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ABsTrRACT. We present a market model of a liberalized aviation market with
independent decision makers. The model consists of a hierarchical, trilevel
optimization problem where perfectly-competitive budget-constrained airports
decide (in the first level) on optimal runway capacity extensions and airport
charges by anticipating long-term fleet investment and medium-term aircraft
scheduling decisions taken by a set of imperfectly-competitive airlines (in the
second level). Both airports and airlines anticipate the short-term outcome
of a perfectly-competitive ticket market (in the third level). We compare our
trilevel model to an integrated single-level (benchmark) model in which invest-
ments, scheduling, and market-clearing decisions are simultaneously taken by
a welfare-maximizing social planner. Using a simple six-airports example from
the literature, we illustrate the inefficiency of long-run investments in both run-
way capacity and aircraft fleet which may be observed in aviation markets with
imperfectly-competitive airlines.

1. INTRODUCTION

Over the past decades, many countries have liberalized their air transportation
sector—see, for instance, [12], [31], or [14]. This liberalization has lead to the cre-
ation of markets in which different airlines compete with each other and invest in
new aircraft on the basis of their expectations of the market outcomes and the corre-
sponding profits to be made. Regulated airports, by deciding on capacity extensions
and setting their charges, directly affect the outcomes of such markets while, at
the same time, they rely on an anticipation of the market outcomes (as well as on
the expected growth of passenger volumes) when taking long-term decisions. Such a
complex investment structure involving independent decision makers whose decisions
affect each other challenges traditional planning processes (see the literature review
below), which do not account for the interplay of the different investment decisions
made by the different players involved at different points in time and for their impact
on market outcomes.

The purpose of this paper is to introduce a new model capable of providing valuable
information on how to make optimal investments in a complex market environment
with many market participants (airlines and airport operators), which can also be of
interest to policy makers as a market-analysis tool. The model we propose features
three hierarchical levels which correspond to three different decision-making stages.
Focusing on a set of airports and airlines of interest in the context of a liberalized mar-
ket environment, the model allows for identifying which (optimal) capacity-expansion
options the airports should consider (in the first level) as well as which (optimal) long-
run investments in new aircraft and medium-term aircraft-scheduling decisions the
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airlines should make (in the second level) so as to maximize their own profits. As
the investment decisions of the airlines are based on their expected future profits,
our trilevel model also encompasses (in the third level) a model of the ticket market
which determines the corresponding ticket sales. Assuming imperfectly competitive
airlines, we quantify the investment inefficiencies of an imperfect aviation market by
comparing, experimentally, the results obtained with our trilevel model to those of a
single-level benchmark model with perfect competition among all players. The latter
is equivalent to assuming a benevolent social planner which, as the unique decision
maker, plans the whole industry in an integrated and welfare-maximizing way.

Quantitative models such as the one proposed in this paper can provide a valuable
tool to evaluate and assess airport extension projects as well as their interdependent
long-run effects on the airlines’ strategic decision making and policy making. Let us
motivate the relevance of our model by a current example.

1.1. Example. Given the lack of sufficient runway capacity of the two existing air-
ports of Istanbul, the Turkish authorities decided to build a third airport [54,[55]. On
the one hand, the currently observed airport congestion directly limits the operations
of any airline arriving at or departing from Istanbul. In particular, congestion highly
affects the planning decisions of the major local airline, Turkish Airlines, which, in
turn, depend on the (future) demand behavior of the passengers. On the other hand,
the expected fleet expansion strategy of Turkish Airlines and the anticipated future
passenger demand are the main reasons for the construction of the new airport, which
will have a capacity of 150 million passengers per year with estimated construction
costs of more than 32 billion Euro.

1.2. Previous works. Given the typically large-sized and computationally challeng-
ing problems in the airline industry, the operations research literature has identified
different classes of real-word problems which deal with certain aspects of the airline
operational and strategic planning processes—see [5] and [40] for an overview. Among
other aspects, these problems comprise schedule design (see [61], [45], and [15]), fleet
assignment (see [I], [36], [53], or [52]), and fleet planning (see, for instance, [46],
and [18]).

More recently, some authors have started to analyze integrated models which si-
multaneously account for several adjacent planning steps. For instance, [47] and [57]
elaborate on optimal schedule design and fleet assignment within a single planning
model. Based on these works, [44] combines network planning, scheduling, and air-
craft rotation in an integrated planning approach, while [28] focuses on an integrated
schedule design and aircraft maintenance routing. [I7] and [I6] propose a robust
approach covering an integrated airline schedule development/design and fleet as-
signment.

While our work is closely related to the literature on airport capacity extensions,
in the past the latter has, however, mainly built on very simplified models where, e.g.,
at most two airports are considered and/or airline fleet investments are completely
ignored—see, for instance, [68], [9], [67], [56], [60], and [43]. To the best of our
knowledge, no hierarchical models of the aviation market similar to ours, which (as
better explained in the remainder of the paper) involves multiple players taking
sequential decisions affecting each other, are present in the literature.

1.3. Outline of our paper. Our paper is organized as follows. Section [2| describes
the model framework we consider. The hierarchical, trilevel market model that we
introduce is presented in Section [3] Our reformulation of such model and the corre-
sponding approach that we propose for solving it are described in Section [ and [5}
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Section [6] presents the single-level benchmark model which we use as reference. Sec-
tion [7] discusses the results of a simplified case study with six airports, laying the
basis for future research on larger instances. Finally, Section [§] summarizes the main
findings of our work.

2. MODEL FRAMEWORK

In this section, we first describe the main structure of the market environment
we consider and introduce the basic market participants. Secondly, we present more
detailed information on these players, including their main characteristics, their cor-
responding key decision variables, and their profit and cost structures.

2.1. Overview of the Relevant Market Players. Given a set of planning periods
t € T of interest, we consider an inter-temporal problem where different players take
decisions affecting each others’ costs and revenues.

By the set NV, we model a set of airports which can decide to extend their current
runway capacity. For each airport n € N, we denote the corresponding decision
variable by x,, € NU {0}. The latter variable measures the maximum number of
takeoffs/landings that can take place at an airport within a single time period.

In an analogous way, we assume that different airlines, (modeled by the set A),
can make fleet-expansion decisions based on a set of possible aircraft types P,. For
each type p € P,, the variable y,, € NU {0} corresponds to the number of airplanes
of type p the airline decides to extend its fleet with.

We also assume that each airline can make a set of airplane-scheduling decisions.
Let C be a set of connections, and let ¢ € C, be the subset of connections that
can be served by airline a due to its exogenous business model. We refer to such
connections as actual. For technical modeling reasons (which we will better explain
in Subsection (3.2)), we also introduce a superset of connections C' O C, with C; D C,
for each airline a € A. C'\ C and C, \ C, contain dummy connections which we will
use to account for parking situations in which an aircraft stays at the same airport
for one or more time steps. With each connection ¢ € C, we associate a departure
time t9°P an arrival time ¢2, a departure airport 9P and an arrival airport (2.
Given the set C, we introduce the variable z,,. € N U {0} to model the number
of airplanes of type p € P that airline a € A decides to use to serve an (actual or
dummy) connection ¢ € C.

We model the number of tickets sold by airline a € A on an (actual) connection
¢ € C by the continuous variable w,. € R>¢. Lastly, we model the connection-specific
demand for each (actual) connection ¢ € C' by the nonnegative continuous variable
d. € Rzo.

An overview of the relevant market players and their main decisions is given in
Figure [T while Tables[6] [7 [§in Appendix [A]summarize the main sets, variables, and
parameters used in this work. As Figure[I]suggests, there is a clear temporal dimen-
sion to the decision process faced by the different players. We will further expand on
such temporal dimension in the trilevel model that we propose in Section

In order to simplify our notation, whenever a quantity such as x,, Yap, dc, Zapc, OF
W, 18 reported without one of its sub-/superscripts, this quantity is to be understood
as a collection containing as many elements as the number of different values the
missing sub-/superscript(s) can take. For instance, for each a € A, z, corresponds
t0 (2ape)pep, ceC, -

In the remainder of the section, we will look at the different players individually
and give some more details and insights on the way we model their behavior in this

paper.
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FI1GURE 2. Piecewise-linear Total Variable-Cost Function of an Airport

2.2. Airports.

2.2.1. Ezisting Runway Capacity and Airport Operation Costs. Given the set of air-
ports N of interest, we assume a given runway capacity £2™°'* for each airport n € N.
This value corresponds to the maximum number of takeoffs and landings that can
take place in that airport in a single time period before any investments take place.
Such a modeling choice is in line with the assumption of runways operated in a
so-called “mixed mode” (in which a runway is used for both landings and takeoffs),
which is the case in various airports all around the world.

We assume that the airports face flight-dependent costs when operating an airport
and handling arriving and departing flights, which we describe by the total variable-
cost function V™™ Tn this paper, we assume a piecewise-linear total variable-cost
function for each scheduled flight, an example of which is depicted in Figure[2 The
function consists of two different cost components and accounts for the total opera-
tional expenses of an airport. First, for each aircraft arriving at or departing from
airport n € N, a cost of a2™°™ ig incurred (independently of the number of pas-
sengers on board of the respective aircraft). This cost component may, for instance,
comprise taxi-in or taxi-out, parking, or gate-usage expenses. In addition, we assume
that, for each passenger on board of the aircraft, airport n € N faces additional costs
of faPort "which include, e.g., baggage handling, passenger transportation, or secu-
rity checking on a per-capita basis.

