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Abstract  

The adaptive immune response to tumours plays a major role in determining outcome. Patients 

whose tumours contain high numbers of infiltrating lymphocytes (TIL), a marker of on-going 

immune attack, are likely to live longer. The improved understanding of immune cells in the 

tumour microenvironment has led to ground-breaking therapies (e.g. anti-CLTA4 and anti-PD1), in 

which targeting specific components of the anti-tumour immune response can lead to 

dramatically improved patient survival. The studies here focus on HNSCC (head and neck 

squamous cell carcinoma) and NSCLC (non-small cell lung cancer) to explore how differences in 

the adaptive immune response reflected in tumour infiltrating lymphocyte density, translates into 

differing efficacies and phenotypes of the different lymphocyte populations. 

Monitoring of immunotherapy clinical trials and evaluation of changes relies on a stable signal 

over time. To address this, multiple tumour replicates were investigated between diagnostics 

biopsy and surgical resection in HNSCC. An immunologically focused transcriptomic and CD8 

histology evaluation showed that tumours are stable, both over time and space. In HNSCC, HPV(+) 

and (-) disease display a significantly different patient survival, even among the TIL high group. 

Transcriptomic and histological assessment of these tumours at the bulk tissue level, revealed 

that this difference was driven by quantitative rather than qualitative differences in the T cells. 

However, a differential B cell signature emerged between HPV(+) and (-) tumours. Isolation of 

specific immune cell subsets (CD8+ T cells and B cells) from NSCLC and HNSCC enabled higher 

resolution analysis of immune cells in different disease settings (TIL density). Tissue resident 

memory T cells (TRM) were enriched in tumours, the effector function of the TRM cells were also 

found to be superior in TILHi tumours. The TRM cells were also prognostic, where higher numbers in 

the tumour conferred a survival benefit in NSCLC, and a trend towards improved survival in 

HNSCC. B cells from CD8Hi and CD8Lo NSCLC were assessed using single cell transcriptomics, and 

have been shown to exhibit different cellular characteristics depending on T cell density. B cells in 

immune-rich tumours (CD8Hi) show a response to cytokine stimulus, the ability to present 

antigens and evidence of a germinal centre reaction. The B cells in CD8Lo tumours exhibit an 

alternative activation profile with increased markers of cellular stress and reduced interactions 

with co-stimulatory cells. The findings show that many of the cellular components of the immune 

infiltrate show significant qualitative differences which appear to associate with the density of 

CD8+ T cells. Future work needs to explore the control processes and cross-talk between the cells 

of the adaptive immune system that may be involved in determining these differences. 
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Chapter 1: Introduction 

The rapid expansion of research and development in the field of cancer immunology and 

immunotherapy has led to an improved understanding of both cancer biology and immunology. 

The key parts of the adaptive and innate immune system and how they interact with solid 

tumours are outlined, with a focus on the adaptive immune response in head and neck squamous 

cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC). 

1.1 Head and Neck Squamous Cell Carcinoma (HNSCC) 

1.1.1 HNSCC Epidemiology and Mortality 

Head and neck squamous cell carcinoma (HNSCC) has an estimated incidence of 650,000 new 

cases and 350,000 deaths worldwide every year. This makes it the sixth most common type of 

cancer, accounting for approximately 6% of all cases. The 5-year survival data is about 60% for all 

stages combined on the basis of Surveillance Epidemiology and End Results (SEER) (Argiris et al., 

2008, Parkin et al., 2005). Historically, the risk factors involved in HNSCC were predominantly 

smoking and alcohol, however changes in social behaviour have led to an increase in HPV (Human 

papilloma virus) associated HNSCC and an improved survival due to a shift in its aetiology 

(Chaturvedi et al., 2008). The published data indicates that between 50-75% of HNSCC are HPV-

associated (Chaturvedi et al., 2011, Attner et al., 2010, Ward et al., 2014b) with HPV-positive 

[HPV(+)] patients displaying a more favourable prognosis compared to HPV-negative patients 

[HPV(-)]. In one study, the 3 year survival was reported as 84% for HPV(+) and 57% for HPV(-) (Ang 

et al., 2010), in another study, the 5 year survival was identified as 62% for HPV(+) and 26% for 

HPV(-) (Lassen et al., 2009). 

1.1.2 HPV independent HNSCC  

The main risk factors in HNSCC independent of HPV, are smoking and alcohol consumption. It 

would be highly attractive to be able to stratify patients based on information other than stage 

and basic histology. A comprehensive analysis of HNSCC (n= 172) at the genomic and 

transcriptomic level reveals that smoking-related HNSCC exhibits an almost universal loss of TP53 

and CDKN2A, both key tumour suppressor genes (Cancer Genome Atlas, 2015). These large-scale 

datasets allow an unprecedented insight into the driving mechanism and tumour pathogenesis 

with the aim of identifying therapeutic targets. Analysis of HPV(-) HNSCC at a single cell level has 

taken this further with the identification of different subtypes based on the transcriptional profile 
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of the malignant cells and the interaction with epithelial cells, partial epithelial mesenchymal 

transition represented a key part of tumour metastasis, tumour grade and poor prognosis (Puram 

et al., 2017). 

1.1.3 HPV driven HNSCC 

1.1.3.1 HPV life cycle and events leading to cancer: 

The HPV16 genome (Figure 1A) consists of a viral DNA organised into stages of expression defined 

as Early and Late: (E1-7, L1 and L2). The replication enzyme E1, and accessory protein E2, are 

involved in regulation of DNA replication, the E4 protein enables viral replication to take place and 

facilitates virion release, E5 protein is involved in maintaining the host cell in a proliferative state. 

The capsid proteins L1 and L2 are structural proteins that encapsulate the viral genomes and 

virions ready for release from the upper layers of the epithelium (Stanley, 2012, Moody and 

Laimins, 2010).  

During an active HPV infection, the E6 and E7 oncoproteins play a major role in the 

transformation of the infected basal mucosal squamous cells into cancer cells, E6 and E7 proteins 

target critical cell cycle regulators leading to aberrant proliferation and cellular transformation. 

The E7 protein targets the retinoblastoma tumour suppressor (pRB) for degradation, this causes 

the cell to transition from G1 phase to S-phase of the cell cycle, leading to irregular proliferation 

(Dyson, 1998, Korzeniewski et al., 2011). Disruption of the pRB signalling pathways by E7 enables 

viral genome replication to occur in non-proliferating cells. Under normal cellular conditions, the 

unscheduled progression from G1 to S-phase would initiate pro-apoptotic cellular responses in 

the host cell. However, the E6 oncoprotein inhibits this process by targeting p53 for degradation 

via Ubiquitin-protein ligase E3A (UBE3A /E6AP), disrupting the apoptotic signalling cascade (Patel 

et al., 1999). Cellular immortalisation is another key step in the transition to cancer and occurs as 

a result of E6- dependent up-regulation of human telomerase reverse transcriptase (hTERT); this 

disrupts subsequent erosion of telomeres which would occur as a result of repeated cell division 

(Klingelhutz et al., 1996). HNSCC tumours display viral genome integration in 39% of cases with 

61% displaying episomal viral sequences (Olthof et al., 2014). This study highlighted that it was 

constitutive expression of the high-risk proteins E6 and E7 that lead to cancer progression caused 

by the genomic instability as well as the integration on the viral genome. 
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Figure 1. HPV life cycle, genomic organisation and cellular transformation. 
(A) The key events that occur following infection and the stages of viral replication and the genes 
involved at each stage are depicted. Initially starting with the E6 and E7 oncoproteins in the basal 
epithelium at the site of infection. The organisation of the HPV16 genome is also shown 
highlighting the order in which the HPV-16 genes (E6, E7, E1, E2, E4, E5, L2 and L1) are expressed. 
(B). The cellular transformation of the infected epithelial cells takes place as a result of the E6 
and E7 oncoproteins. E6 functions to target p53 for degradation, thus inhibiting apoptosis. The 
E7 protein interacts with the retinoblastoma (pRb) protein leading to its degradation and 
uncontrolled cellular proliferation. As a result of the lacking pRb the transcription factor E2F 
remains unbound and causes the increase of p16 (CDKN2A) a key histological marker in HPV  
Adapted from (Andersen et al., 2014). 
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1.2 Non-small cell lung cancer (NSCLC) 

1.2.1 NSCLC epidemiology and mortality 

Lung cancer is one of the leading causes of cancer worldwide with a 5-year survival of 20% (Siegel 

et al., 2018). NSCLC accounts for 90% of all lung cancer cases and is divided into the two subtypes 

Adenocarcinoma (50% of total) and Squamous cell carcinoma (40% of total)(Chen et al., 2014). 

The classification and treatment are primarily based on the TNM staging system (tumour size = T; 

nodal involvement = N and distal metastasis = M) (Mirsadraee et al., 2012), within this system 

tumours are classified into stages I-IV. The clinical outcomes can vary dramatically between 

patients that have the same stage tumours. A critical factor in the variability of patient outcome 

are the extent and type of immune cells that infiltrate the tumours (Domagala-Kulawik, 2015, 

Horne et al., 2011, Kilic et al., 2011).  

1.2.2 Subtypes of NSCLC  

Adenocarcinoma (AD) arises predominantly in the distal airways, they display features of 

glandular histology and express biomarkers that are specific to the distal region of the airways 

(Keratin 7- KRT7 and thyroid transcription factor 1 -TTF1). The alveolar epithelial type 2 cells (club 

cells) are proposed to be the cell of origin for adenocarcinoma (Thunnissen et al., 2012). 

Squamous cell carcinomas (SCC) arise in the more proximal regions of the airways and are 

associated with the chronic inflammation usually caused by smoking. They display squamous 

differentiation that is similar to the epithelium of the upper airways, the tracheal basal cell is 

proposed to be the cell of origin for SCC (Davidson et al., 2013).  

1.3 The role of the immune system in cancer  

The importance of the immune system and its potential role in cancer was first put forward in 

1970, where the concept of immune surveillance of cancer was raised (Burnet, 1970). It was 

hypothesised that the potential frequency of mutations leading to malignancy would need 

mechanisms for elimination of these mutant cells; one was proposed to be immunological 

(Burnet, 1970). The evidence for the impact of the immune system on cancer can be seen in 

situations where it is compromised, such as inherited and drug-induced immunodeficiencies. 

Primary immunodeficiencies are genetic disorders that lead to severe impairment of the immune 

system leading to autoimmunity and increased risk of infections, as well an increased risk of 

cancer. The overall risk of children with primary immunodeficiency developing cancer is estimated 

to be 4-25% depending on the type of immunodeficiency, showing a link between the immune 
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system and the control of cancer cells (Salavoura et al., 2008). Another example is increased risk 

of cancer linked to virally induced immunodeficiency as is the case with HIV-1 (Human 

immunodeficiency virus type 1)/AIDS. These patients have reduced numbers of CD4 T cells and 

have been shown to have an elevated risk of cancer. This has been attributed to oncogenic viruses 

and also environmental factors like smoking; HIV has also been shown to be an independent risk 

factor in developing lung cancer (Sigel et al., 2012),(Clifford et al., 2005). Immunosuppressive 

drugs that are administered to organ transplant recipients to reduce the risk of transplant 

rejection also lead to the increase risk of cancer, with a 2- to 5-fold increase in risk for cancers of 

the colon, larynx, lung, bladder, prostate, and testis, an increased risk of 10- to 30-fold was 

observed in cancers of the lip, skin, kidney and endocrine glands (Birkeland et al., 1995). The role 

of the immune system in control of cancer is clearly evident from the increased risk of malignancy 

that arise as result of perturbations in the immune system. 

The importance of the immune system can also be seen by the impact that certain cell types have 

on patient survival. The immune density of CD4 and CD8 cells within tumours predicts for survival 

in many cancers, where a denser and more functional infiltrate leads to a reduction in tumour 

burden and improved survival, these cell types and the core elements of the immune system are 

discussed with a focus on cancer biology (Fridman et al., 2012, Hiraoka et al., 2006, Mahmoud et 

al., 2011).  

1.3.1 Immune response to tumours 

The general structure of tumours includes a tumour core, an invasive margin and a surrounding 

stromal compartment; heterogeneous immune infiltrates can be observed dispersed or 

aggregated within the tumour microenvironment. Tumour cells develop from mutations and 

alterations in key genes, the main hallmarks of cancer are evading growth suppression, resistance 

to apoptosis, metastasis, angiogenesis, sustained proliferative capacity, modulation of cellular 

metabolism and the ability to avoid immune destruction (Hanahan and Weinberg, 2011, Hanahan 

and Weinberg, 2000). Most tumours will contain a heterogeneous immune infiltrate comprising 

dendritic cells, Natural killer cells, macrophages, mast cells and then the B cells and T cells. It is 

important to know how stable immune infiltrates are across a tumour sample; this becomes an 

important consideration when sampling small areas of the whole tumour. 

The clinical benefit for patients with highly infiltrated tumours is well documented with one of the 

key pieces of research carried out in colorectal cancer, where it was shown that a high number of 

CD8+ lymphocytes both intratumoural and at the invasive margin, conferred a vast improvement 

in survival (Galon et al., 2006, Ward et al., 2014b). The immune landscape of tumours was 

characterised in detail using a network of gene expression and systems biology to show that 
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cellular infiltrates consisted of a functional immune response that changes over time with a 

reduction in T cells and an increase in B cells and T follicular helper (Tfh) cells as tumours progress 

(Bindea et al., 2013). 

1.3.2 Immunoediting 

Immunoediting refers to the interaction of the immune system and the tumour over time. 

Originally identified in mouse experiments using a combination of immunocompetent/ 

immunodeficient mice. Tumours forming in mice lacking an immune system were more 

immunogenic (“unedited”) than those from immunocompetent mice (“edited”)(Shankaran et al., 

2001, Dunn et al., 2002). The immune system protects against tumour growth but also shapes 

tumour immunogenicity. This has been put into three distinct phases of elimination, equilibrium 

and escape, the process of elimination involves innate and adaptive immune cells that either 

eradicate tumour cells completely, or due to mutational variations, some tumour clones are not 

killed (Vesely et al., 2011). In equilibrium the mutational events (germline or epigenetic) lead to 

tumour cell variants escaping immune attack, this phase is considered the longest and where 

immunoediting occurs. It is also referred to as a type of dormancy where disease progression is 

limited due to immunological control (Aguirre-Ghiso, 2007). The escape phase refers to tumour 

cells that no longer elicit an immunoprotective response, either from (i) loss of antigenicity, (ii) 

insensitivity to effector mechanisms or (iii) an immunosuppressive state. Once these tumours 

enter this phase, which is essentially selection of poorly immunogenic tumour variants that are no 

longer visible to the immune system, tumour outgrowth occurs rapidly (Vesely et al., 2011).  

1.3.3 Stromal features of tumours and immune evasion 

An important feature of all tumours and immune infiltrates is the tissue context or stromal 

composition that forms the tumour microenvironment (TME). Cancer associated fibroblasts 

(CAFs) are a key part of the TME, playing a role in tumour progression and also suppression of 

antitumor immunity (Shalapour et al., 2017). The activation of these via TGFb leads to aSMA(+) 

myofibroblasts that contribute to cancer progression and a poor prognosis via extracellular matrix 

(ECM) re-modelling. The conversion of fibroblasts to myofibroblasts relies on the ROS (reactive 

oxygen species) generated by NOX4; inhibition of this pathway leads to a reduction in tumour 

growth and fewer aSMA(+) cells (Hanley et al., 2018). The impact on the immune cell component 

is one of impeded migration through the ECM, as shown in migration assays of CD8 cells in 

collagen rich tumours (Bougherara et al., 2015).  
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1.4 Adaptive Immune system  

The fundamental role of the immune system is to distinguish self from non-self; at the core of this 

co-ordinated response are the innate and adaptive immune systems. The lymphocytes of the 

adaptive immune system (T cells and B cells) generate a response to unique antigens that are 

recognised as non-self with the aim of clearing the pathogen/ cells from the host. The key cell 

types of the adaptive immune system are shown in Figure 2. T cells mature in the thymus (primary 

lymphoid tissue) and make up cellular immunity, with the humoral immune response being 

fulfilled by B cells that develop in the bone marrow (primary lymphoid tissue); both groups of cells 

then migrate to the secondary lymphoid organs (lymph nodes and spleen) (Bendall et al., 2011).  

 

T cells are activated by antigen presenting cells (e.g. dendritic cells) that process and present 

protein peptides to CD4+ and CD8+ cells. Activation of naïve helper T cells requires 3 signals in the 

form of TCR (T cell receptor) stimulus, co-stimulation from antigen presenting cells and 

environmental stimulus in the form of cytokines. Activation of naïve CD4 Th0 helper cells leads to 

a diverse range of cells that provide “help” to CD8+ cells and B cells as well as other cells of the 

immune system (e.g macrophages) via co-stimulation and cytokine release. CD8+ cytotoxic cells 

are activated by antigen presenting cells and function to kill infected/ damaged cells; T-helper 

cells also play a role in their activation. B cell activation occurs when antigen is bound by the 

unique BCR, co-stimulation is required from T helper cells as is the action of cytokines. This leads 

to the release of antibodies that bind antigen and can activate innate immune cells (e.g. natural 

killer and macrophages) that enable pathogen/ damaged cell clearance. The activated effectors 

cells (T cells and B cells) differentiate and expand, carry out their effector functions, followed by a 

contraction phase and the formation of long-lasting memory cells that respond rapidly to future 

antigenic challenge. CD4+ and CD8+ memory cells are formed as well as memory B cells and 

plasma cells. More detail on the different aspects of the adaptive immune response and its role in 

cancer biology are described below.



Chapter 1 

 8 

 

A 

 
B 

 

 

Figure 2. Cells of the lymphoid and myeloid cell lineages. 
(A) Cells of the lymphoid lineage originate from a common lymphoid precursor and give rise to 
innate Natural killer cells, plasmacytoid dendritic cells and the T cells and B cells that then 
differentiate into the different functional cell populations. (B) The innate cells of the myeloid 
lineage originate from the common myeloid precursors and give rise to the granulocyte/ 
monocyte precursor and subsequently the macrophages, neutrophils, basophils, eosinophils and 
myeloid dendritic cells. Adapted from Human immune cell lineage and antigen expression 
database, Bio-Rad-antibodies.com, 2018. 
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1.4.1 Cellular immunity and T cells  

1.4.1.1 T-cell development and receptor rearrangement  

T-cells develop from common lymphoid progenitor cells originating in the bone marrow (Figure 2 

shows an overview of the T cell linage). They then migrate to the thymus as CD8 and CD4 double 

negative cells. Here they develop further via rearrangement of the T-cell receptor (TCR) genes 

(Hedrick, 2008, Nimmo et al., 2015, Hedrick et al., 1984). The TCR is made up from the genes 

encoding the alpha, beta, gamma, and delta chains. The unique features of TCRs are encompassed 

by the complementarity determining regions CDR1, CDR2 and the hypervariable CDR3; these 

regions ultimately form the antigen binding site of the cell (Shetty and Schatz, 2015). The 

functional formed TCR is unique and has the ability to recognise a vast number of different targets 

including self-antigens, at this stage the thymocytes are CD4+ and CD8+ with the TCR complexed 

to CD3.  

A process of positive and negative selection then occurs. Positive selection occurs when 

thymocytes interact through their TCR with peptide MHC-I and -II complexes on thymic epithelial 

cells in the medulla; this leads to selection of CD8+ cells that complex with pMHC-I (peptide-MHC) 

and CD4+ that complex with pMHC-II. Cells with very high avidity for self pMHC complexes are 

negatively selected against, cells receiving no signal are removed via apoptosis and a lack of 

survival signals (Capone et al., 2001, Van Laethem et al., 2013). The next stage of selection focuses 

on deletion of cells that interact with self-peptides that are normally expressed in distant organs, 

this is achieved through the gene AIRE (autoimmune regulator), which functions to stimulate gene 

expression of tissue restricted antigens (TRAs) in medullary thymic tissue (Mathis and Benoist, 

2009, Danso-Abeam et al., 2011). Cells that exhibit high levels of self-reactivity are deleted as a 

mechanism of self-tolerance. The self-restricted (MHC-I/ II) non-autoreactive, negatively selected 

T cells (CD4/ CD8) downregulate CD69, and migrate to exit the medulla into the peripheral 

circulation via the expression of sphingosine-1-phospahte (S1P1) as mature CD4+ or CD8+ 

(CD62L+CD69-) cells (Drennan et al., 2009, Bunting et al., 2011). 

1.4.1.2 Activation of T cells (signal 1) 

Naïve T (Th0) cells reside in the paracortical areas of lymph nodes, awaiting the wake-up call that 

can only be given by Dendritic (professional) antigen presenting cells (APC). These APC sample 

and collect material from their local environment and potential antigenic peptides are processed 

and brought into physical association with MHC molecules which are then mounted on the APC 

surface where they can be presented to naïve T cells.  
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MHC class II (HLA-DR, HLA-DQ and HLA-DP) present peptides (11-33 amino acids) that originate 

from phagocytosis and endocytosis of exogenous proteins and interact with TCRs expressed by 

CD4+ Helper T cells (Neefjes et al., 2011, Matsui et al., 1994, Matsui et al., 1991). The MHC class I 

(HLA-A, HLA-B and HLA-C) present intracellular antigenic peptides (9-11 amino acids) in a complex 

with b2microglobulin (B2M) that are bound by TCRs of CD8+ cells. A single pMHC (peptide:MHC 

complex) interaction has been shown to be sufficient to trigger the activation of T cells via the TCR 

(Huang et al., 2013). The TCR signalling cascade consists of a complex set of interactions that are 

initiated upon a stable CD4/ CD8 TCR bound to pMHC-I/ II (signal 1), the CD3-TCR complex and co-

receptor (CD4/ CD8) leads to activation of signal amplification transcriptional networks and 

cellular diversification modules (Malissen et al., 2014, Salek et al., 2013).   

As stated previously the main site of T-cell priming takes place in the lymph nodes, it has now also 

been shown to take place in the tumour microenvironment.  Antigen processing cells in the form 

of conventional dendritic cells (cDCs) that reside in the tumour microenvironment can acquire, 

process and present antigens to T-cells in-situ. This T-cell priming can initiate CD8 and CD4 

responses outside of the lymph node (Sanchez-Paulete et al., 2017). One such study identified 

conventional DCs that reside in the tumour as a key cell type in the cross presentation of antigen 

to CD8+ T-cells in-situ, overall the CD8+ T-cell immune infiltrates were higher when more DCs 

were present (Broz et al., 2014).  

 

1.4.1.3 T-cell co-stimulation (signals 2 and 3) 

T cells activated via TCR engagement require additional signals via co-stimulation from antigen 

presenting cells (APC). The classical two signal hypothesis arose from studies of the co-stimulatory 

receptor CD28 on T-cells and its ligands CD80/ CD86 (B7.1 and B7.2) on APCs that act through 

MAPK, NFkB and PI3K pathways to promote cell growth, effector function and survival (Linsley et 

al., 1990). As part of the signalling programme, upregulation of CTLA4 occurs that downregulates 

CD28, it also competes with CD28 and the co-stimulatory receptor on the APC (Rudd et al., 2009). 

T-cells exhibit a wide range of co-signalling molecules that act as stimulatory and inhibitory 

checkpoints in T cell activation – so-called “Signal 2” summarised in Table 1. The 3rd signal that 

activated T cells require is delivered via APCs and the surrounding microenvironment. The innate 

sensing mechanism of APCs of PAMPs, DAMPs and PRRs (see section 1.3.3 Innate immunity) 

induce cytokine release that leads to polarisation of the T-cells. For example, release of IL-12 or IL-

4 by APCs activates specific lineage transcriptional gene networks leading to differentiation of the 

cells into different effector cell types (e.g. CD4+ Th1 and Th2) (van Panhuys et al., 2014, O'Garra 

and Arai, 2000).  
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 Positive function    Negative function 

Table 1. T-cell co-stimulatory and inhibitory molecules. 
An overview of the key co-stimulatory (+) and inhibitory molecules (-) for both CD4+ and CD8+ 
cells are shown with their functional effect (Cell priming, cell growth, Th cell differentiation, 
effector function, survival and memory) on that cell type. Adapted from (Chen and Flies, 2013, 
Schildberg et al., 2016). 

1.4.1.4 CD4+ and CD8+ T cell phenotype and function. 

1.4.1.4.1 CD4+ T helper cells  

Naïve CD4 T helper cells (Th0), once activated, show extensive plasticity depending on the 

external stimuli that they receive. This leads to a diverse range of cell subsets with Th1, Th2, Th17, 

Th9, Th22, Tfh and Treg cells all developing from the same precursor cells; each cell type has 

specific transcriptional profiles and functions briefly outlined in Figure 3 (Zhou et al., 2009, 

Tripathi and Lahesmaa, 2014). Their primary function is to provide helper functions to CD8 cells 

and B cells via co-stimulation and the range of cytokines that each subset produces, in addition to 

this they function to inhibit excessive immune response via the immunosuppressive Treg 

populations. CD4+ Th cells also shift phenotype depending on the environmental cues, CD4+ Th17 

inflammatory cells when exposed to the external stimulus of TGFb are able to transdifferentiate 

into an anti-inflammatory Treg phenotype with the expression of FOXP3 (Treg) transcription 

factor (Gagliani et al., 2015, DuPage and Bluestone, 2016). 

Receptor CD28 ICOS CD27 4-1BB 0X40 GITR PD1 CTLA4 TIM3 LAG3 TIGIT CD80 CD86 PD-L1 PD-L2

Priming + +
Cell growth + + + + + - - - - - - - -

TH cell differentiation

Effector function + + + - - - - - - - -
Survival + + + + + - -
Memory + + + + + - - -

Receptor CD28 ICOS CD27 4-1BB 0X40 GITR PD1 CTLA4 TIM3 LAG3 TIGIT CD80 CD86 PD-L1 PD-L2

Priming + +
Cell growth + + + + + + - - - - - - - - -

TH cell differentiation + + + -
Effector function + + + + - - - - - - - - -

Survival + + + + + - -
Memory + + + + + - -

CD8+

CD4+

Positive function

Negative function

Positive / negative fucntion

No information

Positive function

Negative function

Positive / negative fucntion

No information
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A  

 
B 

 
Figure 3. CD4+ T- helper cell lineage commitment and cytokine functions.  
(A) Diagrammatic representation of CD4+ T helper cell differentiation. Adapted from (Tripathi and 
Lahesmaa, 2014, Caza and Landas, 2015, Majchrzak et al., 2016). (B) The Functional and 
Phenotypic Plasticity of CD4+ T Cell Subsets is outline in brief with the key lineage determining 
cytokines and transcription factors associated with that lineage. The effector cytokines and 
overall function are also outlined. Adapted from (Tripathi and Lahesmaa, 2014, Caza and Landas, 
2015, Majchrzak et al., 2016). 

The 
subset

Factors 
inducing 
lineage

STAT 
activated

Lineage-
specifying 

transcription 
factor

Effector 
cytokines 
produced

Functions

Th1 IL-12
IL-27 

STAT4, 
STAT1 T-bet

IFNγ, 
lymphotoxin, 

TNFα 

Cell-mediated immunity, delayed-type 
hypersensitivity responses, clearance of 
intracellular pathogens and tumor cells, 

opsonizing Ab production by B cell class-switching 
to IgG2a 

Th2 IL-4 
IDO STAT6 Gata-3 

c-MAF
IL-4, IL-5, IL-

13, IL-10

Humoral immunity, clearance of extracellular 
bacteria and worms, B cell class-switching to IgE, 

allergic responses 

Th9 IL-4 
TGFβ STAT6 BATF IL-9, IL-10 Protection against parasitic worms/helminth 

infections 

Th17 

IL-6
MyD88

Low TGFβ
IL-23

 

STAT3 RORγT, 
RORα 

IL-17, IL-17F, 
IL-6, IL-22, 
TNFα, IL-10 

Protection of mucosal surfaces, recruitment of 
neutrophils, clearance of Mycobacterium and 

tuberculosis

Th22 
IL-10Rβ

IL-6
TNFα   

STAT3
Aryl 

hydrocarbon 
receptor

IL-22, IL-13, 
FGF, CCL15, 
CCL17, TNFα 

Mucosal immunity, prevention of microbial 
translocation across epithelial surfaces, promotes 

wound repair.

Th25 IL-4, IL-25 Unknown Act1 IL-25, IL-4, IL-
5, IL-13

Mucosal immunity, stimulates nonlymphoid cells 
to produce IL-4, limits Th1 and Th17 induced 
inflammation, CD4 T cell memory (mouse)

TFH 

Strong TCR 
signal, IL-12, 
CXCR5, IL-

21, IL-4

STAT3
MAF (IL-21 

transactivator
)

IL-21, OX40, 
ICOS

Helps B cells produce high affinity, class-switched 
antibodies, guides migration into germinal centers

Treg High TGFβ
mTOR  STAT5 Foxp3 IL-10, TGFβ 

Suppression of existing immune responses, 
maintains tolerance/protection against 

autoimmunity
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1.4.1.4.2 Cytotoxic CD8+ T cell (CTL)  

CD8+ T cells are the key defence against intracellular antigen(s) and function to kill infected cells 

(viruses/ bacteria) and malignant cells. This process is mediated via the initial activation of the 

cells via the TCR:pMHC-I interaction and the co-receptor CD8. Activation occurs when the CD8+ T 

cells are primed by APCs (e.g. Dendritic cells). In this process, the APC scans T cells (500+ T cells/ 

hr), once antigen engagement occurs its duration is influenced by the avidity of the interaction 

and can last for hours (Bousso and Robey, 2003). Following TCR activation (including co-

stimulation as described previously), extensive proliferation of the CTL and short-lived effectors 

occurs that then reduce in number once the antigenic stimulus is cleared, leaving a memory 

population (Gerlach et al., 2010).  

Maximal expansion of CTLs requires multiple signals in the form of co-stimulation, CD27, OX-40, 4-

1BB and the cytokines IL-2, IL-12 and IFNg all act to enhance CD8 expansion and function. The pro-

inflammatory cytokine IL-12 acts via T-bet to induce CD8+ T cell differentiation via mTOR 

pathways (Rao et al. (2010)). IL-2 acts via CD25 (IL2R) and acts as a growth factor as well as 

enhancing the effector cell differentiation and functions. It functions via the STAT5, PI3K and 

MAPK pathways, inducing the transcriptional repressor BLIMP1 in a negative feedback loop 

(Pipkin et al., 2010, Malek and Castro, 2010). The effector function of the CTL is linked to an IL-2 

dependent induction of the cytolytic components IFNg, TNFa and the pore forming perforin and 

serine esterase granzymes (GZMA/ GZMB) that are essential for CTL activity (Pipkin et al., 2010, 

Harty et al., 2000, Zhang and Bevan, 2011).  

 

1.4.1.5 Central memory and effector memory CD4+ and CD8+ T cells 

Upon antigen exposure and co-stimulation, antigen-specific naïve CD4+ and CD8+ cells undergo 

cellular expansion and differentiation into the effector T cells as described above. During this 

process, precursors for the long-lived antigen-specific memory cells are formed, that upon 

subsequent antigen exposure in peripheral tissues, rapidly expand into effectors cells. After the 

initial expansion and contraction phases the different subsets of CD4 and CD8 cells are effector 

memory (TEM), central memory (TCM), effector memory re-expressing CD45RA (TEMRA) and T 

resident memory (TRM). This is based broadly on the expression of CD45RA, CCR7 and CD62L (see 

Figure 4) (Sallusto et al., 2004). The surface markers CD62L and CCR7 function to retain central 

memory cells in lymphoid tissues, where they differentiate into effector cells upon antigen re-

encounter, conversely effector memory cells migrate to the peripheral tissues and respond to 

antigen with immediate effector functions. This then gives rise to additional subsets defined as 

resident memory cells (TRM), often characterised by CD103 and CD69 expression, these cells are 
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retained in the tissue where they exert their effector functions (Farber et al., 2014, Sathaliyawala 

et al., 2013).  

 

Figure 4. Central memory and effector memory T cells (CD4+ and CD8+). 
Following T cell activation, expansion and contraction a memory population is generated that 
responds to future antigen stimulus. The phenotypic and functional characteristics of the cells are 
shown. T central memory (TCM) cells home to lymph nodes and are also found in circulation; 
conversely T effector (TEM) cells circulate and home to the tissues, the TEM expressing CD45RA 
(TEMRA) are terminally differentiated but express the CD45RA normally present on naïve cells. T-
resident memory cells (TRM and TRM CD103+) are retained in the tissues (skin, lung, gastrointestinal 
tract and also in tumours).Adapted from (Farber et al., 2014 and Sallusto et al., 2004). 

1.4.1.6 Gamma delta T cells (gd T cells) 

These are a diverse group cells that originate from the lymphoid thymocytes and recognise 

antigens in an MHC-independent manner and have the capacity to secrete cytokines. They are 

classified by their TCR composition and function. The TCR consists of a g and d chain and can be 

arranged in several combinations, four Vd chains give rise to four main gd T cells types with 

various Vg chains. The V9gVd2 T cells are the most abundant cells in the peripheral blood and 

recognise phospho-antigens (Dimova et al., 2015). Upon activation the cytokines IFNg, TNFa and 

IL-17 can be released as well as the cytolytics perforin and granzyme. gd T-cells can also serve as 

APCs, presenting antigen on MHC-I to CD8+ T cells (Brandes et al., 2009, Moens et al., 2011). 

TCM TEM TEMRA TRM TRM 
(CD103+)

Circulating memory cells
Tissue-resident 

memory cells

TCM TEM TemRA TRM CD103 TRM

CD45RO (+) (+) (-) (+) (+)

CD45RA (-) (-) (+) (-) (-) 

CCR7 (+) (-) (-) (-) (-) 

CD62L (+) (-/+) (-/+) (-/+) (-/+)

CD69 (-) (-) (+) (+) (+)

CD103 (-) (-) (-) (-) (+)

IL2 (++) (+) (+) (-/+) (-/+)

IFNg (+) (++) (++) (++) (++)

TNF (+) (++) (++) (++) (++)
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1.4.1.7 T cell inhibition  

The highly potent immune response that ensues upon initial activation of the T cell system 

requires a way of self-limitation, this avoids excessive immune activation and the potential for 

harmful effects on the surrounding tissues. There are many co-inhibitory molecules expressed by 

T cells that dampen the immune response, some of these are summarised in Table 2. The 

interplay between some of the key molecules (PD1, PDL1, PDL2, LAG3, CTLA4 and TIM3) are also 

of importance as therapeutic targets for immunotherapy (see section 1.5.7 Immunotherapy). In 

the classical example of CD28 co-stimulation and T cell activation, the inhibitory molecule CTLA4 is 

induced on the T cell leading to interactions with the B7 receptors and competition for CD28 

(CTLA4 has a greater affinity for B7 proteins than CD28). CTLA4 binding to B7 leads to activation of 

the phosphatase (PP2A), which in turn acts to inhibit the CD28/TCR activation of Akt, ultimately 

leading to a reduction in the immune response (Rudd et al., 2009). 

The PD1 and PDL1/ 2 interaction is also a well characterised immune checkpoint. Expression of 

PD1 is primarily on mature T cells and limits effector function by binding to its main ligands PDL1 

and PDL2. This leads to inactivation of ZAP70 (dephosphorylation), recruitment of SHP2 and 

inactivation by dephosphorylation of PI3K and subsequent inhibition of Akt, a reduction in 

cytokine release and cell survival also occurs (Keir et al., 2008). The use of these co-stimulatory 

and co-inhibitory molecules is of great interest in the field of immunotherapy where 

immunomodulatory agents can be used to overcome the negative regulators of the immune 

response. 

1.4.1.8 T cell tolerance, anergy, exhaustion and senescence 

Antigen-stimulated T cells normally differentiate into effector cells followed by a contraction 

phase yielding memory cells. Under certain circumstances, T cell dysfunction may occur leading to 

hyporesponsive/ unresponsive T cells. Peripheral tolerance refers to the ability to manage self-

reactive T cells that escape central tolerance (central tolerance occurs in the thymus via deletion 

of autoreactive cells). Peripheral tolerance occurs by deletion of the autoreactive cells and 

suppression by regulatory cells (Tregs) and ultimately a terminal state of unresponsiveness 

(Redmond et al., 2005, Wing and Sakaguchi, 2010). Anergic cells represent cells that no longer 

respond appropriately to antigenic stimulus, originally identified in skin hypersensitivity reactions 

to recall antigens (Schier, 1954). This state represents cells stimulated through the TCR in the 

absence of co-stimulation, where an anergic transcriptional profile is induced, a key transcription 

factor in that program is EGR2 that regulates Ras/MAPK signalling and IL2 production (Zheng et 

al., 2012). 
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Table 2. Checkpoint molecules in T cell inhibition.  
The key checkpoints that are involved in T cell inhibition and their cellular effects as well as the 
ligands are shown in the table. These function to supress the immune response after antigen 
exposure and activation. Adapted from (Chen and Flies, 2013). 

 

Persistent exposure to antigenic stimulus can occur during chronic viral infections and also within 

tumours, leading to the progressive loss of T cell functionality and a hyporesponsive state. 

Experiments using LCMV infection identified a sequential change in virus-specific CD8+ cells upon 

chronic antigen exposure, with first the loss of IL2 and proliferative capability, followed by loss of 

TNFa and IFNg production. T cell exhaustion occurs over a longer period of time (weeks) and 

coincides with the increase in inhibitory surface receptors PD1, LAG3, TIM3 and CTLA4 (Wherry et 

al., 2003, Wherry, 2011b, Blackburn et al., 2009). These features of T cell exhaustion also exist in 

tumour-infiltrating lymphocytes (TIL), CD8+ cells in the tumour microenvironment express the 

same inhibitory receptors (PD1, LAG3, TIM3 and CTLA4), these can also be used as therapeutic 

targets to restore anti-tumour immunity (discussed in more detail in section 1.5.7 

Immunotherapy), blockade of TIM3 and PD1 inhibitory receptors maintains anti-tumour T cell 

functionality (Sakuishi et al., 2010). The cellular states of senescence and quiescence refer to cells 

that are in a non-proliferative state, cells in a state of a permanent cell-cycle arrest are termed 

senescent where the Hayflick limit (maximum number of replicative events for a cell) has been 

reached and are often terminally differentiated functional cells, they are often defined by the 

Immune 

Checkpoint 

Protein 

Gene
Cellular 

Expression 
Ligand Mechanism of Action 

CTLA-4 

(suppressive) 
CTLA4 

Mostly naïve 

CD4 and CD8

T cells, Tregs

CD80 (B7-1) 

CD86 (B7-2) 

v Negatively regulates T cell activation by neutralizing 

CD28 (outcompetes for to bind to CD80 and CD86)

v CD80 and CD86 ligands removed from APC surface 

via transendocytosis

v Reduces TCR signalling via impaired Akt activation

PD-1 

(suppressive)
PDCD1 

Activated T cells 

in peripheral 

tissue, B cells, 

professional 

APCs, NK cells 

PD-L1 

PD-L2

v Reduces T cell proliferation by Inhibiting T cell 

kinase ZAP70, recruitment of SHP2, 

dephosphorylation of PI3K and inhibition of Akt

activation, leads to reduced cytokines and 

decreased expression of survival proteins 

LAG-3 

(suppressive)
LAG3 

Activated T cells, 

NK cells 
MHC class II 

v Mechanism likely involves the intracellular KIEELE 

domain 

TIM-3 

(suppressive)
HAVCR2 

Activated T cells 

in  tissues
Galectin-9

v Interacts with Bat-3 to remain inactive when not 

bound to ligand. On ligand binding, Bat-3 

dissociates, leading to decreased production of IFNγ

and reduced T cell proliferation 

KIRs 

(suppressive)
CD158 

NK cells but also 

APCs and tumor

associated CTLS 

MHC class I 

molecules 

(HLAs) 

v Inhibitory KIRs induce NK cell tolerance through 

licensing, in which KIR recognizes self MHC class I 

molecules thus preventing NK cell activation against 

self tissue and auto-antigens 

4-1BB 

(activating)
TNFRSF9 

Activated CD4,

CD8 T cells and 

NK cells, Tregs

DCs, neutrophils 

4-1BB-L 

v Activates NF-κB, c-Jun and p38 signaling pathways 

upon ligand binding, leading to induction of pro-

inflammatory pathways and cell survival 

GITR 

(activating)
TNFRSF18 

Tregs, activated 

CD4 and CD8 T 

cells 

GITRL 

v GITR:GITRL pathway results in attenuation of Treg

suppressive responses and enhancement of effector 

T cell responses 
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shortening of telomeres. Both CD4+ and CD8+ cells can enter this non-proliferative but functional 

state, which has implications for immune related therapies (Akbar et al., 2016, Hayflick and 

Moorhead, 1961).  

Quiescent cells are in G0 phase (non-cycling), naïve T cells are in this state of inactivity until they 

become activated by antigen stimulation and the correct co-stimulatory cues, naïve quiescent 

cells express low levels of CD5 which increases upon activation, conversely the transcription 

factor FOXP1 is linked to maintenance of the quiescent phenotype and naïve T cell control (CD8 

cells) (Feng et al., 2011, Hamilton and Jameson, 2012). 

1.4.2 Humoral immunity and B cells 

1.4.2.1 B-cell development and receptor rearrangement 

The development of B cells occurs within the bone marrow, an overview of the B cell subtypes is 

depicted in Figure 2. B cell maturation occurs through sequential steps in the bone marrow prior 

to release into the periphery, a key stage in B cell development is the formation of an immature B 

cell with a mature IgM B cell receptor (BCR). The BCR is composed of a heavy chain and light 

chain, different constant regions make up the different Ig isotypes (IgM, IgD, IgG1-4, IgE and IgA1-

2). The unique binding ability is encompassed by the CDR3 leading to a large number of possible 

BCR combinations and the ability to recognise many antigenic targets including autoantigens 

(Melchers, 2005). Clonal deletion by apoptosis of strongly autoreactive B cells occurs prior to 

release from the bone marrow (central tolerance).  

1.4.2.2 B cell activation and survival 

The Immature B cells (functional IgM BCR) leave the bone marrow as transitional B cells. It has 

been shown that all B cells exiting the BM display some level of auto-reactivity with variable IgM 

and BCR signalling (Zikherman et al., 2012). These transitional (T1 and T2) cells enter the Spleen, 

where they differentiate into marginal zone B cells (MZ) and follicular B cells (FO) depending on 

the BCR signals. MZ B cells function in a T-cell independent manner, providing a defence against 

bloodborne pathogens by differentiating into extrafollicular plasma cells and secreting IgM. FO B 

cells are primarily IgDhiIgMlo and require Bruton’s tyrosine kinase (BTK) for their development, 

these cells are mature Naïve B cells and shuttle between blood and secondary lymphoid organs 

(Martin et al., 2001).  

T cell dependent B cell activation requires the interaction of antigen with B cells expressing the 

corresponding BCR that recognise that antigen, for FO B cells this occurs within a germinal centre 

(GC) where the FO (naïve) cells express CXCR5 and are retained in the lymphoid tissue by CXCL13 

(Ebisuno et al., 2003). The interaction with T helper cells provides co-stimulatory signals, which 
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occurs within areas defined by a dark zone and a light zone. At the border of the T and B zone the 

B cells interact with antigen-specific T follicular helper cells (Tfh), help is provided by co-

stimulatory molecules and cytokines from Tfh cells (CD40L, ICOS, IL21, IL4 and IFNg) (Kerfoot et 

al., 2011). Different B cell subsets (GZMB+ B cells) can also be produced in the presence of IL21 

but in the absence of CD40L co-stimulation (Lindner et al., 2013). 

The signals from co-stimulation sustain B-cell proliferation and activate genes needed for class 

switch recombination (CSR) and somatic hypermutation (SHM), expression of activation induced 

cytidine deaminase (AID) is a crucial part of CSR and SHM leading to the introduction of point 

mutations in the Variable region of the Ig gene. This enables selection of high affinity clones as 

well as the replacement of genes associated with the isotype classes leading to class switching 

and the different effector functions of the resultant antibodies (IgM to IgG, IgE and IgA) 

(Chaudhuri and Alt, 2004). GC B cells that have been activated and undergone CSR (via Tfh co-

stimulation) differentiate into plasma cells and memory B cells; these display high affinity class 

switched immunoglobulin and reside in the BM and secondary lymphoid organs (Shlomchik and 

Weisel, 2012). Extrafollicular activation can also occur leading to memory cell and plasmablast 

formation independent of the GC reaction (MacLennan et al., 2003). The key function of memory 

B cells is to remain in secondary lymphoid tissues and rapidly respond to exposure of the same 

antigen by differentiating into plasma cells and releasing large titres of high affinity class switched 

antibody (Kometani et al., 2013). This occurs both in an extrafollicular manner and GC-dependant 

manner, these cells can also undergo further SHM and CSR by re-entering the GC leading to higher 

affinity BCRs (McHeyzer-Williams et al., 2015, Pape et al., 2011). Long lived plasma cells home to 

the bone marrow via CXCR4, where they are supported by stromal cells secreting CXCL12 and the 

cytokine IL6, here they function to produce antibodies (Nutt et al., 2015).  

1.4.2.3 B cell effector functions  

Effectors functions of B cells are divided into the primary function of producing highly specific 

unique immunoglobulins, and cellular functions. Secreted immunoglobulins are qualitatively the 

same as the BCR, but in a non-membrane bound form and, as mentioned, are divided into the 

different isotypes IgD, IgM, IgG1-4, IgE and IgA1-2 (Fc regions); these regions mediate the effector 

function and are summarised in Figure 5. The key function is neutralisation of the target and 

activation of other immune cells such as macrophages and NK cells. This occurs through binding of 

the Fc region to Fc receptors (FcR) and activation of complement by the binding of C1q. The IgM 

and IgG3 isotypes are more effective at activating complement, IgG1 also initiates complement 

activation and activates macrophage and IgE acts on Mast cells (Bruhns and Jonsson, 2015). The 

cellular functions of B cells consist of antigen presentation, co-stimulation, tertiary lymphoid 

organ formation and cytokine release, both inhibitory and stimulatory. B cells present antigens by 
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internalising the antigen:BCR complex and processing it in to peptides where it is then bound to 

MHC-I and II, this allows B cells to act as antigen presenting cells to CD8+ and CD4+ cells (Yuseff et 

al., 2013). 

A 

 
B 

 

Figure 5.Immunoglobulin structure and function. 

(A) The structure of the different sub classes of immunoglobulin; IgM, IgG, IgA, IgD and IgE 
adapted from (Bruhns and Jonsson, 2015). (B) This highlights the different roles of each of the 
antibody subtypes and the relative percentages found in the serum. Adapted from (Bruhns and 
Jonsson, 2015, Schroeder and Cavacini, 2010) 

 

B cells also play a key role in the formation of lymphoid organs and germinal centres by the 

release of lymphotoxin alpha (LTA), thus directly influencing the co-localisation of follicular 

dendritic cells and CD4+ cells (Tfh cells) (Fu et al., 1998). B cells can also exert effector functions 

through cytokines that act on CD4+ T cells and modify their polarisation state. Thus, production of 

Ig subtype Serum (%) Structure Complement 
Fixation Opsonizing Cross 

Placenta Other Functions FcR

IgG 75% Monomer + +++ + For all IgG: subclasses FcγR
-IgG1 67% IgG Monomer Yes Yes + Secondary response I,II,III
-IgG2 22% IgG Monomer Yes Yes + Neutralize toxins II
-IgG3 7% IgG Monomer Yes Yes + Neutralize virus I,II,III
-IgG4 4% IgG Monomer No No + I,II
IgM 10% Pentamer +++ + − Primary response
IgA 15% Monomer, Dimer − − − Mucosal response FcαR (CD89)
-IgA1 Monomer, Dimer − − −
-IgA2 Monomer, Dimer − − −
IgD <0.5% Monomer − − − homeostasis FcδR
IgE <0.01% Monomer − − − Allergy FcεR I,II 
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TNFa and CCL3 promotes Th1 cell differentiation leading to increased IFNg from Th1 cells. IL-6 

from B cells supports Th1, Tfh and Th17 cells, IL-17 promotes the production and accumulation of 

neutrophils and IL-4 supports a Th2 response (Vazquez et al., 2015, Shen and Fillatreau, 2015). 

The other important role of B cells is as negative regulators of the immune response, these cells 

are termed Bregs. The immunosuppressive role of Bregs falls into the release of cytokines in the 

form of IL35, IL10 and TGFb that act to impede the Th1 and Th17 responses as well as increase 

Treg generation (IL10 mediated) (Olkhanud et al., 2011). The cellular interactions of Bregs via PD-

L1, OX40L, CD80/CD86 and FasL also act to impair T cell mediated immunity (Zhou et al., 2016). 

Regulatory B cells fall into different subsets depending on their mechanism of suppression with 

B10 plasmablast cells expressing IL10, GZMB B cells (GZMB, IL10 and IDO), BR1 cells (IL10 and 

IgG4), induced iBregs (TGFb and IDO) and i35Bregs (IL35) (Rosser and Mauri, 2015, Mauri and 

Menon, 2015). 

1.4.3 Innate Immunity 

The Innate immune system works in partnership with the unique antigen recognition of the 

adaptive immune system. Innate immunity acts as the first line of defence against infection, it 

includes an array of specialised cells and molecular mechanisms that can be used to eliminate 

infections. This starts with the anatomical barriers that are the epithelial surfaces of skin, mouth, 

stomach, intestines and the airways that all play an integral role in controlling infections and are a 

key component of the innate immune system (Turvey and Broide, 2010). The structural epithelial 

cells of barrier tissues are equipped with some basic protective mechanisms that enable them to 

sense and respond to potential danger in the form of invasive microbes. In addition, there is a 

range of specialised cells in close anatomical proximity to the barriers, with a greater range of 

defensive and protective functions, these are regarded as forming the core of the innate immune 

defences. 

1.4.3.1 Pattern recognition receptors of Innate Immunity 

The innate immune system detects the presence of potentially harmful organisms/ cells (e.g. 

bacteria and viruses) through the pattern-recognition receptors (PRRs). These are divided into the 

Toll-like receptors 1-10 (TLRs), C-type lectin receptors (CLRs), nucleotide oligomerisation domain 

receptors (NLRs) domain, RIG-I like receptors (RLRs) and AIM2-like receptors. They recognise 

pathogen-associated molecular patterns (PAMPs), which are conserved molecular structures 

specific to particular microorganisms (Kawai and Akira, 2010). TLRs and CLRs are predominantly 

located at the cell surface and in endocytic compartments, the NLRs, RLRs and ALRs are unbound 
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and located in the cytoplasm(Yang et al., 2017), Table 3 summarises the various PRRs and PAMPs 

of the innate immune system.  

1.4.3.2 Cells of the innate immune system 

The main specialised cellular components of innate immunity are shown in Figure 2, they consist 

of macrophages, dendritic cells, natural killer cells and granulocytes (neutrophils, basophils and 

eosinophils).  

Monocytes are a subset of circulating cells with the ability to migrate to areas of tissue damage 

and inflammation, this occurs via the expression of various chemokine receptors (e.g. CCR2, 

CXCR1, CCR1 and CCR5) and adhesion molecules (e.g. L-selectin, LFA1 and VLA4). These allow the 

cells to attach and migrate to sites of tissue damage and inflammation (Shi and Pamer, 2011). At 

sites of inflammation monocytes have the ability to differentiate into plasmacytoid dendritic cells 

(pDC), pre-cursor DC and Macrophages (Geissmann et al., 2010).  

Macrophages: Once at the site of tissue damage and in the presence of the correct environmental 

cues differentiate and polarise into different subsets of cells depending on the type of signals. 

These have distinct cytokine, cell-surface markers and expression profiles on which they are 

broadly divided into the classical M1 and the alternative M2 macrophages (Mantovani et al., 

2002). The M1 phenotype is associated with the Th1 cytokine IFNg and bacterial stimulus such as 

lipopolysaccharides (LPS), they produce the pro-inflammatory cytokines IL-6, IL-12 and IL-23 as 

well as TNFa. The alternative M2 macrophages are more pleiotropic and differentiate into M2a 

(IL-4 and IL-13 stimulus); M2b (LPS and Ig immune complex stimulus); M2c (TGFb and IL-10 

stimulus) and the M2d which occur in response to tumour-derived factors (Movahedi et al., 2010). 

The M2 phenotype is broadly associated with a pro-angiogenesis and anti-inflammatory response, 

this includes the production of TGFb, IL-10, CCL17, CCL22 and CCL24 (Qian and Pollard, 2010, 

Roszer, 2015).  

Dendritic cells are specialised cells that function as potent activators of the immune response, 

they are divided into conventional DCs (cDCs) and plasmacytoid DCs (pDCs). They are derived 

from common lymphoid and myeloid progenitor cells in the bone marrow, pre-DCs migrate 

through the blood to peripheral tissue where they differentiate into cDCs (either CD8a+/CD103+ 

or CD11b+). The highly migratory cDCs are found at peripheral tissue sites where they function as 

specialised antigen presenting cells that capture and process antigen for presentation to cells of 

the adaptive immune response in the lymphoid organs, this subsequently leads to activation of an 

immune response. pDCs terminally differentiate in the bone morrow and migrate to lymphoid 

organs and tissue compartments. The role of pDCs is to respond to viral infection via TLR7 and 9, 

upon stimulation large amounts of IFNa and INFb are produced (Schraml and Reis e Sousa, 2015, 

Geissmann et al., 2010). 
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Table 3. The recognition of pathogens by the innate immune system. 
Pathogen-associated molecular patterns (PAMPs) are recognised by Pattern-recognition 
receptors (PRRs) on immune cells. Innate immune cells in particular use the PRRs to react quickly 
to these antigens. Adapted from (Brubaker et al., 2015). 

 

Natural killer cells (NK) have the ability to bind specific regions of Ig FC receptor via the 

expression of CD16a/b (FCGR3A/B) and CD32 (FCGRIIC, a low affinity IgG receptor)(Anderson et 

al., 1990). The binding of FcR by NK cells leads to antibody dependant cell cytotoxicity (ADCC), 

where degranulation of cytotoxic particles (perforin and granzyme) occurs causing cell cytotoxicity 

(Smyth et al., 2005).  

Natural Killer T-cells (NKT) are innate T lymphocytes that undergo thymic selection and possess a 

functional T cell receptor (TCR), they recognise lipid antigens presented by CD1d as well as 

cytokine receptors such as IL-12, IL-18, IL-25 and IL-23 (Cohen et al., 2013). They are divided into 

two main subtypes; Type I NKT or invariant NKT (iNKT) and Type II NKT or variant NKT (Exley et al., 

2001).  

PAMP Detection by TLRs and Other PRRs

Species PAMPs TLR PRRs Involved in Recognition

Bacteria, mycobacteria LPS TLR4

lipoproteins, LTA, PGN, TLR2/1, TLR2/6 NOD1, NOD2, NALP3, NALP1

DNA TLR9 AIM2

RNA TLR7 NALP3

Viruses DNA TLR9 AIM2, DAI, IFI16

RNA
TLR3, TLR7, 

TLR8
RIG-I, MDA5, NALP3

structural protein TLR2, TLR4

Fungus zymosan, β-glucan TLR2, TLR6 Dectin-1, NALP3

Mannan TLR2, TLR4

DNA TLR9

RNA TLR7

Parasites tGPI-mutin (Trypanosoma) TLR2

glycoinositolphospholipids

(Trypanosoma)
TLR4

DNA TLR9

hemozoin (Plasmodium) TLR9 NALP3

profilin-like molecule 

(Toxoplasma gondii)
TLR11
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Granulocytes (Neutrophils basophils and eosinophils) play an important role in the immune 

response clearing pathogens and immunoregulation, they originate from myeloid progenitor cells 

in the bone marrow and are released into the circulation fully differentiated.  

Neutrophils are recruited to sites of infection and inflammation and enter tissues via a cascade of 

cell migration where cytokines and chemo-attractants signals originate (Sundd et al., 2013), (Chou 

et al., 2010). Activation can occur via an array of different signals that consist of pattern 

recognition receptors (PRR), G protein-coupled receptors (GPCRs) and opsonising receptors in the 

form of FcγR and complement. One of the main PRRs in neutrophils are the Toll like receptors 

(TLR1, 2, 4, 5, 6, 8, 9 and 10), which recognise DNA, RNA, Lipids, carbohydrates and peptides 

(Trinchieri and Sher, 2007). Opsonising receptors expressed by neutrophils include part of the 

complement system; CR3, CR4 and CR1 as well as high- and low-affinity IgG FC receptors (Bruhns, 

2012) Once activated neutrophils are able to exert killing effects via receptor mediated uptake, 

this involves phagocytosis and the formation of a phagosome with opsonised IgG targets, 

production of reactive oxygen species (ROS), as well as release of three types of cytotoxic granules 

during degranulation. (Vethanayagam et al., 2011).  

Basophils are recruited to sites of inflammation and are activated by FCERI aggregating with IgE, 

this is enhanced in the presence of IL-3, IL-5 and GM-CSF, TLR2 and TLR4 leading to activation. 

Once activated they release preformed mediators stored in granules, these contain heparin, 

histamine and leukotrienes (lipid mediators). The cytokines produced included IL-4, IL-13 and GM-

CSF, in particular IL-4 which is also involved in Th2 cell differentiation (Stone et al., 2010, Sullivan 

and Locksley, 2009).  

Eosinophils are released from the bone marrow in response to IL-5 and traffic to the tissues and 

sites of infection (helminth) and inflammation. They are often located at sites where a Th2 

response has dominated, IL-4 and IL-13 play a crucial role in the trafficking of the cells to the 

tissues. Activation of Eosinophils can occur via IgG and IgE. Once activated they release 

proinflammatory granules that contain major basic protein, a highly cationic protein that interacts 

with the cell membrane on parasites, they also release lipid mediators (leukotrienes) (Uhm et al., 

2012, Rosenberg et al., 2007, Hogan et al., 2008). 

1.5 Immune response to viral infection 

During a viral infection the innate immune system reacts immediately (hours), sensing the 

molecular patterns associated with the pathogen via the PAMP receptors. The adaptive immune 

response develops over a longer period of time (7 days) and is in part triggered by the innate 

response. Ultimately the goal is to clear the pathogen and prevent further infection by the 

production of immunological memory.  
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1.5.1 Innate immune reaction to virus 

The innate non-specific early antiviral response involves pathogen recognition (mostly DCs), 

followed by IFN and cytokine release and recruitment of other innate cells (NK cells, neutrophils 

and macrophages). The sensors of the innate system consist of TLRs with endosomal nucleic acids 

being detected by TLR3 (dsRNA), TLR7 and TLR8 (ssRNA) and TLR9 (CpG and DNA viruses), viral 

envelope glycoproteins are detected by TLR2 and TLR4 (Finberg et al., 2007, Barbalat et al., 2009). 

Ultimately the activation of the TLR leads to NFkB activation and type I IFN production (Takeuchi 

and Akira, 2009). Intracellular sensing of viral RNA by NLR and DNA by ALR leads to the release of 

IL-1b (Rehwinkel et al., 2010). The stimulator of IFN genes (STING) play a key role in RLR function, 

increased expression of STING is linked with subsequent increases IFN release (Ishikawa and 

Barber, 2008). Increased production of IFN type I (a/ b) leads to an antiviral response, pDCs are 

specialised IFN producers and sense viral RNA and DNA via TLRs (TLR7, 8 and 9) (de Veer et al., 

2001, Haller et al., 2006). 

1.5.2 Adaptive immune response to virus 

During an adaptive immune response to virus, a co-ordinated reaction takes place involving the 

processing and presentation of the viral proteins on MHC-I and MHC-II by APCs (e.g. DCs) as well 

as the infected cells in the case of MHC-I. This leads to the activation of cell mediated immunity 

via CD8+ cells (MHC-I) and CD4+ cells (MHC-II), with a prominent CD4+ Th1 response. The Th1 

response is characterised by production of the cytokines IL-2, IL-12, IL-23, IL-27 and IFNg, this in 

turn acts to help drive clonal expansion of CD8+ cells, as well as helping virus specific B cells 

switch to IgG1 isotypes involved in ADCC (Strutt et al., 2013, Trinchieri, 2003). CD8+ cells (CTLs) 

function as the key defence mechanism against virus infected cells by releasing perforin and 

granzymes that induce apoptosis in the infected cells (Lawrence et al., 2005). Immune response to 

HPV-16 is covered in section 1.6.7 (Immune response to HPV driven cancer), where the oncogenic 

viral proteins E6 and E7 play a key role in the adaptive immune response to the virus by 

generating both an adaptive T cell (E6/E7 specific CD8 cells) as well as a B cell response (HPV16(+) 

antibodies) to the virus (Frazer, 2009). 

1.6 Interaction of the host immune system and cancer 

1.6.1 Tumour Infiltrating Lymphocytes (TIL) and survival 

The presence of tumour infiltrating lymphocytes (TIL) is regarded as reflecting the immune 

response against the tumour. The density of TILs is linked to an improved prognosis and is 
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associated with an active immune response within the tumour (Galon et al., 2006). A key piece of 

work in colorectal tumours showed a significant clinical benefit of immune cells infiltrating the 

tumour, both at the invasive margin and within the tumour. Tumours with high densities of 

immune infiltrate (CD3) show a much better prognosis when compared to immune low tumours 

(Galon et al., 2006). The type of cells that are involved in the infiltrate are also pivotal, with CD8+ 

and Th1 cells linked to the best prognosis, whereas Th2, Th17 and Treg numbers are generally 

linked to a poorer outcome (Fridman et al., 2012). In metastatic melanoma, a similar pattern has 

been observed, with low, moderate and high immunotypes as determined by H and E. This 

showed that the most prognostic immune cell as well as the most numerous, was the CD8+ T cell, 

again with higher global immune densities showing the best survival (Erdag et al., 2012).  

 

The same clinical benefits were observed in HNSCC when tumours were characterised as immune 

cell high, moderate or low as determined by H and E staining, where higher immune cell densities 

conferred an improved survival. This classification was able accurately to group cases in the same 

way as using cell-specific markers (CD4+ and CD8+). This study also shows a highly improved 

survival in HPV(+) tumours compared to HPV(-) HNSCC (Ward et al., 2014b). Patients that display 

high levels of CD8+ T-cell tumour invasion have increased disease free survival, with the level of 

functional CD8+ CTL (GZMB+) infiltrate being directly correlated to tumour burden and prognosis 

(Bindea et al., 2011, Galon et al., 2006).The presence of TLS (tertiary lymphoid structures) in 

tumours broadly predicts for a better outcome, these are often marked by high densities of B cells 

that aggregate to form the TLS in the tumour, it is indicative of an on-going immune reaction 

involving the major cell types (CD4+ and CD8+) that encounter antigen stimulus and respond 

(Germain et al., 2014, Sakimura et al., 2017).  

1.6.2 Immune response and survival in HNSCC  

HPV(+) tumours are now treated as a separate group to HPV(-) tumours due to differences in 

presentation and prognosis. HPV(-) tumours usually arise on the background of alcohol and 

smoking, conversely the HPV(+) tumours as discussed previously arise due to the cellular 

transformation linked to the viral oncoproteins, the clinical presentation and prognosis is also 

different between the two tumour groups (Pai and Westra, 2009). HPV(-) tumours have a lower 

lymphocytic infiltration of CD8+ T-cells and B-cells compared to HPV(+) (Russell et al., 2013). The 

CD8 infiltrate in HPV16 disease in one study was 6 times higher than HPV(-) with a greatly 

improved 3-year overall survival (Nordfors et al., 2013). The prognostic value of TIL in HNSCC 

shows a direct relationship between the level of immune infiltration and survival, in one study the 

presence of a high/ moderate global TIL conferred improved prognosis compared to low 
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infiltration. The 3-year survival of HNSCC patients was 82% in HPV(+) vs 56% in HPV(-), the level of 

TIL was strongly correlated to HPV(+) tumours with 85% containing high/ moderate TIL. The 3-

year survival in patients with HPV(+)/ TILHi tumours was 96%, HPV(+)/TILMod was 76% and 

HPV(+)/TILLo
 was 59% (Ward et al., 2014b). The HPV(+)/ TILLo

 displayed a similar survival to that of 

the HPV(-) at 56%, this is an interesting group that may allow insights into the cellular and 

molecular state that is required for tumour infiltration when compared to the HPV(+)/TILHi. The 

predictive values of individual cell types were also assessed in terms of total TIL, CD4, CD8, Foxp3, 

CD4:CD8 ratio and Foxp3:CD8 ratio, the prognostic model indicated that the overall TIL (High/ 

Mod and Low) were equally as informative a prognostic maker as the individually scored cell 

populations Ward et al. (2014b). The difference in survival between patients with HPV(+) and 

HPV(-) tumours and the level of immune infiltrate highlights the possibility of a different immune 

response between virally driven and virus-independent tumours; analysis of immune rich tumours 

and comparison of immune functions in HPV(+) and HPV(-) tumours is therefore important as it 

may give insight into these survival differences.  

The overall immune composition of HNSCC using flow cytometry was characterised by T-cell 

infiltrates that display an effector memory phenotype (70% of CD3 cells = CD45RA-/CCR7-), an 

increase in T-regulatory cells (12% of CD3 cells = CD25+/CD127Low/CD4+) and higher expression of 

immune check point markers PD1 and CTLA4 relative to PBMC controls. The overall tumour 

infiltrating lymphocyte level was also highly variable and displayed higher levels in HPV(+) 

tumours relative to HPV(-) (Lechner et al., 2017). In HPV(-) HNSCC single cell transcriptomics 

identified a varied immune infiltrate, this consisted of T-cells, macrophages and dendritic cells. 

The T-cells were divided into cytotoxic CD8 T-cells (exhausted and non-exhausted), with the CD4 

cells divided into Tregs and CD4 T helper cells.  The cell types were expressed across multiple 

patients but varied in their overall proportions, interestingly there were little or no B cells 

identified (Puram et al., 2017, Cillo et al., 2020). 

1.6.3 Immune infiltrates and survival in NSCLC  

The extent of the immune cell infiltrate in NSCLC is also directly linked to patient survival, where 

the overall 5-year survival for TILHi tumours was 60% compared to 21% in TILLo tumours, as 

determined by global TIL scoring of haematoxylin and eosin stained tumours (Horne et al., 2011). 

The Patient survival also differs between Adenocarcinoma and Squamous cell carcinoma, where 

5-year overall survival was 42% and 63% respectively (Moldvay et al., 2000). A more focused 

immune score using CD8+ TIL yielded similar results with 5-year survival at 61% (CD8+ TILHi) and 

41% (CD8+ TILLo) (Donnem et al., 2015). Tumours are heterogenous, the location of the CD8+ 

immune cells (CD8+ TILHi, Mod and Lo) can have an impact on survival. Whether the whole tumour, 
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representative areas, central tumour, invasive margins, dense lymphoid aggregates or random 

area sampling are used affects the overall survival. The most concordant survival data was derived 

from random sampling 20% of the tumour, central tumour, conversely the invasive margin led to 

poor concordance and significance (Obeid et al., 2017). 

