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Abstract

We assess the spatial spread of a fold within a narrow elastic strip theoretically and computationally in the small deflection
regime. We consider a hierarchy of folding-response ansatz, suitable for stretch-free deformation. The role of Poisson’s
coupling between the two curvatures, and that of surface twist, is brought out. Here we show that there exists a critical
Poisson’s ratio separating the regime of monotonically decaying fold profiles from that of decaying oscillatory folds. A
spatially separable solution results in length-wise localised folds, the length scale of which is in excellent agreement
with that obtained from simulations. The persistence length shows significant sensitivity to the Poisson’s ratio of the
material. We also establish a mathematical analogy of the folding problem, with one of elastic structures on foundations,
the restoring force being proportional to local deflection as well as shear in the foundation.
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1. Introduction

Folding and bending of soft sheets, filaments and rib-
bons are of great current interest in biology [1, 2], micro-
electronics [3], aerospace skin-structures [4], nano-mechanics
of 2D materials such as graphene [5, 6, 7], and stretch-
able electronics [8]. Thermal fluctuations alone can bend
extremely thin films and filaments appreciably. For rods,
the spatial decay of response is characterised by the persis-
tence length, which is the ratio of the bending stiffness and
the Boltzmann scale factor of energy kBT (see, e.g. [9]).
Decaying elastic response, away from the point of loading,
is also associated with Saint-Venant’s principle [10], which
states that the effect of distribution of loading quickly “dis-
sipates” away from the region of its application, a conse-
quence of which is that a self-equilibrating system of forces
must result in a decaying near-field i.e. a vanishing far-
field. Spatial decay of response has been estimated for a
host of molecular and nano-structures, e.g. long polymer
chains [11, 12], DNA and RNA [13, 14], conformations of
developable ribbons [15], etc. The role of membrane and
bending forces in wrinkling [16] and its suppression [17] as
well as its spatial localisation have been reported. Wrin-
kling has been proposed to measure the modulus of elas-
ticity [18]; the present work suggests the potential of using
the persistence of cantilevered films for the metrology of
Poisson’s ratio. Inspired by practical applications, elas-
tic strips under various loads have been analysed before
[19, 20, 21, 22]. However, characterising the spatial locali-
sation of a fold at the edge of an elastic strip has not been
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Figure 1: (a) A localised fold on a 2 mm thick soft rubber strip, (b)
Edge view of a cantilevered strip poked at a point, (c) Half of the
strip in (b) showing a decay length scale ≈ 0.93×width.

the motivation in these, which is our primary interest here.
We will use the word persistence in the spirit of [23, 24],
who studied a diametrically pinched elastic cylinder.

We define a decay length L1/e as the distance at which
the amplitude of the edge profile diminishes to 1/e of its
value. For a rubber strip (Figure 1(a)), it is estimated as
≈ 1.2 × b, where b is the width. The bent profile is deep
in the plane perpendicular to that of the paper, which
could induce significant non-linearity. A 20 mm wide can-
tilevered strip (Figure 1(b)), poked to a moderate ampli-
tude by a sharp tip (tip displacement ≈ 3 × t; t is the
thickness) , gives L1/e ≈ 0.93 × b (Figure 1(c)). Consider
a toy problem, which consists of a narrow elastic strip of
width b, fixed along the long edge y = 0 and free at y = b.
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It is folded at x = 0 with a prescribed width-wise curvature
κ0. Our primary interest here is in the spatial evolution of
the curvature along the length, rather than the response
of a poked sheet to a force, when rotations of the normal
are small. We ignore membrane energies due to (i) stretch
that accompanies bending1, and (ii) geometric nonlinear-
ity2. In the competition to establish equilibrium, their rel-
ative importance vis-a-vis bending energy depends on the
regime of deflection and the geometric parameters. A sim-
ple yet fundamental understanding of the fold relaxation
arising from the competition between energies associated
with curvatures in the two direction, coupling mediated by
Poisson’s effect, and the twist energy, appears to be miss-
ing. Indeed, here we show that Poisson coupling plays
a central role in the persistence of a fold and the simple
linear analysis is adequate to produce even the finest de-
tails of the curved fold profile, when membrane strains are
small.

