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Electric fields are commonly used for manipulating particles and liquids in microfluidic systems. In
this work, we report stationary electroosmotic flow vortices around dielectric micro-pillars induced
by AC electric fields in electrolytes. The flow characteristics are theoretically predicted based on
the well-known phenomena of surface conductance and concentration polarization around a charged
object. The stationary flows arise from two distinct contributions working together: an oscillating
non-uniform zeta-potential induced around the pillar and a rectified electric field induced by the
ion concentration gradients. We present experimental data in support of the theoretical predictions.
The magnitude and frequency dependence of the electroosmotic velocity are in agreement with the
theoretical estimates and are significantly different from predictions based on the standard theory for
induced-charge electroosmosis, which has previously been postulated as the origin of the stationary
flow around dielectric objects. In addition to furthering our understanding of the influence of AC
fields on fluid flows, we anticipate that this work will also expand the use of AC fields for flow control
in microfluidic systems.

Keywords: AC Electrokinetics, Microfluidics, Electroosmosis, Surface Conductance, Concentration Polariza-
tion.

I. INTRODUCTION

Solid surfaces in contact with aqueous electrolytes usu-
ally carry a net surface charge arising from the different
affinities of cations and anions [1]. This surface charge is
screened by a diffuse ionic layer on the electrolyte side of
the interface, and liquid streaming can occur when an ex-
ternal electric field acts on these charges. This fluid flow
is known as electroosmosis (EO) [2] and is a common
way of driving liquids within capillaries and microfluidic
structures [3]. The thickness of the diffuse layer (Debye
length) for typical aqueous electrolytes is around tens of
nanometers or smaller [1]. Thus, at length scales of mi-
crometers or larger, the fluid motion that occurs within
the diffuse layer can be modelled via an effective slip ve-
locity tangential to the solid wall, uslip. The Helmholtz-
Smoluchowski formula relates the slip velocity with the
applied electric field (E) and the zeta potential (ζ) of the
interface [1]:

uslip = −εζ
η
E, (1)

where ε and η are, respectively, the electrolyte permi-
tivitty and viscosity. The zeta potential is commonly
defined as the electrical potential at the slip plane with
the bulk solution [4].

In the case of AC electric fields, eq. (1) predicts an
oscillating slip velocity with a zero time-average value.
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However, recent experimental reports have shown a
non-zero time-average slip velocity of electrolytes around
dielectric pillars in an AC field [5]. Similar stationary
(or rectified) flows have been observed around dielectric
corners [6–8] and have been attributed to induced-charge
electroosmosis (ICEO) [9], i.e. electroosmosis generated
by the action of an electric field on the charges in the
diffuse layer induced by the same field [10], see figure
1(a). In this work we show that ICEO is not the origin
of these flows and demonstrate that a rectified fluid
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FIG. 1. (a) An applied electric field induces charges on a
metal (conducting) cylinder that are screened by ions in the
liquid phase – a diffuse layer is induced around the metal ob-
ject. ICEO occurs due to the action of the applied field on
these diffuse-layer charges. (b) A dielectric cylinder has an
intrinsic surface charge. Upon application of an electric field,
surface conductance creates both a non-homogeneous elec-
trolyte concentration and zeta potential around the cylinder.
In (b), the distance of the positive ions (counterions) to the
particle surface changes with position - this indicates that the
Debye length varies due to concentration polarization. For
both (a) and (b), and using equation (1), the induced zeta
potentials generate stationary quadrupolar flows around the
cylinder.
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FIG. 2. (a) Negative charges on the dielectric surface attract (positive) counterions. The mean ion concentration increases
near the surface leading to a surface current density Js. Charge conservation implies that variations in surface current must be
balanced by a counterion flux (F+). (b) Color map showing the perturbation in electrolyte concentration (δc) around a charged
cylinder. Darker blue indicates a higher value of c. As a consequence of the concentration polarization, the screening thickness
(Debye length) depends on position around the cylinder. The black arrows indicate the direction of the stationary electroosmotic
flow. (c) A consequence of concentration polarization is induced free charge that is in addition to the concentration gradients.
The rectified electric field due to these charges acts on the diffuse-layer charges and generates an electroosmotic flow.

flow arises from the polarization of modified electrolyte
concentration (i.e. concentration polarization) that
results from the surface conductance around a dielectric
pillar [2].

