
Non-linear least squares fitting of
Bézier surfaces to unstructured point
clouds
Joseph Lifton1,*, Tong Liu2 and John McBride3

1Intelligent Product Verification Group, Advanced Remanufacturing and Technology Centre,

637143, Singapore

2Precision Measurements Group, Singapore Institute of Manufacturing Technology, 637662,

Singapore

3Mechatronics Engineering Group, Mechanical Engineering Department, Faculty of Engineering

and Physical Sciences, University of Southampton, SO17 1BJ, UK

*Email: Lifton_Joseph_John@artc.a-star.edu.sg.

Abstract: Algorithms for linear and non-linear least squares fitting of Bézier surfaces to

unstructured point clouds are derived from first principles. The presented derivation includes the

analytical form of the partial derivatives that are required for minimising the objective functions,

these have been computed numerically in previous work concerning Bézier curve fitting, not

surface fitting. Results of fitting fourth degree Bézier surfaces to complex simulated and measured

surfaces are presented, a quantitative comparison is made between fitting Bézier surfaces and

fitting polynomial surfaces. The developed fitting algorithm is used to remove the geometric form

of a complex engineered surface such that the surface roughness can be evaluated.

Keywords: Bézier surfaces; least squares fitting; surface metrology

1 Introduction

Bézier curves and surfaces are widely used in computer graphics and computer aided design for

representing complex geometries as a set of smooth analytically driven curves. For example, they

have been used for aerofoil geometry optimisation [1] for representing the outline of textual

characters [2] and are used extensively for designing and reconstructing complex free form

objects in computer aided geometric design [3]. A Bézier curve is a parametric curve based on

Bernstein polynomials. The shape of the curve is modified by a set of control points, consecutive

control points are termed a control polygon, note that the resulting curve does not necessarily

pass through these control points. The number of control points defines the possible complexity

of the curve, for example, with two control points only a straight line can be evaluated, this being

a first degree Bézier curve, with three control points (a second degree Bézier curve) quadratic

curvature is possible, and so on. Some example fourth degree (5 by 5 control points) Bézier

surfaces are shown in Figure 1 alongside the control points.

Figure 1. Exemplar Bézier surfaces and the respective control points.

In this work we are interested in fitting Bézier surfaces to a set of noisy, unstructured, scattered

points, the particular application we are interested in is the removal of geometric form in order to

characterise the surface texture of highly complex engineering surfaces [4]. It is straightforward

to fit a polynomial surface to a set of measured points using the least squares method, many

commercial software packages are available to do this fitting task, however Bézier surfaces offer

the desirable property of passing through the control points at the corners of its control polygon,

this means that Bézier patches can be stitched together to form a patchwork which can be used

to approximate geometries of even greater complexity, such as the surface geometries that can

now be fabricated using additive manufacturing.

Having reviewed the literature, the linear least squares (LLS) solution for fitting Bézier surfaces is

well documented, however, we are unable to find the non-linear least squares (NLLS) Bézier

surface fitting algorithm that is presented in this work. Fitting Bézier curves (not surfaces) via LLS

and NLLS is considered in references [5] and [6] and a NLLS spline curve fitting algorithm is

presented in [7]. In references [8–10] the LLS Bézier surface fitting algorithm is given, but iterative

refinement is achieved using a genetic algorithm, the fireworks algorithm and the firefly algorithm,

respectively, rather than NLLS, which makes the fitting task more complicated than it need be for

many applications such as form removal for surface texture characterisation. The LLS fitting

algorithm for Bézier surfaces is given in references [11] and [12] but the authors do not present

the NLLS fitting algorithm. In [13] free form surface fitting is discussed from a reverse engineering

perspective but neither the LLS or NLLS Bézier surface fitting algorithms are presented. We

therefore adopt the general LLS and NLLS approach presented in references [5] and [6] but

extend to the case of a fourth degree Bézier surface.

Fourth degree Bézier surfaces are considered here to allow for the fitting of highly complex

surfaces such as the engineered surface considered at the end of the paper. Linear, quadratic

and cubic surfaces are deemed too simple to represent the complex surfaces that are of interest

in this work. It is worth noting that the presented algorithm can be modified to consider any degree

of Bézier surface.

In this work the partial derivatives that are required for both the LLS and NLLS fitting are evaluated

explicitly (see Appendix 2 and 3) as opposed to numerically as per the work in [5], this leads to a

more computationally efficient implementation.

The structure or order of the data points to which we fit Bézier surfaces is not required apriori, the

data points can be randomly scattered. Furthermore, no initial estimate of the control points is

required, this is provided by the LLS algorithm. Therefore, the developed method is highly

practical and should be of great use for a number of surface fitting tasks.

In order to validate the developed method and benchmark it, we compare the algorithm to the

fitting of polynomial surfaces for 3 different surfaces, two simulated surfaces with superimposed

noise and one measured surface. The algorithm is benchmarked against polynomials because

these are the default fitting functions used by engineers, especially in the field of surface

metrology [4]. The convergence of the iterative NLLS algorithm is also plotted for each of the

considered surfaces to demonstrate the stability of the algorithm.

