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Abstract

The purpose of this work to investigate pseudomonotone and Lipschitz continuous varia-
tional inequalities in real Hilbert spaces. For solving this problem, we propose two new methods
which combine advantages of the subgradient extragradient method and the projection con-
traction method. Similar to some recent developments, the proposed methods do not require
the knowledge of the Lipschitz constant associated with the variational inequality mapping.
Under suitable mild conditions, we establish the weak and strong convergence of the proposed
algorithms. Moreover, linear convergence is obtained under strong pseudomonotonicity and
Lipschitz continuity assumptions. Numerical examples in fractional programming and optimal
control problems demonstrate the potential of our algorithms as well as compare their perfor-
mances to several related results.
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1 Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be a nonempty,
closed and convex subset of H. Let A : H → H be a single-valued continuous mapping. We
consider classical variational inequality (VI) in the sense of Fichera [18] and Stampacchia [37] (see
also Kinderlehrer and Stampacchia [25]) which is formulated as follows: Find a point x∗ ∈ C such
that

〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C. (1)

We denote by Ω the solution set of the VI (1), which is assumed to be nonempty.
Variational inequality (VI) is a very general mathematical model with numerous applications

in economics, engineering mechanics, transportation, and many more, see for example, [3, 17,
25, 26]. During the last decades, many algorithms for solving VIs have been proposed in the
literature, see e.g. [15, 16, 17, 25]. Typically, some kinds of monotonicity are needed for proving the
convergence of proposed algorithms. While most of the existing methods are applicable to solving
monotone VIs, there are only a few methods can be applied to solving pseudomonotone VIs. It
is well known that pseudoconvexity of a function can be characterized by pseudomonotonicity of
the gradient mapping [2, 20]. One of the most important applications of pseudoconvex problem
is the fractional programming. Indeed, a fractional function is pseudocovex provided that the
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enumerator is convex, the denominator is concave and both of them are positive and differentiable
[5]. This motivates researchers to study numerical methods for solving pseudoconvex programming
and pseudomonotone VIs.

Korpelevich [27] (also by Antipin [1] independently) introduced the extragradient method for
solving pseudomonotone VIs, which requires two projections onto the feasible set in each iteration.
One of the important extensions of the extragradient method is the projection and contraction
method proposed by He [21] and Sun [38]. This method also consists of two inner steps per
iteration but using a different direction which improved significantly the speed of convergence
when compared with the extragradient method [6, 21, 38]. Another important extension of the
extragradient method is known as the subgradient extragradient method proposed by Censor et
al. [11]. In this method, the second projection onto the feasible set is replaced by a projection
onto an easy and constructible half-space containing the feasible set. Since the projection onto
a half-space is explicit, the subgradient extragradient method significantly reduces the amount of
computation comparing to the extragradient method. A combination of these extensions has been
recently considered in [14], which takes advantages of both the projection contraction method and
the subgradient extragradient method. A drawback of this method is that, to determine stepsizes,
it requires line-search procedures containing many additional projections.

The extragradient method and its modifications have been considered for solving VIs in infinite
dimensional Hilbert spaces. It was proved that, if the assigned operator is monotone and Lipschitz
continuous, then the iterative sequence generated by the extragradient method converges weakly to
a solution [23]. Similar results have been also obtained for the subgradient extragradient method
[9, 10, 40] and the projection contraction method [13, 14]. The extension of these methods to
pseudomonotone VIs, however, is not a trivial task. The reason is that, in the monotone setting,
one can use the theory of maximal monotone operators to deliver the convergence of the iterative
sequence, which is not the case in the pseudomonotone setting. The first attempt in this direction
was done in [8], where the authors assumed that the assigned operator is weakly-strongly continuous,
i.e., it maps a weakly convergent sequence to a strongly convergence sequence. This assumption
is very strong and does not hold even in the simplest case where the assigned operator is the
identity one. Recently it has been weakened to a more reasonable weak-weak continuity condition
for the extragradient method in [42, 43]. Similar results for the subgradient extragradient method
[42, Remark 3.3] and the forward-backward-forward method [4] were proved by using the same
technique. In the convergence analysis of these methods, it is required to know the Lipschitz
constant a priori, which is not a simple task. In this paper, motivated by recently active research
on pseudomonotone VIs, we propose some new modified schemes of the subgradient extragradient
method for solving pseudomonotone and Lipschitz-continuous variational inequalities in real Hilbert
spaces. Our schemes have some significant advantages: firstly, no line-search procedure is needed,
which reduces the amount of computation in each step. Secondly, they do not require a priori
the knowledge of the Lipschitz constant of the associated operator, which is important in practice.
Lastly, they are applicable to pseudomonotone VIs, a strictly broader class than monotone VIs
[2, 20].

After recalling the problem and some basic definitions and results in Section 2, we propose
our first scheme and prove the weak convergence of the iterative sequence to a solution of the
considered VI in Section 3. As we are working in infinite dimensional Hilbert spaces, the strong
convergence is more desirable. Therefore, in Section 4, we modify the first scheme such that
the strong convergence can be guaranteed. In Section 5 we present some numerical experiments
illustrating the performance of the proposed methods. To demonstrate the pseudomonotonicity,
we present numerical results for a class of fractional programming which is pseudoconvex. For the
strong convergence illustration, we consider a class of VIs arising in optimal control problem with
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bang-bang control. Final remarks and conclusions are given in Section 6.

2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. The weak convergence of
{xn} to x is denoted by xn ⇀ x as n→∞, while the strong convergence of {xn} to x is written as
xn → x as n→∞. For all x, y ∈ H we have

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉. (2)

Moreover

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y − z‖2 (3)

for all α, β, γ ∈ [0, 1] with α+ β + γ = 1.

