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Vibration measurement and control of planetary gears 

by Kolade Abiola Olanipekun 

Planetary gears are widely used in many applications such as power transmission in automotive 

vehicles, aircraft, turbines, power screws etc. They are different from parallel shafts gears because of 

their compactness, better load-carrying capacity etc. These advantages do not restrict them from 

vibrating during operation. This research work focuses on their mathematical modelling, vibration 

measurement and control. 

Mathematical modelling was done in order to predict the free and forced vibration responses of a 

planetary gear comprising different numbers of up to six planet gears. Two coordinate systems were 

used namely fixed and rotating frames of reference. It is shown that the same natural frequencies can 

be obtained using either a fixed or rotating frame of reference, but on the condition that the carrier 

speed is set to zero when using a rotating frame of reference. Furthermore, the effect of the carrier 

speed on the natural frequencies were investigated using a rotating frame of reference on a four-planet 

model. It shows that only the natural frequencies of the translational modes are either increasing or 

decreasing, the natural frequencies of the rotational and planet modes remain significantly unchanged. 

Both the predicted and experimental results were compared, there is a certain level of agreement. 

Spinning vibration experiments were conducted in order to determine the effect of various loads at a 

constant speed, and various speeds at a constant load on the natural and mesh frequencies of a 

planetary gear. This was achieved with the use of MEMs accelerometers which were mounted and 

rotate with the system to measure the vibration of a carrier, sun and planets. A further investigation 

identified the principal source of vibration in the planetary gear train during operation considering 

different loads and speeds. A Principal component analysis (PCA) was employed to identify the 

principal vibration sources. 

Finally, a method of active vibration control called pole placement was used to shift the poles of the 

system theoretically in order to mitigate vibration. This was done to prevent resonances which may 

occur if the frequency of the synchronous vibration or mesh frequency coincides with any of the 

system natural frequencies. Poles were assigned to the carrier and sun gear for different scenarios and 

subsequently assigned simultaneously to them. Some of the poles of the translational modes whose 



vibration can be very severe were shifted, the poles corresponding to the rotational modes remain 

unchanged.
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Chapter 1 Introduction 

Planetary gears are widely used in many applications such as power transmission in automotive 

vehicles, helicopters, turbines, aircraft engines, tractors etc. A typical planetary gear train comprises a 

carrier, ring, sun and planet gears. The carrier, ring and sun gears are referred to as the central 

members and any of them can be made an input or output member. This is one of the advantages over 

a parallel shaft gear because different speed ratios can be obtained by simply changing the input and 

the output member while the remaining central member is kept stationary [1]. Another better 

comparative advantage over a parallel shaft gear train is that the load is transmitted by several 

contacts of the tooth surfaces (i.e. a good load distribution). Also, the arrangement of the shaft leads to 

a compact layout. These features bring about versatility in their applications, especially in the 

transmission system of an automobile. In most cases, the planetary gear system may be either spur or 

helical gear. Spur planetary gears are frequently used in heavy machines, while the helical planetary 

gear (which is relatively quieter and more durable because of gradual engagement of the teeth) are 

used in automatic transmission systems. 

However, in planetary gears there can still be vibration and noise due to dynamic overload, backlash, 

fluid entrainment, friction, gravity as in the planetary gear of a wind turbine [2], variation in the 

stiffness of teeth contact surface [3],  as well as transmission error. Many research studies have been 

carried out on vibrations of gears [4], because of the wide applications, which includes torque and 

power transmission in numerous machines as mentioned earlier. 

In most cases, the vibration of parallel axis and planetary gears are measured on the casing because 

typical available accelerometers cannot rotate with the system. A filtered response of the original 

vibration signal with a significant noise contamination is measured by an accelerometer externally 

mounted on the casing [5]. Therefore, fault detection in the system may not be easy especially in the 

time domain. In this case, signal separation techniques like time synchronous averaging (TSA) may 

be employed to identify the fault in the components. TSA makes it possible to isolate a component 

signal from noise or any unwanted signal [6] measured from the gearbox.  (Abhinav et al [5] stated 

that although fault can be identified from TSA signal but such a fault must be associated with gear 

teeth).  If there is a crack on the carrier, TSA will not work well according to Abhinav et al. [5]. This 

is because there is the possibility that the resonance frequency that will show the fault due to the crack 

has been isolated because it is not synchronised with the carrier speed. Therefore, they proposed a 

method known as Complex Morlet Wavelet to extract a useful signal from the raw signal. Some 

researchers like Jong et al. [6] used a method known as Autocorrelation-based TSA to solve the 
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problem associated with the conventional TSA used in condition monitoring of planetary gearboxes of 

wind turbine.   

1.1 Description of an epicyclic gear and types 

For a proper understanding it is essential to describe an epicyclic gear and discuss the three possible 

types. Planetary gear train, which is also known as epicyclic gear, comprises a sun gear which rotates 

about a fixed axis, planet gears which rotate about their axis and revolve around the sun gear like the 

planets orbit around the sun in solar system. A carrier serves as a link between two or more planet 

gears with revolute joints at the centre of the planets and there is a ring gear, which has internal teeth 

arrangement, which meshes with the planet gears.  

The various types of planetary gears depend on which member is fixed and this in turn determines 

their speed ratios considering the input and the output member. The three configurations or naming 

descriptions are: planetary type, solar type and star type. 

 (1) In the planetary type, the input gear may be the carrier while the output is the sun gear or vice 

versa. The ring gear, which has internal teeth, is stationary and meshed with the planet gears which 

are also moving in an epicyclic motion around the sun gear (Figure 1-1).  

 

Figure 1-1 Schematic diagram of planetary type of epicyclic gear with a stationary ring gear. 

The carrier, ring, sun and planet gears are denoted by c, r, s and p respectively. 
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(2) In the solar type, the sun is fixed, the input gear may be either the ring or the carrier, and the same 

thing is applicable for the output (Figure1-2).  

 

Figure 1-2 Schematic diagram of solar type of epicyclic gear with a stationary sun gear. The 

carrier, ring, sun and planet gears are denoted by c, r, s and p respectively. 

 (3) In the star type, the sun and the ring are moving while the carrier is fixed. In this latter case, the 

planets gears rotate about a fixed position without revolving around the sun gear. This makes the gear 

system behave like an ordinary gear train, thereby the planet gears act like idlers (Figure 1-3). 

 

Figure 1-3 . Schematic diagram of star type of epicyclic gear with a stationary carrier. The 

carrier, ring, sun and planet gears are denoted by c, r, s and p respectively. 

The carrier, ring and sun gears share the same axis as shown in Figures 1-1, 1-2 and 1-3. The 

configuration is more flexible than that of a parallel shaft gear. The CAD model of a typical planetary 

gear test rig for this research is as shown in Figure 1.4 where the main components are the carrier, sun 
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gear, two planet gears, sun shaft, carrier shaft, the frame, the bearing supports and the fasteners. The 

particular detailed CAD model for the study was developed for manufacturing some required parts of 

the test rig for the purpose of vibration experiment and control. 

 

Figure 1-4 CAD model of a planetary gear test rig. 

1.2 Transmission error 

Transmission error is the main source of excitation [7] which was considered in this study as the 

external excitation. It is defined as the distance between the actual position of the output gear and the 

position it would occupy if the gear drive were perfect. This implies that for no transmission error, the 

speed ratio of the mating gears remain constant throughout the cycle of meshing i.e. from approach to 

recess [8].  

Transmission error may also be expressed as the angular or linear displacement that occurs at the 

pitch point of meshing gear teeth [9]. The phenomenon of transmission error is caused by gear 

eccentricity, geometrical errors in the tooth profile, wrong positioning of the bearing in the housing, 

misalignment of shafts, deflection (e.g. contact deformation at the mesh region, deflection due to 

bending of the gear teeth, shaft deflection) and geometrical modification (such as tip and root relief) 

in the tooth profile [9].  
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Figure 1-5 Transmission error in gears. 

In Figure 1-5, the driving gear is assumed to be rotating at constant angular velocity Ω1 while the 

angular velocity of the driven gear is Ω2.  Therefore, the transmission error, sn
e  in terms of angular 

displacement is:           

                    (1.1) 

where, θact and θth are the actual and theoretical rotational displacements of the driven gear 

respectively. Therefore, 

                     (1.2) 

In terms of linear displacement at the line of contact or pressure line; 

=
sn

e rδθ              (1.3)                                                                                                                                      

Where t  is the time taken from the initial position of the driven gear to the current position and δθ

is the angular transmission error. Transmission error can also be determined in terms of linear 

displacement by multiplying the above terms with radius, r  of the base circle of the output gear as 

written in equation (1.3). 

1.3  Methods for controlling gear and rotor vibration  

Vibration in planetary gears hinder their performance in assembled machines, so there is a need to 

suppress vibration because of the adverse effect. There are two main methods of vibration control for 

gears and rotors namely; passive vibration control and active vibration control.  
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Passive vibration control involves changing the physical properties of the planetary gear system, 

typically by design in order to reduce vibration. There are many methods of controlling the vibration 

of planetary gear using passive modification methods. Tooth profile modification is an example but it 

is not guaranteed that vibration will be controlled as desired [10]. Other ways of reducing gear 

vibration passively can be achieved by introducing damping elements, mesh phasing and increasing 

the contact ratio by reducing the pressure angle or increasing the height of the tooth. Also, some 

researchers in their work [4] and [11] have shown that some particular instabilities due to parametric 

excitation (which is another major causes of instabilities in gear train) can be reduced by certain 

conditions of the mesh phasing, which involves a proper selection of design parameters (like contact 

ratio) and teeth configuration so that there would be a balancing of the net forces on the meshing teeth. 

Passive vibration control techniques according to Fuller et al.  [12] are mainly effective at high 

frequencies. 

Active control involves changing the dynamics of the system by the application of typically control 

forces using actuators at some positions to counterbalance the effect of the excitation force (or 

external disturbance causing the vibration). Active vibration control for rotating systems are of two 

categories: direct active vibration control technique in which a control force is applied to the rotor 

directly and active mass balancing technique in which the mass distribution is adjusted by a mass 

redistribution actuator which is mounted on the rotor [13]. There are some studies where a 

feedforward control strategy was used to control vibration in a single stage spur gear. Dogruer and 

Abbas proposed a nonlinear controller with feedforward loop such that the input torque acting on the 

driving gear can be adjusted. Thus the periodic change in mesh stiffness can be cancelled by a 

feedforward loop. 

1.4  Scope of the research and questions 

The scope of this research is to advance the vibration control of a planetary gear based on the dynamic 

modelling and analysis carried out by Parker et al [14]. First and foremost the dynamic modelling 

using a fixed and rotating coordinate system were used to analyse a planetary gear system. The results 

were then compared considering both frames of reference. Modal analysis was carried out to 

determine the natural frequencies of the system which helps to identify the modes excited in the 

spinning test. Vibration source identification was carried out using the signal acquired from the 

spinning test.  

In this study, active control by pole placement method was used considering numerical 

demonstrations to shift the pole of the planetary gear system to avoid resonance which may lead to 

damage of the system. A feedback loop was typically considered because its signal can be adjusted to 
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achieve desired result. To achieve this, the models in both frames of reference were subsequently 

extended to derive a vibration control law developed by Mottershead et al. [15] using pole placement 

in order to analyse and numerically predict the modified response of planetary gear system.   

 

The research questions are: 

 What is the difference between the results of analyzing a planetary gear model using 

a fixed and rotating frame of reference? The frequency response and modal damping 

were considered at different rotational speed of the rotating frame of reference.  

 What are the effects of loads and rotational speed on the dynamic response of a 

planetary gear system?  

 Would there be the sidebands in the frequency spectrum of a planetary gear measured 

by a rotating accelerometers like the stationary accelerometers? 

 Can the principal source of vibrations in a planetary gear system be obtained from the 

synchronized vibration signal measured from the individual component? 

 Assuming the control force required to achieve vibration control was predicted using 

a rotating frame of reference what will be the equivalent force using a fixed frame of 

reference? 

 Where is the optimal location to apply a control force in a planetary gear train?   

1.5 Aim and objectives of the research 

The aim of this research is to model, measure and control the vibration of a planetary gear system. 

The main objectives are: 

 To model a planetary gear system analytically, in order to determine its natural frequencies 

and mode shapes in the free vibration case using both fixed and rotating coordinate systems. 

 To compare the natural frequencies obtained using a fixed coordinate system with those of 

rotating coordinate systems especially at high rotational speeds. 

 To predict the effect of the speed on the resonance frequencies and modal damping ratios of 

the system using a rotating coordinate reference system.  

 To design and develop a suitable experimentally based physical model of a planetary gear 

system test rig for the purpose of measuring the vibration of carrier, sun and planet gears 

during operation individually. In this case, there is no need to use a slip ring with 

instrumentation to measure the vibration of the components. Also, there is no need to use any 

complicated signal separation techniques to know which component is faulty in the system.  
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 To perform modal testing on the physical model developed in order to compare the results 

obtained with predictions from the analytical model. 

 To determine the effect of the load and rotational speed on the dynamic response at the mesh 

and natural frequencies of the system.   

 To identify the principal source of vibration in a planetary gear using a method known as 

Principal Component Analysis (PCA). The relationship between the physical sources would 

be considered. 

 To numerically implement the methods of active vibration control by pole placement in order 

to mitigate the vibration of a planetary gear.  

 To determine the optimal place to put a control force in a planetary gear by comparing the 

control efforts obtained when a control force is applied either on the carrier or on the sun 

gear. 

1.6 Outline of the thesis 

Chapter 1 of this thesis gives a brief introduction covering the areas of applications of planetary gears 

and its advantages over parallel shaft gears. Despite the advantages, some causes of vibrations in 

planetary gear system were mentioned with most emphasis on transmission error which is one of the 

main causes of vibration. The methods of vibration control of rotors and gears are briefly discussed. 

Also included in this chapter are the aim and objectives of the study, significance, scope and the 

outline of the thesis. Lastly, the contributions of the study to knowledge were highlighted. 

Chapter 2 focuses on the review of recent relevant and applicable literature associated with dynamic 

and finite element modelling and analysis of gears especially planetary gears. Also, some literature is 

reviewed for theoretical modelling and vibration experiments of planetary gear, vibration spectra 

analysis, vibration control of gears and vibration source identification. Finally in this chapter, the 

workdone in this thesis is briefly discussed.  

Chapter 3 involves the dynamic modelling and analysis of planetary gear models comprising from 

two up to six planet gears. The results of the analysis were compared in each case using both fixed 

and rotating frames of reference. Parker‟s parameters are used for simulations in this chapter to see 

that the analysis is correct, by comparing with the results in his published paper. The results are 

compared and a few differences identified were discussed. 

Chapter 4 deals with the design and construction of a test rig, estimation of planetary gear system 

parameters required for subsequent natural frequency and frequency response predictions using a 

rotating frame of reference. 
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Chapter 5 focuses on the comparison of the predicted and measured behaviours of an experimental 

planetary gear when it is nonrotating. The measured behaviour is achieved using modal testing and 

analysis. Also, the mesh force is predicted at the mesh frequency using the dynamic model of the 

planetary gear. 

Chapter 6 focuses on the spinning or rotating test, where the effect of different loads and rotational 

speeds on the dynamic response of the system at natural and mesh frequencies are investigated. Also 

investigated is the vibration source in the system over a particular frequency range. 

Chapter 7 focuses on the modelling and numerical analysis using active control by a pole placement 

method. This is done using both a fixed and rotating frame of reference. The optimal location to apply 

the control force was also determined, by comparing the control effort when control forces are applied 

on the carrier and sun in the translational directions. 

Chapter 8 deals with the general conclusions and suggestions for future work. 

1.7 Contributions to knowledge 

1. The study has extended an already existing theoretical model using a fixed and rotating 

coordinate system to analyse and predict the dynamic response of planetary gears. The effect 

of a high rotational speed on the results predicted using a rotating frame of reference was 

investigated on the frequency response and modal damping.  

2. Design and construction of a suitable planetary gear vibration test rig, which can 

accommodate wireless MEMS accelerometers that can rotate with the system. This makes the 

measurement of the carrier, sun and planet gears possible without using any signal separation 

technique. 

3. Estimation of sun-planet and planet-ring mesh stiffnesses dynamically using error 

minimisation method which is simpler than the existing methods. 

4. Investigation into the effect of load and rotational speed on the dynamic response of the 

carrier, sun and planet gears during operation. The natural and mesh frequencies are the 

frequencies of interest. 

5. Identification of the vibration sources over a particular frequency range in a planetary gear 

system. 

6. The theory of active vibration control by pole placement was extended to formulate a control 

law using both fixed and rotating frames of reference. The control force required using a 

rotating frame of reference was determined, and its equivalence was evaluated using the fixed 

frame of reference for numerical implementation. 
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7. The optimal location to apply control forces was investigated by comparing the control effort 

required when a control force was applied to the carrier and sun in the two orthogonal 

directions.  

 

1.8 Significance of the research 

The significant results or potential applications of this research amongst others are as follows: 

 The vibration level of each component can be measured individually, hence there is no need 

for any signal separation techniques like when measured on the casing. 

 Reduction of vibration induced failure and noise in planetary gears. 

 Increment in life span for planetary gears.  

 Ensuring safe, smooth running and productive operation of the mechanical systems where 

planetary gears are components e.g. wind turbine, automobile systems, helicopters etc. 

 Prevention of breakdown due to planetary gear vibration in mechanical systems where the 

planetary gear train is one of the components and reduction in maintenance cost of the 

system.  

 If vibration is reduced to a certain acceptable limit, noise which can cause passengers‟ 

discomfort (for example in a vehicle or aircraft) would also be reduced. 

The next chapter will focus on review of relevant and applicable literature to gather more useful 

information for the study. This will also help to identify knowledge gaps. 
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Chapter 2 Literature Review 

There are some existing analytical models for planetary gears, where for vibration control only 

passive modification was considered after determining the natural frequencies and mode shapes. 

Publications covering active methods of control for these systems are scarce. This literature review 

mainly covers the dynamic modelling, vibration measurement, principal component analysis and 

vibration control of planetary gear system.  

2.1 Dynamic modelling using linear models  

The reason for dynamic modelling of planetary gear system depends on whether the aim of modelling 

would be noise reduction or vibration control. In the 1920s and early 1930s, effort was made to 

determine the dynamic load on gear teeth by both dynamic analysis (i.e. mathematical modelling) and 

experiments [16]. Lumped parameter systems were adopted for most of the dynamic models at the 

time.  The meshing gear teeth have stiffness without mass, while the masses i.e. the gears are 

considered to be rigid. 

Kahraman [17] proposed a simplified purely torsional model of a single stage planetary gear system 

where he derived closed form expressions for the torsional natural frequencies. He stated that the 

expression may be a useful tool in designing planetary gear systems. The natural modes from the 

simplified torsional model were compared with predictions from a more complicated transverse-

torsional model. He stated that a pure torsional model can be used in many practical situations to 

predict the natural frequencies of a planetary gear train as required by gear designers. In the case of a 

transverse- torsional model, he stated that a more general and accurate means of modelling gear sets 

can be achieved. 

Kharaman  [18] also developed a three dimensional model of a single-stage planetary gear train with 

helical gears. The dynamic model takes into consideration the six rigid body motions of the ring, sun, 

planet gears and the carrier. The generic nature of the formulation permits any number of planet gears 

to be analysed such that they can be equally or unequally spaced around the sun gear. The natural 

modes are obtained by solving a derived linear time-invariant equation of motion. The model was also 

used to determine the forced vibration response, considering a static transmission error as external 

disturbance. The effect of planet mesh phasing on the dynamic behaviour of a four-planet model was 

described using such a model. 

Analytical models of planetary gear with equally spaced planets were developed and used to 

determine the eigensolutions, which characterise the unique behaviour of the system for the linear 
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time-invariant case [14]. Three degrees of freedom (radial, tangential and rotational co-ordinates) 

rigid body models were adopted in the two dimensional plane. A rotating coordinate system attached 

to the centre of the carrier was used for the analysis with an assumption that the bearing stiffnesses are 

isotropic. The model includes some key factors (i.e. time-varying stiffness and Coriolis terms) which 

may affect the vibration of the planetary gears. Free vibration was considered neglecting the Coriolis 

terms and the vibration modes were classified into translational, rotational and planet modes (where 

for the latter only the planets are moving) [14]. The free vibration response obtained was as a result of 

the equal spaces between the planet gears. In this case, six natural frequencies have a multiplicity of 

one for the rotational mode in which there is no translation of the centre members (carrier, ring and 

sun gears). There are another six natural frequencies with multiplicity of two for the translational 

mode, where there is no rotation of the centre members while the natural frequencies with multiplicity 

of three were associated with planet mode, where only the planet gears are moving.  

Removing the restriction of equal spaces between the planets, the dynamic response of planetary gears 

with unequal spaces were investigated by Lin and Parker [19].They  discovered that the response of 

the planetary gear system with equally spaced planet gears was different from that of unequally 

spaced planet gears because of the loss in the cyclic symmetry. In this case, the planet mode, as 

described earlier, does not change as a result of the change of location of the planet gears. In the case 

of rotational modes, there is a coupling between the rotational and translational modes; therefore, the 

unique properties of the mode cannot be identified. The translational mode lost its degenerate form 

because of the loss of cyclic symmetry in the system.  

The simple  and single stage model used by Lin and Parker in [14] was extended to a compound and 

multi-stage planetary gear model. The natural frequencies and the normal modes obtained in this 

extended model show that the structure of the vibration modes are the same as in the previous model, 

which has equally spaced planets, and it also retains this well-defined structure for diametrically 

opposed planets [20].  

Lin and Parker [21] investigated the parametric instability in planetary gears where the mesh stiffness 

of the teeth varies with time. The model used for this investigation is the same as the one used in [14] 

only that the translational coordinates were ignored. The analysis revealed that parametric instabilities 

occur as a result of the closeness in the values of the harmonics of the mesh frequency and particular 

combination of natural frequencies of the planetary gear. General expressions were derived, which 

permit the reduction of particular parametric instabilities by careful selection of design parameters 

like the gear ratio and mesh phasing. 
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The sensitivities of the planetary gear natural frequencies and modes of vibration to some design 

parameters (like component masses, mesh stiffnesses, operating speed and second moment of masses) 

were studied by Lin and Parker [22]. Their research considered both the planetary gears that are 

symmetrical (i.e. cyclically tuned) and unsymmetrical (which are not tuned). Considering the tuned 

planet arrangements, the sensitivity of the natural frequency to the operating speed was determined in 

order to know the contribution of Gyroscopic effect.  It was discovered that the natural frequencies of 

the rotational and planet modes are not sensitive to the operating speed, while the sensitivity of the 

natural frequency of the translational mode to the operating speed increases with the inertia of the 

component and decreases with the stiffness of the system. Also, rotational modes do not depend on 

the transverse support stiffnesses and masses of the centre gears and carrier. Translational modes 

likewise do not depend on the torsional support stiffnesses and inertia of the centre gears and the 

carrier. 

Chaari et al. [23] developed a mathematical model using a fixed frame of reference which took into 

account the driving unit (torque of the motor), transmission and load. They were included in the 

model because of some applications like wind turbines where variable loads leads to variations in the 

transmission speed and eventually the mesh frequency. The dynamic response was computed and it 

shows a relationship between the level of the vibration amplitude and load magnitude; as the load 

increases, the level of vibration increases. The study is mainly applicable in modelling of wind 

turbines which operates under a highly non-stationary condition. 

An additional feature present in planetary gears can be due to friction effects in the teeth meshing or 

indexing errors. These have been considered previously for spur gears. Howard et al. [24] presented a 

method by which a sliding frictional force can be incorporated in between the meshing teeth of a 

dynamic model of a meshing spur gear and this was reflected in the equation of motion. The aim was 

to determine the effect of friction on the resultant vibration of the gear case. It was shown in the study 

that the inclusion of frictional forces in the model resulted in additional six degrees of freedom which 

are perpendicular to the pressure line. They also used Finite Element Analysis (FEA) to model the 

tooth stiffness in order to determine the variation of the mesh stiffness to tooth crack. It was stated 

that a crack decreases the stiffness of the tooth, therefore the speed of the input shaft fluctuates (i.e. 

increasing and decreasing) because the other teeth have not experienced cracking.   

Inapolat et al. used a transverse-torsional model to investigate the effect of indexing errors (i.e. 

deviation of any tooth flank from its theoretical position with respect to reference tooth flank) on the 

dynamic response of spur gear [25]. In this case, a long-period quasi-static transmission error caused 

by indexing error was considered to be the source of primary excitation. Two cases were investigated 
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for gears having deterministic and stochastic indexing errors. The dynamic responses of the gear pair 

for the two cases were compared thereafter to that of spur gear pair with negligible indexing errors. It 

was concluded that the deterministic indexing errors increase the dynamic response of a gear during a 

limited number of mesh cycles while the stochastic indexing errors show a larger broadband response. 

2.2 Dynamic modelling using nonlinear models 

Modelling and analysis was carried out by Parker and Guo [26] for a planetary gear set with tooth 

wedging (also known as tight meshing of the teeth mainly caused by gravity and bearing clearance 

nonlinearity) in order to determine its response.  The planet bearing forces in relation with the 

nonlinear behaviour of tooth wedging were analysed. It was concluded that tooth wedging, which can 

cause bearing failure, increases the bearing forces in the planetary gears and also destroys the load 

sharing characteristics among the planets. It was also concluded that the phenomenon of tooth 

wedging may be likely to occur in planetary gears which have heavy elements. 

Nonlinear dynamic response of a planetary gear was investigated by Guo and Parker [27] with a 

lumped parameter model which was developed considering bearing clearance, variation in the gear 

mesh stiffness and teeth separation. The forced dynamic response was determined by a harmonic 

balance method with arc length continuation and the stability was analysed by Floquent theory. It was 

concluded that the input torque can be used to reduce partially some of the nonlinear occurrences, 

such as jumps which are nonlinear, hardening effect arising from changes from bearing non-contact to 

contact and softening effect due to teeth separation as a result of the bearing clearance. 

Farshad et al., [28] present a brute-force optimization method on the tip relief, which is a tooth profile 

modification in order to reduce vibration of the planetary gear. A nonlinear dynamic model was used 

for the investigation and optimal radius and amplitude were determined after determining a number of 

possible solutions. The method presented was said to be useful in reducing chaotic vibration in 

planetary gear systems.  

Bahk et al. [29] investigated the nonlinear dynamic behaviour of planetary gears with equally spaced 

planets, using analytical and numerical methods over a range of frequency. Perturbation analysis was 

used to determine the closed-form approximate solution of the dynamic response. The analytical 

solution revealed that the tooth separation, which causes nonlinear occurrences such as jump 

phenomena and subharmonic resonance, occurs even when the torque is large. The solution obtained 

from the perturbation analysis were confirmed by the harmonic balance method with arc-length 

continuation, while the finite element and numerical integration simulations were used to validate the 

results obtained from the perturbation analysis and harmonic balance method.  
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Kharaman [30] investigated load sharing characteristics of planetary gear transmission using a 

nonlinear-time varying lumped parameter model, which can incorporate an arbitrary number of 

planets. The model developed can accommodate problems like manufacturing errors and parametric 

excitation due to multiple variations in the mesh stiffness. The dynamic load sharing factor (which is 

the ratio of the actual dynamic load to the ideal static load) was predicted using the model and the 

effect of manufacturing error like pinion run-out error on the dynamic load sharing factor was 

identified. 

2.3 Finite Element Modelling 

The effectiveness of planet phasing on vibration reduction at some harmonics of the tooth mesh 

frequency was examined by Parker et al. [11]. For this method a dynamic finite element and contact 

mechanics simulation model was used to demonstrate the phasing phenomena considering the systems 

with equally spaced planets and unequally spaced planets as well as diametrically opposed planets.  It 

was concluded that there were reductions in some particular resonances due to a coincidence between 

the natural frequency and some harmonics of the mesh frequency. 

The vibration behaviour of a high-speed planetary gear system was studied by Zhaoxia et al. [31].The 

study considered the parameters like bearing support stiffness and mesh stiffness as well as the effect 

of mass eccentricity on the planetary gear system.  Also, they derived formulae to determine the 

modal kinetic and strain energies for different modes of vibration at their corresponding frequencies. 

The kinetic energy calculated was a parameter used to determine the effect of the mass properties on 

different frequencies. It was concluded that for the rotational mode, the bearing support stiffness has a 

negligible effect on the centre gears (i.e. carrier, ring and sun gears) and their masses do not have an 

effect on the mode shapes. For the translational mode, the moment of inertia of the centre gear is 

insignificant. 

The nonlinear dynamic behaviour of a pair of spur gears was obtained by a combination of finite 

element and contact mechanics analyses over a wide range of operating speed and torque [32]. The 

mesh forces were calculated by contact analysis at each step of time when the meshing gears are 

rotating. In this case it is no longer necessary to assume that the sources of external excitation may be 

parametric excitation and static transmission error or one of them. Two models each comprising a 

single degree of freedom were studied, the results obtained from one of the models show good 

agreement with the results obtained from the finite element analysis while the other does not show a 

good comparison with the experiments. The source of the nonlinear behaviour was stated to be a loss 

of contact of the meshing teeth.   
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The effect of errors due to manufacturing of planetary gears was characterised by Cheon and Parker 

by performing a dynamic analysis using a hybrid finite element method [33]. Errors in the centre 

gears and carrier were considered as well as their effects on the critical stress on the tooth, bearing 

forces and load sharing ability. The parameters considered are tooth thickness, run-out error and 

position error, because they are very common in the manufacturing of gear systems with respect to 

tolerance control. The most important error that affects the dynamic characteristics like critical stress 

on the tooth, bearing forces and load sharing capability were discovered to be the indexing error for 

the planet assembly and run-out error for the planets. 

2.4 Theoretical and experimental planetary gear vibration frequency 

analysis  

An understanding of planetary gear vibration spectra is very important and useful to detect any fault 

in the system. The measured vibration spectra from a planetary gearbox is more complicated than that 

of a parallel axis gear box [34] . For instance, a symmetric or asymmetric modulation sideband can be 

seen in the vibration spectra of a planetary gear due to the carrier rotation but it is not common in the 

measured response of a parallel axis gear [35].  

The explanation of the cause of the asymmetry in the modulation sidebands for planetary gear mesh 

vibrations was given by McFadden and Smith [36]. Sidebands are seen in the planetary gear vibration 

spectra because of the movement of planet gears and it occurs at the mesh frequency plus or minus the 

planet pass frequency. The planet pass frequency is the product of the rotational speed of the carrier 

and the number of planet gears in the system. In their study, they proposed a model to explain the 

asymmetry in the sideband with respect to the relationship between the vibrations produced by each 

planet gear as they move relative to the location of the accelerometer. They showed that the motion of 

a single planet gear past an accelerometer on a gear casing or a stationary ring gear produces a 

symmetrical sideband about the mesh frequency. They concluded that asymmetry in the sidebands are 

caused by different phases produced by different planets, because they have different phase angles 

relative to the first planet. They compared the predictions with measured spectra for three different 

epicyclic gearboxes and correct spectra were obtained. 

Mosher [34] developed a planetary gear vibration model in order to explain some characteristics of 

the vibration spectra. The model predicts vibration at frequencies that are integer multiples of the 

planet spacing repetition frequency at gear mesh harmonic frequencies and their sidebands. The 

predictions by the model were compared to the measurements from a real helicopter transmission 

during flight. It shows, from the vibration measurements, that the model predicts the frequencies of 
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large amplitude components to the tenth gear mesh harmonic. However, the frequencies do not match 

around the higher gear mesh harmonics. 

A wavelet transform based methodology for extracting and analysing useful features of planetary gear 

vibration data was suggested by Abhinav et al. [5]. The vibration data was measured from a planetary 

gear system present in military helicopters. They used a wavelet transform method because the 

common technique being used for analysis is time synchronous averaging (TSA). TSA technique is 

sufficient to identify faults in a fixed axis gear teeth, but will not work efficiently in identification of 

faults due to a cracked carrier plate. This is because TSA can average out an external disturbance, 

which can excite a resonance frequency, because they are not in sync with the carrier rotation. 

Therefore, a wavelet transform based method which can detect the transient response due to a cracked 

carrier plate was developed. 

 Inapolat and Kahraman [35] developed a mathematical model that can be used to describe the 

amplitude modulation (AM) vibration time history of planetary gear sets, which leads to modulation 

sidebands in the frequency domain. Included in the model are key parameters like the number of 

planet gears, planet position angle, planet phasing relationship (defined by the position angle) and the 

number of teeth. A wide range of planetary gear set were considered and classified into five distinct 

groups according to the amplitudes and frequencies of their sidebands. The five groups are equally 

spaced planets and in-phase gear meshes, equally spaced planets and sequentially phased gear meshes, 

unequally spaced planets and in-phase gear meshes, unequally spaced planets and sequentially phased 

gear meshes and unequally spaced planets and arbitrarily phased gear meshes.  To validate the 

predictions, an experimental planetary gear set-up was developed and three planetary sets out of the 

five groups earlier described were procured. Measurements were taken from the radial acceleration of 

the stationary ring gear for a different rotational speeds and torque conditions. A methodology was 

developed to demonstrate a modulation sideband from the measured signal. There is agreement 

between the predicted and measured results. They concluded that sidebands are always 

asymmetrically distributed about the mesh orders in a sequentially phased planetary gear set. They 

mentioned that a maximum mesh harmonic amplitude can be seen when the planet meshes are in 

phase, i.e. when the ratio of the number of teeth on the ring to number of planet is equal to an integer. 

Also, the conclusion shows it is possible to have a symmetric sideband if the gear set is in-phase and 

equally spaced. 

Cooley and Parker [37] investigated the geometry and frequency content of single-mode vibration of 

planetary gear using both a fixed and rotating frame of reference. A stationary observer measures the 

gear vibration by fixed displacement probes and lasers. For response seen by a rotating observer, 
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accelerometers or strain gauges were mounted on individual gear bodies. They showed in their 

conclusion that the frequency content and phase relationship of the motion in both frames of reference 

differ. They said there would be sideband frequencies about the natural frequencies for a stationary 

sensor. 

Ayoub et al [38] investigated the effect of varying load and mesh stiffness on the modal properties of 

planetary gears. The test bench comprised identical planetary reaction gears with a free ring and a 

planetary test gear with a fixed ring which are driven by an electric motor. The two gear sets are 

connected back to back by two rigid shafts, this permits power recirculation through the transmission 

which improves energy efficiency. Hammer impact test were carried out and the vibrations were 

measured on the fixed and free ring gear at different level of loads. The external loads were applied by 

adding masses to the reaction gear set. The vibration signals acquired were processed with the 

software “LMS Test Lab signature acquisition”. The natural frequencies were identified from the 

frequency response functions (FRF) obtained. They concluded that the natural frequencies are 

increasing with an increase in load. For variation in mesh stiffness, they carried out a parametric test 

and stated that the natural frequencies vary with mesh position.   

