aggressive data augmentation and selective learning 
on existing (pre-trained) models, they are able to learn an 
effective CNN-based model using little more than 1300 
training images, and the recognition rate at rank 1 is 62%. 
Emersic et al [44] presents the results of the unconstrained 
ear recognition challenge. This paper contains the results 
from five groups and evaluates six ear recognition 
techniques. The challenges of unconstrained ear images 
include head rotation, flipping, gallery size, large-scale 
recognition and the others. They have found that the robust 
performance is based on smaller part of dataset, but there 
still is a significant performance drop when the entire 
dataset is used for testing. Ear recognition in the wild are 
also discussed in [45][46]. Ying et al. [43] describes a human 
ear recognition algorithm based on a convolutional neural 
network. A final fully connected layer is introduced in 
Dropout technology and an optimal activation function is 
selected to prevent network overfitting. For the non-
rotated ear image dataset, the recognition accuracy has 
achieved 98.12%. 

In terms of identity science, Khorsandi et al. [7] presents 
the first study for the gender classification using 2D ear 
image analysis based on a sparse representation. Gabor 
filters are used for feature extraction to achieve a 
performance of 89.5%. Lei et al. [9] reports the first study 
for gender classification from 3D ear images and achieve 
the accuracy of 92.9% for gender classification. Yaman et al. 
[12] demonstrates the extraction of soft biometric traits, age 
and gender, from ear images. The accuracies of gender 
classification in [12] are 65% and 94% with the geometric 
and appearance features, respectively. Meng et al. [13] uses 
a model-based approach for gender classification and 
kinship verification. The geometric features are used for 
the gender classification, with an accuracy of 67.2%. Yaman 
et. al [10] reports excellent gender identification 98% and 
with fusion with face profiles can reach very high accuracy 
(>99%). This is the current state-of-the-art in ear biometrics 
for gender classification. However, these studies are only 
interested in performance and not specificity. An important 
question is also that which parts of ear guide the gender 
classification? Yoga et al. [32] analyses the gender 
differences based on anthropometric measurements of ears. 
They use manual measurements of the total ear index and 
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the lobe index to demonstrate the differences between 
female and male. Arbab-Zavar et al. [11] is the first to 
consider potency of different ear parts for ear identification. 
The recognition accuracy in [11] is 85.7%, and the top ten 
most significant parts of ears for recognition are shown 
with the most important being the inferior crus of the 
antihelix. For surveillance applications, we invariably 
capture a subject’s ear from one side and often the other 
sides are not available, similar to Fig. 1(b). Thus, the 
question is when we examine ear images, do we need to 
consider left ears or right ears? If we can establish the 
possibility of ear symmetry, then we can remove the need 
to capture views of both sides of the head, as only one is 
necessary. 

In symmetry, Yan et al. [15] is the first study to mention 
the symmetry of ears and indicate that around 90% of 
people’s right and left ears show bilateral symmetry. Yan et 
al. [14] consider 3D ear symmetry and formulate results of 
oblique ( ) views with a 24-subject dataset. 
Although these are naturally welcome advances, they do 
not present a concerted study on a large database. Abaza et 
al. [16] presents an analysis of symmetry of human ears, 
using a semi-automated mode and geometric features, 
with an Equal Error Rate (EER) of 16.8%. They also use 
Eigen-Ears (PCA) and the Shape From Shading (SFS), with 
EERs of 21.1% and 17.1%, respectively. Toygar et al. [17] 
also reports symmetric ear recognition with profile face 
fusion. They use LBP, LPQ and BSIF algorithms, and the 
best performance of using ear images with no profile faces 
is around 76.1%. 

Previous studies do not consider rotation, and ears are 
recorded in laboratory conditions under which a subject 
looks straight ahead. Fig. 1(b) shows how a subject’s head 
might be inclined or rotated, especially when committing a 
crime. Only three angles are discriminated in [14], where 
ear symmetry is considered based on the appearance of 
ears, rather than its structure. However, some subjects’ 
heads are rotated along the yaw or pitch axes, which can 
change the appearance of the ears. 

This paper is originally based on a study of which ear 
parts are used most for identification in ear biometrics, and 
which contributes to gender recognition [IWBF][30]. 
Beyond greater formalism of the previous paper, we now 
show: 

1. that recognition can be achieved in unconstrained 
images; 

2. that human ears appear largely to be bilaterally 
symmetric; and 

3. which ear parts contribute most to recognition of 
bilateral symmetry. 

