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Abstract—Literate computing has emerged as an important tool for computational studies and
open science, with growing folklore of best practices. In this work, we report two case studies –
one in computational magnetism and another in computational mathematics – where a dedicated
software was exposed into the Jupyter environment. This enabled interactive and batch
computational exploration of data, simulations, data analysis, and workflow documentation and
outcome in Jupyter notebooks. In the first study, Ubermag drives existing computational
micromagnetics software through a domain-specific language embedded in Python. In the
second study, a dedicated Jupyter kernel interfaces with the GAP system for computational
discrete algebra and its dedicated programming language. In light of these case studies, we
discuss the benefits of this approach, including progress towards more reproducible and
re-usable research results and outputs, notably through the use of infrastructure such as
JupyterHub and Binder.

INTRODUCTION

Research usually results in a publication that
presents and shares the obtained findings and

conclusions. For a publication to be scientifically
valid, it must present the methodology rigorously,
so that readers can follow the “recipe” and
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reproduce the results. If this criterion is met,
the publication is considered reproducible. Re-
producible publications are more easily re-usable
and thus provide a significant opportunity to make
(often tax-payer funded) research more impactful.
However, the reproducibility of computational
work is usually hindered not only by a lack of
data or meta-data but also by a lack of details on
the procedure and tools used:

1) The source code of the software used is not
available.

2) Information on the computing environment,
such as the hardware, operating system,
supporting libraries, and (if required) code
compilation details is not revealed.

3) The exact procedure which led to the results
reported in the publication is not shared.
This should include the set of parameters
used, the simulation and data analysis pro-
cedure, and any additional data cleaning,
processing, and visualization. Ideally, these
are shared as open-source code and analy-
sis scripts used to perform the simulation
and to read, analyze, and visualize the re-
sulting data. This way, the entire process
can be repeated by re-running simulation
and/or analysis scripts. A human-readable
document detailing the computational steps
taken, despite being “better-than-nothing”,
is still insufficient to ensure reproducibility,
and keeping a detailed log of all steps taken
during a computational study is often impos-
sible.

Reproducibility is a challenging question and
spans a range of different topics. In this work, we
focus on one of them. We describe the features
and capabilities of the Jupyter environment that,
in our view, make it a highly productive environ-
ment for computational science and mathematics,
while facilitating reproducibility.

The topic of bitwise reproducibility is outside
the scope of this work: even with the same
hardware and same software, it may be diffi-
cult to reproduce computational results to be
bitwise identical. This can originate from the non-
associativity of floating-point operations com-
bined with parallel execution or from compiler
optimizations. Bitwise reproducibility is not al-
ways required to be achieved.

In the last decade, literate computing has
emerged as an important tool for computational
studies and open science, with an ever-growing
set of best practices. In this paper, we review and
expand some of these best practices in the context
of two case studies: computational magnetism
and mathematics. This is based on the experience
of enabling and applying Jupyter environments
in these fields as a part of the OpenDreamKit
(https://opendreamkit.org/) project.

To be able to run computational studies from
the Jupyter environment, it is necessary to either
have the simulation and/or analysis code exposed
to a general-purpose programming language sup-
ported by Jupyter, or have a dedicated Jupyter
kernel for the computational libraries. Although
the main topic of this work is the overview of
features and capabilities of the Jupyter environ-
ment for reproducible workflows, we begin by
discussing how a computational library can be
exposed to Jupyter as a necessary prerequisite.

Prerequisite: Exposing computational
libraries to the Jupyter environment

Computational studies often use existing com-
putational (legacy) tools. These could be executa-
bles called from the command line or libraries
that are used within a programming language. For
the approach suggested here, these computational
tools need to be accessible to scientists from
a general-purpose programming language sup-
ported by Jupyter (such as Python). For some do-
mains, such as pure mathematics research, there
are domain-specific languages with enough power
to be used directly as the programming language
in notebooks (e.g., Singular and GAP). In other
areas, exposing computational tools to a general-
purpose programming language is the key to inte-
grating them into researchers’ custom code. A key
benefit of making computational tools available
in a general-purpose programming language is
that the computation can be driven flexibly using
the control structures provided by that language.
For example, a simulation can conveniently be
repeated with a range of parameters through a for-
loop, rather than having to change a configuration
file for each value and trigger execution of the
simulation manually.

