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Abstract

Binding free energy calculations using alchemical free energy (AFE) methods are

widely considered to be the most rigorous tool in the computational drug discovery ar-

senal. Despite this, the calculations suffer from accuracy, precision and reproducibility

issues. In this publication, we perform a high-throughput study of more than a thou-

sand AFE calculations, utilizing over 220 µs of total sampling time, on three different

protein systems to investigate the impact of the initial crystal structure on the resulting

binding free energy values. We also consider the influence of equilibration time and

discover that the initial crystal structure can have a significant effect on free energy

values obtained at short timescales that can manifest itself as a free energy difference

of more than 1 kcal/mol. At longer timescales, these differences are largely overtaken

by important rare events, such as torsional ligand motions, typically resulting in a

much higher uncertainty in the obtained values. This work emphasizes the importance

of rare event sampling and long-timescale dynamics in free energy calculations even

for routinely performed alchemical perturbations. We conclude that an optimal proto-

col should not only concentrate the computational resources on achieving convergence

in the alchemical coupling parameter (λ) space, but also on longer simulations and

multiple repeats.

1 Introduction

There are two overarching topics of research in computational biophysics: improvement of

model accuracy (solved by developing new Hamiltonians) and increasing the precision of

model evaluation (solved by more efficient enhanced sampling methods). However, there is a

third problem which is also relevant to all areas of science – reproducibility. The exploration

of this issue has been gathering increased attention from computational chemists in recent

years, not least because it is a requirement and an expectation from any method nearing

operational maturity.
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An example is alchemical free energy methods (AFE), which have amassed increasing

popularity not only as a topic of academic research but also as a tool in commercial drug

discovery1–3 since their conception. However, the nature of these methods requires the

scientist to make various choices in the initial conditions and/or the “hyperparameters”

of the underlying models. These choices are occasionally obvious, sometimes conventional

and often completely arbitrary. Robustness of the predictive model to these choices would

imply consistent results between individual scientists, research groups, software packages and

therefore facilitate automatability – a highly desirable quality in the age of high-performance

high-throughput computing.

Recent efforts have investigated the influence of the following factors on free energy

calculations: the force field;4–8 the type of enhanced sampling method;8–11 the sampling

time;7,9,12,13 the barostat;10 the free energy calculation method;10,14,15 the free energy anal-

ysis method;16 the software package;7,8,10,17,18 the alchemical interpolation protocol;19 the

charge perturbation method;20 the protonation and tautomeric states;21 the location of wa-

ter molecules in the binding site;22–26 the ligand binding mode.26,27 In addition, it has been

suggested that system preparation is a crucial part of the free energy calculation process.2,7

Directly relevant to our work are previous results showing free energy dependence on the

protein conformation28 and on the ligand alignment based on the initial protein crystal

structure used.7,25

A number of the above studies have found concerning reproducibility issues. Rizzi et

al.10 report differences of between 0.3 and 1.0 kcal/mol between different equally valid meth-

ods using the same force field parameters. Similarly, Loeffler et al.18 show that even for

simple solvation free energy calculations, reproducibility between software packages is only

maintained to 0.2 kcal/mol. Even more significant is the impact of initial binding site wa-

ter molecules on the free energy estimate, in some cases reaching discrepancies of over 5

kcal/mol,25 meaning that assuming a particular binding mode without performing enhanced

sampling can be detrimental to the free energy calculation. Pérez-Benito et al.7 observe sim-
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ilar behaviour when comparing free energy results obtained from different crystal structures

native to either of the perturbed ligands with some discrepancies surpassing 5 kcal/mol.

Even though this behaviour is mitigated to some extent by increased sampling, some sig-

nificant outliers can still persist, meaning that the initial system setup can be a non-trivial

process and warrants further investigation.

In this work we examine the effect of the initial protein crystal structure on a range of

ligand-ligand perturbations systematically and in depth. The crystal structures have been

chosen so that they vary in their resolution, year of deposition, bound ligands and research

groups. Ligand perturbations have generally been kept simple, since we are mostly interested

in calculations that appear “converged” at short timescales. We study three distinct protein

systems – dihydrofolate reductase (DHFR), protein tyrosine phosphatase 1B (PTP1B) and

factor Xa (FXa). These test systems have been chosen so that the following commonly

encountered features are covered at least once: cofactors, auxiliary ions, disulfide bonds,

missing residues and atoms, multiple chains. In addition, these proteins are relatively small

and shown in previous computational studies29–32 to compare favourably to experiment,

meaning that major force field and efficiency issues are not expected. We perform a high-

throughput study on the effect of different crystal structures on the relative binding free

energy values with and without an extra 20 ns equilibration. This will allow us to verify

the increasingly common notion that multiple short simulations are preferable to a single

long one.33–35 In all cases we also analyze cycle closure errors and compare to experiment

whenever possible. To the best of our knowledge, this is the most extensive study to date

which investigates the dependence of binding free energies on the initial structure.
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2 Methods