Figure 1(b) shows a diagram of how concentra-
tion polarization (CP) leads to a non-homogeneous
zeta potential. We have assumed that the pillar car-
ries a negative intrinsic surface charge density (qs)
which is linked to ζ via the Gouy-Chapman equation
qs = 2

√
2cεeφther sinh(ζ/2φther), with c the electrolyte

concentration and φther = kBT/e the thermal voltage
(kB is Boltzmann’s constant, T absolute temperature
and e the proton charge; φther ≈ 25 mV at 20ºC) [1]. A
consequence of the surface charge is a local increase in
counterion concentration within the diffuse layer and an
accompanying enhancement in electrical conductivity
that manifests itself as a surface conductance that is
in addition to the bulk electrolyte conductivity [2], see
Figure 2(a). When an external electric field acts on the
interface, the additional current near the wall leads to
depletion of electrolyte on one side of the pillar, and a
corresponding enhancement on the opposite side. Figure
2(b) depicts the variation in electrolyte concentration
that appears near a charged cylinder subjected to an ex-
ternal electric field. Thus, the electrolyte concentration
near the wall is not homogeneous and since qs is fixed,
the Gouy-Chapman relation implies that ζ also varies
over the solid wall. The effects of CP on colloids have
been extensively studied [11–13]; it is responsible for
the well-known low-frequency dispersion of a colloidal
suspension - the so called α-relaxation.

In the following sections we focus on developing a the-
oretical model for the effect of CP on the electroosmotic
slip velocity induced by an AC electric field around an

insulating pillar. We show that two distinct mechanisms
acting together give rise to stationary flows: an oscil-
lating non-uniform zeta-potential and a rectified elec-
tric field induced by the concentration gradients. We
also present experimental data of these stationary flows.
Both the magnitude and frequency dependence of the
electroosmotic velocity are in agreement with the theo-
retical estimates and differ significantly from predictions
based on the theory for induced-charge electroosmosis.

II. THEORY

Our analysis for an insulating cylinder follows the work
of Schnitzer and Yariv [14, 15] for the electrophoresis of
charged particles immersed in a symmetrical electrolyte.
We extend their analysis to the case of AC signals (see
appendix A for details). We perform a linear expansion of
the governing equations for small Dukhin number (Du);
the ratio of surface to bulk conductance [2]. The lin-
earization of the electrokinetic equations for ac voltages
gives rise to a steady velocity field that scales linearly
with Du but is quadratic with the amplitude of the elec-
tric field. In the approximation, the electrical potential
is written as φ = φ0 + δφ, where φ0 is the potential
around a dielectric cylinder for Du = 0, and δφ is the
perturbation as a consequence of surface conductance.
φ0 satisfies Laplace equation with zero normal derivative
as the boundary condition on the cylinder surface. For
an applied AC field of magnitude E0 and angular fre-
quency ω, φ0 can be written as φ0(t) = Re[φ̃0 exp(iωt)],
where Re[· · · ] means the real part of the function be-

tween the brackets and φ̃0 is the potential phasor, which



3

in cylindrical coordinates is written as:

φ̃0 = −E0

(
r +

a2

r

)
cos θ. (2)

Likewise, the salt concentration can be written as c =
c0 + δc, where c0 is the bulk concentration and δc is the
perturbation due to the applied field. For a relatively
small surface conductance, and neglecting advection, δc
is given by the solution of the diffusion equation:

D∇2δc = ∂tδc, (3)

where D is the diffusion coefficient of the ions in the
electrolyte.

For thin diffuse layers, the ion flux balance shown in
Figure 2(a) can be written as an effective boundary con-
dition that incorporates the surface conductance as a pa-
rameter. Assuming that negative ions (co-ions) are ex-
pelled from the diffuse layer, the divergence of the surface
current must be balanced by the normal flux of positive
ions. The boundary condition for δc on the insulating
surface is written as [15]:

− n · ∇δc/c0 = Du a∇2
s(φ0/φther), (4)

where n is a unit vector normal to the wall, a is the
cylinder radius and φ0 is the electrical potential. ∇2

s is
the Laplacian operator tangential to the wall surface.
As mentioned above, Du is the ratio of surface to
bulk conductance (Du = Ks/aσ, with Ks the surface
conductance and σ the electrolyte conductivity).