We are the first to utilize deep learning to study ear 
symmetry. We also use a model-based technique for 
comparison with deep learning, and we consider 
unconstrained ear images, whilst we measure the 
performance by training pre-processing ear images, by 
using the affine transformation to register the two ears for 
comparison. The work presented here is the current state-
of-the-art in ear symmetry. We show for the first time that 
there is actually a high chance of symmetry between a 
subject’s two ears, confirming the previous observations 

from human vision, and we show which ear regions are 
significant for evaluating ear symmetry.  

2 IMAGE PRE-PROCESSING 

2.1 Force Field Transform 
The force field transform is inspired by electrostatics, and 
electromagnetics and is used within one of the earliest 
approaches to ear biometrics [5]. The image is transformed 
by assuming that it consists of an array of Gaussian 
attractors, which act as the source of a force field. Each pixel 
in the image affects the other pixels, and it therefore 
contributes to the energy affecting other pixels in the image. 
Associated with the force field generated by each pixel, 
there is a spherically symmetrical scalar potential energy 
field denoted by . This energy is the potential energy 
imparted to a pixel of unit intensity at the pixel location 
with position vector  by the energy field of any other 
pixel with position vector  and pixel intensity , and 
is given by 

where each pixel affects the other pixels with the 
different distances. The potential energy transformation is 

Fig. 3 depicts the results of the force field feature 
extraction applied to the ear image. As shown in Fig. 3, 
Force Field Transform helps to reduce the effects of hair 
whilst preserving ear structure. 

Fig. 3 Force Field Transform of 
a sample

Fig. 4 HOG descriptions of an 
ear image

(a) reference (b) new (c) after affine 
Fig. 5 Applying the affine transformation 

2.2 Affine Transformation 
The affine transformation is defined as  

 has six degrees of freedom corresponding to the six 
parameters of the transformation (scale, rotation and 
translation parameters) [27] and can be calculated from 
non-collinear correspondences. In our study, we consider 
ear images in which a person’s head may rotate only about 
yaw axis, and we do not consider roll and pitch rotations. 
Fig. 5 shows an example of the affine transformation. Fig. 
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5(a) depicts the reference image, the image to be registered 
is also shown in Fig. 5(b). This ear image is then rotated 
around the yaw axis to result in the ear image presented in 
Fig. 5(c) by using an affine transformation. 

3 MODEL-BASED METHODOLOGY 
The Histogram of Oriented Gradients (HOG) [18] is also 
employed here to describe ear images. There are five steps 
in computing the HOG descriptors. The first step is 
optional and is global image normalization, equalization, 
and gamma (power law) compression, and also the 
calculation of square root or log of every color channel. The 
second step is to calculate the gradient of image. This can 
capture the edges and some texture information in the 
image, while illumination variations are mostly ignored. 
The third step is to compute gradient histograms. An ear 
image is divided into small spatial regions, named as ‘cells’ 
here. For all the pixels inside every cell, a 1-D local 
histogram of gradient or edge orientation is accumulated. 
This 1-D histogram forms the basic for the ‘orientation 
histogram’ representation. Gradient angle range is divided 
into a fixed number of predetermined bins. Using the 
gradient value of pixels in cells, votes are taken in the 
orientation histogram. The fourth step is to normalize 
across blocks using local groups of cells, with responses 
normalized before the next stage. The normalized block 
descriptors are described as HOG descriptors. The final 
step is to collect HOG descriptors from all the blocks of a 
dense overlapping grid of blocks covering the detection 
window (cell), and then to construct a feature vector as an 
input for classification algorithms. We apply HOG on the 
ear images after force field transform. Fig. 4 shows the 
HOG descriptors of an ear image. 

4 DEEP LEARNING 

4.1 ResNet-50 
The deep residual learning method addresses the 
degradation problem by introducing a deep residual 
network [19]. This method allows some stacked layers to 
fit a residual mapping, instead of hoping that these layers 
directly fit a desired underlying mapping. The original 
mapping is recast into . The formulation of 

 can be realized by feedforward neural networks 
with skip connections. We use a residual network with 18, 
34 and 50 layers. Because of concerns on the training time, 
the building block is modified as a bottleneck design [19]. 
The 50-layer ResNet contains 3-layer bottleneck blocks 
instead of the 2-layer blocks in the 34-layer network.  

