

1
2
3 **ANTICONVULSANT AND ANTISSCHIZOPHRENIC MEDICATIONS IN THE PHARMACOTHERAPY OF PANIC**
4
5
6 **DISORDER: A STRUCTURED REVIEW**
7
8
9
10
11

12 **Vasilios G. Masdrakis*, David S. Baldwin**¶**
13
14
15
16
17
18
19
20

21 ***National and Kapodistrian University of Athens, School of Medicine, First Department of Psychiatry, Eginition**
22
23 **Hospital, Athens, Greece**
24
25
26
27
28
29

30 ****University Department of Psychiatry, Clinical and Experimental Sciences, Faculty of Medicine, University of**
31
32 **Southampton, Southampton, United Kingdom**
33
34
35
36
37

38 **¶ Corresponding author:** David Baldwin MA DM FRCPsych; Professor of Psychiatry and Head of Mental Health
39
40 Group, University of Southampton Faculty of Medicine; University Department of Psychiatry, Academic Centre,
41
42 College Keep, 4-12 Terminus Terrace, Southampton SO14 3DT; Tel. + 44 02382 310 764; Fax + 44 02382 310
43
44 766. E-mail address: D.S.Baldwin@soton.ac.uk
45
46
47
48
49
50
51
52
53
54
55

56 **Running head:** Anticonvulsants and antipsychotics in panic disorder
57
58
59
60

Abbreviations: **BLA**= basolateral amygdala; **CBT**= cognitive-behavior therapy; **CCK**= cholecystokinin; **CGI-I**= Clinical Global Impression-Improvement scale; **CGI-S**= Clinical Global Impression-Severity scale; **D-receptors**= dopamine receptors; **DPAG**= dorsal periaqueductal gray; **EEG**= electroencephalogram; **GABA**= γ -aminobutyric acid; **GAD**= generalized anxiety disorder; **5-HT**= 5-hydroxytryptamine; **HAM-A**= Hamilton Anxiety Scale; **MRI**= Magnetic Resonance Imaging; **PAS**= Panic and Agoraphobia Scale; **PET**= positron emission tomography; **PD**= panic disorder; **PDA**= panic disorder with comorbid agoraphobia; **SCL-90-R**= Symptom Checklist-90-Revised; **SPS**= Sheehan Panic Disorder Scale; **PDSS**= Panic Disorder Severity Scale; **SGAs**= second-generation antipsychotics; **SNRIs**=serotonin-norepinephrine reuptake inhibitors; **SSRIs**= selective serotonin re-uptake inhibitors.

ABSTRACT

Background: As the remission rate of panic disorder (PD) achieved with conventional pharmacotherapy ranges between 20-50%, alternative psychopharmacological strategies are needed. We aimed to firstly review data regarding use of antipsychotic and non-benzodiazepine anticonvulsant medication in PD patients with or without comorbidities; secondly, to review data concerning reduction of panic symptoms during treatment of another psychiatric disorder with the same medications; and thirdly, to examine reports of anticonvulsant- or antipsychotic-induced new-onset panic symptomatology.

Method: We performed a PUBMED-search (last day: April 28, 2020) of only English-language studies, combining psychopathological terms (e.g. "panic disorder") and terms referring either to categories of psychotropic medications (e.g. "anticonvulsants") or to specific drugs (e.g. "carbamazepine"). All duplications were eliminated. All studies included in the review met certain inclusion/exclusion criteria. The level of evidence for the efficacy of each drug was defined according to widely accepted criteria.

Results: In treatment-resistant PD, beneficial effects have been reported after treatment (mostly augmentation therapy) with a range of anticonvulsant (carbamazepine, gabapentin, lamotrigine, levetiracetam, oxcarbamazepine, valproate, vigabatrin, tiagabine) and antipsychotic (aripiprazole, olanzapine, risperidone, sulpiride) medications: overall, most medications appear generally well tolerated. Additionally, bipolar patients receiving valproate or quetiapine-XR (but not risperidone or ziprasidone) demonstrated reductions of comorbid panic-related symptoms. There are case reports of new-onset panic symptoms associated with clozapine, haloperidol, olanzapine and topiramate, in patients with conditions other than PD. The small-to-modest sample size, the lack of control groups and the open-label and short-term nature of most of the reviewed studies hinder

1
2
3 definitive conclusions regarding either the short-term and long-term efficacy of antipsychotic and anticonvulsant
4
5 medications or their potential long-term side effects.
6
7

8
9 **Conclusion:** Some atypical antipsychotic and anticonvulsant medications may have a role in the treatment of
10
11 some PD patients, mostly when more conventional approaches have not been successful, but the quality of
12
13 supporting evidence is limited.
14
15

16
17
18
19
20
21 **Keywords:** panic disorder; pharmacotherapy; anticonvulsants; antipsychotics; medication.
22
23
24
25
26
27
28
29
30
31
32

1. INTRODUCTION

1.1. Panic disorder: clinical features, prevalence, etiology

33
34
35
36
37
38 Panic disorder (PD) is a psychiatric disorder characterized by recurring *panic attacks* -i.e. brief periods of
39
40 severe psychological and somatic symptoms of anxiety, typically peaking within 10 min and resolving within 30
41
42 min- at least some of which are, or have been, unexpected. Between panic attacks, the patient is relatively free
43
44 from panic psychopathology. However, patients demonstrate concern, worry and/or behavioral changes due to
45
46 anticipation of future panic attacks. There is a substantial overlap between PD and agoraphobia (1). Panic
47
48 disorder is often comorbid with other psychiatric syndromes, including other anxiety disorders, major depression
49
50 and bipolar disorder (2). Comorbidity of PD with depression is particularly common and results in greater
51
52 impairment and increased use of health services (3). Lifetime prevalence of PD ranges from 1-3% in the general
53
54
55
56
57
58
59
60

1
2
3 population, while the prevalence in clinical settings ranges from 3.0-8.3%. Furthermore, PD and other anxiety
4
5 disorders contribute to approximately 1% of all disability-adjusted life years, and 3.5% of all the years lived with
6
7 disability worldwide (4). The exact pathogenesis of PD remains uncertain, but a range of biological (5-8) and
8
9 psychosocial factors (9, 10) contribute to the emergence and maintenance of panic psychopathology.
10
11
12
13
14
15
16
17

18 **1.2. Panic disorder: current standard treatment modalities and their efficacy**

19

20
21 Significant progress has been achieved concerning the presumed biological basis (8, 11) and the
22
23 pharmacotherapy (3, 12) of PD. Selective serotonin reuptake inhibitors (SSRIs) or serotonin-norepinephrine
24
25 reuptake inhibitors (SNRIs) are commonly recommended first-line and second-line pharmacotherapies, followed
26
27 by a number of switching strategies, while cognitive-behavior therapy (CBT) is the first-line psychological
28
29 treatment (3,12). However, a significant proportion of PD patients shows little or no response to standard
30
31 pharmacotherapies, CBT and/or their combination, and suffers from significant and impairing residual symptoms.
32
33
34 The remission rates achieved with pharmacotherapy range between 20-50%, and approximately 20% of patients
35
36 will remain substantially impaired despite undergoing a succession of pharmacological and/or psychosocial
37
38 treatments (13, 14). Therefore, PD is considered a potentially chronic, recurrent and often difficult-to-treat
39
40 psychiatric illness.
41
42
43
44
45
46
47
48
49

50 Despite the official guidelines which consider pharmacotherapy with antidepressants alone and CBT alone
51
52 as two treatment modalities with similar efficacy, some research data suggest that psychopharmacological
53
54 treatment may be somewhat more effective than psychotherapies -including CBT- especially for more severely ill
55
56 patients with PD without or with (PDA) agoraphobia. It remains uncertain whether combined CBT-
57
58
59
60

1
2
3 pharmacotherapy is substantially more effective than either approach given as monotherapy (12, 15, 16). There is
4
5 a need for novel interventions which might enable non-responders or partial responders to become full-
6
7 responders to treatment. Drugs with proven efficacy and acceptability in patients with other psychiatric conditions
8
9 might conceivably be suitable for 'repurposing' in patients with treatment-resistant PD.
10
11
12
13
14
15
16
17

18 1.3. Rationale for the use of anticonvulsants in treating panic disorder 19

20
21 Benzodiazepines modulate brain levels of γ -aminobutyric acid (GABA) which is implicated in the
22
23 pathogenesis of PD and other anxiety disorders: but they are not considered a first-line pharmacotherapy due to
24
25 their adverse effects, including abuse liability, withdrawal symptoms, and memory deficits (3). Early theoretical
26
27 views stressed that anticonvulsants possess GABAergic properties but lack the adverse effects of
28
29 benzodiazepines, and this advantage could support the use of the former instead of the latter in panic and anxiety
30
31 states (17, 18). A strong indication that anticonvulsants could be an efficacious substitute for benzodiazepines is
32
33 that some of them –e.g. pregabalin (19-21) and tiagabine (22)- may be sometimes be helpful in discontinuing
34
35 long-term benzodiazepine use and ameliorating associated memory deficits (23). Biological mechanisms included
36
37 in a "kindling" model may be important in the pathogenesis of PD (24), and anticonvulsants may have a particular
38
39 role in the pharmacotherapy of PD.
40
41
42

43
44 The *GABA-A receptor subtype* regulates excitability and acute changes in fear/anxiety responses to
45
46 exteroceptive or interoceptive stimuli (25). Abnormal GABA activity may contribute to the pathophysiology of PD:
47
48 for example, a PET study suggests that PD patients demonstrate decreased GABA-A receptor binding (26). The
49
50 main mode of action of anticonvulsant drugs is the elevation of the GABA brain levels, by inhibiting the GABA-
51
52
53
54
55
56
57
58
59
60

1
2
3 catabolizing enzyme GABA-transaminase (17). This *GABAergic action* of anticonvulsants was the decisive
4
5 reason for exploring their potential utility to treat panic and other anxiety disorders (24). Additionally,
6
7 anticonvulsants exert their action through a regulating effect on excessive sodium and calcium fluxes (e.g.
8
9 carbamazepine, valproate, lamotrigine and phenytoin) and/or through the modulation of serotonin (valproate and
10
11 lamotrigine), dopamine (valproate), noradrenaline (lamotrigine) and hypothalamic-pituitary activity (lamotrigine)
12
13 (24, 25).
14
15
16

17
18 During a panic attack, a strong association with the surrounding context is established suggesting that the
19
20 hippocampus and other structures of the “fear circuit” may be critically involved in the pathophysiology of PD,
21
22 given their role in contextual processing (6, 27). Anticonvulsants probably act by regulating the malfunctioning of
23
24 this fear circuit. For example, Santos et al (27) reported that administration of tiagabine -a GABA reuptake
25
26 inhibitor- significantly reduced hippocampal hyperexcitability and abnormal fear circuit activation in an animal
27
28 model of panic/fear. Moreover, the “kindling model” (originally developed to explain progression of epilepsy) may
29
30 also apply to the pathogenesis of panic. More precisely, theoretical views stress that repetitive activation and
31
32 kindling of brain structures involved in fear responses, such as the amygdala and the hippocampus, may result in
33
34 excitatory output, similar to that observed in epilepsy. Therefore, anticonvulsant medication could exert a
35
36 therapeutic action by limiting this excessive activation (24). In line with this notion, an investigation using an
37
38 animal model of limbic epilepsy, provides evidence for a bidirectional, mutually exacerbating effect of epilepsy
39
40 and panic-like behaviors in animals: animals were subject to alternating electrical stimulations of the basolateral
41
42 amygdala (BLA) to induce kindling of limbic seizures, and of the dorsal periaqueductal gray (DPAG) to induce
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 panic-like episodes; BLA-DPAG stimulation exacerbated panic-like episodes more drastically than the DPAG
4
5 stimulation alone, but BLA stimulation alone was not panicogenic (28).
6
7
8
9
10
11

12 **1.4. Rationale for the use of antipsychotics in treating panic disorder**

13

14
15 Panic disorder and other anxiety disorders are often comorbid with psychotic disorders (29), while apparently
16
17 psychosis-like features can sometimes be seen as part of the clinical presentation of PD and other anxiety
18 disorders (30-33). For example, panic attacks during adolescence were significantly associated with increased
19
20 levels of psychotic-like psychopathology among young adults (34). In a previous study in 35 medication-free,
21
22 acutely-ill PD patients (29 with comorbid agoraphobia) without a history of psychosis, significant correlations
23
24 emerged between the Symptom Checklist-90-Revised (SCL-90-R) "psychoticism" and "paranoid ideation"
25
26 subscales and the study's clinical measures of panic psychopathology: the authors suggested that PD patients
27
28 can be differentiated according to the severity of their "psychoticism" as a dimension, comprising clinical features
29
30 such as psychotic-like experiences, increased social alienation, hostility and suspiciousness, and concluded that
31
32 these associations may reflect a more severe subtype of PD (32). Finally, there is evidence for the efficacy of
33
34 antipsychotic drugs in reducing anxiety psychopathology in psychotic patients (35, 36).
35
36

37
38 Previous researchers have explored the potential utility of antipsychotic medications in anxiety disorders. In
39
40 earlier times, patients with "anxiety neuroses" were frequently treated with "typical" high- or low-potency
41
42 antipsychotics, including haloperidol, flupenthixol, chlorprothixene, melperone and others at lower doses than
43
44 those used for the treatment of patients with schizophrenia. However, anxiety disorders, including PD, run a
45
46 chronic course and often need long-term pharmacotherapy. Therefore, concerns regarding typical antipsychotics'
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 tardive adverse effects led to the abandonment of these pharmacological strategies (37). With the advent of the
4
5 second generation antipsychotics (SGAs), researchers returned to investigate whether these "atypical"
6
7 antipsychotics could prove both efficacious in treatment-resistant PD and other anxiety disorders and better
8
9 tolerated, since they lack some of the more serious adverse effects of typical antipsychotics (38).
10
11
12
13
14

