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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

School of Physics and Astronomy

Doctor of Philosophy

ASPECTS OF FOUR-POINT FUNCTIONS IN N = 4 SYM AT STRONG

COUPLING

by Hynek Paul

In this thesis we focus on two main topics: the double-trace spectrum of strongly-coupled

N = 4 SYM theory and the construction of one-loop four-point functions in AdS5×S5.

We begin by providing a basic review of N = 4 SYM and its connection to holographic

correlators on AdS5×S5 through the AdS/CFT duality. In the second part, we examine

the spectrum of double-trace operators at strong coupling, which are dual to two-particle

bound states in AdS. At large N , these states are degenerate and to obtain their order

1/N2 anomalous dimensions one has to solve a mixing problem. We present a compact

formula for all tree-level supergravity anomalous dimensions and we observe an interest-

ing pattern of residual degeneracies. Considering further string corrections, we identify a

ten-dimensional principle which dictates the structure of the string corrected spectrum.

The third part is devoted to the construction of one-loop corrections to four-point cor-

relation functions. We develop an algorithm for bootstrapping one-loop supergravity

correlators for arbitrary Kaluza-Klein modes, which relies solely on implementing the

consistency of the OPE to order 1/N4. We illustrate the subtle features of this algorithm

by constructing new explicit results for multi-channel correlators. Lastly, we consider

one-loop string corrections to the 〈O2O2O2O2〉 correlator. We find that a transcendental

weight three function involving a new type of singularity is required, whose presence is

a novelty in the context of AdS amplitudes.
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Chapter 1

Introduction

The development of quantum field theory in the course of the last century is doubtlessly

one of the greatest achievements of modern theoretical physics. Quantum field theories

are mathematical frameworks unifying the theory of special relativity with the principles

of quantum mechanics, and even though they were originally developed to describe

the interactions between elementary particles, its applications reach from cosmology to

condensed matter physics. The most successful such theory however is the standard

model of particle physics. More precisely, the standard model is a non-abelian Yang-

Mills theory with gauge group SU(3) × SU(2) × U(1), which accounts for three out of

the four fundamental interactions of nature: electromagnetism, the strong and the weak

nuclear force. Thanks to immense experimental efforts, it has been tested to a very high

degree of precision.

The theory describing the strong nuclear force, governing the interactions of quarks

and gluons, is given by the SU(3) part of the standard model and is known under the

name of quantum chromodynamics (QCD). It stands out because of its special property

that the interactions become weaker at high energies, a phenomenon called asymptotic

freedom. Conversely, at low energies, QCD becomes strongly-coupled and gives rise

to the intricate spectrum of hadrons, observed in e.g. collider experiments. While we

can use perturbation theory to study the weak coupling limit, understanding quantum

field theories at strong coupling remains a big challenge to this day. One possibility

is to put the theory on a discrete spacetime instead, an approach called lattice field

theory, which has been mostly applied to numerically study the hadronic spectrum of

QCD using various simulation techniques. On the other hand, we do not have any

systematic analytic technique to study the strongly-coupled regime of generic quantum

field theories.

For a special class of quantum field theories however, some promising progress has been

achieved in recent years. These are so-called conformal field theories (CFTs), which

are much more constrained because of their additional symmetries. For example, their

1



2 Chapter 1 Introduction

two- and three-point correlation functions are entirely fixed by conformal symmetry.

One avenue of progress comes from the revival of the old idea of using symmetries

and other consistency-conditions to solve a theory. Thanks to significant advances in

computational power, the modern (numerical) conformal bootstrap program, initiated

in the seminal work [11], has sparked a wealth of new non-perturbative results. Most

notably, this lead to a high precision determination of operator dimensions and OPE

coefficients in the three-dimensional Ising model [12, 13], surpassing by far any other

available method.

Another avenue to study CFTs at strong coupling comes from the celebrated discovery

by Maldacena: the AdS/CFT correspondence [14–16], a conjectured duality between

strongly-coupled CFTs and weakly-coupled gravitational theories on an AdS background

of one more spacetime dimension. As such, it is a prime example of the holographic

principle, an idea that gravity is emergent from a lower-dimensional description. This,

and the extraordinary property that it is a strong-weak coupling duality, has made

the AdS/CFT correspondence one of the most vibrant research areas of present-day

theoretical physics. The first and most-studied example of such a correspondence is the

duality between four-dimensional N = 4 SYM theory with gauge group SU(N) and

type IIB string theory on AdS5×S5. It is important to mention that this duality has not

been proven, but over the years it has passed many non-trivial checks and an enormous

amount of evidence in its favour has been gathered. For our purposes, we will assume

the duality and use it to study the strongly-coupled regime of N = 4 SYM theory, which

in turn provides an avenue to study quantum gravity in AdS5×S5.

Even though N = 4 SYM theory is arguably quite far from real-life physics, having

maximal supersymmetry and conformal invariance which leads to the loss of asymptotic

freedom, it can still be seen as a more symmetric ‘cousin’ of QCD, as their perturbative

scattering amplitudes share many qualitative properties.1 Moreover, N = 4 SYM has

many further special features which make it worthwhile studying: for example, in a limit

where one takes the number of colours N large (the planar limit), this theory becomes

integrable.2 Furthermore, its superconformal symmetry persists at the quantum level,

and we can use CFT techniques to study the theory at any value of the coupling. It is

also believed that this theory obeys S-duality (Montonen-Olive duality), realised as a

SL(2,Z) symmetry of the complexified gauge coupling, which relates the weak and strong

coupling regions in a non-trivial manner. Finally, for us the most interesting feature of

this theory is its presence in the previously mentioned AdS/CFT correspondence. The

central quantities of interest within this duality are the correlation functions of local

operators. In particular, we will consider correlators of one-half BPS operators, which are

dual to states belonging to the AdS5 graviton supermultiplet and its Kaluza-Klein modes

1See e.g. the recent review [17].
2In particular, one finds an infinite number of symmetries in the planar limit, making it possible to

compute the spectrum of scaling dimensions exactly. See e.g. [18] for a review on integrability in this
regime.
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on S5. While their two- and three-point correlation functions are protected quantities

(whose matching served as one of the early tests of the correspondence [19, 20]), the first

non-trivial dynamics appears in four-point functions. At weak coupling, many results for

such four-point functions have been obtained in perturbation theory: for the simplest,

lowest-charge correlator the works [21–26] have lead to results up to ten-loops [27]. For

higher-charge correlators, results are known up to three-loop order [28–35], and later even

up to five-loops [36]. On the other hand, more interesting for us are the results at strong

coupling, where the correlation functions have a dual interpretation as supergravity

scattering amplitudes in AdS [37–40]. In a truly heroic effort, the effective type IIB

supergravity action on AdS5×S5 has been obtained up to quartic order by Arutyunov

and Frolov [41]. In principle, their results prepared the ground for the computation of

any four-point supergravity correlator as a sum of Witten diagrams, but the complexity

of this traditional method limits the direct computation to correlators of low external

charges, see [28, 29, 42–46] for results obtained in this way. It then took almost twenty

years and a completely new approach to make further progress: in the groundbreaking

work of Rastelli and Zhou [47, 48], a remarkably compact Mellin space formula for

all tree-level supergravity correlation functions was obtained by a bootstrap approach,

which completely bypasses the diagrammatic expansion in terms of Witten diagrams.3

Their formula is consistent with all previously known correlators, and has been further

checked in many new cases by explicit supergravity computations [58–60]. Finally, as

this formula was obtained as a solution of a bootstrap problem, the overall normalisation

was left unfixed. Using a physical argument on the absence of certain states, we will be

able to determine this normalisation.

Here, we take the general result for the tree-level supergravity correlators from [47, 48] as

an input and we will employ CFT techniques, in particular the (super)conformal partial

wave expansion developed by Dolan and Osborn [61–65], to systematically analyse the

spectrum of exchanged operators in the supergravity limit. To leading order in large N ,

the only operators in the supergravity spectrum which develop an order 1/N2 anomalous

dimension are double-trace operators, corresponding to bound two-particle states in

AdS. In turn, we can then use the obtained information on the spectrum to bootstrap

order 1/N4 corrections to the supergravity correlators, which correspond to one-loop

amplitudes in the dual gravity theory. Solely by implementing the consistency of the

OPE to order 1/N4, we can thus learn about quantum corrections to supergravity on

AdS5×S5 without any reference to actual one-loop diagrams, and in fact such a direct

computation remains extremely challenging. Instead, explicit one-loop computations in

the bulk have so far been restricted to much simpler, scalar theories [66–71].

Lastly, let us mention that a considerable amount of the recent work on the AdS/CFT

correspondence has focussed on studying general constraints on possible holographic the-

ories, see e.g. [72–85]. We believe that both general considerations and also explorations

3Similar methods have subsequently been applied to holographic correlators in other theories and
backgrounds, see references [49–54], and also for boundary CFTs [55–57].
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of explicit examples, such as discussed in this thesis, are necessary to further advance our

understanding of strongly-coupled CFTs, quantum corrections to gravitational theories

and ultimately the remarkable AdS/CFT duality itself.

Outline of the Thesis

This thesis is divided into three parts. The first part consists of two introductory chap-

ters, starting with a collection of basic facts about N = 4 SYM theory in Chapter 2. In

particular, we describe the spectrum of local operators and review the superconformal

partial wave (SCPW) expansion of four-point correlation functions of one-half BPS op-

erators. In Chapter 3, we present the statement of the AdS/CFT correspondence and

give a precise definition of the operators dual to single-particle states in AdS. We then

describe the consequences of the duality for four-point correlation functions and review

the results for tree-level supergravity correlators.

In the second part, we describe how to resolve the mixing of exchanged double-trace

operators in the supergravity limit by using data from many tree-level correlators. In

Chapter 4, this leads to a formula for all tree-level supergravity anomalous dimensions,

which is of remarkable simplicity and has an interesting pattern of residual degeneracies.

Further string corrections are then addressed in Chapter 5, and we find that their struc-

ture follows from a new ten-dimensional principle. We compute the order λ−
3
2 and λ−

5
2

anomalous dimensions and, most notably, the order λ−
5
2 result lifts the supergravity

degeneracy in a non-trivial way.

The third part is devoted to the construction of one-loop corrections to four-point cor-

relation functions. Building on the results for the double-trace anomalous dimensions

from part two, our strategy is to predict the leading logarithmic discontinuity and com-

plete it to the full one-loop amplitude. In Chapter 6, we develop a general algorithm for

bootstrapping one-loop supergravity correlators of generic external Kaluza-Klein states

and we illustrate this algorithm by considering many explicit examples. From the con-

structed one-loop amplitudes, we then extract new subleading anomalous dimensions. In

Chapter 7, we then consider string corrections to the one-loop supergravity amplitudes.

We find that the string corrections require the presence of a transcendental weight three

function involving a new type of singularity, which has not appeared in the context

of AdS amplitudes before. Finally, some additional material can be found in the five

appendices.
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Chapter 2

Basics of N = 4 SYM Theory

As already mentioned in the introduction, on one side of the AdS/CFT duality we have

the N = 4 SYM theory. In this chapter, we will collect some basic facts and results

about this special theory. We will start by giving a Lagrangian description of the theory

and discuss its symmetries. In Section 2.2, we will view this theory as a superconformal

field theory and study its spectrum of gauge invariant operators. Up to that point, the

reviewed material is standard and we will loosely follow references [86–88]. In Section 2.3,

we then introduce four-point correlation functions of one-half BPS operators, which are

one of the main objects of interest in this thesis. Finally, in Section 2.4, we describe

the N = 4 superconformal operator product expansion (OPE), which gives rise to the

superconformal partial wave decomposition used later as our main tool for analysing the

spectrum of exchanged operators.

2.1 Lagrangian Description and Superconformal Algebra

A convenient description of the N = 4 SYM theory can be obtained by dimensional

reduction from a ten-dimensional Lagrangian. Consider

L10 = − 1

2g2
YM

tr
{
FMNF

MN − 2iΛ̄ΓMDMΛ
}
, (2.1)

which describes a massless vector multiplet in 10 dimensions withN = 1 supersymmetry.

In the above, FMN is the field strength tensor for a ten-dimensional gauge field AM , Λ

denotes a Majorana-Weyl spinor with 16 real components, andM , N are ten-dimensional

indices. The trace is taken over the gauge group SU(N), under which the fields transform

in the adjoint representation.

The four-dimensional Lagrangian L4 then follows upon Kaluza-Klein compactification on

a six-torus T 6. The resulting field content in four dimensions constitutes the full N = 4

supersymmetry gauge multiplet, given by one gauge field Aµ, four chiral fermions λAα

7
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(A = 1, . . . , 4) and six real scalar degrees of freedom φI (I = 1, . . . , 6) transforming in

the fundamental representation of SO(6). The reason why we end up with (rigid) N = 4

supersymmetry in the four-dimensional theory is a consequence of the compactification

on T 6 which preserves all 16 supercharges, such that the four-dimensional multiplet has

an additional SU(4) ' SO(6) global R-symmetry. The four-dimensional Lagrangian

with N = 4 supersymmetry turns out to be unique, and it is given by

L4 = tr
{
− 1

2FµνF
µν − (Dµϕ

AB)(Dµϕ̄AB) + 2iλ̄Aσ̄
µDµλ

A

− 2gYM

(
λA[ϕ̄AB, λ

B]− λ̄A[ϕAB, λ̄B]
)

+ 1
2g

2
YM[ϕAB, ϕCD][ϕ̄AB, ϕ̄CD]

}
,

(2.2)

where the ϕAB describe three complex scalars transforming in the antisymmetric rank-

two representation of SU(4). Note that they are simply related to the six real scalars

φI mentioned above through a linear transformation.

By inspection of the mass-dimensions of the terms in the above Lagrangian, we find that

L4 describes a scale invariant theory at the classical level. Combined with the usual

Poincaré invariance of L4, this results in conformal symmetry of the theory, described

by the conformal group SO(4, 2) ' SU(2, 2). Together with N = 4 supersymmetry with

R-symmetry group SU(4), this gives rise to the even larger supergroup PSU(2, 2|4) of

superconformal symmetries.

An important and very remarkable fact about this theory, which is not directly visible

from the Lagrangian formulation, is its superconformal symmetry at the quantum level:

perturbative computations of correlation functions in this theory have shown no ultravi-

olet divergences, resulting in an identically vanishing β-function of the renormalisation

group. As a consequence, the superconformal group mentioned above remains an exact

symmetry of N = 4 SYM even at the quantum level. This allows us to adopt a different

point of view on this theory: instead of thinking about it as a framework for pertur-

bative computations in the gauge coupling gYM of e.g. scattering amplitudes (as one

does for example in QED or QCD), we will think of N = 4 SYM as a (super)conformal

field theory and apply CFT methods. This will allow us to study the theory in the

strong coupling regime, which is not accessible through the traditional perturbative ap-

proach. We will elaborate more on this CFT point of view and introduce the necessary

terminology in the next section.

Let us now turn to the algebra of the superconformal group PSU(2, 2|4), as we will

need its generators in order to understand the construction of the operator spectrum

of N = 4 SYM theory. The N = 4 superconformal algebra in four dimensions can be

broken down into smaller subalgebras. One of the two bosonic subalgebras is the algebra

of the conformal group SU(2, 2), an extension of the Poincaré algebra: it is generated by

translations Pµ, Lorentz transformations Mµν , together with dilatations D and special

conformal transformations Kµ. Another extension of the Poincaré algebra is given by

adding four fermionic supercharges Qaα and Q̄α̇a with a = 1, . . . , 4, and R-symmetry
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generators RA (A = 1, . . . , 15), which gives the N = 4 supersymmetry algebra. Now,

we can combine these two extensions in a consistent way once we add 16 additional

fermionic generators in order to close the algebra. These are the so-called conformal

supercharges Sαa and S̄aα̇, which complete the full N = 4 superconformal algebra. To

emphasise the structure of the resulting super-algebra, one can organise the generators

into the four blocks [86] (
Mµν , Pµ, Kµ, D Qaα, S̄

a
α̇

Q̄α̇a, Sαa RA

)
, (2.3)

with the generators of the two commuting bosonic subalgebras on the diagonal, and

the fermionic generators on the off-diagonal. We will refrain from writing down all

(anti)commutation relations of the N = 4 superconformal algebra, which can be found

in e.g. [87]. For our purposes it will be enough to note the anticommutation relations of

the Poincaré supercharges (in the absence of a central charge):

{Qaα, Qbβ} = 0, {Qaα, Q̄β̇b} = 2σµ
αβ̇
Pµδ

a
b . (2.4)

2.2 The Spectrum of Local Operators

Due to the conformal symmetry ofN = 4 SYM, there are no massive particles (both, fun-

damental or composite) in this theory and hence no mass spectrum to study. Nonethe-

less, there exists an analogue of composite particles and their mass spectrum in a CFT:

these are the so-called local operators, usually denoted by O, which are gauge-invariant

objects built from products of the fundamental fields and their derivatives, inserted at

the same point in spacetime. For example, the simplest class of such operators is given by

single-trace operators O(x) = tr
{
F (1)(x) · · ·F (n)(x)

}
, where the F (i) can be any of the

fundamental fields introduced in the previous section, or covariant derivatives thereof.

For reasons of gauge-invariance, rather than using the gauge field Aµ, we take the field

strength Fµν as a basic building block instead. It is also possible to have multi-trace

operators, which are simply products of single-trace ones. The CFT-analogue of a mass

spectrum is then given by the spectrum of scaling dimensions of the local operators of

a theory, where the scaling dimension (or simply dimension) ∆O of a local operator O
is defined as its eigenvalue under dilatations:

[D,O(0)] = i∆OO(0). (2.5)

The classical value of ∆O equals the sum of the naive scaling dimensions of the con-

stituent fields, which are given by

[φI ] = [Dµ] = 1, [λA] =
3

2
, [Fµν ] = 2. (2.6)



10 Chapter 2 Basics of N = 4 SYM Theory

At the quantum level however, the scaling dimensions generically receive quantum cor-

rections. These so-called anomalous dimensions are then functions of the coupling gYM

and the number of colours N of the gauge group SU(N).

Let us now proceed by describing the classification of local operators in N = 4 SYM the-

ory. First of all, as in any CFT, local operators can be divided into two distinct classes:

primaries and descendants. Conformal primary operators are by definition those which

are annihilated by special conformal transformations, that is

[Kµ,O(0)] = 0, (2.7)

whereas descendants can be obtained from linear combinations of derivatives of primary

operators (i.e. by action of the translation operator Pµ). In other words, Pµ (Kµ) acts

as a raising (lowering) operator with respect to the scaling dimension, and thus primary

operators are defined as the operators of lowest dimension within a conformal multiplet.

Now, in a superconformal theory, there is a second set of raising and lowering operators

given by the supercharges Q and S. To obtain a superconformal primary operator, which

is the state of lowest dimension in a superconformal multiplet, we thus supplement the

condition (2.7) by additionally requiring

[S,O(0)] = 0. (2.8)

In fact, since S lowers the dimension by −1/2 compared to Kµ which lowers it by −1,

equation (2.8) is the stronger condition as it implies the former condition (2.7). A

superconformal primary is therefore automatically also a conformal primary, whereas

the converse is not true in general.

The descendants of a given superconformal primary operator O are constructed by

applying the raising operators Pµ and Q on O. Recalling the anticommutation relations

from equation (2.4), one can obtain Pµ from a combination of Poincaré supercharges Q,

and therefore the entire superconformal multiplet can be generated by the action of the

Q’s alone. Note that this also implies that a superconformal multiplet comprises a finite

number of conformal primaries, since there are only finitely many ways to apply the

supercharges Q before obtaining a derivative operator Pµ. In N = 4 SYM theory there

are 16 supercharges, so a generic supermultiplet consists of 16 conformal primaries.1 In

summary, descendants are operators which can be written as Q-commutators of other

operators, and in turn the entire supermultiplet can be generated by the action of Q’s

on a superconformal primary.

Using the above reasoning, let us explicitly construct the superconformal primary oper-

ators of N = 4 SYM theory which will be relevant in the context of this thesis. To this

1Compared to these so-called long supermultiplets of maximal size, there also exist special classes of
supermultiplets which obey shortening conditions. We will elaborate further on this important concept
later in this section.
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end it is instructive to inspect the action of the Poincaré supercharges on the funda-

mental building blocks of gauge-invariant local operators. Schematically and omitting

all indices, they read [86]

[Q,φ] = λ, [Q,F ] = Dλ,

{Q,λ} = F + [φ, φ], {Q, λ̄} = Dφ,
(2.9)

where D stands for the covariant derivative. As we have argued earlier, all quantities

which arise from the action of Q’s can not be primaries. The only way to obtain a

superconformal primary is therefore by a symmetric combination of the scalar fields φI ,

all inserted at the same spacetime point x. The simplest such operators are given by

single-trace operators

str
{
φI1φI2 · · ·φIp

}
(x), (2.10)

where str denotes the symmetrised trace over the gauge group SU(N) and the Ik are

the SO(6) R-symmetry vector indices. Since tr{φI} = 0 for an SU(N) gauge group, we

have p ≥ 2 in the above. These operators transform in the symmetrised product of n

vector representations, which in general yields a reducible representation. One way of

obtaining an irreducible representation is by removing the traces:2

OI1,I2,...,Ipp (x) = tr
{
φ{I1φI2 · · ·φIp}

}
(x), (2.11)

where the curly brackets denote traceless symmetrisation of the R-symmetry indices.

One can conveniently remove the free indices by contracting them with auxiliary SO(6)

null-vectors yI , giving

Op(x, y) = yI1yI2 · · · yIp tr
{
φI1φI2 · · ·φIp

}
(x), (2.12)

where the null condition yIyI = 0 automatically projects onto the symmetric traceless

part, corresponding to the [0, p, 0] representation of SU(4). Furthermore, it turns out

that Op is annihilated by half of the supercharges, making it a so-called one-half BPS

operator whose superconformal multiplet is shorter than the generic one. As a conse-

quence, its classical scaling dimension ∆ = p is protected from quantum corrections and

hence remains unrenormalised. These operators play a special role within the AdS/CFT

correspondence, as they are dual to single-particle states in the bulk theory. Note that

this statement is strictly true only in the large N limit, as additional 1/N suppressed

multi-trace terms to the definition (2.12) need to be considered. We will discuss this

issue in more detail in Section 3.2.

A zoo of more complicated superconformal primary operators can be constructed from

products of the above single-trace ones, which are accordingly called multi-trace opera-

2Another irreducible representation can be obtained by taking the trace over the SO(6) indices. The
first such example is given by the so-called Konishi operator

∑
I tr
{
φIφI

}
.
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tors. Depending on their detailed form, they can give rise to BPS or non-BPS multiplets.

For example, a multi-trace one-half BPS operator can be obtained from the product

Op1 · · · Opn after projection onto the [0, p, 0] representation:

(
Op1 · · · Opn

)∣∣
[0,p,0]

, with p = p1 + . . .+ pn. (2.13)

Just like the single-trace operators Op, they have protected scaling dimension ∆ = p.

On the other hand, we can also obtain multi-trace operators in more general SU(4)

representations, which give rise to long superconformal multiplets. As such, their scal-

ing dimensions will in general be unprotected and these operators acquire an anomalous

dimension. In this thesis, we will mainly focus on double-trace operators which schemat-

ically are of the form

Op�n∂{µ1 · · · ∂µ`}Oq
∣∣
[aba]

, (2.14)

such that the operator is in a totally symmetric and traceless irreducible representation

with Lorentz-spin ` and classical scaling dimension ∆(0) = p+q+2n+`. These operators

arise as exchanged states in the operator product expansion of four-point functions of

one-half BPS operators, which we will introduce next. In the context of the AdS/CFT

correspondence, double-trace operators correspond to bound two-particle states in AdS.

2.3 Four-Point Functions of One-Half BPS Operators

As in any CFT, the form of two- and three-point functions in N = 4 SYM theory is

entirely fixed by conformal symmetry. Furthermore, since the operators Op are protected

by supersymmetry, their two- and three-point functions are fully described by their

free field expressions. The first non-trivial dynamics appears therefore in four-point

functions, which are generically coupling dependent because unprotected operators can

be exchanged in the operator product expansion. The fact that we take one-half BPS

operators as external states means that the four-point functions of any operators in

the supermultiplets are uniquely determined in terms of the four-point function of the

superconformal primaries,

〈p1p2p3p4〉 ≡ 〈Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)〉. (2.15)

Such correlation functions are homogeneous polynomials of degree pi in the yi variables,

while the dependence on the position space variables xi is in general much more involved.

However, the four-point function should really depend on the conformal and su(4) cross-

ratios u, v and σ, τ only. This can be achieved by pulling out a dimensionful prefactor,

〈p1p2p3p4〉 = P~p G~p (u, v;σ, τ), (2.16)
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where P~p carries the conformal and su(4) weights of the correlator such that G~p is a

(á priori arbitrary) function of the conformal cross-ratios u and v, and a polynomial in

the su(4) cross-ratios σ and τ . For future convenience, we introduced the short-hand

notation ~p to denote the dependence on the four external charges (p1, p2, p3, p4). In

terms of the original variables, the cross-ratios are given by

u = xx̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− x)(1− x̄) =
x2

14x
2
23

x2
13x

2
24

,

1

σ
= yȳ =

y2
12y

2
34

y2
13y

2
24

,
τ

σ
= (1− y)(1− ȳ) =

y2
14y

2
23

y2
13y

2
24

,

(2.17)

with x2
ij = (xi − xj)2 and y2

ij = yi · yj . We also introduced the variables x, x̄ and y, ȳ,

which we will use interchangeably with u, v and σ, τ , often even including both sets of

variables in the same formula. Without loss of generality, we can arrange the external

charges such that p43 ≥ p21 ≥ 0, where pij = pi − pj . The prefactor P~p is then given by

P~p = g
p1+p2−p43

2
12 g

p43−p21
2

14 g
p43+p21

2
24 gp3

34, (2.18)

where gij denotes the superpropagator defined as

gij =
y2
ij

x2
ij

, (2.19)

obeying gij = gji and gii = 0. As mentioned before, in contrast to two- and three-point

functions of one-half BPS operators, the four-point functions are not identical to their

free field expressions. However, their dependence on the coupling is heavily constrained

by superconformal symmetry. To express the constraints imposed by superconformal

symmetry, it is useful to separate the correlator into a free field theory and an interacting

piece. The so-called partial non-renormalisation theorem [89] then constrains the four-

point functions to have the following structure

〈p1p2p3p4〉 = 〈p1p2p3p4〉free + P~p × I(x, x̄, y, ȳ)×H~p (u, v;σ, τ ; gYM), (2.20)

where the first term is the coupling-independent free field correlator and the second term

is the interacting piece. The key point is that all non-trivial dependence on the gauge

coupling gYM appears in H~p . Furthermore, the interacting (or dynamical) term admits

a decomposition into the three terms shown above, where the factor I is fixed by the

superconformal Ward identities to take the fully factorised form3

I(x, x̄, y, ȳ) =
(x− y)(x− ȳ)(x̄− y)(x̄− ȳ)

(yȳ)2
. (2.22)

3Alternatively, it can be written as the following degree-two polynomial

I(u, v, σ, τ) = v + σ2uv + τ2u+ σv(v − 1− u) + τ(1− u− v) + στu(u− 1− v). (2.21)
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Note that the presence of this factor reduces the polynomial degree of H~p in σ and τ

by two compared to the free field theory part.

The free field four-point functions can be computed simply by performing Wick con-

tractions between the elementary fields. The result is a sum over the different allowed

superpropagator structures accompanied by their colour factors. Graphically, the four

external operators Opi are represented as vertices with pi legs and each superpropagator

gij is represented as a line between the points i and j. We arrange the four operators at

the corners of a square, labelled clockwise from the bottom left. For example, the free

theory correlator of four dimension-three one-half BPS operators O3 reads

〈3333〉free = A0
0

+A0
2 +A1

2

+A0
4 +A1

4 +A2
4

+A0
6 +A1

6 +A2
6 +A3

6 ,

(2.23)

where the coefficients Akγ are the associated colour factors. The subscript γ counts the

total number of propagators connecting the left half of the graph to the right half, and k

is the number of propagators along the top edge of the square. Due to the full crossing

symmetry of the above correlator, many colour factors are equal to each other whenever

the corresponding graphs are isomorphic. Indeed, in this example there are only three

independent colour factors and an explicit computation of the Wick contractions yields

the factors

A0
0 = A0

6 = A3
6 =

9(N2 − 4)2(N2 − 1)2

N2
,

A0
2 = A1

2 = A0
4 = A2

4 = A1
6 = A2

6 =
9

N2 − 1
A0

0,

A1
4 =

18(N2 − 12)

(N2 − 1)(N2 − 4)
A0

0,

(2.24)

which are exact inN . For a general correlator (using our conventions for the arrangement

of external charges, i.e. p43 ≥ p21 ≥ 0), the free theory result reads

〈p1p2p3p4〉free = P~p
min{p1+p2,p3+p4}∑

γ=p43
γ−p43 ∈ 2Z

[(
g13g24

g12g34

) γ−p43
2

γ−p43
2∑

k=0

Akγ

(
g14g23

g13g24

)k ]
, (2.25)

where Akγ are the N -dependent colour factors and the prefactor P~p has been defined in

equation (2.18). Using the definition of the superpropagator from (2.19), we have

g13g24

g12g34
=
xx̄

yȳ
= uσ,

g14g23

g13g24
=

(1− y)(1− ȳ)

(1− x)(1− x̄)
=

τ

vσ
. (2.26)
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Substituting these relations into the general formula (2.25), we find that the free theory

correlators are simply rational functions of the conformal cross-ratios (u, v), whereas the

(σ, τ) dependence is only polynomial, as expected.

2.4 The N = 4 Superconformal OPE

One of the central tools we will use throughout this thesis is the superconformal partial

wave (SCPW) decomposition (or superconformal block decomposition) of the four-point

functions introduced in the previous section. It relies on the notion of an operator

product expansion (OPE), which describes the product of two operators as a sum over

the spectrum of the theory, offering a fully non-perturbative approach to the study of

correlation functions. We will consider the OPE obtained in the limit x2
12 → 0, x2

34 → 0,

which in cross-ratio variables corresponds to the limit u→ 0 with v fixed. The OPE of

two one-half BPS operators reads

Op1(x1)Op2(x2) ∼
∑
O

g
p1+p2−∆

2
12 Cp1p2O L(`)(x12, ∂x2) ∗ O(`)

∆ (x2), (2.27)

where the sum runs over all primary operators O
(`)
∆ of dimension ∆ and spin ` which

belong to the SU(4) representations in the tensor product

[0, p1, 0]⊗ [0, p2, 0] =

p1∑
k1=0

p1−k1∑
k2=0

[k1, p2 − p1 + 2k2, k1], (p1 ≤ p2). (2.28)

The descendants are captured by the action of the derivative operator L(`)(x12, ∂x2)

on the primaries O
(`)
∆ . A manifest N = 4 formulation of the OPE can be obtained

by reorganising the sum over operators into supermultiplets. Inserting the OPE of

Op1(x1)Op2(x2) and Op3(x3)Op4(x4) into the four-point correlator we obtain the repre-

sentation

〈p1p2p3p4〉 = P~p
∑
{τ,`,R}

A~p,R(τ, `) S~p,R(τ, `), (2.29)

where instead of summing over the dimensions of the exchanged operators we choose to

sum over their twists τ ≡ ∆ − `, and the sum over representations R runs over those

which belong to ([0, p1, 0]⊗ [0, p2, 0])∩ ([0, p3, 0]⊗ [0, p4, 0]). The functions S~p,R(τ, `) are

the superconformal blocks which we will describe below. Note that inside correlation

functions the OPE is convergent and therefore if we keep all terms in the expansion (as

we do in the following discussion) it is valid for all values of u and v inside the radius of

convergence. The coefficients A~p,R(τ, `) depend explicitly on the charges and are related
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to the OPE coefficients from equation (2.27) by

A~p,R(τ, `) =
∑
O∈R

Cp1p2OCp3p4O, (2.30)

where the sum is over all operators with leading order dimension ∆, spin ` and SU(4)

representation R. The block decomposition is invariant under swapping points 1 and 2,

points 3 and 4 and swapping the pairs of points (1,2) and (3,4). Using this symmetry we

can clearly always ensure that p43 ≥ p21 ≥ 0, which justifies our choice of conventions

for the ordering of the external charges in the definition (2.18) of the prefactor P~p .

Finally, the superblocks S~p,R(τ, `) can be derived using a variety of approaches. There

has been a great deal of work on superblocks in N = 4 SYM both from the pioneering

work of Dolan and Osborn [61, 63–65] and more recently [90], as well as supergroup

theoretic approaches [91, 92]. Here we follow the formalism of [92] and explain the

superblocks in a compact fashion in terms of representations of GL(2|2), which provides

a group theoretic, manifestly unitary approach and has the great advantage of dealing

with all representations in a uniform way.

2.4.1 The GL(2|2) Superconformal Partial Wave Expansion

To address the SCPW expansion we must first describe the conformal blocks for all

supermultiplets that might be exchanged in the OPE of one-half BPS operators. Fol-

lowing [92], we label the superconformal primariesOγ,λ by a number γ and a finite dimen-

sional representation of GL(2|2) which we specify by a Young diagram λ ≡ [λ1, . . . , λn]

where λi is the length of the ith row.

The Young diagrams do not have an arbitrary shape but have to fit into a ‘fat hook’

shape, which amounts to the additional constraint that the third row (and hence any

subsequent rows) cannot be longer than length two, i.e. λ3 ≤ 2. The number of rows n

also satisfies n ≤ (γ − p43)/2. For example, a generic such diagram has the form

← λ1 →
← λ2 →

↑
µ2

↓
↑
µ1

↓

= [λ1, λ2, 2
µ2 , 1µ1 ], (2.31)

with first row of length λ1, second row of length λ2 and then µ2 rows of length 2 (which

we denote by 2µ2) and µ1 rows of length 1 (denoted by 1µ1). Such a generic Young

tableau corresponds to a long multiplet. Short multiplets instead have row 2 of length

1 or 0 and so have the shape of a ‘thin hook’. The parameters γ and λ determine the

usual quantum numbers of twist τ , spin ` and SU(4) representation which here always

takes the form [a, b, a]. The dictionary is summarized below in Table 2.1.
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GL(2|2) rep λ τ = ∆− ` ` SU(4) representation multiplet type

[0] γ 0 [0, γ, 0] one-half BPS

[1µ] γ 0 [µ, γ−2µ, µ] quarter BPS

[λ, 1µ] (λ ≥ 2) γ λ−2 [µ, γ−2µ−2, µ] semi-short

[λ1, λ2, 2
µ2 , 1µ1 ] (λ2 ≥ 2) γ + 2λ2 − 4 λ1−λ2 [µ1, γ−2µ1−2µ2−4, µ1] long

Table 2.1: Translation between N = 4 superconformal representations and superfields Oγ,λ.

Note that the Young tableau representation of a long multiplet is invariant up to the

shift-symmetry,

λ1 → λ1 + 1, λ2 → λ2 + 1, µ2 → µ2 − 1, γ → γ − 2, (2.32)

under which the twist τ , spin ` and su(4) representation [a, b, a] remain fixed. On the

contrary, protected operators require both γ and the Young tableau to be fully specified.

We denote the superconformal block corresponding to the contribution of an operator

Oγ,λ to the four-point correlator 〈p1p2p3p4〉 by S~p;γ,λ, Long superblocks (those with λ2 =

2, 3, ...) will occur often and we will also denote them by L~p;~τ , where ~τ ≡ (τ, `, [a, b, a]) is

a compact notation for the quantum numbers specifying the representation. They have

the following factorised structure,

L~p;~τ ≡ S~p;γ,λ = P~p × I × L̃~p;~τ , L̃~p;~τ =
B(2+ τ

2
,`)

u2+
p43
2

×Υ[aba] , (2.33)

with P~p defined in equation (2.18) and I in (2.22). Note that the presence of the ex-

plicit factor I in the blocks for long multiplets agrees with the expectation that all

quantum corrections appear with such a prefactor in accordance with the partial non-

renormalisation theorem (2.20). The dimensions and therefore the twists of such multi-

plets are coupling dependent and hence generically not integer valued. Likewise, their

corresponding OPE coefficients are also explicitly dependent on the coupling. In the

above, B(t,`) and Υ[aba] are the ordinary four-dimensional bosonic blocks for conformal

and internal symmetries. Explicitly, we have

B(t,`)(x, x̄) = (−1)` ut
(
x`+1Ft+`(x̄)Ft−1(x̄)− (x↔ x̄)

x− x̄

)
, (2.34)

and

Υ[aba](y, ȳ) = −Pn+1(y)Pm(ȳ)− (y ↔ ȳ)

y − ȳ
,


n = m+ a,

m =
b− p43

2
,

(2.35)
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where we used

Ft(x) = 2F1

(
t− p12

2 , t+ p34

2 , 2t;x
)
,

Pn(y) =
n! y

(n+ 1 + p43)n
J

(
p43−p21

2
,
p43+p21

2

)
n

(
2
y − 1

)
,

(2.36)

with J being the standard Jacobi polynomial.

Explicit formulae for the semi-short, quarter and one-half BPS superconformal blocks

were obtained in [92] and can be found in Appendix A. Especially in these cases, the

superblock formalism naturally provides manifestly unitary representations.

Since the parameters λi are defined by a Young diagram, they are a priori integer

valued. However, for long superblocks in the interacting theory the scaling dimension ∆

(or equivalently the twist τ) of an operator becomes anomalous and hence non-integer.

We can thus allow an analytic continuation of λ1 and λ2 such that the spin λ1 − λ2 = `

remains integer. In such cases we even allow for continuations such that λ2 < 2. This

means that the labels of such continued long superblocks can coincide with those of

short superblocks when λ2 → 1, µ2 = 0. To avoid this potential confusion we simply use

the notation for long superblocks, L~p;~τ , on the LHS of (2.33) and allow τ ≥ 2a + b + 2

to be non-integer valued.

When long supermultiplets sit exactly on the unitarity bound, τ = 2a + b + 2, they

become reducible and can be expressed as a sum of two short multiplets

L~p;~τ = S~p;τ,[`+2,1a] + S~p;τ+2,[`+1,1a+1], for τ = 2a+ b+ 2 . (2.37)

The first term on the RHS of the above equation is a semi-short superblock of spin `

while the second one is a semi-short superblock of spin `−1 or a quarter-BPS superblock

if ` = 0. We will make use of this reducibility equation when discussing multiplet

recombination of semi-short operators at the unitarity bound in Appendix B.

2.5 The SCPW Expansion of the Free Theory

The SCPW of free theory correlators naturally stratifies by the label γ = p43, p43 +

2, . . . , τmin = min{p1 + p2, p3 + p4} introduced in (2.25). As mentioned in that context,

γ counts the number of propagators connecting operators inserted at points 1 and 2 to

operators inserted at points 3 and 4. In the SCPW expansion of a free theory correlator,

γ simply corresponds to the number of fundamental fields appearing in the operator

Oγ,λ being exchanged in the OPE. Note that this is a good quantum number only in the

free theory, and simply reflects the number of Wick contractions which have occurred
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in the OPE:

γ = # fundamental fields defining Oγ,λ
= p1 + p2 − (# Wick contractions in Op1Op2 ∼ Oγ,λ OPE )

= p3 + p4 − (# Wick contractions in Op3Op4 ∼ Oγ,λ OPE ).

(2.38)

The general free theory correlator (2.25) then decomposes as

〈p1p2p3p4〉free =

min{p1+p2,p3+p4}∑
γ=p43

γ−p43 ∈ 2Z

∑
λ

A~p;γ,λ S~p;γ,λ, (2.39)

where each term in the sum over γ represents the expansion in SCPW of the analogous

terms in (2.25). Furthermore, the Young tableaux λ have at most (γ−p43)/2 rows. Note

also that in the free theory all Young tableaux are proper, having both integer rows and

correct shape and thus the above decomposition is unambiguous.

However, we do not consider the free theory in isolation, rather we will consider it as the

limit of the interacting theory as the coupling vanishes. In the interacting theory, the

OPE of two one-half BPS operators contains both operators in short supermultiplets,

whose dimensions are protected, and long operators which have anomalous dimensions.

Therefore we will split the SCPW expansion (2.39) accordingly and we will distinguish

between the short sector which by definition remains short in the interacting theory, and

a free long sector which will then acquire an anomalous dimension in the interacting

theory,

〈p1p2p3p4〉free = 〈p1p2p3p4〉short + 〈p1p2p3p4〉free long . (2.40)

For the short sector we sum over superblocks with the specific form S~p;γ,[λ,1µ] (given in

Appendix A), and for the long sector we sum over the long superblocks L~p;~τ defined in

equation (2.33). More explicitly, we introduce the SCPW coefficients S~p;γ,[λ,1µ] and Lf~p;~τ
as follows:

〈p1p2p3p4〉short =

τmin∑
γ=p43

γ−p43∈2Z

[
S~p;γ,∅ S~p;γ,∅ +

∞∑
λ=1

1
2

(γ−p43)−1∑
µ=0

S~p;γ,[λ,1µ] S~p;γ,[λ,1µ]

]
,

〈p1p2p3p4〉free long =
∑
a,b∈2Z

2a+b+4≤τmin

∞∑
`=0

∑
τ>2a+b
τ−b∈2Z

Lf~p;~τ L~p;~τ .

