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Gram-negative bacteria have an unusual cell envelope that contains an inner
cytoplasmic lipid membrane and an outer bacterial lipid membrane. The
outer bacterial lipid membrane produces outer membrane vesicles that
regulate bacterial pathogenesis processes. The outer membrane vesicles
transport virulence factors from bacteria to host cell surfaces and the vesicles
then move into the host cell cytosol. Computer simulations were conducted
here in this thesis to understand how outer membrane vesicles pass through
host cell surfaces independently of any membrane protein effects. The
simulations suggest that outer membrane vesicles enter cells via lipid-
mediated endocytosis processes and interestingly, that the host membrane
wrapping interactions depend on the length of the lipopolysaccharide
macromolecules. Additional simulations were conducted to understand how
polymyxin B1 peptides affect the inner and outer membranes of Gram-
negative bacteria and how cohesive intermolecular interactions between
lipopolysaccharide lipids can affect the durability of Gram-negative bacterial
membranes. The simulation studies are by no means disparate; the
simulations provide general insights into disease transmission. The
simulations clarify how lipopolysaccharide macromolecules promote the
spread of disease and conversely how antibiotics can curb it.
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List of Tables

Table 1: Summary of lipid properties for OMVs in solution; data are shown for
the inner leaflet (IL) and the outer leaflet (OL). Standard deviations are less
than 0.02 for areas per lipids and less than 0.9 for radial heights.

Table 2: Standard deviations for radius of gyration values are less than 0.07
and for heights they are less than 1.74.

Table 3: Standard deviations for radius of gyration values are less than 0.01
and for heights they are less than 1.7.

Table 4: Changes in local lipid composition within 5 nm of the OMVs. Data are
shown for each lipid type (per bilayer leaflet).

Table 5: Areas per lipid for the POPE-POPG vesicle in water. Standard
deviations are less than 0.01 throughout.



List of Figures

Figure 1: Introduction to the structure of animal cells. (A) Eukaryotic
subcellular membrane-bound organelles (e.g. mitochondria and lysosomes)
that are encased by the peripheral cellular membrane. The cellular membrane
delineates “self” and “non-self” cellular interactions and the organelle
membranes isolate organelle functions from the encompassing cytoplasmic
space. The labels are used to show how the subcellular organelles are
distributed throughout the cellular cytoplasm. (B) Modern molecular
dynamics simulation graphics that represent how molecular modelling has
been used to understand the clustering of integral membrane proteins. The
integral membrane proteins are pink and the lipid membrane is either blue or
yellow. (C) Schematic representation of the eukaryotic cellular membrane
structure that includes a central liquid-ordered membrane raft domain and
two liquid-disordered membrane domains either side of this. Saturated lipids
are red and orange, unsaturated lipids are yellow and green, cholesterol
molecules are the curved purple structures. The macromolecules can be
identified by the different refence labels. Image sources are: Encyclopaedia
Britannica, and papers (i) 10.1038/nrm.2017.16 (DOI) [75]; and (ii)
10.1021/jacs.5b08048 (DOI) [76].

Figure 2: The structure of Gram-negative bacteria. (A) Schematic illustration
that shows the structure of the Gram-negative bacterial cell organelles and
how these subcellular structures are encased by the peripheral cell envelope.
(B) Tripartite structure of the Gram-negative cell envelope that includes the
inner cytoplasmic membrane (black), the outer bacterial membrane (black
and pink), peptidoglycan (orange) and the anchoring proteins that stretch
across the periplasm (green and blue). The structure was determined from
complementary experimental and computational analyses. The image sources
are: Wikipedia Commons and paper 10.1016/j.sbi.2019.12.017 (DOI) [53].

Figure 3: The increasing scope of molecular simulation forcefields. (A)
Comparison between an atomistic CHARMM forcefield lipid model, a united-
atom Berger forcefield lipid model, a coarse-grained Martini forcefield lipid
model, and a supra coarse-grained forcefield lipid model. Each constituent
particle of the four lipid models represents a single molecular dynamics
simulation interaction center. (B) Sideview snapshots of a multicomponent
membrane being simulated with an atomistic or “all-atom” resolution
forcefield (AA), a coarse-grained resolution forcefield (CG), and a supra
coarse-grained resolution simulation forcefield (SCG). Transmembrane
proteins are cyan and green, water is blue and the other molecules represent
the simulation lipids. The image sources are: 10.1021/acs.chemrev.8b00460
(DOI) [114] and 2015.igem.org.

Figure 4: (A) Visualization of a complex asymmetric Gram-negative outer
membrane mimetics that were created with the CHARMM-GUI web-based
construction tool. (B) The Campylobacter jejuni outer membrane model that
was assembled with the CHARMM-GUI construction tool (top) and simulated



for a time At (bottom). (C) The E. coli outer membrane model that contains
the central vitamin B12 transporter (BtuB) integral membrane protein. The
structure was assembled with the CHARMM-GUI construction tool (top) and
simulated for a time At (bottom). The inner leaflet lipids are blue, white, and
black. The outer leaflet lipids are pink, orange, gold, cyan and gray. The BtuB
protein is yellow and green. The ions are represented as small spheres that are
not covalently linked with the lipids or protein molecules. Image source:
10.1021/acs.jctc.8b01066 (DOI) [229].

Figure 5: (A) Model of the E. coli cell envelope that includes the inner
cytoplasmic membrane (IM), the outer membrane (OM), peptidoglycan (cell
wall), Braun’s lipoprotein (Lpp) and integral membrane proteins. The lipids
are gray and the peptidoglycan is blue and green. The proteins have different
color schemes to help readers to distinguish between them. (B-D)
Representative states of the peptidoglycan cell wall composite when it is
relaxed (B), stretched to 1.5x of its original area (C) and stretched to 2x its
original area (D). The glycan strands are blue, the peptide cross-links are
green and the borders of the simulation cell are represented as a thin dashed
line. The image sources are: 10.106/j.bbamem.2018.09.020 (DOI) [312] and
10.1371/journal.pcbi.1003475 (DOI) [309].

Figure 6: Implementation of the CHARMM-GUI Martini Maker module. (A)
The initial random placement of 20 LPS lipids and the subsequent self-
assembly of the lipids into a unilamellar or bilamellar bacterial membrane
fragment. (B) The initial construction of an LPS micelle and the subsequent
transformation of the micelle to become a unilamellar bacterial membrane.
(C) The initial construction of an LPS micelle with embedded OmpF protein
and the subsequent transformation of the micelle into a multicomponent
unilamellar bacterial membrane. (D) The final frame snapshots of molecular
dynamics simulations of asymmetric bacterial membrane models that were
generated with the CHARMM-GUI Martini Maker. The bilayers contained only
lipids (OM) or lipids and the OmpA integral membrane protein (OM-OmpA).
(E) Snapshots of OMV simulation systems that contained only lipids or lipids
and an embedded outer membrane protein. The systems were made with the
CHARMM-GUI Martini Maker module. The proteins are red, the acyl tails are
yellow, the core sugars are violet, the choline and phosphate groups are blue
and purple and the unsaturated bonds are cyan. Image source:

10.1002 /jcc.24895 (DOI) [151].

Figure 7: Understanding the properties of lipid rafts through the application
of molecular dynamics simulations. (A) Formation of separate liquid-ordered
(green) and liquid-disordered (red) nanodomains that are enriched in
saturated lipids (green) and cholesterol (black), or polyunsaturated lipids
(red). (B) Top view snapshots showing how the cholesterol molecules were
distributed within the multicomponent membrane simulation system and the
(C) radial distribution function for the cholesterol-cholesterol intermolecular
separation distances. (D) Snapshots of GM1 ganglioside and POPC lipids that
were simulated in two-component membranes. The membrane became more
rigid and raft-like as the concentration of the ganglioside molecules was



increased from 10% through to 30%. The Image sources are:
10.1073/pnas.0807527105 (DOI) [335] and 10.1016/j.bpj.2016.09.021 (DOI)
[362].

Figure 8: The structure of four phospholipids. (A) The structure of a
phosphatidylcholine lipid (16:0/18:1(9Z)) that consists of two acyl tails
bonded via an ester linkage to glycerol, a negatively charged phosphate group
and a terminal positively charged choline section. (B) The structure of
phosphatidylserine lipid (16:0/18:1(9Z)) that consists of two acyl chains
bonded via an ester linkage to glycerol, a negatively charged phosphate group
and a terminal serine moiety. (C) The structure of a phosphatidylethanolamine
lipid (16:0/18:1(9Z)) that consists of two acyl chains covalently bonded
through an ester link to central glycerol and phosphate groups, and a terminal
ethanolamine section. (D) The structure of a phosphatidylglycerol lipid
(16:0/18:1(9Z)) that consists of two acyl tails bonded via an ester linkage to
glycerol, a negatively charged phosphate group and a terminal glycerol group.
Image source: https://avantilipids.com

Figure 9: The properties and molecular dynamics simulations of cholesterol.
(A) The chemical composition of cholesterol molecules and a simplified
schematic illustration showing how the polar-headgroup-to-hydrophobic-body
cross sectional area ratio gives cholesterol an effective conical structure. (B)
Schematic illustrations showing how lipid shape, defined by the hydrophilic-
headgroup-to-hydrophobic-lipid-component, is expected to affect preferences
for spontaneous curvature generation. (C) Molecular dynamics simulations
that show how cholesterol molecules can regulate membrane curvature and
the membrane stress distribution by flipping between the apposed membrane
leaflets on a nanosecond timescale. (D) Schematic illustration showing how
lipid sorting can be induced by membrane curvature, but also how induced
lipid sorting can affect local preferences for spontaneous membrane curvature
generation. (E) Plasma membrane molecular dynamics simulations that
demonstrated curvature-induced cholesterol molecule sorting. The cholesterol
molecules moved to negatively curved membrane domains during production
time. The image sources are: Wikipedia Commons, 10.3389/fmicb.2014.00220
(DOI) (439) 10.1021/ja903529f (DOI) [437]
10.1146/annurev.cellbio.20.010403.095451 (DOI) [440]
10.1002/adts.201800034 (DOI) [364].

Figure 10: The structure and molecular dynamics simulations of hopanoids.
(A-C) The structure of three hopanoids: hopane (A), diploptene (B), and
bacteriopanetetrol (C). (D) Martini coarse-grained molecular dynamics
simulations of multicomponent membranes that included either hopane
(vellow), diploptene (green), or bacteriohopanetetrol (purple) with POPC
lipids. The POPC phosphate headgroups are orange to show the position of the
membrane-water interface. The image sources are: Wikipedia Commons and
10.1063/1.4937783 (DOI) [451].

Figure 11: The structure of PIP; molecules and the interaction of PIP;
molecules with integral membrane proteins. (A) The skeletal structure of the



PIP; lipid that includes the phosphate groups (red), the inositol ring and the
anchoring saturated and unsaturated acyl chains (blue). (B-C) The binding
positions of PIP; lipids on Kir2.2 channel proteins that were identified from X-
ray crystallography (B) and molecular dynamics simulation studies (C). The
PIP; lipids are represented as green and red spheres and the protein residues
are represented as violet chains. (D) The S1P1 GPCR molecule that has been
colored according to its interactions with the PIP2 phosphoryl headgroup in
coarse-grained molecular dynamics simulations. The interaction number color
bar ranges from white through to red. The image sources are: Wikipedia
Commons, 10.1038/nature10370 (DOI) 10.1021/bi301350s (DOI) [470] and
10.1021/jacs.5b08048 (DOI) [76].

Figure 12: The chemical structure of three simple sphingolipids. (A) The
chemical structure of sphingosine. (B) The chemical structure of a ceramide.
The variable fatty acid moiety is red and the sphingosine backbone is black.
(C) The chemical structure of a sphingomyelin molecule. The variable fatty
acid moiety is red, the sphingomyelin backbone is black and the
phosphocholine group is blue. Image source: Wikipedia Commons.

Figure 13: The ganglioside lipid structure and representations of how
ganglioside molecules can induce spontaneous curvature generation. (4)
Biosynthetic pathway for some of the smallest and simplest ganglioside
molecules i.e. GM3, GM2 and GM 1. Ganglioside molecules consist of a core
ceramide unit that is bonded to glycan headgroups that contain
monosaccharides such as glucose (Glc), galactose (Gal), N-
acetylgalactosamine (GalNAc), and sialic acid residues (Sia). Additional
monosaccharide units can be added onto GM3, GM2 and GM1 molecules to
create larger and more complex ganglioside molecules. (B) The skeletal
formula of the GM3 lipid. The ceramide domain is highlighted gray and the Glc,
Gal, and Sia units are highlighted blue, yellow and maroon. (C-D) Molecular
dynamics simulations showing how molecular dynamics simulations have
demonstrated that GM1 molecules can reshape asymmetric biomembranes.
The phospholipids are blue and the GM1 molecules are red. The graphic
contains both top view and side view snapshots. (E-F) Molecular dynamics
simulations showing how cholera toxin B subunit (CTxB) can induce local
curvature generation within biomembrane mimetics. (E) The DOPC lipids are
green and the GM1 lipids are purple. (F) The membrane has been refitted to a
thin surface for easier visualization of the induced membrane curvature. The
image sources are: 10.3389/fimmu.2014.00325 (DOI) [426]
10.1038/nchembio0209-71 (DOI) [535] 10.1073/pnas.1722320115 (DOI)
[536] 10.1002/2211-5463.12321 (DOI) [537].

Figure 14: Pathogens and pathogenic products can bind ganglioside lipids
and this interaction promotes endocytosis. (A) SV40 coat protein VP1
pentamer cocrystallized with GM1 pentasaccharide. The coat protein is green
and the pentasaccharides are red. (B) Cholera toxin Bsubunit cocrystallized
with GM1 pentasaccharide. (C) E. coli enterotoxin [subunit cocrystallized with
nitrophenyl-galactoside. (D) Shiga toxin Bsubunit cocrystallized with GB3
trisaccharide. (E) Pentameric E. coli Shigalike toxin subunit cocrystallized



with a GB3 analog. (F) Binding of SV40 to GM1 lipids in a multicomponent
membrane. (G) The formation of a lipid raft (dark blue band) and the
demonstration of actin-dependent immobilization. (H) The invagination of the
plasma membrane mimetic due to interactions with SV40. The interactions
between SV40 and the plasma membrane mimetic generate a caveola
structure. (I) Scission machinery facilitating endocytosis after the production
of a flask-shaped lipid raft structure (i.e. caveola). (J]) The formation of a
vacuole and the transport of the vacuole through the intracellular space. The
image source is: 10.1101/cshperspect.a004721 (DOI) [542].

Figure 15: Schematic representation of a single molecule of smooth LPS from
E. coli bacteria. The illustration includes the conserved Lipid A domain, which
is a phosphorylated glucosamine disaccharide decorated with multiple fatty
acid chains. Lipid A is bonded to the core oligosaccharide section, which
includes hexose sugars such as keto-deoxyoctulosonate (Kdo), glucose (Glc),
mannoheptose (Hep), N-acetyl-D-glucosamine (GIcNac), galactose (Gal) and
phosphate groups. The length of the core domain determines rough LPS
nomenclature e.g. Re and Ra mutants are shown using red and pink skeletal
structures. Smooth LPS lipids additionally contain terminal O-antigen chain
units. Smooth LPS lipids can contain multiple repeats of the repetitive O-
antigen chain polymer unit. The length and composition of the O-antigen
chain varies among different bacterial species and depends on the bacterial
growth conditions. The image is based on work from the
10.1021/acs.jctc.8b01059 manuscript (DOI) [315].

Figure 16: Schematic illustration of the cell envelope of (A) Gram-negative
and (B) Gram-positive bacteria. Phospholipids are orange spheres attached to
two acyl chains, LPS lipids are orange ovals attached to six acyl chains and
terminal red square polymers, teichoic acids are green circle polymers
attached to orange heptagons, proteins are gray circle and oval composites,
and peptidoglycan is the repeating blue and purple hexagon-square
composite. (C) The chemical structure of the peptidoglycan unit. (D) The
chemical structure of teichoic acid. The different cell wall structures affect
how bacteria interact with the external milieu and thereby, their response to
the Gram stain procedure. The image source is: 10.1021/acs.chemrev.8b00538
(DOI) [59].

Figure 17: Host-pathogen interface interactions. The OMVs are liposomes
that contain an outer leaflet that is predominantly comprised of
lipopolysaccharide lipids and an inner leaflet that is predominantly comprised
of phospholipids. The OMVs deliver luminal cargo and virulence factors to host
cells as they pass through or fuse with the host cell (eukaryotic) plasma
membranes. The OMVs can enter cells through clathrin-dependent endocytosis
and alternative lipid-mediated internalization uptake pathways that involve
lipid rafts, but the precise biomolecular interactions that underpin these
processes are not entirely understood. Here, the OMV outer leaflet is cyan, the
inner leaflet is orange, the outer membrane proteins are yellow, the host
plasma membrane is pink, the lipid raft is blue and the clathrin molecules are
purple and red.



Figure 18: Overview of AMP membrane breakdown processes. (A) The AMPs
initially bind to the host membrane surfaces through a combination of
electrostatic and hydrophobic protein-lipid interactions. The AMPs adopt
orientations that maximize the number of attractive peptide-lipid electrostatic
and hydrophobic interactions. (B) In the barrel-stave model the hydrophobic
AMP moieties are oriented toward the encompassing acyl chains and this
creates a transmembrane water pore. The encompassing acyl chains maintain
a transmembrane orientation (i.e. align with the membrane normal axes) and
the AMPs oligomerize to effectively form a pore that has one hydrophobic
surface and one hydrophilic surface. (C) In the toroidal-pore model the
intracellular (inner) and extracellular (outer) monolayers distort when they
interact with the oligomerized AMPs and this creates a transmembrane water
pore whose surface is comprised of lipid headgroups and protein residues. (D)
In the carpet model the AMPs stay on the membrane surface and induce
membrane rupture as they change the structure of the membrane. The image
source is: 10.1007/s10989-009-9180-5 (DOI) [673].

Figure 19: The structure and simulations of the Polymyxin B antimicrobial
peptide. (A) The lipopeptide contains a cyclic component that is made of seven
amino acids and a non-cyclic section that contains three amino acids with
terminal fatty acid chain moiety. The lipopeptide contains five cationic
diaminobutyric acid (Dab) residues that impart a net (+5) positive charge to
the molecule and this positive electrostatic charge promotes PMB1
interactions with anionic lipids. The fatty acid chain, isobutyl group, and
phenylalanine side chains confer hydrophobicity and they promote PMB1
interactions with hydrophobic acyl chain moieties. (B-C) Results from
molecular dynamics simulations. The cholesterol concentration affected how
the simulated PMB1 peptides interacted with the multicomponent membranes.
There was indentation of the bilayers and an overall increase in permeability
when the cholesterol content was zero (B). There was significantly less
membrane damage when the membranes contained high concentrations of
cholesterol (C). The water molecules are red and white, the lipid tails are thin
cyan strands, the phosphate groups are orange and the polymyxin molecules
are represented using a space-filling van der Waals model. The image sources
are: Wikipedia Commons and 10.1016/j.bpj.2017.09.013 (DOI) [728].

Figure 20: Schematic representation of the non-bonded interaction energy
term components. (A) Lennard-Jones component that is used to approximate
repulsive electron overlap forces at short-range, and attractive dispersion
forces at long-range. The well depth is provided by ¢, and o is the distance
where the potential reaches its minimum. (B) Coulombic interaction energy
experienced by two point charged particles. Coulomb forces are appreciable at
both short- and long-ranges given that they decay according r~*, where r is
the distance between two charged particles.

Figure 21: The components of the molecular dynamics forcefield bonded

potential. (A) The component for bond stretching: atoms i and j oscillate about
an equilibrium bond distance 1. (B) The component for valence angles:
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atoms i, j, and k flex about an equilibrium valence angle 6,,. (C) The improper
torsion angle component: the angle between the two intersecting planes (ijk)
and (jkl) oscillates about an equilibrium improper torsion angle w,,. (D) The
proper dihedral component describes the angular spring between the planes
(ijk) and (jkl) that is formed of four consecutively bonded atoms.

Figure 22: Some of the different resolution levels that can be used in
molecular dynamics simulations. (A) An all-atom model for the DPPC lipid. The
carbon (cyan), oxygen (red), nitrogen (blue), and hydrogen (white) atoms are
represented here explicitly. (B) The GROMOS united-atom forcefield model for
the DPPC lipid. The hydrogen atoms are clustered into neighboring carbon
atoms to produce a less computationally demanding representation for the
DPPC lipid. (C) The coarse-grained Martini forcefield model for the DPPC lipid.
Here, multiple neighboring heavy atoms have been clustered into single
pseudo-atom interaction centers to substantially reduce the computational
load and make the lipid simulations less computationally demanding. The
Martini beads have the following color scheme: carbon tail (cyan), glycerol
(pink), phosphate (brown), and choline (blue).

Figure 23: Schematic illustration of a single particle (red circle) passing
through the borders of a periodic unit cell (black lines). The use of periodic
representations provides a more accurate mimic of bulk systems given the
removal of a well-defined, simulation cell boundary. The simulated atoms can
freely traverse the space-filling box and as they pass through one border of the
unit cell, they instantaneously re-enter through the opposite face.

Figure 24: [llustration showing how the leap-frog algorithm operates. The
computation of particle positions is shown with a blue line and the
computation of particle velocities is shown with a red line. Simulation time is
represented with a black arrow; the time step is user-defined and should be
calibrated to ensure that molecular dynamics simulations are both efficient
and realistic. There is a lack of synchronization between the particle position
and velocity calculations: if particle positions are calculated at t + nAt, then
particle velocities are calculated at t + %At, wheren € N.

Figure 25: Representative harmonic potential used to enforce (standard)
position restraints in molecular dynamics simulations. The potential energy
rises as particles drift from a user-defined reference position. The magnitude
of the potential energy is a function of the distance between the atom and the
user-defined reference position.

Figure 26: Coarse-grained models for PMB1 and Re LPS. (A) coarse-grained
model for PMB1. The Martini beads are shown as translucent spheres and the
underlying united-atom particles are shown as opaque spheres. The carbon
atoms are ice blue, the oxygen atoms are red, the nitrogen atoms are blue and
the hydrogen atoms are white. (B) The coarse-grained model for Re LPS. The
carbon tails are white, the glucosamine and glycerol groups are pink, the
phosphate groups are blue, and the remaining core saccharides are cyan. The
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Re LPS lipid is divided into its component Lipid A anchor and keto-
deoxyoctulosonate (Kdo) dimer sections for clarity.

Figure 27: Voronoi tessellation of the Re LPS bilayers that were simulated
with either Na* or Ca?* ions. (4, B) The two-dimensional Voronoi tessellations
were used to determine the projected surface areas distributions for the Re
LPS bilayers that were simulated with either (A) Na* or (B) Ca?* ions. The
mean area values are represented with dashed red lines and the standard
deviation (o) and skew (S) values are shown in the top right-hand corner. (C,
D) The observed data sets are compared with Gaussian distributed data sets of
equivalent o and S values. The linear association between the Gaussian (blue)
and observed data (black) sets was calculated with the standard Pearson
product-moment correlation coefficient ().

Figure 28: The properties of the Re LPS bilayers that with simulated with
either Na* or Ca?* ions. (A, B) The wave-number-dependent viscosity n(k) was
determined from the transverse current autocorrelation function for the Re
LPS bilayers that were simulated with either Na* (blue triangles) or Ca?*
(black squares) ions. The values of n(k) were determined by considering (A)
the entire Re LPS lipids in the viscosity calculations or by considering (B) only
their phosphate groups. The data were fit to the Padé approximant: n(k) =

(1 + bk?)™1; the fitting parameters (a, b) are shown with the optimized
expressions for n(k) (dashed lines). The inset image shows n(k) as k— 0. Blue
lines represent the simulations with Na* ions; black lines represent the
simulations with Ca?* ions. (C, D) The radial distribution functions (RDF) were
determined for the Re LPS phosphate groups in the simulations with (C) Ca?*
and (D) Na* ions. (E-H) The velocity autocorrelation functions C(t) were
determined for (E, G) the whole Re LPS lipids or for their (F, H) phosphate
groups. The data are presented for the bilayers with either (E, F) Na* or (G, H)
Ca?* ions.

Figure 29: The translocation of the PMB1 peptide through the bacterial
membrane mimetic depended on the type of ambient ions that were used to
conduct the molecular dynamics simulations. (A, B) The contact number for
interactions between the PMB1 Dab residue side chains and the Re LPS lipid
phosphate groups as a function of simulation time. The cut-off distance was
0.47 nm (the effective size of a coarse-grained Martini bead); data were
collated for all of the unbiased simulations. (A) The data for the bilayers that
were simulated with Na* ions and for (B) the bilayers that were simulated
with Ca?* ions. (C, D) The final-frame snapshots of the PMB1 peptides (green)
interacting with the Re LPS bilayers that were loaded with (C) Na* or (D) Ca?*
ions. The Re LPS lipids are colored according to Fig. 26 and the Na*, Ca?*, and
water particles are omitted for clarity. (E-H) The radial distribution functions
for the phosphate (black lines) and carboxylate (blue lines) groups of the Re
LPS lipids with respect to the position of the PMB1 Dab residue side chains.
The data are shown for both the (E, F) Na*, and (G, H) Ca?* ion simulation
systems. The data were sampled during the last 100 ns of simulation time.
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Figure 30: The PMB1 benzyl group penetrates the lipid core. (A) Position of
the Re LPS phosphate groups and a single PMB1 benzyl group are shown with
black and blue lines, respectively. The coordinates are with respect to the
bilayer normal and the distances are relative to the bilayer center. The
temperature was 310 K, the pressure was 1 bar and the membranes were
simulated with divalent Ca?* ions. (B) Side view snapshot showing how the
PMB1 peptide enters into the bacterial membrane mimetic; the perspective is
reversed relative to Fig. 30A for clarity. The inset image shows the two-
dimensional Voronoi tessellation for the Re LPS headgroups as the PMB1
peptide enters into the lipid core. The projected polygons are colored cyan if
they represent lipids that were adjacent to the embedded PMB1 benzyl group.
(C) The area per lipid for the five Re LPS lipids that were adjacent to the
benzyl group when it moved into the bilayer interior (3390-3480 ns). The
average projected surface area of the five Re LPS headgroups was higher than
the bilayer average (1.60 + 0.004 nm?).

Figure 31: The free energy profile for PMB1 translocation into the membrane
interior. The free energy profiles are shown for the simulation systems with (A,
C) Na* or (B, D) Ca?* ions. (A, B) The PMF profiles for PMB1 as a function of
distance from the bilayer center. The PMF profiles are shown for the system
temperatures: 320 K (solid cyan lines), 310 K (solid blue lines), and 300 K
(solid black lines). (C, D) The free energy profiles AG that were computed at
310 K were decomposed into entropic -TAS (solid red lines) and enthalpic AH
(solid green lines) components. The dashed black lines show the average
position of the Re LPS phosphate groups from the bilayer center. (E) The
configurational entropy for the PMB1 peptides was evaluated with the
Schlitter formula (S) and the quasi-harmonic approximations (Q) as a function
of distance from the bilayer center. The cyan and black lines show the data for
the simulations with Na* ions and the red and blue lines represent the data for
simulations with Ca?* ions.

Figure 32: The vitreous dynamics of the Re LPS lipids. The lipid dynamics of
the Re LPS lipids were different when they were simulated with (A-D) Na* and
(E-H) Ca?* ions. (A, E) The trajectories of single representative Re LPS
phosphate groups are presented here as red lines. The background snapshots
of the Re LPS lipids are shown with the scale bar to provide a sense of distance.
The background snapshots clarify how far the representative Re LPS lipids
have moved in Fig. 32A and Fig. 32E or in other words, how long the red line
trajectories are. The simulations were conducted with a simulation
temperature of 310 K and the analysis was performed for 1 us. (B-C, F-G)
Streamline visualization analysis for arbitrarily selected simulation frames to
capture the collective, heterogeneous relaxation dynamics that give rise to the
so-called “blob-and-channel” trajectories that are a hallmark of vitreous
systems. (D, H) The self-part of the van Hove correlation function that is
defined as the probability that a particle that is at r_0 at time zero can be
found at position r_0+t at time t. The figures show how the Re LPS lipid
trajectories change when they are simulated with different types of ions.
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Figure 33: The Re LPS diffusion was affected by the PMB1 peptides. (A, E) The
trajectories of single representative Re LPS phosphate groups was visualized
over the course of 1 us long umbrella sampling simulations. The sampled
windows correspond to the minimum of the 310 K PMF profiles from Fig. 31A.
The trajectories of single representative Re LPS phosphate groups are
presented here as red lines. The background snapshots of the Re LPS lipids are
shown with the scale bar to provide a sense of distance. The background
snapshots clarify how far the representative Re LPS lipids have moved in Fig.
33A and Fig. 33E or in other words, how long the red line trajectories are. (A)
When the Na* ion simulation system was simulated with a PMB1 peptide there
was a shift away from the clustered-continuous-time-random walk processes
(see Figure 32A for comparison) towards the localized oscillatory and rattling
motions that have been noted for ions in rigid crystals. (E) When the Ca?* ion
simulation system was simulated with a PMB1 peptide there was a more
significant shift away from clustered-continuous-time-random walk processes
(see Figure 32E for comparison) towards localized oscillatory motions. The Re
LPS phosphate groups were confined to membrane domains that were
approximately 2 nm? during the last 1 us of simulation time. (B-C, F-G)
Streamline visualization analyses of arbitrarily selected simulation frames to
clarify the collective Re LPS headgroup relaxation dynamics in the presence of
the PMBI1 peptide. The Re LPS trajectories are noticeably different from the
relaxation dynamics of the Re LPS phosphate groups when they were not
simulated with PMB1 peptides (see Figure 32B-C and Figure 32F-G for
comparison). There is an approximate order of magnitude reduction in the
headgroup displacements per simulation step (see adjoining color bars for
clarity). (D, H) Self-part of the van Hove correlation function for the Re LPS
phosphate groups. Comparisons between Figure 32D, 32H and Figure 33D,
33H reveal significant differences in the relative mobility of the Re LPS
molecules when they interact with a PMB1 peptide.

Figure 34: The lateral diffusion coefficients D(z) for the Re LPS phosphate
groups as a function of PMB1 distance from the bilayer center. The blue line
shows the data for the systems with Na* ions and the black line shows the data
for the systems with Ca?* ions. The diffusion coefficients D(z) were determined
by linear regression of the mean square displacement and error bars have
been included for each data point. The lateral diffusion coefficient axis is
logarithmic.

Figure 35: The PMBI1 peptide induces the glass-to-crystal transformation. (4,
B) Top view snapshots of the Re LPS bilayer when it was simulated with (A)
water and ions and (B) when it was simulated with water, ions and a PMB1
peptide. The Re LPS phosphate groups are presented as opaque blue spheres
and the other sections of the Re LPS molecules are depicted as translucent
spheres. The red quadrilaterals are used to draw attention to the crystalline
packing of the Re LPS phosphate groups. These membrane systems were
simulated at 310 K with Na* ions. (C-F) Voronoi tessellation analyses of the Re
LPS phosphate groups when they were simulated (C, E) with water and ions
and (D, F) when they were simulated with water, ions and the PMB1 peptide.
(D, F) The figures were created by sampling data from the umbrella sampling
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window that was positioned at the location of the 310 K PMF minimum (see
Figure 31A for reference). (C, D) The plots show the area per phosphate group.
The color scale bars are used for clarity. It should be noted that each Re LPS
lipid has two phosphate groups. (E, F) The plots show the number of whole Re
LPS lipids that are counted for each of the tessellated Voronoi cells (see
adjoining color scale bars for clarity). (F) The number of 3 Re LPS neighbors
(corresponding to 6 phosphate groups), is indicative of hexagonal packing,
which has previously been observed in experimental studies when Gram-
negative outer membrane mimetics were strained or placed under high
surface pressures [121]. (G, H) The heat capacity change as a function of
distance between the PMB1 peptide and the bilayer center. The data are
determined for the membrane that with simulated with (G) Na* and (H) Ca?*
ions.

Figure 36: (A) Final frame (top view) snapshot of the Gram-negative inner
membrane mimetic. The lipids have the following color scheme: POPE (cyan)
and POPG (white). (B) The visualization of the POPG number density during
the last 10 ns of the simulation. (C, D) The corresponding visualization of the
POPG number densities in the upper (C) and lower (D) bilayer leaflets.

Figure 37: (A) The distance of the upper leaflet POPE and POPG phosphate
groups from the membrane midplane is shown with a black line. The distance
between a single (representative) PMB1 peptide and the bilayer center is
shown with a blue line. (B) The area per lipid for each one of the upper leaflet
phosphate group at 460 ns i.e. the time when the PMB1 peptide passed
through the phosphate group domain. The arrow shows the pore that the
PMB1 peptide tunneled when it moved into the membrane interior. (C) Final
frame (side view) snapshot that shows the position of the PMB1 peptides in the
Gram-negative inner membrane mimetic.

Figure 38: (A) The POPG lipid number density during the last 10 ns of the
molecular dynamics simulation. The projected number density map is
decomposed into the contributions from the upper and lower leaflets (inset).
(B) The associated PMB1 peptide particle number density during the last 10 ns
of the molecular dynamics simulation. (C, D) The thickness of the upper bilayer
leaflet during the last 10 ns of the molecular dynamics simulation. The figures
show thickness data for the simulation systems with water and ions (C) and for
the simulation systems with water, ions and peptides. There is approximately
one PMBI1 peptide for every 27 phospholipids (D).

Figure 39: (4) Snapshot of a single unit of the E. coli 01 O-antigen chain that
was simulated with the GROMOS 53A6 united-atom forcefield. The atoms have
the following color scheme: carbon atoms (cyan), nitrogen atoms (blue),
oxygen atoms (red) and hydrogen atoms (white). (B) The corresponding
coarse-grained Martini forcefield model. (C) Comparison of the radius of
gyration values for the O-antigen chain units in the comparative united-atom
and coarse-grained molecular dynamics simulations. (D) Comparison of the
end-to-end lengths for the O-antigen chain units in the comparative united-
atom and coarse-grained molecular dynamics simulations. (E) The probability
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distribution for a single O-antigen chain bond length in the comparative
united-atom and coarse-grained molecular dynamics simulations. (E) The
probability distribution for a single angle in the comparative united-atom and
coarse-grained molecular dynamics simulations. The united-atom simulation
data are presented with black lines and the corresponding coarse-grained
molecular dynamics simulation data are presented with red lines.

Figure 40: (A) Side view snapshot of system OANT, with (B) a single smooth
LPS lipid extracted from the bilayer to show the orientation of the acyl chains
and 0-antigen chain sugars. The bond that anchors the O-antigen chain to the
Lipid A and core sugar domains is termed here as “0O-anchor” to make the
discussion of LPS headgroup orientation clearer. (C) Side view snapshot of
system MIXED_POPE, with (D) a single smooth LPS lipid extracted from the
bilayer to show the orientation of the smooth LPS acyl chains and O-antigen
chain sugars. The acyl tails are white, the phosphate groups are blue, the
glycerol and glucosamine sugars are pink, the core sugars are cyan, the
terminal O-antigen chains are red and the water molecules are omitted for
clarity. (E) The average order parameters that were calculated for the
backbone chain beads of the O-antigen chain sugars in systems OANT (black),
OANT_POPE (red), MIXED (green), and MIXED_POPE (blue). (F) The angle
distribution for the angle that was formed between the O-anchor bond and the
terminal O-antigen chain sugar in systems OANT (black), OANT_POPE (red),
MIXED (green) and MIXED_POPE (blue).

Figure 41: (A) Two smooth LPS lipids from system MIXED_POPE that were
initially separated by ~4 nm and subsequently formed a dimer after the
flexible O-antigen chains interacted with each other. (B) The corresponding
time series that shows the distance between the two smooth LPS lipids as a
function of sampled simulation time. (C) Snapshot of the large smooth LPS
lipid aggregate that formed after additional smooth LPS lipids interacted with
the smooth LPS lipid dimer. (D-E) The O-antigen chain number density in
systems OANT (D) and MIXED_POPE (E) after 500 ns. The inset images show
the corresponding top view snapshots.

Figure 42: (A) Top view snapshot of a larger analogue of system MIXED_POPE
after 15 us. The POPE and rough LPS lipids are omitted for clarity. The
periodic borders are represented with a thin blue line and the periodic images
are presented with different shades of red and cyan for clarity. The smooth LPS
lipids formed a single contiguous network that spanned the entire length of
the simulation cell. (B) The corresponding two-dimensional projection of the
O-antigen chain number density (sampled during the last 100 ns). (C)
Snapshot of the two O-antigen chain aggregates after 15 us of simulation time.
One of the O-antigen chain aggregates is green and the other one is orange.
(D) The number of glycan polymers in each of these O-antigen chain
aggregates.

Figure 43: (A) Surface tension-areal strain curves. (B) Lateral pressure

against areal strain. (C) Lateral pressure against membrane thickness. (D)
Lateral pressure against acyl tail order parameters. Data are shown for the
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OANT (black), OANT_POPE (red), MIXED (green), and MIXED_POPE (blue)
simulation systems. Readers should note that the dependent variables were
plotted on the y-axis in Figure 43A and Figure 43B even though it is customary
to plot the independent variable on the x-axis and the dependent variable of
the y-axis. The unusual presentation of the simulation data enables readers to
more easily identify the relationship between the applied mechanical stress
and the membrane stress response. The presentation of the simulation data
has been used to study for example, how phospholipid membranes respond to
applied mechanical stress [977] and it is therefore easier to compare the data
that are presented here with data from previous molecular dynamics
simulation studies.

Figure 44: (A) The average order parameters for the O-antigen chains in
system OANT as the lateral pressure component magnitude was incrementally
increased. The color scheme is as follows: -10 bar (red), -30 bar (green), -50
bar (blue), -70 bar (yellow), -90 bar (brown), -110 bar (cyan) and -130 bar
(violet). (B, C) The two-dimensional projection of the O-antigen chain particle
number density for system OANT when it was simulated with a lateral
pressure magnitude of 1 bar (B) and -130 bar (C). (D) The partial mass density
plots for system OANT when it was simulated with a lateral pressure of 1 bar
(red and blue lines) and -130 bar (cyan and green lines). The data for the lipid
phosphate groups are red and green and the data for the water molecules are
blue and cyan. (E) Snapshot that shows the spontaneous formation of a
transmembrane pore in system OANT when it is simulated with a lateral
pressure magnitude of -150 bar. The water particles are blue and the LPS
lipids follow the color scheme of Figure 40.

Figure 45: (A) The starting configuration for the smooth OMV equilibration
simulations. The POPE and POPG lipids are silver and the LPS lipids have the
color scheme: Lipid A and core sugars (cyan) and O-antigen chain (red). The
water and ions were removed to make the figure clearer. The periodic cell
boundaries are represented with a blue line. The periodic images are shown
using different color shades for clarity. The lipids were extended along the
bilayer normal to ensure that lipid clustering was not biased during the
molecular dynamics simulations. Water pores were maintained along the
(x/y/z) coordinate axes to facilitate interleaflet flip-flop for small
phospholipids. (B) Area per lipid for LPS (red) and POPE (magenta) lipids in
the smooth OMV (during the last 0.25 us); area per lipid for LPS (cyan) and
POPE (magenta) lipids in the rough OMV. (C) Membrane thickness for the
smooth (red) and rough (cyan) OMVs during the last 0.25 us; the average
membrane thickness values were 3.58 + 0.01 nm (smooth OMV) and 3.72 #
0.01 nm (rough OMV). (D) Area per lipid for POPE (orange) and POPG (green)
lipids in the POPE-POPG phospholipid vesicle during the last 0.25 us. (E) The
corresponding membrane thickness values for the POPE-POPG phospholipid
vesicle.

Figure 46: (A) Smooth and rough OMVs—atoms are represented using a

volumetric density map. The POPE and POPG lipids are silver and the LPS
molecules have the color scheme: Lipid A and core sugars (cyan), O-antigen
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chain (red). (B) The terminal sugar particles are assigned a BGR color based
on their radial height (extension). (C) The LPS molecule is divided into its
constituent Lipid A anchor, core sugar domain, and terminal O-antigen chain.
The Lipid A phosphate groups are green to clarify the position of the water-
lipid interface that is referenced throughout this chapter. The atoms are
represented with a volumetric density map (left) and a simpler ball-and-stick
model (right).

Figure 47: Schematic illustration of the smooth OMV that has been used to
understand the different topology of the rough and smooth OMVs. The LPS
lipids are orange, the outer leaflet POPE molecules are magenta and inner
leaflet lipids are omitted throughout. The radial heights are labelled as
follows: 1, (middle of the hydrophobic membrane core), r; (outer leaflet
phosphate group boundary), r, (termini of the LPS core sugars), and 1
(termini of the LPS O-antigen chains). The lipids are treated as axisymmetric
cylinders, for example, the LPS macromolecules have constant cross-sectional
area A, and volume V, = nt(r — 1,,)(d,/2)? where d, is the cylinder diameter
and 1y, <1 <13

Figure 48: (A-B) Smooth and rough OMVs at the POPC bilayer. (C) The axis
components of the radius of gyration for the rough OMV (bottom); the
phosphate group (BGR) height map after 2 us (top). (D) The POPC lipid shell
population for the rough OMV (5 nm cutoff). (E) The LPS-POPC contact number
(0.6 nm cutoff). (F) The fraction of simulation frames—during the last 0.25 ps—
with registered LPS-POPC contacts (per rough LPS molecule). (G) The axis
components of the radius of gyration for the smooth OMV (top); the phosphate
group (BGR) height map after 2 us (bottom). (H) The fraction of simulation
frames—during the last 0.25 us—with registered LPS-POPC contacts (per
smooth LPS molecule). (1) The POPC lipid shell population for the smooth OMV;
(]) the LPS-POPC contact number. Figures I-] and Figures D-E are measured
from the point of OMV-host membrane first contact and thus, are non-zero from
the start.

Figure 49: The area per lipid (BPR) color-height map for the upper
(extracellular) leaflet of the POPC bilayer after it was simulated with the
smooth OMV for 2 us. The mean area per lipid for this color-height map is 0.54

nm?; for comparison, the area per lipid is 0.68 nm? for POPC membranes that
are not strained.

Figure 50: (A) Smooth OMV and the host plasma membrane (5 nm shell). The
phosphate groups are assigned a (BSR) color based on their height (z-axis
coordinate); the ganglioside molecules are magenta. In the inset, the
ganglioside head groups are magenta and the lipid tails are white. (B) The
phosphate group (BGR) height map after 2 us. (C) The terminal sugar
particles are assigned are a (BGR) color based on their endpoint radial height.
(D) The LPS-GM3 contact duration projected onto the phosphate group
density map; the data are shown for the last 0.25 us of simulation time. (E)
The fraction of simulation frames—during the last 0.25 ys—that LPS-GM3
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contacts were registered for each one of the 615 smooth LPS molecules in the
OMV outer leaflet. Put simply, the graph shows the fraction of sampled
simulation time that each smooth LPS lipid was bonded to GM3 lipids (based
on a 0.6 cutoff). Once the LPS-GM3 interactions were formed they were almost
always maintained thereafter.

Figure 51: (A) Top view snapshot of the smooth OMV after it was simulated
for 2 us with the multicomponent plasma membrane model. (B) The same top
view snapshot with the smooth OMV removed for clarity. The ganglioside
lipids within 5 nm of the smooth OMV are magenta and the ganglioside lipids

beyond this 5 nm cutoff are white. The POPE, POPC, POPS, PIP2, cholesterol,
and sphingomyelin molecules are omitted throughout. The trajectories are
shown for the magenta ganglioside lipids during the last 0.25 us. The
trajectory paths were assigned colors to link the sampled simulation time with
lipid diffusion. The early frame positions are red, the late frame positions are
blue and the intermediary frame positions are white. (C) Snapshot of the
multicomponent plasma membrane when it was simulated without any OMVs.
The trajectories are shown for randomly selected ganglioside lipids during the
last 0.25 us. When Figures A-B are compared with Figure C it becomes
apparent that OMVs have the capacity to immobilize ganglioside lipids
through zipper-like interlinking at the wrapping interface.

Figure 52: (A) The POPE-POPG vesicle that was used in the control
experiments—the atoms are represented using a volumetric density map. The
POPE lipids are orange and the POPG lipids are green. (B) The phosphate
group (BGR) height map for the POPE-POPG vesicle after it bounced off the
host POPC membrane. (C) The endpoint conformation for the simulation of the
POPE-POPG vesicle and the multicomponent plasma membrane model. The
POPE molecules are orange, the POPG molecules are green, and the host
plasma membrane lipids that are within 0.5 nm of these lipids are purple. The
vesicle fused with the host plasma membrane to form a lipid-lined pore that
promoted lipid exchange between the plasma membrane and the POPE-POPG
vesicle.

Figure 53: Comparison of the smooth and rough OMVs at the plasma
membrane surface at 2 us of simulation time. The smooth OMV retained its
spherical shape and generated moderate curvature and the rough OMV lost its
spherical shape and generated larger curvatures at the spreading front.
Sphericity is denoted here with the ¥,, symbols.

Figure 54: (A) The ganglioside molecules (pink), which are confined to the
upper (extracellular) leaflet, create non-negligible stress in plasma
membranes that promotes spontaneous bilayer curvature. (B) The energy
barriers for bilayer reshaping are reduced when ganglioside molecules
aggregate and form clusters that have high intrinsic positive curvature. The
ganglioside lipid aggregates can reduce the line tension between membrane
domains of different widths due to their conical shape. (C-D) Schematic
illustrations showing how smooth OMV:s affect bilayer shape and composition.

19



The sphingomyelin are yellow rectangles, the PIP2 lipids are orange triangles,
the cholesterol molecules are inverted green triangles and the POPS, POPC,
and POPE lipids are omitted for clarity. After simulation time of At there a
significant number of (GM3) ganglioside molecules that have interlinked the
smooth LPS lipid headgroups (based on a 0.6 nm cutoff) and consequently,
there is a change in the local lipid composition and bilayer curvature. (E) The
abundance of ganglioside monomers and aggregates that were detected
during the last 100 ns of simulation time when the plasma membrane mimetic
was simulated without any OMVs.
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Chapter 1: Introduction

1.1 Biological Membranes (Overview and Current Understanding)

All living organisms contain biological membranes, which are semipermeable
barriers that regulate the movement of molecules from one region of space to
another region through passive and energy-dependent processes [1-6].
Cellular membranes form the boundary between the intracellular and
extracellular environments and delineate “self” and “non-self” biomolecular
interactions. Cellular membranes regulate the uptake of nutrients from the
outside of cells and at the same time they facilitate the export of waste
products from the intracellular cytosol [7-9]. Cellular membranes underpin
all basic cell functioning and they are inextricably linked to the most basic
concepts of living organism and the most basic definitions of “life”. It is
theorized that the very first lifeforms comprised little more than a single lipid
bilayer encasing a relatively unsophisticated matrix whose primary function

was to produce more phospholipids [10-13].

Cellular biological membranes can be sub-divided into three types:
eukaryotic cell membranes, prokaryotic cell membranes, and archaeal cell
membranes [14-16]. Eukaryotic cell membranes compartmentalize the
eukaryotic cellular cytosol and consist of a single phospholipid bilayer with a
complex combination of anchored integral membranes proteins (e.g.
transporters, linkers and receptors) and less tightly anchored peripheral
membranes proteins (e.g. enzymes, lipid clamps and electron carriers) [17-
19]. Prokaryotic cell membranes compartmentalize the prokaryotic cellular
cytosol and have an altogether different composition that varies from one
class of bacteria to another. Gram-positive bacteria contain a single
phospholipid bilayer that is interlinked with a thick wall of peptidoglycan,
whereas Gram-negative bacteria have two cellular membranes and a thin
wall of peptidoglycan that is wedged between them [20-22]. Archaeal

membranes contain unusually long phospholipids that can span the entire
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membrane normal axis and the lipids can contain two, rather than one,

hydrophilic headgroups [23-25].

Biological membranes also compartmentalize biological matter within
subcellular organelles and isolate subcellular organelle functions from the
encompassing cellular cytoplasm (Figure 1A). Subcellular lysosomes are
membrane-bound organelles that compartmentalize hydrolytic enzymes that
are capable of breaking down proteins, nucleic acids, lipids and complex
sugars at physiological temperature and pressure [26-28]. Lysosomes
contain an acidic lumen that activates the hydrolytic enzymes and enhances
the digestion of complex macromolecules into smaller and more useful
biomolecules. Mitochondria are perhaps an even more interesting
representative organelle since they are described as semiautonomous
double-membrane-bound organelles; they contain their own genome and
even have the capacity to independently generate chemical energy through
the action of enzymes [29-31]. Mitochondria are surrounded by two
membranes and the inner membrane has substantial infoldings called cristae
that resemble the textured outer surface of alpha-proteobacteria [32-33]. The
inner membrane and matrix contain high concentrations of the enzymes that
are necessary for aerobic respiration and the production of adenosine
triphosphate (ATP) [34-35]. Given that mitochondria resemble
proteobacteria, that they contain bacterial lipids and also that the inner and
outer membranes effectively compartmentalize cytosolic organelle functions,
it has been theorized that mitochondria were originally prokaryotic cells that
became endosymbionts living inside eukaryotic cells [36-38]. It is clear then
that lipid membranes effectively compartmentalize entire cellular cytosols
and also effectively delineate subcellular organelle functions from the

encompassing cellular cytoplasm.

Lipid membranes can also form vesicles either within or outside of
eukaryotic, prokaryotic, or archaeal cellular membranes. Vesicles are
nanoscopic spheric structures that consist of at least one lipid membrane that

encases a liquid or cytoplasmic core [37-39]. Vesicles form naturally within
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the plasma membrane during the expulsion (exocytosis), uptake
(endocytosis) and transport of organic and non-organic materials [40-41].
Vesicles are also formed within the cellular cytoplasm where they traffic
biomolecules from one organelle to another, or even from one subcellular
organelle to the cellular membrane where they are expelled into the
extracellular space and can subsequently enter into neighbouring cells or
rupture at a distance far away from the parent cells. Synaptic vesicles are
specialized nanocarriers that mediate interactions between adjacent neurons
and relay nerve impulses from one dendritic cell to another [42-43]. Synaptic
vesicles are located at the presynaptic terminal and fuse with one cellular
membrane when a signal moves along an axon. The neurotransmitters are
released into the synaptic cleft, where they can move into a neighboring

neuron and propagate the nerve impulse [44-45].

Vesicles are also formed within Gram-negative bacterial cell surfaces and
given their structure and composition, i.e. an external leaflet of
lipopolysaccharide (LPS) molecules and an internal leaflet of phospholipids,
the nanospheres are termed “outer membrane vesicles” (OMVs) [46-47].
OMVs are involved in diverse cellular functions including trafficking bacterial
cell signalling biochemicals, sequestering metals and biomolecules, nutrient
scavenging, forming bacterial biofilms and even mediating bacterial
pathogenesis [48-51]. OMVs traffic pathogenic cargo from parent bacteria to
host eukaryotic membranes where they move into the host cell cytosol and
induce disease transmission processes [52-53]. The precise nanoscopic
biomolecular interactions that underpin OMV entry into host cell cytosols are
not entirely understood, although some important insights will be provided

here in the penultimate chapter of this thesis.

While it is evident that the production of vesicles in vivo underpins
intercellular signalling, nutrient scavenging, subcellular trafficking, bacterial
pathogenesis, etc. It is important to appreciate that synthetic vesicles are also
regularly manufactured within laboratories and then they are used in

biochemical and biophysical studies. Homogeneous phospholipid vesicle
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suspensions can be prepared for example, through extrusion, sonification, or
alternatively, by injecting a suspension of phospholipids into water [54-55].
Phospholipid vesicles can be produced with relatively simple experimental
apparatus and used as suitable surrogates for more complex realistic

biological membrane systems.

Biological membranes regulate many important biological functions and they
contain multiple different types of constituent biomolecules. Cellular
membranes ordinarily contain at the very least, a complex combination of
lipids, proteins and sugars [56]. But cellular membranes can comprise tens of
thousands of different lipids and an inordinate number of different integral
and peripheral membrane proteins [57-58]. The interactions between these
lipids and proteins are only now beginning to be understood through the use
of molecular simulation methods [59] (Figure 1B) but the simulated
membrane mimetics have generally been overly simplistic. The models
generally contain just a few different types of proteins and lipids and the
membrane mimetics almost always omit important biomolecular matter such
as the glycocalyx or the “pericellular matrix”, which is a glycoprotein and
glycolipid covering that surrounds the cell membranes of some epithelia and
bacterial cells [60-62]. Characterizing the structure of such inordinately
complex cellular membranes has proved difficult and a clear, indisputable
representation of cellular membrane structure stills remains elusive [63].
Several rudimentary models were proposed to explain cellular membrane
structure in the 20t century and one of the better-known hypotheses was the
fluid mosaic model; now commonly known as the Singer-Nicolson model

(1972).

The fluid mosaic model assumed that cellular membranes contained different
types of lipids and proteins that would diffuse laterally from one position
within the membrane plane to another [64-65]. The constituent protein and
lipid molecules were hypothesized to be the “membrane mosaic tiles” that
together would form a contiguous bilayer structure. The proteins and lipids

were assumed to have considerable degrees of freedom and their lateral and
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rotational movement was effectively unrestrained in the fluid mosaic model
[66-67]. The proteins and lipids would undergo continuous lateral diffusion
and the membrane would be more or less homogeneous with the proteins
and lipids being uniformly distributed throughout the membrane bilayer.
This hypothesis was however, in conflict with publications from the 1970s
that proposed that cellular membranes were full of lateral heterogeneities
[68-70]. There was an increasing number of publications that contested the
hypothesis that lipids and proteins were arranged relatively uniformly
throughout biological membranes. Newer data suggested that there were
lateral lipid composition fluctuations within biological membranes and that
the membranes could not be both homogenous and equally fluid throughout.
It was becoming increasingly apparent that there was lateral segregation,
domain formation, and lipid-protein interactions associated with functional
membrane domains within biological membranes [71-72]. The mounting
evidence called into question the fluid-mosaic model and by 1997, Simons
and Ikonen popularized the raft hypothesis [73]. Lipid rafts are of special
interest here, since data form the penultimate chapter of this thesis suggests
that OMVs might promote the formation of curved lipid rafts, i.e. caveolae
[74], in mammalian membrane mimetics when they interact with host cell

(GM3) ganglioside molecules.
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Figure 1. Introduction to the structure of animal cells. (A) Eukaryotic
subcellular membrane-bound organelles (e.g. mitochondria and lysosomes)
that are encased by the peripheral cellular membrane. The cellular
membrane delineates “self” and “non-self” cellular interactions and the
organelle membranes isolate organelle functions from the encompassing
cytoplasmic space. The labels are used to show how the subcellular
organelles are distributed throughout the cellular cytoplasm. (B) Modern
molecular dynamics simulation graphics that represent how molecular
modelling has been used to understand the clustering of integral membrane
proteins. The integral membrane proteins are pink and the lipid membrane
is either blue or yellow. (C) Schematic representation of the eukaryotic
cellular membrane structure that includes a central liquid-ordered
membrane raft domain and two liquid-disordered membrane domains
either side of this. Saturated lipids are red and orange, unsaturated lipids
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are yellow and green, cholesterol molecules are the curved purple
structures. The macromolecules can be identified by the different refence
labels. Image sources are: Encyclopaedia Britannica, and papers (i)
10.1038/nrm.2017.16 (DOI) [75]; and (ii) 10.1021/jacs.5b08048 (DOI) [76].

The membrane raft model (Figure 1C) proposed that biological membranes
are interspersed with cholesterol- and sphingolipid-rich nanodomains that
are associated with specific cellular functions and cell signalling [77-79]. It
had already been theorized that under the appropriate conditions,
cholesterol could co-couple with saturated phospholipids to generate
cholesterol-rich liquid ordered domains within multicomponent membranes
[80]. The areas that were enriched with cholesterol would be termed liquid-
ordered (Lo) domains and the areas that were depleted of cholesterol
molecules would be termed liquid-disordered (Ld) domains. The raft
hypothesis was however, significantly more specific in its characterization of
lipid segregation and the composition of lateral membrane heterogeneities.
The membrane raft model posited that cholesterol molecules would pair with
sphingolipids, saturated phospholipids and proteins to form a structure
whose biophysical parameters differed from the encompassing membrane
environment [81-84]. The so-called “lipid rafts” would facilitate for example,

intercellular signalling and membrane budding events [85-87].

After more than a decade of research, it was concluded that lipid rafts are
transient functional structures or in other words, they are fluctuating
functional nanoscale assemblies that regulate important biological functions
[88]. Stimulated emission depletion microscopy (SEDM) has been refined to
analyze membrane structures on spatial scales as small as 10-20 nm [75].
When SEDM was used to analyze biological membrane mimetics it was found
that nanoscopic raft-like assemblies self-assembled through the attractive
interactions of proteins and lipids. The experimental groups observed
nanoscopic multicomponent biomolecular structures that consisted of small
(3-6 nm) membrane proteins with encompassing pools of lipids (~5 nm) [89].

Experimental evidence has generally corroborated the raft hypothesis and it
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is now considered to be a reasonably accurate representation of generic

mammalian membrane structure [90-91].

