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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

by Edoardo Manino

Many classification problems are solved by combining the output of a group of dis-

tinct predictors. Whether it is voting, consulting domain experts, training an ensemble

method or crowdsourcing, the collective consensus we reach is typically more robust and

accurate than the decisions of an individual predictor alone. However, aggregating the

predictors’ output efficiently is not a trivial endeavour. Furthermore, when we need to

solve not just one but multiple classification problems at the same time, the question of

how to allocate the limited pool of available predictors arises.

These two questions of collecting and aggregating the data from multiple predictors have

been addressed to various extents in the existing literature. On the one hand, aggre-

gation algorithms are numerous but are mostly designed for predictive accuracy alone.

Achieving state-of-the-art accuracy in a computationally efficient way is currently an

open question. On the other hand, empirical studies show that the collection policies

we use to allocate the available pool of predictors have a strong impact on the perfor-

mance of the system. However, to date there is little theoretical understanding of this

phenomenon.

In this thesis, we tackle these research questions from both a theoretical and an algo-

rithmic angle. First, we develop the theoretical tools to uncover the link between the

predictive accuracy of the system and its causal factors: the quality of the predictors,

their number and the algorithms we use. We do so by representing the data collection

process as a random walk in the posterior probability space, and deriving upper and

lower bounds on the expected accuracy. These bounds reveal that the tradeoff between

number of predictors and accuracy is always exponential, and allow us to quantify its

coefficient.

With these tools, we provide the first theoretical explanation of the accuracy gap between

different data collection policies. Namely, we prove that the probability of error of

adaptive policies decays at more than double the exponential rate of non-adaptive ones.

Likewise, we prove that the two most popular adaptive policies, uncertainty sampling

and information gain maximisation, are mathematically equivalent. Furthermore, our
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analysis holds both in the case where we know the accuracy of each individual predictor

exactly, and in the case where we only have access to some noisy estimate of it.

Finally, we revisit the problem of aggregating the predictors’ output by proposing two

novel algorithms. The first, Mirror Gibbs, is a refinement of traditional Monte Carlo

sampling and achieves better than state-of-the-art accuracy with fewer samples. The

second, Streaming Bayesian Inference for Crowdsourcing (SBIC), is based on variational

inference and comes in two variants: Fast SBIC is designed for computational speed,

while Sorted SBIC is designed for predictive accuracy. Both deliver state-of-the-art

accuracy, and feature provable asymptotic guarantees.
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ĥ halved estimated log-odds z on a single item

i item index

I(•) indicator or characteristic function

j predictor index

Lj number of items labelled by predictor j

M set of items

Mj set of items labelled by predictor j

µi(yi) item factor for mean-field approximation

n number of predictors required to achieve the target probability pe

npart number of particles in Mirror Gibbs

nflip number or rejuvenation steps in Mirror Gibbs

N set of predictors

Ni set of predictors who labelled item i

νj(pj) predictor factor for mean-field approximation

okj label of predictor j on trial item k

O dataset containing all labels okj

pe target probability of a classification error

pj accuracy of predictor j

p̂j estimated accuracy of predictor j

p̄j expected accuracy of predictor j

π(t) item selected by the policy π at time t

q prior probability on a positive item class

xv



xvi NOMENCLATURE

R (average) number of labels per item

sij step induced by predictor j on item i

ŝij estimated step induced by predictor j on item i

ski view on the log-odds of item i according to item k

sig(•) sigmoid function (inverse of the log-odds)

t current time step

T total number of labels (timesteps)

we log-odds of the target error probability pe

wj weight associated to predictor j (log-odds of pj)
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Chapter 1

Introduction

Throughout history, many critical decisions have been taken not just by a single individ-

ual, but by a collective of several people. Indeed, whether it is the board of a company,

a cabinet of ministers, a steering committee, the jury of a trial or a townhall meeting,

the idea of consulting a plurality of opinions has an important role in modern society.

The most extreme example, of course, is that of large democratic exercises, where all

the adult citizens of an entire nation are asked to cast their ballot.1

Thus, it is not surprising that this societal phenomenon has attracted the attention of

the scientific community. Following the early efforts of Marquis de Condorcet (1785),

one of the main questions has been establishing a mathematical justification for the

need of consulting multiple people. Accordingly, a recurrent answer is that each person,

however biased or ill-informed, has a chance of contributing some information about the

problem at hand. Thus, the more people we consult, the more we are likely to form a

consensus on the correct choice (Berend and Paroush, 1998). Vice versa, relying on a

single individual’s opinion leaves us more prone to commit mistakes.

At the same time, in many practical scenarios we are confronted with more concrete

questions. A classic example is that of a clinical setting where a patient’s case is reviewed

by several physicians before a decision is made (Dawid and Skene, 1979). How many

doctors should evaluate the patient’s symptoms before we can be confident that the

diagnosis is correct? In the case of a life-and-death situation, for instance a major

surgery or a tumor (Fanshawe et al., 2008), the answer to this question may have a

crucial impact on hospital policies and health insurance coverage.

On a less harrowing note, the same question appears in the unrelated field of machine

learning. There, a successful idea is training multiple distinct predictive models, and

aggregating their output to form a so-called ensemble method (Dietterich, 2000). As

with human experts, the predictions of an ensemble method are usually more accurate

1In the 2019 Indian election the turnout was more than 69% out of the 880 million eligible voters
(official statistics from www.indiavotes.com, retrieved on March 4, 2020).
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2 Chapter 1 Introduction

than those of an individual model alone. Similarly, the number of predictive models and

the way they are trained play a crucial role in determining the predictive performance

of the ensemble as a whole (Freund and Schapire, 1996; Breiman, 2001).

But perhaps the example that best illustrates the power of collective decision making is

crowdsourcing. In general, this term is used to describe the practice of outsourcing work

to large crowds of people (Howe, 2006). Differently from the traditional job market,

the workforce is not limited to trained professionals, but any member of the public can

participate (Ross et al., 2010). Furthermore, the whole process of hiring, distributing

the work and collecting the results is usually performed remotely through one of the

many dedicated websites.2

The open call nature of crowdsourcing means that there is no guarantee that the workers

will provide meaningful data, which in some cases may lead to nonsensical outcomes.3

Thus, some effort is required to develop a methodology that could effectively channel

the collective effort of the crowd. Among the early crowdsourcing initiatives, the ESP

game achieved this goal by asking two workers to execute the same task and accepting

their submissions only when they matched (von Ahn and Dabbish, 2004). Reportedly, a

set of images labelled in this way has been used to train the first iteration of the Google

Image Labeler.4 On a similar note, the Galaxy Zoo 1 project took advantage of the

vibrant community of amateur astronomers to classify the shape of more than 900 000

images of galaxies taken by the Hubble telescope. By collecting the labels of dozens

of workers for each image, they achieved a similar classification accuracy to that of an

expert astronomer (Lintott et al., 2011).

Importantly, the two crowdsourcing projects mentioned above are both centred on the

execution of a set of independent microtasks, small units of work that can be processed

in parallel by the crowd (Difallah et al., 2015). This crowdsourcing methodology has

become popular in the past decade, and it has been used to take advantage of human

skills that current state-of-the-art machine learning algorithms cannot replicate. Among

them we have video annotation (Vondrick et al., 2013), speech recognition (Lasecki et al.,

2013), natural language processing (Snow et al., 2008) and even psychological research

(Buhrmester et al., 2011).

Generally speaking, all three examples of collective decision making we mention, the

clinical setting, ensemble methods and crowdsourcing, have a number of characteristics

in common. First, the individual predictors are potentially inaccurate: physicians may

have different levels of expertise on a specific condition, machine learning models may

be able to discriminate only certain types of instances, and crowdworkers may try and

2For instance, Amazon Mechanical Turk (www.mturk.com), Figure Eight (www.figure-eight.com)
and CrowdSource (www.crowdsource.com).

3A recent example is the victory of “Boaty McBoatface” in a poll for naming a British research vessel
on nameourship.nerc.ac.uk.

4According to crowdsource.google.com/imagelabeler, consulted on May 9, 2016
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execute the tasks as fast as possible to increase their revenue. To compound this,

we might have little information about the predictors. While in machine learning we

usually have full control on the training of the individual models, in the other setting

the predictors are human beings and, as such, behave more like a black box of unknown

properties (Kim and Ghahramani, 2012).

Second, the available resources are limited: physicians can only visit a given number of

patients per day, training a very large number of base models in an ensemble method is

computationally impractical, and mobilising large crowds of workers requires an equally

large monetary budget. This poses some restrictions on the size of the datasets we

can gather, and thus our confidence on the collective decisions we take. However, it

also opens interesting avenues for research, as the methods we use for aggregating the

predictors’ output can be optimised to make an efficient use of the available resources

(Liu et al., 2012).

Third, the predictive effort needs to cover not just a single target but a whole set of them:

a medical centre has to assess the health status of a number of patients, an ensemble

method is designed to process entire datasets at once, and a crowdsourcing project

typically includes hundreds or thousands of tasks to solve. An important consequence

of this is that the process of collecting the data is not instantaneous, but extends over

a period of time that can range from a few seconds for an ensemble methods, to several

days in a clinical setting or a crowdsourcing project. Thus, early results can potentially

be used to inform later decisions, and improve the performance of our predictive system

(Slivkins and Vaughan, 2014).

Together, these three properties define the background of our research effort. More

specifically, they highlight a need for efficiency when combining the output of multiple

predictors. This goal is the guiding principle of this thesis and underlies all our research

requirements, as we detail in the next Section 1.1.

1.1 Research requirements

As the problem of combining the output of multiple predictors is quite broad, in this

thesis we focus on the specific case of classification tasks. This includes any situation

where we need to reach a collective agreement on a finite set of options. For instance,

determining whether a patient has cancer in a clinical setting (Fanshawe et al., 2008),

using an ensemble method to recognize handwritten digits (Xu et al., 1992), or asking

a group of crowdworkers to assign images the correct label (Welinder et al., 2010).

An advantage of this choice is that the classification framework provides us with a

well-defined metric to assess the performance of our system. Namely, we can assume

that each item we want to classify comes with an unknown ground-truth class, and then
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measure our ability to recover it. Clearly, the latter is deeply influenced by three factors:

the accuracy of the individual predictors, whether humans or machines, the available

budget, whether computational or monetary, and the techniques we use to collect and

aggregate the predictors’ output. In loose mathematical notation, we can summarise

the link between these three factors and the probability of a classification error as the

following function:

P(error) = f(predictors, budget, algorithms) (1.1)

Clearly, understanding the properties of the relationship in Equation 1.1 is not just an

idle academic endeavour. From the perspective of a hospital manager, a data scientist,

or a crowdsourcing employer, any guarantees over the predictive quality of the combined

predictions is vital. This includes knowing which algorithms to deploy given the char-

acteristics of the problem at hand and, as importantly, being able to choose the correct

budget to achieve the desired accuracy. While similar concerns are routinely examined

for most business services (Ackoff, 1969), the complexity of the present setting poses

a major obstacle to this goal, and the existing research has not yet addressed it in a

satisfactory way (Fanshawe et al., 2008; Luz et al., 2015).

Accordingly, we set our research effort to be both theoretical and algorithmic. The first

is required to produce strong guarantees on the predictive performance of our system.

Ideally, these guarantees shed a light on the mathematical form of the function in Equa-

tion 1.1, thus giving us a deep understanding on the influence of each factor therein.

With it, we can answer a range of crucial planning questions. For instance, how much

the result is affected by the quality of the predictors, how many individual predictors

we need to achieve the desired accuracy, and what is the impact of different techniques

for polling the predictors and aggregating their opinions.

The second is required to satisfy our need for efficiency in settings with limited resources.

On the one hand, the obvious goal is to improve the classification accuracy of the system.

From a classical machine learning perspective, this is achieved by refining the aggregation

algorithm we use to combine the individual predictors’ output. At the same time,

when we have control over the process of polling the predictors, we can deploy different

adaptive strategies to increase the quality and informativeness of the data we collect.

Optimising the complex interplay between the collection and aggregation algorithms is

vital for improving the predictive accuracy of our system.

On the other hand, while predictive accuracy is important, in some settings computa-

tional speed is of the essence. More specifically, if we want deploy an adaptive data

collection strategy, our decisions on how to poll the predictors are subject to a time

constraint. This is particularly important in crowdsourcing, where workers queue on an

online website and might switch to a different employer if we do not serve them quickly
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enough. Similarly, a slow data collection process may not be desirable for an ensemble

method, when used in a time-critical application.

1.2 Research challenges

Satisfying our requirements of theoretical guarantees, predictive accuracy and compu-

tational speed is not straightforward. A first challenge is choosing the right model of

classifier combination (Xu et al., 1992; Kim and Ghahramani, 2012). Since Marquis de

Condorcet (1785), most authors adopt a probabilistic interpretation of the predictors’

output. That is, each predictor behaves like a random variable, the observations of

which are correct with some, possibly unknown, probability. Yet, each existing model

introduces dependencies on a number of different underlying factors, ranging from simple

and universal voting models (Nitzan and Paroush, 1982; Berend and Paroush, 1998) to

complex and specific crowdsourcing models (Welinder et al., 2010; Kamar et al., 2012).

The reason for this variety is that we can make additional assumptions based on do-

main knowledge of each potential application. For instance, combination models for

the clinical setting, where predictors are humans, tend to be fairly simple (Dawid and

Skene, 1979; Fanshawe et al., 2008). Conversely, ensemble methods come with more

control over the properties of the individual predictors, and thus we can afford training

complex stacked models (Wolpert, 1992). Instead, for crowdsourcing applications the

limiting factor is usually the amount of data we can gather from each worker. Take for

example the Galaxy Zoo 2 project (Willett et al., 2013): without any constraints on

their productivity, the majority of the volunteers labeled only a handful of images, as

shown in Figure 1.1. From such sparse data, it is impossible to train detailed models of

the predictors’ behaviour.

The abundance of models in the current literature has two direct consequences. On the

one hand, we lack a common basis to make a meaningful comparison between different

algorithms. On the other hand, general theoretical results are rare. In fact, most

authors focus on specific algorithms (Ghosh et al., 2011; Dalvi et al., 2013; Karger et al.,

2014; Zhang et al., 2016; Bonald and Combes, 2017) or are only interested in proving

asymptotic convergence (Berend and Paroush, 1998; Baharad et al., 2011). Still, there

are a few works that propose more universal guarantees: both Berend and Kontorovich

(2015) and Gao et al. (2016) derive bounds on the classification accuracy of a group of

predictors that apply to several algorithms and estimators. We use these results as a

baseline to compare our own theoretical contributions to.

The other challenges are related to efficiency. In this regard, the problem of aggregating

the output of the individual predictors and forming a collective decision has been al-

ready explored at length in the current literature (see Zheng et al. (2017) and references

therein). Nonetheless, the focus is usually put on improving the predictive accuracy,
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Figure 1.1: Number of crowdworkers who took part in the Galaxy Zoo 2 project,
sorted by the number of images they labelled. For the sake of clarity, workers with

more than 80 images are not shown here.

as this is the standard goal in machine learning. Unfortunately, this means that most

of the existing algorithms have a high computational cost, which goes against one of

our main requirements. The only notable exception is the recent work by Bonald and

Combes (2017) which, however, is not suitable for settings where the properties of each

individual predictor are difficult to estimate precisely. Thus, achieving both predictive

accuracy and computational speed in all settings is currently an open research question.

At the same time, the aggregation problem is only one side of the coin. Several studies

have shown that improving our strategies for polling the predictors has a positive effect

on the collective predictive accuracy. However, the majority of the existing results are

either empirical (Welinder and Perona, 2010; Barowy et al., 2012; Simpson and Roberts,

2014) or rely on restrictive assumptions on the problem setting (Chen et al., 2013; Ho

et al., 2013; Khetan and Oh, 2016). Indeed, the only general theoretical result (Karger

et al. (2014)) states that any data collection strategy exhibits the same asymptotic

relationship between accuracy and budget:

P(error) ≤ exp(−cR) (1.2)

where R is the number of predictors we poll on each item we need to classify. Equation

1.2 suggests that the difference in performance between different collection strategies is

hidden in the constant factor c, but no theoretical analysis exists to confirm that.
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1.3 Research contributions

Against this background, we propose several contributions to the state of the art. From

a high-level perspective, we identify the Dawid-Skene model (Dawid and Skene, 1979)

as a reasonable common ground between all models proposed in the current literature.

Thanks to this choice, we are able to develop the theoretical tools to express the rela-

tionship in Equation 1.1 in closed-form. Using these tools, we review and compare all

existing data collection strategies, and prove that adaptive strategies deliver exponen-

tially better predictive accuracy than non-adaptive ones. Furthermore, we introduce two

novel algorithms to aggregate the predictors’ output in an accurate and computationally

efficient way.

More specifically, we solve the modelling, theoretical and algorithmic challenges outlined

in Section 1.2 in the following way:

• We study three variants of the popular Dawid-Skene model that span different

levels of knowledge about the properties of the predictors. In order of complexity,

we study first the case where each predictor’s accuracy is known, then the case

where the predictor’s accuracy can only be tested beforehand, and finally the case

where we have no information about them. These three variants cover a large

number of practical applications of the multiple classifier setting. Moreover, they

allow us to evaluate the impact of different modelling choices on the corresponding

theoretical and empirical results.

• We derive new theoretical bounds on the probability of a classification error under

all possible combinations of predictors’ accuracies, available budget, aggregation

algorithm and collection strategy. With this, we completely characterise the rela-

tionship between all the factors in Equation 1.1, and give a value for the asymptotic

constant c in Equation 1.2 for all possible scenarios. This is not only the first effort

of this kind, but it is also an improvement over the existing results by Berend and

Kontorovich (2015) and Gao et al. (2016).

• We make the first structured comparison of all data collection strategies proposed

in the literature. In this regard, we prove the equivalence between the two most

popular adaptive strategies: uncertainty sampling and information gain maximi-

sation. Furthermore, we propose a new interpretation of the runtime behaviour of

these two strategies in terms of a random walk in the log-odds domain. Finally,

we prove in general that adaptive strategies have a faster exponential decay in the

error rate as the budget increases, by at least a power of two. With these results,

practitioners can finally make informed choices when deploying these strategies in

real-world applications.

• We tackle the aggregation problem by introducing the Mirror Gibbs algorithm,

a refinement of Monte Carlo sampling that is specifically tuned for combining
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multiple independent classifiers. This technique allows us to evaluate the exact

posterior distribution over the ground-truth classes in a computationally-efficient

way, and infer the correct classes with better than state-of-the-art accuracy in

most settings.

• We expand the portfolio of existing algorithmic solutions further with Streaming

Bayesian Inference for Crowdsourcing (SBIC). This variational inference method

comes in two variants. The first, called Fast SBIC, privileges computational speed

over accuracy. Specifically, it runs in the same time as the simple majority voting

algorithm, while delivering better predictive accuracy by orders of magnitude. The

second, called Sorted SBIC, is more expensive computationally but improves over

the performance of Mirror Gibbs by a noticeable margin.

Together, these contributions are an important step in addressing the requirements for

theoretical guarantees, predictive accuracy and computational speed we introduced in

Section 1.2. As such, they have led to a number of recent peer-reviewed publications in

top conferences and journals:

• In (Manino et al., 2018) we introduce the random walk interpretation of the collec-

tion process, prove that uncertainty sampling and information gain maximisation

are equivalent and make the first theoretical comparison between different data

collection strategies.

• In (Manino et al., 2019a) we prove that the classification error of adaptive collection

strategies decays at more than double the exponential rate of non-adaptive ones.

Our analysis improves over the results in (Berend and Kontorovich, 2015) and (Gao

et al., 2016), while covering both the known and unknown predictors accuracy

cases.

• In (Manino et al., 2019b) we introduce the Streaming Bayesian Inference for

Crowdsourcing (SBIC) algorithm and its two variants Fast SBIC and Sorted SBIC.

Our analysis shows that these algorithms are competitive with the state of the art

and have tractable theoretical properties.

Additionally, we are preparing a further journal paper containing the Mirror Gibbs

algorithm, a general theoretical result on the aggregation problem and a third variant

of SBIC. We discuss the first two in Chapter 5 and the last in Chapter 6.

1.4 Thesis outline

The remainder of this thesis is structured as follows:
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• In Chapter 2 we review the relevant literature on the combination of multiple

classifiers. We begin with the issue of modelling this setting, introduce the Dawid-

Skene model, and discuss all its possible variants and extensions. Then, we turn

to aggregation methods and touch on both simple voting schemes and advanced

probabilistic inference approaches. Finally, we examine the existing data collection

strategies, and trace them back to the fields of crowdsourcing and active learning.

• In Chapter 3 we begin our journey on the combination of multiple classifiers by

assuming we know their accuracy. Thanks to this assumption, we can optimally ag-

gregate the predictors’ output with the weighted majority voting algorithm. This

creates an ideal setting where we can formally define the different data collection

policies, study their properties theoretically, and compare their performance.

• In Chapter 4 we add a layer of uncertainty, as the accuracy of the predictors is

unknown but can be tested in advance. There, most of our efforts are directed

towards generalising the results from Chapter 3 to this new, more challenging,

setting. Fortunately, we are able to do so without invoking any restrictive as-

sumption.

• In Chapter 5 we take our last step towards generality, and deal with predictors

of completely unknown accuracy. This setting reopens the question of efficiently

aggregating the predictors’ output, which we address by introducing our two new

algorithms Mirror Gibbs and Streaming Bayesian Inference for Crowdsourcing.

After doing so, we give theoretical guarantees on the accuracy of our algorithms,

we compare their performance with the state of the art empirically, and derive a

general lower bound on the probability of a classification error.

• In Chapter 6 we draw our conclusions and outline possible directions for future

work.





Chapter 2

Background

In Chapter 1 we explain how the same setting with multiple independent classifiers ap-

pears in different contexts across the whole computer science field. There, we introduce

three motivating examples. The first, are ensemble methods, where we combine the

predictions of a set of base classifiers. The second, is a clinical setting, where multiple

physicians are asked their opinion on the health status of a patient. The third, is crowd-

sourcing, where online anonymous workers are paid to execute some repetitive labelling

task.

In this section, we expand on our previous discussion by examining how this setting

is treated in the existing literature. The current state of the art is quite fragmented,

and many results are grounded on different assumptions (Slivkins and Vaughan, 2014).

Thus, we pay particular attention to the works that are general enough to cover all of our

motivating examples, rather than dealing with the minute details of a specific scenario.

Furthermore, we highlight the main existing theoretical contributions, as they represent

the baseline against which we benchmark many of our results in Chapters 3, 4 and 5.

We divide our review of the literature in three main sections. In the first Section 2.1, we

focus on how the multiple classifier setting is usually formalised. There, we show that

the classic choice is the Dawid-Skene model (see Section 2.1.1), and give a taxonomy

of its variants and extensions (see Section 2.1.2). In the second Section 2.2, we look

at methods to combine the raw output of each predictor in an accurate solution of the

classification problem. These aggregation methods range from voting schemes (Section

2.2.1) to probabilistic inference, either Bayesian (Section 2.2.2) or frequentist (Section

2.2.3). In the third Section 2.3, we move on to the complementary question of data

collection. When we have control on how the dataset is acquired, we can deploy a

number of different collection strategies to improve its quality. These come mostly from

crowdsourcing (see Sections 2.3.1 and 2.3.2) or the field of active learning (see Section

2.3.3). Finally, we give a brief summary in Section 2.4.

11
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2.1 Modelling the multiple classifiers setting

Let us begin the review of the existing models by introducing some general notation. In

this thesis, we assume that our objective is recovering the ground-truth classes of a set M

of distinct items. On the one hand, this aligns well with the structure of crowdsourcing,

where the workers are solving several tasks in parallel, e.g. tagging images and videos,

flagging websites or translating sentences (Snow et al., 2008; Lintott et al., 2011; Lasecki

et al., 2013; Vondrick et al., 2013). On the other hand, this generalises on the standard

setting in ensemble methods (Dietterich, 2000) and voting (Coughlin, 1992), where the

focus is usually on classifying a single item (in other terms |M | = 1). Similarly, this

covers the full spectrum of existing research on medical consensus, which ranges from a

single patient (Fanshawe et al., 2008) to a full set M of them (Dawid and Skene, 1979).

The main source of information we have in achieving our classification goal is the output

X of a set of predictors N . The nature of these predictors can vary wildly: in ensemble

methods we have base classifiers, in medical consensus problems we have physicians,

and in crowdsourcing we have crowdworkers. This variety means that modelling how

the predictors’ output X is produced is a major point of contention. While in ensemble

methods we usually have full control on the type and training of each base classifier

(Dietterich, 2000), in the other examples the predictors can be little more than a black

box of unknown properties. Furthermore, if the predictors are human beings we run into

additional uncertainty: for instance, while medical professionals usually undergo some

form of standardised training, in crowdsourcing the workers come from a wide range of

backgrounds, age group and nationality (Ross et al., 2010).

We deal with the predictors’ complexity by focusing on models that place the smallest

number of assumptions on them. As argued in (Kim and Ghahramani, 2012), this choice

leads to the most general models of classifier combination. Furthermore, the resulting

mathematical structures allow for a more thorough theoretical analysis, which is one of

the objectives of this work. At the same time, while some of these assumptions may be

restrictive, generalising to more complex scenarios is always possible. In this light, we

first present the classic Dawid-Skene model in the next Section 2.1.1, and then review

the variants and extensions that have been proposed in the current literature.

2.1.1 Independent classifiers and the Dawid-Skene model

Among all models of the multiple classifier setting, the one proposed by Dawid and

Skene (1979) has survived the test of time. Originally designed with the clinical setting

in mind, it has undergone a new surge of popularity in the crowdsourcing field in recent

years (Welinder and Perona, 2010; Ghosh et al., 2011; Liu et al., 2012; Dalvi et al., 2013;

Karger et al., 2014; Zhang et al., 2016; Gao et al., 2016; Bonald and Combes, 2017). At

the same time, it has been shown in (Simpson et al., 2011; Kim and Ghahramani, 2012)
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that this model is an instance of a more general framework for combining classifiers

which encompasses ensemble methods. Furthermore, a number of extensions have been

proposed: we list them in Section 2.1.2.

In this thesis we focus on the so-called one-coin Dawid-Skene model (Ghosh et al., 2011;

Liu et al., 2012; Dalvi et al., 2013; Karger et al., 2014; Bonald and Combes, 2017). Like

other prototypical works in the field of classifier combination (Nitzan and Paroush, 1982;

Berend and Kontorovich, 2015), the main simplifying assumption is that the ground-

truth classes yi of each item i ∈ M are binary, i.e. yi ∈ {±1}. The reason for this

choice is that it allows us to study the fundamental properties of the multiple classifier

setting, without dealing with the peculiarities of more complex scenarios. At the same

time, generalising the corresponding results to the multiclass setting is not difficult, as

shown by Zhang et al. (2016) and Gao et al. (2016). In Chapter 6, we outline the steps

necessary to do the same with our own contributions.

The Dawid-Skene model makes two other key assumptions. First, the output of the

predictors is modelled as a stochastic process. That is to say, when predictor j ∈ N

labels any item i ∈ M , its corresponding output xij is extracted from an underlying

probability distribution pj . In the one-coin variant, pj is nothing more than a single

parameter representing the accuracy of the predictor.1 We show how to extend this

modelling choice to the multiclass case in Equation 2.2.

Second, the predictors are independent. More specifically, the probability of observing

xij is only conditional on the ground-truth class yi of the corresponding item. This

assumption of independence is a standard feature in machine learning, since it yields

more tractable methods (Murphy, 2012). In the present setting, it is also supported by

practical considerations. In fact, ensemble methods strive to create independent base

classifiers by subsampling the training set via bagging (Breiman, 1996), dagging (Ting

and Witten, 1997) or boosting (Freund and Schapire, 1996). Conversely, the output of

human predictors tends to be independent unless they are sharing information in the

background. In crowdsourcing, the workers rarely share information, and when it hap-

pens we can detect it with statistical methods (Naroditskiy et al., 2014; KhudaBukhsh

et al., 2014; Wang et al., 2015).

Due to its structure, the Dawid-Skene model belongs to the larger family of probabilistic

graphical models (Koller and Friedman, 2009). These models are characterised by the

property that the joint distribution of all the random variables can be factorised as a

product of independent terms. In this case, for all choices of the ground-truth classes y

and the predictors’ distributions p, we can write:

P(X|y,p) =
∏
xij∈X

P(xij |yi, pj) (2.1)

1This is also the reason for the model’s name: each predictor behaves like a biased coin with a fixed
probability of landing on the correct side.
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where X = {xij} is the set of all observed labels. We report a compact representation

of the graph associated with the Dawid-Skene model in Figure 2.1, where we use the

visual notation proposed by Dietz (2010): random variables are represented as nodes,

probabilistic dependency as directed arcs, and multiple copies of the same structure as

plates. Furthermore, observed variables are shaded.

xij

pj yi

j ∈ N
i ∈ M

Figure 2.1: A graphical representation of the Dawid-Skene model.

While the original Dawid-Skene model is fully represented by the graphical model in

Figure 2.1, additional assumptions are often imposed on the unobserved variables p

and y. This is because it would be otherwise impossible to infer their values from the

dataset X alone (Bonald and Combes, 2017). We review the impact of these additional

assumptions on the resulting inference algorithms in Section 2.2. In turn, they inform

our modelling choices in Chapters 3, 4 and 5, where we analyse the inference accuracy

under the one-coin Dawid-Skene model as we progressively remove information about

the underlying generative process.

2.1.2 A taxonomy of extended models

The Dawid-Skene model has been extended in various directions, which can be classified

according to two main aspects: the nature of the items and the behaviour of the predic-

tors. A further difference exists, namely in the availability of the individual predictors.

However, since the latter pertains to the data collection process, we review it in the

corresponding Section 2.3.

As we highlight in Section 2.1.1, a number of extensions of the one-coin Dawid-Skene

model regard the number of classes the items can have. In particular, Ipeirotis et al.

(2010), Simpson et al. (2011), Kim and Ghahramani (2012), Zhou et al. (2012), Zhang

et al. (2016) and Gao et al. (2016) move away from the binary case and consider items

with k possible classes. As a result, every predictor j is characterised by a confusion

matrix Pj ∈ [0, 1]k×k, whose entries pjxy represent the conditional probability of reporting
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label x given that the true class of the item is y:

Pj =


pj11 . . . pj1k
...

. . .
...

pjk1 . . . pjkk

 (2.2)

where each column sums up to one.

Other authors generalise the basic model by adding a notion of difficulty of an item.

That is to say, the predictors are more likely to commit a mistake on a difficult item

than an easy one. This can take the form of a single parameter for each item as in

Whitehill et al. (2009), Dai et al. (2011), Chen et al. (2013) and Khetan and Oh (2016),

or a confusion matrix indicating which classes are more likely to be misreported (Zhou

et al., 2012). Alternatively, we can have a heterogeneous model where the probability

of a mistake depends on the type of item at hand and the expertise of each predictor

(Welinder et al., 2010; Ho et al., 2013; Zhang et al., 2015).

In some cases the items are not isolated entities, but can be mapped to a feature space.

For example, in image classification we may have access to a set of high-level features

extracted from the pixels of the image, and use them to predict the label of the image

and the performance of the predictors (Kamar et al., 2012). More in general, if the

objective is to train a supervised classifier by using our predictions over the item classes

y as part of the training set, we can optimise over the accuracy of such a classifier rather

than the accuracy on y itself (Yan et al., 2011; Lin et al., 2014).

In a scenario with repeated interactions over a long stretch of time, we may observe

fluctuations in the predictors’ performance. Donmez et al. (2010) are the first to propose

a method to monitor the predictors’ accuracy, and select only the best subset of them.

Conversely, Simpson et al. (2013) propose a dynamic model of the predictors for the

sake of improving the accuracy of their aggregated answers. The authors of both papers

allow the parameters of each predictor to drift in small stochastic steps, and propose a

method to track their values over time.

Finally, there have been attempts to move away from the assumption of independence

between the predictors. Kim and Ghahramani (2012) proposes two general dependent

classifier combination models, but find minimal empirical improvement over their in-

dependent counterparts. On a different note, KhudaBukhsh et al. (2014) proposes a

method to detect when a group of predictors copies each others’ answers. This is vital

to avoid crowdworker collusion in crowdsourcing applications. Similarly, Wang et al.

(2015) is concerned with explicit coordinated attacks to change the system predictions

on a specific subset of items.

While all of these extended models are undoubtedly interesting, they target specific

characteristics of the problem at hand. Moreover, a general issue with richer models is
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that we need more data to train them and avoid overfitting (Murphy, 2012). For this

reason, in this thesis we mainly focus on the basic Dawid-Skene model, as it is a good

balance between expressiveness and simplicity. Studying more complex models is the

focus of our future work (see Chapter 6).

2.2 Aggregating the predictors’ output

Once we have a model that describes the properties of the individual predictors and

how their collective output X is generated, we need a way to combine the data X into

a prediction ŷi over the class of each item i ∈ M . The goal here is to recover the

unknown vector of ground-truth classes y, even though the noise in the dataset X may

hinder the accuracy of our predictions. In general, we can define an aggregation method

as a function g : {+1, 0,−1}|M |×|N | → {±1}|M | from the space of the dataset X to

the space of item classes. Of course, some specific aggregators might have access to

more information than just X, if that is the case we adapt our notation accordingly.

More importanly, with this definition we can measure the performance of an aggregation

method by means of its expected zero-one loss over the item set M :

P(ŷi 6= yi) = EX,y

{
I
(
gi(X) 6= yi

)}
(2.3)

which we refer to as predictive accuracy, misclassification rate or probability of a classi-

fication error throughout the whole thesis.

In this section, we review a wide range of aggregation methods and discuss their prop-

erties. We begin with voting schemes, which underpin much of our contributions in

Chapters 3 and 4, and are the building block for more complex aggregation methods.

Then, we introduce probabilistic inference methods that are based on Bayesian statis-

tics. These are known for delivering state-of-the-art performance in any setting, but

rarely offer any theoretical guarantees. We dedicate most of Chapter 5 to address this

research gap. Finally, we move onto aggregation algorithms which are rooted in frequen-

tist statistics and the method of moments. These come with good theoretical guarantees,

but have strict requirements on the properties of the dataset X. As we show in Chapter

5, the latter can limit their empirical performance in many settings.

2.2.1 Voting schemes

The literature on voting is extensive and cover various facets of this fascinating field

(Coughlin, 1992). However, there are only a few methods that are relevant to our work,

and so we present them here in order of complexity.
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2.2.1.1 Majority voting

The problem of reaching a consensus in the presence of contrasting opinion is as old as

human societies. A common solution is collecting the votes of a group of individuals

and selecting the option that received the largest number of preferences. This majority

voting scheme has been successfully used in computer science as well, where its ap-

plications range from ensemble methods (Freund and Schapire, 1996; Breiman, 2001)

to crowdsourcing (Snow et al., 2008; Barowy et al., 2012). We can formalise majority

voting as follows:

ŷi = argmax
`∈{±1}

{∑
j∈N

I(xij = `)
}

(2.4)

where ties are broken uniformly at random.

The first theoretical analysis of this aggregation method dates back to 1785, when De

Condorcet published his jury theorem (Marquis de Condorcet, 1785). This theorem

states that, by increasing the number of voters, the probability of committing a mistake

under majority voting goes to zero in the limit. This result is valid if each voter chooses

the correct answer with probability larger than random chance, i.e. pj > 1/2 for all

j ∈ N , and their votes are independent.

More recently, this result has been generalized to crowds where some workers have

pj < 1/2, as long as the average accuracy p̄ = 1
|N |
∑

j∈N pj remains above random chance.

Formally, Berend and Paroush (1998) state that the probability of a classification error

goes to zero for |N | → ∞, as long as the following condition holds:

lim
|N |→∞

(p̄− 1

2
)
√
|N | → ∞ (2.5)

Both these results support the robustness of majority voting as an aggregation method

when we have an abundance of votes. However, there is scope for improvement when

this is not the case, as we explain in the next Section 2.2.1.2.

2.2.1.2 Weighted majority voting

Once we consider that each individual predictor may have a different accuracy pj , we can

see the limitations of the majority voting method. Specifically, the presence of predictors

with pj < 1/2 decreases the predictive performance of the system, as they tend to select

the wrong item class more often than not. Ironically, we could achieve a better result

by toggling the sign of all their respective labels xij . More in general, we can define a

better aggregation method if we take into account the accuracy of each predictor, and

treat their output differently.

Along this line of reasoning, we can define a weighted majority voting method that
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associates a scalar weight wj ∈ R to each predictor j ∈ N , and generates a prediction

on the item classes as follows:

ŷi = sign
{∑
j∈N

xijwj

}
(2.6)

where ties are broken uniformly at random.

Equation 2.6 is flexible enough to accomodate a wide range of behaviours. As an il-

lustration, a noisy predictor can be associated with a weight close to zero, whereas an

accurate one can be assigned a large positive weight. According to Nitzan and Paroush

(1982), when the votes are independent and the parameters pj are known, we can define

a set of optimal weights as follows:

wj = log
( pj

1− pj

)
(2.7)

We explore the connection between the weights in Equation 2.7 and a probabilistic

interpretation of weighted majority voting in Chapter 3, as it is relevant to our discussion

therein. For now, let us note that wj is zero for uninformative predictors (pj = 1/2),

negative for pj < 1/2 and positive for pj > 1/2. In this sense, this set of optimal weights

satisfies all the properties outlined in the present section.

Finally, the work of Berend and Kontorovich (2015) and Gao et al. (2016) provide us

with guarantees on the convergence of Equation 2.6 as the number of predictors grows

to infinity. We review these results in Chapter 3, where we propose our own bounds

on the predictive accuracy of weighted majority voting. These compare favourably with

the aforementioned results (see Remarks 3.2, 3.3, 3.5 and 3.6).

2.2.1.3 The plug-in aggregator

However, in most settings we do not have access to the accuracy pj of each predictor.

For example, in ensemble methods we can only estimate pj on a validation set. Similarly,

in crowdsourcing we can only test each worker on a limited number of golden tasks.2

The question is whether this sort of estimates carry enough information to be used in a

weighted majority scheme.

We formalise the setting by assuming that each predictor is subjected to |G| trials,

and its number of correct answers dj is known. Given this, we have two main options

for computing an estimate of the predictors’ accuracies (Murphy, 2012). On the one

hand, we can choose the maximum likelihood estimate p̂ML
j = dj/|G|. On the other

hand, we can choose a Bayesian approach and compute the posterior expectation p̂BAj =

2Interestingly, some authors advocate for hiding these golden tasks in the normal workflow of the
crowdworkers, so that they are not aware of being monitored (Oleson et al., 2011).
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Epj |dj ,|G|,fp(pj), given a prior distribution fp. With either of these options, we can deploy

the so-called plug-in aggregator (Berend and Kontorovich, 2015; Gao et al., 2016), which

is defined as follows:

ŷi = sign
{∑
j∈N

xijŵj

}
where ŵj = log

( p̂j
1− p̂j

)
(2.8)

where ties are broken uniformly at random.