(2.41)

It is important to note that this split is non-trivial due to multiplet recombination: in

the free theory limit a long multiplet whose twist lies on the unitary bound is indistin-

guishable from the direct sum of certain short multiplets. A consequence of this is the

identity of superblocks (2.37). The challenge then is to relate the SCPW coefficients

S~p;γ,[λ,1µ] and Lf~p;~τ to the original ones A~p;γ,λ in (2.39).



20 Chapter 2 Basics of N = 4 SYM Theory

The simplest SCPW coefficients to identify are the coefficients of one-half BPS operators

(corresponding to an empty Young tableau, i.e. λ = ∅), which are unchanged:

S~p;γ,∅ = A~p;γ,∅ . (2.42)

The next simplest to deal with are the long representations above the unitarity bound.

Here we take into account the fact that γ ceases to be a good quantum number for long

operators. This is because long operators with different fundamental fields can mix. For

example, the double-trace operators O3O3 (γ = 6) mixes with O2�O2 (γ = 4), which

both have twist 6. This is the origin of the ambiguity in the description of long operators,

which manifests itself in the shift-symmetry (2.32) of the Young tableaux corresponding

to long operators. Thus we need to collect together all SCPW coefficients with the same

quantum numbers ~τ (but different values of γ) using the shift-symmetry (2.32), giving

Lf~p;~τ =

min{p1+p2,p3+p4}∑
γ=2a+b+4

A
~p;γ,[2+ τ−γ

2
+`,2+ τ−γ

2
,2
γ−b

2 −a−2,1a]
, for τ ≥ 2a+ b+ 4. (2.43)

The most difficult SCPW coefficients to identify in (2.41) are the (non-half BPS) short

coefficients S[λ,1µ] with non-zero λ or µ and the related long coefficients L~p;~τ at the

unitarity bound τ = 2a + b + 2. This is because as we deform away from the free

theory, some semi-short blocks combine to become long (as in (2.37)), whereas others

remain semi-short. Thus, a single SCPW coefficient A for a semi-short block at the

unitarity bound can actually contain the contribution of both short and long multiplets

of the interacting theory. More details along with some concrete examples on how

to properly disentangle the semi-short and long contributions at the unitarity bound

are given in Appendix B. At first sight this may seem like a technical detail, but the

correct identification of the long sector will be relevant for the consistency of the SCPW

expansion, and ultimately for the construction of one-loop correlators from tree-level

data as discussed later in this thesis.



Chapter 3

Basics of Holographic Correlators

in AdS5×S5

After having reviewed the basics of N = 4 SYM theory, we turn our attention to the

other side of the AdS/CFT duality: holographic correlators on AdS5×S5. We will

start by discussing the basic consequences of the AdS/CFT correspondence, and in

particular we will give a precise definition of the single-particle operators Op, whose

four-point correlation functions we have already introduced in the previous chapter. In

Section 3.3 we then describe the large N , strong-coupling expansion of the four-point

correlators, as well as the spectrum of unprotected exchanged operators which survive in

the supergravity limit: the spectrum of double-trace operators. Finally, we will review

the progress in computing tree-level supergravity correlators in AdS5, which culminated

in an elegant Mellin space formula for all supergravity correlators of arbitrary external

charges.

3.1 Statement of the AdS/CFT Correspondence

The first and most-studied example of the AdS/CFT correspondence is the following

conjectured duality [14]:

• Type IIB string theory on an AdS5×S5 background (‘gravity side’)

• Four-dimensional N = 4 SYM with gauge group SU(N) (‘CFT side’)

The original argument by Maldacena for such a duality is based on considering a stack of

N parallel D3-branes in type IIB superstring theory. The D3-brane is a tensionless object

in ten-dimensional superstring theory, which incidentally is a maximally-symmetric solu-

tion of type IIB supergravity with rotational symmetry group given by SO(1, 3)×SO(6).

21
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In the low-energy limit (α′ → 0) and taking the D3-branes to be coincident, the mass-

less excitations of open strings on the brane describe a four-dimensional theory: N = 4

SYM theory with SU(N) gauge symmetry.1 This is the CFT side of the duality.

On the other hand, the same setup allows for another, inherently gravitational descrip-

tion. As mentioned above, the D3-brane is a solution of type IIB supergravity. In the

near-horizon limit, this solution gives rise to an AdS5×S5 background, where both the

AdS5 and the S5 factors have a common radius L given by

L4 = 4πgsN(α′)2, (3.1)

and the string coupling constant gs is related to the gauge theory coupling gYM via

gs =
g2

YM

4π
. (3.2)

Note that here the supergravity solution is understood as the low-energy limit of the

classical type IIB string theory on AdS5×S5. While its quantum completion, the full

type IIB superstring theory on AdS5×S5, is currently not fully understood because of the

great difficulties of string theory quantisation on curved spacetimes, we can still study the

proposed duality in an interesting limit, namely in perturbative string theory. This is the

case for small string coupling gs. In order to preserve equation (3.1), we simultaneously

need to take the limit N → ∞. In other words, if we define the ’t Hooft coupling

λ ≡ g2
YMN , this corresponds to the well-known ’t Hooft limit of N = 4 SYM theory,

where one takes N large with λ fixed. This limit is well-defined and corresponds to

a topological expansion of the gauge theory, where non-planar Feynman diagrams are

suppressed.

After taking the ’t Hooft limit, the only parameter left is λ = L4/(α′)2. Now, we

want to take the limit where supergravity is a good approximation to string theory, i.e.

the supergravity limit α′ → 0. On the CFT side, this corresponds to a strong-coupling

expansion around large λ. In summary, taking the supergravity limit in AdS corresponds

to a double expansion around large N and large λ. In this picture, the 1/N expansion

corresponds to a loop-expansion in the bulk, while the 1/λ expansion corresponds to

adding string corrections to supergravity. We will further discuss the implications of

this double expansion for four-point correlation functions in Section 3.3.

Not too long after the original conjecture by Maldacena, further details of the AdS/CFT

correspondence were made more precise in references [15, 16]: it was explained how the

states of the two theories can be identified with each other, and how correlation functions

on the CFT side are related to supergravity scattering amplitudes on AdS5×S5. In

particular, it was understood that the one-half BPS single-trace operators of N = 4

1Technically, the total gauge group is given by U(N). However, the U(1) factor corresponds to the
overall position of the D3-branes. As such, it decouples from the dynamics of the theory and the effective
gauge group is reduced to SU(N).
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SYM theory (as introduced in the previous chapter) correspond to the spectrum of

type IIB supergravity, which is given by the graviton supermultiplet and its Kaluza-

Klein modes on S5. In fact, the identification of single-particle supergravity states with

single-trace operators only holds strictly in the large N limit, and in the next section

we will discuss how to uplift this statement to finite N . Once the states on both sides

are correctly identified with each other, we can ask about physical observables, like

e.g. correlation functions. The AdS/CFT dictionary states that the CFT generating

functional equals the AdS path integral with boundary sources:〈
e
∫
∂AdS ϕ̄iOi

〉
CFT

=

∫
ϕ̄i

Dϕi e−SAdS[ϕi], (3.3)

where the bulk fields ϕi of the AdS path integral equal ϕ̄i on the conformal boundary

of AdS. In this sense, one can think of N = 4 SYM theory living on the boundary of

AdS5, with the boundary states ϕ̄i acting as classical sources for their dual operators

Oi. From the above equality, one can obtain n-point correlation functions by taking n

functional derivatives with respect to the boundary sources ϕ̄i. We will elaborate on

this procedure further when discussing tree-level supergravity correlators in Section 3.4.

3.2 Single-Particle Operators

We are interested in correlation functions of one-half BPS operators which describe

scattering of single-particle supergravity states in AdS5×S5. The first task is thus to

determine the precise form of the gauge theory operators which are dual to those single-

particle states. We will call these operators single-particle operators, and from now on

we denote them by Op. It turns out that in the general case these are not simply the

single-trace operators Tp which, recalling the discussion in Section 2.2, are schematically

of the form Tp = tr
{
φp
}

. Instead, they require admixtures of multi-trace operators, i.e.

products of single-trace ones, such that Op = Tp + (multi-trace terms). This important

subtlety was already noticed in the early works [40, 93, 94] and discussed more recently

again in references [4, 6, 45, 48, 59, 60, 95]. In particular, it was noticed in [45] that

the connected part of 〈p1p2p3p4〉free generated via tree-level Witten diagrams disagrees

with the free theory four-point functions of single-trace one-half BPS operators. The

resolution is that one has to include admixtures of multi-trace operators, and the first

order double-trace corrections have recently been worked out directly from supergravity

in [59, 60]. However, the non-perturbative nature of the AdS/CFT correspondence

points towards a definition of single-particle states which is valid to all orders in N .

Such a non-perturbative definition can be given in terms of the following deceptively

simple statement:

Single-particle operators are one-half BPS operators

which are orthogonal to all multi-trace operators.
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Up to a normalisation, this definition via orthogonality of operators uniquely fixes the

single-particle operators Op. Moreover, it allows us to compute the additional multi-

trace terms purely within free field theory (i.e. using Wick contractions), and the results

are exact in N . In the strict large N limit, the above definition reduces to the familiar

statement that single-particle states correspond to single-trace operators in the [0, p, 0]

representation of su(4): Op → Tp + O(1/N). For finite N however, our definition

automatically picks the correct multi-trace admixtures which are needed to uplift one-

half BPS single-trace operators Tp to single-particle operators Op.

Note that a similar orthogonal basis for all one-half BPS operators in the U(N) theory

was described previously in terms of Schur polynomials [96]. However, this basis does

not project onto an orthogonal basis for SU(N), which is the case of interest here.

Nevertheless, at large N and with charge close to N , we find that the single-particle

operators defined here become proportional to the so-called (sub)-determinant operators.

These operators are given by completely antisymmetric Schur polynomials, and in [97]

it was argued that they are dual to the giant sphere gravitons predicted in [98].

Let us now consider some explicit examples of single-particle operators with low charges.

For the first two cases (Op with p = 2,3), there are no multi-trace operators to mix with,2

and the single-particle operator thus equals the single-trace operator even at finite N :

O2 = T2, O3 = T3. (3.4)

In the holographic context, the operator with p = 2 is the superconformal primary for

the energy-momentum multiplet which is dual to the graviton supermultiplet in AdS5.

Operators with p ≥ 3 then correspond to Kaluza-Klein modes arising from reduction of

the graviton supermultiplet on S5.

For Kaluza-Klein modes with p ≥ 4 we find non-trivial multi-trace terms. In the case of

p = 4, the coefficient of the double-trace contribution [T2T2] to O4 is, according to the

above definition, determined by the orthogonality condition

〈O4(x1, y1)[T2T2](x2, y2)〉 = 0. (3.5)

A computation using Wick contractions yields the result

O4 = T4 −
2N2 − 3

N(N2 + 1)
[T2T2], (3.6)

and it is with this identification of O4 that (the free theory part of) the supergravity

result for the 〈2244〉 correlator from [45] agrees with the free theory computation. For

2This is true only when the gauge group is SU(N). In a U(N) gauge theory, one also has to consider
the operator T1, in which case for example T2 can mix with the double-trace term [T1T1]. Interestingly,
in turns out that the single-particle operators in the U(N) theory and the SU(N) theory are actually
the same, see [9] for more details.
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p2 p3

p1 p4

Figure 3.1: Example of a vanishing free theory diagram.

illustration, the next two examples read

O5 = T5 −
5(N2 − 2)

N(N2 + 5)
[T3T2], (3.7)

O6 = T6 −
3N4 − 11N2 + 80

N(N4 + 15N2 + 8)
[T3T3]− 6(N − 2)(N + 2)(N2 + 5)

N(N4 + 15N2 + 8)
[T4T2]

+
7(N2 − 7)

N4 + 15N2 + 8
[T2T2T2],

(3.8)

where O6 is the first case with a triple-trace contribution. An explicit formula for all

single-particle operators was recently given in [9], together with their two-point functions

〈Op(x1)Op(x2)〉 = gp12Rp . (3.9)

The N dependent factor Rp can be derived by using the group theoretic approach of [99],

and takes the form

Rp = p2(p− 1)

[
1

(N − p+ 1)p−1
− 1

(N + 1)p−1

]−1

. (3.10)

As mentioned briefly in the above, the correct identification of single-particle operators

has very important non-trivial implications for their four-point correlation functions. In

particular, connected free theory diagrams where e.g. Op3 is joined only to Op4 (see

Figure 3.1) are absent due to the orthogonality property of single-particle operators.3

Obviously, any topology related by a permutation to the diagram in Figure 3.1 also

vanishes. As a consequence of this observation, the colour factors of all extremal and

next-to-extremal correlators of single-particle operators vanish identically. These are

correlators whose charges satisfy (with our choice of p43 ≥ p21 ≥ 0):

p4 = p1 + p2 + p3, (extremal),

p4 = p1 + p2 + p3 − 2, (next-to-extremal).
(3.11)

3To see this, note that at twist p43 in the Op3×Op4 OPE, only a one-half BPS operator Op43 of charge
p43 could potentially be transferred. By our definition, Op4 is orthogonal to all multi-trace operators and
in particular to the double (or higher) trace operator [Op43Op3 ]. But the vanishing two-point function
〈[Op43Op3 ]Op4〉 is just a non-singular limit of the three-point function 〈Op43Op3Op4〉, which therefore
also vanishes. Hence no operator Op43 can be exchanged and the coefficient of the diagram in Figure 3.1
must vanish. Note that this holds no matter whether Op43 is single-trace, multi-trace or any linear
combination thereof.
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Note that extremal and next-to-extremal correlators in general do not vanish for single-

trace operators as external states, but they do for our definition of single-particle opera-

tors. The first single-particle correlators which are non-vanishing are therefore next-to-

next-to-extremal, with charges obeying

p4 = p1 + p2 + p3 − 4, (next-to-next-to-extremal). (3.12)

More generally, we define the so-called degree of extremality κ~p by

κ~p = min
{

1
2(p1 + p2 + p3 − p4), p3

}
, (3.13)

and we say that a correlator is NκE, according to its degree of extremality. As such, the

next-to-next-to-extremal correlators obeying (3.12) have degree of extremality κ~p = 2.

3.3 Correlation Functions at Strong ’t Hooft Coupling

With the correct single-particle operators in mind, we now describe what the AdS/CFT

correspondence implies for their four-point correlation functions in the interacting the-

ory. In particular, we will consider N = 4 SYM in the supergravity regime, where

quantum corrections are organised in a double expansion in 1/N2 and 1/λ. Further-

more, the decoupling of excited string states in this limit leads to a restricted spectrum

of exchanged operators, which at leading order is given by double-trace operators.

3.3.1 The Large N , Strong-Coupling Expansion

Let us recall the general structure of the four-point correlation functions 〈p1p2p3p4〉 as

introduced in Section 2.3: the partial non-renormalisation theorem (2.20) singles out the

factor H~p ≡ Hp1p2p3p4 as the only piece of the correlator which depends on the gauge

coupling. As such, H~p contributes only to the long sector of the SCPW expansion.

However, this is not the only contribution to the long sector: recalling the SCPW

expansion of the free theory (see Section 2.5), we also have to take into account the free

theory contribution to the long sector, denoted by 〈p1p2p3p4〉free long in equation (2.40).

Now, in the supergravity limit of large N and large ’t Hooft coupling λ, the long sector

of the free theory admits the expansion

〈p1p2p3p4〉free long = 〈p1p2p3p4〉(0)
free long + a 〈p1p2p3p4〉(1)

free long

+ a2〈p1p2p3p4〉(2)
free long +O(a3),

(3.14)

where for convenience we use a = 1/(N2−1) as our large N expansion parameter. Note

that since the free theory does not depend on the gauge coupling, all of the above terms
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are of leading order in 1/λ. On the other hand, the dynamical part H~p admits a double

expansion of the form

H~p = a
(
H(1,0)
~p + λ−

3
2H(1,3)

~p + λ−
5
2H(1,5)

~p + λ−3H(1,6)
~p + λ−

7
2H(1,7)

~p + . . .
)

+ a2
(
λ

1
2H(2,−1)

~p +H(2,0)
~p + λ−

1
2H(2,1)

~p + λ−1H(2,2)
~p + λ−

3
2H(2,3)

~p + . . .
)

+O(a3).

(3.15)

The order a terms of this double expansion correspond to tree-level amplitudes in AdS5,

with the first term H(1,0)
~p being the well-studied tree-level supergravity correlator dis-

cussed further in Section 3.4. The supergravity term is followed by an infinite tower of

1/λ suppressed string corrections H(1,n)
~p . The structure of this 1/λ expansion is related

via the flat space limit to the low-energy expansion of the tree-level type IIB string

amplitude in 10 dimensions, the so-called Virasoro-Shapiro amplitude. In other words,

the 1/λ expansion arises from contact interaction vertices in the string theory effective

action, where the order λ−
3
2 and λ−

5
2 terms descend from dimensional reduction of the

R4 and ∂4R4 supervertices, respectively. These tree-level terms are most conveniently

studied in their Mellin space representation, which will be introduced later.

The order a2 terms of the double expansion (3.15) correspond to one-loop amplitudes

in AdS5. Note that the term H(2,−1)
~p comes with a superleading power of λ

1
2 , and is due

to the presence of a quadratic divergence at one-loop in ten-dimensional supergravity.

This divergence is regulated by a specific R4 counterterm at one-loop in string theory.

The next contribution, H(2,0)
~p , is the one-loop supergravity term which we will address in

Chapter 6. Note that a direct computation of such one-loop amplitudes would require the

application of a renormalisation procedure. The corresponding counterterms are of the

form of contact Witten diagrams, and in our bootstrap program they manifest themselves

as a finite set of undetermined free parameters which we call ‘ambiguities’. Ultimately,

the values of these ambiguities are determined within the full superstring theory, but as

our bootstrap approach is not able to fix them we have to rely on other methods, such

as e.g. supersymmetric localisation techniques. Next, the term H(2,1)
~p corresponds to

the genus-one contribution to the modular completion of the H(1,5)
~p term. The existence

of such a term follows from the S-duality of N = 4 SYM and type IIB string theory,

which is realised as a SL(2,Z) symmetry of the complexified gauge coupling. For the

correlation functions under consideration, this symmetry is manifest in the ‘very strong

coupling’ limit (N → ∞ with gYM fixed), where the corresponding terms are given by

certain modular functions.4 In particular, the first few terms are given by Eisenstein

series, which (apart from an infinite sequence of non-perturbative instanton corrections)

receive a finite number of perturbative contributions. In the case of the H(2,1)
~p term, the

corresponding Eisenstein series receives perturbative contributions only at genus zero

and genus two [103], and we therefore expect H(2,1)
~p to vanish.5 The term H(2,2)

~p gives

4See e.g. the recent series of papers [100–102].
5The vanishing of this term is also consistent with the supersymmetric localisation analysis of [104,
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rise, in the flat space limit, to the analytic part of the one-loop string amplitude studied

in [106]. It is therefore non-vanishing and corresponds to the genus-one contribution to

the modular completion of the H(1,6)
~p term. Finally, at order λ−

3
2 , we find the H(2,3)

~p

term which is the genuine one-loop string correction induced by the presence of theH(1,3)
~p

term at tree-level. This term as well as some higher order corrections will be addressed

in Chapter 7.

3.3.2 The Double-Trace Spectrum at Strong Coupling

At last, let us combine the strong coupling expansion described above with the SCPW

decomposition introduced in Section 2.4. As the short sector of the SCPW expansion

can be understood within free field theory only, we will specialise to the long sector. In

particular, we have to describe the precise spectrum of exchanged operators in the OPE

of single-particle one-half BPS operators Op.

In the supergravity limit, and in particular after we take the limit of large ’t Hooft

coupling λ, we expect all operators which are dual to excited string states to decouple as

they become infinitely massive. We are thus left with the spectrum of supergravity states,

consisting of the protected single-particle operators Op themselves as well as multi-

particle operators built out of the single-particle ones. Such operators can themselves

be either protected or unprotected. The unprotected operators of this type are still

present in the spectrum because in the strictly infinite N limit they keep their classical

scaling dimensions due to operator factorisation, and hence the corresponding states

do not acquire infinite mass. In the supergravity spectrum such operators are ‘nearly’

protected and receive anomalous dimensions at order 1/N2 and higher.

However, all other operators, not built from products of single-particle operators, corre-

spond to the afore-mentioned string states and such operators are therefore absent from

the spectrum in the supergravity limit.6 In fact, the OPE analysis of known supergrav-

ity four-point correlators [65, 107] reveals that certain long operators indeed cancel in

the sum of the long sector of free theory and the dynamical part,

〈p1p2p3p4〉(1)
free + P~p × I ×H

(1,0)
~p , (3.16)

resulting in the absence of string states. This is a non-trivial consistency-check of the

AdS/CFT correspondence. In Section 3.4.3, we will explain how to make use of this

cancellation to determine the normalisation of the supergravity correlators H(1,0)
~p .

The simplest unprotected operators which remain in the supergravity spectrum are the

105].
6A simple example of an operator corresponding to a string state is the Konishi operator, which is

a twist 2 operator in the su(4) singlet representation. At higher twists, one has to carefully distin-
guish operators which remain in the supergravity spectrum from excited string states through multiplet
recombination, as outlined in detail in Appendix B.
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Figure 3.2: The set of double-trace operators Opq;~τ depicted as points in the (p, q) plane. An
alternative description is given by the labels (i, r). In that parametrisation, it is easy to see
that the ‘width’ of the rectangle is fixed by the choice of su(4) channel, while its ‘length’
depends on the twist τ , i.e. the value of t. In this example, we show the set of double-trace
operators for twist τ = 24 and su(4) channel [0, 6, 0], corresponding to t = 9 and µ = 4.
According to equation (3.18), we therefore have i = 1, . . . , 8 and r = 0, . . . , 3.

so-called double-trace operators, which correspond to two-particle bound states in the

bulk theory. These double-trace operators are special for two reasons: firstly, their

three-point functions are of leading order in the large N expansion, whereas we expect

the three-point functions involving triple-trace operators and higher to be suppressed.

Secondly, there is a unique double-trace operator of spin ` for fixed twist τ and su(4)

labels. In contrast, triple- and higher multi-trace operators do not have this property as

their number grows with spin. A basis of unprotected double-trace operators of twist τ ,

spin ` and su(4) labels [a, b, a] is of the schematic form

Opq;~τ =
(
Op�

1
2

(τ−p−q)∂`Oq + . . .
)∣∣

[a,b,a]
, (p ≤ q), (3.17)

where the ellipsis denotes similar terms with the spacetime derivatives distributed dif-

ferently between the two constituent operators. The precise combination is not relevant

here, but importantly there is a unique combination yielding a superconformal primary

operator. The allowed values for the pairs (p, q) are given by the set R~τ , defined as

R~τ :=

{
(p, q) :

p = i+ a+ 1 + r

q = i+ a+ 1 + b− r
for

i = 1, . . . , t− 1

r = 0, . . . , µ− 1

}
. (3.18)

There are in total d = µ(t− 1) allowed values, where

t ≡ (τ − b)
2

− a , µ ≡


⌊
b+2

2

⌋
a+ ` even,⌊

b+1
2

⌋
a+ ` odd.

(3.19)
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Note that the set of double-trace operators R~τ traces out a rectangle in the (p, q) plane.

As an example, a pictorial representation with quantum numbers ~τ = (24, `, [0, 6, 0]) is

given in Figure 3.2.7

Note that the double-trace operators Opq;~τ all have the same classical dimension ∆(0) =

τ+`, and hence in general they will mix. We collectively denote the true eigenstates (with

well-defined scaling dimensions) by Kpq, which are simply certain linear combinations of

the operators Opq;~τ from (3.17). Their three-point couplings CpipjK with two external

operators Opi , Opj are related to the three-point functions 〈OpiOpjK〉 and admit the

double expansion

CpipjK =
(
C

(0,0)
pipjK + λ−

3
2C

(0,3)
pipjK + λ−

5
2C

(0,5)
pipjK + . . .

)
+ a
(
C

(1,0)
pipjK + λ−

3
2C

(1,3)
pipjK + λ−

5
2C

(1,5)
pipjK + . . .

)
+O(a2).

(3.20)

Similarly, the double expansion of their scaling dimensions reads

∆K = τ + `+ 2a
(
η(1,0) + λ−

3
2 η(1,3) + λ−

5
2 η(1,5) + . . .

)
+ 2a2

(
λ

1
1 η(2,−1) + η(2,0) + λ−

1
2 η(2,1) + λ−1η(2,2) + λ−

3
2 η(2,3) + . . .)

+O(a3),

(3.21)

where η denotes (half) the anomalous dimension.

In the second part of this thesis, we will explain in detail how the mixing problem of

the double-trace spectrum can be resolved by combining data from many correlation

functions simultaneously, both at the level of tree-level supergravity (Chapter 4) and

including the first string corrections (Chapter 5). Furthermore, certain one-loop anoma-

lous dimensions can be extracted from the explicit results for correlators at one-loop,

which we will discuss in the third part of this thesis.

3.4 The Tree-Level Supergravity Correlator

Let us now turn our attention to the supergravity correlators H(1,0)
~p . As mentioned

before, the AdS/CFT correspondence predicts, in the regime of strong ’t Hooft coupling

corresponding to classical supergravity, the leading large N behaviour of the correlation

functions 〈p1p2p3p4〉. We will start by briefly outlining the traditional computation of

supergravity correlators in terms of Witten diagrams. We then focus on the Mellin

space representation of these correlators, which turned out to be the right language to

write down a surprisingly simple formula for all supergravity correlators with arbitrary

external charges.

7For general quantum numbers, the four corners of the rectangle defined by (3.18) have the coordinates
A = (a+2, a+b+2), B = (a+µ+1, a+b−µ+3), C = (a+t+µ−1, a+b+t−µ+1) and D = (a+t, a+b+t).
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3.4.1 The Traditional Method of Computing Supergravity Correlators

The standard method of computing holographic correlation functions in supergravity

relies on the equality (3.3) of the CFT partition function and the AdS path integral. One

starts with the action for a collection of scalar Kaluza-Klein modes {ϕk} on AdS5×S5,

which can be written as

Ssugra =
N2

8π2L3

∫
dΩ
(
L(2) + L(3) + L(4) + . . .

)
, (3.22)

with dΩ being the measure on AdS5 and L its radius, which can be set to one.8 We

denote the bulk coordinate by z and the boundary coordinates by ~x. The index n on

L(n) indicates the number of fields, in particular L(3) and L(4) contain cubic and quartic

interactions among the Kaluza-Klein modes, which include the graviton and the gauge

fields. The above action is known explicitly up to quartic order [41].

Let us focus on one single Kaluza-Klein mode ϕ̄(z, ~x) from the infinite tower. In the

saddlepoint approximation, valid at large N , the bulk field ϕ̄(z, ~x) propagates according

to its equation of motion, (∇2 −m2)ϕ̄ = J [{ϕk}], where the source term J depends on

all the fields coupling to ϕ̄. The general solution for ϕ̄(z, ~x) can be written in terms of

the bulk Green’s function Gbb and the bulk-to-boundary propagator Gb∂ as follows,

ϕ̄(z, ~x) = ϕ0(z, ~x) +

∫
dzd4~x′Gbb(z, ~x; z′, ~x′) J [{ϕk(z′, ~x′)}],

ϕ̄0(z, ~x) =

∫
d4~x′ Gb∂(z, ~x; ~x′) S(~x′),

(3.23)

where ϕ0 solves the homogeneous equation of motion with boundary conditions S(~x′).

According to the AdS/CFT correspondence, S(~x′) is identified with the boundary source

which couples to the operator dual to ϕ̄(z, ~x). The perturbative expansion around the

homogeneous solutions {ϕ0
k(z
′, ~x′)} defines the corresponding series expansion for J , i.e.

J = J(2) +J(3) + . . ., where the label indicates again the number of boundary fields Sk(~x′)

at each order. Finally, evaluating the action on-shell can be interpreted diagrammatically

as summing over tree-level Witten diagrams. The result is the following generating

functional for the boundary sources:

Ssugra =

∫
(d4~x)2 Sk1(~x1)Sk2(~x2) D(2)

k1k2
(~x1, ~x2)

+

∫
(d4~x)3 Sk1(~x1)Sk2(~x2)Sk3(~x3) D(3)

k1k2k3
(~x1, ~x2, ~x3)

+

∫
(d4~x)4 Sk1(~x1)Sk2(~x2)Sk3(~x3)Sk4(~x4) D(4)

k1k2k3k4
(~x1, ~x2, ~x3, ~x4)

+ . . . ,

(3.24)

8We can do this since we will not consider any curvature corrections here. Curvature and loop
corrections to the supergravity effective action have been discussed in [108].



32 Chapter 3 Basics of Holographic Correlators in AdS5×S5

where the functions D(i=2,3,4)({~xi}) are proportional toN2 according to the action (3.22).

Correlators of n operators can then be computed by taking n functional derivatives with

respect to the dual sources, i.e.

〈Op1(~x1)Op2(~x2)Op3(~x3)Op4(~x4)〉 =
4∏

n=1

δ

δSn(~xn)
e−Ssugra

∣∣∣
Sn=0

. (3.25)

The two- and three-point functions of AdS supergravity obtained in an analogous way

manifestly agree with CFT expectations [19, 20, 93]. In the supergravity conventions all

two-point functions are normalised to N2, it is however always possible to redefine the

sources in such a way to match the normalisation given in (3.9)-(3.10).

Four-point correlation functions are more interesting and require quite involved manip-

ulations. Explicit Witten diagram computations have been carried out for a number of

different cases: 〈OpOpOpOp〉 for p = 2, 3, 4 [28, 29, 42], 〈O2O2OqOq〉 [44, 45] and for the

two parameter family of next-to-next-to-extremal correlators 〈Ok+2Ok+2Oq−kOq+k〉 [46]

for arbitrary q and k. Despite highly complicated calculations, the end result for all of

the above cases is neat and can be written in terms of a restricted set of functions (the

so-called D-functions), suggesting that a generalisation to arbitrary external charges is

feasible. Indeed, it turned out that such a generalisation can be achieved using the

Mellin space representation of holographic correlators, which we will review in detail in

the next section.

Lastly, it is clear from the form of Ssugra in (3.24) that upon taking functional derivatives

with respect to the sources, a four-point correlator will get a leading contribution from

disconnected two-point functions D(2)
k1k2

D(2)
k3k4

(when it exists), followed by the 1/N2 sup-

pressed contribution D(4)
k1k2k3k4

. The latter will contain a dynamical term with a log(u)

singularity, but also a subset of the corresponding connected free field theory correlator,

allowing us to consider the the splitting

Gsugra~p = Gfree
~p + Gdyna

~p , (3.26)

where Gfree
~p can be computed independently from supergravity. Furthermore, the dy-

namical part of the correlator, Gdyna
~p , turns out to be of the form

Gdyna
~p = I(x, x̄, y, ȳ)×Hdyna

~p , (3.27)

which is in exact agreement with the partial non-renormalisation theorem (2.20) as well

as the splitting (3.16) discussed in the previous section, both of which are necessary for

the consistency of the AdS/CFT correspondence.

Next, let us introduce the Mellin formalism for holographic correlators, and in particular

we review the generalisation of the previously known tree-level supergravity amplitudes

mentioned above to arbitrary external charges.
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3.4.2 Holographic Correlators in Mellin Space

The explicit position space results mentioned above have a simple representation when

expressed in Mellin space. In fact, the Mellin space formalism [74, 109–111] has turned

out to be an efficient framework to describe holographic correlators, where in particular

tree-level Witten diagrams take a particularly simple form. In the case of tree-level

supergravity, they are rational functions of the Mellin variables with a prescribed set of

poles which correspond to the exchanged single-trace operators in a given Witten dia-

gram. Beyond supergravity, further string corrections are even simpler when expressed

in Mellin space, as their corresponding Mellin amplitudes are only polynomial.9

The Mellin representation of the interacting part H~p is defined by the integral trans-

form10

H~p (u, v;σ, τ) =

∫ i∞

−i∞

ds

2

dt

2
u
s
2
− p43

2 v
t
2
− p2+p3

2 M~p (s, t;σ, τ) Γ~p (s, t), (3.28)

where the string of six Γ-functions is defined as

Γ~p (s, t) =
∏
i<j

Γ [cij ] , (3.29)

with the Mellin space parametrisation cij = cji given by

c12 = −s
2

+
p1 + p2

2
, c13 = − ũ

2
+
p1 + p3

2
, c14 = − t

2
+
p1 + p4

2
,

c23 = − t
2

+
p2 + p3

2
, c24 = − ũ

2
+
p2 + p4

2
, c34 = −s

2
+
p3 + p4

2
.

(3.30)

Note that the Mellin space variables (s, t, ũ) satisfy the constraint

s+ t+ ũ = p1 + p2 + p3 + p4 − 4. (3.31)

The Mellin amplitude inherits an analogous double expansion at strong coupling, as given

for the dynamical part H(u, v) in equation (3.15). Hence M~p admits an expansion of

9We will revisit the structure of tree-level string corrections in more detail in Chapter 5.
10What we call M~p here is in fact the reduced Mellin amplitude (denoted by M̃~p in [47]), which is

related to the full Mellin amplitude M~p by

M~p (s, t;σ, τ) = R̂(u, v;σ, τ) ◦ M̃~p (s, t;σ, τ),

where R̂ is a difference operator mimicking the action of the factor I on the interacting part H~p . See [48]
for further details, where also a precise definition of the integration contour is given, such that rational
parts of the position space result (corresponding to the long part of free theory) are correctly recovered
from the Mellin integrals.
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the form

M~p = a
(
M(1,0)

~p + λ−
3
2M(1,3)

~p + λ−
5
2M(1,5)

~p + . . .
)

+ a2
(
λ

1
2M(2,−1)

~p +M(2,0)
~p + λ−

1
2M(2,1)

~p + λ−1M(2,2)
~p + λ−

3
2M(2,3)

~p + . . .
)

+O(a3).

(3.32)

In this formalism, the supergravity correlator M(1,0)
~p for arbitrary external charges has

been obtained by solving a bootstrap problem in Mellin space [47, 48]. The final result

of Rastelli and Zhou takes the form of a simple rational Mellin amplitude and, up to an

undetermined overall normalisation N~p , it is given by

M(1,0)
~p = N~p

∑
i,j≥0

aijk σ
iτ j

(s− s0 + 2k)(t− t0 + 2j)(ũ− ũ0 + 2i)
, (3.33)

where k = min{p3,
p1+p2+p3−p4

2 } − i − j − 2 and the range of i, j is such that k ≥ 0 in

the sum. We have used the definitions

s0 = min {p1 + p2, p3 + p4} − 2,

t0 = p2 + p3 − 2,

ũ0 = p1 + p3 − 2,

(3.34)

and the coefficients aijk are given by

aijk =
1

i!j!k!

8(M − 1)!(
1 + p43+p21

2

)
i

(
1 + p43−p21

2

)
j

(
1 + |p1+p2−p3−p4|

2

)
k

, (3.35)

with M = min{p3,
p1+p2+p3−p4

2 }−1. The result (3.33) is consistent with the various pre-

viously known position space results obtained in [28, 29, 42–46], and further indications

about the correctness of the general formula come from more recent explicit supergravity

computations [58–60].

Note that the overall normalisation N~p has been left undetermined in equation (3.33).

This is because the result for M(1,0)
~p has been obtained as the solution of a bootstrap

problem, and as such it is not sensitive to the overall normalisation. However, as men-

tioned earlier, consistency with the AdS/CFT correspondence requires the absence of

excited string states in the spectrum of N = 4 SYM at strong coupling which the

supergravity correlators must satisfy. We will make use of this in the following.

3.4.3 Determining the Supergravity Normalisation

Let us explain how to determine the normalisation N~p in the supergravity Mellin am-

plitude (3.33), by requiring the cancellation of string states between the free field theory
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Figure 3.3: Free theory diagrams in the light-like limit.

part of the correlator at order 1/N2 and the dynamical part given byM(1,0)
~p . In partic-

ular, the normalisation N~p can be fixed by imposing the following non-trivial condition:

lim
u,v→0

〈p1p2p3p4〉
P~p

∣∣∣
1
N2

= 0, with
u

v
fixed, (3.36)

where the limit u, v → 0 whilst keeping the ratio u/v fixed corresponds to taking the

points x1, . . . , x4 to be sequentially light-like separated.

Examining both the free theory and interacting contributions to the LHS of (3.36), we

find that it takes the form
∑M

r=1Ar(uτ/v)r, with

Ar = p1p2p3p4
p21 + p43 + 2

2
−N~p B~p . (3.37)

The first term comes from 〈p1p2p3p4〉free/P~p and arises from the diagrams shown in

Figure 3.3. The normalisation of each of these diagrams in the planar limit can be simply

obtained by counting the number of inequivalent planar embeddings: cyclic rotations on

each vertex leave the diagram unchanged, hence the factor p1p2p3p4. Additionally, the

diagonal propagators can be drawn inside or outside the square, giving 1
2(p21 + p43) + 1

different possibilities. Note that the multi-trace terms of the single-particle operatorsOpi
do not affect the leading large N result for the diagram. The cases r = 0 and r = M + 1

correspond to diagrams of Figure 3.1 which are absent due to the orthogonality property

of the single-particle operators Opi .

The second contribution in (3.37) is obtained from I ×H(1,0)
~p , where H(1,0)

~p is computed

from M(1,0)
~p by inverting the Mellin transformation. Note that each term in the Mellin

amplitude M(1,0)
~p is proportional to

u
s
2
− p43

2 v
t
2
− p2+p3

2 ×
aijk σ

iτ j(
s− p43 − 2− 2(i+ j)

)(
t− p2 − p3 + 2 + 2j

) , (3.38)

which upon residue integration will produce a term proportional to (uσ)i(u/v)1+jτ j .

Since I = τ + O(u, v), the contribution to Ar comes from taking the simple poles with

i = 0 in the Mellin amplitude. Taking all contributions into account, the residue of the
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tree-level supergravity amplitude yields

B~p =
(
M − 1

)
!
( |p1+p2−p3−p4|

2

)
!
(p43−p21

2

)
!
(p43+p21+2

2

)
! . (3.39)

Crucially, the j dependence cancels between a0jk/(j!k!) and Γ~p (s, t) and hence Ar is in

fact independent of r. Now the statement (3.36) is clearly equivalent to the statement

Ar = 0 for all r. Rearranging equation (3.37) for N~p we thus obtain the result

N~p =
p1p2p3p4(

M − 1
)
!
( |p1+p2−p3−p4|

2

)
!
(p43−p21

2

)
!
(p43+p21

2

)
!
. (3.40)

The result combines neatly with the coefficients aijk and we find

N~p aijk =
1

i!j!k!

8p1p2p3p4(p43+p21

2 + i
)
!
(p43−p21

2 + j
)
!
( |p1+p2−p3−p4|

2 + k
)
!
. (3.41)

3.4.4 Proof of the Light-Like Vanishing

The light-like limit projects the common OPE of (Op1 × Op2) and (Op3 × Op4) onto

operators with large spin and twist τ ≤ p43 + 2M , i.e. twist τ < min{p1 + p2, p3 +

p4}. To justify the statement (3.36), let us consider the various contributions to the

OPE expected in the supergravity regime. First of all, we have single-particle states

corresponding to one-half BPS superconformal primary operators. Such operators have

spin zero and do not contribute in the limit v → 0, which receives contributions from

large spin. Next, we have (both protected and unprotected) double-trace operators of the

form [Op∂`�nOq] or mixtures thereof. The leading large N contribution to three-point

functions of the form 〈OpOq[Op′∂`�nOq′ ]〉 ∼ O(Np+q) arises when p = p′ and q = q′,

which is when the three-point function factorises into a product of two-point functions.

The twist τ of the double-trace operator therefore must obey τ ≥ p + q, otherwise the

three-point function will be suppressed by 1/N2. The exchanged operators surviving

the light-like limit (3.36) all have twists less than both p1 + p2 and p3 + p4 and hence

their contributions will be suppressed by at least 1/N4 and will not contribute to the

LHS of (3.36). Higher multi-trace operators are even more suppressed and we conclude

that no operators in the supergravity spectrum can contribute in the light-like limit,

justifying the vanishing of the light-like limit (3.36).

3.4.5 A Hidden Ten-Dimensional Conformal Symmetry

Lastly, let us point out an unexpected feature of the tree-level supergravity correlators

H(1,0)
~p . In [112], these correlators were found to exhibit a hidden conformal symmetry in

10 dimensions.11 One of the main consequences of this hidden symmetry is the existence

11Subsequently, a similar hidden conformal symmetry has been observed for tree-level supergravity on
AdS3×S3, in which case the symmetry is of six-dimensional origin, see references [113, 114].
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of a ten-dimensional generating functional, from which one can obtain all four-point

functions of arbitrary external charges by the action of certain differential operators on

the stress-tensor correlator:

H(1,0)
~p = D̂~p · u2H(1,0)

2222 , (3.42)

As such, the stress-tensor correlator H(1,0)
2222 ∝ u2D2422(u, v) acts as a seed-correlator

for the general correlator H(1,0)
~p . In Mellin space, the differential operators D̂~p act as

shift-operators on the Mellin variables. Importantly, in [112] it has been shown how to

re-derive the Mellin amplitudes M(1,0)
~p as given in (3.33), thus proving consistency of

the above (3.42) with the Mellin space results of [47, 48].

