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1 Introduction

Since the initial work by Park and Phillips (2001) in this area, the past two decades have

witnessed significant developments in nonlinear cointegrating regression, including parametric,

nonparametric and semi-parametric specifications of such models. These developments have

provided a framework of econometric estimation and inference for a wide class of nonlinear,

nonstationary relationships. Among many other contributions to this research, we may refer to

Chang, Park and Phillips (2001), Chang and Park (2003), Bae and de Jong (2007), Wang and

Phillips (2009a, b, 2016), Kim and Kim (2012) and Gao and Phillips (2013), together with the

references cited therein.

In recent work Chan and Wang (2015) established some general results on nonlinear paramet-

ric cointegrating regression. In comparison with previous research, Chan and Wang (2015) em-

ployed a different approach to investigating asymptotics in models of this kind. Their approach

directly established joint distributional convergence of the martingale of interest in conjunction

with its conditional variance, rather than relying on the classical approach to the martingale limit

theorem which requires convergence in probability for the conditional variance.1 The methodol-

ogy used in Chan and Wang (2015) has important advantages since it is usually difficult to prove

convergence in probability without expanding the probability space, particularly in the structure

of cointegrating regression settings where the conditional variance typically converges weakly to

a random variable rather than in probability to a constant. The latter methodology was used

in Park and Phillips (2001) and requires more restrictive conditions as well as expansion of the

probability space to secure the required results.

The models considered in Chan and Wang (2015) include integrable and non-integrable

regression functionals. However, as is apparent from their Assumption 3.4, power regression

functions are excluded, such as those that take the form f(x) = β |x|γ , where β ∈ R and γ ≥ 0.

This shortcoming in coverage is restrictive because power function regression is a commonly used

model in many empirical applications. An area of application where such regression has been

found particularly useful is in testing the validity and order of polynomial regression (Baek, Cho

and Phillips, 2015; Cho and Phillips, 2018.)

One goal of the present paper is to address this omission in coverage. A further goal is to

contribute to the general development of asymptotic theory in nonlinear nonstationary regres-

sion. First, while this paper focuses on power function regression, our results allow for models

1Readers are referred to Wang (2014) for a recent general exposition and development of limit theory relevant
to nonstationary time series regression.
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that include both endogeneity and heteroskedasticity. Power functions fall within the framework

of homogeneous functions that were considered in Park and Phillips (2001), but their results

applied to I(1) integrated and weakly exogenous regressor processes and martingale difference

equation errors with constant conditional variances, thereby excluding a wide class of nonsta-

tionary processes and standard error volatility models such as ARCH and GARCH. Second,

accompanying the development of our asymptotic theory for power regression, we provide new

results on convergence to stochastic integrals that extend beyond the semimartingale structure.

Since the 1980s there has been extensive research in both econometrics and probability on weak

convergence to stochastic integrals, yielding a large body of useful theory. But results that ex-

tend beyond a semimartingale framework and allow for nonlinear functionals have only recently

become available, notably by Liang, et al. (2016) and Peng and Wang (2018). However, the non-

linear functionals considered in the latter papers exclude power functions such as f(x) = β |x|γ ,

since the first order derivative of f(x) does not everywhere exist or even satisfy a Lipschitz

condition in cases such as −1 < γ < 0.

The present paper contributes to this literature by building a framework of theory that

accommodates these extensions, thereby helping to complete the limit theory for extremum

estimation in nonlinear nonstationary regressions. To achieve this purpose the paper provides

a weak convergence result for normalized stochastic processes, associated sample covariance

functionals, and quadratic variations at a level of generality that assists in delivering asymptotics

for power regression. Further, as in Phillips (2007) where deterministic power function regression

was analyzed, we show how different convergence rates apply in corresponding least squares

power regressions in the presence of stochastic trends.

The paper is organized as follows. Section 2 develops limit theory in a stochastic power

function regression model. Certain technical results concerning weak convergence to stochastic

integrals that extend beyond semimartingale formulations are provided in Section 3. We mention

that these results are quite different from previous researches and are of some independent

interest. They are designed to allow for a class of nonlinear locally integrable functions that

are suited to power function regression modeling. Section 4 concludes, proofs of all the main

results are given in Section 5, and Appendix A provides a framework of extremum estimation

for nonlinear least squares estimation that allows for various convergence rates and asymptotic

linearization with general forms of score and hessian functions that allow for many different

forms of limit theory.

Throughout the paper ⇒ denotes weak convergence of probability measures with respect

to the uniform topology (see, for instance, Billingsley (1968)) and →D is weak convergence in
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Euclidean space. For a symmetric matrix A, we take A > 0 to mean that A is positive definite.

A function g(x) is called locally integrable if, for all compact sets K ⊂ R,
∫
K |g(x)|dx <∞.

2 Nonlinear cointegrating power regression

Let (ξk, uk)k≥1 be a sequence of arbitrary random vectors. Consider a nonlinear cointegrating

power regression model defined by

yk = β|xk|γ + uk, (2.1)

where xk =
∑k

j=1 ξj and θ = (β, γ) ∈ Θ := R × [−1/2,∞). The least squares estimator (LSE)

θ̃n of θ is defined by the extremum problem

θ̃n = (β̃n, γ̃n) = arg min
(β,γ)∈Θ

n∑
k=1

(
yk − β|xk|γ

)2
. (2.2)

To develop asymptotics for the estimator θ̃n, we denote the true parameter θ0 = (β0, γ0), where

β0 6= 0 and γ0 > −1/2. The power parameter γ is clearly unidentified when β0 = 0 and

only weakly identified when the true regression coefficient β0 is local to zero in the sense that

β0 = o(1) as n→∞. The latter case fits within the weak instrument econometric literature and

has been analyzed by Shi and Phillips (2012) in the nonstationary regressor case and Andrews

and Cheng (2012) in the stationary case.2 In addition, when γ0 < −1/2 there are difficulties

in developing asymptotics for the LSE θ̃n, as discussed in Remark 2.1 below3. Throughout the

present work we maintain the assumption that β0 6= 0 and γ0 > −1/2.

Write xnk = xk/dn where d2
n = var(xn) and unk = 1√

n

∑k
j=1 uj . Throughout the paper, we

assume

1

n

n∑
k=1

d−1
k dn = O(1), dn →∞ and d2

n = O(nµ)

for some 0 < µ < 2. This is a minor requirement and holds for usual I(1) processes and a partial

sum of a long memory process. We further make use of the following conditions:

A1 (i) {uk,Fk}k≥1 forms a martingale difference with supk≥1 Eu2
k <∞, where {Fk}k≥1 is a

filtration such that xk is adapted to Fk−1 for all k ≥ 1 (F0 is defined to be a trivial

σ-field).

2Weak identification occurs in such cases because the loading coefficient parameter β of the nonlinear function
may be close to zero and limit theory under the alternative typically fails to provide a good approximation to
finite sample behavior close to the null. Development of a local limit theory that improves the approximation
uniformly well irrespective of the strength of the identification relies on uniform weak convergence of sample
covariance functionals to stochastic integral limits - see Shi and Phillips (2012).

3Related but less complex convergence issues arise in the deterministic (evaporating) trend case with xk = k
for which

∑∞
k=1 k

2γ <∞ when γ < −1/2 and the usual excitation condition for consistency fails.
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(ii) There exists a 2-dimensional continuous Gaussian process (Xt, Ut) with covariance

matrix Ωt > 0 so that

(xn,[nt], un,[nt]) ⇒ (Xt, Ut), on DR2 [0, 1], (2.3)

Condition A1 imposes a martingale structure in the model (2.1), which is extensively used in

the literature of nonlinear cointegrating regression. See, for instance, Park and Phillips (2001)

and Chan and Wang (2015). However, unlike these existing results, only supk≥1 Eu2
k < ∞

rather than supk≥1 E
(
u2
k | Fk−1

)
≤ C < ∞ is used here, which allows for heteroskedasticity

in the model (2.1), thereby enhancing wider use of our results in financial econometrics. The

martingale difference error structure in model (2.1) will be extended to include endogeneity in

Section 2.1 and more general models are considered in Section 2.2.

Let Fn = diag
[√
ndγ0n / log dn,

√
ndγ0n

]
be a diagonal rate matrix, Qn(θ) =

∑n
k=1

(
yk −

β|xk|γ
)2

and Sn(θ) = ∂Qn(θ)
∂θ . Our first result concerning the asymptotic behavior of the ex-

tremum estimator θ̃n follows. The theorem is stated as a local rather than a global result

because the objective function (2.2) is not a convex function of the parameters unless more re-

strictive conditions on γ are introduced, which makes a general proof of consistency challenging.

Although it is unclear whether the sequence θ̃n defined by (2.2) is the same as the sequence

of roots θ̂n in the theorem below, they must coincide with probability approaching to 1 if the

minimization (2.2) is taken over a set shrinking at an appropriate rate4.

Theorem 2.1. Suppose A1 holds. For any γ0 > 0, there exists a sequence of estimators θ̂n

such that Sn(θ̂n) = 0 with probability approaching to 1, and

Fn(θ̂n − θ0) →D

(
1

−1/β0

)
V0

∫ 1
0 |Xt|γ0 log |Xt| dUt − V1

∫ 1
0 |Xt|γ0dUt

V 2
1 − V0 V2

, (2.4)

where Vi =
∫ 1

0 |Xt|2γ0 logi |Xt| dt for i = 0, 1 and 2.

Since Xt has a continuous path, for γ0 ≥ 0 the existence of Vi and the limit distribution

on the right hand of (2.4) follow immediately. Further. when the Gaussian limit processes

(Xt, Ut) are independent, the limit distribution in (2.4) is mixed normal. Notably, the limit

distribution is degenerate, reflecting the intimate linkage between the roles of the coefficient and

power parameters in θ = (β, γ) and the associated singularity of the limiting distribution arising

from the asymptotic collinearity of the induced regressors in the linearized system corresponding

to the model (2.1). This phenomenon mirrors the singular limit distribution behavior that was

4Indeed, as noted by one of the referees, if Fn(θ̃n − θ0) = OP (1) then Theorem 2.1 and (2.4) give the limit

distribution of θ̃n.
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analyzed in Phillips (2007) in the context of power function deterministic trend regressors. In

particular, the asymptotic collinearity in deterministic trend regressors such as |t|γ and |t|γ log(t)

also arises with stochastic trend regressors such as |xt|γ and |xt|γ log |xt|. These variables arise in

a natural way in Taylor expansions of the first order conditions in the nonlinear power function

regressions that are explored in this paper. The asymptotic collinearity leads to a degenerate

limit distribution for the estimated parameters, as occurs in Theorem 2.1. The problem was

discussed in detail in Phillips (2007) to which readers may refer for further details.

Figs. 1(a) and 1(b) show kernel density estimates for the estimates β̂n and γ̂n for sample

sizes n ∈ {100, 250, 500, 750} computed for β = 1 and γ = 0.5 from 50,000 replications. The

simulation DGP used a random walk regressor xt with iid N (0, 1) innovations and independent

ut ∼ iid N (0, 1) equation errors. Both estimates show increasing concentration as n increases

and greater kurtosis than Gaussianity in line with the corresponding mixed normal limit dis-

tribution of Theorem 2.1 that applies in this exogenous regressor case. Evidently, the densities

of γ̂n given in Fig. 1(b) display much smaller variation than those of β̂n, consonant with the

greater rate of convergence of the power parameter estimate γ̂n. In spite of their different vari-

ation, these finite sample distributions show the same general shape characteristics, reflecting

the singularity of the limit distribution established in Theorem 2.1.
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(b) γ̂n densities

Figure 1: Empirical densities of the estimates β̂n and γ̂n for sample sizes n ∈ {100, 250, 500, 750}
with β = 1 and γ = 0.5.

Theorem 2.1 can be extended to include the extra domain −1/2 < γ0 ≤ 0 of the power

parameter under the following additional condition:

A2 (i) xk/dk has a density pk(x) that is uniformly bounded by a constant K for all 1 ≤ k ≤ n

and x ∈ R,
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(ii) Xt has a density p̃t(x) satisfying supx
∫ 1

0 p̃t(x)dt <∞,

(iii) supk≥1 E
(
u2
k | Fk−1

)
≤ C <∞.