Immune profiling of NSCLC shows that the tumour infiltrating lymphocytes consist of a wide range 

of immune cells that recapitulates an on-going adaptive immune response T-cells (CD4 and CD8) B 

cells, NK cells, and macrophages are all identified at varying proportions across a patient cohort 

see Table 4 (Lizotte et al., 2016) (Stankovic et al., 2018). 

 

Table 4. The Immune cell composition in NSCLC.  
The tumour infiltrating lymphocytes in NSCLC are diverse and represent a wide range of cells 
associated with and on-going adaptive immune response. Adapted from Stankovic et al., 2018 

 

Further evaluation of the tumour ecosystem in NSCLC using single cell transcriptomics, again 

shows a highly heterogenous immune infiltrate that represents immune response to the tumour.  

B cells, macrophages and T cells were all elevated in the tumour relative to control tissue. CD8 T-

cells exhibited cytolytic (GZMA/ B and PRF1) features, as well as exhaustion features (PD1 and 

CTLA4) , CD4 cells were divided into helper and regulatory. B cells displayed signs of activation 

and class switching indicative of germinal centre reaction (Chung et al., 2017, Peng et al., 2019, 

Sade-Feldman et al., 2018, Lambrechts et al., 2018, Tirosh et al., 2016, Puram et al., 2017). 

Cell type Gating strategy
Cell % in 
NSCLC

Number of 
samples 

Live Leukocytes CD45+PI− 100 n = 68

T cells CD45+PI−CD3+CD19− 46.5 n = 43
   CD4+ T cells CD45+PI−CD3+CD19−CD8−CD4+ 25.9 n = 43
   CD8+ T cell CD45+PI−CD3+CD19−CD8+CD4− 21.7 n = 30
   CD4− CD8− T cells CD45+PI−CD3+CD19−CD8−CD4− 1.4 n = 30

B cells CD45+PI−CD3−CD14−CD19+ 15.9 n = 55
   Naive B cells CD45+PI−CD3−CD14−CD19+IgM+IgD+ CD27− CD38+/− 1.6 n = 23
   CD27+CD38+/− B cells CD45+PI−CD3−CD14−CD19+IgM−IgD− CD27+CD38+/− 4.2 n = 23
   Plasma cells CD45+PI−CD3−CD14−CD19+IgM−IgD− CD27+CD38++ 0.8 n = 23
   IgM+IgD− B cells CD45+PI−CD3−CD14−CD19+IgM+IgD− 2.2 n = 23

Macrophages CD45+PI−CD19−CD14+HLA-DR+ 4.7 n = 33

pDCs CD45+PI−CD19−CD14−HLA-DR+CD11c−CD123+ 1.2 n = 29

Classical DCs CD45+PI−CD19−CD14−HLA-DR+CD11c+ 1.6 n = 29
   CD1c+ DCs CD45+PI−CD19−CD14− HLA-DR+CD11c+ CD1c+CD141− 0.8 n = 29
   CD141+ DCs CD45+PI−CD19−CD14− HLA-DR+ CD11c+CD1c−CD141+ 0.1 n = 29
   “DN DCs” CD45+PI−CD19−CD14−HLA-DR+CD11c+ CD1c−CD141− 0.5 n = 29

NK cells CD45+PI−CD19−CD14−CD3−CD56+ 4.5 n = 18
   CD16+ NK cells CD45+PI−CD19−CD14−CD3−CD56+CD16+ 2.3 n = 18
   CD16− NK cells CD45+PI−CD19−CD14−CD3−CD56+CD16− 2.2 n = 18

Neutrophils CD45+PI−CD19−CD3−C14−CD11b+CD15+CD49d− 8.6 n = 18

Basophils CD45+PI−CD19−CD3−C14−CD11b−FcεR1α+CD117−CD49d+ 0.4 n = 18

Eosinophils CD45+PI−CD19−CD3−C14−CD11b+CD15+CD49d+ 0.3 n = 18

Mast cells CD45+PI−CD19−CD3−C14−CD11b−FcεR1α+CD117+CD49d+ 1.4 n = 18
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1.6.4 Innate response to tumour 

The key innate cells that elicit a response to tumour are NK cells, NKT cells, gd cells, DCs and 

macrophages that all play a role in the response via DAMPs. NK cells in the context of the tumour 

environment can be activated by the MICA/ B (MHC-I chain related molecules A/B) ligands that 

are expressed on tumour cells under stress, these are recognised by the NKG2D receptors on NK 

cells and lead to direct activation and release of cytotoxic granules and expression of FASL/ TRAIL 

(Gasser et al., 2005, Cheng et al., 2013). IFNg from NK cells also functions to activate CD8 T cells 

and skew the CD4+ response towards Th1 (Martin-Fontecha et al., 2004). NKT (type I) cells can be 

activated by glycolipids like tumour associated ganglioside GD3 that are recognised by CD1d, the 

activated NKT cells can rapidly produce cytokines and cytotoxic activity, expressing IL-2, IL-4, and 

IFNg (Wu et al., 2003, Coquet et al., 2008). NKT (type II) cells have been shown to play a negative 

role via the action of IL-13 from type II NKT cells, this down regulated tumour immune 

surveillance in a mouse model via the IL4R- STAT6 pathway (Terabe et al., 2000). gd cells function 

to recognise phospho-antigens that are expressed on tumour cells, accumulation of mevalonate 

pathway metabolites in tumours act as ligands for TCRs on gd cells leading to activation and direct 

killing of the tumours cells via cytotoxic granule release and FasL/ TRAIL. Activated gd cells also 

produce IFNg and TNFa contributing to the control of tumour growth (Gober et al., 2003, Kondo 

et al., 2008). 

1.6.5 Cellular adaptive response to tumours 

In order to elicit an adaptive immune response to a tumour the immune system must become 

activated to antigen, in the tumour this can take a variety of different forms (Table 5). Tumour 

associated antigens (TAA) are presented to T-cells via MHC-I/II and to B cells via the BCR, with the 

activation process mirroring what is seen in normal secondary lymphoid organs and peripheral 

tissues. Some of the classical TAAs are the MAGE (melanoma antigens) proteins that are normally 

confined to the testis, CEA (carcinoembryonic antigen) often overexpressed in colorectal cancer, 

PSA (prostate specific antigen) expressed in the normal prostate and elevated in prostate cancer 

and Her2 which is over expressed in breast cancer.  

A different type of TAA occurs as a result of genetic mutations yielding proteins that are foreign to 

the immune system, these can be in the form of fusion proteins like BCR-ABL in AML and CLL, 

while others arise from splicing mutations such as K-RAS mutations (Novellino et al., 2005). 

Further classification of these mutations has led to the term neo-antigens, where novel peptides 

arise as result of frameshifts and point mutations in normal proteins, this yields a protein that is 

then perceived as foreign to the immune system eliciting an immune response. The number of 

these mutations is linked to a higher immune infiltrate and increased CTL action as well as 
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improved patient survival (Brown et al., 2014). This was expanded further by the assessment of 18 

tumour types linking MHC-I neo-antigens to cytolytic activity (GZMA and PRF1), cervical cancer 

(HPV(+)) displayed the highest CTL+ predicted neo-antigen activity, thyroid on the other hand 

showed the least (Rooney et al., 2015). Targeting of these mutations has led to successful immune 

responses that can be used as a custom therapeutic target, where neo-antigen specific RNA 

vaccines can yield peptide specific responses in human patients yielding an improvement in 

disease control (melanoma)(Sahin et al., 2017, Ott et al., 2017).  

  
Table 5. T cells reactivity to Tumour antigens. 
This shows some of the various types of tumour antigens that are able to generate an immune 
response and the mechanism by which it occurs. Adapted from (Novellino et al., 2005). 

1.6.6 Humoral adaptive response to tumours 

The humoral response to tumours requires engagement of the CD4+ T helper compartment to 

mount an effective B cell mediated response to tumour. The role of tumour infiltrating B cells 

rests with an interplay between both anti-tumour and pro-tumour activity, positive roles of B cells 

in tumour clearance are associated with ADCC, Granzyme B producing B cells and antigen 

presentation. The negative role of B cells are linked to regulatory cells that function to inhibit the 

immune response (Breg), inhibitory Immunoglobulin classes (IgA) and expression of negative 

regulators of the immune response like PDL1 (Olkhanud et al., 2011) (Park et al., 2010). 

Classification of tumour 
antigen Mechanism of immune activation Example 

Cancer-testis antigens
Normal expression found in spermatocytes in 
testis  and occasionally placenta (immune-
privileged site), triggering T cell response.

MAGE (melanoma antigen)
BAGE (B antigen)
GAGE (G antigen)

Differentiation antigens Antigen is expressed by the tumour and the 
normal tissue from which it arose.

CEA – expressed in embryonic tissue and over-
expressed in colorectal cancer.
Gp100 – expressed in melanocytes and 
melanoma.
PSA – expressed in normal prostate and over-
expressed in prostate cancer.

Over-expressed tumour 
associated antigens

Level of expression in normal tissue is below the 
threshold for T cell activation. Over- expression 
by cancers cells triggers T cell activation.

Her2 – over-expressed in breast cancer.
AFP – over-expressed in hepatocellular cancer 
and certain germ cell tumours.

Tumour-specific antigens
These arise from genetic mutations or splicing 
aberrations, generating a protein that is foreign 
to the host immune system.

Neoantigens unique to each patient tumour.

Fusion proteins

Chromosomal translocation results in fusion of 
distant genes and expression of an abnormal 
fusion protein that is foreign to the host immune 
system.

BCR-ABL in CML and some ALL.
EML4-ALK in non-small cell lung cancer.

Tumour-associated antigens that are recognised by T cells
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1.6.6.1 Positive role of B cells in tumour immunity 

The process of initiating a protective immune response to tumour requires the interplay of the 

key cells of the immune response, both the CD4+ and CD8+ T cells as well as B cells providing co-

stimulatory cues both direct and in-direct (CD40-CD40L and cytokine release). One of the key 

features that appears to outline an ongoing and sustained immune response to antigenic tumours 

is the formation on TLS (tertiary lymphoid structures) within the tumour; these resemble the 

anatomical structures observed in the secondary lymphoid organs. A higher number of TLS and 

increased B cell densities confer a survival benefit in NSCLC, this is also seen in HNSCC (Germain et 

al., 2014). 

The role of ADCC and tumour auto-antibodies also plays a role in anti-tumour activity, HER2 

expressing breast and ovarian tumours can be targeted by endogenous anti-HER2 antibodies 

(Montgomery et al., 2005); mutated proteins such calreticulin in hepatocellular cancer also 

generate an antibody response. These tumour-associated antigens are currently being used as 

biomarkers of on-going disease rather than for any therapeutic applications (Le Naour et al., 

2002). B cells that have not received sufficient co-stimulation from CD40L on CD4+ Th cells in the 

presence of IL21 shift from plasma cell formation, to granzyme B+ B cell production. These cells 

are not able to function in the same manner as CTLs as they lack perforin, although the mode of 

action potentially revolves around antiviral/ cytolytic function, auto-regulation and regulatory and 

suppressive effects on other immune cells(Hagn et al., 2012, Hagn and Jahrsdorfer, 2012, Lindner 

et al., 2013). B cells also function as antigen presenting cells and express both MHC-I and MHC-II, 

presentation of antigen to CD4+ cells via MHC-II leads to CD4+ cell priming and a Th1 response 

(Rodriguez-Pinto, 2005, Bruno et al., 2017). The primary function of a B cell is to produce antibody 

(IgG1-4, IgA1-2 and IgM), with IgG1 and IgG3 functioning through opsonisation, NK cell activation 

and complement activation, IgM also activates the complement system, most treatment regimens 

(e.g. Herceptin) that use antibodies use the IgG1 isotype (Beers et al., 2016, Vidarsson et al., 2014, 

Shi et al., 2015). 

1.6.6.2 Negative role of B cells in tumour immunity 

Regulatory cells within the tumour microenvironment impede the immune response, B regulatory 

cells (Bregs) are those that arise from the B cell lineage and have a negative effect on the immune 

response. This is commonly attributed to the secretion of the suppressive cytokines IL10, IL35 and 

TGFb. IL10 plays a role in suppressing IFNg and IL17 production from Th1 and Th17 cells, it also 

induces the formation of Treg (FOXP3+) cells (Olkhanud et al., 2011). Bregs have also been shown 

to reduce secretion of IFNg in cytotoxic CD8 cells. The secretion of TGFb by B cells functions to 

modulate CD4+ cell proliferation, CD8+ cell cytotoxicity and Treg formation (Sarvaria et al., 2017, 
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Zhou et al., 2016, Flores-Borja et al., 2013). Bregs also play a role in macrophage differentiation, 

depletion of B cells in SCC re-programs the tumour associated macrophage (TAM) phenotype 

from a Th2-TAM expressing FC gamma receptors that respond to the immune complex deposited 

by B cells, to a Th1-TAM antitumor phenotype that express anti-angiogenic chemokines CXCL10/ 

11, expression of CCR5 also leads to a greater infiltrate of CD8 and improved survival in mice 

(Affara et al., 2014).  

The chronic antigen exposure that occurs in tumours may also lead to a hypofunctional state and 

an exhausted B cell phenotype, this has been extensively studied in persistent viral infections 

(HIV). In this situation B cells are CD21lo and CD27lo with the expression of an inhibitory tissue 

marker FCRL4, the loss of CD21 is a marker of exhaustion, coupled with a lack of CD95 expression 

in the presence of persistent antigen (Ehrhardt et al., 2005, Moir et al., 2008), (Sciaranghella et al., 

2013). Antigen presentation by B cells to CD4+ cells can also alter their phenotype, this depends 

on the functional state of the B cells. Activated B cells are associated with a Th1 response, 

whereas B cells with an exhausted phenotype are associated with the formation of CD4+ 

regulatory cells (FOXP3(+)) (Sciaranghella et al., 2013). The particular Ig isotype produced by the 

plasmablast also plays an important role in antitumor immunity, IgG4 subclasses accumulate in 

tumours with an IL10 driven Th2 pro-inflammatory response (IL10, IL4, IL13), this class switch was 

linked to a poorer patient outcome and impaired antitumor activity in Melanoma (Karagiannis et 

al., 2013). Immunosuppressive IgA+IL10+PDL1+ plasmocytes (induced by TGFb) have been shown 

to impede treatment of prostate cancer (mouse model and human), with subsequent depletion of 

these cells leading to effective tumour eradication. Inflammation induced IgA+PDL1+ B cells have 

also been shown to impede the activity of CD8 CTL function directly, these cells directly 

suppressed CD8+ cells in liver cancer. The disruption of either IgA or PDL1 led to eradication of the 

tumour and regression of tumours through the released activity of CD8+ CTL in hepatocellular 

carcinoma (Shalapour et al., 2015, Shalapour et al., 2017).  

1.6.7 Immune response to HPV driven cancer 

1.6.7.1 Immune response HPV16  

HPV driven HNSCC exhibits unique tumour characteristics with known antigenic components that 

can generate an immune response. The innate immune response triggered by HPV consists of TLR 

activation involving TLR9 (unmethylated CpG dsDNA), TLR3, 7 and 8 (dsDNA) leading to the 

production of IFN-α, IFN-β and IFN-g (Akira and Takeda, 2004). Tumour infiltrating macrophages 

can also play a role in both tumour suppression and promotion, the activity type of the 

macrophage is dependent on the differentiation pathway with classically-activated M1 (IFN-g and 

LPS) leading to anti-tumour activity via immune stimulation and production of inflammatory 
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cytokines; alternatively-activated macrophages M2 (IL-4, IL13, IL10) cause tumour promotion via 

tissue repair and angiogenesis (Quatromoni and Eruslanov, 2012, Tang et al., 2013).  

 

During an on-going infection with HPV16, T cell responses are found in the form of circulating 

HPV-reactive CD4+ and CD8+ cells, 63% of patients are reactive to the E6 and E7 protein in 

patients with HPV16(+) driven HNSCC. However, E6/E7 reactive cells have also been identified in 

24% of HPV16(-) lesions arising as a result of a previous exposure to the virus (Heusinkveld et al., 

2012).  A local T cell response to HPV16(+) tumours has been found in most patients and is 

determined by the number of tumour infiltrating lymphocytes that are specific to HPV16. This 

consists of CD4+ T-helper (Th1 and Th2), CD8+ T-cells and CD4+ T-regulatory cells (Treg) that are 

specific to E6 and E7 epitopes. These also produce a range of cytokines in the form of IFNg, TNFa, 

IL-5 and IL-4 (Heusinkveld et al., 2012). The balance between CD8+ T-cells and Tregs (CD4, CD25, 

Foxp3) has also been linked to a better prognosis; thus, in addition to the total CD8 T-cell 

infiltration, the CD8:Treg ratio can also be used as a prognostic indicator (Nasman et al., 2012, 

Ward et al., 2014b). 

 In cervical cancer (HPV driven) serum antibodies to the HPV16 virus can be detected in 30% to 

53% of low to high-grade cervical lesions respectively (control subjects = 16%), this indicates that 

both a T-cell and B-cell response to the HPV16 virus can be generated (Wideroff et al., 1995). Data 

from HPV16 driven CIN (cervical intraepithelial neoplasia) mirrors what is seen in HNSCC with a T-

cell response to HPV16 proteins (E6, E7, E4, L1 and L2) in 78% cases, in this particular study there 

was a correlation between T-helper cells and a response that is able to clear an HPV lesion, CD4+ 

T-cell responders were also less likely to have progressive disease. The study also showed that 

80% of cases have a CD8+ T-cell response to HPV16 (E6) (Steele et al., 2005). The interplay 

between the CD4 subtypes and the cytokines released plays an important role in controlling the 

tumour, Th1 responses (IL-2 and IFNg, TNFα) being expected from an intracellular pathogen like 

HPV leading to cancer suppression, whereas a Th2 (IL-4 and IL-10) response would lead to tumour 

progression and suppression of the immune response. The presence of Treg cells producing IL-10, 

TGFβ1 and TGFβ2 are associated with a more severe cancer (Peghini et al., 2012b). As the disease 

severity increases from low grade cervical intraepithelial lesions (LSILs), to high grade cervical 

intraepithelial lesions (HSILs) and finally invasive cancer (CA), a shift in cytokine profile occurs with 

a reducing Th1 (IL-2, IFNg and TNFα) response, conversely the Th2 and Treg response profiles 

increase with disease severity (Peghini et al., 2012a). This supports the Th1 cytokine profile 

inducing a tumour suppressive state, in contrast to the Th2 cytokine profile that promotes tumour 

progression and immune suppression.  
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1.6.7.2 HPV16 HNSCC Immune evasion tactics 

A feature of HPV is the chronic infection caused by ineffective clearance of the virus due to an 

inadequate immune response. HPV is a non-lytic virus causing little cellular damage that would 

initiate an inflammatory response. Finally, the expression of oncogenes at various stages of the 

viral lifecycle play a role in the immune evasion, with the late production of the immunogenic 

capsid proteins (Stanley, 2010, Chow et al., 2010). The ability of the HPV16 proteins E6 and E7 to 

bind and inhibit key elements of the interferon signalling pathway lead to an impeded interferon 

antiviral response at several levels. The E6 protein subverts apoptotic signalling normally caused 

by the action of TNF-α, it also interacts with FAS-associated protein with death domain (FADD) 

and caspase 8, blocking FAS and TNF-related apoptosis-inducing ligand (TRAIL) signals ultimately 

leading to interruption of apoptosis and cell survival (Garnett and Duerksen-Hughes, 2006). The 

E5 protein is linked to down-regulation of the HLA class I molecule and reduced peptide 

presentation of the viral peptides (Ashrafi et al., 2005). The E6 and E7 proteins are key elements 

both in the tumour progression but also in the process of subverting the immune response.  

1.6.8 Immunotherapy  

Immune cell infiltration predicts for a better prognosis in many cancers, this is linked to both the 

number and functional state of the immune cells. This leads to the concept of using the immune 

system as a therapeutic option in cancer treatments. Immunotherapy looks to modulate the 

immune system in order to improve the effectiveness of tumour infiltrating lymphocytes.  

1.6.8.1 Cancer vaccines  

Vaccines that target TAAs or CTAs are a way of improving an immune response to antigens in the 

tumour using a systemic vaccine approach. Many clinical trials have been carried out with varying 

success (Melero et al., 2014). In lung cancer a MUC1 peptide vaccine yielded an improvement of 3 

months (vaccine only) and 10 months when concurrent rather than sequential chemotherapy was 

administered; GP100 (peptide vaccine) has been used in Melanoma with an increased survival of 

6.5 months (Butts et al., 2014, Schwartzentruber et al., 2011). On-going Trials using vaccines are 

focusing on unique antigens present in the tumour (neoantigens) that are delivered using an RNA 

vector loaded with multiple predicted peptides (Brown et al., 2014, Sahin et al., 2017, Ott et al., 

2017). HPV E6 and E7 antigens that are present in head and neck cancer and Cervical cancer are 

used as targets in an on-going trial using an RNA vaccine (HARE-40 - A trial of a vaccine for cancers 

that tested positive to HPV, EudraCT reference number:2014-002061-30). Vaccination regimens 

are also employed using DNA fusion vaccines with immunogenic tetanus toxoid domains (pDOM) 

linked to carcinoembryonic antigen (CAP-1); this generated effective CAP1 CD8 T-cells responses. 
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In addition to this, gastrointestinal adverse events were identified and linked to a vaccine 

response in 48% of patients(McCann et al., 2016).  

 

1.6.8.1 Adoptive cell transfer  

 

Another method of eliciting an immune response is by introducing cells that are derived from the 

host immune system, this is done using adoptive cell therapy (ACT) where immune cells with anti-

cancer activity are introduced back to the patient (Rosenberg and Restifo, 2015, Restifo et al., 

2012). Tumour infiltrating lymphocytes are isolated from patients and then expanded in culture 

with IL2, followed by reintroduction of the autologous immune cells back into the patient, in a 

Melanoma study a response rate of 40% was observed (Besser et al., 2013). An alternative to this 

is reintroducing a specific cell population by co-culture with APCs from the tumour that contain 

tumour antigens. Tumour reactive CD8 identified by 4-1BB (TCR engagement) are further 

expanded in-vitro prior to reintroduction to the patient (Seliktar-Ofir et al., 2017). This has been 

used in a phase 2 clinical trial (Immunotherapy using 4-1BB Selected Tumour Infiltrating 

Lymphocytes for Patients with Metastatic Melanoma-NCT02111863), where tumour-antigen 

specific expanded 4-1BB positive cells are given to the patients. 

 

The use of dendritic cell (DC) vaccines focuses on cultured DC cells (expanded from CD14 cells), 

they are loaded with immuno-reactive tumour antigens, further manipulation ensures the correct 

homing and co-stimulatory molecules are expressed, ultimately leading to tumour antigen 

presentation to CD4+/ CD8+ cells when reintroduced to the patient. The safety of this has been 

shown in a prostate cancer phase I clinical trial (Garg et al., 2017). Also, in patients with 

metastatic melanoma treated with DCs loaded with TAAs gp100 and/or tyrosinase, effective CD8+ 

T cell responses have also been observed and the patients show an improved progression-free 

survival (Schreibelt et al., 2016). Many of these studies assume a stable immune signature and 

tumour transcriptome across the time course of the clinical trial. However, in reality, natural 

change in the tumour may make the outcomes more difficult to interpret. An example is a recent 

trial to assess the efficacy of an inhibitor of PI3Kd in HNSCC - (AMG319 study in HPV positive and 

negative HNSCC: NCT02540928). This isoform of PI3Kd is expressed predominantly on leukocytes, 

the inhibition of PI3Kd leads to a selective inactivation of Treg cells. This in turn releases cytotoxic 

CD8 cells and induces tumour regression (breast and melanoma mouse tumour model) (Ali et al., 

2014). This is a so-called “window of opportunity” study, where the effects of the drug are 

evaluated by administering it between the diagnostic biopsy and surgical resection (approx. 30 

days) prior to conventional treatment. It is important to know with confidence that the nature 



Chapter 1 

 35 

and distribution of the immune infiltrates in tumours are stable over the course of a clinical trial 

and are well represented in the information obtained from small biopsies. 

1.6.8.2 Immune checkpoint blockade 

The use of immune cell checkpoint blockade has transformed the field of immunotherapy with 

dramatic results and improved patient survival; two of the most studied checkpoint inhibitors are 

the anti-CTLA4 (Ipilimumab) and anti-PD1 (nivolumab/pembrolizumab) therapies. Both of these 

checkpoint inhibitors target the self-regulating mechanism of the immune system that ordinarily 

dampen the immune response post infection, these antibodies block this function abrogating the 

negative, suppressive effects.  

CTLA4 expressed on CD4+, Tregs and CD8+ cells competes for CD28 on APCs and has an increased 

binding affinity, thus affecting the co-stimulatory action of CD28. Anti-CTLA4 treatment in a 

phase-III trial was able to improve survival (10 months) in metastatic melanoma compared to 

gp100 peptide vaccine alone and in combination (gp100+ anti-CTLA4) (Hodi et al., 2010). The 

activity of anti-CTLA4 is able to increase the number of tumour specific CD8 cells in melanoma 

compared to pre-treatment, broadening the T cell repertoire via potentially enhanced T cell 

priming, in contrast pre-existing immune reactivities remained unaltered (inc. virus specific 

control responses)(Kvistborg et al., 2014).  

Anti-PD1 therapy utilises the blockade of PD1 interactions with PDL1 and PDL2, which when 

engaged, inhibit T cell responses. The survival benefit of Pembrolizumab versus Ipilimumab in 

advanced Melanoma was dramatic, with much less toxicity (fewer adverse events) (Robert et al., 

2015). Treatments of NSCLC with anti-PD1 also exhibited a radical reduction in tumour growth 

and improved survival, this was correlated to the expression of tumour PDL1, with low PDL1 

expressing tumours having an inferior response to the therapy (Robert et al., 2015). The action of 

anti-PD1 releases pre-existing immune infiltrates that have been negatively regulated due to the 

PD1-PDL1 interactions, the subsequent released CD8 response is also more clonally restricted 

(Tumeh et al., 2014, Rizvi et al., 2015).  

The highly effective nature of checkpoint inhibitors in mono-therapy has led to combination 

therapies with multiple checkpoint inhibitors (CTLA4 and PD1), as well as combinations of 

vaccines and checkpoint blockade, which can improve responses in personalised neoantigen 

vaccines when combined with anti-PD1 (Sahin et al., 2017, Wolchok et al., 2013).   

As the nature of the immune infiltrates in tumours is better understood, additional targets are 

identified and explored, Table 6 shows some of the on-going immunotherapies in HNSCC and 

NSCLC. This is not and exhaustive list of clinical trials, it does however demonstrate that many 

immune checkpoints are being targeted with overlaps between the two cancer types (Mei et al., 

2020, Ghanizada et al., 2019, Herbst et al., 2018, Chen et al., 2020).  
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 One of the main issues with immune checkpoint blockades has been the poor response rates, 

with 20-30% displaying little or no benefit (Sharma and Allison, 2015). It argues that selecting 

patients based on information about the tumour could be critical in improving responses. This 

requires stratification of patients into groups that are more likely to respond,  selecting patients 

with high tumour immune infiltrates that are PD1Hi prior to treatment, will likely yield better 

responses. Conversely, patients with sparse immune infiltrates that are PD1Lo  may benefit from 

alternative approach that are not immune focused. 

 

 
Table 6. A Summary of on-going Immunotherapies in HNSCC and NSCLC.  
This shows a non-exhaustive list of immune related therapies in HNSCC and NSCLC. It 
demonstrates that a wide range overlapping immune checkpoints are targeted in both cancer 
types. Adapted from (Mei et al., 2020, Ghanizada et al., 2019, Herbst et al., 2018, Chen et al., 
2020). 

 

  

HNSCC

Drug Mechanism of action Clinical trial Phase
Nivolumab, nivolumab+ipilimumab or 
BMS-986016 (anti-LAG-3 antibody) 
(neoadjuvant and metastatic cohort) PD-1, CTLA-4 LAG-3 NCT02488759 I/II
LAG525, PDR001 LAG-3, PD-1 NCT02460224 I/II
Varlilumab, nivolumab CD27 PD-1 NCT02335918 I/II
PDR001 PD-1 NCT02404441 I/II
MEDI6383, durvalumab OX-40 PD-L1 NCT02221960a I
Atezolizumab PD-1 NCT01375842 I
Pembrolizumab PD-1 NCT01848834a Ib
Pembrolizumab PD-1 NCT02255097a II
Nivolumab vs investigators choice PD-1 NCT02105636a III
Durvalumab PD-L1 NCT01693562 I/II

NSCLC

Drug Mechanism of action Clinical trial Phase
REGN4659 Anti-CTLA-4 NCT03580694 I
Cemiplimab Anti-PD-1 NCT02383212 I
Tislelizumab Anti-PD-1 NCT03432598 II
NC318 Siglec-15 antibody NCT03665285 I
TSR-022,TSR 042, TSR033 Anti-TIM-3, Anti-PD-1, and anti-LGA3 NCT02817633 I
Eftilagimod alpha LAG-3 fusion protein NCT03625323 II
NKTR-214 CD122-biased agonist NCT02983045 I/II
NKTR-214 CD122-Biased Cytokine NCT03138889 I
APX005M CD40 agonistic antibody NCT03123783 I/II
SEA-CD40 CD40 Antibody NCT02376699 I
ALX148 CD47 blocker NCT03013218 I
IO102 IDO vaccine NCT03562871 I/II
Epacadostat IDO1 inhibitor NCT02178722 I/II
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1.7 Study summary, hypotheses and objectives 

1.7.1 Study summary 

The rapid expansion of immunotherapy being used in the treatment of cancer, has led to clinical 

trials using novel approaches with the aim of modulating the immune response. On-going clinical 

trials in HNSCC plan to use high resolution transcriptomics (RNA-Seq), to try and understand the 

impact of immunomodulatory agents on the immune cells. The AMG319 trial is a “window of 

opportunity” trial, where the pre-treatment diagnostic biopsy will be compared to surgical 

resection samples after treatment. This poses the problem of differences that exist due to 

different spatial and temporal sampling. Heterogeneity is a known feature of tumours at a 

genomic level but has not been assessed at the transcriptomic level. 

Tumour infiltrating lymphocytes (TIL) in cancer play an important role in patient survival, with 

higher numbers linked to improved prognosis. HNSCC arises from conventional triggers (smoking, 

alcohol etc.) as well as a large number being caused by oncogenic HPV and the oncoproteins E6 

and E7. The difference in survival between patients with HPV(+) and HPV(-) tumours is significant, 

even more so when the level of immune infiltration is taken in to account, where HPV(+) TIL rich 

tumours have the best prognosis even when compared to HPV(-) TIL rich tumours. This presents 

an interesting comparison group to study the potential differences in immune attack between 

HPV(+) and HPV(-) tumours. Where the presence of the immunogenic HPV proteins may elicit a 

different immune response leading to improved survival. Isolation and transcriptomic 

investigation of immune cells from solid tumours (primarily HSNCC and NSCLC) aims to profile 

CD8+ T-cells and B cells in greater detail. The comparison of purified immune cell subsets in 

different tissues and disease settings (TIL density) will allow unique features of these cells to be 

uncovered.  

1.7.2 Study hypotheses 

1.7.2.1 Hypothesis 1  

Hypothesis 1a) the general tumour transcriptomic and immune signature is stably distributed 

across the tumour; Hypothesis 1b) the overall tumour transcriptomic and immune signature also 

remains stable over time.  

1.7.2.2 Hypothesis 2  

HNSCC tumours with rich immune infiltrates (TILhigh/mod) have different outcomes depending on 

whether they are HPV(+) or (-). Hypothesis 2a) is that there is a difference driven by the presence 
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of the virus between HPV(+) and (-) tumours regarding the functional phenotypes of the 

infiltrating T cells: CD8+ and CD4+. This assumes that in HPV(-) tumours, the T cells are somehow 

less functionally active or are suppressed. Hypothesis 2b) is that the difference in outcome is due 

to purely quantitative differences in the numbers of TILS between HPV(+) and HPV(-) tumours. 

This assumes that the abundance of TAAs are the driving force in the anti-tumour responses, 

where HPV(+) tumours have more CTLs due to ubiquitous expression of E6 and E7. 

1.7.2.3 Hypothesis 3  

Hypothesis 3a) Immune infiltrates of CD8+ T and B cells in tumours (head, neck and lung cancers) 

display a distinct profile relative to a control tissue, but remain consistent between the tumour 

types. Hypothesis 3b) The functional characteristics of the immune cells (CD8+ T and B cells) in 

tumours with varying levels of infiltration (TILHi to TILLo ) are different and consist of different 

cellular subsets, that lead to differences in survival.  

1.7.3 Objectives 

Hypothesis 1a) will be tested by taking multiple, replicate biopsies from different locations within 

the tumour and comparing the transcriptomic and immunological signature within the replicates; 

hypothesis 1b) will be tested by taking serial biopsies over time between the diagnostic biopsy 

and surgical resection and comparing the transcriptomic signature and immunological signature 

within the replicates.  

Hypotheses 2a and 2b) will be tested through different approaches: first numbers, types and 

gross phenotypic features will be determined by use of IHC. Functional indicators such as 

production of key cytokines, cytotoxic molecules and indicators of TCR engagement will be 

examined. Secondly, differential gene expression will be determined in whole tumour 

transcriptomes from HPV(+) and HPV(-) tumours. The transcripts for immune cell markers may 

need to be used to normalise the data and account for differences in immune cell number 

between HPV(+)high/mod and HPV(-)high/mod tumours. However, the analysis of whole tumours and 

the encompassed cells is a crude form of analysis. Therefore, it may be necessary to move to 

more sensitive transcriptomic analysis of isolated specific immune cell populations (CD8+ cells) to 

further interrogate phenotypic differences between HPV(+) and (-) tumours.  

Hypothesis 3a) will involve the isolation and evaluation of specific immune cells (CD8+ T and B 

cells) from suspensions derived from tumours (HNSCC and NSCLC), control tissue and peripheral 

blood. Transcriptomic gene expression profiles (RNA-Seq) and cellular phenotypes (flow 

cytometry) will be evaluated between tissue and tumours types. Hypothesis 3b) will be tested by 

comparing the transcriptomic profiles of CD8+ T and B cells in TILHi and Lo tumours, survival 
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differences will be evaluated using a retrospective cohort of patients in a tissue microarray by 

immunohistochemistry. 
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Chapter 2: Materials and Methods 

2.1 Outline of collaborative work and data generation  

An outline of the individuals that have supported the completion of this thesis are outlined in 

Table 7, the appropriate section is also noted in the table.  

Support and guidance - Highlights key individuals that assisted with scientific guidance during the 

analysis and writing of the thesis. 

Clinical samples and data - A large number of clinical samples were obtained and analysed 

throughout this thesis. None of this would be possible without access to the tumour specimens 

enabled by the ethical approval and input from the clinical staff. Dr Emma King was instrumental 

in allowing access to head and neck tumours, also enabling me to collate the clinical data for 

these cases. The Lung tumour collections were made possible by Dr Serena Chee and the 

surgeons Mr A. Alzetani and Mr E. Woo.  The clinical trial assistant team facilitated collection of 

the lung tumours, including access to anonymised patient clinical data.   

The two tissue microarray cohorts (TMA) in head and neck cancer and lung cancer, were prepared 

by the Research histology team based in the Histopathology department, Southampton Hospital. 

The head and neck meta data was originally curated by Dr Matthew Ward, with the lung cancer 

data originally prepared by Dr Serena Chee.  

Experimental assistance - The immunohistochemistry (IHC) for markers of interest were carried 

out using the service from Research Histology, Histopathology department, Southampton Hospita 

(Monette Lopez and Maria Machado). Dr Sonya James carried out training on the Leica Cryostat, 

enabling the development of a process for obtaining RNA from frozen tumour tissue.  

Training in the use of flow cytometry was carried out by Dr Angelica Cazaly (BD FACS Canto II). 

Initial training on cell sorting using the BD FACS Aria I and II was carried out by Dr Carolann 

McGuire and Richard Jewell. This was then built on to develop an immune cell isolation strategy 

from solid tumours.  The RNA-Seq of whole tumour, bulk immune cells and single cells was carried 

out at the sequencing core facility, La Jolla Institute for Allergy & Immunology (Vijay 

Pandurangan).  

Bioinformatics support – The RNA-Seq mapping and feature counting were carried out by 

collaborators Dr Jeongmin Woo (Whole tumour), Bharat Panwar (bulk CD8) and Crio Suastegui 

(single cell). Dr Jeongmin Woo also performed the differential gene testing on the whole tumour 

RNA-Seq using EdgeR. Guidance and assistance with custom R scripts was also given by Dr James 

Clarke and Dr Bharat Panwar.  
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Table 7. Acknowledgments  
Outline of individuals that supported the completions of this thesis. It is divided into general 
guidance, clinical samples and data, experimental work and bioinformatics.  

 

Name Category Details Section of 
thesis

Prof. Christian Ottensmeier
Prof. Peter Friedmann
Dr Emma King
Prof. Gareth Thomas
Dr Vijayanand Pandurangan

Dr Tilman Sanchez-Elsner
Dr Katy McCann
Lindsey Chudley
Dr Angelica Cazaly
Dr Serena Chee
Dr James Clarke
Dr Emma king Access to HNSCC surgical resection samples from 

Poole 
3.2, 3.3, 4.2

Prof. Gareth Thomas Access to HNSCC surgical resection samples from 
Southampton

3.2.3, 3.3.3, 
4.2.3

Monnette Lopez and Maria 
Machado

Research histology - Access to pathology blocks, 
routine histology marker staining and formation of 
tissue microarrays (TMA)

3.2.3.7, 3.3.3.9, 
4.2.3.1, 4.2.3.4, 
4.3.4.5

Mr Aiman Alzetani, Mr Edwin 
Woo

Access to surgical resection samples in NSCLC 4.3
Ben Johnson Clinical support for NSCLC collection 4.2, 4.3
Dr Matthew Ward Clinical database for retrospective HNSCC cohort 4.2.3.4
Dr Serena Chee Clinical database for retrospective NSCLC cohort 4.2.3.4
Monnette Lopez and Maria 
Machado

Research histology - routine histology marker 
staining and formation of tissue microarrays (TMA)

3.2.3.7, 3.3.3.9, 
4.2.3.1, 4.2.3.4, 
4.3.4.5

Dr Sonya James Training on the cryostat, Histology and microscope 
support

3.2, 3.3, 4.3

Richard Jewell and Carolann 
McGuire

Training on the FACS ARIA for cell sorting 3.2, 3.3, 4.3

Dr Vijayand Parandurgan 
and Dr Greg Seumois

La Jolla Sequencing core facility - Whole tumour 
RNA-Seq

3.2.3, 3.3.3

Dr Vijayand Parandurgan 
and Dr Greg Seumois

La Jolla Sequencing core facility -  Microscaled 
RNA-Seq

4.1.3, 4.2.3, 
4.3.3

Dr Vijayand Parandurgan 
and Dr Greg Seumois

La Jolla Sequencing core facility - 10x single cell 
RNA-Seq in La Jolla

4.3.4

Dr James Clarke Cell sorting for B cells for Single cell 
transcriptomics (10x genomics) in La Jolla

4.3.4

Christopher Woelk Bioinformatics support - alignment, mapping and 
data normalisation of RNA-Seq data 

3.2.3.1, 3.3.3.1, 
3.3.3.2

Dr Jeongmin Woo Bioinformatics support - alignment, mapping and 
data normalisation of RNA-Seq data 

3.2.3.1, 3.3.3.1, 
3.3.3.2

Dr Jeongmin Woo Differential gene analysis - EdgeR 3.3.3.2
Dr Bharat Panwar and Dr 
Greg Seumois 

Alignment, mapping and data normalisation of 
CD8+ T cell RNA-Seq data.

4.2.3

Ciro Ramirez Suastegui Alignment, mapping and data normalisation of 
Single cell (B cell) RNA-Seq data

4.3.3

Dr Bharat Panwar Bioinformatics support - help with DESEQ2 r 
scripts

4.2.3.3

Dr James Clarke Single cell analysis support - r script help 4.3.3

Scientific and experimental All sectionsSupport and 
guidance

Bioinformatics

Experimental

Clinical 
samples and 
data
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2.2 Study Subjects and sample collection 

2.2.1 Ethics and approval  

Patients diagnosed with HNSCC or NSCLC were consented and recruited by clinical staff using a 

standardised consent form. This allowed collection of material surplus to diagnostic requirements 

to be used for research purposes following surgical resections. Ethical approval for the collection 

and use of HNSCC and NSCLC samples for research was obtained from the NRES Committee South 

Central for HNSCC REC reference number: 09/H0501/90 and for NSCLC REC Reference Number: 

14/SC/0186.	Patient samples were anonymised in line with GDPR (general data protection 

regulation) and stored in line with the Human Tissue Act at the University of Southampton 

(Human Tissue Act License: 12009 Southampton and South West Hampshire Research Ethics 

Committee: 280/99). 

2.2.2 Tissue collection strategy  

The collection of tumours samples for both whole tumour RNA-Seq and also immune cell isolation 

by FACS was carried out concurrently, the flow diagram in Figure 6 highlights the standardised 

tissue collection strategy that was employed for collection of HNSCC and NSCLC tumours. The 

collection of tumours followed a prioritisation of always obtaining snap frozen and cryopreserved 

material, followed by immune cell isolation using FACS and then cryopreservation of cell 

suspensions if any surplus remained.  

2.2.3 Summary of sample cohorts and data  

Several different patient cohorts were used to generate the data presented within this thesis, 

Table 8 provides a summary, full details of each cohort are outlined in Appendix A.1 
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Figure 6. Standardized collection of human tumour tissue. 
The figure demonstrates the sample collection and processing prioritisations for all patient 
tumours.  

 

Figure 3. (moved to methods Figure 1) 

Figure	3.	Tissue	collection	flow	diagram
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Table 8. Summary of patient cohorts and data. 
A summary of the different patient cohorts and the analysis that has been undertaken. 

2.3 Isolation of RNA from whole tumour samples 

All snap frozen tumour samples were stored at -80oC. Snap frozen tumour samples were 

sectioned using a cryostat (Leica) with blade and sample block set at -20oC. Tumour tissue was 

kept on dry ice and put immediately into the cryostat before partial embedding in OCT (optimum 

cutting temperature) compound (Leica), cryospray (Bright instruments) was used at this stage to 

ensure the tissue remained frozen. Cryosections n=15-30 (10µm) were cut and used for RNA 

isolation with the RNeasy Mini Kit (Qiagen Ltd., Manchester, UK). This procedure is currently being 

put into an SOP for wider use. 

2.4 Whole tumour RNA-Seq analysis of tumour replicates across time 

and space (Data set TRTS) 

Multi-region tumour samples (replicates) were collected under general anaesthesia and were 

snap frozen immediately at diagnostic biopsy and surgical resection. Pre-resection replicates were 

Patient cohort tissue type no. data type Thesis section

Tumour replicate dataset 
TRTS 

HNSCC 44 Whole tumour RNA-Seq 3.2.3

Tumour replicate HNSCC 41 CD8 IHC 3.2.3.7

Immuno-oncology
panel - Biomark 

HNSCC 12 IFC based qPCR 3.3.3

HPV(+) compared to (-)  
dataset HPVN 

HNSCC 39 Whole tumour RNA-Seq 3.4.3

HNSCC CGA data HNSCC 518 RNA-Seq 3.4.3.7

NSCLC CGA data NSCLC 1004 RNA-Seq 3.4.3.7

HPV(+) compared to (-)  
dataset HPVN 

HNSCC 16 qPCR on Purified B cells 3.4.3.8

Tissue processing method 
comparison

NSCLC and 
Melanoma

6 FACS and Micro-scaled 
RNA-Seq (CD8+ T cells)

4.1.3

Purified CD8 T cell RNA-Seq 
from tumours

HNSCC, NSCLC and 
non-involved lung

55, 48 
and 
37

FACS and Micro-scaled 
RNA-Seq

4.3.3

TRM flow cytometry NSCLC 16 FACS surface and inta- 
cellular staining

4.3.3

Comparison of CD8+PD1 Hi 
and CD8+PD1 Lo T cells

NSCLC and 
Melanoma

7 Micro-scaled RNA-Seq 
(CD8+ T cell)

4.3.3

NSCLC retrospective survival 
cohort 

NSCLC 689 CD8 and CD103 IHC 4.3.3

HNSCC retrospective survival 
cohort 

HNSCC 123 CD103 IHC 4.3.3

Single cell B lymphocyte 
dataset

NSCLC 15 Single cell RNA-Seq (10x) 
and IHC

4.3.4
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taken before vascular ligature to minimize hypoxic time. Spatial heterogeneity was assessed by 

collection of multiple replicates at either diagnostic sampling or at resection. Samples were taken 

at least 10mm apart to maximize the chance of capturing spatial heterogeneity. The comparison 

between replicates collected at diagnostic sampling to those replicates from the same patient at 

resection were further used to assess change over time (temporal heterogeneity), in the 

recognition of the fact that this comparison may also be shaped by any spatial heterogeneity in 

any given cancer. A total of 16 patients were consented, with 44 samples collected, the full 

analysis included 14 patients and n=37 tumour replicates. Single timepoint replicates (n=15) were 

collected from 6 patients, 8 patients had replicates (n=22) from two timepoints, both diagnosis 

and resection, with an average of 26 days between. Patient demographics, clinical details and 

number of replicates are shown in Appendix A.1.1. 

 

2.4.1  Histology and immunohistochemistry for RNA-Seq dataset TRTS (Analysis of tumour 

replicates across time and space) 

Tumour grade and differentiation were recorded from formalin fixed, paraffin embedded (FFPE) 

tissue by an accredited pathologist [G.J.T] using the diagnostic H and E sections. 

Immunohistochemical (IHC) staining for CD8a (anti-CD8a antibody (clone: C8/144B, DAKO) was 

performed on each frozen tumour tissue replicate, for each case, using the region immediately 

adjacent to that used for RNA-Seq analysis. This enabled spatially distinct samples to be compared 

within the same patient, this did however limit the number of analytes that we could evaluate.  

CD8 was chosen as the key metric due to its known prognostic importance in tumour biology (see 

section 1.6.1). IHC was undertaken by the research pathology team, Southampton Hospital 

(Monette Lopez and Maria Machado). An insufficient amount of frozen material remained for 

cases #6, #11 and #13. Tumour-infiltrating CD8 T-cells were quantified using a Zeiss AxioCam 

MRc5 microscope (Zeiss, Cambridge, UK) and Zeiss Axiovision software (version 4.8.1.0; Zeiss) 

with an average of 10 high-power (x400) fields; an average intratumoural score per high-power 

field (HPF) was calculated (Appendix A1.1).  

2.4.1.1 Comparison of IHC to RNA-Seq data for Immune gene markers  

Spearman correlation coefficients were calculated between CD8A gene expression and CD8 

immune cell IHC count using Graphpad Prism (v8.0). 
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2.4.1 RNA-Seq methodology for Dataset TRTS (Analysis of tumour replicates across time 

and space)  

RNA quality was assessed using the Agilent 2100 Bioanalyser (Agilent Technologies UK Ltd., 

Stockport, UK); an average RNA quality number (RIN) of 8.51±0.90 was observed across all tumour 

samples. Total RNA was converted into a library for sequencing on the HiSeq 2000 (Illumina Inc., 

San Diego, USA) using the TruSeq™ stranded mRNA Sample Preparation Kit (Illumina Inc.). Briefly, 

poly-A mRNA was purified from total RNA (100ng) using the Poly(A) Purist Mag Kit (Life 

Technologies Ltd., Paisley, UK), according to the manufacturer’s instructions. The mRNA was then 

amplified and converted into cDNA, which was purified and used to construct libraries that were 

hybridized to the flow cell for single end (SE 35bp) sequencing. The RNA sequencing was carried 

out in collaboration with the La Jolla Institute for Allergy & Immunology using the sequencing core 

facility.  

2.4.2 Bioinformatics and data processing for TRTS dataset (Analysis of tumour replicates 

across time and space) 

2.4.2.1 RNA-Seq Dataset TRTS analysis pipeline  

The quality of raw SE read data in FASTQ files was assessed and reads of low quality were 

trimmed or removed. SE reads were then mapped to the human genome (hg19) using TopHat 

(version 2.0.9) (Trapnell et al., 2009) and, following the removal of multi-mapping reads, 

converted to gene-specific read counts for 20,825 annotated genes using HTSeq-count (version 

0.5.4) (Anders et al., 2014). Raw counts from the RNA-Seq were processed in Bioconductor 

package DESeq2, variance was estimated and size factor normalized. Bioinformatics was 

performed by Dr Jeongmin Woo at Southampton University (Bioinformatics core). 

2.4.2.2 RNA-Seq data visualisation (heatmaps and PCA) 

Qlucore Omics software (3.2) was used to visualize the normalized RNA-Seq data using Principle 

component analysis and hierarchical clustering. These were performed on data using the setting: 

mean=0, variance=1 normalization in the Qlucore Omics software (3.2). Where the clustering is 

agglomerative, average linkage criterion was used to determine the distance between sets of 

samples and hierarchical clustering is based on Euclidean distances, where the Euclidean distance 

will be equal to sqrt(1-r), where r is the Pearson correlation coefficient. In order to identify the 

4000 most variable genes, variance was set at 0.2879, this value was then adjusted to yield a 

decreasing number of gene features. Briefly genes with a standard deviation (SD) less than a 

specified variance cut off from the maximal SD were removed using Qlucore Omics Explorer (3.2) 
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as previously described (Engel et al., 2016). RNA-Seq data were visualised in heat maps where 

each row represents normalized gene expression values for a given gene; each column represents 

the gene expression for a given tumour: red shading denotes greater gene expression; blue 

shading denotes lower gene expression. 

2.4.2.3 Euclidean distance comparisons 

As a measure of similarity and dissimilarity for intrapatient and interpatient sample replicates, 

Euclidean distances were quantified for the 4000 most variable genes in the R statistical 

environment (3.3) between all replicates from the same patient to all other replicates, where the 

Euclidean distance is equal to the sqrt(1-Pearson)^2. This measures distances between samples in 

the hierarchical tree, with smaller distances between replicates indicating a closer relationship. 

The median distances were calculated for all replicates to all other replicates (interpatient) and 

compared to the median distances from intrapatient replicates, e.g. case #14 median distance for 

intrapatient derived from n=6 and compared to median distance to all other cases n=31 (each 

replicate comparison is plotted). The Wilcoxon matched-pairs signed rank test was used to 

compare median distances between replicates from the same patient to those from different 

patients. 

2.4.2.4 Immune gene heatmap and dot plots  

A curated list of immune genes relating to immune cell markers, effector function and 

exhaustion/ regulatory function were derived from the gene ontology terms GO:0002250 

adaptive immune response, GO:0002449 lymphocyte mediated immunity and GO:0002456 T cell 

mediated immunity were visualised in a heatmap. Reads per kilobase per million mapped reads 

(RPKM) were used to display expression of genes between replicates in dot plot comparisons.  

2.4.2.5 Correlation analysis 

Spearman correlation analysis was performed in Corrplot 0.73, in an R statistical environment 

(3.3) and visualised in in Graphpad Prism (v8.0). Correlation analysis was carried out on all genes 

and the top 4000 most variable genes. Median, minimum and maximum correlations were also 

calculated for intrapatient and interpatient replicates.  

2.4.2.1 Data repository for TRTS - Tumour replicates 

RNA-Seq data for all samples including clinical data has been deposited at ArrayExpress accession 

E-MTAB-4546. 
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2.5 Patient stratification using expression of immune genes. 

2.5.1 Immune gene expression evaluation in HNSCC and NSCLC using RNA-Seq  

The HNSCC HPVN cohort (Appendix A1.2) (n=39), HNSCC CGA (n=518) and NSCLC CGA (n=1004) 

RNA-Seq data were used to visualise a curated list of core immune genes, stromal and glycolysis 

markers. 

2.5.1.1 RNA-Seq data  

Our own HNSCC cohort HPVN RNA-Seq data (Wood et al., 2016a). The Cancer Genome Atlas 

(TCGA) Genome Data Analysis Centre (GDAC) Firehose website was used to access HNSCC RNA-

Seq data (http://gdac.broadinstitute.org/runs/stddata_2015_11_01/data/ 

HNSC/20151101/)(Cancer Genome Atlas, 2015), and the NSCLC RNA-Seq data 

(http://gdac.broadinstitute.org/runs/stddata_2016_01_28/data/LUSC/20160128 and 

_2016_01_28/data/LUAD/20160128)((Cancer Genome Atlas Research, 2014) (Campbell et al., 

2016). 

2.5.1.1 Data visualisation and heatmaps 

A curated list of immune genes relating to immune cell markers, effector function and 

exhaustion/ regulatory function were derived from the gene ontology terms GO:0002250 

adaptive immune response, GO:0002449 lymphocyte mediated immunity and GO:0002456 T cell 

mediated immunity. Additionally, the stromal genes ACTA2 (Smooth muscle actin), POSTN 

(Periostin) and COL1A1 (collagen, type 1, alpha 1), and glycolysis genes SLC2A1 (GLUT1), ALDOA 

(Aldolase) and PKM2 (Pyruvate kinase M1/2) were included. Qlucore Omics software (3.2) was 

used to visualize the normalized RNA-Seq data using hierarchical clustering as stated previously. 

Briefly, the clustering is agglomerative, average linkage criterion was used to determine the 

distance between sets of samples and hierarchical clustering is based on Euclidean distances 

(Pearson correlation coefficient). Red shading denotes greater gene expression; blue shading 

denotes lower gene expression. Immune infiltration as determined by H and E is annotated on the 

HPVN data, CGA data displays manual categorisation of immune infiltration based on gene 

expression.  

2.5.2 Advanta Immuno-Oncology gene expression assay  

The Immuno-Oncology gene expression assay 24.192 IFC (integrated fluidics chip) (PN 101-7088) 

from fluidigm was used to assess gene expression in n=9 (See Appendices B.5) HNSCC samples 
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that had previously been analysed with RNA-Seq. The samples selected had a range of immune 

gene expression from ”hot ” to “cold” (n=4 ImmuneHi, n=2 ImmuneMod and n=4 ImmuneLo) 

determined by the RNA-Seq. A positive control was used to confirm that all of the assay targets 

were working, this was also used as a reference point for the analysis. The Advanta Immuno-

Oncology Panel A consists of 91 target genes, and panel B consists of 74 target genes and 5 

reference genes (see table in Appendix B.5.1 for details).  

2.5.2.1 Integrated fluidics chip (IFC) and RT-qPCR  

Full details of the Immuno-Oncology gene expression assay protocol 24.192 IFC (PN 101-7088) are 

outlined in Appendices B.5.2. A summary of the reverse transcription (RT) reaction is shown in 

Table 9. Pre-amplification of gene targets were carried out using pooled assays from panel A and 

B, followed by a 1:5 dilution (Table 10).  

  

RT pre-mix 

Component  Vol (μL) RT conditions 

Reverse Transcription Master Mix (Fluidigm) 1 25oC 5min 

PCR Water  3 42oC 30min 

RNA (75ng) 1 85oC 5min 

Total 5 4oC - 
 

Table 9. Reverse transcription of RNA to cDNA 

Conditions used for conversion of RNA to cDNA for the immune-oncology panel. 

 

Panel A and B assay mixes are diluted from 10x to 2x prior to running on the IFC (Table 11). Once 

the assays and samples are ready they are loaded into the IFC controller (Juno) see Figure 7 for 

assay loading map. Following this the IFC is run on the Biomark HD system using a GE 24x192 

standard v1 thermal protocol, with the settings Application = Gene expression, passive reference 

= ROX, Assay = Single probe and Probes = FAM-MGB. 



Chapter 2 

50 

 

 
 
 
 

Preamplification reaction mix:  

Component  Vol (μL) 

 

Preamp Master Mix 1 

Advanta IO Gene Expression Assay Preamp Pool—Panel A  1.25 

Advanta IO Gene Expression Assay Preamp Pool—Panel B 1.25 

PCR Water 0.25 

Total 3.75 

 

Preamplification reaction: RT conditions 

Preamplification pre-mix 3.75 95oC – 2min  

cDNA 1.25 95oC – 15sec 

16 cycles 
Total 5 60oC – 4min  

  4oC - hold  

    

Sample dilution mix Vol (μL)   

20x GE sample loading reagent 35   

DNA Dilution Reagent 525   

Total  560   

1:5 dilution of Preamplification reaction    

Sample dilution mix 20   

Preamplification reaction 5   

Table 10. Preamplification of cDNA and subsequent dilution of the cDNA. 

Details of the pre-amplification and cDNA dilution for the immune-oncology panel. 
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Assay dilution mix 

Component  Vol (μL) 

 
20x GE sample loading reagent 250 

DNA Dilution Reagent 1,750 

Total  2,000 

Assay dilution (10x to 2x) 

Component  Vol (μL) 

 
10x assay Plate A and B  2 

DNA Dilution Reagent 8 

Total  10 

Final assay mix  

Component  Vol (μL) 

 
2x Gene expression master mix 3 

2x assay mix (plate A and B) 3 

Total  10 

Table 11. Assay preparation for Panel A and B.  

Details of the assay plate preparation for immune-oncology panels A and B. 
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(A) Assay mix loading map: 

 
(B) Sample mix loading map: 

 
Figure 7. Loading the integrated fluidics chip (IFC).  
(A) Displaying the assay loading map for panel A and B. (B) The sample loading map for the 24.192 
IFC. 
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2.5.2.2 Data processing and calculation of relative gene expression.  

The raw Ct (cycle time) values from the Biomark HD qPCR machine were processed in the Biomark 

real-time PCR analysis software (Fluidigm), Ct values for genes of interest (GOI) were normalized 

against the mean expression of the two reference genes (ACTB and B2M) and presented as ΔΔCt 

values relative to the positive control (pos.ctrl). The final relative expression values were 

generated by subtracting the ΔΔCt from the total number of cycles (40), this meant the test 

results were positively correlated, a format that facilitates interpretation for clinical decision 

making (Laible et al., 2016, Varga et al., 2017). 

Relative expression: (Ct) 40 − ΔΔCt(GOI)S =  

40 − ((Ct[GOI]sample –meanCt[REF]sample)– (Ct[GOI]pos.ctrl– meanCt[REF]pos.ctrl)) 

The relative expression values were then visualised as heatmaps in Qlucore Omics software (3.2) 

detailed in section 2.4.3.3. Red shading denotes greater gene expression; blue shading denotes 

lower gene expression. Comparison of RNA-Seq and qPCR expression for a selected number of 

targets was performed using Spearman’s correlation coefficient (r) in Graphpad Prism (v8.0). 

2.6 Whole tumour RNA-Seq Comparing HPV(+) and HPV(-) TIL rich 

tumours (Dataset HPVN) 

39 consecutive HNSCC samples were obtained from patients at three centres (Southampton, 

n=22; Poole, n=15; Liverpool, n=2) from 2010-2014. Tumour samples were collected at least 

10mm apart, following general anaesthesia but before surgical resection, and were snap frozen 

immediately. Appendix A.1.2 shows the patient demographics, tumour characteristics and tumour 

sampling/processing information for the HPV(+) and HPV(-) patient cohorts. 

2.6.1 RNA-Seq methodology for HPVN dataset (HPV(+) vs HPV(-) TIL rich tumours)  

The RNA-Seq for the HPVN dataset was single end (SE 35bp) sequencing as per TRTS data (Analysis 

of tumour replicates across time and space - Section 2.3.1).  

2.6.2 Histology and immunohistochemistry for RNA-Seq dataset HPVN (HPV(+) vs HPV(-) 

TIL rich comparison). 

Frozen tumour sections taken immediately adjacent to the tissue analysed by RNA-Seq were 

stained with hematoxylin and eosin (H&E) and viewed under low-power magnification (x2.5 

objective) as described previously (Marsh et al., 2011); TILHi: diffuse, present in >80% of 

tumour/stroma; TILMod: patchy, present in 20–80% of tumour/stroma; TILLo: weak/absent, present 
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in <20% of tumour/stroma by an accredited pathologist [G.J.T]. Data regarding the percentage 

tumour cells, tumour grade and pattern of invasion were also recorded. IHC was performed on 

FFPE tumour sections against CD3, CD4, CD8 and CD20 (all from Novocastra, Milton Keynes, UK). 

IHC was performed by Research histology, Southampton University Hospital. TILs were quantified 

using a Zeiss AxioCam MRc5 microscope (Zeiss, Cambridge, UK) and Zeiss Axiovision software 

(version 4.8.1.0; Zeiss) in an average of 10 high-power (x400) fields across representative areas of 

each tumour to allow for intratumoural heterogeneity; an average intratumoural TIL score per 

high-power field was calculated, CD8 is shown as an example in Figure 8. Additionally, IHC was 

performed against the antigenic targets, CD200 (Sigma-Aldrich Company Ltd., Gillingham, UK) and 

CD23 (Abcam, Cambridge, UK). HPV status was evaluated by IHC against p16 (CINtec, Roche, 

Burgess Hill, UK) and scored as HPV(+) (>50% tumour cells positive) or HPV(-) (<50% tumour cells 

positive). HPV status was also confirmed by evaluation of E6 and E7 RNA transcript levels from the 

RNA-Seq data Appendix A.1.2.  

 

Figure 8. Representative images for CD8 TILHi at 40x, 100x and 400x magnification.  
For TIL scoring, 10 high power fields are counted at 400x. (IHC slides prepared by research 
histology – Monette Lopez and Maria Machado). 

 

2.6.3 Bioinformatic analysis of HPVN dataset (HPV(+) vs HPV(-) TIL rich tumours) 

2.6.3.1 RNA-Seq dataset HPVN - HPV(+) vs HPV(-) TIL rich tumour comparison 

The quality of raw SE read data in FASTQ files was assessed and reads of low quality were 

trimmed or removed. SE reads were then mapped to the human genome (hg19) using TopHat 

(version 2.0.9) (Trapnell et al., 2009) and, following the removal of multi-mapping reads, 

converted to gene-specific read counts for 23,368 annotated genes using HTSeq-count (version 

0.5.4) (Anders et al., 2014). Non-specific filtering of count data was performed using the 

Bioconductor package EdgeR (version 3.4.2) (Nikolayeva and Robinson, 2014, Robinson et al., 

2010) such that genes with less than 2 read counts per million in 25% of tumour samples were 

excluded from further analysis. The remaining 14,528 genes were subject to variance stabilizing 
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transformation of trimmed mean of M-values (TMM) data normalization (Robinson and Oshlack, 

2010) to account for differences in library size from sample to sample. Bioinformatics was 

performed by Dr Jeongmin Woo at Southampton University (Bioinformatics core). 

2.6.3.2 Identification of differentially expressed genes (DEG) 

Differentially expressed genes (DEGs) between HPV(+) and HPV(-) groups (TILmod/Hi) were 

identified with an FDR (false discovery rate) adjusted p-value <0.05 (i.e., q-value <0.05) and a fold 

change of >2 or <-2 (log2) using EdgeR (Nikolayeva and Robinson, 2014). Fold change was 

calculated in EdgeR as the log2 of geometric mean of intensities; a positive and a negative fold 

change represents genes that were expressed to a greater or lesser extent, respectively, in HPV(+) 

versus HPV(-) tumours. q-values were obtained from differential expression test in EdgeR using 

the generalized linear model likelihood ratio test and adjusted for multiple testing using the 

Benjamini and Hochberg method to control the FDR. This package models the negative binomial 

distribution and implements general linear models to identify DEGs. EdgeR was also used to 

identify DEGs while adjusting for covariates associated with varying proportions of lymphocyte 

subsets in each tumour sample as reflected in the expression of CD19 (B-cells) and CD4 and CD8A 

(T-cells) e.g. R-script used in EdgeR for the covariate adjustment was: 

design<model.matrix(~adjustv_CD19+ adjust_CD4+adjustv_CD8+Group). Differential testing using 

EdgeR was performed by Dr Jeongmin Woo at Southampton University (Bioinformatics core). 

2.6.3.3 Data visualisation using Heatmaps 

Qlucore Omics software (3.2) was used to visualize the normalized RNA-Seq data using Principle 

component analysis and hierarchical clustering. These were performed on data using the setting: 

mean=0, variance=1 normalization in the Qlucore Omics software (3.2). Where the clustering is 

agglomerative, average linkage criterion was used to determine the distance between sets of 

samples and hierarchical clustering is based on Euclidean distances (sqrt(1-r)^2), where r is 

the Pearson correlation coefficient. RNA-Seq data were visualised in heat maps where each row 

represents normalized gene expression values for a given gene; each column represents the gene 

expression for a given tumour: red shading denotes greater gene expression; blue shading 

denotes lower gene expression.  

2.6.3.4 Gene ontology and pathway analysis 

GO terms associated with biological processes and biological pathways that were significantly 

over-represented for DEGs (q-value <0.05) were identified with ConsensusPathDB (Kamburov et 

al., 2011) (CPDB, release 30) using the hypergeometric test. ConsensusPathDB GO and pathway 

analyses were performed for genes that were expressed (i) to a greater extent and (ii) to a lesser 



Chapter 2 

56 

extent in HPV(+) compared to HPV(-) TIL rich tumours. REVIGO was used to visualise non-

redundant GO terms, it uses a clustering algorithm that relies on semantic similarity measure, 

enabling large overlapping gene ontology terms to be reduced in number (http://revigo.irb.hr/) 

(Supek et al., 2011). 

2.6.3.5 Validation of findings in The Cancer Genome Atlas (TCGA) HNSCC data 

HNSCC RNA-Seq data (TCGA HNSC HiSeqV2 2015-02-24) was obtained from The Cancer Genome 

Atlas (TCGA) Genome Data Analysis Centre (GDAC) Firehose website 

(http://gdac.broadinstitute.org/runs/stddata_2015_11_01/data/HNSC/20151101/), the RNA-Seq 

methodology and processing have been described by TCGA (Cancer Genome Atlas, 2015). As HPV-

driven cancers typically arise in the oropharynx, tonsil and base of tongue, these anatomical sites 

were evaluated from TCGA. Unsupervised clustering and visualisation in heatmaps (as previously 

described) of 46 HPV16(+) and 26 HPV(-) anatomically matched tumours from the oropharynx, 

tonsil and base of tongue was performed using the differentially expressed gene lists generated 

from our own analysis. 

