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Abstract

This report shall serve as an introductory background to SotonAr-
ray, the microphone array system at the University of Southampton.
It covers the practical aspects only; namely the instrumentation setup
and the beamforming software. It aims to give a basic level of un-
derstanding of the system to the researcher who wants to use it, and
especially to highlight both the capabilities and limitations of the sys-
tem. Since the microphone array system is a new capability for the
Aerodynamics and Flight Mechanics research group (AFM), the hard-
ware and software is constantly being upgraded, and the details given
here are correct only at the time of going to print.
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1 Introduction

Carrying out acoustic measurements in closed-section hard-walled wind tun-
nels is a challenging task, given the nature of the measuring environment.
Three major problems need to be addressed, namely the air flow creating
turbulence over the microphone diaphragms, high background noise levels
generated by the fan and the flow over the wind tunnel boundaries, and the
hard walls giving rise to image noise sources. In most cases single microphone
measurements can only be used to extract a very limited set of data. On the
other hand an array of microphones can be used to yield useful information
by making it act as a spatially-selective filter.1 In this way a qualitative data
set can be obtained to aid in source localisation; however accurate absolute
levels are still not achievable. This is because of simplifying assumptions

1This processing technique is commonly referred to as beamforming.
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in the beamforming analysis. Further limitations inherent in this process-
ing technique include a poor resolution at low frequencies (typically below
1 kHz), and spatial noise at high frequencies.2

A microphone array system can be split up into hardware and software.
The hardware is what actually measures the acoustic information and records
it into a readily-accessible digital format. The software part involves the post
processing of the measured data in order to obtain spatial noise distribution
plots. The following sections will present a breakdown of the constituent
parts of the system.

2 Microphone Array Hardware

Figure 1 shows a pictorial overview of a typical microphone array system.
The array of microphones A is installed in the wind tunnel, typically flush-
mounted in one of the walls of the test section. Signal conditioning occurs at
the preamplifiers B, and the measured analog data is then converted to digital
(C) and stored in a computer where post-processing is performed. In the
following sections these four main stages are described in more detail. A more
detailed schematic of the present array system at the School of Engineering
Sciences (SES) can be found in Appendix A.

2.1 Microphone Array

2.1.1 Microphones

Traditionally, instrumentation-grade Type 1 condenser microphones from
manufacturers such as Brüel and Kjær, Gras and PCB have been the pri-
mary choice for microphone array measurements. However the cost of these
microphones is significant, and is often the limiting factor when deciding the
channel-count of a particular system. It has been shown that arrays built
using electret microphones (such as the Panasonic WM-61A/B), or MEMS
microphones give similar results (within their operating frequency ranges3)
as arrays employing instrumentation microphones[2], whereas their cost is
around three orders of magnitude less. However in critical applications in-
strumentation microphones are still recommended (the cheaper microphones
are more prone to errors and drift with changes in temperature, pressure and
humidity). 1/4′′ or 1/8′′ instrumentation microphones should in theory also
be used when the frequency of interest is higher than 20 kHz, for example

2For further details please refer to ref. [1].
3Typically up to 20 kHz for the electrets and 10 kHz for MEMS, as in 2005.
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when testing very small scale models, although in Ref. [3] it has been shown
that the cheaper electret microphones can potentially be used at frequencies
up to 48 kHz.

Currently aeroacoustic measurements within SES are carried out using
the Panasonic WM-61A electret microphones, which is also used extensively
at the Institute of Sound and Vibration (ISVR). The microphone cartridges
can either be fixed permanently in the array board, or mounted in plastic
tubes to form a more rugged assembly. Each microphone is normally wired
to an SMB female connector to facilitate replacements of either microphone
or cables.

2.1.2 Array Design

The choice of the microphones’ placement is often more important than the
choice of the microphones themselves. For current beamforming techniques,
the performance of the array is measured by the array resolution and average
sidelobe levels. The resolution of an array is a measure of the finite size of
a point source as it appears on a beamforming plot, and determines the
closest distance to which two sources can be resolved. It is a function of
aperture size, frequency and distance from the model. Array resolution at low
frequencies is usually the determining factor for the array’s aperture, i.e. the
longest dimension encompassing all the sensors. In the high frequency range,
spatial aliasing determines the inter-sensor spacing. If using a regularly-
arranged array (e.g. square), the inter-sensor spacing has to be less than half
the wavelength of the highest frequency of interest. In practice this is not
practical, and aperiodic design arrays[4] are used. In such arrays microphone
placement is chosen in such a way that the vector spacing between any two
microphones is not repeated, and thus the adverse effects of spatial aliasing
do not add up. These kind of arrays are still prone to random sidelobes
(also known as phantom images), the levels of which increase with increasing
frequency. High sidelobe levels, which can be comparable to the levels of the
actual sources, make it difficult to interpret a beamforming plot.

In a closed-section wind tunnel, the microphone array has to be flush-
mounted in a boundary section. This subjects the microphones to large
hydrodynamic forces due to the turbulent boundary layer. At NASA, ar-
rays are recessed behind a stretched Kevlar sheet; this setup drastically
reduces the influence of the boundary layer noise at the lower end of the
spectrum (< 10 kHz). However, complex resonances are introduced in the
array’s response.[5]

Currently there are a number of microphone arrays in use in the SES
wind tunnels, all based on the principle of a multi-arm logarithmic spiral.
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An odd-number of sensors is placed on a number of concentric circles. The
location of the microphones is determined by a log-spiral intersecting these
circles. The original array design, which can accommodate up to 63 sensors,
has an aperture of 0.7m, giving a resolution of approx. 1.6 λ for a scan plane
parallel to the array and at a perpendicular distance of 1m from it. A porous
cloth is attached to the surface of the array to smoothen the flow over the
microphones.

Currently work is going on to design and build an array with a larger
aperture and channel count. Furthermore, research is underway to explore
the real benefits and implications of array recessing.

2.2 Microphone Cabling

In the existing arrays, each microphone is connected using an individual coax-
ial RG174 cable; this allows each signal to be individually screened. Cable
labelling is of utmost importance, especially in higher channel count systems.
Cables can also be grouped together to facilitate assembly/disassembly and
troubleshooting.