1. Method

The general formula for a Bézier surface of degree 𝑛,𝑚 is:

𝑃(𝑢𝑡 , 𝑣𝑡) = ∑∑(
𝑛
𝑖
)𝑢𝑡

𝑖(1 − 𝑢𝑡)
𝑛−𝑖

𝑚

𝑗=0

(
𝑚
𝑗) 𝑣𝑡

𝑗(1 − 𝑣𝑡)
𝑚−𝑗

𝑛

𝑖=0

𝑘𝑖𝑗 (1)

where 𝑢 and 𝑣 are parametric coordinates with 0 ≤ 𝑢 ≤ 1 and 0 ≤ 𝑣 ≤ 1. The term 𝑡 is the index

of the parametric coordinates. The terms 𝑘𝑖𝑗 are the control point coordinates in 𝑥, 𝑦, 𝑧 and these

are the variables that need to be estimated such that the Bézier surface 𝑃(𝑢𝑡 , 𝑣𝑡) fits the measured

data. We will consider a fourth degree Bézier surface where 𝑚 = 𝑛 = 4. The fourth degree Bézier

surface is written explicitly as per Appendix 1.

Let the measured data we wish to fit the Bézier surface to be denoted 𝑑𝑡 with 𝑡 = 1,… ,𝑁. The

least squares solution requires we minimise the sum of the squared errors. Therefore, define error

𝑒𝑡 as:

𝑒𝑡 = 𝑃(𝑢𝑡, 𝑣𝑡) − 𝑑(𝑢𝑡 , 𝑣𝑡). (2)

Summing the squared errors gives:

𝑀 = ∑(𝑃(𝑢𝑡, 𝑣𝑡) − 𝑑(𝑢𝑡, 𝑣𝑡))
2

𝑁

𝑡=1

= ∑𝑒𝑡
2

𝑁

𝑡=1

. (3)

We want to minimise 𝑀, therefore take partial derivatives with respect to 𝑘𝑖𝑗 and set these to zero:

𝜕𝑀

𝜕𝑘𝑖,𝑗
=

𝜕𝑀

𝜕𝑒𝑡

𝜕𝑒𝑡

𝜕𝑘𝑖,𝑗
,

𝜕𝑀

𝜕𝑒𝑡
= 2∑𝑒𝑡

𝑁

𝑡=1

,
𝜕𝑀

𝜕𝑘𝑖,𝑗
= 2∑𝑒𝑡

𝑁

𝑡=1

𝜕𝑒𝑡

𝜕𝑘𝑖,𝑗
. (4)

The partial derivatives 𝜕𝑒𝑡/𝜕𝑘𝑖,𝑗 are given in Appendix 2. Taking partial derivatives leads to 25

equations that must be solved simultaneously for the coefficients 𝑘𝑖𝑗. These equations can be

written in the form 𝐴𝑥 = 𝑏 and solved in the usual way. First, consider the partial derivatives set

equal to zero and then rearranged:

2∑(𝑃(𝑢𝑡 , 𝑣𝑡) − 𝑑(𝑢𝑡 , 𝑣𝑡))
𝜕𝑒𝑡

𝜕𝑘𝑖,𝑗

𝑁

𝑡=1

= 0 (5)

∑𝑃(𝑢𝑡 , 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘𝑖,𝑗

𝑁

𝑡=1

= ∑𝑑(𝑢𝑡 , 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘𝑖,𝑗

𝑁

𝑡=1

. (6)

Let the coefficients of the 𝑘𝑖𝑗 terms in 𝑃(𝑢𝑡 , 𝑣𝑡) be denoted 𝑐1 𝑡𝑜 𝑐25:

[

∑𝑐1

𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

… ∑𝑐25
𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

⋮ ⋱ ⋮

∑𝑐1
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1

… ∑𝑐25
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1]

[

𝑘0,0
𝑥 𝑘0,0

𝑦
𝑘0,0

𝑧

⋮ ⋮ ⋮
𝑘4,4

𝑥 𝑘4,4
𝑦

𝑘4,4
𝑧

]

=

[

∑𝑑𝑥(𝑢𝑡, 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

∑𝑑𝑦(𝑢𝑡 , 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

∑𝑑𝑧(𝑢𝑡 , 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

⋮ ⋮ ⋮

∑𝑑𝑥(𝑢𝑡, 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1

∑𝑑𝑦(𝑢𝑡 , 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1

∑𝑑𝑧(𝑢𝑡 , 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1]

(7)

which takes the form 𝐴𝑥 = 𝑏 where:

𝐴 =

[

∑𝑐1

𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

… ∑𝑐25
𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

⋮ ⋱ ⋮

∑𝑐1
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1

… ∑𝑐25
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1]

𝑥 = [

𝑘0,0
𝑥 𝑘0,0

𝑦
𝑘0,0

𝑧

⋮ ⋮ ⋮
𝑘4,4

𝑥 𝑘4,4
𝑦

𝑘4,4
𝑧

]

(8)

𝑏 =

[

∑𝑑𝑥(𝑢𝑡, 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

∑𝑑𝑦(𝑢𝑡, 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

∑𝑑𝑧(𝑢𝑡, 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘0,0

𝑁

𝑡=1

⋮ ⋮ ⋮

∑𝑑𝑥(𝑢𝑡, 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1

∑𝑑𝑦(𝑢𝑡, 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1

∑𝑑𝑧(𝑢𝑡, 𝑣𝑡)
𝜕𝑒𝑡

𝜕𝑘4,4

𝑁

𝑡=1]

.