Definition 2.1. ([32, Chapter 9]). Suppose that a sequence {xn} in H converges strongly to p ∈ H.
We say that {xn} converges to p with a Q-linear rate if there exists δ ∈ (0, 1) such that,

lim sup
n→∞

‖xn+1 − p‖
‖xn − p‖

= δ, (4)

where Q-convergence rate means Quotient-convergence rate. It can define equivalently as follows:
The sequence {xn} in H converges strongly to p ∈ H with a Q-linear rate if there exists δ ∈ (0, 1)

such that,
‖xn+1 − p‖ ≤ δ‖xn − p‖ for all sufficiently large n (5)

Definition 2.2. Let T : H → H be an operator. Then

1. T is called L-Lipschitz continuous with constant L > 0 if

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ H,

if L = 1 then the operator T is called nonexpansive and if L ∈ (0, 1), T is called a contraction.

2. T is called monotone if
〈Tx− Ty, x− y〉 ≥ 0 ∀x, y ∈ H;

3. T is called pseudomonotone in the sense of Karamardian [22] if

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ 0 ∀x, y ∈ H; (6)

4. T is called α-strongly monotone if there exists a constant α > 0 such that

〈Tx− Ty, x− y〉 ≥ α‖x− y‖2 ∀x, y ∈ H;

5. T is called α-strongly pseudomonotone if there exists a constant α > 0 such that

〈Tx, y − x〉 ≥ 0 =⇒ 〈Ty, y − x〉 ≥ α‖x− y‖2 ∀x, y ∈ H;

6. The operator T is called sequentially weakly continuous if for each sequence {xn} we have:
xn converges weakly to x implies Txn converges weakly to Tx.
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We note that (6) is only one of the definitions of pseudomonotonicity which can be found in the
literature. For every point x ∈ H, there exists a unique nearest point in C, denoted by PCx such
that ‖x − PCx‖ ≤ ‖x − y‖ ∀y ∈ C. PC is called the metric projection of H onto C. It is known
that PC is nonexpansive. For properties of the metric projection, the interested reader could be
referred to Section 3 in [19].

We recall some well known projection methods for solving (pseudo)monotone VIs considered
in the literature. The most well known one is extragradient method proposed by Korpelevich [27]
(also by Antipin [1] independently). Consider the Euclidean space Rm and let A : Rm → Rm be
monotone and L-Lipschitz continuous operator. The extragradient method has the following form{

yn = PC(xn − τnAxn),

xn+1 = PC(xn − τnAyn),
(7)

where τn ∈ (0, 1/L) or τn is updated by an adaptive rule such that

τn‖Axn −Ayn‖ ≤ µ‖xn − yn‖, µ ∈ (0, 1). (8)

Observe that the extragradient method requires the evaluation of two orthogonal projections
onto C per iteration. The first method which overcomes this obstacle is the projection and con-
traction method (PC) of He [21] and Sun [38]. For each iteration n ∈ N generates point yn in the
spirit of (7):

yn = PC(xn − τnAxn),

and then the next iterate xn+1 is generated via the following

xn+1 = xn − γηnd(xn, yn),

where γ ∈ (0, 2),

ηn :=
〈xn − yn, d(xn, yn)〉
‖d(xn, yn)‖2

,

and
d(xn, yn) := xn − yn − τn(Axn −Ayn), (9)

with τn ∈ (0, 1/L) or τn is updated by some adaptive rule like (8).
The second extension of the extragradient method is known as the subgradient extragradient

method proposed by Censor et al. [9, 10, 11]. In this algorithm, the second projection onto the
feasible set C is replaced by a projection onto an easy and constructible set which contains C. For
each n ∈ N generate the following sequences,

yn = PC(xn − τAxn),

Tn = {x ∈ H | 〈xn − τAxn − yn, x− yn〉 ≤ 0},
xn+1 = PTn(xn − τAyn),

where τ ∈ (0, 1/L).
Since the projection and contraction and the subgradient extragradient methods require to cal-

culate only one projection onto C per iteration, their computational efforts and performance have
an advantage over other existing results in the literature. Recently, [14] introduced a modification
of the subgradient extragradient method by using the direction of the projection and contraction
method and stepsize rule τn satisfying (8). The fact that in order to determine the stepsize τn,
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[14, Algorithm 3.1] requires a line-search procedure which contains additional projections. At iter-
ation n, if this procedure requires many steps to obtain the appropriate τn then many projections
are needed. On the other hand, [44] proposed two modifications of the subgradient extragradient
method without using the projection contraction direction (9) but an adaptive rule which does not
require line-search. Observe that the aforementioned methods are applicable to solving monotone
Lipschitz VIs. We will propose in this paper some new methods improving the aforementioned
methods. To do so, we need to recall the following Lemmas, which are useful for the later conver-
gence analysis.

Lemma 2.1. ([19]) Let C be a nonempty closed convex subset of a real Hilbert space H. Given
x ∈ H and z ∈ C. Then z = PCx⇐⇒ 〈x− z, z − y〉 ≥ 0 ∀y ∈ C. Moreover,

‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 ∀x, y ∈ C.

Lemma 2.2. ([31]) Let C be a nonempty set of H and {xn} be a sequence in H such that the
following two conditions hold:
i) for every x ∈ C, limn→∞ ‖xn − x‖ exists;
ii) every sequential weak cluster point of {xn} is in C.
Then {xn} converges weakly to a point in C.

Lemma 2.3. ([12]) Consider the problem V I(C,A) with C being a nonempty, closed, convex subset
of a real Hilbert space H and A : C → H being pseudomonotone and continuous. Then, x∗ is a
solution of V I(C,A) if and only if

〈Ax, x− x∗〉 ≥ 0 ∀x ∈ C.