2.3 Microphone Preamplifiers

Signals from a microphone capsule tend to be very weak, and the signal-
to-noise ratio can be significantly compromised when using long cable runs.
Instrumentation microphones normally have their own proprietary pream-
plifiers which are designed to attach physically to the capsule itself; these
in turn have to be supplied with a fixed voltage or current. Electret micro-
phones are much more flexible in terms of powering, and typically can operate
with any voltage between 2 - 12V. An external preamplifier is therefore re-
quired to supply this voltage and amplify the incoming signal. In most cases
a variable gain preamplifier is the best choice because the signal level can
be maximised to improve the signal-to-noise ratio. Another important fea-
ture is a high-pass filter, since the signals from flush-mounted microphones
are dominated by low-frequency boundary layer noise, which is not useful
for the measurements. An overload indicator also helps to avoid acquiring
corrupted data.

A set of preamplifiers have recently been commissioned specifically for
use in wind tunnel aeroacoustic applications. They have been designed for
an ultra-wide frequency response (20 - 80,000Hz), a large dynamic range
(0 - 40 dB gain in 10 dB steps) and a user-selectable high-pass filter. The
preamplifiers are assembled as two channels on one PCB, with one overload
indicator per PCB. The variable gain and frequency cut-off controls are linked
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to groups of 16 channels. A total of 64 channels are housed in one 6U 19”
rack case. In order to facilitate wiring up, input and output connectors are
in the form of 32-pin EDAC block connectors, which means that each block
connector accommodates 16 channels.

An investigation of the performance of these preamplifiers as been car-
ried out, an it was shown that these preamps do have a very wide frequency
response. Furthermore their response is repeatable across the different chan-
nels, which means that preamp channels can be swapped without influencing
the results. Further details can be found in Ref. [3].

Another set of preamplifiers which are occasionally used for microphone
array measurements are owned by ISVR. These come as 2U 19” rack cases
housing 33 channels each. Each channel has its own input and output connec-
tors, gain control and overload indicator. Input connectors are 6-pin LEMOs
whilst output connectors are BNC (see Appendix A).

2.4 Data Acquisition cabling

Cabling from microphone preamps to data acquisition is very similar to mi-
crophone cabling, i.e. individual coaxial RG174 cable. Once again, the
importance of proper cable labelling cannot be over-stressed, especially in
higher channel count systems. Cables can be grouped together to facilitate
assembly/disassembly and troubleshooting. The end connectors depend on
the particular equipment they are attached to (see Appendix A).

2.5 Data Acquisition, Storage and Processing

2.5.1 Data Acquisition

The analog data from the preamplifiers has to be converted to digital prior
to post-processing: this step is referred to as data acquisition. An important
prerequisite for phased array measurements is that all channels have to be
simultaneously sampled, since the technique relies on phase deviations in the
microphone signals. This can be a very demanding requirement when you
consider that typically microphone arrays consist of over hundred channels.
The analog-to-digital converters must also have a large dynamic range to cope
with the large differences between low frequency and high frequency noise,
and 24-bit analog to digital converters (ADCs) are recommended. The com-
bination of high-resolution ADCs, high channel count, high sampling rates
(to capture information at the higher frequencies) and relatively long sam-
ple durations (to improve data accuracy through averaging) means that the
system has to handle a large data throughput. Furthermore array require-
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ments tend to change with time, so the system has to be modular for future
upgradeability.

There are very few data acquisition systems that can satisfy such de-
manding applications, one of which is the Dynamic Signal Acquisition (DSA)
family of products by National Instruments. The system is based on a chassis
housing various input/output cards interfaced by the PXI bus. These cards
can be controlled either by an embedded controller housed in the same PXI
chassis, or by an external PC through a software-transparent link. There
are two choices for multi-channel DSA cards: a four-channel PXI-4462 and
an eight-channel PXI-4472. The 4462 has 4 BNC terminals, 24bit, 118dB
dynamic range, sample rates up to 2048 ksamples/s, ± 316mV to 42.4V
variable input range; the 4472 has 8 SMB (male) terminals, 24bit, 110dB dy-
namic range, sample rates up to 102.4kSamples/s (i.e. up to 45 kHz alias-free
bandwidth), ± 10V fixed input range.

To date, SES owns one 18-slot and two 8-slot PXI-chassis, and a mixture
of PXI-4472 and PXI-4462 DSA cards. Due to the nature of the synchroni-
sation signals issued by the hardware,4 the maximum number of 8-channel
cards which can be synchronised in one 18-slot chassis is fourteen (i.e. cards
in slots 2 to 15), which gives a total of 112 channels. If a higher channel
count system is desirable, two or more PXI chassis have to be synchronised
together. This is done by placing a timing card in Slot 2 of each chassis,
and wiring them in such a way that the oversample clock, SYNC and start
triggers are routed from master to slave chassis. For further details how this
is accomplished, please see Ref. [8].

National instruments hardware can be directly controlled using Labview
software, a graphical based programming language. The latest versions of
Labview and DAQmx (the device drivers) have simplified significantly the
way how hardware is initialised and controlled. For example, to synchronise
any number of channels in one PXI chassis, it is sufficient to specify the
desired channels in one task; the drivers then take care of the routing of all
timing and synchronisation pulses. Therefore, if there are seven PXI-4472
cards in one chassis, named5 ’PXI1Slot2 ’, ’PXI1Slot3 ’, ... ’PXI1Slot8 ’, and
we want to use all eight channels on each card, the Physical Channels entry
would be

{PXI1Slot2/ai0:7,PXI1Slot3/ai0:7,

4PXI-4472 cards can only be synchronised by routing an oversample clock through the
PXI STAR line.[6] On the other hand PXI-4462 cards can also be synchronised through
the CLK IO line,[7] and any number of cards in one chassis can be synchronised.