Note that Equation 2.8 is almost indentical to the weighted majority voting scheme

of Section 2.2.1.2. At the same time, the introduction of the approximate weights ŵj

changes its properties in a significant way. In this regard, Berend and Kontorovich (2015)

study the plug-in aggregator in conjunction with the maximum likelihood estimates p̂ML
j .

Their analysis shows that the fact that these estimates can hit both extreme values

p̂ML
j = 0 and p̂ML

j = 1 is not an issue. However, the resulting guarantees depend heavily

on the estimates p̂j being close to their ground-truth value pj , as we detail in Appendix

E. Our own results from Chapter 4 do not suffer from this limitation. Conversely, there

are no existing results on the accuracy of the plug-in aggregator used with the Bayesian

estimates p̂BAj . We fill this gap in the current literature in Chapter 4.

2.2.2 Bayesian inference

The issue with the more advanced voting schemes we review in Sections 2.2.1.2 and

2.2.1.3 is that they require some prior knowledge on the accuracy pj of each predictor.

When this piece of information is not available, we are left with two options: revert back

to the simpler majority voting scheme, or try and learn the values of pj from the dataset

X itself. The latter is possible if we can measure how often each predictor agrees with

the output of the other ones. In this section we review a number of Bayesian approaches

to do so, while we delve into the frequentist ones later in Section 2.2.3.

At a high level, Bayesian inference works by defining a prior distribution on the latent

variables of interest (Murphy, 2012). In our case, this invariably includes the item

classes y, and the predictors’ accuracies p, as in (Whitehill et al., 2009; Welinder et al.,

2010; Dai et al., 2011; Kim and Ghahramani, 2012; Karger et al., 2014). Then, after

observing the dataset X, the objective is to compute a posterior distribution of the

latent variables, e.g. P(y,p|X). If the data is informative enough, such a posterior

distribution concentrates around the ground-truth values with high probability, which

allows us to form a meaningful prediction.

The details of how the posterior is defined depends on the model we choose. For this

reason we defer most of the related technical details to our discussion in Chapter 5, where

they become relevant (See Section 5.2 in particular). Here, we focus on the algorithmic

side of Bayesian inference.
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2.2.2.1 Approximate mean-field variational inference

A classic approach to Bayesian inference for our setting is the approximate mean-field

method proposed in (Liu et al., 2012). This method builds on the intuition of measuring

the level of agreement of each predictors with the other ones in an iterative way. The

idea is to begin with a majority voting estimate of the item classes, and use it to assess

the predictors’ accuracies. Then, we can use the latter to refine our estimate on the

items, and so on until convergence.

More formally, the prior of choice for the predictor’s accuracy is the Beta distribution

pj ∼ Beta(α, β). This induces identical estimates p̂j = α/(α + β) of each predictor’s

accuracy. With them, we can iterate between the following two steps until convergence:

Item step: ẑi ∝
∑
j∈N

xij log
( p̂j

1− p̂j

)
(2.9)

Predictor step: p̂j =

∑
i∈Mj

sig(xij ẑi) + α

|Mj |+ α+ β
(2.10)

where Mj is the set of items labelled by predictor j and sig(•) is the inverse of the logit

function as detailed in Appendix D. Finally, we can form the final predictions on the

item classes as ŷi = sign
{
ẑi
}

.

Notably, this algorithm is very similar to the original expectation-maximisation method

in (Dawid and Skene, 1979), with the only difference of some additional smoothing

in Equation 2.10. Likewise, both algorithms build on top of the plug-in estimator we

present in Section 2.2.1.3, as Equation 2.9 shows. Crucially, these iterative methods

are provably more accurate than majority voting, as shown in (Baharad et al., 2011).

However, there are no other guarantees on their performance, with the exception of the

general bounds by Gao et al. (2016), which we discuss in Chapter 5.

Other authors have employed variational inference on more complex models of classifier

combination. For example, both Welinder and Perona (2010) and Simpson et al. (2011)

study a multiclass model where we also learn the share of items per each class. Similarly,

Whitehill et al. (2009) and Zhou et al. (2012) extend the basic model to include predictors

with varying accuracy depending on the item they label. However, since our focus is

directed towards the foundations of the original Dawid-Skene model, all these methods

are outside the scope of our work.

2.2.2.2 Belief propagation as matrix factorisation

Next, we introduce another iterative method proposed by Karger et al. (2014). Their

work stems from the observation that, if we represent X in matrix form, we obtain a

regular form. Specifically, the expected value of the |M | × |N | full matrix E{X} =
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y(2p− 1)T has rank one. Therefore, we can try and estimate the values of y and p by

computing the principal components of the observed matrix X. While this observation

is not new, see for instance (Ghosh et al., 2011), the author’s approach is particularly

effective, and can be applied to extended variants of the Dawid-Skene model, as done in

(Khetan and Oh, 2016).

With this in mind, the authors propose an iterative message-passing algorithm that

resembles a power iteration method. First, initialise the predictor messages ŵij to

Gaussian-distributed values with positive mean. Then, repeat the two following steps

for each pair i, j such that xij 6= 0 until convergence:

Item messages: ẑij ∝
∑

j′∈N\j
xij′ŵij′ (2.11)

Predictor messages: ŵij ∝
∑

i′∈M\i
xi′j ẑi′j (2.12)

Finally, we can predict the item classes by ŷi = sign
{∑

j∈Ni
xijŵij

}
, which corresponds

to recovering the sign of the entries of the first eigenvector.

This algorithm has a strong connection with the plug-in aggregator we present in Sec-

tion 2.2.1.3. In fact, Equation 2.11 is nothing but weighted majority voting with an

approximate set of weights ŵ. At the same time, the weights in Equation 2.12 can be

justified if we assume that the prior over pj is discrete, and P(pj =1) > P(pj =0) with

the probability of all other values being zero. This distribution, commonly referred to as

the spammer-hammer prior (Liu et al., 2012; Karger et al., 2014), makes the problem of

inferring every ŵij symmetric to that of inferring ẑij . Moreover, it allows us to interpret

the algorithm as a belief propagation method (Liu et al., 2012).

Crucially, this algorithm is the only relevant Bayesian method with convergence guaran-

tees. Specifically, the authors are able to bound the probability of a classification error

from above:

P(ŷi 6= yi) ≤ 2 exp
(
− R

32
Epj
(
(2pj − 1)2

))
(2.13)

where each item must be labelled by R different predictors. Incidentally, the authors are

also able to show that this exponential relationship between R and the probability of an

error is valid for any inference algorithm, albeit the constant factor inside the exponential

may differ. Most of our theoretical results in this thesis are directed towards quantifying

and comparing this constant factor under different settings.

2.2.2.3 Other probabilistic methods

Both the methods we describe in Sections 2.2.2.1 and 2.2.2.2 are iterative. This is a

common choice in the existing literature, but not unique. We conclude this review of

Bayesian inference by offering two alternative approaches.
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On the one hand, the posterior distribution can be estimated directly via Monte Carlo

sampling. For the Dawid-Skene model, the standard approach is Gibbs’ sampling, as

shown in (Kim and Ghahramani, 2012). This allows us to sample the posterior distri-

bution, without the need of expressing it in analytical form. In Chapter 5 we show that

such an approach is not efficient, and introduce an improved version of Sequential Monte

Carlo sampling (Chopin, 2002) to address this issue.

On the other hand, some authors propose to compute the maximum-a-posteriori (MAP)

value of all the latent variables by gradient ascent. In this regard, Welinder et al.

(2010) applies this strategy on a large hierarchical generative model of image tagging.

Similarly, Jung and Lease (2012) applies this strategy to factorise the matrix X. Unlike

the algorithm in Section 2.2.2.2, their approach assumes that the matrix has rank larger

than one in expectation. We take advantage of the connection betweem gradient ascent

and variational inference in Chapter 5, where we introduce our Streaming Bayesian

Inference for Crowdsourcing algorithm.

2.2.3 Methods of moments

We conclude our review of aggregation methods by looking at a few algorithms rooted in

frequentist statistics. Although this approach is less popular than its Bayesian counter-

part, the resulting algorithms offer some theoretical guarantees on the accuracy of their

predictions. Unfortunately, in order to do so they often require strong assumptions on

the input dataset X, that are not necessarily met in practice.

2.2.3.1 Frequentist matrix factorisation

In this regard, Dalvi et al. (2013) propose an algorithm to compute a set of approx-

imate weights to use in the plug-in aggregator we present in Section 2.2.1.3. Their

method works as follows. Call A = I{X} the predictor-item adjacency matrix, and

E = EX|A,p,y{X} the corresponding expected value of the dataset X in matrix form.

Then, it is easy to see that the relationship ETE = (ATA) ⊗ (wwT ) holds, where

w = (2p− 1) and ⊗ is the element-wise product. If we ignore the expectation operator,

we can compute an approximation of the weights w as ŵ = v1(XTX)�v1(ATA), where

v1(•) is the principal eigenvector and � is the element-wise division.

Note that the weights computed by the algorithm in (Dalvi et al., 2013) are linear

in our estimate of the predictor’s accuracy, i.e. ŵj = 2p̂j − 1, as opposed to the

non-linear ones in Equation 2.2.1.3 for the plug-in agggregator. This makes the al-

gorithm very conservative in its estimates, and reduces its predictive accuracy. Further-

more, the way the weights are computed imposes some restrictions on which settings

this algorithm can be applied to. Specifically, we get a convergence guarantee only
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if the number of labels per item is R >
√
|N |/(8ε‖w‖22), the number of labels per

predictor is L > 256 log(|N |/δ)
√
|N |/(ε2‖w‖22), and the second eigenvalue of ATA is

µ2 < ε‖w‖22RL/(16
√
|N |) for some positive constants ε, δ < 1. When all these technical

constraints are satisfied, we know the probability of a classification error is bounded as

follows:

P(ŷi 6= yi) ≤ exp

(
−RO

( ‖w‖22√
|N |
− 1

R
− 1√

L

)2
)

(2.14)

In Chapter 5 we present our own algorithmic contributions which are both guaranteed

to work in all settings, and exhibit a more direct relationship between the probability of

a classification error and the paramenters R, L and p.

2.2.3.2 A spectral method to ensure EM convergence

Conversely, Zhang et al. (2016) study the convergence properties of the expectation-

maximisation algorithm from a frequentist perspective. Expectation maximisation (EM),

like the other iterative algorithms in Section 2.2.2.1, optimises a non-convex objective

function. In order to ensure convergence to the global optimum, the authors focus on

initialising it properly. They do so with a tensor factorisation algorithm, which is in-

spired by the work of Anandkumar et al. (2015). We review here its binary one-coin

variant.

First, define the level of agreement between two predictors a and b as:

Hab =
1

2

(∑
i∈Mab

I(xia = xib)

|Mab|
− 1

2

)
(2.15)

where Mab is the subset of items labelled by both a and b. Then, for each predictor

j, choose a pair of predictors that maximises (aj , bj) = argmaxa6=b6=j{|Hab|}. Finally,

initialise the accuracy estimates of each predictor to the following value:

p̂j =
1

2
+ sign(Hjaj )

√
HjajHjbj

Hajbj

(2.16)

The main drawback of this algorithm is that we need considerable overlap between the

output of the predictors for the estimates in Equation 2.16 to be different from 1/2. If

this is not the case, the EM algorithm cannot converge. For this reason, it is common

practice to initialise the predictors estimates with a small positive value, as suggested

by (Liu et al., 2012).
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2.2.3.3 Triangular estimation

Finally, Bonald and Combes (2017) propose the triangular estimation algorithm (TE),

which shares many ideas with the algorithm we present in Section 2.2.3.2, but does not

need the expectation-maximisation phase. At its core, the TE algorithm estimates the

correlation between the output of each pair of predictors a and b as follows:

Cab =

∑
i∈Mab

xiaxib

max
(
|Mab|, 1

) (2.17)

where Mab is the subset of items labelled by both a and b. Then, for each predictor

j, we choose the most informative pair of predictors as (aj , bj) = argmaxa6=b 6=j{|Cab|}.
With it, we can estimate the magnitude of the predictor’s accuracy:

|ŵj | ≡ |2p̂j − 1| =
√∣∣∣∣CjajCjbjCajbj

∣∣∣∣ (2.18)

Similarly, the sign of ŵj can be recovered from the correlations as follows. First, define

k = argmaxj{|ŵ2
j +
∑

j′ 6=j Cj′j |}. Then, choose sign(ŵj) = sign(ŵkCjk) for all predictors

j 6= k, and sign(ŵk) = sign(ŵ2
k +

∑
j′ 6=k Cj′k) for predictor k instead.

The triangular estimation algorithm suffers from the same drawback as the algorithm in

Section 2.2.3.2, in that we need a considerable overlap between the output of the workers

to get meaningful values of p̂j . However, when this condition is met, TE delivers state-

of-the-art performance, while offering some loose theoretical guarantees on the accuracy

of its estimates p̂j . For this reason, we include this algorithm in our experimental

comparison in Chapter 5.

2.3 Collecting the predictors’ data

Throughout our review of models and aggregation methods in Sections 2.1 and 2.2 we

always assume that the observations in the dataset X are given. At the same time, we

know that number of labels in X affects the accuracy of our predictions, as proven by

the theoretical results in Equations 2.13 and 2.14. Moreover, it is often the case that

we can control the number of labels we observe. For instance, in ensemble methods we

can choose how many base classifiers we train. Similarly, in crowdsourcing we can ask

additional workers to label our set of items. Thus, in this section we take a closer look

at the problem of collecting the labels in the dataset X, and review relevant existing

work.

The first issue in managing the data collection process is a matter of resources. These

can be computational resources in the case of ensemble methods or actual money in

the case of crowdsourcing (Sorokin and Forsyth, 2008). In the latter case, setting the
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right monetary compensation in order to attract enough crowdworkers without wasting

resources is a research question in itself, and has been studied in (Mason and Watts, 2009;

Horton and Chilton, 2010; Singla and Krause, 2013). A simpler scheme is studied in

(Nguyen et al., 2015), where expert labelers are more costly than regular crowdworkers.

On a similar note, there have been recent efforts to evaluate the value of each data point

in supervised machine learning, by measuring their impact on the prediction accuracy

(Ghorbani and Zou, 2019). In the present discussion we adopt the common assumption

that each data point comes at a fixed cost, by convention c = 1, and that we have a

limit T on the total budget that we can spend (Chen et al., 2013; Tran-Thanh et al.,

2014; Zhang et al., 2015).

The second issue is assessing how much control we have on the data collection process.

A classic assumption from the online learning community is that all the predictors in

the current pool N are always available (Littlestone and Warmuth, 1994; Donmez et al.,

2010; Chen et al., 2013; Tran-Thanh et al., 2014; Zhang et al., 2015). In this setting,

the objective is to quickly identify which predictors are the most accurate, and discard

the rest. However, this assumption is too strong for one of our main applications,

crowdsourcing, where the workers are free to join and leave a project whenever they

please. In this setting, it is difficult to predict the quality of incoming labels (Mao et al.,

2013), and the availability of workers is best modelled as a stochastic process (Faridani

et al., 2011). As a consequence, the corresponding literature has focused on algorithms

that employ all the predictors that are available at each time (Welinder and Perona,

2010; Barowy et al., 2012; Simpson and Roberts, 2014; Bonald and Combes, 2017). In

this thesis we adopt the second approach, as it is more general.

All things considered, we are left with the problem of collecting a fixed number T of labels

across the set of items M . The existing literature proposes some potential solutions. On

the one hand, the crowdsourcing community has designed a number of collection policies

that regulate the data acquisition process. We review them in Sections 2.3.1 and 2.3.2.

On the other hand, the machine learning community has developed the concept of active

learning. We explain how it applies to our setting in Section 2.3.3.

2.3.1 Budget sharing

Since the total budget of labels T is fixed, we can treat it as a limited resource, and

choose a policy that shares it as evenly as possible across the tasks. In Section 2.2.2.2

we mentioned the work of Karger et al. (2014), which is based on the assumption that

each item receives the same number of labels R = T/|M |. The main advantage of

this uniform allocation policy is that it needs no prior information to be executed, and

the collection schedule could even be fixed in advance. However, Simpson and Roberts

(2014) show that the empirical performance of the uniform policy is far from optimal, a

result that we are able to confirm theoretically in Chapters 3 and 4.
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Alternatively, we can try and improve the collection strategy by taking into account the

different accuracy of the individual workers. In the crowdsourcing literature, Ho et al.

(2013) build an allocation strategy on top of a variant of the plug-in aggregator (see

Section 2.2.1.3). Their idea is to associate each predictor with a positive weight ŵj > 0

that measures how accurate they are. Then, they compute an allocation schedule that

evenly balances the sum of weights on each item. We revisit this weight balancing policy

in Chapters 3 and 4, where we show that it is only marginally better than the simple

uniform allocation policy.

Outside of the crowdsourcing field, the problem of budget sharing has received con-

siderable attention. Both the fair allocation of indivisible goods in the economic field

(Golovin, 2005; Asadpour and Saberi, 2007) and multi-set partitioning in combinatorics

(Karmarkar and Karp, 1983; Korf, 1998) are well understood and offer efficient algo-

rithms for their solutions. However, these techniques require us to know in advance the

weights and the number of labels from each predictor, which makes them unsuitable for

our setting with stochastic arrivals. Conversely, the work on online scheduling for par-

allel machines is more suitable to our case, since it does not assume the prior knowledge

of the list of incoming jobs (Albers, 1997; Avidor et al., 2001). Specifically, in Chapters

3 and 4 we use a greedy algorithm originally proposed by Graham (1966) to implement

the weight balancing policy efficiently.

2.3.2 Measuring disagreement

Another approach to the label collection problem is to track the current consensus on

the items, and acquire additional labels where the predictors are disagreeing. Following

this line of reasoning, Barowy et al. (2012) proposes a policy that keeps collecting new

labels until all the items are classified with confidence larger than a threshold δ. In order

to do so, the authors consider the output of a group of N predictors who choose their

labels completely at random, and compute the probability that fewer than r of them

will agree on the labeling of item i:

ε(N, r) = P
(

max
`∈{±1}

{∑
j∈N

I(xij = `)
}
< r
)

=
r−1∑

k=|N |−r+1

(|N |
k

)
2|N |

(2.19)

Then, their policy begins with soliciting a minimum number of labels R = minN{|N | :
ε(N, r) ≤ δ} for each task, and keeps doubling that amount until a majority larger than

r is reached. When this happens, we know with confidence δ that the predictions are not

the result of random chance. This is similar to the Kappa measure in medical research

(Fanshawe et al., 2008).

In a similar way, (Parameswaran et al., 2012) explore the design of complex policies en-

tirely based on the number of positive and negative labels received on each item. Besides
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giving guarantees on the probability of a classification error when all the predictors share

the same accuracy pj = p̄, they also propose an efficient algorithm to design a policy

with a given expected budget E{T}. In our discussion of Chapter 3, we explain how

these majority-based policies are a subset of the active learning strategies we introduce

in the next Section 2.3.3.

2.3.3 Active learning

A more structured approach to the problem of label collection is offered by the existing

literature on active learning (Settles, 2010). Here, the goal is to improve the performance

of a standard machine learning algorithm by carefully selecting the samples in its training

set, in order to acquire more informative data. The active learning paradigm is iterative:

we collect the first few samples, train a partial model, consider its current output, and

then decide which samples to query next. Depending on the problem at hand and the

specific data collection strategy we use, we may achieve the same predictive performance

of a random training set, but with an exponentially smaller number of samples (Freund

et al., 1997; Dasgupta, 2004).

Applying the active learning paradigm to our setting requires a few adaptations (Yan

et al., 2011). First, we should restrict our focus to pool-based methods, a subset of active

learning techniques that query labels on a fixed set of points, in our case the M items.

Second, we must take into account the fact that the labels we collect from the predictors

are noisy, whereas the standard assumption in active learning is that we can observe

ground-truth values y.

Along this line of reasoning, a few authors have studied the impact of active learning

techniques when a supervised machine learning algorithm is trained on crowdsourced

data. In particular, Lin et al. (2014) answer the question of whether it is more efficient

to acquire a single label on most of the items or label a subset of them multiple times.

Conversely, Nushi et al. (2016) investigate a scenario where we need to crowdsource the

features of each item too, and thus we do not want to waste our budget on uninformative

ones. Finally, Yan et al. (2011) and Nguyen et al. (2015) explore a different model of

interaction that allows the learner to select individual predictors.

However, in our setting we do not have access to a feature space and the individual

items are independent (see Section 2.1). Thus, the supervised learning paradigm is not

appropriate, since collecting a new label on any item i does not necessarily bring more

information on the other items i′ 6= i. Moreover, our goal is to improve the classification

accuracy on the pool of M items itself, and not to generalise over other unseen items.

As a consequence, we need to turn to other, more general, label collection policies (Fu

et al., 2013).

The first active learning policy that is relevant to our research is uncertainty sampling
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(Lewis and Gale, 1994). According to this heuristic, the learner will always acquire new

data on the items whose classification she is the least confident about. Depending on

the particular application, the exact definition of uncertainty may vary: Welinder and

Perona (2010) use the posterior probability of choosing the wrong class and show the

efficiency of their system experimentally, while Khetan and Oh (2016) use the magnitude

of the first eigenvector of X and prove its asymptotical optimality, though in a more

complex model with heterogeneous items. For non-binary classification problems, a

further measure of uncertainty is the entropy of the posterior distribution (Settles, 2010).

We study the theoretical properties of the uncertainty sampling policy in Chapters 3

and 4.

Looking at the problem from a different angle, we can see that the active learner is

training a new model after acquiring every subset of samples. We can exploit this fact

and define a label collection policy that takes into account the impact of the new labels

on the current model. Both Lizotte et al. (2003) and Nguyen et al. (2015) propose to

target the probability of error, and always choose the label that reduces it the most in

expectation. However, this strategy has never been studied on the basic Dawid-Skene

model. We fill this research gap in Chapter 3, where we show that minimising the

expected prediction error is a weaker form of uncertainty sampling.

In contrast, there are accounts of using the information gain of the incoming data to

define an active learning policy in probabilistic settings (MacKay, 1992). Specifically,

we can measure the information gain of a future probabilistic model g(•) with respect

to the current one f(•) in terms of the Kullback-Leibler divergence between the two

distributions (Kullback and Leibler, 1951):

KL(g||f) =
∑
y

g(y) log

(
g(y)

f(y)

)
(2.20)

where we assume that the domain of the probabilistic model spans all the possible

combinations of item classes y. Since we cannot predict the values of the incoming

labels, we use the expected information gain Eg{KL(g||f)} over all possible outcomes

of our current query as an optimisation proxy.

In this vein, Simpson and Roberts (2014) employ the idea just introduced to create a

label collection policy for crowdsourcing. However, the intelligent tasking algorithm they

introduce suffers from a major drawback: without a closed form for the expected value

of Equation 2.20, we need to simulate the arrival of all the possible future labels and

retrain the probabilistic model on each of them. In Chapter 5 we comment on the high

computational requirements of this policy on the full Dawid-Skene model. Conversely,

in Chapters 3 and 4 we prove that this strategy is equivalent to uncertainty sampling

when more information about the predictors’ accuracy is available.
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2.4 Summary

In this chapter we present the three building blocks of the multiple classifiers setting and

the related literature. First, in Section 2.1 we review different models of this setting,

and the related assumptions. There, we present the one-coin Dawid-Skene model as a

reasonable compromise between expressiveness and simplicity. Second, in Section 2.2 we

introduce several state-of-the-art techniques to aggregate the output of the individual

predictors, and form accurate estimates of the item classes. These come from different

fields, namely voting, Bayesian statistics and frequentist statistics. Third, we move to

the question of collecting the data from the predictors in Section 2.3. The existing

collection policies come both from the crowdsourcing community and, more in general,

from the active learning literature.

Along the way, we show that this corpus of literature is fragmented. Not only are

a large number of the relevant works grounded in different assumptions, but also we

miss a structured comparison between alternative techniques, let alone a theoretical

understanding of their properties and performance. This is particularly evident for the

data collection problem, where the only theoretical result applies to a policy that has

been proven suboptimal in practice. As a consequence, the pratictioner who plans to use

one of these existing techniques may be unsure on which to select, while the researcher

working on a generalisation of some of the classic approaches we present in this chapter

may not have enough foundational knowledge to build upon.

The contributions we present in this thesis address this gap in the literature, and provide

a structured study of both the data aggregation and the data collection problems in

the multiple classifier setting. More specifically, in Chapter 3 we study the impact

of all the different collection policies on the predictive accuracy of the system from a

theoretical standpoint. This approach allows us to explain their behaviour and make a

meaningful comparison among them. However, in order to do so, we are forced to use a

idealised variant of the one-coin Dawid-Skene model. Thus, we spend most of Chapter

4 generalising our result to a more realistic setting. Thanks to this background, we are

able to tackle the data aggregation problem in the original one-coin Dawid-Skene model

in Chapter 5. There, we propose two new Bayesian inference methods which consistently

beat the state-of-the-art in terms of predictive accuracy and computational speed. In

addition to this, we are able to give theoretical guarantees on their accuracy, both in

conjunction with non-adaptive collection policies and adaptive ones. The latter is the

first instance of this kind in the current literature.





Chapter 3

Known predictors’ accuracy

As we show in the previous chapter, the existing literature offers a number of differ-

ent approaches to collect and aggregate the predictions of different classifiers. On the

practical side, this variety is useful to those willing to implement a particular system,

as they have a library of examples from which to take inspiration. On the theoretical

side, comparing the existing results is challenging as they are rooted in different models

and assumptions. As a consequence, we are left without an answer to why a specific

technique works best in some cases, but may fail dramatically in others.

In this chapter, we take a first step towards addressing this question by reducing the

aggregation problem to a bare minimum, and studying the impact of different collection

policies. This includes considering binary classes only, and assuming that the accuracy

of each individual predictor is known. We argue that this model, though too abstract

for most practical purposes, still captures the essential properties of the problem at

hand. Most importantly, it defines a common ground on which we can compare different

collection policies in a meaningful way.

The work we present in this chapter is mainly theoretical. Primarily, we study the

relationship between the number of data points R we collect on each item, and the

probability of a classification error. We show that this relationship is exponential in the

form P(error) = exp(−cR), where c > 0 is a policy-dependent constant. Our goal is

identifying the value of this constant for each collection policy, and using it to make a

comparison between them.

Specifically, our contribution unfolds in the following way. After explaining the details

of our binary model in Section 3.1, we divide the existing collection policies into two

categories. The first is that of non-adaptive policies, which we explore in Section 3.2.

These include all policies that make decisions based on the number and accuracy of

the predictors, but ignore the data points they provide. The second is that of adaptive

policies, which instead take the latter into account too. We study them in Section 3.3,

31
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where we analyse their performance under ideal assumptions. In reality, we do not need

these assumptions to hold in a strict sense, as we show in Section 3.4. With these results

in mind, we can quantify the advantage that adaptive policies have over non-adaptive

ones, as we do in Section 3.5. Finally, in Section 3.6 we draw our conclusions and explain

how the results in the present chapter inform the content of the following ones.

3.1 An idealised model

We introduce here a model of classification for multiple items that we carry through-

out the whole thesis. This is based on the celebrated Dawid-Skene model (Dawid and

Skene, 1979) for aggregating multiple classifiers, that we briefly presented in Chapter 2.

However, in this chapter we make several simplifying assumptions, and reduce the afore-

mentioned model to an ideal setting where most of the parameters are known. In the

following chapters we remove these assumptions one by one, and show how our results

for the idealised model extend to more general settings.

Here we recap the basic properties of our setting. First, our objective is to recover the

ground-truth class of a set of items M . For now, we assume that the ground-truth class

yi ∈ {±1} of each item i in M is binary, and that the prior probability on a positive

class is P(yi = +1) = q. To achieve this objective we have a set of predictors N which

provide us with data points, or labels, which we denote as X = {xij}, where i is the

item index and j is the predictor index. To make our analysis more general, we assume

that we have no control over the order in which the predictors label the items. Instead,

we model their arrival with a vector a, where j = a(t) is the predictor available at time

t. However, we assume that we can choose which (single) item i ∈ M the available

predictor j = a(t) labels at time t. This job is performed according to a collection policy

π. Finally, after T timesteps the label collection process concludes.

In the course of the following discussion, we use some additional notation. First, we

denote with Ni the subset of predictors that labelled item i. Similarly, we use Mj to

represent the subset of items labelled by predictor j. Second, since the collection process

is inherently sequential, we use the superscript t to denote the information available up

to each time step t. For example, we use Xt for the subset of data points observed so

far.

A key feature of the Dawid-Skene model is that the predictors cast their labels inde-

pendently. More formally, conditional on the ground-truth class yi of the item they

are labelling, the predictor’s chance of producing a correct answer is P(xij = yi) = pj .

Oftentimes, the literature refers to this property as the one-coin assumption, as each

predictor is modelled with a single Bernoulli parameter. In this chapter, we assume

that the accuracy vector of the predictors p = (p1, . . . , p|N |) is known. Furthermore,
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we assume that the values of the parameters pj are extracted from an underlying com-

mon distribution fp. All together, these assumptions form a full generative model, for

which we give a graphical representation in Figure 3.1. There, we highlight in grey the

variables we know the value of, and in white those we need to estimate.

xij

pj yi

fp q

j ∈ N
i ∈ M

Figure 3.1: A graphical representation of the idealised Dawid-Skene model.

With this information, the problem of aggregating the data points X in a prediction

over the class of the items reduces to weighted majority voting. In other terms, we can

directly compute the posterior probability over yi as follows:

P(yi = +1|X,p, q) ∝ q
∏
j∈Ni

p
I(xij=+1)
j (1− pj)I(xij=−1) (3.1)

which translates to the optimal weighted majority voting rule (Nitzan and Paroush,

1982) when taken in the log-odds domain:

zi ≡ log

(
P(yi = +1|X,p, q)
P(yi = −1|X,p, q)

)
= log

( q

1− q
)

+
∑
j∈Ni

xij log
( pj

1− pj

) (3.2)

and where the final predictions are formed as ŷi = sign(zi) for all items i ∈ M . In

the following discussion, we often refer to the log-odds of q and pj in Equation 3.2 as

weights, and we denote them as wq and wj respectively.

Our choice of assumptions for this chapter is not arbitrary. In fact, most of our results

depend on the specific form Equation 3.2 takes. There, we can see that the log-odds zi

are the summation of a number of independent terms: a prior on the item class, and a

set of weighted votes by the predictors. In this respect, we can interpret the evolution

of zi during the collection process as a discrete random walk that starts in z0
i = wq, and

moves with continuous-sized steps sij ≡ xijwj until it reaches its final value. We use

this interpretation throughout the whole chapter.
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An important property of the steps sij is that on average they always points towards the

ground-truth class yi. More formally, we can write the expected value of sij as follows:

Exij ,pj |yi(xijwj) = Epj
(
Exij |pj ,yi(xij)wj

)
= yiEpj

(
(2pj − 1)wj

) (3.3)

where the last expectation is either positive or zero (when all accuracies equal pj =
1
2). As a consequence, the expected value of sij will always have the same sign as yi.

Furthermore, its magnitude depends solely on the probability density function of the

predictors’ accuracy pj ∼ fp. To give an intuitive understanding of this relationship, we

plot three examples in Figure 3.2, under the assumption that yi = +1. Note how the

density of the probability function is skewed towards the positive side in all three cases.
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(a) Predictors’ accuracy domain.
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(b) Weighted vote domain.

Figure 3.2: Three examples of the predictors’ population.

As a consequence, the random walk on zi always exhibits a drift toward the correct class.

However, in our following analysis we show that different collection policies capitalise on

this drift at different rates. We present a quantitative comparison between such rates in

Section 3.5.

3.2 Non-adaptive collection policies

In this section we present our analysis of non-adaptive policies. We put in this category

all the collection policies that base their decisions solely on the number and accuracy of

the predictors. More formally, a non-adaptive policy decides which subset of predictors

Ni to allocate to each item i based on the following two pieces of information: the total

number of items |Mj | each predictor j can label and the accuracy p = (p1, . . . , pN ) of

the predictors. In general this information must be known in advance of the collection

process. However, all the policies we study in this section can be implemented in an

online fashion, where the availability vector a is revealed one time step at a time.
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Given this definition, all non-adaptive policies satisfy the following property: the prob-

ability of a classification error on item i depends only on the corresponding subset Ni

of predictors, and their accuracy. In other terms, once the collection policy has selected

Ni, the predictors therein cast their labels xij independently. This is in contrast with

the adaptive policies we study in Section 3.3, which populate the subset Ni one predictor

at a time, depending on the labels collected so far.

This property allows us to study the probability of a classification error on each item

i separately. Accordingly, we first derive some results with a single item |M | = 1 in

Section 3.2.1, and compare them with the existing literature. Then, we use them to

assess the performance of the UNI policy in Section 3.2.2, and the WB policy in Section

3.2.3.

3.2.1 Classification error on a single item

Before dealing with the behaviour of a specific non-adaptive collection policy, let us

derive some general bounds on the probability of misclassifying a single item. The

results we present in this section are not only useful for our discussion in the following

Sections 3.2.2 and 3.2.3, but constitute an improvement on the existing error bounds for

the weighted majority voting rule in (Berend and Kontorovich, 2015) and (Gao et al.,

2016) as we explain below. Throughout this whole section we drop the index i, since

we have only a single item to classify, and assume that we observe a label xj from each

predictors j in N . Moreover, we assume that the cardinality of N , i.e. the number of

predictors, is independent from the value of the data X we observe, in accordance with

the definition of a non-adaptive policy. We will drop this assumption in Section 3.3.1

where we analyse the adaptive case instead.

With this in mind, we can bound the probability of a classification error from above,

conditional on the quality of the predictors and the prior on the class of the item:

Theorem 3.1. Given a set N of predictors with known accuracies p = (p1, . . . , p|N |)

and prior on the positive class q ≡ P(y = +1), the probability of a classification error

under weighted majority voting is upper bounded by:

P(ŷ 6= y|p, q) ≤
√
q(1− q)

∏
j∈N

2
√
pj(1− pj) (3.4)

Proof. By definition the probability of a classification error is:

P(ŷ 6= y|p, q) = qP(ŷ 6= y|p, y = +1) + (1− q)P(ŷ 6= y|p, y = −1) (3.5)

Now, let us define the halved log-odds as h ≡ 1
2wq +

∑
j∈N xj

1
2wj , and rewrite the

conditional probabilities in Equation 3.5 by marginalising over the output X of the
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individual predictors:

P(ŷ 6= y|p, y = +1) =
∑
X

(
I(h < 0) +

1

2
I(h = 0)

)
P(X|p, y = +1) (3.6)

P(ŷ 6= y|p, y = −1) =
∑
X

(
I(h > 0) +

1

2
I(h = 0)

)
P(X|p, y = −1) (3.7)

Here, the probability of observing each xj ∈ X is independent of the output of the other

predictors, conditional on the ground-truth y. Therefore, we have that:

P(X|p, y = +1) =
∏
j∈N

P(xj |pj , y = +1)

=
∏
j∈N

P(xj |pj , y = +1) exp(−xj 1
2wj)

√
pj(1− pj)√

pj(1− pj) exp(−xj 1
2wj)

= exp(h− 1

2
wq)

∏
j∈N

√
pj(1− pj)

(3.8)

since P(xj |pj , y) is either pj or 1− pj , and the following holds:

P(xj |pj , y = +1) exp(−xj 1
2wj)√

pj(1− pj)
= 1 for all xj ∈ {±1} (3.9)

Similarly, for the opposite ground-truth class we have:

P(X|p, y = −1) = exp(−h+
1

2
wq)

∏
j∈N

√
pj(1− pj) (3.10)

By substituting Equations 3.8 and 3.10 in Equations 3.6 and 3.7 we get:

P(ŷ 6= y|p, y = +1) ≤
∑
X

(
I(h < 0) +

1

2
I(h = 0)

)
exp(−1

2
wq)

∏
j∈N

√
pj(1− pj) (3.11)

P(ŷ 6= y|p, y = −1) ≤
∑
X

(
I(h > 0) +

1

2
I(h = 0)

)
exp(+

1

2
wq)

∏
j∈N

√
pj(1− pj) (3.12)

where the inequality signs comes from the fact that exp(h) ≤ 1 and exp(−h) ≤ 1 for all

h ≤ 0 and h ≥ 0 respectively.

Finally, both the sum in Equation 3.11 and 3.12 amount to 2|N |−1, as for each h there

exists an h′ such that h′ = −h, and the number of possible values of X is 2|N |. By

combining these results according to Equation 3.5 we get the bound in the theorem.

Two things must be noted. First, the prior q takes the role of an extra predictor in

the bound of Theorem 3.1, reducing the chance of an error by
√
q(1− q) instead of√

pj(1− pj). Second, the existing literature provides two alternative bounds in the

special case q = 1
2 . In the following two remarks, we show that our result is tighter than

both of them:
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Remark 3.2. Theorem 3.1 is tighter than the corresponding result in (Gao et al., 2016)1:

P
(
ŷ 6= y|p, q =

1

2

)
≤
∏
j∈N

2
√
pj(1− pj) (3.13)

Proof. Substituting q = 1
2 in Equation 3.4 yields a factor of 1

2 in front of the product.

The corresponding bound in Equation 3.13 lacks this factor.

Remark 3.3. Theorem 3.1 is tighter than the corresponding result in (Berend and Kon-

torovich, 2015):

P
(
ŷ 6= y|p, q =

1

2

)
≤ exp

(
− 1

2

∑
j∈N

(
pj −

1

2

)
wj

)
(3.14)

Proof. By taking the logarithm of our result in Theorem 3.1, and setting q = 1
2 , we have:

P
(
ŷ 6= y|p, q =

1

2

)
≤ exp

(
− log(2) +

1

2

∑
j∈N

log
(
4pj(1− pj)

))
(3.15)

where for any pj the function log
(
4pj(1 − pj)

)
is never larger than the corresponding

function
(

1
2 − pj

)
wj in the argument of Equation 3.14. Therefore, for any p the bound

in Theorem 3.1 always produces estimates that are closer to the true probability of an

error.

Let us move now to our lower bound on the probability of a classification error:

Theorem 3.4. Given a set N of predictors with known accuracies p = (p1, . . . , p|N |)

and prior on the positive class q ≡ P(y = +1), the probability of a classification error

under weighted majority voting is lower bounded by:

P(ŷ 6= y|p, q) ≥ 0.73 exp
(
− 1

2
‖w‖2

)√
q(1− q)

∏
j∈N

2
√
pj(1− pj) (3.16)

where w is the vector of weights wj = log
(
pj/(1− pj)

)
, and ‖•‖2 denotes the Euclidean

norm.