We mention that A2 (i) and (ii) ensure the existence of Vi for −1/2 < γ0 ≤ 0 and the smoothness

condition on the density of xk/dk is needed for the convergence of the sample quantities to Vi.

See, for instance, Pötscher (2004) and Berkes and Horváth (2006). Further discussion is given

in Section 3. Since the limit result involves locally integrable functionals of integrated processes,

we also require the more restrictive A2 (iii) instead of supk≥1 Eu2
k < ∞ for technical reasons.

This condition can be modified under higher moment conditions on uk and a narrower interval of

validity for the power parameter γ0. These extensions involve some complex further calculations

and are therefore not pursued in the present work.

Theorem 2.2. Suppose A1 and A2 hold. The limit theory (2.4) continues to hold for −1/2 <

γ0 ≤ 0.

Remark 2.1. If γ0 < −1/2, the random variable V2 does not exist even in the case where

the process Xt is standard Brownian motion Ut because the integral fails to converge. Note,

in particular, that
∫ 1

0 |Ut|
2γ0dt = ∞ a.s. when γ0 < −1/2. See, e.g., Ethier and Kurtz (1986,

p. 332). In consequence, use of the present methods fail and the asymptotic behavior of θ̂n is

unclear in such cases and a matter for further investigation.

Remark 2.2. The proof of (2.4) heavily depends on the existence of the integral
∫ 1

0 |Xt|2γ0−εdt

for some small ε > 0 rather than just only on the existence of Vi itself. Since |x|−ε even for small

ε > 0 is locally Lebesque rather than Riemann integrable on R, A2 (i) and (ii) are essentially

required to ensure the existence of
∫ 1

0 |Xt|−εdt, as seen in Theorems 1.2 and 2.1 of Berkes and

Horváth (2006). This helps to explain why Theorem 2.1 excludes the case γ0 = 0, but this can

be established under the additional condition A2, as seen in Theorem 2.2.

Remark 2.3. If γ > −1/2 is fixed and known, the least squares estimator (LSE) β̂(γ) of β in

model (2.1) is given by

β̂(γ) =

∑n
k=1 yk|xk|γ∑n
k=1 |xk|2γ

= β0 +

∑n
k=1 |xk|γuk∑n
k=1 |xk|2γ

. (2.5)

Under the given conditions (A2 is required if γ < 0), it is readily seen that

√
ndγn

[
β̂(γ)− β0

]
→D

∫ 1
0 |Xt|γdUt∫ 1
0 |Xt|2γdt

(2.6)

In comparison with (2.4), there is now a different convergence rate for the asymptotic distribution

of β̂(γ). This phenomenon was noted by Phillips (2007) in the investigation of nonlinear power

trend regression.
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Remark 2.4. Using (2.4), we have

√
ndγ0n (γ̂n − γ0) →D

1

β0

V1

∫ 1
0 |Xt|γ0dUt − V0

∫ 1
0 |Xt|γ0 log |Xt| dUt

V 2
1 − V0 V2

, (2.7)

where Vi =
∫ 1

0 |Xt|2γ0 logi |Xt| dt for i = 0, 1 and 2, as before. Since β0 is consistently estimable,

this limit theory enables model specification of linear cointegration, which involves testing the

null hypothesis 5

H0 : γ = 1 vs H1 : γ 6= 1. (2.8)

Indeed a test statistic that may be used to test (2.8) can be defined by

Tn =
√
n d̂n β̂(1) (γ̂n − 1), (2.9)

where β̂(1) is given as in Remark 2.3 and d̂n is constructed so that d̂n/dn → 1 in probability.

From (2.6) and (2.7) it follows that under the null H0,

Tn →D
Ṽ1

∫ 1
0 |Xt|dUt − Ṽ0

∫ 1
0 |Xt| log |Xt| dUt

Ṽ 2
1 − Ṽ0 Ṽ2

, (2.10)

where Ṽi =
∫ 1

0 |Xt|2 logi |Xt| dt for i = 0, 1 and 2. Under the conditions that allow for the joint

distribution of (Xt, Ut) to be determined, this test is asymptotically pivotal and consistent with

PH1(|Tn| ≥ t0) → 1 for any t0 > 0, where PH1(·) denotes the probability under the alternative

H1. In more general situation where the joint distribution of (Xt, Ut) depends on some unknown

parameters (ϑ, say), Tn is not pivotal. In this case, a bootstrap or other simulation method will

be required for inference. Furthermore, some aspects of inference, such as confidence interval

construction, are more difficult. The limit distribution of θ̂n given in (2.4) depends jointly on

the parameter vector θ0 = (β0, γ0), making direct inference about θ0 in power regression more

complex. It is not clear at present whether or not an asymptotic theory might be developed

for θ̂n using a different approach such as a self-normalized quantity in place of the use of rate

matrix scaling like Fn in (2.4) so that the unknown parameter θ0 on the right hand of (2.4) can

be eliminated and an asymptotically pivotal approach developed.

Remark 2.5. A more convenient approach to testing H0 that avoids nonlinear regression is to

fit a linear regression based on a first order Taylor approximation (or pseudo-linear version) of

5A related approach to testing the linear cointegrating specification based on the hypothesis (2.8) is to use
the augmented regressor approach of Baek et al. (2015), where a quasi-likelihood ratio statistic is developed and
identification problems associated with models with power transform regressors are discussed for stationary and
trend stationary models. In the present setting, the method involves estimating the augmented cointegrating
regression yk = β|xk| + α|xk|γ + uk, and testing the significance of the nonlinear component via the parameter
α. Nonlinear estimation of the power coefficient γ is again required with this approach.
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the original model (2.1), viz., yk = β|xk|γ + uk, about the same model with coefficient β0 and

power coefficient γ0 = 1. This (infeasible) pseudo-linear model has the explicit linear regression

form

ỹk(β0) = β|xk|+ γzk(β0) + uk = qk(β0)′θ + uk, zk(β0) = β0|xk| log(|xk|), (2.11)

where ỹk(β0) = yk + β0|xk| log(|xk|) and qk(β0) = (|xk|, zk(β0))′. The model (2.11) is linear in

both the coefficients (β, γ) and the variables (|xk|, zk(β0)), given β0. The unknown parameter

β0 in the variables ỹk(β0) and zk(β0) in (2.11) can be estimated consistently under the null H0 :

γ = 1 using the linear cointegrating regression estimate β̂(1) = (
∑n

k=1 |xk|2)−1(
∑n

k=1 |xk|yk) in

place of the unknown β0. The resulting feasible regression equation is then fitted by linear least

squares of ỹk(β̂(1)) on qk(β̂(1)). The null hypothesis H0 : γ = 1 is tested by applying a standard

t-test of γ = 1 in this fitted linear regression, which we write as

ỹk(β̂(1)) = β̂|xk|+ γ̂zk(β̂(1)) + ûk = qk(β̂(1))′θ̂ + ûk. (2.12)

The required t-statistic associated with γ̂ in this regression has the usual form tγ = γ̂−1
sγ

with

s2
γ = s2

u/mγγ , s2
u = n−1

∑n
k=1 û

2
k, ûk defined by the regression residual in (2.12), and mγγ the

second diagonal element of M−1
θθ , where

Mθθ =

n∑
k=1

qk(β̂(1))qk(β̂(1))′ =

( ∑n
k=1 |xk|2 β̂(1)

∑n
k=1 |xk|2 log |xk|

β̂(1)
∑n

k=1 |xk|2 log |xk| β̂(1)2
∑n

k=1 |xk|2 log2 |xk|

)

=:

(
Ωn0 β̂(1)Ωn1

β̂(1)Ωn1 β̂(1)2Ωn2

)
.

Then, θ̂−θ = M−1
θθ

∑n
k=1 qk(β̂(1))′ uk which under the linear cointegration null H0 : γ = 1 gives

γ̂ − 1 =
1

β̂(1) (Ωn2Ωn0 − Ω2
n1)

n∑
k=1

(
Ωn0|xk| log |xk| − Ωn1|xk|

)
uk

with t-statistic

tγ = m1/2
γγ (γ̂ − 1)/su =

1

su Ω
1/2
n0 (Ωn2Ωn0 − Ω2

n1)1/2

n∑
k=1

(
Ωn0|xk| log |xk| − Ωn1|xk|

)
uk.

When (xn,[nt], un,[nt]) ⇒ (Xt, Ut) where (uk,Fk) is a martingale difference sequence so that xk

is adapted to Fk−1, we deduce, just as in result (2.4), that

tγ →D
Ω0

∫ 1
0 |Xt| log |Xt|dUt − Ω1

∫ 1
0 |Xt|dUt

σΩ0(Ω2Ω0 − Ω2
1)1/2

,

where Ωj =
∫ 1

0 |Xt|2 logj |Xt|dt. If the limit processes (Xt, Ut) are independent, it follows that

tγ →D N(0, 1), giving a simple test of linear cointegration. When (Xt, Ut) are dependent, it

seems that some form of fully modified regression statistic is required for pivotal inference, as

in the nonlinear regression case based on Theorem 2.1.
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Figure 2: Empirical densities of the t-statistic tγ = γ̂−1
sγ

in the pseudo-linear model regression

(2.12) under H0 : γ = 1 and power curves for γ ∈ [0.8, 1.2] for various sample sizes n, based on
50, 000 replications and a model with random walk xt and iid N (0, 1) errors.

Fig. 2(a) displays kernel density estimates of the finite sample densities of the statistic

tγ under the null γ = 1 and with β0 = 1.0 for sample sizes n = 25, 50, 100 shown against the

standard normal density N (0, 1). The same data generating mechanism as the earlier simulation

was used, with random walk xt and iid N (0, 1) errors. Evidently, the finite sample distributions

are all well approximated by the standard normal even for small n in this case. Fig. 2(b) gives

power function curves of the test based on a nominal asymptotic 5% significance level for a two

tailed test, for a grid of values γ ∈ [0.8, 1.20] and sample sizes n ∈ {100, 200, 300, 500}. Test

size is close to the nominal 5% level, conforming with the graphs of the densities of tγ under the

null γ = 1. The power curves show that power rises monotonically for deviations of the power

coefficient γ from unity in all cases and for both γ < 1 and γ > 1. There is some evidence of

slightly stronger local power against alternative with γ > 1 rather than γ < 1, which may arise

from the amplified effect of the regressor |xk|γ in the generating model yk = β|xk|γ + uk for the

data yk in this case. Overall, the findings indicate that this simple t-test of H0 : γ = 1 has good

size and power for testing linear cointegrating regression in the exogenous regressor case and is

easy to implement in practical work.

Remark 2.6. In a natural setting amenable to a linear cointegrated structure, it may be desir-

able to consider the following nonlinear power function cointegrating regression model

yk = α′zk + β|xk|γ + uk, (2.13)

where α = (α1, ..., αd)
′, β ∈ R, and −1/2 < γ < 1 are unknown parameters, zk is a d-dimensional

regressor whose differences ∆zk = zk − zk−1 are stationary, and xk and uk are defined as in
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Theorem 2.1. In applications related to cointegration analysis and forecasting based on usual

linear regression formulations, the power term β|xk|γ in model (2.13) may provide an extra

precision correction term that admits nonlinear effects that are relevant in certain empirical

examples. As discussed above, the presence of a power regressor term in such cointegrating

regression is a mechanism for testing linearity, as was done in Baek et al. (2015) and Cho

and Phillips (2018) in stationary and deterministic trend model settings. The limit theory in

the present paper provides a foundation for a general study of such formulations and tests, in

addition to the approach based on the test Tn given in (2.9). Full investigation of this topic in

the present context requires challenging new limit theorems, which are deferred to later work.

2.1 Extension to endogeneity

The data generating process in model (2.1) is assumed to have a martingale structure.

This assumption is used in many articles in parametric cointegrating regression and predictive

regression. See, for instance, Chang, Park and Phillips (2001), Park and Phillips (2001), Phillips

(2015) and Chan and Wang (2015). From the viewpoint of empirical applications, however, this

martingale structure can be restrictive. The aim of this section is to remove the restriction so

that endogeneity is allowed in the model. Explicitly, we are concerned with the model:

yk = β|xk|γ + wk, (2.14)

where xk is the partial sum process xk =
∑k

j=1 ξj ,

wk = uk + zk−1 − zk, (2.15)

the uk are assumed to satisfy A1, and the zk satisfy certain regularity conditions that are

specified as follows:

A3 (i) supk≥1 E
[
(1 + |zk−1|)(1 + |ξk|)

]α
<∞ for some α > 1;

(ii) Ezk−1ξk → A0, as k →∞;

(iii) supk≥2m |E(λk|Fk−m)| = oP (1), as m→∞, where λk = zk−1ξk − Ezk−1ξk.

