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Anomalous exciton Hall effect
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It is well known that electrically neutral excitons can still be affected by crossed electric and
magnetic fields that make them move in a direction perpendicular to both fields. This effect is at
the origin of the magnetic Stark effect for excitons and is described in terms of a synthetic gauge
field. We show that a similar effect appears in the absence of external electric fields, in the case of
scattering of an exciton flow by charge impurities in the presence of the external magnetic field. As
a result, the exciton flow changes the direction of its propagation that may be described in terms
of the Hall conductivity for excitons. We develop a theory of this effect, which we refer to as the
anomalous exciton Hall effect, to distinguish it from the exciton Hall effect that arises due to the
valley selective exciton transport in transition metal dichalcogenides. According to our estimations,
the effect is relatively weak for optically active or bright excitons in conventional GaAs quantum
wells, but it becomes significant for optically inactive or dark excitons, because of the difference of
the lifetimes. This makes the proposed effect a convenient tool for spatial separation of dark and
bright excitons.

Introduction. Thomas and Hopfield [1] were the first
to point out that excitons propagating in the presence
of an external magnetic field orthogonal to their velocity
acquire stationary dipole polarisation perpendicular to
both the magnetic field and their propagation direction.
This is the manifestation of the magnetic Stark effect for
excitons that was experimentally evidenced in a variety
of semiconductor systems [2–4]. This effect is a mani-
festation of the Lorentz force that pulls an electron and
a hole apart if an exciton as a whole particle moves in
the presence of a magnetic field. Imamolu [5, 6] pointed
out that once an exciton is placed in crossed electric and
magnetic fields, it starts moving as a whole in the direc-
tion perpendicular to the directions of both fields, that
leads to the renormalization of the excitonic dispersion
semiconductor quantum wells or two-dimensional semi-
conductor crystals. Onga et al. [7] have recently reported
the experimental observation of an exciton Hall effect in
atomically thin layers of MoS2 that manifests itself in the
appearance of an off-diagonal exciton conductivity in the
presence of a magnetic field. The effect is caused by the
strong spin-valley locking in monolayer transition metal
dichalcogenides.

Here we propose one further step with respect to the
three effects described above. We show that in conven-
tional GaAs quantum wells containing charged impuri-
ties, an exciton flow may be reoriented in the real space
due to the combined effect of the local electrostatic po-
tential created by charged impurities and the magnetic
field applied in normal to the plane direction. Conceptu-
ally, this effect is similar to the cross-field effect proposed
by Imamolu [5, 6] and it manifests itself in a very simi-

lar phenomenology to the exciton Hall effect studied by
Onga et al. [7], however, it is different from both above
mentionned effects as (i) an external electric field is not
needed, (ii) spin-valley locking is not needed. To distin-
guish from the previous studies we refer to the effect we
study as an anomalous exciton Hall effect.
We use the full microscopic description, based on the

Lippmann-Schwinger equation in order to calculate the
exciton scattering matrix on a single impurity, next we
calculate the magnitude of the Hall angle for an exciton
flow accounting for multiple scattering events and a fi-
nite exciton lifetime. We argue that the effect may have
a significant magnitude in fluids of optically inactive,
dark excitons due to their long lifetimes. On the other
hand, the estimated Hall angle is only about 1 degree for
short-living bright excitons in conventional GaAs-based
quantum wells. This makes the anomalous Hall effect a
powerful tool for spatial separation of dark and bright
excitons.
The gauge field formalism. The concept of gauge fields

is pivotal in high energy physics. In non-relativistic
condensed matter physics gauge fields are also ubiqui-
tous. The best known example is magnetic field B. It is
Abelian U(1) gauge field, which can be introduced into
single particle Hamiltonian by substitution

p̂µ → p̂µ − qÂµ (1)

with q being the electric charge of the particle, Aµ being
components of the vector potential, B = ∇×A(r). The
presence of a magnetic field dramatically modifies the
properties of the system, and leads to such fundamen-
tal phenomena as quantum Hall and Aharonov-Bohm ef-
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fects.
For neutral particles with q = 0, such as photons, cold