Proof. Here we can reuse some of the arguments from the proof of Theorem 3.1. Specif-

ically, Equations 3.6, 3.7, 3.8 and 3.10 allow us to derive the following:

P(ŷ 6= y|p, y = +1) = S exp(−1

2
wq)

∏
j∈N

2
√
pj(1− pj) (3.17)

P(ŷ 6= y|p, y = −1) = S exp(+
1

2
wq)

∏
j∈N

2
√
pj(1− pj) (3.18)

1The original formulation of this result is not straightforward. Refer to Appendix A for clarifications.
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where we define the shared term S as:

S ≡ 1

2|N |
∑
X

(
I(h < 0) +

1

2
I(h = 0)

)
exp(h) (3.19)

Then, we notice that S does not depend on the predictor accuracy p except for the

weights w. In this regard, we can treat X as the observation of |N | independent

Rademacher variables ε with corresponding probability 2−|N |. The following upper

bound follows suit:

S ≥ 1

2|N |
∑
X

(
I(h < 0) +

1

2
I(h = 0)− I(h < −H)

)
exp(−H)

=

(
1

2
− 1

2|N |
∑
X

I(h < −H)

)
exp(−H)

=

(
1

2
−Pε(h < −H)

)
exp(−H)

(3.20)

where H ≥ 0 is an arbitrary constant, and the probability of h exceeding −H when the

observations X are Rademacher-distributed can be bounded with Hoeffding’s inequality:

Pε(h < −H) ≤ exp

(
− 8H2∑

j∈N w
2
j

)
(3.21)

Now, since the result in Equation 3.20 is valid for anyH ≥ 0, let us setH = 1
2

√∑
j∈N w

2
j .

This choice yields 1
2−Pε(h < −H) ≥ 0.5−exp(−2) ≈ 0.365. By combining these results

according to Equation 3.5 we get the bound in the theorem.

Note that the lower bound in Theorem 3.4 introduces an additional term with respect

to the upper bound in Theorem 3.1. Despite this, our result is still tighter than the

bounds in the existing literature. Specifically, for q = 1
2 we have:

Remark 3.5. Theorem 3.4 is tighter than the corresponding result in (Gao et al., 2016)2:

P
(
ŷ 6= y|p, q =

1

2

)
≥ 0.25 exp

(
− ‖w‖2

) ∏
j∈N

2
√
pj(1− pj) (3.22)

Proof. Substituting q = 1
2 in Equation 3.16 yields a factor of 0.365 which is larger than

the factor 0.25 in Equation 3.22. More importantly, our bound in Equation 3.16 has an

additional factor 1
2 before the term ‖w‖2, which makes it exponentially tighter.

Remark 3.6. Theorem 3.4 is asymptotically tighter than the corresponding result in

(Berend and Kontorovich, 2015):

P
(
ŷ 6= y|p, q =

1

2

)
≥ 3

4
(
1 + exp(2Φ + 4

√
Φ)
) where Φ =

∑
j∈N

(
pj −

1

2

)
wj (3.23)

2Again, refer to Appendix A for clarifications on the original formulation of this result.
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Proof. Assume that the number of predictors is large, i.e. |N | → ∞, and that their accu-

racy is non-random, i.e. pj 6= 1
2 for most j. Then, Φ→∞ and the non-asymptotic terms

in both Equation 3.16 and 3.23 become negligible. As a consequence, the statement we

need to prove reduces to the following:∏
j∈N

2
√
pj(1− pj) ≥ exp(−2Φ) (3.24)

or alternatively in logarithm form:

1

2

∑
j∈N

log
(
4pj(1− pj)

)
≥
∑
j∈N

(1− 2pj)wj (3.25)

which holds for any p, since the left-hand function is not smaller than the right-hand

one for any pj ∈ (0, 1), with equality for pj = 1
2 .

For a qualitative comparison between our results in Theorems 3.1, 3.4 and the existing

bounds in the literature, refer to Figure 3.3 and its related discussion.

3.2.2 Classification error under the UNI policy

The results in Section 3.2.1 allow us to study the performance of the uniform (UNI)

collection policy we introduce in Section 2.3.1. The idea behind this policy is simple:

given the total amount of data points T we can afford, split them equally amongst the set

of items we are trying to classify. In the following discussion, we assume a round-robin

implementation of the UNI policy. That is, at every time step t we assign the currently

available predictor j = a(t) to the next item i = π(t−1)+1. In order to avoid assigning

a predictor to the same item twice, we formally define the UNI policy as follows:

πuni(t) = argmin
i∈M\Mt−1

a(t)

(
|N t−1

i |
)

(3.26)

where M t−1
a(t) is the set of items labelled by predictor j = a(t) in the past, which we need

to skip, and ties are resolved in lexicographic order.

Overall, the UNI policy tries to assign R = T/|M | predictors to each item, rounded to

the nearest integer. The round-robin implementation guarantees this behaviour happens

in most cases. In fact, the UNI policy is robust to several non-ideal conditions during

the collection process, as we detail in Section 3.4. The only exception being when the

number of predictors |N | is smaller than R, and thus it is impossible to collect enough

independent data points on each item. However, there exists no policy that can overcome

such a degenerate scenario.

With this in mind, we can extend the results in Section 3.2.1 to the UNI policy. Recall,
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that Theorems 3.1 and 3.4 bound the probability of a classification error on a single item

given a set of predictors N . In the case of the UNI policy, these predictors are spread

over the whole set of items M , and each item i receives only a subset Ni ⊆ N , with

cardinality |Ni| = R. Crucially, the decisions on how to distribute the set of predictors

N over the overlapping subsets Ni do not depend on the accuracy p of the predictors (see

Equation 3.26). As a consequence, we can study the probability of a classification error

on each item i in isolation, and assume that the accuracy of its corresponding subset of

predictors Ni is extracted from the underlying probability density function pj ∼ fp.

More specifically, we can tie the probability of a classification error under the UNI policy

to the number of predictors per item R and the predictors’ accuracy density fp as follows:

Corollary 3.7. Given a population of predictors with accuracy pj ∼ fp, a prior on

the positive class q ≡ P(yi = +1), and R predictors per item, the probability of a

classification error by the UNI policy under weighted majority voting is upper bounded

by:

P(ŷi 6= yi|fp, q) ≤
√
q(1− q)

(
2Epj∼fp

(√
pj(1− pj)

))R
(3.27)

and lower bounded by:

P(ŷi 6= yi|fp, q) ≥ 0.73
√
q(1− q)Ep′∼fp

(
exp

(
− 1

2
‖w′‖2

) R∏
j=1

2
√
pj(1− pj)

)
(3.28)

for any item i ∈M , where p′ is a vector of length R and w′ contains its corresponding

weights wj = log
(
pj/(1− pj)

)
.

Proof. Theorems 3.1 and 3.4 provide us with bounds on the probability of a classification

error conditioned on the predictors’ accuracy p. Using the chain rule we can derive the

probability of an error for any p ∼ fp as follows:

P(ŷi 6= yi|fp, q) = Ep∼fp
(
P(ŷi 6= yi|p, q)

)
(3.29)

The results in the corollary follow from the fact that each pj is i.i.d.

Comparing the two bounds in Corollary 3.7, we can see that they both share the common

terms
√
q(1− q) and 2

√
pj(1− pj). At the same time, the dependency of the lower

bound on the Euclidean norm of w′ can give the impression that the two bounds do not

match asymptotically. However, we can show that this is not the case. In fact, as the

number of predictors R→∞ grows large, the term ‖w′‖2 has a contribution of c
√
R on

the probability of an error, for some constant c. Conversely, the term
√
pj(1− pj) has

a contribution of c′R, for some other constant c′, which quickly dominates the former.

Since both upper and lower bound share the latter term, we can conclude that they

match asymptotically.
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As a sidenote, the results in Corollary 3.7 are only the last of a sequence of incremental

improvements in our research. We list our previous bounds in Appendix B. While these

bounds are less tight, the technique we use to derive them is more general, and as such

it can be of separate interest.

We conclude this section with a qualitative assessment on how close the bounds in Corol-

lary 3.7 are to the true probability of a classification error. To this end, we generate

synthetic data and compute the empirical performance of the UNI policy. In the fol-

lowing experiment we set the number of items to |M | = 1000, the prior on the items

to q = 1
2 , the number of labels provided by each predictor to L = 1, and we extract

the predictors’ accuracy according to pj ∼ Beta(4, 3). This represents a scenario with

a mixed population of predictors whose average accuracy is not too distant from 1
2 .

Similar results can be obtained for different choices of fp. The results are presented in

Figure 3.3 for an increasing number of labels per item R.
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Figure 3.3: Comparison between the empirical classification error under the UNI
policy, the bounds in the existing literature and our results. Dashed lines are the upper

bounds, dotted lines are the lower bounds.

As expected, the probability of a classification error decreases as we observe more data

points. In this regard, notice how the bounds in Corollary 3.7 closely match the empirical

performance as R increases. This is in contrast with both the existing works of (Gao

et al., 2016), which suffers from more conservative factors, and (Berend and Kontorovich,

2015), whose non-matching lower bound rapidly diverges away from the true empirical

performance. For a more rigorous comparison of our results with these existing works,

see Section 3.2.1. For a comparison with the performance of other collection policies,

see Section 3.5.
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3.2.3 Classification error under the WB policy

One of the drawbacks of the UNI policy is that it does not take into account the accuracy

of the individual predictors during the collection process. Without this distinction, the

UNI policy may collect a set of very noisy data points on some items, while assigning

all the accurate predictors to some others. When the population of predictors is varied,

this behaviour can be very inefficient.

In this section we investigate the properties of an optimal non-adaptive policy. First, we

provide an asymptotical expression for its probability of a classification error. Second,

we propose an efficient policy to approximate its behaviour. We call the latter the

weight balancing (WB) policy (see Section 2.3.1), and we show that it has indeed a

better performance than the UNI policy, albeit only marginally.

Let us begin with the probability of a classification error of an optimal non-adaptive

collection policy:

Corollary 3.8. Given a population of predictors with accuracy pj ∼ fp, a prior on the

item classes q ≡ P(yi = +1), and a large number of predictors per item R → ∞, the

probability of a classification error by an optimal non-adaptive policy under weighted

majority voting is:

P(ŷi 6= yi|fp, q) = exp

(
R

2
Epj∼fp

(
log
(
4pj(1− pj)

))
+ o
(√
R
))

(3.30)

for any item i ∈M .

Proof. Let us focus on the asymptotic case where R → ∞. Rewriting the bounds in

Theorems 3.1 and 3.4 in exponential form for any item i ∈M we have:

P(ŷ 6= y|p, q) = exp
(1

2

∑
j∈Ni

log
(
4pj(1− pj)

)
+ o
(√
|Ni|

))
(3.31)

where o
(√
|Ni|

)
includes both the logarithm of the constant

√
q(1− q) and the term

−1
2

√∑
j∈Ni

w2
j in the lower bound, as explained in the discussion of Theorem 3.7.

Three things must be noted. First, the dominant term in Equation 3.31 is the sum over

log(4pj(1 − pj)). Second, the exponential is a convex function. Third, the decisions

of any collection policy affect which subset of predictors Ni gets assigned to each item

i ∈M . Therefore, if we want to minimise the probability of a classification error across

all the items M , we need to cleverly distribute the predictors in such a way that the

sum in Equation 3.31 has the same value for each i ∈M . The total amount that we can

distribute after the whole collection process is the following:

Stot =
1

2

∑
j∈N

L log
(
pj(1− pj)

)
(3.32)
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where we assume that each predictor labels the same number of items |Mj | = L. Fur-

thermore, for R → ∞ the number of predictors |N | must also become large. As a

consequence we can rewrite Equation 3.32 taking the expectation over pj as follows:

Stot =
L|N |

2
Epj∼fp

(
log
(
4pj(1− pj)

))
(3.33)

where L|N | = T is the total number of data points we collect.

In the best-case scenario, an optimal non-adaptive policy is able to split Stot evenly over

the M items. If this is the case, L|N |/|M | = R and we get the result in the corollary.

Note that the result in Corollary 3.8 differs from the corresponding results for the UNI

policy (see Corollary 3.7) in that the expectation over pj is outside of the logarithm. By

Jensen’s inequality we have:

Epj∼fp
(

log
(
2
√
pj(1− pj)

))
≤ log

(
Epj∼fp

(
2
√
pj(1− pj)

))
(3.34)

thus establishing that the probability of a classification error under the UNI policy,

which depends on the right-hand side term, is never smaller than that of an optimal

non-adaptive policy (left-hand side term).

We show in Corollary 3.8 that such an optimal policy aims to distribute the quantity

Stot as evenly as possible across the set of items M . We can approximate this behaviour

by greedily assigning the next predictor j = a(t) to the item with the largest probability

of a classification error according to Equation 3.31. This approach is akin to the greedy

load-balancing algorithm in (Graham, 1966). We call the resulting collection strategy

the weight balancing (WB) policy, which we formally define in the following way:

πwb(t) = argmax
i∈M\Mt−1

a(t)

( ∑
j∈Nt−1

i

log
(
4pj(1− pj)

))
(3.35)

We provide a qualitative assessment of this policy in Figure 3.4, where we compare it

to the UNI policy under the same settings of Figure 3.3. Note that the improvement in

empirical performance is minimal. Similarly, the corresponding bound in Corollary 3.8

shows only a slightly better asymptotic decay than the bound in Corollary 3.7 for the

UNI policy. Regardless, we use the stronger result in Corollary 3.8 to compare adaptive

and non-adaptive policies in Section 3.5.

3.3 Adaptive collection policies

The policies we analyse in Section 3.2 are designed around a notion of resource sharing.

In the case of the UNI policy the resource is the total number of data points T , whereas
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Figure 3.4: Comparison between the empirical classification error under the WB and
UNI policies and their corresponding upper bounds.

for the WB policy it is the total predictive power of the available set of predictors

N . However, using a non-adaptive policy means ignoring another potential source of

information, that is the actual data points we collect. As a result, we may end up

collecting too many labels on some items where our predictions are already very accurate,

and neglecting others where more labels are needed to discriminate the ground-truth

class effectively.

In contrast, the decisions of an adaptive policy also depend on the data points we

collect. Since the value of the labels xij are revealed one by one as the collection process

progresses, adaptive policies are sequential by their very nature. More formally, at any

time step t an adaptive policy chooses the next item i to label based on the following

pieces of information: the set of data points Xt−1 observed so far, the current subset

of items M t
j labelled by each predictor j, and their accuracy p = (p1, . . . , pN ). In the

following discussion, this information is usually summarised in terms of the current

state of the log-odds zi on each item i, and the characteristics of the incoming predictor

j = a(t).

Before dealing with the individual collection policies, we introduce some general results

for a single item |M | = 1 in Section 3.3.1. These results are crucial in our analysis of the

US policy, which we cover in Section 3.3.2. Then, in Section 3.3.3 we show that the IG

policy, despite optimising a different objective function, is equivalent to the US policy.

Finally, we dedicate Section 3.3.4 to the LOS policy, and discuss why it is inferior to the

previous two.
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3.3.1 Achieving a target classification error on a single item

Adaptive policies introduce additional complexity to our analysis, since the decision of

assigning an individual predictor j to a specific item i depends on all the information X

observed in the past. Thus, before dealing with the complexity of each collection policy

as we do in Sections 3.3.2 and 3.3.3, let us derive some general results with a single

item. This is the same approach we take in Section 3.2.1 for non-adaptive policies.

However, in this section we reverse our argument: that is, we fix a target probability pe

for the classification error, and we compute the number of predictors n ≡ |N | we need

to reach it. To this end, we rely on the assumptions that the predictors’ accuracy is

i.i.d. according to an underlying probability density function pj ∼ fp.

With this in mind, we can put an upper bound on the expected number of predictors

we need as follows:

Theorem 3.9. Given a population of predictors with accuracy pj ∼ fp, and prior on

the positive class q ≡ P(y = +1), the expected number n ≡ |N | of predictors we need to

lower the chance of a classification error below pe is upper bounded by:

EX,p,y|q,pe(n) <
−we + (1− 2q)wq

Epj∼fp
(
(2pj − 1)wj

) + 1 (3.36)

where we, wq and wj are the log-odds of pe, q and pj respectively.

Proof. Let us define z0 = wq as the starting point of the random walk in the log-odds

domain, and zn as its final value, after observing the output of n ≡ |N | predictors. By

definition, we have zn 6∈ (we,−we), as this ensures a chance of a classification error

P(ŷ 6= y) = sig(−|zn|) smaller than sig(−|we|) = pe. Notice that n is a stopping time,

since our decision to stop collecting additional data depends only on the information

collected up to time n.

The expected number of predictors n we need to cross the threshold we on either the

positive or negative side depends on the ground-truth y as follows:

EX,p,y|q,pe(n) = qEX,p|y=+1,pe(n) + (1− q)EX,p|y=−1,pe(n) (3.37)

At the same time, there is a connection between the value of n and the average drift in

the random walk caused by each step sj = xjwj . Specifically, since n is a stopping time

we can apply Wald’s equation (Wald, 1944) to our case:

EX,p|y,pe(z
n) = EX,p|y,pe(n)Exj ,pj∼fp|y(sj) + wq (3.38)

Furthermore, we can link the expected value of zn with the threshold we. To do this,
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we recall that each step sj in the random walk is independent, and thus:

EX,p|y,pe(z
n) = EX,p|y,pe(z

n−1) +Exj ,pj∼fp|y(sj) (3.39)

Additionally, we know that the value of zn−1 falls in the interval (we,−we) by definition.

Therefore, we can use Equation 3.39 to establish the following inequalities:

EX,p|y=+1,pe(z
n) < −we +Exj ,pj∼fp|y=+1(sj) (3.40)

EX,p|y=−1,pe(z
n) > we +Exj ,pj∼fp|y=−1(sj) (3.41)

Now, we can derive a bound on the expected value of n. First, we combine Equations

3.38, 3.40 and 3.41 as follows:

EX,p|y=+1,pe(n)Exj ,pj∼fp|y=+1(sj) < −we +Exj ,pj∼fp|y=+1(sj)− wq (3.42)

EX,p|y=−1,pe(n)Exj ,pj∼fp|y=−1(sj) > we +Exj ,pj∼fp|y=−1(sj)− wq (3.43)

Then, we notice that the expected value of sj when y = −1 has the same magnitude

but opposite sign than the expected value of sj when y = −1. Thus, we can rewrite

Equation 3.37 as:

EX,p,y|q,pe(n) <
−we +Exj ,pj∼fp|y=+1(sj)− wq(2q − 1)

Exj ,pj∼fp|y=+1(sj)
(3.44)

Finally, we compute the expected value of the step sj = xjwj in terms of the predictor’s

accuracy pj only, since Exj |pj ,y=+1(sj) = (2pj − 1)wj , which leads to the result in the

theorem.

Likewise, we can bound the expected number of predictors from below:

Theorem 3.10. Given a population of predictors with accuracy pj ∼ fp, and prior on

the positive class q ≡ P(y = +1), the expected number n ≡ |N | of predictors we need to

lower the chance of a classification error below pe is lower bounded by:

EX,p,y|q,pe(n) ≥ −we + (1− 2q)wq − 0.56−Epj∼fp
(
|wj |

)
Epj∼fp

(
(2pj − 1)wj

) (3.45)

where we, wq and wj are the log-odds of pe, q and pj respectively.

Proof. We reuse here some of the arguments and the notation from the proof of Theorem

3.9. Let us begin with establishing a lower bound on the expected number of predictors

n when the ground-truth is y = +1.

By definition, at the end of the collection process the absolute value of the log-odds zn
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is larger than or equal to the threshold −we. More formally:

−we ≤ EX,p|y=+1,pe

(
|zn|
)

= EX,p|y=+1,pe(z
n)− 2EX,p|y=+1,pe

(
znI(zn < 0)

) (3.46)

where the last equality comes from the definition of absolute value. Now, we can link the

first summand in Equation 3.46 to the expected value of n with the result in Equation

3.38. Together, they yield the following inequality:

EX,p|y=+1,pe(n)Exj ,pj∼fp|y=+1(sj) ≥ −we − wq + 2EX,p|y=+1,pe

(
znI(zn < 0)

)
(3.47)

Notice that a negative zn is never larger than we. Thus, we can rewrite its expected

value as follows (we omit the subscript X,p|y=+1, pe for simplicity):

E
(
znI(zn < 0)

)
=

∫ we

−∞
zP(zn = z)dz

= we

∫ we

−∞
P(zn = z)dz +

∫ we

−∞
(z − we)P(zn = z)dz

= weP(zn ≤ we) + S

(3.48)

Furthermore, we can show that the term S is linked to the probability of a negative

step sj as follows. Let us introduce the change of variables z = z′ + s and rewrite the

probability of zn in terms of zn−1 and sj :

S =

∫ −we

we

P(zn−1 = z′)
∫ −z′+we

−∞
(z′ + s− we)P(sj = s)dsdz′

=

∫ −we

we

P(zn−1 = z′)(z′ − we)
∫ −z′+we

−∞
P(sj = s)dsdz′

+

∫ −we

we

P(zn−1 = z′)
∫ −z′+we

−∞
sP(sj = s)dsdz′

≥ 0 +

∫ 0

−∞
sP(sj = s)ds

= E
(
sjI(sj < 0)

)

(3.49)

where the last inequality follows from the fact that z′ − we is always non-negative, and

that the integral over s is always non-positive. Finally, we can combine Equations 3.48

and 3.49 to derive the following upper bound:

E
(
znI(zn < 0)

)
≥ wepe +E

(
sjI(sj < 0)

)
≥ −0.28− 1

2
E
(
|sj |
) (3.50)

where we derive the first addend by minimising wepe over all possible pe ∈ (0, 1), and

the second by noting that E
(
sjI(sj < 0)

)
≥ −E

(
sjI(sj > 0)

)
and using the definition
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of absolute value. By substituting Equation 3.50 in Equation 3.47 we have:

EX,p|y=+1,pe(n) ≥
−we − wq − 0.56−Exj ,pj∼fp|y=+1

(
|sj |
)

Exj ,pj∼fp|y=+1(sj)
(3.51)

Let us move now to the case when the ground-truth takes the opposite value y = −1.

Luckily, we can borrow most of the derivation from the y = +1 case. Namely, it follows

from the definition of absolute value that:

EX,p|y=−1,pe

(
|zn|
)

= EX,p|y=−1,pe(−zn) + 2EX,p|y=−1,pe

(
znI(zn > 0)

)
(3.52)

which, combined with the result in Equation 3.38 and noting that EX,p|y=+1(sj) =

−EX,p|y=−1(sj), yields:

EX,p|y=−1,pe(n)Exj ,pj∼fp|y=+1(sj) ≥ −we + wq − 2EX,p|y=−1,pe

(
znI(zn > 0)

)
(3.53)

Lastly, the expected value of a positive zn (conditional on y = −1) can be bounded with

the same procedure shown in Equations 3.48, 3.49 and 3.50 for the opposite case. With

these results, we can write:

EX,p|y=−1,pe(n) ≥
−we + wq − 0.56−Exj ,pj∼fp|y=+1

(
|sj |
)

Exj ,pj∼fp|y=+1(sj)
(3.54)

By substituting Equations 3.51 and 3.54 into Equation 3.37, and noting that we can

write the expected value of sj = xjwj in terms of the predictor’s accuracy pj only, we

get the result in the theorem.

Together, the bounds in Theorems 3.9 and 3.10 constitute the foundation of our analysis

of the US policy in the following section.

3.3.2 Classification error under the US policy

The uncertainty sampling (US) policy comes from the field of active learning, as we

explain in Section 2.3.3. Its original goal is to collect more data points in the regions of

larger uncertainty, and thus achieving higher accuracy than random sampling. In our

context, we can apply the same principle and collect more labels on the items whose

classification is not yet settled. More formally, we define the US policy as a greedy

collection strategy that always tries to assign the currently available predictor j = a(t)

to the item i whose log-odds zi are closest to zero:

πus(t) = argmin
i∈M\Mt−1

a(t)

(
|zti |
)

(3.55)

where ties are broken in lexicographic order.



Chapter 3 Known predictors’ accuracy 49

From the point of view of a single item i, the US policy operates in short bursts of

activity. As long as i is the most uncertain item, it keeps receiving new data points.

Once the confidence in its classification improves enough, the policy switches its attention

to the other items left behind. The only exception to this behaviour happens when the

currently available predictor j = a(t) has already labelled the most uncertain item i,

and thus a different item i′ = πus(t) is chosen. We call these events collisions, and

study their effect on the performance of the US policy separately in Section 3.4. In

the remainder of the present discussion we will assume that each predictor j provides a

single data point, and therefore no collision occurs.

Note that the behaviour of the US policy amounts to a separate bounded random walk

over zi for each item i ∈ M . However, unlike our results in Section 3.3.1, the value of

the stopping threshold we is not known in advance. Instead, we can only define it in

hindsight as the maxmin magnitude of the log-odds throughout the collection process:

we ≡ − max
t∈[1,T ]

(
min
i∈M

(
|zti |
))

(3.56)

where the negative sign is to ensure consistency with our notation in Section 3.3.1.

If we take a snapshot of the log-odds z at the end of the collection process, we end

up with a situation like the example in Figure 3.5. There, the magnitude of the log-

odds zi has crossed the threshold we on all items except one, shown in red. This can

happen frequently, as the value of zi can always regress toward zero, and thus we may

run out of data points before pushing it back towards the threshold. However, given

our definition of we in Equation 3.56, this can happen only on a single item. When the

number of items |M | grows large, this phenomenon becomes negligible, as we explain in

the following discussion.
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Figure 3.5: An example of the state of the US policy at the end of the collection
process with |M | = 25 items. The red bar represents the most uncertain item, the

dashed line represents the threshold we.
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With this in mind, let us bound the probability of a classification error under the US

policy:

Corollary 3.11. Given a population of predictors with accuracy pj ∼ fp, a prior on

the positive class q ≡ P(yi = +1), a large number of items |M | → ∞, and an average

number of predictors per item R, the probability of a classification error by the US policy

under weighted majority voting is upper bounded by:

P(ŷi 6= yi|fp, q) < exp
(
− (R− 1)Epj∼fp

(
(2pj − 1)wj

)
− (2q − 1)wq

)
(3.57)

for all items i ∈M .

Proof. Let us assume for the moment that we can collect as many data points T as

we want. Under this assumption, we can run |M | independent random walks on each

item i ∈ M until all their respective log-odds zi cross a threshold ±we of our choice.

Furthermore, we can compute the average number of predictors per item |Ni| we need

according to Theorem 3.9. The latter provides the following expression:

− we >
(
EX,p,yi|q,pe

(
|Ni|

)
− 1
)
Epj∼fp

(
(2pj − 1)wj

)
+ (2q − 1)wq (3.58)

At the same time, when the number of items |M | grows large, we can show that the

total number of data points T =
∑

i∈M |Ni| is close to its expected value with high

probability. We do so by bounding the dispersion of T around its expected value with

Chebyshev’s inequality:

P(|T −EX,p,y|q,pe(T )| ≥ ε) ≤
VarX,p,y|q,pe(T )

ε2
(3.59)

and the making the following substitutions. First, the random walks are independent,

thus E(T ) = |M |E
(
|Ni|

)
and similarly Var(T ) = |M |Var

(
|Ni|

)
. Second, we can intro-

duce the average number of predictors per item R = T/|M | by dividing the left-hand

side by |M |. Third, we can replace our measure of dispersion with δ = ε/|M |. Together,

this changes yield:

P(|R−EX,p,y|q,pe(|Ni|)| ≥ δ) ≤
VarX,p,y|q,pe(|Ni|)

δ2|M | (3.60)

which goes to zero as |M | → ∞ for all δ > 0, since the variance at the numerator is

provably finite (see Appendix C).

Finally, let us drop the assumption that we can collect as many data points as we need.

Additionally, let us choose we such that EX,p,y|q,pe
(
|Ni|

)
= R, i.e. the expected number

of predictors per item is equal to the amount we can actually afford. According to

Equation 3.60, this is enough to push the log-odds zi across the threshold ±we for each

item i ∈M with high probability. Therefore, we can link the value of the log-odds zTi at
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the end of the collection process with the probability of a classification error as follows:

P(ŷi 6= yi|fp, q) = EX,p,y|q
(

sig
(
− |zTi |

))
≤ sig

(
− |we|

)
≤ exp

(
we
) (3.61)

where the last inequality comes from the properties of the sigmoid function and the

fact that we is negative for any pe <
1
2 . By bounding the value of we further with

Equation 3.58, and replacing the expected value of |Ni| with R, we get the result in the

corollary.

Corollary 3.12. Given a population of predictors with accuracy pj ∼ fp, a prior on

the positive class q ≡ P(yi = +1), a large number of items |M | → ∞, and an average

number of predictors per item R, the probability of a classification error by the US policy

under weighted majority voting is lower bounded by:

P(ŷi 6= yi|fp, q) ≥ exp
(
−REpj∼fp

(
(2pj−1)wj

)
−(2q−1)wq−1.25−Epj∼fp

(
|wj |

))
(3.62)

for all items i ∈M .

Proof. Let us assume for the moment that we can collect as many data points T as

we want. Then, we can run |M | independent random walks on the log-odds zi of each

item i ∈ M , until they cross a threshold ±we of our choice. Under these conditions,

the techniques described in the proof of Theorem 3.10 are valid. We use them to put

an upper bound on the expected value of the absolute log-odds |zTi | at the end of the

collection process as follows:

EX,p|yi,pe
(
|zTi |

)
≤ yiEX,p|yi,pe(zTi ) + 0.56 +Epj∼fp

(
|wj |

)
(3.63)

where pe is the probability of an error associated to the threshold we. Furthermore, we

can use Equation 3.38 to link the expected value of zTi with the number of predictors

|Ni|:
EX,p|yi,pe(z

T
i ) = EX,p|yi,pe(|Ni|)Exij ,pj∼fp|yi(xijwj) + wq (3.64)

We also know that the probability of yi being positive is q. With this in mind, we can

take the expectation of Equations 3.63 and 3.64 over yi, and combine them as follows:

EX,p,yi|q,pe
(
|zTi |

)
≤ EX,p,yi|q,pe(|Ni|)Epj∼fp

(
(2pj − 1)wj

)
+ (2q − 1)wq + 0.56 +Epj∼fp

(
|wj |

) (3.65)

However, for the reasons explained in the proof of Corollary 3.11, we can choose the

threshold we in such a way that the number of data points T we need to complete all

random walks converges to its expected value, when the number of items |M | grows to
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infinity. In other terms, there exists a value of we such that R→ E(|Ni|) when |M | → ∞.

Additionally, we can establish the following relationship between the probability of an

error and the absolute value of the log-odds |zTi | at the end of the collection process:

P(ŷi 6= yi|fp, q) = EX,p,y|q
(

sig
(
− |zTi |

))
≥ sig

(
−EX,p,y|q

(
|zTi |

))
≥ 1

2
exp

(
−EX,p,y|q

(
|zTi |

)) (3.66)

where the first inequality comes from Jensen’s inequality, and the second from the prop-

erties of the sigmoid function. By substituting the right-hand side of Equation 3.65 into

Equation 3.66, and replacing the expected value of |Ni| with R, we get the result in the

corollary.

Three things must be noted in the results of Corollaries 3.11 and 3.12. First, the two

bounds match asymptotically for R→∞, as they share the common term exp(−Rcus),
where cus is the expected value of a step in the random walk. We use this fact to compare

the US policy to the other policies in Section 3.5. Second, since cus corresponds to the

average drift in the random walk, as explained in Section 3.1, we can say that the US

policy is able to take full advantage of the available predictive power. In this sense, the

US policy is optimal. Third, the prior q takes the role of an extra predictor by reducing

the probability of a classification error by (2q− 1)wq, instead of the term (2pj − 1)wj in

the definition of cus. This property mirrors our findings in Section 3.2.1 for non-adaptive

policies.

To conclude this section, we present in Figure 3.6 a qualitative comparison between

the bounds in Corollaries 3.11 and 3.12 and the empirical probability of a classification

error under the US policy. For consistency reasons, we keep the same setting as the

experiments in Figures 3.3 and 3.4 for the UNI and WB policies respectively. Notice

how the upper bound in Corollary 3.11 closely matches the probability of a classification

error. Furthermore, notice how the US policy outperforms the non-adaptive UNI and

WB policies as R grows large. We quantify this performance gap in a general setting in

Section 3.5. The discussion on the performance of the other two adaptive policies, IG

and LOS, is presented in the following Sections 3.3.3 and 3.3.4.

3.3.3 Classification error under the IG policy

From the information-theoretical perspective, each data point xij we collect brings ad-

ditional information on the ground-truth. A natural goal is to try and maximise the

amount of information we gain during the collection process (see Section 2.3.3). We

can measure this amount of information by computing the Kullback-Leibler (KL) diver-

gence between the posterior distribution on the item classes before and after observing
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Figure 3.6: Comparison between the empirical classification error under the US/IG
policies, and the bounds we derive in Corollaries 3.11 and 3.12. The dashed line is the
upper bound, the dotted one is the lower bound. For reference we include the UNI,

WB and LOS policies as well.

xij . Since, the posterior changes only for the item i we collect the new data point on,

the information we gain observing xij takes the following simplified form:

KL(zt+1 ‖ zt) = KL(zt+1
i ‖ zti)

=
∑

y∈{±1}
sig(yzt+1

i ) log
(sig(yzt+1

i )

sig(yzti)

)
= sig(zt+1

i )

(
log
( sig(zt+1

i )

sig(−zt+1
i )

)
+ log

(sig(−zti)
sig(zti)

))
+ log

(sig(−zt+1
i )

sig(−zti)
)

= sig(zti + xijwj)xijwj + log
(sig(−zti − xijwj)

sig(−zti)
)

(3.67)

where we used several of the properties of the sigmoid listed in Appendix D.

However, the expression in Equation 3.67 is not enough to define a corresponding collec-

tion policy. In fact, we do not just want to measure the information gain after collecting

a data point xij . Instead, we want to choose the item i so as to maximise this quantity

at every time step t. Since xij cannot be observed before choosing the item i, our only

option is to compute Equation 3.67 in expectation over the future observation xij . We
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define the corresponding expected information gain for each item i in M as follows:

Exij |zt,pj
(
KL(zt+1 ‖ zt)

)
=

∑
x∈{±1}

P(xij =x|zti , pj)KL(zti + xwj ‖ zti)

= wj(2pj − 1) sig(zti)

+
∑

x∈{±1}
P(xij =x|zti , pj) log

(sig(−zti − xijwj)
sig(−zti)

)
= wj(2pj − 1) sig(zti)− log

(
sig(−zti)

)
+P(xij =+1|zti , pj) log

(
sig(−zti − wj)

)
+P(xij =−1|zti , pj) log

(
sig(−zti + wj)

)

(3.68)

Thanks to Equation 3.67, we can greedily maximise the expected information gain at

each time step t. In so doing, we hope to improve the “usefulness” of each data point xij

we collect, and thus reduce the probability of a classification error. We formally define

this information gain maximisation (IG) policy in the following way:

πig(t) = argmax
i∈M\Mt−1

a(t)

(
Exia(t)|zt,pa(t)

(
KL(zt+1 ‖ zt)

))
(3.69)

where ties are broken in lexicographic order.

To give the reader an intuitive understanding of the behaviour of the IG policy, we plot

the expected information gain for different values of the log-odds zti and the predictor’s

weight wj in Figure 3.7. Note that for an uninformative predictor with weight wj = 0,

Equation 3.68 is zero for any zti . In all the other cases, the expected information gain is

larger when the log-odds are closer to zero, that is on items whose classification we are

less confident about.
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Figure 3.7: Expected information gain for different values of the log-odds zti and the
predictor’s weight wj .

This observation suggests that the IG policy behaves like the US policy, and always
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selects the most uncertain item. In fact, we can prove this equivalence as follows:

Theorem 3.13. For any values of the log-odds zt, and any predictor j with accuracy

pj 6= 1
2 , the US and IG policies select the same item, that is πus(t) = πig(t).

Proof. Recall that the US policy (see Equation 3.55) selects the item with the smallest

absolute log-odds |zti |. This function is even, monotonically increasing on both sides,

and has a minimum in zti = 0. In order to prove that the IG policy has the same

behaviour, it suffices to prove that the expected information gain in Equation 3.68 has

similar properties for any wj 6= 0. The only difference is that the IG policy maximises

rather then minimises, and thus we need to prove that Equation 3.68 is monotonically

decreasing on both sides, and has a maximum in zti = 0.

First, note that Equation 3.68 is even both in zti and wj , as can be easily proven by

substitution. Given this, we focus only on non-negative values of zti and wj and prove

that the function is monotonically decreasing in zti . To do so, we need to take the

derivative of the expected information gain with respect to the log-odds zti , and show

that its sign is negative:

d

dzti

{
Exij |zti ,pj

(
KL(zt+1

i ‖ zti)
)}

= wj(2pj − 1) sig(zti) sig(−zti) + sig(zti)

+
d

dzti

{
P(xij =+1|zti , pj)

}
log
(

sig(−zti − wj)
)

−P(xij =+1|zti , pj) sig(zti + wj)

+
d

dzti

{
P(xij =−1|zti , pj)

}
log
(

sig(−zti + wj)
)

−P(xij =−1|zti , pj) sig(zti − wj)

(3.70)

However, because of the properties listed in Appendix D we have:

sig(zti)−P(xij =+1|zti , pj) sig(zti + wj)−P(xij =−1|zti , pj) sig(zti − wj) = 0 (3.71)

and:
d

dzti

{
P(xij =x|zti , pj)

}
= sig(zti) sig(−zti)

(
sig(xw)− sig(−xw)

)
(3.72)

Together, Equations 3.70, 3.71 and 3.72 yield the following expression for the derivative

of the expected information gain:

d

dzti

{
Exij |zti ,pj

(
KL(zt+1

i ‖ zti)
)}

= (2pj − 1) sig(zti) sig(−zti)
(
wj + log

(sig(−zti − wj)
sig(−zti + wj)

)) (3.73)
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We prove that Equation 3.73 is negative for any zti > 0 and wj > 0 by contradiction:

d

dzti

{
Exij |zti ,pj

(
KL(zt+1

i ‖ zti)
)}
≥ 0

log
(sig(−zti − wj)

sig(−zti + wj)

)
≥ −wj

1 + exp(zti − wj)
1 + exp(zti + wj)

≥ exp(−wj)

1 + exp(zti − wj) ≥ exp(−wj) + exp(zti)

exp(zti − wj)− exp(zti) ≥ exp(−wj)− 1

exp(zti)
(

exp(−wj)− 1
)
≥ exp(−wj)− 1

exp(zti) ≤ 1

zti ≤ 0

(3.74)

which is a contradiction under our assumptions. Finally, for wj 6= 0 the derivative in

Equation 3.72 has its only zero in zti = 0, proving that the expected information gain

has a global maximum in that location.

Given that the US and IG policies are equivalent, as we prove in Theorem 3.13, their

performance in terms of classification errors is the same. Therefore, our results in Section

3.3.2 apply.

3.3.4 Classification error under the LOS policy

As the previous two sections show, both the US and IG policies achieve an optimal

asymptotic decay of the probability of a classification error. However, they do so by

optimising an indirect objective, respectively the item uncertainty and information gain.

A more direct approach would be trying to minimise the probability of a classification

error itself. While this approach is standard in the active learning literature (see Section

2.3.3), we show that it is ineffective in the present context.

