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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING AND THE ENVIRONMENT 

Computational Engineering Design Research Group 

Thesis for the degree of Engineering Doctorate 

MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION FOR THE 

PRELIMINARY AERO-ENGINE DESIGN PROCESS 

Bogdan Profir 

This thesis investigates the design decisions taken during the preliminary 

aero-engine design process where the amount of knowledge is limited, 

although deciding on fuel efficiency, noise, emissions, weight and overall 

performance occurs within this stage. In order to not commit all resources 

during this phase, those decisions are made using low fidelity models. 

Unfortunately, the results from low fidelity models lack accuracy, so there is 

a natural need to take this into account. Improving those low fidelity 

methods via uncertainty quantification methods is the main theme of this 

thesis. 

In order to create accurate models for the preliminary design stage of the 

aero engine, a probabilistic framework was created and implemented. This 

framework is based upon suggestions from the literature and was 

constructed from two main components: expert systems as well as Bayesian 

inference. The way in which this was developed will be shown in detail later. 

This framework was applied to three aero-engine related case studies which 

reflect the need to have more knowledge available during the preliminary 

stage.  

The results obtained from the framework have the form of predictions which 

offer information which was not available otherwise. For the fan-blade off 

case study, the posterior predictive distributions show what the 

characteristics of the most likely events are, and this information can be 



 

 

used to make the detailed design stage less expensive by doing fewer finite 

element analysis simulations. For the grain growth case study, the results 

show what probability distributions the manufacturing inputs should have 

in order to keep the size of the grain within certain limits in order to 

maximize the life cycles. Finally, the results obtained with regards to fatigue 

failure due to non-metallic particle inclusions show how component life as 

well as failure cause can be obtained. This type of knowledge was not 

previously available in the literature, and making use of it can avoid 

removing components from their service too early.  
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Chapter 1 Introduction 

It is a sensible assumption that the aero-engine is one of the most impressive and 

complex human achievements, as it encapsulates the simple idea which started it 

all: the desire to fly. As it can be expected, designing one is a multi-faceted task as 

there is a high number of factors which need to be considered. One of the 

influencing factors is the current market that needs to be understood, which is why 

a brief overview regarding the aero-engine market needs to be provided. 

Afterwards, the spotlight will be put on the preliminary stage of the design process 

and its importance will be discussed. 

1.1 The Aero-Engine Market 

The growth of the airline industry has been uninterrupted over the last decade and 

a half. This can be easily deduced by the fact that the revenue has increased from 

$379 billion in 2004 to $812 billion in 2018, and by the end of 2019 it is predicted 

to increase by another 6.5%, which would let it reach the considerable amount of 

$865 billion [6].  In addition to that, The International Air Transport Association 

(IATA) forecasts that by 2035 the number of passengers will virtually double 

compared to 2016 [7]. Although this sounds promising, it still does not show the 

entire picture. For example the profit margin has only recently started to increase 

from below 1% to around 7%-8% [8]. This is due to the fact that in order to be cost 

efficient, airlines have to employ various cost reduction strategies in a variety of 

operations, spanning from crew management all the way to ticket sales. Even so, 

in order to achieve a sizeable cost reduction, it is necessary to have a well-designed 

management strategy. Ultimately, this would allow cost reductions in the most 

important areas such as maintenance and fuel consumption. 

Even so, the factors listed above are not nearly close to forming an exhaustive list 

that airlines need to take into consideration. Besides what has already been 

mentioned, the most important factor – safety needs to be given proper thought. 

In addition to that, there are environmental regulation constraints such as fuel 

efficiency and noise reduction. In order to improve on those, it is required to invest 

in research and development in order to look into novel technologies. Those can 

range from investigating novel materials to developing new computational fluid 

dynamics methods (and ultimately solving the Navier-Stokes equations!). In the 

end, it is crucial to remember that all of those areas are building blocks for what 
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constitutes the full picture that is aircraft design. For it is aircraft design that is the 

main research driver for the aforementioned fields as well as for this project.  

As the theme of the project refers to aero-engines (more specifically commercial 

engines), it is worth narrowing down our scope to this topic. Consequently, it is 

worth looking at the market which is specific to the aero-engines themselves. This 

is done in order to put the work in the context of the market as well as to be able 

to motivate the chosen direction of research.  

 

 

Figure 1: Market share for the various engine manufacturers (2018) [9] 

Figure 1 shows three main engine manufacturers which dominate the market: 

General Electric Aviation (GE), Pratt & Whitney (P&W), as well as Rolls-Royce plc (RR). 

In addition, those companies also form consortia in order to both share 

development effort as well as increase the probability of securing orders. The main 

three consortia are therefore: CFM International (CFM), International Aero Engines 

(IAE) and Engine Alliance (EA). By inspecting Figure 1, it can be inferred straightaway 

that CFM seems to be the dominating force in terms of World Commercial Jet 

Aircraft. However, it is also worth having a closer look at each individual sector in 

order to better understand the specific contributions of each manufacturer. For 

example, while CFM still operates 71% of the narrowbody aircraft, GE dominates 

the market both in the widebody and regional jet market groups, with the specific 

shares of 52% and 73% respectively. Rolls-Royce plc on the other hand does not 
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hold a majority of the market share in any of the above groups, although it still 

holds shares of 28% and 17% both in widebody as well as regional jet sectors, which 

is enough for it to be considered a major aero-engine manufacturer.  

In order to have a clearer picture regarding the aero-engine market, it is worthwhile 

to look not just at the current market, but also at how it is predicted to change over 

the next timeframe of 10 years. By 2028, the commercial fleet is expected to grow 

at a rate of 3.8% per year [9], eventually increasing from 30,000 to 44,000 aircrafts 

during this time span. The actual number of aircraft forecasted to be delivered 

between now and 2028 is expected to be around 22,000 while the engine delivery 

forecast shows 44,000 engines that are expected to enter operation during this 

time. The principal aircraft types which are driving this growth are Airbus 319, 

Airbus 320, Boeing 737 MAX and Boeing 787, while the relevant engines which will 

go into service are the Trent XWB, Trent 7000, Trent 1000 as well as the CFM56-

LEAP-1B [9]. The substantial contribution of Rolls-Royce plc in manufacturing 

engines over the next 10 years is backed up by their confidence that their Trent 

XWB is going to “set a new record for reliability” [9], and also under the UltraFan 

programme, the new engine they are developing is set to reduce fuel consumption 

by 25% relative to the current Trent XWB, and is scheduled to enter service in 2025. 

Additionally, Rolls-Royce plc. also attains engineering excellence by investing more 

than £1.3 billion in research and development spread across 31 different University 

technology centres and 7 advanced manufacturing centres [10].  

It is undeniable that the aero-engine market is constantly growing, especially when 

looking at predictions made for the following 10 years. One of the crucial aspects 

for any manufacturer to secure their market share is to be able to constantly be 

able to provide new technologies whose ultimate purpose is to reduce cost while 

maintaining high safety standards. For instance, in the Rolls-Royce plc vision, 

shifting the entire market towards electric propulsion is not a matter of “if”, but 

rather a matter of “when” [9]. “Electrifying the market” will have the effect of 

disrupting current business models, especially those which do not yet give electric 

power the proper credit. This vision is not unique to Rolls-Royce plc; they actually 

share it with its competitors: General Electric Aviation, Pratt & Whitney and 

Honeywell have all disclosed their intention for their power plants to be electrically 

driven [9]. In the end, integrating any technology requires a well thought out design 

process.  

The type of aero-engine that is considered in this thesis is the turbofan, as that is 

the one used for civil aircraft across the industry. The reason why the turbofan 
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engine is preferred traces back to the idea that it is more efficient to slowly 

accelerate a large amount of air (this is achieved via the bypass area) rather than 

to sharply accelerate a smaller amount (which is done by turbojet engines generally 

used on military aircraft). A simplified schematic of a turbofan engine is shown 

below: 

 

Figure 2: Diagram of a turbofan engine [11] 

The principle behind thrust generation is the increase in the velocity of the gas 

which is achieved by increasing the temperature of the mixture passing through 

the core of the engine, which in turn does work on the turbine that is connected 

to the compressor and the fan. The fan has main role of compressing the air 

passing through the bypass area, which contributes the most to the total amount 

of thrust. 

To understand why an optimum design process is needed, it would be necessary 

to examine each of its stages. Therefore, the scope of the following section is not 

only to do that, but to also highlight that the importance of the preliminary stage 

of the design process should not be underestimated, as that is a paramount 

component of the workflow which eventually leads to a successful state-of-the-art 

aero-engine. 
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1.2 The Engine Preliminary Design Process 

Before specifically referring to the aero-engine design process, it would be useful 

to have a definition for the general design process itself as well as the steps 

contained by it. A rigorous definition which has been given by the Engineering 

Accreditation Commission is as follows: “Engineering design is the process of 

devising a system, component or process to meet desired needs. It is a decision-

making process (often iterative), in which the basic sciences, mathematics and the 

engineering sciences are applied to convert resources optimally to meet these 

stated needs” [12]. One recurring feature which appears in most definitions of a 

design process refers to “decision-making”. This is emphasized by Keane and Nair 

[13] who state that the decision-making process needs to be on the forefront 

whenever a design is being made. At its very core, the decision-making process can 

simply be split into two main parts: exploring the design space and choosing the 

best design. The main problem with this description is that it is very generic and 

does not give enough information regarding the actual steps taken until the final 

design is reached.  

One useful method of quantifying the design process is proposed by Verhagen et 

al. [14]. They separated the design process into three main phases: conceptual 

design, preliminary design and detailed design, each of those serving a different 

role. The conceptual phase involves a top-level view which includes general design 

requirements related to the final purpose of the product. In the case of the aero-

engine, it refers to considering the life, the emissions and the overall cost. It can 

also refer to more specific parameters such as the turbine entry temperature as 

well as the compression ratio. The output from the conceptual stage will feed into 

the preliminary one. At this point, the designer’s focus will be on the individual 

components such as the fan, compressor, combustor and turbine. Due to the 

iterative nature of the whole design process, at this point it needs to be investigated 

whether the findings from the preliminary stage agree with the requirements from 

the conceptual stage. If that is not the case, then the conceptual stage will need to 

be reassessed. The same applies to the detailed design stage, where deeper 

analysis is being done. In the case of an aero-engine, high fidelity Computational 

Fluid Dynamics (CFD) and Finite Element Analysis (FEA) can be done on the various 

components, and this process is usually time consuming. Therefore, the designer 

needs to make sure that the conceptual and preliminary stages have been analysed 

in a robust manner. Even so, it may be the case that the converged design at the 

end of the detailed phase will still not satisfy all the design requirements due to 
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conflicts with either of the two previous design stages (i.e.: the preliminary and the 

detailed design stages could yield different values for the turbine entry 

temperature). In this case, there is a need to return to the problematic stage in 

order to re-analyse and eventually create a final design which successfully passes 

all design stages and ultimately checks all requirements. 

The three main design stages can be split even further. Once an aero engine project 

has started, six different stages can be considered to take place along the said 

project’s life. These are requirements specification, conceptual design, preliminary 

design, detailed design, development, and production. From the identification of 

the customer requirements to the eventual production of the engine, the three 

variables (cost, knowledge and freedom) are closely linked to each of the stages 

shown in Figure 3. What can be inferred straightaway is the fact that those variables 

might differ greatly across all those stages. Because of the shapes of the graphs 

below, it comes as no surprise that most if not all the decisions taken during the 

life of the project have to be based on trade-offs. In the most ideal case, the design 

space should be fully explored before committing to one particular engine design. 

As this is hardly practical, it means that the knowledge which the designer has up 

to and during the preliminary design process is below 25% [14]. Although the 

incurred cost is arguably low (around 10%), in reality the committed cost almost 

peaks at this point (80% - 90%) and consequently, there might not be enough 

freedom to adjust the design subsequent to the preliminary design stage. This fact 

stands to emphasize that taking the correct decisions during this stage is crucial. 

However, according to Verhagen et al. [14], because knowledge is limited in this 

region, taking the appropriate decisions can represent a challenge in itself. 
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Figure 3: Cost, design knowledge and freedom along the different stages for any 

preliminary design process [14] 

The decisions which need to be taken during the preliminary design process can 

generally be twofold: doing low fidelity or high fidelity analysis. The first method 

is able to explore the design space extensively; however it does not necessarily 

give an accurate picture of it, as it sacrifices accuracy for speed. Consequently, the 

results it gives should at most only be viewed as trends and not as exact. 

Conversely, high fidelity methods work in the opposite way: they focus on 

exploitation rather than exploration. Due to the relatively high cost of those 

methods, they can only focus on one part of the design space and can identify local 

optima in that region. However, there is no reason to assume that there are no 

other designs in other parts of the design space which are more suitable than the 

one identified in this way. Unfortunately, as high fidelity analysis is expensive, 

exploring more than a small area of the space might be unfeasible.  

What can immediately be concluded is that by solely relying on either of the above 

techniques, it is unlikely that an optimum engine design will be reached [13]. 

Developing this idea further, it also means that it will be difficult for the respective 

company to secure market share. As a result, a different strategy needs to be used. 

Although deterministic low fidelity techniques are usually preferred for the 

preliminary design stage as they can indicate relevant features of the design space, 

the claim here is that there is a way to improve this. Namely, by using a probabilistic 

framework which combines the benefits of low fidelity and high fidelity methods 

as a “best of both worlds” approach, it is possible to save time during the 
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preliminary stage. Details about uncertainty quantification methods will be 

discussed in Chapter 2, while the next section summarizes the research hypothesis. 

 

1.3 The Research Hypothesis 

The research hypothesis of this project is motivated by the above statements. To 

sum up, the preliminary stage of the design process of the aero-engine is delicate, 

as a balance between cost, knowledge and design freedom needs to be reached. In 

order to do this, techniques for investigating the design space need to be employed 

which have to strike equilibrium between exploration and exploitation. Knowing 

this, the research hypothesis can be formulated: 

“Using probability-based methods during the preliminary stage of the aero-engine 

design process can allow fast and accurate investigation of the design space in 

order to aid the generation of an optimum design which can afterwards be passed 

to the detailed design phase. Ultimately, this can have the effect of making the 

entire design process faster and less expensive.” 

The following section has the goal to make the original contributions clear to the 

reader. Afterwards, the next chapter describes the literature survey which covers 

the theory used within this work. 
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1.4 Summary of Original Contributions 

The principal contribution was the development of a framework which is deemed 

suitable to use during the preliminary aero-engine design process. This framework 

combines a few ideas: knowledge gathering techniques that can be used especially 

when data is scarce, Bayesian calibration, as well as putting everything together 

within an expert system which can be applied to a large variety of aero-engine 

design studies. Details regarding the framework are presented in Chapter 3.  

The Bayesian-elicitation framework was written by using custom code. This is also 

claimed to be a novelty, as other Bayesian software packages found in the literature 

do not have the capability of being meshed with the elicitation component, which 

is also a major part of this EngD project. The code is presented throughout Chapter 

3 in the form of pseudocode snippets. 

The application area of this framework is also considered to be new, as there are 

no journal articles in the literature which describe Bayesian networks being applied 

to problems related to the aero-engine such as the ones shown in Chapter 4 of this 

thesis. It should also be noted here that the proposed framework can be applied to 

other aspects of gas turbine design. If a new case study needs to be considered 

(whose application area is a different part of the engine), as long as uncertainty 

quantification remains a top priority, the framework maintains its usefulness. The 

reason is because the code has the capability of accommodating the new physical 

model in order to subsequently do predictions.  

Additionally, an alternative way of gaining feedback during expert elicitations will 

be presented. Most literature sources hint towards obtaining feedback regarding 

the probability density functions (PDFs) themselves which serve as Bayesian priors. 

However, another way of doing this is to obtain feedback regarding the prior 

predictive distribution. A clearer description regarding how this works can be found 

both in section 3.3 and section 4.3.3 during the outline of one of the case studies. 
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Chapter 2 Literature Review 

 

While in the previous chapter the goal was to set the stage and put the project in 

context of the current aero-engine market, the purpose of this chapter is to explore 

the literature regarding probability techniques which have been considered while 

developing the framework which is going to be described in detail in Chapter 3. 

The literature review covers the following topics: uncertainty quantification, 

Bayesian updating, expert systems as well as expert elicitation techniques. 
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2.1 Uncertainty of the Preliminary Aero-Engine Design 

Process 

The motivation for exploring this particular challenge will be given first in order to 

comprehend why this matter is relevant to the aero-engine design process. 

Typically, this motivation arises from the fact that in any real-life engineering 

system, it is virtually guaranteed that some form of uncertainty appears, so using 

deterministic values for the different parameters is far from ideal. In the case of a 

structural system, there will be uncertainties appearing from different sources: 

uncertainties due to material properties (e.g. Young’s Modulus and Poisson’s Ratio) 

caused by small scale defects, uncertainties in dimensions due to tolerances in the 

manufacturing process or uncertainties due to the operating environment itself. 

Rolls-Royce plc. does recognise the need for uncertainty quantification, therefore 

the engineers involved in design use Monte Carlo simulations in order to propagate 

variation in parameters whenever they analyse processes such as blade design, 

manufacture and blade testing [10]. 

It is common practice for the nominal values to be used in engineering in order to 

describe parameters which may or may not be deterministic in the first place. The 

problem with doing so is that the performance can degrade fast because of 

perturbations in the design variables. This behaviour is further exacerbated if the 

design had undergone some form of optimisation beforehand; any perturbation 

can move the design away from the extrema, which can lead to a catastrophic drop 

in performance or a violation of constraints. This behaviour in particular can be 

visualized in Figure 4 below. 

 

Figure 4: Increased sensitivity arising from design perturbations 
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Assuming that 𝑓𝑓(𝑥𝑥) is a function of some dimension within the engine (𝑥𝑥 could 

represent the fan diameter for instance) which gives the thrust specific fuel 

consumption (tsfc), it can be seen that there are two different minima on the graph 

in Figure 4 (This example is completely fictitious and it was chosen for illustrative 

purposes only). Although 𝑥𝑥∗ is a better choice if the goal is to minimize thrust 

specific fuel consumption, because of the steep slopes of the graph around it, a 

small perturbation can lead to a high performance drop compared to the case in 

which 𝑥𝑥𝑙𝑙 had been chosen as the design point. This simple yet effective example 

shows that finding the deterministic value of the optimal solution of any real world 

problem is not enough; the full picture needs to be taken into account and that 

includes the effects of perturbations. In structural design, perturbations might lead 

to stress levels which are close to the yield strength of the material, which is 

something that needs to be avoided at all costs. One solution to circumvent this 

would be to impose safety factors to ensure that the stress level gets nowhere near 

the critical region. However, this can lead to over engineering which can translate 

to an increase in overall weight and consequently to an increase in manufacturing 

and operating costs. 

Creating a design which is insensitive to perturbations from different sources 

equates to creating a robust design. The concept of robustness can be traced back 

to the Japanese engineer Genichi Taguchi who believed that “one should design a 

product in such a way so as to make its performance insensitive to variation in 

variables beyond the control of the engineer” [13]. Figure 5 shows a graphical way 

of interpreting robustness in a probabilistic fashion. 
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Figure 5: Comparison between a sensitive and a robust design 

 

A fictitious function representing thrust specific fuel consumption is once again 

used as an example to illustrate the idea of robustness. Although the design point 

𝑥𝑥1 is better than 𝑥𝑥2 from a deterministic point of view, it is more sensitive to 

perturbations, so choosing between the two requires a more detailed analysis. 

Taguchi classified the design parameters of any general design in two main groups: 

• Control parameters: those are the parameters which can be easily controlled 
by the engineer 

• Noise parameters: they are much harder and expensive to control  

For example, in an aircraft wing design problem, the control parameters could be 
the wingspan/chord, while the Mach number or the geometric uncertainties due to 
manufacturing constitute the noise parameters. 

Keane and Nair [13] identified three main steps which need to be taken in order to 

be able to efficiently optimize a design in the presence of uncertainty: 

• Identify all sources of uncertainty and convert them into mathematical 
models. 

• Use uncertainty propagation techniques in order to quantify their effect on 
the output. 

• Formulate an optimization problem in such a way so that the robustness of 
the optimum solution is ensured. 
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Those steps first require a more detailed accounting of the types of uncertainties 

present in the design process. Oberkampf et al. classify uncertainties as being 

aleatory or epistemic [13], [15]. Aleatory uncertainties, also known as type A or 

stochastic uncertainties [16] generally occur due to variations of a parameter, and 

if enough data is available, they can be characterized by a probability density 

function (PDF). Epistemic uncertainties (also known as type B or cognitive 

uncertainties [16]) on the other hand represent a lack of knowledge of a certain 

aspect of the problem. Variables about which not enough information is known can 

be represented by intervals instead of PDFs. A significant difference between the 

two types is that if the amount of data becomes sufficient, then the epistemic 

uncertainties can be removed completely; the same behaviour does not apply for 

the aleatory type [15]. 

A much more detailed and practical classification of uncertainties is made by 

Thunnissen [17] who classifies them into ambiguity uncertainties (caused by 

imprecision or vagueness), epistemic and aleatory uncertainties (which have the 

same definition as above) as well as interaction uncertainties due to unforeseeable 

sequences of events. It might be more convenient to categorize uncertainties in a 

way which depends on the application undergoing research. For instance, Walton 

[18] focused on the lifecycle of a space system and the uncertainties were split into 

development, operational and model uncertainties. In his doctoral thesis, 

Padmanabhan [19] considered that generally, uncertainties arise due to variations 

of the design parameters themselves, the formulation of the problem and also due 

to numerical errors and approximations. Keane and Nair [13] also focused on those 

three main sources of error, and he also illustrated an expression which highlights 

this idea: 

𝜀𝜀 = 𝜀𝜀ℎ + 𝜀𝜀𝑚𝑚 + 𝜀𝜀𝑑𝑑    [13] 

The total error is given by 𝜀𝜀, while the constituent terms are: 

• 𝜀𝜀ℎ is the error due to numerical approximations. 

• 𝜀𝜀𝑚𝑚 is the modelling error which could be reduced by using a more detailed 

model (in fluid mechanics for instance, it can be reduced by using a Large-

Eddy Simulation model instead of the Reynolds-averaged Navier-Stokes 

equations). 

• Finally 𝜀𝜀𝑑𝑑 is the error due to data uncertainty and it can be quantified by 

using several methods which will be explored further in this section. 
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Uncertainty modelling is mostly done by using probabilistic techniques as plenty 

of research has been invested in this area and as a result it is better known than 

other non-probabilistic techniques which include evidence theory, possibility 

theory and interval analysis [13]. The framework which constitutes the basis of this 

project is focused on probabilistic techniques only, which is why they will be the 

main focus of the thesis. 

When trying to represent parameter uncertainty which occurs during the design 

process, there are generally three main types of probabilistic models which can be 

used: random variable, random field as well as time-dependent stochastic 

processes [13]. It can be argued that it is most appropriate to use probabilistic 

models when sufficient computational or empirical data regarding the parameters 

of interest exists. This approach belongs to one of the two main schools of thought 

in statistics called the frequentist approach. This assumes that the variables of 

interest have fixed unknown values which can be quantified using confidence 

intervals. However, this method is not accurate unless data is easy to be obtained. 

Indeed, for the case studies presented in Chapter 4, it will become clear that 

obtaining data is time consuming and expensive, therefore another method of 

quantifying uncertainties is preferred. The alternative lies in the Bayesian approach, 

whose basic philosophy is that probability is the only measure of uncertainty [20]. 

As a consequence, even if not enough data is available, modeling the uncertainties 

can include past experiences as well as expert opinions. Lindley [21] even makes a 

very bold statement, saying that “Every statistician would be a Bayesian if he took 

the trouble to read the literature thoroughly and was honest enough to admit that 

he might have been wrong.” 

In a real situation, there is limited data in the early stages of the design process, 

meaning that finding distribution moments based on real data can be extremely 

difficult, which means that employing the frequentist approach is not appropriate. 

As a result, the next section will look into the theory regarding Bayesian inference. 
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2.2 Bayesian Analysis 

 

Bayesian theory provides an approach to statistical inference which differs from the 

well-known classical frequentist approach [21]. This difference lies in the form of 

the unknown parameters. In the frequentist context, those parameters are 

considered to be fixed meaning that they can be captured within confidence 

intervals given that a significant number of experiments are performed. The 

philosophy behind Bayesian analysis is that probability is the only measure of 

uncertainty and consequently, the unknown parameters from the problem should 

only be modelled as probability distribution functions instead of assigning them 

fixed unknown values. In the Bayesian context, those PDFs are also known as priors 

[22] (denoted by 𝜋𝜋(𝜽𝜽), where 𝜽𝜽 is the vector containing the parameters of interest)  

and they capture knowledge about the parameters before the data has been 

observed. They can have the form of expert knowledge which is subsequently 

updated via the likelihood function which contains data that has been observed. It 

is common in the literature to refer to the likelihood function as “probability of the 

data”, and this formulation can cause confusion because it is not immediately 

apparent what it means. Technically speaking, this expression is incomplete, as the 

Bayesian statistician is not interested in the probability of the data itself; the 

greatest interest lies in how probable the data is given the initial belief of the values 

taken by parameter 𝜽𝜽. As a result, it is common to mathematically express the 

likelihood function as 𝑓𝑓(𝒙𝒙|𝜽𝜽). This formulation of the likelihood is analogous to the 

way in which conditional probabilities are expressed, which stands to emphasize 

the ideas presented before. After the data has been observed and captured within 

the likelihood function, the prior is updated into a posterior denoted by 𝜋𝜋(𝜽𝜽|𝒙𝒙) 

which can be translated as “the belief regarding parameter 𝜽𝜽 given the observed 

data 𝒙𝒙. If the values which parameter 𝜽𝜽 can be captured within an interval, then 

mathematically, the posterior can be written as it is shown in Equation (1): 

 

𝜋𝜋(𝜽𝜽|𝒙𝒙) =
𝑓𝑓(𝒙𝒙|𝜽𝜽)𝜋𝜋(𝜽𝜽)

∫ 𝑓𝑓(𝒙𝒙|𝜽𝜽)𝜋𝜋(𝜽𝜽)d𝜽𝜽+∞
−∞

 (1) 

If on the other hand, 𝜽𝜽 takes discrete values, then the expression for the posterior 

will have the equivalent form shown below: 
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𝜋𝜋(𝜽𝜽|𝒙𝒙) =
𝑓𝑓(𝒙𝒙|𝜽𝜽)𝜋𝜋(𝜽𝜽)

∑ 𝑓𝑓(𝒙𝒙|𝜽𝜽𝒊𝒊)𝜋𝜋(𝜽𝜽𝒊𝒊)+∞
−∞

 (2) 

The formulations of the posterior from Equations (1) and (2) constitute what is 

known as the Bayes’ rule. One of its advantages stands in the fact that the technique 

can be used in an iterative fashion. Assuming that the first posterior had been 

obtained based on the data available at the moment, whenever a newer set of data 

becomes accessible, a re-updated posterior can be obtained. This concept is 

demonstrated below. 

 

Assuming two data points 𝑥𝑥1 and 𝑥𝑥2 forming vector 𝒙𝒙 have been obtained 

independently and sequentially, then the resulting posterior can be written in the 

following way [20]: 

 

𝜋𝜋(𝜽𝜽|𝑥𝑥1,𝑥𝑥2) =
𝑓𝑓(𝑥𝑥1,𝑥𝑥2|𝜽𝜽)𝜋𝜋(𝜽𝜽)

𝑓𝑓(𝑥𝑥1,𝑥𝑥2) =
𝑓𝑓(𝑥𝑥1|𝜽𝜽)𝑓𝑓(𝑥𝑥2|𝜽𝜽)𝜋𝜋(𝜽𝜽)

𝑓𝑓(𝑥𝑥1)𝑓𝑓(𝑥𝑥2)
 (3) 

 

𝜋𝜋(𝜽𝜽|𝑥𝑥1,𝑥𝑥2) =
𝑓𝑓(𝑥𝑥2|𝜽𝜽)
𝑓𝑓(𝑥𝑥2) �

𝑓𝑓(𝑥𝑥1|𝜽𝜽)𝜋𝜋(𝜽𝜽)
𝑓𝑓(𝑥𝑥1) � =

𝑓𝑓(𝑥𝑥2|𝜽𝜽)𝜋𝜋(𝜽𝜽|𝑥𝑥1)
𝑓𝑓(𝑥𝑥2)  (4) 

Equation (4) shows that the posterior density after the two data points have been 

obtained can also be found by first calculating the posterior corresponding to the 

first data point 𝑥𝑥1 and then using this as the prior in order to find the final posterior 

𝜋𝜋(𝜽𝜽|𝑥𝑥1,𝑥𝑥2). 

In order to illustrate how Bayesian updating works, an example will be given in 

section 3.1 of the Methodology chapter which will also illustrate the concept of 

conjugacy. 

 

This “specific manner” of choosing priors and likelihoods in order to obtain 

conjugacy can be seen in Figure 6 and Figure 7 below [23]: 
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Figure 6: Natural conjugacies regarding the beta prior (arrows start from boxes 

representing the likelihood function and point to the box showing the 

conjugate prior). The parameter on each arrow shows the parameter 

for which the prior is used to quantify uncertainty [23]. 

 

 

 

Figure 7: Natural conjugacies regarding the gamma and normal priors (arrows 

start from boxes representing the likelihood function and point to the 

box showing the conjugate prior). The parameter on each arrow shows 

the parameter for which the prior is used to quantify uncertainty [23]. 
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The way in which the flowcharts above are read is in the following way: the arrows 

leave from the box which represents the PDF of the likelihood function and they 

point towards a box which represents the PDF of both the prior and the posterior. 

In some cases, an arrow can loop which means that both the prior and the 

likelihood for the particular distribution help forming a conjugate relationship (as 

it is the case with the normal and gamma distributions). The different Greek letters 

on each arrow represent the parameters from each likelihood distribution which 

have their own PDFs given by the boxes that the arrows point to. 

In most real situations however, there is no natural conjugate relationship between 

the Bayesian parameters as it was described above. This means that in order to 

calculate the posterior distribution, it is needed to calculate the denominator from 

Equation (1) which integrates over all possible values for the parameter 𝜽𝜽. Even 

when dealing with conjugate priors, solving the integral can prove to be time 

consuming, although it can be done analytically. For more complex examples 

however this stops being the case, meaning that other ways of computing the 

posterior distribution need to be found. For instance, Smith et al [24] presented a 

method of computing the integral by approximating it with a sum of Gauss-Hermite 

quadrature terms. This numerical method is suitable for problems which have up 

to six dimensions, and as Naylor and Smith [25] pointed out, it only works for a 

class of problems which require the product between prior and likelihood to have 

the form of “polynomial function multiplied by a normal distribution”. A more 

general method is preferred in this case; preferably one which does not impose 

restrictions on the shape of either the prior or the likelihood and the method itself 

should be applicable to an arbitrary number of dimensions. Several such methods 

were identified in the literature and they are as follows: 

 

• The CDF inverse method involves knowing the analytical expression of the 

CDF and then calculating its inverse. A number 𝑢𝑢 is chosen randomly 

between 0 and 1, meaning that the drawn sample from the distribution of 

interest will be equal to CDF-1(𝑢𝑢). As straightforward as this method seems, 

it becomes virtually impossible to use as the complexity of the problem 

starts increasing because of the difficulty associated to calculating the 

inverse. 
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• The rejection sampling method involves finding a PDF 𝑞𝑞 and a constant 𝑐𝑐 

so that the PDF given by 𝑐𝑐𝑞𝑞 should be greater than the target PDF 𝜋𝜋 at all 

points. Subsequently, a sample is drawn from the distribution 𝑞𝑞 which is 

then accepted with probability 𝜋𝜋/𝑐𝑐𝑞𝑞. Several problems which are associated 

to this method have to do with the fact that in higher dimensions, the 

potential samples which are generated will have low values of likelihood 

associated to them, therefore the acceptance probabilities are expected to 

be low as well [26]. One way to go around this issue would be to try to 

maximize the likelihood which more often than not requires using 

sophisticated tools. This usually defeats the purpose of using rejection 

sampling as a computationally cheap method, which is why other sampling 

methods based on iterative Monte Carlo might be preferred. 