We therefore solve for 𝑥, where 𝑥 = 𝐴−1𝑏. This gives best fit control points 𝑘𝑖,𝑗 for the initial nodal

points 𝑢𝑡 , 𝑣𝑡. Now we need to minimise 𝑒𝑡 by finding the best fit nodal points 𝑢𝑡, 𝑣𝑡. Given that 𝑒𝑡

is non-linear with respect to 𝑢𝑡 , 𝑣𝑡 we must use non-linear least squares, for this we will use the

Newton Raphson method, which states the following:

0 = 𝑓′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) + 𝑓(𝑥𝑛) (9)

where 𝑥𝑛 is an initial guess of the root of 𝑓(𝑥) and 𝑥𝑛+1 is an improved guess of the root. For our

purpose we want to find the root of 𝑒𝑡 with respect to 𝑢 and 𝑣, we therefore write:

0 =
𝑑𝑒(𝑢1,𝑡, 𝑣1,𝑡)

𝑑𝑢𝑡
(𝑢2,𝑡 − 𝑢1,𝑡) + 𝑒(𝑢1,𝑡, 𝑣1,𝑡)

0 =
𝑑𝑒(𝑢1,𝑡, 𝑣1,𝑡)

𝑑𝑣𝑡
(𝑣2,𝑡 − 𝑣1,𝑡) + 𝑒(𝑢1,𝑡, 𝑣1,𝑡)

(10)

for 𝑢𝑡 and 𝑣𝑡 respectively. These equations require that the partial derivatives of 𝑒𝑡 are evaluated

with respect to 𝑢𝑡 and 𝑣𝑡, these are given in Appendix 3. The partial derivatives are known as the

Jacobian matrices, 𝐽, and are of size 𝑁 by 𝑁 and are filled with zeros apart from the diagonal.

Rewriting 𝜕𝑒𝑡/𝜕𝑢𝑡 and 𝜕𝑒𝑡/𝜕𝑣𝑡 as 𝐽𝑢 and 𝐽𝑣 respectively and rearranging to solve for 𝑢2,𝑡 and 𝑣2,𝑡

gives:

𝑢2,𝑡 = 𝑢1,𝑡 − 𝛼(𝐽𝑢
𝑇𝐽𝑢)−1𝐽𝑢

𝑇𝑒(𝑢1,𝑡, 𝑣1,𝑡)

𝑣2,𝑡 = 𝑣1,𝑡 − 𝛼(𝐽𝑣
𝑇𝐽𝑣)

−1𝐽𝑣
𝑇𝑒(𝑢1,𝑡, 𝑣1,𝑡)

(11)

where 𝛼 is a relaxation parameter, 𝛼 = 0.5 is used throughout this work and is chosen empirically.

These new estimates of 𝑢𝑡 and 𝑣𝑡 are then used to recalculate the control points 𝑘𝑖,𝑗 using the

linear least squares solution previously derived. The above can be implement as an iterative

algorithm as follows:

1. Evaluate the linear least squares solution (Eq 7) to calculate the control points 𝑘𝑖,𝑗
𝑥 , 𝑘𝑖,𝑗

𝑦
, 𝑘𝑖,𝑗

𝑧 ,

use an initial estimate of 𝑢𝑡, 𝑣𝑡 which can be uniformly spaced values from 0 to 1.

2. Evaluate the non-linear least squares solution (Eq 11) to calculate a better estimate of

𝑢𝑡 , 𝑣𝑡.

3. Use the linear least squares solution to calculate new control points 𝑘𝑖,𝑗
𝑥 , 𝑘𝑖,𝑗

𝑦
, 𝑘𝑖,𝑗

𝑧 using the

updated estimate of 𝑢𝑡, 𝑣𝑡.

4. Repeat 2 and 3 until a convergence criterion is met. In this work convergence is deemed

to have been met when the percentage difference between the sum of the squared

residual (Eq 3) of two successive iterations is less than or equal to 0.5%.

2 Results

To test the developed algorithm, Bézier surfaces are fitted to unstructured scattered data sets

that have been generated by randomly sampling two analytical surfaces, these surfaces are then

superimposed with uniformly distributed noise. The analytical surfaces are:

𝑧 =
𝑦 sin 𝑥

5
−

𝑥 cos 𝑦

5
+ 𝜀(𝑥, 𝑦) (12)

𝑧 = sin𝑥 + cos 𝑦 + 𝜀(𝑥, 𝑦) (13)

where the 𝑥, 𝑦 coordinates are generated by randomly generating uniformly distributed values

between -5 and 5. The term 𝜀(𝑥, 𝑦) is a noise signal with uniformly distributed values that lie

between -0.1 and 0.1. Both data sets are generated to have 5000 𝑥, 𝑦, 𝑧 coordinates.

To benchmark the Bézier surface fitting algorithm, polynomial surfaces of 5th to 10th degree are

fitted to the same scattered data points. The goodness of fit for both the Bézier and polynomial

surfaces is calculated as the sum of the squared difference (error) between the 𝑧 coordinates of

the scattered data and the fitted surfaces for all 𝑥, 𝑦 coordinates.

Figure 2A shows the unstructured scattered data points generated using Eq 12, these are

represented as coloured dots, and the fitted Bézier surface is represented as a set of continuous

red lines. The lines of the Bézier surface have been generated using uniformly spaced values of

𝑢𝑡 , 𝑣𝑡, these are downsampled to show the curvature of the fitted surface more clearly. Figure 2B

shows the same data but viewed from the top (𝑧) direction, the curvature of the lines illustrates

how the values of 𝑢𝑡, 𝑣𝑡 have been modified by the NLLS algorithm in order for the surface to fit

the scattered data, this modification would not occur with the LLS algorithm alone.

