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Gram-negative	bacteria	have	an	unusual	cell	envelope	that	contains	an	inner	
cytoplasmic	 lipid	 membrane	 and	 an	 outer	 bacterial	 lipid	 membrane.	 The	
outer	 bacterial	 lipid	 membrane	 produces	 outer	 membrane	 vesicles	 that	
regulate	 bacterial	 pathogenesis	 processes.	 The	 outer	 membrane	 vesicles	
transport	virulence	factors	from	bacteria	to	host	cell	surfaces	and	the	vesicles	
then	move	into	the	host	cell	cytosol.	Computer	simulations	were	conducted	
here	in	this	thesis	to	understand	how	outer	membrane	vesicles	pass	through	
host	 cell	 surfaces	 independently	 of	 any	 membrane	 protein	 effects.	 The	
simulations	 suggest	 that	 outer	 membrane	 vesicles	 enter	 cells	 via	 lipid-
mediated	endocytosis	processes	and	 interestingly,	 that	 the	host	membrane	
wrapping	 interactions	 depend	 on	 the	 length	 of	 the	 lipopolysaccharide	
macromolecules.	Additional	simulations	were	conducted	to	understand	how	
polymyxin	 B1	 peptides	 affect	 the	 inner	 and	 outer	 membranes	 of	 Gram-
negative	 bacteria	 and	 how	 cohesive	 intermolecular	 interactions	 between	
lipopolysaccharide	lipids	can	affect	the	durability	of	Gram-negative	bacterial	
membranes.	 The	 simulation	 studies	 are	 by	 no	 means	 disparate;	 the	
simulations	 provide	 general	 insights	 into	 disease	 transmission.	 The	
simulations	 clarify	 how	 lipopolysaccharide	 macromolecules	 promote	 the	
spread	of	disease	and	conversely	how	antibiotics	can	curb	it.		
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molecules	are	the	curved	purple	structures.	The	macromolecules	can	be	
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across	the	periplasm	(green	and	blue).	The	structure	was	determined	from	
complementary	experimental	and	computational	analyses.	The	image	sources	
are:	Wikipedia	Commons	and	paper	10.1016/j.sbi.2019.12.017	(DOI)	[53].	
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model,	and	a	supra	coarse-grained	forcefield	lipid	model.	Each	constituent	
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simulation	interaction	center.	(B)	Sideview	snapshots	of	a	multicomponent	
membrane	being	simulated	with	an	atomistic	or	“all-atom”	resolution	
forcefield	(AA),	a	coarse-grained	resolution	forcefield	(CG),	and	a	supra	
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construction	tool.	(B)	The	Campylobacter	jejuni	outer	membrane	model	that	
was	assembled	with	the	CHARMM-GUI	construction	tool	(top)	and	simulated	
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for	a	time	𝛥𝑡	(bottom).	(C)	The	E.	coli	outer	membrane	model	that	contains	
the	central	vitamin	B12	transporter	(BtuB)	integral	membrane	protein.	The	
structure	was	assembled	with	the	CHARMM-GUI	construction	tool	(top)	and	
simulated	for	a	time	𝛥𝑡	(bottom).	The	inner	leaflet	lipids	are	blue,	white,	and	
black.	The	outer	leaflet	lipids	are	pink,	orange,	gold,	cyan	and	gray.	The	BtuB	
protein	is	yellow	and	green.	The	ions	are	represented	as	small	spheres	that	are	
not	covalently	linked	with	the	lipids	or	protein	molecules.	Image	source:	
10.1021/acs.jctc.8b01066	(DOI)	[229].	
	
Figure	5:	(A)	Model	of	the	E.	coli	cell	envelope	that	includes	the	inner	
cytoplasmic	membrane	(IM),	the	outer	membrane	(OM),	peptidoglycan	(cell	
wall),	Braun’s	lipoprotein	(Lpp)	and	integral	membrane	proteins.	The	lipids	
are	gray	and	the	peptidoglycan	is	blue	and	green.	The	proteins	have	different	
color	schemes	to	help	readers	to	distinguish	between	them.	(B-D)	
Representative	states	of	the	peptidoglycan	cell	wall	composite	when	it	is	
relaxed	(B),	stretched	to	1.5x	of	its	original	area	(C)	and	stretched	to	2x	its	
original	area	(D).	The	glycan	strands	are	blue,	the	peptide	cross-links	are	
green	and	the	borders	of	the	simulation	cell	are	represented	as	a	thin	dashed	
line.	The	image	sources	are:	10.106/j.bbamem.2018.09.020	(DOI)	[312]	and	
10.1371/journal.pcbi.1003475	(DOI)	[309].	
	
Figure	6:	Implementation	of	the	CHARMM-GUI	Martini	Maker	module.	(A)	
The	initial	random	placement	of	20	LPS	lipids	and	the	subsequent	self-
assembly	of	the	lipids	into	a	unilamellar	or	bilamellar	bacterial	membrane	
fragment.	(B)	The	initial	construction	of	an	LPS	micelle	and	the	subsequent	
transformation	of	the	micelle	to	become	a	unilamellar	bacterial	membrane.	
(C)	The	initial	construction	of	an	LPS	micelle	with	embedded	OmpF	protein	
and	the	subsequent	transformation	of	the	micelle	into	a	multicomponent	
unilamellar	bacterial	membrane.	(D)	The	final	frame	snapshots	of	molecular	
dynamics	simulations	of	asymmetric	bacterial	membrane	models	that	were	
generated	with	the	CHARMM-GUI	Martini	Maker.	The	bilayers	contained	only	
lipids	(OM)	or	lipids	and	the	OmpA	integral	membrane	protein	(OM-OmpA).	
(E)	Snapshots	of	OMV	simulation	systems	that	contained	only	lipids	or	lipids	
and	an	embedded	outer	membrane	protein.	The	systems	were	made	with	the	
CHARMM-GUI	Martini	Maker	module.	The	proteins	are	red,	the	acyl	tails	are	
yellow,	the	core	sugars	are	violet,	the	choline	and	phosphate	groups	are	blue	
and	purple	and	the	unsaturated	bonds	are	cyan.	Image	source:	
10.1002/jcc.24895	(DOI)	[151].	
	
Figure	7:		Understanding	the	properties	of	lipid	rafts	through	the	application	
of	molecular	dynamics	simulations.	(A)	Formation	of	separate	liquid-ordered	
(green)	and	liquid-disordered	(red)	nanodomains	that	are	enriched	in	
saturated	lipids	(green)	and	cholesterol	(black),	or	polyunsaturated	lipids	
(red).	(B)	Top	view	snapshots	showing	how	the	cholesterol	molecules	were	
distributed	within	the	multicomponent	membrane	simulation	system	and	the	
(C)	radial	distribution	function	for	the	cholesterol-cholesterol	intermolecular	
separation	distances.	(D)	Snapshots	of	GM1	ganglioside	and	POPC	lipids	that	
were	simulated	in	two-component	membranes.	The	membrane	became	more	
rigid	and	raft-like	as	the	concentration	of	the	ganglioside	molecules	was	
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increased	from	10%	through	to	30%.	The	Image	sources	are:	
10.1073/pnas.0807527105	(DOI)	[335]	and	10.1016/j.bpj.2016.09.021	(DOI)	
[362].	
	
Figure	8:	The	structure	of	four	phospholipids.	(A)	The	structure	of	a	
phosphatidylcholine	lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	tails	
bonded	via	an	ester	linkage	to	glycerol,	a	negatively	charged	phosphate	group	
and	a	terminal	positively	charged	choline	section.	(B)	The	structure	of	
phosphatidylserine	lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	chains	
bonded	via	an	ester	linkage	to	glycerol,	a	negatively	charged	phosphate	group	
and	a	terminal	serine	moiety.	(C)	The	structure	of	a	phosphatidylethanolamine	
lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	chains	covalently	bonded	
through	an	ester	link	to	central	glycerol	and	phosphate	groups,	and	a	terminal	
ethanolamine	section.	(D)	The	structure	of	a	phosphatidylglycerol	lipid	
(16:0/18:1(9Z))	that	consists	of	two	acyl	tails	bonded	via	an	ester	linkage	to	
glycerol,	a	negatively	charged	phosphate	group	and	a	terminal	glycerol	group.	
Image	source:	https://avantilipids.com	
	
Figure	9:	The	properties	and	molecular	dynamics	simulations	of	cholesterol.	
(A)	The	chemical	composition	of	cholesterol	molecules	and	a	simplified	
schematic	illustration	showing	how	the	polar-headgroup-to-hydrophobic-body	
cross	sectional	area	ratio	gives	cholesterol	an	effective	conical	structure.	(B)	
Schematic	illustrations	showing	how	lipid	shape,	defined	by	the	hydrophilic-
headgroup-to-hydrophobic-lipid-component,	is	expected	to	affect	preferences	
for	spontaneous	curvature	generation.	(C)	Molecular	dynamics	simulations	
that	show	how	cholesterol	molecules	can	regulate	membrane	curvature	and	
the	membrane	stress	distribution	by	flipping	between	the	apposed	membrane	
leaflets	on	a	nanosecond	timescale.	(D)	Schematic	illustration	showing	how	
lipid	sorting	can	be	induced	by	membrane	curvature,	but	also	how	induced	
lipid	sorting	can	affect	local	preferences	for	spontaneous	membrane	curvature	
generation.	(E)	Plasma	membrane	molecular	dynamics	simulations	that	
demonstrated	curvature-induced	cholesterol	molecule	sorting.	The	cholesterol	
molecules	moved	to	negatively	curved	membrane	domains	during	production	
time.	The	image	sources	are:	Wikipedia	Commons,	10.3389/fmicb.2014.00220	
(DOI)	(439)	10.1021/ja903529f	(DOI)	[437]	
10.1146/annurev.cellbio.20.010403.095451	(DOI)	[440]	
10.1002/adts.201800034	(DOI)	[364].	
	
Figure	10:	The	structure	and	molecular	dynamics	simulations	of	hopanoids.	
(A-C)	The	structure	of	three	hopanoids:	hopane	(A),	diploptene	(B),	and	
bacteriopanetetrol	(C).	(D)	Martini	coarse-grained	molecular	dynamics	
simulations	of	multicomponent	membranes	that	included	either	hopane	
(yellow),	diploptene	(green),	or	bacteriohopanetetrol	(purple)	with	POPC	
lipids.	The	POPC	phosphate	headgroups	are	orange	to	show	the	position	of	the	
membrane-water	interface.	The	image	sources	are:	Wikipedia	Commons	and	
10.1063/1.4937783	(DOI)	[451].	
	
Figure	11:	The	structure	of	PIP2	molecules	and	the	interaction	of	PIP2	
molecules	with	integral	membrane	proteins.	(A)	The	skeletal	structure	of	the	
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PIP2	lipid	that	includes	the	phosphate	groups	(red),	the	inositol	ring	and	the	
anchoring	saturated	and	unsaturated	acyl	chains	(blue).	(B-C)	The	binding	
positions	of	PIP2	lipids	on	Kir2.2	channel	proteins	that	were	identified	from	X-
ray	crystallography	(B)	and	molecular	dynamics	simulation	studies	(C).	The	
PIP2	lipids	are	represented	as	green	and	red	spheres	and	the	protein	residues	
are	represented	as	violet	chains.	(D)	The	S1P1	GPCR	molecule	that	has	been	
colored	according	to	its	interactions	with	the	PIP2	phosphoryl	headgroup	in	
coarse-grained	molecular	dynamics	simulations.	The	interaction	number	color	
bar	ranges	from	white	through	to	red.	The	image	sources	are:	Wikipedia	
Commons,	10.1038/nature10370	(DOI)	10.1021/bi301350s	(DOI)	[470]	and	
10.1021/jacs.5b08048	(DOI)	[76]. 
	
Figure	12:	The	chemical	structure	of	three	simple	sphingolipids.	(A)	The	
chemical	structure	of	sphingosine.	(B)	The	chemical	structure	of	a	ceramide.	
The	variable	fatty	acid	moiety	is	red	and	the	sphingosine	backbone	is	black.	
(C)	The	chemical	structure	of	a	sphingomyelin	molecule.	The	variable	fatty	
acid	moiety	is	red,	the	sphingomyelin	backbone	is	black	and	the	
phosphocholine	group	is	blue.	Image	source:	Wikipedia	Commons.	
	
Figure	13:	The ganglioside lipid structure and representations of how 
ganglioside molecules can induce spontaneous curvature generation. (A) 
Biosynthetic pathway for some of the smallest and simplest ganglioside 
molecules i.e. GM3, GM2 and GM1. Ganglioside molecules consist of a core 
ceramide unit that is bonded to glycan headgroups that contain 
monosaccharides such as glucose (Glc), galactose (Gal), N-
acetylgalactosamine	(GalNAc),	and	sialic	acid	residues	(Sia).	Additional	
monosaccharide	units	can	be	added	onto	GM3,	GM2	and	GM1	molecules	to	
create	larger	and	more	complex	ganglioside	molecules.	(B)	The	skeletal	
formula	of	the	GM3	lipid.	The	ceramide	domain	is	highlighted	gray	and	the	Glc,	
Gal,	and	Sia	units	are	highlighted	blue,	yellow	and	maroon.	(C-D)	Molecular	
dynamics	simulations	showing	how	molecular	dynamics	simulations	have	
demonstrated	that	GM1	molecules	can	reshape	asymmetric	biomembranes.	
The	phospholipids	are	blue	and	the	GM1	molecules	are	red.	The	graphic	
contains	both	top	view	and	side	view	snapshots.	(E-F)	Molecular	dynamics	
simulations	showing	how	cholera	toxin	B	subunit	(CTxB)	can	induce	local	
curvature	generation	within	biomembrane	mimetics.	(E)	The	DOPC	lipids	are	
green	and	the	GM1	lipids	are	purple.	(F)	The	membrane	has	been	refitted	to	a	
thin	surface	for	easier	visualization	of	the	induced	membrane	curvature.	The	
image	sources	are:	10.3389/fimmu.2014.00325	(DOI)	[426]	
10.1038/nchembio0209-71	(DOI)	[535]	10.1073/pnas.1722320115	(DOI)	
[536]	10.1002/2211-5463.12321	(DOI)	[537]. 
	
Figure	14:	Pathogens	and	pathogenic	products	can	bind	ganglioside	lipids	
and	this	interaction	promotes	endocytosis.	(A)	SV40	coat	protein	VP1	
pentamer	cocrystallized	with	GM1	pentasaccharide.	The	coat	protein	is	green	
and	the	pentasaccharides	are	red.		(B)	Cholera	toxin	𝛽subunit	cocrystallized	
with	GM1	pentasaccharide.	(C)	E.	coli	enterotoxin	𝛽subunit	cocrystallized	with	
nitrophenyl-galactoside.	(D)	Shiga	toxin	𝛽subunit	cocrystallized	with	GB3	
trisaccharide.	(E)	Pentameric	E.	coli	Shigalike	toxin	𝛽subunit	cocrystallized	
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with	a	GB3	analog.	(F)	Binding	of	SV40	to	GM1	lipids	in	a	multicomponent	
membrane.	(G)	The	formation	of	a	lipid	raft	(dark	blue	band)	and	the	
demonstration	of	actin-dependent	immobilization.	(H)	The	invagination	of	the	
plasma	membrane	mimetic	due	to	interactions	with	SV40.	The	interactions	
between	SV40	and	the	plasma	membrane	mimetic	generate	a	caveola	
structure.	(I)	Scission	machinery	facilitating	endocytosis	after	the	production	
of	a	flask-shaped	lipid	raft	structure	(i.e.	caveola).	(J)	The	formation	of	a	
vacuole	and	the	transport	of	the	vacuole	through	the	intracellular	space.	The	
image	source	is:	10.1101/cshperspect.a004721	(DOI)	[542].	

	
Figure	15:	Schematic	representation	of	a	single	molecule	of	smooth	LPS	from	
E.	coli	bacteria.	The	illustration	includes	the	conserved	Lipid	A	domain,	which	
is	a	phosphorylated	glucosamine	disaccharide	decorated	with	multiple	fatty	
acid	chains.	Lipid	A	is	bonded	to	the	core	oligosaccharide	section,	which	
includes	hexose	sugars	such	as	keto-deoxyoctulosonate	(Kdo),	glucose	(Glc),	
mannoheptose	(Hep),	N-acetyl-D-glucosamine	(GlcNac),	galactose	(Gal)	and	
phosphate	groups.	The	length	of	the	core	domain	determines	rough	LPS	
nomenclature	e.g.	Re	and	Ra	mutants	are	shown	using	red	and	pink	skeletal	
structures.	Smooth	LPS	lipids	additionally	contain	terminal	O-antigen	chain	
units.	Smooth	LPS	lipids	can	contain	multiple	repeats	of	the	repetitive	O-
antigen	chain	polymer	unit.	The	length	and	composition	of	the	O-antigen	
chain	varies	among	different	bacterial	species	and	depends	on	the	bacterial	
growth	conditions.	The	image	is	based	on	work	from	the	
10.1021/acs.jctc.8b01059	manuscript	(DOI)	[315].	
	
Figure	16:	Schematic	illustration	of	the	cell	envelope	of	(A)	Gram-negative	
and	(B)	Gram-positive	bacteria.	Phospholipids	are	orange	spheres	attached	to	
two	acyl	chains,	LPS	lipids	are	orange	ovals	attached	to	six	acyl	chains	and	
terminal	red	square	polymers,	teichoic	acids	are	green	circle	polymers	
attached	to	orange	heptagons,	proteins	are	gray	circle	and	oval	composites,	
and	peptidoglycan	is	the	repeating	blue	and	purple	hexagon-square	
composite.	(C)	The	chemical	structure	of	the	peptidoglycan	unit.	(D)	The	
chemical	structure	of	teichoic	acid.	The	different	cell	wall	structures	affect	
how	bacteria	interact	with	the	external	milieu	and	thereby,	their	response	to	
the	Gram	stain	procedure.	The	image	source	is:	10.1021/acs.chemrev.8b00538	
(DOI)	[59].	
	
Figure	17:	Host-pathogen	interface	interactions.	The	OMVs	are	liposomes	
that	contain	an	outer	leaflet	that	is	predominantly	comprised	of	
lipopolysaccharide	lipids	and	an	inner	leaflet	that	is	predominantly	comprised	
of	phospholipids.	The	OMVs	deliver	luminal	cargo	and	virulence	factors	to	host	
cells	as	they	pass	through	or	fuse	with	the	host	cell	(eukaryotic)	plasma	
membranes.	The	OMVs	can	enter	cells	through	clathrin-dependent	endocytosis	
and	alternative	lipid-mediated	internalization	uptake	pathways	that	involve	
lipid	rafts,	but	the	precise	biomolecular	interactions	that	underpin	these	
processes	are	not	entirely	understood.	Here,	the	OMV	outer	leaflet	is	cyan,	the	
inner	leaflet	is	orange,	the	outer	membrane	proteins	are	yellow,	the	host	
plasma	membrane	is	pink,	the	lipid	raft	is	blue	and	the	clathrin	molecules	are	
purple	and	red.	
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Figure	18:	Overview	of	AMP	membrane	breakdown	processes.	(A)	The	AMPs	
initially	bind	to	the	host	membrane	surfaces	through	a	combination	of	
electrostatic	and	hydrophobic	protein-lipid	interactions.	The	AMPs	adopt	
orientations	that	maximize	the	number	of	attractive	peptide-lipid	electrostatic	
and	hydrophobic	interactions.	(B)	In	the	barrel-stave	model	the	hydrophobic	
AMP	moieties	are	oriented	toward	the	encompassing	acyl	chains	and	this	
creates	a	transmembrane	water	pore.	The	encompassing	acyl	chains	maintain	
a	transmembrane	orientation	(i.e.	align	with	the	membrane	normal	axes)	and	
the	AMPs	oligomerize	to	effectively	form	a	pore	that	has	one	hydrophobic	
surface	and	one	hydrophilic	surface.	(C)	In	the	toroidal-pore	model	the	
intracellular	(inner)	and	extracellular	(outer)	monolayers	distort	when	they	
interact	with	the	oligomerized	AMPs	and	this	creates	a	transmembrane	water	
pore	whose	surface	is	comprised	of	lipid	headgroups	and	protein	residues.	(D)	
In	the	carpet	model	the	AMPs	stay	on	the	membrane	surface	and	induce	
membrane	rupture	as	they	change	the	structure	of	the	membrane.	The	image	
source	is:	10.1007/s10989-009-9180-5	(DOI)	[673].	
	
Figure	19:	The	structure	and	simulations	of	the	Polymyxin	B	antimicrobial	
peptide.	(A)	The	lipopeptide	contains	a	cyclic	component	that	is	made	of	seven	
amino	acids	and	a	non-cyclic	section	that	contains	three	amino	acids	with	
terminal	fatty	acid	chain	moiety.	The	lipopeptide	contains	five	cationic	
diaminobutyric	acid	(Dab)	residues	that	impart	a	net	(+5)	positive	charge	to	
the	molecule	and	this	positive	electrostatic	charge	promotes	PMB1	
interactions	with	anionic	lipids.	The	fatty	acid	chain,	isobutyl	group,	and	
phenylalanine	side	chains	confer	hydrophobicity	and	they	promote	PMB1	
interactions	with	hydrophobic	acyl	chain	moieties.	(B-C)	Results	from	
molecular	dynamics	simulations.	The	cholesterol	concentration	affected	how	
the	simulated	PMB1	peptides	interacted	with	the	multicomponent	membranes.	
There	was	indentation	of	the	bilayers	and	an	overall	increase	in	permeability	
when	the	cholesterol	content	was	zero	(B).	There	was	significantly	less	
membrane	damage	when	the	membranes	contained	high	concentrations	of	
cholesterol	(C).	The	water	molecules	are	red	and	white,	the	lipid	tails	are	thin	
cyan	strands,	the	phosphate	groups	are	orange	and	the	polymyxin	molecules	
are	represented	using	a	space-filling	van	der	Waals	model.	The	image	sources	
are:	Wikipedia	Commons	and	10.1016/j.bpj.2017.09.013	(DOI)	[728]. 
	
Figure	20:	Schematic	representation	of	the	non-bonded	interaction	energy	
term	components.	(A)	Lennard-Jones	component	that	is	used	to	approximate	
repulsive	electron	overlap	forces	at	short-range,	and	attractive	dispersion	
forces	at	long-range.	The	well	depth	is	provided	by	𝜀,	and	𝜎	is	the	distance	
where	the	potential	reaches	its	minimum.	(B)	Coulombic	interaction	energy	
experienced	by	two	point	charged	particles.	Coulomb	forces	are	appreciable	at	
both	short-	and	long-ranges	given	that	they	decay	according	𝑟'(,	where	𝑟	is	
the	distance	between	two	charged	particles.	
	
Figure	21:	The	components	of	the	molecular	dynamics	forcefield	bonded	
potential.	(A)	The	component	for	bond	stretching:	atoms	i	and	j	oscillate	about	
an	equilibrium	bond	distance	𝑟*+ .	(B)	The	component	for	valence	angles:	
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atoms	i,	j,	and	k	flex	about	an	equilibrium	valence	angle	𝜃*+ .	(C)	The	improper	
torsion	angle	component:	the	angle	between	the	two	intersecting	planes	(ijk)	
and	(jkl)	oscillates	about	an	equilibrium	improper	torsion	angle	𝜔*+ .	(D)	The	
proper	dihedral	component	describes	the	angular	spring	between	the	planes	
(ijk)	and	(jkl)	that	is	formed	of	four	consecutively	bonded	atoms.	
	
Figure	22:	Some	of	the	different	resolution	levels	that	can	be	used	in	
molecular	dynamics	simulations.	(A)	An	all-atom	model	for	the	DPPC	lipid.	The	
carbon	(cyan),	oxygen	(red),	nitrogen	(blue),	and	hydrogen	(white)	atoms	are	
represented	here	explicitly.	(B)	The	GROMOS	united-atom	forcefield	model	for	
the	DPPC	lipid.		The	hydrogen	atoms	are	clustered	into	neighboring	carbon	
atoms	to	produce	a	less	computationally	demanding	representation	for	the	
DPPC	lipid.	(C)	The	coarse-grained	Martini	forcefield	model	for	the	DPPC	lipid.	
Here,	multiple	neighboring	heavy	atoms	have	been	clustered	into	single	
pseudo-atom	interaction	centers	to	substantially	reduce	the	computational	
load	and	make	the	lipid	simulations	less	computationally	demanding.	The	
Martini	beads	have	the	following	color	scheme:	carbon	tail	(cyan),	glycerol	
(pink),	phosphate	(brown),	and	choline	(blue).	
	
Figure	23:	Schematic	illustration	of	a	single	particle	(red	circle)	passing	
through	the	borders	of	a	periodic	unit	cell	(black	lines).	The	use	of	periodic	
representations	provides	a	more	accurate	mimic	of	bulk	systems	given	the	
removal	of	a	well-defined,	simulation	cell	boundary.	The	simulated	atoms	can	
freely	traverse	the	space-filling	box	and	as	they	pass	through	one	border	of	the	
unit	cell,	they	instantaneously	re-enter	through	the	opposite	face.	
	
Figure	24:	Illustration	showing	how	the	leap-frog	algorithm	operates.	The	
computation	of	particle	positions	is	shown	with	a	blue	line	and	the	
computation	of	particle	velocities	is	shown	with	a	red	line.	Simulation	time	is	
represented	with	a	black	arrow;	the	time	step	is	user-defined	and	should	be	
calibrated	to	ensure	that	molecular	dynamics	simulations	are	both	efficient	
and	realistic.	There	is	a	lack	of	synchronization	between	the	particle	position	
and	velocity	calculations:	if	particle	positions	are	calculated	at	𝑡 + 𝑛𝛥𝑡,	then	
particle	velocities	are	calculated	at	𝑡 + 0

1
𝛥𝑡,	where	𝑛 ∈ ℕ.	

	
Figure	25:	Representative	harmonic	potential	used	to	enforce	(standard)	
position	restraints	in	molecular	dynamics	simulations.	The	potential	energy	
rises	as	particles	drift	from	a	user-defined	reference	position.	The	magnitude	
of	the	potential	energy	is	a	function	of	the	distance	between	the	atom	and	the	
user-defined	reference	position.	
	
Figure	26:	Coarse-grained	models	for	PMB1	and	Re	LPS.	(A)	coarse-grained	
model	for	PMB1.	The	Martini	beads	are	shown	as	translucent	spheres	and	the	
underlying	united-atom	particles	are	shown	as	opaque	spheres.	The	carbon	
atoms	are	ice	blue,	the	oxygen	atoms	are	red,	the	nitrogen	atoms	are	blue	and	
the	hydrogen	atoms	are	white.	(B)	The	coarse-grained	model	for	Re	LPS.	The	
carbon	tails	are	white,	the	glucosamine	and	glycerol	groups	are	pink,	the	
phosphate	groups	are	blue,	and	the	remaining	core	saccharides	are	cyan.	The	
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Re	LPS	lipid	is	divided	into	its	component	Lipid	A	anchor	and	keto-
deoxyoctulosonate	(Kdo)	dimer	sections	for	clarity.	
	
Figure	27:	Voronoi	tessellation	of	the	Re	LPS	bilayers	that	were	simulated	
with	either	Na+	or	Ca2+	ions.	(A,	B)	The	two-dimensional	Voronoi	tessellations	
were	used	to	determine	the	projected	surface	areas	distributions	for	the	Re	
LPS	bilayers	that	were	simulated	with	either	(A)	Na+	or	(B)	Ca2+	ions.	The	
mean	area	values	are	represented	with	dashed	red	lines	and	the	standard	
deviation	(σ)	and	skew	(S)	values	are	shown	in	the	top	right-hand	corner.	(C,	
D)	The	observed	data	sets	are	compared	with	Gaussian	distributed	data	sets	of	
equivalent	σ	and	S	values.	The	linear	association	between	the	Gaussian	(blue)	
and	observed	data	(black)	sets	was	calculated	with	the	standard	Pearson	
product-moment	correlation	coefficient	(r).	
	
Figure	28:	The	properties	of	the	Re	LPS	bilayers	that	with	simulated	with	
either	Na+	or	Ca2+	ions.	(A,	B)	The	wave-number-dependent	viscosity	η(k)	was	
determined	from	the	transverse	current	autocorrelation	function	for	the	Re	
LPS	bilayers	that	were	simulated	with	either	Na+	(blue	triangles)	or	Ca2+	
(black	squares)	ions.	The	values	of	η(k)	were	determined	by	considering	(A)	
the	entire	Re	LPS	lipids	in	the	viscosity	calculations	or	by	considering	(B)	only	
their	phosphate	groups.	The	data	were	fit	to	the	Padé	approximant:	𝜂(𝑘) =
	(1 + 𝑏𝑘1)'(;	the	fitting	parameters	(a,	b)	are	shown	with	the	optimized	
expressions	for	η(k)	(dashed	lines).	The	inset	image	shows	η(k)	as	k®	0.	Blue	
lines	represent	the	simulations	with	Na+	ions;	black	lines	represent	the	
simulations	with	Ca2+	ions.	(C,	D)	The	radial	distribution	functions	(RDF)	were	
determined	for	the	Re	LPS	phosphate	groups	in	the	simulations	with	(C)	Ca2+	
and	(D)	Na+	ions.	(E-H)	The	velocity	autocorrelation	functions	C(t)	were	
determined	for	(E,	G)	the	whole	Re	LPS	lipids	or	for	their	(F,	H)	phosphate	
groups.	The	data	are	presented	for	the	bilayers	with	either	(E,	F)	Na+	or	(G,	H)	
Ca2+	ions.	
	
Figure	29:	The	translocation	of	the	PMB1	peptide	through	the	bacterial	
membrane	mimetic	depended	on	the	type	of	ambient	ions	that	were	used	to	
conduct	the	molecular	dynamics	simulations.	(A,	B)	The	contact	number	for	
interactions	between	the	PMB1	Dab	residue	side	chains	and	the	Re	LPS	lipid	
phosphate	groups	as	a	function	of	simulation	time.	The	cut-off	distance	was	
0.47	nm	(the	effective	size	of	a	coarse-grained	Martini	bead);	data	were	
collated	for	all	of	the	unbiased	simulations.	(A)	The	data	for	the	bilayers	that	
were	simulated	with	Na+	ions	and	for	(B)	the	bilayers	that	were	simulated	
with	Ca2+	ions.	(C,	D)	The	final-frame	snapshots	of	the	PMB1	peptides	(green)	
interacting	with	the	Re	LPS	bilayers	that	were	loaded	with	(C)	Na+	or	(D)	Ca2+	
ions.	The	Re	LPS	lipids	are	colored	according	to	Fig.	26	and	the	Na+,	Ca2+,	and	
water	particles	are	omitted	for	clarity.	(E-H)	The	radial	distribution	functions	
for	the	phosphate	(black	lines)	and	carboxylate	(blue	lines)	groups	of	the	Re	
LPS	lipids	with	respect	to	the	position	of	the	PMB1	Dab	residue	side	chains.	
The	data	are	shown	for	both	the	(E,	F)	Na+,	and	(G,	H)	Ca2+	ion	simulation	
systems.	The	data	were	sampled	during	the	last	100	ns	of	simulation	time.	
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Figure	30:	The	PMB1	benzyl	group	penetrates	the	lipid	core.	(A)	Position	of	
the	Re	LPS	phosphate	groups	and	a	single	PMB1	benzyl	group	are	shown	with	
black	and	blue	lines,	respectively.	The	coordinates	are	with	respect	to	the	
bilayer	normal	and	the	distances	are	relative	to	the	bilayer	center.	The	
temperature	was	310	K,	the	pressure	was	1	bar	and	the	membranes	were	
simulated	with	divalent	Ca2+	ions.	(B)	Side	view	snapshot	showing	how	the	
PMB1	peptide	enters	into	the	bacterial	membrane	mimetic;	the	perspective	is	
reversed	relative	to	Fig.	30A	for	clarity.	The	inset	image	shows	the	two-
dimensional	Voronoi	tessellation	for	the	Re	LPS	headgroups	as	the	PMB1	
peptide	enters	into	the	lipid	core.	The	projected	polygons	are	colored	cyan	if	
they	represent	lipids	that	were	adjacent	to	the	embedded	PMB1	benzyl	group.	
(C)	The	area	per	lipid	for	the	five	Re	LPS	lipids	that	were	adjacent	to	the	
benzyl	group	when	it	moved	into	the	bilayer	interior	(3390-3480	ns).	The	
average	projected	surface	area	of	the	five	Re	LPS	headgroups	was	higher	than	
the	bilayer	average	(1.60	±	0.004	nm2).	
	
Figure	31:	The	free	energy	profile	for	PMB1	translocation	into	the	membrane	
interior.	The	free	energy	profiles	are	shown	for	the	simulation	systems	with	(A,	
C)	Na+	or	(B,	D)	Ca2+	ions.	(A,	B)	The	PMF	profiles	for	PMB1	as	a	function	of	
distance	from	the	bilayer	center.	The	PMF	profiles	are	shown	for	the	system	
temperatures:	320	K	(solid	cyan	lines),	310	K	(solid	blue	lines),	and	300	K	
(solid	black	lines).	(C,	D)	The	free	energy	profiles	ΔG	that	were	computed	at	
310	K	were	decomposed	into	entropic	-TΔS	(solid	red	lines)	and	enthalpic	ΔH	
(solid	green	lines)	components.	The	dashed	black	lines	show	the	average	
position	of	the	Re	LPS	phosphate	groups	from	the	bilayer	center.	(E)	The	
configurational	entropy	for	the	PMB1	peptides	was	evaluated	with	the	
Schlitter	formula	(S)	and	the	quasi-harmonic	approximations	(Q)	as	a	function	
of	distance	from	the	bilayer	center.	The	cyan	and	black	lines	show	the	data	for	
the	simulations	with	Na+	ions	and	the	red	and	blue	lines	represent	the	data	for	
simulations	with	Ca2+	ions.	
	
Figure	32:	The	vitreous	dynamics	of	the	Re	LPS	lipids.	The	lipid	dynamics	of	
the	Re	LPS	lipids	were	different	when	they	were	simulated	with	(A-D)	Na+	and	
(E-H)	Ca2+	ions.	(A,	E)	The	trajectories	of	single	representative	Re	LPS	
phosphate	groups	are	presented	here	as	red	lines.	The	background	snapshots	
of	the	Re	LPS	lipids	are	shown	with	the	scale	bar	to	provide	a	sense	of	distance.	
The	background	snapshots	clarify	how	far	the	representative	Re	LPS	lipids	
have	moved	in	Fig.	32A	and	Fig.	32E	or	in	other	words,	how	long	the	red	line	
trajectories	are.	The	simulations	were	conducted	with	a	simulation	
temperature	of	310	K	and	the	analysis	was	performed	for	1	μs.	(B-C,	F-G)	
Streamline	visualization	analysis	for	arbitrarily	selected	simulation	frames	to	
capture	the	collective,	heterogeneous	relaxation	dynamics	that	give	rise	to	the	
so-called	“blob-and-channel”	trajectories	that	are	a	hallmark	of	vitreous	
systems.	(D,	H)	The	self-part	of	the	van	Hove	correlation	function	that	is	
defined	as	the	probability	that	a	particle	that	is	at	r_0	at	time	zero	can	be	
found	at	position	r_0+t	at	time	t.	The	figures	show	how	the	Re	LPS	lipid	
trajectories	change	when	they	are	simulated	with	different	types	of	ions.	
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Figure	33:	The	Re	LPS	diffusion	was	affected	by	the	PMB1	peptides.	(A,	E)	The	
trajectories	of	single	representative	Re	LPS	phosphate	groups	was	visualized	
over	the	course	of	1	μs	long	umbrella	sampling	simulations.	The	sampled	
windows	correspond	to	the	minimum	of	the	310	K	PMF	profiles	from	Fig.	31A.	
The	trajectories	of	single	representative	Re	LPS	phosphate	groups	are	
presented	here	as	red	lines.	The	background	snapshots	of	the	Re	LPS	lipids	are	
shown	with	the	scale	bar	to	provide	a	sense	of	distance.	The	background	
snapshots	clarify	how	far	the	representative	Re	LPS	lipids	have	moved	in	Fig.	
33A	and	Fig.	33E	or	in	other	words,	how	long	the	red	line	trajectories	are.	(A)	
When	the	Na+	ion	simulation	system	was	simulated	with	a	PMB1	peptide	there	
was	a	shift	away	from	the	clustered-continuous-time-random	walk	processes	
(see	Figure	32A	for	comparison)	towards	the	localized	oscillatory	and	rattling	
motions	that	have	been	noted	for	ions	in	rigid	crystals.	(E)	When	the	Ca2+	ion	
simulation	system	was	simulated	with	a	PMB1	peptide	there	was	a	more	
significant	shift	away	from	clustered-continuous-time-random	walk	processes	
(see	Figure	32E	for	comparison)	towards	localized	oscillatory	motions.		The	Re	
LPS	phosphate	groups	were	confined	to	membrane	domains	that	were	
approximately	2	nm2	during	the	last	1	μs	of	simulation	time.	(B-C,	F-G)	
Streamline	visualization	analyses	of	arbitrarily	selected	simulation	frames	to	
clarify	the	collective	Re	LPS	headgroup	relaxation	dynamics	in	the	presence	of	
the	PMB1	peptide.	The	Re	LPS	trajectories	are	noticeably	different	from	the	
relaxation	dynamics	of	the	Re	LPS	phosphate	groups	when	they	were	not	
simulated	with	PMB1	peptides	(see	Figure	32B-C	and	Figure	32F-G	for	
comparison).	There	is	an	approximate	order	of	magnitude	reduction	in	the	
headgroup	displacements	per	simulation	step	(see	adjoining	color	bars	for	
clarity).	(D,	H)	Self-part	of	the	van	Hove	correlation	function	for	the	Re	LPS	
phosphate	groups.	Comparisons	between	Figure	32D,	32H	and	Figure	33D,	
33H	reveal	significant	differences	in	the	relative	mobility	of	the	Re	LPS	
molecules	when	they	interact	with	a	PMB1	peptide.	

	
Figure	34:	The	lateral	diffusion	coefficients	D(z)	for	the	Re	LPS	phosphate	
groups	as	a	function	of	PMB1	distance	from	the	bilayer	center.	The	blue	line	
shows	the	data	for	the	systems	with	Na+	ions	and	the	black	line	shows	the	data	
for	the	systems	with	Ca2+	ions.	The	diffusion	coefficients	D(z)	were	determined	
by	linear	regression	of	the	mean	square	displacement	and	error	bars	have	
been	included	for	each	data	point.	The	lateral	diffusion	coefficient	axis	is	
logarithmic.	
	
Figure	35:	The	PMB1	peptide	induces	the	glass-to-crystal	transformation.	(A,	
B)	Top	view	snapshots	of	the	Re	LPS	bilayer	when	it	was	simulated	with	(A)	
water	and	ions	and	(B)	when	it	was	simulated	with	water,	ions	and	a	PMB1	
peptide.	The	Re	LPS	phosphate	groups	are	presented	as	opaque	blue	spheres	
and	the	other	sections	of	the	Re	LPS	molecules	are	depicted	as	translucent	
spheres.	The	red	quadrilaterals	are	used	to	draw	attention	to	the	crystalline	
packing	of	the	Re	LPS	phosphate	groups.	These	membrane	systems	were	
simulated	at	310	K	with	Na+	ions.	(C-F)	Voronoi	tessellation	analyses	of	the	Re	
LPS	phosphate	groups	when	they	were	simulated	(C,	E)	with	water	and	ions	
and	(D,	F)	when	they	were	simulated	with	water,	ions	and	the	PMB1	peptide.	
(D,	F)	The	figures	were	created	by	sampling	data	from	the	umbrella	sampling	
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window	that	was	positioned	at	the	location	of	the	310	K	PMF	minimum	(see	
Figure	31A	for	reference).	(C,	D)	The	plots	show	the	area	per	phosphate	group.	
The	color	scale	bars	are	used	for	clarity.	It	should	be	noted	that	each	Re	LPS	
lipid	has	two	phosphate	groups.	(E,	F)	The	plots	show	the	number	of	whole	Re	
LPS	lipids	that	are	counted	for	each	of	the	tessellated	Voronoi	cells	(see	
adjoining	color	scale	bars	for	clarity).	(F)	The	number	of	3	Re	LPS	neighbors	
(corresponding	to	6	phosphate	groups),	is	indicative	of	hexagonal	packing,	
which	has	previously	been	observed	in	experimental	studies	when	Gram-
negative	outer	membrane	mimetics	were	strained	or	placed	under	high	
surface	pressures	[121].	(G,	H)	The	heat	capacity	change	as	a	function	of	
distance	between	the	PMB1	peptide	and	the	bilayer	center.	The	data	are	
determined	for	the	membrane	that	with	simulated	with	(G)	Na+	and	(H)	Ca2+	
ions.	
	
Figure	36:	(A)	Final	frame	(top	view)	snapshot	of	the	Gram-negative	inner	
membrane	mimetic.	The	lipids	have	the	following	color	scheme:	POPE	(cyan)	
and	POPG	(white).	(B)	The	visualization	of	the	POPG	number	density	during	
the	last	10	ns	of	the	simulation.	(C,	D)	The	corresponding	visualization	of	the	
POPG	number	densities	in	the	upper	(C)	and	lower	(D)	bilayer	leaflets.	
	
Figure	37:	(A)	The	distance	of	the	upper	leaflet	POPE	and	POPG	phosphate	
groups	from	the	membrane	midplane	is	shown	with	a	black	line.	The	distance	
between	a	single	(representative)	PMB1	peptide	and	the	bilayer	center	is	
shown	with	a	blue	line.	(B)	The	area	per	lipid	for	each	one	of	the	upper	leaflet	
phosphate	group	at	460	ns	i.e.	the	time	when	the	PMB1	peptide	passed	
through	the	phosphate	group	domain.	The	arrow	shows	the	pore	that	the	
PMB1	peptide	tunneled	when	it	moved	into	the	membrane	interior.	(C)	Final	
frame	(side	view)	snapshot	that	shows	the	position	of	the	PMB1	peptides	in	the	
Gram-negative	inner	membrane	mimetic.	
	
Figure	38:	(A)	The	POPG	lipid	number	density	during	the	last	10	ns	of	the	
molecular	dynamics	simulation.	The	projected	number	density	map	is	
decomposed	into	the	contributions	from	the	upper	and	lower	leaflets	(inset).	
(B)	The	associated	PMB1	peptide	particle	number	density	during	the	last	10	ns	
of	the	molecular	dynamics	simulation.	(C,	D)	The	thickness	of	the	upper	bilayer	
leaflet	during	the	last	10	ns	of	the	molecular	dynamics	simulation.	The	figures	
show	thickness	data	for	the	simulation	systems	with	water	and	ions	(C)	and	for	
the	simulation	systems	with	water,	ions	and	peptides.	There	is	approximately	
one	PMB1	peptide	for	every	27	phospholipids	(D).	
	
Figure	39:	(A)	Snapshot	of	a	single	unit	of	the	E.	coli	O1	O-antigen	chain	that	
was	simulated	with	the	GROMOS	53A6	united-atom	forcefield.	The	atoms	have	
the	following	color	scheme:	carbon	atoms	(cyan),	nitrogen	atoms	(blue),	
oxygen	atoms	(red)	and	hydrogen	atoms	(white).	(B)	The	corresponding	
coarse-grained	Martini	forcefield	model.	(C)	Comparison	of	the	radius	of	
gyration	values	for	the	O-antigen	chain	units	in	the	comparative	united-atom	
and	coarse-grained	molecular	dynamics	simulations.	(D)	Comparison	of	the	
end-to-end	lengths	for	the	O-antigen	chain	units	in	the	comparative	united-
atom	and	coarse-grained	molecular	dynamics	simulations.	(E)	The	probability	
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distribution	for	a	single	O-antigen	chain	bond	length	in	the	comparative	
united-atom	and	coarse-grained	molecular	dynamics	simulations.	(E)	The	
probability	distribution	for	a	single	angle	in	the	comparative	united-atom	and	
coarse-grained	molecular	dynamics	simulations.	The	united-atom	simulation	
data	are	presented	with	black	lines	and	the	corresponding	coarse-grained	
molecular	dynamics	simulation	data	are	presented	with	red	lines.	
	
Figure	40:	(A)	Side	view	snapshot	of	system	OANT,	with	(B)	a	single	smooth	
LPS	lipid	extracted	from	the	bilayer	to	show	the	orientation	of	the	acyl	chains	
and	O-antigen	chain	sugars.	The	bond	that	anchors	the	O-antigen	chain	to	the	
Lipid	A	and	core	sugar	domains	is	termed	here	as	“O-anchor”	to	make	the	
discussion	of	LPS	headgroup	orientation	clearer.	(C)	Side	view	snapshot	of	
system	MIXED_POPE,	with	(D)	a	single	smooth	LPS	lipid	extracted	from	the	
bilayer	to	show	the	orientation	of	the	smooth	LPS	acyl	chains	and	O-antigen	
chain	sugars.	The	acyl	tails	are	white,	the	phosphate	groups	are	blue,	the	
glycerol	and	glucosamine	sugars	are	pink,	the	core	sugars	are	cyan,	the	
terminal	O-antigen	chains	are	red	and	the	water	molecules	are	omitted	for	
clarity.	(E)	The	average	order	parameters	that	were	calculated	for	the	
backbone	chain	beads	of	the	O-antigen	chain	sugars	in	systems	OANT	(black),	
OANT_POPE	(red),	MIXED	(green),	and	MIXED_POPE	(blue).	(F)	The	angle	
distribution	for	the	angle	that	was	formed	between	the	O-anchor	bond	and	the	
terminal	O-antigen	chain	sugar	in	systems	OANT	(black),	OANT_POPE	(red),	
MIXED	(green)	and	MIXED_POPE	(blue).	
	
Figure	41:	(A)	Two	smooth	LPS	lipids	from	system	MIXED_POPE	that	were	
initially	separated	by	~4	nm	and	subsequently	formed	a	dimer	after	the	
flexible	O-antigen	chains	interacted	with	each	other.	(B)	The	corresponding	
time	series	that	shows	the	distance	between	the	two	smooth	LPS	lipids	as	a	
function	of	sampled	simulation	time.	(C)	Snapshot	of	the	large	smooth	LPS	
lipid	aggregate	that	formed	after	additional	smooth	LPS	lipids	interacted	with	
the	smooth	LPS	lipid	dimer.	(D-E)	The	O-antigen	chain	number	density	in	
systems	OANT	(D)	and	MIXED_POPE	(E)	after	500	ns.	The	inset	images	show	
the	corresponding	top	view	snapshots.	
	
Figure	42:	(A)	Top	view	snapshot	of	a	larger	analogue	of	system	MIXED_POPE	
after	15	μs.	The	POPE	and	rough	LPS	lipids	are	omitted	for	clarity.		The	
periodic	borders	are	represented	with	a	thin	blue	line	and	the	periodic	images	
are	presented	with	different	shades	of	red	and	cyan	for	clarity.	The	smooth	LPS	
lipids	formed	a	single	contiguous	network	that	spanned	the	entire	length	of	
the	simulation	cell.	(B)	The	corresponding	two-dimensional	projection	of	the	
O-antigen	chain	number	density	(sampled	during	the	last	100	ns).	(C)	
Snapshot	of	the	two	O-antigen	chain	aggregates	after	15	μs	of	simulation	time.	
One	of	the	O-antigen	chain	aggregates	is	green	and	the	other	one	is	orange.	
(D)	The	number	of	glycan	polymers	in	each	of	these	O-antigen	chain	
aggregates.	
	
Figure	43:	(A)	Surface	tension-areal	strain	curves.	(B)	Lateral	pressure	
against	areal	strain.	(C)	Lateral	pressure	against	membrane	thickness.	(D)	
Lateral	pressure	against	acyl	tail	order	parameters.	Data	are	shown	for	the	
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OANT	(black),	OANT_POPE	(red),	MIXED	(green),	and	MIXED_POPE	(blue)	
simulation	systems.	Readers	should	note	that	the	dependent	variables	were	
plotted	on	the	y-axis	in	Figure	43A	and	Figure	43B	even	though	it	is	customary	
to	plot	the	independent	variable	on	the	x-axis	and	the	dependent	variable	of	
the	y-axis.	The	unusual	presentation	of	the	simulation	data	enables	readers	to	
more	easily	identify	the	relationship	between	the	applied	mechanical	stress	
and	the	membrane	stress	response.	The	presentation	of	the	simulation	data	
has	been	used	to	study	for	example,	how	phospholipid	membranes	respond	to	
applied	mechanical	stress	[977]	and	it	is	therefore	easier	to	compare	the	data	
that	are	presented	here	with	data	from	previous	molecular	dynamics	
simulation	studies.	
	
Figure	44:	(A)	The	average	order	parameters	for	the	O-antigen	chains	in	
system	OANT	as	the	lateral	pressure	component	magnitude	was	incrementally	
increased.	The	color	scheme	is	as	follows:	-10	bar	(red),	-30	bar	(green),	-50	
bar	(blue),	-70	bar	(yellow),	-90	bar	(brown),	-110	bar	(cyan)	and	-130	bar	
(violet).	(B,	C)	The	two-dimensional	projection	of	the	O-antigen	chain	particle	
number	density	for	system	OANT	when	it	was	simulated	with	a	lateral	
pressure	magnitude	of	1	bar	(B)	and	-130	bar	(C).	(D)	The	partial	mass	density	
plots	for	system	OANT	when	it	was	simulated	with	a	lateral	pressure	of	1	bar	
(red	and	blue	lines)	and	-130	bar	(cyan	and	green	lines).	The	data	for	the	lipid	
phosphate	groups	are	red	and	green	and	the	data	for	the	water	molecules	are	
blue	and	cyan.	(E)	Snapshot	that	shows	the	spontaneous	formation	of	a	
transmembrane	pore	in	system	OANT	when	it	is	simulated	with	a	lateral	
pressure	magnitude	of	-150	bar.	The	water	particles	are	blue	and	the	LPS	
lipids	follow	the	color	scheme	of	Figure	40.	
	
Figure	45:	(A)	The	starting	configuration	for	the	smooth	OMV	equilibration	
simulations.	The	POPE	and	POPG	lipids	are	silver	and	the	LPS	lipids	have	the	
color	scheme:	Lipid	A	and	core	sugars	(cyan)	and	O-antigen	chain	(red).	The	
water	and	ions	were	removed	to	make	the	figure	clearer.	The	periodic	cell	
boundaries	are	represented	with	a	blue	line.	The	periodic	images	are	shown	
using	different	color	shades	for	clarity.	The	lipids	were	extended	along	the	
bilayer	normal	to	ensure	that	lipid	clustering	was	not	biased	during	the	
molecular	dynamics	simulations.	Water	pores	were	maintained	along	the	
(x/y/z)	coordinate	axes	to	facilitate	interleaflet	flip-flop	for	small	
phospholipids.	(B)	Area	per	lipid	for	LPS	(red)	and	POPE	(magenta)	lipids	in	
the	smooth	OMV	(during	the	last	0.25	µs);	area	per	lipid	for	LPS	(cyan)	and	
POPE	(magenta)	lipids	in	the	rough	OMV.	(C)	Membrane	thickness	for	the	
smooth	(red)	and	rough	(cyan)	OMVs	during	the	last	0.25	µs;	the	average	
membrane	thickness	values	were	3.58	±	0.01	nm	(smooth	OMV)	and	3.72	±	
0.01	nm	(rough	OMV).	(D)	Area	per	lipid	for	POPE	(orange)	and	POPG	(green)	
lipids	in	the	POPE-POPG	phospholipid	vesicle	during	the	last	0.25	µs.	(E)	The	
corresponding	membrane	thickness	values	for	the	POPE-POPG	phospholipid	
vesicle.	
	
Figure	46:	(A)	Smooth	and	rough	OMVs—atoms	are	represented	using	a	
volumetric	density	map.	The	POPE	and	POPG	lipids	are	silver	and	the	LPS	
molecules	have	the	color	scheme:	Lipid	A	and	core	sugars	(cyan),	O-antigen	
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chain	(red).	(B)	The	terminal	sugar	particles	are	assigned	a	BGR	color	based	
on	their	radial	height	(extension).	(C)	The	LPS	molecule	is	divided	into	its	
constituent	Lipid	A	anchor,	core	sugar	domain,	and	terminal	O-antigen	chain.	
The	Lipid	A	phosphate	groups	are	green	to	clarify	the	position	of	the	water-
lipid	interface	that	is	referenced	throughout	this	chapter.	The	atoms	are	
represented	with	a	volumetric	density	map	(left)	and	a	simpler	ball-and-stick	
model	(right).	
 
Figure	47:	Schematic	illustration	of	the	smooth	OMV	that	has	been	used	to	
understand	the	different	topology	of	the	rough	and	smooth	OMVs.	The	LPS	
lipids	are	orange,	the	outer	leaflet	POPE	molecules	are	magenta	and	inner	
leaflet	lipids	are	omitted	throughout.	The	radial	heights	are	labelled	as	
follows:	𝑟;	(middle	of	the	hydrophobic	membrane	core),	𝑟(	(outer	leaflet	
phosphate	group	boundary),	𝑟1	(termini	of	the	LPS	core	sugars),	and	𝑟<	
(termini	of	the	LPS	O-antigen	chains).	The	lipids	are	treated	as	axisymmetric	
cylinders,	for	example,	the	LPS	macromolecules	have	constant	cross-sectional	
area	𝐴>	and	volume	𝑉@ = 𝜋(𝑟 − 𝑟;)(𝑑> 2⁄ )1,	where	𝑑>	is	the	cylinder	diameter	
and	𝑟; ≤ 𝑟 ≤ 𝑟<.	
	
Figure	48:	(A-B)	Smooth	and	 rough	OMVs	at	 the	POPC	bilayer.	 (C)	The	axis	
components	 of	 the	 radius	 of	 gyration	 for	 the	 rough	 OMV	 (bottom);	 the	
phosphate	group	(BGR)	height	map	after	2	µs	(top).	(D)	The	POPC	lipid	shell	
population	for	the	rough	OMV	(5	nm	cutoff).	(E)	The	LPS-POPC	contact	number	
(0.6	nm	cutoff).	(F)	The	fraction	of	simulation	frames—during	the	last	0.25	µs—
with	 registered	 LPS-POPC	 contacts	 (per	 rough	 LPS	 molecule).	 (G)	 The	 axis	
components	of	the	radius	of	gyration	for	the	smooth	OMV	(top);	the	phosphate	
group	 (BGR)	height	map	after	 2	µs	 (bottom).	 (H)	The	 fraction	of	 simulation	
frames—during	 the	 last	 0.25	 µs—with	 registered	 LPS-POPC	 contacts	 (per	
smooth	LPS	molecule).	(I)	The	POPC	lipid	shell	population	for	the	smooth	OMV;	
(J)	 the	LPS-POPC	contact	number.	Figures	 I-J	 and	Figures	D-E	are	measured	
from	the	point	of	OMV-host	membrane	first	contact	and	thus,	are	non-zero	from	
the	start.	
	
Figure	 49:	 The	 area	 per	 lipid	 (BPR)	 color-height	 map	 for	 the	 upper	
(extracellular)	 leaflet	 of	 the	 POPC	 bilayer	 after	 it	 was	 simulated	 with	 the	
smooth	OMV	for	2	µs.	The	mean	area	per	lipid	for	this	color-height	map	is	0.54	
nm2;	for	comparison,	the	area	per	lipid	is	0.68	nm2	for	POPC	membranes	that	
are	not	strained.	
	
Figure	50:	(A)	Smooth	OMV	and	the	host	plasma	membrane	(5	nm	shell).	The	
phosphate	groups	are	assigned	a	(BSR)	color	based	on	their	height	(z-axis	
coordinate);	the	ganglioside	molecules	are	magenta.	In	the	inset,	the	
ganglioside	head	groups	are	magenta	and	the	lipid	tails	are	white.	(B)	The	
phosphate	group	(BGR)	height	map	after	2	µs.	(C)	The	terminal	sugar	
particles	are	assigned	are	a	(BGR)	color	based	on	their	endpoint	radial	height.	
(D)	The	LPS-GM3	contact	duration	projected	onto	the	phosphate	group	
density	map;	the	data	are	shown	for	the	last	0.25	µs	of	simulation	time.	(E)	
The	fraction	of	simulation	frames—during	the	last	0.25	µs—that	LPS-GM3	
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contacts	were	registered	for	each	one	of	the	615	smooth	LPS	molecules	in	the	
OMV	outer	leaflet.	Put	simply,	the	graph	shows	the	fraction	of	sampled	
simulation	time	that	each	smooth	LPS	lipid	was	bonded	to	GM3	lipids	(based	
on	a	0.6	cutoff).	Once	the	LPS-GM3	interactions	were	formed	they	were	almost	
always	maintained	thereafter.	
	
Figure	51:	(A)	Top	view	snapshot	of	the	smooth	OMV	after	it	was	simulated	
for	2	µs	with	the	multicomponent	plasma	membrane	model.	(B)	The	same	top	
view	snapshot	with	the	smooth	OMV	removed	for	clarity.	The	ganglioside	
lipids	within	5	nm	of	the	smooth	OMV	are	magenta	and	the	ganglioside	lipids	
beyond	this	5	nm	cutoff	are	white.	The	POPE,	POPC,	POPS,	PIP2,	cholesterol,	
and	sphingomyelin	molecules	are	omitted	throughout.	The	trajectories	are	
shown	for	the	magenta	ganglioside	lipids	during	the	last	0.25	µs.	The	
trajectory	paths	were	assigned	colors	to	link	the	sampled	simulation	time	with	
lipid	diffusion.	The	early	frame	positions	are	red,	the	late	frame	positions	are	
blue	and	the	intermediary	frame	positions	are	white.	(C)	Snapshot	of	the	
multicomponent	plasma	membrane	when	it	was	simulated	without	any	OMVs.	
The	trajectories	are	shown	for	randomly	selected	ganglioside	lipids	during	the	
last	0.25	µs.	When	Figures	A-B	are	compared	with	Figure	C	it	becomes	
apparent	that	OMVs	have	the	capacity	to	immobilize	ganglioside	lipids	
through	zipper-like	interlinking	at	the	wrapping	interface.	
	
Figure	52:	(A)	The	POPE-POPG	vesicle	that	was	used	in	the	control	
experiments—the	atoms	are	represented	using	a	volumetric	density	map.	The	
POPE	lipids	are	orange	and	the	POPG	lipids	are	green.	(B)	The	phosphate	
group	(BGR)	height	map	for	the	POPE-POPG	vesicle	after	it	bounced	off	the	
host	POPC	membrane.	(C)	The	endpoint	conformation	for	the	simulation	of	the	
POPE-POPG	vesicle	and	the	multicomponent	plasma	membrane	model.	The	
POPE	molecules	are	orange,	the	POPG	molecules	are	green,	and	the	host	
plasma	membrane	lipids	that	are	within	0.5	nm	of	these	lipids	are	purple.	The	
vesicle	fused	with	the	host	plasma	membrane	to	form	a	lipid-lined	pore	that	
promoted	lipid	exchange	between	the	plasma	membrane	and	the	POPE-POPG	
vesicle.	
	
Figure	53:	Comparison	of	the	smooth	and	rough	OMVs	at	the	plasma	
membrane	surface	at	2	µs	of	simulation	time.	The	smooth	OMV	retained	its	
spherical	shape	and	generated	moderate	curvature	and	the	rough	OMV	lost	its	
spherical	shape	and	generated	larger	curvatures	at	the	spreading	front.	
Sphericity	is	denoted	here	with	the	𝛹0	symbols.	
	
Figure	54:	(A)	The	ganglioside	molecules	(pink),	which	are	confined	to	the	
upper	(extracellular)	leaflet,	create	non-negligible	stress	in	plasma	
membranes	that	promotes	spontaneous	bilayer	curvature.	(B)	The	energy	
barriers	for	bilayer	reshaping	are	reduced	when	ganglioside	molecules	
aggregate	and	form	clusters	that	have	high	intrinsic	positive	curvature.	The	
ganglioside	lipid	aggregates	can	reduce	the	line	tension	between	membrane	
domains	of	different	widths	due	to	their	conical	shape.	(C-D)	Schematic	
illustrations	showing	how	smooth	OMVs	affect	bilayer	shape	and	composition.	



 20 

The	sphingomyelin	are	yellow	rectangles,	the	PIP2	lipids	are	orange	triangles,	
the	cholesterol	molecules	are	inverted	green	triangles	and	the	POPS,	POPC,	
and	POPE	lipids	are	omitted	for	clarity.	After	simulation	time	of	𝛥𝑡	there	a	
significant	number	of	(GM3)	ganglioside	molecules	that	have	interlinked	the	
smooth	LPS	lipid	headgroups	(based	on	a	0.6	nm	cutoff)	and	consequently,	
there	is	a	change	in	the	local	lipid	composition	and	bilayer	curvature.	(E)	The	
abundance	of	ganglioside	monomers	and	aggregates	that	were	detected	
during	the	last	100	ns	of	simulation	time	when	the	plasma	membrane	mimetic	
was	simulated	without	any	OMVs.	
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Chapter	1:	Introduction	
	

1.1	Biological	Membranes	(Overview	and	Current	Understanding) 
	

All	living	organisms	contain	biological	membranes,	which	are	semipermeable	

barriers	that	regulate	the	movement	of	molecules	from	one	region	of	space	to	

another	 region	 through	 passive	 and	 energy-dependent	 processes	 [1-6].	

Cellular	 membranes	 form	 the	 boundary	 between	 the	 intracellular	 and	

extracellular	environments	and	delineate	“self”	and	“non-self”	biomolecular	

interactions.	Cellular	membranes	regulate	the	uptake	of	nutrients	 from	the	

outside	 of	 cells	 and	 at	 the	 same	 time	 they	 facilitate	 the	 export	 of	 waste	

products	from	the	intracellular	cytosol	[7-9].	Cellular	membranes	underpin	

all	basic	cell	 functioning	and	they	are	 inextricably	 linked	to	the	most	basic	

concepts	 of	 living	 organism	 and	 the	 most	 basic	 definitions	 of	 “life”.	 It	 is	

theorized	that	the	very	first	lifeforms	comprised	little	more	than	a	single	lipid	

bilayer	encasing	a	relatively	unsophisticated	matrix	whose	primary	function	

was	to	produce	more	phospholipids	[10-13].		

	

Cellular	 biological	 membranes	 can	 be	 sub-divided	 into	 three	 types:	

eukaryotic	 cell	membranes,	 prokaryotic	 cell	membranes,	 and	 archaeal	 cell	

membranes	 [14-16].	 Eukaryotic	 cell	 membranes	 compartmentalize	 the	

eukaryotic	cellular	cytosol	and	consist	of	a	single	phospholipid	bilayer	with	a	

complex	 combination	 of	 anchored	 integral	 membranes	 proteins	 (e.g.	

transporters,	 linkers	 and	 receptors)	 and	 less	 tightly	 anchored	 peripheral	

membranes	proteins	(e.g.	enzymes,	lipid	clamps	and	electron	carriers)	[17-

19].	Prokaryotic	cell	membranes	compartmentalize	the	prokaryotic	cellular	

cytosol	 and	 have	 an	 altogether	 different	 composition	 that	 varies	 from	one	

class	 of	 bacteria	 to	 another.	 Gram-positive	 bacteria	 contain	 a	 single	

phospholipid	bilayer	 that	 is	 interlinked	with	a	 thick	wall	of	peptidoglycan,	

whereas	 Gram-negative	 bacteria	 have	 two	 cellular	membranes	 and	 a	 thin	

wall	 of	 peptidoglycan	 that	 is	 wedged	 between	 them	 [20-22].	 Archaeal	

membranes	 contain	unusually	 long	phospholipids	 that	 can	 span	 the	entire	
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membrane	 normal	 axis	 and	 the	 lipids	 can	 contain	 two,	 rather	 than	 one,	

hydrophilic	headgroups	[23-25].						

	

Biological	 membranes	 also	 compartmentalize	 biological	 matter	 within	

subcellular	 organelles	 and	 isolate	 subcellular	 organelle	 functions	 from	 the	

encompassing	 cellular	 cytoplasm	 (Figure	 1A).	 Subcellular	 lysosomes	 are	

membrane-bound	organelles	that	compartmentalize	hydrolytic	enzymes	that	

are	 capable	 of	 breaking	 down	 proteins,	 nucleic	 acids,	 lipids	 and	 complex	

sugars	 at	 physiological	 temperature	 and	 pressure	 [26-28].	 Lysosomes	

contain	an	acidic	lumen	that	activates	the	hydrolytic	enzymes	and	enhances	

the	 digestion	 of	 complex	 macromolecules	 into	 smaller	 and	 more	 useful	

biomolecules.	 Mitochondria	 are	 perhaps	 an	 even	 more	 interesting	

representative	 organelle	 since	 they	 are	 described	 as	 semiautonomous	

double-membrane-bound	 organelles;	 they	 contain	 their	 own	 genome	 and	

even	have	the	capacity	to	independently	generate	chemical	energy	through	

the	 action	 of	 enzymes	 [29-31].	 Mitochondria	 are	 surrounded	 by	 two	

membranes	and	the	inner	membrane	has	substantial	infoldings	called	cristae	

that	resemble	the	textured	outer	surface	of	alpha-proteobacteria	[32-33].	The	

inner	membrane	and	matrix	contain	high	concentrations	of	the	enzymes	that	

are	 necessary	 for	 aerobic	 respiration	 and	 the	 production	 of	 adenosine	

triphosphate	 (ATP)	 [34-35].	 Given	 that	 mitochondria	 resemble	

proteobacteria,	that	they	contain	bacterial	lipids	and	also	that	the	inner	and	

outer	membranes	effectively	compartmentalize	cytosolic	organelle	functions,	

it	has	been	theorized	that	mitochondria	were	originally	prokaryotic	cells	that	

became	endosymbionts	living	inside	eukaryotic	cells	[36-38].	It	is	clear	then	

that	 lipid	membranes	 effectively	 compartmentalize	 entire	 cellular	 cytosols	

and	 also	 effectively	 delineate	 subcellular	 organelle	 functions	 from	 the	

encompassing	cellular	cytoplasm.									

	

Lipid	 membranes	 can	 also	 form	 vesicles	 either	 within	 or	 outside	 of	

eukaryotic,	 prokaryotic,	 or	 archaeal	 cellular	 membranes.	 Vesicles	 are	

nanoscopic	spheric	structures	that	consist	of	at	least	one	lipid	membrane	that	

encases	a	liquid	or	cytoplasmic	core	[37-39].	Vesicles	form	naturally	within	
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the	 plasma	 membrane	 during	 the	 expulsion	 (exocytosis),	 uptake	

(endocytosis)	 and	 transport	of	 organic	 and	 non-organic	materials	 [40-41].	

Vesicles	 are	 also	 formed	 within	 the	 cellular	 cytoplasm	where	 they	 traffic	

biomolecules	 from	one	organelle	 to	 another,	or	 even	 from	one	 subcellular	

organelle	 to	 the	 cellular	 membrane	 where	 they	 are	 expelled	 into	 the	

extracellular	 space	 and	 can	 subsequently	 enter	 into	 neighbouring	 cells	 or	

rupture	at	 a	distance	 far	away	 from	 the	parent	 cells.	 Synaptic	vesicles	are	

specialized	nanocarriers	that	mediate	interactions	between	adjacent	neurons	

and	relay	nerve	impulses	from	one	dendritic	cell	to	another	[42-43].	Synaptic	

vesicles	are	 located	at	 the	presynaptic	 terminal	 and	 fuse	with	one	 cellular	

membrane	when	a	signal	moves	along	an	axon.	The	neurotransmitters	are	

released	 into	 the	 synaptic	 cleft,	 where	 they	 can	 move	 into	 a	 neighboring	

neuron	and	propagate	the	nerve	impulse	[44-45].		

	

Vesicles	 are	 also	 formed	 within	 Gram-negative	 bacterial	 cell	 surfaces	 and	

given	 their	 structure	 and	 composition,	 i.e.	 an	 external	 leaflet	 of	

lipopolysaccharide	(LPS)	molecules	and	an	internal	leaflet	of	phospholipids,	

the	 nanospheres	 are	 termed	 “outer	 membrane	 vesicles”	 (OMVs)	 [46-47].	

OMVs	are	involved	in	diverse	cellular	functions	including	trafficking	bacterial	

cell	signalling	biochemicals,	sequestering	metals	and	biomolecules,	nutrient	

scavenging,	 forming	 bacterial	 biofilms	 and	 even	 mediating	 bacterial	

pathogenesis	[48-51].	OMVs	traffic	pathogenic	cargo	from	parent	bacteria	to	

host	eukaryotic	membranes	where	they	move	into	the	host	cell	cytosol	and	

induce	 disease	 transmission	 processes	 [52-53].	 The	 precise	 nanoscopic	

biomolecular	interactions	that	underpin	OMV	entry	into	host	cell	cytosols	are	

not	entirely	understood,	although	some	important	insights	will	be	provided	

here	in	the	penultimate	chapter	of	this	thesis.		

	

While	 it	 is	 evident	 that	 the	 production	 of	 vesicles	 in	 vivo	 underpins	

intercellular	signalling,	nutrient	scavenging,	subcellular	trafficking,	bacterial	

pathogenesis,	etc.	It	is	important	to	appreciate	that	synthetic	vesicles	are	also	

regularly	 manufactured	 within	 laboratories	 and	 then	 they	 are	 used	 in	

biochemical	 and	 biophysical	 studies.	 Homogeneous	 phospholipid	 vesicle	
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suspensions	can	be	prepared	for	example,	through	extrusion,	sonification,	or	

alternatively,	by	injecting	a	suspension	of	phospholipids	into	water	[54-55].	

Phospholipid	vesicles	can	be	produced	with	relatively	simple	experimental	

apparatus	 and	 used	 as	 suitable	 surrogates	 for	 more	 complex	 realistic	

biological	membrane	systems.	

	

Biological	membranes	regulate	many	important	biological	functions	and	they	

contain	 multiple	 different	 types	 of	 constituent	 biomolecules.	 Cellular	

membranes	ordinarily	 contain	at	 the	very	 least,	 a	 complex	 combination	of	

lipids,	proteins	and	sugars	[56].	But	cellular	membranes	can	comprise	tens	of	

thousands	of	different	lipids	and	an	inordinate	number	of	different	integral	

and	peripheral	membrane	proteins	[57-58].	The	interactions	between	these	

lipids	and	proteins	are	only	now	beginning	to	be	understood	through	the	use	

of	 molecular	 simulation	 methods	 [59]	 (Figure	 1B)	 but	 the	 simulated	

membrane	 mimetics	 have	 generally	 been	 overly	 simplistic.	 The	 models	

generally	 contain	 just	 a	 few	different	 types	 of	 proteins	 and	 lipids	 and	 the	

membrane	mimetics	almost	always	omit	important	biomolecular	matter	such	

as	 the	 glycocalyx	 or	 the	 “pericellular	matrix”,	which	 is	 a	 glycoprotein	 and	

glycolipid	covering	that	surrounds	the	cell	membranes	of	some	epithelia	and	

bacterial	 cells	 [60-62].	 Characterizing	 the	 structure	 of	 such	 inordinately	

complex	 cellular	membranes	 has	 proved	 difficult	 and	 a	 clear,	 indisputable	

representation	 of	 cellular	membrane	 structure	 stills	 remains	 elusive	 [63].	

Several	 rudimentary	models	were	 proposed	 to	 explain	 cellular	membrane	

structure	in	the	20th	century	and	one	of	the	better-known	hypotheses	was	the	

fluid	 mosaic	 model;	 now	 commonly	 known	 as	 the	 Singer-Nicolson	 model	

(1972).		

	

The	fluid	mosaic	model	assumed	that	cellular	membranes	contained	different	

types	 of	 lipids	 and	 proteins	 that	would	diffuse	 laterally	 from	one	 position	

within	the	membrane	plane	to	another	[64-65].	The	constituent	protein	and	

lipid	molecules	were	hypothesized	 to	be	 the	 “membrane	mosaic	 tiles”	 that	

together	would	form	a	contiguous	bilayer	structure.	The	proteins	and	lipids	

were	assumed	to	have	considerable	degrees	of	freedom	and	their	lateral	and	
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rotational	movement	was	effectively	unrestrained	in	the	fluid	mosaic	model	

[66-67].	The	proteins	and	lipids	would	undergo	continuous	lateral	diffusion	

and	the	membrane	would	be	more	or	 less	homogeneous	with	the	proteins	

and	 lipids	 being	 uniformly	 distributed	 throughout	 the	 membrane	 bilayer.	

This	hypothesis	was	however,	 in	conflict	with	publications	 from	the	1970s	

that	proposed	 that	 cellular	membranes	were	 full	of	 lateral	heterogeneities	

[68-70].	There	was	an	increasing	number	of	publications	that	contested	the	

hypothesis	 that	 lipids	 and	 proteins	 were	 arranged	 relatively	 uniformly	

throughout	 biological	 membranes.	 Newer	 data	 suggested	 that	 there	 were	

lateral	lipid	composition	fluctuations	within	biological	membranes	and	that	

the	membranes	could	not	be	both	homogenous	and	equally	fluid	throughout.	

It	 was	 becoming	 increasingly	 apparent	 that	 there	was	 lateral	 segregation,	

domain	formation,	and	lipid-protein	interactions	associated	with	functional	

membrane	 domains	 within	 biological	 membranes	 [71-72].	 The	 mounting	

evidence	 called	 into	question	 the	 fluid-mosaic	model	 and	by	1997,	Simons	

and	 Ikonen	 popularized	 the	 raft	 hypothesis	 [73].	 Lipid	 rafts	 are	 of	 special	

interest	here,	since	data	form	the	penultimate	chapter	of	this	thesis	suggests	

that	OMVs	might	promote	 the	 formation	of	 curved	 lipid	 rafts,	 i.e.	 caveolae	

[74],	 in	mammalian	membrane	mimetics	when	 they	 interact	with	host	 cell	

(GM3)	ganglioside	molecules.		
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Figure	1.	Introduction	to	the	structure	of	animal	cells.	(A)	Eukaryotic	
subcellular	membrane-bound	organelles	(e.g.	mitochondria	and	lysosomes)	
that	are	encased	by	the	peripheral	cellular	membrane.	The	cellular	
membrane	delineates	“self”	and	“non-self”	cellular	interactions	and	the	
organelle	membranes	isolate	organelle	functions	from	the	encompassing	
cytoplasmic	space.	The	labels	are	used	to	show	how	the	subcellular	
organelles	are	distributed	throughout	the	cellular	cytoplasm.	(B)	Modern	
molecular	dynamics	simulation	graphics	that	represent	how	molecular	
modelling	has	been	used	to	understand	the	clustering	of	integral	membrane	
proteins.	The	integral	membrane	proteins	are	pink	and	the	lipid	membrane	
is	either	blue	or	yellow.	(C)	Schematic	representation	of	the	eukaryotic	
cellular	membrane	structure	that	includes	a	central	liquid-ordered	
membrane	raft	domain	and	two	liquid-disordered	membrane	domains	
either	side	of	this.	Saturated	lipids	are	red	and	orange,	unsaturated	lipids	

Integral membrane proteins 

A
 

B
 

C
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are	yellow	and	green,	cholesterol	molecules	are	the	curved	purple	
structures.	The	macromolecules	can	be	identified	by	the	different	refence	
labels.	Image	sources	are:	Encyclopaedia	Britannica,	and	papers	(i)	
10.1038/nrm.2017.16	(DOI)	[75];	and	(ii)	10.1021/jacs.5b08048	(DOI)	[76].			
	

The	membrane	raft	model	(Figure	1C)	proposed	that	biological	membranes	

are	 interspersed	with	 cholesterol-	 and	 sphingolipid-rich	nanodomains	that	

are	associated	with	specific	cellular	 functions	and	cell	signalling	[77-79].	 It	

had	 already	 been	 theorized	 that	 under	 the	 appropriate	 conditions,	

cholesterol	 could	 co-couple	 with	 saturated	 phospholipids	 to	 generate	

cholesterol-rich	liquid	ordered	domains	within	multicomponent	membranes	

[80].	The	areas	that	were	enriched	with	cholesterol	would	be	termed	liquid-

ordered	 (Lo)	 domains	 and	 the	 areas	 that	 were	 depleted	 of	 cholesterol	

molecules	 would	 be	 termed	 liquid-disordered	 (Ld)	 domains.	 The	 raft	

hypothesis	was	however,	significantly	more	specific	in	its	characterization	of	

lipid	segregation	and	the	composition	of	lateral	membrane	heterogeneities.	

The	membrane	raft	model	posited	that	cholesterol	molecules	would	pair	with	

sphingolipids,	 saturated	 phospholipids	 and	 proteins	 to	 form	 a	 structure	

whose	 biophysical	 parameters	differed	 from	 the	 encompassing	membrane	

environment	[81-84].	The	so-called	“lipid	rafts”	would	facilitate	for	example,	

intercellular	signalling	and	membrane	budding	events	[85-87].		

	

After	more	than	a	decade	of	 research,	 it	was	 concluded	 that	 lipid	 rafts	 are	

transient	 functional	 structures	 or	 in	 other	 words,	 they	 are	 fluctuating	

functional	nanoscale	assemblies	that	regulate	important	biological	functions	

[88].	Stimulated	emission	depletion	microscopy	(SEDM)	has	been	refined	to	

analyze	membrane	 structures	on	spatial	 scales	as	 small	 as	10-20	nm	[75].	

When	SEDM	was	used	to	analyze	biological	membrane	mimetics	it	was	found	

that	 nanoscopic	 raft-like	 assemblies	 self-assembled	 through	 the	 attractive	

interactions	 of	 proteins	 and	 lipids.	 The	 experimental	 groups	 observed	

nanoscopic	multicomponent	biomolecular	structures	that	consisted	of	small	

(3-6	nm)	membrane	proteins	with	encompassing	pools	of	lipids	(~5	nm)	[89].	

Experimental	evidence	has	generally	corroborated	the	raft	hypothesis	and	it	
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is	 now	 considered	 to	 be	 a	 reasonably	 accurate	 representation	 of	 generic	

mammalian	membrane	structure	[90-91].							

	

The	 raft	 hypothesis	 is	 however,	 inadequate	 for	 accurately	 describing	 the	

composition	of	bacterial	membranes	and	 in	particular,	 the	 inner	and	outer	

membranes	of	Gram-negative	bacteria	[92-95].	Gram-negative	bacteria	are	

prokaryotic	lifeforms	that	are	typically	a	few	micrometers	in	length	[96-98]	

and	unlike	eukaryotic	cells,	the	bacteria	usually	lack	large	membrane-bound	

organelles	in	their	cytoplasm	such	as	mitochondria	and	a	nucleus	(Figure	2A)	

[99-100].	Gram-negative	bacteria	have	an	unusual	cell	envelope	that	contains	

two	distinct	 lipid	membranes	and	a	 layer	of	peptidoglycan	 that	 is	 situated	

between	them	[101-102].	The	inner	and	outer	membranes	of	Gram-negative	

bacteria	 differ	 in	 terms	 of	 chemical	 composition	 and	 structure	 but	

importantly,	 neither	 membrane	 contains	 cholesterol	 or	 conventional	

membrane	raft	structures	[103].	The	Gram-negative	cell	envelope	is	tripartite	

and	 it	 contains:	 (i)	 the	 cytoplasmic	 membrane;	 (ii)	 the	 outer	 bacterial	

membrane;	 and	 (iii)	 interstitial	 layers	 of	 peptidoglycan	 that	 are	 situated	

between	 them	 [95,101].	 The	 chemical	 composition	 of	 the	 inner	 and	 outer	

membranes	 is	 already	 reasonably	 well-known	 [103]	 but	 the	 specific	

organization	 and	 interactions	 of	 the	 constituent	 components	 still	 needs	

clarifying	 [104-106].	 In	 2018	 Turner	 et	 al.	 used	 atomic	 force	 microscopy	

(AFM)	to	analyze	the	structure	of	the	Escherichia	coli	peptidoglycan	cell	wall	

[107].	It	was	previously	assumed	that	the	layers	of	peptidoglycan	formed	a	

highly	 ordered	 crystalline	 material	 [108-110]	 but	 the	 AFM	 experiments	

demonstrated	that	peptidoglycan	is	much	less	ordered	than	was	previously	

depicted	and	also,	that	the	specify	morphology	of	the	peptidoglycan	chains	

depends	of	the	shape	of	the	parent	bacteria.	The	form	of	the	peptidoglycan	

layer	is	itself	still	debated	and	the	interactions	of	the	peptidoglycan	network	

with	 bacterial	membrane	 proteins	 (e.g.	 Braun’s	 lipoprotein)	 are	 even	 less	

clear	 [111-112].	 AFM	 techniques	 can	 be	 applied	 to	 evaluate	 the	 general	

structural	characteristics	of	peptidoglycan	networks	but	the	fast	interactions	

between	membrane	proteins	and	peptidoglycan	molecules	 transpires	on	a	
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spatiotemporal	scale	that	is	beyond	the	scope	of	conventional	experimental	

analysis	methods	[113].		

	

	

	

	

	

	

 
	

	

	

	

	

	

	

	

 
  
	

	

	

	

	

	

	

Figure	2.	The	structure	of	Gram-negative	bacteria.	(A)	Schematic	illustration	
that	shows	the	structure	of	the	Gram-negative	bacterial	cell	organelles	and	
how	these	subcellular	structures	are	encased	by	the	peripheral	cell	
envelope.	(B)	Tripartite	structure	of	the	Gram-negative	cell	envelope	that	
includes	the	inner	cytoplasmic	membrane	(black),	the	outer	bacterial	
membrane	(black	and	pink),	peptidoglycan	(orange)	and	the	anchoring	
proteins	that	stretch	across	the	periplasm	(green	and	blue).	The	structure	
was	determined	from	complementary	experimental	and	computational	
analyses.	The	image	sources	are:	Wikipedia	Commons	and	paper	
10.1016/j.sbi.2019.12.017	(DOI)	[53].							
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The	 coupling	 of	 outer	membrane	 proteins	 both	with	 each	 other	 and	with	

encompassing	 lipids	 has	 similarly	 been	 difficult	 to	 assess	 through	

experimental	 analysis	 and	 their	 general	 oligomeric	 form	 is	 only	 now	

becoming	 fully	 apparent	 [114].	 Sansom	 et	 al.	 have	 recently	 combined	

experimental	 analysis	 methods	 with	 computer	 simulation	 techniques	 to	

understand	how	outer	membrane	proteins	 (OMPs)	 co-couple	 to	 form	 long	

oligomeric	 networks	 that	 can	 span	 several	 tens	 of	 nanometers	 [115].	 The	

combination	of	 computer	simulation	and	experimental	 analysis	 techniques	

enabled	the	group	to	elucidate	the	spatiotemporal	organization	of	large	OMP	

clusters	 in	 unprecedented	 detail	 and	 also	 to	 understand	 how	 oligomeric	

protein	network	might	be	formed	in	vivo.				

	

The	 conventional	understanding	of	 the	 outer	membrane	 of	 Gram-negative	

bacteria	is	being	revised	due	to	mounting	experimental	and	complementary	

computer	 simulation	 data	 (Figure	 2B)	 [116-118].	 Clifton	 et	 al.	 showed	 for	

example,	 that	 the	 position	 of	 outer	 membrane	 lipids	 can	 depend	 of	 the	

availability	 of	 divalent	 (e.g.	 Ca2+)	 cations	 [119-120].	 The	 intracellular	 and	

extracellular	lipids	were	found	to	rotate	about	the	membrane	midplane	when	

stabilizing	divalent	cations	were	sequestered	with	EDTA.	Neutron	reflectivity	

and	isotopic	labelling	were	used	to	show	that	the	outer	membrane	became	

more	 homogenous	 once	 the	 stabilizing	 cations	were	 displaced.	 The	 EDTA	

chemical	 destabilized	 the	 asymmetric	 structure	 of	 the	 bacterial	 outer	

membrane	 and	 the	 constituent	 LPS	 lipids	 flipped	 about	 the	 membrane	

midplane	into	the	intracellular	leaflet,	while	the	intracellular	phospholipids	

flipped	 about	 the	 membrane	 midplane	 into	 the	 extracellular	 leaflet.	 The	

analyses	 showed	 that	 the	 outer	 membrane	 can	 become	 distorted	 if	 the	

concentration	of	ambient	divalent	cations	is	low.											

	

Bacterial	 membrane	 mimetics	 were	 also	 analyzed	 in	 2013	 via	 X-ray	 and	

neutron	reflectometry	with	grazing	incidence	X-ray	diffraction	and	Brewster	

angle	microscopy	[121].	It	was	found	that	bacterial	membrane	lipids	(Rc	LPS)	

can	form	highly	ordered	monolayers	that	display	an	oblique	hexagonal	unit	

cell	 at	 surface	 pressures	of	 20	 nNm-1	 and	 above.	 The	 bacterial	membrane	
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mimetics	adopted	relatively	rigid	hexagonal	grid	packing	that	is	comparable	

to	 the	 packing	 of	 ions	 within	 a	 crystalline	 material	 [122-123].	 Ongoing	

experimental	analysis	continues	to	corroborate	the	inference	that	the	Gram-

negative	bacterial	outer	membrane	can	 form	a	relatively	rigid	and	ordered	

structure	under	the	right	conditions	[124-128].			

	

Experimental	data	are	also	being	used	to	understand	how	membrane-active	

antimicrobial	agents	can	affect	the	stability	and	morphology	of	bacterial	outer	

membrane	mimetics	[129-133].	Membrane-active	antimicrobial	agents	(e.g.	

antimicrobial	peptides)	are	known	to	disrupt	the	integrity	of	lipid	membrane	

bilayers	 but	 the	 biomolecular	 and	 biophysical	 interactions	 that	 underpin	

these	 disruption	 pathways	 still	 need	 to	 be	 elucidated	 [134-136].	 Our	

understanding	of	bacterial	membranes	is	simplistic,	but	our	understanding	of	

the	 interactions	between	bacterial	membranes	and	antimicrobial	 agents	 is	

even	more	basic.	Neutron	reflectometry	was	applied	under	multiple	contrast	

conditions	to	understand	how	the	sugar	groups	of	bacterial	LPS	lipids	protect	

the	 phosphate-rich	 inner	 core	 region	 from	 electrostatic	 interactions	 with	

antimicrobial	peptides.	By	analyzing	the	interactions	of	the	protein	antibiotic	

colicin	N	with	two	different	rough	LPS	lipids,	it	was	shown	that	the	uncharged	

sugars	of	LPS	lipids	can	block	short-range	electrostatic	interactions	between	

cationic	 antimicrobials	 and	 the	 vulnerable	 anionic	 LPS	 phosphate	 groups	

[137].	 Lakey	 et	 al.	 used	 other	 interesting	 experimental	 methods	 to	

understand	the	general	biophysical	and	biochemical	properties	of	colicin	N	

antimicrobial	 peptides	 and	 to	 rationalize	 how	 the	 peptides	 can	 destroy	

pathogenic	microbes	 [138-143].	 Experiments	were	 additionally	 applied	 to	

investigate	 the	 interactions	 of	 antimicrobial	 polymyxin	 B	 molecules	 with	

Gram-negative	 bacterial	 outer	membrane	mimetics.	 It	was	 shown	 through	

the	combination	of	neutron	reflectometry	and	infrared	spectroscopy	that	the	

physical	 state	of	 the	 lipid	matrix	 can	 regulate	 interactions	with	polymyxin	

peptides	 [144-146].	 The	 analyses	 revealed	 that	 the	 translocation	 of	

polymyxin	 molecules	 into	 the	 bacterial	 outer	 membrane	 mimetics	 was	

dependent	on	the	phase	transition	of	bacterial	lipids	(LPS)	from	the	gel	to	the	

liquid	 crystalline	 state.	 The	 insertion	 of	 polymyxin	moieties	 into	 bacterial	
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membranes	is	well-known	to	mediate	disruptive	interactions	[147-150]	but	

the	 factors	 that	 control	 how	 effectively	 the	 hydrophobic	 moieties	 could	

penetrate	 bacterial	 membrane	 cores	 was	 poorly	 understood	 before	 this	

pioneering	publication.	Collectively,	the	experimental	analyses	are	clarifying	

the	precise	morphology	of	the	Gram-negative	bacterial	cell	envelope	and	how	

antimicrobial	agents	and	mechanical	stress	can	affect	its	form	and	structural	

stability.			