The raft hypothesis is however, inadequate for accurately describing the
composition of bacterial membranes and in particular, the inner and outer
membranes of Gram-negative bacteria [92-95]. Gram-negative bacteria are
prokaryotic lifeforms that are typically a few micrometers in length [96-98]
and unlike eukaryotic cells, the bacteria usually lack large membrane-bound
organelles in their cytoplasm such as mitochondria and a nucleus (Figure 2A)
[99-100]. Gram-negative bacteria have an unusual cell envelope that contains
two distinct lipid membranes and a layer of peptidoglycan that is situated
between them [101-102]. The inner and outer membranes of Gram-negative
bacteria differ in terms of chemical composition and structure but
importantly, neither membrane contains cholesterol or conventional
membrane raft structures [103]. The Gram-negative cell envelope is tripartite
and it contains: (i) the cytoplasmic membrane; (ii) the outer bacterial
membrane; and (iii) interstitial layers of peptidoglycan that are situated
between them [95,101]. The chemical composition of the inner and outer
membranes is already reasonably well-known [103] but the specific
organization and interactions of the constituent components still needs
clarifying [104-106]. In 2018 Turner et al. used atomic force microscopy
(AFM) to analyze the structure of the Escherichia coli peptidoglycan cell wall
[107]. It was previously assumed that the layers of peptidoglycan formed a
highly ordered crystalline material [108-110] but the AFM experiments
demonstrated that peptidoglycan is much less ordered than was previously
depicted and also, that the specify morphology of the peptidoglycan chains
depends of the shape of the parent bacteria. The form of the peptidoglycan
layer is itself still debated and the interactions of the peptidoglycan network
with bacterial membrane proteins (e.g. Braun’s lipoprotein) are even less
clear [111-112]. AFM techniques can be applied to evaluate the general
structural characteristics of peptidoglycan networks but the fast interactions

between membrane proteins and peptidoglycan molecules transpires on a
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spatiotemporal scale that is beyond the scope of conventional experimental

analysis methods [113].

Capsule
Cell wall
Plasma membrane

Bacterial Flagellum
Nucleoid (circular DNA)

Current Opinion in Structural Biology

Figure 2. The structure of Gram-negative bacteria. (A) Schematic illustration
that shows the structure of the Gram-negative bacterial cell organelles and
how these subcellular structures are encased by the peripheral cell
envelope. (B) Tripartite structure of the Gram-negative cell envelope that
includes the inner cytoplasmic membrane (black), the outer bacterial
membrane (black and pink), peptidoglycan (orange) and the anchoring
proteins that stretch across the periplasm (green and blue). The structure
was determined from complementary experimental and computational
analyses. The image sources are: Wikipedia Commons and paper
10.1016/j.sbi.2019.12.017 (DOI) [53].
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The coupling of outer membrane proteins both with each other and with
encompassing lipids has similarly been difficult to assess through
experimental analysis and their general oligomeric form is only now
becoming fully apparent [114]. Sansom et al. have recently combined
experimental analysis methods with computer simulation techniques to
understand how outer membrane proteins (OMPs) co-couple to form long
oligomeric networks that can span several tens of nanometers [115]. The
combination of computer simulation and experimental analysis techniques
enabled the group to elucidate the spatiotemporal organization of large OMP
clusters in unprecedented detail and also to understand how oligomeric

protein network might be formed in vivo.

The conventional understanding of the outer membrane of Gram-negative
bacteria is being revised due to mounting experimental and complementary
computer simulation data (Figure 2B) [116-118]. Clifton et al. showed for
example, that the position of outer membrane lipids can depend of the
availability of divalent (e.g. Ca2*) cations [119-120]. The intracellular and
extracellular lipids were found to rotate about the membrane midplane when
stabilizing divalent cations were sequestered with EDTA. Neutron reflectivity
and isotopic labelling were used to show that the outer membrane became
more homogenous once the stabilizing cations were displaced. The EDTA
chemical destabilized the asymmetric structure of the bacterial outer
membrane and the constituent LPS lipids flipped about the membrane
midplane into the intracellular leaflet, while the intracellular phospholipids
flipped about the membrane midplane into the extracellular leaflet. The
analyses showed that the outer membrane can become distorted if the

concentration of ambient divalent cations is low.

Bacterial membrane mimetics were also analyzed in 2013 via X-ray and
neutron reflectometry with grazing incidence X-ray diffraction and Brewster
angle microscopy [121]. It was found that bacterial membrane lipids (Rc LPS)
can form highly ordered monolayers that display an oblique hexagonal unit

cell at surface pressures of 20 nNm-! and above. The bacterial membrane
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mimetics adopted relatively rigid hexagonal grid packing that is comparable
to the packing of ions within a crystalline material [122-123]. Ongoing
experimental analysis continues to corroborate the inference that the Gram-
negative bacterial outer membrane can form a relatively rigid and ordered

structure under the right conditions [124-128].

Experimental data are also being used to understand how membrane-active
antimicrobial agents can affect the stability and morphology of bacterial outer
membrane mimetics [129-133]. Membrane-active antimicrobial agents (e.g.
antimicrobial peptides) are known to disrupt the integrity of lipid membrane
bilayers but the biomolecular and biophysical interactions that underpin
these disruption pathways still need to be elucidated [134-136]. Our
understanding of bacterial membranes is simplistic, but our understanding of
the interactions between bacterial membranes and antimicrobial agents is
even more basic. Neutron reflectometry was applied under multiple contrast
conditions to understand how the sugar groups of bacterial LPS lipids protect
the phosphate-rich inner core region from electrostatic interactions with
antimicrobial peptides. By analyzing the interactions of the protein antibiotic
colicin N with two different rough LPS lipids, it was shown that the uncharged
sugars of LPS lipids can block short-range electrostatic interactions between
cationic antimicrobials and the vulnerable anionic LPS phosphate groups
[137]. Lakey et al. used other interesting experimental methods to
understand the general biophysical and biochemical properties of colicin N
antimicrobial peptides and to rationalize how the peptides can destroy
pathogenic microbes [138-143]. Experiments were additionally applied to
investigate the interactions of antimicrobial polymyxin B molecules with
Gram-negative bacterial outer membrane mimetics. It was shown through
the combination of neutron reflectometry and infrared spectroscopy that the
physical state of the lipid matrix can regulate interactions with polymyxin
peptides [144-146]. The analyses revealed that the translocation of
polymyxin molecules into the bacterial outer membrane mimetics was
dependent on the phase transition of bacterial lipids (LPS) from the gel to the

liquid crystalline state. The insertion of polymyxin moieties into bacterial
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membranes is well-known to mediate disruptive interactions [147-150] but
the factors that control how effectively the hydrophobic moieties could
penetrate bacterial membrane cores was poorly understood before this
pioneering publication. Collectively, the experimental analyses are clarifying
the precise morphology of the Gram-negative bacterial cell envelope and how
antimicrobial agents and mechanical stress can affect its form and structural

stability.

From this thesis subsection it is evident that experimental techniques are
approaching a spatiotemporal scale where they can be used to detect the
presence of fluctuating nanoscale assemblies [75,89] and the overarching
morphology of the Gram-negative cell envelope [107-112, 92-96]. But it is
nonetheless challenging to understand many biomolecular interactions that
occur both within, and at the surface of, cellular membranes since the
interactions can occur on sub-nanometer and sub-nanosecond
spatiotemporal scales [116-117]. It can be challenging to understand the lipid
and protein interactions that drive the formation of flat lipid rafts, caveola,
and other fluctuating lipid heterogeneities without using some combination
of the most advanced experimental analysis techniques and the most
sophisticated complementary computational tools. Computer simulation
methods are necessary for understanding how mammalian membranes are
organized at the molecular level and for understanding the general
biophysical parameters of fluctuating lipid heterogeneities, e.g. lipid rafts
[114]. Computer simulation methods are necessary for understanding the
interactions that transpire within Gram-negative bacterial cell envelopes
including the interactions between the LPS lipids themselves [104,116-
117,119-120], the interactions between LPS lipids and antimicrobial agents
[105] and the properties of OMVs that erupt from bacterial cell surfaces [151].
There is a spatiotemporal resolution that is relatively inaccessible with
conventional experimental techniques and this scale is more easily accessed

with molecular dynamics simulation methods.
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1.2 Analysis of Biological Membrane Models with Molecular Dynamics
Simulations (Brief Overview)

Some of the first molecular dynamics simulations were conducted in 1957
and they were performed in an attempt to investigate the interactions of
simplistic hard-sphere models [152]. Seven years later (1964) more realistic
molecular dynamics simulations were conducted to simulate the interactions
of an argon liquid [153]. After a few more years of method development,
MacCammon et al. studied the interactions of a small bovine pancreatic
trypsin inhibitor protein over what now seems to be an unacceptably short
simulation timeframe (8.8 ps) but at the time was pioneering [154]. Protein
folding was being simulated for an entire microsecond in 1998 due to
exponential increases in computer processing power and the development of

more advanced molecular dynamics simulation forcefields [155-156].

The attention of the simulation community was at this time gravitating more
and more toward the simulation of lipid assemblies and lipid membrane
mimetics [59]. The first molecular dynamics simulations of biological
membrane mimetics focused on simplified lipid bilayers without explicit
solvent (water) [157], simplified lipid monolayers [158] and small lipid
micelles that were immersed in water [159]. The simulations provided some
interesting molecular level insights but it was desirable to simulate greater
spatiotemporal scales and effectively bridge the gap between experimental
and computational research. Larry Scott et al. began to combine molecular
dynamics simulation algorithms with Monte Carlo methods to develop new
simulation techniques that could be used to simulate unprecedented
spatiotemporal scales [160-162]. There was also an ongoing attempt to
correct any noted inadequacies of common molecular dynamics simulation
forcefields and make them more suitable for accurately representing the
properties of lipid membranes. Scientific research groups would produce one
relatively crude molecular dynamics simulation forcefield and once these
forcefields were benchmarked, they would be refined so that they could more
accurately mimic the properties of lipid membranes. The older simulation

forcefields could be used as an effective “starting-point” for generating

38



entirely new and improved types of molecular dynamics simulation

forcefields [163-167].

For example, Egberts et al. designed a model for DPPC lipids in 1994 that was
based on the GROMOS-87 molecular dynamics simulation forcefield [168].
The forcefield seemed to be inappropriately calibrated; when the DPPC lipids
were simulated at physiological pressure and temperature they inaccurately
transitioned into the gel phase. The partial charges on the GROMOS-87 lipids
were halved and the dihedral potential of the acyl chains was transformed
into the Ryckaert-Belleman representation to compensate for the incorrect
lipid properties. When the DPPC lipids were simulated with the
reparametrized forcefield they correctly entered into the liquid-disordered
Ld membrane phase [169]. Berger went on to systematically reparametrize
the original Egberts et al. parameters by applying the optimized potential for
liquid simulations (OPLS) parameters that were used in an earlier model for
DMPC lipids [170]. The Lennard-Jones parameters for CH2 and CHz moieties
were carefully calibrated to match known experimental data for volume and
heat of vaporization energies [171]. The Berger lipids became the “minimal
standard” in molecular dynamics simulations of lipid membranes [59]. The
method of using so-called Berger lipids for molecular dynamics simulations
is only now, decades later, becoming uncommon and scientists are opting
instead to use more sophisticated molecular dynamics simulation forcefields

such as the CHARMM36 all-atom forcefield [172-173,104].

The advent of sophisticated forcefields that explicitly represented each
constituent atom of a given biomolecule was pioneering and as molecular
dynamics simulations continued to produce more interesting biophysical
data, it was becoming clear that molecular dynamics simulation forcefields
could be modified to not only increase their overall accuracy but also to
increase their scope and spatiotemporal resolution. The molecular dynamics
simulation forcefields could be modified to effectively bridge the length and
timescale gaps between experimental and molecular simulation analysis

methods [114, 59, 174-178]. Rather than directly supersede sophisticated
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atomistic force fields, low resolution force fields, or coarse-grained force
fields, were designed to complement them [179-180]. The simulation
community could use sophisticated all-atom resolution molecular dynamics
simulation forcefields (e.g. CHARMM36) for the accurate reproduction of sub-
nanometer and sub-nanosecond biomolecular interactions in one instance,
and then lower resolution coarse-grained forcefields for the simulation of
biological processes on much larger spatiotemporal scales in another

instance (Figure 3A) [181].
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e.g. CHARMM e.g.Va grained model

— —_— —_—
A

S
&N

%

model e.g. Berger

United-atom ‘

Figure 3. The i 1ncreasmg scope ofmolecular simulation forcefields. (A)
Comparison between an atomistic CHARMM forcefield lipid model, a united-
atom Berger forcefield lipid model, a coarse-grained Martini forcefield lipid
model, and a supra coarse-grained forcefield lipid model. Each constituent
particle of the four lipid models represents a single molecular dynamics
simulation interaction center. (B) Sideview snapshots of a multicomponent
membrane being simulated with an atomistic or “all-atom” resolution
forcefield (AA), a coarse-grained resolution forcefield (CG), and a supra
coarse-grained resolution simulation forcefield (SCG). Transmembrane
proteins are cyan and green, water is blue and the other molecules
represent the simulation lipids. The image sources are:
10.1021/acs.chemrev.8b00460 (DOI) [114] and 2015.igem.org.

Molecular dynamics simulation forcefields are now being used to

complement experimental analysis techniques and resolve biological
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interactions that are barely accessible by any other means. Let us first
consider some of the molecular dynamics simulations that have provided a
clearer understanding of the Gram-negative cell envelope structure and the
interactions between Gram-negative membrane mimetics and AMPs (e.g.
Chrysophsin-3) or antimicrobial nanomaterials (e.g. buckminsterfullerene).
After that, we can consider how molecular dynamics simulation methods
have been used to provide insights into the nature of fluctuating lipid
heterogeneities, lipid rafts, the structure and interactions of mammalian
plasma membranes, and the self-association and self-assembly of biological
membrane proteins and lipids (Figure 3B). Taken together, the descriptions
will provide a brief account of how molecular dynamics simulations are being
used to elucidate the properties of membranes and the nature of membrane
interactions. It should be noted however, that this summary is kept
intentionally brief and more comprehensive reviews are regularly published

to provide more scope for biophysical scientists; for example, see [182-188].

The outer-membrane of Gram-negative bacteria has been simulated
repeatedly using high-level molecular dynamics simulation forcefields to the
point that scientific research groups have created an identity for themselves
that involves almost exclusively, the production and simulation of Gram-
negative bacterial membranes with specific molecular dynamics simulation
forcefields (e.g. the CHARMM suite of forcefields [189-197, etc.]). The Im
group are now firmly established as scientists who probe all aspects of the
Gram-negative bacterial inner and outer membranes using high-level
atomistic forcefields and to a lesser extent, the Martini coarse-grained
molecular dynamics simulation forcefield [104,198-210]. Early pioneering
simulation studies were used to determine the structural parameters of the
Gram-negative bacterial outer membrane; the group determined different
lipid packing parameters such as area per lipid, membrane thickness, lipid
acyl chain order parameters, and structure and orientation metrics for LPS
lipid moieties [211]. It was found that the area per lipid, membrane thickness,
and acyl chain order parameters depended on the size of the LPS chemotype

that was being simulated. Shorter forms of LPS lipids occupied less lateral
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surface area, tended to have less ordered acyl chains, and tended to have a
thicker hydrophobic core membrane domain. More interestingly, it was found
that the orientation of the terminal headgroup moieties also depended on the
local membrane environment. More heterogeneous membrane environments
promoted lipid headgroup splay, and the terminal LPS sugar moieties
stretched out over the membrane surface when they were surrounded by
small lipid molecules. This is interesting to note since LPS headgroup splay is
connected to LPS lipid clustering in chapter 4 of this thesis. Molecular
dynamics simulations are applied in chapter 4 and it is demonstrated that LPS
lipid headgroups can each other and progressively form LPS nanodomains

when they are surrounded by small lipid molecules.

The conformational dynamics of the terminal sugar moieties was later
investigated by the Im group with the CHARMM36 atomistic forcefield and
their simulation data was combined with NMR experimental data. The
simulations focused on homogenous single-component LPS lipid leaflets and
it was found that the LPS lipid headgroup moieties adopted an approximately
lamellar alignment. The tilt angle of the most peripheral LPS headgroup

saccharide moieties was determined to be as small as ~10° [212].

The Im group have also analyzed how outer membrane lipids interact with
outer membrane proteins. In 2014 they performed atomistic resolution
molecular dynamics simulations to analyze the interactions of outer
membrane phospholipase A (OmpLA) with Gram-negative outer membrane
lipids [213]. It is important to state here that the LPS lipid molecules were
relatively short form chemotypes that lacked terminal O-antigen chain
polymers. It is also important to clarify that OmpLA is a porin protein that
consists of a 12-stranded antiparallel beta-barrel with a convex and flat side
[214-218]. The convex side enables semi-specific secretion of biomolecules,
including bacteriocins. It was found that specific protein moieties (i.e. L1, L4,
and L6 loops) covered the interior of the protein barrel in a way that would
prevent pore function in vivo. It was resolved that the omitted LPS headgroup

sugar units would, in some way, intervene and through unaccounted for
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intermolecular interactions, they would affect the position of the protein
loops and thereby the function of the porin protein. The insights regarding
the effects of the lipid environment on the conformation of the embedded
protein are themselves quite interesting, but equally interesting data was
collated to assess how the embedded protein perturbed the encompassing
pool of lipids. It was found that the membrane protein changed the thickness
of the encompassing lipids. In general, energetically unfavourable mismatch
between transmembrane protein domains and hydrophobic bilayer cores is
relieved through adaptation of the bilayer (i.e. local thinning or thickening),
or through changes in protein orientation [219-222]. In the simulations
conducted by the Im group it was found that the local OmpLA membrane
thinning was location specific. There was more thinning adjacent to specific
portions of the embedded OmpLA protein surface, rather than the membrane
thinning being a simple function of distance between lipids and the protein

surface.

The Im group have, and still are, developing web-based tools that simplify the
construction of Gram-negative bacterial membrane mimetics (Figure 4A)
[223-227]. Users can select the relative abundances of upper and lower
membrane leaflet lipids and the CHARMM-GUI Membrane Builder [228-230]
will generate a structure file that has these molecules optimally organized
about the membrane midplane (Figure 4B). Further, one can opt to place
appropriately oriented outer membrane proteins between these lipids and
create a structure file that contains a complex combination of
(asymmetrically distributed) lipids and protein (Figure 4C). The associated
simulation parameter files are provided in a directory for users to unpack and
use one after another. Given the previous discussions of atomistic bacterial
membrane simulations it is unsurprising that the CHARMM-GUI modules
were at first only customized for the production of atomistic structure files
[231]. The scope of the CHARMM-GUI module has since increased beyond
atomistic simulations alone and the online modules now additionally simplify
the construction of lower resolution coarse-grained outer membrane

mimetics [151, 232]. What is more, the construction tools can be used to
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produce more than just flat lipid membranes or conventional planar lipid
geometries. The CHARMM-GUI Martini Maker was customized for the
production of spheric micelles, spheric vesicles, discoidal nanodisc
geometries, flat membrane mimetics and more. The module is used in the
penultimate chapter to assemble OMVs and is also used in chapter 4 to

generate flat bacterial membrane mimetics.

Figure 4. (A) Visualization of a complex asymmetric Gram-negative outer
membrane mimetics that were created with the CHARMM-GUI web-based
construction tool. (B) The Campylobacter jejuni outer membrane model that
was assembled with the CHARMM-GUI construction tool (top) and
simulated for a time At (bottom). (C) The E. coli outer membrane model that
contains the central vitamin B12 transporter (BtuB) integral membrane
protein. The structure was assembled with the CHARMM-GUI construction
tool (top) and simulated for a time At (bottom). The inner leaflet lipids are
blue, white, and black. The outer leaflet lipids are pink, orange, gold, cyan
and gray. The BtuB protein is yellow and green. The ions are represented as
small spheres that are not covalently linked with the lipids or protein
molecules. Image source: 10.1021/acs.jctc.8b01066 (DOI) [229].
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Lins et al. are also firmly established as a scientific research group who are
interested in understanding Gram-negative bacterial outer membranes
interactions with atomistic resolution molecular dynamics simulation
forcefields. The team were conducting atomistic resolution molecular
dynamics simulations as early as 2001 [233] that were based on the
AMBER95 [234] and GLYCAM_93 [235] forcefields with geometry
optimizations being conducted with Hartree-Fock self-consistent field
calculations at the 6-31G* level [236-239]. The simulations revealed that
calcium ions (Ca?*) were predominantly hexacoordinated with the anionic
LPS macromolecule phosphate groups. Most of the calcium ions were
confined to a domain ~2 nm thick in the inner core region of the LPS bacterial
outer membrane mimetics. The analyses showed that the bacterial outer
membrane mimetics were divided quite clearly into positively and negatively
charged domains along the membrane normal axis. The charge distribution
was the result of the calcium ions being spatially restricted to specific
portions of the Gram-negative outer membrane model [240]. Lins et al. would
subsequently analyze the structure and electrostatics of the Pseudomonas
aeruginosa bacterial outer membrane seven years later in 2008 [241-242].
The molecular dynamics simulations demonstrated that the LPS headgroup
and acyl chain domains can have different dynamic interactions; averaged
diffusion constants can be two orders of magnitude larger for the LPS
headgroup domains when comparisons are made with the anchoring acyl
chain domain. Molecular dynamics simulations were additionally conducted
in 2017 to analyze the interactions of polymyxin B molecules with the LPS
Lipid A anchor [243]. It is important to state here that Lipid A molecules
consist of just two glucosamine sugar units, in an B(1—6) linkage, with the
covalently bonded LPS acyl chains [244-245]. Lipid A is the smallest LPS lipid
variant and it is used to understand the interactions of larger and more
complex LPS lipid variants. The simulated polymyxin B antimicrobials were
able to interact with the vulnerable anionic Lipid A phosphate groups. It was
found that the polymyxin B peptides displaced the stabilizing cations from the
bacterial membrane surface when they interacted with the LPS lipid

membrane. The simulations provided atomistic level insights for processes
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that had already been hypothesized but had arguably never been proved
outright [147-150]. The positively charged polymyxin diaminobutyric acid
(Dab) residues interacted with the anionic LPS lipids phosphate groups and
this interaction induced bilayer damage as the stabilizing divalent cations
moved from the water-lipid interfacial domain into the simulated water
domain. The group have used molecular dynamics simulation methods to
make other equally important connections between ion valence and LPS lipid
properties [246-247]. The group has additionally produced molecular
dynamics simulation forcefields and analysis tools that help users to produce
and analyze LPS lipid molecular dynamics simulations; for example, see [248-

252].

Significantly more simulations were conducted to assess the interactions of
antimicrobial agents with Gram-negative bacterial membrane mimetics. The
field of antimicrobial agent based molecular dynamics simulations is vast and
it should be appreciated that the following publications, and the publications
that are listed in sections 1.7 and 1.8, constitute just a small fraction of all the
simulation studies that were conducted to understand some aspect of
antimicrobial interactions through the use of molecular dynamics simulation
forcefields. The coarse-grained Martini forcefield was used to study the
interactions of the antimicrobial peptide (AMP) Chrysophsin-3 (chrys-3)
[253-255] with different phospholipid bilayers, including an inner Gram-
negative (E. coli) bacterial membrane mimetic that contained POPE and POPG
lipids [255]. It was found that the chrys-3 molecules aggregated at the lipid
membrane surface and that this process induced the formation of large lipid
protrusions. The protrusions could be considered micellization
intermediates since the deformation would lower barriers for micellization
processes and membrane rupture processes [256-259]. The simulations were
corroborated by experimental data that suggested that chrysophsin
molecules primarily disrupted membranes through pore formation processes
[260-264]. It was also found the chrys-3 molecules had preferential
interactions for the negatively charged PG lipids within the two-component

Gram-negative inner membrane mimetics and it was hypothesized that
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electrostatic interactions could play an important role in the antimicrobial
action of the cationic chrys-3 peptide. This hypothesis was corroborated by
comparable Martini forcefield simulations that explored the interactions of
different types of cationic AMPs with different models for the inner
membrane of Gram-negative bacteria. Take for example, the coarse-grained
simulations that sought to clarify the interactions of a-helical Latarcin AMPs
[265-269] with the inner membrane of Gram-negative bacteria [270, 271].
The Gram-negative bacterial inner membrane mimetic was arranged with PE
and PG lipids an approximate 7:3 number ratio to make it comparable with
realistic bacterial membrane systems [272-274]. The a -helical AMPs
preferentially interacted with the anionic PG lipids despite the significant
surplus of neutrally charged PE lipids. It was similarly noted in experimental
studies that the Latarcin AMPs could induce membrane reorganization within
plasma membrane mimetics [275], that the Latarcin AMPs have preferential
interactions for anionic liposomes [276] and that the Latarcin AMPs can
induce membrane damage when they interact with host membrane lipids
[277-280]. The coarse-grained molecular dynamics simulations of the chrys-
3 and Latarcin AMPs corroborate data from chapter 3 where it is shown that
polymyxin molecules have preferential interactions for anioniclipids and that
these preferential interactions can induce lipid segregation, anionic domain

registration about the membrane midplane, and bilayer thinning processes.

Grossfield et al. performed comparable coarse-grained [281-282] and
atomistic [283] molecular dynamics simulations but this time the group
explored the interactions of the C16-KGGK cationic peptides [284-285] with
Gram-negative inner membrane mimetics that contained POPE and POPG
lipids in a 2:1 number ratio. Here again it was shown that the cationic AMPs
had preferential interactions with the anionic PG lipids despite their
relatively low concentration within the multicomponent bacterial membrane
mimetics. Over the course of a1 us simulation it was found that the C16-KGGK
molecules had approximately twice as many interactions with the negatively
charged PG lipids compared with the neutrally charged PE lipids. Unusually,

the simulations also found that the C16-KGGK molecules formed a large
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multicomponent cluster before interacting with the Gram-negative inner
bacterial membrane model and also, that this cluster induced crystalline
packing of the PG lipid headgroups when it was interacting with the
membrane surface. Higher resolution atomistic forcefield simulations were
recently conducted by Poger et al. (2018) [286] and the results not only
corroborate, but also add to, earlier simulations that demonstrated
preferential interactions between cationic AMPs and anionic PG
phospholipids. Through the application of molecular dynamics simulations, it
was found that the preferential interactions between cationic AMPs (aurein
1.2) and negatively charged lipids can not only promote spontaneous positive
curvature and bilayer buckling but also that cardiolipin lipids, which have
intrinsic negative curvature, have the capacity to suppress spontaneous
membrane curvature generation during membrane interactions with AMPs.
This is particularly intriguing since it might also explain why high
concentrations of cardiolipin lipids suppress the ability of Gram-positive
bacterial membrane-active proteins (e.g. daptomycin) to lyse, disrupt, or
porate bacterial membrane mimetics [287-291]. There have been several
other supporting computational and experimental publications that have
explored the membrane disrupting properties of aurein 1.2; for example, see

[292-296].

Molecular dynamics simulations methods were applied just a few years ago
to understand how antimicrobial Buckminsterfullerene (Ce¢o) nanoparticles
[297-299] interact with Gram-negative bacterial outer membrane mimetics
[300-301]. The simulations revealed that the LPS core saccharide units tend
to significantly impede the trajectories of the Ceo nanoparticles and that the
nanoparticles could only access the membrane core through bilayer surface
areas that were concentrated in shorter LPS chemotypes or PE phospholipids.
The Ceo nanoparticles preferentially gravitated towards the interfacial
membrane domains once they had penetrated the water-lipid interfacial
domain, i.e. to areas that divided distinct PE and LPS lipid clusters, suggesting
that the nanoparticles were line-active linactants [302-304] and that they

have the capacity to affect interfacial line tension energies. Taken together,
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the simulation studies are quite important since they corroborate simulation
data from chapter 4. Within chapter 4 it is demonstrated that cationic
polymyxin molecules have preferential interactions with negatively charged
PG phospholipids and further that these preferential interactions can change
the multicomponent membrane organization and structure. There is not only
the aggregation of negatively charged PG lipids within one leaflet of the
bilayer, there is also the association, registration, or alignment, of the PG lipid

clusters about the membrane midplane.

Gumburt et al. are also well-known for conducting molecular dynamics
simulations to analyze the biophysical properties of the Gram-negative
bacterial cell wall including the interactions between bacterial lipids and
outer membrane proteins [305-308], the properties of peptidoglycan chains
[309-310] and the properties of both the inner and outer Gram-negative
bacterial membranes. Pioneering publications sought for example, to
understand how the rod shape of Gram-negative bacteria is maintained
during peptidoglycan remodelling [311]. The team developed ad hoc models
for the constituent components of the Gram-negative bacterial cell wall to
demonstrate how peptidoglycan remodelling enzymes, including
transglycosylases, transpeptidases, and endopeptidases, are coordinated to
remodel a sacculus several orders of magnitude larger than the enzymes
themselves. The team found that top-down regulation of new peptidoglycan
insertion sites was unnecessary, and that local coordination of peptidoglycan
remodelling enzymes within discrete complexes was sufficient for
maintaining the rod shape of the Gram-negative bacterial sacculus. In 2018
Gumburt et al. performed additional molecular dynamics simulations to
assess how mechanical stress was distributed throughout the
multicomponent E. coli cell envelope (Figure 5A) [312]. Molecular dynamics
simulations were conducted to understand molecular level interactions
within three domains of the Gram-negative cell envelope: (i) the inner
membrane; (ii) the outer bacterial membrane; and (iii) the thin layer (or
layers) of peptidoglycan that is wedged between them. The molecular

dynamics simulation data was used to understand the mechanical properties
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of each distinct domain of the Gram-negative bacterial cell envelope and
comparisons were also made with complementary experimental data. The
area compressibility modulus (K4) [313-314] was used by Gumbart et al. to
quantify the mechanical strength of each distinct domain of the Gram-
negative bacterial cell envelope. There was close agreement between the
calculated and experimentally resolved K, values for the inner membrane
models, but there were significant discrepancies between the calculated and
experimentally resolved K, values for the outer membrane models. The
experimental analyses suggested that the inner membrane area
compressibility had a magnitude of 238 mNm-! and the molecular dynamics
simulations suggested that the inner membrane area compressibility had a
magnitude of 182 mNm-L. The molecular dynamics simulations predicted a
K, value of 524 mNm-! for the outer bacterial membrane model, whereas the
experiments predicted a significantly lower magnitude of 233 mNm-. The
addition or removal of integral membrane proteins was in general
insignificant and the area compressibility magnitudes would be at most
~10% different between comparative simulation systems that included
integral membrane proteins in one instance and excluded integral membrane
proteins in another. The layer of peptidoglycan was more complex and it was
found that K, values varied substantially with the degree of peptidoglycan
area expansion (Figure 4B-D). Compressibility magnitudes were negligible at
low area expansions but they would rapidly exceed values of 200 mNm-!

when the expansion was 100%.
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Figure 5. (A) Model of the E. coli cell envelope that includes the inner
cytoplasmic membrane (IM), the outer membrane (OM), peptidoglycan (cell
wall), Braun'’s lipoprotein (Lpp) and integral membrane proteins. The lipids
are gray and the peptidoglycan is blue and green. The proteins have
different color schemes to help readers to distinguish between them. (B-D)
Representative states of the peptidoglycan cell wall composite when it is
relaxed (B), stretched to 1.5x of its original area (C) and stretched to 2x its
original area (D). The glycan strands are blue, the peptide cross-links are
green and the borders of the simulation cell are represented as a thin
dashed line. The image sources are: 10.106/j.bbamem.2018.09.020 (DOI)
[312] and 10.1371/journal.pcbi.1003475 (DOI) [309].

Khalid et al. have conducted molecular dynamics simulations over the last
couple of decades to understand various aspects of the Gram-negative cell
envelope including interactions between lipids and outer membrane proteins
[315-319], the interactions between peptidoglycan and outer membrane
proteins [320-321], and the interactions between various components of the

Gram-negative cell wall and AMPs and antimicrobial nanoparticles [301]. In
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2019 the group used molecular dynamics simulation methods to understand
how the E. coli inner membrane TolR protein interacts with periplasmic
layers of peptidoglycan. It was demonstrated that TolR protein can bind the
periplasmic peptidoglycan through electrostatic interactions when it
transitions from an initially compressed conformation that is of one length, to
an extended conformation that is approximately twice as long. The
complementary interactions of the outer membrane OmpA proteins and the
inner membrane TolR proteins with the periplasmic peptidoglycan can help
to maintain the (peptidoglycan) cell wall structure [322]. The Khalid group
have also conducted molecular dynamics simulations to understand how the
TolC-AcrABZ efflux pump [323-324] simultaneously interacts with the inner
and outer membranes of Gram-negative bacteria [325]. The mesoscale
molecular dynamics simulations were conducted to understand how some of
the largest efflux pumps can interact with the inner cytoplasmic membrane,
the outer LPS membrane, and various integral membrane proteins all at the
same time and also, how these interactions might affect the properties of the
Gram-negative cell envelope. It was discovered that there was strong
coupling between the trajectories of the proteins and lipids within the outer
bacterial membrane but perhaps more interestingly, that the lipids were
much less encumbered within the inner cytoplasmic membrane. It was
additionally ascertained that the embedded membrane protein moieties
affected the local membrane composition. Cardiolipin lipids were for
example, significantly enriched within the vicinity of the multidrug efflux
pump (AcrBZ) and also within the vicinity of the AqpZ water channels [326-
327].

The Khalid group also used molecular dynamics simulation methods to
understand how polymyxin molecules interact with both the inner and outer
membranes of Gram-negative bacteria [328-329]. It was found that the outer
membrane core saccharide sugars encumbered the antimicrobial polymyxin
peptides and prevented them from passing through the phosphate group
domain and into the hydrophobic bilayer interior or the “membrane core”.

The outer membrane was not significantly disrupted and it was difficult to
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extrapolate to obvious models for AMP-induced outer membrane breakdown
processes. In stark contrast, it was found that the polymyxin molecules
clearly affected the integrity of the inner membrane by reducing its
transmembrane width. The polymyxin hydrophobic moieties entered into the
bacterial membrane core as the polymyxin molecules adhered to the inner
bacterial membrane mimetic surface and there was obvious correlation
between the position of the attached polymyxin peptides and areas of
membrane thinning. The localized reduction in membrane width and the
associated increase in membrane permeability would inevitably affect bilayer
stability on longer timescales [292,330-331]. It is quite interesting to note
that Dupuy et al. showed, through the use of molecular dynamics simulations
and X-ray and neutron scattering techniques, that colistin also contributes to
the destabilization of the inner membrane of Gram-negative bacteria by
affecting membrane parameters such as acyl tail order values and bilayer
bending moduli [332]. These results are corroborated by molecular dynamics
simulation data in chapter 4. We will see that polymyxin molecules tend to
thin biological membranes in coarse-grained molecular dynamics

simulations when they are simulated on long multimicrosecond timescales.

The Khalid group developed coarse-grained Martini LPS lipid models to
overcome the limitations of computationally demanding atomistic resolution
molecular dynamics simulation forcefields and more effectively bridge the
gap between experimental and simulation spatiotemporal scales [151,301].
The LPS lipids were initially simulated with atomistic resolution molecular
dynamics simulation forcefields and the resulting data were used to calibrate
corresponding coarse-grained Martini forcefield parameter sets. The coarse-
grained models were able to mimic the atomistic reference molecular
dynamics simulation data remarkably accurately. The coarse-grained LPS
area per lipid values were within 1-2% of the reference atomistic simulation
values and the membrane thickness and acyl tail order parameters were
within 10% and 0.2 of the target atomistic simulation data. The coarse-
grained model was used to study the interactions of Csp nanoparticles with

Gram-negative bacterial outer membrane mimetics and it was found that the
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LPS lipid core saccharide domain was an effective barrier to the hydrophobic
Ceonanoparticles. The Cso nanoparticles were unable to pass through the LPS
core saccharide domain; however, the nanoparticles were able to enter into
the bacterial membrane hydrophobic core through “bilayer defects” or in
other words, membrane domains that were depleted of LPS lipid. The Ceo
nanoparticles could pass through areas of the bilayer surface that were
depleted of LPS lipids and contained for example, small quantities of PE
phospholipid. After the Cso nanoparticles had entered into the hydrophobic
membrane core domain they acted as line-active linactants [333-334]and

moved toward the interfacial membrane domains.

The coarse-grained models were subsequently integrated into the CHARMM-
GUI Martini Maker module and have been used to generate LPS lipid micelles
(Figure 6A-C), LPS lipid nanodiscs, LPS lipid membranes (Figure 4D), LPS
OMVs (Figure 4E) etc. [151] The online Martini Maker module is used in the
penultimate chapter of this thesis to generate both smooth and rough OMV
simulation systems. The CHARMM-GUI Martini Maker module is also used in
chapter 4 to create various Gram-negative bacterial membrane mimetics that
contain different concentrations of smooth LPS lipids in the extracellular

leaflet.
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Figure 6. Implementation of the CHARMM-GUI Martini Maker module. (A)
The initial random placement of 20 LPS lipids and the subsequent self-
assembly of the lipids into a unilamellar or bilamellar bacterial membrane
fragment. (B) The initial construction of an LPS micelle and the subsequent
transformation of the micelle to become a unilamellar bacterial membrane.
(C) The initial construction of an LPS micelle with embedded OmpF protein
and the subsequent transformation of the micelle into a multicomponent
unilamellar bacterial membrane. (D) The final frame snapshots of molecular
dynamics simulations of asymmetric bacterial membrane models that were
generated with the CHARMM-GUI Martini Maker. The bilayers contained only
lipids (OM) or lipids and the OmpA integral membrane protein (OM-OmpA).
(E) Snapshots of OMV simulation systems that contained only lipids or lipids
and an embedded outer membrane protein. The systems were made with the
CHARMMS-GUI Martini Maker module. The proteins are red, the acyl tails are
yellow, the core sugars are violet, the choline and phosphate groups are blue
and purple and the unsaturated bonds are cyan. Image source:
10.1002/jcc.24895 (DOI) [151].

Let us now move away from Gram-negative outer membrane molecular
dynamics simulations and consider how molecular dynamics simulations
have been used to understand the formation of lipid raft-like structures. We
can first consider pioneering coarse-grained simulations that explored the
spontaneous formation of Lo and Ld domains in ternary membrane mixtures
of cholesterol, saturated phospholipids and unsaturated phospholipids.
Risselada and Marrink conducted molecular dynamics simulations in 2008
with the Martini coarse-grained forcefield to analyze the molecular level

interactions that can induce the spontaneous formation of Lo and Ld
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nanodomains within multicomponent plasma membrane mimetics [335]. It
was found that uniformly distributed tripartite membranes progressively
sequestered into two distinct nanodomains through stepwise self-associating
lipid-lipid interactions (Figure 7A). The cholesterol molecules would
predominantly co-couple with saturated phospholipids to progressively form
raft-like assemblies and the unsaturated lipids would in turn, progressively
form liquid-disordered (Ld) nanodomains (Figure 7B-C). It seemed that
cholesterol’s preference for saturated lipid chains drove phase segregation
and the formation of raft-like assemblies that within these molecular
simulations, were cut off by relatively diffuse borders. It was previously
assumed that the Lo and Ld interface was rather sharply defined [336-338]
but the coarse-grained Martini forcefield molecular simulations revealed that
the boundaries were instead broad and dynamic. The work is corroborated
by atomistic forcefield simulations that have assessed the biophysical
properties of liquid-ordered nanodomains within multicomponent
membranes [339-340]. The simulations were starting to demonstrate how
molecular level interactions can induce phase segregation and the formation
of lipid raft-like structures. More sophisticated phase diagrams were
subsequently generated for binary lipid/cholesterol simulation systems as a
function of simulation temperature using the coarse-grained Martini
forcefield [341-342]. Carpenter et al. produced a ternary lipid phase diagram
[343-344] that mimicked experimental phase diagrams [345] remarkably
accurately, showing how molecular dynamics simulations can be used to
understand how membrane phase behaviour is modulated. The formation of
fluctuating lipid heterogeneities is being probed on unprecedented
spatiotemporal scales and the resulting simulation data are being combined
with results from experimental analysis techniques to produce a more
comprehensive understanding of lipid raft structure and formation [346-
348]. Indeed, the number of simulations that have explored the spontaneous
production of liquid-ordered nanodomains is now quite significant and it has
been found through molecular dynamics simulations, that phase segregation
is affected by lipid saturation [349-353], hydrophobic mismatch [354], line-
active linactants [355], lipid chain length [356], transmembrane peptides
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[357-358], cholesterol flip-flop processes [359-360] lipid heterogeneity
[361] and more.

Molecular simulations have also been used to understand how glycolipid co-
coupling can induce the formation of raft-like nanodomains whose
biophysical properties differ from the encompassing membrane
environment. The Im group conducted all-atom molecular dynamics
simulations to understand how different concentrations of (GM1) ganglioside
molecules can affect the biophysical parameters of two-component lipid
membrane systems (Figure 7D) [362]. The membranes contained three
different concentrations GM1 lipids (10%, 20%, and 30%) and higher
concentrations of POPC phospholipids (90%, 80%, and 70%). The all-atom
molecular dynamics simulation data demonstrated that higher GM1 lipid
concentrations can induce tighter lipid packing and at the same time,
decrease energy barriers that would otherwise impede localized positive
curvature generation. The ordered clusters segregated from the unordered
membrane domain and formed a large percolated cluster when the GM1
concentration was high (i.e. 30%) and the simulation temperatures did not
exceed a temperature of 330 K. Sansom et al. have demonstrated that positive
curvature generation can be further enhanced when ganglioside molecules
are simulated in multicomponent membranes that have multiple different
types of lipid molecules (cholesterol, PIP2, GM3 lipids etc.) [363]. When
multicomponent membranes contain a diverse combination of both
intrinsically positively and intrinsically negatively curved lipids, the
intrinsically positively curved lipids can move to positively curved membrane
domains and the intrinsically negatively curved lipids can move to negatively
curved membrane domains and this process can lower local energies barriers
that would otherwise impede spontaneous curvature generation and
membrane reshaping processes [364]. Taken together, the molecular
dynamics simulations are beginning to clarify why the outer rims of caveolae
are highly concentrated in ganglioside lipids, whereas the central sections
contain unusually high concentrations of cholesterol [365-367]. The self-

association of ganglioside molecules tends to increase local preferences for
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positive curvature generation and this phenomenon by itself causes plasma
membranes to expand into the intracellular cytosol [368]. But the
spontaneous production of a negatively curved inner plasma membrane
domain is energetically unfavourable and consequently, the intrinsically
negatively curved cholesterol molecules move into the expanding inner
plasma membrane leaflet. These molecular level insights might help to
explain why pathogens and pathogenic products have been found to enter
into the host cell cytoplasmic space as they bind ganglioside lipid molecules
and through this interaction, induce the aggregation of ganglioside molecules
and the production of highly curved caveolae [368]. But this will be discussed
in more depth in section 1.4.4 when glycolipids and ganglioside molecule

properties are explained more thoroughly.
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Figure 7. Understanding the properties of lipid rafts through the application
of molecular dynamics simulations. (A) Formation of separate liquid-
ordered (green) and liquid-disordered (red) nanodomains that are enriched
in saturated lipids (green) and cholesterol (black), or polyunsaturated lipids
(red). (B) Top view snapshots showing how the cholesterol molecules were
distributed within the multicomponent membrane simulation system and
the (C) radial distribution function for the cholesterol-cholesterol
intermolecular separation distances. (D) Snapshots of GM1 ganglioside and
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POPC lipids that were simulated in two-component membranes. The
membrane became more rigid and raft-like as the concentration of the
ganglioside molecules was increased from 10% through to 30%. The Image
sources are: 10.1073/pnas.0807527105 (DOI) [335] and
10.1016/j.bpj.2016.09.021 (DOI) [362].

Perhaps it is even more impressive that molecular dynamics simulation
forcefields were used to understand how lipids interact with integral
membrane proteins and how these protein-lipid interactions can change the
properties of the local membrane environment [369-371]. Understanding
such elementary interactions is necessary for understanding how molecular
self-association processes might take an otherwise homogeneous membrane
toward a state of significant heterogeneity. The simulations were performed
using either high-level atomistic forcefields, lower resolution coarse-grained
forcefields, or even multiple different forcefields used one after another [372-
373]. The protein-lipid simulations provided insights into previously poorly
understood interactions e.g. reversible lipid-protein binding events that can
occur on timescales of 10-100s of microseconds [114]. Arnarez et al
identified six protein binding sites for cardiolipin when it interacts with
respiratory chain complex cytochrome bcl through the application of
molecular dynamics simulation methods [374]. Other notable publications
that have assessed protein-lipid interactions within biological membrane
mimetics include simulation studies by Sansom et al; for instance,
simulations that identified the binding sites of PIP2 molecules on the inwardly
rectifying potassium (Kir) channels [375-376] and the binding sites of PIP3

molecules on the pleckstrin homology domain [377].

Molecular dynamics simulation methods have also been used to understand
how protein oligomerization processes can occur in model membranes
[59,114]. Experimental analysis data was combined with computer
simulation techniques to determine the organization of syntaxin clusters
within plasma membrane mimetics [378] and show at the same time, how the
oligomerization interactions are mediated by interactions between the PIP;
lipids and the syntaxin protein surface. Periole et al. have similarly performed

coarse-grained molecular dynamics simulations to show that G protein-
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coupled receptors (GPCRs) [379] can cluster in model membranes and the
group also showed that the localized adaptation of the membrane bilayer was
most pronounced near transmembrane helices 2, 4, and 7. Comparable
simulation studies were conducted to assess the properties and interactions
of bacterial membrane proteins, i.e. the family of OMPs. In one instance, it was
shown that OmpF proteins can self-associate and form oligomers that contain
a few dozen membrane protein monomers [115]. In another instance it was
shown that the combination of hydrophobic mismatch and curvature-based
sorting might drive protein assembly in phospholipid vesicles [318].
Domanski et al. found that transmembrane WALP helical peptides can
amplify non-ideal lipid mixing and Lo/Ld domain segregation processes
[351]. The group simulated multicomponent plasma membrane mimetics
that contained the following biomolecules: WALP peptides, saturated lipids,
unsaturated lipids and cholesterol. The multicomponent membrane
separated into distinct liquid-ordered and liquid-disordered nanodomains
and interestingly, there was a high concentration of the transmembrane
WALP helices within the liquid-disordered nanodomains. Ackerman and
Feigenson similarly observed the growth of nanodomains around WALP
transmembrane peptides [357] and further, that there is cross-correlation of

the Lo/Ld nanodomains about the membrane midplane.

Newer generation molecular dynamics simulation forcefields are
increasingly being used to investigate unprecedented spatiotemporal scales
and obtain biomolecular level insights to explain previously poorly
understood biological membrane phenomena. We have seen here how
molecular dynamics simulation forcefields have been used to better
understood fluctuating heterogeneities within biological membranes, the
structure and characteristics of the Gram-negative bacterial cell envelope,
specific protein-lipid interactions and the self-association of lipids and
proteins. The same molecular dynamics simulation forcefields will be applied
here throughout this work to understand previously unexplored

biomolecular interactions between proteins, lipids, and lipid membranes and
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thereby explain some long-standing uncertainties such as the different

uptake rates of smooth and rough OMVs at host cell surfaces.

1.3 Main Aims of the Introduction

The primary focus of this thesis is OMVs and more precisely, how OMVs
interact with eukaryotic plasma membrane models. Molecular dynamics
simulation methods are used in this thesis to investigate the interactions of
different types of OMVs with mammalian plasma membrane mimetics. The
molecular dynamics simulations are conducted in order to determine the
biophysical parameters of OMVs at host cell surfaces and to understand why
some OMVs (i.e. smooth OMVs) pass through host cell membranes more
effectively than others (i.e. rough OMVs) [52]. The OMVs contain three
different types of lipid and the host cell mammalian membranes contain
seven different types of lipid that are distributed asymmetrically about the
membrane midplane. It is important that readers understand the chemical
properties of each constitute membrane lipid and for this reason, each lipid
will be mentioned in the forthcoming discussions. The chemical structure of
each lipid type will be provided with an exploration of how the lipids have
been simulated with different molecular dynamics simulation forcefields. For
example, the structure of ganglioside molecules will be described in section
1.4.4 and there will also be a subsequent discussion of how ganglioside
molecules have been simulated with molecular dynamics simulation
forcefields [361-362]. Additional biomolecules (e.g. hopanoids) will be
mentioned to provide a more thorough overview wherever it seems to be

appropriate and beneficial for the readers of this thesis.

Chapters 3 and 4 focus on the interactions of Gram-negative bacterial
membranes. The molecular dynamics simulation forcefields are applied to
understand how lipid-lipid interactions can affect membrane mechanical
strength parameters and also how bacterial membranes can interact with one
of the simplest and most effective AMPs: polymyxin B1 (PMB1) [328,130]. It

is therefore appropriate to discuss the structure of LPS lipids in section 1.4.5
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and also to discuss how LPS lipid interactions have been investigated through
the application of molecular dynamics simulation forcefields. Readers must
be fully aware of the general compositional characteristics of LPS lipids and
also which chemical moieties distinguish so-called “smooth” LPS lipid
[242,315] variants from shorter forms of “rough” LPS lipids [233,241]. Other
than this, it is necessary to discuss bacterial infections and multiple-drug
resistant bacteria to explain why polymyxins are becoming increasingly
necessary [147-150] for treating nosocomial infections and why they are
being studied more and more with computational [180,329] and
experimental analysis methods [144-145]. The precise chemical structure of
the PMB1 peptide will be provided in section 1.8 and there will also be a
detailed description of AMPs [187], the Gram staining process [95], the
asymmetric structure of the Gram-negative cell envelope, and the asymmetric

structure of both smooth and rough OMVs [20].

1.4 Lipids (Structure and Simulations)

1.4.1 Phospholipids

Phospholipids have a relatively simple structure; they contain hydrophobic
acyl chains that are covalently bonded to a hydrophilic domain of a glycerol
or sphingoid base and variable terminal chemical moieties [380-381].
Phosphatidylcholine (PC) is an example of a phospholipid that comprises the
majority of plant [382-383] and animal membranes and the lipid contains two
hydrocarbon acyl chains that are covalently bonded via an ester linkage to
glycerol, a negatively charged phosphate group, and a terminal positively
charged choline section (Figure 8A). The composition of the molecule makes
it zwitterionic at physiological pH and it also confers an overall neutral
electrostatic charge. The intracellular leaflet of mammalian plasma
membranes additionally contains a moderate amount of the
phosphatidylserine (PS) lipid [384-386], which is structurally similar to PC
lipid but rather than there being a terminal positively charged choline section,

there is a terminal serine moiety instead (Figure 8B) [387].
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Bacterial membranes are particularly abundant in the
phosphatidylethanolamine (PE) lipid molecule that contains two acyl chains
covalently bonded through an ester linkage to central glycerol and phosphate
groups and a terminal ethanolamine moiety (Figure 8C) [388-389]. The lipid
has zwitterionic chemical characteristics and neutral electrostatic charge at
physiological pH but the presence of the terminal ethanolamine group affects
the physical properties of the molecule such that PC and PE lipids have
different lateral diffusion constants, intramolecular motion parameters,
bilayer packing properties, preferred bilayer orientation angles and different

elasticity moduli [390].

Phospholipids have an overall positive or negative electrostatic charge when
the phospholipid headgroups are terminated with neutrally charged chemical
compounds. The phosphatidylglycerol (PG) lipid is a minor component of
plant [391-392], animal [393] and bacterial membranes [394] and is similar
to PE in terms of structure and physical parameters but the presence of a
terminal glycerol group gives the lipid an overall negative electrostatic charge
(Figure 8D). The dimeric cardiolipin (CL) molecule contains two PG
molecules connected through a central glycerol backbone and two-fold net
negative charge (at physiological pH). Cardiolipin molecules [395] have an
unusual headgroup-to-acyl-chain cross-sectional area ratio and unusual
biophysical interactions within biological membrane mimetics such as
preferential interactions with Gram-negative integral membrane proteins
[374,396] and the capacity to suppress spontaneous membrane curvature

generation [286].

It is important to state here that PC, PS, PE, and PG phospholipids can be
bonded to different combinations of acyl chain moieties [397]. The
phospholipid headgroups can be bonded to acyl chains that differ in terms of
saturation/unsaturation and the number of constituent carbon atoms. POPC,
POPS, POPE and POPG phospholipids are usually used in molecular dynamics

simulations to better understand biological membrane mimetics
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[59,114,370,]. The molecules contain one saturated acyl chain and one
monounsaturated acyl chain, i.e. the 16:0/18:1 acyl chain bonding scheme.
The POPC, POPS, POPE, and POPG molecules are used throughout this thesis
to mimic realistic eukaryotic and bacterial membranes, but it is important to
appreciate that even minor modifications of the acyl chain structure can affect
the biophysical parameters of lipid membrane bilayers [59]. It was recently
even proposed that E. coli bacteria can survive the acidic conditions of the
human stomach and subsequently multiple within the less acidic human
colon when fabA and fabB genes instigate a cascade of reactions that merely
alters the degree of Gram-negative membrane phospholipid acyl chain

saturation [398].

Phospholipids were some of the first lipids to be simulated with molecular
dynamics simulation forcefields and they have since become a staple of both
atomistic and coarse-grained molecular dynamics simulations [174,182]. The
phospholipids are combined to create simple biological membrane mimetics
and these membrane models are simulated with AMPs [187], nanomaterials
[399-401], integral and peripheral membrane proteins [369-371],
dendrimers [402-403], carbohydrates [404-405], alcohols [406], capsaicin
[407], and more. The simulated phospholipid bilayers are used as simplistic
substitutes for realistic biological membranes and the molecular dynamics
simulation forcefields are applied to understand how these multicomponent
phospholipid membranes interact with different organic and nonorganic
molecules on a range of distinct spatiotemporal scales. It is assumed that the
simulations provide realistic and accurate data since the molecular dynamics
simulation forcefields have been successively reparametrized over the course
of several decades to accurately reproduce the experimentally determined
properties of lipid membranes and at the same time, they have been refined
to mimic higher level reference simulation data, i.e. ab initio quantum
chemical calculations [163,167]. The additive all-atom CHARMM lipid
forcefield [408] was for example, modified to more accurately reproduce the
properties of different phospholipid bilayers including POPC and POPE lipid

membranes. The area per lipid values of the simulated phospholipid

64



membranes matched reference PC and PE lipid surface area data on average
to within 2% [409-413] and the density profiles matched reference data from
neutron and X-ray diffraction experiments [414-417]. The acyl tail order
parameters also provided proper splitting of the Scp for the aliphatic carbon

adjacent to the carbonyl for POPE and POPC bilayer membranes [409,418].

Figure 8. The structure of four phospholipids. (A) The structure of a
phosphatidylcholine lipid (16:0/18:1(9Z)) that consists of two acyl tails
bonded via an ester linkage to glycerol, a negatively charged phosphate
group and a terminal positively charged choline section. (B) The structure of
phosphatidylserine lipid (16:0/18:1(9Z)) that consists of two acyl chains
bonded via an ester linkage to glycerol, a negatively charged phosphate
group and a terminal serine moiety. (C) The structure of a
phosphatidylethanolamine lipid (16:0/18:1(9Z)) that consists of two acyl
chains covalently bonded through an ester link to central glycerol and
phosphate groups, and a terminal ethanolamine section. (D) The structure of
a phosphatidylglycerol lipid (16:0/18:1(9Z)) that consists of two acyl tails
bonded via an ester linkage to glycerol, a negatively charged phosphate
group and a terminal glycerol group. Image source: https://avantilipids.com
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1.4.2 Sterols

Sterols are essential for the basic functioning of eukaryotic and prokaryotic
cells and the eukaryotic and prokaryotic cellular membranes [14,419].
Cholesterol molecules are an important modulator of eukaryotic mammalian
membrane fluidity [420] and ergosterol and hopanoid molecules tightly
regulate the mechanical properties of fungal and bacterial membranes [421-
422]. Sterol molecules contain a single short hydrocarbon chain and variable
functional groups that are both bonded to a relatively rigid central body of
pentagonal and hexagonal hydrocarbon rings [423-425]. The combination of
multiple adjoining pentagonal and hexagonal hydrocarbon rings confers
unusual biophysical parameters and biophysical properties (Figure 9A)
[420]. It is now well-known that cholesterol lipids can order multicomponent
membrane domains and also that cholesterol lipids regulate the formation of
fluctuating lipid heterogeneities and lipid raft structures [73,83,88].
Cholesterol molecules induce the formation of lipid rafts through co-coupling
intermolecular interactions with sphingolipids, saturated lipids and integral
membrane proteins. The cholesterol molecules have an unusual shape that
confers the molecule space-filling properties and the propensity to co-couple
with intrinsically positively curved glycosphingolipids [426-427]. It seems
important to define intrinsic curvature here since it is not only important for
understanding the properties of cholesterol but also for understanding how
OMVs induce membrane curvature generation in chapter 5. The intrinsic
positive curvature magnitude of a molecule defines its propensity forming
positively curved membrane domains [428-429] and is calculated as the
lipid-headgroup-to-acyl-chain moiety cross-sectional area ratio (Figure 9B).
Cholesterol has a lipid-headgroup-to-acyl-chain cross-sectional area ratio
that is smaller than unity (one) and consequently it usually energetically
preferable for cholesterol molecules to move into negatively curved
multicomponent membrane domains. The morphology of the sterol not only
promotes its movement to negatively curved membrane domains but also
promotes its interactions with lipids that have complementary large

headgroup-to-hydrophobic-moiety area ratios [364,430].
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Cholesterol has been repeatedly simulated within biological membrane
mimetics using a wide range of different atomistic and coarse-grained
molecular dynamics simulation forcefields [431-435]. It has been found for
example, that the interactions between cholesterol and saturated lipids can
promote the formation of Lo membrane domains within tripartite plasma
membrane mimetics [335]. It was also found that cholesterol molecules can
flip about the membrane midplane on nanosecond timescales that are readily
probed with low resolution coarse-grained molecular dynamics simulation
forcefields [359,436] and even with the significantly more computationally
demanding suite of high-level atomistic resolution simulation forcefields
(Figure 9C) [437-438,360]. This not only corroborates results from
experimental studies and validates molecular dynamics simulation studies of
biological membranes, but also provides much needed molecular level
insights that are otherwise inaccessible given the spatiotemporal constraints
of conventional experimental analytical techniques. The molecular dynamics
simulations have revealed that the compositional characteristics of
multicomponent membranes affects the frequency of the cholesterol lipid
flip-flop events and also the explicit chemical energy profiles that either
impede or promote the movement of cholesterol molecules from one
membrane leaflet to the other [360,437]. The coarse-grained molecular
dynamics simulations have also demonstrated that cholesterol molecules
have important roles in regulating the registration of Lo and Ld domains
about the membrane midplane [359]. When cholesterol lipids freely flip
about the membrane midplane they can promote the registration of liquid-
ordered (Lo) and liquid-disordered (Ld) membrane domains about the

membrane midplane.
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Figure 9. The properties and molecular dynamics simulations of cholesterol.
(A) The chemical composition of cholesterol molecules and a simplified
schematic illustration showing how the polar-headgroup-to-hydrophobic-
body cross sectional area ratio gives cholesterol an effective conical
structure. (B) Schematic illustrations showing how lipid shape, defined by
the hydrophilic-headgroup-to-hydrophobic-lipid-component, is expected to
affect preferences for spontaneous curvature generation. (C) Molecular
dynamics simulations that show how cholesterol molecules can regulate
membrane curvature and the membrane stress distribution by flipping
between the apposed membrane leaflets on a nanosecond timescale. (D)
Schematic illustration showing how lipid sorting can be induced by
membrane curvature, but also how induced lipid sorting can affect local
preferences for spontaneous membrane curvature generation. (E) Plasma
membrane molecular dynamics simulations that demonstrated curvature-
induced cholesterol molecule sorting. The cholesterol molecules moved to
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negatively curved membrane domains during production time. The image
sources are: Wikipedia Commons, 10.3389/fmicb.2014.00220 (DOI) (439)
10.1021/ja903529f (DOI) [437]
10.1146/annurev.cellbio.20.010403.095451 (DOI) [440]
10.1002/adts.201800034 (DOI) [364].

