UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Institute of Sound and Vibration Research

Vibration measurement and control of planetary gears

by

Kolade Abiola Olanipekun

Thesis for the degree of Doctor of Philosophy

June 2019






UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
Institute of Sound Vibration Research

Thesis for the degree of Doctor of Philosophy

Vibration measurement and control of planetary gears
by Kolade Abiola Olanipekun

Planetary gears are widely used in many applications such as power transmission in automotive
vehicles, aircraft, turbines, power screws etc. They are different from parallel shafts gears because of
their compactness, better load-carrying capacity etc. These advantages do not restrict them from
vibrating during operation. This research work focuses on their mathematical modelling, vibration

measurement and control.

Mathematical modelling was done in order to predict the free and forced vibration responses of a
planetary gear comprising different numbers of up to six planet gears. Two coordinate systems were
used namely fixed and rotating frames of reference. It is shown that the same natural frequencies can
be obtained using either a fixed or rotating frame of reference, but on the condition that the carrier
speed is set to zero when using a rotating frame of reference. Furthermore, the effect of the carrier
speed on the natural frequencies were investigated using a rotating frame of reference on a four-planet
model. It shows that only the natural frequencies of the translational modes are either increasing or
decreasing, the natural frequencies of the rotational and planet modes remain significantly unchanged.

Both the predicted and experimental results were compared, there is a certain level of agreement.

Spinning vibration experiments were conducted in order to determine the effect of various loads at a
constant speed, and various speeds at a constant load on the natural and mesh frequencies of a
planetary gear. This was achieved with the use of MEMs accelerometers which were mounted and
rotate with the system to measure the vibration of a carrier, sun and planets. A further investigation
identified the principal source of vibration in the planetary gear train during operation considering
different loads and speeds. A Principal component analysis (PCA) was employed to identify the

principal vibration sources.

Finally, a method of active vibration control called pole placement was used to shift the poles of the
system theoretically in order to mitigate vibration. This was done to prevent resonances which may
occur if the frequency of the synchronous vibration or mesh frequency coincides with any of the
system natural frequencies. Poles were assigned to the carrier and sun gear for different scenarios and

subsequently assigned simultaneously to them. Some of the poles of the translational modes whose



vibration can be very severe were shifted, the poles corresponding to the rotational modes remain

unchanged.
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Chapter 1 Introduction

Planetary gears are widely used in many applications such as power transmission in automotive
vehicles, helicopters, turbines, aircraft engines, tractors etc. A typical planetary gear train comprises a
carrier, ring, sun and planet gears. The carrier, ring and sun gears are referred to as the central
members and any of them can be made an input or output member. This is one of the advantages over
a parallel shaft gear because different speed ratios can be obtained by simply changing the input and
the output member while the remaining central member is kept stationary [1]. Another better
comparative advantage over a parallel shaft gear train is that the load is transmitted by several
contacts of the tooth surfaces (i.e. a good load distribution). Also, the arrangement of the shaft leads to
a compact layout. These features bring about versatility in their applications, especially in the
transmission system of an automobile. In most cases, the planetary gear system may be either spur or
helical gear. Spur planetary gears are frequently used in heavy machines, while the helical planetary
gear (which is relatively quieter and more durable because of gradual engagement of the teeth) are

used in automatic transmission systems.

However, in planetary gears there can still be vibration and noise due to dynamic overload, backlash,
fluid entrainment, friction, gravity as in the planetary gear of a wind turbine [2], variation in the
stiffness of teeth contact surface [3], as well as transmission error. Many research studies have been
carried out on vibrations of gears [4], because of the wide applications, which includes torque and

power transmission in numerous machines as mentioned earlier.

In most cases, the vibration of parallel axis and planetary gears are measured on the casing because
typical available accelerometers cannot rotate with the system. A filtered response of the original
vibration signal with a significant noise contamination is measured by an accelerometer externally
mounted on the casing [5]. Therefore, fault detection in the system may not be easy especially in the
time domain. In this case, signal separation techniques like time synchronous averaging (TSA) may
be employed to identify the fault in the components. TSA makes it possible to isolate a component
signal from noise or any unwanted signal [6] measured from the gearbox. (Abhinav et al [5] stated
that although fault can be identified from TSA signal but such a fault must be associated with gear
teeth). If there is a crack on the carrier, TSA will not work well according to Abhinav et al. [5]. This
is because there is the possibility that the resonance frequency that will show the fault due to the crack
has been isolated because it is not synchronised with the carrier speed. Therefore, they proposed a
method known as Complex Morlet Wavelet to extract a useful signal from the raw signal. Some

researchers like Jong et al. [6] used a method known as Autocorrelation-based TSA to solve the



problem associated with the conventional TSA used in condition monitoring of planetary gearboxes of

wind turbine.

1.1 Description of an epicyclic gear and types

For a proper understanding it is essential to describe an epicyclic gear and discuss the three possible
types. Planetary gear train, which is also known as epicyclic gear, comprises a sun gear which rotates
about a fixed axis, planet gears which rotate about their axis and revolve around the sun gear like the
planets orbit around the sun in solar system. A carrier serves as a link between two or more planet
gears with revolute joints at the centre of the planets and there is a ring gear, which has internal teeth
arrangement, which meshes with the planet gears.

The various types of planetary gears depend on which member is fixed and this in turn determines
their speed ratios considering the input and the output member. The three configurations or naming

descriptions are: planetary type, solar type and star type.

(1) In the planetary type, the input gear may be the carrier while the output is the sun gear or vice
versa. The ring gear, which has internal teeth, is stationary and meshed with the planet gears which

are also moving in an epicyclic motion around the sun gear (Figure 1-1).

=

Figure 1-1 Schematic diagram of planetary type of epicyclic gear with a stationary ring gear.
The carrier, ring, sun and planet gears are denoted by c, r, s and p respectively.



(2) In the solar type, the sun is fixed, the input gear may be either the ring or the carrier, and the same

thing is applicable for the output (Figurel-2).

0,

Figure 1-2 Schematic diagram of solar type of epicyclic gear with a stationary sun gear. The
carrier, ring, sun and planet gears are denoted by c, r, s and p respectively.

(3) In the star type, the sun and the ring are moving while the carrier is fixed. In this latter case, the
planets gears rotate about a fixed position without revolving around the sun gear. This makes the gear

system behave like an ordinary gear train, thereby the planet gears act like idlers (Figure 1-3).

Q
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Figure 1-3 . Schematic diagram of star type of epicyclic gear with a stationary carrier. The
carrier, ring, sun and planet gears are denoted by c, r, s and p respectively.

The carrier, ring and sun gears share the same axis as shown in Figures 1-1, 1-2 and 1-3. The
configuration is more flexible than that of a parallel shaft gear. The CAD model of a typical planetary

gear test rig for this research is as shown in Figure 1.4 where the main components are the carrier, sun



gear, two planet gears, sun shaft, carrier shaft, the frame, the bearing supports and the fasteners. The

particular detailed CAD model for the study was developed for manufacturing some required parts of

the test rig for the purpose of vibration experiment and control.

1.2

Sun

Ring
Carrier support

Sun support bearing

bearing

Sun shaft

Carrier shaft

Carrier

Planet

Figure 1-4 CAD model of a planetary gear test rig.

Transmission error

Transmission error is the main source of excitation [7] which was considered in this study as the

external excitation. It is defined as the distance between the actual position of the output gear and the

position it would occupy if the gear drive were perfect. This implies that for no transmission error, the

speed ratio of the mating gears remain constant throughout the cycle of meshing i.e. from approach to

recess [8].

Transmission error may also be expressed as the angular or linear displacement that occurs at the

pitch point of meshing gear teeth [9]. The phenomenon of transmission error is caused by gear

eccentricity, geometrical errors in the tooth profile, wrong positioning of the bearing in the housing,

misalignment of shafts, deflection (e.g. contact deformation at the mesh region, deflection due to

bending of the gear teeth, shaft deflection) and geometrical modification (such as tip and root relief)
in the tooth profile [9].



Figure 1-5 Transmission error in gears.

In Figure 1-5, the driving gear is assumed to be rotating at constant angular velocity ©; while the

angular velocity of the driven gear is Q,. Therefore, the transmission error, €, in terms of angular

displacement is:
69 = eact - gth (11)

where, 6, and 6y are the actual and theoretical rotational displacements of the driven gear

respectively. Therefore,
89 = gact - ta (12)

In terms of linear displacement at the line of contact or pressure line;
e, = roo (1.3)

Where 1 is the time taken from the initial position of the driven gear to the current position and 66
is the angular transmission error. Transmission error can also be determined in terms of linear
displacement by multiplying the above terms with radius, r of the base circle of the output gear as

written in equation (1.3).

1.3 Methods for controlling gear and rotor vibration

Vibration in planetary gears hinder their performance in assembled machines, so there is a need to
suppress vibration because of the adverse effect. There are two main methods of vibration control for

gears and rotors namely; passive vibration control and active vibration control.



Passive vibration control involves changing the physical properties of the planetary gear system,
typically by design in order to reduce vibration. There are many methods of controlling the vibration
of planetary gear using passive modification methods. Tooth profile modification is an example but it
is not guaranteed that vibration will be controlled as desired [10]. Other ways of reducing gear
vibration passively can be achieved by introducing damping elements, mesh phasing and increasing
the contact ratio by reducing the pressure angle or increasing the height of the tooth. Also, some
researchers in their work [4] and [11] have shown that some particular instabilities due to parametric
excitation (which is another major causes of instabilities in gear train) can be reduced by certain
conditions of the mesh phasing, which involves a proper selection of design parameters (like contact
ratio) and teeth configuration so that there would be a balancing of the net forces on the meshing teeth.
Passive vibration control techniques according to Fuller et al. [12] are mainly effective at high

frequencies.

Active control involves changing the dynamics of the system by the application of typically control
forces using actuators at some positions to counterbalance the effect of the excitation force (or
external disturbance causing the vibration). Active vibration control for rotating systems are of two
categories: direct active vibration control technique in which a control force is applied to the rotor
directly and active mass balancing technique in which the mass distribution is adjusted by a mass
redistribution actuator which is mounted on the rotor [13]. There are some studies where a
feedforward control strategy was used to control vibration in a single stage spur gear. Dogruer and
Abbas proposed a nonlinear controller with feedforward loop such that the input torque acting on the
driving gear can be adjusted. Thus the periodic change in mesh stiffness can be cancelled by a

feedforward loop.

1.4 Scope of the research and questions

The scope of this research is to advance the vibration control of a planetary gear based on the dynamic
modelling and analysis carried out by Parker et al [14]. First and foremost the dynamic modelling
using a fixed and rotating coordinate system were used to analyse a planetary gear system. The results
were then compared considering both frames of reference. Modal analysis was carried out to
determine the natural frequencies of the system which helps to identify the modes excited in the
spinning test. Vibration source identification was carried out using the signal acquired from the

spinning test.

In this study, active control by pole placement method was used considering numerical
demonstrations to shift the pole of the planetary gear system to avoid resonance which may lead to

damage of the system. A feedback loop was typically considered because its signal can be adjusted to
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achieve desired result. To achieve this, the models in both frames of reference were subsequently

extended to derive a vibration control law developed by Mottershead et al. [15] using pole placement

in order to analyse and numerically predict the modified response of planetary gear system.

The research questions are:

1.5

What is the difference between the results of analyzing a planetary gear model using
a fixed and rotating frame of reference? The frequency response and modal damping
were considered at different rotational speed of the rotating frame of reference.

What are the effects of loads and rotational speed on the dynamic response of a
planetary gear system?

Would there be the sidebands in the frequency spectrum of a planetary gear measured
by a rotating accelerometers like the stationary accelerometers?

Can the principal source of vibrations in a planetary gear system be obtained from the
synchronized vibration signal measured from the individual component?

Assuming the control force required to achieve vibration control was predicted using
a rotating frame of reference what will be the equivalent force using a fixed frame of
reference?

Where is the optimal location to apply a control force in a planetary gear train?

Aim and objectives of the research

The aim of this research is to model, measure and control the vibration of a planetary gear system.

The main objectives are:

To model a planetary gear system analytically, in order to determine its natural frequencies
and mode shapes in the free vibration case using both fixed and rotating coordinate systems.
To compare the natural frequencies obtained using a fixed coordinate system with those of
rotating coordinate systems especially at high rotational speeds.

To predict the effect of the speed on the resonance frequencies and modal damping ratios of
the system using a rotating coordinate reference system.

To design and develop a suitable experimentally based physical model of a planetary gear
system test rig for the purpose of measuring the vibration of carrier, sun and planet gears
during operation individually. In this case, there is no need to use a slip ring with
instrumentation to measure the vibration of the components. Also, there is no need to use any

complicated signal separation techniques to know which component is faulty in the system.



e To perform modal testing on the physical model developed in order to compare the results
obtained with predictions from the analytical model.

e To determine the effect of the load and rotational speed on the dynamic response at the mesh
and natural frequencies of the system.

e To identify the principal source of vibration in a planetary gear using a method known as
Principal Component Analysis (PCA). The relationship between the physical sources would
be considered.

e To numerically implement the methods of active vibration control by pole placement in order
to mitigate the vibration of a planetary gear.

e To determine the optimal place to put a control force in a planetary gear by comparing the
control efforts obtained when a control force is applied either on the carrier or on the sun

gear.

1.6 Outline of the thesis

Chapter 1 of this thesis gives a brief introduction covering the areas of applications of planetary gears
and its advantages over parallel shaft gears. Despite the advantages, some causes of vibrations in
planetary gear system were mentioned with most emphasis on transmission error which is one of the
main causes of vibration. The methods of vibration control of rotors and gears are briefly discussed.
Also included in this chapter are the aim and objectives of the study, significance, scope and the
outline of the thesis. Lastly, the contributions of the study to knowledge were highlighted.

Chapter 2 focuses on the review of recent relevant and applicable literature associated with dynamic
and finite element modelling and analysis of gears especially planetary gears. Also, some literature is
reviewed for theoretical modelling and vibration experiments of planetary gear, vibration spectra
analysis, vibration control of gears and vibration source identification. Finally in this chapter, the

workdone in this thesis is briefly discussed.

Chapter 3 involves the dynamic modelling and analysis of planetary gear models comprising from
two up to six planet gears. The results of the analysis were compared in each case using both fixed
and rotating frames of reference. Parker’s parameters are used for simulations in this chapter to see
that the analysis is correct, by comparing with the results in his published paper. The results are

compared and a few differences identified were discussed.

Chapter 4 deals with the design and construction of a test rig, estimation of planetary gear system
parameters required for subsequent natural frequency and frequency response predictions using a

rotating frame of reference.



Chapter 5 focuses on the comparison of the predicted and measured behaviours of an experimental
planetary gear when it is nonrotating. The measured behaviour is achieved using modal testing and
analysis. Also, the mesh force is predicted at the mesh frequency using the dynamic model of the

planetary gear.

Chapter 6 focuses on the spinning or rotating test, where the effect of different loads and rotational
speeds on the dynamic response of the system at natural and mesh frequencies are investigated. Also

investigated is the vibration source in the system over a particular frequency range.

Chapter 7 focuses on the modelling and numerical analysis using active control by a pole placement
method. This is done using both a fixed and rotating frame of reference. The optimal location to apply
the control force was also determined, by comparing the control effort when control forces are applied

on the carrier and sun in the translational directions.

Chapter 8 deals with the general conclusions and suggestions for future work.

1.7  Contributions to knowledge

1. The study has extended an already existing theoretical model using a fixed and rotating
coordinate system to analyse and predict the dynamic response of planetary gears. The effect
of a high rotational speed on the results predicted using a rotating frame of reference was
investigated on the frequency response and modal damping.

2. Design and construction of a suitable planetary gear vibration test rig, which can
accommodate wireless MEMS accelerometers that can rotate with the system. This makes the
measurement of the carrier, sun and planet gears possible without using any signal separation
technique.

3. Estimation of sun-planet and planet-ring mesh stiffnesses dynamically using error
minimisation method which is simpler than the existing methods.

4. Investigation into the effect of load and rotational speed on the dynamic response of the
carrier, sun and planet gears during operation. The natural and mesh frequencies are the
frequencies of interest.

5. ldentification of the vibration sources over a particular frequency range in a planetary gear
system.

6. The theory of active vibration control by pole placement was extended to formulate a control
law using both fixed and rotating frames of reference. The control force required using a
rotating frame of reference was determined, and its equivalence was evaluated using the fixed

frame of reference for numerical implementation.



7. The optimal location to apply control forces was investigated by comparing the control effort
required when a control force was applied to the carrier and sun in the two orthogonal
directions.

1.8 Significance of the research

The significant results or potential applications of this research amongst others are as follows:

e The vibration level of each component can be measured individually, hence there is no need
for any signal separation techniques like when measured on the casing.

e Reduction of vibration induced failure and noise in planetary gears.

e Increment in life span for planetary gears.

e Ensuring safe, smooth running and productive operation of the mechanical systems where
planetary gears are components e.g. wind turbine, automobile systems, helicopters etc.

e Prevention of breakdown due to planetary gear vibration in mechanical systems where the
planetary gear train is one of the components and reduction in maintenance cost of the
system.

e If vibration is reduced to a certain acceptable limit, noise which can cause passengers’

discomfort (for example in a vehicle or aircraft) would also be reduced.

The next chapter will focus on review of relevant and applicable literature to gather more useful

information for the study. This will also help to identify knowledge gaps.
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Chapter 2 Literature Review

There are some existing analytical models for planetary gears, where for vibration control only
passive modification was considered after determining the natural frequencies and mode shapes.
Publications covering active methods of control for these systems are scarce. This literature review
mainly covers the dynamic modelling, vibration measurement, principal component analysis and

vibration control of planetary gear system.

2.1 Dynamic modelling using linear models

The reason for dynamic modelling of planetary gear system depends on whether the aim of modelling
would be noise reduction or vibration control. In the 1920s and early 1930s, effort was made to
determine the dynamic load on gear teeth by both dynamic analysis (i.e. mathematical modelling) and
experiments [16]. Lumped parameter systems were adopted for most of the dynamic models at the
time. The meshing gear teeth have stiffness without mass, while the masses i.e. the gears are

considered to be rigid.

Kahraman [17] proposed a simplified purely torsional model of a single stage planetary gear system
where he derived closed form expressions for the torsional natural frequencies. He stated that the
expression may be a useful tool in designing planetary gear systems. The natural modes from the
simplified torsional model were compared with predictions from a more complicated transverse-
torsional model. He stated that a pure torsional model can be used in many practical situations to
predict the natural frequencies of a planetary gear train as required by gear designers. In the case of a
transverse- torsional model, he stated that a more general and accurate means of modelling gear sets

can be achieved.

Kharaman [18] also developed a three dimensional model of a single-stage planetary gear train with
helical gears. The dynamic model takes into consideration the six rigid body motions of the ring, sun,
planet gears and the carrier. The generic nature of the formulation permits any number of planet gears
to be analysed such that they can be equally or unequally spaced around the sun gear. The natural
modes are obtained by solving a derived linear time-invariant equation of motion. The model was also
used to determine the forced vibration response, considering a static transmission error as external
disturbance. The effect of planet mesh phasing on the dynamic behaviour of a four-planet model was

described using such a model.

Analytical models of planetary gear with equally spaced planets were developed and used to

determine the eigensolutions, which characterise the unique behaviour of the system for the linear
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time-invariant case [14]. Three degrees of freedom (radial, tangential and rotational co-ordinates)
rigid body models were adopted in the two dimensional plane. A rotating coordinate system attached
to the centre of the carrier was used for the analysis with an assumption that the bearing stiffnesses are
isotropic. The model includes some key factors (i.e. time-varying stiffness and Coriolis terms) which
may affect the vibration of the planetary gears. Free vibration was considered neglecting the Coriolis
terms and the vibration modes were classified into translational, rotational and planet modes (where
for the latter only the planets are moving) [14]. The free vibration response obtained was as a result of
the equal spaces between the planet gears. In this case, six natural frequencies have a multiplicity of
one for the rotational mode in which there is no translation of the centre members (carrier, ring and
sun gears). There are another six natural frequencies with multiplicity of two for the translational
mode, where there is no rotation of the centre members while the natural frequencies with multiplicity

of three were associated with planet mode, where only the planet gears are moving.

Removing the restriction of equal spaces between the planets, the dynamic response of planetary gears
with unequal spaces were investigated by Lin and Parker [19].They discovered that the response of
the planetary gear system with equally spaced planet gears was different from that of unequally
spaced planet gears because of the loss in the cyclic symmetry. In this case, the planet mode, as
described earlier, does not change as a result of the change of location of the planet gears. In the case
of rotational modes, there is a coupling between the rotational and translational modes; therefore, the
unique properties of the mode cannot be identified. The translational mode lost its degenerate form

because of the loss of cyclic symmetry in the system.

The simple and single stage model used by Lin and Parker in [14] was extended to a compound and
multi-stage planetary gear model. The natural frequencies and the normal modes obtained in this
extended model show that the structure of the vibration modes are the same as in the previous model,
which has equally spaced planets, and it also retains this well-defined structure for diametrically

opposed planets [20].

Lin and Parker [21] investigated the parametric instability in planetary gears where the mesh stiffness
of the teeth varies with time. The model used for this investigation is the same as the one used in [14]
only that the translational coordinates were ignored. The analysis revealed that parametric instabilities
occur as a result of the closeness in the values of the harmonics of the mesh frequency and particular
combination of natural frequencies of the planetary gear. General expressions were derived, which
permit the reduction of particular parametric instabilities by careful selection of design parameters

like the gear ratio and mesh phasing.
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The sensitivities of the planetary gear natural frequencies and modes of vibration to some design
parameters (like component masses, mesh stiffnesses, operating speed and second moment of masses)
were studied by Lin and Parker [22]. Their research considered both the planetary gears that are
symmetrical (i.e. cyclically tuned) and unsymmetrical (which are not tuned). Considering the tuned
planet arrangements, the sensitivity of the natural frequency to the operating speed was determined in
order to know the contribution of Gyroscopic effect. It was discovered that the natural frequencies of
the rotational and planet modes are not sensitive to the operating speed, while the sensitivity of the
natural frequency of the translational mode to the operating speed increases with the inertia of the
component and decreases with the stiffness of the system. Also, rotational modes do not depend on
the transverse support stiffnesses and masses of the centre gears and carrier. Translational modes
likewise do not depend on the torsional support stiffnesses and inertia of the centre gears and the

carrier.

Chaari et al. [23] developed a mathematical model using a fixed frame of reference which took into
account the driving unit (torque of the motor), transmission and load. They were included in the
model because of some applications like wind turbines where variable loads leads to variations in the
transmission speed and eventually the mesh frequency. The dynamic response was computed and it
shows a relationship between the level of the vibration amplitude and load magnitude; as the load
increases, the level of vibration increases. The study is mainly applicable in modelling of wind

turbines which operates under a highly non-stationary condition.

An additional feature present in planetary gears can be due to friction effects in the teeth meshing or
indexing errors. These have been considered previously for spur gears. Howard et al. [24] presented a
method by which a sliding frictional force can be incorporated in between the meshing teeth of a
dynamic model of a meshing spur gear and this was reflected in the equation of motion. The aim was
to determine the effect of friction on the resultant vibration of the gear case. It was shown in the study
that the inclusion of frictional forces in the model resulted in additional six degrees of freedom which
are perpendicular to the pressure line. They also used Finite Element Analysis (FEA) to model the
tooth stiffness in order to determine the variation of the mesh stiffness to tooth crack. It was stated
that a crack decreases the stiffness of the tooth, therefore the speed of the input shaft fluctuates (i.e.

increasing and decreasing) because the other teeth have not experienced cracking.

Inapolat et al. used a transverse-torsional model to investigate the effect of indexing errors (i.e.
deviation of any tooth flank from its theoretical position with respect to reference tooth flank) on the
dynamic response of spur gear [25]. In this case, a long-period quasi-static transmission error caused

by indexing error was considered to be the source of primary excitation. Two cases were investigated
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for gears having deterministic and stochastic indexing errors. The dynamic responses of the gear pair
for the two cases were compared thereafter to that of spur gear pair with negligible indexing errors. It
was concluded that the deterministic indexing errors increase the dynamic response of a gear during a

limited number of mesh cycles while the stochastic indexing errors show a larger broadband response.

2.2 Dynamic modelling using nonlinear models

Modelling and analysis was carried out by Parker and Guo [26] for a planetary gear set with tooth
wedging (also known as tight meshing of the teeth mainly caused by gravity and bearing clearance
nonlinearity) in order to determine its response. The planet bearing forces in relation with the
nonlinear behaviour of tooth wedging were analysed. It was concluded that tooth wedging, which can
cause bearing failure, increases the bearing forces in the planetary gears and also destroys the load
sharing characteristics among the planets. It was also concluded that the phenomenon of tooth
wedging may be likely to occur in planetary gears which have heavy elements.

Nonlinear dynamic response of a planetary gear was investigated by Guo and Parker [27] with a
lumped parameter model which was developed considering bearing clearance, variation in the gear
mesh stiffness and teeth separation. The forced dynamic response was determined by a harmonic
balance method with arc length continuation and the stability was analysed by Floquent theory. It was
concluded that the input torque can be used to reduce partially some of the nonlinear occurrences,
such as jumps which are nonlinear, hardening effect arising from changes from bearing non-contact to

contact and softening effect due to teeth separation as a result of the bearing clearance.

Farshad et al., [28] present a brute-force optimization method on the tip relief, which is a tooth profile
modification in order to reduce vibration of the planetary gear. A nonlinear dynamic model was used
for the investigation and optimal radius and amplitude were determined after determining a number of
possible solutions. The method presented was said to be useful in reducing chaotic vibration in

planetary gear systems.

Bahk et al. [29] investigated the nonlinear dynamic behaviour of planetary gears with equally spaced
planets, using analytical and numerical methods over a range of frequency. Perturbation analysis was
used to determine the closed-form approximate solution of the dynamic response. The analytical
solution revealed that the tooth separation, which causes nonlinear occurrences such as jump
phenomena and subharmonic resonance, occurs even when the torque is large. The solution obtained
from the perturbation analysis were confirmed by the harmonic balance method with arc-length
continuation, while the finite element and numerical integration simulations were used to validate the

results obtained from the perturbation analysis and harmonic balance method.
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Kharaman [30] investigated load sharing characteristics of planetary gear transmission using a
nonlinear-time varying lumped parameter model, which can incorporate an arbitrary number of
planets. The model developed can accommodate problems like manufacturing errors and parametric
excitation due to multiple variations in the mesh stiffness. The dynamic load sharing factor (which is
the ratio of the actual dynamic load to the ideal static load) was predicted using the model and the
effect of manufacturing error like pinion run-out error on the dynamic load sharing factor was
identified.

2.3 Finite Element Modelling

The effectiveness of planet phasing on vibration reduction at some harmonics of the tooth mesh
frequency was examined by Parker et al. [11]. For this method a dynamic finite element and contact
mechanics simulation model was used to demonstrate the phasing phenomena considering the systems
with equally spaced planets and unequally spaced planets as well as diametrically opposed planets. It
was concluded that there were reductions in some particular resonances due to a coincidence between

the natural frequency and some harmonics of the mesh frequency.

The vibration behaviour of a high-speed planetary gear system was studied by Zhaoxia et al. [31].The
study considered the parameters like bearing support stiffness and mesh stiffness as well as the effect
of mass eccentricity on the planetary gear system. Also, they derived formulae to determine the
modal kinetic and strain energies for different modes of vibration at their corresponding frequencies.
The kinetic energy calculated was a parameter used to determine the effect of the mass properties on
different frequencies. It was concluded that for the rotational mode, the bearing support stiffness has a
negligible effect on the centre gears (i.e. carrier, ring and sun gears) and their masses do not have an
effect on the mode shapes. For the translational mode, the moment of inertia of the centre gear is

insignificant.

The nonlinear dynamic behaviour of a pair of spur gears was obtained by a combination of finite
element and contact mechanics analyses over a wide range of operating speed and torque [32]. The
mesh forces were calculated by contact analysis at each step of time when the meshing gears are
rotating. In this case it is no longer necessary to assume that the sources of external excitation may be
parametric excitation and static transmission error or one of them. Two models each comprising a
single degree of freedom were studied, the results obtained from one of the models show good
agreement with the results obtained from the finite element analysis while the other does not show a
good comparison with the experiments. The source of the nonlinear behaviour was stated to be a loss

of contact of the meshing teeth.

15



The effect of errors due to manufacturing of planetary gears was characterised by Cheon and Parker
by performing a dynamic analysis using a hybrid finite element method [33]. Errors in the centre
gears and carrier were considered as well as their effects on the critical stress on the tooth, bearing
forces and load sharing ability. The parameters considered are tooth thickness, run-out error and
position error, because they are very common in the manufacturing of gear systems with respect to
tolerance control. The most important error that affects the dynamic characteristics like critical stress
on the tooth, bearing forces and load sharing capability were discovered to be the indexing error for
the planet assembly and run-out error for the planets.

2.4  Theoretical and experimental planetary gear vibration frequency
analysis

An understanding of planetary gear vibration spectra is very important and useful to detect any fault
in the system. The measured vibration spectra from a planetary gearbox is more complicated than that
of a parallel axis gear box [34] . For instance, a symmetric or asymmetric modulation sideband can be
seen in the vibration spectra of a planetary gear due to the carrier rotation but it is not common in the

measured response of a parallel axis gear [35].

The explanation of the cause of the asymmetry in the modulation sidebands for planetary gear mesh
vibrations was given by McFadden and Smith [36]. Sidebands are seen in the planetary gear vibration
spectra because of the movement of planet gears and it occurs at the mesh frequency plus or minus the
planet pass frequency. The planet pass frequency is the product of the rotational speed of the carrier
and the number of planet gears in the system. In their study, they proposed a model to explain the
asymmetry in the sideband with respect to the relationship between the vibrations produced by each
planet gear as they move relative to the location of the accelerometer. They showed that the motion of
a single planet gear past an accelerometer on a gear casing or a stationary ring gear produces a
symmetrical sideband about the mesh frequency. They concluded that asymmetry in the sidebands are
caused by different phases produced by different planets, because they have different phase angles
relative to the first planet. They compared the predictions with measured spectra for three different

epicyclic gearboxes and correct spectra were obtained.

Mosher [34] developed a planetary gear vibration model in order to explain some characteristics of
the vibration spectra. The model predicts vibration at frequencies that are integer multiples of the
planet spacing repetition frequency at gear mesh harmonic frequencies and their sidebands. The
predictions by the model were compared to the measurements from a real helicopter transmission

during flight. It shows, from the vibration measurements, that the model predicts the frequencies of
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large amplitude components to the tenth gear mesh harmonic. However, the frequencies do not match

around the higher gear mesh harmonics.

A wavelet transform based methodology for extracting and analysing useful features of planetary gear
vibration data was suggested by Abhinav et al. [5]. The vibration data was measured from a planetary
gear system present in military helicopters. They used a wavelet transform method because the
common technique being used for analysis is time synchronous averaging (TSA). TSA technique is
sufficient to identify faults in a fixed axis gear teeth, but will not work efficiently in identification of
faults due to a cracked carrier plate. This is because TSA can average out an external disturbance,
which can excite a resonance frequency, because they are not in sync with the carrier rotation.
Therefore, a wavelet transform based method which can detect the transient response due to a cracked

carrier plate was developed.

Inapolat and Kahraman [35] developed a mathematical model that can be used to describe the
amplitude modulation (AM) vibration time history of planetary gear sets, which leads to modulation
sidebands in the frequency domain. Included in the model are key parameters like the number of
planet gears, planet position angle, planet phasing relationship (defined by the position angle) and the
number of teeth. A wide range of planetary gear set were considered and classified into five distinct
groups according to the amplitudes and frequencies of their sidebands. The five groups are equally
spaced planets and in-phase gear meshes, equally spaced planets and sequentially phased gear meshes,
unequally spaced planets and in-phase gear meshes, unequally spaced planets and sequentially phased
gear meshes and unequally spaced planets and arbitrarily phased gear meshes. To validate the
predictions, an experimental planetary gear set-up was developed and three planetary sets out of the
five groups earlier described were procured. Measurements were taken from the radial acceleration of
the stationary ring gear for a different rotational speeds and torque conditions. A methodology was
developed to demonstrate a modulation sideband from the measured signal. There is agreement
between the predicted and measured results. They concluded that sidebands are always
asymmetrically distributed about the mesh orders in a sequentially phased planetary gear set. They
mentioned that a maximum mesh harmonic amplitude can be seen when the planet meshes are in
phase, i.e. when the ratio of the number of teeth on the ring to number of planet is equal to an integer.
Also, the conclusion shows it is possible to have a symmetric sideband if the gear set is in-phase and

equally spaced.

Cooley and Parker [37] investigated the geometry and frequency content of single-mode vibration of
planetary gear using both a fixed and rotating frame of reference. A stationary observer measures the

gear vibration by fixed displacement probes and lasers. For response seen by a rotating observer,
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accelerometers or strain gauges were mounted on individual gear bodies. They showed in their
conclusion that the frequency content and phase relationship of the motion in both frames of reference
differ. They said there would be sideband frequencies about the natural frequencies for a stationary

sensor.

Ayoub et al [38] investigated the effect of varying load and mesh stiffness on the modal properties of
planetary gears. The test bench comprised identical planetary reaction gears with a free ring and a
planetary test gear with a fixed ring which are driven by an electric motor. The two gear sets are
connected back to back by two rigid shafts, this permits power recirculation through the transmission
which improves energy efficiency. Hammer impact test were carried out and the vibrations were
measured on the fixed and free ring gear at different level of loads. The external loads were applied by
adding masses to the reaction gear set. The vibration signals acquired were processed with the
software “LMS Test Lab signature acquisition”. The natural frequencies were identified from the
frequency response functions (FRF) obtained. They concluded that the natural frequencies are
increasing with an increase in load. For variation in mesh stiffness, they carried out a parametric test

and stated that the natural frequencies vary with mesh position.