	

From	 this	 thesis	 subsection	 it	 is	 evident	 that	 experimental	 techniques	 are	

approaching	 a	 spatiotemporal	 scale	where	 they	 can	 be	 used	 to	 detect	 the	

presence	 of	 fluctuating	 nanoscale	 assemblies	 [75,89]	 and	 the	 overarching	

morphology	of	 the	Gram-negative	cell	envelope	[107-112,	92-96].	 	But	it	 is	

nonetheless	challenging	to	understand	many	biomolecular	interactions	that	

occur	 both	 within,	 and	 at	 the	 surface	 of,	 cellular	 membranes	 since	 the	

interactions	 can	 occur	 on	 sub-nanometer	 and	 sub-nanosecond	

spatiotemporal	scales	[116-117].	It	can	be	challenging	to	understand	the	lipid	

and	protein	interactions	that	drive	the	formation	of	flat	lipid	rafts,	caveola,	

and	other	fluctuating	lipid	heterogeneities	without	using	some	combination	

of	 the	 most	 advanced	 experimental	 analysis	 techniques	 and	 the	 most	

sophisticated	 complementary	 computational	 tools.	 Computer	 simulation	

methods	are	necessary	for	understanding	how	mammalian	membranes	are	

organized	 at	 the	 molecular	 level	 and	 for	 understanding	 the	 general	

biophysical	 parameters	 of	 fluctuating	 lipid	 heterogeneities,	 e.g.	 lipid	 rafts	

[114].	 Computer	 simulation	methods	 are	 necessary	 for	 understanding	 the	

interactions	 that	 transpire	 within	 Gram-negative	 bacterial	 cell	 envelopes	

including	 the	 interactions	 between	 the	 LPS	 lipids	 themselves	 [104,116-

117,119-120],	the	interactions	between	LPS	lipids	and	antimicrobial	agents	

[105]	and	the	properties	of	OMVs	that	erupt	from	bacterial	cell	surfaces	[151].	

There	 is	 a	 spatiotemporal	 resolution	 that	 is	 relatively	 inaccessible	 with	

conventional	experimental	techniques	and	this	scale	is	more	easily	accessed	

with	molecular	dynamics	simulation	methods.						
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1.2	Analysis	of	Biological	Membrane	Models	with	Molecular	Dynamics	
Simulations	(Brief	Overview)	
	

Some	of	 the	 first	molecular	dynamics	simulations	were	conducted	 in	1957	

and	 they	were	 performed	 in	 an	 attempt	 to	 investigate	 the	 interactions	 of	

simplistic	hard-sphere	models	[152].	Seven	years	later	(1964)	more	realistic	

molecular	dynamics	simulations	were	conducted	to	simulate	the	interactions	

of	 an	 argon	 liquid	 [153].	 After	 a	 few	more	 years	 of	method	 development,	

MacCammon	 et	 al.	 studied	 the	 interactions	 of	 a	 small	 bovine	 pancreatic	

trypsin	inhibitor	protein	over	what	now	seems	to	be	an	unacceptably	short	

simulation	timeframe	(8.8	ps)	but	at	the	time	was	pioneering	[154].	Protein	

folding	 was	 being	 simulated	 for	 an	 entire	 microsecond	 in	 1998	 due	 to	

exponential	increases	in	computer	processing	power	and	the	development	of	

more	advanced	molecular	dynamics	simulation	forcefields	[155-156].		

	

The	attention	of	the	simulation	community	was	at	this	time	gravitating	more	

and	 more	 toward	 the	 simulation	 of	 lipid	 assemblies	 and	 lipid	 membrane	

mimetics	 [59].	 The	 first	 molecular	 dynamics	 simulations	 of	 biological	

membrane	 mimetics	 focused	 on	 simplified	 lipid	 bilayers	 without	 explicit	

solvent	 (water)	 [157],	 simplified	 lipid	 monolayers	 [158]	 and	 small	 lipid	

micelles	that	were	immersed	in	water	[159].	The	simulations	provided	some	

interesting	molecular	level	insights	but	it	was	desirable	to	simulate	greater	

spatiotemporal	scales	and	effectively	bridge	the	gap	between	experimental	

and	computational	research.	Larry	Scott	et	al.	began	to	combine	molecular	

dynamics	simulation	algorithms	with	Monte	Carlo	methods	to	develop	new	

simulation	 techniques	 that	 could	 be	 used	 to	 simulate	 unprecedented	

spatiotemporal	 scales	 [160-162].	 There	 was	 also	 an	 ongoing	 attempt	 to	

correct	any	noted	inadequacies	of	common	molecular	dynamics	simulation	

forcefields	 and	 make	 them	 more	 suitable	 for	 accurately	 representing	 the	

properties	of	lipid	membranes.	Scientific	research	groups	would	produce	one	

relatively	 crude	 molecular	 dynamics	 simulation	 forcefield	 and	 once	 these	

forcefields	were	benchmarked,	they	would	be	refined	so	that	they	could	more	

accurately	mimic	 the	 properties	of	 lipid	membranes.	 The	 older	 simulation	

forcefields	 could	 be	 used	 as	 an	 effective	 “starting-point”	 for	 generating	
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entirely	 new	 and	 improved	 types	 of	 molecular	 dynamics	 simulation	

forcefields	[163-167].		

	

For	example,	Egberts	et	al.	designed	a	model	for	DPPC	lipids	in	1994	that	was	

based	 on	 the	GROMOS-87	molecular	 dynamics	 simulation	 forcefield	 [168].	

The	forcefield	seemed	to	be	inappropriately	calibrated;	when	the	DPPC	lipids	

were	simulated	at	physiological	pressure	and	temperature	they	inaccurately	

transitioned	into	the	gel	phase.		The	partial	charges	on	the	GROMOS-87	lipids	

were	halved	and	the	dihedral	potential	of	 the	acyl	chains	was	transformed	

into	the	Ryckaert-Belleman	representation	to	compensate	 for	 the	 incorrect	

lipid	 properties.	 When	 the	 DPPC	 lipids	 were	 simulated	 with	 the	

reparametrized	 forcefield	they	correctly	entered	 into	the	 liquid-disordered	

Ld	membrane	phase	[169].	Berger	went	on	to	systematically	reparametrize	

the	original	Egberts	et	al.	parameters	by	applying	the	optimized	potential	for	

liquid	simulations	(OPLS)	parameters	that	were	used	in	an	earlier	model	for	

DMPC	lipids	[170].	The	Lennard-Jones	parameters	for	CH2	and	CH3	moieties	

were	carefully	calibrated	to	match	known	experimental	data	for	volume	and	

heat	of	vaporization	energies	[171].	The	Berger	lipids	became	the	“minimal	

standard”	in	molecular	dynamics	simulations	of	lipid	membranes	[59].	The	

method	of	using	so-called	Berger	lipids	for	molecular	dynamics	simulations	

is	 only	 now,	 decades	 later,	 becoming	uncommon	 and	 scientists	 are	 opting	

instead	to	use	more	sophisticated	molecular	dynamics	simulation	forcefields	

such	as	the	CHARMM36	all-atom	forcefield	[172-173,104].		

	

The	 advent	 of	 sophisticated	 forcefields	 that	 explicitly	 represented	 each	

constituent	 atom	of	 a	 given	 biomolecule	was	pioneering	 and	 as	molecular	

dynamics	 simulations	 continued	 to	 produce	 more	 interesting	 biophysical	

data,	 it	was	becoming	clear	 that	molecular	dynamics	simulation	 forcefields	

could	 be	 modified	 to	 not	 only	 increase	 their	 overall	 accuracy	 but	 also	 to	

increase	their	scope	and	spatiotemporal	resolution.	The	molecular	dynamics	

simulation	forcefields	could	be	modified	to	effectively	bridge	the	length	and	

timescale	 gaps	 between	 experimental	 and	 molecular	 simulation	 analysis	

methods	 [114,	 59,	 174-178].	 Rather	 than	 directly	 supersede	 sophisticated	
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atomistic	 force	 fields,	 low	 resolution	 force	 fields,	 or	 coarse-grained	 force	

fields,	 were	 designed	 to	 complement	 them	 [179-180].	 The	 simulation	

community	could	use	sophisticated	all-atom	resolution	molecular	dynamics	

simulation	forcefields	(e.g.	CHARMM36)	for	the	accurate	reproduction	of	sub-

nanometer	and	 sub-nanosecond	biomolecular	 interactions	 in	one	 instance,	

and	 then	 lower	 resolution	 coarse-grained	 forcefields	 for	 the	 simulation	 of	

biological	 processes	 on	 much	 larger	 spatiotemporal	 scales	 in	 another	

instance	(Figure	3A)	[181].		

	

	

	

	

	

	

 
	

	

 
 
	

	

	

	

Figure	3.	The	increasing	scope	of	molecular	simulation	forcefields.	(A)	
Comparison	between	an	atomistic	CHARMM	forcefield	lipid	model,	a	united-
atom	Berger	forcefield	lipid	model,	a	coarse-grained	Martini	forcefield	lipid	
model,	and	a	supra	coarse-grained	forcefield	lipid	model.	Each	constituent	
particle	of	the	four	lipid	models	represents	a	single	molecular	dynamics	
simulation	interaction	center.	(B)	Sideview	snapshots	of	a	multicomponent	
membrane	being	simulated	with	an	atomistic	or	“all-atom”	resolution	
forcefield	(AA),	a	coarse-grained	resolution	forcefield	(CG),	and	a	supra	
coarse-grained	resolution	simulation	forcefield	(SCG).	Transmembrane	
proteins	are	cyan	and	green,	water	is	blue	and	the	other	molecules	
represent	the	simulation	lipids.	The	image	sources	are:	
10.1021/acs.chemrev.8b00460	(DOI)	[114]	and	2015.igem.org.		
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interactions	 that	 are	 barely	 accessible	 by	 any	 other	 means.	 Let	 us	 first	

consider	some	of	the	molecular	dynamics	simulations	that	have	provided	a	

clearer	understanding	of	the	Gram-negative	cell	envelope	structure	and	the	

interactions	 between	 Gram-negative	 membrane	 mimetics	 and	 AMPs	 (e.g.	

Chrysophsin-3)	or	antimicrobial	nanomaterials	(e.g.	buckminsterfullerene).	

After	 that,	 we	 can	 consider	 how	molecular	 dynamics	 simulation	 methods	

have	 been	 used	 to	 provide	 insights	 into	 the	 nature	 of	 fluctuating	 lipid	

heterogeneities,	 lipid	 rafts,	 the	 structure	 and	 interactions	 of	 mammalian	

plasma	membranes,	and	the	self-association	and	self-assembly	of	biological	

membrane	proteins	and	lipids	(Figure	3B).	Taken	together,	the	descriptions	

will	provide	a	brief	account	of	how	molecular	dynamics	simulations	are	being	

used	to	elucidate	the	properties	of	membranes	and	the	nature	of	membrane	

interactions.	 It	 should	 be	 noted	 however,	 that	 this	 summary	 is	 kept	

intentionally	brief	and	more	comprehensive	reviews	are	regularly	published	

to	provide	more	scope	for	biophysical	scientists;	for	example,	see	[182-188].						

		

The	 outer-membrane	 of	 Gram-negative	 bacteria	 has	 been	 simulated	

repeatedly	using	high-level	molecular	dynamics	simulation	forcefields	to	the	

point	that	scientific	research	groups	have	created	an	identity	for	themselves	

that	 involves	 almost	 exclusively,	 the	 production	 and	 simulation	 of	 Gram-

negative	bacterial	membranes	with	specific	molecular	dynamics	simulation	

forcefields	 (e.g.	 the	 CHARMM	 suite	 of	 forcefields	 [189-197,	 etc.]).	 The	 Im	

group	are	now	firmly	established	as	scientists	who	probe	all	aspects	of	the	

Gram-negative	 bacterial	 inner	 and	 outer	 membranes	 using	 high-level	

atomistic	 forcefields	 and	 to	 a	 lesser	 extent,	 the	 Martini	 coarse-grained	

molecular	 dynamics	 simulation	 forcefield	 [104,198-210].	 Early	 pioneering	

simulation	studies	were	used	to	determine	the	structural	parameters	of	the	

Gram-negative	 bacterial	 outer	membrane;	 the	 group	 determined	 different	

lipid	packing	parameters	such	as	area	per	 lipid,	membrane	thickness,	 lipid	

acyl	chain	order	parameters,	and	structure	and	orientation	metrics	for	LPS	

lipid	moieties	[211].	It	was	found	that	the	area	per	lipid,	membrane	thickness,	

and	acyl	chain	order	parameters	depended	on	the	size	of	the	LPS	chemotype	

that	was	being	simulated.	 Shorter	 forms	of	LPS	 lipids	occupied	 less	 lateral	
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surface	area,	tended	to	have	less	ordered	acyl	chains,	and	tended	to	have	a	

thicker	hydrophobic	core	membrane	domain.	More	interestingly,	it	was	found	

that	the	orientation	of	the	terminal	headgroup	moieties	also	depended	on	the	

local	membrane	environment.	More	heterogeneous	membrane	environments	

promoted	 lipid	 headgroup	 splay,	 and	 the	 terminal	 LPS	 sugar	 moieties	

stretched	 out	 over	 the	membrane	 surface	when	 they	were	 surrounded	 by	

small	lipid	molecules.	This	is	interesting	to	note	since	LPS	headgroup	splay	is	

connected	 to	 LPS	 lipid	 clustering	 in	 chapter	 4	 of	 this	 thesis.	 Molecular	

dynamics	simulations	are	applied	in	chapter	4	and	it	is	demonstrated	that	LPS	

lipid	headgroups	 can	each	other	and	progressively	 form	LPS	nanodomains	

when	they	are	surrounded	by	small	lipid	molecules.		

	

The	 conformational	 dynamics	 of	 the	 terminal	 sugar	 moieties	 was	 later	

investigated	by	the	Im	group	with	the	CHARMM36	atomistic	forcefield	and	

their	 simulation	 data	 was	 combined	 with	 NMR	 experimental	 data.	 The	

simulations	focused	on	homogenous	single-component	LPS	lipid	leaflets	and	

it	was	found	that	the	LPS	lipid	headgroup	moieties	adopted	an	approximately	

lamellar	 alignment.	 The	 tilt	 angle	 of	 the	 most	 peripheral	 LPS	 headgroup	

saccharide	moieties	was	determined	to	be	as	small	as	~10°	[212].		

	

The	Im	group	have	also	analyzed	how	outer	membrane	lipids	interact	with	

outer	 membrane	 proteins.	 In	 2014	 they	 performed	 atomistic	 resolution	

molecular	 dynamics	 simulations	 to	 analyze	 the	 interactions	 of	 outer	

membrane	phospholipase	A	(OmpLA)	with	Gram-negative	outer	membrane	

lipids	[213].	It	is	important	to	state	here	that	the	LPS	lipid	molecules	were	

relatively	 short	 form	 chemotypes	 that	 lacked	 terminal	 O-antigen	 chain	

polymers.	 It	 is	also	 important	 to	clarify	 that	OmpLA	is	a	porin	protein	that	

consists	of	a	12-stranded	antiparallel	beta-barrel	with	a	convex	and	flat	side	

[214-218].	The	convex	side	enables	semi-specific	secretion	of	biomolecules,	

including	bacteriocins.	It	was	found	that	specific	protein	moieties	(i.e.	L1,	L4,	

and	L6	loops)	covered	the	interior	of	the	protein	barrel	in	a	way	that	would	

prevent	pore	function	in	vivo.	It	was	resolved	that	the	omitted	LPS	headgroup	

sugar	 units	 would,	 in	 some	 way,	 intervene	 and	 through	 unaccounted	 for	
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intermolecular	 interactions,	 they	 would	 affect	 the	 position	 of	 the	 protein	

loops	and	thereby	the	function	of	the	porin	protein.	The	insights	regarding	

the	effects	of	 the	 lipid	environment	on	 the	 conformation	of	 the	embedded	

protein	 are	 themselves	 quite	 interesting,	 but	 equally	 interesting	 data	was	

collated	 to	assess	how	 the	embedded	protein	perturbed	 the	encompassing	

pool	of	lipids.	It	was	found	that	the	membrane	protein	changed	the	thickness	

of	the	encompassing	lipids.	In	general,	energetically	unfavourable	mismatch	

between	transmembrane	protein	domains	and	hydrophobic	bilayer	cores	is	

relieved	through	adaptation	of	the	bilayer	(i.e.	local	thinning	or	thickening),	

or	 through	 changes	 in	 protein	 orientation	 [219-222].	 In	 the	 simulations	

conducted	 by	 the	 Im	 group	 it	was	 found	 that	 the	 local	OmpLA	membrane	

thinning	was	location	specific.	There	was	more	thinning	adjacent	to	specific	

portions	of	the	embedded	OmpLA	protein	surface,	rather	than	the	membrane	

thinning	being	a	simple	function	of	distance	between	lipids	and	the	protein	

surface.				

	

The	Im	group	have,	and	still	are,	developing	web-based	tools	that	simplify	the	

construction	 of	 Gram-negative	 bacterial	 membrane	 mimetics	 (Figure	 4A)	

[223-227].	 Users	 can	 select	 the	 relative	 abundances	 of	 upper	 and	 lower	

membrane	leaflet	lipids	and	the	CHARMM-GUI	Membrane	Builder	[228-230]	

will	generate	a	 structure	 file	 that	has	 these	molecules	optimally	organized	

about	 the	membrane	midplane	 (Figure	 4B).	 Further,	 one	 can	 opt	 to	 place	

appropriately	oriented	outer	membrane	proteins	between	these	 lipids	and	

create	 a	 structure	 file	 that	 contains	 a	 complex	 combination	 of	

(asymmetrically	distributed)	lipids	and	protein	(Figure	4C).	The	associated	

simulation	parameter	files	are	provided	in	a	directory	for	users	to	unpack	and	

use	one	after	another.	Given	the	previous	discussions	of	atomistic	bacterial	

membrane	 simulations	 it	 is	 unsurprising	 that	 the	 CHARMM-GUI	 modules	

were	at	first	only	customized	for	the	production	of	atomistic	structure	files	

[231].	 The	 scope	 of	 the	 CHARMM-GUI	module	 has	 since	 increased	 beyond	

atomistic	simulations	alone	and	the	online	modules	now	additionally	simplify	

the	 construction	 of	 lower	 resolution	 coarse-grained	 outer	 membrane	

mimetics	 [151,	 232].	What	 is	more,	 the	 construction	 tools	 can	 be	 used	 to	
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produce	more	 than	 just	 flat	 lipid	membranes	 or	 conventional	 planar	 lipid	

geometries.	 The	 CHARMM-GUI	 Martini	 Maker	 was	 customized	 for	 the	

production	 of	 spheric	 micelles,	 spheric	 vesicles,	 discoidal	 nanodisc	

geometries,	 flat	membrane	mimetics	and	more.	The	module	 is	used	 in	 the	

penultimate	 chapter	 to	 assemble	 OMVs	 and	 is	 also	 used	 in	 chapter	 4	 to	

generate	flat	bacterial	membrane	mimetics.		

	

 
 
 
 
 
 
	

	

	

	

	

	

	

	

	

 
	

	

	

	
Figure	4.	(A)	Visualization	of	a	complex	asymmetric	Gram-negative	outer	
membrane	mimetics	that	were	created	with	the	CHARMM-GUI	web-based	
construction	tool.	(B)	The	Campylobacter	jejuni	outer	membrane	model	that	
was	assembled	with	the	CHARMM-GUI	construction	tool	(top)	and	
simulated	for	a	time	Δ𝑡	(bottom).	(C)	The	E.	coli	outer	membrane	model	that	
contains	the	central	vitamin	B12	transporter	(BtuB)	integral	membrane	
protein.	The	structure	was	assembled	with	the	CHARMM-GUI	construction	
tool	(top)	and	simulated	for	a	time	Δ𝑡	(bottom).	The	inner	leaflet	lipids	are	
blue,	white,	and	black.	The	outer	leaflet	lipids	are	pink,	orange,	gold,	cyan	
and	gray.	The	BtuB	protein	is	yellow	and	green.	The	ions	are	represented	as	
small	spheres	that	are	not	covalently	linked	with	the	lipids	or	protein	
molecules.	Image	source:	10.1021/acs.jctc.8b01066	(DOI)	[229].			
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Lins	et	al.	are	also	firmly	established	as	a	scientific	research	group	who	are	

interested	 in	 understanding	 Gram-negative	 bacterial	 outer	 membranes	

interactions	 with	 atomistic	 resolution	 molecular	 dynamics	 simulation	

forcefields.	 The	 team	 were	 conducting	 atomistic	 resolution	 molecular	

dynamics	 simulations	 as	 early	 as	 2001	 [233]	 that	 were	 based	 on	 the	

AMBER95	 [234]	 and	 GLYCAM_93	 [235]	 forcefields	 with	 geometry	

optimizations	 being	 conducted	 with	 Hartree-Fock	 self-consistent	 field	

calculations	 at	 the	 6-31G*	 level	 [236-239].	 The	 simulations	 revealed	 that	

calcium	 ions	 (Ca2+)	were	 predominantly	 hexacoordinated	with	 the	 anionic	

LPS	 macromolecule	 phosphate	 groups.	 Most	 of	 the	 calcium	 ions	 were	

confined	to	a	domain	~2	nm	thick	in	the	inner	core	region	of	the	LPS	bacterial	

outer	 membrane	 mimetics.	 The	 analyses	 showed	 that	 the	 bacterial	 outer	

membrane	mimetics	were	divided	quite	clearly	into	positively	and	negatively	

charged	domains	along	the	membrane	normal	axis.	The	charge	distribution	

was	 the	 result	 of	 the	 calcium	 ions	 being	 spatially	 restricted	 to	 specific	

portions	of	the	Gram-negative	outer	membrane	model	[240].	Lins	et	al.		would	

subsequently	 analyze	 the	 structure	 and	 electrostatics	 of	 the	Pseudomonas	

aeruginosa	bacterial	outer	membrane	seven	years	 later	 in	2008	[241-242].	

The	molecular	dynamics	simulations	demonstrated	that	the	LPS	headgroup	

and	acyl	 chain	domains	 can	have	different	dynamic	 interactions;	 averaged	

diffusion	 constants	 can	 be	 two	 orders	 of	 magnitude	 larger	 for	 the	 LPS	

headgroup	 domains	when	 comparisons	 are	made	with	 the	 anchoring	 acyl	

chain	domain.	Molecular	dynamics	simulations	were	additionally	conducted	

in	2017	to	analyze	the	 interactions	of	polymyxin	B	molecules	with	the	LPS	

Lipid	 A	 anchor	 [243].	 It	 is	 important	 to	 state	 here	 that	 Lipid	 A	molecules	

consist	of	just	two	glucosamine	sugar	units,	in	an	b(1®6)	linkage,	with	the	

covalently	bonded	LPS	acyl	chains	[244-245].	Lipid	A	is	the	smallest	LPS	lipid	

variant	 and	 it	 is	 used	 to	 understand	 the	 interactions	 of	 larger	 and	 more	

complex	LPS	lipid	variants.	The	simulated	polymyxin	B	antimicrobials	were	

able	to	interact	with	the	vulnerable	anionic	Lipid	A	phosphate	groups.	It	was	

found	that	the	polymyxin	B	peptides	displaced	the	stabilizing	cations	from	the	

bacterial	 membrane	 surface	 when	 they	 interacted	 with	 the	 LPS	 lipid	

membrane.	The	simulations	provided	atomistic	 level	 insights	 for	processes	
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that	 had	 already	 been	 hypothesized	 but	 had	 arguably	 never	 been	 proved	

outright	 [147-150].	 The	 positively	 charged	 polymyxin	 diaminobutyric	 acid	

(Dab)	residues	interacted	with	the	anionic	LPS	lipids	phosphate	groups	and	

this	 interaction	 induced	 bilayer	 damage	 as	 the	 stabilizing	 divalent	 cations	

moved	 from	 the	 water-lipid	 interfacial	 domain	 into	 the	 simulated	 water	

domain.	 The	 group	 have	 used	molecular	 dynamics	 simulation	methods	 to	

make	other	equally	important	connections	between	ion	valence	and	LPS	lipid	

properties	 [246-247].	 The	 group	 has	 additionally	 produced	 molecular	

dynamics	simulation	forcefields	and	analysis	tools	that	help	users	to	produce	

and	analyze	LPS	lipid	molecular	dynamics	simulations;	for	example,	see	[248-

252].		

	

Significantly	more	simulations	were	conducted	to	assess	the	interactions	of	

antimicrobial	agents	with	Gram-negative	bacterial	membrane	mimetics.	The	

field	of	antimicrobial	agent	based	molecular	dynamics	simulations	is	vast	and	

it	should	be	appreciated	that	the	following	publications,	and	the	publications	

that	are	listed	in	sections	1.7	and	1.8,	constitute	just	a	small	fraction	of	all	the	

simulation	 studies	 that	 were	 conducted	 to	 understand	 some	 aspect	 of	

antimicrobial	interactions	through	the	use	of	molecular	dynamics	simulation	

forcefields.	 The	 coarse-grained	 Martini	 forcefield	 was	 used	 to	 study	 the	

interactions	 of	 the	 antimicrobial	 peptide	 (AMP)	 Chrysophsin-3	 (chrys-3)	

[253-255]	 with	 different	 phospholipid	 bilayers,	 including	 an	 inner	 Gram-

negative	(E.	coli)	bacterial	membrane	mimetic	that	contained	POPE	and	POPG	

lipids	[255].	It	was	found	that	the	chrys-3	molecules	aggregated	at	the	lipid	

membrane	surface	and	that	this	process	induced	the	formation	of	large	lipid	

protrusions.	 The	 protrusions	 could	 be	 considered	 micellization	

intermediates	since	the	deformation	would	lower	barriers	for	micellization	

processes	and	membrane	rupture	processes	[256-259].	The	simulations	were	

corroborated	 by	 experimental	 data	 that	 suggested	 that	 chrysophsin	

molecules	primarily	disrupted	membranes	through	pore	formation	processes	

[260-264].	 It	 was	 also	 found	 the	 chrys-3	 molecules	 had	 preferential	

interactions	for	the	negatively	charged	PG	lipids	within	the	two-component	

Gram-negative	 inner	 membrane	 mimetics	 and	 it	 was	 hypothesized	 that	
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electrostatic	 interactions	 could	play	an	 important	 role	 in	 the	antimicrobial	

action	of	the	cationic	chrys-3	peptide.	This	hypothesis	was	corroborated	by	

comparable	Martini	 forcefield	simulations	that	explored	the	 interactions	of	

different	 types	 of	 cationic	 AMPs	 with	 different	 models	 for	 the	 inner	

membrane	of	Gram-negative	bacteria.	Take	for	example,	the	coarse-grained	

simulations	that	sought	to	clarify	the	interactions	of	α-helical	Latarcin	AMPs	

[265-269]	with	the	 inner	membrane	of	Gram-negative	bacteria	[270,	271].	

The	Gram-negative	bacterial	inner	membrane	mimetic	was	arranged	with	PE	

and	PG	lipids	an	approximate	7:3	number	ratio	to	make	it	comparable	with	

realistic	 bacterial	 membrane	 systems	 [272-274].	 The	 α -helical	 AMPs	

preferentially	 interacted	with	 the	 anionic	 PG	 lipids	 despite	 the	 significant	

surplus	of	neutrally	charged	PE	lipids.	It	was	similarly	noted	in	experimental	

studies	that	the	Latarcin	AMPs	could	induce	membrane	reorganization	within	

plasma	membrane	mimetics	[275],	that	the	Latarcin	AMPs	have	preferential	

interactions	 for	 anionic	 liposomes	 [276]	 and	 that	 the	 Latarcin	 AMPs	 can	

induce	membrane	 damage	when	 they	 interact	with	 host	membrane	 lipids	

[277-280].	The	coarse-grained	molecular	dynamics	simulations	of	the	chrys-

3	and	Latarcin	AMPs	corroborate	data	from	chapter	3	where	it	is	shown	that	

polymyxin	molecules	have	preferential	interactions	for	anionic	lipids	and	that	

these	preferential	interactions	can	induce	lipid	segregation,	anionic	domain	

registration	about	the	membrane	midplane,	and	bilayer	thinning	processes.				

	

Grossfield	 et	 al.	 performed	 comparable	 coarse-grained	 [281-282]	 and	

atomistic	 [283]	 molecular	 dynamics	 simulations	 but	 this	 time	 the	 group	

explored	the	interactions	of	the	C16-KGGK	cationic	peptides	[284-285]	with	

Gram-negative	 inner	membrane	 mimetics	 that	 contained	 POPE	 and	 POPG	

lipids	in	a	2:1	number	ratio.	Here	again	it	was	shown	that	the	cationic	AMPs	

had	 preferential	 interactions	 with	 the	 anionic	 PG	 lipids	 despite	 their	

relatively	low	concentration	within	the	multicomponent	bacterial	membrane	

mimetics.	Over	the	course	of	a	1	𝜇s	simulation	it	was	found	that	the	C16-KGGK	

molecules	had	approximately	twice	as	many	interactions	with	the	negatively	

charged	PG	lipids	compared	with	the	neutrally	charged	PE	lipids.	Unusually,	

the	 simulations	 also	 found	 that	 the	 C16-KGGK	 molecules	 formed	 a	 large	
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multicomponent	 cluster	 before	 interacting	 with	 the	 Gram-negative	 inner	

bacterial	 membrane	 model	 and	 also,	 that	 this	 cluster	 induced	 crystalline	

packing	 of	 the	 PG	 lipid	 headgroups	 when	 it	 was	 interacting	 with	 the	

membrane	surface.	Higher	resolution	atomistic	 forcefield	simulations	were	

recently	 conducted	 by	 Poger	 et	 al.	 (2018)	 [286]	 and	 the	 results	 not	 only	

corroborate,	 but	 also	 add	 to,	 earlier	 simulations	 that	 demonstrated	

preferential	 interactions	 between	 cationic	 AMPs	 and	 anionic	 PG	

phospholipids.	Through	the	application	of	molecular	dynamics	simulations,	it	

was	found	that	the	preferential	interactions	between	cationic	AMPs	(aurein	

1.2)	and	negatively	charged	lipids	can	not	only	promote	spontaneous	positive	

curvature	and	bilayer	 buckling	but	also	 that	 cardiolipin	 lipids,	which	have	

intrinsic	 negative	 curvature,	 have	 the	 capacity	 to	 suppress	 spontaneous	

membrane	curvature	generation	during	membrane	interactions	with	AMPs.	

This	 is	 particularly	 intriguing	 since	 it	 might	 also	 explain	 why	 high	

concentrations	 of	 cardiolipin	 lipids	 suppress	 the	 ability	 of	 Gram-positive	

bacterial	 membrane-active	 proteins	 (e.g.	 daptomycin)	 to	 lyse,	 disrupt,	 or	

porate	 bacterial	 membrane	 mimetics	 [287-291].	 There	 have	 been	 several	

other	 supporting	 computational	 and	 experimental	 publications	 that	 have	

explored	the	membrane	disrupting	properties	of	aurein	1.2;	for	example,	see	

[292-296].			

	

Molecular	dynamics	simulations	methods	were	applied	just	a	few	years	ago	

to	understand	how	antimicrobial	Buckminsterfullerene	 (C60)	nanoparticles	

[297-299]	interact	with	Gram-negative	bacterial	outer	membrane	mimetics	

[300-301].	The	simulations	revealed	that	the	LPS	core	saccharide	units	tend	

to	significantly	impede	the	trajectories	of	the	C60	nanoparticles	and	that	the	

nanoparticles	could	only	access	the	membrane	core	through	bilayer	surface	

areas	that	were	concentrated	in	shorter	LPS	chemotypes	or	PE	phospholipids.	

The	 C60	 nanoparticles	 preferentially	 gravitated	 towards	 the	 interfacial	

membrane	 domains	 once	 they	 had	 penetrated	 the	 water-lipid	 interfacial	

domain,	i.e.	to	areas	that	divided	distinct	PE	and	LPS	lipid	clusters,	suggesting	

that	 the	 nanoparticles	were	 line-active	 linactants	 [302-304]	 and	 that	 they	

have	the	capacity	to	affect	interfacial	line	tension	energies.	Taken	together,	
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the	simulation	studies	are	quite	important	since	they	corroborate	simulation	

data	 from	 chapter	 4.	 Within	 chapter	 4	 it	 is	 demonstrated	 that	 cationic	

polymyxin	molecules	have	preferential	interactions	with	negatively	charged	

PG	phospholipids	and	further	that	these	preferential	interactions	can	change	

the	multicomponent	membrane	organization	and	structure.	There	is	not	only	

the	 aggregation	 of	 negatively	 charged	 PG	 lipids	 within	 one	 leaflet	 of	 the	

bilayer,	there	is	also	the	association,	registration,	or	alignment,	of	the	PG	lipid	

clusters	about	the	membrane	midplane.		

	

Gumburt	 et	 al.	 are	 also	 well-known	 for	 conducting	 molecular	 dynamics	

simulations	 to	 analyze	 the	 biophysical	 properties	 of	 the	 Gram-negative	

bacterial	 cell	 wall	 including	 the	 interactions	 between	 bacterial	 lipids	 and	

outer	membrane	proteins	[305-308],	the	properties	of	peptidoglycan	chains	

[309-310]	 and	 the	 properties	 of	 both	 the	 inner	 and	 outer	 Gram-negative	

bacterial	 membranes.	 Pioneering	 publications	 sought	 for	 example,	 to	

understand	 how	 the	 rod	 shape	 of	 Gram-negative	 bacteria	 is	 maintained	

during	peptidoglycan	remodelling	[311].	The	team	developed	ad	hoc	models	

for	 the	 constituent	 components	of	 the	Gram-negative	 bacterial	 cell	wall	 to	

demonstrate	 how	 peptidoglycan	 remodelling	 enzymes,	 including	

transglycosylases,	 transpeptidases,	and	endopeptidases,	are	coordinated	to	

remodel	 a	 sacculus	 several	 orders	 of	 magnitude	 larger	 than	 the	 enzymes	

themselves.	The	team	found	that	top-down	regulation	of	new	peptidoglycan	

insertion	sites	was	unnecessary,	and	that	local	coordination	of	peptidoglycan	

remodelling	 enzymes	 within	 discrete	 complexes	 was	 sufficient	 for	

maintaining	the	rod	shape	of	the	Gram-negative	bacterial	sacculus.	In	2018	

Gumburt	 et	 al.	 performed	 additional	 molecular	 dynamics	 simulations	 to	

assess	 how	 mechanical	 stress	 was	 distributed	 throughout	 the	

multicomponent	E.	coli	cell	envelope	(Figure	5A)	[312].	Molecular	dynamics	

simulations	 were	 conducted	 to	 understand	 molecular	 level	 interactions	

within	 three	 domains	 of	 the	 Gram-negative	 cell	 envelope:	 (i)	 the	 inner	

membrane;	 (ii)	 the	 outer	 bacterial	membrane;	 and	 (iii)	 the	 thin	 layer	 (or	

layers)	 of	 peptidoglycan	 that	 is	 wedged	 between	 them.	 The	 molecular	

dynamics	simulation	data	was	used	to	understand	the	mechanical	properties	
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of	 each	 distinct	 domain	 of	 the	 Gram-negative	 bacterial	 cell	 envelope	 and	

comparisons	were	 also	made	with	 complementary	 experimental	 data.	 The	

area	compressibility	modulus	(𝐾N)	[313-314]	was	used	by	Gumbart	et	al.	to	

quantify	 the	 mechanical	 strength	 of	 each	 distinct	 domain	 of	 the	 Gram-

negative	 bacterial	 cell	 envelope.	 There	 was	 close	 agreement	 between	 the	

calculated	 and	 experimentally	 resolved	𝐾N	values	 for	 the	 inner	membrane	

models,	but	there	were	significant	discrepancies	between	the	calculated	and	

experimentally	 resolved	𝐾N	 values	 for	 the	 outer	 membrane	 models.	 The	

experimental	 analyses	 suggested	 that	 the	 inner	 membrane	 area	

compressibility	had	a	magnitude	of	238	mNm-1	and	the	molecular	dynamics	

simulations	suggested	that	the	inner	membrane	area	compressibility	had	a	

magnitude	of	182	mNm-1.	The	molecular	dynamics	simulations	predicted	a	

𝐾N	value	of	524	mNm-1	for	the	outer	bacterial	membrane	model,	whereas	the	

experiments	predicted	a	 significantly	 lower	magnitude	of	233	mNm-1.	The	

addition	 or	 removal	 of	 integral	 membrane	 proteins	 was	 in	 general	

insignificant	 and	 the	 area	 compressibility	 magnitudes	 would	 be	 at	 most	

~10%	 different	 between	 comparative	 simulation	 systems	 that	 included	

integral	membrane	proteins	in	one	instance	and	excluded	integral	membrane	

proteins	in	another.	The	layer	of	peptidoglycan	was	more	complex	and	it	was	

found	 that	𝐾N	values	varied	 substantially	with	 the	degree	of	peptidoglycan	

area	expansion	(Figure	4B-D).	Compressibility	magnitudes	were	negligible	at	

low	 area	 expansions	 but	 they	would	 rapidly	 exceed	 values	 of	 200	mNm-1	

when	the	expansion	was	100%.	
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Figure	5.	(A)	Model	of	the	E.	coli	cell	envelope	that	includes	the	inner	
cytoplasmic	membrane	(IM),	the	outer	membrane	(OM),	peptidoglycan	(cell	
wall),	Braun’s	lipoprotein	(Lpp)	and	integral	membrane	proteins.	The	lipids	
are	gray	and	the	peptidoglycan	is	blue	and	green.	The	proteins	have	
different	color	schemes	to	help	readers	to	distinguish	between	them.	(B-D)	
Representative	states	of	the	peptidoglycan	cell	wall	composite	when	it	is	
relaxed	(B),	stretched	to	1.5x	of	its	original	area	(C)	and	stretched	to	2x	its	
original	area	(D).	The	glycan	strands	are	blue,	the	peptide	cross-links	are	
green	and	the	borders	of	the	simulation	cell	are	represented	as	a	thin	
dashed	line.	The	image	sources	are:	10.106/j.bbamem.2018.09.020	(DOI)	
[312]	and	10.1371/journal.pcbi.1003475	(DOI)	[309].						 
	

Khalid	et	 al.	 have	 conducted	molecular	dynamics	 simulations	over	 the	 last	

couple	of	decades	 to	understand	various	aspects	of	 the	Gram-negative	 cell	

envelope	including	interactions	between	lipids	and	outer	membrane	proteins	

[315-319],	 the	 interactions	 between	 peptidoglycan	 and	 outer	 membrane	

proteins	[320-321],	and	the	interactions	between	various	components	of	the	

Gram-negative	cell	wall	and	AMPs	and	antimicrobial	nanoparticles	[301].	In	
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2019	the	group	used	molecular	dynamics	simulation	methods	to	understand	

how	 the	 E.	 coli	 inner	 membrane	 TolR	 protein	 interacts	 with	 periplasmic	

layers	of	peptidoglycan.	It	was	demonstrated	that	TolR	protein	can	bind	the	

periplasmic	 peptidoglycan	 through	 electrostatic	 interactions	 when	 it	

transitions	from	an	initially	compressed	conformation	that	is	of	one	length,	to	

an	 extended	 conformation	 that	 is	 approximately	 twice	 as	 long.	 The	

complementary	interactions	of	the	outer	membrane	OmpA	proteins	and	the	

inner	membrane	TolR	proteins	with	the	periplasmic	peptidoglycan	can	help	

to	maintain	the	(peptidoglycan)	cell	wall	structure	[322].	The	Khalid	group	

have	also	conducted	molecular	dynamics	simulations	to	understand	how	the	

TolC-AcrABZ	efflux	pump	[323-324]	simultaneously	interacts	with	the	inner	

and	 outer	 membranes	 of	 Gram-negative	 bacteria	 [325].	 The	 mesoscale	

molecular	dynamics	simulations	were	conducted	to	understand	how	some	of	

the	largest	efflux	pumps	can	interact	with	the	inner	cytoplasmic	membrane,	

the	outer	LPS	membrane,	and	various	integral	membrane	proteins	all	at	the	

same	time	and	also,	how	these	interactions	might	affect	the	properties	of	the	

Gram-negative	 cell	 envelope.	 It	 was	 discovered	 that	 there	 was	 strong	

coupling	between	the	trajectories	of	the	proteins	and	lipids	within	the	outer	

bacterial	 membrane	 but	 perhaps	 more	 interestingly,	 that	 the	 lipids	 were	

much	 less	 encumbered	 within	 the	 inner	 cytoplasmic	 membrane.	 It	 was	

additionally	 ascertained	 that	 the	 embedded	 membrane	 protein	 moieties	

affected	 the	 local	 membrane	 composition.	 Cardiolipin	 lipids	 were	 for	

example,	 significantly	 enriched	 within	 the	 vicinity	 of	 the	 multidrug	 efflux	

pump	(AcrBZ)	and	also	within	the	vicinity	of	the	AqpZ	water	channels	[326-

327].		

	

The	 Khalid	 group	 also	 used	 molecular	 dynamics	 simulation	 methods	 to	

understand	how	polymyxin	molecules	interact	with	both	the	inner	and	outer	

membranes	of	Gram-negative	bacteria	[328-329].	It	was	found	that	the	outer	

membrane	core	saccharide	sugars	encumbered	the	antimicrobial	polymyxin	

peptides	 and	 prevented	 them	 from	 passing	 through	 the	 phosphate	 group	

domain	and	 into	the	hydrophobic	bilayer	 interior	or	 the	“membrane	core”.	

The	outer	membrane	was	not	significantly	disrupted	and	 it	was	difficult	 to	
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extrapolate	to	obvious	models	for	AMP-induced	outer	membrane	breakdown	

processes.	 In	 stark	 contrast,	 it	 was	 found	 that	 the	 polymyxin	 molecules	

clearly	 affected	 the	 integrity	 of	 the	 inner	 membrane	 by	 reducing	 its	

transmembrane	width.	The	polymyxin	hydrophobic	moieties	entered	into	the	

bacterial	membrane	core	as	 the	polymyxin	molecules	adhered	to	the	 inner	

bacterial	 membrane	 mimetic	 surface	 and	 there	 was	 obvious	 correlation	

between	 the	 position	 of	 the	 attached	 polymyxin	 peptides	 and	 areas	 of	

membrane	 thinning.	 The	 localized	 reduction	 in	 membrane	 width	 and	 the	

associated	increase	in	membrane	permeability	would	inevitably	affect	bilayer	

stability	on	 longer	 timescales	[292,330-331].	 It	 is	quite	 interesting	 to	note	

that	Dupuy	et	al.	showed,	through	the	use	of	molecular	dynamics	simulations	

and	X-ray	and	neutron	scattering	techniques,	that	colistin	also	contributes	to	

the	 destabilization	 of	 the	 inner	 membrane	 of	 Gram-negative	 bacteria	 by	

affecting	membrane	 parameters	 such	 as	 acyl	 tail	 order	 values	 and	 bilayer	

bending	moduli	[332].	These	results	are	corroborated	by	molecular	dynamics	

simulation	data	in	chapter	4.	We	will	see	that	polymyxin	molecules	tend	to	

thin	 biological	 membranes	 in	 coarse-grained	 molecular	 dynamics	

simulations	when	they	are	simulated	on	long	multimicrosecond	timescales.		

	

The	 Khalid	 group	 developed	 coarse-grained	 Martini	 LPS	 lipid	 models	 to	

overcome	the	limitations	of	computationally	demanding	atomistic	resolution	

molecular	dynamics	 simulation	 forcefields	and	more	effectively	bridge	 the	

gap	between	experimental	and	simulation	spatiotemporal	scales	[151,301].	

The	LPS	lipids	were	 initially	simulated	with	atomistic	resolution	molecular	

dynamics	simulation	forcefields	and	the	resulting	data	were	used	to	calibrate	

corresponding	coarse-grained	Martini	forcefield	parameter	sets.	The	coarse-

grained	 models	 were	 able	 to	 mimic	 the	 atomistic	 reference	 molecular	

dynamics	 simulation	 data	 remarkably	 accurately.	 The	 coarse-grained	 LPS	

area	per	lipid	values	were	within	1-2%	of	the	reference	atomistic	simulation	

values	 and	 the	 membrane	 thickness	 and	 acyl	 tail	 order	 parameters	 were	

within	 10%	 and	 0.2	 of	 the	 target	 atomistic	 simulation	 data.	 The	 coarse-

grained	model	was	used	to	study	the	interactions	of	C60	nanoparticles	with	

Gram-negative	bacterial	outer	membrane	mimetics	and	it	was	found	that	the	
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LPS	lipid	core	saccharide	domain	was	an	effective	barrier	to	the	hydrophobic	

C60	nanoparticles.	The	C60	nanoparticles	were	unable	to	pass	through	the	LPS	

core	saccharide	domain;	however,	the	nanoparticles	were	able	to	enter	into	

the	 bacterial	 membrane	 hydrophobic	 core	 through	 “bilayer	 defects”	 or	 in	

other	words,	membrane	 domains	 that	were	 depleted	 of	 LPS	 lipid.	 The	 C60	

nanoparticles	 could	 pass	 through	 areas	 of	 the	 bilayer	 surface	 that	 were	

depleted	 of	 LPS	 lipids	 and	 contained	 for	 example,	 small	 quantities	 of	 PE	

phospholipid.	After	the	C60	nanoparticles	had	entered	into	the	hydrophobic	

membrane	 core	 domain	 they	 acted	 as	 line-active	 linactants	 [333-334]and	

moved	toward	the	interfacial	membrane	domains.		

	

The	coarse-grained	models	were	subsequently	integrated	into	the	CHARMM-

GUI	Martini	Maker	module	and	have	been	used	to	generate	LPS	lipid	micelles	

(Figure	 6A-C),	 LPS	 lipid	 nanodiscs,	 LPS	 lipid	membranes	 (Figure	 4D),	 LPS	

OMVs	(Figure	4E)	etc.	[151]	The	online	Martini	Maker	module	is	used	in	the	

penultimate	chapter	of	this	thesis	to	generate	both	smooth	and	rough	OMV	

simulation	systems.	The	CHARMM-GUI	Martini	Maker	module	is	also	used	in	

chapter	4	to	create	various	Gram-negative	bacterial	membrane	mimetics	that	

contain	 different	 concentrations	 of	 smooth	 LPS	 lipids	 in	 the	 extracellular	

leaflet.						
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Figure	 6.	 Implementation	 of	 the	 CHARMM-GUI	Martini	Maker	module.	 (A)	
The	 initial	 random	 placement	 of	 20	 LPS	 lipids	 and	 the	 subsequent	 self-
assembly	of	 the	 lipids	 into	a	unilamellar	or	bilamellar	bacterial	membrane	
fragment.	(B)	The	initial	construction	of	an	LPS	micelle	and	the	subsequent	
transformation	of	the	micelle	to	become	a	unilamellar	bacterial	membrane.	
(C)	The	initial	construction	of	an	LPS	micelle	with	embedded	OmpF	protein	
and	 the	 subsequent	 transformation	 of	 the	 micelle	 into	 a	 multicomponent	
unilamellar	bacterial	membrane.	(D)	The	final	frame	snapshots	of	molecular	
dynamics	simulations	of	asymmetric	bacterial	membrane	models	that	were	
generated	with	the	CHARMM-GUI	Martini	Maker.	The	bilayers	contained	only	
lipids	(OM)	or	lipids	and	the	OmpA	integral	membrane	protein	(OM-OmpA).	
(E)	Snapshots	of	OMV	simulation	systems	that	contained	only	lipids	or	lipids	
and	an	embedded	outer	membrane	protein.	The	systems	were	made	with	the	
CHARMM-GUI	Martini	Maker	module.	The	proteins	are	red,	the	acyl	tails	are	
yellow,	the	core	sugars	are	violet,	the	choline	and	phosphate	groups	are	blue	
and	 purple	 and	 the	 unsaturated	 bonds	 are	 cyan.	 Image	 source:	
10.1002/jcc.24895	(DOI)	[151].												
	

Let	 us	 now	 move	 away	 from	 Gram-negative	 outer	 membrane	 molecular	

dynamics	 simulations	 and	 consider	 how	 molecular	 dynamics	 simulations	

have	been	used	to	understand	the	formation	of	lipid	raft-like	structures.	We	

can	 first	 consider	pioneering	 coarse-grained	 simulations	 that	 explored	 the	

spontaneous	formation	of	Lo	and	Ld	domains	in	ternary	membrane	mixtures	

of	 cholesterol,	 saturated	 phospholipids	 and	 unsaturated	 phospholipids.	

Risselada	and	Marrink	conducted	molecular	dynamics	simulations	 in	2008	

with	 the	 Martini	 coarse-grained	 forcefield	 to	 analyze	 the	 molecular	 level	

interactions	 that	 can	 induce	 the	 spontaneous	 formation	 of	 Lo	 and	 Ld	
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nanodomains	within	multicomponent	plasma	membrane	mimetics	[335].	It	

was	 found	 that	 uniformly	 distributed	 tripartite	 membranes	 progressively	

sequestered	into	two	distinct	nanodomains	through	stepwise	self-associating	

lipid-lipid	 interactions	 (Figure	 7A).	 The	 cholesterol	 molecules	 would	

predominantly	co-couple	with	saturated	phospholipids	to	progressively	form	

raft-like	assemblies	and	the	unsaturated	lipids	would	in	turn,	progressively	

form	 liquid-disordered	 (Ld)	 nanodomains	 (Figure	 7B-C).	 It	 seemed	 that	

cholesterol’s	preference	 for	saturated	 lipid	chains	drove	phase	segregation	

and	 the	 formation	 of	 raft-like	 assemblies	 that	 within	 these	 molecular	

simulations,	 were	 cut	 off	 by	 relatively	 diffuse	 borders.	 It	 was	 previously	

assumed	that	the	Lo	and	Ld	interface	was	rather	sharply	defined	[336-338]	

but	the	coarse-grained	Martini	forcefield	molecular	simulations	revealed	that	

the	boundaries	were	instead	broad	and	dynamic.	The	work	is	corroborated	

by	 atomistic	 forcefield	 simulations	 that	 have	 assessed	 the	 biophysical	

properties	 of	 liquid-ordered	 nanodomains	 within	 multicomponent	

membranes	 [339-340].	The	 simulations	were	starting	 to	demonstrate	how	

molecular	level	interactions	can	induce	phase	segregation	and	the	formation	

of	 lipid	 raft-like	 structures.	 More	 sophisticated	 phase	 diagrams	 were	

subsequently	generated	for	binary	lipid/cholesterol	simulation	systems	as	a	

function	 of	 simulation	 temperature	 using	 the	 coarse-grained	 Martini	

forcefield	[341-342].	Carpenter	et	al.	produced	a	ternary	lipid	phase	diagram	

[343-344]	 that	 mimicked	 experimental	 phase	 diagrams	 [345]	 remarkably	

accurately,	 showing	 how	molecular	 dynamics	 simulations	 can	 be	 used	 to	

understand	how	membrane	phase	behaviour	is	modulated.	The	formation	of	

fluctuating	 lipid	 heterogeneities	 is	 being	 probed	 on	 unprecedented	

spatiotemporal	scales	and	the	resulting	simulation	data	are	being	combined	

with	 results	 from	 experimental	 analysis	 techniques	 to	 produce	 a	 more	

comprehensive	 understanding	 of	 lipid	 raft	 structure	 and	 formation	 [346-

348].	Indeed,	the	number	of	simulations	that	have	explored	the	spontaneous	

production	of	liquid-ordered	nanodomains	is	now	quite	significant	and	it	has	

been	found	through	molecular	dynamics	simulations,	that	phase	segregation	

is	affected	by	lipid	saturation	[349-353],	hydrophobic	mismatch	[354],	line-

active	 linactants	 [355],	 lipid	 chain	 length	 [356],	 transmembrane	 peptides	



 57 

[357-358],	 cholesterol	 flip-flop	 processes	 [359-360]	 lipid	 heterogeneity	

[361]	and	more.							

	

Molecular	simulations	have	also	been	used	to	understand	how	glycolipid	co-

coupling	 can	 induce	 the	 formation	 of	 raft-like	 nanodomains	 whose	

biophysical	 properties	 differ	 from	 the	 encompassing	 membrane	

environment.	 The	 Im	 group	 conducted	 all-atom	 molecular	 dynamics	

simulations	to	understand	how	different	concentrations	of	(GM1)	ganglioside	

molecules	 can	 affect	 the	 biophysical	 parameters	 of	 two-component	 lipid	

membrane	 systems	 (Figure	 7D)	 [362].	 The	 membranes	 contained	 three	

different	 concentrations	 GM1	 lipids	 (10%,	 20%,	 and	 30%)	 and	 higher	

concentrations	of	POPC	phospholipids	(90%,	80%,	and	70%).	The	all-atom	

molecular	 dynamics	 simulation	 data	 demonstrated	 that	 higher	 GM1	 lipid	

concentrations	 can	 induce	 tighter	 lipid	 packing	 and	 at	 the	 same	 time,	

decrease	 energy	 barriers	 that	 would	 otherwise	 impede	 localized	 positive	

curvature	generation.	The	ordered	clusters	segregated	 from	the	unordered	

membrane	 domain	 and	 formed	 a	 large	 percolated	 cluster	 when	 the	 GM1	

concentration	was	high	(i.e.	30%)	and	the	simulation	temperatures	did	not	

exceed	a	temperature	of	330	K.	Sansom	et	al.	have	demonstrated	that	positive	

curvature	generation	can	be	 further	enhanced	when	ganglioside	molecules	

are	 simulated	 in	multicomponent	membranes	 that	 have	multiple	 different	

types	 of	 lipid	 molecules	 (cholesterol,	 PIP2,	 GM3	 lipids	 etc.)	 [363].	 When	

multicomponent	 membranes	 contain	 a	 diverse	 combination	 of	 both	

intrinsically	 positively	 and	 intrinsically	 negatively	 curved	 lipids,	 the	

intrinsically	positively	curved	lipids	can	move	to	positively	curved	membrane	

domains	and	the	intrinsically	negatively	curved	lipids	can	move	to	negatively	

curved	membrane	domains	and	this	process	can	lower	local	energies	barriers	

that	 would	 otherwise	 impede	 spontaneous	 curvature	 generation	 and	

membrane	 reshaping	 processes	 [364].	 Taken	 together,	 the	 molecular	

dynamics	simulations	are	beginning	to	clarify	why	the	outer	rims	of	caveolae	

are	 highly	 concentrated	 in	ganglioside	 lipids,	whereas	 the	 central	 sections	

contain	 unusually	 high	 concentrations	 of	 cholesterol	 [365-367].	 The	 self-

association	of	ganglioside	molecules	tends	to	increase	local	preferences	for	
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positive	curvature	generation	and	this	phenomenon	by	itself	causes	plasma	

membranes	 to	 expand	 into	 the	 intracellular	 cytosol	 [368].	 But	 the	

spontaneous	 production	 of	 a	 negatively	 curved	 inner	 plasma	 membrane	

domain	 is	 energetically	 unfavourable	 and	 consequently,	 the	 intrinsically	

negatively	 curved	 cholesterol	 molecules	 move	 into	 the	 expanding	 inner	

plasma	 membrane	 leaflet.	 These	 molecular	 level	 insights	 might	 help	 to	

explain	why	pathogens	and	pathogenic	products	have	been	 found	 to	enter	

into	the	host	cell	cytoplasmic	space	as	they	bind	ganglioside	lipid	molecules	

and	through	this	interaction,	induce	the	aggregation	of	ganglioside	molecules	

and	the	production	of	highly	curved	caveolae	[368].	But	this	will	be	discussed	

in	more	 depth	 in	 section	 1.4.4	when	 glycolipids	 and	 ganglioside	molecule	

properties	are	explained	more	thoroughly.					

 
	

	

 
	

	

	

	

 
	

	

	

	

	

	

	

	
Figure	7.	Understanding	the	properties	of	lipid	rafts	through	the	application	
of	molecular	dynamics	simulations.	(A)	Formation	of	separate	liquid-
ordered	(green)	and	liquid-disordered	(red)	nanodomains	that	are	enriched	
in	saturated	lipids	(green)	and	cholesterol	(black),	or	polyunsaturated	lipids	
(red).	(B)	Top	view	snapshots	showing	how	the	cholesterol	molecules	were	
distributed	within	the	multicomponent	membrane	simulation	system	and	
the	(C)	radial	distribution	function	for	the	cholesterol-cholesterol	
intermolecular	separation	distances.	(D)	Snapshots	of	GM1	ganglioside	and	
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POPC	lipids	that	were	simulated	in	two-component	membranes.	The	
membrane	became	more	rigid	and	raft-like	as	the	concentration	of	the	
ganglioside	molecules	was	increased	from	10%	through	to	30%.	The	Image	
sources	are:	10.1073/pnas.0807527105	(DOI)	[335]	and	
10.1016/j.bpj.2016.09.021	(DOI)	[362].	
	

Perhaps	 it	 is	 even	 more	 impressive	 that	 molecular	 dynamics	 simulation	

forcefields	 were	 used	 to	 understand	 how	 lipids	 interact	 with	 integral	

membrane	proteins	and	how	these	protein-lipid	interactions	can	change	the	

properties	 of	 the	 local	 membrane	 environment	 [369-371].	 Understanding	

such	elementary	interactions	is	necessary	for	understanding	how	molecular	

self-association	processes	might	take	an	otherwise	homogeneous	membrane	

toward	a	state	of	significant	heterogeneity.	The	simulations	were	performed	

using	either	high-level	atomistic	forcefields,	lower	resolution	coarse-grained	

forcefields,	or	even	multiple	different	forcefields	used	one	after	another	[372-

373].	The	protein-lipid	simulations	provided	insights	into	previously	poorly	

understood	interactions	e.g.	reversible	lipid-protein	binding	events	that	can	

occur	 on	 timescales	 of	 10-100s	 of	 microseconds	 [114].	 Arnarez	 et	 al.	

identified	 six	 protein	 binding	 sites	 for	 cardiolipin	 when	 it	 interacts	 with	

respiratory	 chain	 complex	 cytochrome	 bcl	 through	 the	 application	 of	

molecular	 dynamics	 simulation	methods	 [374].	 Other	 notable	 publications	

that	 have	 assessed	 protein-lipid	 interactions	 within	 biological	 membrane	

mimetics	 include	 simulation	 studies	 by	 Sansom	 et	 al.;	 for	 instance,	

simulations	that	identified	the	binding	sites	of	PIP2	molecules	on	the	inwardly	

rectifying	potassium	(Kir)	channels	[375-376]	and	the	binding	sites	of	PIP3	

molecules	on	the	pleckstrin	homology	domain	[377].		

	

Molecular	dynamics	simulation	methods	have	also	been	used	to	understand	

how	 protein	 oligomerization	 processes	 can	 occur	 in	 model	 membranes	

[59,114].	 Experimental	 analysis	 data	 was	 combined	 with	 computer	

simulation	 techniques	 to	 determine	 the	 organization	 of	 syntaxin	 clusters	

within	plasma	membrane	mimetics	[378]	and	show	at	the	same	time,	how	the	

oligomerization	interactions	are	mediated	by	interactions	between	the	PIP2	

lipids	and	the	syntaxin	protein	surface.	Periole	et	al.	have	similarly	performed	

coarse-grained	 molecular	 dynamics	 simulations	 to	 show	 that	 G	 protein-
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coupled	receptors	(GPCRs)	[379]	can	cluster	 in	model	membranes	and	the	

group	also	showed	that	the	localized	adaptation	of	the	membrane	bilayer	was	

most	 pronounced	 near	 transmembrane	 helices	 2,	 4,	 and	 7.	 Comparable	

simulation	studies	were	conducted	to	assess	the	properties	and	interactions	

of	bacterial	membrane	proteins,	i.e.	the	family	of	OMPs.	In	one	instance,	it	was	

shown	that	OmpF	proteins	can	self-associate	and	form	oligomers	that	contain	

a	few	dozen	membrane	protein	monomers	[115].	In	another	instance	it	was	

shown	that	the	combination	of	hydrophobic	mismatch	and	curvature-based	

sorting	 might	 drive	 protein	 assembly	 in	 phospholipid	 vesicles	 [318].	

Domanski	 et	 al.	 found	 that	 transmembrane	 WALP	 helical	 peptides	 can	

amplify	 non-ideal	 lipid	 mixing	 and	 Lo/Ld	 domain	 segregation	 processes	

[351].	 The	 group	 simulated	 multicomponent	 plasma	 membrane	 mimetics	

that	contained	the	following	biomolecules:	WALP	peptides,	saturated	lipids,	

unsaturated	 lipids	 and	 cholesterol.	 The	 multicomponent	 membrane	

separated	 into	 distinct	 liquid-ordered	 and	 liquid-disordered	 nanodomains	

and	 interestingly,	 there	 was	 a	 high	 concentration	 of	 the	 transmembrane	

WALP	 helices	 within	 the	 liquid-disordered	 nanodomains.	 Ackerman	 and	

Feigenson	 similarly	 observed	 the	 growth	 of	 nanodomains	 around	 WALP	

transmembrane	peptides	[357]	and	further,	that	there	is	cross-correlation	of	

the	Lo/Ld	nanodomains	about	the	membrane	midplane.		

	

Newer	 generation	 molecular	 dynamics	 simulation	 forcefields	 are	

increasingly	being	used	to	investigate	unprecedented	spatiotemporal	scales	

and	 obtain	 biomolecular	 level	 insights	 to	 explain	 previously	 poorly	

understood	 biological	 membrane	 phenomena.	 We	 have	 seen	 here	 how	

molecular	 dynamics	 simulation	 forcefields	 have	 been	 used	 to	 better	

understood	 fluctuating	 heterogeneities	 within	 biological	 membranes,	 the	

structure	 and	 characteristics	 of	 the	Gram-negative	 bacterial	 cell	 envelope,	

specific	 protein-lipid	 interactions	 and	 the	 self-association	 of	 lipids	 and	

proteins.	The	same	molecular	dynamics	simulation	forcefields	will	be	applied	

here	 throughout	 this	 work	 to	 understand	 previously	 unexplored	

biomolecular	interactions	between	proteins,	lipids,	and	lipid	membranes	and	
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thereby	 explain	 some	 long-standing	 uncertainties	 such	 as	 the	 different	

uptake	rates	of	smooth	and	rough	OMVs	at	host	cell	surfaces.		

	

1.3	Main	Aims	of	the	Introduction	
	

The	 primary	 focus	 of	 this	 thesis	 is	 OMVs	 and	more	 precisely,	 how	 OMVs	

interact	 with	 eukaryotic	 plasma	 membrane	 models.	 Molecular	 dynamics	

simulation	methods	are	used	in	this	thesis	to	investigate	the	interactions	of	

different	 types	of	OMVs	with	mammalian	plasma	membrane	mimetics.	The	

molecular	 dynamics	 simulations	 are	 conducted	 in	 order	 to	 determine	 the	

biophysical	parameters	of	OMVs	at	host	cell	surfaces	and	to	understand	why	

some	 OMVs	 (i.e.	 smooth	 OMVs)	 pass	 through	 host	 cell	 membranes	 more	

effectively	 than	 others	 (i.e.	 rough	 OMVs)	 [52].	 The	 OMVs	 contain	 three	

different	 types	 of	 lipid	 and	 the	 host	 cell	 mammalian	 membranes	 contain	

seven	different	types	of	lipid	that	are	distributed	asymmetrically	about	the	

membrane	midplane.	 It	 is	 important	 that	readers	understand	the	chemical	

properties	of	each	constitute	membrane	lipid	and	for	this	reason,	each	lipid	

will	be	mentioned	in	the	forthcoming	discussions.	The	chemical	structure	of	

each	lipid	type	will	be	provided	with	an	exploration	of	how	the	lipids	have	

been	simulated	with	different	molecular	dynamics	simulation	forcefields.	For	

example,	the	structure	of	ganglioside	molecules	will	be	described	in	section	

1.4.4	 and	 there	 will	 also	 be	 a	 subsequent	 discussion	 of	 how	 ganglioside	

molecules	 have	 been	 simulated	 with	 molecular	 dynamics	 simulation	

forcefields	 [361-362].	 Additional	 biomolecules	 (e.g.	 hopanoids)	 will	 be	

mentioned	 to	provide	a	more	 thorough	overview	wherever	 it	 seems	 to	be	

appropriate	and	beneficial	for	the	readers	of	this	thesis.			

	

Chapters	 3	 and	 4	 focus	 on	 the	 interactions	 of	 Gram-negative	 bacterial	

membranes.	 The	molecular	 dynamics	 simulation	 forcefields	 are	 applied	 to	

understand	 how	 lipid-lipid	 interactions	 can	 affect	 membrane	 mechanical	

strength	parameters	and	also	how	bacterial	membranes	can	interact	with	one	

of	the	simplest	and	most	effective	AMPs:	polymyxin	B1	(PMB1)	[328,130].	It	

is	therefore	appropriate	to	discuss	the	structure	of	LPS	lipids	in	section	1.4.5	
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and	also	to	discuss	how	LPS	lipid	interactions	have	been	investigated	through	

the	application	of	molecular	dynamics	simulation	forcefields.	Readers	must	

be	fully	aware	of	the	general	compositional	characteristics	of	LPS	lipids	and	

also	 which	 chemical	 moieties	 distinguish	 so-called	 “smooth”	 LPS	 lipid	

[242,315]	variants	from	shorter	forms	of	“rough”	LPS	lipids	[233,241].	Other	

than	 this,	 it	 is	 necessary	 to	 discuss	 bacterial	 infections	 and	multiple-drug	

resistant	 bacteria	 to	 explain	 why	 polymyxins	 are	 becoming	 increasingly	

necessary	 [147-150]	 for	 treating	 nosocomial	 infections	 and	 why	 they	 are	

being	 studied	 more	 and	 more	 with	 computational	 [180,329]	 and	

experimental	analysis	methods	[144-145].	The	precise	chemical	structure	of	

the	 PMB1	peptide	will	 be	 provided	 in	 section	1.8	 and	 there	will	 also	 be	 a	

detailed	 description	 of	 AMPs	 [187],	 the	 Gram	 staining	 process	 [95],	 the	

asymmetric	structure	of	the	Gram-negative	cell	envelope,	and	the	asymmetric	

structure	of	both	smooth	and	rough	OMVs	[20].					

	

1.4	Lipids	(Structure	and	Simulations)	
	

1.4.1	Phospholipids	
	

Phospholipids	have	a	relatively	simple	structure;	they	contain	hydrophobic	

acyl	chains	that	are	covalently	bonded	to	a	hydrophilic	domain	of	a	glycerol	

or	 sphingoid	 base	 and	 variable	 terminal	 chemical	 moieties	 [380-381].	

Phosphatidylcholine	(PC)	is	an	example	of	a	phospholipid	that	comprises	the	

majority	of	plant	[382-383]	and	animal	membranes	and	the	lipid	contains	two	

hydrocarbon	acyl	chains	that	are	covalently	bonded	via	an	ester	 linkage	to	

glycerol,	 a	 negatively	 charged	 phosphate	 group,	 and	 a	 terminal	 positively	

charged	choline	section	(Figure	8A).	The	composition	of	the	molecule	makes	

it	 zwitterionic	 at	 physiological	 pH	 and	 it	 also	 confers	 an	 overall	 neutral	

electrostatic	 charge.	 The	 intracellular	 leaflet	 of	 mammalian	 plasma	

membranes	 additionally	 contains	 a	 moderate	 amount	 of	 the	

phosphatidylserine	(PS)	lipid	[384-386],	which	is	structurally	similar	to	PC	

lipid	but	rather	than	there	being	a	terminal	positively	charged	choline	section,	

there	is	a	terminal	serine	moiety	instead	(Figure	8B)	[387].		
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Bacterial	 membranes	 are	 particularly	 abundant	 in	 the	

phosphatidylethanolamine	(PE)	lipid	molecule	that	contains	two	acyl	chains	

covalently	bonded	through	an	ester	linkage	to	central	glycerol	and	phosphate	

groups	and	a	terminal	ethanolamine	moiety	(Figure	8C)	[388-389].	The	lipid	

has	zwitterionic	chemical	characteristics	and	neutral	electrostatic	charge	at	

physiological	pH	but	the	presence	of	the	terminal	ethanolamine	group	affects	

the	 physical	 properties	 of	 the	 molecule	 such	 that	 PC	 and	 PE	 lipids	 have	

different	 lateral	 diffusion	 constants,	 intramolecular	 motion	 parameters,	

bilayer	packing	properties,	preferred	bilayer	orientation	angles	and	different	

elasticity	moduli	[390].					

	

Phospholipids	have	an	overall	positive	or	negative	electrostatic	charge	when	

the	phospholipid	headgroups	are	terminated	with	neutrally	charged	chemical	

compounds.	 The	 phosphatidylglycerol	 (PG)	 lipid	 is	 a	minor	 component	 of	

plant	[391-392],	animal	[393]	and	bacterial	membranes	[394]	and	is	similar	

to	PE	 in	 terms	of	 structure	and	physical	parameters	but	 the	presence	of	 a	

terminal	glycerol	group	gives	the	lipid	an	overall	negative	electrostatic	charge	

(Figure	 8D).	 The	 dimeric	 cardiolipin	 (CL)	 molecule	 contains	 two	 PG	

molecules	connected	through	a	central	glycerol	backbone	and	two-fold	net	

negative	charge	 (at	physiological	pH).	Cardiolipin	molecules	[395]	have	an	

unusual	 headgroup-to-acyl-chain	 cross-sectional	 area	 ratio	 and	 unusual	

biophysical	 interactions	 within	 biological	 membrane	 mimetics	 such	 as	

preferential	 interactions	 with	 Gram-negative	 integral	 membrane	 proteins	

[374,396]	 and	 the	 capacity	 to	 suppress	 spontaneous	membrane	 curvature	

generation	[286].		

	

It	 is	 important	 to	 state	 here	 that	 PC,	 PS,	 PE,	 and	PG	phospholipids	 can	 be	

bonded	 to	 different	 combinations	 of	 acyl	 chain	 moieties	 [397].	 The	

phospholipid	headgroups	can	be	bonded	to	acyl	chains	that	differ	in	terms	of	

saturation/unsaturation	and	the	number	of	constituent	carbon	atoms.	POPC,	

POPS,	POPE	and	POPG	phospholipids	are	usually	used	in	molecular	dynamics	

simulations	 to	 better	 understand	 biological	 membrane	 mimetics	
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[59,114,370,].	 The	 molecules	 contain	 one	 saturated	 acyl	 chain	 and	 one	

monounsaturated	acyl	chain,	 i.e.	 the	16:0/18:1	acyl	chain	bonding	scheme.	

The	POPC,	POPS,	POPE,	and	POPG	molecules	are	used	throughout	this	thesis	

to	mimic	realistic	eukaryotic	and	bacterial	membranes,	but	it	is	important	to	

appreciate	that	even	minor	modifications	of	the	acyl	chain	structure	can	affect	

the	biophysical	parameters	of	lipid	membrane	bilayers	[59].	It	was	recently	

even	proposed	that	E.	coli	bacteria	can	survive	the	acidic	conditions	of	 the	

human	 stomach	 and	 subsequently	 multiple	 within	 the	 less	 acidic	 human	

colon	when	fabA	and	fabB	genes	instigate	a	cascade	of	reactions	that	merely	

alters	 the	 degree	 of	 Gram-negative	 membrane	 phospholipid	 acyl	 chain	

saturation	[398].		

	

Phospholipids	were	some	of	the	first	lipids	to	be	simulated	with	molecular	

dynamics	simulation	forcefields	and	they	have	since	become	a	staple	of	both	

atomistic	and	coarse-grained	molecular	dynamics	simulations	[174,182].	The	

phospholipids	are	combined	to	create	simple	biological	membrane	mimetics	

and	these	membrane	models	are	simulated	with	AMPs	[187],	nanomaterials	

[399-401],	 integral	 and	 peripheral	 membrane	 proteins	 [369-371],	

dendrimers	 [402-403],	 carbohydrates	 [404-405],	 alcohols	 [406],	 capsaicin	

[407],	and	more.	The	simulated	phospholipid	bilayers	are	used	as	simplistic	

substitutes	 for	 realistic	biological	membranes	and	 the	molecular	dynamics	

simulation	forcefields	are	applied	to	understand	how	these	multicomponent	

phospholipid	 membranes	 interact	 with	 different	 organic	 and	 nonorganic	

molecules	on	a	range	of	distinct	spatiotemporal	scales.	It	is	assumed	that	the	

simulations	provide	realistic	and	accurate	data	since	the	molecular	dynamics	

simulation	forcefields	have	been	successively	reparametrized	over	the	course	

of	 several	decades	 to	accurately	 reproduce	 the	experimentally	determined	

properties	of	lipid	membranes	and	at	the	same	time,	they	have	been	refined	

to	 mimic	 higher	 level	 reference	 simulation	 data,	 i.e.	 ab	 initio	 quantum	

chemical	 calculations	 [163,167].	 The	 additive	 all-atom	 CHARMM	 lipid	

forcefield	[408]	was	for	example,	modified	to	more	accurately	reproduce	the	

properties	of	different	phospholipid	bilayers	including	POPC	and	POPE	lipid	

membranes.	 The	 area	 per	 lipid	 values	 of	 the	 simulated	 phospholipid	
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membranes	matched	reference	PC	and	PE	lipid	surface	area	data	on	average	

to	within	2%	[409-413]	and	the	density	profiles	matched	reference	data	from	

neutron	 and	 X-ray	 diffraction	 experiments	 [414-417].	 The	 acyl	 tail	 order	

parameters	also	provided	proper	splitting	of	the	SCD	for	the	aliphatic	carbon	

adjacent	to	the	carbonyl	for	POPE	and	POPC	bilayer	membranes	[409,418].		

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	8.		The	structure	of	four	phospholipids.	(A)	The	structure	of	a	
phosphatidylcholine	lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	tails	
bonded	via	an	ester	linkage	to	glycerol,	a	negatively	charged	phosphate	
group	and	a	terminal	positively	charged	choline	section.	(B)	The	structure	of	
phosphatidylserine	lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	chains	
bonded	via	an	ester	linkage	to	glycerol,	a	negatively	charged	phosphate	
group	and	a	terminal	serine	moiety.	(C)	The	structure	of	a	
phosphatidylethanolamine	lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	
chains	covalently	bonded	through	an	ester	link	to	central	glycerol	and	
phosphate	groups,	and	a	terminal	ethanolamine	section.	(D)	The	structure	of	
a	phosphatidylglycerol	lipid	(16:0/18:1(9Z))	that	consists	of	two	acyl	tails	
bonded	via	an	ester	linkage	to	glycerol,	a	negatively	charged	phosphate	
group	and	a	terminal	glycerol	group.	Image	source:	https://avantilipids.com							 
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1.4.2	Sterols	
	

Sterols	are	essential	for	the	basic	functioning	of	eukaryotic	and	prokaryotic	

cells	 and	 the	 eukaryotic	 and	 prokaryotic	 cellular	 membranes	 [14,419].	

Cholesterol	molecules	are	an	important	modulator	of	eukaryotic	mammalian	

membrane	 fluidity	 [420]	 and	 ergosterol	 and	 hopanoid	 molecules	 tightly	

regulate	the	mechanical	properties	of	fungal	and	bacterial	membranes	[421-

422].	Sterol	molecules	contain	a	single	short	hydrocarbon	chain	and	variable	

functional	groups	that	are	both	bonded	to	a	relatively	rigid	central	body	of	

pentagonal	and	hexagonal	hydrocarbon	rings	[423-425].	The	combination	of	

multiple	 adjoining	 pentagonal	 and	 hexagonal	 hydrocarbon	 rings	 confers	

unusual	 biophysical	 parameters	 and	 biophysical	 properties	 (Figure	 9A)	

[420].	It	is	now	well-known	that	cholesterol	lipids	can	order	multicomponent	

membrane	domains	and	also	that	cholesterol	lipids	regulate	the	formation	of	

fluctuating	 lipid	 heterogeneities	 and	 lipid	 raft	 structures	 [73,83,88].	

Cholesterol	molecules	induce	the	formation	of	lipid	rafts	through	co-coupling	

intermolecular	interactions	with	sphingolipids,	saturated	lipids	and	integral	

membrane	proteins.	The	cholesterol	molecules	have	an	unusual	shape	that	

confers	the	molecule	space-filling	properties	and	the	propensity	to	co-couple	

with	 intrinsically	 positively	 curved	 glycosphingolipids	 [426-427].	 It	 seems	

important	to	define	intrinsic	curvature	here	since	it	is	not	only	important	for	

understanding	the	properties	of	cholesterol	but	also	for	understanding	how	

OMVs	 induce	 membrane	 curvature	 generation	 in	 chapter	 5.	 The	 intrinsic	

positive	 curvature	magnitude	of	 a	molecule	defines	 its	propensity	 forming	

positively	 curved	 membrane	 domains	 [428-429]	 and	 is	 calculated	 as	 the	

lipid-headgroup-to-acyl-chain	moiety	cross-sectional	area	ratio	(Figure	9B).	

Cholesterol	 has	 a	 lipid-headgroup-to-acyl-chain	 cross-sectional	 area	 ratio	

that	 is	 smaller	 than	 unity	 (one)	 and	 consequently	 it	 usually	 energetically	

preferable	 for	 cholesterol	 molecules	 to	 move	 into	 negatively	 curved	

multicomponent	membrane	domains.	The	morphology	of	the	sterol	not	only	

promotes	 its	movement	 to	 negatively	 curved	membrane	 domains	 but	 also	

promotes	 its	 interactions	 with	 lipids	 that	 have	 complementary	 large	

headgroup-to-hydrophobic-moiety	area	ratios	[364,430].														
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Cholesterol	 has	 been	 repeatedly	 simulated	 within	 biological	 membrane	

mimetics	 using	 a	 wide	 range	 of	 different	 atomistic	 and	 coarse-grained	

molecular	dynamics	simulation	forcefields	[431-435].	It	has	been	found	for	

example,	that	the	interactions	between	cholesterol	and	saturated	lipids	can	

promote	 the	 formation	 of	 Lo	membrane	 domains	within	 tripartite	 plasma	

membrane	mimetics	[335].	It	was	also	found	that	cholesterol	molecules	can	

flip	about	the	membrane	midplane	on	nanosecond	timescales	that	are	readily	

probed	with	 low	resolution	 coarse-grained	molecular	dynamics	simulation	

forcefields	[359,436]	and	even	with	the	significantly	more	computationally	

demanding	 suite	 of	 high-level	 atomistic	 resolution	 simulation	 forcefields	

(Figure	 9C)	 [437-438,360].	 This	 not	 only	 corroborates	 results	 from	

experimental	studies	and	validates	molecular	dynamics	simulation	studies	of	

biological	 membranes,	 but	 also	 provides	 much	 needed	 molecular	 level	

insights	that	are	otherwise	inaccessible	given	the	spatiotemporal	constraints	

of	conventional	experimental	analytical	techniques.	The	molecular	dynamics	

simulations	 have	 revealed	 that	 the	 compositional	 characteristics	 of	

multicomponent	membranes	 affects	 the	 frequency	 of	 the	 cholesterol	 lipid	

flip-flop	 events	 and	 also	 the	 explicit	 chemical	 energy	 profiles	 that	 either	

impede	 or	 promote	 the	 movement	 of	 cholesterol	 molecules	 from	 one	

membrane	 leaflet	 to	 the	 other	 [360,437].	 The	 coarse-grained	 molecular	

dynamics	 simulations	 have	 also	 demonstrated	 that	 cholesterol	 molecules	

have	 important	 roles	 in	 regulating	 the	 registration	 of	 Lo	 and	 Ld	 domains	

about	 the	 membrane	 midplane	 [359].	 When	 cholesterol	 lipids	 freely	 flip	

about	the	membrane	midplane	they	can	promote	the	registration	of	liquid-

ordered	 (Lo)	 and	 liquid-disordered	 (Ld)	 membrane	 domains	 about	 the	

membrane	midplane.		
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Figure	9.	The	properties	and	molecular	dynamics	simulations	of	cholesterol.	
(A)	The	chemical	composition	of	cholesterol	molecules	and	a	simplified	
schematic	illustration	showing	how	the	polar-headgroup-to-hydrophobic-
body	cross	sectional	area	ratio	gives	cholesterol	an	effective	conical	
structure.	(B)	Schematic	illustrations	showing	how	lipid	shape,	defined	by	
the	hydrophilic-headgroup-to-hydrophobic-lipid-component,	is	expected	to	
affect	preferences	for	spontaneous	curvature	generation.	(C)	Molecular	
dynamics	simulations	that	show	how	cholesterol	molecules	can	regulate	
membrane	curvature	and	the	membrane	stress	distribution	by	flipping	
between	the	apposed	membrane	leaflets	on	a	nanosecond	timescale.	(D)	
Schematic	illustration	showing	how	lipid	sorting	can	be	induced	by	
membrane	curvature,	but	also	how	induced	lipid	sorting	can	affect	local	
preferences	for	spontaneous	membrane	curvature	generation.	(E)	Plasma	
membrane	molecular	dynamics	simulations	that	demonstrated	curvature-
induced	cholesterol	molecule	sorting.	The	cholesterol	molecules	moved	to	
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negatively	curved	membrane	domains	during	production	time.	The	image	
sources	are:	Wikipedia	Commons,	10.3389/fmicb.2014.00220	(DOI)	(439)	
10.1021/ja903529f	(DOI)	[437]	
10.1146/annurev.cellbio.20.010403.095451	(DOI)	[440]	
10.1002/adts.201800034	(DOI)	[364].				 
 

The	 molecular	 dynamics	 simulations	 of	 cholesterol	 molecules	 have	 also	

helped	to	validate	curvature-induced	lipid	sorting	models	that	stated,	but	had	

not	proved	outright,	that	lipid-lipid	interactions	are	governed	by	the	shape,	

or	 intrinsic	 positive	 curvature,	 of	 lipids	 in	 multicomponent	 membranes	

(Figure	9D)	[440,364].	Cholesterol	molecules	have	an	intrinsic	spontaneous	

negative	curvature,	i.e.	a	small	headgroup-to-acyl-chain	cross-sectional	area	

ratio,	and	 it	has	been	found	that	cholesterol	molecules	preferentially	move	

into	 the	 negatively	 curved	 domains	 of	 simulated	 multicomponent	

membranes.	Cholesterol	molecules	were	found	for	example,	to	move	into	the	

negatively	 curved	 domains	 of	 mesoscopic	 (~30	 nm)	 plasma	 membrane	

mimetic	tethers	(Figure	9E)	[430,	364].	These	simulations	are	interesting	not	

only	 because	 they	 help	 to	 validate	 long-standing	 hypothesis	 relating	 to	

spontaneous	curvature	generation	in	multicomponent	membranes,	but	also	

because	they	help	us	to	understand	the	results	from	chapter	5.	Within	chapter	

5	 it	 is	 found	 that	 cholesterol	 molecules	 preferentially	 move	 into	 the	

expanding	 inner	 leaflet	 of	 plasma	 membrane	 mimetics	 as	 the	 membrane	

bulges	into	the	intracellular	space	and	creates	negatively	curved	membrane	

space.	 The	 movement	 of	 cholesterol	 molecules	 into	 negatively	 curved	

membrane	domains	has	already	been	observed	in	coarse-grained	molecular	

dynamics	 simulations	 and	 it	 is	 therefore	 easier	 to	 understand,	 through	

comparison,	why	we	see	cholesterol	molecules	move	from	one	region	of	the	

simulated	plasma	membrane	mimetics	into	another	when	they	interact	with	

the	simulated	OMVs.				

	

It	is	interesting	to	draw	comparisons	with	ergosterol	and	the	different	types	

of	hopanoid	molecules	since	the	comparisons	corroborate	inferences	made	

about	cholesterol’s	space-filling	properties	and	its	tendency	to	increase	the	

order	 and	 rigidity	 of	 localized	 multicomponent	 membrane	 domains.	 The	

ergosterol	and	cholesterol	molecules	have	similar	chemical	structures;	each	
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sterol	contains	four	rigid	pentagonal	or	hexagonal	rings	that	are	bonded	to	a	

short	hydrocarbon	acyl	chain	and	terminal	hydroxyl	moiety	[441-443].	The	

hopanoid	molecules	are	natural	pentacyclic	compounds	that	are	structurally	

comparable	 to	 the	 hopane	 triterpene	 compound	 (Figure	 10A)	 but	 they	

additionally	contain	variable	moieties	that	are	bonded	to	the	central	body	of	

the	pentagonal	and	hexagonal	hydrocarbon	rings	[444-445].		

	

Sáenz	 et	 al.	 studied	 the	 properties	 of	 the	 simplest	 naturally	 occurring	

bacterial	hopanoid,	i.e.	diplopterol,	to	understand	how	hopanoids	affect	the	

biophysical	parameters	of	multicomponent	bacterial	membranes	[446].	The	

diplopterol	 molecule	 is	 comprised	 of	 one	 pentagonal	 and	 four	 hexagonal	

hydrocarbon	rings	with	terminal	hydroxy	group;	 it	 is	 found	 in	prokaryotic	

membranes	where	it	can	co-couple	with	the	Lipid	A	anchoring	domain	of	LPS	

macromolecules	[447-449].	The	group	demonstrated	that	diplopterol	had	the	

capacity	to	order	saturated	lipid	tails	and	form	a	liquid-ordered	(Lo)	phase	

within	multicomponent	 biological	membrane	mimetics.	 Sáenz	 et	 al.	would	

later	 demonstrate	 that	 hopanoid	 molecules	 do	 not	 only	 promote	 the	

formation	of	liquid-ordered	domains	within	multicomponent	bacterial	outer	

membrane	 models	 but	 also	 that	 these	 hopanoid	 molecules	 can	 affect	

multidrug	 transport	 processes	 [450].	 The	 scientific	 research	 groups	 have	

shown	that	hopanoids	can	pair	with	glycolipids	that	have	large	headgroup-

to-acyl-chain	 cross-sectional	 area	 ratios	 and	 that	 these	 progressive	 co-

coupling	 interactions	 can	 generate	 highly	 ordered	 multicomponent	

membrane	 domains	 in	 a	 manner	 that	 is	 analogous	 to	 the	 co-coupling	 of	

sterols	 and	 glycosphingolipids	 within	 the	 mammalian	 eukaryotic	 plasma	

membrane.		

	

There	 have	 been	 few	 (if	 any)	 molecular	 dynamics	 simulations	 that	 been	

conducted	to	understand	the	properties	of	hopanoids	in	realistic	prokaryotic	

membrane	 mimetics	 that	 contain	 some	 combination	 of	 LPS	 lipids,	

phospholipids	 and	 integral	 membrane	 proteins,	 but	 molecular	 dynamics	

methods	 have	 been	 applied	 in	 the	 past	 to	 understand	 the	 properties	 of	

hopanoids	within	highly	simplified	bacterial	membrane	systems	that	contain	
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no	 more	 than	 two	 different	 types	 of	 organic	 molecules.	 Marrink	 et	 al.	

published	 an	 interesting	 publication	 in	 2015	 that	 expanded	 the	 coarse-

grained	Martini	forcefield	simulation	library	and	provided	theoreticians	with	

coarse-grained	Martini	parameter	sets	for	different	sterols	such	as	ergosterol	

[451].	 The	 group	 provided	 coarse-grained	 parameter	 sets	 for	 different	

hopanoid	molecules	 including	hopane	 [452-454],	 diploptene	 (Figure	 10B),	

and	 bacteriohopanetetrol	 (Figure	10C)	 [455]	and	 additionally	 investigated	

the	 interactions	of	 these	 coarse-grained	models	 in	 simulated	phospholipid	

membranes.	 The	 coarse-grained	 molecular	 dynamics	 simulations	

demonstrated	 that	 each	 type	of	hopanoid	molecule	preferentially	adopts	a	

unique	arrangement	along	the	membrane	normal	axis	and	therefore	that	each	

molecule	has	a	unique	partial	mass	density	profile	for	the	membrane	normal	

axis.	The	hopane	and	diploptene	molecules	preferentially	moved	toward	the	

hydrophobic	 membrane	 midplane,	 whereas	 the	 bacteriohopanetetrol	

molecules	moved	closer	to	the	water-lipid	interfacial	domain	that	was	formed	

of	 the	 hydrophilic	 POPC	 lipid	 headgroups	 (Figure	 10D).	 The	 results	 are	

corroborated	 by	 earlier	 atomistic	 molecular	 dynamics	 simulations	 that	

sought	 to	 understand	 the	 relative	 effects	 of	 sterols	 and	 hopanoids	 on	

multicomponent	lipid	membranes.	Poger	et	al.	demonstrated	that	diploptene	

molecules	 preferentially	 partitioned	 between	 two	hydrophobic	membrane	

leaflets,	close	to	the	membrane	midplane,	and	also	that	bacteriohopanetetrol	

molecules	were	aligned	with	the	acyl	chains	and	were	preferentially	situated	

closer	to	the	hydrophilic	headgroup	domain	[456].									
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Figure	10.	The	structure	and	molecular	dynamics	simulations	of	hopanoids.	
(A-C)	The	structure	of	three	hopanoids:	hopane	(A),	diploptene	(B),	and	
bacteriopanetetrol	(C).	(D)	Martini	coarse-grained	molecular	dynamics	
simulations	of	multicomponent	membranes	that	included	either	hopane	
(yellow),	diploptene	(green),	or	bacteriohopanetetrol	(purple)	with	POPC	
lipids.	The	POPC	phosphate	headgroups	are	orange	to	show	the	position	of	
the	membrane-water	interface.	The	image	sources	are:	Wikipedia	Commons	
and	10.1063/1.4937783	(DOI)	[451].							
	

