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UNIVERSITY OF SOUTHAMPTON

ABSTRACT
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Doctor of Philosophy

by Ahmed A. Mubaraki

Epilepsy is a neurological disorder that is characterised by repeated seizures. The sudden

onset of a seizure affects a patient’s quality of life. Therefore, predicting an epileptic

seizure in advance can improve their life by giving them warning and thus avoiding

serious accidents. In this work, two general prediction models are formulated using the

electroencephalography (EEG) signals of patients with Temporal Lobe Epilepsy (TLE)

and Absence seizures.

EEG is the most common technique to map brain functions. Studying brain functions

and how the brain regions interact is essential to understand the basis of several neu-

rodegenerative diseases. Functional brain connectivity, as derived from multichannel

EEG, is currently used as a tool to understand how the various brain regions interact

with each other during a cognitive task. Researchers started to study the functional

brain network by analysing the EEG data captured. Because of the high level of syn-

chronization observed during a seizure, synchronization measures are logically the best

way to assess the dynamic change in functional brain connectivity.

In the current work, Phase Locking Value (PLV), Phase Lag Index (PLI) and Syn-

chronization likelihood (SL) were used to create functional brain connectivity networks.

The networks were characterized by nine graph-theoretic parameters (assortativity co-

efficient, transitivity, clustering coefficient, strength of node, modularity, betweenness

centrality, characteristic path length, global efficiency and radius). A machine-learning

framework was used to extract the patterns that the patients’ data had in common to

build the prediction models.

Both general prediction models were formulated using PLI and SL connectivity networks.

They achieved sensitivity (both 100%) and a false prediction rate of 0.00001/h and

0.01/h, with a maximum prediction time of 19 and 40 minutes, respectively.
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Chapter 1

Introduction

Neurological disorders originate from dysfunction of neuronal system and significantly

affect cognitive and motor functions. They can be broadly categorised into Neurodevel-

opmental disorders – the disorders that are set from childhood and continue throughout

the life, and neurodegenerative disorders that may result from a number of factors, like

brain injury, genetic signature, aging etc. While Autism, Attention Deficit Hyperactiv-

ity Disorder (ADHD) fall within the first category, the diseases in the second category

include epilepsy, Parkinson’s, Alzheimer’s, etc. Out of these disorders epilepsy is par-

ticularly disruptive to a patient’s life as acute epileptic seizures may occur even when a

person is in apparently healthy state. Such seizures may associate with complete loss of

consciousness and muscle stiffening which could be life threatening depending upon the

activity the person is involved at the moment of seizure – imagine a seizure occurs when

a person is driving a car, which will certainly result into a life-threatening incidence. In

the UK, people diagnosed with epilepsy are required to hand in driving licenses (Ser-

vice 2015). Currently about 50 million of people around the world suffer from epilepsy

(Organization 2019).The increasing rates of people with epilepsy make it imperative to

find new methods to diagnose and treat it.

1.1 Motivation

Epilepsy is one of the common neurological diseases affecting the brain and therefore

investigating the brain functions will contribute in developing new techniques for its di-

agnosis and treatment. It is defined as a clinical condition whereby the brain is affected

by repeated seizures (epileptic seizures). These epileptic seizures originate from abnor-

mal electrical activity of neurons. Anti-epileptic drugs are one of the most important

means used to tackle epilepsy. However, approximately one-third of the patients are

not benefited with the use of anti-epileptics (Carney et al. 2011). To diagnose epilepsy

and then find an appropriate treatment, researchers began to study the brain and how

1
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it works. The early detection of the epileptic seizures is necessary in order to prevent

the occurrence of series of these seizures. This early detection helps to deliver the right

intervention at the right time and contribute to develop new methods for treatment.

Although extensive research has been carried out on predicitng the epileptic seizures, no

single model exists that can predict more than one type of epilepsy. In addition, these

models have limitations represented in the low percentages of the sensitivity (the rate

of correct predicting seizures) as in (Li et al. 2013, Aarabi & He 2012)(75.8% and 79.9%

respectively) and high false prediction rate (Iqbal et al. 2015, Cho et al. 2016)(0.38/h

and 0.5/h respectively). Table 1.1 illustrates some of these models with their associated

performance. Our motivation is to develop a novel model that can predict seizure with

high sensitivity and low false prediction rate while maximizing the prediction time for

an impending seizure episode.

Reference of the Model Sensitivity FPR Predicting Amount of
(%) (/h) Time Rate Data Analysed

(minutes) (hours)

Li et al. (2013) 75.8 0.09 49.7 582
Aarabi & He (2012) 79.9 0.17 50 316

Chu et al. (2017) 86.67 0.367 45.3 583
Cho et al. (2016) 82.44 0.5 5 844
Iqbal et al. (2015) 100 0.38 60 -

Table 1.1: Prediction Models with their Associated Performance and Predicitng Time.
FRP refers to False Prediction Rate

1.2 Aims and Objectives

The aim of study is to develop a model for prediction of epileptic seizures using functional

brain connectivity networks in a machine learning framework with low false prediction

rate. The thesis has the following objectives:

• The first objective of the research is trying to predict epileptic seizures for pa-

tients with Temporal Lobe Epilepsy (TLE) by applying each one of the following

functional connectivity approaches (Phase Locking Value, Phase Lag Index and

Synchronization Likelihood) separately.

• Predicting epileptic seizure for patients with other type of epilepsy seizures using

the same three functional connectivity approaches.

• Finally, based on the results of the previous two objectives, a generalized prediction

algorithm will be developed to predict more than one type of epilepsy. It is a new

challenge because the current prediction methods focus only one type of epilepsy.
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1.3 Contribution

The following are the new contributions of this work:

• Two predictive models have been formulated for TLE subjects using Phase Locking

Value (PLV). They achieved high sensitivity (94%, 92%) and low false prediction

rate (0.04/h, 0.03/h) with maximum prediction time 12 minutes. As well as two

predictive models have been formulated to predict the epileptic seizures of TLE

subjects using Phase Lag Index (PLI) and Synchronized Likelihood (SL) with

sensitivity (88%, 87%) and false prediction rate (0.4/h, 0.17/h) respectively. Both

models achieved maximum prediction time 24 minutes.

• For patients with absence seizures, three predictive models have been formu-

lated using the three functional connectivity measures (PLV, PLI and SL). They

achieved high sensitivity (100%, 99%, 99%) and maximum prediction time (41.8

mins, 17.43 mins, 41.9 mins) respectively.

• Finally two general predictive models have been formulated to predict both types of

epileptic seizures using PLI and SL. The first models achieved sensitivity (100%)

and false prediction rate (0.00001/h) with maximum prediction times (5 mins,

19 mins) for TLE and Absence subjects respectively. The second model achieved

sensitivity (100%) and false prediction rate (0.1/h) with maximum prediction time

(5 mins, 40 mins) for TLE and Absence subjects respectively.

1.4 Thesis Outline

Chapter 2 provides the background and a literature review of brain connectivity and

the techniques used to map the brain. It also describes EEG signals and how they are

measured. The various techniques to predict epileptic seizures mentioned in this chapter

have prompted the development of this study’s proposed method, and a description is

provided of its synchronisation approaches (PLV, PLI and SL). The chapter reviews

graph theory and its role in predicting seizures, in addition to the machine-learning

algorithms used in this study. Chapter 3 describes the techniques proposed to predict

epileptic seizures along with the data source used in this work and the pre-processing

procedure steps applied to obtain clean EEG data. Chapter 4 presents and describes

the results of applying the proposed method with the PLV approach to TLE subjects.

Chapter 5 presents the results of formulating predictive models for TLE subjects using

both PLI-based and SL-based brain connectivity networks. In Chapter 6, the three

functional connectivity formulation approaches; PLV, PLI and SL; were again used in

formulating predictive models for patients with absence seizures. Chapter 7 illustrates

the two general predicative models that have been formulated based on the results
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obtained in Chapters 4, 5, and 6. Finally, Chapter 8 provides a conclusion, with reference

to possible future work.



Chapter 2

Literature Review and

Background

To obtain fundamental knowledge about epilepsy that may lead to alternative, more ef-

fective treatment, many studies have begun by analysing brain activity, then the research

has moved in two directions: the early detection of the onset of an epileptic seizure and

its prediction. Methods have been developed to detect the onset of an epileptic seizure,

to give an automatic diagnosis without the need for a doctor’s involvement. Moreover,

knowing in advance that there will be an epileptic seizure improves the quality of a

patient’s life by giving them some warning, enabling them to avoid many of the prob-

lems that arise from its sudden onset. For decades, scientists have worked on developing

methods to predict epileptic seizures. They rely on analysing brain activity using known

techniques of brain mapping (e.g. MRI and EEG) giving patients the opportunity to

minimise the dangers and doctors a chance to schedule the appropriate treatment. Some

of these methods have yielded promising results, yet they have not exhibited the same

level of precision for all patients due to physiological differences.

Studying the prediction of epileptic seizures is more important than the detection, be-

cause they can already be detected by a doctor using proven diagnostic methods, while

predicting them involves observations of sudden or abnormal changes in brain function,

which can contribute in avoiding problems during seizure occurring. Accordingly, the

current study aims to predict epileptic seizures. This chapter provides the essential back-

ground and describes the state-of-the-art techniques used to explore brain connectivity.

Existing methods of predicting epileptic seizures using EEG are also discussed. Phase

synchronisation phenomenon between EEG electrodes, which is considered to be one of

the most common approaches to capture brain synchronisation, especially in epilepsy,

is described. Finally, the fundamentals of graph theory are reviewed, with its potential

for its application in analysing the brain connectivity network for prediction of epilepsy.

5



6 Chapter 2 Literature Review and Background

2.1 Epilepsy

Epilepsy originates from uncontrolled synchronisation of neuron populations. It is clas-

sified by type of seizure: partial epilepsy; or generalised epilepsy. Each is identified by

characteristics such as the seizure’s origin and the associated symptoms (Fisher et al.

1997). In partial (focal) epilepsy, the seizure begins in one hemisphere of the brain and

is not usually accompanied by loss of consciousness. In contrast, generalised epilepsy

spreads to all parts of the brain, and this type is usually hereditary. It is accompanied

by loss of consciousness (Fisher et al. 1997). Partial epilepsy can be simple, without

loss of consciousness, or complex, accompanied by a loss of awareness, while generalised

epilepsy can be one of several types. An absence seizure, characterised by loss of con-

sciousness without convulsion, lasts for only a short time (2 to 10s). Atonic-clonic seizure

is another type, and it lasts from one to 10 minutes. It is characterised by sudden muscle

limpness and can be accompanied by body stiffening, as in the tonic seizure type. This

last type, tonic seizure, lasts less than 20 seconds. In the myoclonic seizure type, muscle

jerking can occur.

Figure 2.1: It is illustration of EEG signals captured by electrodes; the red vertical
dotted line refers to seizure onset

The types of epilepsy vary in terms of their duration, symptoms and place of origin.

The epilepsy may be linked to a specific region in the brain, as in the case of tem-

poral lobe epilepsy. One of the most important symptoms associated with epilepsy is

recurring seizures. However, not all seizures signify epilepsy, as other causes may be

responsible, such as brain injury or lack of oxygen at birth. The seizures are certainly

the chief problem associated with epilepsy, and they occur suddenly. They endanger the
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patient, especially when exercising, driving a car or performing similar activities. Fig-

ure 2.1 presents the brain activity of a patient with temporal lobe epilepsy, as captured

by EEG signal. The vertical axis shows the channel name, and each of them refers to

the region of the brain where the EEG signal was captured. The horizontal axes repre-

sents the capture time of that signal. The dashed red line represents the onset of the

epileptic seizure. During the epileptic seizure, the brain regions synchronise with each

other uncontrollably, starting to work together at the same frequency. Although various

techniques could be used to predict an epileptic seizure the fact that its origins are in

the synchronisation of regions of the brain could be exploited to provide early warning

by capturing this abnormal synchronisation. The direct way to measure it is through

functional brain connectivity network analysis.

2.2 Brain Connectivity

The human brain is divided into regions, composed of neurons, and each region is re-

sponsible for conducting a particular task. The brain connectivity network, in essence,

illustrates how the brain regions are connected and interact when a specific task is

performed. Brain connectivity can be classified as: functional connectivity; structural

(physical) connectivity; or effective connectivity (Figure 2.2) (Niso et al. 2013). The

usual ways to capture brain data for formulating various types of brain connectivity

networks are MRI and its variants, and EEG. These are described in the following sub-

sections.

2.2.1 Structural connectivity

Structural (anatomical) connectivity refers to the physical connections that link the

various brain areas. These can be synaptic contact between the neurons, or what can

be described as white matter tracts (sets of fibre tracts). MRI is employed to map

the brain’s structure, and it uses the interaction between radio waves and magnetic

fields to create a detailed image of the brain’s structure. A variant of MRI, diffusion

MRI (dMRI), can be used in conjunction with the technique of tractography to find the

white matter tracts (Sporns 2010) between different brain regions.

2.2.2 Functional connectivity

Functional connectivity refers to the temporal correlation of the interaction between

brain regions, which are spatially connected/distributed (Friston 2011). It can be cal-

culated by determining the extracted phase synchronisation between them. The various

methods to measure it in the brain depend on specific techniques such as EEG and func-

tional MRI (fMRI). Functional connectivity can be calculated at the cortical level, as
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well as at scalp level. At the cortical level, it can be extracted using fMRI to detect the

change in oxygen level in each region, based on Blood-Oxygen-Level-Dependent (BOLD)

signals. The technique produces a map showing which parts of the brain are involved in

a particular task. At the scalp level, functional connectivity is calculated using EEG by

measuring the electrical activity in the brain regions as they interact. Using electrodes

(metal discs) placed on the scalp, it picks up the signals resulting from brain cell firing.

Functional brain connectivity is usually represented as a graph with brain areas as nodes

and the strength of their correlation as the arcs.

2.2.3 Effective connectivity

Effective connectivity refers to the measures of the causal (directional) influences of the

brain regions, building up a directed graph whose links represent the direct effects of each

region on another. Effective connectivity can map the brain using the same techniques

as in functional connectivity formulation, such as EEG and fMRI. The existing methods

to calculate effective connectivity are mainly Granger causality or model-based dynamic

causal modelling (DCM) (Niso et al. 2013).

Figure 2.2: Three types of brain connectivity (redrawn from (Sporns 2007)).

Generally speaking, structural connectivity, the measurement of which involves the MRI

technique, is not time dependent, as its temporal changes are slower than those of func-

tional connectivity. The change of structural connectivity can occur due to brain injury

or acquired experiences during ageing (Scholz et al. 2009). MRI to map the brain’s

structure has excellent spatial resolution, which means that they relate to physical lo-

cation (the whole brain). Consequently, the fMRI technique used to measure functional

connectivity has extremely high spatial resolution and can thus record signals from all

parts of the brain. It is considered to be a safe technique to estimate brain function with

no risk involved (non-invasive). Its drawbacks are its substantial cost and the fact that

patients must lie down and not move at all if a clear image is to be obtained. Moreover,

fMRI depends on the BOLD method for measuring activated areas in the brain, and

therefore is slow to respond to neural activity (seconds after the activity). Therefore,

its time resolution is worse than EEG.
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EEG can estimate the dynamic change in brain function in milliseconds, therefore it has

a high temporal resolution. However, its spatial resolution is low, as it records signals at

the scalp and cannot distinguish precisely which activated regions are being captured by

an electrode. On the other hand, effective connectivity provides the correlation between

two regions and at the same time identifies which affects the other. These properties

are extremely effective in the diagnosis of neurological diseases such as epilepsy, where

determining the origin of the seizure and how it spreads is paramount. However effective

brain connectivity is formed either with fMRI or EEG data, and therefore suffers either

the spatial or temporal resolution problem as functional brain connectivity.

The study of brain connectivity is the first step for specific methods aimed at diagnosing

epilepsy and finding the appropriate methods with which to predict the occurrence of

epileptic seizures. During such seizures, a high level of synchronisation among the regions

of the brain is observed due to the abnormal firing of neurons. Calculating functional

connectivity is the most appropriate way to capture this type of synchronisation, and the

best and most usual technique to measure it, by virtue of its high temporal resolution,

detecting changes in the order of milliseconds, is EEG (Noachtar & Rémi 2009). It also

involves lower cost than fMRI and is also non-invasive. Apart from being cheaper, EEG

is portable, so it can capture brain activity even outside the clinic, making it the logical

choice for developing a prediction method. In the next section, EEG’s measurement of

the electrical activity of the brain is discussed in detail.

2.3 Electroencephalography (EEG) and brain waves

EEG is a non-invasive system to measure the electrical response of the brain. It uses

electrodes to pick up the small electrical signals resulting from brain cells firing. These

electrodes are metal discs (sensors) placed on the a subject’s scalp, arranged in specific

positions (in a placement system) to record the brain’s signals and display them on

a monitor as channels. The international 10-20 system is the standard approach to

placement, whereby the electrodes are placed at a specific distance of 10% or 20% relative

to four points: naison for the nose position; inion; and the two preauricular points at

the ears (Figure 2.3) (Herwig et al. 2003). Each electrode bears a label consisting of a

letter and number, the letter referring to the part of the brain (e.g. F denotes frontal),

while an even number represents the right hemisphere of the brain and an odd number

the left.

In 1875, Caton was the first to attempt to record brain activity (electrical signals) using

a galvanometer. He did so by placing two electrodes on the scalp of each of a group of

monkeys and rabbits (Caton 1875, Niedermeyer & da Silva 2005). Berger (1924) was

the first to use an EEG machine on a human La Vaque (1999). In 1930, he started to

use the approach with epilepsy patients to determine the patterns that distinguished
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their seizure type, and then this technique of capturing brain activity became widely

adopted, and was soon being used in the diagnosis of many neurological disorders. EEG

is commonly used in diagnosing epileptic seizures, sleep disorders and behaviour change

Noachtar & Rémi (2009). In addition to the conditions mentioned above, EEG is used

to recognise any abnormal patterns in brain waves after injury or before the onset of a

seizure.

Figure 2.3: The International 10-20 System of Electrodes Replacement. It is illustra-
tion of the head from the left and above. The shortcuts of letters refer to the following;
A, ear lobe; C, central; F, frontal; FP, frontal polar; O, occipital; P, parietal; Pg,

nasopharyngeal. ( redrawn from (Sanei & Chambers 2013) ).

Since an EEG signal measured at the scalp is very small, of the order of µV , a differential

amplifier is used to increase its amplitude before processing. The amplifier records

the input of two electrical signals and identifies the difference between them. Next,

a standardised display pattern called montage is used to choose which two electrodes

should be connected to the same amplifier. There are three types of montage: common

reference; average reference; and bipolar (Thatcher et al. 2004). In the first, a common

electrode is used as the reference for all the electrodes, and will usually be one of the

earlobe electrodes (A1, A2) or the Cz electrode at the centre, but this cannot be used

if the participant is asleep because some artifacts waves can be seen in channel Cz

such as saw tooth and sleep spindles which are distributed across all channels(Grigg-

Damberger & Foldvary-Schaefer 2012). The second, the average reference montage,

produces the average of all electrodes values (note: the researcher can choose which are

to be included). In the third, the bipolar montage, the electrodes are linked together in

a sequential pattern from the front to the back of the brain, or even transversely. Its

disadvantage is that cancellation occurs when the activity potentials of the two electrodes

are identical and, as a result, the channel will show as flat.

EEG has an amplitude of around 100 µV when measured at the scalp. Typically, EEG

waves are divided into several frequency bands, as summarised in the following table.
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EEG Band Frequency Range (Hz) Significance

Alpha 8 - 13 Appears in awake adults while
meditating or in a state of re-
laxation

Beta 13 - 30 Appears during daily activi-
ties

Gamma 30 - 42 Related to emotions and feel-
ings such as fear and anxiety

Delta 0.5 - 4 Observed during deep sleep
Theta 4 - 8 Observed in the state of

drowsiness or deep meditation

Table 2.1: Brain waves used with their related frequencies range and significance

2.4 State-of-the-Art Methods for Epileptic Seizure Detec-

tion/Prediction

Several methods have been proposed to detect or predict seizures, using the various

approaches in time, frequency or network domain.

2.4.1 Time Domain

Some research predict or detect seizures by measuring the change in certain features

of EEG signals over time. They use either univariate measures, where a single EEG

signal such as amplitude value is involved, or bivariate measures to check the relation

between two signals, such as correlation. Webber et al. (1996) calculated the amplitude,

slope and curvature of EEG for detecting seizures using an Artificial Neural Network

(ANN) classifier. The method achieved 76% sensitivity with a false prediction rate of

1/h. Gabor (1998) used the spectral features of EEG, also with a self-organising neural

network, and detected seizures with a sensitivity of 92.8% and a false prediction rate

1.35/h. Similarly, Alkan et al. (2005) later used these features for absence seizure detec-

tion, this time with two classifiers (ANN and logistic regression). Petersen et al. (2011)

later used them with Support Vector Machine (SVM) to do the same by checking the

spike of the wave, achieving 99.1% sensitivity and a false prediction rate of 0.5/h.Zandi

et al. (2010) proposed a method exploiting the features of EEG itself. This involved

calculating the positive zero-crossing for a data epoch. It was applied to 3 patients, and

predicted 86% of seizures (sensitivity) in three patients with temporal lobe epilepsy, with

an average prediction of onset of 20.8 minutes and a false prediction rate of 0.12/hr. The

method had varying sensitivity when applied to three channels or five channels (85.7%

and 71.43% respectively) of EEG recording. A seizure prediction method using a combi-

nation of five nonlinear measures (correlation dimension, correlation entropy, noise level,

Lempel-Ziv complexity and largest Lyapunov exponent) to measure the independence
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of two signals was proposed in (Aarabi & He 2012). It attained an average sensitivity of

79.9% and 90.2%, with an average false prediction rate of 0.17 and 0.11/h, respectively

for two seizure prediction periods of 30 and 50 minutes each, tested with 11 patients.