For concreteness, let us give a couple of examples of the differential operators D̂~p for

low external charges. We have

D̂2233 = 9
4(4− u∂u),

D̂2323 = 9
4(u∂u + v∂v),

D̂2244 = 2 (5− u∂u)(4− u∂u),

D̂2424 = 2 (1 + u∂u + v∂v)(u∂u + v∂v),

D̂2334 = 9
2(4− u∂u)(u∂u + v∂v),

D̂3324 = 9
2v∂v(−u∂u − v∂v),

D̂3335 = 135
16 (4− u∂u)v∂v(−u∂u − v∂v),

D̂4424 = 8 (4− u∂u)v∂v(−u∂u − v∂v),

D̂3333 = 81
16

[
(4− u∂u)2 +

uτ

v
(v∂v)

2 + uσ(u∂u + v∂v)
2
]
,

D̂4444 = 4
[
(5− u∂u)2 + 4

uτ

v
(v∂v)

2 + 4uσ(u∂u + v∂v)
2
]

(4− u∂u)2,

+ 4

[
(uτ)2

v2
(1− v∂v)2(v∂v)

2 + (uσ)2(u∂u + v∂v)
2(1 + u∂u + v∂v)

2

]
+ 16

uτ

v
(uσ)(v∂v)

2(v∂v + u∂u)2,

(3.43)

where we note that D̂3335 and D̂4424 are proportional to each other. This (accidental)

degeneracy is a non-trivial consequence of the hidden ten-dimensional symmetry, and it

will be lifted by the one-loop corrections as discussed in Chapter 6.
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Chapter 4

Supergravity Anomalous

Dimensions

The result for supergravity correlators of arbitrary external charges presented above

opens up the systematic study of the leading anomalous dimensions of exchanged double-

trace operators. In this chapter, we will focus solely on the supergravity correction which

is of leading order in the 1/λ expansion. Further string corrections to the spectrum will

be addressed in the next chapter.

Here, we will finally put to use all of the technical machinery introduced in the two

introductory chapters. By combining the superconformal block decomposition of the

long part of four-point functions with the strong coupling expansion and the knowl-

edge of the supergravity spectrum, we arrive at a set of ‘unmixing equations’ whose

solution yields both the supergravity anomalous dimensions η(1,0) and the leading order

three-point couplings of two single-particle operators with an unprotected double-trace

operator. After having introduced the unmixing equations, we start by first discussing

in detail the singlet channel results, which we then generalise to the series of channels

of the form [n, 0, n]. In Section 4.4, we present the general formula for all su(4) rep-

resentations, which is the main result of this chapter. The general formula turns out

to be of a remarkably simple structure and exhibits an interesting pattern of residual

degeneracies.

4.1 The Unmixing Equations

Let us recall the SCPW decomposition introduced in Section 2.4, and in particular the

contribution of long multiplets

〈p1p2p3p4〉long = NΣ
∑
{τ,`,R}

L~p,~τ L~p,~τ , (4.1)

41
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where the external operators are the single-particle operators Op normalised as in (3.9),

and Σ = (p1 + p2 + p3 + p4)/2 such that the disconnected free theory part (when it

exists) is of order 1 in the large N expansion. Due to operator mixing, the long SCPW

coefficients L~p,~τ are not in one-to-one correspondence with the CFT data. Instead, they

are given as a sum over the exchanged operators, i.e.

L~p,~τ =
∑
O∈K

Cp1p2OCp3p4O. (4.2)

Expanding both the dimensions and OPE coefficients up to first order in 1/N2 (and

disregarding any 1/λ corrections for now), we have

∆O = ∆(0) + 2a ηO + . . . , Cp1p2O = C
(0)
p1p2O

+ aC
(1)
p1p2O

+ . . . , (4.3)

where we simplified the notation of the supergravity anomalous dimensions η(1,0) to sim-

ply η. Upon substituting the above expansions into the partial wave decomposition (4.1),

we obtain the following refinement

〈p1p2p3p4〉long = NΣ

(∑
~τ0

A~p,~τ0 L~p,~τ0

+ a log(u)
∑
~τ0

M~p,~τ0 L~p,~τ0 + . . .

)
,

(4.4)

where at order a we omitted analytic terms in u which will not be relevant four our

discussion. By ~τ0 we collectively denote the quantum numbers ~τ0 ≡ (τ0, `, [a, b, a]) of

the exchanged double-trace operators, with τ0 being their classical (integer valued) twist

τ0 = ∆(0) − `. In the above, we have used the definitions

A~p,~τ0 =
∑
O∈K

C
(0)
p1p2O

C
(0)
p3p4O

, (4.5)

M~p,~τ0 =
∑
O∈K

C
(0)
p1p2O

ηOC
(0)
p3p4O

, (4.6)

which constitute the set of ‘unmixing equations’ which we will analyse in detail in the

following. The data on the LHS of these equations will be obtained from the explicit

form of the correlators. In particular, disconnected free theory determines A~p,~τ0 , whereas

M~p,~τ0 is obtained from the leading log(u) singularity of the supergravity correlatorH(1,0)
~p ,

which we obtain from M(1,0)
~p by inverting the Mellin transform.

As discussed before, we expect the set of double-trace operators (denoted by K in the

above sums) to be the only long operators O to have non-vanishing leading order three-

point functions C
(0)
p1p2O

. By solving the above unmixing equations, we wish to obtain

their anomalous dimensions ηO in all su(4) channels [a, b, a] as well as their leading

order three-point functions C
(0)
p1p2O

. To illustrate the general computation, we will start

by first considering the singlet channel representation.
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4.2 Unmixing the Singlet Channel [0, 0, 0]

Specialising to the singlet representation, the set of exchanged singlet operators in ques-

tion have the following schematic form

Kt,`,i|[0,0,0] =
{
O2�

t−2∂`O2, O3�
t−3∂`O3, . . . , Ot�0∂`Ot

}
, (4.7)

where we label the different degenerate operators by i = 1, . . . , t− 1, and in the singlet

channel t is simply half the classical twist, i.e. t = τ0/2. First note that at leading order

in the large N limit the OPE of Op × Op contains the operators Kt,`,i for all t ≥ p.

Thus for fixed t, the four-point correlators 〈ppqq〉 with p ≤ q contain information about

operators Kt,`,i for all q ≤ t. Noting the p ↔ q symmetry we deduce that there are

t(t− 1)/2 such independent correlators. We can then organize the information Appqq,~τ0
coming from each correlator in the free theory at leading order into the symmetric matrix

Â(t, `)|[0,0,0] =


A2222 A2233 . . . A22tt

A3333 . . . A33tt

. . .
...

Atttt

 . (4.8)

In fact, from the form of the large N free theory correlators one can see immediately

that the above matrix Â is actually diagonal. Likewise, we can organise the information

Mppqq,~τ0 coming from the log(u) term at order a of each correlator into another symmetric

matrix

M̂(t, `)|[0,0,0] =


M2222 M2233 . . . M22tt

M3333 . . . M33tt

. . .
...

Mtttt

 , (4.9)

where both in Â(t, `) and M̂(t, `) we have just given the independent entries in the upper

triangular part explicitly.

Consider now the t − 1 independent operators Kt,l,i. They are associated with (t − 1)2

three-point functions C
(0)
ppKt,`,i , with i = 1, . . . , t−1 and p = 2, . . . , t, and t−1 anomalous

dimensions ηt,`,i. This results in a total of t(t−1) unknowns that need to be determined.

Thus the matrices (4.8) and (4.9) contain the precise amount of data needed! The reason

for this exact matching of degrees of freedom is that the operators Kt,`,i are in one-to-

one correspondence with bilinears of single-particle operators. The matching is thus a

remarkable feature of the strong coupling regime of large ’t Hooft coupling and large N ,

as in general there will be many other types of operators contributing.

Let us now examine the unmixing equations (4.5)-(4.6) in detail, beginning with low
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twist cases. To simplify notation a little, we redefine C
(0)
ppKt,`,i in favour of cpi by taking

out a universal factor which we find is always present,

(
C

(0)
ppKt,`,i

)2
=

(`+ t+ 1)!2

(2`+ 2t+ 2)!
c2
pi, (4.10)

and note that at fixed twist we expect cpi to depend non-trivially on the spin `.

4.2.1 Twist 4 (t=2)

At twist 4, there is only one operator contributing and it only appears in the simplest

correlator 〈2222〉. Extracting the relevant superblock coefficients

(C22K2,`,1
)2 = A2222 ⇒ c2

21 =
4

3
(`+ 1)(`+ 6),

η1(C22K2,`,1
)2 = M2222 ⇒ c2

21η1 = −64.
(4.11)

This clearly yields

η1 = − 48

(`+ 1)(`+ 6)
, c21 =

√
4(`+ 1)(`+ 6)

3
, (4.12)

which has been known for a long time [63]. Note the symmetry under ` → −7 − ` of

this result.

4.2.2 Twist 6 (t=3)

The situation becomes more interesting when we move to twist 6. Here there are two

operators contributing, K3,`,1 and K3,`,2. The disconnected free theory results give:

c2
21 + c2

22 =
2

5
(`+ 1)(`+ 8),

c2
31 + c2

32 =
9

40
(`+ 1)(`+ 2)(`+ 7)(`+ 8),

c21c31 + c22c32 = 0.

(4.13)

It is interesting at this point to compare this briefly with the free theory at large N .

The relevant disconnected free theory correlator is exactly the same as the one we are

discussing here at strong coupling. However, despite this one should not be tempted

to assume the leading large N three-point functions are also the same at strong and

weak coupling. Recall that in the free theory at large N the two operators are explicitly

given as K3,`,1 = O2�∂`O2 + . . . and K3,`,2 = O3∂
`O3 + . . . . Although in general

other operators contribute at weak coupling (single-trace etc.), at large N only these

two contribute (the OPE can be easily performed explicitly via Wick contractions to

verify this). Furthermore, the weak coupling three-point functions cweak
22 and cweak

31 are
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suppressed at this order and thus the solution of the above equations simply reads

(cweak
21 )2 =

2

5
(`+ 1)(`+ 8),

cweak
22 = cweak

31 = 0,

(cweak
32 )2 =

9

40
(`+ 1)(`+ 2)(`+ 7)(`+ 8),

(4.14)

and the three-point functions cweak
pi are diagonal.

The strong coupling interpretation of the disconnected free theory equations (4.13) turns

out to be very different however, even though it arises from the same free theory corre-

lators. The dynamical parts of the correlators give

c2
21η1 + c2

22η2 = −96,

c2
31η1 + c2

32η2 = −54(`2 + 9`+ 44),

c21c31η1 + c22c32η2 = 432,

(4.15)

and in particular the last equation means that here the three-point functions cpi cannot

be diagonal. Instead, we can straightforwardly solve the above equations and obtain the

solution

η1 = − 240

(`+ 1)(`+ 2)
, η2 = − 240

(`+ 7)(`+ 8)
,

c21 = −

√
2(`+ 1)(`+ 2)(`+ 8)

5(2`+ 9)
, c22 = −

√
2(`+ 1)(`+ 7)(`+ 8)

5(2`+ 9)
,

c31 =

√
9(`+ 1)(`+ 2)(`+ 7)2(`+ 8)

40(2`+ 9)
, c32 = −

√
9(`+ 1)(`+ 2)2(`+ 7)(`+ 8)

40(2`+ 9)
.

(4.16)

4.2.3 Generalisation to All Twists

The first task in attempting to understand the general structure is to generalise the

equations we obtain from the correlators via the superconformal block expansion. At

leading order the situation is simpler, since off-diagonal correlators 〈ppqq〉 with p 6= q are

suppressed and therefore the matrix Â(t, `) is diagonal. We have computed a number

of explicit examples and spotted the pattern that leads to the general formula

Apppp|[0,0,0] =

24(`+ 1)(t− 2)!(t!)2(`+ 2t+ 2)(`+ t− 1)!((`+ t+ 1)!)2(p+ t)!(`+ p+ t+ 1)!

(p+ 1)(p− 2)!((p− 1)!)3(2t)!(t+ 2)!(`+ t+ 3)!(2`+ 2t+ 2)!(t− p)!(`− p+ t+ 1)!
,

(4.17)
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and let us notice that Apppp has a completely factorized form.1 For a fixed twist t, we

define the matrix of leading order three-point function coefficients C by

C(t, `)|[0,0,0] =


C22Kt,`,1 C22Kt,`,2 . . . C22Kt,`,t−1

C33Kt,`,1 C33Kt,`,2 . . . C33Kt,`,t−1

...
...

. . .
...

CttKt,`,1 CttKt,`,2 . . . CttKt,`,t−1

 , (4.18)

and rewrite the first unmixing equation (4.5) in matrix form,

C̃ · C̃T = 1, where C̃(t, `) ≡ Â−
1
2 · C, (4.19)

where the orthonormality property of the matrix C̃(t, `) is manifest. The second unmix-

ing equation (4.6) then becomes

C̃ · diag (η1, . . . , ηt−1) · C̃T = Â−
1
2 · M̂(t, `) · Â−

1
2 . (4.20)

The columns of C̃(t, `) are then eigenvectors of the matrix Â−
1
2 · M̂(t, `) · Â−

1
2 and the

anomalous dimensions are the corresponding eigenvalues. Notice from the structure of

equation (4.20) (recalling that Â is diagonal) the remarkable property that det(M̂) will

factorise. From the explicit expressions for Mppqq obtained upon decomposing the log(u)

part of the supergravity correlators H(1,0)
ppqq into superblocks this property is completely

obscure. In particular, Mppqq is found to be proportional to a polynomial in ` of degree

2(p−2), with p ≤ q, which does not admit real roots. Their expressions are cumbersome

and thus we will not display them explicitly.

Let us rewrite the solutions at twist four and six from equations (4.11) and (4.16) in

this new notation. In these two cases, the C̃ matrices read

C̃(2, `) =
(
1
)
, C̃(3, `) =


√

`+2
2`+9

√
`+7
2`+9

−
√

`+7
2`+9

√
`+2
2`+9

 , (4.21)

and it can easily be verified that C̃(3, `) · C̃(3, `)T = 1. For later convenience, we also

repeat the formulae for the anomalous dimensions

η2,`,i =

{
− 48

(`+ 1)(`+ 6)

}
, η3,`,i =

{
− 240

(`+ 1)(`+ 2)
,− 240

(`+ 7)(`+ 8)

}
. (4.22)

We now proceed by performing the superconformal block decomposition to find M̂(t, `)

up to twists t ≤ 12, and solve for the anomalous dimensions ηt,`,i and C̃(t, `). From the

1In more detail, we first computed the cases with p = t up to 6 and spotted a pattern for these which
we then confirmed at p = 7. Next we considered cases for fixed p with general t, some of which were
already known [63, 92]. We spotted a pattern for these up to a numerical p-dependent coefficient using
results up to p = 5. This final numerical factor we can then fix as a function of p uniquely by comparison
with the p = t case.
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solution at twist 8 we obtain

C̃(4, `) =


√

7(`+2)(`+3)
6(2`+9)(2`+11)

√
5(`+3)(`+8)

3(2`+9)(2`+13)

√
7(`+8)(`+9)

6(2`+11)(2`+13)

−
√

2(`+2)(`+8)
(2`+9)(2`+11) −

√
35

(2`+9)(2`+13)

√
2(`+3)(`+9)

(2`+11)(2`+13)√
5(`+8)(`+9)

6(2`+9)(2`+11) −
√

7(`+2)(`+9)
3(2`+9)(2`+13)

√
5(`+2)(`+3)

6(2`+11)(2`+13)

 , (4.23)

and

η4,`,i =

{
− 720(`+ 7)

(`+ 1)(`+ 2)(`+ 3)
,− 720

(`+ 3)(`+ 8)
,− 720(`+ 4)

(`+ 8)(`+ 9)(`+ 10)

}
. (4.24)

For higher twists the solutions become quite lengthy so we find it helpful to introduce a

more compact notation for the square root factors, and we define

(n) =
√
`+ n , [n] =

√
2`+ n . (4.25)

With this more compact notation the solution at twist 10 takes the form,

C̃(5, `) =



√
3
2

(2)(3)(4)
[9][11][13]

√
5
2

(3)(4)(9)
[9][13][15]

√
5
2

(4)(9)(10)
[11][13][17]

√
3
2

(9)(10)(11)
[13][15][17]

−
√

27
8

(2)(3)(9)
[9][11][13] −

√
5
8

(`+18)(3)
[9][13][15]

√
5
8

(`−5)(10)
[11][13][17]

√
27
8

(4)(10)(11)
[13][15][17]√

5
2

(2)(9)(10)
[9][11][13] −

√
3
2

(`−3)(10)
[9][13][15] −

√
3
2

(`+16)(3)
[11][13][17]

√
5
2

(3)(4)(11)
[13][15][17]

−
√

5
8

(9)(10)(11)
[9][11][13]

√
27
8

(2)(10)(11)
[9][13][15] −

√
27
8

(2)(3)(11)
[11][13][17]

√
5
8

(2)(3)(4)
[13][15][17]


(4.26)

with

η5,`,i =

{
− 1680(`+ 7)(`+ 8)

(`+ 1)(`+ 2)(`+ 3)(`+ 4)
,− 1680

(`+ 3)(`+ 4)
,

− 1680

(`+ 9)(`+ 10)
,− 1680(`+ 5)(`+ 6)

(`+ 9)(`+ 10)(`+ 11)(`+ 12)

}
.

(4.27)

We begin to see an intriguing structure in the entries of the matrix as well as in the

anomalous dimensions. Note the symmetry ` → −2t − ` − 3, which is an invariance of

the set of anomalous dimensions and an invariance up to signs of the C̃ matrix under

a flip about the vertical axis. Note also that at twist 10 we see for the first time the

appearance of polynomials in ` (without a square root) in the numerators of the central

entries of (4.26). At twist 10 these polynomials are all linear, but their degrees increase

as we increase the twist further.

Indeed, proceeding to compute the next few examples one gets a better idea of the

structure. The anomalous dimensions reveal a fairly simple structure that is consistent

with the formula

ηt,`,i|[0,0,0] = −2(t− 1)4(t+ `)4

(`+ 2i− 1)6
, (4.28)
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where (x)n = x(x+1) . . . (x+n−1) is the familiar Pochhammer symbol (rising factorial).

Note that the anomalous dimensions are all negative for all physical values of spin `.

On the other hand, the general form of the C̃(t, `) matrices is trickier to understand.

Already from the results up to twist 10 we recognise a pattern of square roots of linear

factors of `. In addition, we have seen that in the entries towards the centre one finds

fewer square root factors in the numerator, and polynomials in ` without a square root.

Note that the entries of the matrix always have a finite (but possibly vanishing) limit

as ` → ∞. In fact, we can deduce the structure of C̃(t, `) for a given twist in terms of

an ansatz with some undetermined free parameters,

c̃pi =

√
21−t(2`+ 4i+ 3) ((`+ i+ 1)t−i−p+1) σ1 ((t+ `+ p+ 2)i−p+1) σ2(

`+ i+ 5
2

)
t−1

×
min{i−1,p−2,t−i−1,t−p}∑

k=0

`k a(p, i, k).

(4.29)

The powers of the Pochhammer factors inside the square root are signs given explicitly

by

σ1 = sgn(t− p− i+ 1) , σ2 = sgn(i− p+ 1) . (4.30)

where p = 2, . . . , t and i = 1, . . . , t − 1. We notice that the square root structure in

c̃pi follows from complicated combinatorics, which nevertheless can be captured by the

two (non-analytic) sign functions σ1 and σ2. Around the outer frame of the matrix, the

unfixed polynomial has degree 0, i.e. it is simply a constant. Its degree increases as we

move towards the inside of the matrix. One can readily check (4.29) is consistent with

the explicit examples given above and we have tested the structure up to t = 12.

Given the ansatz (4.29), we have reduced the problem to that of finding the constants

a(p, i, k). Quite surprisingly, enforcing orthonormality of C̃(t, `) uniquely fixes the solu-

tion.2 In more detail, we first insist that the first row has unit norm,
∑

i c̃
2
2i = 1, which

is a linear equation in a(2, i, 0)2 with a unique solution. In fact, the constraint is a

rational function of ` and so this single equation can fix more than one constant. Then,

orthogonality of the rows
∑
c̃pic̃qi = 0 for p 6= q gives a linear system in the remaining

variables and uniquely fixes them, up to an overall scale which is fixed by the unit norm

condition.

We find it remarkable both that there exist such orthonormal matrices with the struc-

ture (4.29) and that the matrix is uniquely fixed by orthonormality as a linear system.

The fact that the problem is essentially linear means it can be solved quickly and we

have complete data up to t = 24. This enables us to spot patterns and write down

general formulae.

2We have checked this up to twist 48 (t = 24).
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We do not have a completely general formula for the full matrix C̃ but we do have various

cases in closed form. In particular, the top row of the matrix is given by the formula3

a(2, i, 0) =
2t−1(2i+ 2)!(t− 2)!(2t− 2i+ 2)!

3(i− 1)!(i+ 1)!(t+ 2)!(t− i− 1)!(t− i+ 1)!
, i = 1, . . . , t− 1. (4.31)

4.3 A First Generalisation: from [0, 0, 0] to [n, 0, n]

Before giving the solution for general su(4) channels [a, b, a], let us discuss a first simple

generalisation of the above singlet channel results. Specifically, we can investigate oper-

ators in the series of representations [n, 0, n] which also arise in the OPE of correlation

functions of the form 〈ppqq〉. For each channel of the form [n, 0, n] the structure of this

problem is analogous to that of the singlet channel. In particular, at twist 2t a basis of

double-trace operators in the [n, 0, n] representation will have the schematic form

Kt,`,i|[n,0,n] =
{
O2+n�

t−n−2∂`O2+n, O3+n�
t−n−3∂`O3+n, . . . , Ot�0∂`Ot

}
, (4.32)

with t− n− 1 degenerate operators labelled by i, where t is again half the twist.

The analysis of the [n, 0, n] channel for fixed n follows a very similar logic to that

presented in the singlet case. Once again we conclude that the series of correlators

〈ppqq〉 for n+2 ≤ p ≤ q ≤ t provides precisely the right amount of information needed in

order to solve for the anomalous dimensions and three-point functions of the exchanged

double-trace operators. From the general form of the long superconformal blocks (2.33),

it is straightforward to isolate the appropriate channel and organise the data from the

SCPW expansion into the symmetric matrices Â(t, `)|[n,0,n] and M̂(t, `)|[n,0,n]. Let us

go through some explicit examples in the [1, 0, 1] channel before presenting results for

general n.

4.3.1 Unmixing the [1, 0, 1] Channel

In this channel, the matrices Â(t, `)|[1,0,1] and M̂(t, `)|[1,0,1] take the form

Â(t, `)|[1,0,1] =


A3333 A3344 . . . A33tt

A4444 . . . A44tt

. . .
...

Atttt

 , (4.33)

3This formula, together with equations (4.10) and (4.17), completely specifies the leading order three-

point functions of the form C
(0)
22Kt,`,i

, which is an essential ingredient in the prediction of the one-loop

supergravity correction to the 〈2222〉 correlator, as we will discuss in Chapter 6.
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and

M̂(t, `)|[1,0,1] =


M3333 M3344 . . . M33tt

M4444 . . . M44tt

. . .
...

Mtttt

 , (4.34)

where Â(t, `) is diagonal with entries

Apppp|[1,0,1] =
15(p− 2)(t− 1)(t+ 2)(`+ t)(`+ t+ 3)

(p+ 2)(t− 2)(t+ 3)(`+ t− 1)(t+ `+ 4)
Apppp|[0,0,0], (4.35)

with Apppp|[0,0,0] given in equation (4.17). Analogously to the singlet channel, we can

then introduce the orthonormal matrix C̃(t, `) and start solving the mixing problem

twist by twist. For illustration, let us look at the first three cases:

• At twist 6 there is only one operator, giving

C̃(3, `) =
(
1
)
, η3,`,i =

{
− 144

(3 + `)(6 + `)

}
. (4.36)

• At twist 8 there are two operators, and we find

C̃(4, `) =


√

`+2
2`+11

√
`+9

2`+11

−
√

`+9
2`+11

√
`+2

2`+11

 , (4.37)

with anomalous dimensions

η4,`,i =

{
− 560(`+ 8)

(`+ 2)(`+ 4)(`+ 7)
,− 560(`+ 3)

(`+ 4)(`+ 7)(`+ 9)

}
. (4.38)

• At twist 10, it becomes evident that the structure of eigenvectors and anomalous

dimension found in the singlet case generalises to [1, 0, 1] with minor modifications.

In particular, we find

C̃(5, `) =


√

9(`+2)(`+3)
8(2`+11)(2`+13)

√
7(`+3)(`+10)

4(2`+11)(2`+15)

√
9(`+10)(`+11)

8(2`+13)(2`+15)

−
√

2(`+2)(`+10)
(2`+11)(2`+13) − 3

√
7√

(2`+11)(2`+15)

√
2(`+3)(`+11)

(2`+13)(2`+15)√
7(`+10)(`+11)

8(2`+11)(2`+13) −
√

9(`+2)(`+11)
4(2`+11)(2`+15)

√
7(`+2)(`+3)

8(2`+13)(2`+15)

 , (4.39)

while the anomalous dimensions are given by

η5,`,i =

{
− 1440(`+ 9)

(`+ 2)(`+ 3)(`+ 5)
,− 1440

(`+ 5)(`+ 8)
,− 1440(`+ 4)

(`+ 8)(`+ 10)(`+ 11)

}
.

(4.40)
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The solutions to the mixing problem up to t = 12 can be found straightforwardly and

lead to the expression

ηt,`,i|[1,0,1] =
(`+ 2i− 1)(t− 2)(t+ 3)(t+ `− 1)(t+ `+ 4)

(`+ 2i+ 5)(t− 1)(t+ 2)(t+ `)(t+ `+ 3)
ηt,`,i|[0,0,0] (4.41)

for the anomalous dimensions, and

c̃pi =

√
21−t(2`+ 4i+ 5) ((`+ i+ 1)t−i−p+1) σ1 ((t+ `+ p+ 2)i−p+2) σ2(

`+ i+ 7
2

)
t−2

×
min{i−1,p−3,t−i−2,t−p}∑

k=0

`k a(p, i, k).

(4.42)

for the entries of the C̃(t, `) matrix, where σ1 = sgn(t− p− i+ 1), σ2 = sgn(i− p+ 2),

with p = 3, . . . , t and i = 1, . . . , t − 2. The orthogonality condition of the matrix again

determines completely the values of a(p, i, k) at any twist.

4.3.2 From [2, 0, 2] to [n, 0, n]

After the detailed study of the [1, 0, 1] channel, let us present the generalisations of the

matrices Â(t, `) and M̂(t, `), anomalous dimensions and matrices of three-point functions

C̃(t, `) to the [n, 0, n] channels.

We begin with the disconnected part of free theory, where we have obtained the result

Apppp|[n,0,n] =

p2(t!)2

n!p!(p− 1)!

(n+ 2)n+3

(p+ 1 + n)!(p− 2− n)!
× (`+ 1)((1 + `+ t)!)2(`+ 2t+ 2)

(2t)!(2`+ 2t+ 2)!
×

(`+ t− p+ 2)p−2−n(`+ t+ 4 + n)p−2−n(`+ 1 + t− n)n(`+ 1 + t+ 2)n×

(t− p+ 1)p−2−n(t+ 3 + n)p−2−n(t− n)n(t+ 2)n.

(4.43)

Introducing the C̃(t, `)|[n,0,n] matrices and computing M(t, `)|[n,0,n] for a large number

of twists and several values of n, we have been able to fit and test both the anomalous

dimensions and the entries of C̃(t, `) with the following formulae: for the anomalous

dimensions we find

ηt,`,i|[n,0,n] = −2(t)2(t− n− 1)(t+ n+ 2)(t+ `+ 1)2(t+ `− n)(t+ `+ n+ 3)

(`+ 2i+ n− 1)6
, (4.44)

with the degeneracy label i running over i = 1, . . . , t − n − 1. For the entries of the
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C̃(t, `) matrix we have

c̃pi =

√
21−t(2`+ 4i+ 3 + 2n ((`+ i+ 1)t−i−p+1) σ1 ((t+ `+ p+ 2)i−p+n+1) σ2(

`+ i+ n+ 5
2

)
t−n−1

×
min{i−1,p−n−2,t−n−i−1,t−p}∑

k=0

`k a(p, i, k),

(4.45)

where σ1 = sgn(t − i − p + 1) and σ2 = sgn(i − p + n + 1). All unspecified coefficients

a(p, i, k) can again be determined by imposing orthogonality of the C̃ matrix.

4.4 Generalisation to All su(4) Channels

Let us finally describe how to determine the anomalous dimensions of the true double-

trace eigenstates Kpq for general su(4) representations [a, b, a]. Recall from the previous

chapter that the set of exchanged operators Kpq is parametrised by pairs (p, q) ∈ R~τ ,

where

R~τ =

{
(p, q) :

p = i+ a+ 1 + r

q = i+ a+ 1 + b− r
for

i = 1, . . . , t− 1

r = 0, . . . , µ− 1

}
, (4.46)

and

t =
(τ − b)

2
− a , µ ≡


⌊
b+2

2

⌋
a+ ` even,⌊

b+1
2

⌋
a+ ` odd.

(4.47)

As in the previous cases, we will have to assemble matrices of correlators from which

we extract the necessary data to resolve the mixing of the set of double-trace operators

described above. We will therefore consider the correlators 〈p1p2p3p4〉 in which the pairs

(p1, p2) and (p3, p4) are both drawn from the set R~τ , resulting in a symmetric d×dmatrix

of SCPW coefficients, with d = µ(t− 1). From disconnected free field theory we obtain

Â(t, `), whereas M̂(t, `) follows from the log(u) part of the supergravity correlatorsH(1,0)
~p .

These two matrices contain the CFT data for the operators Kpq as follows:

Â(t, `)|[a,b,a] = C[a,b,a](t, `) · CT[a,b,a](t, `),

M̂(t, `)|[a,b,a] = C[a,b,a](t, `) · η̂ · CT[a,b,a](t, `),
(4.48)

where we again used the matrix notation of the unmixing equations (4.5)-(4.6), with

C[a,b,a] being the matrix of leading order three-point functions and η̂ = diag(ηpq) the

d × d diagonal matrix of anomalous dimensions of the operators Kpq. As we have pre-

viously seen for the [n, 0, n] channels, the above equations define an eigenvalue problem

for the anomalous dimensions η̂. A simple counting reveals again that the number of

unknowns in Â(t, `) and M̂(t, `) exactly equals the number of unknown three-point cou-
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plings CpipjKpq and anomalous dimensions ηpq, and thus the eigenvalue problem (4.48)

is well defined.

Let us comment on the structure of the matrices Â(t, `) and M̂(t, `). The SCPW ex-

pansion of disconnected free theory has the following compact expression:

Â(t, `)|[a,b,a] = diag
(
F1+a+i+r,b−2r,r,a,t+a+r

)
1≤i≤t−1
0≤r≤µ−1

, (4.49)

where the function F is given by

Fp,h,m,a,s =
p(p+ h)(1 + δh0)(1 + a)(2m+ 2 + h+ a)(l + 1)(l + 2s+ 2 + h)

(p− 1−m)!(p− 2−m− a)!(p+m+ h)!(p+m+ h+ 1 + a)!

× (m+ 1 + h)m+1

m!

(m+ 2 + a+ h)m+2+a

(m+ 1 + a)!
Πs Πl+s+1,

(4.50)

with

Πs =
((s+ h)!)2

(2s+ h)!
(s+ 1−m)m(s+ 1 + h)m(s−m− a)a

× (s+ 2 + h+m)a(s+ 1− p)p−2−m−a(s+ 3 + h+m+ a)p−2−m−a.

(4.51)

The matrix elements of M̂(t, `) are of the form(
`+ 1 + t+ a+ r + p43−p21

2

)
!
(
`+ 1 + t+ a+ r + p43

)
!(

2(`+ 1 + t+ r + a) + p43

)
!

× Pn(`) (4.52)

where Pn(`) is a polynomial in ` of degree n = min{p1 + p2, p3 + p4} − (p43 − p21)− 4,

and r labels the pairs (p3, p4). We determine this polynomial case by case, and solve the

eigenvalue problem as outlined in the previous sections.

This leads us to the main result of this chapter: the general formula for all supergravity

anomalous dimensions in all su(4) channels, given by4

η(1,0)
pq |[a,b,a] = −

2M
(4)
t M

(4)
t+`+1(

`+ 2(p− 1)− a− 1+(−1)a+`

2

)
6

, (4.53)

where the twist is parametrised by t, see equation (4.47), and M
(4)
t is defined as

M
(4)
t = (t− 1)(t+ a)(t+ a+ b+ 1)(t+ 2a+ b+ 2). (4.54)

Note that this formula is consistent with the previously discussed cases, namely the

singlet channel anomalous dimensions (4.28) and its generalisation to the [n, 0, n] channel

given in (4.44).

4We have verified that our conjecture (4.53) holds systematically in the su(4) channels [a, b, a] with
0 ≤ a ≤ 3, 0 ≤ b ≤ 6 up to twist 24 for both even and odd spins. In particular, we have been able to
perform non-trivial tests on the pattern of residual degeneracies which we describe below.
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Figure 4.1: Degeneracy in the supergravity anomalous dimensions η
(1,0)
pq : dots connected by

vertical lines in the (p, q) plane represent operators of common anomalous dimensions. In this
example, we again depict the rectangle R~τ with quantum numbers ~τ = (24, `, [0, 6, 0]).

A few comments are in order. We find it remarkable that the supergravity anomalous

dimensions (4.53) take such a simple, fully factorised and rational form. This is not

at all obvious from the form of the eigenvalue problem (4.48), which features an in-

tricate spin dependence in the matrices M̂(t, `) with non-factorised polynomials in `.

Furthermore, note that there is an interesting residual degeneracy in the supergrav-

ity spectrum: since η
(1,0)
pq is in fact independent of q, the anomalous dimensions are in

general partially degenerate. This is the case when µ > 1 and t > 2, and we display

this property in Figure 4.1, where states which lie on the same vertical line have the

same anomalous dimensions.5 This residual degeneracy in the supergravity spectrum

arises as a consequence of a surprising property of the tree-level supergravity correlators

H(1,0)
~p , from which we extract the relevant data: the hidden ten-dimensional conformal

symmetry predicts a degeneracy among some of the tree-level correlators, see the dis-

cussion below (3.43), which in turn prevents the spectrum from being fully unmixed at

tree-level [112]. This means that although the eigenvalue problem (4.48) is well-defined,

the leading order three-point functions C[a,b,a] are not fully determined when there is a

residual degeneracy.

Furthermore, we observe that the supergravity spectrum exhibits (at least) two inter-

esting symmetries. Firstly, the anomalous dimensions (4.53) are left invariant under the

5The first instance of residual degeneracy occurs in the [0, 2, 0] channel at twist 8 (t = 3). There are
four operators in total, and the two operators labelled by (p, q) = (3, 3) and (3, 5) remain degenerate
(corresponding to the states with labels (i, r) = (1, 1) and (2, 0), such that their sum i + r = 2 in both
cases).
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discrete shift

t→ −t− `− 2a− b− 2, (4.55)

which exchanges the two factors in its numerator. As we will see later, we find this

symmetry to be present also in the string corrected anomalous dimensions at orders

λ−
3
2 and λ−

5
2 , and we believe that this symmetry extends to all string corrections. It

is not known whether this symmetry persists to higher orders in 1/N , or whether it

is broken by quantum corrections. It would be interesting to answer this question to

one-loop order, O(1/N4), but due to the mixing with triple-trace operators we can only

extract the one-loop anomalous dimensions for low twists (where there is no degeneracy)

and we are thus not able to test this symmetry beyond tree-level.

Secondly, the supergravity spectrum exhibits a non-trivial Z2 symmetry. The statement

of this so-called reciprocity symmetry6 is that under the map

`→ −`− 2t− a− 3, (4.56)

the anomalous dimensions of certain families of operators are mapped into each other.

In the [n, 0, n] channel for example, the anomalous dimensions are labelled by only one

degeneracy label i = 1, . . . , t− n− 1, and one can check that

η
(1,0)
t,`,i |[n,0,n] → η

(1,0)
t,−`−2t−3,i|[n,0,n] = η

(1,0)
t,`,j |[n,0,n], where j = t− i− n. (4.57)

Under this symmetry, the family of operators with labels (t, i) maps to operators with

(t, j = t− i−n) and the symmetry simply reverses the list of operators at a given twist.

This symmetry is believed to persist to all orders in 1/N , and it manifests itself as an

invariance of the full anomalous twist of these operators. Up to order 1/N4, we indeed

observe that it is obeyed by the one-loop anomalous dimensions in a non-trivial manner,

see Section 6.5. On the other hand, as we will discuss in detail in the next chapter,

further string corrections to the double-trace spectrum truncate at finite values of the

spin `. This leads to formulae for the string corrected anomalous dimensions which are

non-analytic in spin, and thus the symmetry (4.56) is broken by the 1/λ corrections.

6This symmetry was first noted in [115] and explored further in [116]. As argued in [116, 117], under
certain assumptions about the analyticity of the spectrum, the reciprocity symmetry (4.56) is ultimately
a consequence of conformal symmetry.





Chapter 5

Adding String Corrections to the

Double-Trace Spectrum

String corrections to the supergravity result arise from higher derivative interaction

terms in the AdS5×S5 effective action. At tree-level, the structure of these 1/λ correc-

tions is related to the well-known Virasoro-Shapiro amplitude via the flat space limit,

which we will review shortly. As mentioned earlier, these terms are most conveniently

studied in their Mellin space representation. Focussing on tree-level terms, recall that

the 1/λ expansion of the Mellin amplitude to order a reads

M~p = a
(
M(1,0)

~p + λ−
3
2M(1,3)

~p + λ−
5
2M(1,5)

~p + λ−3M(1,6)
~p + . . .

)
+O(a2), (5.1)

where M(1,0)
~p is the supergravity amplitude given previously in equation (3.33). In

the following, we will consider the corrections to the double-trace spectrum due to the

first two terms M(1,3)
~p and M(1,5)

~p , which descend from dimensional reduction of the

R4 and ∂4R4 supervertices, respectively. Note that the analytic structure of tree-level

Witten diagrams dictates that for a general term of the schematic form ∂2nR4, the

corresponding Mellin amplitude is simply a polynomial of degree n, together with all

subleading polynomial amplitudes coming from terms in 10 dimensions which have legs

on S5 [77, 111, 118–120].1 As such, the tower of string corrections gives rise to a spin

truncated spectrum of exchanged states, which motivates us to introduce the notion of

an effective 10d spin `10. As we will discuss in Section 5.3, the notion of `10 will provide

a useful method to constrain which double-trace states will receive a string correction

to their anomalous dimensions.

1The tree-level corrections to the supergravity Mellin amplitude are polynomial since they correspond
to corrections due to unprotected double-trace operators, whose poles are already correctly accounted
for by the gamma functions Γ~p in the definition of the Mellin representation (3.28). The bound on
the polynomial comes from considering the flat space limit and moreover the coefficients of the leading
Mellin amplitudes can be fixed by comparing against the ten-dimensional type IIB closed superstring
amplitude in flat space, as we will discuss in the next section.

57
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Before introducing the unmixing equations and presenting their solution for the string

corrected double-trace spectrum at orders λ−
3
2 and λ−

5
2 , we will first take a digression

and review the flat space limit for Mellin amplitudes. This will allow us to determine

the order λ−
3
2 correlator for arbitrary external charges in a simple fashion.

5.1 Digression: the Flat Space Limit

Let us start by reviewing the general flat space limit formula for four-particle Mellin

amplitudes. This relation between AdS Mellin amplitudes and flat space physics was

motivated in [111] and explored further in [118]. This method was first applied to the

〈2222〉 correlator in reference [119], and more recently extended to the 〈22pp〉 family of

correlators [100, 120]. Their discussion is based on previous work in AdS7×S4 [121, 122],

whose logic we will follow here to extend the previous results to the general correlator

〈p1p2p3p4〉 with non-trivial (σ, τ) dependence. In four dimensions, the relation reads2

lim
L→∞

M(L2s, L2t) =
L−1

Γ(Σ− 2)

∫ ∞
0

dββΣ−3e−βAFlat

(2βs

L2
,
2βt

L2

)
, (5.3)

where L is the radius of AdS, Σ is half the sum of external charges, Σ = p1+p2+p3+p4

2 ,

and AFlat is the corresponding flat space amplitude, which we describe in detail below.

