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Abstract: Algorithms for linear and non-linear least squares fitting of Bézier surfaces to 

unstructured point clouds are derived from first principles. The presented derivation includes the 

analytical form of the partial derivatives that are required for minimising the objective functions, 

these have been computed numerically in previous work concerning Bézier curve fitting, not 

surface fitting. Results of fitting fourth degree Bézier surfaces to complex simulated and measured 

surfaces are presented, a quantitative comparison is made between fitting Bézier surfaces and 

fitting polynomial surfaces. The developed fitting algorithm is used to remove the geometric form 

of a complex engineered surface such that the surface roughness can be evaluated. 
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1 Introduction 

Bézier curves and surfaces are widely used in computer graphics and computer aided design for 

representing complex geometries as a set of smooth analytically driven curves. For example, they 

have been used for aerofoil geometry optimisation [1] for representing the outline of textual 

characters [2] and are used extensively for designing and reconstructing complex free form 

objects in computer aided geometric design [3]. A Bézier curve is a parametric curve based on 

Bernstein polynomials. The shape of the curve is modified by a set of control points, consecutive 

control points are termed a control polygon, note that the resulting curve does not necessarily 

pass through these control points. The number of control points defines the possible complexity 

of the curve, for example, with two control points only a straight line can be evaluated, this being 

a first degree Bézier curve, with three control points (a second degree Bézier curve) quadratic 

curvature is possible, and so on. Some example fourth degree (5 by 5 control points) Bézier 

surfaces are shown in Figure 1 alongside the control points. 



 

 

Figure 1. Exemplar Bézier surfaces and the respective control points. 

In this work we are interested in fitting Bézier surfaces to a set of noisy, unstructured, scattered 

points, the particular application we are interested in is the removal of geometric form in order to 

characterise the surface texture of highly complex engineering surfaces [4]. It is straightforward 

to fit a polynomial surface to a set of measured points using the least squares method, many 

commercial software packages are available to do this fitting task, however Bézier surfaces offer 

the desirable property of passing through the control points at the corners of its control polygon, 

this means that Bézier patches can be stitched together to form a patchwork which can be used 

to approximate geometries of even greater complexity, such as the surface geometries that can 

now be fabricated using additive manufacturing.  

Having reviewed the literature, the linear least squares (LLS) solution for fitting Bézier surfaces is 

well documented, however, we are unable to find the non-linear least squares (NLLS) Bézier 

surface fitting algorithm that is presented in this work. Fitting Bézier curves (not surfaces) via LLS 

and NLLS is considered in references [5] and [6] and a NLLS spline curve fitting algorithm is 

presented in [7]. In references [8–10] the LLS Bézier surface fitting algorithm is given, but iterative 

refinement is achieved using a genetic algorithm, the fireworks algorithm and the firefly algorithm, 

respectively, rather than NLLS, which makes the fitting task more complicated than it need be for 

many applications such as form removal for surface texture characterisation. The LLS fitting 

algorithm for Bézier surfaces is given in references [11] and [12] but the authors do not present 

the NLLS fitting algorithm. In [13] free form surface fitting is discussed from a reverse engineering 

perspective but neither the LLS or NLLS Bézier surface fitting algorithms are presented. We 

therefore adopt the general LLS and NLLS approach presented in references [5] and [6] but 

extend to the case of a fourth degree Bézier surface.  



Fourth degree Bézier surfaces are considered here to allow for the fitting of highly complex 

surfaces such as the engineered surface considered at the end of the paper. Linear, quadratic 

and cubic surfaces are deemed too simple to represent the complex surfaces that are of interest 

in this work. It is worth noting that the presented algorithm can be modified to consider any degree 

of Bézier surface.  

In this work the partial derivatives that are required for both the LLS and NLLS fitting are evaluated 

explicitly (see Appendix 2 and 3) as opposed to numerically as per the work in [5], this leads to a 

more computationally efficient implementation.  

The structure or order of the data points to which we fit Bézier surfaces is not required apriori, the 

data points can be randomly scattered. Furthermore, no initial estimate of the control points is 

required, this is provided by the LLS algorithm. Therefore, the developed method is highly 

practical and should be of great use for a number of surface fitting tasks. 