5To check the name assigned to each card, just click browse and it will list all the
channels available in that chassis.
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PXI1Slot4/ai0:7,PXI1Slot5/ai0:7,

PXI1Slot6/ai0:7,PXI1Slot7/ai0:7,

PXI1Slot8/ai0:7}

where ai0:7 stands for analog inputs 0 to 7.
The latest version of data acquisition software for microphone arrays is

called Initialise and Acquire, version 2. This program allows the user to select
the required input channels and specify the desired sample rate fs, block size
K and total number of blocks N . When the program is run, all channels
are synchronised and a block-mode6 acquisition is performed. Each block
is dumped to disk in binary format before the next block is read from the
buffer. Acquiring data to RAM is not recommended for high channel count
systems when using a 32-bit PC, due to the large amounts of data involved.
Streaming to disk in binary format is a fairly efficient procedure, provided
the file is kept open and a fast internal hard drive is used.

Binary data in Labview is written as double precision IEEE floating point
with big-endian byte ordering and 64 bit long data type. The raw data is
transposed [i.e. channel number in first dimension and sample number in
second dimension]. A sample Matlab code to read the Labview binary file
and prepare the data for the SotonArray software would be:

fid = fopen(‘filepath\filename.bin’,‘r’,‘s’);

RawData = fread(fid,[M,K*N],‘*double‘);

RawData = RawData’;

fclose(fid);

A separate Labview program which allows two or more PXI chassis to be
synchronised together is currently under development.

2.5.2 Data Storage

As explained in the previous sections, microphone array measurements gen-
erate significant amounts of data. Presently data is dumped to disk for
post-processing at a later stage, although in the future the processing might
be performed using data still in RAM (using distributed computing). In this
case dumping to disk is still necessary for archival purposes.

6Please note that although the Labview program operates in a block-mode acquisition,
the individual blocks are contiguous, as they are read from a buffer. In fact, if the dumping
to disk stage is too slow, the buffer will fill up and an error occurs, prompting the user to
increase the buffer size or decrease the number of blocks requested. What this means is
that when performing an FFT analysis on the raw data, the user is not restricted to an
FFT size equal to or smaller than the block size.
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The best practice is to dump data to a fast internal PATA or SATA drive;
having two drives in RAID 0 configuration is even better. This data can then
be transferred to an external or network-attached storage device for archival
purposes.

2.5.3 Post Processing

The most common microphone array processing technique is frequency-domain
beamforming. The time data from M microphones is Fourier transformed to
the frequency domain and corrected for microphone sensitivities. The cross-
spectral power matrix (CSM) Sp̂p̂ is computed using this corrected data. An
imaginary scan plane is then defined (where a “noise map” is desired) and
split into N grid points. The vector of free-space Green’s functions g between
each grid point and each microphone is computed. The beamformer’s output
for the nth grid point is then

Q =
g†Sp̂p̂g

[g†g]2
. (1)

There are a number of optimisation techniques that can be used to im-
prove the clarity of the plots, such as subtraction of a background noise CSM
and removal of the leading diagonal of the CSM.

If quantitative values are required, an area integration can be performed
by summing up the beamformer’s output within an area enclosing the region
of interest. The resulting quantities have to be corrected for the array’s
response function.

Data processing can be performed in real-time with the data acquisition,
or as a separate process after the acquisition. The principle of beamforming
is fairly simple (does not involve any inversions, regularisation or iterative
algorithms), however it is a multi-dimensional technique, and calculations
have to be made for thousands of grid points for each of a number of centre
frequencies. When using a stand-alone computer, it is not feasible to post
process the data concurrently with the acquisitions, as the CPU and RAM
usage for both processes will conflict and slow down the system. The current
practice is to choose just a few data runs to postprocess, this will somewhat
slow down the experimental test schedule, however it ensures the integrity
of the acquired data, and can also help in making informative changes to
the test schedule. In the future this might change by integrating distributed
computing in the process.
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3 Software - SotonArray v.3.3

The array post-processing is written in Matlab. It is divided into a number
of files: a main interface program and several functions files which are called
by the main program. The main interface program is divided into three main
sections:

• defining parameters

• computing the cross spectral matrix (CSM)

• carrying out the beamforming

The function files have different functions, e.g. fft, generate coordinates,
etc. The software is written in such a way that the user can focus on the
first section of the main interface program, and there is no need of any
advanced knowledge of the phased array processing. The only exception
is when the array is to be mounted in a non-standard position, since the
coordinate system in a number of function files has to be changed.

This code is intended to be used with the array mounted in the vertical
section, control-room side of the 7 × 5 wind tunnel, with the +ve x-axis
pointing downstream. Wind flow can be from any direction, as it is input
as a vector. The code allows a vertical scan plane of dimensions 2lx × 2ly to
be defined in the wind tunnel test section; the scan plane can rotate about a
fixed pivot with a vertical axis of rotation (parallel to the array surface). If
this is not the case, the function file GenerateCoorGrid has to be modified
accordingly.

3.1 Input Parameters

In the first part of the program there is a brief description of what it does,
version history, etc. Global variables are used to simplify the sharing of some
variables between the main program and the function files.

% SotonArray -=CSM and BF complete version=- Copyright B. Fenech 2005-2007

% Main Beamforming script, where user defines all the input and output

% parameters. Script then calls the functions which perform the beamforming

% process, including CSM and weight vector generation

% Developed by Benjamin A. Fenech

% Original code created 18/10/05

% v.3.3 ironed out minor bugs in v.3.2

% v.3.2 (View overall microphone response, added possibility to omit data

11



% from potentially faulty microphones)

% Wind tunnel speed as a vector (relative to array coordinates)

% Renamed a selection of variables

% v.3.1 (added gain factor to faulty channels)

% Version 3.0 created 22/02/06 - 14/03/06

% Some major and minor improvements to the beamforming code, mostly:

% a) possibility to apply 2 types of sensitivities: pistonphone or

% frequency response function

% b) tidy up the fft part, and correct some bugs

% c) possibility to use previously generated CSM

% d) save fft data for individual spectra analysis (psd)