1.4.3	PIP2	
	

Phospahtidylinositol	(4,5)-bisphosphate	(PIP2)	represents	less	than	1%	of	all	

membrane	phospholipids	[457]	but	nonetheless,	the	molecule	modulates	the	

function	of	several	important	integral	membrane	proteins	[458-460],	directs	

major	independent	signalling	cascades	[461-462]	and	affects	the	efficacy	of	

endocytosis	and	exocytosis	processes	within	cellular	membranes	[463-466].	

PIP2	 is	 a	phosphatidylinositol	bisphosphate	 that	 consists	of	 a	phosphatidic	

acidic	 backbone	 linked	 via	 the	 phosphate	 group	 to	 a	 bisphosphorylated	

inositol	(hexahydroxycyclohexane).	Phosphatidylinositol	bisphosphates	are	
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generated	 as	 different	 kinases	 phosphorylate	 simpler	 phosphatidylinositol	

molecules	[467].	The	kinases	add	phosphate	moieties	onto	positions	4	or	5	of	

the	 inositol	 ring,	 although	 position	 3	 can	 additionally	 be	 phosphorylated.	

Phosphatidylinositol	 bisphosphates	 can	 contain	 different	 combinations	 of	

fatty	acid	moieties	at	the	C-1	and	C-2	positions	that	vary	in	terms	of	length	

and	the	degree	of	saturation	[468-469].	Here,	the	PIP2	lipid	is	depicted	with	

one	of	its	acyl	chains	being	saturated	and	another	being	unsaturated	(Figure	

11A).				

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	11.	The	structure	of	PIP2	molecules	and	the	interaction	of	PIP2	
molecules	with	integral	membrane	proteins.	(A)	The	skeletal	structure	of	
the	PIP2	lipid	that	includes	the	phosphate	groups	(red),	the	inositol	ring	and	
the	anchoring	saturated	and	unsaturated	acyl	chains	(blue).	(B-C)	The	
binding	positions	of	PIP2	lipids	on	Kir2.2	channel	proteins	that	were	
identified	from	X-ray	crystallography	(B)	and	molecular	dynamics	(MD)	
simulation	studies	(C).	The	PIP2	lipids	are	represented	as	green	and	red	
spheres	and	the	protein	residues	are	represented	as	violet	chains.	(D)	The	
S1P1	GPCR	molecule	that	has	been	colored	according	to	its	interactions	with	
the	PIP2	phosphoryl	headgroup	in	coarse-grained	molecular	dynamics	
simulations.	The	interaction	number	color	bar	ranges	from	white	through	to	
red.	The	image	sources	are:	Wikipedia	Commons,	10.1038/nature10370	
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(DOI)	10.1021/bi301350s	(DOI)	[470]	and	10.1021/jacs.5b08048	(DOI)	
[76].																		 
	

It	is	interesting	to	note	that	the	inwardly	rectifying	potassium	channels	are	

gated	 by	 the	 interaction	of	 their	 cytoplasmic	 region	with	 PIP2	 lipids	 [471-

475].	 Inwardly	 rectifying	 potassium	 channels	 can	 constitute	 several	

hundreds	 of	 amino	 acid	 residues	 and	 one	would	 not	 expect	 that	 they	 are	

activated	by	the	much	smaller	PIP2	lipids.	Nonetheless,	it	is	now	quite	clear	

that	PIP2	molecules	can	regulate	ion	channel	activity	when	they	interact	with	

the	cytoplasmic	domain	of	the	inwardly	rectifying	potassium	channel	(Figure	

11B-C)	and	that	PIP2	lipids	are	an	important	cofactor	for	ion	channel	activity	

[458-460].	 It	has	also	been	demonstrated	that	PIP2	molecules	can	stabilize	

the	active	states	of	Class	A	GPCRs	through	direct	bonding	[475-477].	The	PIP2	

lipids	 also	 recruit	 the	 G-protein-coupled	 kinase	 2	 enzyme	 to	 the	 plasma	

membrane	 by	 binding	 its	 large	 lobe	 [478]	 and	 that	 the	molecule	 can	 also	

regulate	the	organization	of	filamentous	actin	(F-actin)	when	it	interacts	with	

regulatory	proteins	[479].		

	

Emberhard	et	al.	demonstrated	that	the	phosphoinositides	affected	the	rates	

of	 endocytosis	 and	 exocytosis	 processes	 when	 they	 applied	

phosphoinositide-specific	 phospholipase	 C	 into	 digitonin-permeabilized	

chromaffin	cells	and	found	that	as	this	process	decreased	phosphoinositide	

levels,	it	inhibited	calcium-triggered	exocytosis	processes	[480].	Later	studies	

would	 then	 be	 devised	 to	 identify	 the	 specific	 proteins,	 e.g.	

phosphatidylinositol	 transfer	 protein,	 that	 promoted	 the	 PIP2	 mediated	

endocytosis	and	exocytosis	processes	[481-482].	The	authors	demonstrated	

that	PIP2	specific	antibodies	had	the	capacity	 to	strongly	 inhibit	exocytosis	

processes	and	these	experiments	provided	 indisputable	evidence	that	PIP2	

lipids	can	affect	large	dense	core	vesicle	exocytosis	processes.										

	

It	should	not	be	too	surprising	that	PIP2	molecules	have	been	simulated	with	

both	atomistic	and	coarse-grained	resolution	molecular	dynamics	simulation	

forcefields.	The	molecules	have	putative	roles	in	modulating	the	function	of	

integral	 membrane	 proteins	 and	 the	 PIP2	 molecules	 are	 also	 known	 to	
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facilitate	 endocytosis	 and	 exocytosis	 processes	 within	 host	 cell	 surfaces.	

Molecular	 dynamic	 simulation	 forcefields	 could	 be	 used	 by	 scientists	 to	

understand	the	molecular	level	interactions	that	drive	these	interesting	and	

important	macroscopic	 cellular	 functions.	Molecular	 dynamics	 simulations	

were	conducted	via	CHARMM	with	the	C27r	all-atom	potential	energy	set	to	

explore	the	biophysical	properties	of	PIP2	molecules	when	they	were	in	POPC	

lipid	bilayer	membranes	[483-408].	It	was	discovered	that	the	position	of	the	

simulated	 PIP2	 ring	 phosphate	 groups	 were	 above	 the	 plane	 of	 the	

encompassing	POPC	lipid	nitrogen	atoms	(~40°	from	the	membrane	normal)	

and	 this	 result	was	particularly	 interesting	 since	 it	 contested	 some	earlier	

neutron	 diffraction	 experiments	 that	 were	 conducted	 to	 determine	 the	

orientation	 of	 inositol	 lipid	 headgroups	 in	 biological	 membrane	 mimetics	

[484-485].	 The	 apparent	 mismatch	 between	 PIP2	 lipid	 conformations	 in	

experimental	and	computational	publications	would	be	a	point	of	contention	

in	ensuing	publications.			

	

Later	works	(2013)	used	a	combination	of	quantum	and	all-atom	molecular	

dynamics	simulations	to	understand	the	orientation	of	the	inositol	ring	and	it	

was	 found	 that	 the	 PIP2	 lipid	 headgroup	 and	 anchoring	 acyl	 chains	 were	

approximately	perpendicular	to	each	other,	indicating	that	the	inositol	ring	

should	lie	flat	along	the	membrane	surface	if	there	were	no	other	extraneous	

biomolecular	 interactions	 affecting	 the	 lipid	 headgroup	 orientation	 [486].	

Interestingly,	 these	 atomistic	molecular	 dynamics	 simulations	 additionally	

demonstrated	that	ion	interactions	can	affect	lipid	headgroup	behaviour	and	

they	also	revealed	how	calcium	ions	can	 induce	the	 formation	of	PIP2	 lipid	

clusters.	 Still,	 other	molecular	dynamics	 simulation	groups	were	 reporting	

that	the	inositol	headgroup	was	oriented	~45°	from	the	membrane	normal	in	

atomistic	molecular	 dynamics	 simulations	 and	 further,	 that	 the	 PIP2	 lipids	

had	complex	interactions	with	encompassing	pools	of	lipids	and	that	the	PIP2	

lipids	 could	even	affect	 the	orientation	of	 adjacent	 lipid	headgroups	 [487].	

PIP2	molecules	have	since	been	simulated	with	membrane	proteins	in	more	

complex	 multicomponent	 biological	 membrane	 mimetics	 [488-491]	 but	 it	

still	 seems	 to	 be	 challenging	 to	 accurately	 reproduce	 the	 conformational	
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characteristics	 of	 PIP2	 lipids	 with	 the	 computationally	 demanding	 and	

sophisticated	suite	of	atomistic	molecular	dynamics	simulation	forcefields.					

	

Phosphoinositides	 (PIP)	molecules	have	been	added	 to	 lower-level	 coarse-

grained	 molecular	 dynamics	 simulation	 forcefields	 even	 though	 it	 can	 be	

challenging	 to	 accurately	 imitate	 the	 orientation	 and	 dynamics	 of	 realistic	

PIP2	molecules	with	 higher-level	 atomistic	molecular	 dynamics	 simulation	

forcefields.	 PIP	 lipid	 models	 have	 been	 calibrated	 to	 replicate	 reference	

(target)	 atomistic	 simulation	 data	 and	 once	 acceptable	 predictions	 of	 this	

reference	data	was	reproduced,	the	calibrated	coarse-grained	models	were	

used	 to	 simulate	 more	 complex	 lipid-lipid	 and	 lipid-protein	 interactions	

within	multicomponent	plasma	membrane	models	(Figure	11D)	[492-496].	

Martini	coarse-grained	simulations	have	been	conducted	to	understand	the	

spontaneous	 formation	 of	 PIP	 nanodomains	 [363-364,	 497-498]	 and	 also	

how	 PIP	 molecules	 bind	 different	 integral	 membrane	 proteins	 including	

GPCR	 [475,499]	 and	 inwardly	 rectifying	 potassium	 channels	 [500-501]	 on	

unprecedented	 spatiotemporal	 scales.	 The	 coarse-grained	 simulations	 are	

generally	corroborated	by	comparative	molecular	dynamics	simulations	that	

are	 conducted	 with	 atomistic	 resolution	 forcefields.	 There	 are	 similar	

patterns	of	PIP2	 lipid	binding	 in	 comparative	atomistic	 and	coarse-grained	

resolution	molecular	dynamics	simulations	[369,470,376].														

	

1.4.4	Glycolipids	
	

Glycolipids	have	 important	 roles	 in	 regulating	cellular	recognition,	 cellular	

adhesion	and	preserving	 the	 stable	membrane	bilayer	 structure	 [430,502-

507].	The	essential	feature	of	a	glycolipid	is	the	presence	of	a	monosaccharide	

or	polysaccharide	chain	covalently	linked	to	an	anchoring	lipid	moiety.	The	

lipid	domain	anchors	the	glycolipids	into	the	hydrophobic	core	section	of	a	

biological	membrane,	whereas	the	terminal	carbohydrate	groups	are	exposed	

on	the	bilayer	surface	and	they	project	outwards	into	the	extracellular	space	

[508-511].					
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The	 carbohydrate	 domain	 differs	 from	 one	 glycolipid	 to	 another	 and	 the	

chemical	composition	of	 the	terminal	polysaccharide	chain	depends	on	the	

cellular	 growth	 conditions	 and	 the	 state	 of	 the	 encompassing	 biological	

environment	[512].	The	variable	monosaccharide	or	polysaccharide	sections	

are	 however,	 almost	 always	 covalently	 linked	 to	 simpler	 glycerol	 or	

sphingosine	backbones	and	conserved	anchoring	acyl	chain	domains	[513-

514].	 One	 of	 the	 simplest	 glycolipids	 is	 sphingomyelin,	which	 is	 especially	

abundant	 in	 the	membranous	myelin	 sheath	 that	 encases	nerve	 cell	 axons	

[515-517].	 The	 lipid	 consists	 of	 a	 single	 variable	 palmitoyl	 chain	 that	 is	

covalently	 linked	 to	 the	 central	 sphingosine	 backbone	 and	 terminal	

phosphocholine	 group	 (Figure	 12A-C).	 Palmitoyl	 sphingomyelin	 is	 an	

interesting	 and	 relatively	 simple	 form	 of	 sphingomyelin	 that	 contains	

palmitate	(16:0)	at	the	variable	acylation	position.	Palmitoyl	sphingomyelin	

can	interact	with	cholesterol	in	multicomponent	membranes	to	form	lipid	raft	

structures	 [518-520].	 The	 molecule	 has	 been	 the	 subject	 of	 thorough	

experimental	 [521-524]	 and	 computational	 [525-528]	 analyses	 and	 the	

molecule	is	used	in	chapter	5	(termed	sphingolipid)	for	molecular	dynamics	

simulations	of	simplified	eukaryotic	mammalian	plasma	membrane	models.	

Ganglioside	 molecules	 have	 comparable	 structural	 characteristics	 to	

sphingomyelin	 molecules	 but	 the	 terminal	 phosphocholine	 headgroup	 is	

substituted	with	oligosaccharide	residues	and	sialic	acid	units	instead	[512].	

It	is	important	to	understand	the	biophysical	properties	of	ganglioside	lipids	

here	because	ganglioside	molecules	are	hypothesized	to	instigate	a	complex	

cascade	of	molecular	level	interactions	that	promote	OMV	internalization	in	

chapter	5	of	this	thesis	[368].	

	

	

	

	

	

	

	

	



 78 

	

	

	

	

	

	

	

	

	

	

	

	

 
	

	

	

	

	

Figure	12.	The	chemical	structure	of	three	simple	sphingolipids.	(A)	The	
chemical	structure	of	sphingosine.	(B)	The	chemical	structure	of	a	ceramide.	
The	variable	fatty	acid	moiety	is	red	and	the	sphingosine	backbone	is	black.	
(C)	The	chemical	structure	of	a	sphingomyelin	molecule.	The	variable	fatty	
acid	moiety	is	red,	the	sphingomyelin	backbone	is	black	and	the	
phosphocholine	group	is	blue.	Image	source:	Wikipedia	Commons.		
	

Ganglioside	lipids	were	first	discovered	by	Ernst	Klenk	in	the	1940s	and	the	

term	“ganglioside”	was	based	on	the	high	concentrations	of	the	ganglioside	

glycolipids	 discovered	 within	 neurons	 or	 “Ganglionzellen”	 [426].	 The	

ganglioside	lipid	anchors	contain	the	long-chain	amino	alcohol	sphingosine	

that	 is	 coupled	 through	 an	 amino	 group	 to	 a	 fatty	 acid	 chain	 to	 form	 a	

ceramide	[512-513].	The	glycan	headgroup	contains	one	or	more	sialic	acid	

residues,	 which	 are	 carbohydrates	 with	 a	 nine-carbon	 backbone	 and	 a	

carboxylic	 acid	 moiety	 and	 there	 are	 also	 adjoining	 glucose,	 galactose,	 N-

acetylgalactosamine	units	 etc.	GM3	 lipid	 is	one	of	 the	 simplest	 ganglioside	

lipids	that	is	present	in	almost	all	mammalian	cell	membranes	[426,529-533]	

Sphingosine backbone 
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C
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and	 the	 molecule	 contains	 an	 anchoring	 ceramide	 unit	 that	 is	 covalently	

bonded	 to	 glucose,	 galactose,	 and	 sialic	 acid	 units	 (Figure	13A).	 GM3	 lipid	

have	 the	 smallest	 ganglioside	 headgroup	domain	 and	 they	 can	 be	 used	 to	

produce	more	complex	ganglioside	macromolecules	[512,534].	For	example,	

the	 addition	 of	 single	 adjoining	N-acetylgalactosamine	 and	 galactose	 units	

transforms	 basic	 GM3	 lipids	 into	 the	 larger	 GM2	 and	 GM1	 molecules,	

respectively	(Figure	13B).	Additional	saccharide	units	can	be	added	onto	the	

GM3,	 GM2,	 and	 GM1	molecules	 to	 synthesize	 ganglioside	macromolecules	

that	have	much	larger	headgroups,	e.g.	ganglioside	lipids	with	seven	or	eight	

saccharide	units	per	lipid	headgroup.		
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Figure 13. The ganglioside lipid structure and representations of how ganglioside 
molecules can induce spontaneous curvature generation. (A) Biosynthetic 
pathway for some of the smallest and simplest ganglioside molecules i.e. GM3, 
GM2 and GM1. Ganglioside molecules consist of a core ceramide unit that is 
bonded to glycan headgroups that contain monosaccharides such as glucose 
(Glc), galactose (Gal), N-acetylgalactosamine	(GalNAc),	and	sialic	acid	
residues	(Sia).	Additional	monosaccharide	units	can	be	added	onto	GM3,	
GM2	and	GM1	molecules	to	create	larger	and	more	complex	ganglioside	
molecules.	(B)	The	skeletal	formula	of	the	GM3	lipid.	The	ceramide	domain	
is	highlighted	gray	and	the	Glc,	Gal,	and	Sia	units	are	highlighted	blue,	yellow	
and	maroon.	(C-D)	Molecular	dynamics	simulations	showing	how	molecular	
dynamics	simulations	have	demonstrated	that	GM1	molecules	can	reshape	
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asymmetric	biomembranes.	The	phospholipids	are	blue	and	the	GM1	
molecules	are	red.	The	graphic	contains	both	top	view	and	side	view	
snapshots.	(E-F)	Molecular	dynamics	simulations	showing	how	cholera	
toxin	B	subunit	(CTxB)	can	induce	local	curvature	generation	within	
biomembrane	mimetics.	(E)	The	DOPC	lipids	are	green	and	the	GM1	lipids	
are	purple.	(F)	The	membrane	has	been	refitted	to	a	thin	surface	for	easier	
visualization	of	the	induced	membrane	curvature.	The	image	sources	are:	
10.3389/fimmu.2014.00325	(DOI)	[426]	10.1038/nchembio0209-71	(DOI)	
[535]	10.1073/pnas.1722320115	(DOI)	[536]	10.1002/2211-5463.12321	
(DOI)	[537].							     
	

GM3	 and	 GM1	 lipids	 have	 been	 used	 in	 atomistic	 and	 coarse-grained	

resolution	molecular	dynamics	simulations	to	investigate	the	biophysical	and	

biochemical	 properties	 of	 both	 shorter	 and	 longer	 forms	 of	 ganglioside	

molecules	 [426].	 Dasgupta	 et	 al.	 used	 complementary	molecular	 dynamics	

simulations	 and	 sophisticated	 experimental	 analyses	 to	 demonstrate	 that	

(GM1)	ganglioside	lipids	can	create	non-negligible	stress	in	POPC	membranes	

that	 promotes,	 albeit	 moderately,	 spontaneous	 membrane	 curvature	

generation	 (Figure	 13C-D)	 [536].	 The	 membrane-modulating	 effects	 of	

ganglioside	lipid	become	more	pronounced	when	single	ganglioside	coalesce	

to	 form	 relatively	 rigid	 glycosphingolipid	 clusters	 that	 have	 high	 intrinsic	

positive	 curvature	 parameters	 [363].	 Ganglioside	 molecules	 are	 generally	

confined	to	the	extracellular	 leaflet	of	multicomponent	plasma	membranes	

and	as	they	coalesce	within	just	one	membrane	leaflet,	the	lipids	can	generate	

an	 appreciable	 preference	 for	 positive	 curvature	 generation	 and	 this	 can	

induce	membrane	reshaping	processes	[368].		

	

One	of	the	more	interesting	membrane	reshaping	events	is	the	spontaneous	

production	 of	 curved	 lipid	 rafts,	 or	 caveolae,	 when	 ganglioside	 molecules	

coalesce	 within	 the	 extracellular	 leaflet	 of	 multicomponent	 plasma	

membranes	 [74,87,368].	 The	 caveolae	 are	 produced	when	 pathogens	 (e.g.	

bacteria	 and	 viruses)	 and	 pathogenic	 products	 (e.g.	 toxins	 and	 lectins)	

interact	with	host	cell	membrane	ganglioside	lipid	headgroups	(Figure	13E-

F).	 Computer	 simulation	 and	 experimental	 analysis	 methods	 have	 been	

combined	to	demonstrate	that	SV40	virus	[538-540],	cholera	toxin	[368,537]	

and	 Shiga	 toxin	 (Figure	 14A-E)	 [368,541]	 can	 enter	 into	 the	 host	 cell	
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cytoplasmic	 space	 when	 they	 interact	 with	 host	 cell	 ganglioside	 lipid	

headgroups.	The	pathogens	and	pathogenic	products	interact	with	the	host	

cell	 surface	 and	 as	 they	 progressively	 sequester	 adjacent	 ganglioside	 lipid	

headgroups,	 they	 form	 large	 glycosphingolipid	 clusters	 that	 have	 high	

intrinsic	positive	curvature.	The	co-coupling	glycosphingolipid	 interactions	

simultaneously	induce	localized	membrane	curvature	and	also	increase	the	

local	concentrations	of	cholesterol,	PIP	lipids,	sphingomyelin	molecules,	and	

saturated	 phospholipids	 [368].	 The	 sequestered	 glycosphingolipids	 lower	

energy	 barriers	 that	 would	 otherwise	 impede	 spontaneous	 curvature	

generation	and	the	raft-like	plasma	membrane	domain	bulges	inwards	into	

the	 intracellular	 matrix	 (Figure	 14F-H)	 [542].	 The	 inward	 bulging	

invaginations	continue	to	expand	into	the	cytoplasmic	matrix	and	they	can	

eventually	form	larger	endocytosis	intermediates	(Figure	14I)	that	decouple	

from	the	cellular	membrane	on	long	timescales	(Figure	14J).	It	is	already	well	

established	 that	 Shiga	 toxin,	 cholera	 toxin,	 and	 SV40	 particles	 induce	 the	

formation	 of	 caveolae	 when	 they	 interact	 with	 host	 cell	 ganglioside	 lipid	

headgroups	[368,542],	but	it	stands	to	reason	that	other	pathogenic	products	

and	synthetic	macromolecules	could	be	functionalized,	either	through	natural	

selection	 or	 through	 chemical	 engineering	 processes,	 to	 exploit	 similar	

endocytosis	uptake	processes.	The	simulation	data	from	chapter	5	suggests	

that	 OMVs	 have	 been	 functionalized	 to	 sequester	 ganglioside	 lipids	 and	

through	this	interaction,	deform	host	cell	surfaces	so	that	they	can	enter	into	

the	host	cell	cytosol.		
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Figure	14.	Pathogens	and	pathogenic	products	can	bind	ganglioside	lipids	
and	this	interaction	promotes	endocytosis.	(A)	SV40	coat	protein	VP1	
pentamer	cocrystallized	with	GM1	pentasaccharide.	The	coat	protein	is	
green	and	the	pentasaccharides	are	red.		(B)	Cholera	toxin	𝛽subunit	
cocrystallized	with	GM1	pentasaccharide.	(C)	E.	coli	enterotoxin	𝛽subunit	
cocrystallized	with	nitrophenyl-galactoside.	(D)	Shiga	toxin	𝛽subunit	
cocrystallized	with	GB3	trisaccharide.	(E)	Pentameric	E.	coli	Shigalike	toxin	
𝛽subunit	cocrystallized	with	a	GB3	analog.	(F)	Binding	of	SV40	to	GM1	lipids	
in	a	multicomponent	membrane.	(G)	The	formation	of	a	lipid	raft	(dark	blue	
band)	and	the	demonstration	of	actin-dependent	immobilization.	(H)	The	
invagination	of	the	plasma	membrane	mimetic	due	to	interactions	with	
SV40.	The	interactions	between	SV40	and	the	plasma	membrane	mimetic	
generate	a	caveola	structure.	(I)	Scission	machinery	facilitating	endocytosis	
after	the	production	of	a	flask-shaped	lipid	raft	structure	(i.e.	caveola).	(J)	
The	formation	of	a	vacuole	and	the	transport	of	the	vacuole	through	the	
intracellular	space.	The	image	source	is:	10.1101/cshperspect.a004721	
(DOI)	[542].		
	

1.4.5	Lipopolysaccharide	
	

Lipopolysaccharide	 (LPS)	 macromolecules	 are	 unusually	 large	 glycolipids	

both	 in	 terms	 of	 end-to-end	 length	 and	 the	 lateral	 surface	 area	 that	 the	

molecules	occupy	 in	multicomponent	 bacterial	membranes	 [104,543-545].	

The	macromolecules	have	a	characteristic	tripartite	structure	that	consists	of	
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the	 anchoring	 Lipid	 A	 domain,	 the	 core	 oligosaccharide	 section,	 and	 the	

repetitive	glycan	polymer	O-antigen	chain	[546-548].	

	

The	anchoring	Lipid	A	domain	is	a	phosphorylated	glucosamine	disaccharide	

that	is	decorated	with	multiple	fatty	acid	moieties	[546,549-550].	The	fatty	

acid	moieties	are	embedded	 into	 the	 core	of	bacterial	membranes	and	 the	

glucosamine	 sugars	 extend	 outwards	 into	 the	 extracellular	 space.	 The	

phosphate	groups	are	situated	at	 the	water-lipid	 interface;	 they	have	a	net	

negative	 electrostatic	 charge	 and	 they	 readily	 interact	 with	 stabilizing	

divalent	 cations	 (e.g.	 Ca2+	 and	 Mg2+	 ions).	 The	 divalent	 cations	 can	

simultaneously	 coordinate	 multiple	 adjacent	 anionic	 Lipid	 A	 anchors	 and	

these	 bridging	 cations	 can	 effectively	 screen	 the	 repulsive	 electrostatic	

interactions	between	the	adjacent	anionic	LPS	phosphate	groups	that	would	

otherwise	 promote	 electrostatic	 repulsion	 and	 membrane	 reshaping	

processes	[119-120,551].	Garate	and	Oostenbrink	(2013)	simulated	Lipid	A	

molecules	with	water,	octane	and	at	the	water-octane	interface	itself	[552]	

using	 the	 CHARMM36	 all-atom	 forcefield	 [553-554].	 The	 Lipid	A	molecule	

was	shown	to	have	a	larger	gyration	radius	in	the	hydrophobic	octane	media	

compared	with	the	polar	solution	of	water	or	at	the	water-octane	interface.	

Entire	Lipid	A	membranes	have	been	simulated	by	the	Im	group	using	the	

CHARMM36	all-atom	forcefield	[555],	by	Li	et	al.	[556]	using	the	GLYCAM06-

based	LPS	forcefield	[557-559]	and	by	Lakshminarayanan	et	al.	[560]	using	

the	GROMOS	53A6	forcefield	[561-563].	The	research	groups	showed	that	the	

simulated	 Lipid	 A	 membranes	 were	 stable	 at	 physiological	 pressure	 and	

temperature	when	they	were	interlinked	with	divalent	cations,	e.g.	Ca2+	and	

Mg2+	ions.		

	

The	LPS	lipid	core	domain	contains	an	oligosaccharide	chain	that	is	linked	to	

the	anchoring	Lipid	A	domain.	The	keto-deoxyoctulosonate	(Kdo)	sugar	is	a	

primary	 component	 of	 most	 LPS	 core	 saccharide	 sections	 [563]	 but	 non-

carbohydrate	components	including	amino	acids,	ethanolamine	substituents,	

and	 phosphate	 groups	 can	 also	 be	 present	 [543,564].	 The	 specific	

nomenclature	 used	 to	 describe	 LPS	 lipids	 depends	 predominantly	 on	 the	
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extension	 of	 the	 core	 saccharide	 section	 and	 the	 number	 of	 constituent	

saccharide	units	that	are	bonded	to	the	anchoring	Lipid	A	domain.	Re	LPS	is	

the	simplest	LPS	lipid	that	is	found	within	realistic	Gram-negative	bacterial	

membranes	and	it	consists	of	two	Kdo	saccharide	units	bonded	to	the	Lipid	A	

anchor	 [565-566].	 The	 incorporation	 of	 additional	 saccharide	 units	would	

transform	Re	LPS	chemotypes	to	the	larger	Rd,	Rc,	Rb	and	Ra	LPS	chemotypes	

[567]	that	have	different	sets	of	biophysical	parameters	in	multicomponent	

membranes.	Khalid	et	al.	performed	some	of	the	earliest	molecular	dynamics	

simulations	of	Rd	LPS	lipid	membranes	with	the	united-atom	GROMOS53A6	

forcefield	to	understand	how	electrostatic	fields	can	disrupt	multicomponent	

bacterial	membranes	[551].	The	Rd	LPS	lipid	membranes	were	found	to	have	

area	 per	 lipid	 magnitudes	 that	 were	 in	 line	 with	 predictions	 from	 X-ray	

diffraction	 analysis	 [568],	 but	 the	 LPS	 acyl	 tail	 order	 parameters	 were	

noticeably	higher	than	experimentally	derived	acyl	tail	order	parameters	for	

comparative	 phospholipid	 membranes	 [569].	 The	 Im	 group	 performed	

higher	 resolution	 molecular	 dynamics	 simulations	 of	 various	 LPS	 lipid	

chemotypes	 [211,223]	 with	 the	 CHARMM36	 all-atom	 forcefield	 and	 they	

obtained	more	accurate	estimates	of	the	LPS	acyl	chain	order	parameters	if	

we	 are	 benchmarking	 against	 reference	 DMPC	membranes	 [569],	 but	 the	

predicted	area	per	lipid	values	exceeded	the	upper	limit	of	LPS	area	per	lipid	

values	(1.56	nm2)	predicted	from	experimental	analyses	[568].	Lins	et	al.	also	

performed	 pioneering	 atomistic	 resolution	 simulations	 to	 understand	 the	

uptake	 of	 uranyl	 by	 LPS	 lipid	 membranes	 with	 minimal	 core	 saccharide	

domain	[241].	The	group	did	not	provide	lipid	packing	parameters	and	it	is	

therefore	more	challenging	to	draw	comparisons	with	experimental	analysis	

data.						

	

LPS	lipids	are	increasingly	being	simulated	in	more	realistic	multicomponent	

Gram-negative	 outer	 membrane	 models	 that	 incorporate	 different	 outer	

membrane	 proteins	 [308]	 including	 gated	 outer	 membrane	 transporters	

[570-572]	 and	 β -barrel	 assembly	 machinery	 [573].	 The	 LPS	 lipids	 that	

contain	the	Lipid	A	anchor	and	variable	core	saccharide	sections	are	usually	

termed	“rough”	LPS	 lipid	chemotypes	[121,567]	because	bacterial	colonies	
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have	a	rough	appearance	when	they	contain	short	forms	of	LPS	lipid,	i.e.	LPS	

lipid	without	any	terminal	O-antigen	chain	units.	Martini	molecular	dynamics	

simulation	forcefields	have	been	used	to	understand	the	properties	of	Gram-

negative	outer	membrane	models	that	contain	different	types	of	rough	LPS	

lipids	(e.g.	the	Re	and	Ra	chemotypes)	[301].	The	coarse-grained	molecular	

dynamics	 simulations	 have	 demonstrated	 that	 there	 is	 “communication”	

between	 the	 extracellular	 and	 intracellular	 leaflets	 of	 the	 Gram-negative	

outer	membrane	[574].	Areas	of	high	acyl	chain	disorder	in	the	extracellular	

leaflet	were	found	to	be	correlated	with	areas	of	high	acyl	chain	order	in	the	

intracellular	leaflet.	Martini	coarse-grained	simulations	have	also	been	used	

to	demonstrate	that	LPS	lipid	nanodisc	width	decreases	from	nanodisc	center	

to	periphery	and	that	LPS	lipid	micelle	structure	is	significantly	perturbed	by	

large	changes	in	simulation	temperature	(~90	K	difference)	[151].											

	

The	 repetitive	glycan	polymer	 is	 termed	 the	O-antigen	chain	and	 it	 can,	 in	

some	circumstances,	be	the	heaviest	section	of	the	LPS	lipid	macromolecular	

structure	[575-576].	The	composition	of	the	O-antigen	chain	varies	from	one	

bacterial	 species	 to	 another.	 There	 are	more	 than	 160	 different	E.	 coli	 O-

antigen	glycan	polymer	chain	structures	alone,	but	there	is	found	to	be	even	

more	chemical	heterogeneity	when	LPS	lipids	from	one	bacterial	genus	(e.g.	

Escherichia)	are	compared	with	LPS	lipids	from	an	entirely	distinct	genus	(e.g.	

Campylobacter	 or	 Pseudomonas)	 [543].	 The	 O-antigen	 chains	 are	 the	

peripheral	moiety	of	 the	tripartite	LPS	macromolecular	structure	and	 they	

are	 in	direct	contact	with	the	external	milieu.	When	LPS	 lipids	contain	the	

Lipid	A	anchor	with	 complete	 core	 saccharide	 section	and	 the	 terminal	O-

antigen	chain	polymer	they	are	termed	“smooth”	LPS	lipid	chemotypes	[577]	

because	bacterial	colonies	have	a	smooth	appearance	when	they	contain	the	

longer	forms	of	LPS	lipid,	i.e.	LPS	lipid	with	terminal	O-antigen	chain	moieties.	

Smooth	E.	coli	LPS	lipid	can	contain	for	example,	type	1	Lipid	A	anchor	with	

R3	core	sugar	sequence	and	the	terminal	O1	O-antigen	chain	polymer	(Figure	

15)	[315].	The	O1	O-antigen	chain	subunit	contains	the	five	saccharide	units	

arranged	 end-to-end:	 b	 N-acetyl-D-glucosamine,	 a	 D-galactose,	 a	 L-

rhamnose,	a	L-rhamnose,	and	b	N-acetyl-D-mannosamine	[315].	Smooth	LPS	
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lipids	 have	 been	 simulated	 in	 single-component	 bacterial	 membrane	

mimetics	 and	 also	 in	more	 complex	multicomponent	membrane	mimetics	

with	 atomistic	 resolution	 molecular	 dynamics	 simulation	 forcefields	

[104,198,211-212].	 The	 OPLS-AA	 [170]	 and	 GLYCAM	 [246]	 molecular	

dynamics	 simulation	 forcefields	 have	 also	 been	 used	 to	 analyze	 the	

conformations	of	single	O-antigen	chain	polymers	 in	solution	[578].	 It	was	

found	that	the	conformation	of	the	O-antigen	chain	was	affected	by	the	choice	

of	 the	molecular	dynamics	simulation	 forcefield.	When	the	O-antigen	chain	

was	 simulated	with	 the	OPLS-AA	 forcefield	 it	had	 large	 gyration	 radii	 and	

when	it	was	simulated	with	the	GLYCAM	simulation	forcefield	the	gyration	

radii	 were	 substantially	 smaller.	 Smooth	 LPS	 lipids	 have	 been	 simulated	

much	 less	 frequently	 with	 coarse-grained	 molecular	 dynamics	 simulation	

forcefields.	However,	 in	2018	Khalid	et	al.	used	the	Martini	coarse-grained	

forcefield	to	understand	how	smooth	LPS	lipids	interact	with	the	following	

integral	 membrane	 proteins:	 OmpA,	 FhuA,	 OmpF,	 EstA,	 BtuB,	 and	 OmpX	

[315]	and	before	this,	the	Martini	coarse-grained	forcefield	had	been	used	to	

understand	how	smooth	LPS	 lipids	 interact	with	PE	and	PG	phospholipids	

[579-581].																			
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Figure	15.	Schematic	representation	of	a	single	molecule	of	smooth	LPS	lipid	
from	E.	coli	bacteria.	The	illustration	includes	the	type	1	Lipid	A	domain,	
which	is	a	phosphorylated	glucosamine	disaccharide	decorated	with	
multiple	fatty	acid	chains	(blue).	Lipid	A	is	bonded	to	the	R3	core	
oligosaccharide	domain	that	includes	hexose	sugars	such	as	keto-
deoxyoctulosonate	(Kdo),	glucose	(Glc),	mannoheptose	(Hep),	N-acetyl-D-

𝑛 
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glucosamine	(GlcNac),	galactose	(Gal)	and	phosphate	groups.	The	length	of	
the	core	domain	determines	rough	LPS	nomenclature;	Re	LPS	lipids	contain	
the	Re	core	domain	(red)	and	Ra	LPS	mutants	contain	the	complete	core	
saccharide	sequence	(red	and	pink).	Smooth	LPS	lipids	additionally	contain	
terminal	O-antigen	chain	units	(black).	Smooth	LPS	lipids	can	contain	
multiple	repeats	of	the	repetitive	O-antigen	chain	polymer	unit.	The	
CHARMM-GUI	Martini	Maker	coarse-grained	Re	LPS	lipid	model	contains	the	
type	1	Lipid	A	domain	with	two	Kdo	sugars;	the	Ra	LPS	lipid	model	contains	
the	type	1	Lipid	A	domain	with	complete	core	saccharide	section;	the	
coarse-grained	smooth	LPS	lipid	contains	the	type	1	Lipid	A	domain	with	
complete	R3	core	saccharide	section	and	four	units	of	the	terminal	O1	O-
antigen	chain	polymer.	The	image	is	based	on	work	from	the	
10.1021/acs.jctc.8b01059	manuscript	(DOI)	[315].							
	
1.5	Bacterial	Infection	and	Multiple-Drug	Resistance	
	

Pathogenic	bacteria	spread	disease	as	 they	pass	through	the	 four	stages	of	

infection:	 (i)	 colonization,	 (ii)	 invasion,	 (iii)	 proliferation	 and	 (iv)	

transmission	[582-586].	The	colonization	of	human	tissues	by	pathogens	is	

usually	enhanced	by	adhesion	molecules	that	are	exposed	on	the	bacterial	cell	

surface	[587-589].	The	 infectious	microbes	migrate	toward	target	host	cell	

surfaces	 in	 response	 to	 chemical	 gradients	 and	 then	 attach	 onto	 the	

membrane	 surfaces	 through	 the	 action	 of	 the	 exposed	 adhesion	 proteins.	

After	the	bacteria	have	colonized	the	target	cells,	they	expel	toxins	that	can	

damage	the	host	human	tissues	(e.g.	connective,	muscle,	and	epithelial)	and	

change	 the	 local	 physiological	 conditions.	 The	 microbes	 progressively	

sequester	 different	 biomolecules	 and	metals	 that	 are	 needed	 for	 bacterial	

growth	and	the	pathogenic	microbes	continue	to	multiply	until	they	evoke	an	

immune	response	that	contributes	to	the	transmission	of	the	bacteria	to	new	

a	host	[590-592].						

	

Antibiotics	were	used	throughout	the	20th	century	to	prevent	the	spread	of	

infectious	bacteria	and	to	effectively	reduce	the	global	rates	of	morbidity	and	

mortality	 that	 are	 associated	with	 infectious	 bacterial	 diseases	 [593-595].	

Antibiotics	are	one	of	the	most	successful	forms	of	chemotherapy	and	they	

have	been	used	 to	 treat	nosocomial	 infections	 [596],	 to	avoid	 complicated	

surgery	[597],	to	prevent	infection	during	incision-based	surgery	[598-599],	

to	prevent	 infectious	diseases	among	 immunocompromised	patients	 [598]	
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and	they	were	even	added	to	livestock	feed	to	safeguard	animal	health	and	

welfare	 [600-604].	 The	 excessive	 and	 inappropriate	 use	 of	 antibiotics	

established	a	selective	pressure	that	favored	the	proliferation	of	bacteria	that	

were	 resistant	 to	 first-line	 antibiotic	 agents	 [593,605-606].	 The	 drug-

resistant	 bacteria	 thrived	 and	 their	 drug-resistant	 genes	 became	 more	

common	 [607-609].	 These	 drug	 resistant	 genes	 have	 since	 been	 passed	

between	infectious	bacteria	during	the	last	few	decades	and	there	are	now	

so-called	 multi-drug	 resistant	 bacteria	 that	 are	 unaffected	 by	 almost	 all	

available	 forms	 of	 antibiotic	 medication,	 e.g.	 methicillin-resistant	

Staphylococcus	 aureus	 (MRSA)	 and	 multidrug	 resistant	 strains	 of	

Acinetobacter	 baumannii	 [610-611].	 Multidrug	 resistant	 bacteria	 are	

dangerous	and	they	have	the	potential	to	not	only	increase	the	global	rates	of	

morbidity	 and	 mortality	 associated	 with	 infectious	 bacteria	 but	 also	 to	

increase	national	healthcare	system	spending	[612-616].	Bacterial	infections	

are	becoming	increasingly	hazardous	and	there	is	an	urgent	need	to	synthesis	

new	 antibiotic	 medication	 that	 can	 be	 used	 to	 treat	 multi-drug	 resistant	

bacteria.	The	phenomenon	is	not	unprecedented	and	clinicians	had	noted	that	

Gram-positive	 cocci	 were	 developing	 resistance	 to	 sulphonamide	 group	

drugs	 in	 the	 first-half	 of	 the	 20th	 [593].	 Chemists	 synthesized	 novel	

derivatives	 of	 otherwise	 ineffective	 sulphonamide	 antimicrobials	 to	 make	

new	 antibiotic	 medication	 for	 the	 increasingly	 resistant	 strains	 of	 Gram-

positive	 cocci	 bacteria	 [593,	 617-621].	 There	 was	 an	 effective	 arms	 race	

between	 chemists	 and	microbes	 that	 has	 persisted	 ever	 since,	 sometimes	

increasing	in	rapidity	and	other	times	slowing	as	the	volume	of	antimicrobial	

scientific	research	and	scientific	funding	varied	throughout	the	last	century	

[622-623].	 We	 are	 now	 at	 an	 interesting	 precipice	 where	 computational	

simulation	methodologies	have	reached	a	level	of	sufficient	complexity	that	

they	can	be	used	to	not	only	gain	unprecedented	molecular	level	insights	into	

the	action	of	effective	antimicrobials	 [624]	but	also	to	streamline	pipelines	

for	drug-target	 interaction	network	analysis	and	to	streamline	pipelines	to	

identify	 potentially	 novel	 antibiotic	 medication	 [625-629].	 Molecular	

dynamics	 simulations	 are	 increasingly	 being	 applied	 to	 evaluate	 the	
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molecular	 level	 interactions	of	 effective	antimicrobial	peptides	and	 to	gain	

insights	into	their	antibacterial	and	membrane	disrupting	effects	[630-631].											

	

1.6	Gram-Negative	and	Gram-Positive	Bacteria	
	

1.6.1	Gram	Staining	
	

Bacteria	 are	 broadly	 classed	 as	 either	 Gram-positive	 or	 Gram-negative	

according	to	the	structure	of	their	cell	envelope	and	how	they	respond	to	the	

Gram	stain	test.	The	Gram	stain	test	is	a	relatively	simple	procedure	that	uses	

colored	dyes	to	determine	whether	bacteria	should	be	classed	as	either	Gram-

positive	or	Gram-negative	[632-635].	Scientists	initially	apply	primary	crystal	

violet	 and	 iodine	 solution	 stains	 to	a	heat-fixed	 smear	of	 the	bacterial	 cell	

culture.	 The	 bacterial	 culture	 is	 subsequently	 decoloured	 with	 ethanol	 or	

acetone	and	counterstained	with	 carbol	 fuchsin	or	 safranin.	Gram-positive	

and	 Gram-negative	 bacteria	 respond	 differently	 to	 the	 step-wise	 staining	

procedure	[634].	Gram-negative	bacteria	are	dyed	pink	by	the	carbol	fuchsin	

or	safranin,	whereas	Gram-positive	bacteria	retain	the	initial	measure	of	the	

crystal	violet	stain.	The	different	responses	can	be	understood	if	we	consider	

the	 different	 structure	 and	 composition	 of	 the	 Gram-positive	 and	 Gram-

negative	cell	envelopes	[20,636].	The	Gram-negative	bacterial	cell	envelope	

is	 tripartite	 and	 it	 contains	 the	 inner	 cytoplasmic	 membrane,	 the	 outer	

bacterial	membrane,	 and	 layers	of	peptidoglycan	 that	 are	 located	between	

them.	The	Gram-positive	cell	envelope	is	dipartite	and	rather	than	there	being	

an	outer	membrane,	there	is	only	the	cytoplasmic	membrane	and	the	layers	

of	 peptidoglycan	 that	 bonded	 to	 it	 through	 lipoteichoic	 acid.	 The	 Gram-

positive	and	Gram-negative	layers	of	peptidoglycan	are	differently	exposed	

to	the	external	milieu	and	they	consequently	have	different	responses	to	the	

Gram	stain	test.			

	

1.6.2	Cell	Envelopes	
	

Gram-positive	 bacteria	 have	 a	 cytoplasmic	 lipid	 membrane	 that	 contains	

phospholipids	and	transmembrane	proteins	(Figure	16A).	The	cytoplasmic	
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membrane	additionally	 contains	 interstitial	 lipoteichoic	acids	 (Figure	16B)	

that	act	as	chelating	agents	and	bind	the	fluid	lipid	membrane	to	a	relatively	

rigid	 wall	 of	 porous	 peptidoglycan	 (Figure	 16C)	 [637-639].	 The	

peptidoglycan	 layers	 are	 comprised	of	murein,	 a	 polymer	 of	 disaccharides	

that	 are	 cross-linked	 by	 short	 chains	 of	 amino	 acids	 [640-643].	 The	 sugar	

component	 consists	 of	 alternating	 N-acetylglucosamine	 and	 N-

acetylmuramic	acid	units	that	are	attached	to	a	chain	of	three	to	five	amino	

acid	 units.	The	 peptide	 chains	 can	 be	 cross-linked	 to	 form	 a	 3D	mesh-like	

network	that	is	up	to	80	nm	thick	and	forms	around	90%	of	the	dry-weight	of	

Gram-positive	bacteria	[644].				

	

The	 Gram-negative	 bacterial	 cell	 envelope	 contains	 two	 membranes,	 the	

inner	and	outer	lipid	membrane	bilayers,	and	layers	of	peptidoglycan	that	are	

located	 between	 them	 (Figure	 16D)	 [59].	 There	 are	 different	 types	 of	

phospholipid	molecules	within	 the	 inner	 cytoplasmic	membrane	 including	

cardiolipin,	PE	and	PG	phospholipid	[645-648].	There	are	various	membrane	

proteins	 that	 are	 embedded	 throughout	 the	 inner	 cytoplasmic	membrane	

including	 aquaporin	 AqpZ	 [648]	 and	 the	 lactose	 permease	 LacY	 transport	

protein	[649].	The	outer	membrane	has	an	asymmetric	structure	and	there	

are	significantly	more	phospholipids	in	the	inner	(intracellular)	leaflet	than	

the	outer	leaflet	and	correspondingly,	significantly	more	LPS	macromolecules	

in	the	outer	(extracellular)	leaflet	than	the	inner	leaflet.	There	is	in	effect,	one	

extracellular	 LPS	 leaflet	 that	 interacts	 with	 the	 external	 milieu	 and	 an	

opposing	 phospholipid	 leaflet	 that	 interacts	 with	 the	 periplasmic	 matrix.	

There	 are	 also	 different	 types	 of	 transmembrane	β -barrel	 porin	 proteins	

embedded	throughout	the	outer	membrane,	e.g.	the	vitamin	B12	transporter	

BtuB	protein	 [650-651]	 and	 the	 ferrichrome	outer	membrane	 transporter	

FhuA	 [652].	 Braun’s	 lipoprotein	 is	 also	 embedded	 throughout	 the	 outer	

membrane	and	 this	7.2	kDa	macromolecule	has	 the	 rather	 interesting	and	

unusual	 property	 that	 it	 can	 connect	 the	 outer	 bacterial	membrane	 to	 the	

layers	of	peptidoglycan	in	the	periplasm	[653-655].						
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Molecular	dynamics	simulations	of	the	Gram-negative	bacterial	cell	envelope	

have	become	 larger,	 longer	and	 significantly	more	 complex	during	the	 last	

couple	 of	 decades	 [104-105,231].	 Scientific	 research	 groups	 have	

successively	calibrated	different	atomistic	resolution	simulation	 forcefields	

[163]	to	more	accurately	reproduce	the	properties	of	LPS	containing	bacterial	

outer	membrane	mimetics	and	these	carefully	calibrated	lipidic	systems	have	

been	simulated	with	different	types	of	integral	membrane	proteins,	e.g.	the	

OMPs	 [308].	 Molecular	 dynamics	 simulations	 were	 conducted	 with	

sophisticated	atomistic	resolution	forcefields	to	understand	the	properties	of	

bacterial	 cell	wall	mimetics	 that	 contain	models	 for	 the	 inner	 cytoplasmic	

membrane,	 the	outer	bacterial	membrane,	 the	 layers	of	peptidoglycan,	and	

some	of	the	different	proteins	that	mediate	interactions	between	them	[320-

321].	 Atomistic	 simulations	 were	 similarly	 conducted	 to	 understand	 how	

mechanical	stress	 is	distributed	throughout	the	constituent	components	of	

the	Gram-negative	bacterial	cell	envelope	[312]	and	how	the	outer	membrane	

is	affected	by	membrane-active	AMPs	[328].			

	

Coarse-grained	molecular	dynamics	simulation	forcefields	were	used	in	2017	

to	 probe	 previously	 unprecedented	 spatiotemporal	 scales	 and	 enable	

microsecond	 long	simulations	of	mesoscopic	bacterial	cell	wall	composites	

that	include	models	for	the	inner	cytoplasmic	membrane,	the	outer	bacterial	

membrane,	 and	 a	model	 for	 the	 large	AcrABZ-TolC	multidrug	 efflux	 pump	

protein	that	spans	the	entire	periplasmic	space	and	simultaneously	interacts	

with	 both	 the	 inner	 and	outer	 bacterial	membranes	 [325].	 Coarse-grained	

molecular	dynamics	simulations	have	also	provided	interesting	insights	into	

fundamental	processes	that	underpin	bacterial	cell	growth	and	bacterial	cell	

division.	 Coarse-grained	 molecular	 dynamics	 simulations	 have	 explained	

how	the	rod-shaped	structure	of	Gram-negative	bacteria	is	preserved	during	

bacterial	 cell	 growth	 [311]	 and	 how	 constrictive	 forces	 are	 necessary	 for	

promoting	bacterial	cell	division	[656].	
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Figure	16.		Schematic	illustration	of	the	cell	envelope	of	(A)	Gram-negative	
and	(B)	Gram-positive	bacteria.	Phospholipids	are	orange	spheres	attached	
to	two	acyl	chains,	LPS	lipids	are	orange	ovals	attached	to	six	acyl	chains	and	
terminal	red	square	polymers,	teichoic	acids	are	green	circle	polymers	
attached	to	orange	heptagons,	proteins	are	gray	circle	and	oval	composites,	
and	peptidoglycan	is	the	repeating	blue	and	purple	hexagon-square	
composite.	(C)	The	chemical	structure	of	the	peptidoglycan	unit.	(D)	The	
chemical	structure	of	teichoic	acid.	The	different	cell	wall	structures	affect	
how	bacteria	interact	with	the	external	milieu	and	thereby,	their	response	to	
the	Gram	stain	procedure.	The	image	source	is:	
10.1021/acs.chemrev.8b00538	(DOI)	[59].						
	

1.6.3	Outer	Membrane	Vesicle	Biogenesis	and	Functions	
	

The	 outer	 membrane	 of	 Gram-negative	 bacteria	 frequently	 swells	 and	

ruptures	and	this	process	generates	outer	membrane	vesicles	(OMVs)	that	

can	move	 into	 the	 extracellular	 space	 [47-51]	 and	 traffic	molecular	 cargo	

from	 the	 periplasm	 of	 one	 bacterium	 to	 surface	 of	 another	 [51-52].	 The	

stability	of	 the	Gram-negative	 cell	 envelope	 is	 affected	 by	 the	number	and	

strength	 of	 the	 non-covalent	 interactions	 between	 murein	 and	 the	 outer	

membrane	 proteins	 [312],	 and	 the	 covalent	 cross-links	 between	 Braun’s	

lipoprotein	 and	 the	 rigid	 layers	 of	 peptidoglycan	 [320,657].	 Areas	 of	 the	

bacterial	outer	membrane	that	are	devoid	or	depleted	of	attachments	to	the	

layer	 of	 peptidoglycan	 are	 liable	 to	 swell	 and	 progressively	 protrude	

outwards	until	the	membrane	decouples	entirely	from	the	bacterial	cell	wall	

and	subsequently	forms	spherical	OMVs	[51,658-659].				

D
 

A
 

C
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OMVs	are	small	(~20-250	nm)	spherical	vesicles	that	contain	a	combination	

of	different	lipids	that	are	distributed	asymmetrically	about	the	membrane	

midplane	 [660-661].	 The	 outer	 leaflet	 is	 predominantly	 comprised	 of	 LPS	

lipids	and	the	inner	leaflet	is	predominantly	comprised	of	phospholipids	but	

there	 can	 also	 be	 integral	membrane	 proteins	 that	 embedded	 throughout	

[662-663].	The	structure	and	compositional	characteristics	of	the	OMVs	are	

comparable	to	the	structure	and	compositional	characteristics	of	the	parent	

Gram-negative	bacterial	outer	membranes.	OMVs	have	high	concentrations	

of	 smooth	 LPS	 lipids	 when	 they	 bleb	 from	 the	 surface	 of	 smooth	 Gram-

negative	bacteria	and	similarly,	OMVs	have	high	concentrations	of	rough	LPS	

lipids	when	they	bleb	from	the	surface	of	rough	Gram-negative	bacteria	[664].		

	

OMVs	 contain	 an	 inner	 periplasmic	 core	 and	 diverse	 luminal	 and	 surface	

exposed	 biomolecular	 cargo.	 The	 lumen	 can	 contain	 relatively	 high	

concentrations	of	degradative	enzymes,	which	catalyze	the	decomposition	of	

complex	macromolecules,	or	instead	contain	high	concentrations	of	genetic	

material	 (DNA	and	RNA)	that	can	be	transferred	 from	one	bacterial	cell	 to	

another	[47,665].	OMVs	have	also	been	found	to	traffic	acquisition	proteins	

from	bacterial	cell	envelopes	into	the	extracellular	space,	making	them	adept	

at	performing	nutrient	scavenging	roles	[48].	It	is	becoming	increasingly	clear	

that	 OMVs	 additionally	 traffic	 pathogenic	 cargo	 (e.g.	 virulence	 factors)	

toward	 target	 mammalian	 cell	 membrane	 surfaces	 and	 that	 they	 have	

important	roles	 in	mediating	bacterial	pathogenies	[48,52,664].	OMVs	bleb	

from	 pathogenic	 Gram-negative	 bacterial	 cell	 surfaces	 and	 traffic	 toxins,	

hemolysin	molecules,	proteases,	adhesin	compounds	etc.	to	host	cell	surfaces	

and	this	process	contributes	to	the	spread	of	infectious	disease.	 	The	OMVs	

pass	through	the	extracellular	space	and	after	 initial	interactions	with	host	

cell	surfaces	they	enter	into	the	host	cell	cytosol	and	release	their	pathogenic	

cargo	[52,664].	When	virulence	factors	are	concentrated	within	OMVs	they	

are	afforded	protection	from	the	extracellular	environment	and	consequently	

it	can	be	more	effective	to	deliver	molecular	cargo	within	OMVs	compared	

with	conventional	soluble	section	processes	[666-667].								
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Although	it	is	well	established	that	OMVs	can	enter	into	the	host	cell	cytosol	

during	infection,	the	precise	biomolecular	interactions	that	underpin	host	cell	

association	and	OMV	uptake	have	not	been	determined	[52,664].	It	has	been	

demonstrated	 that	OMVs	can	deliver	 luminal	cargo	via	 clathrin	dependent	

endocytosis	 mechanisms;	 the	 binding	 of	 the	 OMV	 ligands	 to	 the	 host	 cell	

surface	receptors	triggers	the	formation	of	clathrin	coated	pits	that	are	up	to	

200	 nm	 in	 diameter	 and	 are	 sufficiently	 wide	 to	 envelope	 most	 small,	

medium,	 and	 large	 sized	 OMVs	 that	 are	 released	 from	 Gram-negative	

bacterial	cell	surfaces	[52,668-669].	Numerous	studies	have	described	roles	

for	clathrin	proteins	in	the	active	internalization	of	OMVs	but	generally	with	

the	caveat	that	OMV	uptake	still	transpires	even	when	clathrin	proteins	are	

absent	or	entirely	inactivated.	OMV	uptake	can	occur	independently	of	any	

membrane	 embedded	 proteins	 through	 endocytosis	 interactions	 that	 are	

mediated	 entirely	 by	 lipid-lipid	 interactions	 [664].	 It	 is	 theorized	 that	 the	

OMVs	initially	dock	onto	plasma	membranes	and	subsequently	release	their	

luminal	 cargo	 through	 direct	membrane	 fusion	 as	 they	 interact	with	 lipid	

rafts	that	form	the	host	cell	surface	(Figure	17).	The	proposed	model	has	not	

been	 proven	 through	 experimental	 analyses	 and	 the	 uptake	 model	 is	

consequently	quite	vague	and	unclear	[52].	The	observation	that	 the	 lipid-

mediated	 internalization	 dynamics	 depend	 on	 the	 presence	 and	 length	 of	

constituent	LPS	O-antigen	chains	makes	the	uptake	pathway	even	less	clear	

and	more	 difficult	 to	 understand	 [664].	 It	 seems	 appropriate	 therefore	 to	

briefly	describe	the	compositional	characterises	of	lipid	rafts	in	the	following	

paragraph	and	to	describe	how	lipid	rafts	could	promote	direct	membrane	

fusion	or	endocytosis	uptake	processes.	Readers	should	be	aware	that	lipid	

rafts	 have	 already	 been	 discussed	 more	 comprehensively	 when	 the	 raft	

hypothesis	was	first	introduced	in	section	1.1.				

	

Lipid	 rafts	 are	 transient	 fluctuating	 nanoscale	 assemblies	 that	 are	

predominantly	 comprised	 of	 glycosphingolipids,	 cholesterol,	 integral	

membrane	proteins,	 and	 saturated	phospholipids	 [73-75].	Lipid	 rafts	have	

unusual	molecular	packing	parameters	(i.e.	area	per	lipid	and	thickness),	acyl	
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chain	 order	 values,	 and	 diffusion	 parameters	 that	 differ	 from	 the	

encompassing	 membrane	 environment	 [81-82,135,362].	 Cholesterol	

molecules	 pair	 with	 sphingolipids	 and	 proteins	 and	 these	 co-coupling	

interactions	 form	 a	 relatively	 static	 and	 liquid-ordered	 raft	 structure	 (Lo)	

whose	 biophysical	 parameters	 differ	 the	 encompassing	 liquid-disordered	

membrane	(Ld)	[59].	Recent	molecular	dynamics	simulations	have	proposed	

that	 the	 liquid-ordered	 (Lo)/liquid-disordered	 (Ld)	 phase	 boundary	 can	

facilitate	direct	membrane	fusion	if	the	Lo	phase	constituents	have	the	larger	

negative	 spontaneous	 curvature	 [670].	 In	 such	 a	 case,	 the	 presence	 of	

membrane	fusion	intermediates	(i.e.	highly	curved	fusion	stalks)	next	to	the	

less-ordered	boundary	region	becomes	energetically	favourable.		

	

However,	 it	 is	 also	 clear	 that	 caveolae	 promote	 spontaneous	 curvature	

generation	and	the	production	of	endocytosis	 intermediates	 independently	

of	direct	membrane	fusion	interactions	[74,368].	The	word	caveolae	is	Latin	

for	 “little	 caves”	and	 the	name	seems	 to	be	appropriate	 since	 caveolae	are	

small	membrane	invaginations	that	have	a	raft-like	composition	that	includes	

glycosphingolipids,	 cholesterol,	 sphingolipid	 and	 saturated	 phospholipids	

[87,671-672].	Glycosphingolipids	are	especially	abundant	within	the	neck	of	

the	caveolae	[366-367,673]	because	clusters	of	intrinsically	positively	curved	

glycosphingolipids	have	the	capacity	to	lower	line	tension	energies	between	

neighboring	flat	and	negatively	curved	membrane	domains.	In	other	words,	

it	 is	energetically	 favourable	 for	 the	clusters	of	glycosphingolipids	to	move	

toward	 the	 interfacial	 domains	 that	 separate	 adjacent	 flat	 and	 negatively	

curved	membrane	domains	[430,536].	Cholesterol	molecules	are	also	present	

in	 unusually	 high	 concentrations	 within	 caveolae,	 but	 they	 are	 primarily	

situated	within	the	central	portion	of	the	caveolae	that	bulges	inwards	into	

the	 intracellular	 space	 [673].	 Viral	 particles	 are	 already	 known	 to	 induce	

endocytosis	 processes	 when	 they	 interact	 with	 glycosphingolipids	 within	

host	 cell	membrane	 surfaces	 [538-540,674]	 and	 it	 is	 not	 unreasonable	 to	

assume	 that	 OMVs	 might	 also	 induce	 the	 formation	 of	 endocytosis	

intermediates	 (e.g.	 caveolae)	 when	 they	 bind	 and	 sequester	 host	 cell	

glycosphingolipids.	 The	 results	 from	 chapter	 5	 indicate	 that	 OMVs	 might	
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induce	 the	 formation	of	highly	 curved	 lipid	 raft-like	assemblies	when	 they	

bind	(GM3)	ganglioside	molecules	and	that	this	interaction	can	promote	the	

formation	of	raft-like	endocytosis	intermediates	on	long	timescales.		

	
	

	
	
	
	

	

	
	

	
	
	
	
	
	
	
	
	
	
Figure	17.	Host-pathogen	interface	interactions.	The	OMVs	are	liposomes	
that	contain	an	outer	leaflet	that	is	predominantly	comprised	of	
lipopolysaccharide	lipids	and	an	inner	leaflet	that	is	predominantly	
comprised	of	phospholipids.	The	OMVs	deliver	luminal	cargo	and	virulence	
factors	to	host	cells	as	they	pass	through	or	fuse	with	the	host	cell	
(eukaryotic)	plasma	membranes.	The	OMVs	can	enter	cells	through	clathrin-
dependent	endocytosis	and	alternative	lipid-mediated	internalization	
uptake	pathways	that	involve	lipid	rafts,	but	the	precise	biomolecular	
interactions	that	underpin	these	processes	are	not	entirely	understood.	
Here,	the	OMV	outer	leaflet	is	cyan,	the	inner	leaflet	is	orange,	the	outer	
membrane	proteins	are	yellow,	the	host	plasma	membrane	is	pink,	the	lipid	
raft	is	blue	and	the	clathrin	molecules	are	purple	and	red.					
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1.7	Antimicrobial	Peptides	
	

Gram-negative	 and	 Gram-positive	 bacteria	 are	 progressively	 acquiring	

resistance	 to	 last-line	 antibiotic	 medication	 [610-614]	 and	 the	 number	 of	

antibiotics	 that	 are	 still	 effective	 against	 infectious	 diseases	 is	 dwindling	

[593-595].	Without	 immediate	 intervention	 it	 seems	 likely	 that	 there	will	

soon	 be	 few,	 if	 any,	 antibiotics	 that	 are	 suitable	 for	 treating	 the	 most	

concerning	 strains	 of	 infectious	 bacteria	 [675-678].	 We	 could	 observe	 a	

drastic	increase	in	morbidity	and	mortality	as	immunocompromised	patients	

increasingly	 become	 infected	 with	 debilitating	 extensively	 drug-resistant	

bacterial	 infections	 that	 are	 unresponsive	 to	 any	 conventional	 form	 of	

chemotherapy.			

	

Antimicrobial	 peptides	 (AMPs)	 are	 potent	 broad-spectrum	 antibiotics	 that	

are	produced	by	all	classes	of	life	as	part	of	the	innate	immune	response	and	

they	can	destroy	different	forms	of	infectious	bacteria	[129-137].	AMPs	have	

received	 significant	 scientific	 attention	 during	 the	 last	 couple	 of	 decades	

because	AMPs	tend	to	rather	uncommonly,	destroy	pathogenic	microbes	by	

destabilizing	 the	 protective	 lipid-containing	 cellular	membrane.	 AMPs	 are	

effective	against	multiple	different	forms	of	bacteria,	fungi,	and	viruses	and	it	

is	speculated	that	novel	antibiotics	could	be	manufactured	as	 theoreticians	

determine	the	molecular	 level	 interactions	that	underpin	the	antimicrobial	

properties	 of	 these	 broad-spectrum	 AMPs.	 Chemists	 could	 take	 these	

molecular	 level	 insights	 and	 synthesize	 new	 medication	 that	 is	 effective	

against	 otherwise	 extensively	 drug-resistant	 strains	 of	 Gram-negative	

bacteria	[679-682].		

	

Many	AMPs	have	similar	chemical	characteristics	and	they	have	been	found	

to	affect	membrane	permeability	via	comparable	modes	of	action	[683-684].	

There	 are	 several	 chemical	 properties	 that	 are	 common	 among	 different	

types	of	AMP:	 (i)	 the	peptides	 contain	 cationic	moieties	and	a	net	positive	

charge	 ranging	 from	 +2	 to	 +13;	 (ii)	 AMPs	 are	 primarily	 comprised	 of	

hydrophobic	residues	such	as	tryptophan,	phenylalanine,	and	isoleucine;	and	
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(iii)	 all	 AMPs	 are	 amphipathic	 [685-689].	 The	 relative	 abundance	 of	 the	

hydrophilic	and	hydrophobic	moieties	determines	how	the	AMPs	destabilize	

the	target	bacterial	membranes	and	it	also	determines	where	the	AMPs	will	

reside	along	the	membrane	normal	axis	[690].											

					

The	initial	contact	between	AMPs	and	biological	membranes	is	usually	based	

on	 attractive	 electrostatic	 interactions	 because	 the	 bacterial	 membrane	

boundaries	 contain	 anionic	 lipid	 headgroups	 and	 [645]	 the	 AMPs	 always	

contain	 positively	 charged	 amino	 acid	 residues.	 Early	 experimental	 data	

indicated	 that	 biological	 membranes	 are	 disrupted	 by	 so-called	 “barrel-

stave”,	 “carpet”	or	 “toroidal-pore”	AMP-induced	modes	of	 action	[687,691-

692].	The	barrel-stave	model	mechanism	proceeds	as	follows:	the	AMPs	are	

initially	 oriented	 perpendicular	 to	 the	 bilayer	 normal	 but	 they	 slowly	

penetrate	into	the	membrane	interior	until	they	are	oriented	parallel	with	the	

encompassing	lipid	tails	(Figure	18B).		This	transmembrane	protein	position	

promotes	lateral	peptide-peptide	interactions	and	the	proteins	self-assemble	

into	a	transmembrane	cylinder	whose	hollow	lumen	increases	the	diffusion	

of	material	across	the	membrane	normal	axis	[693-694].	The	toroidal	pore	

model	 mechanism	 proceeds	 as	 follows:	 the	 AMPs	 initially	 settle	 onto	 the	

membrane	 surface	 and	 subsequently	 penetrate	 the	 bilayer	 until	 they	 are	

oriented	 along	 the	 membrane	 normal	 axis.	 The	 peptides	 induce	 local	

membrane	 curvature	 until	 the	 peptides	 and	 encompassing	 lipids	 form	 a	

cavernous	 toroidal	 pore	 (Figure	 18C)	 [693,695].	 	 AMPs	 can	 additionally	

disrupt	biological	membranes	through	the	carpet	mechanism,	 in	which	the	

peptides	initially	adsorb	onto	the	bilayer	surface	without	penetrating	into	the	

hydrophobic	interior	and	they	collectively	form	a	“carpet”	of	AMP	molecules.	

The	 unfavorable	 interactions	 between	 the	 adsorbed	 proteins	 and	 the	

underlying	 lipids	 affects	 the	 local	membrane	 integrity	 (Figure	 18D)	 [696].	

The	 protein-lipid	 interactions	 eventually	 disrupt	 the	 stable	 lamellar	

membrane	packing	and	the	lipids	are	prone	to	break	away	from	the	bilayer	

to	form	lipid	micelles.	Indolicidin	and	cecropin	are	AMPs	that	destabilize	the	

bacterial	 membrane	 structure	 through	 processes	 that	 mimic	 the	 carpet	

mechanism	[670-672].			
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Figure	18.	Overview	of	AMP	membrane	breakdown	processes.	(A)	The	AMPs	
initially	bind	to	the	host	membrane	surfaces	through	a	combination	of	
electrostatic	and	hydrophobic	protein-lipid	interactions.	The	AMPs	adopt	
orientations	that	maximize	the	number	of	attractive	peptide-lipid	
electrostatic	and	hydrophobic	interactions.	(B)	In	the	barrel-stave	model	the	
hydrophobic	AMP	moieties	are	oriented	toward	the	encompassing	acyl	
chains	and	this	creates	a	transmembrane	water	pore.	The	encompassing	
acyl	chains	maintain	a	transmembrane	orientation	(i.e.	align	with	the	
membrane	normal	axes)	and	the	AMPs	oligomerize	to	effectively	form	a	
pore	that	has	one	hydrophobic	surface	and	one	hydrophilic	surface.	(C)	In	
the	toroidal-pore	model	the	intracellular	(inner)	and	extracellular	(outer)	
monolayers	distort	when	they	interact	with	the	oligomerized	AMPs	and	this	
creates	a	transmembrane	water	pore	whose	surface	is	comprised	of	lipid	
headgroups	and	protein	residues.	(D)	In	the	carpet	model	the	AMPs	stay	on	
the	membrane	surface	and	induce	membrane	rupture	as	they	change	the	
structure	of	the	membrane.	The	image	source	is:	10.1007/s10989-009-
9180-5	(DOI)	[673].								
	
Keeping	in	mind	that	AMPs	are	known	to	affect	biological	membranes	and	

also	that	molecular	dynamics	simulation	methods	have	been	carefully	

calibrated	over	the	last	few	decades	to	accurately	reproduce	the	interactions	

of	lipids,	it	should	not	be	particularly	surprising	that	there	have	been	an	

inordinate	number	of	molecular	dynamics	simulations	that	have	explored	

the	interactions	of	AMPs	with	bacterial	membrane	mimetics	[188,674-677].	

The	prototypical	AMP	melittin	has	been	repeatedly	simulated	with	different	

molecular	dynamics	simulation	forcefields	and	it	has	been	found	that	

melittin	disrupts	the	stable	bilayer	structure	through	the	formation	of	

transmembrane	water	channels	according	to	an	unconventional	barrel-

stave	membrane	breakdown	process	[678-682].	It	was	found	via	molecular	

dynamics	simulation	methods	that	melittin	molecules	spread	out	across	

transmembrane	water	pores	in	different	orientations	rather	than	being	
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neatly	aligned	along	the	membrane	normal	axis,	as	conventional	membrane	

disruption	models	had	previously	assumed	[683].	Subsequent	molecular	

dynamics	simulations	were	able	to	elucidate	how	the	insertion	of	the	N-

terminus	can	contribute	to	membrane	disruption	[684]	while	the	C-

terminus	anchors	melittin	to	the	lipid	headgroups	through	hydrogen-bond	

interactions	[685].	

	

The	formation	of	toroidal	pores	has	also	been	noted	in	molecular	dynamics	

simulations	of	magainin	AMPs	but	there	were	notable	differences	between	

the	results	from	the	molecular	dynamics	simulations	and	predictions	from	

the	conventional	toroidal	pore	disruption	models.	The	simulated	magainin	

MG-H2	AMPs	induced	the	formation	of	a	nanometer-sized	toroidally	shaped	

pore	in	DPPC	membranes	but	only	one	magainin	AMP	was	found	near	the	

center	of	this	transmembrane	pore	while	the	remaining	AMPs	remained	on	

the	bilayer	surface	with	an	orientation	that	was	approximately	parallel	to	

the	bilayer	surface	[686].	Later	electron	paramagnetic	resonance	

spectroscopy	studies	and	molecular	dynamics	simulations	with	sum	

frequency	generation	vibrational	spectroscopic	studies	would	corroborate	

the	inference	that	magainin	molecules	tend	to	predominantly	lie	on	the	flat	

hydrophilic	surface	of	membranes	[687-688]	rather	than	immediately	

cluster	to	form	the	simplistic	oligomeric	transmembrane	toroidal	pore	

structures	that	had	been	previously	hypothesized.	Through	molecular	

dynamics	simulations	it	is	now	clear	that	magainin	AMPs	can	induce	

membrane	thinning	and	induce	significant	membrane	perturbation	even	

when	they	are	lying	on	the	flat	hydrophilic	surfaces	of	bacterial	membrane	

mimetics	[689].	Prior	to	these	interesting	molecular	dynamics	simulations	it	

was	assumed	that	magainin	AMPs	predominantly	disrupted	biological	

membranes	by	oligomerizing	to	form	conventional	transmembrane	toroidal	

pores	but	it	is	now	becoming	clear	that	the	degradative	interactions	of	

magainin	AMPs	are	much	more	complex	and	it	has	even	been	proposed,	

based	on	simulation	studies	[690],	that	magainin	AMPs	can	only	form	

toroidal	pore	structures	when	they	co-couple	with	PGLa	(sequence	

GMASKAGAIAGKIAKVALKAL-NH2)	[691-693]	because	the	molecules	are	
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both	a	part	of	the	African	frog	Xenpus	laevis	innate	immune	response	system	

[694]	and	consequently	they	would	both	be	found	in	vivo	interacting	with	

the	same	membrane	systems.						

	

Molecular	dynamics	simulations	of	the	chrys-3	AMP	have	produced	

interesting	results	that	in	some	instances	corroborate	pore	formation	

models	and	in	other	instances	corroborate	the	carpet	model.	It	was	found	

that	when	chrys-3	peptides	were	positioned	across	the	membrane	normal	

axis	they	tended	to	co-couple	and	induce	the	spontaneous	production	of	

transmembrane	pores,	but	when	chrys-3	peptides	were	located	at	the	

membrane	surface	they	increased	membrane	curvature	and	generated	

membrane	protrusions	that	could	be	considered	micellization	intermediates	

[255].	Molecular	dynamics	simulations	have	also	demonstrated	that	the	

Aurein	1.2	[286],	Kalata	B1	[695-696],	and	PA-Pln149	AMPs	[697]	have	the	

capacity	to	induce	bilayer	curvature	and	affect	the	membrane	integrity.	The	

AMPs	had	the	capacity	to	increase	membrane	curvature	when	they	were	

located	at	the	membrane	surface	despite	minimal	insertion	of	the	AMP	

hydrophobic	moieties	into	the	hydrophobic	acyl	chain	domain.	Coarse-

grained	molecular	dynamics	simulation	forcefields	have	even	been	applied	

to	demonstrate	that	cyclic	antibacterial	peptides	can	self-assemble	at	the	

membrane	surface	and	cause	the	underlying	membrane	to	extrude	lipids	as	

they	form	micellar	aggregates	[698].	Taken	together,	the	molecular	

dynamics	simulations	reveal	that	the	toroidal,	barrel-stave,	and	carpet	

models	are	too	simplistic	and	that	molecular	dynamics	simulations	are	

necessary	for	revealing	otherwise	inaccessible	molecular	level	details	that	

underpin	the	membrane	disrupting	properties	of	antibacterial	peptides.				

	

1.8	Polymyxin	B1	
	

Polymyxin	 molecules	 are	 a	 class	 of	 antimicrobial	 lipopeptides	 that	 are	

produced	by	strains	of	Gram-positive	Paenibacillus	polymyxa	bacteria	[699-

701].	 The	 polymyxin	 lipopeptides	 consist	 of	 10	 amino	 acids	 including	 six	

cationic	 diaminobutyric	 acid	 (Dab)	 residues	 and	 a	 hydrophobic	 acyl	 chain	
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moiety	(Figure	19A).	Seven	of	the	amino	acids	are	bonded	to	form	the	cyclic	

component	of	the	lipopeptides	while	the	remaining	acyl	tail	and	three	amino	

acids	comprise	the	linear	chain	section	[702-703].				

	

Polymyxins	 are	 potent	 antimicrobials	 that	 are	 effective	 against	 Gram-

negative	bacteria	[147-150].	The	 lipopeptides	are	administered	 in	hospital	

settings	 as	 last-line	 antibiotics	 to	 treat	 infectious	 Gram-negative	 bacterial	

infections	[704-709].	The	intravenous	application	of	polymyxin	medications	

is	 reserved	 for	 the	 most	 potent	 and	 resistant	 strains	 of	 infectious	 Gram-

negative	 bacteria	 partly	 because	 the	 antibiotics	 are	 considered	 to	 be	

relatively	neurotoxic	and	nephrotoxic	[710-716]	and	partly	to	suppress	the	

proliferation	 of	 multidrug	 resistant	 genes	 [606-612].	 The	 inappropriate	

application	of	the	polymyxin	lipopeptides	has	the	potential	to	damage	renal	

and	neural	tissues	and	at	the	same	time	produce	extensively	drug-resistant	

strains	of	Gram-negative	bacteria.		

	

It	is	now	well	established	that	polymyxin	lipopeptides	can	kill	Gram-negative	

bacteria	by	binding	to	and	breaking	down	the	Gram-negative	bacterial	outer	

membrane.	Polymyxin	molecules	initially	bind	to	the	Gram-negative	bacterial	

outer	membrane	 as	 the	 positively	 charged	 Dab	 residues	 interact	with	 the	

negatively	 charged	 LPS	 lipid	 phosphate	 groups	 [717-720].	 Studies	 of	

polymyxin	 nonpeptide	 suggest	 that	 the	 acyl	 chain	 moiety	 also	 affects	 the	

membrane	 breakdown	processes.	 Polymyxin	 nonapeptide	 lacks	 a	 terminal	

acyl	 chain	 moiety	 and	 the	 molecule	 is	 able	 to	 bind	 cationic	 bacterial	

membrane	surfaces	but	it	is	unable	to	kill	pathogenic	bacteria	[721-724].	The	

inability	of	polymyxin	nonapeptide	to	kill	pathogenic	bacteria	indicates	that	

the	 acyl	 tail	 component	 contributes	 to	 the	 disruption	 of	 Gram-negative	

bacterial	cell	membranes	and	this	suggests	that	polymyxin	lipopeptides	affect	

Gram-negative	bacteria	through	detergent-like	action.	It	is	assumed	that	the	

acyl	 chain	 portion	 dissolves	 into	 the	 hydrophobic	 core	 of	 bacterial	

membranes	and	that	 this	process	disrupts	 the	 integrity	of	 the	 lipid	bilayer	

[725].	 It	 is	 quite	 interesting	 therefore,	 that	 in	 2018	 Lakey	 et	 al.	 used	 a	

combination	of	neutron	reflectometry	and	infrared	spectroscopy	to	show	that	
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polymyxin	B	acyl	chain	insertion	depends	on	the	phase	transition	of	LPS	lipids	

from	the	gel	to	the	liquid	crystalline	state	[144].						

	

While	the	precise	antimicrobial	interactions	that	are	responsible	for	Gram-

negative	bacterial	outer	membrane	breakdown	processes	are	still	debated,	

molecular	 dynamics	 simulations	 are	 increasingly	 providing	 new	 and	

interesting	 molecular	 level	 insights	 that	 can	 help	 us	 to	 understand	 the	

antibacterial	 action	 of	 polymyxin	 AMPs.	 One	 of	 the	 first	 pioneering	

publications	came	from	the	Khalid	group	[328]	when	they	revealed,	through	

the	 application	 of	 the	 GROMOS	 53A6	 united-atom	 molecular	 dynamics	

simulation	forcefield	[561-562],	that	PMB1	molecules	affect	the	movement	of	

LPS	lipids	in	the	Gram-negative	bacterial	outer	membrane	and	additionally,	

that	PMB1	molecules	can	decrease	the	inner	cytoplasmic	bacterial	membrane	

width	[328].	Santos	et	al.	later	went	on	to	show	that	the	binding	of	polymyxin	

molecules	 to	Gram-negative	bacterial	outer	membrane	mimetics	promotes	

cation	 displacement	 [243]	 and	 at	 the	 same	 time,	 that	 the	 antimicrobial	

promotes	 spontaneous	 membrane	 curvature	 generation	 when	 it	 interacts	

with	 the	 bacterial	 membrane	 mimetic	 surface.	 Khondker	 et	 al.	 have	 also	

performed	 all-atom	molecular	 dynamics	 simulations	 to	 better	 understand	

how	 the	 mobilized	 colistin	 resistance	 (mcr-1)	 gene	 confers	 resistance	 to	

colistin,	also	known	as	polymyxin	E	[726].	The	mcr-1	phenotype	is	known	to	

increase	 membrane	 packing	 and	 at	 the	 same	 time,	 decrease	 membrane	

charge	 within	 the	 Gram-negative	 bacterial	 outer	 membrane.	 Through	 the	

combination	of	X-ray	diffraction	analyses,	molecular	dynamics	simulations,	

electrochemistry,	and	leakage	assays	it	was	shown	that	increasing	membrane	

surface	 charge	promotes	polymyxin	molecular	penetration	and	membrane	

damage,	whereas	increasing	lipid	packing	decreases	penetration	and	damage.						

	

The	 undesirable	 neurotoxic	 and	 nephrotoxic	 effects	 [710-716]	 of	 the	

polymyxin	peptides	on	mammalian	cell	membranes	have	prompted	scientists	

to	 conduct	 molecular	 dynamics	 simulations	 to	 better	 understand	 how	

polymyxin	molecules	interact	with	mammalian	cell	membranes.	The	SLipids	

molecular	 dynamics	 simulation	 forcefield	 [727]	 was	 paired	 with	 X-ray	
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diffraction	and	electrochemistry	experiments	to	understand	how	polymyxin	

molecules	 disrupt	 mammalian	 cell	 membranes	 [728].	 It	 was	 found	 that	

polymyxin	 clusters	 induced	 bilayer	 indentation	 and	 increased	 water	

permeation	 when	 they	 interacted	 with	 membranes	 that	 were	 depleted	 of	

cholesterol	molecules	(Figure	19B).	The	multicomponent	membranes	were	

significantly	 more	 mechanically	 robust	 when	 they	 contained	 high	

concentrations	 of	 cholesterol	 molecules	 and	 significantly	 more	 prone	 to	

become	damaged	when	they	were	depleted	of	cholesterol	molecules	(Figure	

19C).	There	was	less	bilayer	indentation	and	less	water	permeation	when	the	

cholesterol	 content	 was	 high	 and	 this	 result	 suggests	 that	 cholesterol	

molecules	 can	 suppress	 the	 undesirable	 neurotoxic	 and	 nephrotoxic	

properties	of	polymyxin	peptides.						
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Figure	19.	The	structure	and	simulations	of	the	Polymyxin	B	antimicrobial	
peptide.	(A)	The	lipopeptide	contains	a	cyclic	component	that	is	made	of	
seven	amino	acids	and	a	non-cyclic	section	that	contains	three	amino	acids	
with	terminal	fatty	acid	chain	moiety.	The	lipopeptide	contains	five	cationic	
diaminobutyric	acid	(Dab)	residues	that	impart	a	net	(+5)	positive	charge	to	
the	molecule	and	this	positive	electrostatic	charge	promotes	PMB1	
interactions	with	anionic	lipids.	The	fatty	acid	chain,	isobutyl	group,	and	
phenylalanine	side	chains	confer	hydrophobicity	and	they	promote	PMB1	
interactions	with	hydrophobic	acyl	chain	moieties.	(B-C)	Results	from	
molecular	dynamics	simulations.	The	cholesterol	concentration	affected	
how	the	simulated	PMB1	peptides	interacted	with	the	multicomponent	
membranes.	There	was	indentation	of	the	bilayers	and	an	overall	increase	in	
permeability	when	the	cholesterol	content	was	zero	(B).	There	was	
significantly	less	membrane	damage	when	the	membranes	contained	high	
concentrations	of	cholesterol	(C).	The	water	molecules	are	red	and	white,	
the	lipid	tails	are	thin	cyan	strands,	the	phosphate	groups	are	orange	and	
the	polymyxin	molecules	are	represented	using	a	space-filling	van	der	Waals	
model.	The	image	sources	are:	Wikipedia	Commons	and	
10.1016/j.bpj.2017.09.013	(DOI)	[728].				 
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Chapter	2:	Computational	Methods								
	

2.1	Molecular	Dynamics	
	

Molecular	 dynamics	 simulations	 consist	 of	 the	 numerical,	 step-by-step,	

resolution	of	the	classical	equations	of	motion	[729-730],	which	is	described	

by	the	equation:	

	

𝒇Q = −
𝜕
𝜕𝒓Q

𝒰(𝒓U)	

Equation	1	

	

The	force	𝒇Q 	acting	on	each	atom	is	determined	from	the	potential	energy	of	

the	 system	 𝒰(𝒓U) 	where	 𝒓U = (𝒓(, 𝒓1 …𝒓U) 	is	 the	 set	 of	 N	 atomic	

coordinates.		The	movement	of	the	atoms	is	simulated	by	numerically	solving	

Newton’s	equations	of	motion:	

𝑑1𝒓𝒊
𝑑𝑡1 	= 	

𝒇Q
𝑚Q
	

𝑑𝒓𝒊
𝑑𝑡 	= 𝒗𝒊				; 			

𝑑𝒗𝒊
𝑑𝑡 	= 	

𝒇Q
𝑚Q
	

Equation	2-4	

	

where	𝑚Q 	and	𝒗Q 	are	atomic	mass	and	velocity	values.	By	initially	defining	the	

potential	energy	of	a	simulation	system	the	 force	acting	on	the	constituent	

atoms	can	be	resolved,	enabling	the	calculation	of	updated	atomic	positions,	

velocities,	accelerations	etc.	By	iteratively	updating	the	position	and	physical	

properties	of	the	system	particles	and	the	associated	total	potential	energy,	

the	time-dependent	trajectory	of	a	biological	system	can	be	determined.					

	

In	 conventional	 molecular	 dynamics	 simulations,	 the	 potential	 energy	

function	 is	described	by	a	 conservative	 forcefield,	which	accounts	 for	non-

bonded	 and	 bonded	 interactions	 but	 ignores	 electronic	 transitions.	 The	
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conventional	 molecular	 dynamics	 simulation	 forcefields	 are	 a	 function	 of	

atomic	 positions	 that	 discount	 explicit	 electronic	 transitions,	 although	

approximations	 are	 made	 for	 dispersion	 forces.	 For	 a	 more	 realistic	

simulation	 of	 biological	 processes,	 electronic	 transitions	 can	 be	 computed	

through	the	use	of	computationally	demanding	simulation	methods	that	solve	

the	 time-dependent	 electronic	 Schrödinger	 equation	 self-consistently	with	

the	classical	equations	of	motions	for	atoms	[731-732].									