The molecular dynamics simulations of cholesterol molecules have also
helped to validate curvature-induced lipid sorting models that stated, but had
not proved outright, that lipid-lipid interactions are governed by the shape,
or intrinsic positive curvature, of lipids in multicomponent membranes
(Figure 9D) [440,364]. Cholesterol molecules have an intrinsic spontaneous
negative curvature, i.e. a small headgroup-to-acyl-chain cross-sectional area
ratio, and it has been found that cholesterol molecules preferentially move
into the negatively curved domains of simulated multicomponent
membranes. Cholesterol molecules were found for example, to move into the
negatively curved domains of mesoscopic (~30 nm) plasma membrane
mimetic tethers (Figure 9E) [430, 364]. These simulations are interesting not
only because they help to validate long-standing hypothesis relating to
spontaneous curvature generation in multicomponent membranes, but also
because they help us to understand the results from chapter 5. Within chapter
5 it is found that cholesterol molecules preferentially move into the
expanding inner leaflet of plasma membrane mimetics as the membrane
bulges into the intracellular space and creates negatively curved membrane
space. The movement of cholesterol molecules into negatively curved
membrane domains has already been observed in coarse-grained molecular
dynamics simulations and it is therefore easier to understand, through
comparison, why we see cholesterol molecules move from one region of the
simulated plasma membrane mimetics into another when they interact with

the simulated OMVs.

It is interesting to draw comparisons with ergosterol and the different types
of hopanoid molecules since the comparisons corroborate inferences made
about cholesterol’s space-filling properties and its tendency to increase the
order and rigidity of localized multicomponent membrane domains. The

ergosterol and cholesterol molecules have similar chemical structures; each
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sterol contains four rigid pentagonal or hexagonal rings that are bonded to a
short hydrocarbon acyl chain and terminal hydroxyl moiety [441-443]. The
hopanoid molecules are natural pentacyclic compounds that are structurally
comparable to the hopane triterpene compound (Figure 10A) but they
additionally contain variable moieties that are bonded to the central body of

the pentagonal and hexagonal hydrocarbon rings [444-445].

Saenz et al. studied the properties of the simplest naturally occurring
bacterial hopanoid, i.e. diplopterol, to understand how hopanoids affect the
biophysical parameters of multicomponent bacterial membranes [446]. The
diplopterol molecule is comprised of one pentagonal and four hexagonal
hydrocarbon rings with terminal hydroxy group; it is found in prokaryotic
membranes where it can co-couple with the Lipid A anchoring domain of LPS
macromolecules [447-449]. The group demonstrated that diplopterol had the
capacity to order saturated lipid tails and form a liquid-ordered (Lo) phase
within multicomponent biological membrane mimetics. Sdenz et al. would
later demonstrate that hopanoid molecules do not only promote the
formation of liquid-ordered domains within multicomponent bacterial outer
membrane models but also that these hopanoid molecules can affect
multidrug transport processes [450]. The scientific research groups have
shown that hopanoids can pair with glycolipids that have large headgroup-
to-acyl-chain cross-sectional area ratios and that these progressive co-
coupling interactions can generate highly ordered multicomponent
membrane domains in a manner that is analogous to the co-coupling of
sterols and glycosphingolipids within the mammalian eukaryotic plasma

membrane.

There have been few (if any) molecular dynamics simulations that been
conducted to understand the properties of hopanoids in realistic prokaryotic
membrane mimetics that contain some combination of LPS lipids,
phospholipids and integral membrane proteins, but molecular dynamics
methods have been applied in the past to understand the properties of

hopanoids within highly simplified bacterial membrane systems that contain
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no more than two different types of organic molecules. Marrink et al.
published an interesting publication in 2015 that expanded the coarse-
grained Martini forcefield simulation library and provided theoreticians with
coarse-grained Martini parameter sets for different sterols such as ergosterol
[451]. The group provided coarse-grained parameter sets for different
hopanoid molecules including hopane [452-454], diploptene (Figure 10B),
and bacteriohopanetetrol (Figure 10C) [455] and additionally investigated
the interactions of these coarse-grained models in simulated phospholipid
membranes. The coarse-grained molecular dynamics simulations
demonstrated that each type of hopanoid molecule preferentially adopts a
unique arrangement along the membrane normal axis and therefore that each
molecule has a unique partial mass density profile for the membrane normal
axis. The hopane and diploptene molecules preferentially moved toward the
hydrophobic membrane midplane, whereas the bacteriohopanetetrol
molecules moved closer to the water-lipid interfacial domain that was formed
of the hydrophilic POPC lipid headgroups (Figure 10D). The results are
corroborated by earlier atomistic molecular dynamics simulations that
sought to understand the relative effects of sterols and hopanoids on
multicomponent lipid membranes. Poger et al. demonstrated that diploptene
molecules preferentially partitioned between two hydrophobic membrane
leaflets, close to the membrane midplane, and also that bacteriohopanetetrol
molecules were aligned with the acyl chains and were preferentially situated

closer to the hydrophilic headgroup domain [456].
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Figure 10. The structure and molecular dynamics simulations of hopanoids.
(A-C) The structure of three hopanoids: hopane (A), diploptene (B), and
bacteriopanetetrol (C). (D) Martini coarse-grained molecular dynamics
simulations of multicomponent membranes that included either hopane
(vellow), diploptene (green), or bacteriohopanetetrol (purple) with POPC
lipids. The POPC phosphate headgroups are orange to show the position of
the membrane-water interface. The image sources are: Wikipedia Commons
and 10.1063/1.4937783 (DOI) [451].

1.4.3 PIP;

Phospahtidylinositol (4,5)-bisphosphate (PIP2) represents less than 1% of all
membrane phospholipids [457] but nonetheless, the molecule modulates the
function of several important integral membrane proteins [458-460], directs
major independent signalling cascades [461-462] and affects the efficacy of
endocytosis and exocytosis processes within cellular membranes [463-466].
PIP; is a phosphatidylinositol bisphosphate that consists of a phosphatidic
acidic backbone linked via the phosphate group to a bisphosphorylated
inositol (hexahydroxycyclohexane). Phosphatidylinositol bisphosphates are
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generated as different kinases phosphorylate simpler phosphatidylinositol
molecules [467]. The kinases add phosphate moieties onto positions 4 or 5 of
the inositol ring, although position 3 can additionally be phosphorylated.
Phosphatidylinositol bisphosphates can contain different combinations of
fatty acid moieties at the C-1 and C-2 positions that vary in terms of length
and the degree of saturation [468-469]. Here, the PIP; lipid is depicted with
one of its acyl chains being saturated and another being unsaturated (Figure

11A).

Figure 11. The structure of PIP2 molecules and the interaction of PIP
molecules with integral membrane proteins. (A) The skeletal structure of
the PIP; lipid that includes the phosphate groups (red), the inositol ring and
the anchoring saturated and unsaturated acyl chains (blue). (B-C) The
binding positions of PIP; lipids on Kir2.2 channel proteins that were
identified from X-ray crystallography (B) and molecular dynamics (MD)
simulation studies (C). The PIP; lipids are represented as green and red
spheres and the protein residues are represented as violet chains. (D) The
S1P1 GPCR molecule that has been colored according to its interactions with
the PIP2 phosphoryl headgroup in coarse-grained molecular dynamics
simulations. The interaction number color bar ranges from white through to
red. The image sources are: Wikipedia Commons, 10.1038/nature10370
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(DOI) 10.1021/bi301350s (DOI) [470] and 10.1021 /jacs.5b08048 (DOI)
[76].

It is interesting to note that the inwardly rectifying potassium channels are
gated by the interaction of their cytoplasmic region with PIP; lipids [471-
475]. Inwardly rectifying potassium channels can constitute several
hundreds of amino acid residues and one would not expect that they are
activated by the much smaller PIP; lipids. Nonetheless, it is now quite clear
that PIP; molecules can regulate ion channel activity when they interact with
the cytoplasmic domain of the inwardly rectifying potassium channel (Figure
11B-C) and that PIP; lipids are an important cofactor for ion channel activity
[458-460]. It has also been demonstrated that PIP2 molecules can stabilize
the active states of Class A GPCRs through direct bonding [475-477]. The PIP:
lipids also recruit the G-protein-coupled kinase 2 enzyme to the plasma
membrane by binding its large lobe [478] and that the molecule can also
regulate the organization of filamentous actin (F-actin) when it interacts with

regulatory proteins [479].

Emberhard et al. demonstrated that the phosphoinositides affected the rates
of endocytosis and exocytosis processes when they applied
phosphoinositide-specific phospholipase C into digitonin-permeabilized
chromaffin cells and found that as this process decreased phosphoinositide
levels, itinhibited calcium-triggered exocytosis processes [480]. Later studies
would then be devised to identify the specific proteins, e.g.
phosphatidylinositol transfer protein, that promoted the PIP; mediated
endocytosis and exocytosis processes [481-482]. The authors demonstrated
that PIP; specific antibodies had the capacity to strongly inhibit exocytosis
processes and these experiments provided indisputable evidence that PIP>

lipids can affect large dense core vesicle exocytosis processes.

It should not be too surprising that PIP; molecules have been simulated with
both atomistic and coarse-grained resolution molecular dynamics simulation
forcefields. The molecules have putative roles in modulating the function of

integral membrane proteins and the PIP; molecules are also known to
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facilitate endocytosis and exocytosis processes within host cell surfaces.
Molecular dynamic simulation forcefields could be used by scientists to
understand the molecular level interactions that drive these interesting and
important macroscopic cellular functions. Molecular dynamics simulations
were conducted via CHARMM with the C27r all-atom potential energy set to
explore the biophysical properties of PIP, molecules when they were in POPC
lipid bilayer membranes [483-408]. It was discovered that the position of the
simulated PIP; ring phosphate groups were above the plane of the
encompassing POPC lipid nitrogen atoms (~40° from the membrane normal)
and this result was particularly interesting since it contested some earlier
neutron diffraction experiments that were conducted to determine the
orientation of inositol lipid headgroups in biological membrane mimetics
[484-485]. The apparent mismatch between PIP; lipid conformations in
experimental and computational publications would be a point of contention

in ensuing publications.

Later works (2013) used a combination of quantum and all-atom molecular
dynamics simulations to understand the orientation of the inositol ring and it
was found that the PIP; lipid headgroup and anchoring acyl chains were
approximately perpendicular to each other, indicating that the inositol ring
should lie flat along the membrane surface if there were no other extraneous
biomolecular interactions affecting the lipid headgroup orientation [486].
Interestingly, these atomistic molecular dynamics simulations additionally
demonstrated that ion interactions can affect lipid headgroup behaviour and
they also revealed how calcium ions can induce the formation of PIP; lipid
clusters. Still, other molecular dynamics simulation groups were reporting
that the inositol headgroup was oriented ~45° from the membrane normal in
atomistic molecular dynamics simulations and further, that the PIP; lipids
had complex interactions with encompassing pools of lipids and that the PIP;
lipids could even affect the orientation of adjacent lipid headgroups [487].
PIP2 molecules have since been simulated with membrane proteins in more
complex multicomponent biological membrane mimetics [488-491] but it

still seems to be challenging to accurately reproduce the conformational

75



characteristics of PIP; lipids with the computationally demanding and

sophisticated suite of atomistic molecular dynamics simulation forcefields.

Phosphoinositides (PIP) molecules have been added to lower-level coarse-
grained molecular dynamics simulation forcefields even though it can be
challenging to accurately imitate the orientation and dynamics of realistic
PIP2 molecules with higher-level atomistic molecular dynamics simulation
forcefields. PIP lipid models have been calibrated to replicate reference
(target) atomistic simulation data and once acceptable predictions of this
reference data was reproduced, the calibrated coarse-grained models were
used to simulate more complex lipid-lipid and lipid-protein interactions
within multicomponent plasma membrane models (Figure 11D) [492-496].
Martini coarse-grained simulations have been conducted to understand the
spontaneous formation of PIP nanodomains [363-364, 497-498] and also
how PIP molecules bind different integral membrane proteins including
GPCR [475,499] and inwardly rectifying potassium channels [500-501] on
unprecedented spatiotemporal scales. The coarse-grained simulations are
generally corroborated by comparative molecular dynamics simulations that
are conducted with atomistic resolution forcefields. There are similar
patterns of PIP; lipid binding in comparative atomistic and coarse-grained

resolution molecular dynamics simulations [369,470,376].

1.4.4 Glycolipids

Glycolipids have important roles in regulating cellular recognition, cellular
adhesion and preserving the stable membrane bilayer structure [430,502-
507]. The essential feature of a glycolipid is the presence of a monosaccharide
or polysaccharide chain covalently linked to an anchoring lipid moiety. The
lipid domain anchors the glycolipids into the hydrophobic core section of a
biological membrane, whereas the terminal carbohydrate groups are exposed
on the bilayer surface and they project outwards into the extracellular space

[508-511].
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The carbohydrate domain differs from one glycolipid to another and the
chemical composition of the terminal polysaccharide chain depends on the
cellular growth conditions and the state of the encompassing biological
environment [512]. The variable monosaccharide or polysaccharide sections
are however, almost always covalently linked to simpler glycerol or
sphingosine backbones and conserved anchoring acyl chain domains [513-
514]. One of the simplest glycolipids is sphingomyelin, which is especially
abundant in the membranous myelin sheath that encases nerve cell axons
[515-517]. The lipid consists of a single variable palmitoyl chain that is
covalently linked to the central sphingosine backbone and terminal
phosphocholine group (Figure 12A-C). Palmitoyl sphingomyelin is an
interesting and relatively simple form of sphingomyelin that contains
palmitate (16:0) at the variable acylation position. Palmitoyl sphingomyelin
can interact with cholesterol in multicomponent membranes to form lipid raft
structures [518-520]. The molecule has been the subject of thorough
experimental [521-524] and computational [525-528] analyses and the
molecule is used in chapter 5 (termed sphingolipid) for molecular dynamics
simulations of simplified eukaryotic mammalian plasma membrane models.
Ganglioside molecules have comparable structural characteristics to
sphingomyelin molecules but the terminal phosphocholine headgroup is
substituted with oligosaccharide residues and sialic acid units instead [512].
It is important to understand the biophysical properties of ganglioside lipids
here because ganglioside molecules are hypothesized to instigate a complex
cascade of molecular level interactions that promote OMV internalization in

chapter 5 of this thesis [368].
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Figure 12. The chemical structure of three simple sphingolipids. (A) The
chemical structure of sphingosine. (B) The chemical structure of a ceramide.
The variable fatty acid moiety is red and the sphingosine backbone is black.
(C) The chemical structure of a sphingomyelin molecule. The variable fatty
acid moiety is red, the sphingomyelin backbone is black and the
phosphocholine group is blue. Image source: Wikipedia Commons.

Ganglioside lipids were first discovered by Ernst Klenk in the 1940s and the
term “ganglioside” was based on the high concentrations of the ganglioside
glycolipids discovered within neurons or “Ganglionzellen” [426]. The
ganglioside lipid anchors contain the long-chain amino alcohol sphingosine
that is coupled through an amino group to a fatty acid chain to form a
ceramide [512-513]. The glycan headgroup contains one or more sialic acid
residues, which are carbohydrates with a nine-carbon backbone and a
carboxylic acid moiety and there are also adjoining glucose, galactose, N-
acetylgalactosamine units etc. GM3 lipid is one of the simplest ganglioside

lipids that is present in almost all mammalian cell membranes [426,529-533]
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and the molecule contains an anchoring ceramide unit that is covalently
bonded to glucose, galactose, and sialic acid units (Figure 13A). GM3 lipid
have the smallest ganglioside headgroup domain and they can be used to
produce more complex ganglioside macromolecules [512,534]. For example,
the addition of single adjoining N-acetylgalactosamine and galactose units
transforms basic GM3 lipids into the larger GM2 and GM1 molecules,
respectively (Figure 13B). Additional saccharide units can be added onto the
GM3, GM2, and GM1 molecules to synthesize ganglioside macromolecules
that have much larger headgroups, e.g. ganglioside lipids with seven or eight

saccharide units per lipid headgroup.
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Figure 13. The ganglioside lipid structure and representations of how ganglioside
molecules can induce spontaneous curvature generation. (A) Biosynthetic
pathway for some of the smallest and simplest ganglioside molecules i.e. GM3,
GM2 and GM1. Ganglioside molecules consist of a core ceramide unit that is
bonded to glycan headgroups that contain monosaccharides such as glucose
(Glc), galactose (Gal), N-acetylgalactosamine (GalNAc), and sialic acid
residues (Sia). Additional monosaccharide units can be added onto GM3,
GM2 and GM1 molecules to create larger and more complex ganglioside
molecules. (B) The skeletal formula of the GM3 lipid. The ceramide domain
is highlighted gray and the Glc, Gal, and Sia units are highlighted blue, yellow
and maroon. (C-D) Molecular dynamics simulations showing how molecular
dynamics simulations have demonstrated that GM1 molecules can reshape
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asymmetric biomembranes. The phospholipids are blue and the GM1
molecules are red. The graphic contains both top view and side view
snapshots. (E-F) Molecular dynamics simulations showing how cholera
toxin B subunit (CTxB) can induce local curvature generation within
biomembrane mimetics. (E) The DOPC lipids are green and the GM1 lipids
are purple. (F) The membrane has been refitted to a thin surface for easier
visualization of the induced membrane curvature. The image sources are:
10.3389/fimmu.2014.00325 (DOI) [426] 10.1038/nchembio0209-71 (DOI)
[535] 10.1073/pnas.1722320115 (DOI) [536] 10.1002/2211-5463.12321
(DOI) [537].

GM3 and GM1 lipids have been used in atomistic and coarse-grained
resolution molecular dynamics simulations to investigate the biophysical and
biochemical properties of both shorter and longer forms of ganglioside
molecules [426]. Dasgupta et al. used complementary molecular dynamics
simulations and sophisticated experimental analyses to demonstrate that
(GM1) ganglioside lipids can create non-negligible stress in POPC membranes
that promotes, albeit moderately, spontaneous membrane curvature
generation (Figure 13C-D) [536]. The membrane-modulating effects of
ganglioside lipid become more pronounced when single ganglioside coalesce
to form relatively rigid glycosphingolipid clusters that have high intrinsic
positive curvature parameters [363]. Ganglioside molecules are generally
confined to the extracellular leaflet of multicomponent plasma membranes
and as they coalesce within just one membrane leaflet, the lipids can generate
an appreciable preference for positive curvature generation and this can

induce membrane reshaping processes [368].

One of the more interesting membrane reshaping events is the spontaneous
production of curved lipid rafts, or caveolae, when ganglioside molecules
coalesce within the extracellular leaflet of multicomponent plasma
membranes [74,87,368]. The caveolae are produced when pathogens (e.g.
bacteria and viruses) and pathogenic products (e.g. toxins and lectins)
interact with host cell membrane ganglioside lipid headgroups (Figure 13E-
F). Computer simulation and experimental analysis methods have been
combined to demonstrate that SV40 virus [538-540], cholera toxin [368,537]
and Shiga toxin (Figure 14A-E) [368,541] can enter into the host cell
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cytoplasmic space when they interact with host cell ganglioside lipid
headgroups. The pathogens and pathogenic products interact with the host
cell surface and as they progressively sequester adjacent ganglioside lipid
headgroups, they form large glycosphingolipid clusters that have high
intrinsic positive curvature. The co-coupling glycosphingolipid interactions
simultaneously induce localized membrane curvature and also increase the
local concentrations of cholesterol, PIP lipids, sphingomyelin molecules, and
saturated phospholipids [368]. The sequestered glycosphingolipids lower
energy barriers that would otherwise impede spontaneous curvature
generation and the raft-like plasma membrane domain bulges inwards into
the intracellular matrix (Figure 14F-H) [542]. The inward bulging
invaginations continue to expand into the cytoplasmic matrix and they can
eventually form larger endocytosis intermediates (Figure 141) that decouple
from the cellular membrane on long timescales (Figure 14]). It is already well
established that Shiga toxin, cholera toxin, and SV40 particles induce the
formation of caveolae when they interact with host cell ganglioside lipid
headgroups [368,542], but it stands to reason that other pathogenic products
and synthetic macromolecules could be functionalized, either through natural
selection or through chemical engineering processes, to exploit similar
endocytosis uptake processes. The simulation data from chapter 5 suggests
that OMVs have been functionalized to sequester ganglioside lipids and
through this interaction, deform host cell surfaces so that they can enter into

the host cell cytosol.
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Figure 14. Pathogens and pathogenic products can bind ganglioside lipids
and this interaction promotes endocytosis. (A) SV40 coat protein VP1
pentamer cocrystallized with GM1 pentasaccharide. The coat protein is
green and the pentasaccharides are red. (B) Cholera toxin fsubunit
cocrystallized with GM1 pentasaccharide. (C) E. coli enterotoxin fsubunit
cocrystallized with nitrophenyl-galactoside. (D) Shiga toxin fsubunit
cocrystallized with GB3 trisaccharide. (E) Pentameric E. coli Shigalike toxin
psubunit cocrystallized with a GB3 analog. (F) Binding of SV40 to GM1 lipids
in a multicomponent membrane. (G) The formation of a lipid raft (dark blue
band) and the demonstration of actin-dependent immobilization. (H) The
invagination of the plasma membrane mimetic due to interactions with
SV40. The interactions between SV40 and the plasma membrane mimetic
generate a caveola structure. (I) Scission machinery facilitating endocytosis
after the production of a flask-shaped lipid raft structure (i.e. caveola). (])
The formation of a vacuole and the transport of the vacuole through the
intracellular space. The image source is: 10.1101/cshperspect.a004721
(DOI) [542].

1.4.5 Lipopolysaccharide

Lipopolysaccharide (LPS) macromolecules are unusually large glycolipids
both in terms of end-to-end length and the lateral surface area that the
molecules occupy in multicomponent bacterial membranes [104,543-545].

The macromolecules have a characteristic tripartite structure that consists of
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the anchoring Lipid A domain, the core oligosaccharide section, and the

repetitive glycan polymer O-antigen chain [546-548].

The anchoring Lipid A domain is a phosphorylated glucosamine disaccharide
that is decorated with multiple fatty acid moieties [546,549-550]. The fatty
acid moieties are embedded into the core of bacterial membranes and the
glucosamine sugars extend outwards into the extracellular space. The
phosphate groups are situated at the water-lipid interface; they have a net
negative electrostatic charge and they readily interact with stabilizing
divalent cations (e.g. Ca?* and Mg?* ions). The divalent cations can
simultaneously coordinate multiple adjacent anionic Lipid A anchors and
these bridging cations can effectively screen the repulsive electrostatic
interactions between the adjacent anionic LPS phosphate groups that would
otherwise promote electrostatic repulsion and membrane reshaping
processes [119-120,551]. Garate and Oostenbrink (2013) simulated Lipid A
molecules with water, octane and at the water-octane interface itself [552]
using the CHARMM36 all-atom forcefield [553-554]. The Lipid A molecule
was shown to have a larger gyration radius in the hydrophobic octane media
compared with the polar solution of water or at the water-octane interface.
Entire Lipid A membranes have been simulated by the Im group using the
CHARMMS36 all-atom forcefield [555], by Li et al. [556] using the GLYCAMO06-
based LPS forcefield [557-559] and by Lakshminarayanan et al. [560] using
the GROMOS 53A6 forcefield [561-563]. The research groups showed that the
simulated Lipid A membranes were stable at physiological pressure and
temperature when they were interlinked with divalent cations, e.g. Ca* and

Mg2* ions.

The LPS lipid core domain contains an oligosaccharide chain that is linked to
the anchoring Lipid A domain. The keto-deoxyoctulosonate (Kdo) sugar is a
primary component of most LPS core saccharide sections [563] but non-
carbohydrate components including amino acids, ethanolamine substituents,
and phosphate groups can also be present [543,564]. The specific

nomenclature used to describe LPS lipids depends predominantly on the
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extension of the core saccharide section and the number of constituent
saccharide units that are bonded to the anchoring Lipid A domain. Re LPS is
the simplest LPS lipid that is found within realistic Gram-negative bacterial
membranes and it consists of two Kdo saccharide units bonded to the Lipid A
anchor [565-566]. The incorporation of additional saccharide units would
transform Re LPS chemotypes to the larger Rd, Rc, Rb and Ra LPS chemotypes
[567] that have different sets of biophysical parameters in multicomponent
membranes. Khalid et al. performed some of the earliest molecular dynamics
simulations of Rd LPS lipid membranes with the united-atom GROMOS53A6
forcefield to understand how electrostatic fields can disrupt multicomponent
bacterial membranes [551]. The Rd LPS lipid membranes were found to have
area per lipid magnitudes that were in line with predictions from X-ray
diffraction analysis [568], but the LPS acyl tail order parameters were
noticeably higher than experimentally derived acyl tail order parameters for
comparative phospholipid membranes [569]. The Im group performed
higher resolution molecular dynamics simulations of various LPS lipid
chemotypes [211,223] with the CHARMM36 all-atom forcefield and they
obtained more accurate estimates of the LPS acyl chain order parameters if
we are benchmarking against reference DMPC membranes [569], but the
predicted area per lipid values exceeded the upper limit of LPS area per lipid
values (1.56 nm?) predicted from experimental analyses [568]. Lins et al. also
performed pioneering atomistic resolution simulations to understand the
uptake of uranyl by LPS lipid membranes with minimal core saccharide
domain [241]. The group did not provide lipid packing parameters and it is
therefore more challenging to draw comparisons with experimental analysis

data.

LPS lipids are increasingly being simulated in more realistic multicomponent
Gram-negative outer membrane models that incorporate different outer
membrane proteins [308] including gated outer membrane transporters
[570-572] and [ -barrel assembly machinery [573]. The LPS lipids that
contain the Lipid A anchor and variable core saccharide sections are usually

termed “rough” LPS lipid chemotypes [121,567] because bacterial colonies
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have a rough appearance when they contain short forms of LPS lipid, i.e. LPS
lipid without any terminal O-antigen chain units. Martini molecular dynamics
simulation forcefields have been used to understand the properties of Gram-
negative outer membrane models that contain different types of rough LPS
lipids (e.g. the Re and Ra chemotypes) [301]. The coarse-grained molecular
dynamics simulations have demonstrated that there is “communication”
between the extracellular and intracellular leaflets of the Gram-negative
outer membrane [574]. Areas of high acyl chain disorder in the extracellular
leaflet were found to be correlated with areas of high acyl chain order in the
intracellular leaflet. Martini coarse-grained simulations have also been used
to demonstrate that LPS lipid nanodisc width decreases from nanodisc center
to periphery and that LPS lipid micelle structure is significantly perturbed by

large changes in simulation temperature (~90 K difference) [151].

The repetitive glycan polymer is termed the O-antigen chain and it can, in
some circumstances, be the heaviest section of the LPS lipid macromolecular
structure [575-576]. The composition of the O-antigen chain varies from one
bacterial species to another. There are more than 160 different E. coli O-
antigen glycan polymer chain structures alone, but there is found to be even
more chemical heterogeneity when LPS lipids from one bacterial genus (e.g.
Escherichia) are compared with LPS lipids from an entirely distinct genus (e.g.
Campylobacter or Pseudomonas) [543]. The O-antigen chains are the
peripheral moiety of the tripartite LPS macromolecular structure and they
are in direct contact with the external milieu. When LPS lipids contain the
Lipid A anchor with complete core saccharide section and the terminal O-
antigen chain polymer they are termed “smooth” LPS lipid chemotypes [577]
because bacterial colonies have a smooth appearance when they contain the
longer forms of LPS lipid, i.e. LPS lipid with terminal O-antigen chain moieties.
Smooth E. coli LPS lipid can contain for example, type 1 Lipid A anchor with
R3 core sugar sequence and the terminal O1 O-antigen chain polymer (Figure
15) [315]. The O1 O-antigen chain subunit contains the five saccharide units
arranged end-to-end: P N-acetyl-D-glucosamine, o D-galactose, a L-

rhamnose, o L-rhamnose, and  N-acetyl-D-mannosamine [315]. Smooth LPS
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lipids have been simulated in single-component bacterial membrane
mimetics and also in more complex multicomponent membrane mimetics
with atomistic resolution molecular dynamics simulation forcefields
[104,198,211-212]. The OPLS-AA [170] and GLYCAM [246] molecular
dynamics simulation forcefields have also been used to analyze the
conformations of single O-antigen chain polymers in solution [578]. It was
found that the conformation of the O-antigen chain was affected by the choice
of the molecular dynamics simulation forcefield. When the O-antigen chain
was simulated with the OPLS-AA forcefield it had large gyration radii and
when it was simulated with the GLYCAM simulation forcefield the gyration
radii were substantially smaller. Smooth LPS lipids have been simulated
much less frequently with coarse-grained molecular dynamics simulation
forcefields. However, in 2018 Khalid et al. used the Martini coarse-grained
forcefield to understand how smooth LPS lipids interact with the following
integral membrane proteins: OmpA, FhuA, OmpF, EstA, BtuB, and OmpX
[315] and before this, the Martini coarse-grained forcefield had been used to
understand how smooth LPS lipids interact with PE and PG phospholipids
[579-581].
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O-Antigen chain

Re core

Figure 15. Schematic representation of a single molecule of smooth LPS lipid
from E. coli bacteria. The illustration includes the type 1 Lipid A domain,
which is a phosphorylated glucosamine disaccharide decorated with
multiple fatty acid chains (blue). Lipid A is bonded to the R3 core
oligosaccharide domain that includes hexose sugars such as keto-
deoxyoctulosonate (Kdo), glucose (Glc), mannoheptose (Hep), N-acetyl-D-
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glucosamine (GlcNac), galactose (Gal) and phosphate groups. The length of
the core domain determines rough LPS nomenclature; Re LPS lipids contain
the Re core domain (red) and Ra LPS mutants contain the complete core
saccharide sequence (red and pink). Smooth LPS lipids additionally contain
terminal O-antigen chain units (black). Smooth LPS lipids can contain
multiple repeats of the repetitive O-antigen chain polymer unit. The
CHARMM-GUI Martini Maker coarse-grained Re LPS lipid model contains the
type 1 Lipid A domain with two Kdo sugars; the Ra LPS lipid model contains
the type 1 Lipid A domain with complete core saccharide section; the
coarse-grained smooth LPS lipid contains the type 1 Lipid A domain with
complete R3 core saccharide section and four units of the terminal O1 O-
antigen chain polymer. The image is based on work from the
10.1021/acs.jctc.8b01059 manuscript (DOI) [315].

1.5 Bacterial Infection and Multiple-Drug Resistance

Pathogenic bacteria spread disease as they pass through the four stages of
infection: (i) colonization, (ii) invasion, (iii) proliferation and (iv)
transmission [582-586]. The colonization of human tissues by pathogens is
usually enhanced by adhesion molecules that are exposed on the bacterial cell
surface [587-589]. The infectious microbes migrate toward target host cell
surfaces in response to chemical gradients and then attach onto the
membrane surfaces through the action of the exposed adhesion proteins.
After the bacteria have colonized the target cells, they expel toxins that can
damage the host human tissues (e.g. connective, muscle, and epithelial) and
change the local physiological conditions. The microbes progressively
sequester different biomolecules and metals that are needed for bacterial
growth and the pathogenic microbes continue to multiply until they evoke an
immune response that contributes to the transmission of the bacteria to new

a host [590-592].

Antibiotics were used throughout the 20t century to prevent the spread of
infectious bacteria and to effectively reduce the global rates of morbidity and
mortality that are associated with infectious bacterial diseases [593-595].
Antibiotics are one of the most successful forms of chemotherapy and they
have been used to treat nosocomial infections [596], to avoid complicated
surgery [597], to prevent infection during incision-based surgery [598-599],

to prevent infectious diseases among immunocompromised patients [598]
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and they were even added to livestock feed to safeguard animal health and
welfare [600-604]. The excessive and inappropriate use of antibiotics
established a selective pressure that favored the proliferation of bacteria that
were resistant to first-line antibiotic agents [593,605-606]. The drug-
resistant bacteria thrived and their drug-resistant genes became more
common [607-609]. These drug resistant genes have since been passed
between infectious bacteria during the last few decades and there are now
so-called multi-drug resistant bacteria that are unaffected by almost all
available forms of antibiotic medication, e.g. methicillin-resistant
Staphylococcus aureus (MRSA) and multidrug resistant strains of
Acinetobacter baumannii [610-611]. Multidrug resistant bacteria are
dangerous and they have the potential to not only increase the global rates of
morbidity and mortality associated with infectious bacteria but also to
increase national healthcare system spending [612-616]. Bacterial infections
are becoming increasingly hazardous and there is an urgent need to synthesis
new antibiotic medication that can be used to treat multi-drug resistant
bacteria. The phenomenon is not unprecedented and clinicians had noted that
Gram-positive cocci were developing resistance to sulphonamide group
drugs in the first-half of the 20t [593]. Chemists synthesized novel
derivatives of otherwise ineffective sulphonamide antimicrobials to make
new antibiotic medication for the increasingly resistant strains of Gram-
positive cocci bacteria [593, 617-621]. There was an effective arms race
between chemists and microbes that has persisted ever since, sometimes
increasing in rapidity and other times slowing as the volume of antimicrobial
scientific research and scientific funding varied throughout the last century
[622-623]. We are now at an interesting precipice where computational
simulation methodologies have reached a level of sufficient complexity that
they can be used to not only gain unprecedented molecular level insights into
the action of effective antimicrobials [624] but also to streamline pipelines
for drug-target interaction network analysis and to streamline pipelines to
identify potentially novel antibiotic medication [625-629]. Molecular

dynamics simulations are increasingly being applied to evaluate the
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molecular level interactions of effective antimicrobial peptides and to gain

insights into their antibacterial and membrane disrupting effects [630-631].

1.6 Gram-Negative and Gram-Positive Bacteria

1.6.1 Gram Staining

Bacteria are broadly classed as either Gram-positive or Gram-negative
according to the structure of their cell envelope and how they respond to the
Gram stain test. The Gram stain test is a relatively simple procedure that uses
colored dyes to determine whether bacteria should be classed as either Gram-
positive or Gram-negative [632-635]. Scientists initially apply primary crystal
violet and iodine solution stains to a heat-fixed smear of the bacterial cell
culture. The bacterial culture is subsequently decoloured with ethanol or
acetone and counterstained with carbol fuchsin or safranin. Gram-positive
and Gram-negative bacteria respond differently to the step-wise staining
procedure [634]. Gram-negative bacteria are dyed pink by the carbol fuchsin
or safranin, whereas Gram-positive bacteria retain the initial measure of the
crystal violet stain. The different responses can be understood if we consider
the different structure and composition of the Gram-positive and Gram-
negative cell envelopes [20,636]. The Gram-negative bacterial cell envelope
is tripartite and it contains the inner cytoplasmic membrane, the outer
bacterial membrane, and layers of peptidoglycan that are located between
them. The Gram-positive cell envelope is dipartite and rather than there being
an outer membrane, there is only the cytoplasmic membrane and the layers
of peptidoglycan that bonded to it through lipoteichoic acid. The Gram-
positive and Gram-negative layers of peptidoglycan are differently exposed
to the external milieu and they consequently have different responses to the

Gram stain test.

1.6.2 Cell Envelopes

Gram-positive bacteria have a cytoplasmic lipid membrane that contains

phospholipids and transmembrane proteins (Figure 16A). The cytoplasmic
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membrane additionally contains interstitial lipoteichoic acids (Figure 16B)
that act as chelating agents and bind the fluid lipid membrane to a relatively
rigid wall of porous peptidoglycan (Figure 16C) [637-639]. The
peptidoglycan layers are comprised of murein, a polymer of disaccharides
that are cross-linked by short chains of amino acids [640-643]. The sugar
component consists of alternating N-acetylglucosamine and N-
acetylmuramic acid units that are attached to a chain of three to five amino
acid units. The peptide chains can be cross-linked to form a 3D mesh-like
network that is up to 80 nm thick and forms around 90% of the dry-weight of

Gram-positive bacteria [644].

The Gram-negative bacterial cell envelope contains two membranes, the
inner and outer lipid membrane bilayers, and layers of peptidoglycan that are
located between them (Figure 16D) [59]. There are different types of
phospholipid molecules within the inner cytoplasmic membrane including
cardiolipin, PE and PG phospholipid [645-648]. There are various membrane
proteins that are embedded throughout the inner cytoplasmic membrane
including aquaporin AqpZ [648] and the lactose permease LacY transport
protein [649]. The outer membrane has an asymmetric structure and there
are significantly more phospholipids in the inner (intracellular) leaflet than
the outer leaflet and correspondingly, significantly more LPS macromolecules
in the outer (extracellular) leaflet than the inner leaflet. There is in effect, one
extracellular LPS leaflet that interacts with the external milieu and an
opposing phospholipid leaflet that interacts with the periplasmic matrix.
There are also different types of transmembrane 3-barrel porin proteins
embedded throughout the outer membrane, e.g. the vitamin B12 transporter
BtuB protein [650-651] and the ferrichrome outer membrane transporter
FhuA [652]. Braun’s lipoprotein is also embedded throughout the outer
membrane and this 7.2 kDa macromolecule has the rather interesting and
unusual property that it can connect the outer bacterial membrane to the

layers of peptidoglycan in the periplasm [653-655].
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Molecular dynamics simulations of the Gram-negative bacterial cell envelope
have become larger, longer and significantly more complex during the last
couple of decades [104-105,231]. Scientific research groups have
successively calibrated different atomistic resolution simulation forcefields
[163] to more accurately reproduce the properties of LPS containing bacterial
outer membrane mimetics and these carefully calibrated lipidic systems have
been simulated with different types of integral membrane proteins, e.g. the
OMPs [308]. Molecular dynamics simulations were conducted with
sophisticated atomistic resolution forcefields to understand the properties of
bacterial cell wall mimetics that contain models for the inner cytoplasmic
membrane, the outer bacterial membrane, the layers of peptidoglycan, and
some of the different proteins that mediate interactions between them [320-
321]. Atomistic simulations were similarly conducted to understand how
mechanical stress is distributed throughout the constituent components of
the Gram-negative bacterial cell envelope [312] and how the outer membrane

is affected by membrane-active AMPs [328].

Coarse-grained molecular dynamics simulation forcefields were used in 2017
to probe previously unprecedented spatiotemporal scales and enable
microsecond long simulations of mesoscopic bacterial cell wall composites
that include models for the inner cytoplasmic membrane, the outer bacterial
membrane, and a model for the large AcrABZ-TolC multidrug efflux pump
protein that spans the entire periplasmic space and simultaneously interacts
with both the inner and outer bacterial membranes [325]. Coarse-grained
molecular dynamics simulations have also provided interesting insights into
fundamental processes that underpin bacterial cell growth and bacterial cell
division. Coarse-grained molecular dynamics simulations have explained
how the rod-shaped structure of Gram-negative bacteria is preserved during
bacterial cell growth [311] and how constrictive forces are necessary for

promoting bacterial cell division [656].
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Figure 16. Schematic illustration of the cell envelope of (A) Gram-negative
and (B) Gram-positive bacteria. Phospholipids are orange spheres attached
to two acyl chains, LPS lipids are orange ovals attached to six acyl chains and
terminal red square polymers, teichoic acids are green circle polymers
attached to orange heptagons, proteins are gray circle and oval composites,
and peptidoglycan is the repeating blue and purple hexagon-square
composite. (C) The chemical structure of the peptidoglycan unit. (D) The
chemical structure of teichoic acid. The different cell wall structures affect
how bacteria interact with the external milieu and thereby, their response to
the Gram stain procedure. The image source is:
10.1021/acs.chemrev.8b00538 (DOI) [59].

1.6.3 Outer Membrane Vesicle Biogenesis and Functions

The outer membrane of Gram-negative bacteria frequently swells and
ruptures and this process generates outer membrane vesicles (OMVs) that
can move into the extracellular space [47-51] and traffic molecular cargo
from the periplasm of one bacterium to surface of another [51-52]. The
stability of the Gram-negative cell envelope is affected by the number and
strength of the non-covalent interactions between murein and the outer
membrane proteins [312], and the covalent cross-links between Braun'’s
lipoprotein and the rigid layers of peptidoglycan [320,657]. Areas of the
bacterial outer membrane that are devoid or depleted of attachments to the
layer of peptidoglycan are liable to swell and progressively protrude
outwards until the membrane decouples entirely from the bacterial cell wall

and subsequently forms spherical OMVs [51,658-659].
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OMVs are small (~20-250 nm) spherical vesicles that contain a combination
of different lipids that are distributed asymmetrically about the membrane
midplane [660-661]. The outer leaflet is predominantly comprised of LPS
lipids and the inner leaflet is predominantly comprised of phospholipids but
there can also be integral membrane proteins that embedded throughout
[662-663]. The structure and compositional characteristics of the OMVs are
comparable to the structure and compositional characteristics of the parent
Gram-negative bacterial outer membranes. OMVs have high concentrations
of smooth LPS lipids when they bleb from the surface of smooth Gram-
negative bacteria and similarly, OMVs have high concentrations of rough LPS

lipids when they bleb from the surface of rough Gram-negative bacteria [664].

OMVs contain an inner periplasmic core and diverse luminal and surface
exposed biomolecular cargo. The lumen can contain relatively high
concentrations of degradative enzymes, which catalyze the decomposition of
complex macromolecules, or instead contain high concentrations of genetic
material (DNA and RNA) that can be transferred from one bacterial cell to
another [47,665]. OMVs have also been found to traffic acquisition proteins
from bacterial cell envelopes into the extracellular space, making them adept
at performing nutrient scavenging roles [48]. It is becoming increasingly clear
that OMVs additionally traffic pathogenic cargo (e.g. virulence factors)
toward target mammalian cell membrane surfaces and that they have
important roles in mediating bacterial pathogenies [48,52,664]. OMVs bleb
from pathogenic Gram-negative bacterial cell surfaces and traffic toxins,
hemolysin molecules, proteases, adhesin compounds etc. to host cell surfaces
and this process contributes to the spread of infectious disease. The OMVs
pass through the extracellular space and after initial interactions with host
cell surfaces they enter into the host cell cytosol and release their pathogenic
cargo [52,664]. When virulence factors are concentrated within OMVs they
are afforded protection from the extracellular environment and consequently
it can be more effective to deliver molecular cargo within OMVs compared

with conventional soluble section processes [666-667].
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Although it is well established that OMVs can enter into the host cell cytosol
during infection, the precise biomolecular interactions that underpin host cell
association and OMV uptake have not been determined [52,664]. It has been
demonstrated that OMVs can deliver luminal cargo via clathrin dependent
endocytosis mechanisms; the binding of the OMV ligands to the host cell
surface receptors triggers the formation of clathrin coated pits that are up to
200 nm in diameter and are sufficiently wide to envelope most small,
medium, and large sized OMVs that are released from Gram-negative
bacterial cell surfaces [52,668-669]. Numerous studies have described roles
for clathrin proteins in the active internalization of OMVs but generally with
the caveat that OMV uptake still transpires even when clathrin proteins are
absent or entirely inactivated. OMV uptake can occur independently of any
membrane embedded proteins through endocytosis interactions that are
mediated entirely by lipid-lipid interactions [664]. It is theorized that the
OMVs initially dock onto plasma membranes and subsequently release their
luminal cargo through direct membrane fusion as they interact with lipid
rafts that form the host cell surface (Figure 17). The proposed model has not
been proven through experimental analyses and the uptake model is
consequently quite vague and unclear [52]. The observation that the lipid-
mediated internalization dynamics depend on the presence and length of
constituent LPS O-antigen chains makes the uptake pathway even less clear
and more difficult to understand [664]. It seems appropriate therefore to
briefly describe the compositional characterises of lipid rafts in the following
paragraph and to describe how lipid rafts could promote direct membrane
fusion or endocytosis uptake processes. Readers should be aware that lipid
rafts have already been discussed more comprehensively when the raft

hypothesis was first introduced in section 1.1.

Lipid rafts are transient fluctuating nanoscale assemblies that are
predominantly comprised of glycosphingolipids, cholesterol, integral
membrane proteins, and saturated phospholipids [73-75]. Lipid rafts have

unusual molecular packing parameters (i.e. area per lipid and thickness), acyl
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chain order values, and diffusion parameters that differ from the
encompassing membrane environment [81-82,135,362]. Cholesterol
molecules pair with sphingolipids and proteins and these co-coupling
interactions form a relatively static and liquid-ordered raft structure (Lo)
whose biophysical parameters differ the encompassing liquid-disordered
membrane (Ld) [59]. Recent molecular dynamics simulations have proposed
that the liquid-ordered (Lo)/liquid-disordered (Ld) phase boundary can
facilitate direct membrane fusion if the Lo phase constituents have the larger
negative spontaneous curvature [670]. In such a case, the presence of
membrane fusion intermediates (i.e. highly curved fusion stalks) next to the

less-ordered boundary region becomes energetically favourable.

However, it is also clear that caveolae promote spontaneous curvature
generation and the production of endocytosis intermediates independently
of direct membrane fusion interactions [74,368]. The word caveolae is Latin
for “little caves” and the name seems to be appropriate since caveolae are
small membrane invaginations that have a raft-like composition that includes
glycosphingolipids, cholesterol, sphingolipid and saturated phospholipids
[87,671-672]. Glycosphingolipids are especially abundant within the neck of
the caveolae [366-367,673] because clusters of intrinsically positively curved
glycosphingolipids have the capacity to lower line tension energies between
neighboring flat and negatively curved membrane domains. In other words,
it is energetically favourable for the clusters of glycosphingolipids to move
toward the interfacial domains that separate adjacent flat and negatively
curved membrane domains [430,536]. Cholesterol molecules are also present
in unusually high concentrations within caveolae, but they are primarily
situated within the central portion of the caveolae that bulges inwards into
the intracellular space [673]. Viral particles are already known to induce
endocytosis processes when they interact with glycosphingolipids within
host cell membrane surfaces [538-540,674] and it is not unreasonable to
assume that OMVs might also induce the formation of endocytosis
intermediates (e.g. caveolae) when they bind and sequester host cell

glycosphingolipids. The results from chapter 5 indicate that OMVs might
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induce the formation of highly curved lipid raft-like assemblies when they
bind (GM3) ganglioside molecules and that this interaction can promote the

formation of raft-like endocytosis intermediates on long timescales.

outer leaflet (OMV)
inner leaflet (OMV)
~20-250 nm
luminal cargo (OMV)
_— \
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lipid raft (host)

clathrin (host)

Figure 17. Host-pathogen interface interactions. The OMVs are liposomes
that contain an outer leaflet that is predominantly comprised of
lipopolysaccharide lipids and an inner leaflet that is predominantly
comprised of phospholipids. The OMVs deliver luminal cargo and virulence
factors to host cells as they pass through or fuse with the host cell
(eukaryotic) plasma membranes. The OMVs can enter cells through clathrin-
dependent endocytosis and alternative lipid-mediated internalization
uptake pathways that involve lipid rafts, but the precise biomolecular
interactions that underpin these processes are not entirely understood.
Here, the OMV outer leaflet is cyan, the inner leaflet is orange, the outer
membrane proteins are yellow, the host plasma membrane is pink, the lipid
raft is blue and the clathrin molecules are purple and red.
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1.7 Antimicrobial Peptides

Gram-negative and Gram-positive bacteria are progressively acquiring
resistance to last-line antibiotic medication [610-614] and the number of
antibiotics that are still effective against infectious diseases is dwindling
[593-595]. Without immediate intervention it seems likely that there will
soon be few, if any, antibiotics that are suitable for treating the most
concerning strains of infectious bacteria [675-678]. We could observe a
drastic increase in morbidity and mortality as immunocompromised patients
increasingly become infected with debilitating extensively drug-resistant
bacterial infections that are unresponsive to any conventional form of

chemotherapy.

Antimicrobial peptides (AMPs) are potent broad-spectrum antibiotics that
are produced by all classes of life as part of the innate immune response and
they can destroy different forms of infectious bacteria [129-137]. AMPs have
received significant scientific attention during the last couple of decades
because AMPs tend to rather uncommonly, destroy pathogenic microbes by
destabilizing the protective lipid-containing cellular membrane. AMPs are
effective against multiple different forms of bacteria, fungi, and viruses and it
is speculated that novel antibiotics could be manufactured as theoreticians
determine the molecular level interactions that underpin the antimicrobial
properties of these broad-spectrum AMPs. Chemists could take these
molecular level insights and synthesize new medication that is effective
against otherwise extensively drug-resistant strains of Gram-negative

bacteria [679-682].

Many AMPs have similar chemical characteristics and they have been found
to affect membrane permeability via comparable modes of action [683-684].
There are several chemical properties that are common among different
types of AMP: (i) the peptides contain cationic moieties and a net positive
charge ranging from +2 to +13; (ii) AMPs are primarily comprised of

hydrophobic residues such as tryptophan, phenylalanine, and isoleucine; and
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(iii) all AMPs are amphipathic [685-689]. The relative abundance of the
hydrophilic and hydrophobic moieties determines how the AMPs destabilize
the target bacterial membranes and it also determines where the AMPs will

reside along the membrane normal axis [690].

The initial contact between AMPs and biological membranes is usually based
on attractive electrostatic interactions because the bacterial membrane
boundaries contain anionic lipid headgroups and [645] the AMPs always
contain positively charged amino acid residues. Early experimental data
indicated that biological membranes are disrupted by so-called “barrel-

» “

stave”, “carpet” or “toroidal-pore” AMP-induced modes of action [687,691-
692]. The barrel-stave model mechanism proceeds as follows: the AMPs are
initially oriented perpendicular to the bilayer normal but they slowly
penetrate into the membrane interior until they are oriented parallel with the
encompassing lipid tails (Figure 18B). This transmembrane protein position
promotes lateral peptide-peptide interactions and the proteins self-assemble
into a transmembrane cylinder whose hollow lumen increases the diffusion
of material across the membrane normal axis [693-694]. The toroidal pore
model mechanism proceeds as follows: the AMPs initially settle onto the
membrane surface and subsequently penetrate the bilayer until they are
oriented along the membrane normal axis. The peptides induce local
membrane curvature until the peptides and encompassing lipids form a
cavernous toroidal pore (Figure 18C) [693,695]. AMPs can additionally
disrupt biological membranes through the carpet mechanism, in which the
peptides initially adsorb onto the bilayer surface without penetrating into the
hydrophobic interior and they collectively form a “carpet” of AMP molecules.
The unfavorable interactions between the adsorbed proteins and the
underlying lipids affects the local membrane integrity (Figure 18D) [696].
The protein-lipid interactions eventually disrupt the stable lamellar
membrane packing and the lipids are prone to break away from the bilayer
to form lipid micelles. Indolicidin and cecropin are AMPs that destabilize the
bacterial membrane structure through processes that mimic the carpet

mechanism [670-672].
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Figure 18. Overview of AMP membrane breakdown processes. (A) The AMPs
initially bind to the host membrane surfaces through a combination of
electrostatic and hydrophobic protein-lipid interactions. The AMPs adopt
orientations that maximize the number of attractive peptide-lipid
electrostatic and hydrophobic interactions. (B) In the barrel-stave model the
hydrophobic AMP moieties are oriented toward the encompassing acyl
chains and this creates a transmembrane water pore. The encompassing
acyl chains maintain a transmembrane orientation (i.e. align with the
membrane normal axes) and the AMPs oligomerize to effectively form a
pore that has one hydrophobic surface and one hydrophilic surface. (C) In
the toroidal-pore model the intracellular (inner) and extracellular (outer)
monolayers distort when they interact with the oligomerized AMPs and this
creates a transmembrane water pore whose surface is comprised of lipid
headgroups and protein residues. (D) In the carpet model the AMPs stay on
the membrane surface and induce membrane rupture as they change the
structure of the membrane. The image source is: 10.1007/s10989-009-
9180-5 (DOI) [673].

Keeping in mind that AMPs are known to affect biological membranes and
also that molecular dynamics simulation methods have been carefully
calibrated over the last few decades to accurately reproduce the interactions
of lipids, it should not be particularly surprising that there have been an
inordinate number of molecular dynamics simulations that have explored
the interactions of AMPs with bacterial membrane mimetics [188,674-677].
The prototypical AMP melittin has been repeatedly simulated with different
molecular dynamics simulation forcefields and it has been found that
melittin disrupts the stable bilayer structure through the formation of
transmembrane water channels according to an unconventional barrel-
stave membrane breakdown process [678-682]. It was found via molecular
dynamics simulation methods that melittin molecules spread out across

transmembrane water pores in different orientations rather than being
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neatly aligned along the membrane normal axis, as conventional membrane
disruption models had previously assumed [683]. Subsequent molecular
dynamics simulations were able to elucidate how the insertion of the N-
terminus can contribute to membrane disruption [684] while the C-
terminus anchors melittin to the lipid headgroups through hydrogen-bond

interactions [685].

The formation of toroidal pores has also been noted in molecular dynamics
simulations of magainin AMPs but there were notable differences between
the results from the molecular dynamics simulations and predictions from
the conventional toroidal pore disruption models. The simulated magainin
MG-H2 AMPs induced the formation of a nanometer-sized toroidally shaped
pore in DPPC membranes but only one magainin AMP was found near the
center of this transmembrane pore while the remaining AMPs remained on
the bilayer surface with an orientation that was approximately parallel to
the bilayer surface [686]. Later electron paramagnetic resonance
spectroscopy studies and molecular dynamics simulations with sum
frequency generation vibrational spectroscopic studies would corroborate
the inference that magainin molecules tend to predominantly lie on the flat
hydrophilic surface of membranes [687-688] rather than immediately
cluster to form the simplistic oligomeric transmembrane toroidal pore
structures that had been previously hypothesized. Through molecular
dynamics simulations it is now clear that magainin AMPs can induce
membrane thinning and induce significant membrane perturbation even
when they are lying on the flat hydrophilic surfaces of bacterial membrane
mimetics [689]. Prior to these interesting molecular dynamics simulations it
was assumed that magainin AMPs predominantly disrupted biological
membranes by oligomerizing to form conventional transmembrane toroidal
pores but it is now becoming clear that the degradative interactions of
magainin AMPs are much more complex and it has even been proposed,
based on simulation studies [690], that magainin AMPs can only form
toroidal pore structures when they co-couple with PGLa (sequence

GMASKAGAIAGKIAKVALKAL-NHz) [691-693] because the molecules are
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both a part of the African frog Xenpus laevis innate immune response system
[694] and consequently they would both be found in vivo interacting with

the same membrane systems.

Molecular dynamics simulations of the chrys-3 AMP have produced
interesting results that in some instances corroborate pore formation
models and in other instances corroborate the carpet model. It was found
that when chrys-3 peptides were positioned across the membrane normal
axis they tended to co-couple and induce the spontaneous production of
transmembrane pores, but when chrys-3 peptides were located at the
membrane surface they increased membrane curvature and generated
membrane protrusions that could be considered micellization intermediates
[255]. Molecular dynamics simulations have also demonstrated that the
Aurein 1.2 [286], Kalata B1 [695-696], and PA-PIn149 AMPs [697] have the
capacity to induce bilayer curvature and affect the membrane integrity. The
AMPs had the capacity to increase membrane curvature when they were
located at the membrane surface despite minimal insertion of the AMP
hydrophobic moieties into the hydrophobic acyl chain domain. Coarse-
grained molecular dynamics simulation forcefields have even been applied
to demonstrate that cyclic antibacterial peptides can self-assemble at the
membrane surface and cause the underlying membrane to extrude lipids as
they form micellar aggregates [698]. Taken together, the molecular
dynamics simulations reveal that the toroidal, barrel-stave, and carpet
models are too simplistic and that molecular dynamics simulations are
necessary for revealing otherwise inaccessible molecular level details that

underpin the membrane disrupting properties of antibacterial peptides.