2.6.3.6 Data repository for HPVN (HPV(+) vs HPV(-) TIL rich comparison) 

RNA-Seq data has been deposited in the Gene Expression Omnibus (GEO) at the National Center 

for Biotechnology Information (NCBI) under accession number GSE72536. 

2.6.1 RT-qPCR on B cells from HNSCC tumours 

2.6.1.1 Real-time quantitative reverse transcription (RT) PCR 

Tumour infiltrating B cells were isolated and sorted using the standard operating procedure 

outlined in Appendix A.2 (SOP no. 384 - Cell dissociation and immune cell sorting), samples details 

are shown in Appendix A.1.3. RNA was extracted from the B cells using the Direct-zol™ RNA 

MiniPrep system (ZYMO Research Co., Irvine, USA). Reverse transcription (RT) was performed on 

1.5ng of RNA using SuperScript® III First-Strand Synthesis System (Invitrogen, Fisher Scientific UK 

Ltd.). Real-time quantitative reverse transcription PCR (RT-qPCR) assays were performed using 

Taqman® probes for golgi-associated, gamma adaptin ear containing, ARF binding protein 2 

(GGA2), ADAM metallopeptidase domain 28 (ADAM28), CD200, Spi-B transcriptional factor (SPIB), 

stromal antigen 3 (STAG3), Vascular Cell Adhesion Molecule 1 (VCAM1), Inducible T-Cell Co-

Stimulator Ligand (ICOSLG) and B-Cell CLL/Lymphoma 2 (BCL2). qPCR was performed for the 

selected genes using TaqMan Gene Expression Assays (Life Technologies Ltd.), according to the 

manufacturer’s instructions (see Table 12 and Table 13): GGA2 (Human Hs00370910_m1), 

ADAM28 (Human Hs00248020_m1), STAG3 (Human Hs00429370_m1), CD200 (Human 
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Hs01033303_m1), SPIB (Human Hs00162150_m1), ICOSLG (Hs00323621), BCL2 (Hs01048932_g1) 

and VCAM1 (Hs01003372_m1). Analysis of RT-qPCR data was performed using the comparative Ct 

method (2^-(∆∆Ct) method) using an internal control (Actin) and defined as a normalized relative 

gene expression compared to the control gene (Livak and Schmittgen, 2001). RT-qPCR was 

reported in accordance with Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) (Bustin et al., 2009).  

Gene expression (RT-qPCR) of STAG3 and CD200 was validated in the original tumour RNA, HPV(+) 

n=8 and HPV(-) n=8 patient tumour samples. B-cells (CD20+/ CD19+) isolated from an 

independent cohort of HPV(+) tumours (n=6) using a BD FACSAria™ sorter (BD Biosciences, 

Oxford, UK) were assessed for gene expression of ADAM28, BCL2, CD200, GGA2, ICOSLG, SPIB, 

STAG3, and VCAM1 (as described previously).  
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SuperScript® III First-Strand Synthesis System (Invitrogen 

Primer mix 1x (ul) Condition  

RNA  1 (1.5ng) 65oC 5min 

OligoDT 0.25 4oC 1min 

Hexamers 0.25   

10mM dNTPs 0.5   

H2O 3ul   

    

RT-mix 1x (ul) Condition  

10x RT buffer 1 25oC 10min 

35mM MgCl2 
2 50oC 50min 

0.1M DTT 1 85oC 5min 

RNase OUT 0.5 4oC - 

Superscript III RT 
polymerase 

0.5   

Final reaction mix = 5ul Primer mix + 5ul RT-mix 
 

Table 12. cDNA synthesis from B cell RNA. 
cDNA synthesis reaction conditions using SuperScript® III First-Strand Synthesis System  
Invitrogen.  

TaqMan Gene Expression Assays (Life Technologies) 

qPCR mix 1x (ul) Condition  

  Defined by ABI instrument 6000 HT 

Taqman reaction mix   5 50oC 2min  
 
Hold 

TaqMan Gene Expression 
Assays 

0.5 95oC 10min 

H2O 2.5 95oC 15sec  
40 cycles 

cDNA 2ul (1/5 dilution) 60oC 1min 
 

Table 13. qPCR reaction mix and conditions. 
Reaction conditions for the TaqMan Gene Expression Assays, Life Technologies. 
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2.7 Isolation and analysis of purified immune cells form HNSCC and 

NSCLC 

2.7.1 Tissue dissociation protocol 

Immune cells from tumour and non-involved lung were isolated using a combination of 

mechanical and enzymatic dissociation, the full standard operating procedure is shown in 

appendix A.2 (SOP no. 384 - Cell dissociation and immune cell sorting). The tissue was cut into 

small fragments (1-2mm) using a scalpel. Fragments were then incubated at 37oC for 15 minutes 

in an orbital shaker with 1-2mL RPMI 1640 medium (Gibco, Fisher Scientific UK Ltd., 

Loughborough, UK) containing 0.15 WU/mL Liberase DL (Roche Diagnostics Ltd., Burgess Hill, UK) 

and 800 units/mL DNase I (Sigma-Aldrich Co. Ltd., Gillingham, UK). The cell lysate was then passed 

through a 70μm filter with ice-cold RPMI 1640 medium and centrifuged at 385g for 7 minutes. 

Cells were re-suspended RBC lysis solution (Qiagen Ltd., Manchester, UK) at a 1:10 ratio (cell 

pellet volume to RBC lysis buffer) and incubated for 10 minutes at 4oC, followed by centrifugation 

at 385g for 7 mins. The cells were resuspended in MACS buffer (1xPBS containing 2mM EDTA 

(0.5M stock Ambion) (pH 8.0) and 0.5% BSA (Molecular grade, Sigma) and counted using a 

Neubauer haemocytometer (Celeromics, Cambridge, UK), the volume was adjusted to give a 

concentration of 10e6 cells/mL. 

2.7.2 Cryopreservation of tumour and tumour cell suspensions  

Cryopreserved tumour and lung samples were stored as dispersed tumour (DST) and lung (DSL) 

and also as 2mm pieces of tissue (n=4-10 pieces), CT (tumour) and CL (non-involved lung). The 

DST/ DSL samples processed as above (section 2.6.1) were then cryopreserved in freezing media 

(50% complete RMPI (Fisherscientific), 40% FCS and 10% DMSO (both Sigma). Cryopreserved DST 

and DSL samples were thawed, washed twice with pre-warmed (37°C) and room temperature 

MACS buffer and prepared for staining as above. The CT and CL samples were cryopreserved in 

90% foetal calf serum (Gibco) and 10% DMSO. Thawed CT/ CL samples were washed with pre-

warmed complete RMPI followed by the tissue dispersion protocol (section 2.6.1) prior to 

antibody staining. 

2.7.3 Surface antibody staining procedure for flow cytometry  

Following tumour dissociation the cells were resuspend in 1xPBS and incubated with a fixable 

viability dye for 30 mins at 4°C (ThermoFisher Live/Dead™ Fixable Aqua; L34965). The cells were 

then washed and resuspended in MACS buffer and incubated with 20μL FcR block (Miltenyi Biotec 
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Ltd., Bisley, UK) per 100μL of cell suspension for 10 mins. The Immune cells were then stained 

with a cocktail of fluorescently conjugated antibodies (Table 14, Table 15 and Table 16) at 4oC for 

30 minutes. The unbound antibody was removed by washing the cell suspension with 2ml of 

MACS buffer and centrifugation at 385g for 7 minutes. The cells were then resuspended in MACS 

buffer at 10e6 cells/mL ready for analysis on a BD FACSAria™ and BD FACSCanto II(Becton 

Dickinson, BD). 

2.7.4 Intracellular staining protocol 

Flow cytometry-based intracellular protein validation was completed by processing samples as 

described (section 2.6.1). The samples were resuspend in 1xPBS and incubated with a fixable 

viability dye for 30 mins at 4°C (ThermoFisher Live/Dead™ Fixable Aqua; L34965). The cells were 

then washed and resuspended in MACS buffer. FcR blocking was performed for 10 minutes at 4°C 

with 20ul per 100ul of sample with FcR block (Miltenyi, PN-130-059-901), then stained with the 

surface antibodies (Table 17) for 30 mins at 4°C, followed by 2ml MACS buffer washing at 

1500rpm for 7 minutes. The True-Nuclear™ Transcription factor buffer set (Biolegend, PN-424401) 

was used for intracellular Ki67 staining. 1mL of the True-Nuclear™ 1X Fix Concentrate was added 

to each tube, and incubated at room temperature in the dark for 45 minutes. Without washing, 

2mL of the True-Nuclear™ 1X Perm Buffer was added to each tube and centrifuged tubes at 385g 

at room temperature for 5 minutes, and the supernatant discarded. This step was then repeated, 

followed by resuspending the cell pellet in 100µL of the True-Nuclear™ 1X Perm Buffer. FcR 

blocking was repeated for 10 minutes at 4°C with 20ul per 100ul of sample with FcR block 

(Miltenyi), followed by staining with the intracellular antibody (Table 17), this was incubated in 

the dark at room temperature for 30 minutes. The cells were then washed with 2mL of the True-

Nuclear™ 1X Perm Buffer and centrifuged at 385g at room temperature for 5 minutes (this step 

was then repeated). Cells were then resuspended in 0.5mL cell MACS and acquired on the BD 

FACSCanto II (Becton Dickinson, BD).  

 

2.7.4.1 Flow cytometry analysis 

All FACS data was analysed in FlowJo (v10.4.1), and geometric-mean fluorescence intensity and 

population percentage data were exported and visualized in Graphpad Prism (v8.0). For tSNE and 

co-expression analysis of flow cytometry data, each sample was reduced to exactly 10,000 

randomly selected live and singlet-gated, CD14-CD19-CD20-CD4-CD45+CD3+CD8+ T cells. A tSNE 

plot was constructed using 1,000 permutations and default settings in FlowJo (v10.4.1), z-score 

expression was mean centred.  
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2.7.5 Flow cytometry panels 

2.7.5.1 Initial FACS Panel 

Antibody Clone Supplier Vol (ul)/ 1e6 cells in 
100ul 

anti-CD45 FITC HI30 Biolegend 2.5 

anti-CD4 PE RPA-T4 Biolegend 2 

anti-CD8 PerCP-Cy5.5 SK1 Biolegend 2 

anti-CD3 PE-Cy7 SK7 Biolegend 1.5 

Viability - DAPI 5ug/ml Sigma 2.5 

 

Table 14. Initial Flow cytometry immune cell sorting panel. 
FACS panel for sorting the CD4+ and CD8+ immune cells. 

2.7.5.2 Sorting FACS Panel  

Antibody Clone Supplier Vol (ul)/ 1e6 cells in 100ul 

anti-CD45 FITC HI30 Biolegend 2.5 

anti-CD4 PE RPA-T4 Biolegend 2 

anti-CD8 PerCP-Cy5.5 SK1 Biolegend 2 

anti-CD3 PE-Cy7 SK7 Biolegend 1.5 

anti-CD19 PerCP-Cy5.5 HIB19 Biolegend 2 

anti-CD20 PerCP-Cy5.5 2H7 Biolegend 2 

anti-HLA-DR APC L243 Biolegend 2 

anti-CD14 APC-H7 MφP9 Biolegend 3 

Viability - DAPI 5ug/ml Sigma 2.5 
 

Table 15. Flow cytometry immune cell sorting panel. 
Extended FACS panel for sorting CD8+, CD4+, B cells and Macrophages.  
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2.7.5.3 Analysis of Tissue resident memory cells by FACS  

Antibody Clone Supplier Vol (ul)/ 1e6 cells in 
100ul 

anti-CD45 FITC HI30 Biolegend 2.5 

anti-CD4 PE RPA-T4 Biolegend 2 

anti-CD8 PerCP-Cy5.5 SK1 Biolegend 2 

anti-CD3 APC-Cy7 SK7 Biolegend 1.5 

anti-CD19 PerCP-Cy5.5 HIB19 Biolegend 2 

anti-CD20 PerCP-Cy5.5 2H7 Biolegend 2 

anti-PD1 PE-Cy7 eBioJ105 eBiosciences 2 

anti-CD103 APC Ber-ACT8 Biolegend 2 

anti-41BB Pacific blue 4B4-1 Biolegend 2 

Viability - LIVE/DEAD 
Fixable Aqua dead cell 
stain kit  

- Life  
Technologies 

1.5 

 

Table 16. Tissue resident memory cell FACS panel. 
Evaluation of TRM cells in NSCLC, non-involved lung and peripheral blood by FACS. 

2.7.5.4 Intracellular analysis of Ki67 and Tissue resident memory markers by FACS 

Antibody Clone Supplier Vol (ul)/ 1e6 cells in 
100ul 

anti-CD45 FITC HI30 Biolegend 2.5 

anti-Ki67 PE Ki67 Biolegend 2 

anti-CD8 PerCP-Cy5.5 SK1 Biolegend 2 

anti-CD3 APC-Cy7 SK7 Biolegend 1.5 

anti-CD19 PerCP-Cy5.5 HIB19 Biolegend 2 

anti-CD20 PerCP-Cy5.5 2H7 Biolegend 2 

anti-PD1 PE-Cy7 eBioJ105 eBiosciences 2 

anti-CD103 APC Ber-ACT8 Biolegend 2 

anti-41BB Pacific blue 4B4-1 Biolegend 2 

Viability - LIVE/DEAD 
Fixable Aqua dead cell 
stain kit  

- Life  
Technologies 

1.5 

 

Table 17. FACS panel for the Intracellular assessment of Ki67 in Tissue resident memory cells. 
Evaluation of Ki67 in TRM cells in NSCLC, non-involved lung and peripheral blood by FACS. 



Chapter 2 

63 

2.7.6 Immune cell sorting for bulk immune cell transcriptomic analysis 

After the correct setup of the BD FACSAria™ (BD Biosciences) using a standardised approach, 

detailed information in Appendices A.2. Briefly, the setup ensured accudrop beads (BD) were at 

98>% purity during setup up of the drop delay, the 4-way sort positions were set using the 

collection tubes followed by sorting onto the lids for the fine tuning of the positions to ensure 

that the cells would be sorted into the centre of the Trizol LS (Ambion®, Fisher Scientific UK Ltd.). 

Once acquiring data, the population of interest (e.g. CD8+ T cells) were sorted directly into ice-

cold Trizol LS reagent (Ambion®, Fisher Scientific UK Ltd.) to yield 1,000 to 50,000 immune cells at 

a flow rate of <2000 events/second on a BD FACSAria™ (BD Biosciences). The time from arrival of 

the tumour in the laboratory to processed was <3 hours. This process has been written in into an 

SOP and applied to the AMG319 and HARE-40 clinical trials (SOP no. = 384 see appendix A.2 Cell 

dissociation and immune cell sorting). 

2.7.7 Cohort of Isolated immune cells from HNSCC and NSCLC 

A cohort of purified immune cells (CD8+/ CD4+ T cells, B cells and macrophages/ activated 

monocytes) were collected from n=60 HNSCC (n=60/60 by O.Wood) and n=68 NSCLC (Appendix 

A.1.4 and A.1.5). The collection in NSCLC was a collaborative effort, please see acknowledgements 

(n=24/68 by O.Wood). Microscaled CD8+ T cell RNA-Seq was performed on n=41 HNSCC cases and 

n=43 NSCLC cases at the La Jolla Institute for allergy and disease.  

2.7.8 Histological characterisation of NSCLC and HNSCC  

2.7.8.1 CD8+ T cell and CD20+ B cell immune density 

Immunohistochemistry was performed on formalin-fixed paraffin-embedded tumour sections 

with anti-CD8α (C8/144B; Dako; 1:100), anti-CD103 (EPR4166(2); Abcam; 1:500) and CD20 (CD20 

(L26; Novocastra; 1:100). TILs were quantified using a Zeiss AxioCam MRc5 microscope (Zeiss) and 

Zeiss Axiovision software (version 4.8.1.0; Zeiss). An average of ten high-powered fields (×400) 

across representative areas of each tumour were counted to account for intratumoural 

heterogeneity; these were averaged to generate an intratumoural TIL score. Tumours were 

categorised by generating Tertiles based on the median quantification of cells, the top 1/3 (TILHi) 

or bottom 1/3 (TILLo).  
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2.8 Transcriptomic evaluation of purified immune cells by RNA-Seq 

2.8.1 CD8 RNA-SEQ 

Total RNA was purified using a miRNAeasy micro kit (Qiagen) and was quantified. Purified total 

RNA was amplified according to the smart-seq2 protocol. cDNA was purified using AMPure XP 

beads (1:1.1 ratio, Beckman Coulter). From this step, 1 ng of cDNA was used to prepare a 

standard Nextera XT sequencing library (Nextera XT DNA sample preparation kit and index kit, 

Illumina). Samples were sequenced using HiSeq2500 (Illumina) to obtain 50-bp single-end reads. 

Quality-control steps were included to determine total RNA quality and quantity, optimal number 

of PCR pre-amplification cycles, and cDNA fragment size. The RNA sequencing was carried out in 

collaboration with the La Jolla Institute for Allergy & Immunology following the methods outlined 

in (Rosales et al., 2018). 

2.8.2 CD8 RNA-Seq analysis 

RNA-Seq data were mapped against the hg19 reference using TopHat57 (v1.4.1.,–library-type fr-

secondstrand-C). Sequencing read coverage per gene was counted using HTSeq-count (-m union -

s yes -t exon -i gene_id, http://www-huber.embl.de/users/anders/HTSeq/). This bioinformatics 

was carried out at La Jolla Institute for Allergy & Immunology bioinformatics core.  

To identify differentially expressed genes between patient groups, the Bioconductor package 

DESeq2 was used in the r statistical environment (RStudio). This performs a negative binomial 

tests for paired and unpaired comparisons, genes were considered differentially expressed when 

the DESeq2 analysis resulted in a Benjamini-Hochberg–adjusted P value of <0.05 (FDR <0.05). The 

Qlucore Omics Explorer 3.2 software package was used for visualization and representation (heat 

maps, principal component analysis) of RNA-Seq. Unsupervised hierarchical clustering of samples 

based on the expression of genes from the DESeq2 comparisons were visualised as Heatmaps.  

2.8.2.1 Data repository for HNSCC and NSCLC CD8+ T cell RNA-Seq  

CD8+ T cell RNA-Seq data are deposited into the Gene Expression Omnibus at the National Center 

for Biotechnology Information (NCBI) under accession code GSE90730. 

2.8.1 Immune cell sorting for 10x single-cell transcriptomic analysis (10X Genomics) 

For single cell analysis of B cells from tumour, non-involved lung and lymph node, CD19+ and 

CD20+ B cells were sorted and mixed into 50% ice cold PBS, 50% FBS (Sigma) on a BD Fusion cell 

sorter. The antibody fluorochrome combinations and clones are shown in Table 18.  
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The patients (n=12) used for 10x genomics were divided into n=6 CD8Hi and n=6 CD8Lo tumours, a 

total of n=6 were used for the background lung (n=3 from both CD8Hi and n=6 CD8Lo 

patients)(Appendix A.1.9). The cell sorting was undertaken at the La Jolla, Institute for Allergy and 

Immunology (Clarke et al., 2019). 

Antibody Clone Supplier Vol (ul)/ 1e6 cells in 
100ul 

anti-CD45 APC700 HI30 Biolegend 2.5 

anti-CD56 BV570 HCD56 Biolegend 4 

anti-CD8 PerCP-Cy5.5 SK1 Biolegend 2 

anti-CD3 APC-Cy7 SK7 Biolegend 1.5 

anti-CD19 BV-421 HIB19 Biolegend 2 

anti-CD20 BV-421 2H7 Biolegend 2 

anti-CXCR5 BB515 RF8B2 BD biosciences 4 

anti-CD103 PE-Cy7 Ber-ACT8 Biolegend 2 

anti-CD25 PE BC96 Biolegend 4 

anti-CD127 APC A019D5 Biolegend 4 

Live/ Dead PI / Sigma  
 

Table 18. Sorting panel for 10x genomics single cell experiment. 
FACS panel for immune cell isolation. 

2.8.2 Single cell RNA-Seq of B cells  

Single cell analysis was performed at the La Jolla, Institute for Allergy and Immunology on the 

same day as the cell sorting. Single-cell RNA-seq using 10X genomics platform was performed 

using Chromium™ Single Cell 3' v2 Reagent Kits following the manufacturer’s protocol; 11 and 12 

cycles were used for cDNA amplification and library preparation respectively. Batch effects were 

minimised by sorting groups of 6 donors per day, cells were pooled for 10X sequencing library 

preparation (See appendix A.1.9). Barcoded RNA was collected and processed following 

manufacturer recommendations. Libraries were sequenced on a HiSeq2500 and HiSeq4000 

(Illumina) to obtain 100- and 32-bp paired-end reads using the following read length: read 1, 26 

cycles; read 2, 98 cycles; and i7 index, 8 cycles (Clarke et al., 2019).  

2.8.3 Analysis of single cell RNA-Seq data 

Single-cell RNA-seq data were mapped against the human hg38 reference genome using TopHat 

(v1.4.1., --library-type fr-secondstrand -C) and Gencode version 19 (GRCh37.p13) as gene model 

reference for alignment. Sequencing read coverage per gene was counted using HTSeq-count (-m 
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union -s yes -t exon -i gene_id, http://wwwhuber.embl.de/users/anders/HTSeq. Multiple 

sequencing runs were merged using cellranger count function in cell ranger, then merging 

multiple cell types with cell ranger aggr (v2.0.2). The merged data was transferred to the R 

statistical environment for analysis using the package Seurat (Macosko et al., 2015; Patil et al., 

2018) (v3.0). RNA-Seq mapping and formation of a standardised data frame for analysis was 

performed by Ciro Ramirez Suastegui, La Jolla Institute for Allergy and disease.  

The Seurat V3.0 package was used for subsequent single cell analysis. Only cells expressing more 

than 200 genes and genes expressed in at least 3 cells were included in the analysis. The data was 

then log-normalized and scaled per cell, followed by variable genes detection. Transcriptomic 

data from each cell was then further normalized by the number of UMI-detected and 

mitochondrial genes. A principal component analysis was then run on variable genes, and the first 

12 principal components (PCs) were selected for further analyses based on the significance and 

standard deviation of PCs, as determined by the Jackstraw plot and “elbow plot” in Seurat. Cells 

were clustered using the FindClusters function in Seurat with default settings, resolution = 0.6 and 

12 PCs. Differential expression between clusters was determined by analysing cluster specific 

differences using MAST (model-based analysis of single cell transcriptomics; q ≤ 0.05 and FC 

≤0.25) (Finak et al., 2015). Cluster specific genes were evaluated with gene ontology analysis using 

ToppGene Suite to determine gene families and biological processes that were significantly 

(q<0.05) over-represented (Chen et al., 2009), followed by redundancy reduction with REVIGO 

(Supek et al., 2011). Genes of interest were visualised in the single cell RNA-Seq data with a 

combination of T-distributed Stochastic Neighbour Embedding (t-SNE) and violin plots. Gene 

expression was overlaid on to tSNE plots, grey = low; navy blue = high expression. Violin plots 

were used to display the median and distribution of the gene expression in the different clusters. 

2.9 Retrospective analysis of NSCLC and HNSCC survival data 

2.9.1 NSCLC and HNSCC patient cohorts 

A cohort of NSCLC (n = 689) were used for retrospective analysis of survival according to density 

of CD8+ or CD103+ TILs (IHC). A cohort of previously reported HNSCC cases (n = 123) (Ward et al., 

2015) were again used to assess overall survival according to density of CD8+ or CD103+ TILs. 

Clinical details for the NSCLC cohort were collated by Dr Serena Chee, The HNSCC cohort were 

collated by Dr Matthew Ward. Tissue microarray construction and IHC was performed by research 

histology, Southampton Hospital. 
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2.9.1.1 CD8+ and CD103+ Immune cell survival analysis 

Tumour-tissue microarrays from patients with NSCLC were stained with anti-CD8α (C8/144B; 

Dako; 1:100) or anti-CD103 (EPR4166(2); Abcam; 1:500) and were viewed under low-powered 

magnification (2.5× objective) to determine the density of CD8+ or CD103+ cells, a score of High, 

moderate or low was assigned and independently checked by an accredited pathologist (Prof. 

G.J.Thomas). 

2.9.2 Survival data and analysis 

The primary endpoint was overall survival, and survival time was measured from the date of 

diagnosis until the date of death or date last seen alive. All Kaplan–Meier plots were made in 

Graphpad Prism (v8.0), with log-rank tests to determine significance of overall survival (p-values) 

(Ward et al., 2015). Patients were excluded from analysis if survival was <30 days, to exclude the 

possibility of surgery-related mortality. 
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Chapter 3: Immunological and transcriptomic analysis of 

tumours 

3.1 RNA isolation from solid tumours 

3.1.1 Introduction 

Analysis of tumour RNA by transcriptomics has been applied extensively to a large range of 

tumours using both micro arrays and RNA-Seq (Cancer Genome Atlas, 2015) (Thurlow et al., 

2010). This gives insight into mutational load, transcriptomic variation and immune infiltrate 

levels (Ottensmeier et al., 2016a). Isolation of RNA from tumour tissue is a well-established 

technique and was used in the analysis of multiple cancers by the CGA (Cancer Genome Atlas, 

2015), with the RIN (RNA integrity number) allowing the level of RNA degradation to be estimated 

in a sample prior to further analysis (Schroeder et al., 2006). A set of mouse TC1 tumours were 

used to establish a protocol and look at RNA yield and RNA integrity prior to testing on human 

tumour samples.  

3.1.2 Objectives 

Establish a work flow for the isolation of RNA from cryopreserved samples. In order to ensure no 

degradation had occurred during the procedure, two key factors needed to be taken into account: 

the yield of RNA from small cryosections and also the integrity of the RNA. This will be carried out 

on a test cohort of mouse TC1 tumours prior to use on human tumour HNSCC samples. 

3.1.3 Results 

3.1.3.1 Optimising RNA isolation from frozen tumour tissue. 

3.1.3.1.1 Mouse TC1 RNA 

In order to establish a robust RNA isolation procedure, the TC1 cell line was injected sub-

cutaneously (5e5 TC-1 cells) into C57/BL6 mice; the resulting tumours were harvested at day 15-

30. The RNA yield was assessed by taking 10µm cryosections from a 3mm x 3mm tumour (TC1) 

ranging from 5 to 30 cryosections (n=5, 10, 20 and 30), these were done in triplicate on the same 

tumour followed by RNA extraction (Qiagen RNeasy) and enumeration using the nanodrop to give 

ng/µl. The yield of RNA increases with the number of cryosections as would be expected. The 
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linear relationship continues up to 30 cryosections, which does not overload the RNA extraction 

column (data shown in Appendix A.3). The yield of the column will plateaux once the binding 

capacity has been reached. Using this information, 20-30 cryosections were set for optimal RNA 

yield with an adjustment of +/- 5 to 10 sections depending on the tumour size. The average yield 

of RNA from 22 TC1 tumours was 378ng/µl (total elution volume = 30 µl) (data shown in Appendix 

A.3) with an average RIN of 8.9, showing a robust procedure that yields excellent RNA quality, 

with the exception of 1 case that was likely due to experimental error/ tissue handling. 

3.1.3.1.2 Isolation of RNA from HNSCC tumour samples  

The optimised procedure was applied to HNSCC tumours where a consistent yield of RNA was 

obtained from tumours ranging in size from 2mm x 2mm to 7mm x 7mm, with an average of 221 

ng/µl and 219 ng/µl for dataset TRTS (tumour replicates across time and space cohort) and HPVN 

(HPV positive compared to HPV negative cohort) respectively (Figure 9A). The average RIN for 

cohort TRTS= 8.9 with an average RIN = 7.4 for cohort HPVN (Figure 9B). From the HPVN (HPV 

positive compared to HPV negative) cohort 11/51 were removed due to poor RIN, 7 of those were 

obtained from Liverpool (total Liverpool samples = 10), indicating a potential storage or shipping 

issue for those tumours. The TRTS cohort (tumour replicates across time and space) produced 

better RNA quality with an average RIN of 8.4 and similar RNA yields, 7 samples were removed 

prior to sequencing in cohort TRTS (7/47). 

 
                              TRTS             HPVN                                               TRTS            HPVN 

Figure 9. HNSCC cohorts RNA yield and integrity.  
(A) HNSCC cohort TRTS (1) and HPVN (2) RNA yield. The average RNA yield was 221 ng/µl and 219 
ng/µl for respectively. (B) HNSCC cohort TRTS (1) and HPVN (2) RIN assessment. An average RIN of 
8.9 was seen in the TRTS cohort and an average of 7.4 in the HPVN.  HNSCC data
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3.1.3.2 Discussion 

Successful isolation of high-quality RNA from 10µm cryosections was achieved on TC1 tumours, 

yielding excellent RIN scores with only one sample being removed due to RNA degradation, which 

was mostly likely due to sample handling and/ or the freezing protocol. Isolation of RNA from 

HNSCC tumours using the same methodology yielded similar results with robust RIN scores 

indicating intact RNA. However, the HNSCC patient samples displayed a higher number of cases 

with poor RIN scores as a result of RNA degradation. In particular, a group of samples from 

Liverpool where 7/10 of the samples displayed very poor RIN values, a review of the shipping log 

highlighted a potential problem with the dry ice volume upon arrival.  

3.1.4 Conclusion 

The optimisation of tumour RNA isolation from mouse TC1 tumours was achieved with a high 

average yield and RIN score. The same protocol was then applied to HNSCC tumours with the RNA 

yield being comparable to that of the TC1 mouse tumours. However, the RIN score for the HNSCC 

was more variable but still gave high average RIN scores. This meant the protocol was effective for 

routine extraction of RNA for high resolution transcriptomic analysis using RNA-Seq. 
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3.2 Analysis of HNSCC tumour replicates across time and space 

3.2.1 Introduction 

Morphological heterogeneity in cancer that is visible at the microscopic level is used by 

pathologists in routine diagnostics to inform treatment decisions. Recent data investigating 

tumours at much higher resolution using transcriptomics show that tumour cell clones undergo 

marked diversification over space and time as a result of mutational divergence and selective 

pressure (e.g. immunological attack) (Alizadeh et al., 2015, Dunn et al., 2002, Hensley et al., 2016, 

Jamal-Hanjani et al., 2015, Rooney et al., 2015, Dunne et al., 2016, Gyanchandani et al., 2016). 

Immune attack can vary according to its location in the cancer tissue: when quantifying the 

density of tumour-infiltrating immune cells by microscopy, the spatial distribution of immune cells 

with respect to tumour cells needs to be taken into account (Bindea et al., 2013). Given that 

immunotherapeutics only benefit a minority of patients (Seiwert et al., 2016), heterogeneity of 

immune cell distribution might contribute to treatment failure; and in that case small biopsy 

samples might not accurately represent the tumour microenvironment and immune status of a 

patient’s tumour. In clinical practice however, it is difficult to sample multiple tumour areas at any 

time other than at surgical resection. Valuable prognostic information can be gained from simple 

enumeration of T-cell infiltrates in both human papillomavirus expressing [HPV(+)] and HPV 

independent [HPV(-)] head and neck squamous cell carcinoma (HNSCC) (Ward et al., 2015, Ward 

et al., 2014b).  

Transcriptomic analysis of primary HNSCC using RNA-sequencing (RNA-Seq) allows further 

characterization of global molecular signatures (Cancer Genome Atlas, 2015) and detailed 

assessment of immune infiltrates (Wood et al., 2016a). Such evaluation of gene expression 

provides unprecedented insight into biological processes that occur in the tumour tissue. Like 

morphological assessments, molecular data are shaped by tumour-driving mutations, tissue 

heterogeneity, disease progression or selective pressures from treatment (McBryan et al., 2015, 

Wyatt et al., 2014, Zhang et al., 2014). Technical issues may further affect interpretation: in breast 

cancer, significant differences were identified between diagnostic tissue core biopsies when 

compared to tumour excisions (Pearce et al., 2016). Surgical ischemia was identified as a 

significant confounding factor in transcriptomic analysis. 

Knowledge of variability across tumours is critical for the understanding and effective evaluation 

of immunotherapy interventions using checkpoint inhibitors (e.g. anti-CTLA4, anti-PD1 and anti-

PDL-1 antibodies) (Garon et al., 2015, Hodi et al., 2010). The mechanisms that underpin 

immunotherapeutic success as opposed to treatment failure, remain poorly understood but must 

be linked to the pre-existing immune infiltrates (Gentles et al., 2015, Rooney et al., 2015, Tumeh 
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et al., 2014). To make sense of treatment failure and of any changes detected in longitudinal 

assessments, understanding of natural variability is critical, as is the understanding of how results 

from different assays (e.g. histological and transcriptomic assessment) correlate with each other.  

Clinical trials that test the efficacy of therapeutic agents are increasingly being used in “window of 

opportunity” Studies. These studies aim to investigate compounds in treatment-naïve patients 

prior to standard treatment - patients consent to receiving a new treatment strategy between 

diagnosis and delivery of their standard care. This has the benefit of testing therapeutic response 

in a patient group that has not been exposed to other anti-cancer treatments, hence avoiding 

possible confounding effects from any previous treatment (Glimelius and Lahn, 2011). An example 

of this type of study Is the phase II neoadjuvant trial AMG319 (AMG319 in HPV positive and 

negative HNSCC: NCT02540928), in which the drug AM319 is being studied in relation to the 

patient’s own immune system in HNSCC. Patients are given a course of the drug between 

diagnostic biopsy and their normal care (surgical resection), enumeration of CD8 cells on FFPE 

tumour samples and analysis of RNA-Seq on snap frozen tissue are being used as trial endpoints 

to assess the drug.  

3.2.2 Objectives 

To evaluate the variability in the distribution of immune infiltrates in HNSCC across space and 

time using transcriptomic analysis (RNA-Seq) and CD8 IHC on tumour replicates at diagnostic 

biopsy and surgical resection. The stability of a tumour over this time scale is important when 

considering “window-of-opportunity” studies, in which intervention with immunotherapeutic 

agents such as AMG319 can be used in treatment naïve patients. The outcome will be to assess if 

tumour biopsies taken for “window-of-opportunity” studies are stable at an immunological level 

over time and space. A stable immune and tumour profile will enable a higher level of confidence 

in observable differences post immunotherapy treatment.  

3.2.3 Results 

3.2.3.1 Patient summary of TRTS cohort (tumour replicates across time and space) 

A total of 16 patient tumour samples were collected (n=44 replicates), the full analysis included 14 

patients and n=37 tumour replicates. Single timepoint replicates (n=15) were obtained from 6 

patients, 8 patients had replicates (n=22) from two timepoints, diagnosis and resection, with an 

average of 26 days between them; cohort details shown in Appendix A1.1. 
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3.2.3.2 Principle component analysis (PCA) of tumour replicates for all gene features and 

4000 genes. 

The RNA-Seq data was first visualized using Principle component analysis, Figure 10 A displaying 

the 4000 most variable genes and Figure 10 B all genes (n=18979). When displaying all genes and 

also the 4000 most variable genes, replicates from the same patient group together, showing 

globally similar gene expression profiles. PCA of 4000 genes begins to separate the cases into 

different clusters, which is not as apparent when visualising all genes. Specifically, case 1, 7 and 10 

begin to group together in addition to cases 5, 6 and 11. This highlights that each case likely has a 

distinct transcriptional profile, while also sharing global similarities to other tumours.  

3.2.3.3 Tumour replicates from the same patient cluster hierarchically.  

A decreasing number of gene features were visualised across the cohort by variance filtering 

(removes genes that have similar expression across the cohort) the RNA-Seq data. All genes 

(n=18979), 4000, 1000, 100 and 20 genes were displayed to asses patient replicate clustering at 

different gene numbers. These were hierarchically clustered and displayed in heatmaps Figure 11 

shows all genes and 4000 genes; with Appendix B.1.1 showing 1000, 100 and 20 genes). The 37 

replicates from 14 patients evaluated at either diagnosis or resection cluster well across the 

decreasing gene features (Table 19 and Appendix B.1.1). The varying number of gene features 

highlights that each patient has a distinct tumour gene expression that is conserved across the 

replicates, some patients share similarities, for example cases 9 and 13, where others display a 

more unique expression profile (case 6). As the filtering by variance reduces the gene number to 

20 genes, gender-specific gene differences are identified, females show differential expression of 

XIST and males express DDX3Y and RPS4Y1. In order to rationalise the number of genes for 

downstream analysis, 4000 genes were selected, this number of genes was then used for further 

correlation analysis and Euclidean distance assessment.  

 

No. of genes All (18979) 4000 1000 100 20 
No. Clustering 9/14 9/14 13/14 13/14 13/14 

 

Table 19. Number of hierarchically clustered patients for each gene feature.  
Tumour replicates cluster well across a variable number of gene features.  
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Figure 10. Analysis of tumour replicates using Principle Component Analysis (PCA).  
RNA-Seq analysis showing normalized read counts for the 4000 (variance filtered) most variable 
genes across the tumour replicates. Patient tumour replicates are colour coded and displayed on 
the principle component analysis (PCA) plot. The axis represents the 1st, 2nd and 3rd principle 
component, with the associated % variance. (A) PCA Displaying the 4000 most variable genes 
across tumour replicates and (B) PCA of all genes. Both plots show the similarities between many 
of the tumour replicates (e.g. case #13 where the replicates are close together). Conversely, case 
#3 shows that the replicates are further apart and less closely related.  
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Figure 11. Hierarchical clustering of cases by decreasing gene features using variance filtering. 
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Figure 11. Hierarchical clustering of cases by decreasing gene features using variance filtering. 
A heatmap of RNA-Seq data displaying all genes (A), and the 4000 most variable genes (variance 
filtered) (B). Hierarchical clustering (distance measure=Pearson’s correlation metric; 
clustering=average linkage method) of tumour replicates shows clustering of related replicates in 
many cases (e.g. case #5). Conversely, it also shows some cases where the replicates cluster 
further apart (e.g. case #2). Data is shown as row wise z-scores of normalized read counts; patient 
tumour replicates are colour coded; HPV(+)=black and HPV(-)=beige; diagnostic biopsy (DB) and 
surgical resection (SR) replicates are annotated below.  

3.2.3.4 Euclidean distance analysis of hierarchical clustering 

In order to quantify the level of variation between replicates, the Euclidean distance was assessed 

for each replicate (Figure 12 A); this is a numerical value determined from the distance metric 

used in the hierarchical clustering. The graph displays each case and the median intrapatient 

(circle) distance compared to the median interpatient distance (diamond). The length of the line 
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connecting circles and diamonds is a measure of difference when replicates from one case are 

compared to all other samples. A long line indicates large differences (e.g. case #13), conversely a 

short line highlights cases where this difference is small (e.g. case #5). The minimum and 

maximum distance for each replicate is shown in Figure 12 B, here the intrapatient replicates can 

overlap with another replicate in some cases (e.g. case 7) where the minimum distance is lower 

than the median value for that replicate. This indicates that although replicates on the whole are 

very consistent, they do share similarities with other cases, this was also observed in the Figure 11 

heatmaps. The individual Euclidean distances are also presented as a scatter plot in Figure 12 C 

demonstrating that on the whole, tumour samples from the same patient (intrapatient) are 

significantly closer to each other than to those from other patients (interpatient) (p=<0.0001). 
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Figure 12. Comparison of Euclidean distance from hierarchical clustering of tumour replicates.  
The distances between paired tumour replicates in the hierarchical tree was calculated and used 
to assess how closely related intrapatient replicates were, compared to interpatient replicates. 
The median Euclidean distance (sqrt(1-pearson)2) for intrapatient replicates (circles) was plotted, 
as was the median Euclidean distance for interpatient replicates (diamonds). The smaller the 
distance and the shorter the line the more related the intra and interpatient samples are, 
conversely a larger distance or longer line identify lower homology between intra and 
interpatient samples. (A) Displays the relationship between the intra and interpatient median 
Euclidean distances for each replicate in the cohort respectively. The length of the connecting line 
between circles and diamonds is a measure of the difference between an individual replicate and 
all samples from all other patients. (B) Comparison of minimum and maximum Euclidean distance 
from hierarchical clustering of tumour replicates. The minimum, maximum and median Euclidean 
distance for intrapatient replicates was plotted alongside the median Euclidean distance for 
interpatient replicates. Overall intra patient tumour replicates are closer to each other than the 
interpatient replicates.  
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B
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Figure 12. Comparison of Euclidean distance from hierarchical clustering of tumour replicates.  
(C) Represents a scatterplot of the median intrapatient distances compared to the median 
interpatient distances. There is a significant difference between intrapatient and interpatient 
distances (p=<0.0001, Wilcoxon test). 

 

3.2.3.5 Replicates from the same patient are highly correlated. 

Correlation (Spearman) analysis of the top 4000 most variable genes was carried out across all 

samples and tumour replicates (Figure 13 A). The r values in the correlation matrix range from r=1 

(highly correlated, yellow) to r=0.5 (less correlated, values <0.5 are shown as blue). It shows that 

intrapatient tumour replicates are more correlated to each other than interpatient replicates. 

Case #14 shows a variable correlation between samples, but there is a higher correlation between 

its own replicates than to samples from other cases. The global median correlation coefficient for 

intrapatient replicates was r=0.82 compared to an r=0.63 for interpatient replicates (Figure 13 A). 

When cases are displayed in a correlation matrix, cases #13 and #9 have similar gene expression; 

cases #2, #8 and #14 also display similar correlation values indicating similarities at the global 

transcription level, this was also visible in Figure 11 (heatmaps). The data again suggest that each 

patient’s tumor has a distinct transcriptomic landscape. Correlation analysis of all genes across all 

samples with the inclusion of the less variable genes increases the correlation between samples (r 

scale=0.9 to 1); again, replicates from the same patient are most similar to each other (Figure 13 C 

and D). 
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Figure 13. Correlation analysis of tumour replicates.  
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Figure 13. Correlation analysis of tumour replicates.  
Single timepoint (sampling across space) and two timepoint (sampling across time between 
diagnosis and resection) tumour replicates were assessed using a correlation matrix of gene 
expression (Spearman correlation of top 4000 variance filtered genes and then all genes); each 
tumour replicate’s gene expression was correlated to itself and to each other sample. (A) and (B) 
4000 genes show Intrapatient tumour replicates were more correlated with a median correlation 
of r=0.82 compared to an interpatient median correlation r=0.63. (C) and (D) displays correlation 
of all genes (n=18979), where Intrapatient tumour replicates were more correlated with a median 
correlation of r=0.96, compared to an interpatient median correlation r=0.92.  
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3.2.3.6 Immunological gene expression in tumour replicates from the same patient is 

consistent. 

The prognostic importance of T-cell infiltration in HNSCC is well-documented (Ward et al., 2015, 

Ward et al., 2014b, Cancer Genome Atlas, 2015). Gene expression for immune cell lineage 

markers, effector function, exhaustion and regulatory genes were therefore represented in a 

heatmap (Figure 14 A). Samples were ordered by case number, then cases with replicates at a 

single timepoint were grouped, as were cases with replicates from two timepoints. Visual 

consistency in the immunological signature between replicates from the same patient including 

the markers of immune effector function (IFNG/ GZMA (Rooney et al., 2015)) and targets of 

cancer immunotherapy (PDL1/ CTLA4 (Ahmad et al., 2015)) was observed. Cases #1, #8, #5, #6 

and #7 contain a consistent and low relative level of immune-gene expression, while cases #16, #9 

and #13 have consistently high immune-gene expression. However, in some cases, replicates #2, 

#3, #6, #10 and one sample from case #14, the level of immune-gene expression is more variable. 

This variability is reflected in the hierarchical clustering of the tumour replicates for immune 

genes only, 9/14 cases cluster (Figure 14 B). The hierarchically clustered heatmap also shows a 

clear grouping of the tumours by the level of immune gene expression, the sample replicates 

could easily be divided into immune low, moderate and high. In addition to this, the RPKM of 

CD3E, GZMA, IFNG, CTLA4 and PDL1 (CD274) are displayed as dot plots as an alternative way of 

visualising the data and to see the spread in expression across the tumour replicates. (Appendix 

B.1.2). The dot plots complement the data in the heatmaps and show that the majority of the 

tumour replicates have very consistent expression of these genes. 
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Figure 14. Gene expression of immune markers is consistent in tumour replicates from the 
same patient.  
RNA-Seq analysis showing row wise z-scores of normalized read counts for genes associated with 
immune lineage markers, cytotoxic function, exhaustion and regulatory function. (A) Samples 
were grouped by patient and then by whether replicates had been collected at a single timepoint 
or at two timepoints. Expression profiles are consistent across tumour replicates in most cases. 
(B) Samples were hierarchically clustered (distance measure = Pearson’s correlation metric; 
clustering = average linkage method). Tumour replicates cluster largely by patient displaying 
similar immune gene expression profiles.  
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3.2.3.7 Correlation of CD8+ numbers by IHC and gene expression. 

The gene expression for CD8A was compared to the assessment of CD8 cell counts by standard 

IHC. This was done using tumour tissue sections that were immediately adjacent to those used for 

RNA-Seq. Material was available for 11/14 cases (insufficient material remained after RNA 

isolation for n=3). Gene expression for CD8A is presented as dot plots for cases grouped by 

whether we had replicates from a single timepoint or two timepoints (Figure 15 A). CD8+ cell 

counts (average of 10 HPF) evaluated by IHC are shown in Figure 15 B. Visually, the cases with 

high CD8A transcript count appear to be equally rich in CD8+ T-cells. This was quantified by 

assessing the Spearman correlation coefficient of the CD8A gene expression to CD8+ T-cell IHC 

count with an r = 0.82 (Figure 15 C), representative images are shown in Figure 15 D. 
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Figure 15. Comparison of CD8A gene expression with CD8 immunohistochemistry (IHC) counts 
across time and space.  
(A) The gene expression of CD8A (RPKM – Reads per kilobase per million mapped reads) is shown 
for the cases grouped by single timepoint and two timepoint tumour replicates. (B) CD8 IHC counts 
shown as the mean across 10 high power fields (HPF) on frozen tissue sections taken from the 
adjacent material used in the RNA-Seq analysis, tumour replicates are arranged as described 
above. 
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Figure 15. Comparison of CD8A gene expression with CD8 immunohistochemistry (IHC) counts 
across time and space. 
(C) Spearman correlation analysis of CD8A gene expression and CD8 immunohistochemistry (IHC), 
Spearman analysis shows a high level of correlation between CD8 IHC and CD8A gene expression 
with an r = 0.82. (D) Representative images of CD8 IHC at 100x magnification, a CD8Low and CD8Mod 
are shown. The CD8A gene expression and CD8 IHC show similar pattern of immune density and 
are consistent across time and space with a high level of correlation. (IHC slides prepared by 
research histology – Monette Lopez and Maria Machado). 

3.2.4 Discussion 

In solid cancers, morphological heterogeneity is commonly observed and highlights the issues of 

how representative of the whole cancer small biopsy samples are. This is important clinically as 

biopsy samples are used to make treatment decisions and failure to appreciate heterogeneity 

could contribute to treatment failure. In addition, if tumour samples are used to gain detailed 

information into molecular events resulting from therapeutic intervention, understanding the 

degree of transcriptomic heterogeneity becomes important. This is especially true for window of 

opportunity studies that look to monitor treatment effects in treatment naïve patients. Current 

high-resolution studies have identified that beyond morphological features, genetic features can 

vary within an individual’s cancer (Jamal-Hanjani et al., 2015, Dunne et al., 2016, Gyanchandani et 

al., 2016). The analysis of tumour and immunological heterogeneity at high resolution using RNA 

sequencing in multiple tumour biopsy samples from individual patients was carried out to try and 

address this issue. The focus was to understand gene expression that reflects adaptive immune 

attack, as boosting this is the key for success of immunotherapy. In HNSCC it has been shown that 

TIL density is tightly linked to outcome, in both HPV(+) and HPV(-) cancers (Ward et al., 2014b, 
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Wood et al., 2016a). Here RNA-Seq was used to quantify the immune signatures and global 

tumour gene expression profiles from tumour biopsies, separated in space (more than one 

sample at the same time) and time (samples taken at diagnosis and compared to samples from 

surgical resection). Molecular immune cell quantification was then correlated to data generated 

by the current ‘gold standard’, immunohistochemical assessment of HNSCC patients, which is 

known to be an important prognostic indicator (King et al., 2014, Ward et al., 2015, Ward et al., 

2014b, Wood et al., 2016a). 

The gene expression data generated using RNA-Seq for the patient cohort were assessed by PCA, 

hierarchical clustering and correlation analysis of the top 4000 most variable genes, as well as 

evaluation of specific immune-genes. Hierarchical clustering and Euclidean distance measures 

showed that multiple samples from the same patient were significantly more similar to each other 

than to those from other patients, this was also mirrored in the correlation analysis. The data 

suggest a single sample is able to capture the key immune characteristics of the patient’s primary 

HNSCC, irrespective of whether patient samples were taken at the same time or at different 

timepoints. Tumour biopsies clustered by patient and also displayed similar expression levels of 

immune genes. In contrast, there is considerable variability between patients (Ottensmeier et al., 

2016b, Ward et al., 2014b, Wood et al., 2016a). The similarity of tumour replicates was also 

maintained in both HPV(+) and HPV(-) HNSCC. This opens up the possibility of using gene 

expression analysis on biopsies to inform on treatment options (e.g. PD1 expression), it also 

justifies using biopsies before and after novel treatment regimens (e.g. PI3Kd inhibitor) to 

measure change. Although the current study is limited to the window between the diagnostic 

biopsy and the surgical resection.  

 

The study here has shown that a consistent immune signature in an individual tumour across both 

location and time was observed, at least within the window between diagnosis and resection (av. 

26 days); additionally, the data demonstrates that tumours can be grouped by the immune-gene 

expression profiles. The evaluation of gene expression of key markers for immune attack (IFNG/ 

GZMA (Rooney et al., 2015)) and targets of cancer immunotherapy (PDL1/ CTLA4 (Ahmad et al., 

2015)) further confirm a stable immune signature in the individual patient. The gene expression of 

CD8A correlated strongly (r=0.82) with the CD8 T-cell count assessed by manual counting of cells 

using IHC, this again adds weight to the use of gene expression as a tool for evaluating tumours. 

However, intrapatient tumour replicates were not a perfect match with each other and in some 

instances (cases #2, #3, #10, #11, #14 and #15) the tumour samples did not cluster perfectly by 

patient: In case #10, gene expression differences were observed at the immune-gene level which 

were also reflected in the IHC of CD8. Conversely, case #2 displayed a stable CD8 and immune cell 

marker signature but variability in the expression of effector function genes. A larger cohort of 
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samples taken at biopsy and resection would enable more confidence in the transcriptomic 

stability, in both spatially and temporally distinct tumour replicates. Cases #2, #6, #10 and #14 

were laryngeal tumours, which have been highlighted as having a higher level of mutational 

heterogeneity compared to other sites in HNSCC (Ledgerwood et al., 2016). The heterogeneous 

genomic landscape that has been identified by other groups (Alizadeh et al., 2015, McGranahan et 

al., 2016) would need to be assessed on the tumour replicates in order to allow the assessment of 

genomic variability and its impact on the transcriptome.  

3.2.5 Conclusions 

The data supports that in HNSCC the global tumour and adaptive immune signatures are stable 

across space and time between replicate samples from the same tumour. This has a number of 

implications, it suggests that immunological heterogeneity is not likely to be a key reason for 

immunotherapy failure for the primary cancer in HNSCC; paired analysis of primary and 

metastatic disease would be needed to evaluate this question further for patients with later stage 

disease. It also implies that it is important to examine in other tumours whether a consistent 

immunological ‘fingerprint’ is present even in cancers with known genetic heterogeneity. Finally, 

it supports that from a background of transcriptomic stability in untreated patients, RNA 

sequencing may be useful for the detection of change resulting from treatment effects carried out 

during window of opportunity clinical trials. 
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3.3 Stratification of patients by immunotyping tumours with gene 

expression of key immunological markers. 

3.3.1 Introduction 

The characterisation of tumours at increasing levels of detail has allowed a greater understanding 

of tumour cell biology and its interaction with the host. The cancer genome atlas (CGA) presents a 

vast repository of data that can be interrogated from a variety of perspectives. One of the uses of 

such data is the analysis of the immune landscape in different cancers (Thorsson et al., 2018). In 

the study by Thorsson et al, the mutational characteristics and immunological features were 

determined and shown to have prognostic importance across 33 cancer types (10,000 tumours). 

The immunologically active (inflammatory and IFNg dominant) tumours displayed an improved 

prognosis over the immunologically dormant (immunologically quiet and lymphocyte depleted). 

Key immunological features (e.g. cell markers CD4 and CD8A; functional markers GZMB and IFNG) 

have been used in a multitude of studies to predict for survival (Bindea et al., 2013, Rooney et al., 

2015, Galon et al., 2006).  

This highlights that a core of immunological analytes can be used to stratify patients into different 

outcome groups. An alternative dimension that can be assessed uses the addition of markers that 

are predictive of poor prognosis such as stromal cells, cancer associated fibroblasts (CAFs) and 

glycolytic stress markers. Elevated levels of CAFs and changes in glycolytic activity in tumours have 

been linked to a poorer prognosis (Hanley et al., 2018, Ottensmeier et al., 2016b). The question of 

whether a limited number of analytes may be able to stratify a patient cohort is important, 

especially in light of the number of immunotherapy trials that are on-going (Zhang and Chen, 

2018). Stratification of patients based on a subset of genes, provides a way of selecting patients 

who are most likely to benefit from a particular immunotherapy. IHC is the most widely accepted 

method of determining immunological features e.g. CD8, PD1, PDL1, and this fits in with routine 

histological classifications of tumours. Alternative approaches that use one or a combination of 

techniques such as qPCR, RNA-Seq and flow cytometry, may allow more rapid immunological 

stratification of patients and the targeted selection of immunomodulatory therapies 

(Fehrenbacher et al., 2016), (Dobbin et al., 2016) (Hartmann et al., 2018) (Takahashi et al., 2019). 

The advantage of qPCR over RNA-Seq is that it allows for a lower number of samples to be run per 

batch, as well as enabling a faster turnaround with the assay taking less than 24 hours to 

complete from samples to result. The Fluidigm Biomark HD platform provides a flexible 

microfluidics approach to qPCR that enables reproducible large-scale experiments, the 24 sample 

x 192 analytes allows 4,680 qPCR reactions to be completed simultaneously. The immuno-
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oncology panel provides information on 165 genes across 24 samples (Fehrenbacher et al., 2016). 

Other platforms such as the Nanostring and EdgeSeq also offer immuno-oncology panels and can 

work from FFPE and whole tissue (Fehrenbacher et al., 2016), (Dobbin et al., 2016) (Hartmann et 

al., 2018) (Takahashi et al., 2019). New clinical trials in the design phase are aiming to deliver 

personalised and targeted therapies based on information from the patient’s tumour. This 

presents a variety of challenges that have an impact on the ability to deliver rapid clinically 

relevant data without interfering with the normal routine diagnostic procedures.  

3.3.2 Objectives 

To determine the immunological finger print in HNSCC (head and neck cancer) and NSCLC (lung 

cancer) RNA-Seq data using a set of key immunological and tumour microenvironment genes. To 

evaluate a rapid qPCR gene expression assay for tumour samples, that covers the key immune 

targets observed in the RNA-Seq data. 

3.3.3 Results 

3.3.3.1 Immunological and tumour microenvironment features in Head and neck (HNSCC) 

and Lung cancer (NSCLC). 

Immunological and tumour microenvironment gene markers (see Table Appendix B.5.3 ) were 

visualised as heatmaps (Figure 16, Figure 17 and Figure 18) using RNA-Seq data from our own 

HNSCC cohort, CGA HNSCC and CGA NSCLC cohorts (Cancer Genome Atlas Research, 2014) 

(Cancer Genome Atlas, 2015) (Campbell et al., 2016). The data reveals an immunological signature 

across the different cohorts, ranging from immune “cold” to immune “hot” tumours, this is 

effectively captured using the selected Immunological gene markers. The samples from our own 

HNSCC data cluster mostly by immune density as determined by H and E TIL status (TILLo, Mod and 
Hi), which matches the immune gene expression. An exception to this, is one TILLo tumour that 

clusters with the TILMod and Hi cases (Figure 16). The HNSCC and NSCLC CGA RNA-Seq data (Figure 

17 and Figure 18) can again be clearly grouped by immune density, the data has been manually 

annotated into TILHi, Mod and Lo (green = Lo; pink = Mod and yellow = Hi) based on the 

immunological gene expression. Specific targets of immunotherapy like CD8+ T cells , PD1 

(PDCD1) and CTLA4 can also be grouped into Hi and Lo for the purposes of stratifying patients. 

The expression of tumour microenvironment genes (CAF and glycolysis markers) was higher in the 

immune “cold” tumours (TILLo). However, the relationship was not as clear as the immune genes, 

with groups of samples displaying higher CAF expression in the immune “hot”. The glycolytic gene 

markers also showed a pattern of lower expression in a group of immune “cold” tumours. 
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Figure 16. Gene expression of immune markers in TIL stratified HNSCC.  
A heatmap to illustrate the gene expression profiles for immune and tumour microenvironment 
markers in HNSCC tumours. The immune gene markers were visualised in our own RNA-Seq 
cohort n=35, where tumours are stratified by TIL (low, moderate and high) using histological 
assessment (haematoxylin and eosin) and are hierarchically clustered by TIL in most cases. 
Visualisation of the same genes in the HSNCC CGA (cancer genome atlas ) data n=518 where a 
clear TIL high and low gene expression is seen allowing TIL categorisation based on gene 
expression.  
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Figure 17. Gene expression of immune markers in HNSCC CGA RNA-Seq data. 
Heatmap visualisation of genes associated with immune and tumour microenvironment markers 
in the HSNCC CGA (cancer genome atlas ) data n=518. A clear TIL high and low gene expression 
pattern is seen allowing TIL categorisation based on gene expression in whole tumour samples 
(data sourced from (Cancer Genome Atlas Research, 2014) 
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Figure 18. Gene expression of immune markers in Lung NSCLC CGA RNA-Seq data. 
Heatmap visualisation of genes associated with immune and tumour microenvironment markers 
in the Lung CGA (cancer genome atlas) data n=1004, again a clear grouping of cases by immune 
gene expression can be observed (data sourced from (Cancer Genome Atlas, 2015) (Campbell et 
al., 2016). 
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3.3.3.2  Rapid stratification of patients by gene expression profiling and translation to 

clinical practice. 

The use of gene expression profiling for specific immune gene signatures divides patient cohorts 

into immune Lo, Mod and Hi as previously identified. This could be highly beneficial information 

for patients eligible for immunotherapy. The potential stratification process is outlined in Figure 

19, where patient samples are received from surgery and are processed as per the laboratory 

procedures with two key samples for rapid analytics, RNAlater and cryopreserved tumour tissue. 

The aim of this would be to deliver rapid (<5days) immunological data on key immunotherapy 

targets such as PD1 and CTLA4.  

 

Figure 19. Patient stratification work flow. 
Potential work flow that could be used to deliver immunological readouts in a time frame that 
would allow rapid selection of targeted therapies. qPCR would be used as an initial rapid immune 
readout, followed by flow cytometry and routine immunohistochemistry to complement the 
normal diagnostic reporting procedures. 

 

The immuno-oncology panel (Fluidigm) provides information on 165 genes across 24 samples. 

This has been used on a subset of samples that were analysed using RNA-seq and cover a range of 

immune densities, firstly to assess applicability of the assay to deliver rapid immune information 

and secondly the correlation of the two methods. The genes from the Immuno-oncology panels A 

(91 genes) and B (74 genes) were visualised as a heatmap using our HNSCC cohort (n=35 samples) 

RNA-Seq (HPVN dataset) (See Appendix B.5.4 A-C). The samples are ordered by the first principle 

component (highest variance) and show a hierarchical clustering of genes linked to immune 

density (top half). The bottom half represent the oncology gene markers with heterogeneous 

expression across the 35 samples.  
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A subset of these samples (TILLo n=3; TILMod n=4 and TILHi n= 3) were selected to test the qPCR 

assay (immune-oncology panel, Fluidigm) and determine a range of qPCR values for immune 

“hot” and “cold” tumours. The qPCR assay was performed in duplicate and included a positive 

control for all genes as well as a PBMC control RNA, the data was analysed in relation to two 

endogenous control genes B2M and ACTB. The relative gene expression for each gene (ΔΔct) was 

calculated relative to the positive control (pc), in order to obtain a positive value the ΔΔct was 

subtracted from the number of thermal cycles (n=40) (ΔΔCt(GOI) = 40−((Ct[GOI]sample –

meanCt[REF]sample)– (Ct[GOI]pc– meanCt[REF]pc))). The relative qPCR values for the 165 genes 

ranged from 23 to 40 and were visualised as a heatmap (See Appendix B.5.4 B) using the mean = 0 

and variance = 1 (z-score). The duplicate data points are visually comparable, the positive control 

shows high expression across all analytes. The Immune density across the samples wasn’t 

apparent due to skewing of the z-scores from the high expression observed in the PBMC (control 

RNA) and positive control, this led to the apparent low expression of all genes in the test cohort. 

The PBMC and positive control samples were removed and the data was re-visualised in Appendix 

B.5.4 C, this allowed the range of gene expression within the tumours to become more apparent 

with the immune “hot” and “cold” tumours being more visible across the cohort.  

The number of genes was then reduced to 14 key immune genes covering immunotherapy targets 

and cell markers (Figure 20).  

 

 

Figure 20. Comparison of Immune gene expression in the Southampton HNSCC RNA-Seq data 
and qPCR data (Bookmark HD). 
The cohort of 10 samples with existing RNA-Seq data were compared to the qPCR platform, it 
demonstrates a high level of consistency between the RNA-Seq and the IO (Immuno-oncology) 
qPCR panel (Fluidigm) on whole tumour RNA. Heatmap data is shown for 14 key immune genes 
and cell markers across the two methods. 
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The immune gene expression profiles can easily be determined and are consistent between the 

RNA-Seq and the qPCR assays with the immune rich tumours displaying higher expression of the 

key immune cell markers (CD3E, CD8A, CD4). In order to visually compare the expression profiles 

in tumour samples between the two methods they were aligned side by side (Figure 21 A), the 

two methods yield excellent concordance with very few samples and markers not showing 

comparable data e.g Patient 18 = IL10. This was quantified further by assessing Spearman 

correlation coefficients on the 12 genes to see whether a significant correlation was observed, the 

correlation coefficients range from 0.299 to 0.891 and are all significantly (p=<0.05) positively 

correlated (Figure 21 B). 

A key part of delivering gene expression data for stratification of patients will be defining 

reference ranges for each gene of interest, an example of this is shown in Figure 22. Where even 

in a small subset of 10 HNSCC samples high and low expression in CD8A, PDCD1 and CTLA4 can be 

observed and possible cut-offs can be assigned to define expression ranges. 
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Figure 21.Comparison of immune gene expression between RNA-Seq and qPCR using the IO 
panel (Fluidigm). 
(A) Displays heatmap data of 14 key immune genes and cell markers side by side for the two 
methods. A high level of visual consistency can be seen between RNA-Seq and qPCR for the 
expression of these genes. (B) Quantification of this using spearman correlation coefficients 
demonstrated significant positive correlations ranging from r = 0.299 to 0.891 for these targets. 

 

 

 



Chapter 3 

98 

 

Figure 22. Hypothetical reference ranges for the allocation of immune gene density using qPCR. 
The relative gene expression for CD8A, PD1 (PDCD1) and CTLA4 presented as dot plots indicate 
that even within a small cohort of samples categorisation into high and low can be achieved. It 
demonstrates that each target would need to be validated and relative expression cut-offs would 
be target specific.  

3.3.4 Discussion 

Transcriptomic and genomic profiling of tumours across different subtypes (cancer genome atlas) 

has led to a better understanding of tumour biology. A pan-cancer analysis of immune subtypes in 

different cancers revealed that particular immune subtypes are linked to a favourable outcome 

(Thorsson et al., 2018). The data presented here focuses on a selected number of immune genes 

that capture the overall immune density of the tumours. The immune gene expression profiles in 

HNSCC (HPV[+] and [-]) and NSCLC (Adenocarcinoma and Squamous cell carcinoma) were able to 

group the cohorts into immune “hot” and “cold”. The ability to group patients by immune density 

is attractive clinically as it allows stratification of patients into better survival groups, as well as 

enabling a targeted approach to immunotherapy where immune “cold” PD1 low tumours could 

be targeted with alternative treatments such as a NOX4 inhibitor that aim to modulate the 

tumour stroma (Hanley et al., 2018). More effective patient selection has the potential to 

transform the effectiveness of immunotherapies. By choosing patients that are likely to respond 

(immune ‘hot’), the response rates could massively be improved (currently 20-30%). It would also 

spare patients that are unlikely to respond from the adverse of effects immunotherapy.  

 

In this evaluation transcriptomics was able to accurately capture the immune contexture of 

tumours using RNA-Seq, however there are a variety of issues that present themselves when 

trying to deliver this approach within a clinically relevant time frame. Batching of samples and 

batch effects in RNA-Seq data is a known issue when trying to compare different experiments 

(Leek et al., 2012). The need to normalise the data is also problematic, especially if the sample 

cohort doesn’t accurately capture the immunological extremes (immune “hot” and “cold”). The 
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time for an RNA-Seq run to complete is highly variable depending on the system being used and/ 

or throughput required, often needing multiple sequencing libraries to be run simultaneously. An 

alternative approach to this is a more targeted approach using qPCR and Taqman® assays for 

specific gene targets, this enables higher sample turnover at lower costs and improved batching. 

A pilot study was carried on 10 HNSCC patients with a range of immune densities using an 

immuno-oncology panel. The aim was to investigate if the qPCR and RNA-Seq data could both 

stratify the samples by expression of immune genes. The data generated from the qPCR assay 

displayed an overall good level of similarity between RNA-Seq and qPCR, a significant positive 

correlation (Spearman) was observed for 12 immune markers. The data was also able to capture 

the overall immune density of the samples as previously observed in the RNA-Seq data (TILHi, Mod 

and Lo). In order for the qPCR assay to be useful clinically an extended set of well curated samples 

covering a range of tumour subtypes would need to be tested, in addition to this a reference 

range from Hi to Lo would need to be made, similar to the approach used in the Mammatyper 

(Hartmann et al., 2018). The application of qPCR enables extremely rapid detection of immune 

targets on very small biopsies, it opens up the use of needle aspirates and core biopsies for the 

management and monitoring of later stage of disease (in-operable). This ultimately enables 

treatment decisions to be adapted over time, and in response to changes within the tumour.  