2.5  Vibration control of planetary gears

There are some methods of vibration control that have been utilized to mitigate gear vibration. A
passive method involves changing the physical properties of the system, like mesh phasing or tip
relief on the teeth which have been implemented by some researchers. Seager [39] shows that some
difficult harmonic component can be neutralized by suitably choosing the number of teeth. He
concluded that the conditions to neutralize the mesh frequency components acting on the central
members are if the ratio of the number of teeth of the sun gear to the number on the planet gear is not
equal to an integer. Secondly, the source is reduced if the number of teeth on the planet gear plus or
minus one divided by the number of planet gears is not an integer. The effectiveness of phasing the
planet gear to reduce vibration of planetary gear was studied by Parker [11]. Planet phasing involves
configuration of the planet gears, as well as choosing the number of teeth such that self-equilibration
of the mesh forces lead to a reduction in the net forces and torques acting on the carrier, ring and sun
gears. Phasing reduces the vibration due to some harmonics of the mesh frequency. Richards and
Pines [40], presented a passive method to mitigate transmitted vibration generated by gear mesh. A
periodic shaft comprising identical elements connected together was designed so as to create stop and
pass band regions in the frequency spectra. Transmitted vibrations from the gear mesh to the bearing
support were mitigated at various operating speeds. The effect planet mesh phasing on the overall

dynamic behaviour of a four-planet model of planetary gear train was studied by Kharaman [18]. He
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concluded that transmission error cannot be completely cancelled under static or dynamic conditions
considering the higher harmonics excitations. Tharmakulasingam et al. [41] simulated how the
transmission error will be affected by modifying the tooth profile. The result of this showed that there
is a significant reduction in the transmission error in the spur gear with tooth profile modification (tip
relief) compared to the spur gear without tooth profile modification. Gwande and Shaikh [4] carried
out an experimental investigation in order to study the effect of planet phasing (which involved
unequal spacing of the planets) of a Nylon-6 planetary gear drive on its dynamic response. The
experiments were conducted on two planetary gears in configurations with and without phasing. The
results shows that the dynamic response of the planetary gear with phasing was minimized compared
to the one without phasing.

However, active vibration control method is more versatile than passive methods because the control
force can be adjusted based on the vibration characteristics during operation. In addition, passive
methods have limitations when several modes are excited. Montague et al. [42] presented a means of
reducing mesh vibration in a parallel axis gear by feedforward control using piezoelectric actuators.
They presented the principle of the method by an analysis of a vibrating linear system being excited
by a harmonic force. The result shows a 70% reduction in the gear mesh vibration at 4500 Hz. Active
vibration control method was used by Rebbechi et al. [43] to reduce gear mesh vibration using
magnetostrictive actuators inside the gearbox. An adaptive feedforward controller was used to
determine the required amplitude and phase of the control force applied to the shaft to reduce
vibration at the feet of gearbox housing. The housing vibration was reduced at the first three

harmonics of the gear mesh frequency.

2.6  Vibration source identification in gear boxes

There are few research works on vibration source identification of parallel axis and planetary gears.
Among the few, there are none where the accelerometers are rotating with the gears. Vibroacoustic
source identification of a parallel axis gear has been carried out by Abbassia et al [44], where they
quantified the contributions from the principal sources using principal component analysis. The
acceleration was measured from the casing and the principal components were analysed. They

reported that the virtual coherence is a robust virtual indicator.

Radoslaw and Anna [45] investigated the spectral structure of a gearbox vibration signals using a
PCA technique. The purpose of the study is to monitor the condition of the gearbox through the
information obtained from the data and make decisions. For the case studies, a good and bad planetary

gear were used. They found out that the two sets of data obtained using four stationary accelerometers
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have different spectral structures. A correlation matrix was formed and a spectral decomposition was
done to prove that the gathered data are different in their internal structure. They show that the signal
with many harmonics are generated by the bad gear box with relatively high signal to noise ratio
(SNR). In the case of good gearbox, they have smaller number of harmonics with suitable SNR and
less sensitive to load variation. They also found out that the data set for a bad gearbox are highly

correlated while the one for a good gearbox have a smaller correlation.

Qingbo et al [46] used low-dimensional principal components (PC) representations from the statistical
features of the measured signals to characterize and monitor machine conditions. The PCA technique
was used to extract PC representations from time and frequency domain measured signals. The
capability of each PCs were evaluated using a method known as mean correlation rule (MCR). This
enables selection of the PCs whose mean correlation values are larger than the pre-set threshold. The
selected PC representation captures the variation of the machine health condition. Vibration signals
from experiments conducted on an internal combustion engine sound and automobile gearbox were

used to validate the proposed method which they claimed to be effective.

2.7  Current research study

This research focuses on dynamic modelling, analysis and comparison of a planetary gear, analysed
using both fixed and rotating frames of reference. The dynamic response of planetary will be

predicted and compared to the result from modal test.

2.8 Conclusions

From the past research work, it is evident that the effect of high speed of rotating frame reference
attached to the carrier on the modal damping and the frequency response has not been studied
numerically. Therefore, this study will consider the effect of high speed of the carrier on the modal

damping and frequency response of the system.

It is also evident that vibration measurement of planetary gear components with accelerometers that
can rotate with them is very rare. Therefore, it is very possible that the true vibration of this
components have not been measured. A spinning test will be conducted on a customised planetary
gear vibration test rig which was specially designed and constructed to accommodate wireless MEM
accelerometers. The effect of load and rotational speed on the response at the natural and mesh
frequencies will be considered. The PCA technique has not been used to identify the source of
vibration in a planetary gear system considering the synchronised signals measured with

accelerometers rotating with the system. This will be done in this study.
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This research study will present the theory for pole placement applied to a planetary gear using both
fixed and rotating frames of reference. The method of pole placement has not been used to control the
vibration of planetary gear. This method will be employed and the optimal place to apply control
force using this method is determined. The theory is an extension of that developed by Mottershead et
al. [15] and the model is an extended model developed by Parker [14]. The method is based on output
feedback control strategy, where the sensor and actuator can be collocated. The purpose of the pole
placement is to shift the natural frequencies of the planetary gear in order to avoid resonance through
displacement feedback. Active damping will also be added through velocity feedback.
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Chapter 3 Dynamic modelling and analysis of a
planetary gear

In order to predict the dynamic response of the planetary gear, accurate dynamic modelling and
analysis must be done. This chapter focuses on the theoretical modelling and analysis of a simple
planetary gear system using a model (Figure (3-1)) developed by Lin and Parker [14] as a starting
point . A rotating frame of reference was originally used by Lin and Parker to develop the equation of
motion of Parker’s model [14]. This dynamic model can be used to investigate the dynamic behaviour

of epicyclic gears in general [47].

The planetary gear model shown in Figure 3.2 will be considered for this study. Like Parker’s model,
this is assumed to be linear and time invariant when determining the natural frequencies and
eigenvectors. Two coordinate systems, namely fixed and rotating frames of reference, will be used in
the analysis. According to Friswell et al.[48] , it is easier to use a coordinate system that is not rotating,
i.e. fixed frame of reference when modelling a rotor which is axisymmetric and the bearing may either
be isotropic or anisotropic. In a situation where the rotor is asymmetric and the bearings are isotropic,
a rotating frame of reference is more appropriate. Furthermore, if the rotor is asymmetric and the
bearings are anisotropic, a standard eigenvalue problem cannot be used to determine the stability.
Therefore, Floquet theory is used to determine the stability. This is because of the time varying
coefficients in the equation of motion in both fixed and rotating frames of reference. This leads to

parametric excitation of the system.

The mathematical model here will be developed using a fixed frame of reference first and
subsequently using a rotating frame of reference attached to the centre of the carrier. The stiffness of
the bearing will be assumed to be isotropic when using a rotating frame of reference and the rotating
frame will be attached to the centre of the carrier. The reason for using a rotating frame of reference is
to establish the effect of the carrier speed on the dynamics of the system especially at a high speed
range. This should be sufficient in predicting the dynamic behaviour of the system considering free
and forced responses. First and foremost after modelling, a numerical analysis will be done using
parameters from Lin and Parker. To be assured that the model is working, the results obtained must be
the same with their results. The natural frequencies and the vibration modes is determined considering
planetary gear models with different numbers of planet gears. An investigation will be undertaken on
free vibration response of a planet gear comprising two planet gears as this has not been reported in
any publication. Also, the Coriolis effect on the natural frequencies of the system, because of the

rotating reference frame attached to the carrier at its centre, will be shown using a Campbell diagram.
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An investigation will also be done to find out if there is any difference in the natural frequencies using

either a fixed or rotating frames of reference.

Subsequently, the parameters from the real physical model will be used in Chapter 5 in order to
validate the results from the lumped parameter model. Free vibration response will be considered first
to determine the natural frequencies and the natural vibration modes of the planetary gear train.
Subsequently the model will be extended to incorporate an excitation mechanism and active vibration

control strategies in Chapters 5 and 7 respectively.

Figure 3-1 Lumped parameter model of planetary gear system and coordinates [14]

3.1  General assumptions for fixed and rotating frames of reference

The analysis focuses on vibration of planetary gear in planar motion only, i.e. in two translational

coordinates as well as the rotational coordinate.

The following assumptions hold in formulating the model comprising two planet gears:

a) The main components (i.e. the carrier, ring, sun and planets) are all assumed to be rigid
bodies while the connections (i.e. meshing) between sun-planet and ring-planet are
represented by linear springs acting along the pressure line which is tangential to the base
circle. Time-varying mesh stiffness due to the fluctuation of the number of tooth pairs in
contact are ignored.

b) The bearings are assumed to be represented by two perpendicular linear springs for each gear

component. They are also assumed to be isotropic when using both frames of reference.
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9)

h)

The frictional forces between the meshing teeth are neglected, because the system is assumed
to be well lubricated.

The gear is free of manufacturing, profile and other form of errors; therefore, there is no
transmission error for the case of free vibration analysis.

The gyroscopic effect is not considered in the model, even though there is a Coriolis effect
due to the carrier speed when using a rotating frame of reference.

The gears are rotationally symmetric about their centerline, i.e. they look the same after any
angular rotation.

The carrier is moving at constant angular velocity for the case where a rotating frame of
reference was used.

The two planet gears are identical and the angle between them is 180°. For cases where they
are more than two, they are equally spaced.

The natural frequencies are determined for a linear time-invariant case.

Planet 1

Planet 2

(a)

Ye

kc)‘ illj._—lccx ka
O )
Carrier I_q_l e

(b)

Figure 3-2 Dynamic model of planetary gears. The carrier is shown in (b) for clarity.
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The extended dynamic model of the planetary gear for this study is shown in Figure 3-2. The carrier,
ring, sun and planet gears coordinates xy, Y, h=c,r,s and {,, nn, N=1, ....., N are with respect to the
frame i,j and k, index n refers to the nth planet and N is the number of planet gears. The rotational
coordinates are u; = r;6; , h=c,r,s, 1 ..., N. The stiffnesses ke, Kix, ks and ke, Kry, ks, represent the
bearing stiffnesses of the carrier, ring gear and sun gear in x and y coordinates, k., and ks, are the ring-
planet and sun-planet mesh stiffnesses respectively. The bearing stiffness of the planet gear is denoted
by ko, . The torsional stiffness of the carrier, ring, sun and planets are denoted by Kk, Ky, Ksu and Kp,
respectively. The ring gear is assumed to be stationary, therefore its torsional stiffness is very high.
The torsional stiffness of the carrier, sun and planet gears are set to zero.

3.1.1 Degrees of freedom

The degrees of freedom are defined as the number of independent generalized coordinates required to
specify the configuration of a system. In this research, each component of the planetary gear has three
degrees of freedom; one rotational and two translational degrees of freedom. This implies that for a
carrier, ring, sun gear and three planets, the number of degrees of freedom would be eighteen.

The degrees of freedom (if one of the centre members is not absent) can be determined using the

following equation [14] and [23]:
Number of degrees of freedom = 3(N + 3) (3.1)

where N, is the number of planets and 3 in the brackets represent the number of central members
(carrier, ring and sun) present. The figure 3 outside the bracket represents the horizontal, vertical and

rotational coordinates of each component in the system.

For the model in Figures 3-2a and 3-2b, where there are 2 planets and 3 central members (carrier, ring

and sun gears), the number of degrees of freedom is 3(N + 3) = 15,

3.2 Dynamic model using a fixed frame of reference

It is very important to formulate the governing equations of motion for the planetary gear system in
order to accurately predict its dynamic response. In case of linear time invariant (LTI) system like this,
the natural frequencies and vibration modes of the gear in different configurations were determined
using state space equations.. The dynamic equations of motion were determined using Newton’s

second law of motion.
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3.2.1 Sun-Planet mesh model and equation of motion for the sun gear
The sun-planet mesh which was modelled by a linear spring is shown in Figure 3-3. The subscript n

refers to the n" planet. It shows the sun-planet mesh model which shows the pressure angle, ¢,

(which is the angle between the pressure line AC and the common normal EF to the two gear teeth at

the point of contact).

Figure 3-3 Sun and planet mesh model showing the mesh stiffness along the pressure line AC,
bearing support stiffness of the sun gear and of the planet .

w, is the angle showing the position of the nth planet gear at any point, with respect to the starting

point such that ,, = o.

Figure 3-4 Free-body diagram of the sun-planet mesh model showing the mesh force between
the sun and planet.

The free-body diagram of the sun-planet mesh model is shown in Figure 3-4, the diagram was

considered in deriving the sun-planet mesh deflection 8, . From Figure 3-4, the relationship between
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the position of the nth planet (v,), sun-planet mesh angle (ws,), and the pressure angle («s) can be

expressed as

v, +(=vg,) =a, ; hence

Vp =0 = Vg, (3.2)
The deflection of the sun-planet along the pressure line is given by:

Og, = YCOSY - X Siny  +U, -1, cosa, - { sinag +u, +e, (3.3)

For free vibration analysis, €5, which is the transmission error between the sun-planet mesh is set to

zero. The forces acting on the sun gear along the pressure line is shown in Figure 3-5.

Pressure line

ko

sn - sh
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k8 siny_
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Figure 3-5 Forces acting in the sun-planet mesh which is along the pressure line.

The dynamic equations of motion for the sun gear derived from Figures 3.4 and 3.5 are

Mg + CopXs + Koy Xg — 2k O Sing, = 0 (3.9
msys + Csyys + ksy.Vs + stnganOSl/)sn =0 (3-5)
;_Su's + Zksnbsn =0 (3.6)

The matrix form for the equations (3.4, 3.5 and 3.6) is in Appendix A.
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3.2.2 Ring-planet mesh model and equation of motion for the ring gear

The planet-ring mesh can be analysed considering Figure 3-6 (a) which was magnified in Figure 3-6

(b)

Yr

a, Yin

Yo Vi

Figure 3-6 Planet and ring deflection model with the pressure line in red.

From Figure 3-6, the relationship between the position of the nth planet (), ring-planet mesh angle

(wm), and the pressure angle of the ring gear (o) can be expressed as
v, =V, o (3.7

The mesh deflection of the planet-ring can be determined from Figures 3-6. The mesh deflection is

written as:
8y = Y,COSY . - X Siny, +U, - 7. coso, +( sina, -u, Te, (3.8)

For free vibration analysis, €, which is the transmission error between the ring-planet mesh is set to

zero. The forces acting along the pressure line as resolved are shown in Figure 3-7.
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Figure 3-7 Forces acting in the planet-ring mesh along the pressure line.

The dynamic equations of motion of the ring gear are

MyXy + CrpXy + Ky Xy — 2k O Sin, = 0 (3.9
MYy +Cy ¥y + Ky Yy = 2K Gy COSY =0 (3.10)
I, . . 5
r_zur +C U + kruur + krné‘rn =0 (3-11)

r

The matrix form of Equations (3.9, 3.10 and 3.11) is in Appendix A.

3.2.3 Carrier-planet bearing connection and equation of motion of the carrier

In this sub-section, a carrier will be modelled using a fixed frame of reference with translational

coordinates x. and y..
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D

Figure 3-8 Carrier and planet bearing deflection model. The coordinates X, and y. are in a fixed
frame of reference. The carrier is shown in dotted lines after it has moved in x, y and u
coordinates.

Considering Figure 3-8, x. and y. are the translational coordinates of the carrier in the horizontal and
vertical directions respectively. These two coordinates in a fixed frame of reference can be written in

terms of rotating frame of reference as
X, =ac—ab =X cosy, — Y. siny, (3.12)
Y. =ob+cd =y, cosy, + X, siny, (3.13)

Equations (3.12 and 3.13) can be written in matrix form as

{xc}_{coswn —sinz//n}{ic} (3.14)
Ye siny, cosy, ||V,

The matrix in Equation (3.14) is known as a transformation matrix T. It is orthogonal i.e. the inverse

of matrix T is equal to its transpose. Therefore, the translational coordinates X;and Y, (which are in

rotating frame of reference) can be determined by pre-multiplying the transpose of matrix T with the

vector on the left hand side of Equation (3.14).

The radial and tangential deflections of planet bearing can be deduced by considering Figure 3-8 and
using Equations (3.12 and 3.13),

Planet bearing radial deflection: &, = (X; cos v, = Yesin y/n) -¢, (3.15)
Planet bearing tangential deflection: &, = (X;siny + Y, cosy, ) =7 +U. (3.16)
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by, SNy,

k5, cosy,

Figure 3-9 Forces acting in the carrier-planet bearing contact.
The dynamic equations of motion of the carrier considering Figures 3-8 and 3.9 is

mcxc +chxc + kcxxc +Zkloé‘nr Cosy, +ZkP5nt sin V= 0

M. Y, +Cy, Ve +kyy Yo — 2K, 6, Siny, +2k 6, cosy, =0
I ..
r—zuC +k,6,, =0

The matrix form of equations (3.17, 3.18 and 3.19) is in Appendix A.

3.24 Equation of motion for the planet gear

(3.17)

(3.18)

(3.19)

Considering Figures 3-8 and 3-9 which show the connection between the carrier and planet bearing as

well as Figure 3-10 which shows sun-planet and planet ring meshes, the dynamic equation of motion

can be formulated.

Pressure line

k.mssn

k.0, cosa k3§

an o an

|,_ b

ks!.'a m g a!

Figure 3-10 Forces acting in the sun-planet and planet-ring mesh along the pressure line.

The dynamic equation of motion of the planetary gear is
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mpfn —k, Oy — ke85, Sin @ + 3K, 6, sinar, =0 (3.20)

M, i, = kp5nt — 2K, 0, Cos o, — 2K, 0y, COSe, =0 (3.21)
I, .

5 Uy + ey = Ty =0 (3.22)
p

The matrix form of equations (3.20, 3.21 and 3.22) can be found in Appendix A.

3.25 General form of equation of motion using a fixed frame of reference

The equation of motion for the carrier, ring, sun and planet gears have been obtained using a fixed

frame of reference. The general form of the equation in matrix form can be written as

[M]{a}+[C, Jfa}+ ([, T+ [Kn]){a} = {0} (3.23)

where, M, C,, K, e R™"; M = M7, C, = €I, K, = KI,K,, = K%, are the mass, damping, bearing
and mesh stiffnesses respectively. Although two planet gears are shown in Figure 3-2, the equation of
motion can be used for a planetary gear with more than two planet gears. In practice, using a fixed
frame of reference implies that the accelerometers are not rotating with the components when
measuring their vibrations. The next section focuses on the analysis and derivation of the equation of

motion using a rotating frame of reference.

3.3 Dynamic model using a rotating frame of reference

In this section, the modelling will be done using a rotating frame of reference and carrier will be the
reference. This implies that in practice, the carrier and the accelerometer will be rotating together at
the same speed when taking the vibration measurement. Experiment on this rotating frame of
reference will be discussed extensively in Chapter 6. The equation of motion in this case will be
different from that of fixed frame of reference because of Coriolis and centripetal accelerations terms
that are added. The Coriolis effect is defined as the deviation from the actual path as seen by the
accelerometer fixed at the centre of the rotating carrier as shown in Figure 3-11. It shows a rotating
system which is rotating in a counter clockwise direction, the path of motion seen by a rotating

accelerometer on a rotating frame of reference (red line) is the green line in a clockwise direction.
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Figure 3-11 Coriolis effect on a rotating system.

3.3.1 Relative motion of components using a rotating frame of reference
In order to analyse dynamics of the gears, the effect of using a rotating frame of reference will be

considered. The position of points A and B are defined by the position vectors Iy and Iz measured

with respect to the fixed X, Y, Z coordinate system shown in Figure 3-12. The origin of the translating

and rotating X, y, z coordinate system is the point A. The relative position of B with respect to A is

defined by the vector g .

Ya

Va fJ'S’fA \

Yn

0

Figure 3-12 Kinematic diagram for rotating frame, Qc denotes the angular speed of the frame.

Consider Figure 3-12, OA rotates with constant angular speed of €2. and it is translating and

rotating with respect to fixed XYZ coordinate system with origin O. From Figure 3-12,
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I3 =Ty +Tg/a (3.24)

g =Ty +Xgl + Y51 (3.25)

For the case of planetary gear modelling and mathematical analysis, the features in Figure 3-12
changes to Figure 3-13. In this case, the position of point A, i.e. the position of the carrier is at the
origin O, hence T, becomes zero. This is equivalent to using the centre of mass of the carrier as the

origin. The carrier serves as an observer (or a reference) and the translational coordinates X, and Yy

of the carrier, ring, sun and planet gears can be measured with respect to a rotating frame of reference

attached to the centre of the carrier.

> X

< )
uC

Figure 3-13 Kinematic diagram showing the rotating frame of reference (in pink) fixed to the
centre of mass of the carrier at origin O. The carrier is shown in dotted lines after it has moved

in X, y and u coordinates.

In Figure 3-13, it is shown that point A in Figure 3-12 is now at the origin O which is the centre of the

rotating frame of reference. In this case,

= 0, therefore Equation (3.25) becomes

fa

g = Xgl + Y31 (3.26)

2

Then, T, = X,i + ¥} ] (3.27)
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where h=c,r,s while i and j are the unit vectors in x and y directions respectively. It is very
important to show the time derivative of the unit vectors before determining the relative velocity and

acceleration vectors in rotating frame of reference using Figure 3-14.

di =dy j (3.28)
d dy | .

—=—"]=0.] (3.29)
dt  dt

dj =—dy i (3.30)
d dy . .

I i aj (3.31)
dt dt

Differentiating equations (3.27), we obtain equations (3.32)

s d o 2 - A - — 2

h = a(xhl +Y, 1) =(X - QY )i+ (Y, +QX)) (3.32)

Differentiating Equation. 3.32, we obtain the acceleration vector using a rotating frames of reference

as follows:

3 d = — o\ = o\ 2 " . 2 a . . 2 2
I :a[(xh -QY (Y, QX )] =X —2Qy, — QX )+ (Y, +2Q.X —Qcy, )] (3.33)
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Equations (3.27), (3.32) and (3.33) show that the position, velocity and acceleration vectors using a

rotating frames of reference respectively. They will be included in the equation of motion of the
carrier, ring, sun and planet gears using a rotating frame of reference. The terms (chh)f and
(Qcyh)jwhich are not shown in Equation (3.33) because they are equal to zero, because it was
assumed that the carrier is moving at a constant angular velocity. This is equivalent to having the

tangential angular acceleration QC of the carrier equal to zero. The terms (29, yh)f and (ZQCXh)j

in equation (3.33) are the Coriolis accelerations at the horizontal and vertical directions respectively

due to the rotating frame of reference. The terms (ng)f and (ny)i are the centripetal accelerations

at the horizontal and vertical directions respectively.

3.3.2 Dynamic equation of motion of sun gear using a rotating frame of reference

The dynamic equation of a sun gear using a rotating frame of reference is

M, (X — 20V, — QX ) + Ty (% ~ 0, V,) + KX — kg Iy Sin g, =0 (3.34)
m, (Vs +20 X — Qiys) + Ty (Vs + Q%) + kg Vi + 2k, 5y COSY, =0 (3.35)
.

Fus + ksn5sn =0 (3.36)

S

The matrix form of equations (3.34, 3.35 and 3.36) for the sun gear using a rotating frame of reference

is in Appendix A.

3.3.3 Dynamic equation of motion of ring gear using a rotating frame of reference

The dynamic equation of a ring gear using a rotating frame of reference is

M, (X, —2Q Y, — Q7% ) + T (%, 2.V, ) + KX, — 2K 8y SNy, =0 (3.37)
m, (§, +20Q.X —Q2Y )+T, (¥, +% ) +Ky ¥, — 2k Sy COSypy, =0 (3.38)
I . —_ = o=

r—;ur +C, 0, +k U +2k,0, =0 (3.39)

r

The matrix form of Equations (3.37, 3.38, and 3.39) for the ring gear using a rotating frame of

reference is in Appendix A.
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3.34 Dynamic equation of motion of carrier using a rotating frame of reference

Consider Figure 3-13, which shows a carrier and planet bearing deflection model. The translational

coordinates x. and y. are in rotating frame of reference rotating at the carrier speed o because a

rotating frame of reference rotating at the carrier speed was fixed to the carrier at its origin O. The two

translational coordinates using a rotating frame of reference can be written as

X, = X; COSy, + Y. siny, (3.40)

Vc =X sin Wn +Yc COSYy (341)

The combination of equations (3.40) and (3.41) in matrix form is the inverse of equation (3.14).

Hence the radial and tangential deflection of the bearing can be written as

O = (XC cosy, +Ye sin V’n) _é/n (3.42)
O = (=X siny_+Ygcosy ) =1 + Ue (3.43)
where 5 and 5, are the planet bearing radial and tangential deflections respectively.

The dynamic equation of carrier using a rotating frame of reference is then
M, (X, —2Q Y — Q7% ) + T (%, ~ 2, V.) + Ko X, ~ 2K, 8, cosy, + 3Kk 8, siny, =0 (3.44)
M (Y, +2Q.X, - QEVC) +Cy (Ve + Q%) + K, Ve + 2K 6, siny, + 2k 5, cosy, =0 (3.45)

— U, +k,6, =0 (3.46)

The matrix form of Equations (3.44, 3.45, and 3.46) for the carrier using a rotating frame of reference

is in Appendix A.

3.35 Dynamic equation of motion of planet gear using a rotating frame of reference

The dynamic equation of planet gear using a rotating frame of reference is
M, (&, 207 —Q2C )~k S,y — ZkenSeg SiN @, + kS Sin, =0 (3.47)

m, (7, +20Q ¢ - Qgﬁn) —K, Gy — 2k s, €OS 0t — XK, 5y COS @, =0 (3.48)
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I ..
L0 +2k, S5, —2k 5, =0 (3.49)

2N sn~sn rm=rn
rp

The matrix form of equatons (3.47, 3.48 and 3.49) for the planet gear using a rotating frame of

reference is in Appendix A.

3.3.6 General form of equation of motion using a rotating frame of reference

The combined equation of motion for the carrier, ring, sun and planet gears is thus obtained using a

rotating frame of reference. The general form of the equation in matrix form can be written as
[M{a}+ ([, J+[Co ){a}+ (Ko +[Knl+[Ks -7 [Ko]){a} = {0} (350)

where, @.¢,.K,.K,eR™ ; M=M",C, =C[,K, =K[,K, =K , are the mass, damping,
bearing and mesh stiffnesses respectively. Also, some terms are introduced in this frame of reference
and their matrices due to Coriolis effect of the carrier and these are the Gy Kyand k , ; Gy and Ky

matrices are skew-symmetric while K, =K, . In practice, using a rotating frame of reference implies

that the practical vibration measurements, such as using surface mounted accelerometers, are rotating

with the components.

3.4 Numerical study using the analytical model

34.1 Natural frequencies in a rotating frame of reference and their relationship with the
fixed frame of reference characteristics

For simplicity, the natural frequencies of a sun gear using a rotating frame of reference and their
relationship with the fixed frame of reference was investigated. The axisymmetric sun gear of mass ms
only shown in Figure 3-15 will be used as a case study. It is assumed that the sun gear with isotropic
support stiffness (i.e. kg, = kg, = k) has two degrees of freedom namely in the x and y directions.
This is a case whereby a single mass has two degrees of freedom. The rotating frame is attached to the

centre of the sun gear rotating at a constant speed Qs as shown in Figure 3-15.
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Figure 3-15 Sun gear modelling using a rotating frame of reference

The equations of motion for the undamped and free vibration case in the rotating frame of reference is

written as
mg(xXs — 2Q5ys — Q2%,) + ks = 0 (3.51)
ms(j_}s + ZQ53?5 - Qg}_’s) +ksys =0 (3.52)

The overbar relates to the rotating coordinate displacement of the mass centre. The uncoupled
equations in the fixed frame of reference with the (x, y) displacements are transformed into a rotating

frame of reference with the (x, y;) displacements.
In general, equations (3.51 and 3.52) can be written as
Msas + QSZMsas + (K5 — Qng)ﬁs =0 (3.53)

The Q,2M; and —Q2M; terms in equation (3.53) are the Coriolis and centripetal accelerations terms

respectively.

From equations (3.51) and (3.52)

ms 07 /%, 0  —2mg] (., [ks — Q2mg 0 %) _ (0

[ 0 ms] (575) + 0 [st 0 ] (575)+[ 0 kg — ngs] (375) - (o) (3.54)

Let the matrices of the first, second and the third term be M, G and K respectively. M is the mass
matrix, G is the matrix due to Coriolis effect while K is the overall stiffness matrix.

Xs

The characteristic equation, using (;S) = (Y

) est is given by
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K+ s?2M + sQ,G| =0

(ks — Q%2my) + s%m —Q2mg _ 0

i.e. =
Q2mg (ks — Q%2my) + s?m

[(ks — Q2mg + s2my)]? + 4Q2m?2s? =

Solving the quadratic equation (3.57) in s

_ —2my(ks + 02) £/ @mg (ks + 02my))? — 4m? (ks — Q2my)?

2
s

2

2mg

The term under the square root:

(@2m3) (ks + QEmE)? — 4mg (ks — Qimy)? = 4mZ[(ks + Qimy)? — (ks — Qim,)?]
= 4mZ[(ks + Q3m$)? — (ks — QimE)?]

Using the difference of two squares in the form a? — b? = (a + b)(a — b)

= 4mZ[(ks + Qims + kg — Qmg) (ks + Q5m, — ks + Q3my)]

= 4m2(2k,)(20%m;) = 16m3k 02

Therefore,

N —2mg(ks+Q2mg)+ /16m§k5£2§

S =
2m?

= (ks+Q%mg)+2Q2ksmg

mg

Let w? = % be the natural frequency in the nonrotating frame of reference.
S0 s? = —(w? + 02) + 2,/ w202

= —(w? + 02) + 20,0

For the first solution,

512 = _(wsz + Qg) + 2w = —(ws — Qs)z
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For the second solution,

52 = —(w? + Q%) = 20,05 = —(ws + Q)2 (3.68)
Therefore,
$1 = ij((‘)s - Qs) ors; = ij((")s + Qs) (3-69)

i.e. in the rotating frame of reference, there is observed a splitting of the two equal original natural

frequencies wg into the natural frequencies w + Q.

Let us consider a numerical example, for a mass mg of the sun gear as 2 kg while the isotropic support
stiffness is 2 x 10° N/m. For the isotropic bearing support stiffness, the natural frequencies of the sun
gear can be determined using equation (3.69). This is done independently as a humerical check using
an eigenvalue solution of equation (3.54) in MATLAB. The natural frequencies are plotted against the

rotational speed of the rotating frame of reference and shown in the frequency map in Figure 3-16.
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Figure 3-16 Frequency map showing the variation of the natural frequencies with the rotational
speed of the sun gear as predicted and observed using a rotating coordinate system.

There are two identical natural frequencies for the non-rotating sun gear, because the support stiffness
is isotropic i.e. the same in both the x and y directions. Figure 3-16 shows how the natural frequencies
are changing due to the rotational speed of the sun gear. One of the two natural frequencies is
increasing while the other is decreasing as the speed increases. This is due to the rotating coordinate
system used for the modelling and analysis of the system. The frequencies can be referred to as

pseudonatural frequencies, because a rotating frame of reference was used to investigate a system
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with isotropic bearing stiffness. It is worth mentioning that for an observer who is observing the
motion from a fixed frame of reference, the observer will see a different motion, hence different
natural frequencies. For this isotropic bearing support case, the fixed observer will only see a single
natural frequency corresponding to two modes comprising either a purely vertical or purely horizontal
motion of the sun gear. The analysis given by Friswell [48] considers the general case when the
support is not isotropic (i.e. (k, # k,). As the gear rotates, it experiences a time varying support
stiffness in the rotating coordinate directions. The natural frequencies of the stationary gear in the two
fixed coordinates are then different. Equations (3.51 — 3.54) are subsequently changed and the two
natural frequencies in the rotating frame of reference are obtained.

In practice, measurement using a rotating frame of reference is equivalent to using accelerometers that
are rotating i.e. fixed to the rotating system. This may be possible with the use of wireless
accelerometers, but it may be difficult to measure the natural frequencies of a rotating system
especially at high speed. This is because there will be potentially more than one source of excitation
when the system is rotating.

3.4.2 Numerical study using a planetary gear model

In this sub-section, numerical studies was undertaken to obtain the natural frequencies and vibration
modes of a planetary gear using the equations (3.23) and (3.50). The parameters in Table 3-1 as used
by Lin and Parker [14] will be used in this section to predict the natural frequencies and vibration
modes of planetary. The reason for this is to confirm if the model will predict the same natural
frequencies and eigenvectors as shown in their paper in [14]. It is imperative to state that Lin and
Parker assumed that the carrier speed is small, hence they neglected the Coriolis terms in the equation
of motion using a rotating frame of reference. In this numerical study, both fixed and rotating frames
of reference will be considered and the effect of a wide range of carrier speed on the natural
frequencies would be investigated. This would be shown on a frequency map or Campbell’s diagram.
However natural frequencies of a planetary gear with 2, 3, 4, 5, 6 planets will be shown to see how the

difference between the modes.
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Table 3-1 Planetary gear parameters by Lin and Parker

Parameter description | Carrier Ring Sun Planet
Mass (kg) 3.43 2.35 0.40 0.66
The ratio of mass moment
of inertia to the square of
. 6.29 3.00 0.39 0.61
the radius
1/r* (kg)
Base circle diameter (m) 176.8 275.0 77.4 100.3
Bearing stiffness (MN/m) Ky=K=K=K,=100
Mesh stiffness (MN/m) Ks,=Kr,=500
Torsional stiffness
(MNm/rad) K,=1000, K¢=K.,=0
Pressure angle (degrees) 0s=0,=24.6

For a fixed frame of reference, the standard eigenvalue problem considering equation (3.23) is written

as:
2
o' Mg =(K, +K,, )¢ (3.70)
The natural frequencies and the eigenvectors using a fixed frame of reference are denoted by ®; and
¢ respectively.

For a rotating frame of reference, the free vibration response of the planetary gear for a linear time
invariant case were determined using the general equation of motion in equation (3.50), neglecting the

damping terms, the equation becomes
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MG +Q,G G+ (K, + K, —QfKo)g =0 (3.71 (3))
The eigenvalues of the equation (3.71(a)) can be determined using a state space equation written as

0 |
L . (3.71 (b))
-M (Kb+Km_QcKQ) -M (QCGy)

where | is an identity matrix. In a case where the Coriolis terms were neglected, the standard

eigenvalue problem becomes

o' Mg =(K, +K,)d (3.72)

The natural frequencies and the eigenvectors using a rotating frame of reference are denoted by ®;

and $i respectively. Considering equation (3.72), the eigensolutions of a planetary gear system with

three, four, five and six planets were simulated using the parameters in Table 3-1 and the result for
their natural frequencies are given in Table 3-2. The results match with the ones in Lin and Parker’s
publications which considers three, four and five planet gears. The natural frequencies of a model
with six planet gears were added as further work in this research. The multiplicity (m) in Table 3-2
implies the number of times a particular natural frequency of the planetary gear system occurs. For
instance, for a planetary gear with three planets, a natural frequency of a translational mode, 743 Hz
occurs twice in the third row and second column of the Table 3-2 This implies that the multiplicity of

this natural frequency is two.
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Table 3-2 Natural frequencies of planetary gear system with their multiplicity from 3 to 6-
planet model using a rotating frame of reference.