Let 6%(C,) be the set of all (actual) ingoing connections at airport n € N of
airline a € A. Analogously, let 629¢(C,,) be the corresponding set of outgoing (actual)
connections. By letting 4,,(C,) := 6i*(C,) U 52" (C,), the total variable-cost function
for airport n € N reads:

Viirport(27w) — Z Z Z Oéi);irportzapC + ﬁzirportwac . (]_)

a€A c€s, (Cy) \PEP,
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We remark that, while we assume that both the cost for arriving and departing
at an airport as well the passenger-based ones are identical, this assumption is not
central to our approach and can be easily lifted without hindering the correctness of
our results. [1

2.2.2. Runway Capacity Investment Costs. As described above, we assume that each
airport n € N may choose to invest in additional runway capacity x, € NU {0}
with a unit investment cost of i™°T* Besides the actual runway construction costs,
a runway capacity investment may also comprise gate or terminal extensions which
might be necessary in order to handle additional flights. In line with the existing
literature, throughout this paper we will assume that all investment decisions are
made (and realized) at the beginning of the planning horizon—see, for instance, [41],
[33], [34], and [64]. If, at a given airport, no investments are possible, we set x,, = 0.
We denote the total investment costs of an airport n € N by:

I?Lirport (m) = Z-glirportxn. (2)
We note that the assumption of linearity of Iflirport is not stringent. Indeed, since
4ot only shows up in the objective function of the first-level problem (see Sec-
tion 3), the solution method we propose (see Section 4) in this paper is correct
independently of the nature of such a function, provided that the latter can be han-
dled by a standard spatial branch-and-bound solver (see Section for more details
on the solver we rely on).

2.2.3. Airport charges and budget. In this paper, we consider airport charges as a
measure to recover investment and operational airport costs. Even though different
types of charges may be applied in practice, we make the simplifying assumption that
a passenger-based charge ¢, be imposed on each passenger on board of an aircraft
arriving at or departing from an airport n € N. Given these charges, the revenues
of an airport n € N paid by an airline ¢ € A as a function of the number of tickets
(wqe) it sells on each (actual) connection ¢ € C, are defined as:

RGP (pw) = Y dntae (3)
c€6,(Cq)

For similar charges that are used at different airports all around the world, see,
e.g., [30], [38], or [42]. Let us remark that our model can be easily adapted in order
to account for other types of airport charges (e.g., charges based on the tonnage of
the airplane or on its noise category). Such charges may in general be treated either
as endogenous variables or as exogenous parameters. Examples exist in the literature
of both variants—see, for instance, [4I] or [33]. Since, in our paper, purely exogenous
charges would limit and bias the investment behavior of the different airports, we

model the decision on optimal airport charges as endogenous.
We express the profits of an airport as equal to its income from airport charges
minus runway capacity investments and operational costs. For each airport n € N,

. irport,d irport,d
IIndeed, one could, w.l.o.g., introduce departure costs o "Port:deP gairport.dep

irport,land jairport,land irport . .
qgTPortiand | gairportiand fand redefine Vi'"P°" (2, w) in Equation as follows:

. " i t,land i t,land
V:urpor (Z,UJ) — z < 2 § : <a%1rpor ,lan Zape +ﬁglrpor ,lan wac) +

a€A “cedin(Cq) pEPa

§ : § i t,d i t,d
(a%urpor ePZapc 4 Bglrpor epwac) ) .

c€89ut (Cy) PEP

and landing costs
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such profit can be expressed as:

PO (1 6 2 w) =S RUPOR (g ) (v< w) + TPort <x>). @
acA

2.3. Airlines. Let P, be the set of different aircraft types, e.g., A330 or Boeing
747, which an airline ¢ € A is willing to operate or to invest in according to its
exogenous business model given ex ante. The importance of the business models in
the airline industry has recently been highlighted by different authors. For instance,
[50] discusses the strategy of Emirates, which mainly builds on the two aircraft types
A380 and Boeing 777.

Let ¢2ri"e he the number of aircraft of a specific type p € P, the existing fleet of
airline a € A is composed of at the beginning of the planing horizon. Let also ngircraft
be the seat capacity of each aircraft of type p € P,.

2.3.1. Fleet Operation Costs. Similarly to the airports, we assume that flight-
dependent costs are described by a piecewise-linear total variable-cost function Ve
which depends on two different cost parameters. Independently of the number of pas-
sengers on board of the aircraft, we assume that a constant cost equal to a2iine is
incurred per completed flight due to, for instance, fuel costs of the empty aircraft
p € P, on an (actual) connection ¢ € C,. As the total fuel costs would increase
with the number of passengers, we further assume a variable per capite passenger-
related cost coefficient of f2iMi"¢ which may vary between different (actual) connec-
tions ¢ € C’aﬂ Note that this cost may also capture further passenger-related costs
like, for instance, food or beverage costs. Using this notation, the total variable-cost
function for an airline a € A is:

airline . airline airline
VA (2 w) 1= E E Qe Zape + Bae " Wace | - (5)
ceCy \peEP,

2.3.2. Aircraft Investment and Fleet Expansion Costs. As mentioned before, we as-
sume that the airlines can invest in new aircraft. Similarly to runway capacity exten-
sions, we assume that aircraft investments take place at the beginning of the planning
horizon. For each type of aircraft p € P, we assume a unit cost of igircraft. Thanks
to the decision variable y,, € N U {0}, which quantifies the number of additional
aircraft of type p € P, that airline a € A purchases, the total investment cost for
airline a € A corresponds to:

Izirline (ya) — Z igircraf‘c Yap- (6)
PEP,

2.4. Passengers (Ticket Demand, Consumer Surplus, and Resulting Rev-
enues of Airlines). A set of (price-sensitive) passengers can buy tickets for the
different (actual) flight connections ¢ € C, of an airline a € A. Each (actual) connec-
tion ¢ € C departs and arrives within the assumed planning horizon T'. For the sake
of simplicity, we only consider a single, aggregated fare class as done, for instance,
in [47). As discussed above, we use the variable d. € R>o to describe the elastic
ticket demand on connection ¢, while we denote by wq. € R>( the number of tickets
sold by airline a € A on its flight connection ¢ € C,.

2For the sake of simplicity and in order to reduce the computational burden, we assume a
cost coefficient which is independent of the aircraft type. The model can be, nevertheless, easily
generalized to the case of a cost ,Bgiprgi“e specific to the aircraft type by extending the variable wqc
with an index p.
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We further assume non-arbitraging customers who purchase flight tickets from
their origin to their destination of choice without intermediate stops (we illustrate
how to partially lift this assumption in Section . The strictly decreasing function
P (s) gives the maximum price that at least s customers are willing to pay for
a ticket for connection ¢ € C. Note that P:°" is given as an input and it cannot
be influenced by any decisions made by an airline. For the way the ticket prices
are determined (they correspond, for each connection ¢ € C, to the Lagrangian
multiplier of the market-clearing constraint for that connection of the single-level
welfare-maximization problem), we refer the reader to Proposition

Based on the above definitions, we define the gross consumer surplus as the fol-
lowing integral:

de
/ PO (5) ds. 7
0

By aggregating the maximum willingness to pay for d. tickets, the gross consumer
surplus corresponds to the total monetary gross benefit obtained from purchasing and
eventually using d, tickets. As we will see in Sections 3.1 and 3.3, by subtracting the
costs necessary to supply the d. tickets from the gross consumer surplus, we arrive
at the concept of welfare.

Finally, since the airline revenues are generated by ticket sales, the revenue of an
airline a € A corresponds to the above-defined ticket price P multiplied by the
number of tickets sold:

RN (g 1) = Z P (d,) wae. (8)
ceCy

3. TRILEVEL MARKET MODEL

The key feature as well as the key challenge of liberalized aviation markets is that
an optimal decision of a player will highly depend on the optimal decisions of all the
other players. In this section, we present a market model where the optimal behavior
of the players we consider is influenced by their expectations on the optimal reaction
of the other players to their choices.

In more detail, the model we propose is a hierarchical game-theoretical model
where three groups of players, the airports, the airlines, and the passengers, make
decisions over three different levels (or stages). The order of such levels marks the
different points in time in which the players’ decision-making problems arise. The ac-
tual timing of the decision-making situation we consider is depicted in Figure[3] In it,
long-term airport capacity investments are followed by long-term airline fleet invest-
ments and medium-term aircraft scheduling, which are then followed by short-term
ticket trade. Planning and operation situations with a similar timing are commonly
highlighted in the literature as, e.g., in [59] or [40].

! ! AdddAdASN
Runway Fleet Investment Several Periods of
Capacity Expansion and Aircraft Scheduling Ticket Trade
(Airports) (Airlines) (Passengers & Airlines)

F1GURE 3. Timing of the Hierarchical, Trilevel Game
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Key to our hierarchical model is the fact that, as mentioned before, the decisions
taken by each player (either as a group or individually) affect the utility (in terms
of revenues and costs) of the other players and, in turn, are affected by such deci-
sions. For instance, the airlines’ fleet expansion decisions as well as their scheduling
decisions are affected by the airports’ investments in runway capacities, while, in
turn, the investments the airlines would make as a consequence of the airports’ ca-
pacity expansion choices drive the airports’ investment decisions. Assuming rational
players, the optimal decisions made by a player should therefore take into account
how the other players would react to it, factoring their reaction into the player’s own
decision-making process so to choose a strategy which is best possible for her /him/it.
Similar assumptions are made in the operations research and mathematical program-
ming literature on bilevel (and multilevel) optimization, see [19] [10] for a survey, and
are rooted in the game-theoretical literature on Stackelberg and hierarchical games,
whose origin is in [63].

As we will better explain in the following, in our hierarchical, trilevel model the
airports play as a single, aggregated player (leader) in the first level while the airlines
play imperfectly competitively in the second level, thereby reaching a Generalized
Nash Equilibrium, or GNE, (i.e., a Nash Equilibrium with constraints, see [27] for
a survey as well as the seminal paper [49] on Nash equilibria). The outcome (in
terms of number of sold tickets) of the competitive ticket market is modeled in level
three as a further optimization problem whose solution is affected by the airlines’
investment and scheduling decisions on level two (which, in turn, depend on the
airports’ decisions made in level one). The latter is in line with previous works,
including [6] and [5I]. All the modeling choices we make are better motivated in the
following.

From a mathematical optimization perspective, we will cast the problem of com-
puting an equilibrium in the game underlying our hierarchical, trilevel model as a
trilevel mathematical programming problem with a single (different) decision maker
in levels one and three and many competing decision makers in level two.