The process {wk}k≥1 in (2.15) was used by Peng and Wang (2018) in an investigation of weak

convergence to stochastic integrals beyond the usual semimartingale structure. The exten-

sion arises because {wk}k≥1 is usually not a martingale difference, but the partial sum process
n∑
k=1

wk =
n∑
k=1

vk+z0−zn provides an approximation to a martingale, just as in the decomposition

of Phillips and Solo (1992). Such martingale approximations have been widely studied in the

literature. As shown in Peng and Wang (2018), A3 introduces endogeneity by virtue of A3(ii)

and allows for the following processes that are relevant in much time series econometric work:
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(i) ξk is a long memory process and wk is a stationary causal process such as time series

generated by TAR and bilinear models;

(ii) both ξk and wk are stationary causal processes; and

(iii) (ξk, wk)k≥1 is near-epoch dependent, particularly a sequence of α-mixing random variables.

Within this framework, we can estimate θ and develop asymptotic theory for the estimator

θ̂n of θ under model (2.14). We set Fn = diag
[√
ndγ0n / log dn,

√
ndγ0n

]
as earlier, as have the

following result. As in Theorem 2.1, let Qn(θ) =
∑n

k=1

(
yk − β|xk|γ

)2
and Sn(θ) = ∂Qn(θ)

∂θ .

Theorem 2.3. Suppose that d2
n/n → ∞, A1 and A3 hold. For any γ0 > 0, there exists a

sequence of estimators θ̂n such that Sn(θ̂n) = 0 with probability approaching to 1, and

Fn(θ̂n − θ0) →D

(
1

−1/β0

)
V0

∫ 1
0 |Xt|γ0 log |Xt| dUt − V1

∫ 1
0 |Xt|γ0dUt

V 2
1 − V0 V2

, (2.16)

where, for i = 0, 1, 2, Vi are defined as in Theorem 2.1. If A2 holds in addition, we still have

(2.16) for any 1/α < γ0 ≤ 1.

The condition that d2
n/n → ∞ is satisfied if ξk is a long memory process, in which case we

usually have d2
n = var(

∑n
k=1 ξk) = nµ for some 1 ≤ µ < 2. See, Wang et al. (2003), for instance.

Due to the fast convergence rate involving dn in Fn, the additional term involving zk in the

equation error (2.15) does not produce a bias term in the limit distribution. But elimination of

the bias term requires a more restrictive condition on the interval in which the real parameter

γ0 is located. More explanation can be found in Remark 2.7 given discussed below.

The situation is different if d2
n/n→ σ2 <∞, which generally holds if xk is a partial sum of

a short memory process ξk. In this case, as the following theorem shows, the additional term zk

has an essential impact on the limit distribution. Explicitly, when 0 < σ < ∞, the additional

term zk contributes a bias term in comparison with (2.16). It is interesting to notice that, when

σ = 0 (i.e., dn/
√
n→ 0), the additional term zk dominates and the convergence rate of θ̂n − θ0

becomes slow. It seems that this phenomenon was unnoticed in previous research even in the

case of linear cointegrating regression.

Theorem 2.4. Suppose that dn/
√
n → σ with 0 ≤ σ < ∞, A1 and A3 hold. For any γ0 > 0,

there exists a sequence of estimators θ̂n such that Sn(θ̂n) = 0 with probability approaching to 1,

and

dn√
n
Fn(θ̂n − θ0) →D

(
1

−1/β0

)
V0W1 − V1W0

V 2
1 − V0 V2

, (2.17)
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where, for i = 0, 1, 2, Vi are defined as in Theorem 2.1 and

Wi = σ

∫ 1

0
|Xt|γ0 logi |Xt|dUt + A0

∫ 1

0
|Xt|γ0−1

(
γ0 logi |Xt|+ i

)
sign(Xt) dt

for i = 1, 2. If in addition that A2 holds, we still have (2.17) for any 1/α < γ0 ≤ 1.

Remark 2.7. As explained in Remark 2.1, to ensure the existence of the functionals Wi, some

restriction on the range of the real parameter γ0 is essentially necessary, in the present case

amounting to the condition γ0 > 0 because of the presence of the factor |Xt|γ0−1 in the integrand

of the second component of Wi. Moreover, there is a trade off between the condition γ0 > 1/α

used in Theorem 2.4 and the moment condition on zk as is apparent from the condition assumed

in A3 (i). It is not clear at the moment whether or not the moment condition on zk can be

improved without restricting the interval where γ0 lies.

2.2 Further extension

Phillips (2007) considered a regression model in the following form:

yk = α+ β l(k) + uk, (2.18)

where l(x) is a function slowly varying at ∞. When l(x) = log x, (2.18) becomes the semiloga-

rithmic growth model, which raises naturally in the study of growth convergence problems and

economic transition. Since the sample moment matrix of the regressors is asymptotically singu-

lar, model (2.18) fails to fit within the usual framework. Phillips (2007) investigated asymptotics

of LSE (α̂, β̂) of (α, β) by using a second order approximation of l(xn) by l(n) for any x ∈ R.

Using similar arguments as in Phillips (2007) and the results developed in Section 3, model

(2.18) can be extended to a stochastic slowly evolving trend model defined as follows

yk = α+ β l(|xk|) + uk, (2.19)

where xk =
∑k

j=1 ξj and the uk are assumed to satisfy A1. Let (α0, β0) be the true parameter

of (α, β). We have the following theorem.

Theorem 2.5. Suppose A1 and A2 hold and l(x) satisfies the following condition: there exists

ε(λ)→ 0 as λ→∞ such that∫ A

−A

∣∣∣ l(|x|λ)

l(λ)
− 1− ε(λ) log |x|

∣∣∣ dx = o
[
ε(λ)

]
, (2.20)

for any fixed A > 0. For the LSE (α̂, β̂) of (α, β), we have

F1n

[(α̂n
β̂n

)
−
(
α0

β0

) ]
→D

(
1
−1

) ∫ 1
0 log(|Xt|)dUt − U1

∫ 1
0 log(|Xt|)dt∫ 1

0 log2(|Xt|)dt−
[ ∫ 1

0 log(|Xt|)dt
]2 , (2.21)

where F1n = diag{
√
nl(dn)ε(dn),

√
nε(dn)}.
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We remark that condition (2.20) is weak and is satisfied by the majority of slowly varying

functions. Typical examples include l(x) = logk x, k = 1, 2, ..., etc. For details, see Phillips

(2007). The martingale structure given in A1 is essential for the establishment of Theorem

2.5. Indeed, in the proof of Theorem 2.5, we need to handle sample covariances of the type

Sn =
∑n

k=1 log |xnk|uk. Since d log x/dx = 1/x is not locally integrable, as seen in Section 3, we

cannot provide asymptotics for Sn in the case where uk is replaced by wk. This was also noticed

in de Jong (2002). If l(x) satisfies certain continuity conditions rather than being slowly varying

at ∞, it is possible to modify model (2.19) so that endogeneity is allowed. For details, we refer

to Peng and Wang (2018).

3 Convergence to stochastic integrals: beyond semimartingale
structures

We maintain the same notation as in Section 2, except when explicitly mentioned. Tech-

nical results concerning joint weak convergence to stochastic integrals are fundamental in both

linear and nonlinear nonstationary limit theory where sample covariances typically converge to

stochastic integrals with respect to the relevant limiting stochastic processes rather than to nor-

mal distributions via central limit theory. The results given here extend previous research on

this topic and should be helpful in future lines of research that require joint weak convergence

to stochastic integrals under very general conditions. In particular, our results allow for a class

of nonlinear locally integrable functions that accommodate power function regressions.

Our first result provides a framework of joint weak convergence to stochastic integrals that

accommodates the normalized process, sample moments of nonlinear functions and sample co-

variances. This result, which follows in a long tradition of similar results, delivers the technical

tools needed to establish the main limit Theorems 2.1 - 2.4 given in Section 2 because of its

allowance for locally integrable functions and hence power functions in regression models.

Theorem 3.1. Suppose A1 holds. For any continuous functions g(s) and f(s), we have(
xn,[nt], un,[nt],

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=1

f(xnk)uk

)
⇒

(
Xt, Ut,

∫ 1

0
g(Xt)dt,

∫ 1

0
f(Xt) dUt

)
, (3.1)

on DR4 [0, 1]. If A2 holds in addition, we still have (3.1) whenever g(x) and f2(x) are locally

integrable.

Aspects of the first part of Theorem 3.1 are known in the existing literature. See, for instance,

Kurtz and Protter (1991) and Hansen (1992). Extension to locally integrable functions seems to
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be new and in such cases the condition A2 is essentially necessary to ensure the existence of the

stochastic integrals in the limit. Applying Theorem 3.1 to the functions g(x) = |x|2γ logm1 |x|

and f(x) = |x|γ logm2 |x|, where m1,m2 ≥ 0 are integers, we have the following corollary, which

plays a key role in the proofs of the main results in the paper.

Corollary 3.1. Suppose A1 holds. For all γ > 0, we have

Wn(γ) :=
( 1

n

n∑
k=1

|xnk|2γ logm1 |xnk|,
1√
n

n∑
k=1

|xnk|γ logm2 |xnk|uk
)

→D

(∫ 1

0
|Xt|2γ logm1 |Xt|dt,

∫ 1

0
|Xt|γ logm2 |Xt|dUt

)
, (3.2)

jointly for all integers m1,m2 ≥ 0. If A2 holds in addition, we still have (3.2) for −1/2 < γ ≤ 0.

Let C[a,∞) denote the set of all continuous real-valued functions defined on the interval

[a,∞) endowed with the topology of uniform convergence on compacta (see, for instance, van

der Vaart and Wellner (1996), Ch. 1.6). With an index γ that satisfies γ ≥ a > −1/2, it is

readily seen that {Wn(γ), n ≥ 1} is a sequence of random processes defined on the space C[a,∞).

Consequently, we may extend Corollary 3.1 to the following form of functional convergence for

the process Wn(γ).

Theorem 3.2. Suppose A1 holds. On C[a,∞) with a > 0, for any integers m1,m2 ≥ 0 we

have

Wn(γ) ⇒
(∫ 1

0
|Xt|2γ logm1 |Xt|dt,

∫ 1

0
|Xt|γ logm2 |Xt|dUt

)
. (3.3)

If A2 holds in addition, we still have (3.3) on C[a,∞) with a > −1/2.

In related work to Theorem 3.1 and Corollary 3.1 on convergence to stochastic integrals

that sought generality beyond a semimartingale structure, Liang, et al. (2016) and Wang (2015,

Section 4.5) obtained weak convergence results of sample quantities such as
n−1∑
k=0

f(xnk)wk, where

wk =
∑∞

j=0 ϕj uk−j , with ϕ =
∞∑
j=0

ϕj 6= 0 and
∞∑
j=0

j |ϕj | <∞, and uk defined as in A1(i). More

recently, Peng and Wang (2018) provided another result on such sample covariances by using

the error process representation wk = uk + zk−1 − zk given in (2.15) instead of the martingale

difference uk. While these results are useful, the functions f(x) that are employed satisfy strong

smoothness conditions that require f ′(x) to be continuous and satisfy a Lipschitz condition.

Such conditions are clearly not satisfied for functions that arise in power regression of the form

f(x) = |x|γ logk |x|, where k ≥ 0 are integers, particularly, in the case where f(x) is locally

integrable (i.e., γ < 0).
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The aim of the following theorems is to fill this gap, providing new results on convergence

to stochastic integrals for the purpose of this paper. We mention that these extensions are

non-trivial. To resolve the limit theory, we need to use methodology involving truncation and

continuous functional approximation to a locally integrable function. We mention here that the

ideas developed in the proofs seem promising for use in even more general situations such as

convex functions, although those extensions are not pursued in the present work.

For use in the following, recall that wk = uk + zk−1 − zk, as defined in (2.15).