Lemma 2.4. ([35]) Let {an} be sequence of nonnegative real numbers, {αn} be a sequence of real
numbers in (0, 1) with

∑∞
n=1 αn =∞ and {bn} be a sequence of real numbers. Assume that

an+1 ≤ (1− αn)an + αnbn ∀n ≥ 1.

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

} of {an} satisfying lim infk→∞(ank+1 − ank
) ≥ 0

then limn→∞ an = 0.

3 Weak Convergence Analysis

In this section, we propose modified subgradient extragradient and projection contraction methods
for solving VIs.

Algorithm 3.1.

Initialization: Given τ0 > 0, µ ∈ (0, 1), γ ∈ (0, 2). Let u0 ∈ H be arbitrary

Iterative Steps: Given the current iterate un, calculate un+1 as follows:

Step 1. Compute
vn = PC(un − τnAun).

If un = vn or Avn = 0 then stop and vn is a solution of Ω. Otherwise
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Step 2. Compute
un+1 = PTn(un − γτnηnAvn),

where
Tn = {x ∈ H | 〈un − τnAun − vn, x− vn〉 ≤ 0},

ηn :=


〈un − vn, dn〉
‖dn‖2

if dn 6= 0,

0 if dn = 0,

and
dn := un − vn − τn(Aun −Avn).

Step 3. Update

τn+1 := µ
‖un − vn‖
‖Aun −Avn‖

if τn‖Aun −Avn‖ > µ‖un − vn‖, otherwise τn+1 := τn. (10)

Set n := n+ 1 and go to Step 1.

Observe that the projection onto half-space Tn in Step 2 is explicit [7, Section 4.1.3, p. 133],
therefore, Algorithm 3.1 requires only one projection in Step 1. Moreover, the stepsize τn is updated
adaptively in Step 3 without requiring the knowledge of the Lipschitz constant L. We start the
convergence analysis by proving the following Lemma.

Lemma 3.1. Assume that A is L-Lipschitz continuous on H. Then the sequence {τn} generated
by (10) is nonincreasing and

lim
n→∞

τn = τ ≥ min
{
τ0,

µ

L

}
.

Moreover
‖Aun −Avn‖ ≤

µ

τn+1
‖un − vn‖. (11)

Proof: It is easy to prove this lemma, hence we omit it.
If at some iteration we have un = vn or Avn = 0 then Algorithm 3.1 terminates and vn ∈ Ω.

From now on, we assume that un 6= vn and Avn 6= 0 for all n.

Lemma 3.2. Assume that A is Lipschitz continuous on H and pseudomonotone on C. Then for
every x∗ ∈ Ω, there exists n0 > 0 such that

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − un+1 − γηndn‖2 − (2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ∀n ≥ n0.

Proof: Using (11), we have

‖dn‖ = ‖un − vn − τn(Aun −Avn)‖
≥ ‖un − vn‖ − τn‖Aun −Avn‖

≥ ‖un − vn‖ −
µτn
τn+1

‖un − vn‖

=

(
1− µτn

τn+1

)
‖un − vn‖. (12)
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Since limn→∞

(
1− µτn

τn+1

)
= 1− µ > 0, there exists n0 ∈ N such that

1− µτn
τn+1

>
1− µ

2
∀n ≥ n0.

Therefore, for all n ≥ n0 we get

‖dn‖ ≥
1− µ

2
‖un − vn‖ > 0. (13)

Since x∗ ∈ Ω ⊂ C ⊂ Tn, using Lemma 2.1 we have

‖un+1 − x∗‖2 =‖PTn(un − γηnτnAvn)− PTnx∗‖2

≤〈un+1 − x∗, un − γηnτnAvn − x∗〉

=
1

2
‖un+1 − x∗‖2 +

1

2
‖un − γηnτnAvn − x∗‖2 −

1

2
‖un+1 − un + γηnτnAvn‖2

=
1

2
‖un+1 − x∗‖2 +

1

2
‖un − x∗‖2 +

1

2
γ2η2

nτ
2
n‖Avn‖2 − 〈un − x∗, γηnτnAvn〉

− 1

2
‖un+1 − un‖2 −

1

2
γ2η2

nτ
2
n‖Avn‖2 − 〈un+1 − un, γηnτnAvn〉

=
1

2
‖un+1 − x∗‖2 +

1

2
‖un − x∗‖2 −

1

2
‖un+1 − un‖2 − 〈un+1 − x∗, γηnτnAvn〉.

This implies that

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − ‖un+1 − un‖2 − 2γηnτn〈un+1 − x∗, Avn〉. (14)

Since vn ∈ C and x∗ ∈ Ω,we get 〈Ax∗, vn − x∗〉 ≥ 0. By the pseudomonotonicity of A, we have
〈Avn, vn − x∗〉 ≥ 0, which implies

〈Avn, un+1 − x∗〉 ≥ 〈Avn, un+1 − vn〉.

Thus, we obtain
−2γηnτn〈Avn, un+1 − x∗〉 ≤ −2γηnτn〈Avn, un+1 − vn〉. (15)

On the other hand, from un+1 ∈ Tn we have

〈un − τnAun − vn, un+1 − vn〉 ≤ 0.

This implies that

〈un − vn − τn(Aun −Avn), un+1 − vn〉 ≤ τn〈Avn, un+1 − vn〉,

thus
〈dn, un+1 − vn〉 ≤ τn〈Avn, un+1 − vn〉.