Number of planets (N) 3 4 5 6

0 0 0 0
Rotational mode frequencies (Hz) 1476 1537 1567 1581
multiplicity=1 1930 1971 2006 2033
2658 2626 2615 2624
7463 7774 8065 8343
11775 13071 14253 15346

743 727 710 693

Translational mode frequencies (Hz) 1102 1091 1072 1049
multiplicity=2 1896 1893 1888 1885
2276 2343 2425 2514
6986 7190 7382 7567
9648 10438 11172 11862
Planetary mode frequencies (Hz) 1808 1808 1808
multiplicity=N-3 5964 5964 5964
6982 6982 6982

3.4.3 Mode description

There are some unique properties in the vibration modes which are shown below for a planetary gear

system with four planet gears. The unique properties are due to the fact that the planets’ arrangement

is symmetrical i.e. they are equally spaced.

a) Rotational mode: This mode has a multiplicity of 1 for different numbers of planets and there

is no translation of the carrier, ring and sun. Six natural frequencies always correspond to this

mode and their mode shapes are of the form [0 o u R P PR

L .
p4] i=c,rands;

where ¢, r and s corresponds to the carrier, ring and sun respectively, and P, P,, P; and P,are

the displacements of the planets. Also, all the planets have the same deflection as for a rigid

body mode as shown in Figure 3-17.
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Figure 3-17 Rigid body rotational mode at 0 Hz.

b) Translational mode: This mode as shown in Figure 3-18, has a multiplicity of 2 for different
number of planets and there is no rotation of the carrier, ring and sun. There are always twelve
natural frequencies for this mode and their mode shapes is of the form
[xi y, 0 B P R P ]T i=c, r and s, where Py, P,, P; and P, are the displacements of

planets.
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Figure 3-18 Translational mode at 1893 Hz.

c) Planet mode: This mode as shown in Figure 3-19, has a multiplicity of 3 for a different number
of planets and there is neither rotation nor translation of the carrier, ring and sun. This implies

that only the planet gears are moving in this mode. The natural frequencies in this case depend
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on the number of planets in the planetary gear system. The mode shape has zero displacement

of the carrier, ring, sun and planet in this category is of the form

0051

0051

Figure 3-19 Planet mode at 1808 Hz.

Also, the natural frequencies of a planetary gear with four planets (because it exhibits all the mode
types) was investigated using equation 3.71 (b) over a wide range of carrier speed and shown in the
frequency map in Figure 3-20.

14000

N 12000

10000

8000 &

6000

4000 -

Undamped natural frequency with coriolis effect (H

20008k

S

0 L L I L I . L I .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Carrier speed (rpm)

Figure 3-20 Frequency map showing the variations of the undamped natural frequencies with
the carrier speed for a four-planet model.

It was discovered that the natural frequencies when a fixed frame of reference was used is the same as

the natural frequencies when a rotating frame of reference was used, provided that the carrier speed is
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low. The zoomed view of the frequency map is shown in Figure 3-21. It is obvious that some natural
frequencies are splitting as the carrier speed increases. These are the frequencies of all the

translational modes. The frequencies of rotational and planet modes are not splitting.

2500 [~

2000

1500

1000 [~

—_—

Undamped natural frequency with coriolis effect (Hz)
@
8

0

I I I I I I I I ! I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Carrier speed (rpm)

Figure 3-21 Zoomed view of a frequency map showing the splitting of the natural frequencies of
only the translational modes as the carrier speed is increasing for a four-planet model.

Furthermore, natural frequencies and eigenvectors for a planet gear with two planet gears were
determined using equation (3.72) so that it can be compared with the work of Lin and Parker. The

results are shown in table 3-3 and for this case, there are fifteen natural frequencies and modes.

Table 3-3 Natural frequencies of planetary gear model with two planet gears.

Natural Mode type
frequencies
(Hz)

1 0 Rotational mode

2 594 Translational mode

3 805 Translational mode

4 1038 Translational mode of the ring gear only
5 1129 Translational mode

6 1362 Rotational mode

7 1890 Rotational mode

8 1975 Translational mode

9 2254 Translational mode

10 2516 Translational mode of sun gear only
11 2714 Rotational mode

12 7124 Rotational mode

13 7190 Translational mode

14 10329 Rotational mode

15 10438 Translational mode
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It is obvious from Table 3-3 that there is no planet mode in a two-planet model like a three-planet
model. This implies that a planet mode can only be obtained in a planetary gear model with a
minimum of four planet gears as shown by Lin and Parker [14]. The multiplicity (i.e. occurrence) of
all the natural frequencies in this case is one unlike models with more than two planet gears. In this
case, if the Coriolis terms were considered, there cannot be frequency split because the multiplicity of
the translational mode is not 2 but 1. It was later discovered in chapter 4 that the multiplicity of the
translational mode could be two for a 2-planet model depending on the stiffness of the bearing.
Furthermore, only the ring gear is translating in the x and y directions in the fourth mode while the sun
gear is exhibiting the same behaviour in the tenth mode. This is a unique behaviour which is peculiar
to a planetary gear train with only two planet gears. This is not applicable to a planetary gear with 3, 4,
5 and 6 planet gears as shown by Parker [14].

3.5 Conclusion

A planetary gear model has been derived using both a fixed and rotating frame of reference for
comparison. The model can be used to predict the dynamic behaviour of a planetary gear with one or
more planet gears. Generally in both frames of reference, the mass matrix is dynamically uncoupled
while the bearing stiffness matrix is statically uncoupled. The overall stiffness matrix is statically
coupled using both frames of reference because of the sun-planet and planet-ring mesh stiffnesses as
well as the contact between the carrier and the planet gears. The linear model is assumed to be time
invariant and should be suitable for predicting the dynamic response of a planetary gear using either a
fixed or rotating frame of reference. The models with isotropic bearing stiffnesses of the carrier, ring
sun and planet gears were used to predict the free vibration response of the system. The natural
frequencies of translational modes changed when increasing the carrier speed. This is because the
translational modes have a multiplicity of two, therefore the frequency of one mode is increasing
while the frequency of the other mode is decreasing as the carrier speed increases. This is known as

frequency split due to the Coriolis effect.

The planetary gear system with two planets has not been studied before. In general, the following
were discovered in this study:
a) There is no difference in the free response of the system when using either a fixed or rotating
frame of reference provided that the carrier speed is below 100 rpm or set to zero in the latter.
b) For a two-planet model, the natural frequencies of the translational modes in a model with two
planet gears only occurs once. This implies that the translational modes have a multiplicity of
one. The models with more than two planets do not exhibit this behaviour. This is investigated

further in chapter five where the stiffness of the bearings are reduced.

50



c) There is a translational mode where only the ring gear is vibrating and another translational
mode where only the sun gear is vibrating.

The next chapter will focus on the design of a test rig which will be used to determine the bearing
stiffnesses, sun-planet and ring-planet mesh stiffnessees the component masses and their moment of
inertias. An update will be done on Table 3.1 and the parameters will be used to validate the model
and subsequently some forced responses will be predicted in Chapter 5.
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Chapter 4 Test rig design, estimation of the planetary
gear parameters and frequency response using a
rotating frame of reference

The mathematical model derived in chapter three will be verified by comparison to experimental
results by suitable model predictions and measured data. In order to do this, an applicable planetary
gear test rig must be designed and developed. In most planetary gear vibration experiments,
accelerometers are mounted on the housing because there is no access to measure the vibration of the
components inside the housing. This test rig was configured such that the independent vibration of
carrier, ring, sun and planet gear can be measured when they are stationary and rotating. Some
parameters estimated from the test rig will be used for the mathematical model; therefore the
parameters previously used in chapter three can be updated. Therefore, this chapter focuses on the
design and development of a vibration test rig for vibration measurement, as well as the experimental
estimation of the bearing stiffnesses of the carrier, sun and planet gears. The stiffness of a stationary
ring gear was also estimated. The bearing stiffness was determined dynamically using an
instrumented hammer test. Furthermore, the mesh stiffness and the mass moment of inertia of the
components were determined. The main purpose of doing this is to use the stiffnesses specified in the
analytical model derived in chapter three to predict the natural frequencies, vibration mode shapes and

the damping ratios present for the planetary gear.

It has been verified previously in chapter 3 that the natural frequencies and mode shapes of the
planetary gear system using either a fixed or rotating frame of reference are the same provided the
carrier speed is low when using a rotating frame of reference. Also, the effect of carrier speed on the
undamped natural frequencies of the system has previously been shown in chapter 3, where the
natural frequencies are either increasing or decreasing at high speed. It is necessary to also show how
the rotational speed of the carrier affects the response. For this chapter, the frequency response
function of the carrier, ring, sun and planet gears are shown using a rotating frame of reference at
different carrier speeds. In this case, it was assumed that the bearing stiffnesses are isotropic. The
study of planetary gear dynamic response to excitation using a rotating coordinate system at high
speed is rare. The effect of the carrier speed on the excited low and high frequency were discussed.
Also, the effect of the carrier speed on the damping ratio was studied to know if it is significant or not.
Furthermore, the positions of the damped and the undamped poles in the s-plane are shown at
different carrier speeds. The purpose of doing this is to know if the carrier speed can either increase or

decrease the damping in the system significantly.
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4.1 Design considerations and brief description of the test rig

The necessary test rig comprises mainly of the planetary gear train, the frame, the bearing supports,
the input and output shafts, an electric motor, circlips, planet spindles, keys and the bearing housings.
For modal testing, the external load on the planetary gear train was not considered. Also, for vibration
measurements, instrumentation such as accelerometers were used to measure the vibration and an
instrumented impact hammer to excite the system. The planetary gear design adopted comprises two
pinions as planets, one gear or wheel as sun, a ring gear and the carrier as shown in Figure. 4-1. The
sun and planet gears, when chosen, specified and subsequently purchased as manufactured items from
ONDRIVES [49] and assembled together. The carrier and the ring gear were designed by the author
and manufactured in the university’s Engineering Design and Manufacturing Centre (EDMC). The
shearing force and the bending moments of the shafts are not of interest in this research, therefore
they will not be shown in the design calculations.

Most of the planetary gears used in the vibration test rig are built and enclosed such that there are no
spaces to mount accelerometers on them during operation. One of the novelties in this research is the
design and construction of a vibration test rig of a planetary gear which can accommodate
accelerometers mounted on the carrier, sun and planet gears such that they will rotate with them
during operation. This enhances independent measurement of the carrier, sun and planet gears. Hence,
there will be no need to use a method like Time synchronous averaging (TSA) to know the
frequencies that are related to the speed of carrier, sun or planet. Also frequencies that are not
synchronized with a particular speed can be probably measured and analysed. Temporary fasteners
are used to join the fixtures together which makes it easy to assemble and disassemble the test rig

when necessary.

The following was considered in designing the test rig:

a. Material selection: Suitable materials were chosen for the components based on cost,
availability and the function that they are to perform on the rig. For example, steel gears were
chosen because they possess high strength and to avoid excess deflection of the teeth under
static loading.

b. Use of standard parts: Parts like bearings, gears, keys and circlips were procured from
ONDRIVE based on design standards. This makes the assembly and interchangeability of the
parts as well as operation of the system possible.

c. Convenient features and safety: All the parts are well located for convenient control and

safe operation of the test rig.
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d. Frictional resistance of the rotating parts: For instance, rolling element bearings (which
have low starting friction) were used (i) to avoid high starting friction of the rotating parts (ii)
to achieve easy mounting and shaft alignment.

e. Type of load on the output of the rig: electrical load was chosen to be used on the rig.

f.  Maintenance: The gear teeth were lubricated to avoid wear. Also, sealed rolling element
bearings were chosen because they require less maintenance.

g. Mechanism: The carrier shaft was connected to an electric motor through a V-belt and two
pulleys mounted on the electric motor and carrier shaft. This causes the rotation of the planet
carrier mounted on the shaft. The two planet gears which are meshed with the sun gear rotate
and revolve round the sun with the help of the planet carrier. The sun gear shaft serves as the
output shaft and the external load was mounted onto it.

Sun

Ring
Carrier support

Sun support Reing

bearing

Sun shaft

Carrier shaft

Carrier

Planet

Figure 4-1 CAD model of planetary gear vibration test rig.

The carrier is shown in black in Figure 4-1 linked to the planet gears through two spindles, while the
two bearing housing supports for the sun and carrier are shown in blue. The axes of rotation of the sun
and the carrier are fixed unlike the planets, which makes the latter orbit round the sun gear as they
rotate. The planet and sun have 45 teeth and 95 teeth respectively, while the ring gear with internal
teeth arrangement has 185 teeth. As mentioned earlier, the input shaft is the carrier shaft connected to
an electric motor while the output shaft is the sun shaft on which the external load was applied. The

frames on both sides and the base rigidly supported the rig to avoid structural damage.
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4.2 Gear terminologies

For simplicity, it is necessary to define some terms used in spur gears .Only the terms relevant to this
research work will be defined. These terms are defined using Figure 4-2 as written by Gupta and
Khurmi [50]. Figure 4-2 (a) shows the teeth which are not meshing with another teeth while Figure 4-
2 (b) show the two teeth meshing together.

Pitch surface element

Working depth
Pitch circle
______ ¥
-
/ -\\ \ 4———"*— Tooth thickness
\ \ Circular pitch —#——————", ' s
\ — Total depth “— Tooth space J‘
A\ Root or dedendum circle
\\— Clearance

\__ Clearance or
working depth circle

Base circle of gear 2

Pitch circle of gear 2

Pitch circle of gear 1

Base circle of gear 1

(b)

Figure 4-2 (a) Terms used in describing spur gears by Gupta and Khurmi [50]. (b) Two meshing
gears with the pressure line shown in red.
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The following terminologies will be used:

a.

4.3

Pitch circle. It is an imaginary circle which by pure rolling action, transmits motion by
friction as the actual gear. Its diameter is known as pitch circle diameter.

Addendum. It is the radial height of a tooth above the pitch circle and its circle is known as
addendum circle.

Dedendum. It is the radial depth of a tooth below the pitch circle its circle is known as
dedendum circle.

Pressure angle. It is the angle between the common tangent to the pitch circles (Y'Y in Figure
4.2 (b)) and the pressure line (MN in Figure 4-2 (b)).

Pressure line. It is a line (red in Figure 4-2 (b)) tangential to the base circles of the two
meshing gears.

Base circle. It is a circle that is tangential to the pressure line. The diameter of a base circle is
the product of pitch circle diameter and cosine of the pressure angle.

Face width. It is the width of the tooth along its axial direction.

Pitch point. It is the point (P) where the two pitch circles of two mating gears are in contact
(Figure 4-2 (b)).

Path of contact. It is the path followed by the point of contact of two teeth from the beginning
to the end of mating. It is the line KL in Figure 4-2 (b).

Arc of contact. It is the arc measured on the pitch circle from the beginning to the end of
mating.

Module. This is the ratio of the pitch circle diameter to the number of teeth.

Design calculations

The parameters of the sun and planet gears as received from the manufacturers are shown in Table 4-1.

Other parameters like the speed ratio, design power, input and output torques and contact ratio are

shown with equations in this section. The face width of all the gears is 15 mm. For perfect mating of

the teeth, the modules of the ring, sun and planet gears are the same. The detailed engineering

drawing can be found in the Appendix (C).
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Table 4-1 Sun and planet gear parameters as received from the manufacturer

No. of teeth | Module Addendum Pitch circle |Base circle Pressure
circle diameter, |diameter angle, o
(mm) .
diameter, (mm) (mm)
(degree)
(mm)
Sun gear 95 1.5 1455 1425 133.91 20
Planet gear |45 15 70.5 67.5 63.43 20
431 Design of the ring gear and the carrier

Mild steel was selected as the material because of its tensile strength. Figure 4-3 shows the schematic
diagram of the ring, sun and planet gears with their pitch circle diameters. Let M and Z, be the
module and number of teeth on the ring gear respectively. The pitch circle diameter of the sun and

planet gears are denoted by Dy and D, respectively while the pressure angle of the ring gear is

denoted by «, .

‘ _Planet gear

D,=67.5mm D =142.5mm

Figure 4-3 Pitch circle diameters of the gears.
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The schematic diagram of the carrier is shown in Figure 4-4.

17 mm

210 mm _‘

A

Figure 4-4 Carrier dimension.

The parameters of the ring gear and the carrier which were designed and manufactured are shown in
the Table 4-2.

Table 4-2 Parameters of the carrier and ring gear.

S/N | Parameter Formula Numerical value
(mm)

1 Module, M 15

2 Pitch circle diameter of ring gear , D, (mm) D, = (zpp) + Dy 277.5

3 Number of teeth on the Z, =D,./M 185
ring gear, Z, (mm)

4 Addendum, a, (mm) a, =M 1.5

5 Dedendum, d, (mm) d, =1.25M 1.875

6 Adddendum circle diameter (mm) D, +2M 280.5

7 Dedendum circle diameter (mm) D, —2(d,) 273.75

8 Tooth depth ar +d; 3.375

9 Base circle diameter of the ring gear (mm) D,cos «, 260.76

10 | Tooth thickness nM/2 2.356

11 E:ent)re distance of the planet gears on the carrier, ¢ c = (2 Rp) + D, 210
mm

where, R, is the radius of the planet gear.
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43.2

Speed ratio and mesh frequency

Let Z, Z;, and Z, be the number of the teeth on the ring, sun and planet gears respectively while Q,

Qs and Q, are the rotating speeds of the carrier, sun and planet gears in rpm respectively. The speed

ratio can be determined in tabular form as shown in Table 4-3 when the ring gear is chosen to be

stationary. The schematic diagram showing that the ring gear is stationary is shown in Figure 4-5.

The number of teeth on the ring gear

Z, =2, +2(Z,)=95+2(45) =185

Figure 4-5 The mechanism of planetary gear train with the ring gear fixed.

Table 4-3 Table of speed ratio of the planetary type

S Description of motion Carrier Ring (r) | Sun gear (s) | Planet gear (p)
tep
(c)
1 |Rotate the ring gear once 0 -1 z, 7
_ r
-1 (i.e clockwise) while fixing z, R
P
the carrier
2 |Rotate all at once +1 +1 +1 +1
+
3 |Addup 1 0 1+ Zr Z,
z -
s Z o
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The carrier is the input while the sun is the output. Assuming the carrier moves 1 rpm, the speed ratio

of the carrier to the sun gear considering the last row and column 5 of Table 4-3 is

-1

o)

e _ £1+er (4.1)
Q Zs

S

Equation (4.1) can be re-written as:

e (4.2)

Thus, the speed ratio of the carrier to sun gear is 0.3393 i.e. if the carrier rotates 1 rpm, the sun will
rotate at 2.947 rpm. The same procedure applies to the speed ratio of the carrier to planets considering
the last row and column 6 of Table 4-3 is

—= = (4.3)

Therefore, the speed ratio of the carrier to the planet gear (taking the absolute value) is 0.321 i.e. if the

carrier rotates 1 rpm, the planet gear will rotate at 3.11 rpm.

The contact between the teeth of two mating gears is called mesh. The mesh frequency, fm in Hz, is

the product of the carrier speed and the number of teeth on the ring gear [23]. There will be further

explanation on the mesh frequency in chapter 6. Therefore, the mesh frequency can be expressed as

__ 4
moZ+Z,

f (Q,/60)Z =(Q, /60)Z, (4.4)
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433 Input and output torgques

The torque can be calculated from the relationship between the power and the rotating speed.

S haft
un sha Carrier shaft

Figure 4-6 Torque in planetary gear trains.

Figure 4-6 shows the torques acting on a planetary gear train. A torque T, applied at the input by an
electric motor is transmitted to the output as Ts. The design power was determined based on the
service factor, which is a measure of overloading capacity at which an electric motor can operate to
avoid breakdown. However, the service factor, due to the operating hours of the electric motor at the
input in a day is chosen to be 1 for this test rig. The power rating of the motor is 1 horsepower (0.745
kW).

The input torque applied on the carrier can be written as

60P.
"= o, “9)

C
where, TC and P; are the input torque and power respectively. Likewise, the output torque is on the
sun gear and can be expressed as
60P
[¢]

T =
s ZTIQS

(4.6)

where TS and P, are the output torque and power respectively. If the angular acceleration is zero, i.e. at

constant angular velocity and the input and output shafts are rotating in the same direction, then the
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input and the output torques will be in opposite directions i.e. T;= -Ts . Therefore, from equations (4.5
and 4.6),

[ -
QC QS

This implies that the output power depends on the input power and the rotational speeds of the carrier

and sun gear.

4.3.4 Gear contact ratio

The gear contact ratio is an important parameter, which is sometimes used to control gear noise and
vibration passively. The higher the contact ratio, the lesser the gear vibration and noise. The contact

ratio between the sun and planet gear are determined as follows [50]:

Iy = /(Ry)* — R2c0s220° — Rsin20° (4.8)

l, =/ (12)* — r2c0s220° — rsin20° 4.9
where, I, l,, R, and T are the length of path of approach, length of path of recess, addendum circle

radii of the sun and planet gears respectively, while R and r are pitch circle radii of the sun and planet
gears respectively. The diameters of the addendum and pitch circles of the sun and planets were all
given in Table 4.1 as well as their pressure angles. Therefore, the lengths of path of contact l.; and arc

of contact l,; are determined as

ley = lg + L, = 8.2442 + 5.5945 = 13.84 mm (4.10)
13.84
T 14.73mm (4.11)
& c0s20

™M
there are always at least three pairs of teeth in contact for the sun-planet mesh. Likewise, the contact

The contact ratio between sun and planet gears was calculated as = =3.125. This implies that

ratio between planet and ring gear is calculated as follows:

I, = V(Rya)? — R2c0s?20° — R,sin20° = 8.9704 mm (4.12)

where, I,,R 4 and R, are the length of path of recess, addendum (or inner) and pitch circle radii of the

ring gear respectively. The length of path of approach is equal to I,. The lengths of path of contact I,

and arc of contact |, are determined as
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leg = Ly + 1, = 897 + 5.60 = 14.57 mm (4.13)

1457 15,51 (4.14)
= =15.51mm ,
2 0s20°
. . 15. o
The contact ratio between planet and ring gears was calculated as= —— =3.29. This implies that
™M

there are always at least three pairs of teeth in contact for the planet-ring mesh. Therefore, the
minimum number of pairs of teeth in contact for the ring-planet is three like that of sun-planet contact.

4.4  Determination of the bearing stiffnesses

The bearing stiffnesses of the components are one of the important parameters used to determine the
natural frequencies and the mode shapes of planetary gears. According to Kramer [51], the stiffness of
a rolling element bearing can be approximated using the equation (4.15).

Ky = kbntf/ 3073115 005 o (4.15)

2/3m—4

where K, K,,n, d, foanda are the vertical bearing stiffness, a constant = 13x10° N /3 number

of steel ball in the race, diameter of the ball in the race, vertical static load and the contact angle. For
this study the vertical stiffness calculated for the carrier, sun and planet gears using equation (4.15)
are 14.5, 15.3 and 0.81 MN/m respectively. Also, the horizontal stiffness can be calculated from the
vertical stiffness depending on the number of balls. Kramer gives the ratio of the horizontal to vertical
stiffness to be 0.46 and 0.64 for a bearing with 8 and 12 balls respectively. The planet bearing has 8
balls while the carrier and sun bearings, hence the approximated horizontal stiffnesses of the carrier,

sun and planet gears are 9.28, 9.79 and 0.37 MN/m respectively.

However, the bearing stiffnesses of the carrier, sun and planet gear were experimentally measured by
Tristan and Parker using a hydraulic jack to apply a known force on them [52]. A precise laser was
used to measure the deflection and the force versus deflection curve was plotted. The experimental
bearing stiffnesses of the component are taken from the slope of the least squares linear curve fit.
They assumed the bearing stiffnesses are equal in radial directions. Nithin [53] determined the
stiffness of a deep groove ball bearing by inserting the shaft into the inner race of the bearing. Both
ends of the shaft were clamped so that the system can behave like a single degree of freedom (SDOF)
system. The bearing was excited with an instrumented hammer and the accelerance was measured.

The accelerance which must show 40 dB decade per slope on the stiffness line was converted to
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receptance. The receptance was inverted to get the dynamic stiffness and the value was taken as the

stiffness of the bearing.

For this study, the stiffnesses of the support bearings of the carrier, ring, sun and planet gears were not
supplied by the manufacturers. These parameters are needed to predict the behaviour of the system
using the lumped parameter model. Considering the available facilities and simplicity, a receptance
method of estimating bearing stiffness was used in this study which was compared with those ones

determine analytically using equation (4.15).

An experiment was conducted using modal testing to determine the stiffnesses of the support bearing.
In this experiment, the components were mounted on the shaft in the frame. The bearings were also
mounted such that the whole component (e.g. a carrier) under test behaves like a single degree of
freedom (SDOF) system when excited with the impact hammer. For instance, the impact hammer was

used to excite the carrier in the horizontal direction and the point accelerance was measured.

The experimental set-up for the carrier is shown in Figure 4-7. This comprises the bearing attached to
the frame through the bearing housing, a shaft, a carrier and the base which was attached to a seismic
base. During this test, the components were stationary. The shaft was assumed to behave as a rigid body
so that the system can behave like a SDOF system (Figure 4-7 (a) and (b)). The mass and stiffness of the
system are denoted by m, and k. The hardware for the measurement comprised a signal analyser, an
instrumented impact hammer, accelerometers and a computer to display the results. The sensitivity of
the impact hammer was 2.25 mV/N while the sensitivity of the accelerometers was 1.00 mV/ms?. The
frequency resolution was 1.563 Hz, the window length or maximum time was 640 ms and the sampling
frequency was 2.56 x 10 kHz. This gives 6400 as a number of data points. The sensor was mounted on
the carrier in the radial direction using wax. The instrumented hammer and the sensor were both
connected to the signal analyser. The instrumented impact hammer was used to excite the carrier
horizontally and vertically i.e. x and y directions respectively for different cases. The signals were
displayed on the computer and any clipped data were rejected. The coherence of the data was checked to

be good i.e. they are 90% and above before they were accepted for interpretation.
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(a) (b)

Figure 4-7 Set-up to determine carrier bearing stiffness using the (a) experimental and (b)
analytical models.

The low frequency stiffness line in the receptance plots was used to estimate the bearing stiffness.
Stiffness was obtained by taking the average of the receptance values of points from 20 to 50 Hz. The

average value of receptance was inverted and taken to be the stiffness.

Therefore, the estimated stiffness of the carrier in the horizontal direction is approximately
0.502x10°N/m . This value for the stiffness was used in the single degree of freedom lumped
parameter model to compare the results which were plotted together in Figure 4-8 (a). It shows that
the lumped parameter model is reasonably accurate when considering it as a SDOF. The dynamic
stiffness measured from the experimental model were taken as the stiffness value in the dynamic
model. The effective mass of the carrier was also determined from the mass line of the accelerance
which is in Appendix 4 as 1 kg. The mass of the carrier was measured on a digital weighing balance
as 1.03 kg to confirm the estimated mass from the experiment. The loss factor estimated from a SDOF
circle fit for the carrier at 142 Hz in x direction is 0.3 while that of y direction at 288 Hz is 0.4. These
were applied as hysteretic damping in the analytical model and shown in both Figures 4-8 and 4-9.

The same method was used for the ring, sun and planet gears.

This procedure was repeated to determine the bearing stiffness of the carrier in the vertical direction
and those of ring, sun and planet gears in both directions. The set up for the sun gear is shown in
Figure 4-9 and the point receptances in both directions are shown in Figure 4-10. The receptances of
the planet and ring gears are shown in Figures 4-11 and 4-12 respectively. In general, there is
reasonable agreement between the responses from the model and experiments. However, this is not
the case for the carrier in the vertical direction (Figure 4-8 (b)) where it behaves like a mass at low
frequencies. This may be due to the fact that it was not clamped well enough during the experiment

giving rise to a mounting resonance below 10 Hz.
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Figure 4-8 Point receptance of the carrier showing its bearing stiffness at low frequencies in the
(a) horizontal (0 to 180°), the coherence is good from 23 Hz and (b) vertical directions (90°to
270°), the coherence is good from 38 Hz.

Figure 4-9 Set-up to determine sun gear bearing stiffness.
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Figure 4-10 Point receptance of the sun gear showing its bearing stiffness at low frequencies in
the (a) horizontal and (b) vertical directions. The coherence is good from 20 Hz and 31 Hz
respectively.
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Figure 4-11 Point receptance of the planet gear showing its bearing stiffness at low frequencies
in the (a) horizontal and (b) vertical directions. The coherence are good from 16 Hz and 20 Hz
respectively.
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Figure 4-12 Point receptance of the ring gear showing its stiffness at low frequencies in (a)
horizontal and (b) vertical directions.

The coherence is good from 96 Hz in Figure 4-12 (a) and from 75 Hz in Figure 4-12 (b). There is a
limitation in determining the stiffness of the ring gear in the vertical direction (Figure 4-12 (b))
because it was constrained in the vertical direction (i.e. bolted to the base). Therefore there is a
probability that the whole mass did not move as a rigid body when exciting it with the instrumented
hammer in the vertical direction. The stiffness in the vertical direction cannot be determined
accurately. In this case, the stiffness in the vertical direction will be assumed to be equal to that of

horizontal direction. The stiffness in the horizontal direction is 1.64 x 107 N/m.

The bearing stiffnesses determined analytically using equation (4.15) are greater than the ones
estimated from the experiment. The estimated values for the bearing stiffnesses and stiffness of the
ring gear determined are summarised in Table 4-4. It is believed that the estimated ones will be more
accurate and acceptable than the ones determined analytically. Therefore the estimated ones will be
used in this study.
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Table 4-4 Bearing stiffness values.

Component | Estimated | Estimated | Ratio of Analytical | Analytical | Ratio of
horizontal | vertical estimated horizontal | vertical analytical
Stiffness stiffness horizontal | stiffness stiffness horizontal
(MN/m) (MN/m) to vertical | (MN/m) (MN/m) to vertical
stiffness stiffness
Carrier K=0.50 Ke=1.43 0.350 9.28 14.5 0.64
Ring Kx=16.40 Ky=16.40 - - - -
Sun K«=0.68 Ks=1.35 0.500 9.79 15.3 0.64
Planet Kp=0.027 | K=0.049 0.551 0.37 0.81 0.46

Also, the ratio of horizontal stiffness to vertical stiffness of the bearing was investigated to check if
the values are closer to the one given by Friswell from the analytical method [48]. The comparisons
between the estimated and analytical ratio are close except for the case of the carrier where the
estimated ratio is 0.35 while the analytical ratio is 0.64 (Table 4-4).

4.5 Estimation of sun-planet and planet-ring mesh stiffnesses by a

fitting method

It is necessary to determine the mesh stiffness of a gear system before the natural frequencies and the
mode shapes can be predicted. The mesh stiffness is the mesh force per deflection at the contact
between the meshing teeth [54]. It can vary when the number of teeth in contact changes or when the
load fluctuates. In this study, the mesh stiffness is assumed to be constant for determination of natural
frequencies and mode shapes. Various methods have been used to determine the mesh stiffness of a
gear system analytically and using finite element analysis. Howard et al. [55] modelled the tooth
stiffness using finite element analysis (FEA). Instead of modelling the bending stiffness, the static
torsional mesh stiffness was considered and converted to a linear stiffness for use in their dynamic
model. Wadkar and Kajale in their study [56] show how the single pair torsional stiffness and double
pair torsional stiffness of meshing pinion and gear can be determined. They defined torsional stiffness
as the ratio of applied torque to an angular rotation of gear body. i.e. K=7/0, where K, T and é are the
torsional stiffness, applied torque and the angular rotation of gear body. The transverse plane angular
rotation of the gear body 4 are caused by bending and shear when the gear is stationary using equation
4.16.

(4.16)
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where B, H and R are the tooth displacement caused by bending and shearing at the contact, tooth
displacement caused by contact deformation and the radius of the base circle. They determined the
equivalent torsional stiffness of single pair of meshing teeth using by assuming that the meshing are
springs in series.
eq — % (4.17)
p g

where Kyand Kq are the torsional mesh stiffnesses of the pinion and gear respectively. This procedure
can be used to determine the torsional mesh stiffness. However, to determine the accurate
displacement caused by shearing and bending may not be trivial. Chang et al. [57] proposed a model
for determination of mesh stiffness of cylindrical gears using a combination of local contact analysis
and finite element method (FEM). The two and three-dimensional finite element models which can be
used to determine mesh stiffness were developed by Kiekbuch et al. [58]. The two-dimensional model
is suitable to simulate a variety of different gear pairs in a short period of time. A formula for
combined torsional mesh stiffness of spur gear was derived from the analysis of the two-dimensional
model. They assumed that the stiffnesses of the body, teeth and contact zone can be arranged as three
springs in series such that the combined torsional stiffness K; for each pinion and gear will be

o _ (e )(Kr)(Ks,)
I Kg,i+ K+ K

(4.18)

where Kg;, Kr; and K are stiffnesses of the gear body, tooth and the contact respectively with i
denoting pinion or gear. The combined torsional mesh stiffness of the pinion and gear are then
determined in series. Sanchez [59] et al. presented a model for evaluation of spur gear mesh stiffness
which includes bending, shear, compressive and contact deflections. The stiffness is evaluated at any
point of the path of contact by an analytical equation. The load at any point of contact can be

determined from the analytical equation.

All the aforementioned methods of determining the mesh stiffness are not trivial. In this study, the
sun-planet and ring-planet mesh stiffnesses were determined by fitting a relationship between the
natural frequencies measured from the experiment and those predicted by the model. This is a new
and easier method of estimating mesh stiffness of a planetary gear. It takes into consideration the

measured natural frequencies of the system.

For sun-planet mesh frequency estimation, the ring gear was excluded during the experiment.

Therefore, only the carrier, sun and planet gears were present. A reasonable range of estimated values
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for the mesh stiffness were assumed between 10° and 10° N/m. The contact stiffness matrices was
decomposed (as shown in Appendix 3) in order to achieve this. The relationship in Equation (4.19)

was used to determine the mesh stiffness by choosing to minimise an error function, €.

= ()’
where, n is the chosen number of modes to be used in the estimation process, while ;. and w;, are the
natural frequencies of ith mode from the experiment and the predictions respectively. A table showing
the natural frequencies are shown in the Appendix B. Each pair of estimated and predicted natural
frequencies was chosen based on the closeness in their values. Some of the measured natural
frequencies cannot be identified by the analytical model because the model can only capture the

translational, rotational modes and the assumptions in the lumped parameter model.