atoms, or excitons, magnetic field does not affect the or-
bital degree of freedom directly, and thus can not be
considered as a real gauge field. However, if a particle
possesses internal degrees of freedom, such as spin, po-
larization, or internal set of energy levels, creation of so
called synthetic gauge fields becomes feasible. In general,
they appear as consequences of a delicate interplay of the
evolution of internal degrees of freedom with orbital dy-
namics in the adiabatic regime. In particular, for cold
atoms both Abelian and non Abelian gauge potentials
can be engineered by resonant drive of the system with
spatially inhomogeneous laser beams [8]. For photons,
the methods to create synthetic gauge fields include dy-
namic modulation [9], use of coupled optical resonators
[10], engineering lattices with strain [11], or reciprocal
metamaterials [12].
In condensed matter and semiconductor physics, the

typical example of an electrically neutral particle is an
exciton. Excitons can be created by optical excitation.
They govern the optical response of semiconductor ma-
terials at low temperatures. In systems of the reduced
dimensionality, such as monolayers of transition metal
dichalcogenides (TMDs), excitonic features are highly
pronounced and may be robust up to the room temper-
ature [13]. The recent study of the electric field effect
on the gauge fields for exciton strongly coupled to light
(exciton-polaritons) [6] showed the high potentiality of
the gauge field approach to the description of exciton and
polariton dynamics in the presence of a magnetic field.
In this Letter we demonstrate how the combination of
the magnetic Stark effect [1] with excitonic scattering by
an external potential, leads to the appearance of an effec-
tive U(1) gauge field acting on the motion of the exciton
center of mass.
Phenomenological model. To reveal the nature of the

proposed effects, we start with a simplified phenomeno-
logical model and assume that the motion of the center
of mass of an exciton is decoupled from the internal dy-
namics of an electron and a hole forming it. We consider
a 2D exciton confined in the xy-plane and subject to the
external magnetic field directed along the z-axis. If the
center of mass of the exciton is characterised by a non
zero momentum k 6= 0, the magnetic field acting on the
electron and hole would dipole-polarize the exciton in the
direction perpendicular to k, so that the electric dipole
moment of the exciton reads:

〈d̂〉 = f(B)[ez × k] (2)

where f(B) is a function of the magnetic field, which
depends linearly on B in the weak field limit, but be-
comes inversely proportional to B at the large fields in
the magneto-exciton regime [14–16]. At a small mag-
netic field one can find f(B) by passing to the center-
of-mass reference frame, where the magnetic field is ab-

sent, but an electric field E′ = [h̄k × B]/M appears,
here M is the exciton mass. If this electric field is
weak, then 〈d̂〉 = −e〈r〉 = αE′ = α[h̄k × B]/M , where
α = 21a3B4πǫ0ǫ/128 is the 2D exciton polarizability [26],
thus f(B) = −αh̄B/M . At strong magnetic fields, in
the magneto-exciton regime, the dipole moment is given
by [16] 〈d̂〉 = −e〈r〉 = −e[ez×k]l2B, where lB =

√

h̄/(eB)
is the magnetic length, thus f(B) = −h̄/B.
The presence of impurities and fluctuations of the

quantum well width leads to the appearance of the scat-
tering potential Usc(R) for excitons, here R denotes
the position of the center-of-mass. Moreover, it gener-
ates some non-zero in-plane distribution of electric fields
E(R), which can affect the exciton dipole moment given
by Eq. (2) (see Fig. 1).

Pump

QW

FIG. 1: The sketch of the system under consideration. Exci-
tons created by the optical pump, travel in the plane of a dis-
ordered quantum well in the presence of a uniform magnetic
field B, pointing perpendicularly to the quantum well. The
magnetic field induces an in-plane dipole moment of the exci-
tons which leads to the asymmetric scattering of the excitons
by impurities. This problem can be mapped to the scatter-
ing of a charged particle by an impurity in the presence of the
position-dependent synthetic magnetic field Beff(R), depicted
by the grey domain around the scatterer in the figure.