Theorem 3.3. Suppose that d2
n/n→∞ and A1 and A3 hold. Then, for any γ > 1, any integer

m ≥ 0, and any continuous function g(s), we have(
xn,[nt], un,[nt],

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=1

|xnk|γ logm |xnk|wk
)

⇒
(
Xt, Ut,

∫ 1

0
g(Xt)dt,

∫ 1

0
|Xt|γ logm |Xt| dUt

)
, (3.4)

on DR4 [0, 1]. If A2 holds in addition, then (3.4) remains valid for any 1/α < γ ≤ 1, any integer

m ≥ 0, and any locally integrable function g(x), where α is given in A3(i).

As noted in Section 2, the rate condition d2
n/n → ∞ usually holds if ξk is a long memory

process. The result is different if ξk is a short memory process or equivalently d2
n/n→ σ2 <∞

(σ = 0 is allowed ), as seen in the following theorem.

Theorem 3.4. Suppose that dn/
√
n → σ with 0 ≤ σ < ∞, and A1 and A3 hold. For any

γ > 1, any integer m ≥ 0 and any continuous function g(s), we have(
xn,[nt], un,[nt],

1

n

n∑
k=1

g(xnk),
dn
n

n−1∑
k=1

|xnk|γ logm |xnk|wk
)

⇒
(
Xt, Ut,

∫ 1

0
g(Xt)dt, σ

∫ 1

0
|Xt|γ logm |Xt| dUt +A0

∫ 1

0
f ′(Xt)dt

)
, (3.5)

on DR4 [0, 1], where f ′(x) = |x|γ−1 logm−1 |x|(γ log |x|+m)sign(x). If A2 holds in addition, (3.5)

remains valid for any 1/α < γ ≤ 1, any integer m ≥ 0 and any locally integrable function g(x),

where α is given in A3(i).

Just as in Theorem 3.2, Theorems 3.3 and 3.4 may be extended as follows to functional weak

convergence results involving the index γ.

Theorem 3.5. Suppose that A1 and A3 hold, and m ≥ 0 is an integer.

(a). If d2
n/n→∞, on C[A,∞) with A > 1 we have

Zn(γ) :=
1√
n

n−1∑
k=1

|xnk|γ logm |xnk|wk ⇒
∫ 1

0
|Xt|γ logm |Xt| dUt. (3.6)
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(b). If dn/
√
n→ σ with 0 ≤ σ <∞, on C[A,∞) with A > 1 we have

Zn(γ) :=
dn
n

n−1∑
k=1

|xnk|γ logm |xnk|wk ⇒ σ

∫ 1

0
|Xt|γ logm |Xt| dUt +A0

∫ 1

0
f ′(Xt)dt, (3.7)

where f ′(t) is defined in Theorem 3.4.

If A2 holds in addition, (3.6) and (3.7) remain valid on C[A,∞) with A > 1/α, where α is

given in A3(i).

Remark 3.1. The functional limit theorems for the process Zn(γ) appearing in Theorems 3.2

and 3.5 are useful in testing linearity or polynomial regression using power transformations of

regressors. See, for example, Baek et al (2015) and Cho and Phillips (2018).

4 Conclusion

Power function regressions provide a simple way of generalizing simpler polynomial repre-

sentations and offer potential for constructing general omnibus tests for specification, as shown

in Cho and Phillips (2018). These characteristics extend to nonlinear cointegrating regression

models with power function regressors. The present paper provides new limit theory that en-

ables the development of an asymptotic theory of estimation in such models, allowing for both

endogeneity in the regressors and for heterogeneity in the errors. Our results lead also to a simple

test of linear cointegrating structures against power function alternatives, which is pivotal with

a standard normal limit in the strictly exogenous regressor case. As in earlier research on non-

linear nonstationary regression models, a key element in the asymptotics is the establishment of

stochastic integral limit theory that goes beyond standard martingale and semimartingale struc-

tures. The findings in the present work add to that literature and provide a broader foundation

for estimation and inference in models with these characteristics.
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5 Proofs of the main results

This section provides proofs of the main theorems. We first prove Theorems 3.1 - 3.4, since

these theorems provide technical support for the proofs of Theorems 2.1 - 2.4. We start with

some basic preliminaries.

Recall xn,[nt] ⇒ Xt on DR[0, 1] in the sense of the uniform topology and the limit Gaussian

process X(t) is path continuous. It follows that

lim sup
N→∞

lim sup
n→∞

[
P
(

max
1≤k≤n

|xnk| ≥ N
)

+ P
(

max
1≤k≤n

|xnk| ≤ 1/N
)]

= 0. (5.1)

By the tightness of {xn,[nt]}0≤t≤1, for any ε > 0 and δ > 0, there is some δ̃ = δ̃(ε, δ) > 0 such

that

P
(

sup
|s−t|≤δ̃

|xn,[nt] − xn,[ns]| ≥ δ
)
≤ ε (5.2)

holds for all sufficiently large n. In terms of (5.2), for any δ > 0, we have

lim
n→∞

P
(

max
0≤j≤n/m

max
jm≤k≤(j+1)m

|xnk − xn,jm| ≥ δ
)

= 0, (5.3)

for any m := mn →∞ satisfying n/m→∞.

We next introduce a lemma, which plays a key role in the proof of the main theorems. Let

vk be a sequence of arbitrary stochastic processes satisfying the following conditions.

A4. (i) supk≥1E|vk| <∞;

(ii) there exist A1 ∈ R and 0 < m := mn →∞ with n
m →∞ so that

max
m≤j≤n−m

E
∣∣∣ 1

m

j+m∑
k=j+1

vk −A1

∣∣∣ = o(1).

Lemma 5.1. Suppose A4 holds. For any continuous function H(x) we have

1

n

n∑
k=1

H(xnk)vk =
A1

n

n∑
k=1

H(xnk) + oP (1). (5.4)

If in addition supk≥1 E|vk|α <∞ for some α > 1 and xk/dk has a density pk(x) that is uniformly

bounded by a constant K for all 1 ≤ k ≤ n and x ∈ R, then (5.4) remains valid if Hα/(α−1)(x)

is a locally integrable function.

Remark 5.1. If we are only interested in the boundedness of
∑n

k=1H
(
xnk
)
vk, condition A4 is

not necessary. Indeed, following the proof of Lemma 5.1, it is easy to see that

n∑
k=1

H
(
xnk
)
vk = Op(n) (5.5)

holds under the same conditions in Lemma 5.1 sans A4(ii).
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Proof. For any N > 0, we assume that HN (x) = H(x)ξN (x) with

ξN (x) =


1 |x| ≤ N
2− |x|/N N < |x| < 2N
0 |x| ≥ 2N

Let λ̃k = vk − A1, Rn = 1
n

∑n
k=1 H(xnk) λ̃k and R1n = 1

n

∑n
k=1 HN (xnk) λ̃k. Due to (5.1), we

have

P(Rn 6= R1n) ≤ P
(

max
1≤k≤n

|xnk| > N
)
→ 0,

as n→∞ first and then N →∞. Lemma 5.1 will follow if we prove

R1n =
1

n

n∑
k=1

HN (xnk) λ̃k = oP (1), (5.6)

for each fixed N ≥ 1.

We first assume that H(x) is continuous. In this situation, HN (x) is continuous with bounded

support and, for any ε > 0, there exists a δε > 0 so that whenever |x− y| ≤ δε we have

|HN (x)−HN (y)| ≤ ε.

Write Ωδε =
{
ω : max

0≤j≤n/m
max

jm≤k≤(j+1)m
|xnk − xn,jm| ≤ δε

}
and Tn = [n/m] − 1, where m is

chosen so that m → ∞ and n/m → ∞. By virtue of the above facts, it is readily seen that on

Ωδε

|R1n| ≤
1

n

Tn∑
j=0

∣∣∣ (j+1)m∑
k=jm+1

HN (xnk) λ̃k

∣∣∣+
1

n

n∑
k=mTn+1

|HN (xnk) λ̃k
∣∣

≤ 1

n

Tn∑
j=0

|HN (xn,jm)|
∣∣∣ (j+1)m∑
k=jm+1

λ̃k

∣∣∣+
CN
n

n∑
k=mTn+1

|λ̃k
∣∣

+ max
0≤j≤Tn

max
jm+1≤k≤(j+1)m

|HN (xnk)−HN (xn,jm)| 1

n

n∑
k=1

|λ̃k|

≤ CN
n

Tn∑
j=0

∣∣∣ (j+1)m∑
k=jm+1

λ̃k

∣∣∣+
CN
n

n∑
k=mTn+1

|λ̃k
∣∣+

ε

n

n∑
k=1

|λ̃k|, (5.7)

where CN is a constant depending only on N . Now, for any η1 > 0 and η2 > 0, it follows from

(5.3) and A4 that, for all sufficiently large n,

P(|R1n| ≥ η1) ≤ P
(
Ω̄δε

)
+ η−1

1 CN max
m≤j≤n−m

E
∣∣∣ 1

m

j+m∑
k=j+1

vk −A1

∣∣∣
+
η−1

1 CN
n

n∑
k=mTn+1

E|λ̃k
∣∣+

η2

n

n∑
k=1

E|λ̃k| ≤ C1N η2,
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by taking ε = η1η2, where Ω̄δε denotes the complementary set of Ωδε and C1N is a constant

depending only on N . This proves (5.6) for a continuous function H(x).

We next assume that Hα/(α−1)(x) is locally integrable. In this situation, for any ε > 0, since

both
∫
xHN (x)dx < ∞ and

∫
xH

α/(α−1)
N (x)dx < ∞, there exists a continuous function HN,ε(x)

such that∫
x
|HN (x)−HN,ε(x)|dx ≤ ε and

∫
x
|HN (x)−HN,ε(x)|α/(α−1)dx ≤ ε. (5.8)

See, for instance, Lemma 5.1.2 of Stein and Shakarchi (2005). Write

R1n =
1

n

n∑
k=1

HN,ε

(
xnk
)
λ̃k +

1

n

n∑
k=1

[
HN (xnk)−HN,ε

(
xnk
)]
λ̃k

:= Sn1 + Sn2.

For any ε > 0, using the fact shown in the first part of the proof, we have Sn1 = oP (1).

It suffices to show that E|Sn2| → 0 as n → ∞ first and then ε → 0. Note that, by using

(5.8) and the fact that xk/dk has a density pk(x) that is uniformly bounded by a constant K,

we have

E
∣∣HN (xnk)−HN,ε

(
xnk
)∣∣α/(α−1)

=

∫ ∣∣HN (y/dnk)−HN,ε

(
y/dnk

)∣∣α/(α−1)
pk(y)dy

≤ K

∫ ∣∣HN (y/dnk)−HN,ε

(
y/dnk

)∣∣α/(α−1)
dy

≤ K dnk

∫ ∣∣HN (y)−HN,ε

(
y
)∣∣α/(α−1)

dy

≤ K εdnk,

where dnk = d−1
k dn. It follows from Hölder’s inequality and 1

n

∑n
k=1 d

−1
k dn = O(1) that

(E|Sn2|)α ≤ sup
k≥1

E|λ̃k|α
{ 1

n

n∑
k=1

E
∣∣HN (xnk)−HN,ε

(
xnk
)∣∣α/(α−1)

}α−1

≤ C
( ε
n

n∑
k=1

d−1
k dn

)α−1
→ 0.

Hence E|Sn2| → 0, as n→∞ followed by ε→ 0, which completes the proof of Lemma 5.1.

5.1 Proof of Theorem 3.1

It suffices to show (3.1) when g(x) and f2(x) are locally integrable. The first part when g(x)

and f(x) are continuous follows from Kurtz and Protter (1991) or Hansen (1992).

The idea is similar to that of Lemma 5.1. Let fN (x) = f(x)ξN (x) and gN (x) = g(x)ξN (x).

