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ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
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Doctor of Philosophy

ASPECTS OF FOUR-POINT FUNCTIONS IN A/ =4 SYM AT STRONG
COUPLING

by Hynek Paul

In this thesis we focus on two main topics: the double-trace spectrum of strongly-coupled
N =4 SYM theory and the construction of one-loop four-point functions in AdSsxS>.
We begin by providing a basic review of N'=4 SYM and its connection to holographic
correlators on AdSsxS® through the AdS/CFT duality. In the second part, we examine
the spectrum of double-trace operators at strong coupling, which are dual to two-particle
bound states in AdS. At large N, these states are degenerate and to obtain their order
1/N? anomalous dimensions one has to solve a mixing problem. We present a compact
formula for all tree-level supergravity anomalous dimensions and we observe an interest-
ing pattern of residual degeneracies. Considering further string corrections, we identify a
ten-dimensional principle which dictates the structure of the string corrected spectrum.
The third part is devoted to the construction of one-loop corrections to four-point cor-
relation functions. We develop an algorithm for bootstrapping one-loop supergravity
correlators for arbitrary Kaluza-Klein modes, which relies solely on implementing the
consistency of the OPE to order 1/N4. We illustrate the subtle features of this algorithm
by constructing new explicit results for multi-channel correlators. Lastly, we consider
one-loop string corrections to the (O2020205) correlator. We find that a transcendental
weight three function involving a new type of singularity is required, whose presence is

a novelty in the context of AdS amplitudes.
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Chapter 1

Introduction

The development of quantum field theory in the course of the last century is doubtlessly
one of the greatest achievements of modern theoretical physics. Quantum field theories
are mathematical frameworks unifying the theory of special relativity with the principles
of quantum mechanics, and even though they were originally developed to describe
the interactions between elementary particles, its applications reach from cosmology to
condensed matter physics. The most successful such theory however is the standard
model of particle physics. More precisely, the standard model is a non-abelian Yang-
Mills theory with gauge group SU(3) x SU(2) x U(1), which accounts for three out of
the four fundamental interactions of nature: electromagnetism, the strong and the weak
nuclear force. Thanks to immense experimental efforts, it has been tested to a very high

degree of precision.

The theory describing the strong nuclear force, governing the interactions of quarks
and gluons, is given by the SU(3) part of the standard model and is known under the
name of quantum chromodynamics (QCD). It stands out because of its special property
that the interactions become weaker at high energies, a phenomenon called asymptotic
freedom. Conversely, at low energies, QCD becomes strongly-coupled and gives rise
to the intricate spectrum of hadrons, observed in e.g. collider experiments. While we
can use perturbation theory to study the weak coupling limit, understanding quantum
field theories at strong coupling remains a big challenge to this day. One possibility
is to put the theory on a discrete spacetime instead, an approach called lattice field
theory, which has been mostly applied to numerically study the hadronic spectrum of
QCD using various simulation techniques. On the other hand, we do not have any
systematic analytic technique to study the strongly-coupled regime of generic quantum
field theories.

For a special class of quantum field theories however, some promising progress has been
achieved in recent years. These are so-called conformal field theories (CFTs), which

are much more constrained because of their additional symmetries. For example, their

1



2 Chapter 1 Introduction

two- and three-point correlation functions are entirely fixed by conformal symmetry.
One avenue of progress comes from the revival of the old idea of using symmetries
and other consistency-conditions to solve a theory. Thanks to significant advances in
computational power, the modern (numerical) conformal bootstrap program, initiated
in the seminal work [11], has sparked a wealth of new non-perturbative results. Most
notably, this lead to a high precision determination of operator dimensions and OPE
coefficients in the three-dimensional Ising model [12, 13], surpassing by far any other

available method.

Another avenue to study CFTs at strong coupling comes from the celebrated discovery
by Maldacena: the AdS/CFT correspondence [14-16], a conjectured duality between
strongly-coupled CFTs and weakly-coupled gravitational theories on an AdS background
of one more spacetime dimension. As such, it is a prime example of the holographic
principle, an idea that gravity is emergent from a lower-dimensional description. This,
and the extraordinary property that it is a strong-weak coupling duality, has made
the AdS/CFT correspondence one of the most vibrant research areas of present-day
theoretical physics. The first and most-studied example of such a correspondence is the
duality between four-dimensional N' = 4 SYM theory with gauge group SU(N) and
type IIB string theory on AdSsxS°. It is important to mention that this duality has not
been proven, but over the years it has passed many non-trivial checks and an enormous
amount of evidence in its favour has been gathered. For our purposes, we will assume
the duality and use it to study the strongly-coupled regime of N' = 4 SYM theory, which

in turn provides an avenue to study quantum gravity in AdSsxS°.

Even though N/ = 4 SYM theory is arguably quite far from real-life physics, having
maximal supersymmetry and conformal invariance which leads to the loss of asymptotic
freedom, it can still be seen as a more symmetric ‘cousin’ of QCD, as their perturbative
scattering amplitudes share many qualitative properties.! Moreover, N’ = 4 SYM has
many further special features which make it worthwhile studying: for example, in a limit
where one takes the number of colours N large (the planar limit), this theory becomes
integrable.? Furthermore, its superconformal symmetry persists at the quantum level,
and we can use CF'T techniques to study the theory at any value of the coupling. It is
also believed that this theory obeys S-duality (Montonen-Olive duality), realised as a
SL(2,Z) symmetry of the complexified gauge coupling, which relates the weak and strong
coupling regions in a non-trivial manner. Finally, for us the most interesting feature of
this theory is its presence in the previously mentioned AdS/CFT correspondence. The
central quantities of interest within this duality are the correlation functions of local
operators. In particular, we will consider correlators of one-half BPS operators, which are

dual to states belonging to the AdS5 graviton supermultiplet and its Kaluza-Klein modes

!See e.g. the recent review [17].

2In particular, one finds an infinite number of symmetries in the planar limit, making it possible to
compute the spectrum of scaling dimensions exactly. See e.g. [18] for a review on integrability in this
regime.
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on S°. While their two- and three-point correlation functions are protected quantities
(whose matching served as one of the early tests of the correspondence [19, 20]), the first
non-trivial dynamics appears in four-point functions. At weak coupling, many results for
such four-point functions have been obtained in perturbation theory: for the simplest,
lowest-charge correlator the works [21-26] have lead to results up to ten-loops [27]. For
higher-charge correlators, results are known up to three-loop order [28-35], and later even
up to five-loops [36]. On the other hand, more interesting for us are the results at strong
coupling, where the correlation functions have a dual interpretation as supergravity
scattering amplitudes in AdS [37—40]. In a truly heroic effort, the effective type I1IB
supergravity action on AdSsxS® has been obtained up to quartic order by Arutyunov
and Frolov [41]. In principle, their results prepared the ground for the computation of
any four-point supergravity correlator as a sum of Witten diagrams, but the complexity
of this traditional method limits the direct computation to correlators of low external
charges, see [28, 29, 42-46] for results obtained in this way. It then took almost twenty
years and a completely new approach to make further progress: in the groundbreaking
work of Rastelli and Zhou [47, 48], a remarkably compact Mellin space formula for
all tree-level supergravity correlation functions was obtained by a bootstrap approach,
which completely bypasses the diagrammatic expansion in terms of Witten diagrams.?
Their formula is consistent with all previously known correlators, and has been further
checked in many new cases by explicit supergravity computations [58-60]. Finally, as
this formula was obtained as a solution of a bootstrap problem, the overall normalisation
was left unfixed. Using a physical argument on the absence of certain states, we will be

able to determine this normalisation.

Here, we take the general result for the tree-level supergravity correlators from [47, 48] as
an input and we will employ CFT techniques, in particular the (super)conformal partial
wave expansion developed by Dolan and Osborn [61-65], to systematically analyse the
spectrum of exchanged operators in the supergravity limit. To leading order in large IV,
the only operators in the supergravity spectrum which develop an order 1/N? anomalous
dimension are double-trace operators, corresponding to bound two-particle states in
AdS. In turn, we can then use the obtained information on the spectrum to bootstrap
order 1/N* corrections to the supergravity correlators, which correspond to one-loop
amplitudes in the dual gravity theory. Solely by implementing the consistency of the
OPE to order 1/N*, we can thus learn about quantum corrections to supergravity on
AdS5xS® without any reference to actual one-loop diagrams, and in fact such a direct
computation remains extremely challenging. Instead, explicit one-loop computations in

the bulk have so far been restricted to much simpler, scalar theories [66-71].

Lastly, let us mention that a considerable amount of the recent work on the AdS/CFT
correspondence has focussed on studying general constraints on possible holographic the-

ories, see e.g. [72-85]. We believe that both general considerations and also explorations

3Similar methods have subsequently been applied to holographic correlators in other theories and
backgrounds, see references [49-54], and also for boundary CFTs [55-57].
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of explicit examples, such as discussed in this thesis, are necessary to further advance our
understanding of strongly-coupled CFTs, quantum corrections to gravitational theories
and ultimately the remarkable AdS/CFT duality itself.

Outline of the Thesis

This thesis is divided into three parts. The first part consists of two introductory chap-
ters, starting with a collection of basic facts about N'=4 SYM theory in Chapter 2. In
particular, we describe the spectrum of local operators and review the superconformal
partial wave (SCPW) expansion of four-point correlation functions of one-half BPS op-
erators. In Chapter 3, we present the statement of the AdS/CFT correspondence and
give a precise definition of the operators dual to single-particle states in AdS. We then
describe the consequences of the duality for four-point correlation functions and review

the results for tree-level supergravity correlators.

In the second part, we describe how to resolve the mixing of exchanged double-trace
operators in the supergravity limit by using data from many tree-level correlators. In
Chapter 4, this leads to a formula for all tree-level supergravity anomalous dimensions,
which is of remarkable simplicity and has an interesting pattern of residual degeneracies.
Further string corrections are then addressed in Chapter 5, and we find that their struc-
ture follows from a new ten-dimensional principle. We compute the order A"2 and A3
anomalous dimensions and, most notably, the order A3 result lifts the supergravity

degeneracy in a non-trivial way.

The third part is devoted to the construction of one-loop corrections to four-point cor-
relation functions. Building on the results for the double-trace anomalous dimensions
from part two, our strategy is to predict the leading logarithmic discontinuity and com-
plete it to the full one-loop amplitude. In Chapter 6, we develop a general algorithm for
bootstrapping one-loop supergravity correlators of generic external Kaluza-Klein states
and we illustrate this algorithm by considering many explicit examples. From the con-
structed one-loop amplitudes, we then extract new subleading anomalous dimensions. In
Chapter 7, we then consider string corrections to the one-loop supergravity amplitudes.
We find that the string corrections require the presence of a transcendental weight three
function involving a new type of singularity, which has not appeared in the context
of AdS amplitudes before. Finally, some additional material can be found in the five

appendices.
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Setting the Stage






Chapter 2

Basics of N =4 SYM Theory

As already mentioned in the introduction, on one side of the AdS/CFT duality we have
the N' = 4 SYM theory. In this chapter, we will collect some basic facts and results
about this special theory. We will start by giving a Lagrangian description of the theory
and discuss its symmetries. In Section 2.2, we will view this theory as a superconformal
field theory and study its spectrum of gauge invariant operators. Up to that point, the
reviewed material is standard and we will loosely follow references [86-88]. In Section 2.3,
we then introduce four-point correlation functions of one-half BPS operators, which are
one of the main objects of interest in this thesis. Finally, in Section 2.4, we describe
the N/ = 4 superconformal operator product expansion (OPE), which gives rise to the
superconformal partial wave decomposition used later as our main tool for analysing the

spectrum of exchanged operators.

2.1 Lagrangian Description and Superconformal Algebra

A convenient description of the N' = 4 SYM theory can be obtained by dimensional

reduction from a ten-dimensional Lagrangian. Consider

Lig = —

tr{FMNFMN - QiAFMDMA}, (2.1)
Iym

which describes a massless vector multiplet in 10 dimensions with N' = 1 supersymmetry.
In the above, F)sn is the field strength tensor for a ten-dimensional gauge field Aps, A
denotes a Majorana-Weyl spinor with 16 real components, and M, N are ten-dimensional
indices. The trace is taken over the gauge group SU (N ), under which the fields transform

in the adjoint representation.

The four-dimensional Lagrangian £4 then follows upon Kaluza-Klein compactification on
a six-torus 7. The resulting field content in four dimensions constitutes the full N' = 4

supersymmetry gauge multiplet, given by one gauge field A,, four chiral fermions )\é

7



8 Chapter 2 Basics of N' =4 SYM Theory

(A =1,...,4) and six real scalar degrees of freedom ¢! (I = 1,...,6) transforming in
the fundamental representation of SO(6). The reason why we end up with (rigid) N' =4
supersymmetry in the four-dimensional theory is a consequence of the compactification
on T which preserves all 16 supercharges, such that the four-dimensional multiplet has
an additional SU(4) ~ SO(6) global R-symmetry. The four-dimensional Lagrangian

with A/ = 4 supersymmetry turns out to be unique, and it is given by

Ly = tr{ — 1B, F"™ — (D,p"P)(D"@ap) + 2iAas" D\
. ) (2.2)
—2gvm (A @ s, AP = Ma[p?B, XB]) + Sa3mle™?, 0P @ as, ¢CD}},

where the @8 describe three complex scalars transforming in the antisymmetric rank-
two representation of SU(4). Note that they are simply related to the six real scalars

¢! mentioned above through a linear transformation.

By inspection of the mass-dimensions of the terms in the above Lagrangian, we find that
L4 describes a scale invariant theory at the classical level. Combined with the usual
Poincaré invariance of L4, this results in conformal symmetry of the theory, described
by the conformal group SO(4,2) ~ SU(2,2). Together with N' = 4 supersymmetry with
R-symmetry group SU(4), this gives rise to the even larger supergroup PSU(2,2/4) of

superconformal symmetries.

An important and very remarkable fact about this theory, which is not directly visible
from the Lagrangian formulation, is its superconformal symmetry at the quantum level:
perturbative computations of correlation functions in this theory have shown no ultravi-
olet divergences, resulting in an identically vanishing S-function of the renormalisation
group. As a consequence, the superconformal group mentioned above remains an exact
symmetry of N' =4 SYM even at the quantum level. This allows us to adopt a different
point of view on this theory: instead of thinking about it as a framework for pertur-
bative computations in the gauge coupling gym of e.g. scattering amplitudes (as one
does for example in QED or QCD), we will think of N'=4 SYM as a (super)conformal
field theory and apply CFT methods. This will allow us to study the theory in the
strong coupling regime, which is not accessible through the traditional perturbative ap-
proach. We will elaborate more on this CF'T point of view and introduce the necessary

terminology in the next section.

Let us now turn to the algebra of the superconformal group PSU(2,2|4), as we will
need its generators in order to understand the construction of the operator spectrum
of N'=4 SYM theory. The N' = 4 superconformal algebra in four dimensions can be
broken down into smaller subalgebras. One of the two bosonic subalgebras is the algebra
of the conformal group SU(2,2), an extension of the Poincaré algebra: it is generated by
translations P, Lorentz transformations M, , together with dilatations D and special
conformal transformations K. Another extension of the Poincaré algebra is given by

adding four fermionic supercharges Q% and Qu, with a = 1,...,4, and R-symmetry
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generators R4 (A = 1,...,15), which gives the ' = 4 supersymmetry algebra. Now,
we can combine these two extensions in a consistent way once we add 16 additional
fermionic generators in order to close the algebra. These are the so-called conformal
supercharges S,, and Sg, which complete the full N' = 4 superconformal algebra. To
emphasise the structure of the resulting super-algebra, one can organise the generators
into the four blocks [86]

MM”’_ P/"’ K'u” D Z’ASZ , (23)
Qda; Saa R

with the generators of the two commuting bosonic subalgebras on the diagonal, and
the fermionic generators on the off-diagonal. We will refrain from writing down all
(anti)commutation relations of the N/ = 4 superconformal algebra, which can be found
in e.g. [87]. For our purposes it will be enough to note the anticommutation relations of

the Poincaré supercharges (in the absence of a central charge):

(Q.Qh =0, {Q4Qu) =20, P, (2.4)

2.2 The Spectrum of Local Operators

Due to the conformal symmetry of N' = 4 SYM, there are no massive particles (both, fun-
damental or composite) in this theory and hence no mass spectrum to study. Nonethe-
less, there exists an analogue of composite particles and their mass spectrum in a CFT:
these are the so-called local operators, usually denoted by O, which are gauge-invariant
objects built from products of the fundamental fields and their derivatives, inserted at
the same point in spacetime. For example, the simplest class of such operators is given by
single-trace operators O(z) = tr {F(l)(x) o FM) (z)}, where the F® can be any of the
fundamental fields introduced in the previous section, or covariant derivatives thereof.
For reasons of gauge-invariance, rather than using the gauge field A,, we take the field
strength F),, as a basic building block instead. It is also possible to have multi-trace
operators, which are simply products of single-trace ones. The CFT-analogue of a mass
spectrum is then given by the spectrum of scaling dimensions of the local operators of
a theory, where the scaling dimension (or simply dimension) Ay of a local operator O

is defined as its eigenvalue under dilatations:
[D,0(0)] =iApO(0). (2.5)
The classical value of Ap equals the sum of the naive scaling dimensions of the con-

stituent fields, which are given by

[¢'] = [D] =1, 2] = g [Flw) = 2. (2.6)
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At the quantum level however, the scaling dimensions generically receive quantum cor-
rections. These so-called anomalous dimensions are then functions of the coupling gym

and the number of colours N of the gauge group SU(N).

Let us now proceed by describing the classification of local operators in N' = 4 SYM the-
ory. First of all, as in any CFT, local operators can be divided into two distinct classes:
primaries and descendants. Conformal primary operators are by definition those which

are annihilated by special conformal transformations, that is
(K, 00)] = 0, (2.7)

whereas descendants can be obtained from linear combinations of derivatives of primary
operators (i.e. by action of the translation operator P,). In other words, P, (K,) acts
as a raising (lowering) operator with respect to the scaling dimension, and thus primary
operators are defined as the operators of lowest dimension within a conformal multiplet.
Now, in a superconformal theory, there is a second set of raising and lowering operators
given by the supercharges () and S. To obtain a superconformal primary operator, which
is the state of lowest dimension in a superconformal multiplet, we thus supplement the

condition (2.7) by additionally requiring
[S,0(0)] = 0. (2.8)

In fact, since S lowers the dimension by —1/2 compared to K, which lowers it by —1,
equation (2.8) is the stronger condition as it implies the former condition (2.7). A
superconformal primary is therefore automatically also a conformal primary, whereas

the converse is not true in general.

The descendants of a given superconformal primary operator O are constructed by
applying the raising operators P, and ¢ on O. Recalling the anticommutation relations
from equation (2.4), one can obtain P, from a combination of Poincaré supercharges @,
and therefore the entire superconformal multiplet can be generated by the action of the
Q’s alone. Note that this also implies that a superconformal multiplet comprises a finite
number of conformal primaries, since there are only finitely many ways to apply the
supercharges @ before obtaining a derivative operator P,. In N' =4 SYM theory there
are 16 supercharges, so a generic supermultiplet consists of 16 conformal primaries.! In
summary, descendants are operators which can be written as ()-commutators of other
operators, and in turn the entire supermultiplet can be generated by the action of @)’s

on a superconformal primary.

Using the above reasoning, let us explicitly construct the superconformal primary oper-
ators of N' =4 SYM theory which will be relevant in the context of this thesis. To this

!Compared to these so-called long supermultiplets of maximal size, there also exist special classes of
supermultiplets which obey shortening conditions. We will elaborate further on this important concept
later in this section.
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end it is instructive to inspect the action of the Poincaré supercharges on the funda-
mental building blocks of gauge-invariant local operators. Schematically and omitting
all indices, they read [86]

[Q, 0] = A, [Q, F] = DA,

_ (2.9)
{Q. A} =F+[9,4], {Q, A} = Do,

where D stands for the covariant derivative. As we have argued earlier, all quantities
which arise from the action of Q’s can not be primaries. The only way to obtain a
superconformal primary is therefore by a symmetric combination of the scalar fields ¢!,
all inserted at the same spacetime point x. The simplest such operators are given by

single-trace operators

str{g" g™ ¢l }(x), (2.10)

where str denotes the symmetrised trace over the gauge group SU(N) and the [} are
the SO(6) R-symmetry vector indices. Since tr{¢’} = 0 for an SU(N) gauge group, we
have p > 2 in the above. These operators transform in the symmetrised product of n
vector representations, which in general yields a reducible representation. One way of

obtaining an irreducible representation is by removing the traces:

011)1,12,...,11) () = tr {¢{11¢I2 . -(blp}}(x), (2.11)

where the curly brackets denote traceless symmetrisation of the R-symmetry indices.
One can conveniently remove the free indices by contracting them with auxiliary SO(6)

null-vectors y!, giving

Oplz,y) =y"y™ - yPtr{¢n,on - ¢1,}(2), (2.12)

where the null condition y/y; = 0 automatically projects onto the symmetric traceless
part, corresponding to the [0, p, 0] representation of SU(4). Furthermore, it turns out
that O, is annihilated by half of the supercharges, making it a so-called one-half BPS
operator whose superconformal multiplet is shorter than the generic one. As a conse-
quence, its classical scaling dimension A = p is protected from quantum corrections and
hence remains unrenormalised. These operators play a special role within the AdS/CFT
correspondence, as they are dual to single-particle states in the bulk theory. Note that
this statement is strictly true only in the large N limit, as additional 1/N suppressed
multi-trace terms to the definition (2.12) need to be considered. We will discuss this

issue in more detail in Section 3.2.

A zoo of more complicated superconformal primary operators can be constructed from

products of the above single-trace ones, which are accordingly called multi-trace opera-

2 Another irreducible representation can be obtained by taking the trace over the S O(6) indices. The
first such example is given by the so-called Konishi operator 3, tr {(quSI}.
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tors. Depending on their detailed form, they can give rise to BPS or non-BPS multiplets.
For example, a multi-trace one-half BPS operator can be obtained from the product

Op, - - Op,, after projection onto the [0, p, 0] representation:
(Op, -+ Op,.) ‘[o,p,or with p=p1 + ...+ pn. (2.13)

Just like the single-trace operators O, they have protected scaling dimension A = p.

On the other hand, we can also obtain multi-trace operators in more general SU(4)
representations, which give rise to long superconformal multiplets. As such, their scal-
ing dimensions will in general be unprotected and these operators acquire an anomalous
dimension. In this thesis, we will mainly focus on double-trace operators which schemat-

ically are of the form

Op" ol - 910, (2.14)

aba)’
such that the operator is in a totally symmetric and traceless irreducible representation
with Lorentz-spin ¢ and classical scaling dimension A©®) = p+g+2n+¢. These operators
arise as exchanged states in the operator product expansion of four-point functions of
one-half BPS operators, which we will introduce next. In the context of the AdS/CFT

correspondence, double-trace operators correspond to bound two-particle states in AdS.

2.3 Four-Point Functions of One-Half BPS Operators

As in any CFT, the form of two- and three-point functions in N' = 4 SYM theory is
entirely fixed by conformal symmetry. Furthermore, since the operators O, are protected
by supersymmetry, their two- and three-point functions are fully described by their
free field expressions. The first non-trivial dynamics appears therefore in four-point
functions, which are generically coupling dependent because unprotected operators can
be exchanged in the operator product expansion. The fact that we take one-half BPS
operators as external states means that the four-point functions of any operators in
the supermultiplets are uniquely determined in terms of the four-point function of the

superconformal primaries,

(P1p2p3pa) = (Opy (21, Y1) Opy (22, Y2) Ops (3, Y3) Op, (24, Y1) - (2.15)

Such correlation functions are homogeneous polynomials of degree p; in the y; variables,
while the dependence on the position space variables x; is in general much more involved.
However, the four-point function should really depend on the conformal and su(4) cross-

ratios u, v and o, 7 only. This can be achieved by pulling out a dimensionful prefactor,

(p1p2pspa) = Py Gy (u,v;0,7), (2.16)
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where Py carries the conformal and su(4) weights of the correlator such that Gz is a
(& priori arbitrary) function of the conformal cross-ratios v and v, and a polynomial in
the su(4) cross-ratios o and 7. For future convenience, we introduced the short-hand
notation p to denote the dependence on the four external charges (p1,p2,ps,ps). In

terms of the original variables, the cross-ratios are given by

2 .2 2 .2
u=2xT = x§2x§47 v=_1-2)(1-2)= x;4m337

L13T24 L13T24 (2.17)
1 _ 3/%23/%4 T _ y%4y%3 .
—=yy= ; —=1-y)(1-9)=
o 9%3?/%4 o 9%31134 ’

with x?j = (x; — wj)z and yizj = y; - y;- We also introduced the variables z, ¥ and y, ¥,
which we will use interchangeably with u, v and o, 7, often even including both sets of
variables in the same formula. Without loss of generality, we can arrange the external
charges such that ps3 > p21 > 0, where p;; = p; — p;. The prefactor Py is then given by

P1+P2—P43  P43—P21 P43 +P21

Py =012 ° G4 ? Gog ’ ggi, (2.18)

where g;; denotes the superpropagator defined as

Yis
9ij = —5 (2.19)

T3
obeying g;; = gj; and g; = 0. As mentioned before, in contrast to two- and three-point
functions of one-half BPS operators, the four-point functions are not identical to their
free field expressions. However, their dependence on the coupling is heavily constrained
by superconformal symmetry. To express the constraints imposed by superconformal
symmetry, it is useful to separate the correlator into a free field theory and an interacting
piece. The so-called partial non-renormalisation theorem [89] then constrains the four-

point functions to have the following structure

(P1p2p3pa) = (P1P2P3P4)free + Py X L(2,2,y,9) X Hp(u,v;0,7; gym), (2.20)

where the first term is the coupling-independent free field correlator and the second term
is the interacting piece. The key point is that all non-trivial dependence on the gauge
coupling gym appears in H;;. Furthermore, the interacting (or dynamical) term admits
a decomposition into the three terms shown above, where the factor Z is fixed by the
superconformal Ward identities to take the fully factorised form3

I(2,7,9.7) = (z—y)(@ —(z?y)g(;ﬁ;— y(E—9) (2.22)

3 Alternatively, it can be written as the following degree-two polynomial

T(u,v,0,7) =v+ o uww +17°u+ov(w —1—u)+7(1 —u—v) + oru(u — 1 —v). (2.21)
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Note that the presence of this factor reduces the polynomial degree of Hy in o and 7

by two compared to the free field theory part.

The free field four-point functions can be computed simply by performing Wick con-
tractions between the elementary fields. The result is a sum over the different allowed
superpropagator structures accompanied by their colour factors. Graphically, the four
external operators O, are represented as vertices with p; legs and each superpropagator
gij is represented as a line between the points i and j. We arrange the four operators at
the corners of a square, labelled clockwise from the bottom left. For example, the free

theory correlator of four dimension-three one-half BPS operators O3 reads

(3333) free = A8<D (D
+ AY M+A§(B)
+ AY M + Al + A2 @ (2:23)
+A8%+AéX+A§Z+Ag@,
g

where the coefficients A§ are the associated colour factors. The subscript 7 counts the

total number of propagators connecting the left half of the graph to the right half, and &
is the number of propagators along the top edge of the square. Due to the full crossing
symmetry of the above correlator, many colour factors are equal to each other whenever
the corresponding graphs are isomorphic. Indeed, in this example there are only three
independent colour factors and an explicit computation of the Wick contractions yields

the factors

9(N? — 4)2(N? —1)?

A) = A=A} =
N2 ’
9
A=A =AY = A2 = AL = A2 = mAO, (2.24)
18(N? — 12
Al = ( ) A,

(N2 —1)(N2—4)

which are exact in N. For a general correlator (using our conventions for the arrangement

of external charges, i.e. ps3 > p21 > 0), the free theory result reads

min{p1 +p2,p3+pa} 1=Pa3 = k
(P1P2p3P4) free = Py Z [<913924> Z Aﬁ <914g23> ] . (2.25)
V=P 912934 =0 913924
Y—p43 € 2Z

where A],j are the N-dependent colour factors and the prefactor P has been defined in
equation (2.18). Using the definition of the superpropagator from (2.19), we have

g13924 XX
= — =uo,

912934 Yy g13924 (1—x)(1

914923 _ (1-y( : g UTO' (2.26)
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Substituting these relations into the general formula (2.25), we find that the free theory
correlators are simply rational functions of the conformal cross-ratios (u, v), whereas the

(o, 7) dependence is only polynomial, as expected.

2.4 The N = 4 Superconformal OPE

One of the central tools we will use throughout this thesis is the superconformal partial
wave (SCPW) decomposition (or superconformal block decomposition) of the four-point
functions introduced in the previous section. It relies on the notion of an operator
product expansion (OPE), which describes the product of two operators as a sum over
the spectrum of the theory, offering a fully non-perturbative approach to the study of
correlation functions. We will consider the OPE obtained in the limit 23, — 0, 23, — 0,
which in cross-ratio variables corresponds to the limit uw — 0 with v fixed. The OPE of

two one-half BPS operators reads

p1tpa—A

Op, (1) Op, (22) ~ Z 912 ° Cp1p20 £ (12, Oy ) * O%) (z2), (2.27)
B

where the sum runs over all primary operators O(Ae) of dimension A and spin £ which

belong to the SU(4) representations in the tensor product

p1 p1—k1

[07p17 0] & [07p27 0] = Z Z [k17p2 —P1 + 2k27 kl]) (pl S p2) (228)
k1=0 ko=0

The descendants are captured by the action of the derivative operator L0 (212, Ox,)
on the primaries O%). A manifest N/ = 4 formulation of the OPE can be obtained
by reorganising the sum over operators into supermultiplets. Inserting the OPE of
Op, (21)Opy (22) and Op, (23)Op, (x4) into the four-point correlator we obtain the repre-

sentation

(p1papspa) =Py Y Apm(7,0) Spn(T,0), (2:29)
{10, R}

where instead of summing over the dimensions of the exchanged operators we choose to
sum over their twists 7 = A — ¢, and the sum over representations R runs over those
which belong to ([0, p1, 0] ® [0, p2,0]) N ([0, p3, 0] @ [0, p4, 0]). The functions Sz n(7, £) are
the superconformal blocks which we will describe below. Note that inside correlation
functions the OPE is convergent and therefore if we keep all terms in the expansion (as
we do in the following discussion) it is valid for all values of u and v inside the radius of

convergence. The coefficients Az (7, ¢) depend explicitly on the charges and are related
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to the OPE coefficients from equation (2.27) by

Aﬁm(T? f) = Z Cp1p30Chpaps 0 (2.30)
0eR

where the sum is over all operators with leading order dimension A, spin ¢ and SU(4)
representation $R. The block decomposition is invariant under swapping points 1 and 2,
points 3 and 4 and swapping the pairs of points (1,2) and (3,4). Using this symmetry we
can clearly always ensure that py3 > p21 > 0, which justifies our choice of conventions

for the ordering of the external charges in the definition (2.18) of the prefactor Pg.

Finally, the superblocks Sz 01(7, £) can be derived using a variety of approaches. There
has been a great deal of work on superblocks in N’ =4 SYM both from the pioneering
work of Dolan and Osborn [61, 63-65] and more recently [90], as well as supergroup
theoretic approaches [91, 92]. Here we follow the formalism of [92] and explain the
superblocks in a compact fashion in terms of representations of GL(2|2), which provides
a group theoretic, manifestly unitary approach and has the great advantage of dealing

with all representations in a uniform way.

2.4.1 The GL(2|2) Superconformal Partial Wave Expansion

To address the SCPW expansion we must first describe the conformal blocks for all
supermultiplets that might be exchanged in the OPE of one-half BPS operators. Fol-
lowing [92], we label the superconformal primaries O, ) by a number y and a finite dimen-
sional representation of GL(2|2) which we specify by a Young diagram A = [A1,..., A\,
where A; is the length of the ith row.

The Young diagrams do not have an arbitrary shape but have to fit into a ‘fat hook’
shape, which amounts to the additional constraint that the third row (and hence any
subsequent rows) cannot be longer than length two, i.e. A3 < 2. The number of rows n

also satisfies n < (v — ps3)/2. For example, a generic such diagram has the form

— A1 — |
+— g —

1 = [A1, Ag, 202 1M1, (2.31)

with first row of length \;, second row of length A2 and then uo rows of length 2 (which
we denote by 2#2) and p; rows of length 1 (denoted by 1#1). Such a generic Young
tableau corresponds to a long multiplet. Short multiplets instead have row 2 of length
1 or 0 and so have the shape of a ‘thin hook’. The parameters v and A determine the
usual quantum numbers of twist 7, spin ¢ and SU(4) representation which here always

takes the form [a, b, a]. The dictionary is summarized below in Table 2.1.
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GL(2|2) rep A T=A—-/ 14 SU(4) representation | multiplet type
[0] y 0 [0, 7, 0] one-half BPS
[1#] ¥ 0 (1, v —2p, 1] quarter BPS
A, 1#] (A > 2) y A—2 [, y—2p—2, y] semi-short
(A1, A2, 202, 1M] (A2 > 2) || v+ 2 2 —4 | Mi—Xa | [p1,7—2p1—2p2—4, 1] long

Table 2.1: Translation between N = 4 superconformal representations and superfields O .

Note that the Young tableau representation of a long multiplet is invariant up to the

shift-symmetry,
M=+ =41, ug—>pe—1, v—>v—2, (2.32)

under which the twist 7, spin ¢ and su(4) representation [a, b, a] remain fixed. On the

contrary, protected operators require both « and the Young tableau to be fully specified.

We denote the superconformal block corresponding to the contribution of an operator
O, x to the four-point correlator (p1pap3ps) by Sp.yz, Long superblocks (those with Ay =
2,3,...) will occur often and we will also denote them by L. where 7= (1,4, |a,b,a)) is
a compact notation for the quantum numbers specifying the representation. They have
the following factorised structure,

- - B2+3.0
L.-= Sﬁ;%A = 7)13‘ X T % Lﬁ;,,-:, L = —7p3 X T[aba] R (233)

PiT I
with Py defined in equation (2.18) and Z in (2.22). Note that the presence of the ex-
plicit factor Z in the blocks for long multiplets agrees with the expectation that all
quantum corrections appear with such a prefactor in accordance with the partial non-
renormalisation theorem (2.20). The dimensions and therefore the twists of such multi-
plets are coupling dependent and hence generically not integer valued. Likewise, their
corresponding OPE coefficients are also explicitly dependent on the coupling. In the

(t.0)

above, B and Y4, are the ordinary four-dimensional bosonic blocks for conformal

and internal symmetries. Explicitly, we have

B(t’é)(l’,f) — (_1)8 ut (xz—’—lFt-i—Z(j)Ftl(f) - ($ & j))) (234)

r—T

and

_ _ =m+a,
T = Pt ®)Pn(®) — (y © 5) e
[aba](y7y)__ y—17 ’ b_p43
m =

(2.35)
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where we used

Fy(z) = oFy (t — B2, ¢ + B2% 2t; 1),

(2.36)

P43—DP21 Paztp
n!y (432 21 P43 21)

P = G T pg (G-1)

with J being the standard Jacobi polynomial.

Explicit formulae for the semi-short, quarter and one-half BPS superconformal blocks
were obtained in [92] and can be found in Appendix A. Especially in these cases, the

superblock formalism naturally provides manifestly unitary representations.

Since the parameters \; are defined by a Young diagram, they are a priori integer
valued. However, for long superblocks in the interacting theory the scaling dimension A
(or equivalently the twist 7) of an operator becomes anomalous and hence non-integer.
We can thus allow an analytic continuation of A\; and A such that the spin A\ — Ao =/
remains integer. In such cases we even allow for continuations such that Ao < 2. This
means that the labels of such continued long superblocks can coincide with those of
short superblocks when Ay — 1, uo = 0. To avoid this potential confusion we simply use
the notation for long superblocks, L7, on the LHS of (2.33) and allow 7 > 2a 4 b+ 2

to be non-integer valued.

When long supermultiplets sit exactly on the unitarity bound, 7 = 2a + b + 2, they

become reducible and can be expressed as a sum of two short multiplets
Lﬁ;.;* = Sﬁ77[5+271a} + SET+27[€+171¢1+1], fOI‘ T =20 + b + 2. (2.37)

The first term on the RHS of the above equation is a semi-short superblock of spin /¢
while the second one is a semi-short superblock of spin £ —1 or a quarter-BPS superblock
if £ = 0. We will make use of this reducibility equation when discussing multiplet

recombination of semi-short operators at the unitarity bound in Appendix B.

