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Epigenetic memories play an important part in regulating stem cell identities. Tools from the 

theory of non-Markov processes may help us understand these memories better and develop a 

more integrated view of stem cell fate and function. 

 

It is becoming increasingly clear that epigenetic “memories” have a central role in regulating individual 

stem cell fates, and variations in individual cell histories can generate functional heterogeneity within 

apparently pure stem cell populations (Graf and Stadtfeld, 2008; Yu et al., 2016). These results suggest 

that there are deep connections between cell histories and cell fates, yet our understanding of these 

connections is currently incomplete.  

  In parallel to the experimental advances that are allowing us to probe these connections more 

deeply (Zhu et al., 2020), there has been progress in the mathematical and physical sciences on the 

theory of non-Markov stochastic processes. These developments are helping to provide a formal 

framework to understand how memories can be encoded and propagated in complex dynamical systems 

that have direct implications for our understanding of the relationship between stem cell histories and 

fates.  

Stochastic processes are often used to model the dynamics of systems for which outcomes are 

not entirely predictable. A stochastic process for which the present state of the system provides all the 

information needed to determine the likelihood of future events is said to be Markov (Van Kampen, 

1992). Markov processes are used to model dynamics in which history is not important and they are 

often described as being “memoryless” (see Fig. 1A). Markov processes are widely used to model 

stochastic processes in cell biology, and underpin some important modern data analysis techniques, 

such as trajectory inference methods for single cell data (Weinreb et al., 2018). 

However, Markov processes are not appropriate in all circumstances. In some situations, the 

future of a system may depend on both its present state and on the particular path taken to get to the 

present state. Stochastic processes that account for such history are said to be non-Markov.  

Non-Markov processes typically arise for one of two reasons.  

First, there are features of the system being studied that are unobserved yet have an important 

effect on the observable dynamics. For example, there may be a key gene or molecular mechanism that 

directs a stem cell lineage choice that is not experimentally measured, yet has an important effect on 

the expression of the genes or mechanisms that are observed. In this case, the assessment of the “present 

state” of the cell does not include all relevant information needed to infer its future behaviour and the 

dynamics may be best modelled as a non-Markov process. This issue is particularly pertinent when 

considering regulation of cell fates by cis epigenetic signals (i.e., stable alterations to the DNA, such as 
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methylation, acetylation, etc.). For instance, complex patterns of epigenetic regulators encode cell 

histories and play an important part in cell fate regulation (Yu et al., 2016), yet these patterns may not 

be easy to determine at the single cell level in their entirety (Zhu et al., 2020) and so may give rise to 

apparently unpredictable dynamics at the single cell level and unexplained dynamic heterogeneity at 

the population level. 

Second, there is some persistence in the system. Unless our definition of the present state takes 

account of this persistence, then the dynamics may again be non-Markov (see Fig. 1B). Stem cell 

differentiation is a relevant example. To illustrate this, consider the expression of a hypothetical gene 

that acts as a marker of a transition between two cell fates A and B (see Fig. 1C). Suppose that this gene 

is highly expressed when the cell is in state A and lowly expressed when the cell is in state B. If the cell 

is in transition from state A to state B, then the expression of this gene will generally decrease over 

time. If, by contrast, the cell is in transition from state B to state A, then the expression of this gene will 

generally increase over time. In this case, knowledge of the cell’s instantaneous internal molecular state 

(i.e., the expression of the gene), is not enough to infer its likely future because it does not contain 

information of whether the cell is moving from state A to state B or vice versa. More generally, stem 

cell differentiation involves movement from one functional state to another along a directed 

developmental trajectory in a high dimensional expression space, characterized by coordinated changes 

in gene expression patterns that occur in a particular order. Differentiation dynamics are therefore 

persistent and may be best modelled as a non-Markov process. This issue is particularly pertinent when 

considering trans epigenetic signals (i.e., molecular alterations that are stabilized by the dynamics of 

intracellular regulatory networks), which may alter on environmental stimulus and thereby confer a 

preferred direction to differentiation that is not directly encoded in the cell’s instantaneous state.  