While we favour simplest mathematical apparatus, beam-
like 1D energy expressions are inadequate as staring point,
because of the truly 2D nature of surface structures. The
strain energy of a bent sheet is associated with two curva-
tures, Poisson coupling between them, and twist:

U =
D

2

∫∫
A

(
w2
xx + w2

yy + 2νwxxwyy + 2(1− ν)w2
xy

)
dA,

(1)
where w(x, y) is the transverse deflection of the mid-surface
of the sheet originally in the x-y plane, D is the bending
stiffness; subscripts denote differentiation. A fold is char-
acterised by curvature, so we consider the spatial evolution
of curvature κ(x) in the x-direction. The sheet is bent at
the origin in the form w(0, y) = (κ0/2)y2. Besides simplic-
ity, inherent to this form is y-wise constancy of curvature.
Application of the principle of minimum potential energy,
using Equation 1, results in the well known biharmonic
partial differential equation and the natural boundary con-
ditions. Attempting to solve the field equation directly,
either exactly or approximately, obscures the primary in-
terest here, which is characterising the localisation of a
fold. The algebraic difficulty is particularly severe with
the free-edge, since the variationally consistent boundary
conditions are mathematically arduous, if not intractable.

Here we explore the persistence behaviour of the fold
using a hierarchy of simplifications. Throughout our anal-
yses, we assume that the shape of the fold is preserved
along x —the direction of propagation—as if the shape
were modulated along the long edge. This, in effect, turns
the problem into a one-dimensional one. Note the use of

1Due to Gauss’ Theorema Egregium, a surface cannot bend with-
out stretching or tearing, if its Gaussian curvature changes, Mem-
brane strains (of which, ∂u/∂x and ∂v/∂y are the linear components)
cause geometry-induced stiffening of sheets when they are curved; the
effect is significant for large rotations, not considered here

2The non-linear component of the von Karman membrane strain,
(1/2)w2

x, needs to be accounted for, when the rotation wx is not
small; see e.g. [25]

the word propagation is not in the sense of waves, but a
static shape that evolves spatially along x. The function
according to which the spatial evolution of a localised fold
takes place, is determined here variationally using various
ansatz. At first, using an naive bending energy expres-
sion, all Poisson’s coupling and twist energy terms are ig-
nored and an exponential decay is assumed, with a yet
to be determined exponent. Next, w(x, y) is assumed to
be separable in x and y without assuming the exponential
form. The next level of sophistication considers all terms
in Equation 1, but the spatial evolution is assumed to be
exponential, the exponent being treated as the generalised
coordinate of the problem. Finally, a separable solution is
sought which assumes the shape of the fold fixed but mod-
ulated by an unknown function. An interesting upshot of
our analysis is that the decay of the folds is monotonous for
values of the Poisson’s ratio below a critical, above which
the decay is qualitatively different as it becomes oscilla-
tory in addition to being decaying. The spatial evolution
of curvature is found to be qualitatively and quantitatively
consistent with computational results.

2. Theoretical characterisation of spatially localised
folds

Returning to the cantilevered strip, an out-of-plane
deflection w(0, y) = w0(y/b)2 is imposed at x = 0. In-
troduce non-dimensional quantities w̄ = w/w0, x̄ = x/b,
ȳ = y/b. A quadratic shape is the simplest polynomial
with non-zero curvature κ0 = 2w0/b

2. Due to symme-
try, w̄x(0, ȳ) = 0, and only half of the folded structure,
x̄ ≥ 0, needs to be considered; (•)′ = d(•)/dx̄. Further,
w̄(0, 1) = 1, and w̄(∞, ȳ) = 0. We present a hierarchy of
analyses next, starting with the simplest.

(A) A naive analysis of bi-directional folding. Con-
sider twist-free bending of an elastic sheet, ignoring the
Poisson coupling between the two curvatures wxx and wyy,
i.e. U ≈ (D/2)

∫∫
A

(w2
xx + w2

yy)dA, to be referred to as
Model (A) subsequently. Zero twist in the x-y implies
wxy = 0, so that x and y are the principal curvature di-
rections at all points. Persistence behaviour suggests x-
wise exponential fall, i.e. an ansatz of the form w̄(x̄, ȳ) =
exp (λ|x̄|) (ȳ)2. Minimizing the potential energy after this
substitution while treating λ as a generalised coordinate,
i.e. ∂U/∂λ = 0, we have, λ4 − (20/3) = 0. Only the nega-
tive real root is acceptable since other three roots refer to
oscillatory or growing solutions —both unphysical. The
persistence length can be defined as LP = `P × b, where
`P = |λ−1|. So, `P = (20/3)−1/4 = 0.62, which is inde-
pendent of the Poisson ratio ν. The symmetry condition
f ′(0) = 0 is violated—this is a limitation of the assumed
shape.