1.8 Polymyxin B1

Polymyxin molecules are a class of antimicrobial lipopeptides that are
produced by strains of Gram-positive Paenibacillus polymyxa bacteria [699-
701]. The polymyxin lipopeptides consist of 10 amino acids including six

cationic diaminobutyric acid (Dab) residues and a hydrophobic acyl chain
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moiety (Figure 19A). Seven of the amino acids are bonded to form the cyclic
component of the lipopeptides while the remaining acyl tail and three amino

acids comprise the linear chain section [702-703].

Polymyxins are potent antimicrobials that are effective against Gram-
negative bacteria [147-150]. The lipopeptides are administered in hospital
settings as last-line antibiotics to treat infectious Gram-negative bacterial
infections [704-709]. The intravenous application of polymyxin medications
is reserved for the most potent and resistant strains of infectious Gram-
negative bacteria partly because the antibiotics are considered to be
relatively neurotoxic and nephrotoxic [710-716] and partly to suppress the
proliferation of multidrug resistant genes [606-612]. The inappropriate
application of the polymyxin lipopeptides has the potential to damage renal
and neural tissues and at the same time produce extensively drug-resistant

strains of Gram-negative bacteria.

It is now well established that polymyxin lipopeptides can kill Gram-negative
bacteria by binding to and breaking down the Gram-negative bacterial outer
membrane. Polymyxin molecules initially bind to the Gram-negative bacterial
outer membrane as the positively charged Dab residues interact with the
negatively charged LPS lipid phosphate groups [717-720]. Studies of
polymyxin nonpeptide suggest that the acyl chain moiety also affects the
membrane breakdown processes. Polymyxin nonapeptide lacks a terminal
acyl chain moiety and the molecule is able to bind cationic bacterial
membrane surfaces but it is unable to kill pathogenic bacteria [721-724]. The
inability of polymyxin nonapeptide to kill pathogenic bacteria indicates that
the acyl tail component contributes to the disruption of Gram-negative
bacterial cell membranes and this suggests that polymyxin lipopeptides affect
Gram-negative bacteria through detergent-like action. It is assumed that the
acyl chain portion dissolves into the hydrophobic core of bacterial
membranes and that this process disrupts the integrity of the lipid bilayer
[725]. It is quite interesting therefore, that in 2018 Lakey et al. used a

combination of neutron reflectometry and infrared spectroscopy to show that
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polymyxin B acyl chain insertion depends on the phase transition of LPS lipids

from the gel to the liquid crystalline state [144].

While the precise antimicrobial interactions that are responsible for Gram-
negative bacterial outer membrane breakdown processes are still debated,
molecular dynamics simulations are increasingly providing new and
interesting molecular level insights that can help us to understand the
antibacterial action of polymyxin AMPs. One of the first pioneering
publications came from the Khalid group [328] when they revealed, through
the application of the GROMOS 53A6 united-atom molecular dynamics
simulation forcefield [561-562], that PMB1 molecules affect the movement of
LPS lipids in the Gram-negative bacterial outer membrane and additionally,
that PMB1 molecules can decrease the inner cytoplasmic bacterial membrane
width [328]. Santos et al. later went on to show that the binding of polymyxin
molecules to Gram-negative bacterial outer membrane mimetics promotes
cation displacement [243] and at the same time, that the antimicrobial
promotes spontaneous membrane curvature generation when it interacts
with the bacterial membrane mimetic surface. Khondker et al. have also
performed all-atom molecular dynamics simulations to better understand
how the mobilized colistin resistance (mcr-1) gene confers resistance to
colistin, also known as polymyxin E [726]. The mcr-1 phenotype is known to
increase membrane packing and at the same time, decrease membrane
charge within the Gram-negative bacterial outer membrane. Through the
combination of X-ray diffraction analyses, molecular dynamics simulations,
electrochemistry, and leakage assays it was shown that increasing membrane
surface charge promotes polymyxin molecular penetration and membrane

damage, whereas increasing lipid packing decreases penetration and damage.

The undesirable neurotoxic and nephrotoxic effects [710-716] of the
polymyxin peptides on mammalian cell membranes have prompted scientists
to conduct molecular dynamics simulations to better understand how
polymyxin molecules interact with mammalian cell membranes. The SLipids

molecular dynamics simulation forcefield [727] was paired with X-ray
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diffraction and electrochemistry experiments to understand how polymyxin
molecules disrupt mammalian cell membranes [728]. It was found that
polymyxin clusters induced bilayer indentation and increased water
permeation when they interacted with membranes that were depleted of
cholesterol molecules (Figure 19B). The multicomponent membranes were
significantly more mechanically robust when they contained high
concentrations of cholesterol molecules and significantly more prone to
become damaged when they were depleted of cholesterol molecules (Figure
19C). There was less bilayer indentation and less water permeation when the
cholesterol content was high and this result suggests that cholesterol
molecules can suppress the undesirable neurotoxic and nephrotoxic

properties of polymyxin peptides.

106



phenylalanine

diaminobutyric acid (Dab)

\ isobutyl

carbon tail A

diaminobutyric acid (Dab)

C DMPC:DMPE:DMPS:Chol + PmB

Simulation Box Simulation Box

Figure 19. The structure and simulations of the Polymyxin B antimicrobial
peptide. (A) The lipopeptide contains a cyclic component that is made of
seven amino acids and a non-cyclic section that contains three amino acids
with terminal fatty acid chain moiety. The lipopeptide contains five cationic
diaminobutyric acid (Dab) residues that impart a net (+5) positive charge to
the molecule and this positive electrostatic charge promotes PMB1
interactions with anionic lipids. The fatty acid chain, isobutyl group, and
phenylalanine side chains confer hydrophobicity and they promote PMB1
interactions with hydrophobic acyl chain moieties. (B-C) Results from
molecular dynamics simulations. The cholesterol concentration affected
how the simulated PMB1 peptides interacted with the multicomponent
membranes. There was indentation of the bilayers and an overall increase in
permeability when the cholesterol content was zero (B). There was
significantly less membrane damage when the membranes contained high
concentrations of cholesterol (C). The water molecules are red and white,
the lipid tails are thin cyan strands, the phosphate groups are orange and
the polymyxin molecules are represented using a space-filling van der Waals
model. The image sources are: Wikipedia Commons and
10.1016/j.bpj.2017.09.013 (DOI) [728].
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Chapter 2: Computational Methods

2.1 Molecular Dynamics

Molecular dynamics simulations consist of the numerical, step-by-step,
resolution of the classical equations of motion [729-730], which is described

by the equation:

fi= _a_riu(rN)

Equation 1

The force f; acting on each atom is determined from the potential energy of
the system U@N) where VN = (r,r,..7ry) is the set of N atomic
coordinates. The movement of the atoms is simulated by numerically solving

Newton'’s equations of motion:

d’r; _ fi
dtz N m;
dri ) dvi _ fi

= PV ;
dt ' dt m;

Equation 2-4

where m; and v; are atomic mass and velocity values. By initially defining the
potential energy of a simulation system the force acting on the constituent
atoms can be resolved, enabling the calculation of updated atomic positions,
velocities, accelerations etc. By iteratively updating the position and physical
properties of the system particles and the associated total potential energy,

the time-dependent trajectory of a biological system can be determined.
In conventional molecular dynamics simulations, the potential energy

function is described by a conservative forcefield, which accounts for non-

bonded and bonded interactions but ignores electronic transitions. The
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conventional molecular dynamics simulation forcefields are a function of
atomic positions that discount explicit electronic transitions, although
approximations are made for dispersion forces. For a more realistic
simulation of biological processes, electronic transitions can be computed
through the use of computationally demanding simulation methods that solve
the time-dependent electronic Schrodinger equation self-consistently with

the classical equations of motions for atoms [731-732].

2.2 Non-Bonded Potentials

The total potential energy of conventional molecular dynamics simulation
forcefields consist of a bonded component, which accounts for intramolecular
motions and a non-bonded component that includes a van der Waals and
Coulomb potential, but additional restraining and/or external forces can also
be included. The non-bonded component is derived from the addition of 1-

body, 2-body, 3-body...N-body terms:

Unon-pondea ") = Z w(r;) + Z Z v (T, ;) + ..

i j>i

Equation 5

The «(r) term represents the effects of an externally applied potential field
or the effects of the simulation walls; the term is discounted in bulk
simulations and in simulations where periodic boundary conditions are
applied. For the sake of brevity and a reduction in computational complexity,
molecular dynamics programs conventionally focus on the pair potential
v(ri,rj) =1 (r;;) while neglecting three-body and higher order

interactions.

The van der Waals interactions are generally simulated with the Lennard-

Jones potential [733]:
12

o =[]
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Equation 6

where r represents the distance between the two interacting atoms, ¢ is the
distance where the potential reaches its minimum and ¢ is the well depth
(Figure 20A). The ¢ component of the equation approximates the transient
attractive interactions that exist between induced dipoles, while the r~12
component attempts to account for the repulsive interactions that arise at
short distances, where occupied electron orbitals would tend to overlap. The
Lennard-Jones parameters are determined for atoms in different chemical

environments (hybridization, aromaticity etc.) to enable the simulation of

diverse sets of biomolecules.

Vi (D)

VCoulomb(r)

Figure 20. Schematic representation of the non-bonded interaction energy
term components. (A) Lennard-Jones component that is used to
approximate repulsive electron overlap forces at short-range, and attractive
dispersion forces at long-range. The well depth is provided by ¢, and o is the
distance where the potential reaches its minimum. (B) Coulombic
interaction energy experienced by two point charged particles. Coulomb
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forces are appreciable at both short- and long-ranges given that they decay
according 1, where 7 is the distance between two charged particles.

The choice of 6-12 Lennard-Jones exponents makes simulations
computationally efficient, while also providing satisfactory numerical
accuracy. But the lack of theoretical justification for the Lennard-Jones
potential can warrant the use of alternative mathematical functions to
simulate attractive dispersion forces at long ranges and repulsive electron
orbital overlap forces at short ranges. The van der Waals interactions can be

expressed more generally by the Mie-potential [734-736]:

m/(n-m)

= (=) ()

Equation 7

The exponents n and m can be varied to enable flexible fine-tuning of the
steepness of the attractive and repulsive domains of the pairwise potential.
Likewise, the Buckingham exponential-6 function [737] can be used in place
of the Lennard-Jones potential since it provides a softer repulsive exponential
term that is more computationally demanding, but in better accordance with

electronic structure theory:

ai6eXp(a[1_£D_ai6(g)6]

vg(r) =£[

Equation 8

Here, a is a free dimensionless parameter that has been optimized to
reproduce a realistic interatomic potential. Soft-core van der Waals potential
energy functions are sometimes [738-741] used when alchemically
transforming molecules, during thermodynamic integration calculations and
during energy minimization simulation steps to keep the pairwise interaction
energy finite. The soft-core van der Waals potential energy functions have the

general functional form:
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Equation 9

Here, a controls the softness of the potential energy function, 4 is the linear
scaling term, and a, b, and ¢ are exponents that control how rapidly the
softness is removed. Soft-core potential energy functions are now a part of all
the major biomolecular simulation packages. GROMACS and AMBER
simulation packages [742-745] provide soft-core van der Waals potential
energy functions wherea = 1, b = 1, and ¢ = 6, while NAMD [746-747]and
CHARMM [748-749] packages provide soft-core potential energy functions

wherea =1,b =1,and ¢c = 2.

The Coulomb potential is used to model the energy between point charge
particles that are located at atomic nuclei. The potential energy is described

by the equation:

219,

4ntr €

Vcoutomp (1) =

Equation 10

where @, and Q, quantify the charge of two point particles that are separated
by a distance of r and €, is the permittivity of free space (Figure 20B). Most
molecular dynamics simulation packages discount dispersion and
electrostatic forces between atoms that are separated by only one or two
covalent bonds, however atoms that are separated by at least three bonds are
included, albeit with scaling factors to temper the magnitude of the
interaction energies. For example, the OPLS (Optimized Potential for Liquid
Simulations) forcefield employs a 0.5 scaling factor for the dispersion and

electrostatic energies arising from so-called 1-4 interactions [170,750].
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The derivation of appropriate partial point charges for molecular dynamics
simulations is necessary for accurately mimicking the interactions of all
biomolecules. Electrostatic charge is distributed throughout a given
simulation biomolecule to accurately mimic data from high-level quantum
chemical (ab initio) calculations and data obtained from sophisticated
experimental analyses [751]. For example, ab initio calculations at the
LMP2/cc-pVTZ(-f)/HF/6-31G(d) theory level were conducted to optimize
partial point charge values for ionic liquids in the OPLS-AA molecular
dynamics simulation forcefield [752]. Anions were optimized at the Hartree-
Fock (HF) theory level [236] using the 6-31G(d) basis set with single-point
energy calculations using the local Mgller-Plesset (MP) second-order
perturbation method [753] with the correlation-consistent polarized valence
cc-pVTZ(-f) basis set [754]. Multiple quantum chemical calculations were
used to determine appropriate partial point charge values for each
biomolecule, since multiple low-energy configurations exist for each
biomolecule due primarily to torsion rotations. Electrostatic potential
charges were determined for all of the available energy-minimized stationary
points and an average partial charge value for each atom type was
determined by appropriately weighting the contribution of each ground-state
structure to the overall conformational population. Comparable
parameterization schemes have been adopted for the derivation of the OPLS-
AA menthol simulation forcefield [755] and for other AMBER [756] and
GROMOS forcefields [757-758] but refinement with reference experimental
data is also common [759]. The geometry of the menthol molecule was
optimized at the HF/6-31G* theory level for the reparameterization of the
OPLS-AA menthol forcefield. Following that, single point calculations were
performed at the MP2 level using the aug-cc-pVTZ basis set with the f-type
function excluded. The reparameterization enabled more accurate simulation
of notjustthe static properties of liquid menthol but also transport properties

including the shear viscosity.

The use of partial point charge values is useful for enabling the simulation of

diverse biomolecules in standard nonpolarizable (fixed charge) molecular
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dynamics simulations, but the lack of theoretical justification for the complete
omission of electronic motion can warrant the use of more complex
polarizable simulation forcefields [760-762]. Methods can be used to
approximate the motion of electrons and ensure that charges within
simulated biomolecules display some non-negligible response to their
encompassing electrostatically active environment. To be clear, the methods
make approximations for electronic motion but the level of theory differs
markedly from ab initio quantum chemical calculations. The Drude oscillator
model mimics induced electronic polarization by introducing an auxiliary
particle attached to each polarizable atom via a harmonic spring [763-766].
Drude polarizable forcefields are a simple and intuitive improvement on
conventional nonpolarizable forcefields since they preserve the simple
particle-particle Coulomb electrostatic interactions that are common in
GROMOS, AMBER, OPLS, etc. The AMOEBA (Atomic Multipole Optimized
Energetics for Biomolecular Applications) forcefield is considerably more
complex and aside from having a different functional form for the bonded
potential to most fixed charge molecular dynamics simulation forcefields, it
also replaces the fixed partial charge model with polarizable atomic
multipoles through the quadrupole moments [767-768]. Rather than merely
replicate interaction energies alone, the AMOEBA forcefield replicates
molecular polarizabilities and electrostatic potentials. The use of permanent
dipoles and quadrupoles enables the AMOEBA forcefield to effectively change
molecular charge distributions in response to changing or heterogeneous
molecular environments. The energy correlations between AMOEBA and
MP2 energies for water-sulfate anion clusters were determined to have
correlation coefficients of ~0.9 and predicted AMOEBA solvation free
energies had correlation coefficients of ~0.9 when compared with reference
experimental values [767]. Polarizable forcefields have been used to simulate
relatively few lipid membranes but pronounced differences are already
evident e.g. large differences in the dipole across the water/lipid interface

between fixed charge and polarizable forcefield simulations [769-771].
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2.3 Bonded Potentials

Quantum-chemical calculations are usually performed for most molecular
dynamics molecules to estimate appropriate electron density distributions
that are then modeled as partial point charges according to Equation 10. The

intramolecular bonding potentials are modeled as:

1 2
Upongea(r) = 5 Z kij (Tij - req)

bonds

1
+ 2 Z k?jk(eijk - Heq)z

bend angles

1 2
— w A
+ 2 Z K (@ijrt = Weq)
improper dihedrals

1
.|_E Z k?}kl(l + COS(m¢ijkl - Vm))

proper dihedrals

Equation 11

Here, kirj, kiejk, k{‘}kl and kg)-kl are force constants while 7.4, 6.4 and w,, are
the equilibrium bond distance, equilibrium valence angle and equilibrium
improper torsion angle; m and y,, are the multiplicity and phase of the
proper torsion/dihedral angle term. The value of 1/2 is placed before each of
the bonded potential energy terms because the atomic force is the negative
derivative of the scalar potential energy function Up,ngeq(r). The bonds
between adjacent atoms in a molecular framework are usually modeled by a
harmonic potential with specified equilibrium separation (Figure 21A),
although alternative mathematical functions are also available. The bending
angles between two successive bond vectors (or three directly bonded
atoms) are described by a harmonic potential with an equilibrium valence
angle (Figure 21B). The improper torsion angles usually address out of plane
motions such as planarity of aromatic rings; for example, a harmonic
potential can be applied to control the angle between two planes (ijk) and (jki)
where atoms i, j, k, and [ are neighboring atoms (Figure 21C). The proper
torsion angle term controls the flexing of planes (ijk) and (jkI) formed of a

consecutively bonded quadruple of atoms (Figure 21D). The proper torsion
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angle energy is typically modeled as a Fourier cosine series expression, the
number of terms for a given torsion angle ranges between one and six

depending on the complexity of the energy profile [772-773].

Significant work is undertaken to determine appropriate bonded parameters
for molecular dynamics simulation forcefields. Force constants and
equilibrium positions are optimized using reference data from quantum
chemical calculations and experimental analysis, most commonly X-ray and
neutron scattering studies [750,774-775]. Take for example, the General
Amber ForceField (GAFF) [756], which was parameterized for simulations of
small organic molecules. GAFF used three sources of information for the
parameterization of 7., values: (i) computationally demanding ab initio
calculations (MP2/6-31G*); (ii) X-ray and neutron diffraction data; and (iii)
the suite of Amber protein forcefields [775-776]. The k;; force constants were
derived by designing model molecules and performing high-level ab initio
vibrational frequencies analysis. The same three data sources were used for
the calibration of angle parameters, i.e. the suite of Amber molecular
dynamics simulation forcefields, MP2/G-31G* calculations and crystal data.
Data were initially collated for different atom types and subsequently
averaged to determine appropriate values of 8.,. The torsion energy angle
parameters were determined through electronic structure calculations
carried out at the MP4/6-311G(d,p)//MP2/6-31G* level. The Parmscan
automatic engine [777] was used to derive an angle potential that could
accurately reproduce the reference ab initio rotational profile. The suite of
reference  AMBER protein forcefields were themselves parameterized
according to similar procedures [234]. Equilibrium bond lengths and bond
angles were taken from reference crystal structures and adapted to match the
normal mode frequencies of peptide fragments, while the torsion force
constants were optimized to match torsional energy barriers taken from

quantum chemistry calculations.
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Figure 21. The components of the molecular dynamics forcefield bonded
potential. (A) The component for bond stretching: atoms i and j oscillate
about an equilibrium bond distance 7,,. (B) The component for valence
angles: atoms i, j, and k flex about an equilibrium valence angle 6,,. (C) The
improper torsion angle component: the angle between the two intersecting
planes (ijk) and (jkI) oscillates about an equilibrium improper torsion angle
Weq- (D) The proper dihedral component describes the angular spring

between the planes (ijk) and (jkI) that is formed of four consecutively
bonded atoms.

Despite the simple functional form of bonded interaction energy components
in class I force fields (including AMBER, OPLS, and GROMOS), they are
combined to produce acceptable predictions of thermodynamic data for
biophysical systems. To more accurately simulate nanoscopic molecular
properties such as molecular geometries or vibrational frequencies,
alternative functional forms can be used to model bond stretching motions.

In class II force fields for example, bonded interaction energy terms are more
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commonly modeled using anharmonic functions such as the Morse potential

[778]:

U= De{l — exp[—ﬁ(r — req)]}z
Equation 12

where D, is the dissociation energy and £ is an adjustable parameter defined

as f = ’kf] /(2D,). The stretching energies can alternatively be calculated by

including higher order polynomial terms and cross-terms to account for the

coupling between internal atomic coordinates.

Forcefields specify the size of force constants and sometimes include
additional cross-terms for enhanced chemical accuracy. The forcefields and
their associated strength parameters are carefully calibrated using quantum
mechanical calculations, vibration frequency, thermophysical, and phase
coexistence data. The selection of reference data for forcefield calibration is

dependent on the intended application of the simulation program.

Scientists do in general, progressively refine molecular dynamics simulation
forcefields toward some set of reference experimental data [163]. The
progressive fine-tuning of molecular dynamics simulation forcefield
parameters enables newer generation forcefields to more accurately
reproduce experimental data that has been collated for lipid membranes and
proteins. Lindorff-Larsen et al. performed a systematic review to compare
eight different protein forcefields with idealized reference experimental data
sets [779]. Frist, through the use of experimental NMR data [780-782], the
group examined the capacity of each forcefield to describe the structure and
fluctuations of folded proteins. Second, the group quantified potential biases
toward different secondary structure types through comparison with
experimental and simulation data. Third, the group evaluated the capacity of
each molecular dynamics simulation forcefield to fold two small proteins, one
an a-helix and the other a 3-sheet structure (ubiquitin and GB3) [783-786]. It

was found through comparative analysis that the simulation forcefields had
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improved with time and that newer generation forcefields provided
increasingly accurate descriptions of dynamic protein properties. Martin-
Garcia et al. [787] stated similarly that newer, reparametrized molecular
dynamics simulation forcefields, including variants of AMBER and OPLS, were
able to accurately reproduce the displacement properties of proteins (e.g.
ubiquitin and Protein G) when compared with reference experimental NMR
data [788-791]. However, it was reported that in some instances
reparametrizing the molecular dynamics simulation forcefields did not have
the intended effect. For example, proteins had similar balances of helical and
coil conformations in simulations that were conducted with older less
accurate forcefields, and newer generation forcefields that had apparently
been specifically reparametrized to ensure that molecular dynamics
simulations provided a more accurate balance of the different (helical and

coil) protein conformations.

Molecular dynamics simulation forcefields have also been progressively
refined to more accurately mimic the properties of lipids and biological
membranes. The suite of GROMOS molecular dynamics simulation forcefields
is an illustrative example [59]. The now quite dated GROMOS87 forcefield
parameters were originally optimized based on calculations of the crystal
structures of hydrocarbons and amino acids [792]. The original GROMOS87
forcefield parameter set was later modified and released as the newer and
improved GROMOS96 forcefield. The GROMOS96 forcefield was improved in
different ways, e.g. aliphatic CHn, groups were reparametrized on the basis of
simulations of model liquid alkanes using long (1.4 nm) nonbonded cutoff
radii [757]. Newer generation forcefields were optimized after this to make
GROMOS forcefields even more accurate for simulating various proteins,
sugars, and lipids. The GROMOS54A7 forcefield included adjusted torsional
angle terms to more accurately mimic helical propensities [793], the
GROMOS53A5 was optimized to reproduce the thermodynamic and solvation
free enthalpies of small molecules, the GROMOS53A6 was adjusted to better
reproduce hydration free enthalpies in water [794], etc. Lipid forcefields

were progressively refined to more accurately reproduce thermodynamic
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parameters and other forms of reference experimental data. Fluid
membranes were commonly simulated under the isothermal-isobaric
ensemble (NPT) and compared with reference area per lipid, membrane
thickness, and order parameter data that were primarily determined from X-

ray and neutron scattering studies; for example, see: [551,553].

2.4 Atomistic Forcefield

Class I force fields (AMBER, OPLS and GROMOS etc.) that are geared towards
the simulation of large biomolecular systems are optimized using a
combination of quantum chemical calculations and thermophysical and
phase coexistence data. Despite these shared approaches for optimizing
simulation parameters, class I force fields can differ markedly in their
representation of simulated biomolecules and thereby the number of
pairwise intermolecular interactions computed per simulation time step. The
constituent atoms of the simulated biomolecules can be explicitly
represented to accurately reproduce the complex surface chemistry of
proteins and lipids. Within CHARMM for example, carbon and hydrogen
atoms are explicitly represented (Figure 22A) and membrane protein
dynamics are ordinarily accurately reproduced. Alternatively, neighboring
carbon and hydrogen atoms can be clustered into single interaction centers
within united-atom packages such as the GROMOS suite of forcefields [793-
794], which represent CHz and CH3 hydrocarbon units as single interaction
centers (Figure 22B) and thereby reduce the number of computationally
demanding pairwise interaction calculations that are computed per time step.
As a consequence of reducing the number of interatomic interactions, united-
atom forcefields are typically less accurate and less transferable than their
all-atom counterparts. For complex biomolecules a compromise is sometimes
made e.g. acyl tails can be modeled using a united-atom approach, while

aromatic and polar hydrogen atoms are explicitly represented [328].
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Figure 22. Some of the different resolution levels that can be used in
molecular dynamics simulations. (A) An all-atom model for the DPPC lipid.
The carbon (cyan), oxygen (red), nitrogen (blue), and hydrogen (white)
atoms are represented here explicitly. (B) The GROMOS united-atom
forcefield model for the DPPC lipid. The hydrogen atoms are clustered into
neighboring carbon atoms to produce a less computationally demanding
representation for the DPPC lipid. (C) The coarse-grained Martini forcefield
model for the DPPC lipid. Here, multiple neighboring heavy atoms have been
clustered into single pseudo-atom interaction centers to substantially reduce
the computational load and make the lipid simulations less computationally
demanding. The Martini beads have the following color scheme: carbon tail
(cyan), glycerol (pink), phosphate (brown), and choline (blue).

2.5 Coarse-Grained Forcefield

Coarse-grained forcefields achieve further reductions in computational
complexity by clustering multiple bonded atoms into single interaction
centers or “pseudo-atoms” (Figure 22C). By averaging out expensive
atomistic detail in this way, coarse-grained forcefields significantly simplify
the description of biological systems [795-796], enabling scientists to access
spatio-temporal scales that are beyond the scope of CHARMM and GROMOS.
Coarse-grained forcefields expand the scope of molecular dynamics
simulation methods and reduce the division between molecular modeling
programs and conventional experimental techniques. Coarse-grained
forcefields are more suitable for exploring protein interactions that occur on
mesoscopiclength scales and microsecond timescales such as the aggregation
of multiple membrane proteins in planar and non-planar lipid geometries

[351,496,797-798].
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The Martini forcefield [799] was specifically calibrated for the simulation of
proteins and lipids and it has been used to simulate different multicomponent
membranes. The Martini forcefield is parameterized in a systematic way:
non-bonded interactions are based on the reproduction of experimental
partitioning free energies, whereas bonded interactions are derived from
reference all-atom and united-atom simulations. The model primarily adopts
a four-to-one heavy atom mapping scheme to reduce the computational load
i.e. on average four heavy atoms and associated hydrogen atoms are
represented as a single interaction center, but three-to-one mapping schemes
were also made available for the representation of ring-like geometries.
Based on the chemical nature of the constituent atoms, the coarse-grained
particles are assigned a specific particle type: polar (P), non-polar (N), apolar
(C) and charged (Q). Within each category, subtypes are further distinguished
by their hydrogen bonding capability or their degree of polarity for the fine-
tuning of intermolecular interactions. It is important to note here that the
Martini forcefield has now been employed to a study a range of other

molecules in addition to proteins and lipids [355,406,800-809].

The primary strength of the Martini coarse-grained forcefield is its capacity
to bridge the timescale and length-scale gap between computational and
experimental methods using a relatively simple and broadly applicable
method for mapping diverse biomolecules from atomistic to coarse-grained
resolution [174]. Users can portion complex (atomistic) macromolecules into
smaller sub-sections and assign each constituent subdomain a Martini bead
type classification based on its specific atomistic composition. For example,
one might initially portion a phospholipid headgroup into constituent
phosphate, choline, and glycerol sub-sections and assign each segment the
following Martini bead type classifications: Qa, Qo, and Na [428,810]. Rather
than optimize the non-bonded parameters of each coarse-grained bead
themselves, users can make use of so-called “Martini building-blocks” that
have already been carefully calibrated to reproduce experimental

partitioning free energies by Marrink et al. [799]. The scope of the Martini
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forcefield increased as newer, smaller beads were added to the Martini
building-block library including for example, the Tiny Martini bead type that
enabled more accurate reproduction of DNA conformational characteristics
[805]. The Martini forcefield was originally parameterized for simulations of
proteins and lipids alone but is now used to simulate carbon nanotubes
[802,811], dendrimers [812-813], Cso nanoparticles [301,801], graphite
monolayers [800], synthetic hydrocarbon polymers [355], chitin fibers [803],
carbohydrates [804], DNA [805], RNA [807], alcohol [406], and more. Users
can develop bespoke Martini models by mapping atomistic structures to
Martini beads and subsequently optimize the bonded parameter sets through

comparisons with reference atomistic simulations.

The second strength of the Martini forcefield is its capacity to reproduce
diverse biophysical parameters and provide satisfactory numerical accuracy
in biomolecular simulations. There is the reproduction of area per lipid values
for most types of phospholipid [814], different components of plasma
membrane mimetics [799], and different LPS chemotypes [301,580], to
within 0.1 to 0.2 nm? of the experimental values. Other than this, the Martini
forcefield has been validated through the accurate reproduction of lipid phase
diagrams [335], the reproduction of ternary membrane phase behaviour
[343-344], the dimerization free energies of transmembrane helices [815]
and the capacity of the forcefield to correctly predict protein oligomerization
events [115]. There is also the accurate reproduction of the glycophorin A
dimer structure [816], the H-NMR quadrupolar splittings of WALP peptides
[817], and the relatively accurate binding free energies of pentapeptides at

the water-lipid interface [818].

The Martini forcefield can accurately reproduce the partitioning properties of
most organic compounds and provide satisfactorily accurate quantitative
data for most biomolecular simulations [799,814]. However, there are several
limitations that affect the validity of the Martini forcefield and it is important
to state some of the most noteworthy inaccuracies here, since the Martini

forcefield is used throughout this thesis. First, there is the fact that the Martini
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forcefield was parameterized for the fluid phase and is not expected to
accurately reproduce the packing, or physical properties of the solid phase
[819]. The solid phase generally appears to be too stable in Martini forcefield
simulations and this leads to well-known inaccuracies including incorrect
freezing temperatures for water [820] and the inaccurate simulation of solid-
fluid interfaces. The Lennard-Jones parameters for Martini water bring it into
the solid state region of the Lennard-Jones phase diagram (at points of
atmospheric pressure and temperature) [819] and in previous publications it
was ascertained that the freezing point of Martini water can be as high as 290
+ 5K [799,814,821]. One can impede Martini water freezing processes by
reducing long-range ordering effects, removing obvious ice formation
nucleation sites or alternatively, by interspersing so-called “Martini

antifreeze” particles throughout areas of Martini simulation water [819].

Second, the Martini forcefield is unsuitable for simulating the partitioning of
charged and polar compounds into low dielectric mediums. Coulombic
interactions are screened implicitly with a relative dielectric constant (&,,; =
15) in Martini forcefield simulations to account for the omission of explicit
partial point charges [822]. Because of this implicit screening effect, polar
molecules have unrealistically weak interaction strengths in nonpolarizable
solvents. This has affected for example, the capacity of lipids to create
transmembrane water pores when they are dragged through biological

membrane mimetics [799].

Third, dynamic timescales tend to be different in coarse-grained and
analogous atomistic resolution simulation studies. Coarse-grained simulation
forcefields average out expensive atomistic detail, leading to smoother
intermolecular interaction energy landscapes and less effective
intermolecular friction [795-796]. Based on comparisons between coarse-
grained simulations and reference data, the effective time sampled in Martini
simulations is thought to be three- to eightfold larger than the in vivo scenario
[818]. In general, it is recommended that Martini simulation timescales be

multiplied by a factor of four because Martini water diffuses approximately
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four times too fast when compared with experimental data [823]. The
fourfold speed-up factor is a reasonably accurate conversion factor for many
biomolecular processes in Martini coarse-grained simulations including the
permeation rates of water across lipid membranes [814] and the aggregation
of lipids into bilayers [814] or vesicles [742]. However, the conversion factor
has not been tested systematically for all classes of biomolecules and its
applicability is therefore, somewhat limited. Protein dynamics have not been
thoroughly tested and it is possible that a fourfold speedup-factor could be
inappropriate for describing the effective timescale of Martini protein-lipid
interactions. In general, it is recommended that readers should interpret

simulation timescales as being semi-quantitatively accurate [818].

Fourth, the Martini forcefield represents ions as Q type Martini beads, which
have integer charge values, either 1 or 2, and mass values of 72 amu
(corresponding to four water molecules) [822]. This implicit presentation of
ions can make it difficult to accurately reproduce the interactions of realistic
lipids and biological membranes. Coarse-grained Martini cations do not
effectively establish hydrogen-bonded water networks and this has
repeatedly been reported to undesirably impact the properties of Gram-
negative bacterial membrane mimetics in Martini forcefield simulations
[151,301,329]. There is less water moving through the core saccharide
domain of coarse-grained Martini Gram-negative bacterial membranes and
the LPS core saccharide domain tends to be much too compressed if
measurements are drawn along the membrane normal axis (z-axis)
[151,580,824]. These inaccuracies will invariably have some undesirable
effects on the forthcoming simulations of coarse-grained bacterial

membranes.

Coarse-grained simulations generally provide satisfactorily accurate
qualitative data, but it is important to appreciate that quantitative errors and
inaccuracies are sometimes unavoidable due to the implicit representation of
the simulated ions and biomolecules. Coarse-grained Martini forcefield

simulations are generally referred to as being “semi-quantitatively” accurate
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[822] and no more, or no less, should be expected from the coarse-grained

simulations that are conducted throughout this thesis.

2.6 Periodic Boundary Conditions

Molecular dynamics simulations conventionally consider a relatively small
portion of bulk macroscopic systems due to computational constraints and
the limitations of modern computer hardware. The relatively small size of the
simulation cells can introduce unwanted boundary effects as lipid, protein
and solvent molecules explore the simulation cell and interact with the
simulation cell walls. One can attempt to reduce these unrealistic edge effects
by applying periodic boundary conditions. Here, particles are placed within a
unit cell that is replicated to infinity by periodic translations; the particles are
able to freely traverse the space-filling box and pass through the box borders
unabated (Figure 23) [825]. Each particle interacts with its immediate
neighbors (including atoms in replicated cells) provided they satisfy user-
defined cutoff criteria. Given that each cell is identical to its translated copies,
molecular dynamics programs compute the potential energy for a single
representation of the periodic system. Due to the introduction of periodic
boundary conditions there is no longer an explicit interaction between the
system particles and the unit cell borders and this removes the extraneous
influence of the simulation cell walls and effectively enables the reproduction
of macroscopic physical phenomena with limited computer resources e.g. the
self-assembly of lamellar lipid bilayers that serve as suitable surrogates for

macroscopic biological membranes.
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Figure 23. Schematic illustration of a single particle (red circle) passing
through the borders of a periodic unit cell (black lines). The use of periodic
representations provides a more accurate mimic of bulk systems given the
removal of a well-defined, simulation cell boundary. The simulated atoms
can freely traverse the space-filling box and as they pass through one border
of the unit cell, they instantaneously re-enter through the opposite face.

2.7 Short and Long Interactions

Calculating the nonbonded interactions is generally the most computationally
demanding aspect of conventional molecular dynamics simulations. As stated
previously, nonbonded interactions are typically decomposed into two
components: (i) van der Waals interactions that are used to mimic dispersion
and electron orbital overlap; and (ii) explicit electrostatic interactions
between partial point charges that are computed according to Coulomb’s law.
In theory, each particle experiences explicit electrostatic and van der Waals
interactions with the entire simulation system (including atoms in replicated
cells across periodic boundaries). In practice, approximations are made to
reduce the computational load and enable scientists to access larger
spatiotemporal scales. The treatment of van der Waals and coulomb forces
differs because the van der Waals potential approaches zero rapidly (as r~°)

and the electrostatic potential decays relatively slowly (as 1) [826)].
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2.8 Short Range Interactions

The coulomb interactions can be computed with the reaction field method
[827-828], which assumes a constant dielectric environment beyond a user-
defined cutoff distance .. For a given dielectric constant of ¢, ¢, the reaction

field potential is given as:

3¢
Cepp _fQLQJ ll + & l fQLQJ rf

ErTyj ZETf + & 13 Exle 2807 + &

Equation 13

so that the potential reduces to zero at the user-defined cut-off distance. For
charged cut-off spheres this corresponds to neutralization with a

homogeneous background charge.

Alternatively, the nonbonded potentials can be computed through the use of
shift functions that smooth the interaction energies to zero, close to a user-
defined cutofflength. The shift functions [829-830] reduce the computational
load by effectively discounting the long range nonbonded interactions
through the use of cutoff lengths, while simultaneously ensuring that
significant truncation errors are not inadvertently introduced; an
improvement over straight cut-off methods that can drastically affect system
properties. The shift function’s effects on the nonbonded interactions must
be carefully considered and methods such as Ewald summation [831], must
be properly implemented to account for long-range electrostatic interactions

that have been left untreated.

The shift function is implemented as:

1 A 3 B 4
Cba(r) =3 (T - Tshift) 3 (T - rshift) -G Tsnift ST S Teye

1
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Equation 14-18

where a denotes the power for the Coulombic (¢ = 1) and Lennard-Jones
(@ = 6,12) terms. The functional form ensures that the nonbonded force is
continuous and smoothly decays to zero between 7y and the cut-off

distance r,;.

2.9 Long Range Interactions

The electrostatic energy for N particles is given by:

YIS

Ny Ny Nz 1 j

Equation 19

where the vector n = (n,,n,,n,) runs through all the replicated cells of
lengths (Ly, Ly, L,) in the three dimensions. The star indicates that terms with
i = j should be omitted when (nx,ny,nz) = (0,0,0). The r;; , term denotes
distances between particles within a single simulation cell i.e. not minimum-

image distance.

Ewald summation computes the total electrostatic energy for N particles by
decomposing the slowly converging sum (Equation 19) into two faster

converging terms and a constant term:
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Equation 20-23

Here, m = (m,, m,, m,) and 8 is an adjustable parameter whose magnitude
determines the relative weighting of the direct and reciprocal components of
the electrostatic energy. The cost of computing the direct space sum is low,
but the reciprocal sum scales as N? and therefore the Ewald summation

becomes intractable for large simulation systems.

Molecular dynamics programs make use of the Particle mesh Ewald (PME)
summation method [832] to reduce the computational load and enable the
calculation of the reciprocal sum. PME scales as N log(N) and is therefore
more suitable for simulating medium-to-large systems. PME summation
methods assign explicit charge points to a grid that is Fourier transformed

with 3D FFT algorithms instead of implicit Fourier transformations.

2.10 Energy Minimization

If the starting configuration for a simulation system is far from equilibrium
the inter-atomic forces may be excessively large causing the simulation to
become unstable. Energy minimization algorithms can be used to optimize
molecular positions and orientations and thereby effectively reduce the total
system energy. The energy minimization process reduces unfavorable inter-
atomic interactions and removes undesirable steric clash. The optimization

algorithms adjust atomic positions to locate minima in the complex
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conformational landscape of atomistic or coarse-grained systems. Popular
minimization procedures are the steepest descent [833], conjugate gradient
[834], and limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)
[835] optimization algorithms. Energy minimization is sometimes performed
with soft-core van der Waals potential energy functions that help to keep
pairwise interaction energies finite when conventional energy minimization

algorithms would lead to endpoint errors.

The steepest descent method is a robust and easy to implement first-order
iterative optimization algorithm. Initially the forces F and potential energy

are computed for a given simulation system using a selected simulation

forcefield, new positions are subsequently determined using:

max(F, D

Equation 24

where h,, is the (user-defined) maximum atomic displacement and F,, is the
negative gradient of the potential energy function U(r"). The forces and
energy for the new configuration are resolved and the update is accepted if
there is an overall reduction in total potential energy. The algorithm is
stopped after a selected number of iterations have been performed or
alternatively when the maximum absolute values of the force components are

smaller than an arbitrarily defined value [836].

2.11 Integrators

The calibrated force fields can in theory, be used to determine the force acting
on each particle within the simulation system and thereby generate a time-
dependent trajectory:

9] d?r;

P N — .
fi ariu(r ) m; dt2

Equation 25
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Given however, that the motion of each particle is affected by the position and
velocity of all of its neighbors, a numerical finite difference approach must be
adopted to overcome the demands of an otherwise intractable many-body
problem. The equations of motion are integrated using a small time step At
while the acceleration (a) of each particle is assumed to remain constant. The
series of time dependent atomic positions (or the molecular trajectory) is

obtained by integrating Newton’s equations of motion with respect to time.

dr(o)
ot =~
a()t + v(0) = d:l(tt)

%a(t)tz +v(0)t +1(0) = (t)

Equation 26-28

By integrating Equation 26 from 0 to t we obtain Equation 27, further
integration produces Equation 28, which is the Taylor series for atom
displacement and is the basis of all molecular dynamics integration methods.
Assuming that the forces acting on a particle are constant during a finite time
step, new positions at a subsequent step can be determined from the
positions, velocities and forces at the previous step. The Verlet algorithm
[837] calculates atomic positions at time t + At using the current locations of

the system particles and their positions during the preceding time step.

r(t + At) = r(t) + v(t)At + [a(At)?/2]
r(t — At) = r(t) — v(t)At + [a(At)?/2]
r(t + At) = 2r(t) + a(At)? — r(t — Ab)
Equation 29-31

The Verlet algorithm is straightforward and the storage requirements are

modest, however the integration algorithm is of moderate precision and

explicit particle velocities are not calculated during the update procedure. An
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alternative approach is the leap-frog algorithm [838] that calculates atomic

positions and velocities at half time steps.

1 1
—At) = —=A A
v<t+2 t) v(t > t>+at
1
r(t + At) = r(t) +v<t+§At> At

Equation 32-33

Using the leap-frog algorithm, the velocities are calculated at time ¢t + ;At and

used to determine the positions at time t + At. The update algorithm
explicitly calculates the velocities at half time steps, while the positions are
determined for integer multiples of At only (Figure 24). The lack of
synchronization between particle positions and velocities can be
approximately overcome by estimating the velocity at time t using the

relationship:

(t) = 1[ (t 1At>+ <t+1At>]
V=519 72 vitTe
Equation 34

The Verlet and leap-frog algorithms operate by using information of particle
positions and velocities disseminated from previous time steps but this data
must be manually configured at the start of molecular dynamics simulations.
The positions of particles in a crystal can be determined from X-ray
diffraction patterns while the positions of particles that make up organic
compounds can be determined from nuclear magnetic resonance (NMR)
spectroscopy experiments. The particle positions for liquids are not resolved
experimentally; the particles are instead usually positioned on a three-
dimensional grid whose structure is user-defined. The initial particle speeds
can then be estimated from a Maxwell Boltzmann distribution, where the

distribution of particle speeds p(v) is calculated according to:
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p) = |G o) exp [’;:T]

Equation 35

where k is Boltzmann’s constant and T is the system temperature.

t—6t/2 t+ 612 t+ 3612
t- 6t t t+ &t

v v

Figure 24. lllustration showing how the leap-frog algorithm operates. The
computation of particle positions is shown with a blue line and the
computation of particle velocities is shown with a red line. Simulation time
is represented with a black arrow; the time step is user-defined and should
be calibrated to ensure that molecular dynamics simulations are both
efficient and realistic. There is a lack of synchronization between the
particle position and velocity calculations: if particle positions are calculated
at t + nAt, then particle velocities are calculated at t + %At, wheren € N.

2.12 Temperature Coupling

The use of molecular dynamics integrators naturally gives rise to the micro-
canonical NVE (constant number, constant volume, and constant energy)
ensemble but it is usually more desirable to calculate the physical properties
of the canonical (NVT) and the isothermal-isobaric (NPT) ensemble. To
simulate the canonical and isothermal-isobaric ensembles, it is essential that
molecular dynamics programs implement algorithms that enable users to
control the system pressure and temperature. The ensemble properties are
usually coupled to external heat and pressure baths to accurately modulate
their magnitude. Molecular dynamics simulation programs most commonly

use the weak-coupling Berendsen scheme [839], the extended ensemble
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Nosé-Hoover scheme [840], and the velocity-rescaling scheme to modulate
system temperature and correct for unwanted temperature fluctuations and
drift that occurs as a result of integration errors, heating due to frictional

forces and heating due to external forces.

The Berendsen scheme is an efficient weak-coupling algorithm that uses
exponential relaxation to correct for deviations from a user-defined reference

temperature according to:

dT(t) To—T(1)
dt T

Equation 36

Here, 7 is the time constant that determines the strength of coupling between
the heat bath T, and the simulation system T'(t). The Berendsen thermostat
controls the system temperature by rescaling particle velocities and thereby
suppresses fluctuations in kinetic energy. The algorithm cannot produce
trajectories consistent with the canonical ensemble and this affects the
magnitude of fluctuation properties such as the heat capacity. The velocity-
rescaling thermostat is similar to the Berendsen weak-coupling algorithm but
an additional stochastic term is used to ensure a correct kinetic energy

distribution by modifying it according to:

KK, dw

dK = (K K)dt+2
S Tr Ny Vir

Equation 37
where K is the kinetic energy, dW is a Wiener process and Ny is the number
of degrees of freedom. The velocity-rescaling thermostat produces a correct

canonical ensemble while enabling efficient first-order decay of temperature

deviations.

Canonical ensembles can alternatively be simulated with the Nosé-Hoover

coupling algorithm, which introduces a frictional term into the equations of
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motion. The friction parameter ¢ is a dynamic quantity with its own
momentum whose magnitude depends on the difference between the current

kinetic energies and the reference temperature:

rr (T-To)

Equation 38

Under this scheme, the particles of a given simulation system are integrated

according to:

d’r; _ fi  pgdri

dt2  m; Q dt

Equation 39

where Q is a constant that is usually termed the mass parameter of the Nosé-
Hoover thermal reservoir. Temperature coupling algorithms can be used one
after another to facilitate simulation set up e.g. initial equilibration with
velocity rescaling thermostats and subsequent production runs with the

Nosé-Hoover coupling algorithm.

2.13 Pressure Coupling

Molecular dynamics programs support different methods including the
Berendsen algorithm, the extended-ensemble Parrinello-Rahman [841-842]
approach and the Martyna-Tuckerman-Tobias-Klein [843] (MTTK) barostat
to control system pressure. The Berendsen algorithm modulates system
pressure by rescaling the box vectors of the simulation cell every np. steps
with a matrix p and this enables first-order relaxation of the system pressure

towards the user-defined reference pressure Py:

dP(t) P, —P(t)
dt T

P
Equation 40
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Here, 7, is the barostat relaxation time constant. The relaxation algorithm
leads to cell size variations where the volume is scaled by a factor n and the

coordinates and cell vectors are scaled by n%/3:

N = 1- =y (Py ~ PO)
14

Equation 50

where y is the isothermal compressibility of the system. The Berendsen
pressure control algorithm yields the correct average pressure for a
simulation system, but it does not yield the NPT ensemble. In theory, the exact
NPT ensemble can be produced with the Parrinello-Rahman approach, which
couples the system pressure to an external pressure bath by adding an
additional degree of freedom into the equations of motion. The box vectors

are subsequently scaled using their own equations of motion.

dzri _ fi dri

dtz B mi E
m=b b2 Ly
N dt  dt
db?

W = VW_lb’(_l)(P — PO)

Equation 51-53

Here, b is a matrix of the box vectors, IV denotes the volume of the simulation
box and W~! determines the coupling strength between the simulation
system and the pressure bath. The matrix W™! is calculated using the

expression:

4‘7T2ﬁij
37,%L

W1 =

Equation 54
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Here, L is the largest box vector and £ is the isothermal compressibility.
Deviations in system pressure are minimized through oscillatory
convergence towards the user-defined reference pressure. The Parrinello-
Rahman algorithm can lead to large fluctuations in the dimensions of the unit
cell if the system pressure is far from equilibrium and these fluctuations can
make the simulation system unstable. It is common to first run an
equilibration simulation with the weak-coupling Berendsen algorithm to
exponentially converge the system pressure and subsequently use the

Parrinello-Rahman scheme to yield the correct isothermal-isobaric ensemble.

2.14 Constraints

The choice of integration step is essential for ensuring that simulations are
efficient and molecular motions are appropriately sampled. In atomistic
simulations the most rapid motions are the bond stretching vibrations of
carbon-hydrogen bonds that occur on the timescale of 10 fs and thus limit the
simulation time step to ~1 fs. The time step used in molecular dynamics
simulations is set to be at least ten times smaller than the carbon-hydrogen
bond vibration timescale to ensure that the bonded atoms do not
instantaneously overlap, leading to the computation of unrealistically large
intermolecular forces and the production of unstable molecular dynamics

simulations.

The rapid carbon-hydrogen bond vibrations can be discounted as an
alternative approach if they are deemed by the user to be unnecessary for
producing relevant biophysical data. Constraintalgorithms can be applied to
maintain the distance between atomic mass points during simulation time
and this enables the use of larger integration time steps and the simulation of
longer timescales. The SHAKE [844] and LINCS [845] methods are used quite
frequently in united-atom simulations to fix bonds lengths or angles after the

integration of forces and effectively enable the use of ~2-4 fs time steps.
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The SHAKE algorithm manipulates a set of unconstrained coordinates r* to
produce a set of atomic positions that are in line with selected distance
constraints r'’. The algorithm uses a set reference r to achieve this

conversion:

SHAKE(r' - v ; r)
Equation 55

The algorithm functions by solving a set of Lagrange multipliers in the
constrained equations of motion. Under this scheme, the equations of motion
fulfil a set of K holonomic constraints g, (r,r, ...7y) = 0; k = 1...K, and the

forces acting on simulation particles are defined by:

K
9 (uy >
or, kOk
k=1

Equation 56

where A, are Lagrange multipliers that are solved iteratively by the SHAKE

algorithm.

The LINCS algorithm is in contrast, non-iterative and can only be used to
constrain isolated angles and molecular bonds. The algorithm is faster and
more stable than its SHAKE counterpart and for this reason the LINCS
approach is generally preferred. For a given simulation system particle
acceleration can described by the equation:

dr _ M~'F

dt?

Equation 57

where matrix M contains the atomic masses and F is the 3N force vector. The

system is subject to K constraint equations:
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gir) =|ry—1pl—di=0; i=12,..,K
Equation 58

where d; is the constraint distance. The gradient matrix of the constraint

equation is:

Equation 59

The updated constrained positions r,,,; are related to the unconstrained

positions rj;}4 by:

i =U—-T,B)r¥ + T,d =

rite — M71B, (B M~ B}) 7 (B, — d)
Equation 60-61

where T = M~1BT(BM~1BT)~1. This first step projects the new bonds onto

the directions of the previous bonds. The projection of the bond p; on the old

pi = /Zdiz -1}

direction is then set to:

Equation 62

where [; is the bond length after the first projection. The corrected

coordinates are:

rfl(_)‘_r{ect = - Tan)rn+1 +T,p

Equation 63
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2.15 Position Restraints

Molecular dynamics packages enable users to impose restraining forces on
specified atoms e.g. membrane protein carbon atoms, to guide biomolecular
system construction or steer the simulation through an arbitrary energy
pathway. Position restraints are ordinarily implemented according to the

following function:

1
Vpr(r) = Ekprlri - Rilz

Equation 64

where k,, defines the restraining force applied to maintain the fixed
reference particle positions R;. The functional form makes the position
restraint potential scale with the magnitude of particle position deviation
(Figure 25). The position/restraint potential energy function can also be

written as:

Vor (1) = = [k (xi — X)2R + ko (v — Y29 + k& (2 — Z,)?2]

N =

Equation 65

Users can control the position restraint potential for the x, y, and z dimensions
of a simulation cell. Users can define the strength of the harmonic position
restraint forces that act along the x, y, and z spatial axis and through the
implementation of the restraint potential, users can confine particle positions
to arbitrary spheres, planes, or lines within the periodic unit cell. Position
restraint forces are regularly used by scientists to equilibrate membranes,
micelles, nanodiscs and they have also been used to mimic the action of the

cytoskeletal.
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Figure 25. Representative harmonic potential used to enforce (standard)
position restraints in molecular dynamics simulations. The potential energy
rises as particles drift from a user-defined reference position. The
magnitude of the potential energy is a function of the distance between the
atom and the user-defined reference position.

2.16 Flat-Bottomed Position Restraints

Alternative functional forms can be used to restrain the position of simulation
particles and facilitate simulation set up. Flat-bottomed position restraints
subject particles to a harmonic biasing force while they are outside a user-
defined volume of the simulation cell and these restraining forces are
removed when the particles move back into the arbitrarily selected volume.
The flat-bottomed position restraint potential (Figure 14) is computed

according to:

1 2
Vep (1r;) = Ekfb [dy(ri; R) — 174] "H[dy(ri; R) — 17

Equation 66

where R; is the reference particle position, 7, defines the distance from the
center with a flat potential, H is the Heaviside function, and the magnitude of
the restraining force is set with k¢j,. Molecular dynamics simulation packages
enable users to apply flat-bottomed position restraint potentials to different
types of lipid geometries. Users can for example, apply flat-bottomed position

restraint forces to a cylindrical domain of space that spans a simulated

142



membrane mimetic. Lipids would be able to move unabated within the
cylindrical domain of space but their trajectories would be affected outside of
the cylinder. Flat-bottomed position restraints can be used with the following

geometries:

Spherical: The particle is subjected to a restraining force when it leaves a

spherical domain (contained within the unit cell):

dg(rii R)) = |r; — R

Equation 67

Cylindrical: Particles are contained within cylinders that span the x, y, or z-
axis simulation cell axes and have user-defined radii. The harmonic biasing

force acts toward the cylinder axes and is computed according to the function:

dg(ri; R) =/ (xi — X% + (v — V)2

Equation 68

In this example the cylindrical restraining force is being imposed along the z-
axis, but the restraining force can be imposed along the x and y axes instead.
Cylindrical restraints are increasingly being used to facilitate the construction
of well-packed lipid vesicles. The CHARMM-GUI Martini Maker Module
[151,232] uses flat-bottomed position restraint potentials to maintain
cylindrical cavities across the surface of spherical vesicles and thereby enable
lipids to transfer between the inner and outer bilayer leaflets. The procedure
enables lipids to flip between membrane leaflets and the process can reduce

bilayer tension.

Layer: Particle position restraint forces can be applied along the x, y, or z-axis
to restrain the motion of selected atoms and subject them to a biasing force
as they pass through, and move away from, the borders of user-defined slabs

of simulation cell space. Position restraint forces can be applied
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simultaneously along the x, y, and z-axes to restrain the motion of selected

particles to a cubic volume of the simulation cell. The forces are described as:

dg(ri Ry) = |x; — X;l,ordy(ri; R;) = |y; — Yil,or dy(ri; Ry) = |z; — Z]

Equation 69

2.17 Umbrella Sampling

Large energy barriers can exist between distinct regions of the potential
energy landscape in conventional molecular dynamics simulation systems
and this can leave molecular configurations poorly sampled or completed
neglected. Biased simulation techniques can be used to sample otherwise
inaccessible reaction coordinates when the form of the potential energy

landscape hinders ergodicity.

The umbrella sampling technique [846-847] enables equal evaluation of all
points along a reaction coordinate that separates two well-defined states e.g.
the transition of a solute from hydrophilic to hydrophobic solvent. Molecular
configuration series are initially generated along a selected reaction
coordinate. The starting configurations are most commonly extracted from
simulations where a molecule of interest (e.g. a solute) is steered in a user-
defined direction through the use of a harmonic biasing potential [848].
Initial configurations are generated through the application of steered
molecular dynamics techniques and umbrella potentials and subsequently
applied to restrain the center of mass position of the molecule of interest as
it interacts with the encompassing molecular environment. The distance that
separates the starting configurations is set to be sufficiently small such that
there is overlap between adjacent simulation windows and one can therefore

produce a single, continuous energy function.

For the user-defined reaction coordinate (&), the umbrella potential that is

used to restrain the molecular system at the position & (i =1,

..., N,) with force constant K; is:
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w;(§) = Ki/2(§ - &)?
Equation 70

for a set of N, separate umbrella simulation windows. The restrained
simulations can be used to generate umbrella histograms h; () that represent
the probability distribution P? () along the reaction coordinate biased by the

umbrella potential.

2.18 Weighted Histogram Analysis Method

The Weighted Histogram Analysis Method [849] (WHAM) can be used to
normalize the resulting probability distributions P?() and resolve the
potential of mean force (PMF) function. WHAM operates by estimating the
statistical uncertainty of the wunbiased probability distribution and
subsequently calculates the PMF corresponding to the smallest uncertainty.

Thus, the WHAM equations read as:

Y g hi(®)
P = — =
: Ximgi~! exp[-B(w;(®) — f)]

exp(—f)) = | dsexp[-B v ®)] PO

Equation 71-72

where 8 = 1/kgT, n; is the number of data points in histogram h;(§) and

gi = 1+ 21, when 1; is the autocorrelation time of the umbrella window i.

The PMF is related to the unbiased probability distribution by:

W(&) = =~ In[P(§)/P(&)]
Equation 73

Here, &, defines the position where the PMF reduces to zero. The GROMACS

g_wham function computes the two unknown elements of Equations 71 and

72, the free energy constants f;, and the unbiased distribution P(§), while
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simultaneously allowing for the computation of robust error estimates using

bootstrap techniques [850].