This method involves Intracranial Electroencephalography (iEEG), which requires an

extensive surgical procedure. Iqbal et al. (2015) proposed a prediction method using

two features (entropy and approximate entropy). They used a linear classifier to detect

the pre-ictal (before seizure) and ictal (during seizure), and the predicted seizure onset

ranged from 5 to 60 minutes, and the false detection rate from 0.38/h to 1.00/h. A

method of prediction through detecting the spike rate was proposed in (Li et al. 2013).

It calculates this rate using a morphology filter. It was applied to 21 patients and

achieved a sensitivity of 75.8%, with an average false prediction rate of 0.09/h. It uses

a univariate feature, and this is computed separately for each EEG channel. Although

several univariate measures have been proposed for the purpose, bivariate measures have

shown a more reliable seizure prediction result (Mormann et al. 2005). In addition, in

Li et al. (2013) approach, the accuracy of prediction achieved was low. Le Van Quyen

et al. (2001) used scalp-EEG/video recordings of 23 patients with temporal lobe epilepsy,

checking 18 minutes before the onset of a seizure. Their method is based on measuring

nonlinear similarity. It transfers the signal to the phase information, then calculates the

cross-correlation between them. They achieved an average predicted time to onset of 7

minutes. Relatedly, Ouyang et al. (2007) proposed a method calculating the similarity

of index based on the wavelet transform. A decrease in the similarity of index value was

noted before a seizure. It achieved accuracy of 91%, with a prediction of onset of about

9 minutes. It performed better with data in the beta band (13–30 Hz).

2.4.2 Frequency Domain

The other approach to detecting or predicting a seizure uses the frequency domain.

Such methods filter the signal from the time domain to the frequency domain using

techniques such as Fourier transform (Rubinov & Sporns 2010). A great deal of signal

information is hidden in the time domain, and extracting it is possible only by studying

its frequency. Short-Time Fourier Transform (STFT) and wavelet transform are used

to change the signal to a frequency domain. Wavelet transform appears to solve the

problem of STFT, whereby the use of a fixed size of window affects the resolution

of frequency (Sanei & Chambers 2013). The frequency domain was used by Pradhan

et al. (1996) to detect seizures. They used wavelet transformation features with an ANN

classifier with five patients and achieved 97% sensitivity, with a specificity of 89.5%. The

frequency domain was also used in (Wang et al. 2013) in predicting seizures, this time

using the Lyapunov exponent, where the correlation dimension was extracted from the

wavelet transformation with the K-nearest Neighbour (KNN) classifier. It was applied

to 10 patients and achieved 73% sensitivity, with 67% specificity. Hung et al. (2010)

proposed a method to predict seizures for 11 patients with temporal lobe epilepsy, using
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Discrete Wavelet Transformation (DWT) with the correlation dimension and coefficient.

It achieved 87% sensitivity, with a false prediction rate of 0.24/h and an average of 27

minutes predicted onset time.

2.4.3 Network Domain

The third prediction approach is through the network domain. Its methods try to cre-

ate a brain connectivity network using various connectivity measures. Functional brain

connectivity have been used with EEG to create correlations, and coherence and syn-

chronisation indices. The goal of the work in the network domain is exploring changes in

the network structure in brain. He & Yang (2016) proposed a method to detect seizures

in patients with temporal lobe epilepsy. They used a phase synchronisation index (phase

locking value) to construct the functional connectivity network. The method explored

the features of the network in order to detect seizures, and it was tested with patients

with temporal lobe epilepsy. It showed the difference in the features’ values at seizure,

especially in data in the gamma band. However, the method is limited to detecting the

onset of a seizure. Another study in (Cho et al. 2016) checked the value of PLV of the

data in the gamma band, using Noise-Assisted Multivariate Empirical Mode Decom-

position (NA-MEMD). NA-MEMD filtering algorithm was used to decompose spectral

components from the data, and 21 epileptic children were tested by this method. Two

periods (preitcal and interictal which are the period before and between seizures respec-

tively) were then classified using the SVM classifier, achieving a rate of 83.17%. The

highest PLV was achieved with NA-MEMD, which is considered to be an indicator that

predicts seizures. Graph theory forms the basis of the method for prediction proposed by

Haddad et al. (2014), who used the high correlation between EEG electrodes in voltage

peaks in the delta band. It was applied to 12 patients with temporal lobe epilepsy and

achieved a detection accuracy of 72%, with a false prediction rate of zero and 30 minutes

prediction of onset. Mormann et al. (2000) used phase synchronisation with patients

with temporal lobe epilepsy. It was noted that synchronisation appeared to decrease

prior to a seizure. This study only explored the changes in the phase synchronisation

immediately before seizure and during those periods free of seizures, without making

any predictions. However, it serves as an indicator of the significance of using phase

synchronisation in predicting seizures.

The approach of network was selected in the thesis to develop a predictive model using

functional brain conectivity networks. Table 2.2 illustratres the current methods for

prediction within the three differnt domains. It provides a comparison through providing

the performance of these methods with the patients number and epilepsy type used.

Additionally, it illustrates the maximum predicting time achieved by each method.
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Reference Method Epilepsy
Type

No.of Pa-
tients Used

Description

Zandi et al. (2010) Positive
zero-
crossing

Tmporal
Lobe

3 20.8 mins as
prediction time,
sensitivity of 86%
and FPR 0.12/h

Aarabi & He (2012) Combination
of linear
measures

Focal neo-
cortical
epilepsy

11 Prediction time
50 mins, sensi-
tivity 79.9%, and
FPR 0.17/h

Iqbal et al. (2015) Entropy
and ap-
proximate
Entropy

Intractable
seizures

4 Prediction time
60 mins, sensi-
tivity 100% and
FPR 0.38/h

Li et al. (2013) Spike rate Intractable
focal
epilepsy

21 Prediction time
49.7 mins, Sensi-
tivity 75.8% and
FPR 0.09/h

Le Van Quyen et al. (2001) Nonlinear
similarity

Temporal
Lobe

23 Prediction time 7
mins

Ouyang et al. (2007) Similarity
index

Temporal
Lobe

16 Prediction time 9
mins and sensitiv-
ity 91%

Cho et al. (2016) NA-MEMD
with Phase
Locking
Value

Undefined 21 Prediction time 5
mins, sensitivity
82.44% and FPR
0.5/h

Chu et al. (2017) Attractor
state analy-
sis

Undefined 16 Prediction time
45.3 mins, sensi-
tivity 86.67% and
FPR 0.367/h

Myers et al. (2016) Phase and
Amplitude
Lock Values

Undefined 10 Sensitivity 76.8%
and FPR 0.167/h

Usman et al. (2017) Machine-
learning
methods

Undefined 22 Prediction time
23.6 mins and
sensitivity 92.23%

Alotaiby et al. (2017) CSP and
LDA

Intractable
seizures

24 Prediction time
68.71 mins, sen-
sitivity 89% and
FPR 0.39/h

Table 2.2: Comparison of the current methods of predicting epileptic seizures.

2.5 Functional Brain Connectivity and Prediction

Existing methods to predict seizures take various approaches (time domain, frequency

domain and network domain), but they all have limitations (see Table 2.2). They are
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limited to the prediction of a single type of epilepsy and have low sensitivity. There-

fore, a proposed method has been developed to predict seizures using functional brain

connectivity networks. Three approaches - PLV, PLI, and SL - used to measure the

functional brain connectivity. A description of these three approaches is provided in the

following subsections.

2.5.1 Theory of PLV

PLV is one of the techniques employed to extract the features of functional brain con-

nectivity by estimating the long-range phase synchronisation between two signals – in

the case of EEG, signals captured at multiple electrodes (Lachaux et al. 1999),(Bola

& Sabel 2015). First, both pre-processed EEG signals undergo the Hilbert transform

to calculate their instantaneous phase values, which are subsequently used to establish

the phase difference between them, typically expressed within the range of −π to π.

Mathematically, PLV is expressed as in (Equation 2.1) (Bola & Sabel 2015).

PLVt =
1

N

N∑
n=1

|exp(jθ(t, n))| (2.1)

where, θ(t, n) represents the phase difference between the two signals at time t, and n

denotes the nth trial( the sample number where within each window). PLV value ranges

from 0 to 1, signifying the range from no synchronisation to perfect synchronisation. As

PLV outputs measures related to time, using it to formulate functional brain connectivity

enables the researcher to analyse its temporal behaviour, which may result in important

features for predicting the onset of an impending seizure. However, a fundamental

problem with PLV is the volume conduction effect, which needs to be considered during

functional connectivity network formulation.

To explain the volume conduction problem, it is has to know how EEG signals are

extracted by the electrodes. EEG can record the dynamic change in brain functions in

milliseconds, and therefore has a high temporal resolution. However, because it records

the signals at the scalp and they pass through multiple layers with different insulator

current, it has low spatial resolution and cannot distinguish where the recorded signals

are being transmitted from. Figure 2.4 shows the nature of propagating electrical signals

from their source through biological tissue. The tissue acts as conductor or insulator, so

a signal can either be propagated through or be reflected out in another direction. This

leads to the problem whereby several electrodes may record a different signal from the

same original impulse. The other challenge is that the amplitude of the electrical signal

decreases with distance from the source of the signal. For more details about PLV, see

(Lachaux et al. 1999),(Niso et al. 2013).
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Figure 2.4: Propagation of signal from source to electrode. CSF refers to the Cere-
brospinal fluid found in the brain.

2.5.2 Theory of PLI

PLI was created by Stam & Reijneveld (2007) to handle these problems of volume

conduction and active reference electrode. It is a measure of the asymmetry in the

distribution of the phase difference between two signals captured from the same source

(common source), which leads to fake correlation. Several active reference electrodes

may share the problem and thus provide further fake correlations (Stam & Reijneveld

2007). The results after PLI are less affected by either problem.

PLI assumes that there is a systematic, nonzero phase lag that reflects the real interac-

tion between two brain sources and cannot be interpreted by volume conduction. This

phase lag can be found by using the asymmetry of the distribution of the phase difference

of the two signals. If the likelihood of phase difference distribution in the interval [0, π]

is equal to the likelihood of the interval [0,−π], which means symmetry distribution,

then the phase difference will be eliminated. This is what is meant by phase difference

centred around 0 mod π. Following is the equation used to calculate PLI value (Stam

et al. 2007)

PLI = |〈sign [∆θ (tk)]〉| (2.2)

∆θ (tk) is phase difference of the time series, where k = 1, ........., N is the sample number

within each window and N is total number of these samples inside each window (the

sliding window used to calculate the connectivity network). PLI values ranging from 0

to 1. One indicates a phase locking value with a phase difference other than 0 mod π.
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Zero refers to either no coupling or coupling with phase difference of around 0 mod π.

Using different montages could be slightly affect the value of PLI.

2.5.3 Theory of SL

From the various generalised measures available, temporal SL is most appropriate to

build a prediction method. It is considered to be the most commonly used with neuro-

logical data (Pijnenburg et al. 2004, Ahmadlou et al. 2012, Rosales et al. 2015). Several

indexes of generalised synchronisation have been proposed, as in (Arnhold et al. 1999),

which relies on the change in the average distance between points from their mutual

and nearest neighbours. This has succeeded in detecting nonlinear dependency between

signals. However, detecting asymmetry interdependency is less easy for this index, as

it is sensitive to signal amplitude, thus any measurement of asymmetry may reflect the

dissimilar degrees of freedom in the two systems used (Arnhold et al. 1999). SL has

been proposed to overcome this problem (Stam & Van Dijk 2002). It relies on detecting

a common pattern occurring simultaneously in two signals. In other words, if one signal

has a pattern of activity, another signal may tend to repeat that pattern at the same

time, so SL measures how strongly one signal (channel) is synchronised at a specific time

to all other signals (channels) (Montez et al. 2006). The equations of SL for two points

i and j for Channel k is defined as follows:

Sk,i =
Hi,j − 1

M − 1
(2.3)

Where Hi,j is the number of channels for closer embedded vectors and M is total number

of channels. If the Euclidean distance |Xk,i −Xk,j | (Xk,i is the embedded vector created

for channel k at time i) is equal or greater than the critical distance εk,i then the

synchronisation likelihood (Sk,i,j) equal zero; otherwise the synchronization likelihood

is calculated from the following equation (Niso et al. 2013).

Sk,i =
1

2 (w2 − w1)

N∑
j=1

Sk,i,j (2.4)

where w1 < |i− j| < w2. This equation measures the SL for Channel k at time point i.

2.6 Graph-theoretic Features of Functional Connectivity

Networks

Once a functional connectivity network is formulated, using PLV, PLI or SL , it can

be represented in the form of a graphical network in which each electrode represents a

node and the edges between two nodes represent the strength of their connection. The
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essential characteristics of such graph networks may be analysed using several graph-

theoretic measures (features) to understand their structural and temporal properties.

These features mainly fall into two categories: network aggregate, such as clustering

coefficient, transitivity, modularity, characteristic path length, and so on, capturing

the properties of the entire network; and node-specific features, such as betweenness

centrality, strength of node, and so on, capturing the connectivity properties of individual

nodes (Rubinov & Sporns 2010). In our study to develop a predictive model for patients

with TLE and Absence seizures, we concentrated on the set of features described below

(Rubinov & Sporns 2010). Table 2.3 illustrates describes the network features used in

the thesis with their mathematical equations.
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2.7 Machine Learning Framework

Machine learning is the part of artificial intelligence responsible for the significant devel-

opment in most new technologies such as robots and self-driving cars (Cortes & Vapnik

1995). It has also been applied to the prediction of epilepsy. Amongst the services it

provides is pattern recognition and decision-making. It uses algorithms to learn from

the incoming data and make decisions. Machine learning can be divided into supervised

learning, such as a classification algorithm, and unsupervised learning, such as cluster-

ing, in which the algorithm tries to find hidden patterns. K-means and k-medoids are

the two clustering algorithms used in this current work. By contrast, classification al-

gorithms learn from the input data provided with class labels. support-vector networks

(SVM) is widely used in two-group classification problems. Each data point in the input,

which is considered a training set for the algorithm, is assigned to one of the classes.

Table 2.4 provides a description of all the classifiers used in this study thesis.

Classifier Name Description

k-nearest Neighbour (KNN) Used for classification and regression. It depends on finding
the nearest k-neighbour to a selected data point, so if k=2
then the selected point will be within the class of the two
nearest neighbours. It is easy to implement and can solve
problems of multiclass.

Decision Tree It is fast and can handle large sets of data. It works by split-
ting the set of input features using the tree model. Complex
Tree was used in the current work.

Random Forest It works as an ensemble of Decision Trees. It selects random
subsets of input features for the decision tree. A prediction
is made by averaging the predictions of each decision tree.

Bagged Tree It is an ensemble of Fine Decision Tree. It is often very
accurate.

Support-Vector Machine
(SVM)

It uses a hyperplane to separate input data points by max-
imising the margin between the classes using the closet
points (support vectors) from each class. One of its ad-
vantages is its resistance to overfitting, and it can work with
a small quantity of data. Linear SVM is used in the current
work, which is linear separation.

Logistic Regression It uses a statistical technique. It is a binary classification
that works by calculating the probability in relation of the
input features to the target class. It is easy to implement.

Linear Discriminant Analysis
(LDA)

It works by creating linear boundaries between classes by
calculating the probability of the input with each class. It
works with multiple classes.

Table 2.4: Description of all the classifiers used in this study thesis
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2.8 Conclusion

In this chapter, different brain connectivity approaches used in studying the brain ac-

tivity have been illustrated. Because of the high level of synchronisation noticed during

seizure, Functional brain connectivity was the most appropriate way to measure it.

Among the functional brain connectivity modalities used - fMRI and EEG - using EEG

was the best technique to measure the synchronisation owing to its high time resolution.

Although, the plenty of predicting methods have been developed using EEG, they have

limitations represented in low senstivity and high false prediction rate (see Table 2.2 ).

In this thesis, functional connectivity with the graph theory have been used to develop a

model that can predict seizures with high sensitivity and low false prediction rate with

maximizing the prediction time.





Chapter 3

Research Methodology

As has been discussed in the previous chapter, there were several prediction methods

developed. However, none of them predicts all types of epileptic seizures with acceptable

accuracy. This is due to the difference between the types of epilepsy in terms of their

origin and the duration of the epileptic seizures. In each type, brain activity varies in

terms of how the brain regions interact for manifested symptoms. Nonetheless, focusing

on one type of epilepsy may give a significant chance of building a robust prediction

method and then it could be generalized for other types of epilepsy. In this work, we

propose models to predict seizures for subjects with Temporal Lobe Epilepsy (TLE)

and with absence seizures. This chapter presents the research methodology adopted

in this work. In essence our methodology is based on finding temporal variation in

the functional brain connectivity networks that serve as features for building predictive

models in a machine-learning framework. Connectivity networks are formed using Phase

Locking Value (PLV), Phase Lag Index (PLI) and Synchronization Likelihood (SL) for

data in each frequency band of the recorded EEG signals. Each of the three approaches

listed above to be used in building functional networks was applied to develop models

for predicting seizures separately. Finally, a general model using the network features

for predicting the epileptic seizures in the three approaches has been formulated.

3.1 Overview of Methodology

The proposed methods are based on creating functional brain connectivity networks

by calculating the synchronization between the EEG signals captured at different EEG

electrodes. A pre-processing step has been applied to the acquired EEG signals in order

to obtain clear data before calculating the functional connectivity networks. Artefacts

and noise have been separated from the data before conducting any analysis. The values

of connectivity represent the weighted edges of the created undirected networks, while

each EEG electrode, which captures electrical activity in a brain region, represents a

23
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node of the networks. The dynamic change in the value of the functional connectivity

is tracked over time by analysing the change in the values of the network features.

A machine-learning framework is used to divide data from extracted network features

into groups that share a specific pattern of network feature values in an attempt to

find a common pattern (group) close to an epileptic seizure shared among the epileptic

subjects. Figure 3.1 illustrates the procedural steps of the proposed method which is

described in detail in the following subsections.

Figure 3.1: The procedural steps of the methodology

3.1.1 Data Collection

Figure 3.2: Electrode replacement and the order of the 16 channels of the 10 healthy
subjects (redrawn from (EEG.Healthy.Schizophrenia 2019))

24 EEG files from 10 adult TLE surgical subjects (right hemisphere origin) were used in

conjunction with 10 healthy subjects (each resulting in 1 EEG data file). The data were

sourced by Southampton University Hospital NHS Trust (SUHT), UK and Fondazione

Stella Maris, Pisa, Italy. The data were collected by the clinicians from the respective
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hospitals as part of regular clinical follow-up, properly anonymized and shared for sec-

ondary analysis only. The data was recorded at a sampling rate of 200 Hz using 20

channels international 10-20 EEG system. The data for the 10 healthy subjects were

obtained from Neurophysiology and Neuro database (EEG.Healthy.Schizophrenia 2019)

that was recorded with 16 channels (F7, F3, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz,

P4, T6, O1, and O2) at a sampling rate of 128 Hz (see Figure 3.2). The seizure record-

ing times of the 10 TLE subjects are shown in the Table 3.1. The table illustrates the

recording time of 24 seizure onsets of 10 TLE subjects from the start of data recording.

A training set of 12 EEG data – six EEG data belonging to four TLE and six EEG data

from healthy subjects - was selected as a training set to formulate the predictive models.

The six EEG data of TLE were selected because they have the most common longest

recording time before seizure, which is 5 minutes.

Patient no. Seizure no. Recording time before seizure (seconds)

1 1 52.9
2 24.1

2 1 75.1
2 70.6

3 1 164.1
2 44.1

4 1 1053.8
2 1444.4
3 739.5

5 1 75.4
2 1801

6 1 44
2 81
3 130

7 1 77
2 20

8 1 58.3
2 29.1
3 26
4 30
5 21

9 1 424
2 549

10 1 344

Table 3.1: Illustration of 24 Seizures Time of 10 TLE Subjects from Start of EEG
Data

On the other side, 32 EEG data belonging to nine patients with absence seizures have

been used. Two of the nine patients had no recorded seizures. The EEG data were

recorded using 22 channels for five patients and 21 for four patients at sampling rate of

200 Hz. Only 19 channels that are in common to all patients were used, as shown in

Figure 3.3.
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Figure 3.3: The 19 channels used with all patients; They are created as bipolar using
the electrodes shown with red circles

The number of seizures detected for each of the seven patients and their minimum

and maximum recording time before seizure onset are shown in the Table 3.2. The

training set was divided into two groups to develop a predictive model. Group 1 contains

nine recording of EEG data of 6 patients while Group 2 has two data with no seizures

recorded. Four minutes of recording time before the seizures was selected to search for

a common pattern. Group 2 of the training set was used along with Group 1 to provide

a comparison regarding the possible abnormal change that might have happened at any

time before the seizure onset.