 

The data here displays a good level of immune variability with an immune Lo and Hi signature 

present, obviously without the extremes it would be difficult to determine an accurate reference 

range for specific targets.. Each specific immunotherapy target would need to be validated and an 

appropriate reference range set. The current analysis used a positive control as a reference point 

to generate the ΔΔCt(GOI), future analysis would need to use an RNA sample of know expression 

as reference point for each experiment to minimise run to run variability (Agilent and Clonetech 

qPCR standards). The caveat with all whole tumour analysis is that the cell of origin for a particular 

signal is not known. It has however been shown that the overall gene expression data maps well 

onto clinical response for PD1 (Thommen et al., 2018). Even within the limited number of samples 

tested here the samples can be stratified into high and low expression of key immunological 

genes (PDCD1 and CTLA4).  

3.3.5 Conclusions 

A select number of immune genes were able to accurately capture the immune context of 

different tumours, this provides an interesting avenue for patient stratification in the clinical 

setting. Where therapeutic options can be tailored to specific patients based on detailed 

immunological information, provided it can be delivered in a timely fashion. A pilot study using 
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qPCR shows that it can be used in a clinically relevant time frame (results in <24 hours) and is 

comparable to whole tumour RNA-Seq. Further work and validation on larger cohorts would need 

to be performed to establish an effective work flow and define reference ranges for the immune 

genes.  
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3.4 Transcriptomic analysis of TIL rich HNSCC  

3.4.1 Introduction 

The worldwide prevalence of HPV-associated HNSCC is approximately 30% (Chaturvedi et al., 

2011, Attner et al., 2010, Ward et al., 2014b), of which the majority are caused by HPV16. The 

anatomical location linked to HPV-driven HNSCC is the oropharynx, which includes the base of 

tongue and tonsil (Attner et al., 2010). HPV positive (HPV(+)) patients have a significantly better 

prognosis than HPV negative (HPV(-)) patients, with the 3- and 5-year survival at 84% and 62% for 

HPV(+) patients compared to 57% and 26% for HPV(-) patients, respectively (Ang et al., 2010). 

A high number of tumour-infiltrating lymphocytes (TILs) is linked to good prognosis in many solid 

tumours (Galon et al., 2006). More recent analyses of The Cancer Genome Atlas (TCGA) data 

demonstrate that the effect is mediated by CD8+ GZMA+ PRF1+ T-cells (Rooney et al., 2015, 

Cancer Genome Atlas, 2015). In HPV(+) disease, the persistent viral oncoproteins E6 and E7 cause 

the malignant phenotype, while the immunological visibility of these two proteins contributes to 

the infiltration of the tumour by T-cells (Heusinkveld et al., 2012). It has previously been 

demonstrated that in HPV(+) HNSCC, TIL density correlates with outcome (Ward et al., 2014b). 

In contrast HPV(-) tumours are considered a separate disease entity and are driven by 

heterogeneous genetic events, they also display poorer survival relative to HPV(+) tumours 

(Cancer Genome Atlas, 2015, Stransky et al., 2011).  

Differential gene expression profiling comparing HPV(+) and HPV(-) tumours using microarray, 

RNA-Sequencing (RNA-Seq) and RT-PCR, have led to an improved understanding of the events 

associated with cellular transformation and oncogenesis (Jung et al., 2010, Pyeon et al., 2007, 

Slebos et al., 2006, Russell et al., 2013). Thurlow et al. used spectral clustering and gene ontology 

(GO) analysis to identify discrete gene expression patterns that linked to patient outcome, these 

involved the genes of adaptive and innate immunity. However, the underlying biology of TILs had 

not been addressed despite their link to survival in both HPV(+) and (-) HNSCC (Chung et al., 2004, 

Thurlow et al., 2010, Ward et al., 2014b, Cancer Genome Atlas, 2015, Jung et al., 2010, Pyeon et 

al., 2007, Slebos et al., 2006). 

A previous cohort of HNSCC cases that focused on HPV(+) disease (Ward et al., 2014b) was re-

assessed with the inclusion of the HPV(-) cases (total n=544), as in the HPV(+) tumours, TIL status 

stratified for outcome in HPV(-) HNSCC (Figure 23). Furthermore, HPV(+) TILHi/mod
 patients had 

significantly better survival compared to HPV(-) TILHi/mod patients (log rank p<0.001). The survival 

difference between HPV(+) and HPV(-) TIL rich tumours is interesting as it could arise from 

qualitative difference in the immune response or be due to quantitative differences in immune 

cells. 
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Figure 23. Kaplan-Meier curves for HNSCC mortality stratified according to HPV status and TIL 
density. 
Survival of a retrospective cohort of HNSCC patients (n=544) with respect to HPV status and the 
density of immune cell infiltrate. TIL density predicts for outcome in both the HPV(+) and HPV(-) 
patients; log-rank test, p<0.001. Adapted from (Ward et al., 2014b). 

3.4.2 Objectives 

To interrogate the survival differences between HPV(+) TILHi/mod and HPV(-) TILHi/mod tumours in a 

cohort of consecutive HNSCC surgically resected cases, with a particular focus on the immune 

gene expression profiles. This will be done using high resolution transcriptomic analysis (RNA-

Seq), accompanied by histological assessment to accurately determine immune cell density. The 

presence of HPV driving the tumour may generate a virus-specific immune response, or just lead 

to an increase in immune cell density compared to that of HPV independent tumours, which may 

account for the survival differences.  
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3.4.3 Results 

3.4.3.1 Clinical information for the HNSCC cohort (HPV(+)TILHi/mod compared to HPV(-) 

TILHi/mod) 

In order to investigate the survival difference between HPV(+) and (-) tumours the transcriptome 

was evaluated in a prospective cohort (n=39), patient demographics, tumour characteristics and 

tumour sampling/ processing information for the HPV(+) and HPV(-) patient cohort are shown in 

Appendix A.1.2. The focus for this analysis was to understand immune cells in the HPV(+) and (-) 

setting, we focussed on TIL rich (TILHi/mod) tumours and excluded the 16 TILlow cases from the 

current analysis. The cohort consisted of 23 TILHi/mod cases, HPV(+) n=10 and HPV(-) n=13. The 

clinical and histological descriptors were distributed as expected (Appendix A.1.2); HPV(+) 

tumours were located in the oropharynx of non-smoking patients, HPV(-) tumours were located in 

the larynx (n=4), oral cavity (n=5) and oropharynx (n=4). The HPV(-) cases consisted of n=7 

smokers and n=6 non-smokers; n=2 samples from the oropharynx were from smokers. The clinical 

classification of HPV status was determined by routine IHC against p16 and mapped appropriately 

to the expression of E6 and E7, as detected by RNA-Seq. 

3.4.3.2 Differentially expressed genes between HPV(+) and HPV(-) tumours (TILHi/Mod) 

Differential gene analysis was performed to assess the differences between HPV(+) and HPV(-) 

tumours (TILhigh/mod), EdgeR was used and identified 1634 genes as significantly differentially 

expressed (q-value <0.05) between the two groups; these were visualised in a heatmap (Figure 24 

A). Of these genes, 894 were expressed to a greater extent and 740 to a lesser extent in HPV(+) 

compared to HPV(-) tumours. These gene expression differences segregated HPV(+) and HPV(-) 

tumours in all except one HPV(-) subject (patient 21), whose tumour clustered within the HPV(+) 

cohort (Figure 24 A). A review of the histological data revealed this patient had a basaloid SCC, 

which is a rare and clinically distinct form of HNSCC. The same genes (1634) were also visualised 

in the larger CGA HNSCC dataset (Cancer genome atlas: TCGA HNSC HiSeqV2 2015-02-24(Cancer 

Genome Atlas, 2015); data source outlined in methods section 2.7) (Figure 24 B). The same 

separation of HNSCC into HPV(+) and (-) was observed in that dataset, however due to the limited 

clinical annotations (TIL status not available) the same differential gene analysis could not be 

carried out in EdgeR. The relative expression of key genes linked to HPV were also visualised in 

box and whisker plots (Figure 25), gene expression of the HPV-associated genes CDKN2A (p16), E6 

and E7 were as expected between HPV(+) and HPV(-) tumours. We also found differences in the 

expression of genes associated with ‘immune cell markers’ between HPV(+) and HPV(-) tumours 

(Figure 25); expression of these genes was much greater in HPV(+) tumours. Similarly, the 

expression of GZMA, IFNG and CDNK2A and key genes that link to T-cell activation and 
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exhaustion, such as CTLA4, PD1 and HAVCR2 (encoding TIM3), were all increased in HPV(+) 

compared to HPV(-) tumour.  

A 

           

 

Figure 24. Differentially expressed genes between HPV(+) and HPV(-) immune rich tumours. 
(A) A heatmap to illustrate the DEGs between HPV(+) and HPV(-) tumours; showing row-wise z-
scores of normalized read counts; the scale of z-score is shown: red shading denotes greater gene 
expression, blue shading denotes lower gene expression. Hierarchical clustering (distance 
measure=Pearson’s correlation metric; clustering=average linkage method) of genes and tumours 
based on their expression profile is reflected in the dendrograms to the left and the top of the 
heatmap, respectively. (B) Expression of the same DEGs in the CGA HNSCC data, HPV(+) and (-) 
cohorts cluster separately and show similar expression of the identified genes.  
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Figure 25. Expression of key genes in HPV(+) and (-) tumours 
The expression of key genes associated with HPV, immune cell markers, immune effector function 
and immune exhaustion/regulation are displayed, for both HPV(+) and HPV(-) tumours box plots 
show the median and min/max with the + representing the mean. A greater expression of 
immune associated genes is observed in HPV(+) tumours (gene expression data from normalized 
transcript counts). 

3.4.3.2.1 Gene ontology (GO) and pathway analysis:  

GO and pathway analysis was performed to understand the biological significance of the 1,634 

DEGs. GO terms that were significantly over-represented for DEGs were identified using CPDB 

(Kamburov et al., 2011); GO analysis was performed independently for those genes expressed to a 

greater extent and for genes expressed to a lesser extent in HPV(+) compared to HPV(-) tumours. 

Full details of the GO terms, including the specific genes, number and percentage of DEGs 

associated with each GO term, are presented in Appendices B2.1 to B2.5. The GO terms were 

visualised using REVIGO scatterplots (Appendix B2.1), where a 2D cluster representation shows 

the most significant terms after redundancy reduction. The data reveal that those genes with 

greater expression in the HPV(+) cohort were predominantly associated with an immune reaction 

(e.g., adaptive immune response, GO:0002250; lymphocyte activation, GO:0046649; positive 

regulation of immune system process, GO:0002684; B-cell activation, GO:0042113), whereas 

those expressed to a lesser extent were associated with cellular processes involved in tissue 

development, (GO:0009888), keratinization (GO:0031424) and cell differentiation (GO:0030154). 

Specifically, there was greater expression of genes associated with the adaptive immune system, 

including T-cells (CD4+ and CD8+) and B-cell receptor signalling pathways, as well as NK-cell-

mediated cytotoxicity. Those genes expressed to a lesser extent (Appendix B2.2) represented 

different biological processes, including extracellular matrix organisation, collagen formation, 
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beta1 integrin cell surface interactions and alpha6 beta4 integrin-ligand interactions. The 

biological pathways (e.g., KEGG) over-represented for DEGs mirrored the results of GO analysis 

displaying an enriched number of genes linked to immunological signalling pathways in greater 

expressed genes and pathways linked to extracellular matrix organisation and collagen formation 

in genes expressed to a lesser extent Appendix B2.5. 

3.4.3.3 Quantification of TILs and evolution of the analysis: 

The GO and pathway analysis indicated that the most differentially expressed biological processes 

were related to the immune system and specifically to B and T-cells in the genes expressed to a 

greater extent in HPV(+) tumours. However, it was not clear whether these B- and T-cell immune-

related terms identified by GO and pathway analysis were simply the result of numerical 

differences in lymphocytes between HPV(+) and HPV(-) tumours or the result of differences on a 

per cell basis in the transcriptional signature. In order to address this question, the tumour-

infiltrating lymphocytes were quantified using IHC for CD8, CD20, CD4 and CD3 (representative 

images at 40x magnification shown in Figure 26) followed by manual counting of 10 high-power 

fields (Figure 27 A) and gene RNA transcript levels (log2 normalised) for lymphocyte cell surface 

markers (Figure 27 B). A significant difference in cell number was observed between HPV(+) and 

HPV(-) tumours for the cell markers CD4, CD20 and CD3 (P ≤ 0.05) but not CD8 (ns) by IHC. Gene 

RNA transcript levels were significantly different for all cell markers (CD4, CD20, CD3E and CD8A). 

Spearman correlation coefficients between IHC and gene expression for the cell markers CD8 (r 

=0.76), CD3 (r =0.52), CD4 (r =0.34) and CD19 (r =0.47) are shown in Figure 27 C to F. Both 

analyses demonstrated that the numbers of B-cells and CD4+ and CD8+ T-cells were higher in 

HPV(+) tumours compared to HPV(-) tumours. As a result of this difference the number of 

immune cells as determined by the gene expression of CD4, CD8A and CD20 within the tumour 

from the RNA-Seq data were used to correct for the immune cell differences using EdgeR 

(function in EdgeR used for correction of batch effects and confounding variables). The immune 

cell correction was undertaken to try and establish if an immunological phenotypic difference 

between the tumours still existed, and whether it could account for the difference in survival, or 

whether it was merely due to numerical differences in immune cells.  
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Figure 26.  Representative images for tumour infiltrating CD8+ (TILLMod), CD4+ (TILMod), CD3+ 
(TILHi) and CD20+ (TILMod) cells at 40x magnification.  
The different tumours display highly variable immune infiltrate levels (IHC slides prepared by 
research histology – Monette Lopez and Maria Machado). 

 

3.4.3.1 Analysis of gene expression data following correction for numerical differences in 

TILs 

The global gene expression data were corrected for TIL number using the gene expression of CD19 

(pan B-cell marker), CD4 and CD8A in each sample as a covariate (using EdgeR). When correcting 

both HPV(+) and HPV(-) cohorts in this way, genes co-ordinately expressed in lymphocyte subsets 

were no longer differentially expressed; as a result the number of DEGs dropped from 1,634 to 

437 (Appendices B3.1). As would be expected, there was a large overlap in DEGs between the 

initial uncorrected and the TIL corrected data sets (Figure 28); from the immune cell correction, 

77 new DEGS were identified in the greater expressed genes and 58 new DEGS in the lesser 

expressed. The TIL corrected dataset was next subject to GO and pathway analysis. 
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Figure 27. Immune cell subset analysis of HPV(+) and HPV(-) tumours.  

(A) The distribution of CD8, CD4, CD3 and CD20-expressing cells in HPV(+) and HPV(-) tumours as 
detected by IHC; cell counts are given as a mean of 10 high-power fields. (B) Gene expression 
(normalized transcript counts) of CD8A, CD4, CD3E and CD20 of HPV(+) and HPV(-) tumours 
displayed as box plots (min/max) with the + representing the mean. Significant differences in TIL 
density between HPV(+) and HPV(-) tumours were observed both by gene expression profiling 
and IHC analysis. Spearman correlation analysis between immunohistochemistry and gene 
expression for Immune cell types. Correlation of IHC and gene expression determined by RNA-Seq 
for (C) CD8, (D) CD3, (E) CD20 and (F) CD4. A positive correlation was observed for each marker 
when counting 10 high power fields and correlating it with the level of immune gene transcripts 
determined by RNA-Seq (two group t-test = Mann-Whitney). 
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Figure 28. Overlap of DEGs identified from uncorrected and TIL corrected gene expression data. 
A Venn diagram to illustrate the overlap of DEGs between HPV(+) and HPV(-) tumours identified 
directly by RNA-Seq (n=1,634) or following correction of the gene expression data to account for 
numbers of infiltrating immune cells (n=467); genes expressed to a greater or lesser extent in 
HPV(+) versus HPV(-) tumours. For TIL corrected gene expression data, new DEGs were identified, 
which were expressed to a greater (n=77) or lesser extent (n=58) in HPV(+) tumours 

3.4.3.2 Heatmap visualisation of immune cell corrected DEGs 

Unsupervised hierarchical clustering of all 437 TIL-corrected DEGs for our own dataset and TCGA 

data (the HPV(-) tumours were anatomically matched; arising in the oropharynx, tonsil and base 

of tongue). In both datasets, tumours cluster according to HPV status; sub-clusters are evident in 

the larger TCGA dataset (anatomically matched) shown in Figure 29 A and B. The separation on 

the HPV(+) and (-) tumours is even more pronounced after correction in both ours and the CGA 

data. The removal of the immune cell confounder has the potential to reveal any immune 

differences and/ or transcriptomic features of the tumours; to investigate this further GO analysis 

and pathway analysis was performed. 
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Figure 29. Visualisation of the TIL corrected DEGs between HPV(+) and (-) TILHi/Mod tumours.  
Heatmaps to illustrate gene expression of the TIL corrected DEGs (n=437) between HPV(+) and (-) 
tumours showing row wise z-scores of normalized read counts; the scale of z-score is shown: red 
shading denotes greater gene expression, blue shading denotes lower gene expression. 
Hierarchical clustering (distance measure=Pearson’s correlation metric; clustering=average 
linkage method) of genes and tumours based on their expression profile is reflected in the 
dendrograms to the left and the top of the heatmap, respectively. (A), a heatmap of the HNSCC 
dataset (HPV(+) n=10 and HPV(-) n=13). (B), a heatmap of TCGA HNSCC dataset (HPV(+) n=46 and 
HPV(-) n=26 from anatomically matched tumours arising in the oropharynx, tonsil and base of 
tongue. In both datasets, tumours cluster according to HPV status; sub-clusters are evident in the 
larger TCGA dataset (data sourced from (Cancer Genome Atlas Research, 2014)  
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3.4.3.3 GO and pathway analysis of Immune cell corrected data: 

 GO and pathway analysis was again performed independently for genes expressed to a greater 

extent (n=219; Appendices B.3.2) and a lesser extent (n=218; Appendices B.3.2) in HPV(+) 

compared to HPV(-) tumours. The vast majority of immune and lymphocyte-related terms were 

no longer over-represented in HPV(+) tumours. This included markers of T-cell effector function 

(e.g., IFNG, GZMB and PRF1), which, prior to TIL correction were all over-represented in the 

HPV(+) tumours. Pathway analysis also confirmed the loss of immune-related signalling pathways 

(Appendices B.3.3). Immune GO terms that remained following correction for numerical 

differences in TIL were B-cell activation (GO:0042113), which included BCL2, VCAM1 and ICOSLG, 

with a greater expression in HPV(+) compared to HVP(-) tumours (Appendices B2). The surviving 

non-immune GO terms and biological pathways (Appendices B.3.3) over-represented in HPV(+) 

tumours were associated with cell cycle (GO:0007049), cell phase transition (GO:0044770) and 

chromosome organisation (GO:0051276). 

 The GO terms were again visualised in Revigo (Appendix B2.2), showing clearly the loss of 

immune GO’s and instead, gene ontology terms relating to the HPV(+) associated tumour process. 

The loss of T-cell and the majority of B-cell-related GO terms following TIL correction of gene 

expression data, indicated that gene expression differences between HPV(+) and HPV(-) tumours 

largely resulted from numerical differences in these cell types. To determine if any differences in 

lymphocyte gene expression between the HPV(+) and HPV(-) tumour cohorts were retained 

following TIL correction, the DEGs identified after correction were overlapped with lymphocyte-

specific marker genes (CD19+ B-cell genes and CD8+ and CD4+ T-cell genes, Appendices B.4 

(Shoemaker et al., 2012, Abbas et al., 2005, Watkins et al., 2009, Palmer et al., 2006, Grigoryev et 

al., 2010, Whitney et al., 2003)). The majority of the surviving signals were associated with the 

following B-cell associated genes: GGA2, SPIB, CD200, ADAM28 as well as STAG3, which was not 

previously known to be a B-cell associated gene; these genes are discussed in more detail below. 

A single CD8-associated gene (CD8B) also survived correction (Figure 30).  

GO and pathway analysis of DEGs expressed to a lesser extent in HPV(+) compared to HPV(-) 

tumours were largely unchanged following TIL correction of the data (Revigo Plots and gene 

ontology shown in Appendix B2.2, B.2.2 and B.2.3). There were 218 lesser expressed genes 

following lymphocyte correction, of which many were associated with development (skin, 

epidermis, epithelium, tissue, organ) and keratinization. In addition, lesser expressed genes 

associated with IL-12 and IL-6 production, the inflammatory response and the response to 

oxidative stress. Individual DEG’s included keratin’s (KRT10, 14, 16 and 17), kallikrein-related 

peptidase 5, 7 and 14 (KLK5, 7 and 14), caspase 14 (CASP14), tumour necrosis factor (ligand) 

superfamily member 9 (TNFSF9 or CD137L), thrombospondin receptor (CD36) and chemokine (C-C 
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motif) ligand 19 (CCL19); pathway analysis of lesser expressed genes returned no significantly 

over-represented pathways (q-value <0.05). 

 

Figure 30. Differentially expressed genes between HPV(+) and HPV(-) tumours identified from 
TIL corrected data; overlap of DEGs expressed to a greater extent in HPV(+) tumours with 
published immune cell type gene sets.  
A Venn diagram to illustrate the overlap of 437 DEGs expressed to a greater extent in HPV(+) 
versus HPV(-) tumours identified from TIL corrected gene expression data with immune cell type-
specific marker genes as defined by at least two published databases: CD19 markers (n=159), CD4 
markers (n=70) and CD8 markers (n=9). An increase in the expression of 5 B-cell-associated genes 
was observed in HPV(+) compared to HPV(-) tumours: GGA2, ADAM28, STAG3, CD200 and SIPB; 
fold-change in expression is shown in brackets. 

3.4.3.4 Further assessment of the B cell associated genes using TCGA RNA-Seq data 

Analysis of the identified 8 B-cell-related genes GGA2, SPIB, CD200, ADAM28, BCL2, VCAM1, 

ICOSLG and STAG3 was carried out in an independent HNSCC dataset from the CGA (Cancer 

Genome Atlas, 2015). Analysis of these DEGs in the CGA data allowed potential anatomical bias to 

be addressed: since HPV(+) tumours predominantly arise in specific anatomical locations (tonsil, 

base of tongue and oropharynx) that could contribute to the DEGs.  
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Figure 31. Expression of B-cell-associated genes by RNA-Seq.  
Heatmaps to illustrate gene expression of the identified B-cell-associated genes between HPV(+) 
and (−) tumours: GGA2, SPIB, CD200, STAG3, ADAM28, BCL2, VCAM1 and ICOSLG, showing row 
wise z-scores of normalized read counts; the scale of z-score is shown: red shading denotes 
greater gene expression, blue shading denotes lower gene expression. Hierarchical clustering 
(distance measure=Pearson’s correlation metric; clustering=average linkage method) of genes 
and tumours based on their expression profile is reflected in the dendrograms to the left and the 
top of the heatmap, respectively. (A), a heatmap of our HNSCC dataset (HPV(+) n=10 and HPV(−) 
n=13). (B), a heatmap of the TCGA HNSCC dataset (HPV(+) n=46 and HPV(−) n=26); publicly 
available data from anatomically matched tumours arising in the oropharynx, tonsil and base of 
tongue. In both datasets, tumours cluster according to HPV status, with a greater expression of 
the identified B-cell-associated genes in HPV(+) tumours (data sourced from (Cancer Genome 
Atlas Research, 2014)  

 

The Identification of 72 cases (46 HPV(+) and 26 HPV(-)) from the anatomically matched locations 

(tonsil, base of tongue and oropharynx) were used for visualisation of the 8-gene signature 

(GGA2, SPIB, CD200, ADAM28, BCL2, VCAM1, ICOSLG and STAG3). The genes were hierarchically 

clustered in heatmaps using our data (Figure 31 A) and with the 72 CGA cases (Figure 31 B), the 

tumours clustered according to HPV status, with a greater gene expression in HPV(+) compared to 

HPV(-) tumours. These data confirmed that anatomical bias was not the reason for the B-cell-

associated differences in gene expression. The larger CGA data however, did reveal a high 

expressing and moderate expressing sub-cluster within the HPV(+) cohort. 

A

HPV(+)

HPV(-)

STAG3
ADAM28
CD200
GGA2
BCL2
SPIB
VCAM1
ICOSLG

VCAM1
CD200
BCL2
GGA2
SPIB
STAG3
ADAM28
ICOSLG

2

1

0

-1

-2

B



Chapter 3 

114 

3.4.3.5 Validation of B cell-associated genes by RT-qPCR  

In order to confirm these findings, RT-qPCR of CD200 and STAG3 was carried out on the whole 

tumour RNA samples used for the RNA-Seq (n=8 HPV(+) and n=8 HPV(-). This showed the same 

trend with HPV(+) tumours compared to HPV(-) tumours having increased expression of STAG3 

and CD200 (Figure 32 A; STAG3, ***p<0.001 and CD200 ns, p=0.116). In addition to this, RT-qPCR 

was also used to investigate the expression of the genes GGA2, SPIB, CD200, STAG3, ADAM28, 

BCL2, VCAM1 and ICOSLG in B-cells isolated from an independent HPV(+) HNSCC tumour cohort 

(n=6) (Figure 32 B and A.1.3). Each of the identified B cell genes were confirmed as being 

expressed in the purified B cells, STAG3 was only expressed at a very low-level relative to the 

other genes; it is a component of the meiosis specific cohesin complex (Prieto et al., 2001). 

However, RT-qPCR of whole tumour tissue confirmed its differential expression between HPV(+) 

and HPV(-) tumours highlighting that the differential signature is likely not to be originating from 

the B-cell compartment.  
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Figure 32. Relative expression of B-cell-associated genes by RT-qPCR.  
(A) The average (mean and standard deviation) relative gene expression of CD200 and STAG3 was 
measured by RT-qPCR* in RNA extracted from the whole tumour, as used for the RNA-Seq 
analysis. The expression of STAG3 and CD200 was determined for HPV(+) (n=8) and HPV(-) (n=8) 
tumours. This showed the same trend with HPV(+) tumours compared to HPV(-) tumours having 
increased expression of STAG3 and CD200 (STAG3, ***p<0.001 and CD200 ns, p=0.116). (B) 
Displays the average (mean and standard deviation) relative gene expression of B-cell-associated 
genes measured by RT-qPCR*. The expression of the B-cell-associated genes GGA2, SPIB, CD200, 
STAG3, ADAM28, BCL2, VCAM1 and ICOSLG was confirmed in B-cells sorted from an independent 
cohort of HPV(+) tumours (n=6).  
*Relative gene expression by RT-qPCR, calculated using the comparative Ct method with Actin as 
the control gene (2^-(∆∆Ct) method) (23). Asterisks in column labels indicate a significance level 
of a two-sample t-test comparison of RT-qPCR between HPV(+) and HPV(-) tumours: ns = not 
significant (value stated) and ***P <0.001). 
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40x magnification 

Figure 33. Expression of B-cell markers by IHC  
Cell subset analysis by IHC for the B-cell markers CD20, CD23 and CD200, as well as the T-cell 
marker CD8, was performed on sequential sections for HPV(+) (n=9) and HPV(−) (n=13) tumours; 
representative data is shown for one tumour from each cohort. Tertiary lymphoid structure 
formation is apparent in HPV(+) tumours along with dense infiltrate of CD20+ B-cells.  
(IHC slides prepared by research histology – Monette Lopez and Maria Machado). 
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3.4.3.6 IHC assessment of B cells in HPV(+) and (-) tumours  

IHC assessment of HPV(+) and HPV(-) tumours identified dense clusters of tumour-infiltrating B-

cells in the HPV(+) samples; Figure 33 shows representative histology for one HPV(+) and one 

HPV(-) tumour. The follicular morphology within HPV(+) tumours was apparent following staining 

for CD23, a marker of follicular B-cells. Furthermore, IHC confirmed the presence of CD200+ cells 

within and around tertiary lymphoid follicles, together with a diffuse CD8+ T-cell infiltrate. These 

features were absent in the HPV(-) tumours although sparse CD8 and B-cell infiltrates were seen.  

3.4.4 Discussion 

It has previously been shown that HPV(+) HNSCC patients with a dense immune cell infiltrate 

within the tumour have a better outcome than those with sparse infiltrates (Ward et al., 2014b), 

this has also been identified in HPV(-) tumours (Wood et al., 2016b, Wood et al., 2016a). Here, 

fine-resolution transcriptomic analysis was used to evaluate whether it could give insight into the 

biological difference in the immune infiltrate between patients with a known viral driver (HPV), 

compared with those patients where virus is absent. Although differential gene expression studies 

comparing HPV(+) and HPV(-) tumours have been reported (Jung et al., 2010, Pyeon et al., 2007, 

Slebos et al., 2006, Russell et al., 2013, Cancer Genome Atlas, 2015), the question as to whether 

the pathogenesis of the cancer is reflected in differences in immune cells themselves remains 

open. 

Here the focus was to analyse TILHi/mod
 cases from a consecutive cohort and, following RNA-Seq 

analysis, examine the DEGs. Initially, the most striking difference was the immune signature, 

which was significantly greater in HPV(+) tumours and hence likely reflected an immune 

responses to viral antigens. In contrast HPV(-) tumours revealed a prominent tissue 

development/re-organisation gene signature. The molecular data mapped well onto the TIL 

characterization by IHC, although the variability was higher when TILs were counted manually. 

This was likely a reflection of the fact that RNA-Seq analysis uses homogenized tumour, which 

averages the geographical differences within the tissue.  

A significant difference in TIL density, determined by RNA-Seq gene transcript levels of CD4 and 

CD8A (T-cells) and CD19 (B-cells), remained between the HPV(+) and HPV(-) patient cohorts. This 

was clearly demonstrated in the IHC assessment, HPV(-) TIL Hi/mod
 patients had a significantly lower 

expression of B- and T-cell-related genes compared with HPV(+) TIL Hi/mod
 patients. In order to 

assess the difference between HPV(+) and HPV(-) TIL enriched tumours, the data were corrected 

according to the number of immune cells present in the tissue as determined by RNA-Seq gene 

transcript levels (CD8A, CD4 and CD19), with the aim of accounting for the numerical difference in 

immune cells. 
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RNA-Seq data that had been corrected for TIL number showed that the vast majority of immune-

related DEGs were no longer differentially expressed, suggesting that in both patient cohorts the 

lymphocytes were qualitatively similar. The T-cell immune signature, present in both HPV(+) and 

HPV(-) tumours, no longer showed differentially expressed genes. Thurlow et al. have previously 

demonstrated that both HPV(+) and HPV(-) cohorts can mount adaptive immune responses 

(Thurlow et al., 2010), while the association of cytolytic activity of effector cells and 

immunoediting of the tumour has also been reported (Rooney et al., 2015). These studies 

however, did not correct for lymphocyte numbers; the HPV(+) tumours in which no adaptive 

response was detected, likely represented TILlow patients. It was expected that a viral driver would 

promote a distinct T-cell-driven TIL signature, but this was not observed in the data. Instead, the 

data demonstrate that T-cells in TIL Hi/mod
 tumours of different pathogeneses are transcriptomically 

similar, at the level of bulk tumour analysis. This has important implications in the treatment of 

immune rich tumours, as it argues that the type of cancer, in this case HPV(+) and (-) display 

similar immune responses. This then leaves the tumour and the tumour microenvironment as a 

key determining factor in the immunological response.  

In contrast, there was a distinct B-cell signature between HPV(+) and HPV(-) tumours after 

correction for TIL numbers. There was a small subset of B-cell associated genes that continued to 

have greater expression in HPV(+) tumours, including GGA2, SPIB, CD200, ADAM28, BCL2, VCAM1 

and ICOSLG, as determined by previously published datasets for B-cell gene signatures and the GO 

term (B-cell activation, GO:0042113) (Shoemaker et al., 2012, Abbas et al., 2005, Watkins et al., 

2009, Palmer et al., 2006, Grigoryev et al., 2010, Whitney et al., 2003). The expression of the 

differentially expressed B cell-associated genes is not unique to B cells as they can be identified in 

other cell types. This includes CD200, which has been found to be expressed on 1-2% of basal cell 

carcinoma cells (Colmont et al., 2013). However, the data on purified B-cell populations from 

HPV(+) HNSCC confirms the expression of the BCL2, ADAM28, CD200, ICOSLG and SPIB genes in B 

cells isolated from HNSCC tumours. The DEGs were confirmed in a larger, independent cohort 

derived from HNSCC CGA data. This showed that the DEGs were not the result of anatomical 

location bias in HPV(+) tumours, the differences were maintained in anatomically matched HPV(+) 

and HPV(-) tumours. Additionally, applying the TIL-corrected DEG list to the CGA confirmed the 

validity of these observations. 

Greater expression of BCL2 by HNSCC has been proposed as a predictor of good response to 

chemotherapy; this is consistent with its expression in our HPV(+) cohort, a group of patients that 

respond well to treatment, including chemotherapy (Moreno-Galindo et al., 2014, Ward et al., 

2014a). During a normal humoral response, ICOSLG is expressed on activated B-cells within 

germinal centres, which are formed in follicles and are central for an antigen-specific humoral 

response. Histologically, all of the HPV(+) tumours had very well developed tertiary lymphoid 
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structures (TLS) (Liu et al., 2014). TLS within solid human tumours have previously been described 

in breast, cervical and non-small-cell lung carcinoma (Kobayashi et al., 2002, Nelson, 2010). A 

survival benefit has also been observed in tumours that are positive for TLS, however the 

formation of a TLS is accompanied by a plethora of immune cells that play a role in antitumor 

activity and so the specific cell types involved in this survival benefit are not at this time clear 

(Wirsing et al., 2014). The abundance of TLS in tumours may then be an excellent biomarker of an 

on-going protective immune response, the data here shows high numbers of TLS in immunogenic 

(abundant antigens) HPV(+) tumours, these also have dense overall immune infiltrates. Evaluation 

of B cells and TLS in other tumour types is needed to determine their role immunotherapy 

responses. 

In melanoma, ICOSLG is linked with increasing numbers of regulatory T-cells (Treg) (Martin-Orozco 

et al., 2010), but has not previously been described in HPV(+) HNSCC. When a stimulatory ICOS 

antibody was used in combination with anti-CTLA-4, a significant improvement in tumour 

rejection in both melanoma and colon cancer mouse models was observed, suggesting that 

HPV(+) tumours expressing high levels of ICOSLG may respond better to anti-CTLA-4 therapy (Fan 

et al., 2014). SPIB is a transcriptional activator that is specific for lymphoid cells and has previously 

been identified in germinal centres where it was associated with an activated B-cell phenotype 

(Su et al., 1996).CD200+ B-cells were identified using IHC within and peripheral of the follicular 

structures. The viral antigens E6 and E7 generate a strong B-cell response in patients with HPV(+) 

HNSCC (Liang et al., 2012). It is likely that the expression of the B-cell activation marker CD200 

(Barclay et al., 2002) is linked to a persistence of HPV-driven, tumour-derived antigens, which in 

turn stimulate specific B-cells in the germinal centre and the tumour itself. It is also possible that 

the CD200+ B-cells resident at specific locations in the tumour vs. the follicles, have a distinct 

phenotype and properties. These cells could be part of an inhibitory pathway: CD200R activation 

stimulates the differentiation of T-cells to Treg (Holmannova et al., 2012), the numerical increase of 

Treg in parallel with TIL number has been reported in HPV(+) HNSCC (Badoual et al., 2006). These 

CD200+ B cells can act through CD200R and effector mechanisms may include immunomodulatory 

cytokines such as IL-10, (Lindner et al., 2013) release of granzyme B (Iwata et al., 2011) or other 

yet to be identified modes of action. The receptor is expressed on both lymphoid and myeloid 

cells, hence direct and indirect inhibition of T-cell immunity could be possible (Rygiel and 

Meyaard, 2012). It must, however, be noted that expression of CD200 is thought to have links to 

anti-tumour effects by inhibiting activity of tumour-associated myeloid cells via IL-10 (Wang et al., 

2010), arguing caution in targeting a molecule with potentially pleiotropic effects. 

 

It is evident that a phenotypic differences exists between the B-cells of HPV(+) and HPV(-) 

tumours. Data from an HPV-driven mouse tumour model supports a reduction in tumour growth 
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as a result of the depletion of B-cells via anti-CD20 (Affara et al., 2014). It is tempting to speculate 

that anti-CD200 could provide a more targeted approach to B-cell manipulation within these 

tumours rather than the use of anti-CD20, which would globally remove multiple B-cell subsets. In 

the clinical setting, an anti-CD200 blocking antibody was safe and well tolerated in Phase II testing 

(NCT00648739), but as yet the clinical effects have not been reported. The B-cell receptor 

targeting therapies (ibrutinib) have efficacy on CD200+ cells within the B-CLL setting and 

potentially could be used to remove a cell that has a negative role in antitumor immunity 

(Woyach et al., 2012). 

3.4.5 Conclusions  

Analysis of HPV(+) and HPV(-) HNSCC, controlled for TIL number using RNA-Seq, identified a 

number of genes as being expressed both to a greater and lesser extent between tumour types. 

Correction of the RNA-Seq data to account for numerical differences in immune cells between 

virally driven and virus-independent HNSCC, was an alternative approach to revealing DEGs. 

Analysis of the data post correction for immune cells, revealed that differences between the 

transciptome in T-cells between HPV(+) and HPV(-) HNSCC appears predominantly quantitative, 

but that a distinct B-cell profile exists in HPV(+) cancers. In order to assess the qualitative 

differences in B- and T-cells between HPV(+) and HPV(-) tumours the immune cells need to be 

isolated and analysed separately. 
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Chapter 4: Investigation of Tumour infiltrating 

lymphocytes with high resolution analysis of purified 

immune cell subsets. 

The prognostic relationship between intra-tumoural density of immune infiltrates and survival is 

well documented, with immunomodulatory therapies aiding patient survival. However, these 

therapies still fail in a large proportion of patients, for reasons that are still unclear. Better 

knowledge of immune cells within the tumour micro-environment may allow alternative 

treatments to be implemented to further improve patient survival. One way of understanding the 

features of the immune response is by using transcriptomic analysis of the isolated immune cells.  

4.1 Isolation of immune cells from cancer 

4.1.1 Introduction 

High resolution transcriptomic analysis of purified immune cell subsets presents an opportunity to 

understand immune cells in different clinical contexts. The technique of cell sorting has been used 

extensively in mouse immunology to understand the gene expression patterns of different cell 

types (Painter et al., 2011, Cohen et al., 2013). Micro-scaled RNA-Seq on sorted immune cells has 

also been used to assess phenotype and function in the asthma setting (Seumois et al., 2012, 

Seumois et al., 2014). The application of cell sorting to tumour-infiltrating lymphocytes followed 

by transcriptomic analysis has the potential to allow a better understanding of immune function 

and phenotype in different clinical settings. The first stage in this process is dissociation of the 

tumour using mechanical and enzymatic (collagenase) methods to generate a single cell 

suspension. Data from a comparison of different collagenase preparations has shown that 

Liberase DL (Roche) led to less cell death and lower proteolytic cleavage of cell surface markers 

(Layfield, PhD unpublished data), when compared to more crude collagenase D preparations 

(Sigma). In order to isolate different immune cell populations, an antibody panel that would 

delineate the immune cells into CD8+, CD4+, B cells and macrophages (activated monocytes - 

CD14+ HLA-DR+) was also required. Standardised immune phenotyping is routine and an 

amended protocol was designed to isolate these cells types (Maecker et al., 2012). The immune 

density, as determined by flow cytometry, will be assessed in relation to previous studies for 

HNSCC and NSCLC (Lechner et al., 2017, Lizotte et al., 2016, Stankovic et al., 2018).  
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4.1.2 Objectives 

Isolation of the immune cells CD8+, CD4+ T -cells, activated monocytes / macrophages (activated 

monocytes - CD14+ HLA-DR+ cells will broadly be termed macrophages) and B cells from freshly 

resected tumours to gain further insight into their characteristics in these tumours. Initial 

optimisation of cell isolation methods and generation of a protocol was required for robust and 

continued collection of immune cells from patient tumours for subsequent analysis. Once a 

cohort of samples had been acquired, a collaborative work flow was used to undertake the RNA-

Seq, using proprietary methodology developed in La Jolla, Institute for Allergy and Immunology 

(Seumois et al., 2012). The analysis will focus on the assessment of CD8+ T cells and B cells in 

tumours isolated from HNSCC and NSCLC in relation to immune density and clinical parameters. 

4.1.3 Results 

4.1.3.1 Optimisation of Immune cell sorting  

Initial testing of a FACS panel for immune cell sorting (sorting CD4+ and CD8+) was carried out 

using PBMC’s (Appendix C.1.1). This allowed the flow cytometry gating strategy and optimal sort 

settings to be established prior to use on HNSCC and NSCLC tumours (Appendix C.1.1). The initial 

optimisation FACS panel (CD45, CD3, CD4 and CD8) sort gating strategy is shown in Appendix 

C.1.1, the gating structure uses Singlet exclusion > dead cell exclusion > lymphocyte gating 

(CD45+) > CD3+ and then CD4+ and CD8+ as the sort gates. Initial testing on tumour samples 

highlighted that cell aggregates occurred once the tumour was dispersed leading to flow 

cytometer blockages and a time delay. The flow cytometry buffer was adjusted to contain 2mM 

EDTA; this chelates Ca2+ and alleviates the problem of cell adhesion and formation of aggregates. 

When isolating CD8+ cells, the purity of the sort was >98%; this panel was then used to sort n=18 

HNSCC tumours.  

4.1.3.2 Immune cell sorting panel  

In order to capture additional immune cell populations and maximise the 4-way sort capabilities 

of the FACS ARIA, the flow cytometry panel was expanded to include the markers CD14 and HLA-

DR to capture activated monocytes (the CD14+ HLA-DR+ cells will broadly be termed 

macrophages) and also B cells with CD19 and CD20; the gating strategy is shown in Figure 34 A 

and B. Due to instrument limitations with the number of available fluorophores, CD19 and CD20 

were run in the same fluorophore as CD8 (PerCP-Cy5.5), using the CD3 positive/ negative gate to 

distinguish between them. This protocol was then formalised into an SOP and used to sort 
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immune cells from HNSCC and NSCLC. It has also been used on two different clinical trials as 

tertiary endpoint assays (HARE40 and AMG319), please see Appendix A2 for details.  

PBMC 

 

Figure 34. Immune cell sorting panel. 
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Figure 34. Immune cell sorting panel. 
Immune cell gating strategy for isolation of CD8+, CD4+ T cells, B cells and Macrophages 
(activated monocytes) from tumour samples. (A) FACS panel tested on PBMC and (B) HNSCC 
tumour, both display high purity (>98%) for CD4+ and CD8+ T cells. 

4.1.3.3 Immune cell distribution in HNSCC and NSCLC determined by FACS 

4.1.3.3.1 Immune cell isolation in HNSCC 

Using the optimised tissue-dissociation and flow-sorting panel, immune cells were isolated from 

HNSCC tumours. The average number of immune cells and range for the samples collected are 

outlined in Table 20, the target number of events for each sort was between 1000 and 50,000 

cells for each population.  

 

Table 20. Average and range for each sorted cell population in HNSCC.  
The number of cells sorted for the CD8+, CD4+, B cells and macrophages (activated monocytes) 
using the immune cell sorting panels. Due to technical problems with the flow cytometer 5/ 60 
cases were not sorted. 

 

The distribution of the immune cells as determined by FACS, is shown in Figure 35 A and B; bar 

plots (geometric mean and 95% confidence interval) are shown as a percentage of the parent 

population. The immune cell proportion for each population from its parent gate is summarised in 

Table 21. The data show that CD4+ cells are present at a ratio of 2:1 to CD8 T cells (p<0.001) and B 

cells, with the B cells and CD8 cells having a similar abundance, macrophages (activated 

monocytes) were the least frequent cell in HNSCC. 

FACS cell sorting
(n=60)

Disaggregated tissue
(n=60)

Unsuccessful sorting 
(technical issue with FACS 

ARIA)
(n=5)

Cells Isolated and RNAseq in progress. 
(n=55)

Sorted Cell no. (103) Mean Range 

B cell 44 25 to 53

CD8 36 3 to 55

CD4 31 1.8 to 58

Macrophage 15 1.3 to 15
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                    A                                                                                                       B

 

Figure 35. Immune cell percentages for CD8+, CD4+ T cells, B cells and Macrophages (activated 
monocytes) in HNSCC. 
The geometric mean cell frequency (error bars represent the 95% confidence interval) for CD8+, 
CD4+, B cell and macrophages (activated monocytes) was plotted from CD45 and CD3 populations 
(n=55). (A) % CD4+ and (B) % CD3+. The CD45+ parent gate yields comparable cell frequencies to 
the reported literature.  

  Singlet Live CD45+ CD4+ CD8+ B cell 
Macrophage
(activated 
monocytes) 

n 55 55 55 55 55 37 12 

% Total  86.82 55.14 10.33 3.346 1.64 1.646 0.1306 

% Singlet   62.64 12.06 3.838 1.897 1.76 0.1374 

% Live     23.09 7.582 3.751 2.44 0.2191 

% CD45+ve       26.04 17.1 12.63 3.496 

% CD3+ve       47.33 29.92     
 

Table 21. The median percentage of each cell type derived from flow cytometry in HNSCC.  
Each cell population was assessed from different parent gating strategies displayed as median % 
of each cell type. Cell populations as a defined by % of CD45 yield comparable results to the 
literature.    
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4.1.3.3.2 Immune cell sorting in Lung tumour and background lung. 

A collaborative laboratory collection process was implemented to isolate immune cells from 

NSCLC as well as adjacent non-involved back ground lung tissue using the same process as for 

HNSCC. The Immune cell sorting used the same flow cytometry panel (Figure 34) allowing 

isolation of CD4+, CD8+, B cells and Macrophages (activated monocytes). The number of sorted 

cells for each population is shown in Table 22.  

 
Table 22. Average and range for each sorted cell population from NSCLC and non-involved 
background lung. 
The number of cells sorted for the CD8, CD4, B cells and macrophages (activated monocytes) 
using the immune cell sorting panel. Due to technical problems with the flow cytometer 7 cases 
were not sorted. 

 

The distribution of the immune populations (CD8+, CD4+, B cell and Macrophages (activated 

monocytes) between tumour and background lung gated on CD45 and CD3+ cells is shown in 

Figure 36 A and B as well as a summary in Table 23. The overall percentage of immune cells 

depended on which parent gate was used for the analysis, as was observed in HNSCC. The number 

of CD4+, CD8+ cells and B cells in the CD45+ gate (Figure 36 A) was significantly different between 

tumour and non-involved lung (NIL), with tumours having higher numbers, macrophages 

(activated monocytes) were similar in NIL (5.9%) and tumour (5%). When the cell numbers were 

calculated form the CD3+/- gate (Figure 36 B) only the B cells were significantly different between 

Successful FACS cell sorting
(n=61)

Disaggregated tissue
(n=68)

Unsuccessful sorting (insufficient 
cell number / technical issue with 

FACS ARIA (n=7)

Cells Isolated and RNA-Seq 
performed

Lung tumour n=48

Sorted Cell no. (103) Mean Range 

B cell 16 1.4 to 53

CD8 22 1.6 to 51

CD4 27 4.8 to 54

Macrophage 24 2.7 to 53

Background lung tissue n=37

Sorted Cell no. (103) Mean Range 

B cell 17 1.7 to 51

CD8 33 18 to 52

CD4 39 11 to 54

Macrophage 33 1.4 to 52
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the Tumour and NIL, however the CD4+ cells were higher in the tumour but did not reach 

significance (p=0.07). 

A 

 
B 

 

 
Figure 36. Immune cell percentages for CD8+, CD4+ T cells, B cells and Macrophages (activated 
monocytes) in Lung tumour and background lung tissue. 
The geometric mean cell frequency (error bars represent the 95% confidence interval) or CD8+, 
CD4+, B cell and macrophages (activated monocytes) was plotted from the CD45+ and CD3+ cell 
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populations (n=55). (A) % CD45+ and (B) % CD3+. The CD45+ parent gate yields comparable cell 
frequencies to the reported literature. 

 

Table 23. The median percentage of each cell type derived from flow cytometry in Lung 
tumour and non-involved background lung tissue.  
Each cell populations assessed from different parent gating strategies was displayed as median 
% of each cell type. Cell populations as a defined by % of CD45 yield comparable results to the 
literature. 

4.1.3.4 Analysis of immune cell frequencies in HNSCC and NSCLC in relation to tumour 

type.  

The immune cell distribution in the subtypes HPV(+) and (-) HNSCC; Adenocarcinoma and 

Squamous cell lung carcinoma were assessed by gating on CD45+ cells (Figure 37 A and B). In 

HPV(+) HNSCC, only CD4+ cells were significantly higher compared to HPV(-) tumours; CD8+, B 

cells and Macrophages (activated monocytes) were not significantly different but showed a trend 

towards being higher in HPV(+) tumours (Figure 37 A). When comparing the histological category 

of Adenocarcinoma and Squamous cell lung carcinoma, there were no differences in immune cell 

percentages when gated on CD45+ cells, although adenocarcinoma appeared to have elevated 

CD4+ cell frequencies (Figure 37 B). 

Lung tumour

Singlets Live CD45 CD3+ CD3- CD4 CD8 B cell CD14 Macrophage

n 43 43 43 43 43 43 43 43 43 43

% Total 73.1 40.9 8.8 4.1 4.2 2.1 1.4 1.1 0.8 0.4

% Singlet 54.3 12.2 5.6 6.0 2.9 1.9 1.6 2.6 5.0

% Live 33.5 16.0 16.2 9.0 5.0 4.6 9.6 14.1

% CD45+ve 44.5 50.6 23.5 14.5 12.7 9.6 5.0

% CD3(+) & (-) 51.3 32.9 27.3 19.8 10.4

Background lung

Singlets Live CD45 CD3+ CD3- CD4 CD8 B cell CD14 Macrophage

n 37 37 37 37 37 37 37 37 37 37

% Total 67.9 40.8 17.8 5.8 10.7 2.5 1.7 1.5 3.5 1.0

% Singlet 57.4 28.0 8.9 17.2 3.9 2.7 2.1 10.0 5.9

% Live 58.5 20.2 35.0 9.2 6.5 4.4 16.8 21.9

% CD45+ve 34.7 59.0 15.9 10.8 8.3 16.8 5.9

% CD3(+) & (-) 44.8 31.7 14.5 27.8 10.0
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A 

 

B 

 

Figure 37. Comparison of immune cell infiltrate and tumour type in HNSCC and NSCLC. 
The immune infiltrate (CD4+, CD8+, B cell and macrophage/ activated monocytes) gated from the 
CD45+ cells are shown as a percentage (geometric mean, where error bars represent 95% 
confidence interval). (A) The HNSCC cohort when divided into HPV(+) and (-) only shows a 
significant difference in CD4+ T cells. (B) The histologic subtypes of squamous cell carcinoma and 
adenocarcinoma display no significant differences across the immune cell types in NSCLC. 

 

HPV(+)
CD4

HPV(-)
CD4

HPV(+)
CD8

HPV(-)
CD8

HPV(+)
B ce

ll

HPV(-)
B ce

ll

HPV(+)
Mac

rop
ha

ge

HPV(-)
Mac

rop
ha

ge
0

10

20

30

40

50

60

70

80

90

100

Cell population

%
 o

f C
D

45
 c

el
ls

HPV(+)CD4
HPV(-)CD4

HPV(+)CD8

HPV(-)CD8

HPV(+)B cell

HPV(-)B cell

HPV(+)Macrophage

HPV(-)Macrophage

0.0026
Exact
**

0.2796
Exact
ns

0.3943
Exact
ns

0.8333
Exact
ns

** ns ns ns

SCC-C
D4

Ade
no

-C
D4

SCC-C
D8

Ade
no

-C
D8

SCC-B
 ce

ll

Ade
no

-B
 ce

ll

SCC-M
ac

ro
ph

ag
e

Ade
no

-M
ac

ro
ph

ag
e

0

10

20

30

40

50

60

70

80

90

100

%
 o

f C
D

45
 c

el
ls

Adeno-CD8

Adeno-CD4

Adeno-Macrophage

SCC-CD4

SCC-CD8
Adeno-B cell
SCC-B cell

SCC-Macrophage

ns ns nsnsns



Chapter 4 

131 

4.1.3.5 Evaluation of tissue storage methods on immune cell frequencies and gene 

expression profiles 

Part of the on-going tissue processing optimisation involved identifying if tumour samples could 

be stored prior to sorting and analysis in RNA-Seq experiments. The different storage and 

separation methods were compared to see whether there were any significant differences in 

either the yield of cells or the detectable gene expression profiles. A small cohort of 6 cases were 

used (Appendix A.1.6), part of the freshly resected tumour was sorted as previously reported, part 

was preserved as a cell suspension (DST) and part was cryopreserved as multiple 2mm fragments 

(CT) In 90% FCS and 10% DMSO (see methods section 2.6.2). The cells/ tissue were then thawed 

and immune cells sorted as previously described, followed by RNA-Seq. The cell percentages 

gated on CD45+ % populations are displayed as a dot plots with the standard error of the mean 

(Figure 38 A). Overall the cell percentages between the different methods are consistent (fresh, 

CT and DST), a high or low B cell or CD8+ cell percentage is present in the fresh sort, CT and also 

DST. The individual cases, processing method and immune cell type (CD8, CD4, Macrophage/ 

activated monocytes and B cell) are also shown as bar plots in Figure 38 C. There were however, 

exceptions to this with AC066 displaying a larger error of mean for B cells and macrophages 

(activated monocytes). The tumour volume is likely to impact the consistency of the FACS data 

when comparing it to samples sorted in smaller aliquots. The viability of the cells was also 

consistent between the fresh, DST and CT processing methods (Figure 38 B) with the exception of 

case AC023, where the tissue ischaemic time and large tumour volume may have played a role in 

the variability.  
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Figure 38. Assessment of processing method on the immune cell frequencies and viability as 
determined by FACS.  
Tumour samples from patients were collected, processed and sorted on the day of surgery (fresh) 
as well as being cryopreserved as cell suspensions (DST) and 4 x 2-3mm pieces of tumour (CT). (A) 
Summary dot plot of each case for the cell populations, error bars represent standard error of 
mean (SEM). (B) The viability of the cells (% live of the singlet gate) using the nuclear stain DAPI 
also shows a consistency between the different storage conditions, except in the Fresh tissue 
AC023 sample, where a higher % of cells stained DAPI positive. (C) The cell frequencies for each 
case and each cell population (CD8, CD4, B cell and macrophages/ activated monocytes) are 
shown as a percentage of CD45.  
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Following sorting of the Immune cells, the CD8+ cells were subjected to RNA-Seq and gene 

expression evaluated, firstly by PCA of the top 4000 and 1000 most variable genes across the 

different samples (Figure 39 A) and then by visualisation of immune gene expression profiles 

using a heat map (Figure 39 B). The 4 cases with fresh, DST and CT CD8 T cells are colour coded 

and labelled with the tissue storage/ processing method, the PCAs illustrate that the matching 

samples cluster closer to each other than to different cases, using both the top 4000 and 1000 

most variable genes. The fresh sample from AC023 displayed the largest variance and distance to 

its matched pairs. The immune gene expression focusing on markers of functionality and targets 

of immunotherapy showed consistent expression across all of the different samples, PDCD1 (PD1) 

is a good example where high and low expression levels were observed between cases, but was 

consistent within the matching samples of a case (Figure 39 B). 
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Figure 39. Analysis of gene expression profiles from cells isolated using different processing 
methods.  
(A) To ensure global CD8 gene expression (bulk RNA-Seq) changes hadn’t occurred between 
storage conditions the top 4000 and 1000 most variable genes across the samples and storage 
conditions were visualised as a PCA (principle component analysis), displaying the most variable 
genes emphasizes any global changes. Samples cluster on the PCA closely to their replicates. (B) 
To further assess differences in the CD8 RNA-Seq key immune genes were visualized as a 
heatmap, again showing good consistency among samples replicates.     
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4.1.4 Discussion 

In order to gain further insight into tumour-infiltrating lymphocytes using transcriptomic 

approaches, they needed to be routinely isolated from solid tumours. Early testing with magnetic 

cell isolation techniques (Easy Sep, Stemcell and MACS, Miltenyi) yielded lower purified cell 

numbers and required sequential isolation steps to obtain multiple cells types (data not shown). 

The optimisation of cell sorting using Flow cytometry required both an effective tumour 

dissociation protocol and a functional FACS panel that could be implemented as a robust sorting 

procedure. A routine procedure for isolating immune cells was developed from existing work and 

published work (Maecker et al., 2012), this was firstly applied to head and neck tumours, followed 

by a collaborative expansion into lung cancer. Initial tumour cell suspensions were prone to the 

formation of cell aggregates; as a result EDTA (2mM) was added to the sorting buffer which 

alleviated this issue. Cells were sorted directly into Trizol LS (rather than lysis buffer) to lyse cells 

and preserve RNA. The flow cytometer setup was made structured and routine to ensure good 

stream setup and correct 4-way stream placement for effective sorting into 1.5ml tubes (SOP in 

Appendix A2). Tumour cell suspensions were sorted using a FACS panel for the isolation of CD4+ 

and CD8+ T cells, B cells (CD19+ and CD20+) and macrophages (activated monocytes, CD14+ and 

HLA-DR+), this was routinely applied to HNSCC and NSCLC samples.  

The flow cytometry data shows that the overall immune density can vary greatly depending on 

the gating strategy with the CD45+ % having an average of 10% of all events; this increases to 23% 

if only live cells are used. Reassuringly, the overall immune cell percentages for HNSCC match 

those identified by other groups (Lechner et al., 2017), CD4+ T cells = 47% of T- lymphocytes 

(CD3+) and CD8 = 29%, with the CD4:CD8 ratio at a 1.5 – 2. The overall infiltration with B cells 

matched that of the CD8+ T cells. Again, the immune density in NSCLC showed a similar number of 

immune cells to those stated in the literature (Lechner et al., 2017), (Lizotte et al., 2016) 

(Stankovic et al., 2018). NSCLC had T cell (CD3+) percentages of similar levels to HNSCC with CD4+ 

T cells = 51% and CD8 +T cells = 33%, the non-involved lung (NIL) CD4+ T cells = 45% and CD8+ T 

cells = 32%, also of note were the number of B cells, 27% in tumours and 14% in non-involved 

lung. A significant difference was seen between tumour and non-involved lung for CD8+, CD4+ 

and B cells when gated on CD45+ cell, whereas, when gating on CD3, only B cells were 

significantly different. The next thing was to assess if differences existed between tumour 

subtypes in HPV(+) and (-) HNSCC and adenocarcinoma and squamous cell carcinoma (NSCLC). In 

HNSCC, a significant difference in CD4+ infiltrate was found between HPV(+) and (-) tumours. Our 

previous data looking at TIL rich HSNCC identified a difference in B cells between HPV(+) and (-) 

tumours, using RNA-Seq and IHC (Wood et al., 2016b). The data here is not significant although 

the HPV(+) tumours do split into a high B cell and low B cell group. In line with the literature, no 
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difference was observed in the immune distributions between adenocarcinoma and squamous 

lung carcinomas (Lizotte et al., 2016). 

As part of the on-going tissue storage, samples that couldn’t be sorted on the day of surgery were 

cryopreserved as pieces of tissue (CT) and/or cell suspensions (DST) to ensure that all samples are 

stored for research applications. This opened the question of how representative preserved 

tissues are compared to the fresh surgical specimen. In order to address this, a group of 5 

tumours were divided into triplicate samples one of which was subjected to flow cytometry and 

sorting on the day of surgery (fresh), one was cryopreserved as pieces of tissue (CT) and one was 

disaggregated into cell suspensions (DST) which were analysed. The FACS data shows minimal 

differences between the three methods, with equivalent percentages of CD8+ and B cell (CD45 

gate). The viability was also consistent except for AC023 which was a large tumour with likely 

issues due to ischaemia. To evaluate the impact on gene expression, CD8+ cells were selected for 

comparison. PCA analysis of the top most variable 1000 and 4000 genes across the samples 

revealed that samples grouped mostly by case, except for AC023 (previously identified as an 

outlier). This indicates that at a global gene expression level, the cases exhibited similar global 

expression patterns that were not perturbed by the cryopreservation process. This has also been 

shown at a single cell level (Guillaumet-Adkins et al., 2017). Immune gene expression was also 

assessed and shows similar expression levels between the different storage methods in CD8+ T 

cells, indicating that the cryopreservation methods is not affecting the gene expression readout.  

4.1.5 Conclusions 

Isolation of immune cells from tumours enables high resolution studies to be undertaken in 

different patient cohorts. A tumour dissociation protocol was developed in order to generate 

single cell suspensions for flow cytometry in HNSCC and NSCLC. In addition to this, a flow 

cytometry panel for the isolation of CD8+, CD4+, B cells and macrophages (activated monocytes) 

was implemented. A standardised protocol using flow cytometry (BD FACS ARIA) was then 

implemented for routine and consistent immune cell isolation in HNSCC and NSCLC. This process 

has subsequently been incorporated into two clinical trials in HNSCC (HARE-40 and AMG319; 

Appendices A2), where immune cell transcriptomics is being assessed under different treatment 

conditions. The analysis of the Flow cytometry data shows that the immune cell percentages fit 

with what is currently published. As part of the tumour sample collection strategy (CT and DST), it 

was also important to show that smaller biopsies and cell suspensions reflect the larger samples 

processed on the day of surgery. In addition to this, it was necessary to demonstrate that the 

cryopreservation process had not negatively impacted the gene expression profiles. This was done 

in a small cohort of samples and focused only on CD8+ cells, meaning additional cell types (CD4+, 
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B cell and macrophages/ activated monocytes) and tumour types would be required to answer 

this question fully. However, the data here showed a high level of consistency both at the cell 

frequency and gene expression level. 
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4.2 Impact of CD8+ Tissue resident memory cells in Head & neck and 

lung cancer 

4.2.1 Introduction 

Response to immunotherapy is highly heterogeneous and not all patients benefit from such 

approaches, with 1/3 of patients showing little or no response (Sharma and Allison, 2015). This 

opens the question of what defining features lead to a beneficial clinical response. The main 

cellular targets of immunotherapy are cytotoxic T lymphocytes (CTLs), primarily CD8+ T cells 

(Tumeh et al., 2014); the main aim of immunotherapies is to “release” them from a state of 

exhaustion. In many solid cancers, the density of CD8+ T cells is positively linked to survival, as 

previously outlined (Galon et al., 2006), whether the immune density is also linked to a qualitative 

difference is less well known. During the immune response to tumours, T cells become 

functionally unresponsive (“exhausted”), this is in part due to chronic activation leading to a 

specific phenotype, these states are also seen in chronic viral infections (Wherry, 2011a). Classical 

markers of T cell “exhaustion” are CTLA4, PD1, TIM-3 and LAG3; expression of these ultimately 

leads to a reduction in the cytolytic function of the CD8 T cells (Pardoll, 2012, Barber et al., 2006).  

 

The success of anti-PD1 therapy in management of cancer has led to its widespread use, however 

significant adverse events can occur (Schachter et al., 2017, June et al., 2017), leading to the 

search for more specifically targetable features of tumour-reactive T cells. Transcriptomic 

approaches allow fine mapping of the immune cells and the resulting molecular features in 

different patient stratification groups. To characterise the CD8+ T cell infiltrate in solid tumours, 

the Immune cells were isolated (as previously outlined in section 4.1) from HNSCC and NSCLC, as 

well as from the non-involved background lung. Figure 40 A shows a schematic of the anatomic 

localisation of the tissue collection. In order to establish what unique features may exist in tumour 

CD8+ T cells, their transcriptional activity was assessed and differential gene analysis was 

performed. The differentially expressed genes between Lung tumour-derived CD8+ T cells 

compared to CD8+ T cells from non-involved lung are shown in a heatmap together with the tSNE 

plots in Figure 40 B-D. The transcriptional profiling revealed a distinct gene expression pattern in 

the tumour-derived CD8+ cells that was observed in both NSCLC and HNSCC. This was separate 

from that of the CD8+ T cells from non-involved lung, as seen in the heatmap and also the 

clustering dendrogram (Figure 40 B and C). A signature of markers indicating elevated T cell 

exhaustion and anergy was detected. Markers of T cell dysfunction (PDCD1, HAVCR2, LAG3 and 

CTLA4) were differentially expressed between non-involved lung and tumour-derived CD8+ T cells 

(Ganesan et al., 2017). However, evidence of greater clonal expansion in PD1 positive tumour 



Chapter 4 

140 

infiltrating CD8+ T-cells has also been identified (relative to PD1 negative CD8+ T cells)(Pentcheva-

Hoang et al., 2007, Gros A, 2014). This highlights a dual role of CD8+PD1+ cells in the tumour. In 

depth analysis of the transcriptome in tumour-derived CD8+ T cells identified features of T cell 

activation and clonal expansion (41BB expression and higher numbers of unique TCRs). Included 

in the differential signature was a marker of T cell tissue residency, CD103 (ITGAE), an integrin 

that helps retain T cells in the peripheral tissues by binding to epithelial E-cadherin (Schenkel and 

Masopust, 2014).  

 

Figure 40. The core transcriptional profile of CD8 T cells from HNSCC, NSCLC and non-involved 
lung (NIL). 
(A) Schematic representation of the tissue sites for the cohort. (B) RNA-Seq analysis of genes 
differentially expressed (DESeq2 analysis; Benjamini-Hochberg test, FDR<0.05, FC >1.5) between 
Lung tumour CD8 (n=36) and non-involved lung CD8+ T cells (n=32) (rows = genes , columns = 
patient tumours), presented as row-wise z-scores of normalized read counts in CD8+ TILs. The 
same genes were visualised in the HNSCC CD8+ T cells (n = 41), similarity between tumour CD8+ 
TILs was observed with a different transcriptional profile in the NIL. Hierarchical clustering 
analysis (Ward average linkage, Pearson’s correlation distance metric) grouped the tumour CD8+ 
T cells with minimal outliers (C). This was further demonstrated with tSNE (perplexity = 6, 
iterations = 1000), where the tumour CD8+ T cells cluster together separate from the NIL (D). 
Adapted from (Ganesan et al., 2017). 
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4.2.2 Objectives 

A gene expression pattern for “exhausted” CD8+ Tissue resident memory T cells (CD8+CD103+) 

was identified in lung tumours (Ganesan et al., 2017). However, this needed to be confirmed at a 

protein level using flow cytometry, in lung tumour, non-involved lung as a control tissue and with 

peripheral blood as an additional control sample. The impact of tissue- resident memory T cells 

(CD103+) on survival will also be evaluated by IHC on a retrospective cohort of NSCLC and HSNCC. 