For the sake of a better overview, the overall trilevel market model that we consider
is depicted in Figure [d In the remainder of the section, we describe the different
problems that occur in each level of the trilevel model, their dependency on the
solution that was determined in the previous levels as well as on the anticipated
solution to the problems in the next levels and the way in which, in the second
level, the players (airlines) imperfectly compete with each other. A mathematically
equivalent single-level reformulation, which will be the key for solving the problem
from an algorithmic perspective, is presented in Section [4]

3.1. First-Level Problem: Airport Capacity Investment. In the first level,
the airports choose the passenger-based charges ¢ and provide the necessary infras-
tructure (which is used by both airlines and passengers) by taking runway capacity
extension decisions.

In a lot of countries all around the world, many airports are highly regulated
by governmental authorities with complex planning and approval procedures. In
Germany, for instance, the German Aviation Law (§19b) requires the airports to
obtain an official permission for their charges where, among other (public interest)
criteria, objectivity, transparency, and non-discrimination must be guaranteed. In
addition, especially in structurally-weak regions, airports are often regarded as state-
infrastructure projects oriented towards public (i.e., welfare) goals, offering important
infrastructure services to the public (it is often the case that airports are owned and
operated by public bodies). On these and related topics, also see [9].
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max Welfare (Airports)
st. Budget-Related Constraints
Charge Variable Restr.

Investment Variable Restr.

max Airline Profit (Airline 1) max Airline Profit (Airline |A[)
st. Investment Variable Restr. st. Investment Variable Restr.
Runway Capacity Limitations Runway Capacity Limitations
Aircraft Scheduling Aircraft Scheduling
Scheduling Variable Restr. Scheduling Variable Restr.

max Welfare ( Ticket Trade)
st. Aircraft Capacity Limitations
Market Clearing
Ticket Variable Restr.

F1GURE 4. The Trilevel problem

It is therefore natural to make (as we do in this paper) the assumption that the
airports and their charges be regulated in such a way that it is in an airport’s best
interest to maximize welfare—the welfare function being defined as the aggregated
difference between the gross consumer surplus defined in and the total investment
and variable costs of the airports and airlines defined in f and f@. As such,
welfare gives the net realized monetary gains obtained from trading and eventually
using the flight tickets, having subtracted the relevant costs. It is therefore a natural
objective of a regulated airport pursuing public interests.

w(d,z,y,z,w) Z/ P (s

ceC

_ Z (Ialrport + Va1rport<z w)) (9)
nenN

_ Z <Ia1rhne + Valrhne( ’LU)) )
a€A

We remark that, under the assumption of welfare-maximizing airports, the airport
charges are chosen as a way to “break even”, rather than to increase an airport’s own
profits by squeezing margins from the airlines.

As the welfare function is maximized by each airport n € N, we can w.l.o.g.
assume that the different airports behave as a single, aggregated player in control
of all the decisions that pertain the whole set of airports N. From a mathematical
perspective, this has the effect of reducing the number of players in the first level of
our model to just one.

Even though we assume welfare-maximizing airports, we still make the realistic
assumption that the airports are budget-constrained, i.e., that their profits must
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always be nonnegative. Thus, we introduce the following budget constraints:
plrPoTt (0 b 2z w) >0 Y nEN. (10)

Finally, we make the following assumptions on the variables controlled by the
airports:

z e NNy {0}, (11)
¢ € Ry (12)

We remark that, while the aggregated first-level decision maker, which corresponds
to the airports, can only control the investment and charge variables x and ¢, its
objective function and its budget constraints also depend on the fleet-expansion vari-
ables y, on the aircraft scheduling variables z, and on the ticket variables w. The
values of these variables are determined by other players in other levels of the hierar-
chy. Due to the standard assumption of rationality, the aggregated first-level decision
maker (the airports) makes its decisions by anticipating the optimal value that y, z,
and w variables would take when the corresponding decision makers (airlines and
passengers) react to the choice made by the airports for the values of the x and ¢
variables. This implies that these different levels cannot be solved independently. We
will formalize this aspect from a mathematical perspective in Section [3.5]

3.2. Second-Level Problem: Fleet Expansion and Aircraft Scheduling. In
the second level, imperfectly competitive airlines observe the capacity-extension de-
cisions made by the airports and (reacting to them) decide on their optimal fleet
expansion by investing in new aircraft, thereby choosing the value of the y variables.
For a discussion of imperfect competition in the airline industry, see, e.g., [2]. The
airlines also schedule their aircraft by deciding, for each time period ¢ € T, what
number of aircraft of each type p € P, (be it new ones or old ones) should serve

which (actual or dummy) connection ¢ € C,. We assume, here, that each individual
airline a € A maximizes its profit prin®. Such value can be expressed as the dif-
ference between revenues from ticket trade in the third level and the corresponding
aircraft investment cost, operational aircraft cost, and airport charges. Thus, the
profit function that each imperfectly competitive airline a € A maximizes in the

second-level reads:
pairline(¢ Y,z d w) o Rairline (d U})
a y Iy <~y Wy L a 9

— <Vgir1ine(27 w) + Izirline (ya) + Z Rz;i;port (d)’ w)> )

neN

(13)

Once the investment in new aircraft has taken place, the airlines schedule their
whole fleet (which comprises both existing and new aircraft) as described above. In
particular, a decision is made by each airline as to whether or not a certain connec-
tion should be served by one of its aircraft. In this context, a connection ¢ € C is
defined, as we mentioned before, as a tuple (¢4¢P (2t tdep arr) describing the depar-
ture airport £9°P the flight starts from at a certain time 3P and the corresponding
arrival destination £2'" that it will reach at another point in time t%*. Note that our
definition of connection is independent of the assigned aircraft type and, rather, it
only depends on time-space characteristics, i.e., on the time and airport of departure
and arrival. To give an example of such a connection, consider an aircraft departing
from (4¢P — Munich at t3°® = 1 p.m. and reaching /2" = Berlin at 3 = 2 p.m..
As defined before, C, is the set of all possible (actual) connections that airline a can
decide to serve. Observe that, similarly to fleet investment decisions, C, may again
be determined by an exogenous business model of airline a € A given ex ante. As
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we already introduced in Section we also consider a superset C' O C containing,
besides all “actual” connections in C, a set of “dummy” connections which we use to
model the position in time and space of the aircraft when they are not flying.

In order to describe the aircraft scheduling constraints, we introduce a time-space
graph for every pair (a,p) € (4, P,) to model the routes of all aircraft of type p € P,
of airline a € A. See Figure [f for an illustration.

airline 8
E Ze = Yap + (,Z‘pr ne Munich

€69 (s0,) /

‘ ‘ Berlin

F1GURE 5. Example of a Time-Space Graph Used For for Modeling
the Scheduling Constraints

We first define a pair of dummy nodes consisting of a start node s,, and a final
node f,,. Moreover, for every airport and every time period, we introduce Nap as
the set of nodes corresponding to the locations the aircraft can be at.

We define start edges Sq, = §°%*(s4p) and final edges F,, = 6™ (fap) to connect
the final and start nodes with the respective time and location-specific nodes at time
t =1 and ¢t = |T|. Horizontal edges define holdover edges e € H,, and model the
fact that an aircraft can be in parking state for a certain amount of time. The edges
in Sup U Fup U Hyy, correspond to the dummy connections C, \ C, we introduced
before. Furthermore, we use the actual connections C, to define the flight edges Cy,,
depending on the aircraft type p € P,, connecting the departure node £¢°P at time
td°P to the arrival node (2T at time ¢2. Such edges only exist if a connection can be
served by an airline given its exogenous business model specified ez ante.

Let us again refer to our example with two locations, Berlin and Munich, and
three time periods ¢1, t2, and ¢3, as depicted in Figure[5] In the example, the aircraft
starts in Berlin and arrives after one time period in Munich. The way back takes
more time, which, for instance may be due to the flight trajectory being longer (this
is the case of, e.g., Larnaca-London flights which, usually, take about half an hour
more than London-Larnaca ones).

The following constraints ensure a feasible aircraft route:

Z Ze = Yap + eziprli“e VYae Ape P, (14a)
CESap
Z Ze — Z ze =0 VaEA,pGPa,nGNap (14b)
e€o9vt (HapUCop) e€8iM (HypUCap)
Zzapcgl VaecAceC,. (14c)
pEP,

In the above constraints, we have extended our delta-notation by a time index ¢t € T'
with 0,1 (Cy) so to describe the set of all ingoing and outgoing (actual) connections at
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airport n € N of airline a € A in time period ¢t € T. For every (a,p) € AX P, pair and
for every edge e, the z. variables correspond to the scheduling variables zqp., where
¢ is the (actual or dummy) connection corresponding to edge e. Equations
guarantee that no more than the aircraft that constitute the fleet of airline a be used,
where e21in® is the number of aircraft of type p originally available. Constraints
are flow conservation constraints enforcing that an aircraft can only serve a connection
if it is available at the respective airport. Furthermore, limits the number of
scheduled aircraft on each connection for each airline to one. This way, we prevent
nonrealistic schedules where two or more airplanes take off at the same time from
the same origin airport and land at the same time at the same destination airport.

Given the capacity expansion choice made by the airports in level one, whose
variable = (due to being set in the previous level) is perceived as a constant by the
airlines, we have to guarantee that the sum of all ingoing and outgoing flights of an
airport n € N do not exceed its runway capacity (also accounting for possible runway
capacity extensions) in any time period ¢t € T"

Z Z Z Zape < KETPOT L Y n e N,teT. (15)

a€A C€57zt(ca) PEP,

Observe that, while we do not model airport congestion effects via delay cost func-
tions, our model could easily be extended to incorporate such functions explicitly.
We also remark that, while all the scheduling constraints are specific to each airline,
the airport capacity constraints are shared by them.

Finally, we assume the following restrictions on the decision variables controlled
in this level:

Yap € NU {0} Vae A,pe P, (16a)
Zape € NU {0} Vae A,pe€ P,,ce C,. (16b)

We remark that, while we assume that all types of aircraft can be used on every
connection, this assumption is not stringent and it can be easily lifted by introducing,
for all airlines a € A, a 0 upper bound on the variables z,,. for each pair (p,c)
corresponding to an aircraft type p and a connection ¢ which are incompatible.