% Last modification on 20/11/06

clear all

time(1) = cputime;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Global Parameters %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global SampleFrequency BlockSize WindowType

global CSMBackground CSMOptimise CSMOptimiseType AveragingChoice N_oct

global OmitChoice OmitColumns

global ttl_param1 ttl_param2 ttl_param3

global dim_1 dim_2 dim_3 dim_4 resolution l_x l_y

global freq df

global X Y MicsTotal

global Mach c_0

global FileRootOut perform trial

The raw data can be imported either from ASCII or Matlab’s proprietary
“*.mat” binary format. For microphone array data, ASCII is not recom-
mended, as it is very inefficient in terms of reading/writing to disk speeds,
and disk space cost. Unfortunately, Matlab’s MAT format is not open source,
and it is not practical to write data in this format directly from Labview. In
section 2.5.1 a sample code is given how to read Labview’s binary data effi-
ciently in Matlab; this data can then be saved directly to MAT format with
the save command. SotonArray assumes that the data exists under variable
name RawData. In order to facilitate batch processing, it is recommended to
save the MAT data with a filename having a fixed name and running number
(for example data n.txt, where n is a running integer. The loaded MAT data
is assumed to have the following format: sample number in first dimension
and channel number in second dimension.

12



In the next stage, the main file paths and file name patterns are defined.
A good practice is to have a main root for the whole project, containing the
data folders together with a Misc. Files folder which contains additional
data such as sensor coordinates and calibration data (pistonphone or FRF).
The microphone pistonphone sensitivities are obtained by calibrating each
microphone individually using a calibrated pistonphone and the Labview
VI calibrate.vi, which extracts the peak amplitude of the tone in the signal
(corresponding to 1Pa at 1 kHz). These values (Vpeak/Pa) are then input in
an ASCII file as comma separated variables, according to the order that the
microphones have been wired – i.e. the sensitivity of the microphone wired to
DAQ card 1 channel 0 comes first. An alternative to pistonphone calibration
is a full frequency response function (FRF) calibration, which compares the
spectrum of each microphone to a reference microphone with a flat frequency
response (such as an instrumentation microphone). The magnitude of this
FRF represents the ratio of sensitivities of the mth microphone and the
reference microphone. This type of calibration is a lengthy procedure, but
is the most accurate. A separate Labview VI RefCalibrate.vi can be used
for this type of calibration. The sensitivity of the reference microphone, in
Vpeak/Pa, has to be measured to convert the sensitivity ratios to absolute
sensitivities.

Other input files are the sensor coordinates (coordinates of the holes in
the array), an ASCII file containing which holes are in use and in which
order, and another ASCII file containing the physical microphone numbers
in the order they are wired (used for FRF calibration only).

Two data conditioning processes can be defined at this stage. The first
gives the option to omit data from any particular channels (due for example
to dead channels which can degrade the beamforming data integrity); the
second is to apply a predefined gain to any particular channels to correct, for
example, for any incorrectly set preamplifiers.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start of User Input %

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input directories and filenames %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Data is expected to be in *.mat format, since large ASCII data sets take

% a long time to load (and save in Labview). Here the expected filename is

% data xxx.mat. The data should already be assigned some variable name,

% depending on the Labview code default = RawData.

13



trial = ’001’;

MainRootPath = ’C:\Project Folder Path\’;

DataFolder = ’Array Data Folder\’;

DataFilename = [’data ’,trial,’.mat’];

DataFilenameTXT = [’data ’,trial,’.txt’];

% RAW DATA

% Uncalibrated pressure data from microphones, with no timestamps. Samples

% in first dim, microphones in second dimension

DataPath = [MainRootPath,DataFolder,DataFilename];

DataPathTXT = [MainRootPath,DataFolder,DataFilenameTXT];

% SENSITIVITIES - TWO POSSIBILITIES

% ASCII file containing microphone sensitivities (comma seperated file)

% IMPORTANT ORDER OF SENSITIVITIES MUST MATCH ORDER OF CHANNELS WIRED (i.e.

% columns in raw data file)

% NOTE values are Vpeak/Pa - as given by pistonphone calibration VI

SensitivityFile = [MainRootPath,’Misc. Files\sensitivities M.txt’];

% Root of directory containing FRF data in ASCII format, named according to

% microphone number

FRFPath = [’J:\ACHIEVA\Array Data\Koen III\Calibration\’];

CalibrationNameMAGBase = ’mag mic ’;

CalibrationNamePHASEBase = ’phase mic ’;

CalibrationNameExt = ’.txt’;

BKSensitivity = 1.36; % Vpeak/Pa

% If any channels have to be omitted for data integrity reasons, specify

% the COLUMN numbers to omit here. Data integrity can be checked by the

% microphone check included in this code. When omitting, 4 data arrays will

% be modified: the actual raw data, the microphone index file, the

% microphone sensitivity file and the microphone numbers file.

% Do NOT take into account column shifting - this will be done

% automatically later on

OmitChoice = 1;

OmitColumns = [21,32,51];

% If any channels have to be amplified or attenuated by a fixed factor, it

% can be done here

GainApply = 0; % apply gain corrections

% IMPORTANT: IF OMITTING COLUMNS IN THE PREVIOUS STEP, MAKE SURE THAT THE

% COLUMNS SPECIFIED HERE CORRESPOND TO THE (SHIFTED) COLUMNS AS A RESULT OF

% THE OMISSION PROCEDURE

GainColumns = [35,36]; % columns to apply gain

GainFactor = [10,20]; % extra gain for each channel (not dB)

% SENSOR COORDINATES
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MicsCoorPath =...

[MainRootPath,’Misc. Files\coor 7x9 0.35 unbrnk wcrcl v6.mat’];

% List of sensors used (optional)

MicsUsedPath = [MainRootPath,’Misc. Files\mic positions.txt’];

% List of microphone numbers - as wired in array (for FRF calibration)

MicsNumbersPath = [MainRootPath,’Misc. Files\mic numbers.txt’];

The next step is to define the processing parameters, together with other
input variables. As explained in Section 2.5.1, it is not necessary to use the
same block size as that specified in the acquisition, although the product of
block size and number of averages cannot exceed the total number of available
samples for obvious reasons. Usually it is better to have a smaller block size
and more averages, unless a very fine resolution is explicitly required. Fast
Fourier Transforms are typically based on a block size of 2n. The sample
frequency has to match that used during the acquisition. A Hamming time
window is usually applied for beamforming.