Using these assumptions we write down the model
Hamiltonian of the system as:

Ĥdip =
p̂2

2M
+ V̂ dip =

p̂2

2M
+ Usc(R)−

1

2
(d̂ ·E+E · d̂),

(3)

where d̂ = f(B)[ez × k̂], M is the exciton mass, and

p̂ = h̄k̂ is the exciton center-of-mass momentum opera-
tor. Note, that as exciton is a composite particle, there is
no simple straightforward relation between the scattering
potential and the electric field E = E(R), producing by
the scatterer. After some simple algebra this can be cast
in form:

Ĥdip =
1

2M
(p̂− eAeff(R))2 + Ueff(R), (4)
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where Aeff(R) = Mf(B)(h̄e)−1 (exEy(R)− eyEx(R)) is
a synthetic vector potential, corresponding to the mag-
netic field Beff(R) = −ezMf(B)(h̄e)−1 divE(R) and
Ueff(R) = Usc(R) − Mf2(B)(2h̄2)−1E2(R) is an effec-
tive scalar potential. One can see that in order to have
a non trivial synthetic gauge field, two conditions need
to be fulfilled: (a) B 6= 0 and (b) the presence of an
inhomogeneous electric field.
We consider first the scattering of an exciton by a sin-

gle impurity that is characterized by the radial symme-
try, i.e. we assume that Usc(R) = Usc(R) and E(R) =
E(R)R/R. Then, assuming that the scattering is elas-
tic, so that |k| = |k′|, we obtain the following scatter-
ing matrix elements between the exciton states with the
center-of-mass momenta k and k′

V dip
k,k′ = Usc(∆k)+

ih̄f(B)

2π

[k′ × k]z
|∆k|

∞
∫

0

RdRE(R)J1(|∆k|R). (5)

Here we performed the integration over the polar an-
gle, which yielded the Bessel functions, ∆k = k′ − k is
the transferred momentum. The first term Usc(∆k) ≡

(2π)−1
∞
∫

0

RdRUsc(R)J0(|∆k|R) is real and it describes

the normal symmetric scattering of an exciton by an im-
purity, while the second imaginary term accounts for the
breaking of the time reversal symmetry by the magnetic
field (as V dip

k,k′ 6= V dip
−k′,−k). This term gives rise to the

asymmetric scattering (analogous to skew scattering) of
excitons by the impurities and thus leads to the excitonic
analogue of the anomalous Hall Effect.
Microscopic theory. In the presence of a magnetic field

the center-of-mass motion and the internal motion are
coupled, which has been neglected in the simplified qual-
itative model presented above. Now we proceed with the
full microscopic model of exciton-impurity scattering in
the presence of a magnetic field.
The Hamiltonian Ĥrel of relative motion of an e − h

pair characterized by the center-of-mass momentum h̄k
(where k is the wave vector) in the presence of a perpen-
dicular magnetic field B has the form [14, 18]

Ĥrel =−
h̄2

2µ
∇2

r −
ih̄eB

2

(

1

me
−

1

mh

)

[r×∇r]z +

e2B2

8µ
r2 +

eh̄

M
B · [r× k]−

e2

4πε0ε|r|
+

h̄2k2

2M

(6)

where r = re − rh is the relative e − h coordinate, and
µ−1 = m−1

e + m−1
h . Writing this expression we have

taken advantage of the existence of an exact integral
of motion, namely the magnetic center-of-mass momen-
tum [18], defined by the operator h̄k̂ = −ih̄∇R − eA(r),
where R = (mere +mhrh) /M is the center-of-mass
coordinate, M = me + mh, and the vector potential

is taken in the symmetrical gauge A(r) = B × r/2.
The exciton wave function has the form Ψk(R, r) =
exp

{

iRh̄ [h̄k+ eA(r)]
}

Φk(r), where Φk(r) is the corre-
sponding eingestate of the Hamiltonian above. An im-
portant point is that the wave function Φk of the rela-
tive motion of an e − h pair depends on the center-of-
mass momentum h̄k [18] i.e., the relative motion and the
center-of-mass motion are coupled. The scattering ma-
trix elements Vk,k′ = 〈Ψk|V̂ |Ψk′〉 between the exciton
states with the center-of-mass momenta k and k′ in the
external potential V̂ = Ve(re) + Vh(rh) are given below.
Weak magnetic fields. In the weak-field limit, lB ≫

aB, the problem can be treated analytically, here lB =
√

h̄/(eB) is the magnetic length and aB = 4πε0εh̄
2/(µe2)

is the Bohr radius (the 1s exciton radius is aB/2). In
this section we shall neglect excitonic transitions to the
excited states of internal e − h motion, i.e. the center-
of-mass momentum |k| ≪ a−1