In order to validate the developed method and benchmark it, we compare the algorithm to the 

fitting of polynomial surfaces for 3 different surfaces, two simulated surfaces with superimposed 

noise and one measured surface. The algorithm is benchmarked against polynomials because 

these are the default fitting functions used by engineers, especially in the field of surface 

metrology [4]. The convergence of the iterative NLLS algorithm is also plotted for each of the 

considered surfaces to demonstrate the stability of the algorithm. 

1. Method 

The general formula for a Bézier surface of degree 𝑛,𝑚 is: 
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where 𝑢 and 𝑣 are parametric coordinates with 0 ≤ 𝑢 ≤ 1 and 0 ≤ 𝑣 ≤ 1. The term 𝑡 is the index 

of the parametric coordinates. The terms 𝑘𝑖𝑗 are the control point coordinates in 𝑥, 𝑦, 𝑧 and these 

are the variables that need to be estimated such that the Bézier surface 𝑃(𝑢𝑡 , 𝑣𝑡) fits the measured 

data. We will consider a fourth degree Bézier surface where 𝑚 = 𝑛 = 4. The fourth degree Bézier 

surface is written explicitly as per Appendix 1. 

Let the measured data we wish to fit the Bézier surface to be denoted 𝑑𝑡 with 𝑡 = 1,… ,𝑁. The 

least squares solution requires we minimise the sum of the squared errors. Therefore, define error 

𝑒𝑡 as: 

𝑒𝑡 = 𝑃(𝑢𝑡, 𝑣𝑡) − 𝑑(𝑢𝑡 , 𝑣𝑡). (2) 

Summing the squared errors gives: 
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. (3) 

We want to minimise 𝑀, therefore take partial derivatives with respect to 𝑘𝑖𝑗 and set these to zero: 
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The partial derivatives 𝜕𝑒𝑡/𝜕𝑘𝑖,𝑗 are given in Appendix 2. Taking partial derivatives leads to 25 

equations that must be solved simultaneously for the coefficients 𝑘𝑖𝑗. These equations can be 

written in the form 𝐴𝑥 = 𝑏 and solved in the usual way. First, consider the partial derivatives set 

equal to zero and then rearranged: 
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Let the coefficients of the 𝑘𝑖𝑗 terms in 𝑃(𝑢𝑡 , 𝑣𝑡) be denoted 𝑐1 𝑡𝑜 𝑐25: 
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which takes the form 𝐴𝑥 = 𝑏 where: 
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We therefore solve for 𝑥, where 𝑥 = 𝐴−1𝑏. This gives best fit control points 𝑘𝑖,𝑗 for the initial nodal 

points 𝑢𝑡 , 𝑣𝑡. Now we need to minimise 𝑒𝑡 by finding the best fit nodal points 𝑢𝑡, 𝑣𝑡. Given that 𝑒𝑡 

is non-linear with respect to 𝑢𝑡 , 𝑣𝑡 we must use non-linear least squares, for this we will use the 

Newton Raphson method, which states the following: 

0 = 𝑓′(𝑥𝑛)(𝑥𝑛+1 − 𝑥𝑛) + 𝑓(𝑥𝑛) (9) 

where 𝑥𝑛 is an initial guess of the root of 𝑓(𝑥) and 𝑥𝑛+1 is an improved guess of the root. For our 

purpose we want to find the root of 𝑒𝑡 with respect to 𝑢 and 𝑣, we therefore write: 

0 =
𝑑𝑒(𝑢1,𝑡, 𝑣1,𝑡)

𝑑𝑢𝑡
(𝑢2,𝑡 − 𝑢1,𝑡) + 𝑒(𝑢1,𝑡, 𝑣1,𝑡) 

0 =
𝑑𝑒(𝑢1,𝑡, 𝑣1,𝑡)

𝑑𝑣𝑡
(𝑣2,𝑡 − 𝑣1,𝑡) + 𝑒(𝑢1,𝑡, 𝑣1,𝑡) 

(10) 

for 𝑢𝑡 and 𝑣𝑡 respectively. These equations require that the partial derivatives of 𝑒𝑡 are evaluated 

with respect to 𝑢𝑡 and 𝑣𝑡, these are given in Appendix 3. The partial derivatives are known as the 

Jacobian matrices, 𝐽, and are of size 𝑁 by 𝑁 and are filled with zeros apart from the diagonal. 