	

2.2	Non-Bonded	Potentials	
	

The	 total	 potential	 energy	 of	 conventional	molecular	 dynamics	 simulation	

forcefields	consist	of	a	bonded	component,	which	accounts	for	intramolecular	

motions	 and	 a	 non-bonded	 component	 that	 includes	 a	 van	 der	Waals	 and	

Coulomb	potential,	but	additional	restraining	and/or	external	forces	can	also	

be	included.	The	non-bonded	component	is	derived	from	the	addition	of	1-

body,	2-body,	3-body…N-body	terms:	

	

𝒰0\0']\0^*^(𝒓U) = 	_𝓊(𝒓Q) +
Q

__𝓋(𝒓Q, 𝒓b) +
bcQ

…
Q

	

Equation	5	

	

The	𝓊(𝒓)	term	represents	the	effects	of	an	externally	applied	potential	field	

or	 the	 effects	 of	 the	 simulation	 walls;	 the	 term	 is	 discounted	 in	 bulk	

simulations	 and	 in	 simulations	 where	 periodic	 boundary	 conditions	 are	

applied.		For	the	sake	of	brevity	and	a	reduction	in	computational	complexity,	

molecular	 dynamics	 programs	 conventionally	 focus	 on	 the	 pair	 potential	

𝓋d𝒓Q, 𝒓be = 𝓋	(𝒓Qb) 	while	 neglecting	 three-body	 and	 higher	 order	

interactions.			

	

The	van	der	Waals	 interactions	are	generally	 simulated	with	 the	Lennard-

Jones	potential	[733]:	

𝓋>f(𝑟) = 4𝜀 hi
𝜎
𝑟j

(1
− 	i

𝜎
𝑟j

k
l	
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Equation	6	

	

where	r	represents	the	distance	between	the	two	interacting	atoms,	𝜎	is	the	

distance	where	 the	 potential	 reaches	 its	minimum	and	𝜀	is	 the	well	 depth	

(Figure	20A).		The	𝑟'k	component	of	the	equation	approximates	the	transient	

attractive	 interactions	 that	 exist	 between	 induced	 dipoles,	 while	 the	𝑟'(1	

component	attempts	 to	account	 for	 the	 repulsive	 interactions	 that	 arise	at	

short	distances,	where	occupied	electron	orbitals	would	tend	to	overlap.	The	

Lennard-Jones	 parameters	 are	 determined	 for	 atoms	 in	different	 chemical	

environments	 (hybridization,	 aromaticity	 etc.)	 to	 enable	 the	 simulation	 of	

diverse	sets	of	biomolecules.		

	

	

	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	20.	Schematic	representation	of	the	non-bonded	interaction	energy	
term	components.	(A)	Lennard-Jones	component	that	is	used	to	
approximate	repulsive	electron	overlap	forces	at	short-range,	and	attractive	
dispersion	forces	at	long-range.	The	well	depth	is	provided	by	𝜀,	and	𝜎	is	the	
distance	where	the	potential	reaches	its	minimum.	(B)	Coulombic	
interaction	energy	experienced	by	two	point	charged	particles.	Coulomb	
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forces	are	appreciable	at	both	short-	and	long-ranges	given	that	they	decay	
according	𝑟'(,	where	𝑟	is	the	distance	between	two	charged	particles.				
	

The	 choice	 of	 6-12	 Lennard-Jones	 exponents	 makes	 simulations	

computationally	 efficient,	 while	 also	 providing	 satisfactory	 numerical	

accuracy.	 But	 the	 lack	 of	 theoretical	 justification	 for	 the	 Lennard-Jones	

potential	 can	 warrant	 the	 use	 of	 alternative	 mathematical	 functions	 to	

simulate	attractive	dispersion	 forces	at	 long	 ranges	and	 repulsive	electron	

orbital	overlap	forces	at	short	ranges.	The	van	der	Waals	interactions	can	be	

expressed	more	generally	by	the	Mie-potential	[734-736]:	

	

𝓋m(𝑟) = i
𝑛

𝑛 −𝑚ji
𝑛
𝑚j

; (0';)⁄
𝜀 hi

𝜎
𝑟j

0
− 	i

𝜎
𝑟j

;
l	

Equation	7	

	

The	 exponents	n	 and	m	 can	 be	 varied	 to	 enable	 flexible	 fine-tuning	 of	 the	

steepness	of	the	attractive	and	repulsive	domains	of	the	pairwise	potential.	

Likewise,	the	Buckingham	exponential-6	function	[737]	can	be	used	in	place	

of	the	Lennard-Jones	potential	since	it	provides	a	softer	repulsive	exponential	

term	that	is	more	computationally	demanding,	but	in	better	accordance	with	

electronic	structure	theory:	

	

𝓋n(𝑟) = 𝜀 h
6

𝛼 − 6 exp i𝛼
t1 −

𝑟
𝜎
uj −

𝛼
𝛼 − 6 i

𝜎
𝑟j

k
l	

Equation	8	

	

Here,	 𝛼 	is	 a	 free	 dimensionless	 parameter	 that	 has	 been	 optimized	 to	

reproduce	a	realistic	interatomic	potential.	Soft-core	van	der	Waals	potential	

energy	 functions	 are	 sometimes	 [738-741]	 used	 when	 alchemically	

transforming	molecules,	during	thermodynamic	integration	calculations	and	

during	energy	minimization	simulation	steps	to	keep	the	pairwise	interaction	

energy	finite.	The	soft-core	van	der	Waals	potential	energy	functions	have	the	

general	functional	form:	
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𝓋vw(𝑟, 𝜆) = 4𝜀𝜆y h(
1

𝛼(1 − 𝜆)] + (𝑟 𝜎⁄ )z)
(1 z⁄ −	(

1
𝛼(1 − 𝜆)] + (𝑟 𝜎⁄ )z)

k z⁄ l	

	

Equation	9	

	

Here,	𝛼	controls	the	softness	of	the	potential	energy	function,	𝜆	is	the	linear	

scaling	 term,	 and	𝑎, 𝑏,	and	 𝑐 	are	 exponents	 that	 control	 how	 rapidly	 the	

softness	is	removed.	Soft-core	potential	energy	functions	are	now	a	part	of	all	

the	 major	 biomolecular	 simulation	 packages.	 GROMACS	 and	 AMBER	

simulation	 packages	 [742-745]	 provide	 soft-core	 van	 der	Waals	 potential	

energy	functions	where	𝑎 = 1,	𝑏 = 1,	and	𝑐 = 6,	while	NAMD	[746-747]and	

CHARMM	[748-749]	packages	provide	 soft-core	potential	 energy	 functions	

where	𝑎 = 1,	𝑏 = 1,	and	𝑐 = 2.	

	

The	 Coulomb	potential	 is	used	 to	model	 the	 energy	 between	point	 charge	

particles	that	are	located	at	atomic	nuclei.	The	potential	energy	is	described	

by	the	equation:		

	

𝓋w\}@\;](𝑟) =
𝒬(𝒬1
4𝜋𝑟 ∈�

	

Equation	10	

	

where	𝒬(	and	𝒬1	quantify	the	charge	of	two	point	particles	that	are	separated	

by	a	distance	of	r	and	∈�	is	the	permittivity	of	free	space	(Figure	20B).	Most	

molecular	 dynamics	 simulation	 packages	 discount	 dispersion	 and	

electrostatic	 forces	 between	 atoms	 that	 are	 separated	 by	 only	 one	 or	 two	

covalent	bonds,	however	atoms	that	are	separated	by	at	least	three	bonds	are	

included,	 albeit	 with	 scaling	 factors	 to	 temper	 the	 magnitude	 of	 the	

interaction	energies.	For	example,	the	OPLS	(Optimized	Potential	for	Liquid	

Simulations)	 forcefield	 employs	 a	 0.5	 scaling	 factor	 for	 the	 dispersion	 and	

electrostatic	energies	arising	from	so-called	1-4	interactions	[170,750].			
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The	derivation	of	appropriate	partial	point	charges	for	molecular	dynamics	

simulations	 is	 necessary	 for	 accurately	 mimicking	 the	 interactions	 of	 all	

biomolecules.	 Electrostatic	 charge	 is	 distributed	 throughout	 a	 given	

simulation	 biomolecule	 to	 accurately	mimic	 data	 from	high-level	 quantum	

chemical	 (ab	 initio)	 calculations	 and	 data	 obtained	 from	 sophisticated	

experimental	 analyses	 [751].	 For	 example,	 ab	 initio	 calculations	 at	 the	

LMP2/cc-pVTZ(-f)/HF/6-31G(d)	 theory	 level	 were	 conducted	 to	 optimize	

partial	 point	 charge	 values	 for	 ionic	 liquids	 in	 the	 OPLS-AA	 molecular	

dynamics	simulation	forcefield	[752].	Anions	were	optimized	at	the	Hartree-

Fock	(HF)	theory	level	[236]	using	the	6-31G(d)	basis	set	with	single-point	

energy	 calculations	 using	 the	 local	 Møller-Plesset	 (MP)	 second-order	

perturbation	method	[753]	with	the	correlation-consistent	polarized	valence	

cc-pVTZ(-f)	 basis	 set	 [754].	 Multiple	 quantum	 chemical	 calculations	 were	

used	 to	 determine	 appropriate	 partial	 point	 charge	 values	 for	 each	

biomolecule,	 since	 multiple	 low-energy	 configurations	 exist	 for	 each	

biomolecule	 due	 primarily	 to	 torsion	 rotations.	 Electrostatic	 potential	

charges	were	determined	for	all	of	the	available	energy-minimized	stationary	

points	 and	 an	 average	 partial	 charge	 value	 for	 each	 atom	 type	 was	

determined	by	appropriately	weighting	the	contribution	of	each	ground-state	

structure	 to	 the	 overall	 conformational	 population.	 Comparable	

parameterization	schemes	have	been	adopted	for	the	derivation	of	the	OPLS-

AA	 menthol	 simulation	 forcefield	 [755]	 and	 for	 other	 AMBER	 [756]	 and	

GROMOS	forcefields	[757-758]	but	refinement	with	reference	experimental	

data	 is	 also	 common	 [759].	 The	 geometry	 of	 the	 menthol	 molecule	 was	

optimized	at	 the	HF/6-31G*	 theory	 level	 for	 the	 reparameterization	of	 the	

OPLS-AA	menthol	 forcefield.	Following	 that,	 single	point	 calculations	were	

performed	at	the	MP2	level	using	the	aug-cc-pVTZ	basis	set	with	the	f-type	

function	excluded.	The	reparameterization	enabled	more	accurate	simulation	

of	not	just	the	static	properties	of	liquid	menthol	but	also	transport	properties	

including	the	shear	viscosity.				

	

The	use	of	partial	point	charge	values	is	useful	for	enabling	the	simulation	of	

diverse	 biomolecules	 in	 standard	 nonpolarizable	 (fixed	 charge)	molecular	
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dynamics	simulations,	but	the	lack	of	theoretical	justification	for	the	complete	

omission	 of	 electronic	 motion	 can	 warrant	 the	 use	 of	 more	 complex	

polarizable	 simulation	 forcefields	 [760-762].	 Methods	 can	 be	 used	 to	

approximate	 the	 motion	 of	 electrons	 and	 ensure	 that	 charges	 within	

simulated	 biomolecules	 display	 some	 non-negligible	 response	 to	 their	

encompassing	electrostatically	active	environment.	To	be	clear,	the	methods	

make	 approximations	 for	 electronic	motion	 but	 the	 level	 of	 theory	 differs	

markedly	from	ab	initio	quantum	chemical	calculations.	The	Drude	oscillator	

model	mimics	 induced	 electronic	 polarization	 by	 introducing	 an	 auxiliary	

particle	attached	to	each	polarizable	atom	via	a	harmonic	spring	[763-766].	

Drude	 polarizable	 forcefields	 are	 a	 simple	 and	 intuitive	 improvement	 on	

conventional	 nonpolarizable	 forcefields	 since	 they	 preserve	 the	 simple	

particle-particle	 Coulomb	 electrostatic	 interactions	 that	 are	 common	 in	

GROMOS,	 AMBER,	 OPLS,	 etc.	 The	 AMOEBA	 (Atomic	 Multipole	 Optimized	

Energetics	 for	 Biomolecular	 Applications)	 forcefield	 is	 considerably	 more	

complex	and	aside	 from	having	a	different	 functional	 form	 for	 the	bonded	

potential	to	most	fixed	charge	molecular	dynamics	simulation	forcefields,	it	

also	 replaces	 the	 fixed	 partial	 charge	 model	 with	 polarizable	 atomic	

multipoles	through	the	quadrupole	moments	[767-768].	Rather	than	merely	

replicate	 interaction	 energies	 alone,	 the	 AMOEBA	 forcefield	 replicates	

molecular	polarizabilities	and	electrostatic	potentials.	The	use	of	permanent	

dipoles	and	quadrupoles	enables	the	AMOEBA	forcefield	to	effectively	change	

molecular	 charge	 distributions	 in	 response	 to	 changing	 or	 heterogeneous	

molecular	 environments.	 The	 energy	 correlations	 between	 AMOEBA	 and	

MP2	 energies	 for	 water-sulfate	 anion	 clusters	 were	 determined	 to	 have	

correlation	 coefficients	 of	 ~0.9	 and	 predicted	 AMOEBA	 solvation	 free	

energies	had	correlation	coefficients	of	~0.9	when	compared	with	reference	

experimental	values	[767].	Polarizable	forcefields	have	been	used	to	simulate	

relatively	 few	 lipid	 membranes	 but	 pronounced	 differences	 are	 already	

evident	e.g.	 large	differences	 in	 the	dipole	across	 the	water/lipid	 interface	

between	fixed	charge	and	polarizable	forcefield	simulations	[769-771].		
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2.3	Bonded	Potentials	
	

Quantum-chemical	 calculations	 are	 usually	 performed	 for	 most	molecular	

dynamics	molecules	 to	estimate	appropriate	electron	density	distributions	

that	are	then	modeled	as	partial	point	charges	according	to	Equation	10.	The	

intramolecular	bonding	potentials	are	modeled	as:		

	

𝒰]\0^*^(𝑟) =
1
2 _ 𝑘Qb�
]\0^�

d𝑟Qb − 𝑟*+e
1
	

+	
1
2 _ 𝑘Qb�� d𝜃Qb� − 𝜃*+e

1

]*0^	y0�@*�

	

+	
1
2 _ 𝑘Qb�@� d𝜔Qb�@ − 𝜔*+e

1

Q;��\�*�	^Q�*^�y@�

	

+
1
2 _ 𝑘Qb�@

� d1 + cosd𝑚𝜙Qb�@ − 𝛾;ee
��\�*�	^Q�*^�y@�

	

Equation	11	

Here,	𝑘Qb� ,	𝑘Qb�� ,	𝑘Qb�@� 	and	𝑘Qb�@
� 	are	 force	 constants	while	𝑟*+ ,	𝜃*+ 	and	𝜔*+ 	are	

the	 equilibrium	 bond	 distance,	 equilibrium	 valence	 angle	 and	 equilibrium	

improper	 torsion	 angle;	𝑚 	and	 𝛾; 	are	 the	 multiplicity	 and	 phase	 of	 the	

proper	torsion/dihedral	angle	term.	The	value	of	1 2⁄ 	is	placed	before	each	of	

the	bonded	potential	energy	terms	because	the	atomic	force	is	the	negative	

derivative	 of	 the	 scalar	 potential	 energy	 function	𝒰]\0^*^(𝑟) .	 	 The	 bonds	

between	adjacent	atoms	in	a	molecular	framework	are	usually	modeled	by	a	

harmonic	 potential	 with	 specified	 equilibrium	 separation	 (Figure	 21A),	
although	alternative	mathematical	functions	are	also	available.	The	bending	

angles	 between	 two	 successive	 bond	 vectors	 (or	 three	 directly	 bonded	

atoms)	are	described	by	a	harmonic	potential	with	an	equilibrium	valence	

angle	(Figure	21B).	The	improper	torsion	angles	usually	address	out	of	plane	

motions	 such	 as	 planarity	 of	 aromatic	 rings;	 for	 example,	 a	 harmonic	

potential	can	be	applied	to	control	the	angle	between	two	planes	(ijk)	and	(jkl)	

where	 atoms	 i,	 j,	 k,	and	 l	are	 neighboring	 atoms	 (Figure	21C).	 The	 proper	

torsion	angle	 term	controls	 the	 flexing	of	planes	(ijk)	and	 (jkl)	 formed	of	a	

consecutively	bonded	quadruple	of	atoms	(Figure	21D).	The	proper	torsion	
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angle	energy	is	typically	modeled	as	a	Fourier	cosine	series	expression,	the	

number	 of	 terms	 for	 a	 given	 torsion	 angle	 ranges	 between	 one	 and	 six	

depending	on	the	complexity	of	the	energy	profile	[772-773].					

	

Significant	work	is	undertaken	to	determine	appropriate	bonded	parameters	

for	 molecular	 dynamics	 simulation	 forcefields.	 Force	 constants	 and	

equilibrium	 positions	 are	 optimized	 using	 reference	 data	 from	 quantum	

chemical	calculations	and	experimental	analysis,	most	commonly	X-ray	and	

neutron	 scattering	 studies	 [750,774-775].	 Take	 for	 example,	 the	 General	

Amber	ForceField	(GAFF)	[756],	which	was	parameterized	for	simulations	of	

small	 organic	 molecules.	 GAFF	 used	 three	 sources	 of	 information	 for	 the	

parameterization	 of	 𝑟*+ 	values:	 (i)	 computationally	 demanding	 ab	 initio	

calculations	(MP2/6-31G*);	(ii)	X-ray	and	neutron	diffraction	data;	and	(iii)	

the	suite	of	Amber	protein	forcefields	[775-776].	The	𝑘Qb� 	force	constants	were	

derived	 by	 designing	model	molecules	 and	 performing	 high-level	ab	 initio	

vibrational	frequencies	analysis.	The	same	three	data	sources	were	used	for	

the	 calibration	 of	 angle	 parameters,	 i.e.	 the	 suite	 of	 Amber	 molecular	

dynamics	simulation	forcefields,	MP2/G-31G*	calculations	and	crystal	data.	

Data	 were	 initially	 collated	 for	 different	 atom	 types	 and	 subsequently	

averaged	 to	determine	appropriate	values	of	𝜃*+ .	The	 torsion	energy	angle	

parameters	 were	 determined	 through	 electronic	 structure	 calculations	

carried	 out	 at	 the	 MP4/6-311G(d,p)//MP2/6-31G*	 level.	 The	 Parmscan	

automatic	 engine	 [777]	 was	 used	 to	 derive	 an	 angle	 potential	 that	 could	

accurately	reproduce	the	reference	ab	 initio	 rotational	profile.	The	suite	of	

reference	 AMBER	 protein	 forcefields	 were	 themselves	 parameterized	

according	to	similar	procedures	[234].	Equilibrium	bond	 lengths	and	bond	

angles	were	taken	from	reference	crystal	structures	and	adapted	to	match	the	

normal	 mode	 frequencies	 of	 peptide	 fragments,	 while	 the	 torsion	 force	

constants	 were	 optimized	 to	 match	 torsional	 energy	 barriers	 taken	 from	

quantum	chemistry	calculations.		
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Figure	21.	The	components	of	the	molecular	dynamics	forcefield	bonded	
potential.	(A)	The	component	for	bond	stretching:	atoms	i	and	j	oscillate	
about	an	equilibrium	bond	distance	𝑟*+.	(B)	The	component	for	valence	
angles:	atoms	i,	j,	and	k	flex	about	an	equilibrium	valence	angle	𝜃*+ .	(C)	The	
improper	torsion	angle	component:	the	angle	between	the	two	intersecting	
planes	(ijk)	and	(jkl)	oscillates	about	an	equilibrium	improper	torsion	angle	
𝜔*+ .	(D)	The	proper	dihedral	component	describes	the	angular	spring	
between	the	planes	(ijk)	and	(jkl)	that	is	formed	of	four	consecutively	
bonded	atoms.		
	

Despite	the	simple	functional	form	of	bonded	interaction	energy	components	

in	 class	 I	 force	 fields	 (including	 AMBER,	 OPLS,	 and	 GROMOS),	 they	 are	

combined	 to	 produce	 acceptable	 predictions	 of	 thermodynamic	 data	 for	

biophysical	 systems.	 To	 more	 accurately	 simulate	 nanoscopic	 molecular	

properties	 such	 as	 molecular	 geometries	 or	 vibrational	 frequencies,	

alternative	functional	forms	can	be	used	to	model	bond	stretching	motions.	

In	class	II	force	fields	for	example,	bonded	interaction	energy	terms	are	more	
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commonly	modeled	using	anharmonic	functions	such	as	the	Morse	potential	

[778]:			

𝒰 = 𝐷*�1 − exp�−𝛽(𝑟 − 𝑟*+)��
1
	

Equation	12	

	

where	𝐷*	is	the	dissociation	energy	and	𝛽	is	an	adjustable	parameter	defined	

as	𝛽 = �𝑘Qb� (2𝐷*)⁄ .	The	stretching	energies	can	alternatively	be	calculated	by	

including	higher	order	polynomial	terms	and	cross-terms	to	account	for	the	

coupling	between	internal	atomic	coordinates.		

	

Forcefields	 specify	 the	 size	 of	 force	 constants	 and	 sometimes	 include	

additional	cross-terms	for	enhanced	chemical	accuracy.	The	forcefields	and	

their	associated	strength	parameters	are	carefully	calibrated	using	quantum	

mechanical	 calculations,	 vibration	 frequency,	 thermophysical,	 and	 phase	

coexistence	data.	The	selection	of	reference	data	for	forcefield	calibration	is	

dependent	on	the	intended	application	of	the	simulation	program.		

	

Scientists	do	in	general,	progressively	refine	molecular	dynamics	simulation	

forcefields	 toward	 some	 set	 of	 reference	 experimental	 data	 [163].	 The	

progressive	 fine-tuning	 of	 molecular	 dynamics	 simulation	 forcefield	

parameters	 enables	 newer	 generation	 forcefields	 to	 more	 accurately	

reproduce	experimental	data	that	has	been	collated	for	lipid	membranes	and	

proteins.	Lindorff-Larsen	et	 al.	performed	a	 systematic	 review	 to	 compare	

eight	different	protein	forcefields	with	idealized	reference	experimental	data	

sets	 [779].	Frist,	 through	the	use	of	experimental	NMR	data	[780-782],	 the	

group	examined	the	capacity	of	each	forcefield	to	describe	the	structure	and	

fluctuations	of	folded	proteins.	Second,	the	group	quantified	potential	biases	

toward	 different	 secondary	 structure	 types	 through	 comparison	 with	

experimental	and	simulation	data.	Third,	the	group	evaluated	the	capacity	of	

each	molecular	dynamics	simulation	forcefield	to	fold	two	small	proteins,	one	

an	α-helix	and	the	other	a	β-sheet	structure	(ubiquitin	and	GB3)	[783-786].	It	

was	found	through	comparative	analysis	that	the	simulation	forcefields	had	
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improved	 with	 time	 and	 that	 newer	 generation	 forcefields	 provided	

increasingly	 accurate	 descriptions	 of	 dynamic	 protein	 properties.	 Martin-

Garcia	 et	 al.	 [787]	 stated	 similarly	 that	 newer,	 reparametrized	 molecular	

dynamics	simulation	forcefields,	including	variants	of	AMBER	and	OPLS,	were	

able	 to	 accurately	 reproduce	 the	 displacement	 properties	 of	 proteins	 (e.g.	

ubiquitin	and	Protein	G)	when	compared	with	reference	experimental	NMR	

data	 [788-791].	 However,	 it	 was	 reported	 that	 in	 some	 instances	

reparametrizing	the	molecular	dynamics	simulation	forcefields	did	not	have	

the	intended	effect.	For	example,	proteins	had	similar	balances	of	helical	and	

coil	 conformations	 in	 simulations	 that	 were	 conducted	 with	 older	 less	

accurate	 forcefields,	 and	 newer	 generation	 forcefields	 that	 had	 apparently	

been	 specifically	 reparametrized	 to	 ensure	 that	 molecular	 dynamics	

simulations	provided	a	more	accurate	balance	of	 the	different	 (helical	 and	

coil)	protein	conformations.			

	

Molecular	 dynamics	 simulation	 forcefields	 have	 also	 been	 progressively	

refined	 to	 more	 accurately	 mimic	 the	 properties	 of	 lipids	 and	 biological	

membranes.	The	suite	of	GROMOS	molecular	dynamics	simulation	forcefields	

is	 an	 illustrative	example	 [59].	The	now	quite	dated	GROMOS87	 forcefield	

parameters	were	 originally	 optimized	 based	 on	 calculations	 of	 the	 crystal	

structures	of	hydrocarbons	and	amino	acids	[792].	The	original	GROMOS87	

forcefield	parameter	set	was	 later	modified	and	released	as	 the	newer	and	

improved	GROMOS96	forcefield.	The	GROMOS96	forcefield	was	improved	in	

different	ways,	e.g.	aliphatic	CHn	groups	were	reparametrized	on	the	basis	of	

simulations	of	model	 liquid	alkanes	using	 long	 (1.4	nm)	nonbonded	cutoff	

radii	[757].	Newer	generation	forcefields	were	optimized	after	this	to	make	

GROMOS	 forcefields	 even	 more	 accurate	 for	 simulating	 various	 proteins,	

sugars,	and	lipids.	The	GROMOS54A7	forcefield	included	adjusted	torsional	

angle	 terms	 to	 more	 accurately	 mimic	 helical	 propensities	 [793],	 the	

GROMOS53A5	was	optimized	to	reproduce	the	thermodynamic	and	solvation	

free	enthalpies	of	small	molecules,	the	GROMOS53A6	was	adjusted	to	better	

reproduce	 hydration	 free	 enthalpies	 in	 water	 [794],	 etc.	 Lipid	 forcefields	

were	 progressively	 refined	 to	 more	 accurately	 reproduce	 thermodynamic	
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parameters	 and	 other	 forms	 of	 reference	 experimental	 data.	 Fluid	

membranes	 were	 commonly	 simulated	 under	 the	 isothermal-isobaric	

ensemble	 (NPT)	 and	 compared	 with	 reference	 area	 per	 lipid,	 membrane	

thickness,	and	order	parameter	data	that	were	primarily	determined	from	X-

ray	and	neutron	scattering	studies;	for	example,	see:	[551,553].					

	

2.4	Atomistic	Forcefield	
	

Class	I	force	fields	(AMBER,	OPLS	and	GROMOS	etc.)	that	are	geared	towards	

the	 simulation	 of	 large	 biomolecular	 systems	 are	 optimized	 using	 a	

combination	 of	 quantum	 chemical	 calculations	 and	 thermophysical	 and	

phase	 coexistence	 data.	 	 Despite	 these	 shared	 approaches	 for	 optimizing	

simulation	 parameters,	 class	 I	 force	 fields	 can	 differ	 markedly	 in	 their	

representation	 of	 simulated	 biomolecules	 and	 thereby	 the	 number	 of	

pairwise	intermolecular	interactions	computed	per	simulation	time	step.	The	

constituent	 atoms	 of	 the	 simulated	 biomolecules	 can	 be	 explicitly	

represented	 to	 accurately	 reproduce	 the	 complex	 surface	 chemistry	 of	

proteins	 and	 lipids.	 Within	 CHARMM	 for	 example,	 carbon	 and	 hydrogen	

atoms	 are	 explicitly	 represented	 (Figure	 22A)	 and	 membrane	 protein	

dynamics	 are	 ordinarily	 accurately	 reproduced.	 Alternatively,	 neighboring	

carbon	and	hydrogen	atoms	can	be	clustered	into	single	interaction	centers	

within	united-atom	packages	such	as	the	GROMOS	suite	of	forcefields	[793-

794],	which	represent	CH2	and	CH3	hydrocarbon	units	as	single	interaction	

centers	 (Figure	 22B)	 and	 thereby	 reduce	 the	 number	 of	 computationally	

demanding	pairwise	interaction	calculations	that	are	computed	per	time	step.	

As	a	consequence	of	reducing	the	number	of	interatomic	interactions,	united-

atom	forcefields	are	typically	 less	accurate	and	 less	transferable	 than	their	

all-atom	counterparts.	For	complex	biomolecules	a	compromise	is	sometimes	

made	 e.g.	 acyl	 tails	 can	 be	 modeled	 using	 a	 united-atom	 approach,	 while	

aromatic	and	polar	hydrogen	atoms	are	explicitly	represented	[328].		
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Figure	 22.	 Some	 of	 the	 different	 resolution	 levels	 that	 can	 be	 used	 in	
molecular	dynamics	simulations.	 (A)	An	all-atom	model	 for	 the	DPPC	 lipid.	
The	 carbon	 (cyan),	 oxygen	 (red),	 nitrogen	 (blue),	 and	 hydrogen	 (white)	
atoms	 are	 represented	 here	 explicitly.	 (B)	 The	 GROMOS	 united-atom	
forcefield	model	for	the	DPPC	lipid.		The	hydrogen	atoms	are	clustered	into	
neighboring	 carbon	 atoms	 to	 produce	 a	 less	 computationally	 demanding	
representation	for	the	DPPC	lipid.	(C)	The	coarse-grained	Martini	forcefield	
model	for	the	DPPC	lipid.	Here,	multiple	neighboring	heavy	atoms	have	been	
clustered	into	single	pseudo-atom	interaction	centers	to	substantially	reduce	
the	computational	load	and	make	the	lipid	simulations	less	computationally	
demanding.	The	Martini	beads	have	the	following	color	scheme:	carbon	tail	
(cyan),	glycerol	(pink),	phosphate	(brown),	and	choline	(blue).		
	

2.5	Coarse-Grained	Forcefield	
	

Coarse-grained	 forcefields	 achieve	 further	 reductions	 in	 computational	

complexity	 by	 clustering	 multiple	 bonded	 atoms	 into	 single	 interaction	

centers	 or	 “pseudo-atoms”	 (Figure	 22C).	 By	 averaging	 out	 expensive	

atomistic	detail	in	this	way,	coarse-grained	forcefields	significantly	simplify	

the	description	of	biological	systems	[795-796],	enabling	scientists	to	access	

spatio-temporal	scales	that	are	beyond	the	scope	of	CHARMM	and	GROMOS.	

Coarse-grained	 forcefields	 expand	 the	 scope	 of	 molecular	 dynamics	

simulation	methods	 and	 reduce	 the	 division	 between	molecular	modeling	

programs	 and	 conventional	 experimental	 techniques.	 Coarse-grained	

forcefields	are	more	suitable	for	exploring	protein	interactions	that	occur	on	

mesoscopic	length	scales	and	microsecond	timescales	such	as	the	aggregation	

of	multiple	membrane	 proteins	 in	 planar	 and	 non-planar	 lipid	 geometries	

[351,496,797-798].		
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The	Martini	forcefield	[799]	was	specifically	calibrated	for	the	simulation	of	

proteins	and	lipids	and	it	has	been	used	to	simulate	different	multicomponent	

membranes.	 The	 Martini	 forcefield	 is	 parameterized	 in	 a	 systematic	 way:	

non-bonded	 interactions	 are	 based	 on	 the	 reproduction	 of	 experimental	

partitioning	 free	 energies,	 whereas	 bonded	 interactions	 are	 derived	 from	

reference	all-atom	and	united-atom	simulations.	The	model	primarily	adopts	

a	four-to-one	heavy	atom	mapping	scheme	to	reduce	the	computational	load	

i.e.	 on	 average	 four	 heavy	 atoms	 and	 associated	 hydrogen	 atoms	 are	

represented	as	a	single	interaction	center,	but	three-to-one	mapping	schemes	

were	 also	 made	 available	 for	 the	 representation	 of	 ring-like	 geometries.	

Based	on	 the	 chemical	nature	of	 the	 constituent	atoms,	 the	 coarse-grained	

particles	are	assigned	a	specific	particle	type:	polar	(P),	non-polar	(N),	apolar	

(C)	and	charged	(Q).	Within	each	category,	subtypes	are	further	distinguished	

by	their	hydrogen	bonding	capability	or	their	degree	of	polarity	for	the	fine-

tuning	of	 intermolecular	 interactions.	 It	 is	 important	 to	note	here	 that	 the	

Martini	 forcefield	 has	 now	 been	 employed	 to	 a	 study	 a	 range	 of	 other	

molecules	in	addition	to	proteins	and	lipids	[355,406,800-809].						

	

The	primary	strength	of	the	Martini	coarse-grained	forcefield	is	its	capacity	

to	 bridge	 the	 timescale	 and	 length-scale	 gap	 between	 computational	 and	

experimental	 methods	 using	 a	 relatively	 simple	 and	 broadly	 applicable	

method	for	mapping	diverse	biomolecules	from	atomistic	to	coarse-grained	

resolution	[174].	Users	can	portion	complex	(atomistic)	macromolecules	into	

smaller	sub-sections	and	assign	each	constituent	subdomain	a	Martini	bead	

type	classification	based	on	its	specific	atomistic	composition.	For	example,	

one	 might	 initially	 portion	 a	 phospholipid	 headgroup	 into	 constituent	

phosphate,	 choline,	 and	glycerol	 sub-sections	and	assign	each	 segment	 the	

following	Martini	bead	type	classifications:	Qa,	Q0,	and	Na	[428,810].	Rather	

than	 optimize	 the	 non-bonded	 parameters	 of	 each	 coarse-grained	 bead	

themselves,	users	 can	make	use	of	 so-called	 “Martini	building-blocks”	 that	

have	 already	 been	 carefully	 calibrated	 to	 reproduce	 experimental	

partitioning	 free	energies	by	Marrink	et	al.	 [799].	The	scope	of	 the	Martini	
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forcefield	 increased	 as	 newer,	 smaller	 beads	 were	 added	 to	 the	 Martini	

building-block	library	including	for	example,	the	Tiny	Martini	bead	type	that	

enabled	more	accurate	reproduction	of	DNA	conformational	characteristics	

[805].	The	Martini	forcefield	was	originally	parameterized	for	simulations	of	

proteins	 and	 lipids	 alone	 but	 is	 now	 used	 to	 simulate	 carbon	 nanotubes	

[802,811],	 dendrimers	 [812-813],	 C60	 nanoparticles	 [301,801],	 graphite	

monolayers	[800],	synthetic	hydrocarbon	polymers	[355],	chitin	fibers	[803],	

carbohydrates	[804],	DNA	[805],	RNA	[807],	alcohol	[406],	and	more.	Users	

can	 develop	 bespoke	 Martini	 models	 by	 mapping	 atomistic	 structures	 to	

Martini	beads	and	subsequently	optimize	the	bonded	parameter	sets	through	

comparisons	with	reference	atomistic	simulations.		

	

The	 second	 strength	 of	 the	Martini	 forcefield	 is	 its	 capacity	 to	 reproduce	

diverse	biophysical	parameters	and	provide	satisfactory	numerical	accuracy	

in	biomolecular	simulations.	There	is	the	reproduction	of	area	per	lipid	values	

for	 most	 types	 of	 phospholipid	 [814],	 different	 components	 of	 plasma	

membrane	 mimetics	 [799],	 and	 different	 LPS	 chemotypes	 [301,580],	 to	

within	0.1	to	0.2	nm2	of	the	experimental	values.	Other	than	this,	the	Martini	

forcefield	has	been	validated	through	the	accurate	reproduction	of	lipid	phase	

diagrams	 [335],	 the	 reproduction	 of	 ternary	 membrane	 phase	 behaviour	

[343-344],	 the	 dimerization	 free	 energies	 of	 transmembrane	 helices	 [815]	

and	the	capacity	of	the	forcefield	to	correctly	predict	protein	oligomerization	

events	 [115].	There	 is	 also	 the	accurate	 reproduction	of	 the	glycophorin	A	

dimer	structure	[816],	the	H-NMR	quadrupolar	splittings	of	WALP	peptides	

[817],	and	the	relatively	accurate	binding	free	energies	of	pentapeptides	at	

the	water-lipid	interface	[818].		

	

The	Martini	forcefield	can	accurately	reproduce	the	partitioning	properties	of	

most	 organic	 compounds	 and	 provide	 satisfactorily	 accurate	 quantitative	

data	for	most	biomolecular	simulations	[799,814].	However,	there	are	several	

limitations	that	affect	the	validity	of	the	Martini	forcefield	and	it	is	important	

to	 state	 some	 of	 the	most	 noteworthy	 inaccuracies	 here,	 since	 the	Martini	

forcefield	is	used	throughout	this	thesis.	First,	there	is	the	fact	that	the	Martini	
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forcefield	 was	 parameterized	 for	 the	 fluid	 phase	 and	 is	 not	 expected	 to	

accurately	reproduce	the	packing,	or	physical	properties	of	 the	solid	phase	

[819].	The	solid	phase	generally	appears	to	be	too	stable	in	Martini	forcefield	

simulations	 and	 this	 leads	 to	well-known	 inaccuracies	 including	 incorrect	

freezing	temperatures	for	water	[820]	and	the	inaccurate	simulation	of	solid-

fluid	interfaces.	The	Lennard-Jones	parameters	for	Martini	water	bring	it	into	

the	 solid	 state	 region	 of	 the	 Lennard-Jones	 phase	 diagram	 (at	 points	 of	

atmospheric	pressure	and	temperature)	[819]	and	in	previous	publications	it	

was	ascertained	that	the	freezing	point	of	Martini	water	can	be	as	high	as	290	

±	5	K	 [799,814,821].	One	can	 impede	Martini	water	 freezing	processes	by	

reducing	 long-range	 ordering	 effects,	 removing	 obvious	 ice	 formation	

nucleation	 sites	 or	 alternatively,	 by	 interspersing	 so-called	 “Martini	

antifreeze”	particles	throughout	areas	of	Martini	simulation	water	[819].		

	

Second,	the	Martini	forcefield	is	unsuitable	for	simulating	the	partitioning	of	

charged	 and	 polar	 compounds	 into	 low	 dielectric	 mediums.	 Coulombic	

interactions	are	screened	implicitly	with	a	relative	dielectric	constant	(𝜀�*@ =

15)	in	Martini	 forcefield	simulations	to	account	 for	 the	omission	of	explicit	

partial	 point	 charges	 [822].	 Because	of	 this	 implicit	 screening	 effect,	 polar	

molecules	have	unrealistically	weak	interaction	strengths	in	nonpolarizable	

solvents.	 This	 has	 affected	 for	 example,	 the	 capacity	 of	 lipids	 to	 create	

transmembrane	 water	 pores	 when	 they	 are	 dragged	 through	 biological	

membrane	mimetics	[799].				

	

Third,	 dynamic	 timescales	 tend	 to	 be	 different	 in	 coarse-grained	 and	

analogous	atomistic	resolution	simulation	studies.	Coarse-grained	simulation	

forcefields	 average	 out	 expensive	 atomistic	 detail,	 leading	 to	 smoother	

intermolecular	 interaction	 energy	 landscapes	 and	 less	 effective	

intermolecular	 friction	 [795-796].	 Based	 on	 comparisons	 between	 coarse-

grained	simulations	and	reference	data,	the	effective	time	sampled	in	Martini	

simulations	is	thought	to	be	three-	to	eightfold	larger	than	the	in	vivo	scenario	

[818].	 In	general,	 it	 is	 recommended	that	Martini	 simulation	 timescales	be	

multiplied	by	a	factor	of	four	because	Martini	water	diffuses	approximately	
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four	 times	 too	 fast	 when	 compared	 with	 experimental	 data	 [823].	 The	

fourfold	speed-up	factor	is	a	reasonably	accurate	conversion	factor	for	many	

biomolecular	processes	in	Martini	coarse-grained	simulations	including	the	

permeation	rates	of	water	across	lipid	membranes	[814]	and	the	aggregation	

of	lipids	into	bilayers	[814]	or	vesicles	[742].	However,	the	conversion	factor	

has	 not	 been	 tested	 systematically	 for	 all	 classes	 of	 biomolecules	 and	 its	

applicability	is	therefore,	somewhat	limited.	Protein	dynamics	have	not	been	

thoroughly	tested	and	it	is	possible	that	a	fourfold	speedup-factor	could	be	

inappropriate	for	describing	the	effective	timescale	of	Martini	protein-lipid	

interactions.	 In	 general,	 it	 is	 recommended	 that	 readers	 should	 interpret	

simulation	timescales	as	being	semi-quantitatively	accurate	[818].				

	

Fourth,	the	Martini	forcefield	represents	ions	as	Q	type	Martini	beads,	which	

have	 integer	 charge	 values,	 either	 ±1	 or	 2,	 and	 mass	 values	 of	72 	amu	

(corresponding	to	four	water	molecules)	[822].	This	implicit	presentation	of	

ions	can	make	it	difficult	to	accurately	reproduce	the	interactions	of	realistic	

lipids	 and	 biological	 membranes.	 Coarse-grained	 Martini	 cations	 do	 not	

effectively	 establish	 hydrogen-bonded	 water	 networks	 and	 this	 has	

repeatedly	 been	 reported	 to	 undesirably	 impact	 the	 properties	 of	 Gram-

negative	 bacterial	 membrane	 mimetics	 in	 Martini	 forcefield	 simulations	

[151,301,329].	 There	 is	 less	 water	 moving	 through	 the	 core	 saccharide	

domain	of	coarse-grained	Martini	Gram-negative	bacterial	membranes	and	

the	 LPS	 core	 saccharide	 domain	 tends	 to	 be	 much	 too	 compressed	 if	

measurements	 are	 drawn	 along	 the	 membrane	 normal	 axis	 (z-axis)	

[151,580,824].	 These	 inaccuracies	 will	 invariably	 have	 some	 undesirable	

effects	 on	 the	 forthcoming	 simulations	 of	 coarse-grained	 bacterial	

membranes.			

	

Coarse-grained	 simulations	 generally	 provide	 satisfactorily	 accurate	

qualitative	data,	but	it	is	important	to	appreciate	that	quantitative	errors	and	

inaccuracies	are	sometimes	unavoidable	due	to	the	implicit	representation	of	

the	 simulated	 ions	 and	 biomolecules.	 Coarse-grained	 Martini	 forcefield	

simulations	are	generally	referred	to	as	being	“semi-quantitatively”	accurate	
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[822]	and	no	more,	or	no	less,	should	be	expected	from	the	coarse-grained	

simulations	that	are	conducted	throughout	this	thesis.				

	

2.6	Periodic	Boundary	Conditions	
	

Molecular	 dynamics	 simulations	 conventionally	 consider	 a	 relatively	 small	

portion	of	bulk	macroscopic	systems	due	to	computational	constraints	and	

the	limitations	of	modern	computer	hardware.	The	relatively	small	size	of	the	

simulation	 cells	 can	 introduce	unwanted	boundary	effects	as	 lipid,	protein	

and	 solvent	 molecules	 explore	 the	 simulation	 cell	 and	 interact	 with	 the	

simulation	cell	walls.		One	can	attempt	to	reduce	these	unrealistic	edge	effects	

by	applying	periodic	boundary	conditions.	Here,	particles	are	placed	within	a	

unit	cell	that	is	replicated	to	infinity	by	periodic	translations;	the	particles	are	

able	to	freely	traverse	the	space-filling	box	and	pass	through	the	box	borders	

unabated	 (Figure	 23)	 [825].	 Each	 particle	 interacts	 with	 its	 immediate	

neighbors	 (including	 atoms	 in	 replicated	 cells)	 provided	 they	 satisfy	 user-

defined	cutoff	criteria.	Given	that	each	cell	is	identical	to	its	translated	copies,	

molecular	 dynamics	 programs	 compute	 the	 potential	 energy	 for	 a	 single	

representation	 of	 the	 periodic	 system.	Due	 to	 the	 introduction	 of	 periodic	

boundary	conditions	there	 is	no	 longer	an	explicit	 interaction	between	the	

system	particles	and	the	unit	cell	borders	and	this	removes	the	extraneous	

influence	of	the	simulation	cell	walls	and	effectively	enables	the	reproduction	

of	macroscopic	physical	phenomena	with	limited	computer	resources	e.g.	the	

self-assembly	of	lamellar	lipid	bilayers	that	serve	as	suitable	surrogates	for	

macroscopic	biological	membranes.		
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Figure	23.	Schematic	illustration	of	a	single	particle	(red	circle)	passing	
through	the	borders	of	a	periodic	unit	cell	(black	lines).	The	use	of	periodic	
representations	provides	a	more	accurate	mimic	of	bulk	systems	given	the	
removal	of	a	well-defined,	simulation	cell	boundary.	The	simulated	atoms	
can	freely	traverse	the	space-filling	box	and	as	they	pass	through	one	border	
of	the	unit	cell,	they	instantaneously	re-enter	through	the	opposite	face.		
	

 
2.7	Short	and	Long	Interactions	
	

Calculating	the	nonbonded	interactions	is	generally	the	most	computationally	

demanding	aspect	of	conventional	molecular	dynamics	simulations.	As	stated	

previously,	 nonbonded	 interactions	 are	 typically	 decomposed	 into	 two	

components:	(i)	van	der	Waals	interactions	that	are	used	to	mimic	dispersion	

and	 electron	 orbital	 overlap;	 and	 (ii)	 explicit	 electrostatic	 interactions	

between	partial	point	charges	that	are	computed	according	to	Coulomb’s	law.	

In	theory,	each	particle	experiences	explicit	electrostatic	and	van	der	Waals	

interactions	with	the	entire	simulation	system	(including	atoms	in	replicated	

cells	 across	periodic	boundaries).	 In	practice,	 approximations	are	made	 to	

reduce	 the	 computational	 load	 and	 enable	 scientists	 to	 access	 larger	

spatiotemporal	scales.	The	treatment	of	van	der	Waals	and	coulomb	forces	

differs	because	the	van	der	Waals	potential	approaches	zero	rapidly	(as	𝑟'k)	

and	the	electrostatic	potential	decays	relatively	slowly	(as	𝑟'()	[826].		
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2.8	Short	Range	Interactions	
	

The	 coulomb	 interactions	 can	be	 computed	with	 the	 reaction	 field	method	

[827-828],	which	assumes	a	constant	dielectric	environment	beyond	a	user-

defined	cutoff	distance	𝑟z .	For	a	given	dielectric	constant	of	𝜀��,	the	reaction	

field	potential	is	given	as:	

	

𝓋w�� = 𝑓
𝑞Q𝑞b
𝜀�𝑟Qb

¡1 +
𝜀�� − 𝜀�
2𝜀�� + 𝜀�

𝑟Qb<

𝑟z<
¢ − 𝑓

𝑞Q𝑞b
𝜀�𝑟z

3𝜀��
2𝜀�� + 𝜀�

	

Equation	13	

	

so	that	the	potential	reduces	to	zero	at	the	user-defined	cut-off	distance.	For	

charged	 cut-off	 spheres	 this	 corresponds	 to	 neutralization	 with	 a	

homogeneous	background	charge.	

	

Alternatively,	the	nonbonded	potentials	can	be	computed	through	the	use	of	

shift	functions	that	smooth	the	interaction	energies	to	zero,	close	to	a	user-

defined	cutoff	length.	The	shift	functions	[829-830]	reduce	the	computational	

load	 by	 effectively	 discounting	 the	 long	 range	 nonbonded	 interactions	

through	 the	 use	 of	 cutoff	 lengths,	 while	 simultaneously	 ensuring	 that	

significant	 truncation	 errors	 are	 not	 inadvertently	 introduced;	 an	

improvement	over	straight	cut-off	methods	that	can	drastically	affect	system	

properties.	The	shift	function’s	effects	on	the	nonbonded	interactions	must	

be	carefully	considered	and	methods	such	as	Ewald	summation	[831],	must	

be	properly	implemented	to	account	for	long-range	electrostatic	interactions	

that	have	been	left	untreated.			

	

The	shift	function	is	implemented	as:												

																													

Φ¥(𝑟) =
(
�¦
− N

<
d𝑟 − 𝑟��Q�§e

< − n
¨
d𝑟 − 𝑟��Q�§e

¨ − 𝐶;										𝑟��Q�§ ≤ 𝑟 ≤ 𝑟z}§	

Φ¥(𝑟) =
(
�¦
− 𝐶;																					 	 	 	 											𝑟 ≤ 𝑟��Q�§	
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𝐴 =
𝛼{(𝛼 + 1)𝑟��Q�§ − (𝛼 + 4)𝑟z}§}

𝑟z}§
(¥¬1)(𝑟z}§ − 𝑟��Q�§)1

	

	

𝐵 = −
𝛼{(𝛼 + 1)𝑟��Q�§ − (𝛼 + 3)𝑟z}§}

𝑟z}§
(¥¬1)(𝑟z}§ − 𝑟��Q�§)<

	

	

𝐶 =
1
𝑟z}§¥

−
𝐴
3
d𝑟z}§ − 𝑟��Q�§e

<
−
𝐵
4
d𝑟z}§ − 𝑟��Q�§e

¨
	

	

Equation	14-18	

	

where	α	denotes	 the	power	 for	 the	Coulombic	 (𝛼 = 1)	 and	Lennard-Jones	

(𝛼 = 6,12)	 terms.	The	 functional	 form	ensures	that	 the	nonbonded	force	 is	

continuous	 and	 smoothly	 decays	 to	 zero	 between	 𝑟��Q�§ 	and	 the	 cut-off	

distance	𝑟z}§.	 	

	

2.9	Long	Range	Interactions	
	

The	electrostatic	energy	for	N	particles	is	given	by:	

	

𝓋 =
𝑓
2_____

𝑞Q𝑞b
𝒓Qb,𝒏

U

b

U

Q0¯∗0±0²

	

Equation	19		

	

where	 the	 vector	𝐧 = (𝑛´,𝑛µ, 𝑛¶) 	runs	 through	 all	 the	 replicated	 cells	 of	

lengths	(𝐿´, 𝐿µ, 𝐿¶)	in	the	three	dimensions.	The	star	indicates	that	terms	with	

𝑖 = 𝑗	should	 be	 omitted	when	d𝑛´, 𝑛µ, 𝑛¶e = (0,0,0).	 The	𝒓Qb,𝒏 	term	denotes	

distances	between	particles	within	a	single	simulation	cell	i.e.	not	minimum-

image	distance.		

	

Ewald	summation	computes	the	total	electrostatic	energy	for	N	particles	by	

decomposing	 the	 slowly	 converging	 sum	 (Equation	 19)	 into	 two	 faster	

converging	terms	and	a	constant	term:	
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𝓋z\}@\;] = 𝓋^Q�*z§ + 𝓋�*zQ��\zy@ + 𝓋�*@� 	

𝓋^Q�*z§ =
𝑓
2____𝑞Q𝑞b

𝑒𝑟𝑓𝑐(𝛽𝒓Qb,𝒏)
𝒓Qb,𝒏0¯∗0±0²

U

Q,b

	

𝓋�*zQ��\zy@ =
𝑓
2𝜋𝑉_𝑞Q𝑞b___

𝑒𝑥𝑝(−(𝜋𝒎 𝛽⁄ )1 + 2𝜋𝑖𝒎 ∙ (𝒓Q − 𝑟b))
𝒎1

;¯∗;±;²

U

Q,b

	

𝓋�*@� = −
𝑓𝛽
√𝜋

_𝑞Q1
U

Q

	

Equation	20-23	

	

Here,	𝐦 = (𝑚´,𝑚µ,𝑚¶)	and	𝛽	is	an	adjustable	parameter	whose	magnitude	

determines	the	relative	weighting	of	the	direct	and	reciprocal	components	of	

the	electrostatic	energy.	The	cost	of	computing	the	direct	space	sum	is	low,	

but	 the	 reciprocal	 sum	 scales	 as	𝑁1 	and	 therefore	 the	 Ewald	 summation	

becomes	intractable	for	large	simulation	systems.		

	

Molecular	dynamics	programs	make	use	of	 the	Particle	mesh	Ewald	(PME)	

summation	method	[832]	to	reduce	the	computational	load	and	enable	the	

calculation	 of	 the	 reciprocal	 sum.	 PME	 scales	 as	𝑁 log(𝑁)	and	 is	 therefore	

more	 suitable	 for	 simulating	 medium-to-large	 systems.	 PME	 summation	

methods	assign	explicit	charge	points	 to	a	grid	that	 is	Fourier	 transformed	

with	3D	FFT	algorithms	instead	of	implicit	Fourier	transformations.					

	

2.10	Energy	Minimization	
	

If	the	starting	configuration	for	a	simulation	system	is	far	from	equilibrium	

the	 inter-atomic	 forces	may	be	excessively	 large	 causing	 the	 simulation	 to	

become	unstable.	Energy	minimization	algorithms	can	be	used	to	optimize	

molecular	positions	and	orientations	and	thereby	effectively	reduce	the	total	

system	energy.	The	energy	minimization	process	reduces	unfavorable	inter-

atomic	interactions	and	removes	undesirable	steric	clash.	The	optimization	

algorithms	 adjust	 atomic	 positions	 to	 locate	 minima	 in	 the	 complex	
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conformational	 landscape	of	 atomistic	or	 coarse-grained	systems.	 	Popular	

minimization	procedures	are	the	steepest	descent	[833],	conjugate	gradient	

[834],	 and	 limited-memory	 Broyden-Fletcher-Goldfarb-Shanno	 (L-BFGS)	

[835]	optimization	algorithms.	Energy	minimization	is	sometimes	performed	

with	 soft-core	 van	 der	Waals	 potential	 energy	 functions	 that	 help	 to	 keep	

pairwise	interaction	energies	finite	when	conventional	energy	minimization	

algorithms	would	lead	to	endpoint	errors.			

	

The	steepest	descent	method	is	a	robust	and	easy	to	implement	first-order	

iterative	optimization	algorithm.	 Initially	 the	 forces	𝑭	and	potential	energy	
are	 computed	 for	 a	 given	 simulation	 system	 using	 a	 selected	 simulation	

forcefield,	new	positions	are	subsequently	determined	using:		

	

𝒓U¬( = 𝒓U +
𝑭0

𝑚𝑎𝑥(|𝑭0|)
ℎ0	

Equation	24	

	

where	ℎ0	is	the	(user-defined)	maximum	atomic	displacement	and	𝑭0	is	the	

negative	 gradient	 of	 the	 potential	 energy	 function	𝒰(𝒓U) .	 The	 forces	 and	

energy	for	the	new	configuration	are	resolved	and	the	update	is	accepted	if	

there	 is	 an	 overall	 reduction	 in	 total	 potential	 energy.	 	 The	 algorithm	 is	

stopped	 after	 a	 selected	 number	 of	 iterations	 have	 been	 performed	 or	

alternatively	when	the	maximum	absolute	values	of	the	force	components	are	

smaller	than	an	arbitrarily	defined	value	[836].			

	

2.11	Integrators	
	

The	calibrated	force	fields	can	in	theory,	be	used	to	determine	the	force	acting	

on	each	particle	within	the	simulation	system	and	thereby	generate	a	time-

dependent	trajectory:	

𝒇Q = −
𝜕
𝜕𝒓Q

𝒰(𝒓U) = 𝑚Q
𝑑1𝒓𝒊
𝑑𝑡1 		

Equation	25	
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Given	however,	that	the	motion	of	each	particle	is	affected	by	the	position	and	

velocity	of	all	of	its	neighbors,	a	numerical	finite	difference	approach	must	be	

adopted	 to	overcome	 the	demands	of	 an	otherwise	 intractable	many-body	

problem.			The	equations	of	motion	are	integrated	using	a	small	time	step	Δt	

while	the	acceleration	(𝒂)	of	each	particle	is	assumed	to	remain	constant.	The	

series	 of	 time	 dependent	 atomic	 positions	 (or	 the	molecular	 trajectory)	 is	

obtained	by	integrating	Newton’s	equations	of	motion	with	respect	to	time.		

	

𝒂(𝑡) = 	
𝑑1𝒓(𝑡)
𝑑𝑡1 	

𝒂(𝑡)𝑡 + 𝒗(0) =
𝑑𝒓(𝑡)
𝑑𝑡 	

1
2𝒂

(𝑡)𝑡1 + 𝒗(0)𝑡 + 𝒓(0) = 𝒓(𝑡)	

Equation	26-28	

	

By	 integrating	 Equation	 26	 from	 0	 to	 t	 we	 obtain	 Equation	 27,	 further	

integration	 produces	 Equation	 28,	 which	 is	 the	 Taylor	 series	 for	 atom	

displacement	and	is	the	basis	of	all	molecular	dynamics	integration	methods.		

Assuming	that	the	forces	acting	on	a	particle	are	constant	during	a	finite	time	

step,	 new	 positions	 at	 a	 subsequent	 step	 can	 be	 determined	 from	 the	

positions,	 velocities	and	 forces	at	 the	previous	 step.	 	The	Verlet	 algorithm	

[837]	calculates	atomic	positions	at	time	t	+	Δt	using	the	current	locations	of	

the	system	particles	and	their	positions	during	the	preceding	time	step.		

	

𝒓(𝑡 + Δt) = 𝒓(𝑡) + 𝒗(𝑡)Δt + [𝒂(Δt)1 2]⁄ 	

𝒓(𝑡 − Δt) = 𝒓(𝑡) − 𝒗(𝑡)Δt + [𝒂(Δt)1 2]⁄ 	

𝒓(𝑡 + Δt) = 2𝒓(𝑡) + 𝒂(Δt)1 − 𝒓(𝑡 − Δt)	

Equation	29-31	

	

The	Verlet	 algorithm	 is	 straightforward	 and	 the	 storage	 requirements	 are	

modest,	 however	 the	 integration	 algorithm	 is	 of	 moderate	 precision	 and	

explicit	particle	velocities	are	not	calculated	during	the	update	procedure.	An	
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alternative	approach	is	the	leap-frog	algorithm	[838]	that	calculates	atomic	

positions	and	velocities	at	half	time	steps.		

	

𝑣 Í𝑡 +
1
2ΔtÎ = 𝑣 Í𝑡 −

1
2ΔtÎ + 𝑎Δt	

𝒓(𝑡 + Δt) = 𝒓(𝑡) + 𝒗Í𝑡 +
1
2ΔtÎ Δt	

Equation	32-33	

	

Using	the	leap-frog	algorithm,	the	velocities	are	calculated	at	time	𝑡 + (
1
Δt	and	

used	 to	 determine	 the	 positions	 at	 time	 𝑡 + Δt .	 The	 update	 algorithm	

explicitly	calculates	the	velocities	at	half	time	steps,	while	the	positions	are	

determined	 for	 integer	 multiples	 of	 Δt 	only	 (Figure	 24).	 The	 lack	 of	

synchronization	 between	 particle	 positions	 and	 velocities	 can	 be	

approximately	 overcome	 by	 estimating	 the	 velocity	 at	 time	 t	 using	 the	

relationship:	

	

𝑣(𝑡) =
1
2 h𝑣 Í𝑡 −

1
2ΔtÎ + 𝑣 Í𝑡 +

1
2ΔtÎl	

Equation	34	

	

The	Verlet	and	leap-frog	algorithms	operate	by	using	information	of	particle	

positions	and	velocities	disseminated	from	previous	time	steps	but	this	data	

must	be	manually	configured	at	the	start	of	molecular	dynamics	simulations.	

The	 positions	 of	 particles	 in	 a	 crystal	 can	 be	 determined	 from	 X-ray	

diffraction	 patterns	while	 the	 positions	 of	 particles	 that	 make	 up	 organic	

compounds	 can	 be	 determined	 from	 nuclear	 magnetic	 resonance	 (NMR)	

spectroscopy	experiments.	The	particle	positions	for	liquids	are	not	resolved	

experimentally;	 the	 particles	 are	 instead	 usually	 positioned	 on	 a	 three-

dimensional	grid	whose	structure	is	user-defined.	The	initial	particle	speeds	

can	 then	 be	 estimated	 from	 a	Maxwell	 Boltzmann	 distribution,	 where	 the	

distribution	of	particle	speeds	p(v)	is	calculated	according	to:	
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𝑝(𝑣) = �(
𝑚

2𝜋𝑘𝑇)
< exp ¡

𝑚𝑣1

2𝑘𝑇
¢	

Equation	35	

	

where	k	is	Boltzmann’s	constant	and	T	is	the	system	temperature.		

	

	

	

	

	

	

	

	

Figure	24.	Illustration	showing	how	the	leap-frog	algorithm	operates.	The	
computation	of	particle	positions	is	shown	with	a	blue	line	and	the	
computation	of	particle	velocities	is	shown	with	a	red	line.	Simulation	time	
is	represented	with	a	black	arrow;	the	time	step	is	user-defined	and	should	
be	calibrated	to	ensure	that	molecular	dynamics	simulations	are	both	
efficient	and	realistic.	There	is	a	lack	of	synchronization	between	the	
particle	position	and	velocity	calculations:	if	particle	positions	are	calculated	
at	𝑡 + 𝑛Δt,	then	particle	velocities	are	calculated	at	𝑡 + 0

1
Δt,	where	𝑛 ∈ ℕ.			

	

2.12	Temperature	Coupling	
	

The	use	of	molecular	dynamics	integrators	naturally	gives	rise	to	the	micro-

canonical	 NVE	 (constant	 number,	 constant	 volume,	 and	 constant	 energy)	

ensemble	but	it	is	usually	more	desirable	to	calculate	the	physical	properties	

of	 the	 canonical	 (NVT)	 and	 the	 isothermal-isobaric	 (NPT)	 ensemble.	 To	

simulate	the	canonical	and	isothermal-isobaric	ensembles,	it	is	essential	that	

molecular	 dynamics	 programs	 implement	 algorithms	 that	 enable	 users	 to	

control	the	system	pressure	and	temperature.	The	ensemble	properties	are	

usually	coupled	to	external	heat	and	pressure	baths	to	accurately	modulate	

their	magnitude.	Molecular	dynamics	simulation	programs	most	commonly	

use	 the	 weak-coupling	 Berendsen	 scheme	 [839],	 the	 extended	 ensemble	

r r 

v v 

t t + δt 

t – δt/2 t + 3δt/2 

t - δt 

t + δt/2 
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Nosé-Hoover	scheme	[840],	and	the	velocity-rescaling	scheme	to	modulate	

system	temperature	and	correct	for	unwanted	temperature	fluctuations	and	

drift	 that	occurs	 as	 a	 result	of	 integration	 errors,	heating	 due	 to	 frictional	

forces	and	heating	due	to	external	forces.					

	
The	 Berendsen	 scheme	 is	 an	 efficient	 weak-coupling	 algorithm	 that	 uses	

exponential	relaxation	to	correct	for	deviations	from	a	user-defined	reference	

temperature	according	to:		

	
𝑑𝛵(𝑡)
𝑑𝑡 =

𝛵Ñ − 𝛵(𝑡)
𝜏 	

Equation	36	

	

Here,	𝜏	is	the	time	constant	that	determines	the	strength	of	coupling	between	

the	heat	bath	𝛵Ñ	and	the	simulation	system	𝛵(𝑡).	The	Berendsen	thermostat	

controls	the	system	temperature	by	rescaling	particle	velocities	and	thereby	

suppresses	 fluctuations	 in	 kinetic	 energy.	 The	 algorithm	 cannot	 produce	

trajectories	 consistent	 with	 the	 canonical	 ensemble	 and	 this	 affects	 the	

magnitude	of	fluctuation	properties	such	as	the	heat	capacity.	The	velocity-

rescaling	thermostat	is	similar	to	the	Berendsen	weak-coupling	algorithm	but	

an	 additional	 stochastic	 term	 is	 used	 to	 ensure	 a	 correct	 kinetic	 energy	

distribution	by	modifying	it	according	to:	

	

𝑑𝐾 = (𝐾Ñ − 𝐾)
𝑑𝑡
𝜏Ó
+ 2Ô

𝐾𝐾Ñ
𝑁�

𝑑𝑊
√𝜏Ó

	

Equation	37	

	

where	K	is	the	kinetic	energy,	dW	is	a	Wiener	process	and	𝑁�	is	the	number	

of	degrees	of	freedom.	The	velocity-rescaling	thermostat	produces	a	correct	

canonical	ensemble	while	enabling	efficient	first-order	decay	of	temperature	

deviations.		

	

Canonical	 ensembles	 can	 alternatively	 be	 simulated	with	 the	Nosé-Hoover	

coupling	algorithm,	which	introduces	a	frictional	term	into	the	equations	of	



 136 

motion.	 The	 friction	 parameter	 ξ	 is	 a	 dynamic	 quantity	 with	 its	 own	

momentum	whose	magnitude	depends	on	the	difference	between	the	current	

kinetic	energies	and	the	reference	temperature:	

	
𝑑𝑝Ö
𝑑𝑡 = (𝛵−𝛵Ñ)	

Equation	38	

	

Under	this	scheme,	the	particles	of	a	given	simulation	system	are	integrated	

according	to:	

𝑑1𝒓𝒊
𝑑𝑡1 	= 	

𝒇Q
𝑚Q

−
𝑝Ö
𝑄
𝑑𝒓𝒊
𝑑𝑡 	

Equation	39	

	

where	𝑄	is	a	constant	that	is	usually	termed	the	mass	parameter	of	the	Nosé-

Hoover	thermal	reservoir.	Temperature	coupling	algorithms	can	be	used	one	

after	 another	 to	 facilitate	 simulation	 set	 up	 e.g.	 initial	 equilibration	 with	

velocity	 rescaling	 thermostats	 and	 subsequent	 production	 runs	 with	 the	

Nosé-Hoover	coupling	algorithm.	

	

2.13	Pressure	Coupling	
	

Molecular	 dynamics	 programs	 support	 different	 methods	 including	 the	

Berendsen	algorithm,	the	extended-ensemble	Parrinello-Rahman	[841-842]	

approach	and	the	Martyna-Tuckerman-Tobias-Klein	[843]	(MTTK)	barostat	

to	 control	 system	 pressure.	 The	 Berendsen	 algorithm	 modulates	 system	

pressure	by	rescaling	the	box	vectors	of	the	simulation	cell	every	𝑛Øw 	steps	

with	a	matrix	μ	and	this	enables	first-order	relaxation	of	the	system	pressure	

towards	the	user-defined	reference	pressure	𝐏Ñ:	
	

𝑑𝑷(𝑡)
𝑑𝑡 =

𝑷Ñ − 𝑷(𝑡)
𝜏�

	

Equation	40	
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Here,	𝜏� 	is	 the	 barostat	 relaxation	 time	 constant.	 The	 relaxation	 algorithm	

leads	to	cell	size	variations	where	the	volume	is	scaled	by	a	factor	η	and	the	

coordinates	and	cell	vectors	are	scaled	by	η( <⁄ :	

	

η(t) = 1 −
Δt
𝜏�
𝛾(𝑷Ñ − 𝑷(𝑡))	

Equation	50	

	

where 	𝛾 	is	 the	 isothermal	 compressibility	 of	 the	 system.	 The	 Berendsen	

pressure	 control	 algorithm	 yields	 the	 correct	 average	 pressure	 for	 a	

simulation	system,	but	it	does	not	yield	the	NPT	ensemble.	In	theory,	the	exact	

NPT	ensemble	can	be	produced	with	the	Parrinello-Rahman	approach,	which	

couples	 the	 system	 pressure	 to	 an	 external	 pressure	 bath	 by	 adding	 an	

additional	degree	of	freedom	into	the	equations	of	motion.	The	box	vectors	

are	subsequently	scaled	using	their	own	equations	of	motion.	

	

𝑑1𝒓𝒊
𝑑𝑡1 	= 	

𝒇Q
𝑚Q

− 𝑀
𝑑𝒓𝒊
𝑑𝑡 	

𝑀 = 𝒃'( ¡𝒃
𝑑𝒃Þ

𝑑𝑡 +
𝑑𝒃
𝑑𝑡 𝒃

Þ¢ 𝒃Þ'(	

𝑑𝒃1

𝑑𝑡1 = 𝑉𝑾'(𝒃Þ('()(𝑷 − 𝑷Ñ)	

Equation	51-53	

	

Here,	𝒃	is	a	matrix	of	the	box	vectors,	𝑉	denotes	the	volume	of	the	simulation	

box	 and	𝑾'( 	determines	 the	 coupling	 strength	 between	 the	 simulation	

system	 and	 the	 pressure	 bath.	 	 The	 matrix	𝑾'( 	is	 calculated	 using	 the	

expression:	

	

(𝑾'()Qb =
4𝜋1𝛽Qb
3𝜏�1𝐿

	

Equation	54	
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Here,	𝐿 	is	 the	 largest	 box	 vector	 and	𝛽 	is	 the	 isothermal	 compressibility.	

Deviations	 in	 system	 pressure	 are	 minimized	 through	 oscillatory	

convergence	 towards	 the	 user-defined	 reference	 pressure.	 The	 Parrinello-

Rahman	algorithm	can	lead	to	large	fluctuations	in	the	dimensions	of	the	unit	

cell	if	the	system	pressure	is	far	from	equilibrium	and	these	fluctuations	can	

make	 the	 simulation	 system	 unstable.	 It	 is	 common	 to	 first	 run	 an	

equilibration	 simulation	 with	 the	 weak-coupling	 Berendsen	 algorithm	 to	

exponentially	 converge	 the	 system	 pressure	 and	 subsequently	 use	 the	

Parrinello-Rahman	scheme	to	yield	the	correct	isothermal-isobaric	ensemble.	

	

2.14	Constraints	
	

The	choice	of	integration	step	is	essential	for	ensuring	that	simulations	are	

efficient	 and	 molecular	 motions	 are	 appropriately	 sampled.	 In	 atomistic	

simulations	 the	most	 rapid	motions	 are	 the	 bond	 stretching	 vibrations	 of	

carbon-hydrogen	bonds	that	occur	on	the	timescale	of	10	fs	and	thus	limit	the	

simulation	 time	 step	 to	 ~1	 fs.	 The	 time	 step	 used	 in	molecular	 dynamics	

simulations	is	set	to	be	at	least	ten	times	smaller	than	the	carbon-hydrogen	

bond	 vibration	 timescale	 to	 ensure	 that	 the	 bonded	 atoms	 do	 not	

instantaneously	overlap,	 leading	to	the	computation	of	unrealistically	large	

intermolecular	 forces	 and	 the	 production	 of	 unstable	molecular	 dynamics	

simulations.		

	

The	 rapid	 carbon-hydrogen	 bond	 vibrations	 can	 be	 discounted	 as	 an	

alternative	approach	 if	 they	are	deemed	by	the	user	to	be	unnecessary	 for	

producing	relevant	biophysical	data.		Constraint	algorithms	can	be	applied	to	

maintain	 the	distance	between	atomic	mass	points	during	 simulation	 time	

and	this	enables	the	use	of	larger	integration	time	steps	and	the	simulation	of	

longer	timescales.	The	SHAKE	[844]	and	LINCS	[845]	methods	are	used	quite	

frequently	in	united-atom	simulations	to	fix	bonds	lengths	or	angles	after	the	

integration	of	forces	and	effectively	enable	the	use	of	~2-4	fs	time	steps.		
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The	SHAKE	algorithm	manipulates	a	set	of	unconstrained	coordinates	𝒓Q 	to	

produce	 a	 set	 of	 atomic	 positions	 that	 are	 in	 line	 with	 selected	 distance	

constraints	 𝒓Q′ .	 The	 algorithm	 uses	 a	 set	 reference	 r	 to	 achieve	 this	

conversion:					

							

𝑆𝐻𝐴𝐾𝐸(𝑟Q → 𝑟Qå	; 	𝒓)	

Equation	55	

	

The	 algorithm	 functions	 by	 solving	 a	 set	 of	 Lagrange	 multipliers	 in	 the	

constrained	equations	of	motion.	Under	this	scheme,	the	equations	of	motion	

fulfil	a	set	of	K	holonomic	constraints	𝜎�(𝒓(, 𝒓1 …𝒓U) = 0; 	𝑘 = 1…𝐾,	and	the	

forces	acting	on	simulation	particles	are	defined	by:	
		

−
𝜕
𝜕𝒓Q

æ𝒰 +_𝜆�𝜎�

ç

�è(

é	

Equation	56	

	

where	𝜆�	are	Lagrange	multipliers	that	are	solved	iteratively	by	the	SHAKE	

algorithm.			

	

The	 LINCS	 algorithm	 is	 in	 contrast,	 non-iterative	 and	 can	 only	 be	 used	 to	

constrain	 isolated	angles	and	molecular	bonds.	The	algorithm	is	 faster	and	

more	 stable	 than	 its	 SHAKE	 counterpart	 and	 for	 this	 reason	 the	 LINCS	

approach	 is	 generally	 preferred.	 For	 a	 given	 simulation	 system	 particle	

acceleration	can	described	by	the	equation:	

𝑑1𝒓
𝑑𝑡1 = 	𝑴

'(𝑭	

Equation	57	

	

where	matrix	𝑴	contains	the	atomic	masses	and	F	is	the	3N	force	vector.	The	

system	is	subject	to	K	constraint	equations:		
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𝑔Q(𝒓) = |𝒓Q( − 𝒓Q1| − 𝑑Q = 0		; 		𝑖 = 1, 2, . . , 𝐾	

Equation	58	

	

where	𝑑Q 	is	 the	 constraint	 distance.	 The	 gradient	 matrix	 of	 the	 constraint	

equation	is:	

	

𝐵�Q =
𝜕𝑔�
𝜕𝑟Q

	

Equation	59	

	

The	 updated	 constrained	 positions	𝒓0¬( 	are	 related	 to	 the	 unconstrained	

positions	𝒓0¬(}0z 	by:	

	

𝒓0¬(}0z = (𝑰 − 𝑻0𝑩0)𝒓0¬(}0z + 𝑻0𝒅 =	
	

𝒓0¬(}0z − 𝑴'(𝑩0(𝑩0𝑴'(𝑩0ñ)'((𝑩0𝒓0¬(}0z − 𝒅)	
	
	

Equation	60-61	

	

where	𝑻 = 𝑴'𝟏𝑩𝑻(𝑩𝑴'𝟏𝑩𝑻)'𝟏.		This	first	step	projects	the	new	bonds	onto	

the	directions	of	the	previous	bonds.	The	projection	of	the	bond	𝑝Q 	on	the	old	

direction	is	then	set	to:	

𝑝Q = �2𝑑Q1 − 𝑙Q1	

Equation	62	

	

where	 𝑙Q 	is	 the	 bond	 length	 after	 the	 first	 projection.	 The	 corrected	

coordinates	are:		

	

𝒓0¬(z\��*z§ = (𝑰 − 𝑻0𝑩0)𝒓0¬( + 𝑻0𝒑	

Equation	63	
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2.15	Position	Restraints	
	

Molecular	dynamics	packages	enable	users	 to	 impose	restraining	 forces	on	

specified	atoms	e.g.	membrane	protein	carbon	atoms,	to	guide	biomolecular	

system	 construction	 or	 steer	 the	 simulation	 through	 an	 arbitrary	 energy	

pathway.	 Position	 restraints	 are	 ordinarily	 implemented	 according	 to	 the	

following	function:		

	

𝑉��(𝑟) =
1
2𝑘��

|𝒓Q − 𝑹Q|1	

Equation	64	

	

where	 𝑘�� 	defines	 the	 restraining	 force	 applied	 to	 maintain	 the	 fixed	

reference	 particle	 positions	𝑹Q .	 The	 functional	 form	 makes	 the	 position	

restraint	 potential	 scale	with	 the	magnitude	 of	 particle	 position	 deviation	

(Figure	 25).	 The	 position/restraint	 potential	 energy	 function	 can	 also	 be	

written	as:		

	

𝑉��(𝒓Q) =
1
2
�𝑘��´ (𝑥Q − 𝑋Q)1𝒙ø + 𝑘��

µ (𝑦Q − 𝑌Q)1𝒚ø + 𝑘��¶ (𝑧Q − 𝑍Q)1𝒛ÿ�	

Equation	65	

	

Users	can	control	the	position	restraint	potential	for	the	x,	y,	and	z	dimensions	

of	a	simulation	cell.	Users	can	define	the	strength	of	 the	harmonic	position	

restraint	 forces	 that	 act	 along	 the	 x,	 y,	 and	 z	 spatial	 axis	 and	 through	 the	

implementation	of	the	restraint	potential,	users	can	confine	particle	positions	

to	arbitrary	 spheres,	planes,	or	 lines	within	 the	periodic	unit	 cell.	Position	

restraint	 forces	are	 regularly	used	by	 scientists	 to	equilibrate	membranes,	

micelles,	nanodiscs	and	they	have	also	been	used	to	mimic	the	action	of	the	

cytoskeletal.						
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Figure	25.	Representative	harmonic	potential	used	to	enforce	(standard)	
position	restraints	in	molecular	dynamics	simulations.	The	potential	energy	
rises	as	particles	drift	from	a	user-defined	reference	position.	The	
magnitude	of	the	potential	energy	is	a	function	of	the	distance	between	the	
atom	and	the	user-defined	reference	position.					
	

2.16	Flat-Bottomed	Position	Restraints	
	

Alternative	functional	forms	can	be	used	to	restrain	the	position	of	simulation	

particles	and	 facilitate	 simulation	 set	up.	Flat-bottomed	position	restraints	

subject	particles	to	a	harmonic	biasing	force	while	they	are	outside	a	user-

defined	 volume	 of	 the	 simulation	 cell	 and	 these	 restraining	 forces	 are	

removed	when	the	particles	move	back	into	the	arbitrarily	selected	volume.	

The	 flat-bottomed	 position	 restraint	 potential	 (Figure	 14)	 is	 computed	

according	to:					

	

𝑉�](𝒓Q) =
1
2𝑘�]

�𝑑�(𝒓Q; 𝑹Q) − 𝑟�]�
1
𝐻�𝑑�(𝒓Q; 𝑹Q) − 𝑟�]�	

Equation	66	

	

where	𝑹Q 	is	the	reference	particle	position,	𝑟�]	defines	the	distance	from	the	

center	with	a	flat	potential,	𝐻	is	the	Heaviside	function,	and	the	magnitude	of	

the	restraining	force	is	set	with	𝑘�].	Molecular	dynamics	simulation	packages	

enable	users	to	apply	flat-bottomed	position	restraint	potentials	to	different	

types	of	lipid	geometries.	Users	can	for	example,	apply	flat-bottomed	position	

restraint	 forces	 to	 a	 cylindrical	 domain	 of	 space	 that	 spans	 a	 simulated	
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membrane	 mimetic.	 Lipids	 would	 be	 able	 to	 move	 unabated	 within	 the	

cylindrical	domain	of	space	but	their	trajectories	would	be	affected	outside	of	

the	cylinder.	Flat-bottomed	position	restraints	can	be	used	with	the	following	

geometries:		

	

Spherical:	 The	 particle	 is	 subjected	 to	 a	 restraining	 force	when	 it	 leaves	 a	

spherical	domain	(contained	within	the	unit	cell):	

	

𝑑�(𝒓Q; 𝑹Q) = |𝒓Q − 𝑹Q|	

Equation	67	

	

Cylindrical:	Particles	are	contained	within	cylinders	that	span	the	x,	y,	or	z-

axis	simulation	cell	axes	and	have	user-defined	radii.	The	harmonic	biasing	

force	acts	toward	the	cylinder	axes	and	is	computed	according	to	the	function:	

												

𝑑�(𝒓Q; 𝑹Q) = !(𝑥Q − 𝑋Q)1 + (𝑦Q − 𝑌Q)1	

Equation	68	

	

In	this	example	the	cylindrical	restraining	force	is	being	imposed	along	the	z-

axis,	but	the	restraining	force	can	be	imposed	along	the	x	and	y	axes	instead.	

Cylindrical	restraints	are	increasingly	being	used	to	facilitate	the	construction	

of	 well-packed	 lipid	 vesicles.	 The	 CHARMM-GUI	 Martini	 Maker	 Module	

[151,232]	 uses	 flat-bottomed	 position	 restraint	 potentials	 to	 maintain	

cylindrical	cavities	across	the	surface	of	spherical	vesicles	and	thereby	enable	

lipids	to	transfer	between	the	inner	and	outer	bilayer	leaflets.	The	procedure	

enables	lipids	to	flip	between	membrane	leaflets	and	the	process	can	reduce	

bilayer	tension.				

	

Layer:	Particle	position	restraint	forces	can	be	applied	along	the	x,	y,	or	z-axis	

to	restrain	the	motion	of	selected	atoms	and	subject	them	to	a	biasing	force	

as	they	pass	through,	and	move	away	from,	the	borders	of	user-defined	slabs	

of	 simulation	 cell	 space.	 Position	 restraint	 forces	 can	 be	 applied	
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simultaneously	along	the	x,	y,	and	z-axes	to	restrain	the	motion	of	selected	

particles	to	a	cubic	volume	of	the	simulation	cell.	The	forces	are	described	as:		

	

𝑑�(𝒓Q; 𝑹Q) = |𝑥Q − 𝑋Q|,	or	𝑑�(𝒓Q; 𝑹Q) = |𝑦Q − 𝑌Q|,	or	𝑑�(𝒓Q; 𝑹Q) = |𝑧Q − 𝑍Q|	

Equation	69	

	

2.17	Umbrella	Sampling	
	

Large	 energy	 barriers	 can	 exist	 between	 distinct	 regions	 of	 the	 potential	

energy	 landscape	 in	 conventional	molecular	 dynamics	 simulation	 systems	

and	 this	 can	 leave	molecular	 configurations	 poorly	 sampled	 or	 completed	

neglected.	 Biased	 simulation	 techniques	 can	 be	 used	 to	 sample	 otherwise	

inaccessible	 reaction	 coordinates	 when	 the	 form	 of	 the	 potential	 energy	

landscape	hinders	ergodicity.		

	

The	umbrella	sampling	technique	[846-847]	enables	equal	evaluation	of	all	

points	along	a	reaction	coordinate	that	separates	two	well-defined	states	e.g.	

the	transition	of	a	solute	from	hydrophilic	to	hydrophobic	solvent.	Molecular	

configuration	 series	 are	 initially	 generated	 along	 a	 selected	 reaction	

coordinate.	The	starting	configurations	are	most	commonly	extracted	 from	

simulations	where	a	molecule	of	interest	(e.g.	a	solute)	is	steered	in	a	user-

defined	 direction	 through	 the	 use	 of	 a	 harmonic	 biasing	 potential	 [848].		

Initial	 configurations	 are	 generated	 through	 the	 application	 of	 steered	

molecular	 dynamics	 techniques	 and	 umbrella	 potentials	 and	 subsequently	

applied	to	restrain	the	center	of	mass	position	of	the	molecule	of	interest	as	

it	interacts	with	the	encompassing	molecular	environment.	The	distance	that	

separates	the	starting	configurations	is	set	to	be	sufficiently	small	such	that	

there	is	overlap	between	adjacent	simulation	windows	and	one	can	therefore	

produce	a	single,	continuous	energy	function.											

	

For	 the	user-defined	 reaction	 coordinate	 (ξ),	 the	umbrella	potential	 that	 is	

used	 to	 restrain	 the	 molecular	 system	 at	 the	 position	 ξQz	(𝑖 = 1,

. . . , 𝑁𝑤)		with	force	constant	𝐾Q 	is:			
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𝑤Q(ξ) = 𝐾Q 2(ξ− ξQz)1⁄ 	

Equation	70	

	

for	 a	 set	 of	 𝑁$ 	separate	 umbrella	 simulation	 windows.	 The	 restrained	

simulations	can	be	used	to	generate	umbrella	histograms	ℎQ(ξ)	that	represent	

the	probability	distribution	𝑃Q](ξ)	along	the	reaction	coordinate	biased	by	the	

umbrella	potential.			

	

2.18	Weighted	Histogram	Analysis	Method	
	

The	Weighted	 Histogram	 Analysis	 Method	 [849]	 (WHAM)	 can	 be	 used	 to	

normalize	 the	 resulting	 probability	 distributions	 𝑃Q](ξ) 	and	 resolve	 the	

potential	of	mean	force	(PMF)	function.	 	WHAM	operates	by	estimating	the	

statistical	 uncertainty	 of	 the	 unbiased	 probability	 distribution	 and	

subsequently	calculates	the	PMF	corresponding	to	the	smallest	uncertainty.	

Thus,	the	WHAM	equations	read	as:		

	

𝑃(ξ) = 	
∑ 𝑔Q'(ℎQ(ξ)
U'
Qè(

∑ 𝑛b𝑔Q'( exp�−𝛽(𝑤b(ξ) − 𝑓b)�
U'
bè(

	

exp(−𝛽𝑓b) = (𝑑ξ exp�−𝛽(𝑤b(ξ)�	𝑃(ξ)		

Equation	71-72	

	

where	𝛽 = 1 𝑘n𝑇⁄ ,	𝑛b 	is	 the	 number	 of	 data	 points	 in	 histogram	ℎQ(ξ) 	and	
𝑔Q = 1 + 2𝜏Q 	when	𝜏Q 	is	 the	autocorrelation	 time	of	 the	umbrella	window	 i.	

The	PMF	is	related	to	the	unbiased	probability	distribution	by:		

	

𝒲(ξ) = −𝛽'(ln[𝑃(ξ) 𝑃(ξÑ)⁄ ]	

Equation	73	

	

Here,	ξÑ	defines	the	position	where	the	PMF	reduces	to	zero.	The	GROMACS	

g_wham	function	computes	the	two	unknown	elements	of	Equations	71	and	

72,	 the	 free	 energy	 constants	𝑓b ,	 and	 the	 unbiased	 distribution	𝑃(ξ),	while	
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simultaneously	allowing	for	the	computation	of	robust	error	estimates	using	

bootstrap	techniques	[850].							

	

2.19	Area	per	Lipid	and	Bilayer	Thickness	
	

The	area	per	lipid	is	the	average	lateral	surface	area	that	is	occupied	by	lipids	

in	a	biological	membrane.	The	area	per	lipid	can	be	computed	as	the	product	

of	the	X	and	Y	box	vectors	divided	by	half	the	total	number	of	lipids	when	the	

unit	cell	is	cubic	and	the	area	per	lipid	is	equivalent	in	upper	and	lower	bilayer	

leaflets.	The	bilayer	 thickness	 can	be	 computed	as	 the	 separation	distance	

between	the	upper	and	lower	leaflet	lipid	phosphate	groups.	These	relatively	

simple	methods	for	analyzing	membrane	morphology	become	less	accurate	

when	bilayers	undulate,	when	membranes	contain	many	different	 types	of	

lipid	 molecules	 and	 when	 bilayer	 curvature	 is	 generated	 through	 active	

processes	mediated	by	specialized	proteins,	lipids	or	the	cytoskeleton.		

	

Polygon-based	 tessellation	 procedures	 can	 be	 used	 instead	 as	 a	 more	

generally	 applicable	 technique	 that	 is	 appropriate	 for	 analyzing	 the	

properties	of	both	flat	and	curved	membrane	surfaces	[851].	The	upper	and	

lower	 membrane	 leaflets	 can	 be	 partitioned	 into	 planes	 of	 contiguous	

polygons	 based	 on	 the	 distances	 between	 adjacent	 lipid	 headgroups.	 The	

average	 projected	 surface	 area	 of	 each	 tessellated	 polygon	 provides	 a	

reasonably	robust	and	accurate	measure	of	area	per	lipid,	while	the	average	

membrane	 thickness	 can	 be	 computed	 as	 the	 average	 distance	 between	

tessellated	 polygons	 either	 side	 of	 the	 membrane	 midplane.	 Voronoi	

tessellations	 segment	 bilayer	 surfaces	 into	 contiguous	 planes	 of	 convex	

polygons,	whereas	Delaunay	triangulations	decompose	bilayer	surfaces	into	

contiguous	planes	of	small	triangles.		

	

Bhatia	 et	 al.	 [851]	 compared	 different	 Voronoi	 tessellation	 and	 Delaunay	

triangulation	methods	for	determining	the	area	per	lipid	fields	of	distorted	

plasma	membrane	mimetics	[364].	Comparisons	were	drawn	between	three	

membrane	 structure	 analysis	 tools:	APL@VORO	 [852],	 FATSLiM	 [853]	 and	
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MemSurfer	 [851].	 APL@VORO	 determines	 the	 area	 per	 lipid	 by	 projecting	

three-dimensional	 coordinates	 onto	 two-dimensional	 surfaces,	 whereas	

FATSLiM	determines	area	per	lipid	via	iterative	and	highly	localized	Voronoi	

tessellation	calculations.	MemSurfer	adopts	an	altogether	different	approach	

and	 calculates	 area	 per	 lipid	 through	 Delaunay	 triangulation	 procedures.	

Visualizations	 were	 included	 in	 this	 publication	 to	 show	 how	 Delaunay	

triangulation	 methods	 manage	 to	 capture	 small	 undulations	 within	

membrane	surfaces	that	are	missed	by	the	less	accurate	Voronoi	tessellation	

tools,	i.e.	APL@VORO	and	FATSLiM.	The	publication	demonstrates	that	even	

the	 more	 robust	 polygon-based	 tessellation	 procedures	 are,	 in	 some	

instances,	 inaccurate	 and	 that	 even	 seemingly	 basic	membrane	 properties	

can	 be	 difficult	 to	 accurately	 evaluate	 in	molecular	 dynamics	 simulations.	