Making the computational capability acces-
sible from a general-purpose programming lan-
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guage supported through a Jupyter kernel such
as Python may be trivial – for example, if the
required code is already a Python library. When
the computational functionality is locked into an
executable, one can create an interface layer so
that functionality can be accessed via a Python
function or class [1]: input parameters will then
be translated into configuration files, the exe-
cutable called, outputs retrieved, and finally, the
results returned.

If the computational tool uses a programming
language that Jupyter does not support, another
possibility is to implement a Jupyter kernel for
that language so that the computational library
can be exposed to the Jupyter environment (as
done for GAP and SageMath for example).

Over time, scientific communities tend to
accumulate functions and classes that are used
repeatedly, and occasionally, through organic
changes or a systematic restructuring of those
computational capabilities, a domain-specific lan-
guage is created, which is embedded in a general-
purpose programming language such as Python.
Depending on the design of this language, its
existence and joint use by researchers of that
domain can help to unify and improve computa-
tional tasks in the community, avoid duplication
of work, support transfer of knowledge and re-
producibility. Examples of such domain-specific
languages include Ubermag in magnetism, Sage-
Math in pure mathematics, and the atomic simu-
lation environment in chemistry [2].

Features of the Jupyter research
environment

Project Jupyter is a set of open-source soft-
ware projects for interactive and exploratory com-
puting emerging from IPython. The central com-
ponent offered by Jupyter is the Jupyter Notebook
– a web-based interactive computing platform. It
allows users to create data- and code-driven narra-
tives that combine live (re-executable) code, equa-
tions, narrative text, interactive dashboards, and
other rich media. Jupyter Notebook documents
provide a complete and executable record of a
computation that can be shared with others in a
way that has not been possible before [3]. Within
the Jupyter Notebook, all libraries available in
Python can be imported and combined flexibly.
Other languages (such as Julia, R, Haskell, Bash,

and many more) are supported through other
Jupyter Notebook kernels. In this work, we sug-
gest using a Jupyter research environment from
which computational studies can be driven and
conducted efficiently. In this section, we discuss
the benefits of using the Jupyter environment for
reproducible scientific workflows.

1. One study – one document
The notebook allows us to carry out an entire

study within a single notebook and provides a
complete and executable record of the process. It
is possible to put the interpretation of the results
into the same document, immediately below the
graphical, tabular or text-based output that needs
to be described. The “one study – one document”
approach has immediate advantages:

• Scientists can be more efficient as they do not
have to search for parts of the study (scripts,
data files, plots) when trying to understand the
data and authoring the associated paper.

• The study is more easily reproducible (see item
6, below).

However, putting all the code, data, and nar-
rative into a single notebook could substantially
affect the notebook’s readability. Thus, it is nec-
essary to decide which parts of the code should
be in libraries and imported in the notebook.

2. Easily shareable
Jupyter notebooks can be converted to other

file formats, such as HTML, LaTeX and PDF.
This is useful because someone working on a
notebook can share it with collaborators, super-
visors, or management without asking them to
install any additional software.

3. Interactive execution or as batch job
Using a Jupyter notebook often involves in-

teractively editing it, executing cells, inspecting
computed outputs, modifying commands, and re-
executing, while understanding the computational
research question. Once a useful processing se-
quence has been found, the researcher often
wants to repeat that, potentially with different
input data. For such scenarios, a notebook can
be executed from the command line (using the
nbconvert tool), treating the notebook like a
script or a batch job. As the notebook executes
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in batch mode, it computes the output cells,
including images and other multimedia, as if it
were executed interactively, and the outputs are
stored into the notebook file for later analysis and
inspection. Execution of notebooks as a script is
a convenient way to use the computational power
of a high-performance computing facility where
such notebook jobs can be submitted to the batch
queue.

Where input data needs to be varied, two
solutions are available: nbparameterise and
papermill. With these tools, assignments in
the first cells of a notebook can be modified
before the notebook is executed as a script.

4. Static and interactive software documention
Writing research software documentation is

a particular challenge in academia. Small teams
may not see the need to document their research
code, as they can learn about it directly from one
another.