2.1 System Preparation

All system preparation in this study was performed using ProtoCaller.36 The following X-ray

crystal structures were used in this study: 1OHJ,37 2W3M,38 3GHW,39 4DDR,40 4M6J,41

5HPB,42 6A7E43 and 6DAV44 for DHFR; 1BZJ,45 1NWE,46 2AZR,47 2F71,48 2H4K,49

2NTA,50 2QBP51 and 2ZN752 for PTP1B; 1EZQ,53 1KSN,54 1LQD,55 1NFW,56 2CJI,57

2J38,58 2J9559 and 4Y7160 for FXa. All protein crystal structures were obtained from the

Protein Data Bank61 (PDB). Some relevant metrics by which these crystal structures differ

are shown in the Supporting Information (Tables S1 to S3). Most importantly, all of the

above structures have a root-mean-suare deviation (RMSD) of less than 1 Å after alignment

to a reference structure (described later) and only one of them (4M6J) has an RMSD larger

than 0.5 Å, indicating that the initial structures used can all be considered very similar

to one another. In addition, some of the structures (4M6J, 1NWE, 2NTA, 1EZQ, 1LQD,

1NFW, 2J38, 4Y71) exhibit slight differences in their reported protein sequence compared to

the others and these differences were kept. None of these differences were near the binding

site (within 1.2 nm of the ligand center of mass).

Where applicable, non-terminal missing residues were added using Modeller62 and miss-

ing atoms were modelled using PDB2PQR.63 All crystal structures were protonated with

PDB2PQR, where all histidine residues were arbitrarily forced to the ε tautomer for FXa for

consistency, due to the presence of multiple histidines near the binding site. No equivalent

modifications to tautomer preference were made for DHFR and PTP1B, in some cases re-

sulting in histidine tautomer differences across structures distal from the binding site (more

than 1.2 nm away from the ligand center of mass). All amino acids were assigned their

default expected protonation states at pH = 7. All crystal structure waters were retained.

In two of the DHFR structures, there were two copies of the protein in the asymmetric unit

and in these cases only the first chain of the PDB file was used in the subsequent simulations.

5



For each crystal structure we performed the following number of ligand-ligand perturba-

tions: 8 for DHFR, 9 for PTP1B and 9 for FXa. The ligand scaffolds and thermodynamic

cycles can be seen in Figure 1. Some of the ligands have been forced into an unnatural proto-

nation state so that no charge perturbation was needed. Such ligands have only been treated

as intermediates and have not been compared to experiment. The crystal structures whose

native ligands most closely matched the scaffolds of our ligands of interest were used for

alignment: 5HPB, 2QBP and 1LQD for DHFR, PTP1B and FXa, respectively. This initial

ligand conformation was enforced across all other crystal structures based on protein-protein

backbone alignment using PyMOL64 and it was also used during the ligand parametriza-

tion stage in order to obtain the same partial charges for the same ligand across different

crystal structures. Ligand protonation states were determined manually and were in most

cases in agreement with Open Babel.65 The most notable difference is the addition of an

extra proton to the DHFR ligand at one of the pyrimidine nitrogen atoms (Figure 2), which

has been previously suggested66 to take part in ligand-carboxylate interactions involving a

closely related ligand, methotrexate.

In this work we used the AMBER force field. All amino acid residues were parametrized

with ff14SB,67 and GAFF268 was used for all ligands. The TIP3P water model69 and its

associated calcium parameters were also used alongside the additional NADP+ and NADPH

parameters,70 available online.71 All ligand charges were parametrized using AM1-BCC.72,73

All ligand perturbations were performed using a single-topology mapping along an al-

chemical coordinate (λ) and alignment to the reference ligands was performed using Proto-

Caller’s default protocol by constraining the positions of the maximum common substructure

atoms to the reference ones. Whenever applicable, all perturbations were in the direction of

atom annihilation. All dummy atom equilibrium distances were scaled to half of their initial

values in an attempt to achieve better phase space overlap between λ windows. All systems

were solvated in cubic periodic boxes with a length of 7 nm in the bound leg and 4 nm in

the solvated leg. NaCl was also added with an ionic concentration of ∼ 0.154 M.
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Figure 1: Ligand scaffolds and perturbations for all three systems. The perturbed ligand
pairs are denoted with numbers and thermodynamic cycles are labelled with letters. In all
cases perturbations of R are shown. In Figure 1f, the circular ligands are substituted with
X=Br and Y=H, and the rectangular ligands contain X=H and Y=OH.