Figure 3A shows the convergence of the NLLS fitting algorithm, the convergence is smooth and

without oscillation. Also plotted in Figure 3A is a constant value that corresponds to the sum of

the squared noise; this is the squared sum of 𝜀(𝑥, 𝑦), the noise residual that would remain after

subtracting the perfect analytical form in Eq 12. We would not expect the sum of the squared error

of the surface fit to fall below this value, if it did, it would indicate overfitting. Figure 3B shows the

sum of the squared error for fitting polynomials of varying degree, the plot shows that the 4th

order (25 control points) Bézier surface achieves a fit similar in error to that of a 7th or 8th degree

polynomial (36 and 45 fitting coefficients respectively). Also plotted in Figure 3B is the squared

sum of 𝜀(𝑥, 𝑦), notice that for polynomials of degree 9 and 10 the fit residual falls below this value,

which suggests the higher order polynomials are overfitting.

The results for fitting a Bézier surface to Eq 13 are shown in Figure 4A. As before the unstructured

scattered data points are represented as coloured dots, and the fitted Bézier surface is

represented as a set of continuous red lines. Figure 4B shows the same data but viewed from the

top (𝑧) direction, the curvature of the lines illustrates how the values of 𝑢𝑡, 𝑣𝑡 have been modified

by the NLLS algorithm in order for the surface to fit the scattered data.

Figure 5A shows the convergence of the NLLS fitting algorithm when fitting to data sampled from

Eq 13, as before the convergence is smooth and without oscillation and the sum of the squared

error does not fall below the sum of the squared noise. Fewer iterations are required for the

algorithm to convergence when fitting to Eq 13 compared to fitting to Eq 12 (see Figure 3A).

Figure 5B shows that the 4th order (25 control points) Bézier surface achieves a fit similar in error

to that of a 6th or 7th degree polynomial (28 and 36 fitting coefficients respectively). The sum of

the squared error for polynomials of 8th degree and higher converge to the sum of the squared

noise, so little to no overfitting is observed.

(A)

(B)

Figure 2. (A) Unstructured point cloud sampled from Eq 12 (coloured dots) and fitted Bézier

surface (red lines). (B) Top view (𝑧) of (A).

(A)

(B)

Figure 3. (A) convergence graph of the NLLS Bézier fitting algorithm. (B) Comparison of

fitting error for polynomial surfaces and the Bézier surface.

(A)

(B)

Figure 4. (A) Unstructured point cloud sampled from Eq 13 (coloured dots) and fitted Bézier

surface (red lines). (B) Top view (𝑧) of (A).

(A) (B)

Figure 5. (A) convergence graph of the NLLS Bézier fitting algorithm. (B) Comparison of

fitting error for polynomial surfaces and the Bézier surface.

To test the proposed method with real measured data we consider the problem of fitting and

subtracting the geometric form of an engineering surface in order to isolate the surface texture for

subsequent surface texture analysis. A complex metallic surface is measured via X-ray computed

tomography (XCT), Figure 6A shows a volume rendering of the surface. The surface is extracted

from the XCT data as an unstructured point cloud with 14478 𝑥, 𝑦 𝑧 coordinates (Figure 6B) and

we fit a Bézier surface using the developed algorithm. The algorithm converges after 75 iterations.

The fitted surface is shown in Figure 7A as a set of continuous red lines that are down sampled

for clarity. Subtracting the fitted surface from the measured surface yields the waviness and

roughness of the surface that can be analysed in the usual way [4], see Figure 7B.

(A)

(B)

Figure 6. (A) Volume rendering of an XCT scan of a complex metal surface. (B) Extracted

point cloud (coloured dots) and Bézier surface (red lines) that has been fitted to the point

cloud.

(A)

(B)

Figure 7. (A) Top view (𝑧) of Figure 6B. (B) Surface residual, the fitted surface has been

subtracted from the measured points.

3 Discussion and conclusions

From the examples considered, it can be seen that the NLLS Bézier surface fitting algorithm is

able to approximate surfaces of a high degree of complexity and is comparable to a 6th to 8th

degree polynomial. The main advantage of using a Bézier surface rather than a polynomial is the

ability to form piecewise Bézier patchworks to approximate surfaces of even higher complexity.

Bézier surfaces have the highly desirable property of passing through the control points at the

corners of the control polygon, see Figure 1. Adjacent Bézier patches can be joined by equating

the control points at the joining edges, however, to ensure a smooth transition from one patch to

another requires equating the tangents of the joining control points, this is no trivial task. Fitting a

patchwork of Bézier surfaces is complicated by the fact that control points at the edge of a patch

cannot be changed without influencing the rest of the fitted surface, hence it is desirable to

consider the stitching and fitting steps simultaneously. To address this problem Cao et al. [15]

proposed a method to automatically subdivide a surface into a patchwork, whilst Lin et al. [16]

proposed an algorithm for adaptively fitting a Bézier patchwork and ensuring first order continuity.

Addressing this challenge is beyond the scope of the present work, but will be considered in future

work. A comprehensive review of constrained fitting methods can be found in reference [17].

In the field of dimensional and surface metrology LLS and NLLS fitting algorithms are well known

and accepted for their robustness [14]. Although more exotic iterative Bézier surface fitting

algorithms have been developed, their complexity is not required for the type of surface fitting

considered here, the robustness of the fitting algorithm is of more importance, this being the

motivation for developing the algorithm presented here. Furthermore, many of the methods

presented in the literature require the coordinate points to be ordered in order to fit a Bézier

surface. Our algorithm requires no such apriori information, only the 𝑥, 𝑦, 𝑧 coordinates of an

unstructured point cloud are required as inputs, such as those generated by optical scanners and

X-ray computed tomography.