Here we will follow the logic of [122] and extend this formula to four-point functions

with arbitrary Kaluza-Klein modes as external operators. Starting from the above ten-

dimensional expression in flat space, we need to restrict the kinematics to the five-plane

R5 ' AdS5|L→∞ by integrating over the S5 wavefunctions of the Kaluza-Klein modes

dual to Op, where the integration over S5 yields an additional factor of L5. Denoting the

ten-dimensional amplitude in transverse kinematics by A(10)
⊥ (s, t;σ, τ), the relation (5.3)

can be inverted to give

A(10)
⊥ (s, t;σ, τ) =

Θflat
4 (s, t;σ, τ)

16 NA
Γ(Σ− 2)

· lim
L→∞

L14

∫ +i∞

−i∞

dα

2πi
α−(Σ+2)eα M~p

(L2s

2α
,
L2t

2α
;σ, τ

)
,

(5.4)

where we made use of equation (5.2) to replaceM(s, t) with the reduced Mellin amplitude

M(s, t;σ, τ), and NA is a normalisation factor which we need to fix. Note that in our

case the relevant ten-dimensional amplitude we want to recover in the flat space limit

2Note that the above relation (5.3) requires the use of the full Mellin amplitude M(s, t;σ, τ) which
is related to the reduced Mellin amplitude M~p (s, t;σ, τ) as defined in (3.28) through the action of a

difference operator R̂ corresponding to the factor I. In the flat space limit s, t → ∞, the relation is
given by

M~p (s, t;σ, τ) ' 1

16
Θflat

4 (s, t;σ, τ)M~p (s, t;σ, τ), with Θflat
4 (s, t;σ, τ) = (tu+ stσ + suτ)2. (5.2)
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is given by the four-graviton scattering amplitude in type IIB superstring theory. This

amplitude admits the genus-expansion

AFlat = κ2
10 g

2
s R4

(
Atree + 2πg2

s Agenus-1 +O(g4
s)
)
, (5.5)

where κ2
10 = 64π7(α′)4 and R4 is a universal kinematic factor, which is fixed by super-

symmetry and hence factors out from the entire amplitude. In the case of four external

gravitons, it is given by a specific tensor-contraction of four Weyl curvatures [106].

When expanded, this kinematic factor encodes the amplitudes of all the states within

the ten-dimensional supermultiplet. Most importantly for our purposes, when restricted

to transverse kinematics as required by the flat space limit formula, it reduces to [122]

R4
⊥ =

Θflat
4 (s, t;σ, τ)

16
, (5.6)

and therefore it precisely cancels against the identical overall factor on the RHS of (5.4).

The tree-level amplitude Atree in the above (5.5) is given by the well-known Virasoro-

Shapiro amplitude

Atree =
Γ(−α′s/4)Γ(−α′t/4)Γ(−α′u/4)

Γ(1 + α′s/4)Γ(1 + α′t/4)Γ(1 + α′u/4)
, (5.7)

where s, t, u are the usual ten-dimensional Mandelstam invariants obeying s+ t+u = 0.

The string theory parameter α′ = l2s can be converted into CFT quantities using the

relation α′ = λ−
1
2L2. The low-energy expansion of the amplitude (5.7) then corresponds

to an expansion in 1/λ:

Atree = − 64

stu (α′)3

(
1 +

stu ζ3

32
· λ−

3
2L6 +

stu ζ5

1024
(s2 + t2 + u2) · λ−

5
2L10 + . . .

)
. (5.8)

We can then fix the normalisation NA in the flat space limit formula (5.4) by plugging

in the AdS supergravity Mellin amplitude M(1,0)
~p from equation (3.33), and comparing

it to the first term in the above expansion (5.8), giving

NA =
(α′)3

32π5

Bsugra
~p (σ, τ)

Σ− 2
. (5.9)

Note that NA has a non-trivial dependence on the su(4) cross-ratios through the fac-

tor Bsugra
~p (σ, τ), which follows from the large s, t limit of the tree-level supergravity

amplitude and is explicitly given by

Bsugra
~p (σ, τ) =

∑
i,j≥0

1

i!j!k!

8p1p2p3p4 σ
iτ j(p43+p21

2 + i
)
!
(p43−p21

2 + j
)
!
( |p1+p2−p3−p4|

2 + k
)
!
, (5.10)

with k = p3 + min
{

0, p1+p2−p3−p4

2

}
− i− j − 2, and the range of i, j is such that k ≥ 0

in the sum.
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With the normalisation factor fixed by the supergravity result, we can turn our attention

to the subsequent tower of string corrections. At each order in the 1/λ expansion,

the flat space limit of the tree-level Mellin amplitude has to match the corresponding

term in the expansion of the Virasoro-Shapiro amplitude (5.8). As a consequence, the

structure of tree-level string corrections in AdS is constrained by the structure of the

expansion (5.8), which we already implicitly assumed in equation (5.1). Furthermore,

the flat space limit completely determines the leading polynomial term in the Mellin

amplitudes M(1,n)
~p , leaving only the subleading polynomial terms unconstrained. For

the first string correction at order λ−
3
2 , this turns out to fix the entire amplitude, as we

will discuss next.

5.1.1 The Order λ−3
2 Correlator for Arbitrary External Charges

The first string correction arises from the order λ−
3
2 term in the Virasoro-Shapiro am-

plitude, corresponding to an R4 interaction vertex in the string theory effective action.

As such, the Mellin amplitudeM(1,3)
~p is given by a polynomial of degree zero and there-

fore has only one contribution, the constant term. It is due to this simplicity that the

first string correction is entirely fixed by the flat space limit only: using the flat space

limit formula (5.4) for a constant Mellin amplitude and matching the λ−
3
2 term in the

expansion (5.8), we are led to the compact result

M(1,3)
~p =

(Σ− 1)3 ζ3

4
Bsugra
~p (σ, τ), (5.11)

with Bsugra
~p given in (5.10). We can straightforwardly obtain the explicit position space

expression by performing the inverse Mellin transform of the above amplitude, giving

H(1,3)
~p =

(Σ− 1)3 ζ3

4
Bsugra
~p (σ, τ) u

p1+p2+p3−p4
2 Dp1+2,p2+2,p3+2,p4+2(u, v). (5.12)

The above formula is consistent with the results for 〈2222〉 [119] and 〈22pp〉 [120], and

by construction obeys the correct crossing transformation properties. We checked ex-

plicitly for many cases that, upon decomposing into superconformal blocks, our general

result (5.12) contributes to spin 0 only, as expected from the R4 correction term. Fur-

thermore, note that the above correlator contributes only to su(4) channels with a = 0,

which is a non-trivial property of the polynomial Bsugra(σ, τ). This will be of particular

relevance when studying the order λ−
3
2 anomalous dimensions in the next section.

Lastly, let us note that the above result for H(1,3)
~p can also be obtained from a ten-

dimensional generating functional. In particular, we observe that the hidden ten-

dimensional conformal symmetry of the supergravity correlatorsH(1,0)
~p (see Section 3.4.5)

remains unbroken by the first string correction! Due to the simplicity of the Mellin am-

plitudeM(1,3)
~p the same construction for a generating functional from [112] goes through,
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and we have

H(1,3)
~p = D̂~p · u2H(1,3)

2222 , (5.13)

where D̂~p is the same differential operator as in the supergravity case.3 In this way,

all correlators of arbitrary external charges are neatly repackaged and descend from the

same seed-correlator H(1,3)
2222 ∝ u2D4444.

5.2 The Double-Trace Spectrum at Order λ−
3
2

With the general correlator H(1,3)
~p at hand, we can now employ the same methods which

allowed us to solve the supergravity mixing problem to the first string correction. In

this section, we extend the set of unmixing equations encountered in the last chapter

to order λ−
3
2 . We then proceed by first solving the equations in the singlet channel,

before generalising the results to all channels [0, b, 0]. These string corrected anomalous

dimensions are of a surprisingly simple structure, for which we will provide an intuitive

ten-dimensional explanation in the next section.

5.2.1 The Unmixing Equations at Order λ−3
2

The unmixing equations are most compactly presented in their matrix form. We will

thus use the same matrix notation as we did in the supergravity case: for a given su(4)

channel [a, b, a], we denote by C[a,b,a](t, `) the matrix of three-point functions CpqK with

(p, q) ∈ R~τ . Keeping only the leading terms in the large N expansion, we have

C[a,b,a](t, `) =
(
C(0) + λ−

3
2 C(3) + λ−

5
2 C(5) + . . .

)
+O(a). (5.14)

Analogously, by η̂(n) we denote the diagonal matrix of the corresponding set of tree-

level anomalous dimensions η
(1,n)
pq , where n denotes the order in the λ−

1
2 expansion. The

unmixing equations then follow by plugging in the above expansions into the supercon-

formal block decomposition of the interacting part of the correlator. Keeping terms up

to order aλ−
3
2 and omitting all arguments for simplicity, we have

O(1) : Â = C(0)
(
C(0)

)T
, (5.15)

O(a) : M̂(1,0) = C(0) η̂(0)
(
C(0)

)T
, (5.16)

O(λ−
3
2 ) : 0 = C(0)

(
C(3)

)T
+ C(3)

(
C(0)

)T
, (5.17)

O(aλ−
3
2 ) : M̂(1,3) = C(0) η̂(3)

(
C(0)

)T
+ C(0) η̂(0)

(
C(3)

)T
+ C(3) η̂(0)

(
C(0)

)T
, (5.18)

3See equation (3.43) for some explicit examples of D̂~p with low external charges.
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where in the first two lines we repeat the supergravity unmixing equations given already

in (4.48). Recall that the leading order SCPW coefficients Â(t, `) are obtained from

disconnected free field theory, while the matrices M̂(1,0)(t, `) and M̂(1,3)(t, `) are extracted

from the log(u) parts of the known tree-level correlators H(1,0)
~p and H(1,3)

~p , respectively.

Also, note that the zero on the LHS of equation (5.17) comes from the fact that there

are no 1/λ corrections to the free theory.

In the last chapter we solved the supergravity unmixing equations (5.15)-(5.16), obtain-

ing C(0) and η̂(0). With this data at hand, we can turn our attention to the next two

equations, with C(3) and η̂(3) as our unknowns. Note that, unlike the supergravity case,

the order λ−
3
2 equations are linear in the unknowns. As before, we can verify that the

number of equations equals the number of unknowns, and as such this is a well defined

set of equations with a unique solution. In the following, we will first consider the singlet

channel and reveal a surprising simplicity in the first string corrections to the spectrum,

before generalising to all su(4) channels.

5.2.2 Singlet Channel Results

Let us start by describing the singlet channel solution to the above unmixing equations.

We obtain the necessary data, namely the log(u) part of the correlators H(1,3)
ppqq in the

singlet channel, from our new result (5.12). As expected, the conformal block decom-

position yields only spin 0 contributions. Solving the unmixing equations (5.17)-(5.18)

twist by twist, we find the surprisingly simple solution

η̂
(3)
[0,0,0] =

{
η

(3)
1 , 0, . . . , 0

}
, C(3)

[0,0,0] = 0, (5.19)

with η
(3)
1 being consistent with the formula

η
(3)
1 = − ζ3

840
(t− 1)2t3(t+ 1)4(t+ 2)3(t+ 3)2 · δ`,0. (5.20)

Some comments are in order:

• The leading 1/λ correction to the matrix of three-point functions C(3) is identically

zero. A priori, such a correction is not forbidden by consistency of the OPE and

its vanishing is a very non-trivial result.

• The pattern of anomalous dimensions turns out to be remarkably simple: only the

operators with degeneracy label i = 1 (note that r = 0 in the singlet channel)

receives a λ−
3
2 correction to its dimension, all other anomalous dimensions vanish.

This pattern follows from a ten-dimensional principle, which we will describe later

in Section 5.3.
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• For large t, the anomalous dimension has the asymptotic behaviour

η
(3)
1 → − ζ3

840
t14, (5.21)

a fact which will become important when comparing with the anomalous di-

mensions for other su(4) channels. Furthermore, η
(3)
1 has the discrete symmetry

t→ −t− 2, which we already observed in the supergravity anomalous dimensions.

• Lastly, together with the leading order three-point functions C(0)
[0,0,0], our result for

η̂
(3)
[0,0,0] correctly reproduces the averages of squared anomalous dimensions derived

in [120], see equation (3.11) therein.

5.2.3 General Solution for All su(4) Channels

The above singlet channel results can be straightforwardly generalised to all su(4) chan-

nels. First however, let us note a non-trivial fact about the H(1,3)
~p correlator from

equation (5.12): its dependence on the su(4) cross-ratios σ and τ , which is determined

entirely by the polynomial Bsugra
~p (σ, τ), is such that it has support only on channels of

the form [0, b, 0], i.e. all channels [a, b, a] with a > 0 are absent from H(1,3)
~p . As a direct

consequence, we therefore have

η̂
(3)
[a,b,a] = 0, C(3)

[a,b,a] = 0, for a > 0. (5.22)

For the remaining channels with a = 0, we repeat the computation described above and

find

η̂
(3)
[0,b,0] =

{
η

(3)
1,0 , 0, . . . , 0

}
, C(3)

[0,b,0] = 0, (5.23)

where only the first anomalous dimension with degeneracy labels (i, r) = (1, 0) is non-

zero, and we find it is consistent with the formula

η
(3)
1,0 = − ζ3

840
M

(4)
t M

(4)
t+1(t− 1)3(t+ b+ 1)3 · δ`,0, (5.24)

where we set a = 0 in M
(4)
t = (t − 1)(t + a)(t + a + b + 1)(t + 2a + b + 2), which is

the same factor as in the supergravity anomalous dimensions, and note that we observe

again the discrete symmetry t → −t − b − 2. The large t limit of the above anomalous

dimension is independent of the quantum number b,

η
(3)
1,0 → −

ζ3

840
t14, (5.25)

and thus necessarily matching the singlet channel value (5.21). The non-trivial vanishing

of the three-point functions C(3) together with the simple pattern of the string anomalous

dimensions, as well as the above matching of their large twist behaviour across different
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su(4) channels, motivates us to consider a ten-dimensional principle behind these simple

patterns which we discuss next.

5.3 Constraints from a New Ten-Dimensional Principle

In Section 3.4.5, we briefly reviewed the recently observed hidden ten-dimensional con-

formal symmetry of the supergravity correlators H(1,0)
~p , which coincidentally extends to

the λ−
3
2 correction in the form of equation (5.13). The discovery of this hidden sym-

metry in [112] was in part motivated by the following observation: the supergravity

anomalous dimensions η
(1,0)
pq and the partial-wave coefficients of the flat ten-dimensional

2 → 2 scattering amplitude of axi-dilatons in type IIB supergravity share a common

Pochhammer structure in their denominators:

1

(`10 + 1)6

∼ 1(
`+ 2(i+ r) + a− 1+(−1)a+`

2

)
6

, (5.26)

where the LHS depends on an effective ten-dimensional spin `10 = 0, 2, . . . and the RHS

is the denominator of the supergravity anomalous dimensions (4.53), which depends on

the usual four-dimensional spin `, the su(4) channel [a, b, a] and the degeneracy labels

(i, r), whose definition we repeat for convenience:

i = 1, . . . , t− 1, r = 0, . . . , µ− 1, µ =


⌊
b+2

2

⌋
a+ ` even,⌊

b+1
2

⌋
a+ ` odd.

(5.27)

The correspondence (5.26) assigns a value of the effective ten-dimensional spin `10 to

each long double-trace operator in the supergravity spectrum by the identification

`10 ≡ `+ 2(i+ r) + a− 1− 1 + (−1)a+`

2
. (5.28)

Note that in general this identification allows for many four-dimensional operators to

be assigned the same effective ten-dimensional spin `10. Heuristically, this observation

can be motivated as follows: in the ten-dimensional four-point correlator considered

in [112], the exchanged operators are built from a single ten-dimensional scalar field Φ

and are given by bilinears of the schematic form [Φ ∂`10 Φ]. As such, there is only one

primary operator for each even spin `10, which upon dimensional reduction results in

multiple four-dimensional double-trace operators descending from the same 10d primary.

Furthermore, their effective spin `10 is simply related to the number of derivatives in the

ten-dimensional theory.

Now consider the first string correction at order λ−
3
2 , for which we have computed the

spectrum of anomalous dimensions, with the result given in (5.23). Unexpectedly, we

found that only the first anomalous dimensions with degeneracy labels (i, r) = (1, 0) in



Chapter 5 Adding String Corrections to the Double-Trace Spectrum 65

channels [a, b, a] with a = 0 are non-vanishing. A neat interpretation of this result can

be given by the assignment of ten-dimensional spin: as the order λ−
3
2 string correction

descends from the R4 supervertex, its ten-dimensional partial-wave decomposition con-

tributes only to spin `10 = 0. Considering the identification (5.28), there is a unique

choice of the four-dimensional quantum numbers satisfying that equation, namely

`10 = 0 ⇒ (`, i, r, a) = (0, 1, 0, 0), (5.29)

which exactly coincides with our explicit results for the spectrum.

The heuristic assignment (5.28) thus seems to correctly give a prediction for which four-

dimensional double-trace operators acquire an anomalous dimension, depending on the

allowed ten-dimensional spin `10. Note that this interpretation is also consistent with

the supergravity case, where operators of any even spin `10 are exchanged. As such,

equation (5.28) does not give any restrictions on the four-dimensional quantum num-

bers (`, i, r, a), and indeed all operators are found to acquire a non-zero supergravity

anomalous dimension. On the other hand, by assuming this ten-dimensional interpre-

tation remains valid when considering further string corrections (which due to their

polynomial amplitudes yield only finite spin contributions to the partial-wave expan-

sion), we can deduce constraints on the spectrum of anomalous dimensions, as shown

above for the λ−
3
2 case.

As a second example, let us consider the next string correction at order λ−
5
2 . The

λ−
5
2 term descends from the ∂4R4 supervertex, allowing for ten-dimensional spins up to

`10 = 2. Using again the assignment (5.28), we find the allowed values

`10 = 2 ⇒ (`, i, r, a) = (2, 1, 0, 0), (1, 1, 0, 0), (1, 1, 0, 1),

(0, 2, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), (0, 1, 0, 2).
(5.30)

Together with the spin `10 = 0 contribution (5.29), we therefore expect the 8 states with

four-dimensional spins ` = 0, 1, 2 in the various channels [0, b, 0], [1, b, 1] and [2, b, 2] to

be the only non-vanishing contributions to the λ−
5
2 spectrum.

There is one further implication of the relation to 10 dimensions, which concerns the ob-

served coincidence of the large twist behaviour of the order λ−
3
2 anomalous dimensions,

recall equations (5.21) and (5.25). Note that for finite spin the large twist asymptotics

accesses the flat space limit, which can be understood from the inverse Mellin trans-

form (3.28): the flat space limit tells us to look at the large s, t behaviour, which in

particular translates into large powers of u in position space. Restricting ourselves to

finite spin contributions, we then see that large twist indeed corresponds to the flat space

limit. Schematically, for finite spin we thus have the correspondence

flat space limit ∼ large twist asymptotics. (5.31)
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Therefore, at a given order in the 1/λ expansion, we expect the same large twist asymp-

totics for all four-dimensional operators which descend from a common ten-dimensional

primary according to the identification (5.28), regardless of their four-dimensional quan-

tum numbers.

The above observations thus motivate the following general proposal:

• η(n)
pq = 0, for `10(p) > n− 3 , (5.32)

• η(n)
pq only depends on `10(p) in the limit t→∞ , (5.33)

• η
(n)
i=1,r=0 is polynomial in t of degree 8 + 2n , (5.34)

• C
(n)
pqKp̃q̃ = 0, for `10(p̃) > n− 3 . (5.35)

The first constraint (5.32) says that `10 dictates the non-zero contributions to η, and

generalises the conditions from examples (5.29) and (5.30). The second condition (5.33)

is related to the restoration of ten-dimensional Lorentz symmetry in the flat space limit

(corresponding to the limit t → ∞, as discussed above). Next, the condition (5.34)

is an assumption on the anomalous dimension in the case of no partial degeneracy.

Furthermore, we expect the polynomial to obey the discrete symmetry (4.55). Lastly,

the fourth condition (5.35) demands that the columns of C(n) corresponding to operators

with too high ten-dimensional spin vanish. Note that in the n = 3 case this implies

C(3) = 0, since the first unmixing equation (5.15) implies up to rescaling that C(0) is an

orthogonal matrix. Its first correction then leads to the equation

C(3)
(
C(0)

)T
+ C(0)

(
C(3)

)T
= 0, (5.36)

and therefore, after a change of basis, C(3) is antisymmetric. If all but the first column

vanishes then the whole matrix vanishes, in agreement with the explicit results described

before.

In the next section, we will consider the second string correction at order λ−
5
2 and

describe how the above constraints can be used to set up a bootstrap problem, allowing

us to solve for both the correlator and the spectrum of anomalous dimensions at the

same time.

5.4 Bootstrapping the Order λ−
5
2 String Correction

The second string correction at order λ−
5
2 descends from the ∂4R4 term in the string the-

ory effective action, and as such gives rise to exchanged operators up to ten-dimensional

spin `10 = 2. This is a particularly interesting case to study, as it allows us to address

the partial degeneracy of the supergravity anomalous dimensions: according to equa-
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tion (5.30), in su(4) channels of the form [0, b, 0] with b ≥ 2 we expect the (i, r) = (2, 0)

and (1, 1) anomalous dimensions to be non-zero, and the order λ−
5
2 string correction

will thus determine the resolution of the first case of partial degeneracy.

Compared to the λ−
3
2 correction however, the necessary tree-level correlatorsM(1,5)

~p are

not known for arbitrary external charges. Prior to our work, the only known correlators

were of the form 〈22pp〉 [100, 120], which is not enough to solve the full mixing problem

without further assumptions.4 We thus have to come up with a set of conditions which

allow us to determine both the correlator M(1,5)
~p and the corresponding spectrum of

anomalous dimensions η
(5)
pq . In the following, we will describe the bootstrap problem

and the conditions which achieve both of the above.

5.4.1 A Bootstrap Problem

Let us start with an ansatz for the general λ−
5
2 correlator in Mellin space. By using

the flat space limit of Section 5.1, we see that M(1,5)
~p is a degree two polynomial in the

Mellin variables and furthermore it determines the quadratic terms, such that we are

left with

M(1,5)
~p = ζ5

(
1
32(Σ− 1)5B

sugra
~p (σ, τ) (s2 + t2 + ũ2)

+ α~p (σ, τ) s+ β~p (σ, τ) t+ γ~p (σ, τ)
)
,

(5.37)

where the additional linear and constant contributions are left unspecified. The SCPW

coefficients M
(1,5)
~p of the above correlators are related to the spectrum of anomalous

dimensions through the unmixing equations, which in our matrix notation read

0 = C(0)
(
C(5)

)T
+ C(5)

(
C(0)

)T
, (5.38)

M̂(1,5) = C(0) η̂(5)
(
C(0)

)T
+ C(0) η̂(0)

(
C(5)

)T
+ C(5) η̂(0)

(
C(0)

)T
, (5.39)

exactly mirroring the order λ−
3
2 unmixing equations (5.17)-(5.18). Let us now spell out

the set of constraints we impose on the correlators M(1,5)
~p and the OPE data:5

• We make an ansatz with finitely many coefficients for each of the unknown func-

tions α~p (σ, τ), β~p (σ, τ) and γ~p (σ, τ), constrained by consistency with the known

〈22pp〉 results and crossing symmetry.

• On the OPE data, we impose the previously introduced conditions (5.32)-(5.35)

with n = 5, and hence the maximal ten-dimensional spin is `10 = 2.

4One can, however, solve the mixing problem in the singlet and [0, 1, 0] channel under the (erroneous)
assumption C(5) = 0, see Section 5 in reference [5]. This does not shed any light on the resolution of the
partial degeneracy, but allows one to correctly determine the 〈23p− 1p〉 family of correlators up to one
free parameter, despite the incorrect assumption C(5) = 0.

5For more details on the individual points, we refer the reader to [8].
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By imposing these two sets of conditions we find a unique consistent solution for the

Mellin amplitude and the spectrum. We emphasise that the existence of a solution

consistent with the ansatz for the Mellin amplitude, crossing symmetry and the spectrum

constraints is highly non-trivial. The final form of the coefficients α~p (σ, τ), β~p (σ, τ) and

γ~p (σ, τ) is not very illuminating and can be found in [8]. Instead, let us focus on the

spectrum of anomalous dimensions.

5.4.2 The Order λ−5
2 Anomalous Dimensions

According to condition (5.32) the anomalous dimensions η(5) are non-vanishing only for

`10 ≤ 2, constraining the possible values of their quantum numbers (`, i, r, a) as shown

in (5.30). In order to explicitly give the individual anomalous dimensions, we use the

notation η
(5)
i,r|`,a and we define the polynomial T as follows

Tt,`,a,b =
ζ5

166320
M

(4)
t M

(4)
t+`+1N

(3)
t N

(3)
−t−2a−b−`−2,

N
(3)
t = (t− 1)(t+ a)(t+ a+ b+ 1),

(5.40)

where M
(4)
t = (t − 1)(t + a)(t + a + b + 1)(t + 2a + b + 2) is the same factor as in the

numerator of the supergravity anomalous dimensions and note that Tt,`=0,a=0,b ∼ η
(3)
1,0,

see equation (5.24). For spin ` = 2 we must have i = 1, r = 0, a = 0 and we find

η
(5)
1,0|2,0 = Tt,2,0,b (t+ 1)(t+ 2)(t+ b+ 2)(t+ b+ 3). (5.41)

For spin ` = 1 we have i = 1, r = 0 with either a = 0 or a = 1:

η
(5)
1,0|1,0 = 1

2Tt,1,0,b (t+ 1)(t+ b+ 2)(2t(3 + b+ t) + b), (5.42)

η
(5)
1,0|1,1 = Tt,1,1,b t(t+ 2)(t+ b+ 3)(t+ b+ 5). (5.43)

The spin zero anomalous dimensions have support on a = 0, 1, 2. For a = 1, 2 we have

only i = 1 and r = 0:

η
(5)
1,0|0,1 = 1

2Tt,0,1,b t(t+ b+ 4)(2t2 + 2(4 + b)t+ b+ 6), (5.44)

η
(5)
1,0|0,2 = Tt,0,2,b t(1 + t)(5 + b+ t)(6 + b+ t). (5.45)

In all the above cases we have C(5) = 0. Finally, the case a = 0 allows for two or three

components depending on the values of t and b. Using the definition θ ≡ 2t+ 2 + b, the

i = 1 component reads

η
(5)
1,0|0,0 = 77

18Tt,0,0,b fb,t,

fb,t = 9
4(θ2 − b0)2 − 35(θ2 − b0)− 34b0 + 639,

(5.46)
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with b0 = b(b + 4). Lastly and most interestingly, we arrive at the first case of partial

degeneracy: the (i, r) = (2, 0) and (1, 1) components read

η
(5)
2,0|0,0 = 1

9Tt,0,0,b
(
jb,t − 10

√
kb,t
)
, η

(5)
1,1|0,0 = 1

9Tt,0,0,b
(
jb,t + 10

√
kb,t
)
, (5.47)

with the quartic polynomials jb,t and kb,t given by

jb,t = 1
4fb,t −

15
4 (θ2 + b0 + 21), kb,t = jb,t + (θ2 + b0)(θ2 + b0 − 10). (5.48)

Note that the residual partial degeneracy observed in supergravity is lifted by the square

root term, and in the ` = a = 0 case we have C(5) 6= 0.

5.4.3 Comments on the Resolution of Partial Degeneracy

The results of the previous section provide the full spectrum at order λ−
5
2 .6 In the

first case where residual degeneracy is present in the supergravity spectrum, the λ−
5
2

corrections resolve it. Due to the residual two-fold mixing problem, the appearance

of square roots in the anomalous dimension is to be expected; this did not happen in

supergravity due to the hidden ten-dimensional conformal symmetry. However, in some

special cases the square roots in (5.47) have to disappear:

• When t = 2, there is no degeneracy and only two states acquire an anomalous

dimension. The above results for the two degenerate anomalous dimensions are

consistent with this, since kb,2 = j2
b,2/100 such that η

(5)
2,0|0,0 vanishes and η

(5)
1,1|0,0

becomes rational.

• When b = 0 or b = 1, there is no degeneracy for any t (since µ = 1 in (5.27) for

those cases) and the square roots disappear again.

• In the flat space limit t→∞ the square root terms are suppressed and degeneracy

is restored, respecting the ten-dimensional Lorentz symmetry.

The disappearance of the square roots in these cases is a strong check of the consistency

of the solution. Finally, all the anomalous dimensions have some shared features.

• When expressed in terms of the twist τ (or θ = 2t + 2a + b + ` + 2) instead of

t, they really depend on the su(4) labels only through the Casimir combination

ba = b(b+ 4 + 2a).

• They enjoy the discrete supergravity symmetry t → −t − ` − 2a − b − 2: this in

turns means that all the quartic polynomials f , j and k are actually quadratic in

6Note that the anomalous dimensions given here differ from those conjectured in [5], since we have
found here that C(5) 6= 0 in general.
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θ2. We partly imposed this property as a part of condition (5.34), but in many

examples it was found to follow from the other assumptions.

5.5 Conclusions

In the last two chapters, we have presented a detailed analysis of the double-trace spec-

trum of N = 4 SYM theory in the supergravity limit. Firstly, we have shown that the

known tree-level supergravity results contain all the necessary information to resolve

the degeneracy of the double-trace operators in the large N limit. Our results for the

leading order OPE coefficients are surprisingly simple, and we find it remarkable that

the result for all supergravity anomalous dimensions admits such a simple and fully

factorised formula as (4.53). Furthermore, the fact that the orthogonal C̃ matrices of

the universal structure (4.45) exist is surprising, considering that modifications of the

square root factors typically lead to no orthogonal solutions at all.

Secondly, we have found a surprisingly simple structure in the string corrections to the

double-trace spectrum at orders λ−
3
2 and λ−

5
2 , which is related to an effective ten-

dimensional spin `10. At order λ−
3
2 , the flat space limit completely determines the

correlators H(1,3)
~p for all external charges, and we observed that the ten-dimensional

conformal symmetry extends to the first string correction. Furthermore, we have found

that only anomalous dimensions with `10 = 0 are non-zero, and as a consequence the

string corrected three-point functions vanish identically, i.e. C(3) = 0. On the other

hand, the order λ−
5
2 correction allows for ten-dimensional spins up to `10 = 2, allowing

for a richer spectrum. Nevertheless, we were able to set up a bootstrap problem which

determines both the correlator H(1,5)
~p and the spectrum of anomalous dimensions at the

same time. It turns out that C(5) is non-vanishing in general, and more importantly we

have found that the residual degeneracy in the supergravity spectrum is resolved by the

order λ−
5
2 correction, thus explicitly breaking the ten-dimensional conformal symmetry.

Notably, in the large twist limit (corresponding to the flat space limit), the anomalous

dimensions recombine such that degeneracy and ten-dimensional Lorentz symmetry is

restored. The explicit formulae for the order λ−
3
2 and λ−

5
2 anomalous dimensions derived

here will enter the computation of string corrections to one-loop correlators described

in Section 7.

We believe that the methods for bootstrapping string-corrected tree-level correlators

described here will continue to be effective at higher orders in 1/λ, with the next case

being the order λ−3 correction. However, one caveat is the number of free parameters

which grows with the order in 1/λ, as higher order Mellin polynomials (corresponding

to a larger effective spin `10) are allowed in the ansatz for the Mellin amplitude. In

particular, there will be a growing number of undetermined coefficients which are left

unfixed by the bootstrap constraints (5.32)-(5.35). Although these coefficients are pro-
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portional to previously found solutions to the bootstrap problem and thus correspond

to known amplitudes from lower orders in the 1/λ expansion, we nevertheless can not

independently fix their values. For example, there are two such free parameters in the

order λ−
5
2 amplitude: one corresponding to a constant Mellin amplitude (i.e. the order

λ−
3
2 result), the other one corresponding to a linear Mellin amplitude (this would be

the order λ−2 amplitude, which however comes with coefficient zero in the expansion

of the Virasoro-Shapiro amplitude, see equation (5.8)). One method of fixing those two

remaining parameters is to make use of the constraints obtained by supersymmetric

localisation techniques in [100, 104, 105]. These localisation results can in principle be

expanded to any order in 1/λ, but they will provide only a finite number of constraints.

A naive counting reveals that there are enough independent constraints to go at least

two orders further in the 1/λ expansion than the results presented in this thesis. We

hope that our future investigations will bring us a step closer towards the ultimate goal

of our tree-level bootstrap program: the construction of the analogue of the Virasoro-

Shapiro amplitude (5.7) on a curved background, i.e. the full tree-level amplitude of

type IIB superstring theory on AdS5×S5.

It would also be fascinating if the results for the double-trace spectrum at strong coupling

discussed here could be compared with the corresponding results obtained in perturba-

tion theory. There has been a lot of progress in pushing the weak coupling results to

finite values of the coupling using methods based on integrability [123–127], but there

is a conceptual obstacle which prevents the direct comparison of results: the spectrum

of exchanged operators at finite coupling is much richer than in the supergravity limit

studied here. In particular, there are unprotected single-trace operators (corresponding

to excited string states which decouple in the supergravity limit) which are also present

in the spectrum and mix with the familiar double-trace operators. As such, one would

require additional information in the form of correlators with more general external oper-

ators to solve the mixing problem. Nevertheless, from the structure of string corrections

to the double-trace spectrum discussed in this chapter, we expect that for finite values

of the coupling λ the residual degeneracy of the supergravity anomalous dimensions will

be completely lifted.

Finally, while we have focussed on N = 4 SYM theory here, the phenomenon of large

N degeneracy and the associated problem of operator mixing is presumably common

to many holographic theories. Essentially, the mixing problem arises because of the

presence of a compact factor in the gravity background (here given by S5), which leads

to a tower of Kaluza-Klein modes related to the massless graviton multiplet. For fixed

twist and spin, one will then typically have many double-trace operators with equal

classical dimensions, which generically will mix. It would be interesting to consider

both other models and the generic structure of the spectrum of large N CFTs further.
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Chapter 6

One-loop Correlators in

Supergravity

This third part is devoted to the construction of order 1/N4 corrections, corresponding

to one-loop amplitudes in AdS, using information from the tree-level data we discussed

previously. In this chapter we will focus on one-loop supergravity correlators, leaving

the discussion of one-loop string corrections for the final chapter. Our approach will

solely rely on implementing the consistency of the SCPW decomposition to order 1/N4,

and as such our results are naturally written in their position space representation. A

complementary approach using the Mellin space formalism has recently been employed

to obtain the Mellin amplitudes for the one-loop 〈2222〉 correlator [128, 129], and a first

generalisation to the 〈22pp〉 family of correlators [95]. In contrast, we will describe an

algorithm which solves the analytic bootstrap program for one-loop supergravity corre-

lators of generic external single-particle Kaluza-Klein states. Compared to correlators

with two graviton multiplets as external states, which receive contributions from a re-

stricted set of exchanged operators and thus are of some physical simplicity, considering

the general case presents a network of new complications which we will address in the

following.

6.1 General Outline

Let us recall the result of the partial non-renormalisation theorem, which restricts the

general four-point correlator to take the form

〈p1p2p3p4〉 = 〈p1p2p3p4〉free + P~p I(x, x̄, y, ȳ) H~p (u, v;σ, τ ;λ), (6.1)

where, contrary to the free theory, the interacting (dynamical) part H~p depends both

on N and the ’t Hooft coupling λ. In this chapter, we will focus solely on the order zero

75
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terms in the 1/λ strong coupling expansion, and hence we drop the λ dependence for

now.

In Section 2.5 and together with Appendix B, we studied the SCPW decomposition of

the free theory. In particular, we split the free theory correlator 〈p1p2p3p4〉free into a

part with only (semi-)short contributions to the SCPW expansion, and a part with only

long contributions which we denoted by 〈p1p2p3p4〉free long, see equation (2.40). We will

now incorporate the dynamical part H~p and specialise to the long sector. It will be

convenient to distinguish the two 1/N expansions,

〈p1p2p3p4〉free long = 〈p1p2p3p4〉(0)
free long +

1

N2
〈p1p2p3p4〉(1)

free long + . . . ,

H~p =
1

N2
H(1)
~p +

1

N4
H(2)
~p + . . . ,

(6.2)

where for general external charges we choose the expansion parameter to be 1/N2 instead

of the previously introduced a = 1/(N2 − 1).1 The notation we will use to refer to the

SCPW expansion of the long sector of 〈p1p2p3p4〉 (i.e. the long sector of the free theory

together with the dynamical part), up to order 1/N4, is

〈p1p2p3p4〉
∣∣
long

= log0(u)
∑
~τ

(
L

(0)
~p;~τ +

1

N2
L

(1)
~p;~τ +

1

N4
L

(2)
~p;~τ

)
L~p;~τ + . . . (6.3)

+ log1(u)
∑
~τ

(
1

N2
M

(1)
~p;~τ +

1

N4
M

(2)
~p;~τ

)
L~p;~τ + . . . (6.4)

+ log2(u)
∑
~τ

(
1

N4
N

(2)
~p;~τ

)
L~p;~τ , (6.5)

where the ellipses stand for omitted terms with τ -derivatives of the blocks, which are not

important for our purpose here. In the above equations we clustered together various

contributions within each log(u) stratum, and we did not specify the ranges of summa-

tion. In fact, understanding the precise ranges of summation for different contributions

needs extra explanations, which we will provide shortly.

First however, note that the log(u) and log2(u) terms receive contributions only from

the dynamical function H~p, whereas the non-log projection (6.3) is subject to non-trivial

interplay between the free theory and the dynamical part, since beyond leading order

both contribute to the 1/N expansion:

L
(0)
~p;~τ = L

f(0)
~p;~τ ,

L
(i)
~p;~τ = L

f(i)
~p;~τ + L

H(i)
~p;~τ , for i ≥ 1.

(6.6)

The SCPW coefficients in equations (6.3)-(6.5) are predicted by the OPE, and in par-

ticular they depend on the spectrum of exchanged operators. As discussed in detail in

1For correlators of the form 〈22pp〉, we will however still use a as the expansion parameter, since with

this choice the free theory correlator contributes only to the first two orders in a, i.e. 〈22pp〉(2)
free long = 0.
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Above

Threshold

Window

Below

Window

τ=2a+b+2

τ=2a+b+4

τ=p3+p4

τ=p1+p2

τ=τmin

τ=τmax

O(N0)

O(1/N2)

Cp1p2;~τ =

O(N0)

O(1/N2)

= Cp3p4;~τ

Figure 6.1: The large N structure of Cp1p2;~τ Cp3p4;~τ for two-particle operators Kpq in an su(4)
representation [a, b, a] and varying twist τ .

previous chapters, the supergravity spectrum consists of the single-particle states Op
and multi-particle states built from products of the single-particle ones. Importantly,

multi-particle operators corresponding to bound states of more than two particles do not

have leading order three-point functions with the external operators, and therefore do

not appear in the OPE at leading order. In other words, only the three-point couplings

CpipjKpq , where Kpq denotes the set of true two-particle scaling eigenstates introduced in

Section 3.3.2, have a leading contribution in the large N expansion. Since the operators

Kpq with leading order quantum numbers ~τ0 = (τ0, `, [a, b, a]) are mixtures containing

some contribution from every double-trace operator Opq;~τ , they will have leading order

three-point couplings at twist τ ≥ pi + pj . On the other hand, exchanged two-particle

operators with twist in the range 2a + b + 2 ≤ τ < pi + pj do not receive any contri-

bution of the form Opipj ;~τ , and therefore necessarily have 1/N2 suppressed three-point

couplings, i.e.

CpipjKpq = C
(0)
pipjKpq +

1

N2
C

(1)
pipjKpq + . . . , (6.7)

with C
(0)
pipjKpq 6= 0 only for τ ≥ pi + pj . Note again that we have disregarded any 1/λ

terms in the above expansion.

The exchange of two-particle operators in the common OPE of a four-point correlator

〈p1p2p3p4〉 gives a contribution of the form Cp1p2;~τ × Cp3p4;~τ , for different values of the

quantum numbers ~τ . Putting together two of these, we obtain a representation of the

common OPE coefficient as in Figure 6.1, leading to the following three regions:

• Above Threshold: for τ ≥ τmax ≡ max{p1 + p2, p3 + p4}, we find exchanged

operators for which both three-point couplings are leading order, i.e. C
(0)
p1p2 and

C
(0)
p3p4 are both non-zero. In particular, τmax is the threshold twist for the exchange

of long two-particle operators in disconnected free theory, giving rise to L
(0)
~p;~τ in

equation (6.3).
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• Window: in the window region τmax > τ ≥ τmin ≡ min{p1 + p2, p3 + p4}, we find

exchanged operators which have leading order three-point couplings with one pair

of external operators, but 1/N2 suppressed three-point couplings with the other

pair of external operators, e.g. we have C
(0)
p1p2 = 0 but C

(0)
p3p4 non-zero.