Jupyter notebooks offer an efficient method
for creating documentation. The popular Sphinx
documentation software can use Jupyter note-
books as the documentation source with the
nbsphinx plugin, and create HTML and PDF
documents. Demos and tutorials written in note-
books can complement reference documentation
in Sphinx’s default reStructuredText input format.
Notebooks have several benefits for extended
examples in documentation:

• It takes less time to create documentation as
the author can type commands and explana-
tions into the same document, and the outputs
that the commands produce (text and images)
appear immediately in the notebook.

• After changing the user interface or computa-
tional algorithms, re-executing the documen-
tation notebooks will often show where the
documentation needs changing.

• Tools like nbval can automatically re-execute
the notebooks and raise test errors if the ex-
ecution fails, or the computed outputs have
changed. This means continuous integration
can be used to check the documentation and
warn developers if changes in the code affect
the illustrated behaviour.

• Using Binder, the documentation notebook can
be executed interactively by the user (see item

5, below).

5. Executable interactive documents in the
cloud (Binder)

The open-source Binder project [4] and
Binder instances such as myBinder offer cus-
tomized computational environments in the cloud
on-demand, in which notebooks can be exe-
cuted interactively. To use the free myBinder
service, one needs to create a publicly read-
able git-repository containing Jupyter notebooks
and a specification of the software required
to execute these notebooks. This specifica-
tion follows existing standards, such as a
Python-style requirements.txt file, conda
environment.yml file, or Dockerfile.
The myBinder service is invoked when a URL
is requested containing the path to the GitHub
repository. The myBinder service searches that
repository for the software specification, creates
a suitable container, adds a Jupyter server to
the container, and exposes that server to the
user. Figure 1 offers an artistic illustration of a
typical scenario for using Binder in the research
workflow. Other use cases include:

• Providing a computational environment for
workshops or teaching purposes: participants
are given the URL to invoke the service, and
are presented a Jupyter session, in which they
find the notebooks the presenter/teacher has
prepared. No software installation (other than
having a modern web browser) is required for
participants.

• Providing interactive documentation: Given
Binder-compatible specifications, documenta-
tion can be presented as an executable note-
book through myBinder, allowing the person
reading the documentation to interactively ex-
plore the the software’s behaviour (the com-
mand can be modified and run again).

• Demonstrating and disseminating small com-
putational studies: Jupyter notebooks can be
used to document computational processes. For
example, for dissemination or to demonstrate
reproducibility, as we explain in item 6, below.

The related Voilà project can execute note-
books (for example on myBinder) and hide all
code cells, making an interactive dashboard to
display and explore data without the source code.
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Figure 1. An artistic depiction of a scenario in which a researcher shares her computational workflow with
others in the Jupyter environment, taking advantage of the Binder project. Licensed under “Creative Commons
License, Attribution-ShareAlike” (enables reuse and adaptations, as long as credits to the original author are
kept). © CC BY-SA

6. Reproducibility – combining data, code, and
software environment

Reproducibility of scientific results is a cor-
nerstone of our interpretation of science: only
results that can be reproduced are accepted as
proven insight. We see an emerging trend that
journals and research councils increasingly (and
justifiably) ask for details on how published re-
sults can be reproduced, or at least expect authors
to provide that information if a reader requests.

It is often impossible to truly document an
entire computational workflow, software require-
ments, hardware used, and other parameters
within a conventional manuscript submission. The
Jupyter-based research environment can help
because it makes the process of publishing repro-
ducible computational results easily achievable:

• The “one document – one study” model au-
tomatically records all parameters, process-

ing commands, and outputs, demonstrating the
process leading to the result obtained with
that notebook. By sharing the notebooks in
a public repository, a DOI can be assigned
via Zenodo to preserve the repository’s content
permanently and make it citable.