Collectively, these considerations should cause us to pause and consider what we can, and 

cannot, determine from an experiment – and how we can better design experiments. For example, 

remarkable advances in modern single cell profiling techniques that allow us to explore cellular 

identities in exquisite detail do not, alone, resolve these issues when considering dynamics, such as 

differentiation, that are out of equilibrium. Computational trajectory inference methods, which aim to 

infer local velocities via pseudotemporal ordering of multiple single cell expression profiles are also 

needed. Similarly, methods that seek to infer mRNA expression velocities for individual cells from 

snap-shot data, for instance by comparing the abundance of spliced and unspliced mRNA or through 

metabolic labelling of nascent RNA, are important.  

Yet, powerful as many of these computational methods are, they are subject to some limitations. 

Typically, they are presently developed for one modality – usually single cell RNA sequencing data 

since this is the dominant current methodology – and make an implicit assumption that effects of 

unmeasured “hidden variables”, such as chromatin state, and expression of proteomic, metabolic or 

epigenetic factors, etc., are negligible and dynamics along an inferred trajectory are therefore Markov 

(Weinreb et al., 2018). By doing so they are potentially able to detect persistence in expression dynamics 

due to trans mechanisms but are less well-equipped to address the effects of hidden cis mechanisms on 

cell fate dynamics. Trajectory inference methods that merge data from multiple modalities are therefore 

needed, and some work in this area is now emerging (Chen et al., 2019). A strong theoretical basis in 

the theory of non-Markov processes could help develop the next generation of such methods.  

Integrating such theory with experiment is hard and better methods are needed to do this. 

Nevertheless, recent years have seen some progress (Armond et al., 2014; Stumpf et al., 2017; Zhang 

and Zhou, 2019) and some simple heuristics may help. For example, so-called wait-times between 

events are of central importance in stochastic analysis (Van Kampen, 1992). The extent to which an 

observed wait-time distribution deviates from the exponential distribution expected for Markov 

processes is a straightforward, experimentally obtainable, indication that important information is being 

missed. As a simple example, cell cycle time distributions show strong deviation from exponential, and 



analysis of cycle time distributions can accordingly be used to infer the presence of unobserved 

intermediate stages. Similarly, analysis of the distribution of exit times from pluripotency has been used 

to reveal the presence of hidden metastable states in embryonic stem cell differentiation trajectories 

(Stumpf et al., 2017). These results prompt two general observations: (1) theoretical considerations can 

help guide the design of experiments and maximize the information obtained from complex data sets; 

(2) to make better use of theory we need to move toward collecting and analysing properties of 

distributions (e.g. of cell cycle/exit times) and comparing experimentally observed distributions with 

those expected from theory, rather than anchoring our analysis on statistical comparison of 

distributional moments, such as the mean and variance. To do so will require collection of fine-grained 

data on the dynamics of large numbers of individual cells, for example using advances in live cell 

labelling and continuous imaging strategies or observation of cellular genealogies via genetic lineage 

tracing.  

Such notions may be particularly useful in understanding the origins and functional 

consequences of “heterogeneity” in stem cell populations.  

It has been widely observed that apparently pure stem cell populations can, in fact, be highly 

heterogeneous in their molecular expression patterns (Graf and Stadtfeld, 2008). This variability is 

thought to play an important part in regulating stem cell population function and has numerous genetic 

and epigenetic origins that we do not yet fully understand. One intriguing possibility is that mitotic 

histories may have a central role (Bernitz et al., 2016).  

Consider a population of stem cells proliferating under homeostatic conditions in vivo. If 

individual stem cells in the population divide in a temporally stochastic, uncoordinated (i.e., 

unsynchronized) way, then proliferation will naturally generate a heterogeneous, age-structured 

population (illustrated schematically in Fig. 2A-B). In principle this age-structure need not be of 

functional importance. However, if divisional history confers bias to individual stem cells, then the 

potency of the population as a whole will depend on the collective dynamics of an inherently 

heterogeneous mix of cells, each with different innate regenerative abilities. There is developing 

evidence that this is indeed the case. For example, the accumulation of cell divisions is directly 

associated with loss of hematopoietic stem cell potency both during native haematopoiesis and under 

conditions of stress (Bernitz et al., 2016).  

