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1 Plate strip folding: decaying ansatz

The strain energy of stretch-free bending of a thin elastic sheet, when the twist
wxy and the Poisson’s coupling between the two curvatures 2νwxxwyy are ac-
counted for, is given by

U =
D

2

∫ ∞
−∞

∫ b

0

(
w2

xx + 2νwxxwyy + 2(1− ν)w2
xy + w2

yy

)
dy dx (S1)

Consider the following ansatz for the transverse deflection of the form, which
assumes an exponential decay in the x-direction

w(x, y) = exp

(
λ|x|
b

)
.
(y
b

)2
(S2)

Substituting the above and evaluating the energy expression, after carrying out
the integrations, we obtain

U = − D

2b2

(
λ3

5
+

4

3
(2− ν)λ+

4

λ

)
. (S3)

The above expression brings out the competition between various terms in the
strain energy that determine the equilibrium shape. The cubic term arising from
wxx scales as ∼ λ3, whereas the term arising from wyy scales as per ∼ λ−1. The
term that scales according to ∼ λ2 originates from the Poisson’s coupling and
the twist combined. The only undetermined parameter in this expression is the
decay rate λ, which can be treated as the generalised coordinate of the problem.
Minimising the strain energy with respect to λ by setting ∂U/∂λ = 0, we obtain
a quadratic equation for λ2,

λ4 +
20

9
(2− ν)λ2 − 20

3
= 0. (S4)

The discriminant of the solution of the above equation,
(
20
9 (2− ν)

)2
+ 80

3 , is
always positive for all physically possible values of Poisson ratio −1 < ν < 0.5.
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Hence λ2, will always be real. In Figure S1, we see that one of the roots is always
positive and the other is always negative. Hence, Equation S4 will always have
roots of the form λ = ±p,±qi where p, q ∈ R. But the boundary conditions
at ∞ demand exponential growth to be discarded, therefore, only the negative
real root is admissible.

Figure S1: One root of Equation S4 (as quadratic in λ2) is always positive real
while the other is negative real for all possible ν

2 Variational minimisation under separable ansatz

Using the same energy expression as before (Equation S1) consider the ansatz
for transverse deflection, which assumes a separable form w(x, y) = f(x)(y/b)2

in the energy expression and evaluating the y integral we obtain,

U =
D

2

∫ ∞
−∞

(
b

5
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4ν

3b
f ′′(x)f(x) +
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3b
f ′2(x) +

4

b3
f2(x)

)
dx (S5)

Non dimensionalize using ξ = x/b & f(x) = f(bξ) = F (ξ). Change the limits
of integration to [0,∞) given that F (ξ) is and even function. (The argument of
F is suppressed from here on in the interest of clarity.) Applying the principle
of minimum potential energy, i.e. δU = 0, we have

δU =
D

b2
δ

∫ ∞
0

(
1

5
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3
F ′′F +
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3
F ′2 + 4F 2

)
dξ = 0, (S6)

where the first variation of (·) is written as δ(·). Since the integral and the vari-
ation operator commute, the variation of the integral simplifies after integrating
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the integrand by parts to
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The field terms and the boundary terms can be separated. Collecting all the
field terms, we get Assuming that all boundary terms, the equation reduces to,

δU =
D

b2

∫ ∞
0

(
2

5
F ′′′′ +

8

3
(3ν − 2)F ′′ + 8F

)
δF dξ + Boundary terms = 0.

(S9)
The boundary terms must vanish separately as and so must the field terms, as
they are associated with independent variations. Because the variation δF is
arbitrary, the field term vanishes only when the integrand must be identically
zero regardless of the variations in F , i.e.

F ′′′′ +
20

3
(3ν − 2)F ′′ + 20F = 0. (S10)

The boundary terms contain geometric as well as natural boundary conditions.
Since the strip is symmetric about x = 0, the geometric conditions at this point
are F ′(0) = 0. Additionally, the value of the function F (0) = 1 is prescribed,
as this follows from the imposed y-wise shape at the origin w(0, y) = (y/b)2.
Solutions of the form F (ξ) = exp(λξ) are admissible. Hence, the characteristic
equation is the following quadratic in λ2

λ4 +
20

3
(3ν − 2)λ2 + 20 = 0, (S11)

which can be solved analytically. The discriminant of this quadratic is D =
(20/3(3ν − 2))2 − 80. Consider the regime of ν where D < 0, i.e.

D =

(
20

3
(3ν − 2)

)2

− 80 < 0

=⇒ (3ν − 2)2 <
9

5

=⇒ 1

3

(
2− 3√

5

)
< ν <

1

3

(
2 +

3√
5

)
=⇒ 0.2195 < ν < 1.1139

Since, for real materials, ν ≤ 0.5 we may define νcrit = 0.2195 such that, for
ν > νcrit, Equation S11 (which is a quadratic in λ2) has two complex solutions
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that are conjugates of each other and have a positive real component. Hence
the solutions for λ are four complex numbers of which two are conjugate and
the other two are negative of the first two. Of these, two will have negative
real parts and will be conjugates of each other. These two are admissible λs.
For ν ≤ νcrit, Equation S11 (as a quadratic in λ2) has two roots, both positive
real. Hence, the solutions for λ will be four numbers, two distinct (except when
ν = νcrit) real numbers and their negatives. The two negative numbers are
admissible solutions.