δc is also an oscillating function with angular frequency
ω and with a frequency-dependent phasor given by:

δc̃/c0 = −2Du
E0a

φther

K1(kr)

kaK ′1(ka)
cos θ, (5)

where k =
√
iω/D, Kn(x) is the modified Bessel func-

tion of the second kind of order n and K ′n(x) = dKn/dx.
The relaxation angular frequency for δc is the reciprocal
of the typical time in the diffusion equation, τ = a2/D.
Figure 2(b) shows the solution for δc around a cylinder
for ω = 0, i.e. a DC field.

According to the Gouy-Chapman relation, a change in
local concentration δc implies a perturbation in zeta po-
tential given by δζ/φther = −δc|r=a tanh(ζ0/2φther)/c0
and thus, ζ can be written as shown in Figure 1(b). For
the case of an AC excitation, the inhomogeneous part
of ζ is an oscillating function with angular frequency ω.
Using the Helmholtz-Smoluchowski equation, it can be
readily shown that a non-zero time-averaged electroos-
motic velocity appears, given by:

〈uslip〉A = (ε/2η)Re[δζ̃∇sφ̃
∗
0], (6)

where ∗ indicates complex conjugate. Grosse and Shilov
[16, 17] proposed a similar mechanism as the explanation

for the co-field electrorotation observed in polystyrene
microspheres at low frequencies (below 100 Hz).

Another effect of the concentration polarization is the
induction of a net electrical charge arising from the con-
centration gradients [18, 19]. In fact, current conserva-
tion for a symmetrical electrolyte leads to the following
equation for the perturbation of the electrical potential,
∇2δφ = −∇φ0 · ∇δc/c0 (see Appendix A). Since δc and
φ0 are oscillating functions with angular frequency ω, δφ
has a non-zero time-averaged component satisfying:

∇2〈δφ〉 = −(1/2)Re[∇φ̃0 · ∇δc̃∗/c0]. (7)

Figure 2(c) shows a schematic representation of the
induced charges associated with the rectified potential
(δρ = −ε∇2〈δφ〉) for a cylinder with negative surface
charge. The rectified electric field corresponding to these
induced charges acts on the intrinsic charges of the diffuse
layer generating an electroosmotic slip velocity with non-
zero time average given by:

〈uslip〉B = (ε/η)ζ0∇s〈δφ〉. (8)

To the best of our knowledge, this contribution to the
slip velocity has not been previously considered.

Evaluation of eq. 8 requires a solution for 〈δφ〉. To
this end, we write equation (7) as:

∇2〈δφ〉/φther = Du(E0a/φther)
2Re[f(r) + g(r) cos(2θ)],

(9)
where

f(r) =
1

2K ′1(ka)

(
K0(kr)− K2(kr)

(r/a)2

)
, (10)

g(r) =
1

2K ′1(ka)

(
K2(kr)− K0(kr)

(r/a)2

)
. (11)

From this the solution is 〈δφ〉/φther =
Du(E0a/φther)

2Re[F (r) + G(r) cos(2θ)]. G(r) is
the only function that contributes to the slip velocity
(the derivation of G(r) is outlined in the appendices).
Thus, the combination of the contributions given by eqs.
(6) and (8) provides the rectified slip velocity for the
cylinder. This is of the form 〈uslip〉 = U sin(2θ), with U
the frequency dependent, maximum slip velocity:

U

(εaE2
0/2η)Du

= (1/2)|ζ0|f1 + 2 tanh(|ζ0|/2)f2, (12)

where we define the functions f1 and f2 as

f1(ωa2/D) = 4Re[G(a)], (13)

f2(ωa2/D) = −Re[K1(ka)/(kaK ′1(ka))]. (14)

The functions f1(x) and f2(x) are plotted in figure 3. For
zero frequency (k = 0), f1 = f2 = 1 and

U

(εaE2
0/2η)Du

= |ζ0|/2 + tanh(|ζ0|/2), (15)
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while for high frequencies f1 � f2 and

U

(εaE2
0/2η)Du

∼ 1√
2ωa2/D

tanh(|ζ0|/2). (16)
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FIG. 3. Plot of the functions f1 and f2 versus ωa2/D. The
frequency dependence of the slip velocity is contained within
these functions (eq. (12)).