Let us highlight that, due to the assumption of imperfect competition in level
two, the airlines explicitly compete for the scarce runway capacity as well as for a
share of the ticket market (whose outcome is determined in level three) in order to
maximize their profits. Notice that the objective function and the constraints in
this level depend on variables (x,d, and w) whose value is set in either level one or
three. As the value of the x variables is set in the first level, such quantities are
perceived as constants by the airlines. Differently, the values of the d and w variables
is determined in level three as a consequence of the decisions made in level one and
two. Therefore, we assume that the airlines make their decisions by anticipating the
value that such variables would take as a consequence of their choice.

Crucially, due to the assumption of imperfect competition we cannot condense
all the airlines in a single player (as we did for the airports). In line with previous
works including [6] and [51], we rely on the concept of Generalized Nash Equilibrium
(GNE) and formulate the second-level problem as an equilibrium problem with |A]
players, one per airline, noncooperatively seeking to maximize their individual prof-
its subject to individual flow-conservation/airplane-trajectory constraints and joint
capacity constraints imposed on their scheduling variables z. According to the no-
tion of GNE, the airlines decide on a collection of strategies y = (y1,...,y4)) and
z = (21,...,24|) such that the decision y,, 2, of each airline a € A is best possible
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assuming that all the other airlines play according to their strategy in y_, and z_g,
where the latter two identify the decisions of all airlines except for airline a.

We remark that, in this level, the imperfectly competitive airlines may decide to
limit their investments in order to increase their profits through higher prices on
the ticket market on the third level. In particular, the airlines’ imperfectly com-
petitive behavior does not necessarily imply an efficient (in terms of social welfare)
use of airport infrastructures. We illustrate such a situation in the computational
experiments we carry out in Section [7]

3.3. Third-Level Problem: Ticket Trade. After the airlines have invested and
scheduled their flights in level two, the ticket prices that will have to be paid by
the price-sensitive customers and the corresponding number of sold tickets on the
different routes (which, in turn, depend on the scheduling choices of the airlines) are
determined.

Especially with the emergence of various travel-fare metasearch engines and on-
line travel agencies like Expedia, Opodo, or Momondo, the ability for customers to
compare fares of different airlines has increased significantly [26]. Thanks to websites
that the customers can use for price monitoring, price comparison, and booking of
(typically) the cheapest airline ticket on a desired route (and booking class), the
pressure on the airlines is constantly increasing. As a consequence, the airlines
are constantly monitoring the price level of their competitors by appropriate tools
and adjust their own price levels on the different connections appropriately. There-
fore, especially in times where the customers can rely on many multi-channel ticket
purchase possibilities, it is reasonable to model the outcome (in terms of number of
tickets sold) of the ticket market by a perfectly-competitive ticket market modelﬂ

We formulate the ticket trade problem as an equilibrium problem involving two
groups of players: the customers, aggregated as a player per connection ¢ € C, and
the different airlines. W.l.o.g., we aggregate all customers of a given connection ¢ € C
into a single “aggregate” customer. Under the assumption of perfect competition, we
assume exogenously-given ticket prices 7 for each connection c € C.

The aggregate customer of connection ¢ maximizes its benefit, defined as the
difference between gross consumer surplus (as a function of realized demand d.)
and the ticket price that corresponds to it:

/ " peon(9)ds —ntd, Vee . (17)
The aggregate customer onl(; faces a nonnegativity restriction on the demand:
d. € R>y VeeC. (18)
Each airline a € A maximizes its profits, defined as:
Zﬂ' Wae — VAN (5 0y) Z R¥IPOTt () 4y} Va € A. (19)
ceC nenN

To guarantee that, for each airline a € A, the number of passengers on a connec-
tion ¢ € C, does not exceed the capacity of the aircraft that has been scheduled on it,
we impose the following constraint to limit the number of sold tickets per connection:

Wee < Z Hzircraftzam VaeAceC,. (20)

pPEP,

3The same assumption (of perfect competition) is often made in the literature for many complex
multilevel models that arise from the applications. See, e.g., [33].
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Also, we assume the following restrictions on the variables of each airline:
Wq € ]RLCI)‘ Va € A. (21)

In addition, we must ensure market clearing for each connection, i.e., we must
ensure that, for each connection, the number of tickets bought by the passengers be
equal to the number of tickets sold for that connection. This is achieved by imposing
the following constraint:

de= wae YceC. (22)
acA

Compactly, the ticket-market model we consider boils down to the following equi-
librium problem, where the exogenous prices 7%, ¢ € C, are variables:

dc
dc € arg max {/ POt (s)ds — TI'ZdC} Vee C (23a)
de.>0 0
Z szac Valrllne(z wa) _ Z Ran‘port((ﬁ, wa)
wq € arg max ced . neN Va € A (23b
¢ wageRw‘ St wae < Z mz‘r”a&zapc Ve, (23b)
20 pEP,
dc:Zwac Veel (23(})
acA
s €ER Ve e C. (23d)

We remark that Problem coincides with the maximization of overd, > 0
with a given price 7. Due to PS°"(s) being (by assumption) strictly decreasing, the
(unique) solution to Problem coincides with setting d. = argsup,so{P"(s) >
7}, which indicated that every passenger with willingness to pay at least mr will
buy a ticket.

The objective functions of the players involved in this equilibrium problem depend
on the z and ¢ variables, whose value is not determined in it but, rather, it is set in,
respectively, the second and the first level. Therefore, these variables are all perceived
as constants here. Crucially, as the third-level problem is the last problem in our
hierarchical model, it does not involve any variables whose value is set in further
levels and, therefore, it does not involve any anticipation.

3.4. Reformulation of the third-level problem as a (single-level) welfare-
maximization problem. We now show how to recast the third-level equilibrium
problem as a single-level problem in which welfare is maximized. Similar reformula-
tions can be found in, e.g., [33 39].

Let us introduce the following third-level welfare function, defined as the difference
between the gross consumer benefit and the total costs incurred by the airlines (we
refer to it as wtk®ts to distinguish it from the welfare function w that is maximized
by the airports in level one):

wticketS((b 2.d U} Z/ P(‘on

ceC (24)
_ Z <Valr11ne Za7 Z Ralrport )> )
acA neN

The single-level welfare-maximization problem we introduce calls for maximizing the
objective function in subject to constraints and (22)), as well as to the
restrictions on the variables in and (21). Similarly to the original equilibrium
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problem, this problem is parametric in the z, ¢, y, z variables which, in it, behave as
givens. Compactly, it reads as follows:

dc
RN ROEDD / P! (5)ds (25a)
0

max
1C] [AIx|C|
dERzo ,wERZO ceC

airline airline
- § E : Qape  “apc + ﬁac Wac (25b)

ceC, \peP,

=33 > bnwac (25¢)

a€AnEN c€6,(Cy)

St Wee < Z H;ircraftzapc Vaec A, ceC, (25d)
pEP,
dc = Z Wae VeceC. (256)
acA

With the following proposition, we show that the two problems are equivalent:

Proposition 1. The solutions to the single-level welfare maximization problem
coincide with those to the perfect-competition equilibrium problem (23)).

Proof. All of the constraints of the welfare-maximization problem in are linear,
which implies that constraint qualification holds everywhere on the feasible region.
Since the problem calls for the maximization of a concave function, all of its KKT
points are global optima—i.e., its KKT conditions are both necessary and sufficient
(see, for instance, [13]). Therefore, all of its optimal solutions satisfy the following
KKT system:

— airline _ ¢egep — Ppand — Yac + Aac T e =0 Va€ A,ceC, (26a)

ac

P(de) —pe +ve=0 VeeC (26b)
Wae — Z H;ircraftzapc <0 Va€e A ce(C, (26¢)
PEP
de— > Wee=0 VYceC (26d)
acA
—Wae <0 Vae A,ce(C, (26e)
—d. <0 VeeC (26f)
Yac >0 VYa€e A ceC, (26g)
pe€R VeeC (26h)
Aac >0 VYae AceC, (261)
v, >0 VYeeC (26§)
Yac (wac - n;“;ir“a“zapc> =0 VaeAce(, (26k)
pEPa
Aac(—Wee) =0 Va€ A,ce C, (261)
ve(—de) =0 VYeeC. (26m)

Let us consider the equilibrium problem . For each player ¢ € C, the KKT
system of its decision-making problem reads:

P (de) — i +v. =0 (27a)



AIRPORT CAPACITY EXTENSION, FLEET INVESTMENT, AND AIRCRAFT SCHEDULING17

v. >0 (27b)
ve(—d.) = 0. (27¢)
For each player a € A, the KKT system of its decision-making problem reads:
T — B — Graco — Gpana — Yo + Aae =0 Ve € Cy (28a)
Wae — Z ﬁ;ircraftzapc <0 VaeAceC, (28b)
pEP,
—Wee <0 Vee O, (28c¢)
Yac > 0 Vee (28d)
Aac >0 VeeC, (28e)
Yac (wac — Z Kzgir“ra&zapc> =0 VeeC, (28f)
PEF,
Aac(—Wae) =0 Ve € C,. (28g)

Thus, every solution to consists of a triple (d, w, 7*) satisfying (27), (28), and the
market-clearing constraint (22)). Letting 7* = y, (d,w, 7*), these equations coincide

with . O

In the remainder on the paper, we will solely consider the welfare maximization
problem as, while the two are equivalent, the former results in a less complex problem
from a computational point of view.

We remind that the welfare-maximization problem is always feasible for every
choice of the first and second-level variables (z, ¢, y, z) and it always admits a finite
optimal solution.

Notice that this problem can be decomposed into |C| independent problems, one
per connection. From an economical perspective, this is due to the fact that we
are assuming the demands for two different connections to be independent. Also
observe that, in contrast to the welfare objective function w that is used in level
one, the welfare function w'°*®* that we adopt here to model the ticket market
does not account for (sunk) investment costs, but, rather, only considers variable
flight-dependent costs and the relevant airport charges.