3 Finite element model and persistence length
extraction

Finite element (FE) simulations were carried out on the commercial code AN-
SYS Mechanical1 using SHELL63 element (KEYOPT(1) = 2, to retain only
bending stiffness). The plate strip domain of [−30b, 30b] × [0, b] was meshed
with square elements of side length b/30. This mesh density was found to be
sufficient to obtain convergent result. For the simulations b was taken to be
1cm. Young modulus of 200 GPa and thickness of b/100 was used. The choice
of these parameters is obviously arbitrary as demonstrated in our work.

To extract `P values from FE we fit the logarithm of the absolute value of the
deflection of the free edge to logarithm of the absolute value of RHS of Equation
(6) or (7) depending on monotonicity. The fitting was carried out on the logar-
tihm of the function since fitting weighted sum of exponentials is known to be ill-

posed2. MATLAB
TM3 ’s fit function is used with ‘NonlinearLeastSquares’

method to do the fitting. Further, the non-monotonicity of some of the deflec-
tion profiles necessitates use of absolute value to avoid imaginary values when
taking the logarithm. `1/e is found simply by finding the horizontal location
where the deflection crosses 1/e ≈ 0.368.

4 Higher order effects in sheet folding

The simple analysis of the folding problem using stretch-free strain energy ig-
nores several higher order effects. They include those due to the inevitable
stretch (membrane effect) as well as ignoring through-the-thickness shear. The
first is due to the change in Gauss curvature required, as the initial Gaussian
curvature of the sheet is zero. This effect is likely to be less significant in the
present case, because the edges are free, so the mid-surface is not forced to
stretch significantly, or tear. Non-linear components of the von Karman mem-
brane strain εxx = (1/2)w2

x, εyy = (1/2)w2
y, and εxy = (1/2)wxwy are also

1Ansys R© Academic Research Mechanical, Release 19.2
2A. A.Istratov, and O. F. Vyvenko, Exponential analysis in physical phenomena, Review

of Scientific Instruments 70, 2 (1999)
3MATLAB. version 9.8 (R2020a). The MathWorks Inc., Natick, Massachusetts
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Figure S2: Free edge of the plate strip with different stiffness terms. We see
that the bending stiffness captures the physics adequately in the linear regime.

negligible, as we are interested in small rotation situations. Shear could be sig-
nificant when the thickness to width ratio is not small. This can be accounted
for by shear correction, which in plate theory is due to Mindlin, which is a 2D
analog of the shear correction in flexural mechanics introduced by Timoshenko.
The role of these higher order effects were examined computationally, mainly to
verify if the strain energy expression used is capable of capturing the essential
physics of the problem, or not.

The effect of ignoring other energies in the linear regime is brought out
by comparing the profile of the free edge of the fold when both bending and
membrane stiffnesses are included in the simulations (SHELL63, KEYOPT(1)
= 0). To study the case where bending, membrane and shear stiffnesses are
included SHELL181 element (KEYOPT(1) = 0) is used. We see in Figure S2
that the profile of the free edge deflection is practically identical in all cases
indicating that bending stiffness dominates and is adequate to model deflection
in the linear regime of thin sheets.

5 The effect of thickness

Within the applicability of thin plate bending mechanics, the effect of thickness
is absent as expected. This is because thickness appears as a part of the bend-
ing rigidity D. Indeed for the same reason, there is no effect of the Young’s
modulus on the persistence length. Both of these conclusions follow from sim-
ple dimensional analysis and can be verified numerically. Profiles obtained from
finite element calculations for three different ratios of t/b = 1/1000, 1/100, 1/50
are presented in Figure S3 below. All the profiles overlap exactly within the
tolerance of numerical calculations as expected.
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Figure S3: Profile of the leading edge for various values of sheet thickness ob-
tained from FE are plotted. We see that variation of the thickness has no effect
on the profile. This is expected since the element used for modeling is a linear
thin plate element with only bending energies. This also therefore also agrees
with our model for persistence length which is thickness independent.

6 Contribution of Curvature, Twist and Poisson
coupling

There are three effects that contribute to the plate behaviour of a folded elastic
strip as a 2D surface structure vis-a-vis 1D beam bending: they are curvatures
in the two directions, twist, and Poisson’s ratio mediated coupling between the
two curvatures. The effect of each of these three in the persistence behaviour is
brought out next. Persistence length estimated from finite element calculations
are compared with three different simplifications in Figure S4 when (a) all three
terms are retained in the strain energy expression, (b) only the two curvature
terms and the twist term are kept in the expression for U , and (c) only the cur-
vature terms and the Poisson’s coupling are kept in the strain energy expression
while the twist term is ignored. The monotonically increasing trend (shown in
purple line) refers to ignoring twist – this does not match well with numerical
calculations (as well as with trends obtained from the other two simplifications).
This shows the greater role of twist in determining the persistence of a folded
strip than any other aspect of elastic sheet folding.
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Figure S4: The plot quantities the effect of curvature, twist and Poisson coupling
contribution in the persistence length predicted by our model. It is compared
with results from FE.
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