2.5 The SCPW Expansion of the Free Theory

The SCPW of free theory correlators naturally stratifies by the label v = p43, pas +
2,..., ™™ = min{p; + p2, p3 + pa} introduced in (2.25). As mentioned in that context,
~ counts the number of propagators connecting operators inserted at points 1 and 2 to
operators inserted at points 3 and 4. In the SCPW expansion of a free theory correlator,
~ simply corresponds to the number of fundamental fields appearing in the operator
O, ) being exchanged in the OPE. Note that this is a good quantum number only in the

free theory, and simply reflects the number of Wick contractions which have occurred
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in the OPE:

v = # fundamental fields defining O, \
= p1 + p2 — (# Wick contractions in Oy, O, ~ O, OPE ) (2.38)
= p3 + p4 — (# Wick contractions in Op,O0,, ~ O, » OPE ).

The general free theory correlator (2.25) then decomposes as

min{p1+p2,p3+pa}

(P1P2P3P4) free = Z Z Ajyx Sy (2.39)
Y=Dp43 by
y—piz€2Z  ©

where each term in the sum over  represents the expansion in SCPW of the analogous
terms in (2.25). Furthermore, the Young tableaux A\ have at most (y—pa3)/2 rows. Note
also that in the free theory all Young tableaux are proper, having both integer rows and

correct shape and thus the above decomposition is unambiguous.

However, we do not consider the free theory in isolation, rather we will consider it as the
limit of the interacting theory as the coupling vanishes. In the interacting theory, the
OPE of two one-half BPS operators contains both operators in short supermultiplets,
whose dimensions are protected, and long operators which have anomalous dimensions.
Therefore we will split the SCPW expansion (2.39) accordingly and we will distinguish
between the short sector which by definition remains short in the interacting theory, and
a free long sector which will then acquire an anomalous dimension in the interacting

theory,

(P1D2D3D4) free = (P1P2P3D4)short + (P1P2D3D4) free long - (2.40)

For the short sector we sum over superblocks with the specific form Sg, 14 (given in
Appendix A), and for the long sector we sum over the long superblocks L.» defined in

equation (2.33). More explicitly, we introduce the SCPW coefficients Sp. (14 and L{W

as follows:
min 00 %(’Y—p43)_1
(P1popspa)short = [Smw Siv0+ D D Spyiaie] Spyps [
"/:p4322 A=1 =0
Y—P43€ (241)

o0
(P1P2P3D4) free long = Z Z Z sz;q—; Lﬁ;; .

a,be2Z (=0 7>2a+b

2a+b+4<rmin T—be2Z
It is important to note that this split is non-trivial due to multiplet recombination: in
the free theory limit a long multiplet whose twist lies on the unitary bound is indistin-
guishable from the direct sum of certain short multiplets. A consequence of this is the
identity of superblocks (2.37). The challenge then is to relate the SCPW coefficients

S..

7y, 10] and Léﬁ to the original ones Az 5 in (2.39).
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The simplest SCPW coefficients to identify are the coefficients of one-half BPS operators

(corresponding to an empty Young tableau, i.e. A = {)), which are unchanged:

Sﬁ;%@ = A (2.42)

pyy,0

The next simplest to deal with are the long representations above the unitarity bound.
Here we take into account the fact that v ceases to be a good quantum number for long
operators. This is because long operators with different fundamental fields can mix. For
example, the double-trace operators Q303 (v = 6) mixes with Q20003 (v = 4), which
both have twist 6. This is the origin of the ambiguity in the description of long operators,
which manifests itself in the shift-symmetry (2.32) of the Young tableaux corresponding
to long operators. Thus we need to collect together all SCPW coeflicients with the same

quantum numbers 7 (but different values of «) using the shift-symmetry (2.32), giving

min{p1+p2,p3+pa}

Ly = A = , forT>2a+0b+4. 2.43
" m;m B2+ T 24 T3 27T 02 0a] = (2.43)

The most difficult SCPW coefficients to identify in (2.41) are the (non-half BPS) short
coefficients S 14) with non-zero A or p and the related long coefficients Ly at the
unitarity bound 7 = 2a + b 4+ 2. This is because as we deform away from the free
theory, some semi-short blocks combine to become long (as in (2.37)), whereas others
remain semi-short. Thus, a single SCPW coefficient A for a semi-short block at the
unitarity bound can actually contain the contribution of both short and long multiplets
of the interacting theory. More details along with some concrete examples on how
to properly disentangle the semi-short and long contributions at the unitarity bound
are given in Appendix B. At first sight this may seem like a technical detail, but the
correct identification of the long sector will be relevant for the consistency of the SCPW
expansion, and ultimately for the construction of one-loop correlators from tree-level

data as discussed later in this thesis.



Chapter 3

Basics of Holographic Correlators

in AdSsxS?®

After having reviewed the basics of N/ = 4 SYM theory, we turn our attention to the
other side of the AdS/CFT duality: holographic correlators on AdSsxS®. We will
start by discussing the basic consequences of the AdS/CFT correspondence, and in
particular we will give a precise definition of the single-particle operators O,, whose
four-point correlation functions we have already introduced in the previous chapter. In
Section 3.3 we then describe the large IV, strong-coupling expansion of the four-point
correlators, as well as the spectrum of unprotected exchanged operators which survive in
the supergravity limit: the spectrum of double-trace operators. Finally, we will review
the progress in computing tree-level supergravity correlators in AdSs, which culminated
in an elegant Mellin space formula for all supergravity correlators of arbitrary external

charges.

3.1 Statement of the AdS/CFT Correspondence

The first and most-studied example of the AdS/CFT correspondence is the following
conjectured duality [14]:

e Type IIB string theory on an AdS5xS® background (‘gravity side’)

e Four-dimensional N =4 SYM with gauge group SU(N) (‘CFT side’)

The original argument by Maldacena for such a duality is based on considering a stack of
N parallel D3-branes in type IIB superstring theory. The D3-brane is a tensionless object
in ten-dimensional superstring theory, which incidentally is a maximally-symmetric solu-

tion of type IIB supergravity with rotational symmetry group given by SO(1, 3) x SO(6).
21
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In the low-energy limit (¢’ — 0) and taking the D3-branes to be coincident, the mass-
less excitations of open strings on the brane describe a four-dimensional theory: N = 4
SYM theory with SU(N) gauge symmetry.! This is the CFT side of the duality.

On the other hand, the same setup allows for another, inherently gravitational descrip-
tion. As mentioned above, the D3-brane is a solution of type IIB supergravity. In the
near-horizon limit, this solution gives rise to an AdS5xS® background, where both the

AdS5 and the S° factors have a common radius L given by
L' = 4mg N (a')?, (3.1)
and the string coupling constant g, is related to the gauge theory coupling gy via

2
_ 9ym (3.2)

9s A

Note that here the supergravity solution is understood as the low-energy limit of the
classical type IIB string theory on AdSsxS®. While its quantum completion, the full
type IIB superstring theory on AdSsxS®, is currently not fully understood because of the
great difficulties of string theory quantisation on curved spacetimes, we can still study the
proposed duality in an interesting limit, namely in perturbative string theory. This is the
case for small string coupling gs. In order to preserve equation (3.1), we simultaneously
need to take the limit N — oo. In other words, if we define the 't Hooft coupling
A= g%MN , this corresponds to the well-known ’t Hooft limit of N = 4 SYM theory,
where one takes N large with A fixed. This limit is well-defined and corresponds to
a topological expansion of the gauge theory, where non-planar Feynman diagrams are

suppressed.

After taking the 't Hooft limit, the only parameter left is A\ = L*/(a’)?. Now, we
want to take the limit where supergravity is a good approximation to string theory, i.e.
the supergravity limit o/ — 0. On the CFT side, this corresponds to a strong-coupling
expansion around large A. In summary, taking the supergravity limit in AdS corresponds
to a double expansion around large N and large A. In this picture, the 1/N expansion
corresponds to a loop-expansion in the bulk, while the 1/A expansion corresponds to
adding string corrections to supergravity. We will further discuss the implications of

this double expansion for four-point correlation functions in Section 3.3.

Not too long after the original conjecture by Maldacena, further details of the AdS/CFT
correspondence were made more precise in references [15, 16]: it was explained how the
states of the two theories can be identified with each other, and how correlation functions
on the CFT side are related to supergravity scattering amplitudes on AdSsxS®. In

particular, it was understood that the one-half BPS single-trace operators of NV = 4

!Technically, the total gauge group is given by U(N). However, the U(1) factor corresponds to the
overall position of the D3-branes. As such, it decouples from the dynamics of the theory and the effective
gauge group is reduced to SU(N).
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SYM theory (as introduced in the previous chapter) correspond to the spectrum of
type IIB supergravity, which is given by the graviton supermultiplet and its Kaluza-
Klein modes on S°. In fact, the identification of single-particle supergravity states with
single-trace operators only holds strictly in the large N limit, and in the next section
we will discuss how to uplift this statement to finite N. Once the states on both sides
are correctly identified with each other, we can ask about physical observables, like
e.g. correlation functions. The AdS/CFT dictionary states that the CFT generating

functional equals the AdS path integral with boundary sources:

<efaAds ?i Oi >

_ Do e~ Saasleil 3.3
OFT /% Pi€ ) ( )

where the bulk fields ¢; of the AdS path integral equal @; on the conformal boundary
of AdS. In this sense, one can think of N' = 4 SYM theory living on the boundary of
AdSs, with the boundary states p; acting as classical sources for their dual operators
O;. From the above equality, one can obtain n-point correlation functions by taking n
functional derivatives with respect to the boundary sources @;. We will elaborate on

this procedure further when discussing tree-level supergravity correlators in Section 3.4.

3.2 Single-Particle Operators

We are interested in correlation functions of one-half BPS operators which describe
scattering of single-particle supergravity states in AdS5xS°. The first task is thus to
determine the precise form of the gauge theory operators which are dual to those single-
particle states. We will call these operators single-particle operators, and from now on
we denote them by O,. It turns out that in the general case these are not simply the
single-trace operators 7}, which, recalling the discussion in Section 2.2, are schematically
of the form T}, = tr {qﬁp}. Instead, they require admixtures of multi-trace operators, i.e.
products of single-trace ones, such that O, = T}, + (multi-trace terms). This important
subtlety was already noticed in the early works [40, 93, 94] and discussed more recently
again in references [4, 6, 45, 48, 59, 60, 95]. In particular, it was noticed in [45] that
the connected part of (p1papsps)see generated via tree-level Witten diagrams disagrees
with the free theory four-point functions of single-trace one-half BPS operators. The
resolution is that one has to include admixtures of multi-trace operators, and the first
order double-trace corrections have recently been worked out directly from supergravity
in [59, 60]. However, the non-perturbative nature of the AdS/CFT correspondence
points towards a definition of single-particle states which is valid to all orders in .
Such a non-perturbative definition can be given in terms of the following deceptively

simple statement:

Single-particle operators are one-half BPS operators

which are orthogonal to all multi-trace operators.
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Up to a normalisation, this definition via orthogonality of operators uniquely fixes the
single-particle operators O,. Moreover, it allows us to compute the additional multi-
trace terms purely within free field theory (i.e. using Wick contractions), and the results
are exact in N. In the strict large N limit, the above definition reduces to the familiar
statement that single-particle states correspond to single-trace operators in the [0, p, 0]
representation of su(4): Op, — T, + O(1/N). For finite N however, our definition
automatically picks the correct multi-trace admixtures which are needed to uplift one-

half BPS single-trace operators T}, to single-particle operators O,,.

Note that a similar orthogonal basis for all one-half BPS operators in the U(N) theory
was described previously in terms of Schur polynomials [96]. However, this basis does
not project onto an orthogonal basis for SU(N), which is the case of interest here.
Nevertheless, at large N and with charge close to IV, we find that the single-particle
operators defined here become proportional to the so-called (sub)-determinant operators.
These operators are given by completely antisymmetric Schur polynomials, and in [97]

it was argued that they are dual to the giant sphere gravitons predicted in [98].

Let us now consider some explicit examples of single-particle operators with low charges.
For the first two cases (O, with p = 2,3), there are no multi-trace operators to mix with,?

and the single-particle operator thus equals the single-trace operator even at finite NV:
Oy =15, O3 =1T;. (3.4)

In the holographic context, the operator with p = 2 is the superconformal primary for
the energy-momentum multiplet which is dual to the graviton supermultiplet in AdSs.
Operators with p > 3 then correspond to Kaluza-Klein modes arising from reduction of

the graviton supermultiplet on S°.

For Kaluza-Klein modes with p > 4 we find non-trivial multi-trace terms. In the case of
p = 4, the coefficient of the double-trace contribution [T57%] to Oy is, according to the

above definition, determined by the orthogonality condition

(Os(z1,91) [T T (22, y2)) = 0. (3.5)

A computation using Wick contractions yields the result

2N2_3

Or=T " Ny

[T>T3], (3.6)

and it is with this identification of Oy that (the free theory part of) the supergravity

result for the (2244) correlator from [45] agrees with the free theory computation. For

2This is true only when the gauge group is SU(N). In a U(N) gauge theory, one also has to consider
the operator T4, in which case for example T> can mix with the double-trace term [T171]. Interestingly,
in turns out that the single-particle operators in the U(N) theory and the SU(N) theory are actually
the same, see [9] for more details.
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Figure 3.1: Example of a vanishing free theory diagram.

illustration, the next two examples read

5(N? —2)
N(N2 +5)
3N* — 11N? +80 T 6(N —2)(N +2)(N? +5)
N(N*+15N2 +8) ITST] N(N*+15N? +8)
7(N%2 -7)
N4+ 15N2 +8

O =15 — VEYDIR (3.7)

O¢ =T5 —

[T4T>)
(3.8)

(T2 T»T],

where Qg is the first case with a triple-trace contribution. An explicit formula for all

single-particle operators was recently given in [9], together with their two-point functions
(Op(21)Op(2)) = g7y R (3.9)

The N dependent factor R, can be derived by using the group theoretic approach of [99],
and takes the form
1 1 !

Ry =p*(p—1) s yials oyl B (3.10)

As mentioned briefly in the above, the correct identification of single-particle operators
has very important non-trivial implications for their four-point correlation functions. In
particular, connected free theory diagrams where e.g. O, is joined only to O,, (see
Figure 3.1) are absent due to the orthogonality property of single-particle operators.?
Obviously, any topology related by a permutation to the diagram in Figure 3.1 also
vanishes. As a consequence of this observation, the colour factors of all extremal and
next-to-extremal correlators of single-particle operators vanish identically. These are

correlators whose charges satisfy (with our choice of py3 > po1 > 0):

P4 = p1 + p2 + ps3, extremal),
( ) (3.11)

P4 =p1+p2+p3—2, (next-to-extremal).

3To see this, note that at twist pa3 in the Opy x O, OPE, only a one-half BPS operator O,,, of charge
pas could potentially be transferred. By our definition, O,, is orthogonal to all multi-trace operators and
in particular to the double (or higher) trace operator [Op,,Op,]. But the vanishing two-point function
([Opys Ops]Op,) is just a non-singular limit of the three-point function (Op,; Op, O,,), which therefore
also vanishes. Hence no operator O,,, can be exchanged and the coefficient of the diagram in Figure 3.1
must vanish. Note that this holds no matter whether O,,, is single-trace, multi-trace or any linear
combination thereof.
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Note that extremal and next-to-extremal correlators in general do not vanish for single-
trace operators as external states, but they do for our definition of single-particle opera-
tors. The first single-particle correlators which are non-vanishing are therefore next-to-

next-to-extremal, with charges obeying
pa=p1+p2+p3s—4, (next-to-next-to-extremal). (3.12)

More generally, we define the so-called degree of extremality k; by

Ky = min {3(p1 +p2 +p3 — pa), P3}, (3.13)

and we say that a correlator is N*E, according to its degree of extremality. As such, the

next-to-next-to-extremal correlators obeying (3.12) have degree of extremality ry = 2.

3.3 Correlation Functions at Strong ’t Hooft Coupling

With the correct single-particle operators in mind, we now describe what the AdS/CFT
correspondence implies for their four-point correlation functions in the interacting the-
ory. In particular, we will consider ' = 4 SYM in the supergravity regime, where
quantum corrections are organised in a double expansion in 1/N? and 1/\. Further-
more, the decoupling of excited string states in this limit leads to a restricted spectrum

of exchanged operators, which at leading order is given by double-trace operators.

3.3.1 The Large N, Strong-Coupling Expansion

Let us recall the general structure of the four-point correlation functions (p1popsps) as
introduced in Section 2.3: the partial non-renormalisation theorem (2.20) singles out the
factor Hy = Hpipopsps @s the only piece of the correlator which depends on the gauge
coupling. As such, H; contributes only to the long sector of the SCPW expansion.
However, this is not the only contribution to the long sector: recalling the SCPW
expansion of the free theory (see Section 2.5), we also have to take into account the free

theory contribution to the long sector, denoted by (p1p2p3p4)reciong i equation (2.40).

Now, in the supergravity limit of large N and large 't Hooft coupling A, the long sector

of the free theory admits the expansion

0 1
(P1P2P3P4) freclong = <p1p2p3p4>§re)e long T @ <P1P2psp4>§rge long (3.14)

2
+ a? <p1p2p3p4>§re)e long T O(a3),

where for convenience we use a = 1/(N? — 1) as our large N expansion parameter. Note

that since the free theory does not depend on the gauge coupling, all of the above terms
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are of leading order in 1/A. On the other hand, the dynamical part H; admits a double

expansion of the form

Hy=a (HYY + 27210 4 a3 4 a3 a0+ )
+a? (AT 1Y AT EPY Y a4 ) (3.15)
+ O(a®).

The order a terms of this double expansion correspond to tree-level amplitudes in AdSs,

with the first term 7-[1571’0)
cussed further in Section 3.4. The supergravity term is followed by an infinite tower of
(Ln)
2

via the flat space limit to the low-energy expansion of the tree-level type IIB string

being the well-studied tree-level supergravity correlator dis-

1/ suppressed string corrections H . The structure of this 1/\ expansion is related
amplitude in 10 dimensions, the so-called Virasoro-Shapiro amplitude. In other words,
the 1/)\ expansion arises from contact interaction vertices in the string theory effective
action, where the order A~2 and A\~3 terms descend from dimensional reduction of the
R* and 0*R* supervertices, respectively. These tree-level terms are most conveniently

studied in their Mellin space representation, which will be introduced later.

The order a? terms of the double expansion (3.15) correspond to one-loop amplitudes

in AdS5. Note that the term 7—[1(3,2’71)
to the presence of a quadratic divergence at one-loop in ten-dimensional supergravity.

comes with a superleading power of /\%, and is due

This divergence is regulated by a specific R* counterterm at one-loop in string theory.
The next contribution, 7—[](32’0), is the one-loop supergravity term which we will address in
Chapter 6. Note that a direct computation of such one-loop amplitudes would require the
application of a renormalisation procedure. The corresponding counterterms are of the
form of contact Witten diagrams, and in our bootstrap program they manifest themselves
as a finite set of undetermined free parameters which we call ‘ambiguities’. Ultimately,
the values of these ambiguities are determined within the full superstring theory, but as
our bootstrap approach is not able to fix them we have to rely on other methods, such

)

as e.g. supersymmetric localisation techniques. Next, the term H?’l corresponds to

}(;1’5) term. The existence
of such a term follows from the S-duality of N' = 4 SYM and type IIB string theory,
which is realised as a SL(2,Z) symmetry of the complexified gauge coupling. For the

the genus-one contribution to the modular completion of the H

correlation functions under consideration, this symmetry is manifest in the ‘very strong
coupling’ limit (N — oo with gy fixed), where the corresponding terms are given by
certain modular functions.* In particular, the first few terms are given by Eisenstein

series, which (apart from an infinite sequence of non-perturbative instanton corrections)
(2,1)
2
corresponding Eisenstein series receives perturbative contributions only at genus zero
(2,1)
2

receive a finite number of perturbative contributions. In the case of the H term, the

and genus two [103], and we therefore expect H to vanish.> The term 7-[1(72 2 gives

“See e.g. the recent series of papers [100-102].
®The vanishing of this term is also consistent with the supersymmetric localisation analysis of [104,
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rise, in the flat space limit, to the analytic part of the one-loop string amplitude studied
n [106]. It is therefore non-vanishing and corresponds to the genus one contribution to

the modular completion of the H(l %) term. Finally, at order A\~ 2 we find the ’H( 3)
( 3)

term which is the genuine one-loop string correction induced by the presence of the ’Hﬁ
term at tree-level. This term as well as some higher order corrections will be addressed
in Chapter 7.

3.3.2 The Double-Trace Spectrum at Strong Coupling

At last, let us combine the strong coupling expansion described above with the SCPW
decomposition introduced in Section 2.4. As the short sector of the SCPW expansion
can be understood within free field theory only, we will specialise to the long sector. In
particular, we have to describe the precise spectrum of exchanged operators in the OPE

of single-particle one-half BPS operators O,,.

In the supergravity limit, and in particular after we take the limit of large 't Hooft
coupling A, we expect all operators which are dual to excited string states to decouple as
they become infinitely massive. We are thus left with the spectrum of supergravity states,
consisting of the protected single-particle operators O, themselves as well as multi-
particle operators built out of the single-particle ones. Such operators can themselves
be either protected or unprotected. The unprotected operators of this type are still
present in the spectrum because in the strictly infinite N limit they keep their classical
scaling dimensions due to operator factorisation, and hence the corresponding states
do not acquire infinite mass. In the supergravity spectrum such operators are ‘nearly’

protected and receive anomalous dimensions at order 1/N? and higher.

However, all other operators, not built from products of single-particle operators, corre-
spond to the afore-mentioned string states and such operators are therefore absent from
the spectrum in the supergravity limit.® In fact, the OPE analysis of known supergrav-
ity four-point correlators [65, 107] reveals that certain long operators indeed cancel in

the sum of the long sector of free theory and the dynamical part,
(p1p2p3p4)ge)e + Py x I x 7_[;1,0)7 (3.16)

resulting in the absence of string states. This is a non-trivial consistency-check of the
AdS/CFT correspondence. In Section 3.4.3, we will explain how to make use of this

cancellation to determine the normalisation of the supergravity correlators 7-[(1 0

The simplest unprotected operators which remain in the supergravity spectrum are the

105].

SA simple example of an operator corresponding to a string state is the Konishi operator, which is
a twist 2 operator in the su(4) singlet representation. At higher twists, one has to carefully distin-
guish operators which remain in the supergravity spectrum from excited string states through multiplet
recombination, as outlined in detail in Appendix B.
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Figure 3.2: The set of double-trace operators O,,.7 depicted as points in the (p, ¢) plane. An
alternative description is given by the labels (7,7). In that parametrisation, it is easy to see
that the ‘width’ of the rectangle is fixed by the choice of su(4) channel, while its ‘length’
depends on the twist 7, i.e. the value of t. In this example, we show the set of double-trace
operators for twist 7 = 24 and su(4) channel [0,6,0], corresponding to ¢ = 9 and pu = 4.
According to equation (3.18), we therefore have i =1,...,8 and r =0,...,3.

so-called double-trace operators, which correspond to two-particle bound states in the
bulk theory. These double-trace operators are special for two reasons: firstly, their
three-point functions are of leading order in the large N expansion, whereas we expect
the three-point functions involving triple-trace operators and higher to be suppressed.
Secondly, there is a unique double-trace operator of spin ¢ for fixed twist 7 and su(4)
labels. In contrast, triple- and higher multi-trace operators do not have this property as
their number grows with spin. A basis of unprotected double-trace operators of twist 7,
spin £ and su(4) labels [a, b, a] is of the schematic form

O

Pg;T

Lirpe
= (OPDQ( p q)@foq + .. ')}[a,b,a]’ (p <q), (3.17)

where the ellipsis denotes similar terms with the spacetime derivatives distributed dif-
ferently between the two constituent operators. The precise combination is not relevant
here, but importantly there is a unique combination yielding a superconformal primary

operator. The allowed values for the pairs (p, q) are given by the set Rz, defined as

— 1 =1,...,t—1
p=tdat i for . (3.18)
g=t+a+1+b—1r r=0,...,p0—1

Rz := {(p7Q) :

There are in total d = p(t — 1) allowed values, where

_ b2 g 4/ even,
tE(T b)—a, = ] (3.19)
2 LZ’JFTlJ a+ ¢ odd.
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Note that the set of double-trace operators Rz traces out a rectangle in the (p, ¢) plane.
As an example, a pictorial representation with quantum numbers 7 = (24, ¢, [0, 6,0]) is

given in Figure 3.2.7

Note that the double-trace operators O,,.» all have the same classical dimension A0 =
7+, and hence in general they will mix. We collectively denote the true eigenstates (with
well-defined scaling dimensions) by /C,q, which are simply certain linear combinations of
the operators O,z from (3.17). Their three-point couplings Cp,;,x with two external
operators O, O, are related to the three-point functions (0,0, K) and admit the
double expansion

Cpipyk = (Czﬂop?}c +FATEO AT 4 ) o0

(1,0) -3013) -5 015 2
+ a(Cpmj,C FAT20, e+ A0, e+ ) + O(a”).

Similarly, the double expansion of their scaling dimensions reads

A =7+ £+2a (n10 4 A72y0 4 x—55(5) 4)
+ 262 (AT 420 a0 A1) L A5 ) (3.21)
+0(a%),

where 7 denotes (half) the anomalous dimension.

In the second part of this thesis, we will explain in detail how the mixing problem of
the double-trace spectrum can be resolved by combining data from many correlation
functions simultaneously, both at the level of tree-level supergravity (Chapter 4) and
including the first string corrections (Chapter 5). Furthermore, certain one-loop anoma-
lous dimensions can be extracted from the explicit results for correlators at one-loop,

which we will discuss in the third part of this thesis.

3.4 The Tree-Level Supergravity Correlator

Let us now turn our attention to the supergravity correlators #H9 As mentioned

before, the AdS/CFT correspondence predicts, in the regime of stropng 't Hooft coupling
corresponding to classical supergravity, the leading large N behaviour of the correlation
functions (p1popsps). We will start by briefly outlining the traditional computation of
supergravity correlators in terms of Witten diagrams. We then focus on the Mellin
space representation of these correlators, which turned out to be the right language to
write down a surprisingly simple formula for all supergravity correlators with arbitrary

external charges.

"For general quantum numbers, the four corners of the rectangle defined by (3.18) have the coordinates
A = (a+2,a+b+2), B = (a+p+1,a+b—p+3), C = (a+t+p—1,a+b+t—p+1) and D = (a+t, a+b+t).
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3.4.1 The Traditional Method of Computing Supergravity Correlators

The standard method of computing holographic correlation functions in supergravity
relies on the equality (3.3) of the CFT partition function and the AdS path integral. One
starts with the action for a collection of scalar Kaluza-Klein modes {¢;} on AdSsxS?,
which can be written as
N2

Ssugra = S:2[8 /dQ (,C(g) + E(g) + [,(4) + .. ) , (3.22)
with dQ being the measure on AdSs and L its radius, which can be set to one.® We
denote the bulk coordinate by z and the boundary coordinates by #. The index n on
L) indicates the number of fields, in particular £3) and L4 contain cubic and quartic
interactions among the Kaluza-Klein modes, which include the graviton and the gauge

fields. The above action is known explicitly up to quartic order [41].

Let us focus on one single Kaluza-Klein mode ¢(z,#) from the infinite tower. In the
saddlepoint approximation, valid at large N, the bulk field ¢(z, Z) propagates according
to its equation of motion, (V2 — m?)p = J[{w}], where the source term J depends on
all the fields coupling to ¢. The general solution for @(z,Z) can be written in terms of

the bulk Green’s function Gy, and the bulk-to-boundary propagator Gyg as follows,

@(zaf) = (po(z?f) + /d2d4f/be(va5 Zlv f/) J[{gpk(z,, f/)}]a
(3.23)
) = [diF Gl ) 5(@),

where " solves the homogeneous equation of motion with boundary conditions §(Z”).
According to the AdS/CFT correspondence, §(Z’) is identified with the boundary source
which couples to the operator dual to ¢(z,Z). The perturbative expansion around the
homogeneous solutions {¢9 (2, 7)} defines the corresponding series expansion for J, i.e.
J = Jgy+J3)+. .., where the label indicates again the number of boundary fields S (@)
at each order. Finally, evaluating the action on-shell can be interpreted diagrammatically
as summing over tree-level Witten diagrams. The result is the following generating

functional for the boundary sources:

S = [ (@5 50, (00)50(72) 22, (1,72
+ [ @D 50 @050 (2)50 (@) D1, (@1, 0. 0) o
+ / ()" Sty (T1) ks (T2) Sk (T3) Sk (1) Doy (T1, T, T, )

+...,

8We can do this since we will not consider any curvature corrections here. Curvature and loop
corrections to the supergravity effective action have been discussed in [108].
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where the functions P(=234) ({Z;}) are proportional to N? according to the action (3.22).
Correlators of n operators can then be computed by taking n functional derivatives with

respect to the dual sources, i.e.

=g 7, g = — —Ssugra
(Op1 (1) Opy (T2) Ops (73) Op, (74)) = H Ssn(@n) © P (3.25)
The two- and three-point functions of AdS supergravity obtained in an analogous way
manifestly agree with CFT expectations [19, 20, 93]. In the supergravity conventions all
two-point functions are normalised to N2, it is however always possible to redefine the

sources in such a way to match the normalisation given in (3.9)-(3.10).

Four-point correlation functions are more interesting and require quite involved manip-
ulations. Explicit Witten diagram computations have been carried out for a number of
different cases: (0,0,0,0,) for p = 2,3,4 [28, 29, 42], (02020,0,) [44, 45] and for the
two parameter family of next-to-next-to-extremal correlators (Op120k1204—1Og4k) [46]
for arbitrary ¢ and k. Despite highly complicated calculations, the end result for all of
the above cases is neat and can be written in terms of a restricted set of functions (the
so-called D-functions), suggesting that a generalisation to arbitrary external charges is
feasible. Indeed, it turned out that such a generalisation can be achieved using the
Mellin space representation of holographic correlators, which we will review in detail in

the next section.

Lastly, it is clear from the form of Sgyera in (3.24) that upon taking functional derivatives
with respect to the sources, a four-point correlator will get a leading contribution from
disconnected two-point functions @,5?3@ Q)gam (when it exists), followed by the 1/N? sup-
pressed contribution Q),Sj%@ ksky- Lhe latter will contain a dynamical term with a log(u)
singularity, but also a subset of the corresponding connected free field theory correlator,
allowing us to consider the the splitting

sugra __ ~free dyna

e — ghee | g, (3.20)
where ggee can be computed independently from supergravity. Furthermore, the dy-
namical part of the correlator, ngna, turns out to be of the form

I = T(,3,y,7) x HF™, (3.27)

which is in exact agreement with the partial non-renormalisation theorem (2.20) as well
as the splitting (3.16) discussed in the previous section, both of which are necessary for

the consistency of the AdS/CFT correspondence.

Next, let us introduce the Mellin formalism for holographic correlators, and in particular
we review the generalisation of the previously known tree-level supergravity amplitudes

mentioned above to arbitrary external charges.
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3.4.2 Holographic Correlators in Mellin Space

The explicit position space results mentioned above have a simple representation when
expressed in Mellin space. In fact, the Mellin space formalism [74, 109-111] has turned
out to be an efficient framework to describe holographic correlators, where in particular
tree-level Witten diagrams take a particularly simple form. In the case of tree-level
supergravity, they are rational functions of the Mellin variables with a prescribed set of
poles which correspond to the exchanged single-trace operators in a given Witten dia-
gram. Beyond supergravity, further string corrections are even simpler when expressed

in Mellin space, as their corresponding Mellin amplitudes are only polynomial.”

The Mellin representation of the interacting part H; is defined by the integral trans-

form?!0
0 dsdt s 3
/H:,;‘(U,U;O',T):/‘ ;5 5_%1)%_1)2? M (s, t;0,7)Ti(s,t), (3.28)
—100

where the string of six I'-functions is defined as

Lp(s,t) = HF [cij] (3.29)
1<J
with the Mellin space parametrisation c;; = c;; given by

5 + U + t +
012:_7_’_]01 pz, 013:_74_1?1 p3, 614:_7_’_191 p47
2 2 2 2 22 (3.30)
c :_f+p2+P3 . :_@+p2+p4 oy = 5 P3EDa
Note that the Mellin space variables (s,t, ) satisfy the constraint
st+t+u=p+p2+p3+ps—4 (3.31)

The Mellin amplitude inherits an analogous double expansion at strong coupling, as given

for the dynamical part #H(u,v) in equation (3.15). Hence My admits an expansion of

9We will revisit the structure of tree-level string corrections in more detail in Chapter 5.
'"What we call M here is in fact the reduced Mellin amplitude (denoted by M in [47]), which is
related to the full Mellin amplitude My by

My (s, t;0,7) = R(u,v;0,7) 0 My (s, t;0,7),

where R is a difference operator mimicking the action of the factor T on the interacting part Hp. See [48]
for further details, where also a precise definition of the integration contour is given, such that rational
parts of the position space result (corresponding to the long part of free theory) are correctly recovered
from the Mellin integrals.
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My = a (Mgm +ATIMEY A i )

12
1 a2 (A%Ml‘f’*” + MED AT MY A IMED LA MY 4 ) (3.32)
+ O(a®).

)

In this formalism, the supergravity correlator Mg’o for arbitrary external charges has
been obtained by solving a bootstrap problem in Mellin space [47, 48]. The final result
of Rastelli and Zhou takes the form of a simple rational Mellin amplitude and, up to an

undetermined overall normalisation N, it is given by

(10) _ rr. iji o'
My =N ;O (5 — 50 + 2k)(t — to + 27)(a@ — o + 20)’ (3:33)

i —j — 2 and the range of ¢, j is such that £ > 0 in

where k = min{ps, W} _

the sum. We have used the definitions
so = min {p1 + p2,p3 +pa} — 2,

to = p2 +p3 — 2, (3.34)
up =p1+p3—2,
and the coefficients a;;;, are given by
1 8(M —1)!

il51k! (1+P43-5P21)i(1+2743;p21)j(1+ \P1+p2gps—p4|)k

aijk = N (335)

with M = min{ps, W} —1. The result (3.33) is consistent with the various pre-
viously known position space results obtained in [28, 29, 42—46], and further indications
about the correctness of the general formula come from more recent explicit supergravity

computations [58-60].

Note that the overall normalisation Nz has been left undetermined in equation (3.33).
This is because the result for Mg’o) has been obtained as the solution of a bootstrap
problem, and as such it is not sensitive to the overall normalisation. However, as men-
tioned earlier, consistency with the AdS/CFT correspondence requires the absence of
excited string states in the spectrum of N/ = 4 SYM at strong coupling which the

supergravity correlators must satisfy. We will make use of this in the following.

3.4.3 Determining the Supergravity Normalisation

Let us explain how to determine the normalisation N in the supergravity Mellin am-

plitude (3.33), by requiring the cancellation of string states between the free field theory
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P43 —P21
g T

+ —
p1 p2-5p3 P4 p3— 1

Figure 3.3: Free theory diagrams in the light-like limit.

1(;’0). In partic-
ular, the normalisation Ay can be fixed by imposing the following non-trivial condition:

part of the correlator at order 1/N? and the dynamical part given by M

lim (p1p2p3pa)

u,v—0 Pﬁ ﬁ

—0, with < fixed, (3.36)
v

where the limit u,v — 0 whilst keeping the ratio u/v fixed corresponds to taking the

points x1, ..., x4 to be sequentially light-like separated.

Examining both the free theory and interacting contributions to the LHS of (3.36), we
find that it takes the form Y- A, (ur/v)", with

P21+ pa3+2

5 Ny Bj. (3.37)

Ap = p1pap3pa
The first term comes from (p1pap3ps)mee/Pp and arises from the diagrams shown in
Figure 3.3. The normalisation of each of these diagrams in the planar limit can be simply
obtained by counting the number of inequivalent planar embeddings: cyclic rotations on
each vertex leave the diagram unchanged, hence the factor pipsopsps. Additionally, the
diagonal propagators can be drawn inside or outside the square, giving %(pgl +pa3)+1
different possibilities. Note that the multi-trace terms of the single-particle operators Oy,
do not affect the leading large N result for the diagram. The casesr =0andr = M +1
correspond to diagrams of Figure 3.1 which are absent due to the orthogonality property

of the single-particle operators O,,.

The second contribution in (3.37) is obtained from Z X ’H(}’O), where H0 is computed
P P
from /\/11(71 0) by inverting the Mellin transformation. Note that each term in the Mellin
amplitude Ml(?l’o) is proportional to
s_P43 t_P2tP3 aiijiTj
uz" 2w 7 X (3.38)

(s—paz—2—2(i+74)(t—p2—p3+2+2j)’

which upon residue integration will produce a term proportional to (uo)®(u/v)*i77.
Since Z = 7 + O(u, v), the contribution to A, comes from taking the simple poles with

1 = 0 in the Mellin amplitude. Taking all contributions into account, the residue of the
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tree-level supergravity amplitude yields

+po—p3— — 2
By = (M _ 1)!(|’P1 p22P3 p4\)!(p432p21)!(p43+12)21+ )!. (3.39)
Crucially, the j dependence cancels between ag;i/(j!k!) and I';(s,t) and hence A, is in
fact independent of r. Now the statement (3.36) is clearly equivalent to the statement

A, = 0 for all r. Rearranging equation (3.37) for Az we thus obtain the result

Ny = DP1p2pP3Pa ‘ (3.40)

d (M _ 1) ! ( |P1+P2;P3—p4\ ) ! (p43;p21 ) | (p43-5p21 )!