2.5 Vibration control of planetary gears 

There are some methods of vibration control that have been utilized to mitigate gear vibration. A 

passive method involves changing the physical properties of the system, like mesh phasing or tip 

relief on the teeth which have been implemented by some researchers. Seager [39] shows that some 

difficult harmonic component can be neutralized by suitably choosing the number of teeth. He 

concluded that the conditions to neutralize the mesh frequency components acting on the central 

members are if the ratio of the number of teeth of the sun gear to the number on the planet gear is not 

equal to an integer. Secondly, the source is reduced if the number of teeth on the planet gear plus or 

minus one divided by the number of planet gears is not an integer. The effectiveness of phasing the 

planet gear to reduce vibration of planetary gear was studied by Parker [11]. Planet phasing involves 

configuration of the planet gears, as well as choosing the number of teeth such that self-equilibration 

of the mesh forces lead to a reduction in the net forces and torques acting on the carrier, ring and sun 

gears. Phasing reduces the vibration due to some harmonics of the mesh frequency. Richards and 

Pines [40], presented a passive method to mitigate transmitted vibration generated by gear mesh. A 

periodic shaft comprising identical elements connected together was designed so as to create stop and 

pass band regions in the frequency spectra. Transmitted vibrations from the gear mesh to the bearing 

support were mitigated at various operating speeds. The effect planet mesh phasing on the overall 

dynamic behaviour of a four-planet model of planetary gear train was studied by Kharaman [18]. He 
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concluded that transmission error cannot be completely cancelled under static or dynamic conditions 

considering the higher harmonics excitations. Tharmakulasingam et al. [41] simulated how the 

transmission error will be affected by modifying the tooth profile. The result of this showed that there 

is a significant reduction in the transmission error in the spur gear with tooth profile modification (tip 

relief) compared to the spur gear without tooth profile modification.  Gwande and Shaikh [4] carried 

out an experimental investigation in order to study the effect of planet phasing (which involved 

unequal spacing of the planets) of a Nylon-6 planetary gear drive on its dynamic response. The 

experiments were conducted on two planetary gears in configurations with and without phasing. The 

results shows that the dynamic response of the planetary gear with phasing was minimized compared 

to the one without phasing. 

 

However, active vibration control method is more versatile than passive methods because the control 

force can be adjusted based on the vibration characteristics during operation. In addition, passive 

methods have limitations when several modes are excited. Montague et al. [42] presented a means of 

reducing mesh vibration in a parallel axis gear by feedforward control using piezoelectric actuators. 

They presented the principle of the method by an analysis of a vibrating linear system being excited 

by a harmonic force. The result shows a 70% reduction in the gear mesh vibration at 4500 Hz. Active 

vibration control method was used by Rebbechi et al. [43] to reduce gear mesh vibration using 

magnetostrictive actuators inside the gearbox. An adaptive feedforward controller was used to 

determine the required amplitude and phase of the control force applied to the shaft to reduce 

vibration at the feet of gearbox housing. The housing vibration was reduced at the first three 

harmonics of the gear mesh frequency.   

2.6 Vibration source identification in gear boxes 

There are few research works on vibration source identification of parallel axis and planetary gears. 

Among the few, there are none where the accelerometers are rotating with the gears. Vibroacoustic 

source identification of a parallel axis gear has been carried out by Abbassia et al [44], where they 

quantified the contributions from the principal sources using principal component analysis. The 

acceleration was measured from the casing and the principal components were analysed. They 

reported that the virtual coherence is a robust virtual indicator. 

Radoslaw and Anna [45] investigated the spectral structure of a gearbox vibration signals using a 

PCA technique. The purpose of the study is to monitor the condition of the gearbox through the 

information obtained from the data and make decisions. For the case studies, a good and bad planetary 

gear were used. They found out that the two sets of data obtained using four stationary accelerometers 
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have different spectral structures. A correlation matrix was formed and a spectral decomposition was 

done to prove that the gathered data are different in their internal structure. They show that the signal 

with many harmonics are generated by the bad gear box with relatively high signal to noise ratio 

(SNR). In the case of good gearbox, they have smaller number of harmonics with suitable SNR and 

less sensitive to load variation. They also found out that the data set for a bad gearbox are highly 

correlated while the one for a good gearbox have a smaller correlation. 

Qingbo et al [46] used low-dimensional principal components (PC) representations from the statistical 

features of the measured signals to characterize and monitor machine conditions. The PCA technique 

was used to extract PC representations from time and frequency domain measured signals. The 

capability of each PCs were evaluated using a method known as mean correlation rule (MCR). This 

enables selection of the PCs whose mean correlation values are larger than the pre-set threshold. The 

selected PC representation captures the variation of the machine health condition. Vibration signals 

from experiments conducted on an internal combustion engine sound and automobile gearbox were 

used to validate the proposed method which they claimed to be effective. 

2.7 Current research study 

This research focuses on dynamic modelling, analysis and comparison of a planetary gear, analysed 

using both fixed and rotating frames of reference. The dynamic response of planetary will be 

predicted and compared to the result from modal test. 

2.8  Conclusions 

From the past research work, it is evident that the effect of high speed of rotating frame reference 

attached to the carrier on the modal damping and the frequency response has not been studied 

numerically. Therefore, this study will consider the effect of high speed of the carrier on the modal 

damping and frequency response of the system.  

It is also evident that vibration measurement of planetary gear components with accelerometers that 

can rotate with them is very rare. Therefore, it is very possible that the true vibration of this 

components have not been measured. A spinning test will be conducted on a customised planetary 

gear vibration test rig which was specially designed and constructed to accommodate wireless MEM 

accelerometers. The effect of load and rotational speed on the response at the natural and mesh 

frequencies will be considered. The PCA technique has not been used to identify the source of 

vibration in a planetary gear system considering the synchronised signals measured with 

accelerometers rotating with the system. This will be done in this study.  
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This research study will present the theory for pole placement applied to a planetary gear using both 

fixed and rotating frames of reference. The method of pole placement has not been used to control the 

vibration of planetary gear. This method will be employed and the optimal place to apply control 

force using this method is determined. The theory is an extension of that developed by Mottershead et 

al. [15] and the model is an extended model developed by Parker [14]. The method is based on output 

feedback control strategy, where the sensor and actuator can be collocated. The purpose of the pole 

placement is to shift the natural frequencies of the planetary gear in order to avoid resonance through 

displacement feedback. Active damping will also be added through velocity feedback. 
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Chapter 3 Dynamic modelling and analysis of a 

planetary gear 

In order to predict the dynamic response of the planetary gear, accurate dynamic modelling and 

analysis must be done. This chapter focuses on the theoretical modelling and analysis of a simple  

planetary gear system using a model (Figure (3-1)) developed by Lin and Parker [14] as a starting 

point . A rotating frame of reference was originally used by Lin and Parker to develop the equation of 

motion of Parker‟s model [14]. This dynamic model can be used to investigate the dynamic behaviour 

of  epicyclic gears in general [47].  

The planetary gear model shown in Figure 3.2 will be considered for this study. Like Parker‟s model, 

this is assumed to be linear and time invariant when determining the natural frequencies and 

eigenvectors. Two coordinate systems, namely fixed and rotating frames of reference, will be used in 

the analysis. According to Friswell et al.[48] , it is easier to use a coordinate system that is not rotating, 

i.e. fixed frame of reference when modelling a rotor which is axisymmetric and the bearing may either 

be isotropic or anisotropic. In a situation where the rotor is asymmetric and the bearings are isotropic, 

a rotating frame of reference is more appropriate. Furthermore, if the rotor is asymmetric and the 

bearings are anisotropic, a standard eigenvalue problem cannot be used to determine the stability. 

Therefore, Floquet theory is used to determine the stability. This is because of the time varying 

coefficients in the equation of motion in both fixed and rotating frames of reference. This leads to 

parametric excitation of the system.  

The mathematical model here will be developed using a fixed frame of reference first and 

subsequently using a rotating frame of reference attached to the centre of the carrier. The stiffness of 

the bearing will be assumed to be isotropic when using a rotating frame of reference and the rotating 

frame will be attached to the centre of the carrier. The reason for using a rotating frame of reference is 

to establish the effect of the carrier speed on the dynamics of the system especially at a high speed 

range. This should be sufficient in predicting the dynamic behaviour of the system considering free 

and forced responses. First and foremost after modelling, a numerical analysis will be done using 

parameters from Lin and Parker. To be assured that the model is working, the results obtained must be 

the same with their results. The natural frequencies and the vibration modes is determined considering 

planetary gear models with different numbers of planet gears. An investigation will be undertaken on 

free vibration response of a planet gear comprising two planet gears as this has not been reported in 

any publication. Also, the Coriolis effect on the natural frequencies of the system, because of the 

rotating reference frame attached to the carrier at its centre, will be shown using a Campbell diagram. 
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An investigation will also be done to find out if there is any difference in the natural frequencies using 

either a fixed or rotating frames of reference.  

Subsequently, the parameters from the real physical model will be used in Chapter 5 in order to 

validate the results from the lumped parameter model. Free vibration response will be considered first 

to determine the natural frequencies and the natural vibration modes of the planetary gear train. 

Subsequently the model will be extended to incorporate an excitation mechanism and active vibration 

control strategies in Chapters 5 and 7 respectively.  

 

Figure 3-1 Lumped parameter model of planetary gear system and coordinates [14] 

3.1 General assumptions for fixed and rotating frames of reference 

The analysis focuses on vibration of planetary gear in planar motion only, i.e. in two translational 

coordinates as well as the rotational coordinate.  

The following assumptions hold in formulating the model comprising two planet gears: 

a) The main components (i.e. the carrier, ring, sun and planets) are all assumed to be rigid 

bodies while the connections (i.e. meshing) between sun-planet and ring-planet are 

represented by linear springs acting along the pressure line which is tangential to the base 

circle. Time-varying mesh stiffness due to the fluctuation of the number of tooth pairs in 

contact are ignored. 

b) The bearings are assumed to be represented by two perpendicular linear springs for each gear 

component. They are also assumed to be isotropic when using both frames of reference. 
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c) The frictional forces between the meshing teeth are neglected, because the system is assumed 

to be well lubricated.  

d) The gear is free of manufacturing, profile and other form of errors; therefore, there is no 

transmission error for the case of free vibration analysis.  

e) The gyroscopic effect is not considered in the model, even though there is a Coriolis effect 

due to the carrier speed when using a rotating frame of reference. 

f) The gears are rotationally symmetric about their centerline, i.e. they look the same after any 

angular rotation. 

g) The carrier is moving at constant angular velocity for the case where a rotating frame of 

reference was used. 

h) The two planet gears are identical and the angle between them is 180
o
. For cases where they 

are more than two, they are equally spaced. 

i) The natural frequencies are determined for a linear time-invariant case. 

 

 

(a) 

 

(b) 

Figure 3-2 Dynamic model of planetary gears. The carrier is shown in (b) for clarity. 
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The extended dynamic model of the planetary gear for this study is shown in Figure 3-2. The carrier, 

ring, sun and planet gears coordinates xh, yh, h=c,r,s and ζn, ηn, n=1, ….., N are with respect to the 

frame i,j and k, index n refers to the nth planet and N is the number of planet gears. The rotational 

coordinates are uj = rjθj , h=c,r,s, 1 …, N. The stiffnesses kcx, krx, ksx and kcy, kry, ksy represent the 

bearing stiffnesses of the carrier, ring gear and sun gear in x and y coordinates, krn and ksn are the ring-

planet and sun-planet mesh stiffnesses respectively. The bearing stiffness of the planet gear is denoted 

by kp . The torsional stiffness of the carrier, ring, sun and planets are denoted by kcu, kru, ksu and kpu 

respectively. The ring gear is assumed to be stationary, therefore its torsional stiffness is very high. 

The torsional stiffness of the carrier, sun and planet gears are set to zero. 

3.1.1 Degrees of freedom  

The degrees of freedom are defined as the number of independent generalized coordinates required to 

specify the configuration of a system. In this research, each component of the planetary gear has three 

degrees of freedom; one rotational and two translational degrees of freedom. This implies that for a 

carrier, ring, sun gear and three planets, the number of degrees of freedom would be eighteen.  

The degrees of freedom (if one of the centre members is not absent) can be determined using the 

following equation [14] and [23]: 

                                          (3.1)                                                                 

where  , is the number of planets and 3 in the brackets represent the number of central members 

(carrier, ring and sun)  present. The figure 3 outside the bracket represents the horizontal, vertical and 

rotational coordinates of each component in the system.  

For the model in Figures 3-2a and 3-2b, where there are 2 planets and 3 central members (carrier, ring 

and sun gears), the number of degrees of freedom is          ,      

3.2 Dynamic model using a fixed frame of reference 

It is very important to formulate the governing equations of motion for the planetary gear system in 

order to accurately predict its dynamic response. In case of linear time invariant (LTI) system like this, 

the natural frequencies and vibration modes of the gear in different configurations were determined 

using state space equations.. The dynamic equations of motion were determined using Newton‟s 

second law of motion. 
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3.2.1 Sun-Planet mesh model and equation of motion for the sun gear 

The sun-planet mesh which was modelled by a linear spring is shown in Figure 3-3. The subscript n 

refers to the n
th
 planet. It shows the sun-planet mesh model which shows the pressure angle, αs , 

(which is the angle between the pressure line AC and the common normal EF to the two gear teeth at 

the point of contact). 

 

Figure 3-3 Sun and planet mesh model showing the mesh stiffness along the pressure line AC, 

bearing support stiffness of the sun gear  and of the planet . 

n  is the angle showing the position of the nth planet gear at any point, with respect to the starting 

point such that 
1 0  .  

 

Figure 3-4 Free-body diagram of the sun-planet mesh model showing the mesh force between 

the sun and planet. 

The free-body diagram of the sun-planet mesh model is shown in Figure 3-4, the diagram was 

considered in deriving the sun-planet mesh deflection sn
 . From Figure 3-4, the relationship between 
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the position of the nth planet (ψn), sun-planet mesh angle (ψsn), and the pressure angle (αs) can be 

expressed as 

( )n sn s      ; hence 

n s sn                (3.2) 

The deflection of the sun-planet along the pressure line is given by: 

sn s sn s sn s n s n s n sny cos - x sin + u - η cosα - ζ sinα +u +e        (3.3)   

For free vibration analysis, sn
e  which is the transmission error between the sun-planet mesh is set to 

zero. The forces acting on the sun gear along the pressure line is shown in Figure 3-5. 

 

 

Figure 3-5 Forces acting in the sun-planet mesh which is along the pressure line. 

  

The dynamic equations of motion for the sun gear derived from Figures 3.4 and 3.5 are  

 

   ̈      ̇                             (3.4) 

 

   ̈      ̇                             (3.5) 

  

  
 ̈                   (3.6)  

The matrix form for the equations (3.4, 3.5 and 3.6) is in Appendix A. 
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3.2.2 Ring-planet mesh model and equation of motion for the ring gear 

The planet-ring mesh can be analysed considering Figure 3-6 (a) which was magnified in Figure 3-6 

(b)  

     

Figure 3-6 Planet and ring deflection model with the pressure line in red. 

From Figure 3-6, the relationship between the position of the nth planet (ψn), ring-planet mesh angle 

(ψrn), and the pressure angle of the ring gear (αr) can be expressed as 

rn n r
              (3.7) 

The mesh deflection of the planet-ring can be determined from Figures 3-6. The mesh deflection is 

written as: 

rn rr rn r rn n r n r n rn-y cos - x sin +u η cosα + ζ sinα - u +e        (3.8) 

For free vibration analysis, rn
e  which is the transmission error between the ring-planet mesh is set to 

zero. The forces acting along the pressure line as resolved are shown in Figure 3-7. 
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Figure 3-7 Forces acting in the planet-ring mesh along the pressure line. 

 

The dynamic equations of motion of the ring gear are  

   ̈      ̇                             (3.9) 

cos 0ry rr r ry r rn rn rnm y c y k y k             (3.10) 

2
0r

r ru r ru r

r

rn rnu c u k u k
I

r
           (3.11) 

The matrix form of Equations (3.9, 3.10 and 3.11) is in Appendix A. 

3.2.3 Carrier-planet bearing connection and equation of motion of the carrier 

In this sub-section, a carrier will be modelled using a fixed frame of reference with translational 

coordinates xc and yc. 
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Figure 3-8 Carrier and planet bearing deflection model. The coordinates xc and yc are in a fixed 

frame of reference. The carrier is shown in dotted lines after it has moved in x, y and u 

coordinates. 

Considering Figure 3-8, xc and yc are the translational coordinates of the carrier in the horizontal and 

vertical directions respectively. These two coordinates in a fixed frame of reference can be written in 

terms of rotating frame of reference as  

cos sinn nc c cx ac ab x y             (3.12) 

cos sinn nc c cy ob cd y x            (3.13) 

Equations (3.12 and 3.13) can be written in matrix form as 

cos sin

sin cos

c n n c

c n n c

x x

y y

 

 




     
    
     

        (3.14) 

The matrix in Equation (3.14) is known as a transformation matrix T. It is orthogonal i.e. the inverse 

of matrix T is equal to its transpose. Therefore, the translational coordinates c
x and cy  (which are in 

rotating frame of reference) can be determined by pre-multiplying the transpose of matrix T with the 

vector on the left hand side of Equation (3.14).  

The radial and tangential deflections of planet bearing can be deduced by considering Figure 3-8 and 

using Equations (3.12 and 3.13), 

Planet bearing radial deflection: cos sin( )nr c cn n n
x y        (3.15) 

Planet bearing tangential deflection: sin cos( )nt c cn n n c
x y u        (3.16) 



32 

 

 

Figure 3-9 Forces acting in the carrier-planet bearing contact. 

The dynamic equations of motion of the carrier considering Figures 3-8 and 3.9 is  

cos sin 0p nr n p nt nc c cx c cx cm x c x k x k k           (3.17) 

sin cos 0cy c cy c p nr n p nt nc cm y c y k y k k           (3.18) 

2
0c

c p nt

c

u k
I

r
           (3.19) 

The matrix form of equations (3.17, 3.18 and 3.19) is in Appendix A. 

 

3.2.4 Equation of motion for the planet gear 

Considering Figures 3-8 and 3-9 which show the connection between the carrier and planet bearing as 

well as Figure 3-10 which shows sun-planet and planet ring meshes, the dynamic equation of motion 

can be formulated. 

 

Figure 3-10 Forces acting in the sun-planet and planet-ring mesh along the pressure line. 

The dynamic equation of motion of the planetary gear is  
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sin sin 0p n p nr s rsn sn rn rnm k k k              (3.20) 

cos cos 0p n p nt s rsn sn rn rnm k k k              (3.21) 

2
0

p

p

n sn sn rn rnk k
I

u
r

            (3.22) 

The matrix form of equations (3.20, 3.21 and 3.22) can be found in Appendix A. 

3.2.5 General form of equation of motion using a fixed frame of reference 

The equation of motion for the carrier, ring, sun and planet gears have been obtained using a fixed 

frame of reference. The general form of the equation in matrix form can be written as 

          mb b         M q C q K K q 0       (3.23) 

where,            
   ;           

       
       

    are the mass, damping, bearing 

and mesh stiffnesses respectively. Although two planet gears are shown in Figure 3-2, the equation of 

motion can be used for a planetary gear with more than two planet gears. In practice, using a fixed 

frame of reference implies that the accelerometers are not rotating with the components when 

measuring their vibrations. The next section focuses on the analysis and derivation of the equation of 

motion using a rotating frame of reference. 

3.3 Dynamic model using a rotating frame of reference 

In this section, the modelling will be done using a rotating frame of reference and carrier will be the 

reference. This implies that in practice, the carrier and the accelerometer will be rotating together at 

the same speed when taking the vibration measurement. Experiment on this rotating frame of 

reference will be discussed extensively in Chapter 6. The equation of motion in this case will be 

different from that of fixed frame of reference because of Coriolis and centripetal accelerations terms 

that are added. The Coriolis effect is defined as the deviation from the actual path as seen by the 

accelerometer fixed at the centre of the rotating carrier as shown in Figure 3-11. It shows a rotating 

system which is rotating in a counter clockwise direction, the path of motion seen by a rotating 

accelerometer on a rotating frame of reference (red line) is the green line in a clockwise direction. 
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Figure 3-11 Coriolis effect on a rotating system. 

 

3.3.1 Relative motion of components using a rotating frame of reference 

In order to analyse dynamics of the gears, the effect of using a rotating frame of reference will be 

considered. The position of points A and B are defined by the position vectors A
r  and B

r  measured 

with respect to the fixed X, Y, Z coordinate system shown in Figure 3-12. The origin of the translating 

and rotating x, y, z coordinate system is the point A. The relative position of B with respect to A is 

defined by the vector B/A
r .   

 

Figure 3-12 Kinematic diagram for rotating frame, Ωc denotes the angular speed of the frame. 

Consider Figure 3-12, OA rotates with constant angular speed of c
  and it is translating and 

rotating with respect to fixed XYZ coordinate system with origin O. From Figure 3-12, 
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/B A B Ar r r             (3.24)    

ˆˆ jB A B Br r x i y            (3.25)    

For the case of planetary gear modelling and mathematical analysis, the features in Figure 3-12 

changes to Figure 3-13. In this case, the position of point A, i.e. the position of the carrier is at the 

origin O, hence A
r becomes zero. This is equivalent to using the centre of mass of the carrier as the 

origin. The carrier serves as an observer (or a reference) and the translational coordinates h
x  and h

y

of the carrier, ring, sun and planet gears can be measured with respect to a rotating frame of reference 

attached to the centre of the carrier.  

 

Figure 3-13 Kinematic diagram showing the rotating frame of reference (in pink) fixed to the 

centre of mass of the carrier at origin O. The carrier is shown in dotted lines after it has moved 

in x, y and u coordinates. 

In Figure 3-13, it is shown that point A in Figure 3-12 is now at the origin O which is the centre of the 

rotating frame of reference. In this case,  

A
0r  , therefore Equation (3.25) becomes  

ˆˆ j
B B B

r x i y            (3.26) 

Then, ˆ ˆ
h h h

r x i y j           (3.27) 
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where , ,h c r s  while î and ĵ  are the unit vectors in x and y directions respectively. It is very 

important to show the time derivative of the unit vectors before determining the relative velocity and 

acceleration vectors in rotating frame of reference using Figure 3-14.  

 

Figure 3-14 Rate of change of unit vectors with respect to time. 

ˆ ˆ
n

di d j            (3.28) 

ˆ
ˆ ˆn

c

ddi
j j

dt dt


            (3.29) 

ˆ ˆ
n

dj d i             (3.30) 

ˆ
ˆ ˆn

c

ddj
i i

dt dt


             (3.31) 

Differentiating equations (3.27), we obtain equations (3.32)  

ˆ ˆ( )
h h h

d
r x i y j

dt
  ˆ ˆ( Ω ) ( Ω )

c ch h h h
x - y i + y + x j      (3.32)                                                                                                                                                                                      

Differentiating Equation. 3.32, we obtain the acceleration vector using a rotating frames of reference 

as follows: 

2 2
[ ˆ ˆ ˆ ˆ( Ω ) ( Ω ) ] ( 2 ) ( 2 )

c c c c c ch h h h h h h h h hh

d
r x - y i + y + x j x y x i y x y j

dt
           (3.33) 
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Equations (3.27), (3.32) and (3.33) show that the position, velocity and acceleration vectors using a 

rotating frames of reference respectively. They will be included in the equation of motion of the 

carrier, ring, sun and planet gears using a rotating frame of reference. The terms ) ˆ(Ω
c h
x i  and 

) ˆ(Ω
c h

y j which are not shown in Equation (3.33) because they are equal to zero, because it was 

assumed that the carrier is moving at a constant angular velocity. This is equivalent to having the 

tangential angular acceleration Ωc of the carrier equal to zero. The terms )ˆ(2Ω
c h
y i  and ) ˆ(2Ωc hx j  

in equation (3.33) are the Coriolis accelerations at the horizontal and vertical directions respectively 

due to the rotating frame of reference. The terms 
2 ˆ( )
c
x i and 

2 ˆ( )
c

y j  are the centripetal accelerations 

at the horizontal and vertical directions respectively.  

3.3.2 Dynamic equation of motion of sun gear using a rotating frame of reference  

The dynamic equation of a sun gear using a rotating frame of reference is  

2
( 2 ) ( sin 0)ss s sx s sx s sn sn snc s c s c

m x y x c x y k x k            (3.34)

 
2

( 2 ) ( cos 0)ss s sy s sy s sn sn snc s c s c
m y x y c y x k y k             (3.35) 

    

2
0s

s sn sn

s

u k
I

r
           (3.36) 

The matrix form of equations (3.34, 3.35 and 3.36) for the sun gear using a rotating frame of reference 

is in Appendix A. 

3.3.3 Dynamic equation of motion of ring gear using a rotating frame of reference 

The dynamic equation of a ring gear using a rotating frame of reference is 

2
( 2 ) ( sin 0)r r rx r r rx r rn rn rnc r c r c

m x y x c x y k x k             (3.37) 

2
( 2 ) ( cos 0)ryr r r r ry r rn rn rnc r c r c

m y x y c y x k y k             (3.38)

2
0r

r ru r ru r

r

rn rnu c u k u k
I

r
           (3.39) 

The matrix form of Equations (3.37, 3.38, and 3.39) for the ring gear using a rotating frame of 

reference is in Appendix A.  
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3.3.4 Dynamic equation of motion of carrier using a rotating frame of reference 

Consider Figure 3-13, which shows a carrier and planet bearing deflection model. The translational 

coordinates  ̅  and  ̅  are in rotating frame of reference rotating at the carrier speed 
c  because a 

rotating frame of reference rotating at the carrier speed was fixed to the carrier at its origin O. The two 

translational coordinates using a rotating frame of reference can be written as 

cos sinc c n c nx x y           (3.40) 

sin cosc c n c ny x y            (3.41) 

The combination of equations (3.40) and (3.41) in matrix form is the inverse of equation (3.14). 

Hence the radial and tangential deflection of the bearing can be written as  

cos sin( )nr c cn n n
x y           (3.42) 

sin cos( )nt c cn n n c
x y u             (3.43) 

where andnr nt  are the planet bearing radial and tangential deflections respectively. 

The dynamic equation of carrier using a rotating frame of reference is then 

2
( 2 ) ( cos sin 0) p nr n p nt nc c cx c c cx cc c c c c

m x y x c x y k x k k             (3.44) 

2
( 2 ) ( sin cos 0)cy cy c p nr n p nt nc c c cc c c c c

m y x y c y x k y k k             (3.45)

2
0c

c p nt

c

u k
I

r
         (3.46) 

The matrix form of Equations (3.44, 3.45, and 3.46) for the carrier using a rotating frame of reference 

is in Appendix A. 

3.3.5 Dynamic equation of motion of planet gear using a rotating frame of reference 

The dynamic equation of planet gear using a rotating frame of reference is  

2
( 2 ) sin sin 0p n p nr s rsn sn rn rnc n c n

m k k k                 (3.47) 

 
2

( 2 ) cos cos 0p n p nt s rsn sn rn rnc n c n
m k k k                (3.48) 
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2
0

p

p

n sn sn rn rnk k
I

u
r

             (3.49)  

The matrix form of equatons (3.47, 3.48 and 3.49) for the planet gear using a rotating frame of 

reference is in Appendix A. 

3.3.6 General form of equation of motion using a rotating frame of reference 

The combined equation of motion for the carrier, ring, sun and planet gears is thus obtained using a 

rotating frame of reference. The general form of the equation in matrix form can be written as 

            2
c y m c cb b d                       M q G C q K K K K q 0  (3.50) 

where, , , ,b b m

n nM C K K ; , , ,T T T T

b b b b m m   M M C C K K K K , are the mass, damping, 

bearing and mesh stiffnesses respectively. Also, some terms are introduced in this frame of reference 

and their matrices due to Coriolis effect of the carrier and these are the Gy, Kd and 
K ; Gy and Kd  

matrices are skew-symmetric while
T

 K K . In practice, using a rotating frame of reference implies 

that the practical vibration measurements, such as using surface mounted accelerometers, are rotating 

with the components. 

3.4 Numerical study using the analytical model 

3.4.1 Natural frequencies in a rotating frame of reference and their relationship with the 

fixed frame of reference characteristics 

For simplicity, the natural frequencies of a sun gear using a rotating frame of reference and their 

relationship with the fixed frame of reference was investigated. The axisymmetric sun gear of mass ms 

only shown in Figure 3-15 will be used as a case study. It is assumed that the sun gear with isotropic 

support stiffness (i.e.           ) has two degrees of freedom namely in the x and y directions. 

This is a case whereby a single mass has two degrees of freedom. The rotating frame is attached to the 

centre of the sun gear rotating at a constant speed Ωs as shown in Figure 3-15.  



40 

 

  

Figure 3-15 Sun gear modelling using a rotating frame of reference 

The equations of motion for the undamped and free vibration case in the rotating frame of reference is 

written as   

    ̈̅      ̇̅    
  ̅      ̅          (3.51) 

    ̈̅      ̇̅    
  ̅      ̅          (3.52) 

The overbar relates to the rotating coordinate displacement of the mass centre. The uncoupled 

equations in the fixed frame of reference with the (x, y) displacements are transformed into a rotating 

frame of reference with the ( ̅ ,  ̅ ) displacements. 

In general, equations (3.51 and 3.52) can be written as 

   ̈̅        ̇̅        
     ̅         (3.53) 

The       and    
    terms in equation (3.53) are the Coriolis and centripetal accelerations terms 

respectively.  

From equations (3.51) and (3.52) 

[
   
   

] (
 ̈̅ 

 ̈̅ 
)    [

     

    
] (

 ̇̅ 

 ̇̅ 
)+[

     
    

      
   

] ( ̅ 
 ̅ 
)  ( 

 
)  (3.54) 

Let the matrices of the first, second and the third term be M, G and K respectively. M is the mass 

matrix, G is the matrix due to Coriolis effect while K is the overall stiffness matrix.  

The characteristic equation, using ( ̅ 
 ̅ 
)  ( ̅ 

 ̅ 
)     is given by 
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|          |            (3.55) 

i.e. |
      

              

           
        

|        (3.56) 

[      
         ]

     
   

           (3.57) 

Solving the quadratic equation (3.57) in s
2 

   
          

   √          
     

     
       

    
 

   
  

            (3.58)  

The term under the square root: 

    
        

   
       

       
    

     
 [      

    
        

    
 ] (3.59) 

    
 [      

   
          

   
   ] (3.60) 

Using the difference of two squares in the form                   

    
 [      

         
          

         
    ]    (3.61) 

    
          

          
     

        (3.62) 

Therefore, 

   
          

     √    
     

 

   
        (3.63) 

 
       

      √  
     

  
        (3.64)  

Let   
  

  

  
  be the natural frequency in the nonrotating frame of reference.  

So        
    

    √  
   

        (3.65) 

     
    

                (3.66) 

For the first solution, 

  
      

    
                 

       (3.67) 



42 

 

For the second solution, 

  
      

    
                 

       (3.68) 

Therefore, 

             or                   (3.69) 

i.e. in the rotating frame of reference, there is observed a splitting of the two equal original natural 

frequencies    into the natural frequencies      . 

Let us consider a numerical example, for a mass ms of the sun gear as 2 kg while the isotropic support 

stiffness is          . For the isotropic bearing support stiffness, the natural frequencies of the sun 

gear can be determined using equation (3.69). This is done independently as a numerical check using 

an eigenvalue solution of equation (3.54) in MATLAB. The natural frequencies are plotted against the 

rotational speed of the rotating frame of reference and shown in the frequency map in Figure 3-16. 

 

Figure 3-16 Frequency map showing the variation of the natural frequencies with the rotational 

speed of the sun gear as predicted and observed using a rotating coordinate system. 

There are two identical natural frequencies for the non-rotating sun gear, because the support stiffness 

is isotropic i.e. the same in both the x and y directions. Figure 3-16 shows how the natural frequencies 

are changing due to the rotational speed of the sun gear. One of the two natural frequencies is 

increasing while the other is decreasing as the speed increases. This is due to the rotating coordinate 

system used for the modelling and analysis of the system. The frequencies can be referred to as 

pseudonatural frequencies, because a rotating frame of reference was used to investigate a system 
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with isotropic bearing stiffness. It is worth mentioning that for an observer who is observing the 

motion from a fixed frame of reference, the observer will see a different motion, hence different 

natural frequencies. For this isotropic bearing support case, the fixed observer will only see a single 

natural frequency corresponding to two modes comprising either a purely vertical or purely horizontal 

motion of the sun gear. The analysis given by Friswell [48] considers the general case when the 

support is not isotropic (i.e.        . As the gear rotates, it experiences a time varying support 

stiffness in the rotating coordinate directions. The natural frequencies of the stationary gear in the two 

fixed coordinates are then different. Equations (3.51 – 3.54) are subsequently changed and the two 

natural frequencies in the rotating frame of reference are obtained. 

In practice, measurement using a rotating frame of reference is equivalent to using accelerometers that 

are rotating i.e. fixed to the rotating system. This may be possible with the use of wireless 

accelerometers, but it may be difficult to measure the natural frequencies of a rotating system 

especially at high speed. This is because there will be potentially more than one source of excitation 

when the system is rotating.  

3.4.2 Numerical study using a planetary gear model 

In this sub-section, numerical studies was undertaken to obtain the natural frequencies and vibration 

modes of a planetary gear using the equations (3.23) and (3.50). The parameters in Table 3-1 as used 

by Lin and Parker [14] will be used in this section to predict the natural frequencies and vibration 

modes of planetary. The reason for this is to confirm if the model will predict the same natural 

frequencies and eigenvectors as shown in their paper in [14]. It is imperative to state that Lin and 

Parker assumed that the carrier speed is small, hence they neglected the Coriolis terms in the equation 

of motion using a rotating frame of reference. In this numerical study, both fixed and rotating frames 

of reference will be considered and the effect of a wide range of carrier speed on the natural 

frequencies would be investigated. This would be shown on a frequency map or Campbell‟s diagram. 

However natural frequencies of a planetary gear with 2, 3, 4, 5, 6 planets will be shown to see how the 

difference between the modes.  
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Table 3-1  Planetary gear parameters by Lin and Parker 

Parameter description Carrier Ring Sun Planet 

Mass (kg) 3.43 2.35 0.40 0.66 

The ratio of mass moment 

of inertia to the square of 

the radius 

 I/r
2 
(kg) 

6.29 3.00 0.39 0.61 

Base circle diameter (m) 176.8 275.0 77.4 100.3 

Bearing stiffness (MN/m) Kp=Ks=Kr=Kp=100 

Mesh stiffness (MN/m) Ksn=Krn=500 

Torsional stiffness 

(MNm/rad) Kru=1000, Ksu=Kcu=0 

Pressure angle (degrees) αs=αr=24.6 

For a fixed frame of reference, the standard eigenvalue problem considering equation (3.23) is written 

as: 

2
( )i i i M K Kmb          (3.70) 

The natural frequencies and the eigenvectors using a fixed frame of reference are denoted by i
 and 

i respectively. 