• The weighted bootstrap method involves drawing a number of samples 𝑛𝑛 

(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) from the proposal distribution 𝑞𝑞, and for each of them a 

weight is calculated. The value of weight 𝑖𝑖 is given by the following 

expression [26]: 

𝑤𝑤𝑖𝑖 =

𝜋𝜋(𝜃𝜃𝑖𝑖)
𝑞𝑞(𝜃𝜃𝑖𝑖)

∑ 𝜋𝜋(𝜃𝜃𝑖𝑖)
𝑞𝑞(𝜃𝜃𝑖𝑖)

𝑛𝑛
𝑖𝑖=1

 (5) 

Subsequently, a resampling procedure is set up, this time however the 

samples are drawn from the discrete distribution {𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛} with 

corresponding probabilities {𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛}. A random sample which is drawn 

from this last distribution is assumed to be an approximate sample from the 

target distribution 𝜋𝜋. As it was the case with the rejection sampling 

algorithm, problems which involve a high number of dimensions become 

difficult to solve using the weighted bootstrap method as posterior regions 

become harder to cover. 

• The Gibbs sampler is different than all the other methods presented above 

with regards to the proposal distribution; the Gibbs sampling algorithm 

does not use one. Instead, the samples are being drawn from the 

conditional target distribution with respect to each variable (provided that 

the conditional distributions are easy to sample from). Because a kernel 

function 𝑞𝑞 does not need to be found, there is therefore no error 

introduced when drawing the respective samples. In other words, the 

acceptance probability corresponding to those samples is always going to 



 

41 

be equal to 1. Given that a sample 𝜃𝜃𝑖𝑖 at step 𝑖𝑖 exists, the sample at step 𝑖𝑖 +

1 can be obtained in the following way: 

 

𝜃𝜃1𝑖𝑖+1~𝜋𝜋�𝜃𝜃1𝑖𝑖 |𝜃𝜃2𝑖𝑖 ,𝜃𝜃3𝑖𝑖 , … ,𝜃𝜃𝑛𝑛𝑖𝑖 � 

𝜃𝜃2𝑖𝑖+1~𝜋𝜋�𝜃𝜃2𝑖𝑖 |𝜃𝜃1𝑖𝑖+1,𝜃𝜃3𝑖𝑖 , … ,𝜃𝜃𝑛𝑛𝑖𝑖 � 

𝜃𝜃3𝑖𝑖+1~𝜋𝜋�𝜃𝜃3𝑖𝑖 |𝜃𝜃1𝑖𝑖+1,𝜃𝜃2𝑖𝑖+1, … ,𝜃𝜃𝑛𝑛𝑖𝑖 � 

⋮           ⋮           ⋮ 

𝜃𝜃𝑛𝑛𝑖𝑖+1~𝜋𝜋�𝜃𝜃𝑛𝑛𝑖𝑖 |𝜃𝜃1𝑖𝑖+1,𝜃𝜃2𝑖𝑖+1, … ,𝜃𝜃𝑛𝑛−1𝑖𝑖+1 � 

 

One important feature to notice is that each conditional distribution makes 

use of the previously updated sample element at step 𝑖𝑖 + 1. The main 

shortcoming of this method is the fact that the conditional distributions 

have to be accessible and easy to sample from. For complex problems it 

might happen that only a few components will have their conditional 

distributions available [26]. One way to solve this problem, as Muller 

suggested [27], would be by making use of a Metropolis-Hastings sub-chain 

within the Gibbs algorithm that will only draw samples corresponding to the 

components for which the conditionals are not known. 

• The Metropolis-Hastings algorithm is predominantly used in the literature in 

the cases when the distribution the distributions which need to be sampled 

from are complex and also not completely known (generally, the 

denominator from Equation (1) is unknown) [26]. As opposed to the Gibbs 

sampler, it can be used in instances when conditional distributions are not 

known [26]. One drawback of this method is that its success depends on the 

acceptance probability. For example, if the step size is too low, then 

although the acceptance probability will be close to 1, the search process 

will be very slow, meaning that a large number of iterations are needed. 

Conversely, if the step size is large, the samples will be most likely taken 

from the tails of the posterior distribution, resulting in a very low acceptance 

ratio.  

 

The following section is dedicated to a brief introduction to Bayesian networks as 

they had been identified as a formal tool with a great amount of potential 

regarding the visualization of the Bayesian processes.  
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2.3 Expert Systems and Bayesian Networks 

 

This section briefly introduces the idea of expert systems and Bayesian networks 

(BNs) by first reviewing the relevant literature. The reason why Bayesian networks 

are investigated is twofold: they represent a formal way of implementing Bayesian 

inference to a problem where making predictions is a priority, and also their 

graphical format can help visualise the way they propagate information throughout 

the model. Before going into further detail, the term “expert” which lies at the 

foundation of this chapter will be analysed. 

Knowledge is usually linked to the idea of intelligence, which is generally not as 

easy to define as it is to identify [28]. Usually the intelligence of a person is 

quantified based not only on the knowledge they possess, but also what they can 

apply that knowledge to. This knowledge is then associated to the term “expert”; 

according to the Concise Oxford English Dictionary, it is defined as “a person having 

special skill or knowledge”. In simple terms, people might use the word “expert” in 

order to associate it to someone who they turn to whenever they encounter a 

problem which is either too difficult for them or outside their own area of 

specialization. In the same context, an expert system can be considered to be a 

tool whose aim is to condense the knowledge of one or multiple experts so as to 

make it accessible for people who don’t have that specialized knowledge. A more 

formal definition of an expert system has been given by Welbank [29] in the 

following way: 

“An expert system is a program which has a wide base of knowledge in a restricted 

domain, and uses complex inferential reasoning to perform tasks which a human 

expert could do.” 

Cowell [30] summarizes the above phrase by using the following qualitative 

expression: 

Expert System = Knowledge Base + Inference Engine 

Cooper [31] investigated the current research directions regarding the 

development of Bayesian network based expert systems. The domains in which 
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expert systems are applied are often complex and characterised by uncertain 

knowledge and data. In the beginning, probability approaches have been avoided 

whenever uncertainty had to be represented because of concerns that those kinds 

of approaches are usually not mathematically rigorous. Recently however, 

probability has started being revisited in the context of artificial intelligence [32]. 

Belief networks have been identified in recent research as a pragmatic method of 

acquiring knowledge. More details about them will be given in this section. 

Sakellaropoulos and Nikiforidis [33] used a Bayesian belief network in order to 

create a decision support system for the prognosis of head-injured patients at an 

intensive care unit (ICU). They compared its performance to other systems which 

include: a simpler belief network which assumes conditional independence among 

the results, as well as a human expert. The results tend to show that performance 

is not only better than the performance of the independence model, but is also 

comparable to that of the expert neurosurgeon [33], which by itself stands to 

emphasize the power of using this approach. The authors also stated that although 

there are other techniques such as 3-nearest neighbours which are suitable for their 

problem, Bayesian approaches have been implemented for other reasons. Namely, 

Bayesian networks have rigorous mathematical descriptions, while at the same time 

they mirror the knowledge structures in the human mind [34]. This has the effect 

of facilitating the interpretation of knowledge and optimising decision making. 

Guo [35] implemented the Bayesian belief network framework to a safety 

assessment expert system. The first step taken in this work was to identify the 

problems happening during the application of safety standards. It is the case that 

those problems are related to the uncertainty present in the safety assessment, 

which makes the Bayesian networks a suitable tool due to their probabilistic nature. 

Consequently, due to the solid mathematical foundation behind them, they can 

allow for a quantitative evaluation of safety. In addition, they can also be viewed as 

expert systems which allow people to make decisions. 

Pitchforth and Mengersen [36] referred to Bayesian networks in terms of robust 

methods of validating them in the case when there are no objective sets of data 

available. Their aim was to demonstrate that even when there is no data at all, 

validation is still possible. The traditional validation methods for expert elicited 

networks involve either comparing the model predictions with available data, or by 

directly asking the experts who provided the data in the first place. However, unless 
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objective data is available, Bayesian networks cannot be properly validated using 

test data. As a result, it cannot be said whether a test has been passed in a 

conclusive fashion. Consequently, they claim that for Bayesian networks based 

either solely on expert elicitation or on a combination of expert elicitation and data, 

a comprehensive framework is needed for the validation process. The framework 

proposed, although not comprehensive, is simply formed from a number of steps 

which can be followed in order to allow the designer to gain confidence in the 

validity of the model. Their main proposal is that when actual data cannot be used 

for the validation process, the posterior predictive distribution (the prediction) 

should be shown to an expert who will be able to tell whether he thinks the 

predictions match their expectations. 

Jongsawat and Premchaiswadi [37] put forward a methodology which focuses on 

obtaining the structure of a Bayesian network from experts. More specifically, their 

method is based on transforming qualitative expert knowledge into rigorous prior 

distributions which can be used to build a Bayesian probabilistic model. It is 

proposed by the authors that this method is useful for group decision making. To 

be more specific, the qualitative knowledge extracted from a group can be 

transformed into probabilities used further in the Bayesian network. 

Karandikar et al. [38] used a Bayesian approach in order to be able to predict the 

life for a cutting tool. The empirical model which is used to obtain life contains 

several calibration parameters for which prior distributions were given. As a first 

iteration, only knowledge regarding the range of the parameters was assumed 

(which resulted in uniform prior distributions being used). The likelihood function 

only used three experimental values and was assumed to have a normal 

distribution. The Bayesian updating was done using the component-wise 

Metropolis-Hastings method, the authors mentioning that the alternative updating 

procedure (block-wise updating) would be more computationally expensive. 

Comparison with a deterministic model lead to the conclusion that using an 

informed prior would result in a more accurate prediction of the final result, without 

the need to use a large amount of experimental data. As a result, normal 

distributions were used for the priors, and also different values for the standard 

deviation were used for the likelihood. The case study stands to illustrate the power 

of the Metropolis-Hastings algorithm as a tool used to sample from multivariate 

distributions, and also that the use of optimal priors and Bayesian inference is a 

robust method which can be used to quantify uncertainties. 
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Karandikar et al. [39] also used Bayesian inference in order to predict the remaining 

useful life for structures that had been damaged due to fatigue. They used the 

Paris’ law, for which the calibration parameters were assigned prior distributions 

that were subsequently updated using experimental data. Although the 

fundamental theory is the same as for the previous case study, the actual algorithm 

employed this time is the random walk approach. A future direction for 

Karandikar’s research would be to combine it with decision analysis in order to 

assign a monetary value to the information gained from experiments prior to 

performing them. In this fashion, it is possible to determine the optimum number 

of performance cycles before the structure has to be placed under maintenance. 

Zhu et al. [40] applied MCMC methods in order to predict the life of turbine disks 

due to low cycle fatigue. Besides predicting life, the Bayesian framework developed 

by Zhu et al. also has the aim of quantifying uncertainty of material properties. The 

results of the Bayesian framework were afterwards compared against experimental 

data as well as four different fatigue models, and they showed that the probabilistic 

predictions are in agreement with the experimental data. According to the author, 

this makes the framework a preferred alternative to deterministic methods for low 

cycle fatigue life prediction. 

Yeratapally [41] used an MCMC approach in order to study the fatigue life as well 

as the crack propagation based on microstructure, and the MATLAB code used in 

this respect (which is currently owned by Rolls-Royce plc) was one of the starting 

points of this research. This is especially true when looking into the second case 

study shown in Chapter 4. 

The knowledge base is considered to represent the core of any expert system, in 

the sense that regardless of how advanced the inference engine itself is, as long as 

the level of knowledge is poor, the consequent inferences will not be very useful. 

Expert systems are characterized by their ability to deal with uncertainty which is 

also the main scope of this thesis. The way in which it does so is by making use of 

the Bayes’ theorem explained in the previous section and by representing the 

probabilistic expert system onto a graph; the resulting structure has the potential 

to become a Bayesian network. Before discussing Bayesian networks however, a 
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brief overview will be given regarding similar graphical methods of taking 

decisions. 

 

• Diagnostic decision trees. They form a structured sequence of questions 

where each response determines the next set of questions which should be 

asked [30]. This particular system is similar to a flowchart in that after 

answering a question, the appropriate path will have to be taken according 

to the answers given to the questions which are contained by the nodes of 

the tree. Franklin et al. [42] have taken into consideration a diagnostic 

decision tree whose purpose was to diagnose heart problems in newborns. 

The particular algorithm has been applied to around 400 cases. Although 

this type of decision tree is easy to implement and explain, they have 

several shortcomings. Because of their form, they are completely reliant 

upon the knowledge base in the sense that a single erroneous choice can 

lead to a completely wrong conclusion. In addition to that, their usage 

becomes extremely limited if there is any information missing. 

• Production systems. Those are generally more flexible than the diagnostic 

decision trees and their goal is to perform reasoning by using logical rules. 

An example to illustrate this idea is shown with an example from Winston 

[43]: 

 

o IF the animal has hair THEN it is a mammal. 

o IF the animal gives milk THEN it is a mammal. 

o IF the animal has feathers THEN it is a bird. 

o IF the animal flies and it lays eggs THEN it is a bird. 

 

Production systems do rely on rules, however they allow for more flexibility 

unlike diagnostic decision trees. The main reason is that they can make 

deductions from a given set of assertions (known as forward chaining) as 

well as determine whether assertions exist given a specific conjecture 

(backward chaining). On the other hand, they don’t allow for multiple choice 

questions as much as they focus on the assertions themselves. The 

consequence of that is that production systems can’t handle negations very 

well [43]. In particular, they cannot differentiate between formulations such 
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as “found to be false” and “not found to be true”, meaning that extra 

conditioning would need to be applied. 

 

Although the above examples are tightly related to logical deductions, most of the 

time the available data can be scarce, meaning that a method of coping with 

uncertainty needs to be devised. It has been the case, especially in the Artificial 

Intelligence (AI) community, that probability theory is not a suitable tool in order 

to quantify uncertainty having to do with expert systems. As a result, alternative 

measures of measuring uncertainty have been developed such as fuzzy logic [44] 

as well as belief functions [45]. In the next paragraph the reasoning will be given 

regarding why there is a good reason for using probability theory for studying 

expert systems and also why the initial beliefs about its unsuitability might not be 

necessarily true. The reasons why probability was considered useless, according to 

Cowell [30] were as follows: 

• The kind of uncertainty present in an expert system is different from the 

very idea of probability which is strongly related to observable events. 

• A joint probability distribution of many quantities is impractical. 

• Those two ideas stem from the fact that the interpretation of probability has 

always been a hot debate topic. There have been two main approaches 

regarding the understanding of probability: the objective and the 

epistemological approach. One of the most relevant objective 

interpretations has been the frequentist one regarding to which probabilities 

have been viewed as quantities characteristic of any event, the main belief 

being that their true values become observable as the number of 

experiments able to cause the said event becomes very large (if 𝑛𝑛 is the 

number of experiments, then frequency of a particular event to occur 

becomes close to its innate probability 𝑝𝑝 as 𝑛𝑛 tends to infinity). However, 

this approach implies that the meaning of probability is strictly related to 

events which are repeatable; their corresponding probability can be found if 

enough observations are being made. Unfortunately, this view severely 

limits the usage of probability theory in various contexts such as expert 

systems, and it was this particular view which caused people to adopt non-

probabilistic approaches and discard probability as a potential method 

which could be used in this respect [30]. 
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The second view on probability refrains from describing it as a deterministic 

unknown value characteristic of the events being studied, and instead, it uses the 

concept of conditional probability in order to potentially refer to a state of “mental 

uncertainty” [30] which can change as more information is being provided. This 

view is consistent with the Bayesian formulation regarding uncertainty 

quantification which has been studied in the previous section. The Bayesian 

approach is also used for the intents and purposes of the research conducted for 

this project. Seeing that Bayesian theory has been proposed as a consistent 

framework for different probabilistic applications, it might not be unreasonable to 

wonder why it is not used more often. According to Lindley [21], the reason for this 

lies first of all in the fact that only recently has there been a trend of this subject 

being taught thoroughly at universities throughout the world, which can also be 

indicative of people starting to realize its strength. Coupled with this fact, Bayesian 

theory might not be an accessible tool especially for someone who had been trained 

to make use of the frequentist approach. There is even an arguably blunt remark 

that Lindley makes by saying that “Every statistician would be a Bayesian if he took 

the trouble to read the literature thoroughly and was honest enough to admit that 

he might have been wrong.” [21]. 

The Bayesian belief network is the third way of quantifying uncertainties related to 

expert systems and in broad terms, they represent a probability distribution in the 

shape of a Directed Acyclic Graph (DAG) which has the following mathematical 

formulation [46]: 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = �𝑓𝑓�𝑥𝑥𝑖𝑖|pa(𝑥𝑥𝑖𝑖)�
𝑁𝑁

𝑖𝑖=1

 (6) 

The notation pa(𝑥𝑥𝑖𝑖) stands for the “parent” node of random variable 𝑥𝑥𝑖𝑖. Also, 𝑓𝑓(𝑥𝑥𝑖𝑖) 

is the probability distribution of random variable 𝑥𝑥𝑖𝑖 which can be either discrete or 

continuous depending on the context. An example which can illustrate those ideas 

and also expand on them is shown below in Figure 8: 
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Figure 8: Example of a Bayesian Network consisting of four variables. 

 

The network shown in Figure 8 is considered to contain two independent nodes 

given by 𝑥𝑥1 and 𝑥𝑥2. As a result, they do not have any parent nodes associated with 

them (there are no arrows pointed to either of them). They are however the parent 

nodes of node 𝑥𝑥3 and although 𝑥𝑥4 also depends on 𝑥𝑥1 and 𝑥𝑥2 (through 𝑥𝑥3), the only 

parent node of 𝑥𝑥4 is going to be 𝑥𝑥3. As the dependence of 𝑥𝑥4 on 𝑥𝑥1 and 𝑥𝑥2 is 

manifested through 𝑥𝑥3 it is therefore considered that 𝑥𝑥4 is independent of either of 

them. Equation (6) (which is a particularization of the law of total probability [22]) 

can be rewritten as: 

 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, 𝑥𝑥4) = 𝑓𝑓(𝑥𝑥4|𝑥𝑥3,𝑥𝑥2, 𝑥𝑥1)𝑓𝑓(𝑥𝑥3,𝑥𝑥2, 𝑥𝑥1) (7) 

By applying the same rule to the second factor on the right hand side, Equation (7) 

becomes: 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3,𝑥𝑥4) = 𝑓𝑓(𝑥𝑥4|𝑥𝑥3,𝑥𝑥2, 𝑥𝑥1)𝑓𝑓(𝑥𝑥3|𝑥𝑥2,𝑥𝑥1)𝑓𝑓(𝑥𝑥2|𝑥𝑥1)𝑓𝑓(𝑥𝑥1) (8) 

The independence relations between the variables 𝑥𝑥1 and 𝑥𝑥2 will result in Equation 

(8) to become: 

𝑥𝑥1 𝑥𝑥2

𝑥𝑥3

𝑥𝑥4
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𝑓𝑓(𝑥𝑥1, 𝑥𝑥2,𝑥𝑥3,𝑥𝑥4) = 𝑓𝑓(𝑥𝑥4|𝑥𝑥3)𝑓𝑓(𝑥𝑥3|𝑥𝑥2,𝑥𝑥1)𝑓𝑓(𝑥𝑥2)𝑓𝑓(𝑥𝑥1) (9) 

There are two particular types of variables which can represent the nodes of a 

Bayesian network; discrete or continuous. There are a great number of simple 

discrete Bayesian networks which can be found in the literature (such as the “wet 

grass” example [46] or the “burglar model” [47]), however in most cases, 

continuous variables are used in order to quantify uncertainty surrounding various 

processes. A very simple example of a continuous Bayesian network is given below 

in Figure 9. 

 

 

Figure 9: Bayesian network showing two continuous variables and a constant. 

 

The distributions which are used for the different parameters above are as follows: 

𝜋𝜋(𝜃𝜃) =
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)𝜃𝜃

𝛼𝛼−1(1− 𝜃𝜃)𝛽𝛽−1 (10) 

 

𝜃𝜃

𝑘𝑘

𝑛𝑛

𝛽𝛽𝛼𝛼
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𝑓𝑓(𝑘𝑘|𝜃𝜃) = 𝐶𝐶𝑛𝑛𝑘𝑘𝜃𝜃𝑘𝑘(1− 𝜃𝜃)𝑛𝑛−𝑘𝑘 (11) 

The parameter 𝜃𝜃 has a prior beta distribution with parameters 𝛼𝛼 and 𝛽𝛽. The notation 

Γ(𝑥𝑥) stands for the gamma function calculated in point 𝑥𝑥. The first term from the 

formula of the binomial distribution of 𝑘𝑘 given 𝜃𝜃 stands for “𝑛𝑛 choose 𝑘𝑘” and it is 

expressed in the usual way 𝐶𝐶𝑛𝑛𝑘𝑘 = 𝑛𝑛!
(𝑛𝑛−𝑘𝑘)!𝑘𝑘!

. Also, in Figure 9, the nodes for 𝑛𝑛, 𝛼𝛼 and 𝛽𝛽 

are represented by double circles, which means that those parameters are 

deterministic. Even more, in this particular case, they are assumed to be constant 

for explanatory purposes. As a result, there are several operations which can be 

done on a Bayesian Network, and consequently, the one in Figure 9 will be used as 

an example to illustrate them. 

First of all, a method needs to be used in order to calculate the prior predictive 

distribution. Mathematically, this refers to the denominator of Equation (1). An 

important reason why doing this is a good idea is in order to see how the model 

“thinks” the observed data should look like before actually obtaining any real data. 

In addition, by knowing the PDF of the prior predictive, synthetic data can be 

generated (by taking samples from it) in order to perform the posterior inference 

(which will be described shortly) to test the inference procedures used in the 

network. If subsequently it is found that the inference performs properly, then it 

can be expected that the inference should also work for any actual data. As it was 

explained above however, analytically computing this integral is no easy task and 

unless the problem being studied has a simple form (for instance using conjugate 

priors), then it can become virtually impossible. Using Bayesian networks however, 

allows for the integral to be computed numerically using what is known as 

ancestral sampling. The method is easy to understand and implement and it is only 

based on Monte Carlo sampling (instead of MCMC as it is the case when sampling 

from the posterior). The first step consists of drawing samples from all the 

independent nodes (nodes that have no parents). After that, samples are drawn 

from the distributions conditional on the already sampled parent nodes, and this 

top-to-bottom process is continued until samples have been drawn from all relevant 

nodes. In the case shown in Figure 9, the first sample is drawn from the prior 

distribution of 𝜃𝜃, and given the value obtained, a second sample is drawn from the 

distribution 𝑘𝑘|𝜃𝜃. This second sample is considered to come from the prior 

predictive distribution of 𝑘𝑘 (also known as 𝑓𝑓(𝑘𝑘)). 𝑛𝑛 is considered to be a constant 
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so it will be kept at its original value all of the time. The whole process is repeated 

for a pre-set number of iterations (the exact number depends on the problem) until 

the designer is confident that enough samples have been drawn in order to obtain 

an accurate representation of the prior predictive. 

For the example given in Figure 9, the prior predictive distribution has been 

computed in two different ways: first, a Monte Carlo analysis was used to find 

10000 samples and plot those on a histogram, and for the second one, the integral 

giving 𝑓𝑓(𝑘𝑘) has been computed analytically. The values for 𝛼𝛼 and 𝛽𝛽 have been 

randomly chosen as 5 and 2, while the total number of trials 𝑛𝑛 has been set to 10. 

The evaluation of the integral gave an expression for 𝑓𝑓(𝑘𝑘) as follows: 

𝑓𝑓(𝑘𝑘) = 𝐶𝐶𝑛𝑛𝑘𝑘
Γ(𝛼𝛼 + 𝛽𝛽)
Γ(𝛼𝛼)Γ(𝛽𝛽)

Γ(𝛼𝛼 + 𝑘𝑘)Γ(𝛽𝛽 + 𝑛𝑛 − 𝑘𝑘)
Γ(𝛼𝛼 + 𝛽𝛽 + 𝑛𝑛)  (12) 

The resulting histogram found from the algorithm described above as well as the 

plot of 𝑓𝑓(𝑘𝑘) for integer values of 𝑘𝑘 between 0 and 10 can be seen below in Figure 

10: 

 

 

Figure 10: Comparison between numerical and analytic calculations of the prior 

predictive distribution 



 

53 

It can be seen that when 10,000 samples are taken, the result from the numerical 

method follows the analytical solution. This concept has been illustrated to a very 

simple example, however it could be applied to more complex cases as well. 

The other operation which might have to be done on a Bayesian network is related 

to finding the posterior distribution given that some data has been observed. The 

way to solve this problem for continuous variables is to make use of an MCMC 

algorithm. The only difference however, is that this time the samples drawn will 

always be conditioned upon the observed values. The same example shown in 

Figure 8 is going to be used to illustrate this concept. After the numerical algorithm 

is applied, the result will be compared to the analytical one. In this instance, it is 

easy to compute the posterior because a quick look at Figure 6 shows that the beta 

prior is conjugate if a binomial likelihood is used. As a result, the posterior will 

have its distribution given by: 

𝜃𝜃|𝑘𝑘~Beta(𝛼𝛼 + 𝑘𝑘,𝛽𝛽 + 𝑛𝑛 − 𝑘𝑘) (13) 

It will be assumed that the observed value is 𝑘𝑘 = 3. The Metropolis-Hastings 

algorithm has been used in order to draw samples from the posterior which has 

been conditioned on the observed value of 𝑘𝑘. The results have been plotted on the 

same graph in Figure 11 below and it is clear that in this particular case the MCMC 

method has been accurate in finding the shape of the posterior. The main reason 

for that of course is that the case under consideration has been relatively simple. 
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Figure 11: Analytic posterior and histogram for an observed value of k = 3 

The examples shown above have the purpose of demonstrating one way in which 

Bayesian networks could be implemented within an expert system. For instance, 

some of the nodes in Figure 9 could be based on expert judgements regarding the 

distribution of various parameters such as 𝜃𝜃 or even 𝛼𝛼 and 𝛽𝛽 if they were not 

considered fixed or deterministic. The same kind of philosophy could be applied 

in the same manner to more complex problems as it will be demonstrated on the 

case studies presented later on. Before that however, it would be reasonable to ask 

how the expert knowledge, which lies at the core of any expert system, is going to 

be elicited. It therefore comes as no surprise that this topic itself needs to be 

analysed. As a result, the following section will look into various considerations 

which have to be taken when trying to elicit expert knowledge. 
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2.4 Elicitation of Expert Judgements 

 

There is a great body of literature which is concerned with uncertainty 

quantification via elicitation of expert judgements. Several authors such as 

O’Hagan, Kadane, and Winkler published a number of papers which explore this 

subject in great detail and will be discussed in this section. The main points which 

have to be addressed have to do with the structure of the elicitation process as well 

as with the methods needed to be used in order to draw the relevant judgements 

from the experts. In addition to that, an elicitation has already been performed 

within Rolls-Royce plc for the purposes of this project. For more details about that, 

the reader is referred to section 4.3, which outlines the details of the third case 

study. 

Before going further, it is important to consider the meaning of the term 

“elicitation”. Generally, it refers to information needed to be drawn in order to fulfil 

a certain purpose. More often than not, the information being elicited has one out 

of two forms: 

• Exact knowledge possessed by the experts can be simply drawn out by 

asking a simple question. In this case, if multiple experts have the same 

particular piece of knowledge, they should all give the same value [48]. 

• Judgements regarding an uncertain quantity involve a more complex 

process, since this time, the elicitor is not asking for specific pieces of 

knowledge; the aim is to represent the expert’s uncertainty about some 

parameters of interest in the form of PDFs. The elicitor is able to draw this 

out by asking for some estimates. More details about this will be given in 

this section. 

At the end of section 2.3 it was stated that in a Bayesian context, expert judgements 

are the ones giving the prior for the expert systems taken into consideration. 

Although there are several reviews and books on prior elicitation such as the ones 

by Kadane and Wolfson [49] as well as Meyer and Booker [50], according to O’Hagan 

[51] the topic deserves more attention. O’Hagan states that “elicitation is a key 

component of any serious Bayesian analysis in which the data are not so numerous 

as to swamp whatever prior information there might be”. Because of its importance 

and complexity, a rigorous framework needs to be set up within which the needed 
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judgements have to be drawn out with as little bias as possible. Before talking 

about the potential biases which can occur, it would be useful to give a short outline 

of how a generic elicitation process looks like. Some steps towards outlining this 

have been identified by O’Hagan and are shown in this section. In order to gain a 

deeper understanding into the whole elicitation process, the reader is referred to 

O’Hagan [48]. A brief summary of the process can be seen below: 

1) The objectives. Obviously, the prime objective of any elicitation process is to 

gather enough information in order to solve a problem. This information 

mainly refers to quantities which need to be elicited to solve the problem, 

and whose values are uncertain. It is also important to clearly define the 

quantities of interest to the expert so the chances of any ambiguity are 

reduced as much as possible. 

2) The format. There is flexibility in the manner in which the elicitation is 

conducted; it can take the form of a questionnaire which can be sent by 

mail/email, uploaded on a website, or it can take a more personal form 

either by telephone or face-to-face meeting. 

3) The experts. The number of experts taking part in the elicitation process can 

vary; it usually depends on availability, resources as well as the quantities of 

interest which are elicited. For instance, in the case of the European Food 

Safety Agency (EFSA), the experts whose knowledge is elicited are either 

external experts or members of their relevant working group [48]. 

4) The elicitor. In the case when the format is either a telephone elicitation or 

a face-to-face meeting, an obvious participant is the elicitor who has the 

purpose of controlling the flow of the elicitation. If the elicitation has the 

form of a questionnaire, the elicitor is still able to control the direction of 

the elicitation process, however in this case, this is only limited to designing 

the questionnaire. 

5) Other participants. If the elicitation has the form of a meeting, there can be 

other participants as well. Usually, there can be field experts that have 

general knowledge, and their role can be to offer background data as well 

as clarify the objectives to the experts. 
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6) Preparation and training. The experts need to be aware of the probabilistic 

judgements which they need to provide, meaning that unless already 

familiar with the statistics aspects, enough preparatory material has to be 

provided prior to the elicitation. 