This reasoning suggests that population heterogeneity and individual cell histories may be 

intertwined. This is an interesting hypothesis, yet because it implies that the regenerative potential of 

the population depends on the entire mitotic history of each of its constituent cells, it is hard to 

experimentally explore. However, some theoretical notions may again help. In particular, if mitotic 

history (or indeed any other functionally important aspect of cellular history) is not experimentally 

observed, then an important part of the stem cell identity will remain hidden, and proliferation may be 

best modelled as a non-Markov process. In situations such as this, hidden Markov models – which are 

widely used in the physical sciences to model processes for which the “true” dynamics cannot be 

directly or fully monitored – provide a powerful way to infer the presence of regulatory mechanisms 

that cannot be observed from the dynamics that can be observed, and so can be used to interpret sparse 

data (see Fig. 2C). Higher-order Markov models – which assume that the future of a system depends 

on its present state and immediate, but not distant, past, and therefore allow for “short-term memory” – 

may be similarly used to formally encode hypothesised memory mechanisms in explanatory models. 

Moreover, because both hidden and higher-order Markov models allow putative candidate mechanisms 

to be compared with each other, they can be used to weigh the empirical evidence for competing 

hypotheses and so provide biological clarity – for example, by ruling out some candidate mechanisms. 

Substantial benefit can therefore be gained by taking advantage of theory to interpret experiment and 

make better use of data that can be collected. Indeed, we propose that these considerations highlight a 



general principle of widespread importance: experimental advances are not enough; we also need better 

methods and models to extract biological information from the data we collect. 

Collectively, these considerations indicate that relationships between cellular histories, 

memories and fates are intrinsically complex, but they are not impenetrable. They also raise numerous 

fundamental questions that may help guide future work in this area. For instance: Do different 

epigenetic regulatory mechanisms leave different characteristic “signatures” in observable dynamics 

that can be dissected by appropriate non-Markov, hidden Markov or higher-order Markov models? How 

can mathematical models be developed to account for complex cis regulatory mechanisms that may 

occur stochastically and independently at numerous different loci and persist over time? How can 

advances in multimodal live cell tracking and cell linage tracing be best combined with mathematical 

models to decipher the formation and propagation of memories at the single cell level? To approach 

these most challenging and interesting problems will require that we foster new ways of working in 

which theoretical and experimental methods are developed concurrently and guide each other. Doing 

so may help us develop a more integrated perspective of epigenetic memories and their effects on stem 

cell identities.  

 

Figure Captions 

 

Figure 1. Markov and non-Markov processes. (A) The unbiased random walk is a simple example 

of a Markov process. In the unbiased random walk, a walker moves up and down on a one-dimensional 

domain. At each time-step the walker moves up with probability 0.5 and down with probability 0.5. 

Three simulations are shown. (B) The persistent random walk is a simple example of a non-Markov 

process. In the persistent random walk, a walker moves up and down on a one-dimensional domain. At 

each time-step the walker persists in the direction it is currently going with probability p and changes 

direction with probability 1-p. In this case, transition probabilities depend explicitly on both the current 

and previous position of the walker, and the dynamics are accordingly non-Markov (the persistent 

random walk is a second-order Markov process). Three simulations are shown. (C) Transitions between 

cell fates A and B, assessed by the expression of a hypothetical marker gene. A transition from fate A 

to B is in red; a transition from fate B to A is in blue. The current state of the cell (i.e., expression of 

the hypothetical gene in the cell) is not enough to determine its future, since it depends on which way 

the fate transition is occurring. The dotted pink line shows a set expression level encountered in both 

transitions. If a transition from fate A to B is occurring then it is likely that the expression level will 

decrease, while if a transition from fate B to A is occurring, it is likely that it will increase. This 

persistence, which may in turn relate to the expression dynamics of a myriad of unobserved genes, 

means that the dynamics may be best modelled as a non-Markov process. 