The two different lines of the error function € against the sun-planet mesh stiffness are used in the
model shown in Figure 4-13 (a). The value chosen was determined using three natural frequencies in
the first case and four natural frequencies in the second case from both experiment and predictions.
The minimum value in the error function corresponds to an estimated mesh stiffness of 1.0 x
107 N/m and this was taken as the sun-planet mesh stiffness in the analytical model. The same
procedure was repeated when a ring gear was included on the test rig in order to estimate ring-planet
mesh stiffness. The estimated ring-planet mesh stiffness as shown in Figure 4-13 (b) is 1.5 X 10’ N/m.
The average of sun-planet and planet-ring mesh stiffnesses estimated is 1.25 x 10’N/m. This value
was subsequently used as the mesh stiffness for both the sun-planet and planet-ring contact. Since the
same numbers of pairs of teeth are in contact at any point in time the sun-planet and planet-ring mesh,

both mesh stiffnesses should be the same.
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Figure 4-13 Determination of the mesh stiffness by minimising the error in the squared
difference in the predicted and estimated natural frequencies as a function of the mesh stiffness
(a) Sun-planet mesh (b) Planet-ring mesh.

The red line denoted the error function when four natural frequencies were chosen while the black is

for the error when three natural frequencies were chosen.

4.6 Estimation of the mass moment of inertia of the components and the
torsional stiffness of the ring gear

The masses, mass moment of inertias of carrier, ring, sun and planet gears were evaluated and
tabulated in Table 4-5. Their geometric shapes were considered for the calculations of the mass
moment of inertia which was subsequently divided by the square of the radii of the pitch circles. The
carrier mass moment of inertia was divided by its horizontal length as shown in Figure 4-4. These will
be used in the mathematical model which has been derived in chapter three. The equations for
calculation of the moment of inertia of the carrier, ring, sun and planet gears with relevant diagrams

are shown in Appendix B.

Table 4-5 The estimated masses and mass moment of inertia of the planetary gear.

Component Masses (kg) Mass moment of 1/r* (kg)
inertia, 1 (kgm?

Carrier 1.00 0.0377 241

Ring 4.30 0.1197 6.22

Sun 2.00 0.0051 1.00

Planet 0.43 0.000254 0.22
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Also, the torsional stiffness of the ring gear was calculated to be 2.54 x 108Nm/rad . This can be
found in Appendix B.

4.7 The determination of viscous damping

For the numerical analysis using a rotating frame of reference, the viscous damping coefficient was
calculated using equation (4.20) taking the damping ratio £ as 0.01. The reason for doing this is to

see clearly the resonance peaks of the system when an external force is applied.

C.
=——— ;i=c,r,sand p (4.20)

;i_zm

The values of ¢;, k; and m; are the viscous damping coefficient, stiffness and mass of the carrier, ring,

sun and planet gears. The estimated viscous damping coefficients are shown in Table 4-6.

4.7.1 4.7.1 The effect of the different carrier speed on the damping ratios

In this subsection, the effect of carrier speed on the damping ratios was studied. This was compared to
the damping ratios obtained at each damped natural frequencies when using a fixed frame of reference.
For this comparison between both frames of reference, the parameters in Table 4-6 were considered
for both cases. The modal damping ratio of the m™ mode was determined analytically from the

calculated eigenvalues as follows assuming a viscous damped mode i.e.

S, = —¢w, ja’n\ll_é’z (4.21)

where, &, &, w, and w, are the real parts of the complex eigenvalue and the damping ratio, natural

frequency and damped natural frequency respectively.

o= —Cw, @y =w,\1-C? (4.22 (a) and (b))
Therefore, equation (4.13) becomes

S, =01 joy (4.23)

o, can be made the subject of the formula from equation 4.22 (a) and (b) such that they will be equal

and the modal damping ratio can be determined based on the damped natural frequency and o. The

modal damping ratio of the m™ mode is therefore expressed as
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2
Cn = |5 (4.24)
ot ®4n
where, 0,, and@,, are the real part of the complex eigenvalue of m™ mode and its damped natural

frequency respectively. The calculated modal damping are shown using coloured lines in Figure 4-14

for the carrier speeds 0 to 2000 rpm in 500 rpm increments.
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Figure 4-14 The effect of the carrier speed on the modal damping ratios at 0 to 2000 rpm.

It is obvious in Figure 4-14 that there is no significant difference in the modal damping ratios between
0 and 500 rpm from the second to eight mode, but the difference is obvious from 1000 rpm for these
modes. The case is different for the ninth to fifteenth mode because the modal damping ratios are
almost invariant at the carrier speeds considered. This implies that the Coriolis effect has no influence
on the modal damping ratios at higher order modes, from 272 Hz but has an effect on the lower modes
at 1000, to 2000 rpm.

4.8  The frequency response at different carrier speed using a rotating
frame of reference

In many publications where a rotating coordinate system was used, the Coriolis terms are usually

ignored because they do not have effect on the natural frequencies of the system at low rotational
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speeds. The aim in this section is to investigate and report how the Coriolis effect affects the response
at high carrier speeds. Five different carrier speeds at intervals of 500 rpm were chosen to demonstrate
and compare the frequencies excited when a unit force is applied on a system component in the
horizontal, vertical and rotational directions. Therefore, the bearing stiffness must be isotropic in this
case, so the average of the stiffnesses of carrier, ring, sun and planet gears in both the horizontal and
vertical directions as written in Table 4-4 were taken and used at this point. They are shown in Table
4.6 and will be used in all the subsequent studies in this research when using either a fixed or rotating
coordinate system for analysis unless otherwise stated.

Table 4-6 Parameters of the system when using a rotating frame of reference

Parameter Carrier Ring Sun Planet
description

Mass (kg) 1.00 4.30 2.00 0.43

I/ (k) 2.41 6.22 1.00 0.23

(Bniie circle diameter 176.8 261.00 134.00 63.40

Bearing stiffness

6 7 6 4
(N/m) 0.965x10 1.64x10 1.02x10 3.82x10

Bearing damping

cogﬁ|C|ent (Ns/m) 10.65 53.22 28,57 5 56
using 0.01 as the

damping ratio

Mesh stiffness (N/m)
1.25 x 107

Torsional stiffness of

the ring gear 8
(Nm/rad) 2.54 x 10

Torsional damping
coefficient of the
ring (Ns/m) using
0.01 as the damping
ratio

661

Pressure angle

(degree) 0=0,=20

The above parameters were used to determine the natural frequencies and the mode shapes of the
system using equation (3.56) in chapter 3. This is a case whereby a rotating frame of reference was
used for the analysis neglecting the Coriolis terms. The natural frequencies and the mode type are

shown in Table 4-7.
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Table 4-7 Natural frequencies using a rotating frame of reference and isotropic bearing
stiffnesses

SIN Natural frequencies (Hz) Mode type

1 0 Rotational mode

2 34.7 Rotational mode

3 44 Translational mode
4 46.1 Rotational mode

5 105.7 Translational mode
6 113.7 Translational mode
7 162.5 Translational mode
8 162.9 Translational mode
9 298.7 Translational mode
10 310.8 Translational mode
11 959.7 Rotational mode
12 1237.2 Translational mode
13 13111 Rotational mode
14 1778.8 Translational mode
15 1830.5 Rotational mode

The mode shapes of the rotational and translational modes at 34.7 and 162.5 Hz respectively are

shown in Figure 4-15.
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Figure 4-15 (a) Rotational mode at 34.7 Hz (b) Translational mode at 162.5 Hz.

At 34.7 Hz, the sun and planet exhibit significant displacement in the rotational direction (Figure 4-
15). Also, at 162.5 Hz, it shows that the sun was more significantly displaced in the horizontal
direction than the vertical direction.

The carrier, ring, sun and planet gears were excited in the horizontal, vertical and the rotational
direction using a rotating frame of reference and their point receptances are shown in Figures 4-16 to
4-19 respectively. The various carrier speeds considered are shown in different colours for clarity with
the black line as a reference. Also, the Coriolis effect on the natural frequencies of the system
considering a wide carrier speed range was shown on a frequency map to confirm if there is any
frequency split shown on the frequency response function.
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Figure 4-16 Predicted point receptance of the carrier in the (a) horizontal (b) vertical and (c)
rotational directions at different speeds. The point receptance at 0, 500, 1000, 1500 and 2000
rpm are shown in black, red, blue, yellow and green lines respectively.

Figure 4-16 (a) show the carrier frequency response in the horizontal direction. There is a peak at 44
Hz when the carrier speed is zero (i.e. when there is no Coriolis effect) and this is a translational mode.
There is no significant difference between the resonance frequencies at the carrier speeds 0 and 500
rpm. The difference becomes significant when the carrier speed reaches 1000 rpm and above because
of the Coriolis effect. At higher frequencies, the resonance frequency when there was no Coriolis
effect is 162.5 Hz and there was a frequency split for the carrier speeds above 500 rpm. This is due to
the fact that there are two frequencies of 162.5 and 162.9 Hz when there is no Coriolis effect in the
system which split as the carrier speed increases. It has been shown in Chapter three that the

analytical model with two planet gears does not exhibit this behaviour whereby there will be two
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similar natural frequencies of translational modes. Lin and Parker [14] said this kind of mode has a
multiplicity of two. However, the stiffnesses used for the analysis in Chapter three are more than the
ones used in this section, so this may be responsible for the occurrence of two similar frequencies
splitting as the carrier speed is increasing in the two-planet model. The higher frequencies excited in
the vertical direction also show the same trend as in the horizontal direction. Without the Coriolis
effect, a rotational mode was excited in the rotational direction (Figure 4-16 (c)) at 34.7 Hz. The
difference in the resonance frequencies is not significant at the lower speed 500 rpm. The difference
is significant from 1000 rpm most especially at 2000 rpm, but less significant when compared to the
translational mode excited at low frequencies in the horizontal direction (Figure 4-16 (a)). It is
obvious that the frequency of the rotational mode does not split. For three directions, the responses
when there is no Coriolis effect is about 6 dB higher than the responses at higher carrier speeds. This
was mentioned considering that the same viscous damping coefficient was applied to the components
in both the horizontal and vertical directions.
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Figure 4-17 Predicted point receptance of the ring gear in the (a) horizontal, (b) vertical and (c)
rotational directions at different speeds. The point receptances at 0, 500, 1000, 1500 and 2000
rpm are shown in black, red, blue, yellow and green lines respectively.
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Two frequency peaks can be seen in the horizontal and vertical directions of the ring gear at 298.7 and
310.8 Hz without the Coriolis effect (Figures 4-17 (a) and (b)). When the carrier is rotating at 500 rpm,
there is a little difference in the resonance frequencies. The difference becomes obvious at the carrier
speeds above 1000 rpm. In the rotational directions, there is no difference in the resonance
frequencies with and without the Coriolis effect. This implies that Coriolis effect has no influence on
the rotational modes of the ring because of its high torsional stiffness i.e. the ring gear is effectively
stationary.
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Figure 4-18 Predicted point receptance of the sun gear in the (a) horizontal, (b) vertical and (c)

rotational directions at different speedsThe point receptances at 0, 500, 1000, 1500 and 2000
rpm are shown in black, red, blue, yellow and green lines respectively.

81



There is a low-amplitude peak on the sun gear at 105.7 Hz without the Coriolis effect, while the
resonance frequencies at the carrier speed above 500 rpm can be seen at lower frequencies (Figure 4-
18 (a) and (b)). As in the case of the carrier, the resonance frequency at 0 and 500 rpm are not
significantly different from each other with a difference of only 4 Hz. The case is different for
excitations above 1000 rpm. The higher the carrier speed the lower the resonance frequencies. The
second mode was excited in the absence of Coriolis effect with resonance occurring at 113.7 Hz. In

this mode, the resonance frequency is increasing as the carrier speed is increasing.

In the rotational direction (Figure 4-18 (c), the frequency of the corresponding to a rotational mode is
34.7 Hz when there is no Coriolis effect. As the carrier speeds increases, the resonance frequencies
are reducing, although there is no significant difference between the frequencies excited at 0 and 500
rpm. Another rotational mode was excited at 46.1 Hz for a stationary coordinate system while the
other resonance frequencies at for rotational speeds above 500 rpm are not significantly different. This
shows again that the Coriolis effect does not have a significant influence on the rotational modes of
the system at high carrier speeds.
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Figure 4-19. Predicted point receptance of the first planet gear in the (a) horizontal, (b) vertical
and (c) rotational directions at different speeds The point receptances at 0, 500, 1000, 1500 and
2000 rpm are shown in black, red, blue, yellow and green lines respectively.

The point receptances of the first planet gear are shown in Figures 4-19. The corresponding point
receptances of the second planet gear are in Appendix 5, because they are identical. A careful
observation shows that a rotational mode at 34 Hz as shown in Figure 4-18 (a) was not visible when
the carrier is not rotating but can be seen at the speed of 500 rpm. It is obvious for this mode that the
resonance frequencies are decreasing as the carrier speed increases. Also, at a translational mode 44
Hz when there is no Coriolis effect, the frequencies are decreasing with increased carrier speed. The
carrier speed has no significant effect on another rotational mode excited at 46.1 Hz. In Figure 4-18
(b), the resonance frequencies at 34.7 Hz, 105.7 and 298.7 Hz are decreasing with increased carrier
speed because they translational mode. Although there are no peaks at 113.7 and 310.8 Hz when there
is no Coriolis effect, but resonance peaks can be seen at 118.7 and 315 Hz when the carrier speed is

500rpm. The resonance frequencies are increasing at these two frequencies with increased carrier
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speed. The two frequencies correspond to two translational modes. The resonance frequency of a
rotational mode at 46.1 Hz remain significantly unchanged as well as the resonance frequencies from
959.7 Hz and above. The same trend in the vertical direction of the planet frequency response can be

seen in the response at the rotational direction.

In general, the trend in the responses considering the Coriolis effect depends on the mode type. In
other words, the resonance frequencies decrease as the carrier speed increases for frequencies excited
between 34 and 105 Hz but with no significant effect on the rotational modes. The resonance
frequencies are either decreasing or increasing as the carrier speed increases for frequencies between
118.7 and 315 Hz. All the modes excited (both rotational and translational modes) above 959.7 Hz
remain unchanged with increasing carrier speed, therefore the frequencies excited within this range
does not change even by a small amount due to Coriolis effect. This observation is peculiar to a two-

planet model.

The frequency map which shows how the carrier speed is affecting the undamped natural frequencies

is shown in Figure 4-20.
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Figure 4-20 Zoomed view of a frequency map showing the split at 162.5 and 162.9 Hz as the
carrier speed increases for a two-planet model.

The frequency map shows two translational modes number 7 and 8 at 162.5 and 162.9 Hz which split

as the carrier speed is increases.
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4.9 Location of the poles in the s-plane

The positions of the damped poles in the s-plane are presented to see if the Coriolis effect can produce

shifts to the right hand side of the complex plane which indicates potential instability in the system.
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Figure 4-21 Positions of the damped poles in the s-plane at different carrier speeds.

Figure 4-21 shows that the damped poles are not significantly affected by the Coriolis effect due to
the rotational coordinate system which is attached to the carrier. Also the poles are not shifting to the
right hand side due to the high carrier speed which indicate potential instability in the system.

410 Conclusions

A suitable vibration test rig for a planetary gear system has been designed and developed for vibration
tests and model validation. The test rig was configured such that an accelerometer can be mounted on
the carrier, ring, sun and planet gear separately at the same time when they are stationary or rotating.
The novelty in this is that, the independent vibration of each of them can be measured with the
accelerometers rotating with the components during operation. Also, the test rig was built in such a

way that it will be easier to assemble or disassemble when necessary.

The configuration of the test rig makes it possible to be used for experimental estimation of the
bearing stiffnesses of the carrier, ring, sun and planet gears when it is not rotating. The estimated
bearing stiffnesses were compared to the stiffnesses determined analytically and the ones of analytical
are significantly larger. The estimated bearing stiffnesses will be used instead of the analytical ones.

The ratio of the horizontal to the vertical bearing stiffness was also investigated and compared with
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the results in the literature [48]. It shows that the ratios are close for cases of the sun and planet
bearing. The mesh stiffness was also determined using a fitting method which includes the measured
natural frequencies. This is another novelty in this chapter as the sun-planet and planet-ring mesh
stiffnesses were estimated by a fitting method. The values of both the bearing and mesh stiffnesses
will be used in the lumped parameter analytical model to predict both the free and forced responses of

the planetary gear in the subsequent chapters.

The effect of carrier speed (i.e. Coriolis effect) on the modal damping ratios of the system was
investigated. Out of fifteen modes, it shows there is no significant change on the modal damping
ratios from the first to the eighth mode while the damping ratios from ninth to the fifteenth mode

remain unchanged.

Also the effect of the carrier speed on the resonance frequencies was studied for each component in
the different directions. In general, the dynamic behaviour is not significantly affected by a Coriolis
effect at a carrier speed below 500 rpm. Above 500 rpm the behaviour may seem to be different until
1000 rpm where the change in frequency is obvious for the translational mode. The Coriolis effect
either decreases or increases the resonance frequencies in the component does not have a significant
effect on the rotational mode excited. All the excited modes (both rotational and translational) above
960 Hz remain unchanged with increase in the carrier speed, therefore they are not influenced by the
Coriolis effect probably because of higher stiffness. It was discovered that there is a translational
mode (approximately 163 Hz) with a multiplicity of two in the model with two planet gears. In this
case, the stiffness values of the bearings have reduced compare to the one in chapter 3. Therefore, the

frequency will split at high carrier speeds when using a rotating frame of reference.

The next chapter focuses on modal testing carried out on the test rig when it was stationary. The

results of the modal test will be compared to the predictions from the analytical model.
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Chapter 5 Comparison between the predictions and
measurements with forced vibration response

In the previous chapter the parameters needed for the analytical model have been determined. This
chapter focuses on comparing the predictions from the analytical model with the measured natural
frequencies. In this case, a fixed frame of reference was used to analyse the dynamic model, and the
anisotropic bearing stiffnesses determined in Chapter 4 were used. For the modal test, the frequency

and loss factor are shown.

The forced response at the mesh excitation frequency was predicted using the analytical model and
this was compared to the measured response from the spinning test.

5.1 Experimental modal analysis: non-rotating planetary gear

The processing of the vibration data from the planetary gear system was carried out using modal
analysis, in order to validate the results obtained from the lumped parameter model.

The set-up for the modal testing is shown in Figure 5-1. The impact hammer with a steel tip (model
number PCB 086C03) was used. The sensitivities of the hammer and the accelerometers are 2.25
mV/N and 1.00 mV/ms® respectively. The two accelerometers (model number PCB 352C22)
measuring the response in the horizontal (x) and vertical (y) directions of the planetary gear
components were acquired. The frequency span was set to be 10 kHz while the number of sampling
points is 3200. The sampling time is thus 0.32 s. The frequency resolution, df, equals 3.125 Hz which
is good enough to distinguish between two close natural frequencies. The accelerometers were
carefully mounted with wax on the components to be tested in both the horizontal and vertical
directions. The clipped data were rejected while the signals with good coherence were accepted for
processing. The acquired data namely acceleration and force for computation of the accelerance is
converted from analogue voltage signals by the analyser. The natural frequencies and loss factors
were subsequently determined from processing the point accelerance measured on each component of

the system.

87



Instrumented hammer
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Accelerometers mounted on
the ring gear in the vertical
direction

Figure 5-1 Planetary gear vibration test on the ring gear in both the horizontal and vertical
directions.

5.2  Validation of the analytical model

Viscous damping was added into the analytical model in parallel to the bearing stiffness of the carrier,
ring, sun and the planet gears based on the measured loss factor measured at the first excited mode.
However, there are some cases where the viscous damping estimated is slightly greater than the one
used. For instance, the loss factor measured for the first excited mode (84.37 Hz) of the carrier in the
horizontal direction is 0.3. This implies the damping ratio is 0.15 but 0.2 was used in the analytical

model which is not significantly different.

The frequency responses in the rotational direction are not shown in the model validation, because
they were not measured. The parameters in Tables 4-4 and 4-5 were used to determine analytically the
natural frequencies and mode shapes of the system. In this case, the bearing stiffnesses are not the
same in all directions, so a fixed frame of reference was chosen as the coordinate system. The
analytical and measured point receptances of the carrier, sun, planet and ring gears were plotted and
shown together for each them in x and y directions respectively.
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Figure 5-2 Locations where the carrier was excited in x and y directions.

A unit force, F, was applied to the carrier in the horizontal direction and subsequently in the vertical
direction, F¢, as shown in Figure 5-2 to show the points of excitation and measurement in the
experimental and the analytical models. An accelerometer mounted on the opposite side measures the
point accelerance which was later converted to receptance. The point accelerance and Nyquist circle
at 84.37 Hz are shown in Figures 5-3 (a) and (b). The frequencies of the modes measured on the

carrier in this direction are shown in Table 5-1.
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Figure 5-3 (a) Point accelerance and (b) Nyquist circle of the carrier in x directions at 84.37 Hz.

Table 5-1 Modal parameters of the carrier in x direction

Mode Frequency Loss factor Modal Phase Angle to +ve
(Hz) diameter imag axis
(deg)
1 84.37 0.300 0.589 +ve -22
2 365.80 0.180 0.478 +ve -45
3 537.47 0.114 0.592 +ve -64
4 7631.21 0.009 2.140 -ve -168
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Figure 5-4 (a) Point accelerance and (b) Nyquist circle of the carrier in y directions at 143.7 Hz.

The point accelerance and Nyquist circle at 143.7 Hz are shown in Figures 5-4 (a) and (b). The

frequencies and other modal parameters measured on the carrier in y direction are shown in Table 5-2.

Table 5-2 Modal parameters of the carrier in y direction

Angle to +ve
Mode Frequency Loss factor Modal Phase imag axis
(H2) diameter (deg)
1 143.70 0.204 0.369 +ve 15
2 369.00 0.215 0.395 +ve -34
3 587.60 0.073 1.130 +ve -24
4 1984.00 0.053 8.060 +ve -10
5 3781.00 0.067 9.460 +Vve 17
6 7628.00 0.079 11.100 -ve -114
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Figure 5-5 Point receptance of the carrier in both the (a) x and (b) y directions.
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The predicted and measured receptances are shown graphically for each direction for comparison.
Figure 5-5 (a) shows the receptance in the x direction where the coherence of the measured signal is
acceptable from 31.5 Hz. There is poor matching between two damped peaks at 84.37 and 121.9 Hz
from the predicted and measured results respectively. The predicted mode, corresponding to 121.9 Hz,
is a translational mode where the carrier, sun and planet gears are translating. There is a significant
amount of damping in the measured receptance because the peak is not sharp. This may be due to
dissipation from the bearing and friction or coulomb damping between the teeth of the sun and planet
gears in the system. The case is different when the planetary gear system is rotating, this will be
shown in Chapter 6. In the y direction of the carrier (Figure 5-5 (b)), the measured and predicted
receptances show a better degree of agreement. The coherence of the measured signal in this direction
is good from 44 Hz. The first excited mode corresponding to 195 Hz is a translational mode. There
are two peaks at 1984 and 3781 Hz in the measured frequency responses which were not predicted by
the analytical model.

Figure 5-6 Locations where the sun gear was excited in x and y directions.

The sun gear was excited with an instrumented hammer in the horizontal direction and subsequently

in the vertical direction as shown in Figure 5-6.
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Figure 5-7 (a) Point accelerance and (b) Nyquist circle of the sun gear in x direction at 187.6 Hz.

The point accelerance and Nyquist circle are shown in Figure 5-7 (a) and (b) while the modal

parameters are shown in Table 5-3.

Table 5-3 Modal parameters of sun gear in x direction

Mode Angle to +ve
Frequency Modal X .
Loss factor . Phase imag axis
(H2) diameter
(deg)
1 90.66 0.204 0.102 +ve 17
2 187.64 0.339 0.301 +ve -48
3 1341.23 0.217 0.514 +ve -52
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Figure 5-8 (a) Point accelerance and (b) Nyquist circle of the sun gear in y direction at 143.9 Hz.
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Table 5-4 Modal parameters of sun gear in y direction

Mode Frequenc Modal Angle to +ve
q y Loss factor . Phase imag axis
(H2) diameter
(deg)
1 143.9 0.453 0.312 +ve -52
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Figure 5-9 Point receptance of the sun in both the (a) x and (b) y directions.

The measured and predicted receptances in the x direction are shown in Figure 5-9 (a), where the
coherence for the measurements is good from 44 Hz. Both the measured and predicted receptances
show a fair degree of agreement especially between 2.5 to 8 kHz. There is a peak in the predicted
receptance (1779 Hz) which was not measured. This is more significant in the predicted receptance in
the y direction (Figure 5-9 (b)) as well as another peak at 1237.3 Hz. The coherence is good from 35
Hz in the vertical direction. The corresponding modes for these two peaks as predicted and shown in
Table 5.1 are translational modes.

Figure 5-10 Locations where the planet gear was excited in x and y directions.

93



The planet gear was subsequently excited in the same way as shown in Figure 5.10 and the natural

frequencies are shown in Tables 5-5 and 5-6.

Table 5-5 Modal parameters of planet gear in x direction

Mode Frequency (Hz) | Loss factor Modal diameter | Phase

1 184.40 0.315 0.584 +ve

2 362.45 0.151 0.280 +ve

Table 5-6 Modal parameters of planet gear in y direction

Mode Frequency Loss factor Modal Phase Angle to +ve
(H2) diameter imag axis

(deg)

1 156.36 0.465 1.46 +ve -30

2 356.40 0.354 1.26 +ve -61

3 2034.50 0.055 1.89 +ve -69

The accelerance and Nyquist circle are in Appendix C
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Figure 5-11 Point receptance of the planet in both the (a) x and (b) y directions.

The measured and predicted receptance in the x direction are shown in Figure 5-11 (a). The coherence
of the measured signal is acceptable from 40 Hz upwards. For the model, two predicted resonance
peaks can be seen in the horizontal direction at 42.3 Hz and 1779 Hz. The peak at 42.3 Hz is damped
while the second one at 1779 is lightly damped. Both peaks correspond to the class of translational
modes although the planet gears are moving in the three translational and rotational directions. The
measured and predicted responses only agree at frequencies above 2 kHz. Also, the predicted
receptance show two peaks at 34.6 and 1237 Hz in the y direction (Figure 5-11 (b)). The coherence of

the measured signal is acceptable from 13 Hz. The first excited mode corresponds to a rotational
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mode while the second one at 1237 Hz is a translational mode. This implies from the predictions that
both translational and rotational modes can be excited in the y direction of the planet gears probably
because it is tangential to the rotational coordinate of the carrier and planet gears. The behaviour of

the measured and predicted results agrees at frequencies above 3 kHz.

bry

e

Figure 5-12 Locations where the ring gear was excited in x and y directions.

The ring gear was subsequently excited in the same way as shown in Figure 5-12. The modal

parameters are shown in Tables 5-7 and 5-8.

Table 5-7 Modal parameters of ring gear in x direction

Mode Frequency Loss factor Modal Phase Angle to +ve
(Hz) diameter imag axis
(deg)
1 275.00 0.175 1.02 +ve -55
2 506.20 0.125 1.20 -ve -164
3 2281.43 0.053 1.08 +ve -15
4 4200.00 0.078 22.20 -ve -177
5 7780.00 0.052 22.00 -ve 108
Table 5-8 Modal parameters of ring gear in y direction
Mode Frequency Loss factor Modal Phase Angle to +ve
(Hz) diameter imag axis
(deg)
1 515.56 0.140 4.38 -ve 173
2 1117.00 0.118 1.01 -ve 138
3 1640.57 0.039 2.03 -ve 130
4 2300.00 0.054 6.42 -ve 158
5 4249.80 0.051 11.90 -ve -163
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Figure 5-13 Point receptance of the ring in both the (a) x and (b) y directions.

Figure 5-13 (a) shows both the measured and predicted receptances in the x direction. The measured
signal from this direction is acceptable from 50 Hz. A peak frequency was measured at 275 Hz and
another one was predicted at approximately 311 Hz. The difference between them is significant. The
predicted frequency is related to a translational mode where only the ring gear is translating among
the central members of the planetary gear system. In the y direction (Figure (5-13 (b)), the measured
signal is acceptable from 30 Hz. A damped peak at 299 Hz was predicted which is a frequency of
translational mode while a measured peak can be seen at 516 Hz. There is poor agreement between
the peaks and the behaviour at low and high frequencies in this direction. This may be due to the fact
that there is a limitation in measuring a reasonably accurate stiffness of the ring gear in the y direction

as mentioned earlier in Chapter 4.
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Table 5-9 Predicted and measured natural frequencies of a two-planet model of a planetary
gear system.

SIN Predicted Mode type Measured %
natural natural difference
frequencies frequency
(Hz) (Hz)

1 0.00 Rotational mode of the carrier and sun -

2 34.60 Rotational mode -

3 42.30 Translational mode -

4 46.10 Rotational mode of the carrier and sun of the ring -

5 92.00 Translational mode 90.66 1.48
6 121.90 Translational mode 143.70 15.17
7 122.90 Translational mode 143.70 14.47
8 195.40 Translational mode 187.64 4,14
9 298.80 Translational mode 275.00 8.65
10 310.90 Translational mode of ring gear only 356.64 12.83
11 959.70 Rotational mode -

12 1237.30 Translational mode 1117.00 10.77
13 1311.10 Rotational mode 1341.23 2.25
14 1778.80 Translational mode (carrier moves only in x 1640.57 8.43

direction while ring and planet moves in x and y
directions)
15 1830.50 Rotational mode of both the ring and sun gears 1984.00 7.74

Table 5-9 shows the predicted and measured natural frequencies of the particular planetary gear

system modelled. The percentage difference was estimated between the measured and predicted

natural frequencies and it shows that the sixth, seventh and tenth modes are not as accurate as for the

other modes because their natural frequencies greater than nine percentage points higher than the

predicted ones. The mode shapes of corresponding to 0, 92 and 122.9 Hz are shown in Appendix C.
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Figure 5-14 Sensitivity of the natural frequencies to the (a) sun-planet mesh stiffness and (b)
planet-ring mesh stiffness.

The sensitivity of the sun-planet and planet-ring mesh stiffness was determined using the analytical
model and shown in Figures 5-14 (a) and (b). It shows that the natural frequencies from 1779 Hz are
sensitive to these mesh stiffnesses while the lower frequencies are not significantly sensitive to the
mesh stiffnesses. This is in agreement with the study shown by Lin and Parker where they show the
sensitivity of the natural frequencies to the sun-planet mesh stiffness [22]. The method used to
estimate the sun-planet and planet-ring mesh stiffnesses is relatively simpler. The values of the mesh

stiffnesses determined are believe to be close to the accurate value.

5.3 Forced vibration responses

This section focuses on studying the response of planetary gear system to transmission error as an
externally applied force at the mesh. The force is assumed harmonic (i.e. sinusoidal) for easier
calculation and interpretation. The force was added by adding a forcing function to the equation of
motion (3.49), as previously derived in chapter 3 of this report. A rotating frame of reference was
chosen as a coordinate system for this study. The mesh force was applied at the ring-planet and sun-

planet mesh of the system.

The response is obtained in time domain by writing equation (3.49) in state space form and using the
ODE 45 solver in MATLARB to solve the differential equation written in equation (5. 1).

0 I 0

% (Z) - [M—l(Kb + K+ 0Kz — QK3 M 1(Q.G+ cb)] (Z) + (M—lFm) (5-1)

The notations have been defined previously in equation 3.50 except for q,q and F,, which denotes

the generalized displacement, velocity and force vectors respectively. Therefore, the component force
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vectors in a force vector F,, on the carrier, ring, sun and planet gears respectively are written in
equations (5.2 - 5.6).

F.=[0 o o (5.2)
Fo=[KmemSinw,  Kimém Cosy,  Kiném ]T (5.3)
Fo =Kl Sinwg, Kb COsyg,  Kges ]T (5.4)
Fo=[~(Knem + Keegsina —(Kpep +Kgesn)cosar —(Kep, + Ksnesn)]T (5.5)

Since it was assumed that the excitation force is time harmonic, then
e, = E,, sinw,t (5.6)

where, E,, is the amplitude of the transmission error applied (0.00105 mm) between sun-planet and

planet-ring meshes.

The transmission error between planet and gear e, is assumed to be the same as sun-planet eg,. The
mesh frequency which is the product of carrier speed (€2;) and the number of teeth on the ring gear is
denoted by on. The harmonic force on the planet gear is equal and opposite of the forces on the sun

and ring gears. The predicted results were shown in Figures 5-15 and 5-16.
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Figure 5-15 The predicted power spectral density of the carrier radial acceleration response at a
rotational speed of 100 rpm in the (&) horizontal and (b) vertical directions.
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a rotation speed of 100 rpm in the (a) horizontal and (b) vertical direction.

Figures 5-15 (a) and (b) show the predicted acceleration power spectral densities (PSD) of the carrier
in both the horizontal and vertical directions with the mesh frequencies dominating the spectrum. In
this case, the carrier speed is 100 rpm which makes the mesh frequency 308 Hz. There are some other
frequencies in the spectrum as shown in Figure 5-15 (a) which are 44 and 162 Hz while another one
was excited at the vertical direction Figure 5-15 (b) at 162 Hz. Figure 5-16 (a) and (b) show the

acceleration PSDs of the sun gear in the horizontal and vertical directions. They also show excitation

at 44 Hz.
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Figures 5-17 (a) and (b) show the measured acceleration power spectral densities of the carrier and the
sun gear in the radial direction respectively. The dominant frequency content in both figures is also
the mesh frequency at 318 Hz. There is small difference in the predicted and measured mesh
frequencies, because the ideal speed of the sun gear is supposed to be 295 rpm, but the actual speed is
305 rpm, hence the mesh frequency which is a function of speed increases. For a sun gear vibration
(Figure 5-17 (b)), there are symmetric sidebands around a frequency at 32 Hz. The frequencies at the
lower and upper side band are 27 and 37 Hz respectively. The measured speed of the sun gear is 305
rpm (5.08 Hz). It shows that the lower and upper sidebands are +5 Hz to the frequency at 32 Hz. This
frequency may be associated with a particular fault on the sun gear. It shows that the experiment can
detect more forces exciting the system than the model being considered. More investigations on some

faults at lower frequencies are discussed in the next chapter.

5.4 Conclusions

The measured parameters of a planetary gear train were used in the analytical model and the
frequency response was compared with that of the modal testing. Although the agreement is not
perfect, the model seems to represent the main physical features of the system. Probably higher degree
of agreement can be achieved if mesh damping was determined and included in the model. For the
ring gear there is inaccuracy in measuring the stiffness in the vertical direction as discussed in chapter
4. Therefore for better agreement, the mesh damping and stiffness of the ring gear in the vertical
directions must be accurately estimated. Also determined, was the sensitivity of the sun-planet and
planet-ring mesh to the natural frequencies of the system; only the high natural frequencies (above
1311 Hz) are significantly affected by the mesh stiffness, the lower frequencies are governed by the
bearing frequencies. The modal testing will help to distinguish between the frequencies that are

related to natural modes and rotational speeds in the frequency spectrum of the spinning test.