Hence
−2γηnτn〈Avn, un+1 − vn〉 ≤ −2γηn〈dn, un+1 − vn〉. (16)

Combining (15) and (16) we get

−2γηnτn〈Avn, un+1 − x∗〉 ≤ −2γηn〈dn, un+1 − vn〉
= −2γηn〈dn, un − vn〉+ 2γηn〈dn, un − un+1〉. (17)
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From (13), we have dn 6= 0 ∀n ≥ n0, thus ηn =
〈un − vn, dn〉
‖dn‖2

, which means

〈un − vn, dn〉 = ηn‖dn‖2 ∀n ≥ n0. (18)

Moreover

2γηn〈dn, un − un+1〉 = 2〈γηndn, un − un+1〉
= ‖un − un+1‖2 + γ2η2

n‖dn‖2 − ‖un − un+1 − γηndn‖2. (19)

Combining (17), (18) and (19) we get for all n ≥ n0 that

−2γηnτn〈Avn, un+1 − x∗〉 ≤ −2γη2
n‖dn‖2 + ‖un − un+1‖2 + γ2η2

n‖dn‖2 − ‖un − un+1 − γηndn‖2

= ‖un − un+1‖2 − ‖un − un+1 − γηndn‖2 − (2− γ)γη2
n‖dn‖2. (20)

Substituting (20) into (14) we get

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − un+1 − γηndn‖2 − (2− γ)γη2
n‖dn‖2. (21)

Now, we estimate ηn. We have from (11) that

‖dn‖ ≤ ‖un − vn‖+ τn‖Aun −Avn‖ ≤
(

1 +
µτn
τn+1

)
‖un − vn‖.

Hence

‖dn‖2 ≤
(

1 +
µτn
τn+1

)2

‖un − vn‖2,

or equivalently
1

‖dn‖2
≥ 1(

1 +
µτn
τn+1

)2

‖un − vn‖2
.

Again from (11) we find

〈un − vn, dn〉 = ‖un − vn‖2 − τn〈un − vn, Aun −Avn〉
≥ ‖un − vn‖2 − τn‖un − vn‖‖Aun −Avn‖

≥ ‖un − vn‖2 −
µτn
τn+1

‖un − vn‖2

=

(
1− µτn

τn+1

)
‖un − vn‖2. (22)

Hence for all n ≥ n0

ηn‖dn‖2 = 〈un − vn, dn〉 ≥
(

1− µτn
τn+1

)
‖un − vn‖2 (23)

and

ηn =
〈un − vn, dn〉
‖dn‖2

≥

(
1− µτn

τn+1

)
(

1 +
µτn
τn+1

)2 . (24)
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Combining (23) and (24), we get

η2
n‖dn‖2 ≥

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ∀n ≥ n0. (25)

It follows from (21) and (25) that

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − un+1 − γηndn‖2 − (2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ∀n ≥ n0.

In the following result, we use the technique developed in [41, Lemma 3.3], where the sequential
weak continuity of A plays the key role, see also [42, 43].

Lemma 3.3. Assume that A is Lipschitz continuous, pseudomonotone on H and sequentially
weakly continuous on C. If there exists a subsequence {unk

} convergent weakly to z ∈ H and
limk→∞ ‖unk

− vnk
‖ = 0, then z ∈ Ω.

Remark 3.1. The imposed sequential weak lower semicontinuity of ‖Ax‖ can be omitted in one
of the following cases: either A is monotone (see, [43]), or A is strongly pseudomonotone (see
Theorem 3.2 below).

We are now in the position to establish the first main result of this section.

Theorem 3.1. Assume that A is Lipschitz continuous, pseudomonotone on H and sequentially
weakly continuous on C. Then the sequence {un} generated by Algorithm 3.1 converges weakly to
an element of Ω.

Proof: Let p ∈ Ω. Thanks to Lemma 3.2 there exists n0 > 0 such that

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − un+1 − γηndn‖2 − (2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ∀n ≥ n0.

Thus
‖un+1 − x∗‖ ≤ ‖un − x∗‖ ∀n ≥ n0.

This implies that limn→∞ ‖un−x∗‖ exists, thus the sequence {un} is bounded. On the other hand,
according to Lemma 3.2, we get

(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ≤ ‖un − x∗‖2 − ‖un+1 − x∗‖2 ∀n ≥ n0.

This implies that
lim
n→∞

‖un − vn‖ = 0. (26)

9



Consequently, {vn} is bounded. Since {un} is a bounded sequence, there exists the subsequence
{unk

} of {un} such that {unk
} converges weakly to z ∈ H. It follows from Lemma 3.3 and (26)

that z ∈ Ω.
Therefore, we have showed that:

i) For every x∗ ∈ Ω, then limn→∞ ‖un − x∗‖ exists;

ii) Every sequential weak cluster point of the sequence {un} is in Ω.

By Lemma 2.2 the sequence {un} converges weakly to an element of Ω.

Remark 3.2. 1. Our result improves the related results in the literature and hence might be
applied to a wider class of mappings. For example, we next present the advantage of our
method compared with the recent result [14, Theorem 3.1]. In Theorem 3.1, A : H → H
is assumed to be pseudomonotone on H and sequentially weakly continuous on C instead of
monotone on H in [14]. In particular, unlike [14, Algorithm 3.1] we use only one projection
on the feasible set to design the proposed algorithm. Comparing with [39], our method does
not require any line-search.

2. Similar to [4], since the sequence (un)n≥0 generated by Algorithm 3.1 may not be feasible, we
need to ask in the convergence analysis that A is Lipschitz continuous on the whole space H.
However, if the feasible set C is bounded, then we can weaken this assumption by asking that
A is Lipschitz continuous on the bounded set

D := {x+ y : x ∈ C, ‖y‖ ≤ d} ,

where d denotes the diameter of C (see [4, Remark 3.3]).

Before ending this section, we provide a result on the convergence rate of the iterative sequence
generated by Algorithm 3.1.

Theorem 3.2. Assume that A is L-Lipschitz continuous on H and κ-strongly pseudomonotone on
C. Then the sequence {un} generated by Algorithm 3.1 converges strongly to the unique solution
x∗ of (1) with a Q-linear rate.