CD8+ T cells from HPV(+) and (-) tumours will also be evaluated for evidence of a viral-specific 

gene expression profile in the virally-driven tumours. The core transcriptomic differences 

between the clinically relevant CD8+PD1+ and PD1- T cells will also be assessed in a small cohort 

of samples. 

4.2.3 Results 

4.2.3.1 Evaluating the tissue residency and exhaustion features of CD8+ T cells in cancer 

4.2.3.1.1 Frequency of TRM and exhaustion markers in tumours and control tissue using flow 

cytometry 

A cohort (Appendix A.1.7) from whom matched tumour, non-involved lung (control) and 

peripheral blood (control) was obtained, was assessed on the day of the surgical resection, using a 

FACS panel that covers CD8 (CD8A), PD1 (PDCD1), CD103 (ITGAE) and 41BB (TNFRSF9). The CD8+ T 

cells (gating = singlet>live>CD45>CD3>CD8) were assessed for the frequency of CD103 (Figure 41), 

PD1 (Figure 42) and 41BB positive cells (Figure 43) in the different tissue compartments. 

Representative plots for the expression and frequency of the tissue residency marker CD103 are 

shown in Figure 41 A and B, with a bar chart summary (geometric mean and 95% confidence 

intervals) of the percentage of CD8+ CD103+ T cells in the three tissue compartments. The 

peripheral blood control has a very low number of CD8+ CD103+ T cells (1-2%) and is consistently 

low across the cohort, however they are not absent and represent an intriguing population that 

may have originated in the tumour. The non-involved lung (NIL) and tumour display a 

heterogeneous number of CD103+ cells with significantly higher numbers in the tumour 

(p=0.0059) relative to the NIL (Figure 41 C).  
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Figure 41. Evaluation of CD103 protein expression in CD8 T cells.  
Flow cytometric analysis of CD103 (ITGAE) was carried out on PBMC, non-involved lung (NIL) and 
tumour (NSCLC). (A) Representative plots for the cell frequencies in PBMC, NIL and tumour, (B) 
Histogram for the same representative cases. (C) Bar and dot plots (geometric mean and 95% 
confidence interval) displaying the distribution of CD8+CD103+ TRM cell frequencies in PBMC , Nil 
and tumour. Tumours exhibit a significantly higher number of CD8+CD103+ TRM T cells (p=0.0059; 
Mann-Whitney test). 
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The finding of high CD8+CD103+ TRM cells in the tumour led to the evaluation of whether the T cell 

“exhaustion” marker PD1 varied between the CD8+CD103+ and CD103- populations. The 

expression and distribution of PD1 between the CD103+ and CD103- CD8+ T cells is shown in 

Figure 42 A and B, where representative plots show a higher expression and frequency of PD1 in 

tumour TRM (CD8+CD103+) cells compared to the NIL. A higher frequency of CD8+CD103+PD1+ 

cells was observed in the tumour compared to the NIL (p=0.0006). In addition, the frequency of 

PD1+ T cells was higher in the tumour-infiltrating CD103+ CD8+ T cells compared to the CD103-

CD8+ cells (p=0.0011) (Figure 42 C). In PBMC, the CD8+CD103+ cells expressed very little PD1, 

however the CD8+CD103- T cells in peripheral blood expressed equivalent levels of PD1 to 

CD8+CD103- T cells in the normal lung and tumour. 

This showed that the CD8+CD103+ TRM cells were expressing high levels of PD1 in the tumour, as 

was seen in the transcriptomic data. Another feature identified from the transcriptomic analysis 

of tumour CD8+ T cells was the increased expression of 41BB, a marker of TCR engagement. This 

displayed a more heterogenous expression profile between the different tissue compartments, 

shown in Figure 43 A-C (PBMC, NIL and tumour), however a significant difference was identified in 

the number of CD8+CD103+41BB+ cells in the tumour relative to the NIL (p=0.0005). The tumour 

also displayed a higher number of 41BB+ cells between the CD103+ and CD103- populations 

(p=0.0015). The number of CD8+CD103-41BB+ cells was similar in PBMC and NIL, with the tumour 

displaying lower cell numbers. 
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Figure 42. PD1 exhaustion marker cell frequencies in CD8 TRM T cells. 
Flow cytometric analysis of PD1 cell numbers in CD8 TRM (CD103+) and non- TRM (CD103-) in 
PBMC, non-involved lung (NIL) and tumour (NSCLC). (A) Representative plots for the cell 
frequencies in PBMC, NIL and tumour. A fluorescence minus one (FMO) control tube with the 
removal of the PD1 antibody was used to set the cut-off point for the gating, (B) Histogram for 
the same representative case. (C) Bar and dot plots (geometric mean and 95% confidence 
interval) displaying the distribution of CD8+CD103+ PD1+ TRM and non- TRM cell frequencies in 
PBMC, Nil and tumour. Significantly higher PD1 cell numbers were observed in the tumour CD8+ 
T cells (Mann-Whitney test). 
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Figure 43. Analysis of 41BB cell activation marker in CD8 TRM T cells. 
Flow cytometric analysis of 41BB+ cell numbers in CD8+ TRM (CD103+) and non- TRM (CD103-) in 
PBMC, non-involved lung (NIL) and tumour (NSCLC). (A) Representative plots for the cell 
frequencies in PBMC, NIL and tumour. A fluorescence minus one (FMO) control tube with the 
removal of the 41BB antibody was used to set the cut-off point for the gating, (B) Histogram for 
the same representative case. (C) Bar and dot plots (geometric mean and 95% confidence 
interval) displaying the distribution of CD8+CD103+ 41BB+ TRM and non- TRM cell frequencies in 
PBMC, Nil and tumour. Significantly higher 41BB cell numbers were observed in the tumour CD8+ 
TRMs (Mann-Whitney test). 
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4.2.3.1.2 Mapping the proliferative state of CD8+CD103+ TRM T cells using Ki67 

Evidence of a higher number of 41BB+ cells and an increase in the number of unique TCR (CDR3) 

repeats that are indicative of a T cell expansion (Ganesan et al., 2017), led to the interrogation of 

the proliferative state of the cells using Ki67 as a marker. This was performed using flow 

cytometry on a separate cohort of n=10 tumour samples (Appendix A.1.7; key markers = Ki67, 

PD1, CD103 and 41BB), where the frequency of Ki67 cells was analysed relative to the tissue type 

and TRM status (CD103+ and CD103-). The representative FACS plot and histogram (Figure 44 A 

and B) shows a tumour with high numbers of CD8+CD103+Ki67+ TRM cells. The number of 

CD8+CD103+Ki67+ cells in the NIL was extremely low compared to the tumour (p=0.0007). The 

comparison of the tumour CD8+ TRMs (CD8+CD103+) with non- TRM (CD8+CD103-) (Figure 44 C) 

cells again showed a significant difference, with the tumour TRM cells displaying higher 

proliferating Ki67+ cell numbers (p=0.0433). The PBMC and NIL non-TRM cells numbers displayed 

low numbers of Ki67+ cells.  

In order to understand the co-expression of the markers PD1, 41BB, Ki67 and CD103, the flow 

cytometry data was visualised as a tSNE (t-distributed stochastic neighbour embedding) plot 

(Figure 45). The CD8+ T cells were randomly sampled to yield 10,000 cells per sample, then 

concatenated together and tSNE analysis performed using the limited number of markers (PD1, 

41BB, Ki67 and CD103). The expression of CD103 (TRM) clearly divides the CD8+ cells into two 

groups, most of the PBMC and NIL have less expression of CD103, as has been previously 

identified using conventional flow analysis (Figure 41). Cells from the tumour (teal) and NIL(pink) 

dominate the CD8+CD103+ signal in the tSNE. Two regions within the CD8+CD103+ cells were 

almost exclusively derived from the tumour (not shared with the NIL). The expression of PD1 was 

most prominent in this region which is also broadly divided by a small cluster of 41BB+ and a 

ki67+ cells (arrow). It shows that CD8+ T cells can co-express CD103+PD1+41BB+Ki67+ and that 

only a small subset were actively dividing (Ki67+) and display TCR engagement (41BB+). 

 



Chapter 4 

147 

 
Figure 44. Proliferative capacity of the CD8 TRMs in NSCLC. 
Intracellular analysis of the nuclear proliferation marker Ki67 in CD8 TRM (CD103+) and non- TRM 
(CD103-) in PBMC, non-involved lung (NIL) and tumour (NSCLC). (A) Representative plots for the 
cell frequencies in PBMC, NIL and tumour. A fluorescence minus one (FMO) control tube with the 
removal of the Ki67 antibody was used to set the cut-off point for the gating, (B) Histogram for 
the same representative case. (C) Bar and dot plots (geometric mean and 95% confidence 
interval) displaying the distribution of CD8+CD103+ Ki67+ TRM and non- TRM cell frequencies in 
PBMC, Nil and tumour. Higher numbers of proliferating Ki67+ cells were identified in the tumour 
CD8+ TRM (Mann-Whitney test). 
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Figure 45. Co-expression of T cell activation and exhaustions markers in CD8 TRMs. 
Cytometric analysis of CD8+ cells from n= 3 PBMC, n= 6 NIL and n=10 tumour, these were 
reduced to 10,000 CD8+ cells and combined across all samples (Flowjo 10). The expression (z-
score, blue low expression and red high expression) of the surface markers CD8, CD103, PD1 and 
41BB and the nuclear proliferation marker ki67 were visualised as 2D tSNE plots (perplexity = 6, 
iterations = 800). The tissue of origin is shown as PBMC (black contours), Tumour (teal contours),  
and NIL (pink contours), the expression of the markers can then be seen across the different 
tissue origins. The origin of the CD8 cells (PBMC, Tumour and NIL) reveals unique regions on the 
tSNE plot in the tumour CD8+ TRMs (teal). Co-expression of the activation (41BB) and proliferation 
(ki67) markers and PD1 exhaustion makers were present in the CD8+ TRMs in the tumour (teal), 
the arrow marks an area where tumour CD8+ TRMs exhibit co-expression. This demonstrates 
presence of antigen engaged and proliferating CD8+CD103+PD1+41BB+Ki67+ cells in the tumour, 
that are absent in the background lung and PBMC controls. 
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4.2.3.2 Comparison of CD8+ T cells derived from virally driven HPV(+) and viral 

independent (HPV-) head and neck cancer.  

The analysis of immune dense HPV(+) and (-) HSNCC whole tumour RNA-Seq revealed that the 

immunological T cell signature was very consistent between the two tumour sub-types. To assess 

this further, the CD8+ T cells from HPV(+) and (-) tumours were compared with the aim of 

revealing any differences between virally-driven cancer relative to a viral-independent cancer. A 

sample size of n=12 HPV(+) was compared to n=20 HPV(-) CD8+ T cells using DESeq2. 

4.2.3.2.1 Differential gene analysis between CD8+ T cells from HPV(+) and (-) tumours 

A limited number of differentially expressed genes were identified (13 genes with an FDR <0.1 and 

FC of >1.5), these were visualised as a hierarchically clustered heatmap (Figure 46 A). The HPV(-) 

CD8+ T cells have a higher level of most of the genes except TSPAN33, which displayed very low 

transcripts per million gene counts (<10 TPM) and is likely a spurious result. Gene ontology 

analysis recovered no significant biological associations with the limited number of genes. 

However, in order to try and rule out these genes being linked to a viral response, they were 

cross-referenced with gene ontology terms linked to viral responses, and yielded no matches (GO-

0009615 response to virus n=295 genes; GO-0051607 defence response to virus n=214 genes and 

GO-0098586 cellular response to virus n=47 genes). The genes from the viral-specific gene 

ontologies (n=288) were visualised as a heatmap, no clustering or grouping of the samples by HPV 

status was observed (Figure 46 B). The same was seen when tSNE was performed using the 288 

genes where 3 clusters of CD8+ T cells formed based on gene expression similarity, but this was 

not linked to the HPV status of the samples (Figure 46 C).  
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Figure 46. Gene expression differences between HPV(+) and (-) CD8 cells in HNSCC.  
DESeq2 comparison (FDR<0.1, FC>1.5) of HPV(+) (n=12) and (-) (n=20) revealed few differentially 
expressed genes (n=13). (A) These are visualised as a hierarchically clustered (Person’s correlation 
distance metric, Ward-average linkage) heatmap presented as row-wise z-scores of normalized 
read counts in CD8. (B) Gene ontologies GO-0009615 response to virus; GO-0051607 defence 
response to virus and GO-0098586 cellular response to virus (total 288 genes) 
Visualised as a heatmap show little separation between HPV(+) and (-) CD8 cells. (C) tSNE 
(perplexity = 6, iterations =1000) again shows little grouping of the CD8 cells by HPV status.  
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4.2.3.3 Functional differences between PD1+ve and PD1-ve CD8+ T cells 

In order to assess the finding that CD8+ TRMscells (CD8+CD103+) express markers of cytolytic 

function, proliferation as well as high levels of negative immune regulators like PD1, a small 

cohort of CD8+ T cells split into PD1+ and PD1-, were isolated by flow cytometric sorting 

(Appendix A.1.8). They were evaluated at the transcriptomic level to assess whether the features 

identified in the flow cytometry and bulk CD8 RNA-Seq were again present in cells subcategorised 

into PD1+ and PD1-. This also had the potential to reveal unique features and biomarkers specific 

to the PD1+ and PD1- CD8+ groups. Using DESeq2, differentially expressed genes (DEG) were 

identified between PD1+ and PD1- CD8+ T cells; genes with FDR<0.05 (false discovery rate or q-

value) and FC (fold change) >1.5 were considered significant. A total of 133 genes were expressed 

to a greater extent in the CD8+PD1+ cells, with 147 genes expressed to a lesser extent in the 

CD8+PD1- cells relative to the CD8+PD1+ cells. The DEGs were visualised as a hierarchically 

clustered heatmap (Figure 47 A) in which, reassuringly, a clear difference between the two groups 

was observed, and in line with our previous findings, the genes PDCD1, HAVCR2, ITGAE, MKI67, 

GZMB and IFNG were higher in the CD8+PD1+ cells relative to the CD8+PD1- cells. The expression 

of negative regulators of the immune response were also visualised (Figure 47 B). This shows that 

the CD8+PD1+ cells co-express other negative regulators of the immune response. Key negative 

regulators, activation and functional markers of the immune response are represented as dot 

plots in Figure 47 C. All of the genes (PD1, TIM3, 41BB, Ki67, CD103, IFNG and GZMB) have a 

significant difference (FDR <0.05; range of q-values=1.1e-6 to 0.05) between PD1+ and PD1- CD8+ T 

cells (DESeq2), the CD8+PD1+ cells showing higher expression in all but one case (GZMB). 

 

In order to gain further insight to the genes that were differentially expressed between PD1+ and 

PD1- CD8+ T cells, gene ontology analysis was performed on the greater and lesser expressed 

genes between the two groups (133 and 147 respectively). Genes expressed to a lesser extent 

were not significantly associated with any GO biological processes or pathways, however n =10 

genes (SELL, NT5E, ITGA6, TNFRSF10D, CD320, S1PR1, MST1R, TLR1, TSPAN7, CCR7) linked to the 

tumour necrosis super family (TNFS) were identified (Table 24). The top 25 gene ontologies 

associated with the genes expressed to a greater extent in CD8+PD1+ cells were broadly linked to 

cell cycle progression and mitotic cell division. However, within this there were several immune-

specific terms (GO:0002520 - immune system development; GO:0032652 - regulation of 

interleukin-1 production and GO:0050715 - positive regulation of cytokine secretion). The gene 

families related to tumour necrosis factor superfamily further identified key immune gene 

differences between PD1+ and PD1- CD8+ T cells (PDCD1, TNFRSF9, LAG3, ITGAE, TFRC, SIRPG, 

BMPR1A, CXCR6, CCR1, CCR5, ALCAM and VCAM1).  
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Figure 47. Transcriptional profile of PD1 Hi tumours.  
(A) DESeq2 comparison (FDR<0.1, FC>1.5) of PD1 Hi (n=7) and PD1 Lo (n=7) CD8+ T cells revealed 
143 greater expressed genes and 133 lesser expressed. These are visualised as a hierarchically 
clustered (Person’s correlation distance metric, Ward-average linkage) heatmap presented as 
row-wise z-scores of normalized read counts. (B) Immunotherapy targets in PD1 Hi and Lo 
tumour CD8 cells. (C) Dot plots showing geometric mean and 95% confidence interval for key 
targets identified in the CD103 Hi CD8 cells (PDCD1, ITGAE (CD103), MKI67 (Ki67), TNFRSF9 
(41BB) , HAVCR2 (TIM3), GZMB, and IFNG.  
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 To further evaluate the link between PD1+ cells and CD103+ TRMscells, the genes expressed to a 

greater extent in the CD8+PD1+ cells were overlapped with the genes expressed to a greater 

extent in the CD8+CD103+ cells (n= 442 genes; (Ganesan et al., 2017)). An overlap of 60 genes 

were identified that contain many of the key functional markers of activation and proliferation 

(GZMA, GZMB, PRF1, IFNG and MKI67) as well as negative regulators of the immune response 

(HAVCR2, LAG3 and CTLA4) (Figure 48). 

 

 
Figure 48. Overlap of genes expressed to a greater extent in CD8+PD1+ and CD8+CD103+ T cells. 
Overlap between the differentially expressed genes in CD8+CD103+ cells and CD8+PD1+ cells, 60 
genes are shared. The RNA-Seq of CD8+PD1+ and CD8+PD1- T cells (n=7 patients) mirrors the 
findings from the CD8+CD103+ and CD8+CD103- comparison, where high levels of immune check 
point expression and cytolytic function are co-expressed. 
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Table 24. Gene ontology and gene family analysis of Differentially expressed genes in 
CD8+PD1+ and CD8+PD1- cells.  
Biological processes (Top 15 gene ontologies shown) and gene families that are significantly 
(FDR <0.05) associated with the differentially expressed genes. The Genes expressed to a 
greater/ lesser extent in CD8+PD1+ cells compared to CD8+PD1- cells (only the top 20 significant 
biological processes are shown).  

Genes	with	upregulated	expresison	(PD1+ve	compared	to	PD1-ve)
Category ID Name q-value	

FDR
No.	of	
hits

Total	GO	
size

Pecentage Hit	in	Query	List

GO:0000278 mitotic	cell	cycle 2.14E-10 32 1016 3.15 NUSAP1,CDKN2A,CDKN2B,CDKN3,KIF18A,PTTG1,CENPA,U
BE2C,SMC4,MCM2,SKA2,STMN1,MCM10,PRC1,RRM2,MEL
K,GFI1,E2F8,CCNA2,CEP55,TYMS,AURKA,LMNB1,TPX2,CTD

P1,BTG3,SKA3,CDCA5,PMF1,TOP2A,WDR62,KIF2C
GO:1903047 mitotic	cell	cycle	

process
4.27E-10 30 931 3.22 NUSAP1,CDKN2A,CDKN2B,CDKN3,KIF18A,PTTG1,CENPA,U

BE2C,SMC4,MCM2,SKA2,STMN1,MCM10,PRC1,RRM2,MEL
K,GFI1,CCNA2,CEP55,TYMS,AURKA,LMNB1,TPX2,CTDP1,SK

A3,CDCA5,PMF1,TOP2A,WDR62,KIF2C
GO:0022402 cell	cycle	process 4.31E-10 36 1385 2.60 RAD51,NUSAP1,CDKN2A,CDKN2B,CDKN3,KIF18A,PTTG1,T

P53INP1,CENPA,UBE2C,SMC4,MCM2,SKA2,STMN1,MCM1
0,PRC1,RRM2,MELK,GFI1,E2F8,CCNA2,CEP55,TYMS,IFNG,
AURKA,LMNB1,TPX2,CTDP1,MKI67,SLBP,SKA3,CDCA5,PMF

1,TOP2A,WDR62,KIF2C
GO:0007049 cell	cycle 4.23E-09 39 1766 2.21 RAD51,NUSAP1,CDKN2A,CDKN2B,CDKN3,KIF18A,PTTG1,T

P53INP1,CENPA,UBE2C,HJURP,SMC4,MCM2,SKA2,STMN1,
MND1,MCM10,PRC1,RRM2,MELK,GFI1,E2F8,CCNA2,CEP5
5,TYMS,IFNG,AURKA,LMNB1,TPX2,CTDP1,MKI67,BTG3,SLB

P,SKA3,CDCA5,PMF1,TOP2A,WDR62,KIF2C
GO:0000819 sister	chromatid	

segregation
2.00E-06 13 225 5.78 NUSAP1,KIF18A,PTTG1,CENPA,UBE2C,SMC4,SKA2,PRC1,CE

P55,CDCA5,PMF1,TOP2A,KIF2C
GO:0007059 chromosome	

segregation
2.90E-06 15 333 4.50 NUSAP1,KIF18A,PTTG1,CENPA,UBE2C,HJURP,SMC4,SKA2,

PRC1,CEP55,SKA3,CDCA5,PMF1,TOP2A,KIF2C
GO:0000280 nuclear	division 5.88E-06 19 599 3.17 RAD51,NUSAP1,KIF18A,PTTG1,UBE2C,SMC4,SKA2,PRC1,C

CNA2,CEP55,AURKA,TPX2,CTDP1,MKI67,SKA3,CDCA5,PMF
1,TOP2A,KIF2C

GO:0051301 cell	division 5.88E-06 20 668 2.99 NUSAP1,CDKN2A,PTTG1,UBE2C,SMC4,SKA2,STMN1,PRC1,
E2F8,CCNA2,CEP55,AURKA,TUBA1B,TPX2,CTDP1,SKA3,CD

CA5,PMF1,TOP2A,KIF2C
GO:0048285 organelle	fission 1.29E-05 19 636 2.99 RAD51,NUSAP1,KIF18A,PTTG1,UBE2C,SMC4,SKA2,PRC1,C

CNA2,CEP55,AURKA,TPX2,CTDP1,MKI67,SKA3,CDCA5,PMF
1,TOP2A,KIF2C

GO:0098813 nuclear	chromosome	
segregation

1.54E-05 13 283 4.59 NUSAP1,KIF18A,PTTG1,CENPA,UBE2C,SMC4,SKA2,PRC1,CE
P55,CDCA5,PMF1,TOP2A,KIF2C

GO:0000070 mitotic	sister	
chromatid	segregation

8.51E-05 9 136 6.62 NUSAP1,KIF18A,PTTG1,UBE2C,SMC4,PRC1,CEP55,CDCA5,K
IF2C

GO:0044772 mitotic	cell	cycle	
phase	transition

1.09E-04 16 529 3.02 CDKN2A,CDKN2B,CDKN3,UBE2C,MCM2,MCM10,RRM2,M
ELK,GFI1,CCNA2,TYMS,AURKA,LMNB1,TPX2,CTDP1,CDCA5

GO:0044770 cell	cycle	phase	
transition

1.90E-04 16 555 2.88 CDKN2A,CDKN2B,CDKN3,UBE2C,MCM2,MCM10,RRM2,M
ELK,GFI1,CCNA2,TYMS,AURKA,LMNB1,TPX2,CTDP1,CDCA5

GO:0000226 microtubule	
cytoskeleton	
organization

5.37E-04 14 464 3.02 NUSAP1,KIF18A,CENPA,GAPDH,SKA2,STMN1,PRC1,AURKA
,TUBA1B,TPX2,PRKCZ,SKA3,WDR62,KIF2C

GO:0002520 immune	system	
development

8.30E-04 20 949 2.11 IL10,CDKN2A,CDKN2B,PDCD1,ACP5,HMGB2,MELK,GFI1,TF
RC,IFNG,HAVCR2,CSF1,SNX10,CCL3,CCR1,PRKCZ,SEMA4A,I

TM2A,TOP2A,VCAM1
471 CD	molecules|Tumor	

necrosis	factor	
superfamily

1.68E-05 12 394 3.05 PDCD1,TNFRSF9,LAG3,ITGAE,TFRC,SIRPG,BMPR1A,CXCR6,
CCR1,CCR5,ALCAM,VCAM1

735 Secretory	carrier	
membrane	proteins

7.85E-03 2 5 40.00 SCAMP2,SCAMP5

1087 LEM	domain	
containing

1.09E-02 2 7 28.57 LEMD1,TMPO

1091 C-C	motif	chemokine	
receptors

1.74E-02 2 10 20.00 CCR1,CCR5

Genes with downregulated expresison (PD1+ve compared to PD1-ve)
Category ID Name q-value	

FDR
No.	of	
hits

Total	GO	
size

Percentage Hit	in	Query	List

471 CD	molecules|Tumor	
necrosis	factor	
superfamily

1.34E-03 10 394 2.54 SELL,NT5E,ITGA6,TNFRSF10D,CD320,S1PR1,MST1R,TLR1,T
SPAN7,CCR7

1179 Apolipoproteins|Sushi	
domain	containing

5.45E-03 4 57 7.02 SELL,SUSD4,SNED1,GABBR1

1217 Brain	expressed	X-
linked	family

5.45E-03 2 5 40.00 BEX5,BEX2

782 Tumor	necrosis	factor	
receptor	superfamily

6.44E-03 3 29 10.34 TNFRSF25,TNFRSF10D,LTBR

738 Proteases,	serine 4.98E-02 3 63 4.76 PRSS35,TMPRSS4,ST14
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4.2.3.4 Stratification of tumours by Immune density and evaluation of TRM targets using 

IHC  

The differences between the tumour and background lung CD8+ T cells highlighted an emerging 

TRM signature within the tumour. However, assessment of the distribution of the CD8+CD103+ TRM 

from the flow cytometry identified a range of samples where lower CD8+CD103+ TRM numbers 

occur in some cases. This led to the analysis of the tumour CD8 cells, taking in to account immune 

density; it highlighted that features of Immune cell exhaustion were heterogeneous across the 

cohort. They were broadly linked to T cell density with CD8Hi tumours showing increased levels of 

the negative regulators of the immune response in both NSCLC and HNSCC (Figure 49 A and B). 

The CD8Hi and Lo groups were further characterised by comparative DESeq2 analysis, this was 

extended to included tumours with high TRM cell numbers (CD103Hi and CD103Lo). The 

transcriptomic analysis revealed that differences are present in CD8 cells that reside in CD8Hi and 
Lo tumours, with a differential expression of activation, functional and negative regulation markers 

between CD8+ T cells in the CD8Hi and Lo tumours (Ganesan et al., 2017). 

4.2.3.4.1 Tissue distribution of TRM targets in CD8Hi and Lo tumours 

The Immune density which is linked to a favourable outcome has previously focused on CD8 as 

one of the most effective prognostic markers of an improved survival. Elevated frequencies of 

CD8+ T cell CD103+ (TRM), PD1+ and 41BB+ cells were observed in the tumour relative to the non-

involved lung. Representative images for CD8, CD103, PD1 and Ki67 confirm the presence of the 

markers identified by transcriptomics but also highlight the differences that exist between CD8Hi 

and Lo tumours. CD8Lo tumours exhibit much lower CD8 infiltration but also lower CD103 levels. 

Ki67+ cells were diffuse in both the CD8Hi and Lo with the staining most likely attributed to tumour 

cells (Figure 50). 
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Figure 49. Heterogeneous expression of immunotherapy targets in CD8+ T cells from HNSCC 
and NCSLSC. 
RNA-Seq analysis (normalised counts) of specific immune targets in CD8+ TILs from patients with 
(A) NSCLC and (B) HNSCC. CD8+ TIL density and tumour stage are annotated. Expression of the 
immunotherapy targets in baseline samples is heterogenous, however it is broadly elevated in 
immune dense tumours (CD8) and could be used to guide therapy. Adapted from (Ganesan et al., 
2017). 
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100x magnification 

Figure 50. Immunohistochemistry for the surface expression of CD8, CD103, PD1 and Ki67 in TIL 
Hi and Lo NSCLC.  
Representative images of CD8, CD103, PD1 and Ki67 immunohistochemistry in CD8Hi and CD8Lo 
tumours, Images were captured at 100x magnification. Clear differences in the CD103 and PD1 
staining were visible between CD8Hi and CD8Lo tumours. (IHC slides prepared by research 
histology – Monette Lopez and Maria Machado). 
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4.2.3.4.2 CD103+ T cell density is predictive of survival 

Tumour tissue from a retrospective cohort of n=689 NSCLC patients that had previously not been 

reported and a cohort of n=124 previously published HNSCC patients (Ward et al., 2014b), were 

available as a TMA (tissue microarray). They were stained for CD8 and CD103 and the immune 

density evaluated using the TIL Hi, Mod and Lo classification as used in (Ward et al., 2014b).  

4.2.3.4.2.1 NSCLC survival data 

In order to assess the NSCLC survival data and ensure the data fit with what has previously been 

reported, the tumour stage and gender were assessed (Figure 51 A and B respectively). The 

patient survival is tightly linked to the staging of the tumours, with stage I conferring the best 

prognosis (~80% at 5 years) and stage IV displaying the worst survival (~15% at 5 years). Another 

internal check of the survival data is gender, where males have a poorer outcome relative to 

females (p=0.031). The identification of a unique transcriptomic profile between CD8+ T cells from 

CD8Hi and Lo tumours, where CD103 was tightly linked to the cytolytic activity of the CD8+ T Cells 

meant it may also confer a survival benefit superior to CD8 alone. Analysis of the CD8 and CD103 

density in the TMA was carried out using the TIL Hi, Mod and Lo categorisation. A higher density 

of CD8+ T cells was associated with a trend towards better survival (~55% at 5 years) but did not 

reach significance (p=0.086) (Figure 52 A). Assessment of CD103Hi tumours revealed a significant 

survival benefit (~62% at 5 years) over CD103Lo tumours (p=0.043) (Figure 52 B). The CD8 and 

CD103 survival data were combined in Figure 52 C, this highlighted clearly that CD103Hi tumours 

have an improved survival relative to the CD8Hi tumours. In order to assess the possibility of sub 

categories within the CD8Hi group, only the CD8Hi tumours were analysed for CD103 density. The 

sub-group of CD8Hi /CD103Lo tumours displayed a significantly (p=0.036) poorer survival (~20% at 

5 years) relative to the CD8Hi /CD103Hi patients (~62% at 5 years) (Figure 52 D). This suggests that 

patients with elevated TRM (CD103Hi) numbers in their tumour have a better long-term survival 

even in CD8Hi tumours. Conversely, it shows that in CD8Hi /CD103Lo tumours patients have a worse 

prognosis reiterating the importance of CD103+ TRM cells in the tumour. 
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Figure 51. Stage and gender survival differences in lung cancer.  
Survival data from n=689 patients with lung cancer. (A) Tumour stage and survival presented as 
Kaplan-Meier curves, where increasing stage of disease is linked to a worse outcome. (B) 
Differences between male and female survival (p=0.031; log-rank test presented as a Kaplan-
Meier curve). Survival data collected by Dr S. Chee University of Southampton, published in 
(Ganesan et al., 2017). 
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Figure 52. CD103 density predicts for survival in lung cancer.  

Survival data from patients with lung cancer (n = 689; presented as Kaplan Meier-curves with log-
rank test significance) with a low density (CD8Lo) or high density (CD8Hi) of CD8 cells in tumours, 
p=0.086 (A), high or low density of CD103 cells (CD103Lo and CD103Hi) p=0.043 (B). Survival data 
for CD8 and CD103 was also combined in (C). Survival of patients with CD8Hi tumours 
subcategorised by CD103 density (CD103Lo or CD103Hi) in (D) p=0.036. The survival data highlights 
that CD103Hi tumours confer an improved survival over CD8. Survival data collected by Dr S. Chee 
University of Southampton, published in (Ganesan et al., 2017). 
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4.2.3.4.2.2  HNSCC survival data 

The same analyses were then repeated in a different epithelial tumour arising in the head and 

neck (HNSCC) to assess the impact of CD103 positivity on patient survival (Figure 53 A-D). The 

density of the CD8+ cells were again linked to a favourable outcome (p=0.0182), as has been 

previously reported. The CD103 density (Hi and Lo) conferred a slight improvement in survival 

over CD8 alone, although the difference between CD103Hi and Lo did not reach significance (p=ns). 

The subcategory of CD8Hi /CD103Hi tumours showed a trend towards a more favourable outcome 

relative to CD8Hi /CD103Lo (p=ns). Numerically this cohort of patients was under powered (n=123) 

leading to less significance in the result, the same trend was observed in HNSCC that was seen in 

NSCLC.  
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Figure 53. CD103 and patient survival in head and neck cancer. 
Patient survival in HNSCC (n = 123; presented as Kaplan Meier-curves with log-rank test 
significance). (A) Patient survival of CD8Hi and CD8Lo tumours from the available cases; * = 
p=0.0182. (B) CD103 density (CD103Hi and CD103Lo) and patient survival, displaying a small 
improvement over CD8 p=ns (low cohort size impacted significance). (C) Combined Kaplan-Meier 
curves for CD8 and CD103 and (D) survival of patients with CD8Hi tumours subcategorised into 
CD103Lo or CD103Hi p=ns. The CD103 shows a trend towards improved Survival, data collected by 
Dr M. Ward University of Southampton, published in Ward et al., 2014b. 
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4.2.4 Discussion 

Isolation and transcriptomic evaluation of CD8+ T cells from HNSCC and NSCLC has allowed 

characterization of novel features of tumour specific CD8+ T cells. The initial transcriptomic 

analysis identified a clear CD8+ TRM T cell signature in the tumours relative to the control tissue 

(non-involved lung) (Ganesan et al., 2017). Use of flow cytometry for protein validation of CD103 

on CD8+ T cells in tumour and non-involved lung, confirmed the findings of the transcriptomic 

analysis with CD8+CD103+ TRM T cells being present at higher numbers in the tumour compared to 

the control tissue. TRM T cells play an integral role in the “re-call” response to antigen in peripheral 

tissues (Schenkel et al., 2014). 

 TRM cells develop a unique transcriptional profile that is distinct from circulating memory cells, 

and are retained in the tissue via CD103 (ITGAE), which binds to E-Cadherin and anchors the CD8+ 

T cells in the epithelial tissues awaiting secondary encounter with antigen (Mackay et al., 2013). 

The features of T -cell “exhaustion” in the CD8+ T cells were also of interest as they represent 

effective targets of immunotherapy. The immunotherapy target PD1 was identified at high levels 

in the CD8+ T cells of the tumour and was present at higher frequencies relative to the NIL; in 

particular it was elevated in the tumour CD8+CD103+ TRM T cells relative to the non-TRM T cells 

(CD8+CD103-). PD1 expression can be a marker of clonally expanded antigen-specific T cells in the 

tumour, indicating that the CD8+ TRM cell population is likely to be a tumour-reactive population 

(Gros et al., 2014). To test this and the proliferative capacity of the TRM cells and non-TRM cells, 

41BB and Ki67 were evaluated at the protein level with flow cytometry. Elevated 41BB+ cell 

frequencies were identified in the CD8+ T cells between the tumour and NIL, but 41BB+ cells were 

also increased in the tumour CD8+ TRM cells relative to the non-TRM. Ki67 was also increased in the 

tumour CD8+ T cells relative to the control tissue and again, was higher in the CD8+ TRM relative to 

the non-TRM. Ki67 has also been linked with the expression of PD1 in viral infections (Hong et al., 

2013). This is indicative of activation through the TCR that leads to increased 41BB expression and 

cellular proliferation, likely linked to a tumour antigen-driven response and the formation of TRM 

cells in the tumour (Willoughby et al., 2014) (Nam et al., 2005). The co-expression of PD1, 41BB 

and Ki67 in the tumour CD8+ TRM cells (FACS, tSNE) indicates an interesting population of recently 

activated proliferating cells that have increased expression of PD1, classically considered as a 

marker of dysfunction (Pentcheva-Hoang et al., 2007). These activated tissue resident CD8+ T cells 

may be crucial in the anti-tumour response, they express high levels of markers that can be 

targeted by immunotherapy (e.g. PD1). If these cells are present in high enough numbers in the 

tumour they have the potential to elicit potent anti-tumour immune responses. 
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Assessment of the cellular density of CD8, CD103, PD1 and Ki67 (IHC) in CD8 TILHi and Lo tumours 

highlighted differences between the CD8 TILHi and Lo tumours in terms of CD103 density. Immune 

cell-rich tumours represent an on-going protective immunological reaction to TAAs, conversely 

TILLo tumours likely represent immunologically silent tumours or tumours with stromal barrier 

features (Djenidi et al., 2015),(Hanley et al., 2018). When taking into account the CD8+ TIL density 

(CD8Hi and Lo) and CD103 expression (ITGAEHi and Lo) in the CD8 transcriptomic data, further 

differences were revealed between CD8+ T cells from immune-rich tumours relative to immune-

low tumours. Increased levels of molecules indicating cytolytic function and active killing of 

tumours (GZMB, PRF1 and IFNG) were present, suggesting that CD8+ TRM T cells were functionally 

superior to the CD8+ non-TRMs in the tumour (Ganesan et al., 2017). Due to CD8+CD103+ cells 

(TRMs) displaying improved ability to control tumours, the TRM marker CD103 was used in two 

retrospective survival cohorts (NSCLC and HNSCC), where CD103Hi infiltrates in tumours more 

clearly appeared to confer an improved patient survival compared to CD8+ T cells. This was 

significant in the NSCLC cohort, with a trend to significance in HNSCC, the small cohort size in 

HNSCC likely impacted the significance level. When only the CD8Hi tumours are considered, the 

CD103Hi and Lo patient groups separate, with CD8Hi /CD103Lo patients displaying a worse outcome 

compared to the CD8Hi /CD103Hi group. This is likely due to differences in the subtypes of CD8+ T 

cells within the tumour, where an enrichment of the CD8+CD103+ cell (TRM) subtype confers a 

survival benefit. Data from a Breast cancer cohort also showed that CD103 was prognostic when 

combined with CD8 and that the intraepithelial density was more beneficial than intrastromal 

infiltrate (Wang et al., 2016). The evaluation of CD103 (ITGAE) expression in the HNSCC and NSCLC 

TCGA data, also shows the same survival benefit. Where higher expression is associated with 

prolonged survival when compared to lower expression of ITGAE (Duhen et al., 2018). A variety of 

novel potential immunotherapy targets were also identified from the transcriptomic analysis in 

the CD8 TILHi TRMs (CD38, CD39, BATF, NAB1, KIR2DL4 and SIPRG). The cell surface 

ectonucleotidase CD39 (ENTPD1) is an interesting target that converts ATP to AMP, it may protect 

TRMs (among other immune cells) from ATP-induced cell death (Ganesan et al., 2017). The survival 

benefit linked to the density/ expression of CD103 indicates that these are important cells that 

can be targeted by immune check point blockade, or could function as a key marker of patients 

that may respond to immune check point blockade. 

In HNSCC that is divided into HPV(+) and (-) disease, it was unclear if differences in the CD8+ T 

cells may exist due to a viral tumour driver. Differential gene expression testing between HPV(+) 

and (-) CD8+ T cells was unable to reveal a substantial change between the CD8+ T cells derived 

from the two tumour types. It was hypothesised that the HPV(+) tumours may generate a 

different virus-specific response compared to HPV(-) tumours (Frazer, 2009). No overlap of the 

DEGs was observed with gene ontologies reflecting virus-specific immune responses as well as no 
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obvious grouping of cases by HPV status. This suggests very surprisingly that, on the whole, CD8+ 

T cells are transcriptionally similar between the two tumour subtypes. It argues that a virus-

specific response (HPV viral infection i.e. HPV capsid proteins L1 and L2) is not the determining 

factor in the difference in immune density, and that the key factor is the immunogenic E6 and E7 

proteins that are abundant in all HPV(+) tumours. This then leads to the hypothesis that the 

immune density in HPV(-) tumours is determined in part, by how immunogenic and visible it is to 

the immune system (less visible than HPV(+) tumours). This fits with the concept of higher 

immune infiltrates in tumours that display higher mutational loads, with an increase in potential 

neoantigens (McGranahan et al., 2016, Sahin et al., 2017). This is however a relatively small 

cohort and doesn’t account for the fraction of episomal and integrated viral DNA in the HPV(+) 

tumours, which could impact the immune response (Olthof et al., 2014). It is possible that the 

level of episomal and integrated viral DNA leads to the differential immune responses that are 

observed in HPV(+) tumours coupled together with the variability in HPV gene expression (E1, E2, 

E6 etc.) within the tumours (Wood et al., 2016b). The transcriptional similarities between the CD8 

cells in different tumours types (NSCLC and HNSCC), and also the sub-categories has important 

implications for immunotherapies. It argues that the cells are functionally similar, meaning 

therapies that are effective in one tumour are also likely to work in a another. The caveat is that 

the density of the immune cells, in particular the CD8+ TRM infiltrate needs to be considered. 

 

Examination of the transcriptomic features of CD8+PD1+ T cells also mirrored the findings that 

were identified in the CD8 bulk transcriptome, where cells expressing high levels of PD1 exhibited 

the same features as CD8+ TRM Hi tumours (CD8+CD103+), a T cell exhaustion profile (TIM3, LAG3, 

CTLA4 and PD1) and at the same time a high level of antigen engagement (41BB) and cytolytic 

activity (GZMA/B). A large number of genes were shared between CD103Hi (Ganesan et al., 2017) 

and PD1Hi tumour CD8+ T cells. This demonstrated that the cells expressing high levels of PD1 or 

CD103 displayed similar characteristics of a protective adaptive immune response, and that PD1 

and CD103 were co-expressed in tumour CD8+ T cells. Features of tissue residency (TRM) and 

clonal expansion have also been identified in CD8+PD1+ cells in chronic inflammatory disorders, 

this includes the paradoxical elevation of cytolytic and antigen experience markers (GZMA, GZMB 

and 41BB) (Petrelli et al., 2018). This was initially counter-intuitive as the expression of PD1 is 

classically considered a marker of T cell dysfunction not function (Wherry EJ, 2007). It argues that 

upon activation, the negative regulators of the immune response are switched on during the 

active killing phase of the CTL, before they ultimately lead to cellular inactivity. One study 

highlighted that CD8+PD1+ cells exist in two states, one that is terminally differentiated and 

incapable of reactivation with the other displaying cellular plasticity that can be reprogrammed to 

an active state; these features were determined by the epigenetic state of the cells (Philip et al., 
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2017). Another key marker that has emerged is TIM3 (HAVCR2) that was highly elevated in both 

CD103Hi and PD1Hi groups of CD8+ T cells; this has become a marker of hyper-activated CD8+ T cell 

responses in tumours (Fourcade J, 2010). The CD8+PD1Lo T cells exhibited a central memory/ 

Naïve phenotype expressing CCR7 and CD62L. Finding high numbers of CD8 TRM features in the  

PD1+ cells adds further evidence to this group of cells being key targets for immunotherapy.  

 

Data leading on from the interrogation of tumour CD8+ T cells presented here focused on the 

dissection of CD8+ TRM and non-TRMs at the bulk and single cell levels. This identified three unique 

Tumour-specific TRM populations that expressed high levels of cytolytic markers that also co-

expressed TIM3, PD1 and 41BB. The TIM3+ TRM cells were found to be clonally expanded and also 

elevated in patients that respond to anti-PD1 therapy (Clarke et al., 2019). These subsets have the 

potential to be used as immunotherapy response biomarkers for patient stratification, adoptive 

cell therapies and tumour-specific TCR recovery. Interestingly the transcription factor TCF7 was 

expressed at higher levels in the PD1Lo group relative to PD1hi; TCF7 has been identified as a 

marker of Immunotherapy responder versus non-responder. In this single cell study it was 

expressed on early activated cells and effector memory cells but not cells displaying high cytotoxic 

activity as observed from the previous CD8 TRM PD1+TIM3+ study (Sade-Feldman et al., 2018). The 

exact cellular mechanisms and cell state transitions that take place during an effective immune 

attack on the tumour are still being elucidated, whether early TCF7 expression and activation 

leads to TRM formation in the tumours, expression of immune checkpoints and ultimately a T cell 

contraction phase are still being elucidated. 

4.2.5 Conclusion 

Evaluation at the transcriptomic level of purified CD8+ T cells from NSCLC and HNSCC has revealed 

unique features that were indicative of tissue residency (CD8+CD103+). The CD8+ TRMs (CD103+) 

expressed markers of T cell exhaustion (PD1) and activation (41BB, Ki67), this was observed 

transcriptomically and also at the protein level. Features of superior functionality were seen in 

CD8+ TRMs from CD8Hi tumours. Retrospective analysis of the CD8+ and CD103+ density in NSCLC 

and HNSCC identified an improved prognosis linked to higher numbers of CD103+ cells when 

compared to CD8+ T cells alone. This has implications for patients, where higher CD103 levels 

would predict for a better prognosis and potentially improved immunotherapy responses. The 

work on CD8+ TRMs and their role in cancer immunity was investigated further in the publication by 

Clarke et al., 2019.
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4.3 Tumour infiltrating B lymphocytes in NSCLC  

4.3.1 Introduction 

The role that B cells play in the immune response to tumours has been investigated far less than 

that of their T-Cell counterparts. Tumour-infiltrating B lymphocytes (TIBs) have the potential to 

regulate immune function through antibody, presentation of antigens, co-stimulation and 

cytokines (Martin and Chan, 2006). B cells represent a heterogenous population (cell subtypes 

outlined in section 1.4.2) with distinctive functions that can have both pro-tumour and anti-

tumour properties.  

Current thinking about the positive impact of B cells in tumours has resulted from observations 

that higher B cell infiltrates are linked to better patient outcomes. In NSCLC, CD20+ B cells were 

prognostic in both stromal and epithelial locations (Al-Shibli et al., 2008). Another key element of 

the B cell response to tumours was the formation of tertiary lymphoid structures (TLS). These 

arise within the tumour and contain the same cellular components and morphology as germinal 

centres in secondary lymphoid tissues (dark and light zones), they express the markers BCL6, 

CD23, Ki67 and AID (Activation-induced cytidine deaminase). Reactivity to tumour antigens by IgA 

and IgG indicates that isotype switching can occur in the tumour and/or lymph node (Germain et 

al., 2014). In Breast cancer, the formation of TLS and high numbers of class-switched plasma cells 

(also co-localised with CD8+, CD4+ and CD20+ cells) were linked to a more favourable prognosis, 

the antibody isotypes IgG1 and IgG3 were found to dominate responses (Kroeger et al., 2016). In 

pancreatic ductal adenocarcinoma, B cells were identified as being prognostic but only in TLS-high 

tumours (not CD20+ B cells alone), which were again, co-localised with CD8+ cells (Castino et al., 

2016). The clonal expansion of T cells has also been correlated to the density of TLS and B cells, 

showing a link between the B cells and the diversity of the adaptive immune response (Zhu et al., 

2015).  

Mining of the CGA (Cancer genome atlas) data for Breast and ovarian cancer identified a B cell 

gene expression signature that was linked to improved survival; a lower BCR diversity was also 

consistent with an antigen driven clonal response (Iglesia et al., 2014). It is not currently known 

whether the characteristics of B cells in immune dense tumours is different to that of immune 

sparse tumours. However, the improved survival that is linked with higher numbers of co-

localised B cells and CD8+ T cells (Kroeger et al., 2016) indicates that differences may exist. 

The other side of the humoral response to tumour involves a negative impact on the protective 

function of adaptive immune T cells. Immunosuppressive B cells can arise in different stages of B 

cell development where immature B cells differentiate into regulatory B (Breg) cells. These cells 
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represent a product of their environmental cues (IL21, IL6, IL35, CD40) rather than lineage specific 

transcription factors like FOXP3 for Tregs (Matsumoto et al., 2014, Rosser and Mauri, 2015). Breg 

cells function to impede the immune response and have a negative effect on a wide range of 

immune cells (CD4+ TH1, TH17 and Treg, NKT, CD8+ CTLs, DCs and monocytes) via the secretion of 

IL10, TGFb and IL35 (Matsumoto et al., 2014, Rosser and Mauri, 2015). Use of anti-CD20 to 

deplete B cells in squamous cell carcinoma (mouse model) led to increase in the CD8+ T cell 

infiltrates by modulating the tumour macrophages towards a protective M1 phenotype (Affara et 

al., 2014). The elimination of Immunosuppressive plasma cells expressing IgA, IL10 and PDL1, also 

enabled the eradication of tumours in a mouse model of prostate cancer (Shalapour et al., 2015). 

Likewise CD8+ CTL function was restored by depletion or blockade of IgA+IL10+PDL1+ Breg cells 

that accumulate at the site of hepatocellular carcinoma (Shalapour et al., 2017). The phenotype of 

CD4+ T cells is also modulated by B cells in NSCLC, where activated TIBs 

(CD19+CD20+CD69+CD27+CD21+) were associated with an effector T cell response (IFNg+ CD4+ 

TILs) and the presence of TLS. Exhausted TIBs (CD19+CD20+CD69+CD27–CD21–) were associated 

with a regulatory T-cell phenotype (FoxP3+ CD4+ TILs) and absence of TLS (Bruno et al., 2017). In 

Breast cancer, conversion of CD4+ T cells to CD4+ Tregs can also be induced by TGFb released 

from Bregs, further hampering the immune response. This study identified the TIBs as activated 

but non-proliferative mature B cells expressing STAT3, CD19, CD25Hi, CD69Hi, B7-H1Hi, CD81Hi, 

CD86Hi, CD62LLo and IgMHi (Olkhanud et al., 2011). Tregs that secrete IL21 (also secreted by Tfh 

cells) can induce GZMB in B cells, GZMB+ Bregs express the regulatory markers IL10, IDO and 

CD25 and are considered immunosuppressive (Lindner et al., 2013). Another source of IL21 are 

the Tfh cells in the germinal centre, where IL21 is secreted upon interaction with B cells (Belanger 

and Crotty, 2016, Crotty, 2011). The formation of GZMB+ Bregs can occur in the absence of CD40L 

co-stimulation and in the presence of IL21, the resulting GZMB+ Bregs suppress T cell 

functionality, although GZMB+ Bregs have also been shown to display cytotoxic effects on tumour 

cells (Hagn et al., 2012). These regulatory B cell features again may vary in different tumours 

settings, in particular tumours with different immune cell densities (e.g. CD8Hi and CD8Lo tumours), 

where more Bregs could lead to less immune cell infiltration or impeded functionality. 

B resident memory cells (BRMs) are a subset of B cells in peripheral tissues, they are not currently 

well-defined. Much like TRM cells (CD8+CD103+), they reside in the tissue and are established in 

response to local antigen encounter. In the lung, BRMs have been identified as CXCR3+, CD62L- and 

are evenly divided between CD73+/ - (NT5E gene) expression. They play a role in accelerated 

antibody responses following antigenic challenge (Allie et al., 2019), although the role/ presence 

of BRMs in tumours has yet to be established.  

B cells are abundant in NSCLC and represent 15.9% of the CD45 cells (our FACS data shows B cells 

as 12.9% of CD45+ cells). Naïve B cells make up a small proportion (1.6%), plasma cells were the 
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least abundant (0.8%), memory cells (4.2%) and GC B cells (2.2%) were the most abundant 

(memory B cells = CD27+CD38+/-; GC B cells = IgM+IgD- B cells) (Stankovic et al., 2018, Kaminski et 

al., 2012). 

The application of single cell (SC) transcriptomics has changed the shape of cell biology and 

broadened our understanding of it. The field of cancer immunology has embraced this 

methodology which enhances insight into both the tumour and immune cells. Publications 

reporting transcriptomic analysis of single cells (SC) that contain B cells, are summarised in Table 

25 (Chung et al., 2017, Peng et al., 2019, Sade-Feldman et al., 2018, Lambrechts et al., 2018, 

Tirosh et al., 2016, Puram et al., 2017). SC analysis of B cells in breast cancer identified germinal 

centre B cells (centroblasts/ centrocytes) and cells with memory/ naïve profiles (Chung et al., 

2017).  

 

Table 25. Overview of current B lymphocyte single cell data.  
Multiple single cell data sets are summarised including the overall findings relating to B cells in 
each publication.  

 

Title Tumour 
type

No. B 
cells

No. of 
patients

RNA-Seq 
method

Summary of B cell data in the paper Reference

Dissecting the multicellular 
ecosystem of metastatic 
melanoma by single-cell RNA-
seq.

Melanoma 515 10 Smart_Seq2 B cell clusters defined in tSNE, cluster specific 
genes listed in supplemental data, B cell data not 
used in discussion.

 Tirosh et al., 
2016

Single-cell RNA-seq enables 
comprehensive tumour and 
immune cell profiling in 
primary breast cancer.

Breast 
cancer

175 11 Smart_Seq B cell cluster identified and cluster specific genes 
subjected to GO analysis (B cell activation, Ig like, 
BCR signalling). Gene set variation analysis 
(GSVA) using B cell gene signatures. Two sub 
classes identified = centroblast/ cenrocytes (GC B 
cells) and memory /naïve B cells. B cell data not 
used in discussion.

Chung et al., 
2017

Single-Cell Transcriptomic 
Analysis of Primary and 
Metastatic Tumor Ecosystems 
in Head and Neck Cancer.

HPV(-) 
HNSCC

138 18 Smart_Seq2 B cells identified as a single cluster (B/ Plasma 
cells), B cells from HPV(-) tumours in this paper 
were only found in lymph node samples. No B cell 
data used in discussion.

Puram et al., 
2017

Phenotype molding of stromal 
cells in the lung tumor 
microenvironment.

NSCLC 4806 5 10x 
genomics

B cells identified as a cluster from tumour isolate, 
also stated that B cells were elevated in tumour 
compared to background lung. B cells (CD79A/B) 
re-clustered separately into 9 clusters, 6 clusters 
were enriched in tumours.Follicular B cells 
expressing high levels of CD20 (MS4A1), CXCR4 
and HLA-DRs. Plasma cells (IGHG1) and. MALT B 
cells (IGHA1, JCHAIN). No B cell data used in 
discussion.

Lambrechts et 
al., 2018

Defining T Cell States 
Associated with Response to 
Checkpoint Immunotherapy in 
Melanoma.

Melanoma 1428 48 Smart_Seq2 Two B cell clusters identified. B cells (CD79A, 
MS4A1) and Plasma cells (IGH genes). State that 
responders to ICB have higher B cell numbers (not 
Plasma cells). No B cell data used in discussion.

Sade-Feldman 
et al., 2018

Single-cell RNA-seq highlights 
intra-tumoural heterogeneity 
and malignant progression in 
pancreatic ductal 
adenocarcinoma.

Pancreatic 2416 24 10x 
genomics

Global tSNE identifies B cells, these are then sub 
divided into 6 clusters. Key B cell markers 
highlighted. State that using Cell state trajectory, 
B cells transition from Naïve to Plasma blast.  No 
B cell data used in discussion.

Peng et al., 
2019
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Analysis of patients either responding or non-responding to immune check point blockade, 

identified two B cell clusters, CD20+ B cells were enriched in responders compared to non-

responders while plasma cells were equivalent between the two groups (Sade-Feldman et al., 

2018). B cells isolated from pancreatic ductal carcinoma formed 6 distinct clusters that displayed a 

transition from Naïve to activated plasmablasts (Peng et al., 2019). Single cell analysis of B cells 

from NSCLC defined them as Follicular (CD20+, CXCR4+ and HLA-DR), mucosal associated 

lymphoid (MALT) tissue-derived (higher relative IGHM, IGHA1 and IGJ expression) and plasma 

cells (higher relative IGHG1-4 expression). This type of classification is not entirely appropriate as 

IGHM, IGHA1-2 and IGHG1-4 are also expressed by other B cell subsets, in this case it refers to 

higher relative expression (not unique expression) in those B cell clusters. The B cells formed 6 

clusters and were enriched in the tumour relative to the non-involved lung tissue (Lambrechts et 

al., 2018). These studies so far have not assessed B cells in patients with different levels of CD8+ T 

cell infiltrates (CD8Hi and CD8Lo) or elaborated beyond the core B cell markers what the 

transcriptional profile of the B cells in each cluster represent.  

4.3.2 Objectives 

Evaluation of transcriptomic features of B lymphocytes from CD8Hi and CD8Lo tumours in NSCLC. B 

cells from adjacent non-involved lung tissue and lymph nodes will also be evaluated. Guided 

analysis will use markers known to differentiate B cells, following this, cluster-specific differential 

gene analysis will be used to reveal B cell features that are specific to CD8Hi and CD8Lo tumours.  
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4.3.3 Results 

4.3.3.1 Evaluation of B cell density and formation of aggregates in the cohort 

The cohort of CD8Hi (n=6) and CD8Lo (n=6) NSCLC tumours collected for single cell transcriptomic 

analysis were evaluated using IHC for CD20 (MS4A1) (Figure 54 A and B). The broad B cell marker 

CD20 was able to capture the overall immune density of B cells, as well as the number of B cell 

aggregates that form tertiary lymphoid structures (TLS). Analysis of the density of TIBs revealed 

that the CD8Hi cases were heavily enriched for B cells and showed a significant difference for those 

that resided within dense aggregates and TLS (p=0.0024) (Figure 54 A and B). However, although 

CD8Lo tumours had substantially fewer B cells and fewer B cell aggregates, they were not absent 

and resided predominantly at the tumour margin.  

4.3.3.2 Single cell data analysis framework 

After filtering and normalisation of the single cell data (Seurat v3.0), 4989 cells were taken 

forward for analysis of cell lineage and cluster-specific genes - see Table 26 for the number of B 

cells derived from each tissue origin. Linear dimensionality reduction was performed using PCA, 

followed by assessment of the data across the PCAs using the JackStraw plot to identity significant 

principle components (PCs) (Macosko et al., 2015). Additionally, the ‘Elbow plot’ displaying the 

standard deviation of the PC’s was used to determine the number of PCs to take into the cell 

clustering (Appendix D1.1 and D1.2 respectively). Significant PCs were identified as having a p-

value <0.05, the significance of the PCs drops after PC12 in the Jackstraw plot. This is also evident 

in the elbow plot where the standard deviation of the data reduces forming an ‘elbow’ at PC12. 

Principle components 1 to 12 were taken into the cell clustering with a resolution of 0.6.  

Tissue origin Number of B cells 

CD8Hi tumours  1547 

CD8Lo tumours 1165 

Non-involved lung 756 

Lymph node 1521 

Total  4989 
 

Table 26. Number of B cells from each tissue compartment.  
The number of B cells recovered and taken forward for cluster evaluation for each tissue 
compartment (CD8Hiand CD8Lo tumours, Non-involved lung and Lymph node). 



Chapter 4 

172 

A 

 
B 

 
Figure 54. Evaluation of B cell aggerates in CD8Hi and CD8Lo tumours. 
(A) Representative CD20 (MS4A1) IHC images from CD8Hi and CD8Lo tumours at 0x, 40x and 100x 
magnification. (B) Qualitative assessment of B cell density and number of B cell aggregates from 
the single cell data cohort. CD8Hi tumours have significantly higher numbers of B cell aggregates 
compared to CD8Lo tumours (unpaired t-test p=0.0024) (IHC slides prepared by research histology 
– Monette Lopez and Maria Machado). 

 

Tumour Id CD8 
density

CD20 
density 

No. of 
aggregate
s  

Location of TLS 

TL853 High Moderate 23 Intratumoural + Tumour edge
TL846 High High 64 Tumour edge
TL873 High High 59 Intratumoural + Tumour edge
TL925 High High 34 Intratumoural + Tumour edge
TL938 High High 61 Intratumoural + Tumour edge
TL920 High High 46 Intratumoural + Tumour edge
TL29111 Low Low 4 Tumour edge
TL939 Low Low 15  Tumour edge
TL956 Low Low 17  Tumour edge
TL959 Low Moderate 28  Tumour edge
TL933 Low Low 3  Tumour edge
TL924 Low Moderate 26  Tumour edge
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4.3.3.3 Multiple B cell clusters emerge in NSCLC and background lung 

Following dimensionality reduction and tSNE (t-distributed stochastic neighbour embedding) the 

B cells formed 9 transcriptionally distinct clusters (C0-8): these are colour coded by cluster and 

visualised in Figure 55. 

4.3.3.1 Identification of B cell subtypes across the clusters 

Following on from the identification of different B cell clusters across the different tissue 

compartments, B cell subtype allocation was undertaken using lineage specific markers (Table 27) 

(Stankovic et al., 2018, Kaminski et al., 2012). The key lineage markers covering the main subtypes 

of B cells were visualised by tSNE (Figure 56), where naïve B cells (CD27-IGHD+), activated/ 

memory cells (CD27+IGHD-Isotype switched+/-), Plasmablasts (CD20loCD27+CD38+Isotype 

switched+/-) and Plasma cells (CD20LoSDC1+Isotype switched+/-) can be distinguished. However, 

the expression profiles for the designated lineage markers were not distinct and formed a 

continuum of expression across several of the different clusters. In addition, not all surface 

markers were successful at differentiating B cells at the transcriptional level; for example CD24 

and CD21 display absent/ very low expression and cannot be used for cell type allocation.  

The naïve B cells (IGHD+CD27-) were elevated in C0 and C2 and a small fraction of C1. 

Activated/ memory cells expressing CD27, class switched Ig isotypes (IGHA1, IGHG1) and CD20 

(MS4A1) were distinguishable from the naïve cells (CD27-IGHD+), and were identified in clusters 

C1, C2, C4, C5, C6. Plasmablasts are evident in C7 where low CD20 and abundant CD27, CD38, 

SDC1 and high expression of isotype switched Ig was observed (IGHA1 and IGHG1). Cluster C8 

represented Plasma cells with high levels of SDC1 and a lack of CD20 and CD27 expression. The 

mean normalised Seurat expression and mean expressing fraction for the lineage markers for 

each cluster are shown as bar charts in Figure 57. In each cluster the genes display the same 

overall expression pattern and cell allocation complementing the tSNE. Very high normalised and 

percentage expression of Ig genes (IGHA1, IGHG1 and IGHM) was observed in the plasmablast 

cluster C7.  
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Figure 55. B cell clustering and visualisation of Single cell data by tSNE  
Visualisation by tSNE (t-Distributed Stochastic Neighbour Embedding) of the 4989 B cells from 
tumour, non-involved lung and lymph node, each dot represents a cell, the colours indicate the 9 
(C0 to C8) B cell clusters (Seurat v3.0 clustering).  

 

 
Table 27. B cell lineage markers for subtype allocation  
Table of phenotypic surface markers successfully used in flow cytometry to determine B cell 
subtypes. Adapted from (Kaminski et al., 2012). 

 

Name Type Phenotype Markers to further 
subset

Ascribed functions

T1 IgD+CD27neg 

CD10+CD24high CD38high

Precursor to T2; IL10 production

T2 IgD+CD27neg 

CD10+CD24high/+ CD38high/+

Precursor to T3; IL10 production 

T3 IgD+CD27neg 

CD10negCD24+/low CD38+/low

Precursor to mature-naïve; IL10 
production 

Mature-naïve IgD+CD27neg 

CD10negCD24+/low CD38+/low

CD23, CD69, CD80, 
CD86

Precursor to GC, memory, and 
antibody-secreting cells

Double-negative IgDnegCD27neg CD21, CD24, CD95, 
CXCR3

Recall responses (and effector 
functions)

Non-switched IgD+CD27+ CD1c, CD21, CD24 Immunoprotective self antibody ; 
circulating MZ-like ; regulatory 

IgM-only IgM+IgDnegCD27+ CD1c, CD21, CD24 Immunoprotective self antibody ; 
circulating MZ-like ; regulatory 

Switched IgMneg IgDnegCD27+ CD21, CD24, CD95, 
CXCR3

Pathogen protection; 
autoimmune pathology

Plasmablast IgDnegCD27high 

CD38highCD138neg

CD20, HLA-DR Antibody secretion

Plasma cell IgDnegCD27high 

CD38highCD138+

CD20, HLA-DR Antibody secretion

*Bold indicates core markers

Transitional

Memory

Antibody-secreting cell
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Figure 56. B cell subtype allocation using cell surface phenotypic markers. 
Seurat normalised expression is overlaid across the tSNE plots with the expression level 
represented by the colour scale (blue= highest expression), the C0-C8 cluster allocation tSNE is 
also shown as a guide. The key B cell markers are able to distinguish possible B cell subtypes.  
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Figure 57. B cell phenotypic marker expression and expressing fraction across the cell clusters.  
The B cell subtype markers (CD27-activated, IGHD-naïve, SDC1-plasmablast/ plasma cell, IGHA1 
and IGHG1 class switched cells) are displayed as bar plots of mean Seurat expression (striped bar) 
and mean expressing fraction as a percentage (grey bar). The bar plots complement the B cell 
subtypes observed in the tSNE.  
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Figure 58. B cell subtype allocation using canonical transcription factors.  
Seurat normalised expression is overlaid across the tSNE plots with the expression level 
represented by the colour scale, the C0-C8 cluster allocation tSNE is also shown as a guide. The B 
cell transcription factors assist in allocating B cell subtypes (Naïve=PAX5, EBF1; Activated=BACH2, 
IRF4lo, IRF8; Germinal centre=BCL6, BACH2, PAX5; Memory cells=PAX5, POUF2AF1 (OBF1), SPIB; 
Plasmablast and plasma cell=IRF4, BLIMP1, XBP1 (Basso and Dalla-Favera, 2015, Nutt et al., 
2015). 
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An additional layer of B cell subtype allocation was achieved with canonical transcription factors 

(Naïve=PAX5, EBF1; Activated=BACH2, IRF4lo, IRF8; Germinal center=BCL6, BACH2, PAX5; Memory 

cells=PAX5, POUF2AF1 (OBF1), SPIB; Plasmablast and plasma cell=IRF4, BLIMP1, XBP1) (Basso and 

Dalla-Favera, 2015, Nutt et al., 2015). Again, these display a continuum of expression across the B 

cell clusters, except for XBP1 and PRDM1 (Figure 58), violin plots for each marker are shown in 

Appendix D.2.1. Naïve B cells expressing PAX5 and EBF1 were identified in C0 and C2. Memory B 

cell features (PAX5, OBF1 (POU2AF2) and SPIB) as well as features of activation (IRF8), were 

expressed in C1, C2 and C4-C6. A key feature of germinal centre B cells is the expression of BCL6 

along with BACH2 and PAX5, which were apparent in C3. The plasmablast and plasma cell genes 

XBP1 and PRDM1 (BLIMP1) were observed in C7 and C8. 