Rewriting 𝜕𝑒𝑡/𝜕𝑢𝑡 and 𝜕𝑒𝑡/𝜕𝑣𝑡 as 𝐽𝑢 and 𝐽𝑣 respectively and rearranging to solve for 𝑢2,𝑡 and 𝑣2,𝑡 

gives: 

𝑢2,𝑡 = 𝑢1,𝑡 − 𝛼(𝐽𝑢
𝑇𝐽𝑢)−1𝐽𝑢

𝑇𝑒(𝑢1,𝑡, 𝑣1,𝑡) 

𝑣2,𝑡 = 𝑣1,𝑡 − 𝛼(𝐽𝑣
𝑇𝐽𝑣)

−1𝐽𝑣
𝑇𝑒(𝑢1,𝑡, 𝑣1,𝑡) 

(11) 

where 𝛼 is a relaxation parameter, 𝛼 = 0.5 is used throughout this work and is chosen empirically. 

These new estimates of 𝑢𝑡 and 𝑣𝑡 are then used to recalculate the control points 𝑘𝑖,𝑗 using the 

linear least squares solution previously derived. The above can be implement as an iterative 

algorithm as follows: 

1. Evaluate the linear least squares solution (Eq 7) to calculate the control points 𝑘𝑖,𝑗
𝑥 , 𝑘𝑖,𝑗

𝑦
, 𝑘𝑖,𝑗

𝑧 , 

use an initial estimate of 𝑢𝑡, 𝑣𝑡 which can be uniformly spaced values from 0 to 1. 

2. Evaluate the non-linear least squares solution (Eq 11) to calculate a better estimate of 

𝑢𝑡 , 𝑣𝑡. 

3. Use the linear least squares solution to calculate new control points 𝑘𝑖,𝑗
𝑥 , 𝑘𝑖,𝑗

𝑦
, 𝑘𝑖,𝑗

𝑧  using the 

updated estimate of 𝑢𝑡, 𝑣𝑡. 

4. Repeat 2 and 3 until a convergence criterion is met. In this work convergence is deemed 

to have been met when the percentage difference between the sum of the squared 

residual (Eq 3) of two successive iterations is less than or equal to 0.5%. 



2 Results 

To test the developed algorithm, Bézier surfaces are fitted to unstructured scattered data sets 

that have been generated by randomly sampling two analytical surfaces, these surfaces are then 

superimposed with uniformly distributed noise. The analytical surfaces are: 

𝑧 =
𝑦 sin 𝑥

5
−

𝑥 cos 𝑦

5
+ 𝜀(𝑥, 𝑦) (12) 

𝑧 = sin𝑥 + cos 𝑦 + 𝜀(𝑥, 𝑦) (13) 

where the 𝑥, 𝑦 coordinates are generated by randomly generating uniformly distributed values 

between -5 and 5. The term 𝜀(𝑥, 𝑦) is a noise signal with uniformly distributed values that lie 

between -0.1 and 0.1. Both data sets are generated to have 5000 𝑥, 𝑦, 𝑧 coordinates. 

To benchmark the Bézier surface fitting algorithm, polynomial surfaces of 5th to 10th degree are 

fitted to the same scattered data points. The goodness of fit for both the Bézier and polynomial 

surfaces is calculated as the sum of the squared difference (error) between the 𝑧 coordinates of 

the scattered data and the fitted surfaces for all 𝑥, 𝑦 coordinates. 

Figure 2A shows the unstructured scattered data points generated using Eq 12, these are 

represented as coloured dots, and the fitted Bézier surface is represented as a set of continuous 

red lines. The lines of the Bézier surface have been generated using uniformly spaced values of 

𝑢𝑡 , 𝑣𝑡, these are downsampled to show the curvature of the fitted surface more clearly. Figure 2B 

shows the same data but viewed from the top (𝑧) direction, the curvature of the lines illustrates 

how the values of 𝑢𝑡, 𝑣𝑡 have been modified by the NLLS algorithm in order for the surface to fit 

the scattered data, this modification would not occur with the LLS algorithm alone. 