B . The ground-state wave
function Φk(r) is calculated in a magnetic field using the
perturbation theory. The corresponding scattering ma-
trix elements Vk,k′ are obtained in Ref. [17] and read as
follows

Vk,k′ = Ṽe(∆k)Fe(∆k) + Ṽh(∆k)Fh(∆k)+

i[k′ × k]za
2
B

(

aB
lB

)2
(

Ṽe(∆k)αe − Ṽh(∆k)αh

)

. (7)

Here Ṽj(k) is the two-dimensional Fourier trans-
form of the potentials Vj(r) (j = e, h), Fe(h)(∆k) =
[

1− 3a2Bm
2
h(e)(∆k)2/(32M2) + βe(h)(∆k)2a2B (aB/ℓB)

4
]

,

and ∆k = k′ − k is the transferred momentum. In the
derivation above only the essential terms of up to the sec-
ond order in B and the lowest orders in |k|aB are taken
into account. The expressions for the dimensionless con-
stants αe(h) and βe(h) for a 2D Wannier-Mott exciton can
be found in [17] (we corrected the typos in the original

formulas): βe(h) = 4−6M−2
(

105m2
h(e) − 159µ2/2

)

and

αe(h) = −2mh(e)κ/M , κ = −21µ/(162M). Note that
βe, βh > 0 are positive, therefore, the exciton scattering
cross-section increases with B when lB ≫ aB. An
important point is that for this scattering potential the
time-reversal symmetry is broken Vk,k1

6= V−k1,−k, and
the structure of Vk,k′ resembles its counterpart (5) from
the simplified phenomenological model. The exciton
energy spectrum is given by

ǫ(k) = −ǫ0

[

1−

(

l2
lB

)4
]

+
h̄2k2

2M

[

1− 2|κ|

(

aB
lB

)4
]

,

(8)
where the parameter l2 = (3/128)1/4aB determines the
diamagnetic shift. The first term represents the bind-
ing energy, whereas the second stands for the center-of-
mass kinetic energy. Magneto-exciton regime. In the
opposite regime, where the magnetic field is strong (i.e.
aB ≫ lB), one can neglect the Coulomb interaction term
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(a)

FIG. 2: (a) The dependence of the dipole moment (absolute
value |〈r〉|) on the magnetic field strength for GaAs and CdTe
quantum wells. The solid lines are obtained from the numer-
ically found eigenstates of Eq. (6), whereas the dashed lines
are obtained, using the perturbation theory. The parameters
of the plot are typical of GaAs quantum wells: the effective
electron and hole masses me = 0.067me0, mh = 0.5me0, the
dielectric constant of the quantum well ε = 12.5 (average
dielectric constant of the surroundings). The exciton momen-
tum corresponds to the wavelength of the absorbed photon
λ = 860 nm as |k| = 2π sin(π/2 − π/8)/λ, where the angle
of incidence is set to π/2− π/8. The linear part of the curve
describes the weak magnetic field limit, whereas the decay-
ing tail corresponds to the magneto-exciton regime. (b) The
Hall angle in a GaAs quantum well as a function of the exci-
ton lifetime in two regimes: weak fields aB/lB ≪ 1 and the
magneto-exciton regime aB/lB ≫ 1. The expected behavior
in the non-perturbative regime aB/lB ∼ 1, where the Hall
angle is expected to be the largest, is shown with the dashed
curve.

in the Hamiltonian (6) and the exciton dynamics is gov-
erned by the magnetic field solely. In this regime, which
is often referred to as the magneto-exciton regime, one
can calculate the dispersion of the ground state (the elec-
tron and the hole occupy the lowest Landau level) of the
system in the first order with respect to the e−h Coulomb
potential [25], which is now treated as a perturbation

ǫ(k) =
1

2
h̄ωC −

√

π

2

e2

4πǫ0ǫlB
e−

k
2
l
2

B

4 I0

(

k2l2B
4

)

. (9)

The corresponding impurity scattering matrix elements
are given by

Vk,k′ =Ṽe(∆k) exp

(

−
i

2
[k′ × k]z l

2
B −

∆k2l2B
4

)

+

Ṽh(∆k) exp

(

+
i

2
[k′ × k]z l

2
B −

∆k2l2B
4

)

, (10)

here ωC = eB/µ is the cyclotron frequency.