15 Fear- and anxiety-conditioning animal-models are used to explore whether antipsychotic drugs attenuate
16
17 anxiety/fear responses acquired through learning mechanisms (39, 40). Data from experiments in rats (passive-
18
19 and active-avoidance conditioning models) suggest that the atypical antipsychotics olanzapine and clozapine
20
21 possess anxiolytic properties which are not attributable to this antipsychotic effect, or to their effects on motor
22
23 functions or learning and memory processes: by contrast, haloperidol did not possess anxiolytic properties in
24
25 these particular conditioning models, but demonstrated an anxiogenic-like activity (40).
26
27
28
29
30
31
32

33 Data from animal studies suggest positive correlations between panic/fear/anxiety manifestations and
34
35 release of dopamine in certain brain structures, including the prefrontal cortex and the amygdala (41-44).
36
37 Dopamine contributes significantly to the modulation of a "cortical brake" that the medial prefrontal cortex exerts
38
39 on the panicogenic/anxiogenic activity of the amygdala, and influences the impulse trafficking between the
40
41 basolateral and central nuclei of the amygdala (45). D1- and D2-dopamine receptors in the amygdala have
42
43 different roles in the modulation of anxiety: D1 receptors participate in danger recognition facilitating conditioned-
44
45 unconditioned associations by the retrieval of the affective properties of the unconditioned stimuli, and in the
46
47 control of impulse trafficking from cortical and basolateral regions and central nuclei respectively; whereas D2
48
49 receptors generate adaptive responses to cope with aversive environmental stimuli (45).
50
51
52
53
54
55
56
57
58
59
60

1
2
3 The potential anti-panic properties of antipsychotics in humans may be due to their direct action in
4
5 dopaminergic systems (46). Antipsychotic drugs –both typical and atypical- block the acquisition of conditioned
6
7 fear responses (39, 47, 48). SGAs are agonists of 5HT_{1A} receptors and/or antagonists of 5HT_{2A} and 5HT_{2C}
8
9 receptors (13, 49), which are implicated in the neurobiology of PD, since they mediate the activation of the
10
11 amygdala (50), which is considered the central neuronal structure of the “fear circuit” (6, 7). For example, the
12
13 possible anti-panic effects of olanzapine may be partly due to its 5HT_{1A} agonist properties (51), and of risperidone
14
15 to its antagonistic properties at 5HT_{2A} receptors (52-54). The anti-panic effects of SSRIs may be due partly to the
16
17 blockade of excitatory 5HT_{2A} receptors located on inhibitory GABA inter-neurons, suppressing the firing of
18
19 noradrenergic neurons in the locus coeruleus (55, 56). This may explain the anti-panic properties of SGAs: for
20
21 example, the affinity of risperidone for the 5HT_{2A} receptor is greater than its affinity for the D2 receptor (46, 57).
22
23 Overall, the anti-panic effect of SGAs may be due to their dual action in suppressing both dopaminergic and
24
25 serotonergic activity. Additionally, in the cerebral cortex and the hippocampus of rodents, olanzapine and
26
27 clozapine seem to increase levels of the neuroactive steroid allopregnanolone, a potent GABA-A receptor
28
29 modulator which possesses anxiolytic-like properties (58, 59).
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1.5. Aims of the review

50 A number of reports – mainly case reports and open-label studies - have described the potential utility of
51
52 anticonvulsant and antipsychotic medications in PD patients who have not responded to standard anti-panic
53
54 pharmacological and psychosocial treatments, and who do not suffer from major psychiatric comorbidities. A
55
56 number of previous review papers concerning the pharmacotherapy of PD in general, also include data with
57
58
59
60

1
2
3 respect to the administration of antipsychotic or anticonvulsant medications (3, 12, 16, 60, 61). A number of
4
5 previous papers have *specifically* reviewed the administration either of anticonvulsant drugs (4, 25) or of
6
7 antipsychotic medications (46, 59, 62-66) in the pharmacotherapy of PD. The most recent of these reviews date
8
9 back to 2008 regarding anticonvulsant drugs (24) and to 2016 concerning antipsychotic medications (59).
10
11
12

13 Subsequently, an updated review of data concerning the use specifically of antipsychotic and
14
15 anticonvulsant drugs in the treatment of panic disorder is the main aim of the present report.
16
17

18 We also aimed to review data from previous reports of the administration of an anticonvulsant or an
19
20 antipsychotic medication for the treatment of another psychiatric disorder (e.g. bipolar disorder) with comorbid
21
22 panic psychopathology.
23
24

25 Finally, we wished to examine reports of newly onset panic symptomatology after the administration of an
26
27 anticonvulsant or an antipsychotic medication, given for another psychiatric condition.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

2. METHOD FOR THE LITERATURE REVIEW

2.1. Criteria for the appraisal of quality of reports

PubMed search was conducted to answer the three research questions mentioned above (section 1.5.: 'Aims of the study'). Subsequently, a number of general and specific inclusion/exclusion criteria were used to decide whether to include a report in our review.

2.1.1. General inclusion/exclusion criteria

The following inclusion and exclusion criteria had to be met so that a study report or a letter was included in the present review:

General inclusion criteria: (1) the report must have been published only in a scientific journal with a peer-review process; (2) the diagnostic procedures, pharmacotherapy and clinical follow-up were all conducted by psychiatrists; (3) the diagnosis was based on criteria from standard, broadly accepted international diagnostic systems (DSM, ICD).

General exclusion criteria: (1) the study sample included patients with comorbid major somatic diseases, including epilepsy; (2) the study's sample included patients with comorbid alcoholism and/or other substance abuse disorders, except smoking; (3) presence of ethical issues.

2.1.2. Inclusion/exclusion criteria regarding the first research question

1
2
3 Regarding our main aim, i.e. to review the studies that have explored the potential utility of anticonvulsant
4
5 and antipsychotic medications in PD patients who have not responded to standard anti-panic treatments, the
6
7 following inclusion/exclusion criteria had to be met for a study to be included in the present report:
8
9
10
11

12 *Inclusion criteria:* (1) study sample included patients primarily suffering from panic disorder with or without
13
14 agoraphobia, according to DSM-5 or ICD-10 diagnostic criteria; (2) all the 'general inclusion criteria' had to be
15
16 met.
17
18

19
20 *Exclusion criteria:* (1) study sample included patients with comorbid major psychiatric disorder (e.g.
21
22 schizophrenia, bipolar disorder, etc.); (2) study's patients suffer from panic attacks or other panic/agoraphobic
23
24 symptoms, but these did not meet the DSM/ICD criteria for PD/PDA; (3) all the 'general exclusion criteria' had to
25
26 be met.
27
28
29
30

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 2.1.3. Inclusion/exclusion criteria regarding the second research question

Regarding our second research aim, i.e. to review data from previous reports of the administration of an anticonvulsant or an antipsychotic medication for the treatment of another psychiatric disorder (e.g. bipolar disorder) with comorbid panic psychopathology, the following inclusion/exclusion criteria had to be met for a study to be included in the present report:

Inclusion criteria: (1) study sample included patients primarily suffering from another psychiatric disorder for which they receive the anticonvulsant or antipsychotic medication (e.g. bipolar disorder, psychosis) and either [1a] from comorbid DSM/ICD PD/PDA, or [1b] from comorbid panic attacks and other panic/agoraphobic

1
2
3 symptoms, which yet did not meet the DSM/ICD diagnostic criteria for PD/PDA; (2) all the 'general inclusion
4
5 criteria' had to be met.
6
7
8

9 *Exclusion criteria:* all the 'general exclusion criteria' had to be met.
10
11
12
13
14

15 **2.1.4. Inclusion/exclusion criteria regarding the third research question** 16 17

18 Regarding our third aim, i.e. to review data from reports of newly onset panic symptomatology after the
19
20 administration of an anticonvulsant or an antipsychotic medication, given for another psychiatric condition, all the
21
22 'general inclusion/exclusion criteria' had to be met for a study to be included in the present report.
23
24
25
26
27
28
29

30 **2.2. Search terms-search methodology and results** 31 32 33 34 35

36 **2.2.1. Anticonvulsants** 37

38 We performed an updated PUBMED search using the terms ["panic disorder", OR "agoraphobia", OR
39
40 "panic disorder"-AND-"agoraphobia", OR "panic attacks", OR "panic"] AND ["anticonvulsants" OR, "antiepileptics",
41
42 OR "carbamazepine", OR " gabapentin", OR "lamotrigine", OR "levetiracetam", OR "phenobarbital", OR
43
44 "phenytoin", OR "pregabalin", OR "tiagabine", OR "topiramate", OR "valproate", OR "vigabatrin"] (the
45
46 anticonvulsant medications are named in alphabetical order). The PUBMED search concerned only *non-*
47
48 *benzodiazepine* anticonvulsant medications.
49
50
51

52 More precisely, the term '*antiepileptics*' was combined with the terms '*panic disorder*' (N=395) and
53
54 '*agoraphobia*' (N=101) (in brackets the number of papers that the respective search yielded). Moreover, the term
55
56
57
58
59
60

1
2
3 'antiepileptics' was also combined with the more "general" terms '*panic attacks*' (N=420) and '*panic*' (N=478) so
4
5 as to trace papers possibly missing from the first two searches.
6
7

8
9 Likewise, the term '*anticonvulsants*' was combined with the terms '*panic disorder*' (N=387) and
10
11 '*agoraphobia*' (N=97). Moreover, the term '*anticonvulsants*' was also combined with the more "general" terms
12
13 '*panic attacks*' (N=409) and '*panic*' (N=471) so as to trace papers possibly missing from the first two searches.
14
15

16
17 The searches in PUBMED combining each of the terms '*panic disorder*'/'*agoraphobia*'/'*panic*
18
19 '*attacks*'/'*panic*' with specific drugs (e.g. 'carbamazepine', 'lamotrigine' etc) did not add any further reports to those
20
21 already found when categories of drugs were investigated ('antiepileptics', etc).
22
23
24

25
26 The abstracts (as demonstrated in the PUBMED platform) of all papers yielded by the above mentioned
27
28 searches were screened, so that reports which did not relate to the study aims and inclusion/exclusion criteria
29
30 were rejected and duplications were not taken into consideration.
31
32
33

34
35 The last day of PUBMED search was the 28th April, 2020. Only English-language studies were reviewed.
36
37
38
39
40

41 2.2.2. *Antipsychotics* 42

43
44 We performed an updated PUBMED search using the terms ["*panic disorder*", OR "*agoraphobia*", OR
45
46 "*panic disorder*"-AND-"*agoraphobia*", OR "*panic attacks*", OR "*panic*"] AND ["*antipsychotics*", OR "*neuroleptics*"
47
48 OR "*second-generation antipsychotics*", OR "*amisulpride*", OR, "*aripiprazole*", OR "*clozapine*", OR "*haloperidol*",
49
50 OR "*olanzapine*", OR "*risperidone*", OR "*sulpiride*", OR "*trifluoperazine*", OR "*ziprasidone*"] (the antipsychotic
51
52 medications are named in alphabetical order).
53
54
55
56
57
58
59
60

1
2
3 More precisely, the term '*antipsychotics*' was combined with the terms '*panic disorder*' (N=215) and
4
5 '*agoraphobia*' (N=40) (in brackets the number of papers which the respective search yielded). Moreover, the term
6
7 '*antipsychotics*' was also combined with the more "general" terms '*panic attacks*' (N=240) and '*panic*' (N=260) so
8
9 as to trace papers possibly missing from the first two searches.
10
11

12
13
14 Likewise, the term '*neuroleptics*' was combined with the terms '*panic disorder*' (N=191) and '*agoraphobia*'
15
16 (N=39). Moreover, the term '*neuroleptics*' was also combined with the more "general" terms '*panic attacks*'
17
18 (N=205) and '*panic*' (N=236) so as to trace papers possibly missing from the first two searches.
19
20
21

22
23 Additionally, the term '*second generation antipsychotics*' was combined with the terms '*panic disorder*'
24
25 (N= 26) and '*agoraphobia*' (N=5). Moreover, the term '*second generation antipsychotics*' was also combined with
26
27 the more "general" terms '*panic attacks*' (N=26) and '*panic*' (N=28) so as to trace papers possibly missing from
28
29 the previous two searches.
30
31
32
33

34
35 The searches in PUBMED combining each of the terms '*panic disorder*"/"*agoraphobia*"/"*panic*
36
37 '*attacks*"/'*panic*' with specific antipsychotic drugs (e.g. 'risperidone, 'haloperidol' etc) did not add any further reports
38
39 to those already found when categories of drugs were investigated ('antipsychotics', etc).
40
41
42

43
44 The abstracts (as demonstrated in the PUBMED platform) of all the papers yielded by the above
45
46 mentioned searches were screened, so that reports which did not relate to the study's purpose and
47
48 inclusion/exclusion criteria were rejected and duplications were not taken into consideration.
49
50
51

52
53 The last day of PUBMED search was the **28th April, 2020**. Only English-language studies were reviewed.
54
55
56
57
58

59 2.3. Criteria for the levels of evidence 60

1
2
3 We used the following internationally used criteria concerning levels of evidence (3, 25, 67): **level 1**= meta-
4
5 analysis of randomized controlled trials (RCTs); **level 2**= at least one RCT; **level 3**= uncontrolled trial with ≥ 10
6
7 subjects; and **level 4**= anecdotal case reports.
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

3. ANTICONVULSANTS

3.1. Anticonvulsants in patients with a primary diagnosis of panic disorder, or without other comorbid psychiatric conditions

The following anticonvulsants (*in alphabetical order*) have been used in patients with a primary diagnosis of panic disorder, or PD without comorbidities (**TABLE 1**):

3.1.1. Carbamazepine

An early open-label study suggested a possible anti-panic effect of carbamazepine (68). Subsequently, a controlled study explored the potential efficacy of carbamazepine (mean dose=679 mg/d; mean treatment duration=66 days) in the treatment of 14 PD patients (69). Despite improvement in anxiety symptoms on several measures, only one patient demonstrated a marked and sustained clinical improvement while taking carbamazepine. The presence of either abnormalities in the electroencephalogram (EEG) or prominent psychosensory symptoms did not predict response to carbamazepine. Subsequently, there is **level 3** evidence that carbamazepine administration may have some short-term benefits. Other studies have more systematically explored the efficacy of carbamazepine in treating “panic attacks” in non-epileptic patients with various psychiatric disorders demonstrating abnormal EEGs (see for a review: 70). Further data concerning these studies are reported below.