We note that, while, in our model, we assume that passengers consider each con-
nection separately, the extension to the case with multi-leg trips and changeovers can
be made without too much effort. [

3.5. Complete Trilevel Model. We are now ready to introduce the trilevel opti-
mization problem that we propose in this paper from a mathematical-optimization
perspective. First, we present the following result:

“Let T be a set of trips, with each trip 7 € T consisting of a collection of connections (or legs)
Cr. Rather than a demand d. per connection ¢ € C, let us introduce a demand d, per trip 7 € T.
Let us redefine the gross consumer surplus per trip 7 € T as deT Pgors(s)ds, where PO is the
maximum price at least s customers are willing to pay for a ticket for trip 7. From an equilibrium-
problem perspective, we now have a consumer/player for each trip 7 € T, rather than for each
connection ¢ € C. The market-clearing constraint becomes ZTGT:CGCT dr = ZaeA wqe for all
c € C. Assuming exogenous prices 7 for each connection ¢ € C and assuming a price of > ..o ¢
for each trip 7 € T, it is not difficult to see that the result of Proposition 1 still applies, i.e., we can
still solve the market-clearing problem as a single-level welfare-maximization problem with variables
dr,7 € T, rather than d.,c € C, and the above-redefined willingness to pay function Pf°" and
market-clearing constraint. As this has no impact on levels 1 and 2 (as only the wqc variables have
an impact there), the method we propose in the paper remains valid for the trip case.
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Theorem 1. Assume that, for each airline a € A, the variable-cost coefficients
patrtine qre pairwise distinct for each connection ¢ € C. Then, the third-level
welfare-mazximization problem admits a unique optimal solution.

Proof. The objective function w'¥®*(¢p > d w) of the problem features
three terms: Zcecfod“Pion(s)ds, Suea VR (5 ), where VA™(z,w) =

Seccn (Zper, 0820 + B0, ), and 3 ,e 4 e REP (6, w), where
RAIPOT () q) = > e, (Co) PnWac. The first term, due to P (s) being a strictly
decreasing function, is strictly concave in d and constant in w, while the second
and third term are constant in d and linear in w. The problem decomposes into
|C| independent subproblems, one per connection. As each connection ¢ € C has a
unique pair of departure and landing airports ¢4°P, /1384 the value of ¢,, is constant
in each subproblem and, thus, the third term can be ignored. Let d’ be the optimal
demand level of the subproblem for connection ¢ € C. Due to the assumption, we
can assume, w.l.o.g., gairline - gairline for 1] ¢ o’ € A :a < a’. Any solution w with
Wae < ZPEPa K;ircraftzapc and wy. > 0 for some a,a’ € A : a < a’ is not optimal
as shifting some of the value of wyr. to we. would improve the solution value. We
deduce that w;. is optimal if and only if 3a € A such that:

aircraft _

> pep, Kp Zape a<a

* * aircraft _ =
Woe = § e ZaGA:a<& ZpGPa Kp Zape @ =0a
0 a > a.

Clearly, such a solution is unique. Due to the objective function of each subproblem
being strictly concave in d., this implies that the overall problem admits a unique
global optimum. O

In the following, whenever it is necessary to refer to the (unique, due to Theorem
values that the variables w and d take for a specific choice, let us call it ¢, 2, of the
¢, z variables which is different from the value these variables take in an equilibrium
solution to the trilevel model, we will use the notation w(gﬁ, %) and d((;AS, 2).

According to the standard notion of generalized Nash equilibrium, we say that
a strategy profile (a collection of strategies, one per airline) (y,z) corresponds to a
GNE if and only if, for every airline @ € A, a unilateral deviation from a GNE which
is feasible when the other airlines play their equilibrium strategy does not lead to a
strictly larger profit for airline a. Denoting by y_, and z_, the set of subvectors of
y and z containing every component except for that of airline a, the latter implies,
equivalently, that, given a GNE (y, z), the (feasible) best-response strategy that each
airline a € A can adopt to react to the strategies (y_q,z_,) the other airlines play
at that GNE must not yield airline a a profit strictly larger than the one the airline
would make by playing the strategy (yq, 24 ) that the equilibrium prescribes. Formally,
we must guarantee that the following best-response constraints be satisfied for each
a € A:

pz;irline (¢7 Y, 2, W, d)

> max. s pglrhne((ﬁ’}ga? Y—a éaa.z—aa W(P, Zas 2—a), APy Zas 2-a)) ) )

= YaZe ' (Goy Y—a), Za, Z—a) satisfy , , , for the given x

(29)
The right-hand side of the inequality corresponds to the problem of computing a
best-response strategy (yq,Z,) for airline a € A, possibly different from (ya, za),
to react to the strategy (y_q,2_q) of the other airlines. According to the stan-
dard game-theoretical terminology, we refer to it as a best-response problem. The
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optimal solution to this best-response problem corresponds to the largest revenue
airline a could make given the airport charges ¢ and under the assumption that
the investment strategy and scheduling decisions of the other airlines correspond to
(Y—a,2—a). Note that the objective function of the best-response problem depends
on w(Q, 2q,2—q),d(P, 24, 2—a), Which, according to our notation, correspond to the
(unique, due to Theorem [1f) values that the w, z variables would take if the all air-
lines but a were to play the strategy specified by ¥, z while airline a were to deviate
from it by playing 9, 2.

Formally, we require that the best response (9, 24), together with the other air-
lines’ strategies (y_q,2_q), satisfy constrai, (15), (162), and or, more
precisely, that g, satisfy (16a)), 2, satisfy (L6b), that (g, 2.) satisfy (14), and that
Zq, jointly with z_, and for the given x, satisfy . Note that the latter are the
only constraints that link the strategies of the different airlines together, i.e., they
are the only constraints responsible for the problem to be a GNE problem, rather
than just a Nash-equilibrium problem.

By imposing best-response constraints with , we guarantee that the investment
strategy vy, and the scheduling decision z, of each airline a € A be at least as
profitable for that airline as the most profitable ones, which we denote by (gq, 2.),
that the airline could make under the assumption that the other airlines’ decisions
were those in (y, ).

Interestingly, we note that the right-hand side of each of Constraints corre-
sponds to a bilevel programming problem (i.e., a multilevel problem with two levels).
This is because, due to containing w(e, 24, 2—,) and d(¢, 24, 2—a), each best-response
problem embeds an instance of the third-level problem.

We now report, for better readability, a schematic illustration of the full trilevel
model we propose:

(g w)

sim PEPOY (2, 6,) > 0 Yne N
st Y > - DD DEWESLLE meNteT
Vp € Py

Wp € Payn € Ny

e (6 o w) > max VeeC, Yae A
JaEN
za€{0,1}141
4 e Va' € A\{a},c€Cy
(d*, 0% e argmax Yee C,
ierlS)
werly <! VeeC
YneN,teT
Vaec A,pe P,

Va € A,p € Pyyn € Ny

Yae A,ceC,
,w)
b Wae € Y KTz Vo€ AceCy
(d,w) € argmax ,; ’ Y
=Y veec

weRATXIS

Let us comment on the model from the bottom up:

e Third level: In its lower level, the constraints (d,w) € argmax{-} impose
that, given the value of the x, ¢ variables chosen in level one and those of the
variables y, z chosen in level two, the d,w variables be equal to the (unique,
due to Theorem [1)) optimal solution to the market-clearing problem.

e Second level: The constraints p*™"(¢, y, z, w, d) > max{-}, together with
the three linear inequalities that follow them, guarantee that, given the value
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FIGURE 6. Solution Approach

of the x, ¢ variables set in level one, y and z be optimal for the GNE problem
in level two. In particular, this requires that, for each airline a € A, its
choice of values for the y,, z, variables be best possible given, besides the
value of the x variable chosen in level one, the choice for y_,, 2_, made by
the other airlines. The max{-} part in the right-hand side is the best-response
problem of computing the maximum revenue (with decision variables 9, Z,)
that is obtainable by airline a given the choices y_,, z_, made by the other
airlines—the constraint imposes that the revenue p™"®(¢,y, 2, w, d) be at
least as large as this value. As the choice of an airline a € A to switch strategy
from 4., 24 0O Y, 2, could trigger a change in the market outcome, the best-
response problem contains, as a subproblem, another instance of the third
level problem with variables zfa, w®. Such variables model the anticipation
of the market outcomes for airline a under the assumption that its strategy
correspond to variables g, Z, rather than y,, z,, while all the other variables,
including the y_, and z_, variables of airline a, keep their original value.

e First level: Our trilevel model is concluded by its airport capacity-extension
constraints and its objective function, which correspond to those we intro-
duced in Section when describing the first-level problem.

We show how to further reformulate the problem into a single-level problem in the
next section.

We remark that, in this model, we have implicitly made the assumption of opti-
mism, i.e., we have assumed that, if multiple GNE arose, a welfare-maximizing GNE
would be chosen. We believe that such an assumption is appropriate as, in general,
the airlines will abide by a corporate social responsibility that will not lead them to
choose a solution with a welfare-diminishing effect. For instance, a responsible busi-
ness practice is part of the corporate strategy of the Lufthansa Group, which aims
at “meeting (its) responsibilities towards the environment and society’—see [35].

4. SINGLE-LEVEL PROBLEM REFORMULATION

Multilevel problems are known to be computationally very challenging. See, for
instance, [23], 19, 24, 20], and [7, 8, 2I] in which hardness and inapproximability
results are shown for simpler problems featuring only two levels and a single player
per level. For a recent survey, we refer the reader to [10]. To find a solution to the
model we proposed, in this paper we develop a reformulation strategy which builds
on the steps depicted in Figure [6]

In the first step, we replace the third-level market problem by its Karush-Kuhn-
Tucker (KKT) conditions. ~We then add such conditions (and the corresponding
third-level variables) on top of the first-level problem. Then, we reformulate the
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best-response problem of each airline via a set of extra constraints and variables
which we collectively refer to as best-response systems and which do not contain the
max operator which the original best-response constraints featured. Lastly, we add
a copy of the KKT conditions to the best-response systems of each airline to model
the value that the third-level variables would take as a consequence of the deviation
that the best-response system looks for, thus obtaining what we refer to as explicit
best-response systems. Overall, this sequence of transformations yields a single-level
reformulation of the original trilevel problem.