Due to the local integrability of g(x) and f2(x), for any ε > 0, there exist continuous functions
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gN,ε(x) andfN,ε(x) such that
∫
x |gN (x)− gN,ε(x)|dx ≤ ε,∫

x
|fN (x)− fN,ε(x)|dx ≤ ε and

∫
x
|fN (x)− fN,ε(x)|2dx ≤ ε. (5.9)

Note that supn
∑n

k=1 E(unk − un,k−1)2 = supn n
−1
∑n

k=1 Eu2
k ≤ supk Eu2

k < ∞. It follows from

Theorem 2.1 of Hansen (1992) that, for each N ≥ 1 and ε > 0,

(
xn,[nt], un,[nt],

1

n

n∑
k=1

gN,ε(xnk),
1√
n

n−1∑
k=1

fN,ε(xnk)uk

)
⇒

(
Xt, Ut,

∫ 1

0
gN,ε(Xs)ds,

∫ 1

0
fN,ε(Xs) dUs

)
.

Note that, uniformly for 0 ≤ t ≤ 1,

P
[(
Xt, Ut,

∫ 1

0
g(Xs)ds,

∫ 1

0
f(Xs) dUs

)
6=
(
Xt, Ut,

∫ 1

0
gN (Xs)ds,

∫ 1

0
fN (Xs) dUs

)]
≤ P

(
sup

0≤s≤1
|Xs| > N

)
→ 0,

P
[(
xn,[nt], un,[nt],

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=1

f(xnk)uk

)
6=
(
xn,[nt], un,[nt],

1

n

n∑
k=1

gN (xnk),
1√
n

n−1∑
k=1

fN (xnk)uk

)]
≤ P

(
max

1≤k≤n
|xnk| > N

)
→ 0,

as n → ∞ first and then N → ∞. It is readily seen from these facts that (3.1) will hold if we

prove the following: for each N ≥ 1,

1

n

n∑
k=1

gN,ε(xnk)−
1

n

n∑
k=1

gN (xnk) = oP (1), (5.10)

∫ 1

0
gN,ε(Xt)dt−

∫ 1

0
gN (Xt)dt = oP (1), (5.11)

In :=
1√
n

n−1∑
k=1

fN,ε(xnk)uk −
1√
n

n−1∑
k=1

fN (xnk)uk = oP (1), (5.12)

I1n :=

∫ 1

0
fN,ε(Xt) dUt −

∫ 1

0
fN (Xt) dUt = oP (1). (5.13)

as n→∞ first and then ε→ 0.

As in the proof of Lemma 5.1, by using A2 (i) and (iii), we have

EI2
n =

1

n

n−1∑
k=1

E
{[
fN,ε(xnk)− fN (xnk)

]
uk
}2

≤ 1

n

n−1∑
k=1

E
(

sup
m≥1

E
(
u2
m | Fm−1

) [
fN,ε(xnk)− fN (xnk)

]2)

21



≤ C
1

n

n∑
k=1

d−1
k dn

∫
x
|fN (x)− fN,ε(x)|2dx ≤ C1ε.

Hence (5.12) holds. Similarly, it follows from A2 (ii) that

EI2
1n ≤

∫ 1

0
E
[
fN,ε(Xt) − fN (Xt)

]2
dt

≤
∫ 1

0

∫
y

[
fN,ε(y) − fN (y)

]2
pt(y)dydt

≤ sup
x

∫ 1

0
pt(x)dt

∫
y

[
fN,ε(y) − fN (y)

]2
dy ≤ C2 ε,

yielding (5.13). The proofs of (5.10) and (5.11) are similar and this completes the proof of

Theorem 3.1. 2

5.2 Proof of Theorem 3.2

To prove (3.3), let

Y1,n(γ) =
1

n

n∑
k=1

|xnk|2γ logm1 |xnk|, Y2,n(γ) =
1√
n

n∑
k=1

|xnk|γ logm2 |xnk|uk;

Ỹ1,n(γ) =
1

n

n∑
k=1

|xnk|2γ logm1 |xnk|I(xnk| ≤ N),

Ỹ2,n(γ) =
1√
n

n∑
k=1

|xnk|γ logm2 |xnk|I(|xnk| ≤ N)uk.

By virtue of Theorem 3.1 and Prohorov’s theorem, and noting that, for every K > a and k0 > 0,

P
(

sup
γ1,γ2∈[a,K],|γ1−γ1|≤2−k0

|Yj,n(γ1)− Yj,n(γ2)| 6= sup
γ1,γ2∈[a,K],|γ1−γ1|≤2−k0

|Ỹj,n(γ1)− Ỹj,n(γ2)|
)

≤ P
(

max
1≤k≤n

|xnk| > N
)
→ 0, for j = 1 and 2,

as n → ∞ first and then N → ∞, it suffices to show the tightness of Ỹ1n(γ) and Ỹ2n(γ) on

C[a,K] for each K > 0 and N ≥ 1.

We prove the tightness of Ỹ1n(γ) and Ỹ2n(γ) on C[a,K] by using Example 2.2.12 of van der

Vaart and Wellner (1996). 6 In particular, it suffices to show that, for any a ≤ γ1 < γ2 ≤ K

E
∣∣Ỹj,n(γ1)− Ỹj,n(γ2)

∣∣p ≤ CN |γ1 − γ2|1+r, for j = 1 and 2, (5.14)

for some constants p, r > 0 and CN > 0 independent of n.

Write fN (x) = (|x|a + |x|K)2
∣∣ log2+2m2 |x|

∣∣I(|x| ≤ N). It is readily seen that, when a > 0,

E
(
fN (xnk)u

2
k

)
≤ CN sup

k
Eu2

k,

6We thank one of the referees for suggesting the use of this approach, which has greatly shortened the original
proof.
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and when a > −1/2,

E
(
fN (xnk)u

2
k

)
≤ E

[
fN (xnk)E

(
u2
k | Fk−1

)]
≤ C EfN (xnk) ≤ C dk/dn

∫
fN (x)dx ≤ CN dk/dn,

under additional condition A2, where CN is a constant depending only on N . Consequently, by

noting ∣∣|x|γ1 − |x|γ2∣∣ ≤ |γ1 − γ2| max{|x|γ1 , |x|γ2}
∣∣ log(|x|)

∣∣
≤ |γ1 − γ2|

(
|x|a + |x|K

) ∣∣ log(|x|)
∣∣, (5.15)

for any a ≤ γ1 < γ2 ≤ K and x 6= 0, we have

E
(
Ỹ2,n(γ1)− Ỹ2,n(γ2)

)2
=

1

n

n∑
k=1

E
(

(|xnk|γ1 − |xnk|γ2)2 log2m2 |xnk|I(|xnk| ≤ N)u2
k

)
≤ (γ1 − γ2)2 1

n

n∑
k=1

E
(
fN (xnk)u

2
k

)
≤ (γ1 − γ2)2CN

1

n

n∑
k=1

[
d−1
k dn + sup

k
Eu2

k

]
≤ CN (γ1 − γ2)2,

yielding (5.14) for j = 2, where CN > 0 is a constant independent of n. Similarly, by taking

r > 0 so that a(1 + r) > −1/2, it follows from Hölder’s inequality and (5.15) that

E
∣∣Ỹ1,n(γ1)− Ỹ1,n(γ2)

∣∣1+r

≤ 1

n

n∑
k=1

E
(∣∣|xnk|2γ1 − |xnk|2γ2∣∣1+r

log(1+r)m1 |xnk|I(|xnk| ≤ N)
)

≤ 1

n

n∑
k=1

Ef1N (xnk) ≤ CN |γ1 − γ2|1+r,

where f1N (x) = (|x|a + |x|K)2(1+r)
∣∣ log(1+r)m1 |x|

∣∣I(|x| ≤ N). This proves (5.14) for j = 1. 2

5.3 Proofs of Theorems 3.3 and 3.4

Let f(x) = |x|γ logm |x| where γ > 0 and integer m ≥ 0, and

f ′(x) = |x|γ−1 logm−1 |x| (γ log |x|+m) sign(x).

Obviously, f ′(x) is continuous for γ > 1 and [f ′(x)]α/(α−1) is locally integrable for γ > 1/α.

These facts will be used in the proof without further indication. To prove Theorems 3.3 and

3.4, we write

1√
n

n−1∑
k=1

|xnk|γ logm |xnk|wk
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=
1√
n

n−1∑
k=1

f(xnk)uk +
1√
n

n−1∑
k=1

[f(xnk)− f(xn,k−1)] zk−1 + oP (1)

=
1√
n

n−1∑
k=1

f(xnk)uk +

√
n

dn

1

n

n−1∑
k=1

zk−1ξkf
′(xn,k−1) +Rn + oP (1), (5.16)

where

Rn :=
1√
n

n−1∑
k=1

[
f(xnk)− f(xn,k−1)− ξk

dn
f ′(xn,k−1)

]
zk−1.

Let vk = zk−1ξk and λk = vk − Evk. Recalling A3, it follows that supk≥1 E
(
|vk|α + |λk|α

)
<

∞, where α > 1, and, for any 0 < m → ∞ satisfying n/m → ∞ and m̃ → ∞ satisfying

m̃/ logm→ 0,

max
m≤j≤n−m

∣∣ 1

m

j+m∑
k=j+1

Evk −A0

∣∣ = o(1), max
m≤j≤n−m

∣∣ 1

m

j+m∑
k=j+1

E
(
λk | Fk−m̃

)∣∣ = oP (1).

Furthermore, let λk(i) = E
(
λk | Fk−i

)
− E

(
λk | Fk−i−1

)
and

λ̃k(i) = E
(
λkI(|λk| ≤ m1/4) | Fk−i

)
− E

(
λkI(λk| ≤ m1/4) | Fk−i−1

)
.

By noting that λ̃k(i) is a martingale difference for each i ≥ 0 and supk≥1 E|λk|α < ∞, it is

readily seen that

E
∣∣∣ j+m∑
k=j+1

λk(i)
∣∣∣ ≤ { j+m∑

k=j+1

E
(
λ̃k(i)

)2}1/2
+

j+m∑
k=j+1

E
∣∣λk(i)− λ̃k(i)∣∣

≤ C
(
m1/2+(2−α)/8 +m1−α/4) ≤ Cm log−2m,

and

max
m≤j≤n−m

E
∣∣∣ 1

m

j+m∑
k=j+1

(
λk − E(λk | Fk−m̃)

) ∣∣∣
≤

m̃−1∑
i=0

max
m≤j≤n−m

1

m
E
∣∣∣ j+m∑
k=j+1

λk(i)
∣∣∣ ≤ C m̃ log−2m = o(1).

Combining these estimates, it is easy to see that vk = zk−1ξk satisfies A4 with A1 = A0. As a

consequence, it follows from Lemma 5.1 that

1

n

n−1∑
k=1

zk−1ξkf
′(xn,k−1) =

A0

n

n−1∑
k=1

f ′(xn,k−1) + oP (1), (5.17)

for all γ > 1/α. We mention that, if 1/α < γ ≤ 1, to prove (5.17) we need the fact that xk/dk

has a density pk(x) that is uniformly bounded by a constant K for all 1 ≤ k ≤ n and x ∈ R,

which is imposed in A2 (i).
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Due to (5.16) and (5.17), together with Theorem 3.1 and the continuous mapping theorem,

simple algebra shows that Theorem 3.3 will follow if we have

Rn = oP (1), for all γ > 1/α, (5.18)

where there is no bias term due to the fact that
√
n/dn → 0. Similarly, Theorem 3.4 will follow

if we prove

dn√
n
Rn = oP (1), for all γ > 1/α. (5.19)

Indeed, for Theorem 3.4, the result comes from

dn
n

n−1∑
k=1

|xnk|γ logm |xnk|wk

=
dn√
n

1√
n

n−1∑
k=1

f(xnk)uk +
1

n

n−1∑
k=1

zk−1ξkf
′(xn,k−1) +

dn√
n
Rn + oP (1),

which is a minor modification of (5.16).

We next prove (5.19) under the conditions of Theorem 3.4, where we assume d2
n/n→ σ2 <∞.

The proof of (5.18) is similar but simpler. To complete the proof we use the following lemma,

which will be established in Appendix B.

Lemma 5.2. Suppose that δ > 0 is a sufficiently small constant. For any x, y with 0 < |x|, |y| <

N and |x− y| < δ, we have that, for any α > 1,

∣∣f(x)− f(y)− (x− y)f ′(y)
∣∣

≤ 3|x− y|
[
|f ′(|x|)|I(|x| < 2δ) + |f ′(|y|)|I(|y| < 2δ)

]
+ Cδ,N |x− y|min{α,2},

where Cδ,N is a constant only depending on γ,m, α, δ and N .