Each	method	has	been	used	to	assess	area	per	lipid	values	for	flat	membranes	

of	phospholipid-composite	and	LPS-composite	simulation	systems	to	within	

0.1	or	0.2	nm2	of	experimental	values	[151,301,329,851-853].	The	tools	are	

suitable	for	analyzing	the	properties	of	flat	lipid	membrane	systems	but	they	

are	less	suitable	for	studying	highly	curved	membranes	that	have	unusually	

complex	topologies.		

	

Area	 per	 lipid	 and	 membrane	 thickness	 parameters	 have	 similarly	 been	

evaluated	with	X-ray	and	neutron	scattering	analysis	techniques	[854].	The	

most	 common	 real-space	 parameter	 derived	 from	 X-ray	 and	 neutron	

scattering	 experiments	 is	 the	 membrane	 thickness.	 However,	 there	 is	 no	

single	 definition	 of	 membrane	 thickness,	 since	 one	 might	 characterize	

membrane	width	as	the	full	extension	of	the	hydrophobic	membrane	interior	

or	as	the	distance	between	terminal	hydrophilic	headgroup	moieties,	or	then	

again,	 some	 other	 entirely	 distinct,	 but	 equally	 valid	 metric	 [854].	 One	

relatively	 simple	 method	 for	 assessing	 membrane	 thickness	 is	 to	 initially	

divide	the	repeat	spacing	of	(membrane)	lamellae	stacks	into	distinct	water	

and	 lipid	 regions	 and	 subsequently	 determine	 membrane	 width	 through	

relatively	 simple	 comparative	 numerical	 analysis	 [855].	 The	 divisions	

between	membranes	can	be	ascertained	by	monitoring	the	contrast	between	

protiated	 and	 deuterated	 water	 stacks	 through	 neutron	 scattering	
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experiments	[856-857].	This	method	makes	use	of	multiple	lipid	membranes	

and	 is	 expected	 to	provide	reasonable	numerical	 accuracy;	however,	users	

must	 be	 able	 to	 precisely	 quantify	 both	 the	 lipid	 concentration	 and	 the	

specific	volumes	of	both	water	and	lipid.		

	

X-ray	 scattering	experiments	are	 commonly	applied	 to	assess	 the	head-to-

head	distance,	which	 is	defined	by	 the	positions	of	 the	 two	maxima	 in	 the	

electron	density	profiles	of	 lipid	bilayer	 structures	[856].	This	method	has	

been	applied	to	study	the	morphology	of	rough	(Re,	Rd,	Rc,	and	Ra)	LPS	lipid	

membranes	[568]	and	the	resulting	data	were	used	to	validate	different	LPS	

molecular	 dynamics	 simulation	 forcefields	 [301,308,551].	 There	 are	many	

other	 alternative	 methods	 for	 determining	 membrane	 thickness	 through	

experimental	techniques.	Membrane	thickness	can	be	evaluated	for	example,	

from	NMR-derived	properties	such	as	the	acyl	chain	carbon-deuterium	bond	

order	parameter	[858-859].	It	is	important	to	appreciate	that	experimentally	

derived	membrane	thickness	data	usually	depend	on	specific	approximations	

including	 the	 tilt	of	 lipid	 tails	 and	 the	volume	of	 constituent	 lipid	moieties	

[856,858,860].	Thickness	values	for	single	lipid	types	can	vary	substantially	

and	it	is	consequently	desirable	to	compare	computational	data	with	several	

sets	of	experimental	data.		

	

Experiments	 have	 also	 been	 performed	 to	 assess	 area	 per	 lipid	 values	 for	

different	membranes	and	this	data	has	been	used	to	validate	atomistic	and	

coarse-grained	molecular	dynamics	simulation	forcefields	for	the	past	couple	

of	decades	[167,428,822].	Area	per	lipid	data	tends	to	take	precedence	over	

membrane	 thickness	 magnitudes	 for	 molecular	 dynamics	 simulation	

forcefield	benchmarking	because	it	is	inextricably	linked	to	lipid	fluidity	and	

is	 especially	 sensitive	 to	 the	magnitude	 of	 intermolecular	 lipid	 headgroup	

attraction	 and	 repulsion	 forces.	 Petrache	 et	 al.	 [861]	 proposed	 that	

volumetric	data	and	electron	density	profiles	could	be	combined	and	used	to	

determine	the	area	per	lipid	values	of	single-component	bilayers	according	to	

the	formula:		
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𝐴>� =
𝑉>� − 𝑉+Ñ

𝐷wÑ + (𝐷++� − 𝐷++Ñ )/2
	

Equation	74	

	

Here,	𝐴>� 	and	𝑉>� 	are	 the	 area	 and	 volume	 per	 lipid	𝑘 	within	 a	 biological	

membrane	of	thickness	𝐷++� .		𝑉+Ñ	represents	the	volume	of	the	headgroup	of	

the	 lipid	of	 reference	 in	a	bilayer	of	 thicknesses	𝐷++Ñ 	and	2𝐷wÑ.	The	method	

makes	assumptions	that	are	difficult	to	prove	through	experimental	analysis	

e.g.	 that	 𝑉+Ñ 	and	 𝐷wÑ 	can	 always	 be	 accurately	 estimated.	 An	 altogether	

different	approach	seeks	to	determine	area	per	lipid	from	the	values	of	lipid	

volume	(𝑉>)	and	the	Luzzati	thickness	[857]:		

	

𝐴> =
2𝑉>
𝐷n

	

Equation	75	

	

But	 it	 is	presumed	that	one	can	accurately	estimate	the	magnitude	of	 lipid	

volumetric	parameters	[856,862-863],	even	though	this	is	rarely	the	case.		

	

Less	 intuitive	 approaches	have	 been	 proposed	 based	 on	 the	 average	NMR	

order	 parameters	 of	 selected	 carbon-deuterium	 bonds.	 The	 area	 per	 lipid	

values	can	be	extrapolated	from	the	volume	per	methylene	groups	and	the	

orientation	of	methylene	groups	with	respect	to	the	membrane	normal	axis	

(z-axis)	[858-860].	It	has	been	found	that	these	experimentally	determined	

area	per	lipid	values	can	vary	significantly;	much	more	so	than	the	area	per	

lipid	values	that	are	determined	from	computer	simulations.	There	tends	to	

be	greater	differences	between	lipid	packing	parameters	that	are	determined	

with	 different	 types	of	 experimental	 apparatus	 than	 the	 comparative	 lipid	

packing	parameters	that	are	determined	with	different	molecular	dynamics	

simulation	 forcefields	 [854].	 This	 incongruity	 suggests	 that	 there	 is	 a	

systematic	bias	 toward	specific	 lipid	packing	parameters	within	molecular	

dynamics	simulations	and	this	calls	into	question	the	validity	of	using	such	

reference	metrics	 for	molecular	 dynamics	 simulation	 forcefield	 validation.	
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Nonetheless,	 area	 per	 lipid	 and	 membrane	 thickness	 values	 are	 now	

established	 as	 “gold-standards”	 for	 assessing	 the	 quality	 of	 molecular	

dynamics	 simulation	 forcefields	 and	 these	 lipid	 packing	 parameters	 were	

used	quite	recently	to	validate	rough	(Re	and	Ra)	LPS	coarse-grained	Martini	

simulation	 forcefields	 [301].	 Lipid	 packing	 parameters	 have	 been	 used	

repeatedly	 in	 the	 past	 to	 validate	 biomolecular	 simulation	 forcefields;	 for	

example,	see	[408,428,799,814]										

	

2.20	Order	Parameter	
	

The	acyl	 tail	 order	parameter	quantifies	 the	orientational	mobility	of	 lipid	

acyl	 tails	within	 a	 fluid	membrane	 [428,569,864].	The	 dynamic	 parameter	

provides	a	unique	metric	to	quantify	the	average	order	of	acyl	chains	relative	

to	the	bilayer	normal	over	the	course	a	molecular	dynamics	simulation.	The	

order	parameter	is	calculated	according	to	the	following	equation:		

	

𝑆w- =
1
2 < 3(cosΘ)1 − 1 >	

Equation	76	

	

Here,	Θ	is	the	time-dependent	angle	between	acyl	chain	bond	vectors	and	the	

membrane	normal	reference	axis.	The	magnitude	of	the	computed	acyl	chain	

order	parameters	depends	on	the	resolution	level	of	the	molecular	dynamics	

simulation	 forcefields.	 Single	 bond	 vectors	 between	 two	 coarse-grained	

beads	can	represent	multiple	underlying	carbon	atoms	and	consequently	the	

order	parameters	of	 comparative	 coarse-grained	and	atomistic	 acyl	 chains	

can	be	significantly	different	[301].				

	

Comparisons	 have	 been	 made	 between	 experimental	 and	 computational	

order	 parameter	 data	 sets	 to	 validate	 molecular	 dynamics	 simulation	

forcefields.	Take	for	example,	the	recent	validation	of	the	hybrid	GLYCAM06	

[557-559]	and	Stockholm	 lipids	 forcefield	 (Slipids)	 [727]	 that	was	used	 to	

model	 a	P.	 aeruginosa	 biological	membrane	mimetic	 [556].	 The	molecular	

dynamics	 simulation	 model	 membrane	 contained	 an	 outer	 (extracellular)	
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leaflet	 of	 Lipid	 A	molecules	 and	 the	 inner	 (intracellular)	 leaflet	 contained	

some	combination	of	DPPE,	DOPE,	DPPG,	and	DOPG	lipids.	The	averaged	acyl	

chain	order	parameter	was	determined	to	be	0.38	for	the	simulated	Lipid	A	

molecules	in	these	atomistic	simulations	and	for	comparison,	the	acyl	chain	

order	parameter	for	Lipid	A	molecules	was	determined	to	be	0.28	when	they	

were	analyzed	with	Fourier-transform	infrared	spectroscopy	(FT-IR)	[865].	

Molecular	simulations	conducted	with	the	GLYCAM	and	AMBER	forcefields	

reported	 order	 parameter	 values	 of	 0.32	 instead	 [866-868]	 and	 these	

differences	 demonstrate	 (i)	 that	 molecular	 dynamics	 forcefields	 generally	

provide	 satisfactorily	 accurate	 predictions	 for	acyl	 chain	 order	 parameter;	

and	(ii)	that	some	atomistic	forcefields	provide	more	acceptable	predictions	

of	experimental	data	than	others.			

	

2.21	Radius	of	Gyration	
	

The	radius	of	gyration	 is	used	 in	polymer	science	to	assess	how	compact	a	

macromolecule	 is	 around	 its	 center	 of	 mass	 [869].	 For	 a	 macromolecule	

composed	 of	 n	 mass	 elements	 of	 mass	 values	𝑚Q, 𝑖 = 1,2…𝑛 	located	 at	

positions	𝒓Q 	from	the	center	of	mass,	the	radius	of	gyration	is	computed	as	the	

square-root	of	the	mass	average	of	𝒓Q1	over	all	mass	elements	i.e.		

	

𝑅� = (_𝑚Q𝒓Q1
0

Qè(

_𝑚Q

0

Qè(

2 )( 1⁄ 	

Equation	77	

	

Alternatively,	one	can	compute	the	radius	of	gyration	around	the	coordinate	

or	principal	axes	by	only	summing	the	radii	components	orthogonal	to	each	

axis:	

𝑅�,´ = (_𝑚Q(𝒓Q,µ1 + 𝒓Q,¶1 )
0

Qè(

_𝑚Q

0

Qè(

2 )( 1⁄ 	

Equation	78	
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2.22	Root-Mean-Square	Deviation	
	

The	 root-mean-square	 deviation	 (RMSD)	 of	 atomic/particle	 positions	

measures	the	average	distance	between	the	atoms	of	a	dynamic	biomolecule	

relative	 to	 a	 reference	 structure.	 The	 most	 common	 application	 of	 RMSD	

computation	 is	 for	 the	 study	 of	 globular	 protein	 conformations	where	 the	

RMSD	of	carbon-α	atomic	coordinates	is	compared	for	a	fluctuating	protein	

relative	to	a	superimposed	reference	structure	[870].				

	

One	typically	computes	the	deviation	of	atomic	positions	relative	to	a	starting	

crystal	 structure	 within	 molecular	 dynamics	 simulations	 to	 evaluate	 the	

molecular	fluctuation.	The	RMSD	value	can	alternatively	be	computed	with	

respect	 to	 the	 structure	of	 a	biomolecule	at	 specified	 simulation	 time	𝑡1 =

𝑡( − 𝜏.	The	functional	form	of	the	RMSD	is	then:	
	

𝑅𝑀𝑆𝐷(𝑡(, 𝑡1) = [
1
𝑀_𝑚Q‖𝒓Q(𝑡() − 𝒓Q(𝑡1)‖1

U

Qè(

]
(
1	

	Equation	79	

where	𝑀 = ∑ 𝑚Q
U
Qè( 	and	𝒓Q(𝑡)	is	the	position	of	particle	i	at	time	t.	

	
2.23	Radial	Distribution	Function	
	

The	 radial	 distribution	 function	 g(r)	 for	 a	 dynamic	 simulation	 system	

describes	 how	 the	 density	of	 atoms,	molecules,	 colloids	 etc.	 varies	 around	

central	 reference	 particles	 and	 it	 is	 determined	 by	 partitioning	 simulation	

system	 into	 a	 system	 of	 concentric	 circles	 or	 spheres.	 Radial	 distribution	

function	 algorithms	 compute	 the	 probability	 that	 molecules	 are	 located	

within	concentric	spherical	shells	of	user-defined	width.	In	GROMACS	[742]	

the	 radial	 distribution	 function	 algorithm	 is	 implemented	 as	 a	 pair	

correlation	function	for	atoms	of	type	A	and	B	according	to:	

	

𝑔Nn	(�) =
〈𝜌n(𝑟)〉
〈𝜌n〉@\zy@

=
1

〈𝜌n〉@\zy@
1
𝑁N
__

𝛿(𝑟Qb − 𝑟)
4𝜋𝑟1

U8

b9n

U:

Q9N
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Equation	80	

	

Here,	𝜌n(𝑟)	is	the	density	of	particles	of	type	B	at	a	distance	r	from	particles	

of	 type	A	 and	〈𝜌n〉@\zy@ 	is	 the	 density	 of	 type	B	 particles	 averaged	 over	 all	

spheres	encompassing	type	A	particles.		

	

2.24	Visualization	Software	
	

Visual	 Molecular	 Dynamics	 (VMD)	 [871]	 is	 a	 molecular	 modeling	 and	

visualization	computer	program	that	was	used	throughout	this	work	to	set	up	

complex	simulation	systems.	The	software	was	also	used	to	follow	stepwise	

molecular	trajectories	and	for	animating	and	analyzing	biomolecular	systems	

through	the	use	of	built-in	computer	scripts.		The	software	was	used	together	

with	 the	 Tachyon	 renderer	 to	 produce	 high-resolution	 images	 for	 various	

biomolecular	simulation	systems.				

	 	



 154 

Chapter	3:	Interactions	of	Polymyxin	B1	with	Gram-
Negative	Bacterial	Membranes		
	

3.1	Abstract	
	

Molecular	dynamics	simulations	were	conducted	in	an	attempt	to	understand	

the	 interaction	 of	 polymyxin	 B1	 (PMB1)	 peptides	 with	 (i)	 POPE/POPG	

phospholipid	bilayers	that	are	used	to	mimic	the	inner	membrane	of	Gram-

negative	bacteria;	and	(ii)	bilayers	of	rough	(Re	mutant)	LPS	that	are	used	to	

mimic	 the	 extracellular	 leaflet	 of	 the	 outer	 membrane	 of	 Gram-negative	

bacteria.	 The	 simulations	 demonstrated	 that	 PMB1	 peptides	 promote	 the	

formation	of	anionic	(POPG)	microdomains	when	they	 interact	with	Gram-

negative	 inner	 membrane	 models.	 The	 PMB1	 peptides	 also	 decreased	

membrane	width	and	it	was	found	that	this	reduction	in	membrane	thickness	

was	non-uniform	across	the	membrane	with	some	membrane	domains	being	

thinner	than	others.	The	insights	help	to	clarify	how	PMB1	peptides	make	the	

inner	membrane	more	liable	to	rupture	and	how	PMB1	peptides	can	destroy	

Gram-negative	 bacteria.	 The	 Re	 LPS	 membrane	 simulations	 revealed	 that	

PMB1	 peptides	 have	 the	 capacity	 to	 modulate	 the	 phase	 behavior	 of	 the	

Gram-negative	bacterial	outer	membrane.	This	capacity	to	affect	LPS	phase	

properties	could	help	us	to	understand	how	PMB1	peptides	disrupt	the	outer	

membrane	of	Gram-negative	bacteria.					

	

3.2	Introduction	
	

Antibiotic	resistance	has	increased	during	the	past	few	decades	as	first-line	

antimicrobial	agents	have	been	applied	both	excessively	and	inappropriately	

[593-595].	The	overuse	of	 antibiotics	established	a	 selective	pressure	 that	

promoted	 the	 spread	 of	 drug-resistant	 genes	 and	 pathogenic	 bacteria	

progressively	acquired	 resistance	 to	 conventional	 antibiotics.	The	problem	

was	 then	 compounded	 as	 the	 drug-resistant	 genes	 spread	 throughout	 the	

bacterial	 communities.	 The	 successive	 transfer	 of	 drug-resistant	 genes	

progressively	 produced	 so-called	 “superbugs”	 that	 are	 unresponsive	 to	

almost	 all	 available	 antibiotic	 medication	 [872-876].	 Multi-drug	 resistant	
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bacteria	 are	 now	 becoming	 increasingly	 prevalent	 and	 these	 infectious	

microbes	are	increasing	our	national	healthcare	costs	and	the	global	rates	of	

morbidity	 and	 mortality	 [612-616].	 Bacterial	 infections	 are	 becoming	

increasingly	 hazardous	 and	 there	 is	 an	 urgent	 need	 to	 synthesis	 new	

antibiotic	medication	that	can	be	used	to	kill	the	most	concerning	strains	of	

multi-drug	resistant	bacteria.		

	

We	 are	 now	 at	 an	 interesting	 precipice	 where	 computational	 simulation	

methodologies	 have	 reached	 a	 level	 of	 sufficient	 complexity	 that	 we	 can	

streamline	 otherwise	 laborious	 methods	 for	 identifying	 novel	

chemotherapeutic	 agents	 and	 at	 the	 same	 time,	 use	 atomic	 simulation	

techniques	to	gain	unprecedented	molecular	level	insights	into	the	action	of	

effective	 antimicrobials	 [624-629].	 Molecular	 dynamics	 simulations	 are	

increasingly	 being	 applied	 to	 evaluate	 the	 molecular	 level	 interactions	 of	

effective	antimicrobial	peptides	and	to	understand	how	these	biomolecules	

disrupt	 bacterial	 membrane	 systems	 [630-631].	 PMB1	 is	 an	 unusually	

effective	antimicrobial	agent	that	is	used	as	a	last-line	therapy	to	treat	multi-	

or	 extensively	 drug-resistant	 species	of	 Gram-negative	 bacteria	 [709-710].	

PMB1	molecules	have	the	capacity	to	kill	multi-drug	resistant	Gram-negative	

bacterial	 species	 that	 are	 unresponsive	 to	 conventional	 first-line	

chemotherapy,	but	the	widespread	application	of	polymyxin	medications	is	

limited	 because	 the	 antimicrobial	 molecules	 have	 adverse	 neurotoxic	 and	

nephrotoxic	 side-effects	 [710-716].	 It	 is	 reasoned	 that	 chemists	 could	

potentially	synthesis	new	polymyxin	derivatives	in	the	future	that	have	fewer	

side-effects	 but	 are	 nonetheless	 still	 effective	 against	 multi-drug	 resistant	

strains	of	Gram-negative	bacteria.	Chemists	could	exploit	the	insights	that	are	

being	gained	from	experimental	and	computational	research	and	design	new	

antibiotic	medication	that	is	relatively	harmless	to	renal	and	neural	tissues	

but	 is	nonetheless	still	 effective	 for	 treating	bacterial	 infections.	Molecular	

dynamics	 simulations	 were	 conducted	 in	 this	 chapter	 to	 understand	 how	

PMB1	molecules	permeabilize	bacterial	membrane	mimetic	systems.		

	



 156 

The	 Martini	 coarse-grained	molecular	 dynamics	 simulation	 forcefield	 was	

used	 to	 understand	 how	 PMB1	 peptides	 interact	 with	 two	 symmetric	

biological	membrane	mimetics:	(i)	bilayer	membranes	of	Re	LPS	lipid;	and	(ii)	

bilayers	that	contained	POPE	and	POPG	molecules	in	a	3:1	number	ratio.	The	

first	 set	 of	 simulations	 was	 analyzed	 to	 understand	 how	 PMB1	 peptides	

interact	 with	 the	 outer	 membrane	 of	 Gram-negative.	 The	 second	 set	 of	

simulations	was	analyzed	 to	understand	how	PMB1	peptides	 interact	with	

the	 inner	 membrane	 of	 Gram-negative	 [645-646,879-880].	 The	 coarse-

grained	 simulations	 provided	 important	 insights	 that	 can	 help	 us	 to	

understand	how	PMB1	peptides	interact	with	both	membranes	of	the	Gram-

negative	bacterial	cell	envelope.	It	was	found	that	PMB1	peptides	affect	lipid	

packing	parameters	and	the	bilayer	organization	in	a	way	that	has	important	

consequences	for	membrane	structural	stability.					

	

When	the	PMB1	peptides	were	simulated	with	the	Gram-negative	bacterial	

inner	membrane	mimetic	they	preferentially	interacted	with	the	POPG	lipids	

and	this	process	promoted	lipid	demixing	and	the	formation	of	anionic	POPG	

lipid	 nanodomains.	 The	 PMB1	 peptides	 also	 decreased	 membrane	 width	

when	 they	 were	 preferentially	 interacting	 with	 the	 POPG	 lipids	 and	 this	

increased	the	membrane	width	heterogeneity.	The	results	could	explain	how	

PMB1	 peptides	 disrupt	 the	 inner	 membrane	 of	 Gram-negative	 bacteria.	

Preferential	interactions	between	PMB1	and	POPG	molecules	would	lead	to	a	

non-negligible	increase	in	peptide	density	at	highly	localized	points	along	the	

membrane	 surface.	 The	 PMB1	 peptides	 could	 become	 highly	 localized	 at	

specific	 points	 along	 the	 membrane	 surface	 and	 as	 these	 points	 became	

increasingly	 thin,	 they	 would	 become	 increasingly	 prone	 to	 rupture	 and	

break	 away	 from	 the	multicomponent	membrane	 [331,	 881	 16-18].	 There	

would	be	thin	and	negatively	charged	membrane	“hotspots”	that	are	prone	to	

induce	the	formation	of	transmembrane	water	pores	or	other	processes	that	

affect	the	membrane	structural	stability.	

	

When	the	PMB1	peptides	were	simulated	with	the	Re	LPS	membranes	it	was	

found	that	LPS	lipids	had	unusual	biophysical	parameters	that	prevented	the	
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antimicrobial	molecules	 from	passing	 through	 the	 LPS	 core	 sugar	domain.	

The	Re	LPS	bilayers	had	glass-like	dynamics,	high	shear	viscosity	parameters,	

relatively	 immobile	 phosphate	 groups	 and	 a	 relatively	 thick	 domain	 of	

hydrophilic	core	sugar	units.	Analyses	of	the	unbiased	simulations	indicated	

that	 the	 interactions	between	the	PMB1	peptides	and	the	Re	LPS	were	not	

converged	 even	 after	 5	 μs	 of	 simulation	 time.	 The	 umbrella	 sampling	

simulation	technique	was	used	to	increase	the	scope	of	the	simulation	study	

and	understand	biomolecular	interactions	on	long	timescales.	The	umbrella	

sampling	 simulations	were	 used	 to	 determine	 free	 energy	 profiles	 and	 to	

understand	 LPS	 properties	 as	 a	 function	 of	 PMB1	 distance	 from	 the	

membrane	midplane.	It	was	found	that	the	bilayers	became	increasingly	rigid	

as	the	distance	between	the	PMB1	peptides	and	the	host	cell	membranes	was	

decreased.	 This	 PMB1	 peptides	 induced	 a	 phase	 change	 when	 they	 were	

simulated	 at	 the	 position	 of	 the	 PMF	profile	minima.	 The	 Re	 LPS	 bilayers	

began	to	behave	more	like	an	amorphous	solid	than	a	simple	and	highly	fluid	

lipid	 membrane.	 This	 insight	 is	 noteworthy	 because	 membrane	 fluidity	

affects	various	important	membrane	properties	such	as	shape,	elastic	moduli,	

tension	[884-887]	and	it	also	influences	biological	functions	that	are	crucial	

for	cell	viability	such	as	enzymatic	action	and	protein	sorting	[888-891].	The	

simulations	provided	important	insights	that	can	help	use	to	understand	the	

PMB1	 antibacterial	 modes	 of	 action	 and	 the	 data	 might	 help	 chemists	 to	

synthesis	new	antibiotic	medication	for	Gram-negative	bacterial	infections.			

	

3.3	Methods	
	

3.3.1	Coarse-Grained	Models	
	

The	PMB1	peptide	(Figure	26A)	was	clustered	into	a	coarse-grained	model	so	

that	 it	 could	 be	 used	with	 the	 coarse-grained	Martini	molecular	 dynamics	

simulation	forcefield	[799].	The	bead	type	classification	for	each	constituent	

coarse-grained	 pseudo-atom	 was	 selected	 through	 comparison	 with	 the	

standard	 set	of	Martini	 coarse-grained	building	blocks	 [814].	The	 terminal	

acyl	chain	moiety	was	modeled	as	two	coarse-grained	pseudo-atoms	whose	
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interaction	parameters	were	set	to	reproduce	the	experimental	partitioning	

free	energies	of	alkyl	groups	or	saturated	lipid	tails.	An	approximate	four-to-

one	heavy	atom	mapping	scheme	was	used	to	model	most	of	the	constituent	

PMB1	peptide	amino	acids.	However,	smaller	S-type	Martini	coarse-grained	

beads	 were	 used	 to	 model	 the	 cyclic	 benzyl	 group	 of	 the	 phenylalanine	

residue.	The	side	chain	Dab	residues	were	modeled	as	single	cationic	beads	

so	 that	 they	 had	 more	 conformational	 flexibility.	 There	 is	 a	 total	 of	 five	

positively	charged	Dab	residues	on	each	PMB1	peptide	(Figure	19)	and	the	

PMB1	coarse-grained	model	was	consequently	designed	to	have	an	overall	

positive	charge	of	+5.			

	

The	coarse-grained	parameters	were	optimized	with	the	PyCGTOOL	[892],	

which	 calculates	 equilibrium	 distances	 and	 force	 constants	 for	 coarse-

grained	pseudo-atoms	directly	from	reference	atomistic	molecular	dynamics	

simulation	trajectories.	PyCGTOOL	was	initially	applied	to	different	coarse-

grained	 mapping	 schemes	 and	 the	 resulting	 coarse-grained	 models	 were	

simulated	with	the	Martini	simulation	forcefield.	The	simulation	results	were	

then	compared	against	the	original	set	of	atomistic	simulation	reference	data.	

In	other	words,	the	Python	PyCGTOOL	program	was	applied	to	investigate	the	

accuracy	 of	 different	 multiple	 atom-to-bead	 mapping	 schemes.	 The	 most	

accurate	 coarse-grained	 model,	 and	 the	 one	 used	 in	 this	 chapter,	 had	

equilibrium	bond	distances	(𝑟Qb)	that	differed	by	no	more	than	0.01	nm	from	

the	 reference	atomistic	data;	 the	equilibrium	atomistic	 and	coarse-grained	

angle	values	(𝜃*+)were	equivalent	 to	within	10%.	The	corresponding	 force	

constants	 ( 𝑘Qb� 	and	 𝑘Qb�� )	 were	 well	 matched	 between	 the	 comparative	

atomistic	 and	 coarse-grained	 parameter	 sets,	 i.e.	 typically	 within	 10%.	

However,	 constraints	 were	 applied	 (rather	 than	 values	 of	𝑟*+ 	and𝑘Qb� )	 to	

model	 the	effective	 lack	of	 bond	stretching	within	 the	benzyl	 group	of	 the	

phenylalanine	 residue.	 Analysis	 of	 the	 atomistic	 simulation	 reference	 data	

demonstrated	 that	 the	 benzyl	 moiety	 displayed	 a	 small	 degree	 of	 bond-

stretching	 and	 by	 association	 had	 unusually	 high	 force	 constants	 that,	 if	

transferred	into	a	comparable	coarse-grained	simulation	model,	would	make	

the	 associated	 coarse-grained	 simulations	 unnecessarily	 unstable.	
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Constraints	were	therefore	used	to	mimic	the	behaviour	of	the	benzyl	moiety.	

Marrink	et	al.	have	used	comparable	constraint	options	to	mimic	the	dynamic	

interactions	of	benzene	and	cholesterol	[799,814,822].	It	was	found	that	the	

average	 root-mean-square	 fluctuation	 values	 for	 PMB1	 molecules	 in	

comparative	 coarse-grained	 and	 atomistic	 resolution	 molecular	 dynamics	

simulations	differed	by	no	more	than	0.1	nm.						

	

	

	

	

	

	

	

	

	

	

	

	
	
	
	
	
	
	
	
Figure	26.	coarse-grained	models	for	PMB1	and	Re	LPS.	(A)	coarse-grained	
model	for	PMB1.	The	Martini	beads	are	shown	as	translucent	spheres	and	
the	underlying	united-atom	particles	are	shown	as	opaque	spheres.	The	
carbon	atoms	are	ice	blue,	the	oxygen	atoms	are	red,	the	nitrogen	atoms	are	
blue	and	the	hydrogen	atoms	are	white.	(B)	The	coarse-grained	model	for	
Re	LPS.	The	carbon	tails	are	white,	the	glucosamine	and	glycerol	groups	are	
pink,	the	phosphate	groups	are	blue,	and	the	remaining	core	saccharides	are	
cyan.	The	Re	LPS	lipid	is	divided	into	its	component	Lipid	A	anchor	and	
keto-deoxyoctulosonate	acid	(Kdo)	dimer	sections	for	clarity.		
	

	

The	deep-rough	(Re)	mutant	LPS	lipid	(Figure	26B),	which	contains	a	Lipid	A	

anchor	bonded	to	minimal	core	oligosaccharide	section	for	bacterial	survival	

(i.e.	 two	 keto-deoxyoctulosonate	 sugars),	 was	 modeled	 using	 the	 coarse-
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grained	Martini	forcefield	parameter	set	that	is	available	online	as	part	of	the	

CHARMM-GUI	Martini	Maker	module	 (http://www.charmm-gui.org)	 [151].	

The	 POPE	 and	 POPG	 molecule	 interaction	 strengths,	 equilibrium	 bond	

distances	 (𝑟Qb) ,	 equilibrium	 angle	 values	 (𝜃*+)	 and	 the	 associated	 force	

constant	 parameters	 (e.g.	 𝑘Qb� 	and	 𝑘Qb�� )	 were	 from	 the	 standard	 Martini	

molecular	dynamics	simulation	forcefield	databank.			

	

3.3.2	Membrane	Building	
	

The	 molecular	 dynamics	 simulations	 were	 conducted	 with	 the	 GROMACS	

simulation	package	[742]	and	the	Martini	coarse-grained	forcefield	(version	

2.2)	 [799].	 The	 LPS	 bilayers	 were	 generated	 with	 the	 GROMACS	 genconf	

utility	 and	 the	 phospholipid	 bilayers	 were	 made	 with	 the	 Martini	 Python	

bilayer-building	program	(insane.py)	[893].	The	bilayers	were	solvated	with	

enough	water	to	minimize	the	strength	of	the	interactions	between	periodic	

membrane	 images	along	the	z-axis	 i.e.	 the	bilayer	normal	axis.	The	anionic	

charge	 of	 the	 POPE	 and	POPG	phospholipid	 bilayers	was	 neutralized	with	

monovalent	sodium	ions	(Na+)	and	the	LPS	bilayers	were	neutralized	with	

either	monovalent	 sodium	 ions	 (Na+)	 or	 divalent	 calcium	 ions	 (Ca2+).	 The	

phospholipid	 bilayers	 were	 equilibrated	 for	 5	 μs	 at	 310	 K	 and	 the	 LPS	

membranes	were	equilibrated	for	10	μs	at	three	different	temperatures:	300	

K,	310	K,	and	320	K.	The	simulation	pressure	was	maintained	at	1	bar	with	

the	 Parrinello-Rahman	 barostat	 [841-842]	 and	 the	 temperature	 was	

modulated	with	the	Nosé-Hoover	thermostat	[840]	with	a	time	constant	of	1	

ps.	The	shift	 function	was	used	to	smoothly	reduce	the	Lennard-Jones	and	

Coulomb	 potentials	 to	 zero	 between	 0	 and	 1.2	 nm	 and	 0.9	 and	 1.2	 nm,	

respectively.	The	simulations	were	conducted	with	an	integration	time	step	

of	10	fs.					

	

It	is	important	to	state	here	how	the	Martini	forcefield	represents	ions	and	

how	this	can	lead	to	the	inaccurate	simulation	of	proteins	and	lipids.	Coarse-

grained	 ions	 are	 represented	 as	Q	 type	Martini	 beads,	which	 have	 integer	

charge	values,	either	±1	or	2,	and	mass	values	of	72	amu	(corresponding	to	
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four	water	molecules)	[822].	Monovalent	Martini	ions	were	originally	based	

on	single	atom	ions,	either	sodium,	chloride,	or	choline,	with	first	hydration	

shell	 water	 molecules	 [799].	 Considering	 how	 difficult	 it	 is	 to	 accurately	

reproduce	the	interactions	of	ions	with	sophisticated	united-atom	or	all-atom	

forcefields	 [894-895],	 it	 was	 concluded	 that	 ions	 could	 only	 have	 “semi-

qualitatively”	 accurate	 interactions	 in	 coarse-grained	 molecular	 dynamics	

simulations	[822].	Coarse-grained	Martini	calcium	cations	are	modelled	by	

simply	assigning	Martini	sodium	ions	two-fold	charge	making	them	at	best,	

satisfactory	mimics	of	their	atomistic	simulation	counterparts	(i.e.	Ca2+	ions	

with	 first	 hydration	 shells),	 but	 more	 often	 than	 not,	 rather	 crude	

representations	 of	 realistic	 hydrated	 calcium	 ions	 [151].	 The	 implicit	

presentation	of	ions	has	important	consequences	for	Martini	simulations	of	

proteins	 and	 lipids,	 and	 in	 particular	 of	 LPS	 macromolecules,	 which	 are	

connected	and	stabilized	by	divalent	 cations	 in	Gram-negative	membranes	

[211-212].	 Divalent	 cations	 draw	 water	 molecules	 into	 the	 LPS	 core	

saccharide	domain	and	this	helps	to	support	the	lamellar	lipid	packing	of	LPS	

lipids	[551].	It	has	been	found	that	the	LPS	core	saccharide	domain	can	be	up	

to	 three-fold	 depleted	 of	 water	 molecules	 in	 Martini	 coarse-grained	

simulations	when	comparisons	are	drawn	with	target	atomistic	simulations	

[301].	 It	 has	 also	 been	 found	 that	 the	 LPS	 core	 saccharide	 domain	 can	 be	

compressed	by	up	to	10%	in	coarse-grained	simulations	when	comparisons	

are	 made	 with	 target	 atomistic	 resolution	 simulations	 [301,580].	 Coarse-

grained	 molecular	 dynamics	 simulations	 generally	 provide	 semi-

quantitatively	accurate	data	but	it	is	important	to	appreciate	that	errors	and	

inaccuracies	are	sometimes	unavoidable	due	to	the	implicit	presentation	of	

the	coarse-grained	ions	and	biomolecules	[822].		

	

3.3.3	Peptide	Simulations	
	

The	 PMB1	 peptides	 were	 combined	 with	 the	 equilibrated	 Gram-negative	

inner	and	outer	membrane	mimetics.	The	number	of	peptides	per	unit	cell	

was	 incrementally	 increased	 in	 different	 simulations	 in	 an	 attempt	 to	

understand	how	peptide	concentration	can	affect	the	membrane	interactions.	



 162 

Here	 it	 is	 important	 to	draw	comparisons	with	 the	 clinical	usage	of	PMB1	

peptides	 to	 determine	 how	 realistically	 these	 coarse-grained	 simulations	

mimic	in	vivo	 interactions.	Therapeutic	dosages	are	administered	to	exceed	

pre-determined	minimum	inhibitory	concentrations	(MICs),	which	quantify	

the	lowest	drug	concentrations	that	are	needed	for	inhibiting	the	growth	of	

different	species	of	bacteria	[896-897].	The	MIC	of	PMB1	peptide	molecules	

is	 0.8	 µg/ml	 for	 Haemophilus	 influenzae,	 0.25	 µg/ml	 –	 4	 µg/ml	 for	 P.	

aeruginosa,	 and	 0.25	 µg/ml	 –	 4	 µg/ml	 for	 E.	 coli	 bacteria	 [898-900].	 The	

simulated	PMB1	concentrations	were	at	least	one	order	of	magnitude	larger	

than	these	therapeutic	MIC	values.	The	PMB1	concentrations	were	between	

50	µg/ml	–	400	µg/ml	when	they	were	simulated	with	the	LPS	lipids	and	even	

higher	when	they	were	simulated	with	the	two-component	POPE	and	POPG	

lipid	membranes.	The	disparity	between	the	therapeutic	and	coarse-grained	

simulation	concentrations	is	somewhat	unavoidable	given	the	constraints	of	

modern	 computer	 hardware.	 Simulation	 cells	 must	 be	 made	 small	 to	

minimize	the	computational	load	and	small	simulation	cells	can	only	contain	

a	 limited	 number	 of	 water	 molecules.	 The	 coarse-grained	 PMB1	 peptides	

were	 initially	positioned	at	 least	5	nm	 from	 the	 lipid	phosphate	groups	 to	

ensure	 that	 the	 initial	 peptide-lipid	 interactions	 were	 not	 biased.	 The	

orientation	 of	 each	 PMB1	 peptide	 was	 initially	 randomized	 before	 it	

interacted	 with	 the	 bacterial	 membrane	 lipids	 to	 avoid	 biasing	 the	 initial	

peptide-lipids	interactions.	The	spacing	between	the	peptides	was	maximized	

to	 ensure	 that	 the	 peptides	 did	 not	 overlap	 at	 the	 start	 of	 the	 molecular	

dynamics	 simulations.	 Ions	were	added	 to	ensure	 that	 the	 systems	had	an	

overall	 (net)	neutral	electrostatic	charge	(±0).	Anionic	charge	values	were	

summed	 for	 all	 LPS	 and	POPG	 lipids	 and	 the	 total	 sum	value	was	 used	 to	

determine	 the	 number	 of	 Na+	 or	 Ca2+	 ions	 that	 were	 included	 into	 each	

simulation	 cell	 or	 “periodic	 box”.	 The	 phospholipid	 membranes	 were	

simulated	at	a	temperature	of	310	K	and	the	LPS	membranes	were	simulated	

at	temperatures	of	300	K,	310	K,	and	320	K.	The	simulation	parameters	were	

adjusted	 so	 that	 they	 would	 match	 the	 simulation	 parameters	 from	 the	

membrane	equilibration	simulations.		
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3.3.4	Biased	Simulations	
	

The	 umbrella	 sampling	 technique	 and	 the	 Weighted	 Histogram	 Analysis	

Method	 (WHAM)	 [849]	 was	 used	 to	 produce	 the	 potential	 of	 mean	 force	

(PMF)	profiles.	The	PMB1	peptides	were	restrained	by	applying	a	harmonic	

potential	 with	 a	 force	 constant	 of	 1000	 kJ	 mol-1	 nm-2	 along	 the	 z-axis	

(membrane	 normal);	movement	was	 unrestrained	within	 the	 plane	 of	 the	

membrane.	The	PMF	reaction	coordinate	(length	sampled)	was	4.3	nm	and	

the	 distance	 between	 the	 sampling	 positions	 was	 0.1	 nm	 (along	 the	

membrane	 normal).	 Each	 of	 the	 umbrella	 sampling	 simulations	were	 1	 μs	

long.		

 
3.3.5	Analysis	
	

Radial	distribution	functions	were	analyzed	with	the	GROMACS	g_rdf	utility	

and	the	contact	analysis	data	was	determined	with	the	g_mindist	utility.	The	

van	Hove	correlation	functions	were	computed	with	the	g_vanhove	program	

and	the	 lateral	diffusion	coefficients	were	determined	with	the	g_msd	tool.	

The	trajectories	of	coarse-grained	Martini	particles	were	resolved	with	the	

g_traj	utility.	The	configurational	entropy	was	calculated	with	the	g_covar	and	

g_anaeig	 programs.	 The	 vector	 fields	were	 visualized	with	 an	MDAnalysis	

module	and	the	lateral	area	compressibility	moduli	were	calculated	with	the	

equation:		

	

𝐾N =
𝑘n𝑇𝐴>
𝑁>〈𝛿𝐴>1〉

									

Equation	81	

	

where	𝑇	is	system	temperature,	AL	is	average	area	per	lipid,	NL	is	the	number	

of	lipids	per	bilayer	leaflet,	kB	 is	the	Boltzmann	constant,	and	<	𝛿𝐴>1>	is	the	

average	value	of	the	squared	fluctuation	of	AL.		
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3.4	Results	
	

3.4.1	Effect	of	Ion	Charge	on	Re	LPS	Bilayer	Properties	
	

It	 was	 important	 to	 first	 analyze	 the	 properties	 of	 the	 LPS	 lipids	 in	 the	

presence	 of	 both	monovalent	 and	 divalent	 ion	 solutions	 since	 it	 has	 been	

demonstrated	 that	LPS	 lipid	 interactions	depend	on	 the	 concentration	and	

type	 of	 ambient	 ions	 [251,901-902].	 The	 symmetric	 Re	 LPS	 membrane	

systems	were	simulated	with	either	monovalent	(Na+)	or	divalent	(Ca2+)	ion	

solutions	 for	 10	 μs.	 The	 Re	 LPS	 lipids	 had	 a	 time-averaged	 area	 per	 lipid	

magnitude	of	1.67	±	0.005	nm2	when	the	membranes	were	simulated	with	

Na+	ions	and	a	time-averaged	area	per	lipid	magnitude	of	1.60	±	0.004	nm2	

when	 the	 membranes	 were	 simulated	 with	 Ca2+	 ions	 (Figure	 27A-D).	 To	

assess	the	quality	of	the	computed	data	it	is	necessary	to	draw	comparisons	

with	previous	united-atom	and	all-atom	molecular	dynamics	simulations	of	

LPS	lipid	membranes.	Let	us	first	compare	with	all-atom	simulations	of	the	

Lipid	A	anchoring	domain,	which	usually	contains	two	phosphate	groups,	two	

glucosamine	 saccharide	 units,	 and	 no	 more	 than	 seven	 hydrophobic	 acyl	

chains	[904-905].	Kim	et	al.	used	the	CHARMM	atomistic	simulation	forcefield	

to	evaluate	the	area	per	lipid	for	Lipid	A	anchors	from	twelve	different	species	

of	bacteria;	some	containing	as	few	as	four	acyl	chains,	and	others	as	many	as	

seven	 [555].	The	area	per	 lipid	values	were	evaluated	as	being	no	 smaller	

than	1.50	nm2	and	no	larger	than	1.68	nm2	for	all	of	the	Lipid	A	molecules	with	

6	hydrophobic	acyl	 chain	moieties.	 It	 is	well	 known	 that	 the	 length	of	LPS	

macromolecules	is	inextricably	linked	to	the	magnitude	of	LPS	lateral	packing	

parameters	 in	 bacterial	 membrane	 simulation	 systems	 [212,301,551,555-

556].	 In	 general,	 the	 longer	 the	 LPS	molecule	 is,	 i.e.	 the	more	 core	 and	O-

antigen	sugars	it	contains,	the	larger	its	projected	lateral	surface	area	will	be.	

Keeping	this	in	mind,	it	is	expected	that	longer	LPS	lipid	variants	(i.e.,	Rd	LPS,	

Ra	LPS,	and	especially	smooth	LPS)	will	preferentially	occupy	more	 lateral	

surface	 area	within	 bacterial	membrane	 systems.	 It	 was	 found	 that	 semi-

rough	 Rd	 LPS	 lipids	 had	 area	 per	 lipid	 values	 of	 1.51	 nm2	 in	 atomistic	

simulations	[551]	and	as	expected,	that	longer	Ra	LPS	lipid	variants	had	an	
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average	 area	 per	 lipid	 magnitude	 of	 1.80	 nm2	 [211].	 When	 the	 LPS	

macromolecules	contained	long	terminal	O-antigen	chains	(i.e.	smooth	LPS)	

they	 tended	 to	 occupy	 even	 more	 lateral	 surface	 area	 within	 bacterial	

membrane	mimetics.	For	example,	smooth	LPS	lipids	had	an	average	area	per	

lipid	 magnitude	 of	 1.90	 nm2	 in	 all-atom	 molecular	 dynamics	 simulations	

[211]	that	were	conducted	with	the	CHARMM	forcefield.	The	coarse-grained	

Re	LPS	lipid	packing	parameters	that	have	been	calculated	within	this	chapter	

are	quite	reasonable	when	compared	with	previous	computational	work	e.g.	

the	work	 performed	 by	 Kim	 et	 al.	 [555].	 The	 coarse-grained	 Re	 LPS	 lipid	

models	have	time-averaged	area	per	lipid	values	that	are	intermediary	to	the	

packing	 parameters	 that	were	 obtained	 for	 short	 and	 longer	 forms	 of	LPS	

lipids	from	previous	atomistic	simulation	studies.	In	addition,	there	is	little	

mismatch	with	the	experimental	values	that	were	obtained	by	Snyder	et	al.	

[568]	 for	 LPS	 lipid	 variants	 from	 Salmonella	 Minnesota	 and	 Salmonella	

typhimurium	bacteria.	Snyder	et	al.	used	X-ray	diffraction	analysis	methods	

to	demonstrate	that	that	LPS	lipids	had	average	area	per	lipid	magnitudes	of	

1.56	nm2.	This	value	(i.e.	1.56	nm2)	is	only	2.5%	smaller	than	the	magnitudes	

that	were	computed	for	the	coarse-grained	Re	LPS	lipid	membrane	systems	

that	simulated	here	in	this	chapter	with	divalent	calcium	(Ca2+)	ions.					

	

The	distribution	of	area	per	lipid	values	followed	an	approximate	Gaussian	

distribution	when	the	LPS	membrane	systems	were	simulated	with	the	Na+	

ion	solvent.	The	area	per	lipid	values	were	distributed	according	to	a	multi-

model	non-Gaussian	distribution	function	instead	when	the	LPS	lipids	were	

simulated	with	the	Ca2+	ion	solvent.	The	multi-modal	distribution	is	indicative	

of	heterogeneous	lipid	packing,	with	areas	of	tightly	packed	lipids,	and	areas	

of	more	loosely	packed	lipids.	The	heterogeneous	packing	was	confirmed	via	

two-dimensional	 tessellations	 of	 the	 Re	 LPS	 phosphate	 plane.	 Voronoi	

tessellations	 revealed	 that	 the	 phosphate	 groups	were	 packed	 similarly	 to	

glasses	such	as	defective	graphene	and	sheets	of	silica.	Vitreous	and	crystal-

like	 fractions	 were	 both	 present	 within	 the	 LPS	 membranes	 and	 this	 a	

hallmark	of	glassy	materials	[906-908].				
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Figure	27.	Voronoi	tessellation	of	the	Re	LPS	bilayers	that	were	simulated	
with	either	Na+	or	Ca2+	ions.	(A,	B)	The	two-dimensional	Voronoi	
tessellations	were	used	to	determine	the	projected	surface	areas	
distributions	for	the	Re	LPS	bilayers	that	were	simulated	with	either	(A)	Na+	
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or	(B)	Ca2+	ions.	The	mean	area	values	are	represented	with	dashed	red	
lines	and	the	standard	deviation	(σ)	and	skew	(S)	values	are	shown	in	the	
top	right-hand	corner.	(C,	D)	The	observed	data	sets	are	compared	with	
Gaussian	distributed	data	sets	of	equivalent	σ	and	S	values.	The	linear	
association	between	the	Gaussian	(blue)	and	observed	data	(black)	sets	was	
calculated	with	the	standard	Pearson	product-moment	correlation	
coefficient	(r).		
	

Here	it	is	necessary	to	provide	a	characterisation	of	the	viscosity	and	phase	

properties	of	the	biological	membranes	since	it	appears	that	cations	affect	the	

properties	of	LPS	 lipid	membranes	and	as	we	will	see,	 that	PMB1	peptides	

also	affect	membrane	phase	behaviour	when	they	are	embedded	into	the	LPS	

lipid	 leaflet.	 If	we	 are	 to	 discuss	 how	PMB1	peptides	 can	 affect	 the	 phase	

properties	 of	 bacterial	 membranes	 we	 should	 first	 evaluate	 the	 phase	

properties	of	bacterial	membranes	before	they	interact	with	PMB1	peptides.	

We	 should	 explore	 different	 simulation	 setups	 that	 have	 different	

concentrations	of	ambient	ions,	i.e.	monovalent	cations	in	one	instance	and	

divalent	 cations	 in	 the	 other.	 Viscosity	 is	 a	 rather	 simple	 biophysical	

parameter	that	can	be	used	to	explore	the	phase	characteristics	of	different	

fluids	 and	 the	 metric	 provides	 insights	 into	 the	 consistency	 and	 internal	

friction	of	entire	biological	membranes	or	biological	membrane	components	

(e.g.	the	plane	of	phosphate	groups)	[909-911].	Radial	distribution	functions	

and	 velocity	 autocorrelation	 functions	 can	 also	 provide	 important	 insights	

into	 the	 phase	 behaviour	 of	 LPS	 lipid	 leaflets	 [335,912-913].	 Viscosity	

magnitudes,	 radial	 distribution	 functions,	 and	 velocity	 autocorrelation	

functions	can	be	computed	to	determine	the	phase	behaviour	of	the	LPS	lipid	

membranes	before	they	are	simulated	with	the	PMB1	peptides.			

	

The	 wave-number	 dependent	 viscosity	 values	 η(k)	 were	 computed	 using	

transverse	 current	 autocorrelation	 functions	 (Figure	 28A)	 to	 assess	 the	

coexistence	 of	 fluid	 and	 static	 domains	 in	 the	 Re	 LPS	 bilayers	 and	 to	

determine	 the	 overall	 phase	 of	 the	 lipids.	 The	 data	 were	 fit	 to	 the	 Padé	

approximant	 used	 for	 simulations	 of	 three-dimensional	 liquids:	 𝜂(𝑘) ∝

	(1 + 𝛼𝑘1)'( 	[914-915]	 and	 the	 static	 viscosity	 values	 were	 estimated	 by	

subsequent	extrapolation	to	infinite	wavelength	(k	®	0).	The	viscosity	values	
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were	2.45	(Ca2+	system)	and	2.11	kg	m-1	s-1	(Na+	system).	The	magnitudes	are	

comparable	to	the	shear	viscosity	of	water	at	physiological	temperatures	and	

atmospheric	pressure	[916]	indicating	that	the	LPS	bilayers	were	as	a	whole,	

fluid	during	simulation	time.	In	contrast,	static	viscosities	of	the	phosphate	

plane	were	extrapolated	to	values	of	8426	and	2562	kg	m-1	s-1	(Figure	28B)	

and	these	magnitudes	are	comparable	to	the	viscosity	of	molten	glass	(104	–	

106	kg	m-1	s-1)	[917].	The	data	demonstrates	that	the	hydrophobic	core	was	

highly	 fluid,	whereas	 the	phosphate	plane	was	 less	mobile	and	was	better	

described	as	a	relatively	rigid	viscous	glass.		
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Figure	28.	The	properties	of	the	Re	LPS	bilayers	that	with	simulated	with	
either	Na+	or	Ca2+	ions.	(A,	B)	The	wave-number-dependent	viscosity	η(k)	
was	determined	from	the	transverse	current	autocorrelation	function	for	
the	Re	LPS	bilayers	that	were	simulated	with	either	Na+	(blue	triangles)	or	
Ca2+	(black	squares)	ions.	The	values	of	η(k)	were	determined	by	
considering	(A)	the	entire	Re	LPS	lipids	in	the	viscosity	calculations	or	by	
considering	(B)	only	their	phosphate	groups.	The	data	were	fit	to	the	Padé	
approximant:	𝜂(𝑘) = 	 (1 + 𝑏𝑘1)'(;	the	fitting	parameters	(a,	b)	are	shown	
with	the	optimized	expressions	for	η(k)	(dashed	lines).	The	inset	image	
shows	η(k)	as	k®	0.	Blue	lines	represent	the	simulations	with	Na+	ions;	
black	lines	represent	the	simulations	with	Ca2+	ions.	(C,	D)	The	radial	
distribution	functions	(RDF)	were	determined	for	the	Re	LPS	phosphate	
groups	in	the	simulations	with	(C)	Ca2+	and	(D)	Na+	ions.	(E-H)	The	velocity	
autocorrelation	functions	C(t)	were	determined	for	(E,	G)	the	whole	Re	LPS	
lipids	or	for	their	(F,	H)	phosphate	groups.	The	data	are	presented	for	the	
bilayers	with	either	(E,	F)	Na+	or	(G,	H)	Ca2+	ions.		
	

Radial	distribution	functions	support	the	assessment	that	the	LPS	phosphate	

plane	can	be	considered	to	be	a	relatively	rigid	viscous	glass	(Figure	28C-D).	

The	 radial	 distribution	 functions	 for	 the	 Re	 LPS	 phosphate	 groups	 were	

C D 

E F 

G H 
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intermediary	 to	 the	 smooth	and	 jagged	profiles	one	obtains	 for	 liquid	and	

crystalline	materials.	The	radial	distribution	functions	for	Re	LPS	phosphate	

groups	were	multi-modal	and	featured	long-range	order	that	is	indicative	of	

glass-like	packing	and	is	atypical	of	the	 fluid	phase	[918-919].	The	velocity	

autocorrelation	 function	 is	 a	 time	 dependent	 metric	 that	 quantifies	 the	

underlying	dynamic	processes	operating	in	a	molecular	system;	the	function	

can	be	used	to	evaluate	molecular	fluidity	[920].	The	velocity	autocorrelation	

functions	were	typical	of	three-dimensional	fluids	when	they	were	computed	

for	the	bilayers	as	a	whole	(Figure	28E,	G)	[921].	There	was	exponential	decay	

to	a	negative	value	and	subsequent	convergence	to	zero	within	10	ps.	When	

auto	correlation	 functions	were	computed	for	the	phosphate	plane	(Figure	

17F,	H)	there	was	rapid	fluctuation	between	positive	and	negative	values	that	

did	 not	 dissipate	 for	 tens	 of	 nanoseconds.	 The	 oscillatory	 behavior	 is	

indicative	 of	 long-term	 localization	 or	 “caging”	 of	 the	 phosphate	 groups,	

whereas	the	rapid	convergence	to	zero	is	indicative	of	a	more	mobile	medium,	

in	 which	 the	 phosphate	 groups	 are	 caged	 only	 briefly.	 Rheological	

experiments	 support	 the	 conclusion	 that	 Re	 LPS	 lipids	 can	 form	relatively	

rigid	gels	when	they	are	interlinked	by	bridging	cations	[922].			

	

3.4.2	PMB1	Interaction	with	Re	LPS	Bilayers	
	

The	PMB1	peptides	were	simulated	with	Re	LPS	lipid	bilayers	in	two	different	

solutions,	one	containing	monovalent	cations	(Na+)	and	another	containing	

divalent	(Ca2+)	cations.	The	simulation	cells	were	~13	x	13	x	20	nm	in	size	

and	there	were	no	more	than	6	PMB1	peptides	per	periodic	box.	The	PMB1	

peptides	were	initially	placed	~5	nm	above	the	Re	LPS	bilayer	center	(using	

their	 center	 of	 mass	 coordinates	 for	 reference).	 The	 peptides	 formed	

favorable	electrostatic	interactions	(defined	as	an	interatomic	separation	of	

𝑟 ≤ 0.47	nm	 i.e.	 smaller	 than	 the	 effective	 diameter	 of	 a	 standard	 coarse-

grained	bead)	with	 the	peripheral	 carboxylate	groups	of	 the	Re	LPS	 lipids	

after	an	average	time	of	60.9	±	66.2	(s.d.)	ns	and	80.7	±	81.6	(s.d.)	ns	for	the	

systems	 with	 Ca2+	 and	 Na+	 ions,	 respectively.	 The	 PMB1	 peptides	 moved	

toward	the	water-lipid	interface	after	binding	to	the	peripheral	core	sugars	
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and	electrostatic	interactions	then	formed	between	the	PMB1	Dab	residues	

and	the	Lipid	A	phosphate	groups.	Electrostatic	interactions	between	the	Dab	

residues	 and	 the	 Re	 LPS	 phosphate	 groups	 were	 first	 registered	 after	 an	

average	time	of	251.4	±	405.8	(s.d.),	and	45.6	±	149.9	(s.d.)	ns	for	the	systems	

with	 Ca2+	 and	 Na+	 ions,	 respectively.	 The	 large	 standard	 deviations	

demonstrate	 that	 the	 PMB1	peptides	 contacted	 the	 LPS	 phosphate	 groups	

somewhat	 sporadically	 and	 that	 the	 LPS-phosphate	 contact	 times	 differed	

significantly	 from	 one	 molecular	 dynamics	 simulation	 to	 another.	 In	 one	

simulation	 the	 PMB1	 peptides	 moved	 through	 the	 LPS	 core	 saccharide	

domain	relatively	quickly	and	in	another	instance	the	PMB1	peptides	moved	

through	the	LPS	core	saccharide	domain	significantly	more	slowly.	But	still,	

these	average	values	demonstrate	quite	clearly	that	there	was	a	significant	

difference	between	the	LPS-phosphate	contact	times	that	were	sampled	for	

the	comparative	simulation	systems	that	contained	Na+	ions	in	one	case	and	

Ca2+	ions	in	another.	The	number	of	contacts	between	the	Dab	residues	and	

the	 Re	 LPS	 phosphate	 groups	 systematically	 increased	 after	 the	 first	 LPS-

phosphate	contacts	were	registered	at	the	times	of	251.4	±	405.8	(s.d.),	and	

45.6	±	149.9	(s.d.)	ns	(Figure	29A,	B).	The	differences	 in	contact	profiles	 is	

more	apparent	when	we	examine	the	number	of	contacts	made	between	the	

PMB1	 Dab	 residues	 and	 the	 Re	 LPS	 phosphate	 groups	 as	 a	 function	 of	

simulation	time.	 It	 is	clear	 that	 the	number	of	LPS-phosphate	contacts	was	

significantly	different	in	the	monovalent	and	divalent	ion	simulation	systems	

during	 the	 entire	 5	𝜇 s	 long	 molecular	 dynamics	 simulations.	 There	 were	

approximately	twice	as	many	electrostatic	contacts	between	the	Dab	residues	

and	 the	Re	LPS	phosphate	groups	when	 the	 simulation	 systems	contained	

monovalent	Na+	ions	compared	with	the	simulation	systems	that	contained	

divalent	Ca2+	 ions.	The	data	suggests	 that	PMB1	peptides	are	able	 to	move	

through	the	LPS	headgroup	sugar	domain	more	easily	when	the	LPS	lipids	are	

interlinked	with	monovalent	cations.	Based	on	these	different	interactions	it	

is	 expected	 that	 the	 distance	 between	 the	 PMB1	 peptides	 and	 the	 bilayer	

center	will	be	smaller	in	the	simulation	systems	that	contain	the	monovalent	

(Na+)	cations.			
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Figure	29.	The	translocation	of	the	PMB1	peptide	through	the	bacterial	
membrane	mimetic	depended	on	the	type	of	ambient	ions	that	were	used	to	
conduct	the	molecular	dynamics	simulations.	(A,	B)	The	contact	number	for	
interactions	between	the	PMB1	Dab	residue	side	chains	and	the	Re	LPS	lipid	
phosphate	groups	as	a	function	of	simulation	time.	The	cut-off	distance	was	
0.47	nm	(the	effective	size	of	a	coarse-grained	Martini	bead);	data	were	
collated	for	all	of	the	unbiased	simulations.	(A)	The	data	for	the	bilayers	that	
were	simulated	with	Na+	ions	and	for	(B)	the	bilayers	that	were	simulated	
with	Ca2+	ions.	(C,	D)	The	final-frame	snapshots	of	the	PMB1	peptides	
(green)	interacting	with	the	Re	LPS	bilayers	that	were	loaded	with	(C)	Na+	
or	(D)	Ca2+	ions.	The	Re	LPS	lipids	are	colored	according	to	Fig.	26	and	the	
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Na+,	Ca2+,	and	water	particles	are	omitted	for	clarity.	(E-H)	The	radial	
distribution	functions	for	the	phosphate	(black	lines)	and	carboxylate	(blue	
lines)	groups	of	the	Re	LPS	lipids	with	respect	to	the	position	of	the	PMB1	
Dab	residue	side	chains.	The	data	are	shown	for	both	the	(E,	F)	Na+,	and	(G,	
H)	Ca2+	ion	simulation	systems.	The	data	were	sampled	during	the	last	100	
ns	of	simulation	time.		
	
	

The	 distance	 between	 the	 PMB1	 peptides	 and	 the	 bilayer	 center	 was	

computed	by	sampling	data	during	the	 last	100	ns	of	simulation	time.	The	

PMB1	peptides	were	on	average	2.8	±	0.6	nm	above	the	bilayer	center	when	

the	LPS	lipids	were	interlinked	with	Ca2+	ions	and	2.2	±	0.6	nm	when	the	LPS	

lipids	were	 interlinked	with	Na+	 ions	 (Figure	29C,	D).	 In	 other	words,	 the	

PMB1	 peptides	 bypassed	 more	 of	 the	 peripheral	 LPS	 headgroup	 sugar	

domains	when	the	LPS	lipids	were	interlinked	with	cations	of	lower	charge.	

Pairwise	 radial	 distribution	 functions	 (sampled	 over	 the	 final	 100	 ns	 of	

simulation	time)	provide	additional	evidence	to	demonstrate	that	the	PMB1	

peptides	moved	through	the	LPS	lipid	headgroups	more	effectively	when	the	

simulation	systems	contain	monovalent	Na+	ions.	Pairwise	radial	distribution	

functions	had	first	peak	values	(corresponding	to	the	first	coordination	shell)	

of	~30	for	the	position	of	peripheral	carboxylate	groups	with	respect	to	the	

PMB1	Dab	residues,	regardless	of	ambient	ion	type	loading.	In	contrast,	the	

first	 RDF	 peak	 values	 for	 the	 position	 of	 Re	 LPS	 phosphate	 groups	 with	

respect	 to	 PMB1	 Dab	 residues	 were	 ~15	 when	 the	 Re	 LPS	 lipids	 were	

interlinked	with	monovalent	(Na+)	cations	and	~60	when	the	Re	LPS	lipids	

were	 interlinked	 with	 divalent	 cations	 (Ca2+)	 instead	 (Figure	 29E-H).	 To	

summarize	 these	 data:	 the	 PMB1	 peptides	 partially	 bypassed	 the	 LPS	

headgroups	 and	 maximized	 their	 interactions	 with	 the	 protected	 Re	 LPS	

phosphate	groups	at	the	water-lipid	interface.	The	PMB1	peptides	bypassed	

the	 Re	 LPS	 headgroups	 more	 easily	 and	 more	 rapidly	 when	 the	 bilayers	

contained	 monovalent	 Na+	 ions.	 It	 must	 be	 stressed	 here	 that	 the	 PMB1	

peptides	only	partially	bypassed	the	carbohydrate	headgroup	moieties	of	the	

LPS	lipids.	There	were	interactions	between	the	PMB1	peptides	and	the	Re	

LPS	phosphate	groups,	but	they	were	limited.		
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The	PMB1	peptides	only	partially	bypassed	the	LPS	lipid	headgroups	and	as	

a	 consequence,	 there	 was	 minimal	 insertion	 of	 the	 PMB1	 peptide	

hydrophobic	 moieties	 into	 the	 Re	 LPS	 lipid	 core.	 There	 were	 only	 two	

instances	of	any	PMB1	hydrophobic	moieties	completely	passing	through	the	

phosphate	 plane	 to	 enter	 into	 the	 hydrophobic	 membrane	 interior.	 The	

isobutyl	and	benzyl	groups	bypassed	the	 interfacial	phosphate	groups	of	a	

bilayer	 that	 contained	 Ca2+	 ions	 in	 one	 instance	 (Figure	 30A)	 and	 in	 the	

second	instance,	a	single	lipid	tail	slipped	through	the	phosphate	groups	of	a	

Re	LPS	bilayer	that	was	simulated	with	Na+	ions.	The	low	number	of	times	

that	the	PMB1	hydrophobic	moieties	enter	into	the	hydrophobic	membrane	

core	 can	 be	 rationalized	 through	 the	 use	 of	 two-dimensional	 Voronoi	

tessellations.	Voronoi	tessellations	can	be	used	to	understand	the	distances	

between	LPS	lipid	headgroups	at	the	water-lipid	interface	and	further	how	

the	LPS	headgroup	packing	affects	the	translocation	of	hydrophobic	moieties	

into	the	Re	LPS	bacterial	membrane	mimetic	core.			
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Figure	30.	The	PMB1	benzyl	group	penetrates	the	lipid	core.	(A)	Position	of	
the	Re	LPS	phosphate	groups	and	a	single	PMB1	benzyl	group	are	shown	
with	black	and	blue	lines,	respectively.	The	coordinates	are	with	respect	to	
the	bilayer	normal	and	the	distances	are	relative	to	the	bilayer	center.	The	
temperature	was	310	K,	the	pressure	was	1	bar	and	the	membranes	were	
simulated	with	divalent	Ca2+	ions.	(B)	Side	view	snapshot	showing	how	the	
PMB1	peptide	enters	into	the	bacterial	membrane	mimetic;	the	perspective	
is	reversed	relative	to	Fig.	30A	for	clarity.	The	inset	image	shows	the	two-
dimensional	Voronoi	tessellation	for	the	Re	LPS	headgroups	as	the	PMB1	
peptide	enters	into	the	lipid	core.	The	projected	polygons	are	colored	cyan	if	
they	represent	lipids	that	were	adjacent	to	the	embedded	PMB1	benzyl	
group.	(C)	The	area	per	lipid	for	the	five	Re	LPS	lipids	that	were	adjacent	to	
the	benzyl	group	when	it	moved	into	the	bilayer	interior	(3390-3480	ns).	
The	average	projected	surface	area	of	the	five	Re	LPS	headgroups	was	
higher	than	the	bilayer	average	(1.60	±	0.004	nm2).		
	

Two-dimensional	Voronoi	tessellations	of	the	LPS	phosphate	groups	revealed	

that	 the	 PMB1	 hydrophobic	 moieties	 translocated	 into	 the	 hydrophobic	

membrane	core	as	“transient	micropores”	were	formed	at	the	bilayer-water	
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interface	(Figure	30B).	The	phosphate	headgroups	temporarily	moved	away	

from	each	other	when	they	were	interacting	with	the	PMB1	peptides	and	the	

alkyl	and	benzyl	groups	of	the	PMB1	peptides	were	then	able	to	translocate	

the	 areas	 of	 the	 bilayer	 surface	 that	 were	 depleted	 of	 hydrophilic	 lipid	

headgroup	 moieties	 (Figure	 30C).	 Perhaps	 it	 is	 necessary	 to	 draw	

comparisons	with	previous	publications	to	explain	precisely	what	“transient	

micropores”	 are	 and	 precisely	 how	 hydrophobic	 penetrants	 pass	 through	

them.	 Theoretical	 models	 hypothesized	 that	 hydrophobic	 penetrants	

translocated	 past	 hydrophilic	 lipid	 headgroups	 and	 moved	 into	 the	 lipid	

membrane	cores	during	the	spontaneous	formation	of	“transient	micropores”	

within	 the	 membrane	 surface	 [923-924].	 Lipid	 headgroups	 continuously	

jostle	 back-and-forth	 within	 fluid	 membranes	 and	 consequently,	 their	

individual	projected	 lateral	 surface	 area	 changes	 from	one	moment	 to	 the	

next	[925-926].	When	there	is	movement	of	multiple	lipid	headgroups	away	

from	one	central	point	between	them,	there	is	an	unusually	large	interstitial	

portion	of	the	membrane	core	that	is	exposed	to	the	extracellular	fluid.	The	

resulting	transient	micropore	is	not	sufficiently	large	to	be	readily	tunnelled	

by	 multiple	 water	 or	 ion	 Martini	 beads,	 but	 it	 is	 easier	 for	 hydrophobic	

moieties	to	enter	into	the	membrane	core	through	this	point	of	the	membrane	

surface	than	most,	if	not	all,	other	points	surrounding	it.	In	other	words,	it	is	

energetically	 favorable	 for	 hydrophobic	 penetrants	 to	 pass	 through	 the	

hydrophilic	headgroup	domain	and	then	enter	 into	 the	membrane	 interior	

but	 there	 are	 large	 energy	 barriers	 that	 can	 prevent	 this	 energetically	

favorable	 translocation	 process	 from	occurring	 [927].	The	 energy	 barriers	

were	 hypothesized	 to	 be	 larger	 when	 the	 lipid	 headgroups	 were	 closer	

together	 and	 smaller	when	 they	were	 further	 apart.	 The	 hypothesize	was	

confirmed	 in	 previous	 all-atom	 simulations	 that	 sought	 to	 clarify	 how	 C60	

nanoparticles	 translocate	 into	 DPPC	 lipid	 membranes	 [925-926]	 and	 was	

subsequently	 corroborated	by	 comparable	 coarse-grained	simulations	 that	

used	bacterial	membrane	and	plasma	membrane	mimetics	instead	[301,928].	

The	 formation	of	 the	micropores	was	rationalized	here	 through	 the	use	of	

Voronoi	 tessellations.	Polygon	 tessellations	 revealed	 there	was	 larger	 than	

average	spacing	between	adjacent	 lipid	headgroups	when	the	hydrophobic	
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penetrants	were	passing	 in	between	 them.	To	reiterate,	Figure	19B	and	 in	

particular	the	small	inset	image	within	Figure	19B,	shows	that	six	adjacent	

LPS	 lipid	 headgroups	 had	 unusually	 large	 intermolecular	 spacing	 when	

hydrophobic	penetrants	were	passing	in	between	them	(see	the	association	

figure	 caption).	The	 translocation	of	 the	hydrophobic	 penetrants	 seems	 to	

depend	on	the	fluctuations	of	lipid	headgroups	here	in	this	chapter,	and	also	

in	previous	computational	publications	[925,301].	As	lipid	headgroups	jostle	

back-and-forth	they	temporarily	create	“micropores”	that	enhance	the	rate	at	

which	 hydrophobic	 moieties	 can	 pass	 through	 the	 hydrophilic	 headgroup	

domain	and	enter	into	the	hydrophobic	membrane	core.				

	

However,	the	formation	of	these	membrane	defects	or	temporary	micropores	

is	suppressed	by	the	large	lateral	area	compressibility	moduli	of	the	LPS	lipid	

membranes.	 The	 compressibility	 moduli	 were	 calculated	 according	 to	 the	

equation:		

	

𝐾N =
𝑘n𝑇𝐴>
𝑁>〈𝛿𝐴>1〉

									

	

where	kB	 is	 the	Boltzmann	constant,	T	 is	 the	system	temperature,	AL	 is	 the	

average	surface	area	per	lipid,	NL	is	the	number	of	lipids	per	membrane	leaflet	

and	<	𝛿𝐴>1>	 is	the	average	of	 the	squared	fluctuation	of	AL	values.	The	area	

compressibility	moduli	were	1.700	±	0.003	and	0.673	±	0.002	Nm-1	 for	 the	

bilayers	that	were	simulated	with	Ca2+	and	Na+	ions,	respectively.	The	values	

are	significantly	larger	than	the	𝐾N	values	for	DOPC	bilayers	(0.371	±	8	Nm-1)	

that	were	simulated	at	a	temperature	of	300	K	and	at	atmospheric	pressure	

[928],	or	 for	DPPC	and	DMPC	membranes	(0.234	and	0.231	Nm-1)	 in	X-ray	

scattering	studies	[929-930].	The	PMB1	peptides	were	generally	unable	to	

pass	through	the	thick	hydrophilic	core	saccharide	domain	due	to	the	slow	

dynamics	of	the	LPS	lipids	and	the	PMB1	peptides	were	generally	unable	to	

translocate	 through	 the	 Re	 LPS	 phosphate	 plane	 due	 to	 the	 high	 lateral	

compressibility	moduli	of	 the	Re	LPS	 lipids.	 It	 is	 likely	 that	 the	 final	 lipid-

peptide	 conformations	do	not	 represent	global	 energy	minima	despite	 the	
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microsecond	 timescales	used	 in	 this	 study	and	 it	 is	 evident	 that	 enhanced	

sampling	 techniques	 (e.g.	umbrella	 sampling)	must	be	used	 to	understand	

lipid-peptide	interactions	on	long	timescales.										

														

3.4.3	Umbrella	Sampling,	WHAM,	and	the	Thermodynamics	of	PMB1	
Penetration	
	

Potential	 of	mean	 force	 profiles	 (PMFs)	were	 produced	 to	understand	 the	

energetics	 that	 control	 the	 movement	 of	 PMB1	 peptides	 from	 the	 water	

domain	into	the	Re	LPS	bilayer	core	and	also	to	understand	the	biomolecular	

interactions	that	can	occur	on	long	timescales.	PMFs	were	determined	using	

the	 umbrella	 sampling	 technique	 and	 the	 weighted	 histogram	 analysis	

method	 (WHAM)	 [849].	 PMF	profiles	were	 computed	 for	 three	 simulation	

temperatures:	300	K,	310	K,	and	320	K.	The	energy	minima	were	located	at	

distances	of	approximately	1.6	nm	and	1.9	nm	from	the	bilayer	center	in	the	

simulation	 systems	 that	 contained	 divalent	 (Ca2+)	 cations	 and	monovalent	

(Na+)	cations,	respectively	(Figure	31A-B).	The	PMF	minima	correspond	to	

positions	along	the	bilayer	normal	where	the	PMB1	peptide	molecules	can	

interact	 with	 cationic	 phosphate	 groups	 while	 the	 PMB1	 isobutyl,	

phenylalanine,	 and	 acyl	 chain	 hydrophobic	 moieties	 interact	 with	 the	

hydrophobic	acyl	chains	of	the	Re	LPS.					

	

The	accuracy	of	umbrella	sampling	calculations	is	affected	by	the	degree	of	

data	convergence	and	the	number	of	umbrella	sampling	windows	[931-932].	

Given	the	complexity	of	the	simulation	systems	it	was	necessary	to	evaluate	

the	 accuracy	 of	 the	 umbrella	 sampling	 calculations	 by	 evaluating	 if	 the	

reaction	 coordinates	 were	 appropriately	 sampled	 and	 if	 the	 PMF	 profiles	

were	 appropriately	 converged.	 Sampling	 was	 evaluated	 by	 studying	 the	

overlap	of	the	histograms	that	were	used	to	produce	the	PMF	curves	and	the	

data	convergence	was	evaluated	by	time-block	analysis	of	the	PMF	profiles	

[933].	 For	 each	 reaction	 coordinate	 there	 was	 excellent	 overlap	 of	 the	

histograms	and	through	time-block	analyses	it	was	revealed	that	each	data	

set	was	converged.	Comparable	validation	methods	were	used	by	Khalid	et	al.	
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to	evaluate	the	free	energies	of	small	solute	permeation	through	the	E.	coli	

outer	membrane	[934].							

	

The	free	energy	values	(PMFs)	were	decomposed	into	enthalpic	and	entropic	

contributions	(Figure	31C-D)	according	to	the	equations:		

	

−𝑇Δ𝑆 = 𝑇
𝑑𝐺
𝑑𝑇 ≈

𝑇
2∆𝑇 (𝐺

(𝑇 + ∆𝑇) − 𝐺(𝑇 − ∆𝑇))	

	

∆𝐻 = ∆𝐺 + 𝑇∆𝑆	

Equation	82-83	

	

where	G	 is	 the	Gibbs	 free	 energy,	S	 is	 entropy,	H	 is	 enthalpy,	 and	T	 is	 the	

system	 temperature	 [935].	 The	 decomposition	 of	 the	 free	 energy	 values	

revealed	that	PMB1	permeation	was	hindered	by	an	unfavorable	change	in	

system	 entropy	 and	 that	 it	 was	 driven	 by	 favorable	 changes	 in	 system	

enthalpy.	The	Schlitter	formula	and	the	quasi-harmonic	approximations	were	

used	 to	 understand	 the	 origin	 of	 the	 entropic	 wall	 hindering	 PMB1	

permeation.	The	configurational	entropy	was	computed	for	the	PMB1	peptide	

as	 a	 function	 of	 distance	 along	 the	 bilayer	 normal	 (Figure	 31E).	 The	

penetration	 of	 the	 PMB1	 into	 the	 bilayer	 interior	 reduced	 the	 peptide	

configurational	 entropy	 by	 ~0.3	 kJ	 mol-1	 K-1	 and	 this	 indicates	 that	 the	

significant	 changes	 in	 system	 entropy	 were	 not	 accounted	 for	 solely	 by	

changes	in	peptide	conformation.	It	is	apparent	that	PMB1	penetration	was	

associated	with	a	concomitant	change	in	the	conformational	behavior	of	the	

encompassing	lipids.		
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Figure	31.	The	free	energy	profile	for	PMB1	translocation	into	the	
membrane	interior.	The	free	energy	profiles	are	shown	for	the	simulation	
systems	with	(A,	C)	Na+	or	(B,	D)	Ca2+	ions.	(A,	B)	The	PMF	profiles	for	PMB1	
as	a	function	of	distance	from	the	bilayer	center.	The	PMF	profiles	are	
shown	for	the	system	temperatures:	320	K	(solid	cyan	lines),	310	K	(solid	
blue	lines),	and	300	K	(solid	black	lines).	(C,	D)	The	free	energy	profiles	ΔG	
that	were	computed	at	310	K	were	decomposed	into	entropic	-TΔS	(solid	
red	lines)	and	enthalpic	ΔH	(solid	green	lines)	components.	The	dashed	
black	lines	show	the	average	position	of	the	Re	LPS	phosphate	groups	from	
the	bilayer	center.	(E)	The	configurational	entropy	for	the	PMB1	peptides	
was	evaluated	with	the	Schlitter	formula	(S)	and	the	quasi-harmonic	
approximations	(Q)	as	a	function	of	distance	from	the	bilayer	center.	The	
cyan	and	black	lines	show	the	data	for	the	simulations	with	Na+	ions	and	the	
red	and	blue	lines	represent	the	data	for	simulations	with	Ca2+	ions.		
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It	is	important	to	state	here	that	some	of	the	following	data	were	derived	from	

the	umbrella	sampling	simulations.	Data	were	predominantly	sampled	when	

the	PMB1	peptides	were	restrained	at	distances	of	1.6	nm	(Ca2+	system)	and	

1.9	nm	(Na+	 system)	 from	 the	membrane	midplane,	 i.e.	 the	position	of	 the	

PMF	 minima.	 Data	 were	 however,	 sometimes	 extracted	 from	 all	 of	 the	

umbrella	sampling	simulation	windows	when	it	was	necessary	to	understand	

LPS	 properties,	 e.g.	 lateral	 diffusion	 coefficients	 and	 heat	 capacity,	 as	 a	

function	of	PMB1	distance	from	the	membrane	midplane.		

	

The	 self-part	 of	 the	 van	 Hove	 correlation	 function	 G(r,t)	 provides	 the	

probability	that	a	particle	moves	a	distance	r	from	its	neighboring	particles	

within	 a	 time	 interval	 t.	 	 The	 metric	 can	 be	 used	 to	 quantify	 the	 overall	

dynamic	characteristics	of	Re	LPS	lipids	and	demonstrate	that	as	the	PMB1	

peptides	 translocate	 into	 the	 membrane	 interior	 they	 affect	 lipid	

conformation	 and	 the	 membrane	 entropy.	 The	 van	 Hove	 correlation	

functions,	coupled	with	projections	of	Re	LPS	trajectories	(during	simulation	

time)	and	streamlined	visualization	of	lipid	motion,	is	used	here	to	show	that	

the	 PMB1	 peptides	 changed	 the	 lipid	 conformation	 and	 the	 lipid	 phase	

characteristics	when	they	were	located	at	a	membrane	normal	position	that	

corresponds	to	the	location	of	the	PMF	minima.		

	

It	is	first	necessary	to	give	some	insight	into	streamline	visualisation	figures	

here	 to	 provide	 context	 for	 the	 ensuing	 LPS	 lipid	 trajectory	 analysis	 data.	

Sansom	et	al.	have	developed	software	that	enables	the	easy	identification	of	

the	correlated	movement	of	lipids	within	either	flat	of	spherical	membrane	

systems	 [936].	 The	 software	 couples	 the	 desirable	 properties	 of	 path	 line	

visualization	techniques	and	methods	for	vector	field	visualization	to	create	

an	analysis	 tool	 that	generates	an	 intuitive	visualization	of	both	 linear	and	

circular	 nanometer-scale	 lipid	 movement	 patterns.	 The	 analysis	 tool	 has	

already	been	used	to	study	the	properties	of	the	Gram-negative	bacterial	cell	

envelope	and	it	was	shown	that	LPS	lipid	trajectories	are	strongly	influenced	

by	the	movement	of	proteins	[325].	The	analysis	tool	was	created	in	part	to	

evaluate	the	nature	of	lipid	diffusion	since	our	model	of	biological	membranes	
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is	currently	evolving	from	the	simplistic	fluid	mosaic	model	toward	a	more	

nuanced	view	of	a	laterally	heterogeneous	patchwork	of	proteins	and	lipids	

[937-938]	 (see	 section	 1.1).	 It	 was	 also	 developed	 to	 understand	 if	 lipids	

move	 according	 to	 a	 rattle-in-a-cage	 diffusion	 model	 [164],	 a	 flow-like	

diffusion	model	 [939-941],	 or	 some	 other	 entirely	 distinct	 lipid	 trajectory	

scheme.		

	

The	evaluation	of	lipid	diffusion	patterns	is	of	prime	importance	within	this	

chapter	 since	 diffusion	 patterns	 characterize	 the	 different	 phase	

characteristics	of	 fluid	mediums.	Heterogeneous	relaxation	dynamics	are	a	

hallmark	of	amorphous	materials	and	of	particles	within	glassy	systems	[942-

945].	 The	 particles	 move	 according	 to	 two	 diffusion	 processes:	 (i)	

cooperatively	 rattling	 within	 small	 regions	 of	 space;	 and	 (ii)	 correlated	

migrations	 of	 particles	 to	 neighboring	 regions	 of	 space.	 The	 movements	

mimic	 clustered	 continuous-time	 random	walk	 processes	 [946],	 in	 which	

particles	 are	 momentarily	 confined	 to	 small	 regions	 of	 space	 before	 they	

collectively	 “jump”	 into	 new	 regions	 of	 space.	 Heterogenous	 relaxation	

dynamics	are	a	hallmark	of	vitreous	systems,	whereas	crystalline	materials	

tend	to	display	more	uniform	relaxation	dynamics.	When	atoms	are	confined	

within	a	solid	material	 they	tend	to	oscillate	back-and-forth	within	a	small	

region	of	space,	effectively	rattling	within	a	small	cell	and	not	“jumping”	from	

one	cell	to	another	[947].		

	

We	will	see	from	Figures	21	and	22	that	ions	and	PMB1	peptides	affect	the	

properties	 of	 Gram-negative	 bacterial	 membranes	 and	 in	 particular,	 the	

diffusion	 behaviour	 of	 the	 LPS	 lipids.	 Figure	 21	 shows	 that	 the	 LPS	 lipids	

display	heterogeneous	relaxation	dynamics	that	are	typical	of	glassy	systems	

but	that	the	precise	characteristics	of	the	clustered	continuous-time	random	

walk	or	“blob-and-channel”	trajectories	depend	on	the	type	of	ambient	ions	

that	 are	 present	 within	 the	 simulation	 cell.	 In	 either	 instance	 there	 is	

momentary	cooperative	rattling	within	small	regions	of	the	membrane	and	

after	that	there	is	cooperative	migration	to	new	regions	of	space.	Figure	22	

then	 shows	 how	 PMB1	 peptides	 can	 affect	 LPS	 lipid	 trajectories	 during	
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simulation	 time.	 There	 is	 not	 only	 a	 significant	 reduction	 in	 the	 absolute	

lateral	displacement	that	is	quantified	here	in	terms	of	angstroms,	but	also	

the	 reduction	 (Na+	 system),	 or	 complete	 removal	 (Ca2+	 system),	 of	 the	

“channel”	component	of	the	blob-and-channel	trajectories.	The	integration	of	

a	PMB1	peptide	into	the	membrane	affects	the	LPS	lipid	trajectories	and	they	

transition	from	the	heterogeneous	relaxation	dynamic	movement	patterns	of	

vitreous	systems	toward	the	more	static,	oscillatory	movement	patterns	of	

solid	and	crystalline	materials.	Figures	21A,	21E	and	Figures	22A,	22E	show	

the	trajectories	of	single	LPS	lipids	over	the	course	of	1	μs	long	simulations	to	

enable	 simple	 identification	of	 single	LPS	 lipid	movement	patterns	and	 for	

simple	 comparison	 with	 conventional	 blob-and-channel	 and	 crystalline	

material	trajectories.	Figures	21B,	21C	and	Figures	22F,	22	G	are	generated	

using	the	Flows	module	developed	by	Sansom	et	al.	[936].	The	figures	reveal	

the	differences	between	each	membrane	system	in	terms	of	correlated	lipid	

trajectories	to	show	that	the	ions	and	PMB1	peptides	affected	all	of	the	LPS	

lipids	and	also	to	quantify	 the	magnitude	of	 the	effect	 in	 terms	of	absolute	

lateral	displacement,	i.e.	angstroms.																											
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Figure	32.	The	vitreous	dynamics	of	the	Re	LPS	lipids.	The	lipid	dynamics	of	
the	Re	LPS	lipids	were	different	when	they	were	simulated	with	(A-D)	Na+	
and	(E-H)	Ca2+	ions.	(A,	E)	The	trajectories	of	single	representative	Re	LPS	
phosphate	groups	are	presented	here	as	red	lines.	The	background	
snapshots	of	the	Re	LPS	lipids	are	shown	with	the	scale	bar	to	provide	a	
sense	of	distance.	The	background	snapshots	clarify	how	far	the	
representative	Re	LPS	lipids	have	moved	in	Fig.	32A	and	Fig.	32E	or	in	other	
words,	how	long	the	red	line	trajectories	are.	The	simulations	were	
conducted	with	a	simulation	temperature	of	310	K	and	the	analysis	was	
performed	for	1	μs.	(B-C,	F-G)	Streamline	visualization	analysis	for	
arbitrarily	selected	simulation	frames	to	capture	the	collective,	
heterogeneous	relaxation	dynamics	that	give	rise	to	the	so-called	“blob-and-
channel”	trajectories	that	are	a	hallmark	of	vitreous	systems.	(D,	H)	The	self-
part	of	the	van	Hove	correlation	function	that	is	defined	as	the	probability	
that	a	particle	that	is	at	r_0	at	time	zero	can	be	found	at	position	r_0+t	at	



 185 

time	t.	The	figures	show	how	the	Re	LPS	lipid	trajectories	change	when	they	
are	simulated	with	different	types	of	ions.			
	