The rectified slip velocity gives rise to a quadrupolar
flow of the liquid around the cylinder with a velocity field
given by:

〈u〉 = U

(
1− r2
r3

cos(2θ)r̂ +
1

r3
sin(2θ)θ̂

)
. (17)

This expression gives rise to a velocity amplitude that
approximately decays as

√
D/ωa2 at frequencies larger

than D/a2. ICEO flows around a cylinder are also
quadrupolar (they satisfy eq. (17)) and scale with
E2

0 [20]. However, assuming that the permittivity of
the cylinder is much smaller than that of water (true
for all experimental cases), the ICEO theory predicts
a velocity with a frequency dependence consisting of
a plateau followed by a decay around frequencies of
the order of the reciprocal of the charge relaxation
time of the electrolyte (σ/(2πε) ≈ 0.3 − 3 MHz for our
experimental conditions. This frequency is several orders
of magnitude greater than the typical frequencies for
the flows observed in our experiments [9, 21]). It is also
enlightening to compare the slip velocities predicted by
both theories. According to ICEO theory for dielectric
objects [20, 22], the maximum induced zeta potential for
a DC field with amplitude E0 is δζICEO = 2(εd/ε)E0λD,
where εd is the permittivity of the dielectric object
and λD the thickness of the diffuse layer, i.e. the
Debye length. Thus, from eq. (1), the maximum
time-averaged slip velocity for an AC field of amplitude
E0 is vICEO

slip = (εd/η)λDE
2
0 . On the other hand,

the maximum slip velocity for the stationary flows is
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FIG. 4. (a) Experimental streamlines around an insulating
pillar of 20µm diameter. The electrolyte conductivity was
1.75 mS/m and the voltage amplitude and frequency were
1600 Vpp and 190 Hz, respectively (see video in supplemen-
tary material [23]). (b) Numerically calculated streamlines
for the rectified electroosmotic flow around a dielectric cylin-
der. The color map represents the magnitude of the fluid
velocity field. (c) Experimental data for the average fluid ve-
locity magnitude as a function of signal frequency for three
electrolyte conductivities (KCl in water). The amplitude of
the applied voltage is 1600 Vpp. The velocity approximately
decays as 1/

√
f .

vCPEO
slip = (εaE2

0/2η)Du(|ζ0|/φther + 2 tanh(|ζ0|/2φther)),
where we introduce the acronym CPEO for concentra-
tion polarization electroosmosis. Using values of the
parameters obtained from our experiments, and typical
values for the permittivity of PDMS (εd = 2.8ε0),
λD ≤ 30 nm and Du ∈ [0.01, 0.1], the ratio between the
two slip velocities is vICEO

slip /vCPEO
slip ∈ [0.004, 0.04], which

demonstrates that CPEO stationary flows completely
dominate over ICEO for charged dielectric obstacles.

III. EXPERIMENTAL RESULTS AND
COMPARISON WITH THEORY

The CPEO flows were experimentally validated using
simple microfluidic devices made using standard soft
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lithography. Channels (1 cm long, 50µm tall, 200µm
wide) containing a periodic square array of cylindrical
micropillars (20µm diameter) were made from PDMS.
The separation between the centers of neighboring pillars
was 40µm. The channel was filled with KCl electrolyte
with conductivities σ = {1.75, 5.01, 11.23}mS/m. For
flow visualization, fluorescent nanoparticles (500 nm
diameter) were dispersed in the electrolyte and imaged
with a fluorescence microscope. Before experiments, the
PDMS channels were primed for at least 30 minutes
with a solution of 0.1% Pluronics F-127 – a non-ionic
surfactanct that adsorbs onto the PDMS walls to
minimise sticking of the tracer particles. Metal needles
were inserted at the inlet and outlet of the channel and
AC voltages applied, with amplitude up to 2000 Vpp

and frequencies up to 1 kHz. Videos of the fluorescent
particles were analyzed with Particle Image Velocimetry
(PIV) (described in section S3 of supplementary material
[23]).