We return to the proof of (5.19). By Lemma 5.2, on ΩN,δ :=
{

max
1≤k≤n

|xnk| ≤ N
}
∩{

max
1≤k≤n

|xnk − xn,k−1| < δ
}

, we have

dn√
n
|Rn| ≤ R1n +R2n +R3n,

where

|R1n| ≤
3

n

n−1∑
k=1

|zk−1ξk||f ′(xnk)|I(|xnk| ≤ 2δ),

|R2n| ≤
3

n

n−1∑
k=1

|zk−1ξk||f ′(xn,k−1)|I(|xn,k−1| ≤ 2δ),
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|R3n| ≤
Cδ,N

nd
min{α−1,1}
n

n−1∑
k=1

|zk−1||ξk|min{α,2}.

Since lim
N→∞

lim
n→∞

P(Ω̄N,δ) = 0 by (5.1) and (5.2), where Ω̄N,δ denotes the complementary set of

ΩN,δ, (5.19) will follow if we prove that, for any fixed N ∈ N and ζ > 0,

lim sup
δ→0

lim sup
n→∞

P(|Rin| > ζ, ΩN,δ) = 0, i = 1, 2, 3. (5.20)

Let η > 0 be small enough so that γ−2η > 1 or γ−2η > 1/α whenever γ > 1 or 1 ≥ γ > 1/α,

respectively. For this η > 0, there exists a constant c0, which only depends on r and m, such

that |f ′(x)| ≤ c0|x|γ−η−1 for all 0 < x < 2δ. Now, recalling that supk≥1 E|zk−1ξk|α < ∞, it

follows from (5.5) with vk = zk−1ξk that, for all γ > 1/α,

|R1n| ≤
3c0

n

n−1∑
k=1

|zk−1ξk||xnk|γ−η−1I(|xnk| ≤ 2δ)

≤ 3c0(2δ)η

n

n−1∑
k=1

|zk−1ξk||xnk|γ−2η−1 = Op(δ
η),

where we have used the fact that, when 1/α < γ ≤ 1, A2 (i) holds and x(γ−2η−1)α/(α−1) is

locally integrable due to γ − 2η > 1/α. This implies (5.20) for i = 1.

Similarly, (5.20) holds for i = 2. Since α > 1 and

sup
k

E
(
|zk−1| |ξk|min{α,2}) ≤ sup

k

(
E
[
(1 + |zk−1|)|ξk|

]α)min{α,2}
α

<∞,

it is readily seen that

1

n

n−1∑
k=1

|zk−1||ξk|min{α,2} = OP (1),

and then (5.20) holds for i = 3 since dn → ∞. Combining all these results gives (5.19). The

proof of Theorem 3.3 is then complete. 2

5.4 Proof of Theorem 3.5

Similar to the proof of Theorem 3.2, by virtue of Theorems 3.3 and 3.4, we only need to

prove tightness, i.e., to show that, for any ε > 0, η > 0 and M > A, there exists a k0 such that

lim sup
n→∞

P
[

sup
γ1,γ2∈[A,M ],|γ1−γ2|≤2−k0

|Zn(γ1)− Zn(γ2)| ≥ ε
]
≤ η, (5.21)

where

Zn(γ) :=
an√
n

n−1∑
k=1

|xnk|γ logm |xnk|wk,
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with an = 1 in (a) and an = dn/
√
n in (b).

As in (5.16), we may write

1√
n

n−1∑
k=1

|xnk|γ logm |xnk|wk

=
1√
n

n−1∑
k=1

fγ(xnk)uk +

√
n

dn

1

n

n−1∑
k=1

zk−1ξkf
′
γ(xn,k−1) + S1n(γ) + S2n(γ)

=
1√
n

n−1∑
k=1

fγ(xnk)uk +

√
n

dn

A0

n

n−1∑
k=1

f ′γ(xn,k−1) + S1n(γ) + S2n(γ) + S3n(γ),

where fγ(x) = |x|γ logm |x|, f ′γ(x) = |x|γ−1 logm−1 |x| (γ log |x|+m) sign(x),

S1n(γ) :=
1√
n

n−1∑
k=1

[
fγ(xnk)− fγ(xn,k−1)− ξk

dn
f ′γ(xn,k−1)

]
zk−1,

S2n(γ) :=
1√
n
fγ(xn,n−2) zn−2,

and

S3n(γ) :=

√
n

dn

1

n

n−1∑
k=1

(zk−1ξk −A0)f ′γ(xn,k−1).

Following the same arguments as in the proof of Theorem 3.2, we deduce tightness of

1√
n

∑n−1
k=1 fγ(xnk)uk and A0

n

∑n−1
k=1 f

′
γ(xn,k−1) on C[A,∞). Thus, to prove (5.21), it suffices

to show that

an sup
γ∈[A,M ]

|Sin(γ)| = op(1), i = 1, 2, 3. (5.22)

We proceed for each value of i.

(a) For i = 2, (5.22) is obvious, following from

sup
γ∈[A,M ]

|S2n(γ)| ≤ 1√
n

(|xn,n−2|M + |xn,n−2|A) logm |xn,n−2| |zn−2| = oP (1).

(b) For i = 1, note that

sup
γ∈[A,M ]

|f ′γ(x)| ≤ (|x|M−1 + |x|A−1)| logm−1 |x|| (M | log |x||+m) := gM (x). (5.23)

By Lemma 5.2, on ΩN,δ :=
{

max
1≤k≤n

|xnk| ≤ N
}
∩
{

max
1≤k≤n

|xnk − xn,k−1| < δ
}

, we have

dn√
n
|S1n(γ)| ≤ R1n(γ) +R2n(γ) +R3n(γ),

where

sup
γ∈[A,M ]

|R1n(γ)| ≤ 3

n

n−1∑
k=1

|zk−1ξk|gM (xnk)I(|xnk| ≤ 2δ),
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sup
γ∈[A,M ]

|R2n(γ)| ≤ 3

n

n−1∑
k=1

|zk−1ξk|gM (xn,k−1)I(|xn,k−1| ≤ 2δ),

sup
γ∈[A,M ]

|R3n(γ)| ≤
Cδ,N

nd
min{α−1,1}
n

n−1∑
k=1

|zk−1||ξk|min{α,2},

where Cδ,N is a constant only depending on A,M,m,α, δ and N . Now, as in the proof of (5.20),

we obtain the following: for any fixed N ∈ N and ζ > 0,

lim sup
δ→0

lim sup
n→∞

P( sup
γ∈[A,M ]

|Rin(γ)| > ζ, ΩN,δ) = 0, i = 1, 2, 3. (5.24)

This, together with the fact that lim
N→∞

lim
n→∞

P(Ω̄N,δ) = 0, implies (5.22).

(c) We now prove (5.22) for i = 3. First note that, for any ε > 0, there exists a δε ∈ (0, ε) such

that supγ∈[A,M ] |f ′γ(x) − f ′γ(y)| < ε holds for any ε ≤ |x|, |y| ≤ N with |x − y| < δε. Thus, if

|x|, |y| ≤ N and |x− y| < δε < ε, then

|f ′γ(x)I(ε ≤ |x| ≤ N)− f ′γ(y)I(ε ≤ |y| ≤ N)|

≤ |f ′γ(x)− f ′γ(y)|I(ε ≤ |y| ≤ N) + |f ′γ(x)||I(ε ≤ |x| ≤ N)− I(ε ≤ |y| ≤ N)|

≤ ε+ 2|f ′γ(x)|I(|x| < 2ε).

Write λ̃k = zk−1ξk −A0, Tn = [n/l]− 1 and

Ω̃N,ε = { max
1≤k≤n

|xnk| ≤ N} ∩ { max
0≤j≤n/l

max
jl≤k≤(j+1)l

|xnk − xn,jl| ≤ δε},

where l is chosen so that l→∞ and n/l→∞. On Ω̃N,ε, it is readily seen that

sup
γ∈[A,M ]

1

n

∣∣∣ n−1∑
k=1

(zk−1ξk −A0)f ′γ(xn,k−1)
∣∣∣

≤ sup
γ∈[A,M ]

1

n

n−1∑
k=1

|λ̃k||f ′γ(xn,k−1)|I(|xn,k−1| < ε)

+
1

n
sup

γ∈[A,M ]

∣∣∣ n−1∑
k=1

λ̃kf
′
γ(xn,k−1)I(ε ≤ |xn,k−1| ≤ N)

∣∣∣
=: T1n(ε) + T2n(ε), (5.25)

and similar arguments to those in the proof of Lemma 5.1 [see (5.7) there] yield

T2n(ε) ≤
CN,ε
n

Tn∑
j=0

∣∣ (j+1)l∑
k=jl+1

λ̃k
∣∣+

CN,ε
n

n∑
k=lTn+1

|λ̃k
∣∣+

ε

n

n∑
k=1

|λ̃k|

+
2

n
sup

γ∈[A,M ]

n−1∑
k=1

|λ̃k||f ′γ(xn,k−1)|I(|xn,k−1| < 2ε)
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= T3n(ε) + 2T1n(2ε), say, (5.26)

where CN,ε is a constant only depending on M,m, ε and N .

Recalling (5.23), we have

T1n(2ε) ≤ 1

n

n−1∑
k=1

|λ̃k|gM (xn,k−1)I(|xn,k−1| < 2ε)

and, as in (5.24),

lim sup
δ→0

lim sup
n→∞

P(T1n(2ε) > ζ, Ω̃N,ε) = 0, (5.27)

for any fixed N ∈ N and ζ > 0. On the other hand, recalling A3, we find that vk = zk−1ξk

satisfies A4 and supk≥1 E|vk|α <∞, implying that, for any fixed N ∈ N and ζ > 0,

lim sup
ε→0

lim sup
n→∞

P(|T3n(ε)| > ζ, Ω̃N,ε) = 0. (5.28)

Combining (5.25) to (5.28), for any fixed N ∈ N and ζ > 0, we have

lim sup
ε→0

lim sup
n→∞

P
(
an sup

γ∈[A,M ]
|S3n(γ)| ≥ ζ, Ω̃N,ε

)
= 0.

This implies (5.22) for i = 3, since, for any ε > 0,

P
( ¯̃ΩN,ε

)
≤ P

(
max

1≤k≤n
|xnk| > N}

)
+ P

(
max

0≤j≤n/l
max

jl≤k≤(j+1)l
|xnk − xn,jl| > δε

)
→ 0,

as N →∞ and n→∞ by (5.3), where ¯̃ΩN,ε denotes the complementary set of Ω̃N,ε. The proof

of Theorem 3.5 is now completed. 2

5.5 Proofs of Theorems 2.1 - 2.4

We prove Theorems 2.1 - 2.4 by verifying the conditions of Theorem A.1 in Appendix A

with gk(θ) = β|xk|γ , θ = (β, γ), and Fn = diag
[√
ndγ0n / log dn,

√
ndγ0n

]
. In these derivations the

results of Theorems 3.1 - 3.4 are integrally involved in providing necessary technical support in

the derivation.

Prior to the main derivations we give some preliminaries. Let ġk(θ) = ∂gk(θ)
∂θ and g̈k(θ) =

∂2gk(θ)
∂θ∂θ′ , and set Hn(θ) =

∑n
k=1 ġk(θ)ġk(θ) and

Vnm =
1

n

n∑
k=1

|xnk|2γ0 logm |xnk|, m = 0, 1, 2,

where xnk = xk/dn. By using Corollary 3.1, we have (Vn0, Vn1, Vn2)→D (V1, V2, V3), where Vi =∫ 1
0 |Xt|2γ0 logi |Xt|dt, i = 0, 1, 2 is defined as in Theorem 2.1. Since F−1

n = diag
[(√

ndγ0n
)−1

log dn,
(√
ndγ0n

)−1]
and

ġk(θ)ġk(θ)
′ =

(
|xk|2γ β|xk|2γ log |xk|

β|xk|2γ log |xk| β2|xk|2γ log2 |xk|

)
29



=

(
1 β log dn

log dn β2 log2 dn

)
|xk|2γ

+

(
0 β
β 2β2 log dn

)
|xk|2γ log

|xk|
dn

+

(
0 0
0 β2

)
|xk|2γ log2 |xk|

dn
,

we may write

F−1
n Hn(θ0)F−1

n = F−1
n

n∑
k=1

ġk(θ0)ġk(θ0)′F−1
n

=

(
1 β0

β0 β2
0

)
Vn0 log2 dn +

(
0 β0

β0 2β2
0

)
Vn1 log dn +

(
0 0
0 β2

0

)
Vn2

=:

(
H11 H12

H12 H22

)
,

where

H11 = Vn0 log2 dn, H12 = β0

(
Vn0 log2 dn + Vn1 log dn

)
,

H22 = β2
0(Vn0 log2 dn + Vn1 log dn + Vn2).