(B) Naive strain energy: separable ansatz. Sub-
stituting another ansatz w̄(x̄, ȳ) = f(x̄)ȳ2—that has an
unknown function f(x̄)—into the approximate expression
U ≈ (D/2)

∫∫
A

(w2
xx + w2

yy)dA, and setting δU = 0, we
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Figure 2: (a) Spatially decaying edge profile predicted by different approaches, for ν = 0.1. (b) Edge profiles for ν = 0.4, showing oscillatory
decay. (c) Onset of oscillatory character for ν > νcrit on a semi-log plot. (d) Profiles, x̄ ≥ 0, for each fixed ȳ, show persistence length similar
to that predicted analytically. The grey reference lines have slope −1.98 as per analysis (D). (e) The width-wise shape on semi-log plot shows
quadratic for each fixed x̄. The grey reference lines have slope 2.

have f ′′′′ + 20f = 0. The characteristic equation is λ4 +
20 = 0 with roots λ1,2,3,4 = 1.5(±1 ± i). Discarding
the spatially growing solutions and imposing f(0) = 1 &
f ′(0) = 0, the fold profile is obtained as exp(−1.5x̄)[cos(1.5x̄)+
sin(1.5x̄)]; and `P = 0.67.

(C) Inclusion of twist & Poisson-coupling. Let us
return to the bending energy expression in Equation 1, re-
taining all terms. Like (A), consider an ansatz with x-wise
exponential decay, treating λ as a generalised coordinate.
Minimising U(λ) with respect to λ, we have

λ4 + (20/9)(2− ν)λ2 − (20/3) = 0. (2)

Note that given the coefficients of the equation we can be
sure that the solutions will be of the form ±p,±qi where
p, q > 0 (supplemental material). Only the negative real
root is admissible for finiteness at infinity. An upshot of
this is that the decay length scale `P depends on the Pois-
son’s ratio ν. The admissible root is given by

λ = −
√

10

9

(
−2 + ν +

√
47/5− 4ν + ν2

)
. (3)

Like (A), the ansatz here violates the symmetry condi-
tion f ′(0) = 0, but all the terms in Equation 1 are now
accounted for.

(D) Plate strip folding: separable ansatz. Finally, we
seek the functional form of the x-dependence of the fold,

within an ansatz of the form w̄(x̄, ȳ) = f(x̄)ȳ2. Substitut-
ing this into Equation 1, and variationally minimising U
(supplemental material), we obtain

f ′′′′ + γf ′′ + 20f = 0, (4)

where γ(ν) = (20/3)(3ν − 2). Seeking an exponential so-
lution ∼ exp(λx̄), for x̄ > 0, we obtain the characteristic
equation, which is a quadratic in λ2

λ4 + (20/3)(3ν − 2)λ2 + 20 = 0. (5)

The four roots of Equation 5, depending on the value
of ν, are either of the form ±p, ±q (where p, q > 0),
or the form ±

√
r exp(±iθ/2), using De Moivre’s theorem

(where r, θ > 0). In either case, of the four roots there
are two with positive real parts associated with spatially
growing solutions that must be discarded. The deflected
shape can be expressed in terms of the admissible roots
(λ1, λ2) having negative real part as f(x̄) = C1 exp(λ1x̄)+
C2 exp(λ2x̄), where C1 and C2 can be determined by im-
posing the boundary conditions f(0) = 1 and the symme-
try condition f ′(0) = 0, so that

w̄(x̄, ȳ) =

[
λ2e

λ1x̄ − λ1e
λ2x̄

λ2 − λ1

]
ȳ2, (6)

for positive x̄. When λ1 & λ2 are real, the above expres-
sion contains two decay length scales |λ1|−1 and |λ2|−1.
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The larger magnitude root is associated with a faster spa-
tial decay, so it is reasonable that the length over which
the fold persists is given by reciprocal of the root with
smaller magnitude, i.e. `P ≈ max(|λ1|−1, |λ2|−1), which
is a function of the Poisson’s ratio ν.