Recall that we can measure the overall probability of a classification error by looking at

the current log-odds vector zt. This gives us the expected zero-one loss, i.e. the number

of misclassified items, if no more data point are to be collected. More formally:

L(zt) = Ey|zt
( ∑
i′∈M

I(ŷi′ 6= yi′)
)

=
∑
i′∈M

sig
(
− |zti′ |

)
(3.75)

However, Equation 3.75 does not tell us which item i we need to allocate the incoming

predictor j = a(t) on. This is because we can only compute L(zt) after observing the

next label xij . In the same manner as our work on the IG policy (see Section 3.3.3), we

overcome this issue by taking the expectation of Equation 3.75 over xij . This gives us



Chapter 3 Known predictors’ accuracy 57

the following expression:

Exij |zt,pj
(
L(zt+1)

)
=
∑
i′ 6=i

sig
(
− |zti′ |

)
+P(xij = +1|zti , pj) sig

(
− |zti + wj |

)
+P(xij = −1|zti , pj) sig

(
− |zti − wj |

) (3.76)

where the incoming label xij has only an effect on the probability of an error on item i,

while the rest remain unchanged.

With Equation 3.76 in mind, we can formally define a zero-one loss minimisation (LOS)

policy. For simplicity, we consider the expected reduction in zero-one loss, instead of

using Equation 3.76 as is. This allows us to focus on what happens on item i alone. As

a result, we maximise over this alternative objective function, instead of minimising the

original one:

πlos(t) = argmax
i∈M\Mt−1

a(t)

(
L(zti)−Exij |zti ,pj

(
L(zt+1

i )
))

(3.77)

where ties are broken in lexicographic order.

Now, let us consider the shape of the objective function in Equation 3.77. To this end,

we plot it in Figure 3.8 for a range of values of the current log-odds zti , and the incoming

predictor’s weight wj . At a first glance, it becomes apparent that the function is not

smooth everywhere. Specifically, we have three points of non differentiability in zti = 0

and zti = ±wj , where the former is also the global maximum. More importantly, the

objective function goes to zero for any zti outside of the range
(
− |wj |, |wj |

)
.
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Figure 3.8: Expected zero-one loss reduction for different values of the log-odds zti
and the predictor’s weight wj .

We can show analytically that the last property does indeed hold as follows:

Proposition 3.14. For any value of the log-odds zti and the predictor’s weight wj such
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that |zti | ≥ |wj |, the expected reduction in zero-one loss is zero.

Proof. First, let us rewrite the expected reduction in zero-one loss explicitly:

L(zti)−Exij |zti ,pj
(
L(zt+1

i )
)

= sig
(
− |zti |

)
+P(xij = +1|zti , pj) sig

(
− |zti + wj |

)
+P(xij = −1|zti , pj) sig

(
− |zti − wj |

) (3.78)

which corresponds to the argument of Equation 3.77. Then, notice that the function in

Equation 3.78 is even in both zti and wj , as can be proven by substitution. Thus, let

us focus on the positive quadrant and deduce the other cases by symmetry. When both

zti > 0, wj > 0 and zti > wj , Equation 3.78 simplifies as follows:

L(zti)−Exij |zti ,pj
(
L(zt+1

i )
)

= sig
(
− zti

)
+P(xij = +1|zti , pj) sig(−zti − wj)
+P(xij = −1|zti , pj) sig(−zti + wj)

= sig(−zti)− sig(−zti) sig(−wj)− sig(−zti) sig(wj)

= 0

(3.79)

where the second equality comes from the properties of the sigmoid function listed in

Appendix D.

The property in Proposition 3.14 has a crucial impact on the behaviour of the LOS

policy. In fact, at the beginning of the collection process the log-odds z are close to

zero, and the policy behaves like the US policy. However, once the magnitude of the

log-odds goes beyond that of the incoming weight |wj | on the whole set M , the LOS

policy has no preference on which item i to select. Even assuming that the ties in

Equation 3.76 are broken at random, instead of the lexicographic order, the behaviour

of this collection policy becomes worse than the UNI policy.

For a qualitative comparison of the LOS policy with the other collection policies, refer

to Figure 3.6. There, we can see that this policy manages to improve over both non-

adaptive policies UNI and WB, despite its erratic behaviour at the end of the collection

process. We attribute this to its equivalence with the optimal US policy when the

magnitude of the log-odds z is low. However, with respect to the latter, the LOS policy

is noticeably inferior. For this reason, we exclude it from further analysis.

3.4 Running the policies under non-ideal conditions

Our analysis of the adaptive and non-adaptive collection policies in Sections 3.2 and 3.3

is based on the assumption that we can always assign the available predictor j = a(t)
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to any item i of our choice. In scenarios where the predictors label multiple items, this

assumption may not hold. Specifically, predictor j = a(t) may have already labelled

item i, and thus reassigning it to the same item will just elicit a repeated response.

When this happens, the collection policy is forced to choose another item i′. We call

such events collisions and we study their impact on the performance of the collection

policies here. Let us establish a worst-case and a best-case scenarios. On one end of

the spectrum, we have the case where each predictor labels all items, and therefore all

collection policies end up assigning all the N predictors to each item, as the UNI policy

would do. In this case we observe no difference between the collection policies. On the

other end of the spectrum, we have the case where each predictor labels only one item

and thus no collision occurs. This is the assumption we used in our theoretical analysis

in Sections 3.2.2, 3.2.3 and 3.3.2.

In order to study what happens in between these two extremes, we resort to an empirical

analysis. To this end, we fix the number of items to |M | = 1000 and let each predictor

label a subset of them ranging from L = |M | (all the items) to L = 1 (only one).

We extract the predictors’ accuracy from a Beta(4, 3) distribution, collect an average

of R = 20 labels per item, and compute the empirical classification error for the UNI,

WB and US/IG policies. Note that we make this choice of parameters to highlight the

phenomenon under study, but similar results can be obtained with other choices. As

the results in Figure 3.9(a) show, the US/IG policy retains its ability to deliver an order

of magnitude lower classification error than both non-adaptive policies, even when the

predictors label up to 40% of the items. This is because, when a collision occurs at time

t, the US/IG policy is still able to assign some other predictor to the most uncertain item

at a later stage. In broader terms, as long as there is enough scope to strategise during

the collection process, the US/IG policy is able to compensate for the occurrence of most

collisions. A similar phenomenon happens for the WB policy, though its advantage over

the UNI policy is minimal even in the best case scenario.
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Figure 3.9: Impact of non-ideal conditions on the performance of the policies.
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On a related note, recall that our analysis of the US policy in Section 3.3.2 requires the

assumption that the number of items is large. This is also valid for the IG policy, since

the two are equivalent as we prove in Section 3.3.3, and the WB policy, albeit in a more

indirect way. Intuitively, any of these policies benefits from a larger number of options

during the collection process, as it can intelligently balance the assignment of predictors

across the whole set of items. Conversely, if we only have a single item to classify, the

policy is left with no option but to assign all predictors to that single item. What our

theoretical results in Sections 3.2.3 and 3.3.2 do not tell us is how many items the WB

and US/IG policies need to reach their full potential.

We give an answer to this question by running the following experiment. First, we fix

the number of labels per predictor to L = 1 to avoid the chance of a collision. Then,

we let the number of items increase from |M | = 1 to |M | = 100 and compute the

empirical classification error for the UNI, WB and US/IG policies. All other parameters

are the same as the experiment in Figure 3.9(a). As the results in Figure 3.9(b) show,

for |M | = 1 the three policies are equivalent as expected. However, for larger values of

|M | the US/IG policy shows a definite advantage: for |M | = 10 the difference is already

an order of magnitude, and for |M | = 50 the chance of a misclassification has almost

reached its asymptotic value. Similarly, the WB policy only needs a few items to reach

its asymptotic value.

In conclusion, we have shown that the UNI policy is immune to the occurrence of

collisions and independent of the number of items. In contrast, the performance of

more intelligent collection strategies like the WB and US/IG policies degrades both

with a high rate of collisions and a limited number of items to be classified. These two

conditions can be used to guide the design choices when deploying a data collection

policy in the real-world.

For example, we report in Table 5.1 the characteristics of five publicly available crowd-

sourcing datasets, which are often used as a benchmark in the corresponding literature

(Snow et al., 2008; Welinder et al., 2010; Lease and Kazai, 2011; Bonald and Combes,

2017). In three cases out of five the number of items labelled by each predictor is small

enough for the US/IG policy to be worthwhile. Specifically, for the RTE dataset it is

6%, for the TEMP dataset it is 13% and for the TREC dataset it is 2%.

In contrast, the difference in performance between the UNI and WB policies is so small

that it does not justify the added complexity of the latter, even under ideal circum-

stances. In the next Section 3.5, we quantify the advantage of using an adaptive policy

instead of a non-adaptive one in a general setting.
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3.5 Asymptotic policy comparison

Now that we have established several bounds on the performance of both adaptive

and non-adaptive collection policies, we can compare their efficiency in aggregating the

predictors’ output. We do so by analysing their asymptotic behaviour when the average

number of labels per item R grows large. Under this scenario, all policies exhibit an

exponential dependency between R and the classification error, which takes the form:

P(ŷ 6= y) = exp
(
− cπR+ o(

√
R)
)

(3.80)

where the term o(
√
R) encompasses all the negligible contributions as R→∞.

At the same time, the value of the constant cπ varies according to the policy π we use.

For the UNI policy, both the upper and the lower bounds in Corollary 3.7 contain the

following asymptotic term:

cuni = − log
(

2Epj
(√

pj(1− pj)
))

(3.81)

Similarly, Corollary 3.8 yields the following constant for an optimal non-adaptive policy:

cnada = −1

2
Epj

(
log
(
4pj(1− pj)

))
(3.82)

which the WB policy tries to approximate.

Likewise, we can derive the value of cπ for the US policy from Corollaries 3.11 and 3.12.

Thanks to our equivalence result in Section 3.3.3, the IG policy shares the same value,

which we define as follows:

cada = Epj

(
(2pj − 1) log

( pj
1− pj

))
(3.83)

In general, a larger value of cπ means that the policy is more efficient in using additional

data points to reduce the classification error. In this respect, we can prove that the

adaptive US/IG policy is asymptotically superior to any non-adaptive policy:

Theorem 3.15. Given a population of predictors with accuracy pj ∼ fp such that

P(pj 6= 1
2) > 0, a large number of items |M | → ∞, and a large number of predic-

tors per item R→∞, the asymptotic rate of the US and IG policies is at least twice as

large as that of any non-adaptive policy. That is cada ≥ 2cnada.

Proof. If we apply Jensen’s inequality to the definitions of cuni and cnada in Equations

3.81 and 3.82 we get the following relationship:

2cuni ≤ 2cnada = Epj

(
− log

(
4pj(1− pj)

))
(3.84)
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Then, by comparing the arguments of the expectations in Equations 3.82 and 3.83 we

can notice that:

− log
(
4pj(1− pj)

)
≤ (2pj − 1) log

( pj
1− pj

)
for all pj ∈ (0, 1) (3.85)

Finally, the result in the theorem follows from the monotonicity property of the expec-

tation operator.

At the same time, the result in Theorem 3.15 does not tell how much the cada/cnada ratio

is larger than its theoretical baseline. In fact, we can only approximate the behaviour of

an optimal non-adaptive policy either by using the WB or UNI policy. We investigate

this through an empirical study with different populations of predictors fp. For each

choice of fp we run experiments with M = 1000, L = 1 and increasing values of R.

Then, we estimate the value of cπ by fitting the experimental data. The results are

summarised in Figure 3.10.

Specifically, in Figure 3.10(a) we report the empirical value of the cada/cnada ratio when

all predictors have the same accuracy pj = p̄. Under this setting, both the UNI and WB

policies exhibit the same behaviour, as we explain in Section 3.2.3. Note how the value

drops as p̄ approaches 1
2 . In this scenario, the output of the predictors is almost random,

and the advantage of using an adaptive policy is reduced. In the extreme case of p̄ = 1
2 ,

which is not covered by Theorem 3.15, the weighted sum zi is always zero, and thus the

predictions are random for all policies. Conversely, for p̄ > 0.9 the classification error

quickly goes to zero as R increases, and thus it is impossible to have a reliable estimate

of cπ. At the same time, for all the other values of p̄, the cada/cnada ratio is above or

close to three, a 50% larger value than its theoretical baseline.
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Figure 3.10: Empirical advantage of adaptive policies.

Likewise, we report in Figure 3.10(b) our results for a mixed population of predictors.

Specifically, in this set of experiments we extract pj uniformly in the interval (p̄−0.2, p̄+
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0.2) for different values of p̄. Under this setting, the UNI and WB policies differ, and thus

we report the cada/cuni and cada/cwb ratios separately. Note how the latter is smaller

than the former across the whole range of fp, as the WB policy achieves marginally better

classification performance. At the same time, we still observe values above three for all

choices of p̄. The only difference is that, thanks to the mixed population of predictors,

we do have neither a singularity around p̄ = 1
2 , nor a markedly larger uncertainty for

the largest values of p̄.

3.6 Summary

Using the results we present here, we now have the foundations for a principled study of

data collection policies for the multiple classifier setting. The literature on the topic is

sparse and the various existing ideas are often explored and tested under very different

assumptions. By reducing all of them to a simplified model with binary classes and

known predictor accuracy, we have been able to analyse each of them in depth. Further-

more, having a common ground allowed us to compare the different collection policies,

and distill their drawbacks and merits.

The results of this chapter resurface in various forms in the next chapters of this thesis.

For this reason, let us go through the key messages again. First, there are two funda-

mentally different categories of collection policies: non-adaptive and adaptive. In the

former category, we discovered that the UNI policy, although slightly less accurate than

the WB policy, has a simple implementation, and is robust in all non-ideal settings.

Conversely, adaptive policies are more sensitive to the properties of the setting they are

run in, but come with provably better performance. In this category, we proved that

the US and IG policies, despite addressing different objectives, have identical behaviour,

and achieve optimal behaviour. At the same time, we discovered that trying to greed-

ily reduce the probability of a classification error, like the LOS policy does, results in

non-optimal behaviour.

On a more technical note, in this chapter we introduce a range of theoretical tools

that form the basis for our analysis. First and foremost, we model the behaviour of

the collection process as a random walk. By looking at the aggregation algorithm,

weighted majority voting, in the log-odds domain, we can separate the contribution

of each predictor. This property informs all of our results. Second, we give ourselves

the goal of inspecting the relationship between the number of data points per item R

and the probability of a classification error. This relationship takes the exponential

form of P(error) ∝ exp(−cπR), with different constants cπ for each collection policy.

Being able to derive analytical bounds on the probability of a classification error in this

form, allows us to compare the different collection policies theoretically, and not just
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empirically. We return to these tools in the next chapters, as we make our underlying

model more general, and thus introduce new challenges in our theoretical analysis.



Chapter 4

Unknown predictors’ accuracy

It is now time to drop the unrealistic assumption from Chapter 3 that we know the

individual accuracies of the predictors. Specifically, this requires dealing with predictors

of unknown accuracy. This is the underlying theme of the present and next chapter,

as it yields models of greater generality. In fact, many of the practical applications

that feature the combination of multiple classifiers bring some form of uncertainty on

the accuracy of these. For instance, in crowdsourcing the predictors are anonymous

human workers, and as such their accuracy, let alone their identity, cannot be known in

advance. Similarly, if the predictors are human experts (medical pratictioners, financial

advisers) we may only have access to a record of their past performance. Finally, even for

machine learning predictors, like in ensemble classifiers, we can only test their accuracy

on a training or validation set.

With this in mind, in this chapter we study an extension of the known accuracy model

of Chapter 3 where the accuracy pj of each predictor is unknown, but we can test it on a

small set of trial questions. The number of correct answers during the trials gives a rough

indication of the underlying accuracy of the predictor and can be used to aggregate their

output. In this sense, the trials are a model of the side information we may have about

the predictors, whether it is a report on the past performance of a human expert or the

training-set accuracy of a machine learning classifier. When our setting does not include

this type of information, we need an even more general model, which we will introduce

later in Chapter 5.

Since the present chapter is an extension of the results presented in the previous one,

we maintain the same structure. Namely, we introduce all the details of our extended

model in Section 4.1. Then, we divide our analysis in two parts: the first tackles the non-

adaptive collection policies (Section 4.2) and the second the adaptive ones (Section 4.3).

Following that, we present a theoretical comparison between the two categories of policies

in Section 4.4. Before concluding, we show how these results can inform the design

choices of a practical implementation of a multiple classifier system. We do so in Section

65
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4.5, where we explain how to choose the number of trials and data collection rounds

each predictor should go through in order to ensure optimal classification performance.

Finally, in Section 4.6 we summarise the contributions of this chapter and link them to

the discussion of the next one.

Note that, except for the material in Section 4.5, all the results in this chapter are

reminiscent of the corresponding ones for the known accuracy case in Chapter 3. In

order to avoid unnecessary repetitions, we frequently refer there for details on the proofs,

and general discussion on the behaviour of the policies. Even though we include enough

information to make the present chapter self-contained, knowledge of Chapter 4.5 is

necessary for a deep understanding of the following discussion.

4.1 An extended model

The model we present in this section is the intermediate step towards the fully agnostic

model of Chapter 5. Still, most of the assumptions we make in Chapter 3 remain

valid here. At the same time, we introduce a new layer of uncertainty, by dealing with

predictors of unknown accuracy.

In order to avoid any confusion, let us quickly go through the one-coin Dawid-Skene

model we introduced in Section 3.1 again. Our objective is recovering the ground-

truth classes yi ∈ {±1} of every item i in the set M . To do so, we can poll a set

of N predictors which provides us with a limited number of labels X = {xij}, where

j ∈ N . The predictors become available one by one according to the sequence a, and

get assigned to a specific item according to the collection policy π̂. After T timesteps

the label collection process ends, and we need to produce a guess ŷ on the item classes

y. The following information helps us with this task. First, we know the value of the

prior on the item classes q ≡ P(yi = +1). Second, we know that the predictors are

independent, their labels are bernoulli-distributed according to P(xij = yi) = pj , and

their accuracies p are extracted from the underlying probability distribution fp.

However, in contrast to the known accuracy model in Section 3.1, the vector p is hidden.

Instead, we have access to an additional set of items G on which we can test the accuracy

of the predictors. In this case, we assume we know the ground-truth classes gk ∈ {±1} for

each k ∈ G, and we observe all the predictors’ labels O = {okj} on them. Furthermore,

we assume that their probability of success remains the same across both sets G and M ,

i.e. P(okj = gk) = P(xij = yi) for any k ∈ G and i ∈ M . For reference, we collate all

these assumptions in the graphical model depicted in Figure 4.1.

The labels O we collect on the test items G allow us to form an estimate on the accuracy

pj of each predictor j ∈ N . We do so by counting the number of successes vj =∑
k∈G I(okj = gk) each predictor j achieves over the total number of trials |G|, and
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xij

pj yi

fp q

okj

gk

j ∈ N
i ∈ Mk ∈ G

Figure 4.1: A graphical representation of the extended Dawid-Skene model.

build our estimates p̂j accordingly (see Section 2.2.1.3 for examples). In the following

discussion we strive not to put any unnecessary restriction on how the estimates p̂ are

computed when possible. However, we often need to ensure that p̂j ∈ (0, 1), for instance

in Theorems 4.1 and 4.2, or that all the estimates are unbiased, i.e. p̂j = Epj∼fp|O,G(pj)

for all j ∈ N . Specifically, the latter is crucial for our analysis of the adaptive policies

in Section 4.3.

No matter which estimator of p we choose, the corresponding estimates p̂ can always be

useful in predicting the item classes y. This is because after collecting the set of labels

X as usual, we can use p̂ in the so-called plug-in aggregator (see Section 2.2.1.3), and

form our final predictions on the item classes as follows:

ŷi = sign
( ∑
j∈Ni

xijŵj + log
( q

1− q
))

where ŵj = log
( p̂j

1− p̂j

)
(4.1)

Thanks to Equation 4.1, the parallel with the known accuracy model in Section 3.1 is

complete. Specifically, the predictor weight wj becomes ŵj , the related weighted vote

sij becomes ŝij = xijŵj , and the log-odds zi becomes ẑi =
∑

j∈Ni
xijŵj . Finally, if the

unbiasedness property p̂j = Epj |Oj ,g(pj) holds, the following probabilistic interpretation

of the log-odds ẑi is guaranteed (see Equation 3.2 for comparison):

ẑi ≡ log

(
P(yi = +1|X,O, g, q)
P(yi = −1|X,O, g, q)

)
(4.2)
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since

P(yi = +1|X,O, g, q) =

∫
p
P(yi = +1,p|X,O, g, q)dp

=

∫
p
P(yi = +1|X,p, q)P(p|O, g)dp

∝ q
∏
j∈Ni

∫
pj

p
I(xij=+1)
j (1− pj)I(xij=−1)P(pj |Oj , g)dpj

∝ q
∏
j∈Ni

p̂
I(xij=+1)
j (1− p̂j)I(xij=−1)

(4.3)

We refer to this last property throughout the present chapter, even though part of our

results do not need it.

4.2 Non-adaptive collection policies

In this section we analyse all the collection strategies belonging to the category of non-

adaptive policies. Carrying forward the definition we introduced for the known accuracy

case (see Section 3.2), a non-adaptive policy chooses how to distribute the set of predic-

tors N over the items i ∈M according to the total number of items |Mj | each predictor

j can label, and its respective estimated accuracy p̂j . Here, the introduction of the esti-

mates p̂ instead of their ground-truth values p introduces a number of subtle differences

in our analysis.

For this reason, we need to revise all the results we derived in the known accuracy case.

In order to make the comparison easier, we keep the same section structure as Chapter

3. Accordingly, in Section 4.2.1 we derive some general results on the classification error

on a single item. Then, in Section 4.2.2 we use them to analyse the performance of

the UNI policy. Finally, in Section 4.2.3 we investigate the performance of an optimal

non-adaptive policy and approximate its behaviour with the WB policy.

4.2.1 Classification error on a single item

We begin our analysis by deriving some general results on the classification error over a

single item. This allows us to simplify our notation, drop the item index i, and assume

we observe a single label xj from each predictor j ∈ N . Later, in Sections 4.2.2 and

4.2.3, we extend these results to multiple items and use them to assess the performance

of the UNI and WB policies. Note, that the contribution we present in this section is

an improvement over the existing error bounds in (Berend and Kontorovich, 2015) and

(Gao et al., 2016).

With this in mind, let us bound the probability of a classification error from above:
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Theorem 4.1. Given a set N of predictors with ground-truth accuracies p and estimated

accuracies p̂ such that p̂j ∈ (0, 1) for all j ∈ N , the probability of a classification error

under the plug-in aggregator is upper bounded by:

P(ŷ 6= y|p, p̂, q) ≤ 2
√
q(1− q)

∏
j∈N

(
pj
p̂j

+
1− pj
1− p̂j

)√
p̂j(1− p̂j) (4.4)

where q ≡ P(y = +1) is the prior on the positive class.

Proof. This proof uses similar arguments to that of Theorem 3.1. First, we rewrite the

probability of a classification error as follows:

P(ŷ 6= y|p, p̂, q) = qP(ŷ 6= y|p, p̂, y = +1) + (1− q)P(ŷ 6= y|p, p̂, y = −1) (4.5)

Second, we define the halved log-odds under the plug-in aggregator as ĥ ≡ 1
2wq +∑

j∈N xj
1
2 ŵj , and compute the probabilities in Equation 4.5 by marginalising over the

content of the dataset X:

P(ŷ 6= y|p, p̂, y = +1) =
∑
X

(
I(ĥ < 0) +

1

2
I(ĥ = 0)

)
P(X|p, p̂, y = +1) (4.6)

P(ŷ 6= y|p, p̂, y = −1) =
∑
X

(
I(ĥ > 0) +

1

2
I(ĥ = 0)

)
P(X|p, p̂, y = −1) (4.7)

Third, we introduce a helper function f which we define as follows:

f(xj , p̂j , y) ≡

p̂j if xj = y

1− p̂j if xj 6= y
(4.8)

Fourth, we notice that the probability of observing each xj ∈ X is independent from the

other data points, conditional on y. This property, together with Equation 4.8, allows

us to write the following:

P(X|p, p̂, y = +1) =
∏
j∈N

P(xj |pj , p̂j , y = +1)

=
∏
j∈N

P(xj |pj , p̂j , y = +1)f(xj , p̂j ,+1) exp(−xj 1
2 ŵj)

√
p̂j(1− p̂j)

f(xj , p̂j ,+1)
√
p̂j(1− p̂j) exp(−xj 1

2 ŵj)

= exp(ĥ− 1

2
wq)

∏
j∈N

P(xj |pj , p̂j , y = +1)

f(xj , p̂j ,+1)

√
p̂j(1− p̂j) (4.9)

where the last equality follows from the fact that:

f(xj , p̂j ,+1) exp(−xj 1
2 ŵj)√

p̂j(1− p̂j)
= 1 for all xj ∈ {±1} (4.10)
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Similarly, for y = −1 we have the following:

P(X|p, p̂, y = −1) = exp(−ĥ+
1

2
wq)

∏
j∈N

P(xj |pj , p̂j , y = −1)

f(xj , p̂j ,−1)

√
p̂j(1− p̂j) (4.11)

Now, by substituing Equations 4.9 and 4.11 into Equations 4.6 and 4.7, we get the

following two inequalities:

P(ŷ 6= y|p, p̂, y = +1) ≤ exp(−1

2
wq)

∏
j∈N

(
pj
p̂j

+
1− pj
1− p̂j

)√
p̂j(1− p̂j) (4.12)

P(ŷ 6= y|p, p̂, y = −1) ≤ exp(+
1

2
wq)

∏
j∈N

(
pj
p̂j

+
1− pj
1− p̂j

)√
p̂j(1− p̂j) (4.13)

Finally, we can plug Equations 4.12 and 4.13 into Equation 4.5, which yields the result

in the theorem.

Let us compare Theorem 4.1 with the corresponding result for the known accuracy case

(see Section 3.2.1). First, the two terms
√
q(1− q) and

√
p̂j(1− p̂j) remain, albeit

with the estimates p̂j taking the place of their ground-truth values pj . Second, we have

an additional term inside the product, which measures how far the estimates are from

the aforementioned ground-truth values. Note that for perfect estimates, i.e. p̂j = pj ,

the original coefficient of 2 is restored, bringing us back to the known accuracy result.

Finally, for purely technical reasons, we have an additional factor of 2 in front of the

bound. This means that, with q = 1
2 and no predictors, our bound yields a maximum

value of 1.

Overall, the result in Theorem 4.1 manages to relate the probability of a classification

error to the main three underlying quantities: the prior, the estimation error and the

number of predictors. In Corollary 4.3 we show how to refine this result even further,

with the introduction of an additional assumption. Conversely, the bounds in the ex-

isting literature fail to deliver on these three properties. We discuss this in Appendix

E.

Let us move on to bounding the classification error from below. Note that the following

result is the first attempt at deriving a lower bound in the existing literature (Berend

and Kontorovich, 2015; Gao et al., 2016):

Theorem 4.2. Given a set N of predictors with ground-truth accuracies p and estimated

accuracies p̂ such that p̂j ∈ (0, 1) for all j ∈ N , the probability of a classification error

under the plug-in aggregator is lower bounded by:

P(ŷ 6= y|p, p̂, q) ≥ 0.73 exp
(
− 1

2
‖ŵ‖2

)√
q(1− q)

∏
j∈N

min

(
pj
p̂j
,
1− pj
1− p̂j

)
2
√
p̂j(1− p̂j)

(4.14)

where q ≡ P(y = +1) is the prior on the positive class.
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Proof. In this proof we reuse some of the arguments from Theorems 4.1 and 3.4. Specif-

ically, Equations 4.6, 4.7, 4.9 and 4.11 allow us to derive the following inequalities:

P(ŷ 6= y|p, p̂, y = +1) ≥ S exp(−1

2
wq)

∏
j∈N

min

(
pj
p̂j
,
1− pj
1− p̂j

)
2
√
p̂j(1− p̂j) (4.15)

P(ŷ 6= y|p, p̂, y = −1) ≥ S exp(+
1

2
wq)

∏
j∈N

min

(
pj
p̂j
,
1− pj
1− p̂j

)
2
√
p̂j(1− p̂j) (4.16)

where we define the shared term Ŝ as:

Ŝ ≡ 1

2|N |
∑
X

(
I(ĥ < 0) +

1

2
I(ĥ = 0)

)
exp(ĥ) (4.17)

The shared term Ŝ is identical to the corresponding term S in Equation 3.19 for the

known accuracies case, after replacing the exact weights w with the estimates ŵ in the

definitions of h therein. From the discussion in Equations 3.20 and 3.21, we can derive

that Ŝ ≥ 0.365 exp(−1
2‖ŵ‖2), which together with Equations 4.5, 4.15 and 4.16 yields

the result in the theorem.

Unfortunately, the two bounds in Theorems 4.1 and 4.2 do not match. This is in contrast

with our analysis of the known accuracy case in Section 3.2.1, which yielded the same

asymptotic terms for both the upper and lower bound. Instead, in the lower bound of

Theorem 4.2 the minimisation term inside the product can be arbitrarily smaller than

the corresponding sum in the upper bound of Theorem 4.1. The match is restored only

if the estimates p̂ are close enough to their ground-truth values p.

At the same time, this issue can be completely eliminated by introducing the extra

assumption that we have access to unbiased estimates. An example of this is when we

use the Bayesian estimator p̂BAj = Epj |Oj ,g(pj) we introduce in Section 2.2.1.3. In such

circumstances, the following corollary holds:

Corollary 4.3. Given a set N of predictors with unknown ground-truth accuracies p

and estimated accuracies p̂, such that p̂j = Epj |Oj ,g(pj) after observing the output Oj of

each predictor j ∈ N on the trials g, the probability of a classification error under the

plug-in aggregator is upper bounded by:

P(ŷ 6= y|O, g, q) ≤
√
q(1− q)

∏
j∈N

2
√
p̂j(1− p̂j) (4.18)

and lower bounded by:

P(ŷ 6= y|O, g, q) ≥ 0.73 exp
(
− 1

2
‖ŵ‖2

)√
q(1− q)

∏
j∈N

2
√
p̂j(1− p̂j) (4.19)

where q ≡ P(y = +1) is the prior on the positive class.
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Proof. To prove this corollary we notice that p̂j depends solely on the observations Oj ,

the trial classes g, and the underlying distribution of pj . As a consequence, we can take

Equation 4.9, condition it on O and g instead of p̂, and marginalise it over all possible

values of pj as follows:

P(X|O, g, y = +1) =

∫
p
P(X|p, O, g, y = +1)P(p|O, g)dp

= exp(ĥ− 1

2
wq)

∏
j∈N

√
p̂j(1− p̂j)

∫
pj

P(xj |pj , y = +1)

f(xj , p̂j , y)
P(pj |Oj , g)dpj

= exp(ĥ− 1

2
wq)

∏
j∈N

√
p̂j(1− p̂j) (4.20)

where the last equality follows from the fact that
∫
pj
pjP(pj |Oj , g)dpj is another way

of writing Epj |Oj ,g(pj), and thus numerator and denominator are both p̂j or 1 − p̂j

depending on the sign of xj . Similarly, when the ground-truth class is y = −1 we can

marginalise Equation 4.11 to obtain the following:

P(X|O, g, y = −1) = exp(−ĥ+
1

2
wq)

∏
j∈N

√
p̂j(1− p̂j) (4.21)

As any attentive reader will notice, both the expressions in Equations 4.20 and 4.21 are

almost identical to their counterparts for the known accuracy case in Equations 3.8 and

3.10. The only difference is that the ground-truth accuracies pj are replaced with p̂j .

Since this difference only informs how the weights w (respectively ŵ) are created, our

discussion on bounding the quantity
∑

X I(h < 0) + 1
2I(h = 0) for the known accuracy

case remains valid for ĥ too. The same can be said for
∑

X I(h > 0) + 1
2I(h = 0)

when y = −1. As a consequence, we can use Equations 4.20 and 4.21 to extend the

result of Theorems 3.1 and 3.4 to the unknown accuracy case as shown in the present

corollary.

The results in Corollary 4.3 form the basis for our following analysis of the UNI and

WB policies.

4.2.2 Classification error under the UNI policy

As we do in the previous chapter, we start our analysis from the simplest collection

strategy: the uniform (UNI) policy. With respect to the known accuracy case (see

Section 3.2.2), the behaviour of this policy remains the same. That is, we use a round-

robin allocation strategy to assign the same number of predictors to each item. More

formally, we define the UNI policy as follows:

π̂uni(t) = argmin
i∈M\Mt−1

a(t)

(
|N t−1

i |
)

(4.22)
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where ties are resolved in lexicographic order.

Barring any degenerate cases, the UNI policy assigns R = T/|M | predictors per item,

rounded to the nearest integer. Since the choice of predictors does not depend either

on their accuracy, or on their output, we can analyse this behaviour as |M | separate

instances of the single-item bounds presented in Section 4.2.1. In order to make our

presentation simpler, we assume here that the estimates p̂ are unbiased, and thus we

refer to the bounds in Corollary 4.3 as shown in the following discussion. If this is not

the case, it is just a matter of taking the expectation over both p̂ and p of the bounds

in Theorems 4.1 and 4.2 instead (Manino et al., 2019a).

Corollary 4.4. Given a population of predictors with unknown accuracy pj ∼ fp and

corresponding estimates p̂j = Epj |Oj ,g(pj) after observing the output Oj of each predictor

j ∈ N on the trials g, a prior on the positive class q ≡ P(yi = +1), and R predictors

per item, the probability of a classification error by the UNI policy under the plug-in

aggregator is upper bounded by:

P(ŷ 6= y|fp, g, q) ≤
√
q(1− q)

(
2Ep̂j |fp,g

(√
p̂j(1− p̂j)

))R
(4.23)

and lower bounded by:

P(ŷ 6= y|fp, g, q) ≥ 0.73
√
q(1− q)Ep̂′|fp,g

(
exp

(
− 1

2
‖ŵ′‖2

) R∏
j=1

2
√
p̂j(1− p̂j)

)
(4.24)

for any item i ∈M , where p̂′ is a vector of length R and ŵ′ contains its corresponding

weights ŵj = log
(
p̂j/(1− p̂j)

)
.

Proof. Corollary 4.3 provide us with bounds on the probability of a classification error

given a specific set of predictors with output Oj on the trials g, and corresponding

estimated accuracies p̂. Since we know the underlying distribution fp of the ground-

truth accuracies p, we can also compute the probability of observing a specific output

Oj . Then, we can use the chain rule to derive the probability of an error for a random

set of predictors as follows:

P(ŷ 6= y|fp, g, q) = EO|fp,g
(
P(ŷ 6= y|O, g, q)

)
(4.25)

Now, we know that the accuracy pj and the output Oj of each predictor j is indepen-

dently extracted. As a consequence the estimates p̂ are independent as well, and the

result in the corollary follows.

As for the known accuracy case in Section 3.2.2, both bounds in Corollary 4.4 share the

same term 2
√
p̂j(1− p̂j). This term becomes dominant as R grows large, making the

upper and lower bound match asymptotically.
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We can see this phenomenon at play in the results of our empirical experiments in

Figure 4.2. There, we run the UNI policy on synthetic data using the same settings

of the corresponding results for the known accuracy case in Section 3.2.2. Moreover,

we test the policy both with high and low uncertainty estimates p̂. In the former case,

we test the accuracy of each predictor on just |G| = 10 trials, whereas in the latter we

use an order of magnitude more (|G| = 100). Note how the UNI policy benefits from

more accurate estimates p̂, as for each R its prediction error in Figure 4.2(b) is lower

than that in Figure 4.2(a). In fact, as we increase the number of trials and p̂ → p,

the performance of the UNI policy, and the bounds in Corollary 4.4 converge to the

known accuracy case portrayed in Figure 3.3. This is not an isolated phenomenon, as it

happens for all the policies we analyse in this chapter.
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(a) |G| = 10 trials per predictor
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(b) |G| = 100 trials per predictor

Figure 4.2: Comparison between the empirical classification error under the UNI
policy, the bounds in the existing literature and our results. The dashed line is the

upper bound, the dotted one is the lower bound.

As a final note, there exists a closed form of the upper bound in Corollary 4.4 for a Beta

prior. While it is of marginal interest here, it becomes more important in Chapter 5.

For this reason, we include it separately in Appendix F.

4.2.3 Classification error under the WB policy

In the known accuracy case (see Section 3.2.3), we discussed how the UNI policy can

be inefficient as it ignores the quality of the predictors in its allocation decisions. On

the contrary, an optimal non-adaptive policy can achieve a lower prediction error with

the same resources by distributing the predictors according to their accuracy. More

formally, such policy can choose the composition of the subsets Ni for each item i ∈M
so as to minimise the corresponding error bound.

When translating this idea to the present setting, we encounter a key issue. Without

knowledge of the ground-truth accuracies p, we are forced to trust the estimates p̂. For

instance, we cannot use the general bounds in Theorems 4.1 and 4.2 because they contain
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the term pj . On the contrary, we can only assume that the estimates p̂j are unbiased, and

let our optimal non-adaptive policy minimise over the corresponding results in Corollary

4.3.

With this in mind, we can give an expression of the asymptotic performance of such an

optimal policy. We do so in the following corollary:

Corollary 4.5. Given a population of predictors with unknown accuracy pj ∼ fp and

corresponding estimates p̂j = Epj |Oj ,g(pj) after observing the output Oj of each predictor

j ∈ N on the trials g, prior on the positive class q ≡ P(yi = +1), and a large number of

predictors per item R, the probability of a classification error by an optimal non-adaptive

policy under the plug-in aggregator is:

P(ŷ 6= y|fp, g, q) = exp

(
R

2
Ep̂j |fp,g

(
log
(
4p̂j(1− p̂j)

))
+ o
(√
R
))

(4.26)

for any item i ∈M

Proof. This proof follows the same outline as the proof of Corollary 3.8. Accordingly,

we can rewrite the bounds in Corollary 4.3 in exponential form as follows:

P(ŷ 6= y|O, g, q) = exp

(
1

2

∑
j∈Ni

log
(
4p̂j(1− p̂j)

)
+ o
(√
|Ni|

))
(4.27)

Then, we claim that an optimal non-adaptive policy would try to redistribute the pre-

dictors in such a way that the sum in Equation 4.27 has the same value for each item

i ∈M . We denote the total amount that we can distribute during the collection process

as follows:

Ŝtot =
L|N |

2
Ep̂j |fp,g

(
log
(
4p̂j(1− p̂j)

))
(4.28)

where we assume that |Mj | = L for each predictor j. In the best case scenario, the

optimal policy manages to split Ŝtot evenly over M . Thus, L|N |/|M | = R and we get

the result in the corollary.