4.2 Fine Tuning ResNet-50 
Transfer learning is used to improve the performance of the 
network from one domain by transferring information 
from a related domain [20], specially for small datasets 
such as our ear dataset. The strategy of the transfer learning 
is to pre-train a model on a large labelled dataset. As we 
have a limited dataset for the training, we use ResNet-50, 
and transfer the learning of the pre-trained model (ResNet-
50) to the ear dataset. For ear recognition, we replace the 
last fully connected layer and the classification layer in the 

pre-trained ResNet-50 with a set of layers that can classify 
137 classes to recognize 137 subjects. For the case of gender 
classification, we replace those layers with layers that can 
classify into two groups for male and female classes. Finally, 
for ear symmetry experiments, we replace those layers 
with layers that can classify 100 classes to recognize 100 
subjects.  

4.3 Evaluating Visualizations 
Grad-CAM [22] (Gradient-weighted Class Activation 
Mapping) uses the gradients of any target concept (say 
logits for ‘female’ or even a caption), flowing into the final 
convolution layer to produce a coarse localization map 
highlighting the important regions in the image. The class 
discriminative localization map Grad-CAM 

 of width  and height  for any class ,  
(before the softmax), with respect to feature map  of a 
convolutional layer is . The neuron 
importance weights  are calculated as: 

which are obtained by global average pooling of the 
gradients derived via backpropagation. The weight  
represents a partial linearization of the deep network 
downstream from feature map  , and captures the 
‘importance’ of the kth feature map for a target class .  is 
the number of pixels in the feature map. 

A weighted combination of forward activation maps is 
developed in [22] , and this is followed by a ReLU to obtain 
the linear combination written as, 

5 EXPERIMENTS FOR EAR RECOGNITION 

5.1 Datasets for Ear Recognition 
 We use USTB dataset 1 [28] and USTB dataset 2 [28] for 
ear recognition. USTB dataset 1 has 180 ear images with 60 
subjects. Each subject has 3 different images, they are 
normal frontal ear image, non-rotated frontal ear image 
and ear image under different lighting conditions. Images 
in USTB dataset 1 has already experienced rotation and 
shearing. USTB dataset 2 has 308 ear images with 77 
subjects, each subject contains 4 images. The first and the 
fourth images are profile images with varying 
illuminations. Compared with the first image, the second 
and the third images have the same illumination. These 
two ears have been rotated by  respectively. Fig. 6 
shows samples of ear recognition images. 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
Fig. 6 Samples of ear recognition data 
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5.2 Model-based Methodology 
We use kNN (k=1) with a leave-one-out cross validation 
strategy for ear identification. Euclidean and Manhattan 
distances are used in kNN classifier to evaluate the model. 
The results of correct recognition are shown in Table 1. 

TABLE 1 
EAR RECOGNITION ACCURACIES BY MODEL-BASED METHOD 

As shown in TABLE I, the model-based method achieves an 
accuracy of 95.1% in ear recognition, which shows the model 
can be used for identification, with good performance. 

5.3 Deep Learning  
We deploy the transfer learning of ResNet-50 in this study. 

USTB Database 1 and Database 2 (308 images, 77 subjects 
with 4 images for each subject) are used for ear recognition. 
There are 351 images for training, and 137 images for testing. 
We select one test ear image from each subject randomly, so 
we select 137 test images from 137 subjects, and then we split 
the rest of images into training and validation datasets: 70% 
data for training and 30% data for verification.  The 
accuracy of ear recognition is 92.9%, which means this 
model has good capacity for ear recognition. Compared with 
previous studies [39][40][41][42][43], the highest accuracy 
was 100%. Almisreb et al. [41] uses 250 training images for 
10 subjects. There is such a little amount of data in this 
dataset, and it contains just 10 subjects. However, when our 
model is trained on the rotated ear image datasets, we are 
training 348 images for 137 subjects. Also, the datasets used 
here include rotated ear images and the ear images are under 
weak illuminations. Therefore, our model appears to be 
robust to rotation and illumination. Then, we employ Grad-
CAM to analyse which parts of the ear are significant for 
recognition. Fig. 7 shows the heatmap for ear recognition. 
The red parts in heatmaps are the most important parts, 
whereas the blue parts show those of less importance. As 
Fig. 7 shows, the central region of ear is more significant for 
ear recognition.  