Patient no. No. of Seizures Used Minimum and Maximum Recording
Time Before Seizure Onset(seconds)

1 5 100 - 929
2 6 201 - 980
3 2 572 - 1225
4 1 67
5 6 247 - 2519
6 7 133 - 800
7 3 192 - 429

Table 3.2: Minimum and maximum recording time before seizure onset for 7 patients
with Absence Seizure. The column three refers to the minimum and maximum time of

all seizures of each patient
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Table 3.3 summaries the amount of data used for each epilepsy type with thier number

of seizures. It illustrates the amount of data analysed before seizures and how much

data have been used as training set.

Epilepsy Type Total Data Data Analysed Data Used Number of
Analysed before Seizure as Training Seizures Used
(hours) (hours) (hours)

TLE 3.9 2 1 24
Absence seizures 16.3 5 3.1 30

Table 3.3: Summary of the amount of data used in the thesis

3.1.2 Pre-processing Data

Pre-processing of the EEG data has been done in MATLAB to remove unwanted noise

and artefacts. A 6th order Finite Impulse Response (FIR) notch filter has been used

to remove 50Hz power line noise and then the signal was low-pass filtered with cut-off

frequency 100Hz to remove high frequency noise. Artefacts were removed using Inde-

pendent Component Analysis (ICA). The resulting EEG signals were then re-referenced

using average referencing approach. The re-referenced EEGs were then broken down

into canonical frequency bands - alpha, beta, gamma, delta and theta (α, β, γ, δ, and θ

respectively) using band pass filtering in the range of [8 13] Hz, [13 30] Hz, [30 42] Hz,

and [0.5 4] Hz, [4 8] Hz respectively. Figure 3-4 illustrates the order of pre-processing

steps applied to EEG data. Next, steps applied to pre-processing EEG data will be

detailed.

3.1.2.1 Artefacts and Noise Separation

First, two types of noises were removed. These noises are power line noise at 50Hz and

high frequency noise. The power line noise was removed by using a FIR notch filter

of 6th order. The other noise to be removed is high frequency. The upper limit of the

frequencies of the human brain waves is 100Hz. Therefore, any frequency higher than

100Hz represents a noise caused by sources of signal other than brain activity. Low-pass

FIR filter with cut-off frequency of 99Hz was applied to remove this noise.

The second noise that needs to be removed is that from artefacts. The process of artefact

removing involves trying to separate the artefacts without distorting the actual EEG

signal. EEG signals captured for brain activity are mixed with other electrical activities

that are derived from different non-brain sources. These non-cerebral-origin electrical

activities are considered artefacts. Such artefacts could stem from inside the body of

the patient (cardiac, muscular and ocular artefacts) or outside the body (equipment).
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Figure 3.4: Pre-processing steps applied to EEG signals

Figure 3.5 presents three types of artefacts: (a) muscular artefacts (EMG); (b) and (c)

eye-blink and lateral eye-movement artefacts (EOG), respectively. Eye blinking produces

ocular artefacts because of the rapid movement. It appears as a slow wave. Meanwhile,

lateral eye-movement artefacts originate because of the horizontal movement of the eye,

which can be noticed in the frontal electrodes such as F7 (odd numbers represent the

left side of the brain).

Over the past years, many algorithms and methods have been proposed to remove all

types of artefacts, such as ICA. In general, all algorithms apply either filtering and

regression or decomposing (separating) data. The drawback of the algorithms using

regression fail if there is no reference channel, such as a channel recording muscular

movement (Islam et al. 2016). On the other hand, decomposing separates EEG data

into components and then removes artefacts from each of the components. Blind source

separation (BSS) is an example of a separation method, which is considered one of the

most common methods used (Urigüen & Garcia-Zapirain 2015). It is used to divide data

into spatial components. Figure 3.6 illustrates the main principles of BSS work.

ICA is the BSS method mostly used by researchers to separate artefacts (Naik & Ku-

mar 2011). ICA separates multichannel signals into independent components, assuming

that these components are non-Gaussian signals and statistically independent (Sweeney

et al. 2012). It works by seeking maximally independent sources (Crespo-Garcia et al.

2008). Equation 3.1 illustrates the general model of ICA as obseved data or matrix

decomposition (Coben & Evans 2010, Lu et al. 2019).
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(a)

(b)

(c)

Figure 3.5: Examples of three types of artefacts. (a) muscular artefacts. (b) eye blink
artefacts (c) lateral eye movement artefacts(redrawn from (Marella 2012))

X = AS where xi(t) =
n∑

i=1

aisi(t) (3.1)
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Figure 3.6: Illustration of the technique of blind source separation, where S represents
a linear mixture of sources, N the white noise, and W an uncorrelated mixture of
components estimated from a mixture of A sources (redrawn from (Islam et al. 2016))

where i = 1, ......., n (n is the total number of signals) and si(t) represents the statistically

independent ith signal at time t. x(t) is the observed signals which are mixture of

sources S (different signals representing the brain activity with other artefact sources)

captured by electrodes. Each electrode has a different mixture of sources. A in the

equation represents the unknown mixing matrix (a BSS principle that estimates the

sources without information of source signals). ICA decomposes signals by finding the

maximally independent sources of activity in the brain (eye movement and muscular

artefacts are examples of these activities, two sources said to be statistically independent

if each source does not provide information on the other) (Naik & Kumar 2011).

In the present work, Principal Component Analysis (PCA), a decomposing method, has

been used to make a comparison with ICA to assess the efficiency of the ICA method.

PCA uses orthogonal transformation to extract uncorrelated components (principal com-

ponents). Its separation method is based on maximising the variance of the orthogo-

nal transformation, in contrast to ICA (which maximises non-Gaussian (normality))

(Tibaduiza et al. 2012). Figure 3.7, (a) represents EEG signals with artefacts, while

(b) is a representation of the clear signals, showings how clear a signal is after apply-

ing the ICA method. The Y-axis shows the channel names while the x-axis shows the

time in seconds. FastICA has been used to apply ICA. It is a popular ICA algorithm

characterised by finding the maximally non-Gaussian components (Hyvarinen 1999).

For comparison Figure 3.8 shows the application of the PCA method to the same EEG

signals. It can be seen in (b) that EEG signals still contain artefacts compared to ICA.

Therefore, ICA has been selected to remove artefacts in the proposed method.

At this point, the EEG signals have been cleaned of noise and artefacts. As a next step,

the clean EEG signals will be re-referenced and then filtered into different brain waves.

3.1.2.2 Re-referencing EEG Data

EEG scalp recording uses the technique of a differential amplifier in producing channels.

It uses the difference between two values of two electrodes to produce channels. One of
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(a) EEG Signals with Artefacts

(b) EEG Signals without Artefacts

Figure 3.7: Illustration of artefact removal using ICA. (a) EEG signal with artefacts
(b) clear EEG after ICA was applied

the two electrodes is an active electrode and the other is the reference. Choosing the

best reference depends on the purpose of analysis. The reference has a direct impact

on the functional network studies (Huang et al. 2017). Different examples of references

include the left mastoid reference (LR), which uses the right earlobe as a reference,

and linked mastoids(LM), which is an average of both earlobes. The Average Reference

(AR) is another choice of reference, which concerns the average value of all electrodes.

Using LR as a reference reduces the amplitude of the signals captured at electrodes,

especially those which are close to the reference, while using the linked earlobes will

avoid any asymmetry produced by the LR reference. The AR avoids the asymmetry

from LR and LM references. AR is the best choice with respect to analysis based on

correlation or synchronisation, as it will avoid any unwanted correlation made by the

reference activity (Dien 1998). As a result, the common average was applied to EEG

data. All pre-processing steps have been carried out using MATLAB as a framework,

which provides an integrated environment for all functions needed to analyse EEG data.
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(a) EEG Signals with Artefacts

(b) EEG Signals without Artefacts

Figure 3.8: Illustration of artefact removal using PCA. (a) EEG signal with artefacts
(b) clear EEG after PCA was applied

This, in turn, facilitates the process of analysis.

After re-referencing step, the signal was filtered into five different frequency bands. FIR

band pass filter was applied to EEG signals using pass band edges of [8 13] Hz, [13 30]

Hz, [30 42] Hz and [0.5 4] Hz, and [4 8]Hz with cut-offs frequency [7 14] Hz, [12 31] Hz,

[29 43] Hz, [0.4 5] Hz, and [3 9] Hz for alpha, beta, gamma, delta and theta respectively.

Filter order was automatic assigned by EEGLAB.

3.1.3 Network creation and parameters extraction

Most of the current methods proposed to predict seizures use univariate measure while

some use bivariate measures. Regardless of which one can predict better (Yadollahpour

& Jalilifar 2015), it is known that the most significant phenomenon noticed during

seizure is the high level of uncontrolled synchronization between brain regions. As a
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result, detecting this synchronization may provide a better predictive result. Here,

undirected weighted functional brain connectivity networks have been constructed using

PLV, PLI and SL at each frequency band using 1s sliding window from the start of the

data to the point of clinical onset of seizures. In these created networks, each EEG

channel represents a region of the brain wherein electrical signals are captured. These

brain regions represent the nodes of the network. Meanwhile, the value of calculated

functional connectivity represents the weighted edges of the network. Figure 3.9 shows

an example of creating undirected weighted network of PLV using 21 channels.

Figure 3.9: Functional connectivity created using phase locking value (PLV) for 21
channels. The colour bar illustrates how strong PLV value is

Subsequently, the created networks are characterised using a set of graph-theoretic fea-

tures, such as described in Chapter 2. They are used to characterise the dynamic change

in the brain network structure, wherein the prediction of epileptic seizures is made based

on the variation in the network structure. Some of the graph-theoretic parameters de-

scribe the property of the entire network, such as characteristic path length, global

efficiency, and transitivity. Meanwhile, other parameters describe a specific node in

the network, such as betweenness centrality. For more details of the graph-theoretic

parameters and how they are calculated see Table 2.3.

The big question is how the temporal variation of connectivity networks is captured.

A sliding-window technique is used to find the temporal variation. This approach is

used with most detection and prediction problems to find out features of continuous

data (Esteller et al. 2001). In the proposed method, a sliding window of 1-second
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duration with overlapping is used to create subsequent sliding windows. Two overlapping

values were used in the current work, one sample of samples contained within 1 seconds

(for example, sampling rate of 200 Hz has 200 samples within each second) and 50%

overlapping. For each window, the functional connectivity value is calculated to create

a network. Figure 3.10 illustrates how the approach of sliding window is used with

one sample overlapping to capture the temporal variation. The red rectangles represent

windows of fixed length (1s). While t refers to the starting time of window, that equal

the sample number for t = ti, t(i+1), . . . . . . . . . .., t(i+n) , while n is the total number of

samples. For every time window for each canonical band, a functional connectivity

network is created. αNi refers to the created functional connectivity network for alpha

band of window i. As a result, the temporal variation will be presented as consecutive

number series of windows. Each created network is characterized by extracting its

features using several graph-theoretic parameters. All values of features of the networks

will be used to describe the structure of each network, which changes over time. The

set of features of each network will be used in clustering. The clustering algorithm will

divides the set of networks based on their features into clusters. Each network is assigned

to a specific cluster based on its features values.

Figure 3.10: Sliding-window approach to calculate functional connectivity for four
different frequency bands; t is the starting time of window, ti is the sample number
within the network of ith window , i = 1, 2, . . . . . . .n where n is the total number of

windows. αNi is network calculated for alpha at ith trial
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3.1.4 Approach for Formulating Predictive Algorithm

The temporal dynamics of the graph-theoretic parameters for the created networks were

used in a machine-learning framework to develop the target model. Clustering techniques

were used to find the hidden structure (pattern) inside the data by segmenting data into

clusters in which elements in the same cluster are more similar to each other than

elements in other clusters. Figure 3.11 is an example of clustering a set of networks with

specific feature values extracted from EEG signals. Since all created networks have been

clustered (P1, P2 and P3) based on their features, each network is assigned to one of

these three clusters.

Figure 3.11: Clustering the extracted features from EEG data before seizure onset
time into three clusters; each circle represents a window of created connectivity network

with 1 seconds length

Figure 3.11 shows three groups of graph-theoretic parameters belonging to three created

networks. The variation inside each red circle refers to the EEG signals within 1 second

were used to create the functional connectivity network and then characterised using

graph-theoretic parameters. These groups are three different clusters where each cluster

is composed of a different pattern of network feature values. The cluster which appears

close to seizure onset could be a sign of abnormal change happening before seizure. This

features space clustering is applied to different patients to see which cluster they share

and its time of occurrence for each patient. Finding a shared cluster close to seizure for

all patients, indicates a common change occurring before seizure. This change may start

early and at different time points for different patients. As a result, using clustering will

help in formulating a prediction model. In the current work, k-means and k-mediods

are used to cluster data because they can work with data of a significant size. Before

clustering data, it is necessary to normalise the features. Normalising is used when

features have different units or when one or more features has a large variance value

compared to the other features. Normalising is used to prevent certain features which

have large variance values compared to other features, dominating distance measures,
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(e.g. the Euclidean distance measure) (Suarez-Alvarez et al. 2012). Therefore, the

features were normalised so that their values were between zero and one. Equation 3.2

has been used for normalising features:

outputnorm =
(A−max(A)

(max(A)−min(A))
(3.2)

where A represents the matrix or vector of feature, and min(A) or max(A) represent

the minimum or maximum value of all matrices respectively. Next, the idea of the two

clustering algorithms (k-means and k-mediods) is described.

3.1.4.1 K-means and K-mediods Clustering Algorithms

The k-means is one of the unsupervised learning pattern recognition approaches. It

depends on dividing data into groups after providing the number of clusters as prior

knowledge. It starts by randomly defining the centroid points which equal the number

of clusters predefined. Then it seeks to calculate the distance between each data point

(observations) and each centroid using one of the distance measures. Euclidean is one

of the common measures used (Shahid et al. 2009). The k-means clustering technique

works iteratively by assigning each data point to the cluster of which the distance value to

its centroid is the smallest. In other words, it measures the dissimilarity between data

vectors (sets of extracted features). Therefore, it tries to minimise the cost function

iteratively. Equation 3.3 (Kassambara 2017) illustrates the cost function of cluster uj

which represents the sum of squared distance of the data points to their centre points in

the selected clusters. µj is the mean of the elements of jth cluster(centroid point) while

xi is ith data point wanted to calaculate the distance between it and µj .

Cost function(uj) =
∑
xi∈j
‖xi − µj‖2 (3.3)

On the other side, K-mediods work in a similar way to k-means but the centre points in

the clusters are used as mediods. They minimise the sum of dissimilarity compared to

the k-means, which minimise the sum of the Euclidean distance. This makes it robust

against outliers and noise (Arora et al. 2016).

Choosing the optimal number of clusters is a big issue; some algorithms must be pro-

vided with number of clusters as prior knowledge, such as k-means. Unfortunately, the

optimal number of clusters is subjective, and depends on the distance measure and the

parameters used in each clustering algorithm. Three common methods are used to cal-

culate the optimal number of clusters: the elbow method, the silhouette method, and

the gap statistic method.
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The elbow method is one of the methods used to select the optimal number of clusters.

This method compares the average of all points of variance within the same cluster to

another cluster. The process chooses the optimal number based on the average value of

the total variance within that cluster. Thus, choosing the optimal number of clusters

will be at the point when the average value of the following cluster does not show any

reduction. If the average value at each cluster is plotted, the number of clusters is

chosen at the point where a knee or sharp angle is shown. The elbow method does

not always identify the optimal number and can fail to show any elbow. Therefore,

checking different methods is necessary to assess data and know if they can be clustered.

On occasions, the elbow method does not give a clear result (ambiguous). Therefore,

the average silhouette could be another choice when it comes to verifying the optimal

number of clusters (Rousseeuw 1987).

The silhouette of data observation instance is the measure of how similar an observation

is to other data observations in the same cluster, and the extent to which the observa-

tion instance (the set of features values for one connectivity network) is dissimilar to

the neighbouring cluster. The method works by calculating the average silhouette at

different numbers of clusters (Equation 3.4) (Han et al. 2012):

Si =
b(i)− a(i)

max(a(i), b(i))
(3.4)

where a(i) is the average dissimilarity of point i to all points in the same cluster, which is

calculated using a distance measure. Moreover, b(i) is the minimum average dissimilarity

of point i to all other points in the neighbouring cluster. After trying different clusters,

the method chooses the neighbouring cluster that provides the smallest similarity. The

silhouette value is between -1 and 1. If the silhouette value close to 1 means that the data

observation instance is in the correct cluster, while a value close to -1 suggests that the

data observation instance is in the wrong cluster. Rescaling features before calculating

the silhouette could help to maximise the value of the silhouette at the correct number

of clusters (Kaufman & Rousseeuw 2009).

The third method used to obtain the optimal number of clusters is the statistical gap.

This method differs from previous methods, which depend on a null hypothesis. It starts

by creating different numbers of random samples from original data. The value of the

within sum square (similarity) is calculated for both sets of data – namely original and

random samples – at different numbers of clusters. The statistic gap represents the

deviation of the within-cluster sum-square value of the original data from value of the

random samples. The optimal number of clusters will be chosen based on finding the

smallest cluster k where the gap value at cluster k + 1 is larger or equal. This can be

calculated as follows (Kassambara 2017):
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Gap(k) =
1

B

B∑
b=1

log(W ∗kb)− log(Wk) (3.5)

where Wk is the total variation within cluster k and B the number of random samples.

k = [1, 2, 3, . . . .N ], where N is the number of clusters. W ∗kb is the total variation within

cluster for the corresponding random sample.

Finally, 30 indices, which represent criteria to evaluate the number of clusters have been

used (Caliński & Harabasz 1974). The description of these indices and how they are

used to evaluate the number of clusters can be found in the research conducted in (Liu

et al. 2010). These criteria are used to confirm the optimal number of clusters selected

by the three methods or whether these methods failed to identify an optimal number

of clusters. The optimal number of clusters was chosen based on the common decision

made by these 30 indices. All previous methods have been carried out using MATLAB,

which was provided as an integrated environment for all methods.

3.1.5 Performance Metrics Calculation for Classifier Models

To assess the performance of the created models in the thesis, three performance mea-

sures have been used - sensitivity, specificity, and false prediction rate. They were

calcluated using the metrics of confusion matrix created for each model. Because of the

small number of seizures for each patient, the number of common patterns appearing

was considered in the thesis. On other word,the window based method rather than event

based method was used for measuring detections and the number of ‘events’ (positive

and negative) which are present for the performance metrics calculation. Table 3.4 il-

lustrates the matrix used measure the performance of prediction models. Tge following

are defintions of these metris:

• True Positive: the number of windows correctly identified as common pattern.

• False Positive: the number of windows incorrectly identified as common pattern.

• True Negative: the number of windows incorrectly identified as common pattern.

• False Negative: the number of windows incorrectly identified as non-pattern.

The sensitivity which measures the rate of windows that model has predicted correctly

as common pattern while specificity measures the rate of correct predicted windows as

non-pattern. False prediction rate measures the average number of windows predicted

incorrectly as a common pattern of abnormal change per hour. The following equations

illustrate how performance measures were calculated using the metrics of confusion ma-

trix.
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Actual

Predicted Pattern Non-pattern
Pattern TP FP

Non-pattern FN TN

Table 3.4: Representation of a Confusion Matrix; the shortcut letters refers to True
Positive, False Positive, True Negative, False Negative for TP, FP, TN, and FN respec-

tively

Accuracy =
TP + TN

TP + TN + FP + FN
(3.6)

Sensitivity =
TP

TP + FN
(3.7)

Specificity =
TN

TN + FP
(3.8)

FalsePredictionRate =
FP

FP + TN
within each hour (3.9)

Confidence intervals of sensitivity was applied to test the effect of sample size on the

reported sensitivity for each model. The percentage of 95% was used for the confidence

interval (Casson & Rodriguez-Villegas 2011). It means there are 95% possibility that

sensitivity within the interval.

3.2 Summary

In this chapter, the procedural steps of the proposed method have been described. Af-

ter the EEG signal has been cleaned of noise and artefacts using the ICA method, the

synchronisation between brain regions was detected by calculating one of the three func-

tional connectivity measures mentioned in chapter 2. From these values, the connectivity

networks were created and characterised using graph-theoretic parameters. Finally, the

clustering approach was taken to find the optimal pattern (cluster) for the temporal

variation of the connectivity networks. In the next chapter, the results of using PLV in

creating the connectivity networks to formulate predictive models are described.