For a rotating frame of reference, the free vibration response of the planetary gear for a linear time 

invariant case were determined using the general equation of motion in equation (3.50), neglecting the 

damping terms, the equation becomes   
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2
( )c y c    Mq G q + K K K q 0mb       (3.71 (a)) 

The eigenvalues of the equation (3.71(a)) can be determined using a state space equation written as  

1 2 1
) )( (

b m c yc
 


   

 
 
  

0 I

-M K K K -M G

      (3.71 (b)) 

where I is an identity matrix. In a case where the Coriolis terms were neglected, the standard 

eigenvalue problem becomes 

2
( )i i i M K Kmb           (3.72) 

The natural frequencies and the eigenvectors using a rotating frame of reference are denoted by i


and i respectively. Considering equation (3.72), the eigensolutions of a planetary gear system with 

three, four, five and six planets were simulated using the parameters in Table 3-1 and the result for 

their natural frequencies are given in Table 3-2. The results match with the ones in Lin and Parker‟s 

publications which considers three, four and five planet gears. The natural frequencies of a model 

with six planet gears were added as further work in this research. The multiplicity (m) in Table 3-2 

implies the number of times a particular natural frequency of the planetary gear system occurs.  For 

instance, for a planetary gear with three planets, a natural frequency of a translational mode, 743 Hz 

occurs twice in the third row and second column of the Table 3-2 This implies that the multiplicity of 

this natural frequency is two.  
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Table 3-2 Natural frequencies of planetary gear system with their multiplicity from 3 to 6-

planet model using a rotating frame of reference. 

Number of planets (N) 3 4 5 6 

  0 0 0 0 

Rotational mode frequencies (Hz) 1476 1537 1567 1581 

multiplicity=1 1930 1971 2006 2033 

  2658 2626 2615 2624 

  7463 7774 8065 8343 

  11775 13071 14253 15346 

  743 727 710 693 

Translational mode frequencies (Hz) 1102 1091 1072 1049 

multiplicity=2 1896 1893 1888 1885 

  2276 2343 2425 2514 

  6986 7190 7382 7567 

  9648 10438 11172 11862 

Planetary mode frequencies (Hz)   1808 1808 1808 

multiplicity=N-3   5964 5964 5964 

    6982 6982 6982 

 

3.4.3 Mode description 

There are some unique properties in the vibration modes which are shown below for a planetary gear 

system with four planet gears. The unique properties are due to the fact that the planets‟ arrangement 

is symmetrical i.e. they are equally spaced. 

a) Rotational mode: This mode has a multiplicity of 1 for different numbers of planets and there 

is no translation of the carrier, ring and sun. Six natural frequencies always correspond to this 

mode and their mode shapes are of the form 1 2 3 4
0 0

T

i
u P P P P  i= c, r and s; 

where c, r and s corresponds to the carrier, ring and sun respectively, and P1, P2, P3 and P4 are 

the displacements of the planets.  Also, all the planets have the same deflection as for a rigid 

body mode as shown in Figure 3-17. 



47 

 

 

Figure 3-17 Rigid body rotational mode at 0 Hz. 

b) Translational mode: This mode as shown in Figure 3-18, has a multiplicity of 2 for different 

number of planets and there is no rotation of the carrier, ring and sun. There are always twelve 

natural frequencies for this mode and their mode shapes is of the form 

 1 2 3 4
0

T

i i
x y P P P P  i=c, r and s, where P1, P2, P3 and P4 are the displacements of 

planets. 

 

 

Figure 3-18 Translational mode at 1893 Hz. 

c) Planet mode: This mode as shown in Figure 3-19, has a multiplicity of 3 for a different number 

of planets and there is neither rotation nor translation of the carrier, ring and sun. This implies 

that only the planet gears are moving in this mode. The natural frequencies in this case depend 
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on the number of planets in the planetary gear system. The mode shape has zero displacement 

of the carrier, ring, sun and planet in this category is of the form

 1 2 3 4
0 0 0

T

P P P P .  

 

Figure 3-19 Planet mode at 1808 Hz. 

Also, the natural frequencies of a planetary gear with four planets (because it exhibits all the mode 

types) was investigated using equation 3.71 (b) over a wide range of carrier speed and shown in the 

frequency map in Figure 3-20.  

 

Figure 3-20 Frequency map showing the variations of the undamped natural frequencies with 

the carrier speed for a four-planet model. 

It was discovered that the natural frequencies when a fixed frame of reference was used is the same as 

the natural frequencies when a rotating frame of reference was used, provided that the carrier speed is 
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low. The zoomed view of the frequency map is shown in Figure 3-21. It is obvious that some natural 

frequencies are splitting as the carrier speed increases. These are the frequencies of all the 

translational modes. The frequencies of rotational and planet modes are not splitting. 

 

Figure 3-21 Zoomed view of a frequency map showing the splitting of the natural frequencies of 

only the translational modes as the carrier speed is increasing for a four-planet model. 

Furthermore, natural frequencies and eigenvectors for a planet gear with two planet gears were 

determined using equation (3.72) so that it can be compared with the work of Lin and Parker. The 

results are shown in table 3-3 and for this case, there are fifteen natural frequencies and modes. 

Table 3-3 Natural frequencies of planetary gear model with two planet gears. 

S/N Natural 

frequencies 

(Hz) 

Mode type 

1   Rotational mode 

2     Translational mode 
3     Translational mode 
4      Translational mode of the ring gear only 

5      Translational mode 

6      Rotational mode 
7      Rotational mode 

8                         
9                         
10                                          
11      Rotational mode 
12      Rotational mode 
13 7190                    
14 10329 Rotational mode 
15 10438                    
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It is obvious from Table 3-3 that there is no planet mode in a two-planet model like a three-planet 

model. This implies that a planet mode can only be obtained in a planetary gear model with a 

minimum of four planet gears as shown by Lin and Parker [14]. The multiplicity (i.e. occurrence) of 

all the natural frequencies in this case is one unlike models with more than two planet gears. In this 

case, if the Coriolis terms were considered, there cannot be frequency split because the multiplicity of 

the translational mode is not 2 but 1. It was later discovered in chapter 4 that the multiplicity of the 

translational mode could be two for a 2-planet model depending on the stiffness of the bearing. 

Furthermore, only the ring gear is translating in the x and y directions in the fourth mode while the sun 

gear is exhibiting the same behaviour in the tenth mode. This is a unique behaviour which is peculiar 

to a planetary gear train with only two planet gears. This is not applicable to a planetary gear with 3, 4, 

5 and 6 planet gears as shown by Parker [14]. 

3.5 Conclusion 

A planetary gear model has been derived using both a fixed and rotating frame of reference for 

comparison. The model can be used to predict the dynamic behaviour of a planetary gear with one or 

more planet gears. Generally in both frames of reference, the mass matrix is dynamically uncoupled 

while the bearing stiffness matrix is statically uncoupled. The overall stiffness matrix is statically 

coupled using both frames of reference because of the sun-planet and planet-ring mesh stiffnesses as 

well as the contact between the carrier and the planet gears. The linear model is assumed to be time 

invariant and should be suitable for predicting the dynamic response of a planetary gear using either a 

fixed or rotating frame of reference. The models with isotropic bearing stiffnesses of the carrier, ring 

sun and planet gears were used to predict the free vibration response of the system. The natural 

frequencies of translational modes changed when increasing the carrier speed. This is because the 

translational modes have a multiplicity of two, therefore the frequency of one mode is increasing 

while the frequency of the other mode is decreasing as the carrier speed increases. This is known as 

frequency split due to the Coriolis effect.  

The planetary gear system with two planets has not been studied before. In general, the following 

were discovered in this study: 

a) There is no difference in the free response of the system when using either a fixed or rotating 

frame of reference provided that the carrier speed is below 100 rpm or set to zero in the latter.  

b) For a two-planet model, the natural frequencies of the translational modes in a model with two 

planet gears only occurs once. This implies that the translational modes have a multiplicity of 

one. The models with more than two planets do not exhibit this behaviour. This is investigated 

further in chapter five where the stiffness of the bearings are reduced. 
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c) There is a translational mode where only the ring gear is vibrating and another translational 

mode where only the sun gear is vibrating.  

The next chapter will focus on the design of a test rig which will be used to determine the bearing 

stiffnesses, sun-planet and ring-planet mesh stiffnessees the component masses and their moment of 

inertias. An update will be done on Table 3.1 and the parameters will be used to validate the model 

and subsequently some forced responses will be predicted in Chapter 5.  
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Chapter 4 Test rig design, estimation of the planetary 

gear parameters and frequency response using a 

rotating frame of reference  

The mathematical model derived in chapter three will be verified by comparison to experimental 

results by suitable model predictions and measured data. In order to do this, an applicable planetary 

gear test rig must be designed and developed. In most planetary gear vibration experiments, 

accelerometers are mounted on the housing because there is no access to measure the vibration of the 

components inside the housing. This test rig was configured such that the independent vibration of 

carrier, ring, sun and planet gear can be measured when they are stationary and rotating. Some 

parameters estimated from the test rig will be used for the mathematical model; therefore the 

parameters previously used in chapter three can be updated. Therefore, this chapter focuses on the 

design and development of a vibration test rig for vibration measurement, as well as the experimental 

estimation of the bearing stiffnesses of the carrier, sun and planet gears. The stiffness of a stationary 

ring gear was also estimated. The bearing stiffness was determined dynamically using an 

instrumented hammer test. Furthermore, the mesh stiffness and the mass moment of inertia of the 

components were determined. The main purpose of doing this is to use the stiffnesses specified in the 

analytical model derived in chapter three to predict the natural frequencies, vibration mode shapes and 

the damping ratios present for the planetary gear.  

It has been verified previously in chapter 3 that the natural frequencies and mode shapes of the 

planetary gear system using either a fixed or rotating frame of reference are the same provided the 

carrier speed is low when using a rotating frame of reference. Also, the effect of carrier speed on the 

undamped natural frequencies of the system has previously been shown in chapter 3, where the 

natural frequencies are either increasing or decreasing at high speed. It is necessary to also show how 

the rotational speed of the carrier affects the response. For this chapter, the frequency response 

function of the carrier, ring, sun and planet gears are shown using a rotating frame of reference at 

different carrier speeds. In this case, it was assumed that the bearing stiffnesses are isotropic. The 

study of planetary gear dynamic response to excitation using a rotating coordinate system at high 

speed is rare. The effect of the carrier speed on the excited low and high frequency were discussed. 

Also, the effect of the carrier speed on the damping ratio was studied to know if it is significant or not. 

Furthermore, the positions of the damped and the undamped poles in the s-plane are shown at 

different carrier speeds. The purpose of doing this is to know if the carrier speed can either increase or 

decrease the damping in the system significantly.    
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4.1  Design considerations and brief description of the test rig 

The necessary test rig comprises mainly of the planetary gear train, the frame, the bearing supports, 

the input and output shafts, an electric motor, circlips, planet spindles, keys and the bearing housings. 

For modal testing, the external load on the planetary gear train was not considered. Also, for vibration 

measurements, instrumentation such as accelerometers were used to measure the vibration and an 

instrumented impact hammer to excite the system. The planetary gear design adopted comprises two 

pinions as planets, one gear or wheel as sun, a ring gear and the carrier as shown in Figure. 4-1. The 

sun and planet gears, when chosen, specified and subsequently purchased as manufactured items from 

ONDRIVES [49] and assembled together. The carrier and the ring gear were designed by the author 

and manufactured in the university‟s Engineering Design and Manufacturing Centre (EDMC). The 

shearing force and the bending moments of the shafts are not of interest in this research, therefore 

they will not be shown in the design calculations.  

Most of the planetary gears used in the vibration test rig are built and enclosed such that there are no 

spaces to mount accelerometers on them during operation. One of the novelties in this research is the 

design and construction of a vibration test rig of a planetary gear which can accommodate 

accelerometers mounted on the carrier, sun and planet gears such that they will rotate with them 

during operation. This enhances independent measurement of the carrier, sun and planet gears. Hence, 

there will be no need to use a method like Time synchronous averaging (TSA) to know the 

frequencies that are related to the speed of carrier, sun or planet. Also frequencies that are not 

synchronized with a particular speed can be probably measured and analysed. Temporary fasteners 

are used to join the fixtures together which makes it easy to assemble and disassemble the test rig 

when necessary.   

The following was considered in designing the test rig: 

a. Material selection: Suitable materials were chosen for the components based on cost, 

availability and the function that they are to perform on the rig. For example, steel gears were 

chosen because they possess high strength and to avoid excess deflection of the teeth under 

static loading. 

b. Use of standard parts: Parts like bearings, gears, keys and circlips were procured from 

ONDRIVE based on design standards. This makes the assembly and interchangeability of the 

parts as well as operation of the system possible.  

c. Convenient features and safety: All the parts are well located for convenient control and 

safe operation of the test rig. 
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d. Frictional resistance of the rotating parts: For instance, rolling element bearings (which 

have low starting friction) were used (i) to avoid high starting friction of the rotating parts (ii) 

to achieve easy mounting and shaft alignment. 

e. Type of load on the output of the rig: electrical load was chosen to be used on the rig. 

f. Maintenance: The gear teeth were lubricated to avoid wear. Also, sealed rolling element 

bearings were chosen because they require less maintenance. 

g. Mechanism: The carrier shaft was connected to an electric motor through a V-belt and two 

pulleys mounted on the electric motor and carrier shaft. This causes the rotation of the planet 

carrier mounted on the shaft. The two planet gears which are meshed with the sun gear rotate 

and revolve round the sun with the help of the planet carrier. The sun gear shaft serves as the 

output shaft and the external load was mounted onto it.  

 

 

Figure 4-1 CAD model of planetary gear vibration test rig. 

The carrier is shown in black in Figure 4-1 linked to the planet gears through two spindles, while the 

two bearing housing supports for the sun and carrier are shown in blue. The axes of rotation of the sun 

and the carrier are fixed unlike the planets, which makes the latter orbit round the sun gear as they 

rotate. The planet and sun have 45 teeth and 95 teeth respectively, while the ring gear with internal 

teeth arrangement has 185 teeth. As mentioned earlier, the input shaft is the carrier shaft connected to 

an electric motor while the output shaft is the sun shaft on which the external load was applied. The 

frames on both sides and the base rigidly supported the rig to avoid structural damage. 
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4.2 Gear terminologies 

For simplicity, it is necessary to define some terms used in spur gears .Only the terms relevant to this 

research work will be defined. These terms are defined using Figure 4-2 as written by Gupta and 

Khurmi [50]. Figure 4-2 (a) shows the teeth which are not meshing with another teeth while Figure 4-

2 (b) show the two teeth meshing together.  

 

(a) 

 

(b) 

Figure 4-2 (a) Terms used in describing spur gears by Gupta and Khurmi [50]. (b) Two meshing 

gears with the pressure line shown in red. 
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The following terminologies will be used: 

a. Pitch circle. It is an imaginary circle which by pure rolling action, transmits motion by 

friction as the actual gear. Its diameter is known as pitch circle diameter. 

b. Addendum. It is the radial height of a tooth above the pitch circle and its circle is known as 

addendum circle. 

c. Dedendum. It is the radial depth of a tooth below the pitch circle its circle is known as 

dedendum circle. 

d. Pressure angle. It is the angle between the common tangent to the pitch circles (YY in Figure 

4.2 (b)) and the pressure line (MN in Figure 4-2 (b)). 

e. Pressure line. It is a line (red in Figure 4-2 (b)) tangential to the base circles of the two 

meshing gears. 

f. Base circle. It is a circle that is tangential to the pressure line. The diameter of a base circle is 

the product of pitch circle diameter and cosine of the pressure angle. 

g. Face width. It is the width of the tooth along its axial direction. 

h. Pitch point. It is the point (P) where the two pitch circles of two mating gears are in contact 

(Figure 4-2 (b)).  

i. Path of contact. It is the path followed by the point of contact of two teeth from the beginning 

to the end of mating. It is the line KL in Figure 4-2 (b).  

j. Arc of contact. It is the arc measured on the pitch circle from the beginning to the end of 

mating.  

k. Module. This is the ratio of the pitch circle diameter to the number of teeth. 

4.3  Design calculations 

The parameters of the sun and planet gears as received from the manufacturers are shown in Table 4-1. 

Other parameters like the speed ratio, design power, input and output torques and contact ratio are 

shown with equations in this section. The face width of all the gears is 15 mm. For perfect mating of 

the teeth, the modules of the ring, sun and planet gears are the same. The detailed engineering 

drawing can be found in the Appendix (C). 
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Table 4-1 Sun and planet gear parameters as received from the manufacturer 

 No. of teeth Module 

(mm) 

Addendum 

circle 

diameter, 

(mm)  

Pitch circle 

diameter, 

(mm) 

Base circle 

diameter 

(mm) 

Pressure 

angle, α 

(degree) 

Sun gear 95 1.5 145.5 142.5 133.91 20 

Planet gear 45 1.5 70.5 67.5 63.43 20 

4.3.1 Design of the ring gear and the carrier 

Mild steel was selected as the material because of its tensile strength. Figure 4-3 shows the schematic 

diagram of the ring, sun and planet gears with their pitch circle diameters. Let M and rZ  be the 

module and number of teeth on the ring gear respectively. The pitch circle diameter of the sun and 

planet gears are denoted by sD  and pD   respectively while the pressure angle of the ring gear is 

denoted by r .  

 

Figure 4-3 Pitch circle diameters of the gears. 
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The schematic diagram of the carrier is shown in Figure 4-4. 

 

Figure 4-4 Carrier dimension. 

The parameters of the ring gear and the carrier which were designed and manufactured are shown in 

the Table 4-2. 

Table 4-2 Parameters of the carrier and ring gear. 

S/N Parameter Formula Numerical value 

(mm) 

1 Module, M   1.5 

 

2 Pitch circle diameter of ring gear , Dr (mm)    (   )     

 

      
 

3 Number of teeth on the  

ring gear, Zr (mm) 
        

 

 

    
 

 

4 Addendum, ar (mm)      
 

    
 

5 Dedendum, dr (mm)          
 

1.875 

 

6 Adddendum circle diameter (mm)             
 

7 Dedendum circle diameter (mm)        ) 

 
       

 

8 Tooth depth             
 

9 Base circle diameter of the ring gear (mm)                
 

10 Tooth thickness            
 

11 Centre distance of the planet gears on the carrier, c 

(mm) 
  (   )     210 

where, Rp is the radius of the planet gear. 
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4.3.2  Speed ratio and mesh frequency 

Let Zr, Zs, and Zp be the number of the teeth on the ring, sun and planet gears respectively while Ωc, 

Ωs and Ωp are the rotating speeds of the carrier, sun and planet gears in rpm respectively. The speed 

ratio can be determined in tabular form as shown in Table 4-3 when the ring gear is chosen to be 

stationary. The schematic diagram showing that the ring gear is stationary is shown in Figure 4-5.  

The number of teeth on the ring gear 

2(Z ) 95 2(45) 185
r s p

Z Z      

 

Figure 4-5 The mechanism of planetary gear train with the ring gear fixed. 

 

Table 4-3 Table of speed ratio of the planetary type 

Step 
Description of motion Carrier 

(c) 

Ring (r) Sun gear (s) Planet gear (p) 

1 Rotate the ring gear once 

-1 (i.e clockwise) while fixing 

the carrier 

0 -1 
r

s

Z

Z

 r

p

Z

Z
  

 

2 Rotate all at once +1 +1 +1 +1 

 

3 Add up +1 0 
1+ r

s

Z

Z

 
1-

p

rZ

Z
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The carrier is the input while the sun is the output. Assuming the carrier moves 1 rpm, the speed ratio 

of the carrier to the sun gear considering the last row and column 5 of Table 4-3 is 

1

1
c

s

Zr

Zs


 
  

 





          (4.1) 

Equation (4.1) can be re-written as: 

c s

s s r

Z

Z Z




 
          (4.2) 

Thus, the speed ratio of the carrier to sun gear is 0.3393 i.e. if the carrier rotates 1 rpm, the sun will 

rotate at 2.947 rpm. The same procedure applies to the speed ratio of the carrier to planets considering 

the last row and column 6 of Table 4-3 is 

 
p

p r

c

p

Z

Z Z





          (4.3) 

Therefore, the speed ratio of the carrier to the planet gear (taking the absolute value) is 0.321 i.e. if the 

carrier rotates 1 rpm, the planet gear will rotate at 3.11 rpm. 

The contact between the teeth of two mating gears is called mesh. The mesh frequency, m
f  in Hz, is 

the product of the carrier speed and the number of teeth on the ring gear [23]. There will be further 

explanation on the mesh frequency in chapter 6. Therefore, the mesh frequency can be expressed as 

( // 60) ( 60)s
m s r r

s r
c

Z
f Z Z

Z Z
   


         (4.4) 
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4.3.3 Input and output torques 

The torque can be calculated from the relationship between the power and the rotating speed.  

 

Figure 4-6 Torque in planetary gear trains. 

 

Figure 4-6 shows the torques acting on a planetary gear train. A torque Tc applied at the input by an 

electric motor is transmitted to the output as Ts. The design power was determined based on the 

service factor, which is a measure of overloading capacity at which an electric motor can operate to 

avoid breakdown. However, the service factor, due to the operating hours of the electric motor at the 

input in a day is chosen to be 1 for this test rig. The power rating of the motor is 1 horsepower (0.745 

kW). 

The input torque applied on the carrier can be written as 

60P
T

2

i

c
c




          (4.5) 

where, 
c

T and Pi are the input torque and power respectively. Likewise, the output torque is on the 

sun gear and can be expressed as  

60P
T

2

o

s
s




          (4.6)  

where
s

T and Po are the output torque and power respectively. If the angular acceleration is zero, i.e. at 

constant angular velocity and the input and output shafts are rotating in the same direction, then the 
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input and the output torques will be in opposite directions i.e. Tc= -Ts . Therefore, from equations (4.5 

and 4.6), 

P P
i o

c s

 
 

          (4.7) 

This implies that the output power depends on the input power and the rotational speeds of the carrier 

and sun gear. 

         

4.3.4 Gear contact ratio 

The gear contact ratio is an important parameter, which is sometimes used to control gear noise and 

vibration passively. The higher the contact ratio, the lesser the gear vibration and noise. The contact 

ratio between the sun and planet gear are determined as follows [50]: 

   √    
                          (4.8) 

   √    
                            (4.9)                             

where, ls, lp, a
R  and a

r are the length of path of approach, length of path of recess, addendum circle 

radii of the sun and planet gears respectively, while R and r are pitch circle radii of the sun and planet 

gears respectively. The diameters of the addendum and pitch circles of the sun and planets were all 

given in Table 4.1 as well as their pressure angles. Therefore, the lengths of path of contact lc1 and arc 

of contact la1 are determined as 

                                      (4.10) 

1

13.84
14.73mm

cos20
0a

l            (4.11) 

The contact ratio between sun and planet gears was calculated as
14.73

3.125
M

 


. This implies that 

there are always at least three pairs of teeth in contact for the sun-planet mesh. Likewise, the contact 

ratio between planet and ring gear is calculated as follows:     

   √     
    

                
                (4.12) 

where, lr, rd
R  and r

R are the length of path of recess, addendum (or inner) and pitch circle radii of the 

ring gear respectively. The length of path of approach is equal to lp. The lengths of path of contact lc2 

and arc of contact la2 are determined as  
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                                  (4.13) 

2

14.57
15.51mm

cos20
0a

l           (4.14) 

The contact ratio between planet and ring gears was calculated as
15.51

3.29
M

 


. This implies that 

there are always at least three pairs of teeth in contact for the planet-ring mesh. Therefore, the 

minimum number of pairs of teeth in contact for the ring-planet is three like that of sun-planet contact. 

4.4 Determination of the bearing stiffnesses 

The bearing stiffnesses of the components are one of the important parameters used to determine the 

natural frequencies and the mode shapes of planetary gears. According to Kramer [51], the stiffness of 

a rolling element bearing can be approximated using the equation (4.15).  

2/3 1/3 1/3 5/3
cosvv sb bk k n d f           (4.15) 

where , , and, ,vv b sbk k n d f   are the vertical bearing stiffness, a constant = 6 2/3 4/3
13 10 N m


 , number 

of steel ball in the race, diameter of the ball in the race, vertical static load and the contact angle. For 

this study the vertical stiffness calculated for the carrier, sun and planet gears using equation (4.15) 

are 14.5, 15.3 and 0.81 MN/m respectively. Also, the horizontal stiffness can be calculated from the 

vertical stiffness depending on the number of balls. Kramer gives the ratio of the horizontal to vertical 

stiffness to be 0.46 and 0.64 for a bearing with 8 and 12 balls respectively. The planet bearing has 8 

balls while the carrier and sun bearings, hence the approximated horizontal stiffnesses of the carrier, 

sun and planet gears are 9.28, 9.79 and 0.37 MN/m respectively.   

However, the bearing stiffnesses of the carrier, sun and planet gear were experimentally measured by 

Tristan and Parker using a hydraulic jack to apply a known force on them [52]. A precise laser was 

used to measure the deflection and the force versus deflection curve was plotted. The experimental 

bearing stiffnesses of the component are taken from the slope of the least squares linear curve fit. 

They assumed the bearing stiffnesses are equal in radial directions. Nithin [53] determined the 

stiffness of a deep groove ball bearing by inserting the shaft into the inner race of the bearing. Both 

ends of the shaft were clamped so that the system can behave like a single degree of freedom (SDOF) 

system. The bearing was excited with an instrumented hammer and the accelerance was measured. 

The accelerance which must show 40 dB decade per slope on the stiffness line was converted to 
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receptance. The receptance was inverted to get the dynamic stiffness and the value was taken as the 

stiffness of the bearing.   

For this study, the stiffnesses of the support bearings of the carrier, ring, sun and planet gears were not 

supplied by the manufacturers. These parameters are needed to predict the behaviour of the system 

using the lumped parameter model. Considering the available facilities and simplicity, a receptance 

method of estimating bearing stiffness was used in this study which was compared with those ones 

determine analytically using equation (4.15). 

An experiment was conducted using modal testing to determine the stiffnesses of the support bearing. 

In this experiment, the components were mounted on the shaft in the frame. The bearings were also 

mounted such that the whole component (e.g. a carrier) under test behaves like a single degree of 

freedom (SDOF) system when excited with the impact hammer. For instance, the impact hammer was 

used to excite the carrier in the horizontal direction and the point accelerance was measured.  

The experimental set-up for the carrier is shown in Figure 4-7. This comprises the bearing attached to 

the frame through the bearing housing, a shaft, a carrier and the base which was attached to a seismic 

base. During this test, the components were stationary. The shaft was assumed to behave as a rigid body 

so that the system can behave like a SDOF system (Figure 4-7 (a) and (b)). The mass and stiffness of the 

system are denoted by mb and kb. The hardware for the measurement comprised a signal analyser, an 

instrumented impact hammer, accelerometers and a computer to display the results. The sensitivity of 

the impact hammer was 2.25 mV/N while the sensitivity of the accelerometers was 1.00 mV/ms
-2

.
  
The 

frequency resolution was 1.563 Hz, the window length or maximum time was 640 ms and the sampling 

frequency was         kHz. This gives 6400 as a number of data points. The sensor was mounted on 

the carrier in the radial direction using wax. The instrumented hammer and the sensor were both 

connected to the signal analyser. The instrumented impact hammer was used to excite the carrier 

horizontally and vertically i.e. x and y directions respectively for different cases. The signals were 

displayed on the computer and any clipped data were rejected. The coherence of the data was checked to 

be good i.e. they are 90% and above before they were accepted for interpretation. 
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(a)      (b) 

Figure 4-7 Set-up to determine carrier bearing stiffness using the (a) experimental and (b) 

analytical models. 

The low frequency stiffness line in the receptance plots was used to estimate the bearing stiffness. 

Stiffness was obtained by taking the average of the receptance values of points from 20 to 50 Hz. The 

average value of receptance was inverted and taken to be the stiffness. 

Therefore, the estimated stiffness of the carrier in the horizontal direction is approximately

6
10 N / m0.502 . This value for the stiffness was used in the single degree of freedom lumped 

parameter model to compare the results which were plotted together in Figure 4-8 (a). It shows that 

the lumped parameter model is reasonably accurate when considering it as a SDOF. The dynamic 

stiffness measured from the experimental model were taken as the stiffness value in the dynamic 

model. The effective mass of the carrier was also determined from the mass line of the accelerance 

which is in Appendix 4 as 1 kg. The mass of the carrier was measured on a digital weighing balance 

as 1.03 kg to confirm the estimated mass from the experiment. The loss factor estimated from a SDOF 

circle fit for the carrier at 142 Hz in x direction is 0.3 while that of y direction at 288 Hz is 0.4. These 

were applied as hysteretic damping in the analytical model and shown in both Figures 4-8 and 4-9. 

The same method was used for the ring, sun and planet gears. 

This procedure was repeated to determine the bearing stiffness of the carrier in the vertical direction 

and those of ring, sun and planet gears in both directions. The set up for the sun gear is shown in 

Figure 4-9 and the point receptances in both directions are shown in Figure 4-10. The receptances of 

the planet and ring gears are shown in Figures 4-11 and 4-12 respectively. In general, there is 

reasonable agreement between the responses from the model and experiments. However, this is not 

the case for the carrier in the vertical direction (Figure 4-8 (b)) where it behaves like a mass at low 

frequencies. This may be due to the fact that it was not clamped well enough during the experiment 

giving rise to a mounting resonance below 10 Hz. 
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(a)     (b) 

Figure 4-8 Point receptance of the carrier showing its bearing stiffness at low frequencies in the 

(a) horizontal (0 to 180
o
), the coherence is good from 23 Hz and (b) vertical directions (90

o 
to 

270
o
), the coherence is good from 38 Hz. 

 

Figure 4-9 Set-up to determine sun gear bearing stiffness. 
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(a)      (b) 

Figure 4-10 Point receptance of the sun gear showing its bearing stiffness at low frequencies in 

the (a) horizontal and (b) vertical directions. The coherence is good from 20 Hz and 31 Hz 

respectively. 

  

(a)     (b) 

Figure 4-11 Point receptance of the planet gear showing its bearing stiffness at low frequencies 

in the (a) horizontal and (b) vertical directions. The coherence are good from 16 Hz and 20 Hz 

respectively. 
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(a)     (b) 

Figure 4-12 Point receptance of the ring gear showing its stiffness at low frequencies in (a) 

horizontal and (b) vertical directions. 

The coherence is good from 96 Hz in Figure 4-12 (a) and from 75 Hz in Figure 4-12 (b). There is a 

limitation in determining the stiffness of the ring gear in the vertical direction (Figure 4-12 (b)) 

because it was constrained in the vertical direction (i.e. bolted to the base). Therefore there is a 

probability that the whole mass did not move as a rigid body when exciting it with the instrumented 

hammer in the vertical direction. The stiffness in the vertical direction cannot be determined 

accurately. In this case, the stiffness in the vertical direction will be assumed to be equal to that of 

horizontal direction. The stiffness in the horizontal direction is             . 

The bearing stiffnesses determined analytically using equation (4.15) are greater than the ones 

estimated from the experiment. The estimated values for the bearing stiffnesses and stiffness of the 

ring gear determined are summarised in Table 4-4. It is believed that the estimated ones will be more 

accurate and acceptable than the ones determined analytically. Therefore the estimated ones will be 

used in this study. 
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Table 4-4 Bearing stiffness values. 

Component Estimated 

horizontal 

Stiffness 

(MN/m) 

Estimated 

vertical 

stiffness 

(MN/m) 

Ratio of 

estimated 

horizontal 

to vertical 

stiffness 

Analytical 

horizontal 

stiffness 

(MN/m) 

Analytical 

vertical 

stiffness 

(MN/m) 

Ratio of 

analytical 

horizontal 

to vertical 

stiffness 

Carrier 

 

Kcx=0.50 Kcy=1.43 0.350 9.28 14.5 0.64 

Ring 

 

Krx=16.40 Kry=16.40 - - - - 

Sun 

 

Ksx=0.68 Ksy=1.35 0.500 9.79 15.3 0.64 

Planet Kpx=0.027 Kcy=0.049 0.551 0.37 0.81 0.46 

 

Also, the ratio of horizontal stiffness to vertical stiffness of the bearing was investigated to check if 

the values are closer to the one given by Friswell from the analytical method [48]. The comparisons 

between the estimated and analytical ratio are close except for the case of the carrier where the 

estimated ratio is 0.35 while the analytical ratio is 0.64 (Table 4-4).     

4.5 Estimation of sun-planet and planet-ring mesh stiffnesses by a 

fitting method 

It is necessary to determine the mesh stiffness of a gear system before the natural frequencies and the 

mode shapes can be predicted. The mesh stiffness is the mesh force per deflection at the contact 

between the meshing teeth [54]. It can vary when the number of teeth in contact changes or when the 

load fluctuates. In this study, the mesh stiffness is assumed to be constant for determination of natural 

frequencies and mode shapes. Various methods have been used to determine the mesh stiffness of a 

gear system analytically and using finite element analysis. Howard et al. [55] modelled the tooth 

stiffness using finite element analysis (FEA). Instead of modelling the bending stiffness, the static 

torsional mesh stiffness was considered and converted to a linear stiffness for use in their dynamic 

model. Wadkar and Kajale in their study [56] show how the single pair torsional stiffness and double 

pair torsional stiffness of meshing pinion and gear can be determined. They defined torsional stiffness 

as the ratio of applied torque to an angular rotation of gear body. i.e. K=T/θ, where K, T and θ are the 

torsional stiffness, applied torque and the angular rotation of gear body. The transverse plane angular 

rotation of the gear body θ are caused by bending and shear when the gear is stationary using equation 

4.16. 

  
   

 
         (4.16) 
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where B, H and R are the tooth displacement caused by bending and shearing at the contact, tooth 

displacement caused by contact deformation and the radius of the base circle. They determined the 

equivalent torsional stiffness of single pair of meshing teeth using by assuming that the meshing are 

springs in series.  

p g

eq

p g

K K
K

K K
            (4.17) 

where Kp and Kg  are the torsional mesh stiffnesses of the pinion and gear respectively. This procedure 

can be used to determine the torsional mesh stiffness. However, to determine the accurate 

displacement caused by shearing and bending may not be trivial. Chang et al. [57] proposed a model 

for determination of mesh stiffness of cylindrical gears using a combination of local contact analysis 

and finite element method (FEM). The two and three-dimensional finite element models which can be 

used to determine mesh stiffness were developed by Kiekbuch et al. [58]. The two-dimensional model 

is suitable to simulate a variety of different gear pairs in a short period of time. A formula for 

combined torsional mesh stiffness of spur gear was derived from the analysis of the two-dimensional 

model. They assumed that the stiffnesses of the body, teeth and contact zone can be arranged as three 

springs in series such that the combined torsional stiffness Ki for each pinion and gear will be  

,, ,

,, ,

( )( )( )c iB i T i
i

c iB i T i

K K K
K

K K K 
         (4.18) 

where KB,i, KT,i and Kci are stiffnesses of the gear body, tooth and the contact respectively with i 

denoting pinion or gear.  The combined torsional mesh stiffness of the pinion and gear are then 

determined in series. Sanchez [59] et al. presented a model for evaluation of spur gear mesh stiffness 

which includes bending, shear, compressive and contact deflections. The stiffness is evaluated at any 

point of the path of contact by an analytical equation. The load at any point of contact can be 

determined from the analytical equation.  

