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Planar maximally supersymmetric Yang-Mills theory (N = 4 SYM) is a unique quan-
tum field theory. Its interesting properties include conformal symmetry at the quantum
level, expected integrability, and being a prime example of the AdS/CFT correspondence.
Witten’s twistor string theory [1] reignited an interest in this theory, leading to enormous
progress in utilising its special features to uncover new mathematical structures, such as
the Grassmannian [2], and to better understand gauge theory in general. One such feature
is the hidden dual conformal symmetry in SYM [3, 4] which led to the introduction of mo-
mentum twistors [5] as useful variables when describing scattering amplitudes in SYM. It
was then shown in [6] that the kinematic space parametrised by these momentum twistors,
itself a Grassmannian, comes equipped with a particular mathematical structure called
a cluster algebra. It was shown that scattering amplitudes in SYM depend on cluster
coordinates and, at least for six and seven-points, the cluster algebra provided all the sin-
gularities, or alphabet, for all known amplitudes in SYM. The ultimate hope is that by
understanding all the analytic structure of the functions scattering amplitudes consist of,
one could simply write down the form of an amplitude without the need for an explicit
calculation. The overarching theme of this thesis is to better understand the analytic
properties of scattering amplitudes, mainly (but not exclusively) in SYM. Although this
thesis has two parts, the main focus is on cluster algebras; extracting the information they
contain about amplitudes and exploring their relationship with other areas of mathematics,
as well as what those relationships imply for the singularity properties of amplitudes. In
the first part, we introduce and develop the notion of cluster adjacency and how it controls
the poles and branch cuts an amplitude is allowed to have. We also provide an example of
how cluster adjacency can aid in computations in calculating the seven-point, four-loop,
NMHV scattering amplitude. The second part expands on the discussion started in [7]
linking tropical geometry to scattering amplitudes in the biadjoint φ3 theory. We demon-
strate how the connection between tropical Grassmannians and cluster algebras allows for
straightforward calculation of amplitudes in this theory. We go on to utilise this connection
to generalise the notion of cluster adjacency and conjecture how different helicity config-
urations (MHV, NMHV, etc.) may each have their own cluster adjacency rules. Finally,
tropical geometry allows us to approach certain issues with eight-point scattering in SYM.
Namely, the infinite set of cluster coordinates provided by cluster algebra associated with
eight-point scattering, as well as generating the algebraic singularities known to appear
even at one-loop for N2MHV amplitudes.

This thesis is based on [8–13] with considerable overlap with these papers.

i





Contents

Abstract i

List of Figures vii

List of Tables xi

Introduction 1

I Cluster Adjacency 7

1 Review 9
1.1 On-shell methods for scattering amplitudes 9

1.1.1 Colour decomposition 9
1.1.2 Spinor-helicity formalism 10
1.1.3 BCFW 12
1.1.4 Factorisation Poles 15

1.2 Scattering equations 16
1.3 N = 4 super Yang-Mills theory 17

1.3.1 Supersymmetry 17
1.3.2 Superamplitudes 19
1.3.3 Super-BCFW 20
1.3.4 Dual conformal symmetry and twistors 22
1.3.5 Loop amplitudes in SYM 24
1.3.6 Polylogarithms and symbols 26
1.3.7 The Bootstrap Program 30

2 Cluster Algebras and Adjacency 37
2.1 The Grassmannian 37
2.2 Cluster Algebras 38

2.2.1 Hexagons and the A3 associahedron 40
2.2.2 Heptagons and the E6 polytope 45
2.2.3 General cyclic mutations for n > 7 48

2.3 Adjacency rules from Gr(4, n) clusters 48
2.4 Heptagon integrals 51

iii



2.5 Cluster adjacent polylogarithms 53
2.5.1 Neighbour sets 54
2.5.2 Definition of cluster adjacent polylogarithms 56
2.5.3 Neighbour-set functions 57
2.5.4 Integrability 58

3 BCFW and NMHV 61
3.1 Cluster adjacency in hexagon and heptagon loop amplitudes 61
3.2 Cluster adjacency of tree-level BCFW recursion 62

3.2.1 NMHV 63
3.2.2 Beyond NMHV 66
3.2.3 Discussion 70

3.3 NMHV loop amplitudes 71
3.3.1 Hexagons 71
3.3.2 Heptagons 73

3.4 The four-loop NMHV heptagon 75
3.4.1 NMHV loop amplitudes and Q final entries 76

3.5 The four-loop computation 77
3.5.1 Explicit results 79

3.6 Multi-Regge limit 80
3.6.1 Kinematics 80
3.6.2 BDS normalisation and analytic continuation 81
3.6.3 Evaluating the gluon amplitude in the limit 82
3.6.4 Comparison with BFKL approach and new predictions 84

II Tropical Geometry 87

4 Tropical Geometry 89
4.1 Amplitudes from volumes of dual associahedra 90
4.2 Tropical Grassmannians and amplitudes 91
4.3 The positive tropical Grassmannian from webs 94
4.4 The tropical Grassmannian and cluster algebras 98
4.5 Tr+(3, 6) 100

4.5.1 Triangulating Tr+(3, 6) with clusters 102
4.6 Tr(3, 7): the amplitude from E6 clusters 104
4.7 Gr(3, 8): redundant triangulations 105

5 Finite Fans 109
5.1 Grassmannian cluster algebras and tropical fans 110
5.2 Generalised scattering equations 117
5.3 Cluster polytopes and face variables 121

5.3.1 Gr(3, 6) 123
5.3.2 Gr(3, 7) 124

iv



5.3.3 Gr(3, 8) 125
5.4 Tropically adjacent polylogarithms 126

6 Infinite to Finite and Algebraic Singularities 131
6.1 Review of positive tropical Gr(4, 8) 131
6.2 Infinite paths in Gr(4, 8) and algebraic letters 136

7 Conclusions 145

A Spinor Conventions 151

B Superconformal Algebra 153

v





List of Figures

1 A perturbative expansion in Feynman diagrams where only a few diagrams
are shown at each loop order. 2

2 A ten-point tree-level gluon amplitude is a sum of over ten million terms
which remarkably produces a single term. 2

1.1 Colour structure of the three and four-gluon interaction vertices 9

1.2 Factorisation of the z deformed amplitude on the pole z = zPi 14

1.3 The four-point MHV amplitude with the intermediary BCFW step 15

1.4 Two overlapping channels for six-point scattering. The discontinuity of an
amplitude in the s345 channel (left) cannot be followed by a discontinuity in
the s234 channel (right). 16

1.5 Equivalence between an amplitude in momentum space and a closed, light-
like polygon in twistor space. 23

1.6 The factorised form of a tree-level scattering amplitude in multi-Regge kine-
matics. 33

2.1 The initial cluster of the Grassmannian series Gr(4, n). 39

2.2 The quiver diagram for the initial cluster for the algebra associated to Gr(4, 6). 40

2.3 The A3 Stasheff polytope with six pentagonal faces and three square faces,
each labelled with the corresponding A-coordinate. The initial cluster cor-
responds to the vertex at the top left corner at the intersection of the faces
labelled by 〈1235〉, 〈1245〉, 〈1345〉. The three-step path leads from the initial
cluster to one obtained by a cyclic rotation by one unit. 41

2.4 The two-brackets 〈ij〉 can be identified with chords on a hexagon between
the vertices i and j. A triangulation of the hexagon then corresponds to
a cluster of the A3 or Gr(4, 6) polytope. Above is shown the triangulation
corresponding to the initial cluster of Figure 2.2 comprised of the chords
〈26〉 = 〈1345〉, 〈36〉 = 〈1245〉 and 〈46〉 = 〈1235〉 together with the six edges
which correspond to the frozen nodes. 42

2.5 The Stasheff polytope for Gr(4, 6) ∼=M0,6 with the clusters labelled by the
different triangulations of a hexagon. 42

vii



2.6 The A3 polytope with four faces labelled by their dihedral coordinates. The
double scaling limits u46 → 0 and its parity conjugate version u13 → 0 are
are the highlighted red pentagons. The soft limits u36 → 0 and u14 → 0

are the blue squares. The line joining the two squares corresponds to the
collinear limit u13 = u46 = 0. 45

2.7 The initial cluster of the Gr(4, 7) cluster algebra, relevant for heptagon am-
plitudes. 46

2.8 The initial cluster for Gr(4, 7) labelled by homogenised A-coordinates. 46
2.9 The initial cluster of Gr(4, 7) does not have the topology of an E6 Dynkin

diagram but it is possible to mutate it to one which does. This cluster
contains homogenised A-coordinates of all six types given in (2.2.16). 47

2.10 The E6-shaped cluster with X -coordinates shown at each of the nodes. 48
2.11 A series of mutations which result in a rotation of the Gr(4, 8) initial cluster

by one unit. The dots represent unfrozen nodes (arrows have been removed
for clarity) and the squares represent the mutated nodes. Note there are
no gaps between mutated nodes and we always mutate from the bottom up
and from left to right. 48

2.12 The Gr(3, 7) initial cluster (left) and the cluster resulting from a cyclic
mutation of a Gr(3, 6) subalgebra, highlighted in green (right). Gr(3, 7) ∼
Gr(4, 7) but we have given this example to demonstrate this procedure is
valid for Gr(k, n) ∀ k, n. 49

2.13 Seven-point, three-loop, massless integral. 52
2.14 The seven-point, two-loop integrals I(2) and Ĩ(2). 52
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Introduction

Our current understanding of the fundamental laws of elementary particles comes from
a quantum field theory (QFT) called the Standard Model of Particle Physics (SM). This
QFT consists of two sectors, Quantum Chromodynamics (QCD) and Electroweak Theory,
which govern the strong and electroweak forces respectively. We test and explore these
theories at particle colliders such as the Large Hadron Collider (LHC). Here beams of
high energy protons are collided together and detectors surrounding the interaction point
record data about the particles produced in the collision. This data is then compared
against predictions from the SM from which we can assess the accuracy of our theory.

The object which is calculated from the theory and measured against collider data
is called a scattering cross section. Roughly speaking, a scattering cross section is the
probability that a specific process will take place in a collision of incoming particles. In
order to calculate a cross section we must first calculate a scattering amplitude. Scattering
amplitudes are formally defined as the overlap between an incoming state of ni particles
and an outgoing state of nf particles

Sif ≡ 〈1, . . . , ni|1, . . . , nf 〉 (0.0.1)

where Sif is an element of the S-matrix and |1, . . . , n〉 is an n-particle momentum eigen-
state. The incoming and outgoing states are free (non-interacting) and the elements of the
S-matrix account for finite time.

In general, scattering amplitudes are difficult to calculate and exact computations are
often impossible to perform. The textbook-standard method for computing scattering
amplitudes begins with the corresponding correlation function of local gauge-invariant
operators Oi

〈O1(x1) · · · On(xn)〉 =

∫
d[Ψ]O1(x1) · · · On(xn)e−SEuc[Ψ], (0.0.2)

where d[Ψ] corresponds to the integration over all possible field configurations of the fun-
damental fields Ψ, and

SEuc =

∫
d4xL[Ψ(x)] (0.0.3)

is the Euclidean action (obtained by Wick rotation t→ it). From the correlation functions
one employs the Lehmann-Symanzik-Zimmermann (LSZ) reduction prescription [14]; this
amounts to Fourier transforming the correlator of fundamental fields to momentum space
and requiring the fields to be momentum eigenstates i.e. plane waves. The Feynman rules
for the theory in question can now be extracted from its Lagrangian, which for a weakly
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A = + + + · · ·

Figure 1: A perturbative expansion in Feynman diagrams where only a few diagrams are
shown at each loop order.

A
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Figure 2: A ten-point tree-level gluon amplitude is a sum of over ten million terms which
remarkably produces a single term.

coupled theory has the form

L = Lfree + gLint, g � 1, (0.0.4)

where Lfree provides the propagator and Lint provides the interaction terms. If a theory
can be decomposed in the manner of (0.0.4) one can perform a perturbative expansion in
terms of Feynman diagrams of increasing loop order, as shown in Figure 1. This is due to
expanding the exponential in (0.0.2) resulting in all correlation functions becoming a series
in g. The Feynman rules are used to build mathematical expressions corresponding to the
diagram in question and for each loop an integral over all possible values of loop momenta
has to be performed. These loop integrals constitute a significant bottleneck in efficiently
calculating amplitudes.

The Feynman diagram method is straightforward and mechanical, meaning it can read-
ily be set up on a computer and automatically calculate terms of higher and higher order.
However, due to the rapidly increasing number of diagrams at each loop order, the com-
putations quickly become insurmountable, even for the simplest of events. Moreover, even
the best supercomputers cannot handle the complex collisions taking place at the LHC. In
short, relying on Feynman diagrams will be impractical for higher precision experiments.

Beyond computational difficulty, there are other indicators that the Feynman diagram
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approach is less than ideal. For instance, Feynman diagrams contain a large amount of
redundancy. Individual diagrams may produce physically impossible final states, the prob-
ability of these processes occurring only shown to be zero when the diagrams are summed
together. Individual diagrams are also gauge-dependent however the final amplitude is not.
One of the most popular indicators that Feynman diagrams may not be the best tool is the
Parke-Taylor amplitude [15]. Parke and Taylor initially showed that tree-level amplitudes
with particular helicity configurations for the external particles vanished, noticing that
the first non-vanishing case had a simple closed form. This came from painstaking work,
simplifying pages of four-momenta contractions from many diagrams into a remarkable
formula, demonstrated in Figure 2.

The analytic behaviour of scattering amplitudes has been a subject of great interest for
decades [16]. Recent developments in the theory of amplitudes have led to the application
of an array of mathematical ideas to their calculation. The study of poles in tree-level
amplitudes led to the BCFW recursion relations [17] as well as unitarity cuts of integrals
[18]. Related ideas have been applied to constructing the S-matrix of massive theories
directly [19, 20], inspired by recent developments in the numerical bootstrap for conformal
field theories [21, 22]. The combination of these ideas has fed into new constructions of loop
integrands for many amplitudes [23, 24]. The study of polylogarithmic iterated integrals
[25–28] has led to a much greater understanding of loop integrals and motivated a greater
push to classify and understand more general functions of elliptic type and beyond [29–
34]. These developments have inspired recent advances [35] in the well-studied subject of
differential equations for loop integrals [36–39] which have been applied to processes of
interest for QCD or gauge theories in general. It is clear that the greater understanding
we have of the role of singularities in field theory amplitudes, the greater our ability is to
calculate them, and the deeper our understanding of field theory becomes.

In this thesis, we will focus on the study of poles and branch cuts in perturbative
amplitudes and the algebraic and geometrical structures which govern their appearance.
In this regard, a helpful toy model is the planar limit of N = 4 super Yang-Mills theory
where many approaches can be taken to calculate amplitudes. In perturbation theory,
an analytic bootstrap programme has been employed for certain amplitudes, allowing the
construction of explicit data for many loop orders [40–49]. A different technique, relying
on the relation of the planar amplitudes with light-like Wilson loops [50–55], is based on
multiple expansions in a near-collinear OPE limit [56–60]. This is much like correlation
functions of local operators in conformal field theories. Many of these techniques were
developed as a consequence of the gauge/string duality wherein SYM is dual to type IIB
string theory on anti-de Sitter space [61]. The interplay of these techniques has revealed
surprising structures at the heart of scattering amplitudes.

An important observation about perturbative amplitudes came with the work of [6] and
was explored further in e.g. [62] where a link was made between the locations of branch
point singularities in scattering amplitudes and cluster algebras related to Grassmannian
spaces Gr(4, n). Cluster algebras were introduced and developed in [63–65] and are an area
of intense ongoing research. Their relation to scattering amplitudes was first discussed in
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[23] in the context of on-shell diagrams. This connection relates the cluster A-coordinates
of the cluster algebra with the symbol letters (potential logarithmic branch cuts) of the
scattering amplitude. The cluster algebra connection explains the simple nine-letter al-
phabet of singularities previously found in six-particle amplitudes [66] and it has been
exploited in the context of the analytic bootstrap programme up to high loop orders [40,
42–44, 46, 47, 49]. Moreover, the link to cluster algebras suggests a 42 letter alphabet for
seven-particle amplitudes which has successfully been used to bootstrap amplitudes in [10,
45, 48].

In Chapter 2, we will describe and extend the connection between cluster algebras and
amplitudes to the interplay of such singularities with each other. Specifically, we notice that
the cluster algebras also control the possible sequences of such branch cut singularities; a
non-trivial analytic continuation around a given singularity may only be followed by certain
others. The set of which singularities are visible on any given Riemann sheet is dictated
by the clusters themselves. We refer to this property of amplitudes as ‘cluster adjacency’.
The adjacency relations we find encompass the Steinmann relations [67, 68] which place
constraints on consecutive discontinuities of amplitudes [69]. Such relations can be made
manifest on appropriately defined infrared finite quantities, these then become a powerful
constraint in the analytic bootstrap programme [47]. An equivalent set of conditions on
multiple discontinuities is that of the extended Steinmann relations [70].