2.2 Simulation

All simulations were performed in GROMACS 2018.4.74 The perturbations were carried out

over 40 λ windows with 10 equally-spaced perturbations of the electrostatic terms followed

by simultaneous scaling of the Lennard-Jones (LJ) and bonded terms during the other 30

windows. The latter λ windows were also equally spaced (rounded to two significant figures),

except for the final values, which were more closely spaced in an attempt to increase phase

space overlap: 0.95, 0.97, 0.98, 0.99, 0.999 and 1. All interaction parameters were scaled

linearly with respect to λ, except for the LJ interactions, which were perturbed using a

soft-core potential75 with a parameter value α = 0.5.

Each λ window involved 25,000-step steepest descent minimization, 50 ps of NVT equili-

bration followed by 50 ps of NPT equilibration using a 1 fs timestep and 4 ns NPT production

with a 2 fs timestep. In all cases the calculations were repeated after an additional initial 20

ns NPT equilibration at λ = 0, with this coordinate set being used to prepare simulations

at all λ values. Both the 100 ps and the 20 ns protocols were repeated in triplicates, where

the only difference was the pseudorandom number seed used for velocity initialization from
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Figure 2: Hydrogen bond interactions between one of the protonated DHFR ligands and
Glu30 (PDB code: 5HPB).

the Maxwell-Boltzmann distribution.

All simulations were run at 298 K using the Langevin thermostat76 with τT = 1 ps-1.

Equilibration pressure control at 1 bar was achieved with the Berendsen barostat,77 whereas

the production barostat of choice was the Parrinello-Rahman78 barostat with τP = 1 ps-1. In

all cases bonds involving hydrogen were constrained using the 4th order LINCS algorithm.79

Long-range electrostatics were calculated using particle mesh Ewald80 (PME) with real space

cut-off at 1.2 nm. LJ interactions also had a cut-off at 1.2 nm with a relevant energy and

pressure dispersion correction. A Verlet cut-off scheme was used for neighbour list updates

every 20 integration steps.

Energy difference (∆H) readings were taken every 10 ps and were analyzed using the

Bennett acceptance ratio81 implementation in Python.82 Since in many cases we perturbed

constrained atoms, the multistate Bennett acceptance ratio (MBAR83) approach was not

feasible, since LINCS constraint contributions to free energy differences in GROMACS 2018.4

are extrapolated from ∂H
∂λ

values and are thus not suitable for non-neighbouring λ windows.
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2.3 Analysis

When analyzing results from different replicates, the errors have been assumed to be ap-

proximately normally distributed, and in these cases the sample mean and its associated

standard error were used to describe the data. Normality was not assumed in all other cases,

e.g. when comparing different crystal structures and equilibration times. In these cases

robust statistics, such as the sample median and the interquartile range, were used.

In accordance with the non-assumption of normality, non-parametric rank-based tests

were used for all comparisons, namely the Mann-Whitney U test84 for comparing two pop-

ulations and the Kruskal-Wallis test85 for comparing multiple populations. In both tests

the null hypothesis is that the mean ranks of the populations are the same and the result-

ing p-values indicate the probability of observing the data given that the null hypothesis

is correct. Since in all cases the compared populations were sampled from practically the

same distribution, meaning that the null hypothesis was satisfied, the p-values were not

used as a tool for statistical inference but rather as an approximate measure of apparent

sampling quality. Where applicable, correlation between populations was also measured in

a rank-based fashion, using Kendall’s τ .86

In the Supporting Information, we conduct analysis which involves 145 independent

Kruskal-Wallis tests. We have reported a p-value for each test but we have not attempted to

demonstrate any statistical significance, since the large number of tests increases the proba-

bility of a type I error. These values have therefore been presented purely for demonstration

purposes.
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3 Results and Analysis

3.1 Variance Between Structures after 100 ps and 20 ns Equili-

bration

DHFR The calculated ∆∆G−◦ values across all perturbed pairs and crystal structures are

shown in Figures 3 and 4 after 100 ps and an additional 20 ns equilibration, respectively. It

can be seen that the “largest” (i.e. perturbing the highest number of atoms) perturbation

(pair 5) has the highest total variance with 90% of the samples spanning a confidence interval

(CI) of ∼ 2 kcal/mol. Correspondingly, the “smallest” perturbation (pair 8) has the lowest

spread of ∆∆G−◦ values with CI spanning ∼ 0.5 kcal/mol at the 90% level with all other

perturbations exhibiting an approximately similar variance of ∼ 1 kcal/mol at this CI. This

correlation between perturbation size and total data spread is hardly surprising, since the

same computational time was dedicated to perturbations of varying difficulty. More notably,

inter-replicate variance is generally low with no crystal structures exhibiting consistently

higher variances. Therefore, the total variance is mostly explained by the inter-structure

variance, meaning that the use of simulation repeats starting from the same coordinates is

not capturing the variance observed when using different but acceptable crystal structures.