Figure 4(a) shows results of the superposition of
experimental images showing the trajectories of the
fluorescent particles in an electrolyte. Four symmetrical
flow rolls are seen, as predicted from the theory for the
rectified electroosmotic flow field around a cylinder.
Figure 4(c) shows the mean value of the velocity mag-
nitude as a function of the applied AC frequency for
three electrolyte conductivities. Following convention,
the frequency in experiments f is related to the angular
frequency by ω = 2πf . The data were obtained by
averaging the fluid velocity magnitude within a unit
cell of the periodic array of cylinders. Error bars
correspond to the dispersion in the measurements within
six different unit cells. Importantly, a strong decrease
of the stationary velocity is observed for frequencies
around and above tens of Hertz, in accordance with
a2/D ≈ 0.1 s, i.e. the timescale introduced by the
diffusion equation, eq. (3). Additionally, the velocity for
a given conductivity approximately decays as 1/

√
f , also

in agreement with theoretical predictions. We have also
performed experiments using a single post (rather than
an array). The observed flow is completely analogous to
the flow observed with the array of posts. An example
of streamlines is shown in section S1 of supplementary
material [23].

The stationary electroosmotic velocity for a periodic
array of dielectric cylinders as used experimentally was
calculated using the commercial finite element solver
COMSOL Multiphysics. The governing equations for
φ0 (Laplace equation), δc (eq.(3)) and 〈δφ〉 (eq. (7))
were solved in a 2D domain corresponding to a unit
cell centered on a cylinder, see Figure 4(b). Boundary
conditions on the cylinder surface were n · ∇φ0 = 0,
eq.(4) and n · ∇〈δφ0〉 = 0. Periodicity was imposed on
the boundaries of the unit cell. The velocity field within
the unit cell satisfies Stokes equations with slip velocity
on the cylinder wall given by the sum of eqs. (6) and

(8). We also imposed periodicity for the velocity and
pressure fields on the boundaries of the unit cell.

Figure 4(b) shows the streamlines obtained for the
rectified electroosmotic flow around a post in the
periodic array. As expected, the time-averaged flow
pattern shows four recirculating vortices as found
experimentally. Fig. 5 shows a comparison between
the experimental data from figure 4(c) and numerical
results with the following parameters: ζ0 = −110 mV
(for the lowest conductivity) [24] and E0 = 96.25 kV/m.
For the other conductivities, ζ0 was calculated from the
Gouy-Chapman relation for fixed surface charge; these
values are in agreement with the measurements in [25].
The experimental data in fig. 5 are scaled with u0Du,
where u0 = εaE2

0/2η and Du is calculated by assuming
a fixed surface conductance of 1 nS – independent of
electrolyte conductivity. This is a typical value obtained
from experimental data for the electrokinetic properties
of submicrometre latex particles [26] and it is larger
that the estimation obtained for Ks when using the
theory of the diffuse layer. The difference is attributed
to the contribution to surface conductance arising from
a layer of mobile ions adsorbed on the wall [12] – the
so-called Stern layer. Experimental trends are correctly
described by the theoretical model: the rectified fluid
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FIG. 5. Comparison between experimental data in figure
4(c) and numerical calculations for a periodic array of di-
electric cylinders. The solid lines correspond to the aver-
age velocity magnitude determined from simulations with
E0 = 96.25 kV/m and ζ0 = −110 mV for the lowest con-
ductivities. For the other conductivities, ζ0 was calculated
from the Gouy-Chapman relation for fixed surface charge.
Frequencies are nondimensionalized with f0 = D/(2πa2).
Velocities are scaled with the product of a typical velocity
(u0 = εaE2

0/2η) and the Dukhin number. Note that the nu-
merical curves do not exactly have the same frequency de-
pendence and, therefore, they do not collapse onto a master
curve. The reason is that the relative contribution of the two
mechanisms to rectified electroosmosis varies with ζ0, which
in turn decreases with electrolyte conductivity.
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velocity decreases with electrolyte conductivity and,
significantly, its frequency dependence is close to 1/

√
f .

The magnitude of the velocity is clearly overestimated
by the numerical simulations by a factor of around 4.5.
It is important to note that the channels were primed
with the surfactant Pluronics before each experiment
which is known to significantly reduce electroosmotic
velocities [27].

IV. CONCLUSIONS

We have presented a mathematical model that pre-
dicts stationary fluid flow of electrolytes induced by
AC electric fields around charged dielectric objects.
We show experimental data for electrolyte flow around
micropillars in a microfluidic channel and demonstrate
that the experimental trends are in agreement with
numerical calculations for typical values of surface
conductance and ζ-potential for PDMS.