Chapter 4

Predicting TLE Seizures Using

PLV

In conjunction with six healthy subjects, 6 EEG records from 4 adult TLE surgical

subjects (right hemisphere origin) were used as a training set (for more details on the

data, see Chapter 3). The pre-processing steps described in Chapter 3 were applied

to the EEG data, which were filtered into four bands – alpha, beta, gamma and delta.

Undirected weighted functional brain connectivity networks were constructed using PLV

at each frequency band, using a one-second sliding window with a one-sample overlap

from the start of the data to the point of clinical onset of the seizure.

4.1 Analysis of the created networks

In this section, the results of applying the proposed method are presented, starting by

exploring the dynamic changes in the created functional connectivity networks and in-

vestigating their temporal topographical changes using unsupervised clustering, leading

towards the construction of a predictive model.

4.1.1 Selection of threshold in the connectivity networks

After creating the PLV-based functional connectivity network, a proportional threshold-

ing (van den Heuvel et al. 2017) was applied to retain only the dominant connections. To

select the appropriate value of proportional thresholding, the small-worldness measure

signifying the structural randomness of a network was used as the determining factor

using the training data (Bassett & Bullmore 2017, Humphries & Gurney 2008, Watts

& Strogatz 1998). This compares the value of the clustering coefficient and the char-

acteristic path length of the network to the value of the same network measures in a

41
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random network with the same number of nodes and edges, using the following equation

to calculate the small-world property (Watts & Strogatz 1998, Rubinov & Sporns 2010):

S =

C
Crand

L
Lrand

(4.1)

where, C and Crand are the clustering coefficients of the original network and that of

a random one, respectively, and, L and Lrand are the characteristic path lengths of

the original and the random network, respectively. To calculate Crand and Lrand, the

following equations were used (Rubinov & Sporns 2010):

Lrand ≈
lnN

ln 〈k〉
(4.2)

Crand ≈
〈k〉
N

(4.3)

where 〈k〉 is the average degree of nodes, and N is the total number of nodes in the

network. If the calculated value of S exceeded exceeds 1, then the structure of network

tends to be a small-worldness one – a high clustering coefficient and low characteristic

path length – and vice versa. Figure 4.1, (a) and (b) show the measure of the small-

worldness values with respect to the percentages of proportional thresholding for seven

TLE and six healthy subjects, respectively. It is apparent that the random structure

of network (S ≤ 1) for both TLE and healthy subjects starts after a 90% proportional

threshold for both TLE and healthy subjects. As a result, 90% has been selected to be

the proportional threshold applied to all created the connectivity networks that were

created either in training or testing set.
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Figure 4.1: Small world-ness values at various proportional threshold percentages for:
(a) 7 patients; and (b) 6 non-patients.
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4.1.2 Exploring the change in PLV-based networks

The temporal change in PLV value before seizure onset had been explored for the patients

in the training set, as well as for the six healthy subjects, in the four bands. Figure 4.2

shows the value of PLV at four points of time – 60 seconds before, 30 seconds before,

10 seconds before and immediately before seizure onset – for one patient, in the gamma

band and using 19 channels. The colour maps show the variation in PLV, and light-

yellow indicates values above 0.9 in some channels. Although this increase (to above

0.9) in PLV value was evident in some channels before seizure onset, it was not common

among all the patients in the four bands.

(a) 60 seconds before seizure
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(b) 30 seconds before seizure
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(c) 10 seconds before seizure
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(d) Exactly before seizure
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Figure 4.2: Temporal change in PLV value of data in gamma band in one patient at
four points in time; (a) 60 seconds before; (b) 30 seconds before; (c) 10 seconds before;

and (d) immediately before seizure onset.

To evaluate the temporal change in PLV values further and to extract a possible common

pattern, two statistical measures of PLV - the average PLV values of all nodes (channels)

within each window and the total number of the synchronised nodes where their PLV

values are above 0.9 - were calculated for patients in the training set and the six healthy
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subjects. Table 4.1 shows the results of the two measures’ application within the four

bands.

Subject Average PLV value No. of synchronised
nodes with PLV
above 0.9

Alpha Beta Gamma Delta Alpha Beta Gamma Delta
P1 0.69 0.58 0.67 0.51 152 84 148 34
P2 0.66 0.58 0.57 0.52 114 48 64 22
P3 0.75 0.62 0.57 0.65 220 66 52 86
P4 0.56 0.59 0.60 0.55 52 50 58 26
P5 0.58 0.64 0.62 0.56 46 62 136 58
P6 0.68 0.63 0.68 0.53 122 90 120 36
N1 0.81 0.73 0.64 0.60 198 110 710 42
N2 0.75 0.56 0.49 0.58 170 42 20 18
N3 0.83 0.71 0.62 0.74 216 108 76 104
N4 0.82 0.70 0.58 0.59 216 104 48 30
N5 0.83 0.65 0.51 0.71 216 58 18 104
N6 0.80 0.63 0.50 0.54 196 60 22 28

Table 4.1: Trends in values of the two measures for the training subjects, including 6
healthy subjects, within four bands

All values in the table represent the maximum value reached for each subject. It is

apparent that neither of the calculated measures in the four bands show a common trend

value among patients, so checking the temporal change of PLV provided no pattern.

Subsequently, network features analysis was applied to find out if there is any common

pattern in the feature domain.

4.1.3 Exploring features of the networks

Eight features (as mentioned in Chapter 2) were used to characterize the networks over

four frequency bands (alpha, beta, gamma and delta), as discussed in chapter 3, as these

are the most common features in studying and diagnosing various neurological disorders

(Kodinariya & Makwana 2013, Rousseeuw 1987, Mohajer et al. 2011, Liu et al. 2010)

such as epilepsy.

The dynamic change in the eight features was shown visually in order to find any common

pattern. Figure 4.3 shows an example of the characteristic path length value (CPL) for

six seizures in four patients, calculated for data in four frequency bands at exactly 10

seconds before the seizure onset. The x-axis denotes the window number - each window

represents a connectivity network created over one second. It is apparent that there is

no abnormal pattern of change (either an increase or a decrease) exhibited in the four

frequency bands by all patients. Similarly, in Figure 4.4, exploration of the transitivity

values revealed no common pattern. In visualizing the temporal change in the remaining
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features before seizure onset, only random variations are shown. As a result, exploring

changes in the features values did not show any common abnormal change. Accordingly,

a clustering approach was taken to detect any possible common yet hidden pattern

among patients.

Figure 4.3: Characteristic path length (CPL) of 6 seizures in 4 patients at 10 seconds
before seizure onset: calculated by sliding window of 1 second’s duration, with 1 sample

overlap (1 second = 200 samples)
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Figure 4.4: Transitivity values of 4 frequency bands in six patients, at 10 seconds

before a seizure

4.1.4 Deriving a common pattern using clustering

To detect the presence of a common pattern, unsupervised pattern recognition using

k-means and k-medoids (Arora et al. 2016) techniques were employed. Both algorithms

work by minimizing the distance between the point designated as a centre and all points

within the same cluster. Euclidean distance was used as the distance measure. To nullify

any possible dominating effects of the features with large variance, feature normalization

was the first step. Both algorithms needed to be provided with the number of clusters

as prior knowledge. Therefore, three popular methods were used to find the optimal

number of clusters: the elbow method (Kodinariya & Makwana 2013); the silhouette

method (Rousseeuw 1987); and the gap statistic method (Mohajer et al. 2011). The

clustering results from the above-mentioned methods for k-means and k-medoids are

summarized in Table 4.2.

Alpha Beta Gamma Delta

k-means Elbow - - - -
Silhouette 2 2 3 2

Gap 9 3 8 8
k-medoids Elbow - - - -

Silhouette 2 2 3 2
Gap Statistic 2 2 3 2

Table 4.2: Optimal number of clusters using various evaluation methodss
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Figure 4.5: Frequency of the optimal number of clusters within each cluster, as pro-
duced by the 30 indices.

As shown in Table 4.2, no clear optimal number of clusters was obtained by k-means.

Therefore, 30 indices, as described in an earlier study (Liu et al. 2010), served as the

criteria by which to evaluate this number of clusters. The choice of the optimal number of

clusters is based on the most frequent number provided by using these indices. Figure 4.5

shows a histogram of these 30 indices used for k-means clustering. It can be seen that

the data in all bands show that two clusters is the optimal number, apart from that

in the gamma band, which show three clusters. From Table 4.2 and Figure 4.5, it is

apparent that both k-means and k-medoids arrive at the same number of clusters, which

is two in the alpha, beta, and delta bands and three in the gamma band. As a result,

both algorithms were used in formulating the predictive algorithm for epileptic seizures.

4.1.5 Formulating a predictive algorithm

After clustering the data, a feature selection step reduced the feature space dimensional-

ity by retaining only the most significant features. Random forest classifier was used for

this purpose, with cluster number serving as classification label. Figure 4.6 illustrates

the five most important features of the data in the beta band, clustered by k-means,

as shown in red. It can be seen that the characteristic path lengths and assortativity

coefficients are the most significant features in classifying the data. These five features,

from the TLE data only, were used to build a classifier model. The data corresponding

to five-minute point before a seizure for these six TLE were used for this purpose.
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Figure 4.6: Feature ranking of data in the beta band, clustered by k-means.
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Figure 4.7: Feature ranking of data in the beta band, clustered by k-mediods.

Five classifier algorithms were employed with the features for k-means and k-medoids

clustering, as their top-ranked features differed, as shown in Figure 4.6 and 4.7. The

classification results for both are shown in Table 4.3. Five-fold cross-validation then

calculated the accuracy and sensitivity of the classifiers.
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Clssifuer k-means k-medoids

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
Complex Tree 97.2% 96% 97.7%% 97% 96% 97.5%

LDA 96.3% 90% 99.2% 96.3% 90% 99.2%
SVM 100% 100% 99.9% 100% 99.9% 100%
KNN 98.2% 98% 98.4% 98% 97.9% 98%

Logistic Regression 100% 99.9% 100% 100% 99% 100%

Table 4.3: Performance results of 5 classifiers applied to clustered features using k-
means and k-medoids

It can be seen that both the Logistic Regression and SVM classifiers in both k-means

and k-medoids exhibited 100% accuracy and had a slightly higher sensitivity than the

others. Therefore, these two were chosen to build the predictive model and were applied

to all the TLE and the six healthy subjects within each band of clustered features.

The output clusters of each subject produced by the classifier models were averaged by

determining the most frequent in the output classes (created by the classifier model)

during each second. These averaged results were represented graphically to seek any

pattern that was shared by all patients. For the features clustered by k-means, one was

found only within the gamma band – the presence of Cluster 3 for a duration of longer

than five seconds at different time-points before onset of a seizure in all TLE, whereas in

healthy subjects it lasted for less than five seconds. By contrast, there was no common

pattern among TLE subjects using the features clustered by k-medoids. Therefore, the

common pattern in the gamma band, which was found using k-means, was selected to

build the predictive algorithm.
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Figure 4.8: Transition of the three clusters in four TLE subjects before seizure onset.
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Figure 4.9: Transition of the three clusters in four healthy subjects.

Figure 4.8 and 4.9 show the temporal transition of the three clusters of four TLE and

four healthy subjects, respectively. The presence of Cluster 3 for longer than than 5

seconds in all the patients is evident in Figure 4.8, for the TLE subject, yet not in

Figure 4.9, for the healthy subjects. Table 4.4 presents the mean value of the five most

important features of data in the gamma band, showing how features’ values vary from

one cluster to another. It is evident that Cluster 3 is characterized by a higher value

of CPL, with lower values for transitivity, clustering coefficient and strength of the two

nodes T5 and P3.

Cluster 1 Cluster 2 Cluster 3

CPL 0.1380 0.5358 0.6714
Transitivity 0.3333 0.3086 0.2008

Clustering Coefficient 0.5242 0.4870 0.4266
Strength of Node T5 0.5621 0.5531 0.4575
Strength of Node P3 0.5733 0.6051 0.4603

Table 4.4: Mean values of five features of data in the gamma band in each cluster,
conducted by k-means.

4.1.6 Statistical analysis

To characterize the dynamic property of the above-mentioned features, five descriptive

statistics for each were calculated: mean; standard deviation; skewness; kurtosis; and
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coefficient of variance. The aim was to find statistical trends shared by all patients,

which could be used as new features in formulating the predictive algorithm.
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Figure 4.10: Mean of CPL value of 10 TLE and 6 healthy subjects.
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Figure 4.11: Skewness of CPL value of 10 TLE and 6 healthy subjects.

After applying these five statistical measures to all the five extracted features in the

gamma band for the TLE and healthy subjects, only the feature of characteristic path

length exhibited a statistical trend. This analysis shows that, for all the TLE subjects,

for CPL only mean, skewness and coefficient of variance (mean/standard deviation)

exhibit statistical trends: mean >25, skewness <0.5 and coefficient of variance <0.16.

Figure 4.10, 4.11 and 4.12 show the three that show a trend in their values. In all

figures, (a) and (b) refer to the seven TLE and the six healthy subjects, respectively. As

shown in the figures, TLE subjects experience a varying length of time before seizure

onset, while the healthy subjects all show one minute. A binary recoding of the clusters

was applied by using these trends to formulate the predictive model according to the

following rule: 1 – when all the three trends are simultaneously satisfied in the incoming
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Figure 4.12: Coefficient of Variance of CPL value of 10 TLE and 6 healthy subjects.

data; and 0 – when at least one of the above mentioned trends is not satisfied. In

addition, another measure was used, J , signifying the maximum number of occurrences

of Cluster 3, which was calculated as follows:

J = W × S (4.4)

where S is the average value of characteristic path length at each second and W is

calculated as follows:

W =
(FDC1 + FDC2)

FDC3
(4.5)

where, FD∗ denotes the frequency of occurrence of the cluster∗. FDC3 was set to

one, if it did not appear during the selected time window, to avoid dividing by zero

in Equation 4.5. In Figure 4.13, (a) and (b) illustrate the value of J for the TLE and

healthy subjects respectively. J is less than one when FDC3 > FDC1 +FDC2, and vice

versa.

The value of J and the recoded trend value (0 or 1) were then used as features to build

the predictive classification model based on the following: at every second, the values of

these two features extracted from the incoming data are fed into a classifier to classify

two classes: seizures( when J value less than one and the value of satisfied trends is one);

and non-seizures. The earliest time point at which the classifier output is labelled as

‘seizure’ is considered the prediction time point. The overall prediction time is calculated

by subtracting this time point from the actual seizure time observed in the raw data.
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Figure 4.13: J value, applied to TLE and healthy subjects.

4.1.7 Prediction Performance

The length of EEG data of each patients used as training set was 5 minutes (30 minutes

in total). Because of 1 sample used as overlapping, the total number of windows have

been analysed is 360000. They are equal to 100 hours as a time of analysis. Here,

the features values used in classification were calculated for each seconds (1 second

=200 windows). As a result, 1800 windows (0.67 hours) were used in building the

predictive model - 1000 windows assigned as pattern. Table 4.5 and Table 4.6 present

the confusion matrices used to calculate the performance of Linear SVM and Logistic

Regression classifier models respectively as described in Chapter 3.

Actual

Predicted Pattern Non-pattern
Pattern 940 24

Non-pattern 60 776

Table 4.5: Confusion Matrix of Linear SVM Model

Actual

Predicted Pattern Non-pattern
Pattern 920 16

Non-pattern 80 784

Table 4.6: Confusion Matrix of Logistic Regression Model

Both the Linear SVM and Logistic Regression classifier models were applied to 24 seizure

episodes in 10 patients, and the five-fold cross-validation approach was adopted to build

the model and verify it. Both classifier models achieved 96% accuracy rate, with 94%

and 92% sensitivity and 97% and 98% specificity, for Linear SVM and Logistic Regres-

sion respectively. Furthermore, the data for the six healthy subjects (containing no

seizure episodes) were used with the classifiers and, in all cases, they worked correctly

and made no seizure classification. The rate number of incorrect predicted windows as
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pattern (0.03 and 0.02 for Linear SVM and Logistic Regression classifier models respec-

tivley) was divded by the amount data used (0.67 hours) to extract false prediction rate

in hour (0.04/h and 0.03/h for Linear SVM and Logistic Regression classifier models

respectively). False prediction rate was calculated here to evaluate the performance of

predictive model before apply it to the remaining patients. In Figure 4.14 (a) and (b)

provide the 95% confidence interval of sensitivity for the first and second models re-

spectively. They show 95% probability that the true sensitivity value ranges within the

interval. It was checked with different size of test data (number of windows used).
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Figure 4.14: Estimated 95% confidence intervals of the sensitivity of the two models
within different number of windows.

The patient-by-patient prediction time result is summarized in Table 4.7, and it shows

that the maximum prediction time obtained was 12 minutes (Patient 3), while the

minimum prediction time was 40 seconds. Although the minimum prediction time seems

very low, it is because, in this particular case, the data were recorded for only 44 seconds

before the seizure, which is considered to be insufficient for good prediction. This trend

was also observed for the other records tested with the model (see Table 4.7), showing

the trend whereby the longer the recorded data before the actual seizure, the better is the

prediction time. Therefore, these models are expected to demonstrate better prediction

in a continuous-monitoring scenario.
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Patient no. Length of data Prediction time Prediction time
before actual
seizure

using Logistic
Regression

using Linear
SVM

(minutes) (minutes) (minutes)

1 5 4.99 4.98
2 5 5 5
3 24.07.4 12 12
4 1.25 1.17 1.17
5 1.26 1.16 1.16
6 1.28 1.17 1.17
7 0.88 0.83 0.83
8 0.73 0.67 0.67
9 0.97 0.83 0.83
10 2.74 1.67 1.67

Table 4.7: Prediction time of two classifiers for 10 TLE subjects.

4.2 Comparison

Table 4.8 compares the two models proposed in this study to nine previously published

methods. It can be seen that the proposed models achieved a maximum prediction time

of 12 minutes, which was the case for Patient 3 and, compared to the other methods,

this prediction time seems to be low. However, from a clinical point of view, this is

considered to be more practical. This is because, from this perspective, too early a

prediction of a seizure (such as 60 (Iqbal et al. 2015) or 50 (Aarabi & He 2012) minutes

before the actual seizure) is prone to misrepresentation, as there are several changes in

information processing in the brain that could arise in the intervening period. Therefore,

it is considered that a practical seizure prediction time should be neither be too long,

nor too short (of the order of seconds) before an actual seizure. From this point of

view, the prediction time obtained in these models is more practical than the others.

This is demonstrated also by the high sensitivity obtained by the two proposed models,

compared earlier models (Aarabi & He 2012, Li et al. 2013, Myers et al. 2016) and close

to that of the study (Iqbal et al. 2015) where the prediction time was calculated for

only four subjects, compared to the 10 TLE subjects in the proposed models. Also, the

models proposed here have a higher specificity than those in earlier studies (Myers et al.

2016) and (Cho et al. 2016) and a lower false prediction rate (all seizures used have been

predicted while no seizure was detected for healthy subjects) than those in (Alotaiby

et al. 2017) and (Chu et al. 2017). However, the results are still based on only a small

number of patients (10) and, although promising, need to undergo a larger patient trial.
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Model Sensitivity Specificity FPR Prediction time No. of pa-
tients

(%) (%) (/h) (minutes)

Zandi et al.
(2010)

86 - 0.12 20.8 3

Aarabi & He
(2012)

79.9 - 0.17 50 11

Iqbal et al. (2015) 100 - 0.38 60 4
Li et al. (2013) 75.8 - 0.09 49.7 21
Cho et al. (2016) 82.44 82.76 0.5 5 21
Chu et al. (2017) 86.67 - 0.367 45.3 16
Myers et al.
(2016)

76.8 88.3 0.167 - 10

Usman et al.
(2017)

92.23 - - 23.6 22

Alotaiby et al.
(2017)

89 - 0.39 68.71 24

Model 1 (Linear
SVM)

94 97 0.04 12 10

Model 2 (Logistic
Regression)

92 98 0.03 12 10

Table 4.8: Comparison of the two models proposed to nine existing models. FPR
refers to False Prediction Rate

4.3 Conclusion

The models proposed predict the epileptic seizures of 10 TLE patients by analysing the

functional brain connectivity networks created using PLV. A common pattern among

patients’ data was found only in the gamma band – the presence of Cluster 3 for longer

than five seconds at different points in time before onset of a seizure in all TLE patients,

whereas in the healthy subjects it lasted for less than five seconds. It was characterized

by an increased value of the characteristic path length. When using this observation

within the framework of Linear SVM and Logistic Regression classifiers, it achieved

seizure prediction with 94% and 92% sensitivity and 97% and 98% specificity, respec-

tively. For healthy subjects, neither model detected any seizure episodes, which was the

expected result. Both predictive models showed 12 minutes as the maximum prediction

time prior to the clinical seizure onset, based on the available data in this work. The

minimum prediction time in the models, in essence, depends on the length of the data

recorded before the actual seizure episode, and therefore the models are expected to

work well when applied in a continuous monitoring scenario. The combination of high

sensitivity and specificity and a clinically practical prediction time makes these mod-

els good candidates for further exploration with a larger population, with the aim of

translating them into real-life clinical practice.