7) The sequence of questions. As mentioned in the section above, the ultimate 

goal of any elicitation process is to represent the experts’ uncertainty 

regarding different parameters in the form of PDFs. Although the types of 

questions asked are definitely of key importance, the exact sequence and 

wording of questions must also be taken into account. 

8) Fitting. The judgements are used in order to fit a PDF (which can refer to one 

variable or several, in which case the PDF will be a joint distribution). 

Although relatively straightforward, an issue arises when there are multiple 

experts giving their judgements. 

9) Documentation and reporting. After the fitting step, the obtained PDFs are 

reported back to the experts who can then provide feedback which depends 

on whether the uncertainty regarding the parameters of interest. The elicitor 

then uses this new information to update the distributions which are once 

again shown to the experts. Several such iterations can take place until both 

parties are satisfied with the result. 

A simplified diagram illustrating the main outline of an elicitation process is shown 

below in Figure 12. 

 

Figure 12: Simplified chart of the elicitation procedure [52] 

Setup (Screening, 
Preparation, 

Training)
Elicit Fit Adequate?

No
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It becomes clear that elicitation itself is an iterative process; the elicitor asks the 

expert about estimates which are used to build PDFs, and then the PDFs are 

presented to the experts who can then choose to update their estimates if 

necessary. This process continues until both parties are satisfied with the results 

(illustrated by the feedback loop at the bottom of Figure 12).  

 

2.4.1 Elicitation frameworks 

Landquist et al. [53] used the SHELF method [54] in order to perform an expert 

elicitation workshop in order to quantify uncertainties regarding risk assessment 

of shipwrecks. The input coming from experts is mainly in the form of probabilities 

of an opening in a shipwreck occurring due to a variety of causes. The motivation 

for using experts for this case study was that information necessary for a shipwreck 

risk assessment may be incomplete or simply non-existent. The SHELF quartile 

method has been implemented in the elicitation workshop in order to obtain 

Bayesian priors. Available data is used to update them, giving posterior 

distributions, which allow the Bayesian network to estimate the annual discharge 

probability from shipwrecks and consequently provide decision support.  

An elicitation framework different from SHELF has been used by Johnson et al. [55] 

in order to look at methods of controlling invasive species (in particular the tegu 

lizards from southern Florida) by using expert judgements. The type of elicitation 

workshop used was based on the 3-point process [56] which involved eliciting a 

median and a 95% confidence interval from each expert in a group. The judgements 

were drawn separately and were subsequently shown to everyone who were 

afterwards allowed to revise their opinions subjected to group discussions. 

However, consensus was not enforced because, similarly to what O’Hagan [48] 

suggests, the final result would not be based on genuine agreement, but on group 

pressure instead. This goes against the main interest of performing the elicitation 

which was to assess the full range of the experts’ opinions. 

One important consideration to take is that due to the personal nature of the 

procedure, there is a high probability of biases appearing for instance if the expert 

has some kind of personal interest in the outcome of the elicitation. Those can 

impact the outcome in a negative way which makes it paramount for the elicitor to 

be aware of them and know how to account for them. Before moving on to the next 

section and talking about biases, it would be worth defining what an expert is. The 
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most popular idea that people have about this concept is that an expert is a person 

who has special knowledge regarding the problem for which the elicitation is being 

performed. However, this is not always the case. For instance, some surveys were 

concerned with studying adolescent decision making around risky behaviours [52]. 

In this case, the elicitor might want to ask the teenagers themselves how they 

perceive risk. It becomes clear that in this situation the lack of expertise is the 

whole point of the elicitation process. Consequently, the title of “expert” is 

proposed to refer just to a person whose knowledge is being elicited and nothing 

beyond that. In the section below, several results of psychological research which 

have to be taken into account when designing a method of quantifying expert 

knowledge are presented. 

 

2.4.2 Psychological Considerations 

It is agreed that any elicitation method in general has the purpose of connecting 

the expert’s opinions to their representation in statistical form. As a natural 

consequence, understanding both the psychological and the statistical parts of the 

elicitation process is needed in order to develop an efficient elicitation method. 

This idea is reinforced by Hogarth [57] in the following statement: 

“Assessment techniques should be designed both to be compatible with man’s 

abilities and to counteract his deficiencies.” 

The amount of psychological research that should go into elicitation is an 

enormous topic by itself, so only some key findings will be presented here. The 

way and which a person is able to assess the probability of an event or judge various 

statistical parameters. Those judgements are found to be based upon heuristics 

which generally can prove to be effective [52], however there is the risk that they 

can cause significant levels of bias. Some of the most common types of biases that 

can occur are listed below: 

• Judgement by representativeness is a common heuristic which is relevant to 

questions of the form: “What is the probability that event 𝐴𝐴 will generate 

event 𝐵𝐵?” [52]. In statistical terms, this asks about the conditional probability 

𝑃𝑃(𝐵𝐵|𝐴𝐴), and in general people tend to compare the main features of 𝐴𝐴 with 
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those of 𝐵𝐵 when giving an answer. What many people do on the other hand 

(which is where the bias stems from) is that they don’t take into account the 

unconditional probability 𝑃𝑃(𝐵𝐵) when making the judgement [58] (i.e. little to 

no attention is given to the marginal probability of event 𝐵𝐵). 

 

• Judgement by availability refers to the case when a person is asked about 

the frequency of an event occurring and they make judgements by using 

examples which come to mind. It is inevitable that some examples are 

recalled better than others, and although others might seem unlikely, they 

can prove to occur more often than the more obvious ones. For instance, 

someone might be asked whether a randomly chosen English word is more 

likely to have the letter “r” as its starting or as its third letter. It is much 

easier to recall words which begin with “r”, meaning that most probably the 

expert will skew the probability in favour of words that start with “r”, 

although the exact opposite is true [58]. 

 
• Judgement by anchoring and adjustment is one of the most predominant 

types of biases which can occur in elicitation processes especially when the 

expert is asked to estimate a value based on an initial starting point which 

is called an anchor. The bias usually comes from the fact that the person 

fails to adjust sufficiently in order to obtain a better result; this phenomenon 

is known as anchoring [59]. There was an experiment performed by Tversky 

and Kahneman [60] in which people were asked to estimate the percentage 

of African countries in the United Nations using different initial starting 

values. As it turned out, most people failed to adjust enough; subjects with 

higher starting values arrived at much greater final values than those who 

were given small starting values. 

 

• Tversky and Kahneman refer to the Law of small numbers [60] as the bias 

which governs some people’s belief that a small sample from a population 

should contain all important characteristics of the population as a whole. 

The simplest example possible is flipping a coin and writing down the 

outcomes. Most people expect the sequence HTHTHTH (H-heads, T-tails) to 

be more likely than HTTTHHH and even more likely than HHHHTHH, as the 

last two sequences don’t seem to be an accurate representation of the 

fairness of the coin. Most of the time, chance is fallaciously viewed as a self-

correcting process, the belief being that a deviation in one direction (more 
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instances of heads) should result in a deviation in the opposite direction. 

This idea is also known as the “gambler’s fallacy”. What actually happens in 

reality is that those deviations will simply be diluted in the long run, causing 

the probability of a head to get closer to 0.5. 

 

 

• Hindsight bias is a certain type of bias which occurs whenever people are 

asked to estimate the prior probability of an event after its occurrence. 

Because the subjects already know what has occurred, they have a tendency 

to overestimate the prior probability, even if the occurrence of the event 

might have seemed unlikely before it actually took place. In the same 

manner, the prior probability can be underestimated for events that did not 

occur [52]. 

 

• Conservatism is a type of bias which occurs in the Bayesian context when 

the experts are made aware of the prior probabilities. This is also similar to 

the anchoring bias discussed above in the sense that the judged posterior 

values are close to the original prior. An experiment which is usually done 

in order to illustrate this idea is by drawing red and blue poker chips from a 

bag and asking about the posterior probability that the bag from which the 

chips were drawn contains mostly red chips. For example, there could be 

two bags containing 70% red and 30% blue chips, while another contains 

30% red and 70% blue (those percentages are unknown to the expert). 

Samples are drawn from a single bag which is chosen via a coin flip (each 

bag has a 50% probability of being selected – this is the prior probability). 

Assuming that the sample contains 8 red and 4 blue chips, the expert is 

asked to assess the probability that the chips were drawn from the “red” bag. 

It has been observed that the posterior probability given by the experts is 

around 75% which is a lot less than the true probability found by using the 

Bayes’ theorem which is approximately 96.7%. 

 

• Conjunction fallacy is discussed in Tversky and Kahneman [61] and it is 

based on the idea that the joint probability 𝑃𝑃(𝐴𝐴,𝐵𝐵) cannot be higher than 

either 𝑃𝑃(𝐴𝐴) and 𝑃𝑃(𝐵𝐵). The bias itself occurs when a high probability is 

assigned to an event which in turn is a subset of an event with a lower 

probability [49]. For example, the class of 7-letter English words ending in 

“-ing” is contained within the class of English words that have “n” as the 6th 
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letter, the former is usually judged to be more frequent simply because it is 

easier to think of words ending in “-ing”. This is deemed to be a serious 

mistake which, by definition, violates the fundamental laws of probability 

[62]. 

• Overconfidence is a problem which can occur especially when assessing the 

tails of a distribution. More details about this however will be given in 

Chapter 4. 

 

According to Kadane [49] , one way to take into account the above-mentioned types 

of biases is to ask the expert about observable quantities rather than about 

moments of the distribution. There have been some common views in the literature 

(for instance in Wilson [62], Kadane [63], Murphy and Winkler [64]) regarding the 

way in which an elicitation should be carried out. Some common points which are 

made are: 

 

• Expert opinions are the most worthwhile to elicit. 

• Experts should be asked to only assess observable quantities (such as 

quantiles) and not be asked about the moments of the distribution. 

• Feedback should be given to the expert in a continuous fashion (see Figure 

12 illustrating the iterative nature of the process). 

• Experts should be asked to give their estimates both before and after seeing 

the data. 

• The elicitor should avoid using leading questions (such as questions which 

expect a specific answer from the expert). 

• Neutral language should be used instead of emotive expression whenever 

asking questions. 

• Compound questions should not be asked, as it is better to ask questions 

regarding one feature at a time (avoid asking about both health and safety 

for instance). 

• All the technical terms should be properly defined so that misinterpretations 

do not become an issue. 

• When proposing an example, general usage of numbers should be avoided 

as it can cause anchoring (described above). 
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In addition to those points, it is considered good practice to ask the experts to 

express their answers in numerical terms whenever possible. For instance, EFSA 

uses a semi-quantitative method as the most popular elicitation procedure. This 

involves a list of verbal descriptions given alongside a list of numerical values; 

however conversion from verbal to numerical can be a source of hidden traps. On 

the other hand, using purely quantitative scales can also pose various problems, 

as most experts can be reluctant to give numbers in order to represent uncertainty 

due to a variety of reasons: 

• Some experts can simply find it difficult to express uncertainties using 

numbers; probably they are unused to do so in their everyday lives. This is 

one occurrence when appropriate training can potentially solve the problem. 

• Some experts are reluctant to give numbers so as not to imply an unjustified 

level of precision. 

• Some experts are concerned that their estimates could be misinterpreted by 

decision-makers and the public [48]. 

As a compromise is needed, a semi-quantitative method is used in many cases. 

One of the best-known elicitation scales is that used by the Intergovernmental Panel 

on Climate Change (IPCC) who recommends using a scale consisting of seven verbal 

terms which get translated into probabilities as it is shown below in Table 1: 

Table 1: Verbal probabilities description, as used by IPCC [48] 

Verbal Description Probability Interpretations 

Virtually certain >0.99 

Very likely >0.9 

Likely >0.66 

About as likely as not 0.33-0.66 

Unlikely <0.33 

Very unlikely <0.1 

Exceptionally unlikely <0.01 
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This subsection had the purpose of introducing some of the most common ways 

in which people might judge numerical quantities during an elicitation process. It 

is considered that the elicitor should be aware of the psychological biases which 

the expert could have so that he can devise a method to quantify the error in the 

responses he receives. Also, Hogarth [57] provided a much more detailed list of 

such heuristics and biases in his papers. 

 

2.4.3 Identifying Experts 

Depending on the application for which an elicitation has to be conducted, one or 

more experts are needed. As a result, several considerations related to finding 

experts have to be employed, and for that, several questions have to be answered 

by the elicitors themselves such as: “How many experts is optimal?”, “What is the 

kind of expertise that the experts should have?”, “How to actually find the experts 

we need?”, “How to persuade them to join the project?”, “How to evaluate their 

expertise?” [48]. At this point it would be worth remembering that the kinds of 

judgement which are elicited involve numerical quantities which are used in order 

to construct the experts’ uncertainty about a specific parameter in the form of a 

PDF. 

O’Hagan [48] suggests several indicators which can point to whether a potential 

candidate has the relevant kind of expertise for the problem having to be solved, 

such as: 

• Formal qualifications and training 

• Job experience in terms of: 

o Amount (years of experience) 

o Quality of experience (industrial vs. academic); it is important to note 

that the environment where the expert gathered experience is also a 

factor in deciding the suitability for the elicitation process. 

• Useful outputs (papers, reports, speeches) 

• Awards received 

• References from other experts: this feature can prove whether an expert has 

credibility within his or her field. 
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Alternately, there are several unreliable indicators which should not be followed 

when assessing an individual’s expertise such as: 

• Name of his/her job as well as the social role 

• Projected confidence 

• Being verbose 

• Presence in the media 

The best way of quantifying the expertise of a candidate up to date is asking for a 

resume as most of the good indicators of expertise are found there. However, the 

resume has to be complemented by at least two other documents. In order to 

gather further information about the actual job experience of the candidate as well 

as whether he/she is suited for the particular elicitation exercise, an expertise 

questionnaire should be filled in by the expert and then sent back to the elicitor. 

O’Hagan suggests a general template for such a questionnaire; a slightly more 

specific version was created for Rolls-Royce plc purposes which can be used to 

address the Fan Blade Off (FBO) related issues and it can be found in Appendix A 

at the end of the thesis. The second document consists of what is known as a 

Generalized Expertise Measure (GEM) [48] whose purpose is to identify if the 

experts possess the following characteristics: 

• Specific training and education 

• Qualifications required 

• Ability to assess work-related issues 

• Capability of self-improvement 

• Intuition 

• Confidence in the knowledge they possess 

The last several characteristics described were previously also listed as “unreliable 

indicators of expertise”, which is also the reason why the purpose of the GEM is to 

be completed not by the experts themselves, but instead either by the experts’ 

peers or by the person who referenced them to the elicitor (who is also assumed 

to be an expert). There is also the issue that people may find it difficult to give 

impartial answers to slightly more personal questions. An example of the GEM form 

which could be used for screening experts can be found in Appendix B. 
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The purpose of the next section will develop on one of the ideas briefly mentioned 

which is related to the quantities that experts should be asked about. Before that 

however, this section will conclude with a summarized process of selecting experts 

which also covers the points above. 

1. The elicitor should identify the desired characteristics of the experts who 

may be able to answer the questions related to the problem of interest. 

2. Identify the experts who possess the characteristics from step 1. 

3. Contact the experts either by email/letter/telephone and mention that: 

- “Our company has an important problem and we have 

identified you as an expert” 

- Also, offer a brief overview of the said problem 

4. If there is a positive reply, the expert should be sent the expertise 

questionnaire to fill it in. If the expert would like to invite a peer, the GEM 

should also be completed by the expert. 

5. If an expert is shortlisted, he should be sent an invitation letter which should 

also contain: 

- More detailed information regarding the problem as well as the 

motivation for the elicitation taking place 

- The type of activities performed during the elicitation as well as any 

kind of compensation 

- The date of the elicitation 

- The reasons why the particular expert was shortlisted 

6. If the expert accepts the invitation, a second detailed information letter is 

sent, which as its name suggests, contains further detailed (and most likely 

confidential information) about the elicitation such as: 

- The exact location 

- A more detailed timetable for the activities occurring during the 

elicitation day 

- Details on the parameters being elicited 

- Clause of confidentiality 

- Ask for any additional information which the expert might need to 

share 
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2.4.4 Quantities to Elicit 

Whenever an elicitation procedure is designed, more often than not the elicitor can 

choose which quantities to ask the expert about. Preferably, these quantities 

should be easy to elicit without intensive prior training. In the past, several 

experiments have been performed whose purpose was to examine people’s ability 

to estimate basic statistical quantities [52]. Some of those experiments focused on 

the experts’ capability of estimating probabilities/proportions. For instance, the 

experiments by Erlick [65], Nash [66], Pitz [67], Shuford [68] generally involved 

showing binary data to the subjects who were then asked to estimate a proportion. 

More specifically, Shuford [68] displayed on a screen several 20x20 matrices which 

contained blue and red squares, after which the subjects were asked to estimate 

the proportion of blue within each matrix. The conclusions were that the 

proportions given by the experts were assessed very accurately, the error being 

less than 0.05 in most cases. 

Other experiments were conducted in order to assess people’s capability of 

accurately estimating central tendencies within a sequence. Beach and Swenson 

[69] as well as Spencer [70] found that when a symmetric distribution is being used, 

the estimates given by the subjects contain a high degree of accuracy. This was not 

the case for asymmetric distribution however; Peterson and Miller [71] concluded 

that for a skewed distribution the subjects became confused about the significance 

of the mean, giving values which were more appropriate to those the mode and 

median instead. Several other experiments performed by Hofstatter [72] arrived at 

the conclusion that people are not familiar with the idea of variance either. 

Several basic principles regarding the elicitation process itself which should dictate 

its flow have been suggested by O’Hagan [48]: 

• It should not be assumed that the expert has experience in making 

probabilistic judgements even though he might have years of experience in 

their domain. As a result, appropriate training will have to be given. 

• On the other hand, even if enough training is given, the expert can still find 

it difficult to understand the concepts of expected value and variance. 

Consequently, it is advised against eliciting the moments of the distribution. 
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• It needs to be emphasized that the goal of the elicitation process is not to 

obtain a point estimate, but a probability distribution which represents the 

expert’s uncertainty about a certain variable. 

Taking into consideration the aforementioned points, several intuitive ways of 

eliciting estimates had to be devised. Those methods are based upon the fixed and 

variable interval methodologies [48] which are described below. 

The fixed interval approach is based upon first choosing a value of 𝑥𝑥 (Figure 13) 

and then asking about the probability that the true value of 𝑥𝑥 is smaller than the 

value given by the expert. This can be seen below in a visual format. 

 

Figure 13: Graphical representation of the fixed interval method [48] 

The variable interval method on the other hand, is considered to be an inverse 

operation in that the elicitor asks the expert for a value of 𝑥𝑥 such that the true 

unknown 𝑥𝑥 is less than the required value with a specified probability. In statistical 

terms this is known as “eliciting quantiles”; this concept which is illustrated in 

Figure 14 will be developed below. 
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Figure 14: Graphical representation of the variable interval method [48]. 

The main suggestion from O’Hagan regarding the variable interval method is to 

first elicit the expert’s range [48]. This has the impact of preventing the expert 

from anchoring to any value; if the expert gives the range at first, the tendency to 

anchor to both sides of the range will have the effect of negating anchoring in the 

first place. O’Hagan also suggests several methods of eliciting quantiles [48] as 

follows: 

• Elicit the quartiles: the median (0.5 quantile), upper and lower quartiles 

(0.25 and 0.75 quantiles) 

• Elicit the tertiles: the 0.33 and 0.66 quantiles 

• Elicit the median, the 0.05 quantile and the 0.95 quantile 

• Elicit the median, the 0.17 quantile and the 0.83 quantile 

Two issues regarding the choice of quantiles refer to interpretability and 

overconfidence. Interpretability can be described in the following way. Assuming 

that the quartiles have been elicited, the range can be divided into four intervals of 

equal probability. For the sake of argument, it can be assumed that those intervals 

are: [0, 20], [20, 40], [40, 80], [80, 100]. The expert might be asked to place an 

imaginary bet on which of those intervals is the most likely to contain the real 
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unknown random variable 𝑋𝑋. Theoretically, the expert should have no preference 

as to which interval is most likely to contain 𝑋𝑋. However, if the expert believes that 

[0, 20] has a higher likelihood than [20, 40], it most likely means the expert believes 

that 20 and 40 are not the actual lower quartile and median. 

Overconfidence is the other issue which has been investigated especially by 

O’Hagan et al. [48] who suggested that experts shouldn’t be asked about extreme 

quantiles and instead resort to moderate quantiles such as tertiles or quartiles. An 

experiment was performed by Soll and Klayman [56] which reinforced this finding: 

they elicited an 80% interval in two different ways: directly and then by eliciting the 

0.1 and 0.9 quantiles. The second approach was found to work better as it forced 

the experts to consider low and high values simultaneously which, as mentioned 

before, had the consequence of reducing the anchoring effect. 

In the variable interval case, a bisection method can be applied in order to elicit the 

summaries regardless of the quantile method chosen. For instance, in the case of 

quartile, the following set of questions can be used to elicit for the median as well 

as the lower and upper quartiles [52]: 

• “Can you determine a value such that 𝑋𝑋 is equally likely to be less than or 

greater than this point?” - This is an intuitive way of asking about the median 

which the expert might not be fully familiar with. 

• “Suppose you were told that 𝑋𝑋 is below your assessed median. Can you now 

determine a new value such that it is equally likely that 𝑋𝑋 is less than or 

greater than this value?” - Lower quartile. 

• “Suppose you were told that 𝑋𝑋 is above your assessed median. Can you now 

determine a new value such that it is equally likely that 𝑋𝑋 is less than or 

greater than this value?” - Upper quartile. 

The obvious advantage of this way of questioning is that the expert is asked about 

50-50 intervals, and intuitively, it is much easier than being asked about intervals 

which have 25% chance of containing the real value of 𝑋𝑋. 

The next logical step after the elicitor obtains the quantiles is to decide what type 

of distribution to use depending on the possible values of the unknown variable 𝑋𝑋. 

The most common ones used in plenty of applications are as follows: 
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• If 𝑋𝑋 represents a proportion (such as a probability), it must lie between 0 

and 1. In this case, a Beta distribution might be preferable in order to 

quantify uncertainty. 

• If 𝑋𝑋 has a lower limit, a gamma, Weibull or a log-normal distribution can be 

expected to fit the data well. 

• If the PDF of 𝑋𝑋 is expected to be symmetric about the median, then a 

Gaussian or a t-distribution can be used. If 𝑋𝑋 has both upper and lower 

bounds, a Beta distribution could also be used. 

Once the distribution is chosen and the expert’s data is fitted to it, the next step 

consists of checking with the expert whether the distribution matches his 

uncertainty about the data. This is usually done in two ways [48]: 

1. Feedback method. Summaries from the fitted distribution are given to the 

expert who is subsequently invited to give his opinion. 

2. Overfitting method. The expert is asked to provide additional judgements in 

order to be compared to those from the distribution fitted by the elicitor. 

This is the stage where the expert has the opportunity to modify his or her initial 

judgements. If this happens, the elicitor has to re-fit the distribution and to re-

check with the expert once more. This iterative process continues until both parties 

are satisfied with the outcome (in the same way suggested by Figure 12). 
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2.4.5 Multivariate Elicitation 

In reality, it is rare for a problem to only have one input or one variable; in general, 

tasks are much more complex as it is actually needed to elicit judgements 

regarding a joint probability distribution involving several variables. This ultimately 

translates in having to ask questions about other aspects of the problem. 

In the simplest case, the variables of the problem can be independent, in which 

case PDFs about each individual variable can be elicited using the techniques 

described above, and the joint PDF is therefore obtained by multiplying all marginal 

PDFs. However, when variables are dependent upon each other, the complexity 

surrounding multivariate elicitation can no longer be by-passed. Although eliciting 

summaries for individual variables is still possible, it may no longer give the elicitor 

meaningful results. Therefore, a means of eliciting correlation has to be put 

forward. Research in this direction has been mainly focused on eliciting correlation 

between variables as they are drawn from a population [52]. For instance, Clemen 

et al. proposed six methods which can be used to elicit the correlation between 

height and weight of a population of MBA students [73]: 

• Verbal description of the correlation strength using a 7-point scale ranging 

from “very strong negative relationship” to “very strong relationship”. In the 

original papers, the author made several assumptions which are used to 

convert those into numerical values. 

• Direct estimation of the correlation by asking the expert to specify a value 

between -1 and 1. -1 implies a strong negative correlation, 0 stands for a 

lack of correlation (this suggests that independence of variables is a 

particular case of correlation) and 1 implies a strong positive correlation. 

• Ask the expert to imagine that a person from the population has been 

selected at random; the expert is then given the percentile for the first 

variable and is then asked about the percentile for the second variable. 

• Ask the expert to imagine that two people (𝐴𝐴 and 𝐵𝐵) have been selected. If 

𝐴𝐴 is greater than 𝐵𝐵 for the first variable, ask about the probability that 𝐴𝐴 is 

greater than 𝐵𝐵 for the second variable as well. 

• Ask the expert to imagine that a person has been picked at random. The 

expert is then asked to estimate the probability that the person is below a 

specific percentile for both variables. 
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• Ask the expert to imagine that a person has been selected randomly from 

the population. Considering that the person is below a certain percentile for 

one of the variables, ask the expert the probability that the certain person 

is below the same percentile for the second variable. 

In his report, Clemen et al. found that the second method performed best [73]. 

This however seems to disagree with the other experiments previously mentioned 

which discourage direct elicitation of statistical moments. It is also important to 

note that several cases of multivariate elicitation are not comparable to draws from 

a population. If the problem of interest revolves around eliciting judgements about 

the correlation between fuel consumption and maximum acceleration of a car, 

methods 4 and 6 suggested by Clemen et al. clearly do not apply; the two variables 

are not single draws from a population anymore. For one of the case studies that 

are presented in this work however, the elicitation was structured in such a way so 

that it would be performed on each set of variables by conditioning on the values 

of the previous variables which had been elicited. A more detailed analysis will be 

shown in Chapter 4. Before moving on however, there is a need to talk about the 

case in which the elicitation is performed with multiple experts, because most of 

the time, it might be desirable to have more than one opinion taken into account 

when trying to represent a probability distribution. 

 

2.4.6 Number of Experts 

There are several psychological factors which should be accounted for when more 

than one expert is involved. Generally, there are two different kinds of approaches 

which can be used when eliciting the experts’ knowledge. First, there is the 

situation when the experts do not interact and separate probability distributions 

are elicited separately and are then synthesized into a single distribution. The 

question to be asked as a result of that is how to combine those distributions into 

a single one [52]. 

The most popular methods are based upon “opinion pools” which in general terms 

represent either a weighted average of all the probability distributions which form 

it (linear pool) or the weighted average of the logarithms of each probability 

distribution (logarithmic pool). The advantage of using those techniques is the fact 

that the values of the weights attributed to the experts can be modified based on 
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how accurate the probability distribution from each expert is believed to be [74]. 

However, pooling methods could lead to a final PDF which does not explicitly show 

whose opinion is captured most; it may be the case that no one’s opinion is 

captured in the final PDF. This technique is also known as mathematical 

aggregation. 

Behavioural aggregation is another way of eliciting judgements from a group of 

experts and it involves allowing the experts to discuss which in the end should 

result in a single PDF. In this case, the elicitor should act as a moderator and 

encourage all experts to contribute to the group discussion, bearing in mind that 

some of them may be less likely to express their opinions than others who have 

stronger personalities and will show a tendency to dominate the group. As a result, 

the elicitor should be aware of this situation and encourage everyone to give their 

opinions, while remaining aware that some people may be naturally quiet as they 

may not have anything to say on a topic. 

An essential factor is heterogeneity of opinion which should exist in any group 

where there is more than one expert. The prime reason why the elicitor wishes to 

increase the number of experts is to improve the quality of the judgements. As a 

result, it can be disadvantageous to add experts with the same opinion as in this 

way, even though the overall confidence increases, the accuracy might not [48]. 

This means that as long as the experts are able to discuss freely and exchange 

opinions, a net benefit should exist which should be greater than in the case when 

experts give individual opinions. Also, caution needs to be taken when an expert 

proposes another expert from his or her area of expertise to take part in the 

elicitation; it is often the case that experts have the tendency to propose others 

who have the same opinions as themselves. 

One of the methods to manage interaction within a group is also known as the 

Delphi method. It involves eliciting each PDF individually, after which each expert’s 

opinion is fed back to all the others while explaining the reasoning behind it. After 

that, each expert is allowed to revise their reasoning and hence the individual PDFs. 

Each revision is passed to all other experts and this process continues in an iterative 

fashion. In a way this is a hybrid between the mathematical and behavioural 

aggregation methods and is not likely to promote a very efficient sharing of 

knowledge as the latter. A review of the Delphi method (which has been used 

frequently in political sciences) has been made by Pill [75]. 
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There is no general consensus regarding which aggregation method is better. Even 

more, it is downright difficult to compare the two and the reason for that is 

intuitive. It is impossible to test the two methods with the same group of experts 

simply because once a judgement, the said judgement already exists in their head 

meaning they cannot give it a second time. It can be possible however to test the 

two methods on different groups of experts, however this will only give statistically 

significant results on which method is better and to obtain an estimate, a large 

number of those tests need to be made, meaning that the whole process can 

become extremely expensive. 

A popular method of drawing judgements is called the Sheffield Elicitation 

Framework (SHELF) and it has been created by Prof. O’Hagan from University of 

Sheffield. The method uses the behavioural aggregation technique and moreover, 

it uses the idea of a “rational impartial observer” (RIO). This technique makes the 

consensus which is obtained following the interactions between all experts to have 

the form of a PDF which would come from a hypothetical rational and impartial 

observer who has attended the whole meeting and has formed an opinion based 

upon everything that the experts said. It should be noted though, that the idea of 

“consensus” does not imply that the experts agree that the final distribution 

represents the opinion of either of them. In this manner, the judgements given by 

an expert who had been dominating the discussion and whose opinions were not 

agreed upon by the majority of the others will not reflect too much in the RIO’s 

final PDF. This has an opposite effect on people who are quiet and whose 

judgements are closer to the others’ beliefs, thus making their opinion stand out 

more in the resulting PDF. 

An important point which has to be addressed has to do with the actual number of 

experts whose judgements should be elicited. Theoretically, adding experts to the 

elicitation exercise should increase the odds to have the actual values of interest 

elicited. In addition to that, more judgements would result in a reduction in the 

potential error, meaning that apparently, the more experts involved, the better the 

results of the elicitation would seem to be [48]. However, this is usually the case 

when the elicitation has the form of a questionnaire; in a workshop type of meeting 

it may be impractical to have a large number of attending experts as multiple 

sessions would be required. This means that a trade-off between quality and 

quantity will have to be made. Obviously, this doesn’t take into account availability 

which is a prime factor that decides the difficulty of finding the experts and as a 
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result, the maximum number of experts able to attend the elicitation. Regarding 

the actual question “How many experts?”, there are several suggestions in the 

literature regarding the number of experts which would be appropriate. For 

instance, Aspinall [76] shares his experience with more than 20 panels of experts, 

saying that generally 8 up to 15 experts is an appropriate range to consider 

whenever setting up an elicitation. Having more than that, not only offers little 

improvement to the accuracy, but also increases cost and time. Meyer and Booker 

[50] answer the same question in a different manner; they are of the opinion that 

having less than 5 experts does not address the point mentioned above referring 

to heterogeneity of opinion, and does not offer as much diversity to the whole 

process. 