The analytical model has been used to predict the mesh response of the system to mesh excitation.
The next chapter will focus on the analysis of the results from the spinning test at different rotating

speeds and loads as well as identification of vibration source in the system during operation.

The next chapter will focus on the spinning test where a planetary gear system is operating to transmit
power from the input to the output. Different electrical loads will be applied and the independent
vibration of the carrier, sun and planet gears will be measured. Also vibration source in the system
will be identified using a method known as Principal component analysis (PCA) where the vibration

level of the individual component will be determined in order of preponderance.
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Chapter 6 Spinning Testing and Vibration Source
Identification

In the last chapter, the natural frequencies and some other modal parameters of a planetary gear
system were measured using modal testing. The measured natural frequencies will be one of the
frequencies of interest in this chapter where a spinning test will be carried out to know the effect of
loads and speeds on the response of the system during operation.

Therefore, this chapter focuses on the dynamic response of the planetary gear train (PGT) when
rotating at different rotational speeds under different loads and identification of vibration sources.
This is necessary, because it will show how the system behaves before active control is implemented.
Also with the natural vibration mode, the vibration response of the carrier, sun and planet gears at
mesh frequencies will be investigated. Investigation will be done to determine their level of vibration
responses when changing the load and the rotational speed and these will be compared. Also, a
method known as principal component analysis (PCA) will be applied to identify the vibration

sources in the planetary gear for at different speeds.

One of the sources of vibration in planetary gears is the vibration generated from the sun-planet mesh
as explained by Miao and Zhou [60]. This mesh vibration is transmitted to the stationary casing via
the sun gear, its shaft and bearing. Another transmission path as explained by them is the vibration
from the sun-planet mesh which passes through the planet gear and its bearing to the carrier and its
shaft and from there to the carrier bearing and to the casing of the gearbox. A second source is the
mesh vibration generated from the planet-ring mesh. This vibration is transmitted directly to the ring
gear and the casing. However, it was stated by McFadden and Smith [36], that if an accelerometer is
placed on a stationary ring gear, the dominant vibration that can be measured by the accelerometer is
the one generated by the planet-ring mesh. Therefore, it is believed that the true dynamic behaviour of
the carrier, sun and planet gears may not be fully captured by accelerometers placed either on the
stationary ring gear or casing. One of the benefits of measuring the response using a rotating frame of
reference (i.e. where the accelerometers rotate with the component), according to Jarvinen [61] is that
all the measured signals are from the true dynamics of the rotating components being measured.
Vibration signals of a rotating component measured from fixed ring gear or casing (i.e. fixed frame of
reference) are characterized by some factors (like signal distortion, vibration of the casing etc.) that do
not correlate with the true motions of the rotating component. Smith said such a vibration signal is
likely to contain a substantial amount of extraneous information [62]. In a case like this, time

synchronous averaging (TSA) can be used to remove unwanted signals that are not related to the
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component speed [6]. However, if there is a frequency relating to the natural mode, it will be filtered

out of the frequency spectrum [5].

One of the main objectives of this chapter is to determine the effect of load and rotational speed on the
dynamic response of a planetary gear system. These responses are measured independently on the
components using MEMS accelerometers which rotate with them unlike what many researchers do.
Section 6.1 covers the coordinate system used in measuring vibration response of planetary gears and
causes of sidebands in the spectrum while section 6.2 covers the set-up and data acquisition. Section
6.3 covers the effect on the dynamic response when both the speed and the load are changing, the
effect when the load is constant at varying speed and the effect when the speed is constant, and the
load is changing. Another objective is to identify the vibration source using a statistical method
known as principal component analysis (PCA). PCA can help to determine the optimal location where
control force can be applied in the case of active vibration control. Therefore, section 6.4 focuses on
the principal component analysis where the vibration sources of the planetary gear system were
investigated. This was done by forming a correlation matrix using the PSDs of the measured signals.
The singular value decomposition was utilized to determine the eigenvalues and the eigenvectors
which are useful parameters in the vibration source identification. The evaluated virtual coherence

assists in determining how much the principal components are contributing to each physical source.

6.1  Vibration measurement of planetary gears and coordinate system

An accelerometer mounted on the casing of a planetary gearbox measures a filtered vibration response
of the original vibration signal characterized by a significant noise contamination. This makes it more
challenging to process signal in order to detect fault successfully [5]. There are some experiments
where a slip ring has been used with the instrumentation to measure the vibration of the rotating
components. In this case, there may be some unwanted signals (noise) in the frequency spectrum due
to electrical noise and contacts within the slip ring like the experiment conducted by Smith [62] and
Ericson et al. [63] .

According to McFadden [36], most of the experiments where gear vibrations were investigated, the
accelerometers are either mounted on a stationary member or the stationary casing. In this case, an
accurate vibration amplitude may not be obtained because the level of vibration transmitted from the
components to the casing may not be the actual vibration level of the rotating components. The
accelerometer may capture some dynamic response that is not the response of the intended rotating
component to be measured. De Smidt [64] suggested in his thesis after mounting accelerometers with
slip rings on the carrier that with the future improvement in wireless technologies, the internal

measurement of vibration of planetary gear will be more viable.
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In this research, the response of the planetary gear is obtained experimentally by using wireless
micro-electro-mechanical system (MEMS) accelerometers which can rotate with the planetary gear
components. It is important to state that this kind of experiment is not common because the vibration
of the rotating components cannot be measured by typically available accelerometers, which use
cables to transmit signals. The MEMS accelerometers were mounted on each of the rotating
components of the planetary gear, and their time histories were obtained. These sensors, give the
possibility of measuring the vibration of the rotating elements on-site. The low frequency range
associated with rotation gives the symptoms of basic mechanical faults like unbalance, misalignment,
looseness etc. This frequency spans between one to ten multiplied by the rotational frequency [65].
These frequencies are measured by the MEMS accelerometers which helps to detect the misalignment
and effect of load and rotational speed on it. The frequency response in this study was subsequently
obtained by a Fast Fourier Transform (FFT) algorithm and analysed for interpretation.

6.1.1 Sidebands and its causes in planetary gear vibration signal

Most measured vibration and noise signals measured from planetary gear exhibit sideband around the
mesh frequency [35]. On this note, it is necessary to discuss the basic meaning of sideband. Sideband
is defined as a band of frequencies higher or lower than the centre or dominant frequency. The
dominant frequency in this case is the mesh frequency. Sidebands are formed due to frequency,
amplitude or phase modulation of the signal at the mesh. The frequency of the sidebands is equal to
the mesh frequency plus and minus the rotational speed of the components in each case i.e. the carrier,
sun and planet gears. For instance, if the frequency of the sideband is equal to the mesh frequency
plus the rotational speed of a planet gear, it called an upper side band [36] and [66]. Conversely, if the
sideband is equal to the mesh frequency minus the rotational speed of a planet gear it is called a lower

side band.

According to Inalpolat and Kahraman [35] there will be sideband in planetary gear vibration signals
if

o the planet load sharing characteristics impact the amplitude modulation as well as the
dynamic mesh forces.

o the planet passes through the location of a fixed transducer mounted on a stationary ring gear
or casing. In this case there will be variation in the amplitudes of vibration which causes
amplitude modulation.

o there are eccentricities and run-out errors of the gears and the carrier, tooth thickness, tooth to

tooth spacing and indexing errors.
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o there is a change in the deformation of the components with planet pass, tooth pass or ring
gear spline pass as observed by the gears.

e there is a large number of manufacturing errors. These can cause variations which are capable
of modulating the dynamic gear mesh forces in three different forms which are amplitude,
frequency and phase modulations.

6.2 Experimental set up and data acquisition

The test rig without load has been described in the previous chapter. Here, load has been attached to
the rig as shown in (Figure 6-1 (a)). The test rig comprises mainly a carrier, a ring, a sun and two
planet gears, two bearings with housing, a generator, a resistor box, two timing belts and a speed
regulating unit. The ring gear is fastened to the base to make it stationary. There are two identical
bearing housing supports, one for the sun gear and the other for the carrier. The maximum capacity of
the generator (Parvalaux model number 329321/06G) as shown in Figure 6-1 (a) is 125 W while the
maximum speed is 3000 rpm. It was used to generate the electrical power at the output. The field
windings of the motor were excited by an applied DC voltage using a rectifier. The sun gear shaft of
the planetary gear train (PGT) drives the generator via a timing belt at a faster speed, such that the
speed ratio of the carrier to sun gear is 1 to 2.95. The advantage of using a belt according to Tristan
[67] is that it serves as a mechanical filter isolating the planetary gear system from the driving motor
and the generator. This excites the armature windings of the motor and an electrical voltage is
generated. The amount of power generated depends on the rotational speed of the sun gear driving the
generator, which in turn depends on the rotational speed of the carrier and the planet gears. The speed
ratio of the carrier to planet gear is 1 to 3.11. The speed ratio of the sun gear to that of the generator is

approximately 1 to 1.50.

Three 3-axis Axivity MEMS accelerometers, one of which is shown in each of Figures. 6-1 (b), (c),
and (d) were used to measure the acceleration of the carrier, sun and planet gears. The measuring
device is suitable for use in various environments, and it has resistance to water. The memory size is
512 MB NAND flash which is non-volatile. The sampling frequency range is 12.5 — 3200 Hz, while
the acceleration amplitude ranges of the sensor are+2,+4,4+8,and + 16g. There is a configuration
software and analytical tool known as the AX3 OMGUI. This is used to set up and configure the
accelerometer before the measurement. It is also used to download and obtain the recorded data (in
the form of a time history) from the experiment. It helps to convert the binary AX3 recorded data
from the experiment for subsequent data processing and analysis. The accelerometer has a real time

quartz internal clock, where the desired time to start measuring the vibration is set. The precision is
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typically £50 parts per million (ppm) as specified by the manufacturer. For PCA, the accelerometers

are set to start at the same time throughout the spinning test for the purpose of synchronization.

In all of the experiments, the sampling rate was set to 1600 Hz. However, it was discovered that the
actual sampling rate is always different from configured sampling frequency. The actual sampling rate
was obtained by dividing the number of the sampled data points by the sampled time after the
measurements have been downloaded. If the sampling rate is not up to 1600 Hz, the signal length
acquired was interpolated to resample and hence achieve the configured sampling rate. The PSDs
were obtained using a Hamming window with 50% overlap. The frequency resolution of 1 Hz was
used for the frequency analysis

The three accelerometers were mounted on the rotating components, namely; the carrier, the sun and
one of the planet gears as shown in Figure 6-1 (b), (c), and (d) respectively. Their vibrations were
measured separately when spinning. The accelerometers are capable of measuring the vibrations in all
three translational directions i.e. in the radial, tangential and axial coordinates in the cases of the
carrier and sun gear. The horizontal and vertical directions were measured on the planet gear because
of the available space to accommodate the accelerometer (Figure. 6-1 (b)). The flash memory of the
accelerometer after removal from the gear is linked by a USB enabled microcontroller. This allows
the measured vibration signal (in the form of time history) to be accessed on the computer and

exported to MATLAB for frequency analysis.
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Figure 6-1 Test rig and 3-axis MEMS accelerometer with dimension 23x32.5x8.9 mm. The
accelerometers were attached to the components with wax and Garvey tape.

The configuration considered is the planetary type of epicyclic gear as shown in Figure. 6-2, where
the ring gear is stationary. The speed ratio is the ratio of the input speed to the output speed which has

been shown in Chapter 4.
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The dominant or mesh frequency in the vibration spectrum is then equal to product of the number of

teeth on the stationary component (i.e. ring gear) and the rotational speed of the carrier at the input.

/4L
7

Figure 6-2 Planetary type of epicyclic gear. The notations ¢, r, s and p are the carrier, ring, sun
and planet gears respectively.
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The mesh frequency can also be determined from the components using equation (6.1) written as
fm:Zr(Qr_Qc):Zs(Qs_Qc):Zp(Q‘p-l_Qc) (6.1)

where, f , 7,7, z, €, €, and Q) are the mesh frequency, number of teeth on the sun gear,

ring gear, planet gear, rotational speeds of the sun gear, ring gear, planet gear and the carrier
respectively. For a stationary ring in equation 6.1, Q. is equal to zero. When using the ring gear to
calculate the mesh frequency in the equation 6.1, the absolute value of the carrier speed is considered
[68].

Two configurations were considered in the spinning test. One is the case where the PGT was idle (i.e.
unloaded) and the second is the case where the PGT was loaded using a generator attached to the
output shaft via a timing belt. The generator was configured to generate electric power and the output
voltage was used to determine the output power. A resistor box containing resistors of different
resistances was used to apply different electrical load on the generator. The results show the time
histories and the power spectral densities (PSD) of the components starting from the low speed. Later,

the PSD of each component at different speeds were obtained.
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6.3 Dynamic response of the rotating planetary gear

6.3.1 Combined effects of different loads and speeds on the dynamic response

The sub-section aims to determine how different resistance loads and speeds affect the dynamic
behaviour of a planetary gear system from an unloaded condition to a loaded condition. This scenario
occurs in day to day activities in some countries where there is no regular power supply. In this
situation, a power generator can be used to generate power. If the generator is started initially, it will
be allowed to run for few minutes without any load and later it will be loaded from a light load to a
heavy load. This section aims to see the dynamic effect on the planetary gear at different loads and
corresponding rotational speeds. The measured natural and mesh frequencies are the frequencies of

interest.

The rotational speed of the carrier when the planetary gear train was unloaded is 117 rpm, although
the tachometer reading shows 120 rpm being the chosen speed.. At this carrier speed, the open circuit
output voltage is 32.5 V. Subsequently, an electrical load of 10, 23.5, 33, 47 and 100 Ohms were
loaded using a decade box which contains different resistance loads. The change in the resistance load
also leads to a change in the voltage and the speeds when loaded. The values of the power at the

output was calculated from the output voltage and the electrical resistance using equation (6.2).

Vv
P=— (6.2)

where P, V and R are the output power in Watts, output voltage in Volts and the electrical resistance
in Ohms respectively. The effect of the load resistance on the output power generated is shown in
Figure 6-3 where the maximum power generated is approximately 6.4 Watts. The corresponding

resistance loads at the maximum power is 47 Ohms.
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Figure 6-3 The effect of the load resistance on the generated output power. The maximum
output power was generated when the load resistance was 33 and 47 Ohms.

A typical time history of the acceleration of the carrier in the radial direction is shown in Figure. 6-4
(a), which was then transformed to the frequency domain using a Fast Fourier Transform (FFT)
routine available in MATLAB to obtain the frequency content shown in Figure 6-4 (b). The PSDs
were calculated and plotted using the “pwelch” routine available in MATLAB in order to show the
strength of the signal at each frequency. The time history and the frequency content of the carrier

response in the tangential direction is shown in Figure D6.1 in Appendix D.

It is imperative to state that the frequencies of interest in this study are the frequencies of rotation,
natural mode and the mesh vibration. Another frequency considered is the one measured on the sun
gear which is probably related to misalignment, unbalance, looseness etc. The tangential component
of the response at the mesh frequencies in all cases considered, is taken more serious because of the
capability of the tangential force acting at the mesh to bend the gear teeth as stated by Gupta and
Khurmi [69].

Ea
o

raw
30 1
< |
E 20 " ~
c
o | | |
\‘\\‘H‘\\“‘ ‘} ‘ il (il ‘wH\
<
8 o
Q
< |
-10
-20 ' , , , ,
0 10 20 30 40 50 60

time [s]

Figure 6-4. Time history of the unloaded carrier acceleration in the radial direction.
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Figure 6-5 The power spectral density of the carrier acceleration in the (a) radial direction (b)
tangential direction. The PSD of the unloaded, 10, 23.5, 33, 47 and 100 Ohms are shown in
black, red, blue, cyan, green and magenta lines respectively.

The rotational speeds, load resistances and the mesh frequencies of the carrier (which can be seen in

Figure 6-5) are shown in Table 6-1.

Table 6-1 The rotational speeds, load and mesh frequencies of the carrier when varying the
speed and load.

Rotational speed (rpm) Load resistance (Ohms) Mesh frequency (Hz)
117 0.00 357
89 10.00 274
91 23.50 288
98 33.00 301
108 47.00 331
116 100.00 355

The mesh frequencies are different for different loading conditions due to the different carrier speeds.
Figure 6-5 (a) shows that the radial mesh frequency increases as the load is increasing except for the
load where the maximum electric power (6.4 W) was generated. The radial response at the mesh

frequency when unloaded is significantly lower than others.

The acceleration PSD of the carrier acceleration in the radial direction shows some frequencies close
to the measured natural frequencies measured on the carrier in chapter 5. The frequencies are 80.3, 81,
82, 84, 85, 87, 137, 138, 140, 144 Hz which can be seen in Figure 6-5 (a) and some other PSDs at
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different rotational speeds. The highest PSD level for frequencies between 80 and 87 Hz was obtained
at a load of 10 ohms which is a light load compared to the others. There is no visible peak within this
frequency range corresponding to 100 Ohms. The PSD levels of other peaks within the frequency
range are not significantly different from one another. For frequencies between 137 and 144 Hz, the
highest PSD was obtained when the system is unloaded while the PSD levels of other peaks within

this range are almost the same.

Therefore, for carrier in the radial direction, the response at the mesh frequency increases with
increase in load and rotational speed for loaded case. A reduced response was obtained when
unloaded and when generating maximum power at a load resistance of 47 Ohms. The responses at
frequencies close to a measured natural frequency of 84 Hz are relatively high when unloaded and
when a light load resistance of 10 Ohms was applied. This implies that a light load or unloaded

condition can lead to a significant response at this frequency.

The acceleration PSD in the tangential direction (Figure 6-5 (b)), shows that the highest response at
the mesh frequency was obtained when the maximum load was applied. The PSD levels at the mesh
frequency increase as the load and speed are increased for the loaded case. The PSD level at the mesh
frequency when unloaded is the lowest. For the tangential response at the mesh frequency, the PSD
level at 47 ohms is not relatively lower than other responses when loaded like the radial response. The
acceleration PSD level of the frequencies between 80 and 85 Hz shows that the responses are not
significantly different from one another at different speeds and loads. There is a significant response

at 76 Hz corresponding to a load resistance of 10 Ohms.

Therefore, it can be deduced that the response level of the carrier at the mesh frequency in both the
radial and tangential directions for varying rotational speeds and loads are not the same. This due to
the fact that the external load applied is acting more at the mesh in a tangential direction than the
radial direction. Generally for the carrier, the level of the responses at mesh and natural frequencies in

the tangential direction is relatively higher than the radial direction.
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Figure 6-6 The power spectral density of the sun gear acceleration in the (a) radial and (b)
tangential directions. The PSD of the unloaded, 10, 23.5, 33, 47 and 100 Ohms are shown in
black, red, blue, cyan, green and magenta lines respectively.

The rotational speeds, load and mesh frequencies of the sun gear which was determined from Figure

6-6 are shown in Table 6-2.

Table 6-2 The rotational speeds, load and mesh frequencies of the sun gear when varying the
speed and load.

Rotational speed (rpm) Load resistance (Ohms) Mesh frequency (Hz)
332 0.00 350
261 10.00 272
267 23.50 291
291 33.00 304
296 47.00 312
343 100.00 361

The response of the sun gear in the radial direction is shown in Figure 6-6 (a). The response at the
mesh frequency when a load (10 Ohms) was applied is the most significant considering the PSD level.
This may be as a result of light load which is insufficient to ensure that there is a proper contact
between the meshing teeth of the sun and planet gears [7]. This can lead to damage at the mesh due to
impact when the teeth are coming into contact again after disengagement. There is no significant
difference between the responses at other mesh frequencies except for the unloaded case where the

response is relatively lower.
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For the peaks between 80 and 88 Hz, the response at a light load of 10 ohms is the highest. There are
responses at 131, 133 and 143 Hz which correspond to loads of 33, 47 and 100 Ohms respectively.

Their PSD levels are almost the same.

For the tangential direction of the sun gear, the PSD level at the mesh frequencies are slightly
increasing as the load increases (Figure 6-6 (b)). The two most significant responses at the mesh
frequency in this direction can be seen when at the maximum load resistance (100 Ohms) and when
unloaded. This probably may be confirming what Derek [7] stated in his book about high loads which
can also lead to contact loss if the errors are larger than the deformation at the tooth and the inertia of
the system is high. The mass of the sun gear is relatively larger than those of the carrier and planet
gears. Therefore, it is possible to have a higher response at the mesh frequency when the load is
relatively high. This is different when compared to the mesh response in the radial direction. Another
possibility is that the load may act more at the teeth mesh in the tangential direction than the radial

direction.

There is a response on the sun gear at 74 Hz for a 10 Ohms load resistance which is more significant
than the mesh frequency. Among the responses between 80 and 88 Hz, the response at 10 Ohms is the
highest followed by the one at 47 Ohms where maximum power was generated. Other responses
within this frequency range are almost the same in PSD level. Only the PSD when a maximum load
was applied shows a peak at 143 Hz with a smaller PSD level compared to that of carrier in the

tangential direction (Figure 6-5 (b)).

There are frequency peaks between 26 and 29 Hz on the sun gear in both the radial and tangential
directions. These frequencies are probably associated with mechanical faults like misalignment,
unbalance etc. as stated by Jan et al. [65]. The independent measurement of vibration has made it
easier to detect faults associated with mechanical fault on each component without any complicated
signal processing method. The levels of the responses within this frequency range are almost the same
except for the response at maximum load and rotational speed of the sun gear which is higher.

Therefore, the response is more significant at the maximum load and rotational speed.

In general, like the carrier, the response at the mesh frequency of the sun gear is higher in the

tangential direction than the radial direction.
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Figure 6-7 The power spectral density of the planet gear acceleration in the () x and (b) y
directions. The PSD of the unloaded, 10, 23.5, 33, 47 and 100 Ohms are shown in black, red,
blue, cyan, green and magenta lines respectively.

The rotational speeds, load and mesh frequencies of the planet gear which was determined from

Figure 6-7 are shown in Table 6-3.

Table 6-3 The rotational speeds, load and mesh frequencies of the planet gear when varying the
speed and load resistance.

Rotational speed (rpm) Load resistance (Ohms) Mesh frequency (Hz)
352 0.00 350
267 10.00 272
292 23.50 287
298 33.00 304
338 47.00 338
359 100.00 368

Although the PSD level of the responses at the mesh frequencies are almost the same, the maximum
response in x and y directions at the mesh frequency was determined on the planet gear when loads of
47 and 100 Ohms (which are relatively heavy) were applied (Figure 6-7 (a) and (b)). There are some
frequencies excited in both directions which are close to the second harmonics of the mesh
frequencies at different speed and loads. The most significant response occur at the mesh frequency

corresponds to 47 ohms where the maximum power was generated.

The most significant response close to the measured natural frequencies between 79 and 89 Hz
occurred at a maximum load resistance of 100 Ohms and another response at a load of 10 Ohms.

There are responses within a frequency range of 150 and 158 Hz and a natural frequency of 156.36 Hz
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was measured on the planet gear and shown in Table 5-6. The most significant response within this
frequency range occurred when a maximum load of 100 Ohms (Figure 6-7 (a) and (b). This implies
the level of response relating to the natural mode on the planet gear under varying load and speed
does not depend on the magnitude of load and speed. They can be high or low when lightly loaded or
heavily loaded.

6.3.2 Dynamic response under constant load of 100 ohms and different speeds

In this sub-section, the dynamic response of planetary gear under a constant load resistance of 100
Ohms will be investigated. The carrier, sun and planet gears speeds are varied by varying the input
speed. Generally, the output power increases as the speed is increased. Therefore, for a constant load,

increased speed leads to an increase in the output power transmitted as shown in Figure 6-8.

75

. . . . . .
70 80 90 100 110 120 130 140
Speed (rpm)

Figure 6-8 The effect of rotating speed on the power generated under constant load of 100
Ohms.
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Figure 6-9 The power spectral density of the carrier acceleration in the (a) radial (b) tangential
directions under a constant load resistance of 100 Ohms. The rotational speeds 77, 89, 100, 110,
116 and 132 rpm are shown in black, red, blue, cyan, green and magenta lines respectively.

In (Figure 6-9 (a) and (b)), some frequencies are excited in one direction only but the frequencies of
interest are the frequencies of the modes as measured, mesh frequencies and some of its harmonics if

they are significant.
The rotational speeds and mesh frequencies of the planet gear at a constant load of 100 Ohms are
shown in Table 6-4.

Table 6-4 The rotational speeds and mesh frequencies of the planet gear when varying the speed
at a constant load of 100 Ohms.

Rotational speed (rpm) Mesh frequency (Hz)
77 238
89 274
100 310
110 338
116 355
132 404

The vibration response of the carrier in the radial direction is shown in Figure 6-9 (a). The response at
the mesh frequency is slightly increasing till it reaches a rotational speed of 116 rpm corresponding to
a frequency of 355 Hz. This frequency was measured on the planet gear and another closer value was
measured on the carrier (Tables 5-1 and 5-6). The response at the highest speed of 132 rpm is
significantly lower considering its acceleration PSD level. Probably, the high response at a mesh

frequency of 355 Hz is due to the fact that the mesh frequency coincides with one of the natural
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frequencies of the system. Hence, for the carrier in radial direction, the mesh response was increasing
with increment in the rotational speed up to 116 rpm. The response later reduced at 132 rpm with a
corresponding mesh frequency of 407 Hz. It is possible that the natural frequency of the system has
been excited in this case. It may be necessary to investigate further the response level at a higher
speed (which will not excite the natural frequency of the system) to know if it will decrease or
increase. There is a limitation with the current equipment. The range of the accelerometer is not
enough to measure the vibration of the gears especially the planet at higher speeds.

Therefore, for a constant load, high speed and power generated can lead to a significant response of

the carrier in the radial direction at the mesh frequency but the response can reduce at a higher speed.

There are three obvious groups of frequency peaks of interest in the radial direction of the carrier at
frequencies lower than the mesh frequencies (Figure. 6-9 (a)). They are 76, 78, 79, 81, 86, 130, 138,
139, 140, 145 and 156 Hz. It is obvious that some of these frequencies are close to one another
depending on the rotational speed of the carrier. Also they are close to the measured natural
frequencies. For a frequency range between 76 and 86 Hz, there is a significant response at 76 and 81
Hz with corresponding speed of 100 and 110 rpm respectively. The responses at 89 and 77 rpm are
lower while the response at 132 rpm is the lowest. There is no peak within this frequency range in the
PSD of 116 rpm. However, for the frequency range between 130 and 145 Hz, the most significant
response is recorded at the lowest rotational speed (77 rpm) followed by the response at 110 rpm.

It appears that the increasing speed does not lead to an increment in the response level at the natural
frequencies in the radial direction of the carrier at a constant load of 100 ohms. Nevertheless one can
deduce that the natural modes are significantly excited in the radial direction of the carrier at

relatively low speeds.

The response of the carrier in the tangential direction is shown in Figure 6-9 (b). The mesh frequency
is increasing with increment in speed till 116 rpm which is the most significant response at the mesh
frequency at a rotational speed of 116 rpm with a corresponding frequency of 355 Hz. Like the radial
direction the highest response at the mesh appeared at 355 Hz. The acceleration PSD level shows that
the tangential response at the mesh frequency of the carrier is more than the radial response at the
mesh frequency. The level of response at mesh frequency (404 Hz) which corresponds to the highest
rotational speed of the carrier (132 rpm) is significantly lower (approximately 8 dB) than the response
level at 116 rpm. High level of response can be avoided at mesh frequency by carefully selecting the
rotational speed such that the frequency of the mesh force will not coincide with any of the natural

frequencies of the system.
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Some peaks can be seen in Figure 6-9 (b) between 77 and 88 Hz, 131 and 143 Hz and a peak at 151
Hz. The most significant response among the first frequency range can be seen at 77 Hz with a
corresponding rotational speed of 100 rpm. The highest response level in the second frequency range
was recorded at 139 and 143 Hz with corresponding rotational speeds 77 and 110 rpm respectively.
For this frequency range, the peaks are not obvious for the rotational speeds at 89, 100, 116 and 132
rpm. The response at the frequency of 151 Hz is significant and the corresponding rotational speed of

the carrier is 116 rpm which is relatively high.
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Figure 6-10 The power spectral density of the sun gear acceleration in the (a) radial and (b)
tangential directions under a constant load resistance of 100 Ohms and different speeds. The
rotational speeds 240, 262, 304, 328, 342 and 386 rpm are shown in black, red, blue, cyan, green
and magenta lines respectively.

In figure (6-10), the mesh frequency of the sun at the minimum speed of 240 rpm is 254 Hz. The
mesh vibration response of the sun gear in the radial direction is shown in Figure 6-10 (a). The
responses at the mesh frequencies of 254 and 275Hz corresponding to low rotational speeds of 240
and 262 rpm are relatively low. The mesh responses at rotational speeds of 304, 328, 343 and 386 rpm
are higher and are not significantly different from one another. Based on this result, it can be deduced
that the radial response of the sun gear at mesh frequency can be influenced by high speed for a

constant load resistance.

There are two significant responses at frequencies of 72 and 73 Hz corresponding to rotational speeds
262 and 386 rpm. The acceleration PSD levels of other peaks within this frequency range are not
significant. The responses between 80 and 87 Hz show that the PSD level of the frequency

corresponding to 304 rpm is the highest. The levels of all other peaks within this frequency range are
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approximately the same and low. For the frequency range between 137 and 147 Hz, the PSD levels of

the responses are approximately the same.

In the tangential direction of sun gear, the response at the mesh frequency (starting from 252 Hz) is
increasing as the rotational speed is increasing. The level of mesh response corresponding to speeds of
328 and 342 rpm are approximately the same because of the small speed difference between them.
The level of this response increases further at a maximum speed of 386 rpm corresponding to mesh
frequency of 407 Hz (Figure 6-10 (b)). The peaks at different mesh frequencies show clearly that the
response increases with increment in the rotational speed of the sun gear. This means that the

tangential mesh response of the sun gear increases as the speed is increasing.

Considering the responses between 72 and 84 Hz, the ones corresponding to the relatively low speed
of 89 and 100 rpm are more significant. For the frequency range between 137 and 147 Hz, the
response levels are approximately the same for rotational speeds from 100 to 116 rpm. The response
at 240 and 386 rpm are relatively low. There is no obvious peak at 89 rpm within the frequency range.
One cannot really infer that the level of tangential responses at the frequencies closed to the measured

natural frequencies are actually influenced by the rotational speed of the sun gear.
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Figure 6-11 The power spectral density of the planet gear acceleration in the (a) x and (b) y
directions under a constant load of 100 Ohms and different speeds. The rotational speeds 238,
276, 309, 362 and 360 rpm are shown in black, red, blue, cyan and green lines respectively.

The response of planet gear in x direction at the mesh frequency shows that the most significant
response appeared at the 361 Hz when the rotational speed is 362 rpm (Figure 6-11 (a)). This is the
maximum speed of planet gear in this case study. Although, it is not supposed to be the highest speed
considering the speed ratio of the gear train. There may be little fluctuation of the applied load acting

on the planet gear at this speed, if the load reduces this may have effect on the speed which is
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supposed to be 342 rpm theoretically. Therefore, the most significant radial response of the planet
gear at the mesh frequency occurred at the maximum speed. The next radial response at mesh
frequency in order of PSD level occurred at a rotational speed of 360 rpm speed corresponding to the
speed where the highest power was generated (Figure 6-8). Two significant peaks appeared at 79 and
80 Hz corresponding to a rotational speed of 360 and 362 rpm respectively. This implies that for a
planet gear under a constant load but varying speed, the response relating to the natural mode is more
significant at higher speed than lower speed.

The response level and pattern in y direction is the almost same with the ones in the x direction
because they are both radial. The acceleration PSD level of the response in y direction at the mesh
frequency is slightly higher (Figure 6-11 (a) and (b)). Also, a frequency was significantly excited iny
direction at 505 Hz at a relatively high rotational speed of the planet gear. This frequency was
measured on the ring gear in x direction in chapter 5. The corresponding response of the planet gear
when the input speed (i.e. the carrier speed) was 132 rpm could not be measured as a result of signal
clipping due to the dynamic range of the accelerometer.

6.3.3 Dynamic response under a constant speed 100 rpm and different loads

The dynamic response of planetary gear under a constant speed and varying load resistance was
examined in this section. Although there are some little differences in the speed when changing the
load resistance, the difference is assumed to be insignificant. The rotational speed varies from 100
rpm (1.667 Hz) to 103 rpm (1.717 Hz), therefore, the difference is assumed to be negligible on the
dynamic response of the system. The effect of the load resistance on the output power is as shown in
Figure (6-12). The power generated was increasing as the resistance load applied was increasing up to
6.65 W at a corresponding load resistance of 23.5 Ohms. The power starts decreasing from 6.65 Watts
as the load increases until it reaches 4.97 W at a corresponding load resistance of 100 Ohms which is
the maximum load applied. If the rotational speed is increased at this load the power generated will

also increase like the case shown in Figure 6-8.
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Figure 6-12 The effect of the load resistance on the output power at a constant gear speed of 100
rpm.
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Figure 6-13 The power spectral density of the carrier acceleration in the (a) radial and (b)
tangential directions under a constant speed of 100 rpm at different resistance loads. The load
resistance of 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, blue, cyan and magenta
lines respectively.

The response of the carrier in the radial direction is shown in Figure 6-13 (a). The mesh frequency at
each load resistance dominates the vibration spectra in both the radial and tangential directions. From
Figure 6-13 (a), it is obvious that the values of all the mesh frequencies at an assumed constant speed
are not significantly different from one another. The mesh frequencies are 315, 319, 306, 306 and 310
Hz at applied loads of 10, 23.5, 33, 47 and 100 Ohms respectively. There are little variations in the
mesh frequencies due to little variation in the rotational speed. The vibration response level at the
mesh frequency is higher at loads of 10, 23.5 and 33 Ohms than when heavier loads of 47 and 100
Ohms. They are 3.8 and 5.1 dB lower respectively than the first three responses which are

approximately the same. The power generated at this loads are relatively low as shown in Figure 6-12.
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Therefore the radial responses of the carrier at the mesh frequency are more significant at relatively

lighter loads for a case where the rotational speed is constant or not changing significantly.

The response believed to be related with the natural mode between 75 and 86 Hz are significant at
loads of 33, 47 and 100 Ohms than the responses at a light load of 23.5 Ohms. The frequency peaks at
82, 80, 75 Hz correspond to the applied loads of 33, 47 and 100 Ohms respectively There is no peak at
10 Ohms within this frequency range. For responses within 130 and 148 Hz, the acceleration PSD
levels are relatively higher at loads of 33, 47 and 100 Ohms. The carrier radial response at the
frequencies close to the measured natural frequencies is high at higher load when the rotational speed

is constant.