Fig. 7 Average heatmap for ear identification

5.4 Ear Recognition Verification 
We also do verification experiments to evaluate the 
performance of our model. For the verification experiments, 
we select two ear images from each subject at random. We use 
the training model to represent each image by a vector, and 
then calculate the cosine similarities as a distance metric 
between two images.  

If the stored ear image of a subject  is represented by 

 and another ear image for verification is represented by 
, thus, the null hypothesis  and alternate hypothesis 

 are defined as: 
Null hypothesis :  and   come from different 

subjects. 
Alternate hypothesis :  and  come from the 

same subject. 
If the value of cosine similarity is higher, the system is 

more certain that  is correct. The system makes decision 
based on a threshold: if the cosine similarity value is higher 
than or equal to the threshold,  is correct. Otherwise, the 
cosine similarity value is lower than the threshold, and 
therefore  is confirmed 

False Reject Rate FRR is defined as rejecting the null 
hypothesis  when it is true, and False Accept Rate (FAR) 
is defined as failing to reject  when it is false. Equal error 
rate (EER) is the value defined as FRR=FAR, EER is an 
indicator of the performance of the model, the lower value 
for EER, the higher performance for the model. . 

Fig. 8 shows the recognition verification of ear images, 
and the Equal error rate (EER) for ear recognition 
verification is 7.24%. 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8 Ear recognition verfication

6 ANALYSING THE DISTINCTIVENESS OF GENDER 

6.1 Datasets for Gender Classification 
We explore the model-based technique for gender 
classification by using our own database (which we have 
made available on Github [33]) which contains 78 subjects: 
38 females, and 40 males. Each subject contains two 
unconstrained profile images, which are from two sides. 
We use the USTB dataset 3 [28] and our own dataset for 
gender classification from ear images for deep learning. 
USTB dataset 3 contains 79 subjects. There are 10 ear 
images for each subject which include profile images with 

 rotation, and there are two images for 
every pose. Fig. 9 shows samples used for gender 
classification. 

 
 
 
 

 
 

 
 
 
 

 
 

 
 
 
 

 
 

Fig. 9 Samples for gender classification 
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6.2 Model-based Methodology 
We use the Euclidean, Manhattan and Mahalanobis 
distances for  with  in a leave-one-out cross 
validation. Soft biometric data information includes gender, 
and relationship between subjects for all subjects, Table 2 
shows accuracies of gender classification.  

TABLE 2 
GENDER CLASSIFICATION ACCURACIES FOR OUR MODEL-

BASED 

As observed in Table 2, our model-based technique has 
achieved gender classification with accuracy of 82.9%, 
being 32.9% higher than random. The next question we 
address in this paper is which parts of ears contribute to 
gender classification. 

   We divide the ear images into 4 and 16 parts, as shown 
in Fig. 10. The sub-regions are referred to as  
( with order n shown in Fig. 11. We use each 
part for gender classification separately. Table 3 shows the 
accuracies for the 4 ear parts, and Table 4 presents the 
accuracies for the 16 ear parts. 

Divided  regions Divided  regions 

Fig. 10 An example for a divided ear image 

Fig. 11 The order of regions (4 regions: left side,16 regions: right 
side) 

The accuracies of gender classification for each individual 
region are shown in Table 3 and Table 4. Table 3 shows the 
accuracies of the  sub-regions. Table 4 shows the 
gender classification accuracies for 16 parts of ears. The 
results in Table 3 and Table 4 are based on the Mahalanobis 
distance for  with  in a leave-one-out 
cross validation strategy for gender classification. 

TABLE 3 
GENDER CLASSIFICATION ACCURACIES IN DIFFERENT PARTS OF 

EARS (4 REGIONS) BY USING OUR MODEL-BASED METHOD 

TABLE 4 
GENDER CLASSIFICATION ACCURACIES IN DIFFERENT PARTS OF 

EARS (16 REGIONS) BY USING OUR MODEL-BASED METHOD 

As observed in Table 3, r1 (in the four-region setting) 
enjoys the highest accuracy of 73.2%, which means r1 is the 
most important region for gender classification. 
Furthermore, r2 and r4 are the second most important 
regions for gender classification, whereas region r3 is 
considered as the worst region for gender classification. The 
accuracy in r3 is even lower than a random classifier. 

For 16 region analysis, Table 4 shows that the highest 
accuracy of 71.8% is associated with r4. Region r2 has the 
second highest accuracy of 69.0%, both r2 and r4 being on 
the upper helix. 