This is exemplified by the low p-values shown in Figure 3 obtained by the non-parametric

Kruskal-Wallis test. It can be noted that 6DAV is a consistent outlier in most of the cases –

an unsurprising observation which can be readily explained by the different cofactor in the

crystal structure (NADP+, instead of NADPH). However, most inter-crystal differences are

significant at the 10% level even if we discard 6DAV – a value which is still concerning, since

in principle the choice of initial crystal structure should have little to no effect on the free

energy values.

These observations change drastically after 20 ns pre-equilibration at λ = 0. In this case

we observe increased total variances with pairs 5 and 7 exhibiting a spread of ∆∆G−◦ values

over ∼ 3 kcal/mol at 90% CI. Even the perturbations with the smallest variances span a
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Figure 3: Box plots of the ∆∆G−◦ values per perturbation for each of the DHFR crystal
structures after 100 ps total equilibration time. Each point represents the average of three
repeats and the associated error bar is its standard error of the mean. The boxes contain
all values between 25th and 75th percentile and the whiskers are based on the 5th and 95th

percentile. The p-values have been obtained from the Kruskal-Wallis test on all samples
(pall) and on all samples except for 6DAV (pNADPH). The solid orange line shows the median
value and the dashed red line denotes the measured experimental value,29 if available.

12



Figure 4: Box plots of the ∆∆G−◦ values per perturbation for each of the DHFR crystal
structures after 20 ns total equilibration time. Each point represents the average of three
repeats and the associated error bar is its standard error of the mean. The boxes contain
all values between 25th and 75th percentile and the whiskers are based on the 5th and 95th

percentile. The p-values have been obtained from the Kruskal-Wallis test on all samples
(pall) and on all samples except for 6DAV (pNADPH). The solid orange line shows the median
value and the dashed red line denotes the measured experimental value,29 if available.
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range of ∼ 1 kcal/mol at this CI. This time much larger inter-replicate standard errors are

observed with the largest one being 6DAV in pair 2 with σ∆∆G−◦ ≈ 1.5 kcal/mol. Although it

is unsurprising that increased decorrelation between replicates results in higher variance, the

magnitude of this increase after only 20 ns is remarkable. Although 6DAV is still a rather

consistent outlier, it is much less so, resulting in heightened p-values, meaning that there is

no significant difference between the crystal structures. Most p-values are now insignificant

at the 10% level, again demonstrating the increased loss of memory of the starting crystal

structure.

PTP1B The corresponding data for PTP1B can be seen in Figures 5 and 6. Similarly

to DHFR, here we observe a total data spread ranging between ∼ 0.5 kcal/mol at the 90%

CI for the simpler perturbations (pairs 7 and 8) up to ∼ 1.5 kcal/mol for the most difficult

perturbation (pair 3). Inter-replicate variance is generally higher than for DHFR for most

perturbations with no structures being consistent outliers. This is illustrated by the generally

high p-values for 4 of the pairs. However, the rest of the pairs exhibit consistent significant

differences at the 10% level, similar to the results obtained with DHFR. Perhaps the most

curious perturbation is pair 9, which has a low p-value and a very low inter-replicate variance,

exhibiting a total spread of values of over ∼ 1 kcal/mol. This behaviour would not have been

expected if we had only used a single crystal structure which exhibits apparent convergence.