Chapter 5

Predicting TLE Seizures Using

PLI and SL

One of the objectives of this research is to develop models to predict seizure in TLE sub-

jects using three synchronisation measures – PLV, PLI, and SL. The previous chapter

showed the possibility of using PLV-based connectivity networks in developing a predic-

tive model. The two models formulated were able to predict all the seizures, giving a

maximum prediction time of 12 minutes and achieving a false prediction rate of 0.04/h

and 0.03/h respectively. However, the biggest drawback of PLV-based method is that

they are susceptible to volume conduction which may result into false synchronisation.

On the other hand, PLI and SL are more robust in this respect. Therefore, this chapter

is aimed at developing models using PLI and SL and compare their outcomes with the

result of the previous chapter.

The present chapter has been divided into three sections. It starts by dealing with the

result of using PLI in formulating a predictive model, and then illustrates the result for

SL, ending with a discussion on the results of all three measures.

5.1 Result of prediction using PLI

EEG data of the 10 TLE subjects used with PLV were explored to develop a PLI-based

predictive model. The number of seizures checked for each patient was increased to at

least two. Furthermore, EEG data for six healthy subjects were used alongside the pa-

tients’ data to assess the difference. A pre-processing step was used (see Figure 3.4) to

clean the data of any noise or artefacts. Here, EEG signals were filtered into five different

bands – alpha, beta, gamma, delta, and theta – instead of the four used with PLV. PLI-

based connectivity networks were created for each 1-second sliding window. Moving the

57
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one window sample, as applied previously with PLV, did not provide additional infor-

mation but instead raised the computation time for creating the functional connectivity

networks. Accordingly, the overlap of the sliding window was modified to 0.5 seconds

(50% overlap) instead of one sample. That means there are 599 windows for each EEG

data in the training set with total number equal 3594 windows. They are equal 1 hour

as a time of analysis.Similar to PLV, the created networks were characterized using nine

features – strength of node, modularity, transitivity, clustering coefficient, characteristic

path length, density, betweenness centrality and assortativity – in addition to the global

efficiency and raduis features. Four types of classifiers (SVM, logistic regression, linear

discriminant analysis and Bagged Tree) were selected to build a predictive model. All

four had their own way of learning and, consequently, may give prediction models of

varying accuracy. The result of using PLI in predicting seizures will be presented later

in this section.

5.1.1 Exploring the change in PLI-based networks

Functional brain connectivity networks were created for 24 seizure files of 10 TLE sub-

jects. The six EEG data of four TLE subjects who had 5 minutes recording time before

seizure onset were selected for the training set. They were used in analysing and formu-

lating the predictive model. Furthermore, the functional brain connectivity networks of

six EEG data of healthy subjects were created for comparison to the structure change

in the patients’ networks. To explore the dynamic change of PLI, functional connectiv-

ity networks were created before and during seizure for all five bands. The temporal

variation in PLI values was checked for the six EEG data 10 seconds before and during

seizures at the beginning, then it was increased until it reached 60 seconds before seizure

onset. Only the data in the beta and gamma bands showed a slight increase in PLI value

before and during seizures for all six seizures at several points of time. By contrast, the

data within these two bands for the six healthy subjects showed no increase in PLI value.

Figure 5.1 depicts the colour maps to illustrate the dynamic change in PLI value of data

in the beta band. They show the change in PLI value at three points in time within

10 seconds prior to and during seizure. A slight increase in the value of PLI – which

exceeded 0.9, as illustrated by the colour bar – is exceeded at one point, shown in bright

yellow. Figure 5.2 exhibits the same noticeable increase but for the data in the gamma

band for the same patient. In both figures, it is apparent that the PLI value of most

channels exceeded 0.9 at some point either before or during a seizure.

To evaluate this increase in PLI value and determine whether it is a sign of abnormal

change common to all patients, two statistical values of PLI value were calculated: the

average value of the PLI of all synchronised nodes (channels) within each window; and

the total number of these synchronised nodes whose PLI value exceeded 0.9. Both

measures were calculated for the six EEG data of the four TLE subjects, as well as
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Figure 5.1: Temporal change of PLI value before and during seizures in beta within
10 seconds.
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Figure 5.2: Temporal change in PLI value before and during a seizures in gamma
band, within 10 seconds of onset.
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for the six healthy subjects. The aim of the calculation was to seek a trend in value

shared by the patients to distinguish them from healthy subjects. After checking the

temporal variation of both measures, it was found that only the measure of total number

of synchronised nodes with a PLI value above 0.9 showed a trend in value shared by

the patients (TLE subjects). Figure 5.3 and 5.4 illustrate the temporal change for three

TLE and six healthy subjects for data in the gamma band. The windows shown in

Figure 5.4 represent one minute overall, which is the total length of recording data of

all healthy subjects. It is apparent from the two figures that the trend value – which

exceeded 200 – is the same in both the TLE and healthy subjects. Therefore, it cannot

be used to formulate a predictive model. Next, the extracted features of the networks

were explored to identify any abnormal changes.
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Figure 5.3: Temporal change in the total number of nodes with PLI values exceeding
0.9 for three TLE subjects in the gamma band.

5.1.2 Exploring the network features

Since checking the temporal change in PLI value either before or during a seizure did

not reveal any clear abnormal change common to all patients, the features of the cre-

ated functional connectivity networks within each of the five bands were subsequently

extracted. In the current work, nine features were extracted for all bands: Strength of

Node, Assortativity, Betweenness Centrality, Clustering Coefficient, Transitivity, Modu-

larity, Characteristic path length (CPL), Global Efficiency and Radius. An examination

of the temporal change of the features’ values was conducted for the six EEG data before

and during seizures to search for any pattern of sudden falls or rises and to compare it to

the features’ values in the six healthy subjects. Figure 5.5 shows the temporal change in

CPL value before and during epileptic seizure for the beta band. The x-axis represents

the window number at which the feature value was calculated. The red dashed vertical
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Figure 5.4: Temporal change of the total number of nodes with PLI values exceeding
0.9 for six healthy subjects in the gamma band.

line marks the beginning of an epileptic seizure. The figure compares the variation in

the CPL value of data in the beta band before and during seizure within 10 seconds. It

can be seen how different they are in all patients during seizure. In addition, the same

level of increase in CPL value was observed in the data of healthy subjects. Similarly,

assessment of CPL variation in the alpha, gamma and delta bands revealed the same

result. Therefore, tracing the temporal change in CPL showed no common abnormal

change within the five bands.

Checking the temporal change in betweenness centrality of the nodes started with four

channels in and around the right temporal lobe – T4, T6, C4 and F4. Both Figure 5.6

and 5.7 illustrate the betweenness centrality values for two nodes represented in the

right temporal lobe area – T4 and T6 – for data in the beta band for six TLE and

six healthy subjects, respectively. The x-axis represents the window number, where a

window number of zero indicates a window 5 minutes before onset of the seizure. The

green vertical lines in Figure 5-6 represent the start of the seizure. Both TLE and

healthy subjects exhibited peaks exceeding 100, but these figures were below 80 during

seizure. After checking these four channels around the right temporal lobe, no clear

abnormal change was found in patients’ values before seizure, while the same was true

for subjects without epilepsy. In conclusion, exploring the betweenness centrality value

did not reveal any sign that could be used to predict a seizure.

Similarly, the remaining features of the networks were checked but, unfortunately, ex-

ploring the temporal changes of these features showed no abnormal change which can

be used as a common pattern. Following this, clustering was applied to figure out any

hidden pattern. The procedure of clustering and formulating the predictive model is

explained in the following subsection.
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Figure 5.5: Characteristic path length value for six TLE subjects 10 seconds before
and during seizure.

0 100 200 300 400 500 600

Window Number

0

50

100

B
C

P 1
T4

T6

0 100 200 300 400 500 600

Window Number

0

50

100

B
C

P 2 T4

T6

0 100 200 300 400 500 600

Window Number

0

50

100

150

B
C

P 3
T4

T6

0 100 200 300 400 500 600

Window Number

0

50

100

B
C

P 4
T4

T6

0 100 200 300 400 500 600

Window Number

0

50

100

B
C

P 5
T4

T6

0 100 200 300 400 500 600

Window Number

0

50

100

B
C

P 6
T4

T6

Figure 5.6: Betweenness centrality of data in beta band for six TLE subjects, 5
minutes before seizure onset.
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Figure 5.7: Betweenness centrality of data in the beta band for six healthy subjects.

5.1.3 Clustering data and predicting seizures

As the next step, a clustering process was applied using K-means. Before clustering,

the features’ dimensions were reduced by deleting one of the two strongest correlated

features. Doing this removed any bias arising from clustering. The strength of the

node features of all 16 channels used showed a high correlation to the characteristic

path length and modularity features. Therefore, they were deleted. The nodes used to

calculate betweenness centrality were reduced to four: two represent the right temporal

lobe of the brain (T4 and T6) and two around this area (F4 and C4). They were selected

for checking because the patients in the study had temporal lobe epilepsy originating in

the right lobe. As a result of the reduction in the features’ dimensions, eight features

were selected – CPL, Modularity, Transitivity, four nodes of Betweenness Centrality (T4,

T6, F4, C4) and Assortativity – and clustered for each band. The optimal number of

clusters was calculated using the elbow, silhouette and gap statistical methods as before.

Extracting the common pattern for the clustered features in each band separately did

not reveal any shared pattern among the patients. Therefore, a combination of the

features of the bands was applied, starting with the beta and gamma bands, because of

the slight change in PLI values that was observed earlier. The optimal number of clusters

of using both beta and gamma bands’ features was calculated using three methods –
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namely elbow, silhouette and gap statistics – and they arrived at three, two and one,

respectively.

Figure 5.8: Elbow method for extracted features in both beta and gamma bands.

Figure 5.8 shows the optimal number of clusters as three, using the elbow method. Such

an elbow can be seen at 3 on the x-axis. For further confirmation of the optimal number

of clusters, the 30 indices mentioned in (Liu et al. 2010) were applied to assess the

number of clusters. Each of these 30 indices has its own way of finding the optimal

number of clusters, leading to various answers. A histogram of the frequency of index

for each cluster (Figure 5.9) shows that the most frequently selected clusters by the 30

indices was three. This confirms the results achieved previously by the elbow method.

Therefore, the extracted features were grouped into three clusters.

Each cluster of the three was tested to extract the common pattern (cluster) shared

among patients. Every cluster was tested for all TLE and healthy subjects. In each, the

process of testing was constructed by building a classifier model using samples of data

from the patients in that cluster, labelled number 1. The data of the extracted features

of the six healthy subjects were added to the classifier with the label 0. Four classifier

models were chosen to classify the prepared data mentioned earlier in this chapter, and

composed of TLE subjects’ data of the cluster with the label 1, and label 0 for the

healthy subjects.

Measure LDA Logistic Regression SVM Bagged Tree

Sensitivity 84% 75 % 88% 88%
Specificity 78% 79% 80.5% 84%

Table 5.1: Sensitivity and specificity measures of four classifier models.
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Figure 5.9: Histogram of results of applying 30 indices in the clustering evaluation.

Table 5.1 shows both the specificity and sensitivity of all four classifiers for Cluster

1. It illustrates that the Bagged Tree showed slightly better prediction statistics (sen-

sitivity and specificity). These were calculated from the confusion matrices extracted

after evaluating the performance of classifiers by applying the five-fold cross-validation

method.

Simple statistical analysis was used to describe the networks’ structure during each

cluster by calculating the mean values. These values were used to compare the common

pattern (Cluster 1) to the other two clusters. For Cluster 1, the statistical values of the

extracted features of data in the gamma band reported significantly more distinguish-

able values than those in the beta band. Table 5.2 presents the results obtained from

calculating the mean value of network features of data in the gamma band, which was

used with data in the beta band to create the predictive model. It shows the mean

value for three clusters predicted using Bagged Tree model, which achieved high accu-

racy in addition to good sensitivity and specificity measures. It provides a comparison

of the three clusters and shows what happened to the network structure in the common

pattern.

It can be seen from the data in Table 5.2 that the mean of CPL value of Cluster 1

was higher than that of the other two clusters. This indicates that the structure of

the network changed, making it the longest path to transfer data through the brain

regions. According to this increase in the path lengths, the mean of the betweenness

centrality value of the nodes of the right temporal lobe (the origin of seizure) exhibited

higher values in T4, T6 and the other two nodes around them (F4 and C4). This refers

to increases in the activity in these regions of the brain, which interprets the increase
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Feature Cluster 1 Cluster 2 Cluster 3

Assortativity -0.06723 -0.09461 -0.09597
Betweenness centrality F4 11.66197 8.697298 7.14617
Betweenness centrality C4 10.44352 8.534289 7.564803
Betweenness centrality T4 11.54533 8.043288 8.075776
Betweenness centrality T6 10.56221 7.554554 7.722671

Transitivity 0.417287 0.629029 0.61843
Modularity 0.075775 0.024779 0.027528

Characteristic path length 2.233076 1.588615 1.625887

Table 5.2: Mean value of the three clusters of data in the gamma band.

in the network path lengths. Similarly, the mean of modularity of Cluster 1 (common

pattern) had the highest value, while the transitivity value had the lowest. A possible

explanation for the transitivity value might be the lack of transitive triples in the network

because of the greater betweenness centrality value of nodes in the right temporal lobes.
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Figure 5.10: Variation in characteristic path length value of data in gamma band of
Patient 1 for three clusters at 3 minutes before seizure.

Figure 5.10 and 5.11 are examples to show the variation in the characteristic path

length value of two patients for three clusters over 1 minute at three points of time – 3

minutes, 2 minutes and 1 minute before seizure onset. The x-axes represent the number

of windows, which is 120 windows per minute. Each window is 1 second in duration,
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Figure 5.11: Variation in characteristic path length value of data in gamma band of
Patient 2 for three clusters at 3 minutes before seizure.

with 50% overlap, which means 120 windows for 1 minute. It is apparent from both how

the CPL value of Cluster 1 (the common pattern) was higher than that of the others.

Both illustrate the time of Cluster 1’s occurrence and how it was close to the onset of

the seizure. The increase in the CPL value of Cluster 1 can be seen in both patients,

confirming that the abnormal increase in CPL value is common to the patients. These

procedures were undertaken to describe the network structure of the common pattern

(Cluster 1) by exploring its features and comparing them to other clusters.

The four classifier models built to predict Cluster 1 were applied to 24 EEG data of 10

TLE and 10 healthy subjects. As mentioned previously, the classifier models were built

using the 16 extracted features of Cluster 1 of the six seizure files of four TLE subjects

as a training set, labelled 1. The extracted features of the six healthy subjects used in

building a training set were labelled 0.

Table 5.3 illustrates the prediction time in minutes for 10 TLE subjects. All four models

predicted Cluster 1 (common pattern) in all patients at around the same time. Bagged

Tree model had the best sensitivity and specificity values (see Table 5.1), so it is the

best choice to predict epileptic seizures for new patients. The amount of data used in

building the classifier model was 1437 windows (0.4 hour) containing 717 windows for
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Patient no. Time before LDA Logistic SVM Bagged
seizure onset (minutes) Regression (minutes) Tree

(seconds) (minutes) (minutes)

1 300 4.96 4.88 4.96 4.96
2 300 4.96 4.96 4.96 4.96
3 300 5 5 5 5
4 70 1.08 1.08 1.17 1.12
5 70 0.83 0.83 0.83 0.83
6 50 0.3 0.3 0.3 0.33
7 40 0.25 0.27 0.27 0.27
8 100 0.57 0.58 0.67 0.57
9 180 1.67 1.67 1.67 1.67
10 20 0.8 0.8 0.8 0.8

Table 5.3: Prediction time of patients for common pattern using four classifiers.

the common pattern (cluster 1). The sensitivity was calculated using the metrics of

the confusion matrix as seen in Table 5.4. The rate of incorrect predicted windows was

equal 0.16. Because the amount of data used in building the model is 1437 windows (0.4

hour), the false prediction rate is 0.4/h (It calculated through dividing 0.16 by 0.4).

Figure 5.12 provides the 95% confidence interval of sensitivity for Bagged Tree model. It

shows 95% probability that the true sensitivity value ranges within the interval. It was

checked with different size of test data (number of windows used). It is apparent that

the interval of sensitivity decrease with increasing the total number of tested windows.

Actual

Predicted Pattern Non-pattern
Pattern 631 115

Non-pattern 86 605

Table 5.4: Confusion Matrix of Bagged Tree Model

The maximum prediction time was revealed for Patient 3, with a recording time before

seizure of 300 seconds. However, this is not the maximum time as, to create the training

set, a limit of 5 minutes was imposed for this patient: their whole recording time before

seizure onset was assessed to identify the maximum prediction time of 24 minutes. This

time was explored at three different points of time: 24 minutes, 15 minutes and 5 minutes

before seizure. Each part was 1 minute in length. The maximum prediction time was

23.99 minutes before seizure, and the pattern was detected at both 15 and 5 minutes

beforehand. One of the issues noticed while exploring these three points in time was

that the total number of records (number of windows) detected in the pattern increased

as the seizure was approached. The miss-prediction rate was calculated for 10 healthy

subjects by the four classifier models. Table 5.5 presents the rate of miss-prediction

windows of 10 healthy subjects as non-pattern using four classifier models.
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Figure 5.12: Estimated 95% confidence intervals of the sensitivity of the Bagged Tree
model within different number of windows.

Subject LDA Logistic Regression SVM Bagged Tree

1 0.3 0.18 0.13 0
2 0.31 0.22 0.18 0
3 0.3 0.32 0.24 0
4 0.29 0.23 0.16 0
5 0.28 0.26 0.13 0
6 0.28 0.22 0.18 0
7 0.27 0.27 0.19 0.15
8 0.21 0.15 0.01 0.11
9 0.31 0.28 0.23 0.23
10 0.26 0.12 0.17 0.07

Table 5.5: The miss-prediction rate windows of 10 healthy subjects as non-pattern,
using four classifier algorithms.

The miss-prediction rate for all 10 people without epilepsy was 0.056 for Bagged Tree

classifier. Bagged Tree model exhibited a low miss-prediction rate, compared to other

classifier models, and the best performance, sensitivity and specificity measures as seen

in Table 5.1. It achieved 0.4/h as false prediction rate. The following section gives the

results of predicting epileptic seizures using the synchronisation likelihood approach for
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the same TLE patients.

5.2 The result of predicting using synchronisation likeli-

hood (SL)

The SL approach was used to create a model to predict epileptic seizures. The same

steps as those proposed in Figure 3.1 were taken. The model using SL was applied

to the data in four frequency bands (alpha, beta, gamma and delta). In addition,

the theta band was used with SL because the results produced by Douw et al. (2010)

showed that it can be a more significant predictor in the diagnosis of epilepsy. The

proportional threshold was applied to the network constructed to choose the percentage

of the strongest connection preserved. Nine graph features were used for prediction:

strength of node, betweenness centrality, global efficiency, characteristic path length,

transitivity, modularity, assortativity and raduis). The four classifier models used with

PLI were applied here to predict epileptic seizures. The following subsections describe

the exploration of temporal change in SL within each window, before and during seizure.

5.2.1 Exploring the change in synchronisation likelihood (SL)-based

networks

The temporal dynamic of the SL was explored 60 seconds before seizure, 10 seconds

before and during the seizure in five bands of data at each point. For the data in the

alpha band, there was no clear variation in the value of SL, or even an abnormal change.

In contrast, data in beta and gamma band exhibited a variation in the value of SL, shown

as an increase in the connectivity value at a specific time in all six seizure files of the

four TLE subjects used as a training set at 10 seconds before seizure. Figure 5.13 shows

an example of this increase for one of the patients in the gamma band. Unfortunately,

this increase was not detected in the remaining TLE subjects. The remaining data in

the delta and theta bands did not show any noticeable increase either before or during

a seizure. For further verification of the dynamic change in SL value, the two statistical

measures used earlier with PLI in this chapter were subsequently applied.

Figure 5.14 shows the average value of SL before and during seizure for the data in the

beta, gamma, delta and theta bands. The figures show the data of three TLE subjects as

an example. The x-axes present the window number where SL average was calculated.

In the data of the four bands, the SL value of Patient 1 exhibited the highest average

value, apart from in its gamma band. In Patient 2, the value of the data in the gamma

band increased at the start of the seizure then fell after 5 seconds relative to other

patients. From these observations, which were not common to the patients, checking
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Figure 5.13: Variation in SL value of data in gamma band 10 seconds before and
during seizure.

the temporal change in the average value of SL does not detect any abnormal change

that is shared by all patients.

The second way to assess the increase in SL value is to calculate the total number of

synchronised nodes in each network (window) whose SL value exceeds 0.8. Because the

increased level of SL value was less than PLI, 0.8 was selected as the threshold here.

Only connectivity values above 0.8 were considered for the synchronised nodes in each

window. Figure 5.15 shows the dynamic change in the total number of synchronised

nodes with a value above 0.8 in each window at exactly 5 minutes before seizure.

It can be seen in the figure on the left, for data in the beta band, that only one patient

of the three had peaks representing high values of SL in around 25 nodes out of 256.