• Notebooks that create central figures and state-
ments of publications will likely need under-
lying libraries. To re-execute the notebook, we
need a way to specify a computational envi-
ronment containing these libraries and Binder
provides that possibility. Although specifying
exact versions of underlying libraries is rec-
ommended, Binder does not guarantee that
this would lead to the same computational
environment at any point in the future, and
therefore, it cannot entirely address the issue of
so-called software collapse where the underly-
ing libraries and interfaces become deprecated,
compilers and compiler optimization methods
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Figure 2. An artistic illustration of a configurable JupyterHub where a lecturer provides a customized software
environment to support their teaching. JupyterHub can be accessed and used through a web browser and
does not require local installation of any software. Institutional computing and storage resources are used, and
users have to authenticate themselves. Licensed under “Creative Commons License, Attribution-ShareAlike”
(enables reuse and adaptations, as long as credits to the original author are kept). © CC BY-SA

change, etc.
• By publishing the notebooks reproducing cen-

tral results together with software environment
specifications for Binder in an open repository,
anyone with Internet access and a browser can
inspect and re-execute these notebooks and
thus reproduce the publication.

A key benefit of being able to reproduce a
publication in this way is that the study can
be modified and extended easily: reproducibility
enables re-usability. This can provide efficiency
gains for science overall as it allows scientists to
focus on new insights rather than having to spend
time re-creating known knowledge as a starting
point of their new study.

7. Remote access to institutional compute
resources – JupyterHub

The discussion above assumed that notebooks
were running on the user’s computer. The Jupyter-
Hub software allows institutional provision of
Jupyter Notebook services. It allows users of
an institution to authenticate with their organi-
zational credentials and access a Jupyter environ-
ment running on the institution’s infrastructure.
Typically, any files and folders the user is allowed
to access will also be made available to them
through JupyterHub, including access to shared
data and folders where they can save their note-
books.

The institution generally predefines the soft-
ware environment in which the notebook server
executes. However, the technology is available to
use the software specification as for Binder to
create a customized computing environment on-
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demand. A vital point of the user experience is
that only a web browser is required to access the
JupyterHub and to carry out computational work
using these resources remotely. Figure 2 shows
an artistic illustration of the scenario where an
instructor works with their institution to provide
students with a customized software environment.
Other use cases of JupyterHub installations in-
clude research facilities and universities provid-
ing access to their (high-performance) computing
resources through Jupyter notebooks, where tra-
ditionally ssh or remote desktops may have been
used.

8. Blending script and GUI-driven exploration
methods

The IPyWidgets Jupyter extension pro-
vides selection menus, sliders, radio buttons, and
other GUI-like graphical interaction widgets to
Jupyter notebooks. The Notebook allows embed-
ding such graphical widgets inside the notebook,
and users can combine the usual scripted analysis
with activation of such widgets where desired.
They can be used, for example, to vary the
input parameter values and explore a data set or
computational results. Although less reproducible
than typed commands, widgets can be useful for
rapid feedback on different possibilities.

9. Potential disadvantages
Above we focused on the features and ca-

pabilities of the Jupyter research environment
to support computational workflows in science.
Here, we want to discuss some downsides that
have come up either in our work or as feedback
from users of Jupyter-based computational tools
we developed.

(a) Undefined notebook state
Top-to-bottom arrangement of cells in a notebook
implies that they should be executed in that order.
One of the Jupyter Notebook’s key features is
that the code cells can be executed in an arbitrary
order – the user can select (and modify) any cell
and then execute it. This can be useful while
exploring a data set or a property of computation,
or even to debug the cell’s code. The execution
order used in a notebook is not stored when
the notebook is saved. Therefore, it is critical to
remember that, by executing cells out of order,

we may create different results from when we
execute all cells in order.

There is a practical solution to this. When the
exploratory phase is completed, the best practice
is to restart the kernel to ensure the notebook’s
state is forgotten and then execute all cells from
top to bottom. This ensures that the results in the
notebook are from running the cells in order, and
this version of the notebook should be saved and
shared.

(b) Opening Jupyter Notebook
Among the feedback we receive from some users
who come across Jupyter notebooks for the first
time is that the way a Jupyter server is started
is “strange”. Users who are not used to the
command prompt may find it unusual to open an
application that way, instead of “double-clicking”.

(c) Rapid development of Jupyter ecosystem
Improvements to Project Jupyter and the sur-
rounding software ecosystem appear at a rapid
rate. For instance, for the issues described in
items (a) and (b), contributions providing solu-
tions have already emerged, and there is no space
here to introduce more of the multitude of high-
productivity tools that have been created. It is
challenging to follow all the developments and
find the most appropriate tool for a given task.
Conferences such as JupyterCon help disseminate
new contributions and help to avoid duplication
of development efforts.