The corresponding results after a longer equilibration time are similar to those obtained

for DHFR. It can be seen in Figure 6 that the total spread of ∆∆G−◦ values is generally much

larger. The most remarkable example of this is pair 5 with a total value range of more than 5

kcal/mol at 90% CI. Only the last three pairs exhibit spread of less than 1 kcal/mol, whereas

all perturbations involving the sulfonamide derivative have an uncertainty of ∼ 3 kcal/mol

at 90% CI. In all cases the inter-replicate variance is also markedly higher than the shorter

runs with the highest σ∆∆G−◦ > 1.5 kcal/mol (1NWE, pair 5). Moreover, the new p-values

are also on average higher in comparison, once again showing that longer decorrelation times
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Figure 5: Box plots of the ∆∆G−◦ values per perturbation for each of the PTP1B crystal
structures after 100 ps total equilibration time. Each point represents the average of three
repeats and the associated error bar is its standard error of the mean. The boxes contain
all values between 25th and 75th percentile and the whiskers are based on the 5th and 95th

percentile. The p-values have been obtained from the Kruskal-Wallis test on all samples.
The solid orange line shows the median value and the dashed red line denotes the measured
experimental value,51 if available.
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Figure 6: Box plots of the ∆∆G−◦ values per perturbation for each of the PTP1B crystal
structures after 20 ns total equilibration time. Each point represents the average of three
repeats and the associated error bar is its standard error of the mean. The boxes contain
all values between 25th and 75th percentile and the whiskers are based on the 5th and 95th

percentile. The p-values have been obtained from the Kruskal-Wallis test on all samples.
The solid orange line shows the median value and the dashed red line denotes the measured
experimental value,51 if available.
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result in reduced distinguishability between different crystal structures. Nevertheless, pairs

4, 6 and 9 exhibit significant differences at the 10% level, implying that the initial crystal

structures still influence the obtained free energies. These observations futher demonstrate

that any apparent convergence at shorter timescales is usually deceiving.

FXa The results for FXa are shown in Figures 7 and 8. In this case we generally observe

smaller inter-structure variances than the previous systems with the largest spread being ∼ 1

kcal/mol for the largest perturbation (pair 3) at 90% CI. In some cases this spread is less

than 0.2 kcal/mol, indicating good apparent agreement between initial crystal structures.

However, inter-replicate variance is generally even lower, resulting in all but two perturbation

pairs being significantly different at the 10% level. For example, in pair 3 one can observe

a maximum difference of ∼ 1 kcal/mol for two of the crystal structures with little apparent

variance, once again highlighting the impact of the choice of initial crystal structure at

shorter timescales.

Similarly to previous data, FXa exhibits larger inter-structure variance across all per-

turbations after prolonged equilibration ranging from ∼ 0.5 to ∼ 1 kcal/mol. Especially

curious is pair 9, which shows dramatic relative increase in variance compared to the short-

equilibration results. However, the absolute spread in free energy values is still unremarkable

in light of the previous test cases. In all but two perturbations, the differences between ini-

tial crystal structures are insignificant at the 10% level, once again demonstrating decreasing

dependency of ∆∆G−◦ on the choice of initial crystal structure over time, as expected.

3.2 Comparison Between ∆∆G−◦ after 100 ps and 20 ns Equilibra-

tion

In addition to the previous analysis, we can compare the distribution of ∆∆G−◦ values

across all crystal structures and replicates after 100 ps and 20 ns equilibration. Comparison

between median ∆∆G−◦ for each pair and system is shown in Figure 9 with associated
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Figure 7: Box plots of the ∆∆G−◦ values per perturbation for each of the FXa crystal
structures after 100 ps total equilibration time. Each point represents the average of three
repeats and the associated error bar is its standard error of the mean. The boxes contain
all values between 25th and 75th percentile and the whiskers are based on the 5th and 95th

percentile. The p-values have been obtained from the Kruskal-Wallis test on all samples.
The solid orange line shows the median value and the dashed red line denotes the measured
experimental value,55 if available.
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Figure 8: Box plots of the ∆∆G−◦ values per perturbation for each of the FXa crystal
structures after 20 ns total equilibration time. Each point represents the average of three
repeats and the associated error bar is its standard error of the mean. The boxes contain
all values between 25th and 75th percentile and the whiskers are based on the 5th and 95th

percentile. The p-values have been obtained from the Kruskal-Wallis test on all samples.
The solid orange line shows the median value and the dashed red line denotes the measured
experimental value,55 if available.
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Mann-Whitney U test84 p-values in the Supporting Information (Table S4). In some cases

we see remarkable median differences in the calculated free energies of approximately 1−1.5

kcal/mol (DHFR: pair 2; PTP1B: pairs 1, 2 and 3), whereas most other values, including all

of the FXa perturbations, appear to approximately agree by visual inspection. However, the

Mann-Whitney U test indicates significant differences at 2% CI for: DHFR pairs 1, 2 and

3; PTP1B pairs 1, 2, 3, 7 and 8; FXa pairs 1 and 5, which constitute more than a third of

all perturbations. This indicates that even after comparing across protein crystal structures

and repeats we observe significant time-dependent sampling changes. Nevertheless, it has to

be noted that these differences could to some extent arise from the sampling bias introduced

by prolonged equilibration at only a single λ value and one should ideally compare datasets

where all λ values have been independently equilibrated for 20 ns. In our study, this was

not feasible due to computational resource limitations.