The result combines neatly with the coefficients a;;, and we find

1 8p1p2p3pa
i151k! (p4342rp21 +i)!(p43;p21 +j)!(\P1+p2;p3*]34| —&-k)!.

Nﬁ aijk == (3'41)

3.4.4 Proof of the Light-Like Vanishing

The light-like limit projects the common OPE of (O, x O,,) and (Op, x Op,) onto
operators with large spin and twist 7 < py3 + 2M, i.e. twist 7 < min{p; + p2,p3 +
pa}. To justify the statement (3.36), let us consider the various contributions to the
OPE expected in the supergravity regime. First of all, we have single-particle states
corresponding to one-half BPS superconformal primary operators. Such operators have
spin zero and do not contribute in the limit v — 0, which receives contributions from
large spin. Next, we have (both protected and unprotected) double-trace operators of the
form [0,0°0"0,] or mixtures thereof. The leading large N contribution to three-point
functions of the form (0,0,[0,0‘0"0O,]) ~ O(NP*?) arises when p = p’ and ¢ = ¢/,
which is when the three-point function factorises into a product of two-point functions.
The twist 7 of the double-trace operator therefore must obey 7 > p + ¢, otherwise the
three-point function will be suppressed by 1/N2. The exchanged operators surviving
the light-like limit (3.36) all have twists less than both p; + p2 and ps + ps and hence
their contributions will be suppressed by at least 1/N* and will not contribute to the
LHS of (3.36). Higher multi-trace operators are even more suppressed and we conclude
that no operators in the supergravity spectrum can contribute in the light-like limit,
justifying the vanishing of the light-like limit (3.36).

3.4.5 A Hidden Ten-Dimensional Conformal Symmetry

Lastly, let us point out an unexpected feature of the tree-level supergravity correlators
7—[](31’0). In [112], these correlators were found to exhibit a hidden conformal symmetry in

10 dimensions.'' One of the main consequences of this hidden symmetry is the existence

1 Subsequently, a similar hidden conformal symmetry has been observed for tree-level supergravity on
AdS3xS?, in which case the symmetry is of six-dimensional origin, see references [113, 114].
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of a ten-dimensional generating functional, from which one can obtain all four-point
functions of arbitrary external charges by the action of certain differential operators on

the stress-tensor correlator:

(1,0) _ 2 9,(1,0)
Hy™ = Dy -u”Hapy (3.42)
As such, the stress-tensor correlator 7—[82202) x u? E2422(U,’U) acts as a seed-correlator
(1,0)

for the general correlator Hﬁ . In Mellin space, the differential operators 13]; act as

shift-operators on the Mellin variables. Importantly, in [112] it has been shown how to

(1,0)

re-derive the Mellin amplitudes ./\/lﬁ as given in (3.33), thus proving consistency of

the above (3.42) with the Mellin space results of [47, 48].

For concreteness, let us give a couple of examples of the differential operators 1317 for

low external charges. We have

Doy = 3(4 —udy),

Dogog = %(u@ + v0y),

Dapas = 2(5 — udy,) (4 — udy),
73242 = 2(1 4 udy, + v0y) (udy + vy),
Dogaa = 5(4 — udy) (udy + v0y),

ﬁ3324 = % 8@(*uau - Uav)a
D335 = 12 (4 — udu) vy (—udy — vy), (3.43)
D4424 = 8( — u@ (—u&u - ’Uav),
~ 81 2 Ut 2 2
Ds3ss = {5 [(4 — u0y)” + 7(2}8@) + uo(udy + v0y) } ,
Disas = 4 [(5 — udp)? + 4% (08,)? + duo(udy + vav)ﬂ (4 — udy)?,
v

(ur)?

02

+4 [ (1 — v0y)*(v0y)? + (uo)?(udy + v0y)*(1 4 udy, + vd,)?

uT
+ 16 T(UU)(vﬁv)z(vﬁv + u@u)2,
where we note that 133335 and 54424 are proportional to each other. This (accidental)

degeneracy is a non-trivial consequence of the hidden ten-dimensional symmetry, and it

will be lifted by the one-loop corrections as discussed in Chapter 6.
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Chapter 4

Supergravity Anomalous

Dimensions

The result for supergravity correlators of arbitrary external charges presented above
opens up the systematic study of the leading anomalous dimensions of exchanged double-
trace operators. In this chapter, we will focus solely on the supergravity correction which
is of leading order in the 1/\ expansion. Further string corrections to the spectrum will

be addressed in the next chapter.

Here, we will finally put to use all of the technical machinery introduced in the two
introductory chapters. By combining the superconformal block decomposition of the
long part of four-point functions with the strong coupling expansion and the knowl-
edge of the supergravity spectrum, we arrive at a set of ‘unmixing equations’ whose
solution yields both the supergravity anomalous dimensions 7% and the leading order
three-point couplings of two single-particle operators with an unprotected double-trace
operator. After having introduced the unmixing equations, we start by first discussing
in detail the singlet channel results, which we then generalise to the series of channels
of the form [n,0,n]. In Section 4.4, we present the general formula for all su(4) rep-
resentations, which is the main result of this chapter. The general formula turns out
to be of a remarkably simple structure and exhibits an interesting pattern of residual

degeneracies.

4.1 The Unmixing Equations

Let us recall the SCPW decomposition introduced in Section 2.4, and in particular the

contribution of long multiplets

(P1P2P3PaYIong = N* Z Lyz Lgz, (4.1)
{T’Z7 E){}

41
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where the external operators are the single-particle operators O, normalised as in (3.9),
and X = (p1 + p2 + p3 + p4)/2 such that the disconnected free theory part (when it
exists) is of order 1 in the large N expansion. Due to operator mixing, the long SCPW
coefficients Lz are not in one-to-one correspondence with the CFT data. Instead, they

are given as a sum over the exchanged operators, i.e.

p,T Z Cp1p20 Cpsps0- (4.2)
0eK

Expanding both the dimensions and OPE coefficients up to first order in 1/N? (and
disregarding any 1/\ corrections for now), we have

Ao =A0 4 2ang+..., Cppo=0C0 +act) 4. (4.3)

p1p2 p1p20

where we simplified the notation of the supergravity anomalous dimensions (%0 to sim-
ply n. Upon substituting the above expansions into the partial wave decomposition (4.1),

we obtain the following refinement
(P1p2p3p4) long = < Z *AP 7 Lo

+ alog(u ZM,TO 57 T >,

(4.4)

where at order a we omitted analytic terms in w which will not be relevant four our
discussion. By 7 we collectively denote the quantum numbers 7y = (79, ¢, [a, b, a]) of
the exchanged double-trace operators, with 79 being their classical (integer valued) twist
70 = A — ¢, In the above, we have used the definitions

Apzy = Z p1p20 p3p40’ (4.5)
Oek
(0)
Moz = 3 C¥ onoC) o, (4.6)
Oek

which constitute the set of ‘unmixing equations’ which we will analyse in detail in the
following. The data on the LHS of these equations will be obtained from the explicit

form of the correlators. In particular, disconnected free theory determines Aj; 7 , whereas

M 7, is obtained from the leading log(u) singularity of the supergravity correlator 7—[1(51’0),

(1,

which we obtain from /\/l 0 by inverting the Mellin transform.

As discussed before, we expect the set of double-trace operators (denoted by K in the

above sums) to be the only long operators O to have non-vanishing leading order three-

(0)

point functions C D120 By solving the above unmixing equations, we wish to obtain
their anomalous dimensions 79 in all su(4) channels [a,b,a] as well as their leading
(0)

order three-point functions C’ D120 To illustrate the general computation, we will start

by first considering the singlet channel representation.
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4.2 Unmixing the Singlet Channel [0, 0, 0]

Specialising to the singlet representation, the set of exchanged singlet operators in ques-

tion have the following schematic form
Kieilpoo = {0:0720°0,, 05073005, ..., 0,0°0°0,}, (4.7)

where we label the different degenerate operators by ¢ = 1,...,t — 1, and in the singlet
channel ¢ is simply half the classical twist, i.e. t = 79/2. First note that at leading order
in the large N limit the OPE of O, x O, contains the operators K;,; for all ¢ > p.
Thus for fixed ¢, the four-point correlators (ppgq) with p < ¢ contain information about
operators K, ; for all ¢ < ¢. Noting the p <+ ¢ symmetry we deduce that there are
t(t — 1)/2 such independent correlators. We can then organize the information A4, 7,

coming from each correlator in the free theory at leading order into the symmetric matrix

Agooo Azozz ... Ao

N Aszzzs ... Aszu
A(t, Olj0,0,0 = . : (4.8)

Attt

In fact, from the form of the large N free theory correlators one can see immediately
that the above matrix A is actually diagonal. Likewise, we can organise the information

M,pqq. 7, coming from the log(u) term at order a of each correlator into another symmetric

matrix
Mazga  Magzs ... Maou
J\A/[(ﬂe)\[o,o,O]: Masss M%Stt ; (4.9)
Mzt

where both in A(¢, ) and J\A/[(t, ¢) we have just given the independent entries in the upper

triangular part explicitly.

Consider now the ¢ — 1 independent operators K ;. They are associated with (¢ — 1)2
three-point functions C’I(,g;ct,“, withi=1,...,t—landp=2,...,t, and t —1 anomalous
dimensions 7 ¢ ;. This results in a total of ¢(t— 1) unknowns that need to be determined.
Thus the matrices (4.8) and (4.9) contain the precise amount of data needed! The reason
for this exact matching of degrees of freedom is that the operators K;,; are in one-to-
one correspondence with bilinears of single-particle operators. The matching is thus a
remarkable feature of the strong coupling regime of large 't Hooft coupling and large IV,

as in general there will be many other types of operators contributing.

Let us now examine the unmixing equations (4.5)-(4.6) in detail, beginning with low
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twist cases. To simplify notation a little, we redefine C’;g;ct ,, in favour of c,; by taking

out a universal factor which we find is always present,

(Cox, )" = ((€+t+1)!2 z (4.10)

PPk 0, 2€+2t+2)! Cpis
and note that at fixed twist we expect ¢,; to depend non-trivially on the spin /.
4.2.1 Twist 4 (t=2)

At twist 4, there is only one operator contributing and it only appears in the simplest

correlator (2222). Extracting the relevant superblock coefficients

4
(Coskcyyy)” = Azoza = 5 = 5(5 + 1)(¢+6),

(4.11)
Mm(Caakyyr)? = Mazes = c3ym = —64.
This clearly yields
48 40+ 1)(£ +6)
- S R A S 4.12

which has been known for a long time [63]. Note the symmetry under ¢ — —7 — ¢ of

this result.

4.2.2 Twist 6 (t=3)

The situation becomes more interesting when we move to twist 6. Here there are two

operators contributing, K31 and K3 /2. The disconnected free theory results give:

2
chy + 3y = F(E+1)(E+8),
9
Gty = L+ DI+ D+ T +8), (4.13)

c21¢31 + ca2c32 = 0.

It is interesting at this point to compare this briefly with the free theory at large V.
The relevant disconnected free theory correlator is exactly the same as the one we are
discussing here at strong coupling. However, despite this one should not be tempted
to assume the leading large N three-point functions are also the same at strong and
weak coupling. Recall that in the free theory at large N the two operators are explicitly
given as K31 = 0,000y + ... and Kse2 = 030'O3 + .... Although in general
other operators contribute at weak coupling (single-trace etc.), at large N only these
two contribute (the OPE can be easily performed explicitly via Wick contractions to

weak weak a

verify this). Furthermore, the weak coupling three-point functions c§5** and ¢} are
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suppressed at this order and thus the solution of the above equations simply reads

2
(c31™)* = Z(L+1)(¢+8),
35 = ey =0, (4.14)

(cleaky2 _ 4%@ F1) (4 2)(C+T)(0 +8),

and the three-point functions cIV;’Z-eak are diagonal.

The strong coupling interpretation of the disconnected free theory equations (4.13) turns
out to be very different however, even though it arises from the same free theory corre-

lators. The dynamical parts of the correlators give

c3m + c3ame = —96,
031771 + c§2n2 = —54(€2 + 90+ 44), (4.15)
c21631M1 + Cac32m2 = 432,

and in particular the last equation means that here the three-point functions cp; cannot

be diagonal. Instead, we can straightforwardly solve the above equations and obtain the

solution
B 240 B 240
M= ne+2y T Uty
200+ 1)+ 2)(0+8) 200+ )+ 1)+ 8)
=T 5(20+9) poE T 5(20+9) ’
9+ 1)+ 2)(E+T)2(L 4 8) B 90+ 1)L +2)2(L+T)(¢ + B)
1= 40(2¢ +9) e 40(20 +9) '

(4.16)

4.2.3 Generalisation to All Twists

The first task in attempting to understand the general structure is to generalise the
equations we obtain from the correlators via the superconformal block expansion. At
leading order the situation is simpler, since off-diagonal correlators (ppqq) with p # g are
suppressed and therefore the matrix ,Zl\(t,ﬁ) is diagonal. We have computed a number

of explicit examples and spotted the pattern that leads to the general formula

Apppp|[0,0,o} =
2404+ 1)(t — 212U +2t + )+t — DL+t + D)) 2(p+ )l +p+t+1)
(P+1D—2)(p— N3O+ +t+3)20+2t+2)!(t—p)(L—p+t+ 1)
(4.17)
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and let us notice that A,,,, has a completely factorized form.! For a fixed twist ¢, we

define the matrix of leading order three-point function coefficients C by

Cokyon C22Kipn - C22K004 0
Cs3c0n O33K000 -+ O33Ke000

C(tag)’[O,O,O} - . . . . ) (418)
Curcrpn  Cukipo - Citkiges

and rewrite the first unmixing equation (4.5) in matrix form,

C-C'=1, where C(t,0) = A2 C, (4.19)

where the orthonormality property of the matrix E(t, ) is manifest. The second unmix-

ing equation (4.6) then becomes

NI

C-diag(n1,...,m1)-CT = A2 - M(t,0) - A 2. (4.20)

The columns of C(t, £) are then eigenvectors of the matrix Az M(t, 0) - A~2 and the
anomalous dimensions are the corresponding eigenvalues. Notice from the structure of
equation (4.20) (recalling that A is diagonal) the remarkable property that det(M) will
factorise. From the explicit expressions for M4, obtained upon decomposing the log(u)
part of the supergravity correlators H](;i,’qoq) into superblocks this property is completely
obscure. In particular, M,,q, is found to be proportional to a polynomial in ¢ of degree
2(p—2), with p < ¢, which does not admit real roots. Their expressions are cumbersome

and thus we will not display them explicitly.

Let us rewrite the solutions at twist four and six from equations (4.11) and (4.16) in

this new notation. In these two cases, the C matrices read

142 L+7
- ~ V29 \ 209
C20=»1), CBH= - . (4.21)
_ [t 2
2019 2049
and it can easily be verified that C(3,¢) - C(3,¢)T = 1. For later convenience, we also

repeat the formulae for the anomalous dimensions

48 240 240
( {(€+1)(f+6)} i = {(€+ D+2) (C+n+8) } (422)

We now proceed by performing the superconformal block decomposition to find J\A/[(t, 0)

up to twists ¢ < 12, and solve for the anomalous dimensions 7 ¢; and é(t,ﬁ). From the

n more detail, we first computed the cases with p = ¢ up to 6 and spotted a pattern for these which
we then confirmed at p = 7. Next we considered cases for fixed p with general ¢, some of which were
already known [63, 92]. We spotted a pattern for these up to a numerical p-dependent coefficient using
results up to p = 5. This final numerical factor we can then fix as a function of p uniquely by comparison
with the p =t case.
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solution at twist 8 we obtain

\/ 7(042)(6+3) \/ 5(0+3)(£+8) \/ 7(0+8)(¢49)
(2e+9)(2£+11) 3(20+9)(20+13) (2e+11)(2£+13)

2e+9)(2£+11 T\ @920+ 13) 2e+11)(2£+13 ’ :

5(¢+8)(£+9) \/ 7(64+2)(£+9) \/ 5(4+2)(£+3)
(

6(20+9)(20+11) 3(20+9) (24+13) 6(20+11)(20+13)
and
- {_ 720(0 + 7) 720 CT20(0 +4) } (124
i C+D)(+2)((+3) ((+3)((+8) ((+8)(+9(+10)f

For higher twists the solutions become quite lengthy so we find it helpful to introduce a

more compact notation for the square root factors, and we define

(n)=vl+n, n] =v20+n. (4.25)
With this more compact notation the solution at twist 10 takes the form,

2)(3)(4 3)(4)(9 4)(9)(10) 9)(10)(11

IS ViR VIERE Vi

_ 21 (23O /5 (+18)(3) § (£=5)(10) /27 (4)(10)(11)

= _ 8 [9][11][13] f[9][13][15] [11][13][17] 8 [13][15][17]
C(5,¢) = (4.26)

\/5(2)(9)(10) _ (£+16 5 (3)(4)(11)

2 OI[T1][13] [9][13][15] [TI][3] [17] 2 TI3][15][17]

_ /5(9)(10)(11) / 7 (2)(10)(11) /27 5 (2)(3)4)
\/g (91[11][13] [9][13][15] [11 [13][17] 8 [13][15][17]
with

B 1680(¢ + 7)(¢ + 8) 1680
5.8 = { U2+ 3)(+4) ((+3)(+4)
1680 1680(¢ + 5)(¢ + 6)
(49 +10) (£+9)(£+10)(¢+ 11)(e+12)}'

(4.27)

We begin to see an intriguing structure in the entries of the matrix as well as in the
anomalous dimensions. Note the symmetry ¢ — —2¢t — ¢ — 3, which is an invariance of
the set of anomalous dimensions and an invariance up to signs of the C matrix under
a flip about the vertical axis. Note also that at twist 10 we see for the first time the
appearance of polynomials in ¢ (without a square root) in the numerators of the central
entries of (4.26). At twist 10 these polynomials are all linear, but their degrees increase

as we increase the twist further.

Indeed, proceeding to compute the next few examples one gets a better idea of the
structure. The anomalous dimensions reveal a fairly simple structure that is consistent

with the formula

20— D)a(t 4O
C+2i—1)s

(4.28)
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where (), = z(z+1)...(x+n—1) is the familiar Pochhammer symbol (rising factorial).

Note that the anomalous dimensions are all negative for all physical values of spin £.

On the other hand, the general form of the C(¢,¢) matrices is trickier to understand.
Already from the results up to twist 10 we recognise a pattern of square roots of linear
factors of £. In addition, we have seen that in the entries towards the centre one finds
fewer square root factors in the numerator, and polynomials in ¢ without a square root.
Note that the entries of the matrix always have a finite (but possibly vanishing) limit
as { — oco. In fact, we can deduce the structure of é(t, ¢) for a given twist in terms of

an ansatz with some undetermined free parameters,

o PR A ) (it D) (o P+ 2)i )
" i+ 9

min{i—1,p—2,t—i—1,t—p} (429)

X Z Falp, i k).

k=0

The powers of the Pochhammer factors inside the square root are signs given explicitly
by

op=sgn(t—p—i+1), o9 =sgn(i —p+1). (4.30)

where p = 2,...,t and ¢« = 1,...,t — 1. We notice that the square root structure in
Cpi follows from complicated combinatorics, which nevertheless can be captured by the
two (non-analytic) sign functions o1 and o2. Around the outer frame of the matrix, the
unfixed polynomial has degree 0, i.e. it is simply a constant. Its degree increases as we
move towards the inside of the matrix. One can readily check (4.29) is consistent with

the explicit examples given above and we have tested the structure up to t = 12.

Given the ansatz (4.29), we have reduced the problem to that of finding the constants
a(p,i, k). Quite surprisingly, enforcing orthonormality of é(t, /) uniquely fixes the solu-
tion.? In more detail, we first insist that the first row has unit norm, > Egi = 1, which
is a linear equation in a(2,7,0)? with a unique solution. In fact, the constraint is a
rational function of ¢ and so this single equation can fix more than one constant. Then,
orthogonality of the rows ) ¢,i¢q = 0 for p # g gives a linear system in the remaining
variables and uniquely fixes them, up to an overall scale which is fixed by the unit norm

condition.

We find it remarkable both that there exist such orthonormal matrices with the struc-
ture (4.29) and that the matrix is uniquely fixed by orthonormality as a linear system.
The fact that the problem is essentially linear means it can be solved quickly and we
have complete data up to t = 24. This enables us to spot patterns and write down

general formulae.

*We have checked this up to twist 48 (¢ = 24).
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We do not have a completely general formula for the full matrix C but we do have various

cases in closed form. In particular, the top row of the matrix is given by the formula?

207125 + 2)!(t — 2)!(2t — 2i + 2)!
3@ —DIE+DIE+ 2t —i— DIt —i+ 1)

a(2,i,0) = i=1,...,t—1. (4.31)

4.3 A First Generalisation: from [0, 0, 0] to [n, 0, n]

Before giving the solution for general su(4) channels [a, b, a], let us discuss a first simple
generalisation of the above singlet channel results. Specifically, we can investigate oper-
ators in the series of representations [n, 0, n] which also arise in the OPE of correlation
functions of the form (ppqq). For each channel of the form [n,0,n| the structure of this
problem is analogous to that of the singlet channel. In particular, at twist 2¢ a basis of

double-trace operators in the [n, 0, n] representation will have the schematic form

Kt

m0m] = {02400 20 04, O340 " 30 O3y, ..., 0,0°0°0,},  (4.32)
with £ — n — 1 degenerate operators labelled by 7, where t is again half the twist.

The analysis of the [n,0,n] channel for fixed n follows a very similar logic to that
presented in the singlet case. Once again we conclude that the series of correlators
(ppqq) for n+2 < p < g < t provides precisely the right amount of information needed in
order to solve for the anomalous dimensions and three-point functions of the exchanged
double-trace operators. From the general form of the long superconformal blocks (2.33),
it is straightforward to isolate the appropriate channel and organise the data from the
SCPW expansion into the symmetric matrices /T(t,ﬁ)][n’o,n] and ﬁ(t,ﬁ)][mo,n]. Let us
go through some explicit examples in the [1,0,1] channel before presenting results for

general n.

4.3.1 Unmixing the [1,0,1] Channel

In this channel, the matrices .%T(t,ﬁ)\[w,l] and J\A/[(t,ﬁ)\[LOJ] take the form

Aszzzs Aszzas ... Aszzy

~ Agaas .. Asan
At Ol01 = . ; (4.33)

Atttt

3This formula, together with equations (4.10) and (4.17), completely specifies the leading order three-
point functions of the form Cégk, o which is an essential ingredient in the prediction of the one-loop
supergravity correction to the (2222) correlator, as we will discuss in Chapter 6.
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and
Masgzs Msgaa ... Mssu
M(t, Olo = Noaaas Mimt , (4.34)
Mtttt

where A(t,¢) is diagonal with entries

15(p— 2)(t = 1)(t+2) (L +t)(L +t + 3)

Aver |00 = 0 G 4 B+ £ 1) 1 0+ 4) “rliooo) (4.35)

with Apppplj0,0,0) given in equation (4.17). Analogously to the singlet channel, we can
then introduce the orthonormal matrix é(t,ﬁ) and start solving the mixing problem

twist by twist. For illustration, let us look at the first three cases:

e At twist 6 there is only one operator, giving

C3,0= (1), mei= {_(SJM};I(%%} : (4.36)

e At twist 8 there are two operators, and we find

J4 4
~ \/ zeﬁl \/ 2@1?1
C(4,0) = : (4.37)

[ 19 042
20411 20411

with anomalous dimensions

[ 560(£+8) C 560(0+3)
Mt = { LD+ D+ TxDC+ L) } - (438)

e At twist 10, it becomes evident that the structure of eigenvectors and anomalous
dimension found in the singlet case generalises to [1, 0, 1] with minor modifications.

In particular, we find

\/ 9(4+2)(£+3) \/ 7(043)(¢+10) \/ 9(¢+10)(¢+11)
8(20+11)(20+13) 4(20+11)(20+15) 8(20+13)(20+15)

C — 2(6+2)(¢+10) 3V7 2(0+3)(¢+11)
Co,0) =1 — QCEHINEATS) | /e+11)(20+15) (26+13)(26+15) , (4:39)

7(4+10)(¢+11) \/ (£42)(£+11) \/ 7(042)(£+3)
\ 8(20+11)(20+13) 4(20+11)(20+15) 8(20+13)(20+15)

while the anomalous dimensions are given by

o 1440(¢ + 9) 1440 1440(¢ + 4)
Tt {_(£+2)(€+3)(£+5)’_(£+5)(€+8)’_(£+8)(€+ 10)(¢ + 11)}
(4.40)
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The solutions to the mixing problem up to ¢t = 12 can be found straightforwardly and

lead to the expression

(0420 — 1)t —2)(t+3)(E+ L —1)(t+ € +4)

i = - i 4.41
Mo (25— D+t 0t +013) 5 0.0 (441)
for the anomalous dimensions, and
- 21_'5(26 + 47 + 5) ((5 + 14 1)t—i—p+1) g1 ((t +l+4+p+ Q)i_p_;,_g) o2
" (C+i+3),
min{i—1,p—3,t—i—2,t—p} (442)
X Z * a(p,i k).
k=0

for the entries of the C(¢,¢) matrix, where o1 =sgn(t —p —i+ 1), o9 = sgn(i — p + 2),
with p=3,...,tand ¢ = 1,...,t — 2. The orthogonality condition of the matrix again

determines completely the values of a(p,i, k) at any twist.

4.3.2 From [2,0,2] to [n,0,n]

After the detailed study of the [1,0, 1] channel, let us present the generalisations of the
matrices A(t, £) and JV[(t, ¢), anomalous dimensions and matrices of three-point functions

C(t,¢) to the [n,0,n] channels.

We begin with the disconnected part of free theory, where we have obtained the result

‘APPPP

[n,0,n] —
p2(th)? (n+2)n+s " 4+ D)L+ L+ (L + 2t +2)
nplp—1)!(p+1+n)l(p—2—n)! (26)1(2¢ + 2t + 2)! (4.43)

U+t—p+2)p 2 nl+t+d+n)y o n(l+1+t—n)(L+1+1+2),X
(t —p+ 1)p727n(t + 3+ n)p72fn(t - n)n(t + 2)n

Introducing the é(t,ﬁ)][n’oyn] matrices and computing M(t, £)|,0, for a large number
of twists and several values of n, we have been able to fit and test both the anomalous
dimensions and the entries of C(¢,¢) with the following formulae: for the anomalous

dimensions we find

2 —n—1 n-+2 41 {—n {+n+3
— (t)2(t )(t + jt(gl(t;Jr:_)igiJr JE+€+n+ )’ (4.44)

Mt

with the degeneracy label ¢ running over ¢ = 1,...,¢ —n — 1. For the entries of the
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C(t,¢) matrix we have

(l+it+n+3)
min{i—1,p—n—2,t—n—i—1,t—p}

x > * a(p,i, k),

k=0

t—nm—1

. _\/21—t(2£ F4i4+34+2n((L+i+1) i pr1) T ((E+L+p+2)ipini1)C?
Pt —

(4.45)

where 01 = sgn(t —i —p+ 1) and og = sgn(i — p+n + 1). All unspecified coefficients

a(p,i,k) can again be determined by imposing orthogonality of the C matrix.

4.4 Generalisation to All su(4) Channels

Let us finally describe how to determine the anomalous dimensions of the true double-
trace eigenstates /K, for general su(4) representations [a, b, a]. Recall from the previous

chapter that the set of exchanged operators K, is parametrised by pairs (p,q) € Rz,

where
=1 1 b =1,...,t—1
R==1<(p,q): p=ttatidr for T T , (4.46)
gq=i+a+1+b—1r r=0,...,0—1
and
b+2
S 2= a+ L even,
t:(Tz )—a, w= ) (4.47)

ng—lj a + £ odd.

As in the previous cases, we will have to assemble matrices of correlators from which
we extract the necessary data to resolve the mixing of the set of double-trace operators
described above. We will therefore consider the correlators (p;papsps4) in which the pairs
(p1,p2) and (ps, pa) are both drawn from the set Rz, resulting in a symmetric d x d matrix
of SCPW coefficients, with d = u(t — 1). From disconnected free field theory we obtain
A(t, 0), whereas J\A/[(t, ¢) follows from the log(u) part of the supergravity correlators HS’O).

These two matrices contain the CFT data for the operators KCp, as follows:

A(t,0)](ap.0) = Claa) (t:£) - CLo o1 (8,0,

e (4.48)
M(t7 E)’[a,b,a] = C[a,b,a} (tv 6) - C[a,b,a} (tv 6)7

where we again used the matrix notation of the unmixing equations (4.5)-(4.6), with
Clab,q) being the matrix of leading order three-point functions and 7 = diag(npq) the
d x d diagonal matrix of anomalous dimensions of the operators K,,. As we have pre-
viously seen for the [n,0,n] channels, the above equations define an eigenvalue problem
for the anomalous dimensions 7. A simple counting reveals again that the number of

unknowns in A(t, ¢) and M(t, £) exactly equals the number of unknown three-point cou-
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plings Cy,p,x,, and anomalous dimensions 7,,, and thus the eigenvalue problem (4.48)
is well defined.

Let us comment on the structure of the matrices A(t,¢) and ff[(t,ﬁ). The SCPW ex-

pansion of disconnected free theory has the following compact expression:

A\(taf)“a,b,a} = diag(f1+a+i+r,b—2r,r,a,t+a+r)01<§i§t—117 (4.49)
Srsp—

where the function F is given by

p(p+h)(1+0p)(1+a)2m+2+h+a)l+1)(1+25s+2+h)

Fohm,as =
pihm., p—1-m)(p—2-m-—a)l(p+m+h)(p+m+h+1+a) (4.50)
m! (m+1+a)! s st
with
((s + h)!)?
Iy =— 2 (s+1—m)p(s+1+h)n(s—m-—a),
@8+hﬂ< Il Il ) (4.51)
X(s+24+h+m)a(s+1=p)p—2-ma(s+3+h+m+a)p_2-m—aq-
The matrix elements of J\A{(t, ¢) are of the form
C+1+1 PastPAN(0+ 1+t !
(C+14t+a+r+ 225221041+ +a+r+p@)xf%w) (4.52)

(200 +14t+7r+a)+p3)!

where P, (¢) is a polynomial in ¢ of degree n = min{p; + p2,p3 + pa} — (pa3 — p21) — 4,
and r labels the pairs (p3, ps). We determine this polynomial case by case, and solve the

eigenvalue problem as outlined in the previous sections.

This leads us to the main result of this chapter: the general formula for all supergravity

anomalous dimensions in all su(4) channels, given by*

4 4
2Mt( )Mt(-‘r)f-f—l (4 53)
I+(=Daetey 7 ’
€+ﬂp—U—a———7—J6

1,0 _
néq )|[a,b,a] = _<

where the twist is parametrised by t, see equation (4.47), and Mt(4) is defined as
MY =t —1)t+a)t+a+b+1)(t+2a+b+2). (4.54)

Note that this formula is consistent with the previously discussed cases, namely the
singlet channel anomalous dimensions (4.28) and its generalisation to the [n, 0, n] channel

given in (4.44).

“We have verified that our conjecture (4.53) holds systematically in the su(4) channels [a,b, a] with
0<a<3,0<b<6up totwist 24 for both even and odd spins. In particular, we have been able to
perform non-trivial tests on the pattern of residual degeneracies which we describe below.
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14
12 c
10

0O 2 4 6 8 10 12 14 p

Figure 4.1: Degeneracy in the supergravity anomalous dimensions m%’o) : dots connected by
vertical lines in the (p, ¢) plane represent operators of common anomalous dimensions. In this
example, we again depict the rectangle R with quantum numbers 7= (24, ¢, [0, 6, 0]).

A few comments are in order. We find it remarkable that the supergravity anomalous
dimensions (4.53) take such a simple, fully factorised and rational form. This is not
at all obvious from the form of the eigenvalue problem (4.48), which features an in-
tricate spin dependence in the matrices J\A/[(t,ﬁ) with non-factorised polynomials in /.
Furthermore, note that there is an interesting residual degeneracy in the supergrav-
ity spectrum: since 77/}(,}]’0) is in fact independent of ¢, the anomalous dimensions are in
general partially degenerate. This is the case when p > 1 and ¢ > 2, and we display
this property in Figure 4.1, where states which lie on the same vertical line have the
same anomalous dimensions.> This residual degeneracy in the supergravity spectrum
arises as a consequence of a surprising property of the tree-level supergravity correlators
Hg ’0), from which we extract the relevant data: the hidden ten-dimensional conformal
symmetry predicts a degeneracy among some of the tree-level correlators, see the dis-
cussion below (3.43), which in turn prevents the spectrum from being fully unmixed at
tree-level [112]. This means that although the eigenvalue problem (4.48) is well-defined,
the leading order three-point functions Cy,y ) are not fully determined when there is a

residual degeneracy.

Furthermore, we observe that the supergravity spectrum exhibits (at least) two inter-

esting symmetries. Firstly, the anomalous dimensions (4.53) are left invariant under the

The first instance of residual degeneracy occurs in the [0,2,0] channel at twist 8 (t = 3). There are
four operators in total, and the two operators labelled by (p,q) = (3,3) and (3,5) remain degenerate
(corresponding to the states with labels (¢,7) = (1,1) and (2,0), such that their sum ¢ +r = 2 in both
cases).
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discrete shift
t— —t—40—2a—b—2, (4.55)

which exchanges the two factors in its numerator. As we will see later, we find this
symmetry to be present also in the string corrected anomalous dimensions at orders
A2 and )\_%, and we believe that this symmetry extends to all string corrections. It
is not known whether this symmetry persists to higher orders in 1/N, or whether it
is broken by quantum corrections. It would be interesting to answer this question to
one-loop order, O(1/N*), but due to the mixing with triple-trace operators we can only
extract the one-loop anomalous dimensions for low twists (where there is no degeneracy)

and we are thus not able to test this symmetry beyond tree-level.

Secondly, the supergravity spectrum exhibits a non-trivial Zs symmetry. The statement

of this so-called reciprocity symmetry® is that under the map
b — —0—2t—a—3, (4.56)

the anomalous dimensions of certain families of operators are mapped into each other.

In the [n,0,n] channel for example, the anomalous dimensions are labelled by only one

degeneracy label : = 1,...,t —n — 1, and one can check that
1,0 1,0 1,0 ) )
nt(,é,i)’[nvovn} - 7715,—2—%-3,@' [n,0,n] — Wg,e,j)\[n,o,n], where j =t —1i —n. (4.57)

Under this symmetry, the family of operators with labels (¢,7) maps to operators with
(t,j =t—1—n) and the symmetry simply reverses the list of operators at a given twist.
This symmetry is believed to persist to all orders in 1/N, and it manifests itself as an
invariance of the full anomalous twist of these operators. Up to order 1/N*, we indeed
observe that it is obeyed by the one-loop anomalous dimensions in a non-trivial manner,
see Section 6.5. On the other hand, as we will discuss in detail in the next chapter,
further string corrections to the double-trace spectrum truncate at finite values of the
spin £. This leads to formulae for the string corrected anomalous dimensions which are

non-analytic in spin, and thus the symmetry (4.56) is broken by the 1/\ corrections.

5This symmetry was first noted in [115] and explored further in [116]. As argued in [116, 117], under
certain assumptions about the analyticity of the spectrum, the reciprocity symmetry (4.56) is ultimately
a consequence of conformal symmetry.






Chapter 5

Adding String Corrections to the
Double-Trace Spectrum

String corrections to the supergravity result arise from higher derivative interaction
terms in the AdSs x S° effective action. At tree-level, the structure of these 1/\ correc-
tions is related to the well-known Virasoro-Shapiro amplitude via the flat space limit,
which we will review shortly. As mentioned earlier, these terms are most conveniently
studied in their Mellin space representation. Focussing on tree-level terms, recall that
the 1/\ expansion of the Mellin amplitude to order a reads

My =a (M;}’O) F AT MEY AT MO AP MEY ) +o@@), (5.1
where Mél,o) is the supergravity amplitude given previously in equation (3.33). In
the following, we will consider the corrections to the double-trace spectrum due to the
first two terms M%l’g) and MS’E)), which descend from dimensional reduction of the
R*Y and 0*R* supervertices, respectively. Note that the analytic structure of tree-level
Witten diagrams dictates that for a general term of the schematic form 9?"R?*, the
corresponding Mellin amplitude is simply a polynomial of degree n, together with all
subleading polynomial amplitudes coming from terms in 10 dimensions which have legs
on S° [77, 111, 118-120].1 As such, the tower of string corrections gives rise to a spin
truncated spectrum of exchanged states, which motivates us to introduce the notion of
an effective 10d spin f1g9. As we will discuss in Section 5.3, the notion of ¢1y will provide
a useful method to constrain which double-trace states will receive a string correction

to their anomalous dimensions.