Figure 3A shows the convergence of the NLLS fitting algorithm, the convergence is smooth and 

without oscillation. Also plotted in Figure 3A is a constant value that corresponds to the sum of 

the squared noise; this is the squared sum of 𝜀(𝑥, 𝑦), the noise residual that would remain after 

subtracting the perfect analytical form in Eq 12. We would not expect the sum of the squared error 

of the surface fit to fall below this value, if it did, it would indicate overfitting. Figure 3B shows the 

sum of the squared error for fitting polynomials of varying degree, the plot shows that the 4th 

order (25 control points) Bézier surface achieves a fit similar in error to that of a 7th or 8th degree 

polynomial (36 and 45 fitting coefficients respectively). Also plotted in Figure 3B is the squared 

sum of 𝜀(𝑥, 𝑦), notice that for polynomials of degree 9 and 10 the fit residual falls below this value, 

which suggests the higher order polynomials are overfitting. 

The results for fitting a Bézier surface to Eq 13 are shown in Figure 4A. As before the unstructured 

scattered data points are represented as coloured dots, and the fitted Bézier surface is 

represented as a set of continuous red lines. Figure 4B shows the same data but viewed from the 

top (𝑧) direction, the curvature of the lines illustrates how the values of 𝑢𝑡, 𝑣𝑡 have been modified 

by the NLLS algorithm in order for the surface to fit the scattered data. 

Figure 5A shows the convergence of the NLLS fitting algorithm when fitting to data sampled from 

Eq 13, as before the convergence is smooth and without oscillation and the sum of the squared 

error does not fall below the sum of the squared noise. Fewer iterations are required for the 

algorithm to convergence when fitting to Eq 13 compared to fitting to Eq 12 (see Figure 3A). 

Figure 5B shows that the 4th order (25 control points) Bézier surface achieves a fit similar in error 



to that of a 6th or 7th degree polynomial (28 and 36 fitting coefficients respectively). The sum of 

the squared error for polynomials of 8th degree and higher converge to the sum of the squared 

noise, so little to no overfitting is observed. 
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Figure 2. (A) Unstructured point cloud sampled from Eq 12 (coloured dots) and fitted Bézier 

surface (red lines). (B) Top view (𝑧) of (A). 
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(B) 

Figure 3. (A) convergence graph of the NLLS Bézier fitting algorithm. (B) Comparison of 

fitting error for polynomial surfaces and the Bézier surface. 
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(B) 

Figure 4. (A) Unstructured point cloud sampled from Eq 13 (coloured dots) and fitted Bézier 

surface (red lines). (B) Top view (𝑧) of (A). 

 

(A) (B) 

Figure 5. (A) convergence graph of the NLLS Bézier fitting algorithm. (B) Comparison of 

fitting error for polynomial surfaces and the Bézier surface. 

 

To test the proposed method with real measured data we consider the problem of fitting and 

subtracting the geometric form of an engineering surface in order to isolate the surface texture for 

subsequent surface texture analysis. A complex metallic surface is measured via X-ray computed 

tomography (XCT), Figure 6A shows a volume rendering of the surface. The surface is extracted 

from the XCT data as an unstructured point cloud with 14478 𝑥, 𝑦 𝑧 coordinates (Figure 6B) and 

we fit a Bézier surface using the developed algorithm. The algorithm converges after 75 iterations. 

The fitted surface is shown in Figure 7A as a set of continuous red lines that are down sampled 



for clarity. Subtracting the fitted surface from the measured surface yields the waviness and 

roughness of the surface that can be analysed in the usual way [4], see Figure 7B. 
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(B) 

Figure 6. (A) Volume rendering of an XCT scan of a complex metal surface. (B) Extracted 

point cloud (coloured dots) and Bézier surface (red lines) that has been fitted to the point 

cloud. 
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(B) 

Figure 7. (A) Top view (𝑧) of Figure 6B. (B) Surface residual, the fitted surface has been 

subtracted from the measured points. 

 



3 Discussion and conclusions 

From the examples considered, it can be seen that the NLLS Bézier surface fitting algorithm is 

able to approximate surfaces of a high degree of complexity and is comparable to a 6th to 8th 

degree polynomial. The main advantage of using a Bézier surface rather than a polynomial is the 

ability to form piecewise Bézier patchworks to approximate surfaces of even higher complexity. 