The magnitude of the fluid velocity is overestimated by
the numerical calculations which can be attributed to the
fact that adsorption of Pluronics to PDMS significantly
reduces electroosmosis. The theoretical model correctly
describes the amplitude and frequency dependence of
the rectified flow, in contrast with previous work that at-
tributes the flow around dielectric structures to classical
ICEO in an AC field [9, 28]. Beyond the fundamental
interest in these stationary flows, we anticipate that this
model will expand the understanding of the behavior of
systems that employ AC electric fields for micro- and
nanoparticle manipulation [29, 30] and lead to ways
of locally controlling fluid flow using dielectric structures.
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Appendix A: Theory for Surface Conductance and
Electroosmosis

We consider a negatively charged dielectric object
immersed in a binary electrolyte subjected to an
AC electric field and follow the theory developed by
Schnitzer and Yariv [14], but extending it to the AC
case. This theory is a thin-double-layer analysis of the
electrokinetic equations for charged dielectric solids
that considers surface conduction effects. We assume
that the frequency ω of the applied electric field is low
enough to consider the EDL is in quasi-equilibrium

(ωε/σ � 1, with ε and σ, the liquid permittivity and
conductivity, respectively). In the following we use a
dimensionless formulation [14]: length is nondimension-
alised with a typical distance a (radius of the pillar in
our experiments), potential with the thermal voltage
φther = kBT/e (kB is Boltzmann’s constant, T absolute
temperature and e elementary charge), time with
η/εE2

ther where Ether = φther/a, pressure with εE2
ther,

and concentrations with typical salt concentration c0.
Thus, diffusion constants are nondimensionalised with
εa2E2

ther/η, velocities with εE2
thera/η, and the typical

Reynolds number is Re = ρmεE
2
thera

2/η2, with ρm the
liquid mass density. The surface charge on the dielectric
is nondimensionalised with εφther/λD, where λD is the
Debye length.

The nondimensional equations for the conservation of
positive and negative ions in the bulk electrolyte (outside
the electrical double layer) are, respectively,

∇ · (−c∇φ−∇c) + α+u · ∇c+ α+
∂c

∂t
= 0, (A1)

∇ · (c∇φ−∇c) + α−u · ∇c+ α−
∂c

∂t
= 0, (A2)

where electro-neutrality has been taken into account so
that the concentrations of positive and negative ions are
equal c+ = c− = c. The nondimensional parameters α+

and α− are the reciprocals of the nondimensional dif-
fusion constants D+ and D− of positive and negative
ions, respectively. Adding and substracting equations
(A1) and (A2), we get

D∇2c = u · ∇c+
∂c

∂t
, (A3)

∇ · (c∇φ) = γ

(
∂c

∂t
+ u · ∇c

)
, (A4)

where D = 2/(α+ +α−) and γ = (α+−α−)/2. Equation
(A3) is the diffusion equation for the salt concentration,
with D a nondimensional ambipolar diffusion constant.
Equation (A4) can be read as the equation for the
electrical potential where γ is a parameter that controls
the ion mobility asymmetry.

The boundary conditions on the surface of the charged
dielectric object are the following [14]. Zero normal flux
of co-ions (anions in our case)

c
∂φ

∂n
− ∂c

∂n
= 0. (A5)

The normal flux of counter-ions (cations in our case)
equate the surface divergence of EDL cation fluxes

− c∂φ
∂n
− ∂c

∂n
= 2Du∇2

s(φ+ ln c), (A6)
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where Du is the Dukhin number defined as
Du = (1 + 2α+)|qs|λD, with qs and λD the nondi-
mensional intrinsic surface charge and Debye length,
respectively. Here the normal derivative is from the
dielectric to the electrolyte. The Dukhin number is
defined in the literature [4] as Du = Ks/(σa), where
Ks is the surface conductance. This expression is fully
equivalent to the definition Du = (1 + 2α+)|qs|λD for
symmetrical electrolyte with equal diffusivities and
large zeta potential (the case we deal with in this
work). The supplementary material contains a detailed
derivation of the equivalence of the two definitions [23].
In previous equations, we assumed that the particle is
nonpolarizable, i.e. the charge induced in the EDL by
the external electric field is negligible. This condition
will be examined later.

Liquid velocity and pressure satisfy the Navier-Stokes
equation for negligible Reynolds number:

Re
∂u

∂t
= −∇p+∇2u +∇2φ∇φ, ∇ · u = 0, (A7)

where the Coulomb term is present because gradients
of concentration can lead to induced charge in the
bulk, through equation (A4), and the time derivative of
velocity is present because it may not be negligible for
high frequency.