We first introduce cluster adjacency in terms of the symbols of loop integrals. In Chap-
ter 3, we will extend the notion of cluster adjacency to tree-level amplitudes, illustrating
that not only the amplitude obeys cluster adjacency, but that individual BCFW terms
that make up the amplitude are also cluster adjacent. In this, we can associate each
term to a subalgebra of the full cluster algebra, thus providing a geometric interpretation
for individual BCFW terms through the cluster polytope. We then employ our working
understanding of the cluster adjacency of branch points of loops and poles of trees to cal-
culate an amplitude where there is interplay between them - the seven-point, four-loop,
NMHV amplitude in SYM. The structure of NMHV loop amplitudes in conjunction with
cluster adjacency indicates that their poles and branch points are not independent, and
we utilise this to simplify our calculation. Having obtained our four-loop result we then
analyse the amplitude in multi-Regge kinematics. The multi-Regge or high-energy limit,
originally studied within the analytic S-matrix programme [71] and QCD [72–74], is the
arena where realistically occurring scattering configurations meet a beautiful simplification
of their dynamical description in terms of effective, two-dimensional degrees of freedom.
Particularly for N = 4 SYM theory, this simplicity has allowed for the identification of the
space of functions required to describe the amplitude of an arbitrary number of external
gluons n at any loop order in the limit [75, 76]. In fact, for n = 6, this has even led to the
determination of the amplitude at finite coupling [77].

In this limit, amplitudes develop large logarithms in some of the kinematic variables
(1.3.51), and so at each loop order they reduce to a polynomial of these logarithms. The
highest order of these corresponds to the leading logarithmic approximation (LLA), with
an obvious generalisation to the (next-to)k-leading logarithmic approximation (NkLLA).
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The analysis of our four-loop amplitude provides a check of the consistency of our result
with the expected structure of the Fourier-Mellin representation described in [76, 78] at
LLA and NLLA. It then also provides new predictions at the next two logarithmic orders.
The four-loop results are provided in [10], as are the new predictions for the amplitudes in
multi-Regge kinematics.

Recently, many connections have been made between the study of tropical geometry
and scattering amplitudes in quantum field theory and string theory. One connection is
via the study of massless scattering amplitudes via the scattering equations [79–81]. In
the simplest setting these equations describe tree-level biadjoint φ3 amplitudes. In this
context there is an auxiliary space; the moduli space of n points on a Riemann sphere,
which is related to the kinematics of the n-point massless scattering amplitude via the
scattering equations. The moduli space is the configuration space of n points in P1 which
is equivalent to the Grassmannian Gr(2, n) (modulo local rescalings). The biadjoint φ3

amplitude can be computed by evaluating certain Parke-Taylor type factors on solutions
of the scattering equations. The final expression obtained after summing all solutions is
equal to the traditional Feynman diagram expression.

In [7], a connection of the above picture to the tropical Grassmannian was made. The
tropical version of a space is a simplification in which the defining non-linear equations
are treated in a piecewise linear fashion. Despite this simplification, the tropical space
retains much information from the original. In particular, each φ3 Feynman diagram can
be associated to a maximal cone of the tropical Grassmannian Gr(2, n). This picture is
closely related [11] to the kinematic associahredron picture of [82].

Moreover, in [7] a generalisation of the above picture to Grassmannians Gr(k, n) was
given. In the generalised setting of Gr(k, n), there is no known standard field theory
formulation for the amplitudes. However, it was conjectured that the associated generalised
amplitude obtained from the scattering equations can again be written as a sum over
maximal cones of the tropical Grassmannian.

In Chapter 4, we will review this connection and how triangulating the tropical Grass-
mannian allows one to compute φ3 amplitudes. We will then demonstrate how a tropical
Grassmannian’s corresponding cluster algebra provides one particular triangulation in a
straightforward way, providing examples for various Gr(k, n).

In Chapter 5, we continue discussing the connection between the tropical Grassmannian
and cluster algebras already partly explored in [83]. We describe a family of tropical
fans related to Grassmannian cluster algebras. These fans are related to the kinematic
space of massless scattering processes in a number of ways. For each fan associated to
the Grassmannian Gr(k, n), there is a notion of a generalised φ3 amplitude, as well as
an associated set of scattering equations which further generalise the Gr(k, n) scattering
equations that have been recently introduced. Here we focus mostly on the cases related
to finite Grassmannian cluster algebras and we explain how face variables for the cluster
polytopes are simply related to the scattering equations. For the Grassmannians Gr(4, n)

the tropical fans we describe are related to the singularities (or symbol letters) of loop
amplitudes in planar SYM. We show how each choice of tropical fan leads to a natural
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class of polylogarithms, generalising the notion of cluster adjacency and we describe how
the currently known loop data fit into this classification.

In Chapter 6, we argue that connections between cluster algebras and tropical geome-
try provide a natural language for postulating a finite alphabet for scattering amplitudes
beyond six and seven points, where the corresponding Grassmannian cluster algebras are
infinite. We also address the appearance of algebraic singularities in the symbol alphabet
of scattering amplitudes in the context of planar SYM. Starting from eight-points, as well
as polynomials in Plücker coordinates, algebraic roots show up in the symbol of the ampli-
tude. These appear already at one loop due to the presence of four-mass-box type cuts. As
well as generating natural, finite sets of letters, the tropical fans we discuss provide letters
containing square roots. Remarkably, the minimal fan we consider provides all the square
root letters recently discovered in an explicit two-loop eight-point NMHV calculation.

Finally, Chapter 7 contains concluding remarks of the work presented throughout this
thesis as well as possible outlooks for future research.
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Chapter 1

Review

1.1 On-shell methods for scattering amplitudes

In this chapter, we will review various methods and techniques used in the calculation
of scattering amplitudes. Some of these will be relevant later in this thesis while others are
necessary stepping stones to the central mathematical structures. These will also highlight
the hidden simplicities of amplitudes that textbook methods fail to capture.

1.1.1 Colour decomposition

In general, scattering amplitudes in gauge theory are functions of momenta, wavefunctions
and colour factors of external states, as well as the coupling constant(s). In order to
simplify amplitude calculations, it is useful to separate the colour factors out.

In gauge theory, the colour factors enter through the interaction terms in the Lagrangian
via structure constants of the gauge group. The colour factors of the three and four-
gluon vertices are given in Figure 1.1 where the ta are the generators of the fundamental
representation of SU(N), fabc are the gauge group structure constants, and a = 1, . . . , N2−
1.

In order to absorb factors of 2, we can redefine the ta and fabc

ta →
√

2ta, fabc →
√

2fabc, (1.1.1)

which allows us to write the Lie bracket as[
ta, tb

]
= fabctc. (1.1.2)

ta

tb

tc

∼ fabc

ta

tb tc

td

∼
∑
e

fabefecd

Figure 1.1: Colour structure of the three and four-gluon interaction vertices
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We can choose a diagonal basis for the generators such that

Tr(tatb) = δab, (1.1.3)

allowing us to write the structure constants in terms of the generators

fabc = Tr(ta[tb, tc]), (1.1.4)

rendering the fabc totally anti-symmetric in all indices. Finally we note the identity

(ta)ji (t
a)lk = δliδ

j
k −

1

N
δji δ

l
k (1.1.5)

which can be used to merge traces. In the large N limit, the 1/N term drops out and all
amplitudes are proportional to a single trace over the n generators associated to each of
the n particles. In this limit all Feynman diagrams can be drawn in a plane hence it is
known as the planar limit. Amplitudes in the planar limit have the general form

Aplanarn = gn−2
YM

∑
σ∈Sn/Zn

Tr(taσ(1)taσ(2) . . . taσ(n))An(σ(1), σ(2), . . . , σ(n)) (1.1.6)

where gYM is the Yang-Mills coupling constant. The An function on the right-hand side
is known as a partial or colour-ordered amplitude which contain all kinematical informa-
tion. These partial amplitudes are simpler than the full amplitudes as they only receive
contributions from a fixed cyclic ordering of the external particles which is what allows us
to draw them on a plane. We can think of these planar amplitudes as being drawn on a
disk, with marked points on the boundary representing the external states. Non-planar
amplitudes can be drawn on surfaces with more than one boundary however we shall not
be discussing non-planar amplitudes in this thesis.

1.1.2 Spinor-helicity formalism

For the scattering of massless particles, it is particularly useful to introduce new variables
which automatically satisfy the on-shell condition. They also often render the analytic ex-
pressions of scattering amplitudes in a much more compact form compared to the standard
four-vector notation. We start by contracting the four-vector pµi with the Pauli matrices
which gives us a matrix

pαα̇ = pµσ
µ
αα̇ =

(
p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

)
, σµαα̇ = (1, ~σ). (1.1.7)

Here the mass-shell condition can be expressed as the determinant of pi,αα̇

det(pαα̇) = p2
0 − p2

1 − p2
2 − p2

3 = m2. (1.1.8)

As a 2× 2 matrix, the rank of pαα̇ must be at most 2 and therefore we can write it as

pαα̇ = λαλ̃α̇ + µαµ̃α̇, (1.1.9)

where λ, µ and λ̃, µ̃ are commuting Weyl spinors in the (0, 1/2) and (1/2, 0) representations
of the Lorentz group respectively. In the case of massless particles

det(pαα̇) = 0, (1.1.10)
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hence the light-like four-momenta may be written as

pi,αα̇ = λiαλ̃iα̇. (1.1.11)

The λα and λ̃α̇ are called helicity spinors. For real four-momenta with Lorentzian signature
the spinors are related to each other by (λiα)∗ = ±λ̃iα̇.

A massless four-vector has only three degrees-of-freedom. This is reflected in the spinors
through a scaling invariance

(λ, λ̃) 7→ (tλ, t−1λ̃), t 6= 0, (1.1.12)

called the little group scaling. Physically, the little group is the subset of Lorentz trans-
formations which leave the momentum of an on-shell particle invariant. We can build
Lorentz-invariant quantities out of spinors using the SU(2) invariant tensors

εαβ = εα̇β̇ =

(
0 1

−1 0

)
. (1.1.13)

Contracting spinors with the above tensor gives the following spinor products

〈ij〉 := 〈λiλj〉 = εαβλ
α
i λ

β
j =: −〈ji〉 (1.1.14)

[ij] := [λ̃iλ̃j ] = εα̇β̇λ̃iα̇λ̃jβ̇ =: −[ji]. (1.1.15)

where we also use εαβ , εα̇β̇ as well as their inverses εαβ , εα̇β̇ to raise and lower spinor
indices. For massless particles, we may write Mandelstam invariants sij in terms of these
spinor brackets

sij = (pi + pj)
2 = 2pi · pj = pαα̇i pjαα̇ = 〈ij〉[ji]. (1.1.16)

It is worth noting that sij vanishes when either λi ∝ λj or λ̃i ∝ λ̃j . Physically, this means
pi, pj are collinear.

Spinors are elements of a two-dimensional vector space so three or more of them must
be linearly dependent from which we can derive the Schouten identity

〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉 = 0, (1.1.17)

and similarly for the conjugated spinors. We will see later these angle brackets can also be
interpreted as minors of a 2× n matrix and the Schouten identity is a consequence of the
linear dependence of the minors. Finally, we must still impose momentum conservation on
these variables

n∑
i=1

pi = 0 →
n∑
i=1

〈ai〉[ib] = 0. (1.1.18)

Fermion polarisations

For massless fermions, the Dirac equation degenerates into two Weyl equations

/pv±(p) = 0, u±(p)/p = 0, (1.1.19)

where the subscript ± refers to the helicity of the particle (in the massless case). The
conjugates are related to these wavefunctions via u± = v∓ and v± = u∓. The spinors λ, λ̃
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provide a natural basis for solutions of these equations

u+(p) = v−(p) =

(
λα

0

)
, u−(p) = v+(p) =

(
0

λ̃α̇

)
(1.1.20)

ū+(p) = v̄−(p) =
(

0 λ̃α̇

)
, ū−(p) = v̄+(p) =

(
λα 0

)
(1.1.21)

hence the polarisation spinors are simply

εα−1/2 = λα, εα̇+1/2 = λ̃α̇. (1.1.22)

Gauge boson polarisations

For gauge bosons with helicity ±1, the polarisation vectors must satisfy pαα̇εαα̇ = 0. Thus
the solutions can be written, up to a gauge transformation, as

εαα̇+,i = c+
λ̃α̇i µ

α
i

〈λiµi〉
, εαα̇−,i = c−

λαi µ̃
α̇
i

[λ̃iµ̃i]
, (1.1.23)

where µ, µ̃ are arbitrary reference spinors which are linearly independent of λ, λ̃ and c+, c−

are non-zero constants. It is worth noting that we can redefine the reference spinors

µ→ µ+ δµ, µ̃→ µ̃+ δµ̃, (1.1.24)

such that the ε± only change by a shift proportional to pαα̇. This is equivalent to a gauge
transformation which leaves the amplitude invariant hence we may choose µ, µ̃ for every
external particle to simplify calculations.

A typical example of the power of spinor-helicity variables is the amplitude for n glu-
ons where all but two gluons have positive helicity and the others have negative helicity.
These are the Maximally Helicity Violating, or MHV, amplitudes, which at tree-level are
given by the Parke-Taylor factor [15]

AMHV
n (1+, . . . , i−, . . . , j−, . . . , n+) = δ(4)

(
n∑
i=1

λαλ̃α̇

)
〈ij〉4

〈12〉〈23〉 · · · 〈n1〉
, (1.1.25)

where the delta function enforces momentum conservation. The parity-conjugate of (1.1.25),
the anti-MHV or MHV amplitude, has the same form except with square brackets

AMHV
n (1−, . . . , i+, . . . , j+, . . . , n−) = δ(4)

(
n∑
i=1

λαλ̃α̇

)
[ij]4

[12][23] · · · [n1]
. (1.1.26)

For six external gluons the above result is equivalent to the sum of 220 diagrams just at
tree-level. This fact is hidden when we express these amplitudes in four-vectors and can
only be seen when we introduce spinor-helicity variables.

1.1.3 BCFW

The Britto-Cachazo-Feng-Witten (BCFW) recursion relation [17, 84] is a very powerful
on-shell technique for calculating scattering amplitudes using their analytic properties (lo-
cations of singularities). It allows us to recursively express a tree-level amplitude in terms
of amplitudes with only three particles. First we will explore the special kinematics of
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three-particle scattering in a massless theory. It should also be noted that similar recur-
sion relations exist for massive particles [85] and loop amplitudes [86, 87].

The three-point gluon amplitude

For real null momenta, there are no three-point amplitudes as

pµ1 + pµ2 + pµ3 = 0 → p1 · p2 = p2 · p3 = p3 · p1 = 0, (1.1.27)

leaves no invariants amplitudes could depend on. The only solution to the above conditions
is that all momenta are collinear, p1 ‖ p2 ‖ p3.

The situation is different for complex momenta, pi ∈ C. In this case λi, λ̃i are indepen-
dent and 〈ij〉[ji] = 0 can be solved by either 〈ij〉 = 0,∀ i, j = 1, 2, 3 or [ij] = 0, ∀ i, j =

1, 2, 3. Hence either λα1 ∝ λα2 ∝ λα3 (collinear left-handed spinors) or λ̃α1 ∝ λ̃α2 ∝ λ̃α3
(collinear right-handed spinors) solve the constraints pi · pj = 0. The two choices corre-
spond to the three-gluon MHV and MHV amplitudes respectively. They are given by

AMHV
3 (i−, j−) =

〈ij〉4

〈12〉〈23〉〈31〉
, AMHV

3 (i+, j+) =
[ij]4

[12][23][31]
. (1.1.28)

These results can be argued to be the only functional forms compatible with the helicity
assignments of the external particles and the vanishing of 〈ij〉 and [ij], respectively, up to
a free constant which is identified with the coupling constant [88].

The recursion relation

Now that we have the fundamental building blocks with which to build amplitudes, we can
now discuss the BCFW recursion relation itself.

We begin by introducing a complex shift to two of the spinors, which preserves the
on-shell condition, and see how the amplitude behaves. You can shift any two legs but for
simplicity we shall shift the spinors of two neighbouring legs, 1 and n.

λ1 → λ̂1(z) = λ1 − zλn,

λ̃n → ˆ̃
λn(z) = λ̃n + zλ̃1,

(1.1.29)

with z ∈ C, and λ̃1 and λn are left unchanged. This changes the momenta,

pαα̇1 → p̂αα̇1 (z) = (λ1 − zλn)αλ̃α̇1 ,

pαα̇n → p̂αα̇n (z) = λαn(λ̃n + zλ̃1)α̇.
(1.1.30)

As mentioned, this deformation preserves the on-shell conditions but it also preserves
momentum conservation

p̂2
1(z) = 0, p̂2

n(z) = 0, p̂1(z) + p̂n(z) = p1 + pn, (1.1.31)

and the deformed partial amplitude is written as

An(z) = δ(4)

(
n∑
i=1

pi

)
An(z). (1.1.32)

The BCFW recursion relation focusses on understanding the behaviour of the function
An(z) in the complex z plane. To this end we will first analyse the locations of the poles
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An(z)

43

2

1̂ n̂

∼
z→zPi

1

z − zPi
AL AR

i− 1

2

1̂

i
i+ 1

n̂

Figure 1.2: Factorisation of the z deformed amplitude on the pole z = zPi

of An(z). We will then show that the residues of the poles correspond to products of lower
point amplitudes. Finally, we will determine the large z behaviour of An(z).