1
2
3 **3.1.2. Gabapentin and pregabalin**
4
5

6 Gabapentin and pregabalin are structurally related compounds classified as gamma-aminobutyric analogues
7
8 or *gabapentinoids*, which have broadly similar pharmacodynamic properties. Although both compounds are
9 structurally to GABA, neither has affinity for GABA receptors: instead, they exert their action through binding to
10 the $\alpha 2$ - δ sub-unit of voltage-gated calcium channels in the central nervous system and the resulting inhibition of
11
12 neuronal signaling (71).
13
14

15 In an 8-week, double-blind clinical trial, 133 PD patients received either gabapentin (600-3600 mg/day) or
16 placebo (72). Overall, no significant difference between active treatment and placebo was observed. However,
17 when the data from only the more severely patients (Panic and Agoraphobia Scale [PAS] score >20) were taken
18 into consideration, significantly greater reductions of the PAS score were achieved by gabapentin-treated
19 patients, especially female patients. In a subsequent case report of a 43-year-old male with a 10-year long history
20 of PD with severe agoraphobia, gabapentin was administered for comorbid phantom pain after finger's
21 amputation, and titrated up to 1800 mg/day: incidentally panic and agoraphobic symptoms were significantly
22 reduced, re-emerging after a 6-day cessation of treatment, but remitting again after gabapentin was re-introduced
23 (73). Overall, there is **level 2** evidence that severely ill PD patients, especially females, may benefit from therapy
24 with gabapentin. Although pregabalin has efficacy in generalized anxiety disorder (GAD) (21), there is no report
25 as yet regarding the potential efficacy and safety of pregabalin either as monotherapy or as augmentation therapy
26 in the treatment of PD.
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

3.1.3. Lamotrigine
60

In an open-label, fixed-dose (200 mg/day), 14-week trial, lamotrigine was administered either as an augmentation therapy (three patients with chronic and severe agoraphobia) or as monotherapy (one drug-naïve patient with first-onset PDA) (74). Lamotrigine was slowly titrated up to 200 mg/day within six weeks and maintained at that dosage for eight further weeks. Patients underwent follow-up every week. The patient under lamotrigine monotherapy improved significantly, whereas two of the other patients improved to some extent. However, all patients who underwent augmentation with lamotrigine demonstrated chronic and severe agoraphobia (a robust predictor of pharmacotherapy-resistance) (75). Higher dosages might be needed in such cases, in line with data suggesting improvement of post-traumatic stress disorder with lamotrigine dosages up to 500 mg/day (76). The clinician must be aware of safety issues, especially the risk of severe skin eruptions: slow titration of medication and careful monitoring of patients decreases this risk, a procedure which was strictly followed in this study (74). To the best of our knowledge, no other report has explored the pharmacotherapy of PD with lamotrigine. Consequently, there is **level 4** evidence that lamotrigine may have some benefits in PDA patients.

3.1.4. *Levetiracetam*

This antiepileptic drug modulates high-voltage, N-type, voltage-dependent calcium channels and potassium currents: it is uncertain whether it potentiates GABA-A-mediated activity, and it may act through modulation of synaptic vesicle protein 2A involved in vesicle exocytosis (25, 61). In a 12-week, open-label, fixed-flexible dose clinical trial, levetiracetam was administered to 18 PD/PDA patients: thirteen completed the study and 11 were “very much” or “much” improved (Clinical Global Impression-Improvement scale [CGI-I]), for most of them within

1
2
3 the first weeks of treatment, and levetiracetam was well tolerated with minimal side effects (77). Consequently,
4
5
6 there is **level 3** evidence that levetiracetam may alleviate panic-related symptoms.
7
8
9
10
11

12 3.1.5. Oxcarbamazepine 13

14
15 Only one case report has explored the administration of oxcarbamazepine in PD (78): a 23-year-old male while
16
17 receiving oxcarbamazepine 600 mg/d for alcohol-related grand-mal seizures, demonstrated persistent multiple panic
18
19 attacks and anticipatory anxiety. A diagnosis of PD was made and oxcarbamazepine was increased to 900 mg/d.
20
21 Panic symptomatology remitted within the first two weeks and did not re-emerge for the next six months of
22
23 treatment. Consequently, there is **level 4** evidence that oxcarbamazepine may alleviate panic symptoms.
24
25
26
27
28
29
30
31
32

33 3.1.6. Topiramate 34

35 To the best of our knowledge, the potential utility of topiramate in the treatment of PD has not been
36
37 evaluated. However, the emergence of newly onset panic attacks during therapy with topiramate for conditions
38
39 other than PD has been reported (79-81), as described in a following section.
40
41
42
43
44
45
46

47 3.1.7. Valproate 48

49 Valproate enhances GABA activity in the brain, has anxiolytic-like effects in animal models of anxiety, and
50
51 may have utility in humans (82). Valproate blocks voltage-dependent sodium channels and T-type calcium
52
53 channels, and possesses strong GABAergic potency due to direct action at GABA-B receptors, causing an
54
55 increase in brain GABA (25). This GABA-ergic activity of valproate seems to significantly contribute to its
56
57
58
59
60

1
2
3 psychotropic effect (25). Early case reports suggested the potential usefulness of valproate in the treatment of PD
4
5 comorbid with other clinical entities, including benzodiazepine withdrawal (83), alcoholism and affective disorders
6
7 (84), substance abuse (85) and multiple sclerosis (86).
8
9

10
11 In an early study, 10 PD patients underwent seven weeks of treatment with valproic acid up to 2250 mg/day:
12
13 patients showed significant improvements in panic attacks and overall clinical presentation, but not in phobic
14
15 anxiety: the most frequent adverse effects included nausea, dizziness, drowsiness and tremor (62, 87).
16
17 Subsequently, in a placebo-controlled 6-week trial of sodium divalproex in 12 PD patients, a significant reduction
18
19 in the intensity and duration of panic attacks was observed: these improvements were evident only in patients
20
21 receiving sodium divalproex as a first medication (88). In another study, four treatment-resistant PD patients
22
23 significantly improved when they received sodium valproate-clonazepam combination, but relapses occurred
24
25 when clonazepam dosage was reduced (89). Keck et al (82) explored whether 28 days of valproate treatment (20
26
27 mg/kg/day) blocked lactate-induced panic attacks in 14 PD patients who underwent lactate infusion-challenge
28
29 pre- and post-treatment: ten patients (71%) demonstrated a significant reduction (>50%) in panic attacks'
30
31 frequency and the remaining four patients had complete remission: furthermore, valproate blocked re-induction of
32
33 panic symptoms on post-treatment lactate infusion in 10 out of the 12 patients (83%) who had panicked at the
34
35 pre-treatment lactate challenge.
36
37
38

39
40 In a 6-week, open-label clinical trial, 12 PD patients received divalproex sodium with a starting dose of 500
41
42 mg/d and upward titration according to clinical response and side-effects: all patients completed the trial and all
43
44 were moderately-to-markedly improved, and panic and anxiety psychopathology improved faster and more
45
46 robustly compared to agoraphobia, and 11 patients elected to continue treatment with divalproex and retained
47
48
49

therapeutic gains at 6-month follow-up (90). Additionally, in an 8-week, open-label, flexible-dose (so as to achieve serum levels of 45-90 ug/ml) trial, divalproex sodium was administered in 10 PD patients with comorbid "mood instability", all previously resistant to pharmacotherapy and CBT: all patients demonstrated significant improvements regarding number of panic attacks, "mood instability" and depressive and anxiety symptoms (91). Overall, there is **level 3** evidence that valproate may effectively reduce PD symptoms.

3.1.8. Vigabatrin and tiagabine

Vigabatrin (γ -vinyl-GABA) is an irreversible inhibitor of GABA-transaminase, which increases brain and cerebrospinal fluid GABA levels by 2-3-fold in experimental animals and humans (92). Three severely-ill PD patients without psychiatric comorbidities demonstrated marked reductions of panic psychopathology after a 6-month vigabatrin administration (2 g/day): two patients were free of panic attacks after just a few days of treatment and remained panic-free during the 6-month trial (17). Consequently, there is **level 4** evidence that vigabatrin alleviates PD symptoms. Clinicians must meticulously evaluate the patient for the potential occurrence of visual field constrictions after long-term administration of vigabatrin: data from epileptic patients suggest that a daily dose of 1500 g or more increases the risk of significant visual field defects (93).

Tiagabine, a selective GABA-reuptake inhibitor, exerts its action through blockade of GABA transporter-I, which enhances GABA reuptake: the resulting strengthening of inhibitory GABAergic neurotransmission in various brain systems accounts for both its anti-epileptic and anti-anxiety clinical efficacy (22). Case reports suggest some efficacy as an augmentation therapy in obsessive-compulsive disorder (94) and in the discontinuation of long-term benzodiazepine abuse (22). In healthy volunteers, administration of either vigabatrin

(95) or tiagabine (96) reduced cholecystokinin-4 (CCK-4)-induced panic and anxiety manifestations to an extent similar to that achieved by alprazolam. Tiagabine has more limited effects compared to vigabatrin, although some researchers suggest slow titration to a daily dosage above the standard ones (30 mg/day) may boost therapeutic gains (97). Zwanzger et al (18) were the first to administer tiagabine (15 mg/d) to four PD patients in a 4-week trial: three patients were treatment-resistant and one was drug-naïve. Three patients demonstrated marked improvements in both panic and agoraphobic symptoms: the fourth patient improved but tiagabine had to be discontinued after two weeks of treatment due to side-effects (sedation and severe vertigo). In a subsequent open-label study, PD/PDA patients aged 18-64 years received tiagabine (mean dose=15.1 mg/d; range= 4-20 mg/d) for 10 weeks: reductions between 25-32% were observed across all outcome measures, but they were *not* considered clinically significant by the researchers. Tiagabine was generally well tolerated, the most common adverse events being nausea, dizziness and headaches. Only one patient discontinued tiagabine due to adverse events (98). Another study which explored the potential benefit of a 4-week pharmacotherapy with tiagabine up to 30 mg/d in 19 PD patients (active treatment=10; placebo=9) included a panic-inducing challenge (CCK-4) (performed twice, after 2 and 4 weeks of therapy, respectively) to further evaluate potential anti-panic effects: tiagabine was not superior to placebo regarding symptom reduction, although subjects treated with tiagabine showed significantly less panic responses to the administration of CCK-4 compared to placebo-treated patients, suggesting that tiagabine may reduce patients' sensitivity to panicogenic stimuli (99). Therefore, there is **level 3** evidence that tiagabine is *not* superior to placebo regarding PD symptoms' reduction, although it may reduce patients' sensitivity to panicogenic stimuli.