3.3 Cycle Closure Errors

Since the Gibbs free energy G is a state function, any combination of perturbations which

returns to the initial state must yield a net free energy change of zero. Any deviation from this

value indicates insufficient sampling and lack of convergence. It can be seen (Table 1) that

in most cases cycle closure errors indicate apparent convergence (less than 1 kcal/mol) after

a short equilibration both on a crystal-by-crystal basis and on average, with the notable

exception of all cycles involving PTP1B and the sulfonamide ligand derivative (cycles A,

B and C). However, this apparent convergence is not observed after longer equilibration

with some cycle closure errors surpassing the 2 kcal/mol barrier for some crystal structures.

Nevertheless, all average cycle closures are within 1 kcal/mol with the exception of DHFR,

cycle B, which has a magnitude of 1.67 kcal/mol, despite exhibiting apparent convergence at

shorter equilibration times. This is a striking observation, since one would expect that a net

equilibration time of ∼ 0.5 µs and a total sampling time of ∼ 4 µs per perturbation to exhibit

unconditional convergence, especially for these rather straightforward perturbations. These
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(a) (b)

(c)

Figure 9: Comparison of median ∆∆G−◦ values across all initial crystal structures and repli-
cates after short (100 ps) and long (20 ns) equilibration for DHFR (Figure 9a), PTP1B
(Figure 9b) and FXa (Figure 9c). All error bars indicate 25%–75% CI. The dashed red line
represents the line y = x.
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results show that any apparent convergence at shorter timescales can be deceiving even for

simple systems and low cycle closure errors do not necessarily imply sufficient sampling.

Table 1: Absolute cycle closure errors for all systems after 100 ps and 20 ns equilibration.
The cycles have been calculated per structure as the average of three replicates and denoted
according to Figure 1. The three columns represent the cycle closure errors from the best-
and worst-performing crystal structures, as well as the average cycle closure errors between
all structures.

Cycle Closure Errors (kcal/mol)

Minimum Maximum Average

System Cycle 100 ps 20 ns 100 ps 20 ns 100 ps 20 ns

DHFR
A 0.03 0.07 0.97 2.44 0.02 0.30
B 0.08 0.40 0.76 3.35 0.08 1.67
C 0.01 0.03 0.38 1.39 0.06 0.24

PTP1B

A 0.72 0.05 1.31 1.37 1.06 0.47
B 0.58 0.08 2.11 2.50 1.05 0.80
C 0.01 0.00 1.02 2.03 0.18 0.28
D 0.03 0.02 0.60 0.84 0.20 0.11

FXa

A 0.02 0.01 0.30 0.90 0.06 0.12
B 0.01 0.21 0.17 0.53 0.03 0.05
C 0.01 0.01 0.19 0.84 0.03 0.26

3.4 Comparison to Experiment

While not the focus of this study, which is concerned with reproducibility and precision,

rather than accuracy, it is nevertheless informative to compare the above results to exper-

imental ∆∆G−◦ values. Here we only compare direct perturbations against experiment, as

opposed to thermodynamic chains. It is shown in Figure 10 that the extensively equilibrated

median binding free energies generally move slightly closer to experimental values over time.

The relative ranking, represented by Kendall’s τ 86 changes insignificantly from 0.09 to 0.13,

indicating very weak correlation to experimental data. The mean absolute deviation (MAD)

also improves weakly with more equilibration from 0.73 to 0.61 kcal/mol. Both of these met-

rics are influenced by the low experimental free energy magnitudes (∼ 1 kcal/mol), meaning
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that the MAD is more likely to appear favourable and the relative ranking is dominated by

noise. Owing to the size of the dataset, the low magnitude of the experimental free energy

values and the high variability between different replicates, we conclude that the achieved

improvement in comparison to experiment over time is not substantial for our test cases.

(a) (b)

Figure 10: Comparison of median ∆∆G−◦ values across all initial crystal structures and
replicates for some of the denoted pairs after short (100 ps, Figure 10a) and long (20 ns,
Figure 10b) against experiment.29,51,55 The associated error bars indicate 25%–75% CI and
the dashed red line represents the line y = x.

3.5 The Origin of Long-Timescale Variance

Owing to the complex nature of biomolecular systems, it is difficult to narrow down the

reason for the observed increase in inter-replicate variance with simulation time. One obvious

way to compare different replicates is to quantify the changes which occur during the 20 ns

equilibration based on the final trajectory frame. The most apparent differences by visual

inspection indicate the presence of various rare events with transition times larger than

several nanoseconds, such as rotations of ligand torsions with high kinetic barriers. The
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most striking example is the rotation of the acidic hydrogen in PTP1B, pair 5 (Figure 11).