The temperature refers to the average temperature in the wind tunnel
during the particular trial, and is used to correct the speed of sound. The
flow velocity is used to correct for source convection effects, and it must have
the same coordinate system as the sensor coordinates.

For phased array measurements in a closed-section wind tunnel, with the
array flush-mounted on the wind tunnel walls, the data is contaminated with
the turbulent boundary layer noise in direct contact with the microphones.
It is good practice to try to physically separate this boundary layer from
the microphones as much as possible, using a smooth porous cloth over
the microphones, or better still, by recessing the array behind a stretched
porous cloth. Significant improvements can also be achieved by performing
some optimisations on the calculated Cross Spectral Matrix (CSM), namely
a modification to the leading diagonal. The variable CSMOptimise specifies
whether to perform this optimisation or not (recommended), and CSMOp-

timiseType allows a choice of removal and replacement (both work equally
well). It is also possible to subtract a background CSM to improve the fi-
delity of the results (although the benefits are not very clear.) To do this,
a data acquisition has to be performed with an empty wind tunnel running
at the required speed, and the computed CSM saved as a background CSM.
Finally, if the same run has been already processed and the CSM saved,
putting CSMReady to unity avoids re-calculating the CSM, saving approx.
20% of the time.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Input variables %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Acquisition and processing parameters

SampleFrequency = 48000; % Hz

BlockSize = 4096; % equal to or less than acquisition N

FFTAverages = 100;

WindowType = 1; % 0 Hanning 1 Hamming

% Input Variables

temperature = 16.6; % WT temperature (degrees C)

% Wind speed is a vector with the same coordinates as array

% eg. if wind is coming from -ve x direction and its only component is

% parallel to the x-axis, the vector is [u 0 0]

WTVelocity = [40,0,0]; % wind tunnel speed (m/s)

% CSM Optimisation

CSMBackground = 0; % remove background noise CSM

CSMOptimise = 1; % optimise CSM

CSMOptimiseType = 1; % 0 remove diagonal 1 replace diagonal

CSMReady = 1; % compute CSM (0) or use saved one (1)

An important point when performing beamforming is ensuring that the
scan plane coincides with the region of interest. Moreover, it is essential
that the position of the model being tested is defined with respect to the
array centre, so that potential source-generating locations on the model can
be identified. It is more difficult than one might think to measure the exact
position of the model with respect to the array centre, unless there is a
physical connection between the array surface and the model. A rather crude
way is to use measuring tapes and spirit levels; a better way would be to use
laser instrumentation.

The present code is designed to create a scan plane centred around a
reference point, which is also a pivot. The scan plane can rotate about
a vertical axis (parallel to array surface) through the pivot, and an angle
theta can be defined (clockwise positive, as viewed from above). To define
the location of this reference point with respect to the array centre, three
dimensions have to be input: dim 1 in the x−direction (+ve downstream),
dim 2 in the y−direction (+ve upwards), and dim 4 in the z−direction (+ve
in front of the array, i.e. into the test section). Another dimension, dim 3

specifies the perpendicular distance from the scan plane to the reference point
(+ve towards the array).
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The scan plane extends to a length of 2 × lx and a height of 2 × ly, and
is divided into a grid of resolution × resolution points.

% Fixing a reference point on the model with respect to array centre; if

% the model is rotating, the reference point must be equivalent to a

% centred pivot point. Important: with every new test session, the function

% files GenerateCoorGrid and SaveAndPlot have to be modified to make sure

% that the scan plane is in the right place. The present files are written

% specifically for the array mounted on the wall (control-room side) of 7x5

% WT. For further details refer to log book II p.45

% Coordinates of reference point on model wrt to array origin

% Wall array

dim_1 = -0.247; % x (m)

dim_2 = -0.076; % y (m)

dim_4 = 1.183; % z (m)

% distance of scan plane in front of reference point (in z direction)

dim_3 = 0.076; % z (m)

% angle of scan plane with array surface (clockwise +ve)

ScanAngle = 0; % degrees

% Scan Plane limits - Half the length and height of the scan plane,

% IMPORTANT LIMITS REFERENCED TO REFERENCE POINT ON SCAN PLANE - FUNCTION

% FILE GenerateCoorGrid CORRECTS COORDINATES TO BE RELATIVE TO ARRAY CENTRE

% (ORIGIN)

l_x = 0.5; % (m)

l_y = 0.5; % (m)

resolution = 120; % no. of grid points/side

Beamforming is performed for a set of frequencies; usually the centre fre-
quencies for 1/3-octave bands from 2 kHz to 20 kHz are used. The resolution
of the present array is too poor at low frequencies (below 2 kHz). It has
been shown that frequency averaging is an effective way of reducing the in-
fluence of sidelobes in the resulting plots,[1] and averaging over 1/3-octave
bands (N oct = 3 ) is a good choice. For more tonal phenomena, 1/6-octave
bands (N oct = 6 ) can be used, and in very poor conditions, one might at-
tempt to use full octave bands (N oct = 1 ). If only a particular frequency
is of interest, FrequencyMultipleChoice can be set to 0; in this case, only
FrequencySingle will be calculated.

% Frequencies of interest

% Resolution is too poor below 2kHz

FrequencyInterest = [2000,2500,3150,4000,5000,6300,8000,10000,...

12500,16000,20000];
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% frequency averaging parameters

AveragingChoice = 1; % 0 NO; 1 YES

N_oct = 6; % 1/N octave band (0 for NO averaging)

% Do beamforming for all frequencies of interest, or just for one

% frequency?