(d) Sustainability of myBinder.org
Since 2016 (and at time of writing), a federation
of Binder instances is operated as a service avail-
able on the world wide web at mybinder.org.
The federation is operated by the Jupyter team, in
collaboration with the Turing Institute and GESIS
(Leibniz Institute for Social Sciences). Comput-
ing resources are sponsored by Google Cloud,
OVHCloud, the Turing Institute, and GESIS. The
federation serves approximately 25,000 Binder
instances on a typical weekday, with the Google
Cloud instance serving approximately 70% of
this traffic. These sponsorships are mostly re-
newed annually and can result in members of
the federation halting the operation due to periods
without funding. We hope that the sustainability
of the Binder federation will improve if more
financially-stable members join, for example, as
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a part of the European Open Science Cloud
initiative.

Case studies

Computational magnetism
Computational magnetism complements the-

oretical and experimental methods to support
research in magnetism. For example, it is used
to develop sensors as well as data storage and
information processing devices. It is used both
in academia and industry to explain experimental
observations, design experiments, improve device
and product-designs virtually, and verify theoret-
ical predictions.

The Object-Oriented MicroMagnetic Frame-
work (OOMMF) [5] is a micromagnetic simula-
tion tool, initially developed during the 1990s at
the National Institute of Standards and Technol-
ogy (NIST). It solves non-linear time-dependent
partial differential equations using the finite-
difference method. It is probably the most widely
used and most trusted simulation tool in the com-
putational magnetism community. It was written
in C++, wrapped with Tcl, and driven through
configuration files that follow the Tcl syntax.

The typical computational workflow the user
must follow to simulate a particular problem is
to write a configuration file. After that, the user
runs OOMMF by providing the configuration file
to the OOMMF executable. When the OOMMF
run is complete, results are saved in OOMMF-
specific file formats. Finally, the user analyzes the
result files.

One of the specific goals of a computational
micromagnetic study is parameter-space explo-
ration. More precisely, the user repeats the simu-
lation for different values of input parameters by
changing them in the configuration file. It is often
difficult to automate this, and it is challenging for
the user to keep a log of all steps performed in the
entire micromagnetic study. Besides, postprocess-
ing and analysis of results is performed outside
OOMMF, using techniques and scripts that are
mostly developed by the user, or carried out man-
ually. Consequently, it is hard to track, record, and
convey the exact simulation procedure. Without
this information, resulting publications are gener-
ally not reproducible.

To address this situation, we developed a

L=    8.0, m_init_vortex Running OOMMF ... (2.2 s) 
L=    8.0, m_init_flower Running OOMMF ... (1.1 s) 
L=   8.25, m_init_vortex Running OOMMF ... (1.8 s) 
L=   8.25, m_init_flower Running OOMMF ... (1.1 s) 
L=    8.5, m_init_vortex Running OOMMF ... (1.7 s) 
L=    8.5, m_init_flower Running OOMMF ... (1.1 s) 
L=   8.75, m_init_vortex Running OOMMF ... (1.5 s) 
L=   8.75, m_init_flower Running OOMMF ... (1.1 s) 
L=    9.0, m_init_vortex Running OOMMF ... (1.5 s) 
L=    9.0, m_init_flower Running OOMMF ... (1.1 s) 

In [6]: L_array = np.linspace(8, 9, 5) 
vortex_energies, flower_energies = [], [] 
 
for L in L_array: 
    vortex = minimise_system_energy(L, m_init_vortex) 
    flower = minimise_system_energy(L, m_init_flower) 
    vortex_energies.append(vortex.table.data.tail(1)['E'][0]) 
    flower_energies.append(flower.table.data.tail(1)['E'][0]) 
 
import matplotlib.pyplot as plt 
plt.figure(figsize=(6, 4)) 
plt.plot(L_array, vortex_energies, 'o-', label='vortex') 
plt.plot(L_array, flower_energies, 'o-', label='flower') 
plt.xlabel(r'$L (l_{ex}$)') 
plt.ylabel(r'$E$ (J)') 
plt.grid() 
plt.legend(); 