Proof: Under assumptions made, it was proved that (1) has a unique solution [24].
Since 〈Avn, vn−x∗〉 ≥ κ‖vn−x∗‖2, from the κ-strong pseudomonotonicity of A, using (11) we have

〈Aun, x∗ − vn〉 = 〈Aun −Avn, x∗ − vn〉 − 〈Avn, vn − x∗〉
≤ ‖Aun −Avn‖‖vn − x∗‖ − κ‖vn − x∗‖2

≤ µ

τn+1
‖un − vn‖‖vn − x∗‖ − κ‖vn − x∗‖2.

By the definition of vn we have

〈un − τnAun − vn, vn − x∗〉 ≥ 0.

Therefore

〈un − vn, x∗ − vn〉 ≤ τn〈Aun, x∗ − vn〉

≤ µτn
τn+1

‖un − vn‖‖vn − x∗‖ − τnκ‖vn − x∗‖2.

10



Thus

τnκ‖vn − x∗‖2 ≤
µτn
τn+1

‖un − vn‖‖vn − x∗‖ − 〈un − vn, vn − x∗〉

≤ µτn
τn+1

‖un − vn‖‖vn − x∗‖+ ‖un − vn‖‖vn − x∗‖

=

(
1 +

µτn
τn+1

)
‖un − vn‖‖vn − x∗‖.

This implies that

τnκ‖vn − x∗‖ ≤
(

1 +
µτn
τn+1

)
‖un − vn‖. (27)

Since τn ≥ τ := min
{
τ0,

µ

L

}
for all n ∈ N and limn→∞ τn = τ > 0, there exists β > 0 such that

τ ≤ τn ≤ β for all n. Therefore, together with (27) we get

τκ‖vn − x∗‖ ≤
(

1 +
µβ

τ

)
‖un − vn‖ =

τ + µβ

τ
‖un − vn‖.

Thus,

‖vn − x∗‖ ≤
τ + µβ

τ2κ
‖un − vn‖.

Moreover,

‖un − x∗‖ ≤ ‖un − vn‖+ ‖vn − x∗‖ ≤
(

1 +
τ + µβ

τ2κ

)
‖un − vn‖.

This implies that

‖un − vn‖ ≥
τ2κ

τ2κ+ τ + µβ
‖un − x∗‖. (28)

From Lemma 3.2, there exists n0 > 0 large enough such that

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − (2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ∀n ≥ n0, (29)

1− µτn
τn+1

>
1− µ

2
> 0 ∀n ≥ n0, (30)

and

1 +
µτn
τn+1

≤ 1 +
µβ

τ
. (31)

Combining (29), (30) and (31), we find that

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − (2− γ)γ

(
1− µ

2

)2

(
1 +

µβ

τ

)2 ‖un − vn‖
2 ∀n ≥ n0. (32)
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Substituting (28) into (32), we get

‖un+1 − x∗‖2 ≤ ‖un − x∗‖2 − (2− γ)γ

(
1− µ

2

)2

(
1 +

µβ

τ

)2

(
τ2κ

τ2κ+ τ + µβ

)2

‖un − x∗‖2

=

1− (2− γ)γ

(
1− µ

2

)2

(
1 +

µβ

τ

)2

(
τ2κ

τ2κ+ τ + µβ

)2

 ‖un − x∗‖2 ∀n ≥ n0. (33)

Setting

r := 1− (2− γ)γ

(
1− µ

2

)2

(
1 +

µβ

τ

)2

(
τ2κ

τ2κ+ τ + µβ

)2

,

we obtain
‖un+1 − x∗‖2 ≤ r‖un − x∗‖2 ∀n ≥ n0,

which implies that r ≥ 0. Moreover, it is clear that r < 1. Hence, the preceding inequality shows
that {un} converges linearly to x∗ with a Q-linear convergence rate

√
r ∈ [0, 1).

4 Strong Convergence Analysis

Although Theorem 3.2 provides the strong convergence of Algorithm 3.1 with a Q-linear rate, the
restrictive condition that A is strongly pseudomonotone prevents its applications. In this section,
we incorporate the technique of Mann type method [29, 34] into Algorithm 3.1 to relax the condition
strongly pseudomonotone and still obtain the strong convergence. The algorithm is of the form:

Algorithm 4.1.

Initialization: Given τ0 > 0, µ ∈ (0, 1), γ ∈ (0, 2). Let u0 ∈ H be arbitrary

Iterative Steps: Given the current iterate un, calculate un+1 as follows:

Step 1. Compute
vn = PC(un − τnAun),

If un = vn or Avn = 0 then stop and vn is a solution of Ω. Otherwise

Step 2. Compute
zn = PTn(un − γτnηnAvn),

where
Tn = {x ∈ H | 〈un − τnAun − vn, x− vn〉 ≤ 0},

ηn :=


〈un − vn, dn〉
‖dn‖2

if dn 6= 0,

0 if dn = 0,

12



and
dn := un − vn − τn(Aun −Avn).

Step 3. Compute
un+1 = (1− αn − βn)un + βnzn,

update

τn+1 := µ
‖un − vn‖
‖Aun −Avn‖

if τn‖Aun −Avn‖ > µ‖un − vn‖, otherwise τn+1 := τn. (34)

Set n := n+ 1 and go to Step 1.

To guarantee the strong convergence, we assume that the sequences {αn} and {βn} satisfy the
following condition.

Condition 4.1. Let {αn} and {βn} be two real sequences in (0, 1) such that {βn} ⊂ (a, 1−αn) for
some a > 0 and

lim
n→∞

αn = 0,
∞∑
n=1

αn =∞.

The main result of this section is established as follow:

Theorem 4.1. Assume that A is Lipschitz continuous, pseudomonotone on H and sequentially
weakly continuous on C. Let {αn} and {βn} satisfy Condition 4.1. Then the sequence {un} gener-
ated by Algorithm 4.1 converges strongly to an element x∗ ∈ Ω, where ‖x∗‖ = arg min{‖z‖ : z ∈ Ω}.