 

2.5 Literature Review Summary 

This chapter had the purpose of critically reviewing the concepts which sit at the 

foundation of this project. Those concepts are first and foremost placed within an 

uncertainty quantification context and refer to Bayesian updating, expert systems, 

as well as judgements elicitation. As mentioned in section 2.3, there is a large 

variety of expert systems which have been developed, and the idea of using 

probabilities to characterise them has recently started to be implemented [31]. 

Bayesian belief networks have been used in order to create a decision support 

system for the prognosis of head-injured patients of the intensive care unit (ICU). 

The power of this kind of network became apparent as its performance was deemed 

similar to that of a human expert in the field.  

One of the main hypotheses within this thesis is the fact that such a network could 

be improved if the experts’ opinions themselves could be added. Jongsawat and 

Premchaiswadi [37] actually put forward a methodology which can obtain the 

structure of a Bayesian network from experts, however it seems to be basic and is 

applicable to discrete distributions. Karandikar et al. [38] employed the strength of 

Bayesian inference via Markov Chain Monte Carlo in order to predict the tool life of 

a cutting tool. However, they did not use any expert input, as their research was 

solely based upon the updating procedure. There have been other sources where 

MCMC methods have been applied in order to do predictions, such as Zhu et al. 

[40], but they do not make use of a proper expert elicitation framework. In addition 
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to that, while exploring the literature on expert elicitation, it became apparent that 

the feedback process is very simplistic, because the distributions which are shown 

to the experts after the fitting procedure do not contain information regarding the 

physics of the problem. This is counterintuitive, as generally the experts have more 

experience in their field rather than in statistics, meaning that more can be gained 

by converting the purely statistical outputs, which literature suggests, into tangible 

ones. 

As there is a common theme in the literature regarding research which mainly 

investigates one of the two components (and no application regarding the 

preliminary engine design process), unifying them becomes natural. Moreover, as 

it was mentioned in section 2.1, the type of uncertainty quantification that Rolls-

Royce does is just related to using Monte Carlo simulations on the variables present 

in various problems in order to propagate their variability, and check the 

probability density functions of the outputs [10]. The claim is that this process can 

be improved by going further and using Markov Chain Monte Carlo in order to also 

be able to predict outputs when real data is scarce. 

Therefore, by integrating a robust expert elicitation procedure together with the 

capabilities allowed by Bayesian inference it is possible to create a framework that 

uses a “best of both worlds” approach in order to analyse the preliminary design 

process of the aero-engine. This relates back to Chapter 1 where it was mentioned 

that by doing so it is possible to strike a balance between cost and flexibility, as 

this methodology would combine both high and low fidelity techniques in order to 

improve the design process. A more detailed description of this is going to be 

outlined in the following chapter. Before delving into Chapter 3 however, a project 

aim should be stated as well as a set of objectives which are going to be followed 

in order to satisfy the corresponding aim. 
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2.6 Aim and Objectives 

The aim of this project can be considered to be quantified by the research 

hypothesis stated in section 1.3, which is: 

“Using probability-based methods during the preliminary stage of the aero-engine 

design process can allow fast and accurate investigation of the design space in 

order to aid the generation of an optimum design which can afterwards be 

passed to the detailed design phase. Ultimately, this can have the effect of 

making the entire design process faster and less expensive.” 

The objectives which can satisfy this aim are based upon gaps that were found in 

the literature, and they are expressed as follows: 

• Objective 1: Build the expert elicitation component, including the new 

feedback procedure which is deemed to be more informative for the 

experts who took part in the elicitation.  

• Objective 2: Develop the Bayesian inference component which is used to 

make predictions on how a given model should behave in conditions that 

were not previously tested. 

• Objective 3: Combine the two components into a framework which is used 

to update prior judgements regarding a physical problem by using real 

data. 

• Objective 4: Validate the framework. 

• Objective 5: Identify aero-engine case studies of industrial relevance which 

can benefit from this framework, and solve them by directly applying the 

framework to them. 

As the novel aspects presented in section 1.4 are closely related to the objectives 

above, they are listed once more as follows: 

• Building the Bayesian-elicitation framework 

• Writing the custom code for the framework 

• Applying the framework to the specific case studies from Chapter 4 

• Developing the new elicitation feedback procedure 

Chapter 3 is going to lay the foundations of the framework by mainly looking into 

the components of the framework, while Chapter 4 will apply the framework to 

three different case studies.  
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Chapter 3 Methodology 

This is the part of the thesis which describes how all the literature investigated in 

Chapter 2 comes together in order to build the framework which was used for 

various case studies related to the preliminary stage of the design process. The 

framework has been constructed in MATLAB, and in this section, its various 

components (including snippets of pseudocode) are described separately in order 

to give the reader an in-depth understanding regarding the way in which it works. 

The reason why the MATLAB code was written from the ground up instead of using 

existing tools is because although there are software packages which can do 

Bayesian updating, the priority was to be able to easily link the Bayesian component 

to the elicitation one. Writing custom code allows that by offering more flexibility 

and also removes the issue of treating any other software package as a black box. 

Before showing the entire framework, an example will be given regarding how 

Bayesian inference can be applied to a simple problem. The reason for showing this 

is because the philosophy behind this toy problem is the same as the same as the 

one behind the real case studies presented in Chapter 4.  

 

3.1 Bayesian Updating Example 

The following problem illustrates both the main idea behind Bayesian inference as 

well as the idea of conjugacy which was briefly touched upon in section 2.2. 

The turbine blades of a certain type of aircraft engine are examined during a 

maintenance procedure for potential crack initiation points after the engine spent 

several years in service. The goal of the Bayesian statistician in this circumstance 

is to update the already existing model which predicts the number of crack 

initiation points in a turbine blade by using the actual results which come out of 

the maintenance procedure. 

It should first of all be made clear that this example is fictitious and its only purpose 

is to illustrate some of the potential benefits of performing Bayesian analysis. It is 

known that discrete events that have a low probability of occurring can be 

represented by a Poisson distribution [22], which is also the distribution of choice 

used here in order to describe the likelihood function. As a result, the number of 

crack initiation points within the blade could be represented in the following way: 
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𝑓𝑓(𝑥𝑥|𝜃𝜃) =
𝑒𝑒−𝜃𝜃𝜃𝜃𝑥𝑥

𝑥𝑥!
 (14) 

Here, 𝑥𝑥 is the number of crack initiation points which appear on a turbine blade 

after a certain amount of time, while 𝜃𝜃 is defined as the mean of the Poisson 

distribution. In addition to that, judgements regarding the parameter 𝜃𝜃 have to be 

made and at first they are captured in a prior which for instance can take the 

following form: 

 

𝜋𝜋(𝜃𝜃) =
𝛽𝛽𝛼𝛼

Γ(𝛼𝛼)𝜃𝜃
𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜃𝜃 (15) 

It has been assumed that the Gamma distribution is flexible enough in order to 

capture prior beliefs regarding the mean of the Poisson distribution. The 

parameters 𝛼𝛼 and 𝛽𝛽 could for instance be found from previous cases or they could 

be elicited from experts by setting up an elicitation workshop in this respect. For 

illustrative purposes, it will be assumed that both 𝛼𝛼 and 𝛽𝛽 are known and it will be 

examined how the posterior distribution changes as data is obtained. 

The following nomenclature will be used in order to define several parameters: 

• 𝑛𝑛 represents the number of blades which are examined 
• 𝑥𝑥𝑖𝑖 is the number of crack initiation points on blade 𝑖𝑖, where 𝑖𝑖 = 1,𝑛𝑛����� 

The likelihood function corresponding to all blades (assuming that the crack 

initiation on each blade is independent of all the rest – in a real situation this is 

debatable) will therefore have the following form: 

 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜃𝜃) = �
𝑒𝑒−𝜃𝜃𝜃𝜃𝑥𝑥𝑖𝑖
𝑥𝑥𝑖𝑖!

𝑛𝑛

𝑖𝑖=1

=
𝑒𝑒−𝑛𝑛𝜃𝜃𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1

∏ 𝑥𝑥𝑖𝑖!𝑛𝑛
𝑖𝑖=1

 (16) 
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According to the Bayes’ rule in Equation (1), the posterior will have the following 

form: 

 

𝜋𝜋(𝜃𝜃|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) =
𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜃𝜃)𝜋𝜋(𝜃𝜃)

∫ 𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜃𝜃)𝜋𝜋(𝜃𝜃)d𝜃𝜃+∞
0

 (17) 

The integral in the denominator is constant with respect to the posterior’s 

argument 𝜃𝜃 as the integral takes into consideration all possible values of 𝜃𝜃 (and for 

a Gamma distribution, 𝜃𝜃 ∈ (0,∞)). By ignoring the terms which do not contain 𝜃𝜃, the 

posterior can be rewritten as: 

 

𝜋𝜋(𝜃𝜃|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)~𝑒𝑒−𝑛𝑛𝜃𝜃𝜃𝜃∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1 𝜃𝜃𝛼𝛼−1𝑒𝑒−𝛽𝛽𝜃𝜃 = 𝜃𝜃�∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 +𝛼𝛼�−1𝑒𝑒−𝜃𝜃(𝛽𝛽+𝑛𝑛) (18) 

It can be observed that the posterior has the form of another Gamma distribution, 

which can be fully verified by computing the integral in the denominator. Whereas 

the prior had a Gamma distribution with parameters 𝛼𝛼 and 𝛽𝛽, the new posterior will 

have a distribution given by: 

𝜃𝜃|𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛~Gamma�𝛼𝛼 + �𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

,𝛽𝛽 + 𝑛𝑛� (19) 

In order to understand this better, a numerical example will be given for the above 

problem. First, values for the 𝛼𝛼 and 𝛽𝛽 parameters for the prior will have to be 

considered. For instance, if 𝛼𝛼 and 𝛽𝛽 are equal to 5 and 2.5 respectively, then the 

shape of the resulting prior distribution can be observed below in 
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Figure 15: Shape of the prior distribution for the example problem 

 

Also, the prior distribution can be mathematically written as: 

 

𝜃𝜃~Gamma(5, 2.5) (20) 

For illustration purposes it can be assumed that the number of blades 𝑛𝑛 is equal to 

20, while the total number of crack initiation points found on these blades will be 

equal to 10. After applying the Bayesian updating procedure, and by using the 

numbers and the posterior shape given in Equation (19) above, the resulting 

distribution will have the following form: 

 

𝜃𝜃|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛~Gamma(5 + 10, 2.5 + 20) (21) 

The PDFs corresponding to both the prior and the posterior distribution are 

shown below in Figure 16: 

 



 

83 

 

Figure 16: Prior and posterior shapes for the given numerical example 

In the first instance however, a top-level view will be adopted, the purpose of which 

is to put everything into perspective. This will also show how the previous sections 

have been integrated into the framework.  

As a brief observation, it could be inferred about the graphs in Figure 16 that the 

likelihood function had the effect of causing the posterior to cover a smaller range 

of values (decrease its variance). Also, the fact that the posterior has the same 

distribution as the prior (or in other words, 𝜋𝜋(𝜽𝜽|𝒙𝒙) belongs to the same parametric 

family as 𝜋𝜋(𝜽𝜽) under the likelihood 𝑓𝑓(𝒙𝒙|𝜽𝜽)) means that 𝜋𝜋(𝜽𝜽) is a conjugate prior for 

the parameter 𝜽𝜽. This means that in general, if the prior and the likelihood are 

chosen in a specific manner, the full analytic calculation of the posterior becomes 

redundant as its distribution will be the same as that of the prior (albeit with 

different parameters). 

For complex problems with multiple variables, making use of the concept of 

conjugate priors is impossible, which means that although the basic philosophy 

behind Bayesian updating shown in this simple example remains untouched, a 

numerical method needs to be used. The following section has the role of 

discussion the particular type of numerical Bayesian inference method used to solve 

the case studies presented later in this thesis. 

 

3.2 The Markov Chain Monte Carlo Algorithm 

After analysing the literature on numerical Bayesian updating methods in section 

2.2, the particular method used here is the Metropolis-Hastings algorithm. The 

reason is because it is the most widely used [26] and in general it is a suitable 

algorithm for problems where no further information is known beforehand (such 
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as having to know the conditional PDFs of certain variables, in which case the Gibbs 

sampler would be more efficient). This subsection will therefore have the goal of 

describing this algorithm. The algorithm is part of a class of methods which 

combines the concepts of Monte Carlo analysis and Markov Chains, hence being 

named Markov Chain Monte Carlo (MCMC). The fundamental philosophy behind the 

Monte Carlo aspect is that the important features (mean and variance for instance) 

of a probability distribution which is unknown (in the Bayesian context that is the 

posterior) can be discovered given that a large number of samples have been 

obtained for the said distribution. The obvious question that rises has to do with 

how samples are drawn from a distribution which is unknown in the first place. In 

most sources from the literature, the algorithm is given without too much proof so 

the following steps have the purpose of offering some insight regarding the 

foundations of MCMC by starting from the very basic Bayes’ rule. Before that 

however, there is a need to emphasize some basic concepts regarding the Monte 

Carlo method. 

In mathematical form, the expected value of a random variable (which could be one 

of the features that Monte Carlo can be used to estimate) has one of the following 

two forms depending on whether the random variable 𝑋𝑋 is discrete or continuous: 

 

𝐸𝐸(𝑋𝑋) = lim
𝑁𝑁→∞

1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (22) 

 

𝐸𝐸(𝑋𝑋) = � 𝑥𝑥𝑓𝑓(𝑥𝑥)
+∞

−∞
d𝑥𝑥 (23) 

In this context, 𝑁𝑁 is the total number of samples, 𝑥𝑥𝑖𝑖 is a particular sample taken 

from the distribution of interest, and in the continuous case 𝑓𝑓(𝑥𝑥) is the PDF. 

Although it would be attractive to be able to compute the mean (and other 

statistical moments – such as the variance) in an analytical fashion using the 

integral from Equation (23), it becomes at least impractical to do so as the problem 

being studied increases in complexity. As a result, even for continuous random 

variables it is often the case that the mean is approximated by using Equation (22) 
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as it is easier to implement. Even if computers are used to perform the calculations, 

there is still a glaring problem with Equation (22). Although it is mathematically 

correct, computers cannot deal with the concept of infinity; simply put an infinite 

time and infinite memory is needed to obtain an infinite number of samples. Seeing 

that none of those specifications can ever be viable in practice, a compromise will 

have to be made. Consequently, the term “sample mean” is used whenever such 

computations have to be performed. Its expression is given below in Equation (24): 

 

𝐸𝐸(𝑋𝑋) ≅ 𝑋𝑋� =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 (24) 

Simply put, the limit is removed and instead of finding an exact solution, only 𝑁𝑁 

samples are taken in order to obtain an approximate value for the mean. However, 

the inevitable question which arises in this situation is “How to take samples?”. In 

other words, there has to be a method which takes into account the shape of the 

probability distribution and takes samples from it. If the distribution has a simple 

form, samples can be obtained using the method of inverting the cumulative 

distribution function (CDF) and sampling from a uniform distribution between 0 

and 1. Usually this cannot be done as most distributions which are of interest in 

real life have a more convoluted form, meaning that sampling needs to be done 

using a different technique. 

The Markov Chain Monte Carlo technique mentioned in a previous paragraph 

makes use of the concept of a Markov Chain that is characteristic of stochastic 

processes. In general terms, a Markov Chain is a sequence of events or states for 

which the probability of moving between the current and the next state only 

depends on what the current state is and does not depend on any previous states 

of the chain. In a sense, the chain “forgets” everything that happened until the 

current state. By considering an arbitrary state “𝑖𝑖” as the current state, and “𝑗𝑗” as a 

potential next state, Bayes’ rule can be applied in the following way: 

 

𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗|𝑋𝑋𝑛𝑛 = 𝑖𝑖) =
𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑖𝑖|𝑋𝑋𝑛𝑛+1 = 𝑗𝑗)𝑃𝑃(𝑋𝑋𝑛𝑛+1 = 𝑗𝑗)

𝑃𝑃(𝑋𝑋𝑛𝑛 = 𝑖𝑖)
 (25) 
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The conditional probabilities shown above represent transition probabilities 

between states “𝑖𝑖” and “𝑗𝑗”, while the marginal probabilities represent probabilities 

of being in a certain state. For simplicity, the transition and state probabilities are 

going to be denoted by 𝑝𝑝 and 𝜋𝜋 respectively. Equation (25) therefore becomes: 

 

𝑝𝑝𝑖𝑖𝑖𝑖 =
𝑝𝑝𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖
𝜋𝜋𝑖𝑖

 (26) 

After multiplying Equation (17) by 𝜋𝜋𝑖𝑖, the reversal theorem can be obtained: 

 

𝑝𝑝𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖 = 𝑝𝑝𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖 (27) 

The way in which this is linked to a potential sampling routine is by considering 𝜋𝜋 

as the target distribution (unknown posterior), and by further splitting the 

transition probabilities in two more terms: 

 

�𝑞𝑞𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖 = �𝑞𝑞𝑖𝑖𝑖𝑖𝛼𝛼𝑖𝑖𝑖𝑖�𝜋𝜋𝑖𝑖 (28) 

𝑞𝑞𝑖𝑖𝑖𝑖 is the probability that if the current state is 𝑖𝑖, a tentative next state 𝑗𝑗 is going to 

be selected. On the other hand 𝛼𝛼𝑖𝑖𝑖𝑖 represents the acceptance probability of state 𝑗𝑗 

as the next state of the Markov Chain. The acceptance probability can be rewritten 

as: 

 

𝛼𝛼𝑖𝑖𝑖𝑖 = �
𝑞𝑞𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖

� 𝛼𝛼𝑖𝑖𝑖𝑖 (29) 

If the ratio from Equation (29) is greater than 1, then the value of 𝛼𝛼𝑖𝑖𝑖𝑖 becomes 1 

(because 𝛼𝛼𝑖𝑖𝑖𝑖 is a probability and if the said ratio is greater than 1 it means that 

state 𝑗𝑗 will be accepted for sure). If on the other hand the ratio is smaller than 1, 
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then by inverting Equation (29) it is obtained that 𝛼𝛼𝑖𝑖𝑖𝑖 is equal to 1 because of the 

same reasoning. As a result, 𝛼𝛼𝑖𝑖𝑖𝑖 becomes equal to the ratio �𝑞𝑞𝑗𝑗𝑖𝑖𝜋𝜋𝑗𝑗
𝑞𝑞𝑖𝑖𝑗𝑗𝜋𝜋𝑖𝑖

� itself. The 

solution for the acceptance probability 𝛼𝛼𝑖𝑖𝑖𝑖 can be written as: 

 

𝛼𝛼𝑖𝑖𝑖𝑖 = min�1,
𝑞𝑞𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖
𝑞𝑞𝑖𝑖𝑖𝑖𝜋𝜋𝑖𝑖

� (30) 

This is the core of what is known as the Metropolis-Hastings algorithm which is 

used in order to draw samples from a target distribution 𝜋𝜋 which, as Equation (30) 

suggests, is only sufficient to be known up to a constant of proportionality. This 

ultimately means that the problem concerning the integral from Equation (1) has 

been completely by-passed. The Metropolis-Hastings algorithm itself can be 

outlined as follows [47]: 

 

• Set iteration step 𝑡𝑡 = 1 and generate an initial value for the chain (the process 
can be done many times with different starting points and they should give 
the same distribution in the end). 

• Set 𝑡𝑡 = 𝑡𝑡 + 1 
• Generate a proposal value 𝜃𝜃∗ from the proposal distribution 𝑞𝑞(𝜃𝜃|𝜃𝜃(𝑡𝑡)) 

• Compute the probability of acceptance 𝛼𝛼 = min�1, 𝑞𝑞�𝜃𝜃(𝑡𝑡)|𝜃𝜃∗�𝜋𝜋(𝜃𝜃∗)
𝑞𝑞�𝜃𝜃∗|𝜃𝜃(𝑡𝑡)�𝜋𝜋�𝜃𝜃(𝑡𝑡)�

� 

• Independently sample 𝑢𝑢 from the uniform distribution 𝑈𝑈(0,1) 
• If 𝑢𝑢 ≤ 𝛼𝛼, then the proposal value is accepted and hence 𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃∗. 

Otherwise, 𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) 
• The iteration step is once again increased by 1, and the process is repeated. 

It might not be obvious at an intuitive level why this works. As a result, a graphical 

interpretation of this is suitable in order to grasp those concepts better. 
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Figure 17: State of the Markov Chain at step t as well as the target distribution 

(which might be known, but not easy to sample from) [47]. 

 

 

Figure 18: Choosing a proposed sample from the proposal distribution q and 

comparing its corresponding probability to the probability of the 

sample at step t [47]. 

 

 

Figure 18 stands to illustrate the process of choosing a proposal value from the 

distribution 𝑞𝑞. The value of probability corresponding to the target distribution is 

then calculated for the new proposed value (𝜋𝜋(𝜃𝜃∗)). The way in which it is decided 

θ

𝜋𝜋 θ

θ 𝑡𝑡

𝜋𝜋

θ

𝜋𝜋 θ

θ 𝑡𝑡

𝜋𝜋, 𝑞𝑞

θ∗

𝜋𝜋 θ 𝑡𝑡
𝜋𝜋 θ∗

𝑞𝑞 θ|θ 𝑡𝑡
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if the next state of the chain becomes equal to the proposed value is simply by 

comparing the “heights” of the points 𝜋𝜋�𝜃𝜃(𝑡𝑡)� and 𝜋𝜋(𝜃𝜃∗). Given that the proposal 

distribution is symmetric, if 𝜋𝜋(𝜃𝜃∗) is higher on the graph than 𝜋𝜋�𝜃𝜃(𝑡𝑡)�, then it will be 

accepted 100% of the time. Otherwise, the new proposed value will only be 

accepted with probability 𝜋𝜋(𝜃𝜃∗)/𝜋𝜋(𝜃𝜃(𝑡𝑡)). The reason why points with lower 

probability values are not automatically discarded is because in this manner, the 

Markov chain has the potential to move away from local maxima and find the global 

one (in the case when the distribution is multi-modal, and there is no reason to 

assume otherwise in general). In the case shown in Figure 18 the proposal value is 

accepted, meaning that the new proposal distribution will have its mean at 𝜃𝜃∗ and 

the whole process will be repeated. It should also be mentioned that the term 

𝑞𝑞�𝜃𝜃(𝑡𝑡)|𝜃𝜃∗�/𝑞𝑞�𝜃𝜃∗|𝜃𝜃(𝑡𝑡)�  accounts for the potential asymmetry of the proposal 

distribution; if the proposal is symmetric, then this ratio becomes equal to 1 (and 

the general Metropolis-Hastings algorithm gets reduced to the more particular 

Metropolis algorithm). 

 

 

Figure 19: Generating the proposal distribution based on the next state of the 

Markov Chain (in this case, the proposed value has been accepted for 

the next step) [47]. 

 

It is generally the case however that parameter 𝜽𝜽 is actually a vector, meaning that 

in order to obtain samples from the posterior distribution, the algorithm shown 

above needs to be slightly modified in order to accommodate this. This method 

θ

𝜋𝜋 θ

θ 𝑡𝑡+1

𝑞𝑞 θ|θ 𝑡𝑡+1

𝜋𝜋, 𝑞𝑞
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illustrates a sampling procedure which is implemented assuming that 𝜽𝜽 has just 

two components; however the method could be extended for as many components 

as needed [47]. 

 

• Set iteration step 𝑡𝑡 = 1 and generate an initial value for the chain 
• Set 𝑡𝑡 = 𝑡𝑡 + 1 

• Generate a proposal value 𝜃𝜃1∗ from 𝑞𝑞(𝜃𝜃1|𝜃𝜃1(𝑡𝑡)) 

• Compute the probability of acceptance 𝛼𝛼 = min�1,
𝑞𝑞�𝜃𝜃1

(𝑡𝑡)|𝜃𝜃1∗�𝜋𝜋�𝜃𝜃1∗,𝜃𝜃2
(𝑡𝑡)�

𝑞𝑞�𝜃𝜃1∗|𝜃𝜃1
(𝑡𝑡)�𝜋𝜋�𝜃𝜃1

(𝑡𝑡),𝜃𝜃2
(𝑡𝑡)�
� 

• Independently sample 𝑢𝑢 from the uniform distribution 𝑈𝑈(0,1) 
• If 𝑢𝑢 ≤ 𝛼𝛼, then the proposal value is accepted and hence 𝜃𝜃1(𝑡𝑡+1) = 𝜃𝜃1∗. 

Otherwise, 𝜃𝜃1(𝑡𝑡+1) = 𝜃𝜃1(𝑡𝑡) 

• Generate a proposal value 𝜃𝜃2∗ from 𝑞𝑞(𝜃𝜃2|𝜃𝜃2(𝑡𝑡)) 

• Compute the probability of acceptance 𝛼𝛼 = min�1,
𝑞𝑞�𝜃𝜃2

(𝑡𝑡)|𝜃𝜃2∗�𝜋𝜋�𝜃𝜃1
(𝑡𝑡+1),𝜃𝜃2∗�

𝑞𝑞�𝜃𝜃2∗|𝜃𝜃2
(𝑡𝑡)�𝜋𝜋�𝜃𝜃1

(𝑡𝑡+1),𝜃𝜃2
(𝑡𝑡)�
� (note 

that the argument of the target distribution uses the new updated value for 
𝜃𝜃1 

• Independently sample 𝑢𝑢 from the uniform distribution 𝑈𝑈(0,1) 
• If 𝑢𝑢 ≤ 𝛼𝛼, then the proposal value is accepted and hence 𝜃𝜃2(𝑡𝑡+1) = 𝜃𝜃2∗. 

Otherwise, 𝜃𝜃2(𝑡𝑡+1) = 𝜃𝜃2(𝑡𝑡) 
• The iteration step is once again increased by 1, and the process is repeated. 

For 𝑘𝑘 different variables, the updating step for each iteration will simply be 
performed 𝑘𝑘 times, and each update procedure uses the new values of the 
variables updated prior to that. 

This particular method is a branch of the Metropolis-Hastings algorithm also known 

as component-wise sampling. Its name obviously comes from the fact that the 

components of the vector 𝜽𝜽 are updated one at a time. There is another similar 

method of drawing samples from a target distribution called block-wise sampling 

whose algorithm is similar to what has been shown above; the difference lies in the 

fact that instead of updating each component at a time, a multi-dimensional 

proposal distribution is used (having the same number of dimensions as the vector 

𝜽𝜽) so that all vector components are updated simultaneously. The main problem 

with that however is the fact that in high dimensional problems it might be difficult 

to find a suitable proposal distribution, and also the method is generally associated 

with high rejection rates. 

As the updating algorithm behind this framework was outlined above, the following 

section has the role of presenting the new method for obtaining feedback from 

experts, which is also the last step before presenting the overarching framework. 
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3.3 A new alternative way of obtaining expert feedback 

The main suggestion found in the literature described in section 2.4 is to fit the 

experts’ judgements to a PDF 𝜋𝜋(𝜃𝜃), after which to show it back to the experts in 

order to check whether it captures their uncertainty regarding the parameters of 

the problem. Whereas this method is quite simple to understand and apply, in most 

cases, the experts who attend the elicitation workshop are arguably more 

knowledgeable in their fields of expertise rather than when it comes to interpreting 

the statistics that are a direct result of the elicitation procedure. This means that it 

would be more useful if their judgements could be converted to a metric that is 

directly related to the problem undergoing elicitation, and thus more suitable for 

them to interpret. Fortunately, there is a way of doing this, and it requires one extra 

step: the PDF containing the first iteration of elicited quantiles is then converted to 

a prior predictive distribution, which is subsequently shown to the experts who can 

therefore change their original beliefs based on that. 

By using the usual meanings of the variables presented in Section 2.2, the 

expression for the prior predictive distribution is as follows: 

 

𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = � 𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜽𝜽)𝜋𝜋(𝜽𝜽)d𝜽𝜽
+∞

−∞
 (31) 

The above expression contains information regarding the physical problem for 

which elicitation is done in the first place. Therefore, by analysing 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛), 

the experts can have a better understanding regarding whether and how they need 

to rethink their original judgements. In order to better understand the difference 

between the two feedback methods, it would be useful to highlight this idea using 

graphs: 

 

 

Figure 20: Original method for obtaining expert feedback 

 

𝜽𝜽 𝑖𝑖 Feedback 𝜽𝜽 𝑖𝑖+1
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Figure 21: Proposed method for obtaining expert feedback 

 

The difference between Figure 20 and Figure 21 has already been emphasized 

above: in order to make it easier for the experts, the statistical moments are 

converted to physical parameters via the physical model. The way in which this 

idea is implemented into the current framework is going to be illustrated in more 

detail in Chapter 4, section 4.3. 

Finally, the entire framework is going to be described over the following section, 

which should make the reader understand how its individual components fit 

together. 

 

3.4 A Top Level-View of the Framework 

As previously mentioned, the framework constitutes of two main components: an 

expert elicitation component as well as a Bayesian inference one, both of which 

create the overarching expert system which is at the root of the whole project. 

Although they have been explained in detail in the sections above, it would be 

useful to briefly summarize them in order to set the scene for the rest of this 

chapter. 

The expert elicitation framework from section 2.4 can be represented as a 

flowchart as follows: 

𝜽𝜽 𝑖𝑖

Feedback 𝜽𝜽 𝑖𝑖+1

Model

𝒙𝒙 𝑖𝑖
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Figure 22: Flowchart of the elicitation process 

The process shown in Figure 22 uses as a starting point the natural step of 

identifying the suitable experts for the problem requiring investigation. Afterwards, 

the experts are invited to the workshop where they should be briefed on 

probabilistic methods. Their judgements are subsequently elicited in the form of 

quantiles which are then fitted to PDFs. The feedback procedure commences after 

that. This can either be direct by asking the experts about the PDFs themselves, or 

indirect by using the method proposed in section 3.3 which involves converting the 

statistical moments to physical quantities. If the experts consider their beliefs need 

re-updating, the process goes back to the previous step. Otherwise, the elicitation 

is successful. If this is the case, the whole flowchart from Figure 22 becomes a 

component of the overall framework that is illustrated further. 

 

Figure 23: First part of the framework (Constructing the likelihood function based 

on the experts' priors) 
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The likelihood function simply shows how the physical model “thinks” the data 

should look like given the priors. The next step is using Bayesian inference in order 

to update the priors by using available high fidelity data (such as data from 

experiments or simulations): 

 

Figure 24: Second part of the framework (Updating the priors based on available 

high fidelity data) 

Finally, the posteriors from Figure 24 can be used in order to generate the posterior 

predictive distribution, which ultimately allows the designer to predict how the 

subsystem in question will behave at operating conditions different than the ones 

for which data is available. The actual steps taken in order to be able to do accurate 

predictions are going to be shown in detail in the next section. Their purpose is to 

offer the reader insight into the inner workings of the framework by highlighting 

the code used in this respect.  