• Below Window: in the below-window region τ < τmin we have C
(0)
p1p2 = C

(0)
p3p4 = 0

and the OPE contains contributions which only involve products of 1/N2 sup-

pressed three-point couplings. These contributions give rise to a genuine 1/N4

effect which enters the SCPW coefficients L
(2)
~p;~τ in equation (6.3).

Note that for any arrangement of external charges, there is always a threshold twist such

that a tower of long operators is exchanged, whereas the window itself might be empty

(if τmin = τmax). Similarly, the location of the unitarity bound in Figure 6.1 depends

on the external charges. Generically, the unitarity bound τ = 2a + b + 2 is below the

window, but there are two other situations which do occur. Firstly, the unitarity bound

can coincide with τmin, i.e τmin = 2a + b + 2, in which case there is no below window

region. Secondly, the unitarity bound can coincide with τmax, in which case there is an

empty window and τmax = τmin = 2a+ b+ 2.

With the above discussion in mind, let us revisit the log(u)-stratification from equa-

tions (6.3)-(6.5). The OPE predicts the following form of the SCPW coefficients for the

indicated ranges of the twist of exchanged operators:

τ ≥ τmax : L
(0)
~p;~τ =

∑
(pq)∈R~τ

C
(0)
p1p2KpqC

(0)
p3p4Kpq , (6.8)

M
(1)
~p;~τ = 1

2

∑
(pq)∈R~τ

C
(0)
p1p2Kpq ηKpq C

(0)
p3p4Kpq , (6.9)

N
(2)
~p;~τ = 1

8

∑
(pq)∈R~τ

C
(0)
p1p2Kpq η

2
Kpq C

(0)
p3p4Kpq , (6.10)

τmax > τ ≥ τmin : L
(1)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2KpqC

(0)
p3p4Kpq + C

(0)
p1p2KpqC

(1)
p3p4Kpq , (6.11)

M
(2)
~p;~τ = 1

2

∑
(pq)∈R~τ

C
(1)
p1p2Kpq ηKpq C

(0)
p3p4Kpq + C

(0)
p1p2Kpq ηKpq C

(1)
p3p4Kpq ,

(6.12)

τ < τmin : L
(2)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2KpqC

(1)
p3p4Kpq , (6.13)

where the set of exchanged double-trace operators R~τ has been defined in (3.18), and

ηKpq = 2η
(1,0)
pq is the supergravity anomalous dimension derived in Chapter 4, see (4.53).

Our next task is to leverage data coming from the known tree-level four-point functions,

specifically the SCPW coefficients L(0), L(1) and M (1), in order to obtain information

about the one-loop four-point function, in particular the entire double-log discontinuity,
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N (2), but also pieces of the single-log part M (2) and analytic part L(2).2 In order to

have better control over the various phenomena taking place in equations (6.8)-(6.13),

let us recall the three regions shown pictorially in Figure 6.1:

• Above Threshold: the leading-log SCPW coefficients L(0), M (1) and N (2) have

contributions above the threshold only. Similarly to the unmixing of the super-

gravity anomalous dimensions discussed in Chapter 4, we will use the knowledge of

L(0) and M (1) from many different correlators to bootstrap the double-log contri-

butions N (2). However, it is important to point out that for general correlators the

knowledge of the double-log alone is not sufficient to fully determine the one-loop

correlator consistently, since there are non-trivial parts of the correlator which will

have to be determined by data below the threshold.

• Window: the significance of this region is that the leading order three-point func-

tions are vanishing on one side, but not on the other. This allows us to use the

tree-level SCPW coefficients L(1) to predict a part of the single-log contributions

M (2).

• Below Window: in this range of twists one can predict a piece of the analytic or

non-log(u) contribution to the one-loop correlator. Again, we will use lower order

data, specifically results from L(1) from many correlators, to determine the below

window contributions L(2).

The precise details on how to obtain these predictions will be described in the following.

6.2 Predicting the One-Loop Double-Log

Let us begin with the log2(u) discontinuity. Because of the mixing of exchanged double-

trace operators we will again need data from many different correlators, whose SCPW

coefficients we will conveniently package into matrices. To this end, we will adopt a

similar matrix notation as in Section 4.4, where hatted quantities stand for matrices of

SCPW coefficients from correlators 〈p1p2p3p4〉 with (p1, p2) and (p3, p4) ∈ R~τ . Recall

that the set of exchanged operators Kpq is parametrised by pairs (p, q) in the set R~τ ,

defined previously in (4.46), and its dimension is d = µ(t−1). Promoting equation (6.8)

into matrix notation, we have

L̂
(0)
~τ = C(0)

~τ

(
C(0)
~τ

)T
, (6.14)

2Note that correlators with general external charges will generically get contributions from su(4)
channels [a, b, a] with b ≥ 2, where the supergravity anomalous dimensions ηKpq exhibit a residual
degeneracy. This degeneracy means it is not possible to fully unmix and determine all leading order
three-point functions in those channels. Nevertheless, it is possible to overcome this problem and we
will discuss how to bootstrap one-loop data from tree-level correlators even in su(4) channels with a
remaining partial degeneracy.
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where C(0)
~τ is the d × d matrix of leading order three-point functions C

(0)
p1p2Kp3p4

with

both (p1, p2) and (p3, p4) ∈ R~τ . Furthermore, the matrix of SCPW coefficients L̂
(0)
~τ is

diagonal and explicitly given by formula (4.49). Similarly, converting equation (6.9) into

matrix notation yields

M̂
(1)
~τ = 1

2 C(0)
~τ η̂~τ

(
C(0)
~τ

)T
, (6.15)

with η̂~τ being the (diagonal) matrix of supergravity anomalous dimensions. Using this

matrix form it is now straightforward to see that the SCPW coefficients contributing to

the log2(u) discontinuity at one-loop are given by

N̂
(2)
~τ = 1

8 C(0)
~τ η̂ 2

~τ

(
C(0)
~τ

)T
= 1

2 M̂
(1)
~τ

(
L̂

(0)
~τ

)−1
M̂

(1)
~τ ,

(6.16)

where the second equality follows from equations (6.14) and (6.15), allowing us to predict

the one-loop leading-log coefficients N
(2)
~τ from tree-level data only. Note that the above

formula does not require us to explicitly find the anomalous dimensions η̂~τ nor the three-

point functions C(0)
~τ themselves. This fact is important as it allows us to deal with su(4)

channels in which the anomalous dimensions remain partially degenerate, in which case

the matrices C(0)
~τ are not fully determined.

Once the coefficient matrices N̂
(2)
~τ are assembled using formula (6.16), we can simply

extract the entry corresponding to the 〈p1p2p3p4〉 correlator and obtain the full one-loop

double-log discontinuity by performing the sum

H(2)
~p

∣∣
log2(u)

=
∑
~τ

N
(2)
~p;~τ L̃~p;~τ , (6.17)

with the sum restricted to twists τ ≥ τmax, and we recall that the long blocks take the

form L~p;~τ = P~p×I × L̃~p;~τ , see (2.33). By explicit computation of (6.17) to high order in

the twist we obtained the resummation of the leading-log discontinuity in a number of

cases. It turns out that, as a function of the external charges, it always has the structure

H(2)
~p

∣∣
log2(u)

=
P2,1(x, x̄;σ, τ)

(x− x̄)d~p+8

[
Li2(x)− Li2(x̄)

]
+
P1,2(x, x;σ, τ)

(x− x̄)d~p+8

[
Li21(x)− Li21(x̄)

]
+
P1,−(x, x̄;σ, τ)

(x− x̄)d~p+8

[
Li1(x)− Li1(x̄)

]
+
P1,+(x, x̄;σ, τ)

(x− x̄)d~p+7
log(v)

+
P0(x, x̄;σ, τ)

(x− x̄)d~p+7

1

vκ~p−2 ,

(6.18)

where κ~p is the degree of extremality defined in equation (3.13), d~p is given by

d~p ≡ p1 + p2 + p3 + p4 − 1, (6.19)

and the coefficient functions P in the above are certain polynomials depending implicitly
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on the set of external charges ~p . These polynomials are obtained by matching the series

expansion in small x and x̄ of (6.18) against the sum over long blocks in formula (6.17),

where each conformal block (of twist τ and spin `) has a series expansion of the form

uτ (1 − v)`f(x, x̄), with f(x, x̄) being a symmetric function. We call an expression of

the form (6.18) a two-variable resummation. Since the log2(u) discontinuity only re-

ceives contributions from long operators above the threshold twist τ ≥ τmax, we expect

H(2)
~p

∣∣
log2(u)

to go like u(τmax−p43)/2 for small u.

Finally, let us mention that there is another way to directly obtain the double-log dis-

continuity of H(2)
~p , without the need to perform the two-variable resummation described

above. In fact, by exploiting the hidden ten-dimensional symmetry of [112] one can

find an explicit formula for the one-loop leading discontinuities by making use of the

differential operators D̂~p . We have checked for many cases that the results obtained

from these two different methods agree. More details and explicit formulae for this very

neat alternative way can be found in e.g. [6, 112].

6.3 The 〈2222〉 Correlator

Before continuing the general discussion of the window and below window contributions,

let us consider a first explicit example. In this section, we will consider the 〈2222〉
correlator, which is of particular physical significance and is the simplest correlator to

study. It has degree of extremality κ2222 = 2, and as such its interacting part H2222 has

only one su(4) channel, namely the singlet channel. As a consequence, H2222 does not

depend on the internal su(4) cross-ratios, and furthermore the full crossing symmetry

of the correlator implies the relations

H2222(u, v) =
1

v2
H2222(u/v, 1/v) =

u2

v2
H2222(v, u). (6.20)

In the following, we will discuss how the knowledge of the log2(u) part together with

constraints from the above crossing relations and the absence of unphysical poles allows

us to determine the one-loop contribution H(2)
2222.

6.3.1 Resummation of the log2(u) Discontinuity

By explicitly assembling the SCPW coefficients of the log2(u) discontinuity according

to equation (6.16) and performing the two-variable resummation of the sum (6.17), we

obtain

H(2)
2222

∣∣
log2(u)

=
u

v

[
p(u, v)

Li1(x)2 − Li1(x̄)2

x− x̄
+ 2

[
p(u, v) + p

(
1

v
,
u

v

)]
Li2(x)− Li2(x̄)

x− x̄

+ q(u, v)(Li1(x) + Li1(x̄)) + r(u, v)
Li1(x)− Li1(x̄)

x− x̄
+ s(u, v)

]
. (6.21)
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where p, q, r, s are rational functions of u, v with denominator (x− x̄)14. Note that the

above expression agrees with the general form given in equation (6.18). This double

discontinuity was also obtained in references [130, 131].

The coefficient function p is symmetric p(u, v) = p(v, u) as required by crossing since

the double discontinuity in both u and v comes only from the first term in (6.21) which

contributes p(u, v) log2 u log2 v and hence must be symmetric in u and v. As we will see,

the fact that the coefficient of the Li2 term is related simply to the same function p(u, v)

is a hint at an additional simplicity in the final amplitude. It is possible to write the

coefficient p(u, v) in quite a simple form,

p(u, v) = 96uv∂2
x∂

2
x̄

[
u2v2(1− u− v)[(1− u− v)4 + 20uv(1− u− v)2 + 30u2v2]

(x− x̄)10

]
,

(6.22)

whereas the other coefficients are more complicated and we will not give their explicit

expressions. Instead, we will proceed to construct a fully crossing symmetric function

H(2)
2222(u, v) with the correct log2(u) discontinuity. The remaining coefficients in (6.21)

can then be obtained from the full function by taking the double discontinuity.

6.3.2 Completion to a Crossing Symmetric Amplitude

Having obtained the double discontinuity from resumming the OPE, we make an ansatz

for the form of the full crossing invariant contribution to supergravity at one loop. In

order to construct a suitable ansatz we note that the tree-level supergravity function

H(1)
2222(u, v) is expressible in terms of a D-function, which itself is a particular combi-

nation of derivatives acting on the one-loop box function Φ(1)(u, v). This means that

it is expressible as a combination of single-valued polylogarithms of weights 2, 1 and 0

with rational functions of x and x̄ as coefficients. The particular class of single-valued

polylogarithms of interest here are linear combinations of polylogarithms constructed on

the singularities (or ‘letters’) {x, 1−x, x̄, 1− x̄} such that they are single-valued when x̄

is taken to be the complex conjugate of x. They are constructed in general in [132] and

appear in many contexts, such as in perturbative contributions to the correlation func-

tions 〈p1p2p3p4〉 [33, 35], in multi-Regge kinematics of scattering amplitudes [133, 134]

as well as Feynman integral calculations [135, 136].

Since our result for the double discontinuity H(2)
2222

∣∣
log2(u)

is expressible in terms of log-

arithms and dilogarithms, it seems a natural choice to construct an ansatz for the full

function H(2)
2222(u, v) from the same class of single-valued polylogarithms, but this time

of weights 4, 3, 2, 1 and 0 with rational functions as their coefficients. We then impose

crossing symmetry and the fact that the double discontinuity must match our result

given in equation (6.21).
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The constraints described in the previous paragraph fix completely the weight 4 and

weight 3 parts of the result with rational coefficients which are determined by the coeffi-

cients appearing in H(2)
2222

∣∣
log2(u)

. On the other hand, the weight 2, 1 and 0 parts are not

fixed completely by matching to the double discontinuity. Since the double discontinuity

has a total of 15 powers of (x− x̄) in the denominator, so do the rational coefficients in

the weight 4 and weight 3 parts. This leaves the possibility that the resulting function

has unphysical poles at x = x̄. In order to make sure that poles at x = x̄ are in fact

absent, we have to arrange the weight 2, 1 and 0 parts so that they cancel those of

the weight 4 and weight 3 pieces. We then allow a maximum of 15 powers of (x − x̄)

in the denominators of the coefficients of the weight 2, 1 and 0 parts of the ansatz to

match the denominators in the weight 4 and weight 3 parts and demand that all poles

at x = x̄ cancel. We also demand that the twist-two sector is completely absent from

H(2)
2222(u, v).3 These constraints completely fix the answer within our ansatz up to a

single free coefficient.

We find that we can express the final crossing symmetric result in terms of the so-

called ladder integrals [137, 138]. These are a particular subset of the single-valued

polylogarithms under consideration here. They are given by

Φ(l)(u, v) = − 1

x− x̄
φ(l)

(
x

x− 1
,

x̄

x̄− 1

)
, (6.23)

where

φ(l)(x, x̄) =
l∑

r=0

(−1)r
(2l − r)!
r!(l − r)!l!

logr(xx̄)
(
Li2l−r(x)− Li2l−r(x̄)

)
. (6.24)

The functions Φ(l) obey the symmetry

Φ(l)(u, v) = Φ(l)(v, u), (6.25)

while Φ(1) also obeys

1

u
Φ(1)

(
1

u
,
v

u

)
= Φ(1)(u, v). (6.26)

Our final result for the one-loop correction contains a single unfixed parameter within

the ansatz outlined above. We first quote a particular solution where we set the free

parameter α to zero, and we will come back to the ambiguity later. Our particular

solution is given by the crossing symmetric combination

H(2)
2222(u, v) =

u

v

[
f(u, v) +

1

u
f

(
1

u
,
v

u

)
+

1

v
f

(
1

v
,
u

v

)]
. (6.27)

3Recall that the twist-two long operators are absent from the supergravity spectrum and the cancella-
tion of such contributions between 〈2222〉(1)

free and 〈2222〉(1)
int is complete due to the choice of a = 1/(N2−1)

as our expansion parameter. Therefore there should be no twist-two contributions in H(2)
2222.
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To simplify the presentation of the function f(u, v) we write

f(u, v) = ∆(4)g(u, v) , ∆(4) = (x− x̄)−1uv∂2
x∂

2
x̄(x− x̄) . (6.28)

Furthermore we can decompose the function g into pieces according to the transcendental

weight of the polylogarithmic contributions

g = (x− x̄)−10[g(4) + g(3) + g(2) + g(1) + g(0)] . (6.29)

The pieces of given weight are then as follows,

g(4)(u, v) = P
(4)
− (u, v)Φ(2)(u, v),

g(3)(u, v) = P
(3)
+ (u, v)Ψ(u, v) + P

(3)
− (u, v) log(uv)Φ(1)(u, v),

g(2)(u, v) = P
(2)
+ (u, v) log u log v + P

(2)
− (u, v)Φ(1)(u, v),

g(1)(u, v) = P
(1)
+ (u, v) log(uv),

g(0)(u, v) = P
(0)
+ (u, v),

(6.30)

where the function Ψ(u, v) is a particular derivative of the two-loop ladder integral:

Ψ(u, v) = (x− x̄)(u∂u + v∂v)
[
(x− x̄)Φ(2)(u, v)

]
= [x(1− x)∂x − x̄(1− x̄)∂x̄]φ(2)

(
x

x− 1
,

x̄

x̄− 1

)
.

(6.31)

The coefficients P
(r)
± (u, v) in (6.30) are symmetric polynomials in u and v. The subscripts

± correspond to the symmetry properties under x ↔ x̄ of the pure transcendental

factor that each coefficient P (r) multiplies (antisymmetric for the ladder functions and

symmetric for constants, for logarithms of u and v and for Ψ(u, v)). Note that the

weight four piece is entirely expressible in terms of Φ(2)(u, v), whose transcendental part

is antisymmetric in x and x̄. In principle there could have been a symmetric part, e.g.

Φ(1)(u, v)2, but in fact our function does not have such a contribution. The fact that

the weight four piece is given by Φ(2)(u, v) only implies the relationship between the

coefficients of the Li2 terms and the Li21 terms in the double discontinuity (6.21).

To express the coefficient polynomials it is helpful to introduce symmetric variables

s̄ = 1− u− v, p = uv. (6.32)

The coefficient polynomials are then given by

P
(4)
− (u, v) = 384p2s̄[s̄4 + 20ps̄2 + 30p2] , (6.33)

P
(3)
+ (u, v) =

32

5
p2[137s̄4 + 1214ps̄2 + 512p2] , (6.34)

P
(3)
− (u, v) = 1344p2[s̄(1− s̄)(6− 6s̄+ s̄2) + 2p(3− 14s̄+ 4s̄2)− 16p2] , (6.35)
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P
(2)
+ (u, v) = 8[(1− s̄)2s̄6 − 2ps̄4(20− 33s̄+ 14s̄2)

+ 8p2(756− 1323s̄+ 601s̄2 − 54s̄3 + 30s̄4) (6.36)

− 32p3(583− 25s̄+ 26s̄2) + 1024p4] ,

P
(2)
− (u, v) = 224p2[−s̄2(2− s̄)(18− 18s̄+ 5s̄2)

+ 2p(108− 144s̄+ 128s̄2 − 11s̄3)− 8p2(63− s̄)] , (6.37)

P
(1)
+ (u, v) =

4

3
[5s̄7(2− 3s̄)− 2ps̄5(158− 193s̄)

+ 16p2s̄(378− 567s̄+ 233s̄2 − 147s̄3) (6.38)

+ 32p3(378− 139s̄+ 129s̄2) + 256p4] ,

P
(0)
+ (u, v) =

8

15
(x− x̄)2[20(1− s̄)s̄6 − 5ps̄4(102− 75s̄− 4s̄2)

+ 8p2(630− 630s̄+ 481s̄2 − 255s̄3 − 30s̄4) (6.39)

− 16p3(217− 215s̄− 60s̄2)− 1280p4] .

The terms involving P
(4)
− , P

(3)
± , P

(2)
+ contribute to the double discontinuity and therefore

the coefficients are related to those appearing in (6.21). In particular we have

p(u, v) =
1

4
(x− x̄)∆(4)

[
P

(4)
− (u, v)

(x− x̄)11

]
. (6.40)

The ambiguity in the result is much simpler. In fact all terms proportional to the single

free parameter α can be expressed in a similar way to the tree-level amplitude,

α
u

v
[(1 + u∂u + v∂v)u∂uv∂v]

2Φ(1)(u, v) . (6.41)

At this stage our solution is given by the particular solution H(2)
2222(u, v), as described in

equations (6.27)-(6.39), plus the ambiguity in equation (6.41) above. When written out

in terms of single-valued polylogarithms with rational coefficients, the above ambiguity

has 13 powers of (x− x̄) in the denominator. In terms of D-functions it can be expressed

as u4D4444. Note that the ambiguity (6.41) has no double discontinuity, has no unphys-

ical poles, is fully crossing symmetric and has no twist-two contribution. As such, our

bootstrap approach is not able to fix its coefficient α and we need to rely on different

methods to determine it. One such method is given by supersymmetric localisation,

which (in the conventions used here) determines the value of α to be [104]

α = 60. (6.42)

In principle there are further ambiguities we could add within the class of single-valued

polylogarithms multiplied by rational functions. However, these all have higher powers

of (x − x̄) in the denominator than the 15 we allowed above and they correspond to

crossing symmetric D-functions with higher weights. Indeed such functions have arisen

in the context of tree-level string corrections, see e.g. [5, 77, 100, 120].
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We should sound a note of caution that what we have presented is not strictly a derivation

of the one-loop correction. It is possible that the true answer differs from the expression

we have constructed above by a function that itself has no double discontinuity, no

unphysical poles, no twist-two sector and is fully crossing symmetric on its own. Finally,

it is also possible that there are functions which do not sit in the class of single-valued

polylogarithms that we have allowed. However, it is highly non-trivial that we are able

to find a solution, unique up to a single free parameter within the simplest class of

functions we are led to consider, and we take this as a very strong encouragement that

our amplitude is in fact correct.

6.4 The 〈2233〉 Correlator

The next simplest case to consider is the one-loop correction to the 〈2233〉 correlator.

As before, its degree of extremality is 2 and there is only a single su(4) channel to

consider. On the other hand, this correlator does not have full crossing symmetry as in

the previous case, and we will have to consider its two orientations 〈2233〉 and 〈2323〉.
The remaining crossing symmetries read

H2233(u, v) =
1

v2
H2233(u/v, 1/v), H2323(u, v) =

u2

v2
H2323(v, u), (6.43)

and the two orientations are related via

H2233(u, v) = H2323(1/u, v/u). (6.44)

Furthermore, the 〈2233〉 correlator is the first case featuring a non-trivial window contri-

bution (at twist τ = 4), which allows us to show an example where additional tree-level

information is necessary to fix the one-loop correlator.

We begin again by performing the two-variable resummation of the sum (6.17), obtaining

the log2(u) parts for both of the two orientations. They take the form,

H(2)
2233

∣∣
log2(u)

= P̂ (u, v)
Li1(x)2 − Li1(x̄)2

x− x̄
+ 2

[
1

u2v
P̂

(
u

v
,

1

v

)
+ P̂ (u, v)

]
Li2(x)− Li2(x̄)

x− x̄

+ Q̂(u, v)
(
Li1(x) + Li1(x̄)

)
+ R̂(u, v)

Li1(x)− Li1(x̄)

x− x̄
+ Ŝ(u, v), (6.45)

and

H(2)
2323

∣∣
log2(u)

= P (u, v)
Li1(x)2 − Li1(x̄)2

x− x̄
+ 2

[
1

u2v
P̂

(
1

v
,
u

v

)
+ P (u, v)

]
Li2(x)− Li2(x̄)

x− x̄

+Q(u, v)
(
Li1(x) + Li1(x̄)

)
+R(u, v)

Li1(x)− Li1(x̄)

x− x̄
+ S(u, v), (6.46)

where the coefficient functions P , Q, R, S and similarly the hatted quantities are ratio-
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nal functions of x and x̄ with denominators of the form (x − x̄)16, and are symmetric

under x ↔ x̄. Note that the symmetry of the full correlation function, H2323(u, v) =

u2/v2H(2)
2323(v, u), is visible in the double discontinuity H(2)

2323

∣∣
log2(u)

for the term pro-

portional to log2(u) log2(v). Indeed we can verify that P (u, v) = u2/v2 P (v, u). On the

other hand, we are able to express the coefficient function of Li2 in terms of P̂ (u, v) and

P (1/v, u/v). This non-trivial fact will be important in the next step, when we uplift the

double discontinuity to the full correlation function.

6.4.1 Uplifting to the Full Function

The structure of the double discontinuities (6.45) and (6.46) is very similar to the double

discontinuity for the 〈2222〉 correlator discussed before. In fact, they again follow the

general structure (6.18). This suggests that the transcendental functions appearing in

the full one-loop contributions of 〈2233〉 and 〈2323〉 will also be given by the same one-

loop and two-loop ladder functions which arise in the case of 〈2222〉, i.e. φ(1)(x, x̄) and

φ(2)(x, x̄) as given in (6.24), with symmetry properties

φ(l)

(
1

x
,

1

x̄

)
= −φ(l)(x, x̄), (6.47)

while the one-loop function also obeys

φ(1)(1− x, 1− x̄) = −φ(1)(x, x̄). (6.48)

We proceed very much as in the previous case: we make an ansatz for H(2)
2233(u, v) (or

equivalently H(2)
2323(u, v)) in terms of single-valued harmonic polylogarithms with coeffi-

cients wich are rational functions of x and x̄ with denominators of the form (x− x̄)17, to

match the double discontinuities (6.45) and (6.46). We demand that our ansatz repro-

duces correctly both double discontinuities and furthermore that the resulting function

does not have any unphysical poles at x = x̄. This set of constraints produces a partic-

ular solution with four free parameters. To express the dependence we first quote the

particular solutions Ĥ(2)
2323(u, v) and Ĥ(2)

2233(u, v), and then describe the four remaining

degrees of freedom. Without trying to further simplify the final expressions, let us for

convenience first quote the form of Ĥ(2)
2323(u, v),

Ĥ(2)
2323 = u2

[
A1(x, x̄)φ(2)(x′, x̄′) +A2(x, x̄)φ(2)(x, x̄) +A2(1− x, 1− x̄)φ(2)(1− x, 1− x̄)

+
[
A3(x, x̄)x(1− x)∂xφ

(2)(x′, x̄′) + (x↔ x̄)
]

+
[
A4(x, x̄)x∂xφ

(2)(x, x̄) + (x↔ x̄)
]

−
[
A4(1− x, 1− x̄)(1− x)∂xφ

(2)(1− x, 1− x̄) + (x↔ x̄)
]

(6.49)

+A5(x, x̄) log2(u/v) +A6(x, x̄) log2(u) +A6(1− x, 1− x̄) log2(v)

+A7(x, x̄)φ(1)(x, x̄) +A8(x, x̄) log(u) +A8(1− x, 1− x̄) log(v) +A9(x, x̄)
]
,
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where we have used the notation x′ = x
x−1 . The explicit expressions for the coeffi-

cient functions A1, . . . , A9 are rather cumbersome and we provide them in an attached

Mathematica notebook. These functions obey,

A1(x̄, x) = −A1(x, x̄), A1(1− x, 1− x̄) = −A1(x, x̄),

A2(x̄, x) = −A2(x, x̄),

A3(x̄, x) = +A3(x, x̄), A3(1− x, 1− x̄) = +A3(x, x̄),

A5(x̄, x) = +A5(x, x̄), A5(1− x, 1− x̄) = +A5(x, x̄),

A6(x̄, x) = +A6(x, x̄),

A7(x̄, x) = −A7(x, x̄), A7(1− x, 1− x̄) = −A7(x, x̄),

A8(x̄, x) = +A8(x, x̄),

A9(x̄, x) = +A9(x, x̄), A9(1− x, 1− x̄) = +A9(x, x̄).

(6.50)

The above properties are necessary for Ĥ(2)
2323(u, v) to be symmetric under x ↔ x̄ and

for the crossing property Ĥ(2)
2323(u, v) = u2/v2 Ĥ(2)

2323(v, u) to hold. Part of the weight-

four function in the first line of (6.49) can be immediately related to H(2)
2323|log2(u) from

equation (6.46). In particular, we recognise

P (u, v)

x− x̄
= −u

2A1(x, x̄)

4
,

1

u2v
P̂

(
1

v
,
u

v

)
+ P (u, v) =

u2

4

(
A2(x, x̄)−A1(x, x̄)

)
. (6.51)

whereas the remaining coefficient functions Q, R and S enter non trivially into the set

of coefficient functions Ai(x, x̄).

The particular solution Ĥ(2)
2233(u, v) is given by applying the crossing transformation (6.44)

to the function (6.49), resulting in

Ĥ(2)
2233 =

1

u2

[
−Â2(x′, x̄′)φ(2)(x′, x̄′)− Â2(x, x̄)φ(2)(x, x̄)− Â1(x, x̄)φ(2)(1− x, 1− x̄)

+
[
Â4(x′, x̄′)x(1− x)∂xφ

(2)(x′, x̄′) + (x↔ x̄)
]

+
[
Â4(x, x̄)x∂xφ

(2)(x, x̄) + (x↔ x̄)
]

−
[
Â3(x, x̄)(1− x)∂xφ

(2)(1− x, 1− x̄) + (x↔ x̄)
]

(6.52)

+ Â6(x′, x̄′) log2(u/v) + Â6(x, x̄) log2(u) + Â5(x, x̄) log2(v)

− Â7(x, x̄)φ(1)(x, x̄)−
[
Â8(x, x̄) + Â8(x′, x̄′)

]
log(u)

+ Â8(x′, x̄′) log(v) + Â9(x, x̄)
]
,

where the functions Â1, . . . , Â9 are related to A1, . . . , A9 via Âi(x, x̄) = Ai(1/x, 1/x̄).

Lastly, let us describe the four ambiguities. We find that they can be described in terms

of the following four D-functions,

H(2)
2323(u, v) = Ĥ(2)

2323(u, v) + αu2D4444(u, v) + β u2D4545(u, v)

+ γ u2D4646(u, v) + δ u2vD4565(u, v).
(6.53)
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6.4.2 The Window of 〈2233〉: the Twist 4 Sector

Within our ansatz we have obtained a one-loop solution for the 〈2233〉 correlator with 4

free parameters. Can we further constrain these coefficients? The answer is affirmative,

and in fact there are further consistency conditions that our one-loop result must satisfy,

which are exactly the window-contributions mentioned earlier. Recall that in the long

sector at twist 4 there exists a single double-trace operator K22,` ∼ O2∂
`O2. Since the

three-point function 〈O3O3K22,`〉 vanishes at leading order, i.e. C
(0)
33K22,`

= 0, the OPE

coefficients at twist 4 read

L
(1)
2233,4,` = C

(0)
22K22,`

C
(1)
33K22,`

, (6.54)

M
(2)
2233,4,` = 1

2C
(0)
22K22,`

ηK22,`
C

(1)
33K22,`

, (6.55)

where the supergravity anomalous dimension ηK22,`
= −96/((` + 1)(` + 6)) has been

derived in Section 4.2. The coefficients L
(1)
2233,4,` can be straightforwardly obtained from

the analytic part of the tree-level supergravity amplitude H(1)
2233, and are given by

L
(1)
2233,4,` = 240

(
(`+ 3)!

)
(2`+ 6)!

. (6.56)

Thus the twist 4 sector of the log(u) part of the one-loop correlator is fully determined

by the knowledge of the above tree-level OPE coefficients and the anomalous dimensions

ηK22,`
. It is interesting to notice in (6.56) that the contributions from the long sector

of free theory and supergravity have the same `-dependence but differ in the overall

coefficient, 24 and 216, respectively. Very nicely we find that this OPE constraint is

consistent with our one-loop result and fixes two of the four remaining constants, namely

α = 0, δ = 0, (6.57)

and we thus have a solution with two free parameters. The remaining two parameters

are genuine ambiguities, which our bootstrap method is not able to fix. We will comment

on the general form of these ambiguities later in Section 6.7.4.

6.5 Digression: One-Loop Anomalous Dimensions

Now that we have explicitly constructed the order 1/N4 corrections to the 〈2222〉 and

〈2233〉 correlators, we can obtain further CFT data up to this order: namely, the one-loop

anomalous dimensions η
(2)
Kpq can be extracted from the log(u) stratum of the computed

one-loop correlators. More precisely, they appear in the SCPW coefficients M
(2)
~p;~τ for



90 Chapter 6 One-loop Correlators in Supergravity

twists above the threshold τ ≥ τmax:

M
(2)
~p;~τ = 1

2

∑
(pq)∈R~τ

[
C

(1)
p1p2Kpq η

(1)
Kpq C

(0)
p3p4Kpq + C

(0)
p1p2Kpq η

(1)
Kpq C

(1)
p3p4Kpq

+ C
(0)
p1p2Kpq η

(2)
Kpq C

(0)
p3p4Kpq

]
,

(6.58)

where we already subtracted the terms with τ -derivatives on the blocks, whose coeffi-

cients are simply given by the known quantity 2×N (2)
~p;~τ . In order to successfully isolate

η
(2)
Kpq from the above expression, we will also need information about the subleading

three-point functions C
(1)
p1p2Kpq , which can be obtained from the analytic part of the tree-

level supergravity correlators H(1)
~p . They are contained in the SCPW coefficients L

(1)
~p;~τ ,

given by

L
(1)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2Kpq C

(0)
p3p4Kpq + C

(0)
p1p2Kpq C

(1)
p3p4Kpq , (6.59)

after subtraction of τ -derivatives on the blocks with known coefficients M
(1)
~p;~τ .

However, it is important to remember that due to the potential mixing with triple-trace

operators we can isolate the one-loop anomalous dimensions only in cases where there is

no degeneracy and thus a single operator for each spin. This is the case for the unique

twist 4 operator K22,` ∼ O2∂
`O2 in the singlet channel, as well as the twist 5 operator

K23,` ∼ O2∂
`O3 in the [0, 1, 0] representation.

6.5.1 The Twist 4, [0, 0, 0] One-Loop Anomalous Dimension

We can now extract the twist 4 singlet channel anomalous dimension from the long

sector of the 〈2222〉 correlator. From the non-log part of the tree-level 〈2222〉 correlator

we obtain the coefficients

L
(1)
2222;4,` =

[ −64
(
2`+ 9 + 2(2`+ 7)(H`+3 −H2`+7)

)
2`+ 7

+
16

3

] (
(`+ 3)!

)2
(2`+ 6)!

, (6.60)

where Hn denotes the harmonic numbers and in the above we have split the coefficients

into their contributions from supergravity and connected part of the free theory, respec-

tively. Note that the above formula is consistent with the derivative relation observed

in [72, 139], namely

L
(1)
2222;4,` =

∂

∂τ
M

(1)
2222;τ,`

∣∣
τ=4

. (6.61)

Next, from the explicit result for the one-loop correlator from equations (6.27)-(6.39),

we obtain the coefficients M
(2)
2222;~τ at twist 4. Since there is only one operator which

contributes at twist 4, the sum in equation (6.58) has only one term and we can isolate the
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one-loop anomalous dimension η
(2)
K22,`

by simply subtracting the combination L
(1)
2222;4,` ×

η
(1)
K22,`

from the coefficients M
(2)
2222;4,`, where we know the tree-level anomalous dimension

η
(1)
K22,`

= −96/
(
(`+ 1)(`+ 6)

)
. We find

η
(2)
K22,`

=

{ 2688(`−7)(`+14)
(`−1)(`+1)2(`+6)2(`+8)

− 4608(2`+7)
(`+1)3(`+6)3 , ` = 2, 4, . . .

−36
7 α+ 2296

3 , ` = 0,
(6.62)

where α = 60 is the coefficient of the one-loop ambiguity. Note that the non-zero value

of α breaks the analyticity in spin at spin zero, in agreement with the arguments from

the Lorentzian inversion formula [140].

We can now also test the expected reciprocity symmetry (4.56) at one-loop order, which

now should really be thought of in terms of an expansion in a. The full anomalous twist

of the operators K22,` to one-loop order reads

τ(`; a) = 4 + a η
(1)
` + a2 η

(2)
` +O(a3), (6.63)

and to the relevant order the symmetry (4.56) becomes ` → −l − 7 − a η
(1)
` + O(a2).

Under this transformation the above quantity should remain invariant, and indeed one

can check that

τ(−`− 7− a η
(1)
` ; a) = 4 + a η

(1)

−`−7−a η(1)
`

+ a2η
(2)
−`−7 +O(a3)

= 4 + a η
(1)
−`−7 − a2 η

(1)
`

∂

∂`
η

(1)
−`−7 + a2η

(2)
−`−7 +O(a3)

= τ(`; a) +O(a3).

(6.64)

Note that the last equality arises from the identities

η
(1)
−`−7 = η

(1)
` , η

(2)
−`−7 = η

(2)
` −

1

2

∂

∂`

(
η

(1)
`

)2
, (6.65)

where the first equation is simply the statement of reciprocity symmetry of the tree-

level anomalous dimensions, observed previously in (4.57). The second equation states

that the antisymmetric part of η
(2)
` is given by 1

4
∂
∂`

(
η

(1)
`

)2
, which means it is predicted

from the tree-level anomalous dimension η
(1)
` by the full symmetry. This is a non-trivial

property of the one-loop anomalous dimensions, and we believe that the higher-order

corrections will preserve the reciprocity symmetry in a similar fashion to (6.64).

6.5.2 The Twist 5, [0, 1, 0] One-Loop Anomalous Dimension

The twist 5 anomalous dimension can be extracted from our result for the one-loop

〈2323〉 correlator. Note that the long part of the 〈2323〉 correlator contributes only

to the [0, 1, 0] channel and admits both even and odd spins. The non-log part of the
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tree-level correlator yields

L
(1)
2323;5,` =

{ (144(`+4)(`+7)(H`+3−H2`+7)+ 54
5

(7`2+97`+296)) ((`+3)!)2

(2`+7)! , ` even,

(144(`+1)(`+4)(H`+3−H2`+7)+ 18
5

(`+1)(21`+104)) ((`+3)!)2

(2`+7)! , ` odd,

(6.66)

which is again consistent with the derivative relation

L
(1)
2323;5,` =

∂

∂τ
M

(1)
2323;τ,`

∣∣
τ=5

, (6.67)

where one has to treat the even and odd spin formulae as independent cases. Next, we

consider the SCPW expansion of the log(u) part of the one-loop result (6.49). After

subtracting the combination L
(1)
2323;5,`× η

(1)
K23,`

, where η
(1)
K23,`

= −160/
(
(`+ 1)(`+ 4)

)
and

η
(1)
K23,`

= −160/
(
(`+ 4)(`+ 7)

)
for even and odd spins respectively, we find the one-loop

anomalous dimension to be given by

η
(2)
K23,`

=



640(9`4+68`3−1151`2−5738`−3688)
(`−1)(`+1)3(`+4)3(`+8)

, ` = 2, 4, . . . ,

640(9`4+140`3−487`2−11262`−29400)
`(`+4)3(`+7)3(`+9)

, ` = 3, 5, . . . ,

4610− 30
7 β −

250
21 γ, ` = 0,

−41 + 8
3 γ, ` = 1,

(6.68)

where β and γ are the two unfixed parameters of the one-loop correlator. We observe

again that for β, γ 6= 0 the spectrum is not analytic in spin for ` = 0, 1.

As before, we can check that the above one-loop results continue to obey the reciprocity

symmetry, which in this case is an invariance of the full anomalous twist of the operators

K23,` under the transformation ` → −` − 8 − a η
(1)
` + O(a2). The symmetry swaps the

even and odd spin families, and is satisfied non-trivially thanks to the following order

by order relations which can be readily checked:

η
(1)even
−`−8 = η

(1)odd
` , η

(2)even
−`−8 = η

(2)odd
` − 1

2

∂

∂`

(
η

(1)odd
`

)2
,

η
(1)odd
−`−8 = η

(1)even
` , η

(2)odd
−`−8 = η

(2)even
` − 1

2

∂

∂`

(
η

(1)even
`

)2
.

(6.69)

6.6 Back to the Bootstrap: the Below-Threshold Region

Now that we have described in great detail the construction of one-loop correlators for

two explicit cases, let us outline a general algorithm which can be applied to correlators

of higher external charges. First, we will discuss how to obtain predictions for the two

below-threshold regions: the window and below-window. Second, we need to incorporate

the results of multiplet recombination at the unitarity bound into our algorithm. The

structure of general one-loop correlators will then be addressed in the following section.
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6.6.1 Predictions for the Below-Threshold Region

A feature of four-point correlators of single-particle operators with generic charges is

that one can bootstrap the below-threshold pieces of the log(u) and analytic part of the

correlator. Similarly to the double discontinuity (discussed in Section 6.2), which lies en-

tirely above the threshold, there is information from within and below the window which

further constrains the four-point function. Remarkably, using all of this available lower

order data always fixes the one-loop four-point function up to certain well understood

ambiguities which only have finite spin contributions to the SCPW expansion.

To begin with consider the long SCPW coefficients of the analytic part of the tree-

level correlator L(1), arising from operators in the window region τmin ≤ τ < τmax (see

Figure 6.1). For simplicity assume p1+p2 ≥ p3+p4 (the other case is similar), then (6.11)

becomes

L
(1)
~p;~τ =

∑
(pq)∈R~τ

C
(1)
p1p2KpqC

(0)
p3p4Kpq , for p1 + p2 ≥ p3 + p4. (6.70)

The key point here is that there are new, leading three-point functions at order O(1/N2),

C
(1)
p1p2Kpq , with below threshold twist τ < p1 + p2.