Bézier surfaces have the highly desirable property of passing through the control points at the 

corners of the control polygon, see Figure 1. Adjacent Bézier patches can be joined by equating 

the control points at the joining edges, however, to ensure a smooth transition from one patch to 

another requires equating the tangents of the joining control points, this is no trivial task. Fitting a 

patchwork of Bézier surfaces is complicated by the fact that control points at the edge of a patch 

cannot be changed without influencing the rest of the fitted surface, hence it is desirable to 

consider the stitching and fitting steps simultaneously. To address this problem Cao et al. [15] 

proposed a method to automatically subdivide a surface into a patchwork, whilst Lin et al. [16] 

proposed an algorithm for adaptively fitting a Bézier patchwork and ensuring first order continuity. 

Addressing this challenge is beyond the scope of the present work, but will be considered in future 

work. A comprehensive review of constrained fitting methods can be found in reference [17]. 

In the field of dimensional and surface metrology LLS and NLLS fitting algorithms are well known 

and accepted for their robustness [14]. Although more exotic iterative Bézier surface fitting 

algorithms have been developed, their complexity is not required for the type of surface fitting 

considered here, the robustness of the fitting algorithm is of more importance, this being the 

motivation for developing the algorithm presented here. Furthermore, many of the methods 

presented in the literature require the coordinate points to be ordered in order to fit a Bézier 

surface. Our algorithm requires no such apriori information, only the 𝑥, 𝑦, 𝑧 coordinates of an 

unstructured point cloud are required as inputs, such as those generated by optical scanners and 

X-ray computed tomography. 

To avoid overfitting or underfitting, the degree of the Bézier surface should be selected to match 

the complexity of the measured surface. This work has focused on an engineering surface with 

two inflection points (a peak and a trough), so at least 4 by 4 control points are required to 

approximate the surface. It was decided that the number of control points of the Bézier surface 

should be increased to 5 by 5 in order to better approximate the complexity of the measured 

surface, thus judgement was exercised in the choice of the degree of the Bézier surface. A more 

formal approach to selecting the degree of the Bézier surface is to conduct a convergence study, 

whereby the fit residual is plotted as a function of the degree of the surface, the point at which the 

fit residual converges is then selected as the appropriate degree of the Bézier surface. 

Alternatively, a Bézier surface of a fixed degree could be used and the patch size adjusted: if the 

fit residual is too large then the Bézier patch should be fitted to a smaller region of the measured 

surface and vice versa. 

To conclude, linear and non-linear least squares Bézier surface fitting algorithms have been 

derived from first principles, the latter has not previously been published for Bézier surfaces. The 

analytical form of the partial derivatives required for the fitting process have been presented, these 

were previously evaluated numerically for the case of fitting Bézier curves, not surfaces [5]. The 

performance of the fitting algorithm has been evaluated for simulated and measured data and 

shown to be suitable for approximating complex surfaces. The developed algorithm has been 

shown to be stable and to smoothly converge to a solution. 



4 References 

1. A. Sóbester, A. I. J. Forrester, Aircraft aerodynamic design: geometry and optimization, 

John Wiley & Sons, West Sussex, 2015. 

2. L. Shao, H. Zhou, Curve fitting with Bézier cubics, Graphical Models and Image 

Processing, 58 (1996), 223–232. 

3. T. Várady, P. Salvi, M. Vaitkus, Á. Sipos, Multi-sided Bézier surfaces over curved, multi-

connected domains, Computer Aided Geometric Design, 78 (2020), 101828. 

4. J. N. Petzing, J. M. Coupland, R. K. Leach, The measurement of rough surface topography 

using coherence scanning interferometry, National Physical Laboratory, UK, 2010 

5. T. A. Pastva, Bézier curve fitting, Thesis, Naval Postgraduate School, Monterey, 

California, 1998. 

6. C. F. Borges, T. Pastva, Total least squares fitting of Bézier and B-spline curves to ordered 

data, Computer Aided Geometric Design, 19 (2002), 275–289. 

7. P. Kovacs, A. M. Fekete, Nonlinear least-squares spline fitting with variable knots, Appl. 

Math. Comput., 354 (2019), 490–501. 

8. A. Gálvez, A. Iglesias, A. Cobo, J. Puig-Pey, J. Espinola, Bézier curve and surface fitting 

of 3D point clouds through genetic algorithms, functional networks and least-squares 

approximation, Computational Science and Its Applications, 4706 (2007), 680–693. 