The results presented in Table 3 and Table 4, suggest that 
the upper helix is more important than lower parts of ears 
(such as the lower helix and the lobe) for gender 
classification. Regions r4 and r2 in the 16-region-division 
setting come from r2 and r1 in the 4-region-division setting, 
separately. This indicates that the upper regions of ears are 
more important than lower parts of ears. 

6.3 Deep Learning 
We use the transfer learning with ResNet-50, VGG-16 and 
GoogleNet for gender classification. We use the USTB 
database 3 [28], our own database [33] and AWE dataset 
[34]. We select some images from each dataset, to have a 
merged dataset of ears to ensure a more balanced dataset 
between males and females. As a result, in our newly 
merged dataset there are 90 female subjects and 100 male 
subjects. There are 800 images for training and validation 
(split as: 70% data for training and 30% data for validation) 
and 110 images for testing. In all experiments in this paper, 
we have removed the background of each ear image, to 
focus on just the ear and to exclude the effects of hair, head 
and neck regions. 

TABLE 5 
GENDER CLASSIFICATION ACCURACIES FOR DEEP LEARNING 

As tabulated in Table 5, the highest accuracy of the 
network based on transfer learning is associated with 
ResNet-50, which is 90.9%. This accuracy is sufficiently high, 
it is possible to use this model to classify subjects into 
females and males. We exploit Grad-CAM to compute the 
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heatmaps based on ResNet-50 shown in Fig. 12 to 
determine which parts of ears contribute to gender 
classification from ear images. 

Fig. 12 shows the average heatmaps for two genders: 
males and females, including a general outline of an ear to 
illustrate the important parts of the ear for gender 
classification. As depicted in Fig. 12, the difference between 
different genders is obvious, the upper helix, triangular 
fossa, tragus and antitragus of males is more important than 
the other parts of ears. For females, the lobe plays a more 
significant role in ear recognition. This may be due to the 
fact that women are more likely to wear earrings making 
the ear lobe more important for female recognition. Also, 
females are more likely than males to have long hair which 
increases the chance that the top of the ear is occluded and 
thus not used in their recognition. Conversely, males are 
more likely to have short hair, and their recognition is based 
on their parts that are more easily observed, including the 
antitragus and the antihelix. Some of the conclusions drawn 
for the heatmaps depicted in Fig. 12 differ from those 
obtained in our model-based technique (see Table 3 and 
Table 4), i.e., the upper helix is very important for gender 
classification, not only in our model-based technique but 
also as shown by the difference between the heatmaps in 
Figure 12. However, the lobe has not played an important 
role in the model-based technique for gender classification, 
but it appears very significant for the convolutional 
network to classify genders.  

Female Male 

Fig. 12 Average heatmaps for different genders (ResNet-50) 

It is interesting to compare identification with gender 
recognition. Fig. 7 shows the average heatmap for ear 
identification. This heatmap demonstrates that the central 
parts of ears are very important for ear identification. 
Obviously, heatmaps for identification and gender 
classification are different, and some regions such as the 
helix, strike a balance between a strong positive response 
for males and a strong negative response for females. As the 
heatmaps of different genders demonstrate, the helix and 
lobe are important for gender classification. The central 
parts are also very important for ear recognition. 

7 EAR SYMMETRY 
In this section, we consider bilateral symmetry for ear 
recognition. We use a pre-trained deep learning network as 
well as a model-based method for identification in an ear 
symmetry context. Our results are presented in subsections 

7.2, 7.3 and 7.4.  

7.1 Datasets for Ear Symmetry 
For our symmetry analysis, we exploit the SC face database 
[23] collected by The Technical University of Zagreb as well as 
Annotated Webs Ears (AWE) [34] database collected by 
University of Ljubljana.  
The SC face database has 4160 images from 130 subjects. There 
is a subset of this database which contains each subject. The 
dataset contains 130 subjects, each subject has 9 images with 
different pose, one is mug shot at , the other images rotated 
from  (4 left side images and 4 right side 
images). However, ears from some subjects have been entirely 
occluded by hair. We therefore choose 100 subjects with no 
occlusion for the experiments. 