2.19 Area per Lipid and Bilayer Thickness

The area per lipid is the average lateral surface area that is occupied by lipids
in a biological membrane. The area per lipid can be computed as the product
of the X and Y box vectors divided by half the total number of lipids when the
unit cell is cubic and the area per lipid is equivalent in upper and lower bilayer
leaflets. The bilayer thickness can be computed as the separation distance
between the upper and lower leaflet lipid phosphate groups. These relatively
simple methods for analyzing membrane morphology become less accurate
when bilayers undulate, when membranes contain many different types of
lipid molecules and when bilayer curvature is generated through active

processes mediated by specialized proteins, lipids or the cytoskeleton.

Polygon-based tessellation procedures can be used instead as a more
generally applicable technique that is appropriate for analyzing the
properties of both flat and curved membrane surfaces [851]. The upper and
lower membrane leaflets can be partitioned into planes of contiguous
polygons based on the distances between adjacent lipid headgroups. The
average projected surface area of each tessellated polygon provides a
reasonably robust and accurate measure of area per lipid, while the average
membrane thickness can be computed as the average distance between
tessellated polygons either side of the membrane midplane. Voronoi
tessellations segment bilayer surfaces into contiguous planes of convex
polygons, whereas Delaunay triangulations decompose bilayer surfaces into

contiguous planes of small triangles.

Bhatia et al. [851] compared different Voronoi tessellation and Delaunay
triangulation methods for determining the area per lipid fields of distorted
plasma membrane mimetics [364]. Comparisons were drawn between three

membrane structure analysis tools: APL@VORO [852], FATSLiM [853] and
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MemSurfer [851]. APL@VORO determines the area per lipid by projecting
three-dimensional coordinates onto two-dimensional surfaces, whereas
FATSLiM determines area per lipid via iterative and highly localized Voronoi
tessellation calculations. MemSurfer adopts an altogether different approach
and calculates area per lipid through Delaunay triangulation procedures.
Visualizations were included in this publication to show how Delaunay
triangulation methods manage to capture small undulations within
membrane surfaces that are missed by the less accurate Voronoi tessellation
tools, i.e. APL@VORO and FATSLiM. The publication demonstrates that even
the more robust polygon-based tessellation procedures are, in some
instances, inaccurate and that even seemingly basic membrane properties
can be difficult to accurately evaluate in molecular dynamics simulations.
Each method has been used to assess area per lipid values for flat membranes
of phospholipid-composite and LPS-composite simulation systems to within
0.1 or 0.2 nm? of experimental values [151,301,329,851-853]. The tools are
suitable for analyzing the properties of flat lipid membrane systems but they
are less suitable for studying highly curved membranes that have unusually

complex topologies.

Area per lipid and membrane thickness parameters have similarly been
evaluated with X-ray and neutron scattering analysis techniques [854]. The
most common real-space parameter derived from X-ray and neutron
scattering experiments is the membrane thickness. However, there is no
single definition of membrane thickness, since one might characterize
membrane width as the full extension of the hydrophobic membrane interior
or as the distance between terminal hydrophilic headgroup moieties, or then
again, some other entirely distinct, but equally valid metric [854]. One
relatively simple method for assessing membrane thickness is to initially
divide the repeat spacing of (membrane) lamellae stacks into distinct water
and lipid regions and subsequently determine membrane width through
relatively simple comparative numerical analysis [855]. The divisions
between membranes can be ascertained by monitoring the contrast between

protiated and deuterated water stacks through neutron scattering
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experiments [856-857]. This method makes use of multiple lipid membranes
and is expected to provide reasonable numerical accuracy; however, users
must be able to precisely quantify both the lipid concentration and the

specific volumes of both water and lipid.

X-ray scattering experiments are commonly applied to assess the head-to-
head distance, which is defined by the positions of the two maxima in the
electron density profiles of lipid bilayer structures [856]. This method has
been applied to study the morphology of rough (Re, Rd, Rc, and Ra) LPS lipid
membranes [568] and the resulting data were used to validate different LPS
molecular dynamics simulation forcefields [301,308,551]. There are many
other alternative methods for determining membrane thickness through
experimental techniques. Membrane thickness can be evaluated for example,
from NMR-derived properties such as the acyl chain carbon-deuterium bond
order parameter [858-859]. Itis important to appreciate that experimentally
derived membrane thickness data usually depend on specific approximations
including the tilt of lipid tails and the volume of constituent lipid moieties
[856,858,860]. Thickness values for single lipid types can vary substantially
and it is consequently desirable to compare computational data with several

sets of experimental data.

Experiments have also been performed to assess area per lipid values for
different membranes and this data has been used to validate atomistic and
coarse-grained molecular dynamics simulation forcefields for the past couple
of decades [167,428,822]. Area per lipid data tends to take precedence over
membrane thickness magnitudes for molecular dynamics simulation
forcefield benchmarking because it is inextricably linked to lipid fluidity and
is especially sensitive to the magnitude of intermolecular lipid headgroup
attraction and repulsion forces. Petrache et al. [861] proposed that
volumetric data and electron density profiles could be combined and used to
determine the area per lipid values of single-component bilayers according to

the formula:
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kK _ VLk - VI-(I)
L7 D2+ (DEy — DY) /2

Equation 74

Here, A¥ and V/ are the area and volume per lipid k within a biological
membrane of thickness Df,,. VJ represents the volume of the headgroup of
the lipid of reference in a bilayer of thicknesses D}, and 2D2. The method
makes assumptions that are difficult to prove through experimental analysis
e.g. that V) and D2 can always be accurately estimated. An altogether
different approach seeks to determine area per lipid from the values of lipid

volume (V;) and the Luzzati thickness [857]:

2V,
A, =—=

Equation 75

But it is presumed that one can accurately estimate the magnitude of lipid

volumetric parameters [856,862-863], even though this is rarely the case.

Less intuitive approaches have been proposed based on the average NMR
order parameters of selected carbon-deuterium bonds. The area per lipid
values can be extrapolated from the volume per methylene groups and the
orientation of methylene groups with respect to the membrane normal axis
(z-axis) [858-860]. It has been found that these experimentally determined
area per lipid values can vary significantly; much more so than the area per
lipid values that are determined from computer simulations. There tends to
be greater differences between lipid packing parameters that are determined
with different types of experimental apparatus than the comparative lipid
packing parameters that are determined with different molecular dynamics
simulation forcefields [854]. This incongruity suggests that there is a
systematic bias toward specific lipid packing parameters within molecular
dynamics simulations and this calls into question the validity of using such

reference metrics for molecular dynamics simulation forcefield validation.
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Nonetheless, area per lipid and membrane thickness values are now
established as “gold-standards” for assessing the quality of molecular
dynamics simulation forcefields and these lipid packing parameters were
used quite recently to validate rough (Re and Ra) LPS coarse-grained Martini
simulation forcefields [301]. Lipid packing parameters have been used
repeatedly in the past to validate biomolecular simulation forcefields; for

example, see [408,428,799,814]

2.20 Order Parameter

The acyl tail order parameter quantifies the orientational mobility of lipid
acyl tails within a fluid membrane [428,569,864]. The dynamic parameter
provides a unique metric to quantify the average order of acyl chains relative
to the bilayer normal over the course a molecular dynamics simulation. The

order parameter is calculated according to the following equation:

1
Scp = 5 < 3(cos@)? — 1>

Equation 76

Here, O is the time-dependent angle between acyl chain bond vectors and the
membrane normal reference axis. The magnitude of the computed acyl chain
order parameters depends on the resolution level of the molecular dynamics
simulation forcefields. Single bond vectors between two coarse-grained
beads can represent multiple underlying carbon atoms and consequently the
order parameters of comparative coarse-grained and atomistic acyl chains

can be significantly different [301].

Comparisons have been made between experimental and computational
order parameter data sets to validate molecular dynamics simulation
forcefields. Take for example, the recent validation of the hybrid GLYCAMO06
[557-559] and Stockholm lipids forcefield (Slipids) [727] that was used to
model a P. aeruginosa biological membrane mimetic [556]. The molecular

dynamics simulation model membrane contained an outer (extracellular)
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leaflet of Lipid A molecules and the inner (intracellular) leaflet contained
some combination of DPPE, DOPE, DPPG, and DOPG lipids. The averaged acyl
chain order parameter was determined to be 0.38 for the simulated Lipid A
molecules in these atomistic simulations and for comparison, the acyl chain
order parameter for Lipid A molecules was determined to be 0.28 when they
were analyzed with Fourier-transform infrared spectroscopy (FT-IR) [865].
Molecular simulations conducted with the GLYCAM and AMBER forcefields
reported order parameter values of 0.32 instead [866-868] and these
differences demonstrate (i) that molecular dynamics forcefields generally
provide satisfactorily accurate predictions for acyl chain order parameter;
and (ii) that some atomistic forcefields provide more acceptable predictions

of experimental data than others.

2.21 Radius of Gyration

The radius of gyration is used in polymer science to assess how compact a
macromolecule is around its center of mass [869]. For a macromolecule
composed of n mass elements of mass values m;,i = 1,2..n located at
positions r; from the center of mass, the radius of gyration is computed as the

square-root of the mass average of r? over all mass elements i.e.

n n
o= St [
i=1 i=1

Equation 77

Alternatively, one can compute the radius of gyration around the coordinate

or principal axes by only summing the radii components orthogonal to each

n n
Ryx = (Z mi(rlz,y + rlzz)/z mi)l/z
i=1 i=1

axis:

Equation 78
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2.22 Root-Mean-Square Deviation

The root-mean-square deviation (RMSD) of atomic/particle positions
measures the average distance between the atoms of a dynamic biomolecule
relative to a reference structure. The most common application of RMSD
computation is for the study of globular protein conformations where the
RMSD of carbon-a atomic coordinates is compared for a fluctuating protein

relative to a superimposed reference structure [870].

One typically computes the deviation of atomic positions relative to a starting
crystal structure within molecular dynamics simulations to evaluate the
molecular fluctuation. The RMSD value can alternatively be computed with

respect to the structure of a biomolecule at specified simulation time t, =

t; — T. The functional form of the RMSD is then:

N

1 1

RMSD(t1,6) = [ ) myllri(t) = 1i(t)II]2
i=1

Equation 79

where M = YN, m; and r;(t) is the position of particle i at time t.
2.23 Radial Distribution Function

The radial distribution function g(r) for a dynamic simulation system
describes how the density of atoms, molecules, colloids etc. varies around
central reference particles and it is determined by partitioning simulation
system into a system of concentric circles or spheres. Radial distribution
function algorithms compute the probability that molecules are located
within concentric spherical shells of user-defined width. In GROMACS [742]
the radial distribution function algorithm is implemented as a pair

correlation function for atoms of type A and B according to:

g (pp(1)) 1 Z Z 6(rij —1)
4B (T) <pB )local <pB )local NA 47‘[1"2

A jeB
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Equation 80

Here, pg () is the density of particles of type B at a distance r from particles
of type A and {pg);oca: iS the density of type B particles averaged over all

spheres encompassing type A particles.

2.24 Visualization Software

Visual Molecular Dynamics (VMD) [871] is a molecular modeling and
visualization computer program that was used throughout this work to set up
complex simulation systems. The software was also used to follow stepwise
molecular trajectories and for animating and analyzing biomolecular systems
through the use of built-in computer scripts. The software was used together
with the Tachyon renderer to produce high-resolution images for various

biomolecular simulation systems.
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Chapter 3: Interactions of Polymyxin B1 with Gram-
Negative Bacterial Membranes

3.1 Abstract

Molecular dynamics simulations were conducted in an attempt to understand
the interaction of polymyxin B1 (PMB1) peptides with (i) POPE/POPG
phospholipid bilayers that are used to mimic the inner membrane of Gram-
negative bacteria; and (ii) bilayers of rough (Re mutant) LPS that are used to
mimic the extracellular leaflet of the outer membrane of Gram-negative
bacteria. The simulations demonstrated that PMB1 peptides promote the
formation of anionic (POPG) microdomains when they interact with Gram-
negative inner membrane models. The PMB1 peptides also decreased
membrane width and it was found that this reduction in membrane thickness
was non-uniform across the membrane with some membrane domains being
thinner than others. The insights help to clarify how PMB1 peptides make the
inner membrane more liable to rupture and how PMB1 peptides can destroy
Gram-negative bacteria. The Re LPS membrane simulations revealed that
PMB1 peptides have the capacity to modulate the phase behavior of the
Gram-negative bacterial outer membrane. This capacity to affect LPS phase
properties could help us to understand how PMB1 peptides disrupt the outer

membrane of Gram-negative bacteria.

3.2 Introduction

Antibiotic resistance has increased during the past few decades as first-line
antimicrobial agents have been applied both excessively and inappropriately
[593-595]. The overuse of antibiotics established a selective pressure that
promoted the spread of drug-resistant genes and pathogenic bacteria
progressively acquired resistance to conventional antibiotics. The problem
was then compounded as the drug-resistant genes spread throughout the
bacterial communities. The successive transfer of drug-resistant genes
progressively produced so-called “superbugs” that are unresponsive to

almost all available antibiotic medication [872-876]. Multi-drug resistant
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bacteria are now becoming increasingly prevalent and these infectious
microbes are increasing our national healthcare costs and the global rates of
morbidity and mortality [612-616]. Bacterial infections are becoming
increasingly hazardous and there is an urgent need to synthesis new
antibiotic medication that can be used to kill the most concerning strains of

multi-drug resistant bacteria.

We are now at an interesting precipice where computational simulation
methodologies have reached a level of sufficient complexity that we can
streamline otherwise laborious methods for identifying novel
chemotherapeutic agents and at the same time, use atomic simulation
techniques to gain unprecedented molecular level insights into the action of
effective antimicrobials [624-629]. Molecular dynamics simulations are
increasingly being applied to evaluate the molecular level interactions of
effective antimicrobial peptides and to understand how these biomolecules
disrupt bacterial membrane systems [630-631]. PMB1 is an unusually
effective antimicrobial agent that is used as a last-line therapy to treat multi-
or extensively drug-resistant species of Gram-negative bacteria [709-710].
PMB1 molecules have the capacity to kill multi-drug resistant Gram-negative
bacterial species that are unresponsive to conventional (first-line
chemotherapy, but the widespread application of polymyxin medications is
limited because the antimicrobial molecules have adverse neurotoxic and
nephrotoxic side-effects [710-716]. It is reasoned that chemists could
potentially synthesis new polymyxin derivatives in the future that have fewer
side-effects but are nonetheless still effective against multi-drug resistant
strains of Gram-negative bacteria. Chemists could exploit the insights that are
being gained from experimental and computational research and design new
antibiotic medication that is relatively harmless to renal and neural tissues
but is nonetheless still effective for treating bacterial infections. Molecular
dynamics simulations were conducted in this chapter to understand how

PMB1 molecules permeabilize bacterial membrane mimetic systems.
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The Martini coarse-grained molecular dynamics simulation forcefield was
used to understand how PMB1 peptides interact with two symmetric
biological membrane mimetics: (i) bilayer membranes of Re LPS lipid; and (ii)
bilayers that contained POPE and POPG molecules in a 3:1 number ratio. The
first set of simulations was analyzed to understand how PMB1 peptides
interact with the outer membrane of Gram-negative. The second set of
simulations was analyzed to understand how PMB1 peptides interact with
the inner membrane of Gram-negative [645-646,879-880]. The coarse-
grained simulations provided important insights that can help us to
understand how PMB1 peptides interact with both membranes of the Gram-
negative bacterial cell envelope. It was found that PMB1 peptides affect lipid
packing parameters and the bilayer organization in a way that has important

consequences for membrane structural stability.

When the PMB1 peptides were simulated with the Gram-negative bacterial
inner membrane mimetic they preferentially interacted with the POPG lipids
and this process promoted lipid demixing and the formation of anionic POPG
lipid nanodomains. The PMB1 peptides also decreased membrane width
when they were preferentially interacting with the POPG lipids and this
increased the membrane width heterogeneity. The results could explain how
PMB1 peptides disrupt the inner membrane of Gram-negative bacteria.
Preferential interactions between PMB1 and POPG molecules would lead to a
non-negligible increase in peptide density at highly localized points along the
membrane surface. The PMB1 peptides could become highly localized at
specific points along the membrane surface and as these points became
increasingly thin, they would become increasingly prone to rupture and
break away from the multicomponent membrane [331, 881 16-18]. There
would be thin and negatively charged membrane “hotspots” that are prone to
induce the formation of transmembrane water pores or other processes that

affect the membrane structural stability.

When the PMB1 peptides were simulated with the Re LPS membranes it was
found that LPS lipids had unusual biophysical parameters that prevented the
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antimicrobial molecules from passing through the LPS core sugar domain.
The Re LPS bilayers had glass-like dynamics, high shear viscosity parameters,
relatively immobile phosphate groups and a relatively thick domain of
hydrophilic core sugar units. Analyses of the unbiased simulations indicated
that the interactions between the PMB1 peptides and the Re LPS were not
converged even after 5 ps of simulation time. The umbrella sampling
simulation technique was used to increase the scope of the simulation study
and understand biomolecular interactions on long timescales. The umbrella
sampling simulations were used to determine free energy profiles and to
understand LPS properties as a function of PMB1 distance from the
membrane midplane. It was found that the bilayers became increasingly rigid
as the distance between the PMB1 peptides and the host cell membranes was
decreased. This PMB1 peptides induced a phase change when they were
simulated at the position of the PMF profile minima. The Re LPS bilayers
began to behave more like an amorphous solid than a simple and highly fluid
lipid membrane. This insight is noteworthy because membrane fluidity
affects various important membrane properties such as shape, elastic moduli,
tension [884-887] and it also influences biological functions that are crucial
for cell viability such as enzymatic action and protein sorting [888-891]. The
simulations provided important insights that can help use to understand the
PMB1 antibacterial modes of action and the data might help chemists to

synthesis new antibiotic medication for Gram-negative bacterial infections.

3.3 Methods

3.3.1 Coarse-Grained Models

The PMB1 peptide (Figure 26A) was clustered into a coarse-grained model so
that it could be used with the coarse-grained Martini molecular dynamics
simulation forcefield [799]. The bead type classification for each constituent
coarse-grained pseudo-atom was selected through comparison with the
standard set of Martini coarse-grained building blocks [814]. The terminal

acyl chain moiety was modeled as two coarse-grained pseudo-atoms whose
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interaction parameters were set to reproduce the experimental partitioning
free energies of alkyl groups or saturated lipid tails. An approximate four-to-
one heavy atom mapping scheme was used to model most of the constituent
PMB1 peptide amino acids. However, smaller S-type Martini coarse-grained
beads were used to model the cyclic benzyl group of the phenylalanine
residue. The side chain Dab residues were modeled as single cationic beads
so that they had more conformational flexibility. There is a total of five
positively charged Dab residues on each PMB1 peptide (Figure 19) and the
PMB1 coarse-grained model was consequently designed to have an overall

positive charge of +5.

The coarse-grained parameters were optimized with the PyCGTOOL [892],
which calculates equilibrium distances and force constants for coarse-
grained pseudo-atoms directly from reference atomistic molecular dynamics
simulation trajectories. PyCGTOOL was initially applied to different coarse-
grained mapping schemes and the resulting coarse-grained models were
simulated with the Martini simulation forcefield. The simulation results were
then compared against the original set of atomistic simulation reference data.
In other words, the Python PyCGTOOL program was applied to investigate the
accuracy of different multiple atom-to-bead mapping schemes. The most
accurate coarse-grained model, and the one used in this chapter, had
equilibrium bond distances (7;;) that differed by no more than 0.01 nm from
the reference atomistic data; the equilibrium atomistic and coarse-grained

angle values (6,.,)were equivalent to within 10%. The corresponding force

constants (k;; and kiejk) were well matched between the comparative

atomistic and coarse-grained parameter sets, i.e. typically within 10%.
However, constraints were applied (rather than values of 7, and k[;) to
model the effective lack of bond stretching within the benzyl group of the
phenylalanine residue. Analysis of the atomistic simulation reference data
demonstrated that the benzyl moiety displayed a small degree of bond-
stretching and by association had unusually high force constants that, if
transferred into a comparable coarse-grained simulation model, would make

the associated coarse-grained simulations unnecessarily unstable.
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Constraints were therefore used to mimic the behaviour of the benzyl moiety.
Marrink et al. have used comparable constraint options to mimic the dynamic
interactions of benzene and cholesterol [799,814,822]. It was found that the
average root-mean-square fluctuation values for PMB1 molecules in
comparative coarse-grained and atomistic resolution molecular dynamics

simulations differed by no more than 0.1 nm.

A Phenylanalanine
1

Carbon tail i
| Q :

Figure 26. coarse-grained models for PMB1 and Re LPS. (A) coarse-grained
model for PMB1. The Martini beads are shown as translucent spheres and
the underlying united-atom particles are shown as opaque spheres. The
carbon atoms are ice blue, the oxygen atoms are red, the nitrogen atoms are
blue and the hydrogen atoms are white. (B) The coarse-grained model for
Re LPS. The carbon tails are white, the glucosamine and glycerol groups are
pink, the phosphate groups are blue, and the remaining core saccharides are
cyan. The Re LPS lipid is divided into its component Lipid A anchor and
keto-deoxyoctulosonate acid (Kdo) dimer sections for clarity.

The deep-rough (Re) mutant LPS lipid (Figure 26B), which contains a Lipid A
anchor bonded to minimal core oligosaccharide section for bacterial survival

(i.e. two keto-deoxyoctulosonate sugars), was modeled using the coarse-
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grained Martini forcefield parameter set that is available online as part of the

CHARMM-GUI Martini Maker module (http://www.charmm-gui.org) [151].

The POPE and POPG molecule interaction strengths, equilibrium bond

distances (r;;), equilibrium angle values (6.,) and the associated force

constant parameters (e.g. k;; and kiejk) were from the standard Martini

molecular dynamics simulation forcefield databank.

3.3.2 Membrane Building

The molecular dynamics simulations were conducted with the GROMACS
simulation package [742] and the Martini coarse-grained forcefield (version
2.2) [799]. The LPS bilayers were generated with the GROMACS genconf
utility and the phospholipid bilayers were made with the Martini Python
bilayer-building program (insane.py) [893]. The bilayers were solvated with
enough water to minimize the strength of the interactions between periodic
membrane images along the z-axis i.e. the bilayer normal axis. The anionic
charge of the POPE and POPG phospholipid bilayers was neutralized with
monovalent sodium ions (Na*) and the LPS bilayers were neutralized with
either monovalent sodium ions (Na*) or divalent calcium ions (Ca2*). The
phospholipid bilayers were equilibrated for 5 ps at 310 K and the LPS
membranes were equilibrated for 10 ps at three different temperatures: 300
K, 310 K, and 320 K. The simulation pressure was maintained at 1 bar with
the Parrinello-Rahman barostat [841-842] and the temperature was
modulated with the Nosé-Hoover thermostat [840] with a time constant of 1
ps. The shift function was used to smoothly reduce the Lennard-Jones and
Coulomb potentials to zero between 0 and 1.2 nm and 0.9 and 1.2 nm,
respectively. The simulations were conducted with an integration time step

of 10 fs.

It is important to state here how the Martini forcefield represents ions and
how this can lead to the inaccurate simulation of proteins and lipids. Coarse-
grained ions are represented as Q type Martini beads, which have integer

charge values, either £1 or 2, and mass values of 72 amu (corresponding to
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four water molecules) [822]. Monovalent Martini ions were originally based
on single atom ions, either sodium, chloride, or choline, with first hydration
shell water molecules [799]. Considering how difficult it is to accurately
reproduce the interactions of ions with sophisticated united-atom or all-atom
forcefields [894-895], it was concluded that ions could only have “semi-
qualitatively” accurate interactions in coarse-grained molecular dynamics
simulations [822]. Coarse-grained Martini calcium cations are modelled by
simply assigning Martini sodium ions two-fold charge making them at best,
satisfactory mimics of their atomistic simulation counterparts (i.e. Ca?* ions
with first hydration shells), but more often than not, rather crude
representations of realistic hydrated calcium ions [151]. The implicit
presentation of ions has important consequences for Martini simulations of
proteins and lipids, and in particular of LPS macromolecules, which are
connected and stabilized by divalent cations in Gram-negative membranes
[211-212]. Divalent cations draw water molecules into the LPS core
saccharide domain and this helps to support the lamellar lipid packing of LPS
lipids [551]. It has been found that the LPS core saccharide domain can be up
to three-fold depleted of water molecules in Martini coarse-grained
simulations when comparisons are drawn with target atomistic simulations
[301]. It has also been found that the LPS core saccharide domain can be
compressed by up to 10% in coarse-grained simulations when comparisons
are made with target atomistic resolution simulations [301,580]. Coarse-
grained molecular dynamics simulations generally provide semi-
quantitatively accurate data but it is important to appreciate that errors and
inaccuracies are sometimes unavoidable due to the implicit presentation of

the coarse-grained ions and biomolecules [822].

3.3.3 Peptide Simulations

The PMB1 peptides were combined with the equilibrated Gram-negative
inner and outer membrane mimetics. The number of peptides per unit cell
was incrementally increased in different simulations in an attempt to

understand how peptide concentration can affect the membrane interactions.
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Here it is important to draw comparisons with the clinical usage of PMB1
peptides to determine how realistically these coarse-grained simulations
mimic in vivo interactions. Therapeutic dosages are administered to exceed
pre-determined minimum inhibitory concentrations (MICs), which quantify
the lowest drug concentrations that are needed for inhibiting the growth of
different species of bacteria [896-897]. The MIC of PMB1 peptide molecules
is 0.8 ug/ml for Haemophilus influenzae, 0.25 pg/ml - 4 pg/ml for P.
aeruginosa, and 0.25 pg/ml - 4 ug/ml for E. coli bacteria [898-900]. The
simulated PMB1 concentrations were at least one order of magnitude larger
than these therapeutic MIC values. The PMB1 concentrations were between
50 ug/ml - 400 pg/ml when they were simulated with the LPS lipids and even
higher when they were simulated with the two-component POPE and POPG
lipid membranes. The disparity between the therapeutic and coarse-grained
simulation concentrations is somewhat unavoidable given the constraints of
modern computer hardware. Simulation cells must be made small to
minimize the computational load and small simulation cells can only contain
a limited number of water molecules. The coarse-grained PMB1 peptides
were initially positioned at least 5 nm from the lipid phosphate groups to
ensure that the initial peptide-lipid interactions were not biased. The
orientation of each PMB1 peptide was initially randomized before it
interacted with the bacterial membrane lipids to avoid biasing the initial
peptide-lipids interactions. The spacing between the peptides was maximized
to ensure that the peptides did not overlap at the start of the molecular
dynamics simulations. Ions were added to ensure that the systems had an
overall (net) neutral electrostatic charge (+0). Anionic charge values were
summed for all LPS and POPG lipids and the total sum value was used to
determine the number of Na* or Ca?* ions that were included into each
simulation cell or “periodic box”. The phospholipid membranes were
simulated at a temperature of 310 K and the LPS membranes were simulated
at temperatures of 300 K, 310 K, and 320 K. The simulation parameters were
adjusted so that they would match the simulation parameters from the

membrane equilibration simulations.
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3.3.4 Biased Simulations

The umbrella sampling technique and the Weighted Histogram Analysis
Method (WHAM) [849] was used to produce the potential of mean force
(PMF) profiles. The PMB1 peptides were restrained by applying a harmonic
potential with a force constant of 1000 kJ] mol! nm2 along the z-axis
(membrane normal); movement was unrestrained within the plane of the
membrane. The PMF reaction coordinate (length sampled) was 4.3 nm and
the distance between the sampling positions was 0.1 nm (along the
membrane normal). Each of the umbrella sampling simulations were 1 ps

long.

3.3.5 Analysis

Radial distribution functions were analyzed with the GROMACS g_rdf utility
and the contact analysis data was determined with the g_mindist utility. The
van Hove correlation functions were computed with the g vanhove program
and the lateral diffusion coefficients were determined with the g_msd tool.
The trajectories of coarse-grained Martini particles were resolved with the
g_traj utility. The configurational entropy was calculated with the g_covar and
g_anaeig programs. The vector fields were visualized with an MDAnalysis
module and the lateral area compressibility moduli were calculated with the

equation:

kyTA,

A7 NL(542)
Equation 81

where T is system temperature, A;, is average area per lipid, N is the number

of lipids per bilayer leaflet, kg is the Boltzmann constant, and < §42> is the

average value of the squared fluctuation of A;.
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3.4 Results

3.4.1 Effect of Ion Charge on Re LPS Bilayer Properties

It was important to first analyze the properties of the LPS lipids in the
presence of both monovalent and divalent ion solutions since it has been
demonstrated that LPS lipid interactions depend on the concentration and
type of ambient ions [251,901-902]. The symmetric Re LPS membrane
systems were simulated with either monovalent (Na*) or divalent (Ca?*) ion
solutions for 10 ps. The Re LPS lipids had a time-averaged area per lipid
magnitude of 1.67 * 0.005 nm? when the membranes were simulated with
Na* ions and a time-averaged area per lipid magnitude of 1.60 + 0.004 nm?
when the membranes were simulated with Ca?* ions (Figure 27A-D). To
assess the quality of the computed data it is necessary to draw comparisons
with previous united-atom and all-atom molecular dynamics simulations of
LPS lipid membranes. Let us first compare with all-atom simulations of the
Lipid A anchoring domain, which usually contains two phosphate groups, two
glucosamine saccharide units, and no more than seven hydrophobic acyl
chains [904-905]. Kim et al. used the CHARMM atomistic simulation forcefield
to evaluate the area per lipid for Lipid A anchors from twelve different species
of bacteria; some containing as few as four acyl chains, and others as many as
seven [555]. The area per lipid values were evaluated as being no smaller
than 1.50 nm?and no larger than 1.68 nm? for all of the Lipid A molecules with
6 hydrophobic acyl chain moieties. It is well known that the length of LPS
macromolecules is inextricably linked to the magnitude of LPS lateral packing
parameters in bacterial membrane simulation systems [212,301,551,555-
556]. In general, the longer the LPS molecule is, i.e. the more core and O-
antigen sugars it contains, the larger its projected lateral surface area will be.
Keeping this in mind, it is expected that longer LPS lipid variants (i.e., Rd LPS,
Ra LPS, and especially smooth LPS) will preferentially occupy more lateral
surface area within bacterial membrane systems. It was found that semi-
rough Rd LPS lipids had area per lipid values of 1.51 nm? in atomistic

simulations [551] and as expected, that longer Ra LPS lipid variants had an
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average area per lipid magnitude of 1.80 nm?2 [211]. When the LPS
macromolecules contained long terminal O-antigen chains (i.e. smooth LPS)
they tended to occupy even more lateral surface area within bacterial
membrane mimetics. For example, smooth LPS lipids had an average area per
lipid magnitude of 1.90 nm? in all-atom molecular dynamics simulations
[211] that were conducted with the CHARMM forcefield. The coarse-grained
Re LPS lipid packing parameters that have been calculated within this chapter
are quite reasonable when compared with previous computational work e.g.
the work performed by Kim et al. [555]. The coarse-grained Re LPS lipid
models have time-averaged area per lipid values that are intermediary to the
packing parameters that were obtained for short and longer forms of LPS
lipids from previous atomistic simulation studies. In addition, there is little
mismatch with the experimental values that were obtained by Snyder et al.
[568] for LPS lipid variants from Salmonella Minnesota and Salmonella
typhimurium bacteria. Snyder et al. used X-ray diffraction analysis methods
to demonstrate that that LPS lipids had average area per lipid magnitudes of
1.56 nm?. This value (i.e. 1.56 nm?) is only 2.5% smaller than the magnitudes
that were computed for the coarse-grained Re LPS lipid membrane systems

that simulated here in this chapter with divalent calcium (Ca?*) ions.

The distribution of area per lipid values followed an approximate Gaussian
distribution when the LPS membrane systems were simulated with the Na*
ion solvent. The area per lipid values were distributed according to a multi-
model non-Gaussian distribution function instead when the LPS lipids were
simulated with the Ca?* ion solvent. The multi-modal distribution is indicative
of heterogeneous lipid packing, with areas of tightly packed lipids, and areas
of more loosely packed lipids. The heterogeneous packing was confirmed via
two-dimensional tessellations of the Re LPS phosphate plane. Voronoi
tessellations revealed that the phosphate groups were packed similarly to
glasses such as defective graphene and sheets of silica. Vitreous and crystal-
like fractions were both present within the LPS membranes and this a

hallmark of glassy materials [906-908].
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Figure 27. Voronoi tessellation of the Re LPS bilayers that were simulated
with either Na* or Ca2* ions. (A, B) The two-dimensional Voronoi
tessellations were used to determine the projected surface areas
distributions for the Re LPS bilayers that were simulated with either (A) Na*
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or (B) Ca?* ions. The mean area values are represented with dashed red
lines and the standard deviation (o) and skew (S) values are shown in the
top right-hand corner. (C, D) The observed data sets are compared with
Gaussian distributed data sets of equivalent o and S values. The linear
association between the Gaussian (blue) and observed data (black) sets was
calculated with the standard Pearson product-moment correlation
coefficient (r).

Here it is necessary to provide a characterisation of the viscosity and phase
properties of the biological membranes since it appears that cations affect the
properties of LPS lipid membranes and as we will see, that PMB1 peptides
also affect membrane phase behaviour when they are embedded into the LPS
lipid leaflet. If we are to discuss how PMB1 peptides can affect the phase
properties of bacterial membranes we should first evaluate the phase
properties of bacterial membranes before they interact with PMB1 peptides.
We should explore different simulation setups that have different
concentrations of ambient ions, i.e. monovalent cations in one instance and
divalent cations in the other. Viscosity is a rather simple biophysical
parameter that can be used to explore the phase characteristics of different
fluids and the metric provides insights into the consistency and internal
friction of entire biological membranes or biological membrane components
(e.g. the plane of phosphate groups) [909-911]. Radial distribution functions
and velocity autocorrelation functions can also provide important insights
into the phase behaviour of LPS lipid leaflets [335,912-913]. Viscosity
magnitudes, radial distribution functions, and velocity autocorrelation
functions can be computed to determine the phase behaviour of the LPS lipid

membranes before they are simulated with the PMB1 peptides.

The wave-number dependent viscosity values n(k) were computed using
transverse current autocorrelation functions (Figure 28A) to assess the
coexistence of fluid and static domains in the Re LPS bilayers and to
determine the overall phase of the lipids. The data were fit to the Padé
approximant used for simulations of three-dimensional liquids: n(k) «
(1 + ak?)™1 [914-915] and the static viscosity values were estimated by

subsequent extrapolation to infinite wavelength (k — 0). The viscosity values
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were 2.45 (Ca?* system) and 2.11 kg m'1 s'1 (Na* system). The magnitudes are
comparable to the shear viscosity of water at physiological temperatures and
atmospheric pressure [916] indicating that the LPS bilayers were as a whole,
fluid during simulation time. In contrast, static viscosities of the phosphate
plane were extrapolated to values of 8426 and 2562 kg m-! s1 (Figure 28B)
and these magnitudes are comparable to the viscosity of molten glass (104 -
106 kg m1 s'1) [917]. The data demonstrates that the hydrophobic core was

highly fluid, whereas the phosphate plane was less mobile and was better

described as a relatively rigid viscous glass.
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Figure 28. The properties of the Re LPS bilayers that with simulated with
either Na* or Ca?* ions. (A, B) The wave-number-dependent viscosity 1(k)
was determined from the transverse current autocorrelation function for
the Re LPS bilayers that were simulated with either Na* (blue triangles) or
Ca2* (black squares) ions. The values of n(k) were determined by
considering (A) the entire Re LPS lipids in the viscosity calculations or by
considering (B) only their phosphate groups. The data were fit to the Padé
approximant: n(k) = (1 + bk?)~1; the fitting parameters (a, b) are shown
with the optimized expressions for n(k) (dashed lines). The inset image
shows n(k) as k— 0. Blue lines represent the simulations with Na* ions;
black lines represent the simulations with Ca2* ions. (C, D) The radial
distribution functions (RDF) were determined for the Re LPS phosphate
groups in the simulations with (C) Ca%* and (D) Na* ions. (E-H) The velocity
autocorrelation functions C(t) were determined for (E, G) the whole Re LPS
lipids or for their (F, H) phosphate groups. The data are presented for the
bilayers with either (E, F) Na* or (G, H) Ca%* ions.

Radial distribution functions support the assessment that the LPS phosphate
plane can be considered to be a relatively rigid viscous glass (Figure 28C-D).

The radial distribution functions for the Re LPS phosphate groups were
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intermediary to the smooth and jagged profiles one obtains for liquid and
crystalline materials. The radial distribution functions for Re LPS phosphate
groups were multi-modal and featured long-range order that is indicative of
glass-like packing and is atypical of the fluid phase [918-919]. The velocity
autocorrelation function is a time dependent metric that quantifies the
underlying dynamic processes operating in a molecular system; the function
can be used to evaluate molecular fluidity [920]. The velocity autocorrelation
functions were typical of three-dimensional fluids when they were computed
for the bilayers as awhole (Figure 28E, G) [921]. There was exponential decay
to a negative value and subsequent convergence to zero within 10 ps. When
auto correlation functions were computed for the phosphate plane (Figure
17F, H) there was rapid fluctuation between positive and negative values that
did not dissipate for tens of nanoseconds. The oscillatory behavior is
indicative of long-term localization or “caging” of the phosphate groups,
whereas the rapid convergence to zero is indicative of a more mobile medium,
in which the phosphate groups are caged only briefly. Rheological
experiments support the conclusion that Re LPS lipids can form relatively

rigid gels when they are interlinked by bridging cations [922].

3.4.2 PMB1 Interaction with Re LPS Bilayers

The PMB1 peptides were simulated with Re LPS lipid bilayers in two different
solutions, one containing monovalent cations (Na*) and another containing
divalent (Ca2*) cations. The simulation cells were ~13 x 13 x 20 nm in size
and there were no more than 6 PMB1 peptides per periodic box. The PMB1
peptides were initially placed ~5 nm above the Re LPS bilayer center (using
their center of mass coordinates for reference). The peptides formed
favorable electrostatic interactions (defined as an interatomic separation of
r < 0.47 nm i.e. smaller than the effective diameter of a standard coarse-
grained bead) with the peripheral carboxylate groups of the Re LPS lipids
after an average time of 60.9 + 66.2 (s.d.) ns and 80.7 + 81.6 (s.d.) ns for the
systems with Ca%* and Na* ions, respectively. The PMB1 peptides moved

toward the water-lipid interface after binding to the peripheral core sugars

170



and electrostatic interactions then formed between the PMB1 Dab residues
and the Lipid A phosphate groups. Electrostatic interactions between the Dab
residues and the Re LPS phosphate groups were first registered after an
average time of 251.4 + 405.8 (s.d.), and 45.6 * 149.9 (s.d.) ns for the systems
with Ca2?* and Na* ions, respectively. The large standard deviations
demonstrate that the PMB1 peptides contacted the LPS phosphate groups
somewhat sporadically and that the LPS-phosphate contact times differed
significantly from one molecular dynamics simulation to another. In one
simulation the PMB1 peptides moved through the LPS core saccharide
domain relatively quickly and in another instance the PMB1 peptides moved
through the LPS core saccharide domain significantly more slowly. But still,
these average values demonstrate quite clearly that there was a significant
difference between the LPS-phosphate contact times that were sampled for
the comparative simulation systems that contained Na* ions in one case and
Ca?* ions in another. The number of contacts between the Dab residues and
the Re LPS phosphate groups systematically increased after the first LPS-
phosphate contacts were registered at the times of 251.4 + 405.8 (s.d.), and
45.6 £ 149.9 (s.d.) ns (Figure 29A, B). The differences in contact profiles is
more apparent when we examine the number of contacts made between the
PMB1 Dab residues and the Re LPS phosphate groups as a function of
simulation time. It is clear that the number of LPS-phosphate contacts was
significantly different in the monovalent and divalent ion simulation systems
during the entire 5 us long molecular dynamics simulations. There were
approximately twice as many electrostatic contacts between the Dab residues
and the Re LPS phosphate groups when the simulation systems contained
monovalent Na*ions compared with the simulation systems that contained
divalent Ca2* ions. The data suggests that PMB1 peptides are able to move
through the LPS headgroup sugar domain more easily when the LPS lipids are
interlinked with monovalent cations. Based on these different interactions it
is expected that the distance between the PMB1 peptides and the bilayer
center will be smaller in the simulation systems that contain the monovalent

(Na*) cations.
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Figure 29. The translocation of the PMB1 peptide through the bacterial
membrane mimetic depended on the type of ambient ions that were used to
conduct the molecular dynamics simulations. (A, B) The contact number for
interactions between the PMB1 Dab residue side chains and the Re LPS lipid
phosphate groups as a function of simulation time. The cut-off distance was
0.47 nm (the effective size of a coarse-grained Martini bead); data were
collated for all of the unbiased simulations. (A) The data for the bilayers that
were simulated with Na* ions and for (B) the bilayers that were simulated
with Ca%* ions. (C, D) The final-frame snapshots of the PMB1 peptides
(green) interacting with the Re LPS bilayers that were loaded with (C) Na*
or (D) Ca2*ions. The Re LPS lipids are colored according to Fig. 26 and the
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Na*, Ca?*, and water particles are omitted for clarity. (E-H) The radial
distribution functions for the phosphate (black lines) and carboxylate (blue
lines) groups of the Re LPS lipids with respect to the position of the PMB1
Dab residue side chains. The data are shown for both the (E, F) Na*, and (G,
H) Ca?* ion simulation systems. The data were sampled during the last 100
ns of simulation time.

The distance between the PMB1 peptides and the bilayer center was
computed by sampling data during the last 100 ns of simulation time. The
PMB1 peptides were on average 2.8 + 0.6 nm above the bilayer center when
the LPS lipids were interlinked with Ca2*ions and 2.2 + 0.6 nm when the LPS
lipids were interlinked with Na* ions (Figure 29C, D). In other words, the
PMB1 peptides bypassed more of the peripheral LPS headgroup sugar
domains when the LPS lipids were interlinked with cations of lower charge.
Pairwise radial distribution functions (sampled over the final 100 ns of
simulation time) provide additional evidence to demonstrate that the PMB1
peptides moved through the LPS lipid headgroups more effectively when the
simulation systems contain monovalent Na* ions. Pairwise radial distribution
functions had first peak values (corresponding to the first coordination shell)
of ~30 for the position of peripheral carboxylate groups with respect to the
PMB1 Dab residues, regardless of ambient ion type loading. In contrast, the
first RDF peak values for the position of Re LPS phosphate groups with
respect to PMB1 Dab residues were ~15 when the Re LPS lipids were
interlinked with monovalent (Na*) cations and ~60 when the Re LPS lipids
were interlinked with divalent cations (Ca%*) instead (Figure 29E-H). To
summarize these data: the PMB1 peptides partially bypassed the LPS
headgroups and maximized their interactions with the protected Re LPS
phosphate groups at the water-lipid interface. The PMB1 peptides bypassed
the Re LPS headgroups more easily and more rapidly when the bilayers
contained monovalent Na* ions. It must be stressed here that the PMB1
peptides only partially bypassed the carbohydrate headgroup moieties of the
LPS lipids. There were interactions between the PMB1 peptides and the Re
LPS phosphate groups, but they were limited.
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The PMB1 peptides only partially bypassed the LPS lipid headgroups and as
a consequence, there was minimal insertion of the PMB1 peptide
hydrophobic moieties into the Re LPS lipid core. There were only two
instances of any PMB1 hydrophobic moieties completely passing through the
phosphate plane to enter into the hydrophobic membrane interior. The
isobutyl and benzyl groups bypassed the interfacial phosphate groups of a
bilayer that contained Ca?* ions in one instance (Figure 30A) and in the
second instance, a single lipid tail slipped through the phosphate groups of a
Re LPS bilayer that was simulated with Na* ions. The low number of times
that the PMB1 hydrophobic moieties enter into the hydrophobic membrane
core can be rationalized through the use of two-dimensional Voronoi
tessellations. Voronoi tessellations can be used to understand the distances
between LPS lipid headgroups at the water-lipid interface and further how
the LPS headgroup packing affects the translocation of hydrophobic moieties

into the Re LPS bacterial membrane mimetic core.
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Figure 30. The PMB1 benzyl group penetrates the lipid core. (A) Position of
the Re LPS phosphate groups and a single PMB1 benzyl group are shown
with black and blue lines, respectively. The coordinates are with respect to
the bilayer normal and the distances are relative to the bilayer center. The
temperature was 310 K, the pressure was 1 bar and the membranes were
simulated with divalent Ca2* ions. (B) Side view snapshot showing how the
PMB1 peptide enters into the bacterial membrane mimetic; the perspective
is reversed relative to Fig. 30A for clarity. The inset image shows the two-
dimensional Voronoi tessellation for the Re LPS headgroups as the PMB1
peptide enters into the lipid core. The projected polygons are colored cyan if
they represent lipids that were adjacent to the embedded PMB1 benzyl
group. (C) The area per lipid for the five Re LPS lipids that were adjacent to
the benzyl group when it moved into the bilayer interior (3390-3480 ns).
The average projected surface area of the five Re LPS headgroups was
higher than the bilayer average (1.60 * 0.004 nm?).

Two-dimensional Voronoi tessellations of the LPS phosphate groups revealed
that the PMB1 hydrophobic moieties translocated into the hydrophobic

membrane core as “transient micropores” were formed at the bilayer-water
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interface (Figure 30B). The phosphate headgroups temporarily moved away
from each other when they were interacting with the PMB1 peptides and the
alkyl and benzyl groups of the PMB1 peptides were then able to translocate
the areas of the bilayer surface that were depleted of hydrophilic lipid
headgroup moieties (Figure 30C). Perhaps it is necessary to draw
comparisons with previous publications to explain precisely what “transient
micropores” are and precisely how hydrophobic penetrants pass through
them. Theoretical models hypothesized that hydrophobic penetrants
translocated past hydrophilic lipid headgroups and moved into the lipid
membrane cores during the spontaneous formation of “transient micropores”
within the membrane surface [923-924]. Lipid headgroups continuously
jostle back-and-forth within fluid membranes and consequently, their
individual projected lateral surface area changes from one moment to the
next [925-926]. When there is movement of multiple lipid headgroups away
from one central point between them, there is an unusually large interstitial
portion of the membrane core that is exposed to the extracellular fluid. The
resulting transient micropore is not sufficiently large to be readily tunnelled
by multiple water or ion Martini beads, but it is easier for hydrophobic
moieties to enter into the membrane core through this point of the membrane
surface than most, if not all, other points surrounding it. In other words, it is
energetically favorable for hydrophobic penetrants to pass through the
hydrophilic headgroup domain and then enter into the membrane interior
but there are large energy barriers that can prevent this energetically
favorable translocation process from occurring [927]. The energy barriers
were hypothesized to be larger when the lipid headgroups were closer
together and smaller when they were further apart. The hypothesize was
confirmed in previous all-atom simulations that sought to clarify how Ceo
nanoparticles translocate into DPPC lipid membranes [925-926] and was
subsequently corroborated by comparable coarse-grained simulations that
used bacterial membrane and plasma membrane mimetics instead [301,928].
The formation of the micropores was rationalized here through the use of
Voronoi tessellations. Polygon tessellations revealed there was larger than

average spacing between adjacent lipid headgroups when the hydrophobic
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penetrants were passing in between them. To reiterate, Figure 19B and in
particular the small inset image within Figure 19B, shows that six adjacent
LPS lipid headgroups had unusually large intermolecular spacing when
hydrophobic penetrants were passing in between them (see the association
figure caption). The translocation of the hydrophobic penetrants seems to
depend on the fluctuations of lipid headgroups here in this chapter, and also
in previous computational publications [925,301]. As lipid headgroups jostle
back-and-forth they temporarily create “micropores” that enhance the rate at
which hydrophobic moieties can pass through the hydrophilic headgroup

domain and enter into the hydrophobic membrane core.

However, the formation of these membrane defects or temporary micropores
is suppressed by the large lateral area compressibility moduli of the LPS lipid
membranes. The compressibility moduli were calculated according to the

equation:

s ksTA,
47 NL(842)

where kg is the Boltzmann constant, T is the system temperature, 4; is the
average surface area per lipid, Ny is the number of lipids per membrane leaflet
and < §A%> is the average of the squared fluctuation of A;, values. The area
compressibility moduli were 1.700 * 0.003 and 0.673 + 0.002 Nm-! for the
bilayers that were simulated with Ca2* and Na*ions, respectively. The values
are significantly larger than the K, values for DOPC bilayers (0.371 + 8 Nm1)
that were simulated at a temperature of 300 K and at atmospheric pressure
[928], or for DPPC and DMPC membranes (0.234 and 0.231 Nm1) in X-ray
scattering studies [929-930]. The PMB1 peptides were generally unable to
pass through the thick hydrophilic core saccharide domain due to the slow
dynamics of the LPS lipids and the PMB1 peptides were generally unable to
translocate through the Re LPS phosphate plane due to the high lateral
compressibility moduli of the Re LPS lipids. It is likely that the final lipid-

peptide conformations do not represent global energy minima despite the
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microsecond timescales used in this study and it is evident that enhanced
sampling techniques (e.g. umbrella sampling) must be used to understand

lipid-peptide interactions on long timescales.

3.4.3 Umbrella Sampling, WHAM, and the Thermodynamics of PMB1
Penetration

Potential of mean force profiles (PMFs) were produced to understand the
energetics that control the movement of PMB1 peptides from the water
domain into the Re LPS bilayer core and also to understand the biomolecular
interactions that can occur on long timescales. PMFs were determined using
the umbrella sampling technique and the weighted histogram analysis
method (WHAM) [849]. PMF profiles were computed for three simulation
temperatures: 300 K, 310 K, and 320 K. The energy minima were located at
distances of approximately 1.6 nm and 1.9 nm from the bilayer center in the
simulation systems that contained divalent (Ca2*) cations and monovalent
(Na*) cations, respectively (Figure 31A-B). The PMF minima correspond to
positions along the bilayer normal where the PMB1 peptide molecules can
interact with cationic phosphate groups while the PMB1 isobutyl,
phenylalanine, and acyl chain hydrophobic moieties interact with the

hydrophobic acyl chains of the Re LPS.

The accuracy of umbrella sampling calculations is affected by the degree of
data convergence and the number of umbrella sampling windows [931-932].
Given the complexity of the simulation systems it was necessary to evaluate
the accuracy of the umbrella sampling calculations by evaluating if the
reaction coordinates were appropriately sampled and if the PMF profiles
were appropriately converged. Sampling was evaluated by studying the
overlap of the histograms that were used to produce the PMF curves and the
data convergence was evaluated by time-block analysis of the PMF profiles
[933]. For each reaction coordinate there was excellent overlap of the
histograms and through time-block analyses it was revealed that each data

set was converged. Comparable validation methods were used by Khalid et al.
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to evaluate the free energies of small solute permeation through the E. coli

outer membrane [934].

The free energy values (PMFs) were decomposed into enthalpic and entropic

contributions (Figure 31C-D) according to the equations:

TAS—TdG r G(T + AT) — G(T — AT)
- dTNZAT( )

AH = AG + TAS
Equation 82-83

where G is the Gibbs free energy, S is entropy, H is enthalpy, and T is the
system temperature [935]. The decomposition of the free energy values
revealed that PMB1 permeation was hindered by an unfavorable change in
system entropy and that it was driven by favorable changes in system
enthalpy. The Schlitter formula and the quasi-harmonic approximations were
used to understand the origin of the entropic wall hindering PMB1
permeation. The configurational entropy was computed for the PMB1 peptide
as a function of distance along the bilayer normal (Figure 31E). The
penetration of the PMB1 into the bilayer interior reduced the peptide
configurational entropy by ~0.3 k] mol! K1 and this indicates that the
significant changes in system entropy were not accounted for solely by
changes in peptide conformation. It is apparent that PMB1 penetration was
associated with a concomitant change in the conformational behavior of the

encompassing lipids.
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Figure 31. The free energy profile for PMB1 translocation into the
membrane interior. The free energy profiles are shown for the simulation
systems with (A, C) Na* or (B, D) Ca2*ions. (A, B) The PMF profiles for PMB1
as a function of distance from the bilayer center. The PMF profiles are
shown for the system temperatures: 320 K (solid cyan lines), 310 K (solid
blue lines), and 300 K (solid black lines). (C, D) The free energy profiles AG
that were computed at 310 K were decomposed into entropic -TAS (solid
red lines) and enthalpic AH (solid green lines) components. The dashed
black lines show the average position of the Re LPS phosphate groups from
the bilayer center. (E) The configurational entropy for the PMB1 peptides
was evaluated with the Schlitter formula (S) and the quasi-harmonic
approximations (Q) as a function of distance from the bilayer center. The
cyan and black lines show the data for the simulations with Na* ions and the
red and blue lines represent the data for simulations with Ca2* ions.
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[tis important to state here that some of the following data were derived from
the umbrella sampling simulations. Data were predominantly sampled when
the PMB1 peptides were restrained at distances of 1.6 nm (Ca2* system) and
1.9 nm (Na* system) from the membrane midplane, i.e. the position of the
PMF minima. Data were however, sometimes extracted from all of the
umbrella sampling simulation windows when it was necessary to understand
LPS properties, e.g. lateral diffusion coefficients and heat capacity, as a

function of PMB1 distance from the membrane midplane.

The self-part of the van Hove correlation function G(r,t) provides the
probability that a particle moves a distance r from its neighboring particles
within a time interval t. The metric can be used to quantify the overall
dynamic characteristics of Re LPS lipids and demonstrate that as the PMB1
peptides translocate into the membrane interior they affect lipid
conformation and the membrane entropy. The van Hove correlation
functions, coupled with projections of Re LPS trajectories (during simulation
time) and streamlined visualization of lipid motion, is used here to show that
the PMB1 peptides changed the lipid conformation and the lipid phase
characteristics when they were located at a membrane normal position that

corresponds to the location of the PMF minima.

It is first necessary to give some insight into streamline visualisation figures
here to provide context for the ensuing LPS lipid trajectory analysis data.
Sansom et al. have developed software that enables the easy identification of
the correlated movement of lipids within either flat of spherical membrane
systems [936]. The software couples the desirable properties of path line
visualization techniques and methods for vector field visualization to create
an analysis tool that generates an intuitive visualization of both linear and
circular nanometer-scale lipid movement patterns. The analysis tool has
already been used to study the properties of the Gram-negative bacterial cell
envelope and it was shown that LPS lipid trajectories are strongly influenced
by the movement of proteins [325]. The analysis tool was created in part to

evaluate the nature of lipid diffusion since our model of biological membranes
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is currently evolving from the simplistic fluid mosaic model toward a more
nuanced view of a laterally heterogeneous patchwork of proteins and lipids
[937-938] (see section 1.1). It was also developed to understand if lipids
move according to a rattle-in-a-cage diffusion model [164], a flow-like
diffusion model [939-941], or some other entirely distinct lipid trajectory

scheme.

The evaluation of lipid diffusion patterns is of prime importance within this
chapter since diffusion patterns characterize the different phase
characteristics of fluid mediums. Heterogeneous relaxation dynamics are a
hallmark of amorphous materials and of particles within glassy systems [942-
945]. The particles move according to two diffusion processes: (i)
cooperatively rattling within small regions of space; and (ii) correlated
migrations of particles to neighboring regions of space. The movements
mimic clustered continuous-time random walk processes [946], in which
particles are momentarily confined to small regions of space before they
collectively “jump” into new regions of space. Heterogenous relaxation
dynamics are a hallmark of vitreous systems, whereas crystalline materials
tend to display more uniform relaxation dynamics. When atoms are confined
within a solid material they tend to oscillate back-and-forth within a small
region of space, effectively rattling within a small cell and not “jumping” from

one cell to another [947].