				
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Figure	33.	The	Re	LPS	diffusion	was	affected	by	the	PMB1	peptides.	(A,	E)	
The	trajectories	of	single	representative	Re	LPS	phosphate	groups	was	
visualized	over	the	course	of	1	μs	long	umbrella	sampling	simulations.	The	
sampled	windows	correspond	to	the	minimum	of	the	310	K	PMF	profiles	
from	Fig.	31A.	The	trajectories	of	single	representative	Re	LPS	phosphate	
groups	are	presented	here	as	red	lines.	The	background	snapshots	of	the	Re	
LPS	lipids	are	shown	with	the	scale	bar	to	provide	a	sense	of	distance.	The	
background	snapshots	clarify	how	far	the	representative	Re	LPS	lipids	have	
moved	in	Fig.	33A	and	Fig.	33E	or	in	other	words,	how	long	the	red	line	
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trajectories	are.	(A)	When	the	Na+	ion	simulation	system	was	simulated	with	
a	PMB1	peptide	there	was	a	shift	away	from	the	clustered-continuous-time-
random	walk	processes	(see	Figure	32A	for	comparison)	towards	the	
localized	oscillatory	and	rattling	motions	that	have	been	noted	for	ions	in	
rigid	crystals.	(E)	When	the	Ca2+	ion	simulation	system	was	simulated	with	a	
PMB1	peptide	there	was	a	more	significant	shift	away	from	clustered-
continuous-time-random	walk	processes	(see	Figure	32E	for	comparison)	
towards	localized	oscillatory	motions.		The	Re	LPS	phosphate	groups	were	
confined	to	membrane	domains	that	were	approximately	2	nm2	during	the	
last	1	μs	of	simulation	time.	(B-C,	F-G)	Streamline	visualization	analyses	of	
arbitrarily	selected	simulation	frames	to	clarify	the	collective	Re	LPS	
headgroup	relaxation	dynamics	in	the	presence	of	the	PMB1	peptide.	The	Re	
LPS	trajectories	are	noticeably	different	from	the	relaxation	dynamics	of	the	
Re	LPS	phosphate	groups	when	they	were	not	simulated	with	PMB1	
peptides	(see	Figure	32B-C	and	Figure	32F-G	for	comparison).	There	is	an	
approximate	order	of	magnitude	reduction	in	the	headgroup	displacements	
per	simulation	step	(see	adjoining	color	bars	for	clarity).	(D,	H)	Self-part	of	
the	van	Hove	correlation	function	for	the	Re	LPS	phosphate	groups.	
Comparisons	between	Figure	32D,	32H	and	Figure	33D,	33H	reveal	
significant	differences	in	the	relative	mobility	of	the	Re	LPS	molecules	when	
they	interact	with	a	PMB1	peptide.		
	
					
	

The	 visualization	 of	 the	 LPS	 phosphate	 group	 trajectories	 (void	 of	 PMB1	

peptides)	revealed	that	the	LPS	phosphate	group	diffusion	patterns	depended	

on	 the	 type	 of	 ambient	 ions	 that	 were	 present.	 The	 phosphate	 groups	

displayed	heterogeneous	relaxation	dynamics	comparable	to	the	now	well-

established	clustered	continuous-time	random	walk	processes	(Figure	32A-

D)	[946]	when	the	membranes	were	simulated	with	monovalent	Na+	ions.	The	

phosphate	 groups	 initially	 cooperatively	 traversed	 a	 small	 region	 of	 the	

simulation	 cell	 before	 they	 moved	 cooperatively	 to	 a	 new	 region	 of	 the	

periodic	box.	Heterogeneous	relaxation	dynamics	were	also	observed	when	

the	phosphate	groups	were	interlinked	with	Ca2+	ions	(Figure	32E-H)	but	the	

anions	were	caged	within	small	regions	of	the	simulation	cell	for	less	time	and	

a	 greater	 number	 of	 phosphate	 groups	 were	 involved	 in	 the	 correlated	

migrations	 to	 new	 regions	 of	 space.	 The	 van	 Hove	 time-space	 correlation	

functions	 for	the	phosphate	groups	of	single	Re	LPS	 leaflets	were	similarly	

indicative	of	heterogeneous	relaxation	dynamics.	The	functions	had	features	

of	both	continuous	random-walk	type	diffusion	and	oscillation	type	diffusion.	

The	PMB1	peptides	 changed	 the	LPS	 lipid	diffusion	patterns,	 there	was	an	
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overall	 shift	 from	 clustered	 continuous-time	 random	 walk	 processes	 to	

localized	 oscillatory	 and	 rattling	 motions	 when	 the	 PMB1	 peptides	 were	

simulated	 at	 the	 PMF	 membrane	 minima	 positions	 (Figure	 33A-H).	 This	

inference	was	 supported	 by	 orders	of	magnitude	 reduction	 in	 lipid	 lateral	

diffusion	coefficients	when	diffusion	coefficients	were	 calculated	 for	PMB1	

peptides	at	positions	along	the	bilayer	normal	(Figure	34).	The	Re	LPS	lipids	

become	 increasingly	 immobile	 and	 rigid	 as	 the	 PMB1	 peptide	was	moved	

from	the	simulated	water	domain	and	into	the	bilayer	interior.						

	

Figure	34.	The	lateral	diffusion	coefficients	D(z)	for	the	Re	LPS	phosphate	
groups	as	a	function	of	PMB1	distance	from	the	bilayer	center.	The	blue	line	
shows	the	data	for	the	systems	with	Na+	ions	and	the	black	line	shows	the	
data	for	the	systems	with	Ca2+	ions.	The	diffusion	coefficients	D(z)	were	
determined	by	linear	regression	of	the	mean	square	displacement	and	error	
bars	have	been	included	for	each	data	point.	The	lateral	diffusion	coefficient	
axis	is	logarithmic.		
	

Two-dimensional	Voronoi	tessellations	of	the	Re	LPS	phosphate	groups	was	

used	 to	 clarify	 the	 change	 in	 lipid	 dynamics	 as	 the	 PMB1	 peptide	 was	

restrained	 at	 different	 positions	 along	 the	 membrane	 normal	 axis.	 The	

Voronoi	 tessellations	 revealed	 that	 the	 LPS	 lipid	 phosphate	 groups	 had	

projected	 lateral	 surface	 area	 values	 of	 0.5–0.7	 nm2	 and	 approximate	

hexagonal	coordination	when	the	PMB1	peptide	was	restrained	at	the	PMF	

minima	(Figure	35A-F).	This	is	similar	to	the	packing	of	LPS	lipid	phosphate	
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groups	in	nanocrystalline	domains	for	which	it	was	reported	that	LPS	lipids	

have	 three	 LPS	 lipid	 neighbors,	 corresponding	 to	 six	 anionic	 phosphate	

groups,	 and	 projected	 lateral	 surface	 areas	 of	 0.55	 nm2	 [121,948].	 The	

appearance	of	the	crystalline	domains	in	the	simulations	was	not	temporary	

and	the	rigid	lipid	fractions	were	found	to	be	stable	for	several	hundreds	of	

nanoseconds.					

	

The	 heat	 capacity	 profiles	 provide	 additional	 evidence	 for	 the	 inferred	

crystallization	effects.	 Following	 the	protocol	 in	previous	works	 [935],	 the	

heat	capacity	change	was	calculated	according	to:		

	

∆𝐶� = 	−𝑇
𝑑1𝐺
𝑑𝑇1 	≈ 	

𝑇	
∆𝑇1

(∆𝐺(𝑇 − ∆𝑇) − 2∆𝐺(𝑇) + ∆𝐺(𝑇 + ∆𝑇))	

Equation	84	

	

The	heat	capacity	change	became	increasingly	negative	as	the	PMB1	peptide	

was	restrained	at	positions	along	the	bilayer	normal	that	were	closer	to	the	

position	of	the	membrane	midplane	(Figure	35G-H).	The	heat	capacity	change	

profiles	are	indicative	of	a	transition	from	disordered	to	ordered	states	[949-

950].	The	data	demonstrates	that	PMB1	peptides	changed	the	dynamic	phase	

behavior	 of	 the	 encompassing	 Re	 LPS	 lipids	 as	 they	 were	 restrained	 at	

positions	closer	to	the	membrane	midplane.	It	is	well	established	that	PMB1	

peptides	affect	bilayer	stability	as	they	displace	divalent	cations	that	bridge	

LPS	 Lipid	 A	 anchors,	 but	 these	 results	 suggest	 that	 PMB1	 peptides	 can	

additionally	 change	 the	 phase	 of	 LPS	 lipids	 that	 surround	 them.	 This	 is	

important	to	acknowledge	since	membrane	fluidity	affects	almost	all	bilayer	

properties	including	elastic	moduli,	shape,	tension,	mechanical	stress,	protein	

sorting,	enzymatic	action,	and	signal	transduction	[888-890,951-955].			
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Figure	35.	The	PMB1	peptide	induces	the	glass-to-crystal	transformation.	(A,	
B)	Top	view	snapshots	of	the	Re	LPS	bilayer	when	it	was	simulated	with	(A)	
water	and	ions	and	(B)	when	it	was	simulated	with	water,	ions	and	a	PMB1	
peptide.	The	Re	LPS	phosphate	groups	are	presented	as	opaque	blue	
spheres	and	the	other	sections	of	the	Re	LPS	molecules	are	depicted	as	
translucent	spheres.	The	red	quadrilaterals	are	used	to	draw	attention	to	
the	crystalline	packing	of	the	Re	LPS	phosphate	groups.	These	membrane	
systems	were	simulated	at	310	K	with	Na+	ions.	(C-F)	Voronoi	tessellation	
analyses	of	the	Re	LPS	phosphate	groups	when	they	were	simulated	(C,	E)	
with	water	and	ions	and	(D,	F)	when	they	were	simulated	with	water,	ions	
and	the	PMB1	peptide.	(D,	F)	The	figures	were	created	by	sampling	data	
from	the	umbrella	sampling	window	that	was	positioned	at	the	location	of	
the	310	K	PMF	minimum	(see	Figure	31A	for	reference).	(C,	D)	The	plots	
show	the	area	per	phosphate	group.	The	color	scale	bars	are	used	for	clarity.	
It	should	be	noted	that	each	Re	LPS	lipid	has	two	phosphate	groups.	(E,	F)	
The	plots	show	the	number	of	whole	Re	LPS	lipids	that	are	counted	for	each	
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of	the	tessellated	Voronoi	cells	(see	adjoining	color	scale	bars	for	clarity).	(F)	
The	number	of	3	Re	LPS	neighbors	(corresponding	to	6	phosphate	groups),	
is	indicative	of	hexagonal	packing,	which	has	previously	been	observed	in	
experimental	studies	when	Gram-negative	outer	membrane	mimetics	were	
strained	or	placed	under	high	surface	pressures	[121].	(G,	H)	The	heat	
capacity	change	as	a	function	of	distance	between	the	PMB1	peptide	and	the	
bilayer	center.	The	data	are	determined	for	the	membrane	that	with	
simulated	with	(G)	Na+	and	(H)	Ca2+	ions.									
	

3.4.4	Cytoplasmic	Membrane	Simulations	
	

Once	 PMB1	 peptides	 have	 passed	 the	 Gram-negative	 bacterial	 outer	

membrane	 they	 are	 then	 able	 to	 interact	 with	 and	 disrupt	 the	 inner	

cytoplasmic	 membrane.	 PMB1	 peptides	 have	 been	 simulated	 with	 inner	

bacterial	 membrane	 mimetics	 once	 before	 using	 atomistic	 molecular	

dynamics	simulation	 forcefields	 [328]	and	 they	were	 simulated	here	again	

using	the	coarse-grained	Martini	simulation	forcefield.	The	inner	membrane	

of	 Gram-negative	 bacteria	 is	 known	 to	 contain	 both	 PE	 and	PG	 lipids	 and	

scientists	 have	 used	 two-component	 PE/PG	 lipid	 bilayers	 [270,880]	 as	

substitutes	 for	 the	 Gram-negative	 inner	membrane.	 But	 it	 is	 important	 to	

appreciate	 that	 the	 inner	membrane	 can	 be	more	 complex	 and	 it	 can	 also	

contain	 transmembrane	 proteins,	 peripheral	 membrane	 proteins,	

cardiolipin,	 saturated	 and	 unsaturated	 acyl	 chain	 moieties	 etc.	 [95].	 The	

coarse-grained	PMB1	peptide	molecules	were	simulated	here	with	a	bilayer	

that	contained	POPE	and	POPG	lipids	in	a	3:1	number	ratio	in	an	attempt	to	

understand	how	PMB1	peptides	interact	with	the	inner	membrane	of	Gram-

negative	bacteria.	The	bilayer	was	assembled	with	the	insane.py	Python	tool	

[893]	that	divides	a	periodic	box	of	specified	dimensions	(here	~12.5	x	12.5	

x	10.5	nm)	 into	a	contiguous	three-dimensional	grid	and	subsequently	 fills	

the	 void	 cells	 with	 user-defined	 lipids,	 proteins,	 and	 solute	 particles.	 The	

membrane	was	initially	energy	minimized	and	was	subsequently	simulated	

for	5	μs	to	converge	the	lipid	parameters.	The	PMB1	peptides	were	placed	at	

least	5	nm	from	the	phosphate	plane	(based	on	center	of	mass	separation)	

and	the	resulting	lipid-peptide	systems	were	simulated	for	5	μs	each.			
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It	is	instructive	to	first	consider	the	inner	Gram-negative	bacterial	membrane	

mimetic	when	it	was	simulated	in	water	(Figure	36A)	before	we	consider	its	

properties	when	 it	 interacts	with	 the	PMB1	peptides.	The	POPE	and	POPG	

lipids	segregated	from	each	other	and	formed	distinct	neutrally	charged	PE	

and	 negatively	 charged	PG	 lipid	microdomains	when	 they	were	 simulated	

with	water	and	 ions.	Two-dimensional	RDFs	revealed	that	 the	POPG	lipids	

more	 commonly	 paired	 with	 other	 POPG	 lipids	 than	 with	 the	 neutrally	

charged	POPE	molecules.	The	RDFs	were	computed	for	each	POPG	lipid	with	

respect	to	every	other	POPG	lipid	(POPG-POPG)	and	also	for	each	POPG	lipid	

with	 respect	 to	 all	 of	 the	 other	 POPE	 molecules	 (POPG-POPE).	 The	 pair	

correlation	values	were	larger	in	the	POPG-POPG	RDF	than	they	were	in	the	

POPG-POPE	RDF	despite	the	fact	that	the	POPG	lipids	were	three	times	less	

common.	 The	 disparities	 are	 presented	 in	 terms	 of	 two-dimensional	

projections	of	lipid	number	densities	for	clarity.	The	POPG	number	densities	

were	computed	by	initially	splitting	the	periodic	box	into	a	contiguous	lattice	

and	subsequently	determining	how	many	POPG	lipids	there	were	in	each	(0.2	

x	 0.2	 nm2)	 grid	 cell.	 The	 visualization	 reveals	 that	 the	 POPG	 lipids	

preferentially	 segregated	 from	 the	 encompassing	 POPE	molecules	 to	 form	

nanodomains	that	contained	up	to	six	POPG	lipid	molecules	each	(Figure	36B-

D).	The	formation	of	the	small	POPG	nanodomains	can	be	understood	if	we	

consider	membrane	width,	electrostatic	interactions	and	the	entropic	forces.	

The	association	of	the	POPG	lipids	is	driven	in	part	by	the	hydrophobic	effect:	

as	POPE	and	POPG	lipids	are	progressively	sequestered	into	distinct	domains	

there	is	on	average	a	reduction	in	hydrophobic	mismatch	[219-221].	There	

would	be	more	variance	in	membrane	width	if	the	lipids	were	more	evenly	

distributed	 throughout	 the	 membrane.	 Electrostatic	 interactions	 also	

contribute:	 ambient	 ions	bind	 to	negatively	 charged	POPG	 lipid	phosphate	

groups	and	effectively	screen	some	of	the	repulsive	electrostatic	interactions	

between	 the	 adjacent	 anionic	 POPG	 lipid	 phosphate	 groups	 that	 would	

otherwise	 promote	 electrostatic	 repulsion.	 RDFs	 were	 computed	 for	

monovalent	cations	with	respect	to	the	POPG	phosphate	groups	to	validate	

this	statement.	The	 first	peak	of	 the	RDF	had	a	magnitude	of	25	 (sampled	

during	the	 last	10	ns)	and	this	 indicates	 that	 the	monovalent	cations	were	
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interacting	 with	 the	 POPG	 lipid	 phosphate	 groups.	 Finally,	 we	 must	 also	

appreciate	 that	 entropic	 forces	 must	 have	 driven	 the	 multicomponent	

membranes	towards	a	state	of	increased	homogeneity	[956];	the	lipids	will	

segregate,	but	only	partially.							

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
Figure	36.	(A)	Final	frame	(top	view)	snapshot	of	the	Gram-negative	inner	
membrane	mimetic.	The	lipids	have	the	following	color	scheme:	POPE	
(cyan)	and	POPG	(white).	(B)	The	visualization	of	the	POPG	number	density	
during	the	last	10	ns	of	the	simulation.	(C,	D)	The	corresponding	
visualization	of	the	POPG	number	densities	in	the	upper	(C)	and	lower	(D)	
bilayer	leaflets.		
	

Further	 decomposition	 of	 the	 total	 two-dimensional	 particle	 number	

densities	revealed	that	there	is	also	correlation	of	the	(PE/PG)	lipid	positions	

across	the	membrane	midplane.	There	was	association	of	the	POPG	particle	

positions	in	the	upper	and	lower	leaflets	of	the	Gram-negative	bacterial	inner	

membrane	 mimetic.	 This	 alignment	 of	 lipid	 types	 about	 the	 membrane	

midplane	 has	 been	 observed	 in	 multicomponent	 membranes	 but	 the	

association	 is	usually	noted	 for	plasma	membrane	mimetics	[335,358,957-

958]	rather	than	bacterial	membrane	mimetics.	This	transversal	alignment	
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reduces	the	line	tension	at	the	interface	between	the	two	membrane	leaflets.	

Thus,	the	formation	of	small	POPG	lipid	domains	and	their	correlation	across	

the	 bilayer	 midplane	 is	 due	 in	 large	 part	 to	 a	 complex	 combination	 of	

electrostatic	 interactions	 between	 negatively	 charged	 headgroups,	

hydrophobic	mismatch,	line	tension	energies	at	the	phosphate	interface	and	

an	 entropic	 component	 that	 drives	multicomponent	membranes	 toward	 a	

state	of	homogeneity.							

	

The	 center	 of	 mass	 positions	 of	 the	 PMB1	 peptides	 were	 analyzed	 in	 an	

attempt	to	understand	how	the	PMB1	peptides	moved	from	the	water	domain	

of	 the	 simulation	 cell	 into	 the	 Gram-negative	 inner	 bacterial	 membrane	

mimetic	core	(Figure	37A).	Representative	coordinates	are	shown	for	a	single	

PMB1	peptide	as	it	moved	along	the	bilayer	normal	and	passed	through	the	

phosphate	boundary	at	460	ns.		The	PMB1	peptide	moved	through	the	water	

domain	 until	 it	 came	 into	 contact	with	 the	 surface	 of	 the	multicomponent	

membrane.	 At	 that	 moment	 the	 PMB1	 Dab	 residues	 interacted	 with	 the	

phosphate	 groups	 of	 the	 negatively	 charged	 POPG	 lipid.	 The	 hydrophobic	

alkyl	and	benzyl	groups	of	the	PMB1	peptides	progressively	entered	into	the	

bilayer	 interior.	 Two-dimensional	 Voronoi	 tessellations	 of	 the	 POPG	

phosphate	 groups	 revealed	 that	 the	 PMB1	 hydrophobic	 moieties	 passed	

through	the	phosphate	interface	as	micropores	formed	within	the	membrane	

surface	at	the	bilayer-water	interface	(Figure	37B).			
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Figure	37.	(A)	The	distance	of	the	upper	leaflet	POPE	and	POPG	phosphate	
groups	from	the	membrane	midplane	is	shown	with	a	black	line.	The	
distance	between	a	single	(representative)	PMB1	peptide	and	the	bilayer	
center	is	shown	with	a	blue	line.	(B)	The	area	per	lipid	for	each	one	of	the	
upper	leaflet	phosphate	group	at	460	ns	i.e.	the	time	when	the	PMB1	peptide	
passed	through	the	phosphate	group	domain.	The	arrow	shows	the	pore	
that	the	PMB1	peptide	tunneled	when	it	moved	into	the	membrane	interior.	
(C)	Final	frame	(side	view)	snapshot	that	shows	the	position	of	the	PMB1	
peptides	in	the	Gram-negative	inner	membrane	mimetic.				
	

Temporary	 defects	 formed	 at	 the	 bilayer	 interface	 due	 to	 the	 fact	 the	

constituent	 lipids	 ceaselessly	 move	 back-and-forth	 and	 that	 this	 process	

affects	the	permeability	of	the	membrane	surface.	There	is	at	any	given	time	

an	area	of	 the	membrane	 surface	 that	 is	 relatively	depleted	of	hydrophilic	

headgroups	 and	 other	 areas	 that	 are	 relatively	 enriched	 in	 hydrophilic	

headgroups	 particles.	 The	 hydrophobic	 penetrants	 can	 more	 easily	 pass	

through	 the	areas	of	 the	membrane	 surface	 that	 are	 relatively	depleted	of	
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hydrophilic	headgroups.	There	was	complete	immersion	of	all	the	alkyl	and	

benzyl	groups	into	the	bilayer	interior	during	simulation	time	and	this	can	be	

understood	if	we	consider	the	low	lateral	area	compressibility	moduli	of	the	

phospholipid	membrane	(0.673	±	0.002	Nm-1)	and	that	the	fact	that	the	Gram-

negative	inner	membrane	mimetic	did	not	contain	any	saccharide	units	that	

could	 impede	 the	 PMB1	 peptides.	 The	 inner	 Gram-negative	 hydrophilic	

headgroup	was	much	easier	to	pass	through	than	the	coarse-grained	Re	LPS	

membrane.	 The	 PMB1	 peptides	 were	 on	 average	 1.6	 ±	 0.4	 nm	 above	 the	

bilayer	midplane	during	the	final	100	ns	of	production	time	(Figure	37C).		

	

The	embedded	PMB1	peptides	had	non-negligible	effects	on	the	organization	

of	 the	 membrane	 lipids	 and	 on	 the	 overall	 bilayer	 packing	 parameters.	

Computation	of	the	two-dimensional	number	densities	of	the	Gram-negative	

inner	membrane	mimetics	revealed	that	the	PMB1	peptides	reduced	bilayer	

homogeneity.	There	was	more	pronounced	division	of	 the	POPE	and	POPG	

lipid	fractions	after	the	membranes	had	interacted	with	the	PMB1	molecules	

(Figure	38A).	For	example,	 anionic	 lipid	 clusters	 contained	up	 to	20	POPG	

molecules	 in	 these	 simulations	with	 the	 PMB1	 peptides	 and	 only	 6	 POPG	

lipids	when	the	bilayers	were	simulated	with	only	water	and	ions.	There	was	

lipid	 aggregation	 within	 each	 membrane	 leaflet	 and	 there	 was	 also	

correlation	 of	 the	 cluster	 positions	 across	 the	 membrane	 midplane.	 This	

promotion	of	lipid	demixing	was	associated	with	a	significant	reduction	in	the	

overall	lipid	type	homogeneity.				

	

Further	 computation	 and	 visualization	 of	 the	 particle	 number	 densities	

demonstrated	 that	 the	 position	 of	 the	 POPG	 lipid	 clusters	were	 correlated	

with	 the	 positions	 of	 the	 embedded	 PMB1	 peptides	 (Figure	 38B).	 The	

association	of	the	POPG	lipid	and	the	PMB1	peptide	positions	indicates	that	

the	embedded	PMB1	molecules	were	directly	responsible	for	the	reduction	in	

lipid	 type	 homogeneity.	 The	 embedded	 antimicrobials	 affected	 the	

electrostatic	 interactions	 between	 the	 neighboring	 POPG	 lipids	 and	 this	

process	enhanced	POPG	lipid	aggregation.		
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Figure	38.	(A)	The	POPG	lipid	number	density	during	the	last	10	ns	of	the	
molecular	dynamics	simulation.	The	projected	number	density	map	is	
decomposed	into	the	contributions	from	the	upper	and	lower	leaflets	
(inset).	(B)	The	associated	PMB1	peptide	particle	number	density	during	the	
last	10	ns	of	the	molecular	dynamics	simulation.	(C,	D)	The	thickness	of	the	
upper	bilayer	leaflet	during	the	last	10	ns	of	the	molecular	dynamics	
simulation.	The	figures	show	thickness	data	for	the	simulation	systems	with	
water	and	ions	(C)	and	for	the	simulation	systems	with	water,	ions	and	
peptides.	There	is	approximately	one	PMB1	peptide	for	every	27	
phospholipids	(D).						
	

There	was	also	correlation	between	the	position	of	the	PMB1	peptides	and	

the	 location	of	 the	 localized	 bilayer	 thinning	 and	 this	 result	matched	 data	

from	 comparable	 united-atom	 forcefield	 molecular	 dynamics	 simulations	

[328].	 Membrane	 thickness	 was	 reduced	 in	 the	 vicinity	 of	 the	 embedded	

PMB1	peptides	(Figure	38C-D)	and	affects	bilayer	stability	[959].	Thus,	the	

embedded	PMB1	peptides	have	been	shown	to	promote	lipid	demixing	and	at	

the	same	they	have	been	found	to	reduce	membrane	width.	The	interactions	

are	not	entirely	dissimilar	to	the	carpet	mechanism	that	has	been	proposed	

to	describe	how	certain	AMPs	increase	membrane	permeability	and	destroy	

pathogenic	 bacteria.	 The	 PMB1	 molecules	 were	 found	 to	 not	 only	 affect	

membrane	organization	but	also	the	basic	packing	parameters	that	underpin	
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membrane	strength.	The	structure	of	 the	bilayer	was	affected	on	the	short	

microsecond	timescales	that	were	used	here	and	it	would	be	reasonable	to	

observe	 more	 drastic	 changes	 to	 the	 membrane	 structure	 on	 longer	

timescales.	

	

At	 this	 point,	 it	 is	 necessary	 to	 assess	 the	 quality	 of	 the	 coarse-grained	

molecular	dynamics	simulations	and	consider	if	 the	results	were	biased	by	

the	 simulation	 setup.	 First,	 it	 is	 important	 to	 appreciate	 that	 the	 PMB1	

peptides	were	placed	 at	 least	 5	 nm	 from	 the	bacterial	membrane	mimetic	

surfaces	(defined	by	the	position	of	phosphate	groups)	before	the	unbiased	

molecular	 dynamics	 simulations	 were	 started	 at	 simulation	 time	 𝑡 = 0 .	

Second,	we	 should	 keep	 in	mind	 that	 the	 initial	 orientations	 of	 the	 PMB1	

peptides	were	always	 set	 to	be	 random	before	production	 time.	Third,	we	

need	to	consider	that	the	bacterial	membrane	mimetics	were	simulated	for	at	

least	5	μs	before	the	membranes	were	simulated	with	any	PMB1	peptides.	

Molecular	 dynamics	 simulations	 of	 AMPs	 can	 be	 biased	 if	 the	 lipid	

membranes	have	not	been	adequately	equilibrated	as	the	membranes	will	not	

have	 not	 reached	 a	 converged	 conformation	 [960].	 It	 is	 assumed	 that	

converged	membrane	 conformations	 are	more	 realistic	 representations	 of	

the	in	vivo	scenario	[59]	and	therefore,	that	converged	bilayer	conformations	

are	 necessary	 for	 mimicking	 realistic	 antimicrobial	 interactions.	 The	 long	

equilibration	timescales	that	were	used	in	this	chapter	ensure	that	the	lipid	

conformations	were	converged,	or	close	to	being	converged,	before	they	were	

simulated	with	the	antimicrobial	peptides	and	we	can	therefore	conclude	that	

at	 least	 one	 of	 the	 potential	 simulation	 biases	 was	 addressed.	 Another	

potential	biasing	procedure	is	to	place	antimicrobial	peptides	too	close	to	the	

lipid	 membrane	 surfaces	 before	 the	 molecular	 dynamics	 simulations	 are	

conducted	 [630].	When	 AMPs	 are	 placed	 too	 close	 to	 the	 lipid	membrane	

surfaces	they	are	unable	to	freely	change	their	conformation	before	they	bind	

the	 lipid	 headgroup	 domain.	 The	 initial	 interactions	 become	 highly	

dependent	 on	 the	 starting	 configurations	 and	 the	 simulations	 become	 less	

likely	to	reproduce	realistic	biomolecular	interactions.	Considering	the	initial	

positions	and	orientations	of	the	PMB1	peptides,	i.e.	random	and	at	least	5	
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nm	from	the	lipid	phosphate	groups,	we	can	conclude	that	the	other,	more	

obvious	 simulation	 biases	were	 also	 addressed.	 Overall,	 it	 seems	 that	 the	

PMB1	 simulations	 were	 relatively	 unaffected	 by	 obvious	 biasing	 set	 up	

procedures	 but	 that	 is	 not	 to	 say	 the	 methodology	 was	 faultless.	 More	

independent	repeat	simulations	could	have	been	conducted	to	obtain	average	

values	 that	were	 representative	 of	 tens	 of	 comparable	 simulations,	 rather	

than	 just	 a	 few.	 Numerous	 additional	 repeat	 simulations	 would	 have	

indisputably	demonstrated	that	the	simulation	results	were	not	in	any	way	

anomalous.		

	

Perhaps	 the	 most	 convincing	 evidence	 that	 the	 PMB1	 simulations	 were	

relatively	 free	 from	 bias	 is	 found	 through	 comparisons	 with	 previous	

publications.	 Take	 for	 example,	 the	 tendency	 of	 PMB1	peptides	 (AMPs)	 to	

induce	the	growth	of	small	PG	lipid	nanodomains.	Previous	publications	drew	

comparable	conclusions	for	different	types	of	AMPs	[255,270-271,281-283].	

It	was	found	that	cationic	AMPs	had	the	capacity	to	rearrange	Gram-negative	

bacterial	 inner	 membrane	 mimetics	 in	 both	 atomistic	 and	 coarse-grained	

resolution	 molecular	 dynamics	 simulations.	 Different	 AMPs	 promoted	 the	

growth	of	small	PG	lipid	domains,	regardless	of	the	specific	structure	of	the	

cationic	AMPs	that	were	being	used	to	study	antimicrobial	interactions.	The	

similarities	between	different	publications	help	to	corroborate	the	inference	

that	 these	coarse-grained	simulations	were	not	 in	any	way	anomalous,	not	

highly	 dependent	 on	 the	 selected	 starting	 configurations,	 that	 they	 were	

representative	 of	 realistic	 biomolecular	 interactions	 and	 that	 they	 were	

relatively	 free	 from	 biases	 that	 could	 significantly	 affect	 the	 simulation	

results.					

	

The	movement	of	the	PMB1	peptides	was	unbiased	both	within	the	plane	

parallel	the	lipid	membrane	surface	and	also	along	the	membrane	normal	

axis	(z-axis)	throughout	the	entire	duration	of	the	molecular	dynamics	

simulations.	There	were	two	reasons	for	adopting	this	unbiased	setup:	(i)	

not	to	constrain	the	PMB1	conformations;	and	(ii)	to	ensure	that	there	were	

similar	numbers	of	PMB1	peptides	either	side	of	the	membrane	midplane.	
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The	lipid	bilayer	becomes	strained	when	there	is	mismatch	of	molecular	

surface	area	about	the	membrane	midplane	and	this	can	alter	almost	all	

membrane	properties	including	lipid	aggregation,	curvature	generation,	

membrane	thickness	etc.	[428,961-962]	The	motion	of	the	PMB1	peptides	

was	unbiased	along	the	z-axis	to	minimize	the	possibility	that	all	of	the	

simulated	PMB1	peptides	could	move	into	just	one-half	of	the	membrane	

and	thereby	created	mismatch	of	molecular	surface	area	about	the	

membrane	midplane.	The	PMB1	molecules	could	freely	enter	the	membrane	

through	either	its	outer	(extracellular)	or	inner	(intracellular)	sides.	The	

reasons	for	this	setup	are	now	clear	but	it	is	interesting	to	consider	what	

would	be	expected	if	the	PMB1	peptides	were	exposed	to	just	one	side	of	the	

membrane,	i.e.	the	PMB1	peptide	motion	was	in	fact	biased	along	the	z-axis.	

The	concentration	of	the	PMB1	peptides	would	become	highly	concentrated	

within	just	one-half	of	the	Gram-negative	inner	membrane	mimetic	[695-

696]	and	this	side	of	the	bilayer	would	presumably	display	significant	lipid	

segregation	and	more	pronounced	PG	lipid	nanodomain	formation.	The	

cationic	PMB1	peptides	would	be	especially	abundant	on	this	single	side	of	

the	lipid	membrane	and	this	bilayer	surface	would	presumably	have	more	

significant	PG	nanodomain	formation;	more	so	than	anything	noted	

throughout	this	chapter.		

	

The	possibility	of	performing	simulations	that	would	force	PMB1	peptides	

into	a	single	side	of	the	Gram-negative	bacterial	membrane	mimetic	are	

interesting	to	discuss	not	only	in	terms	of	predicted	results,	but	also	in	

terms	of	potential	implementation.	Here	we	can	discuss	simulation	

procedures	that	would	force	the	PMB1	peptides	to	interact	with	just	one-

half	of	the	inner	Gram-negative	bacterial	membrane	mimetic.	The	discussion	

would	help	readers	to	understand	how	feasible	it	would	be	to	perform	such	

simulations	for	themselves	and	understand	the	quality	of	the	simulation	

output.	One	method	for	biasing	the	movement	of	biomolecules	within	

periodic	simulation	cells	is	to	introduce	simulation	cell	“walls”	[963-964].	

Molecular	dynamics	simulation	packages	ordinarily	enable	users	to	place	

walls	at	the	borders	of	simulation	cells	that	affect	all	molecules	equally,	or	
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some	molecules	more	so	than	others.	The	simulation	cell	walls	could	stop	

PMB1	peptides	from	passing	from	one	side	of	the	simulation	cell	(e.g.	

extracellular)	into	the	other	(e.g.	intracellular).	The	introduction	of	

simulation	cell	walls	can	however,	be	undesirable	since	it	necessitates	the	

use	of	unusual	simulation	options	such	as	periodicity	along	just	two,	rather	

than	three	coordinate	axes.	Another	option	is	to	“trap”	PMB1	peptides	

between	two	equivalent	inner	Gram-negative	bacterial	membrane	mimetics.	

Ordinarily	there	is	only	one	planar	membrane	per	simulation	cell,	but	when	

there	are	two	planar	membranes,	there	are	domains	within	the	simulation	

cell	that	are	relatively	inaccessible	[965-967].	If	PMB1	peptides	are	placed	

between	the	two	adjacent	membranes,	the	antimicrobials	can	only	interact	

with	one-half	of	each	multicomponent	membrane	system.	The	PMB1	

peptides	would	become	concentrated	on	a	single	side	of	each	

multicomponent	membrane	and	it	would	be	relatively	simple	to	understand	

how	the	host	membranes	are	differently	perturbed	when	a	single	side	of	the	

bacterial	membranes	interact	with	PMB1	peptides.											

	

3.5	Conclusion	
	

Gram-negative	bacteria	are	developing	resistance	to	last-line	antibiotics	and	

this	 is	 making	 many	 of	 the	 most	 commonly	 used	 and	 readily	 available	

antimicrobial	 medications	 completely	 ineffective	 for	 treating	 infectious	

strains	 of	 Gram-negative	 bacteria	 [593-600].	 Computational	 simulation	

methodologies	have	reached	a	level	of	sufficient	complexity	that	they	can	be	

used	 to	 gain	 unprecedented	 molecular	 level	 insights	 into	 the	 action	 of	

effective	 antimicrobials	 [624-629].	 Molecular	 dynamics	 simulation	

forcefields	 are	 increasingly	 being	 applied	 to	 understand	 how	 some	 of	 the	

most	effective	AMPs	disrupt	bacterial	membrane	mimetics	[630-631].	There	

have	been	many	atomistic	 resolution	molecular	dynamics	 simulations	 that	

have	 attempted	 to	 understand	 how	 polymyxin	 molecules	 interact	 with	

bacterial	and	mammalian	membrane	mimetics	on	relatively	short	(typically	

less	 than	 1	𝜇 s)	 simulation	 timescales	 [243,328,726,728].	 The	 simulations	

were	 conducted	with	 the	 aim	of	 understanding	 how	polymyxin	molecules	
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interact	 with	 biological	 membranes	 so	 that	 these	 membrane	 disrupting	

properties	could	be	duplicated	in	new	antibiotics	that	are	either	polymyxin-

based	 derivatives	 or	 antibiotics	 that	 have	 an	 entirely	 distinct	 chemical	

composition.	 The	 coarse-grained	 Martini	 molecular	 dynamics	 simulation	

forcefield	was	 used	 here	 in	 this	 chapter	 to	 understand	 the	 interactions	 of	

PMB1	peptides	with	different	Gram-negative	bacterial	membrane	systems	on	

long	timescales.		

	

The	 PMB1	 peptides	 were	 simulated	 with	 a	 phospholipid	 membrane	 that	

contained	POPE	and	POPG	 in	a	3:1	number	 ratio	and	 the	multicomponent	

membrane	was	therefore	quite	similar	to	inner	membranes	of	Gram-negative	

bacteria	 [270,880].	 The	 PMB1	 peptides	 maintained	 positions	 close	 to	 the	

water-lipid	 interface	 once	 the	 PMB1	 hydrophobic	 moieties	 (e.g.	 isobutyl,	

phenylalanine,	 terminal	 acyl	 tail)	 entered	 into	 the	hydrophobic	membrane	

interior.	 The	 positively	 charged	 (Dab)	 residues	 of	 the	 PMB1	 peptides	

preferentially	 interacted	with	 the	 negatively	 charged	 PG	 lipid	 headgroups	

and	 this	 induced	 the	 formation	 of	 negatively	 charged	 (PG)	 nanodomains	

within	 the	 multicomponent	 Gram-negative	 inner	 bacterial	 membrane	

mimetic.	 The	 PMB1	 peptides	 additionally	 induced	 bilayer	 thinning	 and	

decreased	 the	 normal	 distance	 between	 the	 extracellular	 and	 intracellular	

membrane	 leaflet	 hydrophilic	 headgroup	 boundaries.	 The	 membrane	

thinning	 effects	 were	 highly	 localized	 and	 the	 locations	 of	 the	 decreased	

membrane	width	coincided	with	the	locations	of	the	membrane-active	PMB1	

peptides.	 The	 results	 closely	 correspond	 to	 data	 that	 was	 obtained	 from	

previous	 simulation	 studies	 of	 membrane-active	 antimicrobial	 peptides	

[117,270-271,281-283,726,728].	 It	 has	 been	 demonstrated	 that	 the	 PMB1	

peptides	 did	 not	 only	 reorganize	 the	 Gram-negative	 bacterial	

multicomponent	membrane	mimetics	but	that	they	also	reduced	membrane	

thickness	 values.	 The	 results	 could	 help	 to	 explain	 how	 PMB1	 peptides	

disrupt	the	inner	membrane	of	Gram-negative	bacteria.	First,	the	preferential	

interactions	between	the	PG	lipids	and	the	PMB1	molecules	would	lead	to	a	

local	increase	in	the	concentration	of	the	PMB1	peptides	at	specific	points	of	

the	membrane	surface,	i.e.	areas	enriched	with	PG	lipids.	The	PMB1	peptides	
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would	then	thin	the	anionic	PG	lipid	nanodomains	and	these	sections	of	the	

membrane	surface	would	become	less	structurally	stable	and	more	likely	to	

rupture	 [959].	 There	 would	 effectively	 be	 anionic	 “hotspots”	 that	 are	

unusually	 prone	 to	 induce	 membrane	 breakdown	 processes	 such	 as	

micellization	processes	or	the	production	of	transmembrane	water	pores.	It	

must	 be	 appreciated	 here	 that	 the	 reorganization	 of	 the	 PE	 and	 PG	 lipids	

would	additionally	affect	the	function	of	membrane	proteins	because	protein-

lipid	 interactions	 affect	 protein	 properties	 and	 many	 important	 cellular	

functions	 [370-371].	 PMB1	 peptides	 might	 hamper	 the	 proliferation	 of	

pathogenic	 bacteria	 by	 affecting	membrane	 proteins	 that	 control	 bacterial	

growth	 and	 replication.	 This	 is	 speculation	 based	 on	 these	 interesting	

molecular	 dynamics	 simulation	 results,	 but	 it	 is	 important	 to	make	 some	

inferences	to	place	the	simulation	data	in	context	and	provide	predictions	for	

other	scientific	research	groups.						

	

The	 PMB1	 peptides	 were	 also	 simulated	 with	 symmetric	 Re	 LPS	 lipid	

membrane	simulation	systems	to	understand	how	PMB1	peptide	molecules	

interact	with	 the	 outer	membrane	 of	 Gram-negative	 bacteria.	 The	 Re	 LPS	

lipids	had	unusual	biophysical	parameters	that	made	it	difficult	for	the	PMB1	

peptides	to	translocate	from	the	water	domain	of	the	simulation	cell	into	the	

Re	 LPS	 lipid	 membrane	 core.	 The	 Gram-negative	 bacterial	 membrane	

mimetics	had	glass-like	dynamics,	high	shear	viscosities,	relatively	immobile	

phosphate	 groups	 and	 a	 thick	 wall	 of	 hydrophilic	 core	 sugar	 units.	 The	

simulation	analyses	demonstrated	that	the	PMB1-Re	LPS	interactions	were	

not	 completely	 converged	 even	 after	 5	 μs	 and	 this	 lack	 of	 simulation	

convergence	 was	 addressed	 with	 biased	 simulation	 methods.	 The	 biased	

simulation	 methods	 were	 used	 to	 increase	 the	 scope	 of	 the	 molecular	

dynamics	 simulation	 study	and	understand	how	 the	PMB1	peptides	might	

destabilize	the	bacterial	membrane	mimetic	on	long	timescales.	The	umbrella	

sampling	technique	was	combined	with	WHAM	to	generate	PMFs	profiles	and	

determine	 the	 energetics	 of	 PMB1	 peptide	 translocation	 from	 the	 water	

domain	 of	 the	 simulation	 cell	 into	 the	 Re	 LPS	 lipid	 membrane	 core.	 The	

umbrella	sampling	simulations	and	WHAM	analyses	demonstrated	that	the	
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Re	 LPS	 bilayer	 became	 increasingly	 rigid	 and	 immobile	 when	 the	 PMB1	

peptide	was	restrained	at	positions	that	were	closer	to	the	Re	LPS	membrane	

midplane.	When	the	PMB1	peptides	were	restrained	at	normal	distances	of	

1.6	nm	(Ca2+	system)	and	1.9	nm	(Na+	system)	from	the	bilayer	center	(i.e.	the	

position	of	the	PMF	minima)	they	induced	changes	in	the	phase	behaviour	of	

the	bacterial	membrane	mimetics.	The	bacterial	membrane	mimetics	became	

significantly	 more	 rigid	 and	 the	 LPS	 phosphates	 began	 to	 behave	 as	 an	

amorphous	solid.	This	insight	is	noteworthy	because	membrane	fluidity	can	

affect	different	bilayer	properties	such	as	shape,	tension	and	elastic	moduli	

[884-887].	 Membrane	 fluidity	 can	 also	 affect	 biological	 functions	 that	 are	

crucial	 for	cell	viability	such	as	enzymatic	action	and	protein	sorting	[888-

891].	Here	I	have	studied	the	 interactions	of	PMB1	peptides	with	bacterial	

membrane	 mimetics	 and	 I	 have	 provided	 some	 important	 biomolecular	

insights	 that	 might	 help	 chemists	 to	 understand	 how	 PMB1	 peptides	 can	

disrupt	bacterial	membranes	and	kill	Gram-negative	bacteria.		
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Chapter	4:	Lipopolysaccharide	O-Antigen	Chains	
Modulate	the	Mechanical	Strength	of	the	Gram-Negative	
Outer	Membrane		
	

4.1	Abstract	
	

Lipopolysaccharide	 (LPS)	 macromolecules	 are	 unusually	 long	 lipids	 that	

always	contain	the	Lipid	A	anchor	with	covalently	bonded	core	saccharide	

domain	 and	 the	 molecules	 can	 additionally	 contain	 the	 repetitive	 glycan	

polymer	moiety	that	has	been	termed	the	“O-antigen	chain”.	Rough	LPS	lipids	

contain	 the	 Lipid	 A	 anchor	 with	 core	 saccharide	 sugars	 alone,	 whereas	

smooth	 LPS	 lipids	 additionally	 contain	 terminal	 O-antigen	 chain	moieties.	

Coarse-grained	molecular	dynamics	simulations	were	used	in	this	chapter	to	

understand	 how	 the	 interactions	 between	 O-antigen	 chains	 can	 affect	 the	

mobility	 and	 mechanical	 strength	 of	 Gram-negative	 bacterial	 outer	

membrane	 mimetics.	 The	 coarse-grained	 molecular	 dynamics	 simulations	

demonstrate	first	of	all,	that	membrane	composition	affects	LPS	lipid	packing	

parameters	and	second	of	all,	that	these	differences	are	inextricably	linked	to	

membrane	 mechanical	 strength.	 The	 O-antigen	 chains	 had	 approximate	

lamellar	packing	when	the	outer	leaflets	of	the	bacterial	membrane	mimetics	

contained	smooth	LPS	lipids	alone	(i.e.	without	phospholipids).	The	O-antigen	

chains	spread	out	over	the	membrane	surface	when	the	outer	leaflets	of	the	

bacterial	membrane	mimetics	additionally	 contained	PE	and/or	 rough	LPS	

lipids.	When	the	Gram-negative	bacterial	membrane	mimetics	contained	an	

extracellular	leaflet	that	was	exclusively	comprised	of	smooth	LPS	lipids	they	

were	 able	 to	 withstand	 high	 surface	 tensions	 (150	 mNm-1).	 The	 Gram-

negative	bacterial	membrane	mimetics	were	able	to	withstand	lower	surface	

tension	magnitudes	when	they	contained	PE	and/or	rough	LPS	lipids	in	the	

extracellular	leaflet.								

	

4.2	Introduction	
	

The	outer	membrane	of	Gram-negative	bacteria	has	an	unusual	asymmetric	

structure	 and	 unusual	 biophysical	 parameters.	 The	 extracellular	 leaflet	
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contains	 a	 high	 concentration	 of	 long	 LPS	 macromolecules	 and	 the	

intracellular	 leaflet	 contains	 a	 high	 concentration	 of	 smaller	 PE	 and	 PG	

phospholipids	[101-103].	The	LPS	lipids	are	crossed-linked	with	stabilizing	

cations	 and	 this	 combination	 of	 positively	 charged	 cations	 and	 negatively	

charged	LPS	lipids	creates	a	relatively	rigid	barrier	that	can	help	the	Gram-

negative	bacteria	 to	resist	external	stressors	[104,968-969].	LPS	 lipids	can	

affect	the	basic	functioning	of	individual	Gram-negative	bacteria	and	the	basic	

functioning	of	entire	Gram-negative	bacterial	cell	colonies	[970-972].			

	

LPS	 lipids	 always	 contain	 the	 Lipid	A	 anchor	 that	 is	 covalently	 bonded	 to	

some	combination	of	core	saccharide	sugars	and	these	sugars	can	in	turn,	be	

bonded	 to	 the	 terminal	 (repetitive)	 O-antigen	 chain	 glycan	 polymer	 [543-

545].	The	Lipid	A	moiety	is	a	phosphorylated	glucosamine	disaccharide	that	

contains	between	 four	and	seven	anchoring	acyl	 chains	[555].	The	Lipid	A	

moiety	 is	 covalently	 bonded	 to	 the	 core	 saccharide	 domain	 and	 the	 core	

saccharide	 sugars	 can	 in	 turn,	 be	 bonded	 to	 the	 terminal	 O-antigen	 chain	

polymer	that	has	been	found	 in	some	cases	to	contain	several	hundreds	of	

constituent	 sugars	 [971].	 The	 appearance	 of	 Gram-negative	 bacterial	 cell	

colonies	is	affected	by	the	length	of	the	LPS	lipids	that	comprise	the	Gram-

negative	 bacterial	 cell	 outer	membranes.	 Gram-negative	 bacterial	 colonies	

appear	to	be	smooth	when	they	contain	LPS	lipids	with	terminal	O-antigen	

chains	(smooth	LPS)	and	rough	when	they	contain	LPS	lipids	that	are	capped	

at	 the	 core	 saccharide	 domain	 [972].	 LPS	 nomenclature	 is	 based	 on	 the	

appearance	of	Gram-negative	bacterial	cell	colonies.	When	LPS	lipids	contain	

the	Lipid	A	anchor	with	variable	 core	 saccharide	 sections	 they	are	 termed	

“rough”	LPS	lipid	variants	and	when	the	LPS	lipids	contain	the	Lipid	A	anchor	

with	variable	core	saccharide	and	terminal	O-antigen	chain	polymer	they	are	

termed	“smooth”	LPS	lipid	variants.		

	

It	 was	 demonstrated	 that	 O-antigen	 chain	 polymers	 have	 the	 capacity	 to	

modulate	the	structural	characteristics	of	Gram-negative	bacterial	biofilms.	

Previous	 experimental	 analyses	 revealed	 that	 O-antigen	 chains	 have	 the	

capacity	to	affect	the	instantaneous	elasticity	of	bacterial	biofilms	or	put	more	
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simply,	 how	 the	 bacteria	 respond	 to	 applied	mechanical	 stress	 [973].	 It	 is	

interesting	to	explore	the	possibility	that	O-antigen	chains	might	additionally	

affect	 the	 instantaneous	elasticity	of	 individual	bacteria	or	even	 individual	

Gram-negative	 bacterial	 cell	 membranes.	 Molecular	 dynamics	 simulations	

were	used	here	in	this	chapter	to	determine	if	O-antigen	chain	interactions	

can	 affect	 the	 mechanical	 strength	 of	 Gram-negative	 bacterial	 cell	

membranes.	Molecular	 dynamics	 simulation	 forcefields	were	 used	 here	 to	

understand	how	LPS	O-antigen	chains	interact	with	each	other	and	how	these	

lipid-lipid	interactions	can	affect	membrane	tolerance	for	mechanical	stress.	

Smooth	 LPS	 lipids	 were	 simulated	 in	 asymmetric	 membranes	 using	 the	

coarse-grained	Martini	molecular	dynamics	simulation	forcefield.	The	inner	

bacterial	membrane	leaflets	contained	POPE	and	POPG	lipids	in	a	9:1	number	

ratio	and	the	outer	leaflets	contained	different	types	of	lipids	(i.e.	rough	LPS,	

POPE,	and	smooth	LPS)	that	were	arranged	in	different	number	ratios.	The	

membranes	 were	 initially	 simulated	 at	 atmospheric	 pressure	 and	 were	

subsequently	simulated	with	 increasing	 lateral	pressure	to	understand	the	

membrane	tolerance	for	and	response	to,	applied	mechanical	stress.		

	

The	 simulations	 demonstrated	 that	 membrane	 composition	 affects	 the	

organization	 and	 aggregation	 of	 the	 LPS	 O-antigen	 chains.	 The	 O-antigen	

chains	 splayed	 out	 across	 the	 membrane	 surface	 when	 the	 extracellular	

leaflet	of	Gram-negative	bacterial	membrane	mimetics	contained	smooth	LPS	

lipids	with	rough	LPS	and/or	POPE	molecules.	The	conformation	of	the	LPS	

O-antigen	 chains	 was	 different	 when	 the	 extracellular	 leaflet	 contained	

smooth	 LPS	 lipids	 alone.	 The	 O-antigen	 chains	 had	 approximate	 lamellar	

alignment	 when	 the	 extracellular	 leaflet	 of	 the	 Gram-negative	 outer	

membrane	mimetics	contained	smooth	LPS	lipids	alone	and	this	arrangement	

of	 the	 O-antigen	 chains	 promoted	 strong	 cohesive	 intermolecular	

interactions	between	the	adjacent	O-antigen	chains.	The	smooth	LPS	 lipids	

were	significantly	less	mobile	(i.e.	smaller	lateral	diffusion	coefficients)	when	

they	were	 incorporated	 into	 the	 extracellular	 leaflet	 of	 the	Gram-negative	

outer	membrane	mimetic	system	that	was	exclusively	comprised	of	smooth	
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LPS	 lipids	 compared	with	 the	simulation	 systems	 that	also	 included	 rough	

LPS	lipids	and/or	POPE	molecules	in	the	extracellular	leaflet.		

	

The	 simulations	 demonstrated	 that	 cohesive	 intermolecular	 interactions	

between	 O-antigen	 chains	 can	 affect	 membrane	 tolerance	 for	 mechanical	

stress.	The	membranes	were	able	to	withstand	surface	tension	magnitudes	of	

150	 mNm-1	 when	 the	 extracellular	 leaflet	 of	 the	 Gram-negative	 outer	

membrane	 mimetics	 contained	 smooth	 LPS	 lipids	 alone.	 The	 bacterial	

membranes	withstood	surface	tensions	of	no	more	than	100	mNm-1	when	the	

extracellular	leaflet	of	the	Gram-negative	bacterial	outer	membrane	mimetics	

additionally	contained	rough	LPS,	smooth	LPS	and/or	POPE	molecules.		The	

data	demonstrates	 that	 cohesive	O-antigen	chain	 interactions	 can	 increase	

the	mechanical	strength	of	 the	outer	membrane	of	Gram-negative	bacteria.	

There	 are	 strong	 intermolecular	 interactions	 within	 bacterial	 membrane	

mimetics	when	the	constituent	O-antigen	chains	have	approximate	lamellar	

alignment.	The	 cohesive	 interactions	 increase	 the	membrane	 tolerance	 for	

mechanical	stress	and	the	bacterial	membranes	become	more	mechanically	

robust.			

	

The	simulations	were	then	used	to	rationalize	how	the	bacterial	membrane	

properties	changed	as	the	mechanical	stress	was	incrementally	increased	and	

the	lipid	membranes	were	increasingly	driven	toward	the	point	of	rupture.	

There	were	 changes	 to	 almost	 all	 of	 the	membrane	 parameters	when	 the	

applied	mechanical	stress	was	incrementally	increased.	The	bilayers	became	

thinner,	the	distances	between	the	lipids	increased,	and	the	O-antigen	chains	

packing	became	less	uniform.	There	was	less	cohesion	between	the	LPS	lipids	

and	 the	 membranes	 became	more	 flexible.	 Water	 molecules	 were	 able	 to	

penetrate	the	bilayer	interior	and	they	eventually	induced	the	formation	of	

transmembrane	water	chains	that	in	turn,	caused	the	bilayers	to	collapse.		
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4.3	Methods	

	

4.3.1	Parameterization	of	the	Coarse-Grained	Smooth	LPS	Lipid	
	

The	parameterization	of	the	smooth	LPS	lipid	was	stepwise:	the	E.	coli	O1	O-

antigen	 chain	 was	 simulated	 with	 a	 united-atom	 forcefield	 and	 these	

atomistic	resolution	simulation	data	were	then	used	to	optimize	parameters	

for	a	comparable	coarse-grained	model	of	the	O1	O-antigen	chain.	The	coarse-

grained	O-antigen	chain	was	subsequently	combined	with	a	coarse-grained	

model	for	rough	LPS	lipid	to	create	a	new	composite	smooth	LPS	lipid	model	

that	contained	the	Lipid	A	anchor,	core	saccharide	domain,	and	the	terminal	

O-antigen	chain.	This	parameterization	process	is	described	more	thoroughly	

in	the	following	three	paragraphs.		

	

	The	E.	coli	O1	O-antigen	chain	was	initially	simulated	with	the	united-atom	

GROMOS	53A6	forcefield	[561-562].	The	glycan	polymer	was	simulated	in	an	

orthorhombic	unit	cell	and	this	cell	was	filled	with	SPC	water	molecules.	The	

pressure	was	maintained	at	1	bar	with	the	Parrinello-Rahman	barostat	[841-

842]	and	 the	 temperature	was	maintained	at	313	K	with	 the	Nosé-Hoover	

thermostat	 [840].	 The	 electrostatic	 interactions	 were	 computed	 with	 the	

smooth	 particle	mesh	Ewald	 algorithm	 [974];	 the	 short-range	 cutoff	 value	

was	0.9	nm.	The	van	der	Waals	interactions	were	truncated	at	1.4	nm	with	

long-range	 corrections	 for	 the	 energy	 and	pressure.	 The	 simulation	 bonds	

were	constrained	with	the	LINCS	algorithm	[845].	

	

The	 united-atom	 particles	 were	 then	 mapped	 to	 coarse-grained	 pseudo-

atoms	in	an	attempt	to	produce	a	coarse-grained	model	that	could	mimic	the	

behaviour	 of	 the	 reference	 united-atom	E.	 coli	 O1	O-antigen	 chain	 (Figure	

39A-B).	 Suitable	 coarse-grained	 model	 equilibrium	 angles (𝜃*+	and	𝜙Qb�@) ,	

equilibrium	bond	lengths	(𝑟*+)	and	the	associated	force	constant	parameters	

( 𝑘Qb� , 	𝑘Qb�� 	and	 𝑘Qb�@
� )	 were	 initially	 derived	 from	 the	 reference	 atomistic	
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simulation	 data.	 The	 coarse-grained	 equilibrium	 bond	 lengths	 and	 bond	

angles	were	 determined	 as	 the	 average	 spacing	 between	 the	 atoms	 in	 the	

united-atom	 simulations	 and	 the	 corresponding	 force	 constants	 were	

determined	from	the	variance	about	these	mean	average	values.	The	coarse-

grained	parameters	(𝜃*+, 𝜙Qb�@ ,	𝑘Qb� ,	𝑘Qb�� 	and	𝑘Qb�@
� )	were	then	refined	after	the	

coarse-grained	parameter	set	was	used	to	generate	coarse-grained	molecular	

dynamics	simulation	data	and	this	new	coarse-grained	simulation	data	was	

compared	 with	 the	 original	 (reference)	 atomistic	 simulation	 data.	 To	

summarize	 this	 complex	 back-and-forth	 process:	 I	 initially	 determined	

suitable	coarse-grained	O1	O-antigen	chain	simulation	parameters	from	the	

reference	 united-atom	 resolution	 simulations	 and	 then	 I	 used	 these	

parameters	to	conduct	coarse-grained	O1	O-antigen	chain	polymer	molecular	

dynamics	 simulations.	 When	 I	 discovered	 any	 discrepancies	 between	 the	

united-atom	 and	 coarse-grained	 simulations	 I	 would	 adjust	 the	 coarse-

grained	parameters	until	 these	discrepancies	were	minimized.	The	coarse-

grained	 parameter	 set	was	 adjusted	 until	 the	 average	 O1	 O-antigen	 chain	

radius	of	gyration	was	0.49	nm	for	the	comparative	united-atom	and	coarse-

grained	 simulations	 (Figure	 39C)	 and	 until	 the	 average	 end-to-end	 O1	 O-

antigen	chain	distance	differed	by	no	more	than	0.03	nm	(Figure	39D).	The	

equilibrium	bond	lengths	(𝑟*+)	in	the	coarse-grained	and	target	united-atom	

simulations	(mapped	to	coarse-grained	pseudoatoms)	generally	differed	by	

no	more	than	0.01	nm	(Figure	39E)	and	the	equilibrium	bond	angles	(both	

𝜃*+ 	and	𝜙Qb�@)	were	equivalent	to	within	1°	(Figure	39F).		
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Figure	39.	(A)	Snapshot	of	a	single	unit	of	the	E.	coli	O1	O-antigen	chain	that	
was	simulated	with	the	GROMOS	53A6	united-atom	forcefield.	The	atoms	
have	the	following	color	scheme:	carbon	atoms	(cyan),	nitrogen	atoms	
(blue),	oxygen	atoms	(red)	and	hydrogen	atoms	(white).	(B)	The	
corresponding	coarse-grained	Martini	forcefield	model.	(C)	Comparison	of	
the	radius	of	gyration	values	for	the	O-antigen	chain	units	in	the	
comparative	united-atom	and	coarse-grained	molecular	dynamics	
simulations.	(D)	Comparison	of	the	end-to-end	lengths	for	the	O-antigen	
chain	units	in	the	comparative	united-atom	and	coarse-grained	molecular	
dynamics	simulations.	(E)	The	probability	distribution	for	a	single	O-antigen	
chain	bond	length	in	the	comparative	united-atom	and	coarse-grained	
molecular	dynamics	simulations.	(E)	The	probability	distribution	for	a	single	
angle	in	the	comparative	united-atom	and	coarse-grained	molecular	
dynamics	simulations.	The	united-atom	simulation	data	are	presented	with	
black	lines	and	the	corresponding	coarse-grained	molecular	dynamics	
simulation	data	are	presented	with	red	lines.		
	
	

The	coarse-grained	O1	O-antigen	chain	parameter	set	was	combined	with	a	

pre-existing	coarse-grained	model	for	E.	coli	rough	(Ra	type)	LPS	with	R3	core	

sugars	and	type	1	Lipid	A	anchor.	The	resulting	smooth	LPS	model	contains	
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the	conserved	Lipid	A	domain	with	the	complete	R3	core	saccharide	sequence	

and	four	units	of	the	repetitive	O1	O-antigen	chain	glycan	polymer.	The	O1	O-

antigen	chain	repetitive	subunit	contains	the	five	saccharides	arranged	end-

to-end:	 b	 N-acetyl-D-glucosamine,	 a	 D-galactose,	 a	 L-rhamnose,	 a	 L-

rhamnose,	 b	 N-acetyl-D-mannosamine.	 The	 smooth	 LPS	 lipid	 model	 was	

added	 to	 the	 CHARMM-GUI	 Martini	 Maker	 module	 (http://www.charmm-

gui.org/)	[151]	to	simplify	the	process	of	constructing	asymmetric	membrane	

models	that	contain	different	types	of	lipid	(e.g.	rough	LPS,	POPE,	and	smooth	

LPS)	that	are	arranged	in	different	number	ratios.	

	

4.3.2	Bilayer	Simulations	
	

The	 bacterial	membranes	were	 simulated	with	 the	 coarse-grained	Martini	

forcefield	 (version	 2)	 [799,814]	 and	 the	 GROMACS	 simulation	 package	

(version	5.1.2)	[975].		The	simulation	systems	contained	some	combination	

of	 lipid,	water,	 and	 ions	 and	 they	were	 assembled	with	 the	 CHARMM-GUI	

Martini	 Maker	 module	 [151].	 The	 inner	 (intracellular)	 leaflets	 contained	

POPE	and	POPG	lipids	in	a	9:1	number	ratio	and	the	outer	leaflets	contained	

the	following	lipids:	only	smooth	LPS	lipids	(OANT),	smooth	LPS	and	POPE	

lipids	in	a	4:1	ratio	(OANT_POPE),	smooth	LPS	and	rough	LPS	lipids	in	a	1:1	

ratio	 (MIXED),	 and	 smooth	 LPS	 lipids	 with	 rough	 LPS	 lipids	 and	 POPE	

molecules	in	a	2:2:1	ratio	(MIXED_POPE).	The	bilayers	were	solvated	with	a	

column	of	water	that	was	long	enough	(~10	nm)	to	minimize	the	interaction	

strengths	between	one	membrane	system	and	its	periodic	image	along	the	z-

axis	(membrane	normal).	Divalent	cations	(Ca2+)	were	added	to	neutralize	the	

negative	charge	of	the	Lipid	A	anchors	and	the	remaining	system	charge	was	

neutralized	with	monovalent	cations	(Na+).				

	

The	bilayers	were	initially	simulated	for	100	ns	to	equilibrate	the	lipids.	The	

lipids	 were	 then	 simulated	 for	 another	 2	 μs	 to	 understand	 LPS	 lipid	

interactions	on	microsecond	timescales.		The	temperature	was	maintained	at	

313	K	using	the	velocity-rescaling	thermostat	(𝜏C = 1.0	𝑝𝑠)	and	the	pressure	

was	maintained	at	1	bar	using	the	Parrinello-Rahman	barostat	(𝜏E = 5.0	𝑝𝑠)	
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[841-842].	The	integration	time	step	was	10	fs.	The	electrostatic	interactions	

were	computed	with	the	reaction	field	method	using	dielectric	constants	of	

15	 and	 infinity	 for	 charge	 screening	 in	 the	 short-range	 and	 long-range	

regimes.	The	short-range	cutoff	for	the	electrostatic	interactions	was	1.2	nm.	

The	Lennard-Jones	potential	was	 cut	off	 at	 long	 ranges	using	 the	Potential	

shift	Verlet	scheme.		

	

The	bilayers	were	then	simulated	with	lateral	pressure	magnitudes	that	were	

incrementally	increased	until	the	membranes	ruptured.	The	lateral	pressure	

was	 initially	 set	 to	 be	 -10	 bar	 and	 the	 lateral	 pressure	 magnitude	 was	

subsequently	increased	to	the	larger	magnitudes	of	-30	bar,	-50	bar,	-70	bar	

etc.	thereafter.	The	lateral	pressure	(𝑃>)	component	was	coupled	completely	

separately	 from	 the	 pressure	 that	was	 being	 applied	 along	 the	membrane	

normal	(𝑃U).	Each	simulation	was	20	μs	long	because	membrane	bilayers	can	

undergo	 significant	 restructuring	 when	 they	 are	 subjected	 to	 mechanical	

stress	and	the	membrane	restructuring	process	can	be	slow,	i.e.	occur	on	long	

microsecond	timescales.			

	

The	 order	 parameters	 were	 computed	 with	 the	 gmx	 order	 program,	 the	

lateral	diffusion	constants	were	calculated	with	the	gmx	msd	program	and	the	

radial	 distribution	 functions	 were	 determined	 with	 the	 gmx	 rdf	 tool.	 The	

distances	were	calculated	with	the	gmx	mindist	program	and	the	angles	and	

radii	 of	 gyration	 were	 calculated	 with	 the	 gmx	 angle	 and	 gmx	 gyrate	

programs.	The	area	per	 lipid	values	were	determined	via	 two-dimensional	

Voronoi	 tessellations	 of	 the	 lipid	 phosphate	 groups.	 The	 particle	 number	

densities	were	determined	with	the	gmx	densmap	program.			

	

4.4	Results	
	

Molecular	 dynamics	 simulations	 were	 conducted	 to	 understand	 the	

interactions	 of	 LPS	 O-antigen	 chains	 within	 Gram-negative	 membrane	

mimetics	and	to	understand	how	these	interactions	might	affect	membrane	

tolerance	 for	mechanical	stress.	Four	membranes	were	simulated:	systems	
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OANT,	 OANT_POPE,	 MIXED,	 and	 MIXED_POPE.	 In	 each	 instance	 the	 inner	

leaflets	contained	POPE	and	POPG	lipids	in	a	9:1	ratio	and	the	outer	leaflets	

contained	different	 lipid	types	(i.e.	rough	LPS,	POPE,	and	smooth	LPS)	that	

were	 arranged	 in	 different	 number	 ratios.	 The	 composition	 of	 the	

extracellular	leaflet	was	as	follows:	only	smooth	LPS	lipids	(OANT),	smooth	

LPS	and	POPE	molecules	in	a	4:1	ratio	(OANT_POPE),	smooth	LPS	and	rough	

LPS	in	a	1:1	ratio	(MIXED),	and	smooth	LPS,	rough	LPS	and	POPE	molecules	

in	a	2:2:1	ratio	(MIXED_POPE).	There	was	enough	divalent	calcium	(Ca2+)	ions	

within	each	simulation	cell	to	neutralize	the	anionic	charge	that	was	being	

generated	from	the	negatively	charged	LPS	Lipid	A	anchors.	The	remaining	

system	 charge	 was	 neutralized	 with	 monovalent	 sodium	 (Na+)	 ions.	 The	

systems	were	simulated	 for	2	μs	each	and	the	simulation	temperature	and	

pressure	were	maintained	at	magnitudes	of	313	K	and	1	bar.	

	

The	 orientation	 of	 the	 smooth	 LPS	 lipids	 was	 affected	 by	 the	 membrane	

composition.	 The	 O-antigen	 chain	 sugars	 had	 an	 approximate	 lamellar	

alignment	 in	 system	 OANT	 and	 this	 orientation	 was	 comparable	 to	 the	

lamellar	 packing	 of	 the	 LPS	 anchoring	 acyl	 chains	 (Figure	 40A-B).	 The	 O-

antigen	chains	tilted	more	substantially	relative	to	the	bilayer	normal	(Figure	

40C-D)	within	systems	OANT_POPE,	MIXED	and	MIXED_POPE.	The	number	

of	cohesive	intermolecular	interactions	between	the	O-antigen	chain	sugars	

was	 maximized	 when	 the	 LPS	 lipid	 headgroups	 either	 aligned	 with	 the	

membrane	 normal	 axis	 (system	 OANT)	 or	 when	 the	 O-antigen	 chains	

stretched	 out	 over	 the	 membrane	 surface	 (OANT_POPE,	 MIXED	 and	

MIXED_POPE).	 The	 specific	 O-antigen	 chain	 orientation	 depended	 on	 the	

characteristics	of	the	encompassing	membrane	environment.	The	O-antigen	

chains	aligned	with	the	membrane	normal	when	the	extracellular	leaflet	of	

the	Gram-negative	outer	membrane	mimetics	contained	 smooth	LPS	 lipids	

and	the	O-antigen	chains	stretched	out	over	the	membrane	surface	when	this	

leaflet	additionally	contained	rough	LPS	lipids	and/or	POPE	molecules.	In	one	

instance	the	number	of	cohesive	O-antigen	chain	intermolecular	interactions	

was	increased	when	the	smooth	LPS	lipid	O-antigen	chain	polymer	stretched	

out	along	the	bilayer	normal	(OANT)	and	in	the	others	(OANT_POPE,	MIXED	
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and	MIXED_POPE)	 the	number	of	 cohesive	O-antigen	chain	 intermolecular	

interactions	 was	 increased	 when	 the	 smooth	 LPS	 lipid	 O-antigen	 chain	

polymers	stretched	out	over	the	membrane	surface.						

	

The	coarse-grained	smooth	LPS	lipid	model	was	parameterized	to	mimic	the	

interactions	of	E.	coli	LPS	lipid	with	four	units	of	the	repetitive	O1	O-antigen	

chain	glycan	polymer	chain.	The	simulations	provide	some	important	insights	

into	the	general	conformational	characteristics	of	smooth	LPS	lipids	within	

Gram-negative	bacterial	membrane	mimetics	but	it	is	important	to	appreciate	

that	O-antigen	chain	length	can	vary	both	among	different	strains	of	E.	coli,	

and	 also	 within	 single	 highly	 heterogeneous	 Gram-negative	 membranes	

[971].	O-antigen	chain	polymers	can	contain	more	than	ten	repetitive	glycan	

polymer	units	[976]	and,	in	some	circumstances,	as	many	as	forty	units	have	

been	reported	[971].	Based	on	atomistic	molecular	dynamics	simulations	of	

longer	smooth	LPS	lipids	(with	10	units	of	the	O6	O-antigen	chain)	[211]	it	

can	be	surmised	that	the	splay	of	O-antigen	chains	depends	on	the	O-antigen	

chain	length.	In	previous	all-atom	molecular	dynamics	simulations	[211-212]	

it	was	shown	that	(i)	O-antigen	chain	subunits	tilt	relative	to	the	membrane	

normal,	 and	 (ii)	 that	O-antigen	 chain	 extension	 scales	with	 the	 number	 of	

constituent	O-antigen	sugars.	In	other	words,	the	O-antigen	chains	can	stretch	

out	over	a	more	substantial	portion	of	 the	membrane	surface	when	the	O-

antigen	chains	contain	a	greater	number	of	constituent	glycan	polymer	units.	

It	 is	 expected	 then	 that	 the	 conformational	 characteristics	of	 these	 coarse-

grained	 O-antigen	 chains	 will	 differ	 somewhat	 from	 the	 in	 vivo	 scenario.	

Realistic	 Gram-negative	 bacterial	 membranes	 usually	 contain	 longer	 O-

antigen	chain	polymers	[971,976]	and	longer	O-antigen	chains	are	capable	of	

stretching	out	over	more	of	the	membrane	surface.			
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Figure	40.	(A)	Side	view	snapshot	of	system	OANT,	with	(B)	a	single	smooth	
LPS	lipid	extracted	from	the	bilayer	to	show	the	orientation	of	the	acyl	
chains	and	O-antigen	chain	sugars.	The	bond	that	anchors	the	O-antigen	
chain	to	the	Lipid	A	and	core	sugar	domains	is	termed	here	as	“O-anchor”	to	
make	the	discussion	of	LPS	headgroup	orientation	clearer.	(C)	Side	view	
snapshot	of	system	MIXED_POPE,	with	(D)	a	single	smooth	LPS	lipid	
extracted	from	the	bilayer	to	show	the	orientation	of	the	smooth	LPS	acyl	
chains	and	O-antigen	chain	sugars.	The	acyl	tails	are	white,	the	phosphate	
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groups	are	blue,	the	glycerol	and	glucosamine	sugars	are	pink,	the	core	
sugars	are	cyan,	the	terminal	O-antigen	chains	are	red	and	the	water	
molecules	are	omitted	for	clarity.	(E)	The	average	order	parameters	that	
were	calculated	for	the	backbone	chain	beads	of	the	O-antigen	chain	sugars	
in	systems	OANT	(black),	OANT_POPE	(red),	MIXED	(green),	and	
MIXED_POPE	(blue).	(F)	The	angle	distribution	for	the	angle	that	was	
formed	between	the	O-anchor	bond	and	the	terminal	O-antigen	chain	sugar	
in	systems	OANT	(black),	OANT_POPE	(red),	MIXED	(green)	and	
MIXED_POPE	(blue).		
	
	
The	acyl	tail	order	parameter	can	be	quantified	according	to	the	equation	𝑆 =
(
1
〈3(cos𝜃)1 − 1〉	where	𝜃	defines	 the	angle	between	a	 bond	vector	and	 the	

bilayer	 normal	 (per	 simulation	 frame)	 [569].	 The	 time-averaged	 equation	

was	applied	to	compute	the	average	acyl	tail	order	parameter	for	the	smooth	

LPS	lipids	during	the	last	500	ns.	The	acyl	tail	order	parameter	values	were	

as	 follows:	0.20	±	0.002	 (OANT),	0.20	±	0.002	 (OANT_POPE),	0.24	±	0.003	

(MIXED)	and	0.28	±	0.003	(MIXED_POPE).	Order	parameters	can	similarly	be	

computed	for	the	O-antigen	chains	to	assess	their	average	alignment	during	

simulation	 time.	 The	 time-averaged	 acyl	 tail	 order	 parameters	 were	

calculated	for	the	LPS	O-antigen	chains	(Figure	40E)	and	compared	with	acyl	

tail	order	parameters	for	glycerophospholipid	bilayers.				The	O-antigen	chain	

order	parameter	profiles	were	varied	and	they	contained	contrasting	troughs	

and	 peaks.	 The	 shape	 of	 the	 order	 parameter	profile	 is	 comparable	 to	 the	

shape	of	the	order	parameter	profile	for	the	unsaturated	acyl	chain	moiety	of	

POPC	 lipids	 [864].	 The	 order	 parameters	 of	 the	 O-antigen	 chain	 and	 of	

unsaturated	 acyl	 chains	 are	 also	 quite	 similar.	 In	 either	 instance	 the	

magnitude	of	the	order	parameters	tends	to	be	within	the	range	of	0.05–0.2	

[864].	

	

The	angle	between	the	bond	O-anchor	(see	Figure	40B)	and	the	terminal	LPS	

sugars	was	computed	to	understand	the	average	orientation	of	the	smooth	

LPS	lipids	and	in	particular,	the	orientation	of	the	terminal	O-antigen	chain	

polymers	 (Figure	40F).	The	 angles	 and	 the	 associated	 standard	 deviations	

were	calculated	using	the	last	500	ns	of	simulation	time.	The	values	were	as	

follows:	101.2	±	1.1°	(OANT),	75.2	±	1.0	°	(OANT_POPE),	86.5	±	1.9	°	(MIXED),	
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and	68.7	±	2.8°	(MIXED_POPE).	The	data	confirms	that	the	O-antigen	chains	

were	 tilted	more	 substantially	 (relative	 to	 the	anchoring	Lipid	A	domains)	

when	POPE	molecules	and/or	rough	LPS	lipids	were	positioned	between	the	

smooth	 LPS	 lipids.	 The	 POPE	 molecules	 and	 rough	 LPS	 lipids	 broke	 up	

otherwise	contiguous	layers	of	smooth	LPS	lipids	and	as	a	consequence,	the	

terminal	O-antigen	chains	 splayed	out	over	 the	membrane	 surface.	The	O-

antigen	chains	came	into	contact	with	each	other	and	there	was	an	overall	

increase	in	the	number	of	cohesive	intermolecular	interactions	between	the	

terminal	 LPS	 carbohydrate	moieties.	 	 The	 correlation	 between	membrane	

composition	and	O-antigen	chain	orientation	is	corroborated	by	simulations	

of	smooth	LPS	lipids	with	O91	or	O6	O-antigen	chains	[211-212].	The	O91	O-

antigen	 chains	 and	 the	 O6	 O-antigen	 chains	 adopted	 approximate	 linear	

conformations	 when	 the	 extracellular	 leaflet	 of	 the	 Gram-negative	 outer	

membrane	mimetics	only	contained	LPS	lipids	and	the	same	O-antigen	chains	

tilted	relative	to	the	membrane	normal	axis	when	the	extracellular	leaflet	of	

the	Gram-negative	outer	membrane	mimetics	additionally	contained	rough	

LPS	molecules	in	the	extracellular	leaflet	[211-212].	For	reference,	the	O6	O-

antigen	chain	subunit	contains	the	five	saccharides:	b	D-glucose,	b	N-acetyl-

D-glucosamine,	a	N-acetyl-D-galactosamine,	and	two	b	D-mannose	units.	The	

O91	O-antigen	chain	subunit	contains	the	five	saccharide	units:	b	D-galactose,	

two	 b	 N-acetyl-D-glucosamine	 units,	 b	 N-glycine-D-glucosamine,	 and	 one	

unusual	3-amino-3-deoxyquinovose	 sugar.	 In	other	words,	 each	one	of	 the	

three	 O-antigen	 chain	 polymers	 (O1,	 O6,	 and	 O91)	 contains	 different	

repetitive	 chain	 subunits	 but	 they	 all	 contain	 five	 pentose	 or	 five	 hexose	

sugars	that	are	aligned	end-to-end.				

	

The	 flexibility	of	 the	terminal	O-antigen	chains	promoted	smooth	LPS	 lipid	

clustering	 within	 the	 extracellular	 leaflets	 of	 the	 Gram-negative	 outer	

membrane	mimetics.	The	O-antigen	chains	splayed	out	over	the	membrane	

surface	 in	 systems	 MIXED	 and	 MIXED_POPE	 and	 as	 the	 O-antigen	 chains	

interacted	with	each	other,	they	progressively	formed	LPS	lipid	aggregates.	

This	 phenomenon	 is	 demonstrated	 for	 two	 smooth	 LPS	 lipids	 that	 were	

initially	 separated	 by	 ~4	 nm	 at	 the	 start	 of	 the	 MIXED_POPE	 system	
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simulation	(Figure	41A).	The	terminal	O-antigen	chain	polymers	splayed	out	

over	 the	 membrane	 surface	 and	 this	 led	 to	 an	 increase	 in	 the	 number	 of	

cohesive	intermolecular	interactions	between	the	smooth	LPS	lipids	as	they	

interacted	with	each	other.	The	cohesive	intermolecular	interactions	induced	

the	 formation	 of	 a	 smooth	 LPS	 lipid	 dimer	 after	 approximately	 30	 ns	 of	

simulation	time	(Figure	41B).	 	The	dimer	then	formed	a	larger	smooth	LPS	

lipid	 aggregate	 as	 additional	 O-antigen	 chains	 were	 intertwined	 through	

cohesive	 carbohydrate-carbohydrate	 interactions	 (Figure	 41C).	 The	

aggregation	of	multiple	smooth	LPS	lipids	occurred	in	multiple	independent	

coarse-grained	molecular	dynamics	simulations.	The	repeated	observation	of	

the	 smooth	 LPS	 lipid	 clustering	 processes	 suggests	 that	 smooth	 LPS	 lipid	

aggregation	is	energetically	favourable.		
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Figure	41.	(A)	Two	smooth	LPS	lipids	from	system	MIXED_POPE	that	were	
initially	separated	by	~4	nm	and	subsequently	formed	a	dimer	after	the	
flexible	O-antigen	chains	interacted	with	each	other.	(B)	The	corresponding	
time	series	that	shows	the	distance	between	the	two	smooth	LPS	lipids	as	a	
function	of	sampled	simulation	time.	(C)	Snapshot	of	the	large	smooth	LPS	
lipid	aggregate	that	formed	after	additional	smooth	LPS	lipids	interacted	
with	the	smooth	LPS	lipid	dimer.	(D-E)	The	O-antigen	chain	number	density	
in	systems	OANT	(D)	and	MIXED_POPE	(E)	after	500	ns.	The	inset	images	
show	the	corresponding	top	view	snapshots.		
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The	 number	 density	 for	 the	 LPS	 lipid	 O-antigen	 chains	 was	 computed	 to	

understand	the	differences	in	O-antigen	chain	splay	and	clustering.	Number	

densities	 were	 evaluated	 by	 initially	 splitting	 the	 simulation	 cells	 into	 a	

contiguous	 lattice	 and	 subsequently	 determining	 the	 number	 of	 particles	

within	each	grid	cell	unit	(0.2	x	0.2	nm2).	The	projections	reveal	how	the	O-

antigen	 chains	 were	 arranged	 in	 the	 extracellular	 leaflets	 of	 the	 Gram-

negative	bacterial	outer	membrane	mimetics	(Figure	41D-E).	The	smooth	LPS	

lipids	were	distributed	relatively	uniformly	in	system	OANT	and	there	were	

cohesive	intermolecular	interactions	between	the	terminal	O-antigen	chains	

across	the	entire	width	of	the	periodic	simulation	cell.	The	arrangement	of	the	

O-antigen	chains	was	significantly	different	in	the	extracellular	leaflet	of	the	

outer	 membrane	 mimetic	 systems	 (i.e.	 OANT_POPE,	 MIXED	 and	

MIXED_POPE)	compared	with	the	extracellular	leaflet	that	contained	smooth	

LPS	 lipids	alone	 (i.e.	OANT).	The	O-antigen	chains	had	 separated	 from	 the	

encompassing	 POPE	 molecules	 within	 the	 OANT_POPE,	 MIXED,	 and	

MIXED_POPE	simulation	systems	and	the	multicomponent	membranes	were	

effectively	partitioned	into	domains	with	smooth	LPS	lipid	and	areas	without	

smooth	LPS	lipid.			

	

Larger	analogues	of	system	MIXED_POPE	were	simulated	 for	15	μs	to	gain	

additional	 insights	 into	 the	 segregation	of	 the	 smooth	LPS	 lipids	on	 larger	

spatiotemporal	 scales.	 The	 smooth	 LPS	 lipids	 separated	 from	 the	

encompassing	rough	LPS	and	POPE	 lipids	and	formed	a	single	smooth	LPS	

lipid	network	 that	 spanned	 the	entire	 length	of	 the	 simulation	 cell	 (Figure	

42A-B).	The	formation	of	comparable	LPS	lipid	networks	has	been	noted	in	

previous	molecular	dynamics	simulations	that	were	conducted	with	coarse-

grained	molecular	dynamics	 simulation	 forcefields	 [301]	and	 this	 suggests	

that	the	clustering	of	the	LPS	lipids	themselves	and	the	clustering	of	the	LPS	

O-antigen	chains	is	an	energetically	favorable	process.	The	smooth	LPS	lipids	

formed	a	single	network	that	spanned	the	length	of	the	simulation	cell	(based	

on	a	0.6	nm	cut-off	distance)	and	the	terminal	O-antigen	chains	formed	two	

distinct	domains	(Figure	42C-D).		
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It	seems	reasonable	to	assume	that	LPS	lipid	co-clustering	was	not	completely	

converged	 even	 after	 the	 15	 μs	 long	 coarse-grained	 molecular	 dynamics	

simulations	 and	 further	 to	 assume	 that	 the	O-antigen	 chains	 could	 form	 a	

single	 unbroken	 network	 if	 the	 LPS	 lipids	 were	 simulated	 on	 a	 longer	

timescale.	 Simulations	with	 the	Martini	 forcefield	 are	 generally	 limited	 to	

microsecond	timescales	but	 the	coupling	and	decoupling	of	glycolipids	can	

occur	on	timescales	that	are	much	longer	than	this	[325,498].	In	other	words,	

the	segregation	of	the	LPS	lipids	from	the	phospholipids	(e.g.	POPE)	seemed	

to	transpire	quite	quickly	in	these	simulations	but	the	segregation	of	rough	

and	smooth	LPS	lipids	from	each	other	is	a	slower	process	that	involves	large	

energy	 barriers	 [325]	 and	 is	 therefore	 more	 challenging	 to	 probe	 with	

conventional	molecular	dynamics	simulations.					



 222 

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	
	

	
Figure	42.	(A)	Top	view	snapshot	of	a	larger	analogue	of	system	
MIXED_POPE	after	15	μs.	The	POPE	and	rough	LPS	lipids	are	omitted	for	
clarity.		The	periodic	borders	are	represented	with	a	thin	blue	line	and	the	
periodic	images	are	presented	with	different	shades	of	red	and	cyan	for	
clarity.	The	smooth	LPS	lipids	formed	a	single	contiguous	network	that	
spanned	the	entire	length	of	the	simulation	cell.	(B)	The	corresponding	two-
dimensional	projection	of	the	O-antigen	chain	number	density	(sampled	
during	the	last	100	ns).	(C)	Snapshot	of	the	two	O-antigen	chain	aggregates	
after	15	μs	of	simulation	time.	One	of	the	O-antigen	chain	aggregates	is	
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green	and	the	other	one	is	orange.	(D)	The	number	of	glycan	polymers	in	
each	of	these	O-antigen	chain	aggregates.		
	
The	 differences	 in	 the	 packing	 of	 the	 smooth	 LPS	 lipids	 had	 important	

consequences	for	the	lateral	mobility	of	the	smooth	LPS	lipids.	The	average	

lateral	diffusion	 rates	were	 computed	 for	 smooth	LPS	 lipids	 in	each	of	 the	

Gram-negative	outer	membrane	systems	and	the	computed	values	were	as	

follows:	2.1	(OANT),	8.7	(OANT_POPE),	8.0	(MIXED),	and	7.0	(MIXED_POPE)	

x10'Fcm1/s.		The	smooth	LPS	lipids	moved	through	the	extracellular	leaflet	

of	 the	Gram-negative	 outer	membrane	mimetics	more	 rapidly	when	 there	

were	 POPE	 molecules	 and	 rough	 LPS	 lipids	 embedded	 throughout.	 It	 is	

interesting	 to	 compare	 the	 computed	 lateral	 mobilities	 with	 values	 from	

previous	 publications.	 The	 smooth	 LPS	 lipids	 were	 more	 mobile	 than	

previously	simulated	 rough	LPS	 lipid	 (5	x10'Gcm1/s)	but	 less	mobile	 than	

previously	simulated	B-band	O-antigen	chains	(2	x10'Hcm1/s)	[242].		

		

The	 bilayers	were	 subsequently	 simulated	with	 lateral	 pressure	 values	 of	

increasing	magnitude	until	 the	membranes	became	unstable	and	ruptured.	

The	 molecular	 dynamics	 simulations	 were	 conducted	 in	 an	 attempt	 to	

understand	 how	 the	 Gram-negative	 bacterial	 outer	 membrane	 models	

respond	 to	 applied	 mechanical	 stress	 and	 to	 determine	 which	 membrane	

systems	were	the	most	mechanically	robust.	The	lateral	pressure	was	initially	

set	to	be	-10	bar	and	the	lateral	pressure	magnitudes	were	set	to	be	-30	bar,	

-50	bar,	 -70	bar	etc.	 thereafter.	The	 simulations	were	 conducted	 for	20	μs	

because	membrane	breakdown	mechanism	can	occur	on	long	(microsecond)	

timescales	[925].						