The most significant response of the carrier in the tangential direction at the mesh frequencies
occurred when the applied load was 23.5 Ohms (Figure 6-13 (b)). This is a load where maximum
power was generated. Also, the response is higher at loads corresponding to 10 and 33 Ohms than 47
and 100 Ohms. This implies that the response at the mesh frequency in the tangential direction is
higher at light loads especially at a load where maximum power was generated. The level of
tangential response of the carrier at the mesh frequency depends on the load and power; it is high at a

light load where maximum power is being generated.

Five peaks relating to the five loads occurred from 77 to 88 Hz and it shows that frequencies are
reducing as the load is increasing (Figure 6-13 (b)). Furthermore, the highest PSD level within the
frequency range is obtained at 77 Hz when a load of 100 Ohms was applied. The acceleration PSD
level of the peak corresponding to 10 Ohms (87 Hz) is the smallest within the frequency range while
the levels of other peaks are almost the same. This implies that the most significant carrier response at
a frequency range close to a measured natural frequency occurred when a relatively heavy resistance
load (100 Ohms) was applied. Considering a frequency range between from 135 to 143 Hz, the
response at a relatively light resistance load of 23.5 Ohms is the most significant.
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Figure 6-14 Power spectral density of the sun gear acceleration in the (a) radial and (b)
tangential directions under an average constant speed of 300 rpm at different resistance loads.
The resistance loads of 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, blue, cyan and
magenta lines respectively.

The acceleration PSD of the sun gear in the radial direction is shown in Figure 6-14 (a). The most
significant response at the mesh frequency occurred at the light loads of 10 and 23 Ohms. The
corresponding mesh frequencies at these loads are 324 and 316 Hz respectively. The acceleration
PSDs of the peaks corresponding to other load are relatively lower. Hence, the response of the sun
gear at mesh frequency in the radial direction is high when the applied load is relatively light.

There are two peaks at 88 and 95 Hz when a light load of 10 Ohms was applied. Their acceleration
PSD level shows the sun gear was significantly excited at these frequencies more than the most
significant response at mesh frequency. It shows clearly that the most significance response of the sun

in the radial direction at a constant speed occur when a load of 10 Ohms was applied.

The response of the sun gear in the tangential direction is shown in the power spectrum (Figure 6-
14(b)). The peaks at the mesh frequency show that the most significant response occurred when
resistance loads of 23.5 and 100 Ohms were applied. Therefore, there can be a significant tangential
response of the sun gear at mesh frequency at a light load (probably if the maximum power is being
generated) or at a relatively heavy load. This is for a case of constant speed and varying load. The
tangential responses at a measured frequency associated with a natural mode are significant at 88 and

95 Hz when the applied load of 10 Ohms was applied like the radial response.
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Figure 6-15 Power spectral density of the planet gear acceleration in the (a) x and (b) y
directions under a constant speed of 100 rpm at different resistance loads. The resistance loads
of 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, blue, cyan and magenta lines
respectively.

The most significant response in x direction of the planet gear at the mesh frequency occurred when a
relatively light load of 10 Ohms was applied (Figure 6-15 (a)). The power generated by the system at
10 Ohms is relatively low. Also, the lowest response corresponds to maximum load where the
minimum power was generated. Since the response is high for the former case and low for the latter
case such that low power was generated in both cases, the response is independent of power generated
but the light load applied. The acceleration PSD level at the mesh frequency decreases as the load

increases.

Two frequencies (84 and 99 Hz) which are close to the measured natural frequencies were
significantly excited when a light resistance load of 10 Ohms was applied. The response at the mesh
frequency and frequencies close to the measured natural frequencies are the same for planet in y
direction. Therefore for a planet gear rotating at a constant speed different load, it can be inferred that
the response at the mesh and predicted natural frequencies are significantly more excited at relatively

lighter load than heavier load.

6.4  Summary on dynamic responses under different conditions

6.4.1 Combined effect of load resistance and rotational speed on the dynamic response

For a case where the rotational speed and load are increasing simultaneously; the radial and tangential
responses of the carrier at the mesh frequency increase. The radial and tangential carrier responses at

the mesh frequency are typically low when unloaded. In this case, where the rotational speed is
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varying, the carrier response is low when the load is light or when the system is unloaded. For the sun
gear, the radial response at the mesh frequency is high at a light load and low rotational speed. This is
because of the insufficient load to keep the mating teeth together for proper contact, which causes
impacts when they are engaging and disengaging. This can lead to damage of the teeth. The tangential
response of the sun gear at the mesh frequency increases as the load increases. The radial response of
the sun gear at the mesh frequency is low when unloaded while the tangential response is relatively
high. For the planet gear, the response at the mesh is high at higher resistance loads of 47 and 100
Ohms than the remaining lighter loads. The response of the planet at the mesh can also be significant

when unloaded.

The response levels of the carrier at a frequency associated with a natural mode are almost the same
covering a frequency range of 80 to 86 Hz, except for a case where a resistance load of 10 Ohms was
applied. This implies they are not significantly affected by the increasing rotational speed and load.
The tangential response of the carrier is significant at a higher frequency of 151 Hz at a heavy load.
The response of the carrier at a heavy resistance load of 100 Ohms dominates the response at the
higher frequency band in both directions. For the sun gear, the radial response is high at 80 Hz for a
light load. This is probably a resonance frequency because 80 Hz is close to 84. 37 Hz measured on
the carrier. This may be the reason why the response at this frequency is more significant than the
response at the mesh frequency 274 Hz for the same load. Since the force exciting this natural
frequency cannot be an unbalanced force, whose frequency is 1.48 Hz, or the mesh force whose
frequency is 274 Hz, it is necessary to investigate it. It is probably a force associated with a defect
associated with the bearing. The tangential response of the sun gear at a light resistance load of 10
Ohms is the most significant. The response of the planet is high at a light and heavy resistance loads
between 79 and 89 Hz and high at a frequency of 158 Hz corresponding to 100 Ohms. There is no
clear indication that the load and speed affects the dynamic response of the planet at a frequencies

associated with the natural modes when the rotational speeds and load are changing.

Misalignment may be caused by an error in the system during assembling has been diagnosed in
planetary gear at a low frequency range by Abdalla et al [70] using a method known as Modulation
Signal Bispectrum (MSB) . The response was measured by an accelerometer mounted on the housing.
In this study, the PSD of the sun gear shown in Figure 6-6 (a) and (b) when the rotational speed and
load are varying shows a frequency range associated with misalignment as discussed previously in
section 6.1. A significant response was measured on the sun gear at 27 Hz when unloaded. This
response is more significant at maximum load and rotational speed of the sun gear. The change was
obvious at a maximum load resitance of 100 Ohms where the frequency is 29 Hz. The presence of

lower and upper sidebands having relatively lower amplitude can be seen around the frequency, which
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may indicate faults on the sun gear at both frequencies. This fault is probably a misalignment of sun
shaft, so unbalance occurs. The frequency associated with this fault is within the range of low
frequency which signifies mechanical faults. This shows another benefit of measuring vibration of a
planetary gear individually using an accelerometer that can rotate with it. There is no need to employ
any signal separation or extraction technique before a mechanical fault like misalignment can be
detected.

6.4.2 Effect of varying the rotational speed on the dynamic response at a constant
resistance load

The radial response of the carrier at the mesh frequency increases with an increase in the rotational
speed up to 116 rpm. At this rotational speed there is resonance because the mesh frequency of 355
Hz that is close to one of the natural frequencies of the system at 356.4 Hz measured on the planet and
365.8 Hz measured on the carrier. Above this speed, at 132 rpm, the level of the response reduced.
For the tangential response of the carrier at the mesh frequency, the response levels are almost the
same except at 336 and 355 Hz, which correspond to rotational speeds of 110 and 116 rpm
respectively. The responses at these rotational speeds are high especially at 116 rpm because a natural
mode was excited which leads to resonance. Therefore, an increase in the rotational speed leads to an
increase in the radial response of the carrier at the mesh frequency but the most significant response
occurred at the resonance frequency. The tangential response levels at the mesh frequency are the
same except for the response at resonance frequency and the one close to it. The speed corresponding

with this resonance should be avoided to prevent damage of the carrier.

The radial and tangential responses of the sun gear at the mesh frequency are significant at high speed
and relatively low at low speeds. For the planet, the response at the mesh frequency is very high at
high rotational speeds especially the one which corresponds to the resonance frequency of 356.4 Hz

as mentioned earlier.

For the frequencies close to the natural modes, increase in the rotational speed does not clearly show
an increased level of response of the carrier in both radial and tangential directions. The response of
the sun gear in the radial direction seems unaffected by the rotational speed while the tangential
response is high at low rotational speed. The response of the planet gear is significant at high speed,

probably because it becomes more flexible as the rotational speed increases.

In summary, for a constant load and varying speed, the radial and tangential responses of the carrier,
sun and planet gear at the mesh frequency increases as the rotational speed increases. For the
frequencies relating to the natural modes, it is observed that increased rotational speed does not affect

the response level of the carrier in both directions as well as the sun in the radial direction. The
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response level of the sun in the tangential direction is relatively high for low speeds. The response of

the planet gear at a frequency related to a natural mode is significant for high speeds.

The frequency associated with misalignment of sun gear and its response level increases in both

directions as the rotational speed increases for the constant load.

6.4.3 Effect of varying the load resistance on the dynamic response at a constant rotational
speed
The radial response of the carrier at the mesh frequency is high at lighter loads of 10, 23.5 and 33
Ohms than the heavier resistance loads of 47 and 100 Ohms. Most significant tangential response at
the mesh frequency occurred at a light resistance load 23.5 Ohms, where the maximum power was
generated. The most significant radial response of the sun gear at the mesh frequency occurred at light
resistance loads of 10 and 23.5 Ohms. The power generated at 10 Ohms is low while the one
generated at 23.5 Ohms is the maximum. Therefore, the power generated could not be responsible for
the high response for the latter case but a light load applied. The tangential response of the sun gear at
the mesh frequency is high at 10 and 100 Ohms which are light and heavy loads respectively. A light
load could result in a high sun gear response because of the insufficient load to keep the meshing teeth
together, thereby causing a large impact capable of causing tooth failure. Also, a heavy load can cause
a high response if the errors are greater than the tooth deflection and the inertia of the sun gear is
relatively high as presented by smith [7]. The significant response of the planet gear at the mesh
frequency occurred for a light load of 10 Ohms. Therefore, for a constant speed, a light load could
damage the carrier, sun and planets at a frequency relating to the teeth meshing except for the

tangential response of the sun which is only significant for heavy loads.

For the responses relating to the natural mode, the radial response of the carrier are higher at relatively
higher loads. The tangential response is high at a heavy load corresponding to a low frequency range
(between 77 and 87 Hz), while the response over a relatively higher frequency range (135 and 143 Hz)
is high at a light load resistance of 23.5 Ohms. The radial and tangential responses of the sun gear
over a frequency range between 88 and 95 Hz are high at a light load of 10 Ohms. Therefore, a light
load can damage the sun gear at a lower frequency, when the rotational speed is constant. The most

significant response of the planet occurred for a light load resistance.

The frequency associated with misalignment on the sun gear and its response level, is increasing as

the load decreases for a constant rotational speed.

129



6.4.4 General comparison

The radial and tangential responses of the carrier at the mesh frequency could be more than that of the
sun gear if the bearing stiffness of the planet which connects it to the carrier is less than of the sun
gear. This is because the vibration generated at the sun-planet mesh is transmitted through the planet
to its bearing at the carrier-planet interface. This makes the tangential response of the carrier at the

mesh frequency higher than that of the sun gear whose bearing is stiffer.

Generally, for the carrier and sun gear the response at the tangential direction is higher while the
response of the planet gear in x and y directions are the highest.

The response relating to misalignment measured on the sun gear that follows shows a slight increase
as the speed and load is increasing, increases as the speed is increasing for a constant load and
increases as the load is decreasing for a constant speed. It exhibits different behaviours under different

working conditions.

The effect of load and rotational speed has been investigated on the dynamic response of carrier, sun
and planet gear. The next section will focus on the identification of vibration sources at each

measuring point in the system.

6.5 Identification of vibration sources in a planetary gear transmission
mechanism

Principal component analysis (PCA) is a mathematical algorithm used to transform a set of values
which comprise correlated variables into set of uncorrelated variables. Principal component analysis
(PCA) within a vibration context, can be utilized to identify and rank the vibration sources in the
planetary gear. To determine the contribution of each component of the planetary gear to the vibration,
it is important to apply PCA. The method can help to determine where to really apply the control

forces when controlling the vibration.

Huang and Ferguson [71] used a PCA method and virtual coherence techniques to analyse cross-axis
apparent mass in whole body vibration. Their aim is to identify the contributions and correlations
between the cross-axis vertical (x- axis) and cross axis lateral (y-axis) in response to a longitudinal
inline force (z-axis). They stated that the use of the ordinary coherence function to determine the
extent to which the cross axis forces are correlated to the inline longitudinal force is unclear. The use
of only PCA makes it difficult to establish the relationships between principal components and
physical sources. Therefore, a technique known as virtual coherence (VC) has been useful in

identifying the relationship between a principal component and physical sources. They concluded by
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stating that the extent of correlation determined from the results could help to know the causes of
cross-axis coupling which is common in biodynamic vibration response of the whole human body.
Bellino et al. [72] , used a PCA technique to detect damage in a time-varying systems. They showed
that this technique can be successfully used not only for time-invariant systems but time varying
systems like a railway bridge. Their results show that the PCA technique can be used to detect

damage in a time varying system as well as different levels of crack depth.

This section focuses on the application of principal component and virtual coherence methods to the
measured responses from a carrier, sun and planet gears during operation. As mentioned earlier in
section 6.2, the accelerometers are rotating with the components of the planetary gears unlike the past
research works where the accelerometers are stationary. Moreover all the accelerometers were
synchronized by configuring them to start and finish measurements at the same time. The power
spectral density (S;) and cross spectral density (S;) were determined by using MATLAB routine
“pwelch” and “cpsd” respectively. Like previous sections all the signals for a specific case were
acquired in 60 seconds at different sampling rates but were interpolated to 1600 Hz using a MATLAB
routine called “interp1”. This makes the number of data points equal to 96000. The spectral analysis
was performed using a Hamming window with overlap of 50% and the frequency resolution is 1 Hz in
all cases.

They were subsequently used to form a correlation matrix shown in equation (6.3). The aim is to
separate various signals being considered and determine the principal components. A command in
MATLAB known as “svd” which means Singular Value Decomposition was used to achieve this and

the principal components were determined.

The correlation matrix of all the signals measured for general case is built as follows:

S, S, . S
S S . S

[SXX] — 21 22 2m (63)
Soi Smz o Spm

Assuming there are n uncorrelated principal sources (or virtual sources) formed by an m different
physically measured sources, then N<M. In this study, m=n=4. Eigen decomposition of the

correlation matrix Sy at a specific frequency gives:

Sxx = U(NOADOUH(f) (6.4)
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where, A(f) is a diagonal matrix containing nonzero eigenvalues in descending order. It represents
the spectral density of the uncorrelated sources or virtual sources. The measured responses which are
the physical sources are the linear combination of these principal components. Matrix U(f)denotes
the eigenvectors which are arranged in columns. It is the linear relationship between the physical and
virtual sources. Each column in U(f)at a specific frequency corresponds to a specific eigenvalue
A(f)at the same frequency. The number of significant independent contributors or principal

components depends on the number of high eigenvalues at any specific frequency.

However, the principal component analysis can reveal the virtual sources but virtual coherence can
reveal the extent to which a virtual source can contribute to each physical source. The virtual
coherence between the j" virtual and i" physical sources is the ratio of the contribution of the virtual
source j to the power spectral density of the physical source [71]:

V., = @sUy() A0
coh = Si(f)

(6.5)

where, U;;(f)" is the conjugate of the eigenvector coefficient of the ith physical source contributing
to the jth virtual source: A;;(f) is the jth eigenvalue of the principal component or virtual source.

S;i (f) is the power spectral density of the acceleration excitation.

The experiment started by measuring the vibration of the carrier, sun and planet gears when rotating at
speeds of 103, 307.98 and 337.98 rpm respectively with a load resistance of 100 Ohms. The analysis
considered a case whereby a carrier and planet were investigated and another case where a sun and
planet were investigated. This was repeated for another case where the speeds of the carrier, sun and
planet gears are 130, 376.98 and 412 rpm at a load resistance of 100 Ohms. Also, the analysis was

done considering a carrier and two planet gears as well as sun and two planet gears.

6.5.1 Principal Component Analysis of the loaded carrier and planet gear

Investigations were carried out on measured responses in the radial and tangential directions of the
carrier and horizontal and vertical directions of one of the planet gear when the planetary gear was

loaded. In this case, m = n = 4, therefore equation (6.3) is of the form:

(6.6)
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where, the first subscript ‘1’ is the measured radial response of the carrier, ‘2’ is the measured
tangential response of the carrier, ‘3” and ‘4’ are the measured horizontal and vertical radial responses
of the planet gear. The carrier speed in this case is 103 rpm (1.717 Hz), the speed of the planet gear is
337.98 rpm (5.6 Hz) and the load resistance is 100 Ohms. The theoretical mesh frequency is 317.65
Hz considering the number of teeth on the ring gear in equation (6.1), while the actual mesh frequency
estimated from the calculated PSD is 317 Hz. In an actual sense, the mesh frequency may not be the
same using the number of teeth on the sun or planet gear. For instance, the mesh frequency for this
case, considering the number of teeth on the planet gear is 330.75 while the PSD shows a frequency
of 345 Hz. Probably, the load acting at the teeth mesh is fluctuating. The interpolated signal length of
the carrier and the planet is 96,000 and this is applicable to subsequent cases. For instance, the raw
and interpolated acceleration signals as well as the zoomed view of the carrier are shown in Figures 6-
16 and 6-17. Also, few points were chosen from the raw and the interpolated signals, and the mean
square difference was determined to be small. The PSD was zoomed around the mesh frequency
(317.65 Hz) for clarity purpose (Figure 6-17 (b)).
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Figure 6-16. (a) The time domain raw and interpolated acceleration signals of the carrier in the
horizontal direction (b) zoomed view.
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Figure 6-17. (a) The frequency domain raw and interpolated acceleration signals of the carrier
in the horizontal direction (b) zoomed view.
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Figure 6-18 (a) The power spectral density of the carrier and planet gears acceleration. (b) The
eigenvalues of the principal components PC,, PC,, PC; and PC,.

The two PSDs (yellow and violet lines in Figure 6-18 (a)) are of the planet gear acceleration in the x
and y radial directions respectively. They are relatively higher than the PSDs of the carrier
acceleration response. Generally, the responses are significant at the rotational speed and the mesh
frequency. Figure 6-18 (b) shows that two principal components PC; and PC, are more significant,
while the other two principal components are less significant. PC; contributes more at the rotational
and mesh frequencies while PC, only contributes significantly at the mesh frequency. PC; and PC,
are higher in magnitude than PC;and PC, over the wide range of frequency considered. To
investigate further on the principal components, the virtual coherence and the eigenvectors were

determined and plotted over a wide range of frequency.
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Figure 6-19 Virtual coherence of the PC,, PC,, PC; and PC, showing their contributions to the
(a) first physical source (radial direction of the carrier) and (b) second physical source
(tangential direction of the carrier). The blue, red, green and black lines denote PC,, PC,, PC;
and PC, respectively.

Figure 6-19 (a) shows the virtual coherence where the contributions of the PC; to all the physical
sources can be seen over a range of frequencies (1 to 3 Hz) which includes the rotational frequency of
the carrier. The contributions of PC, to the first physical source can be seen between 80 and 100 Hz
which includes a frequency close to a measured natural frequency of the system. At the mesh
frequency 317 Hz, it shows that there is no contribution from all the four PCs to the first physical

source as the virtual coherence shows noisy signals at high frequencies.

The virtual coherence in Figure 6-19 (b) shows that PC; contributes to the second physical source
(carrier tangential) from 10 to 24 Hz and from 30 to 90 Hz. The latter frequency band includes
frequency related to the natural mode. PC; also contributes between 338 and 448 Hz which includes

the mesh frequency of the planet gear which is 345 Hz.
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Figure 6-20 Virtual coherence of the PC,, PC,, PC; and PC, showing their contributions to the
(c) third physical source (horizontal radial direction of the planet gear) and (d) fourth physical
source (vertical radial direction of the planet gear). The blue, red, green and black lines denote
PC,, PC,, PC; and PC, respectively.
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In Figure 6-20 (a), it shows that PC1 contributes to the third physical source between 3.9 and 13 Hz
which includes the rotational speed of the planet gear. PC; also contributes to the fourth physical
source between 4 and 9 Hz (Figure 6-20 (b)). PC, almost show a contribution to the fourth physical
source at 2 Hz. There is no PC contributing to the third and fourth physical source at higher

frequencies especially the mesh frequency.

Only PC; contributes to all the physical sources at the frequencies of synchronous vibration (1.72 and
5.6 Hz). These are the two frequencies (corresponding to the rotational speed of carrier and sun gear)
where the vibration may be as a result of unbalance or misalignment of shaft in the planetary gear
train. The PSDs shows that the response at the frequency corresponding to the rotational speed is
higher than the response at the mesh frequency. The virtual coherence shows noisy signal at high
frequencies of the first, third and fourth physical sources. This analysis may serve as a diagnostic

means of identifying the principal vibration source in planetary gear especially at the rotational and

mesh frequencies of the carrier and planet gear.
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Figure 6-21 Absolute values of eigenvector component of the first, second, third and fourth
physical sources that relate with (a) PC, (b) PC,. The blue, red, green and the black line denotes
the absolute eigenvector components of first, second, third and fourth physical sources
respectively.

Absolute eigenvector
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The absolute eigenvector components of the first, second, third and fourth physical sources showing
their correlation with PC; are shown in Figure 6-21 (a). It shows that the first and second physical
sources correlate with PC; at low frequency corresponding to the rotational frequency of the carrier
(1.72 Hz). The third and fourth physical sources correlate with PC; between 4 and 9 Hz which
includes the rotational speed of the planet gear (5.6 Hz). There is no correlation between all the

physical sources and PC; at high frequencies especially at the mesh frequency. The correlation of all
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the physical sources with PC, is shown in Figure 6-21 (b). It shows that the fourth physical source

correlates with PC, at a low frequency of 2 Hz.
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Figure 6-22 . Absolute values of the eigenvectors of the first, second, third and fourth physical
sources that relate with (a) PC; and (b) PC,. The blue, red, green and the black line denotes the
absolute eigenvector components of first, second, third and fourth physical sources respectively.

10° 1

The correlation of the second physical source with PC; can be seen over a wide range of frequency as
shown in Figure 6-22 (a). This frequency band includes the mesh frequency. It is very obvious that the
first physical source correlate with PC, from 5 to 600 Hz (Figure 6-22 (b)).

In summary the values of the absolute eigenvector component confirms the dominant contribution of
PC; to all the physical sources. It also shows clearly the linear relationship between the first physical
source and PC, and the second physical source and PCa.

6.5.2 Principal component analysis of the loaded sun and planet gears

An investigation was carried out on measured responses from the radial and tangential directions of
the sun gear and horizontal and vertical directions of one of the planet gears when the planetary gear
was loaded. The speed of the sun gear in this case is 307.98 rpm (5.133 Hz), the speed of the planet
gear is 337.98 rpm (5.633 Hz) and the load resistance is 100 Ohms. The theoretical mesh frequency is
324.5 Hz considering the number of teeth on the sun gear in Equation 6.2 (b), while the actual mesh
frequency from the PSD is 324 Hz. The mesh frequency of the planet gear (345 Hz) remains the same

as in the previous section.
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Figure 6-23 (a) The power spectral density of the sun and planet gear accelerations. (b) The
eigenvalues of the principal components PC,, PC,, PC; and PC,.

Figure 6-23 (a) shows that the PSD level of the planet gear is a higher than the sun gear at their
rotational speeds of 5.633 and 5.133 Hz respectively. Also, the PSD of the planet gear is higher at the
mesh frequency. Two principal components (PC, and PC,) are most significant in this case (Figure 6-
23 (b)). PC, contributes more than other PCs but all the PCs are considered because of the difference
between the PCs is not big.
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Figure 6-24 Virtual coherence of the PC,, PC,, PC; and PC, showing their contributions to (a)
the first physical source (radial direction of the sun gear) and (b) the second physical source
(tangential direction of the sun gear). The blue, red, green and black lines denote PC4, PC,, PC;
and PC, respectively.

The contribution of PC; to the first physical source can be seen at a low frequency range from 1 — 5
Hz (Figure 6-24 (a)). The frequency range is close to the rotational frequency of the sun gear (5.13
Hz). It shows that PC1 is not contributing to the first physical source at higher frequencies. Figure 6-
24 (b) show the contribution of PC; To the second physical source at a low frequency range between
3 and 5.2 Hz. PC; contributes from 14 to 42 Hz and from 170 to 490 Hz. The latter frequency band

includes natural frequencies 187, 275, 356, 365 Hz and the mesh frequency measured in the system.
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However it is obvious that the PC; contributes to the second physical source (sun tangential) at the
sun mesh frequency of 324.5 Hz.
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Figure 6-25 Virtual coherence of the PC,, PC,, PC; and PC, showing correlation with (a) the
third physical source (horizontal radial direction of the planet gear) and (b) the fourth physical
source (vertical radial direction of the planet gear). The blue, red, green and black lines denotes
PC,, PC,, PC; and PC, respectively.

PC; contributes to the third physical source from 5.5 to 11 Hz while PC, contribute to it from. 4 to 5
Hz (Figure 6-25 (a)). PC; contributes to the fourth physical source from 5.8 to 9 Hz while PC,
contribute to it from 4 to 5 Hz (Figure 6-25 (b)).

In summary, it shows that PC; contributes to all the four physical sources at a low frequency range
which include the frequencies corresponding to the rotational speed of both the sun and planet gear.
PC; contributes to the second physical source (sun tangential) at a high frequency range which include
the mesh frequency. The virtual coherence of other PCs does not show clear relationship at high

frequencies especially at the mesh frequency.
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Figure 6-26. Absolute values of the eigenvectors of the first, second, third and fourth physical
sources that correlate with (a) PC, (b) PC,. The blue, red, green and the black line denotes the
absolute eigenvector components of first, second, third and fourth physical sources respectively.

The absolute values of eigenvector component in Figure 6-26 (a) shows that there is a linear

relationship between the first physical source and PC; at low frequencies ranging from 1 to 3 Hz.

Figure 6-26 (b) shows that there is a correlation between the fourth physical source and PC, from 1 to
3 Hz. The third physical source relates with PC; from 1 to 3.2 Hz while the second physical source

relates with it at high frequencies. The second physical source relates with the PC, at a low frequency

range.
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Figure 6-27 Absolute value of eigenvectors of the first, second, third and fourth physical sources
that correlates with (a) PC; (b) PC,. The blue, red, green and the black line denotes the absolute
eigenvector components of first, second, third and fourth physical sources respectively.
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At high frequencies (including the mesh frequency), there is a relationship between the second
physical source (tangential response of the sun gear) and PC3 (Figures (6-27 (a)). Also, the first
physical source (radial response of the sun gear) correlates with PC4 from 25 to 45 Hz and from 145
to 500 Hz (Figure (6-27(b)).

For this case where sun and planet gear is being considered at a lower speed and high frequencies
(which includes the mesh frequency), the virtual source of vibration contributing to the tangential
response of the sun at the mesh frequency comes from PCs. The virtual source contributing to the sun
gear radial response is from PC,. At low frequencies (which includes the frequencies corresponding to
the rotational speed of the sun and planet gears), PCs 1 and 2 dominate in all the physical sources in a

small range of frequency.

6.5.3 Principal Component Analysis of the loaded carrier and planet gear at higher speed

In this section, the PCA of the planetary gear was carried out at higher speed. The speed of the carrier
in this case is 130 rpm (2.17 Hz), the speed of the planet gear is 412 rpm (6.87 Hz) and the load
resistance is 100 Ohms. The theoretical mesh frequency is 400.8 Hz considering the number of teeth
on the ring gear in Equation (6.2b), while the actual mesh frequency from the PSD is 397 Hz. The
actual mesh frequency of the planet gear is 420 Hz. The PSDs of the carrier and planet, principal
components, the contributions of the PCs to first and second physical sources and finally to the third
and fourth physical sources are shown in Figures D6.2, D6.3 and D6.4 respectively in Appendix D.

The results are not significantly different from the ones at the lower speed.

6.5.4 Principal Component Analysis of the loaded sun and planet gears at a higher speed

The PCA of the planetary gear was carried out at higher speed for the sun and planet gear. The radial
and tangential directions of the sun gear and x and y directions of one of the planet gears when the
planetary gear train was in operation were considered. The speed of the sun in this case is 376.98 rpm
(6.28 Hz), the speed of the planet gear is 412 rpm (6.87 Hz) and the load resistance is 100 Ohms. The
actual mesh frequencies of the sun and planet gears from the PSD are 397 and 420 Hz respectively.
The PSDs of the sun and planet, principal components, the contributions of the PCs to first and second
physical sources and finally to the third and fourth physical sources are shown in Figures D6.5, D6.6
and D6.7 respectively in Appendix D. The results are not significantly different from the ones at the

lower speed.
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6.5.5 Principal Component Analysis of the loaded carrier and planet gears at a lower
resistance load

The PCA of the planetary gear was carried out at a lighter resistance load of 47 ohms for the carrier
and planet gear. The radial and tangential directions of the carrier and x and y directions of one of the
planet gears when were measured. The speed of the carrier in this case is 103 rpm (1.7 Hz), the speed
of the planet gear is 319.98 rpm (5.33 Hz) and the load resistance is 47 ohms. The results in this sub
section will be compared the ones in sub-section 6.5.1. The effect of reducing the load by
approximately half was investigated. The mesh frequency of the carrier is 317 Hz while that of the
planet is 315 Hz. The PSDs, PCs and the virtual coherence showing the contributions of the PCs to

the first and second physical sources are shown in Figures D6.8 and D6.9 in Appendix D.
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Figure 6-28 Carrier-planet virtual coherence of the PC,, PC,, PC; and PC, at 47 chms showing
their contributions to the (c) third physical source (x direction of the planet gear) and (d) fourth
physical source (y direction of the planet gear). The blue, red, green and black lines denotes
PC,, PC,, PC; and PC, respectively.

The virtual coherence showing the contributions of PC; to the third and fourth physical sources are
shown in Figure 6-28 (a) and (b) respectively. It shows that the contribution of PC,; to the fourth
physical source at higher frequency range is becoming clearer between 450 to 580 Hz (Figure 6-28
(b)). This shows that at a lighter resistance load, the virtual source of vibration contributing to the
fourth physical source at high frequencies is becoming more obvious compared to unlike the virtual

coherence at a heavier load of 100 ohms (Figure 6-20 (b)).
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6.5.6 Principal Component Analysis of the loaded sun and planet gears at lower resistance
load

The PCA of the planetary gear was carried out at a lower resistance load of 47 ohms for the sun and
planet gear. The speed of the sun in this case is 294 rpm (4.9 Hz), the speed of the planet gear is 319.8
rpm (5.33 Hz) and the load resistance is 47 ohms. The actual mesh frequencies of the sun and planet
gears from the PSD are 312 and 326 Hz respectively. The PSDs of the sun and planet, principal
components, the contributions of the PCs to first and second physical sources and finally to the third
and fourth physical sources are shown in Figures D6.10 and D6.11 respectively in Appendix D.
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Figure 6-29 Sun-planet virtual coherence of the PC;, PC,, PC; and PC,at 47 ohms showing
their contributions to the (¢) third physical source (x direction of the planet gear) and (d) fourth
physical source (y direction of the planet gear). The blue, red, green and black lines denotes
PC,, PC,, PC; and PC, respectively.

It is also obvious in Figure 6.29 (b) that PC; is contributing to the fourth physical source at high
frequency. This is not obvious at a load of 100 ohms previously discussed. In general the PCs 1 and 2
do not correlate with the third and fourth physical sources at the mesh frequencies probably because
there is mesh phasing. The number of teeth on the ring gear divided by the number of planet gears in
this study is 92.5. Inapolat et al. [35] stated that if the ratio of number of teeth on the ring gear and
number of planets is not equal to an integer, the planet gear are out of phase, therefore there is mesh
phasing. It is necessary to conduct this experiment without phasing by increasing the number of planet

gears in the planetary gear system such that the ratio will give an integer.

6.5.7 Summary on vibration source identification

The investigation has been carried out using PCA technique to identify the major source of vibration

in the planetary gear considering two different rotational speeds under a constant resistance load. An
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investigation was also done by reducing the load with the speed remaining constant. This is useful in

providing information needed when monitoring or reducing vibration in a planetary gear system. The

analysis was done directly on the signals measured individually on the carrier, sun and planet gears

using MEMs accelerometers when rotating. First and foremost, a carrier and a planet gear were

considered and subsequently a sun and planet gear was considered for two different rotational speeds.

Also, the analysis was performed for a lower resistance load of 47 Ohms. In general, the following

was discovered,

1. For a carrier and planet gear

a.

The major virtual source of vibration of all the physical sources at low frequencies
(especially at the frequency of synchronous vibration) is PCy, which relates with the
planet y radial direction. Hence, the planet is the major source of synchronous
vibration which may be due to unbalance in the load sharing or misalignment when
coupling together the carrier, sun and planets.

The major virtual source of vibration at high frequencies (especially at the mesh
frequency) which dominates the first physical source (carrier radial) is PC4. PC,
relates with the carrier response in the radial direction.

The major virtual source of vibration at high frequencies dominating the second
physical source is PC; which relates with the tangential direction of the carrier
response.

The major virtual source of vibration dominating the third and fourth physical sources
at high frequencies is unclear at 100 Ohms. When a lighter load of 47 Ohms was
applied it becomes clearer that PC, which relates to planet in the y direction

contributes to the fourth physical source over a high frequency range.

2. For sun-planet case

a.

PC; dominates all the physical sources at low frequencies including the frequencies
corresponding to the rotational speeds of the sun and planet gears.

The principal contributor to the first physical source at high frequencies is not clear at
100 ohms.

The major contributor to the second physical source at high frequency is PC;, which
relates with the sun tangential response.

The major contributors to the third and fourth physical sources are not clear at high
frequencies for a load of 100 Ohms. However, at a light load of 47 ohms the major

contribution comes from PC, over a narrow range of frequency.
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3. For a constant load, there is no significant difference between the eigenvalues of the principal
components, virtual coherence and absolute eigenvectors for the two rotational speeds
considered.

4. Attention must be paid to PC,when considering the synchronous vibration.

PC; and PC, which correspond to the planet y and x radial directions respectively are
relatively higher for all the cases considered. This is due to the fact that the planet gears bear
and share the load in the system and there may be larger deflection at the sun-planet and

planet-ring mesh.