The figure on the right represents the data in the gamma band, and it shows only two

patients of the three had a high increase in SL value for around 25 nodes. It is apparent

that the total number of synchronised nodes with an SL value exceeding 0.8 decreased a

couple of seconds before seizure for the data in the beta band. The small total number

of synchronised nodes with SL value exceeding 0.8 may be linked to the existing high

SL value for a few nodes (channels) in the brain network related to the seizure’s origin.

Moreover, the increase might be shown earlier, in other patients. Therefore, if this small

number is to be considered as an abnormal change for the purpose of prediction, it needs

to be evident in all patients. Additionally, the total number of high synchronised nodes,
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Figure 5.14: Average SL value in each window of data in four bands at 10 seconds
before and during seizure. The dashed red line represents the start of seizure. The total
number of windows at 10 seconds before and during seizures was 38 windows (Window

19 refers to the calculated SL average window immediately before seizure).

which was around 25, can be used as abnormal change, if it is not presented in healthy

subjects.
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Figure 5.15: Total number of nodes with SL values exceeding 0.8 in three TLE
subjects for data in the beta and gamma bands: the dashed black line refers to the

beginning of the seizure.
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Figure 5.16: Total number of nodes with SL values exceeding 0.8 in six healthy
subjects for data in the beta and gamma bands

The six healthy subjects in Figure 5.16 showed peaks in the total number of synchronised

nodes with SL above 0.8, exceeding 30. This value is considered higher than those

observed in patients. Therefore, both statistical measures failed to show a common

abnormal change among patients. The next step was to extract features for the networks

created using SL.

5.2.2 Exploring network features

Nine features were extracted to describe the temporal change of the network structure.

Figure 5.17 shows the CPL value variation within 5 minutes before onset of seizure

for six TLE subjects. The x-axes refer to the window number where CPL value was

calculated (e.g. Window no. 1 is 5 minutes before seizure onset).

By comparing the CPL values of the TLE subjects with the values of the healthy sub-

jects in Figure 5.18, it isshown that CPL values of healthy subjects reached a similar

trend value. In addition, there was no common pattern of values (increasing or decreas-

ing) among patients. Similarly, the data of both the TLE and healthy subjects in the

remaining bands showed no visible pattern.

The results obtained by exploring the variation in the transitivity and modularity values

of data in both the beta and gamma bands showed random variation in values without

presenting any abnormal behaviour that is shared among patients. Figure 5.19 illustrates

these randomised values of the transitivity of data of six TLE subjects in the beta band

within 5 minutes of the onset of the epileptic seizure. It was noticed that there was no

common pattern of change among patients. For the betweenness centrality feature, four

nodes of the network that represent the right temporal lobe (the origin of seizure) and

around it were checked.
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Figure 5.17: Variation in CPL value of data in beta band, 5 minutes before seizure for
six TLE: Window no. 600 represents the last window calculated before seizure onset.
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Figure 5.18: Variation in CPL value of data in beta band, 5 minutes before seizure
for six healthy subjects.

Figure 5.20 presents the variation in betweenness centrality value of nodes T4 and T6 for

six TLE subjects in the beta band at 5 minutes before the onset of the epileptic seizure.
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Figure 5.19: Transitivity value of data in beta band for 6 patients, at 5 minutes before
seizure.
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Figure 5.20: Betweenness centrality of data in beta band for six TLE subjects, 5
minutes before seizure onset.

The green line indicates the onset, where it can be seen that the value of betweenness

was under 50 in all patients. The presence of peaks prior to epileptic seizures, which
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is the increase in the value of the betweenness centrality to more than 100, cannot be

considered as abnormal behaviour used in creating a prediction method for seizures,

because there are peaks that exceed 100 in the data of healthy subjects.

None of the remaining features (clustering coefficient, radius, and global efficiency)

showed a common pattern among patients. As a result, checking the network features

did not contribute to finding any abnormal change for use in predicting seizures. In a

subsequent step, the data of the extracted features were clustered to find any hidden

pattern.

5.2.3 Clustering data and predicting seizures

Before applying clustering to the extracted features, they were normalised to eliminate

any bias arising from the range of values of features, which could affect the clustering.

Following this, one of the two most correlated features was eliminated. As a result, the

features were used to characterise networks and included in the clustering process were

assortativity, betweenness centrality of each of the 16 channels (network nodes), cluster-

ing coefficient, transitivity, modularity, characteristic path length, and global efficiency.

Therefore, the total number of features from data in all five bands was 110 features.

The same six TLE subjects were used as a training set with PLI selected to extract a

hidden pattern common to the patients. Because of the variation noticed in the value

of SL, represented by a slight change in the value (increasing) of the data in both the

beta and gamma bands only, the features of these bands were checked together first in

clustering.

K-means was selected to cluster the data, because it can deal with extremely large

amount of data. It needs to be provided with the number of clusters as prior knowledge,

and so the elbow method was used to select the optimal number of clusters. Unfortu-

nately, there was no clear ‘elbow’, referring to the optimal number of clusters, by using

the extracted features of data in the beta and gamma bands together. Hence, the fea-

tures of the data in all five bands were selected for clustering. The optimal numbers of

clusters of data in the five bands, using the elbow method, were 10, 10, 8, 10 and 7 for

the data in the beta, gamma, delta and theta bands, respectively.

For each of the data sets in the five bands, a classifier model was created to check the

possibility of its presence in TLE and healthy subjects. Four classifier models were used

(LDA, Logistic Regression, SVM and Bagged Tree). A label of 1 was attached to the

data of the TLE subjects belonging to the selected cluster, while 0 was attached to the

healthy subjects’ data. By applying all classifiers to predict all clusters of data in all

bands, Cluster 10 of the data in the delta band was dominant, becoming the common

pattern. It was shown in all TLE subjects and in only four of the 10 healthy subjects

in the study.
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Cluster LDA Logistic Regression SVM Bagged Tree

1 87.1% 86.6% 88.6% 87.8%
2 66.2% 66.9% 90.8% 90.5%
3 53.1% 82% 91.9% 92.5%
4 82.3% 82.4% 92.8% 91.7%
5 82.3% 83.7% 94.7% 94.7%
6 82.5% 85% 95.9% 95.6%
7 84.6% 85.7% 94.3% 93.4%
8 84.8% 86.1% 96% 96.2%
9 87.1% 88.8% 96.9% 96.3%
10 88.5% 92.6% 92.7% 92.7%

Table 5.6: Performance (accuracy) of the four classifier models on data in delta band.

Table 5.6 presents the performance (accuracy) of the four classifier models used in pre-

dicting 10 clusters of data in the delta band. They were assessed using the five-fold

cross-validation method. The table shows the closest percentage values of all classifiers,

with a slightly high value for Bagged Tree and SVM. The sensitivity and specificity

measures were calculated for the four classifiers to predict Cluster 10 of the data in the

delta band (see Table 5.7).

no. LDA Logistic Regression SVM Bagged Tree

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
1 82% 89% 72% 91% 80% 92% 71% 93%
2 84% 93% 77% 95% 81% 95% 76% 95%
3 84% 86% 71% 93% 78% 94% 72% 95%
4 81% 90% 66% 92% 75% 92% 92% 86%
5 90% 90% 80% 93% 86% 91% 79% 94%
6 85% 91% 76% 93% 84% 92% 76% 95%
7 74% 90% 71% 92% 74% 92% 52% 95%
8 89% 90% 80% 93% 82% 93% 77% 95%
9 81% 91% 72% 92% 80% 94% 78% 93%
10 87% 91% 77% 93% 78% 94% 76% 95%

Table 5.7: Sensitivity and specificity of the four classifiers for 10 Clusters. first column
refers to the number of cluster

As seen in Table 5.7, the specificity in all classifiers was higher than the sensitivity,

which means less prediction of the selected cluster. The difference between specificity

and sensitivity was large, in some cases. Therefore, a trade-off of these two measures

was considered when the classifier had been selected for the remaining TLE and healthy

subjects. For example, SVM in Table 5.7 was selected to predict Cluster 1, and LDA

was chosen to predict Cluster 10.

Table 5.8 compares Cluster 10 with three clusters for data in the delta band, using the

mean value of seven network features of the nine used to describe connectivity networks.
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Cluster 1 Cluster 2 Cluster 5 Cluster 10

CPL 0.1460 0.2216 0.2828 0.2802
Modularity 0.2092 0.0996 -0.0789 -0.2547
Transitivity -0.3096 -0.3161 -0.1449 -0.0030

Clustering coefficient -0.1276 -0.1894 -0.2593 -0.3519
Betweenness of node T4 -0.2631 -0.1575 -0.1345 2.1257
Betweenness of node T6 -0.1185 -0.1065 -0.2224 0.0681

Assortativity -0.1030 0.1914 -0.0942 -0.0944

Table 5.8: Mean values of five features in four clusters.

As can be seen, Cluster 10 exhibited high values of betweenness centrality for nodes T4

and T6, compared to other clusters. Similarly, the transitivity value of Cluster 10 was

slightly higher than that of others.
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Figure 5.21: Variation in betweenness value of node T4 within Cluster 10 (common
pattern) compared to other clusters.

Figure 5.21 shows the variation in betweenness value of node T4 within Cluster 10

(common pattern) compared to other clusters. It shows the point in time where Cluster

10 occurred. The highest peaks of values within Cluster 10 are represented by a red line.

This increase in the value at these points before seizure, which represents an abnormal

change, refers to the existing uncontrolled synchronisation around this node. Because
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the patients used in the current study had temporal lobe epilepsy originating in the

right lobe, this sudden increase in the betweenness value of node T4 can be considered

as a sign of an oncoming seizure. The proposed model created using the LDA classifier

was selected to predict epileptic seizures of the remaining patients, based on the range

of values of sensitivity and specificity shown in Table 5.7 for Cluster 10.

Actual

Predicted Pattern Non-pattern
Pattern 998 65

Non-pattern 149 655

Table 5.9: Confusion Matrix of LDA Model

Table 5.9 illustrates the metrics values of confusion matrix used in calculating sensitivity

and specificity. The amount of data used in building the classifier model was 1867

windows (0.52 hour) containing 1147 windows for common pattern (cluster 10). The

sensitivity was calculated using the metrics of the confusion matrix as seen in Table 5.9.

The total rate of incorrect predicted windows was equal 0.09. Because the amount of

data used in building the model is 0.52 hour, the false prediction rate is 0.17/h. It was

calculated throuh dividing 0.09 by 0.52.

Again, the 95% confidence interval of sensitivity has been estimated. The same notice

was showed with PLI, here the amount of tested windows affect the sensitivity value

(Figure 5.22).

Patient Time before Maximum Minimum seizures seizures
no. seizure onset prediction time prediction time used predicted

(seconds) (minutes) (seconds)

1 300 4.43 8 2 2
2 300 4.89 1 1 1
3 300 4.95 1 3 3
4 70 2.89 4.5 2 2
5 70 1.11 6 2 2
6 50 0.97 5 2 2
7 40 0.73 8 2 2
8 100 0.39 6 3 3
9 180 2.16 3 2 2
10 20 0.63 2 4 4

Table 5.10: Prediction time of Cluster 10 for 23 seizures of 10 TLE subjects.

Table 5.10 shows the prediction time of 10 TLE subjects used to predict the common

pattern (Cluster 10). The third and fourth columns illustrate the maximum and mini-

mum prediction time for each patient, respectively. As a result, the average of maximum

predicting time for all patients was 1.7 minutes, while the minimum was 9.6 seconds. A

total of 5 minutes’ recording time before seizure for Patient 3 was chosen in building the
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Figure 5.22: Estimated 95% confidence intervals of the sensitivity of LDA model
within different number of windows.

training set of the classifier model for prediction, as seen in Table 5.10. However, Patient

3 had a recording time before seizure of more than 24 minutes, but only 5 minutes be-

fore seizure was chosen in building the training set of the classifier model for predicting.

To see the maximum prediction time for Cluster 10, the first 3 minutes of Patient 3’s

recording time were checked. The result showed that Cluster 10 could be predicted 24

minutes before seizure.

The miss-prediction rate was calculated for each healthy subject which was 0.17 as

average of all. The false prediction rate of LDA classifier model was 0.17/h, which is

lower than that of the predicted model in one study (Alotaiby et al. 2017) (0.39/h) and

equal to that found in another (Aarabi & He 2012) (0.17/h). In general, the proposed

predictive model using LDA did not demonstrate a substantially better performance

– high sensitivity and low specificity – than that proposed using PLI. However, the

above model is considered substantial on the basis of its results produced (24 minutes

prediction time, and a low false prediction rate of 0.17/h) compared to those in other

studies (Chu et al. 2017, Cho et al. 2016), which achieved 0.367/h and 0.5/h respectively.
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5.3 Comparison of performance between PLV, PLI and SL

approaches

As mentioned in Chapter 1, three approaches (PLV, PLI and SL) were chosen to as-

sess the uncontrolled synchronisation and to create a connectivity network to predict

seizures. After applying PLV in the previous chapter to predict seizure, the PLI ap-

proach was used here to predict seizures for the same patients. Four classifier models

were used separately to formulate a predictive model. They employed the network fea-

tures of data in both the beta and gamma bands. They were selected for their slightly

elevated PLI value, observed only in the data of these two bands before seizure. They

were applied to 10 TLE and 10 healthy subjects to predict each cluster. Bagged Tree

model was the best model, with high specificity, sensitivity and accuracy (see Chapter

2 for more describing about model). Cluster 1 was the common pattern, with a false

prediction rate of 0.4/h. The most interesting finding was the high value of CPL in

Cluster 1 compared to other clusters. Figure 5.10 and 5.11 illustrate this increase in

the CPL value. This increase in the CPL value during Cluster 1 refers to changes in

the network structure. A possible explanation may be the increase in brain activity

represented by a high level of uncontrolled synchronisation. It is interesting to note that

the betweenness centrality value of the right temporal lobe nodes (T4, T6) was higher

within Cluster 1 (see Table 5.2). The predictive model achieved a maximum prediction

time of 23.99 minutes. In comparison with earlier methods mentioned in Table 2.2, the

proposed model achieved a substantial prediction time of 23.99 minutes before seizure.

Indeed, it achieved a prediction time longer than those found in other studies (Cho et al.

2016, Ouyang et al. 2007, Le Van Quyen et al. 2001). It was a logically accepted time,

compared to the 60 minutes achieved in (Iqbal et al. 2015). Additionally, the sensitivity

of the prediction method was 88%, higher than that in (Cho et al. 2016, Li et al. 2013,

Aarabi & He 2012). The false prediction rate was 0.4/hr, lower than that provided by

one existing model (Cho et al. 2016) (0.5/hr). The model achieved sensitivity (88%)

for 24 seizures used which are all successfully predicted. As a result, the model created

using PLI was substantially better than the current proposed models in Table 2.2. One

of its limitations was the number of seizures studied for each patient, which was only

one.

A predictive model was created using the SL approach and applied to the same TLE

subjects used with PLI. The extracted features of data in the five bands were explored

(alpha, beta, gamma, delta and theta). The four classifier models used with PLI were

employed to formulate a predictive model using the clustered features of the created

networks. They used to predict each cluster in the data of each band. Cluster 10 of

the delta band was predicted in all patients and in only four of the 10 healthy subjects.

Conversely, other clusters were predicted in both the TLE and healthy subjects. Cluster
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10 of the data in the delta band (the common pattern) was predicted substantially better

by the LDA classifier, in terms of its sensitivity and specificity measures (see Table 5.7).

The most interesting result was the value of the betweenness centrality of the right

temporal lobe nodes T4 and T6 (seizure origin) within Cluster 10, as shown for node

T4 in Figure 5.20. Similarly, this increase in the value of betweenness centrality was

found in the common pattern predicted by the PLI approach. A possible explanation

may be the presence of abnormal brain activity in the right temporal lobe represented

by uncontrolled synchronisation. The predictive method achieved an average prediction

time of 1.7 minutes and a maximum of 24 minutes for Patient 3. Again, the model gave a

substantial prediction time of 24 minutes compared with the time in other studies Aarabi

& He (2012), Iqbal et al. (2015). The false prediction rate was low (0.17/hr) compared

with the methods mentioned in Table 2.2. In addition, the number of patients used in

the current method was higher than used in Zandi et al. (2010), Iqbal et al. (2015). As a

result, the predictive model created using SL is substantially better than existing models.

Table 5.11 summarise the results of the models developed using the three approaches.

Approach Sensitivity Specificity Network Features used Classifier
models

(%) (%) in formulating model used

PLV 94,92 97,98 CPL in gamma band Linear
SVM and
Logistic
Regression

PLI 88 84 CPL, Modularity, Be-
tweenness Centrality of
nodes (T4, T6, P4, and
C4), and Assortativity
for both beta and gamma
bands

Bagged
Tree

SL 87 91 CPL, Modularity, Tran-
sitivity, Clustering Co-
efficient, Assortativity,
Betweenness Centrality of
nodes (T4, T6, P4, C4) in
delta

Linear Dis-
criminant
Analysis

Table 5.11: Summary of all prediction models created in this study.

5.4 Conclusion

All the prediction models created by the three approaches (PLV, PLI and SL) were

tested on data from TLE patients. All achieved a substantial performance - a high

sensitivity and low FPR. However, the sample of patients used – 10 patients – compared
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to that used in existing studies (Chu et al. 2017, Li et al. 2013) (16 and 21 respectively)

is considered small. Another is the short duration of the recording time before seizure

onset in most patients – less than 5 minutes.

By the end of this chapter, the first objective of the thesis has been achieved. The

other objective of the study was to use these approaches to predict epileptic seizures for

patients with generalised epilepsy- absence seizures in our case. The next chapter gives

the results of predicting absence seizures using PLV, PLI and SL approches.





Chapter 6

Predicting Absence Seizures

Using PLV, PLI and SL

As mentioned in Chapter 1, the main goal of this study is to establish the feasibility

of formulating a generalised model to predict epileptic seizures of both types (partial

and generalized epilepsy). To achieve this, a work has been done to create models for

predicting epileptic seizures for each type. These prediction models are now complete for

partial epilepsy, using EEG signals of TLE subjects from each of the three approaches

of estimating synchronization (PLV, PLI and SL) (as described in Chapters 4 and 5). In

this chapter, models are formulated to predict epileptic seizures for generalized epilepsy

by using the EEG signals of patients with Absence seizures - a form of generalized

epilepsy. It explores the procedures adopted in building the models through each of the

three approaches mentioned above.

6.1 Predicting absence seizures using PLV

All the pre-processing steps employed with the TLE subjects described in chapters 4

and 5 have been applied to the patients with generalized epilepsy. After this, the first

step was to check the temporal variation in the PLV values of patients in Groups 1 and

2 (see Chapter 3 for more details). Two measures were calculated to assess the change

before and during a seizure: the average of the PLV values of all nodes in the network

within each window of length 1 second; and the total number of synchronized nodes

whose PLV value exceeds 0.9 within each window. This has been explored for each of

the five bands – alpha, beta, gamma, delta and theta.

The temporal changes in the average values that were observed were assessed by exam-

ining the values of the nine EEG data of patients in Group 1 with those in Group 2. The

comparison sought to find a trend, shared among the nine EEG data used as training

85
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set, that was absent from the data of patients in Group 2. Table 6.1 below summarizes

the results.

Band PLV average Total no. of synchronized
nodes exceeding 0.9

Alpha No pattern No pattern
Beta No pattern No pattern

Gamma No pattern No pattern
Delta No pattern All patients >40
Theta No pattern All patients >45

Table 6.1: PLV average and total number of nodes with a PLV above 0.9, in each of
the five bands.

No common trend in the values appeared among patients in Group 1 regarding the

temporal change in the average PLV value in each window. On the other hand, checking

the total number of nodes whose PLV value exceeded 0.9 in the delta and theta bands

only showed trend in values. These values were detected in all nine EEG data in Group

1. They were checked during seizure in both bands, and the results showed that the same

pattern appears both before and during seizure, in only the delta band. Nonetheless,

the extracted features of both bands were used to find a common pattern and build a

prediction model. Figure 6.1 shows the results of measuring just the delta band data

for the two patients from each group of the training set. The window number shown in

Figure 6.1 (b) represents the total length of recorded data (82 seconds). It is apparent

from Figure 6.1 (a) that the value before and during seizure exceeded the trend of 40,

while in (b) it remained lower. This observation is considered later in formulating the

prediction model.
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(a) Patient with seizure recorded
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(b) Patient with no seizure recoded

Seizure Onset

Figure 6.1: Result of calculating the total synchronised nodes with a PLV value above
0.9 for data in delta band, for both groups of patients. (a) refers to group 1 of patients
with seizures recorded and (b) refers to group 2 of patients with no seizures recorded



Chapter 6 Predicting Absence Seizures Using PLV, PLI and SL 87

6.1.1 Extracting graph theoretic parameters of PLV-based networks

Because of the trend noticed in the values in these patients in both the delta and theta

bands, their PLV-based networks were characterized by extracting eight features, as

shown in Table 6.2, demonstrating which displayed a trend that was common to only

the patients in Group 1, not in Group 2.