The boundary conditions on the charged dielectric sur-
face are (i) the wall is impermeable, u · n = 0, and (ii)
there is a slip velocity generated at the EDL [31]

us = ζ∇sφ− 4 ln (cosh(ζ/4))∇sc, (A8)

where the zeta potential ζ is related to the intrinsic
charge by [1]

qs = 2
√
c sinh(ζ/2). (A9)

Here we see that perturbations of salt concentra-
tion lead to perturbations of zeta potential, i.e.
δζ = −δc tanh(ζ0/2)/c0.

Following Schnitzer and Yariv [15], we now perform
a linear expansion in the parameter Du (which is small
in our case): φ = φ0 + δφ, c = c0 + δc, ζ = ζ0 + δζ,
u = u0 + δu, with δφ, δc, δζ, δu of the order of Du. In
addition, the equations will be simplified in order to
obtain an analytical solution.

Consider an applied AC electric field of nondimen-
sional angular frequency ω. The solution at order zero
(Du = 0) is: a) the salt concentration is unperturbed,
c0 = 1; b) the zeta potential in the absence of concentra-
tion polarization is uniform and given by the relation
qs = 2 sinh(ζ0/2); c) the potential in the liquid bulk

is φ0(t) = Re[φ̃0eiωt], where φ̃0 is the potential phasor
that satisfies Laplace’s equation with boundary condition
∂φ̃0/∂n = 0 at the dielectric surface (the solution for a

cylinder is given in equation (2)); and d) the velocity
field and pressure are, respectively, u0(t) = Re[ũ0e

iωt]
and p0(t) = Re[p̃0eiωt], where ũ0 and p̃0 satisfy

iωReũ0 = −∇p̃0 +∇2ũ0, ∇ · ũ0 = 0, (A10)

with boundary condition ũ0 = ζ0∇φ̃0 at the dielectric
surface. The analytical solution for the velocity and
pressure generated around a cylinder is shown below
(Appendix D).

The concentration δc satisfies

D∇2δc = u0 · ∇δc+
∂δc

∂t
. (A11)

Here we neglect the advection term in order to obtain an
analytical solution. For this to be valid, the Peclet (Pe)
number must be negligibly small (Pe = U0L/D̄, where
U0 is a typical velocity, L is the characteristic length for
the concentration gradients and D̄ the dimensional dif-
fusivity of the ions). For DC, the characteristic length
is a, the pillar radius. For AC fields, the characteris-
tic length is the smaller of a or the diffusion penetration

depth (the penetration depth is
√
D̄/ω̄, with D̄ and ω̄

dimensional quantities). Pe is negligible when either U0

or L is very small. In our experimental system, this im-
plies that either U0 is much smaller than 200µm/s or
ω � 2π10 rad/s. The boundary condition for equation
(A11) at the dielectric surface is

− ∂δc

∂n
= Du∇2

s(φ0). (A12)

Since φ0 is an oscillating function in time with angular
frequency ω and we neglect the advection term, we find
a solution of δc that is of the form δc = Re[δc̃eiωt]. The
complex function δc̃ satisfies

D∇2δc̃ = iωδc̃. (A13)

with boundary condition

∂δc̃

∂n
= −Du∇2

s(φ̃0). (A14)

We further assume that positive and negative ions have
the same mobility so that γ = 0 in equation (A4). The
potential δφ satisfies then

∇2δφ+∇φ0 · ∇δc = 0, (A15)

with boundary condition on the dielectric surface

∂δφ

∂n
=
∂δc

∂n
. (A16)

Equation (A15) and b.c. (A16) implies that the general
solution for δφ has three Fourier independent frequency
components:

{
1, eiωt, e2iωt

}
. We are interested in the

time-independent component, because this contributes
to the rectified velocity, as shown below. Thus we solve
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∇2〈δφ〉+ 〈∇φ0 · ∇δc〉 = 0.

The time-averaged velocity and pressure at the first
order satisfy

∇2δu + 〈∇2δφ∇φ0〉 = ∇δp, ∇ · δu = 0. (A17)

The Coulomb term has zero time average,
〈∇2δφ∇φ0〉 = 0. Effectively, the Laplacian of δφ
is equal to −∇φ0 · ∇δc because of equation (A15). It
has Fourier components

{
1, e2iωt

}
and when multiplied

by ∇φ0 the Coulomb term has Fourier components{
eiωt, e3iωt

}
.