It is easy to show that

det |F−1
n Hn(θ0)F−1

n | = H11H22 −H2
12 = β2

0

(
Vn0 Vn2 − V 2

n1

)
log2 dn > 0 a.s.,

and

(F−1
n Hn(θ0)F−1

n )−1 =
1

H11H22 −H12

(
H22 −H12

−H12 H11

)
=

Vn0

β2
0

(
Vn0 Vn2 − V 2

n1

) ( β2
0 −β0

−β0 1

)
+

Vn1

β2
0

(
Vn0 Vn2 − V 2

n1

)
log dn

(
2β2

0 −β0

−β0 0

)
+

Vn2

β2
0

(
Vn0 Vn2 − V 2

n1

)
log2 dn

(
β2

0 0
0 0

)
. (5.29)

Furthermore, under one of the conditions imposed in Theorems 2.1 - 2.4, we have

λmin(F−1
n Hn(θ0)F−1

n ) =
H11 +H22 −

√
(H11 +H22)2 − 4(H11H22 −H2

12)

2

=
4(H11H22 −H2

12)

2(H11 +H22) + 2
√

(H11 +H22)2 − 4(H11H22 −H2
12)

=
H11H22 −H2

12

H11 +H22
+ op(1)

=
β2

0(Vn0Vn2 − V 2
n1)

(β2
0 + 1)Vn0

+ op(1)

→D
β2

0(V0V2 − V 2
1 )

(β2
0 + 1)V0

> 0, for γ0 > −1/2. (5.30)

We recall that A2 (i) is required to establish (5.30) only for −1/2 < γ0 ≤ 0.
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After these preliminaries, we are now ready to prove Theorems 2.1 - 2.4. For convenience,

we adopt the same notation used in Theorem A.1, namely, we let Qn(θ) =
∑n

k=1(yk − gk(θ))2,

Sn(θ) = ∂Qn(θ)
∂θ , Wn(θ) = ∂2Qn(θ)

∂θ∂θ′ , Zn = F−1
n Sn(θ0) and Yn = F−1

n Hn(θ0)F−1
n .

Proofs of Theorems 2.1 and 2.2.

Since λ−1
min(Yn) = Op(1) by (5.30), by using Theorem A.1, Theorems 2.1 will follow if we prove

that, for γ0 > −1/2 (A2 is required only for 0 ≥ γ0 > −1/2),

Y −1
n Zn →D

(
1

−1/β0

)
V0

∫ 1
0 |Xt|γ0 log |Xt| dUt − V1

∫ 1
0 |Xt|γ0dUt

V0 V2 − V 2
1

, (5.31)

where Vi =
∫ 1

0 |Xt|2γ0 logi |Xt|dt, i = 0, 1, 2, and

sup
θ:||Fn(θ−θ0)||≤log dn

||F−1
n

[
Wn(θ)−Hn(θ0)

]
F−1
n || = oP (log−2 dn). (5.32)

The proof of (5.31) follows from an application of Corollary 3.1 and the continuous mapping

theorem. Indeed, under model (2.1), we have

Sn(θ) = −
n∑
k=1

ġk(θ)uk +
n∑
k=1

ġk(θ) dk(θ),

where dk(θ) = gk(θ)− gk(θ0). Hence, some simple algebra shows that

F−1
n Sn(θ0) = − log dn

(
1√
n

∑n
k=1 |xnk|γ0 uk

β0√
n

∑n
k=1 |xnk|γ0 uk + β0√

n log dn

∑n
k=1 |xnk|γ0 log |xnk|uk

)

= − log dn

(
1
β0

)
1√
n

n∑
k=1

|xnk|γ0 uk −
(

0
β0

)
1√
n

n∑
k=1

|xnk|γ0 log |xnk|uk.

This, together with (5.29), yields that

Y −1
n Zn = (F−1

n Hn(θ0)F−1
n )−1F−1

n Sn(θ0)

= − Vn0

β2
0

(
Vn0 Vn2 − V 2

n1

) ( β2
0 −β0

−β0 1

)(
0
β0

)
1√
n

n∑
k=1

|xnk|γ0 log |xnk|uk

− Vn1

β2
0

(
Vn0 Vn2 − V 2

n1

) (2β2
0 −β0

−β0 0

)(
1
β0

)
1√
n

n∑
k=1

|xnk|γ0 uk +OP (log−1 dn)

=
Vn0

Vn0 Vn2 − V 2
n1

(
1

−1/β0

)
1√
n

n∑
k=1

|xnk|γ0 log |xnk|uk

− Vn1

Vn0 Vn2 − V 2
n1

(
1

−1/β0

)
1√
n

n∑
k=1

|xnk|γ0 uk +OP (log−1 dn), (5.33)

implying (5.31) by Corollary 3.1 and the continuous mapping theorem.
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Note that Wn(θ) =
∑n

k=1 ġk(θ)ġk(θ)
′+
∑n

k=1 g̈k(θ)
[
dk(θ)−uk

]
, where dk(θ) = gk(θ)−gk(θ0).

The proof of (5.32) follows by verification of the following facts: for γ0 > −1/2 (A2 is required

for 0 ≥ γ0 > −1/2),

sup
θ:‖Fn(θ−θ0)‖≤log dn

‖ F−1
n

n∑
k=1

[
ġk(θ)ġk(θ)

′ − ġk(θ0)ġk(θ0)′
]
F−1
n ‖ = oP (log−2 dn), (5.34)

sup
θ:‖Fn(θ−θ0)‖≤log dn

‖ F−1
n

n∑
k=1

g̈k(θ)
[
gk(θ)− gk(θ0)

]
F−1
n ‖ = oP (log−2 dn), (5.35)

sup
θ:‖Fn(θ−θ0)‖≤log dn

‖ F−1
n

n∑
k=1

g̈k(θ)uk F
−1
n ‖ = oP (log−2 dn). (5.36)

Let (A)ij be the (i, j) entry of the matrix A. To prove (5.34), it is sufficient to prove that

sup
θ:‖Fn(θ−θ0)‖≤log dn

(
F−1
n

n∑
k=1

[
ġk(θ)ġk(θ)

′ − ġk(θ0)ġk(θ0)′
]
F−1
n

)
ij

= oP (log−2 dn) (5.37)

for all i, j = 1, 2. Here we only prove the case i = j = 2 since the other cases are similar.

Let ε > 0 be a constant satisfying that γ0−ε > 0 if γ0 > 0 or γ0−ε > −1/2 if −1/2 < γ0 ≤ 0.

For any |γ − γ0| < ε/3, we have

(log |xk|)2||xk|2γ − |xk|2γ0 | ≤ Cε|γ − γ0|(|xk|2γ0+ε + |xk|2γ0−ε),

where Cε is a constant only depending on ε. By using Corollary 3.1,

1

nd2γ0+ε
n

n∑
k=1

|xk|2γ0+ε = Op(1),
1

nd2γ0−ε
n

n∑
k=1

|xk|2γ0−ε = Op(1).

Hence, for sufficiently large n, we have

sup
θ:‖Fn(θ−θ0)‖≤log dn

∣∣∣(F−1
n

n∑
k=1

[
ġk(θ)ġk(θ)

′ − ġk(θ0)ġk(θ0)′
]
F−1
n

)
22

∣∣∣
= n−1d−2γ0

n sup
θ:‖Fn(θ−θ0)‖≤log dn

∣∣∣ n∑
k=1

(log |xk|)2(β2|xk|2γ − β2
0 |xk|2γ0)

∣∣∣
≤ n−1d−2γ0

n sup
θ:‖Fn(θ−θ0)‖≤log dn

n∑
k=1

(log |xk|)2
(
β2||xk|2γ − |xk|2γ0 |+ |β2 − β2

0 ||xk|2γ0
)

= OP (1)× n−3/2d−3γ0
n log2 dn

( n∑
k=1

|xk|2γ0−ε +
n∑
k=1

|xk|2γ0+ε
)

= Op(n
−1/2d−γ0+ε

n log2 dn).

This proves (5.37) for i = j = 2 by noting that dn → ∞ and d2
n = O(nµ) for some 0 < µ < 2.

The proof of (5.35) is similar and details are omitted.

As for (5.36), by recalling

g̈k(θ) :=
∂2gk(θ)

∂θ∂θ′
=

(
0 |xk|γ log |xk|

|xk|γ log |xk| β2|xk|γ log2 |xk|

)
,
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we only need to prove that, for m = 1, 2,

log2 dn

nd2γ0
n

sup
|γ−γ0|≤n−1d

−γ0
n log2 dn

∣∣∣ n∑
k=1

|xk|γ logm |xk|uk
∣∣∣ = oP (log−2 dn).

By using Corollary 3.1, we have

log2 dn

nd2γ0
n

∣∣∣ n∑
k=1

|xk|γ0 logm |xk|uk
∣∣∣ = oP (log−2 dn), m = 1, 2.

Hence, it is sufficient to show that

log2 dn

nd2γ0
n

sup
|γ−γ0|≤n−1d

−γ0
n log2 dn

∣∣∣ n∑
k=1

(|xk|γ − |xk|γ0) logm |xk|uk
∣∣∣ = oP (log−2 dn).

Similar to the proof of (5.34), for sufficiently large n, it follows from (5.5) that

log2 dn

nd2γ0
n

sup
|γ−γ0|≤n−1d

−γ0
n log2 dn

∣∣∣ n∑
k=1

(|xk|γ − |xk|γ0) logm |xk|uk
∣∣∣

≤ C ′ε log4 dn

n2d3γ0
n

n∑
k=1

(|xk|γ0+ε + |xk|γ0−ε) |uk|

= oP (log−2 dn),

where C ′ε is a constant only depending on ε. The proofs of Theorems 2.1 and 2.2 are now

complete.

Proofs of Theorems 2.3 and 2.4.

The argument is the same as that of Theorem 2.1. To illustrate, we consider an outline of the

proof of Theorem 2.4. The proof of Theorem 2.3 is the same except that we replace uk by

wk = uk + zk−1 − zk and Corollary 3.1 by Theorem 3.3, rather than Theorem 3.4.

First note that, following the proof of (5.36) but replacing Corollary 3.1 by Theorem 3.4, we

have

sup
θ:‖Fn(θ−θ0)‖≤log dn

‖ F−1
n

n∑
k=1

g̈k(θ)wk F
−1
n ‖ = oP (log−2 dn).

Hence, using the same argument and notation as those of Theorem 2.1, it follows that

Fn(θ̂n − θ0) = −Y −1
n Zn + oP (1)

= − Vn0

Vn0 Vn2 − V 2
n1

(
1

−1/β0

)
1√
n

n∑
k=1

|xnk|γ0 log |xnk|wk

+
Vn1

Vn0 Vn2 − V 2
n1

(
1

−1/β0

)
1√
n

n∑
k=1

|xnk|γ0 wk + oP (1).
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Now, by using Theorem 3.4 again and the continuous mapping theorem, we have

dn√
n
Fn(θ̂n − θ0) = − Vn0

Vn0 Vn2 − V 2
n1

(
1

−1/β0

)
dn
n

n∑
k=1

|xnk|γ0 log |xnk|wk

+
Vn1

Vn0 Vn2 − V 2
n1

(
1

−1/β0

)
dn
n

n∑
k=1

|xnk|γ0 wk + oP (1)

→D

(
1

−1/β0

)
V0W1 − V1W0

V 2
1 − V0 V2

,

as required.