Proof: First, we note from (13) that there always exists n0 ∈ N such that

‖dn‖ ≥
(

1− µτn
τn+1

)
‖un − vn‖ > 0 ∀n ≥ n0.

Furthermore, by Lemma 3.2, we have

‖zn − x∗‖2 ≤ ‖un − x∗‖2 − ‖un − zn − γηndn‖2 − (2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 ∀n ≥ n0. (35)

Thus
‖zn − x∗‖ ≤ ‖un − x∗‖ ∀n ≥ n0. (36)

The proof will be divided into several steps.

Step 1. The sequence {un} is bounded.
On the one hand, we have

‖un+1 − x∗‖ = ‖(1− αn − βn)un + βnzn − x∗‖
= ‖(1− αn − βn)(un − x∗) + βn(zn − x∗)− αnx∗‖
≤ ‖(1− αn − βn)(un − x∗) + βn(zn − x∗)‖+ αn‖x∗‖. (37)
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On the other hand, from (36) we obtain that for all n ≥ n0

‖(1−αn − βn)(un − x∗) + βn(zn − x∗)‖
≤(1− αn − βn)‖un − x∗‖+ βn‖zn − x∗‖
≤(1− αn − βn)‖un − x∗‖+ βn‖un − x∗‖
=(1− αn)‖un − x∗‖,

which implies

‖(1− αn − βn)(un − x∗) + βn(zn − x∗)‖ ≤ (1− αn)‖un − x∗‖ ∀n ≥ n0. (38)

Combining (37) and (38), we deduce

‖un+1 − x∗‖ ≤ (1− αn)‖un − x∗‖+ αn‖x∗‖
≤ max{‖un − x∗‖, ‖x∗‖}
≤ ... ≤ max{‖un0 − x∗‖, ‖x∗‖},

which means that the sequence {un} is bounded and so is {zn}.

Step 2. We prove that

a(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 + a‖un − zn − γηndn‖2 (39)

≤‖un − x∗‖2 − ‖un+1 − x∗‖2 + αn‖x∗‖2 ∀n ≥ n0. (40)

Indeed, using (3) we have

‖un+1 − x∗‖2 =‖(1− αn − βn)un + βnzn − x∗‖2

=‖(1− αn − βn)(un − x∗) + βn(zn − x∗) + αn(−x∗)‖2

=(1− αn − βn)‖un − x∗‖2 + βn‖zn − x∗‖2 + αn‖x∗‖2 − βn(1− αn − βn)‖un − zn‖2

− αn(1− αn − βn)‖un‖2 − αnβn‖zn‖2

≤(1− αn − βn)‖un − x∗‖2 + βn‖zn − x∗‖2 + αn‖x∗‖2. (41)
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It follows from (35) and (41) that for all n ≥ n0

‖un+1 − x∗‖2 ≤(1− αn − βn)‖un − x∗‖2 + βn‖un − x∗‖2 − βn‖un − zn − γηndn‖2

− βn(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 + αn‖x∗‖2

=(1− αn)‖un − x∗‖2 − βn‖un − zn − γηndn‖2

− βn(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 + αn‖x∗‖2

≤‖un − x∗‖2 − βn‖un − zn − γηndn‖2

− βn(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 + αn‖x∗‖2. (42)

Hence

βn(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 + βn‖un − zn − γηndn‖2

≤‖un − x∗‖2 − ‖un+1 − x∗‖2 + αn‖x∗‖2 ∀n ≥ n0.

Moreover, since bn ≥ a for all n, we obtain

a(2− γ)γ

(
1− µτn

τn+1

)2

(
1 +

µτn
τn+1

)2 ‖un − vn‖
2 + a‖un − zn − γηndn‖2

≤‖un − x∗‖2 − ‖un+1 − x∗‖2 + αn‖x∗‖2 ∀n ≥ n0.

Step 3. We claim that

‖un+1 − x∗‖2 ≤ (1− αn)‖un − x∗‖2 + αn[2βn‖un − zn‖‖un+1 − x∗‖+ 2〈x∗, x∗ − un+1〉] ∀n ≥ n0.

Indeed, setting tn = (1− βn)un + βnzn. We have for all n ≥ n0

‖tn − x∗‖ = ‖(1− βn)(un − x∗) + βn(zn − x∗)‖
= (1− βn)‖un − x∗‖+ βn‖zn − x∗‖
≤ (1− βn)‖un − x∗‖+ βn‖un − x∗‖
= ‖un − x∗‖, (43)

and
‖tn − un‖ = βn‖un − zn‖. (44)
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Using (2), (43) and (44) we get for all n ≥ n0 that

‖un+1 − x∗‖2 =‖(1− αn − βn)un + βnzn − x∗‖2

=‖(1− βn)un + βnzn − αnun − x∗‖2

=‖(1− αn)(tn − x∗)− αn(un − tn)− αnx∗‖2

≤(1− αn)2‖tn − x∗‖2 − 2〈αn(un − tn) + αnx
∗, un+1 − x∗〉

=(1− αn)2‖tn − x∗‖2 + 2αn〈un − tn, x∗ − un+1〉+ 2αn〈x∗, x∗ − un+1〉
≤(1− αn)‖tn − x∗‖2 + 2αn‖un − tn‖‖un+1 − x∗‖+ 2αn〈x∗, x∗ − un+1〉
≤(1− αn)‖un − x∗‖2 + αn[2βn‖un − zn‖‖un+1 − x∗‖+ 2〈x∗, x∗ − un+1〉].