FrequencyMultipleChoice = 1; % 0 NO; 1 YES

FrequencySingle = 4000; % if FrequencyMultipleChoice = 0

The next section specifies several options which users are mostly inter-
ested in. These are:

• saving of beamformer plots – three formats are supported: jpeg (for
quick thumbnail indexing viewing on Windows machines), eps (for loss-
less saving, and for inclusion in LaTeX documents) and ASCII (for
importing in other plotting utilities, such as Tecplot R©);

• calibration type, depending on the calibration procedure performed
during the experiments (FRF calibration is most accurate)

• saving of Cross Spectral Matrices for future use (note that the same
CSM can be used for different scan planes, but a new CSM has to
be generated for different FFT parameters or calibration procedure) –
CSMs are saved in Matlab native .mat format;

• saving power spectral densities of the individual microphones in the
array – the saved files can be read by a separate standalone script file
ViewMultiChannelPSD v11.m;

• optimise code for speed – this option enables a significant increase in
processing time (depending on the user’s minimum number of frequen-
cies input) without any noticeable degradation of results;

• processing time breakdown – this is intended for troubleshooting and
performance optimisation purposes only.

The different options are well documented in the program itself.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% User preferences %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% User choice:
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% a) save beamformer plot

% options: 1. jpeg, 2. eps, 3. ascii, 4. jpeg+ascii 5. eps+ascii

% 6. jpeg+eps 7. jpeg+eps+ascii 0. do not save

% b) pistonphone/FRF calibration

% options: 0. no calibration 1. pistonphone calibration 2. FRF calibration

% c) save Cross Spectral Matrix (CSM)

% options: 0. do not save, 1. save background CSM, 2. save final CSM

% d) save one-sided psds

% options: 0. do not save, 1. save

% e) optimise for speed (frequency averaging part)

% options: 0. NO, integer = minimum number of frequencies to average

% f) show breakdown of processing time for the various processes

% options: 0 NO, 1 YES

perform = [0,2,0,0,12,1];

The next section defines the data acquisition hardware setup, in terms of
the number of PXI cards and channels per card in use. This information is
used to perform automatic data integrity checks.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Array Selection %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Cards setup in NI chassis (channels/card)

CardDescription = [8;8;8;8;8;8;7];

The final part of the first section defines the model output filename for-
mat. It assumes three folders have been created in the relevant data directory,
named CSM, FFT and Results. If background CSM subtraction is going to
be used, a subdirectory called BKG has to be present in the CSM directory.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Output titles and filenames %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate titles given the input variables

TitleParameters;
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% Output filename path

FileRootOut = [MainRootPath,DataFolder,’Results\’];

% Input/Output CSM filenames

CSMPath = [MainRootPath,DataFolder,’CSM\CSM ’,trial,...

’ CAL ’,num2str(perform(2)),’ OPT ’,num2str(CSMBackground),...

num2str(CSMOptimise),...

num2str(CSMOptimiseType),’ fs’,num2str(SampleFrequency/1000),’ N’,...

num2str(BlockSize),’ ’,num2str(FFTAverages),’ avrgs.mat’];

FFTPath = [MainRootPath,DataFolder,’FFT\FFT ’,trial,...

’ ’,num2str(WTVelocity),’m_s CAL ’,num2str(perform(2)),’ fs’,...

num2str(SampleFrequency/1000),’ N’,...

num2str(BlockSize),’ ’,num2str(FFTAverages),’ avrgs.mat’];

CSMBackgroundPath = [MainRootPath,’Day 1\CSM\BKG\CSM background ’,...

num2str(WTVelocity),’m_s CAL ’,num2str(perform(2)),...

’ OPT 0’,num2str(CSMOptimise),...

num2str(CSMOptimiseType),’ fs’,num2str(SampleFrequency/1000),’ N’,...

num2str(BlockSize),’ ’,num2str(FFTAverages),’ avrgs.mat’];

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%

% End of User Input %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3.2 Generation of the Cross Spectral Matrix

User input is not required in the rest of the program, however is it is useful
to have an idea what is going on in the following sections. In the first part,
the raw time data is loaded, converted to Engineering units and transformed
to the frequency domain. The CSM is calculated, and any optimisations
applied.

First the speed of sound and Mach number are calculated, and a number
of data integrity checks are performed.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Start of Program %

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Physical Constants %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constants

c_0 = 331 + 0.6*temperature; % speed of sound as a function of

% temperature

Mach = WTVelocity/c_0; % Mach No.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Load data and perform initial Data Tests %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MicsIndex = load(MicsUsedPath);

if OmitChoice == 1

ab = 0;

for aa = 1:length(OmitColumns)

% The following step is done once to take into account the shifting

% of columns to the left once preceding columns are omitted.

OmitColumns(aa) = OmitColumns(aa) - ab;

% Delete column, shift rest to left

MicsIndex(OmitColumns(aa)) = [];

ab = ab+1;

end

end

clear aa

CardsTotal = size(CardDescription,1);

MicsTotal = sum(CardDescription);

if OmitChoice == 1

MicsTotal = MicsTotal - length(OmitColumns);

end

Next the raw data is loaded, checked, and conditioned. Data omission
and extra gain are applied at this stage.

if CSMReady ~= 1 % compute CSM

% Note: Raw data (units Volts) has to be in columns (corresponding to

% individual channels. If for example 512 samples are taken 100 times for

% 50 different channels, the raw data will consist of 50 columns each

% having 512*100 rows.

% Whenever the cards/channels are altered, the input parameters

% CardDescription, DataPath and SensitivityFile have to be altered

% Import Data (in MAT format, should appear in a variable RawData)

load(DataPath);

RawData = RawDataArray2;

clear RawDataArray2

if OmitChoice == 1

for aa = 1:length(OmitColumns)

RawData(:,OmitColumns(aa)) = [];
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end

end

clear aa

time(2) = cputime;

disp([’Finished loading data file.’])

if size(RawData,2) ~= MicsTotal

warning(’Microphone count mismatch: raw data with MicsTotal’)

end

if size(RawData,2) ~= size(MicsIndex,2)

warning(’Microphone count mismatch: raw data with MicsUsed’)

end

% Compare number of acquired blocks with number of averages requested

aa = size(RawData,1)/BlockSize;

aa = floor(aa);

if aa == 0

aa = 1;

end

if aa < FFTAverages

error(’Number of fft averages requested exceeds available blocks’)

else

disp([’Using ’,num2str(FFTAverages),’ out of a total of ’,...