When the roots are complex conjugate pair, say λ1,2 =
(−ρ ± ik), where ρ > 0, then the solution has the form
w̄(x̄, ȳ) = exp(−ρx̄) [C1 sin(kx̄) + C2 cos(kx̄)] ȳ2. The two
constants are determined as before, so that

w̄(x̄, ȳ) = e−(ρx̄)
[(ρ
k

)
sin(kx̄) + cos(kx̄)

]
ȳ2. (7)

This fold profile is non-monotonic and an oscillatory decay
is observed. There are two distinct length scales ∼ ρ−1 and
∼ k−1, the first is associated with persistence, the second
with spatial oscillation. The decay length scale `P = 1/ρ,
which again depends on the Poisson’s ratio, but is indepen-
dent of all other geometric and material parameters. So,
the fold spreads over a distance that is a fixed multiple of
the width b, for a given ν, regardless of the thickness or
the modulus of elasticity. Unlike the case of a pair of real
admissible roots, there is no ambiguity to be resolved now
for persistence based on the reciprocal of the exponent.
Note that Equation 7 can also be arrived at by substitut-
ing λ1,2 = (−ρ± ik) in Equation 6.

While we accept `P ≈ max(|λ1|−1, |λ2|−1) for real
λ, and `P = ρ−1 for λ = −ρ ± ik, as above and, as
it is customary, there are potentially profound implica-
tions on the actual persistence behaviour of profiles that
are not described by a single exponential. Two exponen-
tials, or an exponential multiplied by an oscillatory func-
tion, could spatially spread very differently from functions
that are described by a single exponential. For example,
LP = b× |λ|−1 can be very different from L1/e, the length
at which the amplitude diminished to 1/e, when a sec-
ond length scale involved. When k = ρ in Equation 7 (as
also in B), the function decreases to 1/e of its value at
`1/e = 1.24ρ−1, as opposed to `P = ρ−1. Likewise, for
ν = 0, from Equation 5, we obtain `P = 0.76, whereas
from equation Equation 6, `1/e = 1.10. Such significant
differences between `P and `1/e suggest a more nuanced
interpretation of persistence length, when an exponential
decay is shaped by an oscillatory function or another ex-
ponential, and a caution against a unqualified use of the
reciprocal of the magnitude of the real part of the expo-
nent. For single exponentials, `P = `1/e, of course.

3. Simulations, reconciliation with analysis, and
discussions

The localisation behaviour of a fold is now examined
computationally. Constant curvature profile w̄(0, ȳ) = ȳ2

was imposed at the length-wise centre of a sufficiently thin
and long elastic strip (t = b/100, length = 60× b, to min-
imise any end effects). Results obtained from finite el-
ement (FE) simulations within the commercial code AN-
SYS (supplemental material) are taken as benchmark; and

Figure 3: Monotonic-to-oscillatory-decay bifurcation at νcrit. Real
and the imaginary parts of λ (analysis D), as functions of ν (top &
bottom); fold profiles on a log scale (middle).

those from the four ansatz (A)-(D) are scrutinised against
these. Figure 2(a) shows the x-wise profile of the edge as
obtained from FE simulations (blue dots, labelled FE), for
ν = 0.1. The profile obtained from the naive analysis (A)
shows some qualitative semblance with that obtained nu-
merically, except that it under-predicts the decay length.
Model (B) produces an x-wise decaying oscillatory pro-
file, which is qualitatively incorrect, since simulations show
monotonic decay. Analysis (C) that uses an exponential
ansatz in conjunction with strain energy in Equation 1
over-predicts the persistence length. Finally, results from
the most sophisticated, yet simple analysis (D), shown in
solid black lines, are in excellent qualitative and quantita-
tive agreement with FE simulations. Note that f ′(0) = 0
is satisfied by profiles obtained from analyses (B) and (D),
but not by those from (A) and (C). Figure 2(b) shows cor-
responding comparisons for ν = 0.4. Insets in both Fig-
ure 2(a) and Figure 2(b) show the profile shapes on a log
scale —straight lines correspond to monotonic exponential
decay, whereas profiles with periodic dips indicate expo-
nentially decaying oscillations. Only analysis (D) captures
the detailed shape of the fold profile in the short length
scale (main figure) as well as long length scale (insets) con-
sistently. The transition from monotonous decay to an os-
cillatory one, upon increasing ν, is apparent in Figure 2(c)
that shows profiles on a logarithmic scale. One half of the
x-wise profiles for different values of ȳ are plotted in Fig-
ure 2(d) against a background of grey reference lines with
a slope -1.98, the real part of λ1,2 = −1.98±0.76i obtained
from analysis (D). Finally, the family of blue lines in Fig-
ure 2(e) are y-wise profiles drawn on a log-log scale for dif-
ferent value of x, which confirms that the curvature does
not change significantly along x. The separable ansatz
w̄(x̄, ȳ) = f(x̄)ȳ2 is thus justified, as the background lines
have a slope 2. The decay length scale `1/e = 0.90 from
model (D) for SBR rubber, ν = 0.48, compares well with
the observed value of ≈ 0.93 for the poked cantilevered
sheet, and 0.98 obtained numerically.