Our first step is to check that A(z) only has poles where the Feynman propagators
have poles. Due to colour-ordering, these propagators take the form

1

(pi + pi+1 + · · ·+ pj)2
, (1.1.33)

i.e. their denominators are formed by a sum of adjacent momenta. With the shifted
momenta these propagators take the form

1

P̂i(z)
:=

1

(p̂1(z) + p2 + · · ·+ pi−1)2
=

1

(pi + pi+1 + · · ·+ p̂n(z))2

=
1

P 2
i − z 〈n|Pi|1]

,

(1.1.34)

where Pi := p1 +p2 + · · ·+pi−1 and 〈n|Pi|1] = λnαP
αα̇
i λ̃1α̇. Note that any region momenta

containing both p̂1 and p̂n is independent of z and so cannot contribute any poles. Therefore
only the propagators considered above can produce poles. We can see that An(z) only has
simple poles in z at

zPi =
P 2
i

〈n|Pi|1]
, ∀ i ∈ [3, n− 1]. (1.1.35)

Now we know where the poles are, we need to know the residues at these poles. It is
known that tree-level amplitudes factorise when a propagator goes on-shell. The on-shell
propagator splits the amplitude into two halves, one at each end of the propagator. The
propagator going on-shell can also be represented as inserting a complete set of all on-shell
states. Approaching the pole zPi is equivalent to a propagator going on-shell hence near
it the amplitude An(z) factorises into a product of lower-point amplitudes, which we label
as “left" and “right" amplitudes AL and AR. We demonstrate this in Figure 1.2.

lim
z→zPi

An(z) =
1

z − zPi
−1

〈n|Pi|1]

∑
s

AL(1̂(zPi), 2, . . . , i− 1,−P̂s(zPi)) (1.1.36)

×AR(P̂s̄(zPi), i, . . . , n− 1, n̂s(zPi)), (1.1.37)

where the sum over s runs over all possible on-shell states propagating between AL and
AR, and s̄ = −s. In general this will depend on the field content of the theory under
consideration e.g. for gluons s = {+1,−1}.

We can now use complex analysis to construct An(z = 0) from the knowledge of the
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AMHV
4 (1̂−, 2+, 3+, 4̂−) = AL AR

2+

1̂−

3+

4̂−

=
〈14〉4

〈12〉〈23〉〈34〉〈41〉

Figure 1.3: The four-point MHV amplitude with the intermediary BCFW step

poles of An(z). We do this by looking at the function An(z)/z and its behaviour in the
limit

lim
z→zPi

An(z)

z
= − 1

z − zPi

∑
s

AsL(zPi)
1

P 2
i

As̄R(zPi), (1.1.38)

where the AL and AR correspond to the AL and AR, respectively, in (1.1.37).

Using the residue theorem, we may write the original amplitude An as

An = An(z = 0) =

∮
C0

dz

2πi

An(z)

z

=
n−1∑
i=2

∑
s

AsL(zPi)
1

P 2
i

As̄R(zPi) + Res(z =∞),

(1.1.39)

where C0 is a small circle around the origin at z = 0 that does not encompass any of the
poles zPi . The step from the first line to the second line of (1.1.39) we have blown up C0

to infinity, capturing all the poles in the complex plane z, now encircled in the opposite
orientation. As z →∞ we need A(z)→ 0 as fast as 1/z → 0. This happens to be the case
for gluon amplitudes but is not true in general. Hence we can drop the residue at infinity
and we arrive at the BCFW recursion relation

An =
n−1∑
i=2

∑
s

AsL(zPi)
1

P 2
i

As̄R(zPi). (1.1.40)

We stated above that we chose adjacent legs for simplicity, if we had chosen non-adjacent
legs this would result in more BCFW diagrams. In general, different shifts in the momenta
correspond to different, yet equivalent, representations of the same amplitude, which we
will see later in this thesis.

In Figure 1.2 an n-point amplitude was factorised into sub-amplitudes. If we use the
recursion relation repeatedly we can keep factorising sub-amplitudes until we have a series
of three-point sub-amplitudes where at least one of the legs is an on-shell propagator. For
example, the BCFW recursion of the four-point MHV amplitude is given in Figure 1.3.

1.1.4 Factorisation Poles

We have already seen that tree amplitudes factorise into the products of lower ones when
taking the residues of the poles in propagators. However, one cannot take multiple residues
in arbitrary channels. Mandelstams label different channels but they also correspond to
an assignment of particles to incoming and outgoing states. Two channels are described
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s345

2

1

6

3

4

5

vs.
s234

4

3

2

5

6

1

Figure 1.4: Two overlapping channels for six-point scattering. The discontinuity of an
amplitude in the s345 channel (left) cannot be followed by a discontinuity in the s234

channel (right).

as overlapping if the four sets into which they divide the particles - (incoming, incoming),
(incoming, outgoing), (outgoing, incoming), (outgoing, outgoing) - are all non-empty. An
example of two overlapping channels is given in Figure 1.4. Hence taking consecutive
residues in overlapping channels corresponds to the following condition

Ressjj+1j+2(Ressii+1i+2A) = 0, for j = i± 1, i± 2. (1.1.41)

Similar conditions exists for loop amplitudes in the Steinmann conditions where an anal-
ogous statement restricts consecutive discontinuities in overlapping channels.

1.2 Scattering equations

In [80, 81], the authors described the Cachazo-He-Yuan (CHY) formalism, showing that
any n-point tree-level amplitude, in an arbitrary number of dimensions, can be expressed
as a multiple integral over the moduli space of n marked points on the Riemann sphere
M0,n

An =

∫ ∏n
a=1 dσa

volSL(2,C)

∏′

a

δ(fa)In. (1.2.1)

Since tree-level amplitudes are rational functions, the integrand is completely localised by
the delta functions, which are defined as∏′

a

δ(fa) ≡ (σrpσpqσqr)
∏

a6=r,p,q
δ(fa), (1.2.2)

where σab ≡ σa − σb and we are free to choose r, p, q at our convenience. The arguments
of the delta functions are the so-called scattering equations, which establish a map from a
configuration of n massless momenta to the moduli space M0,n, and are given by

fa =
∑
b6=a

ka · kb
σa − σb

= 0, a = 1, 2, . . . , n. (1.2.3)

The integrand In contains the information on the dynamics of whichever massless theory
one is considering. There are many so-called “special” theories that can be described
using the CHY formalism including, but not limited to: Yang-Mills, Einstein Gravity,
Einstein-Yang-Mills, Einstein-Maxwell, Born-Infeld, and Dirac-Born-Infeld. A full list and
the relations between them can be found in [89].
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One of these theories in particular will play a part in the second half of this thesis; the
massless biadjoint φ3 theory. A proof for the CHY formalism in an arbitrary number of
dimensions was given in [90]. The authors first established a result for massless φ3 theory
using BCFW, then extending this to the gauge theory case. They also generalised CHY
to massive particles.

As solving the scattering equations is infamously difficult, in later chapters we shall be
examining φ3 theory through the lens of tropical geometry by generalising the approach
of summing over Feynman diagrams. This will also allow us to generalise the scattering
equations beyond M0,n.

1.3 N = 4 super Yang-Mills theory

The majority of the research in this thesis involves a particular gauge theory - N = 4

supersymmetric Yang-Mills theory (SYM). This is a superconformal field theory and the
most symmetric gauge theory in four dimensions (without gravity) in which a substantial
amount of progress has been made in the study of amplitudes. In this section we will review
the symmetries and properties of this theory and how they affect the form of amplitudes
within it, often simplifying calculations. The Lagrangian of N = 4 super Yang-Mills theory
is given by

L =
1

g2
YM

Tr

[
−1

4
F 2
µν −DµφABD

µφAB − 1

2
[φAB, φCD]

[
φAB, φCD

]
+ iψ̄Aα̇σ

αα̇
µ DµψαA −

i

2
ψαA
[
φAB, ψαB

]
− i

2
ψ̄Aα̇
[
φAB, ψ̄

α̇B
]]
,

(1.3.1)

where Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] is the field strength tensor and Dµ = ∂µ − igAµ is
the covariant derivative. This theory consists of a gluon, Aµ, four gluinos ψαA, ψ̄α̇A, and
six real scalars (or three complex) φAB = −φBA. The form of this theory is uniquely fixed
by the N = 4 supersymmetry and it only has two tunable parameters: the gauge coupling
gYM and the rank N of the gauge group SU(N).

1.3.1 Supersymmetry

We can see from the interaction terms in (1.3.1), that a tree-level amplitude with only
gluons as external states must only contain gluons. This tells us that all pure gluon tree-
amplitudes in SYM are the same as those from pure Yang-Mills. It turns out the pure
fermion and pure scalar tree-amplitudes are related to the purely gluonic ones by super-
symmetry (SUSY) transformations. It has also been shown that one-loop gluon amplitudes
can be written as a sum of scalar box integrals with rational coefficients [18, 38]. Hence
SUSY allows us to exchange one, more complicated integral for a sum of simpler ones.
These are just two ways in which the level of SUSY in SYM can simplify calculations and
reveal more about pure YM. Here we will review N = 4 supersymmetry.
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Multiplicity Field
2 gluons g−, g+

4 chiral fermions ψα̇A
4 anti-chiral fermions ψ̄Aα
6 (real) scalars φAB

Table 1.1: Field content of N = 4 SYM.

For SUSY with N supercharges, or generators, QAα , Q̄α̇A, the SUSY algebra is

{QAα , Q̄α̇B} = 2σµαα̇Pµδ
A
B,

{QAα , QBβ } = 0,

{Q̄α̇A, Q̄β̇B} = 0,

(1.3.2)

where A,B = 1, . . . ,N are R-symmetry indices. R-symmetry transforms the QAα amongst
themselves, and in the case of N = 4, this is an SU(4) symmetry. The algebra in (1.3.2)
is a Clifford algebra hence we can define Clifford vacua which are ground states for the
supercharges

QAα |g+〉 = 0, Q̄α̇A |g−〉 = 0, (1.3.3)

these ground states are associated with the positive and negative helicity gluons. The
generators Q̄/Q act on these vacua as raising/lowering operators, generating a tower of
helicity states, for example

QAα |g−〉 = λα |ψ̄〉
A
, Q̄α̇A |g+〉 = λ̃α̇ |ψ〉A . (1.3.4)

Hence for N = 4 we have four left-handed and four right-handed fermions and continued
acting of the generators produces a further six real scalars (or three complex scalars). We
summarise these states in Table 1.1.

The only representation of this superalgebra is an on-shell vector supermultiplet which
comprises all the states above which transform in the adjoint of the gauge group. This
means we can collect these states together into one superfield [91]

|Φ〉 = |g+〉+ ηA |ψA〉+
1

2!
ηAηB |φAB〉+

1

3!
ηAηBηC |ψABC〉+ η1η2η3η4 |g−〉 , (1.3.5)

where ηA is a Grassmann variable transforming in the SU(4) fundamental representation.

The on-shell chiral superspace is parametrised by four fermionic coordinates {θαA}. The
state |Φ〉 is an eigenstate of the generators

QAα |Φ〉 = qAα |Φ〉 , (1.3.6)

where the eigenvalue qAα = λαη
A is the supermomentum carried by the state |Φ〉 in the θαA

direction. We summarise the natural representation of the single-particle SUSY generators
in on-shell superspace

Pαα̇ = λαλ̃α̇, QAα = λαη
A, Q̄α̇A = λ̃α̇

∂

∂ηA
, (1.3.7)

where we have used Pαα̇ as is convention when discussing generators.
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1.3.2 Superamplitudes

We can see in (1.3.7) that the operators pαα̇ and QAα are multiplicative while Q̄α̇A is a
first-order differential operator. The condition that superamplitudes be invariant under
the multiplicative operators requires their general form to be

An =
δ0|8 (

∑n
i=1 λiηi) δ

(4)
(∑n

i=1 λiλ̃i

)
〈12〉〈23〉 · · · 〈n1〉

Pn, (1.3.8)

where δa|b corresponds to a bosonic constraints and b fermionic ones. The fermionic delta
function enforces conservation of super-momentum and corresponds to an expansion

δ0|8

(
n∑
i=1

λiαη
A
i

)
=
∏
α=1,2

4∏
A=1

n∑
i=1

λiαη
A
i . (1.3.9)

Due to the SU(4) R-symmetry, the function Pn has an η-expansion of the form

Pn = P(0)
n + P(4)

n + P(8)
n + · · ·+ P(4n−16)

n (1.3.10)

where P(k)
n ∼ O(ηk). Each term in this expansion corresponds to a helicity configuration

of the external particles
P(4k) → NkMHV, (1.3.11)

where an NkMHV amplitude has k + 2 negative helicity particles and n − k − 2 positive
helicity particles. Hence the k = 0 term corresponds to the MHV superamplitude. It can
be shown that P(0) = 1, thus the MHV tree-superamplitude is given by the prefactor in
(1.3.8)

AMHV
n =

δ0|8 (
∑n

i=1 λiηi) δ
(4)
(∑n

i=1 λiλ̃i

)
〈12〉〈23〉 · · · 〈n1〉

, (1.3.12)

where the MHV amplitude follows from parity (λ → λ̃, η → η̄) and a Fourier transfor-
mation back to η-space. Integrating the superamplitude over the η’s, in accordance with
Grassmann calculus ∫

dηAηA = 1,

∫
dηA = 0, (1.3.13)

selects a specific state from (1.3.5) ∫
d4η → |g−〉 ,

εABCD

∫
d4η ηA → |ψ〉BCD ,

1

2!
εABCD

∫
d4η ηAηB → |φ〉CD ,

1

3!
εABCD

∫
d4η ηAηBηC → |ψ〉D ,

1

4!
εABCD

∫
d4η ηAηBηCηD → |g+〉 ,

(1.3.14)

where d4η ≡ dη1dη2dη3dη4 and the Grassmann delta functions in the amplitudes ensure
that the η’s are localised. Thus SUSY reduces the number of calculations we have to
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perform; once we have calculated a pure gluon amplitude in SYM we can generate the
corresponding fermion and scalar amplitudes simply by SUSY transformations.

1.3.3 Super-BCFW

With the introduction of superamplitudes, we can now give a short review of the super-
symmetric extension of the BCFW recursion relation. We begin by introducing a shift in
the Grassmann variable ηA in a similar way as we did for the spinors in (1.1.29)

η̂1 = η1, η̂n = ηn + zη1, (1.3.15)

where we have dropped the SU(4) index for clarity. Similarly, this shift conserves super-
momentum

q1 → q̂1 = (λ1 − zλn)η̂1,

qn → q̂n = λnη̂n,

q̂1 + q̂n = q1 + qn.

(1.3.16)

From here, the steps for deriving the super-BCFW recursion are the same as those given
above. The amplitude is split into a left and right part and the knowledge of the poles of
these parts allow us to derive a form for the unshifted superamplitude

An =
n−1∑
i=3

∫
d4ηP̂iA

L
i (1̂(zPi), 2, . . . , i− 1,−P̂ (zPi))

× 1

P 2
i

ARn−i+2(P̂ (zPi), i, . . . , n− 1, n̂(zPi)),

(1.3.17)

whereAL, AR have their bosonic delta-functions δ(4)(
∑

i λiλ̃i) stripped-off but the fermionic
ones remain included.

It will be useful for later discussions to review the NMHV derivation from super-BCFW
which will closely follow that of [92].

One can decompose the super-BCFW recursion (1.3.17) into the different Grassmann
degree contributions i.e. decomposing the superamplitudes into their various NkMHV parts
as in (1.3.10). This results in a generalisation of the super-BCFW recursion

ANkMHV
n =

∫
d4ηP
P 2
AMHV

3 (zP )ANkMHV
n−1 (zP )

+
k−1∑
m=0

n−1∑
i=4

∫
d4ηPi
P 2
i

ANmMHV
i (zPi)AN(k−m−1)MHV

n−i+2 (zPi).

(1.3.18)

This recursion relation demonstrates an iterative structure for helicity amplitudes. For
example, in order to calculate an NMHVn amplitude (where the subscript denotes the
number of particles), we need to know the NMHVn−1, MHVk<n, and MHVn amplitudes

ANMHV
n =

∫
d4P

P 2

∫
d4ηP̂A

MHV
3 (zP )ANMHV

n−1 (zP )

+

n−1∑
i=4

∫
d4Pi
P 2
i

∫
d4ηPiAMHV

i (zPi)AMHV
n−i+2(zPi),

≡ A+B,

(1.3.19)
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where A,B are homogeneous and inhomogeneous terms respectively. The inhomogeneous
term can be straightforwardly computed as it is built out of MHV amplitudes only, thus
we have this contribution to the n-point NMHV amplitude

B =
δ(4)(p)δ(8)(q)∏n
j=1〈jj + 1〉

n−1∑
i=4

Rn;2i, (1.3.20)

where p and q are total momentum and supermomentum respectively. Here Rr;st is called
an R-invariant (due to its invariance under the dual superconformal symmetry, something
we shall discuss in more detail shortly) which has the form

Rr;st =
〈ss− 1〉〈tt− 1〉δ(4)(Ξr;st)

x2
st 〈r|xrsxst |t〉 〈r|xrsxst |t− 1〉 〈r|xrtxts |s〉 〈r|xrtxts |s− 1〉

, (1.3.21)

where the Grassmann odd quantity Ξr;st is given by

Ξr;st = 〈r|xrsxst |θtr〉+ 〈r|xrtxts |θsr〉 , (1.3.22)

and
xij := pi + pi+1 + · · ·+ pj−1, θij := qi + qi+1 + · · ·+ qj−1, (1.3.23)

are the dual variables or region momenta which will play a more significant role in the next
section.