num2str(aa),’ available blocks.’])

end

clear aa

% Apply extra gain to pre-defined channels

% Assumes that column shifting to the left has been taken into account when

% specifying GainColumns

if GainApply ~= 0

MultiplyMatrix = ones(size(RawData));

for aa = 1:length(GainColumns)

MultiplyMatrix(:,GainColumns(aa)) = GainFactor(aa);

end

RawData = RawData.*MultiplyMatrix;

clear MultiplyMatrix aa

end

Next the conditioned data is converted to Engineering units. Depending
on the user’s preference, this step is performed either at this stage as a simple
division or after the FFT operation. In the latter case, the filenames for the
microphone calibration data are generated at this stage by calling an external
function GenerateFRFFilenames.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Convert to engineering Units %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Apply pistonphone calibration, if applicable

RawDataCalibrated = zeros(size(RawData));

if perform(2) == 1

MicsSensitivity = load(SensitivityFile);

if OmitChoice == 1

for aa = 1:length(OmitColumns)

MicsSensitivity(OmitColumns(aa)) = [];

end

clear aa

end

% Correct from Vpeak/Pa to Vrms/Pa

MicsSensitivity = MicsSensitivity./sqrt(2);

if size(RawData,2) ~= length(MicsSensitivity)

error(’Pistonphone sensitivity data does not match raw data size’)

end

for aa = 1:size(RawData,2)

RawDataCalibrated(:,aa) = RawData(:,aa)./MicsSensitivity(aa);

end

display(’Applied Pistonphone calibration’)

else

RawDataCalibrated = RawData;

end

clear RawData MicsSensitivity aa

if perform(2) == 2

[FRFFilenamesMAG,FRFFilenamesPHASE] =...

GenerateFRFFilenames(FRFPath,CalibrationNameMAGBase,CalibrationNamePHASEBase,...

CalibrationNameExt,MicsNumbersPath);

display(’Prepared filenames for FRF calibration’)

else

FRFFilenamesMAG = [];

FRFFilenamesPHASE = [];

end

time(3) = cputime;

The Fast Fourier Transforms are computed in function file MultiChan-

nelFFTandFRF, where FRF calibration is also applied if applicable. the
data is returned as one-sided spectrums.

At this stage, a quick data integrity check is performed. A cubic fit
is applied to all the spectrums from the individual microphones, and any
channels which differ from the median by a pre-set threshold are listed and
plotted on a sensor coordinate plot. The user is prompted whether he/she
wants to continue. All this is done within the function file MicrophoneCheck.
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If this check does pick up faulty channels, it is recommended to break the
operation and insert the list of faulty channels into the OmitChoice option
in the beginning of the program.

Depending on the user preferences, another function file MultiChannelPS-

DSave generates and saves power spectrum densities for each channel.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Part I %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FFT (and checking integrity of data) %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Sequence: full calibration (optional, perform FFT

% Perform FFT by calling external function

FrequencyDataOneSided =...

MultiChannelFFTandFRF(RawDataCalibrated,FFTAverages,...

FRFFilenamesMAG,FRFFilenamesPHASE,BKSensitivity);

clear RawDataCalibrated FRFFilenamesMAG FRFFilenamesPHASE

disp([’Finished FFT analysis.’])

time(4) = cputime;

% Check Data Integrity

MicrophoneCheck(FrequencyDataOneSided,MicsCoorPath,MicsIndex)

% Ask user whether to continue processing

ContinueChoice = ’y’;

ContinueChoice = input(’Do you wish to continue y/n [y]:’,’s’)

if ContinueChoice == ’n’

return

end

% Save FFT data (optional)

if perform(4) == 1

MultiChannelPSDSave(FrequencyDataOneSided,FFTPath)

disp([’Saved FFT data.’])

end

In the last stage, the CSM is generated within BuildCSM and optimised
within OptimiseCSM. This array is saved according to user preferences. If
the CSM had already been saved, all the previous steps are skipped and the
pre-calculated CSM is loaded into memory.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Part II %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generate optimise and save CSM %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Builds the averaged, optimised Cross Spectram Matrix from raw time data

% Sequence: build cross spectram matrix and average,

% remove background CSM (optional), optimise diagonal (optional), save

% matrix (optional)

% Build CSM by calling an external function

CrossSpectrum = BuildCSM(FrequencyDataOneSided);

time(5) = cputime;

disp([’Generated CSM.’])

clear FrequencyDataOneSided

% CSM Optimisation by calling external function

if CSMBackground ~= 1 & perform(3) ~= 1

CSMBackgroundPath = [];

end

CSM = OptimiseCSM(CrossSpectrum,CSMBackgroundPath);

time(6) = cputime;

disp([’Optimised CSM.’])

clear CrossSpectrum

% Save cross spectral matrix to file

if perform(3) == 1

save(CSMBackgroundPath,’CSM’)

disp([’Background CSM saved.’])

elseif perform(3) == 2

save(CSMPath,’CSM’,’freq’,’df’)

disp([’Optimised CSM saved.’])

end

% End of CSM Generation

else % Load pre-saved CSM

load(CSMPath)

disp([’CSM loaded.’])

time(2:6) = cputime;

end

3.3 Frequency-Domain Beamforming

In this section, an imaginary scan plane is created and divided into an
equally-distributed grid of points. Microphone weight vectors are calculated
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for vectors connecting each microphone to each grid point. The beamform-
ing equation is than computed using the previously-calculated CSM. This
is performed for a number of frequencies within an averaging band, and a
median value is extracted for each grid point.

Once again, the main processes are carried out in external functions:

• GenerateCoorMics and GenerateCoorGrid generate the coordinates of
each microphone and each grid point, in a well-defined order;

• GenerateFreqBand generates a list of frequencies depending on the
user’s averaging band and speed optimisation choices;

• ChooseFreqNear selects the frequency in the FFT analysis closest to
the frequency of interest;

• beamformer generates the microphone weight vectors and computes the
beamforming expression.