All the aforementioned methods of determining the mesh stiffness are not trivial. In this study, the 

sun-planet and ring-planet mesh stiffnesses were determined by fitting a relationship between the 

natural frequencies measured from the experiment and those predicted by the model. This is a new 

and easier method of estimating mesh stiffness of a planetary gear. It takes into consideration the 

measured natural frequencies of the system.  

For sun-planet mesh frequency estimation, the ring gear was excluded during the experiment. 

Therefore, only the carrier, sun and planet gears were present. A reasonable range of estimated values 
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for the mesh stiffness were assumed between 10
6
 and 10

9 
N/m. The contact stiffness matrices was 

decomposed (as shown in Appendix 3) in order to achieve this. The relationship in Equation (4.19) 

was used to determine the mesh stiffness by choosing to minimise an error function, Є.  

2

21

( )

( )

n ie ip

i
ip




 




        (4.19) 

where, n is the chosen number of modes to be used in the estimation process, while ωie and ωip are the 

natural frequencies of ith mode from the experiment and the predictions respectively. A table showing 

the natural frequencies are shown in the Appendix B. Each pair of estimated and predicted natural 

frequencies was chosen based on the closeness in their values. Some of the measured natural 

frequencies cannot be identified by the analytical model because the model can only capture the 

translational, rotational modes and the assumptions in the lumped parameter model. 

 

The two different lines of the error function Є against the sun-planet mesh stiffness are used in the 

model shown in Figure 4-13 (a). The value chosen was determined using three natural frequencies in 

the first case and four natural frequencies in the second case from both experiment and predictions. 

The minimum value in the error function corresponds to an estimated mesh stiffness of     

        and this was taken as the sun-planet mesh stiffness in the analytical model. The same 

procedure was repeated when a ring gear was included on the test rig in order to estimate ring-planet 

mesh stiffness. The estimated ring-planet mesh stiffness as shown in Figure 4-13 (b) is           . 

The average of sun-planet and planet-ring mesh stiffnesses estimated is            . This value 

was subsequently used as the mesh stiffness for both the sun-planet and planet-ring contact. Since the 

same numbers of pairs of teeth are in contact at any point in time the sun-planet and planet-ring mesh, 

both mesh stiffnesses should be the same. 
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(a)      (b) 

Figure 4-13 Determination of the mesh stiffness by minimising the error in the squared 

difference in the predicted and estimated natural frequencies as a function of the mesh stiffness 

(a) Sun-planet mesh (b) Planet-ring mesh. 

The red line denoted the error function when four natural frequencies were chosen while the black is 

for the error when three natural frequencies were chosen. 

4.6 Estimation of the mass moment of inertia of the components and the 

torsional stiffness of the ring gear 

The masses, mass moment of inertias of carrier, ring, sun and planet gears were evaluated and 

tabulated in Table 4-5. Their geometric shapes were considered for the calculations of the mass 

moment of inertia which was subsequently divided by the square of the radii of the pitch circles. The 

carrier mass moment of inertia was divided by its horizontal length as shown in Figure 4-4. These will 

be used in the mathematical model which has been derived in chapter three. The equations for 

calculation of the moment of inertia of the carrier, ring, sun and planet gears with relevant diagrams 

are shown in Appendix B.  

 

Table 4-5 The estimated masses and mass moment of inertia of the planetary gear. 

Component Masses (kg) Mass moment of 

inertia, I (kgm
2
) 

I/r
2 
(kg) 

Carrier 

 

1.00         2.41 

Ring 

 

4.30 0.1197 6.22 

Sun 

 

2.00 0.0051 1.00 

Planet 0.43 0.000254  0.22 
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Also, the torsional stiffness of the ring gear was calculated to be                . This can be 

found in Appendix B. 

4.7  The determination of viscous damping  

For the numerical analysis using a rotating frame of reference, the viscous damping coefficient was 

calculated using equation (4.20) taking the damping ratio ζ as 0.01. The reason for doing this is to 

see clearly the resonance peaks of the system when an external force is applied. 

2
i

i

i i

c

k m
   ; i=c, r, s and p       (4.20) 

The values of ci, ki and mi are the viscous damping coefficient, stiffness and mass of the carrier, ring, 

sun and planet gears. The estimated viscous damping coefficients are shown in Table 4-6.  

4.7.1 4.7.1 The effect of the different carrier speed on the damping ratios 

In this subsection, the effect of carrier speed on the damping ratios was studied. This was compared to 

the damping ratios obtained at each damped natural frequencies when using a fixed frame of reference. 

For this comparison between both frames of reference, the parameters in Table 4-6 were considered 

for both cases. The modal damping ratio of the m
th
 mode was determined analytically from the 

calculated eigenvalues as follows assuming a viscous damped mode i.e. 

2

1,2 1n ns j              (4.21) 

where, and, , n d     are the real parts of the complex eigenvalue and the damping ratio, natural 

frequency and damped natural frequency respectively.   

n   ; 
2

1d n            (4.22 (a) and (b)) 

Therefore, equation (4.13) becomes 

1,2 ds j            (4.23) 

 
n  can be made the subject of the formula from equation 4.22 (a) and (b) such that they will be equal 

and the modal damping ratio can be determined based on the damped natural frequency and σ.  The 

modal damping ratio of  the m
th
 mode is therefore expressed as  
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2

2 2

m
m

m dm




 



           (4.24) 

where, andm dm   are the real part of the complex eigenvalue of m
th
 mode and its damped natural 

frequency respectively. The calculated modal damping are shown using coloured lines in Figure 4-14 

for the carrier speeds 0 to 2000 rpm in 500 rpm increments. 

 

Figure 4-14 The effect of the carrier speed on the modal damping ratios at 0 to 2000 rpm. 

It is obvious in Figure 4-14 that there is no significant difference in the modal damping ratios between 

0 and 500 rpm from the second to eight mode, but the difference is obvious from 1000 rpm for these 

modes. The case is different for the ninth to fifteenth mode because the modal damping ratios are 

almost invariant at the carrier speeds considered. This implies that the Coriolis effect has no influence 

on the modal damping ratios at higher order modes, from 272 Hz but has an effect on the lower modes 

at 1000, to 2000 rpm.  

4.8 The frequency response at different carrier speed using a rotating 

frame of reference 

In many publications where a rotating coordinate system was used, the Coriolis terms are usually 

ignored because they do not have effect on the natural frequencies of the system at low rotational 
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speeds. The aim in this section is to investigate and report how the Coriolis effect affects the response 

at high carrier speeds. Five different carrier speeds at intervals of 500 rpm were chosen to demonstrate 

and compare the frequencies excited when a unit force is applied on a system component in the 

horizontal, vertical and rotational directions. Therefore, the bearing stiffness must be isotropic in this 

case, so the average of the stiffnesses of carrier, ring, sun and planet gears in both the horizontal and 

vertical directions as written in Table 4-4 were taken and used at this point. They are shown in Table 

4.6 and will be used in all the subsequent studies in this research when using either a fixed or rotating 

coordinate system for analysis unless otherwise stated.   

Table 4-6 Parameters of the system when using a rotating frame of reference 

Parameter 

description 
Carrier Ring Sun Planet 

Mass (kg) 1.00 4.30 2.00 0.43 
I/r

2 
(kg) 2.41 6.22 1.00 0.23 

Base circle diameter 

(m) 
176.8 261.00 134.00 63.40 

Bearing stiffness 

(N/m) 
6

0.965 10  7
1.64 10  6

1.02 10  4
3.82 10  

Bearing damping 

coefficient (Ns/m) 

using 0.01 as the 

damping ratio 

19.65 
53.22 

 
28.57 2.56 

Mesh stiffness (N/m) 

         

Torsional stiffness of 

the ring gear 

(Nm/rad) 
         

Torsional damping 

coefficient of the 

ring (Ns/m)  using 

0.01 as the damping 

ratio 
 

661 

Pressure angle 

(degree) αs=αr=20 

 

The above parameters were used to determine the natural frequencies and the mode shapes of the 

system using equation (3.56) in chapter 3. This is a case whereby a rotating frame of reference was 

used for the analysis neglecting the Coriolis terms. The natural frequencies and the mode type are 

shown in Table 4-7. 
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Table 4-7 Natural frequencies using a rotating frame of reference and isotropic bearing 

stiffnesses 

S/N Natural frequencies (Hz) Mode type 

1 

 
  Rotational mode  

2 

 
     Rotational mode 

3 
 

   Translational mode 

4 
 

     Rotational mode  

5 
 

      Translational mode 

6 
 

      Translational mode 

7 
 

      Translational mode 

8 
 

                         

9 
 

                         

10 
 

                          

11 
 

      Rotational mode 

12 
 

       Translational mode 

13 
 

1311.1                 

14 
 

1778.8 Translational mode  

15 1830.5                  

 

The mode shapes of the rotational and translational modes at 34.7 and 162.5 Hz respectively are 

shown in Figure 4-15. 
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(a)      (b) 

Figure 4-15  (a) Rotational mode at 34.7 Hz (b) Translational mode at 162.5 Hz. 

At 34.7 Hz, the sun and planet exhibit significant displacement in the rotational direction (Figure 4-

15). Also, at 162.5 Hz, it shows that the sun was more significantly displaced in the horizontal 

direction than the vertical direction. 

The carrier, ring, sun and planet gears were excited in the horizontal, vertical and the rotational 

direction using a rotating frame of reference and their point receptances are shown in Figures 4-16 to 

4-19 respectively. The various carrier speeds considered are shown in different colours for clarity with 

the black line as a reference. Also, the Coriolis effect on the natural frequencies of the system 

considering a wide carrier speed range was shown on a frequency map to confirm if there is any 

frequency split shown on the frequency response function.  
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(a)      (b) 

 

(c) 

Figure 4-16 Predicted point receptance of the carrier in the (a) horizontal (b) vertical and (c) 

rotational directions at different speeds. The point receptance at 0, 500, 1000, 1500 and 2000 

rpm are shown in black, red, blue, yellow and green lines respectively. 

Figure 4-16 (a) show the carrier frequency response in the horizontal direction. There is a peak at 44 

Hz when the carrier speed is zero (i.e. when there is no Coriolis effect) and this is a translational mode. 

There is no significant difference between the resonance frequencies at the carrier speeds 0 and 500 

rpm. The difference becomes significant when the carrier speed reaches 1000 rpm and above because 

of the Coriolis effect. At higher frequencies, the resonance frequency when there was no Coriolis 

effect is 162.5 Hz and there was a frequency split for the carrier speeds above 500 rpm. This is due to 

the fact that there are two frequencies of 162.5 and 162.9 Hz when there is no Coriolis effect in the 

system which split as the carrier speed increases. It has been shown in Chapter three that the 

analytical model with two planet gears does not exhibit this behaviour whereby there will be two 
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similar natural frequencies of translational modes. Lin and Parker [14] said this kind of mode has a 

multiplicity of two. However, the stiffnesses used for the analysis in Chapter three are more than the 

ones used in this section, so this may be responsible for the occurrence of two similar frequencies 

splitting as the carrier speed is increasing in the two-planet model.  The higher frequencies excited in 

the vertical direction also show the same trend as in the horizontal direction. Without the Coriolis 

effect, a rotational mode was excited in the rotational direction (Figure 4-16 (c)) at 34.7 Hz.  The 

difference in the resonance frequencies is not significant at the lower speed 500 rpm.  The difference 

is significant from 1000 rpm most especially at 2000 rpm, but less significant when compared to the 

translational mode excited at low frequencies in the horizontal direction (Figure 4-16 (a)). It is 

obvious that the frequency of the rotational mode does not split. For three directions, the responses 

when there is no Coriolis effect is about 6 dB higher than the responses at higher carrier speeds. This 

was mentioned considering that the same viscous damping coefficient was applied to the components 

in both the horizontal and vertical directions. 

  

(a)       (b) 

 

(c) 

Figure 4-17 Predicted point receptance of the ring gear in the (a) horizontal, (b) vertical and (c) 

rotational directions at different speeds. The point receptances at 0, 500, 1000, 1500 and 2000 

rpm are shown in black, red, blue, yellow and green lines respectively. 
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Two frequency peaks can be seen in the horizontal and vertical directions of the ring gear at 298.7 and 

310.8 Hz without the Coriolis effect (Figures 4-17 (a) and (b)). When the carrier is rotating at 500 rpm, 

there is a little difference in the resonance frequencies. The difference becomes obvious at the carrier 

speeds above 1000 rpm. In the rotational directions, there is no difference in the resonance 

frequencies with and without the Coriolis effect. This implies that Coriolis effect has no influence on 

the rotational modes of the ring because of its high torsional stiffness i.e. the ring gear is effectively 

stationary. 

  

(a)      (b) 

 

(c) 

Figure 4-18 Predicted point receptance of the sun gear in the (a) horizontal, (b) vertical and (c) 

rotational directions at different speedsThe point receptances at 0, 500, 1000, 1500 and 2000 

rpm are shown in black, red, blue, yellow and green lines respectively. 
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There is a low-amplitude peak on the sun gear at 105.7 Hz without the Coriolis effect, while the 

resonance frequencies at the carrier speed above 500 rpm can be seen at lower frequencies (Figure 4-

18 (a) and (b)). As in the case of the carrier, the resonance frequency at 0 and 500 rpm are not 

significantly different from each other with a difference of only 4 Hz. The case is different for 

excitations above 1000 rpm. The higher the carrier speed the lower the resonance frequencies. The 

second mode was excited in the absence of Coriolis effect with resonance occurring at 113.7 Hz. In 

this mode, the resonance frequency is increasing as the carrier speed is increasing.  

In the rotational direction (Figure 4-18 (c), the frequency of the corresponding to a rotational mode is 

34.7 Hz when there is no Coriolis effect. As the carrier speeds increases, the resonance frequencies 

are reducing, although there is no significant difference between the frequencies excited at 0 and 500 

rpm. Another rotational mode was excited at 46.1 Hz for a stationary coordinate system while the 

other resonance frequencies at for rotational speeds above 500 rpm are not significantly different. This 

shows again that the Coriolis effect does not have a significant influence on the rotational modes of 

the system at high carrier speeds.  
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(a)      (b) 

 

(c) 

Figure 4-19. Predicted point receptance of the first planet gear in the (a) horizontal, (b) vertical 

and (c) rotational directions at different speeds The point receptances at 0, 500, 1000, 1500 and 

2000 rpm are shown in black, red, blue, yellow and green lines respectively. 

The point receptances of the first planet gear are shown in Figures 4-19. The corresponding point 

receptances of the second planet gear are in Appendix 5, because they are identical. A careful 

observation shows that a rotational mode at 34 Hz as shown in Figure 4-18 (a) was not visible when 

the carrier is not rotating but can be seen at the speed of 500 rpm. It is obvious for this mode that the 

resonance frequencies are decreasing as the carrier speed increases. Also, at a translational mode 44 

Hz when there is no Coriolis effect, the frequencies are decreasing with increased carrier speed. The 

carrier speed has no significant effect on another rotational mode excited at 46.1 Hz. In Figure 4-18 

(b), the resonance frequencies at 34.7 Hz, 105.7 and 298.7 Hz are decreasing with increased carrier 

speed because they translational mode. Although there are no peaks at 113.7 and 310.8 Hz when there 

is no Coriolis effect, but resonance peaks can be seen at 118.7 and 315 Hz when the carrier speed is 

500rpm. The resonance frequencies are increasing at these two frequencies with increased carrier 
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speed. The two frequencies correspond to two translational modes. The resonance frequency of a 

rotational mode at 46.1 Hz remain significantly unchanged as well as the resonance frequencies from 

959.7 Hz and above. The same trend in the vertical direction of the planet frequency response can be 

seen in the response at the rotational direction.  

In general, the trend in the responses considering the Coriolis effect depends on the mode type. In 

other words, the resonance frequencies decrease as the carrier speed increases for frequencies excited 

between 34 and 105 Hz but with no significant effect on the rotational modes. The resonance 

frequencies are either decreasing or increasing as the carrier speed increases for frequencies between 

118.7 and 315 Hz. All the modes excited (both rotational and translational modes) above 959.7  Hz 

remain unchanged with increasing carrier speed, therefore the frequencies excited within this range 

does not change even by a small amount due to Coriolis effect. This observation is peculiar to a two-

planet model. 

The frequency map which shows how the carrier speed is affecting the undamped natural frequencies 

is shown in Figure 4-20. 

  

Figure 4-20 Zoomed view of a frequency map showing the split at 162.5 and 162.9 Hz as the 

carrier speed increases for a two-planet model. 

The frequency map shows two translational modes number 7 and 8 at 162.5 and 162.9 Hz which split 

as the carrier speed is increases.  
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4.9 Location of the poles in the s-plane 

The positions of the damped poles in the s-plane are presented to see if the Coriolis effect can produce 

shifts to the right hand side of the complex plane which indicates potential instability in the system. 

 

Figure 4-21 Positions of the damped poles in the s-plane at different carrier speeds. 

Figure 4-21 shows that the damped poles are not significantly affected by the Coriolis effect due to 

the rotational coordinate system which is attached to the carrier. Also the poles are not shifting to the 

right hand side due to the high carrier speed which indicate potential instability in the system.  

4.10 Conclusions 

A suitable vibration test rig for a planetary gear system has been designed and developed for vibration 

tests and model validation.  The test rig was configured such that an accelerometer can be mounted on 

the carrier, ring, sun and planet gear separately at the same time when they are stationary or rotating. 

The novelty in this is that, the independent vibration of each of them can be measured with the 

accelerometers rotating with the components during operation. Also, the test rig was built in such a 

way that it will be easier to assemble or disassemble when necessary.  

The configuration of the test rig makes it possible to be used for experimental estimation of the 

bearing stiffnesses of the carrier, ring, sun and planet gears when it is not rotating. The estimated 

bearing stiffnesses were compared to the stiffnesses determined analytically and the ones of analytical 

are significantly larger. The estimated bearing stiffnesses will be used instead of the analytical ones. 

The ratio of the horizontal to the vertical bearing stiffness was also investigated and compared with 
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the results in the literature [48]. It shows that the ratios are close for cases of the sun and planet 

bearing. The mesh stiffness was also determined using a fitting method which includes the measured 

natural frequencies. This is another novelty in this chapter as the sun-planet and planet-ring mesh 

stiffnesses were estimated by a fitting method. The values of both the bearing and mesh stiffnesses 

will be used in the lumped parameter analytical model to predict both the free and forced responses of 

the planetary gear in the subsequent chapters.  

The effect of carrier speed (i.e. Coriolis effect) on the modal damping ratios of the system was 

investigated. Out of fifteen modes, it shows there is no significant change on the modal damping 

ratios from the first to the eighth mode while the damping ratios from ninth to the fifteenth mode 

remain unchanged.  

Also the effect of the carrier speed on the resonance frequencies was studied for each component in 

the different directions. In general, the dynamic behaviour is not significantly affected by a Coriolis 

effect at a carrier speed below 500 rpm. Above 500 rpm the behaviour may seem to be different until 

1000 rpm where the change in frequency is obvious for the translational mode. The Coriolis effect 

either decreases or increases the resonance frequencies in the component does not have a significant 

effect on the rotational mode excited. All the excited modes (both rotational and translational) above 

960 Hz remain unchanged with increase in the carrier speed, therefore they are not influenced by the 

Coriolis effect probably because of higher stiffness. It was discovered that there is a translational 

mode (approximately 163 Hz) with a multiplicity of two in the model with two planet gears. In this 

case, the stiffness values of the bearings have reduced compare to the one in chapter 3. Therefore, the 

frequency will split at high carrier speeds when using a rotating frame of reference.   

The next chapter focuses on modal testing carried out on the test rig when it was stationary. The 

results of the modal test will be compared to the predictions from the analytical model.  
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Chapter 5 Comparison between the predictions and 

measurements with forced vibration response 

In the previous chapter the parameters needed for the analytical model have been determined. This 

chapter focuses on comparing the predictions from the analytical model with the measured natural 

frequencies. In this case, a fixed frame of reference was used to analyse the dynamic model, and the 

anisotropic bearing stiffnesses determined in Chapter 4 were used. For the modal test, the frequency 

and loss factor are shown.  

The forced response at the mesh excitation frequency was predicted using the analytical model and 

this was compared to the measured response from the spinning test.  

5.1 Experimental modal analysis: non-rotating planetary gear 

The processing of the vibration data from the planetary gear system was carried out using modal 

analysis, in order to validate the results obtained from the lumped parameter model.  

The set-up for the modal testing is shown in Figure 5-1. The impact hammer with a steel tip (model 

number PCB 086C03) was used. The sensitivities of the hammer and the accelerometers are 2.25 

mV/N and 1.00 mV/ms
2
 respectively. The two accelerometers (model number PCB 352C22) 

measuring the response in the horizontal (x) and vertical (y) directions of the planetary gear 

components were acquired. The frequency span was set to be 10 kHz while the number of sampling 

points is 3200. The sampling time is thus 0.32 s. The frequency resolution, df, equals 3.125 Hz which 

is good enough to distinguish between two close natural frequencies. The accelerometers were 

carefully mounted with wax on the components to be tested in both the horizontal and vertical 

directions. The clipped data were rejected while the signals with good coherence were accepted for 

processing. The acquired data namely acceleration and force for computation of the accelerance is 

converted from analogue voltage signals by the analyser. The natural frequencies and loss factors 

were subsequently determined from processing the point accelerance measured on each component of 

the system.  
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Figure 5-1 Planetary gear vibration test on the ring gear in both the horizontal and vertical 

directions. 

5.2 Validation of the analytical model 

Viscous damping was added into the analytical model in parallel to the bearing stiffness of the carrier, 

ring, sun and the planet gears based on the measured loss factor measured at the first excited mode. 

However, there are some cases where the viscous damping estimated is slightly greater than the one 

used. For instance, the loss factor measured for the first excited mode (84.37 Hz) of the carrier in the 

horizontal direction is 0.3. This implies the damping ratio is 0.15 but 0.2 was used in the analytical 

model which is not significantly different.   

The frequency responses in the rotational direction are not shown in the model validation, because 

they were not measured. The parameters in Tables 4-4 and 4-5 were used to determine analytically the 

natural frequencies and mode shapes of the system. In this case, the bearing stiffnesses are not the 

same in all directions, so a fixed frame of reference was chosen as the coordinate system. The 

analytical and measured point receptances of the carrier, sun, planet and ring gears were plotted and 

shown together for each them in x and y directions respectively.  
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Figure 5-2 Locations where the carrier was excited in x and y directions. 

A unit force, Fcx was applied to the carrier in the horizontal direction and subsequently in the vertical 

direction, Fcy as shown in Figure 5-2 to show the points of excitation and measurement in the 

experimental and the analytical models. An accelerometer mounted on the opposite side measures the 

point accelerance which was later converted to receptance. The point accelerance and Nyquist circle 

at 84.37 Hz are shown in Figures 5-3 (a) and (b). The frequencies of the modes measured on the 

carrier in this direction are shown in Table 5-1.  

 

(a)      (b) 

Figure 5-3 (a) Point accelerance and (b) Nyquist circle of the carrier in x directions at 84.37 Hz. 

 

Table 5-1 Modal parameters of the carrier in x direction 

Mode Frequency 

(Hz) 

Loss factor Modal 

diameter 

Phase Angle to +ve 

imag axis 

(deg) 

1 84.37 0.300 0.589 +ve -22 

2 365.80 0.180 0.478 +ve -45 

3 537.47 0.114 0.592 +ve -64 

4 7631.21 0.009 2.140 -ve -168 



90 

 

  

(a)      (b) 

Figure 5-4 (a) Point accelerance and (b) Nyquist circle of the carrier in y directions at 143.7 Hz. 

The point accelerance and Nyquist circle at 143.7 Hz are shown in Figures 5-4 (a) and (b). The 

frequencies and other modal parameters measured on the carrier in y direction are shown in Table 5-2.  

Table 5-2 Modal parameters of the carrier in y direction 

Mode 
Frequency 

(Hz) 
Loss factor 

Modal 

diameter 
Phase 

Angle to +ve 

imag axis 

(deg) 

1 143.70 0.204 0.369 +ve 15 

2 369.00 0.215 0.395 +ve -34 

3 587.60 0.073 1.130 +ve -24 

4 1984.00 0.053 8.060 +ve -10 

5 3781.00 0.067 9.460 +ve 17 

6 7628.00 0.079 11.100 -ve -114 

 

  

(a)       (b) 

Figure 5-5 Point receptance of the carrier in both the (a) x and (b) y directions. 
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The predicted and measured receptances are shown graphically for each direction for comparison. 

Figure 5-5 (a) shows the receptance in the x direction where the coherence of the measured signal is 

acceptable from 31.5 Hz. There is poor matching between two damped peaks at 84.37 and 121.9 Hz 

from the predicted and measured results respectively. The predicted mode, corresponding to 121.9 Hz, 

is a translational mode where the carrier, sun and planet gears are translating. There is a significant 

amount of damping in the measured receptance because the peak is not sharp. This may be due to 

dissipation from the bearing and friction or coulomb damping between the teeth of the sun and planet 

gears in the system. The case is different when the planetary gear system is rotating, this will be 

shown in Chapter 6. In the y direction of the carrier (Figure 5-5 (b)), the measured and predicted 

receptances show a better degree of agreement. The coherence of the measured signal in this direction 

is good from 44 Hz. The first excited mode corresponding to 195 Hz is a translational mode. There 

are two peaks at 1984 and 3781 Hz in the measured frequency responses which were not predicted by 

the analytical model. 

 

Figure 5-6 Locations where the sun gear was excited in x and y directions. 

The sun gear was excited with an instrumented hammer in the horizontal direction and subsequently 

in the vertical direction as shown in Figure 5-6.  
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(a)       (b) 

Figure 5-7 (a) Point accelerance and (b) Nyquist circle of the sun gear in x direction at 187.6 Hz. 

The point accelerance and Nyquist circle are shown in Figure 5-7 (a) and (b) while the modal 

parameters are shown in Table 5-3. 

Table 5-3 Modal parameters of sun gear in x direction 

Mode 
Frequency 

(Hz) 
Loss factor 

Modal 

diameter 
Phase 

Angle to +ve 

imag axis 

(deg) 

1 90.66 0.204 0.102 +ve 17 

2 187.64 0.339 0.301 +ve -48 

3 1341.23 0.217 0.514 +ve -52 

 

  

(a)       (b) 

Figure 5-8 (a) Point accelerance and (b) Nyquist circle of the sun gear in y direction at 143.9 Hz. 
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Table 5-4 Modal parameters of sun gear in y direction 

Mode 
Frequency 

(Hz) 
Loss factor 

Modal 

diameter 
Phase 

Angle to +ve 

imag axis 

(deg) 

1 143.9 0.453 0.312 +ve -52 

  

(a)      (b) 

Figure 5-9 Point receptance of the sun in both the (a) x and (b) y directions. 

The measured and predicted receptances in the x direction are shown in Figure 5-9 (a), where the 

coherence for the measurements is good from 44 Hz. Both the measured and predicted receptances 

show a fair degree of agreement especially between 2.5 to 8 kHz. There is a peak in the predicted 

receptance (1779 Hz) which was not measured. This is more significant in the predicted receptance in 

the y direction (Figure 5-9 (b)) as well as another peak at 1237.3 Hz. The coherence is good from 35 

Hz in the vertical direction. The corresponding modes for these two peaks as predicted and shown in 

Table 5.1 are translational modes. 

 

 

Figure 5-10 Locations where the planet gear was excited in x and y directions. 
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The planet gear was subsequently excited in the same way as shown in Figure 5.10 and the natural 

frequencies are shown in Tables 5-5 and 5-6. 

Table 5-5 Modal parameters of planet gear in x direction 

Mode Frequency (Hz) Loss factor Modal diameter Phase 

1 184.40 0.315 0.584 +ve 

2 362.45 0.151 0.280 +ve 

 

Table 5-6 Modal parameters of planet gear in y direction 

Mode Frequency 

(Hz) 

Loss factor Modal 

diameter 

Phase Angle to +ve 

imag axis 

(deg) 

1 156.36 0.465 1.46 +ve -30 

2 356.40 0.354 1.26 +ve -61 

3 2034.50 0.055 1.89 +ve -69 

 

The accelerance and Nyquist circle are in Appendix C  

  

(b)    (c) 

Figure 5-11 Point receptance of the planet in both the (a) x and (b) y directions. 

The measured and predicted receptance in the x direction are shown in Figure 5-11 (a). The coherence 

of the measured signal is acceptable from 40 Hz upwards. For the model, two predicted resonance 

peaks can be seen in the horizontal direction at 42.3 Hz and 1779 Hz. The peak at 42.3 Hz is damped 

while the second one at 1779 is lightly damped. Both peaks correspond to the class of translational 

modes although the planet gears are moving in the three translational and rotational directions. The 

measured and predicted responses only agree at frequencies above 2 kHz. Also, the predicted 

receptance show two peaks at 34.6 and 1237 Hz in the y direction (Figure 5-11 (b)). The coherence of 

the measured signal is acceptable from 13 Hz. The first excited mode corresponds to a rotational 



95 

 

mode while the second one at 1237 Hz is a translational mode. This implies from the predictions that 

both translational and rotational modes can be excited in the y direction of the planet gears probably 

because it is tangential to the rotational coordinate of the carrier and planet gears. The behaviour of 

the measured and predicted results agrees at frequencies above 3 kHz. 

 

Figure 5-12 Locations where the ring gear was excited in x and y directions. 

 

The ring gear was subsequently excited in the same way as shown in Figure 5-12. The modal 

parameters are shown in Tables 5-7 and 5-8. 

Table 5-7 Modal parameters of ring gear in x direction 

Mode Frequency 

(Hz) 

Loss factor Modal 

diameter 

Phase Angle to +ve 

imag axis 

(deg) 

1 275.00 0.175 1.02 +ve -55 

2 506.20 0.125 1.20 -ve -164 

3 2281.43 0.053 1.08 +ve -15 

4 4200.00 0.078 22.20 -ve -177 

5 7780.00 0.052 22.00 -ve 108 

.  

Table 5-8 Modal parameters of ring gear in y direction 

 

Mode Frequency 

(Hz) 

Loss factor Modal 

diameter 

Phase Angle to +ve 

imag axis 

(deg) 

1 515.56 0.140 4.38 -ve 173 

2 1117.00 0.118 1.01 -ve 138 

3 1640.57 0.039 2.03 -ve 130 

4 2300.00 0.054 6.42 -ve 158 

5 4249.80 0.051 11.90 -ve -163 



96 

 

  

(b)    (c) 

Figure 5-13 Point receptance of the ring in both the (a) x and (b) y directions. 

 

Figure 5-13 (a) shows both the measured and predicted receptances in the x direction. The measured 

signal from this direction is acceptable from 50 Hz.  A peak frequency was measured at 275 Hz and 

another one was predicted at approximately 311 Hz. The difference between them is significant. The 

predicted frequency is related to a translational mode where only the ring gear is translating among 

the central members of the planetary gear system. In the y direction (Figure (5-13 (b)), the measured 

signal is acceptable from 30 Hz. A damped peak at 299 Hz was predicted which is a frequency of 

translational mode while a measured peak can be seen at 516 Hz. There is poor agreement between 

the peaks and the behaviour at low and high frequencies in this direction. This may be due to the fact 

that there is a limitation in measuring a reasonably accurate stiffness of the ring gear in the y direction 

as mentioned earlier in Chapter 4.  
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Table 5-9 Predicted and measured natural frequencies of a two-planet model of a planetary 

gear system. 

S/N Predicted 

natural 

frequencies 

(Hz) 

Mode type Measured 

natural 

frequency 

(Hz) 

% 

difference 

1      Rotational mode of the carrier and sun -  

2       Rotational mode -  

3       Translational mode -  

4       Rotational mode of the carrier and sun of the ring  -  

5       Translational mode 90.66 1.48 

6        Translational mode 143.70 15.17 

7        Translational mode 143.70 14.47 

8                           187.64 4.14 

9                           275.00 8.65 

10                                             356.64 12.83 

11      0 Rotational mode -  

12         Translational mode 1117.00 10.77 

13 1311.10                 1341.23 2.25 

14 1778.80 Translational mode (carrier moves only in x 

direction while ring and planet moves in x and y 

directions) 

1640.57 8.43 

15 1830.50                                                1984.00 7.74 

 

Table 5-9 shows the predicted and measured natural frequencies of the particular planetary gear 

system modelled. The percentage difference was estimated between the measured and predicted 

natural frequencies and it shows that the sixth, seventh and tenth modes are not as accurate as for the 

other modes because their natural frequencies greater than nine percentage points higher than the 

predicted ones. The mode shapes of corresponding to 0, 92 and 122.9 Hz are shown in Appendix C.  
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(a)      (b) 

Figure 5-14 Sensitivity of the natural frequencies to the (a) sun-planet mesh stiffness and (b) 

planet-ring mesh stiffness. 

The sensitivity of the sun-planet and planet-ring mesh stiffness was determined using the analytical 

model and shown in Figures 5-14 (a) and (b). It shows that the natural frequencies from 1779 Hz are 

sensitive to these mesh stiffnesses while the lower frequencies are not significantly sensitive to the 

mesh stiffnesses. This is in agreement with the study shown by Lin and Parker where they show the 

sensitivity of the natural frequencies to the sun-planet mesh stiffness [22]. The method used to 

estimate the sun-planet and planet-ring mesh stiffnesses is relatively simpler. The values of the mesh 

stiffnesses determined are believe to be close to the accurate value.  

5.3 Forced vibration responses 

This section focuses on studying the response of planetary gear system to transmission error as an 

externally applied force at the mesh. The force is assumed harmonic (i.e. sinusoidal) for easier 

calculation and interpretation. The force was added by adding a forcing function to the equation of 

motion (3.49), as previously derived in chapter 3 of this report. A rotating frame of reference was 

chosen as a coordinate system for this study. The mesh force was applied at the ring-planet and sun-

planet mesh of the system.  

The response is obtained in time domain by writing equation (3.49) in state space form and using the 

ODE 45 solver in MATLAB to solve the differential equation written in equation (5. 1).     

 

  
( 
 ̇
)  [

  
                   

             
] ( 

 ̇
)  (  

     
)   (5.1) 

The notations have been defined previously in equation 3.50 except for     ̇         
which denotes 

the generalized displacement, velocity and force vectors respectively.  Therefore, the component force 
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vectors in a force vector Fm on the carrier, ring, sun and planet gears respectively are written in 

equations (5.2 - 5.6). 