The most trivial case for NMHV is five-points where NMHV5 = MHV5 which we could
calculate from (1.3.12) but it is an instructive case nevertheless. Since there is no four-
point NMHV amplitude, the only contribution to NMHV5 comes from the inhomogeneous
term (1.3.20)

ANMHV
5 =

δ(4)(p)δ(8)(q)∏5
j=1〈jj + 1〉

R5;24. (1.3.24)

Requiring cyclic symmetry of the amplitude implies

R5;24 = R1;35 = R2;41 = R3;52 = R4;13, (1.3.25)

where we have dropped the supermomentum delta function for clarity. These identities
are a first example of a general identity for n points∑

s,t

Rr;st =
∑
s,t

Rr′;st, (1.3.26)

where the sum is over all values of s, t such that r, s, t (or r′, s, t) are ordered cyclically
with |r − s| ≥ 2 (or |r′ − s| ≥ 2).

The general n-point NMHV amplitude can be generated from the (n− 1)-point one by
assuming the ansatz

ANMHV
n = AMHV

n PNMHV
n =

δ(4)(p)δ(8)(q)

〈12〉〈23〉 · · · 〈n1〉
∑

2≤s<t≤n−1

Rn;st, (1.3.27)

to be true and proving by induction. By assuming the above holds for n − 1 we can
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substitute it into the homogeneous term A in (1.3.19)

A =

∫
d4P

P 2

∫
d4ηP̂A

MHV
3 (zP )AMHV

n−1 PNMHV
n−1 (P̂ , 3, . . . , n̄), (1.3.28)

where we have used cyclic symmetry to identify the legs {1, 2, . . . , n − 1} with the legs
{P̂ , 3, 4, . . . , n}. Due to the uniqueness of three-point kinematics and homogeneity of R-
invariants, the explicit dependency on P̂ can be removed, thus we find

A =
δ(4)(p)δ(8)(q)∏n
j=1〈jj + 1〉

∑
3≤s<t≤n−1

Rn;st. (1.3.29)

We can see that (1.3.20) is the missing s = 2 term to complete (1.3.29) into the ansatz
(1.3.27)

A+B = ANMHV
n =

δ(4)(p)δ(8)(q)

〈12〉〈23〉 · · · 〈n1〉
∑

2≤s<t≤n−1

Rn;st. (1.3.30)

It was also shown in [92] that one can completely solve the super-BCFW recursion, finding
an exact analytic expression for all tree-level superamplitudes in N = 4 SYM.

1.3.4 Dual conformal symmetry and twistors

It was shown in [3] that the colour-ordered partial amplitudes in planar N = 4 super Yang-
Mills exhibit a symmetry not present in the Lagrangian - dual superconformal symmetry.
Introducing dual variables

pαα̇i = λαi λ̃
α̇
i = xαα̇i+1 − xαα̇i , qαAi = λαi η

A
i = θαAi+1 − θαAi , (1.3.31)

it can be shown that amplitudes in SYM exhibit a formal superconformal invariance in the
dual (x, θ) space. By the identification xn+1 = x1, we can see that these dual variables au-
tomatically satisfy momentum conservation. This can be seen diagrammatically in Figure
1.5, where the dual variables form a closed, light-like polygon. This also demonstrates the
duality between scattering amplitudes and Wilson loops in SYM at weak coupling. This
duality has also been show to hold at strong coupling [50–55, 93–98]. This duality has
very profound consequences for the scattering amplitudes. In particular, the scattering
amplitude exhibits the anomalous conformal symmetry acting on the Wilson loop. The
fact that the momenta are null means that the geometry in the dual space is associated
with null lines, for which Penrose’s (super)twistor variables are most appropriate [99],

Zi = (Zi |χi) , Zα,α̇i = (λαi , x
βα̇
i λiβ) , χAi = θαAi λiα. (1.3.32)

Hence the kinematics of scattering amplitudes or light-like Wilson-loops are naturally
parametrised using n momentum twistors Zi ∈ CP3 with i = 1, . . . , n. The χi are
Grassmann variables which complete the Zi into supertwistors. They transform in the
fundamental representation of the su(4) R-symmetry and encode all the different possible
choices of NMHV component amplitudes which may be extracted from the NMHV super-
amplitude. Each twistor also carries an index A which indicates the linear action of the
sl4 dual conformal symmetry. The basic sl4 invariants are the Plücker coordinates 〈ijkl〉
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p1
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x2

x3
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Z2

Z3

Zn−1

Zn

Figure 1.5: Equivalence between an amplitude in momentum space and a closed, light-like
polygon in twistor space.

where
〈ijkl〉 = εABCDZ

A
i Z

B
j Z

C
k Z

D
l = det(ZiZjZkZl) . (1.3.33)

These four-brackets are Plücker coordinates because the n twistors Zi can be thought of as
parameterising a Grassmannian Gr(4, n) modulo the rescaling of each of the Zi individually.
Since the global rescaling of all Zi simultaneously is already taken into account in the
definition of the Grassmannian, the kinematical space is identified with

Confn(P3) = Gr(4, n)/(C∗)n−1 . (1.3.34)

In Chapter 2, we will see that this space comes equipped with a very powerful mathematical
structure called a cluster algebra.

In special cases where the four labels of the Plücker coordinate consists of two adjacent
pairs, 〈i− 1 i j − 1 j〉, they correspond to multi-particle Mandelstam invariants

xi =
Zi−1∧Zi
〈i− 1 i I〉

, si,...,j−1 = x2
ij =

〈i− 1 i j − 1 j〉
〈i− 1 iI〉〈j − 1 jI〉

, (1.3.35)

where I is the ‘infinity twistor’ which is necessary to relate twistor brackets to non-
conformally invariant quantities such as Mandelstam invariants. However, a dual-conformal
object, examples of which we shall see shortly, depends only on the homogeneous rational
combinations of these brackets such that the dependence on the infinity twistor cancels
out.

When written in twistor variables [5], R-invariants (1.3.21) depend on five twistors and are
defined as

[ijklm] =
δ(0|4)(χi〈jklm〉+ cyclic)

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
. (1.3.36)

These are the basic invariants of the Yangian symmetry [100] of scattering amplitudes which
combines both the superconformal and dual superconformal symmetries. The R-invariants
are not all independent; there are

(
n−1

4

)
linearly independent ones due to identities of the

form
[abcde]− [bcdef ] + [cdefa]− [defab] + [efabc]− [fabcd] = 0 . (1.3.37)
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which is equivalent to the identity (1.3.26).

1.3.5 Loop amplitudes in SYM

Our discussion so far has only involved tree-amplitudes but calculating amplitudes at loop
level can be much more challenging. Fortunately, dual conformal symmetry can simplify
loop amplitude calculations quite substantially.

When studying loop amplitudes in SYM, it is useful to factor out the MHV tree-level
amplitude

M (L)
n (ε) =

A
(L)
n

A
(0)
n

. (1.3.38)

where ε is the dimensional regularisation parameter in D = 4 − 2ε. The first indication
of an underlying structure of loop amplitudes was found by Anastasiou, Bern, Dixon, and
Kosower (ABDK) [101]. They observed that the four-particle, two-loop amplitude M (2)

4

can be expressed in terms of the one-loop result. Motivated by the resummation and
exponentiation of IR singularities in [102] and the connection to n-point amplitudes in
[103], Bern, Dixon, and Smirnov (BDS) conjectured an exponentiation of the planar MHV
n-point amplitudes at L-loops

MBDS
n =

An
A(0)
n

= exp

[ ∞∑
L=1

aL
(
f (L)(ε)M (1)

n (Lε) + C(L) +O(ε)
)]

. (1.3.39)

The remarkable fact about this formula is that kinematically it only depends on the one-
loop scattering amplitude. This can be explained by realising that the BDS ansatz is the
unique solution to the dual conformal Ward identities for n < 6 [104]. It also accounts for
collinear factorisation to all orders in perturbation theory [105].

We shall now describe the various ingredients in the BDS-ansatz (1.3.39). The factor
a keeps track of the loop order of perturbation theory and is given by

a = 2g2 =
g2
YMN

8π2
. (1.3.40)

The quantity M (1)
n (Lε) is the all-orders-in-ε one-loop amplitude and f (L)(ε) is given by

f (L)(ε) = f
(L)
0 + εf

(L)
1 + ε2f

(L)
2 . (1.3.41)

The constants f (L)
k and C(L) are independent of n and ε. They are both polynomials in the

Riemann values ζm with rational coefficients. They also have uniform transcendentality,
something we shall discuss in more detail shortly.

The BDS ansatz was successfully verified up to five-loops at four-points [106–108] and
three-loops at five-points [105, 109, 110]. However starting at six-points one can define
dual conformal invariant cross-ratios

Uijkl =
x2
ijx

2
kl

x2
ikx

2
jl

, (1.3.42)

where the number of algebraically independent cross-ratios at n-points is given by 3(n−5)

hence there are none for n < 5. The BDS ansatz captures the IR divergent part ofM (2)
6 but

there is a finite correction called the remainder function which depends on the cross-ratios
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[54, 55]. Hence for n > 5 the BDS ansatz takes the form

AMHV
n =MBDS

n exp[Rn], (1.3.43)

where Rn is the remainder function. This ansatz captures all infrared and collinear di-
vergences [102, 103, 111] of the planar amplitude, thus the remainder function is finite.
It is also invariant under dual conformal transformations [50, 104, 112–114]. The remain-
der function can be a useful object when calculating amplitudes as the n-point remainder
function smoothly tends to the (n − 1)-point remainder function in its collinear limits,
providing a consistency check of results. However, the remainder function has an altered
dependence on three-particle Mandelstams and does not possess the correct discontinuity
structure, namely it does not obey the Steinmann conditions [47]. For loop amplitudes,
the Steinmann conditions take the form

Discsjj+1j+2(Discsii+1i+2A) = 0, for j = i± 1, i± 2, (1.3.44)

and similar for higher-particle Mandelstam invariants. As we can see, these take the same
form as (1.1.41) except here we are taking consecutive discontinuities instead of residues.
For n 6= 0 mod 4 one can define an infrared finite and dual conformally invariant function
Yn, which can be removed from the one-loop amplitude allowing us to define a BDS-like
ansatz [115]

ABDS-like
n = ABDS

n exp

[
Γcusp

4
Yn

]
, (1.3.45)

where

Γcusp =
∞∑
L=1

g2LΓLcusp = 4g2 − 4π2

3
g4 +

44π4

45
g6 − 4

(
73π6

315
+ 8ζ2

3

)
g8 +O(g10), (1.3.46)

is the cusp anomalous dimension in the normalisation of e.g. [58]. The BDS-like ansatz is
the unique solution to the anomalous dual conformal Ward identity [104] dependent only
on the two-particle invariants (pi + pi+1)2 = x2

i i+2 (for n 6= 0 mod 4) thus obeying the
Steinmann conditions.

The scattering (super)amplitude then can be decomposed into two parts

An = ABDS-like
n En , (1.3.47)

where the remaining finite piece En can be written purely in terms of the supertwistors Zi
and has an expansion in Grassmann degree

En = En,MHV + En,NMHV + . . . , (1.3.48)

and is invariant under the dual conformal symmetry.
The MHV term in (1.3.48) is of degree zero in the Grassmann χi variables and hence

is just a function of the Zi and is given by

En,MHV = exp

[
Rn −

Γcusp

4
Yn

]
. (1.3.49)

Dual conformal symmetry implies it is a function of the four-brackets 〈ijkl〉. It is homoge-
neous of degree zero in each Zi and so is a function on the configuration space of n points
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Object Weight
π 1
ζn n

log(x) 1
Lin(x) n

Table 1.2: Some examples of transcendental objects and their weights. Lin(x) is the
classical polylogarithm.

in P3, denoted Confn(P3).

The NMHV term in (1.3.48) is of Grassmann degree four and can be written in terms of
R-invariants (1.3.36), which are multiplied by dual conformally invariant functions Eijklm
on Confn(P3),

En,NMHV =

n∑
i,j,k,l,m=1

[ijklm]Eijklm(Z1, . . . , Zn) , (1.3.50)

The function En,MHV depends only on the cross-ratios of the Wilson loop,

uij =
x2
ij+1x

2
ji+1

x2
ijx

2
i+1,j+1

. (1.3.51)

For a seven-particle process, there are seven such cross-ratios satisfying a Gram determinant
constraint which makes E7,MHV a six-variable function.

In what follows the functions En,MHV and En,NMHV (and hence the functions Eijklm)
admit perturbative expansions of the form

F =

∞∑
L=0

g2LF (L) . (1.3.52)

For the hexagon and heptagon amplitudes that we shall discuss later on we need only
consider MHV and NMHV terms in the expansion (1.3.48) since other amplitudes are
obtained by parity conjugation of these ones.

We refer the reader to [3, 5] for details on the structure of the supermultiplets and
supertwistor variables.

1.3.6 Polylogarithms and symbols

In perturbation theory, it is conjectured that amplitudes in SYM are of uniform transcen-
dentality i.e. the objects they are built out of all have the same weight k. Some examples
of transcendental objects and their weights are given in Table 1.2. According to all cur-
rent evidence, the functions appearing in six, seven, and eight-point SYM amplitudes are
transcendental (or pure) functions of weight 2L where L is the loop order. These pure
functions can be defined recursively by their derivatives

df (k) =
∑
a∈A

f
(k−1)
[a] d log a , (1.3.53)

where the a are some rational (or algebraic) functions of some number of variables (called
letters) and the sum runs over a finite set A of such functions (an alphabet). The space
of functions of degree one is spanned by the set of logarithms of the letters a themselves.
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The choice of the set A then determines a class of polylogarithmic functions recursively
in the degree. For example, in the case of functions of a single variable x, the choice
A = {x, 1 − x} yields the class of harmonic polylogarithms [26] with indices 0 or 1. In
particular, this example includes the classical polylogarithms Lin(x)

Lin(x) =

∫ x

0

dt

t
Lin−1(t), Li1(x) ≡ − log(1− x) =

∫ x

0

dt

1− t
, (1.3.54)

where Lin(x) can also be written as

Lin(x) = −
∫ x

0
d log(1− t) ◦ d log(t) ◦ d log(t) ◦ · · · ◦ d log(t)︸ ︷︷ ︸

n−1 times

. (1.3.55)

Polylogarithms are iterated integrals over logarithmic singularities, a more general kind
being Goncharov polylogarithms, also defined recursively

G(a1, a2, . . . , an;x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t),

G(a;x) =

∫ x

0

dt

t− a
, a 6= 0, G(~0n;x) =

1

n!
logn(x).

(1.3.56)

Thus the classical polylogarithms (1.3.54) are special cases of the Goncharov polyloga-
rithms for {a1, a2, . . . , an} = {0, 0, . . . , 1}.

The formula (1.3.53) encodes the (k − 1, 1) part of the coproduct [62] of the function
f (k). We write this as

f (k−1,1) =
∑
a∈A

[f
(k−1)
[a] ⊗ a] , (1.3.57)

where by convention we just record the argument of the d log in the second argument of
the tensor product. The arguments of the (k− 1, 1) coproduct must obey the integrability
relation ∑

a∈A
df

(k−1)
[a] ∧ d log a = 0 , (1.3.58)

which follows from d2f (k) = 0.

If we continue applying the definition of the (n, 1) coproduct iteratively to each of the
functions f (k−1)

[a] all the way down to weight zero, we obtain the symbol, an element of the
k-fold tensor product of the space of one-forms spanned by the d log a for a ∈ A (or more
compactly a word in the alphabet A),

S(f (k)) = f (1,...,1) =
∑

(a1,...,ak)

ca1,...,ak [a1⊗a2⊗ . . .⊗ak] , ca1,...,ak ∈ Q , ai ∈ A . (1.3.59)

Note that by common convention we write the letters a rather than d log a in the arguments
of the tensor product. This leads to the property that symbols with products of functions
in their arguments decompose as follows,

[a⊗ b b′ ⊗ c] = [a⊗ b⊗ c] + [a⊗ b′ ⊗ c] , (1.3.60)

and similarly that symbols with powers of functions in their arguments obey

[a⊗ b p ⊗ c] = p [a⊗ b⊗ c] p ∈ Q . (1.3.61)
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Some symbol examples are given below

S(π) = 0,

S(ζn) = 0,

S(log(x)) = [x],

S(Lin(x)) = −[(1− x)⊗ x⊗ · · · ⊗ x︸ ︷︷ ︸
n−1 times

],

(1.3.62)

where we can see that the symbol for Lin(x) mimics the integral over d log forms in (1.3.55).
An example of the power of the symbol can be seen when looking at the five-term identity
that the dilogarithms Li2(x) satisfy

5∑
i=1

(Li2(an) + log(an−1) log(an)) =
π2

6
,

a1 = x, a2 =
1− x
1− xy

, a3 =
1− y

1− xy
, a4 = y, a5 = 1− xy.