1
2
3 **3.2. Anticonvulsants in non-epileptic patients with panic disorder, and in patients with “panic attacks” and**
4
5 **abnormal electroencephalogram**
6
7

8
9 Boutros et al (63, 70) reviewed data concerning the efficacy of anticonvulsants in treating psychopathological
10
11 manifestations in non-epileptic patients with various psychiatric disorders and demonstrating abnormal EEGs.
12
13 Altogether, eight reports were found concerning patients suffering from “panic attacks”. One was the above-
14
15 mentioned study by Uhde et al (69), which was the only one which included patients with PD (and not simply with
16
17 “panic attacks”) and which suggested that carbamazepine had no efficacy in PD, irrespective of the presence or
18
19 absence of EEG abnormalities. The remaining descriptions are either single case reports (100-103) or case-
20
21 series (104-106). All patients in these studies underwent EEG and received carbamazepine either as
22
23 monotherapy or in combination with other antiepileptics or benzodiazepines. Overall, Boutros et al (70) stressed
24
25 that no definitive conclusions could be drawn regarding the usefulness of anticonvulsant drugs in patients with
26
27 “panic attacks” demonstrating abnormal EEGs, as the results varied between no treatment gains (106) and
28
29 response only when a combination of antiepileptic drugs was administered (101, 105).
30
31
32
33
34
35
36
37
38
39
40
41
42
43

44 **3.3. Administration of anticonvulsants in patients with comorbid panic and bipolar disorders**
45
46

47 In a study of 47 PD patients with comorbid bipolar disorder (N=35) or who were “otherwise resistant to
48
49 antidepressants” (N=12) involving adjunctive pharmacotherapy with valproate (mean dose=687 mg/d; range: 400-
50
51 1500 mg/d), all antidepressant-resistant patients and 88.6% of patients with bipolar comorbidity achieved
52
53 symptom remission: during a 3-year follow-up period, 58.3% of antidepressant-resistant subjects and 48.6% of
54
55 bipolar patients had a relapse of PD after remission. The authors concluded that in some PD patients, resistance
56
57
58
59
60

1
2
3 to antidepressants is mainly due to co-occurring “mood instability”, and speculated that PD is likely to be a
4
5 heterogeneous disorder, including a sub-group of patients who better respond to valproate (107).
6
7
8
9
10
11
12
13
14
15
16
17

18 **3.4. New-onset panic attacks as an adverse effect of anticonvulsant administration**
19

20
21 Topiramate is a fructopyranose sulfamate anticonvulsant which blocks sodium and γ -amino-3-hydroxy-5-
22
23 methylisoxazole-4-propionic acid/kainite N -methyl-d-aspartate receptors (79). Three case reports have previously
24
25 reported topiramate-induced panic attacks (79-81). Goldberg (79) described the emergence of new-onset panic
26
27 attacks in a 24-year-old female with comorbid bipolar-II and binge-eating disorders, after augmenting lamotrigine
28
29 with topiramate aiming at both weight loss and mood stabilization. Panic attacks resolved after termination of
30
31 topiramate treatment, but re-emerged after topiramate re-administration. Possibly, the carbonic-anhydrase
32
33 properties of topiramate may lead to carbon dioxide retention which triggers panic manifestations (79). A case
34
35 report described a 27-year-old female patient with bipolar-II disorder without history of panic manifestations, who
36
37 after switching from lithium to topiramate demonstrated panic attacks at the 150 mg/d dosage (titration lasted six
38
39 weeks). Two weeks after discontinuing topiramate, panic symptoms completely remitted; subsequent re-
40
41 administration of topiramate for hypomania resulted in re-emergence of panic symptoms, which again resolved
42
43 after the drug's termination and did not appear again during the 4-month follow-up (80). In another case report, a
44
45 17-year-old patient with borderline personality disorder suffered from panic attacks after topiramate 25 mg/d was
46
47 added to a 5-month treatment with escitalopram (10 mg/d) and interpersonal psychotherapy: the possible causal
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 relationship between topiramate and panic attack emergence was supported by the cessation of panic attacks
4
5 following drug discontinuation and their re-emergence after drug resumption (81).
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

4. ANTIPISYCHOTICS

4.1. Administration of antipsychotics in patients with a primary diagnosis of panic disorder, or without other comorbid psychiatric disorders

Two reports have described the administration of olanzapine (108) and sulpiride (14) respectively as *monotherapy* in treatment-resistant PD patients without comorbidities. One case report describes the administration of aripiprazole monotherapy in a SSRI-resistant PD patient with comorbid major depression (109).

All other reports describe the utility of antipsychotic medications as augmentation therapy to extant treatment. The potential effectiveness of antipsychotic drug monotherapy in the treatment of acute panic symptomatology is unknown (64). The following antipsychotics (*in alphabetical order*) have been used in PD with or without psychiatric comorbidities (**TABLE 2**):

4.1.1. Aripiprazole

A retrospective study explored the efficacy and safety of augmentation therapy with aripiprazole (16.9 ± 6.6 mg/d; range 7.5-30 mg/d) in 17 SSRI-resistant patients, including 11 patients with anxiety disorders (with 2 PD patients) and 6 patients with depression: up to 59% of subjects demonstrated significant clinical improvements (CGI-I ≤ 2), but up to 29% of the patients discontinued treatment, 18% due to side-effects. Although the results suggested a beneficial effect of augmentation therapy with aripiprazole, there was no mention of the clinical course of the two PD patients, or whether they were among the drop-outs (38). Harada et al (13) described the case of a 36-year-old PDA patient who was significantly improved after a 4-month treatment with paroxetine 40 mg/d, but with persistent limited-symptom attacks and agoraphobic avoidance: augmentation of paroxetine with

1
2
3 aripiprazole 6 mg/d was associated with rapid (within one week) and marked improvement in panic and
4
5 agoraphobic features, the therapeutic gains being maintained over a 4-month follow-up, with no serious adverse
6
7 effects.
8
9

10
11 In an 8-week, flexible-dose, open-label trial, Hoge et al (110) administered augmentation therapy with
12
13 aripiprazole in 10 PD patients (5 with comorbid GAD) resistant to at least 8 weeks of standard pharmacotherapy,
14
15 using a flexible-dosage protocol starting at 2.5 mg/d and titrated up to 30 mg/d based on response and tolerability
16
17 (mean dosage= 10.5 ± 4.95 mg/d). Augmentation with aripiprazole significantly reduced anxiety and depressive
18
19 symptoms and improved the overall clinical presentation (Clinical Global Impression-Severity scale [CGI-S]), but
20
21 only one patient (10%) achieved remission (CGI-S≤2). Up to 30% of patients prematurely discontinued treatment:
22
23 adverse effects included sedation, fatigue, insomnia, jitteriness, dyspepsia and nausea. The authors conclude
24
25 that aripiprazole may be an effective and well-tolerated augmentation strategy in pharmacotherapy-resistant PD
26
27 (110). Overall, there is **level 3** evidence that aripiprazole may be beneficial in the treatment of PD as
28
29 augmentation therapy.
30
31
32

33
34 Additionally, in a case report of a treatment-resistant patient with PD comorbid with major depression,
35
36 who underwent *monotherapy* with aripiprazole titrated up to 10 mg/d, panic and depressive symptoms were
37
38 significantly improved within the first six weeks of therapy: moreover, Magnetic Resonance Imaging (MRI)
39
40 structural analysis revealed that within this 6-week period of treatment with aripiprazole, a growth in gray matter
41
42 and brain volume increase had occurred (109).
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

4.1.2. Olanzapine

1
2
3 Augmentation with olanzapine may be beneficial in pharmacotherapy-resistant PD. This was first evaluated in
4
5 two PD patients (50). The first patient (a 32-year-old man) was switched from perphenazine (15 mg/d) to
6
7 olanzapine (12.5 mg/d) and from venlafaxine (150 mg/d) to nefazodone (600 mg/d). Four months later, panic
8
9 attacks and agoraphobia had fully remitted. Nevertheless, the comorbid psychiatric disorder is not reported
10
11 (hospitalized for “suicidal thoughts” shortly before olanzapine administration), while the simultaneous
12
13 administration of nefazodone may have contributed significantly to symptoms’ remission. The second patient (a
14
15 40-year-old woman) suffered from treatment-resistant “panic attacks with agoraphobia” without comorbidities. She
16
17 was switched from perphenazine (12 mg/d) to olanzapine 10 mg/d, while amitriptyline (75 mg/d) and diazepam
18
19 (10 mg/d) were reduced during the trial. Panic and agoraphobic psychopathology improved within two weeks and
20
21 remitted within 2.5 months.

22
23 A subsequent report described two female patients with treatment-resistant PDA (one with no comorbidity, the
24
25 other with comorbid recurrent major depression): in both cases, rapid (within the first days) improvement in panic
26
27 manifestations was observed after adding olanzapine (5 mg/d) to paroxetine (40 mg/d) (51). Likewise,
28
29 augmenting paroxetine with olanzapine resulted in complete remission of panic psychopathology in a 49-year-old
30
31 man (111).

32
33 Among 10 treatment-resistant PD patients who completed an 8-week, open-label, flexible-dose, clinical trial of
34
35 olanzapine *monotherapy* (mean dose= 12.1 mg/d; dose range= 2.5-20 mg/d), up to 50% were panic-free and
36
37 40% reported only one panic attack during the previous week, while in 60% anticipatory anxiety completely
38
39 remitted (108). A wash-out (2-5 weeks) of all medications preceded the trial. Weight gain was observed in 60% of
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 patients (0.18 ± 4.4 kg). The authors concluded that olanzapine is potentially effective and safe to administer to PD
4
5 patients, taking into consideration the limitations of a case-series report.
6
7

8
9 In a 12-week, open-label study, 26 PD patients with SSRI-resistance received augmentation therapy with
10
11 olanzapine (fixed-dose: 5 mg/d) (112). Twenty-one (81.8%) were “responders”, and 57.7% (N=15) achieved
12
13 “remission”. The most frequent adverse effects were mild-to-moderate weight gain and drowsiness. The authors
14
15 concluded that olanzapine may successfully augment SSRIs in treatment-resistant PD, and since SSRI-treatment
16
17 was either paroxetine or sertraline, speculated that the positive effect of olanzapine augmentation was due to
18
19 pharmacodynamic rather than pharmacokinetic factors. Overall, there is **level 3** evidence that olanzapine may be
20
21 an effective augmentation strategy for the treatment of non-responders to standard anti-panic pharmacotherapy.
22
23
24
25
26
27
28
29
30
31
32
33

4.1.3. Quetiapine

34
35 In a double-blind, placebo-controlled, randomized, parallel-group, 8-week clinical trial, PD patients with
36
37 SSRI-resistance underwent augmentation with quetiapine-extended release (XR) (113). Response was defined
38
39 as $\geq 50\%$ decrease in the Panic Disorder Severity Scale (PDSS). Ten quetiapine-treated ($150 \text{ mg} \pm 106 \text{ mg/d}$) and
40
41 11 placebo-treated completed the trial. Quetiapine-XR was well tolerated, but was *not* better than placebo in
42
43 reducing panic psychopathology. Study’s main limitations included the small sample size, the relatively low mean
44
45 dose of quetiapine-XR and the non-exclusion of patients with comorbid psychiatric (except psychosis or bipolar
46
47 disorder) and/or other medical comorbidities (except if they were unstable). Notably, there were no unified criteria
48
49 for the definition of “SSRI-resistance”. Thus, medication-free patients at intake underwent an 8-week SSRI-
50
51 treatment and were characterized as “treatment-resistant” if they demonstrated less than 50% reduction in the
52
53
54
55
56
57
58
59
60

PDSS score. Concerning patients already receiving adequate (≥ 8 weeks in sufficient doses) SSRI therapy at intake, "treatment-resistance" was defined as a CGI-I ≥ 3 as judged by the study psychiatrist. Consequently, there is **level 3** evidence that quetiapine-XR is *not* better than placebo as an augmentation therapy in PD patients with SSRI-resistance.

4.1.4. Risperidone

In an 8-week, flexible-dose, open-label study, 30 patients with chronic treatment-refractory anxiety disorders (PD, GAD, or social anxiety disorder) underwent augmentation therapy with risperidone (mean dose=1.12 mg/d; SD=0.68; range=0.25-3.00). The PD subgroup (7 patients) demonstrated significant reductions in panic psychopathology (PDSS) and anxiety symptoms (Hamilton Anxiety Scale [HAM-A]), as well as a significant improvement in overall clinical state (CGI-S): risperidone was well tolerated, the most common side-effects being sedation/fatigue, appetite increase and weight gain and dizziness, the authors concluding that augmentation therapy with low-dose risperidone may alleviate chronic severe treatment-resistant PD (114).

In a randomized, rater-blind, 8-week clinical trial, 56 patients suffering from PD (N=43, 76.8% of the sample) or 'major depression with panic attacks', underwent augmentation of extant pharmacotherapy either with low-dose risperidone (mean=0.53 mg; range=0.125-1.0 mg) or paroxetine 30 mg (115). All participants demonstrated significant reductions in the frequency and severity of panic attacks. The reductions were similar in the two groups, but augmentation with risperidone resulted in quicker clinical response. No significant side-effects were reported in either group. Up to 48% of patients dropped out of the study and the attrition rates in the two groups were similar. The initiation of risperidone was titrated, while paroxetine was initiated without titration. Another

1
2
3 limitation –characteristic of all studies concerning antipsychotic administration in anxiety disorders- is that an 8-
4
5 week follow-up period does not provide useful evidence on the long-term efficacy and safety of pharmacotherapy.
6
7

8
9 Overall, there is **level 3** evidence that risperidone may be an effective augmentation strategy for the treatment of
10
11 non-responders to standard anti-panic pharmacotherapy.
12
13

14
15
16
17
18 *4.1.5. Sulpiride and Amisulpride*

19
20 Sulpiride is an antagonist of D2/D3 receptors, with almost no affinity for other receptors (116). In an open-
21
22 label, 8-week study, sulpiride monotherapy (100, 150, or 200 mg/d, according to symptomatology) was
23
24 administered in 19 treatment-resistant PD patients (mean age=37.4 years) (14). During the week prior to sulpiride
25
26 administration, previous pharmacotherapy (SSRIs) was washed out. At post-treatment, significant reductions
27
28 were observed in the number of panic attacks (63.2% were panic-free), anxiety levels (HAM-A) and the overall
29
30 clinical improvement (CGI-S). Noteworthy, among the more severely ill, more therapeutic gains were achieved
31
32 with the lower dose of sulpiride (100 mg). The most common adverse effects included appetite change (55%) and
33
34 amenorrhea/galactorrhea (44%), both of them being mild in intensity. In conclusion, sulpiride demonstrated a
35
36 positive effect on the symptoms of treatment-resistant PD. In conclusion, there is **level 3** evidence that sulpiride
37
38 monotherapy may significantly reduce PD symptoms.
39
40
41
42
43
44
45
46
47