We will see from Figures 21 and 22 that ions and PMB1 peptides affect the
properties of Gram-negative bacterial membranes and in particular, the
diffusion behaviour of the LPS lipids. Figure 21 shows that the LPS lipids
display heterogeneous relaxation dynamics that are typical of glassy systems
but that the precise characteristics of the clustered continuous-time random
walk or “blob-and-channel” trajectories depend on the type of ambient ions
that are present within the simulation cell. In either instance there is
momentary cooperative rattling within small regions of the membrane and
after that there is cooperative migration to new regions of space. Figure 22

then shows how PMB1 peptides can affect LPS lipid trajectories during
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simulation time. There is not only a significant reduction in the absolute
lateral displacement that is quantified here in terms of angstroms, but also
the reduction (Na* system), or complete removal (Ca%* system), of the
“channel” component of the blob-and-channel trajectories. The integration of
a PMB1 peptide into the membrane affects the LPS lipid trajectories and they
transition from the heterogeneous relaxation dynamic movement patterns of
vitreous systems toward the more static, oscillatory movement patterns of
solid and crystalline materials. Figures 21A, 21E and Figures 22A, 22E show
the trajectories of single LPS lipids over the course of 1 ps long simulations to
enable simple identification of single LPS lipid movement patterns and for
simple comparison with conventional blob-and-channel and crystalline
material trajectories. Figures 21B, 21C and Figures 22F, 22 G are generated
using the Flows module developed by Sansom et al. [936]. The figures reveal
the differences between each membrane system in terms of correlated lipid
trajectories to show that the ions and PMB1 peptides affected all of the LPS
lipids and also to quantify the magnitude of the effect in terms of absolute

lateral displacement, i.e. angstroms.
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Figure 32. The vitreous dynamics of the Re LPS lipids. The lipid dynamics of
the Re LPS lipids were different when they were simulated with (A-D) Na*
and (E-H) Ca?* ions. (A, E) The trajectories of single representative Re LPS
phosphate groups are presented here as red lines. The background
snapshots of the Re LPS lipids are shown with the scale bar to provide a
sense of distance. The background snapshots clarify how far the
representative Re LPS lipids have moved in Fig. 32A and Fig. 32E or in other
words, how long the red line trajectories are. The simulations were
conducted with a simulation temperature of 310 K and the analysis was
performed for 1 ps. (B-C, F-G) Streamline visualization analysis for
arbitrarily selected simulation frames to capture the collective,
heterogeneous relaxation dynamics that give rise to the so-called “blob-and-
channel” trajectories that are a hallmark of vitreous systems. (D, H) The self-
part of the van Hove correlation function that is defined as the probability
that a particle that is at r_0 at time zero can be found at position r_0+t at
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time t. The figures show how the Re LPS lipid trajectories change when they

are simulated with different types of ions.
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Figure 33. The Re LPS diffusion was affected by the PMB1 peptides. (A, E)
The trajectories of single representative Re LPS phosphate groups was
visualized over the course of 1 ps long umbrella sampling simulations. The
sampled windows correspond to the minimum of the 310 K PMF profiles
from Fig. 31A. The trajectories of single representative Re LPS phosphate
groups are presented here as red lines. The background snapshots of the Re
LPS lipids are shown with the scale bar to provide a sense of distance. The
background snapshots clarify how far the representative Re LPS lipids have
moved in Fig. 33A and Fig. 33E or in other words, how long the red line
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trajectories are. (A) When the Na* ion simulation system was simulated with
a PMB1 peptide there was a shift away from the clustered-continuous-time-
random walk processes (see Figure 32A for comparison) towards the
localized oscillatory and rattling motions that have been noted for ions in
rigid crystals. (E) When the Ca%* ion simulation system was simulated with a
PMB1 peptide there was a more significant shift away from clustered-
continuous-time-random walk processes (see Figure 32E for comparison)
towards localized oscillatory motions. The Re LPS phosphate groups were
confined to membrane domains that were approximately 2 nm? during the
last 1 ps of simulation time. (B-C, F-G) Streamline visualization analyses of
arbitrarily selected simulation frames to clarify the collective Re LPS
headgroup relaxation dynamics in the presence of the PMB1 peptide. The Re
LPS trajectories are noticeably different from the relaxation dynamics of the
Re LPS phosphate groups when they were not simulated with PMB1
peptides (see Figure 32B-C and Figure 32F-G for comparison). There is an
approximate order of magnitude reduction in the headgroup displacements
per simulation step (see adjoining color bars for clarity). (D, H) Self-part of
the van Hove correlation function for the Re LPS phosphate groups.
Comparisons between Figure 32D, 32H and Figure 33D, 33H reveal
significant differences in the relative mobility of the Re LPS molecules when
they interact with a PMB1 peptide.

The visualization of the LPS phosphate group trajectories (void of PMB1
peptides) revealed that the LPS phosphate group diffusion patterns depended
on the type of ambient ions that were present. The phosphate groups
displayed heterogeneous relaxation dynamics comparable to the now well-
established clustered continuous-time random walk processes (Figure 32A-
D) [946] when the membranes were simulated with monovalent Na*ions. The
phosphate groups initially cooperatively traversed a small region of the
simulation cell before they moved cooperatively to a new region of the
periodic box. Heterogeneous relaxation dynamics were also observed when
the phosphate groups were interlinked with Ca?* ions (Figure 32E-H) but the
anions were caged within small regions of the simulation cell for less time and
a greater number of phosphate groups were involved in the correlated
migrations to new regions of space. The van Hove time-space correlation
functions for the phosphate groups of single Re LPS leaflets were similarly
indicative of heterogeneous relaxation dynamics. The functions had features
of both continuous random-walk type diffusion and oscillation type diffusion.

The PMB1 peptides changed the LPS lipid diffusion patterns, there was an
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overall shift from clustered continuous-time random walk processes to
localized oscillatory and rattling motions when the PMB1 peptides were
simulated at the PMF membrane minima positions (Figure 33A-H). This
inference was supported by orders of magnitude reduction in lipid lateral
diffusion coefficients when diffusion coefficients were calculated for PMB1
peptides at positions along the bilayer normal (Figure 34). The Re LPS lipids
become increasingly immobile and rigid as the PMB1 peptide was moved

from the simulated water domain and into the bilayer interior.
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Figure 34. The lateral diffusion coefficients D(z) for the Re LPS phosphate
groups as a function of PMB1 distance from the bilayer center. The blue line
shows the data for the systems with Na* ions and the black line shows the
data for the systems with Ca?* ions. The diffusion coefficients D(z) were
determined by linear regression of the mean square displacement and error
bars have been included for each data point. The lateral diffusion coefficient
axis is logarithmic.

]

Two-dimensional Voronoi tessellations of the Re LPS phosphate groups was
used to clarify the change in lipid dynamics as the PMB1 peptide was
restrained at different positions along the membrane normal axis. The
Voronoi tessellations revealed that the LPS lipid phosphate groups had
projected lateral surface area values of 0.5-0.7 nm? and approximate
hexagonal coordination when the PMB1 peptide was restrained at the PMF

minima (Figure 35A-F). This is similar to the packing of LPS lipid phosphate
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groups in nanocrystalline domains for which it was reported that LPS lipids
have three LPS lipid neighbors, corresponding to six anionic phosphate
groups, and projected lateral surface areas of 0.55 nm? [121,948]. The
appearance of the crystalline domains in the simulations was not temporary
and the rigid lipid fractions were found to be stable for several hundreds of

nanoseconds.

The heat capacity profiles provide additional evidence for the inferred
crystallization effects. Following the protocol in previous works [935], the

heat capacity change was calculated according to:

d*G
AC, =

p= ~T 03 ~ 103 (AG(T = AT) = 2AG(T) + AG(T + AT))

Equation 84

The heat capacity change became increasingly negative as the PMB1 peptide
was restrained at positions along the bilayer normal that were closer to the
position of the membrane midplane (Figure 35G-H). The heat capacity change
profiles are indicative of a transition from disordered to ordered states [949-
950]. The data demonstrates that PMB1 peptides changed the dynamic phase
behavior of the encompassing Re LPS lipids as they were restrained at
positions closer to the membrane midplane. It is well established that PMB1
peptides affect bilayer stability as they displace divalent cations that bridge
LPS Lipid A anchors, but these results suggest that PMB1 peptides can
additionally change the phase of LPS lipids that surround them. This is
important to acknowledge since membrane fluidity affects almost all bilayer
properties including elastic moduli, shape, tension, mechanical stress, protein

sorting, enzymatic action, and signal transduction [888-890,951-955].
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Figure 35. The PMB1 peptide induces the glass-to-crystal transformation. (4,
B) Top view snapshots of the Re LPS bilayer when it was simulated with (A)
water and ions and (B) when it was simulated with water, ions and a PMB1
peptide. The Re LPS phosphate groups are presented as opaque blue
spheres and the other sections of the Re LPS molecules are depicted as
translucent spheres. The red quadrilaterals are used to draw attention to
the crystalline packing of the Re LPS phosphate groups. These membrane
systems were simulated at 310 K with Na* ions. (C-F) Voronoi tessellation
analyses of the Re LPS phosphate groups when they were simulated (C, E)
with water and ions and (D, F) when they were simulated with water, ions
and the PMB1 peptide. (D, F) The figures were created by sampling data
from the umbrella sampling window that was positioned at the location of
the 310 K PMF minimum (see Figure 31A for reference). (C, D) The plots
show the area per phosphate group. The color scale bars are used for clarity.
It should be noted that each Re LPS lipid has two phosphate groups. (E, F)
The plots show the number of whole Re LPS lipids that are counted for each
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of the tessellated Voronoi cells (see adjoining color scale bars for clarity). (F)
The number of 3 Re LPS neighbors (corresponding to 6 phosphate groups),
is indicative of hexagonal packing, which has previously been observed in
experimental studies when Gram-negative outer membrane mimetics were
strained or placed under high surface pressures [121]. (G, H) The heat
capacity change as a function of distance between the PMB1 peptide and the
bilayer center. The data are determined for the membrane that with
simulated with (G) Na* and (H) Ca2* ions.

3.4.4 Cytoplasmic Membrane Simulations

Once PMB1 peptides have passed the Gram-negative bacterial outer
membrane they are then able to interact with and disrupt the inner
cytoplasmic membrane. PMB1 peptides have been simulated with inner
bacterial membrane mimetics once before using atomistic molecular
dynamics simulation forcefields [328] and they were simulated here again
using the coarse-grained Martini simulation forcefield. The inner membrane
of Gram-negative bacteria is known to contain both PE and PG lipids and
scientists have used two-component PE/PG lipid bilayers [270,880] as
substitutes for the Gram-negative inner membrane. But it is important to
appreciate that the inner membrane can be more complex and it can also
contain transmembrane proteins, peripheral membrane proteins,
cardiolipin, saturated and unsaturated acyl chain moieties etc. [95]. The
coarse-grained PMB1 peptide molecules were simulated here with a bilayer
that contained POPE and POPG lipids in a 3:1 number ratio in an attempt to
understand how PMB1 peptides interact with the inner membrane of Gram-
negative bacteria. The bilayer was assembled with the insane.py Python tool
[893] that divides a periodic box of specified dimensions (here ~12.5 x 12.5
x 10.5 nm) into a contiguous three-dimensional grid and subsequently fills
the void cells with user-defined lipids, proteins, and solute particles. The
membrane was initially energy minimized and was subsequently simulated
for 5 ps to converge the lipid parameters. The PMB1 peptides were placed at
least 5 nm from the phosphate plane (based on center of mass separation)

and the resulting lipid-peptide systems were simulated for 5 ps each.
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It is instructive to first consider the inner Gram-negative bacterial membrane
mimetic when it was simulated in water (Figure 36A) before we consider its
properties when it interacts with the PMB1 peptides. The POPE and POPG
lipids segregated from each other and formed distinct neutrally charged PE
and negatively charged PG lipid microdomains when they were simulated
with water and ions. Two-dimensional RDFs revealed that the POPG lipids
more commonly paired with other POPG lipids than with the neutrally
charged POPE molecules. The RDFs were computed for each POPG lipid with
respect to every other POPG lipid (POPG-POPG) and also for each POPG lipid
with respect to all of the other POPE molecules (POPG-POPE). The pair
correlation values were larger in the POPG-POPG RDF than they were in the
POPG-POPE RDF despite the fact that the POPG lipids were three times less
common. The disparities are presented in terms of two-dimensional
projections of lipid number densities for clarity. The POPG number densities
were computed by initially splitting the periodic box into a contiguous lattice
and subsequently determining how many POPG lipids there were in each (0.2
x 0.2 nm?) grid cell. The visualization reveals that the POPG lipids
preferentially segregated from the encompassing POPE molecules to form
nanodomains that contained up to six POPG lipid molecules each (Figure 36B-
D). The formation of the small POPG nanodomains can be understood if we
consider membrane width, electrostatic interactions and the entropic forces.
The association of the POPG lipids is driven in part by the hydrophobic effect:
as POPE and POPG lipids are progressively sequestered into distinct domains
there is on average a reduction in hydrophobic mismatch [219-221]. There
would be more variance in membrane width if the lipids were more evenly
distributed throughout the membrane. Electrostatic interactions also
contribute: ambient ions bind to negatively charged POPG lipid phosphate
groups and effectively screen some of the repulsive electrostatic interactions
between the adjacent anionic POPG lipid phosphate groups that would
otherwise promote electrostatic repulsion. RDFs were computed for
monovalent cations with respect to the POPG phosphate groups to validate
this statement. The first peak of the RDF had a magnitude of 25 (sampled

during the last 10 ns) and this indicates that the monovalent cations were
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interacting with the POPG lipid phosphate groups. Finally, we must also
appreciate that entropic forces must have driven the multicomponent
membranes towards a state of increased homogeneity [956]; the lipids will

segregate, but only partially.

Density 1000

Figure 36. (A) Final frame (top view) snapshot of the Gram-negative inner
membrane mimetic. The lipids have the following color scheme: POPE
(cyan) and POPG (white). (B) The visualization of the POPG number density
during the last 10 ns of the simulation. (C, D) The corresponding
visualization of the POPG number densities in the upper (C) and lower (D)
bilayer leaflets.

Further decomposition of the total two-dimensional particle number
densities revealed that there is also correlation of the (PE/PG) lipid positions
across the membrane midplane. There was association of the POPG particle
positions in the upper and lower leaflets of the Gram-negative bacterial inner
membrane mimetic. This alignment of lipid types about the membrane
midplane has been observed in multicomponent membranes but the
association is usually noted for plasma membrane mimetics [335,358,957-

958] rather than bacterial membrane mimetics. This transversal alignment
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reduces the line tension at the interface between the two membrane leaflets.
Thus, the formation of small POPG lipid domains and their correlation across
the bilayer midplane is due in large part to a complex combination of
electrostatic interactions between negatively charged headgroups,
hydrophobic mismatch, line tension energies at the phosphate interface and
an entropic component that drives multicomponent membranes toward a

state of homogeneity.

The center of mass positions of the PMB1 peptides were analyzed in an
attempt to understand how the PMB1 peptides moved from the water domain
of the simulation cell into the Gram-negative inner bacterial membrane
mimetic core (Figure 37A). Representative coordinates are shown for a single
PMB1 peptide as it moved along the bilayer normal and passed through the
phosphate boundary at 460 ns. The PMB1 peptide moved through the water
domain until it came into contact with the surface of the multicomponent
membrane. At that moment the PMB1 Dab residues interacted with the
phosphate groups of the negatively charged POPG lipid. The hydrophobic
alkyl and benzyl groups of the PMB1 peptides progressively entered into the
bilayer interior. Two-dimensional Voronoi tessellations of the POPG
phosphate groups revealed that the PMB1 hydrophobic moieties passed
through the phosphate interface as micropores formed within the membrane

surface at the bilayer-water interface (Figure 37B).
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Figure 37. (A) The distance of the upper leaflet POPE and POPG phosphate
groups from the membrane midplane is shown with a black line. The
distance between a single (representative) PMB1 peptide and the bilayer
center is shown with a blue line. (B) The area per lipid for each one of the
upper leaflet phosphate group at 460 ns i.e. the time when the PMB1 peptide
passed through the phosphate group domain. The arrow shows the pore
that the PMB1 peptide tunneled when it moved into the membrane interior.
(C) Final frame (side view) snapshot that shows the position of the PMB1
peptides in the Gram-negative inner membrane mimetic.

Temporary defects formed at the bilayer interface due to the fact the
constituent lipids ceaselessly move back-and-forth and that this process
affects the permeability of the membrane surface. There is at any given time
an area of the membrane surface that is relatively depleted of hydrophilic
headgroups and other areas that are relatively enriched in hydrophilic
headgroups particles. The hydrophobic penetrants can more easily pass

through the areas of the membrane surface that are relatively depleted of
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hydrophilic headgroups. There was complete immersion of all the alkyl and
benzyl groups into the bilayer interior during simulation time and this can be
understood if we consider the low lateral area compressibility moduli of the
phospholipid membrane (0.673 + 0.002 Nm-1) and that the fact that the Gram-
negative inner membrane mimetic did not contain any saccharide units that
could impede the PMB1 peptides. The inner Gram-negative hydrophilic
headgroup was much easier to pass through than the coarse-grained Re LPS
membrane. The PMB1 peptides were on average 1.6 * 0.4 nm above the

bilayer midplane during the final 100 ns of production time (Figure 37C).

The embedded PMB1 peptides had non-negligible effects on the organization
of the membrane lipids and on the overall bilayer packing parameters.
Computation of the two-dimensional number densities of the Gram-negative
inner membrane mimetics revealed that the PMB1 peptides reduced bilayer
homogeneity. There was more pronounced division of the POPE and POPG
lipid fractions after the membranes had interacted with the PMB1 molecules
(Figure 38A). For example, anionic lipid clusters contained up to 20 POPG
molecules in these simulations with the PMB1 peptides and only 6 POPG
lipids when the bilayers were simulated with only water and ions. There was
lipid aggregation within each membrane leaflet and there was also
correlation of the cluster positions across the membrane midplane. This
promotion oflipid demixing was associated with a significant reduction in the

overall lipid type homogeneity.

Further computation and visualization of the particle number densities
demonstrated that the position of the POPG lipid clusters were correlated
with the positions of the embedded PMB1 peptides (Figure 38B). The
association of the POPG lipid and the PMB1 peptide positions indicates that
the embedded PMB1 molecules were directly responsible for the reduction in
lipid type homogeneity. The embedded antimicrobials affected the
electrostatic interactions between the neighboring POPG lipids and this

process enhanced POPG lipid aggregation.
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Density

Figure 38. (A) The POPG lipid number density during the last 10 ns of the
molecular dynamics simulation. The projected number density map is
decomposed into the contributions from the upper and lower leaflets
(inset). (B) The associated PMB1 peptide particle number density during the
last 10 ns of the molecular dynamics simulation. (C, D) The thickness of the
upper bilayer leaflet during the last 10 ns of the molecular dynamics
simulation. The figures show thickness data for the simulation systems with
water and ions (C) and for the simulation systems with water, ions and
peptides. There is approximately one PMB1 peptide for every 27
phospholipids (D).

There was also correlation between the position of the PMB1 peptides and
the location of the localized bilayer thinning and this result matched data
from comparable united-atom forcefield molecular dynamics simulations
[328]. Membrane thickness was reduced in the vicinity of the embedded
PMB1 peptides (Figure 38C-D) and affects bilayer stability [959]. Thus, the
embedded PMB1 peptides have been shown to promote lipid demixing and at
the same they have been found to reduce membrane width. The interactions
are not entirely dissimilar to the carpet mechanism that has been proposed
to describe how certain AMPs increase membrane permeability and destroy
pathogenic bacteria. The PMB1 molecules were found to not only affect

membrane organization but also the basic packing parameters that underpin
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membrane strength. The structure of the bilayer was affected on the short
microsecond timescales that were used here and it would be reasonable to
observe more drastic changes to the membrane structure on longer

timescales.

At this point, it is necessary to assess the quality of the coarse-grained
molecular dynamics simulations and consider if the results were biased by
the simulation setup. First, it is important to appreciate that the PMB1
peptides were placed at least 5 nm from the bacterial membrane mimetic
surfaces (defined by the position of phosphate groups) before the unbiased
molecular dynamics simulations were started at simulation time t =0.
Second, we should keep in mind that the initial orientations of the PMB1
peptides were always set to be random before production time. Third, we
need to consider that the bacterial membrane mimetics were simulated for at
least 5 ps before the membranes were simulated with any PMB1 peptides.
Molecular dynamics simulations of AMPs can be biased if the lipid
membranes have not been adequately equilibrated as the membranes will not
have not reached a converged conformation [960]. It is assumed that
converged membrane conformations are more realistic representations of
the in vivo scenario [59] and therefore, that converged bilayer conformations
are necessary for mimicking realistic antimicrobial interactions. The long
equilibration timescales that were used in this chapter ensure that the lipid
conformations were converged, or close to being converged, before they were
simulated with the antimicrobial peptides and we can therefore conclude that
at least one of the potential simulation biases was addressed. Another
potential biasing procedure is to place antimicrobial peptides too close to the
lipid membrane surfaces before the molecular dynamics simulations are
conducted [630]. When AMPs are placed too close to the lipid membrane
surfaces they are unable to freely change their conformation before they bind
the lipid headgroup domain. The initial interactions become highly
dependent on the starting configurations and the simulations become less
likely to reproduce realistic biomolecular interactions. Considering the initial

positions and orientations of the PMB1 peptides, i.e. random and at least 5
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nm from the lipid phosphate groups, we can conclude that the other, more
obvious simulation biases were also addressed. Overall, it seems that the
PMB1 simulations were relatively unaffected by obvious biasing set up
procedures but that is not to say the methodology was faultless. More
independent repeat simulations could have been conducted to obtain average
values that were representative of tens of comparable simulations, rather
than just a few. Numerous additional repeat simulations would have
indisputably demonstrated that the simulation results were not in any way

anomalous.

Perhaps the most convincing evidence that the PMB1 simulations were
relatively free from bias is found through comparisons with previous
publications. Take for example, the tendency of PMB1 peptides (AMPs) to
induce the growth of small PG lipid nanodomains. Previous publications drew
comparable conclusions for different types of AMPs [255,270-271,281-283].
It was found that cationic AMPs had the capacity to rearrange Gram-negative
bacterial inner membrane mimetics in both atomistic and coarse-grained
resolution molecular dynamics simulations. Different AMPs promoted the
growth of small PG lipid domains, regardless of the specific structure of the
cationic AMPs that were being used to study antimicrobial interactions. The
similarities between different publications help to corroborate the inference
that these coarse-grained simulations were not in any way anomalous, not
highly dependent on the selected starting configurations, that they were
representative of realistic biomolecular interactions and that they were
relatively free from biases that could significantly affect the simulation

results.

The movement of the PMB1 peptides was unbiased both within the plane
parallel the lipid membrane surface and also along the membrane normal
axis (z-axis) throughout the entire duration of the molecular dynamics
simulations. There were two reasons for adopting this unbiased setup: (i)
not to constrain the PMB1 conformations; and (ii) to ensure that there were

similar numbers of PMB1 peptides either side of the membrane midplane.
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The lipid bilayer becomes strained when there is mismatch of molecular
surface area about the membrane midplane and this can alter almost all
membrane properties including lipid aggregation, curvature generation,
membrane thickness etc. [428,961-962] The motion of the PMB1 peptides
was unbiased along the z-axis to minimize the possibility that all of the
simulated PMB1 peptides could move into just one-half of the membrane
and thereby created mismatch of molecular surface area about the
membrane midplane. The PMB1 molecules could freely enter the membrane
through either its outer (extracellular) or inner (intracellular) sides. The
reasons for this setup are now clear but it is interesting to consider what
would be expected if the PMB1 peptides were exposed to just one side of the
membrane, i.e. the PMB1 peptide motion was in fact biased along the z-axis.
The concentration of the PMB1 peptides would become highly concentrated
within just one-half of the Gram-negative inner membrane mimetic [695-
696] and this side of the bilayer would presumably display significant lipid
segregation and more pronounced PG lipid nanodomain formation. The
cationic PMB1 peptides would be especially abundant on this single side of
the lipid membrane and this bilayer surface would presumably have more
significant PG nanodomain formation; more so than anything noted

throughout this chapter.

The possibility of performing simulations that would force PMB1 peptides
into a single side of the Gram-negative bacterial membrane mimetic are
interesting to discuss not only in terms of predicted results, but also in
terms of potential implementation. Here we can discuss simulation
procedures that would force the PMB1 peptides to interact with just one-
half of the inner Gram-negative bacterial membrane mimetic. The discussion
would help readers to understand how feasible it would be to perform such
simulations for themselves and understand the quality of the simulation
output. One method for biasing the movement of biomolecules within
periodic simulation cells is to introduce simulation cell “walls” [963-964].
Molecular dynamics simulation packages ordinarily enable users to place

walls at the borders of simulation cells that affect all molecules equally, or
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some molecules more so than others. The simulation cell walls could stop
PMB1 peptides from passing from one side of the simulation cell (e.g.
extracellular) into the other (e.g. intracellular). The introduction of
simulation cell walls can however, be undesirable since it necessitates the
use of unusual simulation options such as periodicity along just two, rather
than three coordinate axes. Another option is to “trap” PMB1 peptides
between two equivalent inner Gram-negative bacterial membrane mimetics.
Ordinarily there is only one planar membrane per simulation cell, but when
there are two planar membranes, there are domains within the simulation
cell that are relatively inaccessible [965-967]. If PMB1 peptides are placed
between the two adjacent membranes, the antimicrobials can only interact
with one-half of each multicomponent membrane system. The PMB1
peptides would become concentrated on a single side of each
multicomponent membrane and it would be relatively simple to understand
how the host membranes are differently perturbed when a single side of the

bacterial membranes interact with PMB1 peptides.

3.5 Conclusion

Gram-negative bacteria are developing resistance to last-line antibiotics and
this is making many of the most commonly used and readily available
antimicrobial medications completely ineffective for treating infectious
strains of Gram-negative bacteria [593-600]. Computational simulation
methodologies have reached a level of sufficient complexity that they can be
used to gain unprecedented molecular level insights into the action of
effective antimicrobials [624-629]. Molecular dynamics simulation
forcefields are increasingly being applied to understand how some of the
most effective AMPs disrupt bacterial membrane mimetics [630-631]. There
have been many atomistic resolution molecular dynamics simulations that
have attempted to understand how polymyxin molecules interact with
bacterial and mammalian membrane mimetics on relatively short (typically
less than 1 us) simulation timescales [243,328,726,728]. The simulations

were conducted with the aim of understanding how polymyxin molecules
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interact with biological membranes so that these membrane disrupting
properties could be duplicated in new antibiotics that are either polymyxin-
based derivatives or antibiotics that have an entirely distinct chemical
composition. The coarse-grained Martini molecular dynamics simulation
forcefield was used here in this chapter to understand the interactions of
PMB1 peptides with different Gram-negative bacterial membrane systems on

long timescales.

The PMB1 peptides were simulated with a phospholipid membrane that
contained POPE and POPG in a 3:1 number ratio and the multicomponent
membrane was therefore quite similar to inner membranes of Gram-negative
bacteria [270,880]. The PMB1 peptides maintained positions close to the
water-lipid interface once the PMB1 hydrophobic moieties (e.g. isobutyl,
phenylalanine, terminal acyl tail) entered into the hydrophobic membrane
interior. The positively charged (Dab) residues of the PMB1 peptides
preferentially interacted with the negatively charged PG lipid headgroups
and this induced the formation of negatively charged (PG) nanodomains
within the multicomponent Gram-negative inner bacterial membrane
mimetic. The PMB1 peptides additionally induced bilayer thinning and
decreased the normal distance between the extracellular and intracellular
membrane leaflet hydrophilic headgroup boundaries. The membrane
thinning effects were highly localized and the locations of the decreased
membrane width coincided with the locations of the membrane-active PMB1
peptides. The results closely correspond to data that was obtained from
previous simulation studies of membrane-active antimicrobial peptides
[117,270-271,281-283,726,728]. It has been demonstrated that the PMB1
peptides did not only reorganize the Gram-negative bacterial
multicomponent membrane mimetics but that they also reduced membrane
thickness values. The results could help to explain how PMB1 peptides
disrupt the inner membrane of Gram-negative bacteria. First, the preferential
interactions between the PG lipids and the PMB1 molecules would lead to a
local increase in the concentration of the PMB1 peptides at specific points of

the membrane surface, i.e. areas enriched with PG lipids. The PMB1 peptides
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would then thin the anionic PG lipid nanodomains and these sections of the
membrane surface would become less structurally stable and more likely to
rupture [959]. There would effectively be anionic “hotspots” that are
unusually prone to induce membrane breakdown processes such as
micellization processes or the production of transmembrane water pores. It
must be appreciated here that the reorganization of the PE and PG lipids
would additionally affect the function of membrane proteins because protein-
lipid interactions affect protein properties and many important cellular
functions [370-371]. PMB1 peptides might hamper the proliferation of
pathogenic bacteria by affecting membrane proteins that control bacterial
growth and replication. This is speculation based on these interesting
molecular dynamics simulation results, but it is important to make some
inferences to place the simulation data in context and provide predictions for

other scientific research groups.

The PMB1 peptides were also simulated with symmetric Re LPS lipid
membrane simulation systems to understand how PMB1 peptide molecules
interact with the outer membrane of Gram-negative bacteria. The Re LPS
lipids had unusual biophysical parameters that made it difficult for the PMB1
peptides to translocate from the water domain of the simulation cell into the
Re LPS lipid membrane core. The Gram-negative bacterial membrane
mimetics had glass-like dynamics, high shear viscosities, relatively immobile
phosphate groups and a thick wall of hydrophilic core sugar units. The
simulation analyses demonstrated that the PMB1-Re LPS interactions were
not completely converged even after 5 ps and this lack of simulation
convergence was addressed with biased simulation methods. The biased
simulation methods were used to increase the scope of the molecular
dynamics simulation study and understand how the PMB1 peptides might
destabilize the bacterial membrane mimetic on long timescales. The umbrella
sampling technique was combined with WHAM to generate PMFs profiles and
determine the energetics of PMB1 peptide translocation from the water
domain of the simulation cell into the Re LPS lipid membrane core. The

umbrella sampling simulations and WHAM analyses demonstrated that the

202



Re LPS bilayer became increasingly rigid and immobile when the PMB1
peptide was restrained at positions that were closer to the Re LPS membrane
midplane. When the PMB1 peptides were restrained at normal distances of
1.6 nm (Ca?* system) and 1.9 nm (Na* system) from the bilayer center (i.e. the
position of the PMF minima) they induced changes in the phase behaviour of
the bacterial membrane mimetics. The bacterial membrane mimetics became
significantly more rigid and the LPS phosphates began to behave as an
amorphous solid. This insight is noteworthy because membrane fluidity can
affect different bilayer properties such as shape, tension and elastic moduli
[884-887]. Membrane fluidity can also affect biological functions that are
crucial for cell viability such as enzymatic action and protein sorting [888-
891]. Here I have studied the interactions of PMB1 peptides with bacterial
membrane mimetics and I have provided some important biomolecular
insights that might help chemists to understand how PMB1 peptides can

disrupt bacterial membranes and kill Gram-negative bacteria.
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Chapter 4: Lipopolysaccharide O-Antigen Chains
Modulate the Mechanical Strength of the Gram-Negative
Outer Membrane

4.1 Abstract

Lipopolysaccharide (LPS) macromolecules are unusually long lipids that
always contain the Lipid A anchor with covalently bonded core saccharide
domain and the molecules can additionally contain the repetitive glycan
polymer moiety that has been termed the “O-antigen chain”. Rough LPS lipids
contain the Lipid A anchor with core saccharide sugars alone, whereas
smooth LPS lipids additionally contain terminal O-antigen chain moieties.
Coarse-grained molecular dynamics simulations were used in this chapter to
understand how the interactions between O-antigen chains can affect the
mobility and mechanical strength of Gram-negative bacterial outer
membrane mimetics. The coarse-grained molecular dynamics simulations
demonstrate first of all, that membrane composition affects LPS lipid packing
parameters and second of all, that these differences are inextricably linked to
membrane mechanical strength. The O-antigen chains had approximate
lamellar packing when the outer leaflets of the bacterial membrane mimetics
contained smooth LPS lipids alone (i.e. without phospholipids). The O-antigen
chains spread out over the membrane surface when the outer leaflets of the
bacterial membrane mimetics additionally contained PE and/or rough LPS
lipids. When the Gram-negative bacterial membrane mimetics contained an
extracellular leaflet that was exclusively comprised of smooth LPS lipids they
were able to withstand high surface tensions (150 mNm-1). The Gram-
negative bacterial membrane mimetics were able to withstand lower surface
tension magnitudes when they contained PE and/or rough LPS lipids in the

extracellular leaflet.

4.2 Introduction

The outer membrane of Gram-negative bacteria has an unusual asymmetric

structure and unusual biophysical parameters. The extracellular leaflet
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contains a high concentration of long LPS macromolecules and the
intracellular leaflet contains a high concentration of smaller PE and PG
phospholipids [101-103]. The LPS lipids are crossed-linked with stabilizing
cations and this combination of positively charged cations and negatively
charged LPS lipids creates a relatively rigid barrier that can help the Gram-
negative bacteria to resist external stressors [104,968-969]. LPS lipids can
affect the basic functioning of individual Gram-negative bacteria and the basic

functioning of entire Gram-negative bacterial cell colonies [970-972].

LPS lipids always contain the Lipid A anchor that is covalently bonded to
some combination of core saccharide sugars and these sugars can in turn, be
bonded to the terminal (repetitive) O-antigen chain glycan polymer [543-
545]. The Lipid A moiety is a phosphorylated glucosamine disaccharide that
contains between four and seven anchoring acyl chains [555]. The Lipid A
moiety is covalently bonded to the core saccharide domain and the core
saccharide sugars can in turn, be bonded to the terminal O-antigen chain
polymer that has been found in some cases to contain several hundreds of
constituent sugars [971]. The appearance of Gram-negative bacterial cell
colonies is affected by the length of the LPS lipids that comprise the Gram-
negative bacterial cell outer membranes. Gram-negative bacterial colonies
appear to be smooth when they contain LPS lipids with terminal O-antigen
chains (smooth LPS) and rough when they contain LPS lipids that are capped
at the core saccharide domain [972]. LPS nomenclature is based on the
appearance of Gram-negative bacterial cell colonies. When LPS lipids contain
the Lipid A anchor with variable core saccharide sections they are termed
“rough” LPS lipid variants and when the LPS lipids contain the Lipid A anchor
with variable core saccharide and terminal O-antigen chain polymer they are

termed “smooth” LPS lipid variants.

It was demonstrated that O-antigen chain polymers have the capacity to
modulate the structural characteristics of Gram-negative bacterial biofilms.
Previous experimental analyses revealed that O-antigen chains have the

capacity to affect the instantaneous elasticity of bacterial biofilms or put more
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simply, how the bacteria respond to applied mechanical stress [973]. It is
interesting to explore the possibility that O-antigen chains might additionally
affect the instantaneous elasticity of individual bacteria or even individual
Gram-negative bacterial cell membranes. Molecular dynamics simulations
were used here in this chapter to determine if O-antigen chain interactions
can affect the mechanical strength of Gram-negative bacterial cell
membranes. Molecular dynamics simulation forcefields were used here to
understand how LPS O-antigen chains interact with each other and how these
lipid-lipid interactions can affect membrane tolerance for mechanical stress.
Smooth LPS lipids were simulated in asymmetric membranes using the
coarse-grained Martini molecular dynamics simulation forcefield. The inner
bacterial membrane leaflets contained POPE and POPG lipids in a 9:1 number
ratio and the outer leaflets contained different types of lipids (i.e. rough LPS,
POPE, and smooth LPS) that were arranged in different number ratios. The
membranes were initially simulated at atmospheric pressure and were
subsequently simulated with increasing lateral pressure to understand the

membrane tolerance for and response to, applied mechanical stress.

The simulations demonstrated that membrane composition affects the
organization and aggregation of the LPS O-antigen chains. The O-antigen
chains splayed out across the membrane surface when the extracellular
leaflet of Gram-negative bacterial membrane mimetics contained smooth LPS
lipids with rough LPS and/or POPE molecules. The conformation of the LPS
O-antigen chains was different when the extracellular leaflet contained
smooth LPS lipids alone. The O-antigen chains had approximate lamellar
alignment when the extracellular leaflet of the Gram-negative outer
membrane mimetics contained smooth LPS lipids alone and this arrangement
of the O-antigen chains promoted strong cohesive intermolecular
interactions between the adjacent O-antigen chains. The smooth LPS lipids
were significantly less mobile (i.e. smaller lateral diffusion coefficients) when
they were incorporated into the extracellular leaflet of the Gram-negative

outer membrane mimetic system that was exclusively comprised of smooth
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LPS lipids compared with the simulation systems that also included rough

LPS lipids and/or POPE molecules in the extracellular leaflet.

The simulations demonstrated that cohesive intermolecular interactions
between O-antigen chains can affect membrane tolerance for mechanical
stress. The membranes were able to withstand surface tension magnitudes of
150 mNm?1 when the extracellular leaflet of the Gram-negative outer
membrane mimetics contained smooth LPS lipids alone. The bacterial
membranes withstood surface tensions of no more than 100 mNm-! when the
extracellular leaflet of the Gram-negative bacterial outer membrane mimetics
additionally contained rough LPS, smooth LPS and/or POPE molecules. The
data demonstrates that cohesive O-antigen chain interactions can increase
the mechanical strength of the outer membrane of Gram-negative bacteria.
There are strong intermolecular interactions within bacterial membrane
mimetics when the constituent O-antigen chains have approximate lamellar
alignment. The cohesive interactions increase the membrane tolerance for
mechanical stress and the bacterial membranes become more mechanically

robust.

The simulations were then used to rationalize how the bacterial membrane
properties changed as the mechanical stress was incrementally increased and
the lipid membranes were increasingly driven toward the point of rupture.
There were changes to almost all of the membrane parameters when the
applied mechanical stress was incrementally increased. The bilayers became
thinner, the distances between the lipids increased, and the O-antigen chains
packing became less uniform. There was less cohesion between the LPS lipids
and the membranes became more flexible. Water molecules were able to
penetrate the bilayer interior and they eventually induced the formation of

transmembrane water chains that in turn, caused the bilayers to collapse.
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4.3 Methods

4.3.1 Parameterization of the Coarse-Grained Smooth LPS Lipid

The parameterization of the smooth LPS lipid was stepwise: the E. coli 01 O-
antigen chain was simulated with a united-atom forcefield and these
atomistic resolution simulation data were then used to optimize parameters
for a comparable coarse-grained model of the O1 O-antigen chain. The coarse-
grained O-antigen chain was subsequently combined with a coarse-grained
model for rough LPS lipid to create a new composite smooth LPS lipid model
that contained the Lipid A anchor, core saccharide domain, and the terminal
O-antigen chain. This parameterization process is described more thoroughly

in the following three paragraphs.

The E. coli 01 O-antigen chain was initially simulated with the united-atom
GROMOS 53A6 forcefield [561-562]. The glycan polymer was simulated in an
orthorhombic unit cell and this cell was filled with SPC water molecules. The
pressure was maintained at 1 bar with the Parrinello-Rahman barostat [841-
842] and the temperature was maintained at 313 K with the Nosé-Hoover
thermostat [840]. The electrostatic interactions were computed with the
smooth particle mesh Ewald algorithm [974]; the short-range cutoff value
was 0.9 nm. The van der Waals interactions were truncated at 1.4 nm with
long-range corrections for the energy and pressure. The simulation bonds

were constrained with the LINCS algorithm [845].

The united-atom particles were then mapped to coarse-grained pseudo-
atoms in an attempt to produce a coarse-grained model that could mimic the
behaviour of the reference united-atom E. coli 01 O-antigen chain (Figure
39A-B). Suitable coarse-grained model equilibrium angles (6., and ¢;y,),

equilibrium bond lengths (,,) and the associated force constant parameters

(ki) k?jk and k;l])'kl) were initially derived from the reference atomistic
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simulation data. The coarse-grained equilibrium bond lengths and bond
angles were determined as the average spacing between the atoms in the
united-atom simulations and the corresponding force constants were
determined from the variance about these mean average values. The coarse-
grained parameters (6cq, ;jii, kij) k?jk and k;l])'kl) were then refined after the
coarse-grained parameter set was used to generate coarse-grained molecular
dynamics simulation data and this new coarse-grained simulation data was
compared with the original (reference) atomistic simulation data. To
summarize this complex back-and-forth process: I initially determined
suitable coarse-grained 01 O-antigen chain simulation parameters from the
reference united-atom resolution simulations and then [ used these
parameters to conduct coarse-grained O1 O-antigen chain polymer molecular
dynamics simulations. When I discovered any discrepancies between the
united-atom and coarse-grained simulations I would adjust the coarse-
grained parameters until these discrepancies were minimized. The coarse-
grained parameter set was adjusted until the average O1 O-antigen chain
radius of gyration was 0.49 nm for the comparative united-atom and coarse-
grained simulations (Figure 39C) and until the average end-to-end O1 O-
antigen chain distance differed by no more than 0.03 nm (Figure 39D). The
equilibrium bond lengths (7;) in the coarse-grained and target united-atom
simulations (mapped to coarse-grained pseudoatoms) generally differed by
no more than 0.01 nm (Figure 39E) and the equilibrium bond angles (both

0eq and ¢; ;) were equivalent to within 1° (Figure 39F).
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Figure 39. (A) Snapshot of a single unit of the E. coli 01 O-antigen chain that
was simulated with the GROMOS 53A6 united-atom forcefield. The atoms
have the following color scheme: carbon atoms (cyan), nitrogen atoms
(blue), oxygen atoms (red) and hydrogen atoms (white). (B) The
corresponding coarse-grained Martini forcefield model. (C) Comparison of
the radius of gyration values for the O-antigen chain units in the
comparative united-atom and coarse-grained molecular dynamics
simulations. (D) Comparison of the end-to-end lengths for the O-antigen
chain units in the comparative united-atom and coarse-grained molecular
dynamics simulations. (E) The probability distribution for a single O-antigen
chain bond length in the comparative united-atom and coarse-grained
molecular dynamics simulations. (E) The probability distribution for a single
angle in the comparative united-atom and coarse-grained molecular
dynamics simulations. The united-atom simulation data are presented with
black lines and the corresponding coarse-grained molecular dynamics
simulation data are presented with red lines.

The coarse-grained O1 O-antigen chain parameter set was combined with a
pre-existing coarse-grained model for E. coli rough (Ra type) LPS with R3 core

sugars and type 1 Lipid A anchor. The resulting smooth LPS model contains
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the conserved Lipid A domain with the complete R3 core saccharide sequence
and four units of the repetitive 01 O-antigen chain glycan polymer. The 01 O-
antigen chain repetitive subunit contains the five saccharides arranged end-
to-end: B N-acetyl-D-glucosamine, o D-galactose, a L-rhamnose, o L-
rhamnose, f N-acetyl-D-mannosamine. The smooth LPS lipid model was

added to the CHARMM-GUI Martini Maker module (http://www.charmm-

gui.org/) [151] to simplify the process of constructing asymmetric membrane
models that contain different types of lipid (e.g. rough LPS, POPE, and smooth

LPS) that are arranged in different number ratios.

4.3.2 Bilayer Simulations

The bacterial membranes were simulated with the coarse-grained Martini
forcefield (version 2) [799,814] and the GROMACS simulation package
(version 5.1.2) [975]. The simulation systems contained some combination
of lipid, water, and ions and they were assembled with the CHARMM-GUI
Martini Maker module [151]. The inner (intracellular) leaflets contained
POPE and POPG lipids in a 9:1 number ratio and the outer leaflets contained
the following lipids: only smooth LPS lipids (OANT), smooth LPS and POPE
lipids in a 4:1 ratio (OANT_POPE), smooth LPS and rough LPS lipids in a 1:1
ratio (MIXED), and smooth LPS lipids with rough LPS lipids and POPE
molecules in a 2:2:1 ratio (MIXED_POPE). The bilayers were solvated with a
column of water that was long enough (~10 nm) to minimize the interaction
strengths between one membrane system and its periodic image along the z-
axis (membrane normal). Divalent cations (Ca?*) were added to neutralize the
negative charge of the Lipid A anchors and the remaining system charge was

neutralized with monovalent cations (Na*).

The bilayers were initially simulated for 100 ns to equilibrate the lipids. The
lipids were then simulated for another 2 ps to understand LPS lipid
interactions on microsecond timescales. The temperature was maintained at
313 K using the velocity-rescaling thermostat (z+ = 1.0 ps) and the pressure

was maintained at 1 bar using the Parrinello-Rahman barostat (zp = 5.0 ps)
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[841-842]. The integration time step was 10 fs. The electrostatic interactions
were computed with the reaction field method using dielectric constants of
15 and infinity for charge screening in the short-range and long-range
regimes. The short-range cutoff for the electrostatic interactions was 1.2 nm.
The Lennard-Jones potential was cut off at long ranges using the Potential

shift Verlet scheme.

The bilayers were then simulated with lateral pressure magnitudes that were
incrementally increased until the membranes ruptured. The lateral pressure
was initially set to be -10 bar and the lateral pressure magnitude was
subsequently increased to the larger magnitudes of -30 bar, -50 bar, -70 bar
etc. thereafter. The lateral pressure (P,) component was coupled completely
separately from the pressure that was being applied along the membrane
normal (Py). Each simulation was 20 ps long because membrane bilayers can
undergo significant restructuring when they are subjected to mechanical
stress and the membrane restructuring process can be slow, i.e. occur on long

microsecond timescales.

The order parameters were computed with the gmx order program, the
lateral diffusion constants were calculated with the gmx msd program and the
radial distribution functions were determined with the gmx rdf tool. The
distances were calculated with the gmx mindist program and the angles and
radii of gyration were calculated with the gmx angle and gmx gyrate
programs. The area per lipid values were determined via two-dimensional
Voronoi tessellations of the lipid phosphate groups. The particle number

densities were determined with the gmx densmap program.

4.4 Results

Molecular dynamics simulations were conducted to understand the
interactions of LPS O-antigen chains within Gram-negative membrane
mimetics and to understand how these interactions might affect membrane

tolerance for mechanical stress. Four membranes were simulated: systems
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OANT, OANT_POPE, MIXED, and MIXED_POPE. In each instance the inner
leaflets contained POPE and POPG lipids in a 9:1 ratio and the outer leaflets
contained different lipid types (i.e. rough LPS, POPE, and smooth LPS) that
were arranged in different number ratios. The composition of the
extracellular leaflet was as follows: only smooth LPS lipids (OANT), smooth
LPS and POPE molecules in a 4:1 ratio (OANT_POPE), smooth LPS and rough
LPS in a 1:1 ratio (MIXED), and smooth LPS, rough LPS and POPE molecules
ina 2:2:1ratio (MIXED_POPE). There was enough divalent calcium (Ca2*) ions
within each simulation cell to neutralize the anionic charge that was being
generated from the negatively charged LPS Lipid A anchors. The remaining
system charge was neutralized with monovalent sodium (Na*) ions. The
systems were simulated for 2 ps each and the simulation temperature and

pressure were maintained at magnitudes of 313 K and 1 bar.

The orientation of the smooth LPS lipids was affected by the membrane
composition. The O-antigen chain sugars had an approximate lamellar
alignment in system OANT and this orientation was comparable to the
lamellar packing of the LPS anchoring acyl chains (Figure 40A-B). The O-
antigen chains tilted more substantially relative to the bilayer normal (Figure
40C-D) within systems OANT_POPE, MIXED and MIXED_POPE. The number
of cohesive intermolecular interactions between the O-antigen chain sugars
was maximized when the LPS lipid headgroups either aligned with the
membrane normal axis (system OANT) or when the O-antigen chains
stretched out over the membrane surface (OANT_POPE, MIXED and
MIXED_POPE). The specific O-antigen chain orientation depended on the
characteristics of the encompassing membrane environment. The O-antigen
chains aligned with the membrane normal when the extracellular leaflet of
the Gram-negative outer membrane mimetics contained smooth LPS lipids
and the O-antigen chains stretched out over the membrane surface when this
leaflet additionally contained rough LPS lipids and/or POPE molecules. In one
instance the number of cohesive O-antigen chain intermolecular interactions
was increased when the smooth LPS lipid O-antigen chain polymer stretched

out along the bilayer normal (OANT) and in the others (OANT_POPE, MIXED
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and MIXED_POPE) the number of cohesive O-antigen chain intermolecular
interactions was increased when the smooth LPS lipid O-antigen chain

polymers stretched out over the membrane surface.

The coarse-grained smooth LPS lipid model was parameterized to mimic the
interactions of E. coli LPS lipid with four units of the repetitive 01 O-antigen
chain glycan polymer chain. The simulations provide some important insights
into the general conformational characteristics of smooth LPS lipids within
Gram-negative bacterial membrane mimetics but it isimportant to appreciate
that O-antigen chain length can vary both among different strains of E. coli,
and also within single highly heterogeneous Gram-negative membranes
[971]. O-antigen chain polymers can contain more than ten repetitive glycan
polymer units [976] and, in some circumstances, as many as forty units have
been reported [971]. Based on atomistic molecular dynamics simulations of
longer smooth LPS lipids (with 10 units of the 06 O-antigen chain) [211] it
can be surmised that the splay of O-antigen chains depends on the O-antigen
chain length. In previous all-atom molecular dynamics simulations [211-212]
it was shown that (i) O-antigen chain subunits tilt relative to the membrane
normal, and (ii) that O-antigen chain extension scales with the number of
constituent O-antigen sugars. In other words, the O-antigen chains can stretch
out over a more substantial portion of the membrane surface when the O-
antigen chains contain a greater number of constituent glycan polymer units.
It is expected then that the conformational characteristics of these coarse-
grained O-antigen chains will differ somewhat from the in vivo scenario.
Realistic Gram-negative bacterial membranes usually contain longer O-
antigen chain polymers [971,976] and longer O-antigen chains are capable of

stretching out over more of the membrane surface.
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Figure 40. (A) Side view snapshot of system OANT, with (B) a single smooth
LPS lipid extracted from the bilayer to show the orientation of the acyl
chains and O-antigen chain sugars. The bond that anchors the O-antigen
chain to the Lipid A and core sugar domains is termed here as “O-anchor” to
make the discussion of LPS headgroup orientation clearer. (C) Side view
snapshot of system MIXED_POPE, with (D) a single smooth LPS lipid
extracted from the bilayer to show the orientation of the smooth LPS acyl
chains and O-antigen chain sugars. The acyl tails are white, the phosphate
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groups are blue, the glycerol and glucosamine sugars are pink, the core
sugars are cyan, the terminal O-antigen chains are red and the water
molecules are omitted for clarity. (E) The average order parameters that
were calculated for the backbone chain beads of the O-antigen chain sugars
in systems OANT (black), OANT_POPE (red), MIXED (green), and
MIXED_POPE (blue). (F) The angle distribution for the angle that was
formed between the O-anchor bond and the terminal O-antigen chain sugar
in systems OANT (black), OANT_POPE (red), MIXED (green) and
MIXED_POPE (blue).

The acyl tail order parameter can be quantified according to the equation § =
%(S(COS 0)? — 1) where 6 defines the angle between a bond vector and the

bilayer normal (per simulation frame) [569]. The time-averaged equation
was applied to compute the average acyl tail order parameter for the smooth
LPS lipids during the last 500 ns. The acyl tail order parameter values were
as follows: 0.20 £ 0.002 (OANT), 0.20 + 0.002 (OANT_POPE), 0.24 + 0.003
(MIXED) and 0.28 + 0.003 (MIXED_POPE). Order parameters can similarly be
computed for the O-antigen chains to assess their average alignment during
simulation time. The time-averaged acyl tail order parameters were
calculated for the LPS O-antigen chains (Figure 40E) and compared with acyl
tail order parameters for glycerophospholipid bilayers. The O-antigen chain
order parameter profiles were varied and they contained contrasting troughs
and peaks. The shape of the order parameter profile is comparable to the
shape of the order parameter profile for the unsaturated acyl chain moiety of
POPC lipids [864]. The order parameters of the O-antigen chain and of
unsaturated acyl chains are also quite similar. In either instance the
magnitude of the order parameters tends to be within the range of 0.05-0.2

[864].

The angle between the bond 0-anchor (see Figure 40B) and the terminal LPS
sugars was computed to understand the average orientation of the smooth
LPS lipids and in particular, the orientation of the terminal O-antigen chain
polymers (Figure 40F). The angles and the associated standard deviations
were calculated using the last 500 ns of simulation time. The values were as

follows: 101.2 + 1.1° (OANT), 75.2 + 1.0 ° (OANT_POPE), 86.5 + 1.9 ° (MIXED),
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and 68.7 * 2.8° (MIXED_POPE). The data confirms that the O-antigen chains
were tilted more substantially (relative to the anchoring Lipid A domains)
when POPE molecules and/or rough LPS lipids were positioned between the
smooth LPS lipids. The POPE molecules and rough LPS lipids broke up
otherwise contiguous layers of smooth LPS lipids and as a consequence, the
terminal O-antigen chains splayed out over the membrane surface. The O-
antigen chains came into contact with each other and there was an overall
increase in the number of cohesive intermolecular interactions between the
terminal LPS carbohydrate moieties. The correlation between membrane
composition and O-antigen chain orientation is corroborated by simulations
of smooth LPS lipids with 091 or 06 O-antigen chains [211-212]. The 091 O-
antigen chains and the 06 O-antigen chains adopted approximate linear
conformations when the extracellular leaflet of the Gram-negative outer
membrane mimetics only contained LPS lipids and the same O-antigen chains
tilted relative to the membrane normal axis when the extracellular leaflet of
the Gram-negative outer membrane mimetics additionally contained rough
LPS molecules in the extracellular leaflet [211-212]. For reference, the 06 O-
antigen chain subunit contains the five saccharides:  D-glucose, 3 N-acetyl-
D-glucosamine, o N-acetyl-D-galactosamine, and two 3 D-mannose units. The
091 O-antigen chain subunit contains the five saccharide units: § D-galactose,
two B N-acetyl-D-glucosamine units, f N-glycine-D-glucosamine, and one
unusual 3-amino-3-deoxyquinovose sugar. In other words, each one of the
three O-antigen chain polymers (01, 06, and 091) contains different
repetitive chain subunits but they all contain five pentose or five hexose

sugars that are aligned end-to-end.

The flexibility of the terminal O-antigen chains promoted smooth LPS lipid
clustering within the extracellular leaflets of the Gram-negative outer
membrane mimetics. The O-antigen chains splayed out over the membrane
surface in systems MIXED and MIXED_POPE and as the O-antigen chains
interacted with each other, they progressively formed LPS lipid aggregates.
This phenomenon is demonstrated for two smooth LPS lipids that were

initially separated by ~4 nm at the start of the MIXED_POPE system
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simulation (Figure 41A). The terminal O-antigen chain polymers splayed out
over the membrane surface and this led to an increase in the number of
cohesive intermolecular interactions between the smooth LPS lipids as they
interacted with each other. The cohesive intermolecular interactions induced
the formation of a smooth LPS lipid dimer after approximately 30 ns of
simulation time (Figure 41B). The dimer then formed a larger smooth LPS
lipid aggregate as additional O-antigen chains were intertwined through
cohesive carbohydrate-carbohydrate interactions (Figure 41C). The
aggregation of multiple smooth LPS lipids occurred in multiple independent
coarse-grained molecular dynamics simulations. The repeated observation of
the smooth LPS lipid clustering processes suggests that smooth LPS lipid

aggregation is energetically favourable.
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Figure 41. (A) Two smooth LPS lipids from system MIXED_POPE that were
initially separated by ~4 nm and subsequently formed a dimer after the
flexible O-antigen chains interacted with each other. (B) The corresponding
time series that shows the distance between the two smooth LPS lipids as a
function of sampled simulation time. (C) Snapshot of the large smooth LPS
lipid aggregate that formed after additional smooth LPS lipids interacted
with the smooth LPS lipid dimer. (D-E) The O-antigen chain number density
in systems OANT (D) and MIXED_POPE (E) after 500 ns. The inset images
show the corresponding top view snapshots.
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The number density for the LPS lipid O-antigen chains was computed to
understand the differences in O-antigen chain splay and clustering. Number
densities were evaluated by initially splitting the simulation cells into a
contiguous lattice and subsequently determining the number of particles
within each grid cell unit (0.2 x 0.2 nm?). The projections reveal how the O-
antigen chains were arranged in the extracellular leaflets of the Gram-
negative bacterial outer membrane mimetics (Figure 41D-E). The smooth LPS
lipids were distributed relatively uniformly in system OANT and there were
cohesive intermolecular interactions between the terminal O-antigen chains
across the entire width of the periodic simulation cell. The arrangement of the
O-antigen chains was significantly different in the extracellular leaflet of the
outer membrane mimetic systems (i.e. OANT_POPE, MIXED and
MIXED_POPE) compared with the extracellular leaflet that contained smooth
LPS lipids alone (i.e. OANT). The O-antigen chains had separated from the
encompassing POPE molecules within the OANT_POPE, MIXED, and
MIXED_POPE simulation systems and the multicomponent membranes were
effectively partitioned into domains with smooth LPS lipid and areas without

smooth LPS lipid.

Larger analogues of system MIXED_POPE were simulated for 15 ps to gain
additional insights into the segregation of the smooth LPS lipids on larger
spatiotemporal scales. The smooth LPS lipids separated from the
encompassing rough LPS and POPE lipids and formed a single smooth LPS
lipid network that spanned the entire length of the simulation cell (Figure
42A-B). The formation of comparable LPS lipid networks has been noted in
previous molecular dynamics simulations that were conducted with coarse-
grained molecular dynamics simulation forcefields [301] and this suggests
that the clustering of the LPS lipids themselves and the clustering of the LPS
O-antigen chains is an energetically favorable process. The smooth LPS lipids
formed a single network that spanned the length of the simulation cell (based
on a 0.6 nm cut-off distance) and the terminal O-antigen chains formed two

distinct domains (Figure 42C-D).
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It seems reasonable to assume that LPS lipid co-clustering was not completely
converged even after the 15 ps long coarse-grained molecular dynamics
simulations and further to assume that the O-antigen chains could form a
single unbroken network if the LPS lipids were simulated on a longer
timescale. Simulations with the Martini forcefield are generally limited to
microsecond timescales but the coupling and decoupling of glycolipids can
occur on timescales that are much longer than this [325,498]. In other words,
the segregation of the LPS lipids from the phospholipids (e.g. POPE) seemed
to transpire quite quickly in these simulations but the segregation of rough
and smooth LPS lipids from each other is a slower process that involves large
energy barriers [325] and is therefore more challenging to probe with

conventional molecular dynamics simulations.
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Figure 42. (A) Top view snapshot of a larger analogue of system
MIXED_POPE after 15 ps. The POPE and rough LPS lipids are omitted for
clarity. The periodic borders are represented with a thin blue line and the
periodic images are presented with different shades of red and cyan for
clarity. The smooth LPS lipids formed a single contiguous network that
spanned the entire length of the simulation cell. (B) The corresponding two-
dimensional projection of the O-antigen chain number density (sampled
during the last 100 ns). (C) Snapshot of the two O-antigen chain aggregates
after 15 ps of simulation time. One of the O-antigen chain aggregates is
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green and the other one is orange. (D) The number of glycan polymers in
each of these O-antigen chain aggregates.