L=    8.4, m_init_vortex Running OOMMF ... (1.7 s) 
L=    8.4, m_init_flower Running OOMMF ... (1.1 s) 
L=    8.6, m_init_vortex Running OOMMF ... (1.6 s) 
L=    8.6, m_init_flower Running OOMMF ... (1.1 s) 
L=    8.5, m_init_vortex Running OOMMF ... (1.7 s) 
L=    8.5, m_init_flower Running OOMMF ... (1.1 s) 
L=   8.45, m_init_vortex Running OOMMF ... (1.6 s) 
L=   8.45, m_init_flower Running OOMMF ... (1.1 s) 
L=  8.425, m_init_vortex Running OOMMF ... (1.8 s) 
L=  8.425, m_init_flower Running OOMMF ... (1.2 s) 
L= 8.4375, m_init_vortex Running OOMMF ... (1.6 s) 
L= 8.4375, m_init_flower Running OOMMF ... (1.2 s) 

The energy crossing occurs at L = 8.4375*lex 

In [7]: from scipy.optimize import bisect 
 
def energy_difference(L): 
    vortex = minimise_system_energy(L, m_init_vortex) 
    flower = minimise_system_energy(L, m_init_flower) 
    return (vortex.table.data.tail(1)['E'][0] - 
            flower.table.data.tail(1)['E'][0]) 
 
cross_section = bisect(energy_difference, 8.4, 8.6, xtol=0.02) 
 
print(f'\nThe energy crossing occurs at L = {cross_section}*lex'

Figure 3. Running computational magnetism simu-
lations through Python in a Jupyter notebook allows
the use of the Python scientific stack and results in a
self-contained record combining narrative, code, and
results.
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Python interface to the OOMMF executable. This
allows us to conduct computational magnetism
simulations from within the Jupyter notebook to
capitalize on the benefits of this environment.

We developed a set of Python libraries we
refer to as Ubermag, which expose the compu-
tational capabilities of OOMMF so that it can be
controlled from Python. These Python libraries
provide a domain-specific language to define a
micromagnetic problem [1]. A micromagnetic
model, defined using the domain-specific lan-
guage, is not aware of the particular simulation
tool that will perform the actual micromagnetic
simulation, and it is only used to describe the
model. When a simulation is required, the model
is translated into the OOMMF configuration file,
the OOMMF executable is called, and the output
files are read. By exposing the micromagnetic
simulation capabilities to Python and driving
the research from Jupyter Notebook, we have
available all the benefits of the Jupyter research
environment.

To demonstrate the use of Ubermag, we use
standard problem 3 as an example. Standard
problem 3 is a standardized problem posed by the
micromagnetic community to test, validate, and
compare different simulation tools. It describes
a magnetic cube of edge length L with two
different magnetization states that can occur as
local energy minima, called the flower state and
the vortex state. The main question of standard
problem 3 is “For what edge length L have
the flower state and the vortex state the same
energy?”

In the conventional OOMMF workflow, it is
necessary to run the micromagnetic simulations
for different edge lengths and different initial
magnetization states. After every simulation, the
total energy is recorded and saved within a tab-
separated data file. Finally, one extracts the mag-
netic energy values from all the saved files and
plots them as a function of edge length for both
magnetization states. From the plot, an estimation
of the energy crossing would be made.

By using our Python interface to OOMMF
integrated into a Jupyter notebook, we can loop
over different input parameters to obtain this
crossing in a plot. Furthermore, we can make use
of the Python scientific stack, in particular, a root-
finding method such as bisect from scipy.

A Jupyter notebook solving standard problem 3
can be found in the repository accompanying this
work [M. Beg et al. Using Jupyter for repro-
ducible scientific workflows. GitHub: https://gith
ub.com/marijanbeg/2021-paper-jupyter-reprodu
cible-workflows, DOI: 10.5281/zenodo.4382225
(2021)]. We show the two most relevant code
cells inside the Jupyter notebook in Figure 3.

Ubermag and the Jupyter environment sim-
plify the efforts to make computational mag-
netism publications reproducible. For each figure
in the publication, one notebook can be provided
(find examples in Refs. [6], [7]). Using Binder,
the community can inspect and re-run all the
calculations in the cloud and make the publication
reproducible.