48
49 Previous data suggest that amisulpride may be an effective augmentation therapy in treatment-resistant mood
50
51 disorders (117) and somatoform disorders (118, 119) possibly because at low dosages (up to 10 mg/d) it
52
53 selectively blocks presynaptic D2 and D3 autoreceptors, which leads to increased dopaminergic transmission in
54
55
56
57
58
59
60

1
2
3 several cortical and limbic regions (120). Although such mechanisms of action on the dopamine system might
4
5 have anti-panic effects (46), there is *no* report of amisulpride administration to treat panic psychopathology.
6
7
8
9
10
11

12 **4.2. Administration of antipsychotics in patients with panic disorder comorbid with a bipolar disorder**

13

14
15 Patients with comorbid panic disorder and bipolar disorder are usually not suitable for first-line treatments for
16
17 PD –SSRIs and SNRIs- as monotherapy, due to the risks of rapid cycling and induced manic/hypomanic episodes
18
19 (121, 122). Furthermore, it is important to distinguish between anxiety symptoms as part of the psychopathology
20
21 of a bipolar disorder and the presence of a comorbid syndromal anxiety disorder. This distinction is clinically
22
23 important as although SGAs may reduce anxiety symptoms in bipolar depression they may exacerbate symptoms
24
25 in PD, possibly because of serotonergic antagonistic properties (122). The following antipsychotics (*in*
26
27 *alphabetical order*) have been used in patients with comorbid panic and bipolar disorders:
28
29
30
31
32
33
34
35
36
37

38 **4.2.1. Quetiapine-XR**

39

40
41 An 8-week, double-blind, placebo-controlled, randomized clinical trial in 149 patients with bipolar disorder
42
43 comorbid with PD (N=113) or GAD, compared the anxiolytic effects of quetiapine-XR 50-300 mg/d and
44
45 divalproex-ER (500-3000 mg/d) (122). In all patients, and PD patients in particular, quetiapine-treatment (mean
46
47 dose=186 mg/d) produced rapid improvements compared to divalproex-treatment and placebo on both anxiety
48
49 levels (HAM-A) and panic manifestations (Sheehan Panic Disorder Scale, SPS). When comparing the active
50
51 treatments, quetiapine-XR was significantly superior to divalproex-ER. Both active medications were well
52
53
54
55
56
57
58
59
60

tolerated, but weight gain was higher on quetiapine-XR. Thus, there is **level 2** evidence that quetiapine-XR may effectively reduce panic and anxiety manifestations in patients with comorbid PD and bipolar disorder.

4.2.2. *Risperidone*

An 8-week, double-blind, placebo-controlled, randomized clinical trial in 111 patients with bipolar disorder comorbid with PD (N=80) or GAD, explored the anti-panic/anxiolytic effects of risperidone 0.5-4 mg/d (123). Concerning all patients (i.e. irrespective of the comorbid anxiety disorder), risperidone was *no* more effective than placebo in reducing panic and anxiety symptomatology and in the overall clinical improvement. Remarkably, in the subgroup with comorbid PD, significantly greater reduction of anxiety symptoms (HAM-A) was seen in the placebo-group. Therefore, there is **level 2** evidence that risperidone is not superior to placebo in alleviating panic and anxiety symptoms in patients with comorbid PD and bipolar disorder.

4.2.3. *Ziprasidone*

A randomized, double-blind, placebo-controlled parallel-group, 8-week trial explored the potential efficacy of ziprasidone monotherapy (mean dose=146.7 mg/d; SD=20.7 mg/d; range: 40-160 mg/d) in 49 bipolar patients with comorbid PD or GAD (124). Ziprasidone monotherapy was *not* associated with a clinically significant improvement in patients' panic/anxiety psychopathology, while significantly more adverse effects (including abnormal movements) compared to placebo were evident. However patients were only moderately ill regarding their baseline panic/anxiety symptomatology. Subsequently, there is **level 2** evidence that ziprasidone

1
2
3 monotherapy is *not* superior to placebo in alleviating panic and anxiety symptoms in patients with comorbid PD
4
5 and bipolar disorder.
6
7
8
9
10
11

12 **4.3. Administration of antipsychotics in patients with panic disorder comorbid with schizophrenia or a related**
13
14 **psychotic disorder**
15
16
17

18 To the best of our knowledge, the effect that antipsychotic medications prescribed for schizophrenia or related
19
20 psychoses have on comorbid panic and agoraphobic psychopathology has not been explored.
21
22
23
24
25
26

27 **4.4. Newly-onset panic attacks as an adverse effect of the administration of an antipsychotic**
28
29

30 We found three case-reports in which administration of an antipsychotic medication in a psychotic patient was
31
32 associated with emergence of new-onset panic psychopathology, which in 2 of the 3 cases remitted after
33
34 switching to another antipsychotic (125-127). These antipsychotic medications are as follows (*in alphabetical*
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
order):

4.4.1. *Clozapine*

A 34-year-old woman developed multiple panic attacks and agoraphobia after a 20-week successful clozapine
monotherapy (400 mg/d). The panic attacks were modestly improved after dosage reduction to 250 mg/d. Full
remission of the panic and agoraphobic psychopathology was only seen two months after the switch from
clozapine to olanzapine 10 mg/d (126).

1
2
3 4.4.2. *Haloperidol*
4
5
6 A 28-year old female with schizophrenia, while receiving haloperidol 6 mg/d developed recurrent panic attacks
7
8 resistant to a 5-month alprazolam treatment (127). A switch from haloperidol to risperidone 3 mg/d resulted in full
9
10
11 remission of panic psychopathology, while psychosis did not deteriorate.
12
13
14
15
16
17

18 4.4.3. *Olanzapine*
19
20 A 36-year-old female schizophrenic patient, without history of panic psychopathology, significantly improved
21
22 concerning her psychosis after switching to olanzapine 15 mg/d, but also demonstrated newly-onset panic attacks
23
24 one month later (125). Olanzapine dosage was not reduced due to the marked improvement of her psychosis but
25
26
27 panic attacks persisted for the next six months.
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

5. CLINICAL IMPLICATIONS

The small-to-modest sample size, the lack of control groups and the open-label and short-term nature of most of the reviewed studies together hinder definitive conclusions regarding either the short-term and long-term efficacy of antipsychotic and anticonvulsant medications or their potential long-term side effects.

However, in selected treatment-resistant patients in which the clinician decides that administration of an anticonvulsant drug may result in clinical improvement, the following order of drug selection is suggested: (a) *gabapentin* (level 2); (b) any of the following drugs (level 3) based on the clinician's judgment regarding expected clinical gains versus adverse effects (alphabetically): *carbamazepine*, *levetiracetam* and *valproate*; (c) any of the following drugs (level 4) based on the clinician's judgment regarding expected clinical gains versus adverse effects (alphabetically): *lamotrigine*, *oxcarbamazepine* and *vigabatrin*. Clinicians must be aware that *tiagabine* was *not* superior to placebo concerning reduction of PD psychopathology (level 3 of evidence). Furthermore *we stress that the use of valproate and carbamazepine, despite their potential effectiveness in PD, is limited in women of childbearing potential due to their potential teratogenicity and it has been suggested that these two anticonvulsant medications must be totally avoided during pregnancy (128). European Medicines Agency (EMA) and Medicines and Healthcare Products Regulatory Agency (MHRA) guidance severely restrict the use of valproate in all women of childbearing potential (129, 130).*

Similarly, in selected treatment-resistant cases in which the clinician decides that administration of an antipsychotic drug may result in clinical improvement, the following order of drug selection is suggested: any of the following drugs (level 3) based on the clinician's judgment regarding expected clinical gains versus adverse effects (alphabetically): *aripiprazole* (augmentation therapy), *olanzapine* (augmentation therapy), *risperidone*

1
2
3 (augmentation therapy), *sulpiride* (monotherapy); clinicians must be aware that *quetiapine-XR* was *not* better than
4
5 placebo as an augmentation therapy in PD patients with SSRI-resistance (level 3 of evidence).
6
7

8
9 Finally, in patients with comorbid PD and bipolar disorder in which the clinician has to choose an antipsychotic
10
11 that effectively reduces symptoms of both PD and bipolar disorder, with respect to the data available as yet which
12
13 were reviewed in the present paper, *quetiapine XR* effectively reduces symptoms of both these psychiatric
14
15 disorders when comorbid (level 2 of evidence). Moreover, the clinician must be aware that both *risperidone* and
16
17 *ziprasidone* are *not* superior to placebo in alleviating panic and anxiety symptoms in patients with comorbid PD
18
19 and bipolar disorder (in both cases there is a level 3 of evidence).
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

6. CONCLUSION

To summarize, previous studies suggest that a number of atypical antipsychotic and anticonvulsant medications may have a role in the pharmacotherapy of panic disorder with or without psychiatric comorbidities, mainly as augmentation therapy in non-response to standard anti-panic treatment modalities. In patients with a primary diagnosis of PD, or without other comorbid psychiatric conditions, therapeutic gains were reported after treatment –mostly as augmentation therapy- with a number of anticonvulsant drugs (carbamazepine, gabapentin, lamotrigine, levetiracetam, oxcarbamazepine, valproate, vigabatrin and tiagabine) and antipsychotic drugs (aripiprazole, olanzapine, quetiapine, risperidone and sulpiride, but not with quetiapine-XR). As regards tolerability and safety, reports suggest that atypical antipsychotics and anticonvulsants were generally well-tolerated in samples of PD patients. Moreover, bipolar patients receiving valproate or quetiapine-XR (but not risperidone or ziprasidone) demonstrated reductions of comorbid panic psychopathology. Finally, we traced a few case-reports of new-onset panic manifestations after the administration of some anticonvulsant (topiramate) or antipsychotic (clozapine, haloperidol, olanzapine) medications for other than PD psychiatric syndromes.

The main limitation of this review is that it is difficult to draw definite conclusions for everyday clinical practice as the great majority of existing studies follow an open-label methodology, and include small patient samples which lack control groups, which together may result in overestimation of benefit. Moreover, the small-to-modest sample-size and the short-term nature of the vast majority of these studies prevents the drawing of definitive conclusions regarding the long-term efficacy and safety of antipsychotic and anticonvulsant medications and their potential long-term side effects, such as extra-pyramidal or metabolic adverse effects, sexual dysfunction, and dermatological conditions. Furthermore, daily dosages of anticonvulsants and atypical antipsychotics that were

1
2
3 administered in PD were low, which can be an additional reason for the lack of severe adverse events. Future
4
5 studies in larger samples which address these limitations are needed. Comparison with first-line
6
7 pharmacotherapies for PD may more precisely evaluate the efficacy of antipsychotics and anticonvulsants in
8
9 treating panic psychopathology.
10
11
12

13
14 It has been hypothesized that specific PD patient subgroups might preferentially respond to the administration
15 of anticonvulsants or antipsychotics. Thus, non-epileptic PD patients with an abnormal EEG or non-bipolar PD
16 patients with "mood instability" may represent groups for add-on anticonvulsant medication. Likewise, patients
17 with rigid panic/agoraphobic cognitions and beliefs resistant both to CBT strategies and various standard
18 pharmacological interventions might respond to augmentation with low doses of antipsychotic agents. However,
19 further research is needed to enrich the few and often contradictory extant data regarding the better response of
20 such subgroups to antipsychotic or anticonvulsant pharmacotherapy. Finally, to the best of our knowledge, the
21 effect that antipsychotic medications received for schizophrenia or related psychoses have on comorbid panic
22 and agoraphobic psychopathology has not been explored.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acknowledgments: None.

COMPLIANCE WITH ETHICAL STANDARDS

Conflict of Interest: Neither of the authors reports any conflict of interest.

Ethical Approval: All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent: Informed consent was obtained from all individual participants included in this study.

Animal Rights: This article does not contain any studies with animals performed by any of the authors.

For Peer Review

1
2
3 **REFERENCES**
4
5

6 1. American Psychiatric Association, 2013. *Diagnostic and Statistical Manual of Mental Disorders*. 5th ed. Arlington
7 VA, Washington DC: 2013.

8 2. Roy-Byrne P, Craske M and Stein M. Panic disorder. Lancet 2006; 368: 1023-1032.

9 3. Baldwin DS, Anderson IM, Nutt DJ, et al. Evidence-based pharmacological treatment of anxiety disorders,
10 post-traumatic stress disorder and obsessive-compulsive disorder: a revision of the 2005 guidelines
11 from the British Association for Psychopharmacology. J Psychopharmacol 2014; 28: 403-439.

12 4. Park SC and Kim YK. A novel bio-psychosocial-behavioral treatment model of panic disorder. Psychiatry Investig
13 2019; 16: 4-15.

14 5. Klein DF. False suffocation alarms, spontaneous panics, and related conditions. An integrative hypothesis. Arch
15 Gen Psychiatry 1993; 50: 306-317.

16 6. Gorman JM, Kent JM, Sullivan GM, et al. Neuroanatomical hypothesis of panic disorder, revised. Am J
17 Psychiatry 2000; 157, 493-505.

18 7. Dresler T, Guhn A, Tupak S.V. et al. Revise the revised? New dimensions of the neuroanatomical hypothesis of
19 panic disorder. J. Neural Transm. (Vienna) 2013; 120, 3-29.

20 8. Bandelow B, Baldwin D, Abelli M, et al. 2017a. Biological markers for anxiety disorders, OCD and PTSD- a
21 consensus statement- Part II: neurochemistry, neurophysiology and neurocognition. World J. Biol. Psychiatry
22 2017a; 18: 162-214.

23 9. Clark DM. A cognitive approach to panic. Behav Res Ther 1986; 24: 461-470.