!The tree-level corrections to the supergravity Mellin amplitude are polynomial since they correspond
to corrections due to unprotected double-trace operators, whose poles are already correctly accounted
for by the gamma functions I'y in the definition of the Mellin representation (3.28). The bound on
the polynomial comes from considering the flat space limit and moreover the coefficients of the leading
Mellin amplitudes can be fixed by comparing against the ten-dimensional type IIB closed superstring
amplitude in flat space, as we will discuss in the next section.

o7
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Before introducing the unmixing equations and presenting their solution for the string
corrected double-trace spectrum at orders A2 and )\_%, we will first take a digression
and review the flat space limit for Mellin amplitudes. This will allow us to determine

the order A~ 2 correlator for arbitrary external charges in a simple fashion.

5.1 Digression: the Flat Space Limit

Let us start by reviewing the general flat space limit formula for four-particle Mellin
amplitudes. This relation between AdS Mellin amplitudes and flat space physics was
motivated in [111] and explored further in [118]. This method was first applied to the
(2222) correlator in reference [119], and more recently extended to the (22pp) family of
correlators [100, 120]. Their discussion is based on previous work in AdSy x S* [121, 122],
whose logic we will follow here to extend the previous results to the general correlator

(p1pap3ps) with non-trivial (o, 7) dependence. In four dimensions, the relation reads?

L1 o0 2Bs 2ft
: 2, 724 _ L3-8
Jim M(L%s, 1) = fo 2)/0 dBBE3e Aplat( i ) (5.3)

where L is the radius of AdS, ¥ is half the sum of external charges, ¥ = W,

and Apy,; is the corresponding flat space amplitude, which we describe in detail below.

Here we will follow the logic of [122] and extend this formula to four-point functions
with arbitrary Kaluza-Klein modes as external operators. Starting from the above ten-
dimensional expression in flat space, we need to restrict the kinematics to the five-plane
R® ~ AdSs|; oo by integrating over the S® wavefunctions of the Kaluza-Klein modes
dual to O, where the integration over S® yields an additional factor of L5. Denoting the
ten-dimensional amplitude in transverse kinematics by A(fo) (s,t;0,7), the relation (5.3)

can be inverted to give

ot (s, t;0,7)

10
AU (s t:0,7) = SN TE-2)
O da 549 L*s L* (54)
lim LY a _(542) o ﬁ(i L7, )
Pt /_,-oo omi " My 2 202" 7))

where we made use of equation (5.2) to replace M (s, t) with the reduced Mellin amplitude
M(s,t;0,7), and N4 is a normalisation factor which we need to fix. Note that in our

case the relevant ten-dimensional amplitude we want to recover in the flat space limit

ZNote that the above relation (5.3) requires the use of the full Mellin amplitude M (s, t; o, 7) which
is related to the reduced Mellin amplitude M (s,t;0,7) as defined in (3.28) through the action of a
difference operator R corresponding to the factor Z. In the flat space limit s,¢ — oo, the relation is
given by

1 . .
Mg (s, t;o,7) ~ 1—692‘“(5, t;0,7) Mg (s, t;0,7), with ©5% (s, t;0,7) = (tu + sto + sur)’. (5.2)
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is given by the four-graviton scattering amplitude in type IIB superstring theory. This

amplitude admits the genus-expansion
Apa = Ko 2 R (A 4 2mg? AF™1 1 O(g1) ), (5.5)

where r2, = 6477 (a/)* and R* is a universal kinematic factor, which is fixed by super-
symmetry and hence factors out from the entire amplitude. In the case of four external
gravitons, it is given by a specific tensor-contraction of four Weyl curvatures [106].
When expanded, this kinematic factor encodes the amplitudes of all the states within
the ten-dimensional supermultiplet. Most importantly for our purposes, when restricted

to transverse kinematics as required by the flat space limit formula, it reduces to [122]

ofat(s,t;0,7)

4 _
Ri= 16 ’

(5.6)

and therefore it precisely cancels against the identical overall factor on the RHS of (5.4).

The tree-level amplitude A" in the above (5.5) is given by the well-known Virasoro-

Shapiro amplitude

[(—d/s/4)T(—a't/4)T (- u/4)

tree __
AT = L(1+o/s/AT(1+ o/t/4)T(1 + a'u/4)’

(5.7)

where s, t, u are the usual ten-dimensional Mandelstam invariants obeying s+t +u = 0.
The string theory parameter o/ = I2 can be converted into CFT quantities using the
relation o/ = A"2L2. The low-energy expansion of the amplitude (5.7) then corresponds

to an expansion in 1/A:

Atree - _ 64 (1 + stu C3 . )\_%L(; + stu (s

2 2 2 —-3,10
¢ AL ) 5.8
stu (o)3 32 Topa (& HE W) AL (58)

We can then fix the normalisation N4 in the flat space limit formula (5.4) by plugging
in the AdS supergravity Mellin amplitude Mz(?l 9 from equation (3.33), and comparing

it to the first term in the above expansion (5.8), giving

(/) By (o,7)

T3 »-_29

A (5.9)
Note that N4 has a non-trivial dependence on the su(4) cross-ratios through the fac-
tor B;ugra(o*, 7), which follows from the large s, ¢ limit of the tree-level supergravity

amplitude and is explicitly given by

1 8p1pap3ps o'
iugra(a 7_) —_ (510)
’ Z i1ilk! . - . —p3— ’
p 750 2.j.k. (P4342rp21 + Z)!(104321021 +j)!(\p1+P22p3 P4 4 /6)!

with & = pg + min {0, W#} — 14— j — 2, and the range of 4, j is such that & > 0

in the sum.
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With the normalisation factor fixed by the supergravity result, we can turn our attention
to the subsequent tower of string corrections. At each order in the 1/\ expansion,
the flat space limit of the tree-level Mellin amplitude has to match the corresponding
term in the expansion of the Virasoro-Shapiro amplitude (5.8). As a consequence, the
structure of tree-level string corrections in AdS is constrained by the structure of the
expansion (5.8), which we already implicitly assumed in equation (5.1). Furthermore,
the flat space limit completely determines the leading polynomial term in the Mellin
amplitudes Mg’n), leaving only the subleading polynomial terms unconstrained. For
the first string correction at order /\7%, this turns out to fix the entire amplitude, as we

will discuss next.

5.1.1 The Order A2 Correlator for Arbitrary External Charges

The first string correction arises from the order A~ term in the Virasoro-Shapiro am-
plitude, corresponding to an R* interaction vertex in the string theory effective action.
As such, the Mellin amplitude Mg 3)
fore has only one contribution, the constant term. It is due to this simplicity that the

is given by a polynomial of degree zero and there-

first string correction is entirely fixed by the flat space limit only: using the flat space
limit formula (5.4) for a constant Mellin amplitude and matching the A"3 term in the
expansion (5.8), we are led to the compact result
13 (E-1)3
MG = SR B o, ), (5.11)
with B;ugra given in (5.10). We can straightforwardly obtain the explicit position space
expression by performing the inverse Mellin transform of the above amplitude, giving
1,3 (E — 1)3 Cg p1t+p2+pP3—pP4 —

Hy Y = 0 By em) w T Do perapeta(usv). (5.12)
The above formula is consistent with the results for (2222) [119] and (22pp) [120], and
by construction obeys the correct crossing transformation properties. We checked ex-
plicitly for many cases that, upon decomposing into superconformal blocks, our general
result (5.12) contributes to spin 0 only, as expected from the R* correction term. Fur-
thermore, note that the above correlator contributes only to su(4) channels with a = 0,
which is a non-trivial property of the polynomial B8 (g, 7). This will be of particular
relevance when studying the order A% anomalous dimensions in the next section.
(1,3)
2
dimensional generating functional. In particular, we observe that the hidden ten-
1(71’0) (see Section 3.4.5)
remains unbroken by the first string correction! Due to the simplicity of the Mellin am-

Lastly, let us note that the above result for H can also be obtained from a ten-

dimensional conformal symmetry of the supergravity correlators H

plitude ./\/lg’g) the same construction for a generating functional from [112] goes through,
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and we have

3 ~ 3
HOY = Dy - u? 1), (5.13)

where 735 is the same differential operator as in the supergravity case.? In this way,
all correlators of arbitrary external charges are neatly repackaged and descend from the

1,3 -
same seed-correlator HéZQQ) o u? Dggas.

5.2 The Double-Trace Spectrum at Order A2

(1,3)
2
allowed us to solve the supergravity mixing problem to the first string correction. In

With the general correlator H at hand, we can now employ the same methods which
this section, we extend the set of unmixing equations encountered in the last chapter
to order A\"2. We then proceed by first solving the equations in the singlet channel,
before generalising the results to all channels [0, b, 0]. These string corrected anomalous
dimensions are of a surprisingly simple structure, for which we will provide an intuitive

ten-dimensional explanation in the next section.

5.2.1 The Unmixing Equations at Order A2

The unmixing equations are most compactly presented in their matrix form. We will
thus use the same matrix notation as we did in the supergravity case: for a given su(4)
channel [a, b, a], we denote by Ci, (¢, €) the matrix of three-point functions Cpgc with

(p,q) € Rz. Keeping only the leading terms in the large N expansion, we have
C[a,b,a] (t,0) = (C(O) + )\_%C(?)) + )\_%C(5) +... ) + O(a). (5.14)

Analogously, by 7™ we denote the diagonal matrix of the corresponding set of tree-

(1,n)

level anomalous dimensions npé’n , where n denotes the order in the A3 expansion. The
unmixing equations then follow by plugging in the above expansions into the supercon-
formal block decomposition of the interacting part of the correlator. Keeping terms up

to order a\~? and omitting all arguments for simplicity, we have

o(1) : A=cO (cnT (5.15)
O(a) MO0 = cO 7O (cONT, (5.16)
O(A"2): 0=Cc® (ctH" +c® (cO’, (5.17)
O(ar~2) MOD) = cOF® (CO)T 4 cO 75O ()T 4+ c® 7O (O, (5.18)

3See equation (3.43) for some explicit examples of 135 with low external charges.
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where in the first two lines we repeat the supergravity unmixing equations given already
in (4.48). Recall that the leading order SCPW coefficients A(t, ¢) are obtained from

disconnected free field theory, while the matrices M(1:0) (t,0) and M13) (t,0) are extracted
(1,0)
2

Also, note that the zero on the LHS of equation (5.17) comes from the fact that there

are no 1/\ corrections to the free theory.

from the log(u) parts of the known tree-level correlators H and 7—[;1’3), respectively.

In the last chapter we solved the supergravity unmixing equations (5.15)-(5.16), obtain-
ing C(©) and 7(°). With this data at hand, we can turn our attention to the next two
equations, with C®) and 77(3) as our unknowns. Note that, unlike the supergravity case,
the order A\~ 2 equations are linear in the unknowns. As before, we can verify that the
number of equations equals the number of unknowns, and as such this is a well defined
set of equations with a unique solution. In the following, we will first consider the singlet
channel and reveal a surprising simplicity in the first string corrections to the spectrum,

before generalising to all su(4) channels.

5.2.2 Singlet Channel Results

Let us start by describing the singlet channel solution to the above unmixing equations.
We obtain the necessary data, namely the log(u) part of the correlators HE)’;’Q) in the
singlet channel, from our new result (5.12). As expected, the conformal block decom-
position yields only spin 0 contributions. Solving the unmixing equations (5.17)-(5.18)

twist by twist, we find the surprisingly simple solution

~(3)  _ [ ) 3 _
T’[O,O,O] - { 1 ’07 o 70} ) C[O,O,O] - 0’ (519)
with 77§3) being consistent with the formula
3 _ G, 123 4 3 2
m = =gt DDt +2)°(E +3)7 - deo. (5.20)

Some comments are in order:

e The leading 1/A correction to the matrix of three-point functions C®) is identically
zero. A priori, such a correction is not forbidden by consistency of the OPE and

its vanishing is a very non-trivial result.

e The pattern of anomalous dimensions turns out to be remarkably simple: only the
operators with degeneracy label i = 1 (note that » = 0 in the singlet channel)
receives a A2 correction to its dimension, all other anomalous dimensions vanish.
This pattern follows from a ten-dimensional principle, which we will describe later

in Section 5.3.
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e For large t, the anomalous dimension has the asymptotic behaviour

3) G L4
y ¢ 5.21
771 840 9 ( )

a fact which will become important when comparing with the anomalous di-

mensions for other su(4) channels. Furthermore, 77%3) has the discrete symmetry

t — —t — 2, which we already observed in the supergravity anomalous dimensions.

e Lastly, together with the leading order three-point functions CEO) our result for

0,0,0]’
_(3) i . .
10,0,0] correctly reproduces the averages of squared anomalous dimensions derived

in [120], see equation (3.11) therein.

5.2.3 General Solution for All su(4) Channels

The above singlet channel results can be straightforwardly generalised to all su(4) chan-
(1,3)
i

equation (5.12): its dependence on the su(4) cross-ratios o and 7, which is determined

nels. First however, let us note a non-trivial fact about the H correlator from
entirely by the polynomial B;.ugra(a, 7), is such that it has support only on channels of
the form [0, b, 0], i.e. all channels [a, b, a] with a > 0 are absent from Hg’g). As a direct
consequence, we therefore have

) o c®

Masba) = laba] = 0, fora>0. (5.22)

For the remaining channels with a = 0, we repeat the computation described above and
find

3 3 3
77/\([0,)1)70] = {77§,()) ;0,0 70} ’ CEO,)b,O] =0, (523)

where only the first anomalous dimension with degeneracy labels (i,7) = (1,0) is non-
zero, and we find it is consistent with the formula
3 C3 2 (4) 2 (4
0y = —%Mf "M, (t = 1)3(t + b+ 1)3 - 600, (5.24)
where we set a = 0 in Mt(A‘) =@t—-1)t+a)(t+a+b+1)(t+ 2a+ b+ 2), which is
the same factor as in the supergravity anomalous dimensions, and note that we observe
again the discrete symmetry ¢ — —t — b — 2. The large ¢ limit of the above anomalous

dimension is independent of the quantum number b,

(3) G 14
— — t 2
nl,O 840 ’ (5 5)

and thus necessarily matching the singlet channel value (5.21). The non-trivial vanishing
of the three-point functions C(®) together with the simple pattern of the string anomalous

dimensions, as well as the above matching of their large twist behaviour across different
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su(4) channels, motivates us to consider a ten-dimensional principle behind these simple

patterns which we discuss next.

5.3 Constraints from a New Ten-Dimensional Principle

In Section 3.4.5, we briefly reviewed the recently observed hidden ten-dimensional con-
(1,0)
s 2

the A™2 correction in the form of equation (5.13). The discovery of this hidden sym-

formal symmetry of the supergravity correlators 4 "/, which coincidentally extends to

metry in [112] was in part motivated by the following observation: the supergravity

) ) (1,0)
anomalous dimensions 7,4

and the partial-wave coefficients of the flat ten-dimensional
2 — 2 scattering amplitude of axi-dilatons in type IIB supergravity share a common

Pochhammer structure in their denominators:

1 1
(l10 + 1)g <g+2(i+r)+a_M>Ga

(5.26)

where the LHS depends on an effective ten-dimensional spin £19 = 0,2, ... and the RHS
is the denominator of the supergravity anomalous dimensions (4.53), which depends on
the usual four-dimensional spin /¢, the su(4) channel [a,b,a] and the degeneracy labels

(i,7), whose definition we repeat for convenience:

_ ng—ﬂ a+ £ even,
i=1,...,t—1, r=0,...,u0—1, W= - (5.27)
L%J a + ¢ odd.

The correspondence (5.26) assigns a value of the effective ten-dimensional spin ¢y to

each long double-trace operator in the supergravity spectrum by the identification

1+ (_1)a+€

lo=0+20G+r)+a—1— 5

(5.28)

Note that in general this identification allows for many four-dimensional operators to
be assigned the same effective ten-dimensional spin £19. Heuristically, this observation
can be motivated as follows: in the ten-dimensional four-point correlator considered
in [112], the exchanged operators are built from a single ten-dimensional scalar field ®
and are given by bilinears of the schematic form [® 940 ®]. As such, there is only one
primary operator for each even spin f1g, which upon dimensional reduction results in
multiple four-dimensional double-trace operators descending from the same 10d primary.
Furthermore, their effective spin ¢1¢ is simply related to the number of derivatives in the

ten-dimensional theory.

Now consider the first string correction at order )\_%, for which we have computed the
spectrum of anomalous dimensions, with the result given in (5.23). Unexpectedly, we

found that only the first anomalous dimensions with degeneracy labels (i,r) = (1,0) in
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channels [a, b, a] with a = 0 are non-vanishing. A neat interpretation of this result can
be given by the assignment of ten-dimensional spin: as the order A3 string correction
descends from the R* supervertex, its ten-dimensional partial-wave decomposition con-
tributes only to spin 19 = 0. Considering the identification (5.28), there is a unique

choice of the four-dimensional quantum numbers satisfying that equation, namely
lip=0 = (E,Z',T, a) = (0,1,0,0), (5.29)
which exactly coincides with our explicit results for the spectrum.

The heuristic assignment (5.28) thus seems to correctly give a prediction for which four-
dimensional double-trace operators acquire an anomalous dimension, depending on the
allowed ten-dimensional spin f13. Note that this interpretation is also consistent with
the supergravity case, where operators of any even spin f1y are exchanged. As such,
equation (5.28) does not give any restrictions on the four-dimensional quantum num-
bers (¢,i,r,a), and indeed all operators are found to acquire a non-zero supergravity
anomalous dimension. On the other hand, by assuming this ten-dimensional interpre-
tation remains valid when considering further string corrections (which due to their
polynomial amplitudes yield only finite spin contributions to the partial-wave expan-
sion), we can deduce constraints on the spectrum of anomalous dimensions, as shown

above for the )\7% case.

As a second example, let us consider the next string correction at order A"3. The
A~3 term descends from the 9*R4 supervertex, allowing for ten-dimensional spins up to

l1p = 2. Using again the assignment (5.28), we find the allowed values

lo=2 = (Ci,ra)= (21,0,0), (1,1,0,0), (1,1,0,1),

(5.30)
(0,2,0,0), (0,1,1,0), (0,1,0,1), (0,1,0,2).

Together with the spin £19 = 0 contribution (5.29), we therefore expect the 8 states with
four-dimensional spins ¢ = 0,1, 2 in the various channels [0,b,0], [1,b,1] and [2,b,2] to

be the only non-vanishing contributions to the A3 spectrum.

There is one further implication of the relation to 10 dimensions, which concerns the ob-
served coincidence of the large twist behaviour of the order A~ anomalous dimensions,
recall equations (5.21) and (5.25). Note that for finite spin the large twist asymptotics
accesses the flat space limit, which can be understood from the inverse Mellin trans-
form (3.28): the flat space limit tells us to look at the large s,¢ behaviour, which in
particular translates into large powers of u in position space. Restricting ourselves to
finite spin contributions, we then see that large twist indeed corresponds to the flat space

limit. Schematically, for finite spin we thus have the correspondence

flat space limit ~ large twist asymptotics. (5.31)
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Therefore, at a given order in the 1/)\ expansion, we expect the same large twist asymp-
totics for all four-dimensional operators which descend from a common ten-dimensional
primary according to the identification (5.28), regardless of their four-dimensional quan-

tum numbers.

The above observations thus motivate the following general proposal:

o 7" =0, for fro(p) >n—3, (5.32)
e 7w only depends on £19(p) in the limit ¢ — oo, (5.33)
. 771'(2)1,1:0 is polynomial in ¢ of degree 8 + 2n, (5.34)
o . =0, for fyg() > n 3. (5.35)

The first constraint (5.32) says that 1 dictates the non-zero contributions to n, and
generalises the conditions from examples (5.29) and (5.30). The second condition (5.33)
is related to the restoration of ten-dimensional Lorentz symmetry in the flat space limit
(corresponding to the limit ¢ — oo, as discussed above). Next, the condition (5.34)
is an assumption on the anomalous dimension in the case of no partial degeneracy.
Furthermore, we expect the polynomial to obey the discrete symmetry (4.55). Lastly,
the fourth condition (5.35) demands that the columns of C™ corresponding to operators
with too high ten-dimensional spin vanish. Note that in the n = 3 case this implies
C®) = 0, since the first unmixing equation (5.15) implies up to rescaling that C(¥) is an

orthogonal matrix. Its first correction then leads to the equation
c® (T +c@ (cBH" =, (5.36)

and therefore, after a change of basis, C®) is antisymmetric. If all but the first column
vanishes then the whole matrix vanishes, in agreement with the explicit results described

before.

In the next section, we will consider the second string correction at order A3 and
describe how the above constraints can be used to set up a bootstrap problem, allowing
us to solve for both the correlator and the spectrum of anomalous dimensions at the

same time.

5.4 Bootstrapping the Order A3 String Correction

The second string correction at order A~3 descends from the #*R* term in the string the-
ory effective action, and as such gives rise to exchanged operators up to ten-dimensional
spin f19 = 2. This is a particularly interesting case to study, as it allows us to address

the partial degeneracy of the supergravity anomalous dimensions: according to equa-
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tion (5.30), in su(4) channels of the form [0, b, 0] with b > 2 we expect the (i,7) = (2,0)
and (1,1) anomalous dimensions to be non-zero, and the order A3 string correction
will thus determine the resolution of the first case of partial degeneracy.

1(51’5) are
not known for arbitrary external charges. Prior to our work, the only known correlators

Compared to the A~3 correction however, the necessary tree-level correlators M

were of the form (22pp) [100, 120], which is not enough to solve the full mixing problem

without further assumptions.? We thus have to come up with a set of conditions which
(1,5)
2

. In the following, we will describe the bootstrap problem

allow us to determine both the correlator M

(5)

. . 5
anomalous dimensions 7,4

and the corresponding spectrum of

and the conditions which achieve both of the above.

5.4.1 A Bootstrap Problem

Let us start with an ansatz for the general A~3 correlator in Mellin space. By using
(1,5)
2
Mellin variables and furthermore it determines the quadratic terms, such that we are
left with

the flat space limit of Section 5.1, we see that M is a degree two polynomial in the

M = G (2 = 15 BY=*(0,7) (5 + 2 + @)
(5.37)
+ap(0,7) s+ B5(0.7) t+75(0, 7)),

where the additional linear and constant contributions are left unspecified. The SCPW
coefficients J\/[](;m) of the above correlators are related to the spectrum of anomalous

dimensions through the unmixing equations, which in our matrix notation read

0=CcO (ctGH" £ ¢ (cT, (5.38)
M = cO 76 (COYT 4 cO 7 ()T 4 c6) 5O ()7 (5.39)

exactly mirroring the order A2 unmixing equations (5.17)-(5.18). Let us now spell out

the set of constraints we impose on the correlators Mg’@ and the OPE data:®

e We make an ansatz with finitely many coefficients for each of the unknown func-
tions oy (0, 7), By(o,7) and (0, T), constrained by consistency with the known

(22pp) results and crossing symmetry.

e On the OPE data, we impose the previously introduced conditions (5.32)-(5.35)

with n = 5, and hence the maximal ten-dimensional spin is £19 = 2.

“One can, however, solve the mixing problem in the singlet and [0, 1, 0] channel under the (erroneous)
assumption C® = 0, see Section 5 in reference [5]. This does not shed any light on the resolution of the
partial degeneracy, but allows one to correctly determine the (23p — 1p) family of correlators up to one
free parameter, despite the incorrect assumption c® =o.

®For more details on the individual points, we refer the reader to [8].
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By imposing these two sets of conditions we find a unique consistent solution for the
Mellin amplitude and the spectrum. We emphasise that the existence of a solution
consistent with the ansatz for the Mellin amplitude, crossing symmetry and the spectrum
constraints is highly non-trivial. The final form of the coefficients a; (o, 7), B5(0, 7) and
v (0, 7) is not very illuminating and can be found in [8]. Instead, let us focus on the

spectrum of anomalous dimensions.

5.4.2 The Order A~2 Anomalous Dimensions

According to condition (5.32) the anomalous dimensions 1(® are non-vanishing only for
019 < 2, constraining the possible values of their quantum numbers (¢,7,7,a) as shown

in (5.30). In order to explicitly give the individual anomalous dimensions, we use the
(5)

notation 7, rlta and we define the polynomial T as follows
G @ @ B B
Tivap = M N,” N ;
t,0,a,b 166320 t t+0+1 "t —t—2a—b—0—2 (540)

N =@t —1)(t+a)t+at+b+1),

where Mt(4) =(t—-1Dt+a)(t+a+b+1)(t+ 2a+ b+ 2) is the same factor as in the
(3)

. . : 3
numerator of the supergravity anomalous dimensions and note that 7y ¢—0a=0,6 ~ 17>

see equation (5.24). For spin ¢ = 2 we must have i = 1, r = 0, a = 0 and we find

7753\270 = Tep00 (E+1)(E+2)(E+b0+2)(t+ b+ 3). (5.41)

For spin £ =1 we have i = 1, r = 0 with either a =0 or a = 1:

10 = §Tin0s (E+D(E+b+2)(26B b+ 1) +b), (5.42)
nfgug =Tiiap tt+2)E+b+3)(t+b+5). (5.43)

The spin zero anomalous dimensions have support on a = 0,1,2. For a = 1,2 we have

only i =1 and r = 0:

775‘?3\0,1 = 5Te0,1 t(t +0+4)(20° + 2(4 + b)t + b+ 6), (5.44)
0 0s = Trozs L+ )5 +b+1)(6+b+1). (5.45)

In all the above cases we have C(®) = (. Finally, the case a = 0 allows for two or three
components depending on the values of ¢t and b. Using the definition 8 = 2t + 2 + b, the

i = 1 component reads

6  _
771’0‘070 - Eﬁ,0,0,b fb,t,

e 2 e e (5.46)
for = (0% — bo)* — 35(6% — by) — 34bg + 639,
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with by = b(b + 4). Lastly and most interestingly, we arrive at the first case of partial
degeneracy: the (i,7) = (2,0) and (1,1) components read

7753‘070 = 71005 (Jbt — 103k ), nfl)m,o = 171005 (bt + 10/ ko t) (5.47)

with the quartic polynomials j;; and k¢ given by
ot = % for — 2(6% + by + 21), kbt = jot + (0% + bo) (0% + by — 10). (5.48)

Note that the residual partial degeneracy observed in supergravity is lifted by the square

root term, and in the £ = a = 0 case we have C(®) £ 0.

5.4.3 Comments on the Resolution of Partial Degeneracy

The results of the previous section provide the full spectrum at order A"3.6 In the
first case where residual degeneracy is present in the supergravity spectrum, the A3
corrections resolve it. Due to the residual two-fold mixing problem, the appearance
of square roots in the anomalous dimension is to be expected; this did not happen in
supergravity due to the hidden ten-dimensional conformal symmetry. However, in some

special cases the square roots in (5.47) have to disappear:

e When t = 2, there is no degeneracy and only two states acquire an anomalous

dimension. The above results for the two degenerate anomalous dimensions are

(5) (5)

consistent with this, since kyo = j22/100 such that 7, 00,0 1,1/0,0

vanishes and 7

becomes rational.

e When b = 0 or b = 1, there is no degeneracy for any ¢ (since p = 1 in (5.27) for

those cases) and the square roots disappear again.

e In the flat space limit ¢ — oo the square root terms are suppressed and degeneracy

is restored, respecting the ten-dimensional Lorentz symmetry.

The disappearance of the square roots in these cases is a strong check of the consistency

of the solution. Finally, all the anomalous dimensions have some shared features.

e When expressed in terms of the twist 7 (or § = 2t + 2a + b + ¢ + 2) instead of
t, they really depend on the su(4) labels only through the Casimir combination
be = b(b+ 4+ 2a).

e They enjoy the discrete supergravity symmetry ¢t — —t — £ — 2a — b — 2: this in

turns means that all the quartic polynomials f, 7 and k are actually quadratic in

5Note that the anomalous dimensions given here differ from those conjectured in [5], since we have
found here that C®® £ 0 in general.
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2. We partly imposed this property as a part of condition (5.34), but in many

examples it was found to follow from the other assumptions.

5.5 Conclusions

In the last two chapters, we have presented a detailed analysis of the double-trace spec-
trum of N/ = 4 SYM theory in the supergravity limit. Firstly, we have shown that the
known tree-level supergravity results contain all the necessary information to resolve
the degeneracy of the double-trace operators in the large N limit. Our results for the
leading order OPE coeflicients are surprisingly simple, and we find it remarkable that
the result for all supergravity anomalous dimensions admits such a simple and fully
factorised formula as (4.53). Furthermore, the fact that the orthogonal C matrices of
the universal structure (4.45) exist is surprising, considering that modifications of the

square root factors typically lead to no orthogonal solutions at all.

Secondly, we have found a surprisingly simple structure in the string corrections to the
double-trace spectrum at orders A2 and )\_%, which is related to an effective ten-
dimensional spin £19. At order )\_%, the flat space limit completely determines the

)

correlators 7—[1(;1’3 for all external charges, and we observed that the ten-dimensional
conformal symmetry extends to the first string correction. Furthermore, we have found
that only anomalous dimensions with ¢;5 = 0 are non-zero, and as a consequence the
string corrected three-point functions vanish identically, i.e. C®) = 0. On the other
5 . . . . .
hand, the order A™2 correction allows for ten-dimensional spins up to ¢1p = 2, allowing
for a richer spectrum. Nevertheless, we were able to set up a bootstrap problem which

)

determines both the correlator 7—[1(;1’5 and the spectrum of anomalous dimensions at the
same time. It turns out that C(®) is non-vanishing in general, and more importantly we
have found that the residual degeneracy in the supergravity spectrum is resolved by the
order A3 correction, thus explicitly breaking the ten-dimensional conformal symmetry.
Notably, in the large twist limit (corresponding to the flat space limit), the anomalous
dimensions recombine such that degeneracy and ten-dimensional Lorentz symmetry is
restored. The explicit formulae for the order A2 and A\~ 3 anomalous dimensions derived
here will enter the computation of string corrections to one-loop correlators described

in Section 7.

We believe that the methods for bootstrapping string-corrected tree-level correlators
described here will continue to be effective at higher orders in 1/\, with the next case
being the order A\~3 correction. However, one caveat is the number of free parameters
which grows with the order in 1/A, as higher order Mellin polynomials (corresponding
to a larger effective spin ¢19) are allowed in the ansatz for the Mellin amplitude. In
particular, there will be a growing number of undetermined coefficients which are left

unfixed by the bootstrap constraints (5.32)-(5.35). Although these coefficients are pro-
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portional to previously found solutions to the bootstrap problem and thus correspond
to known amplitudes from lower orders in the 1/ expansion, we nevertheless can not
independently fix their values. For example, there are two such free parameters in the
order A3 amplitude: one corresponding to a constant Mellin amplitude (i.e. the order
A3 result), the other one corresponding to a linear Mellin amplitude (this would be
the order A2 amplitude, which however comes with coefficient zero in the expansion
of the Virasoro-Shapiro amplitude, see equation (5.8)). One method of fixing those two
remaining parameters is to make use of the constraints obtained by supersymmetric
localisation techniques in [100, 104, 105]. These localisation results can in principle be
expanded to any order in 1/\, but they will provide only a finite number of constraints.
A naive counting reveals that there are enough independent constraints to go at least
two orders further in the 1/\ expansion than the results presented in this thesis. We
hope that our future investigations will bring us a step closer towards the ultimate goal
of our tree-level bootstrap program: the construction of the analogue of the Virasoro-
Shapiro amplitude (5.7) on a curved background, i.e. the full tree-level amplitude of

type IIB superstring theory on AdSsxS°.

It would also be fascinating if the results for the double-trace spectrum at strong coupling
discussed here could be compared with the corresponding results obtained in perturba-
tion theory. There has been a lot of progress in pushing the weak coupling results to
finite values of the coupling using methods based on integrability [123-127], but there
is a conceptual obstacle which prevents the direct comparison of results: the spectrum
of exchanged operators at finite coupling is much richer than in the supergravity limit
studied here. In particular, there are unprotected single-trace operators (corresponding
to excited string states which decouple in the supergravity limit) which are also present
in the spectrum and mix with the familiar double-trace operators. As such, one would
require additional information in the form of correlators with more general external oper-
ators to solve the mixing problem. Nevertheless, from the structure of string corrections
to the double-trace spectrum discussed in this chapter, we expect that for finite values
of the coupling A the residual degeneracy of the supergravity anomalous dimensions will

be completely lifted.

Finally, while we have focussed on N' = 4 SYM theory here, the phenomenon of large
N degeneracy and the associated problem of operator mixing is presumably common
to many holographic theories. Essentially, the mixing problem arises because of the
presence of a compact factor in the gravity background (here given by S®), which leads
to a tower of Kaluza-Klein modes related to the massless graviton multiplet. For fixed
twist and spin, one will then typically have many double-trace operators with equal
classical dimensions, which generically will mix. It would be interesting to consider

both other models and the generic structure of the spectrum of large N CF'Ts further.
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Chapter 6

One-loop Correlators in

Supergravity

This third part is devoted to the construction of order 1/N* corrections, corresponding
to one-loop amplitudes in AdS, using information from the tree-level data we discussed
previously. In this chapter we will focus on one-loop supergravity correlators, leaving
the discussion of one-loop string corrections for the final chapter. Our approach will
solely rely on implementing the consistency of the SCPW decomposition to order 1/N*,
and as such our results are naturally written in their position space representation. A
complementary approach using the Mellin space formalism has recently been employed
to obtain the Mellin amplitudes for the one-loop (2222) correlator [128, 129], and a first
generalisation to the (22pp) family of correlators [95]. In contrast, we will describe an
algorithm which solves the analytic bootstrap program for one-loop supergravity corre-
lators of generic external single-particle Kaluza-Klein states. Compared to correlators
with two graviton multiplets as external states, which receive contributions from a re-
stricted set of exchanged operators and thus are of some physical simplicity, considering
the general case presents a network of new complications which we will address in the

following.

6.1 General Outline

Let us recall the result of the partial non-renormalisation theorem, which restricts the

general four-point correlator to take the form

(P1p2p3pa) = (P1P2P3P4) free + P L(x, T, y, §) Hy (u,v; 0,75 A), (6.1)

where, contrary to the free theory, the interacting (dynamical) part Hz depends both

on N and the 't Hooft coupling A. In this chapter, we will focus solely on the order zero

75
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terms in the 1/\ strong coupling expansion, and hence we drop the A dependence for

now.

In Section 2.5 and together with Appendix B, we studied the SCPW decomposition of
the free theory. In particular, we split the free theory correlator (pi1papsps)ee into a
part with only (semi-)short contributions to the SCPW expansion, and a part with only
long contributions which we denoted by (p1p2p3P4)free long: S€€ equation (2.40). We will
now incorporate the dynamical part Hz and specialise to the long sector. It will be

convenient to distinguish the two 1/N expansions,

0 1 1
(P1DP2D3D4) free long = <p1p2p3p4>§rge long T m<p1p2p3p4)§re)e long T -+ - 62

_ o, 1o
where for general external charges we choose the expansion parameter to be 1/N? instead
of the previously introduced a = 1/(N? — 1).! The notation we will use to refer to the
SCPW expansion of the long sector of (p1papsps) (i-e. the long sector of the free theory
together with the dynamical part), up to order 1/N4, is

0 1 1
(Prp2pspa) g = log%(u) Y (Lf?j + WL%} + N4L;;;> Lyw+ ... (6.3)
7'_’
1 Lo, 1,

7

1
+log(u) 3 (N4NI§2;> Ly, (6.5)

7

where the ellipses stand for omitted terms with 7-derivatives of the blocks, which are not
important for our purpose here. In the above equations we clustered together various
contributions within each log(u) stratum, and we did not specify the ranges of summa-
tion. In fact, understanding the precise ranges of summation for different contributions

needs extra explanations, which we will provide shortly.

First however, note that the log(u) and log?(u) terms receive contributions only from
the dynamical function H;, whereas the non-log projection (6.3) is subject to non-trivial
interplay between the free theory and the dynamical part, since beyond leading order

both contribute to the 1/N expansion:

RSO FACY
pF T BT
| . | (6.6)
(@) _ 7 f6) H (@) :
Lye=Ly. + L5, for i > 1.

The SCPW coefficients in equations (6.3)-(6.5) are predicted by the OPE, and in par-

ticular they depend on the spectrum of exchanged operators. As discussed in detail in

'For correlators of the form (22pp), we will however still use a as the expansion parameter, since with
@ _g

this choice the free theory correlator contributes only to the first two orders in a, i.e. (22pP)lc 1ong
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o) T:bo;lfeld
resho
S S e | O
Cpipai7 = Window = Cpopy:7
i B T=p3+p4
O(l/NQ) Below °
Window ¢ O(1/N?)
T=2a+b+4 °
T=2a+b+20---------- .