 0 0 0
T

c F           (5.2) 

 sin cos
T

r rn rn rn rn rn rn rn rnK e K e K e F       (5.3) 

 sin cos
T

s sn sn sn sn sn sn sn snK e K e K e F      (5.4) 

 ) ) )( sin ( cos (
T

n rn rn sn sn rn rn sn sn rn rn sn snK e K e K e K e K e K e      F  (5.5) 

Since it was assumed that the excitation force is time harmonic, then  

sinrn rn me E t           (5.6)  

where, Ern is the amplitude of the transmission error applied (0.00105 mm) between sun-planet and 

planet-ring meshes.  

The transmission error between planet and gear ern is assumed to be the same as sun-planet esn. The 

mesh frequency which is the product of carrier speed (Ωc) and the number of teeth on the ring gear is 

denoted by ωm. The harmonic force on the planet gear is equal and opposite of the forces on the sun 

and ring gears. The predicted results were shown in Figures 5-15 and 5-16. 

 

 (a)      (b) 

Figure 5-15 The predicted power spectral density of the carrier radial acceleration response at a 

rotational speed of 100 rpm in the (a) horizontal and (b) vertical directions. 
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 (a)      (b) 

Figure 5-16 The predicted power spectral density of the sun gear radial acceleration response at 

a rotation speed of 100 rpm in the (a) horizontal and (b) vertical direction. 

Figures 5-15 (a) and (b) show the predicted acceleration power spectral densities (PSD) of the carrier 

in both the horizontal and vertical directions with the mesh frequencies dominating the spectrum. In 

this case, the carrier speed is 100 rpm which makes the mesh frequency 308 Hz. There are some other 

frequencies in the spectrum as shown in Figure 5-15 (a) which are 44 and 162 Hz while another one 

was excited at the vertical direction Figure 5-15 (b) at 162 Hz. Figure 5-16 (a) and (b) show the 

acceleration PSDs of the sun gear in the horizontal and vertical directions. They also show excitation 

at 44 Hz. 

 

(a)      (b) 

Figure 5-17. The measured power spectral density of the acceleration response at a rotational 

speed of 100 rpm (a) Carrier in radial direction (b) Sun gear in radial direction. 



101 

 

Figures 5-17 (a) and (b) show the measured acceleration power spectral densities of the carrier and the 

sun gear in the radial direction respectively. The dominant frequency content in both figures is also 

the mesh frequency at 318 Hz. There is small difference in the predicted and measured mesh 

frequencies, because the ideal speed of the sun gear is supposed to be 295 rpm, but the actual speed is 

305 rpm, hence the mesh frequency which is a function of speed increases. For a sun gear vibration 

(Figure 5-17 (b)), there are symmetric sidebands around a frequency at 32 Hz. The frequencies at the 

lower and upper side band are 27 and 37 Hz respectively.  The measured speed of the sun gear is 305 

rpm (5.08 Hz). It shows that the lower and upper sidebands are    Hz to the frequency at 32 Hz. This 

frequency may be associated with a particular fault on the sun gear. It shows that the experiment can 

detect more forces exciting the system than the model being considered. More investigations on some 

faults at lower frequencies are discussed in the next chapter. 

5.4 Conclusions 

The measured parameters of a planetary gear train were used in the analytical model and the 

frequency response was compared with that of the modal testing. Although the agreement is not 

perfect, the model seems to represent the main physical features of the system. Probably higher degree 

of agreement can be achieved if mesh damping was determined and included in the model. For the 

ring gear there is inaccuracy in measuring the stiffness in the vertical direction as discussed in chapter 

4. Therefore for better agreement, the mesh damping and stiffness of the ring gear in the vertical 

directions must be accurately estimated. Also determined, was the sensitivity of the sun-planet and 

planet-ring mesh to the natural frequencies of the system; only the high natural frequencies (above 

1311 Hz) are significantly affected by the mesh stiffness, the lower frequencies are governed by the 

bearing frequencies. The modal testing will help to distinguish between the frequencies that are 

related to natural modes and rotational speeds in the frequency spectrum of the spinning test.  

The analytical model has been used to predict the mesh response of the system to mesh excitation. 

The next chapter will focus on the analysis of the results from the spinning test at different rotating 

speeds and loads as well as identification of vibration source in the system during operation. 

The next chapter will focus on the spinning test where a planetary gear system is operating to transmit 

power from the input to the output. Different electrical loads will be applied and the independent 

vibration of the carrier, sun and planet gears will be measured. Also vibration source in the system 

will be identified using a method known as Principal component analysis (PCA) where the vibration 

level of the individual component will be determined in order of preponderance.      
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Chapter 6 Spinning Testing and Vibration Source 

Identification 

In the last chapter, the natural frequencies and some other modal parameters of a planetary gear 

system were measured using modal testing. The measured natural frequencies will be one of the 

frequencies of interest in this chapter where a spinning test will be carried out to know the effect of 

loads and speeds on the response of the system during operation. 

Therefore, this chapter focuses on the dynamic response of the planetary gear train (PGT) when 

rotating at different rotational speeds under different loads and identification of vibration sources. 

This is necessary, because it will show how the system behaves before active control is implemented. 

Also with the natural vibration mode, the vibration response of the carrier, sun and planet gears at 

mesh frequencies will be investigated. Investigation will be done to determine their level of vibration 

responses when changing the load and the rotational speed and these will be compared. Also, a 

method known as principal component analysis (PCA) will be applied to identify the vibration 

sources in the planetary gear for at different speeds.  

One of the sources of vibration in planetary gears is the vibration generated from the sun-planet mesh 

as explained by Miao and Zhou [60]. This mesh vibration is transmitted to the stationary casing via 

the sun gear, its shaft and bearing. Another transmission path as explained by them is the vibration 

from the sun-planet mesh which passes through the planet gear and its bearing to the carrier and its 

shaft and from there to the carrier bearing and to the casing of the gearbox. A second source is the 

mesh vibration generated from the planet-ring mesh. This vibration is transmitted directly to the ring 

gear and the casing. However, it was stated by McFadden and Smith [36], that if an accelerometer is 

placed on a stationary ring gear, the dominant vibration that can be measured by the accelerometer is 

the one generated by the planet-ring mesh. Therefore, it is believed that the true dynamic behaviour of 

the carrier, sun and planet gears may not be fully captured by accelerometers placed either on the 

stationary ring gear or casing. One of the benefits of measuring the response using a rotating frame of 

reference (i.e. where the accelerometers rotate with the component), according to Jarvinen [61] is that 

all the measured signals are from the true dynamics of the rotating components being measured. 

Vibration signals of a rotating component measured from fixed ring gear or casing (i.e. fixed frame of 

reference) are characterized by some factors (like signal distortion, vibration of the casing etc.) that do 

not correlate with the true motions of the rotating component. Smith said such a vibration signal is 

likely to contain a substantial amount of extraneous information [62]. In a case like this, time 

synchronous averaging (TSA) can be used to remove unwanted signals that are not related to the 
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component speed [6]. However, if there is a frequency relating to the natural mode, it will be filtered 

out of the frequency spectrum [5].  

One of the main objectives of this chapter is to determine the effect of load and rotational speed on the 

dynamic response of a planetary gear system. These responses are measured independently on the 

components using MEMS accelerometers which rotate with them unlike what many researchers do. 

Section 6.1 covers the coordinate system used in measuring vibration response of planetary gears and 

causes of sidebands in the spectrum while section 6.2 covers the set-up and data acquisition. Section 

6.3 covers the effect on the dynamic response when both the speed and the load are changing, the 

effect when the load is constant at varying speed and the effect when the speed is constant, and the 

load is changing. Another objective is to identify the vibration source using a statistical method 

known as principal component analysis (PCA). PCA can help to determine the optimal location where 

control force can be applied in the case of active vibration control. Therefore, section 6.4 focuses on 

the principal component analysis where the vibration sources of the planetary gear system were 

investigated. This was done by forming a correlation matrix using the PSDs of the measured signals. 

The singular value decomposition was utilized to determine the eigenvalues and the eigenvectors 

which are useful parameters in the vibration source identification. The evaluated virtual coherence 

assists in determining how much the principal components are contributing to each physical source.  

6.1 Vibration measurement of planetary gears and coordinate system 

An accelerometer mounted on the casing of a planetary gearbox measures a filtered vibration response 

of the original vibration signal characterized by a significant noise contamination. This makes it more 

challenging to process signal in order to detect fault successfully [5].  There are some experiments 

where a slip ring has been used with the instrumentation to measure the vibration of the rotating 

components. In this case, there may be some unwanted signals (noise) in the frequency spectrum due 

to electrical noise and contacts within the slip ring like the experiment conducted by Smith [62] and 

Ericson et al. [63] .  

According to McFadden [36], most of the experiments where gear vibrations were investigated, the 

accelerometers are either mounted on a stationary member or the stationary casing. In this case, an 

accurate vibration amplitude may not be obtained because the level of vibration transmitted from the 

components to the casing may not be the actual vibration level of the rotating components. The 

accelerometer may capture some dynamic response that is not the response of the intended rotating 

component to be measured. De Smidt [64] suggested in his thesis after mounting accelerometers with 

slip rings on the carrier that with the future improvement in wireless technologies, the internal 

measurement of vibration of planetary gear will be more viable. 
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In this research, the response of the planetary gear is obtained experimentally by using wireless 

micro-electro-mechanical system (MEMS) accelerometers which can rotate with the planetary gear 

components. It is important to state that this kind of experiment is not common because the vibration 

of the rotating components cannot be measured by typically available accelerometers, which use 

cables to transmit signals. The MEMS accelerometers were mounted on each of the rotating 

components of the planetary gear, and their time histories were obtained. These sensors, give the 

possibility of measuring the vibration of the rotating elements on-site. The low frequency range 

associated with rotation gives the symptoms of basic mechanical faults like unbalance, misalignment, 

looseness etc.  This frequency spans between one to ten multiplied by the rotational frequency [65].  

These frequencies are measured by the MEMS accelerometers which helps to detect the misalignment 

and effect of load and rotational speed on it. The frequency response in this study was subsequently 

obtained by a Fast Fourier Transform (FFT) algorithm and analysed for interpretation.   

6.1.1 Sidebands and its causes in planetary gear vibration signal 

Most measured vibration and noise signals measured from planetary gear exhibit sideband around the 

mesh frequency [35]. On this note, it is necessary to discuss the basic meaning of sideband. Sideband 

is defined as a band of frequencies higher or lower than the centre or dominant frequency. The 

dominant frequency in this case is the mesh frequency. Sidebands are formed due to frequency, 

amplitude or phase modulation of the signal at the mesh. The frequency of the sidebands is equal to 

the mesh frequency plus and minus the rotational speed of the components in each case i.e. the carrier, 

sun and planet gears. For instance, if the frequency of the sideband is equal to the mesh frequency 

plus the rotational speed of a planet gear, it called an upper side band [36] and [66]. Conversely, if the 

sideband is equal to the mesh frequency minus the rotational speed of a planet gear it is called a lower 

side band. 

According to Inalpolat and Kahraman [35] there will be sideband  in planetary gear vibration signals 

if  

 the planet load sharing characteristics impact the amplitude modulation as well as the 

dynamic mesh forces. 

 the planet passes through the location of a fixed transducer mounted on a stationary ring gear 

or casing. In this case there will be variation in the amplitudes of vibration which causes 

amplitude modulation.  

 there are eccentricities and run-out errors of the gears and the carrier, tooth thickness, tooth to 

tooth spacing and indexing errors. 
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 there is a change in the deformation of the components with planet pass, tooth pass or  ring 

gear spline pass as observed by the gears. 

 there is a large number of manufacturing errors. These can cause variations which are capable 

of modulating the dynamic gear mesh forces in three different forms which are amplitude, 

frequency and phase modulations.  

6.2 Experimental set up and data acquisition  

The test rig without load has been described in the previous chapter. Here, load has been attached to 

the rig as shown in (Figure 6-1 (a)). The test rig comprises mainly a carrier, a ring, a sun and two 

planet gears, two bearings with housing, a generator, a resistor box, two timing belts and a speed 

regulating unit. The ring gear is fastened to the base to make it stationary. There are two identical 

bearing housing supports, one for the sun gear and the other for the carrier. The maximum capacity of 

the generator (Parvalaux model number 329321/06G) as shown in Figure 6-1 (a) is 125 W while the 

maximum speed is 3000 rpm. It was used to generate the electrical power at the output. The field 

windings of the motor were excited by an applied DC voltage using a rectifier. The sun gear shaft of 

the planetary gear train (PGT) drives the generator via a timing belt at a faster speed, such that the 

speed ratio of the carrier to sun gear is 1 to 2.95. The advantage of using a belt according to Tristan 

[67] is that it serves as a mechanical filter isolating the planetary gear system from the driving motor 

and the generator. This excites the armature windings of the motor and an electrical voltage is 

generated. The amount of power generated depends on the rotational speed of the sun gear driving the 

generator, which in turn depends on the rotational speed of the carrier and the planet gears. The speed 

ratio of the carrier to planet gear is 1 to 3.11. The speed ratio of the sun gear to that of the generator is 

approximately 1 to 1.50. 

Three 3-axis Axivity MEMS accelerometers, one of which is shown in each of Figures. 6-1 (b), (c), 

and (d) were used to measure the acceleration of the carrier, sun and planet gears. The measuring 

device is suitable for use in various environments, and it has resistance to water. The memory size is 

512 MB NAND flash which is non-volatile. The sampling frequency range is 12.5 – 3200 Hz, while 

the acceleration amplitude ranges of the sensor are                 . There is a configuration 

software and analytical tool known as the AX3 OMGUI. This is used to set up and configure the 

accelerometer before the measurement. It is also used to download and obtain the recorded data (in 

the form of a time history) from the experiment. It helps to convert the binary AX3 recorded data 

from the experiment for subsequent data processing and analysis. The accelerometer has a real time 

quartz internal clock, where the desired time to start measuring the vibration is set. The precision is 
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typically     parts per million (ppm) as specified by the manufacturer. For PCA, the accelerometers 

are set to start at the same time throughout the spinning test for the purpose of synchronization.  

In all of the experiments, the sampling rate was set to 1600 Hz. However, it was discovered that the 

actual sampling rate is always different from configured sampling frequency. The actual sampling rate 

was obtained by dividing the number of the sampled data points by the sampled time after the 

measurements have been downloaded. If the sampling rate is not up to 1600 Hz, the signal length 

acquired was interpolated to resample and hence achieve the configured sampling rate. The PSDs 

were obtained using a Hamming window with 50% overlap. The frequency resolution of 1 Hz was 

used for the frequency analysis 

The three accelerometers were mounted on the rotating components, namely; the carrier, the sun and 

one of the planet gears as shown in Figure 6-1 (b), (c), and (d) respectively. Their vibrations were 

measured separately when spinning. The accelerometers are capable of measuring the vibrations in all 

three translational directions i.e. in the radial, tangential and axial coordinates in the cases of the 

carrier and sun gear. The horizontal and vertical directions were measured on the planet gear because 

of the available space to accommodate the accelerometer (Figure. 6-1 (b)). The flash memory of the 

accelerometer after removal from the gear is linked by a USB enabled microcontroller. This allows 

the measured vibration signal (in the form of time history) to be accessed on the computer and 

exported to MATLAB for frequency analysis.  
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(a) 

    

(b)     (c)   

 

 

(d) 

Figure 6-1 Test rig and 3-axis MEMS accelerometer with dimension 23×32.5×8.9 mm. The 

accelerometers were attached to the components with wax and Garvey tape. 

The configuration considered is the planetary type of epicyclic gear as shown in Figure. 6-2, where 

the ring gear is stationary. The speed ratio is the ratio of the input speed to the output speed which has 

been shown in Chapter 4. 
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The dominant or mesh frequency in the vibration spectrum is then equal to product of the number of 

teeth on the stationary component (i.e. ring gear) and the rotational speed of the carrier at the input.  

 

Figure 6-2 Planetary type of epicyclic gear. The notations c, r, s and p are the carrier, ring, sun 

and planet gears respectively. 

 

The mesh frequency can also be determined from the components using equation (6.1) written as   

) ) )m r r c s s c p p cz z zf                     (6.1) 

where, , and , , , ,m s r p s r p cz z zf     are the mesh frequency, number of teeth on the sun gear, 

ring gear, planet gear, rotational speeds of the sun gear, ring gear, planet gear and the carrier 

respectively. For a stationary ring in equation 6.1, Ωr is equal to zero. When using the ring gear to 

calculate the mesh frequency in the equation 6.1, the absolute value of the carrier speed is considered 

[68]. 

Two configurations were considered in the spinning test. One is the case where the PGT was idle (i.e. 

unloaded) and the second is the case where the PGT was loaded using a generator attached to the 

output shaft via a timing belt. The generator was configured to generate electric power and the output 

voltage was used to determine the output power. A resistor box containing resistors of different 

resistances was used to apply different electrical load on the generator. The results show the time 

histories and the power spectral densities (PSD) of the components starting from the low speed. Later, 

the PSD of each component at different speeds were obtained. 
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6.3  Dynamic response of the rotating planetary gear 

6.3.1 Combined effects of different loads and speeds on the dynamic response  

The sub-section aims to determine how different resistance loads and speeds affect the dynamic 

behaviour of a planetary gear system from an unloaded condition to a loaded condition. This scenario 

occurs in day to day activities in some countries where there is no regular power supply. In this 

situation, a power generator can be used to generate power. If the generator is started initially, it will 

be allowed to run for few minutes without any load and later it will be loaded from a light load to a 

heavy load. This section aims to see the dynamic effect on the planetary gear at different loads and 

corresponding rotational speeds. The measured natural and mesh frequencies are the frequencies of 

interest.     

The rotational speed of the carrier when the planetary gear train was unloaded is 117 rpm, although 

the tachometer reading shows 120 rpm being the chosen speed.. At this carrier speed, the open circuit 

output voltage is 32.5 V. Subsequently, an electrical load of 10, 23.5, 33, 47 and 100 Ohms were 

loaded using a decade box which contains different resistance loads. The change in the resistance load 

also leads to a change in the voltage and the speeds when loaded. The values of the power at the 

output was calculated from the output voltage and the electrical resistance using equation (6.2). 

2
V

P
R

=           (6.2) 

where P, V and R are the output power in Watts, output voltage in Volts and the electrical resistance 

in Ohms respectively. The effect of the load resistance on the output power generated is shown in 

Figure 6-3 where the maximum power generated is approximately 6.4 Watts. The corresponding 

resistance loads at the maximum power is 47 Ohms.  
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Figure 6-3 The effect of the load resistance on the generated output power. The maximum 

output power was generated when the load resistance was 33 and 47 Ohms. 

A typical time history of the acceleration of the carrier in the radial direction is shown in Figure. 6-4 

(a), which was then transformed to the frequency domain using a Fast Fourier Transform (FFT) 

routine available in MATLAB to obtain the frequency content shown in Figure 6-4 (b). The PSDs 

were calculated and plotted using the “pwelch” routine available in MATLAB in order to show the 

strength of the signal at each frequency. The time history and the frequency content of the carrier 

response in the tangential direction is shown in Figure D6.1 in Appendix D. 

It is imperative to state that the frequencies of interest in this study are the frequencies of rotation, 

natural mode and the mesh vibration. Another frequency considered is the one measured on the sun 

gear which is probably related to misalignment, unbalance, looseness etc. The tangential component 

of the response at the mesh frequencies in all cases considered, is taken more serious because of the 

capability of the tangential force acting at the mesh to bend the gear teeth as stated by Gupta and 

Khurmi [69].  

  

Figure 6-4. Time history of the unloaded carrier acceleration in the radial direction.  
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 (a)      (b) 

Figure 6-5 The power spectral density of the carrier acceleration in the (a) radial direction (b) 

tangential direction. The PSD of the unloaded, 10, 23.5, 33, 47 and 100 Ohms are shown in 

black, red, blue, cyan, green and magenta lines respectively. 

The rotational speeds, load resistances and the mesh frequencies of the carrier (which can be seen in 

Figure 6-5) are shown in Table 6-1. 

  

Table 6-1 The rotational speeds, load and mesh frequencies of the carrier when varying the 

speed and load. 

Rotational speed (rpm) Load resistance (Ohms) Mesh frequency (Hz) 

117 0.00 357 

89 10.00 274 

91 23.50 288 

98 33.00 301 

108 47.00 331 

116 100.00 355 

 

The mesh frequencies are different for different loading conditions due to the different carrier speeds. 

Figure 6-5 (a) shows that the radial mesh frequency increases as the load is increasing except for the 

load where the maximum electric power (6.4 W) was generated. The radial response at the mesh 

frequency when unloaded is significantly lower than others. 

The acceleration PSD of the carrier acceleration in the radial direction shows some frequencies close 

to the measured natural frequencies measured on the carrier in chapter 5. The frequencies are 80.3, 81, 

82, 84, 85, 87, 137, 138, 140, 144 Hz which can be seen in Figure 6-5 (a) and some other PSDs at 
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different rotational speeds. The highest PSD level for frequencies between 80 and 87 Hz was obtained 

at a load of 10 ohms which is a light load compared to the others. There is no visible peak within this 

frequency range corresponding to 100 Ohms. The PSD levels of other peaks within the frequency 

range are not significantly different from one another. For frequencies between 137 and 144 Hz, the 

highest PSD was obtained when the system is unloaded while the PSD levels of other peaks within 

this range are almost the same.  

Therefore, for carrier in the radial direction, the response at the mesh frequency increases with 

increase in load and rotational speed for loaded case. A reduced response was obtained when 

unloaded and when generating maximum power at a load resistance of 47 Ohms. The responses at 

frequencies close to a measured natural frequency of 84 Hz are relatively high when unloaded and 

when a light load resistance of 10 Ohms was applied. This implies that a light load or unloaded 

condition can lead to a significant response at this frequency. 

The acceleration PSD in the tangential direction (Figure 6-5 (b)), shows that the highest response at 

the mesh frequency was obtained when the maximum load was applied. The PSD levels at the mesh 

frequency increase as the load and speed are increased for the loaded case. The PSD level at the mesh 

frequency when unloaded is the lowest. For the tangential response at the mesh frequency, the PSD 

level at 47 ohms is not relatively lower than other responses when loaded like the radial response. The 

acceleration PSD level of the frequencies between 80 and 85 Hz shows that the responses are not 

significantly different from one another at different speeds and loads. There is a significant response 

at 76 Hz corresponding to a load resistance of 10 Ohms. 

Therefore, it can be deduced that the response level of the carrier at the mesh frequency in both the 

radial and tangential directions for varying rotational speeds and loads are not the same. This due to 

the fact that the external load applied is acting more at the mesh in a tangential direction than the 

radial direction. Generally for the carrier, the level of the responses at mesh and natural frequencies in 

the tangential direction is relatively higher than the radial direction. 
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 (a)      (b) 

Figure 6-6 The power spectral density of the sun gear acceleration in the (a) radial and (b) 

tangential directions. The PSD of the unloaded, 10, 23.5, 33, 47 and 100 Ohms are shown in 

black, red, blue, cyan, green and magenta lines respectively. 

The rotational speeds, load and mesh frequencies of the sun gear which was determined from Figure 

6-6 are shown in Table 6-2.  

Table 6-2 The rotational speeds, load and mesh frequencies of the sun gear when varying the 

speed and load. 

Rotational speed (rpm) Load resistance (Ohms) Mesh frequency (Hz) 

332 0.00 350 

261 10.00 272 

267 23.50 291 

291 33.00 304 

296 47.00 312 

343 100.00 361 

The response of the sun gear in the radial direction is shown in Figure 6-6 (a). The response at the 

mesh frequency when a load (10 Ohms) was applied is the most significant considering the PSD level. 

This may be as a result of light load which is insufficient to ensure that there is a proper contact 

between the meshing teeth of the sun and planet gears [7]. This can lead to damage at the mesh due to 

impact when the teeth are coming into contact again after disengagement. There is no significant 

difference between the responses at other mesh frequencies except for the unloaded case where the 

response is relatively lower.   
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For the peaks between 80 and 88 Hz, the response at a light load of 10 ohms is the highest. There are 

responses at 131, 133 and 143 Hz which correspond to loads of 33, 47 and 100 Ohms respectively. 

Their PSD levels are almost the same.  

For the tangential direction of the sun gear, the PSD level at the mesh frequencies are slightly 

increasing as the load increases (Figure 6-6 (b)). The two most significant responses at the mesh 

frequency in this direction can be seen when at the maximum load resistance (100 Ohms) and when 

unloaded. This probably may be confirming what Derek [7] stated in his book about high loads which 

can also lead to  contact loss if the errors are larger than the deformation at the tooth and the inertia of 

the system is high. The mass of the sun gear is relatively larger than those of the carrier and planet 

gears. Therefore, it is possible to have a higher response at the mesh frequency when the load is 

relatively high. This is different when compared to the mesh response in the radial direction. Another 

possibility is that the load may act more at the teeth mesh in the tangential direction than the radial 

direction.  

There is a response on the sun gear at 74 Hz for a 10 Ohms load resistance which is more significant 

than the mesh frequency. Among the responses between 80 and 88 Hz, the response at 10 Ohms is the 

highest followed by the one at 47 Ohms where maximum power was generated.  Other responses 

within this frequency range are almost the same in PSD level. Only the PSD when a maximum load 

was applied shows a peak at 143 Hz with a smaller PSD level compared to that of carrier in the 

tangential direction (Figure 6-5 (b)).  

There are frequency peaks between 26 and 29 Hz on the sun gear in both the radial and tangential 

directions. These frequencies are probably associated with mechanical faults like misalignment, 

unbalance etc. as stated by Jan et al. [65]. The independent measurement of vibration has made it 

easier to detect faults associated with mechanical fault on each component without any complicated 

signal processing method. The levels of the responses within this frequency range are almost the same 

except for the response at maximum load and rotational speed of the sun gear which is higher. 

Therefore, the response is more significant at the maximum load and rotational speed.  

In general, like the carrier, the response at the mesh frequency of the sun gear is higher in the 

tangential direction than the radial direction. 
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 (a)      (b) 

Figure 6-7 The power spectral density of the planet gear acceleration in the (a) x and (b) y 

directions. The PSD of the unloaded, 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, 

blue, cyan, green and magenta lines respectively. 

The rotational speeds, load and mesh frequencies of the planet gear which was determined from 

Figure 6-7 are shown in Table 6-3.  

Table 6-3 The rotational speeds, load and mesh frequencies of the planet gear when varying the 

speed and load resistance. 

Rotational speed (rpm) Load resistance (Ohms) Mesh frequency (Hz) 

352 0.00 350 

267 10.00 272 

292 23.50 287 

298 33.00 304 

338 47.00 338 

359 100.00 368 

Although the PSD level of the responses at the mesh frequencies are almost the same, the maximum 

response in x and y directions at the mesh frequency was determined on the planet gear when loads of  

47 and 100 Ohms (which are relatively heavy) were applied (Figure 6-7 (a) and (b)). There are some 

frequencies excited in both directions which are close to the second harmonics of the mesh 

frequencies at different speed and loads. The most significant response occur at the mesh frequency 

corresponds to 47 ohms where the maximum power was generated. 

The most significant response close to the measured natural frequencies between 79 and 89 Hz 

occurred at a maximum load resistance of 100 Ohms and another response at a load of 10 Ohms. 

There are responses within a frequency range of 150 and 158 Hz and a natural frequency of 156.36 Hz 
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was measured on the planet gear and shown in Table 5-6. The most significant response within this 

frequency range occurred when a maximum load of 100 Ohms (Figure 6-7 (a) and (b). This implies 

the level of response relating to the natural mode on the planet gear under varying load and speed 

does not depend on the magnitude of load and speed. They can be high or low when lightly loaded or 

heavily loaded. 

6.3.2 Dynamic response under constant load of 100 ohms and different speeds 

In this sub-section, the dynamic response of planetary gear under a constant load resistance of 100 

Ohms will be investigated. The carrier, sun and planet gears speeds are varied by varying the input 

speed. Generally, the output power increases as the speed is increased. Therefore, for a constant load, 

increased speed leads to an increase in the output power transmitted as shown in Figure 6-8. 

 

Figure 6-8 The effect of rotating speed on the power generated under constant load of 100 

Ohms. 
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 (a)      (b) 

Figure 6-9 The power spectral density of the carrier acceleration in the (a) radial (b) tangential 

directions under a constant load resistance of 100 Ohms. The rotational speeds 77, 89, 100, 110, 

116 and 132 rpm are shown in black, red, blue, cyan, green and magenta lines respectively. 

In (Figure 6-9 (a) and (b)), some frequencies are excited in one direction only but the frequencies of 

interest are the frequencies of the modes as measured, mesh frequencies and some of its harmonics if 

they are significant. 

The rotational speeds and mesh frequencies of the planet gear at a constant load of 100 Ohms are 

shown in Table 6-4.  

Table 6-4 The rotational speeds and mesh frequencies of the planet gear when varying the speed 

at a constant load of 100 Ohms. 

The vibration response of the carrier in the radial direction is shown in Figure 6-9 (a). The response at 

the mesh frequency is slightly increasing till it reaches a rotational speed of 116 rpm corresponding to 

a frequency of 355 Hz. This frequency was measured on the planet gear and another closer value was 

measured on the carrier (Tables 5-1 and 5-6).  The response at the highest speed of 132 rpm is 

significantly lower considering its acceleration PSD level. Probably, the high response at a mesh 

frequency of 355 Hz is due to the fact that the mesh frequency coincides with one of the natural 

Rotational speed (rpm) Mesh frequency (Hz) 

77 238 

89 274 

100 310 

110 338 

116 355 

132 404 
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frequencies of the system. Hence, for the carrier in radial direction, the mesh response was increasing 

with increment in the rotational speed up to 116 rpm. The response later reduced at 132 rpm with a 

corresponding mesh frequency of 407 Hz. It is possible that the natural frequency of the system has 

been excited in this case. It may be necessary to investigate further the response level at a higher 

speed (which will not excite the natural frequency of the system) to know if it will decrease or 

increase. There is a limitation with the current equipment. The range of the accelerometer is not 

enough to measure the vibration of the gears especially the planet at higher speeds.  

Therefore, for a constant load, high speed and power generated can lead to a significant response of 

the carrier in the radial direction at the mesh frequency but the response can reduce at a higher speed. 

There are three obvious groups of frequency peaks of interest in the radial direction of the carrier at 

frequencies lower than the mesh frequencies (Figure. 6-9 (a)). They are 76, 78, 79, 81, 86, 130, 138, 

139, 140, 145 and 156 Hz. It is obvious that some of these frequencies are close to one another 

depending on the rotational speed of the carrier. Also they are close to the measured natural 

frequencies. For a frequency range between 76 and 86 Hz, there is a significant response at 76 and 81 

Hz with corresponding speed of 100 and 110 rpm respectively. The responses at 89 and 77 rpm are 

lower while the response at 132 rpm is the lowest. There is no peak within this frequency range in the 

PSD of 116 rpm. However, for the frequency range between 130 and 145 Hz, the most significant 

response is recorded at the lowest rotational speed (77 rpm) followed by the response at 110 rpm. 

 It appears that the increasing speed does not lead to an increment in the response level at the natural 

frequencies in the radial direction of the carrier at a constant load of 100 ohms. Nevertheless one can 

deduce that the natural modes are significantly excited in the radial direction of the carrier at 

relatively low speeds. 

The response of the carrier in the tangential direction is shown in Figure 6-9 (b). The mesh frequency 

is increasing with increment in speed till 116 rpm which is the most significant response at the mesh 

frequency at a rotational speed of 116 rpm with a corresponding frequency of 355 Hz. Like the radial 

direction the highest response at the mesh appeared at 355 Hz. The acceleration PSD level shows that 

the tangential response at the mesh frequency of the carrier is more than the radial response at the 

mesh frequency. The level of response at mesh frequency (404 Hz) which corresponds to the highest 

rotational speed of the carrier (132 rpm) is significantly lower (approximately 8 dB) than the response 

level at 116 rpm. High level of response can be avoided at mesh frequency by carefully selecting the 

rotational speed such that the frequency of the mesh force will not coincide with any of the natural 

frequencies of the system. 
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Some peaks can be seen in Figure 6-9 (b) between 77 and 88 Hz, 131 and 143 Hz and a peak at 151 

Hz. The most significant response among the first frequency range can be seen at 77 Hz with a 

corresponding rotational speed of 100 rpm. The highest response level in the second frequency range 

was recorded at 139 and 143 Hz with corresponding rotational speeds 77 and 110 rpm respectively. 

For this frequency range, the peaks are not obvious for the rotational speeds at 89, 100, 116 and 132 

rpm. The response at the frequency of 151 Hz is significant and the corresponding rotational speed of 

the carrier is 116 rpm which is relatively high.  

 

 (a)      (b) 

Figure 6-10 The power spectral density of the sun gear acceleration in the (a) radial and (b) 

tangential directions under a constant load resistance of 100 Ohms and different speeds. The 

rotational speeds 240, 262, 304, 328, 342 and 386 rpm are shown in black, red, blue, cyan, green 

and magenta lines respectively. 

 

In figure (6-10), the mesh frequency of the sun at the minimum speed of 240 rpm is 254 Hz. The 

mesh vibration response of the sun gear in the radial direction is shown in Figure 6-10 (a). The 

responses at the mesh frequencies of 254 and 275Hz corresponding to low rotational speeds of 240 

and 262 rpm are relatively low. The mesh responses at rotational speeds of 304, 328, 343 and 386 rpm 

are higher and are not significantly different from one another. Based on this result, it can be deduced 

that the radial response of the sun gear at mesh frequency can be influenced by high speed for a 

constant load resistance.  

There are two significant responses at frequencies of 72 and 73 Hz corresponding to rotational speeds 

262 and 386 rpm. The acceleration PSD levels of other peaks within this frequency range are not 

significant. The responses between 80 and 87 Hz show that the PSD level of the frequency 

corresponding to 304 rpm is the highest. The levels of all other peaks within this frequency range are 
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approximately the same and low.  For the frequency range between 137 and 147 Hz, the PSD levels of 

the responses are approximately the same. 

In the tangential direction of sun gear, the response at the mesh frequency (starting from 252 Hz) is 

increasing as the rotational speed is increasing. The level of mesh response corresponding to speeds of 

328 and 342 rpm are approximately the same because of the small speed difference between them. 

The level of this response increases further at a maximum speed of 386 rpm corresponding to mesh 

frequency of 407 Hz (Figure 6-10 (b)). The peaks at different mesh frequencies show clearly that the 

response increases with increment in the rotational speed of the sun gear. This means that the 

tangential mesh response of the sun gear increases as the speed is increasing. 

 Considering the responses between 72 and 84 Hz, the ones corresponding to the relatively low speed 

of 89 and 100 rpm are more significant. For the frequency range between 137 and 147 Hz, the 

response levels are approximately the same for rotational speeds from 100 to 116 rpm.  The response 

at 240 and 386 rpm are relatively low. There is no obvious peak at 89 rpm within the frequency range. 

One cannot really infer that the level of tangential responses at the frequencies closed to the measured 

natural frequencies are actually influenced by the rotational speed of the sun gear. 