(1.3.63)

It is not obvious that this identity holds when looking at the functions however if we take
the symbol of the identity (and set y = 0 for simplicity)

− [(1− x)⊗ x]− [x⊗ (1− x)] + [x⊗ (1− x)] + [(1− x)⊗ x] = 0, (1.3.64)

the identity is automatically satisfied. As we can see, the symbol does not capture zeta-
values, or in other words, the symbol does not keep track of which Riemann sheet the
multivalued functions are evaluated on. These beyond the symbol terms can be recovered
numerically by demanding agreement before and after simplification.

The symbol S[f (k)] displays both the branch cut structure and the differential structure
of the function f (k). From the definition of the symbol (1.3.59) and the behaviour of
polylogarithms under derivative action (1.3.53) we see derivatives act on the symbol by
action on the rightmost element of the tensor product,

d [a1 ⊗ . . .⊗ ak] = [a1 ⊗ . . .⊗ ak−1] d log ak . (1.3.65)

In general, a linear combination of tensor products is not the symbol of a function. This
is only the case if the symbol (1.3.59) obeys the integrability conditions,∑

~a

c~a [a1⊗ . . .⊗ai−1⊗ai+2⊗ . . .⊗ak] (d log ai∧d log ai+1) = 0 , i = 1, . . . , k−1 (1.3.66)

which follow from the fact that d2f = 0 for all functions of all weights and encode the
commutativity of partial derivatives. These conditions also ensure that when integrating a
symbol up to its function, one is free to choose a contour of integration since the functions
depend only on the endpoints of integration.

Similarly, a logarithmic branch cut discontinuity around a singularity at a1 = 0 is
obtained from terms beginning with the letters a, assuming the alphabet is chosen so that
no other letter vanishes at a1 = 0,

Disca1=0[a1 ⊗ a2 ⊗ . . .⊗ ak] = (2πi)[a2 ⊗ . . .⊗ ak] . (1.3.67)
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Above one-loop, scattering amplitudes built out of polylogarithms can be very complicated.
For example, the two-loop hexagon Wilson loop (dual to the six-point two-loop remainder
function [50–52]) was analytically calculated in [116]. The calculation was famous for being
not only laborious but producing a 17-page long result, a combination of many weight-4
functions, many of which being Goncharov polylogarithms. However, in [66], the symbol
was used to simplify this result down to an expression which fits on a single line! In
using the symbol it was also shown that the six-point two-loop remainder function could
be written in terms of classical polylogarithms only. We refer the reader to the many
available references, e.g. [9, 25, 27, 28, 66, 117] for background on polylogarithms and
symbols.

A first step in the bootstrap calculations of [40–48] is to build integrable words in a
given alphabet. We quickly review here the method described in [48] for performing this
task. The construction of integrable words can be done iteratively in weight. We suppose
that we have a basis {f (k)

i } of integrable words up to weight k. This means that we know
how to decompose integrable words of weight k into their (k − 1, 1) coproducts

f
(k)
i =

∑
a,j

M
(k)
ija [f

(k−1)
j ⊗ a] . (1.3.68)

Now we would like to construct integrable words of weight (k+ 1). We build an ansatz
for the (k, 1) coproduct with constants cai,

f (k,1) =
∑
a,i

cai[f
(k)
i ⊗ a] . (1.3.69)

The constraints we have to solve come from the integrability condition (1.3.58),∑
a,i

caidf
(k) ∧ d log a =

∑
a,i

cai
∑
b,j

M
(k)
ijb f

(k−1)
j d log b ∧ d log a = 0 . (1.3.70)

where the first equality expresses df (k) using (1.3.53).

The two-forms d log a ∧ d log b are not generally all linearly independent. They satisfy
linear relations known as Arnold relations which essentially come from partial fraction
identities. We suppose that {ω(2)

m } form a basis for the space of independent two forms.
Then there exists a tensor Y which expresses each two-form d log a∧d log b in terms of the
independent basis

d log a ∧ d log b =
∑
m

Yab,m ω
(2)
m . (1.3.71)

It follows that the condition (1.3.70) becomes∑
a,i

cai
∑
b,j

M
(k)
ijb f

(k−1)
j Yab,m ω

(2)
m = 0 . (1.3.72)

Since the ω(2)
m form a basis for the independent two-forms and the f (k−1)

j form a basis for
the integrable words of weight (k − 1) the condition becomes∑

a,i

cai
∑
b

M
(k)
ijb Yab,m = 0 . (1.3.73)
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In other words we need to compute the kernel of the matrix

MAB =
∑
b

M
(k)
ijb Yab,m , A = (jm) , B = (ai) , (1.3.74)

where we grouped indices into multi-indices A,B.

To obtain a solution to (1.3.74) is a linear algebra problem that can be helpfully ad-
dressed with available packages. The package SpaSM [118] for sparse modular linear alge-
bra operations is particularly helpful as the matrices involved are typically sparse and all
quantities involved can be chosen to be integer-valued. However it is solved, one obtains
a basis for the kernel of M, i.e. a set of linearly independent null vectors {vA,l} where
l = 1, . . . ,dim(kerM). Expanding the multi-index A = (ai) we obtain the desired basis of
weight (k + 1) words,

f
(k+1)
l =

∑
a,i

M
(k+1)
lia [f

(k)
i ⊗ a] , M

(k+1)
lia = vai,l . (1.3.75)

The above procedure has been used extensively in several works as a first step in the
analytic bootstrap programme for amplitudes.

1.3.7 The Bootstrap Program

Here we shall give a general overview of the symbol bootstrap program, providing some
of the ingredients one would impose in order to calculate the symbol of an amplitude in
SYM.

In the last section, we described how one can use linear algebra to iterative generate
bases of integrable words of weight k. To compute the symbol of an L-loop amplitude
we must find a linear combination of elements of the weight 2L basis such that the result
matches the symbol one would get from taking the symbol of the explicit amplitude. This
can be done by taking an ansatz built out of the basis elements and imposing conditions,
which the amplitude is expected to obey, thus fixing the coefficients. We shall now discuss
some typical conditions one could impose.

Initial entry condition

Locality requires that amplitudes only have singularities when an intermediate particle
goes on-shell. For a planar theory the momenta of intermediate particles can always be
expressed as a sum of cyclically adjacent momenta, and for massless theories the thresholds
are always at the origin. Hence perturbative amplitudes in planar SYM theory can only
have branch points when the corresponding Mandelstam si,...,j−1 = x2

ij vanishes. As shown
in (1.3.67), the first entry of a symbol a1 corresponds to the function having a branch point
at a1 = 0 or a1 =∞. Therefore the first entry of a symbol that corresponds to a physical
n-point scattering amplitude must be one of the 3(n− 5) cross-ratios [119].

Steinmann Conditions

We can impose the Steinmann conditions on the ansatz to ensure that the result has the
correct discontinuity structure. For arbitrary n the Steinmann conditions take the form

Discsjj+1j+2(Discsii+1i+2A) = 0, for j = i± 1, i± 2, (1.3.76)
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with obvious generalisations to higher-particle Mandelstam invariants as well.

We shall see in the next chapter that so-called cluster algebras associated to Grassman-
nians Gr(k, n) provide more conditions beyond Steinmann which involve invariants other
than Mandelstams.

Final entry condition

In [120], it was shown, as a result of dual conformal symmetry, that the total differential
of the MHV remainder function is given by a linear combination of d log〈ij − 1jj + 1〉
forms. Since derivatives act on the final entry of a symbol, final entries of symbols of MHV
amplitudes are given by twistor brackets of the form 〈ij − 1jj + 1〉.

The MHV final entry condition just described can be derived from an anomaly equation
for the Q̄ dual conformal generators [121], which is given by

Q̄AaRn,k = aResε=0

∫ τ=∞

τ=0

(
d2|3Zn+1

)A
a

[Rn+1,k+1 −Rn,kRtree
n+1,1] + cyclic, (1.3.77)

where Rn,k is the infrared finite and regulator independent BDS-subtracted, n-point,
NkMHV amplitude, a,A = 1, . . . , 4 are momentum twistor indices, and ε, τ parametrise
Zn+1 in the collinear limit (τ being related to the longitudinal momentum fraction). The
operator Q̄Aa is given by

Q̄Aa = (SAα , Q̄
A
α̇ ) :=

n∑
i=1

χAi
∂

∂Zai
, (1.3.78)

where the form of the operators SAα , Q̄Aα̇ and the algebra they obey are given in Appendix
B.

This same anomaly equation can also be used to constrain the final entries of the symbol
of the NMHV superamplitude. For example, using the leading singularities of the N2MHV
eight-point amplitude obtained from the Grassmannian [2] as input, and redefining the Q̄
equation to act on the BDS-like normalised amplitude rather than the BDS-normalised
one, Caron-Huot found 147 distinct (R-invariant) × (final entry) combinations which are
given in [48] 1.

Discrete symmetries

Scattering amplitudes usually possess certain discrete symmetries, for example, dihedral
symmetry and parity are common. Dihedral symmetry consists of cyclic symmetry Zi →
Zi+1 and reflection symmetry Zi → Z1−i. Parity is a more involved transformation, acting
on the twistors as

Zi →Wi = ∗(Zi−1 ∧ Zi ∧ Zi+1). (1.3.79)

These discrete transformations can be imposed on the ansatz of integrable words in order
to fix more coefficients.

1In the reference [48] it was stated that the list of 147 final entry combinations was from a private
conversation with Caron-Huot.
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Collinear limit

As mentioned above, the remainder function tends smoothly in the collinear limit, namely

Rn → Rn−1, for i||i+ 1. (1.3.80)

In terms of (super)twistors, for n||n− 1 this limit takes the form

Zn → Zn−1+ε
〈n− 3n− 1 12〉
〈n− 3n− 2 12〉

Zn−2+
〈n− 3n− 2n− 1 2〉
〈n− 3n− 2 12〉

ετZ1+
〈n− 3n− 2n− 1 1〉
〈n− 3n− 2 12〉

ηZ2,

(1.3.81)
although there are many other collinear limits one could choose from.

Multi-Regge kinematics

Useful information about amplitudes can be extracted by analysing them in particular
kinematics. One such kinematic regime is the multi-Regge kinematics.

Multi-Regge kinematics (MRK) is defined as a 2-to-(n− 2) scattering of particles (for
our purposes we need only consider gluons) where the produced particles in the final state
are strongly ordered in rapidity while having comparable transverse momenta

y3 � y4 � · · · � yn and |p⊥3 | ' |p⊥4 | ' · · · ' |p⊥n |, (1.3.82)

where p⊥i = p1
i + ik2

i is the complexified transverse momenta. This strong ordering in
rapidity is equivalent to a strong ordering in lightcone +-coordinates

p+
3 � p+

4 � · · · � p+
n , (1.3.83)

where
pi = (p+

i , p
−
i ; p⊥i ), p± = p0

i ± p3
i . (1.3.84)

The mass-shell condition p2
i = p+

i p
−
i − |p⊥i |2 = 0 implies that

p−n � p−n−1 � · · · � p−4 � p−3 . (1.3.85)

In lightcone coordinates, the two-particle invariants become

s12 = 2p1 · p2 ' p+
3 p
−
n ,

s1i = 2p1 · pi ' −p+
i p
−
n ,

s2i = 2p2 · pi ' −p+
3 p
−
i ,

sij = 2pi · pj ' p+
i p
−
j , 3 ≤ i < j ≤ n.

(1.3.86)

The last line of (1.3.86) shows that all Mandelstams made of k consecutive final state
momenta sii+1···i+k ' sii+k will be comparable in size and much larger than invariants
made of k − 1 consecutive momenta. Thus the ordering of the lightcone coordinates in
(1.3.83) leads to a hierarchy of Mandelstams

s12 � s3···n−1, s4···n � s3···n−2, s4···n−1, s5···n � · · ·

· · · � s34, · · · , sn−1n � −t1, · · · ,−tn−3,
(1.3.87)

where ti+1 ≡ q2
i and qi ≡ −p2 − · · · − pi+3 = x2

i+3,1. It is conjectured that in MRK every
gluon amplitude factorises into a set of universal building blocks, as shown in Figure 1.6,
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p1 pn

p2 p3

p4

pn−1

qn

q4

Figure 1.6: The factorised form of a tree-level scattering amplitude in multi-Regge kine-
matics.

describing the emission of gluons along a t-channel ladder

An ' sC(2; 3)
−1

|q⊥4 |2
V (q4; 4; q5) · · · −1

|q⊥n−1|2
V (qn−1;n− 1; qn)

−1

|q⊥n |2
C(1;n), (1.3.88)

where qi =
∑i−1

j=2 pj with 4 ≤ i ≤ n are the momenta exchanged in the t-channel. Certain
terms in (1.3.88) are power-suppressed in the kinematic limit hence the use of '. The
various building blocks on the right-hand side of (1.3.88) are the impact factors [72, 122]

C(2+; 3+) = C(2−; 3−) = 0,

C(2−; 3+) = C(2+; 3−) = 1,

C(1+;n+) = C(1−;n−) = 0,

C(1−;n+) = C(1+;n−) =
(p⊥n )∗

p⊥n
,

(1.3.89)

and the Lipatov vertices [122–124]

V (qi; i
+; qi+1) = V (qi; i

−; qi+1)∗ =
(q⊥i )∗q⊥i+1

p⊥i
. (1.3.90)

The impact factors conserve helicity thus forcing certain helicity combinations in (1.3.89)
to vanish. They, along with the Lipatov vertices, are completely determined by the four
and five-point amplitudes. Since all helicity configurations for four and five particles are
MHV (or MHV), any amplitude in MRK is determined by MHV-type building blocks,
independently of the helicity configuration.

The factorisation of the amplitude in MRK (1.3.88) is consistent with all available
results for tree amplitudes but has only been rigorously proven for arbitrary multiplicity
for the simplest helicity configurations [122].

In SYM, we can pick a set of 3n− 15 dual conformal invariant cross-ratios (1.3.42) of
the form

u1i =
x2
i+1,i+5x

2
i+2,i+4

x2
i+1,i+4x

2
i+2,i+5

, u2i =
x2
n,i+3x

2
1,i+2

x2
n,i+2x

2
1,i+3

, u3i =
x2

1,i+4x
2
2,i+3

x2
1,i+3x

2
2,i+4

, (1.3.91)

which can be associated to the t-channel invariants (1.3.87) with transverse momentum
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|qi|2 [125, 126]. In MRK these cross-ratios take the form

u1i = 1− δi
|ki + ki+1|2

|ki+1|2
+O(δ2

i ),

u2i = δi
|qi−1|2

|qi|2
+O(δ2

i ),

u3i = δi
|qi+1|2|ki|2

|qi|2|ki+1|2
+O(δ2

i ),

(1.3.92)

where ki ≡ pi+3, 1 ≤ i ≤ n − 4 denote the momenta of the gluons emitted along the
t-channel ladder and δi ≡ k+

i+1/k
+
i . From (1.3.83) it is evident that δi → 0 in MRK hence

u1i → 1, u2i → 0, u3i → 0, (1.3.93)

all at the same rate. It is convenient to define reduced cross-ratios [125, 126]

v2i =
u2i

1− u1i
=
|qi−1|2|ki+1|2

|qi|2|kiki+1|2
+O(δi),

v3i =
u3i

1− u1i
=
|qi+1|2|ki|2

|qi|2|kiki+1|2
+O(δi).

(1.3.94)

In Chapter 3, we will employ the bootstrap program in order to calculate the four-loop,
seven-point, NMHV amplitude in SYM and we shall use these reduced cross-ratios to
perform an MRK analysis of the result.

We shall now give a very short example of the bootstrap program, computing the
symbol of Y6 for the BDS-like ansatz (1.3.45) at six-points.

The alphabet for six-point scattering in SYM is given by

u =
〈1236〉〈3456〉
〈1346〉〈2356〉

, v =
〈1234〉〈1456〉
〈1245〉〈1346〉

, w =
〈1256〉〈2345〉
〈1245〉〈2356〉

,

1− u =
〈1356〉〈2346〉
〈1346〉〈2356〉

, 1− v =
〈1246〉〈1345〉
〈1245〉〈1346〉

, 1− w =
〈1235〉〈2456〉
〈1245〉〈2356〉

,

yu =
〈1236〉〈1345〉〈2456〉
〈1235〉〈1246〉〈3456〉

, yv =
〈1235〉〈1456〉〈2346〉
〈1234〉〈1356〉〈2456〉

, yw =
〈1246〉〈1356〉〈2345〉
〈1256〉〈1345〉〈2346〉

.