Comparison of free energy calculations starting from the two different rotamers reveal a

median difference of more than 4 kcal/mol, indicating that this rotation is likely the primary

reason for the extraordinary variance, observed in Figure 6. Another conspicuous example

of rare events determining the outcome of a free energy calculation is the sulfonamide bond

rotation in the first three PTP1B perturbations (Figure 12), with each rotamer exhibiting an

average of approximately 1–2 kcal/mol difference to the other rotamers. Detailed analysis of

these and all other rotamers can be found in the Supporting Information (Figures S1 to S4),

revealing the prevalence of this trend in many of the perturbations involving DHFR and

PTP1B. This analysis also shows that such ligand flexibility is observed to a much lesser

extent for FXa, thereby explaining the comparatively low free energy variance even after

extended equilibration.

Naturally, it is expected that the protein backbone also has an impact on the increased

free energy variance over time. However, analysing such a high-dimensional dataset requires

an immense amount of data points in the form of ∆∆G−◦ values. With only 24 ∆∆G−◦ values

per perturbation, establishing a statistically significant connection between protein internal

degrees of freedom and calculated free energies is not feasible and we attribute most of the

long-timescale variability to slow ligand motions – a conclusion, which is supported by all of

the data presented above.

4 Discussion

There are several important lessons to be learned from the above analysis. Most strikingly, we

observed that at short timescales different protein crystal structures can disagree significantly

over the free energy change and these differences can be more than 1 kcal/mol in magnitude.

Such short-timescale simulations are commonly used in practice, most notably in commercial

implementations,32,87 making these results highly relevant to state-of-the-art applications
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(a) (b)

Figure 11: Acidic hydrogen rotation in pair 5 observed in extended PTP1B simulations.
Images generated from the final trajectory frame of the extended equilibration for 1BZJ
(Figure 11a) and 1NWE (Figure 11b).

of alchemical methods. More worryingly, most of these results appear well-converged, as

evidenced by the low inter-replicate variance and the satisfactory cycle closure errors. The

issue of using a single crystal structure is now apparent: this choice can covertly affect the

relative ranking of compounds, even when the free energy changes appear to be too large for

this to be likely to occur.

As we saw above, these inter-structure differences are largely reduced after a prolonged

equilibration time and the inter-triplicate differences become more representative of their

true uncorrelated values. However, even after ∼ 24 ns of dynamics we can often distinguish

between the different initial structures selected, showing that this initial choice affects our

results in the long run. Nevertheless, these results show that the proposition that multiple

short simulations are preferable to a single long simulation does not necessarily capture the

full nature of the problem: replicates are necessary but insufficient for convergence, while

many important long-timescale motions are practically inaccessible at shorter timescales,

regardless of the number of replicates. Therefore, one needs both multiple replicates for
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(a) (b) (c)

Figure 12: Sulfonamide rotation in pair 3 observed in extended PTP1B simulations. Images
generated from the final trajectory frame of the extended equilibration for 1BZJ (Figure 12a),
2AZR (Figure 12b) and 2H4K (Figure 12c).

statistical confidence and longer simulations for physical validity – a requirement which is

rarely practically feasible with current computational capabilities.

One obvious way to practically circumvent this problem is to run short simulations over

more than one crystal structure. While the average of the resulting free energy values would

likely be biased, at least the researcher would be aware of the minimal uncertainty in their

results. However, this approach would result in reduced quality of ligand sampling, since pure

molecular dynamics is not good at exploring multiple binding modes at short timescales.88

Alternatively, one could run repeats over several binding poses determined by e.g. docking,

but the same problem of determining the correct weights of each binding pose persists,

resulting in biased free energy differences.

Another possibly more preferable working alternative is running longer simulations on

one crystal structure with enhanced sampling of the ligand degrees of freedom. The results

from longer timescales are typically more sensitive to ligand conformational changes and the

initial crystal structure becomes less influential on the free energy changes over time. A

protocol combining AFE and replica exchange with solute scaling (REST289) has long been

used in commercial implementations, such as FEP+32 and has recently been used over longer

timescales.12,90,91 Although it is expected that this approach would lead to a much higher
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variance due to the number of ligand degrees of freedom and decreased phase space overlap

between neighbouring states due to the Hamiltonian rescaling, this variance would be more

representative of the true result and this approach would be much less likely to exhibit false

convergence. In all cases it is highly recommended to run at least triplicate simulations.

