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Key points: The KIT D816V transcriptional activity has an adverse impact in AdvSM
patients.
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Abstract

In systemic mastocytosis (SM), qualitative and serial quantitative assessment of the
KIT D816V mutation is of diagnostic and prognostic relevance. We investigated
peripheral blood (PB) and bone marrow (BM) samples of 161 patients (indolent SM,
ISM, n=40; advanced SM, AdvSM, n=121) at referral and during follow-up for the KIT
D816V variant allele frequency (VAF) at the DNA-level and the KIT D816V expressed
allele burden (EAB) at the RNA-level. A round robin test with four participating
laboratories revealed an excellent correlation (r>0.99, R2>0.98) between three
different DNA-assays. VAF and EAB strongly correlated in ISM (r=0.91, coefficient of
determination, R2=0.84) but only to a lesser extent in AdvSM (r=0.71; R2=0.5).
However, as compared to an EAB/VAF ratio <2 (cohort A, 77/121 patients, 64%) ROC
analysis identified an EAB/VAF ratio of >2 (cohort B, 44/121 patients, 36%) as
predictive for an advanced phenotype and a significantly inferior median survival (3.3
vs. 11.7 years; p=0.005). In terms of overall survival, Cox-regression analysis was only
significant for the EAB/VAF ratio >2 (p=0.006) but not for VAF or EAB individually. This
study demonstrates for the first time that the transcriptional activity of KIT D816V may

play an important role in the pathophysiology of SM.
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Introduction

Systemic mastocytosis (SM) is a rare hematologic disorder characterized by clonal
expansion and abnormal accumulation of neoplastic mast cells in various organ
systems. According to the World Health Organization (WHO), SM can be divided into
indolent SM (ISM) and advanced SM (AdvSM), which is further subcategorized into
aggressive SM (ASM), SM with associated hematologic neoplasm (SM-AHN) and mast
cell leukemia (MCL).!'31ISM patients have a nearly normal life expectancy while AdvSM

patients have a poor survival of median 3-4 years.®*"

KIT D816V is the pathogenic driver mutation and is detectable in more than 90% of
SM patients. Qualitative detection of KIT D816V has been established as a diagnostic
criterion for SM. The serial quantitative assessment of the KIT D816V expressed allele
burden (EAB) by a real time RT- quantitative PCR (RT-qPCR) assay during treatment
with the KIT-inhibitor midostaurin is a strong and independent marker for response,

progression and survival.[8,9]

DNA-based quantitative assays (variant allele frequency, VAF) are more widely used
than RNA-based assays,"®'" but only limited data exist concerning the reproducibility
between different assays and the correlation between the DNA- and RNA-based
quantitative assays.!'>'% We therefore sought to quantitatively assess KIT D816V at
both the DNA- and RNA-levels in bone marrow (BM) and peripheral blood (PB)

samples obtained at referral and during follow-up from patients with ISM and AdvSM.
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Material and Methods

Patients and samples

PB (n=161; ISM, n=40; AdvSM, n=121) and corresponding BM (n=45, AdvSM, n=37,
ISM, n=8) samples were collected from KIT D816V positive patients at time of referral.
For serial analyses of midostaurin treated patients, we analyzed at least three PB
samples from 8 patients. All patients were diagnosed and subtyped according to the
2016 WHO classification and were listed within the "German Registry for Disorders of
Eosinophils and Mast cells’. Data collection was compliant with the tenets of the
Declaration of Helsinki and was approved by the institutional review board of the
Medical Faculty Mannheim, Heidelberg University, Germany. All patients gave written

informed consent.

RNA-based assessment of KIT D816V

Quantitative assessment of the KIT D816V expressed allele burden (EAB) at RNA-
level was performed by allele-specific RT-qPCR. Two PCR assays were designed for
amplification of total KIT transcripts and KIT D816V mutated transcripts. KIT D816V
EAB was calculated as ratio between mutant KIT D816V and total KIT transcripts. Limit
of detection reveals a sensitivity of 0.01-0.1%. PCR was performed using the universal
“‘mastermix” (LightCycler Faststart plus set, Roche Diagnostics, Mannheim, Germany)
and specific primer and probes on a LightCycler instrument 1.5 (Roche Diagnostics) in
a final volume of 20 yL with 2 yL cDNA or plasmid product (500 nm primer; 250 nm
probes). Thermocycling conditions were as follows: 95 °C (10 min), 45 cycles: 95 °C