The difference between the result in Corollary 4.5 and the corresponding result for

the UNI policy in Corollary 4.4 is that now the expectation over p̂j lies outside of

the logarithm. According to Jensen’s inequality, this guarantees that the optimal non-

adaptive policy has a larger decay in the probability of error as R increases, since:

Ep̂j |fp,g
(

log
(
2
√
p̂j(1− p̂j)

))
≤ log

(
Ep̂j |fp,g

(
2
√
p̂j(1− p̂j)

))
(4.29)

However, note that this optimal policy is only an abstract construct. In order to have a

practical implementation of it, we turn again to the greedy strategy depicted in Section

3.2.3 for the known accuracy case. There, we define a weight balancing (WB) policy
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that aims to distribute the quantity Stot as evenly as possible. We can apply the same

approach to Ŝtot in the following way:

π̂wb(t) = argmax
i∈M\Mt−1

a(t)

( ∑
j∈Nt−1

i

log
(
4p̂j(1− p̂j)

))
(4.30)

In order to get a qualitative understanding of the improvement the WB policy brings

over the UNI policy, we compare their performance on synthetic data. The results in

Figure 4.3 show that the advantage of the WB policy is minimal, similarly to the known

accuracy case in Section 3.2.3. This is true both for the empirical performance, as well

as the theoretical bound. As noted for the experiments in Figure 4.2, the behaviour of

the policies converges to the known accuracy case (see Figure 3.4) as the estimates p̂

become more accurate (larger number of trials).
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Figure 4.3: Comparison between the empirical classification error under the WB and
UNI policies and their corresponding upper bounds.

All things considered, the WB policy is usually not worth the added complexity. If the

circumstances allow for a more complex collection strategy, one of the adaptive policies

we analyse in the next Section 4.3 would provide better performance.

4.3 Adaptive collection policies

In this section, we analyse the performance of adaptive collection policies. Borrowing

our definition from the known accuracy case (see Section 3.3), an adaptive policy is a

collection strategy that chooses the next item i to label depending on all the data Xt

collected so far. As a consequence, the behaviour of these policies tend to be more

complex than that of non-adaptive policies. Fortunately, the tools we introduce for the

known accuracy case translate well to the present scenario.

Still, there are a few technicalities that we need to cover. For this reason, we first

introduce some general results on classifying a single item in Section 4.3.1. Then, we
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use these to analyse the US policy in Section 4.3.2. Finally, we prove the equivalence

between the US and IG policies in Section 4.3.3. For the reasons described in Section

3.3.4, we drop the LOS policy from our discussion.

4.3.1 Achieving a target classification error on a single item

As per Section 4.2.1, before dealing with the specifics of the individual adaptive policies,

we derive some general results for a single item. This allows us to reduce the complexity

of our analysis and use milder assumptions. However, in this section we reverse the

argument we use for non-adaptive policies. That is, we fix the target classification error

p̂e we want and assume that we can collect as much data we need to achieve it. In

contrast with our analysis for the known accuracy case (see Section 3.3.1), the target p̂e

is the reported probability of a classification error. This is because at runtime we only

have access to the estimated log-odds ẑ, and we do not know the actual probability of

an error.

With this in mind, we can put an upper bound on the expected number of predictors

we need to reach p̂e as follows:

Theorem 4.6. Given a population of predictors with unknown accuracy pj ∼ fp, corre-

sponding estimates p̂j ∼ fp̂ and prior on the positive class q ≡ P(yi = +1), the expected

number n ≡ |N | of predictors we need to lower the reported classification error below p̂e

is upper bounded by:

EX,p,p̂,y|q,p̂e(n) <
−ŵe + (1− 2q)wq

Epj ,p̂j
(
(2pj − 1)ŵj

) + 1 (4.31)

where ŵe, wq and wj are the log-odds of p̂e, q and p̂j respectively.

Proof. This proof follows the same outline as the corresponding one for the known

accuracy case in Theorem 3.9. First, let us define ẑ0 = wq as the starting point of the

random walk over the estimated log-odds. Similarly, let us define ẑn as its final value

after collecting the labels of n ≡ |N | predictors. By definition we have ẑn 6∈ (ŵe,−ŵe),
as we collect labels until the value of ẑt reaches or crosses the threshold. In this regard,

the expected number of predictors we need to do so depends on the ground-truth class

y as follows:

EX,p,p̂,y|q,p̂e(n) = qEX,p,p̂|y=+1,p̂e(n) + (1− q)EX,p,p̂|y=−1,p̂e(n) (4.32)

At the same time, we can link the expected value of n to the average drift of the

random walk. In fact, according to Wald’s equation (Wald, 1944), each step ŝj = xjŵj

contributes in expectation to the value of ẑn as follows:

EX,p,p̂|y,p̂e(ẑ
n) = EX,p,p̂|y,p̂e(n)Exj ,pj ,p̂j |y(ŝj) + wq (4.33)
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Moreover, we can bound the expected value of ẑn with the threshold ŵe as follows. First,

recall that the steps ŝj are independent. As a consequence, we have:

EX,p,p̂|y,p̂e(ẑ
n) = EX,p,p̂|y,p̂e(ẑ

n−1) +Exj ,pj ,p̂j |y(ŝj) (4.34)

Second, we know that ẑn−1 ∈ (ŵe,−ŵe), since ẑn−1 are the log-odds just before crossing

the threshold. By combining this observation with Equation 4.34, we get the following

inequalities:

EX,p,p̂|y=+1,p̂e(ẑ
n) < −ŵe +Exj ,pj ,p̂j |y=+1(ŝj) (4.35)

EX,p,p̂|y=−1,p̂e(ẑ
n) > ŵe +Exj ,pj ,p̂j |y=−1(ŝj) (4.36)

Next, we can use Equation 4.33 to eliminate the variable ẑn from Equations 4.35 and

4.36:

EX,p,p̂|y=+1,p̂e(n)Exj ,pj ,p̂j |y=+1(ŝj) < −ŵe +Exj ,pj ,p̂j |y=+1(ŝj)− wq (4.37)

EX,p,p̂|y=−1,p̂e(n)Exj ,pj ,p̂j |y=−1(ŝj) > ŵe +Exj ,pj ,p̂j |y=−1(ŝj)− wq (4.38)

Finally, we notice that the expected value of the step ŝj changes its sign, but not its

magnitude, when we swap y = +1 with y = −1. Thus, we can plug Equations 4.37 and

4.38 into Equation 4.32, and compute the following bound:

EX,p,p̂,y|q,p̂e(n) <
−ŵe +Exj ,pj ,p̂j |y=+1(ŝj)− wq(2q − 1)

Exj ,pj ,p̂j |y=+1(ŝj)
(4.39)

The bound in the theorem follows from writing the expected value of ŝj = xjŵj in

explicit form.

Deriving a lower bound is more difficult. The main issue is that we need a relationship

between the estimated log-odds ẑ and the probability of a classification error in our

proof. For this reason, we introduce the extra assumption that the estimates of the

predictors’ accuracy p̂ are unbiased. According to our discussion in Section 4.2.1, this

assumption suffices to restore to relationship we need, and establishes the following

result:

Theorem 4.7. Given a population of predictors with unknown accuracy pj ∼ fp, cor-

responding estimates p̂j = Epj |Oj ,g(pj) after observing the output Oj of each predictor

j ∈ N on the trials g, and prior on the positive class q ≡ P(yi = +1), the expected

number n ≡ |N | of predictors we need to lower the reported classification error below p̂e

is lower bounded by:

EX,p,p̂,y|q,p̂e(n) <
−ŵe + (1− 2q)wq − 0.56−Ep̂j |fp,g

(
|ŵj |

)
Ep̂j |fp,g

(
(2p̂j − 1)ŵj

) (4.40)

where ŵe, wq and wj are the log-odds of p̂e, q and p̂j respectively.
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Proof. In this proof we reuse some of the arguments from the corresponding result for

the known accuracy case in Theorem 3.10, and the upper bound in Theorem 4.6. We

begin by establishing a lower bound on the expected value of n when the ground-truth

class is y = +1. By definition, we know that the magnitude of ẑn is larger or equal to

the threshold ŵe. Thus:

−ŵe ≤ EX,p,p̂|y=+1,p̂e

(
|ẑn|
)

= EX,p,p̂|y=+1,p̂e(ẑ
n)− 2EX,p,p̂|y=+1,p̂e

(
ẑnI(ẑn < 0)

) (4.41)

where the last equality comes from the definition of absolute value. Now, we can sub-

stitute Equation 4.33 into Equation 4.41, which yields the following inequality:

EX,p,p̂|y=+1,p̂e(n)Exj ,pj ,p̂j |y=+1(ŝj) ≥ −ŵe − wq + 2EX,p,p̂|y=+1,p̂e

(
ẑnI(ẑn < 0)

)
(4.42)

Furthermore, we can apply the same arguments we use in Equations 3.48 and 3.49 to

the last addend in Equation 4.42. In doing so, we get the following inequality:

EX,p,p̂|y=+1,p̂e

(
ẑnI(ẑn < 0)

)
≥ ŵeP(ẑn ≤ ŵe|y = +1) +Exj ,pj ,p̂j |y=+1

(
ŝjI(ŝj < 0)

)
≥ −0.28− 1

2
Exj ,pj ,p̂j |y=+1

(
|ŝj |
)

(4.43)

since the assumptions of the present theorem ensures that P(ẑn ≤ ŵe) = sig(ŵe), and

thus the same arguments of Equation 3.50 apply here (see discussion in Section 4.1).

Then, by substituting Equation 4.43 into Equation 4.41 we have a lower bound on n for

y = +1:

EX,p,p̂|y=+1,p̂e(n) <
−ŵe − wq − 0.56−Exj ,pj ,p̂j |y=+1

(
|ŝj |
)

Exj ,pj ,p̂j |y=+1(ŝj)
(4.44)

The corresponding bound for y = −1 can be derived in a similar fashion. First, we

exchange the definition of absolute value in Equation 4.41 for the following equivalent

expression:

EX,p,p̂|y=−1,p̂e

(
|ẑn|
)

= EX,p,p̂|y=−1,p̂e(−ẑn) + 2EX,p,p̂|y=−1,p̂e

(
ẑnI(ẑn > 0)

)
(4.45)

Second, we combine Equation 4.45 with Equation 4.33 to derive the following inequality:

EX,p,p̂|y=−1,p̂e(n)Exj ,pj ,p̂j |y=+1(ŝj) ≥ −ŵe + wq − 2EX,p,p̂|y=−1,p̂e

(
ẑnI(ẑn > 0)

)
(4.46)

since the expected value of ŝj changes in sign but not magnitude with y. Finally, we

bound the expected value of a positive ẑn with the same procedure shown in Equation

4.43 (up to a change in sign), which yields the following result:

EX,p,p̂|y=−1,p̂e(n) <
−ŵe + wq − 0.56−Exj ,pj ,p̂j |y=+1

(
|ŝj |
)

Exj ,pj ,p̂j |y=+1(ŝj)
(4.47)

Then, we notice that we can write the expected value of the steps ŝj = xjŵj in terms of
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the estimates p̂j only. This is because we have Exj ,p̂j |y=+1(xjŵj) = Epj ,p̂j |y=+1

(
(2pj −

1)ŵj
)
, and Epj |p̂j (pj) = p̂j as per the assumptions of the present theorem. Finally,

by substituting Equations 4.44 and 4.47 into Equation 4.32 we get the result in the

theorem.

The results of Theorem 4.31 and 4.40 can be easily extended to the multi-item case. We

do so in the next section, where we analyse the performance of the US policy.

4.3.2 Classification error under the US policy

The US policy can be easily implemented even if we only have access to the estimated

posterior ẑt. In fact, we can greedily choose the item whose log-odds are closest to zero:

π̂us(t) = argmin
i∈M\Mt−1

a(t)

(
|ẑti |
)

(4.48)

where ties are broken in lexicographic order. Note that Equation 4.48 optimises over the

estimated uncertainty. This differs from our definition in Section 3.3.2 where we have

access to the actual posterior probability through the log-odds zt.

As a consequence, we lose the link between the value of the log-odds ẑti and the probabil-

ity of a classification error on that item. Such a link can be restored if we assume that all

p̂ are unbiased estimates of their ground-truth value pj (see discussion in Section 4.2.1).

In the following corollaries we work under this assumption, which allows us to derive

very similar results to those for the known accuracy case in Section 3.3.2. However, bear

in mind that the unbiasedness assumption is not strictly necessary. Milder assumptions

that create a relationship between ẑti and P(ŷi 6= yi) can suffice. Since they are not

needed for the discussion in this chapter, we explore them in Chapter 5.

At the same time, the runtime behaviour of the US policy does not depend on how the

predictors’ weights ŵ are computed. Accordingly, all of our consideration from Section

3.3.2 still applies. Additionally, we need to take into account the same non-ideality

issues discussed in Section 3.4. With this in mind, we can bound its probability of a

classification error as follows:

Corollary 4.8. Given a population of predictors with unknown accuracy pj ∼ fp and

corresponding estimates p̂j = Epj |Oj ,g(pj) after observing the output Oj of each predictor

j ∈ N on the trials g, a prior on the positive class q ≡ P(yi = +1), a large number of

items |M | → ∞, and an average number of predictors per item R, the probability of a

classification error by the US policy under the plug-in aggregator is upper bounded by:

P(ŷ 6= y|fp, g, q) ≤ exp
(
− (R− 1)Ep̂j |fp,g

(
(2p̂j − 1)ŵj

)
− (2q − 1)wq

)
(4.49)

for all items i ∈M .
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Proof. Let us assume for the moment that we can collect as many data points T as

we want. Under this assumption, we can run |M | independent random walks on the

estimated log-odds ẑi of each item i ∈ M , until they all cross the threshold ±ŵe we

choose. In this respect, Theorem 4.6 gives us the average number of predictors we need

for each item. From there, we can derive the following expression:

− ŵe >
(
EX,p,p̂,y|q,p̂e

(
|Ni|

)
− 1
)
Epj ,p̂j

(
(2pj − 1)ŵj

)
+ (2q − 1)wq (4.50)

where, given the assumption of unbiased estimates p̂, we can simplify the expected value

Epj ,p̂j
(
(2pj − 1)ŵj

)
to Ep̂j

(
(2p̂j − 1)ŵj

)
as we do in the proof of Theorem 4.7.

At the same time, when the number of items |M | grows large, we know that the number

of predictors we need on each item will converge to its expected value (for a thourough

discussion on this, see the proof of Corollary 3.11). As a result, we can substitute

E
(
|Ni|

)
in Equation 4.50, with the actual average number of predictors R we have

access to. Furthermore, under the assumptions of this corollary, we can tie the value of

the log-odds ẑTi at the end of the collection process, with the value of the threshold ŵe

as follows:

P(ŷ 6= y|fp̂, q) = EX,p,p̂,y|q
(

sig
(
− |ẑTi |

))
≤ sig

(
− |ŵe|

)
≤ exp(ŵe)

(4.51)

The result in the present corollary follows from subsituting Equation 4.50 into Equation

4.51, with E
(
|Ni|

)
= R.

Corollary 4.9. Given a population of predictors with unknown accuracy pj ∼ fp and

corresponding estimates p̂j = Epj |Oj ,g(pj) after observing the output Oj of each predictor

j ∈ N on the trials g, a prior on the positive class q ≡ P(yi = +1), a large number of

items |M | → ∞, and an average number of predictors per item R, the probability of a

classification error by the US policy under the plug-in aggregator is lower bounded by:

P(ŷ 6= y|fp, g, q) ≥ exp
(
−REp̂j |fp,g

(
(2p̂j − 1)ŵj

)
− (2q − 1)wq

− 1.25−Ep̂j |fp,g
(
|ŵj |

)) (4.52)

for all items i ∈M .

Proof. This proof follows the same outline as the proof of Corollary 3.12. Similarly to

the proof of Corollary 4.8 we assume for the moment that we can collect as many data

points T as we want. Under this condition, the techniques we used in Theorem 4.7 are

valid. We use them to bound the expected value of the absolute log-odds |ẑTi | at the

end of the collection process:

EX,p,p̂|yi,p̂e
(
|ẑTi |

)
≤ yiEX,p,p̂|yi,p̂e(ẑTi ) + 0.56 +Ep̂j |fp,g

(
|ŵj |

)
(4.53)
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We also know that we can compute E(ẑTi ) according to Equation 4.33, and that we can

take the expectation of Equation 4.53 over yi. Together, these two operations yield the

following result:

EX,p,p̂,yi|q,p̂e
(
|ẑTi |

)
≤ EX,p,p̂,y|q,p̂e

(
|Ni|

)
Ep̂j |fp,g

(
(2p̂j − 1)ŵj

)
+ (2q − 1)wq + 0.56 +Ep̂j |fp,g

(
|ŵj |

) (4.54)

However, for the reasons explained in Corollary 3.11, for |M | → ∞ the number of

predictors per item converges to its expected value. Therefore, we can replace E
(
|Ni|

)
with the actual number of available predictors R in Equation 4.54. Additionally, given

the assumptions in the present corollary, we have the following relationship between the

probability of an error and the absolute log-odds |ẑTi |:

P(ŷ 6= y|fp̂, q) = EX,p,p̂,y|q
(

sig
(
− |ẑTi |

))
≥ sig

(
−EX,p,p̂,y|q

(
|ẑTi |

))
≥ 1

2
exp

(
−EX,p,p̂,y|q

(
|ẑTi |

)) (4.55)

The result in the present corollary follows from subsituting Equation 4.54 into Equation

4.55, with E
(
|Ni|

)
= R.

Corollaries 4.8 and 4.9 highlight two desired properties of the US policy. First, the two

bounds match asymptotically in R as they share the same constant Ep̂j
(
(2p̂j − 1)ŵj

)
.

This is the average drift of the random walk on the log-odds ẑi, and thus ensures that

the US policy is optimal. That is, there is no collection policy that can achieve a better

asymptotic rate. Second, the two bounds converge to the corresponding results for the

known accuracy case in Corollaries 3.11 and 3.12 as the estimates p̂ converge to their

ground-truth value p. This ensures that the US policy achieves similar performance to

its known-accuracy counterpart when high-quality estimates p̂ are provided.

We test the latter property in a set of empirical experiments on synthetic data. In order

to make the comparison easier, we use the same setting of the corresponding experiments

for the known accuracy case in Section 3.3.2. Additionally, we run the same experiments

twice: first in a high uncertainty regime, where the estimates p̂ are computed after only

|G| = 10 trials, and then in the low uncertainty regime, with |G| = 100 instead. The

results are reported in Figures 4.4(a) and 4.4(b) respectively. There, it is clear that

having more accurate estimates p̂ improves the performance of all policies. Moreover, if

we compare these two plots with Figure 3.6, we can see that for |G| → ∞ we converge

to the known accuracy case. Finally, the relative performance of all collection policy

does not differ from the known accuracy case, even in the high uncertainty regime. We

formally study this phenomenon in Section 4.4.
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Figure 4.4: Comparison between the empirical classification error under the US/IG
policies, and the bounds we derive in Corollaries 4.8 and 4.9. The dashed line is the
upper bound, the dotted one is the lower bound. For reference we include the UNI and

WB policies as well.

4.3.3 Classification error under the IG policy

The amount of information carried by each new data point xij we observe can be mea-

sured in terms of the Kullback-Leibler (KL) divergence (see Section 2.3.3). Similarly

to our derivation for the known accuracy case in Section 3.3.3, we can apply the KL

divergence to our setting as follows:

KL(ẑt+1 ‖ ẑt) = sig(ẑti + xijŵj)xijŵj + log
(sig(−ẑti − xijŵj)

sig(−ẑti)
)

(4.56)

Of course, the value of the new data point xij can be observed only after we collect

it. Therefore, our decision on which item i to collect it on must be based on the

expected information gain of the future label. We can compute this expectation under

the assumption that p̂j is an unbiased estimate of the probability of observing a correct

label. This is similar to what we do in Section 4.2.3 for the WB policy. With this

assumption, ẑti is an unbiased estimate of the log-odds zti and the expectation of Equation

4.56 is the following:

Exij |ẑt,p̂j
(
KL(ẑt+1 ‖ ẑt)

)
= ŵj(2p̂j − 1) sig(ẑti)− log

(
sig(−ẑti)

)
+P(xij =+1|ẑti , p̂j) log

(
sig(−ẑti − ŵj)

)
+P(xij =−1|ẑti , p̂j) log

(
sig(−ẑti + ŵj)

) (4.57)

Which leads to the following formal definition of the IG policy for the unknown accuracy

case:

π̂ig(t) = argmax
i∈M\Mt−1

a(t)

(
Exij |ẑt,p̂j

(
KL(ẑt+1 ‖ ẑt)

))
(4.58)

where ties are broken in lexicographic order.
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Now, the definition of the IG policy in Equation 4.58 almost matches the corresponding

one for the known accuracy case (see Equation 3.69). The only difference is that we

replaced the ground-truth accuracies p with their unbiased estimates p̂. As a result, our

equivalence result with the US policy presented in Theorem 3.13 still applies:

Theorem 4.10. For any values of the estimated log-odds ẑt, and any predictor j with

unbiased accuracy estimate p̂j = Epj |Oj ,g(pj) 6= 1
2 , the US and IG policies select the

same item, that is π̂us(t) = π̂ig(t).

Proof. This proof follows the same outline of the corresponding result for the known

accuracy case in Theorem 3.13. Recall that the US policy (see Equation 4.48) optimises

over the function |ẑti |. Crucially, this function is even and has its global minimum in

ẑti = 0. In order to prove our equivalence result, we need to show that Equation 4.57

has similar properties. The only difference is that the IG policy maximises rather than

minimises over its objective funtion.

First, note that Equation 4.57 is even both in ẑti and ŵj , as can be easily proven by

substitution. Thus, in the following discussion we only focus on the positive quadrant,

since the other ones have identical properties. Accordingly, it suffices to show that

Equation 4.57 is monotonically decreasing in ẑti > 0. We do so by taking its derivative

and proving that its sign is always negative (see Equations 3.70, 3.71, 3.72 and 3.73 for

a similar derivation):

d

dẑti

{
Exij |ẑt,p̂j

(
KL(ẑt+1 ‖ ẑt)

)}
= (2p̂j − 1) sig(ẑti) sig(−ẑti)

(
ŵj + log

(sig(−ẑti − ŵj)
sig(−ẑti + ŵj)

)) (4.59)

which can be proven to be negative for all ẑti > 0 and ŵj 6= 0 by contradiction in the

same way as Equation 3.74. Finally, for ŵj 6= 0 the derivative in Equation 4.59 has its

only zero in ẑti = 0, proving that the estimated expected information gain has a global

maximum in that location.

The result in Theorem 4.10 can be easily overlooked, given that it differs from its known-

accuracy counterpart only slightly. However, there is one condition required for it to

hold, which becomes crucial in the next Chapter 5. That is, we assume that the estimates

p̂ are given, and do not depend on the set of data X we collect. As we progress further

in our analysis of unknown accuracy models, we remove the aforementioned assumption,

thus restoring the IG policy to its role of fully independent collection policy. An example

of this is presented in Section 5.3.1. In contrast, throughout the present chapter the

equivalence between the US and IG policies always holds, and therefore we can use the

results in Corollaries 4.8 and 4.9 to analyse the performance of the latter.
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4.4 Asymptotic policy comparison

Now that we have analysed each collection policy individually, it is time to compare

their performance. As per Section 3.5 for the known accuracy case, we present here an

asymptotic comparison. This is because, as the average number of items per predictor

R grows large, the probability of an error exhibits the following exponential decay under

all policies:

P(ŷ 6= y) = exp
(
− ĉπR+ o(

√
R)
)

(4.60)

where the constant ĉπ depends on the particular collection policy we use. Thanks to

the results in Corollaries 4.4, 4.8, 4.9 and Theorems 4.5, 4.10 we can quantify the value

of such a constant for the UNI policy, an optimal non-adaptive policy and both US/IG

adaptive policies as follows:

ĉuni = − log
(

2Ep̂j
(√

p̂j(1− p̂j)
))

(4.61)

ĉnada = −1

2
Ep̂j

(
log
(
4p̂j(1− p̂j)

))
(4.62)

ĉada = Ep̂j

(
(2p̂j − 1) log

( p̂j
1− p̂j

))
(4.63)

It is worth noting that the value of ĉπ for the policies analysed in this chapter is identical

to the known accuracy case in so far as we replace pj with its estimate p̂j (see Equations

3.81, 3.82 and 3.83). As a consequence, we can expect the value of ĉπ to approach cπ as

the estimates of the predictors’ accuracy become more accurate. Additionally, we can

derive a similar result to Theorem 3.15 about the advantage of using an adaptive policy:

Theorem 4.11. Given a population of predictors with unknown accuracy pj ∼ fp,

corresponding estimates p̂j = Epj |Oj ,g(pj) such that P(p̂j 6= 1
2) > 0, a large number of

items |M | → ∞, and a large number of predictors per item R→∞, the asymptotic rate

of the US and IG policies is at least twice as large as that of any non-adaptive policy,

that is ĉada ≥ 2ĉnada.

Proof. Thanks to Jensen’s inequality, we know that ĉuni ≤ ĉnada. Furthermore, a quick

inspection of the arguments of the expected values in Equations 4.62 and 4.63 reveals

that:

− log
(
4p̂j(1− p̂j)

)
≤ (2p̂j − 1) log

( p̂j
1− p̂j

)
for all p̂j ∈ (0, 1) (4.64)

The result in the present theorem follows from these considerations and the monotonicity

property of the expectation operator.

At the same time, Theorem 4.11 is based on the assumption that the estimates p̂j are

unbiased. In some instances, this can be impossible to guarantee, for example if we
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have no prior information on the distribution of the predictors’ accuracy fp. In such

circumstances, it is customary to replace the missing information with an uninformative

prior, e.g. assuming a beta prior and setting α = 1, β = 1 (Murphy, 2012). In order to

explore what happens to the value of the ratio ĉada/ĉnada under such circumstances, we

ran synthetic experiments with a variety of choices for fp, and estimate the asymptotic

ratio between the policies empirically. To make the comparison with the known accuracy

case easier, we use the same settings of the corresponding experiments presented in

Section 3.5.
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Figure 4.5: Empirical advantage of adaptive policies with identical predictors pj = p̄.
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Figure 4.6: Empirical advantage of adaptive policies with mixed predictors pj ∼
Uniform(p̄− 0.2, p̄+ 0.2).

In this regard, we present the result with homogeneous predictors in Figure 4.5, and

those with mixed predictors in Figure 4.6. For both cases, we run experiments both in

the high uncertainty regime, when the predictors’ accuracy is tested on |G| = 10 trials,

and the low uncertainty regime, when we have |G| = 100 trials instead. As expected,

the more trials we have, the more the estimates p̂j approach their ground-truth value
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pj , and thus the ĉada/ĉnada converges to its known accuracy counterpart. This makes

Figures 4.5(b) and 4.6(b) very close to Figures 3.10(a) and 3.10(b).

On the contrary, in the high uncertainty regime we can see some small differences. In

Figure 4.5(a) the difference between adaptive and non-adaptive policies is less evident

for small p̄, and thus the ĉada/ĉnada drops to lower values than Figure 4.5(b). This is

because the predictors are almost random in that region, and thus the estimates p̂j do

not necessarily match the value of p̄, leading to a less efficient adaptive allocation. A

similar effect appears in Figure 4.6(a), even though the mixed population of predictors

mitigates the phenomenon.

4.5 The estimate-predict tradeoff

Before closing the present discussion, we want to show how the results in this chapter,

though theoretical, can have a concrete practical application. Recall that according to

our assumptions in Section 4.1, each predictor outputs two distinct set of labels Oj and

Xj . The first is used to estimate the accuracies p̂, the second to predict the classes

of the items in M . However, until now we have taken for granted that the cardinality

of Oj and Xj are given. What if we actually had the freedom to make this choice by

ourselves?

In fact, it is not unimaginable to encounter a scenario where each predictor j is able to

produce only |Oj | + |Xj | labels in total. For example, in crowdsourcing the predictors

are human workers that get hired to execute a fixed number of labelling tasks. In order

not to waste the resources available to us, it is our job to decide how to optimally split

the |Oj |+ |Xj | labels between the two sets.

Fortunately, this is an easy question to answer given the results presented in this chapter.

Specifically, we define the following optimisation problem. Assume that each predictor

provides the same number S = |Oj | + |Xj | of labels in total (extending our results to

a different number of labels per predictor is trivial). Then, for each collection policy

presented in Sections 4.2 and 4.3 we can optimise over the respective upper bounds.

This procedure splits S into a number of trials |G| = S − R∗ and a number of effective

labels R∗ that gives us the best guarantees over the classification error. Since the bounds

presented in Sections 4.2 and 4.3 are close to the actual predictive error, such guarantees

translate to an optimal performance.

As we would expect, the optimal split depends on all the parameters at play: the

collection policy π we use, the total number of labels S, and the underlying accuracy

distribution fp of the predictors. At the same time, one interesting phenomenon emerges

which is consistent across different choices of the aforementioned three parameters. We

highlight it in the following loose statement:
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Remark 4.12. For any collection policy π, and any population of predictors whose ac-

curacy distribution fp has both mean different from 1
2 and small variance, the best

allocation of resources is having zero trials, that is R∗ = S, as long as S is not too large.

While Remark 4.12 can appear infuriatingly vague when compared with the other re-

sults in this chapter, it justifies a common practice in the crowdsourcing field. That is,

oftentimes crowdsourcing pratictioners avoid employing any form of sophisticated statis-

tical tool and revert to the basic majority voting rule (Snow et al., 2008; Barowy et al.,

2012). In general, this works as long as the population of predictors is biased towards the

ground-truth class yi. Here, we can show that such a design choice is actually optimal

if the conditions in Remark 4.12 apply.

In order to visualise why this is so, let us assume that fp ∼ Beta(α, β) and run the

optimisation process for different choices of α and β. Thanks to the properties of the

Beta distribution, we can force the probability density function to assume a large variety

of shapes, as we show in Figure 4.7. Note that we choose a mean of α/(α + β) = 0.6

for all of them, but we progressively reduce the variance by increasing both α and β by

the same factor. As a sidenote, if fp has a mean of 1
2 , we are forced to spend some of

the labels S on estimating the predictors’ accuracy. In fact, running majority voting in

such a scenario is impossible, as all predictors would receive a null weight ŵj = 0.
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Figure 4.7: Three examples of the Beta distribution for different values of the param-
eters α and β.

We report the number of trials |G| required for optimal performance in Table 4.1. The

table explores all three parameter dimensions: the collection policy π, the total number

of labels S, and the three accuracy distributions fp portrayed in Figure 4.7. Three

things must be noted. First, the choice of policy has little impact on the optimal split,

with WB requiring slightly more trials and US/IG requiring slightly fewer. Second, the

number of trials grows almost linearly with S, taking around 25% of the total number

of labels. Third, as soon as the variance of fp becomes small, it is not worth running

any trial at all for small S. Instead, it is better to dedicate all resources to predict the
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item classes, i.e. R∗ = S as highlighted in Remark 4.12.

α = 0.3, β = 0.2 α = 1.5, β = 1.0 α = 7.5, β = 5.0

S UNI WB US/IG UNI WB US/IG UNI WB US/IG

1 0 0 0 0 0 0 0 0 0
2 1 1 0 1 1 0 0 0 0
3 1 1 1 1 1 1 0 0 0
4 1 1 1 1 1 1 0 0 0
5 2 2 1 2 2 1 0 0 0

6 2 2 2 2 2 2 0 0 0
7 2 2 2 2 2 2 0 0 0
8 2 2 2 3 3 2 0 1 0
9 2 3 2 3 3 3 1 1 0
10 3 3 2 3 3 3 1 1 1

11 3 3 3 3 3 3 1 1 1
12 3 3 3 4 4 3 2 2 1
13 3 4 3 4 4 4 2 2 2
14 3 4 3 4 4 4 2 2 2
15 3 4 3 4 4 4 3 3 2

16 4 4 3 4 5 4 3 3 3
17 4 4 4 5 5 4 3 3 3
18 4 5 4 5 5 5 3 4 3
19 4 5 4 5 5 5 4 4 3
20 4 5 4 5 6 5 4 4 4

Table 4.1: Number of trials |G| needed to get optimal guarantees given the predictors’
productivity S.

Unfortunately, it is impossible to quantify the conditions under which Remark 4.12 is

valid in general. Doing so requires knowing all of the three parameters π, S, fp at play.

For this reason, in a practical scenario any design choice has to be evaluated on a case

by case basis.

4.6 Summary

In this chapter we extend the known accuracy model of Chapter 3 to account for predic-

tors with unknown accuracy. We show that the majority of our results are reminiscent

of the corresponding ones for the known accuracy case. If we had to summarise them

in one sentence, we could say that, as long as the accuracy estimates p̂ are unbiased, all

the results derived with known accuracy still apply. Furthermore, some of the results

presented here are of independent interest: specifically, the theoretical improvement on

the state of the art in Section 4.2.1 and the design choice guidelines in Section 4.5.

Both can help a pratictioner make the correct design choices when deploying a multiple

classifier system in the real world.
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Against this background, the current chapter is as a stepping stone towards the next one.

There, we remove any side-information from the model, whether it is the ground-truth

accuracies p or the trial outcomes O, and deal with predictors of completely unknown

properties. Importantly, such generalisation step does not make the results we present

here invalid. In fact, we show there that as long as we can produce some estimates p̂ of

the predictors’ accuracy, the theoretical tools of this chapter remain applicable.



Chapter 5

Inferring the predictors’ accuracy

Thanks to the solid theoretical foundations we lay in Chapters 3 and 4, we are now in the

position to make our last step towards generality. Recall that in Chapter 3 we assume

perfect knowledge of the predictors’ accuracies p. Conversely, in Chapter 4 we assume

that the accuracies p are unknown, but we have access to their estimates p̂. Here, we

let this last piece of information go, and rely exclusively on the dataset X to form our

predicitons on the item classes.

This last scenario adheres closely to the original Dawid-Skene model (Dawid and Skene,

1979). There, the goal is to infer both the ability of a group of physicians and the correct

diagnosis of their patients, given the opinion of each doctor on the patients’ symptoms.

With the advent of crowdsourcing, this model has found a new application: if we replace

the physicians with crowdworkers, and the patients with a set of data-processing tasks,

we are left with the same inference problem.

However, just solving this inference problem is not enough. As we show in the present

chapter, most existing approaches to do so are computationally intensive. Clearly, this is

not an issue in an offline setting, where the whole dataset is available for processing, and

there is no time constraint. At the same time, some applications like crowdsourcing call

for an online approach, where we need to make real-time inference decisions. Crucially,

this is the case if we want to deploy an adaptive data collection strategy like the US

policy, and enjoy its superior accuracy.

On a different note, the solution to the inference problem we study in this chapter is not

unique. This is in stark constrast with the other variants of the Dawid-Skene model we

study in Chapters 3 and 4, which are optimally solved by weighted majority voting and

the plug-in aggregator respectively. A consequence of the presence of multiple inference

solutions is that deriving general theoretical results is more challenging. As an example,

the existing literature contains only two attempts of this kind (Karger et al., 2014; Gao

et al., 2016). The rest take the form of algorithm-specific guarantees (see Section 2.2).

91
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In this chapter we address both the aforementioned algorithmic and theoretical chal-

lenges. We begin in Section 5.1 by providing the details of the inference model we use

throughout the whole chapter. Then, in Section 5.2 we introduce two new inference

algorithms. The first is an efficient particle filter implementation of Monte Carlo sam-

pling, and helps us define a baseline approach for probabilistic inference. The second is a

novel approach based on approximate Bayesian inference, and provides good predictive

accuracy while running several orders of magnitude faster than the state of the art.

Next, in Section 5.3 we focus on the theoretical challenge. Our contributions include a

novel general bound on the accuracy of any inference algorithm, and several algorithm-

specific bounds. All of these match the empirical performance of the respective algo-

rithms very closely. Furthermore, these bounds cover both the UNI and US policies.

The latter are the first result of this kind in the existing literature.

Finally, in Section 5.4 we run an empirical comparison of our algorithmic contributions

with the state of the art. We do so both on synthetic and real datasets. Our results

show that our algorithms are the most accurate among the existing Bayesian approaches.

Moreover, they are the only ones exhibiting a consistent behaviour under the US policy,

when the number of labels provided by each predictor is small. Lastly, we give a brief

summary of all our contributions in Section 5.5.

5.1 A fully agnostic model

In this section we introduce our last model of multiple item classification. This model

is the next natural step towards generality with respect o the other models we use in

Chapters 3 and 4. Under this light, we keep many of the assumptions we use there (see

Sections 3.1 and 4.1 for comparison), but remove any direct or side information about

the accuracy of the individual predictors. As a consequence, our inference effort can

only rely on the predictors’ output over the original set of items.

Let us specify our setting in a more formal manner. As per the one-coin Dawid-Skene

model we introduce in Sections 3.1 and 4.1, we have a set of M items with unknown

ground-truth classes yi ∈ {±1} and corresponding prior distribution P(yi = +1) ≡ q.

Likewise, we have a pool ofN predictors which become available multiple times according

to a random sequence a. At each timestep t, we assign the available predictor j = a(t)

to an item i = π̂(t) according to the policy π̂, and receive the predictor’s output label

xij . After T timesteps the label collection process ends, and we use the resulting dataset

X = {xij} to form our final predictions ŷ over the item class vector y.

At the same time, we have little information on the ground-truth accuracy P(xij =

yi) ≡ pj of each predictor j ∈ N . Here, the only assumption we make is that the

predictors are independent, and their accuracies p are extracted from an underlying
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known distribution fp. Together, this set of assumptions defines a generative model for

the dataset X, which we summarise in graphical format in Figure 5.1.

xij

pj yi

fp q

j ∈ N
i ∈ M

Figure 5.1: A graphical representation of the agnostic Dawid-Skene model.

With the background of Chapters 3 and 4.1, it is clear that the model in Figure 5.1 renews

our research challenges. In fact, lacking any additional knowledge on the predictors’

accuracies p, the corresponding inference problem might even seem underdetermined at

first glance. On the one hand, if we knew p like in Chapter 3, we would have all the

tools we need to predict y efficiently. On the other hand, if we knew y beforehand, as

we know the ground-truth classes g of the extra set of items G in Chapter 4.1, then we

could estimate p easily. Here, we are tasked with doing both things at the same time,

using the information in the dataset X alone.

Before moving to our contributions, let us point out that the challenges the present

model poses are not only algorithmic. In fact, once we choose an existing algorithm or

develop a new one, we are often left with no guarantees on how well such an algorithm

will perform. Thus, we also need to address the corresponding theoretical challenge. To

this end, after proposing our own algorithmic solutions in Section 5.2, we study their

theoretical properties in Section 5.3.

5.2 Algorithmic contributions

The agnostic Dawid-Skene model we present in Section 5.1 has already received con-

siderable attention in the machine learning literature. However, the existing algorithms

(see Section 2.2) fail to address all the three requirements that underlie our present

research effort. Namely, the need for computational speed, theoretical guarantees and

good predictive performance in all settings.

Thus, we dedicate this section to our own take on this algorithmic challenge. Our

contribution is divided in two parts. In the first (Section 5.2.1), we present our approach
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to Bayesian probabilistic inference via Monte Carlo sampling. There, we show that a

particle filter implementation is required for an efficient estimation of the posterior in

an online setting. Furthermore, since the posterior distribution is strongly bimodal,

we introduce a mirroring technique that allows the particles to jump out of the wrong

mode with little computational cost. This first part also functions as an introduction to

Bayesian inference on the Dawid-Skene model, and as such we often refer to it in the

remainder of this chapter.