The relative success of the four approaches in predict-
ing the decay behaviour of a fold is reflected in the values
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Figure 4: Persistence length as a function of the Poisson’s ratio:
numerical results vs. analyses. Non-smooth variation is due to tran-
sition from monotonic decay to oscillatory decay.

Analytical approach λ `P
Exponential ansatz (naive U): (A) −1.61 0.62
Separable ansatz (naive U): (B) −1.50± 1.50i 0.67
Exponential ansatz, U in eq 1: (C) −1.15 0.87
Separable ansatz, U in eq 1: (D) −1.98± 0.76i 0.51
FE simulation −1.90± 0.79i 0.53

Table 1: Decay length scale from various analyses. ν = 1/3.

of λ and `P tabulated in Figure 3, for ν = 1/3. The expo-
nent obtained by fitting an exponential to w(x, b) from FE
matches best with the real part of λ from analysis (D). The
decay length scale given by the real part of λ and the length
scale of oscillation given by its imaginary part are within
4% of the values obtained from FE. The length scales from
FE were ascertained by fitting Equation 6 or Equation 7,
depending on value of ν. It can be shown (supplemental
material) that the roots of the characteristic equation are
complex conjugate for ν > νcrit, where νcrit ≈ 0.22. Hence
the fold has a decaying oscillatory shape for ν > νcrit,
whereas it is monotonic for −1 < ν < νcrit. The real and
the imaginary parts of λ are plotted against the Poisson’s
ratio in Figure 3. The transition from a pair to real roots
to a pair of complex conjugates retains continuity of the
persistence length at the point of bifurcation. The decay
behaviour is unremarkable for negative Poisson’s ratio—i.e
for auxetic materials—as it follows the trend smoothly.

The dependence `P(ν) is presented for −1 < ν < 0.5 in
Figure 4. Analyses (A) and (B) provide reasonable esti-
mates of persistence around ν = 0.1, but they incorrectly
show independence of the characteristic decay length with
Poisson’s ratio. Model (C) shows predicts monotonic de-
cay of a fold for all values of ν, which is incorrect. Again,
the simple yet effective model (D) successfully captures all
the subtle features of the fold localisation extremely well,
as evidenced by the excellent agreement with numerical
estimates for `P.

Having considered two models that include Poisson’s
coupling between the two curvatures (the second term
within the strain energy expression in Equation 1) and
twist (the last term in this expression), it is worth asking
as to what the inclusion of one and not the other may lead
to the persistence behaviour. Without detailed presenta-
tion of results, we state that the effect of twist turns out to

be significant (supplemental material, figure S4), whereas
retaining just the Poisson’s coupling term results in an in-
correct dependence of the persistence length with respect
to the Poisson’s ratio for most values of ν. Also, given
the use of thin plate theory, thickness is not expected to
have an effect on the persistence length. This is confirmed
in finite element simulations numerically (explanation and
numerical results in figure S3 of supplemental material).

Beam on Pasternak foundation analogy. The spatial
decay behaviour of a fold has strong mathematical paral-
lelism with the mechanics of beams on elastic foundations
[26] that has had a profound influence on modelling adhe-
sive interactions in soft matter [27]. The simplest elastic
foundation model, attributed to Winkler [28], has restor-
ing force proportional to the local deflection. The naive
expression of the strain energy of a bent sheet in (B) re-
sults in the ODE f ′′′′ + 20f = 0, which is formally sim-
ilar to the beam on elastic foundation Bf ′′′′ + Kf = 0,
where B is the bending stiffness and K is the stiffness per
unit length of the Winkler foundation. The solution in
(B) of the form exp(−kx) cos(kx+φ) is reminiscent of the
pinched tube problem [23, 29], the length scale for decay
and oscillations being the same and equal to k−1 ≈ 1.5b,
which is independent of all material and structural prop-
erties for analysis (B). Contrast this with the fold profile
in Equation 7, which is characterised by two length scales,
one for decay and one for oscillations—both dependent on
the Poisson’s ratio. Let us turn to equation (4) that con-
tains the f ′′ term, which is analogous Pasternak elastic
foundation [30] Bf ′′′′ + γf ′′ +Kf = 0; the second deriva-
tive term is associated with the shear deformation in the
foundation. A key difference between the behaviour aris-
ing from the Winkler foundation model vs the Pasternak
model is that in case of the former, the oscillatory decay
has wavenumber of oscillations the same as the reciprocal
of the persistence length. For Pasternak model, and also
Equation 4, these two length scales are different.