4.3.3.2 B cells from CD8Hi and CD8Lo tumours are enriched in different clusters  

It was very interesting to observe that an enrichment of B cells in different clusters depended on 

whether they were from either CD8Hi (C1 and C6) or CD8Lo (C2, C4 and C5) tumours (Figure 59 A 

and B). The combination of lineage cell surface markers and transcription factors for B cell subsets 

(Figure 56 to Figure 58) were used to assign cell subtypes where possible. The cell subtypes for 

mature naïve/ memory B cells (MB), lymph node germinal centre B cells (LN GC), Plasmablasts 

(PB) and Plasma cells (PC) are shown in Figure 60. The tSNE plots showing each tissue origin and 

the corresponding B cell clusters shows enrichment of particular clusters depending on the tissue 

of origin, the clusters that were enriched in either B cells from CD8Hi or CD8Lo tumours were 

annotated CD8Hi B1-B2 and CD8Lo B3-B5 (Figure 60). Analysis of the clusters by proportions from 

each tissue compartment using stacked bar charts (Figure 61) reiterates that B cells in B1 CD8Hi 

(Blue) and B2 CD8Hi (Red) were enriched in the CD8Hi tumours, whereas the B cells in CD8Lo 

tumours were enriched in B3 CD8Lo (Green), B4 CD8Lo (Purple) and B5 CD8Lo (Orange). B cells 

originating from the lymph node dominated LN GC (lymph node germinal centre B cells), with the 

remaining B cells distributed across MB (mature naïve/ memory B cells), clusters B3, B5 and PB 

(plasmablast); the non-involved lung B cells were enriched in cluster MB and B5. 



Chapter 4 

179 

 
Figure 59. Distribution of clusters from different tissue origins. 
(A) tSNE identifying the tissue of origin of B cells as CD8Hi and CD8Lo tumours, non-involved lung 
(NIL) and lymph node (LN). (B) As a guide the tSNE of the 9 clusters is included. The B cells from 
CD8Hi (C1 and C6 - solid line) and CD8Lo (C2, C4 and C5 - dashed line) tumours are enriched in 
different clusters. 
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Figure 60. Cell subtype allocation and distribution of cell clusters from different tissue origins. 
The Cell subtypes and clusters that were enriched in CD8Hi and CD8Lo tumours are annotated. The 
contribution of each tissue to the different clusters is shown by tSNE (CD8Hi and CD8Lo tumours, 
non-involved lung and lymph node). B cells from the CD8Hi tumours were enriched in B1 (Blue) 
and B2 (Red). The B cells from CD8Lo tumours were enriched in B3 (Green), B4 (Purple) and B5 
(Orange). Cell subtypes have also been assigned for mature naïve/memory B cells (MB), lymph 
node germinal centre B cells (LN GC), Plasmablasts (PB) and plasma cells (PC). 
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Figure 61. Distribution of cell clusters from different tissue origins. 
A representative number of cells (n=756) were used for assessing the proportions of clusters and 
tissues origin (CD8Hi and CD8Lo tumours, non-involved lung and lymph node). Stacked bar plots 
showing the percentage contribution of each tissue origin to each cluster. B cells from different 
tissues display enrichment of clusters (e.g. CD8Hi tumours and cluster B1).  

4.3.3.3 Identifying differentially expressed genes in each B cell cluster 

In order to identify novel features associated with each cluster, differential gene testing of each 

cluster was performed (cluster of interest compared to all remaining cells) using MAST (model-

based analysis of single cell transcriptomics), a cut-off to identify genes with significantly elevated 

expression was set as a fold change of >0.25 (log2) and an FDR of <0.05. The number of 

differentially expressed genes for each cluster is annotated next to the cluster allocations (Figure 

62 A). B cells from CD8Hi tumours B1 CD8Hi (n=151 genes) and B2 CD8Hi (n=256 genes), B cells 

derived from CD8Lo tumours were enriched in clusters B3 CD8Lo (n=41 genes), B4 CD8Lo (n=50 

genes) and B5 CD8Lo (n=84 genes); B3 CD8Lo also contained cells derived from the lymph node. 

Lymph node B cells accounted for >90% in the LN GC cluster (n=334 genes). The top 25 

differentially expressed genes for each cluster (Individual clusters compared to remaining cells 

using MAST) are displayed as a heat map in Figure 62 B, where columns are cells and rows are 

genes, with the cluster colour annotated above. The gene expression pattern for the clusters was 

most distinctive in clusters LN GC, PB and PC, this was also mirrored by the spatial positioning of 
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the clusters in the tSNE. The remaining clusters (B1-B5 and MB) share more gene features and 

occupy a closer relationship by tSNE. 

4.3.3.4 B cells display variable features of activation depending on the tissue origin  

The differentially expressed genes for each cluster were subjected to gene ontology analysis to 

identify significant gene families and biological processes using ToppGene Suite (Chen et al., 

2009). From the differential gene testing, some common activation features (CXCR4, CD69 and 

GPR183) were shown to be differentially expressed in clusters B1, B2 CD8Hi and B3 CD8Lo; these 

are displayed as violin plots of normalised expression, tSNE plots with overlaid expression, grey = 

low; navy blue = high expression and the mean expressing fraction (%) of the cells in each cluster 

(Figure 63 A-C). The average expression of CXCR4, CD69 and GPR183 was highest in B1 CD8Hi and 

B2 CD8Hi (CD8Hi tumours), although the average expression was also high in B3 CD8Lo, B4 CD8Lo 

and B5 CD8Lo. The genes IGHG1, IGHA1 and IGHM are also displayed, this allows the distribution 

of isotype switched cells across the clusters to be determined. Expression of the IGH genes was 

highest in PB (plasmablasts), with IGHG1, IGHA1 and IGHM expression also high in B cell clusters 

B1 CD8Hi, B2 CD8Hi (CD8Hi tumours), B4 CD8Lo and B5 CD8Lo (CD8Lo tumours). The average 

expression of IGHA1 was 1.5-2x higher than that of IGHG1 in clusters B1-B5, with the highest 

average expression in B1 CD8Hi (excluding the PB cluster). 
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Figure 62. Summary of the differentially expressed genes in each cluster.  
Differentially expressed genes were identified by MAST comparing each cluster to the remaining 
cells, significant genes were identified with a log2 fold change > 0.25 and FDR <0.05. (A) lists the 
number of differentially expressed genes identified in each cluster alongside a tSNE of the 
clusters. (B) shows the top 25 expressed genes for each cluster identified from the MAST analysis.  
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Figure 63. Highly expressed markers of activation and isotype switching. 
(A) Violin plots of Seurat normalised expression for the activation markers CXCR4, CD69 and 
GPR183 and the IGH genes IGHG1, IGHA1 and IGHM as an indication of B cell class switching 
across the clusters. (B) Seurat normalised expression overlaid across the tSNE plots and (C) mean 
expressing fraction (%) for the same genes. 
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4.3.3.5 B cells from CD8Hi and CD8Lo tumours display distinct characteristics 

4.3.3.5.1 Gene ontology analysis of clusters enriched in CD8Hi tumours (B1 and B2) 

Since B cells from CD8Hi tumours formed the major part of B1 CD8Hi (Blue) and B2 CD8Hi (Red), the 

differentially expressed genes in each cluster were subjected to gene ontology analysis to identify 

biological processes and gene families. The gene families in B1 CD8Hi consisted of a variety of 

cluster of differentiation (CD) molecules and tumour necrosis super family (TNFS) genes, MHC-I 

and II, Actins and phosphatases that dephosphorylate MAP kinase; the terms and genes are 

summarised in Appendix D.3.4. Significant gene ontology terms associated with biological 

processes (FDR<0.05) were subsequently reduced using REVIGO (Appendix D.3.4). Immunological 

GO terms consisted of interferon-gamma-mediated signalling, response to cytokine, cell 

activation and biological adhesion, summarised in Appendix D.3.4.  

The same analysis rationale was applied to B2 CD8Hi, where significant (FDR<0.05) gene families 

and gene ontologies (reduced by REVIGO) are summarised in Appendix D.3.5. Biological processes 

consisted of a response to type I interferon, response to IFNG, regulation of immune response 

and presentation of exogenous peptides. B cell-specific terms were also identified for B cell 

proliferation, BCR signalling, B cell differentiation and B cell apoptotic process.  

4.3.3.6 Distinctive adaptive immune response features in B cells from CD8Hi tumours  

Differentially expressed genes that linked to an adaptive immune response in B1 CD8Hi and B2 

CD8Hi were evaluated in greater detail. The gene functions in B cells were assessed using the 

literature, presented in Table 28 and Table 29 respectively. As previously stated, some 

overlapping genes (e.g. CXCR4, CD69 and GPR183) from the MAST analysis (cluster of interest 

compared to all remaining cells) were differentially expressed in several clusters (B1 CD8Hi, B2 

CD8Hi and B3 CD8Lo) (section 4.3.3.4). However, these genes displayed the highest average 

expression in cluster B1 CD8Hi and are associated with B cell activation and GC interactions 

(CXCR4, CD69, GPR183, MHC1-I and MHC-II, IRF8 and TNFRSF13B), as well as features of germinal 

centre formation (LTB and ACTG1). The expression of TNFRSF13B (TACI), IRF8, ZFP36L2 and CD48 

are displayed as violin plots, tSNE plots and mean expressing fraction (%), where the average 

expression is higher in B1 CD8Hi, with a reduced number of cells expressing these features in B2 

CD8Hi (Figure 64 A-C). The average expression of these targets was reduced but not absent in the 

remaining clusters B3-B5 and MB. Differentially expressed genes in B cell cluster B2 CD8Hi 

displayed features of an on-going germinal centre reaction (CD40, CD53, TNFSF10 and TNFRSF14), 

as well as increased negative regulators of the B cell response via negative feedback (FCGR2B, 

FCRL5, LGALS9). The genes SRGN and LGALS9 (16% of cells) were elevated in B2 CD8Hi and may 

represent interesting targets that can modulate the functionality of T cells in the tumour 
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microenvironment. A key finding in cluster B2 CD8Hi were the interferon stimulated genes (ISGs), 

which covered a large number of the differentially expressed genes (n=30), and were part of the 

interferon activation gene ontology (biological processes). The ISGs displayed high average 

expression across the cells in the B2 CD8Hi (e.g. IFI44L, STAT1 and IRF7); Violin plots, tSNE plots 

and expressing fraction are shown in Figure 65 A-C for the genes IFI44L, STAT1, FCRL5, IL2RG, 

CD40 and SRGN. A negative regulator of the B cell response FCRL5 was also elevated in both B2 

CD8Hi and PB cluster, with the common gamma chain for the interferon receptor (IL2RG) 

displaying high average expression across B1 CD8Hi, B2 CD8Hi and PB. The proteoglycan Serglycin 

was expressed in several clusters with the highest average expression in B1 CD8Hi, B2 CD8Hi and 

PB.  
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B1 CD8Hi (B cells from CD8Hi tumours) 

 
Table 28. Evaluation of genes identified by gene ontology analysis in B1 CD8Hi cluster (B cells 
from CD8Hi tumours). 
The targets identified from the gene ontology analysis in B1 CD8Hi were investigated further to 
assign the potential functional roles in B cells. The fold change (log2), function and supporting 
evidence are outlined.  

Gene Av. 
FC

Summary Ref.

CXCR4 0.94 CXCR4 is the receptor for CXCL12 and functions to locate GC B cells into the dark and 
light zones, it is also linked with cell cycle and coincides with BCR signalling in the GC 
followed by AID activity.

(Weber, 2018) 

MHC-I and  
MHC-II 

0.78/
0.52

MHC-I and MHC-II (HLA-A, HLA-C, HLA-DPA1 , HLA-DPB1, HLA-DQA1, HLA-
DQB1, HLADRA, HLA-DRB1, HLAE) represent activation status and the ability to 
present antigen to both CD4+ and CD8+ T cells.

(Katikaneni and 
Jin, 2019, 
Yuseff et al., 
2013)

DUSP1 and 
DUSP2 

0.78/ 
0.35

DUSP1 and DUSP2 (Dual Specificity Phosphatase 1/2) are  linked to pro-apoptotic 
features and are implicated as molecular controls to attenuate immune effector 
functions.

(Shen et al., 
2017) 

GPR183 0.73 GPR183 (G Protein-Coupled Receptor 183; EBI2, Epstein-Barr virus-induced gene 2) 
increases during the BCR activation and CD40 co-stimulation. Essential for migration 
of B cells to extrafollicular sites and induction of plasmablasts. Downregulation 
promotes B cell migration to the centre of follicles and GC formation.

(Gatto et al., 
2009)

CD69 0.68 CD69 is an early activation marker, stopping egress form lymphoid tissues by 
inhibiting S1P1, it leads to a more stable CD4+ Tfh cell interaction.

(Shiow et al., 
2006, Ise et al., 
2018)

ACTG1 0.58 ACTG1 (actin gamma 1) plays a role in the immunological synapse and activation of B 
cells.

(Burbage and 
Keppler, 2018) 

KLF2 0.5 KLF2 (Krupple like factor 2) KLF2 controls B cell localization its absence leads to 
diminished FO B cells and plasma cells.

 (Winkelmann 
et al., 2011)

ZFP36L2 0.47 ZFP36L2 is a transcription factor that is critical for re-establishing quiescence and 
maintenance of genomic integrity during B cell development and SHM and CSR.

(Galloway et 
al., 2016)  

CD48 0.44 CD48 (part of SLAM; signalling lymphocyte activation molecules) is required for the 
effective differentiation of B cells and T-dependent Ig production, Nk cells expressing 
CD48 can activate B cells  leading to T-independent Ig.

(Hoffmann et 
al., 1998, Yuan 
et al., 2013)

SAMSN1 0.4 SAMSN1 Negative regulator of B cell activation that is elevated in lymphoid B cells, co-
expressed with CD27.

(Chokeshai-u-
saha et al., 
2012) 

CD37 0.39 CD37 (TSAPN26; Tetraspanin 26) forms complexes with MHC-II and is important for 
T and B cell interactions leading Ig production. 

(van Spriel, 
2011)

SELL 0.35 SELL (CD62L) expressed on Naïve lymphocytes and is subsequently lost from the 
cells surface upon BCR activation.

(Morrison et al., 
2010) 

LTB 0.34 LTB (lymphotoxin beta) plays a role in B cells by tissue remodelling and inducing the 
formation of TLS.

(Shen and 
Fillatreau, 
2015)

IRF8 0.3 IRF8 is required for formation of follicular and GC B cells, loss leads to impaired Ig 
production. IRF8 regulates the BACH2 and FCER2 that maintain the FO B cell 
phenotype, it also regulates BCL6 a fundamental part of GC B cells.

(Wang et al., 
2019)

TNFRSF13B 0.27 TNFRSF13B (Transmembrane activator and calcium-modulator and cytophilin ligand 
interactor; TACI) is expressed in switched memory B cells and is upregulated upon 
activation via BCR and TLR.

(Castigli et al., 
2005, Smulski 
et al., 2017)

SOCS1 0.26 SOCS1 (Suppressor Of Cytokine Signalling 1) inhibits the JAK-STAT1 pathway and is 
induced by cytokines (IFNG) and acts in a negative feedback loop to attenuate cytokine 
signalling.

(Zhou et al., 
2007) 

Cluster C1



Chapter 4 

188 

 
 Figure 64. Expression of differentially expressed B cell features identified in B1 CD8Hi cluster 
(B cells from CD8Hi tumours).  
(A) Violin plots of Seurat normalised expression for the genes TNSRSF13B, IRF8, ZFP36L2 and 
CD48 across the clusters. (B) Seurat normalised expression overlaid across the tSNE plots and (C) 
mean expressing fraction (%) for the same genes. An activation profile exists in C1 that indicates 
germinal centre and memory B cells, this was also observed in C6 but to a lesser extent.   
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B2 CD8Hi cluster (B cells from CD8Hi tumours) 

 
Table 29. Evaluation of genes identified by gene ontology analysis in B2 CD8Hi cluster (B cells 
from CD8Hi tumours). 
The targets identified from the gene ontology analysis in B2 CD8Hi were investigated further to 
assign the potential functional roles in B cells. The fold change (log2), function and supporting 
evidence are outlined.  

 

 

Gene Av. 
FC Summary

Ref.

ISGs 1.48/ 
1.46/ 
1.1 

Interferon stimulated genes (ISGs) that result from a response to IFN binding 
cell surface receptors, it leads to signalling via JAK:STAT1 and ISG expression. 
ISGs=PSMB8, PSMB9, IRF2, IRF7, ISG20, PSMD13, PSME1, PSME2, IRF9, 
IFITM1, IFITM2,IFI44L, IFI16, IFI35, IFIT2, IFIT3, MT2A, ISG15, IFI6, MX1, 
MX2.

(Schoggins and Rice, 2011) 
(Schneider et al., 2014) (Vazquez et 
al., 2015) (Jackson et al., 2015)

STAT1 0.97 STAT1 signalling along with INF signalling are fundamental to the formation 
germinal centres. (Domeier et al., 2016)

CXCR4 0.7
See table for C1

FCRL5 0.62 FCRL5 functions as a regulator of the B cell response by binding to the Fc region 
of IgG, forming a negative feedback loop. It is expressed on activated B cells and 
memory B cells.

(Wilson et al., 2012, Kim et al., 
2019a) 

TNFSF10 0.59 TNFSF10 (TRAIL) induces apoptosis upon ligation, BCR activation and CD40 
co-stimulation abrogates this process. TRAIL therefore induces apoptosis in 
poorly stimulated cells and helps maintain B cell homeostasis. (Guerreiro-Cacais et al., 2010)

CD69 0.51
See table for C1

GPR183 0.48
See table for C1

SAMSN1 0.48
See table for C1

CD164 0.48 CD164 expression modulates the proliferation, adhesion and migration of 
haemopoietic cells, it interacts with CXCR4 and enhances cells motility.

(Forde et al., 2007, Huang et al., 
2013a)

SOCS3 0.47

SOCS3 (Suppressor Of Cytokine Signalling 3) is a key regulator of STAT3-
dependent cytokine responses, It's expression is linked to IL10 production.

(Stanic et al., 2015, Jones et al., 
2011)

LGALS9 0.4

LGALS9 expressed on activated B cells, binding to Gal-9 leads to suppression 
on of BCR in memory B cells. Also has the potential to regulate the functionality 
of T cells by binding to HAVCR2 (TIM3) inhibiting their survival and function.

(Zhu et al., 2005, Giovannone et al., 
2018, Cao et al., 2018) 

SRGN 0.38 SRGN (Proteoglycan serglycin) forms a macromolecular complex with 
granzymes and perforin. Extracellularly secreted where it can enhance 
immunity. Also implicated in epithelial mesenchymal transition and promotion of 
cancer cell invasion and metastasis.

(Kolset and Pejler, 2011, Korpetinou 
et al., 2014, Xu et al., 2018, Zhang et 
al., 2017) (Li et al., 2011)

CCR7 0.33 CCR7 is upregulated upon activation via BCR, makes B cells more 
responsiveness to CCL21 maintaining them at the immunological synapse. (Pereira et al., 2010)

FCGR2B 0.31 FCGR2B a receptor for IgG, it blocks B cell activation and induces apoptosis via 
a negative feedback loop. (Jhou et al., 2017) 

CD53 0.31 CD53 (TSPAN25) complexes with integrins and promotes BCR dependent 
activation. (Zuidscherwoude et al., 2017)

IL2RG 0.31 IL2RG (Interleukin 2 Receptor Subunit Gamma) is a signaling component of 
many interleukin receptors, including interleukin -2, -4, -7 and -21, leading to 
cytokine sensing and B cell differentiation. (Berglund et al., 2013) 

CD40 0.3 CD40 is expressed on B cells and APCs, the binding of antigen by T cells 
presented by B cells requires co-stimulation via CD40 and CD40LG expressed 
CD4 cells for effective activation of both cell types. (Elgueta et al., 2009)

TNFRSF14 0.29 TNFRSF14 (herpesvirus entry mediator; HVEM) interacts with BTLA on T cells 
(CD4+ Tfh) and restrains the GC response by impeding the TCR signalling in 
Tfh cells leading to lower CD40LG co-stimulation. (Mintz et al., 2019)

Cluster C6
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Figure 65. Expression of differentially expressed B cell features identified in B2 CD8Hi cluster (B 
cells from CD8Hi tumours). 
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Figure 65 legend. 

 
Figure 65. Expression of differentially expressed B cell features identified in B2 CD8Hi cluster (B 
cells from CD8Hi tumours).   
(A) Violin plots of Seurat normalised expression for the genes IFI44L, STAT1, FCRL5, IL2RG, CD40 
and SRGN across the clusters. (B) Seurat normalised expression overlaid across the tSNE plots and 
(C) mean expressing fraction (%) for the same genes. Some of the featured genes in the B2 CD8Hi 
B cell cluster highlight that an interferon response signature was present (IFI44L and STAT1), 
including an interferon receptor (IL2RG), along with CD40 indicating co-stimulation and response 
to potential environmental cytokines. Elevated SRGN was also observed and may be an 
interesting immunomodulatory target.  

4.3.3.7 Gene ontology analysis of B cells enriched in CD8Lo tumours (B3 CD8Lo, B4 CD8Lo and 

B5 CD8Lo) 

Differentially expressed genes in clusters B3 CD8Lo, B4 CD8Lo and B5 CD8Lo (enriched in CD8Lo 

tumours) were subjected to gene ontology analysis of biological process and gene families, 

summarised in Appendix D.3.6 to D.3.8 respectively. The analysis of B3 CD8Lo identified biological 

processes associated with CD4+ T cell activation, regulation of cell adhesion and regulation of 

leukocyte activation; IGHD, a marker of naïve cells, also displayed higher average expression in B3 

CD8Lo (Appendix D.3.6). Gene ontologies associated with B4 CD8Lo were involved in cellular 

response to TNF and cellular response to stress/ response to unfolded protein. The gene families 

identified in B4 CD8Lo were related to heat shock proteins (Appendix D.3.7). The gene families in 

cluster B5 CD8Lo were linked with calcium binding, along with biological processes indicating 

regulation of cell adhesion, cell growth, protein localisation and immune response-activating cell 

surface receptor signaling pathways (Appendix D.3.8).  

4.3.3.8 Distinctive adaptive immune response features in B cells from CD8Lo tumours  

The differentially expressed genes identified in clusters B3 CD8Lo, B4 CD8Lo and B5 CD8Lo were 

explored in more detail relative to the literature and are summarised Table 30 to Table 32. The 

key features in B3 CD8Lo were those of an enrichment of naïve mature B cell genes (IGHD and 

FOXP1). The genes NR4A2, FOXP1, CD83 and IGHD displayed higher average expression in B3 

CD8Lo, although expression was also observed in B1 CD8Hi and B2 CD8Hi Figure 66 A-C). In Cluster 

B4 CD8Lo, heat shock proteins (HSPs) dominated the signal and were expressed at significantly 
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higher levels in the B cells from CD8Lo tumours relative to CD8Hi tumours. HSP expression (DNAJB1, 

HSPA1A and HSPB1) was also present in the PB and PC clusters, although at lower levels than in 

cluster B4 CD8Lo (Figure 67 A-C). These function to facilitate the correct folding of proteins, they 

are also induced by cellular stress and play a role in pro- and anti-inflammatory responses. A 

signature of B cell activation was detected in B5 CD8Lo with the expression of Ca2+ channel 

proteins (S100A4 and S100A10) and the activation marker CD69 (Figure 68 A-C). Elevated average 

expression of LGALS1 was also observed in B5 CD8Lo, this has been linked to regulation of B cells 

and can also have negative effects on T cell functionality. LGALS1 was also identified at elevated 

levels in the PB and PC clusters, indicating its sustained expression through different B cell 

differentiation states.  

B3 CD8Lo cluster (B cells from CD8Lo tumours) 

 
Table 30. Evaluation of genes identified by gene ontology analysis in B3 CD8Lo cluster (B cells 
from CD8Lo tumours). 
The targets identified from the gene ontology analysis in B3 CD8Lo were investigated further to 
assign the potential functional roles in B cells. The fold change (log2), function and supporting 
evidence are outlined. 

 

Gene Av. 
FC

Summary Ref.

NR4A2 0.65 NR4A2 (Nuclear Receptor Subfamily 4 Group A Member 2) functions as a 
transcription factor in early B cell development, its absence causes disruption 
to B cell lymphogenesis.

(Miyai et al., 2018)

IGHD 0.65 IGHD expression is a feature of mature B cells along with IGHM. Upon 
activation with antigen B cells undergo loss of IGHD and with co-stimulation 
class switching. Surface IgD has also been implicated in tolerance where it 
inhibits responses to potential autoantigens. 

(Gutzeit et al., 2018, 
Quach et al., 2011)

CD83 0.55 CD83 is a membrane Ig receptor expressed on recently activated B cells and 
in GC B cells, aberrations in CD83 can lead to altered antibody production and 
GC responses.

(Krzyzak et al., 2016)

CD69 0.38 CD69 broad activation marker highlighted previously in C1 table. (Shiow et al., 2006, Ise 
et al., 2018) 

CD44 0.278 CD44 involved in cell adhesions and ECM interactions as well as interacting 
with cytokines and growth factors in the tumour microenvironment.

(Morath et al., 2016) 

FOXP1  0.25 Essential transcription factor in early B cell development and expressed on  
mature B cells.

(Patzelt et al., 2018) 
(Hu et al., 2006)

Cluster C2
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Figure 66. Expression of differentially expressed B cell features identified in cluster B3 CD8Lo 

cluster (B cells from CD8Lo tumours).   
(A) Violin plots of Seurat normalised expression for the genes NR4A2, FOXP1, CD83 and IGHD 
across the clusters. (B) Seurat normalised expression overlaid across the tSNE plots and (C) mean 
expressing fraction (%) for the same genes. The expression IGHD was higher in B3 CD8Lo and 
indicates an enrichment of naïve B cells.  
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B4 CD8Lo cluster (B cells from CD8Lo tumours) 

 

Table 31. Evaluation of genes identified by gene ontology analysis in B4 CD8Lo cluster (B cells 
from CD8Lo tumours). 
The targets identified from the gene ontology analysis in B4 CD8Lo were investigated further to 
assign the potential functional roles in B cells. The fold change (log2), function and supporting 
evidence are outlined. 

Gene Av. 
FC

Summary Ref.

ID3 0.97 ID3 (Inhibitor Of DNA Binding 3) is expressed in follicular B cells and then declines 
in GC B cells, it is proposed that the decline of ID3 leads to effective BCR activation 
and subsequent signalling.

(Chen et al., 2016)

CACYBP 1 CACYBP (Calcyclin Binding Protein) functions to degrade Beta-catenin, a regulator 
of cell communication and associated with differentiation of cell (CD4+ T cells).

(Fukushima et al., 
2006)

GADD45B 0.69 GADD45B (Growth Arrest And DNA Damage Inducible Beta) Is upregulated by 
CD40 activation and functions to protect B cells from FAS-induced programmed 
cells death. It is found in GC B cells and is crucial pro-survival mediator that blocks 
FAS cytotoxicity.

(Zazzeroni et al., 
2003)

HSP40 2.08 HSP40 may play a role in the production of IL10 and inhibition on T cell replication. (Tukaj et al., 2010)

HSP70 2.05 HSP70 can directly regulate immune responses via IFN-γ and TNF-α production 
as well as downregulating CD86 and MHC class II.

(Milani et al., 2002)

HSP90 1.46 HSP90 is involved intra and extra cellular antigen presentation via MHC-I and -II as 
well as modulating the IFN response.

(Mbofung et al., 
2017, Graner, 
2016) 

HSPs 2.08/ 
2.05/ 
0.91

Heat shock proteins (HSPs)/ cellular response to stress. GADD45B, DNAJB1, 
HSPH1, PRDX1, DNAJB6, PPP1R15A ,CHORDC1,DNAJA1, HSPA1A, HSPA1B, 
PTGES3, HSPA8 ,HSPB1, PMAIP1, SOD1, HSP
90AA1, HSP90AB1.

(Zininga et al., 
2018)

Cluster C4
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Figure 67. Expression of differentially expressed B cell features identified in B cells from B4 
CD8Lo cluster (B cells from CD8Lo tumours).   
(A) Violin plots of Seurat normalised expression for the genes DNAJB1, HSPA1A, HSPB1 and ID3. 
(B) Seurat normalised expression overlaid across the tSNE plots and (C) mean expressing fraction 
(%) for the same genes. Expression of heat shock proteins dominated the differentially expressed 
genes in B4 CD8Lo, they are linked to cellular and endoplasmic reticulum stress.  
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B5 CD8Lo cluster (B cells from CD8Lo tumours) 

 

Table 32. Evaluation of genes identified by gene ontology analysis of B cells in B5 CD8Lo cluster 
(B cells from CD8Lo tumours). 
The targets identified from the gene ontology analysis in B5 CD8Lo were investigated further to 
assign the potential functional roles in B cells. The gene fold change (log2), function and 
supporting evidence are outlined in the table. 

 

 

 

 

 

Gene Av. 
FC

Summary Ref.

CRIP1 1.48 CRIP1 (Cysteine-rich intestinal protein 1) is a zinc finger protein that has been 
used as a biomarker for cancer, it promotes cell migration and invasion, its 
expression also increases Beta catenin. 

(Ludyga et al., 2013)

ITGB1 1.03 ITGB1 Integrin beta 1 supports the interactions between GC B cells and FDC 
cells for efficient GC B cell responses .

(Wang et al., 2014)

S100 1.02 S100 are calcium Ca2+ binding proteins that regulate intracellular Ca2+ levels 
( S100A10, S100A11 and S100A4). In B cells they function to control the influx of 
Ca2+ after activation via the BCR. This shapes B cell development through 
tolerance mechanisms that relate to excessive Ca2+ influx that results after 
chronic stimulation, ultimately leading to apoptosis. 

(Baba and Kurosaki, 
2016) (Hemon et al., 
2017)

LGALS1 0.67 LGALS1 (Galectin 1) is the partner to TIM1 (HAVCR1) and has been shown to 
be part of regulatory B cell subtype with the ability to regulate and induce 
apoptosis in T cells. It functions in B cells to regulate homeostasis and promote 
cell survival in plasma cells.

(Zuniga et al., 2001, 
Alhabbab et al., 2018) 
(Anginot et al., 2013)

Cluster C5
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Figure 68. Expression of differentially expressed B cell features identified in cluster B5 CD8Lo (B 
cells from CD8Lo tumours).   
(A) Violin plots of Seurat normalised expression for the genes CRIP1, ITGB1, S100A10 and LGALS1. 
(B) Seurat normalised expression overlaid across the tSNE plots and (C) mean expressing fraction 
(%) for the same genes. Ca2+ channel expression suggests cell activation via the BCR and 
interactions with follicular dendritic cells via ITGB1. LGALS1 represent an interesting target that 
regulates B cell activation but also has the potential to negatively influence T cells.  
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4.3.3.9 Characteristics of B cells in the remaining clusters (LN GC, MB, PB and PC) 

The remaining clusters that did not show a specific enrichment in either CD8Hi or CD8Lo tumours 

were the lymph node germinal centre B cells (LN GC), mature/ naïve B cells (MB), plasmablasts 

(PB) and plasma cells (PC). As previously outlined, differential gene testing was performed (MAST) 

followed by gene ontology analysis for clusters LN GC, MB, PB and PC. GO terms were 

subsequently reduced using REVIGO (Appendix D.3), where highly overlapping GO terms are 

removed to leave the core biological processes, any B cell related terms were also retained 

(summarised Appendix D.3.1 to D.3.3).   

The LN GC cluster (Lymph node germinal centre B cells) were almost entirely made up of B cells 

derived from the lymph node tissue. The GO analysis of LN GC cluster displayed features of B cell 

activation, regulation of type 2 immune responses, BCR signalling pathway and positive regulation 

of B cell proliferation (Appendix D.3.1). Lymph node-derived B cells in the LN GC cluster also 

displayed a distinct germinal centre B cell expression profile; key to this was expression of BACH2 

and BCL7A (Figure 69 A-C). The average expression of BCL6 was also highest in the LN GC cluster, 

although it was expressed at a low level overall and in a small fraction of the cells (Figure 69 A-C). 

The key genes identified in LN GC and supporting literature are shown in Table 33.  

Mature/ naïve B cells (MB), as previously described (section 4.4.3.1), were defined as either 

quiescent memory or follicular B cells based on expression of CD27, IGHD and also evidence of 

isotype switching (IGHA and IGHG expression). The MB cluster displayed the fewest differential 

genes, likely a result of shared gene features across the remaining cells. Plasmablasts were 

identified in the PB cluster by the expression of key transcription factors (XBP1), activation 

markers (CD27), the cell markers SDC1 (CD138), CD38 and high levels of IGH expression (IGHG, 

IGHA and IGHM). The gene ontology identified response to unfolded protein, Ig-mediated 

immune responses and response to interferon (Appendix D.3.2). 

The B cells derived from the PC cluster were few in number (n=30 cells) and represented the 

cluster with the most differential genes relative to the other cells (n=1037), the key identifying 

features from the gene ontology analysis were cell adhesion, localisation of cell and tissue 

migration (Appendix D.3.3). The cell type allocation identified this cluster as most likely plasma 

cells using SDC1 expression as a key marker along with tissue homing features.  
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Lymph node germinal centre B cells (LN GC) 

 
Table 33. Evaluation of genes identified by gene ontology analysis in the LN germinal centre B 
cells (LN GC) cluster. 
The targets identified from the gene ontology analysis in LN GC were investigated further to 
assign the potential functional roles in B cells. The fold change (log2), function and supporting 
evidence are outlined.  

 

 

Gene Av. 
FC

Summary Ref.

BACH2 1.59 BACH2 is integral to GC B cell formation by repressing the formation of Plasma cells 
and inhibiting the transcription factor BLIMP1 (required from PC formation). It also 
function as an essential part of BCR mediated cell proliferation.

(Muto et al., 
2010) (Miura et 
al., 2018)

BCL7A 1.99 BCL7A (BAF Chromatin Remodelling Complex Subunit) has been termed a tumour 
suppressor gene and is linked to several lymphomas, it is also co-expressed with 
AID(activation induced cytidine deaminase) playing a role in isotype class switching. 

(Yu et al., 2017)

CD22 1.14 CD22 functions as an inhibitory receptor reducing Ca2+ and limiting BCR signalling. (Muller and 
Nitschke, 2014)

RGS13 1.83 RGS13 (Regulator Of G Protein Signalling 13) function to regulate the Germinal centre 
B cell response and size by modulating  chemokine induced cell migration.

(Shi et al., 
2002)

IL4R 0.95 Stimulation via IL4R and CD40 leads to effective BCR signalling and increased TACI 
and BCMA associated cell survival ,  IL4 is also linked to a TH2 response.  

(Ferrer et al., 
2014)

Cluster C3
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Figure 69. Expression of differentially expressed B cell features identified in the Lymph node 
germinal centre B cell (LN GC) cluster.   
(A) Violin plots of Seurat normalised expression for the genes BACH2, BCL7A, CD22 and BCL6. (B) 
Seurat normalised expression overlaid across the tSNE plots and (C) mean expressing fraction 
(%) for the same genes. The B cells in LN GC were predominantly from the lymph node and 
display a germinal centre expression pattern with elevated BACH2 and BLC6. 
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4.3.4 Discussion 

The role that B cells play in anti-tumour immunity consists of paradoxical findings that are yet to 

be resolved. On the one hand, they are reported to be immunosuppressive in the form of Breg cells 

(Shalapour et al., 2015, Shalapour et al., 2017), where they have a negative impact on CD8+ T cell 

tumour immunity. On the other hand, a positive link to survival has been associated with high 

numbers of B cells and TLS in tumours, where B cells are also co-localised with CD8+ cells (Dieu-

Nosjean et al., 2016, Germain et al., 2014).  

Evaluation of B cells at a single cell level in NSCLC and non-involved tissues revealed distinct 

clusters that were linked to the density of the CD8+ T cell infiltrate in the originating tumour 

(CD8Hi and CD8Lo tumours). The present study aimed to investigate B cells from tumours that were 

CD8Hi and CD8Lo, with the CD8+ T cell density being a known prognostic indicator of good outcome 

(Galon et al., 2006, Ward et al., 2014b). The identified clusters link to known B cell subsets, but 

also highlight differences in the overall function and activation profile of B cells that reflect the 

tissue from which they were derived (CD8Hi and CD8Lo tumours, non-involved lung (NIL) and 

Lymph node (LN). The B cell clusters (n=9) were categorised as enriched in CD8Hi tumours (clusters 

B1 and B2), CD8Lo tumours (clusters B3, B4 and B5) or annotated as B cell subsets (MB=mature/ 

naïve; LN GC=lymph node germinal centre; PB= plasmablast and PC= plasma cell).  

A large proportion (70%) of B cells in NSCLC have previously been identified as having a memory/ 

antigen experienced phenotype (IGHD-CD38+/-) (Germain et al., 2014). The Single Cell data 

presented here was also enriched for cells that fit the profile of antigen-experienced activated/ 

memory cells. These were identified in clusters B1-B5, where differences associated with the CD8 

density in the originating tumour emerged; these cells formed the focal point of the analysis.  

B cells from CD8Hi tumours were enriched in clusters B1 (Blue) and B2 (Red), cell subtypes in B1 

and B2 highlighted features of naïve B cells (IGHD+IGHM+), activated B cells (CD27) and evidence 

of isotype switching (IGHG and IGHA). Differentially expressed genes associated with B1 and to a 

lesser extent B2, were linked to an activation profile via BCR signalling and cellular migration 

(CXCR4, CD69, GPR183, CD48) (Weber, 2018, Gatto et al., 2009, Hoffmann et al., 1998, Yuan et al., 

2013,(Castigli et al., 2005, Smulski et al., 2017, Weber, 2018, Gatto et al., 2009, Hoffmann et al., 

1998, Yuan et al., 2013).  

 

Both clusters B1 and B2 displayed the highest average expression of TACI (Transmembrane 

activator and Calcium-modulator and cytophilin ligand interactor - TNFRSF13B), a marker of 

switched memory cells, and an indicator of reactivated memory B cells within the tumour (Castigli 

et al., 2005, Smulski et al., 2017). TACI also plays a key role in the germinal centre during 
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differentiation into plasmablasts. It is a key part of the B cell and T cell interface in the light zone, 

its loss results in reduced plasmablast formation (Zhang et al., 2018). The ligation of TACI by APRIL 

has been shown to inhibit B cell proliferation and lead to plasma cell differentiation (Mackay and 

Schneider, 2008). The signature emerging from B1 was that of GC B cells and formation of TLS 

identified by expression of IRF8 and LTB (lymphotoxin b) (Wang et al., 2019, Shen and Fillatreau, 

2015, Burbage and Keppler, 2018). All CD8Hi tumours displayed significantly more TLS within the 

tumour and at the tumour edge compared to the CD8Lo tumours. Other highly expressed features 

in B1 were MHC-I and -II genes; when coupled with features of T and B cell interactions (CD37, 

CD48) this highlights that antigen presentation to CD8+ and CD4+ T cells was possible and likely 

on-going. The role of antigen presentation by TIBs in lung cancer has been shown to have 

important effects on the functionality of CD4+ TIL. The presence of activated B cells leads to an 

effector T- cell response (IFNg+), with unresponsive B cells (exhausted) leading to formation of 

Tregs (FOXP3+) (Bruno et al., 2017). The expression of MHC -I and -II genes was also elevated in B 

cells from CD8Hi tumours relative to the CD8Lo (Katikaneni and Jin, 2019, Yuseff et al., 2013). 

A striking gene signature in cluster B2 (enriched in CD8Hi tumours) was that of the interferon 

stimulated genes (ISGs) that result from a response to IFN binding its cognate cell surface 

receptors. This leads to signalling via JAK:STAT1 and a wide range of ISG expression (Schneider et 

al., 2014). The average expression of IRF7 (interferon regulatory Factor 7) was also elevated; IRF7 

is the gene regulator of Interferon alpha and beta (Honda et al., 2005). Conversely the expression 

of interferon genes linked to IFNg signalling also exists (IFIL4, MX1/2 and ISG15)(Schneider et al., 

2014). 

Taken together, this highlights that a heterogenous stimulus is taking place leading to the 

expression of a wide range of interferon stimulated genes in the B cells in cluster B2 CD8Hi. This 

indicates that the B cells in CD8Hi tumours are co-localised with antigen-specific CD4+ and CD8+ T 

cells and an on-going immune response, with the subsequent release of Interferon and a 

consequent ISG signature in the B cells. Some other key indicators of the interaction of B cells 

with T cells in the B2 cluster were the elevated expression of CD40, CCR7 and TNFRSF14 

(herpesvirus entry mediator; HVEM) (Pereira et al., 2010, Elgueta et al., 2009, Domeier et al., 

2016). Negative regulators were also identified that function to restrain the B cell response after 

the initial activation phase (FCGR2B, FCRL5, TNFSF10, TRAIL), SOCS3 (Guerreiro-Cacais et al., 

2010), (Jhou et al., 2017), (Wilson et al., 2012, Jones et al., 2011). This feedback mechanism is also 

important for the selection of high affinity B cell clones in the GC, where only high affinity 

antibody clones are selected, this ultimately leads to a reduction in the GC reaction (Zhang et al., 

2013). The formation of TLS in tumours has been shown to confer a favourable prognosis, the 

transcriptomic features here are indicative of TLS formation and an on-going interaction between 

B cells and CD4+ T cells providing co-stimulation. Histologically the CD8Hi tumours displayed 
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significantly (p=0.0024) higher numbers of B cells and dense aggregates of B cells (TLS) when 

compared to the CD8Lo tumours. This is supportive of a different B cell response and activation 

profile, with features of an on-going GC reaction and the co-existence of antigen specific T and B 

cells in the tumour. The extensive interferon signature that was observed in B2 (enriched in CD8Hi 

tumours) may be a reflection of a protective immune response to the tumour (Germain et al., 

2014, Kroeger et al., 2016). From the cluster comparisons, LGALS9 emerged as differentially 

expressed in B2 (expressed in 16% of cells). LGALS9 is the ligand to TIM3 (HAVCR2) and is a potent 

regulator of CD8+ T cell responses, especially in highly active and functional CD8+ CTLs that 

express TIM3 (Zhu et al., 2005, Giovannone et al., 2018, Cao et al., 2018, Clarke et al., 2019). 

Although LGALS9 is only expressed in a small fraction of the cells it raises the question of whether 

B cells expressing LGALS9 have the potential to directly inhibit T-cells via TIM3. The cluster 

analysis also identified high average expression of a proteoglycan SRGN (Serglycin) in B2 (also in 

PB and to a lesser extent in B1). This forms molecular complexes with granzymes and perforin 

within the cell, it also exists in an extracellular secreted form. It has been implicated in promoting 

epithelial mesenchymal transition as well as prompting cancer cell invasion and metastasis, with 

higher expression linked to a worse prognosis in breast and colorectal cancer (Kolset and Pejler, 

2011, Korpetinou et al., 2014, Xu et al., 2018, Zhang et al., 2017, Li et al., 2011). It is likely that 

even in tumours with a good prognosis (CD8Hi) and high number of favourable TLS, B cells are 

present that exhibit features of direct negative regulation on T cells. Modulating/ blocking these 

features in an already good prognostic patient group may allow the antitumor response to be 

even more potent, LGALS9 and SRGN represented interesting targets that could be used for 

potential immunomodulation. The B cells that were identified in the CD8Hi tumours present an 

interesting group of cells that are playing a key role in the adaptive immune response. Displaying 

features of antigen presentation and interacting with other cells of the immune system, in 

particular expression of co-stimulatory molecules. Further work in this area is required to 

elucidate the exact nature of the positive and negative features expressed on B cells, and how 

they may be manipulated to improve antitumor responses.   

 

The CD8Lo tumours are known to confer a poor prognosis (Galon et al., 2006, Ward et al., 2014b). 

The B cells from these tumours displayed a marked difference in clustering relative to the CD8Hi 

tumours, and were enriched in B3 (Green), B4 (Purple) and B5 (Orange). Naïve B cells (IGHD+) did 

not form a discrete B cell cluster in this cohort, IGHD was differentially expressed relative to the 

remaining cells in B3 (Green). However, expression of CXCR4 and CD69 in the same cluster also 

indicated a process of activation (Gutzeit et al., 2018, Quach et al., 2011). FOXP1 was differentially 

expressed in B3 cluster (also identified in MB cluster) and is found throughout B cell development, 

especially in mature naïve B cells (Patzelt et al., 2018, Hu et al., 2006). Taken together these two 
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pieces of evidence, along with lower CD27, mean they are likely cells undergoing activation, but 

also contain a higher proportion of naïve cells. B cells in cluster B3 were comprised mostly of cells 

from CD8Lo tumours and Lymph node, whereas the B cells from CD8Hi tumours were mainly 

absent. The B cells forming cluster B5 (Orange) were derived from LN, NIL and CD8Lo TIBs (least 

abundant in TIBS from CD8Hi tumours). The curated cell type allocation showed isotype switching 

and expression of IRF8 and SPIB, indicating activation and memory cell formation (Wang et al., 

2019). A number of Calcium (Ca2+) binding proteins that are associated with BCR activation and 

the regulation of Ca2+ influx were also differentially expressed in cluster B5 (Baba and Kurosaki, 

2016, Hemon et al., 2017). ITGB1 (Integrin beta 1) was also elevated and plays a role in the 

interaction between GC B cells and FDC cells at the immunological synapse (Wang et al., 2014). An 

interesting target that emerged from the differential gene analysis was LGALS1 (Galectin 1), which 

binds b-galactosides. It is part of normal B cell homeostasis and is integral to BCR signaling and 

activation (Tsai et al., 2014). The expression of LGALS1 in B cells can induce a regulatory function, 

where it is required for IL10 production (Alhabbab et al., 2018). Immunomodulatory effects of 

LGALS1 have also been reported, but have not been directly associated with tumour infiltrating B 

cells. These effects include the induction of T-cell apoptosis and a reduction in cytokine 

production, where TCR signaling and IL2 production are modulated by LGALS1 (Zuniga et al., 2001) 

(Anginot et al., 2013, Perillo et al., 1995, Chung et al., 2000). The immune-inhibitory action of 

LGALS1 is diverse, affecting expansion of Tregs, T cell apoptosis, TCR activation, macrophage 

deactivation and a shift towards Th2 cytokine production (Cedeno-Laurent et al., 2012, Mendez-

Huergo et al., 2017). Small molecule inhibitors of LGALS1 are being used in phase 1 clinical trials of 

OTX008 (NCT01724320), this opens the possibility to block its negative effects on T cells (Sundblad 

et al., 2017, Zheng et al., 2019, Paz et al., 2018). LGALS1 represents a novel marker identified in B 

cells that could be used to modulate the immune response alongside other immunomodulatory 

therapies (anit-PD1 and anti-CTLA4).  

TIBs in CD8Lo tumours were also enriched in B4 (Purple) where a number of heat shock proteins 

(HSPs) were expressed. These function to facilitate the correct folding of proteins, they are also 

induced by cellular stress (Zininga et al., 2018). At an immunological level, HSPs play a role in both 

pro- and anti-inflammatory responses. HSP90 is involved in intra- and extra-cellular antigen 

presentation via MHC-I and -II as well as modulating the IFN response. HSP70 can directly regulate 

immune responses via IFN-γ and TNF-α production, as well as downregulating CD86 and MHC 

class II (Milani et al., 2002). The unfolded protein response (UPR) is a normal process of cells that 

are undergoing endoplasmic reticulum (ER) stress, and a key feature of cells preparing to become 

antibody secreting cells and is driven by the expression of XBP1 (highly expressed in plasmablasts 

(PB) and plasma cells (PC), which is upregulated upon ER stress. It should also be stated that XBP1 

is expressed in cells that are not under ER stress, and is a requirement for effective differentiation 
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into plasmablasts via BCR signaling (Hetz, 2012, Hu et al., 2009). Evidence indicated isotype 

switched B cells in B5 (Purple) were also present, with IGHA and IGHG expression along with the 

activation marker CD27. This and the expression of cellular response to ER stress would indicate 

that these cells are undergoing differentiation into antibody secreting cells. Alternatively, the 

HSPs and Unfolded Protein response may be a combination of preparing to secrete antibody, and 

a cellular response to environmental stress. Cellular stress can be induced by conditions in the 

tissue microenvironment such as hypoxia and cellular damage, which are all hallmarks of cancer 

(Hanahan and Weinberg, 2011). The CD8Lo tumours present a picture of B cells with less 

activation, reduced interaction with other immune cells and display far fewer TLS. This fits with 

the tumours likely exhibiting a low level of immunogenicity (fewer antigens), leading to lower 

overall immune infiltrates. 

Known B cell subsets (PC, PB, MB and LN GC) were identified using B cell lineage markers. The 

plasmablasts (PB) and plasma cells (PC) were identified by key transcriptional regulators (MZB1, 

XBP1, PRMD1), cell markers SDC1 (CD138) (Andreani et al., 2018) (Basso and Dalla-Favera, 2015, 

Nutt et al., 2015). The plasmablasts (PB) displayed the highest expression of IGHM, IGHA and 

IGHG genes linked to antibody secreting cells. The B cells in this cluster were derived evenly from 

all of the tissue types, suggestive of B cell activation in the CD8Hi and CD8Lo tumour, non-involved 

lung (NIL) and Lymph node (LN) B cells. The plasmablasts (PB cluster), especially the IGHA 

expressing cells, were those that have previously been reported as potentially 

immunosuppressive. The data here was unable to resolve features linked to IL10 expression or 

PDL1 expression that have been reported in the literature (Shalapour et al., 2015, Shalapour et al., 

2017). Another B cell type not identified were the GZMB+ B cells that can display both 

immunosuppressive and cytotoxic effects in tumours (Lindner et al., 2013, Hagn et al., 2012). This 

is likely a limitation of the current single cell technology where the expression of IGH RNA 

transcripts dominate the available RNA-Seq capacity, this ultimately leads to an inability to 

capture transcripts expressed at lower levels in this cell type. Plasma cells (PC cluster) were few in 

number and displayed features of cellular adhesion and localisation, expressing SDC1, EPCAM and 

integrins (Tarte et al., 2003). The B cells in cluster MB (mature/ naïve B cells) displayed very few 

distinguishing features relative to the other clusters; this likely indicates that they share features 

with the remaining B cells in the comparison. Assessment of transcription factors identified SPIB, 

PAX5 and EBF1 in MB B cells, in addition to this there was also evidence of isotype switched IGHA, 

IGHG and non-switched IGHM B cells (Basso and Dalla-Favera, 2015, Nutt et al., 2015). Taken 

together this indicates that they likely represent quiescent memory/ follicular B cells that are 

enriched in the lymph node, non-involved lung tissue and to some extent, the B cells in CD8Lo 

tumours. Interestingly, the MB cluster was all but absent from the TIBs in CD8Hi tumours. A 

fraction of B cells isolated from the lymph node formed a unique cluster (LN GC) with the 
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hallmarks of a classical germinal centre reaction, expressing BACH2, BCL6, IL4R and CD40. This 

would argue that the GC signature observed in the remaining clusters is not identical to that of a 

GC B cells that resides in a secondary lymph node (Muto et al., 2010, Basso and Dalla-Favera, 

2010, Miura et al., 2018, Ferrer et al., 2014).  

 

TIBs derived from CD8Hi and CD8Lo tumours did not cluster based on a specific B cell lineage 

feature. They did however, cluster separately with an enrichment of cells from CD8Hi tumours in 

B1 (Blue) and B2 (Red), with CD8Lo tumours enriched for B cells in B3 (Green), B4 (Purple) and B5 

(Orange). Previous single cell studies in NSCLC have highlighted the B cells as plasmablast/plasma 

cells, activated/memory and BALT (bronchus associated lymphoid) B cells (Table 25). The data 

presented here has identified the same cell types but also identifies differences in the B cells 

based on whether they were residing in a CD8Hi or CD8Lo tumour. This suggests that within the 

previously reported activated/memory and BALT clusters, B cells were also present that differ by 

function and response to environmental cues, in particular CD8 density.  

The activation and differentiation of the cells in CD8Hi and CD8Lo tumours does not appear to 

follow the same path, in CD8Hi tumours the cells co-express markers in clusters B1 and B2, 

whereas in CD8Lo tumours co-expression occurs in B3, B4 and B5 clusters ultimately leading to 

activated B cells. One way of investigating this further will be to perform unsupervised 

pseudotime cell state trajectory analysis (Trapnell et al., 2014), this allows a cell’s state to be 

plotted on pseudotime based on its transcriptional profile. This is currently underway and will aim 

to resolve the identified differential activation and differentiation profile of the B cells in different 

prognostic groups (CD8Hi and CD8Lo tumours). Where it is hypothesised that the cells in CD8Hi and 

CD8Lo tumours are activated under different conditions, this leads to a distinct transcriptional 

profile that is reflective of the co-stimulatory and cytokine conditions in the tissue 

microenvironment. The cells would be predicated to diverge during activation and differentiation, 

this then leads to different cell population characteristics. 

4.3.5 Conclusion 

The data presented here has revealed that B cells isolated from tumour and control tissues 

generate distinct clusters. These were biologically relevant and confirmed what had been 

reported in the literature previously relating to B cell subtypes. B cells from two prognostically 

different groups (CD8Hi and CD8Lo tumours) represented a unique analysis feature that allowed 

specific B cell characteristics in these settings to be investigated. Analysis of the transcriptomic 

features of B cells enriched in CD8Hi tumours showed a distinct activation and differentiation 

profile that was not identified in the B cells from CD8Lo tumours, lymph node or non-involved lung 



Chapter 4 

207 

B cells. In addition, potential targets of immunomodulation were also revealed that were 

expressed in the different prognostic groups (SRGN, LGALS9 and LGALS1). Histological assessment 

of these tumours identified a stark difference in the location and organisation of B cells in 

tumours that were enriched for CD8+ T cells compared to tumours with sparser infiltrates. The 

data has revealed that the B cells within, and outside these aggregates have different 

transcriptional characteristics depending on the overall density of the CD8+ T cell infiltrate. This 

has potential applications for ways to improve immunotherapy by modulating the negative effect 

of B cells during the adaptive immune response in different prognostic groups (CD8Hi and CD8Lo 

tumours).  
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Chapter 5: Concluding statement 

The work outlined in this thesis investigates tumour infiltrating lymphocytes (TIL) in different 

biological settings. In particular it addresses the differences that exist in these immune cells, when 

they reside in TILHi and TILLow tumours. The role of immune cells in tumour biology has gained an 

immense amount of scientific attention, this is due to patient outcomes being linked to immune 

cell density. Building on this, the blockade of immune regulators (e.g. PD1) has transformed 

cancer treatment and capitalised on the existing immune response to tumours. However, despite 

these advances response rates to immunotherapies stand at 20-30%, the reasons for which are 

still being elucidated. The work here evaluates the tumour as a whole and the stability of the 

immune signatures, the stratification of patients, and how the immune response may differ in 

virally induced tumours (HPV(+) and (-)). Following this the immune cells were investigated at an 

individual population level, evaluating CD8 T-cells and B cells in TILHi and TILLow tumours with the 

aim of identifying unique features that may improve our understanding of tumour immunology. 

 

The immunological stability of a tumour, both spatially and temporally, has important implications 

for monitoring of immunomodulatory therapy in clinical trials, as well as during routine treatment 

regimens. Multiple tumour (HNSCC) replicates from the same patient, separated spatially and 

temporally, were taken between diagnostic biopsy and surgical resection. The analysis revealed a 

high level of consistency at the global gene expression level across tumour replicates both 

spatially and temporally. Further interrogation of immune gene expression and CD8 cell numbers 

by immunohistochemistry also showed stable immune cell features across spatially and 

temporally distinct tumour replicates. This data has increased our confidence in the stability of 

small biopsies taken for “window of opportunity studies”, where immunological readouts are a 

key focus (Wood et al., 2017). This key piece of work was used as a basis for the evaluation of the 

PI3Kd inhibitor of in HNSCC (AMG319 study in HPV positive and negative HNSCC: NCT02540928) 

(Ali et al., 2014). Knowing that the immune signal was stable between replicates across time and 

space, enabled confidence in assessing change caused by the therapeutic intervention. It also 

means that tumour biopsies taken for patient stratification and disease monitoring, are likely to 

be representative of the tumour as a whole. 

 

The survival difference that exists between HPV(+) and (-) tumours is well documented in the 

literature. This has been categorised further with the use of TIL status, where high/ moderate TIL 

confer a substantial survival benefit. However, differences still exist between HPV(+) and (-) TIL 

rich tumours. In order to better understand the survival difference between them, the analysis 
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focused on the comparison of HPV(+) and (-) immune rich tumours (TIL high/ Moderate). 

Differential gene expression analysis was used to compare the two groups. This led to the finding 

that TIL rich HPV(+) tumours were significantly more enriched for immune genes than HPV(-) 

tumours. As a result, the immune cell markers detected by IHC were enumerated and correlated 

to the RNA-Seq data, confirming the finding. At this point the numerical differences appeared to 

be the key driver in the survival difference, however, it was still possible that a specific 

immunological signature existed in the HPV(+) relative to the (-). The analysis was then repeated 

with an Immune cell correction; this used the immune gene expression as a confounding variable 

in the differential gene analysis. The analysis yielded vastly different results, with tumour-driving 

gene ontologies replacing the significant immunological signature identified in the HPV(+) cases, 

highlighting the loss of the differential immune gene expression signature. This would indicate 

that at the bulk tumour level, the immune characteristics in TIL rich HPV(+) and (-) tumours are 

comparable, and that the presence of a persistent immunogenic TAA leads to a higher density of 

immune cells. However, during the analysis, a signature of B cell-related genes remained that was 

a distinguishing feature between TIL rich HPV(+) and (-)tumours (Wood et al., 2016b). The B cells 

that are enriched in HPV(+) tumours are being assessed in more detail in a separate project using 

flow cytometry, IHC, ELISA and ELISPOT analyses.  

Analysing the tumour as a whole enabled the global immune context to be investigated, it also 

highlighted that immune density could be assigned based on a very limited number of immune 

genes. This becomes important due to the potential of applying rapid gene expression assays, this 

the enables the grouping of patients into categories that may/ or may not respond to treatments. 

The ability to deliver this in clinical trial and/ or diagnostics settings, where drug targets could be 

tailored to specific tumours is highly attractive and could improve immunotherapy response rates.  

 

Following on from the findings of global immunological similarities at the whole tumour level in 

HPV(+) and (-) tumours, a greater level of detail and insight into the immune cell populations and 

how they differ between patient groups would be achieved by transcriptomic analysis of specific 

immune cells. The aim was to sort CD4, CD8, B cell and Macrophages from HNSCC, NSCLC and 

non-involved background lung and carry out high resolution transcriptomic analysis of the cells 

using proprietary RNA-Seq techniques developed in house in La Jolla institute for allergy and 

disease. The experimental procedures have been optimised for the dissociation of tumours, 

subsequent flow cytometric analysis and cell sorting using a simple immunophenotyping panel for 

isolation of the purified CD4, CD8, B cell and Macrophage populations for RNA-Seq analysis. The 

flow sorting procedure has also been applied to the collection of immune cell populations in 

tertiary assays on the AMG-319 and HARE40 clinical trials looking at immunomodulatory 
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treatments in HNSCC. The immune cell percentages, as determined by flow cytometry, map well 

onto what has previously been reported in the literature (HNSCC and NSCLC).  

 

Transcriptomic analysis of CD8+ T cells in HNSCC and NSCLC revealed a distinct tissue-resident 

memory cell features in tumours relative to non-involved lung. This was confirmed by flow 

cytometric analysis of NSCLC, non-involved lung tissue and blood. This identified that 

CD8+CD103+ T cells were significantly enriched in tumours relative to the control tissue, and that 

they also expressed negative regulators of the immune response (PD1). Following on from this the 

transcriptome of CD8+ T cell in CD8Hi and CD8Lo tumours was investigated by differential gene 

testing. The gene signature that emerged was one of activated cytolytic CD8+TRMs in the CD8Hi 

tumours relative to the CD8Lo. The positive association of CD8+CD103+ cells with superior 

cytolytic functionality meant that the density of CD103 in tumours would be predicted to confer a 

survival benefit in NSCLC. A retrospective cohort of NSCLC and HNSCC were assessed for survival 

in relation to the density of CD103+ and CD8+ cells. The CD103+ cell density displayed a significant 

improvement in survival in NSCLC and the same trend in HNSCC relative to the known good 

outcome marker CD8 (Ganesan, Clarke, Wood et al., 2017). The identification of numerous 

CD8+TRMs in immune rich tumours is an important consideration for immunotherapy and disease 

monitoring. These cells are markers of a protective immune response, they are also released 

during the blockade of immune checkpoints (Clarke et al., 2019). In-depth analysis of CD8+TRMs 

identified HACVR2/ TIM3 as a prominent feature, enabling the CD8+TRMs to be grouped into highly 

active CD8+TRMs TIM3+  (Clarke et al., 2019). This has potential uses in selecting tumour reactive 

cells for adoptive cell therapies, and also as a marker of immunotherapy response.  

 

The transcriptomic data from CD8+ TILS isolated from HNSCC was used to compare CD8 T cells 

from HPV(+) and (-) cases. The data confirmed that there was not a significant association with a 

viral signature in CD8+T cells from HPV(+) tumours. This corroborated the findings in the bulk 

tumour analysis where the CD8+ T cell characteristics appeared equivalent between HPV(+) and   

(-) tumours. This indicated that it was the density and number of cells that conferred the 

substantial survival benefit in HPV(+) tumours relative to HPV(-), rather than a qualitative 

difference. The consistent features identified in CD8 cells between NSCLC, HNSCC HPV(+) and (-) 

tumours was a key finding (Cillo et al., 2020) also identified similarities in CD8 cells in HPV(+) and 

(-) HNSCC. It shows that the CD8 cells in different tumours are highly similar and that the 

observed functional differences are a reflection of the tumour itself. Where highly immunogenic 

tumours drive a large number of cytolytic CD8 cells into the tumour. Conversely, poorly 

immunogenic tumours have fewer/ less activated infiltrates. It also demonstrates that 
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immunotherapies targeting immune cells in one cancer type will likely be successful across many 

cancers, providing a dense immune infiltrate is present.   

 

Analysis of B cells (single cell) isolated from CD8Hi and CD8Lo tumours showed that the 

transcriptomic features and clustering were heavily influenced by the tissue from which they 

originated. The transcriptional features indicate a different activation profile, with B cells in CD8Hi 

tumours exhibiting a response to interferon and co-stimulatory signals that are all indicative of an 

antigen driven immune reaction. Conversely the B cells isolated form CD8Lo tumours displayed a 

more naïve profile and activated features that were lacking co-stimulatory signals. The analysis so 

far has identified several unique regulatory features that could also be potential targets for 

immunomodulation. This work is on-going and requires further analysis to map the activation of 

the B cells using cell state trajectories. IHC and flow cytometry will also be required to confirm the 

presence of the unique B cell features in CD8Hi and CD8Lo tumours. 

The importance of tumour infiltrating B cells and their role in supporting the anti-tumour 

response has recently moved to the forefront of tumour immunology. The data here shows that B 

cells exhibit features of cellular co-ordination and promotion of both CD4 and CD8 T-cells. Several 

studies have recently identified TLS and the cells that reside within them to be crucial for the 

response to immune check point blockade. These studies also highlight the Tfh cells that 

interreact with B cells as key cells (Helmink et al., 2020, Hollern et al., 2019, Cillo et al., 2020) . The 

balance of suppressive and activating B cells in the tumour and their manipulation, has the 

potential to further enhance the antitumor effects of the immune system. 

 

A general overview of the findings are presented in Figure 70, here the tumours have been 

divided into ImmunogenicHigh and ImmunogenicLow. An excellent example of these two tumour 

types are the HPV(+) and HPV(-) tumours, where highly abundant HPV antigens drive a prominent 

immune response, this also happens in other tumours  that express tumour associated antigens. 

Many studies (Sahin et al., 2017, Ott et al., 2017) have identified the mutational (neoantigens) 

burden as a key factor in the overall survival, and also response to immunotherapies. These 

tumours (ImmunogenicHigh) have dense immune infiltrates consisting of cytolytic CD8+TRMs , B cells 

that aggregate into lymphoid structures and interact with Tfh cells. This ultimately confers a 

survival benefit, it also points to the patient selection group that are most likely to benefit from 

immunotherapies. Tumours with lower immune infiltrates fit into immune excluded (see section 

1.3.3) and the ImmunogenicLow group, where the lack of abundant antigen leads to fewer 

expanding CD8+TRMs, less B cells and less TLS. This patient group has poorer survival and are less 

likely to respond to immunotherapies. The immune cell functionality and overall density in 

tumours is shaped by the tumour itself (ImmunogenicHigh and ImmunogenicLow tumours), this 
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means that to improve the patient outlook during immunotherapy treatments, they need to be 

uniquely tailored to each patient and their tumour.  

 

Figure 70. Overview of immune infiltrates in immune ‘Hot’ and ‘cold’ tumours.   
A schematic representation tumours of with high numbers of immune infiltrate (‘Immune Hot’), 
and tumours with sparse immune infiltrates (‘Immune Cold’). (A) Tumours that have abundant 
antigens (e.g. HPV(+)/ high number of neoantigens) exhibit dense immune infiltrates. This consists 
of cytolytic CD8 TRM that improve patients survival and B cells that form tertiary lymphoid 
structures with evidence of antigen presentation, class switching and T-cell help. (B) Tumours that 
are poorly immunogenic (HPV(-)/ low mutational burden) and/ or display stromal barrier features 
(not shown), have fewer immune infiltrates (‘Immune Cold’). Patient survival is lower with less 
CD8 TRM cells and less activated B cells, significantly fewer tertiary lymphoid structures and display 
less interaction with T-cells. 
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Figure 70. Overview of immune infiltrates in immune ‘Hot’ and ‘cold’ tumours. 
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Appendices 

Appendix A  

A.1 Patient demographics 

A.1.1 Clinical cohort for the analysis of tumour replicates across time and space (data set 
TRTS) 

 

A.1.1.Clinical cohort for the analysis of tumour replicates across time and space (data set TRTS). 
Samples collected from 16 patients between diagnostic biopsy and surgical resection (two 
timepoints) and also spatially by collection of multiple replicates at the same timepoint (one 
timepoint).  