Figure 6.1: The large N structure of Cp, p,.7 Cpgypy;# for two-particle operators K,q in an su(4)
representation [a, b, a] and varying twist 7.

previous chapters, the supergravity spectrum consists of the single-particle states O,
and multi-particle states built from products of the single-particle ones. Importantly,
multi-particle operators corresponding to bound states of more than two particles do not
have leading order three-point functions with the external operators, and therefore do
not appear in the OPE at leading order. In other words, only the three-point couplings
Chpipjkpqs Where KCp denotes the set of true two-particle scaling eigenstates introduced in
Section 3.3.2, have a leading contribution in the large N expansion. Since the operators
Kpq with leading order quantum numbers 7y = (79,4, [a, b, a]) are mixtures containing
some contribution from every double-trace operator O,,.z, they will have leading order
three-point couplings at twist 7 > p; + p;. On the other hand, exchanged two-particle
operators with twist in the range 2a + b+ 2 < 7 < p; + p; do not receive any contri-
bution of the form O,,,..7, and therefore necessarily have 1 /N? suppressed three-point
couplings, i.e.

(1) L
Cpiplepq B Cpipj’CPq T ﬁ Cpipjlcpq T (6'7)

with CZ()?Z))]_ Kpa # 0 only for 7 > p; + p;. Note again that we have disregarded any 1/A

terms in the above expansion.

The exchange of two-particle operators in the common OPE of a four-point correlator

(p1p2pspa) gives a contribution of the form C), .7 x C

P1P2;T P3P4;TH
quantum numbers 7. Putting together two of these, we obtain a representation of the

for different values of the
common OPE coefficient as in Figure 6.1, leading to the following three regions:

e Above Threshold: for 7 > 7™ = max{p; + po2,ps + pa}, we find exchanged

operators for which both three-point couplings are leading order, i.e. 01(2%2 and

max

CZSQ;M are both non-zero. In particular, 7% is the threshold twist for the exchange

of long two-particle operators in disconnected free theory, giving rise to L;(TO; in

)

equation (6.3).



78 Chapter 6 One-loop Correlators in Supergravity

e Window: in the window region 708 > 7 > 7™in =

min{p + p2, p3 + pa}, we find
exchanged operators which have leading order three-point couplings with one pair
of external operators, but 1/N? suppressed three-point couplings with the other

pair of external operators, e.g. we have C}(,%Q =0 but C,(,g);M non-zero.

(0) (0)

min _ _
we have Cpp, = Cpspy, =0

e Below Window: in the below-window region 7 < 7
and the OPE contains contributions which only involve products of 1/N? sup-
pressed three-point couplings. These contributions give rise to a genuine 1/N*

effect which enters the SCPW coefficients Lg; in equation (6.3).

Note that for any arrangement of external charges, there is always a threshold twist such
that a tower of long operators is exchanged, whereas the window itself might be empty
(if 7m0 = 7max) - Similarly, the location of the unitarity bound in Figure 6.1 depends
on the external charges. Generically, the unitarity bound 7 = 2a + b + 2 is below the
window, but there are two other situations which do occur. Firstly, the unitarity bound

can coincide with 7™, i.e 7™" = 2a 4+ b + 2, in which case there is no below window

max

region. Secondly, the unitarity bound can coincide with 72%, in which case there is an

empty window and 7 = 7™ = 9g 4 b + 2.

With the above discussion in mind, let us revisit the log(u)-stratification from equa-
tions (6.3)-(6.5). The OPE predicts the following form of the SCPW coefficients for the

indicated ranges of the twist of exchanged operators:

max . o) _ (0)
T Z T a . LEF — Z 1172qu p3p4K:pq (68)
(pe)eRz
1 _1 (0) (0)
Myz =5 3 Comiy Mus Cogpurcye (6.9)
(pg)ER~
2 _1 (0) 2 (0)
NﬁF ) Z CPlPQICpq nKPq Cp3p4leq’ (610)
(pg)ER~
max min , 1 _ (1) (0) (0) (1)
T >T2T ’ L_’ﬂ:‘ o Z CPlPZquCPSMqu + CPlPZquCPis‘PUCpq’ (6'11)
(pq JER-
(2) (0) (0) (1)
Mﬂﬂ? Z 1P2’Cpq n’CPq Cp3p4’Cpq + C 1P2qu nlcpq Cp3p4lcpq7
(pq JERz
(6.12)
min , 2 _ 1)
TT . L**’F - Z 1p2]Cpq p3p4/Cpq (613)
(pg)€R5

where the set of exchanged double-trace operators Rz has been defined in (3.18), and
(1,0)

N,y = 2Mpg  is the supergravity anomalous dimension derived in Chapter 4, see (4.53).

Our next task is to leverage data coming from the known tree-level four-point functions,
specifically the SCPW coefficients L(9), L) and M™)| in order to obtain information

about the one-loop four-point function, in particular the entire double-log discontinuity,
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N@ | but also pieces of the single-log part M@ and analytic part L2 .2 In order to
have better control over the various phenomena taking place in equations (6.8)-(6.13),

let us recall the three regions shown pictorially in Figure 6.1:

e Above Threshold: the leading-log SCPW coefficients L(®, M® and N@ have
contributions above the threshold only. Similarly to the unmixing of the super-
gravity anomalous dimensions discussed in Chapter 4, we will use the knowledge of
L and M® from many different correlators to bootstrap the double-log contri-
butions N2, However, it is important to point out that for general correlators the
knowledge of the double-log alone is not sufficient to fully determine the one-loop
correlator consistently, since there are non-trivial parts of the correlator which will
have to be determined by data below the threshold.

e Window: the significance of this region is that the leading order three-point func-
tions are vanishing on one side, but not on the other. This allows us to use the
tree-level SCPW coefficients L(!) to predict a part of the single-log contributions
M@,

e Below Window: in this range of twists one can predict a piece of the analytic or
non-log(u) contribution to the one-loop correlator. Again, we will use lower order
data, specifically results from L) from many correlators, to determine the below

window contributions L(2).

The precise details on how to obtain these predictions will be described in the following.

6.2 Predicting the One-Loop Double-Log

Let us begin with the 10g2(u) discontinuity. Because of the mixing of exchanged double-
trace operators we will again need data from many different correlators, whose SCPW
coefficients we will conveniently package into matrices. To this end, we will adopt a
similar matrix notation as in Section 4.4, where hatted quantities stand for matrices of
SCPW coefficients from correlators (p1pepsps) with (p1,p2) and (ps,ps) € Rz. Recall
that the set of exchanged operators Kp, is parametrised by pairs (p,¢) in the set Rz,
defined previously in (4.46), and its dimension is d = p(t — 1). Promoting equation (6.8)
into matrix notation, we have

L9 = (chT, (6.14)

7

2Note that correlators with general external charges will generically get contributions from su(4)
channels [a,b,a] with b > 2, where the supergravity anomalous dimensions 7, exhibit a residual
degeneracy. This degeneracy means it is not possible to fully unmix and determine all leading order
three-point functions in those channels. Nevertheless, it is possible to overcome this problem and we
will discuss how to bootstrap one-loop data from tree-level correlators even in su(4) channels with a
remaining partial degeneracy.
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where C;O) is the d x d matrix of leading order three-point functions c© with

P1P2’Cp3p4
both (p1,p2) and (p3,ps) € Rz. Furthermore, the matrix of SCPW coefficients L(FO) is

diagonal and explicitly given by formula (4.49). Similarly, converting equation (6.9) into

matrix notation yields
7 0) ~ ONT
MY =19 7 (T (6.15)

with 7z being the (diagonal) matrix of supergravity anomalous dimensions. Using this
matrix form it is now straightforward to see that the SCPW coefficients contributing to

the log? (u) discontinuity at one-loop are given by

N® =
(6.16)

where the second equality follows from equations (6.14) and (6.15), allowing us to predict

the one-loop leading-log coeflicients IV, @

~ from tree-level data only. Note that the above

formula does not require us to explicitly find the anomalous dimensions 7= nor the three-
point functions C;O) themselves. This fact is important as it allows us to deal with su(4)

channels in which the anomalous dimensions remain partially degenerate, in which case

(0)

the matrices C..” are not fully determined.

Once the coefficient matrices N. ;2) are assembled using formula (6.16), we can simply

extract the entry corresponding to the (p1papsps) correlator and obtain the full one-loop

double-log discontinuity by performing the sum

(2) _ @)
M g2y = 2 Nypz Lor (6.17)

2

7

with the sum restricted to twists 7 > 7% and we recall that the long blocks take the
form Lgz = Py x I x Eﬁ;;, see (2.33). By explicit computation of (6.17) to high order in
the twist we obtained the resummation of the leading-log discontinuity in a number of
cases. It turns out that, as a function of the external charges, it always has the structure

_ Pyi(x,750,7)

(2) P o(z,z50,7)
/Hp_’ ’logQ(u) o

[Lis(2) — Lia(z)] + s [Lif (z) — Lif(z)]

W (x — ) )
W [Liy(z) — Liy(z)] + W log(v) (6.18)

PO(‘TVCE;U)T) 1
)d5+7 ,UlﬁﬁfZ’

(x —x

where 5 is the degree of extremality defined in equation (3.13), dy is given by
dy =p1+p2+p3+ps—1, (6.19)

and the coefficient functions P in the above are certain polynomials depending implicitly
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on the set of external charges . These polynomials are obtained by matching the series
expansion in small x and Z of (6.18) against the sum over long blocks in formula (6.17),
where each conformal block (of twist 7 and spin £) has a series expansion of the form
u™(1 — v)’f(x,Z), with f(x,Z) being a symmetric function. We call an expression of
the form (6.18) a two-variable resummation. Since the log?(u) discontinuity only re-
max

ceives contributions from long operators above the threshold twist 7 > 7

%I(f)hogg (u) tO 80 like u(™""*=P13)/2 for small u.

, we expect

Finally, let us mention that there is another way to directly obtain the double-log dis-

continuity of HS)
above. In fact, by exploiting the hidden ten-dimensional symmetry of [112] one can

, without the need to perform the two-variable resummation described

find an explicit formula for the one-loop leading discontinuities by making use of the
differential operators ﬁﬁ. We have checked for many cases that the results obtained
from these two different methods agree. More details and explicit formulae for this very

neat alternative way can be found in e.g. [6, 112].

6.3 The (2222) Correlator

Before continuing the general discussion of the window and below window contributions,
let us consider a first explicit example. In this section, we will consider the (2222)
correlator, which is of particular physical significance and is the simplest correlator to
study. It has degree of extremality ko992 = 2, and as such its interacting part Hoooo has
only one su(4) channel, namely the singlet channel. As a consequence, Hag2o does not
depend on the internal su(4) cross-ratios, and furthermore the full crossing symmetry

of the correlator implies the relations

1 u?
Hooo2(u,v) = 2 Hogoo(u/v,1/v) = 2 Ha222(v, u). (6.20)

In the following, we will discuss how the knowledge of the log2(u) part together with
constraints from the above crossing relations and the absence of unphysical poles allows

us to determine the one-loop contribution 7—[522)22

6.3.1 Resummation of the log®(u) Discontinuity

By explicitly assembling the SCPW coeflicients of the logQ(u) discontinuity according

to equation (6.16) and performing the two-variable resummation of the sum (6.17), we

obtain

Lil(ll?)Q - Lil(f)z
r—2x

+ 2 {p(u, v) + p(i, Zﬂ LiQ(:C:Z - 212(5)
Liy (z) — Lis ()

r—Xx

2 u
7{§2)22 ’10g2 (w) :; [p(u, v)

+ q(u,v)(Liy (x) + Liy (2)) + r(u,v) + s(u, v)} . (6.21)
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where p, q,7, s are rational functions of u, v with denominator (z — z)'4. Note that the
above expression agrees with the general form given in equation (6.18). This double

discontinuity was also obtained in references [130, 131].

The coefficient function p is symmetric p(u,v) = p(v,u) as required by crossing since
the double discontinuity in both w and v comes only from the first term in (6.21) which
contributes p(u, v) log? ulog? v and hence must be symmetric in v and v. As we will see,
the fact that the coefficient of the Liy term is related simply to the same function p(u,v)
is a hint at an additional simplicity in the final amplitude. It is possible to write the

coefficient p(u,v) in quite a simple form,

202(1 —u—0)[(1 — u —v)* + 20uv(1l — u — v)? + 30u?v?]
(x —x)10 ’
(6.22)

p(u,v) = 96uvd202 “

whereas the other coefficients are more complicated and we will not give their explicit
expressions. Instead, we will proceed to construct a fully crossing symmetric function
7—[522)22(11,1)) with the correct log?(u) discontinuity. The remaining coefficients in (6.21)

can then be obtained from the full function by taking the double discontinuity.

6.3.2 Completion to a Crossing Symmetric Amplitude

Having obtained the double discontinuity from resumming the OPE, we make an ansatz
for the form of the full crossing invariant contribution to supergravity at one loop. In
order to construct a suitable ansatz we note that the tree-level supergravity function
7—[§12)22(u,v) is expressible in terms of a D-function, which itself is a particular combi-
nation of derivatives acting on the one-loop box function ®(!)(u,v). This means that
it is expressible as a combination of single-valued polylogarithms of weights 2, 1 and 0
with rational functions of z and Z as coefficients. The particular class of single-valued
polylogarithms of interest here are linear combinations of polylogarithms constructed on
the singularities (or ‘letters’) {x,1 —z,z,1 — Z} such that they are single-valued when z
is taken to be the complex conjugate of x. They are constructed in general in [132] and
appear in many contexts, such as in perturbative contributions to the correlation func-
tions (p1pap3pa) [33, 35], in multi-Regge kinematics of scattering amplitudes [133, 134]

as well as Feynman integral calculations [135, 136].

Since our result for the double discontinuity Hg)m‘logg (u) 18 expressible in terms of log-
arithms and dilogarithms, it seems a natural choice to construct an ansatz for the full
function 7—[522)22(% v) from the same class of single-valued polylogarithms, but this time
of weights 4, 3, 2, 1 and 0 with rational functions as their coefficients. We then impose
crossing symmetry and the fact that the double discontinuity must match our result

given in equation (6.21).



Chapter 6 One-loop Correlators in Supergravity 83

The constraints described in the previous paragraph fix completely the weight 4 and
weight 3 parts of the result with rational coefficients which are determined by the coeffi-
cients appearing in H§22)22}10g2 ()" On the other hand, the weight 2, 1 and 0 parts are not
fixed completely by matching to the double discontinuity. Since the double discontinuity
has a total of 15 powers of (z — Z) in the denominator, so do the rational coefficients in
the weight 4 and weight 3 parts. This leaves the possibility that the resulting function
has unphysical poles at x = Z. In order to make sure that poles at x = Z are in fact
absent, we have to arrange the weight 2, 1 and 0 parts so that they cancel those of
the weight 4 and weight 3 pieces. We then allow a maximum of 15 powers of (z — Z)
in the denominators of the coefficients of the weight 2, 1 and 0 parts of the ansatz to
match the denominators in the weight 4 and weight 3 parts and demand that all poles
at x = T cancel. We also demand that the twist-two sector is completely absent from
7-[§22)22(u,v).3 These constraints completely fix the answer within our ansatz up to a

single free coefficient.

We find that we can express the final crossing symmetric result in terms of the so-
called ladder integrals [137, 138]. These are a particular subset of the single-valued

polylogarithms under consideration here. They are given by

3O (u, ) = — 1_¢><”( vz ) (6.23)

where

l

oW (z,z) = Z(—wm log" (27) (Lig—(x) — Liy—(%)). (6.24)

r—=

The functions &) obey the symmetry

& (u,v) = W (v, u), (6.25)
while 1) also obeys
1 1 v
oW (2 2) =@ . 2
Lo (1) =00w) (6:26)

Our final result for the one-loop correction contains a single unfixed parameter within
the ansatz outlined above. We first quote a particular solution where we set the free
parameter « to zero, and we will come back to the ambiguity later. Our particular

solution is given by the crossing symmetric combination

u u

a1, 0) = = | () + if(l, ”) + if(i Z)} (6.27)

3Recall that the twist-two long operators are absent from the supergravity spectrum and the cancella-
tion of such contributions between (2222>(1) and (2222><1) is complete due to the choice of a = 1/(N?—1)

free int
. . . . . 2
as our expansion parameter. Therefore there should be no twist-two contributions in Hé;m.
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To simplify the presentation of the function f(u,v) we write
flu,v) = AWg(u,v), AW = (z — ) uwd?d%(x — z). (6.28)

Furthermore we can decompose the function g into pieces according to the transcendental

weight of the polylogarithmic contributions
g=(z—2) W 4 ¢® 4 ¢@ 4 g 4 4O7, (6.29)

The pieces of given weight are then as follows,

4)(u,v) = P£ (u,v)q) ( v),

), v) = PP (u, 0) T (u,v) + PP (u, v) log(uv) @D (u, v),
g(2) (u,v) = Pf (u,v)logulogv + P( )( )q)(l)(u,v), (6.30)
9 (u,v) = P (u, v) log(uv),
9% (u,v) = PV (w, ),

where the function ¥(u,v) is a particular derivative of the two-loop ladder integral:

U(u,v) = (z — 7)(udy + vdy) [(z — 7)®P (u, v)]
x z 6.31
= [o(1 — )0, — 7(1 — )9;] ( > (6.31)

xr—1"7—1

The coefficients Pj(tr) (u,v) in (6.30) are symmetric polynomials in  and v. The subscripts
4 correspond to the symmetry properties under z <> Z of the pure transcendental
factor that each coefficient P(") multiplies (antisymmetric for the ladder functions and
symmetric for constants, for logarithms of w and v and for ¥(u,v)). Note that the
weight four piece is entirely expressible in terms of o2 (u,v), whose transcendental part
is antisymmetric in  and Z. In principle there could have been a symmetric part, e.g.
®W (u,v)?, but in fact our function does not have such a contribution. The fact that
the weight four piece is given by ®(2) (u,v) only implies the relationship between the
coefficients of the Lis terms and the Li? terms in the double discontinuity (6.21).

To express the coefficient polynomials it is helpful to introduce symmetric variables
s5=1—-u—w, p = uv. (6.32)

The coefficient polynomials are then given by

PW (u,v) = 384p?5[5* + 20p3% + 30p?] (6.33)
32
PP (u,v) = €p2[137§4 + 1214p3% + 512p7] , (6.34)

PP (u,v) = 1344p[5(1 — 5)(6 — 65 + 52) + 2p(3 — 145 + 45%) — 16p7 , (6.35)
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PP (u,v) = 8[(1 — 5)28° — 2p5*(20 — 335 + 145°)
+ 8p? (756 — 13235 + 6015% — 545° 4 305) (6.36)
— 32p3(583 — 255 + 265%) + 1024p"]
PP (u,v) = 224p*[—5%(2 — 5)(18 — 185 + 552)
+ 2p(108 — 1445 + 1285% — 115°) — 8p*(63 — 5)], (6.37)
P (u,v) = %[557(2 — 35) — 2ps°(158 — 1935)
+ 16p?5(378 — 5675 + 2335% — 1475°) (6.38)
+ 32p3(378 — 1395 + 1295%) + 256p*],
PO (u,v) = 1%(:5 — 7)2[20(1 — 5)3° — 5pst(102 — 755 — 45%)
+ 8p? (630 — 6305 + 48152 — 2555° — 305) (6.39)
— 16p3(217 — 2155 — 605%) — 1280p™].
The terms involving P£4), f), Pf) contribute to the double discontinuity and therefore

the coefficients are related to those appearing in (6.21). In particular we have

o)
e C ”)] . (6.40)

p(u,v) = i(m —)AW [(m—:c)ll

The ambiguity in the result is much simpler. In fact all terms proportional to the single
free parameter o can be expressed in a similar way to the tree-level amplitude,

a %[(1 + uBy + 00, udy 0y 20W (u, v) . (6.41)
At this stage our solution is given by the particular solution H522)22 (u,v), as described in
equations (6.27)-(6.39), plus the ambiguity in equation (6.41) above. When written out
in terms of single-valued polylogarithms with rational coefficients, the above ambiguity
has 13 powers of (z —Z) in the denominator. In terms of D-functions it can be expressed
as u*Dy444. Note that the ambiguity (6.41) has no double discontinuity, has no unphys-
ical poles, is fully crossing symmetric and has no twist-two contribution. As such, our
bootstrap approach is not able to fix its coefficient oz and we need to rely on different

methods to determine it. One such method is given by supersymmetric localisation,

which (in the conventions used here) determines the value of « to be [104]
a = 60. (6.42)

In principle there are further ambiguities we could add within the class of single-valued
polylogarithms multiplied by rational functions. However, these all have higher powers
of (x — z) in the denominator than the 15 we allowed above and they correspond to
crossing symmetric D-functions with higher weights. Indeed such functions have arisen

in the context of tree-level string corrections, see e.g. [5, 77, 100, 120].
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We should sound a note of caution that what we have presented is not strictly a derivation
of the one-loop correction. It is possible that the true answer differs from the expression
we have constructed above by a function that itself has no double discontinuity, no
unphysical poles, no twist-two sector and is fully crossing symmetric on its own. Finally,
it is also possible that there are functions which do not sit in the class of single-valued
polylogarithms that we have allowed. However, it is highly non-trivial that we are able
to find a solution, unique up to a single free parameter within the simplest class of
functions we are led to consider, and we take this as a very strong encouragement that

our amplitude is in fact correct.

6.4 The (2233) Correlator

The next simplest case to consider is the one-loop correction to the (2233) correlator.
As before, its degree of extremality is 2 and there is only a single su(4) channel to
consider. On the other hand, this correlator does not have full crossing symmetry as in
the previous case, and we will have to consider its two orientations (2233) and (2323).

The remaining crossing symmetries read

1 u?
Hoozz(u,v) = o) Hoozz(u/v,1/v), Hazes(u,v) = ) Hazes (v, u), (6.43)
and the two orientations are related via
H2233(u, U) = 7—[2323(1/u, v/u) (6.44)

Furthermore, the (2233) correlator is the first case featuring a non-trivial window contri-
bution (at twist 7 = 4), which allows us to show an example where additional tree-level

information is necessary to fix the one-loop correlator.

We begin again by performing the two-variable resummation of the sum (6.17), obtaining

the log?(u) parts for both of the two orientations. They take the form,

Ml = Pt O o p (5.0 4 Pl | PR 0
+ Q(u,v) (Lit (2) + Li1 (2)) + R(u, U)Lil(”z — ;il@) + S(u,v), (6.45)
and

)
v v

Lij (z) — Liy (%)

r—

Lij (2)? — Liy ()2 N 2[1]5(1 u> N P(u’v)] Lig(z) — Lig(Z)

(2) _ -z
7‘[2323}1%2(“) = P(u,0) T —7 r—

+ Q(u,v)(Liy (z) + Li1 (2)) + R(u,v) + S(u,v), (6.46)

where the coefficient functions P, @), R, S and similarly the hatted quantities are ratio-
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16 and are symmetric

nal functions of x and Z with denominators of the form (x — Z)
under x +> Z. Note that the symmetry of the full correlation function, Hasas(u,v) =
u? Jv? H§23)23(v,u), is visible in the double discontinuity 7—[%)23}1%2 () for the term pro-
portional to log?(u)log®(v). Indeed we can verify that P(u,v) = u?/v? P(v,u). On the
other hand, we are able to express the coefficient function of Lis in terms of P(u, v) and
P(1/v,u/v). This non-trivial fact will be important in the next step, when we uplift the

double discontinuity to the full correlation function.

6.4.1 Uplifting to the Full Function

The structure of the double discontinuities (6.45) and (6.46) is very similar to the double
discontinuity for the (2222) correlator discussed before. In fact, they again follow the
general structure (6.18). This suggests that the transcendental functions appearing in
the full one-loop contributions of (2233) and (2323) will also be given by the same one-
loop and two-loop ladder functions which arise in the case of (2222), i.e. ¢V)(z, ) and

¢ (z, ) as given in (6.24), with symmetry properties

o (1, 1) = Oz, ), (6.47)

while the one-loop function also obeys
oV — 2,1 - 1) = —¢pW(x, z). (6.48)

We proceed very much as in the previous case: we make an ansatz for 7—[;22)33(11,, v) (or
equivalently ’H%)%(u, v)) in terms of single-valued harmonic polylogarithms with coeffi-
cients wich are rational functions of # and Z with denominators of the form (z —z)'7, to
match the double discontinuities (6.45) and (6.46). We demand that our ansatz repro-
duces correctly both double discontinuities and furthermore that the resulting function
does not have any unphysical poles at x = . This set of constraints produces a partic-
ular solution with four free parameters. To express the dependence we first quote the
particular solutions ﬁggg(u,v) and ﬁg)gg(u,v), and then describe the four remaining
degrees of freedom. Without trying to further simplify the final expressions, let us for

77(2)

convenience first quote the form of Hg354(u, v),

Ay = v 41 (2,2)0P) (!, 7) + As(w, 2)6? (2, 2) + A (1 = 2,1 = )¢ (1 - 2,1 — 7)

+ [As(z, 2)a(1 — )00 (2, 7) + (z > 7))

+ [As(x, 2)20,0%) (2,7) + (2 > 7)]

—[As(1 = 2,1 = 2)(1 — 2)8,0P (1 — 2,1 - Z) + (z < 7)] (6.49)
+ As(z, %) log?(u/v) + Ag(x, Z) log? (u) + Ag(1 — 2,1 — Z) log?(v)
+ Az, )61 (2,2) + Ag(w,7) log(u) + As(1 — 2,1 - 7) log(v) + Ag(z,7) .
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xT

rx—1"°

cient functions Ay, ..., Ag are rather cumbersome and we provide them in an attached

where we have used the notation 7/ = The explicit expressions for the coeffi-

Mathematica notebook. These functions obey,

Ai(z,z) = —Ai(x, T), Al —z,1—2) = —Ay(z,2),

Ag(z,x) = —Ag(z, T),

As(z,z) = +As(x, ), As(l —z,1 — ) = +A3(z, 7),

As(z,x) = +A5(z, 7), As(1— 2,1 —z) = +A5(x, T), (6.50)
Ag(z,z) = +A¢(x, ),

A7(z,x) = —Aq(z, T), A;(1—2,1—z) = —A7(x, ),

Ag(z,z) = +As(x, ),

Ag(z,x) = +Ag(z, T), Ag(1 —2z,1 — ) = +Ag(z, T).

The above properties are necessary for ﬁ%)%(u,v) to be symmetric under z <> & and
for the crossing property ﬁ%)%(u,v) = u?/v? ﬁé§)23(v,u) to hold. Part of the weight-
four function in the first line of (6.49) can be immediately related to Hé?i)23|log2 () from

equation (6.46). In particular, we recognise

U, v u? x,T A U u?
];(_795) = Ali 7 1P<1 > = Z(Az(x,i')—Aﬂx,j)). (6.51)

whereas the remaining coefficient functions @, R and S enter non trivially into the set

of coefficient functions A;(x, ).

The particular solution ﬁg)g?,(u, v) is given by applying the crossing transformation (6.44)
to the function (6.49), resulting in

Ay = [~ Aola, 200 (@,7) — Al 2)6P (0, 7) — A, 2)9) (1~ 2,1~ 2)
Ay, 7)2(1 — 2)0,0P (2, 7) + (z + 7)]
)
Az(2,2)(1 — 2)8,0P (1 — 2,1 - Z) + (z +> 7)] (6.52)
) log?(u/v) + 1216(:(}, z) log?(u) + 1215(m, z) log?(v)
U(x,z) — [Ag(x,7) + Ag(2’, 7)) log(u)
) log(v) + As (2, 7)),

~

+
oy
o
H\
v& |

where the functions A1, ..., Ag are related to Ai,..., Ag via Ay(x, &) = A;(1/2,1/Z).

Lastly, let us describe the four ambiguities. We find that they can be described in terms

of the following four D-functions,

Hiohs (1, 0) = Hboha (1, ) + @ u? Dagaa(u, v) + Bu*Dasas(u, v)

o L (6.53)
+ vy uDagas(u, v) + d u“vDyse5(u, v).
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6.4.2 The Window of (2233): the Twist 4 Sector

Within our ansatz we have obtained a one-loop solution for the (2233) correlator with 4
free parameters. Can we further constrain these coefficients? The answer is affirmative,
and in fact there are further consistency conditions that our one-loop result must satisfy,
which are exactly the window-contributions mentioned earlier. Recall that in the long
sector at twist 4 there exists a single double-trace operator Kooy ~ 020'O5. Since the
three-point function (O303K>3 ) vanishes at leading order, i.e. C’:,Eg)KQu =0, the OPE

coefficients at twist 4 read

(1) _ 0 (1)
L2233,4,£ - 22K227g 33K227e7 (6'54)
(2) _ 1~(0) (1)
M2233,4,é = 50221(22,[ NK22. 033K22,[a (6.55)
where the supergravity anomalous dimension 7y,,, = —96/((¢ + 1)(£ + 6)) has been

derived in Section 4.2. The coeflicients L%)% 10 can be straightforwardly obtained from

the analytic part of the tree-level supergravity amplitude 7—[;12)33, and are given by

((¢+3))

(1) _
L2233,4,€ =240 (2£ + 6)] '

(6.56)
Thus the twist 4 sector of the log(u) part of the one-loop correlator is fully determined
by the knowledge of the above tree-level OPE coefficients and the anomalous dimensions
MKy, 1t is interesting to notice in (6.56) that the contributions from the long sector
of free theory and supergravity have the same /-dependence but differ in the overall
coefficient, 24 and 216, respectively. Very nicely we find that this OPE constraint is

consistent with our one-loop result and fixes two of the four remaining constants, namely
a=0, 0=0, (6.57)

and we thus have a solution with two free parameters. The remaining two parameters
are genuine ambiguities, which our bootstrap method is not able to fix. We will comment

on the general form of these ambiguities later in Section 6.7.4.

6.5 Digression: One-Loop Anomalous Dimensions

Now that we have explicitly constructed the order 1/N* corrections to the (2222) and

(2233) correlators, we can obtain further CEF'T data up to this order: namely, the one-loop

anomalous dimensions n,(gp)q can be extracted from the log(u) stratum of the computed

one-loop correlators. More precisely, they appear in the SCPW coefficients M (2)

2 for
i
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twists above the threshold 7 > 7™ax:

(2) _1 1) (1) ~(0) (0) (1) ~(1)
Mﬁﬁ:‘ -2 Z |:Cp1p2/Cpq 77’Cpq CP3P4’Cpq + CP1P2qu nlcpq Cp3p4’Cpq

(pg)ER> (6.58)

(0) (2) ~(0)
JrCPlWICpq nlcpq p3paKpq |

where we already subtracted the terms with 7-derivatives on the blocks, whose coeffi-

cients are simply given by the known quantity 2 x IV ;272 In order to successfully isolate
n,(gzq from the above expression, we will also need information about the subleading
1)

three-point functions Cp1p2’Cpq

level supergravity correlators 7—[1(3.1). They are contained in the SCPW coefficients L

, which can be obtained from the analytic part of the tree-
o),
2
given by

D=5 ¥ cO . +c o) (6.59)

P1P2Kpg ~ P3paKpg 1P2Kpg ~p3paKpg?
(pg)ER>

after subtraction of 7-derivatives on the blocks with known coefficients M Zg;.

However, it is important to remember that due to the potential mixing with triple-trace
operators we can isolate the one-loop anomalous dimensions only in cases where there is
no degeneracy and thus a single operator for each spin. This is the case for the unique
twist 4 operator Kopy ~ 020'O4 in the singlet channel, as well as the twist 5 operator
Koz ~ 020°O3 in the [0, 1,0] representation.

6.5.1 The Twist 4, [0,0,0] One-Loop Anomalous Dimension

We can now extract the twist 4 singlet channel anomalous dimension from the long
sector of the (2222) correlator. From the non-log part of the tree-level (2222) correlator
we obtain the coefficients

) —64(20+ 9+ 220+ T)(Heys — Har7)) 16 (€ +3))°

L - 16| (le+9)") _
222248 2 +7 T3 e (6.60)

where H,, denotes the harmonic numbers and in the above we have split the coefficients
into their contributions from supergravity and connected part of the free theory, respec-
tively. Note that the above formula is consistent with the derivative relation observed
in [72, 139], namely

1 0 1
L52)22;4,£ = or M2(2%2;T,e r=4" (6.61)

Next, from the explicit result for the one-loop correlator from equations (6.27)-(6.39),
we obtain the coefficients MQ(;%Z,?

contributes at twist 4, the sum in equation (6.58) has only one term and we can isolate the

at twist 4. Since there is only one operator which
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one-loop anomalous dimension 7757?22 , by simply subtracting the combination L§2)22~ a0 X

(1)

. 2 . .
N, , irom the coefficients M2(2;2, 40> Where we know the tree-level anomalous dimension

ne) = ~96/((£+ 1)(€ +6)). We find

2688(¢—7)(¢+14) _4608(20+7) /=94
(2)  _ ) EDEHD)?(H6)7(+8) (412 (¢+6)3” S (6.62)
77K22,e —%a—k%? 6207 .

where o = 60 is the coefficient of the one-loop ambiguity. Note that the non-zero value
of a breaks the analyticity in spin at spin zero, in agreement with the arguments from

the Lorentzian inversion formula [140].

We can now also test the expected reciprocity symmetry (4.56) at one-loop order, which
now should really be thought of in terms of an expansion in a. The full anomalous twist

of the operators Ky ¢ to one-loop order reads

r(ta) =4+ anl” + a0 + 0(a?), (6.63)
and to the relevant order the symmetry (4.56) becomes ¢ — —] — 7 — anél) + O(a?).
Under this transformation the above quantity should remain invariant, and indeed one
can check that

T(—0—7— anél);a) =4+ an(

1) 2, (2) 3
e Tan +a*n’,_, + O(a’)

0
=4+ t:tn(fel7 —a? nél)@n(fgq + ct2?7(72£)77 + O(a3) (6.64)
=7(l;a) + O(a®).

Note that the last equality arises from the identities

W= = - S5 ) (669
where the first equation is simply the statement of reciprocity symmetry of the tree-
level anomalous dimensions, observed previously in (4.57). The second equation states
that the antisymmetric part of 7752) is given by i% (nél))Z, which means it is predicted
from the tree-level anomalous dimension T]él) by the full symmetry. This is a non-trivial
property of the one-loop anomalous dimensions, and we believe that the higher-order

corrections will preserve the reciprocity symmetry in a similar fashion to (6.64).

6.5.2 The Twist 5, [0,1,0] One-Loop Anomalous Dimension

The twist 5 anomalous dimension can be extracted from our result for the one-loop
(2323) correlator. Note that the long part of the (2323) correlator contributes only
to the [0,1,0] channel and admits both even and odd spins. The non-log part of the
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tree-level correlator yields

2+7)! ; ¢ even,

(144(6+1) (0+4) (Hpy3— Hoppr)+ 2 (6+1)(2104104) ) ((€+3)1)2
(20+7)! J

I

2323;54 —

(144(6+4) (0+7)(Hyq3— Hapq7)+ 52 (T62+9704296) ) ((€43)!)?
{ (6.66)

¢ odd,

which is again consistent with the derivative relation

W _ 9,

Lisas50 = or Mys3.7¢ |T:5 ) (6.67)
where one has to treat the even and odd spin formulae as independent cases. Next, we
consider the SCPW expansion of the log(u) part of the one-loop result (6.49). After
subtracting the combination L%)23,5 o X 77&23 ,» Where 77%33 )= —160/((¢+1)(¢+4)) and

77%331 = —160/((¢+4)(¢+ 7)) for even and odd spins respectively, we find the one-loop

anomalous dimension to be given by

( 640(9(4 +68¢3—1151¢2 —57382—3688)

@) (13 (C+4)3(0+8) ; 0=24,...,
640 (904 4+140¢% — 48702 —11262—29400) 035
77(2)‘ _ A3 (C+7)3(0+9) ) S T (6.68)
fas. 30 250
461077'87ﬁ’7a EZO,
—41+ 3, (=1,

where 8 and v are the two unfixed parameters of the one-loop correlator. We observe

again that for 5,7 # 0 the spectrum is not analytic in spin for £ = 0, 1.