Step 4. Finally, it remains to prove that {‖un − x∗‖} converges to zero.
Indeed, by Lemma 2.4 it suffices to show that

lim sup
k→∞

(βnk
‖unk

− znk
‖‖unk+1 − x∗‖+ 〈x∗, x∗ − unk+1〉) ≤ 0

for every subsequence {‖unk
− x∗‖} of {‖un − x∗‖} satisfying

lim inf
k→∞

(‖unk+1 − x∗‖ − ‖unk
− x∗‖) ≥ 0.

For this, suppose that {‖unk
− x∗‖} is a subsequence of {‖un − x∗‖} such that

lim inf
k→∞

(‖unk+1 − x∗‖ − ‖unk
− x∗‖) ≥ 0.

Then

lim inf
k→∞

(‖unk+1−x∗‖2−‖unk
−x∗‖2) = lim inf

k→∞
[(‖unk+1−x∗‖−‖unk

−x∗‖)(‖unk+1−x∗‖+‖unk
−x∗‖)] ≥ 0.

By Step 2 we obtain

lim sup
k→∞

(a(2− γ)γ

(
1− µτnk

τnk+1

)2

(
1 +

µτnk

τnk+1

)2 ‖unk
− vnk

‖2 + a‖unk
− znk

− γηnk
dnk
‖)

≤ lim sup
k→∞

[‖unk
− x∗‖2 − ‖unk+1 − x∗‖2 + αnk

‖x∗‖2]

≤ lim sup
k→∞

[‖unk
− x∗‖2 − ‖unk+1 − x∗‖2] + lim sup

k→∞
αnk
‖x∗‖2

= − lim inf
k→∞

[‖unk+1 − x∗‖2 − ‖unk
− x∗‖2]

≤ 0.

This implies that

lim
k→∞

‖unk
− vnk

‖ = 0, lim
k→∞

‖unk
− znk

− γηnk
dnk
‖ = 0. (45)

Now, we prove that
lim
k→∞

‖unk+1 − unk
‖ = 0. (46)
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Indeed, we have

0 <

(
1− µτn

τn+1

)
‖un − vn‖ ≤ ‖dn‖ ≤

(
1 +

µτn
τn+1

)
‖un − vn‖ ∀n ≥ n0. (47)

This implies that

0 <
1(

1 +
µτn
τn+1

)2

‖un − vn‖2
≤ 1

‖dn‖2
≤ 1(

1− µτn
τn+1

)2

‖un − vn‖2
∀n ≥ n0. (48)

Moreover from (22), (11) and the definition of dn we obtain

0 <

(
1− µτn

τn+1

)
‖un − vn‖2 ≤ 〈un − vn, dn〉 ≤

(
1 +

µτn
τn+1

)
‖un − vn‖2 ∀n ≥ n0. (49)

From (48) and (49), we have

0 < ηn =
〈un − vn, dn〉
‖dn‖2

≤

(
1 +

µτn
τn+1

)
(

1− µτn
τn+1

)2 ∀n ≥ n0. (50)

It follows from (45) and (47) that
lim
k→∞

‖dnk
‖ = 0.

By (50) we get

ηnk
‖dnk
‖ ≤

(
1 +

µτnk

τnk+1

)
(

1− µτnk

τnk+1

)2 ‖dnk
‖ → 0 as k →∞.

Hence
‖unk

− znk
‖ ≤ ‖unk

− znk
− γηnk

dnk
‖+ γηnk

‖dnk
‖ → 0 as k →∞.

Thus
‖unk+1 − unk

‖ ≤ αnk
‖unk

‖+ βnk
‖unk

− znk
‖ → 0 as k →∞.

Since the sequence {unk
} is bounded, it follows that there exists a subsequence {unkj

} of {unk
},

which converges weakly to some z ∈ H, such that

lim sup
k→∞

〈x∗, x∗ − unk
〉 = lim

j→∞
〈x∗, x∗ − unkj

〉 = 〈x∗, x∗ − z〉. (51)

From limk→∞ ‖unk
− vnk

‖ = 0 and Lemma 3.3, we have z ∈ Ω and, from (51) and the definition of
x∗ = PΩ0, we have

lim sup
k→∞

〈x∗, x∗ − unk
〉 = 〈x∗, x∗ − z〉 ≤ 0. (52)

Combining (46) and (52), we have

lim sup
k→∞

〈x∗, x∗ − unk+1〉 ≤ lim sup
k→∞

〈x∗, x∗ − unk
〉

= 〈x∗, x∗ − z〉 ≤ 0. (53)

Hence, by (53), limk→∞ ‖unk
− znk

‖ = 0, Step 3 and Lemma 2.4, we have limn→∞ ‖un − x∗‖ = 0.
This is the desired result.
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Table 1: Averaged over 100 tests for fractional problems of different size

Algorithm 3.1 Tseng’s method [4]

m Number of Iterations time(sec.) Number of Iterations. time

5 52.45 0.29 115.45 0.63

10 52.27 0.28 120.43 0.64

20 86.49 0.42 150.64 0.73

50 106.80 0.52 161.69 0.80

100 107.37 0.76 159.89 1.13

200 107.58 0.81 164.51 1.24

5 Numerical Illustrations

In this section, we present some numerical experiments to illustrate the performance of proposed
Algorithms. As we are interested in pseudo-monotone VIs, in the first experiment we consider a
class of pseudo-monotone VIs, which is not monotone. Consider the following quadratic fractional
programming of the following form

min
x∈C

f(x)

where f(x) := xTMx+aT x+c
bT x+d

and

C = {x ∈ Rm :

m∑
i=1

xi ≤ m, 0 ≤ xi ≤ 2m, i = 1, 2...,m},

The matrix M is positive semi-definite and all elements are generated randomly in (0, 5). Similarly,
vectors a, b and scalars c, d are generated randomly with elements in (0, 5). Clearly, this problem
is equivalent to VI(A,C) with

Ax = ∇f(x) :=

(
bTx+ d

)
(2Mx+ a)− b

(
xTMx+ aTx+ c

)
(bTx+ d)2 .