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 10. Bouton ME, Mineka S and Barlow DH. A modern learning theory perspective on the etiology of panic disorder.
4
5
6 Psychol Rev 2001; 108: 4-32.
7
8
9 11. Cosci F and Mansueto G. Biological and clinical markers in panic disorder. Psychiatry Investig 2019; 16: 27-36.
10
11
12 12. Bandelow B, Michaelis S and Wedekind D. Treatment of anxiety disorders. Dialogues Clin Neurosci 2017b; 19:
13
14
15 93-106.
16
17
18 13. Harada T, Yamada K, Sakamoto K, et al. Aripiprazole augmentation for a patient with partial remission of panic
19
20 disorder. J Clin Psychopharmacol 2009; 29: 301-302.
21
22
23
24 14. Nunes EA, Freire RC, dos Reis M, et al. Sulpiride and refractory panic disorder. Psychopharmacology 2012; 223:
25
26
27 247-249.
28
29
30 15. McHugh RK, Smits JA and Otto MW. Empirically supported treatments for panic disorder. Psychiatr Clin North
31
32
33 Am 2009; 32: 593-610.
34
35
36 16. Bandelow B, Reitt M, Röver C, et al. Efficacy of treatments for anxiety disorders. A meta-analysis. Int Clin
37
38 Psychopharmacol 2015; 30: 183-192.
39
40
41 17. Zwanzger P, Baghai T, Boerner RJ, et al. Anxiolytic effects of vigabatrin in panic disorder. J Clin
42
43
44 Psychopharmacol 2001a; 21: 539-540.
45
46
47 18. Zwanzger P, Baghai T, Schule C, et al. Tiagabine improves panic and agoraphobia in panic disorder patients. J
48
49
50 Clin Psychiatry 2001b; 62: 656-657.
51
52
53 19. Oulis P, Masdrakis VG, Karakatsanis NA, et al. Pregabalin in the discontinuation of long-term benzodiazepine
54
55
56 use: a case-series. Int Clin Psychopharmacol 2008a; 23: 110-112.
57
58
59
60

1
2
3 20. Oulis P, Konstantakopoulos G, Kouzoupis AV, et al. Pregabalin in the discontinuation of long-term
4 benzodiazepines' use. *Hum Psychopharmacol Clin Exp* 2008b; 23: 337-340.
5
6
7
8 21. Baldwin DS, Ajel K, Masdrakis VG, et al. Pregabalin for the treatment of generalized anxiety disorder: an update.
9 *Neuropsychiatr Dis Treat* 2013; 9: 883-892.
10
11
12
13
14 22. Oulis P, Masdrakis VG, Karapoulios E, et al. Tiagabine in the discontinuation of long-term benzodiazepine use.
15 *Psychiatry Clin Neurosci* 2009a; 63: 122-128.
16
17
18
19
20
21 23. Oulis P, Kalogerakou S, Anyfandi E, et al. Cognitive effects of pregabalin in the treatment of long-term
22 benzodiazepine-use and dependence. *Hum Psychopharmacol Clin Exp* 2014; 29: 224-229.
23
24
25
26
27 24. Grunze HCR. The effectiveness of anticonvulsants in psychiatric disorders. *Dialogues Clin Neurosci* 2008; 10: 77-
28
29 89.
30
31
32 25. Mula M, Pini S and Cassano GB. The role of anticonvulsant drugs in anxiety disorders: a critical review of the
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
evidence. *J Clin Psychopharmacology* 2007; 27: 263-272.
26. Malizia AL, Cunningham VJ, Bell CJ, et al. Decreased brain GABA(A) benzodiazepine receptor binding in panic
disorder: preliminary results from a quantitative PET study. *Arch Gen Psychiatry* 1998; 55: 715-720.
27. Santos M, D'Amico D, Spadoni O, et al. Hippocampal hyperexcitability underlies enhanced fear memories in
TgNTRK3, a panic disorder mouse model. *J Neurosci* 2013; 33: 15259-15271.
28. Medel-Matus JS, Shin D, Sankar R, et al. Kindling epileptogenesis and panic-like behavior: Their bidirectional
connection and contribution to epilepsy-associated depression. *Epilepsy Behav* 2017; 77: 33-38.
29. Young S, Pfaff D, Lewandowski KE, et al. Anxiety disorder comorbidity in bipolar disorder, schizophrenia and
schizoaffective disorder. *Psychopathology* 2013; 46: 176-185.

1
2
3 30. Masdrakis VG, Vaidakis N, Legaki EM, et al. Auditory hallucinations during a caffeine challenge in a patient with
4
5 panic disorder. *Prog Neuropsychopharmacol Biol Psychiatry* 2007; 31: 1539-1540.
6
7
8 31. Saha S, Scott J and Varghese D, et al. Anxiety and depressive disorders are associated with delusional-like
9
10 experiences: a replication study based on a National Survey of Mental Health and Wellbeing. *BMJ Open* 2012; 2:
11
12 e001001.
13
14
15 32. Masdrakis VG, Legaki EM, Papageorgiou C, et al. Psychoticism in patients with panic disorder with or without
16
17 comorbid agoraphobia. *Int J Psychiatry Clin Practice* 2017; 21: 181-187.
18
19
20
21
22
23 33. Pignon B, Schüroff F, Szöke A, et al. Sociodemographic and clinical correlates of psychotic symptoms in the
24
25 general population: Findings from the MHGP survey. *Schizophr Res* 2018; 193: 336-342.
26
27
28
29 34. Goodwin RD, Fergusson DM and Horwood LJ. Panic attacks and psychoticism. *Am J Psychiatry* 2004; 161: 88-
30
31 92.
32
33
34
35 35. Marques TR, Levine SZ, Reichenberg A, et al. How antipsychotics impact the different dimensions of
36
37 schizophrenia: a test of competing hypotheses. *Eur Neuropsychopharmacol* 2014; 24: 1279-1288.
38
39
40
41 36. Garay RP, Samalin L, Hameg A, et al. Investigational drugs for anxiety in patients with schizophrenia. *Expert
42
43 Opin Investig Drugs* 2015; 24: 507-517.
44
45
46
47 37. Bandelow B, Zohar J, Hollander E, et al. World Federation of Societies of Biological Psychiatry (WFSBP)
48
49 guidelines for the pharmacological treatment of anxiety, obsessive compulsive and post-traumatic stress
50
51 disorders –First Revision. *World J Biol Psychiatry* 2008; 9: 248-312.
52
53
54
55 38. Worthington JJ, Kinrys G, Wygant LE, et al. Aripiprazole as an augmentor of selective serotonin reuptake
56
57
58 inhibitors in depression and anxiety disorder patients. *Int Clin Psychopharmacol* 2005; 20: 9-11.
59
60

1
2
3 39. Ishida-Tokuda K, Ohno Y, Sakamoto H, et al. Evaluation of perospirone (SM-9018), a novel serotonin-2 and
4 dopamine-2 antagonist, and other antipsychotics in the conditioned fear stress-induced freezing behavior model
5 in rats. *Jpn J Pharmacol* 1996; 72: 119-126.

6
7
8
9
10 40. Mead A, Li M and Kapur S. Clozapine and olanzapine exhibit an intrinsic anxiolytic property fear paradigms:
11
12 contrast with haloperidol and chlordiazepoxide. *Pharmacol Biochem Behav* 2008; 551- 562.

13
14
15 41. Ladurelle N, Roques BP and Dauge V. The transfer of rats from a familial to a novel environment prolongs the
16
17 increase of extracellular dopamine efflux induced by CCK8 in the posterior nucleus accumbens. *J Neurosci* 1995;
18
19 15: 3118-3127.

20
21
22
23
24 42. Wedzony K, Mackowiak M, Fihal K, et al. Evidence that conditioned stress enhances outflow of dopamine in the
25
26 rat prefrontal cortex: a search for the influence of diazepam and 5-HT1A agonists. *Synapse* 1996; 24: 240-247.

27
28
29
30 43. Yoshioka M, Matsumoto M, Togshi H, et al. Effect of conditioned fear stress on dopamine release in the rat
31
32 prefrontal cortex. *Neurosci Lett* 1996; 209: 201-203.

33
34
35
36 44. Peeze MA and Feldon J. Mesolimbic dopaminergic pathways in fear conditioning. *Prog Neurobiol* 2004; 74: 301-
37
38 320.

39
40
41
42 45. De la Mora MP, Gallegos-Cari A, Arizmendi-Garcia Y, et al. Role of dopamine receptor mechanisms in the
43
44 amygdaloid modulation of fear and anxiety: structural and functional analysis. *Prog Neurobiol* 2010; 90: 198-216.

45
46
47
48 46. Gao K, Muzina D, Gajwani P, et al. Efficacy of typical and atypical antipsychotics for primary and comorbid
49
50 anxiety symptoms or disorders. *J Clin Psychiatry* 2006; 67: 1327-1340.

51
52
53
54 47. Inoue T, Tsuchiya K and Koyoma T. Effects of typical and atypical antipsychotic drugs on freezing behavior
55
56 induced by conditioned fear. *Pharmacol Biochem Behav* 1996; 55: 195-201.

57
58
59
60

1
2
3 48. Cavazutti E, Bertoloni A, Vergoni AV, et al. 1-Sulpiride, at a low, non-neuroleptic dose, prevents conditioned fear
4
5 stress-induced freezing behavior in rats. *Psychopharmacology (Berl)* 1999; 143: 20-23.
6
7
8 49. Marek GJ, Martin-Ruiz R, Abo A, et al. The selective 5-HT2A receptor antagonist M100907 enhances
9
10 antidepressant-like behavioral effects of the SSRI fluoxetine. *Neuropsychopharmacology* 2005; 30: 2205-2215.
11
12
13 50. Etxebeste M, Aragues E, Malo P, et al. Olanzapine and panic attacks. *Am J Psychiatry* 2000; 157: 659-660.
14
15
16 51. Khaldi S, Kornreich C, Dan B, et al. Usefulness of olanzapine in refractory panic attacks. *J Clin
17
18 Psychopharmacology* 2003; 23: 100-101.
19
20
21
22
23 52. Nyberg S, Farde L, Eriksson L, et al. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A
24
25 PET study with risperidone. *Psychopharmacology Berl* 1993; 110: 265-272.
26
27
28
29 53. Leysen JE, Janssen PM, Megens AA, et al. Risperidone: a novel antipsychotic with balanced serotonin-
30
31
32
33
34
35
36 dopamine antagonism, receptor occupancy profile, and pharmacologic activity. *J Clin Psychiatry* 1994; 55
37
38 (Suppl): 5-12.
39
40
41
42
43
44 54. Megens AA. Survey on the pharmacodynamics of the new antipsychotic risperidone. *Psychopharmacology Berl*
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 55. Szabo ST and Blier P. Serotonin (1A) receptor ligands act on norepinephrine neuron fighting through excitatory
amino acid and GABA(A) receptors: a microiontophoretic study in the rat locus ceruleus. *Synapse* 2001; 42: 203-
212.
56. Blier P and Szabo ST. Potential mechanisms of action of atypical antipsychotic medications in treatment-resistant
depression and anxiety. *J Clin Psychiatry* 2005; 66 (suppl 8): 30-40.

1
2
3 57. Stockmeier CA, DiCarlo JJ, Zhang Y, et al. Characterization of typical and atypical antipsychotic drugs based on
4
5 in vivo occupancy of serotonin2 and dopamine2 receptors. *J Pharmacol Exp Ther* 1993; 266: 1374-1384.
6
7
8 58. Marx CE, Van Doren MJ, Duncan GE, et al. Olanzapine and clozapine increase the GABAergic neuroactive
9 steroid allopregnanolone in rodents. *Neuropsychopharmacology* 2003; 28: 1-13.
10
11
12
13
14 59. Perna G, Alciati A, Balletta R, et al. Is there room for second-generation antipsychotics in the pharmacotherapy of
15 panic disorder? A systematic review based on PRISMA guidelines. *Int J Mol Sci* 2016; 17: 551.
16
17
18
19
20 60. Zugliani MM, Cabo MC, Nardi AE, et al. Pharmacological and neuromodulatory treatments for panic
21 disorder: clinical trials from 2010 to 2018. *Psychiatry Investig*, 2019; 16: 50- 58.
22
23
24
25
26 61. Zulfarina MS, Syarifah-Noratiqah SB, Nazrun SA, et al. Pharmacological therapy in panic disorder: current
27 guidelines and novel drugs discovery for treatment-resistant patient. *Clin Psychopharmacol Neurosci* 2019; 17:
28
29 145-154.
30
31
32
33
34
35 62. Primeau F and Fontaine R. Gabaergic agents and panic disorder. *Biol Psychiatry* 1988; 24: 942-943.
36
37
38 63. Boutros NN, Ghosh S, Khan A, et al. Anticonvulsant medications for panic disorder: a review and synthesis of
39 the evidence. *Int J Psychiatry Clin Pract* 2014a; 18: 2-10.
40
41
42
43
44 64. Depping AM, Komossa K, Kissling W, et al. Second-generation antipsychotics for anxiety disorders. *Cochrane*
45
46
47 Database Syst Rev 2010; 12: CD008120. DOI: 10.1002/14651858.CD008120.pub2
48
49
50 65. Wang HR, Woo YS and Bahk WM. The potential role of atypical antipsychotics in the treatment of panic
51
52 disorder. *Hum Psychopharmacol Clin Exp* 2014; 29: 405-413.
53
54
55
56 66. Pies R. Should psychiatrists use atypical antipsychotics to treat non-psychotic anxiety? *Psychiatry (Edgemont)*
57
58 2009; 6: 29-37.
59
60