As before, we can check that the above one-loop results continue to obey the reciprocity
symmetry, which in this case is an invariance of the full anomalous twist of the operators
K>3 ¢ under the transformation ¢ — —¢ — 8 — anél) + O(a?). The symmetry swaps the
even and odd spin families, and is satisfied non-trivially thanks to the following order

by order relations which can be readily checked:

1)even 1)odd 2)even 2Nodd 1 0/ (1)oddy2

n(,g)ige = 77; o ) 77(,2586 = ?75 Jo - 5%(”@ o ) ) (6 69)
(I)odd _ (1)even (2)odd _  (2)even 10 (1)eveny 2 ‘
-8 — Mg ’ N_g-g =1y - 5%(774 ) :

6.6 Back to the Bootstrap: the Below-Threshold Region

Now that we have described in great detail the construction of one-loop correlators for
two explicit cases, let us outline a general algorithm which can be applied to correlators
of higher external charges. First, we will discuss how to obtain predictions for the two
below-threshold regions: the window and below-window. Second, we need to incorporate
the results of multiplet recombination at the unitarity bound into our algorithm. The

structure of general one-loop correlators will then be addressed in the following section.
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6.6.1 Predictions for the Below-Threshold Region

A feature of four-point correlators of single-particle operators with generic charges is
that one can bootstrap the below-threshold pieces of the log(u) and analytic part of the
correlator. Similarly to the double discontinuity (discussed in Section 6.2), which lies en-
tirely above the threshold, there is information from within and below the window which
further constrains the four-point function. Remarkably, using all of this available lower
order data always fixes the one-loop four-point function up to certain well understood

ambiguities which only have finite spin contributions to the SCPW expansion.

To begin with consider the long SCPW coefficients of the analytic part of the tree-

max (See

level correlator L(Y)| arising from operators in the window region 7™ < 7 < 7
Figure 6.1). For simplicity assume p;+pa2 > ps+pa (the other case is similar), then (6.11)
becomes

=% ¢V . c¥ for p1 + p2 > ps + pa- (6.70)

T p1p2’cpq p3p4/Cpq’
(pg)ER~

The key point here is that there are new, leading three-point functions at order O(1/N?),
1) . .

Cp1p2 Kpq® with below threshold twist 7 < p1 + po.

Fixing the pair (pi1p2) and 7, let us consider all values of (p3ps) € Rz and rewrite (6.70)

as a vector equation4

L el

(ONT
(p1p2);T (p1p2);T (CF ) . (6.71)

(1)

Here we have defined the row-vector C - with entries

(p1p2);7
1) A1) )
(C(p1p2)§77) (pq) - Cp1p2/C(pq);;’ v(pQ) € Rz, (672)
and the row-vector of the analytic O(1/N?) SCPW coefficients, Lam)?, with entries
(1) D .
(L(mpz);?> (p3pa) Lz V(psps) € Rz (6.73)

The other ingredient is the matrix of leading three-point couplings C(FO) encountered in

previous chapters.

Consider now the log(u)-part of the one-loop correlator with SCPW coefficients M @)

given by (6.12). In direct analogy to LY above, we define the corresponding vector

(p1p2);™
Mgipz)-?’ We can turn the OPE predictions in the window (for varying (psps) € Rz)

“In the following, all boldface quantities refer to row-vectors of SCPW coefficients.
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into the vector equation

(2) _ 1M ~ ONT
M(Plpz)f_ ic(plpz);-? iz (C” ) : (6.74)

(0)

Knowing C.. (1)

we can explicitly solve for C(plm);ﬁ using (6.71) and plug it in the above

equation to get the one-loop SCPW coefficients MEp)p
(0

we do not have C ), because of the degeneracy of the anomalous dimensions, we see that
by combining equations (6.14), (6.15) and (6.71) we obtain Mgp)m)
tree-level SCPW data:

)7 HOW€V€I‘ even in cases where

purely in terms of

M®? M

0\ -1 77(1)
(p1p2);™ (p1p2);7 (L_’ ) Mq’-’ : (675)

We thus obtain a piece of the single-log coefficient of the one-loop correlator from tree-

level data.

In a very similar manner, pieces of the analytic part of the one-loop correlator, namely
the coefficients L(?) for twists below the window, can be determined purely in terms of
tree-level SCPW coefficients. From equation (6.13) we find
@ _ M (1
Liz=Cpppr (C

I

(6.76)

)
3
_1.( 7(0)\ — (1) T
= L( ; (L“ ) (L(p3p4);7—_‘) 5 fOI‘ 4+2a+b S T < D3 +p4

Recall that the SCPW coefficients L(!) appearing in the above (6.76) are determined by
1)

summing contributions from tree-level supergravity H1(7 and the connected part of free
theory, as shown in (6.6). A general formula for the connected free theory at order 1/N?

was presented already in [112], and we we record it in our notation in Appendix C.

In summary, from all the results given above we can determine the following pieces of the
O(1/N*) four-point functions (besides the double discontinuities discussed previously in
Section 6.2):

e log!(u) stratum obtained from a finite number of twists:

rmax__ 9

(2) _ M® ~
e |10g1(“) =3 log Z Z ( (p1p2); >(p3p4) Lor tees (6.77)

f,a,b T=7min

where the coefficients M(?) are given in (6.75) and we are omitting terms con-

tributing to twists 7 > 78X,

e log’(u) stratum obtained from a finite number of twists:

nlln -2

2) 2)
Hﬁ ‘logO bound + Z Z Lﬁf-‘ Lﬁ? s (678)
L,a,b T=2a+b+4
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with L) given in (6.76) and omitting terms contributing to twists 7 > 7™

There is an extra subtlety which needs to be tackled in order to fully determine the
log?(u) stratum: it enters the contribution called Héi)und above and has to do with
multiplet recombination at the unitarity bound, 7 = 2a + b + 2, in each channel. We

will address this next.

6.6.2 Predictions for the Semi-Short Sector

We now come back to the delicate point of multiplet recombination at the unitarity
bound. In Appendix B, we discussed multiplet recombination in the free theory, whose

results we now need to incorporate.

In equation (6.78) we gave the one-loop non-log predictions which originate from twists

min T addition, we claim

above the unitary bound, i.e. for twists 2a +b+4 < 7 < 5
that the dynamical one-loop function must contain a contrlbutlon at the unitarity bound

T = 2a + b+ 2, which we are also able to predict, namely we have

L2 =137 + L <o, for 7 = 2a + b+ 2, (6.79)
a a
@)f _ k ke
Loatvr2pfape = 21 A[e+2+k,1afk]’ﬁ = (1) ot 10, (6.80)
k=0 k=0
where the coeflicient Lg:)é 4204 Was obtained in (B.14). Its first term is given by the

SCPW of the order 1/N* connected free theory Aﬁ;2a+b+2_2k7[€+2+k71a7k]|ﬁ. Its sec-
ond term is given by summing over the new coefficients Sp.oq4p4-2— 9k [e424k,10-+], and it
follows non-trivially from the analysis of the semi-short sector, which by construction
is of order 1/N*. The contributions to the analytic (i.e. log’(u)) part of H(® which
(2)

come from twists at the unitarity bound combine to give the function denoted by H; 7. 4
n (6.78), which itself is of the form

@F T
Hbound ZLpT L : (681)
L,a,b

The reason for the cancellation in equation (6.79) is the following: the OPE of O, O,
in the free theory runs by definition over all operators of N' =4 SYM, but supergravity
states correspond only to operators built from one-half BPS operators, i.e. they are
either one-half BPS operators themselves or multi-particle operators. Other single-trace
operators at the unitarity bound, which are present in the free theory, therefore corre-
spond to excited string states and should be absent from the OPE in the supergravity

regime.

Simple examples of such operators which correspond to excited string states are e.g. the

Konishi operator tr(¢?) in the [000] representation, or the twist 3 superconformal pri-
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mary of the form tr(¢?) in the [010] representation. However, these two cases are special
because there are no other existing operators with such quantum numbers. In particular,
there will be no S-type contribution in (6.80). On the other hand, beyond twist 3 one
has to distinguish carefully between multi-trace semi-short operators, which do remain

in the spectrum of supergravity, and excited string states, as done in Appendix B.

It is very instructive to compare the new features at order 1/N* with the corresponding
tree-level terms. Let us begin from the analogue of equation (6.79) at tree level. It

reduces to

a

1) _ k ()H .
Lﬁ;2a+b+2,£,[a7b7a} - Z(_l) A[Z+2+k,1a7k]‘ﬁ + L_';2a+b+2,f,[a,b,a] =0. (682)
k=0

:Lz(ﬁ'gi-&—b-&—zé,[a,b,a]
The difference compared to equation (6.79) is precisely the difference between performing
multiplet recombination with SCPW coefficients of connected free theory — assuming all
below threshold (7 = 2a+b+2 < 7™ semi-short operators are absent — and performing
multiplet recombination with remaining below-threshold semi-short operators. This is
simply because the semi-short three-point functions are all of order O(1/N?), and thus
are only visible in the SCPW decomposition at order 1/N4.

Indeed, the leading order three-point functions C]g?;j,cpq = 0 whenever p; +p; > T,

and thus this vanishing condition extends to the non-semi-short below-window sector

7 < M 5t tree-level. We therefore have
1 _ +Of HH _ min
Lyz=Lsz +L;2" =0, for 7 < 7™ (6.83)

with the free theory part Lg)f

=
\T

bound 7 > 2a + b+ 4 and (6.82) when at the bound 7 = 2a + b+ 2.

given in (2.43) when the twist is above the unitarity

6.7 The Structure of General One-Loop Correlators

In the previous sections we have explained how to bootstrap predictions about the
(2)
i
the leading log?(u) discontinuity, see Section 6.2. Then, after considering the two explicit

examples H%)QQ and 7-[522)33, we described the new below-threshold features of correlators

dynamical one-loop function H 3" from tree-level results. Summarising, we have obtained

with general external charges. In particular, we have obtained pieces of the single
log! (u) from exchanged operators in the window (see discussion around equations (6.75)
and (6.77)), and also pieces of the analytic log®(u) part of the correlator from below-
window data (see discussion around (6.76) and (6.78)). Finally, we understood how
to deal with the SCPW coefficients of long operators at the unitarity bound in (6.80).

Let us emphasize that even though the leading-log discontinuity can be obtained more
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elegantly by using the hidden symmetry of [112], our approach here allows us to go
beyond that and compute M@ and L?), which are crucial ingredients to our general

one-loop bootstrap program.

All the OPE predictions discussed in the above are organised according to the log(u)
stratification of the correlators given in (6.3)-(6.5). Before describing a precise ansatz
for the general one-loop correlators, let us point out in the following that the structure

of the order 1/N* dynamical function 7—[2(;2) admits a further refinement.

6.7.1 A Further Refinement

Consider first the following observation: looking at below-threshold physics at tree-
level we found that the analytic sector of the dynamical function 7—[:571)

constraint (6.83), i.e

is subject to the

—

L= LW for2a+b+2<r <, (6.84)

augmented by a similar constraint at the unitarity bound given in (6.82). We claim (and
we will show this in Section 6.8) that HW is entirely fixed by these constraints, together

max

with the requirement that its log(u)-discontinuity has threshold twist 7

Considering now the analytic sector at one-loop, we find instead

LM = L7+ L8 for2a+b+2<r<rmin, (6.85)

where Lg; is the new O(1/N*) prediction (6.76) arising from tree-level data via the
OPE. It is clear then that the analytic part of H(® has two separate contributions:
one is cancelling the free theory contribution, i.e —Lg)f , and the other one is linked
to predictions from tree-level data L;Q; Furthermore, at the unitarity bound we find

a similar split into a piece depending directly on free theory SCPW coefficients and a
non-trivial prediction arising from correlators of different charges, recall equation (6.80).
Since the double- and single-log strata of £ are determined uniquely by tree-level data
via the OPE and have no free theory contributions, it is natural to split the one-loop
function accordingly into

HP =T + D (6.86)

ﬁ 9
where 7%(2) and DI(?Q) have a different interplay with the connected part of the free theory.
The function ’7%(2) generalises the tree-level function 7—[(1), and it is defined by the fol-

2

lowing properties: it has a logl(u) discontinuity with threshold twist 7™#*

, no log?(u)
double discontinuity, and it fully cancels all long below-window contributions coming

from recombined free theory, hence the name of generalised tree-level function. Indeed,
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for twists 2a + b+ 2 < 7 < 7™ strictly above the unitary bound, we expect

@T _ _ ;@
L7 = 197, (6.87)

with L& being the order 1/N* part of the free-theory SCPW coefficients as defined

piT

in (2.43), whereas at the unitarity bound we have

a

T _ k
Lﬁ;2a+b+2,é,[a,b,a] - Z(*l) A[€+2+k,1“*k}’ﬁ' (6.88)
k=0

It follows that the below-window OPE predictions (6.76) will be encoded only in the
(2)

function D37, i.e.

fz
L](QP = L}glﬂ, for 2 +b+2 <7 < 7M1, (6.89)

and at the unitarity bound

a

(2D k
Lﬁ;;a+b+2,€,[a,b,a} = Z(_l) S[é+2+k71“*’“}' (6.90)
k=0

@)
(g
OPE predictions. We will see that the splitting 7—[1(;2 ) = 7:(2) + D](FQ) is also strongly

P
motivated by features of the log?(u) discontinuity. In fact, we will discover that Dg)

Our task now is to construct the full one-loop correlators H:’ consistently with the

is the minimal one-loop function which consistently emanates from the leading log? (u)
discontinuity. Furthermore, we will find that 7; can be constructed as an exact function
of N. The interplay of D}(f) with the semi-short prediction (6.90) is very remarkable,
and when we think of it as descending from the double-logarithmic discontinuity it is a

tangible triumph of supergravity within our A/ = 4 bootstrap program.

6.7.2 Ansatz for Minimal One-Loop Functions

We are finally at the stage where we can introduce an ansatz for the minimal one-loop
function D1(72)’ which will accommodate all of the various OPE-predictions discussed in
the above. To understand this ansatz and impose as many constraints as possible, we
will first consider the consequences of the OPE as well as crossing symmetry on the

structure of one-loop correlators.

From the OPE we expect different parts of the correlator to possess contributions from
operators of different twists: the logQ(u) discontinuity has contributions only from op-
erators above threshold 7 > 7™8%_ The log!(u) part can have contributions from the
window, 7 > 7™ and finally the analytic logo(u) part can have contributions starting
from the semi-short operators with 7 > p43 + 2. Because a long operator of twist 7 gives

a contribution to the correlator which for small u goes like u%(T_p“), the OPE then
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dictates that

Hg)hog?(u) O(u%( " —pas)),
’Hg)’logl(u) = O(uz("" ), (6.91)
1y 1ogo) = O),
with
%(rmax ~ pis) = max {PERERL (6.92)
L) in (B )

where the latter is precisely the degree of extremality.

Consider now the splitting 7—[1(52)

claim that only 7;3(2) has a contribution at O(u) whereas Dl(f) = O(u?). The reason

for this follows again from the detailed understanding of the semi-short sector: the

= 7(2) + D( ) , as discussed in the previous section. We

contributions at O(u) arise from semi-short operators with twist p43 + 2 in the [0, p43, 0]
representation of su(4). In this case there is a single A-type contribution in the sum
of (B.14), which has to be dealt with by 7;7(2), and a single S contribution, to be dealt with
by D1(32)' Recall that we deal with the split ’Hém = 7;7(2) + Dl(?z) by using equations (6.88)
and (6.90). Then notice that the S contribution itself is obtained in (B.13) in terms
of the SCPW coefficients Sg,g,psps, Where ¢, + ¢ = ps3 + 2. But these correlators are
next-to-extremal and, according to the discussion around (3.11), they completely vanish
when we use the correct definition of single-particle operators, so the S contribution
vanishes at that twist. We therefore have

5 log(u) = O(u?). (6.93)

Under the crossing transformation u < v, the analysis of the small v expansion in (6.91)
translates into predictions for the small v expansion, which is then useful to understand

how to constrain the ansatz for the full function.

For the correlator itself crossing symmetry simply implies that

(Op1 (21)Ops (2) Opy (23) Opy (24)) = (Opy, (261)Opy, (205) Opg, (204) Oy, (T54)) » (6.94)

for any permutation ¢ € S4. The implications of this while taking into account the
prefactor Py requires a little care. 'When defining the prefactor we always made the
choice 0 < po1 < p43, which should therefore be maintained under the permutation
whilst exchanging u <> v. This requires considering a number of different cases for the

relative values of the charges p;. In all cases however, there is a unique permutation o
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satisfying the above requirements and one finds that for this permutation

7(2)

P1P2pP3P4

(u,v) = (E)Hﬁ HEP) (v,u). (6.95)

v Po1PogPozPoy

The small u behaviour of 7—[;@1%2%3%4 (u,v) given in (6.91) then yields the following

small v behaviour of ’Hg)(u, v)

(U%(p1+p4—P2—P3))

9

(2)
Hﬁ }logQ(v)

0
HY g 0y = O, (6.96)
0

(1/v"7 1),

(2)
Hﬁ ‘logo(v)

Furthermore, the different small v behaviour of 7%(2) and Dg) in (6.93) implies a different

small v limit:
Kz — 2 P
0(”) - 0(1/’0 ! 1)’ Dlg)‘logo(y) - O(l/’l} P 2) . (697)

Note that the differences in the small v behaviour between ’7;7(2) and D](f) will be crucial

in the determination of our ansatz.

We now have all the relevant information to write an ansatz for the minimal one-loop
function #®, which is consistent with crossing symmetry and matches the two-variable
resummation of the leading logQ(u) discontinuity. In analogy with the results for the one-
loop corrections to the (2222) and (2233) correlators discussed previously, we consider
single-valued transcendental functions of up to weight 4. The bound on the overall tran-
scendental weight follows from the explicit form of the two-variable resummations (6.18),
in which we find an overall logQ(u) paired with an at most weight-two antisymmetric
transcendental function. We therefore need a basis of weight-four antisymmetric tran-
scendental functions, together with their lower weight completions. As before, we will

make use of the series of ladder integrals [137, 13§]

l

oW (z,7) = Z(—wm log” (u) (Lig—r(x) — Lig—(Z)). (6.98)

r=

Our proposed basis then has the form

Wi = h1 ¢ (2, 2h) + ha 0P (2, 7) + hg pP (1 — 2,1 — ),

Ws_ = hy 20,6 (2, 2) + hs (v = )0,6P (1 — 2,1 = 7) — (x < 7), (6.99)
6.99

Wit = (z — 2)[he 00\ P (2, %) + b7 8P (1 — 2,1 — 7)] + hs G,

Way = hglog(u)log(v) + hio 10g2(v) + h11 log2 (u),
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and

Wo_ = hg oM (z, 2), Wo = ho,

(6.100)
Wiu = hylog(u), Wiy = hy log(v).

The basis at weight four and three is written in terms of the double-box function, which
is the [ = 2 integral in the ladder series (6.98). The weight-two antisymmetric element is
instead the [ = 1 one-loop box-function. Finally, the coefficient functions h;—1 . 11,0u,0

will be polynomials in the variables z, z, o, 7.

From considerations about crossing in equation (6.97) and the structure of the two-

variable resummations from (6.18), we conclude that the ansatz for the minimal one-loop

function D;(S?) is given by
@ Wi +Ws 1 Way
7= (z—2)7*® (a2 —z)%T War + Jri
(6.101)
,UH];;’—Q (x _ i.)dﬁ—‘rg (.T _ j)dﬁ+7 (.T _ j)dﬁ+5 ’
where we recall the definitions
dy =pi+p2+ps+ps—1, Ky =min {BFLEIPIZPL pot (6.102)

For future convenience, we will refer to the smaller basis (6.100), consisting of the one-
loop box-function qb(l)(x,j) together with its weight-one and weight-zero completions,

as tree-like. For example, any D-function can be decomposed in such a basis.

6.7.3 The Bootstrap Algorithm

Next, we will describe in detail our bootstrap algorithm: step by step, we will go through
the sequence of constraints we impose in order to determine the free parameters in the
above ansatz (6.101) for D;(S‘Z)'

Crossing symmetry and matching of the leading-log

For any orientation of the external charges f, we consider the log?(u) projection of the
ansatz and match it against the explicit two-variable resummation described in (6.18).
This fixes combinations of the coefficient functions Wy_, W31 and Wa,. Note that
the power v*# =2 in the denominator of Wa, in equation (6.101) is consistent with the
weight-zero part of the leading-log as given in (6.18). Matching all independent leading-
log discontinuities actually fixes completely the polynomials h; fori =1,2,7,9,11. When
Ky = 2, the correlators are next-to-next-to extremal (examples are the (2222) and (2233)

correlators considered previously), in which case there is no singular v behaviour in the
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ansatz. In these cases the general ansatz (6.101) reduces to the ansétze considered in
Sections 6.3 and 6.4.

Absence of unphysical poles

Any leading-log discontinuity has itself no poles at x = Z. However, this only accounts

for the log?(u) projection of the function D](;).

In order for the ansatz to yield a well
defined function, we have to ensure that globally there are no unphysical poles. In this
way, lower-weight coefficient functions become entangled with those at weights 4, 3 and
2. In particular, both the powers of (z — Z) in the denominators and the coefficient
functions of Wo_, W1y, W1, and Wy have the right structure such that all x = Z poles
coming from the symmetric coefficient functions at weights 4, 3 and 2 can be cancelled.
For this reason the ‘tree-like’ coefficient functions of Dg), i.e. hg, hy, hy, and hg, have
quite different features compared to their counterparts at tree-level. During this process

Ky —2

we can keep v as the maximum singular power in the denominator.

Matching the OPE predictions in and below the window

At this stage of the algorithm we have found a well defined ansatz with the correct log? (u)
discontinuities. It differs from D](?Q) because we have not yet imposed the remaining
predictions in and below the window, which we have to compute explicitly by using the
strategy outlined in Section 6.6. These OPE predictions come as SCPW coefficients at

fixed twist with varying spin, i.e. from sums of the form

D e BOY 44> e BUED, (6.103)
l L

(2)

2
where ¢,y stands for M T( Z) or L7, and 7, < 718

is finite. Given the analytic repre-
sentation of the conformal blocks B(™), we can series expand the sum (6.103) in the

form

Te—T0 OO

u® Y dp 22", (6.104)

n=0 m=0
and then resum it as

TkL—T0

2™ > a"gn(T). (6.105)
n=0

where the functions g, contain transcendental functions in the variable z. In fact, the
ansatz for the g, descends from the full two-variable ansatz (6.101), upon performing
the same series expansion as in (6.105). We call an expression of the above form a

one-variable resummation.
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correlator initial free coeffs. | after leading-log matching after OPE predictions
in hg, by, by, b and pole cancellation in and below window
(2222) 1 x 378 1 1
(2233) 1 x 496 16 2
(2244) 1 x 579 20 2
(3333) 3 x 579 20 2
(4444) 6 x 946 68 4

Table 6.1: Number of tree-like free coefficients across the three steps of our algorithm.

The initial number of free coefficients grows with p; + p2 + p3 + p4, because of the
denominator factors (x —z) in (6.101), and obviously with the number of su(4) channels.
Cancelling x = T poles alone still leaves a large number of free coefficients. Imposing
OPE predictions in and below the window is indeed crucial to finally obtain the minimal

one-loop functions ng), as can be seen in Table 6.1.

6.7.4 The (Finite) Set of Ambiguities

Imposing predictions in and below the window fixes the majority of the free coefficients in
the ansatz. A sample of this process for a couple of correlators is illustrated in Table 6.1.
The free parameters left are associated to a restricted class of tree-like functions, which
we call ambiguities. By construction, such ambiguities do not contribute to the log?(u)
discontinuity in any channel, obey the correct crossing transformations by themselves,
have no x = Z poles and contribute only above the window, i.e for twists 7 > 7™ma%,
Furthermore, we find the special feature that their SCPW coefficients have finite spin

support: they contribute only to spins £ = 0, 1.

The Mellin amplitude corresponding to these ambiguities is very simple, since it can be
at most linear in the Mellin variables (s,t). This is for two reasons: firstly, it cannot
be rational, as any additional pole would spoil the OPE predictions in and below the
window. Therefore it has to be polynomial. Secondly, this polynomial cannot be higher
order than linear, as it would generate tree-like terms with a higher degree denominator
than allowed by our ansatz (6.101) for the minimal one-loop function Dg).

For a generic correlator without any crossing symmetries, we can parametrise the full

set of ambiguities by

_ pb43 Hﬁ—QRﬁ—Q—Z
(2) u 2 2 & (1,i5) (545) (t,ig) ij
h = 2902 = = N hR
D; ‘ambiguity o P uv? Ty(s,t) ap™ +ay s +ayp ) o't
V2 i=0  j=0

(6.106)
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where I';(s,t) is the usual string of six I'-functions given by

I;=T [P1+g2—s] T [P3+g4—8] T [P1+§4—t] T [P2+§3—t] T [P1+g3—ﬁ] T [P2+1274—ﬁ] ) (6.107)

. 3(ky—1)kg
Thus, for a generic correlator, we find M

undetermined ambiguities. In cases
in which the correlator has some crossing symmetry, we have to count only crossing

symmetric combinations. Let us illustrate this by means of a few explicit examples:

e (2222): The only fully crossing symmetric combination one can build is the con-

stant Mellin amplitude 1, so there can only be a single ambiguity: 0492)22.5

e (22pp): This family of correlators is not fully crossing symmetric if p > 2. The
remaining crossing symmetry can be understood as an invariance under ¢ <> 4. As

a result, we are left with two out of three ambiguities,

ag.  and  aly . (6.108)

e (3333): This correlator admits up to linear terms in o and 7, but crossing symmetry

only allows two (fully symmetric) ambiguities,
o (l+o+7), and  al2h (s+ o +tr) (6.109)
3333 , 3333 : :

Other correlators with x5 = 3 but no crossing symmetries would admit a total of

9 ambiguities.

e (4444): The full crossing symmetry of this correlator greatly reduces the number
of ambiguities. With at most quadratic terms in ¢ and 7, one can construct four

independent ambiguities: two ambiguities with constant Mellin amplitudes
(1) 2 2 (2)
g L+ 0%+ 7%), and g (0 +7+07), (6.110)
and two other ambiguities with linear terms
(3) ~ 2 2 (4) -
gy (8 + 0% +177), and  ayyy, (to +ar + soT). (6.111)
Correlators with x; = 4 but no crossing symmetries would otherwise admit 18

ambiguities.

Notice that our analysis here is already in agreement with the observed number of

ambiguities, as shown in Table 6.1.

® As mentioned in Section 6.3, the value of a%)m = 60 was found by using a supersymmetric localisa-
tion computation [104]. To our knowledge, this is the only case where a value for a one-loop ambiguity
has been found. As such, the values of all other ambiguities remain undetermined.
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With this we conclude the general discussion of the construction of one-loop supergrav-
ity correlators. In order to illustrate all the different features described at length in
the above, we will now consider a few more concrete examples: in the next section,
we will consider the minimal one-loop functions for the correlators (2244), (3335) and
(4424). These are of the same degree of extremality as the two examples (2222) and
(2233) discussed before, and therefore their dynamical functions contribute to only one
su(4) channel, namely the [0, ps3, 0] representation. Later, we also discuss the (3333)
correlator, which compared to the previous examples features multiple su(4) channels.
As a final and even more complicated example, the (4444) correlator is discussed in

Appendix D.

6.7.5 Examples of Next-to-Next-to-Extremal Correlators

In this section, we will consider a few next-to-next-to-extremal correlators, which are
defined by the condition x5z = 2, i.e. their external charges are such that either p3 = 2
or p1 + ps + p3 — pg = 4. In particular, we will consider the examples Dé?gg), DS@M and

2
Dyl

For such N2E correlators there are no below-window OPE predictions, since the predic-
tions for the semi-short sector Sy, p,psp, Vanish because they are determined through (B.13)

in terms of SCPW coefficients S, ;)4 where p(r)+q(r) = paz+2. These correlators

T)P3pa>
are next-to-extremal, and thus vanish identically as a consequence of our definition of
external single particles states (see Section 3.2). Because of the split 7;7(2) —l—D;?), it then

2)D _
follows that L2+p43, [0,p43,0) —

An additional peculiarity of the (3335) and (4424) correlators (which generalises to
other N2E correlators) is the fact that the corresponding tree-level functions H%)gg) and
7—[2324 are proportional to each other.® This implies that, up to a normalisation, both
correlators have the same one-loop 10g2(u) discontinuity. Therefore, an ansatz having
the correct crossing symmetries, constructed by matching the leading-log discontinuity
and imposing absence of x = Z poles, cannot distinguish between D§§é5 and Dﬁ)M.
Very interestingly, this type of degeneracy is actually lifted at one-loop, because of the
different OPE predictions in the window! This illustrates another important aspect of
the OPE predictions in and below the window. In general, we expect the situation to
be as follows: pairs of correlators which are degenerate at tree-level will instead have
different minimal one-loop functions, and thus are distinguished by the OPE predictions

in and below the window.

Concretely, in the case of the (3335) and (4424) correlators, we have different twist 6

5This can be understood from the hidden ten-dimensional conformal symmetry of the tree-level
correlators 'H;l): the differential operators Dssss and Dagos differ only in their overall normalisations,
see equation (3.43).
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log(u) predictions in the [0,2,0] channel, given by
0 2
e Viss + Yaggs(C+5)> (L4+4)!(¢+5)!
3335:6,60.200 7 (f L 1) (0 +4) (L +5)(£+8)  (20+8)!

e Y Y+ 9 (4 4+ 5)!
1002007 (L 1)+ ) +5)(C+8) (248

(6.112)

where the values of the free Y coeflicients above, obtained from the OPE predictions,

are
0 2 0
Ys(:s?zsy = —4762800, Y3(3?25 = %Y3(33257 (6.113)
0 2 0 ’
Y4(42)4 = —4628736, Y4(42)4 = %3@(42)4

We now proceed according to our previously described bootstrap algorithm. In a first
step, we match the ansatz (6.101) for the minimal one-loop functions D](;) against the
computed double-logs and impose the correct crossing symmetries for the correlators.
Secondly, we impose absence of unphysical poles at * = z on the ansatz. In a third and

last step, we then impose the below-threshold OPE predictions.

The results for (3335) and (4424) can be obtained in the following instructive way.
We initially normalize both correlators in a way that the leading double-logs are the
same. After cancelling the unphysical poles, we still have one identical ansatz for both
correlators, which has six free coefficients. We now insist that the SCPW coeflicients of
the ansatz at 7 = 6 have the form (6.112), where we do not specify the values of Yﬁ(o) and
Yﬁ@) yet. This constraint returns a one-parameter ansatz with one additional ambiguity.
We go back to the correct normalisations for the correlators, and we keep YZE(O) as a free
parameter, isolating the tree-like function it multiplies. Then, we can write the minimal
one-loop functions in the form

DY = Ny Dy + V¥ u? Dagaa,  for 7= 3335 and 4424, (6.114)

with N3335 = 135 and Nasos = 128. Because Y3(??§5 # 1/21(22)4, we ultimately find that
Dé?,)):,;g) and Dzﬁ)ﬂ are not proportional to each other. Differently from the degeneracy at

tree-level, the minimal one-loop functions are thus distinct.

The result for the (2244) correlator is more straightforward to obtain. In the window,

we have twist 4 and 6 predictions in the [0, 0, 0] representation, given by

(0) 2
() _ X044 ((£+3))
M2244;4,é,[0,0,0] TWED(E+6) 210’ (6.115)
0 2
e Yopua + YU+ 37 ((£+4))? 6,116

2446.60000 7 (0 + 1)((+2)(C+7)(£+8) (20 +8)
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with predicted values,
X, = —8x1920, Y, =8x 176400, V{2, = Jov0).. (6.117)

In the other orientation of the correlator, (2424), the window is empty. The bootstrap
(

algorithm returns D222)44 leaving only two ambiguities, in agreement with (6.108).

The minimal one-loop functions corresponding to (3335), (4424) and (2244) are given in
an ancillary file. For (3335) and (4424) we have only included D%(Q), see equation (6.114).
In all cases, we have fixed a particular value of the ambiguities and we have checked
that their SCPW coefficients have only finite spin support above the respective threshold

twists.

6.7.6 The (3333) Correlator

We continue to illustrate our bootstrap algorithm with the (3333) correlator. The so-
lutions for the polynomial coefficients h1, ... hi1, hg, by, by, ho are listed in an attached
Mathematica notebook, where for simplicity the ancillary file contains Dé?)))?);} with a

particular value of the ambiguities.

The (3333) correlator has degree of extremality x3333 = 3 and it is fully crossing sym-
metric. The long sector decomposes into the three representations [0,0,0], [1,0,1] and
[0,2,0], with threshold twist 7™#* = 6. We start by obtaining the two-variable resum-
mations of the log?(u) discontinuities in the three channels. We then match the ansatz
against the computed double-logs in all channels and impose crossing symmetry. Sec-
ondly, we impose absence of x = T poles on the ansatz, which leaves us with 20 free
parameters. Finally, we have to impose the OPE predictions in and below the window.
Since all the external charges are equal in this example, the window region is empty.
This implies that upon projecting the ansatz onto the log(u) stratum, we have to set
to zero the one-variable expansion up to order O(u?). On the other hand, the OPE
predictions below the window are non-trivial: in the singlet channel the unitary bound
lies at twist 7 = 2, where no long supergravity states contribute since there are only
string states present at that twist. We thus have

(2D _
L3333;2,£,[o,0,0] =0. (6.118)

A non-trivial prediction comes in at twist 7 = 4. Here there is only one double-trace
operator Ka.4.7.10,0,0] ~ 020°05. Using (6.76) we thus get a prediction for Lg?ggu 0,0,0]

and we find

(2)D 9% 4800 ((£+3)1)% 1+ (~1)°

Lsgssacionn = grnye+e) @+o) 2

(6.119)

Performing the one-variable resummation of the above coefficients (6.119), i.e. perform-
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ing the sum of equation (6.78), we have

6122 _ e _
Diislio 00, g0y = 9 = [(F — 22Lir(8) + §(6 — 67 + 2°)Li}(2)] + O(a*). (6.120)

In the [1,0,1] and [0,2,0] channels, the unitary bound is at twist 7 = 4, and there
are no predictions descending from the long sectors at tree-level. Instead, this is the
first case where we need to consider the consequences of protected semi-short operators
through our formula (6.90), using the results for Sy 9 1) and Syeq2 given in (B.16).

More precisely, there is an Sy, (1) contribution to the [1,0, 1] channel, which implies

N2 1 _(_1\¢
Lgi)324€[101] I ) (6.121)
(L+2)(f+5) (20+06)! 2
with corresponding one-variable resummation
D) 96'—:”[3(gz=—2)33+(6—6f+1z2)m (#) + (7 — 2)zLi} ()] + O(a?).
33331[1,0,1], log®(u) — 74 5 1@ s\T 1y
(6.122)

Similarly, in the [0, 2,0] channel we have a contribution from Sy s49 o) Which gives

19D 9 x 288 (432 1+ (-1)°
3333;4,,[0,2,0] — (C+3)(C+4) (20+6)! 9 )

(6.123)

with one-variable resummation

6l22 _ -
Dl 0001 100y = 9= (577 + 2 = 2)7Lis (2) + 2°LE ()] + OP).  (6.124)
Note that there is an important logical distinction between Lég)% 4,0,[1,0,1] and L§)3)33 4,6,00,2,0]

we should highlight: in the [0,2,0] channel, the twist 4 contribution lies at the bottom
of multiplet recombination, in the sense that 7 = 2a + b+ 2 with b = 2 and a = 0.
This means that the corresponding SCPW coefficients do not get shifted by multiplet
recombination in another su(4) representation. In fact, our formula (6.90) makes ex-
plicit that there is no extra summation over a that needs to be taken into account.
This is not the case for the twist 4 contribution in the [1,0, 1] channel, where instead
the SCPW coefficients receive a contribution due to multiplet recombination from twist
2 in the singlet channel. However, there is no Ss,.9 (g contribution, and therefore

2)D
L:()>3)33 ,01,0,1] = Ose+2,1) holds exactly.

Coming back to our ansatz, we match the resummations from the above equations (6.120),
(6.122) and (6.124). Recall that we had 20 free coefficients which were not fixed by im-
posing absence of unphysical poles at x = Z. Now, after matching the OPE predictions
below the window, we are left with only two free coefficients, which are exactly the two
ambiguities described in (6.109). Upon inspection, their SCPW coefficients contribute
only to spin ¢ = 0 for twists above threshold.
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Lastly, one further example of even higher complexity, the (4444) correlator, is described

in Appendix D.

6.8 Generalised Tree-Level Mellin Amplitudes

(2)
i)
encodes all the non-trivial

In the previous sections, we argued that the one-loop function H:’ admits the splitting

7-[%2) = 7;52) —|—D;2), where the minimal one-loop function D1(72)
OPE predictions at order 1/N*, whereas 7%(2) is a generalised tree-level function without

10g2(u) contribution. The purpose of this section and our final task is to bootstrap 7.

We define the generalised tree-level function 7; as the unique function within the ansatz

Ty

_ PeW(wa) - Pylog(v) 1 [Pulog(“) P ] (6.125)
: . (6.

(x—2)% 2 (z—z)%t vl (p—2)%T (2 — 7))

such that:

(a) the threshold twist for the log(u) discontinuity is 7 = 77,

(b) the SCPW expansion below the window completely cancels the free theory contri-
butions as described in equations (6.87) and (6.88).