	

The	surface	tension	was	computed	according	to	the	equation:		

	

																																										γ = 𝐿¶	(𝑃U − 𝑃>)																																												
Equation	85	

	

where	𝐿¶	 	was	 the	 length	 of	 the	 simulation	 cell	 along	 the	 z-axis	 (bilayer	

normal)	and	𝑃U	and	𝑃>	were	defined	in	terms	of	the	diagonal	components	of	
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the	 pressure	 tensor	 ( 𝑃 ´ ,	 𝑃µµ 	and	 𝑃¶¶ )	 according	 to	 𝑃U = 𝑃¶¶ 	and	 𝑃> =

[𝑃 ´ + 𝑃µµ] 2⁄ .	The	areal	strain	(𝜀N)	was	defined	as:	

	

																																																		𝜀N =
NJ
NK
− 1																																																	

Equation	86	

	

where	𝐴Ñ	was	 the	 cross-sectional	 area	of	 the	membrane	 (along	 the	bilayer	

normal)	when	it	was	simulated	at	atmospheric	pressure	and	𝐴Q	was	the	cross-

sectional	area	of	the	membrane	when	it	was	subjected	to	a	lateral	pressure	

𝑃>.	

			

The	 surface	 tension-areal	 strain	 curves	 (Figure	 43A)	 revealed	 that	 the	

membrane	surface	tension	increased	as	the	lateral	pressure	magnitude	was	

incrementally	 increased.	 The	 tolerance	 of	 each	membrane	 for	 lateral	 area	

expansion	was	similar	throughout:	the	membranes	ruptured	over	a	critical	

area	 strain	 range	 of	 0.61-0.76.	 Phospholipid	 membranes	 generally	 have	

similar	tolerance	for	areal	strain	in	atomistic	simulations	[977-979]	and	this	

similarity	 in	data	suggests	 that	 there	must	be	similar	maximum	thresholds	

for	most,	if	not	all,	lipid	membrane	systems.					

	

It	 is	apparent	 from	the	tension-areal	strain	curves	that	 the	surface	tension	

magnitudes	were	largest	in	system	OANT	and	this	indicates	that	there	were	

stronger	 intermolecular	 interactions	 at	 the	 membrane	 surface	 of	 system	

OANT	compared	with	the	OANT_POPE,	MIXED,	and	MIXED_POPE	simulation	

systems.	System	OANT	had	increased	tolerance	for	surface	tension:	system	

OANT	 tolerated	 approximately	 60	 mNm-1	 more	 tension	 than	 systems	

OANT_POPE,	 MIXED,	 or	 MIXED_POPE.	 System	 OANT	 was	 not	 only	 more	

robust	than	systems	OANT_POPE,	MIXED,	and	MIXED_POPE,	it	was	also	much	

more	 robust	 than	 single-component	DPPC	bilayers	 [978].	 It	 seems	 that	O-

antigen	chain	interactions	increase	membrane	mechanical	strength.	System	

OANT	was	the	most	rigid	bilayer	at	atmospheric	pressure	and	it	was	also	the	

system	that	tolerated	the	largest	surface	tensions.			
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There	were	 changes	 in	 the	physical	parameters	of	 each	membrane	 system	

when	the	lateral	pressure	magnitudes	were	incrementally	increased.	There	

was	a	systematic	increase	in	bilayer	surface	area	(Figure	43B),	a	systematic	

decrease	in	membrane	thickness	(Figure	43C),	and	a	general	reduction	in	acyl	

tail	order	parameters	(Figure	43D).	The	bilayers	become	thinner	and	wider	

in	 response	to	the	 increasing	 lateral	pressure	magnitudes	and	 there	was	a	

general	reduction	in	the	lamellar	alignment	of	the	lipid	tails.	The	increasing	

lateral	pressure	magnitudes	were	associated	with	membrane	deformation.	

The	bilayers	progressively	thinned	and	expanded	outwards	(with	increasing	

lateral	 pressure)	 until	 pores	 appeared	 along	 the	 bilayer	 normal	 and	 these	

pores	caused	the	membranes	to	rupture.	

	

It	 is	 interesting	 to	 compare	 the	degradation	and	 rupture	of	 these	 complex	

Gram-negative	 bacterial	membrane	models	with	 simpler	 lipid	models	 that	

contain	 some	 combination	 of	 phospholipid	 and	 cholesterol	 molecules.	

Previous	simulation	studies	assessed	the	relationship	between	bilayer	areal	

strain	and	the	magnitudes	of	different	 lipid	properties	 including	molecular	

orientation,	membrane	 thickness,	 and	 the	 extent	of	 lipid	phase	 transitions	

[980].	 Two	 simulation	 approaches	 were	 used:	 unsteady	 stretching	 (US),	

which	involved	proportional	and	temporal	scaling	of	the	system	box	lengths	

and	atom	positions	[981],	and	quasistatic	stretching	(QS),	where	membranes	

were	simulated	at	constant	temperature	(323	K),	z-axis	pressure	(1	bar)	and	

various	 constant	 bilayer	 surface	 areas	 [981-983].	 The	 averaged	

instantaneous	order	parameter	was	found	to	monotonically	decrease	as	the	

areal	strain	was	increased	in	all	of	the	US	and	QS	simulations	of	the	single-

component	 DPPC	 lipid	 bilayers.	 However,	 the	 relationship	 between	 areal	

strain	 values	 and	 the	 averaged	 instantaneous	 order	 parameter	 was	 more	

complex	for	the	multicomponent	membranes	that	contained	both	DPPC	and	

cholesterol	molecules.	Rather	than	monotonically	decrease	or	monotonically	

increase,	the	averaged	instantaneous	order	parameter	was	found	to	depend	

strongly	on	the	range	of	areal	strain	magnitudes	that	was	being	studied.	The	

averaged	 instantaneous	 order	 parameter	 was	 negatively	 correlated	 with	
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areal	strain	values	for	one	range	of	𝜀N	magnitudes	and	positively	correlated	

for	another	 range	of	𝜀N 	magnitudes.	The	 relationship	between	areal	 strain	
and	membrane	thickness	values	was	comparatively	less	convoluted	for	the	

single-component	 and	 multicomponent	 membrane	 systems	 [980].	 The	

membrane	 thickness	magnitudes	were	 found	 to	monotonically	decrease	 in	

both	US	and	QS	simulations	of	either	single-component	or	 two-component	

membranes,	for	all	but	the	most	extreme	of	𝜀N	magnitudes.		
	

It	 can	 be	 stated	 that	 the	 effects	 of	 increasing	 areal	 strain	magnitudes	 are	

similar	 for	 systems	 OANT,	 OANT_POPE,	 MIXED,	 MIXED_POPE	 and	 for	 the	

simpler	 biological	 membranes	 that	 were	 simulated	 in	 previous	

computational	 publications	 [980].	Membrane	 thickness	 and	 acyl	 tail	 order	

parameters	were	negatively	correlated	with	surface	tension	and	areal	strain	

values	 in	 this,	and	 in	previous	simulation	studies.	 It	can	be	concluded	that	

similar	interactions	might	mediate	bilayer	breakdown	processes,	regardless	

of	the	specific	membrane	composition.				

	

It	is	important	to	appreciate	that	the	scope	of	molecular	dynamics	membrane	

mechanical	 strength	 analyses	 extends	 beyond	 the	 computation	 of	 surface	

tension	 magnitudes	 alone	 [984-991].	 Membrane	 stiffness	 parameters	 are	

increasingly	 being	 characterized	 in	 terms	 of	 membrane	 fluctuation	

properties	 including	 bilayer	 height	 and	 thickness	 fluctuations	 [992-993].	

Helfrich-Canham	 theory	 [994-996]	 can	 be	 used	 to	 accurately	 ascertain	

membrane	bending	rigidities,	but	the	more	accurate	bending	constants	are	

derived	from	mesoscopic	membrane	simulations	that	include	several	tens	of	

thousands	of	lipids	and	consequently,	have	both	small	and	large	undulatory	

wavelengths.	Alternative	 schemes,	 albeit	ones	based	on	 similar	underlying	

physical	models,	 tend	 to	 derive	membrane	mechanical	 strength	 constants	

from	lipid	tilting	[997-999].	This	approach	was	shown	to	be	appropriate	for	

single-component	all-atom	lipid	bilayers	but	was	deemed	to	be	inappropriate	

for	coarse-grained	membrane	simulation	systems	that	contained	membrane	

proteins	[993].	The	coarse-grained	membranes	that	were	simulated	 in	this	
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chapter	 (i.e.	 OANT,	 OANT_POPE,	 MIXED,	 MIXED_POPE)	 lack	 the	 size	 or	

sophistication	that	would	warrant	the	use	of	membrane	mechanical	strength	

analyses	methods	that	are	based	on	the	Helfrich-Canham	theory.					
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Figure	43.	(A)	Surface	tension-areal	strain	curves.	(B)	Lateral	pressure	
against	areal	strain.	(C)	Lateral	pressure	against	membrane	thickness.	(D)	
Lateral	pressure	against	acyl	tail	order	parameters.	Data	are	shown	for	the	
OANT	(black),	OANT_POPE	(red),	MIXED	(green),	and	MIXED_POPE	(blue)	
simulation	systems.	Readers	should	note	that	the	dependent	variables	were	
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plotted	on	the	y-axis	in	Figure	43A	and	Figure	43B	even	though	it	is	
customary	to	plot	the	independent	variable	on	the	x-axis	and	the	dependent	
variable	of	the	y-axis.	The	unusual	presentation	of	the	simulation	data	
enables	readers	to	more	easily	identify	the	relationship	between	the	applied	
mechanical	stress	and	the	membrane	stress	response.	The	presentation	of	
the	simulation	data	has	been	used	to	study	for	example,	how	phospholipid	
membranes	respond	to	applied	mechanical	stress	[977]	and	it	is	therefore	
easier	to	compare	the	data	that	are	presented	here	with	data	from	previous	
molecular	dynamics	simulation	studies.			
	

The	progressive	degradation	of	system	OANT	was	monitored	here	to	better	

understand	 the	mechanisms	 that	 underpin	membrane	 collapse.	 The	 order	

parameter	was	computed	for	the	O-antigen	chains	to	understand	how	the	O-

antigen	chain	orientation	changed	as	the	lateral	pressure	was	incrementally	

increased	 (Figure	 44A).	 There	was	 a	 general	 reduction	 in	O-antigen	 order	

parameters	as	 the	 lateral	pressure	magnitude	was	 incrementally	 increased	

and	 this	 indicates	 that	 the	 LPS	 headgroup	 moieties	 were	 becoming	 less	

aligned	with	the	membrane	normal	axes.	This	conclusion	was	corroborated	

when	 the	O-antigen	 chain	 tilt	 angle	was	 computed	 as	 a	 function	of	 lateral	

pressure	 magnitude.	 The	 tilt	 angles	 generally	 decreased	 as	 the	 lateral	

pressure	was	increased	e.g.	the	tilt	angle	was	9.5	±	1.5°	smaller	when	system	

OANT	was	 subjected	 to	 a	 lateral	 pressure	 of	 -130	 bar	 compared	with	 the	

atmospheric	pressure	 (1	bar)	 simulations.	Two-dimensional	projections	of	

the	particle	number	densities	revealed	that	the	O-antigen	chain	distribution	

became	 increasingly	 uneven	 as	 the	 lateral	 pressure	 magnitude	 was	

incrementally	increased	(Figure	44B-C).									

	

The	increased	lateral	pressure	magnitudes	also	affected	the	permeability	of	

the	OANT,	OANT_POPE,	MIXED,	and	MIXED_POPE	simulation	systems.	One-

dimensional	partial	mass	density	plots	revealed	that	there	was	a	change	in	

bilayer	structure:	the	distance	between	the	lipid	phosphate	groups	decreased	

as	 the	magnitude	 of	 the	 lateral	 pressure	was	 increased	 (Figure	 44D).	 The	

bilayer	became	more	permeable	as	the	membrane	thickness	was	reduced	and	

consequently,	more	water	particles	were	able	to	pass	through	the	water-lipid	

interface	and	flood	the	extremities	of	the	hydrophobic	core.	The	increase	in	

lateral	 pressure	 significantly	 impacted	 the	 bilayer	 interface:	 there	was	 no	
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longer	a	clear	division	between	the	acyl	tails	and	the	encompassing	solvent.	

The	distance	between	water	particles	on	the	opposing	ends	of	the	asymmetric	

bilayer	was	reduced	as	the	lateral	pressure	magnitude	was	increased	and	this	

increased	the	likelihood	that	water	chains	would	spontaneously	form	along	

the	bilayer	normal.	The	critical	lateral	pressure	magnitude	for	system	OANT	

was	-130	bar	and	water	molecules	entered	into	the	hydrophobic	membrane	

core	 when	 this	 pressure	 was	 applied	 (Figure	 44E).	 The	 water	 molecules	

spontaneously	created	a	single	 transmembrane	water	chain	and	this	 led	to	

the	 formation	 of	 larger	 transmembrane	 water	 channels	 that	 drastically	

reduced	the	membrane	integrity	and	quickly	led	to	the	compete	loss	of	basic	

bilayer	 structure.	 It	 is	 noteworthy	 that	 comparable	 breakdown	 processes	

have	 been	 noted	 in	 previous	 mechanical	 rupture	 simulations	 of	 lipid	

membranes.	Water	pores	would	appear	within	lipid	bilayers	after	a	critical	

areal	strain	magnitude	was	reached	and	after	that,	there	would	generally	be	

a	complete	loss	of	lamellar	structure	as	the	pore	expanded	[977-980].					
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Figure	44.	(A)	The	average	order	parameters	for	the	O-antigen	chains	in	
system	OANT	as	the	lateral	pressure	component	magnitude	was	
incrementally	increased.	The	color	scheme	is	as	follows:	-10	bar	(red),	-30	
bar	(green),	-50	bar	(blue),	-70	bar	(yellow),	-90	bar	(brown),	-110	bar	
(cyan)	and	-130	bar	(violet).	(B,	C)	The	two-dimensional	projection	of	the	O-
antigen	chain	particle	number	density	for	system	OANT	when	it	was	
simulated	with	a	lateral	pressure	magnitude	of	1	bar	(B)	and	-130	bar	(C).	
(D)	The	partial	mass	density	plots	for	system	OANT	when	it	was	simulated	
with	a	lateral	pressure	of	1	bar	(red	and	blue	lines)	and	-130	bar	(cyan	and	
green	lines).	The	data	for	the	lipid	phosphate	groups	are	red	and	green	and	
the	data	for	the	water	molecules	are	blue	and	cyan.	(E)	Snapshot	that	shows	
the	spontaneous	formation	of	a	transmembrane	pore	in	system	OANT	when	
it	is	simulated	with	a	lateral	pressure	magnitude	of	-150	bar.	The	water	
particles	are	blue	and	the	LPS	lipids	follow	the	color	scheme	of	Figure	40.			
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4.5	Conclusion	
	

LPS	lipids	are	found	in	the	outer	membranes	of	Gram-negative	bacteria	

[95,104-105]	and	they	affect	many	important	biological	functions	e.g.	they	

regulate	nutrient	uptake	and	control	processes	that	are	related	to	OMV	

biogenesis	[576-578,659-660].	The	composition	of	LPS	lipids	varies	widely	

from	one	bacterial	strain	to	another	and	the	specific	composition	of	the	LPS	

lipids	also	depends	on	bacterial	growth	conditions	[971-972].	The	molecules	

always	contain	the	anchoring	Lipid	A	domain	but	the	size	and	composition	

of	the	carbohydrate	headgroup	moieties	can	be	strikingly	different.	Rough	

LPS	lipid	variants	contain	a	core	domain	of	sugars,	amino	acids,	

ethanolamine,	and	phosphate	groups	that	are	covalently	bonded	to	the	Lipid	

A	domain;	smooth	LPS	lipids	additionally	contain	long	O-antigen	chain	

polymers	[971-972].			

	

It	was	previously	demonstrated	that	O-antigen	chains	have	the	capacity	 to	

modulate	the	structural	characteristics	of	bacterial	biofilms.	The	size	of	the	

LPS	lipids	affected	the	mechanical	and	structural	properties	of	P.	aeruginosa	

bacterial	biofilms	[973].	Computer	simulations	were	conducted	here	within	

this	 chapter	 to	 explore	 the	 possibility	 that	 O-antigen	 chains	 might	

additionally	affect	the	elasticity	of	individual	bacterial	cell	surfaces.	Smooth	

LPS	lipids	were	simulated	in	membranes	that	contained	different	lipid	types	

(i.e.	rough	LPS,	POPE,	POPG,	and	smooth	LPS)	that	were	arranged	in	different	

number	ratios.	The	intracellular	leaflet	contained	POPE	and	POPG	lipids	in	a	

9:1	number	ratio	and	the	extracellular	leaflet	contained	either	smooth	LPS	

lipids	alone	or	alternatively	some	combination	of	smooth	LPS,	rough	LPS,	and	

POPE	molecules.	 The	 membranes	 were	 initially	 simulated	 at	 atmospheric	

pressure	(1	bar)	to	understand	the	magnitude	of	the	lipid	packing	parameters	

when	the	membranes	were	not	strained.	The	membrane	mimetics	were	then	

simulated	 with	 increasing	 lateral	 pressure	 magnitudes	 to	 understand	 the	

membrane	system	tolerance	for,	and	response	to,	applied	mechanical	stress.		
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The	 simulations	 revealed	 that	 the	 membrane	 composition	 affected	 the	

organization	 of	 the	 terminal	 smooth	 LPS	 O-antigen	 chains.	 The	 O-antigen	

chains	 splayed	out	across	 the	membrane	 surface	when	 there	was	a	mix	of	

rough	LPS,	smooth	LPS	and/or	POPE	molecules	in	the	extracellular	leaflet	of	

the	Gram-negative	bacterial	membrane	mimetics.	In	contrast,	the	O-antigen	

chains	 achieved	 tight	 lamellar	 alignment	 that	 was	 associated	 with	 higher	

cohesion	 forces	 when	 the	 extracellular	 leaflet	 was	 homogeneous	 and	 it	

contained	 smooth	 LPS	 lipids	 alone.	 The	 differences	 in	 O-antigen	 chain	

interactions	affected	 the	membrane	 tolerance	 for	mechanical	 strength:	 the	

membranes	could	withstand	high	surface	tension	magnitudes	(150	mNm-1)	

and	 the	 constituent	 LPS	 lipids	 had	 low	 diffusion	 constants	 when	 the	

extracellular	 leaflets	 contained	 smooth	 LPS	 lipids	 alone.	 The	 smooth	 LPS	

lipids	diffused	 faster	and	 the	membrane	 tolerance	 for	 surface	 tension	was	

reduced	 by	 ~50	 mNm-1	 when	 there	 were	 POPE	 lipid	 and/or	 rough	 LPS	

molecules	 that	were	 embedded	 throughout	 the	 extracellular	 leaflet	 of	 the	

Gram-negative	bacterial	outer	membrane	mimetics.	The	simulations	suggest	

that	cohesive	O-antigen	chain	interactions	can	make	Gram-negative	bacterial	

membranes	stiffer	and	more	resilient	to	external	mechanical	stress.		

	

The	simulations	provide	interesting	insights	into	the	behavior	of	the	LPS	O-

antigen	 chains	 and	 they	 also	 reveal	 how	 their	 collective	 cohesive	

intermolecular	 interactions	 can	enhance	 the	mechanical	 strength	of	Gram-

negative	 bacterial	 membranes.	 The	 conclusions	 have	 far	 reaching	

ramifications	if	they	are	reproducible	in	vivo	and	as	such,	it	is	important	to	

consider	 the	 limitations	 of	 this	 simulation	 study	 and	 to	 determine	 how	

credible	the	data	are.	First,	it	must	be	acknowledged	that	the	coarse-grained	

models	 omit	 atomistic	 detail	 and	 that	 this	 can	 affect	 how	 accurately	 LPS	

conformational	 landscapes	 are	 reproduced	 in	 coarse-grained	 molecular	

dynamics	simulations	[174-176].	There	is	in	general	satisfactory	overlap	of	

the	 LPS	 lipid	 conformational	 landscapes	 in	 comparative	 united-atom	 and	

coarse-grained	 molecular	 dynamics	 simulations	 but	 minor	 discrepancies	

have	 been	 observed	 e.g.	 disparities	 in	 the	 full	 extension	 of	 the	 LPS	 lipid	

headgroup	moieties	[301,580].	Second,	it	must	be	acknowledged	that	cations	
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are	 not	 explicitly	 represented	 in	 coarse-grained	 molecular	 dynamics	

simulations	that	are	conducted	with	the	Martini	forcefield	[822].	The	implicit	

presentation	 of	 cations	 could	 affect	 the	 accuracy	 of	 bridging	 interactions	

between	 Lipid	 A	 anchors	 and	 this	 property	 is	 important	 to	 simulate	

accurately	because	it	can	determine	LPS	lipid	coordination	and	it	can	affect	

the	mechanical	strength	of	lipid	membranes	[551,	866-867].	Third,	we	must	

recognize	 that	 LPS	 lipids	 have	 unusually	 slow	dynamics	 [246,866]	 and	 by	

association,	 that	 LPS	 co-clustering	 was	 most	 likely	 not	 converged	 here.	

Fourth,	we	must	consider	that	the	outer	membrane	of	Gram-negative	bacteria	

is	much	more	complex	than	these	simple	simulations	would	lead	readers	to	

believe.	Bacterial	membranes	include	a	diverse	set	of	lipids	and	membrane	

proteins	that	can	affect,	at	least	locally,	the	properties	of	the	membranes	that	

they	are	simulated	 in	[213,219-222].	Taken	together,	we	can	conclude	that	

the	 simulations	 were	 quite	 crude	 and	 that	 there	 were	 inevitably,	 minor	

numerical	inaccuracies	throughout.	It	is	likely	that	the	cohesion	forces	were	

simulated	 in	 this	 work	 as	 being	 either	 slightly	 too	 strong	 or	 too	 weak	

compared	with	the	in	vivo	scenario.	We	should	not	presume	that	all	of	the	data	

were	 quantitatively	 correct	 but	 we	 can	 presume	 that	 the	 overarching	

qualitative	 conclusions	 were	 accurate.	 The	 differences	 in	 membrane	

mechanical	strength	magnitudes	was	stark	and	they	cannot	be	accounted	for	

by	 slight	 inaccuracies	 in	 the	 computation	 of	 cohesive	 intermolecular	

interactions	alone.		

	

The	 simulations	help	us	 to	better	understand	how	 the	outer	membrane	of	

Gram-negative	 bacteria	 and	 more	 specifically,	 how	 interactions	 between	

terminal	O-antigen	chains	affect	the	mechanical	properties	of	Gram-negative	

bacterial	outer	membranes.	The	simulations	revealed	that	when	there	was	

tight	 lamellar	 alignment	 of	 the	 terminal	 O-antigen	 chains,	 there	 was	 an	

associated	increase	in	membrane	rigidity	and	in	the	membrane	tolerance	for	

surface	 tension.	 The	 simulations	 suggest	 that	 Gram-negative	 bacterial	

membranes	will	be	stiff	and	resilient	to	different	in	vivo	stressors	(e.g.	osmotic	

pressure)	 when	 there	 is	 tight	 packing	 of	 the	 LPS	 O-antigen	 chains.	 The	

simulations	additionally	indicate	that	the	elasticity	and	shelf	stability	of	OMVs	
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will	 be	 affected	 by	 the	 type	 of	 lipids	 that	 they	 are	 made	 with.	 OMVs	 are	

spherical	 liposomes	 that	 bud	 from	 the	 outer	membrane	 of	 Gram-negative	

bacteria	 [659-660].	 The	 nanospheres	 have	 an	 outer	 leaflet	 that	 contains	 a	

high	 concentration	 of	 LPS	 lipids	 and	 an	 inner	 leaflet	 that	 contains	 a	 high	

proportion	of	PE	and	PG	phospholipids.	The	OMV	lipid	composition	can	be	

modulated	 [1000]	 and	 it	 can	 be	 made	 to	 mimic	 the	 systems	 that	 were	

simulated	in	this	chapter	i.e.	OANT,	OANT_POPE,	MIXED,	and	MIXED_POPE.	

We	can	change	the	mechanical	strength	of	synthetic	OMVs	to	control	 their	

tolerance	 for	 in	 vitro	 and	 in	 vivo	 stressors	 such	 as	 turgor	 pressure,	 by	

controlling	the	relative	abundances	of	smooth	LPS	lipids	and	rough	LPS	in	the	

(OMV)	 outer	 leaflet.	 The	 length	 and	 concentration	 of	 the	 O-antigen	 chain	

polymers	 can	be	varied	and	 this	will	 change	 the	OMV	mechanical	 strength	

parameters.	 This	 is	 important	 since	 elasticity	 directly	 impacts	 important	

nanocarrier	(or	vesicle)	properties	including	how	liable	nanocarriers	are	to	

rupture	or	fuse,	the	loading	rates	of	drugs,	and	the	rates	of	drug	uptake	at	host	

cell	 surfaces	 [1001-1003].	 The	 insights	 are	 timely	 because	 OMVs	 have	 an	

increasing	number	of	nanomedical	functions,	e.g.	roles	as	vaccine	adjuvants	

and	roles	as	functional	liposomes	that	can	traffic	molecular	cargo	directly	into	

host	cell	cytoplasm	[1004-1006].			
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Chapter	5:	Understanding	the	Uptake	of	Outer	Membrane	
Vesicles	at	Host	Cell	Surfaces		
	

5.1	Abstract	
	

Outer	membrane	vesicles	(OMVs)	are	spherical	liposomes	that	are	secreted	

by	 almost	 all	 forms	 of	 Gram-negative	 bacteria.	 The	 nanospheres	 regulate	

bacterial	 pathogenesis	 processes	 by	 trafficking	 molecular	 cargo	 from	

bacterial	 cell	 membranes	 to	 target	 cell	 surfaces	 at	 the	 host-pathogen	

interface.	OMVs	were	simulated	with	host	cell	membranes	to	understand	why	

lipid-mediated	OMV	uptake	processes	depend	on	 the	 length	of	 constituent	

lipopolysaccharide	 (LPS)	 macromolecules.	 Coarse-grained	 molecular	

dynamics	 simulation	 forcefields	 were	 used	 to	 demonstrate	 that	 LPS	 lipid	

length	 affects	 the	 shape	 of	 OMVs	 at	 host	 cell	 surfaces.	 OMVs	 with	 long	

(smooth-type)	LPS	lipids	retained	their	spherical	shape	when	they	interacted	

with	 host	 cell	 membranes,	 whereas	 OMVs	 with	 shorter	 (rough-type)	 LPS	

lipids	distorted	and	spread	out	over	the	host	membrane	surface.	In	addition,	

it	was	shown	that	ganglioside	lipid	headgroups	acted	as	a	zipper	to	mediate	

strong	adhesion	that	helped	to	force	the	host	membranes	around	the	attached	

OMVs.	The	differences	in	shape	preservation	will	affect	OMV	internalization	

on	long	timescales:	spherical	nanoparticles	tend	to	be	completely	engulfed	by	

host	membranes,	whereas	lower	sphericity	nanoparticles	tend	to	remain	on	

the	surface	of	cells.		

	

5.2	Introduction	
	

Outer	membrane	vesicles	(OMVs)	are	spherical	liposomes	that	bud	from	the	

outer	 membranes	 of	 almost	 all	 Gram-negative	 bacteria	 [46,49].	 The	

nanospheres	 have	 an	 asymmetric	 architecture:	 there	 are	

glycerophospholipids	 in	 the	 inner	 (intracellular)	 leaflet	 and	 LPS	

macromolecules	 in	 the	 outer	 (extracellular)	 leaflet	 [47-49].	 The	OMVs	 are	

enriched	 with	 bioactive	 proteins	 of	 two	 types:	 (i)	 integral	 membrane	

proteins,	 which	 span	 across	 the	 bilayer	 normal	 axis;	 and	 (ii)	 peripheral	

membrane	proteins,	which	are	expressed	on	the	OMV	surface	[51,661-662].	
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The	lumen	frequently	contains	more	complex	molecular	cargo	ranging	from	

nucleic	 acids	 through	 to	 toxins	 and	 virulence	 factors	 [46-47,1006].	 It	 was	

initially	theorized	that	OMVs	were	produced	by	bacteria	as	a	stress	response	

but	it	is	now	recognized	that	OMVs	also	traffic	molecular	cargo	between	cell	

surfaces	[46-51].			

	

OMVs	shuttle	molecular	cargo	across	the	external	milieu	and	they	regulate	

different	 forms	 of	 intercellular	 communication,	 nutrient	 scavenging,	

horizontal	gene	transmission	processes,	and	bacterial	pathogenesis	[46-52].	

Specific	virulence	factors	can	be	concentrated	within	the	small	(20-250	nm)	

proteoliposomes	 and	 this	 primes	 them	 for	 disease	 transmission	processes	

[48-49,1007].	Disease	transmission	occur	as	 follows:	 the	nanospheres	bleb	

from	the	outer	membrane	of	Gram-negative	bacteria,	 the	OMVs	then	move	

through	the	external	milieu	and	latch	onto	host	cell	surfaces,	the	OMVs	then	

pass	through	the	plasma	membrane	surface	and	release	virulence	factors	into	

the	host	cell	cytosol	[48-52].								

	

There	 is	 evidence	 that	OMVs	can	enter	 into	host	 cells	 via	a	 lipid-mediated	

uptake	 pathway	 that	 is	 inextricably	 linked	 to	 the	 length	 of	 LPS	

macromolecules	 in	 the	(OMV)	outer	 leaflet	 [664].	OMVs	can	enter	cells	via	

protein	 dependent	 pathways	 including	 for	 example,	 clathrin-mediated	

endocytosis	 [52],	 but	 according	 to	 Forster	 Resonance	 Energy	 Transfer	

(FRET)	 [1008]	microscopy	analysis	 techniques,	OMVs	still	manage	 to	pass	

through	host	cell	membranes	even	when	host	membrane	protein	receptors	

are	inactivated	[664].	When	OMVs	contain	short	LPS	lipids	that	lack	terminal	

O-antigen	 chains	 (rough	 OMVs)	 the	 uptake	 is	 relatively	 inefficient;	

conversely,	when	OMVs	contain	longer	LPS	lipids	(smooth	OMVs)	they	enter	

cells	 more	 effectively	 [664].	 Figure	 15	 shows	 the	 different	 chemical	

composition	of	the	coarse-grained	smooth	and	rough	E.	coli	LPS	lipid	models	

that	are	used	in	this	chapter	to	simulate	OMVs.	The	rough	(Ra	type)	LPS	lipid	

contains	type	1	Lipid	A	with	R3	core	sugar	sequence.	The	smooth	LPS	lipid	

contains	the	type	1	Lipid	A	anchor	with	complete	R3	core	saccharide	section	

and	 it	 additionally	 contains	 four	units	of	 the	 repetitive	O1	O-antigen	chain	
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glycan	 polymer.	 The	 O1	 antigen	 chain	 repetitive	 subunit	 contains	 the	 five	

saccharide	 units	 arranged	 end-to-end:	 b	 N-acetyl-D-glucosamine,	 a	 D-

galactose,	a	L-rhamnose,	a	L-rhamnose,	b	N-acetyl-D-mannosamine.		

	

The	 processes	 that	 underpin	 lipid-mediated	 uptake	 are	 likely	 to	 involve	

molecular	 level	 interactions	 that	 are	 beyond	 the	 scope	 of	 conventional	

experimental	 techniques.	Fortunately,	 computer	 simulation	methods	make	

the	 smallest	 spatiotemporal	 scale	 accessible;	 molecular	 dynamics	

simulations	 can	be	 conducted	 to	understand	OMV	uptake	processes	at	 the	

host-pathogen	 interface.	 The	 coarse-grained	 Martini	 molecular	 dynamics	

simulation	 forcefield	 is	used	 here	 in	 this	 chapter	 to	 describe	 the	 stepwise	

biomolecular	 interactions	 that	 drive	 OMVs	 into	 the	 host	 cell	 cytoplasmic	

matrix.	 Coarse-grained	 molecular	 dynamics	 simulations	 are	 used	 to	

understand	 how	 the	 interactions	 between	 LPS	 lipids	 and	 host	 membrane	

ganglioside	molecules	(GM3)	can	contribute	to	the	uptake	of	OMVs	at	host	cell	

surfaces.	 But	 the	 question	 then	 becomes:	 how	 can	 the	 simulation	 results	

themselves	be	validated?		

	

Experimental	validation	techniques	can	be	used	to	validate	most	inferences	

that	 are	 ascertained	 from	 molecular	 dynamics	 simulations.	 Experimental	

techniques	have	been	used	in	the	past	to	validate	inferences	that	were	drawn	

from	coarse-grained	molecular	dynamics	simulations	of	bacterial	membrane	

proteins	[115]	and	it	is	expected	that	experimental	validation	techniques	can	

also	 be	 used	 after	 this	 work	 is	 published	 to	 validate	 the	 overarching	

qualitative	conclusions	that	are	drawn	from	these	coarse-grained	molecular	

dynamics	 simulations	of	OMVs.	Let	us	 consider	one	of	 the	most	 important	

insights	that	will	be	drawn	from	the	molecular	dynamics	simulations	that	are	

conducted	in	this	chapter:	it	is	determined	here	that	ganglioside	molecules	

promote	 wrapping	 interactions	 at	 the	 host	 cell	 surface	 and	 that	 these	

interactions	promote	OMV	uptake	processes.	This	prediction	can	be	validated	

by	 analyzing	 OMV	 uptake	 at	 host	 membrane	 surfaces	 with	 experimental	

analytical	 techniques.	 OMVs	 can	 be	 brought	 into	 contact	with	membranes	

that	either	 lack	ganglioside	molecules	altogether	or	contain	an	appreciable	
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amount	of	ganglioside	molecules	e.g.	more	than	1%	of	GM1	or	GM3	lipids.	If	

ganglioside	lipids	affect	uptake	interactions	we	should	expect	that	the	GM1	

or	 GM3	 molecules	 would	 affect	 lipid-mediated	 OMV	 uptake	 processes.	

Membranes	 that	 contain	 ganglioside	 molecules	 should	 promote	 uptake	

interactions	 more	 effectively	 than	 comparative	 membranes	 that	 lack	

ganglioside	 molecules.	 The	 effects	 of	 ganglioside	 molecules	 can	 also	 be	

evaluated	systematically	by	varying	the	ganglioside	concentration	within	a	

relatively	 simple	 membrane	 mimetic	 and	 correlating	 lipid	 concentrations	

with	OMV	uptake	metrics.	Some	aspects	of	the	OMV	uptake	processes	could	

also	 be	 imaged	 directly.	 Imaging	 techniques	 could	 be	 applied	 to	 capture	

snapshots	of	OMVs	interacting	with	lipid	membranes	whose	composition	is	

controlled	 to	 mimic	 realistic	 plasma	 membranes,	 or	 some	 other	 lipid	

composition	that	affords	much	needed	insights	into	OMV	uptake	interactions.	

There	are	many	possibilities	for	potentially	validating	theoretical	predictions	

through	 experimental	 analysis	 techniques	 and	 these	 possibilities	 are	

discussed	more	thoroughly	in	chapter	6.				

	

Coarse-grained	molecular	dynamics	simulations	were	used	[799,814]	here	to	

understand	 the	 different	 entry	 kinetics	 of	 rough	 and	 smooth	OMVs	 at	 the	

host–pathogen	interface	[664].	The	OMVs	were	initially	simulated	in	water	to	

determine	 the	 OMV	 lipid	 packing	 parameters	 and	 the	 OMVs	 were	 then	

simulated	with	a	single-component	POPC	bilayer	in	the	first	instance,	and	a	

multicomponent	plasma	membrane	in	the	second.	The	simulations	revealed	

that	the	shape	of	OMVs	at	host	cell	surfaces	is	determined	by	the	length	of	the	

constituent	LPS	lipids	in	the	OMV	outer	leaflet.	Smooth	OMVs	maintained	high	

sphericity	at	host	cell	membranes,	whereas	rough	OMVs	spread	over	the	host	

cell	surface.	This	result	helps	to	clarify	why	smooth	OMVs	pass	through	host	

cell	surfaces	more	readily	than	comparable	rough	OMVs.	Rigid	nanospheres	

slowly	wrap	host	membrane	surfaces	and	achieve	complete	encapsulation,	

whereas	 lower	 sphericity	 nanoparticles	 generate	 larger	 curvatures	 at	 the	

spreading	 front	 and	 this	 makes	 endocytosis	 less	 likely	 [1009-1014].	 The	

results	are	corroborated	by	the	data	from	Chapter	4	where	it	was	shown	that	

O-antigen	chain	interactions	can	make	Gram-negative	bacterial	membranes	
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more	 mechanically	 robust.	 The	 O-antigen	 chain	 interactions	 affected	 the	

mechanical	 properties	 of	 the	 OMVs	 by	 making	 them	 stiffer	 and	 we	 can	

therefore	conclude	that	smooth	OMVs	should	be	more	able	to	retain	a	higher	

sphericity	value	when	 they	 interact	with	host	cell	 surfaces	 compared	with	

rough	OMVs.	 	Smooth	OMVs	are	more	likely	to	retain	their	spherical	shape	

when	they	interact	with	host	cell	membranes	and	therefore	they	will	be	able	

to	wrap	host	cell	membranes	more	effectively.	Smooth	OMVs	have	smaller	

energy	barriers	to	surmount	during	the	late	stages	of	nanosphere	endocytosis	

[1010-1013]	because	they	are	stiffer.				

	

The	simulations	also	revealed	that	 the	host	membrane	composition	affects	

the	OMV	wrapping	interactions.	Ganglioside	(GM3)	lipid	headgroups	acted	as	

a	 zipper	 to	mediate	 strong	 OMV-host	 cell	 adhesion	 and	 lower	 the	 energy	

barriers	 for	 host	membrane	 curvature	 generation.	 The	 OMVs	 affected	 the	

organization	of	the	ganglioside	lipid	headgroup	moieties	within	the	host	cell	

membranes	 and	 this	 interaction	 promoted	 host	 membrane	 wrapping	

processes.	The	 induced	self-assembly	of	 the	ganglioside	molecules	and	 the	

associated	 increase	 in	 host	 membrane	 wrapping	 is	 comparable	 to	 the	

perturbation	of	host	cell	membranes	by	different	pathogens	(e.g.	SV40)	and	

pathogenic	 products	 (e.g.	 Shiga	 toxin)	 when	 they	 reorganize	 ganglioside	

lipids	in	host	cell	plasma	membranes	[537,542,1015-1018].	The	sequestered	

ganglioside	 lipids	 formed	 aggregates	 within	 the	 simulated	 host	 cell	

membranes	 and	 this	 increased	 the	 local	 membrane	 curvature	 and	 it	 also	

increased	 the	 local	 abundances	 of	 lipids	 that	 are	 associated	 with	 raft	

formation	and	endocytosis.		

	

Ganglioside	 lipids	 seem	 to	 control	 OMV	 uptake	 interactions	 due	 to	 the	

properties	 of	 their	 carbohydrate	 headgroup	 moieties	 e.g.	 high	 surface	

polarity	 [534]	 and	 the	 tendency	 to	 form	 relatively	 long-lasting	 aggregates	

[498].	Glycoproteins	 have	 comparable	 polar	 carbohydrate	moieties	 [1019-

1020]	that	must	impact,	at	least	partially,	OMV	uptake	interactions	at	host	cell	

surfaces.	Glycoproteins	and	the	glycocalyx	(pericellular	matrix)	[1021-1022]	

were	omitted	throughout	this	chapter	to	simplify	the	simulation	study	and	to	
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make	 the	 lipid	 interactions	 easier	 to	 analyze.	 The	 setup	 enabled	 the	

elucidation	of	lipid	processes	that	seem	to	drive	OMV	uptake	processes	at	the	

host	cell	surface	but	the	complete	omission	of	the	glycocalyx	makes	the	work	

somewhat	crude	and	the	proposed	uptake	model	at	best,	rudimentary.	More	

refined	simulation	studies	would	be	necessary	for	providing	a	comprehensive	

understanding	of	the	molecular	level	interactions	that	determine	OMV	uptake	

processes	 at	 host	 cell	 surfaces.	 The	 simulation	 study	 is	 crude	 but	 it	 does	

provide	 novel	 insights	 that	 seem	 to	 answer	 a	 rather	 interesting	 and	

perplexing	question:	why	does	OMV	lipid-mediated	uptake	depend	on	the	cell	

wall	architecture	of	the	parent	bacteria	[664]?		

	

5.3	Methods	
	
5.3.1	Vesicle	Construction	Details	
	

The	OMVs	were	 assembled	with	 the	 CHARMM-GUI	Martini	Maker	module	

[151,232]	 and	 simulated	 with	 the	 GROMACS	 simulation	 package	 (version	

5.1.2)	and	the	Martini	coarse-grained	forcefield	(version	2)	[799,814].	Two	

types	of	OMV	were	produced:	smooth	and	rough.	The	inner	leaflets	contained	

POPE	and	LPS	lipids	in	a	9:1	number	ratio	and	the	outer	leaflets	contained	

POPE	with	either	smooth-type,	or	rough-type	LPS	lipids	in	a	1:1	number	ratio.	

The	smooth	LPS	lipids	had	four	units	of	the	E.	coli	O1	O-antigen	chain	and	the	

rough	 LPS	 lipids	 were	 modeled	 without	 any	 O-antigen	 chain	 units	 at	 all.	

Figure	15	helps	to	clarify	the	structural	differences	between	the	rough	(Ra)	

and	smooth	LPS	lipid	variants	that	were	used	here	in	this	chapter	to	model	

smooth	and	rough	OMVs.	The	OMVs	were	assembled	with	diameters	of	20	nm	

(based	 on	 the	 position	 of	 their	 hydrophobic	 midplane).	 The	 OMVs	 were	

hydrated	with	standard	Martini	water	particles	(W	type)	and	enough	calcium	

ions	(Ca2+)	to	neutralize	the	anionic	system	charge.	The	OMVs	were	initially	

energy	 minimized	 with	 the	 steepest	 descent	 algorithm	 and	 subsequently	

subjected	to	successive	equilibration	simulations.	Position	restraints	(1000	

KJ	mol-1	nm-2)	were	applied	along	the	unit	cell	axes	(x-,	y-,	and	z-axes)	during	

these	equilibration	simulations	to	create	six	membrane	spanning	water	pores	

that	facilitated	lipid	flip-flop	processes.	The	water	pores	were	small;	so	much	
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so,	 that	 lipid	 flip-flop	 processes	 were	 facilitated	 for	 small	

glycerophospholipids,	while	large	LPS	macromolecules	were	confined	to	the	

extracellular	leaflet	(Figure	45A).	The	set	up	promoted	optimal	lipid	packing	

while	 simultaneously	 ensuring	 that	 the	 OMVs	 had	 a	 realistic,	 asymmetric	

distribution	of	LPS	lipids.	The	water	pores	were	closed	over	the	course	of	five	

successive	equilibration	simulations;	the	water	pore	radii	were	initially	set	to	

be	2	nm	and	were	then	reduced	in	size	to	1.5	nm,	1.0	nm,	0.5	nm	and	0.2	nm.	

The	position	restraints	were	then	removed	and	the	OMVs	were	simulated	for	

an	additional	1	µs	 to	ensure	that	 the	 lipid	parameters	could	converge.	The	

temperature	was	maintained	at	303	K	using	the	V-rescale	thermostat	and	the	

pressure	was	maintained	 at	 1	 bar.	 The	 pressure	was	modulated	with	 the	

isotropic	 Berendsen	 barostat	 [839]	 when	 the	 position	 restraints	 were	

enforced	along	the	unit	cell	axes;	the	Parrinello-Rahman	barostat	[841-842]	

(12.0	ps	coupling	constant)	was	applied	thereafter.		Electrostatic	interactions	

were	computed	with	the	reaction	field	method	with	dielectric	constants	of	15	

for	charge	screening	in	the	short-range	regime	and	infinity	for	the	long-range	

regime.	 The	 Lennard-Jones	 potential	 was	 cut	 off	 at	 long-ranges	 using	 the	

Potential-shift-Verlet	 scheme.	 The	membrane	 thickness	 and	 area	 per	 lipid	

values	were	used	to	determine	OMV	system	convergence	and	ensure	that	the	

OMVs	had	achieved	optimal	 lipid	packing	before	they	were	simulated	with	

the	POPC	or	plasma	membrane	bilayers	(Figure	45B-E).		

	

The	assembled	OMVs	were	highly	simplified	models	that	lack,	amongst	other	

biomolecules,	 enzymes,	 toxins,	 peptidoglycan,	 DNA,	 RNA,	 OMPs	 and	 other	

bacterial	membrane	proteins	[46-52,661-662].	The	omission	of	the	full	in	vivo	

OMV	compositional	complexity	was	intentional.	Here	I	aimed	to	understand	

how	simple	lipid	interactions	at	the	host-pathogen	interface	modulate	at	least	

one	OMV	uptake	pathway	and	consequently,	it	seemed	most	appropriate	to	

omit	extraneous	biomolecular	 interactions	that	could	make	this	simulation	

study	 needlessly	 more	 convoluted.	 The	 aim	 was	 to	 determine	 how	 the	

overarching	 lipid	 interactions	 at	 the	 host-pathogen	 interface	 can	 regulate	

lipid-mediated	OMV	uptake	and	subsequent	simulation	studies	could	then	be	

used	 to	 determine	 how	 additional	 OMV	 compositional	 complexity	 further	
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affects	 the	 OMV	 uptake	 interactions.	 This	 is	 not	 to	 discount	 the	 action	 of	

scission	machinery,	adhesion	molecules	etc.	that	also	invariably	impact	OMV	

uptake	efficiency	[52].	The	aims	of	this	chapter	were	relatively	modest	and	

consequently	the	molecular	dynamics	simulations	were	highly	simplified.			
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Figure	45.	(A)	The	starting	configuration	for	the	smooth	OMV	equilibration	
simulations.	The	POPE	and	POPG	lipids	are	silver	and	the	LPS	lipids	have	the	
color	scheme:	Lipid	A	and	core	sugars	(cyan)	and	O-antigen	chain	(red).	The	
water	and	ions	were	removed	to	make	the	figure	clearer.	The	periodic	cell	
boundaries	are	represented	with	a	blue	line.	The	periodic	images	are	shown	
using	different	color	shades	for	clarity.	The	lipids	were	extended	along	the	
bilayer	normal	to	ensure	that	lipid	clustering	was	not	biased	during	the	
molecular	dynamics	simulations.	Water	pores	were	maintained	along	the	
(x/y/z)	coordinate	axes	to	facilitate	interleaflet	flip-flop	for	small	
phospholipids.	(B)	Area	per	lipid	for	LPS	(red)	and	POPE	(magenta)	lipids	in	
the	smooth	OMV	(during	the	last	0.25	µs);	area	per	lipid	for	LPS	(cyan)	and	
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POPE	(magenta)	lipids	in	the	rough	OMV.	(C)	Membrane	thickness	for	the	
smooth	(red)	and	rough	(cyan)	OMVs	during	the	last	0.25	µs;	the	average	
membrane	thickness	values	were	3.58	±	0.01	nm	(smooth	OMV)	and	3.72	±	
0.01	nm	(rough	OMV).	(D)	Area	per	lipid	for	POPE	(orange)	and	POPG	
(green)	lipids	in	the	POPE-POPG	phospholipid	vesicle	during	the	last	0.25	
µs.	(E)	The	corresponding	membrane	thickness	values	for	the	POPE-POPG	
phospholipid	vesicle.					
	

The	 phospholipid	 vesicle	was	made	with	 the	CHARMM-GUI	Martini	Maker	

module	[151,232].	The	inner	and	outer	leaflets	were	both	made	with	POPE	

and	 POPG	 lipids	 in	 a	 9:1	 number	 ratio.	 The	 phospholipid	 vesicle	 was	

assembled	with	a	diameter	of	20	nm	to	make	it	physically	comparable	to	the	

smooth	 and	 rough	 OMV	 simulation	 systems.	 The	 POPE-POPG	 vesicle	 was	

hydrated	 with	 Martini	 water	 using	 the	 gmx	 solvate	 program	 and	 enough	

calcium	ions	were	added	to	neutralize	the	system	charge.	Position	restraints	

were	used	to	maintain	six	membrane	spanning	water	pores	along	the	unit	cell	

(x,	y,	and	z)	axes.	The	water	pore	radius	was	initially	set	to	be	2	nm	and	the	

final	water	pore	radius	was	0.2	nm,	intermediary	radii	were	1.5	nm,	1.0	nm,	

and	then	0.5	nm.	The	vesicle	was	simulated	for	an	additional	1	µs	after	the	

water	 pores	 had	 closed	 to	 converge	 the	 lipid	 parameters.	 The	 simulation	

temperature	was	kept	at	303	K	using	the	V-rescale	thermostat.	The	pressure	

was	 modulated	 with	 the	 isotropic	 Berendsen	 barostat	 when	 the	 position	

restraints	were	being	enforced	along	 the	unit	cell	 axes	and	 the	Parrinello-

Rahman	 barostat	 (12.0	 ps	 coupling	 constant)	 [841-842]	 was	 applied	

thereafter.	 	The	membrane	thickness	values	and	area	per	 lipid	magnitudes	

were	 used	here	 to	 assess	 the	 POPE-POPG	system	 convergence	 and	 ensure	

that	the	vesicle	was	ready	for	simulations	with	the	single-component	POPC	

and	the	multicomponent	plasma	membrane	bilayers.					

	

5.3.2	Host	Membrane	Construction	Details	
	

The	 Palmitoyloleoyl-phosphatidylcholine	 (POPC)	 membrane	 bilayer	 was	

made	with	the	insane.py	script	[893].	The	initial	simulation	cell	dimensions	

were	75	x	75	x	20	nm;	standard	Martini	water	particles	were	used	to	hydrate	

the	lipids	within	the	orthorhombic	simulation	cell.	Position	restraints	were	
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applied	 over	 the	 course	 of	 five	 successive	 equilibration	 simulations	 to	

suppress	excessive	 lipid	splay	and	promote	the	production	of	an	optimally	

packed	lipid	bilayer.	Position	restraints	were	used	to	fix	the	position	of	the	

POPC	 lipid	 headgroups	 and	 promote	 lamellar	 lipid	 alignment.	 The	 force	

constant	was	initially	set	to	be	200	KJ	mol-1	nm-2	and	this	was	reduced	to	10	

KJ	mol-1	nm-2;	the	intermediary	force	constants	were	100,	50,	and	then	20	KJ	

mol-1	 nm-2.	 The	 bilayer	was	 simulated	 for	 an	additional	1	µs	 after	 this	 to	

promote	optimal	 lipid	packing.	The	 temperature	was	maintained	at	303	K	

using	the	V-rescale	thermostat.	The	pressure	was	maintained	at	1	bar	using	a	

semi-isotropic	 pressure	 coupling	 algorithm.	 The	 Berendsen	 barostat	 was	

applied	when	the	position	restraints	were	being	applied	and	the	Parrinello-

Rahman	 barostat	 [841-842]	 was	 used	 once	 the	 position	 restraints	 were	

removed.	 The	 electrostatic	 interactions	 were	 computed	 with	 the	 reaction	

field	method,	with	dielectric	constants	of	15	for	charge	screening	in	the	short-

range	 regime	 and	 infinity	 for	 the	 long-range	 regime.	 The	 Lennard-Jones	

potential	was	cut	off	at	long-ranges	using	the	Potential-shift-Verlet	scheme.	

	

The	 multicomponent	 plasma	 membrane	 model	 contained	 seven	 different	

types	 of	 lipid	 that	 were	 distributed	 asymmetrically	 about	 the	 membrane	

midplane.	The	 lipid	abundances	 for	 the	entire	membrane	were	 as	 follows:	

POPC	 (25%),	 POPE	 (25%),	 POPS	 (7.5%),	 GM3	 lipid	 (5%),	 palmitoyl	

sphingomyelin	 (7.5%),	 PIP2	 (5%),	 and	 cholesterol	 (25%).	 The	 inner	

(intracellular)	leaflet	contained	POPE,	POPC,	POPS,	PIP2	and	cholesterol	in	a	

40:10:15:10:25	ratio.	The	outer	(extracellular)	leaflet	contained	POPE,	POPC,	

sphingomyelin,	(GM3)	ganglioside	and	cholesterol	in	a	10:40:15:10:25	ratio.	

The	plasma	membrane	model	was	made	in	previous	works	by	Sansom	et	al.	

and	the	group	has	simulated	the	membrane	on	a	multimicrosecond	timescale	

before	 it	 was	 used	 here	 in	 this	 chapter	 [76,363,500,993].	 The	 chemical	

properties	of	each	lipid	type	can	be	understood	from	the	following	sections:	

1.4.1	 (PC,	 PE,	 and	 PS	 phospholipid),	 1.4.2	 (cholesterol),	 1.4.3	 (PIP2),	 1.4.4	

(sphingomyelin	and	GM3	lipid).	The	membrane	was	produced	through	a	long	

and	seemingly	arduous	effort	where	 individual	 constituent	 lipid	 types	 (for	
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example,	 see	 reference	 [1023])	 were	 initially	 parameterized	 to	 mimic	

reference	atomistic	simulation	data	and	these	 coarse-grained	models	were	

then	 subsequently	 combined	 to	 produce	 a	 multicomponent	 mammalian	

plasma	membrane	model.	The	 lipid	models	have	been	used	 to	understand	

amongst	 other	 interesting	 biophysical	 phenomena,	 the	 organization	 and	

dynamic	interactions	of	plasma	membrane	receptor	proteins	[76].					

	

The	plasma	membrane	model	was	simulated	here	for	an	additional	0.25	µs	

after	 it	 was	 initially	 acquired	 from	 the	 Sansom	 group	 to	 correct	 for	 small	

differences	in	simulation	settings.	The	membrane	was	simulated	with	Martini	

water	 particles	 and	 either	monovalent	 (Na+)	 or	 divalent	 (Ca2+)	 cations	 to	

systematically	determine	 if	 the	simulation	results	would	be	affected	by	the	

ambient	ion	charge	density.	The	semi-isotropic	Parrinello-Rahman	barostat	

[841-842]	 was	 used	 to	 maintain	 the	 pressure	 at	 1	 bar	 and	 the	 V-rescale	

thermostat	was	used	to	maintain	the	simulation	temperature	at	303	K.	The	

electrostatic	interactions	were	computed	with	the	reaction	field	method	and	

the	Lennard-Jones	potential	was	cut	off	at	 long-ranges	using	the	Potential-

shift-Verlet	scheme.	At	this	point,	the	plasma	membrane	was	combined	with	

vesicles	in	one	instance	and	simulated	independently	in	another.	Ganglioside	

molecule	co-clustering	could	then	be	assessed	both	when	OMVs	were	trapped	

at	the	plasma	membrane	surface	and	also	when	the	plasma	membranes	were	

simulated	without	OMVs.		

	

It	is	important	to	stress	here	that	the	plasma	membrane	was	not	completely	

converged	 when	 it	 was	 first	 provided	 by	 Sansom	 et	 al.	 or	 even	 after	 the	

subsequent	 short	 (0.25	 µs)	 equilibration	 simulations	 that	 were	 used	 to	

correct	 for	 difference	 in	 simulation	 settings.	 Comparable	 simulations	 of	

complex	plasma	membrane	models	[498]	suggest	that	converged	ganglioside	

cluster	 conformations	 are	 beyond	 the	 scope	 of	 the	 current	 coarse-grained	

Martini	forcefield,	which	maps	no	more	than	a	few	heavy	atoms	to	a	single	

interaction	center	[822].	Marrink	et	al.	created	complex	plasma	membrane	

models	 that	 included	 up	 to	 63	 different	 lipid	 types	 ranging	 from	 large	

ganglioside	 lipids	 (e.g.	 GM3,	 and	 GM1	 in	 particular)	 through	 to	 smaller	



 248 

phosphoinositides,	phospholipids	and	cholesterol	[498].	The	conformation	of	

the	ganglioside	molecule	aggregates	changed	continuously	over	40	µs	and	the	

simulated	 GM3	 and	 GM1	 clusters	 continuously	 broke	 apart	 and	 reformed	

throughout.	The	plasma	membrane	contained	63	different	lipid	types	and	this	

level	of	complexity	would	have	made	the	equilibration	timescales	longer,	but	

the	slow	ganglioside	molecule	clustering	processes	cannot	be	explained	by	

the	 number	 of	 lipids	 alone.	 The	 aggregation	 of	 polar	 glycolipids	 tends	 to	

transpire	 on	 unusually	 long	microsecond	 timescales	 when	 the	membrane	

compositional	 complexity	 is	 relatively	 high	 [498]	 and	 equally	 when	 the	

membrane	 compositional	 complexity	 is	 relatively	 low	 [151,301].	 In	 other	

words,	 glycolipid	 conformations	 converge	 on	microsecond	 or	 even	 longer	

(e.g.	 millisecond)	 timescales	 when	 membranes	 contain	 either	 just	 a	 few	

different	 types	 of	 lipid	 or	 up	 to	 63	 different	 types	 of	 lipids.	 The	 Martini	

forcefield	is	optimized	for	microsecond	long	molecular	dynamics	simulations	

and	 so	we	 can	 state	 that	 converged	 glycolipids	might	well	 be	 entirely	 the	

scope	 of	 the	 explicit	 coarse-grained	 Martini	 forcefield	 if	 it	 is	 paired	 with	

nothing	more	than	standard	high-performance	computers.		

	

It	 is	equally	 important	 to	state	 that	glycolipid	molecules	are	challenging	to	

accurately	parameterize	 in	atomistic	 forcefield	simulations	[558,1024],	but	

even	 more	 so	 in	 lower	 resolution	 coarse-grained	 forcefield	 simulations	

[1023,1025-1026]	that	have	fewer	degrees	of	freedom.	The	conformations	of	

glycan	polymers	can	differ	markedly	in	simulations	that	are	conducted	with	

different	atomistic	resolution	forcefields	[578]	suggesting	that	at	least	some,	

if	not	many,	of	 the	apparently	 sophisticated	atomistic	molecular	dynamics	

forcefields	 fail	 to	 satisfactorily	 reproduce	 the	 complex	 conformational	

landscapes	 of	 bonded	 saccharide	 units.	While	 the	 quality	 of	 the	 reference	

atomistic	simulation	data	is	itself	of	questionable	quality,	there	is	the	added	

problem	 that	 coarse-grained	 ganglioside	 parameterization	 schemes	 can	

differ	 from	 target	 all-atom	 molecular	 dynamics	 simulations	 [1025-1026].	

Long	simulation	timescales	might	promote	converged	conformations	but	the	

precise	distribution	of	the	converged	glycolipid	clusters	might	not	match	the	

in	 vivo	 scenario.	 These	 noted	 inaccuracies	 could	 discredit	 the	 forthcoming	
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conclusions	if	the	wrapping	interactions	seemed	to	depend	on	the	precise	size	

or	distribution	of	the	simulated	ganglioside	clusters.	This	was	not	the	case;	

host	 membrane	 wrapping	 interactions	 demanded	 neither	 a	 specific	 GM3	

aggregate	 size	 distribution	 nor	 a	 specific	 ganglioside	 molecule	 spatial	

distribution.	 The	 OMVs	 sequestered	 GM3	 lipids	 that	 were	 in	 a	 range	 of	

different	 orientations	 and	states	 of	 aggregation	 and	 once	 sequestered,	 the	

GM3	molecules	almost	always	contributed	to	stepwise	zippering	interactions	

that	 promoted	 the	wrapping	 of	 the	 host	membranes	 around	 the	 attached	

OMVs.	So,	although	there	is	invariably	some	mismatch	between	ganglioside	

lipid	 interactions	 here	 and	 within	 realistic	 cellular	 membranes,	 the	

overarching	qualitative	conclusions	seem	to	be	warranted	throughout.					

	

But	let	us	explore	a	bit	more	thoroughly	what	we	know	and	what	we	do	not	

know	about	glycolipid	 clustering	and	 in	particular,	Martini	 glycolipid	GM1	

and	 GM3	 molecule	 aggregation.	 It	 is	 already	 well-known	 that	

glycosphingolipids	tend	to	co-couple	with	cholesterol	and	sphingomyelin	in	

multicomponent	plasma	membranes	and	that	this	aggregation	can	induce	the	

formation	 of	 liquid-ordered	 nanodomains	 and	 lipid	 rafts	 [73-79].	 The	 co-

clustering	processes	are	complex;	glycosphingolipids	form	gel-like	domains	

in	fluid	lipid	bilayers	and	sphingomyelin	readily	associates	with	cholesterol	

molecules	 to	 form	 liquid-ordered	 nanodomains,	 but	 glycosphingolipids	 do	

not	tend	to	form	cholesterol-enriched	domains	by	themselves	[1027-1028].	

Glycosphingolipid	clustering	and	partitioning	also	depends	on	the	ceramide	

backbone	 structure,	 the	 number	 of	 sugar	 units,	 and	 the	 charge	 of	 the	

saccharide	 headgroups.	 Although	 the	 clustering	 of	 glycosphingolipids	 is	

evidently	quite	complex	and	multifaceted,	 it	 is	becoming	 increasingly	clear	

that	ganglioside	molecules	have	high	affinity	 for	each	other	within	plasma	

membranes	and	that	ganglioside	molecules	can	 form	nanodomains	 in	vitro	

and	in	vivo	either	through	attractive	self-interactions	or	through	interactions	

with	pathogenic	biomolecules	 [368].	 	When	pathogenic	viruses	 (e.g.	 SV40)	

and	pathogenic	bacterial	products	(e.g.	Shiga	toxin)	interact	with	ganglioside	

lipid	 headgroups	 they	 can	 induce	 the	 formation	 of	 curved	 lipid	 rafts,	 or	

caveolae	[537,542,1015-1018].	The	ganglioside	molecules	move	to	areas	of	
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high	 positive	 curvature	 such	 as	 the	 rim	 of	 caveolae	where	 their	 presence	

reduces	 the	 line	 tension	 energy	 and	 promotes	 large-scale	 membrane	

reshaping	processes	[671-673].				

	

Through	the	application	of	sophisticated	microscopy	methods,	it	was	shown	

that	lipid	rafts	can	have	a	range	of	different	sizes	ranging	from	approximately	

10	 nm	 [89]	 through	 to	 200	 nm,	 i.e.	 an	 order	 of	 magnitude	 difference	

[348,1029].	Coarse-grained	molecular	dynamics	simulations	with	the	Martini	

forcefield	 have	 corroborated	 the	 inference	 that	 ganglioside	molecules	 can	

form	large	lipid	rafts	when	they	cluster	together	[363,497-498].	The	coarse-

grained	Martini	molecular	dynamics	simulations	showed	that	coarse-grained	

ganglioside	 lipids	 can	 spontaneously	 self-assemble	 into	 clusters	 that	 have	

high	 intrinsic	 spontaneous	 curvature	 and	 further,	 that	 these	

glycosphingolipid	clusters	promote	membrane	curvature	generation	[363].	

The	 coarse-grained	 Martini	 simulation	 forcefield	 correctly	 predicts	 that	

ganglioside	molecules	can	spontaneously	self-assemble	and	form	aggregates	

that	have	high	intrinsic	positive	curvature	but	it	is	assumed	that	ganglioside	

conformations	 and	 binding	 profiles	 are	 less	 accurate	 in	 coarse-grained	

molecular	 dynamics	 simulations	 than	 comparative	 atomistic	 simulations				

[1025-1026].	 There	 are	 noted	 difficulties	 in	 reproducing	 the	 correct	

conformational	 landscapes	 of	 saccharide	 units	 and	 polymers	 in	 atomistic	

simulations	 [578]	 and	 these	 problems	 are	 compounded	 in	 comparative	

coarse-grained	 simulations	 that	 have	 fewer	 degrees	 of	 freedom	 [796].	

Although	 direct	 benchmarking	 papers	 are	 sparse,	 it	was	 shown	 that	 some	

Martini	 forcefield	 ganglioside	molecule	 binding	 profiles	 did	 not	 accurately	

reproduce	 reference	 atomistic	 forcefield	 simulation	 data	 [1026].	 Thus,	we	

can	 state	 that	 the	 Martini	 forcefield	 correctly	 predicts	 that	 ganglioside	

molecules	cluster	and	that	they	can	form	aggregates	that	have	high	intrinsic	

spontaneous	positive	curvature	but	we	should	appreciate	 that	 the	size	and	

state	of	these	clusters	may	be	somewhat	inaccurate,	e.g.	slightly	too	large	or	

too	small,	and	further	that	 the	ganglioside	molecules	might	bind	the	OMVs	

somewhat	inaccurately,	e.g.	slightly	too	tightly	or	too	loosely.			
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5.3.3	Vesicle-Membrane	Simulation	Details	
	

The	Visual	Molecular	Dynamics	(VMD)	module	[871]	was	used	to	combine	

the	vesicles	with	the	host	membrane	systems.	The	position	of	the	vesicles	and	

membranes	were	positioned	within	the	simulation	cells	with	approximately	

5	nm	between	them.	The	distance	was	sufficiently	small	to	promote	cohesive	

interactions	between	the	apposed	membranes,	while	also	being	wide	enough	

to	 not	 drastically	 bias	 the	 initial	 docking	 of	 the	 vesicles	 onto	 the	 host	

membrane	surfaces.	The	systems	were	then	hydrated	with	Martini	(W	type)	

water	particles	with	the	gmx	solvate	program.	The	VMD	visualization	module	

was	 used	 to	 identify	 and	 remove	 any	 water	 particles	 that	 were	

inappropriately	 inserted	 into	 the	 hydrophobic	 lipid	membrane	 cores.	 The	

gmx	genion	program	was	applied	to	add	either	monovalent	(Na+)	or	divalent	

(Ca2+)	 cations	 to	 the	 simulation	 cells.	 The	 steepest	 descent	 algorithm	was	

used	 to	 optimize	 the	 distances	 between	 the	 simulation	 particles	 and	 to	

minimize	 the	 system	 energy.	 The	 vesicle-membrane	 systems	 were	 then	

simulated	for	2	µs	each;	this	timescale	is	sufficiently	long	to	monitor	the	full	

details	of	the	early	stage	endocytosis	interactions	that	transpire	at	the	host-

pathogen	 interface	 e.g.	 the	 loss	 of	 vesicle	 shape	 and	 also	 to	 visualize	 the	

partial	 wrapping	 of	 the	 host	 membranes	 around	 the	 attached	 OMVs.	 The	

simulation	 temperature	 was	 maintained	 at	 303	 K	 using	 the	 V-rescale	

thermostat	and	the	simulation	pressure	was	maintained	at	1	bar	using	the	

Parrinello-Rahman	barostat	[841-842].	The	box	vectors	were	scaled	with	a	

semi-isotropic	 scheme	during	 the	 2	µs	 long	 simulations,	 but	 isotropic	 and	

anisotropic	 algorithms	were	 also	 used	 in	 shorter	 1	µs	 long	 simulations	 to	

ensure	that	the	loss	of	vesicle	shape	was	not	an	artifact	of	simulation	setup.	

Repeat	 simulations	 were	 performed	 in	 all	 instances	 to	 ensure	 that	 the	

simulation	results	were	reproducible.						

	
5.3.4	Lipid	Parameter	Details	
	

The	 coarse-grained	 parameters	 were	 calibrated	 in	 previous	 works	 to	

reproduce	 target	 united-atom	 molecular	 dynamics	 simulation	 data.	 The	

coarse-grained	Martini	forcefield	parameter	set	for	the	rough	(Ra)	LPS	lipid	
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was	determined	 from	reference	united-atom	simulations	of	Ra-type	E.	 coli	

LPS	lipid	with	R3	core	sugar	sequence	and	type	1	Lipid	A	anchor	[301].	The	

rough	LPS	lipid	parameter	set	was	subsequently	expanded	by	sampling	data	

from	united-atom	simulations	of	the	E.	coli	O1	O-antigen	chain	polymer.	Data	

from	united-atom	simulations	of	the	E.	coli	O1	O-antigen	chain	were	sampled	

and	 this	 data	was	 used	 to	 calibrate	 a	 coarse-grained	 O1	 O-antigen	 glycan	

polymer	 chain	model.	 The	 coarse-grained	 O-antigen	 chain	 polymer	model	

was	 then	combined	with	 the	 coarse-grained	model	of	 rough	 (Ra-type)	LPS	

lipid	to	create	the	associated	smooth	LPS	lipid	mimetic	[579].	The	GM3	lipid	

parameters	 were	 optimized	 according	 to	 the	 same	 procedure	 [1023];	

atomistic	simulation	data	was	used	to	determine	appropriate	parameters	for	

a	coarse-grained	model.	The	conformations	of	the	GM3	lipid	headgroup	was	

analyzed	in	united-atom	simulations	and	coarse-grained	model	parameters	

were	 selected	 through	 comparison.	 The	 GM3	 and	 PIP2	 molecules	 were	

modeled	with	 a	 single	monounsaturated	 tail	 throughout.	The	 POPS,	 POPC,	

POPE,	 POPG,	 sphingomyelin	 and	 cholesterol	 molecules	 were	 based	 on	

parameters	 from	 the	 standard	 Martini	 molecular	 dynamics	 simulation	

forcefield	library.										

	

5.3.5	Simulation	Analysis	Details	
	

The	 radii	of	 gyration	were	 computed	about	 the	x-,	y-,	 and	z-axes	 to	assess	

vesicle	shape	during	production	time.	The	axes	components	were	computed	

according	 to	 the	 equation:	 𝑅�(𝑥/𝑦/𝑧) =

!∑ 𝑚Q(𝑅Q(𝑦/𝑥/𝑦)1 + 𝑅Q(𝑧/𝑧/𝑥)1)/∑ 𝑚QQQ 	where	 mi	 were	 the	 mass	 values.	

The	radial	extension	of	 the	saccharide	moieties	and	the	Lipid	A	phosphate	

groups	were	computed	using	the	three-dimensional	form	of	the	Pythagorean	

theorem:	𝑐1 = 𝑥1 + 𝑦1 + 𝑧1	where	x,	y,	and	z	were	lengths	along	the	unit	cell	

axes	 and	 c	 was	 the	 diagonal	 length	 between	 them.	 The	 diagonals	 were	

measured	with	respect	 to	vesicle	centers	 throughout	and	the	 lengths	were	

assigned	 a	 color	 based	 on	 standard	 VMD	 color	 gradients.	 Voronoi	

tessellations	were	performed	to	compute	areas	per	lipid	and	simultaneously	

assess	membrane	 thickness	 parameters.	 The	 lipid	 phosphate	 groups	were	
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partitioned	 into	 a	 contiguous	 grid	 of	 polygons	whose	 size	 and	 separation	

were	used	to	determine	the	 lipid-packing	parameters.	 	The	gmx	select	 tool	

was	used	to	count	the	number	of	lipids	within	an	arbitrary	cutoff	distance	e.g.	

5	nm	from	smooth	or	rough	OMVs.	Residence	times	were	assessed	using	a	0.6	

nm	 cutoff	 distance	 (GROMAS	 default)	 and	 the	 results	 were	 subsequently	

assigned	a	color	based	on	standard	VMD	color	gradients.	Vesicle	headgroup	

width	was	determined	by	computing	radial	distribution	functions	(RDFs)	for	

polar	and	charged	Martini	beads	with	respect	to	the	vesicle	centers.		

	

5.4	Results	and	Discussion	
	
5.4.1	OMV	Construction	Details	
	

The	smooth	and	rough	OMVs	were	simulated	with	the	coarse-grained	Martini	

forcefield	(Figure	46A).	The	OMVs	were	made	with	an	inner	leaflet	of	POPE	

and	POPG	lipids	in	a	9:1	number	ratio	and	the	outer	leaflets	contained	POPE	

and	LPS	molecules	in	a	1:1	number	ratio.	The	outer	leaflet	POPE	lipids	were	

incorporated	 to	 facilitate	CHARMM-GUI	Martini	Maker	 interleaflet	 flip-flop	

processes	 that	 can	minimize	bilayer	 tension.	The	 inner	 leaflet	 composition	

was	 set	 to	mimic	 realistic	 Gram-negative	 bacterial	 outer	membrane	 inner	

leaflets	 that	have	PE	and	PG	 lipids	distributed	 in	an	approximate	9:1	ratio	

[1031].	 It	 should	 be	 stressed	 here	 that	 a	 limited	 number	 of	 lipid	 flip-flop	

events	occurred	during	the	equilibration	simulations	and	consequently	 the	

lipid	abundances	were	not	entirely	constant	throughout.	The	lipid	ratios	were	

still	correct	to	two	significant	figures	after	the	equilibration	simulations,	i.e.	a	

1.0:1.0	number	ratio	for	POPE	and	LPS	molecules	in	the	OMV	outer	leaflets,	

but	the	number	ratios	did	not	precisely	match	the	initial	simulation	setup,	i.e.	

not	an	exact	1:1	number	ratio.				

	

The	rough	LPS	lipids	contained	an	anchoring	Lipid	A	domain	with	complete	

core	saccharide	section	and	the	smooth	LPS	lipids	additionally	contained	four	

units	of	the	E.	coli	O1	O-antigen	chain	repetitive	polymer	unit	(see	Figure	15	

for	 reference).	 The	 OMVs	 had	 an	 asymmetric	 membrane	 structure	 and	

diameters	of	20	nm	based	on	the	position	of	the	hydrophobic	membrane	core	
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midplane.	The	nanospheres	are	therefore	comparable	to	the	smallest	OMVs	

that	are	produced	in	vivo	[663,1005,1032-1034].			

	

5.4.2	OMVs	in	Water	
	

It	is	important	to	first	compute	lipid	packing	parameters	for	the	OMVs	when	

they	were	simulated	in	water	(Figure	46B)	before	we	can	analyze	the	OMV	

properties	 at	 host	membrane	 surfaces.	Data	were	 collated	 from	1	µs	 long	

molecular	 dynamics	 simulations	 of	 smooth	 and	 rough	 OMVs	 in	 Martini	

coarse-grained	water	and	ions.	Voronoi	tessellations	were	used	to	determine	

the	mean	average	area	per	lipid	values	for	each	component	of	the	inner	and	

outer	membrane	leaflets.	It	is	emphasized	here	that	the	position	of	the	Lipid	

A	phosphate	groups	 (Figure	46C)	was	used	 to	 characterize	 the	water-lipid	

interface,	while	the	position	of	peripheral	saccharides	was	used	to	assess	the	

full	 extension	of	 the	 LPS	 lipids	 i.e.	 the	 radial	 length	 of	 the	molecules	with	

respect	to	the	OMV	centers.		

	

The	LPS	lipids	were	packed	more	tightly	(less	area	per	lipid)	in	the	OMVs	than	

in	comparable	flat	bacterial	bilayers	(Table	1).	The	smooth	LPS	lipids	were	

packed	17%	closer	 in	 the	OMVs	 than	 in	 reference	 flat	bacterial	membrane	

mimetics	and	the	rough	LPS	lipids	were	packed	18%	closer	than	reference	

flat	 membrane	 mimetics	 [151,301].	 The	 OMV	 LPS	 lipids	 achieved	 lateral	

packing	comparable	to	the	shortest	forms	of	LPS	(Re-type)	lipid	in	flat	E.	coli	

outer	membrane	mimetics.	This	is	surprising	because	the	simulated	OMV	LPS	

lipids	were	longer	than	Re	LPS	molecules	and	also	that	LPS	lipid	length	scales	

with	 lateral	 surface	 area	 in	 flat	 bacterial	 membrane	 simulation	 systems	

[151,211,301].	This	unusually	tight	(OMV)	lamellar	alignment	is	ascribed	to	

(i)	 additional	 fringe	 volume	 that	 affords	 LPS	 headgroups	 more	

conformational	freedom	and	the	capacity	to	achieve	unusually	tight	lamellar	

alignment,	 and	 (ii)	 compensatory	 lateral	 area	 expansion	 of	 neighboring	

phospholipids,	which	pushes	the	LPS	molecules	closer	together	than	in	flat	

membranes.		
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Table	1:	Summary	of	lipid	properties	for	OMVs	in	solution;	data	are	shown	for	
the	inner	leaflet	(IL)	and	the	outer	leaflet	(OL).	Standard	deviations	are	less	
than	0.02	for	areas	per	lipids	and	less	than	0.9	for	radial	heights.	
Membrane	

type	
Mean	area	per	lipid	(nm2)	 LPS	radial	height	(nm)	

LPS	 POPE	
(IL)	

POPE	
(OL)	

POPG	 phosphates	 extension	

Smooth	OMV	 1.57	 0.55	 1.26	 0.60	 11.63	 15.38	
Rough	OMV	 1.46	 0.50	 1.20	 0.53	 11.52	 12.42	
Flat	outer	
membrane	

Re-LPS:		
1.59	

0.62	 —	 0.61	 —	 —	

Rough	
LPS:	1.78	
Smooth	
LPS:	1.90	
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Figure	46.	(A)	Smooth	and	rough	OMVs—atoms	are	represented	using	a	
volumetric	density	map.	The	POPE	and	POPG	lipids	are	silver	and	the	LPS	
molecules	have	the	color	scheme:	Lipid	A	and	core	sugars	(cyan),	O-antigen	
chain	(red).	(B)	The	terminal	sugar	particles	are	assigned	a	BGR	color	based	
on	their	radial	height	(extension).	(C)	The	LPS	molecule	is	divided	into	its	
constituent	Lipid	A	anchor,	core	sugar	domain,	and	terminal	O-antigen	
chain.	The	Lipid	A	phosphate	groups	are	green	to	clarify	the	position	of	the	
water-lipid	interface	that	is	referenced	throughout	this	chapter.	The	atoms	
are	represented	with	a	volumetric	density	map	(left)	and	a	simpler	ball-and-
stick	model	(right).				
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The	 smooth	and	 rough	OMV	surfaces	were	distinctly	different:	 the	 smooth	

OMV	was	littered	with	large	groves	and	the	rough	OMV	was	comparatively	

uniform.	The	surface	of	the	smooth	OMV	is	quite	similar	to	the	capsid	of	the	

SV40	 virus	 [542,1015-1017],	which	 has	 grooves	 that	 interlink	 ganglioside	

lipid	 receptors	 in	 host	 cell	 membranes	 and	 thereby	 triggers	 endocytosis	

interactions.	At	this	point,	it	is	important	to	rationalize	why	the	surface	of	one	

OMV	 simulation	 system	 is	 relatively	 uniform	 while	 the	 other	 is	 not.	 By	

assessing	the	surface	topologies	more	thoroughly	we	will	be	afforded	more	

general	insights	into	the	differences	between	smooth	and	rough	OMVs	and	in	

particular,	how	their	headgroup	domains	differ	in	terms	of	void	area	and	free	

volume.				

	

The	 differences	 in	 surface	 topologies	 will	 be	 explained	 using	 simple	

geometric	equations	and	a	bare-bones	model	for	the	OMVs	(Figure	47).	The	

lipids	are	treated	here	as	axisymmetric	cylinders	that	have	constant	cross-

sectional	 area	 along	 their	 long-axis.1	Two	more	 assumptions	 are	made:	 (i)	

that	 lipids	 align	 with	 the	 membrane	 normal 2 	and	 (ii)	 that	 lipid	 flip-flop	

processes	 can	 be	 discounted	 throughout.	 Taken	 together,	 the	 assumptions	

will	simplify	the	ensuing	discussion	and	increase	the	scope	of	the	conclusions	

that	can	be	drawn	in	this	section.	Given	that	spherical	surface	area	(𝐴)	scales	

with	the	square	of	radial	length,	i.e.	𝐴 = 4𝜋𝑟1,	it	is	evident	that	𝐴1 > 𝐴(	and	

𝐴< ≫ 𝐴(,	where	𝐴U = 4𝜋𝑟U1	and	𝑟U	values	are	defined	in	Figure	47.	Because	

the	 total	 cross-sectional	 area	 is	 approximately	 constant	 along	 the	 bilayer	

normal	[211-212]	it	can	be	stated	that	𝑁𝐴> + 𝑁𝐴ØM ≈ 𝐴(;	𝑁𝐴> + 𝑁𝐴ØM < 𝐴1;	

and	𝑁𝐴> + 𝑁𝐴ØM ≪ 𝐴< ,	 where	𝐴> 	and	𝐴ØM 	are	 the	 cross-sectional	 areas	 of	

LPS	 macromolecules	 and	 POPE	 lipids,	 and	𝑁 	defines	 the	 number	 of	 these	

                                                
1 The approximation of constant cross-sectional area for lipids is reasonable in this case, given that 
we seek a crude understanding of the disparities in OMV surface topology. The approximation is 
inappropriate for a detailed understanding of the dynamic interactions of lipids within biological 
membranes—slight disparities in molecular shape significantly impact almost all bilayer 
properties, and differences in molecular shape should generally not be ignored. 
 
2 LPS lipids, to a fair approximation, align with the bilayer normal: there is clear division better 
Lipid A anchor, core saccharide section, and O-antigen chain polymers along the membrane normal 
axis [211-212]. 
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molecules	 in	 the	 OMV	 outer	 leaflet.	 If	 we	 assume	 that	 this	 system	 is	 a	

reasonable	approximation	of	the	structure	of	OMVs	we	can	extrapolate	and	

state	that	there	is	an	increasing	disparity	between	the	projected	surface	area	

(𝐴 = 4𝜋𝑟1) 	and	 the	 total	 lipid	 cross-sectional	 area	 (𝑁𝐴> + 𝑁𝐴ØM) 	as	 𝑟 	is	

increased	 beyond	 the	 water-lipid	 interface	 (𝑟( ).	 The	 amount	 of	 void	 area	

increases	exponentially	along	the	LPS	macromolecule	long-axis	(𝑟; ≤ 𝑟 ≤ 𝑟<)	

and	as	a	consequence,	smooth	OMVs	are	expected	to	have	more	void	area	at	

their	 outer	 edge	 than	 rough	 OMVs	 of	 similar	 hydrophobic	 midplane	

(𝑟;)	diameters.	This	inference	should	be	correct	for	almost	all	OMVs	and	this	

could	 be	 tested	 with	 electron	 microscopy	 methods	 or	 some	 other	 (non-

computational)	 microscopy	 methods	 that	 are	 suitable	 for	 assessing	 the	

topology	of	lipid	membrane	surfaces.				
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Figure	47.	Schematic	illustration	of	the	smooth	OMV	that	has	been	used	to	
understand	the	different	topology	of	the	rough	and	smooth	OMVs.	The	LPS	
lipids	are	orange,	the	outer	leaflet	POPE	molecules	are	magenta	and	inner	
leaflet	lipids	are	omitted	throughout.	The	radial	heights	are	labelled	as	
follows:	𝑟;	(middle	of	the	hydrophobic	membrane	core),	𝑟(	(outer	leaflet	
phosphate	group	boundary),	𝑟1	(termini	of	the	LPS	core	sugars),	and	𝑟<	
(termini	of	the	LPS	O-antigen	chains).	The	lipids	are	treated	as	axisymmetric	
cylinders,	for	example,	the	LPS	macromolecules	have	constant	cross-
sectional	area	𝐴>	and	volume	𝑉@ = 𝜋(𝑟 − 𝑟;)(𝑑> 2⁄ )1,	where	𝑑>	is	the	
cylinder	diameter	and	𝑟; ≤ 𝑟 ≤ 𝑟<.			
	
It	is	appropriate	to	additionally	determine	the	relationship	between	“free	

volume”	or	solvent-accessible	space	and	the	length	of	LPS	lipids	in	the	OMV	

outer	leaflet	(𝑟; ≤ 𝑟 ≤ 𝑟<).	The	volume	of	each	LPS	lipid	is	calculated	

according	to	the	equation:	𝑉> = 𝜋(𝑟 − 𝑟;)	(𝑑> 2⁄ )1	where	𝑑>	is	the	effective	

diameter	of	the	LPS	lipids.	The	volume	of	each	POPE	lipid	(in	the	outer	

leaflet)	is	calculated	according	to	the	equation:	𝑉ØM = 𝜋(𝑟 − 𝑟;)	(𝑑ØM 2⁄ )1,	

dPE 

POPE  
Cross-sectional area = APE 

Volume = VPE 

dL 
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Volume = VL 
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where	𝑑ØM 	is	the	diameter	of	POPE	molecules	and	𝑉ØM = 0	beyond	the	

water-lipid	interface	(𝑟 > 𝑟().	The	relationship	between	radial	length	and	

free	volume	becomes:							

	

𝑉�O = 𝑉 −	(𝑁𝑉> + 𝑁𝑉ØM)	

	

or:	

	

𝑉�O =

⎩
⎪
⎨

⎪
⎧Í
4
3
𝜋𝑟<Î −	(𝑁𝜋(𝑟 − 𝑟;) Í

𝑑>
2
Î
1

+ 𝑁𝜋(𝑟 − 𝑟;)	(
𝑑ØM
2
)1)	, 𝑟( ≥ 𝑟 ≥ 𝑟;

Í
4
3
𝜋𝑟<Î −	(𝑁𝜋(𝑟 − 𝑟;) Í

𝑑>
2
Î
1

), 𝑟< ≥ 𝑟 ≥ 𝑟(

	

	

	

𝑉�O = U
(𝑎𝑟<) −	 (𝑏(𝑟 − 𝑟;) + 𝑐(𝑟 − 𝑟;)	)	, 𝑟( ≥ 𝑟 ≥ 𝑟;

(𝑎𝑟<) −	(𝑏(𝑟 − 𝑟;)), 𝑟< ≥ 𝑟 ≥ 𝑟(
	

	

Equation	87-88	

	

because	the	volume	of	a	sphere	is	defined	by	the	equation:	𝑉 = ¨
<
𝜋𝑟<.	Within	

this	 equation	𝑎, 𝑏, 	and	𝑐 	are	 constants	Þ	 that	 the	 amount	 of	 free	 volume	

scales	 rapidly	 with	 𝑟 	beyond	 the	 water-lipid	 (phosphate	 group	 domain)	

interface	for	an	OMV	of	radius	𝑟;.	The	equations	explain	the	disparities	in	the	

smooth	and	rough	OMV	simulation	systems	surface	topologies:	void	area	and	

free	volume	scale	rapidly	as	a	function	of	LPS	headgroup	length	beyond	the	

water-lipid	(phosphate	group)	interface	for	OMVs	of	a	given	(2𝑟;)	diameter.	

There	 should	 be	 stark	 differences	 in	 the	 surface	 topology	 of	 smooth	 and	

rough	 OMVs	 that	 have	 comparable	 hydrophobic	 core	 midplane	 diameters	

regardless	of	the	parent	bacteria	genera.	In	other	words,	smooth	OMVs	will	

have	rugged	surfaces	that	have	contrasting	areas	of	relatively	high	and	low	O-

antigen	chain	cluster	density	in	vivo,	whereas	rough	OMVs	will	appear	to	have	

much	more	uniform	surfaces.		
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The	disparate	surface	topologies	suggest	that	rough	and	smooth	OMVs	will	

have	 different	 interactions	 with	 the	 headgroup	 moieties	 of	 host	 cell	

membrane	 lipids.	The	surfaces	of	smooth	and	rough	OMVs	differ	markedly	

and	this	will	affect	how	they	adhere	to	host	cell	membrane	surfaces.	We	must	

also	 make	 comparison	 with	 simulations	 from	 Chapter	 4,	 i.e.	

Lipopolysaccharide	O-antigen	 Chains	Modulate	 the	Mechanical	 Strength	of	

the	Gram-negative	Outer	Membrane,	since	it	was	shown	that	O-antigen	chain	

interactions	 increase	 the	 strength	 of	 (flat)	 Gram-negative	 membrane	

mimetics.	It	is	reasonable	to	extrapolate	from	the	simulation	data	that	was	

produced	 in	 chapter	 4	 and	 state	 that	 smooth	 OMVs	 must	 be	 more	

mechanically	 robust	 and	 by	 association	 stiffer	 than	 similarly	 sized	 rough	

OMVs.		

	

We	have	found	then	that	the	smooth	and	rough	OMV	surfaces	are	significantly	

different.	The	rough	OMV	surface	is	relatively	uniform,	whereas	the	smooth	

OMV	is	significantly	more	topologically	complex.	There	are	also	cohesive	O-

antigen	 chain	 interactions	 across	 the	 smooth	 OMV	 surface	 and	 these	

interactions	 have	 been	 shown	 to	 increase	membrane	mechanical	 strength	

and	make	 bacterial	membranes	 stiffer	 and	more	mechanically	 robust	 (see	

chapter	4).	Based	on	these	observations	we	should	expect	 that	 the	smooth	

and	 rough	 OMVs	 have	 significantly	 different	 interactions	 with	 host	 cell	

membranes.		