(1s), 60 °C (10 s), and 72 °C (26 s).0
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DNA-based assessment of KIT D816V

Chip-based digital PCR. For quantitative assessment of the KIT D816V VAF, a digital
PCR (dPCR) assay was established. The analysis was performed using the
QuantStudio 3D dPCR System (ThermoFisher Scientific, Massachusetts, USA). Per
sample, a 15 L reaction was prepared. The volume including 7.1 pL of 10 ng/uL DNA,
7.5 pL of QuantStudio 3D Digital PCR Mastermix v2 (ThermoFisher Scientific) and 0.4
pL of KIT D816V specific Tagman gene expression assay (ID: Hs000000039 rm,
ThermoFisher Scientific). The limit of detection (LOD) was assessed through serial
dilution experiments with DNA from healthy individuals and from a SM patient with a
KIT D816V VAF of approximately 50% measured by chip-based dPCR. All samples
were analyzed twice in independent PCR runs. dPCR was performed using the
following thermal cycling conditions: 96°C for 10 min, (56°C for 2 min, 98°C for 30s

[x39 cycles]) and 56°C for 2 min.

Droplet digital PCR. Measurements were performed using the QX200 Droplet Digital
PCR (ddPCR) System (Bio-Rad, California, USA). Per sample, a 22 uL reaction
volume including 6 pL (100ng) DNA, 11 pL of ddPCR Supermix for Probes (no UTP,
Bio-Rad), 3.3 pl H20 and 1.1 pL of KIT D816V specific primer/probe mix (Bio-Rad)
were prepared. Twenty yl from this solution was used for droplet generation in the
QX200™ Droplet Generator (Bio-Rad) followed by PCR analysis and droplet detection

using QX200 Droplet Reader (Bio-Rad).

Quantitative real-time PCR. gPCR was performed using the 7900HT Fast Real-Time

PCR System (Applied Biosystems, Foster City, CA, USA), as previously described.!?]
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Round-robin test for various DNA-based PCR platforms
Thirty PB samples from 26 patients (ISM, n=7; AdvSM, n=19) were used for
interlaboratory correlation (round-robin test, n=4; dPCR, n=1; ddPCR, n=2; qPCR,

n=1) of VAF results.

Statistical analysis

All statistical analyses considered clinical and laboratory parameters obtained at the
time of diagnosis/first referral. OS analysis was considered from the date of diagnosis
to date of death or last visit. OS probabilities were estimated using the Kaplan-Meier
method. Pearson correlation analysis was performed for the correlation between two
continuous parameters. T-test was used to compare continuous variables and medians
of distributions. For the destination of hazard ratios, a cox proportional hazard
regression model was used. Receiver operating characteristic (ROC) curve was used
to select the optimal cut point to dichotomize the EAB/VAF coefficient. All tests were

two-sided, with P < 0.05 considered as statistically significant.

For dPCR results, absolute quantification, including Poisson quantification algorithm,
were performed using the QuantStudio 3D AnalysisSuite Cloud Software online
(Thermo Fisher Scientific). For evaluation of the limit of detection (LOD), limit of
quantification (LOQ) and the limit of blank (LOB) we used established mathematical
calculations!'”"® and performed at least three replicates in independent dPCR runs per
sample. GraphPad Prism Software (version 6, GraphPad, La Jolla, CA, USA), Excel
(version 2019, Microsoft Corporation, Redmond, WA, USA), SPSS (version 21.0.0,
IBM Cooperation, Armonk, NY) and SAS software, release 9.4 (SAS Institute, Cary,

US) were used for statistical analysis.
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Results

Patients’ characteristics

Patients’ characteristics are listed in Table 1. The subcategories of AdvSM included
ASM (18/121, 15%), MCL (2/121, 2%) and SM/MCL-AHN (101/121, 83%). Eighteen
AdvSM patients (18/121, 16%) had progression to secondary AML (11/19, 61%) or
secondary MCL (7/19, 39%). Fifty-three AdvSM patients (47%) were treated with the
KIT-inhibitor midostaurin. Significant differences between ISM (n=40) and AdvSM
(n=121) included gender (female 43%, male 67 %, p=0.006), age (median 54 vs. 76
years, p<0.0001), hemoglobin (median 13.9 g/dL versus 10.8 g/dL, p<0.0001),
platelets (median 283 x 10%/L vs. 114 x 10%L, p=0.0002), serum tryptase level (median
46 ug/L vs. 180 ug/L, p<0.0001), alkaline phosphatase (median 76 U/L vs. 200 U/L),

and OS (median not reached vs. 4.8 years, p<0.0001).