HNSCC tumour replicates (TRTS)

Patient ID Age (years) No. of 
biopsies

Diagnostic 
biopsy

Surgical 
resection

Tumor 
status (T)

Nodal 
status (N)

Metastasis 
status (M)

Smoking 
status HPV Status No. of CD8+ 

cells (av. HPF) Sample type

1 68 3 3 0 T3 N2b M0 Non Smoker Positive 6 Single timepoint
2 60 2 0 2 T4 N0 M0 N/A Negative 10 Single timepoint
3 N/A 3 1 2 T3 N1 M0 N/A Positive 24 Two timepoint
4 72 2 2 0 T2 N2c M0 Ex-Smoker Negative 16 Single timepoint
5 61 2 1 1 T1 N2b M0 N/A Negative 3 Two timepoints
6 76 2 1 1 T2 N0 M0 Non smoker Negative N/A Two timepoints
7 50 2 1 1 T2 N1 M0 Non smoker Positive 8 Two timepoints
8 64 2 0 2 T4 N2b M0 Smoker Negative 10 Single timepoint
9 48 2 1 1 T2 N2b M0 Smoker Positive 38 Two timepoints
10 63 2 1 1 T4 N2c M0 Smoker Positive 21 Two timepoints
11 61 3 0 3 T1 N0 M0 Smoker Negative N/A Single timepoint
12 63 3 0 3 T4 N2b M0 Smoker Negative 22 Single timepoint
13 57 3 1 2 T1 N2b M0 Smoker Positive N/A Two timepoints
14 59 6 3 3 T4 N1 M0 Smoker Negative 10 Two timepoints
15 47 3 3 0 T3 N2a M0 Smoker Positive 12 Single timepoint
16 62 2 0 2 T2 N1 M0 Smoker Negative 28 Single timepoint
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A.1.2 Clinical cohort analysing HPV(+) and HPV(-) TIL rich tumours (Dataset HPVN) 

 
A.1.2. Clinical cohort analysing HPV(+) and HPV(-) TIL rich tumours (Dataset HPVN) 
Clinical features of the HPV(+) and HPV(-) sample cohort (n=39). 

A.1.3 Clinical details of the Sorted B cells for qPCR 

 

A.1.2. Clinical detail of the Sorted B cells for qPCR 
Clinical characteristics of the cases where B cells were isolated for evaluation with qPCR. 

 

Patient ID Age 
(years)

Gender Stage Tumor 
status (T)

Nodal 
status (N)

Metastasis 
status (M)

Smoking 
status

HPV Status No. of CD8+ 
cells (av. 
per HPF)

No. of CD3+ 
cells (av. 
per HPF)

No.of CD20+ 
cells (av. 
per HPF)

TIL 
status

IO Biomark 
qPCR

Patient2 57 male 4 T3 N2 M0 non-smoker POSITIVE 17.2 70.7 64 3 NA
Patient8 59 Male 3 T1 N1 M0 non-smoker POSITIVE NA NA NA 3 NA
Patient12 50 Male 2 T2 N0 M0 smoker POSITIVE 32.3 116.8 328 3 NA
Patient14 58 Male 4 T3 N2a M0 non-smoker POSITIVE 21.2 83.1 69.8 3 NA
Patient16 75 Male 4 T2/3 N2b M0 non-smoker POSITIVE NA NA NA 3 NA
Patient17 57 Male 3 T3 N0 M0 non-smoker POSITIVE NA 83.1 NA 3 NA
Patient19 66 Female 4 T4 N2c M0 non-smoker POSITIVE 41 89 50.1 3 NA
Patient20 47 male 4 T1 N2b M0 non-smoker POSITIVE 27.6 172 208.6 3 NA
Patient1 88 male 4 T1 N2a M1 smoker NEGATIVE 24.2 60.5 42 3 Yes
Patient3 70 Female 4 T4 N2c M0 non-smoker NEGATIVE 29.7 63.2 11.9 3 NA
Patient6 77 male 4 T4 N2c M1 non-smoker NEGATIVE 23.2 67.2 12.3 3 Yes
Patient31_a 84 male 1 T1 N0M0 M0 heavy smokerNEGATIVE 11.9 67.1 8.9 3 Yes
Patient11 60 male 3 T2 N1M0 M0 non-smoker NEGATIVE 35.9 100.5 18.1 3 NA
Patient23 58 male 4 T4 N0 M0 heavy smokerNEGATIVE 20.5 113.9 70.1 3 NA
Patient7 47 Male 4 T3 N2 M0 non-smoker POSITIVE NA NA NA 2 NA
Patient18 53 Male 4 T2 N2b M0 non-smoker POSITIVE 33.3 132.7 172.9 2 Yes
Patient5 55 Male 4 T4 N2c M0 smoker NEGATIVE 19.6 41 23.8 2 Yes
Patient9 68 male 1 T1 N0 M0 non-smoker NEGATIVE 24.9 41 13.3 2 NA
Patient13 52 Female 3 T3 N0 M0 heavy smokerNEGATIVE 9.9 25.3 8.1 2 NA
Patient21 29 Female 1 T1 N0 M0 non-smoker NEGATIVE NA NA NA 2 NA
Patient25 50 male 4 T2 N2a M0 smoker NEGATIVE 15.5 51.5 18.8 2 NA
Patient34 63 Male 4 T2 N2c M0 non-smoker NEGATIVE 37.4 93.4 20.9 2 Yes
Patient39 75 Male 3 T3 N0 M0 smoker NEGATIVE 18.2 32.9 18.3 2 NA
Patient37_A 57 Male 4 T4 N1M0 M0 non-smoker NEGATIVE NA NA NA 2 NA
Patient15 69 Male 4 T4 N2c N/A smoker POSITIVE 8.8 11.7 3.1 1 NA
Patient4_C 56 male 4 T4 N1M0 M0 smoker NEGATIVE NA NA NA 1 NA
Patient10 55 Male 4 T2 N2c N/A heavy smokerNEGATIVE NA NA NA 1 NA
Patient22 82 Female 1 T1 N0 M0 unknown NEGATIVE 7.5 13 3.3 1 Yes
Patient24_a 67 male 4 T4 N2b N/A heavy smokerNEGATIVE 4.1 5.6 4.7 1 NA
Patient26_a 68 Female 3 T3 N0 M0 smoker NEGATIVE 4.5 9.7 10.9 1 Yes
Patient30_a 76 male 3 T3 NxM0 M0 smoker NEGATIVE 8.6 24.6 3.8 1 NA
Patient32 80 female 2 T2 N0 M0 non-smoker NEGATIVE 11.2 12.6 1.9 1 Yes
Patient33 51 Male 4 T4 N2c M0 heavy smokerNEGATIVE 1.8 7.1 1.3 1 NA
Patient35 69 Female 4 T2 N2b M0 non-smoker NEGATIVE 7.8 12.5 1.1 1 NA
Patient36 66 Male 4 T4 N1 M0 smoker NEGATIVE 8.5 13.5 0 1 Yes
Patient38 65 Male 1 T1b N0 M0 non-smoker NEGATIVE NA NA NA 1 NA

Patient ID Age (years) Gender Stage Tumor 
status (T)

Nodal 
status (N)

Metastasis 
status (M)

Smoking 
status

HPV Status

HN40 60 Male 3 3 1 0 Smoker Positive
HN47 51 Male 4 2 3 0 Never Positive
HN54 69 Male 3 2 1 0 Never Positive
HN60 67 Male 4 4 2 0 Never Positive
HN63 48 Male 4 2 2 0 Ex-smoker Positive
HN76 47 Male 4 3 2 0 Smoker Positive
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A.1.4 Clinical cohort of NSCLC cases with CD8 Cells sorted for transcriptomics analysis 

 

A.1.4 Clinical cohort of NSCLC cases with CD8 Cells sorted for transcriptomics analysis.   
Summary of clinical features from the NSCLC cohort where CD8+ T cells were isolated, these were 
then assessed by RNA-Seq. 

 

Patient ID Age 

(years)

Gender Stage Tumor 

status (T)

Nodal 

status (N)

Metastasi

s status 

(M)

Smokin

g status

Tumor histology no. of CD8a+ 

cells (av. per 

HPF)

TIL status

NSCLC_01 87 M IA 1A 0 0 Ex adenocarcinoma 32.7 High
NSCLC_02 74 M IIB 2B 1 0 Ex squamous carcinoma 8.6 Intermediate
NSCLC_03 77 M IA 2B 2 0 Ex adenocarcinoma 28.2 High
NSCLC_04 67 M IB 2A 0 0 Ex squamous carcinoma 14.7 High
NSCLC_05 84 F IIA 1B 1 0 Ex adenocarcinoma 11.4 Intermediate
NSCLC_06 72 M IA 1B 0 0 Ex adenocarcinoma 15.6 High
NSCLC_07 74 M IIB 3 0 0 Ex adenocarcinoma 80.3 High
NSCLC_08 63 M IB 2A 0 0 Ex adenocarcinoma 21.2 High
NSCLC_09 83 M IIA 2B 0 0 Ex squamous carcinoma 11.4 Intermediate
NSCLC_10 64 M IB 1A 0 0 Ex adenocarcinoma 23.2 High
NSCLC_11 72 F IIIA 4 0 0 Current adenocarcinoma 9.9 Intermediate
NSCLC_12 72 F IIA 2B 0 0 Never adenocarcinoma 28.1 High
NSCLC_13 68 F IIA 2A 1 0 Ex adenocarcinoma 9.2 Intermediate
NSCLC_14 50 M IB 2B 0 0 Current adenocarcinoma 7.1 Low
NSCLC_15 74 M IB 2A 0 0 Ex adenocarcinoma 8.3 Intermediate
NSCLC_16 65 F IA 1A 0 0 Ex adenocarcinoma 3.0 Low
NSCLC_17 68 M IIA 2B 0 0 Ex squamous carcinoma 17.5 High
NSCLC_18 71 F IIIA 3 1 0 Current squamous carcinoma 15.0 High
NSCLC_19 68 F IA 1A 0 0 Ex adenocarcinoma 6.5 Low
NSCLC_20 72 F IB 2A 0 0 Ex adenocarcinoma 38.7 High
NSCLC_21 72 M IV 1A 0 1B Ex adenocarcinoma 10.3 Intermediate
NSCLC_22 70 M IIIA 3 2 0 Ex adenocarcinoma 4.1 Low
NSCLC_23 51 F IB 2A 0 0 Never adenocarcinoma 9.6 Intermediate
NSCLC_24 77 F IB 2A 0 0 Ex adenocarcinoma 10.8 Intermediate
NSCLC_25 60 F IA 1B 0 0 Ex adenocarcinoma 10.7 Intermediate
NSCLC_26 77 F IIA 2A 1 0 Ex adenocarcinoma 6.3 Low
NSCLC_27 81 F IIB 3 0 0 Ex squamous carcinoma 10.8 Intermediate
NSCLC_28 69 F IB 2A 0 0 Ex adenocarcinoma 6.8 Low
NSCLC_29 73 M IB 2A 0 0 Ex adenocarcinoma 3.7 Low
NSCLC_30 81 F IIIB 4 2 0 Never adenocarcinoma 4.3 Low
NSCLC_31 76 M IA 1B 0 0 Current squamous carcinoma 2.7 Low
NSCLC_32 77 F IIIA 2A 2 0 Never adenocarcinoma 4.8 Low
NSCLC_33 67 M IIB 3 0 0 Current squamous carcinoma 4.4 Low
NSCLC_34 70 F IA 1B 0 0 Ex adenocarcinoma 12.6 Intermediate
NSCLC_35 66 M IA 1A 0 0 Ex adenocarcinoma 10.1 Intermediate
NSCLC_36 80 M IB 2A 0 0 Ex squamous carcinoma 18.6 High
NSCLC_37 81 M IA 1A 0 0 Ex squamous carcinoma N/A N/A
NSCLC_38 69 M IB 1B 0 0 Ex adenocarcinoma N/A N/A
NSCLC_39 75 M IIIA 3 1 0 Current squamous carcinoma N/A N/A
NSCLC_40 58 F IA 1A 0 0 Current adenocarcinoma N/A N/A
NSCLC_41 76 M IB 2A 0 0 Ex adenocarcinoma N/A N/A
NSCLC_42 74 M IA 1A 0 0 Ex adenocarcinoma N/A N/A
NSCLC_43 79 M IIB 3 0 0 Ex squamous carcinoma N/A N/A

Non-small cell lung cancer
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A.1.5 Clinical cohort of HNSCC cases with CD8 Cells sorted for transcriptomics analysis.   

 
A.1.5 Clinical cohort of HNSCC cases with CD8 Cells sorted for transcriptomics analysis.   
Summary of clinical features from the HNSCC cohort where CD8+ T cells were isolated, these 
were then assessed by RNA-Seq. 

 

A.1.6 Clinical characteristics of samples used for assessment of tissue storage 
methodology. 

 
A.1.6. Clinical characteristics of samples used for assessment of tissue storage methodology. 
Details of samples used for tissue processing method evaluation in CD8+ T cells. Tumours were 
processed on the day of surgery (Fresh), Cryopreserved as 2mm tissue pieces (CT) and 
cryopreserved as a cell suspension (DST).  

 

HNSCC 
Patient ID Age 

(years)
Gender Stage Tumor 

status (T)
Nodal 
status (N)

Metastasi
s status 
(M)

Smokin
g status

HPV Status no. of CD8+ 
cells (av. per 
HPF)

TIL status

HNSCC_01 82 M III 2 1 0 Ex Negative 25 Intermediate
HNSCC_02 55 F IVA 4 1 0 Ex Negative 12.5 Intermediate
HNSCC_03 94 F IVA 3 0 0 N/A Negative 3.1 Low
HNSCC_04 69 M III 2 1 0 N/A Positive 26.1 Intermediate
HNSCC_05 57 M IVA 1 2B 0 Smoker Negative 35.7 High
HNSCC_06 66 M IVA 4 2B 0 Never Positive 23.9 Intermediate
HNSCC_07 64 F I 1 0 0 Ex Negative 35.5 High
HNSCC_08 63 M IVA 4 2C 0 Current Negative 29.3 High
HNSCC_09 66 F IVA 2 2B 0 N/A Negative 28.5 High
HNSCC_10 86 F IVA 4A 0 0 Never Positive 24.1 Intermediate
HNSCC_11 70 M IVA 4B 2B 0 N/A Negative 10.2 Low
HNSCC_12 56 M IVA 3 2B 0 Never Negative 32 High
HNSCC_13 47 M IVA 3 2A 0 Current Positive N/A N/A
HNSCC_14 67 M IVA 4A 2B 0 Never Positive 24.8 Intermediate
HNSCC_15 74 M III 2 1 0 N/A Negative 11 Low
HNSCC_16 57 M IVC 4 3 1 Current Negative 37.2 High
HNSCC_17 60 F IVA 4A 2B 0 Ex Negative 1.6 Low
HNSCC_18 48 M IVA 2 2A 0 Ex Positive 32.5 High
HNSCC_19 60 M III 3 1 0 Current Positive 26.8 Intermediate
HNSCC_20 51 M IVA 4 0 0 Ex Positive 25.5 Intermediate
HNSCC_21 62 M II 2 0 0 Never Negative 28.4 High
HNSCC_22 55 M IVA 2 2C 0 Current Negative 31.1 High
HNSCC_23 68 M IVA 2 2C 0 Ex Positive 24.4 Intermediate
HNSCC_24 75 M III 2 1 0 Ex Negative N/A N/A
HNSCC_25 50 M III 1 1 0 Never Positive N/A N/A
HNSCC_26 68 M IVA 3 2B 0 Never Positive 2 Low
HNSCC_27 62 F IVA 4 1 0 Current Negative 2.4 Low
HNSCC_28 29 F II 2 0 0 Ex Positive 27.4 Intermediate
HNSCC_29 61 F IVA 2 2C 0 Current Negative 20.5 Intermediate
HNSCC_30 52 M IVA 4 0 0 Current Negative 1.5 Low
HNSCC_31 70 F II 2 0 0 N/A Negative 11.2 Low
HNSCC_32 67 F II 2 0 0 Ex Negative 2.2 Low
HNSCC_33 60 M IVA 2 2C 0 Never Positive 45 High
HNSCC_34 57 M IVA 1 2B 0 Smoker Negative 47.7 High
HNSCC_35 51 M IVB 2 3 0 Never Positive 24.4 Intermediate
HNSCC_36 71 F III 3 0 0 Never Positive 41.4 High
HNSCC_37 63 M IVA 3 2B 0 Ex Negative 24.1 Intermediate
HNSCC_38 61 M IVA 1 2B 0 N/A Negative N/A N/A
HNSCC_39 63 M IVA 4 2B 0 Current Negative 6.4 Low
HNSCC_40 38 M IVA 3 2B 0 Current Positive 5 Low
HNSCC_41 62 M II 2 0 0 Ex Negative 2.5 Low

Patient ID Gender Tumour 
type

Tumor 
status (T)

Nodal 
status (N)

Metastasis 
status (M)

Smoking 
status

Tissue 
comparison

AC001 M NSCLC T3 N1 M0 Smoker Fresh, CT, DST
AC013 M Melanoma T4 N0 M1 NA Fresh, CT, DST
AC020 F Melanoma T2 N1 M1 Smoker Fresh, CT, DST
AC023 F Melanoma T4 N2 M1 Non-Smoker Fresh, CT, DST
AC043 M NSCLC T2 N1 M0 Smoker Fresh, CT, DST
AC066 F Melanoma T4 N1 M0 NA CT, DST 



 

219 

A.1.7 Clinical characteristics of samples used for evaluation of CD8+ tissue resident 
memory cells. 

 

A.1.7. Clinical characteristics of samples used for evaluation of CD8+ tissue resident memory 
cells. 
Clinical summary of the cases used for evaluating CD8+ tissue resident memory cells in NSCLC by 
flow cytometry. 
 

A.1.8 Clinical characteristics of samples used for assessment of CD8+PD1+ and PD1- cells. 

 

A.1.8. Clinical characteristics of samples used for assessment of CD8+PD1+ and PD1- cell. 
Clinical summary of the cases used for evaluating CD8+PD1+ and PD1- T cells by RNA-Seq. 

Patient ID Gender Tumour type Stage Tumor 
status (T)

Nodal 
status (N)

Metastasis 
status (M)

Smoking 
status

FACS 
experiment

649 Female Adenocarcinoma 1b 2a 0 0 Smoker TRM + Ki67
681 Male Squamous cell carcinoma 2b 3 0 0 Non-Smoker TRM + Ki67
683 Male Adenocarcinoma 1b 2a 0 0 Ex-Smoker TRM + Ki67
773 Male Adenocarcinoma 1b 2a 0 0 Smoker TRM + Ki67
805 Male Adenocarcinoma 1a 1b 0 0 Smoker TRM + Ki67
822 Female Squamous cell carcinoma 3a 3 2 0 Ex-Smoker TRM + Ki67
835 Male Squamous cell carcinoma 2b 3 0 0 Ex-Smoker TRM + Ki67
836 Male Adenocarcinoma 1a 1b 0 0 Smoker TRM + Ki67
839 Female Adenocarcinoma 3a 2a 2 0 Non-Smoker TRM + Ki67
842 Male Adenocarcinoma 2a 1b 1 0 Ex-Smoker TRM + Ki67
614 Male Squamous cell carcinoma 3a 3 2 0 Ex-Smoker TRM
629 Male Adenocarcinoma 1b 2a 0 0 Smoker TRM
641 Male Adenocarcinoma 3a 3 2 0 Ex-Smoker TRM
642 Male Adenocarcinoma 1a 1a 0 0 Ex-Smoker TRM
621 Female Adenocarcinoma 1b 2a 0 0 Ex-Smoker TRM
628 Female Adenocarcinoma 1b 2a 0 0 Ex-Smoker TRM

Patient ID Gender Tumour 
type

Tumor 
status (T)

Nodal 
status (N)

Metastasis 
status (M)

Smoking 
status

AC006 F NSCLC T3 N2 M1 Non-Smoker
AC020 F Melanoma T2 N1 M1 Smoker
AC020 F Melanoma T2 N1 M1 Smoker
AC023 F Melanoma T4 N2 M1 Non-Smoker
AC042 M NSCLC T4 N0 M0 Non-Smoker
AC051 F HNSCC T2 N0 M0 Smoker
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A.1.9 Clinical characteristics of samples used for evaluation of B cells at the single cell 
level.   

 

A.1.9. Clinical characteristics of samples used for evaluation of B cells at the single cell level.  
The clinical characteristics for each case and the number of cells isolated from each tissue for 
subsequent single cell transcriptomics using the 10x Genomics platform.  

 

 

Patient ID Gender Tumour type Stage Tumor 
status (T)

Nodal 
status (N)

Metastasi
s status 
(M)

Smoking 
status

CD8+ 
TIL 
score

No. 
Tumour B 
cells

No. NIL B 
cells

No. LN B 
cells

TL938 Male Adenocarcinoma 1b 2a 0 0 Smoker High 1500 1500 /

TL925 Male Squamous cell carcinoma 1b 2a 0 0 Smoker High 1500 1500 /

TL873 Male Adenocarcinoma 1a 1b 0 0 / High 1500 1500 /

TL920 Male Adenocarcinoma 1b 2a 0 0 Smoker High 1500 / /

TL853 Female Adenocarcinoma 2a 2b 0 0 Ex-Smoker High 1500 / /

TL846 Female Adenocarcinoma 1a 1a 0 0 Smoker High 1500 / /

TL959 Female Adenocarcinoma 3a 2a 2 0 Ex-Smoker Low 1500 462 /

TL956 Male Adenocarcinoma 2a 2b 0 0 Ex-Smoker Low 1500 1500 /

TL29.111 Male Adenocarcinoma 1a 1a 0 0 Ex-Smoker Low 1500 1500 /

TL939 Female Adenocarcinoma 1b 2a 0 0 Ex-Smoker Low 1500 / /

TL933 Male Adenocarcinoma 3a 3 3 0 Ex-Smoker Low 1500 / /

TL924 Male Adenocarcinoma 3a 1a 2 0 Smoker Low 1500 / /

TL1034 Male EBUS of LN / / / / Smoker NA / / 3000

TL1033 Female EBUS of LN / / / / Ex-Smoker NA / / 3000

TL1023 Female EBUS of LN / / / / Ex-Smoker NA / / 3000

NIL = non-involved lung

LN = Lymphnode

EBUS = Endobronchial ultrasound biopsy
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A.2 Cell dissociation and immune cell sorting SOP384 (HARE40, AMG319 
and Accelerator project) 
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A.2. Cell dissociation and immune cell sorting SOP384 (HARE40, AMG319 and Accelerator 
project. 
Details of the standard operating procedure (SOP) written for the isolation of immune cells from 
tumours. 
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A.3 Optimising RNA isolation from frozen tumour tissue 

 

A.3. Optimisation of RNA isolation using mouse TC1 tumour.  
(A) Titration of tumour cryosections and RNA yield. The yield of RNA increases with a linear 
relationship with increasing cryosections. (B) Yield and (C) RIN (RNA integrity number) for 22 
mouse TC1 tumours. The average RNA yield was 378 ng/µl with an average RIN of 8.9 highlighting 
excellent RNA yield and quality. 
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Appendix B  

B.1 Tumour replicates  

B.1.1 RNA-Seq analysis showing row wise z-scores of normalized read counts for a 
decreasing number of genes (variance filtered) across the tumour replicates 

A 

 
B 
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C 

 
B1.1. RNA-Seq analysis showing row wise z-scores of normalized read counts for a decreasing 
number of genes (variance filtered) across the tumour replicates. 
RNA-Seq analysis showing row wise z-scores of normalized read counts for a decreasing number 
of genes (variance filtered) across the tumour replicates. Patient tumour replicates are colour 
coded and displayed on the heatmap and principle component analysis (PCA) plot; HPV(+)=black 
and HPV(-)=beige; diagnostic biopsy (DB) and surgical resection (SR) replicates are annotated 
below. (A) 1000 genes, (B) 100 genes and (C) 20 genes. Hierarchical clustering (distance 
measure=Pearson’s correlation metric; clustering=average linkage method) of tumour replicates 
displayed as a heatmap shows close clustering of related samples across the different number of 
genes.   
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B.1.2 Gene expression of immune genes across the sample cohort 
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B1.2. Gene expression of immune genes across the sample cohort. 
Gene expression (RPKM – Reads per kilobase per million mapped reads) of immunologically 
relevant genes for the spatial and temporal tumour replicates. Samples from the same patient 
display a high level of similarity between both spatial and temporal replicates for the genes CD3E, 
GZMA, IFNG, CTLA4 and CD274 (PDL1), (A-E) respectively. 
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B.2 Differentially expressed genes between HPV(+) and (-) (no TIL 
correction). 

B.2.1 Gene ontology analysis using REVIGO scatterplots  

 

B.2.1. Gene ontology analysis using REVIGO scatterplots. 
Gene ontology analysis of the greater and lesser expressed genes between HPV(+) and (-), where 
REVIGO scatterplots show the GO terms after redundancy reduction in a 2D space. The bubble 
colour indicates the log10 p-value (red, higher; blue, lower); size indicates the frequency of the 
GO term (all GO terms q <0.05). (A) Gene ontology terms associated with the greater expression 
between HPV(+) and (-) samples, a clear immunological signature was observed. (B) Gene 
ontology terms associated with the lesser expression between HPV(+) and (-) samples, a signature 
of tissue development and keratinisation is present. 

A

B



Appendix  

234 

B.2.2 Gene ontology analysis using REVIGO scatterplots  

 

B.2.2. Gene ontology analysis using REVIGO scatterplots on immune cell corrected differential 
gene analysis. 
Gene ontology analysis of the greater and lesser expressed genes between HPV(+) and (-) 
corrected for immune cell density, where REVIGO scatterplots show the GO terms after 
redundancy reduction in a 2D space. The bubble colour indicates the log10 p-value (red, higher; 
blue, lower); size indicates the frequency of the GO term (all GO terms q <0.05). (A) Gene 
ontology terms associated with the greater expression between HPV(+) and (-) samples, a cell 
cycle and proliferation signature was observed, with a single immune GO (B cell activation). (B) 
Gene ontology terms associated with the lesser expression between HPV(+) and (-) samples, a 
signature of tissue development and keratinisation remained. 

A

B
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B.2.3 A list of differentially expressed genes between HPV(+) and HPV(-) tumours 
identified by RNA-Seq analysis. 

 

 

 

B.2.3 A list of differentially expressed genes between HPV(+) and HPV(-) tumours  
identified by RNA-Seq analysis. 

*Genes that overlap with DEGs identified from TIL corrected data

Gene Symbol Gene/Protein name Fold Change (Log) q -value
SYCP2 synaptonemal complex protein 2 4.57 1.86E-26 *

STAG3 stromal antigen 3 5.05 3.29E-24 *

ZFR2 zinc finger RNA binding protein 2 5.84 1.93E-21 *

SMC1B structural maintenance of chromosomes 1B 5.64 1.19E-19 *

RNF212 ring finger protein 212 5.19 1.94E-19 *

TEX15 testis expressed 15 6.93 8.93E-19 *

KEL Kell blood group, metallo-endopeptidase 6.59 7.88E-17 *

LOC254559 hypothetical LOC254559 4.13 4.83E-15 *

MAP7D2 MAP7 domain containing 2 5.26 5.87E-15 *

NEFH neurofilament, heavy polypeptide 5.82 2.69E-13 *

WNK3 WNK lysine deficient protein kinase 3 3.22 2.07E-11 *

SLFN13 schlafen family member 13 2.32 6.96E-11 *

TAF7L TAF7-like RNA polymerase II, TATA box binding protein (TBP)-associated factor, 50kDa 4.40 8.31E-10 *

SYCE2 synaptonemal complex central element protein 2 2.84 2.32E-09 *

MS4A1 membrane-spanning 4-domains, subfamily A, member 1 3.96 2.46E-09

SOX30 SRY (sex determining region Y)-box 30 3.63 3.28E-09 *

FCRL2 Fc receptor-like 2 3.44 3.51E-09

C14orf39 chromosome 14 open reading frame 39 5.17 4.38E-09 *

UPB1 ureidopropionase, beta 3.90 4.38E-09 *

CD22 CD22 molecule 3.75 7.07E-09

SPIB Spi-B transcription factor (Spi-1/PU.1 related) 3.80 8.05E-09 *

ZNF541 zinc finger protein 541 4.83 1.08E-08 *

CXCR5 chemokine (C-X-C motif) receptor 5 3.64 1.20E-08

ZYG11A zyg-11 homolog A (C. elegans) 3.03 1.33E-08 *

ABCA3 ATP-binding cassette, sub-family A (ABC1), member 3 3.48 1.39E-08 *

BANK1 B-cell scaffold protein with ankyrin repeats 1 2.53 1.46E-08

SCG5 secretogranin V (7B2 protein) -1.47 4.33E-02
LOC643650 hypothetical protein LOC643650 -1.08 4.33E-02
HCN2 hyperpolarization activated cyclic nucleotide-gated potassium channel 2 -1.35 4.40E-02
TGM1 transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-glutamyltransferase)-1.75 4.41E-02
RAET1G retinoic acid early transcript 1G -1.30 4.42E-02
LOC375295 hypothetical protein LOC375295 -1.29 4.43E-02
CA2 carbonic anhydrase II -1.26 4.46E-02
LOC729178 hypothetical protein LOC729178 -1.80 4.46E-02 *
HS3ST3A1 heparan sulfate (glucosamine) 3-O-sulfotransferase 3A1 -1.37 4.52E-02
NACAD NAC alpha domain containing -1.77 4.53E-02
PGLYRP3 peptidoglycan recognition protein 3 -1.45 4.61E-02
STC1 stanniocalcin 1 -1.27 4.66E-02
S100A1 S100 calcium binding protein A1 -1.47 4.68E-02
SAA2 serum amyloid A2 -1.94 4.69E-02
AKR1C2 aldo-keto reductase family 1, member C2 (dihydrodiol dehydrogenase 2; bile acid binding protein; 3-alpha hydroxysteroid dehydrogenase, type III)-1.76 4.72E-02
C5orf38 chromosome 5 open reading frame 38 -1.24 4.74E-02
RAET1L retinoic acid early transcript 1L -1.43 4.78E-02
TMEM86A transmembrane protein 86A -1.77 4.78E-02
AKAP6 A kinase (PRKA) anchor protein 6 -1.29 4.78E-02
TTLL11 tubulin tyrosine ligase-like family, member 11 -1.20 4.86E-02
COL4A1 collagen, type IV, alpha 1 -1.00 4.89E-02
HEYL hairy/enhancer-of-split related with YRPW motif-like -1.04 4.89E-02
ISM1 isthmin 1 homolog (zebrafish) -1.19 4.90E-02
OSBP2 oxysterol binding protein 2 -1.15 4.90E-02
PTX3 pentraxin-related gene, rapidly induced by IL-1 beta -1.62 4.98E-02
HIST1H2BG histone cluster 1, H2bg -1.26 5.00E-02
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B.2.4 Gene ontology analysis of DEGs expressed in HPV(+) vs HPV(-) tumours  

 

 

B.2.4 Gene ontology analysis of DEGs expressed in HPV(+) vs HPV(-) tumours. 

 

DEGs identified with a the FDR adjusted p -value <0.05 (i.e., q -value <0.05) and a fold change of >2 or <-2.

Gene Ontology term Set Size Candidates q -value
GO:0045321   leukocyte activation 631 118 (18.8%) 8.29E-44
GO:0046649   lymphocyte activation 539 108 (20.2%) 2.81E-42
GO:0001775   cell activation 847 125 (14.8%) 5.98E-35
GO:0042110   T cell activation 392 84 (21.6%) 2.15E-34
GO:0002682   regulation of immune system process 1153 144 (12.6%) 1.43E-32
GO:0006955   immune response 1367 157 (11.5%) 7.78E-32
GO:0002694   regulation of leukocyte activation 376 77 (20.7%) 3.35E-30
GO:0050865   regulation of cell activation 407 79 (19.6%) 1.74E-29
GO:0002684   positive regulation of immune system process 696 102 (14.8%) 7.42E-28
GO:0009897   external side of plasma membrane 218 53 (24.5%) 1.58E-24
GO:0044459   plasma membrane part 2165 192 (8.9%) 1.63E-24
GO:0098552   side of membrane 299 60 (20.3%) 1.26E-23
GO:0030098   lymphocyte differentiation 267 57 (21.4%) 4.28E-23
GO:0050776   regulation of immune response 779 100 (12.9%) 1.06E-22
GO:0002252   immune effector process 591 78 (13.3%) 9.70E-19
GO:0046651   lymphocyte proliferation 226 47 (21.1%) 1.11E-18
GO:0032943   mononuclear cell proliferation 228 47 (20.9%) 1.43E-18
GO:0070661   leukocyte proliferation 238 48 (20.4%) 1.61E-18
GO:0042113   B cell activation 203 44 (21.8%) 3.87E-18
GO:0031226   intrinsic component of plasma membrane 1338 127 (9.5%) 8.60E-18
GO:0005887   integral component of plasma membrane 1286 123 (9.6%) 1.26E-17
GO:0002757   immune response-activating signal transduction 371 58 (15.7%) 7.86E-17
GO:0002429   immune response-activating cell surface receptor signaling pathway 230 45 (19.7%) 8.04E-17
GO:0009986   cell surface 561 71 (12.7%) 4.89E-16
GO:0002253   activation of immune response 423 60 (14.3%) 7.48E-16

Genes expressed to a greater extent in HPV(+) compared to HPV(-) tumors

Gene Ontology term Set Size Candidates q -value
GO:0043588   skin development 289 66 (22.9%) 1.69E-30
GO:0008544   epidermis development 289 58 (20.1%) 1.03E-23
GO:0009888   tissue development 1441 128 (8.9%) 4.49E-18
GO:0031424   keratinization 46 21 (45.7%) 5.21E-16
GO:0006928   cellular component movement 1571 128 (8.2%) 2.20E-15
GO:0048513   organ development 2552 176 (6.9%) 7.88E-15
GO:0048731   system development 3615 223 (6.2%) 4.42E-14
GO:0044707   single-multicellular organism process 6199 326 (5.3%) 2.59E-12
GO:0048856   anatomical structure development 4248 241 (5.7%) 1.67E-11
GO:0071944   cell periphery 4682 260 (5.6%) 1.76E-11
GO:0007155   cell adhesion 1032 87 (8.4%) 2.37E-11
GO:0060429   epithelium development 757 73 (9.7%) 2.69E-11
GO:0043292   contractile fiber 204 33 (16.2%) 1.28E-10
GO:0030017   sarcomere 172 30 (17.4%) 2.06E-10
GO:0044767   single-organism developmental process 5037 268 (5.3%) 3.14E-10
GO:0007275   multicellular organismal development 4394 243 (5.5%) 3.28E-10
GO:0044449   contractile fiber part 188 30 (16.0%) 6.75E-10
GO:0005886   plasma membrane 4582 247 (5.4%) 9.80E-10
GO:0044459   plasma membrane part 2165 138 (6.4%) 2.36E-09
GO:0005856   cytoskeleton 1905 127 (6.7%) 2.72E-09
GO:0030154   cell differentiation 3153 185 (5.9%) 8.26E-09
GO:0003012   muscle system process 314 39 (12.4%) 8.26E-09
GO:0048869   cellular developmental process 3345 189 (5.7%) 4.33E-08
GO:0042330   taxis 647 56 (8.7%) 9.18E-08
GO:0031674   I band 116 21 (18.1%) 1.10E-07

Genes expressed to a lesser extent in HPV(+) compared to HPV(-) tumors
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B.2.5 Pathway analysis of DEGs expressed to in HPV(+) vs HPV(-) tumours. 
 

 

 

Appendices B.2.5 Pathway analysis of DEGs expressed to in HPV(+) vs HPV(-) tumours 

 

 

DEGs identified with a the FDR adjusted p -value <0.05 (i.e., q -value <0.05) and a fold change of >2 or <-2.

Pathway Name Set Size Candidates Pathway Source q -value
Primary immunodeficiency - Homo sapiens (human) 36 18 (50.0%) KEGG 1.23E-12
TCR 244 43 (17.7%) NetPath 1.27E-12
Cell adhesion molecules (CAMs) - Homo sapiens (human) 145 32 (22.5%) KEGG 3.27E-12
Adaptive Immune System 569 66 (11.6%) Reactome 4.58E-11
TCR signaling in naïve CD4+ T cells 68 21 (30.9%) PID 1.16E-10
TCR signaling in naïve CD8+ T cells 55 19 (34.5%) PID 1.28E-10
Intestinal immune network for IgA production - Homo sapiens (human) 49 17 (36.2%) KEGG 7.72E-10
BCR 129 27 (20.9%) NetPath 1.03E-09
Immune System 1007 90 (9.0%) Reactome 2.31E-09
Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell116 24 (20.9%) Reactome 1.23E-08
Generation of second messenger molecules 36 14 (38.9%) Reactome 1.23E-08
IL12-mediated signaling events 64 18 (28.1%) PID 1.30E-08
TCR signaling 65 18 (27.7%) Reactome 1.60E-08
Hematopoietic cell lineage - Homo sapiens (human) 88 20 (22.7%) KEGG 6.88E-08
Cytokine-cytokine receptor interaction - Homo sapiens (human) 265 36 (13.6%) KEGG 8.73E-08
TCR Signaling Pathway 92 20 (21.7%) Wikipathways 1.39E-07
Costimulation by the CD28 family 72 17 (23.6%) Reactome 5.68E-07
PD-1 signaling 28 11 (39.3%) Reactome 6.74E-07
lck and fyn tyrosine kinases in initiation of tcr activation 13 8 (61.5%) BioCarta 7.80E-07
Translocation of ZAP-70 to Immunological synapse 23 10 (43.5%) Reactome 8.87E-07
B Cell Receptor Signaling Pathway 94 19 (20.2%) Wikipathways 9.61E-07
Phosphorylation of CD3 and TCR zeta chains 25 10 (40.0%) Reactome 2.13E-06
Leishmaniasis - Homo sapiens (human) 74 16 (22.2%) KEGG 2.84E-06
NF-kappa B signaling pathway - Homo sapiens (human) 91 18 (19.8%) KEGG 2.84E-06
Integrin cell surface interactions 66 15 (22.7%) Reactome 5.04E-06

Genes expressed to a greater extent in HPV(+) compared to HPV(-) tumors

Pathway Name Set Size Candidates Pathway Source q -value
Striated Muscle Contraction 38 13 (34.2%) Wikipathways 1.71E-06
Striated Muscle Contraction 32 11 (34.4%) Reactome 1.52E-05
Assembly of collagen fibrils and other multimeric structures 44 12 (27.3%) Reactome 4.35E-05
Extracellular matrix organization 261 30 (11.5%) Reactome 7.10E-05
Type I hemidesmosome assembly 9 6 (66.7%) Reactome 7.64E-05
Collagen formation 88 16 (18.2%) Reactome 7.77E-05
Basigin interactions 26 9 (34.6%) Reactome 7.77E-05
Muscle contraction 52 12 (23.1%) Reactome 0.000119
Degradation of the extracellular matrix 84 15 (17.9%) Reactome 0.000155
Laminin interactions 23 8 (34.8%) Reactome 0.000231
Antagonism of Activin by Follistatin 4 4 (100.0%) Reactome 0.000284
Focal adhesion - Homo sapiens (human) 207 24 (11.6%) KEGG 0.000331
Amoebiasis - Homo sapiens (human) 109 16 (14.7%) KEGG 0.000688
Cell junction organization 86 14 (16.3%) Reactome 0.000699
Beta1 integrin cell surface interactions 66 12 (18.2%) PID 0.0009
Validated transcriptional targets of AP1 family members Fra1 and Fra2 37 9 (24.3%) PID 0.000908
Activation of Matrix Metalloproteinases 30 8 (26.7%) Reactome 0.00126
Transport of glucose and other sugars, bile salts and organic acids, metal ions and amine compounds97 14 (14.4%) Reactome 0.00223
Alpha6 beta4 integrin-ligand interactions 11 5 (45.5%) PID 0.00249
Hair Follicle Development- Induction (Part 1 of 3) 43 9 (20.9%) Wikipathways 0.00265
Urokinase-type plasminogen activator (uPA) and uPAR-mediated signaling44 9 (20.5%) PID 0.00306
Cell-Cell communication 128 16 (12.5%) Reactome 0.00313
a6b1 and a6b4 Integrin signaling 45 9 (20.0%) PID 0.00337
Anchoring fibril formation 7 4 (57.1%) Reactome 0.00413
AP-1 transcription factor network 70 11 (15.7%) PID 0.00505

Genes expressed to a lesser extent in HPV(+) compared to HPV(-) tumors
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B.3 Differentially expressed genes between HPV(+) and (-) corrected for 
immune cell numbers. 

B.3.1 A list of differentially expressed genes between HPV(+) and HPV(-) tumours 
identified by RNA-Seq analysis followed by correction for TIL number.  

 

 
B.3.1 A list of differentially expressed genes between HPV(+) and HPV(-) tumours identified by 
RNA-Seq analysis followed by correction for TIL number. 

*Genes that overlap with DEGs identified from uncorrected data

Gene Symbol Gene/Protein name Fold Change (Log) q -value
SYCP2 synaptonemal complex protein 2 4.57 1.86E-26 *
STAG3 stromal antigen 3 5.05 3.29E-24 *
ZFR2 zinc finger RNA binding protein 2 5.84 1.93E-21 *
SMC1B structural maintenance of chromosomes 1B 5.64 1.19E-19 *
RNF212 ring finger protein 212 5.19 1.94E-19 *
TEX15 testis expressed 15 6.93 8.93E-19 *
KEL Kell blood group, metallo-endopeptidase 6.59 7.88E-17 *
LOC254559 hypothetical LOC254559 4.13 4.83E-15 *
MAP7D2 MAP7 domain containing 2 5.26 5.87E-15 *
NEFH neurofilament, heavy polypeptide 5.82 2.69E-13 *
WNK3 WNK lysine deficient protein kinase 3 3.22 2.07E-11 *
SLFN13 schlafen family member 13 2.32 6.96E-11 *
TAF7L TAF7-like RNA polymerase II, TATA box binding protein (TBP)-associated factor, 50kDa 4.40 8.31E-10 *
SYCE2 synaptonemal complex central element protein 2 2.84 2.32E-09 *
SOX30 SRY (sex determining region Y)-box 30 3.63 3.28E-09 *
C14orf39 chromosome 14 open reading frame 39 5.17 4.38E-09 *
UPB1 ureidopropionase, beta 3.90 4.38E-09 *
SPIB Spi-B transcription factor (Spi-1/PU.1 related) 3.80 8.05E-09 *
ZNF541 zinc finger protein 541 4.83 1.08E-08 *
ZYG11A zyg-11 homolog A (C. elegans) 3.03 1.33E-08 *
ABCA3 ATP-binding cassette, sub-family A (ABC1), member 3 3.48 1.39E-08 *
KLHL35 kelch-like 35 (Drosophila) 3.49 1.46E-08 *
KCNS1 potassium voltage-gated channel, delayed-rectifier, subfamily S, member 1 3.58 1.56E-08 *
HMSD histocompatibility (minor) serpin domain containing 3.18 3.11E-08 *
IL17REL interleukin 17 receptor E-like 5.51 3.99E-08 *

MOCS1 molybdenum cofactor synthesis 1 -1.41 3.54E-02
PRR5 microfibrillar-associated protein 4 -1.44 3.54E-02
MFAP4 proline rich 5 (renal) -2.02 3.54E-02
GSTA4 glutathione S-transferase alpha 4 -1.20 3.59E-02 *
INHBB inhibin, beta B -1.32 3.59E-02 *
DKFZp434J0226 hypothetical LOC93429 -5.24 3.65E-02
GADD45B growth arrest and DNA-damage-inducible, beta -1.73 3.70E-02
IRX4 iroquois homeobox 4 -3.54 3.71E-02
GEM GTP binding protein overexpressed in skeletal muscle -1.81 3.72E-02
RGS11 regulator of G-protein signaling 11 -2.26 3.77E-02
SMPD3 sphingomyelin phosphodiesterase 3, neutral membrane (neutral sphingomyelinase II) -1.53 3.82E-02 *
CACNA1I calcium channel, voltage-dependent, T type, alpha 1I subunit -2.26 3.87E-02
ADRA2A adrenergic, alpha-2A-, receptor -3.16 4.20E-02
CES4A carboxylesterase 4A -1.99 4.21E-02
ADCY4 adenylate cyclase 4 -1.42 4.42E-02
FOXF1 forkhead box F1 -1.62 4.42E-02
PALM paralemmin -1.93 4.42E-02
LOC729178 hypothetical protein LOC729178 -1.80 4.46E-02 *
CWH43 cell wall biogenesis 43 C-terminal homolog (S. cerevisiae) -4.96 4.54E-02
TNFSF9 tumor necrosis factor (ligand) superfamily, member 9 -2.18 4.56E-02
LGR6 leucine-rich repeat-containing G protein-coupled receptor 6 -3.13 4.62E-02
KCTD15 potassium channel tetramerisation domain containing 15 -1.33 4.74E-02
RPS26 ribosomal protein S26 -1.10 4.77E-02
CHRD chordin -2.11 4.82E-02
NOP16 NOP16 nucleolar protein homolog (yeast) -1.12 4.92E-02
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B.3.2 Gene ontology analysis of DEGs in HPV(+) vs HPV(-) tumours (TIL corrected data). 

 

 

B.3.2 Gene ontology analysis of DEGs in HPV(+) vs HPV(-) tumours (TIL corrected data). 

 

DEGs identified with a the FDR adjusted p -value <0.05 (i.e., q -value <0.05) and a fold change of >2 or <-2.

Gene Ontology term Set Size Candidates q -value
GO:0007049   cell cycle 1576 48 (3.1%) 1.86E-10

GO:0022402   cell cycle process 1157 38 (3.3%) 4.49E-09

GO:0005694   chromosome 758 29 (3.8%) 2.06E-08

GO:0006259   DNA metabolic process 1001 34 (3.4%) 4.88E-08

GO:0000278   mitotic cell cycle 901 32 (3.6%) 4.88E-08

GO:0044427   chromosomal part 658 25 (3.8%) 4.24E-07

GO:0051301   cell division 735 26 (3.5%) 1.35E-06

GO:0000280   nuclear division 498 21 (4.2%) 3.22E-06

GO:0048285   organelle fission 528 21 (4.0%) 4.03E-06

GO:0006323   DNA packaging 208 13 (6.3%) 7.52E-06

GO:0070192   chromosome organization involved in meiosis 38 7 (18.4%) 8.36E-06

GO:0044770   cell cycle phase transition 469 19 (4.1%) 1.64E-05

GO:0044454   nuclear chromosome part 317 15 (4.7%) 1.85E-05

GO:0000228   nuclear chromosome 377 16 (4.2%) 2.18E-05

GO:0007126   meiotic nuclear division 167 11 (6.6%) 3.66E-05

GO:0051276   chromosome organization 867 25 (2.9%) 4.88E-05

GO:0051321   meiotic cell cycle 177 11 (6.2%) 4.88E-05

GO:0007129   synapsis 33 6 (18.2%) 5.31E-05

GO:0031497   chromatin assembly 174 11 (6.4%) 7.26E-05

GO:0000083   regulation of transcription involved in G1/S transition of mitotic cell cycle27 5 (18.5%) 0.000317

GO:0031981   nuclear lumen 2871 50 (1.7%) 0.000365

GO:0044428   nuclear part 3209 55 (1.7%) 0.000366

GO:0007127   meiosis I 76 7 (9.2%) 0.000469

GO:0048610   cellular process involved in reproduction 456 16 (3.5%) 0.000471

GO:0019953   sexual reproduction 679 20 (2.9%) 0.000471

Genes expressed to a greater extent in HPV(+) compared to HPV(-) tumors

Gene Ontology term Set Size Candidates q -value
GO:0043588   skin development 289 30 (10.4%) 4.79E-18
GO:0008544   epidermis development 289 26 (9.0%) 3.66E-14
GO:0031424   keratinization 46 12 (26.1%) 1.93E-11
GO:0060429   epithelium development 757 29 (3.8%) 8.03E-07
GO:0009888   tissue development 1441 40 (2.8%) 7.15E-06
GO:0048731   system development 3615 69 (1.9%) 8.88E-05
GO:0048513   organ development 2552 54 (2.1%) 8.88E-05
GO:0035878   nail development 5 3 (60.0%) 0.000706
GO:0007275   multicellular organismal development 4394 75 (1.7%) 0.00106
GO:0005882   intermediate filament 196 10 (5.2%) 0.00307
GO:0016616   oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor116 8 (6.9%) 0.00313
GO:0005200   structural constituent of cytoskeleton 96 7 (7.3%) 0.00316
GO:0016614   oxidoreductase activity, acting on CH-OH group of donors131 8 (6.1%) 0.00345
GO:0045550   geranylgeranyl reductase activity 2 2 (100.0%) 0.00345
GO:0048856   anatomical structure development 4248 72 (1.7%) 0.00356
GO:0017171   serine hydrolase activity 180 9 (5.0%) 0.00356
GO:0045095   keratin filament 99 7 (7.1%) 0.00382
GO:0005615   extracellular space 1234 29 (2.4%) 0.00397
GO:0030154   cell differentiation 3153 58 (1.8%) 0.0041
GO:0048869   cellular developmental process 3345 59 (1.8%) 0.00425
GO:0008236   serine-type peptidase activity 178 9 (5.1%) 0.00587
GO:0006629   lipid metabolic process 1226 28 (2.3%) 0.00718
GO:0005921   gap junction 31 4 (12.9%) 0.00871
GO:0044707   single-multicellular organism process 6199 93 (1.5%) 0.00926
GO:0035880   embryonic nail plate morphogenesis 2 2 (100.0%) 0.0101

Genes expressed to a lesser extent in HPV(+) compared to HPV(-) tumors
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B.3.3 Pathway analysis of DEGs in HPV(+) vs HPV(-) tumours (TIL corrected data) 

 

 

B.3.3 Pathway analysis of DEGs in HPV(+) vs HPV(-) tumours (TIL corrected data). 

 

 

Pathway Name Set Size Candidates Pathway Source q -value
Cell Cycle 476 26 (5.5%) Reactome 8.75E-10
RB in Cancer 87 12 (13.8%) Wikipathways 1.62E-08
Mitotic G1-G1/S phases 84 11 (13.1%) Reactome 1.20E-07
G1 to S cell cycle control 68 10 (14.7%) Wikipathways 1.67E-07
Cell Cycle, Mitotic 433 21 (4.8%) Reactome 2.61E-07
Activation of the pre-replicative complex 30 7 (23.3%) Reactome 1.12E-06
DNA Replication Pre-Initiation 35 7 (20.0%) Reactome 2.65E-06
M/G1 Transition 35 7 (20.0%) Reactome 2.65E-06
G1/S Transition 60 8 (13.3%) Reactome 7.20E-06
DNA Replication 42 7 (16.7%) Wikipathways 8.00E-06
Mitotic M-M/G1 phases 293 15 (5.1%) Reactome 1.25E-05
Cell cycle 124 10 (8.1%) KEGG 1.83E-05
DNA strand elongation 31 6 (19.4%) Reactome 1.83E-05
E2F transcription factor network 75 8 (10.7%) PID 2.67E-05
DNA replication 36 6 (16.7%) KEGG 4.03E-05
DNA Replication 57 7 (12.3%) Reactome 4.20E-05
ATR signaling pathway 37 6 (16.2%) PID 4.20E-05
p53 signaling pathway 13 4 (30.8%) BioCarta 0.000143
Cell Cycle 103 8 (7.8%) Wikipathways 0.000217
Cell Cycle Checkpoints 75 7 (9.3%) Reactome 0.000218
Oncogene Induced Senescence 30 5 (16.7%) Reactome 0.000218
S Phase 77 7 (9.1%) Reactome 0.000239
Synthesis of DNA 52 6 (11.5%) Reactome 0.000239
Activation of ATR in response to replication stress 37 5 (13.5%) Reactome 0.000533
TP53 Network 19 4 (21.1%) Wikipathways 0.000533

Genes expressed to a greater extent in HPV(+) compared to HPV(-) tumors

Pathway Name Set Size Candidates Pathway Source q -value
Antagonism of Activin by Follistatin 4 2 (50.0%) Reactome 0.0809
ABCA transporters in lipid homeostasis 17 3 (17.6%) Reactome 0.0809
The canonical retinoid cycle in rods (twilight vision) 21 3 (14.3%) Reactome 0.0809
Arachidonic acid metabolism 50 4 (8.0%) Reactome 0.0809
Ovarian steroidogenesis - Homo sapiens (human) 51 4 (7.8%) KEGG 0.0809
Staphylococcus aureus infection - Homo sapiens (human) 57 4 (7.3%) KEGG 0.0809
Steroid hormone biosynthesis - Homo sapiens (human) 57 4 (7.0%) KEGG 0.0809
Visual phototransduction 96 5 (5.2%) Reactome 0.0809
Diseases associated with visual transduction 96 5 (5.2%) Reactome 0.0809
Prostaglandin Synthesis and Regulation 30 3 (10.0%) Wikipathways 0.0809
Oxidative Stress 30 3 (10.0%) Wikipathways 0.0809
Arachidonic acid metabolism - Homo sapiens (human) 64 4 (6.2%) KEGG 0.0928
ABC-family proteins mediated transport 36 3 (8.3%) Reactome 0.103
Gap junction trafficking 12 2 (16.7%) Reactome 0.103
Bile salt and organic anion SLC transporters 12 2 (16.7%) Reactome 0.103
Platinum Pathway, Pharmacokinetics/Pharmacodynamics 13 2 (15.4%) PharmGKB 0.105
Signaling by Activin 13 2 (15.4%) Reactome 0.105
Vitamin A and Carotenoid Metabolism 40 3 (7.5%) Wikipathways 0.105
classical complement pathway 14 2 (14.3%) BioCarta 0.105
Gap junction trafficking and regulation 14 2 (14.3%) Reactome 0.105

Genes expressed to a lesser extent in HPV(+) compared to HPV(-) tumors
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B.4 Lymphocyte marker genes for CD19, CD8 and CD4 cells. 

 
B.4 Marker gene sets whose expression was associated with the different lymphocyte cell 
subsets (B-cells, NK cells and CD4+ and CD8+ T-cells)  
Gene sets obtained from the following resources: CTen, IRIS, HeamAtlas, Palmer et al. Grigoryev 
et al. and Whitney et al. 

B cells a B cells b B cells c NK cells a NK cells b CD4+ T-cells a CD4+ T-cells b CD8+ T-cells
BACH2 KYNU UBE2J1 ADAMTS1 NCR1 TRAT1 NELL2 CD8B
ZNF395 FUBP1 VPREB3 AKR1C3 NMUR1 ICOS MYBL1 TBX21
ARHGAP17 ADAM19 BLNK ASCL2 OSBPL5 TNFRSF25 SH2D1A CST7
IFT57 STX7 TCL1A BNC2 PDGFD MAL LCP2 GZMH
TSPAN13 TFEB SPIB BZRAP1 PDGFRB DPP4 LCK ADRB2
CNTNAP2 TPD52 POU2AF1 CCL3 PDZD4 AQP3 KLRB1 CD8A
OPN3 SYK PNOC CD160 PLEKHF1 BCL11B ITPKB PRF1
GGA2 SNX2 CD79B CD247 PRSS23 GPSM3 ITK IL2RB
FAIM3 SHMT2 CD79A CHST12 PRSS30P LEF1 ITGA6 DKK3
KMO RNASE6 CD19 CMKLR1 PTGDR LEPROTL1 INPP4A
SYPL1 RFX5 BLK COL13A1 PTGDS SYNE2 IL7R
ST6GAL1 PPP3CA TNFRSF17 COLQ RNF165 KLRK1 DNAJB1
PTPRK POU2F2 TMEM156 CX3CR1 S1PR5 AAK1 GZMK
ABCB4 PMAIP1 PPAPDC1B FASLG SGSM1 SEMA4D GBP2
NT5E PLCG2 FCRLA FEZ1 SH2D1B TACC3 GBP1
GPR18 PIK3C2B CPNE5 FGFBP2 SIGLEC17P RASGRP1 GATA3
FCER2 ODC1 FAM129C GK5 SPON2 SPOCK2 GALT
CSNK1G3 NUP88 FCRL5 GOLGA8T SPTSSB LPIN2 FYN
CCR6 NCF4 FCRL1 GZMB TKTL1 IFITM1 FYB
CD40 MEF2C KIAA0125 HOPX TTC38 ZAP70 FLT3LG
CD37 SMAD3 PAX5 IGFBP7 ZBTB16 UPP1 CTSW
CXCR5 LRMP FCRL2 IL12RB2 CD244 TXK CDC25B
NAPSB LGALS9 EAF2 KIR2DL1 IVNS1ABP TNFAIP3 CD28
SLC2A5 IGL@ QRSL1 KIR3DL2 YPEL1 TIAM1 CD6
CD83 IGKC STAP1 KLRC3 KIR2DL2 TCF7 CD3G
E2F5 IGHM SEL1L3 KLRD1 KIR2DS5 STAT4 CD3E
SSPN IGHG1 EZR LAIR2 KIR2DS1 SORL1 CD3D
ZCCHC7 IGHD GNG7 LDB2 KIR3DL3 SELPLG CD2
ZNF154 HLA-DRB6 MS4A1 LIM2 TGFBR1 SATB1 CCND2
GLDC HLA-DRA METTL21D LINGO2 CLIC3 RORA APBA2
PRKCE HLA-DPB1 TCF4 LOC401321 KIR2DL3 RGS10 IL6ST
RAB30 HLA-DPA1 CD200 LOC727787 KIR2DL4 RBMS1 MAN1C1
HLA-DOA HLA-DMB ITPR1 MGC24103 KIR3DL1 RARRES3 FHIT
CYBASC3 HLA-DMA IRF4 MYOM2 KLRF1 PRKCQ INPP4B
SETBP1 HHEX IL4R NCAM1 PIK3R1 PRKCA
TEAD2 GM2A IGJ
BTLA FCGR2B IRF8
TLR10 CYBB HLA-DQB1
RALGPS2 CTSH HLA-DQA1
PLEKHF2 CD74 HLA-DOB
SAV1 CCNG2 CR2
POLD4 BTK CD72
BCL11A BCL7A CD22
SWAP70 RHOH CD1C
SP140 BIRC3 ADK
ADAM28 ANXA4 KLHL14
STAG3 ALOX5 CD24
AIM2 OSBPL10 HIST1H2BK
UVRAG BANK1 WDR11
FAM46C RRAS2 SIDT2
FKBP11 CORO1A SNX10
EIF2AK3 MTSS1 BACE2
KLF6 LY86 NGLY1
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B.5 Advanta Immuno-Oncology gene expression assay 

B.5.1 IO gene expression panel 

 

 

 

B.5.1. Immuno-Oncology gene expression panel (Fluidigm) 
Details of the investigative genes and control genes in panel A and B of the gene expression assay. 
Panel A = 91 genes, Panel B =74 genes + 17 and Control = 5 genes. 
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B.5.2 IO gene expression protocol version and details 
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B.5.2. Immuno-Oncology gene expression panel (Fluidigm) protocol version. 
Details of the Kit components and protocol version used for the qPCR assay.  
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B.5.3 Immunological and tumour microenvironment gene markers 

 

B.5.3. Immunological and tumour microenvironment gene markers. 
A curated list of immune gene markers, stromal gene markers and glycolytic gene markers 
visualised in the qPCR data and RNA-Seq data. 

 

 

Immune 
marker genes

Stromal 
marker genes

Glycolytic 
marker genes

PTPRC ACTA2 SLC2A1
CD3E POSTN ALDOA
CD4 COL1A1 PKM2
CD8A
ITGAE
MS4A1
SELL
FOXP3
IL10
IL2RA
CD86
GZMA
IFNG
PRF1
TNFRSF9
PDCD1
CD274
PDCD1LG2
HAVCR2
LAG3
CTLA4
TIGIT
ICOS
CD27
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B.5.4 Immuno-oncology gene expression panel A and B visualised in the Southampton 
HNSCC RNA-Seq data. 

 

 
 
 
CD8 

B.5.4. Immuno-oncology gene expression panel A and B visualised in the Southampton HNSCC 
RNA-Seq data. 
Heatmap visualisation (sample order 1st PCA) of the Immuno-oncology gene expression Panels A 
and B (panel A = 91 genes, panel B = 74 genes). (A) Heatmap visualisation of the Panels A and B in 
our HNSCC RNA-Seq data. The top cluster consists of the immune genes. The bottom cluster of 
genes are associated with the oncology markers. The panels capture the immune density across 
the samples n=35. (B) qPCR gene expression data for a subset of HNSCC cases (n=10) that display 
a range of immune densities. The gene expression data is derived from qPCR data (ΔΔct[GOI]) for 
the Immuno-oncology panels A and B. A positive control and PBMC sample show high expression 
of the immune gene markers, this results in a loss of resolution in the tumours samples. (C) This 
shows the overall expression of gene panel A and B (excluding the control samples), the duplicate 
samples are highly consistent and a clear clustering of two sample groups (Immune “hot” and 
“cold”) was now present.  
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Appendix C  

C.1 Immune cell sorting optimisation 

C.1.1 Optimisation of Immune cell sorting strategy and panel 1 
PBMC  

 

Optimisation of Immune cell sorting strategy and panel 1. 
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Tumour 

 

 

C.1.1. Optimisation of Immune cell sorting strategy and panel 1. 
(A) PBMC and (B) HNSCC display an immune cell sorting panel that allows CD4+ and CD8+ cells to 
be isolated from tumours at very high purity (>98%).  
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Appendix D  

D.1 Single cell B lymphocyte dimensionality reduction 

D.1.1 Jackstraw plot  

 

D.1.1. Single cell dimensionality reduction using PCA.  
The Jackstraw plot projects the statistical significance of the principle components (PC) against 
the theoretical runit.  

D.1.2 Elbow plot 

 

D.1.2. Single cell dimensionality reduction using PCA.  
An Elbow plot represents the standard deviation for each PC 1-30. The PCs are selected based 
on the p<0.05 and where the “Elbow” begins to flatten (PC1-12).   
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D.2 B cell lineage transcription factors 

D.2.1 Violin plots of key B cell transcription factors 
 

 

D.2.1. Violin plots of key B cell lineage transcription factors in clusters C0 to C8. 
Seurat normalised expression level for each gene as a violin plot. The B cell transcription 
factors assist in allocating B cell subtypes (Naïve, PAX5, EBF1; Activated, BACH2, IRF4lo, IRF8; 
Germinal centre, BCL6, BACH2, PAX5; Memory cells, PAX5, POUF2AF1 (OBF1), SPIB; 
Plasmablast and plasma cell, IRF4, BLIMP1, XBP1 (Basso and Dalla-Favera, 2015, Nutt et al., 
2015). 
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D.3 Gene ontology analysis of B cell clusters 

D.3.1 Cluster LN GC (Lymph node germinal centre B cells) REVIGO reduced gene ontology  

 

 

D3.1. REVIGO gene ontology reduction for LN GC (Lymph node germinal centre B cells). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05).  

 



Appendix  

252 

 

D.3.1. Gene ontology analysis of B cell cluster LN GC (Lymph node germinal centre B cells). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in LN GC. 
The significant (FDR<0.05) gene families and biological processes (overlaps reduced with 
REVIGO) are shown. The significance, number of identified genes and total gene size for each 
term is shown. 

 

LN GC (Lymph node germinal centre B cells)-Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

Histocompatibility complex|C1-set domain 
containing

2.32E-06 8 42 HLA-DMA,HLA-DMB,HLA-DOB,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-
DRB5

RNA binding motif containing 7.99E-06 14 213 SRSF10,HNRNPD,HNRNPH1,U2AF1,TRA2A,SFPQ,SRSF3,SRSF5,RBM23,RBM39,SLT
M,RBM6,SPEN,SRSF9

Actin related protein 2/3 complex |WD repeat 
domain containing

7.45E-05 4 9 ACTR3,ACTR2,ARPC2,ARPC5L

Canonical high mobility group 1.53E-04 4 11 HMGB1,HMGB2,HMGN1,HMGN2
RNA binding motif containing|Serine and 
arginine rich splicing factors

1.90E-04 4 12 SRSF10,SRSF3,SRSF5,SRSF9

Zinc fingers C2HC-type|PHD finger 
proteins|Lysine acetyltransferases

1.63E-03 7 90 ASH1L,BPTF,KMT2C,KMT2A,MTF2,KDM5A,PHF3

DEAD-box helicases 2.09E-03 5 42 DDX3X,DDX5,DDX6,DDX24,DDX17
AT-rich interaction domain containing 1.01E-02 3 15 ARID4B,ARID5B,KDM5A
Ubiquitin conjugating enzymes E2 1.80E-02 4 41 UBE2D2,UBE2D3,UBE2L3,UBE2J1
CD molecules|Tumor necrosis factor superfamily 2.64E-02 12 394 EVI2B,ITGAE,PTPRC,MS4A1,CD22,CD86,CD37,CD53,CD74,CD79B,CD81,IL4R

LN GC (Lymph node germinal centre B cells)-Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

immune response 6.14E-08 62 1572 PAG1,SWAP70,HLA-DMA,HLA-DMB,GAPDH,HLA-DOB,HLA-DQA1,HLA-DQA2,HLA-
DQB1,HLA-DRA,HLA-
DRB5,NCF1,ACTB,ETS1,SNAP23,HMGB1,HMGB2,BCL6,VPREB3,MEF2C,STAP1,DDX
3X,GCSAM,RFTN1,UBE2D2,UBE2D3,PTPRC,SUMO1,STX7,AIM2,SKAP2,RAC1,HSP90
AA1,SEC14L1,KLHL6,EZR,WIPF1,CALM2,CAMK2D,DBNL,CAPZA1,POU2F2,REL,ST6G
AL1,RGS1,ACTR3,ACTR2,ARPC2,ARF6,MS4A1,EGR1,CD86,ATG12,CD37,CD74,ELF1,
CD79B,CD81,LSM14A,PAX5,PUM1,IL4R

antigen processing and presentation of 
exogenous peptide antigen via MHC class II

3.06E-04 10 94 HLA-DMA,HLA-DMB,HLA-DOB,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-
DRB5,CD74,DYNLL1

cell activation 3.54E-04 37 1001 PAG1,SWAP70,HLA-DMA,HLA-DMB,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-
DRB5,ACTB,SNAP23,HMGB1,BCL11A,BCL6,MEF2C,STAP1,BLOC1S6,PTPRC,ZFP36L1
,SKAP2,RAC1,HSP90AA1,POU2F2,LMO4,MYL12A,RHOH,MS4A1,EGR1,CD86,CD37,P
RKAR1A,CD74,CD79B,CD81,ATM,IL4R,TPD52

cell activation 3.54E-04 37 1001 PAG1,SWAP70,HLA-DMA,HLA-DMB,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-
DRB5,ACTB,SNAP23,HMGB1,BCL11A,BCL6,MEF2C,STAP1,BLOC1S6,PTPRC,ZFP36L1
,SKAP2,RAC1,HSP90AA1,POU2F2,LMO4,MYL12A,RHOH,MS4A1,EGR1,CD86,CD37,P
RKAR1A,CD74,CD79B,CD81,ATM,IL4R,TPD52

B cell activation 1.30E-03 15 257 SWAP70,HLA-
DQB1,BCL11A,BCL6,MEF2C,PTPRC,SKAP2,POU2F2,MS4A1,CD86,CD74,CD79B,CD81,
ATM,TPD52

cell cycle 1.45E-03 52 1766 MIS18BP1,ERH,ATRX,PPP1R12A,ETS1,ZNF207,RABGAP1,FOXN3,MDM4,DDX3X,WA
C,PTPRC,UBE2L3,CCNL1,SCIMP,MBD4,CCNI,HSP90AA1,RAD21,EZR,RAN,RANBP2,SF
PQ,SRSF5,OFD1,CALM2,RB1,RBBP4,LAMTOR5,CAMK2D,CNTRL,SYF2,CHORDC1,YW
HAE,PRPF40A,ACTR3,ACTR2,WTAP,RPS27L,PPP1CB,ARF6,PPP2R5C,KHDRBS1,PEBP
1,CDK13,PRKAR1A,DYNLL1,ATM,PUM1,LSM10,STAG3,PCM1

regulation of cell-cell adhesion 1.52E-03 20 430 MYADM,PAG1,SWAP70,HLA-DMA,HLA-DMB,HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-
DRA,HLA-
DRB5,ETS1,HMGB1,BCL6,PTPRC,RAC1,HSP90AA1,CD86,PRKAR1A,CD74,IL4R

B cell receptor signaling pathway 3.01E-03 7 65 MEF2C,STAP1,GCSAM,RFTN1,PTPRC,KLHL6,CD79B
regulation of B cell proliferation 9.10E-03 6 59 BCL6,MEF2C,PTPRC,CD74,CD81,ATM
positive regulation of B cell proliferation 9.31E-03 5 39 BCL6,MEF2C,PTPRC,CD74,CD81
lymphocyte costimulation 9.41E-03 7 83 HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-DRB5,RAC1,CD86
interferon-gamma-mediated signaling pathway 1.05E-02 7 85 HLA-DQA1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-DRB5,SUMO1,CAMK2D

cellular response to endogenous stimulus 1.27E-02 37 1278 NCOA3,SETX,MEF2C,HNRNPD,HNRNPH1,DDX5,IQGAP1,BPTF,PARP1,SULF2,UBE2D
3,UBE2L3,UCP2,NUCKS1,TAF7,GNG7,DNAJA1,THRAP3,DNMT1,EZR,RAN,RAP1B,DD
X17,SRSF3,SRSF5,OFD1,RB1,LAMTOR5,POLR2K,ATP6V1G1,SHOC2,ZNF106,EGR1,P
RKAR1A,H2AFZ,CD81,ACAP2

regulation of type 2 immune response 1.76E-02 4 28 BCL6,CD86,CD74,IL4R
regulation of alpha-beta T cell activation 3.67E-02 6 86 HLA-DQB1,HMGB1,BCL6,PTPRC,CD86,IL4R
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D.3.2 REVIGO gene ontology reduction for PB (Plasmablast) cluster 

 
 

D.3.2. REVIGO gene ontology reduction for PB (Plasmablast) cluster. 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.2. Gene ontology analysis of B cell cluster PB (Plasmablast).  
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in PB. The 
significant (FDR<0.05) gene families and biological processes (overlaps reduced with REVIGO) 
are shown. The significance, number of identified genes and total gene size for each term is 
shown. 