Computational studies in mathematical
research

Many of the leading open-source mathemat-
ical software systems (including GAP, LinBox,
PARI/GP, OSCAR, SageMath, and Singular) have
been made inter-operable with the Jupyter ecosys-
tem through bespoke or general-purpose kernels
(C++, Python, Julia, . . . ). Focusing on one of
these systems, for the sake of concreteness, we il-
lustrate how this supports sharing and publishing
reproducible computational studies in mathemati-
cal research together with the underlying research
code.

GAP is an open-source system for discrete
computational algebra, with particular empha-
sis on computational group theory. It is used
routinely by mathematicians in these fields and
beyond to support teaching and research, notably
through computational exploration. It provides a
domain-specific language, also called GAP, and
a runtime system with a command-line interface.
It can also be used as a library by other systems
such as SageMath or OSCAR.

GAP has been developed for decades by a
community of researchers, teachers, and research
software engineers. It has an established mecha-
nism for user-contributed extensions, called pack-
ages, which may be submitted for the redistri-
bution with the system, and a formal refereeing
process. The current release of GAP (4.11.0)
includes 152 packages that serve different pur-
poses, from providing data libraries and extending
the system’s infrastructure for testing and writ-
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ing documentation, to adding new functionality
and sharing research codes that underpin their
authors’ publications. The latter scenario may
require specific expertise and motivation from
a working mathematician who uses GAP, and
not everyone will be able to invest efforts in
sharing their code in this way. Furthermore, it
is not always justifiable to organize a supplemen-
tary code for a paper as a new GAP package.
Instead, authors can combine Jupyter research
environments with additional services and parts of
the infrastructure for GAP packages to share re-
producible computational studies while following
good code development practices from the start.

Let us illustrate this with the publication in
Ref. [8], which presents a polynomial-time algo-
rithm for solving a major problem in computa-
tional group theory, which remained open since
1999 [9]. An essential addition to the paper is the
author’s GAP implementation of the algorithm.
The authors published this implementation in the
publicly hosted repository. At once, this ensures
long term archival through the Software Heritage
project, and with a small additional step, it makes
it citable through Zenodo. The repository contains
an interactive narrative document – a Jupyter
notebook using the GAP Jupyter kernel [10] –
combining text, mathematics, inputs, and outputs,
and may even be viewed as a slideshow (one
could, of course, have separate notebooks for
different purposes).

Following best practices for organizing re-
producible computational studies (see e.g.,
Ref. [11]), the code is not written in the notebook
itself but loaded from external source files. These
are text files that can be easily managed with
version control, reused from multiple Jupyter
notebooks, and tested using the GAP automated
testing setup. Also, the authors made the repos-
itory Binder-ready. Any user (e.g., readers or
referees of the paper) can run the notebook and
reproduce its execution on Binder itself or – with
additional expertise to install the required assets –
on their own computing resource. To achieve this,
the authors followed the template in Ref. [12],
which also brings in continuous integration to
automatically check the code against several past,
current, and development releases of GAP, and
produce coverage reports on how thoroughly the
tests exercise the code. It boils down to cre-

ating a tst directory with the test files, and
adapting the configuration files .travis.yml
and .codecov.yml for Travis CI and Codecov
services, respectively.

Bringing Jupyter interfaces to command-line
based computational mathematics tools makes it
possible to interface it with numerous JavaScript
libraries, notably for visualization. For example,
GAP packages Francy and JupyterViz extend the
GAP Jupyter kernel [10] with interactive widgets
and plotting tools, which can be tried from their
Binder-ready repositories.

Conclusions
In this article, we discuss some of the chal-

lenges researchers in computational science and
mathematics experience in their everyday work.
We focus on making computational exploration
and workflows more efficient, more reproducible,
and re-usable. We demonstrate the benefits of this
approach by showing computational magnetism
and computational mathematics use cases. We
believe that Project Jupyter and its ecosystem,
including JupyterHub and Binder, which allow
no-installation browser-based use of notebooks
and remote compute resources, can contribute sig-
nificantly towards more efficient computational
workflows, reproducibility and re-usability in sci-
ence. These conclusions are part of a widespread
trend among researchers in the computational
community advocating for the use of literate
computing – for example using Jupyter – for
enhancing reproducible research.
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