Table 1: Clinical, laboratory, outcome and treatment characteristics of patients with indolent
systemic mastocytosis (ISM) and advanced SM (AdvSM).

Variables ISM AdvSM P-value
Number of patients (n) 40 121 -
Age in years, median (range) 54 (29-83) 76 (30-90) <0.0001
Male, n (%) 17 (43) 81 (67) 0.006
Hemoglobin, g/dL; median (range) 13.9 (11.7-16.8) | 10.8 (5.8-15.8) | <0.0001
Platelets, x10° /L; median (range) 283 (87-461) 114 (12-958) 0.0002
MC-infiltration in BM histology, % not applicable 30 (0-100) -
Serum tryptase, ug/L; median (range) 46 (8-166) 180 (11-1382) | <0.0001

Alkaline phosphatase, U/L; median (range) 76 (15-166) 200 (33-1279) | <0.0001

Diagnosis

ASM, n (%) - 18 (15) -
MCL, n (%) - 2(2) -
SM/MCL-AHN, n (%) - 101 (83) -
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Progression to

Secondary AML, n (%) - 11 (61) -
Secondary MCL, n (%) - 7 (39) -
Outcome

Follow-up, years, median (range) 5 (0-21) 3 (0-25) n.s.
Death, n (%) 0 (100) 60 (50) <0.0001
Overall survival, median, years not reached 4.8 <0.0001
Treatment

Midostaurin, n (%) 1(3) 57 (47) <0.0001

Abbreviations: AHN, associated hematological neoplasm; AML, acute myeloid leukemia;
ASM, aggressive systemic mastocytosis; BM, bone marrow; MCL, mast cell leukemia; n,

number.

Assessment of analytical sensitivity, specificity and reproducibility of the dPCR
assay

For evaluation of LOD, we performed a serial dilution series with DNA isolated from a
PB sample with a heterozygous mutation status and a VAF of 50% £ 0.3% (mean +
standard deviation). On average, the total number of wildtype KIT transcripts per dPCR
reaction ranged from 50,000 to 100,000 molecules. If exactly one KIT D816V transcript
is detectable in a single PCR reaction, a VAF of 0.001% is theoretically achievable.
Based on a strong linear correlation of r=0.99, our serial dilution series showed in
practice a LOD of 0.01% on average (Figure 1A). For a mathematical definition of the
LOD, we determined the LOB. Up to two KIT D816V positive events were measured
in n=6 healthy individuals. Therefore, LOB was defined as 0.0025%. Finally, the
replicate measurement of three low-level positive samples (mean <0.06% VAF)
allowed assigning the LOD of 0.04%. A sample was assessed as positive upon the

presence of at least three KIT D816V signals per measurement.
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Figure 1: Limit of detection (LOD) and reproducibility of digital PCR (dPCR) for
quantitative assessment of the KIT D816V variant allele fraction (VAF). (A) dPCR of a
dilution series of a patient sample with 50% VAF. Single points represent merged
measurements from multiple chips (n=3). Dilution results are linear down to 0.1% VAF.
(B) Reproducibility of four patient samples from 0.1 to 7.6 % KIT D816V VAF
(measured with at least 3 replicates) showing a coefficient of variation (CV) below 20%
for all samples.

For validation of reproducibility, we performed LOQ experiments on four samples with
low and high VAF (0.1% to 7.6%), respectively. As a quantity for LOQ, we determined
the coefficient of variation (CV) for all samples with values between 3.6% for the
highest VAF and 17.6% for the lowest VAF (three samples measured in five

independent experiments), which is consistent with that reported for quantitative PCR

(Figure 1B).l1819

Inter-laboratory round-robin test
In the interlaboratory round-robin test (labs, n=4; samples, n=30), an excellent
correlation was observed between the different DNA-based assays (dPCR vs. ddPCR:

R?=0.99; dPCR vs. gPCR: R?=0.98) (Figure 2).

10
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Figure 2: Quantitative assessment of the KIT D816V variant allele fraction (VAF) in 30
samples using various PCR methods. A very good correlation was observed for dPCR
vs. ddPCR (r=0.99, R?=0.99) and for dPCR vs. gPCR (r=0.99, R?=0.98). dPCR, digital
PCR; (1) ddPCR, droplet digital PCR from laboratory A; (2) ddPCR droplet digital PCR
from laboratory B; gPCR, genomic quantitative real-time PCR.