9. K. S. Reddy, A. Mandal, K. K. Verma, G. Rajamohan, Fitting of Bézier surfaces using the 

fireworks algorithm, International Journal of Advances in Engineering & Technology, 9 

(2016), 396–403. 

10. A. Gálvez, A. Iglesias, Firefly Algorithm for Polynomial Bézier Surface Parameterization, 

J. Appl. Math., 2013 (2013). 

11. L. Piegl, W. Tiller, The NURBS book, 2 Eds., Springer-Verlag, Berlin, Heidelberg, New 

York, 1995. 

12. J. Arvo, Graphics Gems II, Academic Press Professional, San Diego, CA, United States, 

1991. 

13. T. Varady and R. Martin, Handbook of Computer Aided Geometric Design, North-Holland, 

Amsterdam, The Netherlands, 2002. 

14. A. B. Forbes, Least-squares best-fit geometric elements, NPL Report DITC 140/89, 1991. 

15. Y. Cao, D. M. Yan, P. Wonka, Patch layout generation by detecting feature networks, 

Computers & Graphics, 46 (2015), 275–282. 

16. H. Lin, W. Chen, H. Bao, Adaptive patch-based mesh fitting for reverse engineering, 

Computer-Aided Design, 39 (2007), 1134–1142. 

17. I. Kovács, T. Várady, Constrained fitting with free-form curves and surfaces, Computer-

Aided Design, 122 (2020), 102816. 



5 Appendix 1: Explicit form of a fourth degree Bézier surface 
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6 Appendix 2: Partial derivatives of 𝑒𝑡 with respect to 𝑘𝑖𝑗 
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46𝑣𝑡

2(1 − 𝑣𝑡)
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= 𝑢𝑡
44𝑣𝑡

3(1 − 𝑣𝑡) 
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7 Appendix 3: Partial derivatives of 𝑒𝑡 with respect to 𝑢𝑡 and 𝑣𝑡 
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(12𝑢𝑡(1 − 𝑢𝑡)
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3)4𝑣𝑡
3(1 − 𝑣𝑡)𝑘3,3 + 

(12𝑢𝑡
2(1 − 𝑢𝑡) − 4𝑢𝑡
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4𝑢𝑡
3(1 − 𝑣𝑡)
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3𝑘4,1 + 

4𝑢𝑡
36𝑣𝑡
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34𝑣𝑡
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𝜕𝑒𝑡

𝜕𝑣𝑡

= (1 − 𝑢𝑡)
4−4(1 − 𝑣𝑡)

3𝑘0,0 + 

(1 − 𝑢𝑡)
4(4(1 − 𝑣𝑡)

3 − 12𝑣𝑡(1 − 𝑣𝑡)
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(1 − 𝑢𝑡)
4(12𝑣𝑡(1 − 𝑣𝑡)
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2(1 − 𝑣𝑡) − 4𝑣𝑡
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(1 − 𝑢𝑡)
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4𝑢𝑡(1 − 𝑢𝑡)
3(4(1 − 𝑣𝑡)
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4𝑢𝑡(1 − 𝑢)3(12𝑣𝑡(1 − 𝑣𝑡)
2 − 12𝑣𝑡

2(1 − 𝑣𝑡))𝑘1,2 + 
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2(1 − 𝑣𝑡))𝑘3,2 + 

4𝑢𝑡
3(1 − 𝑢𝑡)(12𝑣𝑡

2(1 − 𝑣𝑡) − 4𝑣𝑡
3)𝑘3,3 + 

4𝑢𝑡
3(1 − 𝑢𝑡)4𝑣𝑡

3𝑘3,4 + 

𝑢𝑡
4−4(1 − 𝑣𝑡)

3𝑘4,0 + 

𝑢𝑡
4(4(1 − 𝑣𝑡)

3 − 12𝑣𝑡(1 − 𝑣𝑡)
2)𝑘4,1 + 

𝑢𝑡
4(12𝑣𝑡(1 − 𝑣𝑡)

2 − 12𝑣𝑡
2(1 − 𝑣𝑡))𝑘4,2 + 

𝑢𝑡
4(12𝑣𝑡

2(1 − 𝑣𝑡) − 4𝑣𝑡
3)𝑘4,3 + 

𝑢𝑡
44𝑣𝑡

3𝑘4,4 

 

 