The AWE dataset contains 100 subjects with 1000 ear 
images. 520 left ear images and 480 right ear images. All 
the images are collected from the web by first compiling a 
list of people, for whom it is reasonable to assume that a 
large number of images could be found online. Similar to 
other datasets collected in the wild, this list mostly features 
actors, musicians, politicians and the like. [35] Fig. 13 
shows some examples of ear symmetry experiments. 

SCface dataset AWE dataset 

Fig. 13 Samples of AWE dataset

7.2 Model-Based Methodology 
In this subsection, we use a model-based technique for 
matching a pair of ears which is based on the structure of ears. 
Hough Transform [31] is deployed to detect ears whose 
shapes are approximated as ellipses, and then we find the 
outer rectangle enclosing the ellipse. Finally, the histogram of 
gradients of ears is computed. We use one of SC face datasets 
for ear symmetry. In it, there are 300 left ear images for 
training, and 300 right ear images for testing. As both ears are 
used, we mirror the right ear images. Zero mean Gaussian 
noise is also added to ear images to result in noisy ear images 
with SNR 22 dB. The kNN classifier is then used with 
Euclidean and Manhattan distances for ear classification.  

TABLE 6 
EAR RECOGNITION ACCURACIES FOR OUR MODEL-BASED 

METHOD (ORIGINAL IMAGES) 

TABLE 7 
EAR RECOGNITION ACCURACIES FOR OUR MODEL-BASED 

METHOD (IMAGES WITH NOISE) 
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TABLE 8 
EAR RECOGNITION ACCURACIES FOR OUR MODEL-BASED 

METHOD (IMAGES AFTER AFFINE TRANSFORMATION) 

Tables 6, 7 and 8 show the results of our model-based 
technique, and they present the accuracies for original 
images, noisy images and noisy images after affine 
transformation respectively. Affine transformed ear images 
enjoy the highest accuracy of 66.9%. The recognition rate of 
original images is 60.7%, otherwise, the accuracy of ear 
images with Gaussian noise is 23.1%, which is lowered by 
37.6%. We also use the force field transform and uniform 
local binary pattern (ULBP) for extracting features, but 
HOG has slightly better performance than force field 
transform and ULBP. 

7.3 Deep Learning 
In the experiment described in this subsection, we transfer the 
pre-trained ResNet-50 to the SC face datasets. All the left ear 
images for training, and right ear images for testing. 

TABLE 9 
TWO-SIDE EAR RECOGNITION ACCURACIES FOR DEEP 

LEARNING 

As observed in Table 9, the accuracy of the network based 
on transfer learning is as high as 93.1%. The recognition rate 
of training original ear images is 91.2%, otherwise the 
accuracy of training the ear images with Gaussian noise is 
62.9%, which decreases by 28.3%. Clearly, the presence of 
noise lowers the recognition rate, as expected, affine 
transformed ear images are responsible for the highest 
accuracy. In our experiments, we notice that the hair 
occlusion influences the correct prediction. Therefore, the 
hair occlusion is a challenge for verifying ear symmetry.  
For comparison purposes, we transfer pre-trained VGG-16 
and GoogLeNet networks to the dataset, and the accuracies 
are 66.2% and 62.1% respectively. The performance of 
ResNet-50 network is better than the other two networks, 
therefore, we will analysis heatmaps of ResNet-50. In 
addition, we apply this model to an in-the-wild ear image 
dataset (AWE dataset), we use 520 left ear images for 
training, and 480 right ear images for testing, and the ear 
images have severe rotation in pitch, and yaw axes. Also, 
the ear images in the dataset have severe occlusions. The   
recognition accuracy for ear images without pre-processing 
is 20.2%. Although the accuracy is not high, it is still 19.2% 
higher than random chance. Compared with SC face dataset, 
the accuracy has a sharp decrease of 70.3%, therefore, our 
results indicate that applying the system to the in-the-wild 
ear images suggest a considerable challenge. 

It is interesting to compare deep learning approaches 
with model-based techniques. As presented in all the tables, 
deep learning demonstrates better performance. The results 
of training original images indicate that deep learning is 
superior to model-based. Meanwhile, these two methods 

also use ear images after affine transformation in the 
training images. As a result, the accuracy of deep learning 
increases by 1.9%, while that of model-based method 
increases by 8%. As demonstrated in these experiments, 
affine transformation for model-based is actually more 
helpful than that for deep learning. Furthermore, we have 
contaminated the ear images with zero mean Gaussian 
noise for training. Additive Gaussian noise causes the 
accuracies to decline. The deep learning accuracy is lowered 
by 28.3%, while model-based decreases by 37.6%. Our 
results indicate that deep learning enjoys better 
performance than using a model, in a noisy environment. 