4.1. Step 1: KKT Reformulation of the Third-Level Problem. In the trilevel
hierarchy, the third-level market clearing problem is solved last, after the values of all
the decision variables controlled by the airports (x, ¢) and the airlines (y, z) have been
chosen. The third-level problem is, therefore, parametric in the x, ¢, y, z variables
which, in it, behave as givens. From this perspective, the problem is a maximization
problem with a strictly concave quadratic objective and linear constraints and, hence,
constraint qualification holds everywhere on its feasible region. Therefore, all of its
KKT points are global optima—i.e., its KKT conditions are both necessary and
sufficient (see for instance [23] or [I3]). Therefore, we can replace this problem by its
KKT conditions, as reported in .

We remind that the third-level problem is always feasible for every choice of the
first and second-level variables (x,¢,y,z) and, due to its strictly convex objective
function, it always admits a finite optimal solution.

4.2. Step 2: Reformulation of the Generalized Nash Equilibrium Problem
via Best-Response Systems. We now show how to reformulate the best-response
constraints with a set of constraints and variables that do not require the intro-
duction of the max operator featured in . As mentioned above, we refer to this
set as to a best-response system.

For each a € A, let D, be the set of indices of all pairs of strategies (7, 27) which
are feasible when considering airline a individually, that is, the indices of all pairs
(3}27 23) which satisfy , , and . By construction, D, indexes a superset,
of the possible deviations that airline a can take from an equilibrium solution.

Without loss of generality, we can rewrite Constraints as the following con-

straint:
p(slecond (¢7 y? Z? w) d)

> PN, G Yas 2 2o ar W(, 2], 2—a), A, 2], 2-a))
to be imposed for all pairs (¢7,%?) with j € D, with the property that
(93,Y—-a, 23, 2_q) is feasible for the given  and such that (27, z_,) satisfy (15). Given
a strategy profile (y, z), for each a € A and j € D, (i.e., for each deviation (¢7,27))
the previous constraints is equivalent to requiring that the following disjunction be
satisfied:

e cither (77, 4,22, 2_4), together with the ¢ and x chosen in the first level,
satisfies as well as for allm € N and t € T (in this case, we refer to
(00,9 —a, 20, 2_4) as a feasible deviation)

e or ()2, y_a, 22, 2_,), together with the ¢ and = chosen in the first level, does
not need to satisfy as it violates for at least a pair of indices n €
N and t € T (in this case, we refer to (§7,y_a,27,2_4) as an infeasible

deviation).

(30)
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We now show how to express this disjunction in mixed-integer quadratic terms.
Let, for each a € A,j € Dg,n € N,t € T, ;] € {0,1} be a binary variable in-
dicating whether the instance of Constraint with indices n,t is satisfied by
(02, Y—ar 20, 2_4) (€., €% = 1) or violated (i.e., ¢¥ = 0). In addition, for each
a € A and j € D,, let the binary variable £% € {0,1} be equal to 1 if and only if
Constraints are satisfied by (97, y_q,27,2_4) for all n € N,t € T. The following
holds:

Theorem 2. Given a strategy profile (y,z), Constraint is satisfied for each
a € A if and only if the following best-response system is satisfied, i.e., if and only if
there is an assignment of values to the variables ¢ and £% for each j € D,, n € N,
and t € T such that the following constraints are satisfied:

paTime (¢, y, 2, w, d)
2 pg”’llne(d)’ gi? y—aa ‘73(]1’ Z—as w(¢a 2&7 Z—a)7 d(¢7 2&7 Z—a)) - M(l - faj)
Vae A,je D, (31)

DD DI DS DD S RPPL RV )

CL'EA\{U«} cE&nt(Ca/)pEPal Ceént(ca)pep‘l
VneN,teT,je€D, (32)

Z Z Z Zape +Z Z 50> Romert g MCH 41

a€A c€6,(Cq) PEP c€0pt(Cq) PEP,
VneN,teT,j€D, (33)
(9 >¢9 VYaeAjeD,neNteT (34)

nt

Z (1-¢)>1-¢Y YacAjeD, (35
neNteT

Proof. Consider each a € A,j € Dy,n e N,t € T. If (% =1, becomes equal

n
to and is slack. If (Zg =0, is slack and imposes that be strictly
violated (by 1, which is the smallest possible positive violation since the constraint
contains integer coefficients and integer variables only). If £ =1, is imposed as
becomes identical to it and, due to (34), ¢/ = 1 for all n € N,t € T. Therefore,
all of constraints are imposed. If €% = 0, is not imposed as is slack
and, due to (35)), (/7 = 0 holds for at least a pair n € N, ¢ € T—which implies that,

nt —

due to , the corresponding instance of constraint is strictly violated. O

4.3. Step 3: Introduction of Explicit Best-Response Systems. Note that, to
arrive at a single-level mathematical programming formulation, we should drop the
two implicit functions w(¢, 2%, z_,) and d(¢, 2, z_,) from Constraints and sub-
stitute, for them, an appropriate set of variables with the corresponding constraints.
Recall that w(¢, 27, 2_,) and d(¢, 2%, 2_,) represent the anticipation of airline a of
the market outcome due to passenger charges equal to ¢ and flight schedule decisions
equal to (2J,2_,). To drop them, we introduce the variables ©%* and d* for each
j € D, and impose W = w(¢, 22, 2_,) and dv = w(¢, 22, 2_,) by relying on a set of
conditions structurally similar to the KKT conditions . For each airline a € A
and j € D, such conditions read:

— B — Gpacp — dpana — Yyl + Ao+ 1l =0 Va' € A,c€ Cu (36a)
P (d%) — ps + ¥ =0 YeeC (36b)
w’, — Z nzircraftza/pc <0 Vd € A\{a},ceCy  (36c)

pEP,,
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wel, — Y kareitzl <0 Vee Co (36d)
pEP,,
—w® <0 Vd' €A ceCy (36¢)
—d¥ <0 VeeC (36f)
de - wi =0 VeeC (36g)
a’€A
N9 >0 V' € AceCy (36h)
A9.>0 Va' € AceCy (361)
v >0 VYeeC (36j)
Vede (w:;?c - ngi,rcraftza/pc> =0 Va' € A\{a},c€Cu  (36k)
peEP,,
7270 (ws/jc - Z Kzircraftéé-pC> = 0 \V/C € Ca/ (361)
pEPa
A (—wH)=0 Vd' € A,ceCu (36m)
v (—d¥) =0 VYeeC. (36n)

We introduce one such system of inequalities and variables for each pair a € A,j €
D,. Each of them contains its own copy W%, d™ of the w, d variables, the correspond-
ing constraints, the corresponding dual variables, and the corresponding complemen-
tarity constraints. Notice that the system features two types of z variables: the z,/p.
variables, which refer to the equilibrium strategy chosen by all airlines o’ € A\ {a},
and the 2gg variables, which correspond to the deviating strategy of index j € D,
that is considered by airline a in the original best-response system. We refer to a
best-response system employing, rather than the implicit functions w(¢, 22, z_,) and

d(¢, 23, 2_,), Constraints , as an ezxplicit best-response system.

4.4. Final Single-Level Problem. Applying the above reformulation steps, we
arrive at a single-level problem which reads as follows. For better readability, we
separate the constraints into four blocks: 1. first-level constraints, 2. explicit best-
response system for the second-level problem, 3. other second-level constraints, and
4. third-level constraints.



24

max
s.t.

S. CONIGLIO, M. SIRVENT, & M. WEIBELZAHL

w(d, x,y, z,w)
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5. SOLUTION STRATEGY

An obvious drawback of the above problem reformulation is the high number of

explicit best-response systems (i.e., the variables and constraints appearing in the
second block of reformulated model). Therefore, in this section we present a solution
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Algorithm 1: Decomposition approach for the reformulated market model

Input : Parameters for the market model

Output: Optimal solution (z*, ¢*,y*, 2", w*,d*) to the problem

Initialize the master problem as an instance of the single-level reformulation
with no explicit best-response systems.

=

2 while True do
3 Solve the master problem.
4 Denote its solution by (z ™ ™M M wM ™),
5 for all airlines a € A do
6 Fix 2™, oM, me , and solve the best-response subproblem.
7 Denote its solution by (45,2 a,w ,d®).
8 if pmrhne(gf’ yyav Af? ZM W dS) pgzrlinE(yM7 ZM,’U)M, dM) > €
then
9 Add the explicit best-response system (31| . . for airline
a € A and deviation (7, 27) to the master problem.
10 break
11 return solution (z*, ¢*,y*, z*, w*,d*) := (™, oM y™, M wM ™).

strategy which iteratively solves a master problem and a set of subproblems thanks
to which an explicit best-response system is iteratively added at each iteration and
ouly if needed.

5.1. Description of the Algorithm. The main idea of our algorithm is to itera-
tively alternate between solving a master problem which only contains a (small) subset
of explicit best-response systems, i.e., only featuring explicit best-response systems
for a small subset of D,, for each a € A, and solving an auxiliary subproblem per
airline to verify whether at least one airline a € A has an incentive to deviate from
the investment and scheduling decisions y, 2 made when solving the master problem.

In particular, for each airline a € A, the subproblem corresponds to the best-
response problem of maximizing the airline’s profits subject to all the scheduling
restrictions (14), (15), (16D), fleet investment constraints (16a)), the KKT system
, and fixed scheduling and investment values for all other airlines, as determined
by the solution to the current master problem. If we identify a profit-enhancing
strategy (gjmég) for an airline a which allows it to profit by unilaterally deviating
from the solution found when solving the master problem we add a corresponding
instance of the explicit best-response system (3I)—(B5), (36) to the master problem
(substituting, as we explained, w* for w(¢, 2,z ,) and d‘” for w(¢, 2,2 ,)), and
solve it again.