 

3.5 A Detailed View of the Framework 

This section is going to be split into several parts, each of them explaining in detail 

the various components of the framework. All the theory from Chapter 2 is going 

to be brought together at this point, so various references will be made to that 

section of the thesis. The framework description is split into further subsections, 

each of them dealing with one part of the MATLAB code used to put all the ideas 

shown in Chapter 2 in practice. Therefore the first subsection describes the expert 

elicitation component as well as how it fits into the overall picture. 
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3.5.1 The Expert Elicitation Component 

The overarching framework was built to be flexible. In other words, its individual 

components can potentially be swapped with alternative ones if this procedure is 

deemed suitable for any specific case study undergoing analysis. For now however, 

considering the literature survey described in section 2.4, the elicitation method of 

choice that was chosen to be implemented was SHELF [54]. Thus, after the 

elicitation process (as shown in Figure 22) is successful, the data can be collected 

into a table. Then this table can be used as an input for a MATLAB script. 

Due to the nature of the elicitation itself, the elicited quantities are the quantiles of 

𝑛𝑛 different distributions (as shown in Figure 22). The framework is able to accept 

four different distributions types which are: uniform, normal, lognormal and beta 

(although more distributions can be added). In addition to that, due to using the 

SHELF framework, the quantiles that can be elicited can be of various forms: 

• Quartiles (the 25% and 75% quantiles are elicited) 

• Tertiles (the 33% and 66% quantiles are elicited) 

• Extreme (either the 1% and 99% or the 5% and 95% quantiles are elicited) 

The type of the elicited quantiles depends on the nature of the calibration 

parameters, which are in turn dependent on the case study itself. It is important to 

note that in each case, besides the two quantiles shown above, the lower and upper 

bounds as well as the 50% quantile should also be elicited. As it has already been 

suggested in section 2.4.4, the reason for introducing this apparent redundancy is 

due to the idea of overfitting, which is linked to psychology. Although a PDF is 

uniquely defined by only two quantiles, the reason of asking for more is that it is 

very unlikely that just two quantiles are able to accurately depict the expert’s “true” 

distribution [54]. 

The results from the elicitation can be placed within a table which assigns a lower 

bound (LB), an upper bound (UB) as well as three quantiles 𝑞𝑞1,𝑞𝑞2,𝑞𝑞3 to each 

parameter 𝜃𝜃𝑖𝑖. An example of how the collated data looks like can be seen in Table 

2: 
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Table 2: Template of the table containing elicitation data used for the framework 

 

Assuming independence between the priors, all 𝑛𝑛 sets of quantiles are read into a 

MATLAB script, and by considering their values as well as the “Distribution type”, a 

set of 𝑛𝑛 different means and standard deviations are created, and this will cause 

the prior distributions to be fully determinate. A few lines of pseudocode will be 

shown in order to illustrate the logic of the script. 

 

read elicitation_table 

for rows = 1:n 

 if “Distribution type”==”normal”; 

  calculate mean and variance for normal distribution 

 if “Distribution type”==”lognormal”;  

  calculate mean and variance for lognormal distribution 

if “Distribution type”==”beta”; 

 calculate mean and variance for beta distribution 

if “Distribution type”==”uniform”; 

 calculate mean and variance for uniform distribution 

return a vector with n values for mean 

return a vector with n values for variance 

 

A point worth making here is the way in which the final values for mean and 

standard deviation (or variance) were selected. In essence, due to the fact that each 

distribution is uniquely defined by only two quantiles, it is possible to find three 

different pairs of means and variances. Quantiles 𝑞𝑞1,  𝑞𝑞2 and 𝑞𝑞3 correspond to 

probabilities 𝑝𝑝1,𝑝𝑝2 and 𝑝𝑝3. Any two of those taken at a time are able to give a value 

Parameter
Distribution 

type
𝐿𝐿𝐵𝐵 𝑞𝑞1 𝑞𝑞2 𝑞𝑞3 𝑈𝑈𝐵𝐵

θ1

θ2

θ3

θ4
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of mean and standard deviation. For example, (𝑞𝑞1,𝑝𝑝1) and (𝑞𝑞2,𝑝𝑝2) give (𝜇𝜇1,𝜎𝜎1); 

(𝑞𝑞2,𝑝𝑝2) and (𝑞𝑞3,𝑝𝑝3) give (𝜇𝜇2,𝜎𝜎2), while (𝑞𝑞1,𝑝𝑝1) and (𝑞𝑞3,𝑝𝑝3) give (𝜇𝜇3,𝜎𝜎3). This means 

that at the end, there will be three sets of expected values and standard deviations: 

(𝜇𝜇1,𝜎𝜎1), (𝜇𝜇2,𝜎𝜎2) and (𝜇𝜇3,𝜎𝜎3). The final values of the mean and standard deviation are 

simply found by averaging: 

 

𝜇𝜇final =
𝜇𝜇1 + 𝜇𝜇2 + 𝜇𝜇3

3
 (32) 

𝜎𝜎final =
𝜎𝜎1 + 𝜎𝜎2 + 𝜎𝜎3

3
 (33) 

The pseudocode snippet shown above also describes that once the type of 

distribution is established, the mean and variance can be computed based on the 

quantile values. The algorithm used to do that is therefore illustrated below as 

doing so is considered to benefit the reader. This was done using the method 

proposed by Cook [77] which converts the quantiles and corresponding 

probabilities into pairs of (𝜇𝜇,𝜎𝜎). For a normal and lognormal distribution, this is 

done by introducing the function Φ, which is the CDF for the standard normal 

distribution (that is a normal distribution with an expected value of 0 and standard 

deviation of 1). The equations for finding 𝜇𝜇 and 𝜎𝜎 can therefore be written as: 

 

𝜇𝜇 =
𝑞𝑞𝑖𝑖Φ−1�𝑝𝑝𝑖𝑖� − 𝑞𝑞𝑖𝑖Φ−1(𝑝𝑝𝑖𝑖)
Φ−1�𝑝𝑝𝑖𝑖� − Φ−1(𝑝𝑝𝑖𝑖)

 (34) 

𝜎𝜎 =
𝑞𝑞𝑖𝑖 − 𝑞𝑞𝑖𝑖

Φ−1�𝑝𝑝𝑖𝑖� − Φ−1(𝑝𝑝𝑖𝑖)
 (35) 

The subscripts 𝑖𝑖 and 𝑗𝑗 are simply used to represent the two different 

quantiles/probabilities used, while Φ−1 stands for the inverse of the standard 

normal CDF. If a lognormal distribution is deemed suitable, a similar approach is 

used. However, in this case it will not be the mean and standard deviation of the 

lognormal distribution that will be computed, but instead the mean and standard 

deviation of the associated normal distribution. In other words, if 𝑋𝑋~lognormal(𝜇𝜇,𝜎𝜎), 
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then 𝑌𝑌 = ln(𝑋𝑋)~normal(𝜇𝜇,𝜎𝜎) [77], and Equations (34) and (35) are simply modified 

by replacing 𝑞𝑞𝑖𝑖 with ln(𝑞𝑞𝑖𝑖): 

 

𝜇𝜇 =
ln(𝑞𝑞𝑖𝑖)Φ−1�𝑝𝑝𝑖𝑖� − ln�𝑞𝑞𝑖𝑖�Φ−1(𝑝𝑝𝑖𝑖)

Φ−1�𝑝𝑝𝑖𝑖� − Φ−1(𝑝𝑝𝑖𝑖)
 (36) 

𝜎𝜎 =
ln�𝑞𝑞𝑖𝑖� − ln(𝑞𝑞𝑖𝑖)

Φ−1�𝑝𝑝𝑖𝑖� − Φ−1(𝑝𝑝𝑖𝑖)
 (37) 

In the case of a beta distribution, the situation gets slightly more complex because 

there is no MATLAB function (or explicit equation) which can compute the moments 

of the distribution as directly as for the normal and lognormal distributions. Three 

different methods have been identified which are able to convert quantiles into 

moments of a beta distribution. The first one is based on SHELF [54] itself, which 

has an intuitive Graphics User Interface that is able to fit various PDFs based on 

quantiles elicited from experts. An example of that can be seen below: 

 

Figure 25: Example of a beta distribution created in SHELF 

Cook [77] proposes an optimisation algorithm that can find the distribution 

parameters based on just two quantiles. The optimization problem can be 

formulated in the following way: 
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min�𝑓𝑓(𝛼𝛼,𝛽𝛽)� = min((CDF(𝑞𝑞1) − 𝑝𝑝1)2 + (CDF(𝑞𝑞2)− 𝑝𝑝2)2) 
 

(38) 

The terms CDF(𝑥𝑥1) and CDF(𝑥𝑥2) are functions of 𝑞𝑞1, 𝑞𝑞2 (which are the elicited 

quantiles), as well as 𝛼𝛼 and 𝛽𝛽 which are the unknowns. The algorithm requires 

starting values for both 𝛼𝛼 and 𝛽𝛽 as well as a direction of search. As before, 𝑝𝑝1 and 

𝑝𝑝2 are the known probabilities for which the quantiles are elicited. It can be easily 

verified that the theoretical minimum of the function from Equation (38) is clearly 

zero, which coincides with the minimum value of a sum of squares of real numbers. 

This also means that the combination of  𝛼𝛼 and 𝛽𝛽 which brings the function 𝑓𝑓(𝛼𝛼,𝛽𝛽) 

as close to 0 as possible is the solution to the optimization problem. Unfortunately, 

this particular algorithm is very slow, and because it also needs to run multiple 

times it leads to an overall running time that is too large to be practical. One way 

to overcome this would be to use an approximate closed form expression for the 

median of the beta distribution, as suggested by Kerman [78]: 

 

median = 𝑞𝑞2 ≅
𝛼𝛼 − 1

3
𝛼𝛼 + 𝛽𝛽 − 2

3
 

 

(39) 

Equation (39) involves the value of 𝑞𝑞2 which is the elicited value of the median (i.e.: 

the 50% quantile – that is always elicited regardless of the elicitation type). This 

means that a relationship between 𝛼𝛼 and 𝛽𝛽 can be explicitly formulated, which in 

turn means that the optimization algorithm from Equation (38) can simply use just 

one independent variable (either 𝛼𝛼 and 𝛽𝛽), while the other one can be deduced by 

using Equation (39). Although this reduces the computational time exponentially, 

there is yet one more method which is more accurate as well as elegant and quick. 

The final method for solving the backwards problem is based on a paper by van 

Dorp and Mazzuchi [79] which takes into account the monotony of the incomplete 

beta function in terms of 𝛼𝛼 and 𝛽𝛽 in order to produce a fast algorithm which solves 

for the parameters. The first part of their analysis was based on analytically proving 

that only two quantile constraints are needed in order to obtain a solution for 𝛼𝛼 

and 𝛽𝛽 (although this solution might not necessarily be unique). The existence of 

this proof also seems to answer the uncertainty identified in the paper by Cook [77] 

regarding whether the proof exists in the first place. The essential feature of the 

algorithm is its high degree of accuracy as well as fast computing time, which was 
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the reason why this particular procedure was implemented. It is based on a 

bisection optimization algorithm, although the full details are beyond the scope of 

this work, so the reader is simply referred to the relevant paper [79]. 

As the beta distributions are determined using the method described above, the 

framework then converts 𝛼𝛼 and 𝛽𝛽 into a mean and variance: 

 

𝜇𝜇 =
α

α + β
 

 

(40) 

 

𝜎𝜎 = �
αβ

(α + β)2(α + β + 1) 

 

(41) 

Finally, in the simplest case when a uniform distribution with lower and upper 

bounds 𝑎𝑎 and 𝑏𝑏 is used, the mean and standard deviation can be derived very easily, 

and they have the following form: 

 

𝜇𝜇 =
𝑎𝑎 + 𝑏𝑏

2
 

 

(42) 

 

𝜎𝜎 = �(𝑏𝑏 − 𝑎𝑎)2

12
 

(43) 

The pseudocode described above contains the logic within a MATLAB script called 

PriorFit.m. In order to put everything into perspective, it would be useful to 

represent the pseudocode in the form of a flowchart: 
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Figure 26: Determining the prior distributions from the elicitation process 

The next subsection will therefore delve into the next step of the framework, which 

has to do with analysing the likelihood function. 

 

3.5.2 The Likelihood Function 

The likelihood function has been first defined in section 2.2. In general, it is written 

as 𝑓𝑓(𝒙𝒙|𝜽𝜽), and in qualitative terms, it tells “how the model thinks the data 𝒙𝒙 should 

look like, given a prior distribution for the parameter 𝜽𝜽”. The available data is 

contained within a table which associates a set of physical parameters 

(Physical_param𝑖𝑖,𝑖𝑖) to a data point Data𝑖𝑖. A template of how such a table can look like 

is shown below in Table 3. 

Table 3: Template of the table containing data for the updating procedure 

 

The subscript 𝑖𝑖 refers to the number of data points, while 𝑗𝑗 stands for the number 

of physical parameters (in the simple case from Table 3, 𝑗𝑗 takes values from 1 to 

3). Of course in general, the number of the physical parameters can be extended 

indefinitely. They can refer to the known physical experimental inputs (e.g.: 

temperature, stress, speed), and together with the unknown calibration parameters 

(which are approximated via the prior distributions) are used to obtain the data. In 

𝑞𝑞𝑖𝑖,𝑖𝑖;   𝑖𝑖 = 1,3

dist_typej;         j = 1, 𝑛𝑛

𝐏𝐩𝐩𝐢𝐨𝐩𝐩𝐅𝐢𝐭.𝐩𝐩

𝜇𝜇𝑖𝑖 ,𝜎𝜎𝑖𝑖 ;         j = 1,𝑛𝑛

Elicitation

Physical_param1 Physical_param2 Physical_param3 Data



 

102 

addition to that, the distribution type for the likelihood has to be selected. This has 

been done by using a particular script named allfitdist.m. It works by simply fitting 

the data to multiple distributions and then comparing their Bayesian Information 

Criterion (BIC) to each other, and then uses the one with the lowest BIC as the most 

suitable distribution [80]. This simple process looks as follows: 

 

Figure 27: Setting up the distribution type for the likelihood function 

One important point to discuss is the physical model itself. In other words, there 

also needs to be a relationship between the physical parameters representing the 

inputs (shown by the first three columns in Table 3) as well as the physical 

parameter representing the output (which can be more than one). A general 

expression of this relationship is usually contained within a model, and it can have 

the following general form: 

 

ℎ(𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩_𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩1,𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩_𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩2, … ,𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩_𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝑚𝑚) = 𝒙𝒙 

 

(44) 

In Equation (44), ℎ is the model itself, while 𝑚𝑚 is the total number of calibration 

parameters. The bold font emphasizes the fact that the parameters are vector 

quantities.  

The script used to compute the likelihood function is called LikelihoodValue.m. It 

simply finds a PDF value in the point data𝑘𝑘 by considering the type of distribution 

found via allfitdist.m, as well as a mean (which is effectively the value of the 

function ℎ when the values of the physical parameters from Table 3 correspond to 

the 𝑘𝑘-th data point), and a standard deviation. The manner in which the standard 

deviation is defined uses the concept of measurement uncertainty. In other words, 

the standard deviation is a fraction of the measured data: 

 

𝜎𝜎𝑘𝑘 = 𝑓𝑓 ∗ data𝑘𝑘 
 

(45) 

𝑓𝑓 is a number between 0 and 1, whose value is related to the amount of confidence 

in the available data. The following section will take into consideration one of the 

𝐷𝑎𝑎𝑡𝑡𝑎𝑎 𝐩𝐩𝐥𝐥𝐟𝐢𝐭𝐝𝐢𝐩𝐩𝐭.𝐩𝐩 𝐝𝐢𝐩𝐩𝐭_𝐭𝐩𝐩𝐩𝐩𝐞
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crucial elements used in the numerical updating procedure, that is the nature of 

the proposal distribution 𝑞𝑞. 

 

3.5.3 The Numerical Algorithm for the Bayesian Updating 

The numerical method used in order to update the experts’ belief with real data 

has been described in section 3.2 as the “single component Metropolis-Hastings 

algorithm”. The block-wise sampling method was not chosen because generally it 

is associated with high rejection rates [38]. The joint prior distribution (which for 

now has been considered to be made of independent variables) is updated one 

variable at a time, using a number of proposal distributions equal to the total 

number of variables. 

The framework allows the proposal distribution to be of various types (normal, 

lognormal, beta, uniform – which are the same distribution types as the prior). At 

the moment, the proposal distribution is assigned the same type as the prior 

(although this can be easily changed). The mean of the proposal distribution is 

always equal to the current state of the chain, while the standard deviation was 

chosen to be the same as that of the prior. Choosing a suitable standard deviation 

is generally not an easy task because if it is too small, the algorithm tends to only 

focus on a small area of the design space, whereas if it is too large, it will explore 

the space without exploiting potentially suitable areas [38]. It has been observed 

that choosing a standard deviation for the proposal distribution of a similar 

magnitude (or at least the same order of magnitude) as the prior distribution 

creates a good compromise between exploration and exploitation. This can be 

expressed as follows: 

 

𝑞𝑞 �𝜃𝜃𝑖𝑖∗|𝜃𝜃𝑖𝑖
(𝑡𝑡),𝜎𝜎𝑖𝑖� 

 

(46) 

Equation (46) gives the value of the proposal distribution 𝑞𝑞 in the point 𝜃𝜃𝑖𝑖∗ (which 

is the proposed value for variable 𝜃𝜃𝑖𝑖), 𝜃𝜃𝑖𝑖
(𝑡𝑡) is the current value, and 𝜎𝜎𝑖𝑖 is the standard 

deviation. As presented in section 3.2, the mean of the proposal distribution always 

changes as long as newly proposed values are accepted. 

Another important point to make is regarding the likelihood function; more 

specifically regarding the way in the likelihood function uses the data. There are 
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two different ways in which updating can be performed: simultaneously or 

sequentially. Sequential updating allows the likelihood function to use each data 

point at a time and update the priors in this manner. Therefore, the first posteriors 

obtained in this way become the priors for the second data point, and this process 

continues until all data points have been used. The second method (i.e.: 

simultaneous updating) implies a likelihood function which contains information 

about the entire data set. Although the results from the two methods are 

mathematically equivalent, when doing a numerical simulation simultaneous 

updating can be cheaper and more accurate. The reason is that for simultaneous 

updating, the MCMC procedure is only done once, while for sequential updating 

the total number of iterations is done for each data point. In the early stages of 

developing the framework, while analysing the available options, sequential 

updating has been looked into (and also used for the first case study). Later, the 

simultaneous updating has been investigated, and has then been implemented for 

case studies two and three. In the end, simultaneous updating has been used as 

the default method of performing Bayesian inference within the framework. 

It is worth showing how the simultaneous updating algorithm works. To do so, 

Equation (1) can be rewritten by expanding vectors 𝜽𝜽 and 𝒙𝒙: 

 

𝜋𝜋(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)

=
𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛)𝜋𝜋(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛)

∭ 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛)𝜋𝜋(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛)d𝜃𝜃1d𝜃𝜃2 … d𝜃𝜃𝑛𝑛
+∞
−∞

 

 

(47) 

Although Equation (18) looks complex, there are several assumptions which 

simplify both the equation and the expression for the likelihood function given by: 

 

𝐿𝐿 = 𝑓𝑓(𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) 
 

(48) 

The first assumption is that each experiment is independent of all the others; in 

other words 𝑥𝑥𝑖𝑖 does not depend on 𝑥𝑥𝑖𝑖. Knowing this, the likelihood function can be 

rewritten in the following way: 

𝐿𝐿 = 𝑓𝑓(𝑥𝑥1|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) ∗ … ∗ 𝑓𝑓(𝑥𝑥𝑛𝑛|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛) = �𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛)
𝑛𝑛

𝑖𝑖=1

 (49) 
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The other assumption is that each data point is solely dependent on its 

corresponding model prediction (i.e.: 𝑥𝑥𝑖𝑖 only depends on 𝜃𝜃𝑖𝑖). As a result, the total 

likelihood can finally be simplified as follows: 

𝐿𝐿 = 𝑓𝑓(𝑥𝑥1|𝜃𝜃1) ∗ 𝑓𝑓(𝑥𝑥2|𝜃𝜃2) ∗ … ∗ 𝑓𝑓(𝑥𝑥𝑛𝑛|𝜃𝜃𝑛𝑛) = �𝑓𝑓(𝑥𝑥𝑖𝑖|𝜃𝜃𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 (50) 

Computationally, Equation (50) will be easier to use, especially when finding the 

acceptance ratio for the Metropolis-Hastings algorithm. As a reminder, the 

acceptance ratio for the 𝑖𝑖th parameter is given by: 

 

𝛼𝛼 = min�1,
𝑞𝑞 �𝜃𝜃1

(𝑡𝑡+1),𝜃𝜃2
(𝑡𝑡+1), … ,𝜃𝜃𝑛𝑛

(𝑡𝑡)|𝜃𝜃𝑖𝑖∗� 𝜋𝜋 �𝜃𝜃1
(𝑡𝑡+1),𝜃𝜃2

(𝑡𝑡+1), … ,𝜃𝜃𝑖𝑖∗, … ,𝜃𝜃𝑛𝑛
(𝑡𝑡)�

𝑞𝑞 �𝜃𝜃𝑖𝑖∗|𝜃𝜃1
(𝑡𝑡+1),𝜃𝜃2

(𝑡𝑡+1), … ,𝜃𝜃𝑛𝑛
(𝑡𝑡)�𝜋𝜋 �𝜃𝜃1

(𝑡𝑡+1),𝜃𝜃2
(𝑡𝑡+1), … ,𝜃𝜃𝑖𝑖

(𝑡𝑡), … ,𝜃𝜃𝑛𝑛
(𝑡𝑡)�

� 

 

(51) 

 

As it may be deduced, 𝑡𝑡 stands for the current iteration step. In some cases, the 

proposal distribution 𝑞𝑞 is symmetric, which simplifies the above expression to the 

simpler Metropolis algorithm: 

 

𝛼𝛼 = min�1,
𝜋𝜋 �𝜃𝜃1

(𝑡𝑡+1),𝜃𝜃2
(𝑡𝑡+1), … ,𝜃𝜃𝑖𝑖∗, … ,𝜃𝜃𝑛𝑛

(𝑡𝑡)�

𝜋𝜋 �𝜃𝜃1
(𝑡𝑡+1),𝜃𝜃2

(𝑡𝑡+1), … , 𝜃𝜃𝑖𝑖
(𝑡𝑡), … ,𝜃𝜃𝑛𝑛

(𝑡𝑡)�
� 

 

(52) 

 

The equation simplifies such that the only remaining term from the acceptance 

probability expression is the posterior distribution. Depending on the prior 

distribution, Equation (52) could be simplified even further. For instance, if the 

prior is non-informative (such as a uniform distribution), then the acceptance ratio 

will simply become equal to the ratio of the likelihoods: 

 

𝛼𝛼 = min�1,
𝑓𝑓 �𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑖𝑖, … 𝑥𝑥𝑛𝑛�𝜃𝜃1

(𝑡𝑡+1),𝜃𝜃2
(𝑡𝑡+1), … ,𝜃𝜃𝑖𝑖∗, … , 𝜃𝜃𝑛𝑛

(𝑡𝑡)�

𝑓𝑓 �𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑖𝑖, … 𝑥𝑥𝑛𝑛�𝜃𝜃1
(𝑡𝑡+1),𝜃𝜃2

(𝑡𝑡+1), … ,𝜃𝜃𝑖𝑖
(𝑡𝑡), … ,𝜃𝜃𝑛𝑛

(𝑡𝑡)�
� 

 

(53) 

 

Both Equations (52) and (53) are computationally easy to solve. At the end of the 

entire MCMC simulation, the posterior predictive distribution can be computed; 

which in general has the following expression: 
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𝑓𝑓(𝑥𝑥𝑛𝑛+1|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)

= � 𝑓𝑓(𝑥𝑥𝑛𝑛+1|𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛)𝜋𝜋(𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑛𝑛|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛)d𝜃𝜃1d𝜃𝜃2 … d𝜃𝜃𝑛𝑛
+∞

−∞
 

 

(54) 

 

The numerical equivalent of Equation (54) was described as ancestral sampling in 

section 2.3. The manner in which all the ideas illustrated above are put together is 

depicted to the reader in two ways: by using pseudocode as well as in a more 

graphical fashion by condensing all the information into several flowcharts. The 

pseudocode looks as follows: 

 

read prior mean, standard deviation and distribution type 

read data points 

read physical parameters 

set number of MCMC iterations 

set uncertainty of the likelihood function (parameter f) 

set P = vector with starting points for the prior 

set standard deviation of proposal distribution q 

set a flag variable to a value of 0 

 

for i=1:number of MCMC iterations 

 while j<=number of calibration parameters 

  create a new vector Q = P 

  create a sample from the proposal distribution 

  assign the proposed value to Q(j) 

  compute the prior based on the proposed value 

  compute the prior based on the current value 

  compute the proposal q based on the proposed value 

  compute the proposal q based on the current value 
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compute the likelihood for each data point 

  obtain the total likelihood by multiplying all the above 

 

  perform a logic check on the model values 

  if the test fails, assign the flag a value of 1 

   else j=j+1 

  end 

 

  find the acceptance probability a 

  sample a variable u from the uniform distribution (0,1) 

  if u<a 

   assign the proposed value to the next step 

  else 

   assign the current value to the next step 

  end 

   

The results obtained using the code illustrated by the above lines give a joint 

posterior distribution. In order to compute the posterior predictive, an ancestral 

sampling routine is performed on the posterior. The pseudocode above can be put 

a more visual format as follows: 
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Figure 28: Framework of the updating process (simultaneous updating) 

 

In Figure 28, the circles represent probabilistic variables (such as the calibration 

parameters), while the diamonds refer to deterministic ones. Here, 𝑛𝑛 stands for the 

total number of calibration parameters, 𝑚𝑚 is the number of physical parameters 

used by the physical model, while 𝑝𝑝 is the number of data points. The likelihood 

function uses the actual data as well as the “predicted data” in order to update the 

original calibration parameters and hence find their posterior distribution. 

Earlier, it was mentioned that the updating procedure of choice was the 

simultaneous one from Figure 28, however for completion purposes Figure 29 is 

used to show sequential updating that was used in a previous iteration of the 

framework. 
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Figure 29: Framework of the updating process (sequential updating) 

 

Finally, when the posterior distribution has been calculated in either way, the 

ancestral sampling routine is then ran using a simple Monte Carlo simulation which 

draws samples from the posterior distribution, which together with the 

deterministic values of the physical parameters results in a distribution at the end 

which shows how the model estimates the uncertainty of a new data point given all 

previously known data. This algorithm is once again shown graphically in Figure 

30: 
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Figure 30: Ancestral sampling used in order to perform predictions 

 

Although all the theory above holds from a purely mathematical perspective, its 

power should become apparent as it is put into practice. Its application to real-life 

case studies should make this hypothesis clear for the reader, and this is the main 

subject of the following Chapter 4. However, there is a major limitation that the 

framework is subject to. Because the prior distributions are based on expert 

judgements, it is automatically implied that the experts need to have experience 

regarding the problem that is being discussed. The issue here is that if one aspect 

of the problem is completely new (for instance if elicitation is done in order to 

gather judgements on the properties of a turbine blade made from a completely 

new material), then by definition the elicitation and hence the framework become 

invalid. However, in the aerospace sector (and in Rolls-Royce in particular) a great 

amount of research needs to be done before something completely new is 

implemented, which gives experts time to gather knowledge on the topic, and in 

those circumstances, the framework keeps its validity. 

 

Before moving on to Chapter 4, there is one more step which should be taken in 

order to confirm the suitability of the framework for any applications: the validation 

process. 
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3.6 The Validation Process 

It is imperative for any new approach to solving problems to undergo a validation 

process in order to gain confidence that the procedure used is sound. 

Consequently, this framework has been used in order to solve a problem identified 

in a research paper written by Karandikar et al [38] who have investigated the life 

of a cutting tool using a Bayesian approach. In other words, by using the authors’ 

inputs and the framework presented here, that problem has been looked into, and 

the results of the framework were compared to theirs. The physical model which 

they used was the following: 

 

𝑇𝑇 =
𝐶𝐶

𝑉𝑉𝑝𝑝𝑓𝑓𝑞𝑞
 (55) 

 

In Equation (55), 𝑇𝑇 is the tool life itself, 𝑉𝑉 is the cutting speed measured in m/min, 

while 𝑓𝑓 is the feed rate in mm/revolution. 𝐶𝐶, 𝑝𝑝 and 𝑞𝑞 are the three calibration 

parameters for which Bayesian inference is made. By considering the three priors 

as uniform and independent of each other, the posterior predictive distribution 

(which is equivalent to the predicted life) for a combination of speed and feed rate 

for which data was not available can be determined. Next to that is the same 

prediction done with the Bayesian-elicitation framework presented in this thesis. 

The same prior and proposal distributions as well as the same likelihood function 

have been considered, and as Figure 31 proves, the similarity between the two 

graphs is undeniable. This is supported by doing a two tailed F-test on the two 

PDFs which yields that the test statistic is within the 95% confidence interval, 

therefore that the hypothesis that the two distributions are similar is accepted. 
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Figure 31: Comparison of predicted tool life between the journal paper results 

(left) [38] and the framework (right) 

The additional step which needs to be taken in order to convert the histogram into 

a PDF was done via the previously mentioned MATLAB “allfitdist” function which 

compares the Bayesian Information Criterion (BIC) [80] for various models and 

considers the one with the lowest BIC as the most suitable one. Another prediction 

done for different inputs can be seen in Figure 32, where it is once again obvious 

that the two results are nearly identical: 

 

Figure 32: Comparison of predicted tool life between the journal paper results 

(left) [38] and the framework (right) 

In addition to just finding the posterior distributions, the authors also tried using 

different uncertainty values for the likelihood function (similarly to what is shown 

in Equation (45)). As a general rule, as the standard deviation tends to 0, the PDF 

converges to a single point. This behaviour can be observed in Figure 33: 
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Figure 33: Comparison between predicted tool life for various likelihood 

uncertainty levels [38] 

It is becoming more and more clear that the results obtained from the current 

framework once again display a large degree of similarity to the ones from 

Karandikar et al. [38]. Once again, the F-test yielded that the PDFs are the same at 

the 95% confidence level. The 1% uncertainty PDF has not been tested because the 

comparison would have been meaningless (the 1% likelihood uncertainty from the 

journal paper is not to scale). 

This shows that the Bayesian component of the framework has been validated. 

However, as it was highlighted in this chapter, the framework also relies on an 

elicitation component, meaning that validation of the elicitation component also 

needs to be done. According to Pitchforth and Mengersen [36], when it comes to 

frameworks which rely on expert judgements, the validation process is not done in 

the traditional way by comparing the results with others’ results, simply because 

sometimes the outputs from such frameworks are predictions regarding the future 

behaviour of a model, and that data may be either non-existent or very expensive 

to obtain. Instead, the posterior predictive distributions are shown to an expert 

who can affirm whether the predictions match their beliefs and experience. In 

addition to that, the feedback loop of the elicitation process ensures that the expert 

has a chance to change their judgements before they are passed on to the Bayesian 

component. In this respect, the feedback procedure is considered to be a validation 

process.   