Moreover, we determine which region of ears contributes 
most in symmetry-based recognition rates by using Grad-
CAM to compute the heatmaps. We mirror right ears to left 
ones and match the right ears to the left ones. Fig. 14 
demonstrates the contribution of different parts of ears. 

 
 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 
 

Fig. 14 Average heatmap for recognition of single ear from either 
side (Top: original images , Bottom left: affine tranformed images, 
Bottom right: images with added Gaussian noise) 

For the heatmaps, red pixels are the most important, and 
blue pixels are less important. Therefore, the central part of 
ears is very important for recognition of single ears from 
either side, and it is also significant for noisy images and 
affine transformed images. Then, we compare the 
recognition of single ear from either side with one-sided ear 
recognition, and they have similar heatmaps. We also 
consider if the model can test the ear symmetry directly, by 
an image combining a subject’s left ear and right ear, as 
shown in Fig. 15.  

 (a) Same subject (b) Different subjects
Fig. 15 Composite images of two sides
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We also transfer the ResNet-50 learnings to one of SC face 
datasets. There are 300 combined two sides ear images from 
same subjects (100 subjects) and 300 combined ear images 
from different subjects (100 different subjects are selected 
randomly). 150 ear images from same subject (50 subjects) 
and 150 ear images from different subjects for training, and 
the others for testing. We divide the testing set to 5 sub-sets, 
every sub-set has 30 ear images from same subject and 30 
ear images from different subjects. Table 10 shows the 
results of ear symmetry. 

TABLE 10 
EAR SYMMETRY ACCURACIES FOR DEEP LEARNING 

Table 10 shows the ear symmetry accuracies. The 
classification accuracy for original images, affine 
transformed images and noisy images are 100%. As 
observed from Table 10, the model can classify all the ear 
images into the correct groups, and the model is not affected 
by noise. These accuracies along with the recognition rates 
reported in Table 9, indicate that human ears are bilaterally 
symmetric. Fig. 16 shows the average heatmap of an ear 
image in this experiment. 

As shown in Fig. 16, the middle parts are very important 
for ear symmetry. If we compare the heatmap shown in Fig. 
12 with the heatmaps of gender classification, we notice that 
the lobe is significant for gender classification, but not 
significant for ear symmetry. In fact, it appears reasonable 
that those sections of the ear that appear to dominate 
gender analysis contribute less to ear symmetry. The 
classification accuracy in the ear symmetry experiment is 
6.9% higher than the recognition rate of single ear from 
either side, and by comparison with Fig. 14, we observe 
which parts of ears are not symmetric. As the heatmaps 
show the helixes and lobes are not significant for ear 
symmetry, and triangular fossa is most important for ear 
symmetry. 

 

 

 

 

 

 
Fig. 16 Average heatmap for ear symmetry 

 
 
 

 
 
 
 
 

 
Fig. 17 Heatmap affected by earrings 

In the next experiment, we consider the effect of wearing 
earrings on heatmaps. Earrings are usually worn on the ear 
helix, and the positions of the earrings differs among helices. 
Fig. 17 shows a heatmap for ear images derived only from 
subjects wearing earrings. As shown in this figure, the red 
regions remain concentrated on the central section, which 
suggests that the ear symmetry is less affected by earrings.  

7.4 Ear Symmetry Verification 
Deep learning presents high accuracy for ear symmetry 
recognition; thus, we also do verification experiments to 
evaluate the performance of our model. For the verification 
experiments, we select a left ear image and a right ear image 
from each subject randomly. We use the training model to 
represent each image with a vector, and then calculate the 
cosine similarities of each image. 

If the stored left ear biometric template of a subject  is 
represented by  and the right ear for verification is 
represented by , thus, the null hypothesis  and 
alternate hypothesis  are defined as: 

Null hypothesis : Right ear  and left ear  come 
from different subjects. 

Alternate hypothesis : Right ear  and left ear  
come from the same subject. 

If the score of cosine similarity is higher, the system is 
more certain that  is more likely to be confirmed. The 
system decision is regulated by threshold : if the score is 
higher than or equal to the threshold ,  is confirmed. 
Otherwise, the score is lower than , and the system infers 
that  is correct. 