Comparison of VAF between PB and BM

The comparison between the VAF in PB and BM revealed a correlation of r=0.98
(R?=0.96) in ISM (n=8) and r=0.93 (R?=0.86) in AdvSM (n=37), respectively (Appendix

Figure 1B-C).

Comparison between EAB and VAF

In PB of ISM patients (n=40), EAB and VAF had a correlation of r=0.91 (R?>=0.84)
(Figure 3A). In AdvSM patients, r and R? were significantly inferior (PB, n=121: r=0.71,
R?=0.5; BM, n=37: r=0.63; R?>=0.39). ROC analysis showed an ideal threshold for an
EAB/VAF ratio of 2 for cohort classification. In PB, the EAB/VAF ratio was <2 (cohort
A) in 77/121 (64%) and 22 (cohort B) 44/121 (36%) of AdvSM patients (Figure 3B,

Appendix Figure 1A).

11
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Figure 3: Comparison between expressed allele burden (EAB, RNA/cDNA) and
variant allele fraction (VAF, gDNA) in indolent systemic mastocytosis (ISM, n=40) and
advanced SM (AdvSM, n=121). The correlation between EAB and VAF showed a
strong linear relationship in ISM patients (A) but only to a lesser extent in AdvSM
patients (B). Cohort A represents patients with an EAB/VAF ration < 2 (blue) while
cohort B represents patients with an EAB/VAF ratio > 2 (yellow). (C) The overall
survival (OS) of cohort B (p=0.005). In nine patients KIT D816V was below 1 % at
cDNA and DNA level. Independent of their ratio they were categorized as ,no
significant change” (ratio <2, blue, cohort A).

To confirm the significant disparity between EAB and VAF in individual patients of
cohort B, contemporaneously obtained BM and PB from 12 patients were investigated.
In the vast majority of patients (9/12, 75%), the EAB/VAF ratio of >2 could be confirmed
in BM, while it was between 1 and 2 in 3/12 (25%) patients. Serial / longitudinal
analyses of at least three PB samples in 12 patients revealed a stable EAB/VAF ratio
during follow-up. Out of these, eight AdvSM patients were serially investigated while
on treatment with the multikinase/KIT-inhibitor midostaurin. KIT EAB and VAF

paralleled each other throughout the follow-up (Figure 4).

12
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Figure 4: Serial measurement of expressed allele burden (EAB, cDNA) and variant
allele fraction (VAF, gDNA) on midostaurin. Irrespective of the cohorts (cohort A:
EAB/VAF < 2, A-B; cohort B: EAB/VAF > 2, C-D), the changes of KIT EAB and VAF
nearly paralleled each other.

Disease characteristics in cohorts A and B

Significant differences between cohorts A and B were observed in terms of a higher
median hemoglobin level (p=0.006), a lower percentage of patients with hemoglobin
<10g/dL (p=0.01), a lower median monocyte level (p=0.01), a lower percentage of
patients with alkaline phosphatase level >150 U/L (p=0.01), a lower number of patients

with a high risk molecular profile (at least one gene mutation in SRSF2, ASXL1, and/or

RUNX1, S/A/R, p=0.02) and a lower median vitamin B12 level (p=0.02) in cohort A

13
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(Table 2). Patients of cohort A had a significantly better OS than patients in cohort B
(median OS 11.7 versus 3.3 years; hazard ratio (HR) 2.1; 95% confidence interval
(95%Cl) 1.2-3.6; p=0.005) (Figure 3C).

Table 2: Clinical, laboratory, molecular, and outcome characteristics of 121 advanced systemic
mastocytosis (AdvSM) patients stratified by expressed allele burden / variant allele frequency
ratio of < 2 (cohort A) and > 2 (cohort B).

KIT D816V KIT D816V
Variables EAB/VAF ratio < 2 EABIVAF ratio > P-value
(cohort A) (coh<2)rt B)
Number of patients (n) 77 44 -
Age in years, median (range) 71 (30-90) 77 (52-88) -
Male, n (%) 49 (63) 32 (73) -
Diagnosis
ASM, n (%) 14 (18) 4 (11) -
MCL, n (%) 2 (3) - -
SM/MCL-AHN, n (%) 61 (79) 40 (90) -
AHN-subtypes
MDS/MPN-u, n (%) 18 (30) 13 (33) -
CMML, n (%) 27 (44) 17 (43) -
MDS, n (%) 5(8) 6 (15) -
MPN-eo, n (%) 1(2) -
AML, n (%) 1(2) 1(2) -
CEL, n (%) 7(11) 1(2) -
PMF, n (%) 2 (3) 2 (5) -
Progression to
AML, n (%) 8 (10) 3(7) -
MCL, n (%) 6 (8) 2 (5) -
C-findings
Hemoglobin, g/dL; median (range) 11.4 (5.8-15.8) 9.8 (7.5-14.5) 0.006
<10 g/dL; n (%) 20 (29) 21 (53) 0.01