Fixing the pair (p1p2) and ~τ , let us consider all values of (p3p4) ∈ R~τ and rewrite (6.70)

as a vector equation4

L
(1)
(p1p2);~τ = C

(1)
(p1p2);~τ

(
C(0)
~τ

)T
. (6.71)

Here we have defined the row-vector C
(1)
(p1p2);~τ with entries

(
C

(1)
(p1p2);~τ

)
(pq)

= C
(1)
p1p2K(pq);~τ

, ∀(pq) ∈ R~τ , (6.72)

and the row-vector of the analytic O(1/N2) SCPW coefficients, L
(1)
(p1p2);~τ , with entries

(
L

(1)
(p1p2);~τ

)
(p3p4)

= L
(1)
~p;~τ , ∀(p3p4) ∈ R~τ . (6.73)

The other ingredient is the matrix of leading three-point couplings C(0)
~τ encountered in

previous chapters.

Consider now the log(u)-part of the one-loop correlator with SCPW coefficients M (2)

given by (6.12). In direct analogy to L
(1)
(p1p2);~τ above, we define the corresponding vector

M
(2)
(p1p2);~τ . We can turn the OPE predictions in the window (for varying (p3p4) ∈ R~τ )

4In the following, all boldface quantities refer to row-vectors of SCPW coefficients.
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into the vector equation

M
(2)
(p1p2);~τ = 1

2 C
(1)
(p1p2);~τ η̂~τ

(
C(0)
~τ

)T
. (6.74)

Knowing C(0)
~τ we can explicitly solve for C

(1)
(p1p2);~τ using (6.71) and plug it in the above

equation to get the one-loop SCPW coefficients M
(2)
(p1p2);~τ . However, even in cases where

we do not have C(0)
~τ , because of the degeneracy of the anomalous dimensions, we see that

by combining equations (6.14), (6.15) and (6.71) we obtain M
(2)
(p1p2);~τ purely in terms of

tree-level SCPW data:

M
(2)
(p1p2);~τ = L

(1)
(p1p2);~τ

(
L̂

(0)
~τ

)−1
M̂

(1)
~τ . (6.75)

We thus obtain a piece of the single-log coefficient of the one-loop correlator from tree-

level data.

In a very similar manner, pieces of the analytic part of the one-loop correlator, namely

the coefficients L(2) for twists below the window, can be determined purely in terms of

tree-level SCPW coefficients. From equation (6.13) we find

L
(2)
~p;~τ = C

(1)
(p1p2);~τ

(
C

(1)
(p3p4);~τ

)T
= L

(1)
(p1p2);~τ

(
L̂

(0)
~τ

)−1 (
L

(1)
(p3p4);~τ

)T
, for 4+2a+b ≤ τ < p3 + p4.

(6.76)

Recall that the SCPW coefficients L(1) appearing in the above (6.76) are determined by

summing contributions from tree-level supergravity H(1)
~p and the connected part of free

theory, as shown in (6.6). A general formula for the connected free theory at order 1/N2

was presented already in [112], and we we record it in our notation in Appendix C.

In summary, from all the results given above we can determine the following pieces of the

O(1/N4) four-point functions (besides the double discontinuities discussed previously in

Section 6.2):

• log1(u) stratum obtained from a finite number of twists:

H(2)
~p

∣∣
log1(u)

= 1
2 log1(u)

∑
`,a,b

τmax−2∑
τ=τmin

(
M

(2)
(p1p2);~τ

)
(p3p4)

L̃~p;~τ + . . . , (6.77)

where the coefficients M(2) are given in (6.75) and we are omitting terms con-

tributing to twists τ ≥ τmax.

• log0(u) stratum obtained from a finite number of twists:

H(2)
~p

∣∣
log0(u)

= H(2)
bound +

∑
`,a,b

τmin−2∑
τ=2a+b+4

L
(2)
~p;~τ L̃~p;~τ + . . . , (6.78)
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with L(2) given in (6.76) and omitting terms contributing to twists τ ≥ τmin.

There is an extra subtlety which needs to be tackled in order to fully determine the

log0(u) stratum: it enters the contribution called H(2)
bound above and has to do with

multiplet recombination at the unitarity bound, τ = 2a + b + 2, in each channel. We

will address this next.

6.6.2 Predictions for the Semi-Short Sector

We now come back to the delicate point of multiplet recombination at the unitarity

bound. In Appendix B, we discussed multiplet recombination in the free theory, whose

results we now need to incorporate.

In equation (6.78) we gave the one-loop non-log predictions which originate from twists

above the unitary bound, i.e. for twists 2a + b + 4 ≤ τ < τmin
~p . In addition, we claim

that the dynamical one-loop function must contain a contribution at the unitarity bound

τ = 2a+ b+ 2, which we are also able to predict, namely we have

L
(2)
~p;~τ = L

(2)f
~p;~τ + L

(2)H
~p;~τ = 0, for τ = 2a+ b+ 2, (6.79)

L
(2)f
~p;2a+b+2,`,[a,b,a] =

a∑
k=0

(−1)kA[`+2+k,1a−k]

∣∣
1
N4
−

a∑
k=0

(−1)kS[`+2+k,1a−k], (6.80)

where the coefficient L
(2)f
τ=2+2a+b was obtained in (B.14). Its first term is given by the

SCPW of the order 1/N4 connected free theory A~p;2a+b+2−2k,[`+2+k,1a−k]

∣∣
1
N4

. Its sec-

ond term is given by summing over the new coefficients S~p;2a+b+2−2k,[`+2+k,1a−k], and it

follows non-trivially from the analysis of the semi-short sector, which by construction

is of order 1/N4. The contributions to the analytic (i.e. log0(u)) part of H(2) which

come from twists at the unitarity bound combine to give the function denoted by H(2)
bound

in (6.78), which itself is of the form

H(2)
bound = −

∑
`,a,b

L
(2)f
~p;~τ L̃~p;~τ . (6.81)

The reason for the cancellation in equation (6.79) is the following: the OPE of OpiOpj
in the free theory runs by definition over all operators of N = 4 SYM, but supergravity

states correspond only to operators built from one-half BPS operators, i.e. they are

either one-half BPS operators themselves or multi-particle operators. Other single-trace

operators at the unitarity bound, which are present in the free theory, therefore corre-

spond to excited string states and should be absent from the OPE in the supergravity

regime.

Simple examples of such operators which correspond to excited string states are e.g. the

Konishi operator tr(φ2) in the [000] representation, or the twist 3 superconformal pri-
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mary of the form tr(φ3) in the [010] representation. However, these two cases are special

because there are no other existing operators with such quantum numbers. In particular,

there will be no S-type contribution in (6.80). On the other hand, beyond twist 3 one

has to distinguish carefully between multi-trace semi-short operators, which do remain

in the spectrum of supergravity, and excited string states, as done in Appendix B.

It is very instructive to compare the new features at order 1/N4 with the corresponding

tree-level terms. Let us begin from the analogue of equation (6.79) at tree level. It

reduces to

L
(1)
~p;2a+b+2,`,[a,b,a] =

a∑
k=0

(−1)kA[`+2+k,1a−k]

∣∣
1
N2︸ ︷︷ ︸

=L
(1)f
~p;2a+b+2,`,[a,b,a]

+L
(1)H
~p;2a+b+2,`,[a,b,a] = 0. (6.82)

The difference compared to equation (6.79) is precisely the difference between performing

multiplet recombination with SCPW coefficients of connected free theory – assuming all

below threshold (τ = 2a+b+2 < τmin) semi-short operators are absent – and performing

multiplet recombination with remaining below-threshold semi-short operators. This is

simply because the semi-short three-point functions are all of order O(1/N2), and thus

are only visible in the SCPW decomposition at order 1/N4.

Indeed, the leading order three-point functions C
(0)
pipjKpq = 0 whenever pi + pj > τ ,

and thus this vanishing condition extends to the non-semi-short below-window sector

τ < τmin at tree-level. We therefore have

L
(1)
~p;~τ = L

(1)f
~p;~τ + L

(1)H
~p;~τ = 0, for τ < τmin, (6.83)

with the free theory part L
(1)f
~p;~τ given in (2.43) when the twist is above the unitarity

bound τ ≥ 2a+ b+ 4 and (6.82) when at the bound τ = 2a+ b+ 2.

6.7 The Structure of General One-Loop Correlators

In the previous sections we have explained how to bootstrap predictions about the

dynamical one-loop functionH(2)
~p from tree-level results. Summarising, we have obtained

the leading log2(u) discontinuity, see Section 6.2. Then, after considering the two explicit

examples H(2)
2222 and H(2)

2233, we described the new below-threshold features of correlators

with general external charges. In particular, we have obtained pieces of the single

log1(u) from exchanged operators in the window (see discussion around equations (6.75)

and (6.77)), and also pieces of the analytic log0(u) part of the correlator from below-

window data (see discussion around (6.76) and (6.78)). Finally, we understood how

to deal with the SCPW coefficients of long operators at the unitarity bound in (6.80).

Let us emphasize that even though the leading-log discontinuity can be obtained more
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elegantly by using the hidden symmetry of [112], our approach here allows us to go

beyond that and compute M (2) and L(2), which are crucial ingredients to our general

one-loop bootstrap program.

All the OPE predictions discussed in the above are organised according to the log(u)

stratification of the correlators given in (6.3)-(6.5). Before describing a precise ansatz

for the general one-loop correlators, let us point out in the following that the structure

of the order 1/N4 dynamical function H(2)
~p admits a further refinement.

6.7.1 A Further Refinement

Consider first the following observation: looking at below-threshold physics at tree-

level we found that the analytic sector of the dynamical function H(1)
~p is subject to the

constraint (6.83), i.e

L
(1)H
~p;~τ = −L(1)f

~τ , for 2a+ b+ 2 < τ < τmin, (6.84)

augmented by a similar constraint at the unitarity bound given in (6.82). We claim (and

we will show this in Section 6.8) that H(1) is entirely fixed by these constraints, together

with the requirement that its log(u)-discontinuity has threshold twist τmax.

Considering now the analytic sector at one-loop, we find instead

L
(2)H
~p;~τ = −L(2)f

~p;~τ + L
(2)
~p;~τ , for 2a+ b+ 2 < τ < τmin . (6.85)

where L
(2)
~p;~τ is the new O(1/N4) prediction (6.76) arising from tree-level data via the

OPE. It is clear then that the analytic part of H(2) has two separate contributions:

one is cancelling the free theory contribution, i.e −L(2)f
~τ , and the other one is linked

to predictions from tree-level data L
(2)
~p;~τ . Furthermore, at the unitarity bound we find

a similar split into a piece depending directly on free theory SCPW coefficients and a

non-trivial prediction arising from correlators of different charges, recall equation (6.80).

Since the double- and single-log strata of H(2) are determined uniquely by tree-level data

via the OPE and have no free theory contributions, it is natural to split the one-loop

function accordingly into

H(2)
~p = T (2)

~p +D(2)
~p , (6.86)

where T (2)
~p and D(2)

~p have a different interplay with the connected part of the free theory.

The function T (2)
~p generalises the tree-level function H(1)

~p , and it is defined by the fol-

lowing properties: it has a log1(u) discontinuity with threshold twist τmax, no log2(u)

double discontinuity, and it fully cancels all long below-window contributions coming

from recombined free theory, hence the name of generalised tree-level function. Indeed,
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for twists 2a+ b+ 2 < τ < τmin strictly above the unitary bound, we expect

L
(2)T
~p;~τ = −L(2)f

~p;~τ , (6.87)

with L
(2)f
~p;~τ being the order 1/N4 part of the free-theory SCPW coefficients as defined

in (2.43), whereas at the unitarity bound we have

L
(2)T
~p;2a+b+2,`,[a,b,a] = −

a∑
k=0

(−1)kA[`+2+k,1a−k]

∣∣
1
N4
. (6.88)

It follows that the below-window OPE predictions (6.76) will be encoded only in the

function D(2)
~p , i.e.

L
(2)D
~p;~τ = L

(2)
~p;~τ , for 2a+ b+ 2 < τ < τmin, (6.89)

and at the unitarity bound

L
(2)D
~p;2a+b+2,`,[a,b,a] =

a∑
k=0

(−1)kS[`+2+k,1a−k]. (6.90)

Our task now is to construct the full one-loop correlators H(2)
~p consistently with the

OPE predictions. We will see that the splitting H(2)
~p = T (2)

~p + D(2)
~p is also strongly

motivated by features of the log2(u) discontinuity. In fact, we will discover that D(2)
~p

is the minimal one-loop function which consistently emanates from the leading log2(u)

discontinuity. Furthermore, we will find that T~p can be constructed as an exact function

of N . The interplay of D(2)
~p with the semi-short prediction (6.90) is very remarkable,

and when we think of it as descending from the double-logarithmic discontinuity it is a

tangible triumph of supergravity within our N = 4 bootstrap program.

6.7.2 Ansatz for Minimal One-Loop Functions

We are finally at the stage where we can introduce an ansatz for the minimal one-loop

function D(2)
~p , which will accommodate all of the various OPE-predictions discussed in

the above. To understand this ansatz and impose as many constraints as possible, we

will first consider the consequences of the OPE as well as crossing symmetry on the

structure of one-loop correlators.

From the OPE we expect different parts of the correlator to possess contributions from

operators of different twists: the log2(u) discontinuity has contributions only from op-

erators above threshold τ ≥ τmax. The log1(u) part can have contributions from the

window, τ ≥ τmin, and finally the analytic log0(u) part can have contributions starting

from the semi-short operators with τ ≥ p43 + 2. Because a long operator of twist τ gives

a contribution to the correlator which for small u goes like u
1
2

(τ−p43), the OPE then
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dictates that

H(2)
~p

∣∣
log2(u)

= O(u
1
2

(τmax−p43)),

H(2)
~p

∣∣
log1(u)

= O(u
1
2

(τmin−p43)),

H(2)
~p

∣∣
log0(u)

= O(u),

(6.91)

with

1
2(τmax − p43) = max

{p1+p2+p3−p4

2 , p3

}
,

1
2(τmin − p43) = min

{p1+p2+p3−p4

2 , p3

}
= κ~p ,

(6.92)

where the latter is precisely the degree of extremality.

Consider now the splitting H(2)
~p = T (2)

~p +D(2)
~p , as discussed in the previous section. We

claim that only T (2)
~p has a contribution at O(u) whereas D(2)

~p = O(u2). The reason

for this follows again from the detailed understanding of the semi-short sector: the

contributions at O(u) arise from semi-short operators with twist p43 + 2 in the [0, p43, 0]

representation of su(4). In this case there is a single A-type contribution in the sum

of (B.14), which has to be dealt with by T (2)
~p , and a single S contribution, to be dealt with

by D(2)
~p . Recall that we deal with the split H(2)

~p = T (2)
~p +D(2)

~p by using equations (6.88)

and (6.90). Then notice that the S contribution itself is obtained in (B.13) in terms

of the SCPW coefficients Sqr q̃rp3p4 , where qr + q̃r = p43 + 2. But these correlators are

next-to-extremal and, according to the discussion around (3.11), they completely vanish

when we use the correct definition of single-particle operators, so the S contribution

vanishes at that twist. We therefore have

T (2)
~p

∣∣
log0(u)

= O(u), D(2)
~p

∣∣
log0(u)

= O(u2). (6.93)

Under the crossing transformation u↔ v, the analysis of the small u expansion in (6.91)

translates into predictions for the small v expansion, which is then useful to understand

how to constrain the ansatz for the full function.

For the correlator itself crossing symmetry simply implies that

〈Op1(x1)Op2(x2)Op3(x3)Op4(x4)〉 = 〈Opσ1
(xσ1)Opσ2

(xσ2)Opσ3
(xσ3)Opσ4

(xσ4)〉 , (6.94)

for any permutation σ ∈ S4. The implications of this while taking into account the

prefactor P~p requires a little care. When defining the prefactor we always made the

choice 0 ≤ p21 ≤ p43, which should therefore be maintained under the permutation

whilst exchanging u ↔ v. This requires considering a number of different cases for the

relative values of the charges pi. In all cases however, there is a unique permutation σ
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satisfying the above requirements and one finds that for this permutation

H(2)
p1p2p3p4

(u, v) =
(uτ
v

)κ~p
H(2)
pσ1pσ2pσ3pσ4

(v, u). (6.95)

The small u behaviour of H(2)
pσ1pσ2pσ3pσ4

(u, v) given in (6.91) then yields the following

small v behaviour of H(2)
~p (u, v)

H(2)
~p

∣∣
log2(v)

= O(v
1
2

(p1+p4−p2−p3)),

H(2)
~p

∣∣
log1(v)

= O(v0),

H(2)
~p

∣∣
log0(v)

= O(1/vκ~p−1).

(6.96)

Furthermore, the different small u behaviour of T (2)
~p and D(2)

~p in (6.93) implies a different

small v limit:

T (2)
~p

∣∣
log0(v)

= O(1/vκ~p−1), D(2)
~p

∣∣
log0(v)

= O(1/vκ~p−2) . (6.97)

Note that the differences in the small v behaviour between T (2)
~p and D(2)

~p will be crucial

in the determination of our ansatz.

We now have all the relevant information to write an ansatz for the minimal one-loop

function H(2), which is consistent with crossing symmetry and matches the two-variable

resummation of the leading log2(u) discontinuity. In analogy with the results for the one-

loop corrections to the 〈2222〉 and 〈2233〉 correlators discussed previously, we consider

single-valued transcendental functions of up to weight 4. The bound on the overall tran-

scendental weight follows from the explicit form of the two-variable resummations (6.18),

in which we find an overall log2(u) paired with an at most weight-two antisymmetric

transcendental function. We therefore need a basis of weight-four antisymmetric tran-

scendental functions, together with their lower weight completions. As before, we will

make use of the series of ladder integrals [137, 138]

φ(l)(x, x̄) =

l∑
r=0

(−1)r
(2l − r)!
r!(l − r)!l!

logr(u)
(
Li2l−r(x)− Li2l−r(x̄)

)
. (6.98)

Our proposed basis then has the form

W4− = h1 φ
(2)(x′1, x

′
2) + h2 φ

(2)(x, x̄) + h3 φ
(2)(1− x, 1− x̄),

W3− = h4 x∂xφ
(2)(x, x̄) + h5 (x− 1)∂xφ

(2)(1− x, 1− x̄)− (x↔ x̄),

W3+ = (x− x̄)
[
h6 ∂vφ

(2)(x, x̄) + h7 ∂uφ
(2)(1− x, 1− x̄)

]
+ h8 ζ3,

W2+ = h9 log(u) log(v) + h10 log2(v) + h11 log2(u),

(6.99)
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and

W2− = h� φ
(1)(x, x̄), W0 = h0,

W1u = hu log(u), W1v = hv log(v).
(6.100)

The basis at weight four and three is written in terms of the double-box function, which

is the l = 2 integral in the ladder series (6.98). The weight-two antisymmetric element is

instead the l = 1 one-loop box-function. Finally, the coefficient functions hi=1,..,11,�,u,v,0

will be polynomials in the variables x, x̄, σ, τ .

From considerations about crossing in equation (6.97) and the structure of the two-

variable resummations from (6.18), we conclude that the ansatz for the minimal one-loop

function D(2)
~p is given by

D(2)
~p =

W4− +W3−

(x− x̄)d~p+8
+

1

(x− x̄)d~p+7

[
W3+ +

W2+

vκ~p−2

]
+

1

vκ~p−2

[
W2−

(x− x̄)d~p+8
+
W1v +W1u

(x− x̄)d~p+7
+

W0

(x− x̄)d~p+5

]
,

(6.101)

where we recall the definitions

d~p = p1 + p2 + p3 + p4 − 1, κ~p = min
{p1+p2+p3−p4

2 , p3

}
. (6.102)

For future convenience, we will refer to the smaller basis (6.100), consisting of the one-

loop box-function φ(1)(x, x̄) together with its weight-one and weight-zero completions,

as tree-like. For example, any D-function can be decomposed in such a basis.

6.7.3 The Bootstrap Algorithm

Next, we will describe in detail our bootstrap algorithm: step by step, we will go through

the sequence of constraints we impose in order to determine the free parameters in the

above ansatz (6.101) for D(2)
~p .

Crossing symmetry and matching of the leading-log

For any orientation of the external charges ~p, we consider the log2(u) projection of the

ansatz and match it against the explicit two-variable resummation described in (6.18).

This fixes combinations of the coefficient functions W4−, W3± and W2+. Note that

the power vκ~p−2 in the denominator of W2+ in equation (6.101) is consistent with the

weight-zero part of the leading-log as given in (6.18). Matching all independent leading-

log discontinuities actually fixes completely the polynomials hi for i = 1, 2, 7, 9, 11. When

κ~p = 2, the correlators are next-to-next-to extremal (examples are the 〈2222〉 and 〈2233〉
correlators considered previously), in which case there is no singular v behaviour in the
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ansatz. In these cases the general ansatz (6.101) reduces to the ansätze considered in

Sections 6.3 and 6.4.

Absence of unphysical poles

Any leading-log discontinuity has itself no poles at x = x̄. However, this only accounts

for the log2(u) projection of the function D(2)
~p . In order for the ansatz to yield a well

defined function, we have to ensure that globally there are no unphysical poles. In this

way, lower-weight coefficient functions become entangled with those at weights 4, 3 and

2. In particular, both the powers of (x − x̄) in the denominators and the coefficient

functions of W2−, W1u, W1v and W0 have the right structure such that all x = x̄ poles

coming from the symmetric coefficient functions at weights 4, 3 and 2 can be cancelled.

For this reason the ‘tree-like’ coefficient functions of D(2)
~p , i.e. h�, hu, hv, and h0, have

quite different features compared to their counterparts at tree-level. During this process

we can keep vκ~p−2 as the maximum singular power in the denominator.

Matching the OPE predictions in and below the window

At this stage of the algorithm we have found a well defined ansatz with the correct log2(u)

discontinuities. It differs from D(2)
~p because we have not yet imposed the remaining

predictions in and below the window, which we have to compute explicitly by using the

strategy outlined in Section 6.6. These OPE predictions come as SCPW coefficients at

fixed twist with varying spin, i.e. from sums of the form∑
`

cτ0,` B(τ0,`) + . . .+
∑
`

cτk,` B
(τk,`), (6.103)

where cτ,` stands for M
(2)
τ,` or L

(2)
τ,` , and τk < τmax is finite. Given the analytic repre-

sentation of the conformal blocks B(τ,`), we can series expand the sum (6.103) in the

form

uτ0
τk−τ0∑
n=0

∞∑
m=0

dnm x
nx̄m, (6.104)

and then resum it as

xτ0
τk−τ0∑
n=0

xngn(x̄) . (6.105)

where the functions gn contain transcendental functions in the variable x̄. In fact, the

ansatz for the gn descends from the full two-variable ansatz (6.101), upon performing

the same series expansion as in (6.105). We call an expression of the above form a

one-variable resummation.
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correlator
initial free coeffs.
in h�, hu, hv, h1

after leading-log matching
and pole cancellation

after OPE predictions
in and below window

〈2222〉 1× 378 1 1

〈2233〉 1× 496 16 2

〈2244〉 1× 579 20 2

〈3333〉 3× 579 20 2

〈4444〉 6× 946 68 4

Table 6.1: Number of tree-like free coefficients across the three steps of our algorithm.

The initial number of free coefficients grows with p1 + p2 + p3 + p4, because of the

denominator factors (x− x̄) in (6.101), and obviously with the number of su(4) channels.

Cancelling x = x̄ poles alone still leaves a large number of free coefficients. Imposing

OPE predictions in and below the window is indeed crucial to finally obtain the minimal

one-loop functions D(2)
~p , as can be seen in Table 6.1.

6.7.4 The (Finite) Set of Ambiguities

Imposing predictions in and below the window fixes the majority of the free coefficients in

the ansatz. A sample of this process for a couple of correlators is illustrated in Table 6.1.

The free parameters left are associated to a restricted class of tree-like functions, which

we call ambiguities. By construction, such ambiguities do not contribute to the log2(u)

discontinuity in any channel, obey the correct crossing transformations by themselves,

have no x = x̄ poles and contribute only above the window, i.e for twists τ ≥ τmax.

Furthermore, we find the special feature that their SCPW coefficients have finite spin

support: they contribute only to spins ` = 0, 1.

The Mellin amplitude corresponding to these ambiguities is very simple, since it can be

at most linear in the Mellin variables (s, t). This is for two reasons: firstly, it cannot

be rational, as any additional pole would spoil the OPE predictions in and below the

window. Therefore it has to be polynomial. Secondly, this polynomial cannot be higher

order than linear, as it would generate tree-like terms with a higher degree denominator

than allowed by our ansatz (6.101) for the minimal one-loop function D(2)
~p .

For a generic correlator without any crossing symmetries, we can parametrise the full

set of ambiguities by

D(2)
~p

∣∣
ambiguity

=
u−

p43
2

v
p2+p3

2

∮
u
s
2 v

t
2 Γ~p (s, t)

κ~p−2∑
i=0

κ~p−2−i∑
j=0

(
α

(1,ij)
~p + α

(s,ij)
~p s+ α

(t,ij)
~p t

)
σiτ j ,

(6.106)
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where Γ~p (s, t) is the usual string of six Γ-functions given by

Γ~p = Γ
[p1+p2−s

2

]
Γ
[p3+p4−s

2

]
Γ
[p1+p4−t

2

]
Γ
[p2+p3−t

2

]
Γ
[p1+p3−ũ

2

]
Γ
[p2+p4−ũ

2

]
. (6.107)

Thus, for a generic correlator, we find
3(κ~p−1)κ~p

2 undetermined ambiguities. In cases

in which the correlator has some crossing symmetry, we have to count only crossing

symmetric combinations. Let us illustrate this by means of a few explicit examples:

• 〈2222〉: The only fully crossing symmetric combination one can build is the con-

stant Mellin amplitude 1, so there can only be a single ambiguity: α
(1)
2222.5

• 〈22pp〉: This family of correlators is not fully crossing symmetric if p > 2. The

remaining crossing symmetry can be understood as an invariance under t↔ ũ. As

a result, we are left with two out of three ambiguities,

α
(1)
22pp, and α

(2)
22pp s. (6.108)

• 〈3333〉: This correlator admits up to linear terms in σ and τ , but crossing symmetry

only allows two (fully symmetric) ambiguities,

α
(1)
3333 (1 + σ + τ), and α

(2)
3333 (s+ ũσ + tτ). (6.109)

Other correlators with κ~p = 3 but no crossing symmetries would admit a total of

9 ambiguities.

• 〈4444〉: The full crossing symmetry of this correlator greatly reduces the number

of ambiguities. With at most quadratic terms in σ and τ , one can construct four

independent ambiguities: two ambiguities with constant Mellin amplitudes

α
(1)
4444 (1 + σ2 + τ2), and α

(2)
4444 (σ + τ + στ), (6.110)

and two other ambiguities with linear terms

α
(3)
4444 (s+ ũσ2 + tτ2), and α

(4)
4444 (tσ + ũτ + sστ). (6.111)

Correlators with κ~p = 4 but no crossing symmetries would otherwise admit 18

ambiguities.

Notice that our analysis here is already in agreement with the observed number of

ambiguities, as shown in Table 6.1.

5As mentioned in Section 6.3, the value of α
(1)
2222 = 60 was found by using a supersymmetric localisa-

tion computation [104]. To our knowledge, this is the only case where a value for a one-loop ambiguity
has been found. As such, the values of all other ambiguities remain undetermined.
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With this we conclude the general discussion of the construction of one-loop supergrav-

ity correlators. In order to illustrate all the different features described at length in

the above, we will now consider a few more concrete examples: in the next section,

we will consider the minimal one-loop functions for the correlators 〈2244〉, 〈3335〉 and

〈4424〉. These are of the same degree of extremality as the two examples 〈2222〉 and

〈2233〉 discussed before, and therefore their dynamical functions contribute to only one

su(4) channel, namely the [0, p43, 0] representation. Later, we also discuss the 〈3333〉
correlator, which compared to the previous examples features multiple su(4) channels.

As a final and even more complicated example, the 〈4444〉 correlator is discussed in

Appendix D.

6.7.5 Examples of Next-to-Next-to-Extremal Correlators

In this section, we will consider a few next-to-next-to-extremal correlators, which are

defined by the condition κ~p = 2, i.e. their external charges are such that either p3 = 2

or p1 + p2 + p3 − p4 = 4. In particular, we will consider the examples D(2)
3335, D(2)

4424 and

D(2)
2244.

For such N2E correlators there are no below-window OPE predictions, since the predic-

tions for the semi-short sector Sp1p2p3p4 vanish because they are determined through (B.13)

in terms of SCPW coefficients Sp(r)q(r)p3p4
, where p(r)+q(r) = p43 +2. These correlators

are next-to-extremal, and thus vanish identically as a consequence of our definition of

external single particles states (see Section 3.2). Because of the split T (2)
~p +D(2)

~p , it then

follows that L
(2)D
2+p43, [0,p43,0] = 0.

An additional peculiarity of the 〈3335〉 and 〈4424〉 correlators (which generalises to

other N2E correlators) is the fact that the corresponding tree-level functions H(1)
3335 and

H(1)
4424 are proportional to each other.6 This implies that, up to a normalisation, both

correlators have the same one-loop log2(u) discontinuity. Therefore, an ansatz having

the correct crossing symmetries, constructed by matching the leading-log discontinuity

and imposing absence of x = x̄ poles, cannot distinguish between D(2)
3335 and D(2)

4424.

Very interestingly, this type of degeneracy is actually lifted at one-loop, because of the

different OPE predictions in the window! This illustrates another important aspect of

the OPE predictions in and below the window. In general, we expect the situation to

be as follows: pairs of correlators which are degenerate at tree-level will instead have

different minimal one-loop functions, and thus are distinguished by the OPE predictions

in and below the window.

Concretely, in the case of the 〈3335〉 and 〈4424〉 correlators, we have different twist 6

6This can be understood from the hidden ten-dimensional conformal symmetry of the tree-level
correlators H(1)

~p : the differential operators D̂3335 and D̂4424 differ only in their overall normalisations,
see equation (3.43).
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log(u) predictions in the [0, 2, 0] channel, given by

M
(2)
3335;6,`,[0,2,0] =

Y
(0)

3335 + Y
(2)

3335(`+ 9
2)2

(`+ 1)(`+ 4)(`+ 5)(`+ 8)

(`+ 4)!(`+ 5)!

(2`+ 8)!
,

M
(2)
4424;6,`,[0,2,0] =

Y
(0)

4424 + Y
(2)

4424(`+ 9
2)2

(`+ 1)(`+ 4)(`+ 5)(`+ 8)

(`+ 4)!(`+ 5)!

(2`+ 8)!
,

(6.112)

where the values of the free Y coefficients above, obtained from the OPE predictions,

are

Y
(0)

3335 = −4762800, Y
(2)

3335 = 4
35Y

(0)
3335,

Y
(0)

4424 = −4628736, Y
(2)

4424 = 55
2009Y

(0)
4424.

(6.113)

We now proceed according to our previously described bootstrap algorithm. In a first

step, we match the ansatz (6.101) for the minimal one-loop functions D(2)
~p against the

computed double-logs and impose the correct crossing symmetries for the correlators.

Secondly, we impose absence of unphysical poles at x = x̄ on the ansatz. In a third and

last step, we then impose the below-threshold OPE predictions.

The results for 〈3335〉 and 〈4424〉 can be obtained in the following instructive way.

We initially normalize both correlators in a way that the leading double-logs are the

same. After cancelling the unphysical poles, we still have one identical ansatz for both

correlators, which has six free coefficients. We now insist that the SCPW coefficients of

the ansatz at τ = 6 have the form (6.112), where we do not specify the values of Y
(0)
~p and

Y
(2)
~p yet. This constraint returns a one-parameter ansatz with one additional ambiguity.

We go back to the correct normalisations for the correlators, and we keep Y
(0)
~p as a free

parameter, isolating the tree-like function it multiplies. Then, we can write the minimal

one-loop functions in the form

D(2)
~p = N~p D′~p

(2)
+ 1

882Y
(0)
~p u2D4444, for ~p = 3335 and 4424, (6.114)

with N3335 = 135 and N4424 = 128. Because Y
(0)

3335 6= Y
(0)

4424, we ultimately find that

D(2)
3335 and D(2)

4424 are not proportional to each other. Differently from the degeneracy at

tree-level, the minimal one-loop functions are thus distinct.

The result for the 〈2244〉 correlator is more straightforward to obtain. In the window,

we have twist 4 and 6 predictions in the [0, 0, 0] representation, given by

M
(2)
2244;4,`,[0,0,0] =

X
(0)
2244

(`+ 1)(`+ 6)

((`+ 3)!)2

(2`+ 6)!
, (6.115)

M
(2)
2244;6,`,[0,0,0] =

Y
(0)

2244 + Y
(2)

2244(`+ 9
2)2

(`+ 1)(`+ 2)(`+ 7)(`+ 8)

((`+ 4)!)2

(2`+ 8)!
, (6.116)
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with predicted values,

X
(0)
2244 = −8× 1920, Y

(0)
2244 = 8× 176400, Y

(2)
2244 = 76

245Y
(0)

2244. (6.117)

In the other orientation of the correlator, 〈2424〉, the window is empty. The bootstrap

algorithm returns D(2)
2244 leaving only two ambiguities, in agreement with (6.108).

The minimal one-loop functions corresponding to 〈3335〉, 〈4424〉 and 〈2244〉 are given in

an ancillary file. For 〈3335〉 and 〈4424〉 we have only included D′~p
(2), see equation (6.114).

In all cases, we have fixed a particular value of the ambiguities and we have checked

that their SCPW coefficients have only finite spin support above the respective threshold

twists.

6.7.6 The 〈3333〉 Correlator

We continue to illustrate our bootstrap algorithm with the 〈3333〉 correlator. The so-

lutions for the polynomial coefficients h1, . . . h11, h�, hu, hv, h0 are listed in an attached

Mathematica notebook, where for simplicity the ancillary file contains D(2)
3333 with a

particular value of the ambiguities.

The 〈3333〉 correlator has degree of extremality κ3333 = 3 and it is fully crossing sym-

metric. The long sector decomposes into the three representations [0, 0, 0], [1, 0, 1] and

[0, 2, 0], with threshold twist τmax = 6. We start by obtaining the two-variable resum-

mations of the log2(u) discontinuities in the three channels. We then match the ansatz

against the computed double-logs in all channels and impose crossing symmetry. Sec-

ondly, we impose absence of x = x̄ poles on the ansatz, which leaves us with 20 free

parameters. Finally, we have to impose the OPE predictions in and below the window.

Since all the external charges are equal in this example, the window region is empty.

This implies that upon projecting the ansatz onto the log(u) stratum, we have to set

to zero the one-variable expansion up to order O(u3). On the other hand, the OPE

predictions below the window are non-trivial: in the singlet channel the unitary bound

lies at twist τ = 2, where no long supergravity states contribute since there are only

string states present at that twist. We thus have

L
(2)D
3333;2,`,[0,0,0] = 0. (6.118)

A non-trivial prediction comes in at twist τ = 4. Here there is only one double-trace

operator K22;4,`,[0,0,0] ∼ O2∂
`O2. Using (6.76) we thus get a prediction for L

(2)D
3333;4,`,[0,0,0]

and we find

L
(2)D
3333;4,`,[0,0,0] =

9× 4800

(`+ 1)(`+ 6)

((`+ 3)!)2

(2`+ 6)!

1 + (−1)`

2
. (6.119)

Performing the one-variable resummation of the above coefficients (6.119), i.e. perform-
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ing the sum of equation (6.78), we have

D(2)
3333

∣∣
[0,0,0], log0(u)

= 9
6!x2

x̄4

[
5(x̄− 2)x̄Li1(x̄) + 5

3(6− 6x̄+ x̄2)Li21(x̄)
]

+O(x3). (6.120)

In the [1, 0, 1] and [0, 2, 0] channels, the unitary bound is at twist τ = 4, and there

are no predictions descending from the long sectors at tree-level. Instead, this is the

first case where we need to consider the consequences of protected semi-short operators

through our formula (6.90), using the results for S4;`+2,[1] and S4;`+2 given in (B.16).

More precisely, there is an S4;`+2,[1] contribution to the [1, 0, 1] channel, which implies

L
(2)D
3333;4,`,[1,0,1] =

9× 576

(`+ 2)(`+ 5)

((`+ 3)!)2

(2`+ 6)!

1− (−1)`

2
, (6.121)

with corresponding one-variable resummation

D(2)
3333

∣∣
[1,0,1], log0(u)

= 9
6!x2

x̄4

[
3(x̄− 2)x̄+ (6− 6x̄+ 7

5 x̄
2)Li1(x̄) + 1

5(x̄− 2)x̄Li21(x̄)
]

+O(x3).

(6.122)

Similarly, in the [0, 2, 0] channel we have a contribution from S4,`+2,[0] which gives

L
(2)D
3333;4,`,[0,2,0] =

9× 288

(`+ 3)(`+ 4)

((`+ 3)!)2

(2`+ 6)!

1 + (−1)`

2
, (6.123)

with one-variable resummation

D(2)
3333

∣∣
[0,2,0], log0(u)

= 9
6!x2

x̄4

[
6
5 x̄

2 + 3
5(x̄− 2)x̄Li1(x̄) + 1

10 x̄
2Li21(x̄)

]
+O(x3). (6.124)

Note that there is an important logical distinction between L
(2)D
3333;4,`,[1,0,1] and L

(2)D
3333;4,`,[0,2,0]

we should highlight: in the [0, 2, 0] channel, the twist 4 contribution lies at the bottom

of multiplet recombination, in the sense that τ = 2a + b + 2 with b = 2 and a = 0.

This means that the corresponding SCPW coefficients do not get shifted by multiplet

recombination in another su(4) representation. In fact, our formula (6.90) makes ex-

plicit that there is no extra summation over a that needs to be taken into account.

This is not the case for the twist 4 contribution in the [1, 0, 1] channel, where instead

the SCPW coefficients receive a contribution due to multiplet recombination from twist

2 in the singlet channel. However, there is no S2;`+2,[0] contribution, and therefore

L
(2)D
3333;4,`,[1,0,1] = S4;`+2,[1] holds exactly.

Coming back to our ansatz, we match the resummations from the above equations (6.120),

(6.122) and (6.124). Recall that we had 20 free coefficients which were not fixed by im-

posing absence of unphysical poles at x = x̄. Now, after matching the OPE predictions

below the window, we are left with only two free coefficients, which are exactly the two

ambiguities described in (6.109). Upon inspection, their SCPW coefficients contribute

only to spin ` = 0 for twists above threshold.
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Lastly, one further example of even higher complexity, the 〈4444〉 correlator, is described

in Appendix D.

6.8 Generalised Tree-Level Mellin Amplitudes

In the previous sections, we argued that the one-loop function H(2)
~p admits the splitting

H(2)
~p = T (2)

~p +D(2)
~p , where the minimal one-loop function D(2)

~p encodes all the non-trivial

OPE predictions at order 1/N4, whereas T (2)
~p is a generalised tree-level function without

log2(u) contribution. The purpose of this section and our final task is to bootstrap T~p .

We define the generalised tree-level function T~p as the unique function within the ansatz

T~p =
P� φ

(1)(x, x̄)

(x− x̄)d~p+2
+

Pv log(v)

(x− x̄)d~p+1
+

1

vκ~p−1

[ Pu log(u)

(x− x̄)d~p+1
+

P1

(x− x̄)d~p−1

]
, (6.125)

such that:

(a) the threshold twist for the log(u) discontinuity is τ = τmax.

(b) the SCPW expansion below the window completely cancels the free theory contri-

butions as described in equations (6.87) and (6.88).

(c) there are no unphysical poles at x = x̄ in the ansatz (6.125).

The coefficient functions denoted by P are polynomials in x, x̄ and σ, τ . As functions of

the variables x and x̄, these polynomials have a Taylor expansion of the form xnx̄m with

m+ n ≤ p1 + p2 + p3 + p4. The function T~p is symmetric under x↔ x̄, and therefore a

given polynomial P has the same symmetry as the transcendental function it multiplies.

Note that the su(4) decomposition of T~p is the same as for the full dynamical function

H~p . Implementing condition (a) implies

P� = O(u−
p43
2

+
max{p1+p2, p3+p4}

2 ),

Pu = O(u−
p43
2

+
max{p1+p2, p3+p4}

2 ).
(6.126)

The above conditions in fact define a generalised tree-level function T~p which is exact

in N . We can define it in terms of the coefficients Akγ in front of each propagator

structure from equation (2.25), which we can leave completely arbitrary (in contrast to

the relations between them arising from imposing crossing symmetry). The polynomials

P in (6.125) then become functions of the free theory propagator coefficients, P =

P [{Akγ}], and the precise value of these Akγ does not affect any step of this algorithm.