 

PB (Plasmablast cluster) -Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

NADH:ubiquinone oxidoreductase supernumerary 
subunits

1.25E-12 11 30 NDUFA1,NDUFA2,NDUFA3,NDUFA6,NDUFAB1,NDUFB4,NDUFB7,NDUFB10,NDUFC2,
NDUFS6,NDUFB11

Oligosaccharyltransferase complex subunits 5.65E-12 8 12 MLEC,RPN1,RPN2,OST4,DAD1,DDOST,OSTC,KRTCAP2
Peroxiredoxins 8.92E-06 4 6 PRDX5,PRDX4,PRDX2,PRDX1
Heat shock 70kDa proteins 2.72E-05 5 17 HSPA1A,HSPA1B,HSPA5,HSPA6,HYOU1
Transmembrane p24 trafficking proteins 7.23E-05 4 10 TMED2,TMED10,TMED4,TMED9
F-type ATPases|Mitochondrial complex V: ATP 
synthase subunits

8.20E-04 4 18 ATP5MC1,ATP5MC3,ATP5PF,ATP5MF

F-type ATPases|Mitochondrial complex V: ATP 
synthase subunits

8.82E-04 4 19 ATP5MC1,ATP5MC3,ATP5PF,ATP5MF

Protein disulfide isomerases 1.17E-03 4 21 PDIA3,PDIA4,PDIA6,P4HB
CD molecules|Tumor necrosis factor superfamily 1.74E-03 14 394 ITGA6,TNFRSF17,BSG,SDC1,ICAM2,SLC44A1,CD27,GYPC,CD38,CD59,CD63,CD79

A,FCRL5,SLAMF7
DNAJ (HSP40) heat shock proteins 2.29E-03 5 49 DNAJB11,DNAJB9,DNAJC1,SEC63,DNAJC3
Basic leucine zipper proteins 2.29E-03 5 49 JUN,CREB3L2,ATF5,XBP1,ATF4
ARF GTPase family 3.77E-03 4 31 ARF1,ARF4,ARL1,SAR1B
Rhomboid family 4.08E-03 3 14 DERL3,RHBDD1,DERL1
Immunoglobulin lambda locus at 22q11.2 4.08E-03 6 89 IGLV6-57,IGLV3-1,IGLV2-14,IGLC7,IGLC2,IGLC3
Immunoglobulin heavy locus at 14q32.33 9.44E-03 8 187 IGHV1-69,IGHA1,IGHA2,IGHG1,IGHG2,IGHG3,IGHG4,IGHM
Proteasome 1.00E-02 4 43 PSMB5,PSMB6,PSMD8,PSME2
CD molecules|Tumor necrosis factor receptor 
superfamily|Death inducing signaling complex 

1.25E-02 2 6 CFLAR,CASP10

MRH domain containing 1.25E-02 2 6 ERLEC1,OS9
Death effector domain 
containing|Ripoptosome|Death inducing signaling 
complex 

1.64E-02 2 7 CFLAR,CASP10

Blood group antigens 4.94E-02 3 37 BSG,AQP3,GYPC

PB (Plasmablast cluster) -Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

B cell activation 7.98E-08 21 257 MZB1,IGLL5,PRDM1,IGLC7,MIF,CASP3,XBP1,LGALS1,IGHA1,IGHA2,CD27,IGHG1,I
GHG2,IGHG3,IGHG4,IGHM,CD38,IGKC,CD79A,IGLC2,IGLC3

B cell mediated immunity 6.16E-07 15 146 IRF7,IGLL5,IGLC7,IGKV4-
1,IGHA1,IGHA2,CD27,IGHG1,IGHG2,IGHG3,IGHG4,IGHM,IGKC,IGLC2,IGLC3

B cell proliferation 9.42E-03 7 93 MZB1,PRDM1,MIF,CASP3,CD27,CD38,CD79A
B cell receptor signaling pathway 3.59E-11 15 65 IGLL5,IGLC7,IGHA1,IGHA2,IGHG1,IGHG2,IGHG3,IGHG4,IGHM,CD38,IGKC,CD79A,I

GLC2,IGLC3,FCRL5
mitochondrial respiratory chain complex assembly 3.14E-09 14 77 PET100,NDUFA1,NDUFA2,NDUFA3,NDUFA6,NDUFAB1,NDUFB4,NDUFB7,NDUFB10,

NDUFC2,NDUFS6,NDUFS8,NDUFB11,UQCC2
antigen processing and presentation 5.10E-04 14 232 HLA-

C,SEC24A,PSMB5,PSMB6,PSMD8,PSME2,SEC24D,SEC13,CALR,CANX,PDIA3,ARF1
,SAR1B,CYBA

protein exit from endoplasmic reticulum 1.05E-11 13 39 HSP90B1,HM13,ERLEC1,DERL3,SEC61B,OS9,SEL1L,UBE2J1,RHBDD1,DERL1,LMA
N1,TMED9,HERPUD1

protein folding 4.99E-09 22 236 DNAJB11,HSP90B1,MLEC,FKBP11,TXN,DNAJC1,HSPA1A,HSPA1B,HSPA5,FKBP2,H
SPA6,CALR,PRDX4,CANX,PPIB,PDIA3,TXNDC11,SIL1,PDIA4,PDIA6,LMAN1,P4HB

response to type I interferon 6.39E-03 7 86 HLA-C,IRF7,ISG20,ZBP1,IFNAR2,ISG15,IFI6
response to unfolded protein 7.27E-24 34 174 DNAJB11,HSP90B1,ERN1,ACADVL,SRPRA,SSR1,DNAJB9,SERP1,SRPRB,UBXN4,D

ERL3,MANF,SEC61B,SDF2L1,SEC61A1,HSPA1A,HSPA5,HSPA6,HSPB1,CREB3L2,R
HBDD1,HYOU1,DERL1,CALR,XBP1,TMBIM6,PREB,PDIA6,SEC61G,ATF4,EIF2AK4,S
EC63,DNAJC3,HERPUD1

immunoglobulin mediated immune response 4.76E-07 15 143 IRF7,IGLL5,IGLC7,IGKV4-
1,IGHA1,IGHA2,CD27,IGHG1,IGHG2,IGHG3,IGHG4,IGHM,IGKC,IGLC2,IGLC3

leukocyte mediated immunity 4.22E-04 18 356 IRF7,IGLL5,CADM1,IGLC7,IGKV4-
1,IGHA1,IGHA2,CD27,IGHG1,IGHG2,IGHG3,IGHG4,IGHM,IGKC,PRDX1,IGLC2,IGLC3
,SLAMF7

autophagy 1.55E-03 23 590 ATP6V0B,PSAP,TP53INP1,ERN1,PDK1,DAP,UBC,HAX1,SCFD1,HSPB1,PIM2,CISD2,
TMEM59,CASP3,XBP1,FIS1,LARP1B,TMBIM6,ZNF593,TMEM208,EIF2AK4,MTDH,FB
XW7

tumor necrosis factor-mediated signaling pathway 1.91E-04 12 155 TRADD,PSMB5,PSMB6,PSMD8,PSME2,TNFRSF17,UBC,HSPA1A,HSPA1B,TXNDC17,
GSTP1,CD27

proteolysis 4.54E-08 62 1697 TRADD,HSP90B1,SPCS2,PSMB5,PSMB6,DAP,SEC11C,PSMD8,PSME2,DNAJB9,HM
13,MDM2,ERLEC1,CFLAR,SPCS3,UBC,UBXN4,IGLC7,ATRAID,DERL3,SEC61B,SDF2
L1,OS9,AURKAIP1,DNAJC1,PRDX5,USP48,IGKV4-
1,HSPA5,RBX1,SEL1L,UBE2J1,RHBDD1,DERL1,NRDC,SPCS1,TMEM59,CASP3,XBP
1,CASP10,FIS1,CAV1,PDIA3,LAP3,RPS27L,ISG15,TIMP1,CD27,IGHG1,TMEM208,IG
HG2,IGHG3,IGHG4,IGKC,CD59,IGLC2,IGLC3,IFI6,DNAJC3,HERPUD1,TRIB1,FBXW7

regulation of catabolic process 2.65E-08 39 777 ATP6V0B,PSAP,TP53INP1,ERN1,PSMB5,PSMB6,DAP,PSMD8,PSME2,MDM2,ERLEC
1,UBC,BTG2,ATRAID,DERL3,MIF,OS9,HAX1,SCFD1,HSPB1,UBE2J1,DDIT4,RHBDD1,
PIM2,NRDC,CISD2,ANXA2,TMEM59,CASP3,XBP1,RDX,UQCC2,CAV1,TIMP1,EIF2AK
4,HERPUD1,TRIB1,MTDH,FBXW7
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D.3.3 REVIGO gene ontology reduction for PC (Plasma cell) 

 

D.3.3. REVIGO gene ontology reduction for PC (Plasma cell). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.3. Gene ontology analysis of B cell cluster PC (Plasma cell). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in PC 
(Plasma cell). The significant (FDR<0.05) gene families and biological processes (overlaps 
reduced with REVIGO) are shown. The significance, number of identified genes and total gene 
size for each term is shown. 

PC (Plasma cell cluster)-Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

CD molecules|Tumor necrosis factor superfamily 1.73E-06 39 394 ERBB2,CD46,F3,TNFRSF12A,ALCAM,SDC1,FUT3,MUC1,CEACAM6,TNFRSF10B,TNF
RSF21,NRP1,BMPR1B,SLC44A1,CD9,CD47,TREM1,CD59,CD63,CD151,TNFRSF1A,C
DH1,PLAUR,ICAM1,CDCP1,IL1R1,IL13RA1,INSR,CD55,ITGA1,ITGA2,ITGA3,ITGAV,IT
GB1,ITGB4,KDR,LAMP2,BCAM,EPCAM

S100 calcium binding proteins|EF-hand domain 
containing

4.63E-05 8 21 S100A14,S100A2,S100A6,S100A9,S100A10,S100A11,S100A13,S100A16

EF-hand domain containing 8.38E-05 24 219 EHD2,S100A2,S100A6,S100A9,S100A11,CIB1,RASEF,SRI,TBC1D9,DST,CALM2,CA
LU,CAPN1,CAPN2,CETN2,FKBP9,GCA,PLS3,S100A16,PRKCSH,MYL12B,CAPN8,PD
CD6,RCN1

Plakins 2.09E-04 5 8 EVPL,DST,PLEC,PPL,DSP
LIM domain containing 3.35E-04 11 59 FHL2,NEBL,LIMCH1,LMO3,SCEL,CRIP2,CSRP1,TES,PXN,LMO7,LPP
NADH:ubiquinone oxidoreductase supernumerary 
subunits

3.35E-04 8 30 NDUFB2,NDUFB4,NDUFB7,NDUFB10,NDUFC1,NDUFS5,NDUFS6,NDUFA11

WD repeat domain containing|Dyneins, cytoplasmic 2.37E-03 5 13 DYNLT1,DYNLRB1,DYNC1H1,DYNC1I2,DYNC1LI2

Zinc fingers FYVE-type|Pleckstrin homology domain 
containing|Rho guanine nucleotide exchange 
factors

4.72E-03 19 206 NET1,ARHGAP27,KIF1B,SPTBN1,BCR,MPRIP,FGD4,PSD3,GRB7,TRIOBP,PHLDA2,P
LEKHA5,PLEKHH2,OSBPL3,RAPH1,PLEKHM1,FARP1,SBF2,PLEKHA1

Integrin beta subunits 5.24E-03 4 9 ITGB1,ITGB4,ITGB5,ITGB6
Erb-b2 receptor tyrosine kinases 5.24E-03 3 4 ERBB2,ERBB3,EGFR
Short chain dehydrogenase/reductase superfamily 8.78E-03 10 76 NMRAL1,UXS1,HTATIP2,DHRS7,GALE,BLVRB,HPGD,SDR16C5,RDH10,DHRS9

Charged multivesicular body proteins|ESCRT-III 9.82E-03 4 11 CHMP4C,CHMP5,CHMP2A,CHMP4B
STEAP family 9.82E-03 3 5 STEAP1,STEAP2,STEAP4
Rho family GTPases 1.17E-02 5 20 RHOB,RHOC,RND3,RHOV,RAC1
Protein phosphatase 1 regulatory subunits 1.30E-02 16 181 PPP1R9A,SH2D4A,OCLN,AHCYL1,BCL2L1,STAU1,PARD3,TNS1,PHACTR3,ZFYVE1

6,SYTL2,PTK2,ITPR3,PPP1R3B,FARP1,SPRED1
Mucins 1.30E-02 5 21 MUC15,MUC1,MUC5B,MUC21,MUC16
Annexins 1.53E-02 4 13 ANXA1,ANXA2,ANXA4,ANXA11
Claudins 1.81E-02 5 23 CLDN12,CLDN1,CLDN4,CLDN3,CLDN7
14-3-3 phospho-serine/phospho-threonine binding 
proteins

2.12E-02 3 7 SFN,YWHAG,YWHAH

Charged multivesicular body proteins|ESCRT-III 2.12E-02 3 7 CHMP4C,CHMP2A,CHMP4B
Basic leucine zipper proteins 2.14E-02 7 49 BATF,FOSL2,NFE2L1,NFE2L2,CEBPB,CEBPD,MAFK
Cathepsins 2.14E-02 4 15 CTSA,CTSB,CTSD,CTSL
Blood group antigens 2.27E-02 6 37 ACHE,FUT3,CD151,SMIM1,CD55,BCAM
Protein phosphatase 1 regulatory 
subunits|Prefoldin subunits

2.64E-02 3 8 PFDN6,PFDN1,PFDN2

Transmembrane channel likes 2.64E-02 3 8 TMC4,TMC6,TMC5
Tumor necrosis factor receptor superfamily 3.59E-02 5 29 TNFRSF12A,TNFRSF10B,TNFRSF21,TNFRSF1A,LTBR
CD molecules|Complement system|Integrin alpha 
subunits

3.59E-02 4 18 ITGA1,ITGA2,ITGA3,ITGAV

Paraoxonases 3.82E-02 2 3 PON2,PON3
Apolipoproteins|Sushi domain containing 3.82E-02 7 57 C1RL,CD46,CFB,SRPX2,CFH,CD55,SEZ6L2
Armadillo repeat containing 3.82E-02 6 43 PKP4,PKP3,PKP2,CTNNB1,CTNND1,JUP
Endogenous ligands 4.20E-02 17 237 ADM,CCL20,CX3CL1,FN1,ANXA1,APP,CFLAR,C3,CALM2,CXCL2,ICAM1,PSAP,RAC1

,EDN1,LGALS1,LGALS3,LGALS3BP
Transmembrane p24 trafficking proteins 4.20E-02 3 10 TMED10,TMED4,TMED3
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D.3.3. Gene ontology analysis of B cell cluster PC (Plasma cell). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in PC 
(Plasma cell). The significant (FDR<0.05) gene families and biological processes (overlaps 
reduced with REVIGO) are shown. The significance, number of identified genes and total gene 
size for each term is shown. 

PC (Plasma cell cluster) -Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

movement of cell or subcellular component 7.29E-16 186 1882 EPS8,ERBB2,ERBB3,NET1,S100A14,ETV1,ACTN4,ACVR1B,RRAS,RREB1,MDK,F3,S100A2,TNFRSF12A,DOCK5,S100A9,MET,TUBB4B,MTU
S1,MIF,ALCAM,CCL20,CX3CL1,SDC1,SDC4,KLC3,FLNA,SEMA4B,CIB1,CDC42BPA,FN1,ANXA1,KIF21A,TUBB,MYO1B,SIX1,APP,ARF4,RHO
B,RHOC,ARHGAP5,SPINT2,PHPT1,ENAH,NUMB,ATP1B1,FUT8,ATP2A2,ATP2B4,DNAH11,MYH9,NCKAP1,MYO6,AVL9,ADAM9,KIF1B,SPTBN
1,SRI,CEACAM6,GOLPH3,BLOC1S1,BCR,ST14,STAT3,IQGAP1,NRP1,STC1,PARD6B,BMPR1B,SRPX2,DST,NF1,NFE2L2,NFIB,TSPO,GPC1,
DSTN,CALR,ABHD2,GPX1,GRB7,CXCL2,NR2F1,GSN,THBS1,CD9,SLC16A3,TIMP1,NKX2-
1,FURIN,CD47,TREM1,PAK1,CD63,CD151,PARD3,TNNT1,CDH1,TNS1,AGRN,TPM1,TPM4,CD2AP,PHLDA2,PLXNB2,TXN,SUN2,PKP2,PLAT,H
ES1,PLAU,PLAUR,SMURF2,HSPB1,VEGFA,CERS2,VIM,FNDC3B,DDIT4,ICAM1,ID1,CXCL14,CLDN7,CELSR1,IGFBP3,PRKCA,PKN2,CTNNA1,
CTNNB1,IL1R1,MAP2K2,SLK,INSR,ITGA1,ITGA2,FNBP1L,ITGA3,ITGAV,ITGB1,ITGB4,PTGS2,PTK2,PTP4A1,SEMA4C,JUP,PTPRF,PTPRK,P
XN,DYNLRB1,KDR,RAB1A,DNAH5,WIPF2,RAB13,DYNC1H1,DYNC1I2,DYNC1LI2,RAC1,KRAS,DPYSL3,RAB25,DSC2,PDCD6,DSG2,DSP,RTN
4,RDX,LAMC1,EDN1,LGALS3,TSPAN1,NTN4,LRPPRC,EFNA1,EFNA5,LMNA,EGFR,MYH14,LRP5,EMP2,CTTN,SLIRP,TACSTD2,EPCAM,TRIB1
,SMAD3

localization of cell 1.35E-13 147 1428 EPS8,ERBB2,ERBB3,NET1,S100A14,ACTN4,ACVR1B,RRAS,RREB1,MDK,F3,S100A2,TNFRSF12A,DOCK5,S100A9,MET,MTUS1,MIF,CCL20,
CX3CL1,SDC1,SDC4,FLNA,SEMA4B,CIB1,CDC42BPA,FN1,ANXA1,SIX1,ARF4,RHOB,RHOC,ARHGAP5,SPINT2,PHPT1,NUMB,ATP1B1,FUT8,
ATP2B4,DNAH11,MYH9,NCKAP1,AVL9,ADAM9,CEACAM6,GOLPH3,BCR,ST14,STAT3,IQGAP1,NRP1,STC1,PARD6B,SRPX2,DST,NF1,NFE2
L2,TSPO,CALR,ABHD2,GPX1,GRB7,CXCL2,NR2F1,GSN,THBS1,SLC16A3,TIMP1,NKX2-
1,FURIN,CD47,TREM1,PAK1,CD63,CD151,PARD3,CDH1,TNS1,TPM1,CD2AP,PHLDA2,PLXNB2,SUN2,PKP2,PLAT,HES1,PLAU,SMURF2,HSP
B1,VEGFA,CERS2,VIM,FNDC3B,DDIT4,ICAM1,ID1,CXCL14,CLDN7,CELSR1,IGFBP3,PRKCA,PKN2,CTNNA1,CTNNB1,IL1R1,MAP2K2,SLK,IN
SR,ITGA1,ITGA2,ITGA3,ITGAV,ITGB1,ITGB4,PTGS2,PTK2,PTP4A1,SEMA4C,JUP,PTPRF,PTPRK,KDR,RAB1A,DNAH5,RAB13,RAC1,KRAS,D
PYSL3,RAB25,PDCD6,RTN4,RDX,LAMC1,EDN1,LGALS3,TSPAN1,EFNA1,LMNA,EGFR,LRP5,EMP2,CTTN,SLIRP,TACSTD2,EPCAM,TRIB1,S
MAD3

epithelium development 3.63E-13 136 1296 FOXQ1,EVPL,ACVR1B,RREB1,ADM,ESRP2,MET,AHR,TAGLN2,SDC1,SDC4,FLNA,FLNB,ANXA1,FOSL2,ANXA4,AGR2,AGPAT2,SIX1,RHOB,
RHOC,SPINT2,ENAH,NUMB,ATP2A2,SOX4,NCKAP1,SPINT1,MYO6,ADAM9,CCND1,SCEL,ST14,IQGAP1,NRP1,STC1,NF1,NFATC4,NFIB,GNA
Q,GNAS,NOTCH2,SFN,PLOD3,GPX1,NUMA1,TEAD1,GRSF1,GSN,TGM2,NKX2-
1,ERRFI1,PAK1,CD63,TNFRSF1A,PARD3,CDH1,CDH3,CDKN1A,CEBPB,PHB2,PLXNB2,PGK1,GRHL1,CLTC,UGCG,TJP2,HES1,PLAUR,MLPH,
PLS3,SMURF2,CNN3,VEGFA,VIM,FNDC3B,COL17A1,TNC,ICAM1,ID1,XDH,CLDN3,CRABP2,SLC40A1,PPL,CELSR1,CST6,CTNNB1,CTNND1,
CTSB,CTSD,MAP2K2,PRSS8,PSAP,VEZF1,PSMA7,INSR,PSMB5,PSMC1,PSMC3,PSMD2,C1GALT1,ITGA2,PTGS2,SEMA4C,PTPRS,EHF,PXN
,KDR,RAB1A,RAB13,RAC1,KRAS,RAB25,RARA,KRT15,DSP,RDH10,SMURF1,LAMB3,RDX,LAMC2,EDN1,LGALS3,RHEB,NTN4,LLGL2,EGFR,
DHRS9,LRP5,ELF3,EMP1,TACSTD2,EPCAM,SMAD3,SMAD5

regulation of cell death 5.42E-12 157 1650 ERBB2,ERBB3,NET1,ACTN4,MDK,F3,PICALM,TNFRSF12A,ADM,S100A9,MET,NDRG1,MIF,AHR,FHL2,CX3CL1,FLNA,CIB1,SH3RF1,FN1,PHLD
A1,AAMDC,ANXA1,ANXA4,AGR2,HTATIP2,YBX3,SIX1,PDXK,ARF4,RHOB,MUC1,PTGES3,SOD2,SOX4,PLK2,PERP,GOLPH3,BCL2L1,BCL3,
TNFRSF10B,TNFRSF21,CHMP2A,GFER,TMBIM1,STAT3,NRP1,CFLAR,BMP1,BMP3,TSC22D1,BMPR1B,BNIP3,BNIP3L,BOK,NF1,IER3,NFATC
4,FGD4,NFE2L2,SQSTM1,TAX1BP1,TOX3,TSPO,SERINC3,GNAQ,NME4,PTTG1IP,NOTCH2,SFN,TRIM2,CALR,GPX1,CASP4,TMBIM6,GSN,T
GFA,GSTP1,TGM2,THBS1,TIMP1,P4HB,PA2G4,PDCD5,CD59,TNFRSF1A,CDH1,AGRN,CDKN1A,HSP90B1,CEBPB,TRIO,HEBP2,PHB2,TXN,PI
M1,PLAUR,PRDX5,HSPA1B,HSPB1,VEGFA,DDIT4,GDF15,ICAM1,ID1,POR,XDH,CLDN7,NIBAN2,KANK2,YWHAG,SLC40A1,YWHAH,PIM3,IGF
BP3,VSTM2L,PRKAA1,CST3,PRKCA,CTNNA1,CTNNB1,CTSB,SLK,PSAP,TMEM219,DAD1,PSMC1,ITGA1,ITGAV,ITGB1,PTGS2,PTK2,PTPRF,
KDR,RAC1,KRAS,RARA,PDCD6,KRT18,RTN4,DUSP6,FIS1,LDHA,CHMP4B,EDN1,LGALS1,LGALS3,RPS27L,EFNA1,LMNA,EGFR,ANGPTL4,L
RP5,LTBR,CTTN,EPCAM,SMAD3

cytoskeleton organization 1.80E-11 121 1164 EPS8,ACTN4,EHD2,S100A9,S100A10,MKLN1,TAOK1,BAIAP2,ALDOA,FKBP4,SDC4,CHMP4C,FLNA,FLNB,CIB1,CDC42BPA,NEBL,ANXA1,CH
MP5,PPP1R9A,ARPC1A,TUBB,MYO1B,RND3,HOOK3,PHPT1,DCTN6,STAU2,ENAH,LIMCH1,PLK2,MYH9,NCKAP1,GAPDH,SPTBN1,BCR,CHM
P2A,CFLAR,DST,NF1,BAIAP2L1,FGD4,RALBP1,SVIL,CAMSAP2,GOLGA2,DSTN,ARHGEF28,CALR,CAPN2,NUMA1,CASP4,TRIOBP,DYNLT1,
GSN,PAK1,PAM,PARD3,AGRN,PACSIN2,TPM1,TPR,HSP90B1,CDC42EP4,CETN2,CD2AP,PFDN1,PFDN2,CHD3,TRIP10,SUN2,CLTC,FBXW5,
PKP2,PLEKHH2,CNN3,VIM,ICAM1,ID1,RICTOR,KANK2,YWHAH,CELSR1,CSNK1A1,CSNK1D,CSRP1,PRKAR1A,CTNNA1,CTNNB1,SLK,SPIRE
1,ITGB1,ITGB5,PTK2,JUP,STMN3,PXN,DNAH5,WIPF2,RAB13,DYNC1H1,DYNC1LI2,RAC1,KRAS,KRT8,DPYSL3,KRT18,KRT19,DSP,RDX,CHM
P4B,EDN1,LLGL2,EFNA5,LMNA,MYH14,EMP2,CTTN,TACSTD2,MARCKS,SMAD3

response to endogenous stimulus 1.91E-11 161 1740 NR2F6,FSTL3,STUB1,MDK,F3,ADM,ESRP2,ADSS2,MGST1,MGST3,ATP6V1D,PGRMC2,AHR,BAIAP2,FHL2,SDC1,FKBP4,CIB1,FN1,ANXA1,A
NXA2,FOSL2,SLC34A2,APP,TRIM33,NPTN,ASPH,DDRGK1,FUT8,ATP2A2,PTGES3,ATP2B4,AHCYL1,ATP6V1E1,GALNT3,SPINT1,ADAM9,L
MO3,CCND1,BCL2L1,CFB,STAT3,IQGAP1,STC1,BMP1,BMP3,BMPR1B,GNG12,BAIAP2L1,BUD31,TSPO,C3,GNAI1,GNAS,TMED10,GNG10,N
OTCH2,GPC1,PLOD3,CALM2,CALR,ABHD2,CAPN2,CASP4,GRN,CAV2,TMBIM6,NR2F1,GSN,GSTP1,THBS1,CD9,TIMP1,TIMP2,NKX2-
1,PDCD5,FURIN,ERRFI1,PAK1,PAM,PARD3,CDH1,CDKN1A,TPR,HSP90B1,CEBPB,PHB2,CBX3,HNMT,HNRNPU,SERPINA1,VKORC1,HPGD,P
KM,NUCKS1,HES1,PLAU,PLOD2,SMURF2,DDIT4,STRN3,TNC,GDF15,ICAM1,POLR2I,POLR2L,ID1,POR,CLDN4,KANK2,YWHAG,YWHAH,CSN
K1D,PRKAA1,PRKAR1A,PRKCA,LEPROT,CTNNA1,CTNNB1,IL1R1,CTSB,CTSL,ZFYVE16,INSR,ITGA2,ITGA3,STEAP2,ITGB1,PMEPA1,ITGB5
,PTGS2,PTK2,ITPR3,DHX15,DEFB1,JUP,PTPRF,PTPRK,PXN,KDR,TWSG1,RAB13,MED13,KRAS,RARA,DSG2,KRT19,DUSP6,SMURF1,RDX,L
DHA,EDN1,NAMPT,EFNA5,EGFR,SPRED1,LTBP1,LTBP3,MARCKS,SMAD3,SMAD5

regulation of anatomical structure 
morphogenesis

2.23E-11 118 1128 EPS8,ERBB2,NET1,ACHE,TBC1D2,ACTN4,RRAS,RREB1,F3,EHD2,TNFRSF12A,ADM,MET,S100A10,S100A13,MKLN1,BAIAP2,ALDOA,CX3C
L1,FLNA,SEMA4B,CIB1,FN1,ANXA1,PPP1R9A,HTATIP2,SIX1,RHOB,STAU2,NUMB,MYH9,ADAM9,TBC1D2B,BCR,GDI1,TMBIM1,NRP1,CFLAR
,SRPX2,BNIP3,NF1,NFATC4,FGD4,NFE2L2,NFIB,C3,GOLGA2,CALR,TRIOBP,GSN,THBS1,GTF2I,NKX2-
1,TNFRSF1A,CDH1,AGRN,TPM1,CDC42EP4,PHB2,MGLL,CHI3L1,PLXNB2,PDCL3,CLTC,HES1,PLAU,SMURF2,HSPB1,VEGFA,VIM,GDF15,IC
AM1,ID1,POR,XDH,CPE,CRABP2,YWHAH,CELSR1,CSNK1A1,CSNK1D,CST3,PRKCA,CTNNB1,MAP2K2,MYL12B,CUX1,PSMA7,PSMB5,PSMC
1,PSMC3,PSMD2,PTGS2,PTK2,SEMA4C,PTPRF,PXN,KDR,WIPF2,RAC1,PDCD6,RTN4,DUSP6,SMURF1,RDX,FIS1,EDN1,LGALS3,NTN4,EFNA
1,EFNA5,MYH14,ANGPTL4,EMP2,CTTN,TACSTD2,MARCKS,SMAD3

cell adhesion 1.90E-10 143 1530 ERBB2,ERBB3,FSTL3,NET1,ACHE,ACTN4,CD46,RREB1,TNFRSF12A,S100A9,S100A10,MKLN1,ALCAM,CX3CL1,SDC4,FLNA,CIB1,FN1,BATF
,ANXA1,PPFIBP1,PKP4,AGR2,APP,CLSTN1,CASK,RHOB,RND3,ARHGAP5,NPTN,SPINT2,ATP1B1,MUC1,ATP2A2,SOX4,PAG1,MYH9,ADAM
9,PERP,GOLPH3,BCL3,TNFRSF21,IQGAP1,TINAGL1,SRPX2,DST,NF1,NINJ1,GNAS,CALR,TRIOBP,CLDN12,CLDN1,GSN,GSTP1,TGM2,THB
S1,CD9,PKP3,CD47,PAK1,CD59,CD63,CD151,PARD3,CDH1,CDH3,TPM1,MAGI1,MUC21,CEBPB,HLA-
A,CD2AP,PLXNB2,PKP2,HES1,PLAU,HSPB1,VEGFA,FNDC3B,COL17A1,TNC,ICAM1,ID1,RICTOR,CLDN4,CLDN3,CLDN7,PPP1CB,CELSR1,C
SRP1,PRKAR1A,PRKCA,PKN2,CTNNA1,CTNNB1,CTNND1,SLK,CD55,ITGA1,ITGA2,ITGA3,ITGAV,ITGB1,TMEM8A,ITGB4,ITGB5,ITGB6,PTK2,
JUP,PTPRF,PTPRK,PTPRS,PXN,KDR,RAB1A,RAC1,VMP1,RARA,DSC2,DSG2,DSP,MUC16,LAMB3,RDX,LAMC1,LAMC2,LGALS1,LGALS3,LG
ALS3BP,EFNA1,EFNA5,EGFR,LMO7,LPP,BCAM,MPZL2,EMP2,CTTN,TACSTD2,EPCAM,MARCKS,SMAD3

tissue migration 7.02E-06 34 244 RREB1,S100A2,MET,CIB1,RHOB,MYH9,ADAM9,NRP1,STC1,SRPX2,NF1,NFE2L2,GPX1,THBS1,CD63,HSPB1,VEGFA,ID1,PRKCA,PKN2,ITG
A2,ITGA3,ITGAV,ITGB1,PTGS2,PTK2,KDR,RAB13,RAB25,PDCD6,EDN1,EFNA1,EMP2,TACSTD2

cell-cell junction assembly 5.40E-05 18 95 ACTN4,PKP4,RHOC,OCLN,PARD6B,CLDN1,CD9,PKP3,PARD3,CDH1,PKP2,CLDN3,PRKCA,PKN2,CTNNA1,ITGB1,JUP,RAB13
defense response 4.23E-03 116 1651 S100A14,C1RL,CD46,TMEM173,MDK,F3,ADM,S100A9,TUBB4B,HIST2H2BE,IFITM3,MIF,CCL20,CX3CL1,SDC1,FN1,BATF,ANXA1,TUBB,APP,

SLPI,ATP1B1,SNRPD1,GAPDH,IL37,BCL3,TNFRSF10B,BCR,TNFRSF21,GFER,CFB,STAT3,BMPR1B,BNIP3,BNIP3L,SMPDL3B,IER3,NFATC4,
NFE2L1,NFE2L2,SERINC3,C3,STK39,TAPBP,NOTCH2,NTHL1,GPX1,GPX4,CASP4,NFKBIZ,MUC5B,CXCL2,GSTP1,TGM2,THBS1,CD47,TREM
1,PAK1,CD59,OSMR,TNFRSF1A,CFH,HSP90B1,CEBPB,HLA-
A,PHB2,HMGB3,MGLL,CHI3L1,SERPINA1,AP1S1,PRDX5,HSPA1B,HIST1H2BK,DDIT4,ICAM1,PTGES,RICTOR,CLDN7,IGFBP4,CST3,PRKCA,I
L1R1,IL1RAP,CTSB,CTSL,ROMO1,VEZF1,PSMA7,PSMB5,CD55,PSMC1,PSMC3,PSMD2,ITGA2,ITGAV,ITGB1,ITGB6,PTGS2,PTK2,DEFB1,RA
B1A,RAC1,KRAS,SMURF1,LCN2,EDN1,LGALS3,LGALS3BP,MLF2,EGFR,EIF4G1,ELF3,LTBR,SMAD3,STOM

positive regulation of programmed cell death 9.01E-03 53 655 NET1,F3,TNFRSF12A,ADM,S100A9,PHLDA1,ANXA1,HTATIP2,RHOB,SOX4,BCL2L1,TNFRSF10B,TSC22D1,BMPR1B,BNIP3,BNIP3L,BOK,NF
1,NFATC4,FGD4,SQSTM1,TSPO,SERINC3,NOTCH2,SFN,GSN,TGM2,THBS1,PDCD5,TNFRSF1A,AGRN,CDKN1A,TRIO,PLAUR,XDH,YWHAG,Y
WHAH,IGFBP3,CTNNA1,CTNNB1,SLK,ITGA1,ITGB1,PTGS2,PTPRF,RAC1,PDCD6,DUSP6,FIS1,LDHA,RPS27L,LTBR,SMAD3

regulation of cell division 2.26E-02 27 291 MDK,MET,CHMP4C,MACC1,CIB1,CHMP5,PKP4,ANAPC11,CHMP2A,SVIL,SFN,CALM2,CALR,CAV2,TGFA,ZFYVE19,TPR,CETN2,PHB2,VEGFA
,YWHAH,PRKAR1A,PKN2,INSR,CHMP4B,EDN1,LRP5
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D.3.4 REVIGO gene ontology reduction for B1 CD8Hi (Blue) 

 
D.3.4. REVIGO gene ontology reduction for B1 CD8Hi(Blue). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.4 Gene ontology analysis of B cell cluster B1 CD8Hi (Blue). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in B1. The 
significant (FDR<0.05) gene families and biological processes (overlaps reduced with REVIGO) 
are shown. The significance, number of identified genes and total gene size for each term is 
shown. 

B1 CD8Hi(Blue) -Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

Histocompatibility complex|C1-set domain 
containing

1.91E-12 10 42 HLA-A,HLA-C,HLA-DPA1,HLA-DPB1,HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-
DRB1,B2M,HLA-E

Eukaryotic translation initiation factor 3 1.03E-05 4 13 EIF3E,EIF3D,EIF3F,EIF3G

RNA binding motif containing|Serine and 
arginine rich splicing factors

4.61E-04 3 12 SRSF2,SRSF5,SRSF7

Basic leucine zipper proteins|Jun 
transcription factor family

9.61E-04 2 3 JUN,JUNB

Regulators of G-protein signaling 2.08E-03 3 21 RGS19,RGS1,RGS2

Actins 3.80E-03 2 6 ACTB,ACTG1

MAP kinase phosphatases 1.24E-02 2 11 DUSP1,DUSP2

CD molecules|Tumor necrosis factor 
superfamily

1.60E-02 8 394 SELL,CXCR4,CD37,CD48,TNFRSF13B,CD69,CD79A,LY9

Cathepsins 1.84E-02 2 15 CTSH,CTSS

Minor histocompatibility antigens|FERM 
domain containing

1.84E-02 3 51 RPS4Y1,ARHGDIB,CTSH

Zinc fingers CCHC-type 4.70E-02 2 25 SRSF7,CNBP

Tubulins 4.75E-02 2 26 TUBA1B,TUBA1A

B1 CD8Hi(Blue)-Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

translational initiation 1.40E-36 36 194 RPL22,NPM1,RPL30,RPL29,RPL37,RPL36A,RPLP0,RPLP1,RPS2,RPS3,RPS3A,RPS
4Y1,RPS7,EIF3E,RPS12,RPSA,RPS23,RPL14,PPP1R15A,RPL10A,EIF4A1,EIF4A2,E
IF4B,EIF3D,EIF3F,EIF3G,EIF1,RPL3,RPL4,RPL7,RPL7A,RPL8,RPL9,RPL10,RPL18,R
PL19

protein localization to endoplasmic 
reticulum

1.56E-29 27 125 RPL22,RPL30,RPL29,RPL37,RPL36A,RPLP0,RPLP1,RPS2,RPS3,RPS3A,RPS4Y1,R
PS7,RPS12,RPSA,RPS23,RPL14,PPP1R15A,RPL10A,RPL3,RPL4,RPL7,RPL7A,RPL
8,RPL9,RPL10,RPL18,RPL19

multi-organism metabolic process 9.26E-28 30 207 RPL22,RPL30,RPL29,RPL37,RPL36A,RPLP0,RPLP1,RPS2,RPS3,RPS3A,RPS4Y1,R
PS7,RPS12,RPSA,RPS23,RPL14,RPL10A,JUN,EIF3D,EIF3F,EIF3G,RPL3,RPL4,RPL
7,RPL7A,RPL8,RPL9,RPL10,RPL18,RPL19

interferon-gamma-mediated signaling 
pathway

5.20E-12 13 85 HLA-A,HLA-C,HLA-DPA1,HLA-DPB1,HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-
DRB1,B2M,HLA-E,IRF8,SOCS1,HSP90AB1

response to cytokine 1.46E-09 28 825 MYC,RPLP0,HLA-A,HLA-C,GAPDH,HLA-DPA1,RPS2,HLA-DPB1,HLA-DQA1,HLA-
DQB1,HLA-DRA,HLA-DRB1,B2M,HLA-
E,IRF8,KLF2,TUBA1B,JUN,JUNB,CORO1A,UBC,CXCR4,NFKBIA,TNFRSF13B,SOCS1,
LTB,RPL3,HSP90AB1

response to interferon-gamma 1.57E-09 14 163 HLA-A,HLA-C,GAPDH,HLA-DPA1,HLA-DPB1,HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-
DRB1,B2M,HLA-E,IRF8,SOCS1,HSP90AB1

antigen processing and presentation of 
exogenous peptide antigen

2.67E-06 11 166 HLA-A,HLA-C,HLA-DPA1,HLA-DPB1,HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-
DRB1,B2M,HLA-E,CTSS

cell activation 6.40E-06 25 1001 RPL22,HLA-A,HLA-DPA1,HLA-DPB1,HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-
DRB1,B2M,ACTB,HLA-
E,ACTG1,GPR183,SAMSN1,TBC1D10C,JUN,CORO1A,ZFP36L2,CLIC1,CXCR4,CD37,
CD48,TNFRSF13B,CD79A,LY9

cell killing 9.41E-03 6 134 HLA-A,B2M,HLA-E,CORO1A,CTSH,HSP90AB1

biological adhesion 1.92E-02 23 1542 SELL,RPL22,HLA-A,HLA-DPA1,HLA-DPB1,HLA-DQA1,HLA-DQB1,HLA-DRA,HLA-
DRB1,B2M,ACTB,HLA-
E,ACTG1,RPSA,CYTIP,ARHGDIB,CORO1A,ZFP36L2,CLIC1,CXCR4,CD48,LY9,HSP9
0AB1
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D.3.5 REVIGO gene ontology reduction for B2 CD8Hi (Red) 

 
 

D.3.5. REVIGO gene ontology reduction for B2 CD8Hi (Red). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.5. Gene ontology analysis of B cell cluster B2 CD8Hi (Red). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in B2. The 
significant (FDR<0.05) gene families and biological processes (overlaps reduced with REVIGO) 
are shown. The significance, number of identified genes and total gene size for each term is 
shown. 

 

B2 CD8Hi (Red)-Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

Histocompatibility complex|C1-set domain containing 4.56E-15 13 42 HLA-A,HLA-B,HLA-C,HLA-DMB,HLA-DPA1,HLA-DPB1,HLA-DQA2,HLA-DQB1,HLA-DRA,B2M,HLA-
DRB5,HLA-E,HLA-F

Histocompatibility complex|C1-set domain containing 2.16E-13 12 44 HLA-A,HLA-B,HLA-C,HLA-DMB,HLA-DPA1,HLA-DPB1,HLA-DQA2,HLA-DQB1,HLA-DRA,HLA-
DRB5,HLA-E,HLA-F

Actin related protein 2/3 complex |WD repeat domain 
containing

1.65E-09 6 9 ARPC5,ARPC4,ARPC3,ARPC1B,ACTR3,ARPC2

Proteasome 4.42E-09 9 43 PSMA1,PSMA4,PSMA5,PSMA7,PSMB8,PSMB9,PSMD13,PSME1,PSME2

CD molecules|Tumor necrosis factor superfamily 3.02E-06 17 394 TNFSF10,CD164,TNFRSF14,ITGB2,FCGR2B,CXCR4,BST2,CCR7,IFITM1,CD40,CD48,CD53,CD69,
CD74,CD79A,FCRL5,IL2RG

Minor histocompatibility antigens|FERM domain 
containing

1.28E-04 6 51 RPS4Y1,TRIM22,TYMP,SP110,ARHGDIB,CTSH

MAP kinase phosphatases 1.87E-03 3 11 DUSP1,DUSP2,DUSP4

ENAH/VASPs 3.43E-03 2 3 VASP,EVL

Cathepsins 3.90E-03 3 15 CTSC,CTSH,CTSS

Pyrin domain containing|Pyrin and HIN domain family 8.20E-03 2 5 MNDA,IFI16

Regulators of G-protein signaling 8.20E-03 3 21 RGS19,RGS1,RGS2

Protein disulfide isomerases 8.20E-03 3 21 ERP29,PDIA3,PDIA6

Actins 1.04E-02 2 6 ACTB,ACTG1

SH2 domain containing 1.88E-02 5 101 STAT1,PTPN6,BTK,SOCS3,LYN

Caspase recruitment domain containing 1.89E-02 3 30 IFIH1,CASP1,CASP4

Caspases 4.20E-02 2 13 CASP1,CASP4

DEAD-box helicases 4.33E-02 3 42 DDX60,EIF4A1,EIF4A2

Myosin light chains|EF-hand domain containing 4.33E-02 2 14 MYL12A,MYL12B

B2 CD8Hi (Red)-Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

cellular response to cytokine stimulus 5.91E-37 68 713 USP18,RPLP0,HLA-A,HLA-B,HLA-C,GAPDH,HLA-DPA1,HLA-DPB1,RPS2,HLA-DQA2,HLA-
DQB1,HLA-DRA,PSMA1,PSMA4,PSMA5,B2M,HLA-DRB5,PSMA7,TNFRSF14,HLA-E,HLA-
F,PSMB8,PSMB9,GBP1,GBP2,IRF2,IRF7,ISG20,PSMD13,PSME1,PSME2,ADAR,TRIM22,STAT1,K
LF2,PTPN1,IRF9,PTPN6,UBC,GBP4,CXCR4,BST2,CPNE1,CCR7,SOCS3,IRF8,IFITM1,OAS1,OAS3
,IFITM2,IFI16,IFI35,IFIT2,IFIT3,RBCK1,LGALS9,CORO1A,MT2A,ISG15,CD40,CD74,XAF1,IFI6,IL2R
G,HCLS1,MX1,MX2,CYBA

type I interferon signaling pathway 2.05E-33 30 81 USP18,HLA-A,HLA-B,HLA-C,HLA-E,HLA-
F,PSMB8,GBP2,IRF2,IRF7,ISG20,ADAR,STAT1,PTPN1,IRF9,PTPN6,BST2,IRF8,IFITM1,OAS1,OA
S3,IFITM2,IFI35,IFIT2,IFIT3,ISG15,XAF1,IFI6,MX1,MX2

cellular response to type I interferon 2.40E-33 30 82 USP18,HLA-A,HLA-B,HLA-C,HLA-E,HLA-
F,PSMB8,GBP2,IRF2,IRF7,ISG20,ADAR,STAT1,PTPN1,IRF9,PTPN6,BST2,IRF8,IFITM1,OAS1,OA
S3,IFITM2,IFI35,IFIT2,IFIT3,ISG15,XAF1,IFI6,MX1,MX2

interferon-gamma-mediated signaling pathway 1.68E-23 24 85 HLA-A,HLA-B,HLA-C,HLA-DPA1,HLA-DPB1,HLA-DQA2,HLA-DQB1,HLA-DRA,B2M,HLA-DRB5,HLA-
E,HLA-F,GBP1,GBP2,IRF2,IRF7,TRIM22,STAT1,IRF9,SOCS3,IRF8,OAS1,OAS3,MT2A

cellular response to interferon-gamma 7.49E-22 27 140 HLA-A,HLA-B,HLA-C,GAPDH,HLA-DPA1,HLA-DPB1,HLA-DQA2,HLA-DQB1,HLA-DRA,B2M,HLA-
DRB5,HLA-E,HLA-
F,GBP1,GBP2,IRF2,IRF7,TRIM22,STAT1,IRF9,GBP4,SOCS3,IRF8,OAS1,OAS3,LGALS9,MT2A

antigen processing and presentation 2.15E-20 31 232 HLA-A,HLA-B,HLA-C,HLA-DMB,HLA-DPA1,HLA-DPB1,HLA-DQA2,HLA-DQB1,HLA-
DRA,PSMA1,PSMA4,PSMA5,B2M,HLA-DRB5,PSMA7,HLA-E,HLA-
F,PSMB8,PSMB9,PSMD13,PSME1,PSME2,FCGR2B,CCR7,KIF2A,TAP1,PDIA3,CD74,CTSH,CTSS,
CYBA

regulation of defense response 2.99E-15 46 820 USP18,HLA-A,HLA-B,PSMA1,PSMA4,PSMA5,B2M,PSMA7,HLA-
E,PSMB8,PSMB9,PHB2,APOBEC3G,IRF7,PSMD13,PSME1,PSME2,ADAR,ITGB2,STAT1,IFIH1,PT
PN1,PTPN6,UBC,FCGR2B,BTK,PARP9,CCR7,TAP1,PLSCR1,TANK,DDX60,SOCS3,CASP1,CASP4
,IFI16,ZFP36,LGALS9,NMI,GPSM3,CD74,LYN,EIF2AK2,CTSS,HERC5,CYBA

cytokine production 2.13E-13 40 700 UBE2L6,HLA-A,HLA-B,HLA-DPA1,HLA-DPB1,B2M,HLA-DRB5,TNFRSF14,HLA-
E,GBP1,IRF7,KLF2,IFIH1,IRF9,UBC,FCGR2B,BST2,BTK,TSPO,CCR7,TNFAIP8,LITAF,DDX60,IRF8,
CASP1,CASP4,IFI16,BTN3A2,ZFP36,LGALS9,NMI,ISG15,SRGN,CD40,GPSM3,CD74,LYN,EIF2AK
2,HERC5,CYBA

regulation of cytokine production 1.18E-12 37 631 UBE2L6,HLA-A,HLA-B,HLA-DPA1,HLA-DPB1,B2M,HLA-DRB5,TNFRSF14,HLA-
E,GBP1,IRF7,KLF2,IFIH1,UBC,FCGR2B,BST2,BTK,TSPO,CCR7,LITAF,DDX60,IRF8,CASP1,CASP
4,IFI16,ZFP36,LGALS9,NMI,ISG15,SRGN,CD40,GPSM3,CD74,LYN,EIF2AK2,HERC5,CYBA

NIK/NF-kappaB signaling 2.15E-07 13 119 PSMA1,PSMA4,PSMA5,PSMA7,PSMB8,PSMB9,PSMD13,PSME1,PSME2,UBC,GLRX,CPNE1,EIF2
AK2

leukocyte mediated cytotoxicity 2.72E-06 11 103 HLA-A,HLA-B,CTSC,B2M,HLA-E,PTPN6,TAP1,LGALS9,CORO1A,PRDX1,CTSH

B cell activation 1.09E-04 14 257 HLA-
DQB1,SAMSN1,PTPN6,FCGR2B,BST2,BTK,MNDA,GPR183,CD40,CD74,CD79A,LYL1,LYN,IL2RG

cellular response to interferon-beta 1.43E-04 5 23 GBP2,STAT1,GBP4,IFI16,IFIT3

B cell receptor signaling pathway 2.03E-03 6 65 PTPN6,BTK,MNDA,CD79A,FCRL5,LYN

B cell proliferation 2.13E-03 7 93 FCGR2B,MNDA,GPR183,CD40,CD74,CD79A,LYN

cellular response to interferon-alpha 4.01E-03 3 12 OAS1,IFIT2,IFIT3

cellular response to interleukin-4 4.56E-03 4 29 RPLP0,RPS2,CORO1A,IL2RG

B cell mediated immunity 5.68E-03 8 146 HLA-DQB1,HLA-DRB5,IRF7,PTPN6,FCGR2B,BTK,CD40,CD74

B cell differentiation 1.12E-02 7 129 HLA-DQB1,PTPN6,BTK,GPR183,CD79A,LYL1,IL2RG

B cell apoptotic process 2.93E-02 3 27 BTK,CD74,LYN



Appendix  

262 

D.3.6 REVIGO gene ontology reduction for B3 CD8Lo(Green).  

 

 

D.3.6. REVIGO gene ontology reduction for B2 CD8Lo (Green). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.6. Gene ontology analysis of B cell cluster B3 CD8Lo (Green). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in B3. The 
significant (FDR<0.05) gene families and biological processes (overlaps reduced with REVIGO) 
are shown. The significance, number of identified genes and total gene size for each term is 
shown. 

B3 CD8Lo (Green)-Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

Basic leucine zipper proteins 2.63E-05 4 49 JUND,CREM,FOS,FOSB

Basic leucine zipper proteins|Fos transcription 
factor family

1.98E-04 2 4 FOS,FOSB

CD molecules|Tumor necrosis factor superfamily 2.41E-04 6 394 CD44,CD55,CD69,CCR7,CD83,LY9

Blood group antigens 1.07E-02 2 37 CD44,CD55

Nuclear hormone receptors 1.49E-02 2 49 NR4A2,NR4A1

Basic leucine zipper proteins|Jun transcription 
factor family

2.23E-02 1 3 JUND

Phosphatase and actin regulators|Protein 
phosphatase 1 regulatory subunits

2.47E-02 1 4 PHACTR1

Yippee like family 2.47E-02 1 5 YPEL5

ESCRT-III associated factors 2.47E-02 1 5 CHMP1B

BTG/Tob family 2.67E-02 1 6 BTG1

Proteoglycans|Structural maintenance of 
chromosomes proteins|Cohesin complex

2.83E-02 1 7 CD44

WD repeat domain containing|BEACH domain 
containing 

3.33E-02 1 9 NBEAL1

C-C motif chemokine receptors 3.41E-02 1 10 CCR7

Charged multivesicular body proteins|ESCRT-III 3.48E-02 1 11 CHMP1B

B3 CD8Lo (Green).-Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

CD4-positive, alpha-beta T cell activation 2.40E-04 5 76 CD44,CD55,CCR7,CD83,LY9

response to endogenous stimulus 3.75E-03 12 1740 CD44,NR4A2,SIK1,H3F3B,JUND,CCR7,NR4A1,CREM,FOS,FOSB,SDCBP,IER2

cellular response to calcium ion 8.80E-03 3 53 JUND,FOS,FOSB

regulation of leukocyte activation 1.02E-02 6 510 CD44,CD55,NFKBID,CCR7,CD83,IGHD

regulation of homotypic cell-cell adhesion 1.12E-02 5 348 CD44,CD55,NFKBID,CCR7,CD83

regulation of cell differentiation 1.14E-02 10 1699 CD44,STK4,NFKBID,SIK1,JUND,CCR7,CD83,FOS,SDCBP,BTG1

regulation of cell-cell adhesion 1.90E-02 5 430 CD44,CD55,NFKBID,CCR7,CD83

cell motility 3.15E-02 8 1428 CD44,NR4A2,CCR7,NR4A1,SDCBP,BTG1,IER2,PHACTR1

regulation of apoptotic process 4.12E-02 8 1519 CD44,NR4A2,STK4,NFKBID,SIK1,CCR7,NR4A1,BTG1

defense response 4.91E-02 8 1651 CD44,CD55,NFKBID,CCR7,CD83,LY9,IGHD,FOS
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D.3.7 REVIGO gene ontology reduction for B4 CD8Lo (Purple). 

 

 

D.3.7. REVIGO gene ontology reduction for B4 CD8Lo (Purple). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.7. Gene ontology analysis of B cell cluster B4 CD8Lo (Purple). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in B4. The 
significant (FDR<0.05) gene families and biological processes (overlaps reduced with REVIGO) 
are shown. The significance, number of identified genes and total gene size for each term is 
shown. 

 

 

 

 

 

 

 

 

B4 CD8Lo -Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

Heat shock 70kDa proteins 2.44E-09 5 17 HSPH1,HSPA1A,HSPA1B,HSPA6,HSPA8

DNAJ (HSP40) heat shock proteins 2.51E-05 4 49 DNAJB1,DNAJB6,DNAJB4,DNAJA1

Heat shock 90kDa proteins 2.97E-04 2 5 HSP90AA1,HSP90AB1

Chaperonins 2.31E-03 2 15 HSPD1,HSPE1

Basic leucine zipper proteins|Jun 
transcription factor family

3.04E-02 1 3 JUN

Ragulator complex 4.04E-02 1 5 LAMTOR4

Peroxiredoxins 4.04E-02 1 6 PRDX1

Armadillo repeat containing|NineTeen 
complex

4.04E-02 1 7 HSPA8

Gelsolin/villins 4.04E-02 1 8 CAPG

Zinc fingers AN1-type 4.04E-02 1 8 ZFAND2A

Small heat shock proteins 4.26E-02 1 11 HSPB1

BCL2 homology region 3 (BH3) only 4.26E-02 1 11 PMAIP1

MAP kinase phosphatases 4.26E-02 1 11 DUSP2

B4 CD8Lo -Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

regulation of cellular response to stress 2.53E-10 17 752 GADD45B,DNAJB1,HSPH1,PRDX1,DNAJB6,PPP1R15A,CHORDC1,DNAJA1,HSPA1A,
HSPA1B,PTGES3,HSPA8,HSPB1,PMAIP1,SOD1,HSP90AA1,HSP90AB1

regulation of tumor necrosis factor-mediated 
signaling pathway

2.29E-04 4 51 UBB,UBC,HSPA1A,HSPA1B

response to heat 5.39E-15 14 171 DNAJB1,HSPH1,DNAJB6,DNAJB4,CHORDC1,DNAJA1,HSPA1A,HSPA1B,PTGES3,HS
PA6,HSPA8,SOD1,HSP90AA1,HSP90AB1

response to topologically incorrect protein 5.39E-15 14 184 HSPD1,HSPE1,DNAJB1,HSPH1,TSPYL2,DNAJB4,PPP1R15A,DNAJA1,HSPA1A,HSP
A6,HSPA8,HSPB1,HSP90AA1,HSP90AB1

regulation of cell death 1.98E-10 23 1650 HSPD1,RHOB,HSPE1,GADD45B,JUN,DDIT4,UBB,UBC,CIB1,HSPH1,DNAJB6,ID3,CAC
YBP,PPP1R15A,DNAJA1,HSPA1A,HSPA1B,PTGES3,HSPA8,HSPB1,PMAIP1,SOD1,
HSP90AB1

regulation of cytokine production 8.96E-03 7 631 HSPD1,UBB,UBC,HSPA1A,HSPA1B,HSPB1,SOD1

regulation of cell cycle 1.55E-04 12 1008 RHOB,GADD45B,JUN,UBB,UBC,LAMTOR4,TSPYL2,ID3,PPP1R15A,CHORDC1,HSPA
8,SERTAD1

regulation of cytokine production 8.96E-03 7 631 HSPD1,UBB,UBC,HSPA1A,HSPA1B,HSPB1,SOD1

protein folding 5.39E-15 15 236 HSPD1,HSPE1,DNAJB1,HSPH1,DNAJB6,DNAJB4,CHORDC1,DNAJA1,HSPA1A,HSPA
1B,PTGES3,HSPA6,HSPA8,HSP90AA1,HSP90AB1

autophagy 6.71E-03 7 590 VMP1,UBB,UBC,LAMTOR4,HSPA8,HSPB1,HSP90AA1

biological adhesion 1.10E-02 11 1542 HSPD1,RHOB,VMP1,CIB1,CD99,HSPH1,DNAJB6,HSPB1,SOD1,HSP90AA1,HSP90A
B1

cell cycle 4.35E-04 15 1766 RHOB,GADD45B,JUN,UBB,UBC,CIB1,LAMTOR4,TSPYL2,ID3,PPP1R15A,CHORDC1,
RGS2,HSPA8,HSP90AA1,SERTAD1

protein refolding 1.43E-13 8 23 HSPD1,DNAJB1,HSPA1A,HSPA1B,PTGES3,HSPA6,HSPA8,HSP90AA1

protein localization to organelle 6.86E-05 12 919 JUN,RPL36A,LAMTOR4,HSPH1,PRDX1,DNAJB6,PPP1R15A,DNAJA1,HSPA8,PMAIP1
,HSP90AA1,HSP90AB1
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D.3.8 REVIGO gene ontology reduction for B5 CD8Lo (Orange). 

 

D.3.8. REVIGO gene ontology reduction for B5 CD8Lo (Orange). 
Gene ontology results (FDR<0.05) for cluster specific genes, where REVIGO scatterplots show 
the GO terms after redundancy reduction in 2D space. The bubble colour indicates the log10 p-
value (red, higher; blue, lower); size indicates the frequency of the GO term (all GO terms q 
<0.05). 
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D.3.8. Gene ontology analysis of B cell cluster B5 CD8Lo (Orange). 
Gene ontology analysis of the differentially expressed genes (FC >0.25 and FDR<0.05) in B5. The 
significant (FDR<0.05) gene families and biological processes (overlaps reduced with REVIGO) 
are shown. The significance, number of identified genes and total gene size for each term is 
shown. 

 

 

 

 

 

B5 CD8Lo -Gene Family
Name FDR Hit 

Count
Total 
no.

Hit in Query List

S100 calcium binding proteins|EF-hand 
domain containing

2.09E-05 4 21 S100A4,S100A6,S100A10,S100A11

Mitochondrial complex IV: cytochrome c 
oxidase subunits

5.82E-04 3 19 MT-CO3,COX6C,COX7A2

EF-hand domain containing 8.37E-04 6 219 S100A4,S100A6,S100A11,MYL6,CALM1,CALM2

Proteoglycans|Structural maintenance of 
chromosomes proteins|Cohesin complex

2.18E-03 2 7 SRGN,CD44

Actin related protein 2/3 complex |WD 
repeat domain containing

2.97E-03 2 9 ARPC5,ARPC2

F-type ATPases|Mitochondrial complex V: 
ATP synthase subunits

9.60E-03 2 18 ATP5MC3,ATP5MF

F-type ATPases|Mitochondrial complex V: 
ATP synthase subunits

9.60E-03 2 19 ATP5MC3,ATP5MF

Rho family GTPases 9.60E-03 2 20 RHOA,CDC42

Selenoproteins 1.33E-02 2 25 GPX1,GPX4

NADH:ubiquinone oxidoreductase 
supernumerary subunits

1.72E-02 2 30 NDUFB1,NDUFS5

Endogenous ligands 2.48E-02 4 237 PSAP,CALM1,CALM2,LGALS1

CD molecules|Tumor necrosis factor 
superfamily

2.68E-02 5 394 CD52,CD99,CD44,CD63,ITGB1

Proteasome 2.68E-02 2 43 PSMB9,PSME2

B5 CD8Lo -Gene ontology biological processes
Name FDR Hit 

Count
Total 
no.

Hit in Query List

actin filament-based process 5.11E-07 18 685 TPM3,RHOA,VIM,S100A10,PTPN1,MYL6,TLN1,CAPG,TMSB4X,TMSB10,PLEK,PFN1,
CDC42,ITGB1,ARPC5,MARCKS,SH3BGRL3,ARPC2

actin filament organization 1.59E-06 13 345 RHOA,S100A10,CAPG,TMSB4X,TMSB10,PLEK,PFN1,CDC42,ITGB1,ARPC5,MARCK
S,SH3BGRL3,ARPC2

actin filament organization 1.59E-06 13 345 RHOA,S100A10,CAPG,TMSB4X,TMSB10,PLEK,PFN1,CDC42,ITGB1,ARPC5,MARCK
S,SH3BGRL3,ARPC2

Fc receptor signaling pathway 5.31E-04 8 206 CALM1,CALM2,ACTB,PSMB9,PSME2,CDC42,ARPC5,ARPC2

cell projection organization 6.20E-04 19 1423 RHOA,S100A6,VIM,DPYSL2,CAPG,MIF,MBP,ACTB,CD44,PLEK,EMP3,PFN1,CPNE5,
CDC42,ITGB1,ARPC5,MARCKS,LGALS1,ARPC2

immune response 6.20E-04 20 1572 PTPN1,CALM1,GAPDH,CALM2,MIF,MBP,GPX1,ACTB,CD44,PSMB9,LTB,PSME2,CDC
42,ITGB1,ARPC5,CRIP1,LGALS1,HCST,ARPC2,CYBA

positive regulation of multi-organism 
process

2.87E-03 6 168 MIF,POLR2L,PFN1,PPIA,LGALS1,CYBA

vesicle-mediated transport 3.91E-03 17 1514 S100A10,PTPN1,DPYSL2,PSAP,CALM1,CALM2,SRGN,TLN1,ACTB,CD63,TMSB4X,P
LEK,CDC42,ITGB1,ARPC5,ARPC2,CYBA

exocytosis 8.93E-03 8 438 PSAP,CALM1,CALM2,SRGN,TLN1,CD63,TMSB4X,PLEK

integrin-mediated signaling pathway 1.09E-02 4 95 RHOA,CD63,PLEK,ITGB1

cellular response to oxygen-containing 
compound

1.18E-02 12 1001 PTPN1,PSAP,YBX1,LITAF,MIF,HNRNPM,CBX3,ITGB1,ATP2B1,MARCKS,LGALS1,CY
BA

immune response-activating cell surface 
receptor signaling pathway

2.55E-02 6 332 ACTB,PSMB9,PSME2,CDC42,ARPC5,ARPC2

negative regulation of apoptotic signaling 
pathway

2.58E-02 5 228 PTPN1,MIF,GPX1,CD44,MCL1

growth 3.50E-02 11 1091 RHOA,DPYSL2,PSAP,GPX1,ARID5B,CD44,EMP3,CPNE5,CDC42,ITGB1,CYBA
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