The results from this section indicate that the Bayesian-elicitation framework 

presented is valid. Consequently, as it was mentioned at the end of section 3.5, 

Chapter 4 is fully dedicated to demonstrate how this framework can be applied in 
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the context of the aero-engine preliminary design process, by illustrating three 

different case studies. 
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Chapter 4 : Application of the Framework to 

Real Life Aero-Engine Related Case Studies 

The purpose of this chapter is to illustrate how the methodology described in the 

previous chapter (which in turn is based upon all the theory investigated in Chapter 

2) can be applied to real-life case studies that are relevant to the preliminary stage 

of the aero-engine design process. One important thing to take note of is that those 

case studies were being looked into as the framework was being developed. This 

means that each individual case study will offer the reader the opportunity to see 

how the framework has evolved during the timespan in which this doctoral project 

has been undertaken. This is due to the fact that the framework and the case 

studies have not been analysed at separate times, but rather simultaneously. The 

main reason was that a great part of the work has been done in collaboration with 

Rolls-Royce plc and by the time the first case studies were looked into, the 

framework was in its incipient stages. Additionally, those three particular case 

studies were selected (as opposed to something else) because at the time, 

quantifying uncertainties regarding those problems presented a high degree of 

interest to the engineers from Rolls-Royce plc, as those were areas where not 

enough knowledge was available during the preliminary design stage. 

The first case study investigated the disc on which the turbine blades are mounted. 

In this particular case, the interest was to model the grain size as that in turn is 

related to the fatigue life of the component. This particular case study did not deal 

with the first component of the framework (the expert elicitation part), however it 

played a paramount role regarding the development of the main Bayesian inference 

algorithm. 

The second case study shows how knowing the likelihood of Fan Blade Off (FBO) 

events can allow the designer to reduce costs by eventually having to do fewer CFD 

and FEA simulations. As this project deals with rare data, an expert elicitation 

workshop had been held before the case study started to be investigated as part 

of the EngD project. Actually, the idea of using expert judgements as Bayesian 

priors came about while investigating FBO events simply due to their rare 

occurrence rate and the fact that obtaining experimental data is extremely 

expensive as it involves building a fan for the sole purpose of destroying it. 
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Finally, the third case study, also related to the turbine disc, looked into reasons 

why fatigue failure can occur (either due to crystallographic or inclusion failure). It 

is at this point that the framework was fully developed, and enough experience 

regarding using it had been gathered as a result of working on the previous two 

case studies. It would therefore be useful to present each individual case study for 

which the Bayesian-elicitation framework has been applied, starting with the one 

that was the main inspiration for using expert judgements in the first place. 
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4.1 Grain Size Growth within a Turbine Disk 

This case study was primarily investigated in order to develop the Bayesian 

updating procedure. As a result, instead of drawing expert judgements, Bayesian 

priors have been obtained using a MATLAB code which simulates the grain size 

during an isothermal forging process as well as grain growth during heat 

treatment by using physics-based models [81]. Subsequently, the Bayesian 

updating component from the framework has been applied in order to make 

predictions regarding the life of a turbine disc based on the grain size. 

4.1.1 Overview of the Physics of the Case Study 

The typical disc application material for gas turbine engines consists of Nickel-

based high temperature superalloys, with Ni acting as the base material and a 

variety of alloying elements coming from the IVB, VB and VIB groups of the 

periodic table [82]. The microstructure of the material during the manufacturing 

stages (which include alloy gas atomisation, hot isostatic pressing, extrusion, 

isothermal forging, heat treatment and machining) changes according to the 

applied temperature, strain and strain rate that the material experiences. It has 

been observed that the forging and heat treatment stages are the ones which 

dictate the final grain size distribution of the material [83]. Consequently, 

modelling correctly the two processes would provide a direct benefit to any aero-

engine company, while minimising the experimental costs as well as concessions 

due to non-conforming microstructure. 
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Figure 34: Modelled relationship between life/strength and grain size [84] 

Randomness plays a role especially during the isothermal forging stage of the 

manufacturing process when the strain and strain rate are not uniform within the 

forging stock the disk is manufactured from. As a consequence, it was considered 

that Bayesian inference should be used in order to be able to define the limits of 

strain and strain rate allowable within the forging that should lead to an acceptable 

grain size distribution and optimal die design. The whole modelling process covers 

the following three steps:  

1. Modelling isothermal forging and dynamic recrystallization 

2. Using the initial grain size found at step 1, it is studied how the grain 

grows during the heat treatment phase 

3. The MCMC component is used to generate samples from the posterior 

distributions of different parameters of interest 

The first step is realized using a physics-based thermo-statistical model 

developed by Galindo-Nava and Rivera-Diaz [85], which takes as inputs the initial 

billet grain size, forging temperature, strain and strain rate in order to return the 

grain size at the end of the forging process (in this context it is also called 

“DReX”, which stands for “dynamically recrystallized grain”). The second step 

involves using a model which predicts the evolution of the DReX during heat 

treatment by taking into account certain inputs such as grain boundary energy, 

grain boundary mobility, carbide dispersion as well as the heat treatment 
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temperature [81]. The reason behind the importance of grain size modelling and 

manufacturing conformity is shown in Figure 34. While the bore of the turbine 

disc experiences lower operating temperatures, the circumferential load due to 

rotation creates a greater stress range than those of the rim. Thus, higher 

material strength is needed in this region in order to accommodate those 

stresses, whereas the increased temperatures observed in the rim area require a 

larger grain size distribution which would provide much better creep and fatigue 

crack propagation performance. 

4.1.2 Modelling the Uncertainty behind the Grain Growth Process 

The way in which the framework was applied to the grain growth model (which 

includes both the DReX model as well as the grain growth during solution heat 

treatment) can be seen below in Figure 35 [5]: 

 

Figure 35: Flowchart of the Bayesian updating for the grain growth case study 

[85], [86] 

As a reminder, the type of the MCMC algorithm used for finding the posterior 

distribution for this problem is based upon the multivariate component-wise 

updating algorithm similar to the one presented in section 3.2. The steps 

followed by the methodology illustrated in Figure 35 are described below: 
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• There are five different prior distributions corresponding to five inputs that 

are obtained from forging data. 

• Three of those (namely strain, strain rate and forging temperature are fed 

into the DReX model in order to find the DReX grain size after the 

isothermal forging process). 

• The other two inputs (mobility and grain boundary energy) as well as the 

DReX are used in order to compute the final grain size after the heat 

treatment process. 

• The likelihood function is based upon experimental data (which is based 

on approximately 1000 experiments) and together with the five priors 

mentioned above, it is used to find the posterior distributions for strain, 

strain rate, forging temperature, mobility, grain boundary energy and final 

grain size. 

The plots showing the posterior distributions of the above-mentioned parameters 

have been obtained by fitting PDFs on the histograms representing posterior 

distributions. Here, the priors and posteriors for the strain levels as well as grain 

size are shown in order to compare them. 

 

 

Figure 36: Prior and posterior of strain distribution during the forging process 
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Figure 37: Prior and posterior of the grain size distribution after the heat 

treatment process 

The plots from Figure 36 and Figure 37 show the differences between the prior and 

posterior distributions obtained after real experimental data had been input to the 

model, and since the relationship between all the parameters was not at all evident, 

the posteriors were computed using the MCMC approach described in section 2.3. 

After the posteriors have been obtained, further operations could be done on them. 

For instance, in order to ensure a consistent and large number of cycles to failure 

(which is the low cycle fatigue), it is necessary to specify a range for the final grain 

size (whose posterior is shown in Figure 37). Therefore, by fixing the range for the 

grain size, it is possible to work backwards in order to check which values of strain, 

strain rate as well as temperature should be used during the manufacturing process 

so that the corresponding grain size, and hence service life should be satisfied. 

This procedure is illustrated in the following example. It can be assumed that the 

manufacturer does not have an idea on which temperature from a typical range is 

the best in order to obtain an optimum grain size, so in the preliminary stage they 

might have no preference over any temperatures, for instance between the Nickel 

superalloy forging temperatures (1055℃ up to 1155℃). However, by using the 

Bayesian techniques shown above, the designer can compute the posterior 

distribution of the grain size which is shown in Figure 38: 
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Figure 38: Posterior distribution of the grain size 

Finally, the PDF for the forging temperature can be computed by constraining the 

grain size between 3 and 5 microns. The resulting posterior distribution for the 

temperature together with the designer’s initial belief (which was a uniform 

distribution of temperature) are shown below in Figure 39. 

 

Figure 39: Prior and posterior of the temperature difference between the actual 

forging temperature and the lower bound of the uniform distribution 

(which is 1055 Celsius). 
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uniform temperature distribution, which is 1055℃, as it is mentioned above. 

Therefore, in order to obtain the actual temperature used in forging, all there needs 

to be done is to add 1055℃ to the posterior from Figure 39 above. In this way, the 

engineer can control the final grain size to be within the specified range of 3 to 5 

microns. The ultimate goal of this is that the stress analyst should be able to get a 

much better estimate of how many flight cycles the engine can withstand safely in 

operation and avoid having to remove it from service too early based on location-

specific material properties which have grain size as their main independent 

variable. 

The purpose of this case study was mainly to develop the core Bayesian algorithm 

which is integrated within the Bayesian-elicitation framework. The way in which this 

was done was by trying to solve a real-life problem that deals with uncertainties 

regarding the service life of a turbine disc. By investigating the grain size 

distribution at the end of the manufacturing process, and by using the framework 

proposed, the designer can potentially be able to make predictions regarding the 

life of the component. The expert elicitation component can potentially be 

implemented if a new material is planned to be used for the turbine disc for which 

no prior data is available. 

The second case study which applies the probabilistic framework to a real-life 

scenario is illustrated in the following section and it involves modelling fan blade-

off events. As it was mentioned at the beginning of Chapter 4, this case study will 

make use of the updating technique developed in this section, while also focusing 

on expert judgements. 
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4.2 Investigation of Rare In Service Fan Blade Off (FBO) 

Events 

At the point when the Fan Blade Off (FBO) events became part of the Engine 

Certification Requirements for turbofan engines, there was also a need to provide 

evidence showing that the “worst case” FBO event would be safe. This makes use 

of the assumption that the heaviest fan blade is released at Low Pressure (LP) 

redline speed (which is also known as the maximum operational limit revolutions 

per minute (RPM); generally greater than 100%) from its outermost retention feature 

into a Fan Containment Casing which is manufactured to its minimum dimensions. 

This is considered to be the worst Fan Blade containment event. If the engine can 

withstand the worst case FBO event, it is reasonable to assume that it can also 

withstand lesser such events.  

However, a further Certification Requirement needed aero-engine companies to 

prove that the flight phase following an FBO event is safe. The reason for that is 

because once a fan blade detaches from the fan, a phenomenon known as 

“windmilling” starts occurring. In broad terms, when the engine stops working, the 

aircraft continues to fly and the incoming flow of air will cause the fan to rotate 

and because the axisymmetry is lost, there will be large out of balance forces and 

moments acting on the fan. This also has the effect of reducing nominal clearances 

between the blade and the casing, and consequently, different types of interactions 

between the rotor and the stator start appearing which are related to friction and 

impacting [87].  

A model has been created in MATLAB which is able to simulate any number of 

random FBO events and then assess their effect on the released and trailing blades 

and can also help quantify the effect of the windmilling process. The principal 

outputs of interest which are given by the model refer to the characteristics of the 

most likely FBO events that can be expected to occur in service. It is at this point 

that the Bayesian-elicitation framework shines: it can be integrated into the model 

in order to obtain more realistic outputs that are then used to do more efficient 

physical FEA simulations. This process is illustrated below in a visual fashion: 
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Figure 40: Obtaining physical outputs from damage and release speed. 

One physical parameter of interest to the engineer is the stress distribution over 

the fan, as this can provide crucial information regarding whether or not the 

subsystem can withstand windmilling subsequent to the FBO event. In order to 

analyse an FBO event, information regarding damage and release speed (those will 

be explained in detail further in this chapter) need to be provided. However, there 

is a chance that the designer has little information on which FBO events are most 

likely to occur, hence the number of FBO events that will be simulated can 

potentially be massive (around 2000-3000). Figure 40 illustrates this by 

considering 𝑛𝑛 ∗ 𝑚𝑚 pairs of damage and release speed as the inputs. Therefore, if 

this product is complex, there needs to be an equally large amount of FEA 

simulations performed, which can end up being costly. One way to circumvent this 

issue would be to use the Bayesian-elicitation framework. By using this framework, 

Figure 40 will change in the following way: 

Dynamics Analysis

Inputs: Damage and Release Speed

dmgi,𝑣𝑣𝑖𝑖 |𝑖𝑖 = 1, … ,𝑛𝑛; 𝑗𝑗 = 1, … ,𝑚𝑚

Outputs: Stress Distribution
𝜎𝜎𝑥𝑥,𝑦 𝑘𝑘

; 𝑥𝑥,𝑦𝑦 ∈ simulation domain
𝑘𝑘 = 1, … , 𝑠; 𝑠 = total number of simulations
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Figure 41: Obtaining physical outputs from damage and release speed (after the 

update). 

The main consequence of using the framework is that a higher level of 

understanding can be gained regarding the characteristics of the most likely FBO 

events. This will not only result in realistic scenarios being analysed further with 

FEA, but also as a much lower number of simulations need to be done, the total 

cost of the detailed analysis stage will decrease. In order to understand this better, 

it would be useful to first illustrate the outline of the FBO model, and this is the 

subject of the following section. 
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Outputs: Stress Distribution
𝜎𝜎𝑥𝑥,𝑦 𝑘𝑘

; 𝑥𝑥,𝑦𝑦 ∈ simulation domain
𝑘𝑘 = 1, … , 𝑠; 𝑠 = total number of simulations
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127 

4.2.1 Overview of the FBO Model 

Several inputs have been identified as needing to be represented in the form of 

PDFs [1], meaning that uncertainty surrounding them has to be quantified. Those 

inputs refer to features having to do with three different aspects of the FBO event: 

the initial released blade, the trailing blade and the windmill. The inputs associated 

to those aspects are listed below. Before going into detail, it is worth explaining 

the notation used subsequently in this section. The expression 𝑃𝑃(𝑋𝑋 = 𝑥𝑥|𝑌𝑌 =

𝑦𝑦) represents the conditional probability for the random variable 𝑋𝑋 to take the value 

𝑥𝑥 given that the random variable 𝑌𝑌 has the value 𝑦𝑦. Conditional probabilities of this 

type make up for a large proportion of the number of inputs used for the FBO event 

modelling. As a result, the list with all the different inputs appearing is presented 

below. 

 

Initial Released Blade 
 

• INPUT: Causes of failure: There are 8 different causes of FBO events 

identified, and their names (similarly to all of the other inputs to the 

model) are based on expert judgements. The acronyms used in 

some of them are as follows: 

o Foreign object damage (FOD) 

o High Cycle Fatigue (HCF) 

o Low Cycle Fatigue (LCF) 

 

 
• INPUT: Probability of being at a certain speed given that a blade is 

released: 

𝑃𝑃�𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1� 

The notation 𝐹𝐹 = 1 emphasizes the binary nature of a potential FBO 

event; it either happens (in which case 𝐹𝐹 = 1), or it does not (therefore 

𝐹𝐹 = 0). However, as it will shortly become evident, the model is only 

concerned with the phenomena which occur during an FBO event, 

meaning that in all cases from now on, the binary variable 𝐹𝐹 will 

always be assigned the value of 1. 
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• INPUT: Probability of having a specific failure cause given a certain 

speed and the fact that failure happened: 

𝑃𝑃�𝑐𝑐 = 𝑐𝑐𝑘𝑘|𝑣𝑣 = 𝑣𝑣𝑖𝑖,𝐹𝐹 = 1� 

• INPUT: Percentage of the released blade (known as the phase 1 

damage) given a specific failure cause, a certain speed and the fact 

that failure happened: 

𝑃𝑃�dmg = dmg𝑖𝑖|𝑐𝑐 = 𝑐𝑐𝑘𝑘 ,  𝑣𝑣 = 𝑣𝑣𝑖𝑖,𝐹𝐹 = 1� 

Trailing Blade 

• INPUT: Percentage of damage to the trailing blade given the initial 

amount of released blade. The cumulative damage of the released 

and the trailing blade will be referred to from now on as the phase 2 

damage. 

𝑃𝑃�dmg𝑡𝑡 = dmg𝑡𝑡,𝑙𝑙|dmg = dmg𝑖𝑖� 

The Windmill 

• INPUT: Inclusion of “Other” effects. Those effects are actually taking 

place during the windmilling phase which happens after the release 

of the trailing blade. The time scale is also worth taking into account. 

Although the initial and trailing blades can get released in a matter 

of seconds, a longer period of time (of the order of minutes) might 

pass until windmilling starts. There are several phenomena 

associated to the windmill which have an effect on the overall amount 

of “out-of-balance” (OOB) associated with the fan. The OOB term 

which the model refers to, is directly linked to the amount of damage 

which in reality, is the same as the percentage of the blade which gets 

released. The difference between the OOB and the amount of damage 

having to do with it, stands in the fact that the OOB is considered to 

be a vector defined by two features: a magnitude which is exactly 

equal to the amount of damage and an orientation which is defined 

by an angle 𝜃𝜃 with respect to the initial released blade. This idea is 

illustrated in Figure 42 below: 
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Figure 42: Visual representation of the released and trailing blades 

from the fan 

 

Figure 42 shows the configuration of two blades from a fan, which are 

at an angle 𝜃𝜃 with respect to each other. The values 𝑝𝑝1 and 𝑝𝑝2 represent 

the percentages of the blades which are released after the FBO event. 

Their values are also equal to the magnitudes of the OOB vectors which 

can be added in order to find the overall level of OOB in a manner 

similarly to the one shown below in Figure 43: 

 

 

Figure 43: Out-of-balance levels represented as vectors 

 

𝜃𝜃
Released Blade

𝑝𝑝1 = 80%

𝜃𝜃

𝑣𝑣1 = 𝑝𝑝1 = 0.8
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The way in which the final OOB vector 𝑣𝑣3 is obtained is by doing a 

simple vector addition, where 𝑣𝑣1 is the OOB vector associated to the 

initial released blade, while 𝑣𝑣2 corresponds to the trailing blade. A 

physical explanation regarding the reason why the OOB levels are 

best described as vectors can be associated with the fact that the 

damage done to a particular blade (which is the same as that 

percentage of the blade which is missing) is equivalent to “missing 

mass”, and it is this particular feature that is represented by a vector 

which has the same direction as the particular blade that had suffered 

the damage. The resulting OOB due to different damaged blades 

therefore needs to be obtained not only by adding up the amounts of 

damage for each blade, but also by taking into account the angles 

with respect to the initial released blade at which those other fan 

blades are situated. It is also important to mention that the fact that 

the blades break in the manner described in Figure 42 and Figure 43 

is just an assumption; in reality there is no constraint which forces 

the blade to break off in this fashion. 

 

• The effects associated to the windmill are input by the experts as well 

as their effect on the overall OOB and the phase. The phase is 

considered to be the angle with respect to the initial released blade 

where the OOB corresponding to any of the “other” effects occurs. A 

simple example which illustrates this idea is as follows: one of the 

damages that happen during windmilling is secondary blade damage. 

Physically, it can be described as what takes place when the rest of 

the fan starts impacting the inner casing: a certain percentage of the 

blades that come in contact with it may get released, and those blades 

are obviously at an angle with respect to the blade which gets 

released first when the FBO events starts. This angle is the actual 

phase and its possible values (or rather its distribution) are elicited 

from experts. The amount of secondary blade damage (or the damage 

due to any effect in general) is also in the form of a PDF which is 

elicited from experts. In mathematical form, the two inputs described 

above are as follows: 

𝑃𝑃�dmg𝑜𝑜 = dmg𝑜𝑜,𝑚𝑚|𝑒𝑒 = 𝑒𝑒𝑛𝑛,𝐹𝐹 = 1� 



 

131 

This is the probability for the amount of damage due to the other 

effects to be equal to dmgo,m given windmilling effect en and obviously 

given that failure occurred. The probability for the phase to be equal 

to αo,m given windmilling effect en and failure has the following 

expression: 

𝑃𝑃�𝜃𝜃𝑜𝑜 = 𝜃𝜃𝑜𝑜,𝑚𝑚|𝑒𝑒 = 𝑒𝑒𝑛𝑛,𝐹𝐹 = 1� 

• The actual level of OOB does not only depend on the particular 

windmilling effect but also on the speed of blade release as well as 

on the cumulative damage done to the released and the trailing 

blades prior to windmilling (also known as the phase 2 damage). The 

dependence on those two inputs is expressed in terms of factors 

(which are essentially numbers between 0 and 1) which are also 

elicited from the experts. The way in which this works is in the 

following way. Assuming that secondary blade damage has a certain 

PDF associated to it and a sample was taken from that particular PDF 

which for illustration purposes is considered to be equal to 55%. In 

other words, the amount of damage (which is linked to OOB) due to 

secondary blade damage for a particular FBO event might be equal to 

55%, however this does not yet take into account the release speed 

nor how much phase 2 damage exists in the first place. Instead, the 

particular value sampled from the PDF (55% in this case) is considered 

to be the worst case scenario which is associated to the maximum 

release speed and the maximum phase 2 damage, and consequently 

the corresponding release speed and OOB factors for this particular 

FBO event are both equal to 1. In order to find the final value of OOB, 

the sample from the PDF needs to be multiplied by both of the factors 

described above. It therefore becomes clear that for release speeds 

and phase 2 damage levels lower than the maximum, the factors take 

non-negative values below 1, which in the end will cause the sample 

(55%) to have a lower value. 

 

• The reason why the phase is elicited as well is because the amount of 

OOB is considered to be equal to the magnitude of the associated 

OOB vector (equivalently, it can be considered to be a complex 

number). Therefore, the real part of the OOB level (found after the 
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factorization process outlined above) is multiplied by the cosine of 

the angle found during step 7 after sampling from the phase 

distribution. Similarly, the imaginary part is found by multiplying the 

same OOB level by the sine of the same angle. The reason this is done 

is because the cumulative damage of the released and trailing blade 

damage (the phase 2 damage) is also considered to be a complex 

number with a real and an imaginary part. As a result, in order to add 

the OOB of the windmilling effects to the phase 2 damage, the 

addition must be done separately for the real parts and the imaginary 

parts respectively. This particular step has been explained in more 

detail in step 6 above and in Figure 42 and Figure 43. 

The way in which the elicited judgements are input to the model also needs to be 

taken into consideration. A Microsoft Excel spreadsheet has been set up which uses 

the elicited quantities associated to the three types of inputs described above 

(released blade, trailing blade and windmilling) and propagates them through the 

MATLAB model in order to obtain outputs which will be presented later in this 

section. Although Table 4 contains inputs regarding the released blade, it should 

be pointed out that the numbers are randomly generated and do not represent any 

Rolls-Royce plc actual data or trends in any way. Instead, they were simply chosen 

for illustrative purposes in order to emphasize the methodology behind the actual 

FBO model. 

Table 4: Variables related to the released blade. 

 

 

At this point, it should be mentioned that during its initial stage, the model used 

triangular distributions in order to quantify uncertainty regarding the parameters 

in Table 4. The way in which this was done was by considering the Not Less Than 

(NLT) and Not Greater Than (NGT) to be the lower and upper bounds of the possible 

values taken by each variable, while Most Likely (ML) represented the peak of the 
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triangle (statistically known as the mode). However, recent work on elicitation has 

shown that using triangular distributions is not preferable due to two main reasons. 

First of all, the elicitor fails to elicit anything meaningful other than a range and a 

mode. More importantly, there is virtually no engineering quantity that can be 

accurately represented by a triangular distribution [88] (as the function itself is not 

smooth as it is made of straight line segments). 

By taking into account suggestions from elicitation experts after following a 

detailed literature survey, it was decided that beta distributions should be used in 

order to quantify the potential amounts of damage done to the released blade. 

Some of the benefits of using beta distribution have been described previously in 

section 2.4.4. In the original input spreadsheet, there are 7 large columns, each of 

them corresponding to a value of rotational speed as a percentage of the redline 

speed in multiples of 5%, starting from 100% down to 70%. The redline speed 

(abbreviated as RLNL) is considered to be that particular speed level above which, 

the operation of the engine could become critical for the different components 

within it. For simplicity, in this case study, the redline speed is simply considered 

to be the maximum rotational speed that the fan can attain. Also, in this example, 

only the 100% redline speed column has been filled in with numbers, while all the 

other ones have been combined into a single one. The reason for this is due to 

periodicity; each speed columns is filled in exactly the same way as the 100% RLNL 

one, the only difference being the actual numbers used as inputs. The column 

denoted with “95% RLNL -> 70%RLNL” shows the generic structure according to 

which all speed columns are filled in. The smaller column titled “Probability” 

contains conditional probabilities which had been described in more detail above, 

while the other three columns (NLT, ML, NGT) represent the quantiles of the beta 

distribution which corresponds to each of the 8 causes listed above. To be more 

precise, NLT refers to the 1% quantile, ML refers to the 50% quantile, while NGT 

refers to the 99% quantile. The way in which those quantiles have been used in 

order to create the corresponding beta distributions was described in detail in 

Chapter 3. 

 

The general methodology which forms the foundation of the FBO model is going 

to be explained by describing the outputs of interest. Those outputs are closely 

linked to the inputs shown at the beginning of section 4.2.1: 
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• A joint PDF as a function of both the phase 1 damage (ranging from 0% to 

110%) and speed has to be plotted. The reason for that is because in order 

to obtain all the other outputs, a number of samples will have to be drawn 

from this particular distribution. Its actual shape will be shown later. 

• A joint PDF as a function of both the phase 2 damage (ranging from 0% to 

200%) and speed has to be plotted next. As a reminder, if the phase 1 

damage is the damage done to the initial released blade, the phase 2 

damage is the cumulative damage to both the released and the trailing 

blades. Samples from this distribution are then drawn in order to construct 

two more outputs. 

• A joint PDF as a function of both the phase 3 damage (ranging from 0% to 

400%) and speed is plotted next. Once again, the phase 3 damage is the 

cumulative damage which includes the phase 2 as well as the damage due 

to the other effects occurring during windmilling. This is one of the two final 

output plots. 

 

The steps which have to be taken in order to produce those outputs are outlined 
as follows: 

1) The first step of the algorithm involves plotting the joint PDF of the phase 1 

damage and speed. In order to do so, the values in Table 4 are used along 

with the Bayesian rule in order to find probabilities of having a specific 

damage and a specific speed given failure. This uses directly the inputs listed 

at the beginning of this section and it is expressed as follows: 

𝑃𝑃�dmg = dmg𝑖𝑖 , 𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1� =
𝑃𝑃�dmg = dmg𝑖𝑖 , 𝑣𝑣 = 𝑣𝑣𝑖𝑖 ,𝐹𝐹 = 1�

𝑃𝑃(𝐹𝐹 = 1)  (56) 

 

𝑃𝑃�dmg = dmg𝑖𝑖 ,𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1� =
∑ 𝑃𝑃�dmg = dmg𝑖𝑖 , 𝑐𝑐 = 𝑐𝑐𝑘𝑘 ,𝑣𝑣 = 𝑣𝑣𝑖𝑖 ,𝐹𝐹 = 1�𝑛𝑛
𝑘𝑘=1

𝑃𝑃(𝐹𝐹 = 1)  (57) 
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𝑃𝑃�dmg = dmg𝑖𝑖 ,𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1�

=
∑ 𝑃𝑃�dmg = dmg𝑖𝑖|𝑐𝑐 = 𝑐𝑐𝑘𝑘 ,𝑣𝑣 = 𝑣𝑣𝑖𝑖 ,𝐹𝐹 = 1�𝑛𝑛
𝑘𝑘=1 𝑃𝑃�𝑐𝑐 = 𝑐𝑐𝑘𝑘|𝑣𝑣 = 𝑣𝑣𝑖𝑖 ,𝐹𝐹 = 1�𝑃𝑃�𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1�𝑃𝑃(𝐹𝐹 = 1)

𝑃𝑃(𝐹𝐹 = 1)  
(58) 

 

𝑃𝑃�dmg = dmg𝑖𝑖 ,𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1�

= �𝑃𝑃�dmg = dmg𝑖𝑖|𝑐𝑐 = 𝑐𝑐𝑘𝑘 ,𝑣𝑣 = 𝑣𝑣𝑖𝑖 ,𝐹𝐹 = 1�
𝑛𝑛

𝑘𝑘=1

𝑃𝑃�𝑐𝑐 = 𝑐𝑐𝑘𝑘|𝑣𝑣 = 𝑣𝑣𝑖𝑖 ,𝐹𝐹 = 1�𝑃𝑃�𝑣𝑣 = 𝑣𝑣𝑖𝑖|𝐹𝐹 = 1� 

(59) 

 

All quantities in Equation (59) above are directly found using the values from Table 

4. Also, although the values for speed in Table 4 are multiples of 5 ranging from 

70% to 100% redline speed, Equation (59) was applied for all integer speed 

percentages in this range (such as 72%, 83%, 98% for instance). The way in which 

this was done was as follows: for each speed value 𝑣𝑣𝑖𝑖 from Table 4 (which is not 

70% or 100%), the exact same set of quantiles which applies to that particular 

speed, is also used for all integer speed values in the interval �𝑣𝑣𝑖𝑖 − 2%,𝑣𝑣𝑖𝑖 + 2%�. If 

𝑣𝑣𝑖𝑖 takes the value of either of the extreme speed values, then its characteristic set 

of quantiles is used for integer speed values in the interval �𝑣𝑣𝑖𝑖, 𝑣𝑣𝑖𝑖 + 2%� (if 𝑣𝑣𝑖𝑖 is equal 

to 70%) or �𝑣𝑣𝑖𝑖 − 2%, 𝑣𝑣𝑖𝑖� (if 𝑣𝑣𝑖𝑖 is equal to 100%). The reason this was done was because 

it was considered that there is not enough information to justify using other values 

of quantiles for intermediate speed values other than those which are present in 

Table 4. 

In addition to that, Equation (59) was applied only to integer damage levels dmg𝑖𝑖 

ranging from 0% up to 110% (which once again is the range of phase 1 damage). 

The idea of only considering integer values was implemented as it had been 

decided that going beyond this and considering real values of damage as well 

would not give a significant increase in accuracy, while the computational time 

would see an increase. Therefore, by applying Equation (59) to all relevant speeds 

and damage levels, a joint PDF can be obtained which is used further in the analysis 

(Figure 44). 
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Figure 44: Joint PDF of Phase 1 Damage and Release Speed. 

2) The joint PDF found in step 1 is used to perform a Monte Carlo (MC) analysis. 

The number of iterations of the MC algorithm coincides with the number of 

simulated FBO events. An FBO event can simply be considered to be a 

mathematical entity uniquely defined by two parameters: a value of the 

phase 1 damage as well as a speed. Obviously, in order to properly obtain 

any such event, there is the need to sample from the distribution obtained 

in step 1, which is a relatively simple task, seeing that the distribution itself 

is discrete. Therefore, the MC algorithm always starts with two variables: a 

value of the phase 1 damage as well as a value of speed. 

3) Once the values of dmg𝑖𝑖 and 𝑣𝑣𝑖𝑖 have been sampled, the amount of damage 

done to the trailing blade dmg𝑡𝑡,𝑙𝑙 is calculated based on expert judgements. 