 

 (a)      (b) 

Figure 6-11 The power spectral density of the planet gear acceleration in the (a) x and (b) y 

directions under a constant load of 100 Ohms and different speeds. The rotational speeds 238, 

276, 309, 362 and 360 rpm are shown in black, red, blue, cyan and green lines respectively. 

The response of planet gear in x direction at the mesh frequency shows that the most significant 

response appeared at the 361 Hz when the rotational speed is 362 rpm (Figure 6-11 (a)). This is the 

maximum speed of planet gear in this case study. Although, it is not supposed to be the highest speed 

considering the speed ratio of the gear train. There may be little fluctuation of the applied load acting 

on the planet gear at this speed, if the load reduces this may have effect on the speed which is 
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supposed to be 342 rpm theoretically. Therefore, the most significant radial response of the planet 

gear at the mesh frequency occurred at the maximum speed. The next radial response at mesh 

frequency in order of PSD level occurred at a rotational speed of 360 rpm speed corresponding to the 

speed where the highest power was generated (Figure 6-8). Two significant peaks appeared at 79 and 

80 Hz corresponding to a rotational speed of 360 and 362 rpm respectively. This implies that for a 

planet gear under a constant load but varying speed, the response relating to the natural mode is more 

significant at higher speed than lower speed. 

The response level and pattern in y direction is the almost same with the ones in the x direction 

because they are both radial. The acceleration PSD level of the response in y direction at the mesh 

frequency is slightly higher (Figure 6-11 (a) and (b)). Also, a frequency was significantly excited in y 

direction at 505 Hz at a relatively high rotational speed of the planet gear. This frequency was 

measured on the ring gear in x direction in chapter 5. The corresponding response of the planet gear 

when the input speed (i.e. the carrier speed) was 132 rpm could not be measured as a result of signal 

clipping due to the dynamic range of the accelerometer. 

6.3.3 Dynamic response under a constant speed 100 rpm and different loads 

The dynamic response of planetary gear under a constant speed and varying load resistance was 

examined in this section. Although there are some little differences in the speed when changing the 

load resistance, the difference is assumed to be insignificant. The rotational speed varies from 100 

rpm (1.667 Hz) to 103 rpm (1.717 Hz), therefore, the difference is assumed to be negligible on the 

dynamic response of the system. The effect of the load resistance on the output power is as shown in 

Figure (6-12). The power generated was increasing as the resistance load applied was increasing up to 

6.65 W at a corresponding load resistance of 23.5 Ohms. The power starts decreasing from 6.65 Watts 

as the load increases until it reaches 4.97 W at a corresponding load resistance of 100 Ohms which is 

the maximum load applied. If the rotational speed is increased at this load the power generated will 

also increase like the case shown in Figure 6-8. 
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Figure 6-12 The effect of the load resistance on the output power at a constant gear speed of 100 

rpm. 

 

 (a)      (b) 

Figure 6-13 The power spectral density of the carrier acceleration in the (a) radial and (b) 

tangential directions under a constant speed of 100 rpm at different resistance loads. The load 

resistance of 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, blue, cyan and magenta 

lines respectively.  

The response of the carrier in the radial direction is shown in Figure 6-13 (a). The mesh frequency at 

each load resistance dominates the vibration spectra in both the radial and tangential directions. From 

Figure 6-13 (a), it is obvious that the values of all the mesh frequencies at an assumed constant speed 

are not significantly different from one another. The mesh frequencies are 315, 319, 306, 306 and 310 

Hz at applied loads of 10, 23.5, 33, 47 and 100 Ohms respectively. There are little variations in the 

mesh frequencies due to little variation in the rotational speed. The vibration response level at the 

mesh frequency is higher at loads of 10, 23.5 and 33 Ohms than when heavier loads of 47 and 100 

Ohms. They are 3.8 and 5.1 dB lower respectively than the first three responses which are 

approximately the same. The power generated at this loads are relatively low as shown in Figure 6-12. 
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Therefore the radial responses of the carrier at the mesh frequency are more significant at relatively 

lighter loads for a case where the rotational speed is constant or not changing significantly.   

 The response believed to be related with the natural mode between 75 and 86 Hz are significant at 

loads of 33, 47 and 100 Ohms than the responses at a light load of 23.5 Ohms. The frequency peaks at 

82, 80, 75 Hz correspond to the applied loads of 33, 47 and 100 Ohms respectively There is no peak at 

10 Ohms within this frequency range. For responses within 130 and 148 Hz, the acceleration PSD 

levels are relatively higher at loads of 33, 47 and 100 Ohms. The carrier radial response at the 

frequencies close to the measured natural frequencies is high at higher load when the rotational speed 

is constant. 

The most significant response of the carrier in the tangential direction at the mesh frequencies 

occurred when the applied load was 23.5 Ohms (Figure 6-13 (b)). This is a load where maximum 

power was generated. Also, the response is higher at loads corresponding to 10 and 33 Ohms than 47 

and 100 Ohms. This implies that the response at the mesh frequency in the tangential direction is 

higher at light loads especially at a load where maximum power was generated. The level of 

tangential response of the carrier at the mesh frequency depends on the load and power; it is high at a 

light load where maximum power is being generated. 

 Five peaks relating to the five loads occurred from 77 to 88 Hz and it shows that frequencies are 

reducing as the load is increasing (Figure 6-13 (b)). Furthermore, the highest PSD level within the 

frequency range is obtained at 77 Hz when a load of 100 Ohms was applied. The acceleration PSD 

level of the peak corresponding to 10 Ohms (87 Hz) is the smallest within the frequency range while 

the levels of other peaks are almost the same. This implies that the most significant carrier response at 

a frequency range close to a measured natural frequency occurred when a relatively heavy resistance 

load (100 Ohms) was applied. Considering a frequency range between from 135 to 143 Hz, the 

response at a relatively light resistance load of 23.5 Ohms is the most significant. 
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 (a)       (b) 

Figure 6-14 Power spectral density of the sun gear acceleration in the (a) radial and (b) 

tangential directions under an average constant speed of 300 rpm at different resistance loads. 

The resistance loads of 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, blue, cyan and 

magenta lines respectively. 

The acceleration PSD of the sun gear in the radial direction is shown in Figure 6-14 (a). The most 

significant response at the mesh frequency occurred at the light loads of 10 and 23 Ohms. The 

corresponding mesh frequencies at these loads are 324 and 316 Hz respectively. The acceleration 

PSDs of the peaks corresponding to other load are relatively lower. Hence, the response of the sun 

gear at mesh frequency in the radial direction is high when the applied load is relatively light.  

There are two peaks at 88 and 95 Hz when a light load of 10 Ohms was applied. Their acceleration 

PSD level shows the sun gear was significantly excited at these frequencies more than the most 

significant response at mesh frequency. It shows clearly that the most significance response of the sun 

in the radial direction at a constant speed occur when a load of 10 Ohms was applied. 

The response of the sun gear in the tangential direction is shown in the power spectrum (Figure 6-

14(b)). The peaks at the mesh frequency show that the most significant response occurred when 

resistance loads of 23.5 and 100 Ohms were applied. Therefore, there can be a significant tangential 

response of the sun gear at mesh frequency at a light load (probably if the maximum power is being 

generated) or at a relatively heavy load. This is for a case of constant speed and varying load. The 

tangential responses at a measured frequency associated with a natural mode are significant at 88 and 

95 Hz when the applied load of 10 Ohms was applied like the radial response.  
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(a)      (b) 

Figure 6-15 Power spectral density of the planet gear acceleration in the (a) x and (b) y 

directions under a constant speed of 100 rpm at different resistance loads. The resistance loads 

of 10, 23.5, 33, 47 and 100 Ohms are shown in black, red, blue, cyan and magenta lines 

respectively. 

The most significant response in x direction of the planet gear at the mesh frequency occurred when a 

relatively light load of 10 Ohms was applied (Figure 6-15 (a)). The power generated by the system at 

10 Ohms is relatively low. Also, the lowest response corresponds to maximum load where the 

minimum power was generated. Since the response is high for the former case and low for the latter 

case such that low power was generated in both cases, the response is independent of power generated 

but the light load applied. The acceleration PSD level at the mesh frequency decreases as the load 

increases.  

Two frequencies (84 and 99 Hz) which are close to the measured natural frequencies were 

significantly excited when a light resistance load of 10 Ohms was applied. The response at the mesh 

frequency and frequencies close to the measured natural frequencies are the same for planet in y 

direction. Therefore for a planet gear rotating at a constant speed different load, it can be inferred that 

the response at the mesh and predicted natural frequencies are significantly more excited at relatively 

lighter load than heavier load. 

6.4 Summary on dynamic responses under different conditions 

6.4.1 Combined effect of load resistance and rotational speed on the dynamic response 

For a case where the rotational speed and load are increasing simultaneously; the radial and tangential 

responses of the carrier at the mesh frequency increase. The radial and tangential carrier responses at 

the mesh frequency are typically low when unloaded. In this case, where the rotational speed is 
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varying, the carrier response is low when the load is light or when the system is unloaded. For the sun 

gear, the radial response at the mesh frequency is high at a light load and low rotational speed. This is 

because of the insufficient load to keep the mating teeth together for proper contact, which causes 

impacts when they are engaging and disengaging. This can lead to damage of the teeth. The tangential 

response of the sun gear at the mesh frequency increases as the load increases. The radial response of 

the sun gear at the mesh frequency is low when unloaded while the tangential response is relatively 

high. For the planet gear, the response at the mesh is high at higher resistance loads of 47 and 100 

Ohms than the remaining lighter loads.  The response of the planet at the mesh can also be significant 

when unloaded. 

The response levels of the carrier at a frequency associated with a natural mode are almost the same 

covering a frequency range of 80 to 86 Hz, except for a case where a resistance load of 10 Ohms was 

applied. This implies they are not significantly affected by the increasing rotational speed and load. 

The tangential response of the carrier is significant at a higher frequency of 151 Hz at a heavy load. 

The response of the carrier at a heavy resistance load of 100 Ohms dominates the response at the 

higher frequency band in both directions. For the sun gear, the radial response is high at 80 Hz for a 

light load. This is probably a resonance frequency because 80 Hz is close to 84. 37 Hz measured on 

the carrier. This may be the reason why the response at this frequency is more significant than the 

response at the mesh frequency 274 Hz for the same load. Since the force exciting this natural 

frequency cannot be an unbalanced force, whose frequency is 1.48 Hz, or the mesh force whose 

frequency is 274 Hz, it is necessary to investigate it. It is probably a force associated with a defect 

associated with the bearing. The tangential response of the sun gear at a light resistance load of 10 

Ohms is the most significant. The response of the planet is high at a light and heavy resistance loads 

between 79 and 89 Hz and high at a frequency of 158 Hz corresponding to 100 Ohms. There is no 

clear indication that the load and speed affects the dynamic response of the planet at a frequencies 

associated with the natural modes when the rotational speeds and load are changing. 

Misalignment may be caused by an error in the system during assembling has been diagnosed in 

planetary gear at a low frequency range by Abdalla et al [70] using a method known as Modulation 

Signal Bispectrum (MSB) . The response was measured by an accelerometer mounted on the housing.  

In this study, the PSD of the sun gear shown in Figure 6-6 (a) and (b) when the rotational speed and 

load are varying shows a frequency range associated with misalignment as discussed previously in 

section 6.1. A significant response was measured on the sun gear at 27 Hz when unloaded. This 

response is more significant at maximum load and rotational speed of the sun gear. The change was 

obvious at a maximum load resitance of 100 Ohms where the frequency is 29 Hz. The presence of 

lower and upper sidebands having relatively lower amplitude can be seen around the frequency, which 
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may indicate faults on the sun gear at both frequencies. This fault is probably a misalignment of sun 

shaft, so unbalance occurs. The frequency associated with this fault is within the range of low 

frequency which signifies mechanical faults. This shows another benefit of measuring vibration of a 

planetary gear individually using an accelerometer that can rotate with it. There is no need to employ 

any signal separation or extraction technique before a mechanical fault like misalignment can be 

detected. 

6.4.2 Effect of varying the rotational speed on the dynamic response at a constant 

resistance load  

The radial response of the carrier at the mesh frequency increases with an increase in the rotational 

speed up to 116 rpm. At this rotational speed there is resonance because the mesh frequency of 355 

Hz that is close to one of the natural frequencies of the system at 356.4 Hz measured on the planet and 

365.8 Hz measured on the carrier. Above this speed, at 132 rpm, the level of the response reduced. 

For the tangential response of the carrier at the mesh frequency, the response levels are almost the 

same except at 336 and 355 Hz, which correspond to rotational speeds of 110 and 116 rpm 

respectively. The responses at these rotational speeds are high especially at 116 rpm because a natural 

mode was excited which leads to resonance. Therefore, an increase in the rotational speed leads to an 

increase in the radial response of the carrier at the mesh frequency but the most significant response 

occurred at the resonance frequency. The tangential response levels at the mesh frequency are the 

same except for the response at resonance frequency and the one close to it. The speed corresponding 

with this resonance should be avoided to prevent damage of the carrier. 

The radial and tangential responses of the sun gear at the mesh frequency are significant at high speed 

and relatively low at low speeds. For the planet, the response at the mesh frequency is very high at 

high rotational speeds especially the one which corresponds to the resonance frequency of 356.4 Hz 

as mentioned earlier.  

For the frequencies close to the natural modes, increase in the rotational speed does not clearly show 

an increased level of response of the carrier in both radial and tangential directions. The response of 

the sun gear in the radial direction seems unaffected by the rotational speed while the tangential 

response is high at low rotational speed. The response of the planet gear is significant at high speed, 

probably because it becomes more flexible as the rotational speed increases. 

In summary, for a constant load and varying speed, the radial and tangential responses of the carrier, 

sun and planet gear at the mesh frequency increases as the rotational speed increases. For the 

frequencies relating to the natural modes, it is observed that increased rotational speed does not affect 

the response level of the carrier in both directions as well as the sun in the radial direction. The 
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response level of the sun in the tangential direction is relatively high for low speeds. The response of 

the planet gear at a frequency related to a natural mode is significant for high speeds.  

The frequency associated with misalignment of sun gear and its response level increases in both 

directions as the rotational speed increases for the constant load. 

6.4.3 Effect of varying the load resistance on the dynamic response at a constant rotational 

speed  

The radial response of the carrier at the mesh frequency is high at lighter loads of 10, 23.5 and 33 

Ohms than the heavier resistance loads of 47 and 100 Ohms. Most significant tangential response at 

the mesh frequency occurred at a light resistance load 23.5 Ohms, where the maximum power was 

generated. The most significant radial response of the sun gear at the mesh frequency occurred at light 

resistance loads of 10 and 23.5 Ohms. The power generated at 10 Ohms is low while the one 

generated at 23.5 Ohms is the maximum. Therefore, the power generated could not be responsible for 

the high response for the latter case but a light load applied. The tangential response of the sun gear at 

the mesh frequency is high at 10 and 100 Ohms which are light and heavy loads respectively. A light 

load could result in a high sun gear response because of the insufficient load to keep the meshing teeth 

together, thereby causing a large impact capable of causing tooth failure. Also, a heavy load can cause 

a high response if the errors are greater than the tooth deflection and the inertia of the sun gear is 

relatively high as presented by smith [7]. The significant response of the planet gear at the mesh 

frequency occurred for a light load of 10 Ohms. Therefore, for a constant speed, a light load could 

damage the carrier, sun and planets at a frequency relating to the teeth meshing except for the 

tangential response of the sun which is only significant for heavy loads.  

For the responses relating to the natural mode, the radial response of the carrier are higher at relatively 

higher loads. The tangential response is high at a heavy load corresponding to a low frequency range 

(between 77 and 87 Hz), while the response over a relatively higher frequency range (135 and 143 Hz) 

is high at a light load resistance of 23.5 Ohms. The radial and tangential responses of the sun gear 

over a frequency range between 88 and 95 Hz are high at a light load of 10 Ohms. Therefore, a light 

load can damage the sun gear at a lower frequency, when the rotational speed is constant. The most 

significant response of the planet occurred for a light load resistance.  

The frequency associated with misalignment on the sun gear and its response level, is increasing as 

the load decreases for a constant rotational speed. 
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6.4.4 General comparison  

The radial and tangential responses of the carrier at the mesh frequency could be more than that of the 

sun gear if the bearing stiffness of the planet which connects it to the carrier is less than of the sun 

gear. This is because the vibration generated at the sun-planet mesh is transmitted through the planet 

to its bearing at the carrier-planet interface. This makes the tangential response of the carrier at the 

mesh frequency higher than that of the sun gear whose bearing is stiffer. 

Generally, for the carrier and sun gear the response at the tangential direction is higher while the 

response of the planet gear in x and y directions are the highest.  

The response relating to misalignment measured on the sun gear that follows shows a slight increase 

as the speed and load is increasing, increases as the speed is increasing for a constant load and 

increases as the load is decreasing for a constant speed. It exhibits different behaviours under different 

working conditions. 

The effect of load and rotational speed has been investigated on the dynamic response of carrier, sun 

and planet gear. The next section will focus on the identification of vibration sources at each 

measuring point in the system.  

6.5 Identification of vibration sources in a planetary gear transmission 

mechanism 

Principal component analysis (PCA) is a mathematical algorithm used to transform a set of values 

which comprise correlated variables into set of uncorrelated variables. Principal component analysis 

(PCA) within a vibration context, can be utilized to identify and rank the vibration sources in the 

planetary gear. To determine the contribution of each component of the planetary gear to the vibration, 

it is important to apply PCA. The method can help to determine where to really apply the control 

forces when controlling the vibration.  

Huang and Ferguson [71] used a PCA method and virtual coherence techniques to analyse cross-axis 

apparent mass in whole body vibration. Their aim is to identify the contributions and correlations 

between the cross-axis vertical (x- axis) and cross axis lateral (y-axis) in response to a longitudinal 

inline force (z-axis). They stated that the use of the ordinary coherence function to determine the 

extent to which the cross axis forces are correlated to the inline longitudinal force is unclear. The use 

of only PCA makes it difficult to establish the relationships between principal components and 

physical sources. Therefore, a technique known as virtual coherence (VC) has been useful in 

identifying the relationship between a principal component and physical sources. They concluded by 
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stating that the extent of correlation determined from the results could help to know the causes of 

cross-axis coupling which is common in biodynamic vibration response of the whole human body. 

Bellino et al. [72] , used a PCA technique to detect damage in a time-varying systems. They showed 

that this technique can be successfully used not only for time-invariant systems but time varying 

systems like a railway bridge. Their results show that the PCA technique can be used to detect 

damage in a time varying system as well as different levels of crack depth. 

This section focuses on the application of principal component and virtual coherence methods to the 

measured responses from a carrier, sun and planet gears during operation. As mentioned earlier in 

section 6.2, the accelerometers are rotating with the components of the planetary gears unlike the past 

research works where the accelerometers are stationary. Moreover all the accelerometers were 

synchronized by configuring them to start and finish measurements at the same time. The power 

spectral density (Sii) and cross spectral density (Sij) were determined by using MATLAB routine 

“pwelch” and “cpsd” respectively. Like previous sections all the signals for a specific case were 

acquired in 60 seconds at different sampling rates but were interpolated to 1600 Hz using a MATLAB 

routine called “interp1”. This makes the number of data points equal to 96000. The spectral analysis 

was performed using a Hamming window with overlap of 50% and the frequency resolution is 1 Hz in 

all cases. 

They were subsequently used to form a correlation matrix shown in equation (6.3). The aim is to 

separate various signals being considered and determine the principal components. A command in 

MATLAB known as “svd” which means Singular Value Decomposition was used to achieve this and 

the principal components were determined. 

The correlation matrix of all the signals measured for general case is built as follows: 
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Assuming there are n uncorrelated principal sources (or virtual sources) formed by an m different 

physically measured sources, then .n m In this study, 4.m n   Eigen decomposition of the 

correlation matrix Sxx at a specific frequency gives: 

                          (6.4) 
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where,       is a diagonal matrix containing nonzero eigenvalues in descending order. It represents 

the spectral density of the uncorrelated sources or virtual sources. The measured responses which are 

the physical sources are the linear combination of these principal components. Matrix     denotes 

the eigenvectors which are arranged in columns. It is the linear relationship between the physical and 

virtual sources. Each column in     at a specific frequency corresponds to a specific eigenvalue 

    at the same frequency. The number of significant independent contributors or principal 

components depends on the number of high eigenvalues at any specific frequency. 

However, the principal component analysis can reveal the virtual sources but virtual coherence can 

reveal the extent to which a virtual source can contribute to each physical source. The virtual 

coherence between the j
th 

virtual and i
th 

physical sources is the ratio of the contribution of the virtual 

source j to the power spectral density of the physical source [71]: 

     
           

         
     

      
        (6.5) 

where,       
  is the conjugate of the eigenvector coefficient of the ith physical source contributing 

to the jth virtual source:        is the jth eigenvalue of the principal component or virtual source. 

       is the power spectral density of the acceleration excitation.  

The experiment started by measuring the vibration of the carrier, sun and planet gears when rotating at 

speeds of 103, 307.98 and 337.98 rpm respectively with a load resistance of 100 Ohms. The analysis 

considered a case whereby a carrier and planet were investigated and another case where a sun and 

planet were investigated. This was repeated for another case where the speeds of the carrier, sun and 

planet gears are 130, 376.98 and 412 rpm at a load resistance of 100 Ohms. Also, the analysis was 

done considering a carrier and two planet gears as well as sun and two planet gears. 

6.5.1 Principal Component Analysis of the loaded carrier and planet gear 

Investigations were carried out on measured responses in the radial and tangential directions of the 

carrier and horizontal and vertical directions of one of the planet gear when the planetary gear was 

loaded. In this case, 4,m n   therefore equation (6.3) is of the form: 
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where, the first subscript „1‟ is the measured radial response of  the carrier, „2‟ is the measured 

tangential response of the carrier, „3‟ and „4‟ are the measured horizontal and vertical radial responses 

of the planet gear. The carrier speed in this case is 103 rpm (1.717 Hz), the speed of the planet gear is 

337.98 rpm (5.6 Hz) and the load resistance is 100 Ohms. The theoretical mesh frequency is 317.65 

Hz considering the number of teeth on the ring gear in equation (6.1), while the actual mesh frequency 

estimated from the calculated PSD is 317 Hz. In an actual sense, the mesh frequency may not be the 

same using the number of teeth on the sun or planet gear. For instance, the mesh frequency for this 

case, considering the number of teeth on the planet gear is 330.75 while the PSD shows a frequency 

of 345 Hz. Probably, the load acting at the teeth mesh is fluctuating. The interpolated signal length of 

the carrier and the planet is 96,000 and this is applicable to subsequent cases. For instance, the raw 

and interpolated acceleration signals as well as the zoomed view of the carrier are shown in Figures 6-

16 and 6-17. Also, few points were chosen from the raw and the interpolated signals, and the mean 

square difference was determined to be small. The PSD was zoomed around the mesh frequency 

(317.65 Hz) for clarity purpose (Figure 6-17 (b)). 

  

(a)     (b) 

Figure 6-16. (a) The time domain raw and interpolated acceleration signals of the carrier in the 

horizontal direction (b) zoomed view. 
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(a)     (b) 

Figure 6-17. (a) The frequency domain raw and interpolated acceleration signals of the carrier 

in the horizontal direction (b) zoomed view. 

 

 (a)      (b) 

Figure 6-18 (a) The power spectral density of the carrier and planet gears acceleration. (b) The 

eigenvalues of the principal components PC1, PC2, PC3 and PC4. 

The two PSDs (yellow and violet lines in Figure 6-18 (a)) are of the planet gear acceleration in the x 

and y radial directions respectively. They are relatively higher than the PSDs of the carrier 

acceleration response. Generally, the responses are significant at the rotational speed and the mesh 

frequency. Figure 6-18 (b) shows that two principal components             are more significant, 

while the other two principal components are less significant.     contributes more at the rotational 

and mesh frequencies while     only contributes significantly at the mesh frequency.             

are higher in magnitude than             over the wide range of frequency considered. To 

investigate further on the principal components, the virtual coherence and the eigenvectors were 

determined and plotted over a wide range of frequency. 
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(a)      (b) 

Figure 6-19 Virtual coherence of the PC1, PC2, PC3 and PC4 showing their contributions to the 

(a) first physical source (radial direction of the carrier) and (b) second physical source 

(tangential direction of the carrier). The blue, red, green and black lines denote PC1, PC2, PC3 

and PC4 respectively. 

Figure 6-19 (a) shows the virtual coherence where the contributions of the PC1 to all the physical 

sources can be seen over a range of frequencies (1 to 3 Hz) which includes the rotational frequency of 

the carrier. The contributions of PC4 to the first physical source can be seen between 80 and 100 Hz 

which includes a frequency close to a measured natural frequency of the system.  At the mesh 

frequency 317 Hz, it shows that there is no contribution from all the four PCs to the first physical 

source as the virtual coherence shows noisy signals at high frequencies.  

The virtual coherence in Figure 6-19 (b) shows that PC3 contributes to the second physical source 

(carrier tangential) from 10 to 24 Hz and from 30 to 90 Hz. The latter frequency band includes 

frequency related to the natural mode. PC3 also contributes between 338 and 448 Hz which includes 

the mesh frequency of the planet gear which is 345 Hz.  

  

Figure 6-20 Virtual coherence of the PC1, PC2, PC3 and PC4 showing their contributions to the 

(c) third physical source (horizontal radial direction of the planet gear) and (d) fourth physical 

source (vertical radial direction of the planet gear). The blue, red, green and black lines denote 

PC1, PC2, PC3 and PC4 respectively. 
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In Figure 6-20 (a), it shows that PC1 contributes to the third physical source between 3.9 and 13 Hz 

which includes the rotational speed of the planet gear. PC1 also contributes to the fourth physical 

source between 4 and 9 Hz (Figure 6-20 (b)). PC2 almost show a contribution to the fourth physical 

source at 2 Hz. There is no PC contributing to the third and fourth physical source at higher 

frequencies especially the mesh frequency.  

Only PC1 contributes to all the physical sources at the frequencies of synchronous vibration (1.72 and 

5.6 Hz). These are the two frequencies (corresponding to the rotational speed of carrier and sun gear) 

where the vibration may be as a result of unbalance or misalignment of shaft in the planetary gear 

train. The PSDs shows that the response at the frequency corresponding to the rotational speed is 

higher than the response at the mesh frequency. The virtual coherence shows noisy signal at high 

frequencies of the first, third and fourth physical sources. This analysis may serve as a diagnostic 

means of identifying the principal vibration source in planetary gear especially at the rotational and 

mesh frequencies of the carrier and planet gear. 

   

(a)      (b) 

Figure 6-21 Absolute values of eigenvector component of the first, second, third and fourth 

physical sources that relate with (a) PC1 (b) PC2. The blue, red, green and the black line denotes 

the absolute eigenvector components of first, second, third and fourth physical sources 

respectively. 

The absolute eigenvector components of the first, second, third and fourth physical sources showing 

their correlation with PC1 are shown in Figure 6-21 (a). It shows that the first and second physical 

sources correlate with PC1 at low frequency corresponding to the rotational frequency of the carrier 

(1.72 Hz). The third and fourth physical sources correlate with PC1 between 4 and 9 Hz which 

includes the rotational speed of the planet gear (5.6 Hz). There is no correlation between all the 

physical sources and PC1 at high frequencies especially at the mesh frequency. The correlation of all 
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the physical sources with PC2 is shown in Figure 6-21 (b). It shows that the fourth physical source 

correlates with PC2 at a low frequency of 2 Hz. 

  

(a)      (b) 

Figure 6-22 . Absolute values of the eigenvectors of the first, second, third and fourth physical 

sources that relate with (a) PC3 and (b) PC4. The blue, red, green and the black line denotes the 

absolute eigenvector components of first, second, third and fourth physical sources respectively. 

The correlation of the second physical source with PC3 can be seen over a wide range of frequency as 

shown in Figure 6-22 (a). This frequency band includes the mesh frequency. It is very obvious that the 

first physical source correlate with PC4 from 5 to 600 Hz (Figure 6-22 (b)). 

In summary the values of the absolute eigenvector component confirms the dominant contribution of 

PC1 to all the physical sources. It also shows clearly the linear relationship between the first physical 

source and PC4 and the second physical source and PC3. 

6.5.2 Principal component analysis of the loaded sun and planet gears 

An investigation was carried out on measured responses from the radial and tangential directions of 

the sun gear and horizontal and vertical directions of one of the planet gears when the planetary gear 

was loaded. The speed of the sun gear in this case is 307.98 rpm (5.133 Hz), the speed of the planet 

gear is 337.98 rpm (5.633 Hz) and the load resistance is 100 Ohms. The theoretical mesh frequency is 

324.5 Hz considering the number of teeth on the sun gear in Equation 6.2 (b), while the actual mesh 

frequency from the PSD is 324 Hz. The mesh frequency of the planet gear (345 Hz) remains the same 

as in the previous section.  
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Figure 6-23 (a) The power spectral density of the sun and planet gear accelerations. (b) The 

eigenvalues of the principal components PC1, PC2, PC3 and PC4. 

Figure 6-23 (a) shows that the PSD level of the planet gear is a higher than the sun gear at their 

rotational speeds of 5.633 and 5.133 Hz respectively. Also, the PSD of the planet gear is higher at the 

mesh frequency. Two principal components (PC1 and PC2) are most significant in this case (Figure 6-

23 (b)). PC1 contributes more than other PCs but all the PCs are considered because of the difference 

between the PCs is not big. 

  

Figure 6-24 Virtual coherence of the PC1, PC2, PC3 and PC4 showing their contributions to (a) 

the first physical source (radial direction of the sun gear) and (b) the second physical source 

(tangential direction of the sun gear). The blue, red, green and black lines denote PC1, PC2, PC3 

and PC4 respectively. 

The contribution of PC1 to the first physical source can be seen at a low frequency range from 1 – 5 

Hz (Figure 6-24 (a)). The frequency range is close to the rotational frequency of the sun gear (5.13 

Hz). It shows that PC1 is not contributing to the first physical source at higher frequencies. Figure 6-

24 (b) show the contribution of PC1 To the second physical source at a low frequency range between 

3 and 5.2 Hz. PC3 contributes from 14 to 42 Hz and from 170 to 490 Hz. The latter frequency band 

includes natural frequencies 187, 275, 356, 365 Hz and the mesh frequency measured in the system. 
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However it is obvious that the PC3 contributes to the second physical source (sun tangential) at the 

sun mesh frequency of 324.5 Hz. 

  

(a)      (b) 

Figure 6-25 Virtual coherence of the PC1, PC2, PC3 and PC4 showing correlation with (a) the 

third physical source (horizontal radial direction of the planet gear) and (b) the fourth physical 

source (vertical radial direction of the planet gear). The blue, red, green and black lines denotes 

PC1, PC2, PC3 and PC4 respectively. 

PC1 contributes to the third physical source from 5.5 to 11 Hz while PC2 contribute to it from. 4 to 5 

Hz (Figure 6-25 (a)). PC1 contributes to the fourth physical source from 5.8 to 9 Hz while PC2 

contribute to it from 4 to 5 Hz (Figure 6-25 (b)).  

In summary, it shows that PC1 contributes to all the four physical sources at a low frequency range 

which include the frequencies corresponding to the rotational speed of both the sun and planet gear. 

PC3 contributes to the second physical source (sun tangential) at a high frequency range which include 

the mesh frequency. The virtual coherence of other PCs does not show clear relationship at high 

frequencies especially at the mesh frequency.  
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(a)       (b) 

Figure  6-26. Absolute values of the eigenvectors of the first, second, third and fourth physical 

sources that correlate with (a) PC1 (b) PC2. The blue, red, green and the black line denotes the 

absolute eigenvector components of first, second, third and fourth physical sources respectively. 

The absolute values of eigenvector component in Figure 6-26 (a) shows that there is a linear 

relationship between the first physical source and PC1 at low frequencies ranging from 1 to 3 Hz. 

Figure 6-26 (b) shows that there is a correlation between the fourth physical source and PC2 from 1 to 

3 Hz. The third physical source relates with PC3 from 1 to 3.2 Hz while the second physical source 

relates with it at high frequencies. The second physical source relates with the PC4 at a low frequency 

range.  

  

(a)   (b) 

Figure 6-27 Absolute value of eigenvectors of the first, second, third and fourth physical sources 

that correlates with (a) PC3 (b) PC4. The blue, red, green and the black line denotes the absolute 

eigenvector components of first, second, third and fourth physical sources respectively. 
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At high frequencies (including the mesh frequency), there is a relationship between the second 

physical source (tangential response of the sun gear) and PC3 (Figures (6-27 (a)). Also, the first 

physical source (radial response of the sun gear) correlates with PC4 from 25 to 45 Hz and from 145 

to 500 Hz (Figure (6-27(b)).  

For this case where sun and planet gear is being considered at a lower speed and high frequencies 

(which includes the mesh frequency), the virtual source of vibration contributing to the tangential 

response of the sun at the mesh frequency comes from PC3. The virtual source contributing to the sun 

gear radial response is from PC4. At low frequencies (which includes the frequencies corresponding to 

the rotational speed of the sun and planet gears), PCs 1 and 2 dominate in all the physical sources in a 

small range of frequency.  

6.5.3 Principal Component Analysis of the loaded carrier and planet gear at higher speed 

In this section, the PCA of the planetary gear was carried out at higher speed. The speed of the carrier 

in this case is 130 rpm (2.17 Hz), the speed of the planet gear is 412 rpm (6.87 Hz) and the load 

resistance is 100 Ohms. The theoretical mesh frequency is 400.8 Hz considering the number of teeth 

on the ring gear in Equation (6.2b), while the actual mesh frequency from the PSD is 397 Hz. The 

actual mesh frequency of the planet gear is 420 Hz. The PSDs of the carrier and planet, principal 

components, the contributions of the PCs to first and second physical sources and finally to the third 

and fourth physical sources are shown in Figures D6.2, D6.3 and D6.4 respectively in Appendix D. 

The results are not significantly different from the ones at the lower speed. 

6.5.4 Principal Component Analysis of the loaded sun and planet gears at a higher speed 

The PCA of the planetary gear was carried out at higher speed for the sun and planet gear. The radial 

and tangential directions of the sun gear and x and y directions of one of the planet gears when the 

planetary gear train was in operation were considered. The speed of the sun in this case is 376.98 rpm 

(6.28 Hz), the speed of the planet gear is 412 rpm (6.87 Hz) and the load resistance is 100 Ohms. The 

actual mesh frequencies of the sun and planet gears from the PSD are 397 and 420 Hz respectively.  