To avoid overfitting or underfitting, the degree of the Bézier surface should be selected to match

the complexity of the measured surface. This work has focused on an engineering surface with

two inflection points (a peak and a trough), so at least 4 by 4 control points are required to

approximate the surface. It was decided that the number of control points of the Bézier surface

should be increased to 5 by 5 in order to better approximate the complexity of the measured

surface, thus judgement was exercised in the choice of the degree of the Bézier surface. A more

formal approach to selecting the degree of the Bézier surface is to conduct a convergence study,

whereby the fit residual is plotted as a function of the degree of the surface, the point at which the

fit residual converges is then selected as the appropriate degree of the Bézier surface.

Alternatively, a Bézier surface of a fixed degree could be used and the patch size adjusted: if the

fit residual is too large then the Bézier patch should be fitted to a smaller region of the measured

surface and vice versa.

To conclude, linear and non-linear least squares Bézier surface fitting algorithms have been

derived from first principles, the latter has not previously been published for Bézier surfaces. The

analytical form of the partial derivatives required for the fitting process have been presented, these

were previously evaluated numerically for the case of fitting Bézier curves, not surfaces [5]. The

performance of the fitting algorithm has been evaluated for simulated and measured data and

shown to be suitable for approximating complex surfaces. The developed algorithm has been

shown to be stable and to smoothly converge to a solution.

4 References

1. A. Sóbester, A. I. J. Forrester, Aircraft aerodynamic design: geometry and optimization,

John Wiley & Sons, West Sussex, 2015.

2. L. Shao, H. Zhou, Curve fitting with Bézier cubics, Graphical Models and Image

Processing, 58 (1996), 223–232.

3. T. Várady, P. Salvi, M. Vaitkus, Á. Sipos, Multi-sided Bézier surfaces over curved, multi-

connected domains, Computer Aided Geometric Design, 78 (2020), 101828.

4. J. N. Petzing, J. M. Coupland, R. K. Leach, The measurement of rough surface topography

using coherence scanning interferometry, National Physical Laboratory, UK, 2010

5. T. A. Pastva, Bézier curve fitting, Thesis, Naval Postgraduate School, Monterey,

California, 1998.

6. C. F. Borges, T. Pastva, Total least squares fitting of Bézier and B-spline curves to ordered

data, Computer Aided Geometric Design, 19 (2002), 275–289.

7. P. Kovacs, A. M. Fekete, Nonlinear least-squares spline fitting with variable knots, Appl.

Math. Comput., 354 (2019), 490–501.

8. A. Gálvez, A. Iglesias, A. Cobo, J. Puig-Pey, J. Espinola, Bézier curve and surface fitting

of 3D point clouds through genetic algorithms, functional networks and least-squares

approximation, Computational Science and Its Applications, 4706 (2007), 680–693.

9. K. S. Reddy, A. Mandal, K. K. Verma, G. Rajamohan, Fitting of Bézier surfaces using the

fireworks algorithm, International Journal of Advances in Engineering & Technology, 9

(2016), 396–403.

10. A. Gálvez, A. Iglesias, Firefly Algorithm for Polynomial Bézier Surface Parameterization,

J. Appl. Math., 2013 (2013).

11. L. Piegl, W. Tiller, The NURBS book, 2 Eds., Springer-Verlag, Berlin, Heidelberg, New

York, 1995.

12. J. Arvo, Graphics Gems II, Academic Press Professional, San Diego, CA, United States,

1991.

13. T. Varady and R. Martin, Handbook of Computer Aided Geometric Design, North-Holland,

Amsterdam, The Netherlands, 2002.

14. A. B. Forbes, Least-squares best-fit geometric elements, NPL Report DITC 140/89, 1991.

15. Y. Cao, D. M. Yan, P. Wonka, Patch layout generation by detecting feature networks,

Computers & Graphics, 46 (2015), 275–282.

16. H. Lin, W. Chen, H. Bao, Adaptive patch-based mesh fitting for reverse engineering,

Computer-Aided Design, 39 (2007), 1134–1142.

17. I. Kovács, T. Várady, Constrained fitting with free-form curves and surfaces, Computer-

Aided Design, 122 (2020), 102816.

5 Appendix 1: Explicit form of a fourth degree Bézier surface

(
4
0
) = 1, (

4
1
) = 4, (

4
2
) = 6, (

4
3
) = 4, (

4
4
) = 1

[𝑃𝑥(𝑢𝑡 , 𝑣𝑡) 𝑃𝑦(𝑢𝑡 , 𝑣𝑡) 𝑃𝑧(𝑢𝑡 , 𝑣𝑡)] =

(1 − 𝑢𝑡)
4(1 − 𝑣𝑡)

4[𝑘0,0
𝑥 𝑘0,0

𝑦
𝑘0,0

𝑧] +

(1 − 𝑢𝑡)
44𝑣𝑡(1 − 𝑣𝑡)

3[𝑘0,1
𝑥 𝑘0,1

𝑦
𝑘0,1

𝑧] +

(1 − 𝑢𝑡)
46𝑣𝑡

2(1 − 𝑣𝑡)
2[𝑘0,2

𝑥 𝑘0,2
𝑦

𝑘0,2
𝑧] +

(1 − 𝑢𝑡)
44𝑣𝑡

3(1 − 𝑣𝑡)[𝑘0,3
𝑥 𝑘0,3

𝑦
𝑘0,3

𝑧] +

(1 − 𝑢𝑡)
4𝑣𝑡

4[𝑘0,4
𝑥 𝑘0,4

𝑦
𝑘0,4

𝑧] +

4𝑢𝑡(1 − 𝑢𝑡)
3(1 − 𝑣𝑡)