(1.3.95)
The first entries of the symbol can only be the cross-ratios themselves

ai ∈ {u, v, w}, (1.3.96)

and the final entries of the symbol can only be taken from the set

bi ∈
{

u

1− u
,

v

1− v
,

w

1− w
, yu, yv, yw

}
, (1.3.97)

hence we have a 3× 6 = 18 dimensional ansatz for which we need to solve

S(Y6) =

3∑
i=1

6∑
j=1

cij [ai ⊗ bj ]. (1.3.98)

Imposing integrability is our first step which reduces our 18 free coefficients down to 3

S(Y6) = c11([u⊗u]−[u⊗1−u])+c22([v⊗v]−[v⊗1−v])+c33([w⊗w]−[w⊗1−w]). (1.3.99)
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We are now free to impose another condition such as a discrete symmetry like cyclic
symmetry, under which u → v, v → w,w → u, which fixes 2 coefficients leaving us with
one function up to an overall constant which we can ignore

S(Y6) = [u⊗ u]− [u⊗ 1− u] + [v ⊗ v]− [v ⊗ 1− v] + [w ⊗ w]− [w ⊗ 1− w] (1.3.100)

which turns out to be the symbol of

Y6 = −Li2
(

1− 1

u

)
− Li2

(
1− 1

v

)
− Li2

(
1− 1

w

)
. (1.3.101)

This function is removed from the one-loop amplitude, capturing three-particle (and higher)
invariants such that the function En only depends on two-particle invariants. In fact, as
the remainder function starts at two loops

E(1)
n = −Yn (1.3.102)

where E(1)
n is the BDS-like-normalised one-loop amplitude.
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Chapter 2

Cluster Algebras and Adjacency

In this chapter we will introduce cluster algebras and how they relate to the singularities
of scattering amplitudes in SYM.

In [6] the important observation was made that the symbols of the two-loop MHV
remainder functions constructed in [120] were written in terms of alphabets that exclu-
sively contained A-coordinates of cluster algebras associated to Grassmannians Gr(4, n),
or more precisely, the (3n− 15)-dimensional spaces Confn(P3) = Gr(4, n)/(C∗)n−1. From
here on we will abuse notation slightly and refer to Confn(Pk−1) as Gr(k, n) unless it is
required to distinguish between them. Beyond two loops, great progress has been made
in understanding the hexagon (n = 6) and heptagon (n = 7) amplitudes via the analytic
bootstrap programme. All current evidence is compatible with the hypothesis that the
hexagon and heptagon amplitudes are polylogarithmic at all orders in perturbation theory
and moreover that their symbol alphabets are given by the set of A-coordinates for the
cases Gr(4, 6) and Gr(4, 7) respectively. The associated cluster algebras are isomorphic
to the ones based on A3 and E6 respectively. Here we will review some of the important
aspects of cluster algebras. Many of the points we recall here are covered already in [6]
but we review them as we will need many of the ideas to explain the notion of adjacency
for the cluster polylogarithms appearing in the expressions for scattering amplitudes.

We will develop the connection between singularities and cluster algebras further. We
emphasise that, although the connection to cluster algebras is phrased in algebraic terms,
there is also a very geometric picture to the structure of relations between branch point
singularities. The geometry in question is that of cluster polytopes and in particular
the intricate structure of their boundaries, which captures the possible nested sequences
of cluster subalgebras. The picture which emerges is different from, but shares many
features with, the positive geometry arising in the description of integrands in [23, 24].
Before introducing cluster algebras, it will first be useful for our purposes to introduce the
Grassmannian.

2.1 The Grassmannian

The Grassmannian Gr(k, n) is the space of k-planes in n dimensions. The Grassman-
nian can therefore be parametrised by a k×n complex matrix with the k rows specifying a
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k plane. Since the plane is invariant under the action of GL(k) transformations one must
mod out by the action of GL(k), leaving a space of dimension k(n− k).

The Grassmannian may also be specified in terms of the minors of the matrix. The
(k × k) minors pi1,...,ik (Plücker coordinates) of any matrix obey homogeneous quadratic
relations (Plücker relations) obtained by antisymmetrising (k + 1) indices,

pi1,...,ir,[ir+1,...ikpj1,...,jr+1],jr+2,...,jk = 0 . (2.1.1)

In the Gr(2, n) case the Plücker relations are given by the familiar
(
n
4

)
three-term equations

pijpkl − pikpjl + pilpjk = 0 , 1 ≤ i < j < k < l ≤ n . (2.1.2)

The Plücker relations define a subspace in the Plücker space parametrised by the
(
n
k

)
Plücker coordinates pi1,...,ik . Algebraically this space may be thought of as the ideal gen-
erated by the quadratic Plücker relations inside the ring of polynomials in the Plücker
coordinates. After quotienting by a global rescaling of all Plücker coordinates the sub-
space satisfying the Plücker relations can be identified with the Grassmannian Gr(k, n) of
dimension k(n− k).

The original Plücker relations are actually homogeneous in n independent rescalings
pi1,...,ik → ti1 . . . tikpi1,...,ik with ti ∈ C∗. If we quotient by all of these scalings instead of
just the overall scaling we obtain a smaller space,

Confn(Pk−1) = Gr(k, n)/(C∗)n−1 , (2.1.3)

which has dimension m = (k− 1)(n− k− 1) and corresponds to taking the columns of
our original (k × n) to be elements of Pk−1 instead of Ck.

2.2 Cluster Algebras

Cluster algebras are commutative associative algebras with generators referred to as
cluster coordinates which arise in families called clusters. They can be specified by giving
an initial cluster with a set of A-coordinates together with a mutation rule which allows the
generation of further clusters and cluster coordinates. To each cluster can be associated a
quiver diagram with A-coordinates associated to the nodes. Such a quiver is described by
the exchange matrix bij defined via

bij = (no. of arrows i→ j)− (no. of arrows j → i) . (2.2.1)

A Gr(k, n) cluster is identified by its m = (k − 1)(n − k − 1) unfrozen nodes, n frozen
nodes, and an (m+n)× (m+n) exchange matrix B which encodes the connectivity of the
nodes within the cluster. The first m rows and columns correspond to the arrows between
the unfrozen nodes. Mutating an unfrozen node k transforms B to B′ given by

b′ij =

−bij if i = k or j = k.

bij + [−bik]+bkj + bik[bkj ]+ otherwise.
(2.2.2)

where [x]+ = max(x, 0).
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〈1 2 3 4〉

〈1 2 3 5〉

〈1 2 4 5〉

〈1 3 4 5〉

〈2 3 4 5〉

〈1 2 3 6〉

〈1 2 5 6〉

〈1 4 5 6〉

〈3 4 5 6〉

〈1 2 3n−1〉

〈1 2n−2n−1〉

〈1n−3n−2n−1〉

〈n−4n−3n−2n−1〉

〈1 2 3n〉

〈1 2n−1n〉

〈1n−2n−1n〉

〈n−3n−2n−1n〉

. . .

. . .

. . .

. . .

Figure 2.1: The initial cluster of the Grassmannian series Gr(4, n).

The mutated node also transforms, given by

a′k =
1

ak

[
m+n∏
i=1

a
[bik]+
i +

m+n∏
i=1

a
[−bik]+
i

]
. (2.2.3)

For the set of cluster algebras associated to Gr(4, n) we take the initial cluster depicted
in Figure 2.1. The boxed nodes are the frozen nodes and the remainder are the unfrozen
ones. Other clusters (and hence other A-coordinates) are obtained by mutating on the
unfrozen nodes according to the above rules. In the cases of n = 6, 7 the number of
distinct clusters obtained is finite. For n = 6 all A-coordinates are Plücker coordinates of
the form 〈ijkl〉 while n = 7 some A-coordinates are quadratic in Plückers.

Note that while A-coordinates are called ‘coordinates’ they are not strictly coordinates
on Confn(P3) because they are not homogeneous under rescalings of the twistors. A natural
set of homogeneous coordinates for Confn(P3) are the cluster X -coordinates. They are
defined with respect to a given cluster for each unfrozen node j and are related to the
A-coordinates and the adjacency matrix of the cluster via

xj =
∏
i

a
bij
i , (2.2.4)

where the product runs over all nodes (frozen and unfrozen) labelled by i. Under mutation
on an unfrozen node k the X -coordinates change according to

x′i =

1/xi k = i ,

xi
(
1 + x

sgn(bik)
k

)bik k 6= i .
(2.2.5)

Note that if node i is not connected to node k then bik = 0 and x′i = xi.

The adjacency matrix bij actually defines a Poisson structure on the space Gr(k, n) via
the formula

{xi, xj} = bijxixj . (2.2.6)

The choice of cluster is irrelevant since the formula (2.2.6) is preserved under mutation.
Note that only the restriction of the adjacency matrix to the unfrozen nodes actually
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 2.2: The quiver diagram for the initial cluster for the algebra associated to Gr(4, 6).

appears in (2.2.6). We recall that a Poisson structure can be described in terms of a
bivector b such that b(df, dg) = {f, g}. The adjacency matrix of a cluster then gives the
components of the Poisson bivector in the coordinate system given by the (logarithms of
the) cluster X -coordinates for that cluster.

If we restrict attention to the real case then the condition that all X -coordinates obey
0 < x < ∞ defines a region inside Confn(RP3). The region should be visualised as a
polytope with a boundary that is made of facets corresponding to codimension-one sub-
algebras of the original cluster algebra (which, as we described before are associated to
individual A-coordinates). Each facet has boundaries corresponding to codimension-two
subalgebras (associated to admissible pairs of A-coordinates) and so on. If we continue
all the way down we arrive at dimension-zero subalgebras given by the clusters themselves
and corresponding to corners of the polytope in the sense that the corner is the origin in
the associated set of X -coordinates.

The cluster X -coordinates are edge coordinates in that they can be associated to the
one-dimensional edges (axes) which meet at the vertex corresponding to the cluster. On
each edge the associated X -coordinate runs over 0 < x < ∞, in correspondence with the
fact that the X -coordinate associated to a given edge inverts under the mutation along
that edge.

2.2.1 Hexagons and the A3 associahedron

For Gr(4, 6), the initial cluster is represented by the quiver diagram given in Figure 2.2
with Plücker coordinates at each of the nodes. The unfrozen A-coordinates of this cluster
are

a1 = 〈1235〉 , a2 = 〈1245〉 , a3 = 〈1345〉 . (2.2.7)

By repeated mutation of the above data according to 2.2.2 and 2.2.3 one obtains 14 dis-
tinct clusters arranged in the topology of the Stasheff polytope or associahedron illustrated
in Figure 2.3. In total nine distinct unfrozen A-coordinates are obtained, corresponding to
the nine faces of the polytope, in addition to the six frozen ones present in every cluster.
Three are square faces and six are pentagonal. Each cluster corresponds to a vertex, with
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〈1345〉 〈1356〉

〈2346〉〈1246〉

〈1245〉 〈2356〉

〈1235〉〈1235〉

〈2456〉

〈1346〉

Figure 2.3: The A3 Stasheff polytope with six pentagonal faces and three square faces, each
labelled with the corresponding A-coordinate. The initial cluster corresponds to the vertex
at the top left corner at the intersection of the faces labelled by 〈1235〉, 〈1245〉, 〈1345〉.
The three-step path leads from the initial cluster to one obtained by a cyclic rotation by
one unit.

the unfrozen A-coordinates of the cluster corresponding to the faces of the polytope which
meet at the vertex. The frozen A-coordinates 〈i i + 1 i + 2 i + 3〉, being present in every
cluster, are not shown in Figure 2.3. The initial cluster drawn in Figure 2.2 corresponds to
the cluster in the top left of Figure 2.3. The edges between clusters correspond to mutation
operations.

Figure 2.3 also makes manifest the discrete symmetries of the Gr(4, 6) cluster algebra.
A cyclic rotation of the initial cluster can be generated by a threefold sequence of mutations,
as indicated by the arrows. This corresponds to mutating on the three unfrozen nodes in
Figure 2.2 in turn, starting at the bottom and moving to the top. A threefold cyclic rotation
corresponds to a reflection in the equatorial plane of Figure 2.3 and also corresponds to
the parity transformation Zi 7→ Zi−1 ∧Zi ∧Zi+1 when applied to homogeneous quantities.
Finally, the reflection Zi 7→ Z7−i corresponds to a left-right reflection of Figure 2.3 together
with a reflection in the equatorial plane.

The space Conf6(P3) can be identified with the space Conf6(P1) ∼= M0,6, that is the
moduli space of six points on the Riemann sphere modulo sl2 transformations. At the
level of Plücker coordinates this can be achieved by identifying an ordered four-bracket
〈ijkl〉 (such that i < j < k < l) with an ordered two-bracket 〈mn〉 (with m < n) made
of the absent labels from the set {1, . . . , 6}. In other words we make the identifications
〈1345〉 = 〈26〉, 〈1245〉 = 〈36〉, 〈1235〉 = 〈46〉 and so on. In this way the nodes of each quiver
diagram can be identified with chords of a hexagon. The edges of the hexagon correspond
to adjacent two-brackets, e.g. 〈12〉 = 〈3456〉. Such an identification is described in Figure
2.4. With the triangulation labelling of clusters to hand we may illustrate all triangulations
on the Stasheff polytope, as shown in Figure 2.5.

It is important to stress again that Figure 2.3 is not just a pictorial representation of
a set of topological relations between clusters. If we restrict attention to the case of real
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1

2

3 4

5

6

Figure 2.4: The two-brackets 〈ij〉 can be identified with chords on a hexagon between the
vertices i and j. A triangulation of the hexagon then corresponds to a cluster of the A3

or Gr(4, 6) polytope. Above is shown the triangulation corresponding to the initial cluster
of Figure 2.2 comprised of the chords 〈26〉 = 〈1345〉, 〈36〉 = 〈1245〉 and 〈46〉 = 〈1235〉
together with the six edges which correspond to the frozen nodes.

Figure 2.5: The Stasheff polytope for Gr(4, 6) ∼= M0,6 with the clusters labelled by the
different triangulations of a hexagon.
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twistors then Conf6(RP3) ∼= M0,6(R) is a three-dimensional space. The interior of the
polytope in Figure 2.3 is precisely the region inside Conf6(P3) where all the cluster X -
coordinates obey 0 < x <∞. Each corner is the origin in the set of X -coordinates defined
by the corresponding cluster. As an example, the X -coordinates of the initial cluster for
the Conf6(P3) polytope are

x1 =
〈1234〉〈1256〉
〈1236〉〈1245〉

=
〈56〉〈34〉
〈45〉〈36〉

,

x2 =
〈1235〉〈1456〉
〈1256〉〈1345〉

=
〈46〉〈23〉
〈34〉〈26〉

,

x3 =
〈1245〉〈3456〉
〈2345〉〈1456〉

=
〈36〉〈12〉
〈16〉〈23〉

. (2.2.8)

The vertex corresponding to the initial cluster is the origin x1 = x2 = x3 = 0 in this coor-
dinate system. The cluster coordinates run from 0 to ∞ along the three one-dimensional
edges which meet at the vertex. This is in accord with the fact that under a mutation
(which corresponds to moving along an edge to an adjacent vertex) the associated X -
coordinate inverts.

The adjacency matrix for the unfrozen nodes of the initial cluster is

b =

 0 1 0
-1 0 1
0 -1 0

 . (2.2.9)

We recall that the X -coordinates are (log) canonical coordinates for the Poisson bracket.
The adjacency matrix b in (2.2.9) is singular and has rank two. This means that there is a
coordinate ∆ which Poisson commutes with every function {∆, f} = 0. It is the product
of two of the xi above,

∆ = x1x3 =
〈12〉〈34〉〈56〉
〈16〉〈23〉〈45〉

=
〈1234〉〈1256〉〈3456〉
〈1236〉〈1456〉〈2345〉

. (2.2.10)

Equivalently, there is a canonical (up to a constant rescaling) one-form d log ∆ which is
null under the action of the Poisson bivector,

b(d log ∆, ·) = 0 . (2.2.11)

Note that ∆ is built purely from frozen A-coordinates.

Another natural set of coordinates are dihedral coordinates [28] which can be defined
(here with respect to the trivial ordering {1, . . . , n}) for all the moduli spaces M0,n (or
An−3 cluster algebras) via

uij =
〈i j + 1〉〈i+ 1 j〉
〈i j〉〈i+ 1 j + 1〉

. (2.2.12)

We require that the labels i and j are separated by at least two (as for unfrozen two-
brackets). For the case n = 6 this implies that there are nine such dihedral coordinates,
each labelled by the chords of the hexagon.

The interior of the Stasheff polytope is the region where all nine uij obey 0 < uij < 1. A
face of the polytope is the locus defined by uij = 0 where 〈ij〉 is the chord associated to that
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face. When a particular uij = 0 then all the ukl such that the chord 〈kl〉 intersects the chord
〈ij〉 take the value 1. The vertices of the polytope are then the origin in the coordinate
system defined by taking the dihedral coordinates associated to the triangulation of the
corresponding cluster. For example, the initial cluster is associated to the origin in the
coordinates {u26, u36, u46} and the equations u26 = 0, u36 = 0 and u46 = 0 define the faces
labelled by 〈1345〉 = 〈26〉, 〈1245〉 = 〈36〉 and 〈1235〉 = 〈46〉 respectively in Figure 2.3.
These dihedral coordinates are related to the X -coordinates above via

u26 =
x3

1 + x3
, u36 =

x2(1 + x3)

1 + x2 + x2x3
, u46 =

x1(1 + x2 + x2x3)

1 + x1 + x1x2 + x1x2x3
. (2.2.13)

From the above relations it is clear that the three faces meeting at the vertex are equiv-
alently defined either by vanishing of dihedral coordinates or by vanishing of cluster X -
coordinates.

