

Picophotonics

**Carolina Rendon Barraza², Eng Aik Chan², Jinxiang Li¹, Tongjun Liu¹, Kevin F. MacDonald¹,
Jun-Yu Ou¹, Nikitas Papasimakis¹, Tanchao Pu¹, Guanghui Yuan² and Nikolay I. Zheludev^{1,2}**

¹University of Southampton, ORC/ZI, Southampton, UK

²Nanyang Technological University, Singapore

www.nanophotonics.sg; www.nanophotonics.sg

zheludev@soton.ac.uk

Abstract – We demonstrate metrology and odometry (detection of change in position over time) with resolution in the nanometric - picometric scales by analyzing electrons or topologically structured light scattered from the nanostructures using artificial intelligence. We show how these techniques can be applied to characterization and optimization of nano-opto-mechanical metamaterials and the fundamental studies of dynamics of thermal motion and the physics of phonons in photonic nanostructures.