The data for each centre frequency is plotted as a spatial plot, by default
as a 3-D coloured surface plot as viewed directly from above. Function file
PlotandSave defines automatically details such as the viewing angle, colour
scheme and plotting limits.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Part III %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Beamforming %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Loads microphone coordinates, selects the one in use. Generates

% coordinates of scan plane. Calculates propagation vectors and microphone

% weight vectors. Uses pre-calculated CSM to calculate beamforming

% expression, prepares data for 3D plotting

% Edited weight vector calculation to avoid having to flip the plot

% matrices. In the calculation of the Propagation Vectors, the complex

% exponential is +ve, not -ve as indicated in book. This allows an

% off-centre grid plane to be defined directly. Note that this makes sense

% physically since during beamforming we are dealing with waves which are

% propagating towards the source (inwards). Using an e^(iwt) convention,

% waves propagating spherically inwards are denoted by a positive

% exponential e^(ikr)

% Optional Frequency averaging over 1/N octave band. Averaging in frequency

% band by mean OR median (specified in appropriate function file)
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% Loading sensor coordinates and select microphones used

load(MicsCoorPath);

% Build vector of microphone coordinates by calling external function

x_m = GenerateCoorMics(coor,MicsIndex);

% Build vector of grid-point coordinates by calling external function

% IndexPrecision are half the inter-grid spacing in x and y coor, and are

% used to calculate the nearest grid reference index for integration

[x_b,IndexPrecisionX,IndexPrecisionY] =...

GenerateCoorGrid(l_x,l_y,ScanAngle);

% FreqList1 are the distinct centre frequencies at which beamforming plots

% are to be generated

% FreqList2 are all the frequencies within the band centred at the

% frequency of interest, for use by frequency averaging algorithm

if FrequencyMultipleChoice == 1

FreqList1 = FrequencyInterest;

else

FreqList1 = FrequencySingle;

end

% Separate centre frequencies

for FreqIteration1 = 1:length(FreqList1)

[FreqList2,FreqCentre] =...

GenerateFreqBand(FreqList1,FreqIteration1);

% Averaging within bands

for FreqIteration2 = 1:size(FreqList2,2)

[omega,FreqIndex] = ChooseFreqNear(FreqList2,FreqIteration2);

BF = beamformer(omega,FreqIndex,x_m,x_b,CSM);

BFIntermediate = reshape(BF,[resolution+1 resolution+1]);

% BFSpatial contains the complex beamformer’s output in a spatial

% matrix, i.e. 1st dimension represents y coor and 2nd dim.

% represents x coor.

BFSpatial = BFIntermediate’;

% Only absolute values retained

Zall(:,:,FreqIteration2) = abs(BFSpatial);

clear BF*

end % End of frequency averaging

Z = BFFreqAverage(Zall);

Z = 10.*log10( Z./(4E-10) ); % Normalise with p_ref^2 (assuming mean

% square pressures);

Zclear = ClipPlot(Z); % clip datapoints below predefined level

PlotAndSave(Zclear,FreqCentre)
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time(6+FreqIteration1) = cputime;

end

The last part of the program gives the possibility of a breakdown of the
processing time involved, which can be significant.

if perform(6) == 1

for aa = 1:length(time)-1

TimeDifference(aa) = time(aa+1) - time(aa);

end

PieNames = {’Load Data’,’Calibration’,’FFT’,’CSM’,’Optimise CSM’};

for ab = 1:length(FreqList1)

PieNames{1,5+ab} = [num2str(FreqList1(ab)/1000,’%2.1f’),’ kHz’];

end

TimeTotal = sum(TimeDifference)

figure()

pie3(TimeDifference,PieNames),...

title(’Time taken by the different processes’)

end

%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%

% End of Program %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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4 Limitations and Sources of Error

The main limitations of phased array measurements are:

• poor resolution makes it difficult to obtain useful results at low fre-
quencies. For example, the 0.7m diameter array yields a source region
with a diameter of 0.55m for a point source 1m away from the array
emitting noise at 1 kHz. An array with double the aperture has double
the resolution, giving a source region of 0.27m for the same conditions.

• the ability of the array to filter out background noise is finite. Therefore
if the wind tunnel’s operating background noise is significant, there is
a large risk of not picking up significant noise sources on the model,
especially if the model is a low-noise design.

The major sources of error in microphone array measurements are:

• electret microphones – the frequency response of these microphones
somewhat varies from one capsule to another. To obtain best results,
a frequency response calibration is necessary (calculating the transfer
function between each microphone and a reference microphone when
both are subjected to the same sound field). For qualitative results,
a pistonphone calibration may be sufficient. It was shown that phase
deviations up to ± 10 degrees between the array microphones do not
contribute to inaccuracies in the results.[9]

• distance measurements – it is very important to know the exact where-
abouts of the microphones and the test model with respect to some
reference point, say the array’s centre, especially at high frequencies.
Whilst the microphone holes can be machined with reasonably good
accuracy using a CNC, measuring the exact location of the test model
is more problematic. One way of solving this problem is to put a point
source at a known position on the model, and adjust the location of
the model using the beamforming plots. Alternatively there are several
accurate calibration algorithms which can be applied.[9, 10]

• image sources – beamformer plots will be contaminated by image sources.
The levels of these sources (compared to the real sources) depends on
the location of these image sources, and the array’s response or point
spread function (how good the array is at suppressing noise from that
particular point).

• free-space Green’s functions – clearly this is an inaccurate assumption,
especially for small, hard-walled wind tunnel sections. Quantitative
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values are somewhat affected. It should be possible to correct for this
by using measured Green’s functions of the test space.[11]

• coherent sources – the beamforming theory assumes a point source at
the focus point, in the absence of any other interfering sources. In
practice there is usually a distribution of sources with some degree of
coherency between them. This error will mostly influence quantitative
values. The inverse method is not prone to this kind of error.[12]

• geometry of setup – it as been shown that the array’s quantitative
output is dependent on the array’s aperture and the solid collection
angle θDA (the included angle between the outermost sensors as seen by
the source).[13] The apparent source size is also dependent on frequency
(determined by the array’s resolution).
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