In the second part (Section 5.2.2), we present a novel algorithm, which we name Stream-

ing Bayesian Inference for Crowdsourcing (SBIC). This algorithm employs a variational

approximation of the posterior distribution, and updates it on the fly as new data be-

comes available. As a result, SBIC is not only computationally light, but it offers good

theoretical guarantees as we detail later in Section 5.3.4.

5.2.1 Posterior estimation via Monte Carlo sampling

Bayesian probabilistic inference aims at estimating the posterior distribution on the

latent variables of our generative model, and using this information to form a prediction

on their ground-truth value. However, doing so on the Dawid-Skene model we present

in Section 5.1 is not straightforward. A classic but computationally-expensive solution

to this is Monte Calro sampling. Here, we show how to implement it efficiently.

First, let us derive an analytical expression for the posterior of the model in Figure 5.1.

The probability of the evidence X given the latent variables y and p is the following:

P(X|y,p) =
∏
xij∈X

p
I(xij=yi)
j (1− pj)I(xij 6=yi) (5.1)

But, of course, we are interested in the opposite conditional probability. That is, we

want the posterior on the latent variables y and p given the evidence X. For that, we

need Bayes’ formula and the prior distributions q and fp:

P(y,p|X, q, fp) ∝ P(X|y,p)P(y|q)P(p|fp) (5.2)

where the prior probability of the evidence P(X) in the denominator is hidden by the

proportionality operator, and we use our independence assumption to split the joint

probability P(y,p|q, fp) in its corresponding factors P(y|q) and P(p|fp).

Now, what we really care about is the marginal probability on the class of each item i.

If we could compute it, we would form our final predictions as follows:

ŷi = argmax
`∈{±1}

{
P(yi = `|X, q, fp)

}
(5.3)



Chapter 5 Inferring the predictors’ accuracy 95

which is also known as the maximum-a-posteriori (MAP) estimator.

As will become apparent in a few lines, computing the argument of the argmax operator

in Equation 5.3 is unfeasible. Still, we can make a big step towards that goal by taking

Equation 5.2 and marginalising away the predictors’ accuracies p:

P(y|X, q, fp) =

∫
p
P(y,p|X, q, fp)dp

∝ P(y|q)
∫
p
P(X|y,p)P(p|fp)dp

(5.4)

and then we can substitute the closed-form expression for P(X|y,p) from Equation 5.1,

and recall that the predictors are independent, which yields the following:

P(y|X, q, fp) ∝ P(y|q)
∏
j∈N

∫ 1

0
p
d(Xj ,y)
j (1− pj)e(Xj ,y)P(pj |fp)dpj (5.5)

where d(Xj ,y) =
∑

xij∈Xj
I(xij = yi) is the number of labels from predictor j that

match the candidate class vector y, and e(Xj ,y) =
∑

xij∈Xj
I(xij 6= yi) is the number

of labels that contradict it.

For most prior distributions fp, we can only compute a numerical approximation of the

integral in Equation 5.5. A notable exception is the Beta distribution which, as the

conjugate prior of our Bernoulli predictors, yields a closed form solution. In the our

discussion we make this extra assumption, and state that fp = Beta(α, β) with known

parameters, or pseudo-counts, α and β. As a consequence we can rewrite Equation 5.5

as follows:

P(y|X, q, α, β) ∝ P(y|q)
∏
j∈N

B
(
d(Xj ,y) + α, e(Xj ,y) + β

)
(5.6)

where B(•, •) is the Beta function1, and we let the proportionality operator absorb the

denominator B(α, β).

Even in these favourable conditions, we cannot directly compute the marginalP(yi|X, q, fp)
we need for the MAP estimate in Equation 5.3. This is because we would have to sum

over an exponential number of possible candidate class vectors y that contain a specific

yi as follows:

P(yi = `|X, q, fp) =
∑
y:yi=`

P(y|X, q, fp) (5.7)

which rapidly becomes unfeasible as the set M grows larger than a dozen items.

Thus, we can resort to the Monte Carlo sampling framework, and approximate Equation

5.7 on a small sample of all possible candidates y. In order to build an accurate and

efficient approximation, this sample of class vectors, which we denote with the multiset

1The Beta function has the following convenient definition: B(u, v) =
∫ 1

0
xu−1(1 − x)v−1dx
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Y = {yk}, has to satisfy the following two properties. First, we need to sample the

elements of Y according to the posterior P(y|X, q, fp). With this property, we can build

the following unbiased estimator of the marginal:

P(yi = `|X, q, fp) ≈
1

|Y |

|Y |∑
k=1

I(yik = `) (5.8)

Second, we need to define an update mechanism for Y as new data becomes available.

This property is crucial in the online setting, for instance when used in conjunction with

the US policy, as we need to re-estimate the posterior after acquiring each data point

in X. Of course, the simplest approach is to extract Y anew for every Xt, but such a

method is very demanding computationally. In the next Sections 5.2.1.1 and 5.2.1.2, we

show how an appropriately-built particle filter can satisfy both properties.

5.2.1.1 Sequential Monte Carlo with a bimodal posterior

The problem of tracking the evolution of a probability distribution over time is often

addressed by means of a particle filter (Cappé et al., 2007). The core idea is to have a

set of particles, in our case the elements of Y , and let them randomly evolve over time

by mutating some of their elements. If done correctly, the particles will be able to track

the main modes of the probability distribution.

Here, we do not have a truly evolving probability distribution. Instead, the underlying

generative probabilistic model is fixed (see Figure 5.1), but our knowledge of it improves

as the dataset Xt contains more and more data points. In this sense, we can treat the

posterior distribution over the latent variables y and p as our probability distribution

that evolves in t.

This framework is called Sequential Monte Carlo (Chopin, 2002), and was first proposed

to speed up Monte Carlo probabilistic inference on large datasets. A high-level overview

of the method is the following:

1. Initialise the multiset of particles Y according to the prior;

2. Augment the current dataset Xt with the new observations;

3. Compute an importance weight wk for each particle yk ∈ Y given the new evidence;

4. Sample a new set of particles from Y with replacement according to the weights;

5. Add a local perturbation to the new particles to reduce the number of duplicates;

6. Go to 2 unless all the data has been processed already.
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where the importance weighting in Step 3, and the resampling in Step 4 allow the set of

particles to drift along with the posterior distribution of y given Xt. We give the details

of our implementation in Section 5.2.1.2.

Still, a vanilla implementation of Sequential Monte Carlo on the Dawid-Skene model of

Section 5.1 might fail spectacularly depending on the initial random choice of particles

Y . As an example, in our experiments of Figure 5.2 we get state-of-the-art performance

for most random initialisations, but around 99% error rate in a small minority of cases.

Depending on the specific parameter settings of the experiments, this minority of failures

is as large as 1.2% of the total runs. Thus, before dealing with the details of our

algorithmic solution, let us explain what is the underlying issue.

The posterior distribution in Equation 5.5 is strongly bimodal. One way of showing it

analytically, is to take the version with Beta priors in Equation 5.6 and choose α = β.

Let us also define ȳ as the opposite of a class vector y, such that ȳi = −yi for all items

i ∈M . Then, we have the property that:

P(ȳ|X, q, α, α) = P(y|X, q, α, α) (5.9)

since for any Xj we have d(Xj , ȳ) = e(Xj ,y), and the Beta function is symmetric, i.e.

B(u, v) = B(v, u) for any u, v > 0.

In this extreme case, even with a very large dataset X, the posterior has two identical

modes, one centred on the ground-truth class vector y, and the other on the opposite

vector ȳ. Thus, an optimal inference algorithm will either converge to y or ȳ with 50%

chance. More in general, when α 6= β or the prior is not Beta-distributed, we expect a

stronger mode around the ground-truth class vector y. However, there will always be

a large secondary mode around ȳ that threatens to fool our inference algorithm into a

completely wrong solution with 100% error rate.

Our contribution to the classic Sequential Monte Carlo framework is the addition of a

mirroring stage after perturbing the particles (Step 5 above). The idea is to allow a

particle yk to flip to its opposite ȳ according to the posterior probability of the two

alternatives. In this way, the set of particle cannot get stuck in the wrong mode of the

posterior, no matter the random initialisation we use or the order in which we visit the

dataset X.

Before delving into the details of this technique in the next Section 5.2.1.2, let us present

a visualisation of its advantages in Figure 5.2. There we compare the empirical perfor-

mance of a particle filter with and without the additional mirroring stage. The setting

is similar to our experiments in Chapters 3 and 4. Namely, we fix the number of items

to |M | = 1000, extract the predictors’ accuracy from a Beta(4, 3) distribution and col-

lect their labels according to the US policy. In order to compute stable estimates, we

repeat the experiments multiple times until we observe at least 250 classification errors
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for each value of R ∈ [1, 40]. Note how the classification accuracy of the regular particle

filter becomes more and more erratic as R increases. At the same time, for some lucky

initialisation choices, the performance of the two algorithm matches. By introducing the

mirroring stage, we can make sure that the predictive performance does not depend on

the random initialisation of the particles.
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Figure 5.2: Comparison between the empirical classification error of Mirror Gibbs
and a regular particle filter (PF) under the US policy.

5.2.1.2 Mirror Gibbs particle filter

In this section we go through the details of our implementation of Sequential Monte

Carlo with an additional mirroring stage. Throughout our presentation we refer to

the high-level stages of Sequential Monte Carlo listed in Section 5.2.1.1. For clarity,

we also split the pseudocode accordingly, with a main routine in Algorithm 5.1, and

corresponding subroutines in Algorithms 5.2 to 5.6.

First, let us discuss the initialisation procedure (Step 1). With no data observed yet,

i.e. X0 = ∅, we can extract the initial set of particles according to the prior q on the

item classes only. We do so in Algorithm 5.2, where npart is the required number of

particles, and each particle yk is represented as a column vector (thus yik is the ith

entry of particle yk).

Second, we augment the dataset Xt one label at a time (Step 2) as shown in the loop

of Algorithm 5.1 (Lines 4-14). However, recall that the particles of the current set Y

are extracted according to the old posterior P(y|Xt−1, q, fp). Thus, after augmenting

the old dataset Xt−1 with the new label xij , we need to re-weight the importance of

each particle yk in the Monte Carlo estimate of Equation 5.8 (Step 3). We do so by
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computing the following importance weight wk for each particle yk ∈ Y :

wk =
P(yk|Xt, q, fp)

P(yk|Xt−1, q, fp)

=

∫ 1
0 p

d(Xt
j ,yk)

j (1− pj)e(X
t
j ,yk)P(pj |fp)dpj∫ 1

0 p
d(Xt−1

j ,yk)

j (1− pj)e(X
t−1
j ,yk)

P(pj |fp)dpj

(5.10)

where the expression for the posterior comes from Equation 5.5, and depends only on

the output of the predictor j = a(t) available at the current time step t. If we assume a

Beta prior fp = Beta(α, β) on the predictors like in Equation 5.6, we obtain the following

simpler expression:

wk =
B
(
d(Xt

j ,yk) + α, e(Xt
j ,yk) + β

)
B
(
d(Xt−1

j ,yk) + α, e(Xt−1
j ,yk) + β

) (5.11)

which is the one that appears in Algorithm 5.3.

Third, we resample the set of particles Y (Step 4). This stage ensures that particles

with low importance weights are weeded out of our sample set. Conversely, particles

closer to the main modes of the posterior distribution have a higher chance of survival.

Since we sample with replacement, we often end up with multiple copies of particles in

this second category. Algorithm 5.4 outlines the pseudocode for this resampling stage.

Fourth, the Sequential Monte Carlo recipe requires adding some local noise to the new

set of particles (Step 5). The noise has both the effect of eliminating the duplicates, and

helping the set of particles track the evolution of the posterior distribution. We achieve

this second goal via Gibbs’ sampling: given a particle yk and an item i, we randomly

flip the entry yik according to the posterior of the two alternatives. If we denote the

modified particle with y′k, the corresponding posterior probability can be computed as

follows:

P(y′k|X, q, fp) =P(yk|X, q, fp)
P(y′ik|q)
P(yik|q)∏

j∈Nt
i

∫ 1
0 p

d(Xt
j ,y
′
k)

j (1− pj)e(X
t
j ,y
′
k)P(pj |fp)dpj∫ 1

0 p
d(Xt

j ,yk)

j (1− pj)e(X
t
j ,yk)

P(pj |fp)dpj

(5.12)

where the correction factor from the posterior of yk depends on the prior on the modified

item i, and only the output of the predictors who labelled i. We use a version of Equation

5.12 with Beta prior in Algorithm 5.5 Lines 4-7.

Standard Gibbs’ sampling (Murphy, 2012) requires repeating this procedure for every

entry i ∈M . In our experiments we found that choosing a random subset of entries I ⊂
M is not only more efficient computationally, but also yields more accurate predictions.

The latter is likely due to the random ordering, which helps the underlying Markov
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Algorithm 5.1 MirrorGibbs

Input: dataset X, availability a, policy π, # particles npart, # flips nflip, priors q, α, β
Output: predictions ŷ

1: X0 ← ∅
2: Y ← InitialiseParticles(q, npart)

3: µi ← 1
|Y |
∑|Y |

k=1 I(yki = +1) for all i ∈M
4: for t = 1 to T do
5: i← π(t)
6: j ← a(t)
7: Xt ← Xt−1 ∪ xij
8: for k = 1 to |Y | do
9: wk ← ImportanceWeight(Xt−1, xij ,yk, α, β)

10: Y ← ResampleParticles(Y, {wk})
11: Y ← RejuvenateParticles(Y,Xt, nflip, q, α, β)
12: extract an integer k ∈

[
1, |Y |

]
uniformly

13: yk ← MirrorParticle(yk, X
t, q, α, β)

14: µi ← 1
|Y |
∑|Y |

k=1 I(yki = +1) for all i ∈M
15: return ŷi = 2I(µi >

1
2)− 1, ∀i

Algorithm 5.2 InitialiseParticles

Input: prior q, number of particles npart
Output: set of particles Y

1: Y ← ∅
2: for k = 1 to npart do
3: for all i ∈M do
4: extract yik ∈ {±1} such that P(yik = +1) = q

5: Y ← Y ∪ yk
6: return Y

Algorithm 5.3 ImportanceWeight

Input: old dataset X, new label xij , particle yk, priors α and β
Output: importance weight wk

1: dj ←
∑

xhj∈Xj
I(xhj = yhk)

2: ej ←
∑

xhj∈Xj
I(xhj 6= yhk)

3: d′j ← dj + I(xij = yik)
4: e′j ← ej + I(xij 6= yik)

5: return wk =
B(d′j+α,e′j+β)

B(dj+α,ej+β)
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Algorithm 5.4 ResampleParticles

Input: old set of particles Y , corresponding weights {wk}
Output: new set of particles Y ′

1: Y ′ ← ∅
2: while |Y ′| < |Y | do
3: extract an integer k ∈

[
1, |Y |

]
according to {wk}

4: Y ′ ← Y ′ ∪ {yk}
5: return Y ′

Algorithm 5.5 RejuvenateParticles

Input: set of particles Y , dataset X, number of flips nflip, priors q, α and β
Output: rejuvenated set of particles Y

1: for k = 1 to |Y | do
2: extract uniformly I ⊆M such that |I| = nflip
3: for all i ∈ I do
4: y′k ← (y0k, . . . ,−yik, . . . , y|M |k)
5: w′k ← P(y′ik|q)

∏
j∈Ni

B
(
d(Xj ,y

′
k) + α, e(Xj ,y

′
k) + β

)
6: wk ← P(yik|q)

∏
j∈Ni

B
(
d(Xj ,yk) + α, e(Xj ,yk) + β

)
7: replace yk ← y′k with probability

w′k
w′k+wk

8: return Y

Algorithm 5.6 MirrorParticle

Input: particle y, dataset X, priors q, α and β
Output: mirrored particle y

1: w̄ ← P(−yik|q)
∏
j∈N B

(
e(Xj ,y) + α, d(Xj ,y) + β

)
2: w ← P(yik|q)

∏
j∈N B

(
d(Xj ,y) + α, e(Xj ,y) + β

)
3: replace y ← (−y0,−y1, . . . ,−y|M |) with probability w̄

w̄+w
4: return y
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chain converge to the posterior distribution faster. In Algorithm 5.5 we regulate the

cardinality of the subset I with the input variable nflip.

Finally, we add a mirroring stage at the end of the iteration (see Algorithm 5.1 Lines

12-13). In this stage we select a single particle yk from the set Y at random, and

flip the values of all its entries yik at the same time. The mirrored particle ȳk is then

accepted according to its posterior probability (see Algorithm 5.6). Note that comparing

the posteriors of ȳk and yk (Lines 1-2) is easier than the corresponding operation for a

Gibbs’ step in Equation 5.12. In fact, we do not need to count the number of correct

and incorrect labels twice, since d(Xj , ȳk) = e(Xj ,yk) and viceversa.

Our experiments show that adding this mirroring stage to a vanilla Sequential Monte

Carlo implementation solves the issues discussed in Section 5.2.1.1 with negligible com-

putational cost. Moreover, it enables us to compare any other inference algorithm with

a direct estimation of the posterior. This is crucial for our experiments in Section 5.4,

where we compare the predictive accuracy of both the state-of-the-art algorithms we

introduce in Section 2.2 and the novel Streaming Bayesian Inference for Crowdsourcing

algorithm in Section 5.2.2.

5.2.2 Streaming Bayesian Inference for Crowdsourcing

In Section 5.2.1 we showed that computing the marginal posterior distribution over the

class yi of each item i ∈M is challenging. There, we tackled the problem by Monte Carlo

sampling, and proposed an efficient way to estimate it. Still, Monte Carlo techniques,

no matter how efficient, require a large number of samples to reduce the variance in

their estimates. Our mirror particle filter method (see Section 5.2.1.2) is not different.

Thus, if we want to push the computational speed of our algorithmic solution further,

we need a different approach.

Here, we resort to approximate Bayesian inference and introduce a new algorithm, which

we call Streaming Bayesian Inference for Crowdsourcing (SBIC).2 This algorithm is

built around an analytical approximation of the posterior distribution, which allows

for a certain degree of flexibility in its implementation. Consequently, we propose two

variants of SBIC: the first, which we call Fast SBIC, prioritises computational speed,

while the second, Sorted SBIC, prioritises predictive accuracy. Before presenting the

details of these two variants in Sections 5.2.2.1 and 5.2.2.2, let us introduce the main

ideas behind the SBIC algorithm.

According to mean-field variational principles, the posterior distribution in Equation 5.2

can be approximated as the product of some independent factors µ and ν (Liu et al.,

2While the SBIC algorithm was developed with crowdsourcing in mind, it applies to the general
Dawid-Skene model this chapter is based on (see Section 5.1).
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2012):

P(y,p|X, q, fp) ≈
∏
i∈M

µi(yi)
∏
j∈N

νj(pj) (5.13)

where each factor µi corresponds to an item i ∈ M , and each factor νj to a predictor

j ∈ N . The advantage of this factorisation of the posterior is that computing the

marginal probability of yi (see Equation 5.7) becomes trivial since:

P(yi = `|X, q, fp) ≈ µti(`) (5.14)

However, we still need to define a procedure to compute the value of the factors µ and

ν in Equation 5.13. This is crucial since we want our approximation to be as close as

possible to the true value of P(y,p|X, q, fp). The classic approach requires the minimi-

sation of the Kullback-Leibler divergence (KL) between the two sides of Equation 5.13,

thus turning the inference problem into the following optimisation problem (Murphy,

2012):

µ,ν = argmin
µ′,ν′

{
KL

( ∏
i∈M

µ′i(yi)
∏
j∈N

ν ′j(pj)
∣∣∣∣∣∣P(y,p|X, q, fp)

)}
(5.15)

Previous work on the Dawid-Skene model (Liu et al., 2012) uses block coordinate descent

to solve the optimisation problem in Equation 5.15. That is, from an initial guess on

the item factors, we can iteratively refine the value of µ and ν until convergence. Under

the additional assumption that fp = Beta(α, β), we can do so by computing the optimal

distribution of the predictors given the item factors µ:

νj(pj) ∼ Beta
( ∑
i∈Mj

µi(xij) + α,
∑
i∈Mj

µi(−xij) + β
)

(5.16)

which is still a Beta distribution thanks to the properties of the KL divergence. Similarly,

given the predictor factors ν, we can optimise over the items as follows:

µi(yi) ∝
∏
j∈Ni

exp
(
E
(

log(pj)
))I(xij=yi)

exp
(
E
(

log(1− pj)
))I(xij 6=yi)

≈
∏
j∈Ni

E(pj)
I(xij=yi)

(
1−E(pj)

)I(xij 6=yi) (5.17)

where the last expression is the first-order Taylor approximation, which yields less ex-

treme values in the interval (0, 1). Note that, while Equations 5.16 and 5.17 are the

solutions of locally-convex optimisation problems, the global objective from Equation

5.15 is not convex in general. Usually this is not a problem, and the corresponding ap-

proximate mean-field algorithm (AMF) reaches the global optimum reliably (Liu et al.,

2012). However, in our experiments of Section 5.4 we show that it can exhibit a more

unstable behaviour when used in an online setting.

Our work diverges from this iterative approach in that we use a streaming method to
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optimise the factors µ and ν. That is, instead of processing the whole dataset multiple

times to compute the estimates in Equations 5.16 and 5.17, we make a single optimisation

step for each data point in X. On the one hand, this yields quicker updates to µ and ν,

which allows us to run SBIC more efficiently. On the other hand, this yields a tractable

random walk over the value of the factors µ and ν, which allows us to derive strong

theoretical guarantees on the predictive accuracy of SBIC (see Section 5.3.4).

More in detail, the core mechanism of the SBIC algorithm is the following. First, we

assume again that the prior on each predictor’s accuracy is fp = Beta(α, β). Second, we

initialise the item factors µ0 to their respective prior q, that is:

µ0
i (+1) = q and µ0

i (+1) = 1− q (5.18)

Then, for each timestep t, we update the factor νtj that corresponds to the currently

available predictor j = a(t). As per the approximate mean-field updates in Equation

5.16, the new factor is still Beta-distributed. Furthermore, we are only interested in its

expectation p̄tj = E{νtj}, as this is the value that informs the first-order approximation

in Equation 5.17. As a consequence, we have:

p̄tj =

∑
i∈Mt−1

j
µt−1
i (xij) + α

|M t−1
j |+ α+ β

(5.19)

where M t−1
j is the set of items labelled by predictor j up to time t.

Next, we update the factor µti that corresponds to the item i = π(t) labelled by the

current predictor j = a(t). Recall that Equation 5.17 is a product of Ni terms, one per

each label xij that is cast on item i. Thus, we can easily update µti iteratively in the

following way:

µti(yi) ∝

µt−1
i (yi)p̄

t
j if xij = yi

µt−1
i (yi)(1− p̄tj) if xij 6= yi

(5.20)

At the end of the data collection process, we can inspect the final value of the factors

µT , and use the MAP estimates as our predictions on the item classes as follows:

ŷi = argmax
`∈{±1}

{
µTi (`)

}
(5.21)

We summarise the high-level structure of the SBIC algorithm in Figure 5.3. There,

we unroll the graphical model representation of Figure 5.1, and show the dependency

of each factor node on the corresponding data. Specifically, note how we update the

vector of item factors µt given the current predictor factor νtj and data point xtij . Simi-

larly, in order to compute each new predictor factor νtj , we only need the corresponding

predictor’s past output Xt−1
j and the previous item factors µt−1.
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Figure 5.3: Unrolled graphical representation of the SBIC algorithm. The prior nodes
fp and q are omitted for simplicity.

All things considered, the SBIC algorithm falls under the umbrella of the Streaming

Variational Bayes framework (Broderick et al., 2013). This is because, at each timestep

t we trust our current approximations µt and νt to be close to the exact posterior

P(y,p|Xt, q, fp), and we use their values to inform the next local updates. However, even

though the general structure of SBIC matches the framework proposed in (Broderick

et al., 2013), the specific definition of our updates matters. In fact, Equations 5.19 and

5.20 allow us to derive strong theoretical guarantees for the SBIC algorithm in Section

5.3, whereas the only current results for the Streaming Variational Bayes framework in

(Manoel et al., 2017) apply to a different setting.

Similarly, the SBIC algorithm can be interpreted as a form of constrained variational

inference with implicit constraints. That is, instead of having an explicit alteration of

the KL objective in Equation 5.15, the optimisation process is implicitly constrained by

the local updates defined by Equations 5.19 and 5.20. Whether it is possible to express

these implicit constraints in explicit form or not is an open question.

Finally, the sequential nature of the SBIC algorithm means that its output is deeply

influenced by the order in which we process the labels in the dataset X. At the same

time, the structure of the algorithm does not mandate for any specific ordering of the

dataset X. Thus, by altering this ordering, we have the opportunity of optimising

SBIC for different objectives. In this light, we present a variant of SBIC that prioritises

computational speed in Section 5.2.2.1, and another variant that prioritises predictive

accuracy in Section 5.2.2.2.

5.2.2.1 Fast SBIC

We can optimise SBIC for computational speed by keeping the natural ordering of the

dataset X, represented by the predictor availability vector a and the policy π. The

resulting algorithm, which we call Fast SBIC, makes use of the following computational

tricks.

First, we express the value of each item factor µti in terms of its log-odds zti . Accordingly,
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Algorithm 5.7 FastSBIC

Input: dataset X, availability a, policy π, prior θ
Output: predictions ŷ

1: z0
i = log

(
q/(1− q)

)
, ∀i ∈M

2: for t = 1 to T do
3: i← π(t)
4: j ← a(t)

5: p̄tj ←
∑

i∈Mt−1
j

sig(xijz
t−1
i )+α

|Mt−1
j |+α+β

6: zti ← zt−1
i + xij log

(
p̄tj/(1− p̄tj)

)
7: zti′ ← zt−1

i′ , ∀i′ 6= i

8: return ŷi = sign(zTi ), ∀i

Algorithm 5.8 SortedSBIC

Input: dataset X, availability a, policy π, prior θ
Output: final predictions ŷT

1: ski = log(q/(1− q)), ∀i ∈M, ∀k ∈M
2: for t = 1 to T do
3: i← π(t)
4: j ← a(t)
5: for all k ∈M : k 6= i do

6: p̄kj ←
∑

h∈Mt−1
j
\k sig(xhjs

k
h)+α

|Mt−1
j \k|+α+β

7: ski ← ski + xij log(p̄kj /(1− p̄kj ))
8: zti = log(q/(1− q)), ∀i ∈M
9: for u = 1 to t do

10: i← π(u)
11: j ← a(u)

12: p̄ij ←
∑

h∈Mt−1
j
\i sig(xhjs

i
h)+α

|Mt−1
j \i|+α+β

13: zti ← zti + xij log(p̄ij/(1− p̄ij))
14: return ŷi = sign(zTi ), ∀i ∈M
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the update in Equation 5.20 and the initialisation in Equation 5.18 become respectively:

zti = log

(
µti(+1)

µti(−1)

)
= zt−1

i + xij log

(
p̄tj

1− p̄tj

)
(5.22)

and

z0
i = log

(
q

1− q

)
(5.23)

which has both the advantage of converting the chain of products into a summation,

and removing the need for normalisation.

Second, we can use the value of the log-odds zt−1 at each timestep t to compute the

expected predictor’s accuracy in Equation 5.19 as follows:

p̄tj =

∑
i∈Mt−1

j
sig(xijz

t−1
i ) + α

|M t−1
j |+ α+ β

(5.24)

Thanks to the additive nature of Equation 5.22, we can quickly update the log-odds zt

as we observe new labels. More in detail, we report the full pseudocode of Fast SBIC

in Algorithm 5.7. Initially, we set z0 to its prior value in Line 1. Then, we estimate the

expected accuracy of the available predictor j = a(t) in Line 5, and add its contribution

to the logg-odds on item i in Line 6. At the end of the main iteration, we compute the

final predictions by selecting the MAP estimates ŷ in Line 8.

This algorithm runs in O(TL) time, where the factor T comes from the main iteration in

Lines 2-7, and the maximum number of labels per predictor L = maxj
(
|Mj |

)
comes from

computing each predictor’s accuracy in Line 5. As a result, Fast SBIC is particularly

effective in an online setting, e.g. when used in conjunction with the adaptive policies

US and IG, since it takes only O(L) operations to update its estimates after processing

every new label xij . In Section 5.4.4 we show that its empirical computational speed

is on par with the quick majority voting rule, while delivering more than an order of

magnitude higher predictive accuracy.

5.2.2.2 Sorted SBIC

When more computational resources are available, we have the opportunity of trading

off some of the computational speed of Fast SBIC in exchange for better predictive

accuracy. As we mentioned at the end of Section 5.2.2, we can do so by reordering the

labels from the dataset X. We call the resulting algorithm Sorted SBIC, and we list its

pseudocode in Algorithm 5.8.

The intuition behind this algorithm is the following. When running Fast SBIC, the

factors µt and νt are very close to their prior values in the first few rounds. As time

passes, two things change. First, we gather more information in the form of additional
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data points. Second, we run more update steps on the factors µt and νt, which pushes

them closer and closer to their respective ground-truth values. As a result, we get more

accurate predictions on a specific item i when the corresponding subset of labels Xi

is processed towards the end (t ≈ T ) rather than the beginning (t ≈ 0) of the main

iteration.

We can exploit this property by keeping a separate view of the log-odds sk for each

item k ∈ M (see Line 1). Then, every time we observe a new label xij we update the

views for all items k except the one we observed the label on (see Lines 5-7). We skip

it because we want to process the corresponding label xij at the very end of the main

iteration, since doing so improves the classification accuracy of the algorithm. Note that

in Line 6 we compute a different estimate p̄kj for each item k 6= i. This is because we are

implicitly running |M | copies of Fast SBIC, where each copy (indexed by k ∈ M) can

only see its correponding view of the item factors stored in sk.

Finally, we need to process all the labels we skipped. If we are running Sorted SBIC

offline, we only need to do so once at the end of the collection process. Conversely,

in an online setting we need to repeat the same procedure at each time step t. Lines

8-13 contain the corresponding pseudocode. Notice how we compute the estimates p̄ij
by looking at all the items M t

j labelled by predictor j except for item i itself. This is

because we skipped the corresponding label xij in the past, and we are processing it

right now.

The implementation of Sorted SBIC presented in Algorithm 5.8 runs in O(|M |TL) time,

which is a factor |M | slower than Fast SBIC since we are implicitly running |M | copies

of it in parallel (see Lines 5-7). This means that Sorted SBIC is better suited for an

offline setting where computational requirements are usually less of a concern. Still, the

increase in predictive performance is usually worth the extra computational cost, as we

illustrate in our experiments in Section 5.4.2. There, we show that Sorted SBIC achieves

state-of-the-art accuracy, on par with Monte Carlo sampling methods.

5.3 Theoretical results

Let us move to our theoretical contribution now. As per Chapter 3 and 4, we are

interested in bounding the probability of a classification error given the size of the

dataset X, a collection policy π, and a choice of priors q, fp. However, in contrast with

our discussion therein, we have an extra dimension of complexity here: each inference

algorithm exhibits a different predictive accuracy. As a result, we need to derive a

separate set of bounds not only for each policy π, but also for each different algorithm.

Fortunately, all the results we present in this section are built on top of our contribution

in Chapter 4. This means that we can reuse our analysis of classification behaviour
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under the different policies, and the corresponding bounds. The only caveat is that this

time the distribution of the estimated predictors’ accuracies p̂ depends on the inference

algorithm we use. As a consequence, our main theoretical effort is directed towards

computing such distribution fp̂.

This fact is reflected in the structure of our material. Except for a brief discussion

on the IG policy in Section 5.3.1, all of our results are rather organised by algorithm.

Specifically, in Section 5.3.2 we derive a general lower bound on inference in the Dawid-

Skene model. This bound is asymptotically tighter than the state-of-the-art result in

(Gao et al., 2016) and, for the first time, it covers the US policies as well. Next, in Section

5.3.3 we adapt all the bounds of Chapter 4 to the majority voting algorithm. In doing

so, we derive an upper bound on the UNI policy that is tighter than the corresponding

result for the state-of-the-art KOS algorithm in (Karger et al., 2014). Finally, in Section

5.3.4 we bound the performance of Fast SBIC and Sorted SBIC from both sides.

5.3.1 A note on the IG policy

Recall that in Sections 3.3.3 and 4.3.3 we prove that the IG policy is equivalent to the

US policy. While this is true under the variants of the Dawid-Skene models we analyse

therein, the properties of the fully agnostic model of Section 5.1 yield a more complex

picture. More specifically, our equivalence result between the US and IG policies remains

valid only for a subset of inference algorithms.

To understand this, let us consider the objective of the IG policy: maximising the

expected information gain at each timestep t. In order to compute this quantity we

need two ingredients. First, the probability of observing each value of the next label

xij ∈ {±1}. Second, a measure of the information gain after observing it, i.e. the

Kullback-Leibler divergence of the posterior on y. With these two, we can write the

following objective function:

Exij

(
KL

(
Xt−1 ∪ {xij}

∣∣∣∣Xt−1
))

(5.25)

where we omit the priors q and fp for simplicity.

In Chapters 3 and 4 we write a closed-form expression of Equation 5.25 and show that it

has the same monotonicity properties of the uncertainty over y. This is enough to prove

that the US and IG policies are equivalent (see Theorems 3.13 and 4.10). However, in

order to replicate this method we need the following conditions:

1. Access to the posterior over the ground-truth class yi;

2. Access to the posterior over the predictor’s accuracy pj ;

3. Independence of the latter from the value of the next label xij .
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While the first two conditions are necessary for computing the probability of observing

a specific value of xij , the third ensures that our estimate p̂j of the predictor’s accuracy

does not change after the observation. The latter is crucial to compute the information

gain of xij in closed form.

For some algorithms, all these three conditions are met. The list includes the simple

majority voting algorithm and our streaming Bayesian method we introduce in Section

5.2.2. Thus, for these two algorithms we can cover the behaviour of the US and IG

policies at the same time. In this light, we present the corresponding results in Section

5.3.3 and 5.3.4.

For other algorithms, this is not the case. Prominent examples are the KOS algorithm

in (Karger et al., 2014), Monte Carlo sampling methods (see Section 5.2.1), the approx-

imate mean-field inference (AMF) algorithm in Liu et al. (2012) and the expectation-

maximisation (EM) algorithm (Dawid and Skene, 1979). In this respect, the first does

not even have a well-defined posterior over the latent variables p and y (we explain how

to work around this issue in Section 5.4.1). Conversely, the other three update their full

posterior over p and y after observing a new label xij . As a consequence, the impact of

each label on the information gain has a more unpredictable nature, which makes the

theoretical analysis of the IG policy impractical.

Furthermore, running the IG policy with this last class of algorithms also poses a com-

putational challenge. Namely, in order to compute the expected information gain in

Equation 5.25, we need to first augment the current dataset Xt−1 with the new label

xij , and then update the posterior over p and y. Without a closed-form solution, this

operation must be repeated for all possible future labels xij . Clearly, such a procedure

does not scale well with the number of items, since it requires 2|M | distinct inferences

at each timestep t.

Finally, there is no noticeable improvement in empirical accuracy of this class of algo-

rithms under the IG policy, as opposed as deploying the simpler US policy. We show an

example of this in Figure 5.4, where we compare the performance of the AMF algorithm

under the US and IG policies (similar results can be obtained for the EM algorithm).

For consistency reasons, we use the same experimental setting as Chapters 3 and 4,

where we extract the predictors’ accuracy from a Beta(4, 3) and each predictor labels

Lj = 10 items. However, we fix the number of items to only |M | = 100 instead of

|M | = 1000, since running the IG policy would be computationally prohibitive other-

wise. For these reasons, we omit the IG policy from our theoretical discussion in the

next Section 5.3.2, where we derive a general lower bound that applies to many of the

aforementioned algorithms.
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Figure 5.4: Comparison between the empirical classification error of the AMF algo-
rithm under the US and IG policies.

5.3.2 General lower bounds on probabilistic inference

For the agnostic Dawid-Skene model of Section 5.1, the predictive accuracy is strongly

linked to the inference algorithm we use. However, in most settings the current state-

of-the-art algorithms exhibit similar empirical performance, as we show in Section 5.4.

From a high-level perspective, this phenomenon suggests that deriving a general bound

on the predictive accuracy of these algorithm should be possible.

At the same time, these kind of results are rare in the existing literature, with two

notable exceptions. Karger et al. (2014) present a general bound, which proves that the

probability of an error decays exponentially in the size of the dataset. Still, this bound

is asymptotical and does not give any indication about the rate of exponential decay.

Conversely, Gao et al. (2016) propose a method to compute such a rate of decay, which

works under the assumption that our estimates of the predictors’ accuracies are close

to the ground-truth. Unfortunately, this assumption often yields a gross overestimation

of the prediction accuracies, as we show in Remark 5.2. Overall, the main drawback of

these two results is that they only cover the accuracy of inference under the UNI policy.

In this section we fill this gap in the literature and present our own general results for

both the UNI and US policies. These come in the form of lower bounds on the accuracy

of inference under the Dawid-Skene model of Section 5.1. Notably, they depend both

on the size of the dataset and the number of labels we acquire from each predictor.

Consequently, thay take into account the uncertainty on each predictor’s accuracy, thus

yielding useful estimates on the rate of decay of the prediction error.

The main argument we use is information-theoretic. More specifically, we define a

hypothetical inference algorithm that has access to additional information. As a result,



112 Chapter 5 Inferring the predictors’ accuracy

its predictions are more accurate than those of any algorithm that works with the original

information only. Furthermore, we define this hypothetical algorithm in such a way that

it is possible to bound its predictive accuracy. Crucially, the lower bounds we obtain

with this method are also valid for all the other inference algorithms.

Before introducing our hypothetical inference algorithm, let us revise the expression

for the marginal probability on the item classes in Equation 5.7. The reason we are

interested in it is because its value informs our final predictions ŷ. Specifically, if we

can compute the exact value of the marginal on yi, then the corresponding maximum

a posterior (MAP) estimate ŷi is optimal. Here, we want to rewrite the closed-form

expression for the marginal in Equation 5.7 as follows:

P(yi = `|X, q, fp) =

∫
p
P(yi = `,p|X, q, fp)dp

=

∫
p
P(yi = `|Xi, q,p)P(p|X−i, q, fp)dp

(5.26)

While the first equality is obviously true, the second requires more consideration. In

particular, the second probability is conditional on the subset X−i ⊆ X of all the labels

cast on items different from i. Instead, a straightforward application of the chain rule

would require conditioning on the full dataset X. We can prove that Equation 5.26 is

equal to the marginal in Equation 5.7 by expanding this second term:

P(p|X−i, q, fp) =
∑
y−i

P(y−i,p|X−i, q, fp)

∝
∑
y−i

P(X−i|y−i,p)P(y−i|q)P(p|fp)

∝
∑
y−i

P(y−i|q)
∏
j∈N

p
d(Xj ,y−i)
j (1− pj)e(Xj ,y−i)P(pj |fp)

(5.27)

where y−i is a vector assigning a class to each item i′ 6= i, and the functions d(Xj ,y−i)

and e(Xj ,y−i) count the number of respectively correct and incorrect labels provided

by predictor j. Now, if we substitute Equation 5.27 into Equation 5.26 we get:

P(yi = `|X, q, fp) ∝
∑
y−i

P(y−i|q)
∫
p
P(yi = `|Xi, q,p)( ∏

j∈N
p
d(Xj ,y−i)
j (1− pj)e(Xj ,y−i)P(pj |fp)

)
dp

∝
∑
y−i

P(y|q)
∏
j∈N

∫ 1

0
p
d(Xj ,y)
j (1− pj)e(Xj ,y)P(pj |fp)dpj

(5.28)

which is equal to Equation 5.7 once we consider the expression for the posterior on y in

Equation 5.5.