4[𝑘1,0
𝑥 𝑘1,0

𝑦
𝑘1,0

𝑧] +

4𝑢𝑡(1 − 𝑢𝑡)
34𝑣𝑡(1 − 𝑣𝑡)

3[𝑘1,1
𝑥 𝑘1,1

𝑦
𝑘1,1

𝑧] +

4𝑢𝑡(1 − 𝑢)36𝑣𝑡
2(1 − 𝑣𝑡)

2[𝑘1,2
𝑥 𝑘1,2

𝑦
𝑘1,2

𝑧] +

4𝑢𝑡(1 − 𝑢𝑡)
34𝑣𝑡

3(1 − 𝑣𝑡)[𝑘1,3
𝑥 𝑘1,3

𝑦
𝑘1,3

𝑧] +

4𝑢𝑡(1 − 𝑢𝑡)
3𝑣𝑡

4[𝑘1,4
𝑥 𝑘1,4

𝑦
𝑘1,4

𝑧] +

6𝑢𝑡
2(1 − 𝑢𝑡)

2(1 − 𝑣𝑡)
4[𝑘2,0

𝑥 𝑘2,0
𝑦

𝑘2,0
𝑧] +

6𝑢𝑡
2(1 − 𝑢𝑡)

24𝑣𝑡(1 − 𝑣𝑡)
3[𝑘2,1

𝑥 𝑘2,1
𝑦

𝑘2,1
𝑧] +

6𝑢𝑡
2(1 − 𝑢𝑡)

26𝑣𝑡
2(1 − 𝑣𝑡)

2[𝑘2,2
𝑥 𝑘2,2

𝑦
𝑘2,2

𝑧] +

6𝑢𝑡
2(1 − 𝑢𝑡)

24𝑣𝑡
3(1 − 𝑣𝑡)[𝑘2,3

𝑥 𝑘2,3
𝑦

𝑘2,3
𝑧] +

6𝑢𝑡
2(1 − 𝑢𝑡)

2𝑣𝑡
4[𝑘2,4

𝑥 𝑘2,4
𝑦

𝑘2,4
𝑧] +

4𝑢𝑡
3(1 − 𝑢𝑡)(1 − 𝑣𝑡)

4[𝑘3,0
𝑥 𝑘3,0

𝑦
𝑘3,0

𝑧] +

4𝑢𝑡
3(1 − 𝑢𝑡)4𝑣𝑡(1 − 𝑣𝑡)

3[𝑘3,1
𝑥 𝑘3,1

𝑦
𝑘3,1

𝑧] +

4𝑢𝑡
3(1 − 𝑢𝑡)6𝑣𝑡

2(1 − 𝑣𝑡)
2[𝑘3,2

𝑥 𝑘3,2
𝑦

𝑘3,2
𝑧] +

4𝑢𝑡
3(1 − 𝑢𝑡)4𝑣𝑡

3(1 − 𝑣𝑡)[𝑘3,3
𝑥 𝑘3,3

𝑦
𝑘3,3

𝑧] +

4𝑢𝑡
3(1 − 𝑢𝑡)𝑣𝑡

4[𝑘3,4
𝑥 𝑘3,4

𝑦
𝑘3,4

𝑧] +

𝑢𝑡
4(1 − 𝑣𝑡)

4[𝑘4,0
𝑥 𝑘4,0

𝑦
𝑘4,0

𝑧] +

𝑢𝑡
44𝑣𝑡(1 − 𝑣𝑡)

3[𝑘4,1
𝑥 𝑘4,1

𝑦
𝑘𝑧

4,1] +

𝑢𝑡
46𝑣𝑡

2(1 − 𝑣𝑡)
2[𝑘4,2

𝑥 𝑘4,2
𝑦

𝑘4,2
𝑧] +

𝑢𝑡
44𝑣𝑡

3(1 − 𝑣𝑡)[𝑘4,3
𝑥 𝑘4,3

𝑦
𝑘4,3

𝑧] +

𝑢𝑡
4𝑣𝑡

4[𝑘4,4
𝑥 𝑘4,4

𝑦
𝑘4,4

𝑧]

6 Appendix 2: Partial derivatives of 𝑒𝑡 with respect to 𝑘𝑖𝑗

𝜕𝑒𝑡

𝜕𝑘0,0

= (1 − 𝑢𝑡)
4(1 − 𝑣𝑡)

4

𝜕𝑒𝑡

𝜕𝑘0,1

= (1 − 𝑢𝑡)
44𝑣𝑡(1 − 𝑣𝑡)

3

𝜕𝑒𝑡

𝜕𝑘0,2

= (1 − 𝑢𝑡)
46𝑣𝑡

2(1 − 𝑣𝑡)
2

𝜕𝑒𝑡

𝜕𝑘0,3

= (1 − 𝑢𝑡)
44𝑣𝑡

3(1 − 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘0,4

= (1 − 𝑢𝑡)
4𝑣𝑡

4

𝜕𝑒𝑡

𝜕𝑘1,0

= 4𝑢𝑡(1 − 𝑢𝑡)
3(1 − 𝑣𝑡)

4

𝜕𝑒𝑡

𝜕𝑘1,1

= 4𝑢𝑡(1 − 𝑢𝑡)
34𝑣𝑡(1 − 𝑣𝑡)