Furthermore, the condition (b) is overconstraining, and therefore the solution we find is

unique, i.e. T~p is unique.
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Because of this uniqueness, we expect our function T~p to reduce to the known results

at tree-level, and we can take the propagator coefficients Akγ to take on their free theory

values. Indeed, when the external charges are equal, our conditions are precisely those

imposed in [43], and for arbitrary charges we expect to recover the tree-level correlators

H(1)
~p of Rastelli and Zhou [47]. Notice that in position space the function of [47] is

described by the same ansatz as in (6.125), except for the change d~p → d~p − 2. In fact,

we find that all polynomials P�,u,v,1[{Akγ}] non-trivially factor out an extra double-zero

(x − x̄)2 when we restrict the Akγ to their tree-level values, and T~p precisely reduces to

the tree-level correlators H(1)
~p when the coefficients Akγ are truncated to order 1/N2.

Restricted to tree-level, the free theory coefficients Aγ
∣∣
1/N2 are all proportional to

each other, and thus satisfy linear relations. Therefore, we can understand the tree-

level degeneration as the result of imposing these linear relations on the coefficients

P�,u,v,1[{Akγ}]. However, beyond order 1/N2, the non-planar values of the Akγ are not as

simple and the corresponding relations become non-linear.

Similarly to the tree-level functions H(1)
~p , the most transparent representation of T~p is

given in Mellin space. We thus define the corresponding Mellin amplitudes M[T~p ](s, t)

of the generalised tree-level functions similarly to that of the tree-level functions H(1)
~p .

In fact, all the generalised tree-level functions T~p , as defined by the above conditions (a),

(b) and (c), can be written in this form with a simple rational Mellin amplitude with

only simple poles. The specific form of M[T~p ], i.e. finiteness and rationality, translates

into the observation that the entire function T~p is determined uniquely in terms of the

coefficient P� in front of the one-loop box function. This can be understood from the fact

that the box function contains a log(u) log(v) term, which arises only from double-poles

in both s and t in the Mellin transform, and it turns out that this is entirely determined

in terms of the Mellin amplitude M[T~p ] and vice versa. In the following, we illustrate

the above discussions by explicitly considering the generalised tree-level amplitudes T~p
for next-to-next-to-extremal correlators and the case T3333. As a further example, T4444

is described in Appendix D.2.

6.8.1 Next-to-Next-to-Extremal Correlators

Next-to-next-to-extremal correlators have extremality κ~p = 2. As such, their free theory

correlators have a total of six propagator structures and their long sectors admit only

a single su(4) channel, namely the [0, p43, 0] representation. The definition of single-

particle states has two non-trivial consequences: firstly, as we have seen in Section 3.2,

the number of connected propagator structures actually reduces to three. Secondly, the

connected part of next-to-next-to-extremal correlators in the free theory is given by the
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exact formula,

〈p1p2p3p4〉free conn.

P~p
= p1p2p3p4 F~p (N2)×

[(
1 + p43+p21

2

)uτ
v

+
(
1 + p13+p42

2

)
uσ

+
(
1 + |p23+p14|

2

)u2στ

v

]
,

(6.127)

where F~p scales like N (p1+p2+p3+p4−4)/2 in the large N limit. For example, we have

F2244 = F3324 =

∏3
k=1(N2 − k2)

(N2 + 1)
, F3335 = F3524 =

∏4
k=1(N2 − k2)

N(N2 + 5)
,

F4424 =

∏3
k=1(N2 − k2)(N4 − 20N2 + 9)

N(N2 + 1)2
.

(6.128)

Thus, for next-to-next-to-extremal correlators, the non-planar result (6.127) is the fac-

torised product of the order 1/N2 connected free theory uplifted to all N by the factor

F~p (N2). It follows that the all N relative coefficients among the three propagator

structures is already captured by the order 1/N2 result, such thatM[T~p ] is simply pro-

portional to M(1,0)
~p as given by formula (3.33). Notice also that the factors F~p (N2)

manifestly vanish when the number of colours N is less than the charge of any of the

external operators. Both these statements would be false if we replaced our single-

particle operators Op with the corresponding bare single-trace one-half BPS operators,

i.e. dropping the multi-trace admixtures.

The particular structure of the connected free theory in (6.127) implies the following

exact relations on the SCPW coefficients,

Lf~p;p43+2,`,[0,p43,0] = F~p (N2)×
[
A[`+2]

∣∣
1
N2

]
,

Lf~p;τ>p43+2,`,[0,p43,0] = F~p (N2)× L(1)f
~p;τ,`,[0,p43,0].

(6.129)

Therefore, for the purpose of constructing generalised tree-level functions, the defining

condition (b) simply becomes

LT~p;p43+2,`,[0,p43,0] + F~p (N2)
[
A[`+2]

∣∣
1
N2

]
= 0, (6.130)

and by uniqueness we conclude that for next-to-next-to-extremal correlators the gener-

alised tree-level function T~p equals the supergravity tree-level result H(1)
~p multiplied by

the all N factor F~p (N2).

6.8.2 〈3333〉

Let us now consider a slightly more involved example: the 〈3333〉 correlator. The result

for the free theory correlator was previously given pictorially in (2.23). In terms of
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conformal and su(4) cross-ratios, its connected part reads

〈3333〉free conn.

g3
12g

3
34

=
9(N2 − 4)2(N2 − 1)

N2

[
18(N2 − 12)

(N2 − 4)

u2στ

v

+ 9
(
uσ +

uτ

v
+ u2σ2 +

u2τ2

v2
+
u3σ2τ

v2
+
u3στ2

v2

)]
.

(6.131)

Crossing invariance of the 〈3333〉 correlator restricts the total number of connected

coefficients {Ak2, Ak4, Ak6} in the generic sum over propagator structures (2.25) to only

two independent ones, and we have

A0
2 = A1

2 = A0
4 = A2

4 = A1
6 = A2

6 =
9

(N2 − 1)
A0

0, (6.132)

A1
4 =

18(N2 − 12)

(N2 − 4)(N2 − 1)
A0

0, (6.133)

with A0
0 = 9(N2−4)2(N2−1)2

N2 . The generalised tree-level function in Mellin space is given

by

T3333 = u3

∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ 5

]2M[T3333], (6.134)

with Mellin amplitude

M[T3333] = − 1

(s+ 2)(t+ 1)(s+ t+ 4)

[
A0

2 − 1
4(s+ 2)(A1

4 − 2A0
2)
]

− τ

(s+ 1)(t+ 2)(s+ t+ 4)

[
A0

2 − 1
4(t+ 2)(A1

4 − 2A0
2)
]

− σ

(s+ 1)(t+ 1)(s+ t+ 3)

[
A0

2 − 1
4(s+ t+ 3)(A1

4 − 2A0
2)
]
.

(6.135)

After a shift in the Mellin variables s and t, the Mellin amplitude M(1,0)
3333 of Rastelli

and Zhou would correspond only to the term multiplied by A0
2 in the above (6.135).

Indeed, the new contribution, proportional to (A1
4− 2A0

2), vanishes when we plug in the

relations (6.132) and (6.133) and expand to order 1/N2.

Lastly, the generalised tree-level correlator T4444 and some more comments about the

patterns in the Mellin amplitudes M[T~p ] can be found in Appendix D.2.



Chapter 7

One-Loop String Corrections

In this final chapter, we will discuss how to construct further string corrections to the

previously presented one-loop supergravity results. Recall that the tower of string cor-

rections descends from contact terms in the string theory effective action, leading to the

double expansion

H~p = a
(
H(1,0)
~p + λ−

3
2H(1,3)

~p + λ−
5
2H(1,5)

~p + λ−3H(1,6)
~p + λ−

7
2H(1,7)

~p + . . .
)

+ a2
(
λ

1
2H(2,−1)

~p +H(2,0)
~p + λ−

1
2H(2,1)

~p + λ−1H(2,2)
~p + λ−

3
2H(2,3)

~p + . . .
)

+O(a3).

(7.1)

While we have discussed the one-loop supergravity term H(2,0)
~p in the previous chapter,

we will now consider the tower of 1/λ corrections. In particular, we will focus on

the genuine one-loop contributions H(2,k)
~p with k ≥ 3, which are induced by the tree-

level terms H(1,3)
~p etc.1 These terms have been addressed before in Mellin space for

the simplest example, the 〈2222〉 correlator [128], and more recently generalised to the

〈22pp〉 family of correlators at order λ−
3
2 [10]. Here we will describe the structure

of the corresponding position space representation, and also provide new results both

in spacetime and in Mellin space for higher orders in the 1/λ expansion. We find

that, in some sense, the one-loop string corrections are simpler than the supergravity

term H(2,0)
~p , as the transcendental weight in the spacetime ansatz is actually lower:

the supergravity amplitudes require functions up to transcendental weight four, while

the string corrections (essentially due to the finite spin support of the string corrected

double-trace spectrum) require only weights up to three. On the other hand, we find

that we necessarily need a new ingredient, a weight-three function f (3) with a more

general set of singularities (or ‘letters’).

1Recall that the terms H(2,−1)
~p , H(2,1)

~p and H(2,2)
~p correspond to the genus-one modular completions

of the H(1,3)
~p , H(2,5)

~p and H(2,6)
~p terms, respectively. Some of those coefficients have been recently fixed by

supersymmetric localisation techniques, see references [104, 105]. The first genuine one-loop contribution

is then the order λ−
3
2 term H(2,3)

~p .

113
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For simplicity we will consider only the 〈2222〉 correlator, for which we do not need

to worry about any subtleties of below-threshold effects discussed at length in the last

chapter.2 Recall that due to the full crossing symmetry of this correlator, its dynamical

function H2222 obeys the crossing relations

H2222(u, v) =
1

v2
H2222(u/v, 1/v) =

u2

v2
H2222(v, u), (7.2)

which will enter as one of the constraints in our bootstrap algorithm described in the

following.

7.1 Bootstrap Method in Position Space

We begin by reviewing how to obtain the double discontinuity (i.e. the log2(u) part

of the correlator) from tree-level data only. In Section 7.1.2, this will then allow us to

pose a well-defined bootstrap problem, whose solution completely determines the one-

loop correlators H(2,k)
2222 from a given double discontinuity H(2,k)

2222 |log2(u), up to a finite

number of well understood ambiguities. Notably, a new ingredient enters our ansatz of

transcendental functions: it turns out that a certain function of transcendental weight

three with a new type of singularity has to be included. We describe this new ingredient

in Section 7.1.3.

7.1.1 Predicting the String Corrected Double-Log

Let us start by discussing the specific form of the double discontinuities which arise

in the 1/λ expansion at one-loop order. As is the case for the one-loop supergravity

correlators, the string corrected double discontinuity is fully determined by tree-level

data through the conformal block decomposition. More explicitly, we can compute the

log2(u) part of H(2,k)
2222 from spectral data at order a:

H(2,k)
2222 (x, x̄)

∣∣
log2(u)

=
∑

m+n=k

Dm|n(x, x̄), (7.3)

where for m 6= n we need to include the two identical contributions Dm|n and Dn|m,

which are defined through the SCPW expansion by

Dm|n(x, x̄) =
1

2

∑
t,`

t−1∑
i=1

(
C

(0)
22Kt,`,i

)2
η

(1,m)
i η

(1,n)
i

B(t+2,`)(x, x̄)

u2
, (7.4)

2See reference [10] for more details on how to deal with below-threshold predictions in the context of
one-loop string corrections, where the window region of 〈22pp〉 correlators is described in detail.
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where B(t,`) denotes the conformal block from equation (2.34), the η
(1,m)
i are (half) the

tree-level anomalous dimensions at order λ−
m
2 , and i labels the set of exchanged singlet

channel double-trace operators Kt,`,i, see (4.7).3 Recalling the double expansion (7.1),

the general structure of the 1/λ expansion at tree-level demands that the integers k,m, n

in the above equation are drawn from the set {0, 3} ∪ {5, 6, 7, 8 . . .}, with the constraint

m + n = k. Note that when k is large enough to accommodate for different partitions

into (m,n), we get more than one contribution to the double discontinuity at that order

in 1/λ.4 See also Table 7.1 for the first few one-loop terms in the 1/λ expansion.

We have discussed the general form of the supergravity double discontinuities in detail

in the previous chapter, and we have found that the two-variable resummation of D0|0

gives rise to transcendental functions of up to weight two. In contrast to the supergravity

case however, it turns out that the string corrected double discontinuities (Dm|n with

m,n 6= 0) resum into expressions of up to transcendental weight one only. The reason for

this is the spin truncation in the string corrected spectrum. To be explicit, the double

discontinuities Dm|n are of the general form

Dm|n(x, x̄) = u2

(
p
m|n
1 (x, x̄)

(x− x̄)q−1
+
p
m|n
2 (x, x̄)

(
log(1− x)− log(1− x̄)

)
(x− x̄)q

)
, (7.5)

where the denominator powers are given in term of q = 2(m + n) + 15 and p1, p2 are

symmetric polynomials in (x, x̄) of the same degree as their respective denominator.

This simple structure for the double discontinuities was already obtained in [120], and

we find complete agreement with their results by explicitly performing the sum (7.4) for

different cases.

Note that the double discontinuities have a symmetry under the 1 ↔ 2 crossing trans-

formation, which acts on the cross-ratios as x → x′ ≡ x/(x − 1), and similarly for x̄.

This symmetry is inherited from the full crossing symmetry of the 〈2222〉 correlator, and

is preserved by the s-channel OPE decomposition. As a formula, we have

Dm|n(x′, x̄′) = v2Dm|n(x, x̄). (7.6)

In the following, we provide an algorithm on how to uplift the double discontinuity Dm|n

to the corresponding fully crossing symmetric function H(2,k)
2222 (u, v).

3As outlined in Section 6.2, one can also obtain the SCPW coefficients of the leading double-log
through ‘squaring’ the SCPW coefficients tree-level correlators, without explicitly solving the double-
trace mixing-problem. This method simply extends to string corrected double discontinuities for the
〈2222〉 correlator at any given order in 1/λ, which can be obtained from the 〈22pp〉 family of correlators
up to that order (see e.g. [120] for an application of this complementary approach). In this case however,

since we have the precise form of the unmixed three-point functions C
(0)
22Kt,`,i

as well as the anomalous

dimensions, we prefer to explicitly perform the two-variable resummation of the sums (7.4).
4The first instance of this happens already for k = 6 at order λ−3, for which there are the two distinct

possibilities (m,n) = (0, 6) or (3, 3). These contributions correspond to the insertions of S|∂6R4 and
R4|R4 vertices, respectively.
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7.1.2 The Bootstrap Problem

In order to simplify the crossing transformations (7.2) of the interacting partH2222(u, v),

we introduce an auxiliary function F by

F(u, v) =
(x− x̄)4

u2
H2222(u, v), (7.7)

such that F(u, v) transforms without picking up any prefactors under crossing:

F(u, v) = F(u/v, 1/v) = F(v, u). (7.8)

Evidently, F inherits an analogous double expansion as H in (7.1). Guided by the

explicit form of the double discontinuities as given in (7.5), we propose the following

structure for the functions F (2,k) (k > 0):

F (2,k)(u, v) = A1(x, x̄)f (3)(x, x̄) +
(
A2(x, x̄) log(u)−A2(1− x, 1− x̄) log(v)

)
φ(1) (x, x̄)

+A3(x, x̄) log2(u) +A3

(x− 1

x
,
x̄− 1

x̄

)
log2

(u
v

)
+A3

( 1

1− x
,

1

1− x̄

)
log2(v)

+A4(x, x̄)φ(1) (x, x̄) +
(
A5(x, x̄) log(u) +A5(1− x, 1− x̄) log(v)

)
+A6(x, x̄).

(7.9)

The main new feature of this ansatz is the presence of f (3)(x, x̄), which is an anti-

symmetric single-valued function of transcendental weight three. As this function is

new in the context of AdS amplitudes, involving a new type of singularity compared

to the supergravity case, we will describe it in more detail in the next section (see also

Appendix E).

On the other hand, the function φ(1)(x, x̄) is the well-known one-loop massless box-

integral in four-dimensions, which we already encountered in the ansatz for the minimal

one-loop functions in Section 6.7. It is an antisymmetric weight-two function given by

φ(1)(x, x̄) = 2
(
Li2(x)− Li2(x̄)

)
+ log(u)

(
log(1− x)− log(1− x̄)

)
, (7.10)

and obeys the symmetries

φ(1)(x, x̄) = −φ(1)(x̄, x) = −φ(1)(1− x, 1− x̄) = −φ(1)(1/x, 1/x̄). (7.11)

Let us highlight the two main differences of the above ansatz (7.9) to the one-loop

supergravity case:

• The ansatz for F (2,k)(u, v) has maximal transcendental weight three, compared

to up to weight-four contributions in supergravity. This difference is ultimately

a consequence of the spin truncation of the string corrected spectrum. A trunca-

tion to finite spin produces resummed double discontinuities of the form depicted
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in (7.5), which has terms of maximal weight one. In contrast, the supergravity

spectrum has infinite spin support, resulting in up to weight-two contributions to

the corresponding double discontinuity.

• As mentioned before, the presence of the function f (3)(x, x̄) is a novelty in the

context of AdS amplitudes. However, one can already see from the structure of the

double discontinuities Dm|n that a new ingredient is required: as we will discuss

shortly, an ansatz with ladder functions only would enforce a structure on the

polynomial p
m|n
2 in Dm|n which is not observed from direct resummations. We are

therefore led to conclude that we need a new contribution in our ansatz, which we

denote by f (3)(x, x̄) and whose full characterisation we postpone to Section 7.1.3.

Finally, in order to ensure both the exchange symmetry x↔ x̄ as well as the full crossing

symmetries (7.8) of the ansatz F (2,k)(u, v), the coefficient functions Ai(x, x̄) obey the

following relations:

A1(x, x̄) = −A1(x̄, x), A1(x, x̄) = −A1

(
1

x
,

1

x̄

)
= −A1(1− x, 1− x̄),

A2(x, x̄) = −A2(x̄, x), A2(x, x̄) = −A2

(
x

x− 1
,

x̄

x̄− 1

)
,

A3(x, x̄) = A3(x̄, x), A3(x, x̄) = A3

(
1

x
,

1

x̄

)
,

A4(x, x̄) = −A4(x̄, x), A4(x, x̄) = −A4

(
1

x
,

1

x̄

)
= −A4(1− x, 1− x̄),

A5(x, x̄) = A5(x̄, x), A5(x, x̄) = A5

(
x

x− 1
,

x̄

x̄− 1

)
,

A6(x, x̄) = A6(x̄, x), A6(x, x̄) = A6

(
1

x
,

1

x̄

)
= A6(1− x, 1− x̄).

(7.12)

Additionally, each of the coefficients A2(x, x̄) and A5(x, x̄) obey one more constraint:

A2(x, x̄) +A2

(
1

1− x
,

1

1− x̄

)
−A2(1− x, 1− x̄) = 0,

A5(x, x̄) +A5

(
1

1− x
,

1

1− x̄

)
+A5(1− x, 1− x̄) = 0.

(7.13)

The above transformation properties as well as the form of the double discontinuities

constrain the coefficient functions to be of the general form

Ai(x, x̄) =
1

(x− x̄)d

d∑
r=0

d−r∑
s=0

a(i)
rs u

rvs, (7.14)

where d = 2k + 11 (d = 2k + 10) in case Ai is antisymmetric (symmetric) under x↔ x̄.

Recall the relation k = m+ n, where m, n label the double discontinuity Dm|n at order

λ−
k
2 . Note that the difference between the denominator powers d here and q in (7.5) is

due to the explicit (x− x̄)4 factor in the definition of F , according to equation (7.7).
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This completes the description of our ansatz for the one-loop string amplitudes F (2,k).

Next, we continue by describing the conditions we impose in order to constrain the free

parameters a
(i)
rs in the coefficient functions Ai(x, x̄).

Constraining the free parameters

In analogy with our bootstrap algorithm for one-loop supergravity correlators in position

space, there are two steps in constraining the free parameters a
(i)
rs in our ansatz:

1. Matching the double discontinuity:

The contribution of our ansatz (7.9) to the log2(u) term is given by

F (2,k)(u, v)
∣∣
log2(u)

=

(
−1

2
A1(x, x̄) +A2(x, x̄)

)(
log(1− x)− log(1− x̄)

)
+A3(x, x̄) +A3

(x− 1

x
,
x̄− 1

x̄

)
.

(7.15)

Matching this against the corresponding double discontinuity Dm|n fully fixes the

coefficient functions Ai(x, x̄) for i = 1, 2, 3.

It is a fact that the polynomials p
m|n
2 in the resummed double discontinuities do

not obey the first line of (7.13), and hence we require a non-zero contribution from

the new weight-three function f (3)(x, x̄) with coefficient A1(x, x̄).

2. Pole cancellation:

The ansatz for the function H(2,k)
2222 = u2

(x−x̄)4F (2,k) contains explicit denominator

factors, potentially giving rise to up to q = 2k + 15 poles at x = x̄. Demanding

that the full function H(2,k)
2222 is free from such unphysical poles is what we mean by

pole cancellation. Concretely, by imposing as many zeroes between the functions

in the numerator of F (2,k) as there are poles, we find further non-trivial constraints

amongst the remaining free parameters in A4(x, x̄), A5(x, x̄) and A6(x, x̄).

Carrying out the above two steps yields a definite answer for H(2,k)
2222 , and we are left with

only a small number of remaining free parameters. We call these functions which pass all

of the above constraints, and whose coefficients we therefore are not able to determine,

ambiguities.

By construction, the ambiguities do not contribute to the double discontinuity, are fully

crossing symmetric by themselves and free of unphysical poles.5 They are given by

(linear combinations of) D-functions with their (x− x̄) denominator power bounded by

the corresponding denominator in the ansatz for A4(x, x̄) in (7.14): d = 2k + 11. We

find that the ambiguities have finite spin support, and hence they are most conveniently

5Using the terminology from the previous chapter, we may call the ambiguities to be ‘tree-like’ in the
sense that they are of the form of D-functions.
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1/λ order corresponding supervertices 1
(x−x̄)q Namb `max

1 S|S 15 1 0

λ−
3
2 S|R4 21 4 4

λ−
5
2 S|∂4R4 25 7 6

λ−3 S|∂6R4, R4|R4 27 8 6

λ−
7
2 S|∂8R4 29 10 8

λ−4 S|∂10R4, R4|∂4R4 31 12 8

λ−
9
2 S|∂12R4, R4|∂6R4 33 14 10

λ−5 S|∂14R4, R4|∂8R4, ∂4R4|∂4R4 35 16 10

Table 7.1: List of one-loop terms in the 1/λ expansion and their corresponding vertices in the
effective string theory action, where S stands for an insertion of the supergravity anomalous
dimension. We give the denominator powers q = 2k + 15 of the spacetime functions H(2,k)

2222 ,
the total number of ambiguities Namb as well as their maximal spin support `max. Note that
in general there can be more than one term contributing to the same order in 1/λ, the first
occurrence of this being at order λ−3.

described in Mellin space because their Mellin amplitudes are only polynomial. We

therefore postpone the general discussion of ambiguities to Section 7.2.1, where we give

a full classification in terms of polynomial Mellin amplitudes. For now, we simply list

the total number of ambiguities and their maximal spin contributions `max for the first

couple of orders in the 1/λ expansion, see Table 7.1.

Results

Following the bootstrap algorithm outlined above, we explicitly computed the full one-

loop amplitudesH(2,3)
2222 andH(2,5)

2222 , as well as the contributions toH(2,6)
2222 , H(2,8)

2222 andH(2,10)
2222

which descend from the double discontinuities D3|3, D3|5 and D5|5, respectively. In all

cases the results are in agreement with the general patterns described in Table 7.1. For

the amplitudes H(2,k)
2222 with k = 3, 5, 6, we attach the corresponding lists of polynomials

Ai(x, x̄) in an ancillary Mathematica file.

From these position space results, one can then extract further subleading spectral data.

However, as a consequence of the degeneracy in the double-trace spectrum, this is pos-

sible only for the lowest twist contributions at twist τ = 4, where there is a single

operator. We computed the order a2λ−
3
2 and a2λ−

5
2 one-loop anomalous dimensions

η(2,3) and η(2,5) at twist four, finding agreement with the results of [100].

7.1.3 A New Ingredient: f (3)

In finding a suitable crossing symmetric function which matches the structure of the

double discontinuities Dm|n, we encountered the need to include the new function f (3),
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which is beyond the ladder class encountered in the one-loop supergravity results de-

scribed in Chapter 6. This new function is also single-valued in the same sense as the

ladder functions, e.g. φ(1)(x, x̄) given in equation (7.10), but involves a new singularity

(‘letter’) of the form x − x̄ not found in the ladder series. In fact, f (3) is the unique

single-valued antisymmetric function at weight 3 which involves this new type of singu-

larity. Together with the other functions in our general ansatz (7.9), which are given by

combinations of log’s and φ(1), the ansatz thus consists of a complete basis of functions

within the space of single-valued transcendental functions up to weight 3, built from the

set of letters {x, x̄, 1− x, 1− x̄, x− x̄}.

We may characterise f (3) by its total derivative,

df (3)(x, x̄) =
[
−2φ(1)(x, x̄) + 1

2 log2(v)− log(u) log(v)
]
d log x

+
[
−2φ(1)(x, x̄)− 1

2 log2(v) + log(u) log(v)
]
d log x̄

+
[
−2φ(1)(x, x̄)− 1

2 log2(u) + log(u) log(v)
]
d log(1− x)

+
[
−2φ(1)(x, x̄) + 1

2 log2(u)− log(u) log(v)
]
d log(1− x̄)

+
[
6φ(1)(x, x̄)

]
d log(x− x̄),

(7.16)

together with its symmetry property,

f (3)(x, x̄) = −f (3)(x̄, x) (7.17)

which implies f (3)(x, x) = 0. It also obeys antisymmetry under the crossing transforma-

tions

f (3)(1− x, 1− x̄) = −f (3)(x, x̄) = f (3)(1/x, 1/x̄) . (7.18)

Up to to adding a linear combination of single-valued HPLs it can be identified with the

weight-three function calledQ3 in [141]. Functions with the same type of singularities are

also needed in perturbation theory to describe the correlators of one-half BPS operators

at three-loop order [33, 35].

We may make the log(u)-discontinuities of f (3)(x, x̄) more transparent by writing

f (3)(x, x̄) = log2(u) f̃ (1)(x, x̄) + log(u) f̃ (2)(x, x̄) + f̃ (3)(x, x̄), (7.19)

where the f̃ (k) have no log(u)-discontinuities. Its double log(u)-discontinuity is given by

f̃ (1)(x, x̄) = −1

2

[
log(1− x)− log(1− x̄)

]
, (7.20)

as already indicated in equation (7.15). The single log(u)-discontinuity can also be
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simply integrated to obtain

f̃ (2)(x, x̄) = + 6 Li2

(
x̄− x
1− x

)
+ 2
(
Li2(x)− Li2(x̄)

)
+ 5

2 log2(1− x)− 3 log(1− x) log(1− x̄) + 1
2 log2(1− x̄).

(7.21)

The non-log term can be integrated in terms of hyperlogarithms (or Goncharov polylogs).

We discuss this further in Appendix E, where we also describe various techniques for

writing the function in a form suitable for comparison with the Mellin representations

of the one-loop string amplitudes, which we address in the next section.

7.2 Comparison with Mellin Space

In previous chapters we have argued that the Mellin space formalism has led to a wealth

of new results for tree-level correlators. As it turns out, the Mellin space representation

of the string corrected one-loop correlators H(2,k)
2222 is of a simple structure which we

will describe here. In particular, we will verify that our position space results are in

agreement with the Mellin amplitudes found in [128], and we furthermore provide a

number of new explicit Mellin amplitudes at higher orders in 1/λ.

Recall that the Mellin space amplitudeM2222(s, t) of the dynamical function H2222(u, v)

is defined by integral transform

H2222(u, v) =

∫ i∞

−i∞

ds

2

dt

2
u
s
2 v

t
2
−2 M2222(s, t) Γ2

(4− s
2

)
Γ2
(4− t

2

)
Γ2
(4− ũ

2

)
, (7.22)

which is a specialisation of the general formula (3.28). In this case, the Mellin vari-

ables s, t and ũ satisfy the constraint equation s + t + ũ = 4. In order to obey the

crossing transformations from equation (7.2), the Mellin amplitude M2222(s, t) has the

symmetries

M2222(s, t) =M2222(s, ũ) =M2222(t, s). (7.23)

Furthermore, the Mellin amplitude inherits the same strong coupling expansion from

H~p(u, v), see equation (7.1). Hence M~p (s, t) admits a double expansion of the form

M~p = a
(
M(1,0)

~p + λ−
3
2M(1,3)

~p + λ−
5
2M(1,5)

~p + . . .
)

+ a2
(
λ

1
2M(2,−1)

~p +M(2,0)
~p + λ−

1
2M(2,1)

~p + λ−1M(2,2)
~p + λ−

3
2M(2,3)

~p + . . .
)

+O(a3),

(7.24)

where the tree-level terms have been described in previous chapters. We will next give a

Mellin space description of the ambiguities which our position space bootstrap method

is not able to fix. We will then describe the general structure of the genuine one-loop
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Mellin amplitudes in the above expansion, providing a new result for M(2,5)
2222 and new

partial results at orders k = 8, 10.

7.2.1 One-Loop Ambiguities

Before discussing the structure of one-loop Mellin amplitudes, let us describe the ambi-

guities which are left unfixed by our bootstrap method. They are exactly of the form

of tree-level string amplitudes, which can be written in terms of a crossing symmetric

basis of monomials given by σp2σ
q
3, with σn ≡ sn + tn + ũn [77]. The only difference is an

overall shift in the large λ expansion: along with an additional factor of a = 1/(N2−1),

the 1/λ expansion at one-loop order is shifted by a power of λ2 compared to the tree-

level expansion. This results in a super-leading term at order a2λ
1
2 , see equation (7.24),

whose coefficient was fixed in [104].

As a consequence, at one-loop order a2λ−
k
2 , one finds contributions of monomials σp2σ

q
3

with 2p+ 3q ≤ k + 1, in comparison to 2p+ 3q ≤ k − 3 at tree-level. This allows us to

fully characterise the one-loop ambiguities which arise in the string corrected correlators

H(2,k). According to the counting mentioned above these ambiguities are enumerated

by pairs of integers (p, q) such that 2p+ 3q ≤ k+ 1. Thus we can parametrise the set of

ambiguities at any order λ−
k
2 by the sum∑

p,q≥0

′
α(k)
p,q σ

p
2σ

q
3, (7.25)

where the primed sum is over integers p and q such that 2p+ 3q ≤ k+ 1. We found that

the total number of ambiguities Namb(k) can be computed by expanding the generating

function

1

y(1− y)(1− y2)(1− y3)
− 1

y
=
∞∑
k=0

Namb(k) yk. (7.26)

For the first few orders in the 1/λ expansion, we give the total number of ambiguities

and their maximal spin support `max in Table 7.1.

7.2.2 One-Loop Mellin Amplitudes for String Corrections

Let us now turn our attention to the general structure of string corrected one-loop Mellin

amplitudesM(2,k)
2222 . For the genuine one-loop terms with k ≥ 3, the Mellin representation

was proposed to be of the form [128]

M(2,k)
2222 (s, t) =

∑
m+n=k

fm|n(s, t) ψ̃0

(
2− s

2

)
+ fm|n(t, s) ψ̃0

(
2− t

2

)
+ fm|n(ũ, t) ψ̃0

(
2− ũ

2

)
,

(7.27)
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with the constraint

fm|n(s, t) = fm|n(s, ũ), (7.28)

to ensure the crossing symmetries (7.23) of the full Mellin amplitude. Instead of using

the usual digamma function ψ0(w) as in [128], we define a shifted digamma function

ψ̃0(w) ≡ ψ0(w) + γE , such that the unphysical Euler-Mascheroni constant γE does not

appear in the position space representation after performing the Mellin integration of

the amplitudesM(2,k)
2222 (s, t). Note that for integer values n, ψ̃0(n) is then simply related

to the harmonic numbers by ψ̃0(n) = Hn−1.

In the above formula (7.27), the coefficient functions fm|n(s, t) are simply polynomials

in s and t. The order in s of this polynomial is bounded by m+ n+ 1, while the order

in t is determined by the maximal spin contribution `max of the corresponding double

discontinuity Dm|n, given by 6

D0|n : `max = 2

⌊
n− 3

2

⌋
,

Dm|n : `max = 2

⌊
min{m,n} − 3

2

⌋
.

(7.29)

By matching the computed double discontinuitiesD(0|3) andD(3|3) at orders λ−
3
2 and λ−3

against the Mellin space ansatz (7.27), one can determine the corresponding polynomials

fm|n(s, t) to be given by [128]

f0|3(s) = −16ζ3

(
63s4 − 644s3 + 2772s2 − 5776s+ 4800

)
, (7.30)

f3|3(s) = −1080ζ2
3

7

(
462s7 − 11627s6 + 134274s5 − 908180s4

+ 3841208s3 − 10071488s2 + 15053056s− 9838080
)
,

(7.31)

where we made the overall normalisations consistent with our conventions. Note that

both of the above amplitudes do not depend on t, in agreement with the spin truncation

of the R4 vertex to spin `max = 0. By explicitly performing the Mellin integration in a

series expansion around small (u, v), we have verified that the above Mellin amplitudes

are in agreement with our position space results obtained by the bootstrap approach

described in Section 7.1.2, thus confirming the appearance of the weight-three function

f (3)(x, x̄).

By making use of the order λ−
5
2 tree-level data, see references [5, 8, 100, 120], we

can furthermore provide some new results. For example, we can compute the double

6We have checked that our discussion on the orders of the polynomials fm|n(s, t) is in agreement with
the ‘basis of polynomial Mellin amplitudes’ described in [128].
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discontinuity D0|5, resulting in

f0|5(s, t) = −2ζ5

(
10890s6 + 45s5(11t− 4669) + 9s4(55t2 − 640t+ 204358)

− 4s3(945t2 − 7173t+ 2285717) + 36s2(377t2 − 2208t+ 745066)

− 16s(1575t2 − 7488t+ 2722522) + 576(33t2 − 132t+ 52682)
)
,

(7.32)

which in fact appears before the f3|3(s) contribution in the 1/λ expansion and is the

first case with non-trivial t-dependence. At order λ−4, we can similarly compute the

contribution

f3|5(s, t) = −90ζ3ζ5

(
28028s9 − 1075074s8 + 19321302s7 − 211238951s6

+ 1535536842s5 − 7645987076s4 + 25938244248s3

− 57543276224s2 + 75453134080s− 44400268800
)
,

(7.33)

and finally the order λ−5 contribution from D5|5 is given by

f5|5(s, t) = −45ζ2
5

22

(
57657600s11 + 30030s10(16t− 104093)

+ 12012s9(40t2 − 1445t+ 6689071)

− 572s8(26985t2 − 531356t+ 2242111079)

+ 22s7(11008816t2 − 151917584t+ 638025985123)

− 77s6(30823520t2 − 327881344t+ 1429188184721)

+ 14s5(1125229952t2 − 9688637728t+ 44851775822225)

− 28s4(2593858960t2 − 18612610496t+ 92780493961669)

+ 56s3(4118587328t2 − 25104138112t+ 135924547490919)

− 64s2(7551065200t2 − 39625690048t+ 234345782828097)

+ 256s(2355357312t2 − 10748615808t+ 69677906818663)

− 53760(6319936t2 − 25279744t+ 180000568369)
)
.

(7.34)

Note that the orders of the polynomials fm|n given above all fit into the general pattern

described earlier. Before concluding, let us mention once more that we checked agree-

ment between our position space results and the Mellin space amplitudes described here.

Such a comparison can be easily performed in a series expansion around small (u, v) by

using the explicit representation (E.9) of the function f (3)(x, x̄) which is suitable for this

expansion.
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7.3 Discussion and Outlook

In the final two chapters of this thesis, we have considered the problem of constructing

one-loop four-point amplitudes on AdS5×S5 at the level of supergravity and also its

first string corrections. Our results rely solely on imposing consistency with the OPE

to order 1/N4 on the dual CFT side.

In the supergravity case, we have first derived the one-loop corrections to the 〈2222〉 and

〈2233〉 correlators in terms of transcendental functions up to weight 4, from which we

extracted the one-loop anomalous dimensions of the unique twist 4 and 5 double-trace

operators. For higher twist operators, we expect mixing with triple-trace operators to

spoil predictability of the double-trace spectrum.7 Next, we have presented a general al-

gorithm for constructing one-loop correlators which works for arbitrary external charges.

This algorithm is based on extracting all relevant data from many tree-level correlators,

rearranging it into combinations which appear at one-loop and finally feeding this infor-

mation into an ansatz for the full one-loop function. The final result is then obtained

by demanding no unphysical poles at x = x̄. We have illustrated our algorithm for the

correlators 〈2244〉, 〈3335〉, 〈4424〉, 〈3333〉 and 〈4444〉, which we fix up to a finite number

of tree-like ambiguities given explicitly by equation (6.106). Recall that due to their at

most linear Mellin amplitudes, these ambiguities correspond to contact Witten diagrams

of effective ten-dimensional spin `10 = 0. They can be thought of as counterterms to

regulate the one-loop divergencies, and their values are ultimately fixed within string

theory. The only ambiguity whose value has been determined so far is the single am-

biguity of the 〈2222〉 correlator, which has been fixed by a supersymmetric localisation

computation [104], while the values of the ambiguities in other correlators still await to

be determined.

Recently, another method of reconstructing one-loop amplitudes from the double discon-

tinuity based on a dispersive inversion integral has been developed [131, 140, 143, 144],

and furthermore a systematic unitarity method for computing the double discontinuity

of AdS amplitudes has been proposed in [83, 85]. Note that in that context the term

‘double discontinuity’ has a broader meaning than used throughout this thesis: in ad-

dition to the double-log part (the log2(u) coefficient) it moreover includes terms which

are singular in v. As such, it also receives contributions from both the free theory and

from tree-level correlators, and in this way the ‘double discontinuity’ already encodes

the relevant information about the below-threshold OPE data. In principle, this method

provides a direct way to compute one-loop correlators from their double discontinuities

(in the broader sense). However, as it relies on the ability to solve highly complicated

dispersion integrals, explicit one-loop correlators have been computed with this method

only for simpler theories than the full N = 4 SYM. In contrast, our bootstrap program

7We believe that additional data in the form of higher-point correlation functions could remedy
this situation. The first five-point function in supergravity, the 〈22222〉 correlator, has been recently
computed in [142].
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starts with an explicit function in the first place, and the subsequent steps of the algo-

rithm implement the consistency of the OPE, fixing all free parameters up to the set of

ambiguities. Furthermore, since our algorithm begins by matching the predicted log2(u)

coefficient only, constraints from the below-threshold sector are not automatically taken

care of and are crucial to obtain the correct one-loop correlators. In particular, these

below-threshold predictions ultimately lift the tree-level degeneracy of the 〈3335〉 and

〈4424〉 correlators, which have the same log2(u) discontinuities but are distinguished at

one-loop because of different predictions in the window. Two further novel and notable

features of our algorithm are the natural splitting of the one-loop dynamical function

into two independent pieces, H(2)
~p = T (2)

~p +D(2)
~p , as well as the need of a proper under-

standing of multiplet recombination of semi-short operators at order 1/N4. Interestingly,

the problem of multiplet recombination can be solved within the free theory only, and it

is truly remarkable that these independent predictions are consistent with our one-loop

ansatz. As such, we find this is a non-trivial validation of the AdS/CFT correspondence

within the N = 4 bootstrap program.

We then addressed string corrections to the one-loop supergravity amplitude, focussing

on the 〈2222〉 correlator. As in the supergravity case, we use the knowledge of tree-level

data to predict the log2(u) discontinuity of the one-loop amplitude. Starting from an

ansatz of up to weight-three transcendental functions, we constrain the free parameters

by matching the computed double-log’s and cancellation of unphysical poles. While we

provide explicit results for the first few orders in the 1/λ expansion, we want to stress

that the form of our one-loop ansatz is in fact valid to all orders.8 As a consequence of

the spin truncated spectrum of the string corrections, the ansatz is built from functions

which are one degree lower in transcendentality compared to the supergravity case. On

the other hand, the weight-three function f (3) is required as a new ingredient in the

ansatz. This function involves a new type of logarithmic singularity, x − x̄, which is

not present in the supergravity case, and the appearance of this new letter provides a

first understanding of what type of functions will generally appear in loop amplitudes

of string theory on AdS.

Our explicit position space results complement the Mellin space approach of [128].

Therefore, at least for one-loop string corrections,9 the position and Mellin space repre-

sentations are essentially interchangeable by comparison of their small (x, x̃) and small

(u, v) expansions. Note that each of the two representations have their advantages and

disadvantages. For example, comparably simple structures emerge when considering

the string corrected one-loop amplitudes in Mellin space, whereas their position space

8The current restriction is the limited knowledge of higher order (in 1/λ) tree-level amplitudes, which

at the moment is limited to order λ−
5
2 . Recall that, due to mixing of double-trace operators, one needs

tree-level data from 〈22pp〉 correlators to construct the one-loop 〈2222〉 correlator.
9In the supergravity case, there are currently two different representations for the one-loop Mellin

amplitudes, which may turn out to be equivalent: the authors of [95, 128] propose an ansatz in terms of
an infinite double sum (which requires regularisation), whereas more recently a finite Mellin amplitude
was proposed in reference [129].
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equivalents turn out to be rather involved. Also, the connection to ten-dimensional

physics is given very directly in Mellin space through the flat space limit. On the other

hand, the ansatz of transcendental functions for the position space amplitudes makes

their singularity-structure very explicit, while this is quite obscure from the Mellin space

point of view. In particular, any analytic continuation or kinematic expansion (e.g. the

OPE) that one may wish to perform is straightforward from the spacetime representa-

tion.