There are two incorrect conclusions. Type I error is 
defined as rejecting the null hypothesis  when it is true, 
also named False reject rate (FRR). Type II error or False 
accept rate (FAR) is defined as failing to reject  when it 
is false. Equal error rate (EER) is the value defined as 
FRR=FAR, EER is an indicator of the performance of the 
model, the lower value for EER, the higher performance for 
the model. Fig. 18 also presents FRR and FAR with respect 
to the threshold T for the affine transformed ear images. Fig. 
18 indicates that the model enjoys high performance and 
high sensitivity for affine transformed ear images with 
lowest EER. 

Table 11 tabulates the EER for different experiments. EER 
for original ear images, affine transformed ear images and 
noisy ear images are 3.57%, 3.24% and 10.27% respectively. 

 

 

 

 
 

 

 

 

 

 

 

 

 

Fig. 18 Ear symmetry verification for affine transformed ear images  
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TABLE 11 
EQUAL ERROR RATE OF DIFFERENT IMAGES 

Fig. 19 presents the inter- and intra-class variations for 
affine transformed ear images. In this figure, green bars 
represent the distance histogram between same subjects-
client, and red bars show the distance between different 
subjects-imposter. The green bar is small, the red bar is large, 
the confusion region (the overlap region between the green 
and red histograms) is smallest. Such a small confusion 
region indicates a high recognition rate when original ear 
images are used. The model has the best performance for 
the affine transformed ear images, affine transformation can 
compensate for rotation.  

 
 
 
 
 
 
 
 
 
 

 
 
 

 
Fig. 19 Inter and intra class variations for affine transformed 
images 

8 CONCLUSIONS 
This paper presents a model-based technique as well as a 
deep learning method for ear recognition, gender 
classification and ear recognition with bilateral symmetry. 
For the model-based methodology, the accuracies are 95.1%, 
82.9% and 66.9% for ear recognition, gender classification 
and ear recognition with bilateral symmetry, respectively. 
For deep learning, the performances for ear recognition, 
gender classification, and ear recognition with bilateral 
symmetry are 92.9%, 90.9% and 93.1% respectively. Also, 
we use deep learning for paired ear recognition. Our results 
confirm symmetry with a performance of 100%. We are the 
first to use deep learning for ear recognition with bilateral 
symmetry.  

Meanwhile, we also consider which parts of ears 
contribute mostly to ear recognition, gender classification 
and ear bilateral symmetry. The heatmaps presented in this 
paper, indicate that the central region is significant for ear 
recognition and ear bilateral symmetry. Furthermore, we 
compare the heatmap associated with ear recognition with 
that of gender classification. The lobe and upper helix 
appear to be important for gender classification. However, 
the lobe does not play an important role in ear recognition 
and ear bilateral symmetry. Moreover, our analysis related 
to ear bilateral symmetry demonstrates that recognition rate 

is little affected by jewellery. 
 We demonstrate, in this paper, through a set of 

experiments that there is an implied similarity between left 
and right ears. Therefore, ear recognition can be achieved 
regardless of which ear is used for analysis. This notion is 
important because human anatomy dictates that only one 
ear can be seen in a single image. Obviously, ears cannot be 
seen or analysed in images from a full-frontal view, like 
passport style images, which rarely occur in surveillance. 
As such our study therefore indicates that constraints on ear 
image acquisition are reduced. As such, this paper 
establishes benchmarks for ear recognition by using ear 
bilateral symmetry and provides pointers for future 
applications and developments for ear symmetry 
particularly that it appears prudent for recognition to focus 
on the ear perimeter. 

For future work, we aim to fuse the model-based 
approach with deep learning to improve the ear recognition 
performance. The effects of ear occlusion by hair is also 
another topic for future work. Another interesting topic for 
future work is to use deep learning attention networks for 
ear biometric to avoid non-ear regions of ear images in ear 
recognition. The last but not the least topic for future work 
is to avoid using transfer learning for the training of our 
deep learning network in order to produce heat maps with 
no effects of transfer learning, where non ear regions appear 
as least significant in heat maps. In such a scenario, the 
interpretation of heat maps will be clearer and more 
straightforward in the analysis of the deep learning 
methods for ear recognition, gender classification and ear 
symmetry. However, in such a case, a dataset with around 
10,000 ear images for training would be needed.  

We remain grateful to the reviewers for their excellent 
comments and observations made on this paper. 
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