At iteration one, the first master problem is obtained by relaxing all the explicit
best-response systems by dropping the second block of constraints in the single-level
reformulation, together with the variables which occur solely in it.

An overview of the resulting iterative solution strategy can be found in Algo-
rithm [l

5.2. Correctness of the Algorithm. We now establish the correctness of our al-
gorithm:
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Theorem 3. Let |P,| < oo and assume all investment variables x, y as well as
airport charges ¢ have a finite upper bound. Then, Algorithm [1] terminates after a
finite number of iterations with an optimal solution.

Proof. Since y and z are integer variables and, by assumption, they are bounded, the
number of possible strategies (§q,2,) that an airline a € A may use to deviate from
a GNE is finite. Hence, the number of explicit best-response systems which can be
generated is finite. Any instance of the master problem solved in Algorithm 1 is a
relaxation of the trilevel problem (as it is obtained by relaxing some of the explicit
best-response systems the problem features according to our reformulation). Let
(M, oM yM M ™ dM) be solution to the master problem and let, for each a € A,
(g]f, 25w ds) be the solution to the corresponding best-response subproblem. If,
for au a € A, pzirlille(y(f’yl\/fa, 57 zﬁ/[a,w dS) pgirline(yM’ Z]\/I,’UJM7d]M) < €, we
conclude that no airline can obtain a strictly larger profit via a deviation. This
implies that all the explicit best-response systems that have not yet been taken into
account and added to the master problem are satisfied and, hence, the algorithm halts
with an optimal solution. If, conversely, the subproblem produces a strictly improving
deviation for at least one airline a € A, adding the corresponding explicit best-
response system to the master problem guarantees that, after reoptimizing the latter,
we obtain a solution (2, ™, 5™, zM @M dM) in which either (5, 2M) = (§a, 2a)
(i.e., in which the previous dev1at10n is featured as the action chosen by airline a € A),
or the first-level solution has changed (i.e., (™, ¢M) # (2™, ¢™)) and, thanks to

this, (Ja, 2,) is not anymore an improving deviation. O

6. THEORETICAL BENCHMARK: THE INTEGRATED PLANNING MODEL

We now present an integrated planning model which allows for finding an ideal
welfare-maximizing allocation of resources with the corresponding optimal invest-
ments and operational decisions. We will rely on such model as benchmark, using it
as baseline to quantify the costs of liberalized and imperfect aviation markets that
are obtained under our trilevel model in the case study we report in the next section.
As we will see in it, such an integrated planning model may indeed yield (investment)
decisions which are quite different from those identified by our trilevel model.

In the integrated planning model, we make the assumption that all of the air-
ports’ and airlines’ investment and scheduling decisions be taken by a benevolent
social planner in a globally efficient way, i.e., in such a way that the welfare of the
whole industry is maximized. In this model, we assume that the airports are not
limited by budget restrictions. Models similar to this one are typically referred to
as "theoretical" or "first-best" benchmarks and are frequently used in the literature.
See, e.g., [41], [33], or [63].

From an economical point of view, the integrated planning model yields the same
outcome as a variant of our market model in which welfare is maximized in each
levelﬁ The corresponding competitive market prices adequately reflect scarcity of

5In the first level, welfare is expressed as gross consumer surplus minus all investment and
operational costs of both airports and airlines. In the second level, welfare equals gross consumer
surplus minus fleet investment and fleet operation costs. In the third level, welfare is defined as
the difference between gross consumer surplus and operational costs of the airlines. First, as all the
players in the same level maximize the same objective function, they can be collapsed into a single
player. Secondly, from a mathematical point of view, see, e.g., [33], the three welfare functions
we introduced are affinely equivalent. This implies that, under the assumption of optimism, it is
without loss of generality to assume that all levels maximize the same welfare function as the first-
level problem. Thus, the trilevel model can be solved as a single-level welfare maximization problem
with a single decision maker, which is identical to our integrated planner model.
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P = 1200 — 1.5d, P =500 — 1.5d.

= 400 — 1.0d,
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c

P

F1GURE 7. Hub-and-Spoke Topology with Demand Functions Ac-
cording to [25]

resources and incentivize efficient long-run investments for the players, i.e., they align
the individual profit maximization objectives of the airlines with the overall welfare
maximization goal. For more details on such equivalence see, e.g., [66), 29] 62].

Adopting the same definition of welfare as in @D, the integrated planning model
corresponds to the following optimization problem:

max Welfare: (9) (37a)
s.t. Aircraft Capacity Limitations: (20)) (37b)
Market Clearing: ((22) (37¢)
Runway Capacity Limitations: (15 (37d)
Aircraft Scheduling Constraints: ([14)) (37e)
Variable Restrictions: (3.3]). (371)

7. CASE STUDY

In this section, we present an academic six-airport network featuring different
flight connections and adopt it as case study.

7.1. Test Network. The test network we consider was originally introduced in [25]
and is used to illustrate the relevant economic effects in an intuitive way on a simple
example. The instance is reported in Figure [7] As it can be seen in the figure, the
six airports are divided into the hub airport H and the destination airports 1 to 5.

Let us assume that there is no pre-existing runway capacity at the beginning of
the planning horizon. Due to this assumption, the analysis we are about to carry out
may be alternatively interpreted as an analysis of the residual flight demand that can
not be covered by existing runway capacities, under the assumption that any pre-
existing flight schedule would not be modified after the runway capacity extensions
have taken place.

Per-unit airport investment costs for the hub H and the airports 1-5 amount to
$20,000 and $10,000, respectively. Furthermore, the intercept a®™°™ and the slope
POt of the variable-cost function for all airports amount to $5000 and $5, respec-
tively. In order to keep our example (and the corresponding scheduling decisions)
as simple as possible, we only consider five connections with takeoffs taking place
in subsequent periods. In particular, the connections from the hub H to airports 1
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and 2 are long-haul flights with a flight duration of three periods, while the connec-
tions with destination 3, 4, and 5 are short-haul flights with a flight duration of only
one period. Therefore, in our test example we consider a total planning horizon of six
periods. In addition, we assume that connections (H, 1) and (H, 3) are the two high-
demand connections of the network. Note that all the five considered connections
may equivalently be interpreted as return trips without affecting our analysis. As it
can be seen in Figure[7] all the demand functions we use are linear (and decreasing),
which implies that the consumer surplus is a concave function.

In analogy to runway capacities, we assume that no pre-existing aircraft are avail-
able. We consider two possible candidate aircraft for fleet expansion with a seat
capacity k¥ of 300 and 600, which represent a small and a large aircraft type,
respectively. Investment cost i*""® of the “small” and “large” aircraft amount to
$10,000 and $20,000. Note that the investment costs we consider here should be
interpreted as annualized costs, corresponding to the costs of using an aircraft only
over the planning period under consideration. Since we only consider a very short
planning period of a few hours in this section, the investment costs will be relatively
small when compared to the respective variable costs of a flight (see below).

We assume that all five connections can be served by each of the two aircraft.
Moreover, the intercept o™ of the variable-cost function of the “small” aircraft is
assumed to be $22,500 for the long-haul flights and $7200 for the short-haul flights.
For the “large” aircraft, these values are higher and are given by $45,000 and $22,500,
respectively. The slope T8¢ of the variable-cost function for the long-haul flights
and the short-haul flights amounts to $25 and $8, respectively.ﬂ Note that, similarly
to the intercept values we introduced, we assume higher slope values for long-haul
flights than for short-haul flights as, e.g., fuel costs or meal costs will, in general,
increase with the flight time.

For the discussed test network, in the following we present the welfare optimum
of the integrated planning problem as well as the equilibrium solution of our trilevel
market model. In particular, for our trilevel model we analyze the effects of different
degrees of competition among airlines, considering both a monopoly airline and a
duopoly.

7.2. Setup. Note that, for the case of linear demand functions, our integrated plan-
ning model reduces to a mixed-integer problem with linear constraints and a concave
objective, while the trilevel market model is intrinsically nonconvex—this calls for the
adoption of a spatial branch-and-bound solver to achieve a globally optimal solution.
All our problem instances are solved with the spatial branch-and-bound solver SCIP
3.2.1 [32]. Using our Algorithm [1} all instances of our trilevel model are solved in only
a few iterations. All the computations are performed on an Intel© Core™i5-3360M
CPU with 4 cores and 2.8 GHz each and 4 GB RAM.

7.3. Discussion of main results. Let us first analyze the results obtained with the
integrated planner model. As Table [I] shows, in its solution the capacity of all six
airports is extended. Moreover, as shown in Table [2| and Table |3 investments take
place in five aircraft serving all available connections.

Two large aircraft are scheduled on the high-demand connections (H, 1) and (H, 3),
whereas, on the three remaining connections, only small aircraft are used. Overall,
the total welfare amounts to $553,262. We will use this value as a benchmark to

61f more than a single airline is present, their costs o™i are made pairwise distinct by adding

a small perturbation € to them—see footnote 7 for more details.
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TABLE 1. Results for the different airports (set N). Passenger-based
charge (¢, in $), runway capacity extension (z), airport investment
cost (I, in $), and airport variable cost (V, in $) for different models
(integrated planner, monopoly, duopoly)

integrated planner monopoly duopoly
N ¢ =z 1 \% ¢ 1 \% ¢ 1 \%4
H — 1 20,000 35410 4388 1 20,000 19,500 34.16 1 20,000 21,000
1 — 1 10,000 8000 55 1 10,000 6500 30 1 10,000 8000
2 — 1 10,000 6500 0 0 0 0 0 0 0 0
3 — 1 10,000 7910 55 1 10,000 6500 55 1 10,000 6500
4 — 1 10,000 6500 55 1 10,000 6500 55 1 10,000 6500
5 — 1 10,000 6500 0 0 0 0 0 0 0 0

TABLE 2. Results for the different airline(s) (set A). New aircraft
ordered (32%°,49%0), airline investment cost (I, in $), and airline vari-
able cost (V, in $) for different models (above: integrated planner,

monopoly; below: duopoly)

integrated planner monopoly
A 300 600 I v y300 600 I Vv
— 3 2 70,000 128,256 3 — 30,000 49,200
duopoly
A 4300 600 I Vv
small 2 — 20,000 19,200
large — 1 20,000 60,000