The boundary conditions for the time-averaged veloc-
ity on the dielectric surface at the first order are δu·n = 0
and the time-averaged slip velocity

δus = ζ0∇s〈δφ〉+ 〈δζ∇sφ0〉 − 4 ln (cosh(ζ0/4))∇s〈δc〉 =

· · · = ζ0∇s〈δφ〉+ 〈δζ∇sφ0〉, (A18)

where the last equality comes from 〈δc〉 = 0. Here
δζ = −δc tanh(ζ0/2).

Summary of approximations in the model:

1. Thin EDL and highly charged surface, as required
for the Schnitzer-Yariv model;

2. Frequencies much smaller than the electrolyte
charge relaxation frequency, ensuring that the EDL
is in quasi-equilibrium;

3. High frequencies or weak electric fields so that ad-
vection of ions can be neglected;

4. Small Du to justify the use of a linear expansion;

5. Equal ion diffusivities so that the charge induced
in the bulk due to different diffusivities can be ne-
glected;

6. Negligible induced charge in the EDL (valid for
common dielectrics).

Appendix B: Negligible induced charge

At this point we examine the charge induced by the
applied field on a dielectric cylinder. First we compare
the maximum induced zeta potential from the induced
charge on a dielectric and also from the change in con-
centration due to surface conduction. Both induced zeta
potentials are maximum at zero frequency. According to
[20] the maximum induced zeta potential on a dielectric
cylinder due to induced charge is

ζIC = 2
εd
εw
E0λD, (B1)

where εd and εw are the dielectric constants of the solid
and water, respectively. From δζ = −δc tanh(ζ0/2) with

δc given by eq. (5) in nondimensional form and evalu-
ated on the cylinder surface, the maximum induced zeta
potential due to the concentration perturbation is

ζCP = 2DuE0 tanh(|ζ0|/2), (B2)

We see that for thin EDL (λD � 1) and a non-
negligible Dukhin number (i.e. Du> λD), ζIC/ζCP ∼
(εd/εw)(λD/Du)� 1 for common dielectrics. Thus, it is
justifiable to neglect ζIC compared with ζCP .

Appendix C: Functions for analytical solution

The functions F (r) and G(r) are obtained from the
equations:

1

r

∂

∂r

(
r
∂F

∂r

)
= f, (C1)

1

r

∂

∂r

(
r
∂G

∂r

)
− 4G

r2
= g, (C2)

with boundary conditions of ∂F/∂r = ∂G/∂r = 0, both
for r = 1 and r →∞. Only the function G(r) contributes
to the rectified slip velocity (equation 12). We solve for
G using Green’s function that satisfies equation (C2) but
with source equal to the Dirac delta function δ(r − r′)
and with boundary conditions of zero radial derivatives
at r = 1 and r →∞. The solution for G is then

G(r) = −r−2
∫ r

1
g(r′)(r′4+1)

4r′ dr′ − (r2 + r−2)
∫∞
r

g(r′)
4r′ dr

′.
(C3)

According to equation (12), we require the value of G
evaluated on the cylinder surface G(1):

G(1) = −
∫∞
1

g(r′)
2r′ dr

′ = 1
4K′

1(k)

∫∞
1

(
K0(kr

′)
r′3 − K2(kr

′)
r′

)
dr′.

(C4)
The integral (C4) is evaluated using Mathematica.

Appendix D: Oscillating velocity and pressure
around a cylinder

This appendix derives the oscillating velocity at zero
order. This does not affect the stationary electroosmotic
velocity since we have neglected the advection term in
equation (5). The solution to equation (A10) for the
case of a cylinder can be found by writing [32]

ũ0 = − ∇p̃0
iωRe

+∇× (ψẑ), (D1)

with equations for p̃0 and ψ given by, respectively,

∇2p̃0 = 0, ∇2ψ = iωReψ (D2)
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Imposing boundary conditions of zero velocity at infinity

and slip velocity on the cylinder surface ũ0 = 2ζE0 sin θθ̂

leads to

p̃0 = iωRe2ζE0
K1(α)

K1(α) + αK ′1(α)

cos θ

r
, (D3)

ψ = −2ζE0
K1(αr)

K1(α) + αK ′1(α)
sin θ, (D4)

where α =
√
iωRe.
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