The differences in the packing of the smooth LPS lipids had important
consequences for the lateral mobility of the smooth LPS lipids. The average
lateral diffusion rates were computed for smooth LPS lipids in each of the
Gram-negative outer membrane systems and the computed values were as
follows: 2.1 (OANT), 8.7 (OANT_POPE), 8.0 (MIXED), and 7.0 (MIXED_POPE)
x1078cm?/s. The smooth LPS lipids moved through the extracellular leaflet
of the Gram-negative outer membrane mimetics more rapidly when there
were POPE molecules and rough LPS lipids embedded throughout. It is
interesting to compare the computed lateral mobilities with values from
previous publications. The smooth LPS lipids were more mobile than
previously simulated rough LPS lipid (5 x10~?cm?/s) but less mobile than
previously simulated B-band O-antigen chains (2 x10~7cm?/s) [242].

The bilayers were subsequently simulated with lateral pressure values of
increasing magnitude until the membranes became unstable and ruptured.
The molecular dynamics simulations were conducted in an attempt to
understand how the Gram-negative bacterial outer membrane models
respond to applied mechanical stress and to determine which membrane
systems were the most mechanically robust. The lateral pressure was initially
set to be -10 bar and the lateral pressure magnitudes were set to be -30 bar,
-50 bar, -70 bar etc. thereafter. The simulations were conducted for 20 ps
because membrane breakdown mechanism can occur on long (microsecond)

timescales [925].

The surface tension was computed according to the equation:

Y=L, (Py—F)
Equation 85

where L, was the length of the simulation cell along the z-axis (bilayer

normal) and Py and P, were defined in terms of the diagonal components of
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the pressure tensor (P, P,

»y and F,; ) according to Py = P,, and P, =

[Pex + P,y]/2. The areal strain (g4) was defined as:

A;
SA:_l—]_
Ao

Equation 86

where A, was the cross-sectional area of the membrane (along the bilayer
normal) when it was simulated at atmospheric pressure and A; was the cross-
sectional area of the membrane when it was subjected to a lateral pressure

P;.

The surface tension-areal strain curves (Figure 43A) revealed that the
membrane surface tension increased as the lateral pressure magnitude was
incrementally increased. The tolerance of each membrane for lateral area
expansion was similar throughout: the membranes ruptured over a critical
area strain range of 0.61-0.76. Phospholipid membranes generally have
similar tolerance for areal strain in atomistic simulations [977-979] and this
similarity in data suggests that there must be similar maximum thresholds

for most, if not all, lipid membrane systems.

It is apparent from the tension-areal strain curves that the surface tension
magnitudes were largest in system OANT and this indicates that there were
stronger intermolecular interactions at the membrane surface of system
OANT compared with the OANT_POPE, MIXED, and MIXED_POPE simulation
systems. System OANT had increased tolerance for surface tension: system
OANT tolerated approximately 60 mNm more tension than systems
OANT_POPE, MIXED, or MIXED_POPE. System OANT was not only more
robust than systems OANT_POPE, MIXED, and MIXED_POPE, it was also much
more robust than single-component DPPC bilayers [978]. It seems that O-
antigen chain interactions increase membrane mechanical strength. System
OANT was the most rigid bilayer at atmospheric pressure and it was also the

system that tolerated the largest surface tensions.
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There were changes in the physical parameters of each membrane system
when the lateral pressure magnitudes were incrementally increased. There
was a systematic increase in bilayer surface area (Figure 43B), a systematic
decrease in membrane thickness (Figure 43C), and a general reduction in acyl
tail order parameters (Figure 43D). The bilayers become thinner and wider
in response to the increasing lateral pressure magnitudes and there was a
general reduction in the lamellar alignment of the lipid tails. The increasing
lateral pressure magnitudes were associated with membrane deformation.
The bilayers progressively thinned and expanded outwards (with increasing
lateral pressure) until pores appeared along the bilayer normal and these

pores caused the membranes to rupture.

It is interesting to compare the degradation and rupture of these complex
Gram-negative bacterial membrane models with simpler lipid models that
contain some combination of phospholipid and cholesterol molecules.
Previous simulation studies assessed the relationship between bilayer areal
strain and the magnitudes of different lipid properties including molecular
orientation, membrane thickness, and the extent of lipid phase transitions
[980]. Two simulation approaches were used: unsteady stretching (US),
which involved proportional and temporal scaling of the system box lengths
and atom positions [981], and quasistatic stretching (QS), where membranes
were simulated at constant temperature (323 K), z-axis pressure (1 bar) and
various constant bilayer surface areas [981-983]. The averaged
instantaneous order parameter was found to monotonically decrease as the
areal strain was increased in all of the US and QS simulations of the single-
component DPPC lipid bilayers. However, the relationship between areal
strain values and the averaged instantaneous order parameter was more
complex for the multicomponent membranes that contained both DPPC and
cholesterol molecules. Rather than monotonically decrease or monotonically
increase, the averaged instantaneous order parameter was found to depend
strongly on the range of areal strain magnitudes that was being studied. The

averaged instantaneous order parameter was negatively correlated with
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areal strain values for one range of £4 magnitudes and positively correlated

for another range of €4 magnitudes. The relationship between areal strain
and membrane thickness values was comparatively less convoluted for the
single-component and multicomponent membrane systems [980]. The
membrane thickness magnitudes were found to monotonically decrease in
both US and QS simulations of either single-component or two-component

membranes, for all but the most extreme of £4 magnitudes.

It can be stated that the effects of increasing areal strain magnitudes are
similar for systems OANT, OANT_POPE, MIXED, MIXED_POPE and for the
simpler biological membranes that were simulated in previous
computational publications [980]. Membrane thickness and acyl tail order
parameters were negatively correlated with surface tension and areal strain
values in this, and in previous simulation studies. It can be concluded that
similar interactions might mediate bilayer breakdown processes, regardless

of the specific membrane composition.

It is important to appreciate that the scope of molecular dynamics membrane
mechanical strength analyses extends beyond the computation of surface
tension magnitudes alone [984-991]. Membrane stiffness parameters are
increasingly being characterized in terms of membrane fluctuation
properties including bilayer height and thickness fluctuations [992-993].
Helfrich-Canham theory [994-996] can be used to accurately ascertain
membrane bending rigidities, but the more accurate bending constants are
derived from mesoscopic membrane simulations that include several tens of
thousands of lipids and consequently, have both small and large undulatory
wavelengths. Alternative schemes, albeit ones based on similar underlying
physical models, tend to derive membrane mechanical strength constants
from lipid tilting [997-999]. This approach was shown to be appropriate for
single-component all-atom lipid bilayers but was deemed to be inappropriate
for coarse-grained membrane simulation systems that contained membrane

proteins [993]. The coarse-grained membranes that were simulated in this
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chapter (i.e. OANT, OANT_POPE, MIXED, MIXED_POPE) lack the size or
sophistication that would warrant the use of membrane mechanical strength

analyses methods that are based on the Helfrich-Canham theory.
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Figure 43. (A) Surface tension-areal strain curves. (B) Lateral pressure
against areal strain. (C) Lateral pressure against membrane thickness. (D)
Lateral pressure against acyl tail order parameters. Data are shown for the
OANT (black), OANT_POPE (red), MIXED (green), and MIXED_POPE (blue)
simulation systems. Readers should note that the dependent variables were
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plotted on the y-axis in Figure 43A and Figure 43B even though it is
customary to plot the independent variable on the x-axis and the dependent
variable of the y-axis. The unusual presentation of the simulation data
enables readers to more easily identify the relationship between the applied
mechanical stress and the membrane stress response. The presentation of
the simulation data has been used to study for example, how phospholipid
membranes respond to applied mechanical stress [977] and it is therefore
easier to compare the data that are presented here with data from previous
molecular dynamics simulation studies.

The progressive degradation of system OANT was monitored here to better
understand the mechanisms that underpin membrane collapse. The order
parameter was computed for the O-antigen chains to understand how the O-
antigen chain orientation changed as the lateral pressure was incrementally
increased (Figure 44A). There was a general reduction in O-antigen order
parameters as the lateral pressure magnitude was incrementally increased
and this indicates that the LPS headgroup moieties were becoming less
aligned with the membrane normal axes. This conclusion was corroborated
when the O-antigen chain tilt angle was computed as a function of lateral
pressure magnitude. The tilt angles generally decreased as the lateral
pressure was increased e.g. the tilt angle was 9.5 + 1.5° smaller when system
OANT was subjected to a lateral pressure of -130 bar compared with the
atmospheric pressure (1 bar) simulations. Two-dimensional projections of
the particle number densities revealed that the O-antigen chain distribution
became increasingly uneven as the lateral pressure magnitude was

incrementally increased (Figure 44B-C).

The increased lateral pressure magnitudes also affected the permeability of
the OANT, OANT_POPE, MIXED, and MIXED_POPE simulation systems. One-
dimensional partial mass density plots revealed that there was a change in
bilayer structure: the distance between the lipid phosphate groups decreased
as the magnitude of the lateral pressure was increased (Figure 44D). The
bilayer became more permeable as the membrane thickness was reduced and
consequently, more water particles were able to pass through the water-lipid
interface and flood the extremities of the hydrophobic core. The increase in

lateral pressure significantly impacted the bilayer interface: there was no
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longer a clear division between the acyl tails and the encompassing solvent.
The distance between water particles on the opposing ends of the asymmetric
bilayer was reduced as the lateral pressure magnitude was increased and this
increased the likelihood that water chains would spontaneously form along
the bilayer normal. The critical lateral pressure magnitude for system OANT
was -130 bar and water molecules entered into the hydrophobic membrane
core when this pressure was applied (Figure 44E). The water molecules
spontaneously created a single transmembrane water chain and this led to
the formation of larger transmembrane water channels that drastically
reduced the membrane integrity and quickly led to the compete loss of basic
bilayer structure. It is noteworthy that comparable breakdown processes
have been noted in previous mechanical rupture simulations of lipid
membranes. Water pores would appear within lipid bilayers after a critical
areal strain magnitude was reached and after that, there would generally be

a complete loss of lamellar structure as the pore expanded [977-980].
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Figure 44. (A) The average order parameters for the O-antigen chains in
system OANT as the lateral pressure component magnitude was
incrementally increased. The color scheme is as follows: -10 bar (red), -30
bar (green), -50 bar (blue), -70 bar (yellow), -90 bar (brown), -110 bar
(cyan) and -130 bar (violet). (B, C) The two-dimensional projection of the O-
antigen chain particle number density for system OANT when it was
simulated with a lateral pressure magnitude of 1 bar (B) and -130 bar (C).
(D) The partial mass density plots for system OANT when it was simulated
with a lateral pressure of 1 bar (red and blue lines) and -130 bar (cyan and
green lines). The data for the lipid phosphate groups are red and green and
the data for the water molecules are blue and cyan. (E) Snapshot that shows
the spontaneous formation of a transmembrane pore in system OANT when
it is simulated with a lateral pressure magnitude of -150 bar. The water
particles are blue and the LPS lipids follow the color scheme of Figure 40.
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4.5 Conclusion

LPS lipids are found in the outer membranes of Gram-negative bacteria
[95,104-105] and they affect many important biological functions e.g. they
regulate nutrient uptake and control processes that are related to OMV
biogenesis [576-578,659-660]. The composition of LPS lipids varies widely
from one bacterial strain to another and the specific composition of the LPS
lipids also depends on bacterial growth conditions [971-972]. The molecules
always contain the anchoring Lipid A domain but the size and composition
of the carbohydrate headgroup moieties can be strikingly different. Rough
LPS lipid variants contain a core domain of sugars, amino acids,
ethanolamine, and phosphate groups that are covalently bonded to the Lipid
A domain; smooth LPS lipids additionally contain long O-antigen chain

polymers [971-972].

It was previously demonstrated that O-antigen chains have the capacity to
modulate the structural characteristics of bacterial biofilms. The size of the
LPS lipids affected the mechanical and structural properties of P. aeruginosa
bacterial biofilms [973]. Computer simulations were conducted here within
this chapter to explore the possibility that O-antigen chains might
additionally affect the elasticity of individual bacterial cell surfaces. Smooth
LPS lipids were simulated in membranes that contained different lipid types
(i.e. rough LPS, POPE, POPG, and smooth LPS) that were arranged in different
number ratios. The intracellular leaflet contained POPE and POPG lipids in a
9:1 number ratio and the extracellular leaflet contained either smooth LPS
lipids alone or alternatively some combination of smooth LPS, rough LPS, and
POPE molecules. The membranes were initially simulated at atmospheric
pressure (1 bar) to understand the magnitude of the lipid packing parameters
when the membranes were not strained. The membrane mimetics were then
simulated with increasing lateral pressure magnitudes to understand the

membrane system tolerance for, and response to, applied mechanical stress.
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The simulations revealed that the membrane composition affected the
organization of the terminal smooth LPS O-antigen chains. The O-antigen
chains splayed out across the membrane surface when there was a mix of
rough LPS, smooth LPS and/or POPE molecules in the extracellular leaflet of
the Gram-negative bacterial membrane mimetics. In contrast, the O-antigen
chains achieved tight lamellar alignment that was associated with higher
cohesion forces when the extracellular leaflet was homogeneous and it
contained smooth LPS lipids alone. The differences in O-antigen chain
interactions affected the membrane tolerance for mechanical strength: the
membranes could withstand high surface tension magnitudes (150 mNm-1)
and the constituent LPS lipids had low diffusion constants when the
extracellular leaflets contained smooth LPS lipids alone. The smooth LPS
lipids diffused faster and the membrane tolerance for surface tension was
reduced by ~50 mNm- when there were POPE lipid and/or rough LPS
molecules that were embedded throughout the extracellular leaflet of the
Gram-negative bacterial outer membrane mimetics. The simulations suggest
that cohesive O-antigen chain interactions can make Gram-negative bacterial

membranes stiffer and more resilient to external mechanical stress.

The simulations provide interesting insights into the behavior of the LPS O-
antigen chains and they also reveal how their collective cohesive
intermolecular interactions can enhance the mechanical strength of Gram-
negative bacterial membranes. The conclusions have far reaching
ramifications if they are reproducible in vivo and as such, it is important to
consider the limitations of this simulation study and to determine how
credible the data are. First, it must be acknowledged that the coarse-grained
models omit atomistic detail and that this can affect how accurately LPS
conformational landscapes are reproduced in coarse-grained molecular
dynamics simulations [174-176]. There is in general satisfactory overlap of
the LPS lipid conformational landscapes in comparative united-atom and
coarse-grained molecular dynamics simulations but minor discrepancies
have been observed e.g. disparities in the full extension of the LPS lipid

headgroup moieties [301,580]. Second, it must be acknowledged that cations
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are not explicitly represented in coarse-grained molecular dynamics
simulations that are conducted with the Martini forcefield [822]. The implicit
presentation of cations could affect the accuracy of bridging interactions
between Lipid A anchors and this property is important to simulate
accurately because it can determine LPS lipid coordination and it can affect
the mechanical strength of lipid membranes [551, 866-867]. Third, we must
recognize that LPS lipids have unusually slow dynamics [246,866] and by
association, that LPS co-clustering was most likely not converged here.
Fourth, we must consider that the outer membrane of Gram-negative bacteria
is much more complex than these simple simulations would lead readers to
believe. Bacterial membranes include a diverse set of lipids and membrane
proteins that can affect, at least locally, the properties of the membranes that
they are simulated in [213,219-222]. Taken together, we can conclude that
the simulations were quite crude and that there were inevitably, minor
numerical inaccuracies throughout. It is likely that the cohesion forces were
simulated in this work as being either slightly too strong or too weak
compared with the in vivo scenario. We should not presume that all of the data
were quantitatively correct but we can presume that the overarching
qualitative conclusions were accurate. The differences in membrane
mechanical strength magnitudes was stark and they cannot be accounted for
by slight inaccuracies in the computation of cohesive intermolecular

interactions alone.

The simulations help us to better understand how the outer membrane of
Gram-negative bacteria and more specifically, how interactions between
terminal O-antigen chains affect the mechanical properties of Gram-negative
bacterial outer membranes. The simulations revealed that when there was
tight lamellar alignment of the terminal O-antigen chains, there was an
associated increase in membrane rigidity and in the membrane tolerance for
surface tension. The simulations suggest that Gram-negative bacterial
membranes will be stiff and resilient to different in vivo stressors (e.g. osmotic
pressure) when there is tight packing of the LPS O-antigen chains. The
simulations additionally indicate that the elasticity and shelf stability of OMVs

234



will be affected by the type of lipids that they are made with. OMVs are
spherical liposomes that bud from the outer membrane of Gram-negative
bacteria [659-660]. The nanospheres have an outer leaflet that contains a
high concentration of LPS lipids and an inner leaflet that contains a high
proportion of PE and PG phospholipids. The OMV lipid composition can be
modulated [1000] and it can be made to mimic the systems that were
simulated in this chapter i.e. OANT, OANT_POPE, MIXED, and MIXED_POPE.
We can change the mechanical strength of synthetic OMVs to control their
tolerance for in vitro and in vivo stressors such as turgor pressure, by
controlling the relative abundances of smooth LPS lipids and rough LPS in the
(OMV) outer leaflet. The length and concentration of the O-antigen chain
polymers can be varied and this will change the OMV mechanical strength
parameters. This is important since elasticity directly impacts important
nanocarrier (or vesicle) properties including how liable nanocarriers are to
rupture or fuse, the loading rates of drugs, and the rates of drug uptake at host
cell surfaces [1001-1003]. The insights are timely because OMVs have an
increasing number of nanomedical functions, e.g. roles as vaccine adjuvants
and roles as functional liposomes that can traffic molecular cargo directly into

host cell cytoplasm [1004-1006].
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Chapter 5: Understanding the Uptake of Outer Membrane
Vesicles at Host Cell Surfaces

5.1 Abstract

Outer membrane vesicles (OMVs) are spherical liposomes that are secreted
by almost all forms of Gram-negative bacteria. The nanospheres regulate
bacterial pathogenesis processes by trafficking molecular cargo from
bacterial cell membranes to target cell surfaces at the host-pathogen
interface. OMVs were simulated with host cell membranes to understand why
lipid-mediated OMV uptake processes depend on the length of constituent
lipopolysaccharide (LPS) macromolecules. Coarse-grained molecular
dynamics simulation forcefields were used to demonstrate that LPS lipid
length affects the shape of OMVs at host cell surfaces. OMVs with long
(smooth-type) LPS lipids retained their spherical shape when they interacted
with host cell membranes, whereas OMVs with shorter (rough-type) LPS
lipids distorted and spread out over the host membrane surface. In addition,
it was shown that ganglioside lipid headgroups acted as a zipper to mediate
strong adhesion that helped to force the host membranes around the attached
OMVs. The differences in shape preservation will affect OMV internalization
on long timescales: spherical nanoparticles tend to be completely engulfed by
host membranes, whereas lower sphericity nanoparticles tend to remain on

the surface of cells.

5.2 Introduction

Outer membrane vesicles (OMVs) are spherical liposomes that bud from the
outer membranes of almost all Gram-negative bacteria [46,49]. The
nanospheres have an  asymmetric  architecture: there are
glycerophospholipids in the inner (intracellular) leaflet and LPS
macromolecules in the outer (extracellular) leaflet [47-49]. The OMVs are
enriched with bioactive proteins of two types: (i) integral membrane
proteins, which span across the bilayer normal axis; and (ii) peripheral

membrane proteins, which are expressed on the OMV surface [51,661-662].
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The lumen frequently contains more complex molecular cargo ranging from
nucleic acids through to toxins and virulence factors [46-47,1006]. It was
initially theorized that OMVs were produced by bacteria as a stress response
but it is now recognized that OMVs also traffic molecular cargo between cell

surfaces [46-51].

OMVs shuttle molecular cargo across the external milieu and they regulate
different forms of intercellular communication, nutrient scavenging,
horizontal gene transmission processes, and bacterial pathogenesis [46-52].
Specific virulence factors can be concentrated within the small (20-250 nm)
proteoliposomes and this primes them for disease transmission processes
[48-49,1007]. Disease transmission occur as follows: the nanospheres bleb
from the outer membrane of Gram-negative bacteria, the OMVs then move
through the external milieu and latch onto host cell surfaces, the OMVs then
pass through the plasma membrane surface and release virulence factors into

the host cell cytosol [48-52].

There is evidence that OMVs can enter into host cells via a lipid-mediated
uptake pathway that is inextricably linked to the length of LPS
macromolecules in the (OMV) outer leaflet [664]. OMVs can enter cells via
protein dependent pathways including for example, clathrin-mediated
endocytosis [52], but according to Forster Resonance Energy Transfer
(FRET) [1008] microscopy analysis techniques, OMVs still manage to pass
through host cell membranes even when host membrane protein receptors
are inactivated [664]. When OMVs contain short LPS lipids that lack terminal
O-antigen chains (rough OMYVs) the uptake is relatively inefficient;
conversely, when OMVs contain longer LPS lipids (smooth OMVs) they enter
cells more effectively [664]. Figure 15 shows the different chemical
composition of the coarse-grained smooth and rough E. coli LPS lipid models
that are used in this chapter to simulate OMVs. The rough (Ra type) LPS lipid
contains type 1 Lipid A with R3 core sugar sequence. The smooth LPS lipid
contains the type 1 Lipid A anchor with complete R3 core saccharide section

and it additionally contains four units of the repetitive O1 O-antigen chain
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glycan polymer. The O1 antigen chain repetitive subunit contains the five
saccharide units arranged end-to-end: B N-acetyl-D-glucosamine, o D-

galactose, a L-rhamnose, a L-rhamnose, § N-acetyl-D-mannosamine.

The processes that underpin lipid-mediated uptake are likely to involve
molecular level interactions that are beyond the scope of conventional
experimental techniques. Fortunately, computer simulation methods make
the smallest spatiotemporal scale accessible; molecular dynamics
simulations can be conducted to understand OMV uptake processes at the
host-pathogen interface. The coarse-grained Martini molecular dynamics
simulation forcefield is used here in this chapter to describe the stepwise
biomolecular interactions that drive OMVs into the host cell cytoplasmic
matrix. Coarse-grained molecular dynamics simulations are used to
understand how the interactions between LPS lipids and host membrane
ganglioside molecules (GM3) can contribute to the uptake of OMVs at host cell
surfaces. But the question then becomes: how can the simulation results

themselves be validated?

Experimental validation techniques can be used to validate most inferences
that are ascertained from molecular dynamics simulations. Experimental
techniques have been used in the past to validate inferences that were drawn
from coarse-grained molecular dynamics simulations of bacterial membrane
proteins [115] and it is expected that experimental validation techniques can
also be used after this work is published to validate the overarching
qualitative conclusions that are drawn from these coarse-grained molecular
dynamics simulations of OMVs. Let us consider one of the most important
insights that will be drawn from the molecular dynamics simulations that are
conducted in this chapter: it is determined here that ganglioside molecules
promote wrapping interactions at the host cell surface and that these
interactions promote OMV uptake processes. This prediction can be validated
by analyzing OMV uptake at host membrane surfaces with experimental
analytical techniques. OMVs can be brought into contact with membranes

that either lack ganglioside molecules altogether or contain an appreciable
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amount of ganglioside molecules e.g. more than 1% of GM1 or GM3 lipids. If
ganglioside lipids affect uptake interactions we should expect that the GM1
or GM3 molecules would affect lipid-mediated OMV uptake processes.
Membranes that contain ganglioside molecules should promote uptake
interactions more effectively than comparative membranes that lack
ganglioside molecules. The effects of ganglioside molecules can also be
evaluated systematically by varying the ganglioside concentration within a
relatively simple membrane mimetic and correlating lipid concentrations
with OMV uptake metrics. Some aspects of the OMV uptake processes could
also be imaged directly. Imaging techniques could be applied to capture
snapshots of OMVs interacting with lipid membranes whose composition is
controlled to mimic realistic plasma membranes, or some other lipid
composition that affords much needed insights into OMV uptake interactions.
There are many possibilities for potentially validating theoretical predictions
through experimental analysis techniques and these possibilities are

discussed more thoroughly in chapter 6.

Coarse-grained molecular dynamics simulations were used [799,814] here to
understand the different entry kinetics of rough and smooth OMVs at the
host-pathogen interface [664]. The OMVs were initially simulated in water to
determine the OMV lipid packing parameters and the OMVs were then
simulated with a single-component POPC bilayer in the first instance, and a
multicomponent plasma membrane in the second. The simulations revealed
that the shape of OMVs at host cell surfaces is determined by the length of the
constituent LPS lipids in the OMV outer leaflet. Smooth OMVs maintained high
sphericity at host cell membranes, whereas rough OMVs spread over the host
cell surface. This result helps to clarify why smooth OMVs pass through host
cell surfaces more readily than comparable rough OMVs. Rigid nanospheres
slowly wrap host membrane surfaces and achieve complete encapsulation,
whereas lower sphericity nanoparticles generate larger curvatures at the
spreading front and this makes endocytosis less likely [1009-1014]. The
results are corroborated by the data from Chapter 4 where it was shown that

O-antigen chain interactions can make Gram-negative bacterial membranes
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more mechanically robust. The O-antigen chain interactions affected the
mechanical properties of the OMVs by making them stiffer and we can
therefore conclude that smooth OMVs should be more able to retain a higher
sphericity value when they interact with host cell surfaces compared with
rough OMVs. Smooth OMVs are more likely to retain their spherical shape
when they interact with host cell membranes and therefore they will be able
to wrap host cell membranes more effectively. Smooth OMVs have smaller
energy barriers to surmount during the late stages of nanosphere endocytosis

[1010-1013] because they are stiffer.

The simulations also revealed that the host membrane composition affects
the OMV wrapping interactions. Ganglioside (GM3) lipid headgroups acted as
a zipper to mediate strong OMV-host cell adhesion and lower the energy
barriers for host membrane curvature generation. The OMVs affected the
organization of the ganglioside lipid headgroup moieties within the host cell
membranes and this interaction promoted host membrane wrapping
processes. The induced self-assembly of the ganglioside molecules and the
associated increase in host membrane wrapping is comparable to the
perturbation of host cell membranes by different pathogens (e.g. SV40) and
pathogenic products (e.g. Shiga toxin) when they reorganize ganglioside
lipids in host cell plasma membranes [537,542,1015-1018]. The sequestered
ganglioside lipids formed aggregates within the simulated host cell
membranes and this increased the local membrane curvature and it also
increased the local abundances of lipids that are associated with raft

formation and endocytosis.

Ganglioside lipids seem to control OMV uptake interactions due to the
properties of their carbohydrate headgroup moieties e.g. high surface
polarity [534] and the tendency to form relatively long-lasting aggregates
[498]. Glycoproteins have comparable polar carbohydrate moieties [1019-
1020] that must impact, at least partially, OMV uptake interactions at host cell
surfaces. Glycoproteins and the glycocalyx (pericellular matrix) [1021-1022]

were omitted throughout this chapter to simplify the simulation study and to
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make the lipid interactions easier to analyze. The setup enabled the
elucidation of lipid processes that seem to drive OMV uptake processes at the
host cell surface but the complete omission of the glycocalyx makes the work
somewhat crude and the proposed uptake model at best, rudimentary. More
refined simulation studies would be necessary for providing a comprehensive
understanding of the molecular level interactions that determine OMV uptake
processes at host cell surfaces. The simulation study is crude but it does
provide novel insights that seem to answer a rather interesting and
perplexing question: why does OMV lipid-mediated uptake depend on the cell

wall architecture of the parent bacteria [664]?

5.3 Methods

5.3.1 Vesicle Construction Details

The OMVs were assembled with the CHARMM-GUI Martini Maker module
[151,232] and simulated with the GROMACS simulation package (version
5.1.2) and the Martini coarse-grained forcefield (version 2) [799,814]. Two
types of OMV were produced: smooth and rough. The inner leaflets contained
POPE and LPS lipids in a 9:1 number ratio and the outer leaflets contained
POPE with either smooth-type, or rough-type LPS lipids in a 1:1 number ratio.
The smooth LPS lipids had four units of the E. coli 01 O-antigen chain and the
rough LPS lipids were modeled without any O-antigen chain units at all.
Figure 15 helps to clarify the structural differences between the rough (Ra)
and smooth LPS lipid variants that were used here in this chapter to model
smooth and rough OMVs. The OMVs were assembled with diameters of 20 nm
(based on the position of their hydrophobic midplane). The OMVs were
hydrated with standard Martini water particles (W type) and enough calcium
ions (Ca%*) to neutralize the anionic system charge. The OMVs were initially
energy minimized with the steepest descent algorithm and subsequently
subjected to successive equilibration simulations. Position restraints (1000
K] mol-1 nm-2) were applied along the unit cell axes (x-, y-, and z-axes) during
these equilibration simulations to create six membrane spanning water pores

that facilitated lipid flip-flop processes. The water pores were small; so much
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so, that lipid flip-flop processes were facilitated for small
glycerophospholipids, while large LPS macromolecules were confined to the
extracellular leaflet (Figure 45A). The set up promoted optimal lipid packing
while simultaneously ensuring that the OMVs had a realistic, asymmetric
distribution of LPS lipids. The water pores were closed over the course of five
successive equilibration simulations; the water pore radii were initially set to
be 2 nm and were then reduced in size to 1.5 nm, 1.0 nm, 0.5 nm and 0.2 nm.
The position restraints were then removed and the OMVs were simulated for
an additional 1 us to ensure that the lipid parameters could converge. The
temperature was maintained at 303 K using the V-rescale thermostat and the
pressure was maintained at 1 bar. The pressure was modulated with the
isotropic Berendsen barostat [839] when the position restraints were
enforced along the unit cell axes; the Parrinello-Rahman barostat [841-842]
(12.0 ps coupling constant) was applied thereafter. Electrostatic interactions
were computed with the reaction field method with dielectric constants of 15
for charge screening in the short-range regime and infinity for the long-range
regime. The Lennard-Jones potential was cut off at long-ranges using the
Potential-shift-Verlet scheme. The membrane thickness and area per lipid
values were used to determine OMV system convergence and ensure that the
OMVs had achieved optimal lipid packing before they were simulated with
the POPC or plasma membrane bilayers (Figure 45B-E).

The assembled OMVs were highly simplified models that lack, amongst other
biomolecules, enzymes, toxins, peptidoglycan, DNA, RNA, OMPs and other
bacterial membrane proteins [46-52,661-662]. The omission of the full in vivo
OMV compositional complexity was intentional. Here I aimed to understand
how simple lipid interactions at the host-pathogen interface modulate at least
one OMV uptake pathway and consequently, it seemed most appropriate to
omit extraneous biomolecular interactions that could make this simulation
study needlessly more convoluted. The aim was to determine how the
overarching lipid interactions at the host-pathogen interface can regulate
lipid-mediated OMV uptake and subsequent simulation studies could then be

used to determine how additional OMV compositional complexity further
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affects the OMV uptake interactions. This is not to discount the action of
scission machinery, adhesion molecules etc. that also invariably impact OMV
uptake efficiency [52]. The aims of this chapter were relatively modest and

consequently the molecular dynamics simulations were highly simplified.
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Figure 45. (A) The starting configuration for the smooth OMV equilibration
simulations. The POPE and POPG lipids are silver and the LPS lipids have the
color scheme: Lipid A and core sugars (cyan) and O-antigen chain (red). The
water and ions were removed to make the figure clearer. The periodic cell
boundaries are represented with a blue line. The periodic images are shown
using different color shades for clarity. The lipids were extended along the
bilayer normal to ensure that lipid clustering was not biased during the
molecular dynamics simulations. Water pores were maintained along the
(x/y/z) coordinate axes to facilitate interleaflet flip-flop for small
phospholipids. (B) Area per lipid for LPS (red) and POPE (magenta) lipids in
the smooth OMV (during the last 0.25 ps); area per lipid for LPS (cyan) and
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POPE (magenta) lipids in the rough OMV. (C) Membrane thickness for the
smooth (red) and rough (cyan) OMVs during the last 0.25 us; the average
membrane thickness values were 3.58 * 0.01 nm (smooth OMV) and 3.72 *
0.01 nm (rough OMV). (D) Area per lipid for POPE (orange) and POPG
(green) lipids in the POPE-POPG phospholipid vesicle during the last 0.25
ps. (E) The corresponding membrane thickness values for the POPE-POPG
phospholipid vesicle.

The phospholipid vesicle was made with the CHARMM-GUI Martini Maker
module [151,232]. The inner and outer leaflets were both made with POPE
and POPG lipids in a 9:1 number ratio. The phospholipid vesicle was
assembled with a diameter of 20 nm to make it physically comparable to the
smooth and rough OMV simulation systems. The POPE-POPG vesicle was
hydrated with Martini water using the gmx solvate program and enough
calcium ions were added to neutralize the system charge. Position restraints
were used to maintain six membrane spanning water pores along the unit cell
(x, y, and z) axes. The water pore radius was initially set to be 2 nm and the
final water pore radius was 0.2 nm, intermediary radii were 1.5 nm, 1.0 nm,
and then 0.5 nm. The vesicle was simulated for an additional 1 us after the
water pores had closed to converge the lipid parameters. The simulation
temperature was kept at 303 K using the V-rescale thermostat. The pressure
was modulated with the isotropic Berendsen barostat when the position
restraints were being enforced along the unit cell axes and the Parrinello-
Rahman barostat (12.0 ps coupling constant) [841-842] was applied
thereafter. The membrane thickness values and area per lipid magnitudes
were used here to assess the POPE-POPG system convergence and ensure
that the vesicle was ready for simulations with the single-component POPC

and the multicomponent plasma membrane bilayers.

5.3.2 Host Membrane Construction Details

The Palmitoyloleoyl-phosphatidylcholine (POPC) membrane bilayer was
made with the insane.py script [893]. The initial simulation cell dimensions
were 75 x 75 x 20 nm; standard Martini water particles were used to hydrate

the lipids within the orthorhombic simulation cell. Position restraints were
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applied over the course of five successive equilibration simulations to
suppress excessive lipid splay and promote the production of an optimally
packed lipid bilayer. Position restraints were used to fix the position of the

POPC lipid headgroups and promote lamellar lipid alignment. The force

constant was initially set to be 200 KJ mol"l nm2 and this was reduced to 10
K] mol! nm'z; the intermediary force constants were 100, 50, and then 20 K]

moll nm2. The bilayer was simulated for an additional 1 ps after this to

promote optimal lipid packing. The temperature was maintained at 303 K
using the V-rescale thermostat. The pressure was maintained at 1 bar using a
semi-isotropic pressure coupling algorithm. The Berendsen barostat was
applied when the position restraints were being applied and the Parrinello-
Rahman barostat [841-842] was used once the position restraints were
removed. The electrostatic interactions were computed with the reaction
field method, with dielectric constants of 15 for charge screening in the short-
range regime and infinity for the long-range regime. The Lennard-Jones

potential was cut off at long-ranges using the Potential-shift-Verlet scheme.

The multicomponent plasma membrane model contained seven different
types of lipid that were distributed asymmetrically about the membrane
midplane. The lipid abundances for the entire membrane were as follows:
POPC (25%), POPE (25%), POPS (7.5%), GM3 lipid (5%), palmitoyl
sphingomyelin (7.5%), PIP; (5%), and cholesterol (25%). The inner
(intracellular) leaflet contained POPE, POPC, POPS, PIP; and cholesterol in a
40:10:15:10:25 ratio. The outer (extracellular) leaflet contained POPE, POPC,
sphingomyelin, (GM3) ganglioside and cholesterol in a 10:40:15:10:25 ratio.
The plasma membrane model was made in previous works by Sansom et al.
and the group has simulated the membrane on a multimicrosecond timescale
before it was used here in this chapter [76,363,500,993]. The chemical
properties of each lipid type can be understood from the following sections:
1.4.1 (PC, PE, and PS phospholipid), 1.4.2 (cholesterol), 1.4.3 (PIP2), 1.4.4
(sphingomyelin and GM3 lipid). The membrane was produced through a long

and seemingly arduous effort where individual constituent lipid types (for
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example, see reference [1023]) were initially parameterized to mimic
reference atomistic simulation data and these coarse-grained models were
then subsequently combined to produce a multicomponent mammalian
plasma membrane model. The lipid models have been used to understand
amongst other interesting biophysical phenomena, the organization and

dynamic interactions of plasma membrane receptor proteins [76].

The plasma membrane model was simulated here for an additional 0.25 pus
after it was initially acquired from the Sansom group to correct for small
differences in simulation settings. The membrane was simulated with Martini
water particles and either monovalent (Na*) or divalent (Ca%*) cations to
systematically determine if the simulation results would be affected by the
ambient ion charge density. The semi-isotropic Parrinello-Rahman barostat
[841-842] was used to maintain the pressure at 1 bar and the V-rescale
thermostat was used to maintain the simulation temperature at 303 K. The
electrostatic interactions were computed with the reaction field method and
the Lennard-Jones potential was cut off at long-ranges using the Potential-
shift-Verlet scheme. At this point, the plasma membrane was combined with
vesicles in one instance and simulated independently in another. Ganglioside
molecule co-clustering could then be assessed both when OMVs were trapped
at the plasma membrane surface and also when the plasma membranes were

simulated without OMVs.

It is important to stress here that the plasma membrane was not completely
converged when it was first provided by Sansom et al. or even after the
subsequent short (0.25 ps) equilibration simulations that were used to
correct for difference in simulation settings. Comparable simulations of
complex plasma membrane models [498] suggest that converged ganglioside
cluster conformations are beyond the scope of the current coarse-grained
Martini forcefield, which maps no more than a few heavy atoms to a single
interaction center [822]. Marrink et al. created complex plasma membrane
models that included up to 63 different lipid types ranging from large
ganglioside lipids (e.g. GM3, and GM1 in particular) through to smaller
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phosphoinositides, phospholipids and cholesterol [498]. The conformation of
the ganglioside molecule aggregates changed continuously over 40 us and the
simulated GM3 and GM1 clusters continuously broke apart and reformed
throughout. The plasma membrane contained 63 different lipid types and this
level of complexity would have made the equilibration timescales longer, but
the slow ganglioside molecule clustering processes cannot be explained by
the number of lipids alone. The aggregation of polar glycolipids tends to
transpire on unusually long microsecond timescales when the membrane
compositional complexity is relatively high [498] and equally when the
membrane compositional complexity is relatively low [151,301]. In other
words, glycolipid conformations converge on microsecond or even longer
(e.g. millisecond) timescales when membranes contain either just a few
different types of lipid or up to 63 different types of lipids. The Martini
forcefield is optimized for microsecond long molecular dynamics simulations
and so we can state that converged glycolipids might well be entirely the
scope of the explicit coarse-grained Martini forcefield if it is paired with

nothing more than standard high-performance computers.

It is equally important to state that glycolipid molecules are challenging to
accurately parameterize in atomistic forcefield simulations [558,1024], but
even more so in lower resolution coarse-grained forcefield simulations
[1023,1025-1026] that have fewer degrees of freedom. The conformations of
glycan polymers can differ markedly in simulations that are conducted with
different atomistic resolution forcefields [578] suggesting that at least some,
if not many, of the apparently sophisticated atomistic molecular dynamics
forcefields fail to satisfactorily reproduce the complex conformational
landscapes of bonded saccharide units. While the quality of the reference
atomistic simulation data is itself of questionable quality, there is the added
problem that coarse-grained ganglioside parameterization schemes can
differ from target all-atom molecular dynamics simulations [1025-1026].
Long simulation timescales might promote converged conformations but the
precise distribution of the converged glycolipid clusters might not match the

in vivo scenario. These noted inaccuracies could discredit the forthcoming
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conclusions if the wrapping interactions seemed to depend on the precise size
or distribution of the simulated ganglioside clusters. This was not the case;
host membrane wrapping interactions demanded neither a specific GM3
aggregate size distribution nor a specific ganglioside molecule spatial
distribution. The OMVs sequestered GM3 lipids that were in a range of
different orientations and states of aggregation and once sequestered, the
GM3 molecules almost always contributed to stepwise zippering interactions
that promoted the wrapping of the host membranes around the attached
OMVs. So, although there is invariably some mismatch between ganglioside
lipid interactions here and within realistic cellular membranes, the

overarching qualitative conclusions seem to be warranted throughout.

But let us explore a bit more thoroughly what we know and what we do not
know about glycolipid clustering and in particular, Martini glycolipid GM1
and GM3 molecule aggregation. It is already well-known that
glycosphingolipids tend to co-couple with cholesterol and sphingomyelin in
multicomponent plasma membranes and that this aggregation can induce the
formation of liquid-ordered nanodomains and lipid rafts [73-79]. The co-
clustering processes are complex; glycosphingolipids form gel-like domains
in fluid lipid bilayers and sphingomyelin readily associates with cholesterol
molecules to form liquid-ordered nanodomains, but glycosphingolipids do
not tend to form cholesterol-enriched domains by themselves [1027-1028].
Glycosphingolipid clustering and partitioning also depends on the ceramide
backbone structure, the number of sugar units, and the charge of the
saccharide headgroups. Although the clustering of glycosphingolipids is
evidently quite complex and multifaceted, it is becoming increasingly clear
that ganglioside molecules have high affinity for each other within plasma
membranes and that ganglioside molecules can form nanodomains in vitro
and in vivo either through attractive self-interactions or through interactions
with pathogenic biomolecules [368]. When pathogenic viruses (e.g. SV40)
and pathogenic bacterial products (e.g. Shiga toxin) interact with ganglioside
lipid headgroups they can induce the formation of curved lipid rafts, or

caveolae [537,542,1015-1018]. The ganglioside molecules move to areas of
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high positive curvature such as the rim of caveolae where their presence
reduces the line tension energy and promotes large-scale membrane

reshaping processes [671-673].

Through the application of sophisticated microscopy methods, it was shown
that lipid rafts can have a range of different sizes ranging from approximately
10 nm [89] through to 200 nm, i.e. an order of magnitude difference
[348,1029]. Coarse-grained molecular dynamics simulations with the Martini
forcefield have corroborated the inference that ganglioside molecules can
form large lipid rafts when they cluster together [363,497-498]. The coarse-
grained Martini molecular dynamics simulations showed that coarse-grained
ganglioside lipids can spontaneously self-assemble into clusters that have
high intrinsic spontaneous curvature and further, that these
glycosphingolipid clusters promote membrane curvature generation [363].
The coarse-grained Martini simulation forcefield correctly predicts that
ganglioside molecules can spontaneously self-assemble and form aggregates
that have high intrinsic positive curvature but it is assumed that ganglioside
conformations and binding profiles are less accurate in coarse-grained
molecular dynamics simulations than comparative atomistic simulations
[1025-1026]. There are noted difficulties in reproducing the correct
conformational landscapes of saccharide units and polymers in atomistic
simulations [578] and these problems are compounded in comparative
coarse-grained simulations that have fewer degrees of freedom [796].
Although direct benchmarking papers are sparse, it was shown that some
Martini forcefield ganglioside molecule binding profiles did not accurately
reproduce reference atomistic forcefield simulation data [1026]. Thus, we
can state that the Martini forcefield correctly predicts that ganglioside
molecules cluster and that they can form aggregates that have high intrinsic
spontaneous positive curvature but we should appreciate that the size and
state of these clusters may be somewhat inaccurate, e.g. slightly too large or
too small, and further that the ganglioside molecules might bind the OMVs

somewhat inaccurately, e.g. slightly too tightly or too loosely.
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5.3.3 Vesicle-Membrane Simulation Details

The Visual Molecular Dynamics (VMD) module [871] was used to combine
the vesicles with the host membrane systems. The position of the vesicles and
membranes were positioned within the simulation cells with approximately
5 nm between them. The distance was sufficiently small to promote cohesive
interactions between the apposed membranes, while also being wide enough
to not drastically bias the initial docking of the vesicles onto the host
membrane surfaces. The systems were then hydrated with Martini (W type)
water particles with the gmx solvate program. The VMD visualization module
was used to identify and remove any water particles that were
inappropriately inserted into the hydrophobic lipid membrane cores. The
gmx genion program was applied to add either monovalent (Na*) or divalent
(Ca?*) cations to the simulation cells. The steepest descent algorithm was
used to optimize the distances between the simulation particles and to
minimize the system energy. The vesicle-membrane systems were then
simulated for 2 ps each; this timescale is sufficiently long to monitor the full
details of the early stage endocytosis interactions that transpire at the host-
pathogen interface e.g. the loss of vesicle shape and also to visualize the
partial wrapping of the host membranes around the attached OMVs. The
simulation temperature was maintained at 303 K using the V-rescale
thermostat and the simulation pressure was maintained at 1 bar using the
Parrinello-Rahman barostat [841-842]. The box vectors were scaled with a
semi-isotropic scheme during the 2 ps long simulations, but isotropic and
anisotropic algorithms were also used in shorter 1 us long simulations to
ensure that the loss of vesicle shape was not an artifact of simulation setup.
Repeat simulations were performed in all instances to ensure that the

simulation results were reproducible.

5.3.4 Lipid Parameter Details

The coarse-grained parameters were calibrated in previous works to
reproduce target united-atom molecular dynamics simulation data. The

coarse-grained Martini forcefield parameter set for the rough (Ra) LPS lipid
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was determined from reference united-atom simulations of Ra-type E. coli
LPS lipid with R3 core sugar sequence and type 1 Lipid A anchor [301]. The
rough LPS lipid parameter set was subsequently expanded by sampling data
from united-atom simulations of the E. coli 01 O-antigen chain polymer. Data
from united-atom simulations of the E. coli 01 O-antigen chain were sampled
and this data was used to calibrate a coarse-grained 01 O-antigen glycan
polymer chain model. The coarse-grained O-antigen chain polymer model
was then combined with the coarse-grained model of rough (Ra-type) LPS
lipid to create the associated smooth LPS lipid mimetic [579]. The GM3 lipid
parameters were optimized according to the same procedure [1023];
atomistic simulation data was used to determine appropriate parameters for
a coarse-grained model. The conformations of the GM3 lipid headgroup was
analyzed in united-atom simulations and coarse-grained model parameters
were selected through comparison. The GM3 and PIP; molecules were
modeled with a single monounsaturated tail throughout. The POPS, POPC,
POPE, POPG, sphingomyelin and cholesterol molecules were based on
parameters from the standard Martini molecular dynamics simulation

forcefield library.

5.3.5 Simulation Analysis Details

The radii of gyration were computed about the x-, y-, and z-axes to assess
vesicle shape during production time. The axes components were computed

according to the equation: Ry(x/y/z) =

JXimi(R;(y/x/y)? + Ri(z/2z/x)?)/ Y,;m; where m; were the mass values.
The radial extension of the saccharide moieties and the Lipid A phosphate
groups were computed using the three-dimensional form of the Pythagorean
theorem: c¢? = x2? + y2 + z2 where x, y, and z were lengths along the unit cell
axes and ¢ was the diagonal length between them. The diagonals were
measured with respect to vesicle centers throughout and the lengths were
assigned a color based on standard VMD color gradients. Voronoi
tessellations were performed to compute areas per lipid and simultaneously

assess membrane thickness parameters. The lipid phosphate groups were
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partitioned into a contiguous grid of polygons whose size and separation
were used to determine the lipid-packing parameters. The gmx select tool
was used to count the number of lipids within an arbitrary cutoff distance e.g.
5 nm from smooth or rough OMVs. Residence times were assessed usinga 0.6
nm cutoff distance (GROMAS default) and the results were subsequently
assigned a color based on standard VMD color gradients. Vesicle headgroup
width was determined by computing radial distribution functions (RDFs) for

polar and charged Martini beads with respect to the vesicle centers.

5.4 Results and Discussion

5.4.1 OMV Construction Details

The smooth and rough OMVs were simulated with the coarse-grained Martini
forcefield (Figure 46A). The OMVs were made with an inner leaflet of POPE
and POPG lipids in a 9:1 number ratio and the outer leaflets contained POPE
and LPS molecules in a 1:1 number ratio. The outer leaflet POPE lipids were
incorporated to facilitate CHARMM-GUI Martini Maker interleaflet flip-flop
processes that can minimize bilayer tension. The inner leaflet composition
was set to mimic realistic Gram-negative bacterial outer membrane inner
leaflets that have PE and PG lipids distributed in an approximate 9:1 ratio
[1031]. It should be stressed here that a limited number of lipid flip-flop
events occurred during the equilibration simulations and consequently the
lipid abundances were not entirely constant throughout. The lipid ratios were
still correct to two significant figures after the equilibration simulations, i.e. a
1.0:1.0 number ratio for POPE and LPS molecules in the OMV outer leaflets,
but the number ratios did not precisely match the initial simulation setup, i.e.

not an exact 1:1 number ratio.

The rough LPS lipids contained an anchoring Lipid A domain with complete
core saccharide section and the smooth LPS lipids additionally contained four
units of the E. coli 01 O-antigen chain repetitive polymer unit (see Figure 15
for reference). The OMVs had an asymmetric membrane structure and

diameters of 20 nm based on the position of the hydrophobic membrane core
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midplane. The nanospheres are therefore comparable to the smallest OMVs

that are produced in vivo [663,1005,1032-1034].

5.4.2 OMVs in Water

It is important to first compute lipid packing parameters for the OMVs when
they were simulated in water (Figure 46B) before we can analyze the OMV
properties at host membrane surfaces. Data were collated from 1 ps long
molecular dynamics simulations of smooth and rough OMVs in Martini
coarse-grained water and ions. Voronoi tessellations were used to determine
the mean average area per lipid values for each component of the inner and
outer membrane leaflets. It is emphasized here that the position of the Lipid
A phosphate groups (Figure 46C) was used to characterize the water-lipid
interface, while the position of peripheral saccharides was used to assess the
full extension of the LPS lipids i.e. the radial length of the molecules with
respect to the OMV centers.

The LPS lipids were packed more tightly (less area per lipid) in the OMVs than
in comparable flat bacterial bilayers (Table 1). The smooth LPS lipids were
packed 17% closer in the OMVs than in reference flat bacterial membrane
mimetics and the rough LPS lipids were packed 18% closer than reference
flat membrane mimetics [151,301]. The OMV LPS lipids achieved lateral
packing comparable to the shortest forms of LPS (Re-type) lipid in flat E. coli
outer membrane mimetics. This is surprising because the simulated OMV LPS
lipids were longer than Re LPS molecules and also that LPS lipid length scales
with lateral surface area in flat bacterial membrane simulation systems
[151,211,301]. This unusually tight (OMV) lamellar alignment is ascribed to
(i) additional fringe volume that affords LPS headgroups more
conformational freedom and the capacity to achieve unusually tight lamellar
alignment, and (ii) compensatory lateral area expansion of neighboring
phospholipids, which pushes the LPS molecules closer together than in flat

membranes.
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Table 1: Summary of lipid properties for OMVs in solution; data are shown for
the inner leaflet (IL) and the outer leaflet (OL). Standard deviations are less
than 0.02 for areas per lipids and less than 0.9 for radial heights.

Membrane Mean area per lipid (nm?) LPS radial height (nm)
type LPS POPE POPE POPG | phosphates | extension
(IL) (OL)
Smooth OMV 1.57 0.55 1.26 0.60 11.63 15.38
Rough OMV 1.46 0.50 1.20 0.53 11.52 12.42
Flat outer Re-LPS: 0.62 — 0.61 — —
membrane 1.59
Rough
LPS:1.78
Smooth
LPS: 1.90
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Figure 46. (A) Smooth and rough OMVs—atoms are represented using a
volumetric density map. The POPE and POPG lipids are silver and the LPS
molecules have the color scheme: Lipid A and core sugars (cyan), O-antigen
chain (red). (B) The terminal sugar particles are assigned a BGR color based
on their radial height (extension). (C) The LPS molecule is divided into its
constituent Lipid A anchor, core sugar domain, and terminal O-antigen
chain. The Lipid A phosphate groups are green to clarify the position of the
water-lipid interface that is referenced throughout this chapter. The atoms
are represented with a volumetric density map (left) and a simpler ball-and-
stick model (right).
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The smooth and rough OMV surfaces were distinctly different: the smooth
OMV was littered with large groves and the rough OMV was comparatively
uniform. The surface of the smooth OMV is quite similar to the capsid of the
SV40 virus [542,1015-1017], which has grooves that interlink ganglioside
lipid receptors in host cell membranes and thereby triggers endocytosis
interactions. At this point, it is important to rationalize why the surface of one
OMV simulation system is relatively uniform while the other is not. By
assessing the surface topologies more thoroughly we will be afforded more
general insights into the differences between smooth and rough OMVs and in
particular, how their headgroup domains differ in terms of void area and free

volume.

The differences in surface topologies will be explained using simple
geometric equations and a bare-bones model for the OMVs (Figure 47). The
lipids are treated here as axisymmetric cylinders that have constant cross-
sectional area along their long-axis.! Two more assumptions are made: (i)
that lipids align with the membrane normal? and (ii) that lipid flip-flop
processes can be discounted throughout. Taken together, the assumptions
will simplify the ensuing discussion and increase the scope of the conclusions
that can be drawn in this section. Given that spherical surface area (A4) scales
with the square of radial length, i.e. A = 4mr?, it is evident that A, > A, and
A3 > A;, where Ay = 4mry? and ry values are defined in Figure 47. Because
the total cross-sectional area is approximately constant along the bilayer
normal [211-212] it can be stated that NA; + NApy = Ay; NA, + NApg < Ay;
and NA; + NApp < A3, where A; and App are the cross-sectional areas of

LPS macromolecules and POPE lipids, and N defines the number of these

! The approximation of constant cross-sectional area for lipids is reasonable in this case, given that
we seek a crude understanding of the disparities in OMV surface topology. The approximation is
inappropriate for a detailed understanding of the dynamic interactions of lipids within biological
membranes—slight disparities in molecular shape significantly impact almost all bilayer
properties, and differences in molecular shape should generally not be ignored.

2 LPS lipids, to a fair approximation, align with the bilayer normal: there is clear division better

Lipid A anchor, core saccharide section, and O-antigen chain polymers along the membrane normal
axis [211-212].
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molecules in the OMV outer leaflet. If we assume that this system is a
reasonable approximation of the structure of OMVs we can extrapolate and
state that there is an increasing disparity between the projected surface area
(A = 4nr?) and the total lipid cross-sectional area (NA, + NApg) as 7 is
increased beyond the water-lipid interface (r;). The amount of void area
increases exponentially along the LPS macromolecule long-axis (1, < r < 13)
and as a consequence, smooth OMVs are expected to have more void area at
their outer edge than rough OMVs of similar hydrophobic midplane
(1) diameters. This inference should be correct for almost all OMVs and this
could be tested with electron microscopy methods or some other (non-
computational) microscopy methods that are suitable for assessing the

topology of lipid membrane surfaces.

258



(outer leaflet)

Middle of the
hydrophobic
membrane interior

— = Lipopolysaccharide dpk
—
Cross-sectional area = A, l— = = POPE
Volume = V. Cross-sectional area = Apg
Volume = Vpg
—
dr.

Figure 47. Schematic illustration of the smooth OMV that has been used to
understand the different topology of the rough and smooth OMVs. The LPS
lipids are orange, the outer leaflet POPE molecules are magenta and inner
leaflet lipids are omitted throughout. The radial heights are labelled as
follows: 1;,, (middle of the hydrophobic membrane core), r; (outer leaflet
phosphate group boundary), r, (termini of the LPS core sugars), and 15
(termini of the LPS O-antigen chains). The lipids are treated as axisymmetric
cylinders, for example, the LPS macromolecules have constant cross-
sectional area A4, and volume V, = n(r — 1,,,)(d, /2)? where d is the
cylinder diameter and r;,, < r < 3.

It is appropriate to additionally determine the relationship between “free
volume” or solvent-accessible space and the length of LPS lipids in the OMV
outer leaflet (r;,, < r < r3). The volume of each LPS lipid is calculated
according to the equation: V, = n(r — 1,,) (d,/2)? where d, is the effective
diameter of the LPS lipids. The volume of each POPE lipid (in the outer

leaflet) is calculated according to the equation: Vpr = m(r — 13,) (dpg/2)%,
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where dpg is the diameter of POPE molecules and Vp; = 0 beyond the
water-lipid interface (r > r;). The relationship between radial length and

free volume becomes:
Viy =V = (NV, + NVpg)

or:

2

V= (%nﬁ) — (Nn(r — ) (%) + Nr(r — 1) (d%)z) C msrer,

Vo = (ar®)— (b(r—r) +c(r—1)), =T =1,
A (ar3) — (b(r — 1)), T3=Tr =1

Equation 87-88

because the volume of a sphere is defined by the equation: V = gnr3. Within

this equation a, b, and c are constants = that the amount of free volume
scales rapidly with r beyond the water-lipid (phosphate group domain)
interface for an OMV of radius r;,,,. The equations explain the disparities in the
smooth and rough OMV simulation systems surface topologies: void area and
free volume scale rapidly as a function of LPS headgroup length beyond the
water-lipid (phosphate group) interface for OMVs of a given (21;,,) diameter.
There should be stark differences in the surface topology of smooth and
rough OMVs that have comparable hydrophobic core midplane diameters
regardless of the parent bacteria genera. In other words, smooth OMVs will
have rugged surfaces that have contrasting areas of relatively high and low O-
antigen chain cluster density in vivo, whereas rough OMVs will appear to have

much more uniform surfaces.
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The disparate surface topologies suggest that rough and smooth OMVs will
have different interactions with the headgroup moieties of host cell
membrane lipids. The surfaces of smooth and rough OMVs differ markedly
and this will affect how they adhere to host cell membrane surfaces. We must
also make comparison with simulations from Chapter 4, i.e.
Lipopolysaccharide O-antigen Chains Modulate the Mechanical Strength of
the Gram-negative Outer Membrane, since it was shown that O-antigen chain
interactions increase the strength of (flat) Gram-negative membrane
mimetics. It is reasonable to extrapolate from the simulation data that was
produced in chapter 4 and state that smooth OMVs must be more
mechanically robust and by association stiffer than similarly sized rough

OMVs.