The PSDs of the sun and planet, principal components, the contributions of the PCs to first and second 

physical sources and finally to the third and fourth physical sources are shown in Figures D6.5, D6.6 

and D6.7 respectively in Appendix D. The results are not significantly different from the ones at the 

lower speed. 
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6.5.5 Principal Component Analysis of the loaded carrier and planet gears at a lower 

resistance load  

The PCA of the planetary gear was carried out at a lighter resistance load of 47 ohms for the carrier 

and planet gear. The radial and tangential directions of the carrier and x and y directions of one of the 

planet gears when were measured. The speed of the carrier in this case is 103 rpm (1.7 Hz), the speed 

of the planet gear is 319.98 rpm (5.33 Hz) and the load resistance is 47 ohms. The results in this sub 

section will be compared the ones in sub-section 6.5.1. The effect of reducing the load by 

approximately half was investigated. The mesh frequency of the carrier is 317 Hz while that of the 

planet is 315 Hz. The PSDs, PCs and the virtual coherence showing the contributions of the PCs to 

the first and second physical sources are shown in Figures D6.8 and D6.9 in Appendix D.  

 

(a)      (b) 

Figure  6-28 Carrier-planet virtual coherence of the PC1, PC2, PC3 and PC4 at 47 ohms showing 

their contributions to the (c) third physical source (x direction of the planet gear) and (d) fourth 

physical source (y direction of the planet gear). The blue, red, green and black lines denotes 

PC1, PC2, PC3 and PC4 respectively. 

The virtual coherence showing the contributions of PC1 to the third and fourth physical sources are 

shown in Figure 6-28 (a) and (b) respectively. It shows that the contribution of PC1 to the fourth 

physical source at higher frequency range is becoming clearer between 450 to 580 Hz (Figure 6-28 

(b)). This shows that at a lighter resistance load, the virtual source of vibration contributing to the 

fourth physical source at high frequencies is becoming more obvious compared to unlike the virtual 

coherence at a heavier load of 100 ohms (Figure 6-20 (b)). 
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6.5.6 Principal Component Analysis of the loaded sun and planet gears at lower resistance 

load 

The PCA of the planetary gear was carried out at a lower resistance load of 47 ohms for the sun and 

planet gear. The speed of the sun in this case is 294 rpm (4.9 Hz), the speed of the planet gear is 319.8 

rpm (5.33 Hz) and the load resistance is 47 ohms. The actual mesh frequencies of the sun and planet 

gears from the PSD are 312 and 326 Hz respectively. The PSDs of the sun and planet, principal 

components, the contributions of the PCs to first and second physical sources and finally to the third 

and fourth physical sources are shown in Figures D6.10 and D6.11 respectively in Appendix D.  

 

(a)      (b) 

Figure  6-29 Sun-planet virtual coherence of the PC1, PC2, PC3 and PC4 at 47 ohms showing 

their contributions to the (c) third physical source (x direction of the planet gear) and (d) fourth 

physical source (y direction of the planet gear). The blue, red, green and black lines denotes 

PC1, PC2, PC3 and PC4 respectively. 

It is also obvious in Figure 6.29 (b) that PC1 is contributing to the fourth physical source at high 

frequency. This is not obvious at a load of 100 ohms previously discussed. In general the PCs 1 and 2 

do not correlate with the third and fourth physical sources at the mesh frequencies probably because 

there is mesh phasing. The number of teeth on the ring gear divided by the number of planet gears in 

this study is 92.5. Inapolat et al. [35] stated that if the ratio of number of teeth on the ring gear and 

number of planets is not equal to an integer, the planet gear are out of phase, therefore there is mesh 

phasing. It is necessary to conduct this experiment without phasing by increasing the number of planet 

gears in the planetary gear system such that the ratio will give an integer.   

6.5.7 Summary on vibration source identification  

The investigation has been carried out using PCA technique to identify the major source of vibration 

in the planetary gear considering two different rotational speeds under a constant resistance load. An 
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investigation was also done by reducing the load with the speed remaining constant. This is useful in 

providing information needed when monitoring or reducing vibration in a planetary gear system. The 

analysis was done directly on the signals measured individually on the carrier, sun and planet gears 

using MEMs accelerometers when rotating. First and foremost, a carrier and a planet gear were 

considered and subsequently a sun and planet gear was considered for two different rotational speeds. 

Also, the analysis was performed for a lower resistance load of 47 Ohms. In general, the following 

was discovered, 

1. For a carrier and planet gear 

a. The major virtual source of vibration of all the physical sources at low frequencies 

(especially at the frequency of synchronous vibration) is PC1, which relates with the 

planet y radial direction. Hence, the planet is the major source of synchronous 

vibration which may be due to unbalance in the load sharing or misalignment when 

coupling together the carrier, sun and planets. 

b. The major virtual source of vibration at high frequencies (especially at the mesh 

frequency) which dominates the first physical source (carrier radial) is PC4. PC4 

relates with the carrier response in the radial direction. 

c. The major virtual source of vibration at high frequencies dominating the second 

physical source is PC3 which relates with the tangential direction of the carrier 

response. 

d. The major virtual source of vibration dominating the third and fourth physical sources 

at high frequencies is unclear at 100 Ohms. When a lighter load of 47 Ohms was 

applied it becomes clearer that PC1 which relates to planet in the y direction 

contributes to the fourth physical source over a high frequency range.  

2. For sun-planet case 

a. PC1 dominates all the physical sources at low frequencies including the frequencies 

corresponding to the rotational speeds of the sun and planet gears. 

b. The principal contributor to the first physical source at high frequencies is not clear at 

100 ohms. 

c. The major contributor to the second physical source at high frequency is PC3, which 

relates with the sun tangential response. 

d. The major contributors to the third and fourth physical sources are not clear at high 

frequencies for a load of 100 Ohms. However, at a light load of 47 ohms the major 

contribution comes from PC1 over a narrow range of frequency.  

 



145 

 

3. For a constant load, there is no significant difference between the eigenvalues of the principal 

components, virtual coherence and absolute eigenvectors for the two rotational speeds 

considered.  

4. Attention must be paid to PC1when considering the synchronous vibration. 

5.  PC1 and PC2 which correspond to the planet y and x radial directions respectively are 

relatively higher for all the cases considered. This is due to the fact that the planet gears bear 

and share the load in the system and there may be larger deflection at the sun-planet and 

planet-ring mesh.   

6.6 Conclusions 

The individual extensive vibration measurements of the carrier, sun and planet gear has been 

presented for two different rotational speeds and loads. The benefit of such measurement is that there 

is no need to use any signal separation technique to identify the vibration of each component, which is 

the usual practice when accelerometers are mounted on the casing. This method is very good for fault 

diagnosis as all the responses at the resonance and mesh frequencies, responses associated with 

misalignment are measured. In this case, it is easier to identify a faulty component considering their 

vibrations in different directions within a short period. The severity of the faults can be measured and 

monitored for corrections to prevent damage of a planetary gear system.  

The study on the effect of speed and load on the dynamic response reveals the following: 

 In general, the response of the carrier and sun in the tangential direction is higher than the 

responses in the radial direction but the response of the planet gear is the highest.  

 For a case of varying rotational speed and load, the tangential responses of the carrier and sun 

increase with increased speed and load. The response of the planet also increases as the speed 

and load increase. The radial and tangential response of the sun gear at a frequency associated 

with natural mode could be high when a light load is applied.  

 For a case of constant load and varying speed, the tangential response of the carrier at the 

mesh frequency are the same except the response at the resonance frequency and the one 

close to it. The tangential response of the sun gear at mesh frequency increases as the speed 

increases. This is the same for the planet gear response at the mesh frequency. For the 

response at the frequencies relating to the natural mode, increased rotational speed does not 

show clearly if it affects the response of the carrier in both directions. The tangential response 

of the sun is high at low speed, while the response of the planet is high at a light load. 

 For a constant speed and varying resistance load, the response of the carrier at the mesh 

frequency is high when the load is light. Either a light or heavy resistance load can lead to 
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damage of the teeth of the sun gear operating under a constant rotational speed. A light 

resistance load can damage the teeth of the planet gear under a constant speed. 

 The study also shows that the tangential response of the carrier at the mesh frequency can be 

higher than the tangential response of the sun gear at the same frequency, if the stiffness of 

the planet bearing at the carrier-planet interface is less than that of the sun gear.    

 A response level relating to misalignment of sun gear at low frequency is significant at the 

maximum rotational speed and resistance load. If the load is constant, the response level and 

the frequency are increasing with the increased rotational speed. Conversely, if the rotational 

speed is constant, the frequency and response level are increases as the load is decreases. 

The study on vibration source identification shows the major source of synchronous vibration 

contributing to all the physical sources. For carrier-planet and sun-planet cases, the major source of 

vibration contributing to the planet (the third and fourth physical source) at the mesh frequency could 

not be established even when their rotational speeds were increased. The major source of vibration at 

the mesh frequency between carrier-planet and sun-planet is more noticeable when the resistance load 

was reduced from 100 Ohms to 47 Ohms.  

Given the vibration that has been modelled and measured, this study will subsequently consider 

theoretically an active control approach known as pole placement. The theory of pole placement will 

be extended to include equation of motion of a planetary gear. The controller will be designed using 

both fixed and rotating frames of reference in order to control vibration of the system. Analysis with 

numerical examples will be presented in the next chapter. 
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Chapter 7 Active vibration control of planetary gears 

Active vibration control involves changing the dynamics of a vibrating system by typically applying 

equal but opposite active forces to counter the effect of an excitation force. This chapter presents 

mainly the theory for pole placement applied to planetary gear using active vibration control method. 

The theory is an extension of that developed by Mottershead et al.  and the dynamic model is an 

extended model developed by Parker [14].  Pole placement involves assigning the closed loop poles 

of a system at the desired locations in the complex s-plane for stability. The aim is to shift the natural 

frequencies of the system to avoid resonance which can cause failure of a system. This can be 

achieved for example by actively adding stiffness using displacement feedback as the control strategy. 

Likewise, damping can be actively added to the system using velocity feedback in the control strategy. 

It is also possible to combine the displacement and velocity feedback strategies (or output feedback) 

when controlling vibration of a system. In this case, the natural frequencies can be shifted and the 

response at resonance frequencies can be reduced simultaneously.  

Vibration control of planetary gear is necessary to avoid any form of failure associated with vibration. 

These failures can cause breakdown of machines where planetary gears are used for torque 

transmission. It is believed that the poles of a planetary gear system can be shifted to avoid resonance, 

one method to achieve this for a linear system is by a receptance method. The control strategy to be 

implemented in this study is the output feedback and this will be done by pole placement. In some 

cases, the reverse method where the feedback gain is assigned will be demonstrated. According to 

Mottershead et al., collocated sensor-actuator arrangement is possible when using output feedback 

[15]. This implies that the sensors and the actuators are collocated at the same place. This is 

achievable if the characteristic nonlinear equation containing the gain terms is formulated. Closed 

loop poles will be assigned to the dynamic model of the planetary gear using pole placement by 

receptance method. The main purpose of doing this is to actively change the stiffness of the planetary 

gear system by displacement feedback, which results in a phenomenon called detuning. Detuning a 

system prevents resonance, which can cause failure associated with vibration. Another purpose is to 

reduce its response at resonance through velocity feedback which increases the damping of the system.  

For simplicity, the application of displacement and velocity feedback will be demonstrated first 

numerically, using a three degree of freedom system in Figure 7.2. Subsequently, the displacement 

and velocity feedback will be considered simultaneously. It will be demonstrated that there is 

similarity between displacement and velocity feedback without pole placement and with pole 

placement.   
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However, for pole placement on the planetary gear, the theoretical and numerical studies cover the use 

of both fixed and rotating frames of reference as the coordinate systems. The controller design is such 

that the pole can be assigned considering the rotational speed of the reference frame. The pole 

placement method where the rotational speed of the reference frame is considered in the control law is 

rare in the literature. This is done to demonstrate that the control force required using a rotating frame 

of reference can be determined and transformed using a fixed frame of reference for practical 

implementation. Numerical examples will be demonstrated, first using a fixed frame of reference to 

determine the feedback gains after pole assignment. This feedback gain using a fixed frame of 

reference will be used to determine the equivalent poles using a rotating frame of reference. The next 

stage is to determine the feedback gain using a rotating frame of reference and take a further step to 

obtain the poles using a fixed frame of reference. Therefore, the procedure is in a cycle such that the 

equivalent control force using a rotating frame of reference can be determined using a fixed frame of 

reference. 

The simulations in this study are for excitation due to transmission error between the sun and planet 

gear where equal but opposite forces are applied on them. This can give rise to a mesh excitation 

whose frequency is the product of the operating speed and the number of teeth on the stationary ring 

gear.  

For the displacement and velocity feedback, two control forces will be used to assign poles on the 

vertical and the horizontal directions of the sun gear only. The same will be repeated on the carrier. 

Then, four actuators will be used to assign poles on the horizontal and vertical directions of the carrier 

and the sun gear simultaneously. The simulations will be done using both frames of reference. The s-

plane will be presented to show how the poles have shifted after pole placement has been applied to 

the system.  

7.1 Active stiffness and damping using both displacement and velocity 

feedback with numerical examples 

For simplicity, the concept of feedback in active vibration control will be demonstrated first using 

displacement and velocity feedback in order to add active stiffness and damping to a dynamic system.  

The general dynamic equation of motion for a dynamic system is given in the form of second order 

matrix equation in the Laplace domain as 

2
( ( ) = ( ) ( )p ss s s s sM + C + K)x f f        (7.1) 
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where, M, C, K                       are the mass, damping, stiffness matrices 

respectively. Also, where 
1 1

(s) (s)
m m

p s

 
 f f, are the external disturbance and the control force 

respectively.  

 

The control law is written as 

                            (7.2) 

where 
m n

s


B is the control force distribution matrix, 

T

ss
B D  which is the sensor distribution 

matrix, 
d

G  and 
v

G  are the feedback gain matrices proportional to stiffness and damping respectively. 

The output equation is written as 

                     (7.3) 

 For a collocated sensor and actuator arrangement      
  

( ) ( )( )s s

T
ss s  d vF B G G B x         (7.4) 

Equation 7.1 can now be written as  

2
[ ( (s) = ( )s v s s d s ps s sM + C + B G D + (K + B G D x F) )]      (7.5) 

7.1.1 Numerical example  

A theoretical analysis and numerical example is given on a constrained three degree of freedom 

system shown in Figure 7-1 as follows. 

 

Figure 7-1 A constrained three degrees of freedom system. 
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The values of the parameters of the system in Figure 7-1 have been chosen as: 

                                  ⁄            ⁄            ⁄       

    ⁄         ⁄         ⁄   The mass M, damping C and stiffness K matrices are given by 

1 0 0

0 2 0 kg

0 0 4

 
 
 
  

M  , 

1.0 0.6 0

0.6 1.4 0.8 Ns / m

0 0.8 0.8



  



 
 
 
  

C ,

4 0

4 10 6 N / m

0 6

6

6



  



 
 
 
  

K  

The initial poles of the system are as follows: 

2 31 0.0171 0.4350 , 0.2750 1.8949 , 0.6579 2.8643P i P i P i          

In this analysis, both the displacement and velocity were fed back in order to achieve both active 

stiffness and damping simultaneously. Equation 7.5 shows that active stiffness and damping can be 

added to the system through feedback gains. Considering the first and the third masses, the following 

control gains were assigned considering equation (7.5). 

0.5 0

0 0.7
d 

 
 
 

G ,
0.7 0

0 0.4
v 

 
 
 

G ,
1 0 0

0 0 1

 
  
 

D
s ,

1 0

0 0

0 1

T

s

 
 

 
 
  

B D
s  

This changed the location of the initial poles of the system to other positions due to the change in the 

real and complex parts of the initial complex conjugate poles. The modified poles of the system after 

assigning feedback gains 
dG and 

vG are as follows: 

1 2 30.0707 0.5777 , 0.4248 1.9600 , 0.8545 2.8143P i P i P i       

. 
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(a) First mass    (b) Second mass 

 

(c) Third mass 

Figure 7-2 The response of the (a) first mass (b) second mass (c) third mass after assigning 

control gain using both displacement and velocity feedback. The initial and modified 

receptances are shown in red and blue respectively. 

The pole of the first excited mode shown in Figure 7-2 (a) was shifted from 0.0171 0.4350  to

0.0707 0.5777i  and a significant amount of damping was also added as the real part of the pole 

has increased. The same mode was shifted in the second and the third masses. The second mode as 

shown in both the Figures 7-2. (a) and (b), was shifted from 0.2750 1.8949i  to 0.4248 1.9600i  . 

Although the control force is not applied on the second mass, it is evident in Figure 7-2 (b) that the 

frequency of the first mode has been shifted as in the second mass. This is because the first mass is 

statically coupled to the second mass while the second mass is statically coupled to the third mass 

where the control forces were applied. The active stiffness added has changed the damped natural 

frequencies of the system to prevent resonance if excited by external disturbance whose frequency 

matches the natural frequencies of the system. Active damping added to the system can increase the 

level of damping and therefore reduced the response at resonance frequency to prevent failure of the 

system.  
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7.2 Similarities between using displacement and velocity feedback by 

pole placement using receptance method 

It will be demonstrated that displacement and velocity feedback by pole placement using receptance 

method gives the same result as the one demonstrated in sub-section 7.1.1.  First and foremost the 

theory of pole placement by the receptance method will be analysed as follows. 

From equation (7.5), 

2 1
[ ( = (s)( )s v s s d s ps s s

M + C + B G D + (K + B G D F x) )]      (7.6) 

where, 
2 1

[ ( s v s s d ss s


M + C+ B G D +(K + B G D) )] is the closed loop receptance matrix. The open loop 

receptance matrix for the system in Figure 7.1 can be written as: 

2 1
( ) ( )d s s s


  H M C K         (7.7) 

If Equation (7.5) is pre-multiplied by Equation (7.7),  

2
(s)[ ( (s) = (s) ( )d s v s s d s d ps s sH M + C + B G D + (K + B G D x H F) )] , one obtains 

(s) ( + ) ] (s) = (s) (s)s d v s d ps[I + H B G G D x H F       (7.8) 

where, I is an identity matrix, then 

1
(s) = (s) ( + ) ] (s) (s)d s d v s d ps


x [I + H B G G D H F      (7.9) 

[ + (s) ( + ) ]
(s) = (s) (s)

det[ ( ) ( ) ]

adj d s d v s
d

d s d v s

s

s s 

I H B G G D
x H F

I H B G G D
     (7.10) 

The eigenvalues that make the denominator of Equation (7.10) equal to zero are known as poles. 

Likewise, the eigenvalues that makes the numerator equal to zero are called zeros. The closed loop 

poles may be assigned to the system to obtain feedback gains gd and gv such that the nonlinear 

equation    (    (  )  (       )  )    can be satisfied. 

7.2.1  Numerical example  

The modified conjugate poles obtained after assigning feedback gains in Section 7.1.1 were assigned 

to the system in Figure 7.2. The poles are as follows: 

1,2 3,40.0707 0.5777 , 0.8545 2.8143i i        
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There are four characteristic equations written as 

det[ ( ) ( ) ] 0d j s d j v s   I H B G G D     1,...., 4    

while the open loop receptance matrix is written as 

2 1
( ) ( )d j j j  


  H M C K       1,...., 4   

The numerical results for the feedback gains are: 

0.5 0
Ns / m

0 0.6997
d 

 
 
 

G , 
0.6999 0

Ns / m
0 0.4000

v

 
  
 

G   

The feedback gains are approximately equal to the ones assigned in subsection 7.1.1. This illustrates 

that the displacement and velocity feedback strategy without pole placement and by pole placement 

using the receptance method gives similar results in principle.  

7.3 Active control of a planetary gear system by pole placement using a 

fixed frame of reference 

The dynamic model for the pole assignment analysis is shown in Figure 7-3; this model has been 

described earlier in Chapter 3. 

 

Figure 7-3 Lumped parameter model of a single stage planetary gear. It comprises a carrier, a 

ring, a sun and two planet gears. 
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For pole placement, the second order dynamic equation of motion for the planetary gear system using 

fixed frame of reference is formulated as follows 

2
( )]

b b m te
 M + K (s) + BU(s)[s sC K q(s) = F       (7.11) 

where, 

 0 0 0 0 0 0 sin cos 1 sin cos 1 0 0 0
T

te sn sn sn sn s sk e      F   

sn n s     

and where,                             
       

       
 are the mass, damping, 

bearing and mesh stiffnesses respectively. B
m n

 is the control force distribution matrix      

      and is the control force, while 
1m

te


F is the disturbance due to the transmission error in the sun-

planet mesh. These are two opposing forces in the sun-planet mesh unlike the forces being applied in 

most dynamic systems. The pressure angle and planet positions are denoted by αs and ψn. 

 

The feedback control law can be expressed as: 

(s) = -( + s ) (s)
op

U G F q    (7.12) 

  

The matrices G and F give the feedback gains, which are directly proportional to active stiffness and 

damping respectively.  Where, vector (s)
op

q  is the output.  The output equation is written as 

(s) = (s)
op

q Dq    (7.13) 

For collocated sensors and actuators, T
B = D  

m n
 , where D is the sensor distribution matrix. If 

U(s) is substituted into equation (7.11), then 

2
[ ( )] ( ) -( +s ) (s)

b b m te
+       Bs M sC K K q s F (s) G F Dq     (7.14) 

Taking the second term on the right hand side to the left hand side,  

2
)[ ( ( ]

b b m te
+ +   BFD BGDs M s C K K ) q(s) F (s)     (7.15) 

2 1
)[ ( ( ]

b b m te
+ +


  BFD BGDq(s) s M s C K K ) F (s)     (7.16) 
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where, 
2 1

)[ ( ( ]b b m+ +


 s M s C BFD K K BGD) is the closed loop inverse dynamic stiffness 

matrix using the fixed frame of reference. The term )(
b

+s C BFD provides active damping into the 

system while ( )b m K K BGD changes the natural frequencies of the system. The open loop 

inverse dynamic stiffness matrix is: 

2 1
[s s ( )]b b m+


 H(s) M C K K=  ,       (7.17) 

If equation (7.15 is pre-multiplied at both sides by the equation (7.17), we have, 

[ + ( + s ) ] (s) = (s) (s)
te

I H(s)B G F D q H F  

1
(s) = [ + ( + s ) ] (s) (s)

te


q I H(s)B G F D H F  

[ + ( +s ) ]

det[ + ( +s ) ]
(s) = (s) (s)

adj

te

I H(s)B G F D

I H(s)B G F D
q H F       (7.18) 

The eigenvalues j   that make the denominator equal to zero are known as poles and written as.  

det( + ( ) ( + ) ) =j j I H B G F D 0        (7.19) 

The values of eigenvalues i  that make the numerator of equation (6.8) equal to zero are known as 

zeros and written as  

) ) ( )adj( + (λ ( + λ ) ) ( =
i ii i B HI H G F D H 0       (7.20) 

Where, I is an identity n n  matrix 

Only the assignment of poles was considered in this analysis and numerical examples. The schematic 

diagram of the control system is shown in Figure 7-4, where the disturbance is applied at the input and 

the output is fed back to achieve stability in the system. 
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Figure 7-4 Schematic diagram of closed loop feedback control system. 

7.4 Active control of by pole placement using a rotating frame of 

reference 

The control algorithm in the rotating frame of reference can be obtained similarly. In this case, the M, 

C and K matrices are different as well as the coordinate system. This can be analysed using Figure 7-

5, where the dynamics of the rigid bodies were modelled using a rotating frame of reference fixed to 

the carrier with origin o. The coordinate basis (i, j and k) rotates with a constant angular speed of the 

carrier
c . It has been shown in chapter 3 how to transform from one frame of reference to another. 

 

Figure 7-5 The planetary gear system showing the rotating frame of reference attached to the 

carrier at the centre. 

For pole placement, the second order dynamic equation of motion for the planetary gear system using 

rotating frame of reference is written in the Laplace domain as: 

2 2
)] ( ) + ( )s + s( + ) + ( +

c y b m c d c
  


  q(s) = w s BU s[ M G C K K K K    (7.21) 
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where , , , ,b b m y

n nM C K K G  are the mass, damping, bearing stiffness, mesh stiffness and 

Coriolis matrix respectively. , , ,T T T T T

b b m m b b     M M K K K K K K C C, while the Gy and Kd  

matrices are skew-symmetric. B
m n

 is the control force distribution matrix and U(s)
1m

  is 

the control force, while w
1m

 is the disturbance due to the transmission error.  
 

The output equation is written as: 

 (s) = (s)
op

q Dq         (7.22) 

From Equation (7.12), the control force using a rotating frame of reference can be derived using the 

transformation matrix, T: 

where 

 

cos sin 0

sin cos 0

0 0 1

c c

c c

t t

t t

 

 

 
 


 
  

T        (7.23) 

The control force using a rotating frame of reference is written as 

( + + (s)c sU = G FJ F)Dq         (7.24) 

0 1 0

1 0 0

0 0 0

h

 
 
 
  

J = ; h=c, s        (7.25) 

where c and s are the carrier and sun gear because the control forces were applied to them. 

Substituting for U in equation (7.21), one obtains, 

2 2
[ ( ) ( )] ( ) ( ) [ ( )] ( )b m d cc y c c
s s + s


        M G + C K K K K q s w s B - G + FJ + F Dq s  (7.26) 

2 2
[ ( ) ( )] ( ) ( )b d cc y c cms s +


         M G + C + BFD K K K K BGD BFJD q s w s  (7.27) 

2 2 1
( ) [ ( ) ( )] ( )b d cc y c cms s +




         q s M G + C + BFD K K K K BGD BFJD w s  (7.28) 

The closed loop inverse dynamic stiffness matrix is written as  

2 2 1
[ ( ) ( )]b d cc y c cms s +




        M G + C + BFD K K K K BGD BFJD   (7.29) 

The open loop inverse dynamic stiffness matrix is written as: 
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2 2 1
)(s) = [ ( ( ]b dc y c cms s +



   H M + G + C) K K K K      (7.30) 

Pre-multiplying equation (7.30) by equation (7.27) 

[ + [ s ] (s)c I H(s)B (G + FJ + F)D q H(s)w(s)  

1
(s) [ + [ s ]c


 q I H(s)B (G + FJ + F)D H(s)w(s)  

[ + ( + s ) ]
(s) = (s) (s)

det[ + ( + s ) ]
c

c

adj 



I H(s)B G FJ+ F D
q H w

I H(s)B G FJ+ F D
     (7.31) 

The corresponding eigenvalues j are equal to poles given as solutions to 

)det( + ( ( + + ) ) =j jc
  BI H G FJ F D 0 . The corresponding eigenvalues i  are equal to zeros 

given as solutions to ) ( )adj( + (λ ( + λ ) ) =
c ii i  B HI H G FJ F D 0 . 

7.5  Numerical examples of pole assignment using two control forces  

The pole placement will be applied to the either sun gear or the carrier in both the vertical and 

horizontal directions simultaneously using a fixed and rotating frames of reference in each case. A 

transmission error of            was assumed in this study and the subsequent ones. 

7.5.1 Pole assignment to the sun gear using a fixed frame of reference 

Two pairs of complex conjugate poles at 1,2 7 265i   and 3,4 15.661 800i   were assigned to 

the sun gear using two actuators supplying feedback control forces in the horizontal and vertical 

directions through the bearing as shown in Figure 7-6. The poles were chosen considering the open 

loop poles of the system. 



159 

 

 

Figure 7-6 The control force being applied to the system in the x and y directions. They are 

denoted with blue arrows in both directions. 

The mass, damping and stiffness matrices are as given in the Appendix E. The actuator distribution 

matrix B
15 2

 and the sensor distribution matrix D
2 15

 are then 

T 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

 
   

 
D B  

In this case 1 ( ) ( )op sq s x s D  and 2 ( ) ( )op sq s y s D . The open-loop inverse dynamic stiffness 

matrices are written as 

2 1( ) ( ) ,cj cj b cj b m     H M C K + K     1,...., 4j   

Four characteristic equations which are nonlinear in control gains G and F can be written as 

T
det( ( ) ( ) ) 0,j j   I H B G F B    1,...., 4j   

The nonlinear equation was solved using the “fsolve” routine in MATLAB to obtain G and F. This 

was also used subsequently in the remaining numerical simulations. The numerical results for the 

control gains are: 

60.28162 0
10

0
N / m

0.87076

 
  

G  , 
34.9973 0

0 9.4773
Ns / m

 
 
 

F   
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The control gain, G is proportional to stiffness, this implies that stiffness is added to the sun gear in x 

direction and removed stiffness in y direction. The control gain, F is proportional to damping. It 

shows that damping is added to the sun gear in both x and y directions. 

The result was validated using a state-space representation namely: 

1 1
(b m b

  
 

 
 

 

0 I
A

-M (K K BGD) -M C BFD)
     (7.32) 

which yields              and                   which replicate the assigned poles.  

  

(a)      (b) 

Figure 7-7 Displacement per mesh excitation of the sun gear in the (a) x and (b) y direction with 

and without control due to mesh excitation. The initial and the modified displacement per mesh 

excitation are plotted in red and blue respectively. 

The mesh excitation in this study is the product of the sun-planet mesh stiffness and the transmission 

error between the sun and planet gear which is              

The result in Figure. 7-7 (a) which is the displacement of the sun gear in the horizontal direction, 

shows that a pole was shifted from 2.8336 276.75i  to 7 265i  . Another pole was shifted from 

7.1425 714.11i   to 15.662 800i   with significant damping added. This is a mode where only 

the sun gear is translating in both directions. Only the frequencies of translational modes were altered. 

Only the poles of translational mode have shifted the poles of the rotational mode remain unaltered. In 

Figure 7-7 (b), the pole at 2.8336 276.75i   to 7 265i  in the first excited mode while the second 

excited mode was shifted from 7.1425 714.11i   to 15.662 800i  . There is a translational mode 

excited at 664 rad/s; this frequency was shifted to 280.5 rad/s but not excited after modification. The 

poles of higher modes remain unchanged, no damping was added. The stiffness has been reduced in 

the y direction which is why at low frequency the modified displacement per mesh excitation (i.e. the 

blue line) moved up (Figure 7-7 (b)).   
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Figure 7-8 The s-plane plots showing the locations of the initial and the modified poles when the 

control forces were applied to the sun gear using a fixed frame of reference. 

Figure 7-8 shows the three pairs of conjugate poles which were shifted. They are poles of the 

translational modes because the poles were assigned to the sun gear in the translational x and y 

directions. Five translational and 7 rotational modes remain unchanged. The magenta line shows the 

pole that shifted from 2.8336 276.75i  to 7 265i  , the blue line shows the one from 

7.1425 714.11i   to 15.662 800i  while the green line shows how a pole shifted from

6.3894 664.34i   to 4.3504 280.5i    

 

(a)       (b) 

Figure 7-9 Control forces applied on the sun gear in both the (a) x and (b) y directions using 

fixed frame of reference.  
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The normalised and absolute control forces are shown in Figure 7-9 in blue and orange line 

respectively. It depends on the control gains G and F, the closed-loop poles assigned and the 

amplitude of the excitation. Equation (7.12) shows the expression for the control force with the 

actuator distribution matrix B. The control forces in the x direction is less than the y direction. In 

Figure 7-9 (a), the absolute control forces are 0.2 N at 265 rad/s and 2.3 N at 800 rad/s. The absolute 

control forces required in y direction is 115.2 N at 265 rad/s Figure 7-9 (b)). Generally, the control 

forces in both directions are relatively low so actuators with low control force would be suitable for 

practical implementation.  

The resistive and reactive power calculations and their interpretations, for both electrical and 

mechanical systems, are shown in Appendix E. The apparent control power or effort using a fixed 

frame of reference is determined by multiplying the control force by the Hermitian conjugate of the 

velocity in a Laplace domain. This is written as  

   
 

 
[                             ]      (7.33) 

The active control power is determined by considering the real part of equation (7.33). Bobrovnitskii 

[73] gives the expressions for both the real and imaginary parts of the complex power flow. The real 

part of the complex power flow for this case study, which is also called the direct component, can be 

expressed as follows: 

   
 

 
  [                             ]       (7.34) 

Equation (7.34) is equivalent to time averaged active (resistive) power. The imaginary part of 

equation (7.33), known as the reactive power flow, can be expressed as follows 

   
 

 
  [                             ]     (7.35) 

Equation (7.35) is equivalent to the peak value of the periodic with zero time averaged mean (reactive) 

power flow. In addition, the time averaged mean square control force is also considered. This is given 

by 

   
 

 
|[             ]|         (7.36)  

For the sun gear, the control power required to shift the poles in x and y directions using a fixed frame 

of reference are shown in Figure 7.10 (a) and (b) respectively. 
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(a)      (b) 

Figure 7-10 (a) Mean square control force (b) Active control power (c) Peak reactive control 

power required by the sun gear in both the x and y directions respectively using a fixed frame of 

reference. 

Figure 7-10 shows the active control power required by the sun gear in both the x and y directions. 

Very small magnitudes of active control power are required to shift the poles in both directions. As 

discussed earlier, the pole in x direction was shifted from                  to               

while the pole in the y direction was shifted from                  to         . The reactive 

control effort (or power) does no net work, as it flows from the source of the control power (i.e. the 

controller applying the force) to the PGT system and returns the same amount of power within each 

cycle of the corresponding frequency. This is analogous to the power flow into and then back in each 

cycle from the stiffness element in a single degree of freedom system when the stiffness supported 

mass is excited at a discrete frequency (see Appendix E). 

7.5.2 Pole assignment to the sun gear using a rotating frame of reference 

The closed-loop poles were determined using the state space at the carrier speed of 100 rpm. In this 

case, the control gains obtained using a fixed frame of reference were assigned using the state space 

equation (7.37) to obtain the poles. It is assumed that the control gains in both frames of reference are 

not changing with time. 
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21 1
(b m c d c y bc c

  
  

 
 

    

0 I
A

-M (K K K K B(G + FJ)D -M G C BFD)+ +
  (7.37) 

The sensor and force distribution matrices as well as the gain matrices are the same as the ones using 

fixed frame of reference i.e. B B , D D , G G , F F.  The closed-loop poles obtained from the 

state space at the carrier speed of 100 rpm are:  

1,2 3,46.9108 264.18 and 15.659 800.2S i S i      

The open-loop inverse dynamic stiffness matrices are written as 

2 2 1
+ +( ) ( ( ) ( )) * ,cj cj b cj tec y b m c d c

  



     H M G C K K K K F 1,...., 4j   

while the four characteristic equations are written as 

T
det( ( ) ( ) ) 0,cj j    I H B G F BFJ 1,...., 4j   

These poles obtained from the Equation (7.33) were assigned to the sun gear in the x and y directions. 

This yields the following control gains 

60.28161 0 34.9977 0
10 N / m; Ns / m

0 0.87076 0 9.4808
 



   
   
   

G F   

The results was validated by state-space, Equation (7.37) and it yields the following poles: 

1,2 3,46.9112 264.18 and 15.659 800.2S i S i       

The poles are almost the same as the closed loop poles assigned. The displacement per mesh 

excitation for both the horizontal and vertical directions are shown in Figure 7-11.  
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(a)     (b) 

Figure 7-11  Displacement per mesh excitation of the sun gear in the (a) x and (b) y directions 

with and without control due to mesh excitation using a rotating frame of reference at a carrier 

speed of 100 rpm.  The initial and the modified displacement per mesh excitation are plotted in 

red and blue respectively. 