 

Figure 2: Stem cell proliferation as a non-Markov process. (A) Proliferation in a homogeneous stem 

cell population. If all stem cells are equivalent in their self-renewal ability, then proliferation may be 

modelled as a Markov process. (B) Proliferation in a heterogeneous population. If stem cells are 

distinguished in their self-renewal ability by their mitotic history and cell divisions occur 

asynchronously then the stem cell pool will become inherently heterogeneous. If mitotic history is not 

experimentally observed, then proliferation may be best modelled as a non-Markov process. (C) 

Hypotheses concerning unobserved “hidden” mechanisms can be tested against experimentally 

observed dynamics using hidden Markov models. In this hypothetical example, stem cell proliferation 

in vivo is monitored over time (left panel), but the divisional history of each cell is not observed. As an 

illustration, it is hypothesised that stem cells divide four times before entering a dormant state (second 

panel; (Bernitz et al., 2016)). This hypothesis can be encoded in a mathematical model and compared 

with experimentally observed cell numbers (third panel; model is in blue). Based on model fit to 



observed dynamics, the number of cells that have divided 0, 1, 2, 3 and 4 times can be inferred (right 

panel). Although apparently successful, this may not be the only model that explains the experimentally 

observed data. If alternative models of proliferation also explain the data, then model selection tools 

can be used to weigh the empirical evidence for competing hypotheses, suggest those that are 

compatible for further experimental investigation, and exclude those that lack experimental support. 

 

 

References 

Armond, J.W., Saha, K., Rana, A.A., Oates, C.J., Jaenisch, R., Nicodemi, M., and Mukherjee, S. (2014). 

A stochastic model dissects cell states in biological transition processes. Sci. Rep. 4, 1–9. 

Bernitz, J.M., Kim, H.S., MacArthur, B., Sieburg, H., and Moore, K. (2016). Hematopoietic Stem Cells 

Count and Remember Self-Renewal Divisions. Cell 167, 1296-1309.e10. 

Chen, S., Lake, B.B., and Zhang, K. (2019). High-throughput sequencing of the transcriptome and 

chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457. 

Graf, T., and Stadtfeld, M. (2008). Heterogeneity of Embryonic and Adult Stem Cells. Cell Stem Cell 

3, 480–483. 

Van Kampen, N.G. (1992). Stochastic Processes in Physics and Chemistry (Elsevier Science). 

Stumpf, P.S., Smith, R.C.G., Lenz, M., Schuppert, A., Müller, F.-J., Babtie, A., Chan, T.E., Stumpf, 

M.P.H., Please, C.P., Howison, S.D., et al. (2017). Stem Cell Differentiation as a Non-Markov 

Stochastic Process. Cell Syst. 5, 268-282.e7. 

Weinreb, C., Wolock, S., Tusi, B.K., Socolovsky, M., and Klein, A.M. (2018). Fundamental limits on 

dynamic inference from single-cell snapshots. Proc. Natl. Acad. Sci. U. S. A. 115, E2467–E2476. 

Yu, V.W.C., Yusuf, R.Z., Oki, T., Wu, J., Saez, B., Wang, X., Cook, C., Baryawno, N., Ziller, M.J., 

Lee, E., et al. (2016). Epigenetic Memory Underlies Cell-Autonomous Heterogeneous Behavior of 

Hematopoietic Stem Cells. Cell 167, 1310-1322.e17. 

Zhang, J., and Zhou, T. (2019). Markovian approaches to modeling intracellular reaction processes with 

molecular memory. Proc. Natl. Acad. Sci. U. S. A. 116, 23542–23550. 

Zhu, C., Preissl, S., and Ren, B. (2020). Single-cell multimodal omics: the power of many. Nat. Methods 

17, 11–14. 

 

 



A CB

Time step Time

Ex
pr

es
si

on

A

B

Po
si

tio
n

Time step

Po
si

tio
n



Current 
population 

?

A B

Next cell to divide # prior divisionsStem cells

Future 
population 

Current 
population 

Observed
current 

population 
Future 

population 

10 100 1000
Time (days)

Inferred hidden dynamics

# prior divisions

0 1 2 3 4

STOP

0 1 2 3 4

C

10 100 1000
Time (days)

St
em

 c
el

l #

Experimentally
observed dynamics

10 100 1000
Time (days)

Model fit to 
observed dynamics

Hypothesis

St
em

 c
el

l #