(c) there are no unphysical poles at x = Z in the ansatz (6.125).

The coefficient functions denoted by P are polynomials in x, T and o, 7. As functions of
the variables x and Z, these polynomials have a Taylor expansion of the form z"z" with
m +n < p1 + p2 + p3 + ps. The function 7 is symmetric under x <+ z, and therefore a
given polynomial P has the same symmetry as the transcendental function it multiplies.
Note that the su(4) decomposition of 7 is the same as for the full dynamical function
H;. Implementing condition (a) implies

PD _ O(U_IN#_FmaX{leLI;z,Pg‘HM}

_P43 | max{py+p2, p3+ra}
u- 2 2

) (6.126)

P, = O(

The above conditions in fact define a generalised tree-level function 7; which is exact
in N. We can define it in terms of the coefficients A”fY in front of each propagator
structure from equation (2.25), which we can leave completely arbitrary (in contrast to
the relations between them arising from imposing crossing symmetry). The polynomials
P in (6.125) then become functions of the free theory propagator coefficients, P =
P[{Afj}], and the precise value of these Aﬂj does not affect any step of this algorithm.
Furthermore, the condition (b) is overconstraining, and therefore the solution we find is

unique, i.e. 75 is unique.
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Because of this uniqueness, we expect our function 75 to reduce to the known results
at tree-level, and we can take the propagator coefficients Aﬁ to take on their free theory
values. Indeed, when the external charges are equal, our conditions are precisely those
imposed in [43], and for arbitrary charges we expect to recover the tree-level correlators
’Hg) of Rastelli and Zhou [47]. Notice that in position space the function of [47] is
described by the same ansatz as in (6.125), except for the change dy — dy — 2. In fact,
we find that all polynomials PD%UJ[{A,'?}] non-trivially factor out an extra double-zero
(x — %) when we restrict the Ag to their tree-level values, and 75 precisely reduces to

) when the coefficients A”fY are truncated to order 1/N2.

the tree-level correlators 7-[1(71
Restricted to tree-level, the free theory coefficients A“/‘1 /N2 are all proportional to
each other, and thus satisfy linear relations. Therefore, we can understand the tree-
level degeneration as the result of imposing these linear relations on the coeflicients
Pg7u7v71[{A§}]. However, beyond order 1/N?2, the non-planar values of the A”fY are not as

simple and the corresponding relations become non-linear.

Similarly to the tree-level functions ’HI(;), the most transparent representation of 7; is
given in Mellin space. We thus define the corresponding Mellin amplitudes M([7z](s,t)
of the generalised tree-level functions similarly to that of the tree-level functions ’Hg).
In fact, all the generalised tree-level functions 7, as defined by the above conditions (a),
(b) and (c), can be written in this form with a simple rational Mellin amplitude with
only simple poles. The specific form of M[T5], i.e. finiteness and rationality, translates
into the observation that the entire function 7 is determined uniquely in terms of the
coefficient P in front of the one-loop box function. This can be understood from the fact
that the box function contains a log(u) log(v) term, which arises only from double-poles
in both s and ¢ in the Mellin transform, and it turns out that this is entirely determined
in terms of the Mellin amplitude M[75] and vice versa. In the following, we illustrate
the above discussions by explicitly considering the generalised tree-level amplitudes 7
for next-to-next-to-extremal correlators and the case 73333. As a further example, 7444

is described in Appendix D.2.

6.8.1 Next-to-Next-to-Extremal Correlators

Next-to-next-to-extremal correlators have extremality x5 = 2. As such, their free theory
correlators have a total of six propagator structures and their long sectors admit only
a single su(4) channel, namely the [0, p43,0] representation. The definition of single-
particle states has two non-trivial consequences: firstly, as we have seen in Section 3.2,
the number of connected propagator structures actually reduces to three. Secondly, the

connected part of next-to-next-to-extremal correlators in the free theory is given by the
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exact formula,

D1P2P3P4)f : ur
< Piree conn. _ DLP2P3PA Fﬁ(NZ) % [(1 + 1743'5]721)7 + (1 + P13‘5p42)u0.
7 , (6.127)
|p23+p14l u-oT
+ (1 4 lpztpual) - }’

where Fj scales like N (P1Hr2+Ps+p1=4)/2 i the large N limit. For example, we have

[They (V2 — K?)
N(N?2+5) '’

[Tio (V2 — &)
(N24+1) 7

F3335 = F3504 =

Fyo44 = F3304 =

(6.128)

[Tio i (V2 — B*)(N* — 20N? + 9)
N(N?2+41)2

Fpg04 = .
Thus, for next-to-next-to-extremal correlators, the non-planar result (6.127) is the fac-
torised product of the order 1/N? connected free theory uplifted to all N by the factor
Fz(N 2). It follows that the all N relative coefficients among the three propagator
structures is already captured by the order 1/N? result, such that M|[7;] is simply pro-
portional to ./\/lg’o) as given by formula (3.33). Notice also that the factors Fz(N?)
manifestly vanish when the number of colours N is less than the charge of any of the
external operators. Both these statements would be false if we replaced our single-
particle operators O, with the corresponding bare single-trace one-half BPS operators,

i.e. dropping the multi-trace admixtures.

The particular structure of the connected free theory in (6.127) implies the following
exact relations on the SCPW coefficients,

f _ 2
Lﬁp43+2,57[0,p43,0] - Fﬁ(N ) X [A[Hz]’ﬁ} )

(6.129)

Fy(N?) x L0

Lﬁ‘;T>p43+27£7[07p4370] - p;7-7€7[07p4370] ’

Therefore, for the purpose of constructing generalised tree-level functions, the defining

condition (b) simply becomes
T 2 _
Lgpist2.00pis.0 + F5(NV )[A[£+2]|#} =0, (6.130)

and by uniqueness we conclude that for next-to-next-to-extremal correlators the gener-
(1)

alised tree-level function 75 equals the supergravity tree-level result Hﬁ multiplied by

the all NV factor Fj;(N?).

6.8.2 (3333)

Let us now consider a slightly more involved example: the (3333) correlator. The result

for the free theory correlator was previously given pictorially in (2.23). In terms of
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conformal and su(4) cross-ratios, its connected part reads

(3333)free conn. _ I(N? — 4)2(N? — 1) {18(]\72 —12) u?or

uT 2 9 U27'2 U3O'2T U3O'T2
+9(ua+f+ua+ gt —— t—5 )
v v v v

Crossing invariance of the (3333) correlator restricts the total number of connected
coefficients {A5, A% AK} in the generic sum over propagator structures (2.25) to only

two independent ones, and we have

9
(N2 —1)
18(N? —12)
(N2 —4)(N2 - 1)

A=A =A% =A% = Al = A= A, (6.132)

Al = A, (6.133)

with A8 = W. The generalised tree-level function in Mellin space is given
by

Tasss = u’ f{ wv' T[—s]’T[—t]*T'[s + ¢ + 5]2/\/1[7'3333], (6.134)

with Mellin amplitude

1

MITssss] =~y Dy p o d) (42 als +2)(41 - 243)]
P 1)(t+;)(s+t+4) [A2 = 3t +2)(4; - 243)] (6.135)

T GE DG Al TR maAd)

After a shift in the Mellin variables s and ¢, the Mellin amplitude M%gg of Rastelli

and Zhou would correspond only to the term multiplied by A9 in the above (6.135).

Indeed, the new contribution, proportional to (A} —2AY), vanishes when we plug in the
relations (6.132) and (6.133) and expand to order 1/N2.

Lastly, the generalised tree-level correlator 74444 and some more comments about the

patterns in the Mellin amplitudes M[7;] can be found in Appendix D.2.



Chapter 7

One-Loop String Corrections

In this final chapter, we will discuss how to construct further string corrections to the
previously presented one-loop supergravity results. Recall that the tower of string cor-
rections descends from contact terms in the string theory effective action, leading to the

double expansion

Hy= o (PO a 3H iy 0 a3y (0 a0 L)
27\ 1,,(2,-1) (2,0) _1,.,(2,1) —14,(2,2) _3,.,(23)
F O (NIHS T AT A NTHS N HT AT HS ) (7.1)

+0(a®).

(2,0)
2
we will now consider the tower of 1/A corrections. In particular, we will focus on

;Zk) with & > 3, which are induced by the tree-

These terms have been addressed before in Mellin space for

While we have discussed the one-loop supergravity term H in the previous chapter,

the genuine one-loop contributions H
(1,3) 1
2
the simplest example, the (2222) correlator [128], and more recently generalised to the

level terms H etc.
(22pp) family of correlators at order A2 [10]. Here we will describe the structure
of the corresponding position space representation, and also provide new results both
in spacetime and in Mellin space for higher orders in the 1/\ expansion. We find
that, in some sense, the one-loop string corrections are simpler than the supergravity
term 7—[;2’0)
the supergravity amplitudes require functions up to transcendental weight four, while

, as the transcendental weight in the spacetime ansatz is actually lower:

the string corrections (essentially due to the finite spin support of the string corrected

double-trace spectrum) require only weights up to three. On the other hand, we find

3)

that we necessarily need a new ingredient, a weight-three function f®) with a more

general set of singularities (or ‘letters’).

'Recall that the terms 7—[?’71), Hz(f,l) and 7—[1(72’2) correspond to the genus-one modular completions

of the 7—[;1’3), ’H?’a and 7—[](32’6) terms, respectively. Some of those coefficients have been recently fixed by
supersymmetric localisation techniques, see references [104, 105]. The first genuine one-loop contribution
is then the order A~ 3 term 7—[(;’3).

113
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For simplicity we will consider only the (2222) correlator, for which we do not need
to worry about any subtleties of below-threshold effects discussed at length in the last
chapter.? Recall that due to the full crossing symmetry of this correlator, its dynamical
function Haoeo obeys the crossing relations

1 u?
Hazoo(u, v) = ﬁH2222(U/U, 1/v) = 5%2222(1),“), (7.2)

which will enter as one of the constraints in our bootstrap algorithm described in the

following.

7.1 Bootstrap Method in Position Space

We begin by reviewing how to obtain the double discontinuity (i.e. the log®(u) part
of the correlator) from tree-level data only. In Section 7.1.2, this will then allow us to
pose a well-defined bootstrap problem, whose solution completely determines the one-

(2,k)

loop correlators Hyong from a given double discontinuity 7—[2222 (u)» P to a finite

|log
number of well understood ambiguities. Notably, a new ingredient enters our ansatz of
transcendental functions: it turns out that a certain function of transcendental weight
three with a new type of singularity has to be included. We describe this new ingredient

in Section 7.1.3.

7.1.1 Predicting the String Corrected Double-Log

Let us start by discussing the specific form of the double discontinuities which arise
in the 1/ expansion at one-loop order. As is the case for the one-loop supergravity
correlators, the string corrected double discontinuity is fully determined by tree-level
data through the conformal block decomposition. More explicitly, we can compute the

log?(u) part of H%Q@ from spectral data at order a:

2,k m|n =
7-15222) }10g (u Z D | (.’E, .%'), (73)
m-4+n=k

where for m # n we need to include the two identical contributions D™ and D™,
which are defined through the SCPW expansion by

m|n m n B(t+2’€) $,£f'
Din( ZZ Sorcsen) it ) (7.4)

2
u
tl i=1

2See reference [10] for more details on how to deal with below-threshold predictions in the context of
one-loop string corrections, where the window region of (22pp) correlators is described in detail.
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where B denotes the conformal block from equation (2.34), the nl-(l’m) are (half) the
tree-level anomalous dimensions at order A~ 2, and 7 labels the set of exchanged singlet
channel double-trace operators K¢, see (4.7).> Recalling the double expansion (7.1),
the general structure of the 1/ expansion at tree-level demands that the integers k, m,n
in the above equation are drawn from the set {0,3} U {5,6,7,8...}, with the constraint
m + n = k. Note that when k is large enough to accommodate for different partitions
into (m,n), we get more than one contribution to the double discontinuity at that order

in 1/\.% See also Table 7.1 for the first few one-loop terms in the 1/)\ expansion.

We have discussed the general form of the supergravity double discontinuities in detail
in the previous chapter, and we have found that the two-variable resummation of D°/°
gives rise to transcendental functions of up to weight two. In contrast to the supergravity
case however, it turns out that the string corrected double discontinuities (D" with
m,n # 0) resum into expressions of up to transcendental weight one only. The reason for
this is the spin truncation in the string corrected spectrum. To be explicit, the double

discontinuities D™ are of the general form

D 3) = 2 <p71ﬂn(g;7 i‘)l p’2”|”(g;7 z)(log(l — ) — log(1 — a‘c))) 7 (75)

(z —z)

where the denominator powers are given in term of ¢ = 2(m + n) + 15 and p;, pa are
symmetric polynomials in (x,Z) of the same degree as their respective denominator.
This simple structure for the double discontinuities was already obtained in [120], and
we find complete agreement with their results by explicitly performing the sum (7.4) for

different cases.

Note that the double discontinuities have a symmetry under the 1 <+ 2 crossing trans-
formation, which acts on the cross-ratios as © — 2/ = z/(x — 1), and similarly for Z.
This symmetry is inherited from the full crossing symmetry of the (2222) correlator, and

is preserved by the s-channel OPE decomposition. As a formula, we have
DN 7)) = 0? DI (7). (7.6)

In the following, we provide an algorithm on how to uplift the double discontinuity D™™

to the corresponding fully crossing symmetric function ’Hgg (u,v).

3As outlined in Section 6.2, one can also obtain the SCPW coefficients of the leading double-log
through ‘squaring’ the SCPW coefficients tree-level correlators, without explicitly solving the double-
trace mixing-problem. This method simply extends to string corrected double discontinuities for the
(2222) correlator at any given order in 1/X, which can be obtained from the (22pp) family of correlators
up to that order (see e.g. [120] for an application of this complementary approach). In this case however,
since we have the precise form of the unmixed three-point functions Cég;cf ., as well as the anomalous
dimensions, we prefer to explicitly perform the two-variable resummation of the sums (7.4).

4The first instance of this happens already for k = 6 at order A~3, for which there are the two distinct
possibilities (m,n) = (0,6) or (3,3). These contributions correspond to the insertions of S|9°R* and
R*R* vertices, respectively.
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7.1.2 The Bootstrap Problem

In order to simplify the crossing transformations (7.2) of the interacting part Haooo(u, v),

we introduce an auxiliary function F by

Flu) = E= D i (u,0) x7)
u, v u2 2222(U, V), .

such that F(u,v) transforms without picking up any prefactors under crossing:
F(u,v) = F(u/v,1/v) = F(v,u). (7.8)

Evidently, F inherits an analogous double expansion as H in (7.1). Guided by the
explicit form of the double discontinuities as given in (7.5), we propose the following
structure for the functions F(>*) (k > 0):

FE (u,0) = A2, 2) fO (2, 2) + (A2(x, 7) log(u) — A2(1 — ,1 - 7) log(v)) ¢!V (2, 2)
+ As(x, ) logQ(u) + A3<x ; 1, :B ; 1) log? (%) + Az (ﬁ, ﬁ) 10g2(v)
+ Ay(z, 7)o (z,2) + (As(z,z)log(u) + As5(1 — 2,1 — ) log(v)) + Ag(z, ).
(7.9)

The main new feature of this ansatz is the presence of f(3) (z,z), which is an anti-
symmetric single-valued function of transcendental weight three. As this function is
new in the context of AdS amplitudes, involving a new type of singularity compared
to the supergravity case, we will describe it in more detail in the next section (see also
Appendix E).

On the other hand, the function ¢(!)(x,Z) is the well-known one-loop massless box-
integral in four-dimensions, which we already encountered in the ansatz for the minimal

one-loop functions in Section 6.7. It is an antisymmetric weight-two function given by
¢ (2, 7) = 2(Liz(2) — Liz()) + log(u) (log(1 — z) — log(1 — 7)), (7.10)
and obeys the symmetries
oW (z,z) = -V (z,2) = —oW (A — 2,1 — 7) = =W (1/2,1/z). (7.11)

Let us highlight the two main differences of the above ansatz (7.9) to the one-loop

supergravity case:

e The ansatz for F(>¥)(u,v) has maximal transcendental weight three, compared
to up to weight-four contributions in supergravity. This difference is ultimately
a consequence of the spin truncation of the string corrected spectrum. A trunca-

tion to finite spin produces resummed double discontinuities of the form depicted
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in (7.5), which has terms of maximal weight one. In contrast, the supergravity
spectrum has infinite spin support, resulting in up to weight-two contributions to

the corresponding double discontinuity.

e As mentioned before, the presence of the function f®)(z,Z) is a novelty in the
context of AdS amplitudes. However, one can already see from the structure of the
double discontinuities D™ that a new ingredient is required: as we will discuss
shortly, an ansatz with ladder functions only would enforce a structure on the

polynomial p;n " in D™ which is not observed from direct resummations. We are
therefore led to conclude that we need a new contribution in our ansatz, which we

denote by f©) (z,z) and whose full characterisation we postpone to Section 7.1.3.

Finally, in order to ensure both the exchange symmetry x <> T as well as the full crossing
symmetries (7.8) of the ansatz F(*¥)(u,v), the coefficient functions A;(z,Z) obey the

following relations:

Al(x,j) = —Al(:??,m), Al(x,i) =—-A; (1, 1) = —A1<1 —z,1— {Z‘),

r T

T x
Male,0) = —a@a), Aale) = —Aa (S0,

As(z,7) = A3(z, ). As(e,7) = As (ii) ,
o (7.12)
A4((l),§:) = —A4(:i’,33), A4(CE,§Z) =—Ay <$7 x) = —A4(1 —x,1— i’),
As(x,7) = A5(7, ), As(x,7) = As <xf1mf1>
_ ) . 11 )
Ag(x,z) = Ag(Z, ), Ag(z, ) = Ag (a:’ j) =As(1—z,1—1=).

Additionally, each of the coefficients As(x,z) and As(x,Z) obey one more constraint:

1 1
1l—2'1—=%
1 1

A )+ A5 | ———, —— As(l—z,1—xz)=0.
5($,$)+ 5(1—$’1—$>+ 5( €, .’E) 0

AQ(x,x)JrAQ( )—Ag(l—x,l—m)zo,

(7.13)

The above transformation properties as well as the form of the double discontinuities

constrain the coefficient functions to be of the general form
d .
Ai(z,2) = ——— Z aD uv®, (7.14)

where d = 2k + 11 (d = 2k + 10) in case A; is antisymmetric (symmetric) under x < Z.
Recall the relation kK = m + n, where m, n label the double discontinuity D™ at order
A~2. Note that the difference between the denominator powers d here and ¢ in (7.5) is

due to the explicit (x — Z)* factor in the definition of F, according to equation (7.7).
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This completes the description of our ansatz for the one-loop string amplitudes F(2),
Next, we continue by describing the conditions we impose in order to constrain the free

(4)

parameters a4 in the coefficient functions Ai(z, 7).

Constraining the free parameters

In analogy with our bootstrap algorithm for one-loop supergravity correlators in position

(4)

space, there are two steps in constraining the free parameters a,¢ in our ansatz:

1. Matching the double discontinuity:

The contribution of our ansatz (7.9) to the log?(u) term is given by

F2R) (y, v)‘10g2(u) = <—;A1(:v, z) + As(z, x)) (log(1 — z) —log(1 — z))

+A3(m,a‘:)+A3(x;1,f_1>.

(7.15)

X

Matching this against the corresponding double discontinuity D™ fully fixes the
coefficient functions A;(z,z) for i = 1,2, 3.

In

It is a fact that the polynomials pgn in the resummed double discontinuities do

not obey the first line of (7.13), and hence we require a non-zero contribution from

the new weight-three function f(3)(z, Z) with coefficient A;(z, z).

2. Pole cancellation:

The ansatz for the function H§222k2) = (xfz)4 F2k) contains explicit denominator

factors, potentially giving rise to up to ¢ = 2k 4+ 15 poles at x = Z. Demanding
that the full function ngmg) is free from such unphysical poles is what we mean by
pole cancellation. Concretely, by imposing as many zeroes between the functions
in the numerator of F(2) as there are poles, we find further non-trivial constraints
amongst the remaining free parameters in Ay4(x, z), As(x,Z) and Ag(x, T).
Carrying out the above two steps yields a definite answer for 7—[92;2), and we are left with
only a small number of remaining free parameters. We call these functions which pass all
of the above constraints, and whose coefficients we therefore are not able to determine,

ambiguities.

By construction, the ambiguities do not contribute to the double discontinuity, are fully

> They are given by

crossing symmetric by themselves and free of unphysical poles.
(linear combinations of) D-functions with their (x — ) denominator power bounded by
the corresponding denominator in the ansatz for A4(z,z) in (7.14): d = 2k + 11. We

find that the ambiguities have finite spin support, and hence they are most conveniently

®Using the terminology from the previous chapter, we may call the ambiguities to be ‘tree-like’ in the
sense that they are of the form of D-functions.
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1/X order corresponding supervertices (zf@q Nomb | Cmax

1 S|S 15 1 0
A2 S|R 21 4 4
A3 S|0*RA 25 7 6
A3 S|OOR*, RYR* 27 8 6
A2 S|9SRA 29 10 | 8
A4 S|01ORA, R4 OMR 31 12 8
A2 S|012R4, RA|9ORA 33 14 | 10
AP S|oMRY, RYOPRY, 0*RYORY | 35 16 10

Table 7.1: List of one-loop terms in the 1/A expansion and their corresponding vertices in the

effective string theory action, where S stands for an insertion of the supergravity anomalous
dimension. We give the denominator powers ¢ = 2k + 15 of the spacetime functions Hgé’g ,

the total number of ambiguities Namb as well as their maximal spin support ¢max. Note that
in general there can be more than one term contributing to the same order in 1/, the first
occurrence of this being at order A3,

described in Mellin space because their Mellin amplitudes are only polynomial. We
therefore postpone the general discussion of ambiguities to Section 7.2.1, where we give
a full classification in terms of polynomial Mellin amplitudes. For now, we simply list
the total number of ambiguities and their maximal spin contributions £y,,x for the first

couple of orders in the 1/X expansion, see Table 7.1.

Results

Following the bootstrap algorithm outlined above, we explicitly computed the full one-
loop amplitudes H§22232) and 7—[522252), as well as the contributions to Hgg, 7-[;22282) and 7—[%2120 )
which descend from the double discontinuities D313, D35 and D5, respectively. In all
cases the results are in agreement with the general patterns described in Table 7.1. For
the amplitudes ’Hgg with & = 3,5,6, we attach the corresponding lists of polynomials

A;(z,) in an ancillary Mathematica file.

From these position space results, one can then extract further subleading spectral data.
However, as a consequence of the degeneracy in the double-trace spectrum, this is pos-
sible only for the lowest twist contributions at twist 7 = 4, where there is a single
operator. We computed the order a?2A"2 and a2\"3 one-loop anomalous dimensions

n23) and n(>5) at twist four, finding agreement with the results of [100].

7.1.3 A New Ingredient: f®

In finding a suitable crossing symmetric function which matches the structure of the

double discontinuities D", we encountered the need to include the new function f@),
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which is beyond the ladder class encountered in the one-loop supergravity results de-
scribed in Chapter 6. This new function is also single-valued in the same sense as the
ladder functions, e.g. ¢(!)(x, %) given in equation (7.10), but involves a new singularity
(‘letter’) of the form z — Z not found in the ladder series. In fact, f () is the unique
single-valued antisymmetric function at weight 3 which involves this new type of singu-
larity. Together with the other functions in our general ansatz (7.9), which are given by
combinations of log’s and ¢(!), the ansatz thus consists of a complete basis of functions
within the space of single-valued transcendental functions up to weight 3, built from the

set of letters {z,z,1 —z,1 — &,z — T}.

We may characterise f) by its total derivative,

df® (z,7) = [_qu(l)(x,j) + 1log?(v) — log(u) log(v)]dlog z
+[—2¢(1)(x,:?) — %logQ(v) + log(u) 10g(v)]dlogx
+[-20W (2, 7) — log?(u) + log(u) log(v)]dlog(1 — ) (7.16)
+ 200 (2, 7) + L log®(u) — log(u) log(v)]dlog(1 — )
+[66W (z,7)]dlog(z — 7),
together with its symmetry property,
f(g)($> j) = _f(S) (j7 iL’) (717)

which implies f (3)(1‘, x) = 0. It also obeys antisymmetry under the crossing transforma-

tions
A0 -21-2)=—fOz,z) = f31/z,1/z). (7.18)

Up to to adding a linear combination of single-valued HPLs it can be identified with the
weight-three function called Qs in [141]. Functions with the same type of singularities are
also needed in perturbation theory to describe the correlators of one-half BPS operators
at three-loop order [33, 35].

We may make the log(u)-discontinuities of f(3)(x,Z) more transparent by writing
9 (2, 7) = log(u) f (2,7) +log(u) fO(z,7) + fO(w,7),  (7.19)
where the f*) have no log(u)-discontinuities. Its double log(u)-discontinuity is given by
FO (a2, 7) = —% log(1 — z) — log(1 — &)], (7.20)

as already indicated in equation (7.15). The single log(u)-discontinuity can also be
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simply integrated to obtain

FO (2, 7) = + 6 Lia (f:;”) +2(Lis(2) — Lis()) (7.21)

+ 3log*(1 — x) — 3log(1 — z) log(1 — 7) + 5 log*(1 — ).

The non-log term can be integrated in terms of hyperlogarithms (or Goncharov polylogs).
We discuss this further in Appendix E, where we also describe various techniques for
writing the function in a form suitable for comparison with the Mellin representations

of the one-loop string amplitudes, which we address in the next section.

7.2 Comparison with Mellin Space

In previous chapters we have argued that the Mellin space formalism has led to a wealth
of new results for tree-level correlators. As it turns out, the Mellin space representation
of the string corrected one-loop correlators H%Q@ is of a simple structure which we
will describe here. In particular, we will verify that our position space results are in
agreement with the Mellin amplitudes found in [128], and we furthermore provide a

number of new explicit Mellin amplitudes at higher orders in 1/A.

Recall that the Mellin space amplitude Mag2a(s, t) of the dynamical function Hagaa(u, v)

is defined by integral transform

Hamra(u, v) = /_OO B w52 Moo,y (A ()2 (R0), (r2)

which is a specialisation of the general formula (3.28). In this case, the Mellin vari-
ables s, t and u satisfy the constraint equation s +¢ + @ = 4. In order to obey the
crossing transformations from equation (7.2), the Mellin amplitude Magoo(s,t) has the

symmetries
Magaa(s,t) = Maooaa(s, @) = Magaa(t, s). (7.23)

Furthermore, the Mellin amplitude inherits the same strong coupling expansion from
H;(u,v), see equation (7.1). Hence M (s,t) admits a double expansion of the form
o (1,0) | (=2 4 (1,3) | \—2 x ,(1,5)
My = a(MGO 4 AEMED e ATEMED 1)
+a? (AMMET 4+ MED A EMEY AT MED 4 AEMEY 4 ) (729)
+0(a”),
where the tree-level terms have been described in previous chapters. We will next give a

Mellin space description of the ambiguities which our position space bootstrap method

is not able to fix. We will then describe the general structure of the genuine one-loop
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Mellin amplitudes in the above expansion, providing a new result for Mé22252) and new

partial results at orders k = 8, 10.

7.2.1 One-Loop Ambiguities

Before discussing the structure of one-loop Mellin amplitudes, let us describe the ambi-
guities which are left unfixed by our bootstrap method. They are exactly of the form
of tree-level string amplitudes, which can be written in terms of a crossing symmetric
basis of monomials given by obod, with o, = s" +t™ +@" [77]. The only difference is an
overall shift in the large A\ expansion: along with an additional factor of a = 1/(N? — 1),
the 1/\ expansion at one-loop order is shifted by a power of A\? compared to the tree-
level expansion. This results in a super-leading term at order 02)\%, see equation (7.24),

whose coefficient was fixed in [104].

As a consequence, at one-loop order a2)\7%, one finds contributions of monomials oo
with 2p + 3¢ < k + 1, in comparison to 2p + 3¢ < k — 3 at tree-level. This allows us to
fully characterise the one-loop ambiguities which arise in the string corrected correlators
HZFK) According to the counting mentioned above these ambiguities are enumerated
by pairs of integers (p, ¢) such that 2p+ 3¢ < k+ 1. Thus we can parametrise the set of

ambiguities at any order A3 by the sum

!
Z az(,]fg obol, (7.25)
,g>0

where the primed sum is over integers p and g such that 2p+3q < k+ 1. We found that
the total number of ambiguities Nymp (k) can be computed by expanding the generating

function

! 1oy ;
yA -y -1 -7 y kZ:ONamb(’f) v (7.26)

For the first few orders in the 1/A expansion, we give the total number of ambiguities

and their maximal spin support £, in Table 7.1.

7.2.2 One-Loop Mellin Amplitudes for String Corrections

Let us now turn our attention to the general structure of string corrected one-loop Mellin
amplitudes M%g For the genuine one-loop terms with £ > 3, the Mellin representation

was proposed to be of the form [128]

M= 5 a3+ e ) (e 2)
m+n=~k
(7.27)
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with the constraint
F (s, t) = fI (s, ), (7.28)

to ensure the crossing symmetries (7.23) of the full Mellin amplitude. Instead of using
the usual digamma function ¢(w) as in [128], we define a shifted digamma function
1;0(11)) = ¢o(w) + vg, such that the unphysical Euler-Mascheroni constant vz does not
appear in the position space representation after performing the Mellin integration of
the amplitudes M%Q@ (s,t). Note that for integer values n, o (n) is then simply related
to the harmonic numbers by Jo(n) =H, ;.

In the above formula (7.27), the coefficient functions f™I"(s,t) are simply polynomials
in s and t. The order in s of this polynomial is bounded by m + n + 1, while the order
in t is determined by the maximal spin contribution £, of the corresponding double

discontinuity D", given by 6

-3
Dol . lrnax = 2 n
l

min{mén} -3 J |

(7.29)
pmin . Cnax = 2 {

By matching the computed double discontinuities D13 and DGI3) at orders A% and A3
against the Mellin space ansatz (7.27), one can determine the corresponding polynomials
™" (s,t) to be given by [128]

fOB(s) = —16¢3(63s" — 6445 + 27725 — 57765 + 4800), (7.30)

1080¢3
f3B(s)::4744ﬁf5§(4625747116275647134274554790818054

(7.31)
+ 3841208s% — 100714885 + 150530565 — 9838080)

where we made the overall normalisations consistent with our conventions. Note that
both of the above amplitudes do not depend on ¢, in agreement with the spin truncation
of the R* vertex to spin fmax = 0. By explicitly performing the Mellin integration in a
series expansion around small (u,v), we have verified that the above Mellin amplitudes
are in agreement with our position space results obtained by the bootstrap approach

described in Section 7.1.2, thus confirming the appearance of the weight-three function

fO(z,z).

By making use of the order A3 tree-level data, see references [5, 8, 100, 120], we

can furthermore provide some new results. For example, we can compute the double

5We have checked that our discussion on the orders of the polynomials fmln(s, t) is in agreement with
the ‘basis of polynomial Mellin amplitudes’ described in [128].
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discontinuity DY°, resulting in

FOB(s, 1) = —2¢5(108905°% + 455° (11t — 4669) + 9s* (55t — 640t + 204358)
— 453(945t% — 7173t + 2285717) + 365> (377t* — 2208t + 745066)

— 16s(1575t* — 7488t + 2722522) + 576(33t> — 132t + 52682)),
(7.32)

which in fact appears before the f31(s) contribution in the 1/\ expansion and is the
first case with non-trivial ¢-dependence. At order A™*, we can similarly compute the

contribution

F3P(s,1) = —90¢3¢5 (280285° — 10750745 + 1932130257 — 21123895155
+ 15355368425 — 76459870765 + 259382442485° (7.33)
— 575432762245 + 754531340805 — 44400268800),

and finally the order A= contribution from D% is given by

4G

> (57657600 + 30030s°(16t — 104093)

f(s,t) =
4 120125”(40t% — 1445t + 6689071)
— 5725°(26985t% — 531356t 4 2242111079)
+ 2257(11008816t% — 151917584¢ + 638025985123)
— 775%(30823520% — 327881344t + 1429188184721)
4 1455(1125229952¢2 — 9688637728t + 44851775822225)  (1-34)
— 285%(2593858960t% — 18612610496t 4 92780493961669)
+ 565 (4118587328t — 25104138112t + 135924547490919)
— 645%(7551065200t% — 39625690048t + 234345782828097)
+ 2565(2355357312t2 — 10748615808t + 69677906818663)

— 53760(6319936t> — 25279744t + 180000568369)).

Note that the orders of the polynomials f™/™ given above all fit into the general pattern
described earlier. Before concluding, let us mention once more that we checked agree-
ment between our position space results and the Mellin space amplitudes described here.
Such a comparison can be easily performed in a series expansion around small (u,v) by
using the explicit representation (E.9) of the function f()(z,z) which is suitable for this

expansion.
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7.3 Discussion and Outlook

In the final two chapters of this thesis, we have considered the problem of constructing
one-loop four-point amplitudes on AdS5xS° at the level of supergravity and also its
first string corrections. Our results rely solely on imposing consistency with the OPE
to order 1/N* on the dual CFT side.

In the supergravity case, we have first derived the one-loop corrections to the (2222) and
(2233) correlators in terms of transcendental functions up to weight 4, from which we
extracted the one-loop anomalous dimensions of the unique twist 4 and 5 double-trace
operators. For higher twist operators, we expect mixing with triple-trace operators to
spoil predictability of the double-trace spectrum.” Next, we have presented a general al-
gorithm for constructing one-loop correlators which works for arbitrary external charges.
This algorithm is based on extracting all relevant data from many tree-level correlators,
rearranging it into combinations which appear at one-loop and finally feeding this infor-
mation into an ansatz for the full one-loop function. The final result is then obtained
by demanding no unphysical poles at x = Z. We have illustrated our algorithm for the
correlators (2244), (3335), (4424), (3333) and (4444), which we fix up to a finite number
of tree-like ambiguities given explicitly by equation (6.106). Recall that due to their at
most linear Mellin amplitudes, these ambiguities correspond to contact Witten diagrams
of effective ten-dimensional spin ¢19p = 0. They can be thought of as counterterms to
regulate the one-loop divergencies, and their values are ultimately fixed within string
theory. The only ambiguity whose value has been determined so far is the single am-
biguity of the (2222) correlator, which has been fixed by a supersymmetric localisation
computation [104], while the values of the ambiguities in other correlators still await to

be determined.

Recently, another method of reconstructing one-loop amplitudes from the double discon-
tinuity based on a dispersive inversion integral has been developed [131, 140, 143, 144],
and furthermore a systematic unitarity method for computing the double discontinuity
of AdS amplitudes has been proposed in [83, 85]. Note that in that context the term
‘double discontinuity’ has a broader meaning than used throughout this thesis: in ad-
dition to the double-log part (the log?(u) coefficient) it moreover includes terms which
are singular in v. As such, it also receives contributions from both the free theory and
from tree-level correlators, and in this way the ‘double discontinuity’ already encodes
the relevant information about the below-threshold OPE data. In principle, this method
provides a direct way to compute one-loop correlators from their double discontinuities
(in the broader sense). However, as it relies on the ability to solve highly complicated
dispersion integrals, explicit one-loop correlators have been computed with this method

only for simpler theories than the full N'=4 SYM. In contrast, our bootstrap program

"We believe that additional data in the form of higher-point correlation functions could remedy
this situation. The first five-point function in supergravity, the (22222) correlator, has been recently
computed in [142].
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starts with an explicit function in the first place, and the subsequent steps of the algo-
rithm implement the consistency of the OPE, fixing all free parameters up to the set of
ambiguities. Furthermore, since our algorithm begins by matching the predicted log? (u)
coefficient only, constraints from the below-threshold sector are not automatically taken
care of and are crucial to obtain the correct one-loop correlators. In particular, these
below-threshold predictions ultimately lift the tree-level degeneracy of the (3335) and
(4424) correlators, which have the same log?(u) discontinuities but are distinguished at
one-loop because of different predictions in the window. Two further novel and notable
features of our algorithm are the natural splitting of the one-loop dynamical function
into two independent pieces, 7—[;2) = 7;7(2) + Dz(?2)’ as well as the need of a proper under-
standing of multiplet recombination of semi-short operators at order 1/N*. Interestingly,
the problem of multiplet recombination can be solved within the free theory only, and it
is truly remarkable that these independent predictions are consistent with our one-loop
ansatz. As such, we find this is a non-trivial validation of the AdS/CFT correspondence

within the N/ = 4 bootstrap program.