Scattering rates. The impurity scattering matrix el-
ements, discussing above for the two regimes, is the
starting point for calculating the scattering T -matrix,
which is defined as Tk,k′ = 〈Ψk|V̂ |Ψ̃k′〉, where V̂ =
Ve (re) + Vh (rh) is the impurity potential operator, |Ψk〉
is the eigenstate of the free Hamiltonian Ĥ0, describing
a 2D exciton in a magnetic field and |Ψ̃k′〉 is the eigen-
state of the full Hamiltonian Ĥ = Ĥ0+ V̂ . The T -matrix
satisfies the Lippmann-Schwinger equation

Tk,k′ = Vk,k′ +

∫

d2g

(2π)2
Vk,gTg,k′

E − ǫ(g) + i0
, (11)

where ǫ(g) is the dispersion of the bare Hamiltonian Ĥ0

and it is given by Eq. (8) and Eq. (9) for the two regimes
under consideration, respectively, and E is the energy
eigenvalue corresponding to |Ψ̃k′〉. Two contributions
can be distinguished in the square modulus of the T -
matrix: ν20 |Tk,k′|

2
= Gk,k′ + Jk,k′ , here Gk,k′ ≡ G(θ) =

G(−θ), Jk,k′ ≡ J (θ) = −J (−θ) are dimensionless sym-
metric and asymmetric contributions to the scattering
rate, respectively, θ = ϕ−ϕ′ is the scattering angle, ϕ, ϕ′

are the polar angles of k,k′, and ν0 = M/(2πh̄2) is the
2D density of states of free particles with parabolic dis-
persion, which is introduced here to write the scattering
matrices in dimensionless form. The density of states is
defined as ν(k) = |∂ǫ(k)/∂k|

−1
k/(2π). Here we restrict

ourselves to the case |k| = |k′|, which corresponds to the
elastic scattering. It is the asymmetric part Jk,k′ of ex-
citon scattering by impurities that gives rise to the Hall
current. The properties of Jk,k′ are discussed in details
in Ref. [19, 20, 23].

The elastic scattering rate Wk,k′ from k′ to k state
is expressed with use of the Fermi golden rule Wk,k′ =

2πh̄−1nimp |Tk,k′ |
2
δ (ǫk − ǫk′), where nimp is the surface

density of impurities. The presence of the magnetic field
breaks the time inversion symmetry in the problem and
leads to the fact that scattering rates Wk,k′ and Wk′,k

become non-equivalent and thus a non-zero Hall contri-
bution Jk,k′ emerges.

Let us assume that the impurity potential is described
by the Coulomb-like potential [24] Ve(r) = −Vh(r) =
−eqimp/(4πε0εr). The Lippmann-Schwinger equation
can not be treated perturbatively in our system, which
is why we solve this integral equation (11) numerically.
Note that for B = 0 it follows that Vk,k′ is real (see
Eq. (7)), therefore as expected, Jk,k′ = 0, i.e. scattering
is purely symmetrical.

Having solved the Lippmann-Schwinger equation nu-
merically in the two regimes under consideration, one
may proceeds with calculating the Hall current appearing
in the system. We study the classical transport regime
|k|l ≫ 1, where l is the exciton mean free path. We use
the semiclassical Boltzmann equation for the occupation
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numbers of exciton states nk having wave vectors k

dnk

dt
= Pk −Γnk +

∫

d2k′

(2π)2
(Wk,k′nk′ −Wk′,knk), (12)

here Pk is the coherent pump term, Γ = 1/τ0 is the par-
ticle decay rate, which is assumed to be independent of
k. We consider the case where the equilibrium is reached
and nk doesn’t depend on time, thus the time derivative
term will be omitted. Then, performing the integration
over the absolute value of k′, the Boltzmann kinetic equa-
tion can be rewritten as

0 = Pk − Γnk +

∫

dϕ′ (wk,k′nk′ − wk′,knk) , (13)

where wk,k′ = nimpν0/(h̄ν(k)
2) (Gk,k′ + Jk,k′) and the

exciton density of states ν(k) = |∂ǫ(k)/∂k|
−1

k/(2π).
Let us assume the in-plane wave vector k0 of the pump
is pointing along the x-axis, i.e. k0 = (k0, 0)