We also observed that larger perturbations result in much more variable free energy

estimates, a largely expected result. However, even the simplest of perturbations should be

treated with care. More specifically, cycle closure errors can indicate false convergence and

should therefore only be used to demonstrate insufficient sampling. Indeed, we saw that

extensive sampling usually results in higher and more realistic cycle closure errors, meaning

that this criterion is necessary but not sufficient for convergence.

Since it was unclear from our data whether prolonged equilibration affects comparison

to experiment significantly, one might argue that better sampling might not be necessarily

cost-efficient for applications. While this is possible considering the accuracy provided by

current force fields, it has to be remembered that all computational time saved from less

sampling, results in reduced physical and statistical confidence. Therefore, our advice is

at the very least to use timescales and enhanced sampling techniques providing sufficient

ligand conformational sampling whenever possible, so that the binding conformation is not

completely dependent on the ligand alignment method and/or the researcher’s intuition.

5 Conclusion

We have shown the influence of initial crystal structure and extended equilibration time

on the binding free energy values of three different systems: DHFR, PTP1B and FXa. Our

observations indicate that at short timescales, initial crystal structure differences consistently

result in statistically, although not necessarily numerically, significant changes in ∆∆G−◦ ,

sometimes reaching differences of over 1 kcal/mol. Furthermore, large perturbations result

in higher sensitivity to the initial structure at short timescales.
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At longer timescales, we observe increased inter-replicate variance in ∆∆G−◦ , which makes

the results from different initial crystal structures appear more similar. In many cases, a

significant contributor to this variance is the rare changes in ligand conformation which

become more common at these timescales. The extent to which the protein degrees of

freedom impact these results is not clear and is to be investigated in future work. Sometimes

this prolonged sampling can significantly change the expected free energy value. However, we

have inconclusive evidence as to whether these changes improve comparison to experiment.

In addition, we demonstrated that thermodynamic cycle closure values can often indicate

false convergence at short timescales, meaning that long-timescale enhanced sampling is

needed even for simple perturbations.

Finally, we have justified the use of long-timescale dynamics and the use of enhanced

sampling in AFE calculations as well as performing multiple repeats with the same initial

configurations, meaning that an optimal protocol needs to find the balance between the

number of repeats, simulation length, and the number of λ windows in the general case.

Acknowledgement

All of the presented data were generated thanks to the generous computational time on the

Iridis 5 cluster provided by the University of Southampton. This study has been funded by

AstraZeneca, GSK and Syngenta. We are also supported by the EPSRC Centre for Doctoral

Training, Theory and Modelling in Chemical Sciences, under Grant EP/L015722/1.

Supporting Information Available

The following files are available free of charge.

• Additional tables and plots: crystal structure information, p-values and rotamer clus-

tering analysis (PDF)

28



• Python scripts used to perform the study using ProtoCaller (ZIP)

References

(1) Sherborne, B.; Shanmugasundaram, V.; Cheng, A. C.; Christ, C. D.; DesJarlais, R. L.;

Duca, J. S.; Lewis, R. A.; Loughney, D. A.; Manas, E. S.; McGaughey, G. B.;

Peishoff, C. E.; van Vlijmen, H. Collaborating to improve the use of free-energy and

other quantitative methods in drug discovery. J. Comput. Aided Mol. Des. 2016, 30,

1139–1141.

(2) Cournia, Z.; Allen, B.; Sherman, W. Relative binding free energy calculations in drug

discovery: recent advances and practical considerations. J. Chem. Inf. Model. 2017,

57, 2911–2937.

(3) Williams-Noonan, B. J.; Yuriev, E.; Chalmers, D. K. Free energy methods in drug

design: prospects of “alchemical perturbation” in medicinal chemistry: miniperspective.

J. Med. Chem. 2018, 61, 638–649.

(4) Rocklin, G. J.; Mobley, D. L.; Dill, K. A. Calculating the sensitivity and robustness of

binding free energy calculations to force field parameters. J. Chem. Theory Comput.

2013, 9, 3072–3083.

(5) Manzoni, F.; Ryde, U. Assessing the stability of free-energy perturbation calculations

by performing variations in the method. J. Comput. Aided Mol. Des. 2018, 32, 529–536.

(6) Vassetti, D.; Pagliai, M.; Procacci, P. Assessment of GAFF2 and OPLS-AA general

force fields in combination with the water models TIP3P, SPCE and OPC3 for the

solvation free energy of drug-like organic molecules. J. Chem. Theory Comput. 2019,

15, 1983–1995.

29
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