6.6 Conclusions

The individual extensive vibration measurements of the carrier, sun and planet gear has been
presented for two different rotational speeds and loads. The benefit of such measurement is that there
is no need to use any signal separation technique to identify the vibration of each component, which is
the usual practice when accelerometers are mounted on the casing. This method is very good for fault
diagnosis as all the responses at the resonance and mesh frequencies, responses associated with
misalignment are measured. In this case, it is easier to identify a faulty component considering their
vibrations in different directions within a short period. The severity of the faults can be measured and

monitored for corrections to prevent damage of a planetary gear system.

The study on the effect of speed and load on the dynamic response reveals the following:

e In general, the response of the carrier and sun in the tangential direction is higher than the
responses in the radial direction but the response of the planet gear is the highest.

e For a case of varying rotational speed and load, the tangential responses of the carrier and sun
increase with increased speed and load. The response of the planet also increases as the speed
and load increase. The radial and tangential response of the sun gear at a frequency associated
with natural mode could be high when a light load is applied.

e For a case of constant load and varying speed, the tangential response of the carrier at the
mesh frequency are the same except the response at the resonance frequency and the one
close to it. The tangential response of the sun gear at mesh frequency increases as the speed
increases. This is the same for the planet gear response at the mesh frequency. For the
response at the frequencies relating to the natural mode, increased rotational speed does not
show clearly if it affects the response of the carrier in both directions. The tangential response
of the sun is high at low speed, while the response of the planet is high at a light load.

e For a constant speed and varying resistance load, the response of the carrier at the mesh

frequency is high when the load is light. Either a light or heavy resistance load can lead to
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damage of the teeth of the sun gear operating under a constant rotational speed. A light
resistance load can damage the teeth of the planet gear under a constant speed.

e The study also shows that the tangential response of the carrier at the mesh frequency can be
higher than the tangential response of the sun gear at the same frequency, if the stiffness of
the planet bearing at the carrier-planet interface is less than that of the sun gear.

e A response level relating to misalignment of sun gear at low frequency is significant at the
maximum rotational speed and resistance load. If the load is constant, the response level and
the frequency are increasing with the increased rotational speed. Conversely, if the rotational

speed is constant, the frequency and response level are increases as the load is decreases.

The study on vibration source identification shows the major source of synchronous vibration
contributing to all the physical sources. For carrier-planet and sun-planet cases, the major source of
vibration contributing to the planet (the third and fourth physical source) at the mesh frequency could
not be established even when their rotational speeds were increased. The major source of vibration at
the mesh frequency between carrier-planet and sun-planet is more noticeable when the resistance load
was reduced from 100 Ohms to 47 Ohms.

Given the vibration that has been modelled and measured, this study will subsequently consider
theoretically an active control approach known as pole placement. The theory of pole placement will
be extended to include equation of motion of a planetary gear. The controller will be designed using
both fixed and rotating frames of reference in order to control vibration of the system. Analysis with

numerical examples will be presented in the next chapter.
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Chapter 7  Active vibration control of planetary gears

Active vibration control involves changing the dynamics of a vibrating system by typically applying
equal but opposite active forces to counter the effect of an excitation force. This chapter presents
mainly the theory for pole placement applied to planetary gear using active vibration control method.
The theory is an extension of that developed by Mottershead et al. and the dynamic model is an
extended model developed by Parker [14]. Pole placement involves assigning the closed loop poles
of a system at the desired locations in the complex s-plane for stability. The aim is to shift the natural
frequencies of the system to avoid resonance which can cause failure of a system. This can be
achieved for example by actively adding stiffness using displacement feedback as the control strategy.
Likewise, damping can be actively added to the system using velocity feedback in the control strategy.
It is also possible to combine the displacement and velocity feedback strategies (or output feedback)
when controlling vibration of a system. In this case, the natural frequencies can be shifted and the

response at resonance frequencies can be reduced simultaneously.

Vibration control of planetary gear is necessary to avoid any form of failure associated with vibration.
These failures can cause breakdown of machines where planetary gears are used for torque
transmission. It is believed that the poles of a planetary gear system can be shifted to avoid resonance,
one method to achieve this for a linear system is by a receptance method. The control strategy to be
implemented in this study is the output feedback and this will be done by pole placement. In some
cases, the reverse method where the feedback gain is assigned will be demonstrated. According to
Mottershead et al., collocated sensor-actuator arrangement is possible when using output feedback
[15]. This implies that the sensors and the actuators are collocated at the same place. This is
achievable if the characteristic nonlinear equation containing the gain terms is formulated. Closed
loop poles will be assigned to the dynamic model of the planetary gear using pole placement by
receptance method. The main purpose of doing this is to actively change the stiffness of the planetary
gear system by displacement feedback, which results in a phenomenon called detuning. Detuning a
system prevents resonance, which can cause failure associated with vibration. Another purpose is to

reduce its response at resonance through velocity feedback which increases the damping of the system.

For simplicity, the application of displacement and velocity feedback will be demonstrated first
numerically, using a three degree of freedom system in Figure 7.2. Subsequently, the displacement
and velocity feedback will be considered simultaneously. It will be demonstrated that there is
similarity between displacement and velocity feedback without pole placement and with pole

placement.
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However, for pole placement on the planetary gear, the theoretical and numerical studies cover the use
of both fixed and rotating frames of reference as the coordinate systems. The controller design is such
that the pole can be assigned considering the rotational speed of the reference frame. The pole
placement method where the rotational speed of the reference frame is considered in the control law is
rare in the literature. This is done to demonstrate that the control force required using a rotating frame
of reference can be determined and transformed using a fixed frame of reference for practical
implementation. Numerical examples will be demonstrated, first using a fixed frame of reference to
determine the feedback gains after pole assignment. This feedback gain using a fixed frame of
reference will be used to determine the equivalent poles using a rotating frame of reference. The next
stage is to determine the feedback gain using a rotating frame of reference and take a further step to
obtain the poles using a fixed frame of reference. Therefore, the procedure is in a cycle such that the
equivalent control force using a rotating frame of reference can be determined using a fixed frame of

reference.

The simulations in this study are for excitation due to transmission error between the sun and planet
gear where equal but opposite forces are applied on them. This can give rise to a mesh excitation
whose frequency is the product of the operating speed and the number of teeth on the stationary ring

gear.

For the displacement and velocity feedback, two control forces will be used to assign poles on the
vertical and the horizontal directions of the sun gear only. The same will be repeated on the carrier.
Then, four actuators will be used to assign poles on the horizontal and vertical directions of the carrier
and the sun gear simultaneously. The simulations will be done using both frames of reference. The s-
plane will be presented to show how the poles have shifted after pole placement has been applied to

the system.

7.1  Active stiffness and damping using both displacement and velocity
feedback with numerical examples

For simplicity, the concept of feedback in active vibration control will be demonstrated first using

displacement and velocity feedback in order to add active stiffness and damping to a dynamic system.

The general dynamic equation of motion for a dynamic system is given in the form of second order

matrix equation in the Laplace domain as

(s’M +5sC+K)x(s) = f,(s) +1,(s) (7.1)
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where, M, C, K € ™, M =MT", C=CT, K=KTare the mass, damping, stiffness matrices

mx1
T

respectively. Also, where f (s) e R™,f (s) R™ are the external disturbance and the control force

respectively.

The control law is written as

Fs(s) = _Bs(Gd + Gv)Y(S) (72)

where B, € """ is the control force distribution matrix, B; = Dy which is the sensor distribution

matrix, g, and G, are the feedback gain matrices proportional to stiffness and damping respectively.

The output equation is written as
y(s) = Dsx(s) (7.3)
For a collocated sensor and actuator arrangement D, = BT

T
F.(s)=—B,(G4+G,)B¢X(S) (7.4)
Equation 7.1 can now be written as

[s°M+s(C+B,G,D,)+(K+B,G,D,)Ix(s) = F.(s) (7.5)

7.1.1 Numerical example

A theoretical analysis and numerical example is given on a constrained three degree of freedom

system shown in Figure 7-1 as follows.

/]
d k, ks k
A—ANM— ANA- ANA-
; "y m, m,
] l
;—l o 1] | |
(& | Ca Cy
/ —._'l'] — X — Xy
Ve

Figure 7-1 A constrained three degrees of freedom system.
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The values of the parameters of the system in Figure 7-1 have been chosen as:

my =1kg,m,=2kg,m; =4kg,C; =04 Ns/m,C, =0.6 Ns/m,C; = 0.8 Ns/m, k; =
2 N/m,k, =4 N/m,k; =6 N/m. The mass M, damping C and stiffness K matrices are given by

1 00 10 -06 O 6 -4 0
M=l0 2 O|kg,C=|-06 14 -08|Ns/m,K=|-4 10 -6 |N/m
0 0 4 0 -08 038 0 6 6

The initial poles of the system are as follows:
P, =—-0.0171+0.4350i, P, = —0.2750 £1.8949i, P, = —0.6579 + 2.8643i

In this analysis, both the displacement and velocity were fed back in order to achieve both active
stiffness and damping simultaneously. Equation 7.5 shows that active stiffness and damping can be
added to the system through feedback gains. Considering the first and the third masses, the following

control gains were assigned considering equation (7.5).

05 0 07 0 100
Gy = G, = D = B=D; =
0 07 0 04 00 1

This changed the location of the initial poles of the system to other positions due to the change in the

o O -
— O O

real and complex parts of the initial complex conjugate poles. The modified poles of the system after

assigning feedback gains G, and G are as follows:

P, = —0.0707 = 0.5777i, P, = —0.4248 +1.9600i, P, = —0.8545 + 2.8143i
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Figure 7-2 The response of the (a) first mass (b) second mass (c) third mass after assigning
control gain using both displacement and velocity feedback. The initial and modified
receptances are shown in red and blue respectively.

The pole of the first excited mode shown in Figure 7-2 (a) was shifted from —0.0171+0.4350 to

—0.0707 £0.5777iand a significant amount of damping was also added as the real part of the pole
has increased. The same mode was shifted in the second and the third masses. The second mode as
shown in both the Figures 7-2. (a) and (b), was shifted from —0.2750 £1.8949i to —0.4248+1.9600i .
Although the control force is not applied on the second mass, it is evident in Figure 7-2 (b) that the
frequency of the first mode has been shifted as in the second mass. This is because the first mass is
statically coupled to the second mass while the second mass is statically coupled to the third mass
where the control forces were applied. The active stiffness added has changed the damped natural
frequencies of the system to prevent resonance if excited by external disturbance whose frequency
matches the natural frequencies of the system. Active damping added to the system can increase the

level of damping and therefore reduced the response at resonance frequency to prevent failure of the
system.
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7.2 Similarities between using displacement and velocity feedback by
pole placement using receptance method

It will be demonstrated that displacement and velocity feedback by pole placement using receptance
method gives the same result as the one demonstrated in sub-section 7.1.1. First and foremost the

theory of pole placement by the receptance method will be analysed as follows.

From equation (7.5),

[s"M +5(C+B,G,D,) +(K +B,G4D,)]"F,(S) = X(s) (7.6)

where, [s*M+5(C+ B.G,D,)+(K+ BsGst)]_lis the closed loop receptance matrix. The open loop
receptance matrix for the system in Figure 7.1 can be written as:

H,(s) = (s°M +sC+K)™ (7.7)

If Equation (7.5) is pre-multiplied by Equation (7.7),

H, (8)[s°M +5(C+B,G,D,) +(K +B,G,D,)Ix(s) = H, (S)F, (S) , one obtains

[1+H(s)B, (G, +5G,)DJx(s) = H, (S)FIO (S) (7.8)

where, 1 is an identity matrix, then

X(s) = [1 +Hy (5)B (G4 +5G,)D, 1" H, (5)F, (5) (7.9)

:aMU+Hd@BJwaGQDJ
det[l +H,(s)B,(G, +sG,)D]

X(s) H, (S)F(s) (7.10)

The eigenvalues that make the denominator of Equation (7.10) equal to zero are known as poles.
Likewise, the eigenvalues that makes the numerator equal to zero are called zeros. The closed loop

poles may be assigned to the system to obtain feedback gains g4 and g, such that the nonlinear

equation det(I + Hy(4;)Bs(Gg + 2;G,,)Ds) = 0 can be satisfied.

7.2.1 Numerical example

The modified conjugate poles obtained after assigning feedback gains in Section 7.1.1 were assigned

to the system in Figure 7.2. The poles are as follows:
/11,2 =-0.0707£0.5777i, /13 , =—0.8545+2.8143i
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There are four characteristic equations written as

det[I +H,(4,)B(G, +4,G,)D,]=0 A=1...,4
while the open loop receptance matrix is written as

Hy(4)=(AM+4,C+K)™ A=1,..,4

The numerical results for the feedback gains are:

05 0 0.6999 0
G, = Ns/m, G, = Ns/m
0 0.6997 0 0.4000

The feedback gains are approximately equal to the ones assigned in subsection 7.1.1. This illustrates
that the displacement and velocity feedback strategy without pole placement and by pole placement

using the receptance method gives similar results in principle.

7.3 Active control of a planetary gear system by pole placement using a
fixed frame of reference

The dynamic model for the pole assignment analysis is shown in Figure 7-3; this model has been
described earlier in Chapter 3.

Planet 1

Planet 2

Figure 7-3 Lumped parameter model of a single stage planetary gear. It comprises a carrier, a
ring, a sun and two planet gears.
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For pole placement, the second order dynamic equation of motion for the planetary gear system using

fixed frame of reference is formulated as follows

[s°M + sC, + (K, +K )la(s) = F_(5) + BUS) (7.12)
where,

Fo=kg€,J0 0 0 0 0 0 siny, cosy, 1 -sina, —cose, -1 0 0 O]

sn=sn

Ysn =¥n — s

and where, M,Cy,K;, K,, € R, M = MT,C, = C}, K, =K}, K,,, = Kl are the mass, damping,

. . . mxn . o .
bearing and mesh stiffnesses respectively. B € R " is the control force distribution matrix u(s) €

R™*1 and is the control force, while Fte < ®™is the disturbance due to the transmission error in the sun-

planet mesh. These are two opposing forces in the sun-planet mesh unlike the forces being applied in

most dynamic systems. The pressure angle and planet positions are denoted by o and .

The feedback control law can be expressed as:

u@s) =-(G + sF)qu (s) (7.12)

The matrices G and F give the feedback gains, which are directly proportional to active stiffness and

damping respectively. Where, vector qop (s) is the output. The output equation is written as

gp () = DA(s) (7.13)

mxn . . . . -
For collocated sensors and actuators,B" =D €R, where D is the sensor distribution matrix. If
U(s) is substituted into equation (7.11), then

[s"M +5C, +(K, + K )]a(s) = F_(s) + B[-(G+sF)Dq(s)] (7.14)
Taking the second term on the right hand side to the left hand side,

[s°M +5(C, +BFD) + (K, +K,, + BGD)Jq(s) =F. (5) (7.15)

q(s) = [s°M +5(C, + BFD) + (K, + K, + BGD)] 'F_(5) (7.16)
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2 1
where, [S"M +5(C, +BFD)+ (K, +K_ +BGD)] " is the closed loop inverse dynamic stiffness
matrix using the fixed frame of reference. The term S(C, + BFD) provides active damping into the

system while (K, + K +BGD) changes the natural frequencies of the system. The open loop

inverse dynamic stiffness matrix is:

— .2 -1
H(S) =[sM +sCy + (K, + K )1 ™, (7.17)
If equation (7.15 is pre-multiplied at both sides by the equation (7.17), we have,

[1+H(5)B(G +sF)DIq(s) = H(s)F (s)

q6) = [1 + HE)B(G +sF)DT "HEF, ()

_ adj[1+H(s)B(G+sF)D]

96) = Get[1+H(S)B(G+sF)D]

H(S)F, (5) (7.18)

The eigenvalues Ll j that make the denominator equal to zero are known as poles and written as.
det(l + H(uj)B(G + qu)D) =0 (7.19)

The values of eigenvalues }\‘i that make the numerator of equation (6.8) equal to zero are known as

zeros and written as
adj(l + H(ki)B(G + xiF)D)H(ki)H(xi) =0 (7.20)

Where, | is an identity N X N matrix

Only the assignment of poles was considered in this analysis and numerical examples. The schematic
diagram of the control system is shown in Figure 7-4, where the disturbance is applied at the input and

the output is fed back to achieve stability in the system.
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Figure 7-4 Schematic diagram of closed loop feedback control system.

7.4 Active control of by pole placement using a rotating frame of
reference

The control algorithm in the rotating frame of reference can be obtained similarly. In this case, the M,
C and K matrices are different as well as the coordinate system. This can be analysed using Figure 7-
5, where the dynamics of the rigid bodies were modelled using a rotating frame of reference fixed to
the carrier with origin 0. The coordinate basis (i, j and k) rotates with a constant angular speed of the

carrier o_. It has been shown in chapter 3 how to transform from one frame of reference to another.

Figure 7-5 The planetary gear system showing the rotating frame of reference attached to the
carrier at the centre.

For pole placement, the second order dynamic equation of motion for the planetary gear system using

rotating frame of reference is written in the Laplace domain as:

[s"M + S@Q.G +O)+(K +K +QK, - Q%K )IA(E) = w(s) + BU(S) (7.21)
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where l\_/I,C_Zb,IZb,Rm,Gy e R™ are the mass, damping, bearing stiffness, mesh stiffness and
Coriolis matrix respectively. f1 = m7, K, =K] K, =K' |K,=K[,C, =C] while the G, and Ky

: —— mxn . o . _ mxL .
matrices are skew-symmetric. B € R is the control force distribution matrix and Ges) € R is

. 1. . ..
the control force, while we R is the disturbance due to the transmission error.

The output equation is written as:
Ggp (©) = DA() (7.22)

From Equation (7.12), the control force using a rotating frame of reference can be derived using the
transformation matrix, T:
where
cosQt —sinQt 0
T=[sinQt cosQt 0 (7.23)
0 0 1

The control force using a rotating frame of reference is written as

0 = (G +O,FJ +sF)BY(s) (7.24)
0 -1 0

J.=|1 0 O0];h=c,s (7.25)
0 0 O

where ¢ and s are the carrier and sun gear because the control forces were applied to them.

Substituting for U in equation (7.21), one obtains,
[s°M + s(QG, +O)+(K, +K, +Q K, - QjKQ)]q(s) —w(s) + B[-(G + Q_FJ + sF)]D(s) (7.26)

[s°M + S(Q,G, +C+BFD)+ (K, + K, + QK - O’K . +BGD +QBFID)[A(s) =w(s)  (7.27)
q(s) = [s°M + s(@,G, +C+BFD)+ (K, +K, +Q K, ~Q’K_ +BGD +Q.BFID)| "w(s) (7.28)
The closed loop inverse dynamic stiffness matrix is written as

[°M+5(QG +C+BFD)+(K, +K,, +Q K, -QK_ +BGD+ 0 BFID)]" (7.29)

The open loop inverse dynamic stiffness matrix is written as:
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— 25 N T 2 -1
HE) ="M +5(@QG +C)+ (K, +K, +Q Ky - QK )] (7.30)

Pre-multiplying equation (7.30) by equation (7.27)
[1 + H(S)B[(G + QCI_:J + SF)DJA(s) = HES)w(s)

q(s) =[1 + H(s)B[(G + QCIEJ + SIE)D]_ll:KS)W(S)

adj[1+H(s)B(G+Q¢FJ+sF)D] AEWE) (7.31)

96) = Get[1+F(s)B(G +OFI+sF)D]

The corresponding eigenvalues Wy are equal to poles given as solutions to
det(l + H(pj)E(G + QCIEJ + ujlf)f)) = 0. The corresponding eigenvalues A; are equal to zeros
given as solutions toadj(l + H(%)B(G + Q_FJ + A;F)D)H(;) = 0.

7.5 Numerical examples of pole assignment using two control forces

The pole placement will be applied to the either sun gear or the carrier in both the vertical and
horizontal directions simultaneously using a fixed and rotating frames of reference in each case. A

transmission error of 1.05 X 10~3m was assumed in this study and the subsequent ones.

75.1 Pole assignment to the sun gear using a fixed frame of reference

Two pairs of complex conjugate poles at 4, =—7+265i and 4, , =—15.661+800i were assigned to

the sun gear using two actuators supplying feedback control forces in the horizontal and vertical
directions through the bearing as shown in Figure 7-6. The poles were chosen considering the open

loop poles of the system.
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Figure 7-6 The control force being applied to the system in the x and y directions. They are
denoted with blue arrows in both directions.

The mass, damping and stiffness matrices are as given in the Appendix E. The actuator distribution

] 15x2 o . . 2x15
matrix B € R™ "~ and the sensor distribution matrix D € R~ are then

D—BT—000000100000000
"~ |0000D00O010000O0TO0TO

In this case Ch,(S) =DX,(S) and 0y, (S) =Dy,(S) . The open-loop inverse dynamic stiffness

matrices are written as
2 -1 .
H(A‘cj):(lvu'cj+Cbﬁ’cj+Kb+Km) v j=1..,4
Four characteristic equations which are nonlinear in control gains G and F can be written as

det(l +H(2{)B(G +/1jF)BT) =0, j=1..,4

The nonlinear equation was solved using the “fsolve” routine in MATLAB to obtain G and F. This
was also used subsequently in the remaining numerical simulations. The numerical results for the

control gains are:

G- {0.28162 0 349973 0

10°N/m  F=
0 9.4773

0 -0.87076 }NSI m
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The control gain, G is proportional to stiffhess, this implies that stiffness is added to the sun gear in x
direction and removed stiffness in y direction. The control gain, F is proportional to damping. It
shows that damping is added to the sun gear in both x and y directions.

The result was validated using a state-space representation namely:
0 |

T O -
-M™(K, +K_ +BGD) -M~(C, +BFD)

which yields s; , = —7 &+ 265i and s34, = —15.662 % 800i which replicate the assigned poles.
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Figure 7-7 Displacement per mesh excitation of the sun gear in the (a) x and (b) y direction with
and without control due to mesh excitation. The initial and the modified displacement per mesh
excitation are plotted in red and blue respectively.

The mesh excitation in this study is the product of the sun-planet mesh stiffness and the transmission

error between the sun and planet gear which is 1.312 x 10*N.

The result in Figure. 7-7 (a) which is the displacement of the sun gear in the horizontal direction,
shows that a pole was shifted from —2.8336 + 276.75i to—7 £ 265i . Another pole was shifted from
—7.1425+714.11i to —15.662+800i with significant damping added. This is a mode where only
the sun gear is translating in both directions. Only the frequencies of translational modes were altered.
Only the poles of translational mode have shifted the poles of the rotational mode remain unaltered. In
Figure 7-7 (b), the pole at —2.8336+ 276.75i to —7+ 265iin the first excited mode while the second
excited mode was shifted from —7.1425+714.11i to—15.662+800i . There is a translational mode
excited at 664 rad/s; this frequency was shifted to 280.5 rad/s but not excited after modification. The
poles of higher modes remain unchanged, no damping was added. The stiffness has been reduced in
the y direction which is why at low frequency the modified displacement per mesh excitation (i.e. the
blue line) moved up (Figure 7-7 (b)).
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Figure 7-8 The s-plane plots showing the locations of the initial and the modified poles when the
control forces were applied to the sun gear using a fixed frame of reference.

Figure 7-8 shows the three pairs of conjugate poles which were shifted. They are poles of the
translational modes because the poles were assigned to the sun gear in the translational x and y
directions. Five translational and 7 rotational modes remain unchanged. The magenta line shows the
pole that shifted from —2.8336+276.75i to —7+265i , the blue line shows the one from
—7.1425+714.11i to —15.662+800i while the green line shows how a pole shifted from
—6.3894 + 664.341 to —4.3504 + 280.5i
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Figure 7-9 Control forces applied on the sun gear in both the (a) x and (b) y directions using
fixed frame of reference.
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The normalised and absolute control forces are shown in Figure 7-9 in blue and orange line
respectively. It depends on the control gains G and F, the closed-loop poles assigned and the
amplitude of the excitation. Equation (7.12) shows the expression for the control force with the
actuator distribution matrix B. The control forces in the x direction is less than the y direction. In
Figure 7-9 (a), the absolute control forces are 0.2 N at 265 rad/s and 2.3 N at 800 rad/s. The absolute
control forces required in y direction is 115.2 N at 265 rad/s Figure 7-9 (b)). Generally, the control
forces in both directions are relatively low so actuators with low control force would be suitable for

practical implementation.

The resistive and reactive power calculations and their interpretations, for both electrical and
mechanical systems, are shown in Appendix E. The apparent control power or effort using a fixed
frame of reference is determined by multiplying the control force by the Hermitian conjugate of the

velocity in a Laplace domain. This is written as
P, = 2 [~(B(G + sF)Dq(s))(conj(sDq(s))"] (7.33)

The active control power is determined by considering the real part of equation (7.33). Bobrovnitskii
[73] gives the expressions for both the real and imaginary parts of the complex power flow. The real
part of the complex power flow for this case study, which is also called the direct component, can be

expressed as follows:
P, = %Re[—(B(G + sF)Dq(s)) (conj(sDq(s))"] (7.34)

Equation (7.34) is equivalent to time averaged active (resistive) power. The imaginary part of

equation (7.33), known as the reactive power flow, can be expressed as follows
P, = 2 Im[—(B(G + sF)Dq(s)) (conj(sDq(s))"] (7.35)

Equation (7.35) is equivalent to the peak value of the periodic with zero time averaged mean (reactive)

power flow. In addition, the time averaged mean square control force is also considered. This is given

by

F. = ;1[-B(G + sP)Dq(s)]? (7.36)

For the sun gear, the control power required to shift the poles in x and y directions using a fixed frame

of reference are shown in Figure 7.10 (a) and (b) respectively.
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Figure 7-10 (a) Mean square control force (b) Active control power (c) Peak reactive control
power required by the sun gear in both the x and y directions respectively using a fixed frame of
reference.

Figure 7-10 shows the active control power required by the sun gear in both the x and y directions.
Very small magnitudes of active control power are required to shift the poles in both directions. As
discussed earlier, the pole in x direction was shifted from —7.1425 4+ 714.11i to —15.662 + 800i
while the pole in the y direction was shifted from —2.8336 + 276.75i to —7 + 265i . The reactive
control effort (or power) does no net work, as it flows from the source of the control power (i.e. the
controller applying the force) to the PGT system and returns the same amount of power within each
cycle of the corresponding frequency. This is analogous to the power flow into and then back in each
cycle from the stiffness element in a single degree of freedom system when the stiffness supported

mass is excited at a discrete frequency (see Appendix E).

7.5.2 Pole assignment to the sun gear using a rotating frame of reference

The closed-loop poles were determined using the state space at the carrier speed of 100 rpm. In this
case, the control gains obtained using a fixed frame of reference were assigned using the state space
equation (7.37) to obtain the poles. It is assumed that the control gains in both frames of reference are

not changing with time.
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0 [
A=l _ 4 _ e . _ o (7.37)
MK, + K, + QK —QIK, +B(G+QcFID -M (G, +C, +BFD)

The sensor and force distribution matrices as well as the gain matrices are the same as the ones using

fixed frame of reference i.e.B=B, D=D,G =G, F = F. The closed-loop poles obtained from the

state space at the carrier speed of 100 rpm are:

S,, =—6.9108+264.18iand S, , —15.659 £ 800.2i

The open-loop inverse dynamic stiffness matrices are written as

H(2y) = (MAZ +(Q,G, +C,) 4y + (R, + K +Q K, ~QZK ) *F,, j=1..,4
while the four characteristic equations are written as

det(l + F|(,1j)§(é +QFJ +/1jﬁ)§T) =0, j=1,...,4

These poles obtained from the Equation (7.33) were assigned to the sun gear in the x and y directions.

This yields the following control gains

34.9977 0

5 - 0.28161 0
- 0 9.4808

10° N/m;F =
0 -0.87076

} Ns/m
The results was validated by state-space, Equation (7.37) and it yields the following poles:
S, =-6.9112+264.18iand S, , = —15.659+800.2i

The poles are almost the same as the closed loop poles assigned. The displacement per mesh

excitation for both the horizontal and vertical directions are shown in Figure 7-11.
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Figure 7-11 Displacement per mesh excitation of the sun gear in the (a) x and (b) y directions
with and without control due to mesh excitation using a rotating frame of reference at a carrier
speed of 100 rpm. The initial and the modified displacement per mesh excitation are plotted in
red and blue respectively.

The results in Figures 7-11 (a) and Figure 7-7 (a) are the same while the ones in Figures 7-11 (b) and
7-7 (b) are the same. The difference is the coordinate system used but at a low speed like 100 rpm of

the rotating coordinate system attached to the centre of the carrier, the results are the same.

For a rotating frame of reference, the control force required for the sun gear in the y direction is higher
than the x direction. The s-plane is shown in Figure E7.2 in Appendix E. The same number of poles
are shifted in the s-plane as the ones shown in Figure 7-8. Approximately the same magnitude of
control forces are needed using both frames of reference when control forces are applied on the sun
gear in both the x and y directions for a low speed of the rotating coordinate. The control force in both
the x and y direction when a rotating frame of reference was used is shown in Figure E7.3 in

Appendix E.

The control power using a rotating frame of reference is determined by multiplying the control force
by the Hermitian conjugate of velocity in a Laplace domain as written in equation (7.38). The active
and apparent control power as well as the mean square control force are written respectively in
equations (7.39), (7.40), and (7.41).

P, =2 [~(B(G + O FJ + sF)Dq(s)) (conj(sDq(s))"] (7.38)
P, = %Re[—(B(G + Q.F] + sF)Dq(s)) (conj(sDq(s))7] (7.39)
P, = 2 Im[—(B(G + QcFJ + sF)Dq(s)) (conj(sDq(s))"] (7.40)
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In addition, the mean square control force using a rotating coordinate is also considered. This is given
by

Fe =2 |[-B(G + Q.FJ + sF)Dq(s)] |2 (7.41)
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Figure 7-12 (a) Mean square control force (b) Active control power (c) Reactive control power

required by the sun gear in both the x and y directions using a rotating frame of reference when
the coordinate speed is 100 rpm.

For a relatively low rotational speed 100 rpm of the sun gear, the active control power required, is

approximately the same as the effort required using a fixed frame of reference (Figures 7-10 (b) and
7-12 (b)).

7.5.3 Pole assignment to the carrier using both frames of reference

The method of pole placement was applied to the carrier only in the x and y directions simultaneously
using both fixed and rotating frames of reference. The pole placement on the carrier will be compared

to that of the sun gear in order to determine the best location to put the actuator in the system. Two
conjugate poles 4, =—7+265i and 4,, =-15.661+800i (which are the same assigned to the sun

gear) were assigned to the carrier. This is done to compare the control effort required in both cases

and determine the optimal place to apply control forces in a planetary gear system. The numerical
results for the control gains are:
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—-0.49326 0 6 303.53 0
G= 10° N/m ; F= Ns/m
0 —0.40454 0 12.0127

This result was validated and it yields —7 = 265i and —15.663+800i .
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Figure 7-13 Displacement per mesh excitation of the carrier in the (a) x and (b) y directions
with and without control due to mesh excitation using a fixed frame of reference. The initial and
the modified displacement per mesh excitation are plotted in red and blue respectively.

Figure 7-13 (a) shows the displacement per mesh excitation of the carrier in x direction where the pole
of the first excited translational mode is shifted from —2.8336+276.75i to—7+265i. Damping is
added at 265 rad/s because the peak is not as sharp as the peak at 276.75 rad/s. Another pole of a
translational mode moves slightly from —6.3894 + 664.34i to —6.6242+ 662.51i . A pole was also
shifted from —9.7772+1023.7i to —15.663+800i but the peak has vanished in the modified
displacement per mesh excitation. In Figure 7-13 (b), the frequency of the first excited mode was
shifted from 275 rad/s to 265 rad/s. The second mode was shifted from 664.34 to 662.51 rad/s while
the third mode was shifted from 1023.7 to 800 rad/s. The peak of the assigned pole at 800 rad/s can be
seen in y direction. The translational mode at 1876.6 rad/s was slightly damped while the last

translational mode excited at 7773.2 rad/s remains unaltered.
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Figure 7-14 The s-plane showing the locations of the initial and modified poles when the control
forces were applied to the carrier using a fixed frame of reference.

The conjugate poles shifted after pole placement are shown in Figure 7-14. The two assigned poles

and other poles can be seen before and after modification. The real and imaginary part of the poles of

the rotational modes remain unchanged. The magenta line shows the pole shifted from

—2.8336 £ 276.751 to—7+ 2651 while the blue line shows the pole shifted from —9.7772+1023.7ito

-15.663+ 800i . The frequency of a closed-loop pole shown by a green line was shifted from 1020.9 to

730.55 rad/s with a significant level of damping added.
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Figure 7-15 Control forces applied on the carrier in both the (a) x and (b) y directions using a

fixed frame of reference.
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The normalized (blue line) and absolute (orange line) control forces are shown in Figures 7-15 (a) and
(b). A force of 15.6 N is required in x direction to shift the pole from 276.75 to 265 rad/s while a force
of 1.04 N is required to shift the pole from 1023.7 to 800 rad/s in y direction. The control forces vary

and depend on the stiffness and damping added as well as the pole assigned.
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Figure 7-16. (a) Mean square control force (b) Active control power (c) Reactive control power
required by the carrier in both the x and y directions using a fixed frame of reference.

The active control power required by the carrier is relatively higher than that required by the sun gear
in both the x and y directions (comparing Figures 7-10 (b) and 7-16 (b)). It can be seen from both the
figures aforementioned, that the active control power required by the carrier to shift a pole of
—2.8336 + 276.75i to —7 + 265i in the x direction is higher than that required by the sun gear in
the y direction. The control effort required by the carrier to shift a pole from —7.1425 + 714.11i to
—15.662 + 800i in the y direction is less than that required by the sun gear in the x direction. There
is no significant difference in the active control effort required by the carrier using either frames of
reference (Figure 7-16 (b) and Figure E 7.3 (b) in Appendix E).

For a high margin between the open and closed loop poles, the control effort required by the sun gear
is higher because it has higher support stiffness. This is not the case for the low margin between the
open and closed loop poles where the control effort required by the carrier is higher. Therefore, the
optimal place to apply control in the planetary gear system considering the control effort required
depends on the initial location of the poles and the desired final shifted pole location in the s-plane for
stability. Another factor to be considered is the bearing stiffness of the carrier and the sun gear. For
high bearing stiffness, more control effort will be required to shift the pole from a particular location

to another especially for the case where the margin between the open and closed loop is high.
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For the carrier when a rotating frame of reference was used, the poles obtained at a rotational speed of
100 rpm using equation (7.33) are —7.0025+ 264.78i and —16.271+800.31i . The poles were assigned

and yield the following gains:

—0.49335 0 6 303.41 0
G= x10°N/m , F= Ns/m
0 —0.40455 0 12.0221

The results were validated by state-space equation as written in equation (7.33), and this yields
—7.0024 + 264.78i and —16.275+800.3i . The closed-loop poles obtained are the same with the ones

assigned.