The results in Figures 7-11 (a) and Figure 7-7 (a) are the same while the ones in Figures 7-11 (b) and 

7-7 (b) are the same.  The difference is the coordinate system used but at a low speed like 100 rpm of 

the rotating coordinate system attached to the centre of the carrier, the results are the same.  

For a rotating frame of reference, the control force required for the sun gear in the y direction is higher 

than the x direction. The s-plane is shown in Figure E7.2 in Appendix E. The same number of poles 

are shifted in the s-plane as the ones shown in Figure 7-8. Approximately the same magnitude of 

control forces are needed using both frames of reference when control forces are applied on the sun 

gear in both the x and y directions for a low speed of the rotating coordinate. The control force in both 

the x and y direction when a rotating frame of reference was used is shown in Figure E7.3 in 

Appendix E.  

The control power using a rotating frame of reference is determined by multiplying the control force 

by the Hermitian conjugate of velocity in a Laplace domain as written in equation (7.38). The active 

and apparent control power as well as the mean square control force are written respectively in 

equations (7.39), (7.40), and (7.41). 

   
 

 
[                                  ] (7.38) 

   
 

 
  [                                  ] (7.39) 

   
 

 
  [                                  ]         (7.40)
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In addition, the mean square control force using a rotating coordinate is also considered. This is given 

by 

   
 

 
|[                  ]|        (7.41)  

   

 
(a)      (b) 

 

Figure 7-12 (a) Mean square control force (b) Active control power (c) Reactive control power 

required by the sun gear in both the x and y directions using a rotating frame of reference when 

the coordinate speed is 100 rpm. 

For a relatively low rotational speed 100 rpm of the sun gear, the active control power required, is 

approximately the same as the effort required using a fixed frame of reference (Figures 7-10 (b) and 

7-12 (b)). 

7.5.3 Pole assignment to the carrier using both frames of reference 

The method of pole placement was applied to the carrier only in the x and y directions simultaneously 

using both fixed and rotating frames of reference. The pole placement on the carrier will be compared 

to that of the sun gear in order to determine the best location to put the actuator in the system. Two 

conjugate poles 1,2 7 265i   and 3,4 15.661 800i    (which are the same assigned to the sun 

gear) were assigned to the carrier. This is done to compare the control effort required in both cases 

and determine the optimal place to apply control forces in a planetary gear system. The numerical 

results for the control gains are: 
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60.49326 0
10 N / m

0 0.40454






 
 
 

G  ; 
303.53 0

Ns / m
0 12.0127


 
 
 

F  

This result was validated and it yields 7 265i  and 15.663 800i  . 

 

  

(a)       (b) 

Figure 7-13  Displacement per mesh excitation of the carrier in the (a) x and (b) y directions 

with and without control due to mesh excitation using a fixed frame of reference. The initial and 

the modified displacement per mesh excitation are plotted in red and blue respectively. 

Figure 7-13 (a) shows the displacement per mesh excitation of the carrier in x direction where the pole 

of the first excited translational mode is shifted from 2.8336 276.75i   to 7 265i  . Damping is 

added at 265 rad/s because the peak is not as sharp as the peak at 276.75 rad/s. Another pole of a 

translational mode moves slightly from 6.3894 664.34i   to 6.6242 662.51i  . A pole was also 

shifted from 9.7772 1023.7 i  to 15.663 800i   but the peak has vanished in the modified 

displacement per mesh excitation. In Figure 7-13 (b), the frequency of the first excited mode was 

shifted from 275 rad/s to 265 rad/s. The second mode was shifted from 664.34 to 662.51 rad/s while 

the third mode was shifted from 1023.7 to 800 rad/s. The peak of the assigned pole at 800 rad/s can be 

seen in y direction. The translational mode at 1876.6 rad/s was slightly damped while the last 

translational mode excited at 7773.2 rad/s remains unaltered.  
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Figure 7-14 The s-plane showing the locations of the initial and modified poles when the control 

forces were applied to the carrier using a fixed frame of reference. 

The conjugate poles shifted after pole placement are shown in Figure 7-14. The two assigned poles 

and other poles can be seen before and after modification. The real and imaginary part of the poles of 

the rotational modes remain unchanged. The magenta line shows the pole shifted from 

2.8336 276.75i   to 7 265i   while the blue line shows the pole shifted from 9.7772 1023.7 i  to

15.663 800i  . The frequency of a closed-loop pole shown by a green line was shifted from 1020.9 to 

730.55 rad/s with a significant level of damping added. 

 

(a)      (b) 

Figure 7-15 Control forces applied on the carrier in both the (a) x and (b) y directions using a 

fixed frame of reference. 
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The normalized (blue line) and absolute (orange line) control forces are shown in Figures 7-15 (a) and 

(b). A force of 15.6 N is required in x direction to shift the pole from 276.75 to 265 rad/s while a force 

of 1.04 N is required to shift the pole from 1023.7 to 800 rad/s in y direction. The control forces vary 

and depend on the stiffness and damping added as well as the pole assigned.  

 

(a)      (b) 

Figure 7-16. (a) Mean square control force (b) Active control power (c) Reactive control power 

required by the carrier in both the x and y directions using a fixed frame of reference. 

The active control power required by the carrier is relatively higher than that required by the sun gear 

in both the x and y directions (comparing Figures 7-10 (b) and 7-16 (b)).  It can be seen from both the 

figures aforementioned, that the active control power required by the carrier to shift a pole of 

                 to          in the x direction is higher than that required by the sun gear in 

the y direction.  The control effort required by the carrier to shift a pole from                  to 

              in the y direction is less than that required by the sun gear in the x direction. There 

is no significant difference in the active control effort required by the carrier using either frames of 

reference (Figure 7-16 (b) and Figure E 7.3 (b) in Appendix E).  

For a high margin between the open and closed loop poles, the control effort required by the sun gear 

is higher because it has higher support stiffness. This is not the case for the low margin between the 

open and closed loop poles where the control effort required by the carrier is higher. Therefore, the 

optimal place to apply control in the planetary gear system considering the control effort required 

depends on the initial location of the poles and the desired final shifted pole location in the s-plane for 

stability. Another factor to be considered is the bearing stiffness of the carrier and the sun gear. For 

high bearing stiffness, more control effort will be required to shift the pole from a particular location 

to another especially for the case where the margin between the open and closed loop is high. 
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For the carrier when a rotating frame of reference was used, the poles obtained at a rotational speed of 

100 rpm using equation (7.33) are 7.0025 264.78i  and 16.271 800.31i  . The poles were assigned 

and yield the following gains: 

60.49335 0
10 N / m

0 0.40455


 



 
 
 

G  , 
303.41 0

Ns / m
0 12.0221


 
 
 

F   

The results were validated by state-space equation as written in equation (7.33), and this yields 

7.0024 264.78i  and 16.275 800.3i  . The closed-loop poles obtained are the same with the ones 

assigned.  

The displacement per mesh excitation and the control efforts of the carrier using a rotating frame of 

reference is shown in Figures E7.3 and E7.4 in Appendix E. They are the same with the ones when a 

fixed frame of reference was used at a carrier speed of 100 rpm except for a peak which appeared at 

715.9 rad/s in y direction. In this case the control forces and efforts in both directions are the same as 

using a fixed frame of reference. 

 

It has been shown by numerical examples that the poles can be assigned in a fixed frame of reference 

and the equivalent control force and effort can be obtained using a fixed frame of reference. 

Conversely, this can also be done using a rotating frame of reference. This means a pole can be 

assigned using a rotating frame of reference where the accelerometers are rotating with the system at a 

particular carrier speed, the equivalent pole can be obtained using fixed frame of reference where the 

accelerometers are fixed. However, since the actuators cannot rotate with the system, so the control 

force and effort required to shift the pole using a rotating frame of reference can be transformed using 

a fixed frame of reference for practical implementation. The conjugate closed-loop poles and control 

gains for the sun gear and carrier at higher carrier speeds of 500 and 1000 rpm are determined and 

shown in the table 7-1. This is achievable because the controller was design such that the poles can be 

obtained at any rotational speed of the rotating coordinate. 
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Table 7-1 The conjugate closed loop poles and control gains at higher carrier speeds. 

 Sun gear Carrier 

Poles obtained at the 

carrier speed of 500 rpm 

                

                

                

                

Control gains at the 

carrier speed of 500 rpm 

                           

                       

                            

                       

Poles obtained at the 

carrier speed of 1000 

rpm 

             

            

                

                

Control gains at the 

carrier speed of 1000 

rpm 

                           

                       

                            

                       

 

It shows from table 7-1 that the equivalent closed-loop poles at different rotational speeds of the 

rotating coordinate system can be obtained. For simplicity, the procedure for pole placement using 

both fixed and rotating frames of reference is shown in Figure 7-17. 

 

 

Figure 7-17 Procedure for pole assignment using both the fixed and rotating frame of reference. 

 

In this study, the theory of pole placement extend to the vibration control of planetary gear is such that 

the required control force can be determined considering the rotational speed of the reference frame 
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and the control gains. The equivalent control force needed for instance at 500 and 1000 rpm can be 

determined using a fixed frame of reference for implementation.  

 

 

(a) Real part of the poles   

  

(b) Imaginary part of the poles  (c) Zoomed view of the imaginary part. 

Figure 7-18 Effect of the carrier speed on the closed-loop poles for constant feedback gains   at 

100 rpm when the poles were placed on the carrier. 

The effect of the varying carrier speed on the closed loop poles is studied when the feedback gains are 

constant. The feedback gain used is that of the carrier at 1000 rpm shown in Table 7-1. It shows that 

the real part of some poles are not constant over a wide range of carrier speed but the real part of the 

poles at high frequencies (from tenth to fifteenth mode) are constant. They are not affected by the 

carrier speed (Figure 7-18 (a)). For the imaginary part (shown in Figure 7-18 (a)), which represents 

the damped natural frequencies, some frequencies of translational modes are changing as the carrier 

speed is increasing. For instance the frequency of the eighth mode changed from 800 rad/s at low 

speed of the carrier to 853 rad/s at 1000 rpm. The damped natural frequencies of the higher modes 

remain unaltered.     
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7.6 Numerical examples of poles assignment using four control forces 

In this section, the method of pole placement will be simultaneously applied to the carrier and sun 

gear in the vertical and horizontal directions using the fixed and rotating frames of reference in each 

case. There are eight characteristic nonlinear equations to be solved in this case because four complex 

conjugate closed-loop poles will be assigned.  

7.6.1 Pole assignment to the carrier and sun gear using a fixed frame of reference  

In this case, four conjugate poles were assigned and the feedback gains were determined. The 

following poles were assigned to the carrier and sun gear both in the x and y directions. 

1,2

3,4

5,6

7,8

2.9588 278.11

23.326 705.97

27.170 762.17

34.651 1081.7

i

i

i

i

   

   

   

  

 

The open loop inverse dynamic stiffness matrix is then: 

2 1
= 1,...,8( ) ( ) ,cj cj b cj b m j     H M C K + K ,  

and the characteristic equations are  

T
det( ( ) ( ) ) 0, = 1,...,8jj j   I H B G F B .  

The sensor and actuator distribution matrices are then: 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

T


 
 
 
 
  

D B  

In this case 1 ( ) ( )op cq s x s D , 2 ( ) ( )op cq s y s D , 3 ( ) ( )op sq s x s D and 4 ( ) ( )op sq s y s D  
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The numerical results for the control gains are: 

6

0.12366

0.12871
10 N / m

0.01549

0.28533



 
 
 
 
  

G

49.8148
Ns / m

68.0236

49.8991

93.6318



 
 
 
 
  

F  

This result was validated and the following closed-loop poles were obtained: 

1,2

3,4

5,6

7,8

2.9588 278.11

23.326 705.97

27.171 762.17

34.672 1081.7

i

i

i

i

   

   

   

  

 

The returned closed-loop poles are the same with the assigned closed loop poles 

  

(a)      (b) 

Figure 7-19 Displacement of the carrier per mesh excitation in both the (a) x and (b) y directions 

using fixed frame of reference. The initial and the modified displacement per mesh excitation 

are plotted in red and blue respectively. 

Figure 7-19 (a) shows an open loop of the first excited mode was slightly shifted from 

2.8336 276.75i  to 2.9588 278.11i  . Another pole was shifted from 9.7772 1023.7i   to 

34.672 1081.7i  with significant damping added. The damped natural frequency at 1876.6 remain 

unchanged while the one at 7773.2 rad/s is unaltered but little damping was added because it changed 

from 3.5370 7773.2i  to 5.6809 7774.0i  . 
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In Figure 7-19 (b), the open-loop pole at 2.8336 276.75i  was shifted to 2.9588 278.11i   while 

the one at 6.3894 664.34i  was shifted to 27.171 762.17i  . The pole of the third excited mode 

was shifted from 9.7772 1023.7i  to 34.672 1081.71i  . Significant amount of damping were 

added in the modified poles of the second and third modes.  

  

(a)      (b) 

Figure 7-20 Displacement of the sun gear per mesh excitation in both the (a) x and (b) y 

directions using fixed frame of reference. The initial and the modified displacement per mesh 

excitation are plotted in red and blue respectively. 

In the horizontal and vertical directions of the sun gear as shown in Figure. 7-20 (a) and (b), the open-

loop pole of the first excited mode was shifted from 7.1425 714.11i  to 27.7171 762.17i  . There 

is a peak at 664.34 rad/s in the y direction of the sun gear which disappeared in the modified response 

probably because of significant amount of damping added in the y direction of the sun gear as shown 

in the gain matrix F (row 4, column 4). 
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Figure 7-21 The s-plane plane showing the locations of the initial and modified poles when the 

control forces were applied to the carrier and sun gear using a fixed frame of reference. 

Figure 7-21 shows more poles are shifted from their original location when using four actuators. This 

can be compared to Figures 7-8 and 7-14 where only two control forces were applied on either the 

carrier or sun gear in both the horizontal and vertical directions. Three poles were effectively shifted 

using two control forces on either the carrier or the sun gear. In this case, where four control forces 

were applied on the carrier and the sun gear simultaneously, six poles of the translational modes were 

altered. There are two poles among the six poles where only the real parts were slightly altered. In 

general, only the poles of translational modes are altered, the poles of the rotational modes remain 

unchanged. 
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(a) (b) 

Figure 7-22 Normalised and absolute control forces to the carrier in both the (a) x and (b) y 

directions using a fixed frame of reference. 

The control forces applied on the carrier in the x and y directions at different excited frequencies are 

shown in Figures 7-22 (a) and (b) respectively. They are not as high as shown in the Figures 7-19 

where two actuators were applied on the carrier only.  

  

(a)     (b) 

Figure 7-23 Normalised and absolute control forces to the sun gear in both the (a) x and (b) y 

directions using a fixed frame of reference. 

Likewise, Figure 7-23 (a) and (b) shows the control forces applied on the sun gear in both x and y 

directions. This can be compared with the control forces applied to sun gear with two actuators shown 

in Figure 7-10 which are higher. Less control force are required if more actuators are used but this 

may be expensive. In general, actuators that can deliver relatively low displacement and low force 

should be suitable for the control experiment. For the control experiment, the control force will be 
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applied through a bearing fitted in an adapter. This bearing will be mounted on either the carrier or 

sun gear shaft 

7.7 Discussion 

This study has numerically demonstrated how a pole placement method can be used to actively 

control the vibration of a planetary gear system. The controller was designed such that the closed-loop 

poles can be assigned using both fixed and rotating frames of reference. The control gain can be 

determined at any rotational speed using a rotating frame of reference. The control force and effort 

required can then be determined at each frequency, therefore the kind of actuator required for the 

control experiment can be known. The numerical predictions show that the assigned poles of lower 

frequencies corresponding to translational modes are shifted to avoid resonance with the addition of 

damping to reduce the response.  The control forces required for the method are relatively small, 

therefore actuators with low control force are suitable for practical implementation. The control 

experiment on pole placement method in controlling vibration of planetary gear is recommended to 

know if the numerical result closely approximate the dynamic of the system after pole placement. The 

control experiment should be such that the rotational displacement can be measured over a wide range 

of frequency and the poles of the excited rotational modes can be shifted. For this method, the 

transmission error and the mesh stiffness must be known unlike the one demonstrated by Mottershead 

et al which makes use of measured receptance.  

There is a feedforward method used by Montague et al. [42] to control mesh vibration of parallel axis 

gear, this can also be applied to planetary gear for mesh vibration reduction. The piezoelectric 

actuators were mounted 20
o
 to the common tangent to the pitch circles such that they are collinear 

with the line of contact or pressure line. 

7.8 Conclusions 

The theory of pole placement in active vibration control has been extended to control the vibration of 

planetary gear in this study. The new contribution is that a controller was designed such that the 

closed-loop poles can be assigned using both fixed and rotating frames of reference. The feedback 

gains can be obtained at any rotational speed of the rotating coordinate. This pole placement method 

considers output feedback and this was presented and numerically implemented using both fixed and 

rotating reference frames. First and foremost, the same poles were assigned to the sun gear only and 

subsequently the carrier in the x and y (translational) directions using both frames of reference. Three 

open-loop poles corresponding to translational modes out of eight were shifted with two control 

forces applied either on the carrier or sun gear. This shows that the method is suitable to actively 
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control the mesh vibration of a planetary gear system but requires that the mesh excitation should be 

known. 

It was shown that the control force determined using a rotating frame of reference can be transformed 

to the fixed frame of reference for practical implementation. This is because with current technology, 

actuators cannot easily rotate with the planetary gear in practice to control the vibration. Also, the 

control forces required by the actuators are not high, hence actuators with low control forces and 

displacement will be suitable for practical implementation.  

 

The optimal place to apply control force when two actuators are used to apply control force on either 

the carrier or the sun gear was determined using the control effort required. For comparison, the 

control effort required by the sun gear to achieve stability is more because the stiffness of its bearing 

is higher. So the optimal place to apply control force depends on the stiffnesses of the bearings. The 

lesser the stiffness of the bearing the less the control effort required. In this study, the optimal place to 

apply control force is the carrier. 

 

Furthermore, the number of control forces was increased from two to four and they were 

simultaneously applied to the carrier and sun gear in x and y directions. The simultaneous assignment 

of poles to both the carrier and sun gear shows a better vibration controllability than assigning the 

poles to one of them. Five poles corresponding to translational modes were shifted and damped with 

four control forces. The poles of the six rotational modes remain unchanged with two and four control 

forces applied. This is because the closed-loop poles were applied in both the x and y directions of the 

carrier and sun gear which are translating. In general, the translational modes of vibration (i.e. 

transverse vibration) which are the largest in high speed machinery can be controlled effectively by 

pole placement. 
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Chapter 8 General conclusions and future work 

This study focuses mainly on the vibration measurement and control of planetary gear. Dynamic 

modelling and analysis was considered first to predict the natural frequencies and the mode shapes of 

vibration using a fixed and rotating frame of reference. The results using both frames of reference 

were compared. A customized planetary gear test rig was designed and constructed such that the 

independent vibration of the carrier, sun and planet gears can be measured when they are rotating. 

This was achieved by considering a sufficient space on the components where MEMS accelerometers 

can be mounted. Some of the parameters needed to predict vibrations were calculated analytically 

while some were measured and compared to the values of the existing formula. For instance modal 

analysis was used to determine the bearing stiffnesses of the carrier, sun and planet gears and the 

results were compared to the existing formula in the literature. Also, modal analysis was carried out in 

order to compare the predicted vibration results with the experimental results. The spinning test was 

carried out where the MEMS accelerometers were rotating with the components in order to measure 

the true vibrations of the components. Vibration source identification was carried out to determine the 

major source of vibration within a particular frequency range. Finally some poles of the system were 

shifted to another location to avoid resonance which can lead to damage and breakdown of a planetary 

gear system.  

8.1 General conclusions 

8.1.1 Dynamic modelling using fixed and rotating frame of reference 

The dynamic modelling and analysis was done using both the fixed and rotating frames of reference. 

It was discovered that the natural frequencies are the same when using both frames of reference 

provided that the rotational speed of the rotating coordinate is low. It shows that there is the 

possibility of having a mode where only the sun or ring gear is translating in a planetary gear system 

with two planet gears unlike system with higher number of planets. 

8.1.2 Test rig design and construction 

A suitable vibration test rig of planetary gear was designed and developed such that individual 

vibration response of each component in the system can be measured while rotating. The parts of the 

test rig can be easily dismantled for modification because temporary fasteners were used to couple 

them together. Furthermore, the test rig is designed such that there are spaces where wireless 

accelerometers can be mounted on the rotating components. The test rig was used for measuring the 

bearing stiffnesses of the components. The ratio of bearing stiffnesses estimated in the horizontal and 
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vertical directions were determined and compared to the ones presented in literature. It shows that the 

difference is not significant. The mesh stiffness was also estimated using the result of the modal 

testing conducted on the test rig with the predicted results. The vertical stiffness of the ring gear could 

not be estimated correctly because it was bolted to the base of the test in the vertical direction. 

8.1.3 Comparison between predictions and measurement 

The sun-planet and ring-planet mesh stiffnesses were determined with the measured and predicted 

natural frequencies using error function. The predicted and measured responses shows a certain 

degree of agreement but not fully agreed especially the planet and ring gears. In general, the analytical 

model seems to show the behaviour of the planetary gear system. 

8.1.4 Spinning test and vibration source identification 

It has been presented in this study that vibration of individual components of a planetary gear system 

can be measured when rotating. There is no need to use signal separation techniques to isolate signals 

in order to identify faulty components. The effect of load and rotational speed on the response at the 

natural and mesh frequencies are studied and presented. The study shows that a light load can cause a 

significant response on the gears which can damage the teeth as well as a heavy load under a constant 

speed. The response associated with unbalance on the sun gear and their side bands were also 

measured at a low frequency range. The effect of rotational speeds and loads on this response was 

presented. 

8.1.5 Vibration Source identification 

The virtual source of vibration in a planetary gear has been identified using PCA technique. The 

method shows the virtual source over a low frequency range which includes the frequency of 

synchronous vibration of each component. For a high frequency range which includes the mesh 

frequency, the virtual sources could not be identified on the sun and planet at a load 100 ohms. 

However the virtual sources become easier to identify at a lighter load of 47 ohms. It is highly 

recommended that this study should be carried out with a seeded fault on the teeth of sun or planet 

gear.   

8.1.6 Pole placement 

The vibration of a planetary gear system using an active control by a pole placement has been 

presented. It has been predicted that the method is effective in controlling the vibration of the system 

by shifting the some poles to avoid resonance which may damage the system using two control forces 
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on either the sun gear or the carrier. However, it shows that the control effort required depends on the 

bearing stiffness of the component where the control force is being applied. The optimal place to put 

the control force is on the component with lesser stiffness of the bearing. The controllability of the 

system increases with increase in the number of points where control force is added, but the challenge 

is the cost of getting more actuators. This predictions need to be validated with a controlled 

experiments where the control forces can be applied by connecting the actuators to the bearings fitted 

in adapters. These bearings can be mounted on either the carrier or sun gear shafts. 

8.2 Suggestions for future work 

 Modification of the test rig such that the meshing teeth can be lubricated evenly during 

operation. 

 The coulomb damping (dry friction) between the meshing teeth should be estimated. 

 The dynamic range of MEMS accelerometers should be increased and the size of the 

accelerometers can be reduced in order to measure vibrations at higher rotational speeds 

 The tangential response of the planet gears should be measured and compared to the 

tangential response of the planet gears to know which response is higher. The size of the 

planet gears can be increased in order to provide a space to mount the accelerometers 

tangentially. 

 Experimental validation of pole placement predictions should be done using both fixed and 

rotating frames of reference. This may be achievable with the advancement in vibration 

measurement and control technology. 

 Creation of a seeded fault by breaking a tooth on the sun gear and take the measurement. The  

PCA method should be done again and comparison should be done with the result presented 

in this thesis. This will clarify the reason why there is no correlation at the mesh frequency in 

some of the results. A light load can also be considered. 
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Appendices 

Appendix A 

Equation of motion for the sun gear in matrix form using a fixed frame of reference 
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Equation of motion for the ring gear in matrix form using a fixed frame of reference 
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           (A3.2) 

Equation of motion for the carrier in matrix form using a fixed frame of reference 
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Equation of motion for the planet gear in matrix form using a fixed frame of reference 
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Equations of motion using a rotating frame of reference 

Equation of motion for the sun gear in matrix form using a rotating frame of reference 
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Equation of motion for the ring gear in matrix form using a rotating frame of reference 
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Equation of motion for the carrier in matrix form using a rotating frame of reference 

2

0 00 0 0 2 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 0 0 00 0 / 0 0 0

sin

cos

sin co

1 0

0 1

pc c r c cc

c c r p c c c

c c c r c c

n

p n

n

c

c c

cm x x x xm k

m y m y c y k y

I r u u u u

k









    





            
            
            
                          

2

cos sin 0 0

sin cos 0 0

s 1 0 0 0

0

0

0 1 0

c nn n c

c p n n n c

n c n

c

c c

c

x xm

y k m y

u u u

 

  





  

         
                    
                    

 

          (A3.7) 

Equation of motion for the planet gear in matrix form using a rotating frame of reference 
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Contact stiffness matrix for two-planet model 
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The Km matrix can be decomposed into three matrices such that the sun-planet and planet-ring mesh 

stiffness can be varied.  
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For a fixed frame of reference, 
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For a rotating frame of reference 
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Other contact matrices are as follows 
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Appendix B 

Table B1. Natural frequencies used in minimising the difference in the sum of the predicted and 

estimated natural frequencies for determination of sun-planet mesh stiffness.. 

S/N Estimated from 

experiment (Hz) 

Prediction (Hz) 

1 62.5    

2          

3          

4            

 

Table B2. Natural frequencies used in minimising the difference in the sum of the predicted and 

estimated natural frequencies for determination of planet-ring mesh stiffness. 

S/N Estimated from 

experiment (Hz) 

Prediction (Hz) 

1 47.5    

2           

3          

4 1117 712 
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Procedures for calculating the mass moment of inertia of the components 

1. Carrier 

 

Figure B4.1 

 

 

Figure B4.2 

The mass moment of inertia of the rectangular part and the two semi-circles is 

1
1

22 2
( )( )

I ;
12 2

cr tA rtA a b  
         (B4.1) 

The mass moment of inertia of the centre circle in the rectangle 

 

Figure B4.3 
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The mass moment of inertia of the two concentric semi-circles at the end 

 

 

Figure B4.4 
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 The total mass moment of the carrier 
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2. Ring gear  

 

Figure B4.5 
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3. Sun gear 

 

Figure B4.6 
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4. Planet gear 

 

Figure B4.7 
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5. Torsional stiffness of the ring gear 

 

 

Figure B4.8 

 

GJ
K

L

r
tr   ; where G is the modulus of rigidity of steel which is 80GN / m , Jr is the polar moment 

of inertia of the ring geometry while L is the length of the whole body which is h. 

The polar moment of inertia of a rectangular section about its axis 
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The polar moment of inertia of a circular section axial direction 

4
4 4

J 5.823 10
32

cs

D
m

 
     

4
J J J 0.0010r rs cs m     

Therefore, the torsional stiffness of the ring gear, Ktr is                . 

Bearing stiffness estimation 

 

Figure B4.9. The accelerance of the carrier in the horizontal direction compared to a single degree of 

freedom system showing the stiffness line is 40 dB/decade slope. Coherence is good from 22.4 Hz. 
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Appendix C 

  

 

Figure C5.1 

 

Figure C5.2. Carrier in x direction. 
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Figure C5.3. Carrier in y direction. 

  

  

Figure C5.4. Sun gear in x direction. 
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Figure C5.5. Planet gear in x direction. 
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Figure C5.6. Planet gear in y direction 
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Figure C5.7. Ring gear in x direction. 
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Figure C5.8. Ring gear in y direction. 
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(a) Rotational mode at 0 Hz.   (b) Translational mode at 92 Hz. 

 

(c) Translational mode at 122.9 Hz. 

Figure C5.9. Typical modes of vibration (a) rigid body mode (b) Translational mode at 92 Hz (c) The 

two horizontal and vertical including the dashed lines are the equilibrium positions. 
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Appendix D 

 

Figure D6.1 (a). Time history of the unloaded carrier acceleration in the tangential direction (b) The 

frequency content when the carrier speed  is 117 rpm (the corresponding values in Hz is 1.95 Hz).  

 

Figure D6.2 (a) The power spectral density of the carrier and planet gear accelerations at a higher 

speed. (b) The eigenvalues of the principal components PC1, PC2, PC3 and PC4.  

 

Figure D6.3. Virtual coherence of the PC1, PC2, PC3 and PC4 of Carrier-planet at a higher speed to 

the (a) first physical source (radial direction of the carrier) and (b) second physical source (tangential 

direction of the carrier). The blue, red, green and black lines denotes PC1, PC2, PC3 and PC4 

respectively 



206 

 

 

Figure D6.4. Virtual coherence of the PC1, PC2, PC3 and PC4 of Carrier-planet at a higher speed to 

the (c) third physical source (horizontal radial direction of the planet gear) and (d) fourth physical 

source (vertical radial direction of the planet gear). The blue, red, green and black lines denotes PC1, 

PC2, PC3 and PC4 respectively 

 

Figure D6.5 (a) The power spectral density of the sun and planet gear accelerations at a higher speed. 

(b) The eigenvalues of the principal components PC1, PC2, PC3 and PC4.  

  

Figure D6.6 Virtual coherence of the PC1, PC2, PC3 and PC4 of sun-planet at a higher speed to the (a) 

first physical source (radial direction of the sun) and (b) second physical source (tangential direction 

of the sun). The blue, red, green and black lines denotes PC1, PC2, PC3 and PC4 respectively 
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Figure D6.7 Virtual coherence of the PC1, PC2, PC3 and PC4 of sun-planet at a higher speed to the (a) 

third physical source (x direction of the planet) and (b) fourth physical source (y direction of the 

planet). The blue, red, green and black lines denotes PC1, PC2, PC3 and PC4 respectively 

 

Figure D6.8. (a) The power spectral density of the carrier and planet gear accelerations. (b) The 

eigenvalues of the principal components PC1, PC2, PC3 and PC4 at 47 ohms.  

 

Figure D6.9. Carrier-planet virtual coherence of the PC1, PC2, PC3 and PC4 showing their 

contributions to the (a) first physical source (radial direction of the carrier) and (b) second physical 

source (tangential direction of the carrier). The blue, red, green and black lines denotes PC1, PC2, 

PC3 and PC4 respectively at 47 ohms. 
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Figure D6.10. (a) The power spectral density of the sun and planet gear accelerations. (b) The 

eigenvalues of the principal components PC1, PC2, PC3 and PC4 at 47 ohms. 

 

Figure D6.11. Sun-planet virtual coherence of the PC1, PC2, PC3 and PC4 showing their 

contributions to the (a) first physical source (radial direction of the sun) and (b) second physical 

source (tangential direction of the sun). The blue, red, green and black lines denotes PC1, PC2, PC3 

and PC4 respectively at 47 ohms. 
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Appendix E 

Complex power flow – electrical and structural analogies 

E7.1 Instantaneous and time averaged power quantities in electrical circuits. 

The following analysis is a short reduction of the analysis presented by Auld [74]. He considers the 

instantaneous power flow in a circuit as the product of the real positive voltage and current terms, i.e. 

     

                      (E7.1) 

This is applicable to arbitrary waveforms, including harmonic. To simplify the analysis one can 

replace the terms in the above by their complex representation, i.e. 

     |  |            
   

      
      

 
      

    

     |  |            
   

      
      

 
      

    

where the complex numbers  

   |  | 
    

   |  | 
    

Substituting these expressions using the complex formulation into equation (E7.1) and taking an 

arbitrary reference time such that 0v   , then *

0oV V  is real. Hence from the substitution and 

equation (E7.1), one has the instantaneous power given by  

     
        

 

 
 

     
           

       

 
 

 
        

 

 
           

        
 

 
          (E.72) 

 

The first term in equation (xx.1) represents a periodic, always positive or zero, unidirectional power 

flow  
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This term supplies resistive losses (dissipation and resistance components) and has a time averaged 

value equal to  

      
      

 

 
  

The second term   
        

 

 
       is a periodic (reactive) power flow, with a time averaged value 

equal to zero. It corresponds to the power flow which is flowing into and then out of any coils 

(inductance) and capacitors within the circuit. Its time averaged value is zero and it has a peak value 

given by  

   
        

 

 
 

Figure E7.1 illustrates, for a harmonic voltage and current, the resistive and reactive powers for this 

scenario. 

 

 

 

 

Figure E7.1. The time varying resistive and reactive powers and their time averaged quantities. 

The real and imaginary parts of the complex power flow P, are related to time averaged resistive 

power and the peak reactive power by  

  
      

 

 
         

This has been used in Chapter 7 for the Active Pole Placement and the corresponding evaluated power 

quantities and their interpretation. 
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E7.2 Instantaneous and time averaged power quantities in a SDOF mechanical system 

Without any loss of generality one can analyse a single degree of freedom mass-spring-viscous 

damper system responding to a harmonic force applied to the mass. In complex notation, for a force 

j tFe 
 one has the following differential equation of motion for the complex displacement  x t  , 

  ̈    ̇           

The corresponding real force and response velocity v are then given by, assuming F is real without 

any loss of generality,  

   2

22
2

j t
j tj Fe F

v t Re Re j e k m j c
k m j c k m j c




  
   

 
           

  

After further manipulation and taking the real parts, one has 

   2 2

2
2

cos sin
F

v t c t k m t
k m j c

    
 

   
 

 

 

and   cosj tRe Fe F t    
 

The instantaneous power P is then  

     
2

2 2

2
2

cos
cos cos sin

F t
P t v t F t c t k m t

k m j c


     

 
    
 

 

 

i.e.  

 
   2 22 2

2 2
2 2

sin 21 cos2

2 2

k m F tF c t
P t

k m j c k m j c

   

   


 

   

 

Which is exactly analogous to the two power quantities given in equation (E7.2), i.e. the pulsating 

unidirectional resistive power flow, due to dissipation in the viscous damper, and the periodic, with 

zero time average reactive power flow, due to the instantaneous power flow to the spring and mass. 
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Figure E7.2. The s-plane plots showing the locations of the initial and the modified poles when the 

control forces were applied on the sun gear using a rotating frame of reference at the carrier speed of 

100 rpm. The movement of the poles are the same as they are moving using the fixed frame of 

reference. 

  

Figure E7.3. Control forces applied on the sun gear in both the (a) x and (b) y directions using 

rotating frame of reference at the carrier speed of 100 rpm.  
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(a)      (b) 

Figure E7.4. Displacement per mesh excitation of the carrier in (a) x and (b) y direction using a 

rotating frame of reference at 100 rpm.  

 

 

(a)       (b) 

Figure E7.5. Control power required by the carrier in x and y directions respectively using a rotating 

frame of reference when two control forces were applied in sub-section 7.5.3 of the thesis. 
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