We then addressed string corrections to the one-loop supergravity amplitude, focussing
on the (2222) correlator. As in the supergravity case, we use the knowledge of tree-level
data to predict the logz(u) discontinuity of the one-loop amplitude. Starting from an
ansatz of up to weight-three transcendental functions, we constrain the free parameters
by matching the computed double-log’s and cancellation of unphysical poles. While we
provide explicit results for the first few orders in the 1/\ expansion, we want to stress
that the form of our one-loop ansatz is in fact valid to all orders.® As a consequence of
the spin truncated spectrum of the string corrections, the ansatz is built from functions
which are one degree lower in transcendentality compared to the supergravity case. On
the other hand, the weight-three function f®) is required as a new ingredient in the
ansatz. This function involves a new type of logarithmic singularity, * — &, which is
not present in the supergravity case, and the appearance of this new letter provides a
first understanding of what type of functions will generally appear in loop amplitudes

of string theory on AdS.

Our explicit position space results complement the Mellin space approach of [128].
Therefore, at least for one-loop string corrections,” the position and Mellin space repre-
sentations are essentially interchangeable by comparison of their small (x,Z) and small
(u,v) expansions. Note that each of the two representations have their advantages and
disadvantages. For example, comparably simple structures emerge when considering

the string corrected one-loop amplitudes in Mellin space, whereas their position space

8The current restriction is the limited knowledge of higher order (in 1/X) tree-level amplitudes, which
at the moment is limited to order A\~ 3. Recall that, due to mixing of double-trace operators, one needs
tree-level data from (22pp) correlators to construct the one-loop (2222) correlator.

9In the supergravity case, there are currently two different representations for the one-loop Mellin
amplitudes, which may turn out to be equivalent: the authors of [95, 128] propose an ansatz in terms of
an infinite double sum (which requires regularisation), whereas more recently a finite Mellin amplitude
was proposed in reference [129].
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equivalents turn out to be rather involved. Also, the connection to ten-dimensional
physics is given very directly in Mellin space through the flat space limit. On the other
hand, the ansatz of transcendental functions for the position space amplitudes makes
their singularity-structure very explicit, while this is quite obscure from the Mellin space
point of view. In particular, any analytic continuation or kinematic expansion (e.g. the
OPE) that one may wish to perform is straightforward from the spacetime representa-

tion.

In conclusion, the position space bootstrap algorithm for one-loop correlation functions
described in this thesis can be regarded as a proof of principle that it is possible to derive
explicit one-loop amplitudes on a curved space (here AdSs) and in a complicated theory
such as supergravity, where direct computations are extremely difficult if not currently
out of reach. This progress was only possible because of the remarkable AdS/CFT
duality, the simplicity of the supergravity spectrum and moreover the power of CFT
techniques which made it possible to tackle the strong coupling regime of N' =4 SYM
theory. While it is too early to ask about the implications for the full theory of quantum
gravity, we nevertheless provide an understanding of the general analytic structure of
quantum corrections to supergravity, at least to one-loop order. It would be very inter-
esting to try to go beyond one-loop amplitudes and explore the possibility of extending
our bootstrap program to higher loops. In particular, from the structure of the leading
logarithmic discontinuity of the two-loop correlator (the log®(u) part, which is predicted
from tree-level data) it seems plausible that the set of singularities found so far, namely
{z,z,1 — x,1 — z} for the supergravity case and {z,z,1 — z,1 — Z,x — &} for string
corrections, is sufficient for the description of the two-loop amplitude.'® It remains to
be seen whether our methods will provide enough constraints to fix the entire amplitude,
since starting from two-loops we expect also triple-trace operators to contribute to the
SCPW decomposition. Future directions also include a further detailed investigation of
the Mellin space representation of our supergravity one-loop functions, building on the
previous works [95, 128, 129].

Furthermore, our results for the double-trace anomalous dimensions have unexpectedly
motivated the discovery of a new ten-dimensional symmetry of the tree-level supergravity
amplitudes [112], which manifests itself in the partial residual degeneracy of the super-
gravity spectrum. Although this symmetry is broken by the tree-level string corrections
beyond order )\_%, its breaking is controlled by the effective ten-dimensional spin #1g,
which also dictates the stepwise lifting of the residual degeneracy in the spectrum. In-
spired by the flat space Virasoro-Shapiro amplitude, the order by order investigation of
the string corrections might pave the way for the construction of the full tree-level string

theory amplitude on AdSsxS°>.

Finally, the wealth of new results for tree-level supergravity correlators in other back-

10A first step towards exploring the leading-log discontinuity at higher loop orders in supergravity has
been recently taken in [145, 146].
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grounds, e.g. 10d supergravity on AdS3xS? [52, 113, 114, 147, 148] and 11d supergravity
on AdS7xS* [49, 53], can be used to study the spectrum of anomalous dimensions in
those theories. Furthermore, these results open up the avenue for the construction of one-
loop amplitude using similar techniques as we described here for the case of AdSsxS°.
For example, various first steps have already been taken in the case of M-theory on
AdS7xS*, dual to the 6d (2,0) theory: some aspects of the anomalous dimensions have
been studied in [149, 150], string corrections have been addressed in [122, 151] and finally
the first one-loop correction has been computed in [152]. We hope to extend the great

success of our bootstrap program in AdSs to those other cases in the future.



Appendix A

Superconformal Blocks

Here we give the explicit definition of the superblocks Sp., \, which are defined by a

determinantal formula following [92]. Let us introduce first the function

aprr _ (@Y —gE-—y)@-g) Y R
FoPA = (—1)Pt I dt<KA FY>’ (A1)

where the determinant is taken on the (p +2) x (p 4+ 2) matrices (with p = min{«, 5})
given by

( VTR 1 oA 1= 520 + 2 - 2 + )

»)
( GBI~ 1<1<p,1<]<p

Ry = () .
( )Z] Yi ) 1<i<2,1<5<2

The brackets in the definition of F f( mean deletion of the singular terms in the Taylor

1<i<2,1<5<p’

2F12—az 121 — 7y )
& 793) 1<i<p,1<j<2’

(A.2)

expansion in x; around x; = 0 when \; < j, and we have defined here z; = (z,Z)
y; = (y,7) in the matrix. With this at hand, the semi-short, quarter and one-half BPS

superblocks are given by the formula

xx
P1pP2P3P4 __ D,
sP = Py (

%(7—174-&-173) o=
A yﬂ)

1
FOP2 with ? (A.3)
1
2

where the prefactor Py is that of equation (2.18).
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Appendix B

Multiplet Recombination

The purpose of this appendix is to settle a task left undone in Section 2.5: to explain how
to properly disentangle physical semi-short contributions from the SCPW coefficients of
the free theory and to find the short coefficients Sy 14). We will approach this problem
in an 1/N expansion around the large N limit, where the leading contributions come
from the disconnected part of the free theory correlator. Let us note that separating
the short coefficients S from the long coefficients L at the unitary bound is actually
straightforward to order 1/N2. In particular, we will show that apart from the case
Spiya1e] With v = min{p; + p2,p3 + pa}, i.e when 7 = 7min 4]l other coefficients
S,z 1] Vanish. Thus the values of L will be trivially fixed by multiplet recombination.
This special feature at O(1/N?) has lead various people to the assumption that the
same would be true for all N, see [153] for a discussion on this point. However, beyond

O(1/N?) the separation of coefficients S from L is a non-trivial problem.

We will now show how to solve this problem to O(1/N*) and determine the genuine semi-
short sector of the single-particle correlators (pipepsps) in the full interacting theory,
using only the free theory correlators and knowledge about the form of the semi-short
operators. In particular, we provide formulae for all SCPW coefficients — split according
to operators which remain short in the interacting theory and those which are long — in

terms of the free theory coefficients A, \ defined in equation (2.39).

Recall that for long blocks at the unitary bound 7 = 2a + b 4+ 2 we need to resolve the
ambiguity which follows from a reducibility condition (i.e. that a long SCPW is a sum

of two semi-short SCPWs), which we repeat here for convenience:
Lﬁ;; = 8@77[5+271a} =+ Sﬁ;7+27[€+171a+1], fOI‘ T =2a + b + 2. (Bl)

Comparing the two pieces of the SCPW expansion (2.41), and equating the coefficient
131
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of Spir (042,10 using (B.1) yields
Apirer219) = Spirfer210) + L+ L;J;T—z,e+1,[a_1,b,a_1]v forr=2a+b+2. (B2

One of the key points allowing us to resolve the ambiguity at the unitarity bound is the
following (already tacitly assumed in (2.41)) statement: a long operator at the unitarity
bound necessarily has twist less than ™" = min{p; + p2,p3 + pa}, i.e. L]J;? =0 if
T = 2a+b+2 > 7™, This is a non-perturbative statement and a non-trivial consequence

of superconformal symmetry for the corresponding three-point functions [154, 155].

This fact allows us to use equation (B.2) to determine the SCPW coefficients of semi-

short operators of twist 7" = min{p; + pa, p3 + p4} in terms of lower twist coefficients

_ f _ _ mi
Spir o210 = Aprjerzie] = Lo o1 a1y 08 7= 204042 =7 a > 1

. (B.3)
Spire+2) = Apir[e+2)) for 7 = b4+2 = 7™,

It is useful to understand the 1/N expansion® of Spipmin 142, 10] first, since it will play
a role in our later formulas. Referring to Figure 6.1, when 7™ = 2a + b + 2 the two
lines coincide, i.e. the lower dashed line sits on top of the middle dashed line, and thus
we find that Sy min (49 10) in (B.3) is non trivial at O(1/N?). In particular, it gets a
contribution from leading order connected propagator structures. In the special case of
the (ppqq) correlators, 7™ = 7M3% and the free theory starts with an O(1) contribution
from disconnected diagrams. For all su(4) channels [a, b, a] such that 7™ = 2a + b + 2
we find then that all three dashed lines of Figure 6.1 coincide and S rmax (742 1] indeed

has an O(1) contribution from disconnected free theory diagrams.

What about CPW coefficients of semi-short operators of twist less than 7™"? Semi-
short operators generically will sit in the range of twists 7 < min{py + po,ps + pa},
therefore at the bottom dashed line in Figure 6.1, i.e. below the window. It follows that
the corresponding SCPW coefficient is O(1/N%),

Sprferona) = O(1/NY),  for 7 =2a+b+2< ™™ (B.4)

This is the well known statement that at O(1/N?) there are no semi-short operators

in the spectrum below the window, which implies a cancellation between free theory

and the interacting part. Using this information we can solve for Sp. min [p4210] in (B.3)
f . .. 2 . .

and for L7~ in (B.2) explicitly up to order 1/N=. First we solve (B.2) recursively, thus

obtaining the long SCPW coeflicients

a
LZJ;; = Z(—1)kAﬁ;7—_2k7[g+2+k71a—k] +O(1/N%), forT=2a+b+2< 7™ (B.5)
k=0

!Note that here and below, ‘order 1/N*’, really means N%<p1+p2+p3+p4)0(1/Nk) because we have
not normalised our external operators.
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Then, we plug this result into equation (B.3) to give the genuine semi-short coefficients
at threshold,

a

Sprjer2ne) = O _(=DF Az op erasn o) + O(1/NY), 7=2a+b+2=7"". (B.6)
k=0

Note that when a = 0, we correctly obtain Sj.; 419 given above in (B.3).

Now, can we determine the 1/N* SCPW coefficients of semi-short operators of twist less
than 7™"? The answer is affirmative. We first need to use some non-trivial information
about the spectrum of semi-short operators, and then we can determine these SCPW

coefficients unambiguously by combining data from many different correlators.

The key point here is that we know the explicit form of the double-trace semi-short
operators — or more importantly the number of them. They are twist 7, spin £ operators

in the [a, b, a] representation of the form
qu;‘? = Oqaeod |[a,b,a]7 (B7)

with 7 = ¢+ ¢ = 2a + b+ 2. For fixed twist and su(4) representation we can enumerate

the independent operators as
g =a+1+m, Gr=a+1+b-—r, with 7 =0d40,...,0—1, (B.8)

where

bE21 g + ¢ even,
[ B9)

=
Il

|2 a+¢ odd.

[

Unlike the case of long operators (discussed in Section 3.3.2), semi-short operators receive
no anomalous dimension. The operators enumerated in (B.8) are therefore degenerate
and we may directly choose the Oy from (B.7) as our basis. The SCPW coefficients of

such operators are then expressed in terms of the products of three-point couplings,

Sﬁ7—7[[+271a] = Z Cp1p2 (Oqﬂj'r)(M_I)Tscplipzl(oqdjs)’ (Blo)

T8

where M is the matrix of two-point functions (which is diagonal at leading order in large
N),

M,s = <quér0qstis> =Y, s + O(l/NQ)- (B-H)

We also recall the fact that the only couplings with a leading order contribution in the

large N expansion are the ones of the form Cpy(O,q). From this it follows that at leading
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order in large N we have a diagonal structure for the following three-point couplings,
CQ'r'qr(OQqu) = Xy 0ps + 0(1/N2)‘ (B.12)

With this information at hand, we can now predict the SCPW coefficients of semi-short
operators Sp.r [¢42,1a] Of twist 7 < 7 in terms of SCPW coefficients with 7 = 7™i7,
which in turn are known from equation (B.6). Finally, the general formula for Sj.; (712 14),

correct up to and including order 1/N*, is given by

pn—1
S, i Sord .
Spirje+2,10] = Z plp?érqj PP 4 O(1/N),  for 7 =2a+b+2<7™" (B.13)
r=0 qrqrqrqr

For simplicity, we have omitted the labels 7 and [¢ + 2,1°] in the SCPW coefficients
on the RHS above. The two factors in the numerator of the above equation are both
O(1/N?), whereas the factor in the denominator is of leading order in large N, and thus
the RHS is O(1/N?) as we stated already in (B.4). The formula (B.13) may be proven
by simply using (B.10) on both sides and then using (B.12) and (B.11) on the RHS to

cancel the denominator.

Lastly, with equation (B.13) at hand, we can improve LIJ;;F in (B.5) and Sprmin [p12 1a]
in (B.6) up to order 1/N*. The results are

a a

L,};; =Y (DF A5 o easrgo—) — O (1) Spr ok jps2in10-k + O(1/N®), (B.14)
k=0 k=0

for twists 7 = 2a + b +2 < 7™ and

a a

Spir [t42,10] = Z(_1)kAﬁ;r—2k,[€+2+k,1“—k} - Z(_1)ksﬁ;r—2k,[€+2+k,la—k] + O(1/N"),
k=0 =1
(B.15)

when 7 = 2a + b+ 2 = 7™,

In summary, all SCPW coefficients of (p1p2pspa)short and (p1pap3pa)iong from equa-
tion (2.41) have been obtained to order O(1/N%) and therefore we have successfully
split the free theory correlators into a protected contribution and an unprotected one.
In general, we can not go further in the 1/N expansion since to do so would require

input from triple-trace (and higher multi-trace) operators.

Let us conclude this section by illustrating our formulas (B.13) and (B.15) for the semi-
short sectors of the (3333) correlator, which has been already examined in detail in [92],

and the (4444) correlator, which is a new case.

In the case of (3333), we have below threshold semi-short predictions for twists 7 = 2

and 4. This semi-short sector is special because no multi-trace mixing occurs in the large



Appendix B Multiplet Recombination 135

N expansion and therefore we can give formulas which are exact in V. Very explicitly,
we find that

(3333) _
2233
§(3333) _ ( ')? 288((¢ +3)!)° AS
4[e+2) = Sffj” T RO+ ) + ) (VP —1) (B.16)
2233)\ 2
oy _ (Sipn)” 576((¢ + 3)!)° A8
4[e+2.1) SEE e+ ON(C+2)(E+5) — itpy) (N =1)]

where A) = (3(N?—1)(N?—4)/N)2. The structure of the SCPW coefficients of operators
at threshold, i.e. at twist 6, follows straightforwardly from equation (B.15):

Se, i\ = As, [\
Se,na] = Ae 1) — Agpra] T Sl (B.17)
Se,n1,1] = Aen1,1) — A ) T A2 o) T S -

In the case of the (4444) correlator, we have predictions for twists 7 = 2, 4 and 6. The

computations at twist 2 and twist 4 are analogous to the case of (3333). We find

(4444)y
San =0
(aaa2y 16 x 1152 ((£+3)1)2 1+ (—1)* 1
L1207 (14 3)(C+4) (20 +6)! 2 NY (B.18)
gladaa) 6 x 1600  ((£+3)1)%21—(-1)* 1
G217 (4 2)(6+5) (20+6) 2 NT
The twist 6 results are new and given by
glaaad) 16 x 384(29 + 3(20 +9)2) (£ +4)2 1+ (—1)*
G144+ (€+3)(f+6) 20+8) 2 N4’
glaagy 16 72(401 + 174(2( + 92+ 20+ 9" ((+4)? 1—(-1)° 1 B.19)
ol 2+ a5 +7 @8 2 N
gy 16 240000 +2)(0+7) (L+4)1? 1+ (-1)¢ 1
6,[(42,1,1] (¢ +3)(¢+6) (2¢ +8)! 2 N

We insisted on the correlators (3333) and (4444) as examples since these two correlators
capture generic features of our discussion about the semi-short sector, and furthermore
because they are investigated in Section 6.7.6 and Appendix D, respectively, where we
explicitly construct their one-loop completions. This underlines the importance of the

information from the semi-short sector for our one-loop bootstrap program.






Appendix C

Connected Free Theory at Order
1/N?

We quote a formula for connected free theory at order 1/N?, of a generic four-point
function (p1p2psp4)ee in the free field theory. The same formula is described in a
different notation in [112].

Each propagator structure in free theory is labelled by monomials of the form Py ot=ird
where i, j belong to the set T = {(i,j) | 0 < i < Kz, 0 < j < 4}, and the bound kp is
precisely the degree of extremality. The lattice of points described by T is schematically
depicted in Figure C.1 below.

O’#

Figure C.1: The set of monomials ¢*~/77 in a free field theory correlator.

We shall distinguish the three edges from the interior. Vertices at the intersection of the
edges correspond to disconnected diagrams (when they exist according to our definition

of single-particle states). In [4] we determined the value of the connected propagator
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structure

(P1D2D3P4) free _ P1D2P3PA s ) U7
> 1 4 Pastpar) 0 C1
Pﬁ N2 ( + ) v ( )

Comparing to the diagram of T in Figure C.1, the above contribution corresponds to
the coefficient associated to the point (1,1) on the diagonal edge of the triangle. By

crossing on the other edges we find

t—1 t—1
<p1p217);§4>free 5 plp]i]]723p4 [ + p43+p21 Z ( ) 1+ p13-5P42) (ua)k
k=1 k=1
=t t+1—k (©2)
+ ( |p23+p14 Z ( ) ] )
k=1
By including the propagator structures in the interior of 7" we finally obtain the general
formula
t—1 t—1
(P1P2P3P4) free  P1D2D3D4 | 1 pastpa ut\* 1 4 Paz—p2 k
P - N2 ( + 7 ) v + ( + 75 ) (uo)
p k=1 k=1
t—1

t+1—k (C.3)

+(1+ |p71+p25p3_p4 ) Z(ua)k (%)
e E (o))

(n1,m2)€T \edges

T
I

where the double-sum in the last line is over the interior of the set 7' (without the edges).



Appendix D

The (4444) Correlator at
One-Loop

In this appendix we describe the construction of the minimal one-loop function for the

(4444) correlator, as well as the generalised tree-level amplitude T4444.

D.1 The Minimal One-Loop Function for (4444)

The final example we study in detail is the (4444) correlator. The solution of our
bootstrap problem for ijzw given in the basis (6.101) and for simplicity with particular

values of the ambiguities, is appended in an ancillary file.

This correlator is again fully crossing symmetric and has degree of extremality 4, which
results in the long sector containing a total of six su(4) channels: [0,0,0], [1,0,1], [0, 2, 0]
and [2,0,2], [1,2,1], [0,4,0]. In this example, the threshold twist is 7™2* = 8. After
obtaining the two-variable resummations of the leading log2(u) discontinuities for all
channels, we then initiate our algorithm: we match our ansatz against the double-
logs, impose crossing symmetry and absence of x = Z poles. Lastly, we consider the
OPE predictions in and below the window. With the window being empty for this
correlator, we project the ansatz onto the log(u) stratum and we set to zero the one-
variable expansions up to order O(u4). Instead, in the below-window region we find
non-trivial physics. For the representations [0, 0, 0], [1,0, 1] and [0, 2, 0], the discussion is
similar to the twist 4 case for the (3333) correlator, and continues at twist 6 by including
predictions coming from the long sector at tree-level. On the other hand, for the [2,0, 2],
[1,2,1] and [0, 4, 0] channels we will have to consider non-trivial multiplet recombination,
taking into account the predictions arising from the semi-short sector. Let us proceed

channel by channel in the following.

In the singlet channel, there is an empty twist 2 sector, whereas the 1/N? subleading

139



140 Appendix D The (4444) Correlator at One-Loop

three-point couplings C (1) and CV give rise to non-trivial predictions for

44;4,£,10,0,0] 44;6,£,[0,0,0]
twists 4 and 6. Recall that there are two double-trace operators at twist 6, and therefore

the twist 6 computation yields a vector of three-point functions. Using (6.76), we find

(2)D _

L4444;27£,[0,0,0] =0, (D.1)
LD ~16x 4800 ((£+43)1)? 14 (-1)° (D2)
AALLL0000 (1 +1)(0+6) (204 6)! 2 '
1D _ 16 % 360(2¢ + 9)*(119 + (20 +9)?) (€ +4))* 1+ (—1)5‘ (D3)

4444;6,£,[0,0,0] C+1)(L+2)(l+T)(¢+8) (20 4 8)! 2

The corresponding one-variable resummation yields

2
X _ R _
Dl 0.0.01 10500y = 16 6 LA (5(z — 2)aLis (z) + 3(6 — 62 + %)L (@) )

3
((3440 55907 + 48472 — 2447%)Li3(z)

— (1230 — 12107 + 2117%)Li; () (D.4)

— 3007(6 — 67 + 7*)Lia(Z)

+32(z - 2)(2 205))] + O(zh).

In the channels [1,0,1] and [0, 2, 0], there are twist 4 predictions coming from semi-short
operators at the unitarity bound, similarly to the case of (3333). In particular, there
is an Sy49 1] contribution to the [1,0, 1] channel and an Sy49 ) to [0,2,0], computed
n (B.18). In addition we have 1/N? three-point couplings C’LL)M 11,01] and C’Lﬁw 0,2,0]
which give predictions at twist 6. Note that this is the first twist available for a long

operator in the [0, 2, 0] representation, but there is doubling of operators, i.e. u = 2.

The list of results for the [1,0, 1] representation reads

P 16 x 1600 ((£+3))2 1 — (=1)* D)
4444;4,0,[1,0,1] — (L+2)((+5) (20+6)! 9 ) .
7D 16 x 720000 + 1) (£ +8) (L +4)1? 1 — (—1)* D)
44446,0,[1,0,1] — (L+3)(¢+6) (20 + 8)! 9 ) .

with one-variable resummation

U=

2
Diual 01,1007 = 16+ 52 [34 (3(:3 —2)Z + (6 — 62 + L#?)Liy(z) + L(z - Q)zLif(:z))

3
+ 25 (54— 1763 + 8Ta2)TLE (@) + 2(4 + 47 — 35)7Li(2)

+ 18746 — 7667 + 2012%)7Liy (z) + ggi)ﬁ

+ 4 (15277 — 3014)7 )] +O(ah).
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The list of results in the [0, 2, 0] channels reads

7D 16 x 1152 ((£+3)1)2 1+ (—1)° (D.8)
444460200 T (1 £ 3) (0 +4) (20 +6)! 2 '
7D _ 16 x 864(40817 + 16702(2¢ + 9)* + 81(2£ + 9)*) (£ +4))* 1+ (-1)°
4444;6,6,[0,2,0] 80(£+1)(£+4)(L+5)(£+8) (20 +8)! 2
(D.9)

with one-variable resummation

2
2 x T T = = _ . _
Diiaal o201 gt () = 16+ 2°6 sz (822 + 3z — 2aLin (@) + 2°Lid(a))
3
+ 25 (3164640 — 2469607 + 98794 — 86677°)Li%(7)
x

(
3(11358 — 113427 + 19817%)7Li; () — 727°Lix ()

+

ol

(382 — 175%) + W)] + oY),
(D.10)

Finally we arrive at the representations [2,0, 2], [1,2,1] and [0, 4,0]. The unitarity bound
for all these representations is at twist 6, and the semi-short predictions can be found
in equation (B.19). Note that in the [0,4,0] channel, twist 6 lies at the bottom of the
multiplet recombination, since 7 = 2a + b + 2 with b = 4 and ¢ = 0. The prediction
for Lﬁ)ﬁ;& 0,[0,4,0] is thus straightforward. The predictions for the [1,2,1] and [2,0,2]
channels involve further shifts, which we now describe. From equation (6.90) we find

(2D _

L4444;6,g7[07470} = _54444;6,€+2;[0]7 (D.11)
2)D

L4(14)44;6,€,[1,2,1} = +S4444;6,£+2;[1] - 54444;4,e+3;[0]7 ) (D.12)
2)D

Lz(14)44;6,€,[2,0,2} = —S4444:6,042:[2] T S4444:4,043:[1]5 (D.13)

where in the last line we already implemented the absence of Syy44:2 ¢42;(0). Note that
equations (D.12) and (D.13) correctly include the shifts due to multiplet recombination
at twist 4 in the [0,2,0] and [1,0, 1] channels, respectively. Let us give the explicit

expressions here below.

In the [0, 4, 0] representation, we find

Lo 16 x384(20 +3(2( +9)%) (£+4) 1+ (1) (D.14)
4444:6,6,[0.4.0] (£+3)(¢+6) 20+8)! 2 '
with resummation
3
(2) _ L z2 i2(z I)T
,D4444}[0,470]710g0(u) = 16 2%! Lc5<(208 o 5(15?71) + %Lﬁ(x))@ o x)l’Q ( )
D.15

— 16(78 — 787 + 17.1‘2)EL11(£)>:| +O(zh).



142 Appendix D The (4444) Correlator at One-Loop

The results in the [2,0, 2] channel read

@D 16 %200 (—83 +3(20+9)%) (£+4)1? 14 (-1)* (D.16)
4444;6,6,[2,0,2] (€ +3)(¢+6) (20 +8)! 2 '
and
3
(2) _ z 72 2023 (= )
Dyjay [2,0,2],10g%(u) — 16 - 6! [ﬁ((zﬁr’ + 3(5271) + %Lh(x))(x —2)z
(D.17)
+ 2(30 — 30z + 13x2)Li1(x)>] + O(zh).
Lastly, for the [1,2, 1] representation we have
7 (2D 16 x 72(3 + (20 4+ 9)2) (167 + (20 + 9)2) (£ +4)12 1 — (-1)* (D.18)
444436,,[1,2,1] — C+2)l+4)(+5)(+T) (2¢+ 8)! 2 '
and its one-variable resummation gives
3
2 x _ _
D2 0(y = 16- 6! [ﬁ( — (2184 — 32767 + D20 z? — 8233)1i)(7)
+ 14(48 — 487 + 722)Lid(z) + B4z (D.19)

- % — 21847 (% — 1))} + O(z*).
Incredibly, all these predictions are consistent with the minimal one-loop ansatz (6.101)
and uniquely fix the remaining coefficients, leaving only four unfixed parameters. These
are precisely the four ambiguities from equations (6.110) and (6.111), which have once

again only spin £ = 0 support for above-threshold twists.

D.2 Generalised Tree-Level Amplitude for (4444)

Lastly, let us describe the generalised tree-level amplitude for this more complex exam-
ple. There are in total 3 + 12 propagator structures in the free theory, where the first
three are disconnected and not relevant here. The result for the connected part is given
by

(4444) free conn. _ 16(N? — 9)*(N? — 4)*(N? — 1)? [
912954 (N2 +41)2

16 37'3 U4O'3T U4O'7'3
s (uo e +250)
v v v
ulr? 4 2.2 (D.20)
27 TN244 2 u ot
Jr8(1\72(N2 9) +N2+1 (NZ—4)(N2—-1) (“ + 02 )
3 2 3 .2
+16(N2(N2 9y T N2+1 (N2—4)(N2—1 )( v + 02 ‘
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Written as a sum over propagator structures as in (2.25), the connected part of the free

theory correlator is constrained by crossing symmetry to have only three independent

classes:
0 1 0 1 1 3 16
2 2 TN2+44
A4 =Aj=A;=238 (N2(N2 9) + N2+1 (N274)(}Lv271)) ) (D.21)
2 18 16N2425
AG A == A4 — 16 (NQ(NQ 9) + N2+1 - (N2—4)(—]~_V2—1)) 9

from which we pick {A9, A}, A} as the set of independent coefficients.

The generalised tree-level function 73444 can be conveniently written in terms of just

two independent functions, F and F , in the following way:

1 72y
"2

[]—"(u, v) + o?ub F(1/v,u/v) + 6 f(v,u)}

; (D.22)

u
1 -~ ou 6~
+ 2 [UT]:(U,U) + F}'(U,u) +Tu }'(l/v,u/v)},

where both F and F are invariant under the crossing transformation (u,v) — (u/v,1/v).

Given the Mellin transform
Taaas = u? j{ uSv! T[—s]*T[~t]*T'[s + ¢ + 6]2./\/1[7?1444], (D.23)
with
M Taasa] = Mgaq + 0> mags + 72 Miggy + 07 My + 0 Mygy + Ty, (D24)

we will specify m},4(s,t) and m3f,,(s,t), which are the Mellin transforms of F and F,
respectively. One can then reconstruct M[T4444] by using symmetries, analogously to
equation (D.22).

The Mellin transforms of F and F are

ml = — A7 Liag Lhaaa L3444 (s+1)
4444 (s+3)({t+1)(s+t+5) (s+2)(t+1)(s+t+5) 6(s+1)(t+1)(s+t+5)’
ar 4 Llay Ly D.25
Myq44 = (s+1)(t+2)(s+t+4) + 2(s+1)(t+1)(s+t+4) + 2(s+1)(t+2)(5+t+5) ( ’ )
_ Lhaaa(5+3)  Lhyas—L30aa (20040, —L3444) (541)
3(s+1)(t+1)(s+t+5) 3(s+1)(t+2) (s+t+4) )

where

L};444 = A(Q) - Ag» 5421444 = %Ag - Ag - iAé- (D-QG)
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Finally, the other coefficients are determined by the crossing relations

miga(s,t) = miuu(t,s), Migaa(8,t) = mify(—s —t —6,s),
2 2

T 1 o 1 (D27)
Miga(8,t) = miygue(t, s), Miya4(8,t) = Mygy(—5 —1 —6,5).

The terms in m},,, and mJj,, which are proportional to A9 correspond precisely to the
supergravity tree-level amplitude Mﬁﬂ of Rastelli and Zhou. Note that the combina-
tions £’ in (D.26) vanish at order 1/N2.

In conclusion, let us highlight some new features of M|[7444] beyond tree-level. Recall
that the supergravity result from [47, 48] can be obtained by considering an ansatz in
Mellin space such that each monomial ¢*77 is accompanied by a single pole in the (s, t)-
plane. In comparison, the generalised tree-level amplitude has more structure than this.
In particular, poles like (s + 2)(t + 1) and (s + 1)(¢ + 1), corresponding to powers of u?
and u? in the small u expansion, and therefore corresponding to allowed twists below
the window, are also turned on. We see now that their residue is proportional to the

linear constraints Lﬁif, which indeed vanish at order 1/N2. We also notice that by

writing each pole in the form 0 with integers m;—123, the numerator

1
s+n1)(t+n2)(s+t+n3)
is at most linear in s and t. Therefore, we infer that the limit s — 8s and t — [t with
large 3 scales like 1//32, i.e. one more power than the 1/33 scaling of the supergravity

tree-level functions Mg’o) given in (3.33).

The case of M|[T4444] exemplifies well what is the general pattern of M[T;] in Mellin
space. In fact, we expect M([T;] to be a rational function in which all allowed poles in
the (s,t)-plane are turned on, eventually decorated by a non-trivial numerator, which is
nevertheless constrained by the large s and ¢ behaviour. Similarly to our position space
algorithm, the free coefficients in this ansatz will be fixed by demanding that the SCPW
expansion in the below-window region completely cancels the free theory contributions
as described in equations (6.87) and (6.88).



Appendix E
Analytic Properties of f3)(z, z)

The purpose of this appendix is to give more details on the structure of the function f®)
which makes an appearance in the one-loop string amplitudes. We recall that its total
derivative is defined in equation (7.16). By successively stripping off the leading log(u)
discontinuity we arrive at the form (7.19), with @ obtained very simply and with the

total derivative of f@ obtained in the form

df [210g }dlog(z)
+[210g 1—x}dlog(f)
[log 1 —2x)—3log(1 ]d (1—x) (E.1)
[lo 1—z)—3log(1 ]d (1-1x2)
[610g (1 —2)—6log(1l ]dlog x—T).

The form (7.21) agrees with the above and obeys f(?)(x,z) = 0, as it should by anti-

symmetry. Finally, we obtain the total derivative of f®) in the form

4FD(@,7) = [~A(Lia(x) — Lia(2)) + L log?(v) — FO(z, 7)) dlog(x)
[~4(Tin(2) — Lia(2)) — }log(v) — 7z, )] dlog(z)
+[—4(Liz(z) — Liz(z))]dlog(1 — ) (E.2)
+[—4(Liz(z) — Lig(z))]dlog(1 — 7)
+[12(Liz(z) — Liz(z))]dlog(z — )

We can easily integrate this in a form suitable for expansion in small z and Z. However,
for comparison with the Mellin space representation it is more convenient to make the

change of variables £ = 1 — Z, so that

u=uz(l—2), v==2(1—x). (E.3)
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Then the small x and Z expansion can easily be compared to a small u and v expansion

as obtained from Mellin space. To this end we first pull (E.2) back to the line x = 0,
df®(0,7) = [~12Lis(7) — log?(1 — z)]dlog(Z) + [4 Lix(z)]dlog(1 — 7). (E.4)

This can then be easily integrated in terms of weight three harmonic polylogarithms [156]
with the condition that £)(0,0) = 0:

FO(0,7) = —12H3(z) — 4H12() — 2H2,1 (7). (E.5)
Performing our change of variables from Z to £ = 1 —Z, we have in the small & expansion
F(0,1 - &) = —6¢3 + 4¢ log(#) + O(). (E-6)

Now using

oW (2,1 — ) = — log(u) log(v) — 2[Liy (z) log(u) + Liy (Z) log(v)]

(E.7)
— 2[Ca + Liy (2)Liy (2) — Lig(2) — Lia(7)],
we may write

df(ax,1-7) = [-20W (2,1~ 7) + 3 log?(v) — log(u)log(v)]dlog(x)
+ [—qu(l)(:c, 1— i) — $log?(v) + log(u) log(v)]dlog(1 — %)
+[-20W (2,1 — 7) — log?(u) + log(u) log(v)]dlog(l — z)  (E.8)
+ [—2q§(1) (z,1— ) + 1log?(u) — log(u) log(v)] dlog(%)
+ [6¢(1)(m‘, 1—-z2)|dlog(l —x —2)

We can then make manifest all the logarithmic singularities in log(u) and log(v) as

follows,

f(2,1-7) = Llog*(u)log(v) + Llog(u)log?(v) — log*(u)log(l — x) — log*(v) log(1 — &)
+ log(u) log(v) [2log(1 — z) + 2log(1 — &) — 6log(l — z — Z)] (E.9)
+ log(u) 9(2) (z,z) + log(v) g(2) (Z,x) + 69(3)(m,i),

where the function ¢ can be expressed as

I —z)*(1 -
) —2log(1 — z) log (1(1—?@(—1@6 )

(E.10)

g@MLj)24@4F2Uﬂm)+2Lb@)—6Lb(l

To write a formula for ¢(® it is helpful to use hyperlogarithms Gy (t) which depend on

a word w = ajas...a, in letters a; and a variable . The function whose word is just a
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string of n zeros is a power of log(t),
1 n
Gon(t) = ] log"(t). (E.11)

The other functions are defined recursively,

Co(t) = /0 9 Guls). (B.12)

s—a

Using these hyperlogarithms we can write an expression for ¢(3) by integrating the total

derivative and fixing the term proportional to (3 from (E.6),

g (2,3) =  G1(2)Go(z) — 2G1-4(2)Go(x) — 2G1 ()G ()
+ G1(2)G1,1(2) — 2G1(2)G1,1-2(Z) — 2G1(2)G1-21(Z)
+ Goo1(2) + Go0.1(T) — 2Go11(2) + Go11(T) — Go1-2(F)  (E.13)
—2G0,1-21(%) —2G101(7) + G10,1(Z) — G1,01-2(7)
—2G1—2,0,1(%) — 2¢2log(l —x — &) — (3.
Although it is not manifest from the above formula, g3 is symmetric, i.e. ¢® (z,%) =

g® (Z,x). The apparent asymmetry is simply due to a choice of the contour of integration

(first in the z direction, then the Z direction).
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