1
2
3 67. Kennedy SH, Law RW, Cohen N, et al. Clinical guidelines for the treatment of depressive disorders: IV medication
4
5 and other biological treatments. *Can J Psychiatry* 2001; 46 (suppl 1): S38-S58.
6
7
8 68. Tondo L, Burrai C, Scamoniatti L, et al. Carbamazepine in panic disorder. *Am J Psychiatry* 1989; 146: 558-559.
9
10
11 69. Uhde TW, Stein MB and Post RM. Lack of efficacy of carbamazepine in the treatment of panic disorder. *Am J
12 Psychiatry* 1988; 145: 1104-1109.
13
14
15 70. Boutros NN, Kirolos SB, Pogarell O, et al. Predictive value of isolated epileptiform discharges for a favorable
16
17 therapeutic response to antiepileptic drugs in non-epileptic psychiatric patients. *J Clin Neurophysiol* 2014b; 31:
18
19 21-30.
20
21
22
23
24
25
26 71. Greenblatt HK and Greenblatt DJ. Gabapentin and pregabalin for the treatment of anxiety disorders. *Clin
27 Pharmacol Drug Dev* 2018; 7: 228-232.
28
29
30
31
32 72. Pande A, Pollack M, Crockatt J, et al. Placebo-controlled study of gabapentin treatment of panic disorder. *J Clin
33 Psychopharmacol* 2000; 20: 467-471.
34
35
36
37
38 73. Joos AA and Zeeck A. Gabapentin in somatoform and panic disorder. *J Clin Psychopharmacol* 2013; 33: 140-
39
40 142.
41
42
43
44 74. Masdrakis VG, Papadimitriou GN and Oulis P. Lamotrigine administration in panic disorder with agoraphobia. *Clin
45 Neuropharmacol* 2010; 33: 126-128.
46
47
48
49
50 75. Slaap BR and den Boer JA. The prediction of non-response to pharmacotherapy in panic disorder: A review.
51
52
53 50
54
55
56 76. Hertzberg MA, Butterfield MI, Feldman ME, et al. A preliminary study of lamotrigine for the treatment of
57
58 posttraumatic stress disorder. *Biol Psychiatry* 1999; 45: 1226-1229.
59
60

1
2
3 77. Papp LA. Safety and efficacy of levetiracetam for patients with panic disorder: results of an open-label, fixed-
4
5 flexible dose study. *J Clin Psychiatry* 2006; 67: 1573-1576.
6
7
8 78. Windhaber J, Maierhofer D and Dantendorfer K. Oxcarbazepine for panic disorder occurring after two grand mal
9 seizures: a case report. *J Clin Psychiatry* 1997; 58: 404-405.
10
11
12 79. Goldberg JF. Panic attacks associated with the use of topiramate. *Journal of Clinical Psychopharmacology* 2001;
13
14 21: 461-462.
15
16
17
18 80. Damsa C, Warczyk S, Cailhol L, et al. Panic attacks associated with topiramate. *J Clin Psychiatry* 2006; 67: 326-
19
20
21 327.
22
23
24
25
26 81. Clivaz E, Chauvet I, Zullino D, et al. Topiramate and panic attacks in patients with borderline personality disorder.
27
28
29
30 Pharmacopsychiatry 2008; 41: 79.
31
32 82. Keck PE Jr., Taylor VE, Tugrul KC, et al. Valproate treatment of panic disorder and lactate-induced panic attacks.
33
34
35 Biol Psychiatry 1993; 33: 542-546.
36
37
38 83. McElroy SL, Keck PE Jr and Lawrence JM. Treatment of panic disorder and benzodiazepine withdrawal with
39
40
41 valproate. *J Neuropsychiatry Clin Neurosci* 1991; 3: 232-233.
42
43
44 84. Brady KT, Sonne S and Lydiard RB. Valproate treatment of comorbid panic disorder and affective disorders in
45
46
47 two alcoholic patients. *J Clin Psychopharmacol* 1994; 14: 81-82.
48
49
50 85. Roberts JM, Malcolm R and Santos AB. Treatment of panic disorder and comorbid substance abuse with
51
52
53 divalproex sodium. *Am J Psychiatry* 1994; 151: 1521.
54
55
56 86. Marazziti D and Cassano GB. Valproic acid for panic disorder associated with multiple sclerosis. *Am J Psychiatry*
57
58 1996; 153: 842-843.
59
60

1
2
3 87. Primeau F, Fontaine R and Beauclair L. Valproic acid and panic disorder. *Can J Psychiatry* 1990; 35: 248-250.
4
5 88. Lum M, Fontaine R, Elie R, et al. Probable interaction of sodium divalproex with benzodiazepines. *Prog
6
7
8 Neuropsychopharmacol Biol Psychiatry* 1991; 15: 269-273.
9
10 89. Ontiveros A and Fontaine R. Sodium Valproate and clonazepam for treatment-resistant panic disorder. *J
11
12 Psychiatry Neurosci* 1992; 17: 78-80.
13
14 90. Woodman CL and Noyes R Jr. Panic disorder: treatment with valproate. *J Clin Psychiatry* 1994; 55: 134-136.
15
16 91. Baetz M and Bowen RC. Efficacy of divalproex sodium in patients with panic disorder and mood instability who
17
18
19
20
21
22
23
24 have not responded to conventional therapy. *Can J Psychiatry* 1998; 43: 73-77.
25
26 92. Harden CL. New antiepileptic drugs. *Neurology* 1994; 44: 787-795.
27
28 93. Manuchehri K, Goodman S, Siviter L, et al. A controlled study of vigabatrin and visual abnormalities. *Br J
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Ophthalmology* 2000; 84: 499-505.
50
51
52
53
54
55
56
57
58
59
60
94. Oulis P, Masdrakis VG, Karapoullos E, et al. Tiagabine augmentation to fluvoxamine-reserpide combination in
the treatment of obsessive-compulsive disorder. *World J Biol Psychiatry* 2009b; 10: 953-955.
95. Zwanzger P, Baghai TC, Schuele C, et al. Vigabatrin decreases cholecystokinin-tetrapeptide (CCK-4) induced
panic in healthy volunteers. *Neuropsychopharmacology* 2001c; 25: 699-703.
96. Zwanzger P, Eser D, Padberg F, et al. Effects of tiagabine on cholecystokinin-tetrapeptide (CCK-4) induced
anxiety in healthy volunteers. *Depress Anxiety* 2003; 18: 140-143.
97. Zwanzger P and Rupprecht R. Selective GABAergic treatment for panic? Investigations in experimental panic
induction and panic disorder. *J Psychiatry Neurosci* 2005; 30: 167-175.

1
2
3 98. Sheehan DV, Sheehan KH, Raj BA, et al. An open-label study of tiagabine in panic disorder. *Psychopharmacol*
4
5 Bull 2007; 40: 32-40.
6
7
8
9 99. Zwanzger P, Eser D, Nothdurfter C, et al. Effects of the GABA-reuptake inhibitor tiagabine on panic and anxiety in
10 patients with panic disorder. *Pharmacopsychiatry* 2009; 42: 266-269.
11
12
13
14 100. Reid TL, Raj BA and Sheehan DR. Ictal panic/epileptogenic activity: treatment with primidone. *Acad*
15
16
17 Psychosomatic Med 1988; 29: 431-433.
18
19
20
21 101. Dantendorfer K, Frey F, Maierhofer D, et al. Sudden arousal from slow wave sleep and panic disorder:
22
23 successful treatment with anticonvulsants –a case report. *Sleep* 1996; 19: 744-746.
24
25
26
27 102. Huppertz HJ, Franck P, Korinthenberg R, et al. Recurrent attacks of fear and visual hallucinations in a child.
28
29 J Child Neurol 2002; 17: 230-233.
30
31
32 103. Gallinat J, Stotz-Ingenlath G, Lang UE, et al. Panic attacks, spike-wave activity, and limbic dysfunction. A case
33
34 report. *Pharmacopsychiatry* 2003; 36: 123-126.
35
36
37
38 104. Edlund MJ, Swann AC, Clothier J. Patients with panic attacks and abnormal EEG results. *Am J Psychiatry*
39
40 1987; 144: 508-509.
41
42
43
44 105. McNamara ME and Fogel BS. Anticonvulsant-responsive panic attacks with temporal lobe EEG
45
46 abnormalities. *J Neuropsychiatry Clin Neurosci* 1990; 2: 193-196.
47
48
49
50 106. Weilburg JB, Schachter S, Sachs GS, et al. Focal paroxysmal EEG changes during atypical panic attacks. *J*
51
52
53 Neuropsychiatry Clin Neurosci 1993; 5: 50-55.
54
55
56
57
58
59
60

1
2
3 107. Perugi G, Frare F, Toni C, et al. Adjunctive valproate in panic disorder patients with comorbid bipolar
4
5 disorder or otherwise resistant to standard antidepressants: a 3-year "open" follow-up study. Eur Arch
6 Psychiatry Clin Neurosci 2010; 260: 553-560.
7
8
9
10 108. Hollifield M, Thompson PM, Ruiz JE, et al. Potential effectiveness and safety of olanzapine in refractory
11
12 panic disorder. Depress Anxiety 2005; 21: 33-40.
13
14
15 109. Lai CH. Aripiprazole-induced gray matter growth in a patient with major depressive disorder with panic
16
17 disorder. J Clin Psychiatry 2010; 71: 360-362.
18
19
20 110. Hoge EA, Worthington JJ 3rd, Kaufman RE, et al. Aripiprazole as augmentation treatment of refractory
21
22 generalized anxiety disorder and panic disorder. CNS Spectr 2008; 13: 522-527.
23
24
25 111. Chao IL. Olanzapine augmentation in panic disorder: a case report. Pharmacopsychiatry 2004; 37: 239-240.
26
27
28 112. Sepede G, De Berardis D, Gambi F, et al. Olanzapine augmentation in treatment-resistant panic disorder –a
29
30 12-week, fixed-dose, open label trial. J Clin Psychopharmacol 2006; 26: 45-49.
31
32
33 113. Goddard AW, Mahmud W, Medlock C, et al. A controlled trial of quetiapine XR coadministration treatment
34
35 of SSRI-resistant panic disorder. Ann Gen Psychiatry 2015, 14: 26.
36
37
38 114. Simon NM, Hoge EA, Fischmann D, et al. An open label trial of risperidone augmentation for refractory
39
40 anxiety disorders. J Clin Psychiatry 2006; 67: 381-385.
41
42
43 115. Prosser JM, Yard S, Steele A, et al. A comparison of low dose risperidone to paroxetine in the treatment
44
45 of panic attacks: a randomized, single-blind study. BMC Psychiatry 2009; 9: 25.
46
47
48 116. Miyamoto S, Duncan GE, Marx CE, et al. Treatments for schizophrenia: a critical review of pharmacology and
49
50 mechanisms of action of antipsychotic drugs. Mol Psychiatry 2005; 10: 79-104.
51
52
53
54
55
56
57
58
59
60

1
2
3 117. Rittmannsberger H. Amisulpride as an augmentation agent in treatment resistant depression: a case
4
5 series and review of the literature. Psychiatr Danub 2019; 31: 148-156.
6
7
8 118. Oulis P, Kokras N, Papadimitriou GN, et al. Adjunctive low-dose amisulpride in motor conversion disorder.
9
10 Clin Neuropharm 2009c; 32: 342-343.
11
12
13 119. Goswami K, Saddichha S and Chaturvedi SK. Amisulpride treatment of somatoform disorders: not just
14
15 chronic fatigue. Am J Ther 2014; 21: e48-e49.
16
17
18 120. Admon R, Kaiser RH, Dillon DG, et al. Dopaminergic enhancement of striatal response to reward in major
19
20 depression. Am J Psychiatry 2017; 174: 378-386.
21
22
23 121. Young A and Seim D. Review: long term use of antidepressants for bipolar disorder reduces depressive
24
25 episodes but increases risk of mania. Evid Based Ment Health 2009; 12: 49.
26
27
28 122. Sheehan DV, Harnett-Sheehan K, Hidalgo RB, et al. Randomized, placebo-controlled trial of quetiapine
29
30 XR and divalproex ER monotherapies in the treatment of the anxious bipolar patient. J Affect Disord 2013; 145:
31
32 83-94.
33
34
35 123. Sheehan DV, McElroy SL, Harnett-Sheehan K, et al. Randomized, placebo-controlled trial of risperidone
36
37 for acute treatment of bipolar anxiety. J Affect Disord 2009; 115: 376-385.
38
39
40 124. Suppes T, McElroy SL, Sheehan DV, et al. A randomized, double-blind, placebo-controlled study of
41
42 ziprasidone monotherapy in bipolar disorder with co-occurring lifetime panic or generalized anxiety disorder. J
43
44 Clin Psychiatry 2014; 75: 77-84.
45
46
47 125. Mandalos GE and Szarek BL. New-onset panic attacks in a patient treated with olanzapine. J Clin
48
49 Psychopharmacol 1999; 19: 191.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 126. Bressan RA, Monteiro VBM and Dias CC. Panic disorder associated with clozapine. Am J Psychiatry
4
5 2000; 157: 12.
6
7
8
9 127. Takahashi H, Higuchi H and Shimizu T. Full remission of panic attacks in a schizophrenic patient after
10
11 switching from haloperidol to risperidone. J Neuropsychiatry Clin Neurosci 2001; 13: 113- 114.
12
13
14 128. Gimenez A, Pacchiarotti I, Gil J, et al. Adverse outcomes during pregnancy and major congenital
15
16 malformations in infants of patients with bipolar and schizoaffective disorders treated with antiepileptic drugs: a
17
18 systematic review. Psychiatr Pol 2019; 53: 223-244.
19
20
21
22
23 129. European Medicines Agency. New measures to avoid valproate exposure in pregnancy endorsed. E-site:
24
25
26 <https://www.ema.europa.eu/en/medicines/human/referrals/valproate-related-substances-0>
27
28
29 130. Medicines and Healthcare products Regulatory Agency. Valproate use by women and girls. Information about
30
31 the risks of taking valproate medicines during pregnancy. 2021. E-site: <https://www.gov.uk/guidance/valproate-use-by-women-and-girls>
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5 **TABLE 1. Administration of anticonvulsant drugs in patients with a primary diagnosis of panic disorder, or without other comorbid**
6
7 **psychiatric conditions (anticonvulsants in alphabetical order; studies for the same drug in chronological order)**
8