Understanding Equation 5.27 is the key here, because it reveals the underlying structure
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of the marginal on yi. That is, we can first compute the posterior on the latent variables p

without considering the data on item i, and then use this posterior to form our prediction

on yi. In this light, the accuracy of our prediction yi depends on how informative the

posterior on p is.

In order to derive our bound, we need to build a better inference mechanism. Since

Equation 5.27 already represents the exact marginal over yi, our only option is to intro-

duce more information in the system. We do so by assuming that we have access to the

ground-truth classes y−i of all the other items i′ 6= i. In this setting, we can compute

the marginal over yi as follows:

P(yi = `|X, q, fp,y−i) =

∫
p
P(yi = `|Xi, q,p)P(p|X−i, fp,y−i)dp (5.29)

where the posterior over p is now simpler than the one in Equation 5.27:

P(p|X−i, fp,y−i) ∝ P(X−i|y−i,p)P(p|fp)
=
∏
j∈N

p
d(Xj ,y−i)
j (1− pj)e(Xj ,y−i)P(pj |fp) (5.30)

Together, Equations 5.29 and 5.30 yield the following expression for the marginal on yi:

P(yi = `|X, q, fp,y−i) ∝ P(yi|q)
∏
j∈N

∫ 1

0
p
d(Xj ,y)
j (1− pj)e(Xj ,y)P(pj |fp)dpj (5.31)

which appears very similar to the one in Equation 5.28, except for the missing summation

over y−i. Most importantly, Equation 5.31 can be rewritten in a more familiar form by

reintroducing the concept of estimates of the predictor’s accuracy p̂:

P(yi = `|X, q, fp,y−i) ∝ P(yi|q)
∏
j∈Ni

p̂
I(xij=yi)
j (1− p̂j)I(xij 6=yi) (5.32)

where each estimate p̂j is the probability of observing a correct label from predictor j,

given its previous answers on the items i′ 6= i:

p̂j =

∫ 1
0 p

d(Xj ,y−i)+1
j (1− pj)e(Xj ,y−i)P(pj |fp)dpj∫ 1

0 p
d(Xj ,y−i)
j (1− pj)e(Xj ,y−i)P(pj |fp)dpj

(5.33)

Thanks to this, we can finally describe how our hypothetical inference algorithm works.

Formally, for each item i ∈M the algorithm has access to the ground-truth vector y−i.

Thus, it can compute the marginal on yi according to Equations 5.32 and 5.33. Moreover,

it can compute a set of hypothetical prediction ŷH by taking the MAP estimates of the

marginal:

ŷHi = argmax
`∈{±1}

{
P(yi = `|X, q, fp,y−i)

}
(5.34)
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By construction, this set of predictions is more accurate than the predictions any other

inference algorithm can produce without the knowledge of y−i.

With this in mind, we can finally prove the result in the following theorem:

Theorem 5.1. For any inference algorithm on the agnostic one-coin Dawid-Skene

model, the lower bounds in Corollaries 4.4 and 4.9 hold, with the following distribu-

tion of estimates of the predictor’s accuracy:

fp̂(p) =
1

|T |
∑
j∈N

Lj

Lj−1∑
d=0

P(d|Lj − 1, fp)δ
(
p− p̂j(d, Lj − 1, fp)

)
(5.35)

where δ(•) is Dirac’s delta, p̂j is computed as in Equation 5.33 with d correct answers

in the past and e = Lj − d − 1 incorrect ones, and the probability of d successes out of

L′ trials is:

P(d|L′, fp) =

(
L′

d

)∫ 1

0
pdj (1− pj)L

′−dP(pj |fp)dpj (5.36)

Proof. Let us focus on the predictions of the hypothetical inference algorithm in Equa-

tion 5.34. These are the MAP estimates given the marginal posterior on each item i.

More in detail, the corresponding marginal in Equation 5.32 fits the framework we study

in Chapter 4: that is, the posterior on yi is computed independently given an estimate

of the predictor’s accuracy p̂, the label cast on item i, and the prior on the item classes

q.

The only difference is in how the estimates p̂ are computed. In Chapter 4 we have an

extra set of items G with known ground-truth classes g. Here, we have access to the

ground-truth classes y−i of the other items i′ 6= i instead. Similarly, in Chapter 4 we

have an additional set of labels O the predictors cast on G, while here we have access

to the set X−i on the items M−i.

These differences are just a matter of notation though. In fact, the bounds in Corollaries

4.4 and 4.9 hold for any vector of unbiased estimates p̂, which is still the case here (see

Equation 5.33). Moreover, the results in these two theorems depend on the distribution

fp̂ of the predictors’ estimates, rather than the estimates themselves. Luckily, we can

compute such a distribution in the following way.

First, recall that each estimate p̂j in Equation 5.33 depends on three quantities: the

number of successes on the other items d = d(Xj ,y−i), the number of failures e =

e(Xj ,y−i), and the prior pj ∼ fp. Note that the number of failures can be computed

as e = Lj − d− 1, where Lj = |Xj | is the total number of labels provided by predictor

j, and we ignore the label they cast on item i. Then, the probability of observing d

successes out of Lj − 1 trials is shown in Equation 5.36.

Second, for each d we need to place a spike in the (discrete) probability distribution fp̂

(see Equation 5.35). The spikes are Dirac’s deltas centred on the corresponding value of
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the predictor’s estimate p̂j . Moreover, we weigh the contribution of each predictor by

the number of labels Lj it provides, and normalise by the total number of labels T , so

that the integral of the distribution sums up to one.

As we discuss throughout the present section, the predictive accuracy of the hypothetical

inference algorithm in Equation 5.34 is provably superior to that of any other inference

algorithm. Thus, the lower bounds in Corollaries 4.4 and 4.9 with the distribution fp̂

in Equation 5.35 are also valid for any inference algorithm on the agnostic Dawid-Skene

model.

Theorem 5.1 shows the link between the amount of data we have on each predictor

and the resulting classification accuracy. In fact, the more data we have, the better

we can estimate each predictor’s accuracy. In turn, this improves the accuracy of our

predictions ŷ. We give a visual explanation on why this is the case in Figure 5.5: note

how for a larger value of Lj the distribution of estimates fp̂ matches the underlying

distribution fp more closely. In the limit for Lj →∞, the two distribution overlap and

the lower bounds in Corollaries 4.4 and 4.9 reduce to their corresponding versions with

known predictors’ accuracies p (see Corollaries 3.7 and 3.12).
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(a) Lj = 2 labels per predictor.
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(b) Lj = 10 labels per predictor.

Figure 5.5: Comparison between the posterior distribution fp̂ on the predictor’s ac-
curacy in Theorem 5.1, and an example of prior distribution fp = Beta(4, 3).

The latter case is the one explored in (Gao et al., 2016) under the UNI policy, where

it is shown that most state-of-the-art algorithms do reach this limit regime eventually.

However, we argue that ignoring the uncertainty in the estimates p̂ when Lj is small

can lead to serious overestimation of the predictive accuracy:

Remark 5.2. Theorem 5.1 yields a larger asymptotical term for the UNI policy than the

corresponding result in (Gao et al., 2016):

P

(
ŷi 6= yi|p̂→ p, q =

1

2

)
≤ exp

(
−
(
1 + o(1)

) ∑
j∈Ni

log
(
2
√
pj(1− pj)

))
(5.37)
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Proof. Before dealing with the details of our proof, let us point out two things. First, the

result in Equation 5.37 is an upper bound only, as no corresponding lower bound is given

in (Gao et al., 2016). Second, the result in Equation 5.37 is based on the assumption

that p̂ → p, where the mismatch error is absorbed into the o(1) term. Here, we are

interested in the setting where such an assumption does not hold, and the upper bound

in Equation 5.37 becomes invalid.

Referring back to Corollary 4.4, we can see that the crux of our argument lies in the

expected value of the square root, as this is the term that dominates asymptotically.

More formally, we can restate our claim in the following form:

Ep̂j∼fp̂
(√

p̂j(1− p̂j)
)
≥ Epj∼fp

(√
pj(1− pj)

)
(5.38)

where the left-hand side comes from our bounds in Corollary 4.4, and the right-hand

side is the same term under the assumption that p̂→ p like in Equation 5.37.

Intuitively, the inequality in Equation 5.38 is always satisfied since
√
p(1− p) is a con-

cave function, and fp̂ is an approximation of fp that tends to put more mass close to

the prior expected value. However, this fact can only be proven numerically. A notable

exception is when Lj = 1, and fp̂(p) = δ
(
p − p̄

)
as per Theorem 5.1. In this case, all

predictors’ estimates p̂ are equal to the prior expected value p̄ = Epj∼fp(pj), and the

following inequality holds because of concavity:√
p̄
(
1− p̄

)
≥ Epj∼fp

(√
pj(1− pj)

)
(5.39)

We show in Section 5.4 how the lower bound in Theorem 5.1 compares to the empirical

performance of the state-of-the-art algorithms. Moreover, we prove in Section 5.3.4 that

the Sorted SBIC algorithm matches this bound asymptotically.

5.3.3 Upper and lower bounds on majority voting

If we want bounds that are even closer to the actual predictive performance, we need to

abandon generality and focus on one single inference algorithm at a time. In this section,

we focus on the accuracy of majority voting under both the UNI and US policies. Despite

the simplicity of this algorithm, the bounds we derive turn out to be quite informative.

As an example, the upper bound on the UNI policy is tighter than the corresponding

result for the state-of-the-art KOS algorithm (Karger et al., 2014) in most settings. In

this light, the majority voting results we present here constitute a useful baseline for

any future theoretical work.

Let us begin with the UNI policy. In order to bound the accuracy of majority voting in



Chapter 5 Inferring the predictors’ accuracy 117

this context, we go back to our result in Corollary 4.4, which depends on the distribution

of the estimates p. Here, the domain of such a distribution reduces to a single value

p̄j = Epj∼fp(pj), thus yielding the following corollary:

Corollary 5.3. Given a population of predictors with unknown accuracy pj ∼ fp, a

prior on the positive class q ≡ P(yi = +1), and R predictors per item, the probability

of a classification error by the majority voting algorithm under the UNI policy is upper

bounded by:

P(ŷi 6= yi|fp, q) ≤ exp

(
1

2
log
(
q(1− q)

)
+
R

2
log
(
4p̄j(1− p̄j)

))
(5.40)

and lower bounded by:

P(ŷi 6= yi|fp, q) ≥ exp

(
1

2
log
(
q(1− q)

)
+
R

2
log
(
4p̄j(1− p̄j)

)
−
√
R|w̄j | − 0.32

)
(5.41)

for all i ∈M , where p̄j = Epj∼fp(pj) and w̄j = log
(
p̄j/(1− p̄j)

)
.

Proof. Take Equations 4.23 and 4.24 in Corollary 4.4, and substitute p̂j = p̄j for all

j ∈ N . Since all the estimates p̂ are identical, the expectation over fp̂ disappears.

Finally, the constant term in front of the lower bound can be propagated inside the

exponential by taking into account that:

log
(
1− 2 exp(−2)

)
≈ −0.3156297512 (5.42)

which concludes the proof.

From a purely theoretical perspective, the results in Corollary 5.3 have an intrinsic

weakness. That is, they take into account only the average accuracy p̄j of the predictors.

For instance, if we compare the lower bound in Equation 5.41 with the general case in

Theorem 5.1, we notice that they are equivalent only when each predictor provides us

with only one label, i.e. Lj = 1. For any other case, we expect a more powerful inference

algorithm to achieve better accuracy than majority voting.

At the same time, the bounds in Corollary 5.3 do give us a general indication on how

well any other inference algorithm can perform, albeit in a very conservative way. In

this sense, they can be tighter than some other celebrated bounds on state-of-the-art

algorithms. A prominent example is the following:

Remark 5.4. The upper bound in Equation 5.40 of Theorem 5.3 is tighter than the

following upper bound over the KOS algorithm proposed in (Karger et al., 2014):

P

(
ŷi 6= yi|fp, q =

1

2

)
≤ 2 exp

(
− R

32
Epj∼fp

(
(2pj − 1)2

))
(5.43)
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for any distribution which satisfy the following property:

Epj∼fp
(

(2pj − 1)2
)
< −16 log

(
4p̄j(1− p̄j)

)
(5.44)

Proof. If we inspect the asymptotic term in Equations 5.40 and 5.43, the former yields

a quicker exponential decay than the latter when the inequality in Equation 5.44 is

satisfied.

With the risk of repeating ourselves, we want to stress the following idea. Remark

5.4 does not imply that majority voting performs better than the KOS algorithm. In

practice, the opposite is often true, even for instances of fp that do not satisfy Equation

5.44 (see Section 5.4). Instead, Remark 5.4 informs us that, just by analysing the

behaviour of majority voting, we get a theoretical result which is stronger than the

corresponding analysis for the KOS algorithm.

Let us now bound the accuracy of majority voting under the US policy. As for Corollary

5.3, we derive the following bounds as an extension of our results from Chapter 4:

Corollary 5.5. Given a population of predictors with unknown accuracy pj ∼ fp, prior

on the positive class q ≡ P(yi = +1), a large number of items |M | → ∞, and an average

of R predictors per item, the probability of a classification error by the majority voting

algorithm under the US and IG policies is upper bounded by:

P(ŷ 6= y|fp, q) ≤ exp
(
− (R− 1)

(
(2p̄j − 1)w̄j

)
− (2q − 1)wq

)
(5.45)

and lower bounded by:

P(ŷ 6= y|fp, q) ≥ exp
(
−R

(
(2p̄j − 1)w̄j

)
− (2q − 1)wq − 1.25− |w̄j |

)
(5.46)

for all i ∈M , where p̄j = Epj∼fp(pj), w̄j = log
(
p̄j/(1− p̄j)

)
and wq = log

(
q(1− q)

)
.

Proof. Take the upper and lower bounds in Corollaries 4.8 and 4.9 respectively. Sub-

stitute p̂j = p̄j and ŵj = w̄j for all predictors j ∈ N . Since these are identical for all

predictors, the expectation operator disappears thus concluding our proof.

We present a qualitative comparison between the theoretical bounds in Corollaries 5.3,

5.5 and the empirical performance of majority voting in Figure 5.6. The experimental

setting is the same as the one we study in Chapters 3 and 4. Namely, we fix the number

of items to |M | = 1000, the distribution of the predictors’ accuracy to pj ∼ Beta(4, 3),

and let each predictor label Lj = 10 items. We repeat each experiments 1000 times

under both the UNI and US/IG policies. Note how the upper bounds in Corollaries

5.3 and 5.5 are a good representation of the empirical performance of MAJ. Also, the

upper bound for KOS algorithm in (Karger et al., 2014) is less tight in this setting, as

we discuss in Remark 5.4.
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Figure 5.6: Comparison between the empirical performance of the majority voting
(MAJ) algorithm, the existing result in (Karger et al., 2014), and our bounds in Corol-
laries 5.3 and 5.5. Dashed lines are the upper bounds, dotted lines are the lower bounds.

5.3.4 Upper and lower bounds on SBIC

We conclude our brief tour of algorithm-dependent bounds with a theoretical analysis of

the SBIC algorithm. Before dealing with the details of our contribution, let us preface

them with quick note on the research process that led to them. Originally, the SBIC

algorithm we present in Section 5.2.2 was meant purely as a theoretical device. In fact,

the goal was to design an inference method whose properties would allow for strong

guarantees on its predictive accuracy. In doing so, we ended up with an algorithm that

has good empirical performance too (see our experiments in Section 5.4 for details).

Nonetheless, we still managed to fulfil that original goal, and thus we dedicate the

present section to it.

A key property of the SBIC algorithm in all its variants is that the estimates p̂ of

the predictors’ accuracies only depends on past information. In other terms, for each

timestep t, the current predictor’s estimate p̂tj is independent from the value of the

label xij we observe. In this sense, the SBIC algorithm belongs to the framework of

Chapter 4, where the posterior on each item class yi is computed using the data on that

particular item Xi and the estimates p̂. The only difference here is that SBIC computes

the estimates p̂ using the labels cast on the other items X−i and the posterior on the

respective classes y−i, rather than the observations O on the extra set of items G.

We can take advantage of this property by making an argument similar to the one

in Section 5.3.2. That is, if we assume that the ground-truth classes y−i on all the

other items i′ 6= i are known, then the corresponding estimates p̂ yield more accurate

predictions on yi. With this assumption, we can easily compute the distribution of

estimates fp̂, and plug it in the results of Chapter 4. The resulting lower bounds are

listed in the following corollary:

Corollary 5.6. Given a population of predictors with distribution fp = Beta(α, β),
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the probability of a classification error by the Streaming Bayesian Inference for Crowd-

sourcing (SBIC) algorithm satisfies the lower bounds in Corollaries 4.4 and 4.9, with

a distribution of estimates fp̂ that depends on the variant of SBIC we use. For Sorted

SBIC we have the same distribution as in Theorem 5.1:

fSortedp̂ (p) =
1

|T |
∑
j∈N

Lj

Lj−1∑
d=0

P(d|Lj − 1, α, β)δ
(
p− p̂j(d, Lj − 1, α, β)

)
(5.47)

where δ(•) is Dirac’s delta, Lj is the number of labels provided by predictor j, and dj is

the number of correct ones. For Fast SBIC we have the following instead:

fFastp̂ (p) =
1

|T |
∑
j∈N

Lj−1∑
L′=0

L′∑
d=0

P(d|L′, α, β)δ
(
p− p̂j(d, L′, α, β)

)
(5.48)

where the probability of d successes out of L′ trials is the same as Equation 5.36.

Proof. In a similar way as the proof of Theorem 5.1, we focus on the predictive accuracy

of a hypothetical version of SBIC that, for each item i ∈ M , has access to the ground-

truth y−i on the other items i′ 6= i. We know from our discussion in Section 5.3.2 that

this hypothetical algorithm has provably better predictive accuracy. As a result, its

probability of a classification error is always smaller than the one of SBIC.

What we are left with is deriving an expression for fp̂. For Sorted SBIC, we known

that the final posterior on yi is computed after observing all the data on the other items

X−i. Consequently, each corresponding estimate p̂j is computed on the Lj − 1 past

responses of predictor j on items M \ i. Since our hypotethical algorithm has access to

the ground-truth classes of such items, the estimate p̂j depends on the number of correct

answers d out of Lj − 1 trials. This is the same case as our general result in Theorem

5.1, except for the additional assumption by the SBIC algorithm that fp = Beta(α, β).

For Fast SBIC, the number of past responses L′ each predictor is evaluated on increases

during the data collection process. At the beginning each new predictor is tested on

L′ = 0 past answers, at the end on L′ = L − j − 1 of them. Accordingly, we modify

the expression for fp̂ in Equation 5.47 to account for the increasing value of L′. More

specifically, in Equation 5.48 we sum over all values L′ ∈ [0, Lj − 1], instead of weighing

the contribution of predictor j by its productivity Lj .

We can compare the lower bounds in Corollary 5.6 with the actual empirical performance

of SBIC by running both variants of the algorithm on synthetic data. We do so in

Figure 5.7, where we choose the same setting of our experiments for the majority voting

algorithm in Section 5.3.3. Specifically, we set the number of items to |M | = 1000,

extract the predictors’ accuracy according to pj ∼ Beta(4, 3), and let the predictors label

Lj = 10 items each. As the results in Figure 5.7 show, the lower bounds in Corollary
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5.6 capture the differences between Fast SBIC and Sorted SBIC well. Moreover, they

match the asymptotic decay in the error rate of both algorithms.
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Figure 5.7: Comparison between the lower bounds in Corollary 5.6 (dotted lines) and
the empirical performance of the Fast SBIC and Sorted SBIC algorithms.

Computing an upper bound is more difficult, and thus we study the performance of the

SBIC algorithm in its asymptotic regime. This regime emerges when enough data has

been observed and the posterior on the item classes is converging towards its ground-

truth values y. We formalise this concept in the following way:

Definition 5.7. For any value of the item factors µt at time t, define ε1 and ε2 as a

pair of small positive numbers in R such that:

1

|M |
∑
i∈M

I
(
µti(yi) < 1− ε1

)
< ε2 (5.49)

where yi is the ground-truth class of item i.

Note that Definition 5.7 is quite general, in the sense that there is a pair ε1, ε2 ∈ [0, 1]

that satisfies Equation 5.49 for any µt. At the same time, when ε1 and ε2 are small,

this definition binds the value of µt in a stronger way than a mere upper bound on the

prediction error. More in detail, the latter is measured in terms of the 0-1 error loss
1
|M |
∑

i∈M I
(
µti(yi) < 1/2

)
< ε2. In contrast, Equation 5.49 requires both the probability

of an error and the uncertainty ε1 in our item factors µt to be small. As a consequence,

for small ε1 and ε2 the item factors µti(`) are close to the indicator function I(` = yi)

with high probability.

In order to derive our upper bound, we compare the estimates of the predictors’ accuracy

p̄ computed by SBIC and those computed by the hypothetical algorithm of Theorem 5.6.

To avoid confusion, we denote the former with p̄(Xj ,µ) and the latter with p̄(Xj ,y).
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Under Definition 5.7, we have:

ε =
∣∣p̄(Xj ,µ)− p̄(Xj ,y)

∣∣
=

∣∣∣∣
∑

i∈Mj
µi(xij)− I(xij = yi)

|Mj |+ α+ β

∣∣∣∣
=

∣∣∣∣∣
∑

i∈Mj
µi(−yi)

(
I(xij = −yi)− I(xij = yi)

)
|Mj |+ α+ β

∣∣∣∣∣
≤
∑

i∈Mj
µi(−yi)

|Mj |+ α+ β
≤ |Mj |(ε1 + ε2)

|Mj |+ α+ β
≤ ε1 + ε2

(5.50)

In other terms, each estimate p̄(Xj ,µ) used by the SBIC algorithm is always in a ε

neighbourhood of the optimal estimate p̄(Xj ,y). If this neighbourhood is small at a

given time t′, we can prove that the item factors µt for t > t′ converge to the ground-

truth as we observe more and more data. We do so separately for the UNI and US

policy:

Theorem 5.8. Given a population of predictors with distribution fp = Beta(α, β) and R

predictors per item, the probability of a classification error of the SBIC algorithm under

the UNI policy goes to zero as R →∞, if there exists a timestep t such that Definition

5.7 holds with ε1, ε2, and:

EXj |y,α,β

{
max

p̂∈
[
p̄(Xj ,y)±ε

] [( p̄(Xj ,y)

p̂
+

1− p̄(Xj ,y)

1− p̂

)√
p̂(1− p̂)

]}
< 1 (5.51)

where ε = ε1 + ε2 as in Equation 5.50.

Proof. Theorem 4.1 provides us with an upper bound on the probability of a classification

error on a single item, given a plug-in aggregator and vectors of real and estimated

accuracies p and p̂ respectively. In particular, we know that the probability of an error

depends on each predictor j according to the following multiplicative factor:

g(pi, p̂j) =

(
pj
p̂j

+
1− pj
1− p̂j

)√
p̂j(1− p̂j (5.52)

We can extend the result in Equation 5.52 to our current setting by taking the expec-

tation of pj with respect to fp. In this way, we can derive the average contribution of a

generic predictor, given the set of answers Xj it provided in the past:

EXj |y,α,β
(
g(pi, p̂j)

)
=

(
p̄(Xj ,y)

p̂j
+

1− p̄(Xj ,y)

1− p̂j

)√
p̂j(1− p̂j (5.53)

where p̄(Xj ,y) = EXj |y,α,β(pj) by definition.

Now, we need to consider two things. First, if the factor in Equation 5.53 is smaller than

one, observing more labels is guaranteed to lower the probability of an error on average.
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As the number of observations R grows to infinity, the probability of a classification

will converge to zero. Second, the SBIC algorithm computes the value of p̂j = p̄(Xj ,µ)

given both Xj and µ. We can remove the dependency on the latter from Equation 5.53

by using the theorem assumption that p̄(Xj ,µ) ∈ [p̄(Xj ,y) ± ε] for some timestep t.

Since we are interested in proving convergence, we write the worst-case scenario where

Equation 5.53 is maximised, yielding the result in Equation 5.52.

Finally, if the condition in the present theorem are met for a given timestep t, any

subsequent observation at t′ > t will make µti(yi) drift towards one for each i ∈ M . In

turn, the value of ε = ε1 + ε2 will converge to zero, yielding even smaller values for the

expression in Equation 5.53.

Theorem 5.9. Given a population of predictors with distribution fp = Beta(α, β), an

average of R predictors per item, and a large number of items |M | → ∞, the probability

of a classification error of the SBIC algorithm under the US policy goes to zero as

R→∞, if there exists a timestep t such that Definition 5.7 holds with ε1, ε2, and:

EX|y,α,β

{
min

p̃∈
[
p̄j(X,y)−ε,p̄j(X,y)+ε

]((2p̄j(X,y)− 1
)

log
( p̃

1− p̃
))}

> 0 (5.54)

where ε = ε1 + ε2 as in Equation 5.50.

Proof. Theorem 4.6 proves that the average number of predictors required to reach a

target (reported) accuracy 1−pe is finite. The key message is that each predictor changes

the log odds on an item i by an additive random step. The corresponding random walk

has the following average drift:

Epj∼fp,p̂j∼fp̂

(
(2pj − 1) log

( p̂j
1− p̂j

))
(5.55)

which has to be strictly positive.

As in the proof of Theorem 5.8, we extend the result of Equation 5.55 to our current

setting by taking the expectation of pj with respect to fp explicitly. Accordingly, we

write the average drift induced by a predictor j, given the set of answers Xj it provided

in the past:

EXj |y,α,β

(
(2p̄(Xj ,y)− 1) log

( p̂j
1− p̂j

))
(5.56)

where p̄(Xj ,y) = EXj |y,α,β(pj) by definition.

Unfortunately, the dependency of the SBIC estimates p̂j = p̄(Xj ,µ) on X and y is not

straightforward. We solve this issue by considering the worst-case scenario. Since we

are interested in proving that Equation 5.56 is positive, we minimise over all possible

values of p̄(Xj ,µ) ∈ [p̄(Xj ,y) ± ε]. The result of this operation is shown in Equation

5.54.
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Crucially, if the conditions in the present theorem are met for a given timestep t, then

we can reach any level of reported accuracy µt
′
i (yi) = 1− pe we want. Furthermore, the

lower we set pe and the more observations we collect from the predictors, the smaller

the value of ε = ε1 + ε2 will be. In turn, this ensures convergence of p̄ to p̄(Xj ,y), thus

making the value of Equation 5.54 larger. Finally, even if pe is only a reported accuracy,

the fact that µt
′
i (yi) → 1 as pe → 0 guarantees that the probability of a classification

error goes to zero.

Theorems 5.8 and 5.9 provide us with sufficient conditions for the predictions of the

SBIC algorithm to converge to the ground-truth. To summarise, if the item factors µ

are concentrated enough towards the item classes y, then we can guarantee that further

observations will make µ converge to y even further. After this initial transient, we

can study the rate of decay of the misclassification error with the same technique as in

Corollary 5.6. The result are the following two asymptotical upper bounds:

Corollary 5.10. Given that the conditions in Theorem 5.8 are met, the probability of

a classification error by the Streaming Bayesian Inference for Crowdsourcing (SBIC)

algorithm under the UNI policy is upper bounded by:

P(ŷi 6= yi|α, β, q) ≤ exp

(
−R log

(
Ep̂j∼fp̂

(
2
√
p̂j(1− p̂j)

))
+ o(R)

)
(5.57)

for all items i ∈ M , where the distribution fp̂ depends on the variant of SBIC we use,

and is the same as in Corollary 5.6.

Similarly, given that the conditions in Theorem 5.9 are met, the probability of a classi-

fication error by SBIC under the US and IG policies is upper bounded by:

P(ŷi 6= yi|α, β, q) ≤ exp
(
−REp̂j∼fp̂

(
(2p̂j − 1)ŵj

)
+ o(R)

)
(5.58)

for all items i ∈M , where ŵj = log
(
p̂j/(1− p̂j)

)
and fp̂ is in Corollary 5.6.

Proof. First, Theorems 5.8 and 5.9 ensure that, after a specific timestep t, the difference

ε = ε1 + ε2 between the estimates p̄(Xj ,µ) and p̄(Xj ,y) in Equation 5.50 converges to

zero. Thus, in this asymptotical regime, the SBIC algorithm behaves as its hypothetical

counterpart in Corollary 5.6. Specifically, the distribution of estimates fp̂ is the same.

Second, before reaching this asymptotic regime, the approximated marginal posterior

µi(yi) on each item i ∈ M may become biased with respect to its hypothetical coun-

terpart P(yi|X,α, β, q,y−i). In general, this bias increases for each contribution of the

predictors j ∈ Ni, though such contributions become negligible as R → ∞ since the

estimates p̄j converge to their unbiased version. This accounts for the o(R) term in

Equations 5.57 and 5.58.
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Finally, the asymptotical term in the upper bounds of Corollaries 4.4 and 4.8 applies

here. In fact, after accounting for the bias of the initial transient, each contribution of

the predictors in the asymptotic regime reduces the probability of an error by the factor

specified therein.

Taken together, Corollaries 5.6 and 5.10 ensure that the asymptotic performance of

SBIC follows an exponential decay in classification error as the number of predictors

per item R increases. In particular, the rate of decay depends on the variant of the

algorithm and the collection policy we use, as we illustrate in Figure 5.7. At the same

time, the performance of the SBIC algorithm is also sensitive to the number of items

Lj each predictor labels. We show this theoretically in Corollary 5.6, as our result there

depends on Lj . For more empirical evidence on that, see our experiments in Section

5.4.2.

5.4 Experimental comparison

After presenting our algorithmic and theoretical contributions, it is now time check how

well they hold up empirically. Indeed, we already present some empirical results in the

corresponding Sections 5.2 and 5.3. However, they only serve the purpose of illustrating

our main arguments therein. Here we make a more structured analysis.

In particular, we want to compare our take on the inference challenge of Section 5.2

with the existing algorithms in the current literature. For ease of reference, we list

them again in the following Section 5.4.1, together with their implementation details

and parameter settings. These algorithms span a wide range of techniques, from belief

propagation to the method of moments and from expectation-maximisation to varia-

tional inference. Still, in many of our experiments they end up exhibiting very similar

predictive performance.

In this regard, we organise our empirical results according to three research questions.

First, we study the performance of all the inference algorithms on synthetic data (see

Section 5.4.2). This gives us full control on the properties of the data we produce.

Furthermore, it allows us to make a meaningful comparison between the empirical per-

formance of the algorithms and our theoretical results of Section 5.3. Second, we repeat

our analysis in Section 5.4.3 using real data taken from existing crowdsourcing exper-

iments. In this way, we can measure how well the performance of these algorithms

translates to a setting where their assumptions are not satisfied. Finally, in Section

5.4.4 we compare the computational requirements of the different inference methods.
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5.4.1 List of algorithms and related settings

In this section we list the parameter settings and the implementation details of the

inference algorithms we use in our experiments.3 In order to have a representative

sample of the existing literature, we include at least one state-of-the-art algorithm per

each category we introduce in Section 2.2. More in detail, voting schemes are represented

by majority voting (see Section 2.2.1.1), variational inference by both approximate mean-

field and expectation-maximisation (see Section 2.2.2.1), belief propagation by message-

passing (see Section 2.2.2.2) and the method of moments by triangular estimation (see

Section 2.2.3.3). When possible, we use the parameter settings suggested by the original

authors, or we run additional experiments to find the best configuration. All things

considered, in our experiments we compare the following algorithms:

• Majority voting (MAJ). We use a straightforward implementation of majority

voting. Under the US policy, we use the partial sum of votes
∑

j∈Ni
xij as an

indication of uncertainty.

• Approximate mean-field inference (AMF). For experiments on fully-observed

data or in conjunction with the UNI policy, we initialise the predictor estimates

to their mean prior value p̄ = α/(α+ β) and run 50 iterations of the algorithm to

ensure convergence. For adaptive settings in conjunction with the US policy, we

run 4 iterations after collecting each new label xij to update the current estimates.

At the end of the collection process we run 50 iterations from scratch. As for MC

and SBIC, we use a matching prior α = 4, β = 3 for synthetic data, a generic prior

α = 2, β = 1 for real-world data, and q = 1
2 for all experiments.

• Expectation-maximisation (EM). This algorithm shares the same implemen-

tation as AMF. The only difference is that we use ᾱ = α − 1 and β̄ = β − 1 for

the predictors’ prior. As explained in (Liu et al., 2012), this forces the algorithm

to compute the mode rather than the mean of the posterior predictor accuracy.

• Belief propagation with the spammer-hammer prior (KOS). We imple-

ment the algorithm as a power law iteration with alternating steps w = Xz and

z = Xw, where w = (w1, . . . , w|N |) are the predictor weights and z are the item

log-odds. This is the setup recommended by Karger et al. (2014) to achieve maxi-

mum performance, as opposed to the more theoretically-sound belief propagation

algorithm. We initialise z to its majority voting value, and normalise the result at

every iteration to prevent numerical explosion. Under the US policy, we pick the

item with log-odds zi closest to zero. For synthetic data (both under the UNI and

US policies), we run only 5 power law iterations before producing the final esti-

mates, as we found this yields better accuracy. For real-data we let the algorithm

run for 100 iterations to reach convergence instead.

3The source code and related datasets are openly available (see Manino (2020)).
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• Triangular estimation (TE). We use a straightforward implementation of the

algorithm in (Bonald and Combes, 2017). No parameters are required to run this

algorithm.

• Mirror Gibbs particle filter (Mirror Gibbs). We use a straightforward im-

plementation of the algorithms we present in Section 5.2.1.2. For experiments

under the US policy we set the number of particles to npart = 100, and the num-

ber of rejuvenating flips per particle to nflip = 100. For experiments under the

UNI policy we set npart = 20 and nflip = 20, as this is enough to achieve state-of-

the-art accuracy and we do not need to track the posterior during the collection

phase. In general we found that, given the same value for the product npartnflip,

the performance of the algorithm is very similar for any choice of npart and nflip.

As for AMF and SBIC, we use a matching prior α = 4, β = 3 for synthetic data,

a generic prior α = 2, β = 1 for real-world data, and q = 1
2 for all experiments.

• Streaming Bayesian Inference for Crowdsourcing (SBIC). We use a straight-

forward implementation of the algorithms we present in Sections 5.2.2.1 and 5.2.2.2.

As for MC and AMF, we use a matching prior α = 4, β = 3 for synthetic data, a

generic prior α = 2, β = 1 for real-world data, and q = 1
2 for all experiments.

Note that the TE algorithm requires a dense item-predictor matrix X to function prop-

erly. As a result, we exclude it from the experiments in which this assumption is not

met, and its predictions degrade to mere random guesses.

5.4.2 Predictive accuracy on synthetic data

We begin our comparison between the different inference algorithms by measuring their

performance on synthetic data. This choice allows us to test the algorithms when all the

assumptions of the one-coin Dawid-Skene model of Section 5.1 are met. Furthermore,

it gives us the opportunity to compare the empirical performance with the theoretical

results in Section 5.3.

As in Chapter 3 and 4, we set the number of items to |M | = 1000, the item class prior

to q = 1/2, and we extract the predictors’ accuracy according to pj ∼ Beta(α, β). This

represents a medium-sized instance, with a fairly varied population of predictors whose

average accuracy is larger than 1/2 but not too distant from it. Thanks to this, the

synthetic data we generate contains a large number of incorrect labels, without which it

is more difficult to appreciate the difference between the various inference algorithms.

We repeat each test for two values of Lj ∈ {10, 100} for all j ∈ N . The former leaves

a larger uncertainty in the individual accuracy of each predictor, as we have fewer data

points to estimate it. The latter allows the inference algorithms to compute values of
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p̂ that are closer to the ground-truth p. Note that both these values induce an item-

predictor matrix X that is too sparse for the TE algorithm to produce non-random

predictions.

For each combination of algorithm, collection policy π, number of labels per predictor

Lj and number of predictors per item R we run multiple experiments until we have

at least 250 runs with one classification error. In this way the average result has low

variance even for very large R. On this note, the error bars we report in all the figures of

the present section are computed with the Agresti-Coull method set at 99% confidence

(Brown et al., 2001), and their value is as small as 10−5 (which makes them barely visible

in our plots).

In Figure 5.8 we compare the performance of the inference algorithms under the non-

adaptive UNI policy. For reference, we also plot the general lower bound of Theorem

5.1, and the upper bound on majority voting in Corollary 5.3. As suggested by these two

bounds, all state-of-the-art algorithms outperform majority voting. Incidentally, this is

not the case on real-world data as we show in Section 5.4.3.

Additionally, estimating the exact posterior with the Mirror Gibbs particle filter we

present in Section 5.2.1.2 is only one of the most accurate approach. Interestingly, its

performance is matched by Sorted SBIC, which is provably optimal from the theoretical

standpoint, and the KOS algorithm. Conversely, Fast SBIC tends to suffer from a

noticeable performance gap, which is smaller for Lj = 100. This is due to the fact that,

with a large number of labels per predictor Lj , the incremental estimates of p̄j do have

a chance to converge close to the respective ground-truth pj .

At the same time, the AMF and EM algorithms exhibit a weaker asymptotic behaviour

with respect to the other state-of-the-art algorithms when Lj = 10. This is because they

truly minimise the Kullback-Leibler divergence of their approximation (see Equation

5.15). As a consequence, they are unable to form unbiased estimates of the predictors’

accuracy, and end up underestimating the uncertainty in their predictions. Fortunately,

this phenomenon disappears for larger values of Lj , where their performance matches

the one of the other algorithms.

Similarly, in Figure 5.9 we compare the performance of the inference algorithms under

the adaptive US policy. As expected, all algorithms exhibit a smaller prediction error

with respect to the UNI policy. However, some of them take advantage of this setting

more efficiently. In this regard, only Sorted SBIC and Mirror Gibbs manage to guide

the US policy well when Lj = 10, and achieve an accuracy that matches the theoretical

limit of Theorem 5.1 asymptotically. Conversely, KOS performs better than Fast SBIC

for small values of R, but exhibit a weaker asymptotical behaviour when Lj = 10.

Finally, the estimation problems in AMF and EM are exacerbated by the interaction

with the US policy. With few labels per predictor, the over-optimistic predictions of
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(b) Lj = 100 labels per predictor.