14



Platelets, x10° /L; median (range) 133 (12-618) 106 (28-958) n.s.
<100 x 10°/L, n (%) 31 (44) 19 (48) n.s.
Alkaline phosphatase, U/L; median
188 (33-1206) 303 (53-1279) n.s.
(range)
> 150 U/L, n (%) 39 (57) 31(79) 0.01
Albumin, g/L; median (range) 38 (16-48) 36 (22-48) n.s.
<34 g/L, n (%) 23 (34) 14 (40) n.s.
Ascites, n (%) 39 (53) 25 (61) n.s.
B-findings
MC-infiltration in BM histology, %;
_ 35 (3-95) 30 (0-100) n.s.
median (range)
Serum tryptase, pg/L; median
170 (11-1382) 211 (18-875) n.s.
(range)
> 100 pg/L, n (%) 51 (73) 28 (74) n.s.
Splenomegaly, n (%) 60 (87) 37 (90) n.s.
Hepatomegaly, n (%) 33 (52) 28 (72) 0.05
Additional SM and/or AHN
relevant findings
Leukocytes, x10%/L; median
10.6 (5.8-79.3) 7.6 (1.0-89.4) n.s.
(range)
Monocytes, %; median (range) 7 (1-46) 11 (1-31) 0.01
Eosinophils, %, median (range) 3 (0-81) 6 (0-66) n.s.
Vitamin B12, ng/L; median (range) 1188 (114-6000) 2842 (489-6000) 0.02
> 180 ng/L, n (%) 50 (96) 32 (100) n.s.
KIT D816V EAB in PB, %, median
30 (0-95) 28 (2-88) n.s.
(range)
KIT D816V VAF in PB, %, median
27.0 (0.0-49.8) 4.0 (0.1-30.8) < 0.001
(range)
Gl-infiltration, n (%) 30 (41) 19 (43) n.s.
S/A/R mutation(s)?, n (%) 38 (51) 31 (74) 0.02
Outcome
Follow-up, years, median (range) 3.5 (0.0-24.6) 2.2 (0.0-11.9) -

15
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Death, n (%) 33 (43) 27 (61) -
Treatment

Midostaurin monotherapy®, n (%) 26 (48) 14 (39) n.s.
Cladribine monotherapy®, n (%) 6 (11) 7(19) n.s.
Midostaurin + cladribine®, n (%) 22 (41) 15 (36) n.s.
Treatment response® 10 (30) 9 (45) n.s.

Abbreviations: AHN, associated hematological neoplasm; AML, acute myeloid leukemia;
ASM, aggressive systemic mastocytosis; BM, bone marrow; CEL, chronic eosinophilic
leukemia; CMML, chronic myelomonocytic leukemia; EAB, expressed allele burden; Gl,
gastrointestinal; MCL, mast cell leukemia; MDS, myelodysplastic syndromes; MPN,
myeloproliferative neoplasms; -u, unclassified; -eo, eosinophila; n, number; PB, peripheral
blood; PMF, primary myelofibrosis; S/A/R, at least one mutation in the SRSF2, ASXL1, RUNX1
gene panel; SM, systemic mastocytosis; VAF, variant allele frequency; 2, data available for
n=75 patients (cohort A) and n=42 patients (cohort B); *, data available for n=54 (70%) patients
(cohort A) and n=36 (82%) patients (cohort B); c, data available for n=34 patients (cohort A)
and n=20 patients (cohort B).

Prognostic value of EAB, VAF and EAB/VAF ratio
In terms of OS, Cox-regression analysis was only significant for the EAB/VAF ratio >2

(p=0.006) but not for VAF (p=0.657) or (EAB=0.658) individually.