Delta Theta

Radius - -
Global Efficiency > 0.7 >0.65

CPL <1.6 -
Modularity - -
Transitivity >0.7 -

Betweenness Centrality Nodes CZ-PZ, FP2-F8,
P4-O2, T4-T6, and T5-
O1 exceeded 60

Nodes FP2-F4, T4-T6,
and T5-O1 exceeded 65

Assortativity >=0.1 -
Strength of Node - -

Table 6.2: Trend values of the extracted features in delta and theta bands.

It is apparent that the common trends lie in global efficiency, CPL, transitivity and

assortativity, in the delta band. In addition, the betweenness centrality of five nodes

exhibit a shared trend. On the other hand, for the data in the theta band, global

efficiency and betweenness centrality show a common trend in only three nodes. The

features exhibiting trends in values were selected to build the prediction model. The

total number of synchronised nodes whose PLV values exceeded 0.9 – as checked earlier

– were added only to the features of delta band, because the same trend was detected

both before and during a seizure.

6.1.2 Formulating a prediction model using PLV

Only the network features showing a shared trend were used in the clustering process

for both bands to extract the hidden pattern, as shown in Table 6.2. Global efficiency

was removed from the data in the delta band because of its strong correlation to other

features. Therefore, the features used with the delta band were: Assortativity, Between-

ness centrality of five nodes: FP2-F8, P4-O2, T4-T6 and T5-O1, Transitivity, CPL and

the total number of synchronized nodes whose PLV value is above 0.9 in each window.

Only global efficiency and the betweenness centrality of nodes were used for the data in

the theta band, as shown in Table 6.2. K-means was used to cluster the data in both

bands. The optimal number of clusters was four, as indicated by the elbow method,

for data in the delta band, while the method failed to establish an optimal number of

clusters in the theta band. Therefore, the silhouette and gap statistic methods were

applied to both. The result was 2 and 20 clusters for data in the delta band, and 2 and
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11 clusters for the data in the theta band. Because there was no consensus achieved by

these methods, the 30 indices used in Chapter 4 were applied to determine the optimal

number of clusters. The results of applying all 30 indices to data in the delta and theta

bands respectively leads to four and two clusters.

Three classifier models were applied, using the cluster number as a label for classification.

They were applied to the nine EEG data records for the six patients used in Group 1

and to the two patients in Group 2 group used as training set. For data in theta band,

no common pattern was found. For the delta band, Clusters 1 and 4 are shown only

for the two patients without seizures. The remaining clusters – Clusters 2 and 3 – were

not apparent in these two patients, and are described in Table 6.3, showing the mean

values of the features in each. It is apparent that Clusters 2 and 3 have lower values of

CPL and betweenness centrality than Clusters 1 and 4. The highest total numbers of

synchronized nodes whose PLV value exceeds 0.9 are in Clusters 2 and 3.

Network feature Cluster 1 Cluster 2 Cluster 3 Cluster 4

Assortativity -0.04 -0.03 -0.05 -0.03
Betweenness Centrality of node (P4-O2) 7.45 5.85 2.63 6.82
Betweenness Centrality of node (FP2-F8) 8.49 4.47 5.02 6.33
Betweenness Centrality of node (T4-T6) 9.42 5.85 4.55 7.77
Betweenness Centrality of nodef (T5-O1) 8.27 6.08 1.45 7.59
Betweenness Centrality of node (CZ-PZ) 8.65 6.09 1.33 7.77

Transitivity 0.43 0.65 0.85 0.54
CPL 2.62 1.82 1.33 2.1

No. of nodes with PLV above 0.9 4.38 64.47 202.12 24.18

Table 6.3: Mean values of the clustering features within the fourth clusters.

Applying the three classifier models to patients in Group 1 showed that only Cluster 2

was predicted in all patients. Therefore, Cluster 2 was selected as the common pattern.

Table 6.4 shows the performance of the three classifiers in terms of accuracy, sensitivity

and specificity for data in the delta band.

Classifier Accuracy (%) Sensitivity (%) Specificity (%)

Complex Tree 100 100 100
Linear SVM 99.75 97 97
Bagged Tree 99.9 100 98

Table 6.4: Performance of three classifier models for clustered features in delta band.

Figure 6.2 presents the results of applying the classifier models to the patients in Group

1. It shows a transition in the four clusters during seizures. It is apparent that Cluster

2 is evident in all seizures, and for all patients is present both before and during the

onset of a seizure.
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Figure 6.2: Illustration of transition of the four clusters during 9 seizures for data in
delta band. The shortcut s1 refers to the seizure file one

Based on the results in Table 6.4, the Complex Tree model was used to predict Cluster

2 for patients’ remaining seizures. Among 11188 clustered windows (3.1 hours), only

446 windows were assigned as cluster 2. All windows of cluster 2 were completely

predicted by the classifier model leading to 100% as sensitivity and specificity. 6.5

presents the metrics of the confusion matrix used in calculating the performance of the

model. Figure 6.3 illustrates the 95% confidence interval of sensitivity. The classifier

model was applied to 30 seizures in seven patients. Table 6.6 illustrates the maximum

prediction time achieved for each patient, alongside the time recorded before the seizure.

This time relates to the seizure with the longest prediction time, for each patient.

Actual

Predicted Pattern Non-pattern
Pattern 446 1

Non-pattern 0 10741

Table 6.5: Confusion Matrix of Complex Tree Model

It is apparent that the longest prediction time was 41.8 minutes, observed for Patient 5.

All seizures in the data were predicted by the developed model.

The next section gives the result of predicting Absence seizures using the PLI approach.
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Figure 6.3: Estimated 95% confidence intervals of the sensitivity of the Complex Tree
model within different number of windows.

Patient no. Seizures used Seizures predicted Prediction time Time before
(minutes) Seizure onset

(seconds)

1 5 5 15.47 929
2 6 6 16.32 980
3 2 2 18.43 1225
4 1 1 0.96 67
5 6 6 41.8 2519
6 7 7 13.3 800
7 3 3 6.99 429

Table 6.6: Maximum prediction time for all seven patients, with their recorded time
before seizure .

6.2 Predicting Absence Seizures Using PLI

The temporal variation in PLI values was examined for the data of the two groups of

patients used as a training set – data on nine seizures of six patients and two records for

patients with no recorded seizures. It was observed that the value of PLI for patients

in the two groups has not exceeded 0.9 like PLV. Therefore, 0.8 was selected to be
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Figure 6.4: Application of the average PLI measure of all nodes for patients in the
two groups, using data in the theta band.

the threshold value used to compare the dynamic change of PLI values. Exploring the

dynamic change in the total number of synchronized nodes whose PLI value exceeded

0.8 revealed no pattern common to the nine seizures of the six patients. On the other

hand, calculating the average value of PLI of all nodes within each window showed a

trend in values of 0.4 in data in both the alpha and theta bands. Only before seizure

onset were these values shared by all patients in Group 1 – patients with seizures – but

not in Group 2 – patients with no seizures recorded. Figure 6.4 (a) and (b) show the

average PLI of all nodes in the theta band for both groups. It is apparent that in Group

1 the values exceeded 0.4, while in Group 2 they did not attain that value. Based on

previous observations, the network features in both the alpha and theta bands of the

patients were extracted to explore any abnormal change.

6.2.1 Extracting theoretic graph parameters of the PLI-based net-

works

Alpha Theta

Radius 9 10
Global efficiency 0.5 0.5

CPL 6.5 8
Modularity - 0.14
Transitivity 0.55 0.45

Clustering coefficient 0.55 -
Betweenness centrality Nodes (F4-C4, C4-P4,

FP2-F8, T6-O2, FP1-
F3, F3-C3, C3-P3, FP1-
F7) exceeded 104

Nodes (C4-P4, F8-T4,
FP1-F3, F3-C3, C3-P3,
P3-O1, FP1-F7, T3-T5,
PZ-OZ) exceeded 108

Assortativity 0.04 0.02

Table 6.7: shows the trend in the features’ values common to all patients.
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All the features in Table 6.7, in alpha and theta, that had a common trend were used

to build a prediction model. The features in the remaining bands were extracted for use

only if the features in alpha and theta bands had failed in identify a common pattern.

Figure 6.5 (a) and (b) shows how the trend value of CPL of data in the alpha band is

exceeded by patients with recorded seizures.
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Figure 6.5: CPL value of data in the alpha band for both groups of patients.

6.2.2 Formulating a prediction model using PLI

Next, the extracted features were clustered, using k-means, to identify any hidden pat-

terns. Only features with shared trends were used in this process. The features’ di-

mensions were reduced by removing one of the two strongest correlated features. After

removing the radius and clustering coefficient, 12 features remained for the data in the

alpha band – CPL, transitivity, assortativity, global efficiency of betweenness centrality

for eight nodes - while there were 14 features for theta – CPL, global efficiency, transi-

tivity, assortativity, modularity and betweenness centrality for nine nodes. The features

in the alpha band formed 10 clusters- the optimal number determined by the 30 indices

mentioned in Chapter 4- and two in the theta band. Unfortunately, no pattern was

found that was common to both bands. As the next step, the features of both the alpha

and theta bands were combined, and formed two clusters. However, this combination

also failed to reveal any common pattern. As a consequence, all the extracted features

of all bands were used in clustering. Table 6.9 shows the optimal number of clusters in

each band using the three clustering methods.

Alpha Beta Gamma Delta Theta

Elbow - - - - -
Silhouette 2 2 2 2 2

Gap statistic 1 1 1 1 1

Table 6.8: Optimal number of clusters in the five bands, as established by the three
methods.
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It is apparent that the elbow method failed to determine an optimal number of clusters,

while the others arrived at different numbers, for all bands. Therefore, 30 indices were

applied, as described in Chapter 4, and it is found that two was optimal for each band.

Consequently, the extracted features of each band were formed into two clusters. The

logistic regression model classified the data, using the cluster number as a label. Clus-

tering revealed no common pattern in the bands, apart from in the delta band. There

was a pattern shared by all nine data records of the six patients used as training set,

compared to the two patients without any seizures recorded. This appeared close to

the seizure’s onset, as seen in Figure 6.6 between the two dashed red lines, starting and

ending with Cluster 2. It appeared at 180 seconds before seizure for eight patients’ data,

apart from one, which persisted longer.
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Figure 6.6: Common pattern in the transition of the two clusters.

It is evident from the figure that the pattern takes place between Windows 1154 and

1160 (the window number represents distance from seizure onset). It was checked in

the remaining seizures data of seven patients (21 seizures) by applying the Logistic

Regression classifier model. The model achieved 98% specificity and 99% sensitivity.

Figure 6.8 shows the procedures adopted to predict the seizures and their time of onset.

It starts with a series of sliding windows seven windows long and compares their values

to the common pattern [2 1 2 1 2 1 2], referring to the cluster numbers. Applying this
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procedure to all patients resulted in just one prediction failure in 30 seizures in all seven

patients. The classifier model was built by asigning value 1 to the windows showed the

common pattern in the training set and 0 for the other windows. The total amount of

windows used in building the model were 11182 - 1394 windows for the common pattern.

Table 6.9 illustrates the metrics of the confusion matrix used to calcluate sensitivity and

specificity of the model. Figure 6.7 illustrates the 95% confidence interval of sensitivity.

Actual

Predicted Pattern Non-pattern
Pattern 1380 188

Non-pattern 14 9600

Table 6.9: Confusion Matrix of Logistic Regression Model
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Figure 6.7: Estimated 95% confidence intervals of the sensitivity of the Logistic Re-
gression model within different number of windows.

The values of the features in the common pattern for the two clusters are described in

Table 6.10 in terms of the maximum and minimum values of five features. Cluster 2,

which is shown at the start and end of the common pattern, exhibited a higher CPL

value than Cluster 1. After incorporating the CPL values within the pattern, a high

peak was observed at the start in all patients (Figure 6.9). This confirms the results in

Table 6.10.



Chapter 6 Predicting Absence Seizures Using PLV, PLI and SL 95

Figure 6.8: Flowchart of the steps to predict the pattern in all patients.

Cluster 1 Cluster 2

Max Min Avg Max Min Avg
Global Efficiency 0.668 0.260 0.358 0.529 0.163 0.269

CPL 4.53 1.65 3.39 7.31 2.16 4.51
Modularity 0.172 -9.8 0.063 0.180 0.024 0.091
Transitivity 0.640 0.234 0.370 0.422 0.159 0.289

Assortativity 0.039 -0.181 -0.062 0.059 -0.142 -0.060

Table 6.10: Maximum and minimum values of network features of the two clusters.
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Figure 6.9: Values of peaks of CPL in pattern, at two points in time.

Figure 6.9 shows with a red circle the peak in CPL value at the beginning of the common

pattern, at two points of time.

The prediction time was calculated for all predicted seizures. Table 6.11 shows the

prediction time for seven patients, with the number of seizures predicted and the time

recorded before the seizure onset.

Patient no. Seizures used Seizures predicted Prediction time Time before
(minutes) Seizure onset

(seconds)

1 5 5 6.53 480
2 5 5 11.78 862
3 1 0 - 67
4 2 2 3.01 572
5 6 6 4.66 294
6 7 7 17.43 800
7 2 2 2.09 192

Table 6.11: Predicted results of all seven patients.

The maximum prediction time was 17.43 minutes, in Patient 6; that is, 800 seconds

before seizure onset. There was only one prediction failure, for Patient 3, of the total 28

seizures examined.

The next section provides the results of using SL-based connectivity networks to build

a prediction model.
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6.3 Predicting Absence Seizures Using SL

The two statistical measures used with PLI were again applied here to check the temporal

variation in SL value for the two groups of patients in the training set. They used to

find a common trend in either of the two measures’ values among patients with seizures

that is not present in subjects without any recorded seizures. A common trend was seen

in the total number of synchronized nodes of SL value above 0.8 in data in the beta

band, which exceeded two, while the temporal change in SL average in all nodes within

each window showed a common trend of 0.48 in data in the delta band. Figure 6.10

illustrates these two trends: (a) the trend value of total number of synchronised nodes

above 0.8 for four patients in Group 1 - it is clear that values for the beta band are over

two; and (b) the trend value (0.48) is exceeded by these same patients for data in the

delta band. These trends are used later with network features to help in building the

prediction model.
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Figure 6.10: Two trends in the two measures for data patients, in beta and delta
respectively.

6.3.1 Extracting the graph theoretic parameters of the SL-based net-

works

All the features of the network used with PLI were extracted here, for all five bands.

Table 6.12 shows the trend values of the network features in both beta and delta. The

table gives the trend values exceeded by the patients’ data in Group 1 of the training

set, in both the beta and delta bands. Besides the statistical values of the two measures

provided in the previous subsection, only features with the trends in the beta and delta

bands were used to build the prediction model.
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Beta Delta

Radius > 18 -
Global efficiency - > 0.55

CPL > 13.5 -
Modularity > 0.3 -
Transitivity - > 0.75

Betweenness centrality 5 nodes exceeded 40 10 nodes exceeded 17
Assortativity - -

Strength of node - -

Table 6.12: Trend values of network features in the beta and delta bands.

6.3.2 Formulating a prediction model using SL

To build a prediction model based on the previous results, the features extracted from

the beta and delta bands, which showed the trends, were clustered using k-means. Six

and eight clusters were formed for the data in the beta and delta bands, respectively.

Unfortunately, no common pattern appeared for the data in either. Consequently, all

the features extracted from the five bands were used in clustering. The optimal number

of clusters was two, for each band. There was a common pattern only in data in the

beta and gamma bands. In beta, all features were used in clustering apart from radius,

because of its strong correlation to the other features. Cluster 2 showed a pattern of a

duration of more than 10 seconds that was not found in the two patients in Group 2.

During this pattern, the CPL value in all patients in Group 1 at some point exceeded

10, while in patients of Group 2 it reached less than 10. Figure 6.11 and Figure 6.12

show examples of patients with and without seizures, respectively.

Because a 50% overlap was used with the sliding windows, in the above figures each 20

windows represents 10 seconds. Figure 6.11 and Figure 6.12 show that in the common

pattern – starting at Window 5 – the CPL value can either exceed or remain under 10.

As a result of this split, a binary recording was applied using the cluster number with

the CPL value to build a model with the following rule: 1- When the cluster number is

two and the CPL value is higher than 10; and 0- When at least one of the two values

is not satisfied. These binary values were used in the classification. Two models were

used: Linear SVM and Logistic Regression. They achieved (99%, 100%) sensitivity and

(100%, 75%) specificity, respectively. Based on these results, Linear SVM was chosen

to be applied to the remaining patients. The total amount of data used in building

the two models was 11188 windows (3.1 hours). The total number of windows used

for the common pattern was 3502. Table 6.13 and Table 6.14 illustrate the metrics of

the confusion matrices used to calculate the performance of Linear SVM and Logisitic

Regression models respectively.

The result of applying Linear SVM model showed eight prediction failures of the 30

seizures in the seven patients, as shown in Table 6.15. It shows the prediction time
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Figure 6.11: Common pattern in beta band, with corresponding CPL value, for
patients with recorded seizures.
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Figure 6.12: Common pattern in beta band, with corresponding CPL value, for
patients without recorded seizures.

with the recorded time before seizure onset and the number of predicted seizures. The

maximum prediction time was 15.68 minutes, in Patient 7.

The data in the gamma band were clustered into two clusters, after removing the radius

feature due to its strong correlation. CPL values of higher than 13 were observed in all
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Actual

Predicted Pattern Non-pattern
Pattern 3466 4

Non-pattern 36 7682

Table 6.13: Confusion Matrix of Linear SVM Model for data in beta band

Actual

Predicted Pattern Non-pattern
Pattern 3497 1920

Non-pattern 5 5766

Table 6.14: Confusion Matrix of Logistic Regression Model for data in beta band

Patient no. Seizures used Seizures predicted Prediction time Time before
(minutes) Seizure onset

(seconds)

1 5 4 6.91 929
2 6 5 12.98 862
3 2 0 - -
4 1 1 1.05 67
5 6 4 6.03 366
6 7 6 10.52 708
7 3 2 15.68 1082

Table 6.15: Information of predicting results of all patients for data in beta band.

patients during Cluster 2, and this was not demonstrated by the two patients without

any recorded seizures.

It is apparent from Figure 6.13 that the CPL value can exceed 13 during Cluster 2 in

patients with recorded seizures, while it remains under 13 in those without recorded

seizures as seen in Figure 6.14. Based on this observation, a binary recording similar to

that used before was applied, using values of CPL greater than 13 to build a prediction

model. Linear SVM was used to classify, achieving 99% sensitivity and 99% specificity.

Table 6.16 illustrates the confusion matrix used to calculate the performce of the model

using 2847 out of 11188 windows for the common pattern. Figure 6.15 illustrates the

95% confidence interval of sensitivity.

Actual

Predicted Pattern Non-pattern
Pattern 2819 87

Non-pattern 28 8254

Table 6.16: Confusion Matrix of Linear SVM Model for data in gamma band



Chapter 6 Predicting Absence Seizures Using PLV, PLI and SL 101

0 5 10 15 20 25

Window Number

0

1

2

3

C
lu

s
te

r 
N

u
m

b
e

r

0 5 10 15 20 25 30

Window Number

11

12

13

14

15

C
P

L

Figure 6.13: Common pattern in the gamma band, with corresponding CPL values,
for patients with recorded seizures.
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Figure 6.14: Common pattern in the gamma band, with corresponding CPL values,
for patients without recorded seizures.

When applied to the remaining patients, there were four prediction failures out of 30

in the data for seven patients. Table 6.17 gives the result of prediction seizures for all

seven, showing the prediction time and the number of predicted seizures. The maximum

prediction time was 41.9 minutes, shown by Patient 5.
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Figure 6.15: Estimated 95% confidence intervals of the sensitivity of Linear SVM
model within different number of windows.

Patient no. Seizures used Seizures predicted Prediction time Time before
(minutes) Seizure onset

(seconds)

1 5 5 14.93 929
2 6 6 15.73 980
3 2 1 15.71 1225
4 1 1 0.96 67
5 6 6 41.9 2519
6 7 4 5.04 708
7 3 3 13.77 1082

Table 6.17: Information of predicting results of all patients for data in gamma band.

Compared to the models created for the data in the beta band, this prediction model

for the gamma band had fewer prediction failures, representing an improvement.
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6.4 Comparison of the models’ performance

This chapter present the results of predicting Absence seizures using three synchroniza-

tion approaches for constructing functional brain connectivity networks – PLV, PLI and

SL. For PLV-based connectivity networks, the prediction model was based on a pattern

in the features of delta band found to be common to all patients, where CPL has a low

value during seizure, as shown in Table 6.3. Complex Tree classifier was used to build

a prediction model that achieved 100% as sensitivity and specificity. All seizures used

were predicted, with a maximum prediction time of 41.8 minutes (see Table 6.6), and it

successfully showed no seizures for the two subjects without recorded seizures.

For PLI-based connectivity networks, a common pattern was found for data in the

delta band, characterized by a high CPL value at the start of the pattern, as shown in

Figure 6.9. Logistic Regression classifier was used to build the prediction model, which

achieved 99% and 98% for sensitivity and specificity, respectively, giving a maximum

prediction time of 17.43 minutes ( for patient with 800 seconds before seizure). This

is less than that achieved by the model using the PLV-based connectivity network (

for patient with 2519 seconds before seizure), as shown in Table 6.11 and Table 6.6,

respectively. The prediction model succeeded in predicting all the seizures apart from

one.