3

𝜕𝑒𝑡

𝜕𝑘1,2

= 4𝑢𝑡(1 − 𝑢𝑡)
36𝑣𝑡

2(1 − 𝑣𝑡)
2

𝜕𝑒𝑡

𝜕𝑘1,3

= 4𝑢𝑡(1 − 𝑢𝑡)
34𝑣𝑡

3(1 − 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘1,4

= 4𝑢𝑡(1 − 𝑢𝑡)
3𝑣𝑡

4

𝜕𝑒𝑡

𝜕𝑘2,0

= 6𝑢𝑡
2(1 − 𝑢𝑡)

2(1 − 𝑣𝑡)
4

𝜕𝑒𝑡

𝜕𝑘2,1

= 6𝑢𝑡
2(1 − 𝑢𝑡)

24𝑣𝑡(1 − 𝑣𝑡)
3

𝜕𝑒𝑡

𝜕𝑘2,2

= 6𝑢𝑡
2(1 − 𝑢𝑡)

26𝑣𝑡
2(1 − 𝑣𝑡)

2

𝜕𝑒𝑡

𝜕𝑘2,3

= 6𝑢𝑡
2(1 − 𝑢𝑡)

24𝑣𝑡
3(1 − 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘2,4

= 6𝑢𝑡
2(1 − 𝑢𝑡)

2𝑣𝑡
4

𝜕𝑒𝑡

𝜕𝑘3,0

= 4𝑢𝑡
3(1 − 𝑢𝑡)(1 − 𝑣𝑡)

4

𝜕𝑒𝑡

𝜕𝑘3,1

= 4𝑢𝑡
3(1 − 𝑢𝑡)4𝑣𝑡(1 − 𝑣𝑡)

3

𝜕𝑒𝑡

𝜕𝑘3,2

= 4𝑢𝑡
3(1 − 𝑢𝑡)6𝑣𝑡

2(1 − 𝑣𝑡)
2

𝜕𝑒𝑡

𝜕𝑘3,3

= 4𝑢𝑡
3(1 − 𝑢𝑡)4𝑣𝑡

3(1 − 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘3,4

= 4𝑢𝑡
3(1 − 𝑢𝑡)𝑣𝑡

4

𝜕𝑒𝑡

𝜕𝑘4,0

= 𝑢𝑡
4(1 − 𝑣𝑡)

4

𝜕𝑒𝑡

𝜕𝑘4,1

= 𝑢𝑡
44𝑣𝑡(1 − 𝑣𝑡)

3

𝜕𝑒𝑡

𝜕𝑘4,2

= 𝑢𝑡
46𝑣𝑡

2(1 − 𝑣𝑡)
2

𝜕𝑒𝑡

𝜕𝑘4,3

= 𝑢𝑡
44𝑣𝑡

3(1 − 𝑣𝑡)

𝜕𝑒𝑡

𝜕𝑘4,4

= 𝑢𝑡
4𝑣𝑡

4

7 Appendix 3: Partial derivatives of 𝑒𝑡 with respect to 𝑢𝑡 and 𝑣𝑡

𝜕𝑒𝑡

𝜕𝑢𝑡

= −4(1 − 𝑢𝑡)
3(1 − 𝑣𝑡)

4𝑘0,0 +

−4(1 − 𝑢𝑡)
34𝑣𝑡(1 − 𝑣𝑡)

3𝑘0,1 +

−4(1 − 𝑢𝑡)
36𝑣𝑡

2(1 − 𝑣𝑡)
2𝑘0,2 +

−4(1 − 𝑢𝑡)
34𝑣𝑡

3(1 − 𝑣𝑡)𝑘0,3 +

−4(1 − 𝑢𝑡)
3𝑣𝑡

4𝑘0,4 +

(4(1 − 𝑢𝑡)
3 − 12𝑢𝑡(1 − 𝑢𝑡)

2)(1 − 𝑣𝑡)
4𝑘1,0 +

(4(1 − 𝑢𝑡)
3 − 12𝑢𝑡(1 − 𝑢𝑡)

2)4𝑣𝑡(1 − 𝑣𝑡)
3𝑘1,1 +

(4(1 − 𝑢𝑡)
3 − 12𝑢𝑡(1 − 𝑢𝑡)

2)6𝑣𝑡
2(1 − 𝑣𝑡)

2𝑘1,2 +

(4(1 − 𝑢𝑡)
3 − 12𝑢𝑡(1 − 𝑢𝑡)

2)4𝑣𝑡
3(1 − 𝑣𝑡)𝑘1,3 +

(4(1 − 𝑢𝑡)
3 − 12𝑢𝑡(1 − 𝑢𝑡)

2)𝑣𝑡
4𝑘1,4 +

(12𝑢𝑡(1 − 𝑢𝑡)
2 − 12𝑢𝑡

2(1 − 𝑢𝑡))(1 − 𝑣𝑡)
4𝑘2,0 +

(12𝑢𝑡(1 − 𝑢𝑡)
2 − 12𝑢𝑡

2(1 − 𝑢𝑡))4𝑣𝑡(1 − 𝑣𝑡)
3𝑘2,1 +

(12𝑢𝑡(1 − 𝑢𝑡)
2 − 12𝑢𝑡

2(1 − 𝑢𝑡))6𝑣𝑡
2(1 − 𝑣𝑡)