Discussion

In the vast majority of patients with ISM, the KIT D816V mutation burden is rather low
(< 1-3%) in PB and BM. Currently available PCR assays have a sensitivity down to
0.01% and are superior to next generation sequencing based techniques (sensitivity >
1-3%). In cases with suspected SM, the complimentary use of gqPCR/dPCR (for KIT
D816V quantification) and NGS (for additional recurrent myeloid mutations) are
recommended. [4,6] While BM MC infiltration and serum tryptase represent the KIT

D816V positive mast cell burden, the KIT D816V VAF/EAB reveals the overall disease
16
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burden including the involvement of non-mast lineages, e.g. neutrophils, monocytes
and eosinophils. This so-called multilineage involvement is identified in 60-80% of
patients with AdvSM. In SM-AHN, the frequently observed discrepancy between a high
KIT D816V VAF/EAB and a low serum tryptase may indicate a dominant AHN clone.
Overall, the median KIT D816V VAF/EAB in PB of AdvSM patients is approximately
20-30% and it was recently shown that response monitoring at the molecular level is
not only feasible but also highly informative.*0111416 The reduction of the KIT D816V
EAB >25% at month 6 is the most favorable predictor for improved survival in
midostaurin-treated AdvSM patients.® In consequence of the increased diagnostic and
prognostic relevance of quantitative PCR assays for KIT D816V, we thought to
evaluate the comparability of various DNA assays and to compare DNA-based dPCR

with gPCR at RNA/cDNA level.

While real-time PCR (gPCR) utilizes the absolute quantification of a somatic mutation
relative to a calibrator, dPCR is a method for the absolute quantification of a target in
the absence of a calibrator. Several dPCR platforms have recently been developed but
data from round-robin testing as an external quality assessment has been lacking. We
therefore performed an international inter-laboratory comparison of four laboratories
upon quantification of the KIT D816V VAF by chip-based dPCR, ddPCR (droplets of
an emulsion for partition of PCR reactions) and qPCR which revealed an excellent
correlation (r=0.99, R?=0.99) in samples derived from patients with ISM and AdvSM.
dPCR offers a reliable and reproducible tool for quantification of KIT D816V and should
be considered as candidate for inter-laboratory standardization and regular use for

diagnosis and response monitoring in clinical trials and daily routine.
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Although sensitivity and specificity are comparable, only limited data exist upon the
comparability between KIT D816V VAF and EAB.!"0420\We here investigated a large
cohort of patients with ISM and AdVSM unveiling an excellent correlation in ISM but
not in AdvSM. In more detailed analyses, two different AdvSM cohorts were identified
in which approximately two-thirds of patients had an excellent correlation comparable
to ISM whereas in approximately one-third of patients the KIT D816V EAB was at least
2-fold higher than the VAF, suggesting increased transcriptional activity of KIT D816V
relative to the size of the mutant clone. We confirmed this significant disparity between
EAB and VAF by finding i) identical results by dPCR and ddPCR in two independent
laboratories in the majority of patients, ii) comparable EAB/VAF ratios in
contemporaneously obtained samples from BM and PB in the vast majority of patients
and iii) comparable EAB/VAF ratios in serial analyses of at least 3 PB samples in the

same individual.

In terms of OS, Cox-regression analysis was only significant for the EAB/VAF ratio >2
(p=0.006) but not for VAF or EAB individually, highlighting a KIT D816V EAB/VAF ratio
2 2 at diagnosis as an adverse prognostic marker for OS in AdvSM. Patients with an
EAB/VAF ratio >2 had a more advanced phenotype (e.g. lower hemoglobin level,
higher monocytes level, higher alkaline phosphatase level, higher number of high-risk
mutations) and inferior survival. The trigger mechanisms for the supposed enhanced
transcriptional activity remain to be determined. To date, there are only a few reports
comparing mutational analysis at DNA and RNA/cDNA level in hematological
neoplasms. A discrepancy has been reported regarding the JAK2 V617F mutation in
patients with essential thrombocythemia and polycythemia vera, and also regarding
the type A mutation of NPM1 in acute myeloid leukemia (AML).[21-23] All reports found

significantly higher mutation levels at RNA/cDNA level compared to DNA-level
18
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highlighting the potential superior sensitivity of RNA-based assays and the possible

impact of this discrepancy on disease phenotype and prognosis.

In conclusion, i) dPCR is a sensitive and reliable assay for assessment of the KIT
D816V VAF, ii) it could serve as standardized tool for optimized comparability within
clinical trials and daily routine, iii) both, the KIT D816V VAF and the EAB can be used
for subtyping, treatment monitoring and prognostication, iv) an increased KIT D816V
transcriptional activity defined by an EAB/VAF ratio 22 is associated with a more

aggressive phenotype and adverse outcome.
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