The dihedral coordinates form a complete set of nine multiplicatively independent ho-
mogeneous combinations of the A-coordinates. They can therefore be taken as an alphabet
for the construction of polylogarithms on Conf6(P3) =M0,6. They are related to the nine
letters taken in e.g. [41] for the construction of hexagon functions as follows,

u = u26u35u25u36 , 1− u = u14 , yu =
u35

u26
,

v = u13u46u36u14 , 1− v = u25 , yv =
u13

u46
,

w = u24u15u14u25 , 1− w = u36 , yw =
u15

u24
. (2.2.14)

The null Poisson coordinate ∆ is given by

∆ =
u24u26u46

u13u15u35
=

1

yuyvyw
. (2.2.15)

There are two distinct types of codimension-one subalgebras in the A3 polytope. Each
pentagonal face of Figure 2.3 corresponds to an A2 subalgebra. For example, freezing the
node labelled by 〈1235〉 = 〈46〉 in the initial cluster, and mutating the other nodes generates
the pentagon of clusters around the edge of the corresponding face of the polytope. The
condition u46 = 0 corresponds to restricting to the pentagonal boundary. Physically, taking
the limit u46 → 0 corresponds to taking the double scaling limit where v → 0 on the branch
where yv → ∞. Its parity conjugate version is the limit u13 → 0 which corresponds to
v → 0 on the branch where yv → 0. These double-scaling limits are highlighted in red in
Figure 2.6.

The other type of codimension-one subalgebra is A1 × A1, corresponding to a square
face, as can be obtained from freezing the node 〈1245〉 = 〈36〉 in the initial cluster and
mutating the others. The condition u36 = 0 defines this face and taking the limit u36 →
0 corresponds to taking the soft limit where u → 0, v → 0, w → 1. Note that this
limit is a limit to a codimension one (i.e. dimension two) subspace. This is important
because, although the soft limit itself (of the remainder function) is independent of the
location approached on the face, after analytic continuation the same limit corresponds
to a Regge limit which is not independent of where on the face is being approached. The
remaining transverse kinematic dependence of the amplitude in the Regge limit is precisely
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u36 u14

u46

u13

Figure 2.6: The A3 polytope with four faces labelled by their dihedral coordinates. The
double scaling limits u46 → 0 and its parity conjugate version u13 → 0 are are the high-
lighted red pentagons. The soft limits u36 → 0 and u14 → 0 are the blue squares. The line
joining the two squares corresponds to the collinear limit u13 = u46 = 0.

parametrised by the two-dimensional square face. The limit u36 → 0 and a cyclically
rotated one u14 → 0 are highlighted as blue squares in Figure 2.6.

The full space Conf6(RP3) ∼= M0,6(R) is tiled by 60 regions identical to the Stasheff
polytope of Figure 2.3. In general [28], the moduli spaces M0,n(R) are tiled by n!/(2n)

regions which are (n−3)-dimensional polytopes, each corresponding to a choice of dihedral
structure (i.e. an ordering modulo cyclic transformations and reflections) on the n points
in RP1.

Each vertex of the polytope provides a natural base point for the contour of integration
over which a symbol made of homogeneous combinations of the A-coordinates can be
iteratively integrated to produce a polylogarithmic function [28].

2.2.2 Heptagons and the E6 polytope

For Gr(4, 7), the initial cluster is represented by the quiver diagram of Figure 2.7. Each
cluster contains six unfrozen nodes as well as the seven frozen ones labelled by the adjacent
four-brackets 〈i i+1 i+2 i+3〉. Repeated mutation generates a total of 833 distinct clusters
containing a total of 42 distinct unfrozen A-coordinates in addition to the 7 frozen ones.

A useful feature of cases of Gr(k, n) where the pair (k, n) is coprime (such as the
heptagon case) is that one may use the frozen A-coordinates to render the unfrozen ones
homogeneous [45]. In this way one can make a natural set of 42 homogeneous letters
labelled in one-to-one correspondence with the 42 unfrozen A-coordinates. They are given
by the following six quantities together with their cyclic rotations,

a11 =
〈1234〉〈1567〉〈2367〉
〈1237〉〈1267〉〈3456〉

a31 =
〈1567〉〈2347〉
〈1237〉〈4567〉

a51 =
〈1(23)(45)(67)〉
〈1234〉〈1567〉

a21 =
〈1234〉〈2567〉
〈1267〉〈2345〉

a41 =
〈2457〉〈3456〉
〈2345〉〈4567〉

a61 =
〈1(34)(56)(72)〉
〈1234〉〈1567〉

, (2.2.16)
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈1237〉

〈1267〉

〈1567〉

〈2345〉 〈3456〉 〈4567〉

Figure 2.7: The initial cluster of the Gr(4, 7) cluster algebra, relevant for heptagon ampli-
tudes.

a24 a37

a13 a17

a32 a27 .

Figure 2.8: The initial cluster for Gr(4, 7) labelled by homogenised A-coordinates.

where the cyclic copies are defined as ai,j+r = aij
∣∣
Zk 7→Zk+r

and we use the notation

〈a(bc)(de)(fg)〉 = 〈abcd〉〈efga〉 − 〈abce〉〈dfga〉 . (2.2.17)

By labelling the nodes of the quiver diagram with the homogenised A-coordinates, the
initial cluster can be illustrated as in Figure 2.8.

Just as in the hexagon case we should try to visualise the 833 clusters being connected
together in a polytope (the E6 polytope). The polytope is a six-dimensional space with
42 codimension one (i.e dimension five) boundary faces, corresponding to the 42 unfrozen
A-coordinates. As with the hexagon case, this polytope corresponds to the ‘postive’ region
in kinematical space. Considering the dimension and the number of vertices it is not
as visually instructive to plot the full polytope as a graph. Nevertheless similar general
features are present as in the hexagon case.

To illustrate the structure of possible subalgebras it is helpful to bring the initial cluster
to a cluster with the topology of an E6 Dynkin diagram by a sequence of mutations as
shown in Figure 2.9. A helpful feature of the E6-shaped cluster is that its homogenised
A-coordinates contain one representative of each of the six cyclically related classes given
in (2.2.16). The codimension-one subalgebras obtained by freezing any given letter are
then obvious. Freezing a13 and mutating on the other nodes generates an A5 subalgebra.
Freezing a25 or a33 will generate a D5 subalgebra. Freezing a41 or a51 generates an A4×A1

subalgebra. Finally freezing a62 generates an A2 × A2 × A1 subalgebra. The E6-shaped
cluster is special in this regard. For example, the initial cluster contains only a1i, a2i
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a51a24 a62 a41 a33

a13

Figure 2.9: The initial cluster of Gr(4, 7) does not have the topology of an E6 Dynkin
diagram but it is possible to mutate it to one which does. This cluster contains homogenised
A-coordinates of all six types given in (2.2.16).

and a3i types of coordinates and therefore is at the intersection only of D5 and A5 type
subalgebras.

Each cluster (or dimension zero subalgbera) corresponds to a vertex on the boundary
of the E6 polytope and the six associated cluster X -coordinates define a local coordinate
system such that the vertex is the origin. Once again the X -coordinates can be associated
to the one-dimensional edges of the polytope and the interior of the polytope is the region
where all X -coordinates obey 0 < x <∞. The six X -coordinates for the E6-shaped cluster
are shown in Figure 2.10. The five-dimensional face corresponding to the A5 subalgebra is
the boundary component defined by x6 = 0 with all other xi obeying 0 < xi < ∞. The
condition x4 = 0 defines a face corresponding to an A4 ×A1 subalgebra and so on.

As in the A3 case we may define another set of coordinates uij such that the uij = 0

defines the codimension one face labelled by aij . In terms of the cluster X -coordinates of
the E6 shaped cluster we have the following six face coordinates2,

u13 =
x1

1 + x1
u62 =

x6(1 + x1)

1 + x6 + x1x6
(2.2.18)

u51 =
x5(1 + x6 + x1x6)

1 + x5 + x5x6 + x1x5x6
u41 =

x4(1 + x6 + x1x6)

1 + x4 + x4x6 + x1x4x6

u24 =
x2(1 + x5 + x5x6 + x1x5x6)

1 + x2 + x2x5 + x2x5x6 + x1x2x5x6
u33 =

x3(1 + x4 + x4x6 + x1x4x6)

1 + x3 + x3x4 + x3x4x6 + x1x3x4x6
.

Again the origin in the cluster X -coordinates coincides with the origin in the face coordi-
nates. In terms of the homogenised A-coordinates we have

u13 =
a62

a11a13
u62 =

a11a41a51

a62a67

u51 =
a24a67

a46a51
u41 =

a33a67

a41a56

u24 =
a46

a24a31
u33 =

a56

a22a33
. (2.2.19)

Again we clearly have 0 < uij < 1 in the interior of the polytope from (2.2.18). From
the equations (2.2.19) and cyclically related equations one can define a complete set of 42
homogeneous coordinates uij which makes an alternative multiplicatively independent set
to the aij . The variables uij have the property that uij = 0 implies ukl = 1 if the face
labelled by akl is not adjacent to the face labelled by aij . In other words, setting one uij
to zero for a given face means that all the ukl corresponding to non-adjacent faces go to 1.

2Such variables have already been derived by Arkani-Hamed and collaborators [127] for finite cluster
algebras from a different perspective. Here we obtain them from the cluster X -coordinates. We would like
to thank Nima Arkani-Hamed for discussions of this point.
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a24
a62

1
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a33
a62
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=

Figure 2.10: The E6-shaped cluster with X -coordinates shown at each of the nodes.

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
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· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·
· · ·

Figure 2.11: A series of mutations which result in a rotation of the Gr(4, 8) initial cluster
by one unit. The dots represent unfrozen nodes (arrows have been removed for clarity)
and the squares represent the mutated nodes. Note there are no gaps between mutated
nodes and we always mutate from the bottom up and from left to right.

Just as in the A3 case there are specific sequences of mutations which generate a cyclic
transformation of the A-coordinates in a given cluster. Rather than describe it here for
E6 we give a general discussion for Gr(k, n) in the next section.

2.2.3 General cyclic mutations for n > 7

For n > 7, the Gr(4, n) cluster algebra is infinite. We can still define a positive region
where all X -coordinates are positive but the structure of its boundary is much less clear.
We can still, however, understand certain finite aspects of these infinite algebras. For
instance we can mutate from the initial cluster in Figure 2.1 to another one in which all
the A-coordinate labels have been rotated by one unit. We do this by mutating in a
manner that mirrors building Young tableaux, instead building from the bottom-left to
the top-right (as opposed from top-left to bottom-right) as demonstrated in Figure 2.11.

We can use this method to rotate initial-type sub-algebras within a cluster in order to
search for clusters with specific Plückers. In fact we will use this method later to prove that
all R-invariants are cluster adjacent. An example is given in Figure 2.12. As we can see,
the Gr(3, 6) sub-topology remains unchanged but the labels have all been rotated by one
unit. The other nodes have rearranged themselves such that the frozen nodes connected to
the sub-algebra have shifted round the cluster. Mutating on 〈156〉 followed by 〈126〉 will
result in the same topology as the left cluster but with each label rotated by one unit. We
can repeat this process any number of times to achieve the desired number of rotations.

2.3 Adjacency rules from Gr(4, n) clusters

Steinmann relations [67, 68] are the requirement that a scattering amplitude does not
have consecutive discontinuities in overlapping channels. In the context of amplitudes in
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〈123〉

〈124〉 〈125〉 〈126〉 〈127〉

〈134〉 〈145〉 〈156〉 〈167〉

〈234〉 〈345〉 〈456〉 〈567〉

〈234〉 〈123〉

〈235〉 〈236〉 〈126〉 〈127〉

〈245〉 〈256〉 〈156〉 〈167〉

〈345〉 〈456〉 〈567〉

〈235〉 〈236〉 〈126〉 〈127〉

〈245〉 〈256〉 〈156〉

Figure 2.12: The Gr(3, 7) initial cluster (left) and the cluster resulting from a cyclic muta-
tion of a Gr(3, 6) subalgebra, highlighted in green (right). Gr(3, 7) ∼ Gr(4, 7) but we have
given this example to demonstrate this procedure is valid for Gr(k, n) ∀ k, n.

planar N = 4 super Yang-Mills theory their importance was emphasised in [128] and they
have been usefully employed to construct amplitudes in [47, 48].

In order to see the appearance of Steinmann relations in massless amplitudes it is useful
to define an appropriate infrared finite quantity [47]. In planar N = 4 this quantity is the
BDS-like subtracted amplitude [115] which exists for n-point amplitudes with n ≥ 6 and
n 6= 0 mod 4. These amplitudes do not have consecutive branch cuts in overlapping three-
particle or higher Mandelstam invariants. For example, a discontinuity around s123 = 0

cannot itself have a discontinuity around s234 = 0.
While mutations of clusters generate the letters of the symbol alphabet, the alpha-

bet itself does not contain information on the details of which clusters contain which
A-coordinates nor which clusters are linked by mutations. However, a survey of all known
MHV and NMHV BDS-like subtracted heptagon amplitudes reveals that only certain pairs
of letters appear in neighbouring slots. This leads us to conjecture a much more general
set of adjacency relations for BDS-like subtracted amplitudes:

Two distinct A-coordinates can appear consecutively in a symbol only if there exists a
cluster where they both appear.

We believe that the above conjecture will apply to any BDS-like subtracted amplitude
which is expressed in terms of cluster polylogarithms. It has been conjectured that all MHV
and NMHV amplitudes in planar N = 4 super Yang-Mills will have a polylogarithmic form
[23], though it has not yet been tested whether the alphabets are dictated by the Gr(4, n)

cluster structures for n ≥ 8 beyond two-loop MHV amplitudes.
For eight-point amplitudes, a BDS-like subtracted amplitude in the sense of [115],

which uses only two-particle Mandelstam invariants to provide a solution to the conformal
Ward identity of [104], does not exist. Proceeding to nine points, one again has a canonical
BDS-like subtracted amplitude, constructible from the two-loop results in [120] and we have
verified directly that it does obey the above conjecture. That is, for each neighbouring
pair appearing in the symbol we can find a cluster containing that pair.

We can go back and look at the geometric interpretation of this conjecture. If we
pick a particular A-coordinate a and look at all clusters containing a we obtain a cluster
subalgebra. Such clusters may be generated by starting in one cluster containing a and
performing all possible combinations of mutations on the other nodes. In this way, to each
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A-coordinate we associate a codimension-one subalgebra. Similarly we may pick a pair
of coordinates {a, b} and, as long as there is at least one cluster where they both appear,
associate to them a codimension-two subalgebra by performing all possible mutations on
the other nodes. If there is no cluster where a and b appear together then there is no such
subalgebra. The fact that some pairs can be found together (we call them ‘admissible’
or ‘adjacent’) while other pairs cannot is at the heart of the cluster adjacency property
describing the behaviour of singularities of scattering amplitudes. Note that frozen nodes
are present in every cluster and hence are always admissible with any other A-coordinate.

We can continue further and associate codimension-three subalgebras with admissible
triplets {a, b, c} where a, b and c can all be found together in some cluster and so on.
Finally when we have fixed an admissible set of (3n − 15) A-coordinates we uniquely
specify a cluster which we could alternatively describe as a dimension-zero subalgebra.

Using the hexagon case as an example, admissible pairs of unfrozen nodes are pairs of
faces of the Stasheff polytope which intersect on the boundary, e.g. the pair {〈1235〉, 〈2456〉} =

{〈46〉, 〈13〉} is admissible and intersects in a codimension-two (i.e. dimension-one) A1 sub-
algebra corresponding to the shared edge of those two faces. The edge in question is defined
by u46 = u13 = 0 and corresponds to taking the collinear limit of the hexagon amplitudes.
Note that the collinear limit indeed interpolates between two soft limits corresponding to
the square faces labelled by 〈36〉 and 〈14〉.

The pair {〈1245〉, 〈2356〉} = {〈36〉, 〈14〉} on the other hand is not admissible as the
corresponding faces do not intersect on the boundary of Figure 2.3. The absence of such
an intersection is directly related to the Steinmann relations, or even more basically, to
the absence of overlapping factorisation poles in tree-level amplitudes. In general we can
describe admissible pairs as non-intersecting chords 〈ij〉 of the polygon while intersecting
chords give non-admissible pairs. Frozen A-coordinates correspond to the edges of the
polygon and therefore do not intersect any chord and hence are admissible with every
other A-coordinate.

Finally, admissible triples correspond to corners of Figure 2.3, i.e. to clusters them-
selves. They are codimension-three or dimension-zero subalgebras and as an example we
could take the triplet {〈1235〉, 〈1245〉, 〈1345〉} which defines the initial cluster.