Figure 5.8: Prediction error on synthetic data under the UNI policy. For reference,
we include our upper bound on majority voting and our general lower bound on prob-

abilistic inference as well.

these two algorithms cause the US policy to collect more labels on the wrong items. As

a result, the prediction performance reaches a plateau for R > 40. As with the UNI

policy, these issues disappear as soon as more labels are available per each predictor.

In summary, all algorithms except from MAJ benefit from a larger number of labels per

predictor Lj . On the contrary, all algorithms including MAJ benefit from the use of an

adaptive policy like US. We answer the question of computational requirements for this

second case in Section 5.4.4. On a different note, this section shows that the general

lower bound we present in Theorem 5.1 is not an unattainable asymptote, but actually

represents an achievable goal for an inference algorithm.
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Figure 5.9: Prediction error on synthetic data under the US policy. For reference,
we include our upper bound on majority voting and our general lower bound on prob-

abilistic inference as well.

5.4.3 Predictive accuracy on real datasets

Our experiments in Section 5.4.2 are run under the assumption that the data is produced

according to the generative model in Section 5.1. If that is not the case, the predictive

accuracy of the different inference algorithms may be affected dramatically. In order

to assess what could happen in such a scenario, in the present section we repeat our

experiments on real datasets.

Specifically, we consider the 5 publicly available crowdsourcing dataset listed in Table

5.1, which come with binary annotations and ground-truth values (Manino, 2020). These
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datasets are often used as a benchmark in the corresponding literature (Snow et al., 2008;

Welinder et al., 2010; Lease and Kazai, 2011; Bonald and Combes, 2017). Crucially,

they represent a diverse testbed for our inference algorithms. Notably, the density of

the label set X ranges from a full matrix for the Birds dataset, to a very sparse one for

the TREC dataset. Furthermore, since the data has been crowdsourced, we can expect

each crowdworker to exhibit a complex predictive behaviour, rather different from the

one-coin Dawid-Skene modelling assumption of a single parameter pj .

Dataset # Items # Predictors # Labels Avg. L Avg. R

Birds 108 39 4212 108 39
Ducks 240 53 9600 181 40
RTE 800 164 8000 49 10
TEMP 462 76 4620 61 10
TREC 711 181 2199 12 3

Table 5.1: Summary of the properties of five crowdsourcing datasets including the
number of items, number of predictors, total number of data points, average number

of predictors per item and average number of items per predictor.

The performance of the inference algorithms is reported in Table 5.2. There we run

EM, AFM, Mirror Gibbs and SBIC with the generic prior α = 2, β = 1 and q = 1
2 as

proposed in Liu et al. (2012). Additionally, we include the triangular estimation (TE)

algorithm from Bonald and Combes (2017), since it outputs non-random predictions on

most of the aforementioned datasets.

Dataset MAJ AMF EM KOS MirrorGibbs TE FastSBIC SortedSBIC

Birds 0.241 0.278 0.278 0.278 0.341 0.194 0.260 0.298
Ducks 0.306 0.412 0.412 0.396 0.412 0.408 0.400 0.405
RTE 0.100 0.075 0.072 0.491 0.079 0.257 0.075 0.072
TEMP 0.057 0.061 0.061 0.567 0.095 0.115 0.059 0.062
TREC 0.257 0.266 0.217 0.259 0.302 0.451 0.251 0.239

Table 5.2: Prediction error on the real-world datasets

Interestingly, the MAJ algorithm performs quite well and achieves the best score on the

Ducks and TEMP datasets. This confirms the practitioner’s knowledge that majority

voting is a robust and viable algorithms in most crowdsourcing settings. Unsurprisingly,

TE achieves its best score on the Birds dataset, which has a full item-predictor matrix

X. On the contrary, its predictions are almost random on the TREC dataset, which has

a low number of labels per predictor.

At the same time, both Mirror Gibbs and the two variants of SBIC match the perfor-

mance of the other state-of-the-art Bayesian algorithms (EM, AFM), with Sorted SBIC

achieving the best score on RTE. This similarity suggests that the predictive perfor-

mance of all Bayesian approaches is defined by their common set of assumptions, rather

than the specific inference algorithm. More importantly, the fact that Fast SBIC is al-
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ways close to the other algorithms makes a strong case for its computationally efficient

approach to variational Bayes.

5.4.4 Computational speed

As we show in our experiments of Section 5.4.2, all algorithms benefit from being run

under the adaptive US policy. However, in order to deploy such a policy we need to

make real-time decisions on how to allocate the predictors on the set of items M , and

thus we rely on quick updates by the inference algorithm. In contrast, if we run these

algorithms offline after all the data X has been collected (e.g. under the UNI policy),

having a small time complexity becomes a less important requirement.

In this section we show that most existing algorithms have too large a computational

requirements to do that. We achieve this by measuring the time required by the inference

algorithms to produce their predictions under the US policy. For ease of comparison, we

choose the same setting as our experiments on the synthetic data of Section 5.4.2. For

each algorithm and number of predictors per item R, we run 10 simulations and report

the average in Figure 5.10. The error bars correspond to the standard deviation.

Note how Fast SBIC matches MAJ in terms of computational speed, whereas all the

other algorithms are orders of magnitude slower. This makes Fast SBIC a valid alterna-

tive to MAJ for the online setting, particularly because it can deliver superior predictive

accuracy as we demonstrate in Section 5.4.2. Incidentally, Sorted SBIC runs faster in

the setting with only L = 10 labels per predictor since its time complexity O(|M |TL)

depends on L. In theory the same applies to Fast SBIC, but since its time complexity

is O(TL) the difference is negligible.

5.5 Summary

In this Chapter, we study the agnostic variant of the Dawid-Skene model, where we have

no side information on the accuracy of the predictors. This renews all the challenges we

present in Chapter 1. Accordingly, our effort is directed towards solving the aggregation

problem in an efficient way and studying the performance of different data collection

policies theoretically. Thus, let us highlight what we feel are the three main takeover

messages.

First, the Bayesian framework allows us to write a closed-form solution of the inference

problem. However, using this method directly is computationally infeasible. We can

turn to Monte Carlo methods for estimating the exact posterior, but even our efficient

Mirror Gibbs particle filter requires many samples to converge. Thus, we turn to approx-

imate methods, and introduce Streaming Bayesian Inference for Crowdsourcing. This
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Figure 5.10: Time required to complete a single inference run with |M | = 1000 items
under the US policy.

algorithm, in its Fast SBIC variant, is an order or magnitude faster than the state of

the art, while retaining good predictive performance.

Second, the Bayesian framework allows us to derive a general bound on the accuracy of

any inference algorithm. Our experiments show that this bound is not just of theoret-

ical interest, but is also representative of the empirical performance of state-of-the-art

methods. Furthermore, we are able to show that one of our algorithms, Sorted SBIC,

matches this bound asymptotically, thus proving its optimality.

Finally, we identify a common weakness of all existing inference algorithms. That is,

their performance may degrade substantially once their underlying assumptions are not
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met. In particular, we demonstrate this phenomenon on five different crowdsourcing

datasets. In some cases, this issue can be mitigated by choosing more conservative

priors for Bayesian methods. However, a broader analysis is needed to fully address this

issue.
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Conclusions

Combining multiple classifiers to form accurate predictions is a powerful and widespread

idea. From the first work on a mathematical justification of democracy (Marquis de Con-

dorcet, 1785), to more modern applications like ensemble methods (Dietterich, 2000) and

crowdsourcing (Howe, 2006), the drive to deploy and develop more advanced combina-

tions of classifiers is unrelenting. Doing so requires solving two main problems: how

to organise the individual predictors to produce useful data, and how to combine it

together to reveal the desired ground-truth.

These data collection and data aggregation problems are partially addressed by the

existing literature, as we discuss in Chapter 2. There, we introduce the popular Dawid-

Skene model (Dawid and Skene, 1979) as a useful common ground to compare different

techniques, and review the existing aggregation and collection algorithms. However, the

existing body of knowledge is incomplete: we do not have a theoretical understanding on

the difference between data collection policies, we do not have computationally efficient

aggregation algorithms that can deliver state-of-the-art preformance in all settings, and

we do not have strong guarantees on their accuracy.

Since filling these research gaps is not trivial, our approach is incremental. Thus, in

Chapter 3 we begin by reducing the multiple classifier setting to an idealised version

of it, where we know the accuracy of each individual predictor exactly. Thanks to this

framework, we are able to introduce our random walk interpretation of the collection

process, and prove bounds on the exponential tradeoff between the number of predictors

and the classification accuracy. Furthermore, we are able to compare different collection

policies theoretically for the first time. In this regard, our results include a proof of

equivalence between the uncertainty sampling and information gain maximisation poli-

cies, and a proof of the superiority of adaptive policies over non-adaptive ones in terms

of predictive accuracy.

While the results in Chapter 3 are interesting on their own, most applications of the

multiple classifier setting feature predictors of unknown accuracy. In order to cover

135
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these cases, in Chapter 4 we generalise our analysis to a model where the each predic-

tor’s accuracy can only be estimated. Fortunately, this step, while highly technical, does

not change the nature of our results. Namely, the tradeoff between number of predic-

tors and accuracy is still exponential, the uncertainty sampling and information gain

maximisation policies are still equivalent, and all adaptive policies are still superior to

non-adaptive ones. However, what changes is the slope of these exponential tradeoffs:

the more uncertainty we have on the predictors’ accuracy, the slower the decay in error

rate is.

But what happens if we have no prior information about the individual predictors? In

Chapter 5 we study this case, which we call the agnostic Dawid-Skene model. There, we

assume that both the predictors’ accuracy and the ground-truth classes of the items have

to be inferred from the same dataset. This chicken-or-the-egg problem revives the ques-

tion of data aggregation, and forces us to introduce two novel aggregation algorithms:

Mirror Gibbs and Streaming Bayesian Inference for Crowdsourcing. These algorithms

are computationally efficient, while delivering better than state-of-the-art in most set-

tings. On a different note, the presence of a multitude of aggregation algorithms makes

a theoretical analysis more challenging. Despite this, we manage to prove a general

lower bound on the classification accuracy that greatly improves on the state of the art,

and several other bounds on specific algorithms. Notably, we are the first to conduct

such analysis for the adaptive uncertainty sampling policy too, as opposed to limiting

ourselves to non-adaptive data collection policies.

Overall, in this thesis we make big steps in advancing our knowledge of the multiple

classifier setting, and propose several improvements on the state of the art. However,

despite these advances, many open questions remains. We outline them in the next

Section 6.1, as they constitute exciting directions for future work.

6.1 Future work

In Chapter 1 we listed three main challenges to our research effort on the combination

of multiple classifiers: the abundance of different existing models, the lack of theoretical

results and the obstacles towards creating efficient collection and aggregation algorithms.

In this thesis we lay the foundational work to overcome these challenges, but further

steps are needed to broaden the scope of our results. In particular, we envision the

following three research directions:

• Multiclass model. The natural extension of the binary classification case we

study in this thesis is the multiclass Dawid-Skene model. In this scenario, which

we briefly review in Section 2.1.2, the ground-truth label yi of each item is allowed

to take values in the interval [1, k]. Similarly, each predictor j is parametrised by
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a confusion matrix Pj whose entries pjxy represent the conditional probability of

reporting label x given that the ground-truth class of the item is y. Together, these

extensions to the one-coin Dawid-Skene model induce some important theoretical

differences. First, our random walk interpretation of the collection process takes

place in a multidimensional space now. In fact, the marginal posterior probability

on the item classes has k−1 degrees of freedom in general. For this reason, inferring

the ground-truth in the multiclass case may be a harder computational problem, as

suggested by Zhang et al. (2016). Second, we lose our equivalence result between

the uncertainty sampling and information gain maximisation policies. This is

because it may be more profitable to allocate a predictor j on items where she

is expected to be more accurate, rather than always choosing the most uncertain

task. In this regard, a theoretical analysis of data collection in the multiclass case

could explain the empirical observations of Simpson and Roberts (2014).

• Mismatching priors. Most of our theoretical results in Chapters 4 and 5 are

built on the assumption that the priors q and fp are known exactly. At the same

time, we see that the performance of Bayesian inference algorithms degrades in

our experiments on real datasets when this assumption is not met (see Section

5.4.3). Can we extend our theoretical analysis to this case? In general, it is known

that exact Bayesian approaches converge to the ground-truth as the size of the

dataset increases (Murphy, 2012). However, in our setting we may not have many

data points for each predictor. Furthermore, approximate Bayes algorithms like

SBIC may suffer even more from a mismatching prior. On this subject, the current

literature suggests two different approaches. On the empirical side, we can add

an extra layer to our generative model by putting a prior on the prior (Kim and

Ghahramani, 2012). Then, the inference algorithm will be able to learn q and

fp. On the theoretical side, we can deal with the generalisation risk of Bayesian

approaches by constructing a PAC-Bayes bound (McAllester and Akinbiyi, 2013).

Which of these techniques is the most appropriate for the multiple classifier setting

is unknown.

• Accuracy-speed tradeoff. The two variants of Streaming Bayesian Inference for

Crowdsourcing we introduce in Chapter 5 lie at the opposite ends of the efficiency

spectrum. Fast SBIC maximises the computational speed, while Sorted SBIC

maximises the predictive accuracy. A logical question is whether it is possible

to sacrifice part of the computational efficiency of the former to acquire part of

the predictive performance of the latter. This Mixed SBIC algorithm would be

a much needed jack-of-all-trades inference method for the Dawid-Skene model.

Furthermore, analysing its theoretical properties would shed some light on the

tradeoff between predictive accuracy and computational speed that the multiple

classifier setting exhibits.

Apart from this, we also aim to extend the Streaming Bayesian Inference for Crowdsourc-
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ing algorithm to other variational inference problems. On the one side, our interested

is fuelled by the recent work of Manoel et al. (2017), which proves the convergence of

streaming Bayes methods under mild assumptions. On the other side, the streaming

framework imposes an implicit regularisation in the number of data points in the train-

ing set. This is in contrast with classic regularisation (Murphy, 2012) which adds an

explicit regulariser to the objective function. We believe that understanding the con-

nection between the two types of regularisation will be a great source of inspiration for

multiple algorithmic contributions.



Appendix A

A guide to the results in Gao et

al. 2016

In this appendix, we guide the reader through the results presented in (Gao et al., 2016).

Our aim is to show that the bounds in Equations 3.13 and 3.22 are indeed present in the

aforementioned paper, even if somewhat clouded by the original notation. In order to

make the comparison to our work easier, we employ here the same notation of Section

3.2.1, where we derive our bounds for the same setting. We will occasionally refer to the

original notation when needed. Furthermore, we denote all the references to equations

and theorems in (Gao et al., 2016) with the superscript (*).

We are interested here in in Corollary 3.1*, since it is built on the same one-coin Dawid-

Skene model that we use in Section 3.2.1:

Corollary 3.1*. Assume maxj∈N
(
| log(pj)| ∨ | log(1 − pj)|

)
= o

(
RI(p)

)
. Then, we

have:

P(ŷ 6= y) = exp
(
−
(
1 + o(1)

)
RI(p)

)
(A.1)

where I(p) is defined as:

I(p) = − 1

R

∑
j∈N

log
(
2
√
pj(1− pj)

)
(A.2)

According to the authors, Corollary 3.1* can be proved by adapting the proof of Theorem

3.1* (see (Gao et al., 2016) and its supplementary material). The key is rewriting

Equation 15* from its general form to the one coin case:

P

(
s̄j =

1

2
log
(1− pj

pj

))
= pj

P

(
s̄j =

1

2
log
( pj

1− pj

))
= 1− pj

(A.3)
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Note that s̄j has the opposite sign of the step sj = xjwj that we use in Section 3.2.1.

The authors of (Gao et al., 2016) state that we have a classification error when the

following occurs:

P(ŷ 6= y) = P(h̄ > 0) where h̄ =
∑
j∈N

s̄j (A.4)

Now, the probability P(h̄ > 0) can be rewritten as follows (see (Gao et al., 2016) just

below Equation 15*):

P(h̄ > 0) =
∑
h̄>0

∏
j∈N

P(s̄j)

=
∑
h̄>0

∏
j∈N

P(s̄j) exp(s̄j)B1/2(pj , 1− pj)
B1/2(pj , 1− pj) exp(s̄j)

=
∑
h̄>0

exp(−h̄)
∏
j∈N

Qj(s̄j)B1/2(pj , 1− pj)

(A.5)

where B1/2(pj , 1− pj) = 2
√
pj(1− pj) according to the authors’ definition at the begin-

ning of their proof of the lower bound part of their Theorem 3.1*, and similarly:

Qj

(
s̄j =

1

2
log
(1− pj

pj

))
=

√
pj
√

1− pj
B1/2(pj , 1− pj)

=
1

2
(A.6)

From here, we can easily derive the authors’ upper bound. Note that exp(−h̄) < 1 for

all h̄ > 0, and that the value of Qj(s̄j) does not depend on s̄j . Therefore:

P(h̄ > 0) <
∏
j∈N

B1/2(pj , 1− pj) (A.7)

which is the result we report in this thesis as Equation 3.13. This result is represented

in Corollary 3.1* by the asymptotic rate exp
(
−RI(p)

)
without the o(1) term.

The authors’ lower bound requires a little more work. Going back to Equation 15*, we

can lower bound P(h̄ > 0) as follows:

P(h̄ > 0) >
∑

0<h̄<H

exp(−H)
∏
j∈N

Qj(s̄j)B1/2(pj , 1− pj)

= exp(−H)Q(0 < h̄ < H)
∏
j∈N

B1/2(pj , 1− pj)
(A.8)

where Q is the joint probability of all Qj with j ∈ N . If we turn to the supplemental

material of (Gao et al., 2016), we find the following bound for Q:

Q(0 < h̄ < H) ≥ 1

2
−Q(h̄ ≥ H) ≥ 1

2
− VarQ(h̄)

H2
≥ 1

4
(A.9)

where the second to last inequality is Chebyshev’s inequality, and the last one is derived

by setting H = 2
√

VarQ(h̄). Putting all this pieces together, we can derive the authors’



Appendix A A guide to the results in Gao et al. 2016 141

lower bound:

P(h̄ > 0) > exp
(
− 2
√

VarQ(h̄)
)1

4

∏
j∈N

B1/2(pj , 1− pj) (A.10)

which is the result we report in the present paper as Equation 3.22. For reference, this

result accounts for the presence of the o(1) term in Corollary 3.1*.
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Alternative bounds on the UNI

policy under the WMV

aggregator

In Section 3.2.2 we present matching lower and upper bounds on the classification error

of the UNI policy under weighted majority voting. Those results are obtained by careful

derivation of the probability of observing the data X, as detailed in Section 3.2.1. In

this section we explore a different route, which involves the use of concentration in-

equalities on the value of the weighted sum z =
∑

j∈N xjwj + wq. Our early results in

(Manino et al., 2018) were derived in this fashion, but they are now superseded by the

aforementioned bounds. We explain why in the following discussion.

Concentration inequalities bound the probability that a sum of random variables deviates

from its expected value by more than a given margin. In this respect, we can apply

them to the weighted sum z and bound the probability of having a positive or negative

prediction ŷ. For simplicity, we assume that q = 1
2 and thus wq is zero in the following

discussion. Furthermore, we arbitrarily fix the ground-truth label to y = +1, since it

has no effect on our results given the above assumptions.

With this in mind, we can employ a classic concentration inequality by Hoeffding (1963),

and derive the following upper bound:

Theorem B.1. Given a population of predictors with accuracy pj ∼ fp such that the

corresponding distribution of the steps sij = xijwj is sub-Gaussian with variance proxy

σ2
fs

, a prior on the positive class q = 1
2 , and R predictors per item, the probability of a

classification error by the UNI policy under weighted majority voting is upper bounded

by:

P(ŷi 6= yi) ≤ exp
(
−REpj∼fp

(
(2pj − 1)wj

)2
2σ2

fs

)
(B.1)
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for any item i ∈M .

Proof. Under the assumption that each step sij = xijwj in the random walk over zi is

sub-Gaussian with variance proxy σ2
fs

, Hoeffding’s concentration inequality states that:

P
(
zi −EX,p(zi) ≤ −ε

)
≤ exp

(
− ε2

2Rσ2
fs

)
(B.2)

where Rσ2
fs

is the variance proxy of zi =
∑

j∈Ni
sj since the steps are i.i.d.

Now, the left-hand side of Equation B.2 is related to the probability of a misclassification.

In fact, if we substitute ε = EX,p(zi) and we notice that EX,p(zi) = RExij ,pj (sij) we

have:

P(zi ≤ 0) ≤ exp
(
− RExij ,pj (sij)

2

2σ2
fs

)
(B.3)

Finally, the expected value of a step sij depends on the predictor’s accuracy pj alone.

Given that by convention the ground-truth is yi = +1, we have that Exij ,pj (sij) =

Epj
(
(2pj − 1)wj

)
, which yields the result in the theorem.

Hoeffding’s concentration inequality is a general result for a sum of random variables. As

such, its estimates tend to be quite conservative. A well-known consequence (Hoeffding,

1963) is that for small values of R other concentration inequalities may provide tighter

bounds. In our case, this holds true for the Chebyshev-Cantelli inequality (Cantelli,

1928), which translates to the following bound:

Theorem B.2. Given a population of predictors with accuracy pj ∼ fp such that the

corresponding steps sij = xijwj have variance σ2
sij , a prior on the positive class q = 1

2 ,

and R predictors per item, the probability of a classification error by the UNI policy

under weighted majority voting is upper bounded by:

P(ŷi 6= yi) <

(
1 +R

Epj∼fp
(
(2pj − 1)wj

)2
σ2
sij

)−1

(B.4)

for any item i ∈M .

Proof. We can prove this theorem using the same procedure of Theorem B.1. This time

we use the Chebyshev-Cantelli concentration inequality (Cantelli, 1928), which states

that:

P
(
zi −EX,p(zi) ≤ −ε

)
<

VarX,p(zi)

VarX,p(zi) + ε2
(B.5)

By substituting ε = EX,p(zi) we get the following upper bound on the probability of a

classification error:

P(z ≤ 0) <

(
1 +

EX,p(zi)
2

VarX,p(zi)

)−1

(B.6)
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Finally, we know that zi is the sum of R i.i.d. random variables. Thus, its expected

value is EX,p(z) = RExij ,pj (sij) and its variance is VarX,p(z) = RVarxij ,pj (sij), which

yields the result in the theorem.

An example of the bounds in Theorems B.1 and B.2 for different values of R is pre-

sented in Figure B.1. There, we set the distribution of the predictors’ accuracy to

fp = Uniform(0.4, 0.8). With this choice we represent a mixed population of predictors,

with average accuracy 0.6. While similar results can be obtained for different choices of

fp, we must guarantee that the distribution of the steps sij is sub-Gaussian , otherwise

the result in Theorem B.1 becomes invalid. For example, the Beta distribution we use

throughout this all thesis does not satisfy this property.
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Figure B.1: Comparison between the the empirical classification error under the UNI
policy and the upper bounds in Theorems B.1, B.2 and Corollary 3.7.

For reference, in Figure B.1 we plot the bound in Corollary 3.7 and the empirical per-

formance of the UNI policy. Note how the two bounds in Theorems B.1 and B.2 are

considerably less tight than our main result. Additionally, the bound in Theorem B.1

is far more conservative than the bound in Theorem B.2, despite being asymptotically

tighter. This is the result of the aforementioned weakness in Hoeffding’s concentration

inequality (Hoeffding, 1963).

In summary, using concentration inequalities to study the performance of the UNI policy

yields less useful bounds. Moreover, it is impossible to use the same techniques and derive

a lower bound. We see a similar issue with the existing bounds on the performance of

inference algorithms, as we discuss in Remark 5.4.





Appendix C

The number of steps in a bounded

random walk have finite moments

This appendix covers a property that we need in the proofs of Theorems 3.11 and

3.12. There, we rely on the fact that the variance of the number of steps in a bounded

random walk is finite. When the steps are i.i.d., like in our case, we can actually prove

the stronger result that there always exist a finite exponential moment. What follows is

based on a proof published on math.stackexchange.com by an anonymous user.1

Assume that we have a random walk with i.i.d. steps sj ∈ R, such that after t steps

we reach the position zt =
∑t

j=1 sj + z0, where z0 is the starting point. Also, assume

that the random walk stops as soon as zt moves out of some interval (a, b), with finite

a, b ∈ R, and call n : zn 6∈ (a, b) ∧ zn−1 ∈ (a, b) the number of steps when this happens.

If sj 6= 0 with non-zero probability, n is almost surely finite, and there exists an m ∈ N+

such that the following is true:

P(n > m|z0 = z) ≤ e−1 (C.1)

for any starting point z ∈ (a, b). However, we also know that the random walk is

markovian, that is the final number of steps n only depends on the starting point z. In

other terms, if we start the random walk in any z′ and then reach z after k ∈ N+ steps,

we have the following equality:

P(n > m+ k|zk = z) = P(n > m|z0 = z) (C.2)

Next, we can marginalise the left-hand side of Equation C.2 over all possible values of

1math.stackexchange.com/questions/351100/hitting-times-of-markov-chain-process-have-always-
finite-moments, retrieved on March 14, 2020.
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z, and get the following:

P(n > m+ k) =

∫ b

a
P(n > m+ k, zk = z)dz

=

∫ b

a
P(n > m+ k|zk = z)P(zk = z)dz

=

∫ b

a
P(n > m|z0 = z)P(zk = z, n > k)dz

(C.3)

where the second equality comes from the chain rule, and the third comes from Equation

C.2. Note that adding the condition n > k does not change anything, since we already

know that we observed k steps to reach zk = z, with z ∈ (a, b).

Now, we can take advantage of Equation C.1 to bound the value of Equation C.3. We

do so as follows:

P(n > m+ k) ≤ e−1

∫ b

a
P(zk = z, n > k)dz

= e−1P(n > k)

(C.4)

This result proves that the probability of observing n steps before the random walk

terminates decreases exponentially as n increases. If we set k to be a multiple of m, we

get the following bound:

P(n > cm) ≤ exp(−c) (C.5)

for any c ∈ N. Additionally, if we substitute k = cm we get:

P(n > k) ≤ exp
(
− k

m

)
(C.6)

which bounds the upper tail of n. As a consequence, there always exists a positive d < 1
m

such that the exponential moment E
(

exp(dn)
)

is finite. A simple corollary is that the

second moment E(n2), which relates to the variance, is finite too.



Appendix D

Properties of the sigmoid function

In this appendix we list several properties of the sigmoid function which we use through-

out this thesis. The sigmoid function is defined as the following monotonically increasing

function on R:

sig(z) ≡ 1

1 + exp(−z) for all z ∈ (D.1)

The output of the sigmoid function is bounded in (0, 1) as shown in Figure D.1. As a

consequence, this function is often used to map a real number to the probability domain,

for instance in neural network architectures (Murphy, 2012). In reality, the sigmoid

function is not just a generic mapping, but it has a strong probabilistic interpretation.

In fact, it is the inverse of the logit function log
(
p/(1− p)

)
which maps a probability p

to its corresponding log-odds z. This is easy to prove, because:

log
( sig(z)

1− sig(z)

)
= log

( 1

exp(−z)
)

= z (D.2)

Thus, if we know the log-odds z, we can compute the corresponding probability as

p = sig(z). Moreover, we can exploit the fact that the sigmoid is an odd function to

compute the probability of the opposite event as follows:

1− p = 1− sig(z) = sig(−z) (D.3)

While these are the basic properties of the sigmoid function, in our discussion in Chapter

3 we use a few more advanced ones. These need some additional definitions (see Section

3.1). First, let us call z the log-odds corresponding to the posterior on an item class

y ∈ {±1}. In this respect, we can interpret sig(z) as the posterior probability that

y = +1. Second, let us assume that an independent predictor is about to provide us

with a new label x ∈ {±1}, which will be correct with probability p. Under these
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Figure D.1: The sigmoid function.

assumptions, we can write the probability of observing a specific x as follows:

P(x|z, p) =
∑

y∈{±1}
P(y|z)P(x|y, p)

=
∑

y∈{±1}
sig(yz) sig(yxw)

(D.4)

where w = log
(
p/(1 − p)

)
are the log-odds of the preditor’s accuracy p. Note how

we take advantage of the property in Equation D.3 to write a closed form of the joint

probability P(x, y|z, p) = P(y|z)P(x|y, p).

Finally, we can extend the result in Equation D.4 to cover a second property, which

we make extensive use of in our analysis of the IG policy in Section 3.3.3. This relates

the probability of observing a specific new label x with the state of the log-odds z after

adding the new contribution xw:

P(x|z, p) sig(z + xw) = sig(z) sig(xw)
(

1 +
sig(−z) sig(−xw)

sig(z) sig(xw)

)
sig(z + xw)

= sig(z) sig(xw)
(

1 + exp(−z − xw)
)

sig(z + xw)

= sig(z) sig(xw)

(D.5)

where the first equality comes from the definition of P(x|z, p) in Equation D.4, the

second from the relationship with the log-odds in Equation D.2, and the third from the

definition of the sigmoid function in Equation D.1.



Appendix E

Existing bounds on a single item

under the plug-in aggregator

The existing literature contains three different upper bounds on the probability of a

classification error on a single item with the plug-in aggregator. However, these bounds

are qualitatively different from our result in Theorem 4.1, and so a direct comparison

is not straightforward. In this appendix, we translate them to our notation and present

their properties.

Let us begin with the first bound proposed by Berend and Kontorovich (2015) as The-

orem 11*.1 The corresponding statement reads as follows:

Theorem E.1. Let 0 < δ < 1 and 0 < ε < min(5, 2Φ/|N |) where Φ =
∑

j∈N (pj −
1
2) log

(
pj/(1− pj)

)
. If the following holds:

|Oj |min(pj , 1− pj) ≥ 3

(√
4ε+ 1− 1

4

)−2

log
(4|N |

δ

)
for all j ∈ N (E.1)

then we have:

P
(
ŷ 6= y|p, p̂, q =

1

2

)
≤ δ + exp

(
− (2Φ− ε|N |)2

8Φ

)
(E.2)

We can easily spot a major difference with respect to our result in Theorem 4.1: the

bound in Equation E.2 contains a extra addend δ. This term can be explained as a

measure of how much the estimates p̂ are close to their ground-truth values p. We can

see why in Equation E.1. The more observations |Oj | we have on the trial items, the

smaller we can choose δ without breaking the inequality therein. This means smaller

values of δ correlate with a more accurate estimate p̂j .

1We use the superscript (*) to refer to theorems and equations in other papers.
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A second difference is that the bound in Equation E.2 decreases according to Φ. This

quantity measures how informative is the set of predictorsN , and depends on the ground-

truth accuracies p. Adding more predictors to the set N guarantees a larger value of

Φ, and consequently a stronger bound. However, as we add more and more predictors,

Equation E.2 converges to its lowest value δ. Therefore, even with an infinite num-

ber of very informative predictors, this bound still predicts a non-zero probability of a

classification error.

In contrast our result in Theorem 4.1 depends on the estimates p̂ and does not have

a constant addend. As a consequence, it remains consistent and informative even with

a large number of predictors, or noisy estimates p̂. In fact, the latter condition would

induce a large value of δ here, making the bound in Equation E.2 meaningless.

Let us move now to the second bound proposed by Berend and Kontorovich (2015) as

Theorem 13*. If we translate the original statement to our notation, we have:

Theorem E.2. Choose any δ ≥∑j∈N 1/
√
|Oj |, and let E be the event that:

exp
(
− 1

2

∑
j∈N

(p̂j −
1

2
)ŵj
)
≤ δ

2
(E.3)

then the following holds:

P
(
E ∧ ŷ 6= y

∣∣p, p̂, q =
1

2

)
≤ δ (E.4)

Here, the quantity δ is again linked to the accuracy of the estimates p̂. In fact, when we

can test each predictor j ∈ N on a larger number of trials, the corresponding contribution

1/
√
|Oj | will be smaller. In contrast with the previous result in Theorem E.1, δ alone

represent the upper bound on the probability of an error. The introduction of the event

E in Equation E.3 is meant to ensure that the estimated version of Φ provides enough

informative power.

Unfortunately, the bound in Theorem E.2 is not consistent in the number of predictors

|N |. That is, the more predictors we have, the worse the bound becomes. To see why is it

so, let us perform the following thought experiment. First, note that when event E fails,

we are left without a bound. Thus, let us build the best-case scenario and assume that

event E does always happen. Under this condition, we can minimise the upper bound

in Equation E.4 by choosing δ =
∑

j∈N 1/
√
|Oj |. Now, if we add one more predictor j∗

to our current set N , the value of δ must increase by 1/
√
|Oj∗ |. Accordingly, the bound

in Equation E.4 becomes less strong by the same amount.

Conversely, our result in Theorem 4.1 is consistent in the number of predictors |N |.
That is, each new predictor makes our upper bound closer to zero. The only exception

being when the estimate p̂j is wildly different from its ground-truth value pj .

Finally, let us consider the bound proposed by Gao et al. (2016) as Theorem 4.1*.
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Similarly to the known accuracy case (see Appendix A), the results in this paper are

somewhat obfuscated by the authors’ notation. Thus, we present here a digested version

of their bound, using our notation:

Theorem E.3. Assume that, as the number of trials increases, i.e. |G| → ∞, we have:

P

(∑
j∈N

max
(
|log(p̂j)− log(pj)|, |log(1− p̂j)− log(1− pj)|

)
> δ

)
→ 0 (E.5)

with δ = o
(
I(p)

)
, where I(p) = 1

2

∑
j∈N log

(
4pj(1− pj)

)
. Then, we have:

P
(
ŷ 6= y|p, p̂, q =

1

2

)
≤ exp

(
−
(
1 + o(1)

)
I(p)

)
(E.6)

At first glance, Equation E.6 seem to state that the probability of an error is asymptoti-

cally identical to the known accuracy case of Remark 3.2. In fact the quantity exp
(
I(p)

)
is nothing but the term

∏
j∈N 2

√
pj(1− pj) therein. However, let us not forget that the

condition imposed in Equation E.5 guarantees that the estimates p̂ are close to their

ground-truth value p. Under this light, the result in Theorem E.3 is not surprising:

it merely states that the performance with accurate estimates p̂ is close to having the

actual ground-truth p in place.

At the same time, when the condition in Equation E.5 is not met, the o(1) term in

Equation E.6 is not negligible anymore, and we are left without a bound. In contrast,

our result in Theorem 4.1 holds for estimates p̂ of any kind, as long as they do not reach

the extremes of the interval (0, 1).

In summary, all three bounds in Theorems E.1, E.2 and E.3 are derived under some

restrictive assumption. Because of that, they either exhibit some unappealing properties

(non-convergence, non-consistency), or do not cover the general case (noisy estimates of

p). This fact, makes them qualitatively inferior to our bound in Theorem 4.1.





Appendix F

The Beta distribution as a prior

on the predictors’ accuracy

Throughout our discussion in Chapters 3 and 4 we assume to have some knowledge on

the underlying distribution of the predictors’ accuracy fp. Still, except for some specific

examples, we keep our results general and do not restrict fp to any specific distribution.

In this appendix we do the opposite, and show what happens when we constrain fp to

be a Beta distribution.

The reason for this choice is twofold. First, some of the theoretical results we present

in Chapter 4 can be expressed in closed form when fp is set to be a Beta distribution.

Second, the Beta distribution is the conjugate prior of Bernoulli random variables. This

makes it the most natural distribution to model the distribution of the predictors’ ac-

curacy pj . In fact, such choice is standard in Bayesian modelling (Murphy, 2012) as it

often yields an analytical form to otherwise intractable expressions.

As an example, let us take the upper bound on the performance of the UNI policy for

the known accuracy case in Equation 3.27. If we assume that fp = Beta(α, β) for any

choice of the parameters α, β > 0, the expectation over pj at its core becomes:

Epj∼fp
(√

pj(1− pj)
)
≡
∫ 1

0

√
pj(1− pj)P(pj |fp)dpj

=

∫ 1

0

√
pj(1− pj)

(pα−1
j (1− pj)β−1

B(α, β)

)
dpj

=
B
(
α+ 1

2 , β + 1
2

)
B(α, β)

(F.1)

which is a closed-form expression based on the beta function B(a, b) ≡
∫ 1

0 u
a−1(1 −

u)b−1du.

While the result in Equation F.1 gives us a taste of the analytical properties of the Beta
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prior, its role really comes to the fore when we apply it to our bounds for the unknown

accuracy case in Chapter 4. There, we assume that each predictor j is tested on a set

of trial items G with known ground-truth g. If we assume that fp = Beta(α, β) we can

write the probability of observing the outcomes Oj on G in closed form. Let us define

the corresponding number of successes vj ≡
∑

k∈G I(okj = gk). Then, we can write the

following equivalence:

P(Oj |fp, g) =
B(vj + α, |G| − vj + β)

B(α, β)
(F.2)

In this regard, the quantities vj +α and |G|− vj +β are often referred to as the pseudo-

counts (Murphy, 2012), as they measure the (adjusted) number of successes and failures

respectively. When computing a value for the estimate p̂j , these pseudo-counts are the

only variables that matter. In fact, under our assumptions the expected value of the

posterior on the ground-truth accuracy pj is p̂j = (vj + α)/(|G| + α + β). As a result,

we are often interested in the probability of observing a specific number of successes

vj . Since vj depends solely on Oj , we can extend Equation F.2 and derive the following

expression:

P(vj |fp, |G|) =

(|G|
vj

)
B(vj + α, |G| − vj + β)

B(α, β)
(F.3)

where the binomial coefficient takes into account all the possible permutations of the

successes vj over the vector Oj .

Thanks to Equation F.3 we can derive the closed form of the expectations in the bounds

of Corollaries 4.4, 4.5, 4.8, 4.9 and Theorem 4.7. In order of appearance, we have:

Ep̂j |fp,g
(√

p̂j(1− p̂j)
)

=

|G|∑
vj=0

P
(
vj |fp, |G|

)(√(vj + α)(|G| − vj + β)

|G|+ α+ β

)
(F.4)

Ep̂j |fp,g
(

log
(
4p̂j(1− p̂j)

))
=

|G|∑
vj=0

P
(
vj |fp, |G|

)
log

(
4(vj + α)(|G| − vj + β)

(|G|+ α+ β)2

)
(F.5)

Ep̂j |fp,g
(
|ŵj |

)
=

|G|∑
vj=0

P
(
vj |fp, |G|

)∣∣∣∣ log

(
vj + α

|G| − vj + β

)∣∣∣∣ (F.6)

Ep̂j |fp,g
(
(2p̂j − 1)ŵj

)
=

|G|∑
vj=0

P
(
vj |fp, |G|

)
(

2vj − |G|+ α− β
|G|+ α+ β

)
log

(
vj + α

|G| − vj + β

)
(F.7)

Incidentally, the results in Equations F.3, F.4, F.5 and F.6 can be used to compute

the value of the constants ĉuni, ĉnada and ĉada we introduce in Section 4.4. For more

examples of the use of the Beta distribution as a prior, see our discussion on the SBIC

algorithm in Chapter 5.
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