In conclusion, the position space bootstrap algorithm for one-loop correlation functions

described in this thesis can be regarded as a proof of principle that it is possible to derive

explicit one-loop amplitudes on a curved space (here AdS5) and in a complicated theory

such as supergravity, where direct computations are extremely difficult if not currently

out of reach. This progress was only possible because of the remarkable AdS/CFT

duality, the simplicity of the supergravity spectrum and moreover the power of CFT

techniques which made it possible to tackle the strong coupling regime of N = 4 SYM

theory. While it is too early to ask about the implications for the full theory of quantum

gravity, we nevertheless provide an understanding of the general analytic structure of

quantum corrections to supergravity, at least to one-loop order. It would be very inter-

esting to try to go beyond one-loop amplitudes and explore the possibility of extending

our bootstrap program to higher loops. In particular, from the structure of the leading

logarithmic discontinuity of the two-loop correlator (the log3(u) part, which is predicted

from tree-level data) it seems plausible that the set of singularities found so far, namely

{x, x̄, 1 − x, 1 − x̄} for the supergravity case and {x, x̄, 1 − x, 1 − x̄, x − x̄} for string

corrections, is sufficient for the description of the two-loop amplitude.10 It remains to

be seen whether our methods will provide enough constraints to fix the entire amplitude,

since starting from two-loops we expect also triple-trace operators to contribute to the

SCPW decomposition. Future directions also include a further detailed investigation of

the Mellin space representation of our supergravity one-loop functions, building on the

previous works [95, 128, 129].

Furthermore, our results for the double-trace anomalous dimensions have unexpectedly

motivated the discovery of a new ten-dimensional symmetry of the tree-level supergravity

amplitudes [112], which manifests itself in the partial residual degeneracy of the super-

gravity spectrum. Although this symmetry is broken by the tree-level string corrections

beyond order λ−
3
2 , its breaking is controlled by the effective ten-dimensional spin `10,

which also dictates the stepwise lifting of the residual degeneracy in the spectrum. In-

spired by the flat space Virasoro-Shapiro amplitude, the order by order investigation of

the string corrections might pave the way for the construction of the full tree-level string

theory amplitude on AdS5×S5.

Finally, the wealth of new results for tree-level supergravity correlators in other back-

10A first step towards exploring the leading-log discontinuity at higher loop orders in supergravity has
been recently taken in [145, 146].
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grounds, e.g. 10d supergravity on AdS3×S3 [52, 113, 114, 147, 148] and 11d supergravity

on AdS7×S4 [49, 53], can be used to study the spectrum of anomalous dimensions in

those theories. Furthermore, these results open up the avenue for the construction of one-

loop amplitude using similar techniques as we described here for the case of AdS5×S5.

For example, various first steps have already been taken in the case of M-theory on

AdS7×S4, dual to the 6d (2,0) theory: some aspects of the anomalous dimensions have

been studied in [149, 150], string corrections have been addressed in [122, 151] and finally

the first one-loop correction has been computed in [152]. We hope to extend the great

success of our bootstrap program in AdS5 to those other cases in the future.



Appendix A

Superconformal Blocks

Here we give the explicit definition of the superblocks S~p;γ,λ, which are defined by a

determinantal formula following [92]. Let us introduce first the function

Fαβγλ = (−1)p+1 (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)

(x− x̄)(y − ȳ)
det

(
FXλ R

Kλ F Y

)
, (A.1)

where the determinant is taken on the (p+ 2)× (p+ 2) matrices (with p = min{α, β})
given by

(FXλ )ij =
(

[x
λj−j
i 2F1(λj + 1− j + α, λj + 1− j + β; 2λj + 2− 2j + γ;xi)]

)
1≤i≤2, 1≤j≤p

,

(F Y )ij =
(

(yj)
i−1

2F1(i− α, i− β; 2i− γ; yj)
)

1≤i≤p, 1≤j≤2
,

(Kλ)ij =
(
− δi; j−λj

)
1≤i≤p, 1≤j≤p

, (A.2)

(R)ij =
(

1
xi−yj

)
1≤i≤2 ,1≤j≤2

.

The brackets in the definition of FXλ mean deletion of the singular terms in the Taylor

expansion in xi around xi = 0 when λj < j, and we have defined here xi = (x, x̄)

yj = (y, ȳ) in the matrix. With this at hand, the semi-short, quarter and one-half BPS

superblocks are given by the formula

Sp1p2p3p4

~p;γ,λ = P~p
(
xx̄

yȳ

)1
2 (γ−p4+p3)

Fαβγλ , with

 α = 1
2(γ − p1 + p2),

β = 1
2(γ + p3 − p4),

(A.3)

where the prefactor P~p is that of equation (2.18).
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Appendix B

Multiplet Recombination

The purpose of this appendix is to settle a task left undone in Section 2.5: to explain how

to properly disentangle physical semi-short contributions from the SCPW coefficients of

the free theory and to find the short coefficients S[λ,1µ]. We will approach this problem

in an 1/N expansion around the large N limit, where the leading contributions come

from the disconnected part of the free theory correlator. Let us note that separating

the short coefficients S from the long coefficients L at the unitary bound is actually

straightforward to order 1/N2. In particular, we will show that apart from the case

S~p;γ,[λ,1µ] with γ = min{p1 + p2, p3 + p4}, i.e when τ = τmin, all other coefficients

S~p;γ,[λ,1µ] vanish. Thus the values of L will be trivially fixed by multiplet recombination.

This special feature at O(1/N2) has lead various people to the assumption that the

same would be true for all N , see [153] for a discussion on this point. However, beyond

O(1/N2) the separation of coefficients S from L is a non-trivial problem.

We will now show how to solve this problem to O(1/N4) and determine the genuine semi-

short sector of the single-particle correlators 〈p1p2p3p4〉 in the full interacting theory,

using only the free theory correlators and knowledge about the form of the semi-short

operators. In particular, we provide formulae for all SCPW coefficients – split according

to operators which remain short in the interacting theory and those which are long – in

terms of the free theory coefficients A~p;γ,λ defined in equation (2.39).

Recall that for long blocks at the unitary bound τ = 2a + b + 2 we need to resolve the

ambiguity which follows from a reducibility condition (i.e. that a long SCPW is a sum

of two semi-short SCPWs), which we repeat here for convenience:

L~p;~τ = S~p;τ,[`+2,1a] + S~p;τ+2,[`+1,1a+1], for τ = 2a+ b+ 2 . (B.1)

Comparing the two pieces of the SCPW expansion (2.41), and equating the coefficient
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of S~p;τ,[`+2,1a] using (B.1) yields

A~p;τ,[`+2,1a] = S~p;τ,[`+2,1a] + Lf~p,~τ + Lf~p;τ−2,`+1,[a−1,b,a−1], for τ = 2a+ b+ 2 . (B.2)

One of the key points allowing us to resolve the ambiguity at the unitarity bound is the

following (already tacitly assumed in (2.41)) statement: a long operator at the unitarity

bound necessarily has twist less than τmin = min{p1 + p2, p3 + p4}, i.e. Lf~p;~τ = 0 if

τ = 2a+b+2 ≥ τmin. This is a non-perturbative statement and a non-trivial consequence

of superconformal symmetry for the corresponding three-point functions [154, 155].

This fact allows us to use equation (B.2) to determine the SCPW coefficients of semi-

short operators of twist τmin = min{p1 + p2, p3 + p4} in terms of lower twist coefficients

S~p;τ,[`+2,1a] = A~p;τ,[`+2,1a] − L
f
~p;τ−2,`+1,[a−1,b,a−1], for τ = 2a+b+2 = τmin, a ≥ 1

S~p;τ,[`+2] = A~p;τ,[`+2], for τ = b+2 = τmin.
(B.3)

It is useful to understand the 1/N expansion1 of S~p;τmin,[`+2,1a] first, since it will play

a role in our later formulas. Referring to Figure 6.1, when τmin = 2a + b + 2 the two

lines coincide, i.e. the lower dashed line sits on top of the middle dashed line, and thus

we find that S~p;τmin,[`+2,1a] in (B.3) is non trivial at O(1/N2). In particular, it gets a

contribution from leading order connected propagator structures. In the special case of

the 〈ppqq〉 correlators, τmin = τmax and the free theory starts with an O(1) contribution

from disconnected diagrams. For all su(4) channels [a, b, a] such that τmin = 2a+ b+ 2

we find then that all three dashed lines of Figure 6.1 coincide and S~p;τmax,[`+2,1a] indeed

has an O(1) contribution from disconnected free theory diagrams.

What about CPW coefficients of semi-short operators of twist less than τmin? Semi-

short operators generically will sit in the range of twists τ ≤ min{p1 + p2, p3 + p4},
therefore at the bottom dashed line in Figure 6.1, i.e. below the window. It follows that

the corresponding SCPW coefficient is O(1/N4),

S~p;τ,[`+2,1a] = O(1/N4), for τ = 2a+ b+ 2 < τmin. (B.4)

This is the well known statement that at O(1/N2) there are no semi-short operators

in the spectrum below the window, which implies a cancellation between free theory

and the interacting part. Using this information we can solve for S~p;τmin,[`+2,1a] in (B.3)

and for Lf~p;~τ in (B.2) explicitly up to order 1/N2. First we solve (B.2) recursively, thus

obtaining the long SCPW coefficients

Lf~p;~τ =

a∑
k=0

(−1)kA~p;τ−2k,[`+2+k,1a−k] +O(1/N4), for τ = 2a+ b+ 2 < τmin. (B.5)

1Note that here and below, ‘order 1/Nk’, really means N
1
2

(p1+p2+p3+p4)O(1/Nk) because we have
not normalised our external operators.
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Then, we plug this result into equation (B.3) to give the genuine semi-short coefficients

at threshold,

S~p;τ,[`+2,1a] =
a∑
k=0

(−1)kA~p;τ−2k,[`+2+k,1a−k] +O(1/N4), τ = 2a+ b+ 2 = τmin. (B.6)

Note that when a = 0, we correctly obtain S~p;τ,[`+2] given above in (B.3).

Now, can we determine the 1/N4 SCPW coefficients of semi-short operators of twist less

than τmin? The answer is affirmative. We first need to use some non-trivial information

about the spectrum of semi-short operators, and then we can determine these SCPW

coefficients unambiguously by combining data from many different correlators.

The key point here is that we know the explicit form of the double-trace semi-short

operators – or more importantly the number of them. They are twist τ , spin ` operators

in the [a, b, a] representation of the form

Oqq̃;~τ = Oq∂`Oq̃ |[a,b,a], (B.7)

with τ = q+ q̃ = 2a+ b+ 2. For fixed twist and su(4) representation we can enumerate

the independent operators as

qr = a+ 1 + r, q̃r = a+ 1 + b− r, with r = δa,0, . . . , µ−1, (B.8)

where

µ ≡


⌊
b+2

2

⌋
a+ ` even,⌊

b+1
2

⌋
a+ ` odd.

(B.9)

Unlike the case of long operators (discussed in Section 3.3.2), semi-short operators receive

no anomalous dimension. The operators enumerated in (B.8) are therefore degenerate

and we may directly choose the Oqq̃ from (B.7) as our basis. The SCPW coefficients of

such operators are then expressed in terms of the products of three-point couplings,

S~p;τ,[`+2,1a] =
∑
r,s

Cp1p2(Oqr q̃r)(M−1)rsCp3p4(Oqsq̃s), (B.10)

where M is the matrix of two-point functions (which is diagonal at leading order in large

N),

Mrs = 〈Oqr q̃rOqsq̃s〉 = Yr δrs +O(1/N2). (B.11)

We also recall the fact that the only couplings with a leading order contribution in the

large N expansion are the ones of the form Cpq(Opq). From this it follows that at leading
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order in large N we have a diagonal structure for the following three-point couplings,

Cqr q̃r(Oqsq̃s) = Xr δrs +O(1/N2). (B.12)

With this information at hand, we can now predict the SCPW coefficients of semi-short

operators S~p;τ,[`+2,1a] of twist τ < τmin in terms of SCPW coefficients with τ = τmin,

which in turn are known from equation (B.6). Finally, the general formula for S~p;τ,[`+2,1a],

correct up to and including order 1/N4, is given by

S~p;τ,[`+2,1a] =

µ−1∑
r=0

Sp1p2qr q̃rSqr q̃rp3p4

Sqr q̃rqr q̃r
+O(1/N6), for τ = 2a+ b+ 2 < τmin. (B.13)

For simplicity, we have omitted the labels τ and [` + 2, 1a] in the SCPW coefficients

on the RHS above. The two factors in the numerator of the above equation are both

O(1/N2), whereas the factor in the denominator is of leading order in large N , and thus

the RHS is O(1/N4) as we stated already in (B.4). The formula (B.13) may be proven

by simply using (B.10) on both sides and then using (B.12) and (B.11) on the RHS to

cancel the denominator.

Lastly, with equation (B.13) at hand, we can improve Lf~p;~τ in (B.5) and S~p;τmin,[`+2,1a]

in (B.6) up to order 1/N4. The results are

Lf~p;~τ =

a∑
k=0

(−1)kA~p;τ−2k,[`+2+k,1a−k] −
a∑
k=0

(−1)kS~p;τ−2k,[`+2+k,1a−k] +O(1/N6), (B.14)

for twists τ = 2a+ b+ 2 < τmin, and

S~p;τ,[`+2,1a] =
a∑
k=0

(−1)kA~p;τ−2k,[`+2+k,1a−k] −
a∑
k=1

(−1)kS~p;τ−2k,[`+2+k,1a−k] +O(1/N6),

(B.15)

when τ = 2a+ b+ 2 = τmin.

In summary, all SCPW coefficients of 〈p1p2p3p4〉short and 〈p1p2p3p4〉long from equa-

tion (2.41) have been obtained to order O(1/N4) and therefore we have successfully

split the free theory correlators into a protected contribution and an unprotected one.

In general, we can not go further in the 1/N expansion since to do so would require

input from triple-trace (and higher multi-trace) operators.

Let us conclude this section by illustrating our formulas (B.13) and (B.15) for the semi-

short sectors of the 〈3333〉 correlator, which has been already examined in detail in [92],

and the 〈4444〉 correlator, which is a new case.

In the case of 〈3333〉, we have below threshold semi-short predictions for twists τ = 2

and 4. This semi-short sector is special because no multi-trace mixing occurs in the large
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N expansion and therefore we can give formulas which are exact in N . Very explicitly,

we find that

S
〈3333〉
2,[λ] = 0,

S
〈3333〉
4,[`+2] =

(
S
〈2233〉
4,[λ]

)2
S
〈2222〉
4,[λ]

=
288((`+ 3)!)2

(2`+ 6)!((`+ 3)(`+ 4) + 4
(N2−1)

)

A0
0

(N2 − 1)
,

S
〈3333〉
4,[`+2,1] =

(
S
〈2233〉
4,[λ,1]

)2
S
〈2222〉
4,[λ,1]

=
576((`+ 3)!)2

(2`+ 6)!((`+ 2)(`+ 5)− 12
(N2−1)

)

A0
0

(N2 − 1)
,

(B.16)

where A0
0 = (3(N2−1)(N2−4)/N)2. The structure of the SCPW coefficients of operators

at threshold, i.e. at twist 6, follows straightforwardly from equation (B.15):

S6,[λ] = A6,[λ],

S6,[λ,1] = A6,[λ,1] −A4,[λ+1] + S4,[λ+1],

S6,[λ,1,1] = A6,[λ,1,1] −A4,[λ+1,1] +A2,[λ+2] + S4,[λ+1,1].

(B.17)

In the case of the 〈4444〉 correlator, we have predictions for twists τ = 2, 4 and 6. The

computations at twist 2 and twist 4 are analogous to the case of 〈3333〉. We find

S
〈4444〉
2,[λ] = 0,

S
〈4444〉
4,[`+2] =

16× 1152

(`+ 3)(`+ 4)

((`+ 3)!)2

(2`+ 6)!

1 + (−1)`

2

1

N4
,

S
〈4444〉
4,[`+2,1] =

6× 1600

(`+ 2)(`+ 5)

((`+ 3)!)2

(2`+ 6)!

1− (−1)`

2

1

N4
.

(B.18)

The twist 6 results are new and given by

S
〈4444〉
6,[`+2] =

16× 384(29 + 3(2`+ 9)2)

(`+ 3)(`+ 6)

(`+ 4)!2

(2`+ 8)!

1 + (−1)`

2

1

N4
,

S
〈4444〉
6,[`+2,1] =

16× 72(401 + 174(2`+ 9)2 + (2`+ 9)4)

(`+ 2)(`+ 4)(`+ 5)(`+ 7)

(`+ 4)!2

(2`+ 8)!

1− (−1)`

2

1

N4
,

S
〈4444〉
6,[`+2,1,1] =

16× 2400(`+ 2)(`+ 7)

(`+ 3)(`+ 6)

(`+ 4)!2

(2`+ 8)!

1 + (−1)`

2

1

N4
.

(B.19)

We insisted on the correlators 〈3333〉 and 〈4444〉 as examples since these two correlators

capture generic features of our discussion about the semi-short sector, and furthermore

because they are investigated in Section 6.7.6 and Appendix D, respectively, where we

explicitly construct their one-loop completions. This underlines the importance of the

information from the semi-short sector for our one-loop bootstrap program.





Appendix C

Connected Free Theory at Order

1/N2

We quote a formula for connected free theory at order 1/N2, of a generic four-point

function 〈p1p2p3p4〉free in the free field theory. The same formula is described in a

different notation in [112].

Each propagator structure in free theory is labelled by monomials of the form P~p σi−jτ j

where i, j belong to the set T = {(i, j) | 0 ≤ i ≤ κ~p, 0 ≤ j ≤ i}, and the bound κ~p is

precisely the degree of extremality. The lattice of points described by T is schematically

depicted in Figure C.1 below.

τ
#

︷
︸︸

︷

σ#

︸ ︷︷ ︸
Figure C.1: The set of monomials σi−jτ j in a free field theory correlator.

We shall distinguish the three edges from the interior. Vertices at the intersection of the

edges correspond to disconnected diagrams (when they exist according to our definition

of single-particle states). In [4] we determined the value of the connected propagator
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structure

〈p1p2p3p4〉free

P~p
⊃ p1p2p3p4

N2

(
1 + p43+p21

2

) uτ
v
. (C.1)

Comparing to the diagram of T in Figure C.1, the above contribution corresponds to

the coefficient associated to the point (1, 1) on the diagonal edge of the triangle. By

crossing on the other edges we find

〈p1p2p3p4〉free

P~p
⊃ p1p2p3p4

N2

[(
1 + p43+p21

2

) t−1∑
k=1

(uτ
v

)k
+
(
1 + p13+p42

2

) t−1∑
k=1

(uσ)k

+
(
1 + |p23+p14

2 |
) t−1∑
k=1

(uσ)k
(uτ
v

)t+1−k ]
.

(C.2)

By including the propagator structures in the interior of T we finally obtain the general

formula

〈p1p2p3p4〉free

P~p
=
p1p2p3p4

N2

[(
1 + p43+p21

2

) t−1∑
k=1

(uτ
v

)k
+
(
1 + p43−p21

2

) t−1∑
k=1

(uσ)k

+
(
1 + |p1+p2−p3−p4

2 |
) t−1∑
k=1

(uσ)k
(uτ
v

)t+1−k

+ 2
∑

(n1,n2)∈T\edges

(uσ)n1

(uτ
v

)n2
]
,

(C.3)

where the double-sum in the last line is over the interior of the set T (without the edges).



Appendix D

The 〈4444〉 Correlator at

One-Loop

In this appendix we describe the construction of the minimal one-loop function for the

〈4444〉 correlator, as well as the generalised tree-level amplitude T4444.

D.1 The Minimal One-Loop Function for 〈4444〉

The final example we study in detail is the 〈4444〉 correlator. The solution of our

bootstrap problem for D(2)
4444, given in the basis (6.101) and for simplicity with particular

values of the ambiguities, is appended in an ancillary file.

This correlator is again fully crossing symmetric and has degree of extremality 4, which

results in the long sector containing a total of six su(4) channels: [0, 0, 0], [1, 0, 1], [0, 2, 0]

and [2, 0, 2], [1, 2, 1], [0, 4, 0]. In this example, the threshold twist is τmax = 8. After

obtaining the two-variable resummations of the leading log2(u) discontinuities for all

channels, we then initiate our algorithm: we match our ansatz against the double-

logs, impose crossing symmetry and absence of x = x̄ poles. Lastly, we consider the

OPE predictions in and below the window. With the window being empty for this

correlator, we project the ansatz onto the log(u) stratum and we set to zero the one-

variable expansions up to order O(u4). Instead, in the below-window region we find

non-trivial physics. For the representations [0, 0, 0], [1, 0, 1] and [0, 2, 0], the discussion is

similar to the twist 4 case for the 〈3333〉 correlator, and continues at twist 6 by including

predictions coming from the long sector at tree-level. On the other hand, for the [2, 0, 2],

[1, 2, 1] and [0, 4, 0] channels we will have to consider non-trivial multiplet recombination,

taking into account the predictions arising from the semi-short sector. Let us proceed

channel by channel in the following.

In the singlet channel, there is an empty twist 2 sector, whereas the 1/N2 subleading
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three-point couplings C
(1)
44;4,`,[0,0,0] and C

(1)
44;6,`,[0,0,0] give rise to non-trivial predictions for

twists 4 and 6. Recall that there are two double-trace operators at twist 6, and therefore

the twist 6 computation yields a vector of three-point functions. Using (6.76), we find

L
(2)D
4444;2,`,[0,0,0] = 0, (D.1)

L
(2)D
4444;4,`,[0,0,0] =

16× 4800

(`+ 1)(`+ 6)

((`+ 3)!)2

(2`+ 6)!

1 + (−1)`

2
, (D.2)

L
(2)D
4444;6,`,[0,0,0] =

16× 360(2`+ 9)2(119 + (2`+ 9)2)

(`+ 1)(`+ 2)(`+ 7)(`+ 8)

((`+ 4)!)2

(2`+ 8)!

1 + (−1)`

2
. (D.3)

The corresponding one-variable resummation yields

D(2)
4444

∣∣
[0,0,0], log0(u)

= 16 · 6!

[
x2

x̄4

(
5(x̄− 2)x̄Li1(x̄) + 5

3(6− 6x̄+ x̄2)Li21(x̄)
)

+
x3

x̄5

(
(3440− 5590x̄+ 7484

3 x̄2 − 244x̄3)Li21(x̄)

− x̄(1230− 1210x̄+ 211x̄2)Li1(x̄)

− 300x̄(6− 6x̄+ x̄2)Li2(x̄)

+ x̄2(x̄− 2)
(

4x̄2

x̄−1 + 205
))]

+O(x4).

(D.4)

In the channels [1, 0, 1] and [0, 2, 0], there are twist 4 predictions coming from semi-short

operators at the unitarity bound, similarly to the case of 〈3333〉. In particular, there

is an S4;`+2,[1] contribution to the [1, 0, 1] channel and an S4;`+2,[0] to [0, 2, 0], computed

in (B.18). In addition we have 1/N2 three-point couplings C
(1)
44;6,`,[1,0,1] and C

(1)
44;6,`,[0,2,0]

which give predictions at twist 6. Note that this is the first twist available for a long

operator in the [0, 2, 0] representation, but there is doubling of operators, i.e. µ = 2.

The list of results for the [1, 0, 1] representation reads

L
(2)D
4444;4,`,[1,0,1] =

16× 1600

(`+ 2)(`+ 5)

((`+ 3)!)2

(2`+ 6)!

1− (−1)`

2
, (D.5)

L
(2)D
4444;6,`,[1,0,1] =

16× 7200(`+ 1)(`+ 8)

(`+ 3)(`+ 6)

((`+ 4)!)2

(2`+ 8)!

1− (−1)`

2
, (D.6)

with one-variable resummation

D(2)
4444

∣∣
[1,0,1], log0(u)

= 16 · 526!
32

[
x2

x̄4

(
3(x̄− 2)x̄+ (6− 6x̄+ 7

5 x̄
2)Li1(x̄) + 1

5(x̄− 2)x̄Li21(x̄)
)

+
x3

x̄5

(
1
10(4− 176x̄+ 87x̄2)x̄Li21(x̄) + 2

5(4 + 4x̄− 3x̄2)x̄Li2(x̄)

+ 16
75(746− 766x̄+ 201x̄2)x̄Li1(x̄) + 9(x̄−2)x̄4

5(x̄−1)

+ 4
75(1527x̄− 3014)x̄2

)]
+O(x4).

(D.7)
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The list of results in the [0, 2, 0] channels reads

L
(2)D
4444;4,`,[0,2,0] =

16× 1152

(`+ 3)(`+ 4)

((`+ 3)!)2

(2`+ 6)!

1 + (−1)`

2
, (D.8)

L
(2)D
4444;6,`,[0,2,0] =

16× 864(40817 + 16702(2`+ 9)2 + 81(2`+ 9)4)

80(`+ 1)(`+ 4)(`+ 5)(`+ 8)

((`+ 4)!)2

(2`+ 8)!

1 + (−1)`

2
,

(D.9)

with one-variable resummation

D(2)
4444

∣∣
[0,2,0], log0(u)

= 16 · 226!

[
x2

x̄4

(
6
5 x̄

2 + 3
5(x̄− 2)x̄Li1(x̄) + 1

10 x̄
2Li21(x̄)

)
+
x3

x̄5

(
1
25(164640− 246960x̄+ 98794x̄2 − 8667x̄3)Li21(x̄)

− 3
5(11358− 11342x̄+ 1981x̄2)x̄Li1(x̄)− 72x̄3Li2(x̄)

+ 3
5(382− 175x̄) + 243(x̄−2)x̄2

25(x̄−1)

)]
+O(x4).

(D.10)

Finally we arrive at the representations [2, 0, 2], [1, 2, 1] and [0, 4, 0]. The unitarity bound

for all these representations is at twist 6, and the semi-short predictions can be found

in equation (B.19). Note that in the [0, 4, 0] channel, twist 6 lies at the bottom of the

multiplet recombination, since τ = 2a + b + 2 with b = 4 and a = 0. The prediction

for L
(2)D
4444;6,`,[0,4,0] is thus straightforward. The predictions for the [1, 2, 1] and [2, 0, 2]

channels involve further shifts, which we now describe. From equation (6.90) we find

L
(2)D
4444;6,`,[0,4,0] = −S4444;6,`+2;[0], (D.11)

L
(2)D
4444;6,`,[1,2,1] = +S4444;6,`+2;[1] − S4444;4,`+3;[0], , (D.12)

L
(2)D
4444;6,`,[2,0,2] = −S4444;6,`+2;[2] + S4444;4,`+3;[1], (D.13)

where in the last line we already implemented the absence of S4444;2,`+2;[0]. Note that

equations (D.12) and (D.13) correctly include the shifts due to multiplet recombination

at twist 4 in the [0, 2, 0] and [1, 0, 1] channels, respectively. Let us give the explicit

expressions here below.

In the [0, 4, 0] representation, we find

L
(2)H
4444;6,`,[0,4,0] =

16× 384(29 + 3(2`+ 9)2)

(`+ 3)(`+ 6)

(`+ 4)!2

(2`+ 8)!

1 + (−1)`

2
, (D.14)

with resummation

D(2)
4444

∣∣
[0,4,0], log0(u)

= 16 · 226!

[
x3

x̄5

((
208− 16x̄2

5(x̄−1) + 112
15 Li21(x̄)

)
(2− x̄)x̄2

− 16
3 (78− 78x̄+ 17x̄2)x̄Li1(x̄)

)]
+O(x4).

(D.15)
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The results in the [2, 0, 2] channel read

L
(2)D
4444;6,`,[2,0,2] =

16× 200
(
−83 + 3(2`+ 9)2

)
(`+ 3)(`+ 6)

(`+ 4)!2

(2`+ 8)!

1 + (−1)`

2
, (D.16)

and

D(2)
4444

∣∣
[2,0,2], log0(u)

= 16 · 6!

[
x3

x̄5

((
25
3 + 5x̄2

3(x̄−1) + 35
9 Li21(x̄)

)
(x̄− 2)x̄2

+ 5
9(30− 30x̄+ 13x̄2)Li1(x̄)

)]
+O(x4).

(D.17)

Lastly, for the [1, 2, 1] representation we have

L
(2)D
4444;6,`,[1,2,1] =

16× 72(3 + (2`+ 9)2)(167 + (2`+ 9)2)

(`+ 2)(`+ 4)(`+ 5)(`+ 7)

(`+ 4)!2

(2`+ 8)!

1− (−1)`

2
, (D.18)

and its one-variable resummation gives

D(2)
4444

∣∣
[1,2,1], log0(u)

= 16 · 6!

[
x3

x̄5

(
−
(
2184− 3276x̄+ 7104

5 x̄2 − 822
5 x̄3)Li1(x̄)

+ 14
5 (48− 48x̄+ 7x̄2)Li21(x̄) + 1874

5 x̄3

+ 4x̄3(2−2x̄+x̄2)
5(x̄−1) − 2184x̄(x̄− 1)

)]
+O(x4).

(D.19)

Incredibly, all these predictions are consistent with the minimal one-loop ansatz (6.101)

and uniquely fix the remaining coefficients, leaving only four unfixed parameters. These

are precisely the four ambiguities from equations (6.110) and (6.111), which have once

again only spin ` = 0 support for above-threshold twists.

D.2 Generalised Tree-Level Amplitude for 〈4444〉

Lastly, let us describe the generalised tree-level amplitude for this more complex exam-

ple. There are in total 3 + 12 propagator structures in the free theory, where the first

three are disconnected and not relevant here. The result for the connected part is given

by

〈4444〉free conn.

g4
12g

4
34

=
16(N2 − 9)2(N2 − 4)2(N2 − 1)2

(N2 + 1)2

[
16

N2−1

(
uσ +

uτ

v
+ u3σ3 +

u3τ3

v3
+
u4σ3τ

v
+
u4στ3

v3

)
+ 8
(

27
N2(N2−9)

+ 9
N2+1

− 7N2+4
(N2−4)(N2−1)

)(
u2σ2 +

u2τ2

v2
+
u4σ2τ2

v2

)
+ 16

(
54

N2(N2−9)
+ 18

N2+1
− 16N2+25

(N2−4)(N2−1)

)(u2στ

v
+
u3σ2τ

v
+
u3στ2

v2

)]
.

(D.20)
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Written as a sum over propagator structures as in (2.25), the connected part of the free

theory correlator is constrained by crossing symmetry to have only three independent

classes:

A0
2 = A1

2 = A0
6 = A1

6 = A1
8 = A3

8 =
16

N2 − 1
,

A0
4 = A2

4 = A2
8 = 8

(
27

N2(N2−9)
+ 9

N2+1
− 7N2+4

(N2−4)(N2−1)

)
,

A1
6 = A2

6 = A1
4 = 16

(
54

N2(N2−9)
+ 18

N2+1
− 16N2+25

(N2−4)(N2−1)

)
,

(D.21)

from which we pick {A0
2, A

0
4, A

1
6} as the set of independent coefficients.

The generalised tree-level function T4444 can be conveniently written in terms of just

two independent functions, F and F̃ , in the following way:

T4444 =
1

u2

[
F(u, v) + σ2u6F(1/v, u/v) +

τ2u6

v6
F(v, u)

]
+

1

u2

[
στ F̃(u, v) +

σu6

v6
F̃(v, u) + τu6F̃(1/v, u/v)

]
,

(D.22)

where both F and F̃ are invariant under the crossing transformation (u, v)→ (u/v, 1/v).

Given the Mellin transform

T4444 = u4

∮
usvt Γ[−s]2Γ[−t]2Γ

[
s+ t+ 6

]2M[T4444], (D.23)

with

M[T4444] = m1
4444 + σ2mσ2

4444 + τ2mτ2

4444 + στ mστ
4444 + σmσ

4444 + τ mτ
4444, (D.24)

we will specify m1
4444(s, t) and mστ

4444(s, t), which are the Mellin transforms of F and F̃ ,

respectively. One can then reconstruct M[T4444] by using symmetries, analogously to

equation (D.22).

The Mellin transforms of F and F̃ are

m1
4444 = − A0

2
(s+3)(t+1)(s+t+5) −

L1
4444

2(s+2)(t+1)(s+t+5) −
L1

4444+L2
4444(s+1)

6(s+1)(t+1)(s+t+5) ,

mστ
4444 = − A0

2
(s+1)(t+2)(s+t+4) +

L1
4444

2(s+1)(t+1)(s+t+4) +
L1

4444
2(s+1)(t+2)(s+t+5)

− L1
4444(s+3)

3(s+1)(t+1)(s+t+5) −
L1

4444−L2
4444+(2L1

4444−L2
4444)(s+1)

3(s+1)(t+2)(s+t+4) ,

(D.25)

where

L1
4444 = A0

2 −A0
4, L2

4444 = 3
2A

0
2 −A0

4 − 1
4A

1
6. (D.26)
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Finally, the other coefficients are determined by the crossing relations

mσ
4444(s, t) = mστ

4444(t, s), mτ
4444(s, t) = mστ

4444(−s− t− 6, s),

mτ2

4444(s, t) = m1
4444(t, s), mσ2

4444(s, t) = m1
4444(−s− t− 6, s).

(D.27)

The terms in m1
4444 and mστ

4444 which are proportional to A0
2 correspond precisely to the

supergravity tree-level amplitude M(1,0)
4444 of Rastelli and Zhou. Note that the combina-

tions L
i=1,2
4444 in (D.26) vanish at order 1/N2.

In conclusion, let us highlight some new features of M[T4444] beyond tree-level. Recall

that the supergravity result from [47, 48] can be obtained by considering an ansatz in

Mellin space such that each monomial σiτ j is accompanied by a single pole in the (s, t)-

plane. In comparison, the generalised tree-level amplitude has more structure than this.

In particular, poles like (s+ 2)(t+ 1) and (s+ 1)(t+ 1), corresponding to powers of u2

and u3 in the small u expansion, and therefore corresponding to allowed twists below

the window, are also turned on. We see now that their residue is proportional to the

linear constraints L
i=1,2
4444 , which indeed vanish at order 1/N2. We also notice that by

writing each pole in the form 1
(s+n1)(t+n2)(s+t+n3) with integers ni=1,2,3, the numerator

is at most linear in s and t. Therefore, we infer that the limit s→ βs and t→ βt with

large β scales like 1/β2, i.e. one more power than the 1/β3 scaling of the supergravity

tree-level functions M(1,0)
~p given in (3.33).

The case of M[T4444] exemplifies well what is the general pattern of M[T~p ] in Mellin

space. In fact, we expect M[T~p ] to be a rational function in which all allowed poles in

the (s, t)-plane are turned on, eventually decorated by a non-trivial numerator, which is

nevertheless constrained by the large s and t behaviour. Similarly to our position space

algorithm, the free coefficients in this ansatz will be fixed by demanding that the SCPW

expansion in the below-window region completely cancels the free theory contributions

as described in equations (6.87) and (6.88).



Appendix E

Analytic Properties of f (3)(x, x̄)

The purpose of this appendix is to give more details on the structure of the function f (3)

which makes an appearance in the one-loop string amplitudes. We recall that its total

derivative is defined in equation (7.16). By successively stripping off the leading log(u)

discontinuity we arrive at the form (7.19), with f̃ (1) obtained very simply and with the

total derivative of f̃ (2) obtained in the form

df̃ (2)(x, x̄) = −
[
2 log(1− x)

]
d log(x)

+
[
2 log(1− x̄)

]
d log(x̄)

−
[
log(1− x)− 3 log(1− x̄)

]
d log(1− x)

+
[
log(1− x̄)− 3 log(1− x)

]
d log(1− x̄)

+
[
6 log(1− x)− 6 log(1− x̄)

]
d log(x− x̄).

(E.1)

The form (7.21) agrees with the above and obeys f̃ (2)(x, x) = 0, as it should by anti-

symmetry. Finally, we obtain the total derivative of f̃ (3) in the form

df̃ (3)(x, x̄) =
[
−4(Li2(x)− Li2(x̄)) + 1

2 log2(v)− f̃ (2)(x, x̄)
]
d log(x)

+
[
−4(Li2(x)− Li2(x̄))− 1

2 log2(v)− f̃ (2)(x, x̄)
]
d log(x̄)

+
[
−4(Li2(x)− Li2(x̄))

]
d log(1− x)

+
[
−4(Li2(x)− Li2(x̄))

]
d log(1− x̄)

+
[
12(Li2(x)− Li2(x̄))

]
d log(x− x̄).

(E.2)

We can easily integrate this in a form suitable for expansion in small x and x̄. However,

for comparison with the Mellin space representation it is more convenient to make the

change of variables x̃ = 1− x̄, so that

u = x(1− x̃), v = x̃(1− x). (E.3)
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Then the small x and x̃ expansion can easily be compared to a small u and v expansion

as obtained from Mellin space. To this end we first pull (E.2) back to the line x = 0,

df̃ (3)(0, x̄) =
[
−12Li2(x̄)− log2(1− x̄)

]
d log(x̄) +

[
4 Li2(x̄)

]
d log(1− x̄). (E.4)

This can then be easily integrated in terms of weight three harmonic polylogarithms [156]

with the condition that f̃ (3)(0, 0) = 0:

f̃ (3)(0, x̄) = −12H3(x̄)− 4H1,2(x̄)− 2H2,1(x̄). (E.5)

Performing our change of variables from x̄ to x̃ = 1− x̄, we have in the small x̃ expansion

f̃ (3)(0, 1− x̃) = −6ζ3 + 4ζ2 log(x̃) +O(x̃). (E.6)

Now using

φ(1)(x, 1− x̃) =− log(u) log(v)− 2
[
Li1(x) log(u) + Li1(x̃) log(v)

]
− 2
[
ζ2 + Li1(x)Li1(x̃)− Li2(x)− Li2(x̃)

]
,

(E.7)

we may write

df (3)(x, 1− x̃) =
[
−2φ(1)(x, 1− x̃) + 1

2 log2(v)− log(u) log(v)
]
d log(x)

+
[
−2φ(1)(x, 1− x̃)− 1

2 log2(v) + log(u) log(v)
]
d log(1− x̃)

+
[
−2φ(1)(x, 1− x̃)− 1

2 log2(u) + log(u) log(v)
]
d log(1− x)

+
[
−2φ(1)(x, 1− x̃) + 1

2 log2(u)− log(u) log(v)
]
d log(x̃)

+
[
6φ(1)(x, 1− x̃)

]
d log(1− x− x̃).

(E.8)

We can then make manifest all the logarithmic singularities in log(u) and log(v) as

follows,

f (3)(x, 1− x̃) = 1
2 log2(u) log(v) + 1

2 log(u) log2(v)− log2(u) log(1− x)− log2(v) log(1− x̃)

+ log(u) log(v)
[
2 log(1− x) + 2 log(1− x̃)− 6 log(1− x− x̃)

]
(E.9)

+ log(u) g(2)(x, x̃) + log(v) g(2)(x̃, x) + 6g(3)(x, x̃),

where the function g(2) can be expressed as

g(2)(x, x̃) = 4ζ2 + 2 Li2(x) + 2 Li2(x̃)− 6 Li2

( x̃

1− x

)
− 2 log(1− x) log

(1− x)3(1− x̃)

(1− x− x̃)6
.

(E.10)

To write a formula for g(3) it is helpful to use hyperlogarithms Gw(t) which depend on

a word w = a1a2 . . . an in letters ai and a variable t. The function whose word is just a
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string of n zeros is a power of log(t),

G0n(t) =
1

n!
logn(t). (E.11)

The other functions are defined recursively,

Gaw(t) =

∫ t

0

ds

s− a
Gw(s). (E.12)

Using these hyperlogarithms we can write an expression for g(3) by integrating the total

derivative and fixing the term proportional to ζ3 from (E.6),

g(3)(x, x̃) = G1(x̃)G0,1(x)− 2G1−x(x̃)G0,1(x)− 2G1(x̃)G1,1(x)

+G1(x)G1,1(x̃)− 2G1(x)G1,1−x(x̃)− 2G1(x)G1−x,1(x̃)

+G0,0,1(x) +G0,0,1(x̃)− 2G0,1,1(x) +G0,1,1(x̃)−G0,1,1−x(x̃)

− 2G0,1−x,1(x̃)− 2G1,0,1(x) +G1,0,1(x̃)−G1,0,1−x(x̃)

− 2G1−x,0,1(x̃)− 2ζ2 log(1− x− x̃)− ζ3.

(E.13)

Although it is not manifest from the above formula, g(3) is symmetric, i.e. g(3)(x, x̃) =

g(3)(x̃, x). The apparent asymmetry is simply due to a choice of the contour of integration

(first in the x direction, then the x̃ direction).
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