As before, the judgements from the experts are directly related to the 

quantiles of the beta distributions corresponding for each combination of 

phase 1 damage (as a multiple of 5) and speed (also as a multiple of 5). 

Therefore, the phase 2 damage is the cumulative effect of the phase 1 

damage as well as the amount of damaged trailing blade. All values of the 

phase 2 damage obtained in this manner, as well as the original release 

speeds from all iterations of the MC algorithm are used in order to create a 

joint PDF (see Figure 45). Additionally, the value of the phase 2 damage after 

each iteration is propagated further in order to assess the effects of 

windmilling. 
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Figure 45: Joint PDF of Phase 2 Damage and Release Speed. 

4) The cumulative phase 2 damage dmg𝑡𝑡,𝑙𝑙 and the release speed 𝑣𝑣𝑖𝑖 are used (as 

it was described at the beginning of this section) in order to obtain a value 

of the damage (equivalent to the amount of unbalance) due to the 

windmilling effects. The name “phase 3” damage has been therefore given 

to the cumulative effect of phase 2 damage and the amount of damage due 

to windmilling. At this point, a third joint PDF of phase 3 damage and speed 

can be created (Figure 46). 

 

 

Figure 46: Joint PDF of Phase 3 Damage and Release Speed. 
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As it has already been mentioned, those outputs are based upon the 

aforementioned inputs, which in turn have been obtained from expert judgements. 

Those expert judgements have been assigned prior PDFs, which in a Bayesian 

context, are able to be updated via a likelihood function in order to obtain posterior 

PDFs which should depict reality in a more accurate fashion. In order to achieve 

this, the likelihood function should contain information regarding real events. The 

reader should note that at the moment, fictitious data is being used as the interest 

lies more in illustrating the concept of updating expert judgements with data, 

rather than showing what the real data is. Therefore, if the methodology is correct, 

the updating procedure could be done using any values for the observed data. 

4.2.2 Updating Expert Judgements 

The updating procedure has been done to four different inputs: the release speed, 

the cause of release, the amount of damage done to the blade as well as the phase 

(applicable only to the “other” effects). The priors as well as the likelihood functions 

for each of the parameters are shown below:  

1) Each release speed is assigned a marginal prior distribution on which 

subsequent updating is performed [2]. Those priors are beta distributions; the 

reason being that each probability value is within the interval [0,1] which 

coincides with the range of the beta distributions. However, it is worth noting 

that the marginal priors for each speed probability are NOT independent of one 

another. The easiest way to understand this is by recalling that the sum of all 

the speed probabilities has to be equal to 1. As a result, the joint prior 

distribution cannot be found by simply multiplying all the marginal PDFs. 

Fortunately, the correlation between the priors is taken care of if a Dirichlet 

distribution is used. One method in which multiple beta distributions are 

converted into a single Dirichlet distribution can be found in Vazquez [89]. In 

addition to that, all the speed probabilities are part of a categorical distribution 

(which can be thought of as a multi-dimensional Bernoulli distribution) which 

plays the role of a likelihood function. A table containing the quantiles for the 

speed probabilities is shown below in Table 5. 

Table 5: Quantiles for the speed probabilities. 

 

Release Speed (%RLNL) 70 75 80 85 90 95 100

Quantiles 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50% 25% 50%
0 0 3.2 4 6.4 8 6.4 8 21.6 27 28.8 36 13.6 17
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The marginal beta distributions are first found by employing the algorithm shown 

by van Dorp [79], while the Dirichlet distribution is found by using the method in 

Appendix C. The updating procedure is easy to understand considering that the 

Dirichlet – categorical distributions form a conjugate pair [86], meaning that the 

posterior has a Dirichlet distribution as well. The prior and the likelihood function 

used to find the posterior are shown below in Equation (60) and Equation (61): 

 

𝜋𝜋(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘)~Di(𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑘𝑘) (60) 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘|𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘)~Cat(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘) (61) 

The parameters from Equations (60) and (61) have the following meanings: 𝑝𝑝𝑖𝑖 

stands for the 𝑖𝑖th speed probability, 𝛼𝛼𝑖𝑖 is the 𝑖𝑖th parameter for the joint Dirichlet 

distribution, and 𝑥𝑥𝑖𝑖 represents the number of FBO events which occurred at release 

speed 𝑣𝑣𝑖𝑖. After using Equation (1), the posterior, which also has a Dirichlet 

distribution due to conjugacy, can be easily found to have the following 

parameters: 

 

𝜋𝜋(𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑘𝑘|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘)~Di(𝛼𝛼1′ ,𝛼𝛼2′ , … ,𝛼𝛼𝑘𝑘′ ) (62) 

𝛼𝛼𝑖𝑖′ = 𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑖𝑖 (63) 

It becomes obvious that each parameter from the posterior distribution is equal to 

the sum between the corresponding Dirichlet parameter of the prior distribution as 

well as the number of FBO events which occurred at the corresponding release 

speed 𝑣𝑣𝑖𝑖. Besides the posterior, another relevant quantity to consider is the 

posterior predictive distribution. In short, given the updated posterior for the speed 

probabilities, it would be necessary to know what the likelihood function for a new 

data point looks like. In a more intuitive sense, asking for the posterior predictive 

distribution is the same as asking “How does the model think the distribution of 

the data looks like, given the shape of the posterior?”. The posterior predictive can 

generally be found using the following equation: 
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𝑓𝑓(𝑥𝑥𝑘𝑘+1|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘) = � 𝑓𝑓(𝑥𝑥𝑘𝑘+1|𝜃𝜃)
𝜃𝜃𝑛𝑛

𝜃𝜃0
𝜋𝜋(𝜃𝜃|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘)d𝜃𝜃 (64) 

In Equation (64), the general variable 𝜃𝜃 can be replaced with the parameter vector 

𝛼𝛼 used in the current case study. According to Johnson [90], the posterior predictive 

distribution of a Dirichlet-categorical conjugate pair is equal to the expected value 

of the posterior distribution. In other words, for the current problem, Equation (64) 

can be rewritten as: 

𝑓𝑓(𝑥𝑥𝑘𝑘+1|𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑘𝑘) =
𝛼𝛼𝑘𝑘+1 + 𝑥𝑥𝑘𝑘+1
∑ (𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑖𝑖)𝑘𝑘
𝑖𝑖=1

 (65) 

The consequence of Equation (65) is that by obtaining the posterior predictive 

distribution using actual data, the quantiles in Table 5 are most likely going to 

change. In order to illustrate this idea, an example will be given shortly. 

 

2) Each cause of release is also assigned a marginal beta prior distribution, while 

all causes for a particular speed are given a joint Dirichlet distribution. The 

likelihood function is still a categorical distribution, meaning that the same kind 

of conjugacy is achieved in this case as well. An example of a table showing 

some of the cause probabilities for the 95% redline speed is shown as follows: 

 

Table 6: Quantiles for the cause probabilities at 95% redline speed 

  

The actual names for the causes can be seen in Table 4. Because of the same 

Dirichlet-categorical conjugate pair, both the posterior and the posterior predictive 

distributions have the same form as the ones shown in equations (62) and (65). 

The example shown shortly will illustrate how the values in Table 6 are going to be 

updated in light of new data. 

 

Cause of release index 1 2 3 4

Quantiles 25% 50% 25% 50% 25% 50% 25% 50%
10.4 13 3.2 4 6.4 8 8.8 11
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3) The damage done to the released blade due to any specific cause is considered 

to be a percentage of the actual blade length. Knowing this, a scaled beta 

distribution is used as the likelihood function for the damage level on the 

released blade. The prior distribution on the other hand has been elicited from 

experts in an indirect fashion. To illustrate what is meant by this, it is first worth 

looking at the quantiles. 

 

Table 7: Quantiles for the blade damage given the second failure cause and 95% 

redline speed. 

 

 

The reason why three quantiles (1%, 50% and 99%) had been elicited for the 

damage level was in order to achieve “overfitting”. In short, it refers to eliciting 

more quantiles than it is needed in order to fit a distribution. In the case 

displayed in Table 7, where the fitted distribution is a scaled beta, there is 

exactly one more quantile than necessary in order to fit a beta distribution. 

Consequently, a reason for employing overfitting is to capture the experts’ 

range regarding the distribution parameters involved. For the case in Table 7, 

using the 1% and 50% quantiles gives a beta distribution with parameters 𝛼𝛼 =

101.795 and 𝛽𝛽 = 58.3113. The 50% and 99% quantiles give 𝛼𝛼 = 87.89 and 𝛽𝛽 =

50.37, while using the 1% and 99% quantiles gives 𝛼𝛼 = 95.089 and 𝛽𝛽 = 53.696. It 

now becomes clear that the three quantiles do not correspond to a single beta 

distribution. Instead, using the results above, it can be said that the intervals 

𝛼𝛼 ∈ [87.89 ,101.795] and 𝛽𝛽 ∈ [50.37,58.3113] quantify the expert’s uncertainty 

regarding the distribution parameters. In this respect, two prior distributions 

have been constructed for each parameter shown above. Two normal 

distributions have been chosen for each of the beta parameters, the means and 

variances of which have been identified by using the technique found in Cook 

[77]. Also, the parameters of the beta distributions have been computed from 

quantiles using the algorithm from van Dorp [79]. 

The prior distribution and the likelihood function for the phases related to the 

“other” effects are also a normalized beta and a normal distribution respectively, 

95% RLNL

Quantiles
1% 50% 99%
60 70 80
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as it is the case for the damage levels. The reason for this similarity is because 

the phase has a similar structure: it is bound between 0 and 360 degrees, which 

is why it has been modelled using a scaled beta distribution (the likelihood), 

while the beta parameters have been assigned one normal distribution each (the 

prior). 

 

Table 8: Quantiles for the phase and damage corresponding to secondary blade 

damage 

 

The priors and likelihood functions for the parameters above are used in order 

to obtain updated posterior distributions as data becomes available. Below, an 

example is shown whose purpose is to illustrate the effect of real data on the 

FBO model inputs [2]. Figure 47 shows the initial speed probabilities from Table 

5 by using a bar chart (once again, speed probability 𝑝𝑝𝑖𝑖 refers to the probability 

that failure occurs at release speed 𝑣𝑣𝑖𝑖). 

 

Figure 47: Original speed probabilities. 
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Assuming there have been seven different FBO events, each of them occurring at 

the following speeds: 90,90,95,95,90,85,90 (all of them are percentages of the 

redline speed), the goal is to investigate how the probabilities in Figure 47 change 

in light of new data. After applying the techniques described previously in this 

section, the posterior predictive distribution for the speed probabilities can be seen 

below in Figure 48: 

 

Figure 48: Updated speed probabilities 

 

Using a Dirichlet distribution has the implicit effect of accounting for the 

correlations between all the speed probabilities. This can also be observed above 

in Figure 48: as the probability for certain speeds increases due to the addition of 

evidence, the other probabilities for which there is little or no data will decrease 

such that the overall sum remains equal to 1. 

The cause probabilities at 95% redline speed before and after data has been added 

can be seen below in Figure 49: 
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Figure 49: Updated cause probabilities for 95% redline speed. 

The causes which have been input as evidence into the model are: bird ingestion, 

foreign object damage (FOD) as well as low cycle fatigue. The effect of updating 

can be observed in Figure 49; just as it is the case with Figure 48, some probability 

values increased while others decreased in order to keep the total sum equal to 1. 

Finally, the effect of updating the damage level due to an FBO event at 95% redline 

speed which occurred due to FOD (cause number 2, as it is shown in Table 6) is 

shown below in Table 9: 

Table 9: Updated quantiles for the damage level due to FOD at 95% redline speed 

 

Also, the beta PDFs showing the original as well the updated damage quantiles can 

be seen below in Figure 50: 
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Figure 50: Comparison between the prior and the posterior predictive 

distributions. 

The damage levels which were used as observations were 82%, 85%, 81%, 84%, and 

they are outside the original range expressed in Table 9. The resulting posterior 

predictive will therefore be represented by a beta distribution shifted to the right 

(or in general, in the direction where the mean of the observations lies). As one can 

imagine, introducing even more evidence will cause the posterior predictive to shift 

even more. In order to show this, seven more damage levels with values close to 

the four above were added in order to produce another similar graph. 
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Figure 51: Comparison between the prior and the posterior predictive 

distributions (with more data added) 

In order to analyse the effect that updating has on the outputs of interest, it is first 

worth noting what the data used looks like. The observed values can be seen below 

in Table 10 [4]. 

Table 10: Data used in order to update the expert judgements 

 

The joint prior distribution of the phase 1 damage and release speed from Figure 

44 is shown once again below as a contour plot in order to compare it with its 

posterior predictive distribution in Figure 53. 
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Figure 52: Prior predictive joint distribution for phase 1 damage and release 

speed 

 

 

Figure 53: Posterior predictive joint distribution for phase 1 damage and release 

speed 

Before comparing the priors and the posteriors, there is a particular aspect which 

should be brought to light, namely the fact that it might be suggested that despite 
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the evidence being added, there is still not much difference between Figure 52 and 

Figure 53. However, displaying a large difference is not actually the purpose of the 

exercise presented here. The actual goal is to create a flexible model which changes 

every time data becomes available in order to reflect both the original expert 

judgements as well as the data itself [4]. 

It can be seen that after the update, the peaks of the PDFs have changed in 

magnitude. Before the update, it can be inferred from Figure 52 that the most likely 

FBO events correspond to a damage range of 56% up to 65% of released blade 

damage and 95% release speed. Those are only the prior distributions as they are 

solely based upon expert judgements. After using the data in order to perform the 

update, the most likely FBO events become centred in the region corresponding to 

68% up to 75% blade damage and 90% release speed. As it has been mentioned in 

the introduction, this information is going to be further used in order to perform a 

dynamics analysis of the fan in order to study the behaviour during the windmilling 

stage and design it such that the integrity of the engine during this phenomenon 

should be maintained. The joint prior and posterior distributions of phase 2 

damage (which is simply the cumulative trailing blade and released blade damage) 

and speed of release have been created by using a Monte Carlo simulation with 

around 1,000,000 iterations. This simulation has been run three times and it was 

found that the inherent randomness had virtually no effect on the final shapes of 

the graphs which can be seen below in Figure 54 and Figure 55. 

 

 

Figure 54: Prior predictive distribution of phase 2 damage and release speed 
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Figure 55: Posterior predictive distribution of phase 2 damage and release speed 

Although Figure 54 and Figure 55 show the cumulative damage of both the 

released and trailing blades, it can be observed that the most likely FBO event 

correspond to the same combinations of phase 1 damage and release speed as it 

was the case in Figure 52 and Figure 53 (56% - 65% blade damage and 95% release 

speed before the update as well as 68% - 75% blade damage and 90% release speed 

after the update). This posterior updating needs to be taken into account for the 

purposes of the dynamics analysis of the fan which is going to benefit from a more 

accurate representation of the events which are considered to be the most likely. 

The contour plots for the joint distribution of the phase 3 damage and release 

speed are shown below in Figure 56 and Figure 57. The main difference between 

the two is similar to the one seen in Figure 54 and Figure 55: while before the 

update the only region with a high probability corresponds to 50% - 65% phase 3 

damage and 95% redline speed, after adding the data points, FBO events having 

55% - 70% phase 3 damage and 90% redline speed become more probable than 

before, meaning that any subsequent vibration analysis of the fan should also be 

focused in the latter region. 
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Figure 56: Prior predictive distribution of phase 3 damage and release speed 

 

 

Figure 57: Posterior predictive distribution of phase 3 damage and release speed 

In order to understand why this additional knowledge is beneficial, it is worth 

reconsidering the schematic from Figure 41. Namely, without using the proposed 

framework, the total number of FEA simulations which needs to be done can be 

calculated by examining Figure 57. Without knowing which FBO events are more 

likely, all possible combinations of damage and release speed are assigned an 

equal probability. In this case, one FEA simulation needs to be done for each pair 

of damage and release speed �dmg𝑖𝑖, 𝑣𝑣𝑖𝑖�, where 𝑖𝑖 ∈ {1,2,3, … ,110} and 𝑗𝑗 ∈

{80,81,82, … ,100}. Therefore, the total number of simulations is given as the product 

between the total number of elements from each set: 110 ∗ 21 = 2310 simulations. 

On the other hand, if only the most likely FBO events are considered, (for instance 
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the ones from Figure 57 for which the likelihood is 0.002 and above), then the 

number of �dmg𝑖𝑖,𝑣𝑣𝑖𝑖� pairs reduces drastically: 𝑖𝑖 ∈ {47,48, ,49, … ,69}, and 𝑗𝑗 ∈

{88,89,90, … ,96}, which gives a total number of simulations of approximately 115. 

Although those numbers can be reduced even further by employed a design of 

experiments methodology (other than the proposed full factorial presented above), 

it is already obvious that the framework reduces the number of simulations and 

hence the computational time by a factor of approximately 20. 

The initial motivation for applying the Bayesian-elicitation framework for this case 

study was to facilitate further FEA undertaken either during or after the preliminary 

engine design stage. This analysis involves studying the forces and moments 

occurring in the fan subsequent to an FBO event. It would be extremely time 

consuming and impractical to test all the possible combinations of damage and 

speed of release, which is why it is necessary to only look at the ones which are the 

most likely to occur during an FBO event. The model presented here makes use of 

an expert system in order to achieve that, and it also uses data in order to make it 

dynamic in light of real observations. 

As the first two case studies focused on the evolution of the framework during 

this EngD project and created the right environment for creating its two main 

components, the third case study is the one where the whole framework has been 

applied in order to tackle a problem that is of high interest. The final engineering 

problem looked into during this project is generally associated to low levels of 

knowledge regarding the physical parameters, especially during the preliminary 

stage of the design process, as it refers to quantifying the fatigue failure of the 

turbine disc due to Non-metallic particle inclusions. After a discussion about the 

available literature on the topic, it will be explained in detail how the framework 

will allow the designer to obtain useful information during the early stages of the 

aero-engine design process. 

 

 

  



 

152 

4.3 Case Study 3: Uncertainty Quantification of Fatigue 

Failure within a Turbine Disk 

 

In order to comprehend how to effectively manage ageing turbine components, it 

is crucial to understand their fatigue behaviour. To be more precise, there are two 

main types of fatigue failure: crystallographic failure, as well as failure due to Non-

metallic particle (NMP) inclusions. The latter is least understood and the goal of 

this section is to investigate it via the Bayesian-elicitation framework. More 

specifically, the goal is twofold: to be able to predict the life of the turbine disc 

under working conditions, as well as predict the cause of failure itself before doing 

any detailed analysis on the failed component. Understanding this phenomenon 

can also prevent the premature removal from service of the turbine disc in order to 

meet the safety standards. This in turn reduces costs, as it allows the turbine disc 

to potentially operate for a longer period of time without being in danger of 

approaching failure.  

In the first part, some literature on fatigue failure will be explored in order to put 

this problem further into context. Afterwards, it will be shown why applying the 

current framework to the problem can give useful results for the aero-engine 

designer.  

 

4.3.1 Theoretical Background 

Generally, the variability in cycles to failure increases as the operating temperature 

increases and as operating stress level decreases. The former has been observed 

by Huron and Roth [91] who concluded that crack nucleation occurs exclusively 

from intrinsic non-metallic inclusions located under the surface of the material for 

Rene’ 88 DT fatigue specimens being tested at 649oC. Conversely, at a lower 

temperature of around 204OC, a shift in mechanisms seemed to occur, where crack 

initiation occurred only from crystallographic facets. In addition to that, Caton et 

al. [92] illustrated the life variability of the same Rene’ 88 DT material which can 

be seen in Figure 58. It seems that the divergence in the lives of the two 

mechanisms was caused by an increase in the difference between their crack 

nucleation lives as the stress level decreases. 
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The same behaviour has been identified for other materials such as an 𝛼𝛼 + 𝛽𝛽 

titanium alloy as well as a nickel-based superalloy [93]. Moreover, there have been 

several other studies made on titanium and 𝛾𝛾-TiAl [94], [95] for which mechanism 

based prediction methodology was proposed and was able to reduce the 

uncertainty in the total fatigue lifetime. 

 

Figure 58: Divergence of fatigue failure mechanisms [92]. 

The resistance to fatigue of high strength alloys has been observed to reduce if 

NMPs are present. Fatigue crack initiation at inclusions depends on several factors 

such as the matrix material, the types of inclusions and also on the properties of 

the interface between the inclusion itself and the matrix. As a result, controlling 

those factors is crucial for an alloy designer. In order to clarify a few micro-

mechanisms related to crack initiation, several microscopic observations have been 

conducted in various literature sources. For instance, in high-stress steels, the 

fatigue limit is much lower than the yield strength value, while the yield strength 

itself is reduced by the presence of inclusions [96], [97]. Also, Lankford and 

Kusenberger [98] quantified a series of stages which occur during fatigue crack 

initiation at inclusions. The first stage is related to the detaching of the inclusion 

from the matrix, and it is at the interface with the matrix that cracks start initiating. 

Also, together with debonding, the greatest part of crack initiation life is consumed. 

Morrow studied the influence of inclusion size on the fatigue limit on high strength 

steels [99], and his analytical results appear to agree with the experimental results 

of Cummings [97]. 
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There have been plenty of studies which are able to provide a comprehensive 

outline of all the materials-related mechanisms which govern fatigue properties of 

superalloys, however there is very little discussion on the variability in fatigue 

behaviour due to the two main failure mechanisms. By applying the Bayesian-

elicitation framework, it is possible to quantify uncertainties and make predictions 

regarding the life and failure cause of a turbine disc by looking into the behaviour 

of coarse grain (CG) RR1000 samples (RR1000 is a Rolls-Royce plc proprietary 

alloy). The following section will therefore give more details regarding the physics 

of the problem. 

4.3.2 Outline of the Problem 

Being able to design turbine components requires a solid understanding of the 

inevitable fatigue behaviour. The relationship between cycles to failure and the 

Walker strain (explained below) is given by the following equation [100]: 

𝑁𝑁 = 𝑁𝑁0 �
𝜀𝜀 + 𝑈𝑈
𝜀𝜀 − 𝑈𝑈

�
1
2𝐴𝐴

 
(66) 

Here 𝑁𝑁 is the number of cycles to failure, 𝜀𝜀 is the Walker strain, while 𝑁𝑁0, 𝑈𝑈 and 𝐴𝐴 

are calibration parameters. The Walker strain is defined by Equation (67): 

𝜀𝜀Walker =
𝜎𝜎max
𝐸𝐸

�
Δ𝜀𝜀eq𝐸𝐸
𝜎𝜎max

�
𝑚𝑚

 
(67) 

Here,  𝜎𝜎max is the maximum stress used during the fatigue testing, 𝐸𝐸 is Young’s 

modulus, Δ𝜀𝜀eq is the strain range, and 𝑚𝑚 is the Walker strain exponent. The reason 

the Walker strain is used here instead of the usual strain is because the 

experimental data was obtained for different 𝑅𝑅 values, where 𝑅𝑅 = 𝜎𝜎min
𝜎𝜎max

. In other 

words, when plotting cycles to failure against the regular strain, multiple curves 

have to be drawn, each corresponding to one particular 𝑅𝑅 value. The benefit of 

using Walker strain becomes apparent because it can consolidate all the fatigue 

data for various 𝑅𝑅 values into a single curve [100].  

The probabilistic framework was first and foremost used to draw judgements on 

the calibration parameters 𝑁𝑁0, 𝑈𝑈 and 𝐴𝐴 from Equation (66). An expert elicitation 

was organised for this purpose (for which ethical approval was obtained), and 

outputs of the elicitation were subsequently passed on to the second component 
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of the framework in order to update them with real data. As a result, the following 

section is going to discuss the elicitation itself, the theory behind which was put 

forward in section 2.4. 

4.3.3 Obtaining the Priors 

Prior data has been elicited regarding the calibration parameters 𝑁𝑁0, 𝑈𝑈 and 𝐴𝐴 from 

Equation (66). The elicitation workshop used the SHELF framework [54], and for 9 

different temperatures, the quartiles of the prior distributions for the calibration 

parameters have been provided by the expert. The alloy which has been under 

consideration was the Rolls-Royce plc specific CG RR1000. Assuming there is no 

available fatigue data on this specific alloy, the judgements provided were 

extrapolated by the expert from a similar Rolls-Royce plc alloy called FG (fine grain) 

RR1000. Before discussing the data, it would be worth showing how the theory 

from section 2.4 was applied for this specific problem. 

Most of the pre-elicitation phase followed the indications given in the Sheffield 

Elicitation Framework [54]. Namely, in order to assess the suitability of potential 

experts, an Expertise Questionnaire was handed out to them, similar to the one 

from Appendix A. Also, the manager of the experts was also asked to complete a 

General Expertise Measure (see Appendix B), in order to indirectly assess the 

experts asked to participate in the workshop. After the results from those two 

surveys were deemed acceptable, a time and a place have been established with 

the expert in order to hold the elicitation. 

During the first part of the workshop, a “Context” form has been filled in which 

referred to the participant’s expertise, how he gained this expertise, what is his 

interest regarding the outcome of the elicitation as well as whether he possesses 

any prior knowledge on probability and statistical knowledge. Because he proved a 

sound statistical background as he had taken statistical classes at university, the 

probability briefing part of the elicitation was skipped. Subsequently, an actual “Pre-

elicitation” form was filled in containing details about the problem, after which the 

actual elicitation procedure took place. That had been conducted using the quantile 

elicitation technique presented in detail in SHELF [54]. The reason why the 

elicitation was conducted with a single expert was due to the extremely specific 

nature of the knowledge required and the fact that one person had been identified 

as possessing it at that particular time. As already mentioned, the elicited 

quantities are the three calibration parameters from Equation (67). The main results 

from the elicitation procedure are outlined as follows: 
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• The probability distributions for each of the three calibration parameters 

have only been elicited at the following temperature values: 20 OC, 300 OC, 

400 OC, 500 OC, 550 OC, 600 OC, 650 OC, 700 OC, 725 OC, 750 OC, 775 OC. The 

reason for this was simply because those were the only temperatures that 

the fatigue testing had been performed at. 

• Each individual PDF for each parameter at each temperature was considered 

to have a uniform distribution, and the initial results from that are shown in 

Table 11 below (multiplied by a random constant): 

Table 11: Elicited quantiles for the calibration parameters (LB – Lower Bound, UB – 

Upper Bound)

 

• In order to check how the preliminary elicited results compare to the 

experimental data, the new feedback method from section 3.3 has been 

applied. For each temperature, all Walker strain values were used as the 

arguments of the function in Equation (66), and together with the lower and 

upper bounds of the three coefficients from Table 11, two different sets of 

cycles to failure were then obtained. Those sets of data were afterwards 

compared to the actual values of failure cycles which were found from 

experiments. In order to better grasp this idea, the failure cycles against 

Walker strain is plotted at 650 OC. 
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Figure 59: Experimental and elicited Walker strain at elevated temperature. 

 

It is important to note at this point that the plot in Figure 59 shows the elicitation 

results after the feedback process (the actual values have been multiplied by a 

random number in order to obscure the data itself, although the trends are 

representative of the actual ones). In other words, the original elicited values did 

not seem to give proper upper and lower bounds of the failure cycles which 

contained the experimental values, as in Figure 59. This is in-line with the 

alternative feedback method: instead of gaining feedback about the distributions 

from Table 11, it is deemed more useful to convert the distributions into physical 

quantities which the expert can find easier to trace. After the results in Figure 59 

were considered suitable, the elicitation process was stopped. 

Although the priors of the calibration parameters 𝑁𝑁0, 𝑈𝑈 and 𝐴𝐴 were found, their 

temperature dependence should be modelled as well.  Therefore, a functional 

dependence between the three coefficients 𝑁𝑁0, 𝑈𝑈 and 𝐴𝐴 as well as temperature had 

to be found. In order to achieve this, a curve fitting step had to be taken first. For 

each calibration parameters, the mean of each distribution was plotted against 

temperature, and together with the expert, it was decided that the temperature 

dependence can be modelled as a 2nd degree polynomial (at least for the 

temperature range that is relevant for the problem). The equations below illustrate 

this idea: 
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𝑈𝑈(𝑇𝑇∗) = 𝑎𝑎2𝑇𝑇∗
2 + 𝑎𝑎1𝑇𝑇∗ + 𝑎𝑎0 

𝑁𝑁0(𝑇𝑇∗) = 𝑏𝑏2𝑇𝑇∗
2 + 𝑏𝑏1𝑇𝑇∗ + 𝑏𝑏0 

𝐴𝐴(𝑇𝑇∗) = 𝑐𝑐2𝑇𝑇∗
2 + 𝑐𝑐1𝑇𝑇∗ + 𝑐𝑐0 

(68) 

Instead of using the physical temperature, a non-dimensional parameter 𝑇𝑇∗ has 

been used. Its relationship with respect to the actual temperature is the following: 

 

𝑇𝑇∗ =
𝑇𝑇 − 300

775 − 300
 (69) 

As it can be deduced from Equation (69), the 9 temperatures at which the elicitation 

has been performed range between 300 OC and 775 OC. In addition to that, the 𝑎𝑎𝑖𝑖, 

𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖 terms (with 𝑖𝑖 ranging between 1 and 3) are the quadratic polynomial 

coefficients. By considering the mean and the 95% confidence intervals of the 

polynomial coefficients after the fitting process, individual prior distributions for 

all 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖 and 𝑐𝑐𝑖𝑖 have been created. It is those prior distributions that are then used 

further for the Bayesian updating procedure. Note that, due to the flexibility of the 

Bayesian framework, it is possible for the priors to have various distribution types 

(such as uniform, normal, lognormal, beta/scaled beta and so on). However, for all 

further analysis, it will be assumed that all 9 prior distributions corresponding to 

the coefficients from Equation (68) are normal: 

 

𝑎𝑎𝑖𝑖~𝑁𝑁�𝜇𝜇𝑎𝑎,𝑖𝑖,𝜎𝜎𝑎𝑎,𝑖𝑖
2 � 

𝑏𝑏𝑖𝑖~𝑁𝑁�𝜇𝜇𝑏𝑏,𝑖𝑖,𝜎𝜎𝑏𝑏,𝑖𝑖
2 � 

𝑐𝑐𝑖𝑖~𝑁𝑁�𝜇𝜇𝑐𝑐,𝑖𝑖,𝜎𝜎𝑐𝑐,𝑖𝑖
2 � 

(70) 

 

 



 

159 

As the priors have been set, the next step would be to use the second component 

of the framework in order to perform the update which ultimately offers the 

possibility of performing predictions. 

4.3.4 Updating the Priors 

In order to visualize how it is possible for the experimental data to update the prior 

distributions, it would be useful to understand how the Bayesian component is 

applied to this particular problem: 

 

 

Figure 60: Bayesian Network for the failure cycles case study; the arrows start 

upstream from the prior distributions and propagate downstream into 

the likelihood function given by N (number of cycles). 