Since f is pseudo-convex [5], F is pseudo-monotone [20]. We compare Algorithm 3.1 with an
adaptive version of Tseng’s method [4]. We choose γ = 1 for Algorithm 3.1, and the same
parameters for both algorithms: τ0 = 1, µ = 0.9. All codes are implemented in Matlab 2019b
and we perform all computation on a MacBook Pro with 2.6 GHz Intel Core i7 and 16.00GB of
memory. For each value of m, we perform 100 tests with random data and compare the average
number of iterations and CPU time. The projections are computed using quadprog from Matlab.
The stopping condition is ‖un − vn‖ ≤ ε = 10−5. The results are displayed in Table 1. It can
be seen that Algorithm 3.1 outperforms the Tseng’s type method [4]. This is to be expected as
Algorithm 3.1 uses the direction of projection contraction method, whose advantage was showed in
[6, 21, 38].

In the second experiment, we provide computational experiments illustrating the strong con-
vergence method considered in Section 4 for solving VIs arising in optimal control problem. Let
0 < T ∈ R, we denote by L2([0, T ],Rm) the Hilbert space of square integrable, measurable vector
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function u : [0, T ]→ Rm with the inner product

〈u, v〉 =

∫ T

0
〈u(t), v(t)〉dt,

and norm
‖u‖2 =

√
〈u, u〉 <∞.

We consider the following optimal control problem:

u∗(t) = argmin{f(u) : u ∈ U}

on the interval [0, T ], assuming that such a control exists. Here U is the set of admissible controls,
which has the form of an m-dimensional box and consists of piecewise continuous function:

U =
{
u(t) ∈ L2([0, T ],Rm) : ui(t) ∈ [u−i , u

+
i ], i = 1, 2, . . . ,m

}
.

Specially, the control can be bang-bang (piecewise constant function).
The terminal objective has the form

f(u) = φ(x(T )),

where φ is a convex and differentiable function, defined on the attainability set.
Suppose that the trajectory x(t) ∈ L2([0, T ] satisfies constrains in the form of a system of linear
differential equation:

ẋ(t) = D(t)x(t) +B(t)u(t), x(0) = x0, t ∈ [0, T ],

where D(t) ∈ Rn×n, B(t) ∈ Rn×m are given continuous matrices for every t ∈ [0, T ]. By the
Pontryagin maximum principle there exists a function p∗ ∈ L2([0, T ] such that the triple (x∗, p∗, u∗)
solves for a.e. t ∈ [0, T ] the system{

ẋ∗(t) = D(t)x∗(t) +B(t)u∗(t)

x∗(0) = x0,{
ṗ∗(t) = −D(t)>p∗(t)

p∗(T ) = ∇g(x(T )),

0 ∈ B(t)>p∗(t) +NU (u∗(t)), (54)

where NU (u) is the normal cone to U at u defined by

NU (u) :=

{
∅ if u /∈ U,
{` ∈ H : 〈`, v − u〉 ≤ 0, ∀v ∈ U} if u ∈ U.

Denoting Gu(t) := B(t)>p(t), it is known that Gu is the gradient of the objective cost function f
[30]. We can write (54) as the following monotone variational inequality

〈Gu∗, v − u∗〉 ≥ 0 ∀v ∈ U.

The following example is the control of a harmonic oscillator taken from [33, Example 7].

minimize x2(3π)
subject to ẋ1(t) = x2(t),

ẋ2(t) = −x1(t) + u(t), ∀t ∈ [0, 3π],
x(0) = 0,
u(t) ∈ [−1, 1].
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The exact optimal control in this problem is known:

u∗(t) =

{
1 if t ∈ [0, π/2) ∪ (3π/2, 5π/2),

−1 if t ∈ (π/2, 3π/2) ∪ (5π/2, 3π].

We choose the following parameters for Algorithm 4.1:

τ0 = 1, µ = 0.95, γ = 1, αn = 10−4/(n+ 1), βn = 0.95− αn.

The initial control u0(t) is chosen randomly in [−1, 1], and the stopping condition is Error=‖un+1−
un‖ ≤ ε = 10−5. The approximate solution is obtained after 102 iterations in 0.095288 seconds of
CPU time as shown in Figure 1.
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Figure 1: Random initial control (green) and optimal control (red) on the left and optimal trajec-
tories on the right for the control of a harmonic oscillator computed by Algorithm 4.1.

In Figure 2 compares the performance of Algorithm 4.1 with three other strong convergence
algorithms: [28]-denoted by KS-Method, [36, Algorithm 3.1]- denoted by SI-Method and [43, Al-
gorithm 3.3]- denoted by SV-Method. For the KS-Method, we choose adpative stepsize λn+1 =

min
{
λn,

µ‖yn−xn‖
‖Ayn−Axn‖

}
since the Lipschitz constant of A is not available. For [36, Algorithm 3.1] we

choose µ = 0.5, ρ = 0.5 and for [43, Algorithm 3.3] we choose γ = 0.5, ρ = 0.5 as used in these
papers. It can be seen that Algorithm 4.1 is takes advantage comparing with the other methods.

6 Conclusions

In this paper we presented some improved results of the subgradient extragradient method for
solving pseudomonotone variational inequalities in real Hilbert spaces. The algorithms require
the calculation of only one projection onto the feasible set C per iteration. Using an adaptive
stepsize rule, the convergence of the proposed algorithms does not require knowledge of the Lipschitz
constant of A in priori. Numerical experiments for fractional programming and optimal control
problems are presented to illustrate the performance of the new methods.
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Figure 2: Comparision Algorithm 4.1 with three other strong convergence algorithms
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