Stretch-free folding, invariance of Gaussian cur-
vature, & higher order effects. A deflection profile
of the form w(x, y) = exp(λx)y2 is not stretch free, as
it violates wxxwyy = wxy the condition for preserving
the Gaussian curvature. Likewise, a profile of the form
w(x, y) = exp(λx)g(y) requires gyyg = g2

y for stretch-
free deformation, which leads to the trivial fold profile
of w(x, y) = 0. However, numerical experiments con-
firm (supplemental material) the theoretically inevitable
stretch has minimal influence on persistence. This is con-
sistent with the fact the a cantilevered sheet is uncon-
strained. The relaxation of a fold is primarily a conse-
quence of the competition between curvatures in the two
directions and also significantly influenced by the cou-
pling between them, whereas stretch and non-linearity are
higher order effects, when the profile displacement is much
greater than the thickness. Yet another higher order effect
is through-the-thickness shear, which can be neglected if
the thickness of the strip is much smaller than its width b.
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4. Conclusions

For a narrow elastic strip, cantilevered along a long
edge, and folded at the free edge, the bent shape is lo-
calised given by a persistence length that depends only
on the width of the strip and Poisson’s ratio of the ma-
terial. There exists a critical Poisson’s ratio (νcrit), be-
low which the fold profile decays monotonically, and above
which with oscillations. We considered a hierarchy of sim-
ple models to bring out the persistence behaviour. A naive
analysis that ignores Poisson coupling and twist terms
within the elastic plate bending energy expression is un-
able to bring out detailed feature of the persistence be-
haviour. A separable ansatz of the bent shape, in terms
of curvature modulated by an unknown length-wise func-
tion, leads to excellent agreement with numerically simu-
lated results. We identified a mathematical analogy with
the problem of a pinched beam of Pasternak foundation.
The characteristic decay length is slightly under half to
one-and-a-half times the width of the strip, depending on
the Poisson’s ratio. Unlike the response of an elastic struc-
ture that is fairly insensitive to Poisson’s ratio, this elastic
constant has huge implications to the question of spatial
spread of a folded sheet, as the decay length scale varies
with Poisson’s ratio up to a factor of two to three within
the practical range. In the small deflection regime, this
length scale can be calibrated, and potentially used to
measure Poisson’s ratio from thin elastic samples—a prop-
erty usually difficult to measure directly.
Acknowledgements: Useful comments on an early draft,
by our colleague Professor Neil Stephen, are gratefully ac-
knowledged. We thank Ishaan Manav for assisting us with
images in Figure 1 and their processing.
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[1] M. Arnoldi, M. Fritz, E. Bäuerlein, M. Radmacher, E. Sack-
mann, A. Boulbitch, Bacterial turgor pressure can be measured
by atomic force microscopy, Phys. Rev. E 62 (2000) 1034–1044.
doi:10.1103/PhysRevE.62.1034.

[2] J. Dervaux, M. Ben Amar, Morphogenesis of growing soft
tissues, Phys. Rev. Lett. 101 (2008) 068101. doi:10.1103/

PhysRevLett.101.068101.
[3] A. Boisen, S. Dohn, S. S. Keller, S. Schmid, M. Tenje,

Cantilever-like micromechanical sensors, Reports on Progress
in Physics 74 (3) (2011) 036101.

[4] C. Thill, J. Etches, I. Bond, K. Potter, P. Weaver, Morphing
skins, The Aeronautical Journal 112 (1129) (2008) 117–139.

[5] C. Lee, X. Wei, J. W. Kysar, J. Hone, Measurement of the
elastic properties and intrinsic strength of monolayer graphene,
Science 321 (5887) (2008) 385–388. doi:10.1126/science.

1157996.
[6] W. H. Duan, C. M. Wang, Nonlinear bending and stretching of

a circular graphene sheet under a central point load, Nanotech-
nology 20 (7) (2009) 075702. doi:10.1088/0957-4484/20/7/

075702.
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