TABLE 3. Results for the different connections C. Number of pas-
sengers (w), scheduled aircraft capacity (), and price (P, in §) for
different models (integrated planner, monopoly, duopoly).

integrated planner monopoly duopoly
airline large airline small
C w(k) P w(k) P w(k) w(k) P
(H,1) 600(600) 300 300(300) 750 600(600) 0(0) 300
(H,2) 300(300) 50 0(0) 500 0(0) 0(0) 500
(H,3) 582(600) 18 300(300) 300 0(0) 300(300) 300
(H,4) 300(300) 200 300(300) 200 0(0) 300(300) 200
(H,5) 300(300) 100 0(0) 400 0(0) 0(0) 400

assess possible market inefficiencies in the imperfect aviation market case, relying on
our trilevel model—see Table [4l

We now discuss the results of our trilevel market model, which are summarized
in Tables [1] 2| B} and @] We first assume the presence of a single airline, i.e., a
monopolist, which invests in its fleet and schedules its aircraft on the second level.
As expected, the monopolist reduces ticket supply in order to increase its profits.
In particular, the monopolist only invests in three small aircraft that are scheduled
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TABLE 4. Welfare (in $), (net) consumer surplus (in $), and the
sum of airline/airport profits (in $) for different models (integrated
planner, monopoly, duopoly).

integrated planner monopoly duopoly

welfare w 553,262 364,300 478,300
(net) consumer surplus 596861 157,500 360,000
> airport profits -140819 0 0
> airline profits 97220 206,800 118,800

on connections (H,1), (H,3), and (H,4). Given this supply shortage based on the
reduced seat capacity, welfare reduces to $364,300 when compared to the reference
integrated-planning solution. The total profits of the monopolist amount to $206,800.
The connection-specific profits, of $155,333, $40,733, and $10,734 for, respectively,
the three connections (H,1), (H,3), and (H,4), show that, indeed, all three legs
are profitable for the monopolist. We remark that the observed equilibrium prices
are the outcome of the competitive ticket market. This implies that the monopolist
cannot charge a monopolistic price but, rather, can only affect the resulting (perfectly
competitive) price through its strategic aircraft investments and scheduling decisions
in level two. Therefore, for example, given a monopolist choice of investing into the
small aircraft and of scheduling it on connection (H,3) with a capacity of 300 and
assuming a total of 300 passengers on that connection, the resulting market price
will be P§™" = 300.

In a second experiment, we assume a duopoly, i.e., we consider two competing
airlines on level two. In particular, we consider (i) a “large” airline that, according to
its assumed airline-specific fleet portfolio, can only invest in the large aircraft type,
as well as (i¢) a “small” airline that can only invest in the small aircraft type. |Z| As
expected, the increased competition leads to a welfare of $478,800, which is higher
when compared to the monopoly solution. This underlines the importance of ad-
equate competition policy regulations—see the vast literature on competition and
competition policy in the airline industry, e.g., [11], [48], or [58]. The observed wel-
fare gain is mainly driven by the fact that the “large” airline schedules one large
aircraft on connection (H, 1), which increases the seat capacity on this connection
by 300. In addition, we can observe a reduction of airline profits to $117,800 relative
to the monopoly, whereas the consumer surplus moves in the opposite direction. In
both the monopoly and in the duopoly cases, the airport profits are zero, i.e., their
budget constraints are binding.

We also note that, in line with the above observations, airport charges at the hub
and at airport 1 decrease in the duopoly case when compared to the monopolistic
case. This is due to the fact that the airport investment and operational costs can
be recovered via an increased number of passengers.

Given efficient ticket prices under the integrated planner problem (equivalent to
a perfectly competitive market outcome), our trilevel market model will, in general,
distort the optimal price structure of the former. In our example, for instance, the
ticket prices under both the duopoly and the monopoly will be inefficiently high,

To guarantee pairwise-distinct costs, we add a positive perturbation ¢ > 0 to the cost for
connections (H,1) and (H,2) for the small airline, and a positive perturbation by the same e for
connections (H,3), (H,4), and (H,5) for the large airline.
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which directly reflects an underinvestment in aircraft and airport capacity—see Ta-
bles [T and [2} For instance, the price observed in the monopoly case for connection 1
in the amount of $750 is inefficiently high when compared to the price of $300 that
is obtained under the benchmark model. This is because the flight capacity on this
connection is reduced by the monopolist from 600 seats/tickets to only 300. In line
with the current policy debate on the bankruptcy of the German carrier AirBerlin,
the results obtained with our model underline that prices will, in general, tend to
increase if the market concentration increases.

Finally, we note that our model may not only be used for policy analyses (carried
out by, for instance, a regulator wishing to assess, e.g., the impact on the market
when losing a competitor), but it can also serve as a valuable tool for business support
of private actors. In particular, our model inherently allows airlines to identify an
optimal strategy for a given investment and scheduling decision of its competitor(s).

Within the context of optimal airline-strategies and profitable strategy deviations,
in Table 5] we present, as an example, the solutions of the last three restricted master
problems and subproblems for the duopoly case. As it can be seen in the third-last

TABLE 5. Solutions of the last three restricted master and subprob-
lem iterations (duopoly case).

iteration solution to master problem solution to subproblem
airline large  airline small airline large airline small
third last 4300 — 2 — 1
yGOO 2 . 1 .
z1 1 0 1 0
22 0 0 0 0
23 1 0 0 0
z4 0 1 0 1
z5 0 1 0 0
second last 3300 — 3 — 2
yGOO 1 . 1 .
z1 1 0 1 0
22 0 0 0 0
23 0 1 0 1
z4 0 1 0 1
z5 0 1 0 0
last 4300 — 2 — 2
yGOO 1 . 1 .
z1 1 0 1 0
22 0 0 0 0
23 0 1 0 1
z4 0 1 0 1
25 0 0 0 0

iteration, it is optimal for both airlines of the duopoly to unilaterally reduce their
investments, i.e., to only invest in a single aircraft scheduled on the most profitable
connections (which are connections 1 and 4, respectively). While, in the second-last
iteration, there is no further unilateral and profit-enhancing deviation strategy for
the large airline (which now serves connection 1), the small airline has an incentive
not to offer a flight to airport 5. Adding a corresponding best-response system to the
new master problem, in the last iteration no new deviation strategies are found in
either subproblem and the algorithm terminates with an optimal solution, i.e., with
an equilibrium.
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8. CONCLUSION

In this paper, we have presented a trilevel market model which accounts for dif-
ferent economic players including airports, airlines, and passengers. In particular, we
have assumed welfare-regulated airports which choose their optimal runway capacity
expansion as well as an optimal airport charge in the first level, imperfectly compet-
itive airlines which make investment in new aircraft and flight scheduling decisions
in the second level, and a ticket market in the third level, in which the number of
tickets that is sold is determined.

Using an integrated single-level benchmark model, we have been able to quantify
the costs of imperfect markets in terms of inefficient investments in the multilevel
imperfect-market model. In order to illustrate the underlying (economic) effects, as a
first starting point we have analyzed a small test network that consists of six airports
and five flight connections.

Due to the difference in solutions that we obtain when considering either the
integrated benchmark model or our trilevel model, our results suggest the need for a
careful design of (future) market structures as, otherwise, investment incentives for
airports and airlines may be aligned in a way that yields severe long-run inefficiencies
when implemented in practice. To this end, our model may be seen as a valuable tool
to evaluate and assess different policy options on a quantitative basis in the future.

Future works include the development of algorithms for tackling instances of larger
size, possibly relying on techniques of cut diversity and bound improvement for se-
lecting the next explicit best-response system to be introduced (see [3], [4], [22]), as
well the application of techniques similar to those we developed in this paper to other
multi-level decision-making problems in the airline industry.

Another interesting direction for future research is investigating under which con-
ditions the game that is played in the second level by the airlines always admits
a generalized Nash equilibrium. This could be done, for instance, by investigating
whether such a game can be cast as a congestion game where the connections are
interpreted as resources whose value/price is determined as a solution to the ticket-
pricing game played in the third level—see, for instance, [37]. It would also be of
interest to assess the impact on the whole tri-level problem of adopting, in the gen-
eralized Nash equilibrium problem, different equilibrium-selection strategies besides
the optimistic one where a welfare-maximizing equilibrium is selected.
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APPENDIX A. PARAMETERS, SETS, AND VARIABLES

In this appendix, we summarize main parameters, sets, and variables.
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TABLE 6. Sets

Symbol Description

T Set of time periods

N Set of airports

A Set of airlines

P Set of aircraft or plane types
P, C P Set of aircraft types of airline a
C Set of connections

C, C C Set of connections of airline a

TABLE 7. Variables and derived quantities

Symbol Description Unit
T Runway capacity extension at airport n Nu {0}
On Passenger-based charge of airport n $
Yap Number of new aircraft of type p bought by airline a Nu {0}
Zape Decision of scheduling an aircraft of type p on connection ¢ by a {0,1}
d. Ticket demand on connection ¢ R>o
pgon Ticket price or inverse demand function for connection ¢ $
Wee Ticket sold by airline a on connection ¢ R>g
VArPort - Yariable cost function of airport n $
3rPort Tnyestment cost function of airport n $
R2IPrt  Revenues of airport n paid by a $
yairtine  yariable cost function of airline a $
r2irline - Investment cost function of airline n $
R2rline  Revenues of airline a $
TABLE 8. Parameters
Symbol Description Unit
kATPOTt Fyisting runway capacity of airport n NuU {0}
2ot Glope of investment cost function of airport n $
adPort  Tntercept of variable cost function of airport n $
pairpert  Glope of variable cost function of airport n $
Zilf““e Number of existing aircraft of type p owned by airline a NU {0}
aitline Tntercept of variable cost function of airline a $
,6’2;““" Slope of variable cost function of airline a $
aircraft  Qeat capacity of aircraft type p Nu {0}
igircraft Slope of investment cost function of aircraft p $
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