We have found then that the smooth and rough OMV surfaces are significantly
different. The rough OMV surface is relatively uniform, whereas the smooth
OMYV is significantly more topologically complex. There are also cohesive O-
antigen chain interactions across the smooth OMV surface and these
interactions have been shown to increase membrane mechanical strength
and make bacterial membranes stiffer and more mechanically robust (see
chapter 4). Based on these observations we should expect that the smooth
and rough OMVs have significantly different interactions with host cell

membranes.

The inference that smooth OMVs should have more topologically complex
surfaces than rough OMVs is interesting not only because it has consequences
for interactions at the wrapping interface here, but also because it can be
tested experimentally. Most conventional experimental analysis methods
lack the spatiotemporal resolution that would be necessary for visualizing
such small-scale OMV surface features [1035-1038]. However, advanced
imaging techniques are increasingly being applied to overcome some of the
spatiotemporal restrictions of ordinary microscopy methods [1039-1043]. If
sophisticated analytical microscopy methods were used to analyze the

surfaces of smooth and rough OMVs they could potentially validate the
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inference that smooth OMV surfaces are more topologically complex than
comparative rough OMV surfaces. It would be important to mimic the OMV
compositions accurately; the inner leaflet should only contain phospholipid
molecules and the outer OMV leaflets should both contain phospholipids and

LPS macromolecules in an approximate 1:1 number ratio.

5.4.3 OMVs Interacting with POPC Bilayers

The smooth and rough OMVs were simulated with a membrane that
contained POPC lipids alone to obtain a rudimentary understanding of OMV
interactions at host plasma membrane surfaces (Figure 48A-B). For clarity,
the following simulation results are summarized in Table 2: the axis
components of the radius of gyration, the radial extension of the Lipid A
phosphate groups, the radial extension of the peripheral O-antigen chain
saccharides, the number of POPC lipids in contact with LPS lipids, and the
percentage of LPS lipids that were in contact with the host membrane POPC
lipids (based on a 0.6 nm cutoff). The rough OMV behaved quite similarly to
elastic lipid-covered nanoparticles at the host POPC lipid bilayer: the vesicle
distorted and spread over the membrane surface (Figure 48C) [1010-1012].
There was approximate axisymmetric compression of the OMV at the bilayer
surface and there was also compression of the individual LPS lipids along the
membrane normal axes. The average radial extension of the rough LPS lipids

was reduced compared with the simulation in water.

Table 2: Summary of OMV properties at the POPC bilayer. Standard
deviations for radius of gyration values are less than 0.07 and for heights they
are less than 1.74.

OMV Radius of gyration LPS radial height (nm) POPC % LPS
type (nm) in bound
Rg(x) | Rg(y) | Rg(z) | phosphates | extension | contact
Rough 9.20 | 8.88 | 10.07 11.29 12.02 5627 52
Smooth | 999 | 10.13 | 10.13 11.09 16.32 1580 2
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The POPC bilayer deformed and partially wrapped around the rough OMV as
it distorted at the wrapping interface. It is emphasized here that the degree of
host membrane wrapping was quantified according to the number of host
membrane lipids that were in contact with the OMVs. There were more than
5000 POPC lipids within 5 nm of the rough OMV after 2 us and more than 50%
of the OMV surface was in contact with host membrane POPC molecules
(Figure 48D-F). The correlation coefficient was computed for host membrane
wrapping with respect to sampled simulation time to evaluate the likelihood
of complete OMV encapsulation on long timescales. The correlation
coefficient had a magnitude of -0.55 during the last 250 ns and this indicates
that host membrane wrapping peaked at some point before this. Based on the
loss of OMV sphericity, the reduction in host membrane wrapping during the
last 250 ns, and data from comparable large-scale simulations [1009-1012] it

is unlikely that the OMV will be completely enveloped on long timescales.
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Figure 48. (A-B) Smooth and rough OMVs at the POPC bilayer. (C) The axis
components of the radius of gyration for the rough OMV (bottom); the
phosphate group (BGR) height map after 2 us (top). (D) The POPC lipid shell
population for the rough OMV (5 nm cutoff). (E) The LPS-POPC contact
number (0.6 nm cutoff). (F) The fraction of simulation frames—during the
last 0.25 ps—with registered LPS-POPC contacts (per rough LPS molecule).
(G) The axis components of the radius of gyration for the smooth OMV (top);
the phosphate group (BGR) height map after 2 us (bottom). (H) The fraction
of simulation frames—during the last 0.25 us—with registered LPS-POPC
contacts (per smooth LPS molecule). (I) The POPC lipid shell population for
the smooth OMV; (J) the LPS-POPC contact number. Figures I-] and Figures
D-E are measured from the point of OMV-host membrane first contact and
thus, are non-zero from the start.

In contrast, the smooth OMV was found to maintain high sphericity when it
was interacting with the POPC bilayer and did not induce appreciable

wrapping upon interaction (Figure 48G). Through theoretical analyses it was
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shown that stiff nanospheres gradually promote endocytosis via areal
deformation processes [1010-1012]. Voronoi tessellation analyses revealed
that the average areas per lipid were different in the upper and lower leaflets
of the POPC bilayer after 2 pus. The mean area per lipid in the upper
(extracellular) leaflet was 0.54 nm?—ordinarily 0.68 nm? [343-344,1044]—
and 0.81 nm? in the lower (intracellular) leaflet. The area per lipid was
relatively uniform across the length of each lipid monolayer (Figure 49) and
this suggests that the entire bilayer was strained rather than there being
areas of high strain close to the attached OMV. The data collectively indicate
that there were forces promoting areal deformation processes and host
membrane wrapping around the smooth OMV. But there was minimal
membrane wrapping despite this disparity in lipid packing about the
membrane midplane: there were 1580 POPC molecules within 5 nm of the
rough OMV and only 2% of the rough LPS lipids were bonded to the POPC
lipid headgroups during the last 250 ns of simulation time (Figure 48I-H).
Mean squared displacement calculations revealed that the interactions
between the rough LPS lipids and the POPC molecules were weak and
relatively short-lived. The lateral diffusion constants were 0.063 * 0.0003
1x10-> cm?/s for POPC lipids in the intracellular and extracellular leaflets.
Collectively, the data indicate that there were forces favoring host membrane
wrapping but also that the LPS-POPC bonds were weak and it was difficult for
the POPC bilayer to adhere to the arched edge of the smooth OMV and
promote gradual endocytosis interactions. The simulations do not preclude
the possibility of host membrane wrapping on longer timescales, and as such,

an effort has been to explore this possibility.
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Figure 49. The area per lipid (BPR) color-height map for the upper
(extracellular) leaflet of the POPC bilayer after it was simulated with the
smooth OMV for 2 us. The mean area per lipid for this color-height map is

0.54 nm?Z; for comparison, the area per lipid is 0.68 nm? for POPC
membranes that are not strained.

The simulation temperature was increased from 303 K to 330 K in an attempt
to address the temporal limitations of conventional molecular dynamics
simulations. The process introduced greater kinetic energies into the
simulation cell, making it easier for molecules to surmount rate-limiting
energy barriers. The simulation was performed for 250 ns and the last 50 ns
were used to compute the magnitudes of different simulations parameters.
The change did not increase the distortion of the smooth OMV but it did
suppress OMV interactions with POPC lipids and the degree to which the host
membrane was perturbed. The axis components of the radius of gyration
were: 10.03 £ 0.01 (Rg(x)), 10.15 £ 0.01 (Rg(y)), 10.19 + 0.01 nm (Rg(z)) and
the average radial length of the Lipid A phosphate groups was 11.18 + 0.63
nm. There were fewer interactions between the LPS macromolecules and the
POPC lipid headgroup moieties: there were approximately 1500 POPC lipid
headgroups within 5 nm of the smooth OMV and only 1% of the LPS lipids
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were bound to POPC lipids (based on a 0.6 nm cutoff distance). The host
membrane was much less perturbed: the mean area per lipid was 0.65 nm? in
the upper (extracellular) leaflet and 0.70 nm?2 in the lower (intracellular)
leaflet. The analyses suggest that wrapping interactions are not stepwise,
they are not controlled by a series of successive energy barriers that are more
easily surmounted as greater Kkinetic energies are introduced into the
simulation cell. When particle velocities are increased there are in fact, fewer
interactions at the wrapping interface and this loosens the OMV from the host
membrane surface and by association, reduces its areal deformation effects.
It seems sensible at this point to conduct molecular dynamics simulations
with host membranes that contain embedded ganglioside lipids because it
was demonstrated in previous publications that adhesion energies affect

nanoparticle wrapping interactions [1010-1012].

5.4.4 OMVs Interacting with Realistic Plasma Membranes

The OMVs were simulated with plasma membrane models that incorporate
(GM3) ganglioside molecules; this is noteworthy because ganglioside
molecules are known to promote strong adhesion energies and at the same
time, promote bilayer reshaping processes because the molecules have high
intrinsic positive curvature [362-363, 428,1045,536-537]. The plasma
membrane contained seven lipid types in total: cholesterol, POPE, POPC,
POPS, GM3 lipid, (palmitoyl) sphingomyelin, and PIP2. The lipids were
distributed asymmetrically about the membrane midplane to mimic the in
vivo scenario, i.e. a realistic asymmetric mammalian plasma membrane
composition. The following lipids were set into the upper (extracellular)
leaflet: POPE, POPC, sphingomyelin, GM3 lipid, and cholesterol in a 10:40
15:10:25 ratio. The following lipids were set into the inner (intracellular)
leaflet: POPE, POPC, POPS, PIP;, and cholesterol in a 40:10:15:10:25 ratio
[76]. The results of these molecular dynamics simulations are presented in

Table 3 and Table 4, but the results are also discussed in detail below.
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Table 3: Summary of OMV properties at the host plasma membrane. Standard
deviations for radius of gyration values are less than 0.01 and for heights they
are less than 1.7.

OMV type | Radius of gyration (nm) | LPS radial height (nm)

Rg(x) Rg(y) | Rg(z) | phosphates | extension
Rough 9.83 8.76 9.43 11.22 11.99
Smooth 10.35 10.17 | 10.12 11.21 14.18

Table 4: Changes in local lipid composition within 5 nm of the OMVs. Data are
shown for each lipid type (per bilayer leaflet).

OMV Enrichment/depletion within 5 nm of the OMV (%)
GM3 PIP2 Cholesterol | Sphingolipid POPE POPC POPS
IL|OL | IL | OL | IL OL IL OL IL OL IL | OL | IL | OL
Rough | —| 2 2 — | 13 2 — 7 2 -11 | -12 | -1 6 | —
Smooth | —|-2T |18 | —[ 19| 8 | — | 5 |15 |-10|-12| -4 | 4 | —

T There was an absolute increase in the number of GM3 lipids (within 5 nm),
but a relative reduction in GM3 concentration, given the non-negligible influx
of sphingomyelin and cholesterol molecules into the local OMV ‘shell’.

The rough OMV lost its spherical shape when it interacted with the plasma
membrane: the axis components of the radius of gyration were more than
10% different after 2 ps. Other than this loss of OMV sphericity, there was also
compression of the constituent LPS lipids along the membrane normal axes
and this indicates that the shapes of both the OMV and its constituent LPS
lipids, were perturbed upon interaction. The host membrane had distorted
and partially wrapped around the rough OMV to form a concave “pit”, or an
invagination whose size was computed from the z-axis coordinates of lipids
within 5 nm of the LPS macromolecules. The concave pit had a depth of 19.1
nm in this simulation and for comparison, the POPC bilayer formed a pit that
was 21.0 nm deep when it wrapped around this same rough OMV. The extent
to which the rough OMVs and host membranes were deformed seems to be
mostly invariant of the specific host membrane composition. In either
instance, the rough OMVs spread out over the membrane surface and the host
membrane formed a concave pit that was highly curved at the spreading
front. Comparable results were obtained from simulations of soft lipid-

covered nanoparticles that were interacting with host membranes. The soft
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nanospheres rapidly generated large curvatures at the spreading front that

suppressed endocytosis on long timescales [1009].

The smooth OMV retained higher sphericity when it was simulated at the
surface of the plasma membrane model (Figure 50A). The axis components of
the radius of gyration were less than 3% different and the position of the
water-lipid interface had only changed by 0.42 nm compared with the
reference simulation in water (Figure 50B). However, there was some
compression of the O-antigen chains when they interacted with the host
plasma membrane model. The average extension of the LPS lipids was 14.18
nm in this simulation (Figure 50C) and for comparison, the extension of the
smooth LPS lipids was 15.38 nm in water and 16.32 nm at the surface of the
POPC bilayer. The differences in the radial extension of the LPS lipid
headgroups is indicative of rather different interactions at the wrapping
interface and hence, it is instructive to assess host membrane properties

more thoroughly.

269



Z-axis (nm)

Plasma
membrane

D GM3 contact time (last 250 ns)
S
=
.2
g
=
a
g
E
=
.o
3
jas)
Phosphate group radial height
P £ £ End chain radial height
)
£
=
o0
[
=
=
S
<
=4

Lipopolysaccharide index

[INT WAL AL

0 200 400 600
Figure 50. (A) Smooth OMV and the host plasma membrane (5 nm shell).
The phosphate groups are assigned a (BSR) color based on their height (z-
axis coordinate); the ganglioside molecules are magenta. In the inset, the
ganglioside head groups are magenta and the lipid tails are white. (B) The
phosphate group (BGR) height map after 2 ps. (C) The terminal sugar
particles are assigned are a (BGR) color based on their endpoint radial
height. (D) The LPS-GM3 contact duration projected onto the phosphate
group density map; the data are shown for the last 0.25 us of simulation
time. (E) The fraction of simulation frames—during the last 0.25 ps—that
LPS-GM3 contacts were registered for each one of the 615 smooth LPS
molecules in the OMV outer leaflet. Put simply, the graph shows the fraction
of sampled simulation time that each smooth LPS lipid was bonded to GM3

270



lipids (based on a 0.6 cutoff). Once the LPS-GM3 interactions were formed
they were almost always maintained thereafter.

Up to 15.6% of the LPS lipids were in contact with the GM3 lipids and the
bonds between the GM3 lipids and LPS headgroups were strong and long-
lived. The GM3 lipid headgroups acted as a zipper and interlinked the LPS
lipids to form bonds (based on a 0.6 nm cutoff distanced) that generally
remained unbroken thereafter (Figure 50D-E). The process produced a
natural ratchet mechanism where the host membrane progressively engulfed
the OMV as carbohydrate headgroup moieties were intertwined at the
wrapping interface. The ratchet mechanism has membrane-modulating
effects: first, there was immobilization of the intertwined GM3 lipids, second,
there was local curvature generation, and third, there was a change in the
local lipid composition. The ganglioside molecules were progressively
sequestered at the OMV contact edge where they formed relatively immobile
aggregates (Figure 51) that had high intrinsic positive curvature. The clusters
promoted bilayer reshaping processes and facilitated the formation of a small
depression in the surface of the plasma membrane. Glycosphingolipid
molecule clusters have been noted to promote comparable bilayer reshaping

processes in previous computational and experimental publications.

Ganglioside lipids (e.g. GM3) are known to be domain-favoring [362,368,434]
molecules and within these molecular dynamics simulations there were non-
negligible changes in the composition of the membrane that surrounded the
attached OMVs. As the OMV induced ganglioside aggregation there was an
associated increase in the concentrations of PIP2 and cholesterol molecules in
the intracellular leaflet and an increase in the concentration of sphingomyelin
and cholesterol molecules in the extracellular leaflet. Some of the changes in
the local lipid composition can be rationalized by considering lipid shape
alone: for example, PIP; has an inverted conical structure and it preferentially
moved into the expanding intracellular leaflet that is positively curved, while

cholesterol lipids are small and have a space-filling role.
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Figure 51. (A) Top view snapshot of the smooth OMV after it was simulated
for 2 us with the multicomponent plasma membrane model. (B) The same
top view snapshot with the smooth OMV removed for clarity. The
ganglioside lipids within 5 nm of the smooth OMV are magenta and the
ganglioside lipids beyond this 5 nm cutoff are white. The POPE, POPC, POPS,

PIP2, cholesterol, and sphingomyelin molecules are omitted throughout. The
trajectories are shown for the magenta ganglioside lipids during the last
0.25 pus. The trajectory paths were assigned colors to link the sampled
simulation time with lipid diffusion. The early frame positions are red, the
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late frame positions are blue and the intermediary frame positions are
white. (C) Snapshot of the multicomponent plasma membrane when it was
simulated without any OMVs. The trajectories are shown for randomly
selected ganglioside lipids during the last 0.25 ps. When Figures A-B are
compared with Figure C it becomes apparent that OMVs have the capacity to
immobilize ganglioside lipids through zipper-like interlinking at the
wrapping interface.

The ratchet mechanism is comparable to the lectin-induced glycosphingolipid
clustering processes that can reorganize host plasma membrane lipids and
mediate the growth of tubular membrane invaginations [368]. Pathogens
(e.g. norovirus and SV40) and pathogenic products (e.g. Shiga toxin) interact
with glycosphingolipid headgroups and as they reorganize the host cell
membrane lipids they create an asymmetric stress about the membrane
midplane [537,542,1015-1018]. The process lowers local bilayer bending
moduli and promotes the inward bending of the plasma membrane and by
association, the endocytosis of the attached pathogens or pathogenic
products. Based on the striking similarities that can be identified between
these coarse-grained molecular dynamics simulations and previous
endocytosis uptake data it is reasonable to assume that OMVs enter cells as
they interact with ganglioside lipid headgroups and progressively sequester
the ganglioside molecules into clusters that have high intrinsic positive
curvature. The smooth OMVs are spherical and they would generate minimal
curvature as they wrapped host plasma membranes, whereas rough OMVs
would rapidly generate larger curvatures that are less conducive for
endocytosis. It should be stressed here that endocytosis processes have
smaller energy barriers when ganglioside molecules have saturated, rather
than unsaturated, lipid tails [1015] and theoretically, when ganglioside lipids
have more highly branched saccharide headgroup domains. Highly branched
ganglioside headgroup domains would support more cohesive carbohydrate-
carbohydrate intermolecular interactions at the wrapping interface. Ratchet-
like interlinking should occur more readily when plasma membrane mimetics
contain larger ganglioside lipids (e.g. GM1) compared with membrane
systems that contain smaller ganglioside molecules such as the GM3 lipids

that were used here in this simulation study.
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5.4.5 Phospholipid Vesicles Interacting with Host Membranes

Control simulations with a glycerophospholipid vesicle were used to
understand how the LPS lipid leaflet affects the OMV uptake interactions. The
glycerophospholipid vesicle contained POPE and POPG lipids alone. The
vesicle was made with POPE and POPG lipids ina 9:1 number ratio per bilayer
leaflet. The inner and outer glycerophospholipid vesicle leaflets were
comparable to the inner leaflet of the smooth and rough OMV simulation
systems. The POPE-POPG vesicle was made a diameter of 20 nm (2r;,) in an
attempt to make it more similar to the OMVs that were simulated in the
previous sections. The results of these simulations are presented as follows:
(i) data from the simulations in water; (ii) simulations at the POPC lipid
bilayer; and (iii) simulations at the extracellular surface of the plasma
membrane model. It must be emphasized here that these data are used to
understand how the LPS lipid leaflet affects OMV interactions through
comparative analysis. The simulations were not performed to mimic realistic
in vivo interactions and the simulations should not be considered as realistic

representations of OMV uptake processes.

The POPE-POPG vesicle was initially simulated in water (Figure 52A) so that
I could determine how the phospholipids were arranged and so that I could
compare these data with the lipid packing parameters that were ascertained
for the simulations of the rough and smooth OMV simulation systems in
water. The squared relation between radial length and spherical surface area
(i.e. A = 4mr?) states that the spherical surface area scales rapidly with
increasing radii and consequently there was an appreciable disparity in the
magnitude of the lipid packing parameters about the membrane midplane
(Table 5). The mean areas per lipid were larger in the extracellular leaflet
than in the intracellular leaflet. The mean areas per lipid in the inner leaflet
were as follows: 0. 51 + 0.01 nm? (POPE) and 0.53 * 0.01 nm? (POPG). The
mean areas per lipid in the outer leaflet were as follows: 0.78 * 0.01 nm?
(POPE) and 0.82 * 0.01 nm? (POPG). The differences in lateral packing

parameters was due to the non-uniform projected surface area magnitudes
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along the bilayer normal axes. There was less lateral surface area per lipid in
the inner leaflet than there was in the outer leaflet. The disparity in area per
lipid values was comparable to the disparities that were determined in
previous  coarse-grained  molecular = dynamics  simulations  of

glycerophospholipid vesicles by Marrink et al. [1047].

Table 5: Areas per lipid for the POPE-POPG vesicle in water. Standard
deviations are less than 0.01 throughout.

Membrane type Mean area per lipid (nm?)
POPE (IL) | POPG (IL) | POPE (OL) | POPG (OL)
Vesicle 0.51 0.53 0.78 0.82
Flat membrane 0.62 0.61 0.62 0.61
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Figure 52. (A) The POPE-POPG vesicle that was used in the control
experiments—the atoms are represented using a volumetric density map.
The POPE lipids are orange and the POPG lipids are green. (B) The
phosphate group (BGR) height map for the POPE-POPG vesicle after it
bounced off the host POPC membrane. (C) The endpoint conformation for
the simulation of the POPE-POPG vesicle and the multicomponent plasma
membrane model. The POPE molecules are orange, the POPG molecules are
green, and the host plasma membrane lipids that are within 0.5 nm of these
lipids are purple. The vesicle fused with the host plasma membrane to form
a lipid-lined pore that promoted lipid exchange between the plasma
membrane and the POPE-POPG vesicle.

The vesicles were then simulated with the POPC lipid membrane to provide
more data for comparative analysis. The POPE-POPG vesicle moved toward
the surface of the POPC membrane at the start of the molecular dynamics
simulation but then only made transient contact (approximately 1 ns) with
the POPC headgroup moieties before it was pushed backwards. The brief
contact was enough to significantly affect the shape of the POPE-POPG vesicle.
The axis components of the radius of gyration were up to 13.5% different
after 2 us and the radial heights of the outer leaflet phosphate groups were

up to 73% different (Figure 52B). The axisymmetric deformation
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demonstrates that even transient contacts with host membranes are enough

to warp the shape of vesicles.

There was fusion of the vesicle and plasma membrane model headgroups
when the POPE-POPG vesicle was simulated with the multicomponent
plasma membrane mimetic. The fusion event was in line with the stalk-pore
intermediate model [1048], which describes membrane fusion as a stepwise
process that involves hemifusion stalk intermediates. There was initial
aggregation of the lipid membranes, association of the apposed bilayers, lipid
rearrangement, and subsequent lipid content mixing [670,1049-1051]. There
was a lipid-lined pore between the apposed bilayers that facilitated content
exchange from the vesicle to the host membrane and also from the host

membrane to the vesicle (Figure 52C).

The widths of the hydrophilic headgroups were computed for the POPE-POPG
vesicle and the smooth and rough OMVs to understand why fusion was
suppressed in certain simulations and facilitated in others. The widths of the
hydrophilic headgroup domains were determined by computing RDFs for the
hydrophilic headgroup beads with respect to the vesicle centers. The width
of the POPE-POPG vesicle headgroup domain was 0.50 + 0.25 nm and the
widths of the hydrophilic headgroup domains were 1.78 + 0.24 nm and 5.01
+ 0.21 nm for the rough and smooth OMVs, respectively. The data suggests
that OMVs will be less likely to achieve direct membrane fusion than
comparative phospholipid vesicles because membrane fusion reactions are
mediated by pre-stalk transition states. Lipid tails must circumvent a thicker
hydrophilic headgroup domain in OMVs to fuse with host membranes
compared with phospholipid vesicles. Put simply, OMVs have a thick wall of
hydrophilic sugars that obstruct lipid tails and suppress membrane core
content mixing, whereas glycerophospholipid vesicles are less encumbered

by their hydrophilic headgroup moieties.

It must be stressed here that membrane fusion reactions are multifaceted and

that they depend on almost all membrane properties e.g. bilayer curvature,
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lipid heterogeneity, and the abundance of POPE molecules, which have
intrinsic negative curvature and as such, the capacity to stabilize the
negatively curved necks of hemifusion intermediate states [1052-1053].
Indeed, this complexity is evident in these coarse-grained molecular
dynamics simulations, the POPE-POPG vesicle fused with one host membrane
(plasma membrane) and not the other (POPC bilayer). It is not being stated
here that direct membrane fusion reactions are governed by headgroup
width alone but rather that OMVs have unusually thick hydrophilic head
groups; so much so, that OMVs do not fuse with host membranes regardless
of the simulation setup. The data collectively demonstrates that OMVs must
enter cells via host cell membrane wrapping processes and because we know
that host membrane wrapping processes are more efficient when
nanospheres are stiff and cohesion forces are strong, we can explain why
smooth OMVs can more effectively enter into cells via lipid-mediated uptake
processes and also state that ganglioside molecules should enhance this

endocytosis process.

5.5 Conclusion

It has been demonstrated here that the length of LPS lipids affects OMV
properties at the host-pathogen interface. When the simulated OMVs
contained terminal O-antigen chain polymers (smooth OMVs) they
maintained high sphericity when they interacted with host the membranes.
When the simulated OMVs contained shorter LPS lipid variants that lacked
terminal O-antigen chain polymers (rough OMVs) they spread out over the
host membrane surfaces—an event that tends to precede incomplete host
membrane wrapping or incomplete encapsulation [1009-1012]. Wrapping
interactions were also affected by the composition of the host membrane:
ganglioside headgroups acted as a zipper to mediate strong cohesion forces
and help force the host membranes around the round OMV surfaces. The
process occurred via a natural ratchet mechanism as the carbohydrate
headgroup moieties were progressively intertwined at the wrapping

interface. The sequestered ganglioside molecules tended to increase the local
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bilayer curvature and also increase the concentration of lipids that are
associated with raft formation (e.g. sphingomyelin and cholesterol) [79,88]
and endocytosis (e.g. PIPz) [1054-1056]. Importantly, it was observed
throughout these molecular dynamics simulations that rough OMVs can
deform host membranes more rapidly than comparable smooth OMVs.
Smooth OMVs were associated with slow increases in elastic energy that
would promote endocytosis processes on long timescales [1010-1013],

whereas rough OMVs were associated with faster curvature generation.

The simulations can be used to understand the differences in the uptake
efficiency of smooth and rough OMVs at the host-pathogen interface [664].
Interactions between terminal O-antigen chains confer mechanical strength
to smooth OMVs [579] and the smooth OMVs are consequently stiff and prone
to retain high sphericity at host cell surfaces. When OMVs lack terminal O-
antigen chains (rough OMVs) they are less stiff and they tend to lose their
spherical shape as they spread out over host cell membranes (Figure 53). The
differences in sphericity will affect the magnitude of the late stage energy
barriers that are associated with OMV endocytosis. Rigid nanospheres induce
minimal curvature generation at the spreading front as they slowly wrap the
host membranes. Softer nanospheres tend to be associated with faster
increases in elastic energy and the production of larger curvatures at the
spreading front and this faster increase in elastic energy makes nanosphere
encapsulation much less likely on long timescales [1009-1012]. Put simply,
smooth OMVs are stiffer than comparable rough OMVs and consequently,
they should be more adept at forcing host membranes around their

comparatively highly spheric surface.

It is imperative to appreciate that inferences have been made here through
comparisons with previous simulation studies. The simulation data
demonstrates that LPS lipid length affects the rigidity and shape of OMVs at
host cell surfaces and indeed, the shape of the host cell surfaces themselves.
This insight alone appears to explain the differences in the lipid-mediated

uptake of smooth and rough OMVs at host cell surfaces [664]. Previous
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calculations have demonstrated that endocytosis processes depend on the
shape and stiffness of nanoparticles at the wrapping interface. The
endocytosis energy barriers are smaller when nanospheres are stiff and
round and larger when the nanospheres are soft and non-spherical. The
molecular dynamics simulation data is enough to show that endocytosis will
be different for rough and smooth OMVs; it is easier for smooth OMVs to enter
cells via host membrane wrapping processes because they are stiffer and
rounder at host cell surfaces. But nonetheless, the stepwise perturbation of
the lipid geometries (both spherical and flat) has been extrapolated here to
long timescales and while this seems intuitively reasonable, the proposed
uptake models have not been validated outright. To reiterate, an OMV uptake
model was proposed here based on the extrapolation of molecular dynamics

simulation data rather than a model being proved to be irrefutably accurate.

Figure 53. Comparison of the smooth and rough OMVs at the plasma
membrane surface at 2 ps of simulation time. The smooth OMV retained its
spherical shape and generated moderate curvature and the rough OMV lost
its spherical shape and generated larger curvatures at the spreading front.
Sphericity is denoted here with the ¥,, symbols.

The molecular dynamics simulation study dispels the relatively common
assumption that OMVs readily pass through host membrane surfaces via
direct membrane fusion processes [52]. The molecular dynamics simulation
study demonstrated that hydrophilic headgroup width affects membrane
fusion reactions. Phospholipid vesicles had a thin hydrophilic headgroup

domain and they achieved direct membrane fusion via the formation of stalk-
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intermediate states. The OMVs had thicker hydrophilic headgroup domains
that obstructed the lipid acyl chains and this impeded membrane association
and aggregation. The distance between the OMVs and the host membranes
was appreciable throughout the simulations and this made it difficult for the
apposed bilayers to fuse at the wrapping interface. The results suggest that
OMVs enter cells more readily through host membrane wrapping processes
rather than through direct membrane fusion processes. Direct membrane
fusion pathways should not be entirely discounted but it is evident that direct
membrane fusion is not facile for OMVs. Fusion barriers seem to scale with
headgroup width and this implies that direct membrane fusion pathways are
hardly accessible for rough OMVs and even less accessible for comparable

smooth OMVs.

It was additionally demonstrated that wrapping interactions depend on
cohesion energies and the bending moduli of the host membranes. These
inferences are not only interesting because they provide important insights
for understanding OMV uptake, but also because they are corroborated by
predictions from previous theoretical publications [1010-1012]. The smooth
OMVs wrapped host membranes that contained ganglioside molecules but
these same OMVs were unable to affect the shape of single-component POPC
plasma membrane mimetics. POPC lipids do not have high intrinsic positive
curvature and the molecules do not strongly interact with pathogens and
pathogenic products. Ganglioside molecules contain different carbohydrate
headgroup moieties that both promote strong cohesion with pathogens and
at the same time, the ganglioside lipids have the capacity to lower bilayer
bending moduli (see section 1.4.4). Strong cohesion energies were generated
when the LPS headgroup moieties were interlinked with the ganglioside
molecule headgroups. The interlinking of the carbohydrate headgroup
moieties created a natural ratchet mechanism that helped to force the
membrane around the OMV surfaces. The sequestered ganglioside lipids
formed clusters that have high intrinsic positive curvature and have been
shown to promote bilayer reshaping processes [363,430,1046]. Plasma

membrane heterogeneity also impacted the membrane reshaping processes;
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the plasma membrane contained seven different lipids types and these lipids
were able to change their positions within the plasma membrane mimetic
when it was expanding into the intracellular domain of the simulation cell.
The constituent lipids changed their relative membrane position as the
bilayer shape was changing and this reduced line tension energies and
promoted additional membrane reshaping processes. For example, more PIP>
lipids moved into to the expanding inner leaflet of the plasma membrane
model when it was expanding into the intracellular side of the simulation cell.
Lipid type heterogeneity has been established as a driving force for
membrane reshaping processes in previous simulation studies [364,1057]
and it is interesting to see it demonstrated here once again in these coarse-

grained molecular dynamics simulations.

The uptake of OMVs at the host-pathogen interface appears to be multifaceted
and quite complex. Lipid composition affects the stiffness parameters of
OMVs and host membranes and at the same time, the strength of the cohesion
forces that are established between them. Furthermore, there is dynamic
lipid co-clustering within host plasma membranes that can affect how easy it
is for host membranes to wrap around attached OMVs. For clarity, the
simulation results are presented here schematically (Figure 54). The figure
affords some overarching insights that explain the interaction of the smooth
OMVs with the host plasma membrane models and this illustration provides
a more general hypothesis for lipid-mediated OMV uptake. It was
demonstrated that OMVs preferentially interact with glycosphingolipids
within host cell plasma membranes and that this interaction mediates
membrane wrapping processes. The interaction between the LPS lipids and
the ganglioside molecules is comparable to interactions between pathogenic
products (e.g. cholera and Shiga toxin) and host cell membranes and even
more similar to the interaction between pathogenic viral particles (e.g. SV40
virus) and host cell membranes [537,542,1015-1018]. Smooth OMVs initially
bind ganglioside lipid headgroup moieties and this generates a depression in
the host membrane surface that could be considered an endocytosis

intermediate [671-673]. The process transpires as unbound ganglioside
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lipids move through the plasma membrane mimetic surface and subsequently
come into contact with the immobilized OMVs. The ganglioside molecules
become trapped at the OMV contact edge and as they progressively change
the local membrane composition they affect the local energy barriers for
membrane curvature generation (Figure 54). If we extrapolate to longer
timescales we would presumably find that the host membrane would be
wrapped around much more, if not all, of the smooth OMV surface. The
precise degree of host membrane wrapping would depend on specific lipid
parameters such as flexural moduli, cohesion energies, and it would also

depend on the composition of the host membrane [1010-1012].
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Figure 54. (A) The ganglioside molecules (pink), which are confined to the
upper (extracellular) leaflet, create non-negligible stress in plasma
membranes that promotes spontaneous bilayer curvature. (B) The energy
barriers for bilayer reshaping are reduced when ganglioside molecules
aggregate and form clusters that have high intrinsic positive curvature. The
ganglioside lipid aggregates can reduce the line tension between membrane
domains of different widths due to their conical shape. (C-D) Schematic
illustrations showing how smooth OMVs affect bilayer shape and

composition. The sphingomyelin are yellow rectangles, the PIP2 lipids are
orange triangles, the cholesterol molecules are inverted green triangles and
the POPS, POPC, and POPE lipids are omitted for clarity. After simulation
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time of At there a significant number of (GM3) ganglioside molecules that
have interlinked the smooth LPS lipid headgroups (based on a 0.6 nm cutoff)
and consequently, there is a change in the local lipid composition and
bilayer curvature. (E) The abundance of ganglioside monomers and
aggregates that were detected during the last 100 ns of simulation time
when the plasma membrane mimetic was simulated without any OMVs.

The results from this chapter suggest that OMVs can be primed to fully wrap
host membranes by increasing the length and concentration of (smooth) LPS
lipids within the OMV outer leaflets. This change would increase the
mechanical strength of the OMVs and make them more prone to achieve
complete encapsulation—explaining why smooth OMVs with longer O-
antigen chains more readily exploit lipid-mediated uptake pathways in
experimental studies [664]. It can also be discerned from this chapter and
from theories of nanosphere encapsulation that the composition of the host
membranes can be changed to suppress or promote host membrane
wrapping processes [1010-1012]. Constituent membrane lipids have the
capacity to affect membrane flexural moduli, adhesion energies and
membrane reshaping processes. Ganglioside molecules promoted strong
OMV adhesion energies and they also lowered energy barriers for membrane
curvature generation. The integration of different lipid types into the host
membrane also enhanced membrane reshaping processes as intrinsically
negatively curved lipids could move to negatively curved membrane domains
and intrinsically positively curved lipids could move to positively curved
membrane domains. It is important to note that the membrane mimetics
were relatively simplistic and that additional compositional complexity
would have further impacted host membrane wrapping interactions. Changes
to the plasma membrane composition could either further promote or
impede the membrane wrapping processes. For example, integral membrane
proteins can make host membranes stiffer and also affect ganglioside co-
clustering [496,993,1026]. Stiffer host membranes that contain fewer
unconstrained ganglioside headgroups would be less prone to wrap around

attached OMVs and lipid-mediated uptake pathways would be suppressed.
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The computational study was not comprehensive and the molecular
dynamics simulations omitted molecules that could affect OMV uptake
processes e.g. membrane proteins. The simulation study does however clarify
an interesting question: why does OMV lipid-mediated uptake depend on the
cell wall architecture of parent (bacterial) cells [664]? The coarse-grained
simulations appear to address this question and thereby make some headway
in clarifying some longstanding uncertainties associated with OMV uptake
e.g. why the concentration of Filipin, cholesterol, and caveolae affect OMV
internalization? And why does LPS lipid modification affect the efficacy of
OMV vaccine adjuvants [48,52]? The experimental analyses revealed that LPS
lipid length is inexorably linked to membrane parameters that either
promote or impede endocytosis. Rough LPS lipid OMVs deformed at host cell
surfaces and smooth LPS lipid OMVs retained high sphericity. An OMV uptake
model was proposed here based on the extrapolation of molecular dynamics
simulation data rather than a model having been proved to be irrefutably
accurate. The model proposes precisely how constituent rough and smooth
LPS lipids can differently impact lipid-mediated OMV uptake processes. The
model is rudimentary and it could be refined to make it more accurate but
this does not invalidate the inference that smooth OMVs can more easily enter
cells via endocytosis compared with rough OMVs. This conclusion would be
true if the proposed uptake model is left unchanged or even if it is refined.
Here I have shown that smooth OMVs and stiffer and more round at host cell
surfaces than comparative rough OMVs and therefore we can state that it is

easier for smooth OMVs to enter into the host cell cytosol via endocytosis.

Before this chapter is concluded it is important to state the limitations of this
simulation study to legitimize the conclusions that have been made thus far.
The simulations were performed with the coarse-grained Martini forcefield,
which omits explicit atomistic detail to reduce the computational load [822].
The coarse-grained Martini molecular dynamics forcefield reduces the
number of pairwise interactions that are computed per timestep by mapping
approximately four heavy atoms to a single interaction center. The omission

of explicit atomistic interactions can negatively impact the accuracy of lipid-
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solvent interactions. For example, there is almost always less water moving
through the LPS lipid headgroup domain in coarse-grained molecular
dynamics simulations compared with comparative atomistic resolution
simulations [301,580,824]. Water is explicitly represented in united-atom
simulations as tripartite molecules that contain one oxygen atom and two
hydrogen atoms. The water molecules are small and they can fill the small
cavities that exist between LPS headgroup sugar units. Water is represented
in comparative coarse-grained Martini forcefield simulations as large coarse-
grained beads or “pseudoatoms” [799] that are less able to fill small cavities
between LPS lipid headgroup moieties. Ma et al. found that the coarse-grained
P. aeruginosa bacterial outer membrane core saccharide domain was
depleted of ~25-50% [580] water compared with target atomistic resolution
simulations. Van Oosten et al. found that another entirely distinct coarse-
grained P. aeruginosa bacterial outer membrane core saccharide section was
depleted of ~25-50% water in some sections along the bilayer normal [824].
The E. coli LPS lipid models that were used here in this chapter have been
found to be similarly depleted of water. The Re LPS core saccharide section
was found to be up to ~25-50% depleted within some parts of the core
saccharide domain and some sections of the Ra LPS core saccharide section
were up to three-fold depleted [301]. This is a serious artifact that is
essentially unavoidable in Martini coarse-grained molecular dynamics
simulations of LPS lipid membranes because hydrogen-bonded water
networks cannot be accurately mimicked using implicit coarse-grained bead

representations for water and ions [822].

The reduction in atomistic detail additionally makes it difficult to accurately
reproduce the complex conformational landscape of lipids, proteins and
other complex macromolecules. There generally tends to be satisfactory
overlap of LPS lipid conformational landscapes in comparative united-atom
and coarse-grained molecular dynamics simulations but minor discrepancies
have been observed between the two e.g. disparities in endchain
conformations [580]. Let us analyze some of this comparative conformational

data quantitatively to explicit define some differences between target
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atomistic and model coarse-grained molecular dynamics simulations. Khalid
et al. assessed the order parameters of homogeneous Re and Ra LPS lipid
membranes in comparative coarse-grained and atomistic molecular
dynamics simulations in an attempt to provide some insight into the
conformation of the comparative LPS acyl chains [301]. There was a
difference of 0.03-0.08 for the simulations with Re LPS lipid acyl chains and a
difference of 0.01-0.09 for the simulations with Ra LPS lipid acyl chains. The
LPSlipid equilibrium bond length distances () differed by no more than 0.1
nm between the comparative atomistic and coarse-grained molecular
dynamics simulations and the equilibrium bond angles (8,,) differed by no
more than 10%. The corresponding force constants (kiejk and k;;) were well
matched for the comparative atomistic and coarse-grained resolution
simulations and the bond length and angle distributions generally overlapped
to within 20%. The maximum extension of the bacterial membranes differed
by no more than 10% but there did appear to be a systematic bias throughout
and the coarse-grained LPS lipids were almost always more compressed than

the reference atomistic LPS lipids.

The implicit presentation of cations in coarse-grained simulations also affects
the accuracy of bridging interactions between Lipid A anchors. Coarse-
grained Martini calcium ions do not coordinate multiple neighbouring LPS
lipids with each other and with adjacent water molecules. The coarse-grained
ions do not connect multiple lipids and water molecules and they do not
effectively establish lamellar LPS lipid packing and a hydrogen-bonded
network that would otherwise contribute to bacterial membrane stability
[551,1058-1059]. The omission of the correct LPS lipid coordination and of
the hydrogen bond network negatively impacts the accuracy of the bacterial
membrane simulations because these interactions promote lamellar lipid

packing and membrane stability.

There were inaccuracies in domain formation and lipid segregation within
the multicomponent plasma membrane itself. It has been stated in previous

publications that sphingomyelin co-clustering is underestimated in coarse-
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grained Martini forcefield simulations relative to reference all-atom
molecular dynamics simulations and experimental data [363,993,1023]. The
conformation of the coarse-grained ganglioside aggregates must have also
been quite inaccurate in these simulations if we consider the spatiotemporal
limitations of the Martini coarse-grained forcefield [174]. Simulations of flat
plasma membranes had revealed that ganglioside co-clustering proceeds on
timescales that are not entirely amenable to conventional molecular
dynamics simulations. Ganglioside aggregation was not completely
converged even after 40 ps of simulation time [498] and simulation

timescales were even shorter here, within this chapter.

These noted conformational, hydration and lipid-solvent inaccuracies
inevitably affected the quality of the coarse-grained molecular dynamics
simulations that were performed in this chapter. It has been stated previously
that the Martini coarse-grained forcefield is generally described as being
semi-quantitatively accurate [822] and it should be expected that these
coarse-grained simulations were no more, or no less accurate. The
simulations likely produced accurate qualitative conclusions but inevitably
produced numerical data that was in some places inaccurate. In other words,
minor numerical accuracies are to be expected when simulations are
conducted with the Martini forcefield but this does not discredit the validity

of the overarching qualitative conclusions.

The use of a semi-isotropic coupling algorithm could also potentially bias the
deformation of vesicles along a specific plane of the simulation cell. Shorter
simulations (1us) were conducted with isotropic and anisotropic pressure
coupling algorithms to modulate the system pressure with alternative
simulation cell scaling schemes and thereby ensure that the overarching
qualitative conclusions were not an artifact of using inappropriate simulation
settings for the modulation of system pressure. There was approximate
asymmetric deformation of the rough OMVs about the host membrane
normal axes when either of the isotropic and anisotropic pressure coupling

algorithms were used to modulate the system pressure and the smooth OMV
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always retained its spherical shape. The use of a semi-isotropic pressure
coupling algorithm may affect the precise magnitude of the axisymmetric
OMYV deformation but the general differences in shape preservation seemed
to be invariant of the box vector scaling method i.e. isotropic, semi-isotopic,

or anisotropic.

Perhaps the most undesirable limitation is the spatiotemporal constraints of
modern computer hardware that is paired with nothing more than the
coarse-grained Martini simulation forcefield [174]. The Martini forcefield is a
relatively sophisticated coarse-grained molecular dynamics simulation
forcefield that maps a relatively low number of atoms to each coarse-grained
bead and it can be quite computationally demanding. The Martini forcefield
maps approximately four heavy atoms to a single interaction center [799] and
hence it is challenging to probe simulation timescales that exceed anything
more than a few microseconds [59,114]. Simulations were conducted here on
a microsecond timescale and this was long enough to show that rough and
smooth OMV systems have different shapes at host membrane surfaces. The
data were used to infer that this would affect OMV endocytosis processes on
long timescales but this was an inference and not something that was proved
outright. It would be necessary to use significantly more computational
resources or entirely different simulation forcefields to empirically
demonstrate that this prediction is indeed correct and that OMVs have
different endocytosis uptake efficiencies on long timescales. Comparable
simulations were performed with very low resolution solvent-free coarse-
grained forcefields and it was shown that complete endocytosis can take as
long as 500 us [1009]. Thus, alternative approaches must be used if we want
to access the larger and longer spatiotemporal magnitudes that are necessary
for proving some of the predictions that were made in chapter. The non-
polarizable coarse-grained Martini molecular dynamics simulation forcefield
[799,814] is not suitable, but other lower resolution forcefields [114,174]
could be. It is clear then that this simulation study should only be considered
as being semi-quantitatively accurate and that some of the simulation settings

were non-ideal. But based on comparisons with previous publications [1009-
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1012] and the discussions that have been made here we can conclude that the

overarching qualitative conclusions were warranted throughout.
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Chapter 6: Conclusions

6.1 Abstract

The simulations have presented novel insights that in some places
corroborate previous experimental and computational work and in other
places propose altogether new explanations for unexplained biological
phenomena. Within this chapter I discuss the overarching predictions that
were made in chapters 3, 4 and 5 and I attempt to explain how the simulation

predictions could be validated through experimental analyses.

6.2 Validating the Predictions from Chapter 5

Perhaps it is most appropriate to start with the primary focus of this thesis:
bacterial OMVs. First, it was found that the smooth OMV simulation system
surfaces were more topologically complex than the comparative rough OMV
simulation system surfaces. The LPS lipid sugars condensed when they were
simulated and they formed long approximately linear clusters that were
aligned with the bilayer normal axes (Figure 46-47). The smooth LPS lipid
headgroups projected further outwards beyond the Lipid A phosphate group
domain than the comparative rough LPS lipid headgroups. The radial height
of the rough OMV surface was relatively constant, but the smooth OMV
surface was less uniform and the radial height differed much more from one
point to another. The glycan polymer chain concentration was significantly
enriched in some areas of the smooth OMV surface and significantly depleted
in others (see Figure 46 for example). The smooth OMV simulation systems
were comparable to the CHIKV [1060-1061] and SV40 viral capsids [538-
540,1015-1016] that have some surface area noticeably enriched in

biomolecular mass and other areas noticeably depleted.
Scientists have used sophisticated electron microscopy analysis techniques

to visualize viral particle surfaces [1039-1043] and it is reasonable to think

that comparable visualization methods could be used to visualize the surfaces
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of rough and smooth OMV systems. The analyses could be used to determine
if smooth OMV system surfaces are more topologically complex than
comparative rough OMV system surfaces. Sophisticated multistep electron
cryotomography imaging analysis methods were already used by
experimental research groups to image the shape of OMVs that were
approximately 100 nm wide but the imaging methods were not precise
enough for determining how the OMV surface height varied from one point to
another [1062]. In other words, it seems that experiments have already been
conducted to analyze OMV surfaces but the analysis methods have lacked the
requisite resolution one needs to visualize differences in lipid height. There
are however, more advanced electron microscopy methods that have been
used for imaging viral particle surfaces and these methods could potentially
be applied in the future to more precisely assess OMV outer leaflet lipid
height. It is important that scientists attempt to mimic the OMV simulation
system composition as accurately as possible; there should be phospholipids
both within the inner and outer OMV leaflets. It would be beneficial for the
experimental groups to use an approximate 1:1 number ratio for the number
of LPS and phospholipid molecule in the OMV outer leaflet because they could
then make more detailed and numerous comparisons with the work from
chapter 5. Experimental publications already describe methods that can be
used to vary the OMV chemical composition and methods that can be used to
generate OMVs with a high concentration of phospholipid molecules in the

(OMV) outer leaflet; for example, see [1000,1063-1065].

Second, it was found that the simulated OMVs bind to both flat, single-
component POPC lipid bilayers and also to multicomponent plasma
membrane mimetics. The molecular dynamics simulations predict that OMVs
can adhere to either membrane surface without any action from membrane
proteins or the glycocalyx and this proposition should be relatively simple to
assess with experimental apparatus. Experimental groups can synthesize flat
lipid membrane mimetics and study how these membranes interact with
OMVs. The experimental groups can visualize the interactions of OMVs with

different biological membrane mimetics and show that OMVs do indeed bind
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different host membrane mimetic surfaces. Sophisticated microscopy
methods have already been used to visualize the interactions of viral particles
with host membrane surfaces and the experimental techniques are now well

established and replicable [1066].

The simulations also predicted that ganglioside molecules have the capacity
to enhance OMV adhesion energies when they interact with LPS lipid
headgroups. The cohesion forces immobilized the simulated OMVs and
enhanced the membrane wrapping processes. It was found that SV40
particles have comparable intermolecular interactions when they bind
supported membrane bilayers that contain relatively high concentrations of
GM1 lipids (i.e. at least 1 mol %). The SV40 virions interacted with the host
membrane ganglioside lipids (GM1) and the virus then became trapped at the
wrapping interface, wobbling back and forth with a step size of no more than
a few nanometers [1067]. This was surprising because the virions were
highly mobile when they were attached to membranes that did not include
any ganglioside molecules at all [1067-1068]. Comparable experimental
studies could be conducted to analyze the properties of OMVs at the surface
of host membrane mimetics that contain ganglioside molecules in one
instance and do not contain ganglioside molecules in another. The rates of
lateral mobility could be determined and used to understand how tightly the
OMVs were bound to the host membrane surface. Low lateral mobility
parameters would be indicative of strong adhesion energies and higher
lateral mobility parameters would be indicative of weaker adhesion energies.
If the predictions from the coarse-grained molecular dynamics simulations
are accurate then we should expect that the ganglioside-containing
membranes support stronger adhesion energies and by association, that
OMVs have low lateral mobility parameters when they interact with the

ganglioside-containing membrane surface.
Electron microscopy methods were applied in other pioneering publications

to visualize vacant space at the wrapping interface when SV40 and mouse

polyoma (mPy) viruses were interacting with GM1 lipid containing plasma
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membrane mimetics [1069-1071]. Vacant space was found to be minimal due
to the tight interlinking of the SV40 capsid proteins and the GM1 lipid
headgroups. One could use similar electron microscopy methods to analyze
vacant space between OMVs and host membrane surfaces to validate the
prediction that there is tight interlinking of the carbohydrate LPS and
ganglioside lipid headgroups. Such simple experimental insights would have
a high impact factor and they could help us to determine if OMVs can enter
cells by sequestering glycosphingolipids. This has already been shown to be
true for other pathogens and pathogenic products [368] and our current
textbook understanding of the bacterial infection process would have to be

changed if it was shown to be true for OMVs.

Third, it was predicted that plasma membranes wrap smooth OMVs and that
this creates membrane invaginations or endocytosis intermediate structures.
The simulations suggest that the wrapping interactions are mediated by
interactions between OMV LPS lipid headgroups and host cell ganglioside
lipids. Membrane curvature has been analyzed in previous experimental
studies with microscopy methods in an attempt to understand how SV40
particles interact with and perturb host plasma membrane mimetic surfaces
[1069-1071]. The experiments revealed that the SV40 viral particles can
deform lipid membrane surfaces and create tight-fitting inward bulging
“buds”. Subsequent studies revealed that the SV40 particle can further
deform host membrane surfaces and produce mesoscopic membrane
invaginations that morph into elongated membrane tubules on long
timescales [1015]. The deformed membrane domains were considered to be
endocytosis intermediates that when coupled with for example, scission
machinery, would facilitate endocytosis. Similar experiments can be
conducted to determine if smooth OMVs generate comparable curvature
when they bind ganglioside lipid containing membranes. The experiments
would confirm the hypothesis that OMV and host membrane lipid headgroup

interactions induce membrane curvature.
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6.3 Validating the Predictions from Chapter 4

The synthetic OMVs can be used to validate the primary conclusion from
chapter 4: that O-antigen chain interactions increase the mechanical strength
of Gram-negative bacterial membranes. OMVs can be created with smooth
LPS lipids in one instance, and with rough LPS lipids in another [1000,1063-
1065]. Experimental analysis techniques could be used to quantify the
strength and durability of the comparative vesicle systems. Comparable
studies were conducted to assess the strength of ordinary phospholipid
vesicles relative to grafted lipid composites that included for example,
polyelectrolyte complexes or amphiphilic block copolymers. Experiments
were performed to assess vesicle stability during blood circulation [1072]
and to quantify mechanical stability under pH shock [1073-1074]. Membrane
durability was similarly assessed in other experimental works by measuring
shelf stability and the tendency, or lack thereof, to resist rupture and fusion
processes [1072,1075]. Mechanical strength has even been analyzed by
quantifying the loading rates of drugs and the rates of drug uptake for single-
component lipid vesicles and comparative grafted lipid vesicle composites
[1001-1002]. Scientists can systematically assess if LPS O-antigen chains
affect membrane mechanical strength by replicating these experiments with

synthetic rough and smooth OMVs.

6.4 Validating the Predictions from Chapter 3

Validating the predicted interactions of the PMB1 peptides with the inner and
outer Gram-negative bacterial membrane mimetics is expected to be more
challenging because scientists would have to evaluate interactions that occur
on smaller spatiotemporal scales. Chapter 3 made predictions for small-scale
biomolecular processes that in some instances, affected no more than just a
few lipids. Here we will first consider the interactions of the PMB1 peptides
with the Gram-negative bacterial inner membrane mimetic and for reference,
this membrane contained PE and PG lipids in a 3:1 number ratio. It was found

that the simulated PMB1 peptides reduced membrane thickness metrics
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when they were interacting with the PE and PG phospholipids but
importantly, it was also found that this effect dissipated rapidly with distance
from the PMB1 peptides. United-atom and all-atom molecular dynamics
simulations already corroborate the conclusion that antimicrobial peptides
can thin lipid membranes [328,1076-1077] but this effect is significantly
more challenging to prove irrefutably through experimental analyses. Bilayer
thinning tends to be highly localized in molecular dynamics simulations and
the molecular dynamics simulations are generally conducted on relatively
short nanosecond or microsecond timescales. Since conventional analytical
techniques generally lack the spatiotemporal resolution that one needs for
validating highly localized membrane damage directly, it is preferably to infer
thickness change through measures of for example, membrane permeability.
Electrochemical techniques (e.g. cyclic voltammetry [1078]) can be applied
to analyze membrane thickness and bilayer indentation, both before and after
interactions with AMPs. Cyclic voltammetry experiments revealed that
polymyxin B peptides affect the shape and stability of supported renal
membrane mimetics [728]. Comparable experiments could be conducted to
analyze the properties of the Gram-negative bacterial inner membrane
mimetics before and after interactions with PMB1 peptides. Noticeable
increases in water permeability would be indicative of membrane thinning or

bilayer indentation processes.

It was also predicted that cationic AMPs (here PMB1 peptides) would
preferentially interact with anionic lipids (here PG phospholipids) and this
prediction is already corroborated by previous atomistic and coarse-grained
molecular dynamics simulation studies [270,281-283,286]. The simulation
studies demonstrated thatlinear and helical AMPs have the capacity to induce
the formation of negatively charged lipid nanodomains when the positively
charged AMP residues interact with negatively charged lipid headgroup
moieties. Analytical experimental techniques (circular dichroism, infrared
spectroscopy, NMR etc.) have been used to corroborate these conclusions and
they have shown that positively charged AMPs preferentially interact with

negatively charged lipids in bacterial membrane mimetics and that these
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processes enhance lipid demixing processes and additionally promote the
formation of anionic lipid (e.g. PG and CL) nanodomains [275-276,1079-
1081]. Comparable experimental techniques could be applied in future
studies to evaluate the interactions of PMB1 peptides with the surface of
Gram-negative bacterial inner membrane mimetics. The work would not only
validate inferences made in chapter 3 but also substantiate hypotheses for
various AMP-induced bilayer breakdown pathways being instigated by initial

lipid demixing effects.

Other interesting experimental methods such combinations of neutron and
X-ray reflectometry, and X-ray diffraction with Brewster angle microscopy
could be used to assess the interactions of PMB1 peptides with the outer
membrane models. Comparable techniques were used by Lakey et al. to
assess the organization of lipids in supported LPS monolayers when they
were subjected to applied surface pressures; starting with low values and
ending with higher magnitudes [121]. Area per phosphate and LPS
coordination numbers were evaluated as the LPS monolayers transitioned, as
a stress response, from a fluid state to an ordered crystalline phase. By using
similar procedures to analyze rough (Re) LPS leaflets, both before and during
interactions with PMB1 peptides, we could systematically assess the lipid
modulating effects of the PMB1 peptides on LPS lipids. Readers should note
that PMB1 peptides tend to displace stabilizing cations at the LPS Lipid A
phosphate plane domain and this process can induce bilayer rupture
processes [130,243,1082]. The destabilizing interactions could make it
challenging to test the LPS phase modulating properties of the PMB1
peptides. It might be necessary to use LPS chemotypes whose glucosamine
sugars were modified to decrement favourable electrostatic interactions
between attached LPS phosphate groups and PMB1 Dab residues [726]. Such
a setup would ensure that the PMB1 peptides can interact with LPS
membrane lipids for a longer amount of time before there is any appreciable
loss of membrane structure. Single-particle trafficking procedures could also

be used to assess LPS diffusion constants [1083]. Scientists could use these
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methods to determine LPS lipid diffusion constants before and during

interactions with PMB1 peptides.

It is important to emphasize here that these suggestions are restricted by a
personal lack of expertise with biophysical analysis techniques. Experimental
groups are much more knowledgeable of advanced experimental tools and it
is hoped that readers will be able to design more appropriate experiments for

testing the predictions that were made in this thesis.
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