5.6 Proof of Theorem 2.5

It is readily seen that

β̂ =

∑n
k=1 yk

[
l(|xk|)− n−1

∑n
j=1 l(|xj |)

]∑n
k=1

[
l(|xk|)− n−1

∑n
j=1 l(|xj |)

]2
= β0 +

∑n
k=1 uk

[
l(|xk|)− n−1

∑n
j=1 l(|xj |)

]∑n
k=1

[
l(|xk|)− n−1

∑n
j=1 l(|xj |)

]2 , (5.38)

α̂ =
1

n

n∑
k=1

yk −
β̂

n

n∑
k=1

l(|xk|)

= α0 +
1

n

n∑
k=1

uk −
β̂ − β0

n

n∑
k=1

l(|xk|). (5.39)

Let l∗λ(x) = l(|x|λ)
l(λ) − 1− ε(λ) log |x|, ank = log |xnk| − n−1

∑n
j=1 log(|xnj |), and

bnk = l∗dn(|xnk|)− n−1
n∑
j=1

l∗dn(|xnj |),

where xnk = xk/dn. We may write

1

l2(dn)

n∑
k=1

[
l(|xk|)− n−1

n∑
j=1

l(|xj |)
]2

= ε2(dn)
n∑
k=1

a2
nk +

n∑
k=1

b2nk + 2ε(dn)
n∑
k=1

ankbnk,

and

1

l(dn)

n∑
k=1

uk

[
l(|xk|)− n−1

n∑
j=1

l(|xj |)
]

= ε(dn)

n∑
k=1

ukank +

n∑
k=1

ukbnk.

Taking these facts into (5.38) and (5.39), we obtain

√
nl(dn)ε(dn)

(
β̂n − β0

)
=

1√
n

∑n
k=1 ukank + 1√

n ε(dn)

∑n
k=1 ukbnk

1
n

∑n
k=1 a

2
nk + 1

n ε2(dn)

∑n
k=1 b

2
nk + 2

n ε(dn)

∑n
k=1 ankbnk

,

√
nε(dn)

(
α̂n − α0

)
=

ε(dn)√
n

n∑
k=1

uk −
√
nl(dn)ε(dn)

(
β̂ − β0

) 1

nl(dn)

n∑
k=1

l(|xk|).
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Since ε(dn) → 0 and log2 |x| is locally integrable, by using Theorem 3.1 and the continuous

mapping theorem, Theorem 2.5 will follow if we prove

1

n ε2(dn)

n∑
k=1

b2nk = oP (1), (5.40)

1√
n ε(dn)

n∑
k=1

ukbnk = oP (1), (5.41)

1

nl(dn)

n∑
k=1

l(|xk|) = 1 + oP (1). (5.42)

The idea in proving (5.40)-(5.42) is quite similar to that of Theorem 3.1. We only provide an

outline for (5.41). In fact, by letting

b∗nk = l∗dn(|xnk|)I(|xnk| ≤ N)− n−1
n∑
j=1

l∗dn(|xnj |)I(|xnj | ≤ N),

we have

P
( 1√

n ε(dn)

n∑
k=1

ukbnk 6=
1√

n ε(dn)

n∑
k=1

ukb
∗
nk

)
≤ P

(
max

1≤k≤n
|xnk| > N

)
→ 0,

as n→∞ first and then N →∞. This result, together with the fact that due to (2.20) and A2

1

n ε2(dn)
E
( n∑
k=1

ukb
∗
nk

)2
≤ C

n ε2(dn)

n∑
k=1

Eb∗2nk

≤ C

n ε2(dn)

n∑
k=1

E
[
l∗dn(|xnk|)I(|xnk| ≤ N)

]2
≤ C1

n ε2(dn)

n∑
k=1

d−1
k dn

[ ∫
|x|≤N

l∗dn(x)dx
]2

= o(1), as n→∞,

for any fixed N ≥ 1, implies (5.41). This completes the proof of Theorem 2.5. 2
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A A general framework for nonlinear least squares estimation

We consider the general nonlinear parametric regression model

yk = gk(θ) + uk, (A.1)
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where θ ∈ Θ, Θ is a subset of Rm, gk(θ) is a sequence of measurable random functions on

Θ and uk is a sequence of error variables. This section considers estimation of the unknown

parameters θ in model (A.1) by using first-order conditions. The approach taken here is similar

to that used in Park and Phillips (2000, 2001) in the development of nonlinear nonstationary

regression, which in turn utilizes the framework of Wooldridge (1994).

Let Qn(θ) =
∑n

k=1

[
yk − gk(θ)

]2
, Sn(θ) = (1/2)∂Qn(θ)/∂θ, Wn(θ) = (1/2)∂2Qn(θ)/∂θ∂θ′

and

Hn(θ) =

n∑
k=1

ġk(θ)ġk(θ)
′, where ġk(θ) = ∂gk(θ)/∂θ.

For later use, we define g̈k(θ) = ∂2gk(θ)/∂θ∂θ
′ and assume that these quantities exist whenever

they are introduced.

To construct an estimator θ̂n and develop asymptotics for θ̂n, we employ the following frame-

work, which is a generalization of Theorem 8.1 of Wooldridge (1994). Wooldridge dealt with

an abstract extremum estimation problem for possibly deterministically trending and weakly

dependent time series. The approach involved a smooth objective function and regularity condi-

tions that enabled consistency and asymptotic normality for extremum estimators to be obtained

within the same framework. That framework was extended to time trend power regression in

Phillips (2007) and to stochastically nonstationary time series in Park and Phillips (2000, 2001),

with related subsequent work in Andrews and Sun (2004), Chan and Wang (2014) and Wang

and Phillips (2016).

For a sequence of matrices Fn = diag
[
a1(n), ..., am(n)

]
, we define

Zn = F−1
n Sn(θ0), Yn = F−1

n Hn(θ0)F−1
n .

With these components we are able to state the main result.

Theorem A.1. Suppose that θ0 is a finite interior point of Θ, and λ−1
min(Yn) = Op(1), where

λmin(A) denotes the smallest eigenvalue of A, and there exists a sequence of constants {kn, n ≥ 1}

satisfying kn →∞ and kn max1≤j≤m aj(n)−1 → 0 such that Y −1
n Zn = oP (kn) and

sup
θ:||Fn(θ−θ0)||≤kn

||F−1
n

[
Wn(θ)−Hn(θ0)

]
F−1
n || = oP (k−2

n ). (A.2)

Then there exists a sequence of estimators θ̂n such that Sn(θ̂n) = 0 with probability that goes to

one and

Fn(θ̂n − θ0) = −Y −1
n Zn + oP (1). (A.3)
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Proof. The proof follows the same arguments as that of Theorem 4.1 in Wang and Phillips

(2016), see also Andrews and Sun (2004). We provide an outline here for completeness and

convenience for future reference. Let Θn = {θ : ||Fn(θ − θ0)|| ≤ kn}. As kn||F−1
n || = o(1), we

may take n sufficiently large so that Θn ⊂ {θ : ||θ − θ0|| ≤ δ} ⊂ Θ, for some δ > 0. Recall that

Qn(θ) is twice differentiable whenever ‖ θ − θ0 ‖≤ δ. It follows by Taylor expansion that

Qn(θ)−Qn(θ0) = 2(θ − θ0)′Sn(θ0) + (θ − θ0)′Wn(θ1)(θ − θ0) (for some θ1 ∈ Θn)

= 2(θ − θ0)′Sn(θ0) + (θ − θ0)′Hn(θ0)(θ − θ0) +Rn(θ, θ0)

=
[
Fn(θ − θ0) + Y −1

n Zn
]′
Yn
[
Fn(θ − θ0) + Y −1

n Zn
]

−Z ′nY −1
n Zn +Rn(θ, θ0), (A.4)

uniformly for θ ∈ Θn, where, due to (A.2),

sup
θ∈Θn

|Rn(θ, θ0)| ≤ sup
θ∈Θn

sup
θ1∈Θn

|(θ − θ0)′
[
Wn(θ1)−Hn(θ0)

]
(θ − θ0)|

≤ k2
n sup
θ1∈Θn

‖ F−1
n

[
Wn(θ1)−Hn(θn)

]
F−1
n ‖= oP (1). (A.5)

Let θ̃n = θ0 − F−1
n Y −1

n Zn. Using Y −1
n Zn = oP (kn), we have

P(θ̃n /∈ Θn) ≤ P(||Y −1
n Zn|| ≥ kn)→ 0. (A.6)

This, together with (A.4), yields

Qn(θ̃n)−Qn(θ0) = −Z ′nY −1
n Zn +Rn(θ̃n, θ0), (A.7)

where Rn(θ̃n, θ0) = oP (1). For any ε > 0 and n ≥ 1, now let

Θn(ε) = {θ ∈ Θ : ||Fn(θ − θ0) + Y −1
n Zn|| ≤ ε}.

Using Y −1
n Zn = oP (kn) again, we get P(Θn(ε) ⊂ Θn)→ 1, as n→∞. Hence, for any θ ∈ ∂Θn(ε),

where ∂Θn(ε) denotes the boundary of Θn(ε), it follows from (A.4) and (A.7) that

Qn(θ)−Qn(θ̃n) = ν ′nYnνn + oP (1), (A.8)

where νn is a vector with ||νn|| = ε > 0. Since ν ′nYnνn ≥ λmin(Yn)||νn||2 = ε2λmin(Yn), and

θ̃n ∈ Θn(ε), equation (A.8) implies that, for each ε > 0, the event that the minimum ofQn(θ) over

Θn(ε) is in the interior of Θn(ε) has probability that goes to one as n→∞. In particular, for each

ε > 0, there exists a point θ̂n(ε) ∈ Θn(ε) (not necessary unique) such that P(Q̇n[θ̂n(ε)] = 0)→ 1,

as n→∞. In consequence, there exists a sequence of θ̂n = θ̂n(1/Jn) ∈ Θn(1/Jn) where Jn →∞

so that P(Q̇n(θ̂n) = 0)→ 1, as n→∞, and (A.3) holds.
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B Proof of Lemma 5.2

For f(x) = |x|γ logm|x| and any x, y 6= 0, we have

∣∣f(x)− f(y)− (|x| − |y|)f ′(y)
∣∣ =

1

2
(|x| − |y|)2|f ′′(z0)| ≤ 1

2
(x− y)2|f ′′(z0)|,

where z0 lies between |x| and |y|, and

f ′′(z) = zγ−2 logm−2 z[γ(γ − 1) log2 z +m(2γ − 1) log z +m(m− 1)], z > 0.

Hence, if 0 < |x|, |y| < N and |x− y| ≤ δ, then

∣∣f(x)− f(y)− (|x| − |y|)f ′(y)
∣∣I(|x| > δ, |y| > δ)

≤ 1

2
sup

δ<z<N
|f ′′(z)|(x− y)2 ≤ Cδ,N |x− y|min{α,2}, (B.1)

where Cδ,N = 1
2 δ

max{2−α,0} supδ<z<N |f ′′(z)| <∞.

For sufficiently small δ > 0, we have either f ′′(z) > 0 for all 0 < z < 2δ or f ′′(z) < 0 for all

0 < z < 2δ. Thus, if |x− y| ≤ δ, then

∣∣f(x)− f(y)− (|x| − |y|)f ′(y)
∣∣I(|x| < δ or |y| < δ)

≤
∣∣(|x| − |y|)(f ′(z1)− f ′(y))

∣∣I(|x| < 2δ, |y| < 2δ)

≤ |x− y||f ′(x)− f ′(|y|)|I(|x| < 2δ, |y| < 2δ)

≤ |x− y|
[
|f ′(x)|I(|x| < 2δ) + |f ′(y)|I(|y| < 2δ)

]
, (B.2)

where z1 lies between |x| and |y|. Note that for any x, y 6= 0, we may write

(|x| − |y|)f ′(y) = (|x| − |y|)f ′(y)I(xy > 0) + (|x| − |y|)f ′(y)I(xy < 0)

= (x− y)sign(x)f ′(y)I(xy > 0) + (|x| − |y|)f ′(y)I(xy < 0)

= (x− y)sign(x)f ′(y)− (x− y)sign(x)f ′(y)I(xy < 0)

+(|x| − |y|)f ′(y)I(xy < 0).

Hence, for any |x− y| < δ,

∣∣(|x| − |y|)f ′(y)− (x− y)sign(x)f ′(y)
∣∣

≤ 2|x− y||f ′(y)|[I(x > 0, y < 0) + I(x ≤ 0, y > 0)]

≤ 2|x− y||f ′(y)|I(|x| ≤ δ). (B.3)

Lemma 5.2 now follows from (B.1)-(B.3). 2
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