The displacement per mesh excitation and the control efforts of the carrier using a rotating frame of
reference is shown in Figures E7.3 and E7.4 in Appendix E. They are the same with the ones when a
fixed frame of reference was used at a carrier speed of 100 rpm except for a peak which appeared at
715.9 rad/s in y direction. In this case the control forces and efforts in both directions are the same as

using a fixed frame of reference.

It has been shown by numerical examples that the poles can be assigned in a fixed frame of reference
and the equivalent control force and effort can be obtained using a fixed frame of reference.
Conversely, this can also be done using a rotating frame of reference. This means a pole can be
assigned using a rotating frame of reference where the accelerometers are rotating with the system at a
particular carrier speed, the equivalent pole can be obtained using fixed frame of reference where the
accelerometers are fixed. However, since the actuators cannot rotate with the system, so the control
force and effort required to shift the pole using a rotating frame of reference can be transformed using
a fixed frame of reference for practical implementation. The conjugate closed-loop poles and control
gains for the sun gear and carrier at higher carrier speeds of 500 and 1000 rpm are determined and
shown in the table 7-1. This is achievable because the controller was design such that the poles can be

obtained at any rotational speed of the rotating coordinate.
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Table 7-1 The conjugate closed loop poles and control gains at higher carrier speeds.

Sun gear

Carrier

Poles obtained at the

carrier speed of 500 rpm

—6.3618 + 249.18i

—15.579 + 804.89i

—7.0617 + 259.58i

—30.819 + 809.75i

Control gains at the

carrier speed of 500 rpm

G = diag(2.8163,—8.7077) x 105

F = diag(35.0022,9.4758)

G = diag(—4.9322, —4.0468) x 10°

F = diag(303.51,12.0025)

Poles obtained at the
carrier speed of 1000

nm

—6.2341 £+ 219i

—15.35 £ 819i

—7.2383 £+ 242.82i

—58.474 £+ 853.38i

Control gains at the
carrier speed of 1000

rpm

G = diag(2.8163,—8.7075) x 105

F = diag(34.9992,9.4797)

G = diag(—4.9332,—4.0455) x 10°

F = diag(303.46,12.0327)

It shows from table 7-1 that the equivalent closed-loop poles at different rotational speeds of the

rotating coordinate system can be obtained. For simplicity, the procedure for pole placement using

both fixed and rotating frames of reference is shown in Figure 7-17.

M,C,K system

(fixed frame of reference) ~

of reference)

v

Feedback gain (fixed
frame of reference)

Feedback gain

Assignment of the
feedback gains

(rotating frame of
reference)

using state space in
fixed frame of

reference

Assignment of closed
loop poles (fixed frame

Assignment of the feedback gains
using state space in rotating frame of
reference

M,C,K system
(rotating frame of reference)

Assignment of closed
loop poles to MCK
system (rotating frame
of reference

r 3

Closed loop poles in

reference

P rotating frame of

Figure 7-17 Procedure for pole assignment using both the fixed and rotating frame of reference.

In this study, the theory of pole placement extend to the vibration control of planetary gear is such that

the required control force can be determined considering the rotational speed of the reference frame
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and the control gains. The equivalent control force needed for instance at 500 and 1000 rpm can be

determined using a fixed frame of reference for implementation.
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Figure 7-18 Effect of the carrier speed on the closed-loop poles for constant feedback gains at
100 rpm when the poles were placed on the carrier.

The effect of the varying carrier speed on the closed loop poles is studied when the feedback gains are
constant. The feedback gain used is that of the carrier at 1000 rpm shown in Table 7-1. It shows that
the real part of some poles are not constant over a wide range of carrier speed but the real part of the
poles at high frequencies (from tenth to fifteenth mode) are constant. They are not affected by the
carrier speed (Figure 7-18 (a)). For the imaginary part (shown in Figure 7-18 (a)), which represents
the damped natural frequencies, some frequencies of translational modes are changing as the carrier
speed is increasing. For instance the frequency of the eighth mode changed from 800 rad/s at low
speed of the carrier to 853 rad/s at 1000 rpm. The damped natural frequencies of the higher modes
remain unaltered.
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7.6 Numerical examples of poles assignment using four control forces

In this section, the method of pole placement will be simultaneously applied to the carrier and sun
gear in the vertical and horizontal directions using the fixed and rotating frames of reference in each
case. There are eight characteristic nonlinear equations to be solved in this case because four complex

conjugate closed-loop poles will be assigned.

7.6.1 Pole assignment to the carrier and sun gear using a fixed frame of reference

In this case, four conjugate poles were assigned and the feedback gains were determined. The

following poles were assigned to the carrier and sun gear both in the x and y directions.

1o =—2.9588 £ 278.11i

34 = —23.326 £ 705.97i
56 = —27.170 £ 762.17i

> > > >

;g =34.651+1081.7i

The open loop inverse dynamic stiffness matrix is then:
2 -1 - _

H(ch) = (M}tCj +Cb/1Cj +K, +K,)", j=1,..8,

and the characteristic equations are

det(l + H(2;)B(G +ﬂjF)BT) =0, j=1,..,8.

The sensor and actuator distribution matrices are then:

1 0000O0O0OOOOOOSOODP
DB = 01 00O0O0OO0OO0OOOOOOTO OGO
0 0O00O0OOOT11O0O0OODOGOOO0OTO OGO
0 000O0OO0OOO1O0O0ODOOOOOPGO

In this case G, () = DX, (S) , Gygy (S) = DY, (S), Usey (S) = DX,(S) and G, (S) = DY (S)
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The numerical results for the control gains are:

0.12366
0.12871 6
G= 10°N/m
0.01549
0.28533 |
49,8991 i
49.8148
F= Ns/m
68.0236

93.6318

This result was validated and the following closed-loop poles were obtained:
Ay, =—2.9588 + 278.11i

Mg 4 =—23.326 + 705.97i

g g =—27.171+ 762.17i

A, g =34.672 £1081.7i

The returned closed-loop poles are the same with the assigned closed loop poles
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Figure 7-19 Displacement of the carrier per mesh excitation in both the (a) x and (b) y directions
using fixed frame of reference. The initial and the modified displacement per mesh excitation

are plotted in red and blue respectively.

Figure 7-19 (a) shows an open loop of the first excited mode was slightly shifted from
—2.8336 £ 276.75i to —2.9588+ 278.11i . Another pole was shifted from —9.7772+£1023.7i to

—34.672 +1081.7i with significant damping added. The damped natural frequency at 1876.6 remain

unchanged while the one at 7773.2 rad/s is unaltered but little damping was added because it changed

from —3.5370+7773.2i to—5.6809+ 7774.0i .
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In Figure 7-19 (b), the open-loop pole at —2.8336 + 276.75i was shifted to—2.9588 + 278.11i while
the one at —6.3894 + 664.34i was shifted to—27.171+762.17i . The pole of the third excited mode
was shifted from —9.7772+1023.7i to —34.672+1081.71i . Significant amount of damping were

added in the modified poles of the second and third modes.
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Figure 7-20 Displacement of the sun gear per mesh excitation in both the (a) x and (b) y
directions using fixed frame of reference. The initial and the modified displacement per mesh
excitation are plotted in red and blue respectively.

In the horizontal and vertical directions of the sun gear as shown in Figure. 7-20 (a) and (b), the open-
loop pole of the first excited mode was shifted from —7.1425+714.11i to—27.7171+ 762.17i . There
is a peak at 664.34 rad/s in the y direction of the sun gear which disappeared in the modified response
probably because of significant amount of damping added in the y direction of the sun gear as shown

in the gain matrix F (row 4, column 4).
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Imaginary

Figure 7-21 The s-plane plane showing the locations of the initial and modified poles when the
control forces were applied to the carrier and sun gear using a fixed frame of reference.

Figure 7-21 shows more poles are shifted from their original location when using four actuators. This
can be compared to Figures 7-8 and 7-14 where only two control forces were applied on either the
carrier or sun gear in both the horizontal and vertical directions. Three poles were effectively shifted
using two control forces on either the carrier or the sun gear. In this case, where four control forces
were applied on the carrier and the sun gear simultaneously, six poles of the translational modes were
altered. There are two poles among the six poles where only the real parts were slightly altered. In
general, only the poles of translational modes are altered, the poles of the rotational modes remain

unchanged.
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Figure 7-22 Normalised and absolute control forces to the carrier in both the (a) x and (b) y
directions using a fixed frame of reference.
The control forces applied on the carrier in the x and y directions at different excited frequencies are
shown in Figures 7-22 (a) and (b) respectively. They are not as high as shown in the Figures 7-19

where two actuators were applied on the carrier only.

-100

Control force(dB re 1N/N)

Control force(N
Control force(dB re 1N/N)
.o
Control force(N)

Phase
Phase
o

-200 L L ! -200 200 L L L -200
10' 10° 10° 10* 10 102 10° 10
Frequency (rad/s) Frequency (rad/s)

(a) (b)
Figure 7-23 Normalised and absolute control forces to the sun gear in both the (a) x and (b) y
directions using a fixed frame of reference.
Likewise, Figure 7-23 (a) and (b) shows the control forces applied on the sun gear in both x and y
directions. This can be compared with the control forces applied to sun gear with two actuators shown
in Figure 7-10 which are higher. Less control force are required if more actuators are used but this
may be expensive. In general, actuators that can deliver relatively low displacement and low force

should be suitable for the control experiment. For the control experiment, the control force will be
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applied through a bearing fitted in an adapter. This bearing will be mounted on either the carrier or

sun gear shaft

1.7 Discussion

This study has numerically demonstrated how a pole placement method can be used to actively
control the vibration of a planetary gear system. The controller was designed such that the closed-loop
poles can be assigned using both fixed and rotating frames of reference. The control gain can be
determined at any rotational speed using a rotating frame of reference. The control force and effort
required can then be determined at each frequency, therefore the kind of actuator required for the
control experiment can be known. The numerical predictions show that the assigned poles of lower
frequencies corresponding to translational modes are shifted to avoid resonance with the addition of
damping to reduce the response. The control forces required for the method are relatively small,
therefore actuators with low control force are suitable for practical implementation. The control
experiment on pole placement method in controlling vibration of planetary gear is recommended to
know if the numerical result closely approximate the dynamic of the system after pole placement. The
control experiment should be such that the rotational displacement can be measured over a wide range
of frequency and the poles of the excited rotational modes can be shifted. For this method, the
transmission error and the mesh stiffness must be known unlike the one demonstrated by Mottershead

et al which makes use of measured receptance.

There is a feedforward method used by Montague et al. [42] to control mesh vibration of parallel axis
gear, this can also be applied to planetary gear for mesh vibration reduction. The piezoelectric
actuators were mounted 20° to the common tangent to the pitch circles such that they are collinear

with the line of contact or pressure line.

7.8 Conclusions

The theory of pole placement in active vibration control has been extended to control the vibration of
planetary gear in this study. The new contribution is that a controller was designed such that the
closed-loop poles can be assigned using both fixed and rotating frames of reference. The feedback
gains can be obtained at any rotational speed of the rotating coordinate. This pole placement method
considers output feedback and this was presented and numerically implemented using both fixed and
rotating reference frames. First and foremost, the same poles were assigned to the sun gear only and
subsequently the carrier in the x and y (translational) directions using both frames of reference. Three
open-loop poles corresponding to translational modes out of eight were shifted with two control

forces applied either on the carrier or sun gear. This shows that the method is suitable to actively
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control the mesh vibration of a planetary gear system but requires that the mesh excitation should be
known.

It was shown that the control force determined using a rotating frame of reference can be transformed
to the fixed frame of reference for practical implementation. This is because with current technology,
actuators cannot easily rotate with the planetary gear in practice to control the vibration. Also, the
control forces required by the actuators are not high, hence actuators with low control forces and
displacement will be suitable for practical implementation.

The optimal place to apply control force when two actuators are used to apply control force on either
the carrier or the sun gear was determined using the control effort required. For comparison, the
control effort required by the sun gear to achieve stability is more because the stiffness of its bearing
is higher. So the optimal place to apply control force depends on the stiffnesses of the bearings. The
lesser the stiffness of the bearing the less the control effort required. In this study, the optimal place to
apply control force is the carrier.

Furthermore, the number of control forces was increased from two to four and they were
simultaneously applied to the carrier and sun gear in x and y directions. The simultaneous assignment
of poles to both the carrier and sun gear shows a better vibration controllability than assigning the
poles to one of them. Five poles corresponding to translational modes were shifted and damped with
four control forces. The poles of the six rotational modes remain unchanged with two and four control
forces applied. This is because the closed-loop poles were applied in both the x and y directions of the
carrier and sun gear which are translating. In general, the translational modes of vibration (i.e.
transverse vibration) which are the largest in high speed machinery can be controlled effectively by

pole placement.
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Chapter 8 General conclusions and future work

This study focuses mainly on the vibration measurement and control of planetary gear. Dynamic
modelling and analysis was considered first to predict the natural frequencies and the mode shapes of
vibration using a fixed and rotating frame of reference. The results using both frames of reference
were compared. A customized planetary gear test rig was designed and constructed such that the
independent vibration of the carrier, sun and planet gears can be measured when they are rotating.
This was achieved by considering a sufficient space on the components where MEMS accelerometers
can be mounted. Some of the parameters needed to predict vibrations were calculated analytically
while some were measured and compared to the values of the existing formula. For instance modal
analysis was used to determine the bearing stiffnesses of the carrier, sun and planet gears and the
results were compared to the existing formula in the literature. Also, modal analysis was carried out in
order to compare the predicted vibration results with the experimental results. The spinning test was
carried out where the MEMS accelerometers were rotating with the components in order to measure
the true vibrations of the components. Vibration source identification was carried out to determine the
major source of vibration within a particular frequency range. Finally some poles of the system were
shifted to another location to avoid resonance which can lead to damage and breakdown of a planetary

gear system.

8.1 General conclusions

8.1.1 Dynamic modelling using fixed and rotating frame of reference

The dynamic modelling and analysis was done using both the fixed and rotating frames of reference.
It was discovered that the natural frequencies are the same when using both frames of reference
provided that the rotational speed of the rotating coordinate is low. It shows that there is the
possibility of having a mode where only the sun or ring gear is translating in a planetary gear system

with two planet gears unlike system with higher number of planets.

8.1.2 Test rig design and construction

A suitable vibration test rig of planetary gear was designed and developed such that individual
vibration response of each component in the system can be measured while rotating. The parts of the
test rig can be easily dismantled for modification because temporary fasteners were used to couple
them together. Furthermore, the test rig is designed such that there are spaces where wireless
accelerometers can be mounted on the rotating components. The test rig was used for measuring the

bearing stiffnesses of the components. The ratio of bearing stiffnesses estimated in the horizontal and
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vertical directions were determined and compared to the ones presented in literature. It shows that the
difference is not significant. The mesh stiffness was also estimated using the result of the modal
testing conducted on the test rig with the predicted results. The vertical stiffness of the ring gear could

not be estimated correctly because it was bolted to the base of the test in the vertical direction.

8.1.3 Comparison between predictions and measurement

The sun-planet and ring-planet mesh stiffnesses were determined with the measured and predicted
natural frequencies using error function. The predicted and measured responses shows a certain
degree of agreement but not fully agreed especially the planet and ring gears. In general, the analytical

model seems to show the behaviour of the planetary gear system.

8.14 Spinning test and vibration source identification

It has been presented in this study that vibration of individual components of a planetary gear system
can be measured when rotating. There is no need to use signal separation techniques to isolate signals
in order to identify faulty components. The effect of load and rotational speed on the response at the
natural and mesh frequencies are studied and presented. The study shows that a light load can cause a
significant response on the gears which can damage the teeth as well as a heavy load under a constant
speed. The response associated with unbalance on the sun gear and their side bands were also
measured at a low frequency range. The effect of rotational speeds and loads on this response was

presented.

8.1.5 Vibration Source identification

The virtual source of vibration in a planetary gear has been identified using PCA technique. The
method shows the virtual source over a low frequency range which includes the frequency of
synchronous vibration of each component. For a high frequency range which includes the mesh
frequency, the virtual sources could not be identified on the sun and planet at a load 100 ohms.
However the virtual sources become easier to identify at a lighter load of 47 ohms. It is highly
recommended that this study should be carried out with a seeded fault on the teeth of sun or planet

gear.

8.1.6 Pole placement

The vibration of a planetary gear system using an active control by a pole placement has been
presented. It has been predicted that the method is effective in controlling the vibration of the system

by shifting the some poles to avoid resonance which may damage the system using two control forces
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on either the sun gear or the carrier. However, it shows that the control effort required depends on the
bearing stiffness of the component where the control force is being applied. The optimal place to put
the control force is on the component with lesser stiffness of the bearing. The controllability of the
system increases with increase in the number of points where control force is added, but the challenge
is the cost of getting more actuators. This predictions need to be validated with a controlled
experiments where the control forces can be applied by connecting the actuators to the bearings fitted
in adapters. These bearings can be mounted on either the carrier or sun gear shafts.

8.2  Suggestions for future work

e Modification of the test rig such that the meshing teeth can be lubricated evenly during
operation.

e The coulomb damping (dry friction) between the meshing teeth should be estimated.

e The dynamic range of MEMS accelerometers should be increased and the size of the
accelerometers can be reduced in order to measure vibrations at higher rotational speeds

e The tangential response of the planet gears should be measured and compared to the
tangential response of the planet gears to know which response is higher. The size of the
planet gears can be increased in order to provide a space to mount the accelerometers
tangentially.

e Experimental validation of pole placement predictions should be done using both fixed and
rotating frames of reference. This may be achievable with the advancement in vibration
measurement and control technology.

o Creation of a seeded fault by breaking a tooth on the sun gear and take the measurement. The
PCA method should be done again and comparison should be done with the result presented
in this thesis. This will clarify the reason why there is no correlation at the mesh frequency in

some of the results. A light load can also be considered.
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Appendices

Appendix A

Equation of motion for the sun gear in matrix form using a fixed frame of reference

m, O 0 X, c, 0 OffX% ke, 0 0]|X
m, 0 Yop+] 0 ¢, O3Ysr+| O Ky Ofqysp+
o 1 /r2|lu) [0 o o]y 0 0y,
sin® g, —COSy g, SiNyg, —sinyg, sing sinyg,  cosa siny,, —siny,
Ky | —COSY, SiNY, cos’ wg, cos ‘//sn —sina  CcoSy,, —COScr COSY, COSWy,
—-sinyg, Cosy, -sina; oS o 1
(A3.1)
Equation of motion for the ring gear in matrix form using a fixed frame of reference
m, 0 X Cix 0 0 X" er 0 0%
m, 0 Veg+t 0 ¢y Oy, p+[ 0O ky Oy, p+
0 0 I/c7]|4 0 0 ofly, 0 0fly,
sin® —COSy SiNy,  —Siny, —sing Siny,, cosg,siny,, siny,,
K | —COSW, SINY cos’w,, cos ‘//m sing, cosy,, —COSa, COSY,, —COSY/,,
—-siny,, CoSY sine, —Cos a, -1
(A3.2)
Equation of motion for the carrier in matrix form using a fixed frame of reference
m. 0 X | |c, 0 Of[%]| [k, O O]|X 1 0 siny, |[X
m, 0 Yer+| 0 ¢ OfyYep+] O ko Oy, pt+k,| O 1 cosy, |yV.;+
0 I /e |4, 0 0 0]|u, 0 0 0]|u, siny, cosy, 1 a,
—cosy, -siny, 0](¢,
k,| siny, —cosy, 0|7,
0 -1 0|y,
(A3.3)
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Equation of motion for the planet gear in matrix form using a fixed frame of reference

mo 0 0 [[{] [¢, O Off5,| [k, 0 0]f¢, —cosy, siny, 0 ][%
0 m, 0 o et 0 €, O|37, ¢+ O Kk, O|ym, gk, | =siny, —cosy, —1| 1y ¢+
0 0 I /ri|lu] [0 0 0]y [0 0 0]y, 0 0 0 la,
. - . . - 2 - . T
singgsiny, —sina cosy,, —sing, ||X sin® o cosagsina, —sinag || ¢,
K, | COSagsiny, —COSa,COSW,, —COSa, |4V, r+ K |COSasin o cos? o —cosag |17,
—sinyg, cosy, 1 U, -sina, —CoS 1 u,
-sing, siny,, sing,cosy,, sina, ||X sin” cosa,sina,  —sina, | ¢,
+K, | COsa,siny,, —cCoSe¢, cOSy,, —COSa, |1V, +Kq,|—Cose,sing, cos? o, cosag |41,
siny,, —-Ccosa, -1 u, -sina, Cos a 1 u,
(A3.4)
Equations of motion using a rotating frame of reference
Equation of motion for the sun gear in matrix form using a rotating frame of reference
m, 0 X, 0 -2m, X| |t, 0 of(X]| |k, 0 Of[X
0 m, Vop+Q|-2m 0 0V,e+| 0 T, O[qV,p+| O kg OV, r+
0 0 I/ ]||G 0 0 0]|g, 0o o0 o|lu] |0 o of|g
sin yg, —COSy g, Siny g, —sinyg, | | X, sing siny,  cosa sinyg, —sinyyg,
Ken | —COSY g, SiNY, cos’ wg, cosyg, |1V +Kg|—Sinagcosy,, —cosa CoSy,, COSWyq,
—-sinyy, Cosy/ g, 1 u, —-sina, COS o, 1
m@ 0 0%
—QZ 0 m, 0|4V,
0 0 0]|a,
(A3.5)
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Equation of motion for the ring gear in matrix form using a rotating frame of reference

m 0 0 [fX 0 -2m, 0][%]| [c, O O[] [k, 0O 0Of%
0 m 0 |{§,+Q|-2m 0 OV, e+ 0 ¢, OV, e+l O k, 0|4y, t+
0 0 I /r’||G 0 0 0f|q 0 0 0f|G 0 0 0](m
sin®w, —COSY SNy, —siny || X —sina Siny,, cosg,siny,, siny,,
K | —COSW SNy, cos’ wy, cosy,, |1V, r+Kn| Sine, cosy,, —cosa,CoOSy,, —COSy ,,
—-siny,, CoSy/ 1 a, sine, —Ccosa, -1
m 0 0%
Q%0 m 07
0 0 Of|u

=

(A3.6)

Equation of motion for the carrier in matrix form using a rotating frame of reference

m_ O 0 X, 0 -2m, Of[% c, 0 0ffx EC 0 0][x
0 m 0 |§¥.p+Q|-2m, 0 O0<y,t+| 0 ¢, OV, r+| 0 k& O[Sy, ¢+
0 0 I /2]y, 0 0 0JluJ [0 0 Oflu) [0 0 0ffu,
1 0 —siny, [|X —cosy, siny, m 0 O0f[X
k,] O 1 cosy, 1Y (K, | —siny, —coswn ~0Zl 0 m ofy,
—siny, cosy, 1 U, 0 0 0 0]|u,
(A3.7)

Equation of motion for the planet gear in matrix form using a rotating frame of reference

m, 0 Z, 0 -2m, 0||&,| [5, O O[S, | [k, 0 0][¢,
0 m, 0 i+ Q —2m, 0 Mgt 0 C 0|7, ¢+ O k, 0|7, ¢+
2 = - _
0 0 I, /r |G, 0 0 0f|G, 0 0 0]|u, 0 0 0|0,
—-cosy, siny, 0 [[X [sinagsiny,, -—sina cosy,, -sine, ||%
kp| —siny, —cosy, —1|{V, r+Keq|COSassiny,, —cosa,cosyy, —CoSag (1Y, +Kg
0 0 0| | —sinyg, Cosy/, 1 a,
.2 - - = . . . . -
sin® o cosagsine, —sinag |4, —sing, siny,, sing cosy,, sing, ||X
. 2 —_ . —
COs ag Sin o Cos” ag —Cosag 477, ¢+ K| COSax,Siny,, —cOSe, COSy,, —COSa, |\, +
—sina; —cos o 1 a, sinyy, —Cosa, -1 J|&,
i02 . . = _
sin” a, cosa, sina, —sing, ||, m, 0 0]|¢
; 2 — 2 —
K | —COSa, sina, cos” a, Cosarg (477, ¢ — €2 m, 0|37,
-sine, COS o 1 a, 0 of|u,
(A3.8)
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[(I) '\9/'}{2}{Kb+kogg,<g Q;J{g}{g} (A39)

Contact stiffness matrix for two-planet model

K" 0 0 K, K]
0 ZK:’]l 0 KJI:2 K?Z

K,=| 0 0 ZIKy K, K (A3.10)
K, Ki, K K, 0

c2 r2 s2 pp |

KZ K%L KZ 0 K3

The K., matrix can be decomposed into three matrices such that the sun-planet and planet-ring mesh

stiffness can be varied.

KL 0 0 KL, K 0o 0 0 0 0 0 0
0 00 0 O 0 =K, 0 K}, K 0 0
sz 0 0 0 0 0 +Km 0 0 0 0 0 +Ksn 0
ook, 0| oK, oK, o oo Kk
T T 27
K& 00 0 Ki| [0 K, 0 0 Ky [0 g
(A3.11)
For a fixed frame of reference,
1 0 siny, —cosy, -—siny, O
Ka=k,| O 1 cosy, [;K{, =k,| siny, —cosy, O (A3.12)
siny, cosy, 1 0 -1 0
For a rotating frame of reference
1 0  —siny, —cosy, siny, O
Ky=k,| O 1 cosy, K, =k,|-siny, —cosy, O (A3.13)
—-siny, cosy, 1 0 -1 0

Other contact matrices are as follows
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—-sing, Siny,,
sina, cosy/,
sing,

sin’ a,

—Ccosa, sina,

—sina,

sin’ Ven
K = Ken | —COsyr, siny,
—-siny,

sin g Siny,
—sin g, cosy,

»
N
I
x
71
=}
1

—sina,

2
sin® o

COS a Sin org

[
w
Il
=
[%2]
=}

—sin g

cos & sin o

—COSY/,, Siny .,
cos’

COS¥/n

sin? Ym
Ky | —COSW o, SINY
—siny,,

cosa, siny,,  siny,,
—COSYW p | >

-1

—COoS ¢, COSY,,

—cosa,
cosa, sing, —sine,
cos® , cosag |;

Cos oy 1

—CoSy g, Siny, —sinyg,
cos’ cosy,
CoSy/g, 1

cosa,sinyg,  —sinyyg,

—C0Sa, COSY, COSWg,

COS 1

—sin g
cos’a,  —cosa

—CoS g 1

189

—-siny,,
COS ¥ n
1

(A3.14)

(A3.15)

(A3.16)

(A3.17)

(A3.18)

(A3.19)






Appendix B

Table B1. Natural frequencies used in minimising the difference in the sum of the predicted and

estimated natural frequencies for determination of sun-planet mesh stiffness..

Estimated from Prediction (Hz)

experiment (Hz)

1 62.5 50
2 85.7 92
3 134 122
4 1097 1397

Table B2. Natural frequencies used in minimising the difference in the sum of the predicted and

estimated natural frequencies for determination of planet-ring mesh stiffness.

Estimated from Prediction (Hz)

experiment (Hz)

1 47.5 47
2 90.66 98
3 515 519
4 1117 712
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Procedures for calculating the mass moment of inertia of the components

1. Carrier

Figure B4.1

Figure B4.2

The mass moment of inertia of the rectangular part and the two semi-circles is

LA TDY)  ptA () (B4.1)
. 12 2 '

The mass moment of inertia of the centre circle in the rectangle

r, =17 mm

Figure B4.3
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_ Pt (1)

ce 5 (B4.2)
The mass moment of inertia of the two concentric semi-circles at the end
I
r= 10.5 mm
; R, =20 mm
Figure B4.4
2 2
_ptAR))  ptA(r")
l, = - (B4.3)
2 2
The total mass moment of the carrier
o=y I+ 1, (B4.4)
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2. Ring gear

a, =315.56 mm

Li b, =311.20 mm _’\
| |
Figure B4.5
2
| = ,DtA (ar2 +br2) _ ptA?'y(Rr )
' 12 2
3. Sun gear
v, =17 mm
R, =142.5 mm
Figure B4.6

_ PR, ptA(K)
2 2

S

194

/r:ls ;;;;;;
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4. Planet gear
T =12 mm

Rop =67.5mm

Figure B4.7

_PAL (R, ptA (")

|
P 2 2

(B4.7)

5. Torsional stiffness of the ring gear

h=315.56 mm

& 1=15mm

b=311.20 mm
»
|

Figure B4.8

K. = GJ, ; where G is the modulus of rigidity of steel which is 80 GN/ m, J; is the polar moment
L

tr

of inertia of the ring geometry while L is the length of the whole body which is h.

The polar moment of inertia of a rectangular section about its axis

_ bh(b? +h?)

i =0.00164m*
12

J
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The polar moment of inertia of a circular section axial direction

7TD4 44
J.=——=5823x10"m
32

J =], -J_ =00010m"

Therefore, the torsional stiffness of the ring gear, Ky is 2.54 x 108 Nm/rad.

Bearing stiffness estimation

Experiment /
— — —Model

N
o
T

Accelerance (dB re 'Im/sZ/N)
5 \
o

'30 B ' X:22.64
Iy Y: -28.22
40 )7
-50 |
10’ 102 10°

Frequency (Hz)

Figure B4.9. The accelerance of the carrier in the horizontal direction compared to a single degree of

freedom system showing the stiffness line is 40 dB/decade slope. Coherence is good from 22.4 Hz.
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Appendix C

Amplitude [m/s?/N]
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Figure C5.2. Carrier in x direction.
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Figure C5.4. Sun gear in x direction.
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Figure C5.5. Planet gear in x direction.
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Figure C5.6. Planet gear in y direction
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Figure C5.9. Typical modes of vibration (a) rigid body mode (b) Translational mode at 92 Hz (c) The
two horizontal and vertical including the dashed lines are the equilibrium positions.
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Appendix D

Acceleration (m/sz)

Figure D6.1 (a). Time history of the unloaded carrier acceleration in the tangential direction (b) The
frequency content when the carrier speed is 117 rpm (the corresponding values in Hz is 1.95 Hz).
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Figure D6.2 (a) The power spectral density of the carrier and planet gear accelerations at a higher
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Figure D6.3. Virtual coherence of the PC,, PC,, PC; and PC, of Carrier-planet at a higher speed to
the (a) first physical source (radial direction of the carrier) and (b) second physical source (tangential
direction of the carrier). The blue, red, green and black lines denotes PC1, PC2, PC3 and PC4

respectively
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Figure D6.8. (a) The power spectral density of the carrier and planet gear accelerations. (b) The
eigenvalues of the principal components PC1, PC2, PC3 and PC4 at 47 ohms.
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Appendix E

Complex power flow — electrical and structural analogies

E7.1 Instantaneous and time averaged power quantities in electrical circuits.

The following analysis is a short reduction of the analysis presented by Auld [74]. He considers the
instantaneous power flow in a circuit as the product of the real positive voltage and current terms, i.e.
P(t) =V(@)I(t) (E7.2)

This is applicable to arbitrary waveforms, including harmonic. To simplify the analysis one can

replace the terms in the above by their complex representation, i.e.

Voel®t + VgeJwt

V(t) = |Vy| cos(wt + ¢,) = 5 = Relye/ @t
Iyel®t + [je—Jot .
1(t) = |Io| cos(wt + ¢;) = > 5 0 = Relye/t
where the complex numbers
VO = |V0|ej1/)v
Iy = |Iple/¥1

Substituting these expressions using the complex formulation into equation (E7.1) and taking an

arbitrary reference time such that ¢, =0 , then v_ =V is real. Hence from the substitution and

equation (E7.1), one has the instantaneous power given by

ReVy(Io)* N Volgel2@t + Vo (Iy) e /2@t
2 4

P(t) =

_ ReVo(lp)*
- 2

ImVy(Iy)*

(1 + cos2wt) + sin2wt (E.72)

The first term in equation (xx.1) represents a periodic, always positive or zero, unidirectional power

flow

Vo(lp)*
‘Re% (1 + cos2wt)
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This term supplies resistive losses (dissipation and resistance components) and has a time averaged

value equal to

Vo ()"
Py = e Lolo)".
2
The second term w sin 2wt is a periodic (reactive) power flow, with a time averaged value

equal to zero. It corresponds to the power flow which is flowing into and then out of any coils
(inductance) and capacitors within the circuit. Its time averaged value is zero and it has a peak value
given by

ImVy(1y)*
X = 2

Figure E7.1 illustrates, for a harmonic voltage and current, the resistive and reactive powers for this

scenario.

Figure E7.1. The time varying resistive and reactive powers and their time averaged quantities.

The real and imaginary parts of the complex power flow P, are related to time averaged resistive

power and the peak reactive power by

_ Vo)’

P
2

= Pyy +JjP

This has been used in Chapter 7 for the Active Pole Placement and the corresponding evaluated power

quantities and their interpretation.
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E7.2 Instantaneous and time averaged power quantities in a SDOF mechanical system

Without any loss of generality one can analyse a single degree of freedom mass-spring-viscous

damper system responding to a harmonic force applied to the mass. In complex notation, for a force
Fe!* one has the following differential equation of motion for the complex displacement x(t) :
mi + cx + kx = Fel®t

The corresponding real force and response velocity v are then given by, assuming F is real without
any loss of generality,

B joFe B F (b .
V(t)Re{k—wszrJ'a’C}|k—a)2m+jcoC|2 Re[ja)e“(k wm ch)]

After further manipulation and taking the real parts, one has

F

[k —a’m+ jex|

v(t) : a)zccoswt—a)(k—a)zm)sina)t]

and Re[Fej“"] = F cos ot
The instantaneous power P is then

F2 cos wt

P(t)=v(t)Fcosat = 2[a)zccoswt—a)(k—wzm)sina)t]

‘k —o’m+ ja)c‘

2 192 kK —@’m)F?sin 2wt
P(t)_Fa)c(l+0032a)t)_a)( @ ) W

B 2‘k—a)2m+ja)c‘2 2‘k—a)2m+ja)c‘2

Which is exactly analogous to the two power quantities given in equation (E7.2), i.e. the pulsating
unidirectional resistive power flow, due to dissipation in the viscous damper, and the periodic, with

zero time average reactive power flow, due to the instantaneous power flow to the spring and mass.
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Figure E7.2. The s-plane plots showing the locations of the initial and the modified poles when the
control forces were applied on the sun gear using a rotating frame of reference at the carrier speed of
100 rpm. The movement of the poles are the same as they are moving using the fixed frame of
reference.
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Figure E7.3. Control forces applied on the sun gear in both the (a) x and (b) y directions using
rotating frame of reference at the carrier speed of 100 rpm.
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Figure E7.5. Control power required by the carrier in x and y directions respectively using a rotating
frame of reference when two control forces were applied in sub-section 7.5.3 of the thesis.
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