Finally, a prediction model using SL-based connectivity networks was built for data in

the gamma band. The linear SVM classifier was used to formulate a model that achieved

99% for both sensitivity and specificity. It used a common pattern characterized by the

high values of CPL, exceeding 13. The model predicted 26 seizures out of 30, with a

maximum prediction time of 41.9 minutes for the patient with the longest recorded time

before seizure onset (2519 seconds) (Table 6.17).

6.5 Conclusion

The atypical variation in CPL was seen in prediction models of both types of epilepsy

that used the three synchronization measures of PLV, PLI and SL. Consequently, this

observation helped later in building a general prediction model for both types of epilepsy

examined in this studying.

All prediction models using the three synchronization measures – PLV, PLI and SL

- for Absence seizures achieved a high sensitivity (100%, 99% and 99%, respectively),

higher than that of models in previous studies (Cho et al. 2016, Myers et al. 2016, Li

et al. 2013) (82.44%, 76.8% and 75.8%, respectively). It was observed that, in the TLE

models, the maximum prediction time depends on the length of the data recorded before

seizure onset, as seen in Table 4.7 and Table 5.10, whereas in the models of Absence
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Approach Sensitivity Specificity Network Features
used in formulat-
ing model

Classifier
models
used

Prediction
horizon
(minutes)

(%) (%)

PLV 100 100 CPL, Global Effi-
ciency, Transitivity,
Assortativity and
Betweenness Cen-
trality of Nodes
CZ-PZ, FP2-F8,
P4-O2, T4-T6, and
T5-O1 in delta band

Complex
Tree

41.8

PLI 99 98 Global Efficiency,
CPL, Transitivity,
Assortativity, in
delta band

Logistic Re-
gression

17.43

SL 99 99 Transitivity, Global
Efficiency, Between-
ness Centrality Mod-
ularity and Assor-
tativity in gamma
band

Linear
SVM

41.9

Table 6.18: Summary of all prediction models created for absence seizures.

seizures there is no relationship (see Table 6.11 and Table 6.17). Table 6.18 provides a

comparison of performace for the developed models using the three approaches -PLV,

PLI and SL for patients with absence seizures. However the significant performance

provided by these models, they are limited to the sample of patients used -7 patients

and the length of recording time from the start of data to the seizure onset - there is

only one patient with maximum recording time of 20 minutes.

After creating prediction models for both types of epilepsy - both TLE and Absence –

a general prediction model was formulated on the basis of their results.



Chapter 7

Formulating a General Model for

Epileptic Seizure Prediction

Earlier chapters built models to predict both TLE and Absence types of epilepsy, based

on analysing the theoretic graph parameters of the functional brain connectivity net-

works constructed. These networks were created using three measures of functional

connectivity - PLV, PLI and SL - to assess the uncontrolled synchronization between

neural populations. Each model achieves a higher sensitivity and specificity than models

in previous works. In this chapter, a general prediction model is formulated to predict

both types of epilepsy that are examined in this study. To do this, the features were

selected that contributed most significantly to these models’ predictions of seizures. Ta-

ble 5.11 and Table 6.18 summarize all the models created for the prediction of both types

of epilepsy through the three measures - PLV, PLI and SL. These tables show their sen-

sitivity, specificity and classifier model used, in addition to the network features that

contributes to their construction.

Three criteria in selecting the network features were adopted to build the general pre-

diction model:

• Only features common in both types of epilepsy.

• Only features showing an abnormal change.

• Only features in bands shared by both types of epilepsy. For example, although

in different bands - gamma and delta - CPL was common to both PLV-based

prediction models in the two types, as seen in Table 5.11 and Table 6.18. Thus,

CPL was selected to build the prediction model.

Based on these criteria, the feasibility of building a prediction model was explored for

each of the three measures to establish a common pattern among patients with both

types of epilepsy. In preparation, various scenarios were examined:

105
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• All selected bands, with all common features.

• All selected bands, with one feature.

• One band, with all common features.

• One band, with one common feature.

For each scenario, the features of training set – six seizures files of 4 TLE and nine seizures

file of Absence – were used as a training set. The total windows used in the training set

was 14782 - 3594 windows for TLE and 11188 windows for absence seizure- which are

equal 4.1 hours in total. The features were clustered using the k-means algorithm after

ascertaining the optimal number of clusters. Classifier models were formulated using

the clustered features and applied to the remaining patients and six healthy subjects.

If a pattern was found in common to all types of patients, or even within each type of

epilepsy, the prediction time was calculated, along with the sensitivity and specificity of

the prediction model. The two possible scenarios could each have either two patterns –

seizure or no seizure - or three patterns - TLE, Absence or no seizure. Figure 7.1 shows

one of these two possible scenarios, containing three patterns.

Figure 7.1: First possible senario in formulating the general prediction model.

After applying the criteria, the CPL values in the gamma and delta bands for the PLV

measure for TLE and Absence patients, respectively, were selected to build the prediction

model. The features were formed into three clusters, based on the results of applying

the 30 indices. Applying all the possible scenarios to formulate a prediction model using

PLV features of both epilepsy types revealed no common pattern. However, using just

the features of PLI and SL led to common patterns in both. The following sections

describe the process of building prediction models using PLI and SL, along with their

prediction times.
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7.1 Formulating General Predictive Model Using PLI

The beta, gamma and delta bands were selected to create the prediction model, using the

common features of PLI, CPL and assortativity. Only one scenario – using CPL in the

gamma band, for both epilepsy types – showed a common pattern for use in the model.

The features were formed into clusters, after calculating the optimal number of clusters

using four methods. The elbow method failed to find the number of clusters, while

the gap statistic and silhouette methods arrived at one and two clusters, respectively.

Therefore 30 indices were used to evaluate the number of clusters, which was two. The

linear SVM classifier classified the two clusters of data, using the cluster number as the

label, and achieved 100% sensitivity and specificity for both. The classifier was applied

to data on six seizures files for four TLE patients, nine seizures files for six Absence

patients and for six healthy subjects. As a result, three patterns emerged: TLE pattern;

Absence pattern; and no seizure pattern. The first pattern comprised Cluster 1 lasting

for two seconds or more. It was demonstrated by only the TLE subjects in the training

set, as shown in Figure 7.2.

Figure 7.2: Transition of the two clusters for three patients of both epilepsy types,
and three healthy subjects.

Figure 7.2 shows the transition of the two clusters for TLE, Absence and healthy subjects

in Rows 1, 2 and 3, respectively. It is apparent that Pattern 1 – Cluster 1 lasting for two

seconds or more – is present only in TLE patients. Every two windows represent one

second, as 50% overlap was used when the synchronization values of functional brain
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connectivity networks were calculated. The values of CPL of TLE patients during the

pattern have been drawn to characterize Pattern 1.
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Figure 7.3: CPL value of TLE subjects throughout two clusters.
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Figure 7.4: CPL value of Absence subjects throughout two clusters.

The Pattern 1 values for CPL during Cluster 1 were compared to the actual values in

Absence patients and healthy subjects. This showed that CPL values within Cluster 1

for TLE patients lie between 2 and 3. Figure 7.3, 7.4, and 7.5 show the CPL values
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Figure 7.5: CPL value of healthy subjects throughout two clusters.

for the two clusters for TLE, Absence and healthy subjects, respectively. In Figure 7.3,

Pattern 1 and its corresponding CPL values are indicated by red ovals. It is evident

that during Cluster 1 CPL ranges from 2 and 3 for TLE patients, yet exceeds 3 in both

Absence patients and healthy subjects, as shown in Figure 7.4 and Figure 7.5.

This observation was used later to build the model to predict Pattern 1. The range

of CPL value was checked in the data for patients of both types of epilepsy and also

the healthy subjects. It was found only in TLE subjects, confirming that this range of

values indeed characterizes Pattern 1. For further confirmation, the CPL values of two

Absence patients without recorded seizures were checked, and Pattern 1, as indicated by

CPL values of between 2 and 3 in Cluster 1, was found absent. Subsequently, another

pattern for Absence patients was found, represented by the transition between the two

clusters, as shown in Figure 7.6.

As with Pattern 1, a comparison of the CPL value in Pattern 2 was undertaken among

all subjects – TLE, Absence and healthy. It was observed that during Pattern 2, only

in Absence patients does the value of CPL exceed 10 in Cluster 1. This was used to

build the general model to predict Pattern 2. Based on the previous results, the third

pattern - no seizures - was considered for the remaining data, unrelated to Patterns 1

and 2. The general prediction model was formulated using three classes - 1, 2 and 3 -

for TLE, Absence and no seizures patterns, respectively.

Using the Bagged Tree classifier, the proposed model achieved a sensitivity and speci-

ficity of 100% for all three patterns. The total amount of data used in building the model

were 14782 windows (4.1 hours). Table 7.1 illustrates the confusion matrix of the three
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Figure 7.6: Pattern 2, related to Absence patients.

patterns. The performance of the model was calculated by combining the performance

of three patterns as following:

• Sensitivity of the model=(774+13+13993)(775+13+13994)=100%

• Specificity of the model=(14006+14769+787)/(14007+14769+788)=100%

• False Prediction Rate= Fale Positive Rate /amount of data used =(2/29564)/4.1

=0.00001/h.

Actual

Predicted Pattern1 pattern2 Pattern3
Pattern1 774 0 1
Pattern2 0 13 0
Pattern3 1 0 13993

Table 7.1: Confusion Matrix of Bagged Tree Model for data in gamma band

It was applied to 24 seizures files of TLE, 30 seizures files of Absence epilepsy, 10 files of

healthy subjects and the data on two Absence patients without recorded seizures. The

model succeeded in predicting Pattern 1 for 24 seizures of TLE subjects without missing

any, while it predicted Pattern 2 for 21 seizures of Absence patients and missed nine,

and successfully predicted no seizures for the two files of patients with Absence epilepsy

yet with no recorded seizures. For Pattern 3, it resulted in prediction failure for three

healthy subjects of the 10 used. Table 7.2 gives the maximum prediction time in both
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types of epilepsy, and the third column shows the time recorded before seizure onset

only for the subject with the longest prediction time.

Patient no. Maximum predicting Time recording Seizures Seizures
time(seconds) before seizure used predicted

onset (seconds)

TLE-patient 1 229 300 2 2
TLE-patient 2 291 300 1 1
TLE-patient 3 299 300 3 3
TLE-patient 4 67 70 2 2
TLE-patient 5 68 70 1 1
TLE-patient 6 63 70 2 2
TLE-patient 7 45 50 2 2
TLE-patient 8 128 130 3 3
TLE-patient 9 97 100 2 2
TLE-patient 10 48 50 5 5

Absence-patient 1 525 929 5 4
Absence-patient 2 791 980 6 4
Absence-patient 3 1120 1225 2 2
Absence-patient 4 - 67 1 0
Absence-patient 5 624 730 6 4
Absence-patient 6 724 800 7 4
Absence-patient 7 1062 1082 3 3

Table 7.2: Prediction time for all patient types, using the PLI model.

From the table, it is clear that of the TLE patients Patients 1 and 3 show the maximum

prediction time with the PLI model (299 seconds = 5 minutes), while Patient 3, with

Absence seizures, shows the longest time overall (1120 seconds = 19 minutes). The

model has a false prediction rate of 0.00001/h.

7.2 Formulating a General Predictive Model Using SL

In the previous section, a general prediction model was created using PLI features. In

this section, similar scenarios were again applied, this time to create a general prediction

model using SL features. In SL, the features common to both types of epilepsy were

transitivity in the gamma and delta bands, as in Table 5.11 and Table 6.18. After

checking all the possible scenarios, it was found that only transitivity in the delta band

could contribute to a prediction model. Thus, it was extracted from six seizure files

for four TLE patients and nine seizure files of six Absence patients. The elbow method

failed to determine the optimal number of clusters to be used, while the Silhouette and

Gap Statistic methods arrived at two and one, respectively, thus showed no consensus.

The 30 indices which contain the three earlier methods were employed and, as a result,

the data were grouped by k-means into two clusters.
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Two classifier models - Linear SVM and Logistic Regression – classified the data, using

the cluster numbers as labels. Both achieved 100% as sensitivity and specificity. The

result of applying these two classifier models was plotted to identify any common pattern.

One of the most significant contributions in formulating the prediction model is the

value of transitivity that is observed during Cluster 1, which exceeded 0.73 in both TLE

and Absence patients data, compared to that of the four healthy subjects. For further

verification, the transitivity value of two files of Absence patients – who had had no

recorded seizures - were also checked (Figure 7.7).
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Figure 7.7: Transitivity value during Cluster 1 for TLE patients, Absence patients
and healthy subjects.

The pattern of transitivity value was not apparent in the data for these two patients,

therefore, this observation was used to create a training dataset for the classification of

two classes – seizure and no seizure. All samples of data with transitivity values of more

than 0.73 were set to one, while the others were set to zero. A general prediction model

was created using Linear SVM, achieving 100% sensitivity and 94.4% specificity. The

total amount of data used to build the model was 14782 windows (4.1 hours) represent

the training set (6 EEG data of TLE and 9 EEG data of Absence seizures subjects).

There were 14442 windows out of 14782 were assigned to the common pattern. The total

rate of incorrect predicted windows as pattern equal 0.06 which was calculated using

the equation 3.9. The False Prediction Rate was 0.01/h which is calculated through

dividing 0.06 by the total amount of hours used in the in building the model (4.1 hours).

Table 7.3 illustrates the confusion matrix created to calculate the performance of the

model. Figure 7.8 illustrates the 95% confidence interval of sensitivity.
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Actual

Predicted Pattern Non-pattern
Pattern 14442 19

Non-pattern 0 321

Table 7.3: Confusion Matrix of Linear SVM Model for data in gamma band

The model created was applied to the remaining patients. Table 7.4 shows the maximum

prediction time in both types of patients, along with the recorded time before seizure

onset. The model predicted TLE seizures with a maximum time of 298 seconds (5

minutes) for Patient 1, with 300 seconds of recorded time before seizure onset. on the

other side, the model predicted Absence seizures with a maximum time of 2,392 seconds

(40 minutes) for Patient 15, with 2,519 seconds of recorded time before seizure onset.
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Figure 7.8: Estimated 95% confidence intervals of the sensitivity of Linear SVM model
within different number of windows.

7.3 Performance Comparison and Conclusion

In this chapter, two general prediction models were formulated from the findings of

Chapters 4, 5 and 6. These were based on the features common to both types of epilepsy
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Patient name Maximum predicting Time recording Seizures Seizures
time(seconds) before seizure used predicted

onset (seconds)

TLE-patient 1 298 300 2 2
TLE-patient 2 253 300 1 1
TLE-patient 3 294 300 3 3
TLE-patient 4 65 70 2 2
TLE-patient 5 60 70 1 1
TLE-patient 6 62 70 2 2
TLE-patient 7 44 50 2 2
TLE-patient 8 123 130 3 3
TLE-patient 9 99 100 2 2
TLE-patient 10 28 50 5 5

Absence-patient 1 857 929 5 3
Absence-patient 2 782 980 6 6
Absence-patient 3 1112 1225 2 2
Absence-patient 4 - 67 1 0
Absence-patient 5 2392 2519 6 6
Absence-patient 6 723 744 7 6
Absence-patien t7 623 1082 3 2

Table 7.4: Prediction time using SL model on all subject types.

and used the PLI and SL prediction models (see Table 5.11 and Table 6.18).

In the PLI prediction model, CPL and assortativity in the beta, gamma and delta bands

were the features extracted to detect the three patterns, characterized by variations in

the CPL value in the gamma band (see Table 5.11 and Table 6.18). The model achieved

100% sensitivity and specificity with a false prediction rate of 0.00001/h. As seen in

Table 7.2, the maximum prediction time was 299 seconds (5 minutes), as demonstrated

by two TLE subjects, while the prediction time was 1,120 seconds (19 minutes), as

demonstrated by an Absence subject. The maximum prediction time here is dependent

on the length of recorded data before the seizure’s onset.

In the SL prediction model, transitivity in the beta, gamma and delta bands was the

feature used to identify the common pattern. Two patterns - seizure and no seizure

– in the trend of transitivity value were shown only by patients with both types of

epilepsy. The prediction model was formulated using Linear SVM, with 100% and 94.4%

as sensitivity and specificity respectively. Its false prediction rate was 0.01/h, lower than

that in the first model. As seen in Table 7.4, the maximum prediction time was 2,392

seconds (40 minutes) for the fifth patient with Absence seizures, while it was 298 seconds

(5 minutes) for the first TLE subject. Table 7.5 provides a comparison between the two

general predictive models.

In general, both prediction models achieved a higher sensitivity (100%) than those in
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Model Sensitvity Specificity Network Classifier FPR Predicting
(%) (%) features (/h) time

used (mins)

PLI-based
model

100 100 CPL in
gamma
band

Bagged Tree 0.00001 19

SL-based
model

100 94.4 Transitivity
in delta
band

Linear SVM 0.01 40

Table 7.5: Summary of all prediction models created in this study.

previous studies (Chu et al. 2017, Li et al. 2013)(86.67%, 75.8%). The maximum pre-

diction time of the second general prediction model was greater (40 minutes) than that

of the first. The false prediction rates (0.00001/h and 0.01/h for the first and second

model respectively) were lower than the models in previous studies (Chu et al. 2017,

Alotaiby et al. 2017, Iqbal et al. 2015) (0.367/h, 0.39/h and 0.38/h, respectively). The

limitation of both general models is that they use only one seizure type for each type of

partial and generalized epilepsy: TLE and Absence epilepsy, respectively.





Chapter 8

Conclusions and future work

8.1 Conclusion

The main goal of this thesis was to formulate a general prediction model for epileptic

seizures by applying functional brain connectivity networks with machine learning to

achieve a low false prediction rate. The aim was to develop this model to contribute in

predicting both TLE and Absence-type seizures.

This goal was achieved in Chapter 7 through formulating two general prediction models

with a lower false prediction rate (0.00001/h and 0.01/h) than those in earlier studies

(Iqbal et al. 2015, Chu et al. 2017, Alotaiby et al. 2017, Zandi et al. 2010) (0.38/h,

0.367/h, 0.39/h and 0.12/h, respectively). Additionally, the earlier models mentioned

in Chapter 2 have low sensitivity. This is a limitation that has been improved by this

research: both the general models developed achieved the high sensitivity of 100%.

Both general prediction models were developed using three synchronisation measures

- PLV, PLI, and SL - for the two types of epilepsy. All the models improved the

limitations of those mentioned in the literature by achieving high sensitivity combined

with a low false prediction rate and long prediction time. In doing this, all objectives of

the research were achieved, as described in Chapters 4, 5, 6 and 7. All the prediction

models developed contribute to the field of predicting epileptic seizures in terms of

improved performance. In addition, the general prediction models are the first to predict

more than one type of epileptic seizure.

The models are, however, limited by the sample of patients available, which is relatively

small. Moreover, the duration of recording before the onset of seizures was short, in many

of the patients’ data, and the study’s TLE subjects all experienced seizures originating

from only the right temporal lobe. Further, the general models developed were applied

only to one sub-type in each of the two types of epilepsy. This is because the database

available during the study featured only patients with right TLE and Absence seizures.
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8.2 Future works proposed

The two general models proposed in the thesis will contribute to the study area of

developing a closed-loop system for preempting epilepsy. In these systems, the doctor

provides appropriate treatment according to the data collected by the prediction model.

The research can be extended to implement further work, as follows:

• The prediction models developed in this study achieved a strong performance –

low FPR and high sensitivity - but are limited by the data available on the patients

used - 10 TLE and seven Absence subjects. Therefore, in future work the models

should be applied to a larger sample to assess their validity, checking if their

performance is altered in terms of either the false prediction rate or decreased

sensitivity.

• The sample of patients available to the study had only one TLE subject with a

maximum of 40 minutes recorded time before seizure onset, while the remaining

subjects had less than 5 minutes. Similarly, the available data on subjects with

Absence seizures had a maximum of 20 minutes recorded time, and for only one

subject. Further work needs to be done to assess the relationship between the

extent of the recorded time before seizure onset and the duration of the prediction

time that is achieved. This can be done by exploring the data of patients with a

more prolonged recording before seizure than those in this study.

• In the research, only data on patients with right TLE was available for prediction.

Therefore, further work might explore the possibility using the developed models

to predict seizures in patients with left TLE, making sure that the models can

predict TLE in general.

• The epileptic seizures types examined in this study were used to represent just

two sub-types of the two general types of epilepsy - generalized and partial. As

future work, the prediction of seizures in patients with the remaining types of

generalized epilepsy such as, tonic-clonic, atonic, clonic, myoclinic seizures; and

partial epilepsy such as, simple and complex partial seizures could be attempted

using the general models developed in this research. By doing this, we can explore

the possibility of generalizing these prediction models to all types of epileptic

seizure.

• Finally, in a future research, it would be valuable to explore the possibility of

formulating high-performance prediction models using effective brain connectivity

measures in contrast to those used in this study, for instance Granger’s Causality

and Dynamic Causal Modeling (DCM) (to provide the causality between two times

series).
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