T , which im-
plies Pk = P0δ(k−k0) = (P0/k)δ(k−k0)δ(ϕ) and we note
that this function is even with respect to ϕ. Since wk,k′

depends on the difference between the momentum angles,
to perform the integration over ϕ′ in the collision inte-
gral, the particle density nk and the scattering rate wk,k′

should be expanded in cylindrical harmonics cosmϕ,
sinmϕ, where m ≥ 0 is integer. Assuming that only
the dipole type of anisotropy of the momentum-space
distribution function is significant, we represent nk =
n0(k) + δn(k), where δn(k) = n+(k) cosϕ+ n−(k) sinϕ,
n0(k) is the isotropic part of the distribution function
which depends only on energy. The coefficients n±(k)
are to be found. Substituting this decomposition into
the kinetic equation (13) and integrating over ϕ′ in the
collision term, we obtain

0 =
P0

k
δ(k − k0)δ(ϕ) + cosϕ

(

Ω(k)n−(k)−
n+(k)

τ(k)

)

− sinϕ

(

Ω(k)n+(k) +
n−(k)

τ(k)

)

−
nk

τ0
, (14)

where τ(k) is given by the symmetric scattering term

τ(k)−1 = nimpν0/(h̄ν(k)
2)

∫ 2π

0
Gk,k′(1 − cos θ)dθ, here

θ = ϕ − ϕ′ is the scattering angle. The factor
Ω(k) is determined by the asymmetric scattering term

Ω(k) = −nimpν0/(h̄ν(k)
2)

∫ 2π

0
Jk,k′ sin θdθ, and it mixes

the even n+(k) and odd n−(k) contributions to the den-
sity distribution, yielding a Hall current in the trans-
verse y-direction. Using the orthogonality of sinϕ and
cosϕ, the kinetic equation is readily solved, yielding
n−(k) = −Ω(k)τtot(k)n+(k). Here we introduced the
total relaxation time τtot(k) = (τ−1

0 + τ(k)−1)−1. The
Hall angle, defined as the ratio of the Hall current jy and
the longitudinal current jx, is jy/jx = −Ω(k0)τtot(k0),
where jx,y =

∫

h̄kx,yδn(k)d
2k/(2π)2. This quantity can

be estimated for the typical parameters of doped GaAs
quantum wells nimp ≈ 1011 cm−2, k0 ≈ 7 · 106 m−1 (see

the caption of Fig. 2), ε = 12.5, the charge of the im-
purity qimp = e, and τ0 ≈ 10 ps (for bright excitons)
in the two regimes. At a weak magnetic field B = 1 T
the numerical solution of the Lippmann-Schwinger equa-
tion with the kernel (7), yields τ(k0) ≈ 3.8 ps and
jy/jx = −Ω(k0)τtot(k0) ≈ −0.8%. At a strong magnetic
field B = 18 T we solve the Lippmann-Schwinger inte-
gral equation numerically with the magneto-exciton ker-
nel (10), which yields jy/jx = −Ω(k0)τtot(k0) ≈ −1.8%.
The negative sign of the Hall angle (jy/jx) indicates
that the Hall current is antiparallel to the y-direction.
One may expect, by looking at Fig. 2(a), that at in-
termediate magnetic field strengths (about B ≈ 10 T)
the Hall angle would be significantly larger, as the ex-
citon dipole moment reaches its largest value in this
non-perturbative regime, while still not switching to the
magneto-exciton regime. We also note, that the range of
magnetic fields corresponding to the largest dipole mo-
ment is easily achievable experimentally, which makes
the observation of the predicted phenomenon realistic.
The dependence of the Hall angle on the exciton lifetime
is shown in Fig. 2(b). Clearly, for dark excitons whose
lifetime is significantly larger than the lifetime of bright
excitons, the Hall angle is notably larger. This shows
that the anomalous exciton Hall effect may be used as a
tool for spatial separation of dark and bright excitons.

Conclusions. In conclusion, we demonstrated that the
magnetic Stark effect for 2D excitons may lead to the
emergence of an effective U(1) gauge field. This field can
result in the excitonic analogue of the anomalous Hall
effects. For the later we presented a detailed microscopic
description of the scattering mechanism and analyzed
the transport properties, showing that the effect can be
observed experimentally in conventional GaAs quantum
wells and that it is much stronger for dark than bright
excitons.
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