Originally, the values of the likelihood function representing failure cycles are 

solely based upon the prior distribution of the three calibration parameters 𝑁𝑁0, 𝑈𝑈 

and 𝐴𝐴 (as well as the Walker strain), which in turn depend upon the nine polynomial 

coefficients which have been assigned normal distributions. An important feature 

to recall at this point is that the likelihood function shows how the model thinks 

the data should look like based on the prior beliefs. Afterwards, the data is being 

added (in terms of the experimental cycles to failure), and that has the effect of 

updating the prior normal distributions to posteriors (and hence propagate the new 

information “upstream”). This process is illustrated in Figure 61: 
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Figure 61: Bayesian update using experimental data. Here, the experimental data 

is propagated upstream in order to update the original prior 

distributions to posterior values. 

 

Finally, the new posterior distributions can propagate downstream one more time 

(Figure 62) in order to create the posterior predictive distribution for the failure 

cycles (i.e. how the new model thinks the data should look like). This process is 

repeated as long as there is still unused new data, and ultimately it can be applied 

in order to give a prediction regarding the expected cycles to failure whether or 

not the temperature and Walker strain are specified. 
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Figure 62: The newly updated posterior distributions propagate downstream once 

more in order to generate the posterior predictive distributions 

After the elicitation workshop described in the previous section, three sets of 

polynomial coefficients have been assigned joint prior distributions, which have 

the following values (which once again have been multiplied by a random constant): 
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(71) 

 

As it can be deduced from the null non-diagonal elements, an independence 

assumption has been made regarding the coefficients. Knowing this, the following 

step is related to discussing the experimental data. 
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4.3.5 The Experimental Data 

The priors have been updated by using high fidelity experimental data. Almost 200 

individual fatigue tests have been performed on coarse grain RR1000, and the 

results have been gathered in one spreadsheet which contains information 

regarding the temperature, the Walker strain at which the experiments have been 

performed, as well as the number of cycles to failure and the failure cause. In order 

to make the data easier to understand, the spreadsheet was then split into several 

others which contain information about samples that failed due to the same cause. 

An example of how the data looks like for inclusion failure specimens can be seen 

in the table below: 

 

Table 12: Data related to fatigue failure 

Temperature (Celsius) Walker Strain Cycles 
650 0.00576 13279 
700 0.005718 28241 
725 0.005449 16463 
750 0.005071 29626 

 

It is important to note that due to the sensitivity of the information presented here, 

the data in Table 12 has been obfuscated by being multiplied by a certain constant. 

By investigating all the data, it can be concluded that the component life reduces 

with increasing temperature and decreasing strain. As Figure 28 suggests, the data 

is used within the likelihood function in order to perform the Bayesian updating, 

which is going to be further discussed in the following section. 

 

4.3.6 The Bayesian Updating 

Before generating the posterior predictive distribution, which is used to predict life, 

the posterior distribution itself needs to be computed. As described in section 2.3, 

a single component Metropolis-Hastings algorithm is used in this regard. As a 

reminder, the joint posterior distribution is formed of the 9 polynomial coefficients 

which are updated sequentially.  

Let 𝒙𝒙 = (𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, 𝑏𝑏1,𝑏𝑏2,𝑏𝑏3, 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3) be the vector of parameters at each MCMC 

iteration. The updating was performed in the same order suggested by the order 
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of coefficients from vector 𝒙𝒙. The original starting point for the chain corresponds 

to the mean of the joint prior distribution. Several other starting points have been 

tried out, and every time the chain eventually converges to the same values, 

independent of the starting point. The proposal distribution for each variable was 

chosen to be normal (although it can very easily be assigned other distributions as 

well). Its mean was equal to the current state of the chain, while the standard 

deviation was chosen to be equal to a fraction of it. The standard deviation of the 

proposal distribution can also be considered an input (by controlling the value of 

the fraction), and by varying it, it is possible to check for convergence. As a general 

rule, this standard deviation should be large enough so as to explore the space, 

but not too large so that convergence becomes a problem due to low acceptance 

rate. 

 

The likelihood function can once again be assigned various distribution types, 

although for now, it will be assumed that it has a normal distribution with mean 

equal to the life obtained from the physical model, and a standard deviation equal 

to a fraction of the experimental life value. This fraction corresponds to the level 

of uncertainty (i.e.: the level of confidence in the accuracy of the experimental 

results). In the beginning, this level of uncertainty has been set to 10%, although 

the simulation has been carried out for other values, as it will be shown in the 

results section. Due to the nature of the simultaneous updating, the overall 

likelihood function looks exactly like in Equation (49): a product of the likelihood 

functions for each data point. In the following section, the results will be presented 

and also their significance will be discussed. 

 

4.3.7 Results and Discussion 

The number of iterations used for the simulation was 300,000 due to the fact that 

beyond this number, there was minimal increase in the fidelity of the results, while 

the computational time kept increasing. The posteriors of the polynomial 

coefficients were subsequently used in order to create predictions about life. Due 

to the fact that there are 9 coefficients and 6 different failure causes, the graphs 

below will only depict 2 of those coefficients and 2 causes (one corresponding to 

crystallographic failure, and the other to inclusion failure). This is done in order to 

just show 4 plots instead of 54. In addition to that, in the first instance, the 
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uncertainty level used for the likelihood function (as already suggested in the 

previous section) is 10%. The comparison between the prior and posterior plots for 

𝑏𝑏3 and 𝑐𝑐3 can be seen below: 

 

Figure 63: Comparison between prior and posterior of the b3 coefficient 

(crystallographic failure). 

 

Figure 64: Comparison between prior and posterior of the c3 coefficient 

(crystallographic failure). 

-20 -10 0 10 20 30 40 50

b
3

 coefficient - crystallographic failure

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
PD

F

posterior

prior

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

c
3

 coefficient - crystallographic failure

0

20

40

60

80

100

120

140

PD
F

posterior

prior



 

165 

 

Figure 65: Comparison between prior and posterior of the b3 coefficient 

(inclusion failure) 

 

Figure 66: Comparison between prior and posterior of the c3 coefficient 

(inclusion failure) 

In the crystallographic failure case, the joint posterior distribution of the 9 

coefficients was used to predict the life for new test conditions: first at 775 OC and 

0.005 Walker strain, and then at 775 OC and unknown Walker strain. The unknown 

Walker strain is taken into account simply by taking samples from its distribution 

(assumed to be uniform) with lower and upper bound equal to 0.0049 and 0.0056 

respectively. The posterior predictive distributions are therefore shown in the 

following plots. 
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Figure 67: Predicted life for crystallographic failure at 10% uncertainty. 

For the inclusion failure case, the uniform distribution for the Walker strain has 

upper and lower bounds equal to 0.004 and 0.006. The predicted life has been 

calculated at 800 OC (as there is no data at this temperature) as well as 0.005 strain 

(and once again at 800 OC, while the strain was considered unknown). 

 

Figure 68: Predicted life for inclusion failure at 10% uncertainty. 

One of the common features from Figure 67 and Figure 68 is that the variance of 

the prediction increases when the strain is unknown. This is also intuitive, as the 

strain values are sampled from a distribution. In addition to that, it can be observed 
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than the one from Figure 67 due to the different strain range; a wider Walker strain 

distribution causes the predicted life distribution to be wider as well.  

A change in the standard deviation can also be observed as the uncertainty of the 

likelihood function is increased; this behaviour can be seen in the following graphs. 

 

Figure 69: Predicted life (crystallographic failure on the left, inclusion failure on 

the right) at 30% uncertainty. 

As the likelihood uncertainty is increased even further, the predicted life becomes 

more conservative (“wider”) as it can be seen below: 

 

Figure 70: Predicted life (crystallographic failure on the left, inclusion failure on 

the right) at 50% uncertainty 

In order to better quantify the effect of the likelihood uncertainty on the predicted 

life, multiple plots depicting various uncertainty levels have are shown below in the 

same graph. It can also be noted that the normalized histograms have been fitted 

to lognormal distribution via the MATLAB function “allfitdist.m”. One of the main 

reasons lognormal distributions are suitable (as opposed to normal ones for 

instance) is because physically the life cannot take negative values. 
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Figure 71: Predicted life at various uncertainty levels (crystallographic failure) 

 

Figure 72: Predicted life at various uncertainty levels (inclusion failure) 

Another feature of interest is to be able to predict which failure causes are the most 

probable given a certain life and working temperature. The strain is considered to 

have a probabilistic nature: it is a uniform distribution between 0.005 and 0.006. 

In addition to that, the likelihood uncertainty picked in this example is 10%. 
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Figure 73: Predicted life at 6000 for 3 different causes 

In order to assess which cause is the most responsible for a certain failure, it is 

only necessary to examine the graph and compare the relative PDF values. For 

instance, for lives of 150,000 or higher, it can be seen that “Crystallographic 1” is 

the principal cause of failure, whereas for lives lower than 25,000 the failure is 

mainly due to “Crystallographic 2”. Most inclusion failures can thus be expected to 

occur for lives in the range of 40,000 to 60,000. The same kind of graph can be 

plotted for other temperatures as well, and it can also be done while considering 

temperature to be probabilistic. 
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study FBO events, grain growth and fatigue failure, there could be plenty other 

aero-engine related problems where its capabilities can shine. As described in 

Chapter 1, the main reason for developing this was to give the designer useful 

information during the preliminary design process in situations when data is scarce 

or expensive to come across. 

Chapter 5 Summary and Conclusions 
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importance of the preliminary aero-engine design process. Following that, the need 

to develop techniques that produce fast and reliable results during this stage has 

been identified. Later in Chapter 2, the entire theory behind the probabilistic 

framework proposed at the end of Chapter 1 was laid out. This included a general 

discussion regarding uncertainty, after which the focus was directed on more 

specific topics such as Bayesian inference, expert systems as well as judgement 

elicitation. All those topics have been discussed in detail as they form the 

foundation of the Bayesian-elicitation framework which was described in detail in 

Chapter 3. Not only was it outlined how all the theory is interconnected, but the 

validation process was emphasized too. As the power of the framework can only 

become apparent when applied to real-life case studies, the next natural step was 

to use it in order to solve several case studies related to the aero-engine preliminary 

design process; that was presented in Chapter 4. 

5.1 Summary 

The first case study was concerned with analysing in service FBO events, more 

specifically with the loss of balance of the fan during the windmilling phase which 

succeeds the actual event. The Bayesian-elicitation framework was applied in order 

to identify the characteristics of the most likely FBO events. This was done in order 

to allow the designer to obtain critical knowledge during the preliminary stage of 

the aero-design process, which is when some of the most important design 

decisions need to be taken (as mentioned in Chapter 1).  

The second case study dealt with studying the grain growth of a turbine disk during 

the manufacturing process which comprises of two phases: isothermal forging as 

well as heat treatment. As it was mentioned several times, investigating this case 

study had two objectives: developing the updating algorithm as well as quantifying 

the grain size distribution given several manufacturing inputs. The reason is that 

the grain size directly impacts the fatigue life of the component, which is in turn 

related to cost. As it was highlighted in Chapter 1, by the end of the preliminary 

design stage, most of the committed cost is allocated to the project, so doing this 

efficiently is paramount. 

Finally, the third case study investigates fatigue failure of a turbine disc due to non-

metallic particle inclusions. This is where the framework was used to its full 

potential, and this was achieved by applying the elicitation and the updating 
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components, both of which were described in Chapter 3. The case study itself is of 

interest because the available knowledge on inclusion failure is limited. As a direct 

effect of that, there are cases when aero-engine components (such as the turbine 

disc) are taken out of service much earlier than they should be. This is a somewhat 

crude “safety factor approach”, and it is believed that it can be refined further given 

more available knowledge on the topic. This knowledge has the form of expert 

judgements and real-life data which can be used to predict both the life and the 

failure cause of the turbine disc (although the same methodology can be applied 

to any other component subjected to similar working conditions). 

The Bayesian-elicitation framework is the main selling point of this project, and 

throughout the sections above it was shown how useful it can be during the 

preliminary stages of the design process when data is generally hard to come by. 

The number of applications where this framework shines is not limited just to the 

three case studies presented here, but it can be used for any aero-engine problem 

where cutting costs via knowledge gathering and uncertainty quantification is one 

of the top priorities. 

5.2 Conclusions and Summary of Original Contributions 

In order to understand the impact of this project on the field of aero-engine 

design and how it can contribute to the preliminary design process, it would be 

worth discussing the outcomes of this research in the context of the research 

hypothesis presented in section 1.3. The hypothesis stated as follows:  

“Using probability-based methods during the preliminary stage of the aero-engine 

design process can allow fast and accurate investigation of the design space in 

order to aid the generation of an optimum design which can afterwards be 

passed to the detailed design phase. Ultimately, this can have the effect of 

making the entire design process faster and less expensive.” 

The non-deterministic approach to this project was the factor that formed the 

foundation of this EngD. In Chapter 1 the importance of the preliminary design 

stage was established and from that, the need for efficient decision making 

arises. Together with the literature findings from Chapter 2, the Bayesian-

elicitation framework was proposed to meet the requirements of the research 

hypothesis. This was done because also in Chapter 2, it was underlined how 
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unifying the two pillars: expert elicitation and Bayesian inference into a flexible 

framework can meet the desired objective.  

After careful consideration of mathematical and psychological theory, the 

framework was built in MATLAB and was intended to be as flexible as possible so 

that parts of it can be changed for others (if desired by the user), while keeping 

its overall philosophy intact. After the framework was validated, it has been 

applied to a variety of aero-engine specific case studies in a way in which would 

satisfy the goal set within the research hypothesis.  

It would also be worth stating (or re-stating) the novel contributions that were 

developed during this EngD. The principal contribution is the framework itself. Its 

building blocks are put together in a manner unlike what was found in the 

literature and it is also able to solve preliminary aero-engine related problems 

that would allow the designer to take decisions during this stage that would 

ultimately reduce cost. Secondly, a new method of obtaining feedback 

subsequent to an expert elicitation was put forward. That is, instead of asking on 

feedback with regards the PDFs themselves, the feedback can instead be on the 

prior predictive distribution as this converts the calibration parameters into 

physical parameters which for the expert are potentially easier to grasp. 

A final interesting aspect is that the concepts outlined in the title of the project 

have all been dealt with in one form or another: 

• Model Validation: as shown in Chapter 3, especially in section 3.6, the 

model (or the framework in the context of this project) has been validated 

by being applied to a case study found in the literature. It is also 

mentioned that the validation of the elicitation component is taken care of 

during the feedback process. 

• Uncertainty Quantification: the entire EngD revolved around this idea, and 

theory on Bayesian Inference and Expert Systems, which are uncertainty 

quantification methods, is described throughout Chapter 2. 

• The Preliminary Aero-Engine Design Process: the framework was applied to 

several case studies related to making this stage of the design process 

more efficient. 
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5.3 Future Work 

Like any research work carried out in general, there are areas where this project 

could see improvements. Firstly, the expert elicitation component based on SHELF 

[54] could be replaced with something else. One option would be to use a 

Gaussian process approach instead of fitting the judgements to set PDFs [48], as 

this can potentially capture the uncertainty without constraining them beyond the 

fundamental definition that its integral has to be 1. In addition to that, it is also 

possible to consider the elicited coefficients as dependent. However, that would 

add a high amount of complexity to the problem as covariances between various 

parameters have to be investigated and this can prove to be a difficult task 

especially if the case study itself is niche. This could mean that the data can be 

hard to obtain, or it could be a difficult task to find experts with deep 

understanding on the topic. 

The framework itself could be developed by adding several other possibilities for 

the distribution types (or by including the Gaussian process-based PDF mentioned 

earlier). If the methodology described in Chapter 3 is followed, it is expected that 

adding more such possibilities into the framework should be straightforward. 

Additionally, other machine learning algorithms could be used as an alternative to 

Bayesian Inference, although that is expected to modify this framework quite 

significantly.  

From the point of view of the case studies, it is possible to look into more aero-

engine related problems. The field of research need not be constrained strictly to 

aircraft engines, as there are a number of other aerospace-related areas where 

uncertainty quantification is a top priority. Of course, the physical models behind 

the existing case studies could be improved. Unfortunately, there is a limit to this 

as beyond a certain point they could become too expensive from a computational 

perspective. It is also important to keep in mind that no matter how accurate the 

model becomes, at the end of the day it is just an approximation. This is an idea 

that was neatly captured in 1976 in a publication by Box and Draper who said 

that “All models are wrong, but some are useful” [101]. 
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Appendix A Expertise Questionnaire 

This questionnaire is intended to find out about the nature of your job, and the 

type of judgements that you make while performing it. These answers will be used 

to prepare for the upcoming elicitation workshop on  

   Inclusion Fatigue Failure of a Turbine Disc 

In particular, we are interested in whether or not your job requires you to make 

probabilistic judgements, and how you make such judgements. In addition, we are 

interested to find out what sort of aids you use in making judgements, whether you 

received any relevant training, and whether you receive feedback about the quality 

of your judgements. 

Part A: General description of your job 

1. What is the title of your job? 
 

 

 

 

 

2. How would you describe your area of expertise? 
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3. How many years of experience would you say you had in your area of 
expertise? 
 

 

4. Would you describe that experience to be: 
Please tick ONE circle. 

 

o Wholly practical and/or field-based 
o Mostly practical and/or field-based but some theoretical and/or lab-

based 
o About equally practical/theoretical and field/lab-based 
o Mostly theoretical and/or lab-based 
o Wholly theoretical and/or lab-based 

Part B: The judgements you make 

5. Describe the most important judgements you make on a regular basis in 
your job. 
 

 

 

 

 

 

6. When you have to make work judgements, to what extent do you rely on 
your judgements alone, and to what extent do you rely on other information 
sources (such as manuals of statistics, computer databases or programs, 
etc.)? 
Please tick ONE circle. 

 

o I always use my judgement alone. 
o I mostly use my own judgement. 
o I use partly my own judgement, and partly other sources. 
o I mostly use other sources. 
o I always use other sources alone (not personal judgement) 
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7. If you use other information sources, please describe them below. 
 

 

 

 

 

 

8. In making your work judgements, do you receive any feedback on their 
accuracy? 
Please tick ONE circle. 

 

o Always 
o Often 
o Sometimes 
o Rarely 
o Never 

 

9. If you receive feedback, what form does this take? 
 

 

 

 

 

 

10. How often after a judgement, on average, do you receive feedback? 
Please tick ONE circle. 
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o The same day 
o Within a week 
o Within a month 
o Within a year 
o Longer than a year 
o I do not receive feedback 

 

11. How would you rate the ease of making good judgements in your work? 
Please tick a box that represents your opinion. 

 

         Very difficult                                                                                         

Very easy                             

1 2 3 4 5 6 7 

 

 

12. Do you make use of a formal model for making your work judgements? 
Please tick a box that best represents your opinion. 

 

              Never                                                                                                               

Always                         

1 2 3 4 5 6 7 

 

 

13. How would you rate the availability of data you use for your work 
judgements? 
Please tick a box that best represents your opinion. 

 

      Poor Availability                                                                                                                                                     

Plentiful 

1 2 3 4 5 6 7 
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14. How would you rate the quality of data that you use for your work 
judgements? 
Please tick a box that best represents your opinion. 

 

          Very poor                                                                                                                                                          

Very good 

1 2 3 4 5 6 7 

 

 

15. Did you receive any training to make judgements? If so, please describe 
below. 
 

 

 

 

 

 

16. Do you ever make any of the following types of judgements at work 
(numerically, verbally, or by any other means)? Please tick and fill in as 
many as are relevant. 
 

o I estimate the likelihood/probability of 
________________________________________________ 

o I estimate the chances of 
___________________________________________________________ 

o I estimate confidence in 
___________________________________________________________ 

 

 

17. How often, on average, are you called upon to make judgements of risk or 
uncertainty? 
Please tick ONE circle. 

 

o At least once a day 
o At least once a week 
o At least once a month 
o Less than once a month 
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18. When you make judgements of risk or uncertainty, what forms do they 
take? 
Please tick as many circles as are relevant. 

 

o Numerical estimates (e.g. 0.5, 50%, 1 in 2) 
o Verbal estimates (e.g. likely, infrequent) 
o Comparative (e.g. “the risk is similar to another risk”) 

 

19. If you do make numerical judgements, what forms do these take? 
Please tick as many circles as are relevant. 

 

o Percentages (e.g. 50% chance) 
o Point probabilities (e.g. 0.5 chance) 
o Confidence intervals (e.g. range within which you are 95% confident 

the true value falls) 
o Probability distributions (as previous but more than one range 

assessed for each quantity) 
o Frequencies (e.g. 3 out of 10 chances of occurring) 
o Odds (e.g. odds of 2 to 1 chance of occurring) 
o Ratings on scales (e.g. point 2 on a 7-point scale of likelihood) 
o Other types of numerical judgements: please provide details below 

 

 

20. Please give an example of a type of judgement of risk or uncertainty you 
typically make (if you do make such judgements). 

 

 

 

 

21. Did you receive any training to make judgements of risk and uncertainty? If 
so please describe below. 
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22. When you have to make judgements of risk and uncertainty do you rely on 
your own judgement alone or do you also use other information sources 
(such as manuals of statistics, computer databases or programs, etc.)? 
Please tick ONE circle. 

 

o I always use my judgement alone 
o I mostly use my own judgement 
o I use partly my own judgement, and partly other sources 
o I mostly use other sources 
o I always use other sources alone (not personal judgement) 

 

23. If you use other information sources, please describe them below. 
 

 

 

 

 

THANK YOU FOR YOUR TIME AND EFFORT. 

 



 

181 

Appendix B Generalized Expertise Measure 

Please rate the proposed candidate on the characteristics below using the scale: 

Question 

no./rating 

1 2 3 4 5 

Q1      

Q2      

Q3      

Q4      

Q5      

Q6      

Q7      

Q8      

Q9      

Q10      

Q11      

Q12      

Q13      

Q14      

Q15      

 

1 represents “Not true at all” 

5 represents “Definitely true” 

This person: 

Q1. Has knowledge specific to a field of work. 

Q2. Shows they have the education necessary to be an expert in the field. 

Q3. Has the qualifications required to be an expert in the field. 
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Q4. Has been trained in their area of expertise. 

Q5. Is ambitious about their work in the company. 

Q6. Can assess whether a work-related situation is important or not. 

Q7. Is capable of improving themselves.  

Q8. Is charismatic. 

Q9. Can deduce things from work-related situations easily. 

Q10. Is intuitive in the job. 

Q11. Is able to judge what things are important in their job. 

Q12. Has the drive to become what they are capable of becoming in their field. 

Q13. Is self-assured. 

Q14. Has self-confidence. 

Q15. Is outgoing. 
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Appendix C Creating a Dirichlet Distribution  

Let us assume that there is a set of 𝑘𝑘 uncertain quantities which form the vector 

x = (𝑥𝑥1,𝑥𝑥2,𝑥𝑥3, … , 𝑥𝑥𝑘𝑘)𝑇𝑇 which has the properties that 𝑥𝑥𝑖𝑖 ≥ 0 for all 𝑖𝑖 = 1,2, … ,𝑘𝑘 and also 

∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 = 1. Consequently, 𝑥𝑥𝑖𝑖 can be thought of as a proportion of members from a 

population which belong to category 𝑖𝑖 [89]. For explaining purposes, it will be 

assumed that the elicited judgements come from a single expert, although the 

method is flexible enough to make it suitable for a group of experts as well. The 

results obtained from the elicitation are assumed to have a Dirichlet distribution 

unless the expert believes this is not an accurate representation of the knowledge 

possessed.  

The vector x = (𝑥𝑥1,𝑥𝑥2, 𝑥𝑥3, … , 𝑥𝑥𝑘𝑘)𝑇𝑇 is said to have a Dirichlet distribution with the 

parameter vector d = (𝑑𝑑1,𝑑𝑑2,𝑑𝑑3, … ,𝑑𝑑𝑘𝑘)𝑇𝑇if the PDF is given by the following 

expression: 

𝑓𝑓(x|d) = 𝑐𝑐(d)�𝑥𝑥𝑖𝑖𝑑𝑑𝑖𝑖−1
𝑘𝑘

𝑖𝑖=1

 (72) 

 The normalising constant from Equation (73) is given by: 

𝑐𝑐(d) =
Γ�∑ 𝑑𝑑𝑖𝑖𝑘𝑘

𝑖𝑖=1 �
∏ Γ(𝑘𝑘
𝑖𝑖=1 𝑑𝑑𝑖𝑖)

 (73) 

The gamma function Γ(𝑛𝑛) has its usual expression given by: 

Γ(𝑛𝑛) = (𝑛𝑛 − 1)!, if 𝑛𝑛 ∈ ℕ∗  (74) 
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The means and variances of each 𝑥𝑥𝑖𝑖 are given by Equation (75) below: 

𝐸𝐸(𝑥𝑥𝑖𝑖|d) =
𝑑𝑑𝑖𝑖
𝑛𝑛

,       Var(𝑥𝑥𝑖𝑖|d) =
𝑑𝑑𝑖𝑖(𝑛𝑛 − 𝑑𝑑𝑖𝑖)
𝑛𝑛2(𝑛𝑛 + 1)

,       where 𝑛𝑛 = �𝑑𝑑𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 (75) 

It is inevitable for the 𝑥𝑥𝑖𝑖 variables to be correlated because of the relation ∑ 𝑥𝑥𝑖𝑖𝑘𝑘
𝑖𝑖=1 =

1. The expression for covariance is given in Equation (76) below: 

Cov�𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖� = −
𝑑𝑑𝑖𝑖𝑑𝑑𝑖𝑖

𝑛𝑛2(𝑛𝑛 + 1) ,       for 𝑖𝑖 ≠ 𝑗𝑗 (76) 

A special property of the Dirichlet distribution is that each marginal distribution 

of each 𝑥𝑥𝑖𝑖 is a beta distribution with parameters 𝑑𝑑𝑖𝑖 and 𝑛𝑛 − 𝑑𝑑𝑖𝑖: 𝑥𝑥𝑖𝑖~Be(𝑑𝑑𝑖𝑖,𝑛𝑛 − 𝑑𝑑𝑖𝑖). 

The steps taken in order to perform an elicitation using the Dirichlet distribution, 

which were also briefly presented in section 4.2.2, are as follows: 

• Prepare and train the experts in order for them to get familiarized with the 
ideas of probability judgements as well as the elicitation method which will 
be used during the workshop. 
 

• By using O’Hagan’s SHELF software, several quantiles are elicited for each 𝑥𝑥𝑖𝑖 
and a beta distribution which has similar quantile values is built. It is 
important to note at this point that more often than not, a compromise has 
to be made in order to construct the beta distributions; realistically no beta 
distribution will exactly fit the elicited quantiles [89]. This is indeed reflected 
by the way in which the SHELF software operates; it chooses a beta 
distribution which fits the judgements as close as possible. The next step 
consists of the elicitor showing the beta distributions to the expert so that 
feedback can potentially be given and the expert is then given an 
opportunity to update the initial estimates. Alternately, the expert can insist 
that his beliefs are not represented accurately by beta distribution, and at 
this point the procedure stops, the conclusion being that no Dirichlet 
distribution is suitable for the problem. 
 

• The means from all beta distributions will most probably need to be 
adjusted. The constraint ∑ 𝑥𝑥𝑖𝑖𝑘𝑘

𝑖𝑖=1 = 1 always holds for a Dirichlet 
distribution, however because each 𝑥𝑥𝑖𝑖 has been elicited separately, it is 
unlikely to satisfy this equation in practice. If 𝑥𝑥𝑖𝑖 has a beta distribution of 
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the form 𝑥𝑥𝑖𝑖~Be(𝑑𝑑𝑖𝑖, 𝑒𝑒𝑖𝑖) and the expected value is 𝐸𝐸(𝑥𝑥𝑖𝑖) = 𝑑𝑑𝑖𝑖
𝑑𝑑𝑖𝑖+𝑒𝑒𝑖𝑖

, the constraint 

can be written in an equivalent form presented in Equation (77) below: 

𝑟𝑟 = �
𝑑𝑑𝑖𝑖

𝑑𝑑𝑖𝑖 + 𝑒𝑒𝑖𝑖

𝑘𝑘

𝑖𝑖=1

= 1 (77) 

Realistically, the parameter 𝑟𝑟 above will most likely not be equal to 1. This 

discrepancy can be accounted for by applying a correction to 𝑑𝑑𝑖𝑖 and 𝑒𝑒𝑖𝑖 in 

the following way: 

𝑑𝑑𝑖𝑖
∗ =

𝑑𝑑𝑖𝑖
𝑟𝑟

,       𝑒𝑒𝑖𝑖∗ = 𝑑𝑑𝑖𝑖 + 𝑒𝑒𝑖𝑖 − 𝑑𝑑𝑖𝑖
∗ (78) 

• Although Equation (77) is satisfied after the previous step, it is highly likely 
that the sum of beta parameters for each 𝑥𝑥𝑖𝑖 (which is the 𝑛𝑛 value) is different 
for each of the marginal distributions. The joint Dirichlet distribution has 
only a single 𝑛𝑛 value associated to it, meaning that a compromise value for 
𝑛𝑛 should be used. The question therefore becomes: “Which value of 𝑛𝑛 would 
produce a distribution that reflects the expert’s knowledge in the best way 
possible?”. There are several suggestions by Vazquez [89] in this respect: 

o The compromise value for 𝑛𝑛 could for instance be given by the middle 

value 𝑛𝑛𝑚𝑚𝑖𝑖𝑑𝑑 = 𝑛𝑛min+𝑛𝑛max
2

, where 𝑛𝑛min and 𝑛𝑛max correspond to the lowest 

and highest values of 𝑛𝑛 for all 𝑘𝑘 beta distributions. 
 

o Another option would be to use a conservative value 𝑛𝑛 = 𝑛𝑛min as in 
this way the elicitor does not assume more knowledge about the 𝑥𝑥𝑖𝑖 
values than it had already been elicited. 

 

o An optimization technique could be applied, and Vazquez [89] 
showed the full solution on how to obtain the optimum value of 𝑛𝑛 
which is: 

𝑛𝑛𝑜𝑜𝑝𝑝𝑡𝑡 = �
∑ 𝑣𝑣𝑖𝑖∗(𝑛𝑛𝑖𝑖 + 1)𝑘𝑘
𝑖𝑖=1

∑ 𝑣𝑣𝑖𝑖∗�(𝑛𝑛 + 1)𝑘𝑘
𝑖𝑖=1

�
2

− 1,       𝑣𝑣𝑖𝑖∗ =
𝑑𝑑𝑖𝑖
∗(𝑛𝑛𝑖𝑖 − 𝑑𝑑𝑖𝑖

∗)
𝑛𝑛𝑖𝑖2(𝑛𝑛𝑖𝑖 + 1)  (79) 

After the value of 𝑛𝑛 is decided upon, the final values for each pair of beta 

parameters can also be found: 
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𝑑𝑑𝑖𝑖(𝑛𝑛) = 𝑛𝑛
𝑑𝑑𝑖𝑖
∗

𝑑𝑑𝑖𝑖
∗ + 𝑒𝑒𝑖𝑖∗

 (80) 

• The final step consists of showing the expert each beta distribution as 
obtained from the joint Dirichlet distribution in order to obtain feedback as 
to how well each beta distribution fits the expert’s original beliefs. Once 
again, the expert may believe that the final Dirichlet distribution does not 
match his judgements in any way, meaning that the elicitation process 
terminates with the conclusion that no Dirichlet distribution can represent 
the expert’s uncertainty about the problem. Otherwise, it can be stated 
that the vector x has the distribution x~Di�d(𝑛𝑛)�. 
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