9 Abbreviations: CCK-4= cholecystokinin-4; EEG=electroencephalogram; PDA=panic disorder with agoraphobia.
10
11
12

Authors	Anticonvulsant drug	Type of trial	Duration of trial	Number of PD patients	Dosage (mg/day)	Outcome	Comments
Uhde et al., 1988	Carbamazepine	Controlled study	mean=66 days	14	Mean dose=679 mg/d	Improvement in several measures, BUT only 1 patient demonstrated marked and sustained improvement.	EEG abnormalities and prominent psycho-sensory symptoms did not predict response.
Tondo et al., 1989	Carbamazepine	Open-label	52 weeks	34	Mean dose= 419 mg/d	58% improved	
Lum et al., 1991	Divalproex sodium	Placebo-controlled	6 weeks	12	Dosage titration according to response and side-effects.	Significant reductions of panic attacks' intensity/duration.	BUT: Improvements were evident only when sodium divalproex was administered as a first medication.
Woodman and Noyes, 1994	Divalproex sodium	Open-label	6 weeks	12	Starting-dose= 500 mg/d; upward titration according to response/ side-effects.	All patients completed the trial; all were moderately-to-markedly improved.	11 patients continued divalproex-treatment and retained therapeutic gains at 6-month follow-up.
Baetz and Bowen, 1998	Divalproex sodium	Open-label	8 weeks	10	Flexible-dose to achieve	All patients improved	

					serum levels= 45-90 ug/ml.	significantly regarding panic attacks' frequency, "mood instability" and depressive /anxiety symptoms.		
11 12 13 14 15 16 17 18 19 20 21	Pande et al., 2000	Gabapentin	Double-blind, placebo-controlled	8 weeks	133	600-3600 mg/d	Overall, active treatment was <i>not</i> better than placebo. BUT: Active treatment was better than placebo only concerning <i>the more severe cases</i> (especially females).	Gabapentin <i>monotherapy</i> trial.
22 23 24 25 26 27	Joos and Zeeck, 2013	Gabapentin	Case-report	7 weeks	1	1800 mg/d	Reductions of PDA symptoms already from the 1200 mg/d. <i>Titration:</i> first 3 weeks 1200 mg/d and then increased to 1800 mg/d due to pain persistence.	Gabapentin <i>monotherapy</i> (given initially for phantom-pain). <i>Titration:</i> first 3 weeks 1200 mg/d and then increased to 1800 mg/d due to pain persistence.
28 29 30 31 32 33 34 35 36 37 38	Masdrakis et al., 2010	Lamotrigine	Open-label	14 weeks	4	200 mg/day	Significant improvement of patient under monotherapy; some improvement in 2 other patients (chronic-severe agoraphobia). <i>Titration:</i> slowly during the first 6 weeks. <i>Concomitant medication:</i> paroxetine (3 patients), clomipramine (1) and alprazolam (2). All medications' dosages remained steady \geq 3 months before intake and during the trial.	Monotherapy=1 patient; augmentation therapy=3 patients. <i>Titration:</i> slowly during the first 6 weeks. <i>Concomitant medication:</i> paroxetine (3 patients), clomipramine (1) and alprazolam (2). All medications' dosages remained steady \geq 3 months before intake and during the trial.

							Higher dosages might be needed for severe PD/PDA cases. Meticulous follow-up for potential <i>Stevens-Johnson syndrome</i> .
Papp, 2006	Levetiracetam	Open-label	12 weeks	18	500 mg/d	13 completed; 11="very much" or "much" improved	Adverse effects: sedation, headache and irritability.
Windhaber et al., 1997	Oxcarbamazepine	Case-report	6 months	1	900 mg/d	Remission of panic symptoms 2 weeks after increase of oxcarbamazepine dosage to 900 mg/d.	Oxcarbamazepine (600 mg/d) was administered for 2 alcohol-induced seizures. 2 weeks later panic attacks emerged, which remitted after oxcarbamazepine increase to 900 mg/d. No re-emergence during next 6 months.
Zwanzger et al., 2001b	Tiagabine	Open-label	4 weeks	4	15 mg/d	Marked improvement of panic and agoraphobia.	In 2 of the 4 patients remission was achieved after 4 weeks of treatment. Prior to trial, 3 patients were treatment-resistant and 1 was drug-naïve. 1 patient improved but discontinued tiagabine after 2 weeks due to side-effects.
Sheehan et al., 2007	Tiagabine	Open-label	10 weeks	28	Mean dose=15.1 mg/d (range=4-20 mg/d).	Statistically significant BUT <i>clinically non-significant</i> symptoms' reductions (25-32%).	Adverse events: nausea, dizziness and headaches. Many drop-outs (N=5) due to side-effects.
Zwanzger et	Tiagabine	Double-	4 weeks	19	Up to 30 mg/d	Clinical	Tiagabine may reduce sensitivity to

al., 2009		blind, placebo- controlled		active treatment=10; placebo=9		improvement: tiagabine was <i>not</i> superior to placebo. BUT: <i>CCK-4 challenges</i> (<i>after 2 and 4 weeks of treatment</i>): significantly less tiagabine-patients panicked compared to placebo-patients.	panicogenic stimuli. Patients were medication-free ≥10 days before intake. Starting-dose=5 mg; individually increased to maximum 15 mg/d (1 st week) and 30 mg/d (2 nd -4 th weeks). Higher dosages and longer duration of treatment may be needed.
Primeau and Fontaine, 1988; Primeau et al., 1990	Valproate	Open-label	7 weeks	10	Up to 2250 mg/d	Significant improvement of panic attacks and global psychopathology but not of phobic anxiety.	1 week of placebo-washout prior to valproate administration. Starting dose=500 mg/d; increase by 250 mg every 2 nd day, up to 2250 mg/d according to response and tolerance. 1 drop-out due to side-effect (heartburn). Frequent adverse- effects: nausea, dizziness, drowsiness and tremor.
Ontiveros and Fontaine, 1992	Valproate sodium- clonazepam combination	Case-report	4-month to 2-year follow-up.	4	Valproate: 1250-2000 mg/d; Clonazepam: 2-6 mg/d.	Clinically significant improvements retained during follow-up.	Three patients were much more improved after valproate was added to clonazepam initial therapy. 4 th patient had a history of alcohol and benzodiazepines abuse. In all cases, relapses occurred when

							clonazepam dosage was reduced after initial response.
Keck et al, 1993	Valproate	Open-label	4 weeks	14	20 mg/kg/d	10 patients (71%): >50% reduction in panic attacks' frequency; 4 patients: complete remission. AND: <i>Lactate challenge</i> : 10 out of the 12 valproate-treated baseline-panickers (83%) did not panic at post-treatment.	Patients remained drug-free for 30 days prior to valproate administration.
Zwanzger et al., 2001a	Vigabatrin	Open-label	4 weeks; 6 months follow-up	3	2 g/d	Marked reductions of panic symptoms. 2 patients (67%): rapidly panic-free; remained so during the 6-month trial.	Meticulous follow-up needed for potential <i>visual field constrictions</i> after long-term treatment.

1
2
3
4
5 **TABLE 2. Administration of antipsychotic drugs in patients with a primary diagnosis of panic disorder, or without other comorbid psychiatric**
6
7 **conditions (antipsychotics in alphabetical order; studies for the same drug in chronological order)**
8

9 **Abbreviations:** **CGI-I**= Clinical Global Impression of Improvement; **HAM-A**=Hamilton Anxiety Rating Scale; **MRI**=magnetic resonance imaging; **PDA**= panic
10 disorder with agoraphobia; **SSRI**=selective serotonin re-uptake inhibitors.
11
12

Authors	Antipsychotic drug	Type of trial	Duration of trial	Number of PD patients	Dosage (mg/d)	Outcome	Comments
Hoge et al., 2008	Aripiprazole	Open-label	8 weeks	10	Mean dosage= 10.5 ± 4.95 mg/d	Significant improvements regarding panic, anxiety, depression and overall clinical presentation.	Augmentation in treatment-resistance Up to 30% of patients prematurely discontinued treatment. <i>Adverse events</i> : sedation, fatigue, insomnia, jitteriness, dyspepsia, nausea.
Harada et al., 2009	Aripiprazole	Case-report	4 months	1	6 mg/d	Rapid and marked improvement - maintained during the trial- of both residual panic symptoms and paroxetine-resistant agoraphobia.	Augmentation with aripiprazole (6 mg/d; no titration) of a 4-month paroxetine-treatment (40 mg/d: both prior and during the trial). No serious adverse events.
Lai, 2010	Aripiprazole	Case-report	6 weeks	1	10 mg/d	Significant reductions in both panic and comorbid depression.	Aripiprazole <i>monotherapy</i> . Abrupt switch from a 4-month escitalopram-therapy (20 mg/d) to aripiprazole 5 mg/d, titrated to 10 mg/d within 2 weeks.

							MRI: gray matter growth and brain increase.
Etxebeste et al., 2000	Olanzapine	Case-report	4 and 2.5 months respectively.	2	12.5 mg/d and 10 mg/d respectively.	Significant reductions in both panic and agoraphobia.	Augmentation in pharmacotherapy-resistant patients Patient-1 was hospitalized for 'suicidal thoughts' shortly before the trial. Olanzapine (titrated to 12.5 mg/d after 2 weeks) replaced perphenazine. During the trial nefazodone replaced venlafaxine and 2 benzodiazepines were stopped. Patient-2 received olanzapine-augmentation of a 5-month amitriptyline-diazepam combination (both were reduced during the augmentation trial).
Khaldi et al., 2003	Olanzapine	Case-report	-	2	5 mg/d	Rapid reduction of panic.	Augmentation in non-response to paroxetine (40 mg/d).
Chao, 2004	Olanzapine	Case-report	-	1		Complete remission of panic symptoms.	Augmentation of paroxetine with olanzapine.
Hollifield et al., 2005	Olanzapine	Open-label	8 weeks	10	Mean-dose= 12.1 mg/d	Significant reductions of panic attacks and anticipatory anxiety (panic-free=50%).	Augmentation in pharmacotherapy-resistance. In 8 patients, psychotropic drugs were tapered off over a 2-5 weeks period before olanzapine administration. Medications remaining during the trial in the other 2 patients are not reported.

							Weight gain=0.18±4.4 kg.
7 8 9 10 11 12 13 14 15 16	Sepede et al., 2006	Olanzapine	Open-label	12 weeks	26	5 mg/d	‘Response’=81.8% ‘Remission’=57.7% <i>Response</i> = CGI-I≤2 + ≥50% reduction of panic attacks. <i>Remission</i> =no panic attacks and HAM-A≤7 at end-point
17 18 19 20 21 22 23 24 25	Goddard et al., 2015	Quetiapine-XR	Double-blind, placebo-controlled, randomized, parallel-group	8 weeks	21 Quetiapine=10; placebo=11	150±106 mg/d	<i>No significant differences</i> between quetiapine-XR and placebo. <i>Not a unified definition of “SSRI-resistance” used in the study.</i>
26 27 28 29 30 31 32	Simon et al., 2006	Risperidone	Open-label	8 weeks	7 (and 23 with other anxiety disorders)	1.12±0.68 mg/d. (mean dose concerning all 30 patients)	PD subgroup: significant reductions of PDA symptoms and overall clinical improvement. Adverse events: sedation/fatigue, appetite increase, weight gain, dizziness.
33 34 35 36 37 38	Prosser et al., 2009	Risperidone versus paroxetine	Randomized, rater-blind	8 weeks	56 (PD=43; major depression and panic	Mean dosage of risperidone=0.53 mg/d (range= 0.125-1.0 mg).	Significant reduction of panic attacks’ frequency/severity. Efficacy: Attrition rate=48% (risperidone=39.4%;

				attacks=13)	Paroxetine=30 mg/d (fixed-dose).	risperidone=paroxetine.	paroxetine=60.9%; no statistical difference). Paroxetine was initiated <i>without</i> titration. Concomitant medication not reported; BUT: (a) the use of antipsychotics and any changes in antidepressants' or mood stabilizers' dosages during the 2 months prior to study and (b) the use of other psychotropic drugs during the study were both <i>exclusion</i> criteria.
20 21 22 23 24 25 26 27 28 29 30 31	Nunes et al., 2012	Sulpiride	Open-label	8 weeks	19	100, 150, or 200 mg/d, according to symptoms' severity.	Significant improvement: panic attacks (panic-free=63.2%); anxiety; overall clinical presentation. Sulpiride <i>monotherapy</i> of treatment-resistant PD. 1-week wash-out period (paroxetine, citalopram, or sertraline) prior to sulpiride administration Most common adverse events (mild severity): appetite change, amenorrhea/galactorrhea.