	

The	 inference	 that	 smooth	OMVs	should	 have	more	 topologically	 complex	

surfaces	than	rough	OMVs	is	interesting	not	only	because	it	has	consequences	

for	 interactions	 at	 the	wrapping	 interface	 here,	 but	 also	 because	 it	 can	 be	

tested	 experimentally.	 Most	 conventional	 experimental	 analysis	 methods	

lack	 the	 spatiotemporal	resolution	 that	would	be	necessary	 for	visualizing	

such	 small-scale	 OMV	 surface	 features	 [1035-1038].	 However,	 advanced	

imaging	techniques	are	increasingly	being	applied	to	overcome	some	of	the	

spatiotemporal	restrictions	of	ordinary	microscopy	methods	[1039-1043].	If	

sophisticated	 analytical	 microscopy	 methods	 were	 used	 to	 analyze	 the	

surfaces	 of	 smooth	 and	 rough	 OMVs	 they	 could	 potentially	 validate	 the	
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inference	 that	 smooth	OMV	 surfaces	 are	more	 topologically	 complex	 than	

comparative	rough	OMV	surfaces.	It	would	be	important	to	mimic	the	OMV	

compositions	accurately;	the	inner	leaflet	should	only	contain	phospholipid	

molecules	and	the	outer	OMV	leaflets	should	both	contain	phospholipids	and	

LPS	macromolecules	in	an	approximate	1:1	number	ratio.		

	

5.4.3	OMVs	Interacting	with	POPC	Bilayers	
	

The	 smooth	 and	 rough	 OMVs	 were	 simulated	 with	 a	 membrane	 that	

contained	POPC	lipids	alone	to	obtain	a	rudimentary	understanding	of	OMV	

interactions	at	host	plasma	membrane	surfaces	(Figure	48A-B).	For	clarity,	

the	 following	 simulation	 results	 are	 summarized	 in	 Table	 2:	 the	 axis	

components	 of	 the	 radius	 of	 gyration,	 the	 radial	 extension	 of	 the	 Lipid	 A	

phosphate	 groups,	 the	 radial	 extension	 of	 the	 peripheral	 O-antigen	 chain	

saccharides,	 the	number	of	POPC	 lipids	 in	 contact	with	LPS	 lipids,	 and	 the	

percentage	of	LPS	lipids	that	were	in	contact	with	the	host	membrane	POPC	

lipids	(based	on	a	0.6	nm	cutoff).	The	rough	OMV	behaved	quite	similarly	to	

elastic	lipid-covered	nanoparticles	at	the	host	POPC	lipid	bilayer:	the	vesicle	

distorted	and	spread	over	the	membrane	surface	(Figure	48C)	[1010-1012].	

There	was	approximate	axisymmetric	compression	of	the	OMV	at	the	bilayer	

surface	and	there	was	also	compression	of	the	individual	LPS	lipids	along	the	

membrane	normal	axes.	The	average	radial	extension	of	the	rough	LPS	lipids	

was	reduced	compared	with	the	simulation	in	water.		

	

	Table	 2:	 Summary	 of	 OMV	 properties	 at	 the	 POPC	 bilayer.	 Standard	
deviations	for	radius	of	gyration	values	are	less	than	0.07	and	for	heights	they	
are	less	than	1.74.	

	

	

OMV	
type	

Radius	of	gyration	
(nm)	

LPS	radial	height	(nm)	 POPC	
in	

contact	

%	LPS	
bound	

	 Rg(x)	 Rg(y)	 Rg(z)	 phosphates	 extension	
Rough	 9.20	 8.88	 10.07	 11.29	 12.02	 5627	 52	
Smooth	 9.99	 10.13	 10.13	 11.09	 16.32	 1580	 2	
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The	POPC	bilayer	deformed	and	partially	wrapped	around	the	rough	OMV	as	

it	distorted	at	the	wrapping	interface.	It	is	emphasized	here	that	the	degree	of	

host	membrane	wrapping	was	quantified	according	 to	 the	number	of	host	

membrane	lipids	that	were	in	contact	with	the	OMVs.	There	were	more	than	

5000	POPC	lipids	within	5	nm	of	the	rough	OMV	after	2	µs	and	more	than	50%	

of	 the	 OMV	 surface	 was	 in	 contact	 with	 host	 membrane	 POPC	molecules	

(Figure	48D-F).	The	correlation	coefficient	was	computed	for	host	membrane	

wrapping	with	respect	to	sampled	simulation	time	to	evaluate	the	likelihood	

of	 complete	 OMV	 encapsulation	 on	 long	 timescales.	 The	 correlation	

coefficient	had	a	magnitude	of	-0.55	during	the	last	250	ns	and	this	indicates	

that	host	membrane	wrapping	peaked	at	some	point	before	this.	Based	on	the	

loss	of	OMV	sphericity,	the	reduction	in	host	membrane	wrapping	during	the	

last	250	ns,	and	data	from	comparable	large-scale	simulations	[1009-1012]	it	

is	unlikely	that	the	OMV	will	be	completely	enveloped	on	long	timescales.			
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Figure	48.	(A-B)	Smooth	and	rough	OMVs	at	the	POPC	bilayer.	(C)	The	axis	
components	of	the	radius	of	gyration	for	the	rough	OMV	(bottom);	the	
phosphate	group	(BGR)	height	map	after	2	µs	(top).	(D)	The	POPC	lipid	shell	
population	for	the	rough	OMV	(5	nm	cutoff).	(E)	The	LPS-POPC	contact	
number	(0.6	nm	cutoff).	(F)	The	fraction	of	simulation	frames—during	the	
last	0.25	µs—with	registered	LPS-POPC	contacts	(per	rough	LPS	molecule).	
(G)	The	axis	components	of	the	radius	of	gyration	for	the	smooth	OMV	(top);	
the	phosphate	group	(BGR)	height	map	after	2	µs	(bottom).	(H)	The	fraction	
of	simulation	frames—during	the	last	0.25	µs—with	registered	LPS-POPC	
contacts	(per	smooth	LPS	molecule).	(I)	The	POPC	lipid	shell	population	for	
the	smooth	OMV;	(J)	the	LPS-POPC	contact	number.	Figures	I-J	and	Figures	
D-E	are	measured	from	the	point	of	OMV-host	membrane	first	contact	and	
thus,	are	non-zero	from	the	start.			
	

In	contrast,	the	smooth	OMV	was	found	to	maintain	high	sphericity	when	it	

was	 interacting	 with	 the	 POPC	 bilayer	 and	 did	 not	 induce	 appreciable	

wrapping	upon	interaction	(Figure	48G).	Through	theoretical	analyses	it	was	
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shown	 that	 stiff	 nanospheres	 gradually	 promote	 endocytosis	 via	 areal	

deformation	processes	[1010-1012].	Voronoi	tessellation	analyses	revealed	

that	the	average	areas	per	lipid	were	different	in	the	upper	and	lower	leaflets	

of	 the	 POPC	 bilayer	 after	 2	 µs.	 The	 mean	 area	 per	 lipid	 in	 the	 upper	

(extracellular)	leaflet	was	0.54	nm2—ordinarily	0.68	nm2	[343-344,1044]—

and	 0.81	 nm2	 in	 the	 lower	 (intracellular)	 leaflet.	 The	 area	 per	 lipid	 was	

relatively	uniform	across	the	length	of	each	lipid	monolayer	(Figure	49)	and	

this	 suggests	 that	 the	 entire	 bilayer	was	 strained	 rather	 than	 there	 being	

areas	of	high	strain	close	to	the	attached	OMV.	The	data	collectively	indicate	

that	 there	 were	 forces	 promoting	 areal	 deformation	 processes	 and	 host	

membrane	 wrapping	 around	 the	 smooth	 OMV.	 But	 there	 was	 minimal	

membrane	 wrapping	 despite	 this	 disparity	 in	 lipid	 packing	 about	 the	

membrane	midplane:	 there	were	1580	POPC	molecules	within	5	nm	of	the	

rough	OMV	and	only	2%	of	 the	rough	LPS	 lipids	were	bonded	to	the	POPC	

lipid	headgroups	during	 the	 last	250	ns	of	 simulation	 time	 (Figure	48I-H).	

Mean	 squared	 displacement	 calculations	 revealed	 that	 the	 interactions	

between	 the	 rough	 LPS	 lipids	 and	 the	 POPC	 molecules	 were	 weak	 and	

relatively	 short-lived.	 The	 lateral	 diffusion	 constants	were	 0.063	 ±	 0.0003	

1x10-5	 cm2/s	 for	 POPC	 lipids	 in	 the	 intracellular	 and	 extracellular	 leaflets.	

Collectively,	the	data	indicate	that	there	were	forces	favoring	host	membrane	

wrapping	but	also	that	the	LPS-POPC	bonds	were	weak	and	it	was	difficult	for	

the	 POPC	 bilayer	 to	 adhere	 to	 the	 arched	 edge	 of	 the	 smooth	 OMV	 and	

promote	gradual	endocytosis	interactions.	The	simulations	do	not	preclude	

the	possibility	of	host	membrane	wrapping	on	longer	timescales,	and	as	such,	

an	effort	has	been	to	explore	this	possibility.		
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Figure	49.	The	area	per	lipid	(BPR)	color-height	map	for	the	upper	
(extracellular)	leaflet	of	the	POPC	bilayer	after	it	was	simulated	with	the	
smooth	OMV	for	2	µs.	The	mean	area	per	lipid	for	this	color-height	map	is	
0.54	nm2;	for	comparison,	the	area	per	lipid	is	0.68	nm2	for	POPC	
membranes	that	are	not	strained.	
	
The	simulation	temperature	was	increased	from	303	K	to	330	K	in	an	attempt	

to	 address	 the	 temporal	 limitations	 of	 conventional	 molecular	 dynamics	

simulations.	 The	 process	 introduced	 greater	 kinetic	 energies	 into	 the	

simulation	 cell,	 making	 it	 easier	 for	 molecules	 to	 surmount	 rate-limiting	

energy	barriers.	The	simulation	was	performed	for	250	ns	and	the	last	50	ns	

were	used	to	compute	the	magnitudes	of	different	simulations	parameters.	

The	 change	 did	 not	 increase	 the	 distortion	 of	 the	 smooth	 OMV	 but	 it	 did	

suppress	OMV	interactions	with	POPC	lipids	and	the	degree	to	which	the	host	

membrane	was	 perturbed.	 The	 axis	 components	 of	 the	 radius	 of	 gyration	

were:	10.03	±	0.01	(Rg(x)),	10.15	±	0.01	(Rg(y)),	10.19	±	0.01	nm	(Rg(z))	and	

the	average	radial	length	of	the	Lipid	A	phosphate	groups	was	11.18	±	0.63	

nm.	There	were	fewer	interactions	between	the	LPS	macromolecules	and	the	

POPC	lipid	headgroup	moieties:	there	were	approximately	1500	POPC	lipid	

headgroups	within	5	nm	of	the	smooth	OMV	and	only	1%	of	the	LPS	lipids	
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were	 bound	 to	 POPC	 lipids	 (based	 on	 a	 0.6	 nm	 cutoff	 distance).	 The	 host	

membrane	was	much	less	perturbed:	the	mean	area	per	lipid	was	0.65	nm2	in	

the	 upper	 (extracellular)	 leaflet	 and	 0.70	 nm2	 in	 the	 lower	 (intracellular)	

leaflet.	 The	 analyses	 suggest	 that	wrapping	 interactions	 are	 not	 stepwise,	

they	are	not	controlled	by	a	series	of	successive	energy	barriers	that	are	more	

easily	 surmounted	 as	 greater	 kinetic	 energies	 are	 introduced	 into	 the	

simulation	cell.	When	particle	velocities	are	increased	there	are	in	fact,	fewer	

interactions	at	the	wrapping	interface	and	this	loosens	the	OMV	from	the	host	

membrane	surface	and	by	association,	reduces	its	areal	deformation	effects.	

It	 seems	sensible	at	 this	point	 to	 conduct	molecular	dynamics	 simulations	

with	host	membranes	 that	 contain	embedded	ganglioside	 lipids	because	 it	

was	 demonstrated	 in	 previous	 publications	 that	 adhesion	 energies	 affect	

nanoparticle	wrapping	interactions	[1010-1012].	

	

5.4.4	OMVs	Interacting	with	Realistic	Plasma	Membranes	
	

The	OMVs	were	simulated	with	plasma	membrane	models	that	incorporate	

(GM3)	 ganglioside	 molecules;	 this	 is	 noteworthy	 because	 ganglioside	

molecules	are	known	to	promote	strong	adhesion	energies	and	at	the	same	

time,	promote	bilayer	reshaping	processes	because	the	molecules	have	high	

intrinsic	 positive	 curvature	 [362-363,	 428,1045,536-537].	 The	 plasma	

membrane	 contained	 seven	 lipid	 types	 in	 total:	 cholesterol,	 POPE,	 POPC,	

POPS,	 GM3	 lipid,	 (palmitoyl)	 sphingomyelin,	 and	 PIP2.	 The	 lipids	 were	

distributed	asymmetrically	about	 the	membrane	midplane	 to	mimic	 the	 in	

vivo	 scenario,	 i.e.	 a	 realistic	 asymmetric	 mammalian	 plasma	 membrane	

composition.	 The	 following	 lipids	 were	 set	 into	 the	 upper	 (extracellular)	

leaflet:	 POPE,	 POPC,	 sphingomyelin,	 GM3	 lipid,	 and	 cholesterol	 in	 a	 10:40	

15:10:25	 ratio.	 The	 following	 lipids	were	 set	 into	 the	 inner	 (intracellular)	

leaflet:	 POPE,	 POPC,	 POPS,	 PIP2,	 and	 cholesterol	 in	 a	 40:10:15:10:25	 ratio	

[76].	The	results	of	these	molecular	dynamics	simulations	are	presented	in	

Table	3	and	Table	4,	but	the	results	are	also	discussed	in	detail	below.		
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Table	3:	Summary	of	OMV	properties	at	the	host	plasma	membrane.	Standard	
deviations	for	radius	of	gyration	values	are	less	than	0.01	and	for	heights	they	
are	less	than	1.7.	

	
Table	4:	Changes	in	local	lipid	composition	within	5	nm	of	the	OMVs.	Data	are	
shown	for	each	lipid	type	(per	bilayer	leaflet).			

OMV		 Enrichment/depletion	within	5	nm	of	the	OMV	(%)	
		 GM3		 PIP2		 Cholesterol		 Sphingolipid	 POPE		 POPC	 POPS	
		 IL		 OL		 IL		 OL		 IL		 OL		 IL		 OL		 IL		 OL		 IL	 OL		 IL		 OL		

Rough		 —	 2	 2	 —	 13	 2	 —	 7	 2	 -11	 -12	 -1	 6	 —	
Smooth	 —	 -2†	 18	 —	 19	 8	 —	 5	 -15	 -10	 -12	 -4	 4	 —	

†	There	was	an	absolute	increase	in	the	number	of	GM3	lipids	(within	5	nm),	
but	a	relative	reduction	in	GM3	concentration,	given	the	non-negligible	influx	
of	sphingomyelin	and	cholesterol	molecules	into	the	local	OMV	‘shell’.		
	

The	rough	OMV	lost	its	spherical	shape	when	it	interacted	with	the	plasma	

membrane:	 the	axis	 components	of	 the	 radius	of	 gyration	were	more	 than	

10%	different	after	2	µs.	Other	than	this	loss	of	OMV	sphericity,	there	was	also	

compression	of	the	constituent	LPS	lipids	along	the	membrane	normal	axes	

and	this	 indicates	 that	 the	shapes	of	both	the	OMV	and	 its	constituent	LPS	

lipids,	were	perturbed	upon	 interaction.	The	host	membrane	had	distorted	

and	partially	wrapped	around	the	rough	OMV	to	form	a	concave	“pit”,	or	an	

invagination	whose	size	was	computed	from	the	z-axis	coordinates	of	lipids	

within	5	nm	of	the	LPS	macromolecules.	The	concave	pit	had	a	depth	of	19.1	

nm	in	this	simulation	and	for	comparison,	the	POPC	bilayer	formed	a	pit	that	

was	21.0	nm	deep	when	it	wrapped	around	this	same	rough	OMV.	The	extent	

to	which	the	rough	OMVs	and	host	membranes	were	deformed	seems	to	be	

mostly	 invariant	 of	 the	 specific	 host	 membrane	 composition.	 In	 either	

instance,	the	rough	OMVs	spread	out	over	the	membrane	surface	and	the	host	

membrane	 formed	 a	 concave	 pit	 that	was	 highly	 curved	 at	 the	 spreading	

front.	 Comparable	 results	 were	 obtained	 from	 simulations	 of	 soft	 lipid-

covered	nanoparticles	that	were	interacting	with	host	membranes.	The	soft	

OMV	type	 Radius	of	gyration	(nm)	 LPS	radial	height	(nm)	

	 Rg(x)	 Rg(y)	 Rg(z)	 phosphates	 extension	
Rough	 9.83	 8.76	 9.43	 11.22	 11.99	
Smooth	 10.35	 10.17	 10.12	 11.21	 14.18	
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nanospheres	rapidly	generated	large	curvatures	at	the	spreading	front	that	

suppressed	endocytosis	on	long	timescales	[1009].			
	
The	 smooth	OMV	retained	 higher	 sphericity	when	 it	was	 simulated	 at	 the	

surface	of	the	plasma	membrane	model	(Figure	50A).	The	axis	components	of	

the	 radius	of	 gyration	were	 less	 than	3%	different	and	 the	position	of	 the	

water-lipid	 interface	 had	 only	 changed	 by	 0.42	 nm	 compared	 with	 the	

reference	 simulation	 in	 water	 (Figure	 50B).	 However,	 there	 was	 some	

compression	 of	 the	 O-antigen	 chains	 when	 they	 interacted	 with	 the	 host	

plasma	membrane	model.	The	average	extension	of	the	LPS	lipids	was	14.18	

nm	in	this	simulation	(Figure	50C)	and	for	comparison,	the	extension	of	the	

smooth	LPS	lipids	was	15.38	nm	in	water	and	16.32	nm	at	the	surface	of	the	

POPC	 bilayer.	 The	 differences	 in	 the	 radial	 extension	 of	 the	 LPS	 lipid	

headgroups	 is	 indicative	 of	 rather	 different	 interactions	 at	 the	 wrapping	

interface	 and	 hence,	 it	 is	 instructive	 to	 assess	 host	membrane	 properties	

more	thoroughly.			
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Figure	50.	(A)	Smooth	OMV	and	the	host	plasma	membrane	(5	nm	shell).	
The	phosphate	groups	are	assigned	a	(BSR)	color	based	on	their	height	(z-
axis	coordinate);	the	ganglioside	molecules	are	magenta.	In	the	inset,	the	
ganglioside	head	groups	are	magenta	and	the	lipid	tails	are	white.	(B)	The	
phosphate	group	(BGR)	height	map	after	2	µs.	(C)	The	terminal	sugar	
particles	are	assigned	are	a	(BGR)	color	based	on	their	endpoint	radial	
height.	(D)	The	LPS-GM3	contact	duration	projected	onto	the	phosphate	
group	density	map;	the	data	are	shown	for	the	last	0.25	µs	of	simulation	
time.	(E)	The	fraction	of	simulation	frames—during	the	last	0.25	µs—that	
LPS-GM3	contacts	were	registered	for	each	one	of	the	615	smooth	LPS	
molecules	in	the	OMV	outer	leaflet.	Put	simply,	the	graph	shows	the	fraction	
of	sampled	simulation	time	that	each	smooth	LPS	lipid	was	bonded	to	GM3	
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lipids	(based	on	a	0.6	cutoff).	Once	the	LPS-GM3	interactions	were	formed	
they	were	almost	always	maintained	thereafter.		
	

Up	to	15.6%	of	 the	LPS	 lipids	were	 in	contact	with	the	GM3	lipids	and	the	

bonds	between	 the	GM3	 lipids	and	LPS	headgroups	were	 strong	and	 long-

lived.	The	GM3	lipid	headgroups	acted	as	a	zipper	and	 interlinked	the	LPS	

lipids	 to	 form	 bonds	 (based	 on	 a	 0.6	 nm	 cutoff	 distanced)	 that	 generally	

remained	 unbroken	 thereafter	 (Figure	 50D-E).	 The	 process	 produced	 a	

natural	ratchet	mechanism	where	the	host	membrane	progressively	engulfed	

the	 OMV	 as	 carbohydrate	 headgroup	 moieties	 were	 intertwined	 at	 the	

wrapping	 interface.	 The	 ratchet	 mechanism	 has	 membrane-modulating	

effects:	first,	there	was	immobilization	of	the	intertwined	GM3	lipids,	second,	

there	was	 local	 curvature	generation,	 and	 third,	 there	was	a	 change	 in	 the	

local	 lipid	 composition.	 The	 ganglioside	 molecules	 were	 progressively	

sequestered	at	the	OMV	contact	edge	where	they	formed	relatively	immobile	

aggregates	(Figure	51)	that	had	high	intrinsic	positive	curvature.	The	clusters	

promoted	bilayer	reshaping	processes	and	facilitated	the	formation	of	a	small	

depression	 in	 the	 surface	 of	 the	 plasma	 membrane.	 Glycosphingolipid	

molecule	clusters	have	been	noted	to	promote	comparable	bilayer	reshaping	

processes	in	previous	computational	and	experimental	publications.					

	

Ganglioside	lipids	(e.g.	GM3)	are	known	to	be	domain-favoring	[362,368,434]	

molecules	and	within	these	molecular	dynamics	simulations	there	were	non-

negligible	changes	in	the	composition	of	the	membrane	that	surrounded	the	

attached	OMVs.	As	 the	OMV	 induced	ganglioside	aggregation	 there	was	an	

associated	increase	in	the	concentrations	of	PIP2	and	cholesterol	molecules	in	

the	intracellular	leaflet	and	an	increase	in	the	concentration	of	sphingomyelin	

and	cholesterol	molecules	in	the	extracellular	leaflet.	Some	of	the	changes	in	

the	 local	 lipid	 composition	 can	 be	 rationalized	 by	 considering	 lipid	 shape	

alone:	for	example,	PIP2	has	an	inverted	conical	structure	and	it	preferentially	

moved		into	the	expanding	intracellular	leaflet	that	is	positively	curved,	while	

cholesterol	lipids	are	small	and	have	a	space-filling	role.		
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Figure	51.	(A)	Top	view	snapshot	of	the	smooth	OMV	after	it	was	simulated	
for	2	µs	with	the	multicomponent	plasma	membrane	model.	(B)	The	same	
top	view	snapshot	with	the	smooth	OMV	removed	for	clarity.	The	
ganglioside	lipids	within	5	nm	of	the	smooth	OMV	are	magenta	and	the	
ganglioside	lipids	beyond	this	5	nm	cutoff	are	white.	The	POPE,	POPC,	POPS,	
PIP2,	cholesterol,	and	sphingomyelin	molecules	are	omitted	throughout.	The	
trajectories	are	shown	for	the	magenta	ganglioside	lipids	during	the	last	
0.25	µs.	The	trajectory	paths	were	assigned	colors	to	link	the	sampled	
simulation	time	with	lipid	diffusion.	The	early	frame	positions	are	red,	the	
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late	frame	positions	are	blue	and	the	intermediary	frame	positions	are	
white.	(C)	Snapshot	of	the	multicomponent	plasma	membrane	when	it	was	
simulated	without	any	OMVs.	The	trajectories	are	shown	for	randomly	
selected	ganglioside	lipids	during	the	last	0.25	µs.	When	Figures	A-B	are	
compared	with	Figure	C	it	becomes	apparent	that	OMVs	have	the	capacity	to	
immobilize	ganglioside	lipids	through	zipper-like	interlinking	at	the	
wrapping	interface.				
	
The	ratchet	mechanism	is	comparable	to	the	lectin-induced	glycosphingolipid	

clustering	processes	that	can	reorganize	host	plasma	membrane	 lipids	and	

mediate	 the	 growth	 of	 tubular	 membrane	 invaginations	 [368].	 Pathogens	

(e.g.	norovirus	and	SV40)	and	pathogenic	products	(e.g.	Shiga	toxin)	interact	

with	 glycosphingolipid	 headgroups	 and	 as	 they	 reorganize	 the	 host	 cell	

membrane	 lipids	 they	 create	 an	 asymmetric	 stress	 about	 the	 membrane	

midplane	 [537,542,1015-1018].	 The	 process	 lowers	 local	 bilayer	 bending	

moduli	and	promotes	the	inward	bending	of	the	plasma	membrane	and	by	

association,	 the	 endocytosis	 of	 the	 attached	 pathogens	 or	 pathogenic	

products.	Based	on	 the	 striking	 similarities	 that	 can	be	 identified	between	

these	 coarse-grained	 molecular	 dynamics	 simulations	 and	 previous	

endocytosis	uptake	data	it	is	reasonable	to	assume	that	OMVs	enter	cells	as	

they	interact	with	ganglioside	lipid	headgroups	and	progressively	sequester	

the	 ganglioside	 molecules	 into	 clusters	 that	 have	 high	 intrinsic	 positive	

curvature.	The	smooth	OMVs	are	spherical	and	they	would	generate	minimal	

curvature	as	 they	wrapped	host	plasma	membranes,	whereas	rough	OMVs	

would	 rapidly	 generate	 larger	 curvatures	 that	 are	 less	 conducive	 for	

endocytosis.	 It	 should	 be	 stressed	 here	 that	 endocytosis	 processes	 have	

smaller	energy	barriers	when	ganglioside	molecules	have	saturated,	rather	

than	unsaturated,	lipid	tails	[1015]	and	theoretically,	when	ganglioside	lipids	

have	more	highly	branched	saccharide	headgroup	domains.	Highly	branched	

ganglioside	headgroup	domains	would	support	more	cohesive	carbohydrate-

carbohydrate	intermolecular	interactions	at	the	wrapping	interface.	Ratchet-

like	interlinking	should	occur	more	readily	when	plasma	membrane	mimetics	

contain	 larger	 ganglioside	 lipids	 (e.g.	 GM1)	 compared	 with	 membrane	

systems	 that	 contain	smaller	ganglioside	molecules	such	as	 the	GM3	 lipids	

that	were	used	here	in	this	simulation	study.		
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5.4.5	Phospholipid	Vesicles	Interacting	with	Host	Membranes	
	

Control	 simulations	 with	 a	 glycerophospholipid	 vesicle	 were	 used	 to	

understand	how	the	LPS	lipid	leaflet	affects	the	OMV	uptake	interactions.	The	

glycerophospholipid	 vesicle	 contained	 POPE	 and	 POPG	 lipids	 alone.	 The	

vesicle	was	made	with	POPE	and	POPG	lipids	in	a	9:1	number	ratio	per	bilayer	

leaflet.	 The	 inner	 and	 outer	 glycerophospholipid	 vesicle	 leaflets	 were	

comparable	 to	 the	 inner	 leaflet	 of	 the	 smooth	 and	 rough	 OMV	 simulation	

systems.	The	POPE-POPG	vesicle	was	made	a	diameter	of	20	nm	(2𝑟;)	in	an	

attempt	 to	make	 it	 more	 similar	 to	 the	 OMVs	 that	 were	 simulated	 in	 the	

previous	sections.	The	results	of	these	simulations	are	presented	as	follows:	

(i)	 data	 from	 the	 simulations	 in	 water;	 (ii)	 simulations	 at	 the	 POPC	 lipid	

bilayer;	 and	 (iii)	 simulations	 at	 the	 extracellular	 surface	 of	 the	 plasma	

membrane	model.	 It	must	be	emphasized	here	 that	 these	data	are	used	 to	

understand	 how	 the	 LPS	 lipid	 leaflet	 affects	 OMV	 interactions	 through	

comparative	analysis.	The	simulations	were	not	performed	to	mimic	realistic	

in	vivo	interactions	and	the	simulations	should	not	be	considered	as	realistic	

representations	of	OMV	uptake	processes.		

	

The	POPE-POPG	vesicle	was	initially	simulated	in	water	(Figure	52A)	so	that	

I	could	determine	how	the	phospholipids	were	arranged	and	so	that	I	could	

compare	these	data	with	the	lipid	packing	parameters	that	were	ascertained	

for	 the	 simulations	 of	 the	 rough	 and	 smooth	 OMV	 simulation	 systems	 in	

water.	The	squared	relation	between	radial	length	and	spherical	surface	area	

(i.e.	𝐴 = 4𝜋𝑟1 )	 states	 that	 the	 spherical	 surface	 area	 scales	 rapidly	 with	

increasing	radii	and	consequently	there	was	an	appreciable	disparity	in	the	

magnitude	of	 the	 lipid	packing	parameters	about	 the	membrane	midplane	

(Table	5).	The	mean	areas	per	 lipid	were	 larger	 in	 the	extracellular	 leaflet	

than	in	the	intracellular	leaflet.	The	mean	areas	per	lipid	in	the	inner	leaflet	

were	as	follows:	0.	51	±	0.01	nm2	(POPE)	and	0.53	±	0.01	nm2	(POPG).	The	

mean	areas	per	 lipid	 in	 the	outer	 leaflet	were	as	 follows:	0.78	±	0.01	nm2	

(POPE)	 and	 0.82	 ±	 0.01	 nm2	 (POPG).	 The	 differences	 in	 lateral	 packing	

parameters	was	due	to	the	non-uniform	projected	surface	area	magnitudes	
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along	the	bilayer	normal	axes.	There	was	less	lateral	surface	area	per	lipid	in	

the	inner	leaflet	than	there	was	in	the	outer	leaflet.	The	disparity	in	area	per	

lipid	 values	 was	 comparable	 to	 the	 disparities	 that	 were	 determined	 in	

previous	 coarse-grained	 molecular	 dynamics	 simulations	 of	

glycerophospholipid	vesicles	by	Marrink	et	al.	[1047].	

	

Table	5:	Areas	per	lipid	for	the	POPE-POPG	vesicle	in	water.	Standard	
deviations	are	less	than	0.01	throughout.	
Membrane	type	 Mean	area	per	lipid	(nm2)	

POPE	(IL)	 POPG	(IL)	 POPE	(OL)	 POPG	(OL)	
Vesicle	 0.51	 0.53	 0.78	 0.82	

Flat	membrane	 0.62	 0.61	 0.62	 0.61	
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Figure	52.	(A)	The	POPE-POPG	vesicle	that	was	used	in	the	control	
experiments—the	atoms	are	represented	using	a	volumetric	density	map.	
The	POPE	lipids	are	orange	and	the	POPG	lipids	are	green.	(B)	The	
phosphate	group	(BGR)	height	map	for	the	POPE-POPG	vesicle	after	it	
bounced	off	the	host	POPC	membrane.	(C)	The	endpoint	conformation	for	
the	simulation	of	the	POPE-POPG	vesicle	and	the	multicomponent	plasma	
membrane	model.	The	POPE	molecules	are	orange,	the	POPG	molecules	are	
green,	and	the	host	plasma	membrane	lipids	that	are	within	0.5	nm	of	these	
lipids	are	purple.	The	vesicle	fused	with	the	host	plasma	membrane	to	form	
a	lipid-lined	pore	that	promoted	lipid	exchange	between	the	plasma	
membrane	and	the	POPE-POPG	vesicle.		
	
The	vesicles	were	then	simulated	with	the	POPC	lipid	membrane	to	provide	

more	data	for	comparative	analysis.	The	POPE-POPG	vesicle	moved	toward	

the	 surface	of	 the	POPC	membrane	at	 the	 start	of	 the	molecular	dynamics	

simulation	but	then	only	made	transient	contact	(approximately	1	ns)	with	

the	 POPC	 headgroup	moieties	 before	 it	 was	 pushed	 backwards.	 The	 brief	

contact	was	enough	to	significantly	affect	the	shape	of	the	POPE-POPG	vesicle.	

The	axis	 components	of	 the	 radius	of	gyration	were	up	 to	13.5%	different	

after	2	µs	and	the	radial	heights	of	the	outer	leaflet	phosphate	groups	were	

up	 to	 73%	 different	 (Figure	 52B).	 The	 axisymmetric	 deformation	
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demonstrates	that	even	transient	contacts	with	host	membranes	are	enough	

to	warp	the	shape	of	vesicles.		

	

There	was	 fusion	of	 the	 vesicle	 and	 plasma	membrane	model	 headgroups	

when	 the	 POPE-POPG	 vesicle	 was	 simulated	 with	 the	 multicomponent	

plasma	membrane	mimetic.	The	fusion	event	was	in	line	with	the	stalk-pore	

intermediate	model	[1048],	which	describes	membrane	fusion	as	a	stepwise	

process	 that	 involves	 hemifusion	 stalk	 intermediates.	 There	 was	 initial	

aggregation	of	the	lipid	membranes,	association	of	the	apposed	bilayers,	lipid	

rearrangement,	and	subsequent	lipid	content	mixing	[670,1049-1051].	There	

was	a	lipid-lined	pore	between	the	apposed	bilayers	that	facilitated	content	

exchange	 from	 the	 vesicle	 to	 the	 host	 membrane	 and	 also	 from	 the	 host	

membrane	to	the	vesicle	(Figure	52C).		

	

The	widths	of	the	hydrophilic	headgroups	were	computed	for	the	POPE-POPG	

vesicle	 and	 the	 smooth	 and	 rough	 OMVs	 to	 understand	 why	 fusion	 was	

suppressed	in	certain	simulations	and	facilitated	in	others.	The	widths	of	the	

hydrophilic	headgroup	domains	were	determined	by	computing	RDFs	for	the	

hydrophilic	headgroup	beads	with	respect	to	the	vesicle	centers.	The	width	

of	 the	 POPE-POPG	 vesicle	headgroup	domain	was	 0.50	 ±	 0.25	 nm	 and	 the	

widths	of	the	hydrophilic	headgroup	domains	were	1.78	±	0.24	nm	and	5.01	

±	0.21	nm	for	the	rough	and	smooth	OMVs,	respectively.	The	data	suggests	

that	 OMVs	 will	 be	 less	 likely	 to	 achieve	 direct	 membrane	 fusion	 than	

comparative	phospholipid	vesicles	because	membrane	fusion	reactions	are	

mediated	by	pre-stalk	transition	states.	Lipid	tails	must	circumvent	a	thicker	

hydrophilic	 headgroup	 domain	 in	 OMVs	 to	 fuse	 with	 host	 membranes	

compared	with	phospholipid	vesicles.	Put	simply,	OMVs	have	a	thick	wall	of	

hydrophilic	 sugars	 that	 obstruct	 lipid	 tails	 and	 suppress	 membrane	 core	

content	mixing,	whereas	glycerophospholipid	vesicles	are	less	encumbered	

by	their	hydrophilic	headgroup	moieties.		

	

It	must	be	stressed	here	that	membrane	fusion	reactions	are	multifaceted	and	

that	they	depend	on	almost	all	membrane	properties	e.g.	bilayer	curvature,	
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lipid	 heterogeneity,	 and	 the	 abundance	 of	 POPE	 molecules,	 which	 have	

intrinsic	 negative	 curvature	 and	 as	 such,	 the	 capacity	 to	 stabilize	 the	

negatively	 curved	 necks	 of	 hemifusion	 intermediate	 states	 [1052-1053].	

Indeed,	 this	 complexity	 is	 evident	 in	 these	 coarse-grained	 molecular	

dynamics	simulations,	the	POPE-POPG	vesicle	fused	with	one	host	membrane	

(plasma	membrane)	and	not	the	other	(POPC	bilayer).		It	is	not	being	stated	

here	 that	 direct	 membrane	 fusion	 reactions	 are	 governed	 by	 headgroup	

width	 alone	 but	 rather	 that	 OMVs	 have	 unusually	 thick	 hydrophilic	 head	

groups;	so	much	so,	that	OMVs	do	not	fuse	with	host	membranes	regardless	

of	the	simulation	setup.	The	data	collectively	demonstrates	that	OMVs	must	

enter	cells	via	host	cell	membrane	wrapping	processes	and	because	we	know	

that	 host	 membrane	 wrapping	 processes	 are	 more	 efficient	 when	

nanospheres	 are	 stiff	 and	 cohesion	 forces	 are	 strong,	we	 can	 explain	why	

smooth	OMVs	can	more	effectively	enter	into	cells	via	lipid-mediated	uptake	

processes	 and	 also	 state	 that	 ganglioside	 molecules	 should	 enhance	 this	

endocytosis	process.		

	

5.5	Conclusion	
	

It	 has	 been	 demonstrated	 here	 that	 the	 length	 of	 LPS	 lipids	 affects	 OMV	

properties	 at	 the	 host-pathogen	 interface.	 When	 the	 simulated	 OMVs	

contained	 terminal	 O-antigen	 chain	 polymers	 (smooth	 OMVs)	 they	

maintained	high	sphericity	when	they	interacted	with	host	the	membranes.	

When	the	simulated	OMVs	contained	shorter	LPS	lipid	variants	that	lacked	

terminal	O-antigen	chain	polymers	(rough	OMVs)	they	spread	out	over	the	

host	membrane	 surfaces—an	 event	 that	 tends	 to	precede	 incomplete	 host	

membrane	wrapping	 or	 incomplete	 encapsulation	 [1009-1012].	Wrapping	

interactions	were	 also	 affected	 by	 the	 composition	of	 the	 host	membrane:	

ganglioside	headgroups	acted	as	a	zipper	to	mediate	strong	cohesion	forces	

and	 help	 force	 the	 host	membranes	 around	 the	 round	 OMV	 surfaces.	 The	

process	 occurred	 via	 a	 natural	 ratchet	 mechanism	 as	 the	 carbohydrate	

headgroup	 moieties	 were	 progressively	 intertwined	 at	 the	 wrapping	

interface.	The	sequestered	ganglioside	molecules	tended	to	increase	the	local	
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bilayer	 curvature	 and	 also	 increase	 the	 concentration	 of	 lipids	 that	 are	

associated	with	raft	formation	(e.g.	sphingomyelin	and	cholesterol)	[79,88]	

and	 endocytosis	 (e.g.	 PIP2)	 [1054-1056].	 Importantly,	 it	 was	 observed	

throughout	 these	 molecular	 dynamics	 simulations	 that	 rough	 OMVs	 can	

deform	 host	 membranes	 more	 rapidly	 than	 comparable	 smooth	 OMVs.	

Smooth	 OMVs	 were	 associated	 with	 slow	 increases	 in	 elastic	 energy	 that	

would	 promote	 endocytosis	 processes	 on	 long	 timescales	 [1010-1013],	

whereas	rough	OMVs	were	associated	with	faster	curvature	generation.		

	

The	 simulations	 can	 be	 used	 to	 understand	 the	 differences	 in	 the	 uptake	

efficiency	of	smooth	and	rough	OMVs	at	 the	host-pathogen	 interface	[664].	

Interactions	between	terminal	O-antigen	chains	confer	mechanical	strength	

to	smooth	OMVs	[579]	and	the	smooth	OMVs	are	consequently	stiff	and	prone	

to	retain	high	sphericity	at	host	cell	surfaces.	When	OMVs	 lack	terminal	O-

antigen	chains	(rough	OMVs)	they	are	 less	stiff	and	they	tend	to	 lose	their	

spherical	shape	as	they	spread	out	over	host	cell	membranes	(Figure	53).	The	

differences	 in	 sphericity	will	 affect	 the	magnitude	 of	 the	 late	 stage	 energy	

barriers	that	are	associated	with	OMV	endocytosis.	Rigid	nanospheres	induce	

minimal	curvature	generation	at	the	spreading	front	as	they	slowly	wrap	the	

host	 membranes.	 Softer	 nanospheres	 tend	 to	 be	 associated	 with	 faster	

increases	 in	 elastic	 energy	 and	 the	 production	 of	 larger	 curvatures	 at	 the	

spreading	front	and	this	faster	increase	in	elastic	energy	makes	nanosphere	

encapsulation	much	less	likely	on	long	timescales	[1009-1012].	Put	simply,	

smooth	OMVs	 are	 stiffer	 than	 comparable	 rough	 OMVs	 and	 consequently,	

they	 should	 be	 more	 adept	 at	 forcing	 host	 membranes	 around	 their	

comparatively	highly	spheric	surface.		

	

It	is	imperative	to	appreciate	that	inferences	have	been	made	here	through	

comparisons	 with	 previous	 simulation	 studies.	 The	 simulation	 data	

demonstrates	that	LPS	lipid	length	affects	the	rigidity	and	shape	of	OMVs	at	

host	cell	surfaces	and	indeed,	the	shape	of	the	host	cell	surfaces	themselves.	

This	 insight	alone	appears	 to	explain	 the	differences	 in	 the	 lipid-mediated	

uptake	 of	 smooth	 and	 rough	 OMVs	 at	 host	 cell	 surfaces	 [664].	 Previous	
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calculations	 have	 demonstrated	 that	 endocytosis	processes	depend	 on	 the	

shape	 and	 stiffness	 of	 nanoparticles	 at	 the	 wrapping	 interface.	 The	

endocytosis	 energy	 barriers	 are	 smaller	 when	 nanospheres	 are	 stiff	 and	

round	 and	 larger	 when	 the	 nanospheres	 are	 soft	 and	 non-spherical.	 The	

molecular	dynamics	simulation	data	is	enough	to	show	that	endocytosis	will	

be	different	for	rough	and	smooth	OMVs;	it	is	easier	for	smooth	OMVs	to	enter	

cells	 via	 host	membrane	wrapping	 processes	 because	 they	 are	 stiffer	 and	

rounder	at	host	cell	surfaces.		But	nonetheless,	the	stepwise	perturbation	of	

the	lipid	geometries	(both	spherical	and	flat)	has	been	extrapolated	here	to	

long	 timescales	 and	while	 this	 seems	 intuitively	 reasonable,	 the	 proposed	

uptake	models	have	not	been	validated	outright.	To	reiterate,	an	OMV	uptake	

model	was	proposed	here	based	on	the	extrapolation	of	molecular	dynamics	

simulation	data	rather	than	a	model	being	proved	to	be	irrefutably	accurate.		

	

	

	

	

	

	
	
	
	
	
Figure	53.	Comparison	of	the	smooth	and	rough	OMVs	at	the	plasma	
membrane	surface	at	2	µs	of	simulation	time.	The	smooth	OMV	retained	its	
spherical	shape	and	generated	moderate	curvature	and	the	rough	OMV	lost	
its	spherical	shape	and	generated	larger	curvatures	at	the	spreading	front.	
Sphericity	is	denoted	here	with	the	Ψ0	symbols.		
	

	

The	 molecular	 dynamics	 simulation	 study	 dispels	 the	 relatively	 common	

assumption	 that	 OMVs	 readily	 pass	 through	 host	 membrane	 surfaces	 via	

direct	membrane	fusion	processes	[52].	The	molecular	dynamics	simulation	

study	 demonstrated	 that	 hydrophilic	 headgroup	 width	 affects	 membrane	

fusion	 reactions.	 Phospholipid	 vesicles	 had	 a	 thin	 hydrophilic	 headgroup	

domain	and	they	achieved	direct	membrane	fusion	via	the	formation	of	stalk-
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intermediate	states.	The	OMVs	had	thicker	hydrophilic	headgroup	domains	

that	obstructed	the	lipid	acyl	chains	and	this	impeded	membrane	association	

and	aggregation.	The	distance	between	the	OMVs	and	the	host	membranes	

was	appreciable	throughout	the	simulations	and	this	made	it	difficult	for	the	

apposed	bilayers	to	fuse	at	the	wrapping	interface.	The	results	suggest	that	

OMVs	enter	cells	more	readily	through	host	membrane	wrapping	processes	

rather	 than	 through	 direct	membrane	 fusion	 processes.	 Direct	membrane	

fusion	pathways	should	not	be	entirely	discounted	but	it	is	evident	that	direct	

membrane	fusion	is	not	facile	for	OMVs.	Fusion	barriers	seem	to	scale	with	

headgroup	width	and	this	implies	that	direct	membrane	fusion	pathways	are	

hardly	accessible	 for	rough	OMVs	and	even	 less	accessible	 for	 comparable	

smooth	OMVs.		

	

It	 was	 additionally	 demonstrated	 that	 wrapping	 interactions	 depend	 on	

cohesion	 energies	 and	 the	 bending	moduli	 of	 the	 host	membranes.	 These	

inferences	are	not	only	interesting	because	they	provide	important	insights	

for	understanding	OMV	uptake,	but	also	because	 they	are	 corroborated	by	

predictions	from	previous	theoretical	publications	[1010-1012].	The	smooth	

OMVs	wrapped	 host	membranes	 that	 contained	 ganglioside	molecules	 but	

these	same	OMVs	were	unable	to	affect	the	shape	of	single-component	POPC	

plasma	membrane	mimetics.	POPC	lipids	do	not	have	high	intrinsic	positive	

curvature	 and	 the	molecules	 do	 not	 strongly	 interact	with	 pathogens	 and	

pathogenic	products.	Ganglioside	molecules	contain	different	carbohydrate	

headgroup	moieties	that	both	promote	strong	cohesion	with	pathogens	and	

at	 the	 same	 time,	 the	ganglioside	 lipids	have	 the	 capacity	 to	 lower	bilayer	

bending	moduli	(see	section	1.4.4).	Strong	cohesion	energies	were	generated	

when	 the	 LPS	 headgroup	 moieties	 were	 interlinked	 with	 the	 ganglioside	

molecule	 headgroups.	 The	 interlinking	 of	 the	 carbohydrate	 headgroup	

moieties	 created	 a	 natural	 ratchet	 mechanism	 that	 helped	 to	 force	 the	

membrane	 around	 the	 OMV	 surfaces.	 The	 sequestered	 ganglioside	 lipids	

formed	 clusters	 that	 have	 high	 intrinsic	 positive	 curvature	 and	 have	 been	

shown	 to	 promote	 bilayer	 reshaping	 processes	 [363,430,1046].	 Plasma	

membrane	heterogeneity	also	impacted	the	membrane	reshaping	processes;	
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the	plasma	membrane	contained	seven	different	lipids	types	and	these	lipids	

were	able	 to	 change	 their	positions	within	 the	plasma	membrane	mimetic	

when	 it	was	expanding	 into	the	 intracellular	domain	of	 the	simulation	cell.	

The	 constituent	 lipids	 changed	 their	 relative	 membrane	 position	 as	 the	

bilayer	 shape	 was	 changing	 and	 this	 reduced	 line	 tension	 energies	 and	

promoted	additional	membrane	reshaping	processes.	For	example,	more	PIP2	

lipids	moved	 into	 to	 the	 expanding	 inner	 leaflet	 of	 the	 plasma	membrane	

model	when	it	was	expanding	into	the	intracellular	side	of	the	simulation	cell.		

Lipid	 type	 heterogeneity	 has	 been	 established	 as	 a	 driving	 force	 for	

membrane	 reshaping	 processes	 in	 previous	 simulation	 studies	 [364,1057]	

and	it	is	interesting	to	see	it	demonstrated	here	once	again	in	these	coarse-

grained	molecular	dynamics	simulations.					

	

The	uptake	of	OMVs	at	the	host-pathogen	interface	appears	to	be	multifaceted	

and	 quite	 complex.	 Lipid	 composition	 affects	 the	 stiffness	 parameters	 of	

OMVs	and	host	membranes	and	at	the	same	time,	the	strength	of	the	cohesion	

forces	 that	 are	 established	 between	 them.	 Furthermore,	 there	 is	 dynamic	

lipid	co-clustering	within	host	plasma	membranes	that	can	affect	how	easy	it	

is	 for	 host	 membranes	 to	 wrap	 around	 attached	 OMVs.	 For	 clarity,	 the	

simulation	results	are	presented	here	schematically	(Figure	54).	The	figure	

affords	some	overarching	insights	that	explain	the	interaction	of	the	smooth	

OMVs	with	the	host	plasma	membrane	models	and	this	illustration	provides	

a	 more	 general	 hypothesis	 for	 lipid-mediated	 OMV	 uptake.	 It	 was	

demonstrated	 that	 OMVs	 preferentially	 interact	 with	 glycosphingolipids	

within	 host	 cell	 plasma	 membranes	 and	 that	 this	 interaction	 mediates	

membrane	wrapping	processes.	The	interaction	between	the	LPS	lipids	and	

the	ganglioside	molecules	is	comparable	to	interactions	between	pathogenic	

products	 (e.g.	 cholera	and	Shiga	 toxin)	and	host	 cell	membranes	and	even	

more	similar	to	the	interaction	between	pathogenic	viral	particles	(e.g.	SV40	

virus)	and	host	cell	membranes	[537,542,1015-1018].	Smooth	OMVs	initially	

bind	ganglioside	lipid	headgroup	moieties	and	this	generates	a	depression	in	

the	 host	 membrane	 surface	 that	 could	 be	 considered	 an	 endocytosis	

intermediate	 [671-673].	 The	 process	 transpires	 as	 unbound	 ganglioside	
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lipids	move	through	the	plasma	membrane	mimetic	surface	and	subsequently	

come	 into	 contact	with	 the	 immobilized	 OMVs.	 The	 ganglioside	molecules	

become	trapped	at	the	OMV	contact	edge	and	as	they	progressively	change	

the	 local	 membrane	 composition	 they	 affect	 the	 local	 energy	 barriers	 for	

membrane	 curvature	 generation	 (Figure	 54).	 If	 we	 extrapolate	 to	 longer	

timescales	 we	 would	 presumably	 find	 that	 the	 host	 membrane	 would	 be	

wrapped	 around	 much	 more,	 if	 not	 all,	 of	 the	 smooth	 OMV	 surface.	 The	

precise	degree	of	host	membrane	wrapping	would	depend	on	specific	lipid	

parameters	 such	 as	 flexural	moduli,	 cohesion	 energies,	 and	 it	 would	 also	

depend	on	the	composition	of	the	host	membrane	[1010-1012].		
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Figure	54.	(A)	The	ganglioside	molecules	(pink),	which	are	confined	to	the	
upper	(extracellular)	leaflet,	create	non-negligible	stress	in	plasma	
membranes	that	promotes	spontaneous	bilayer	curvature.	(B)	The	energy	
barriers	for	bilayer	reshaping	are	reduced	when	ganglioside	molecules	
aggregate	and	form	clusters	that	have	high	intrinsic	positive	curvature.	The	
ganglioside	lipid	aggregates	can	reduce	the	line	tension	between	membrane	
domains	of	different	widths	due	to	their	conical	shape.	(C-D)	Schematic	
illustrations	showing	how	smooth	OMVs	affect	bilayer	shape	and	
composition.	The	sphingomyelin	are	yellow	rectangles,	the	PIP2	lipids	are	
orange	triangles,	the	cholesterol	molecules	are	inverted	green	triangles	and	
the	POPS,	POPC,	and	POPE	lipids	are	omitted	for	clarity.	After	simulation	
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time	of	Δ𝑡	there	a	significant	number	of	(GM3)	ganglioside	molecules	that	
have	interlinked	the	smooth	LPS	lipid	headgroups	(based	on	a	0.6	nm	cutoff)	
and	consequently,	there	is	a	change	in	the	local	lipid	composition	and	
bilayer	curvature.	(E)	The	abundance	of	ganglioside	monomers	and	
aggregates	that	were	detected	during	the	last	100	ns	of	simulation	time	
when	the	plasma	membrane	mimetic	was	simulated	without	any	OMVs.		
	

The	results	from	this	chapter	suggest	that	OMVs	can	be	primed	to	fully	wrap	

host	membranes	by	increasing	the	length	and	concentration	of	(smooth)	LPS	

lipids	 within	 the	 OMV	 outer	 leaflets.	 This	 change	 would	 increase	 the	

mechanical	 strength	 of	 the	 OMVs	 and	make	 them	more	 prone	 to	 achieve	

complete	 encapsulation—explaining	 why	 smooth	 OMVs	 with	 longer	 O-

antigen	 chains	 more	 readily	 exploit	 lipid-mediated	 uptake	 pathways	 in	

experimental	 studies	[664].	 It	 can	also	be	discerned	 from	 this	 chapter	and	

from	theories	of	nanosphere	encapsulation	that	the	composition	of	the	host	

membranes	 can	 be	 changed	 to	 suppress	 or	 promote	 host	 membrane	

wrapping	 processes	 [1010-1012].	 Constituent	 membrane	 lipids	 have	 the	

capacity	 to	 affect	 membrane	 flexural	 moduli,	 adhesion	 energies	 and	

membrane	 reshaping	 processes.	 Ganglioside	 molecules	 promoted	 strong	

OMV	adhesion	energies	and	they	also	lowered	energy	barriers	for	membrane	

curvature	generation.	The	 integration	of	different	 lipid	 types	 into	 the	host	

membrane	 also	 enhanced	 membrane	 reshaping	 processes	 as	 intrinsically	

negatively	curved	lipids	could	move	to	negatively	curved	membrane	domains	

and	 intrinsically	 positively	 curved	 lipids	 could	 move	 to	 positively	 curved	

membrane	 domains.	 It	 is	 important	 to	 note	 that	 the	 membrane	 mimetics	

were	 relatively	 simplistic	 and	 that	 additional	 compositional	 complexity	

would	have	further	impacted	host	membrane	wrapping	interactions.	Changes	

to	 the	 plasma	 membrane	 composition	 could	 either	 further	 promote	 or	

impede	the	membrane	wrapping	processes.	For	example,	integral	membrane	

proteins	 can	 make	 host	 membranes	 stiffer	 and	 also	 affect	 ganglioside	 co-

clustering	 [496,993,1026].	 Stiffer	 host	 membranes	 that	 contain	 fewer	

unconstrained	ganglioside	headgroups	would	be	less	prone	to	wrap	around	

attached	OMVs	and	lipid-mediated	uptake	pathways	would	be	suppressed.		
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The	 computational	 study	 was	 not	 comprehensive	 and	 the	 molecular	

dynamics	 simulations	 omitted	 molecules	 that	 could	 affect	 OMV	 uptake	

processes	e.g.	membrane	proteins.	The	simulation	study	does	however	clarify	

an	interesting	question:	why	does	OMV	lipid-mediated	uptake	depend	on	the	

cell	wall	 architecture	 of	 parent	 (bacterial)	 cells	 [664]?	 The	 coarse-grained	

simulations	appear	to	address	this	question	and	thereby	make	some	headway	

in	 clarifying	 some	 longstanding	uncertainties	associated	with	OMV	uptake	

e.g.	why	 the	 concentration	of	 Filipin,	 cholesterol,	 and	 caveolae	 affect	OMV	

internalization?	And	why	 does	 LPS	 lipid	modification	 affect	 the	 efficacy	 of	

OMV	vaccine	adjuvants	[48,52]?	The	experimental	analyses	revealed	that	LPS	

lipid	 length	 is	 inexorably	 linked	 to	 membrane	 parameters	 that	 either	

promote	or	impede	endocytosis.	Rough	LPS	lipid	OMVs	deformed	at	host	cell	

surfaces	and	smooth	LPS	lipid	OMVs	retained	high	sphericity.	An	OMV	uptake	

model	was	proposed	here	based	on	the	extrapolation	of	molecular	dynamics	

simulation	data	 rather	 than	 a	model	having	 been	 proved	 to	 be	 irrefutably	

accurate.	The	model	proposes	precisely	how	constituent	rough	and	smooth	

LPS	lipids	can	differently	impact	lipid-mediated	OMV	uptake	processes.	The	

model	is	rudimentary	and	it	could	be	refined	to	make	it	more	accurate	but	

this	does	not	invalidate	the	inference	that	smooth	OMVs	can	more	easily	enter	

cells	via	endocytosis	compared	with	rough	OMVs.	This	conclusion	would	be	

true	if	the	proposed	uptake	model	is	left	unchanged	or	even	if	it	is	refined.	

Here	I	have	shown	that	smooth	OMVs	and	stiffer	and	more	round	at	host	cell	

surfaces	than	comparative	rough	OMVs	and	therefore	we	can	state	that	it	is	

easier	for	smooth	OMVs	to	enter	into	the	host	cell	cytosol	via	endocytosis.		

	

Before	this	chapter	is	concluded	it	is	important	to	state	the	limitations	of	this	

simulation	study	to	legitimize	the	conclusions	that	have	been	made	thus	far.	

The	simulations	were	performed	with	the	coarse-grained	Martini	forcefield,	

which	omits	explicit	atomistic	detail	to	reduce	the	computational	load	[822].	

The	 coarse-grained	 Martini	 molecular	 dynamics	 forcefield	 reduces	 the	

number	of	pairwise	interactions	that	are	computed	per	timestep	by	mapping	

approximately	four	heavy	atoms	to	a	single	interaction	center.	The	omission	

of	explicit	atomistic	interactions	can	negatively	impact	the	accuracy	of	lipid-
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solvent	interactions.	For	example,	there	is	almost	always	less	water	moving	

through	 the	 LPS	 lipid	 headgroup	 domain	 in	 coarse-grained	 molecular	

dynamics	 simulations	 compared	 with	 comparative	 atomistic	 resolution	

simulations	 [301,580,824].	 Water	 is	 explicitly	 represented	 in	 united-atom	

simulations	 as	 tripartite	molecules	 that	 contain	 one	 oxygen	 atom	 and	 two	

hydrogen	atoms.	The	water	molecules	are	small	and	they	can	 fill	 the	small	

cavities	that	exist	between	LPS	headgroup	sugar	units.	Water	is	represented	

in	comparative	coarse-grained	Martini	forcefield	simulations	as	large	coarse-

grained	beads	or	“pseudoatoms”	[799]	that	are	less	able	to	fill	small	cavities	

between	LPS	lipid	headgroup	moieties.	Ma	et	al.	found	that	the	coarse-grained	

P.	 aeruginosa	 bacterial	 outer	 membrane	 core	 saccharide	 domain	 was	

depleted	of	~25-50%	[580]	water	compared	with	target	atomistic	resolution	

simulations.	 Van	 Oosten	 et	 al.	 found	 that	 another	 entirely	 distinct	 coarse-

grained	P.	aeruginosa	bacterial	outer	membrane	core	saccharide	section	was	

depleted	of	~25-50%	water	in	some	sections	along	the	bilayer	normal	[824].	

The	E.	coli	LPS	 lipid	models	 that	were	used	here	 in	 this	chapter	have	been	

found	to	be	similarly	depleted	of	water.	The	Re	LPS	core	saccharide	section	

was	 found	 to	 be	 up	 to	 ~25-50%	 depleted	 within	 some	 parts	 of	 the	 core	

saccharide	domain	and	some	sections	of	the	Ra	LPS	core	saccharide	section	

were	 up	 to	 three-fold	 depleted	 [301].	 This	 is	 a	 serious	 artifact	 that	 is	

essentially	 unavoidable	 in	 Martini	 coarse-grained	 molecular	 dynamics	

simulations	 of	 LPS	 lipid	 membranes	 because	 hydrogen-bonded	 water	

networks	cannot	be	accurately	mimicked	using	implicit	coarse-grained	bead	

representations	for	water	and	ions	[822].				

	

The	reduction	in	atomistic	detail	additionally	makes	it	difficult	to	accurately	

reproduce	 the	 complex	 conformational	 landscape	 of	 lipids,	 proteins	 and	

other	 complex	 macromolecules.	 There	 generally	 tends	 to	 be	 satisfactory	

overlap	of	LPS	lipid	conformational	landscapes	in	comparative	united-atom	

and	coarse-grained	molecular	dynamics	simulations	but	minor	discrepancies	

have	 been	 observed	 between	 the	 two	 e.g.	 disparities	 in	 endchain	

conformations	[580].	Let	us	analyze	some	of	this	comparative	conformational	

data	 quantitatively	 to	 explicit	 define	 some	 differences	 between	 target	
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atomistic	and	model	coarse-grained	molecular	dynamics	simulations.	Khalid	

et	 al.	 assessed	 the	order	 parameters	of	 homogeneous	Re	 and	Ra	 LPS	 lipid	

membranes	 in	 comparative	 coarse-grained	 and	 atomistic	 molecular	

dynamics	 simulations	 in	 an	 attempt	 to	 provide	 some	 insight	 into	 the	

conformation	 of	 the	 comparative	 LPS	 acyl	 chains	 [301].	 There	 was	 a	

difference	of	0.03-0.08	for	the	simulations	with	Re	LPS	lipid	acyl	chains	and	a	

difference	of	0.01-0.09	for	the	simulations	with	Ra	LPS	lipid	acyl	chains.	The	

LPS	lipid	equilibrium	bond	length	distances	(𝑟*+)	differed	by	no	more	than	0.1	

nm	 between	 the	 comparative	 atomistic	 and	 coarse-grained	 molecular	

dynamics	simulations	and	the	equilibrium	bond	angles	(𝜃*+)	differed	by	no	

more	than	10%.	The	corresponding	force	constants	(𝑘Qb�� 	and	𝑘Qb� )	were	well	

matched	 for	 the	 comparative	 atomistic	 and	 coarse-grained	 resolution	

simulations	and	the	bond	length	and	angle	distributions	generally	overlapped	

to	within	20%.	The	maximum	extension	of	the	bacterial	membranes	differed	

by	no	more	than	10%	but	there	did	appear	to	be	a	systematic	bias	throughout	

and	the	coarse-grained	LPS	lipids	were	almost	always	more	compressed	than	

the	reference	atomistic	LPS	lipids.		

	

The	implicit	presentation	of	cations	in	coarse-grained	simulations	also	affects	

the	 accuracy	 of	 bridging	 interactions	 between	 Lipid	 A	 anchors.	 Coarse-

grained	Martini	 calcium	 ions	do	not	 coordinate	multiple	neighbouring	LPS	

lipids	with	each	other	and	with	adjacent	water	molecules.	The	coarse-grained	

ions	 do	 not	 connect	multiple	 lipids	 and	water	molecules	 and	 they	 do	 not	

effectively	 establish	 lamellar	 LPS	 lipid	 packing	 and	 a	 hydrogen-bonded	

network	 that	would	 otherwise	 contribute	 to	 bacterial	membrane	 stability	

[551,1058-1059].	The	omission	of	the	correct	LPS	lipid	coordination	and	of	

the	hydrogen	bond	network	negatively	impacts	the	accuracy	of	the	bacterial	

membrane	 simulations	 because	 these	 interactions	 promote	 lamellar	 lipid	

packing	and	membrane	stability.				

	

There	were	 inaccuracies	 in	domain	 formation	and	 lipid	 segregation	within	

the	multicomponent	plasma	membrane	itself.	It	has	been	stated	in	previous	

publications	that	sphingomyelin	co-clustering	 is	underestimated	 in	coarse-
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grained	 Martini	 forcefield	 simulations	 relative	 to	 reference	 all-atom	

molecular	dynamics	simulations	and	experimental	data	[363,993,1023].	The	

conformation	of	 the	 coarse-grained	ganglioside	 aggregates	must	 have	 also	

been	quite	inaccurate	in	these	simulations	if	we	consider	the	spatiotemporal	

limitations	of	the	Martini	coarse-grained	forcefield	[174].	Simulations	of	flat	

plasma	membranes	had	revealed	that	ganglioside	co-clustering	proceeds	on	

timescales	 that	 are	 not	 entirely	 amenable	 to	 conventional	 molecular	

dynamics	 simulations.	 Ganglioside	 aggregation	 was	 not	 completely	

converged	 even	 after	 40	 µs	 of	 simulation	 time	 [498]	 and	 simulation	

timescales	were	even	shorter	here,	within	this	chapter.		

	

These	 noted	 conformational,	 hydration	 and	 lipid-solvent	 inaccuracies	

inevitably	 affected	 the	 quality	 of	 the	 coarse-grained	 molecular	 dynamics	

simulations	that	were	performed	in	this	chapter.	It	has	been	stated	previously	

that	 the	 Martini	 coarse-grained	 forcefield	 is	 generally	 described	 as	 being	

semi-quantitatively	 accurate	 [822]	 and	 it	 should	 be	 expected	 that	 these	

coarse-grained	 simulations	 were	 no	 more,	 or	 no	 less	 accurate.	 The	

simulations	 likely	produced	accurate	qualitative	conclusions	but	 inevitably	

produced	numerical	data	that	was	in	some	places	inaccurate.		In	other	words,	

minor	 numerical	 accuracies	 are	 to	 be	 expected	 when	 simulations	 are	

conducted	with	the	Martini	forcefield	but	this	does	not	discredit	the	validity	

of	the	overarching	qualitative	conclusions.		

	

The	use	of	a	semi-isotropic	coupling	algorithm	could	also	potentially	bias	the	

deformation	of	vesicles	along	a	specific	plane	of	the	simulation	cell.	Shorter	

simulations	 (1µs)	were	 conducted	with	 isotropic	and	anisotropic	pressure	

coupling	 algorithms	 to	 modulate	 the	 system	 pressure	 with	 alternative	

simulation	 cell	 scaling	 schemes	 and	 thereby	 ensure	 that	 the	 overarching	

qualitative	conclusions	were	not	an	artifact	of	using	inappropriate	simulation	

settings	 for	 the	 modulation	 of	 system	 pressure.	 There	 was	 approximate	

asymmetric	 deformation	 of	 the	 rough	 OMVs	 about	 the	 host	 membrane	

normal	axes	when	either	of	the	isotropic	and	anisotropic	pressure	coupling	

algorithms	were	used	to	modulate	the	system	pressure	and	the	smooth	OMV	
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always	 retained	 its	 spherical	 shape.	 The	 use	 of	 a	 semi-isotropic	 pressure	

coupling	 algorithm	may	 affect	 the	 precise	magnitude	 of	 the	 axisymmetric	

OMV	deformation	but	the	general	differences	in	shape	preservation	seemed	

to	be	invariant	of	the	box	vector	scaling	method	i.e.	isotropic,	semi-isotopic,	

or	anisotropic.		

	

Perhaps	the	most	undesirable	limitation	is	the	spatiotemporal	constraints	of	

modern	 computer	 hardware	 that	 is	 paired	 with	 nothing	 more	 than	 the	

coarse-grained	Martini	simulation	forcefield	[174].	The	Martini	forcefield	is	a	

relatively	 sophisticated	 coarse-grained	 molecular	 dynamics	 simulation	

forcefield	that	maps	a	relatively	low	number	of	atoms	to	each	coarse-grained	

bead	and	it	can	be	quite	computationally	demanding.	The	Martini	forcefield	

maps	approximately	four	heavy	atoms	to	a	single	interaction	center	[799]	and	

hence	it	is	challenging	to	probe	simulation	timescales	that	exceed	anything	

more	than	a	few	microseconds	[59,114].	Simulations	were	conducted	here	on	

a	microsecond	timescale	and	this	was	long	enough	to	show	that	rough	and	

smooth	OMV	systems	have	different	shapes	at	host	membrane	surfaces.	The	

data	were	used	to	infer	that	this	would	affect	OMV	endocytosis	processes	on	

long	timescales	but	this	was	an	inference	and	not	something	that	was	proved	

outright.	 It	 would	 be	 necessary	 to	 use	 significantly	 more	 computational	

resources	 or	 entirely	 different	 simulation	 forcefields	 to	 empirically	

demonstrate	 that	 this	 prediction	 is	 indeed	 correct	 and	 that	 OMVs	 have	

different	 endocytosis	 uptake	 efficiencies	 on	 long	 timescales.	 Comparable	

simulations	were	 performed	with	 very	 low	 resolution	 solvent-free	 coarse-

grained	forcefields	and	it	was	shown	that	complete	endocytosis	can	take	as	

long	as	500	µs	[1009].	Thus,	alternative	approaches	must	be	used	if	we	want	

to	access	the	larger	and	longer	spatiotemporal	magnitudes	that	are	necessary	

for	 proving	 some	 of	 the	 predictions	 that	were	made	 in	 chapter.	 The	 non-

polarizable	coarse-grained	Martini	molecular	dynamics	simulation	forcefield	

[799,814]	 is	 not	 suitable,	 but	 other	 lower	 resolution	 forcefields	 [114,174]	

could	be.	It	is	clear	then	that	this	simulation	study	should	only	be	considered	

as	being	semi-quantitatively	accurate	and	that	some	of	the	simulation	settings	

were	non-ideal.	But	based	on	comparisons	with	previous	publications	[1009-
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1012]	and	the	discussions	that	have	been	made	here	we	can	conclude	that	the	

overarching	qualitative	conclusions	were	warranted	throughout.		
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Chapter	6:	Conclusions		
	

6.1	Abstract	
	

The	 simulations	 have	 presented	 novel	 insights	 that	 in	 some	 places	

corroborate	 previous	 experimental	 and	 computational	 work	 and	 in	 other	

places	 propose	 altogether	 new	 explanations	 for	 unexplained	 biological	

phenomena.	Within	 this	 chapter	 I	discuss	 the	overarching	predictions	 that	

were	made	in	chapters	3,	4	and	5	and	I	attempt	to	explain	how	the	simulation	

predictions	could	be	validated	through	experimental	analyses.		

	

6.2	Validating	the	Predictions	from	Chapter	5	
	

Perhaps	it	is	most	appropriate	to	start	with	the	primary	focus	of	this	thesis:	

bacterial	OMVs.	First,	 it	was	found	that	the	smooth	OMV	simulation	system	

surfaces	were	more	topologically	complex	than	the	comparative	rough	OMV	

simulation	system	surfaces.	The	LPS	lipid	sugars	condensed	when	they	were	

simulated	 and	 they	 formed	 long	 approximately	 linear	 clusters	 that	 were	

aligned	with	the	bilayer	normal	axes	(Figure	46-47).	The	smooth	LPS	lipid	

headgroups	projected	further	outwards	beyond	the	Lipid	A	phosphate	group	

domain	than	the	comparative	rough	LPS	lipid	headgroups.	The	radial	height	

of	 the	 rough	 OMV	 surface	 was	 relatively	 constant,	 but	 the	 smooth	 OMV	

surface	was	less	uniform	and	the	radial	height	differed	much	more	from	one	

point	to	another.	The	glycan	polymer	chain	concentration	was	significantly	

enriched	in	some	areas	of	the	smooth	OMV	surface	and	significantly	depleted	

in	others	(see	Figure	46	for	example).	The	smooth	OMV	simulation	systems	

were	 comparable	 to	 the	 CHIKV	 [1060-1061]	 and	 SV40	 viral	 capsids	 [538-

540,1015-1016]	 that	 have	 some	 surface	 area	 noticeably	 enriched	 in	

biomolecular	mass	and	other	areas	noticeably	depleted.		

	

Scientists	have	used	sophisticated	electron	microscopy	analysis	 techniques	

to	visualize	viral	particle	surfaces	[1039-1043]	and	it	is	reasonable	to	think	

that	comparable	visualization	methods	could	be	used	to	visualize	the	surfaces	
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of	rough	and	smooth	OMV	systems.	The	analyses	could	be	used	to	determine	

if	 smooth	 OMV	 system	 surfaces	 are	 more	 topologically	 complex	 than	

comparative	 rough	OMV	 system	surfaces.	 Sophisticated	multistep	 electron	

cryotomography	 imaging	 analysis	 methods	 were	 already	 used	 by	

experimental	 research	 groups	 to	 image	 the	 shape	 of	 OMVs	 that	 were	

approximately	 100	 nm	 wide	 but	 the	 imaging	 methods	 were	 not	 precise	

enough	for	determining	how	the	OMV	surface	height	varied	from	one	point	to	

another	[1062].	In	other	words,	it	seems	that	experiments	have	already	been	

conducted	to	analyze	OMV	surfaces	but	the	analysis	methods	have	lacked	the	

requisite	resolution	one	needs	to	visualize	differences	in	lipid	height.	There	

are	however,	more	advanced	electron	microscopy	methods	that	have	been	

used	for	imaging	viral	particle	surfaces	and	these	methods	could	potentially	

be	 applied	 in	 the	 future	 to	 more	 precisely	 assess	 OMV	 outer	 leaflet	 lipid	

height.	It	is	important	that	scientists	attempt	to	mimic	the	OMV	simulation	

system	composition	as	accurately	as	possible;	there	should	be	phospholipids	

both	within	the	inner	and	outer	OMV	leaflets.	It	would	be	beneficial	for	the	

experimental	groups	to	use	an	approximate	1:1	number	ratio	for	the	number	

of	LPS	and	phospholipid	molecule	in	the	OMV	outer	leaflet	because	they	could	

then	make	more	 detailed	 and	 numerous	 comparisons	with	 the	work	 from	

chapter	5.	Experimental	publications	already	describe	methods	that	can	be	

used	to	vary	the	OMV	chemical	composition	and	methods	that	can	be	used	to	

generate	OMVs	with	a	high	concentration	of	phospholipid	molecules	 in	 the	

(OMV)	outer	leaflet;	for	example,	see	[1000,1063-1065].					

	

Second,	 it	 was	 found	 that	 the	 simulated	 OMVs	 bind	 to	 both	 flat,	 single-

component	 POPC	 lipid	 bilayers	 and	 also	 to	 multicomponent	 plasma	

membrane	mimetics.	The	molecular	dynamics	simulations	predict	that	OMVs	

can	adhere	to	either	membrane	surface	without	any	action	from	membrane	

proteins	or	the	glycocalyx	and	this	proposition	should	be	relatively	simple	to	

assess	with	experimental	apparatus.	Experimental	groups	can	synthesize	flat	

lipid	 membrane	 mimetics	 and	 study	 how	 these	 membranes	 interact	 with	

OMVs.	The	experimental	groups	can	visualize	the	interactions	of	OMVs	with	

different	biological	membrane	mimetics	and	show	that	OMVs	do	indeed	bind	
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different	 host	 membrane	 mimetic	 surfaces.	 Sophisticated	 microscopy	

methods	have	already	been	used	to	visualize	the	interactions	of	viral	particles	

with	host	membrane	surfaces	and	the	experimental	techniques	are	now	well	

established	and	replicable	[1066].		

	

The	simulations	also	predicted	that	ganglioside	molecules	have	the	capacity	

to	 enhance	 OMV	 adhesion	 energies	 when	 they	 interact	 with	 LPS	 lipid	

headgroups.	 The	 cohesion	 forces	 immobilized	 the	 simulated	 OMVs	 and	

enhanced	 the	 membrane	 wrapping	 processes.	 It	 was	 found	 that	 SV40	

particles	 have	 comparable	 intermolecular	 interactions	 when	 they	 bind	

supported	membrane	bilayers	that	contain	relatively	high	concentrations	of	

GM1	lipids	(i.e.	at	least	1	mol	%).	The	SV40	virions	interacted	with	the	host	

membrane	ganglioside	lipids	(GM1)	and	the	virus	then	became	trapped	at	the	

wrapping	interface,	wobbling	back	and	forth	with	a	step	size	of	no	more	than	

a	 few	 nanometers	 [1067].	 This	 was	 surprising	 because	 the	 virions	 were	

highly	mobile	when	they	were	attached	to	membranes	that	did	not	include	

any	 ganglioside	 molecules	 at	 all	 [1067-1068].	 Comparable	 experimental	

studies	could	be	conducted	to	analyze	the	properties	of	OMVs	at	the	surface	

of	 host	 membrane	 mimetics	 that	 contain	 ganglioside	 molecules	 in	 one	

instance	and	do	not	contain	ganglioside	molecules	 in	another.	The	rates	of	

lateral	mobility	could	be	determined	and	used	to	understand	how	tightly	the	

OMVs	 were	 bound	 to	 the	 host	 membrane	 surface.	 Low	 lateral	 mobility	

parameters	 would	 be	 indicative	 of	 strong	 adhesion	 energies	 and	 higher	

lateral	mobility	parameters	would	be	indicative	of	weaker	adhesion	energies.	

If	 the	predictions	 from	the	coarse-grained	molecular	dynamics	simulations	

are	 accurate	 then	 we	 should	 expect	 that	 the	 ganglioside-containing	

membranes	 support	 stronger	 adhesion	 energies	 and	 by	 association,	 that	

OMVs	 have	 low	 lateral	 mobility	 parameters	 when	 they	 interact	 with	 the	

ganglioside-containing	membrane	surface.										

	

Electron	microscopy	methods	were	applied	in	other	pioneering	publications	

to	visualize	vacant	 space	at	 the	wrapping	 interface	when	SV40	and	mouse	

polyoma	(mPy)	viruses	were	 interacting	with	GM1	lipid	containing	plasma	
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membrane	mimetics	[1069-1071].	Vacant	space	was	found	to	be	minimal	due	

to	 the	 tight	 interlinking	 of	 the	 SV40	 capsid	 proteins	 and	 the	 GM1	 lipid	

headgroups.	One	could	use	similar	electron	microscopy	methods	to	analyze	

vacant	 space	 between	 OMVs	 and	 host	membrane	 surfaces	 to	 validate	 the	

prediction	 that	 there	 is	 tight	 interlinking	 of	 the	 carbohydrate	 LPS	 and	

ganglioside	lipid	headgroups.	Such	simple	experimental	insights	would	have	

a	high	impact	factor	and	they	could	help	us	to	determine	if	OMVs	can	enter	

cells	by	sequestering	glycosphingolipids.	This	has	already	been	shown	to	be	

true	 for	 other	 pathogens	 and	 pathogenic	 products	 [368]	 and	 our	 current	

textbook	understanding	of	the	bacterial	infection	process	would	have	to	be	

changed	if	it	was	shown	to	be	true	for	OMVs.						

	

Third,	it	was	predicted	that	plasma	membranes	wrap	smooth	OMVs	and	that	

this	creates	membrane	invaginations	or	endocytosis	intermediate	structures.	

The	 simulations	 suggest	 that	 the	 wrapping	 interactions	 are	 mediated	 by	

interactions	 between	 OMV	 LPS	 lipid	 headgroups	 and	 host	 cell	 ganglioside	

lipids.	 Membrane	 curvature	 has	 been	 analyzed	 in	 previous	 experimental	

studies	with	microscopy	methods	 in	 an	 attempt	 to	 understand	 how	 SV40	

particles	interact	with	and	perturb	host	plasma	membrane	mimetic	surfaces	

[1069-1071].	 The	 experiments	 revealed	 that	 the	 SV40	 viral	 particles	 can	

deform	 lipid	 membrane	 surfaces	 and	 create	 tight-fitting	 inward	 bulging	

“buds”.	 Subsequent	 studies	 revealed	 that	 the	 SV40	 particle	 can	 further	

deform	 host	 membrane	 surfaces	 and	 produce	 mesoscopic	 membrane	

invaginations	 that	 morph	 into	 elongated	 membrane	 tubules	 on	 long	

timescales	[1015].	The	deformed	membrane	domains	were	considered	to	be	

endocytosis	 intermediates	 that	 when	 coupled	 with	 for	 example,	 scission	

machinery,	 would	 facilitate	 endocytosis.	 Similar	 experiments	 can	 be	

conducted	 to	 determine	 if	 smooth	 OMVs	 generate	 comparable	 curvature	

when	 they	 bind	 ganglioside	 lipid	 containing	membranes.	 The	 experiments	

would	confirm	the	hypothesis	that	OMV	and	host	membrane	lipid	headgroup	

interactions	induce	membrane	curvature.					
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6.3	Validating	the	Predictions	from	Chapter	4	
	

The	 synthetic	 OMVs	 can	 be	 used	 to	 validate	 the	 primary	 conclusion	 from	

chapter	4:	that	O-antigen	chain	interactions	increase	the	mechanical	strength	

of	Gram-negative	bacterial	membranes.	OMVs	can	be	 created	with	 smooth	

LPS	lipids	in	one	instance,	and	with	rough	LPS	lipids	in	another	[1000,1063-

1065].	 Experimental	 analysis	 techniques	 could	 be	 used	 to	 quantify	 the	

strength	 and	 durability	 of	 the	 comparative	 vesicle	 systems.	 Comparable	

studies	 were	 conducted	 to	 assess	 the	 strength	 of	 ordinary	 phospholipid	

vesicles	 relative	 to	 grafted	 lipid	 composites	 that	 included	 for	 example,	

polyelectrolyte	 complexes	 or	 amphiphilic	 block	 copolymers.	 Experiments	

were	 performed	 to	 assess	 vesicle	 stability	during	 blood	 circulation	 [1072]	

and	to	quantify	mechanical	stability	under	pH	shock	[1073-1074].	Membrane	

durability	was	similarly	assessed	in	other	experimental	works	by	measuring	

shelf	stability	and	the	tendency,	or	lack	thereof,	to	resist	rupture	and	fusion	

processes	 [1072,1075].	 Mechanical	 strength	 has	 even	 been	 analyzed	 by	

quantifying	the	loading	rates	of	drugs	and	the	rates	of	drug	uptake	for	single-

component	 lipid	 vesicles	 and	 comparative	 grafted	 lipid	 vesicle	 composites	

[1001-1002].	 Scientists	 can	 systematically	 assess	 if	 LPS	 O-antigen	 chains	

affect	membrane	mechanical	strength	by	replicating	these	experiments	with	

synthetic	rough	and	smooth	OMVs.				

	

6.4	Validating	the	Predictions	from	Chapter	3	
	

Validating	the	predicted	interactions	of	the	PMB1	peptides	with	the	inner	and	

outer	Gram-negative	bacterial	membrane	mimetics	 is	 expected	 to	be	more	

challenging	because	scientists	would	have	to	evaluate	interactions	that	occur	

on	smaller	spatiotemporal	scales.	Chapter	3	made	predictions	for	small-scale	

biomolecular	processes	that	in	some	instances,	affected	no	more	than	just	a	

few	lipids.	Here	we	will	first	consider	the	interactions	of	the	PMB1	peptides	

with	the	Gram-negative	bacterial	inner	membrane	mimetic	and	for	reference,	

this	membrane	contained	PE	and	PG	lipids	in	a	3:1	number	ratio.	It	was	found	

that	 the	 simulated	 PMB1	 peptides	 reduced	 membrane	 thickness	 metrics	
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when	 they	 were	 interacting	 with	 the	 PE	 and	 PG	 phospholipids	 but	

importantly,	it	was	also	found	that	this	effect	dissipated	rapidly	with	distance	

from	 the	 PMB1	 peptides.	 United-atom	 and	 all-atom	 molecular	 dynamics	

simulations	already	corroborate	the	conclusion	that	antimicrobial	peptides	

can	 thin	 lipid	 membranes	 [328,1076-1077]	 but	 this	 effect	 is	 significantly	

more	challenging	to	prove	irrefutably	through	experimental	analyses.	Bilayer	

thinning	tends	to	be	highly	localized	in	molecular	dynamics	simulations	and	

the	molecular	 dynamics	 simulations	 are	 generally	 conducted	 on	 relatively	

short	nanosecond	or	microsecond	timescales.	Since	conventional	analytical	

techniques	generally	 lack	the	spatiotemporal	resolution	that	one	needs	 for	

validating	highly	localized	membrane	damage	directly,	it	is	preferably	to	infer	

thickness	change	through	measures	of	for	example,	membrane	permeability.	

Electrochemical	techniques	(e.g.	cyclic	voltammetry	[1078])	can	be	applied	

to	analyze	membrane	thickness	and	bilayer	indentation,	both	before	and	after	

interactions	 with	 AMPs.	 Cyclic	 voltammetry	 experiments	 revealed	 that	

polymyxin	 B	 peptides	 affect	 the	 shape	 and	 stability	 of	 supported	 renal	

membrane	mimetics	[728].	Comparable	experiments	could	be	conducted	to	

analyze	 the	 properties	 of	 the	 Gram-negative	 bacterial	 inner	 membrane	

mimetics	 before	 and	 after	 interactions	 with	 PMB1	 peptides.	 Noticeable	

increases	in	water	permeability	would	be	indicative	of	membrane	thinning	or	

bilayer	indentation	processes.			

	

It	 was	 also	 predicted	 that	 cationic	 AMPs	 (here	 PMB1	 peptides)	 would	

preferentially	 interact	with	anionic	lipids	(here	PG	phospholipids)	and	this	

prediction	is	already	corroborated	by	previous	atomistic	and	coarse-grained	

molecular	 dynamics	 simulation	 studies	 [270,281-283,286].	 The	 simulation	

studies	demonstrated	that	linear	and	helical	AMPs	have	the	capacity	to	induce	

the	formation	of	negatively	charged	lipid	nanodomains	when	the	positively	

charged	 AMP	 residues	 interact	 with	 negatively	 charged	 lipid	 headgroup	

moieties.	 Analytical	 experimental	 techniques	 (circular	 dichroism,	 infrared	

spectroscopy,	NMR	etc.)	have	been	used	to	corroborate	these	conclusions	and	

they	have	 shown	that	positively	 charged	AMPs	preferentially	 interact	with	

negatively	 charged	 lipids	 in	 bacterial	 membrane	 mimetics	 and	 that	 these	
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processes	 enhance	 lipid	 demixing	 processes	 and	 additionally	 promote	 the	

formation	 of	 anionic	 lipid	 (e.g.	 PG	 and	 CL)	 nanodomains	 [275-276,1079-

1081].	 Comparable	 experimental	 techniques	 could	 be	 applied	 in	 future	

studies	 to	 evaluate	 the	 interactions	 of	 PMB1	peptides	with	 the	 surface	 of	

Gram-negative	bacterial	inner	membrane	mimetics.	The	work	would	not	only	

validate	 inferences	made	 in	chapter	3	but	also	substantiate	hypotheses	 for	

various	AMP-induced	bilayer	breakdown	pathways	being	instigated	by	initial	

lipid	demixing	effects.		

	

Other	interesting	experimental	methods	such	combinations	of	neutron	and	

X-ray	 reflectometry,	 and	X-ray	diffraction	with	Brewster	angle	microscopy	

could	 be	 used	 to	 assess	 the	 interactions	 of	 PMB1	peptides	with	 the	 outer	

membrane	 models.	 Comparable	 techniques	 were	 used	 by	 Lakey	 et	 al.	 to	

assess	 the	 organization	 of	 lipids	 in	 supported	 LPS	monolayers	when	 they	

were	 subjected	 to	 applied	 surface	 pressures;	 starting	with	 low	 values	 and	

ending	 with	 higher	 magnitudes	 [121].	 Area	 per	 phosphate	 and	 LPS	

coordination	numbers	were	evaluated	as	the	LPS	monolayers	transitioned,	as	

a	stress	response,	from	a	fluid	state	to	an	ordered	crystalline	phase.	By	using	

similar	procedures	to	analyze	rough	(Re)	LPS	leaflets,	both	before	and	during	

interactions	with	 PMB1	 peptides,	 we	 could	 systematically	 assess	 the	 lipid	

modulating	effects	of	the	PMB1	peptides	on	LPS	lipids.	Readers	should	note	

that	 PMB1	peptides	 tend	 to	 displace	 stabilizing	 cations	 at	 the	 LPS	 Lipid	A	

phosphate	 plane	 domain	 and	 this	 process	 can	 induce	 bilayer	 rupture	

processes	 [130,243,1082].	 The	 destabilizing	 interactions	 could	 make	 it	

challenging	 to	 test	 the	 LPS	 phase	 modulating	 properties	 of	 the	 PMB1	

peptides.	It	might	be	necessary	to	use	LPS	chemotypes	whose	glucosamine	

sugars	 were	 modified	 to	 decrement	 favourable	 electrostatic	 interactions	

between	attached	LPS	phosphate	groups	and	PMB1	Dab	residues	[726].	Such	

a	 setup	 would	 ensure	 that	 the	 PMB1	 peptides	 can	 interact	 with	 LPS	

membrane	lipids	for	a	longer	amount	of	time	before	there	is	any	appreciable	

loss	of	membrane	structure.	Single-particle	trafficking	procedures	could	also	

be	used	to	assess	LPS	diffusion	constants	[1083].	Scientists	could	use	these	
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methods	 to	 determine	 LPS	 lipid	 diffusion	 constants	 before	 and	 during	

interactions	with	PMB1	peptides.		

	

It	is	important	to	emphasize	here	that	these	suggestions	are	restricted	by	a	

personal	lack	of	expertise	with	biophysical	analysis	techniques.	Experimental	

groups	are	much	more	knowledgeable	of	advanced	experimental	tools	and	it	

is	hoped	that	readers	will	be	able	to	design	more	appropriate	experiments	for	

testing	the	predictions	that	were	made	in	this	thesis.			
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