2𝑘2,2 +

(12𝑢𝑡(1 − 𝑢𝑡)
2 − 12𝑢𝑡

2(1 − 𝑢𝑡))4𝑣𝑡
3(1 − 𝑣𝑡)𝑘2,3 +

(12𝑢𝑡(1 − 𝑢𝑡)
2 − 12𝑢𝑡

2(1 − 𝑢𝑡))𝑣𝑡
4𝑘2,4 +

(12𝑢𝑡
2(1 − 𝑢𝑡) − 4𝑢𝑡

3)(1 − 𝑣𝑡)
4𝑘3,0 +

(12𝑢𝑡
2(1 − 𝑢𝑡) − 4𝑢𝑡

3)4𝑣𝑡(1 − 𝑣𝑡)
3𝑘3,1 +

(12𝑢𝑡
2(1 − 𝑢𝑡) − 4𝑢𝑡

3)6𝑣𝑡
2(1 − 𝑣𝑡)

2𝑘3,2 +

(12𝑢𝑡
2(1 − 𝑢𝑡) − 4𝑢𝑡

3)4𝑣𝑡
3(1 − 𝑣𝑡)𝑘3,3 +

(12𝑢𝑡
2(1 − 𝑢𝑡) − 4𝑢𝑡

3)𝑣𝑡
4𝑘3,4 +

4𝑢𝑡
3(1 − 𝑣𝑡)

4𝑘4,0 +

4𝑢𝑡
34𝑣𝑡(1 − 𝑣𝑡)

3𝑘4,1 +

4𝑢𝑡
36𝑣𝑡

2(1 − 𝑣𝑡)
2𝑘4,2 +

4𝑢𝑡
34𝑣𝑡

3(1 − 𝑣𝑡)𝑘4,3 +

4𝑢𝑡
3𝑣𝑡

4𝑘4,4

𝜕𝑒𝑡

𝜕𝑣𝑡

= (1 − 𝑢𝑡)
4−4(1 − 𝑣𝑡)

3𝑘0,0 +

(1 − 𝑢𝑡)
4(4(1 − 𝑣𝑡)

3 − 12𝑣𝑡(1 − 𝑣𝑡)
2)𝑘0,1 +

(1 − 𝑢𝑡)
4(12𝑣𝑡(1 − 𝑣𝑡)

2 − 12𝑣𝑡
2(1 − 𝑣𝑡))𝑘0,2 +

(1 − 𝑢𝑡)
4(12𝑣𝑡

2(1 − 𝑣𝑡) − 4𝑣𝑡
3)𝑘0,3 +

(1 − 𝑢𝑡)
44𝑣𝑡

3𝑘0,4 +

4𝑢𝑡(1 − 𝑢𝑡)
3−4(1 − 𝑣𝑡)

3𝑘1,0 +

4𝑢𝑡(1 − 𝑢𝑡)
3(4(1 − 𝑣𝑡)

3 − 12𝑣𝑡(1 − 𝑣𝑡)
2)𝑘1,1 +

4𝑢𝑡(1 − 𝑢)3(12𝑣𝑡(1 − 𝑣𝑡)
2 − 12𝑣𝑡

2(1 − 𝑣𝑡))𝑘1,2 +

4𝑢𝑡(1 − 𝑢𝑡)
3(12𝑣𝑡

2(1 − 𝑣𝑡) − 4𝑣𝑡
3)𝑘1,3 +

4𝑢𝑡(1 − 𝑢𝑡)
34𝑣𝑡

3𝑘1,4 +

6𝑢𝑡
2(1 − 𝑢𝑡)

2−4(1 − 𝑣𝑡)
3𝑘2,0 +

6𝑢𝑡
2(1 − 𝑢𝑡)

2(4(1 − 𝑣𝑡)
3 − 12𝑣𝑡(1 − 𝑣𝑡)

2)𝑘2,1 +

6𝑢𝑡
2(1 − 𝑢𝑡)

2(12𝑣𝑡(1 − 𝑣𝑡)
2 − 12𝑣𝑡

2(1 − 𝑣𝑡))𝑘2,2 +

6𝑢𝑡
2(1 − 𝑢𝑡)

2(12𝑣𝑡
2(1 − 𝑣𝑡) − 4𝑣𝑡

3)𝑘2,3 +

6𝑢𝑡
2(1 − 𝑢𝑡)

24𝑣𝑡
3𝑘2,4 +

4𝑢𝑡
3(1 − 𝑢𝑡)−4(1 − 𝑣𝑡)

3𝑘3,0 +

4𝑢𝑡
3(1 − 𝑢𝑡)(4(1 − 𝑣𝑡)

3 − 12𝑣𝑡(1 − 𝑣𝑡)
2)𝑘3,1 +

4𝑢𝑡
3(1 − 𝑢𝑡)(12𝑣𝑡(1 − 𝑣𝑡)

2 − 12𝑣𝑡
2(1 − 𝑣𝑡))𝑘3,2 +

4𝑢𝑡
3(1 − 𝑢𝑡)(12𝑣𝑡

2(1 − 𝑣𝑡) − 4𝑣𝑡
3)𝑘3,3 +

4𝑢𝑡
3(1 − 𝑢𝑡)4𝑣𝑡

3𝑘3,4 +

𝑢𝑡
4−4(1 − 𝑣𝑡)

3𝑘4,0 +

𝑢𝑡
4(4(1 − 𝑣𝑡)

3 − 12𝑣𝑡(1 − 𝑣𝑡)
2)𝑘4,1 +

𝑢𝑡
4(12𝑣𝑡(1 − 𝑣𝑡)

2 − 12𝑣𝑡
2(1 − 𝑣𝑡))𝑘4,2 +

𝑢𝑡
4(12𝑣𝑡

2(1 − 𝑣𝑡) − 4𝑣𝑡
3)𝑘4,3 +

𝑢𝑡
44𝑣𝑡

3𝑘4,4