Admissible pairs in the E6 case correspond to codimension two subalgebras, i.e. di-
mension four subalgebras. For example the admissible pair {a13, a62} corresponds to an
A2 ×A2 subalgebra while the pair {a51, a41} corresponds to an A2 ×A1 ×A1 subalgebra.
Admissible triplets correspond to dimension three subalgebras and so on.

It is important to emphasise that the above adjacency conjecture introduces a much
more detailed role for the cluster structure over and above the fact that the alphabet can be
obtained from the union over all cluster A-coordinates. It is the structure of the individual
clusters which constrains both sequences of discontinuities (reading the symbol from the
left) and successive derivatives (reading from the right).

In the case of planar N = 4 heptagon amplitudes there are 840 distinct admissible
ordered pairs of letters out of the 1764 possible ordered pairs one can make from the 42
letters. We summarise this information in Table 2.1, where we also distinguish whether the
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a1i a2i a3i a4i a5i a6i

a11

a21

a31

a41

a51

a61

Table 2.1: The neighbourhood and connectivity relations of the coordinates ai1 with the
42-letter alphabet. Other relations can be inferred by cyclic symmetry. The relations in
the dashed box imply the Steinmann conditions.
: There are clusters where the coordinates appear together connected by an arrow.
: There are clusters where the coordinates appear together but they are never connected.
: The coordinates never appear in the same cluster but there is a mutation that links

them.
: The coordinates do not appear in the same cluster nor there is a mutation that links

them.

pairs that appear together in a cluster are connected by a quiver arrow as well as whether
two letters that never appear together mutate into each other. If one letter mutates into
another, this pair never appear together in a third cluster.

The Steinmann constraints on the symbol are a subset of the cluster adjacency condi-
tions: The letters a12, a13, a16 or a17 never share a cluster with a11. In fact, four dihedral
copies of the initial cluster mutate to another cluster where a11 is replaced by one of these
four letters which cannot appear after an initial a11. While the Steinmann condition [47]
only applies to the first two letters of the symbol, it has been observed [70, 129] that for
the hexagon amplitudes the same condition applies everywhere in the symbol, which is
consistent with cluster adjacency.

Only 784 of the 840 allowed adjacencies actually occur in the known 7-particle ampli-
tudes, while the pairs

[a11⊗ a41] & cyclic + parity (2.3.1a)

[a21⊗ a64] & cyclic + reflection (2.3.1b)

and their reverses do not appear even though they are permitted by our conjecture. Never-
theless, in the following section we compute the symbol of a three-loop integral by constrain-
ing the space of weight-six Steinmann functions and find that its symbol has, consistently
with our conjecture, adjacent pairs of the form (2.3.1a).

2.4 Heptagon integrals

Let us consider the following finite double pentaladder integral (drawn in Figure 2.13)

I(3) =

∫
dZ̃

N〈AB13〉〈EF46〉
〈CD34〉〈ABCD〉〈CDEF 〉〈CD67〉

∏4
i=1〈AB i− 1 i〉

∏7
i=4〈EF i− 1 i〉

.

(2.4.1)
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The measure is dZ̃ = d4ZAB
iπ2

d4ZCD
iπ2

d4ZEF
iπ2 and the numeratorN = 〈2345〉〈3467〉〈7(12)(34)(56)〉

ensures that the integral has unit leading singularity [130].

52

1 6

43

7

Figure 2.13: Seven-point, three-loop, massless integral.

There exists a set of four second-order differential operators which relate I(3) to two-
loop integrals [131]. Using the notation Oij = Zi · ∂

∂Zj
they are

〈4567〉NO45O34N
−1I(3) = −〈3467〉I(2) , (2.4.2)

〈3456〉NO65O76N
−1I(3) = −〈3467〉I(2) , (2.4.3)

〈1237〉NO32O43N
−1I(3) = +〈1347〉Ĩ(2) , (2.4.4)

〈1234〉NO12O71N
−1I(3) = −〈1347〉Ĩ(2) . (2.4.5)

The two-loop integrals I(2) and Ĩ(2) are shown in Figure 2.14.
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Figure 2.14: The seven-point, two-loop integrals I(2) and Ĩ(2).

The second-order operators above reduce the weight by two, therefore they must anni-
hilate the final entries in the symbol of I(3). Using this condition we can construct a set of
ten multiplicative combinations out the 42 possible heptagon letters for the final entries.

The integral I(2) obeys a similar set of differential equations, except that the integrals
on the RHS are the one-loop hexagons I(1) and Ĩ(1) depicted in Figure 2.15.

61 7

2

3 4

5

61 7

2

3 4

5

Figure 2.15: The one-loop hexagon integrals I(1) and Ĩ(1).

Therefore the integral I(2) can also only have the same ten possible final entries as I(3).
Of the 322 weight-4 Steinmann heptagon symbols constructed in [48], there is a unique
linear combination with the correct final entries for I(2) which we conclude must be the
result up to a scale. The details of the RHS differential equations were not required to
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obtain it, and indeed they can be used to derive formulas for the one-loop hexagons in
Figure 2.15.

Returning to I(3), we find that of the 3192 weight-6 Steinmann heptagon symbols
constructed in [48], seven of them have good final entries. However, only one of these
produces our result for I(2) on the RHS of equations (2.4.2) and (2.4.3) and we conclude
this is the symbol of I(3). Either of the equations (2.4.4) or (2.4.5) can then be used to
derive a result for Ĩ(2). We quote all symbols in a file attached to the arXiv submission.

When analysing the symbol of the three-loop integral I(3), pairs not present in the
MHV and NMHV heptagon data were found, namely [a11⊗ a41] and [a41⊗ a11]. Their
cyclic and parity copies will therefore be found in the associated cyclic and parity copies
of the integral, completing the set (2.3.1a). This evidence supports our conjecture that it
is the cluster structure which controls the appearance of consecutive letters.

The results for these integrals were later confirmed in [132].

2.5 Cluster adjacent polylogarithms

In [47] it was realised that the Steinmann relations were employed to greatly increase
the power of the hexagon bootstrap programme and in [48] the same conditions were
extended to the heptagon case. In fact the Steinmann conditions can be extended to
hold on all adjacent pairs in the symbol [70, 129], not only in the first two entries. The
cluster adjacency property outlined above implies the Steinmann conditions, including the
extended ones. In the hexagon (or A3) case this is simply the statement that the square
faces of the associahedron in Figure 2.3 are not adjacent to each other. In the heptagon
(E6) case it follows from the fact that the face labelled by a11 only intersects those labelled
by a14 and a15 but not those labelled by the other a1i. What is less obvious but nevertheless
appears to hold for the hexagon and heptagon symbols is that the extended Steinmann
relations together with the physical initial entry conditions actually imply cluster adjacency.

Note that the property of cluster adjacency is described in terms of the inhomogeneous
A-coordinates. The polylogarithms describing the known dual conformal invariant ampli-
tudes are functions on the space Gr(4, n) and their symbols are normally described in terms
of homogeneous multiplicative combinations of A-coordinates. Such combinations can be
expanded out into non-manifestly homogeneous combinations by the identities (1.3.60) and
(1.3.61). The resulting expressions are the ones which obey the adjacency criterion.

In the heptagon case we may take the homogenisedA-coordinates (2.2.16) as our symbol
alphabet and the statement of adjacency becomes very direct. In the hexagon case this is
not possible, essentially due to the existence of the purely frozen homogeneous combination
∆ defined eq. (2.2.10).

In general, beyond the hexagon and heptagon amplitudes we discuss here, we expect a
number of new features whose interplay with cluster adjacency is not yet clear. Firstly there
will exist algebraic symbol letters with square roots which are not immediately related to
A-coordinates which are all polynomials in the Plücker coordinates. These already appear
in the N2MHV octagon at one loop in the four-mass box contributions. Moreover at
high enough multiplicity and loop order there will appear non-polylogarithmic functions,
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 2.16: The initial cluster of Gr(4, 6) has the topology of an A3 Dynkin diagram.
Freezing 〈1235〉 = 〈46〉 results in a A2 subalgebra whereas freezing 〈1245〉 = 〈36〉 results in
a A1×A1 subalgebra. These subalgebras generate the letters in ns[〈1235〉] and ns[〈1245〉],
respectively.

e.g. in the ten-point N3MHV amplitude at two loops [30]. Nevertheless we believe that
some suitably extended notion of cluster adjacency will also hold beyond the hexagon and
heptagon amplitudes.

2.5.1 Neighbour sets

We define the neighbour set ns[a] of a given A-coordinate a as the set of A-coordinates
b such that {a, b} form an admissible pair together with a itself. This set automatically
includes all the frozen A-coordinates. In terms of the polytope the unfrozen nodes in the
neighbour set correspond to all faces that share a codimension-two boundary with the face
labelled by a (i.e. are adjacent to a) together with the face labelled by a itself. One way of
systematically constructing neighbour sets is to go to a convenient cluster and freeze the
A-coordinate whose neighbour set is being considered. The neighbour set then consists
of all unfrozen A-coordinates generated in this codimension-one subalgebra, the frozen
coordinates and the coordinate a itself. This is demonstrated in Figure 2.16. Note that
the notion of a neighbour set depends on the cluster algebra in question, as well as the
choice of A-coordinate a.

Through this procedure we find the following neighbour sets for the unfrozen hexagon
A-coordinates:

ns[〈1235〉] = {〈1235〉, 〈2456〉, 〈2356〉, 〈1356〉, 〈1345〉, 〈1245〉, & frozen coordinates.}

ns[〈1245〉] = {〈1245〉, 〈2456〉, 〈1345〉, 〈1246〉, 〈1235〉, & frozen coordinates.} .
(2.5.1)

As stated above, apart from a itself, the unfrozen elements of the neighbour set of a are
associated with the faces of the Stasheff polytope which neighbour the face associated
with a. The edges where these faces intersect correspond to the remaining A1 algebra in a
cluster containing the two letters associated with the two faces, cf. Figure 2.3.

An equivalent way to state the neighbouring principle for the A3 case (and more gener-
ally for the An case) is that A-coordinates corresponding to chords on the hexagon which
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Figure 2.17: Forbidden pairs correspond to crossing chords of the hexagon.

cross are non-neighbouring, i.e. are forbidden to appear next to each other in the symbol.
Examples are shown in Figure 2.17.

There are 12 coordinates in the neighbour set of the A-coordinate 〈2456〉 = 〈13〉 in-
cluding itself and the 6 frozen coordinates. When writing down homogeneous functions,
it convenient to work with a homogeneous alphabet and there are 6 homogeneous combi-
nations that can be constructed using the allowed neighbours of 〈1235〉 = 〈46〉. Such a
homogeneous neighbour set can be chosen as the five X -coordinates associated to the edges
of the pentagonal face labelled by 〈46〉 together with ∆ from eq. (2.2.10) as follows:

hns[〈46〉] =

{
〈13〉〈46〉
〈16〉〈34〉

,
〈24〉〈16〉
〈12〉〈46〉

,
〈36〉〈12〉
〈23〉〈16〉

,
〈14〉〈23〉
〈12〉〈34〉

,
〈26〉〈34〉
〈23〉〈46〉

,
〈12〉〈34〉〈56〉
〈23〉〈45〉〈16〉

}
. (2.5.2)

Similarly, there are five homogeneous combinations that are made out of the 11 allowed
neighbours of 〈2356〉 = 〈14〉. They may be taken as the two X -coordinates associated to
the square (opposite edges on a square have the same X -coordinate) as well as any three of
the four X -coordinates which are associated to the edges which lead away from the square
face. A choice is as follows:

hns[〈14〉] =

{
〈14〉〈23〉
〈12〉〈34〉

,
〈14〉〈56〉
〈16〉〈45〉

,
〈13〉〈24〉
〈12〉〈34〉

,
〈15〉〈46〉
〈16〉〈45〉

,
〈13〉〈45〉
〈34〉〈15〉

}
. (2.5.3)

For the cases of the cluster algebras associated to Gr(k, n) with (k, n) coprime, one has
the advantage of using frozen coordinates to homogenise all remaining letters to construct
a homogeneous alphabet. Since frozen coordinates appear in every cluster by definition,
they cannot spoil cluster adjacency. Hence for (k, n) coprime, it is possible to talk about
the cluster adjacency directly in terms of homogeneous letters such as those in equation
(2.2.16) for seven-particle scattering and ignore the frozen coordinates altogether.

The E6-shaped cluster contains one of each of the six cyclic classes of letters given
in (2.2.16). If we freeze the node a13 the cluster algebra reduces to an A5 algebra which
generates 20 letters all of which are in a cluster with a13. Including a13 itself we find 21
possible neighbours for a13. The letters a16 and a17 are in the neighbour set of a13 but a11,
a12, a14 and a15 are not, which implies the Steinmann conditions. The analysis applies
similarly to all a1i type letters and is in accordance with the first line of Table 2.1. If we
freeze either of the nodes a24 or a37 the cluster algebra reduces to a D5 algebra, generating
25 allowed neighbours in addition to the letter itself. Likewise freezing either a41 or a51

leads to an A4 × A1 algebra which generates 14 + 2 = 16 neighbouring letters in addition
to the letter itself. Finally if we freeze the node a62 we obtain an A2×A2×A1 subalgebra
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which generates 5+5+2 = 12 allowed neighbours in addition to a62 itself. Each subalgebra
responsible for generating the allowed neighbour set of a given letter corresponds to a
subpolytope in the whole E6 polytope. One finds the following homogeneous neighbour
sets for the letters a11, a21, a41 and a61:

hns[a11] = {a11, a14, a15, a21, a22, a24, a25, a26, a31, a33, a34, a35, a37, a41, a43, a46, a51,

a53, a56, a62, a67}

hns[a21] = {a11, a13, a14, a15, a17, a21, a23, a24, a25, a26, a31, a33, a34, a36, a37, a41, a43,

a45, a46, a52, a53, a55, a57, a62, a64, a66}

hns[a41] = {a11, a13, a16, a21, a23, a24, a26, a31, a33, a35, a36, a41, a43, a46, a51, a62, a67}

hns[a61] = {a12, a17, a23, a25, a27, a32, a34, a36, a42, a47, a52, a57, a61} .
(2.5.4)

All other homogeneous neighbour sets for Gr(4, 7) can be obtained as cyclic rotations,
reflections or parity conjugates of these.

2.5.2 Definition of cluster adjacent polylogarithms

We recall a polylogarithm of weight k obeys

df (k) =
∑
a∈A

f
(k−1)
[a] d log a , (2.5.5)

where for us A is the set of all A-coordinates of our cluster algebra. A cluster adjacent
polylogarithm is one where the f (k−1)

[a] above additionally obey

df
(k−1)
[a] =

∑
b∈ns[a]

f
(k−2)
[b],a d log b , (2.5.6)

where the sum is only over b in the neighbour set of a. We also insist that the f (k−1)
[a] are

themselves cluster adjacent polylogarithms in the same sense, i.e.

df
(k−2)
[b],a =

∑
c∈ns[b]

f
(k−3)
[c],ba d log c , (2.5.7)

and so on all the way down to weight zero. It follows from the above that all adjacent pairs
in the symbol of a cluster adjacent polylogarithm [. . .⊗ a⊗ b⊗ . . .] are such that a ∈ ns[b]
or equivalently b ∈ ns[a].

Note that the above discussion is phrased in terms of the inhomogeneous A-coordinates,
even though we are always interested in homogeneous functions f (k). This simply means
that all the df (k) above can be rewritten purely in terms of homogeneous combinations
of A-coordinates and the sum in (2.5.6) could be taken over the homogeneous neighbour
set of a. In general, not all the cluster adjacency properties will be manifest in such a
homogeneous representation, as happens in the hexagon case. In particular if we choose to
write take sum in (2.5.6) over the homogeneous neighbour set of a, then each homogeneous
b should be expanded in terms of the inhomogeneous A-coordinates in order to then reveal
the cluster adjacent nature of the expression (2.5.7).

In the heptagon case one can phrase the whole discussion in terms of the homogenised
unfrozen coordinates and the sum in (2.5.6) can be taken over the homogeneous neighbour
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sets given in (2.5.4). Since the frozen factors play no role in cluster adjacency this property
can be made manifest at the same time as homogeneity.

In Table 2.2 we record the dimensions of the spaces of cluster adjacent symbols. Up
to weight three all Steinmann symbols are cluster adjacent. At weight four there are
14 Steinmann symbols which fail to be cluster adjacent. They are of the form [u⊗ (1 −
u)⊗u⊗u] for u = a11a12

a15
or u = a11a13 and cyclic copies. The failure of adjacency comes in

the last two slots as in either case the letter u may not appear next to itself. Interestingly,
if we apply just the Steinmann conditions on the a1i, but everywhere in the symbol as in
[70, 129], then up to weight six the dimensions come out to be the same as with the cluster
condition i.e. the ‘extended’ Steinmann condition and initial entry condition imply cluster
adjacency. We do not yet know if this pattern continues.

Function space 1 2 3 4 5 6 7 8

7gon 7 42 237 1288 6763 ? ? ?
Steinmann 7gon 7 28 97 322 1030 3192 9570 ?

Cluster 7gon 7 28 97 308 911 2555 6826 ?

Table 2.2: Dimensions of various spaces constructed from the A-coordinates of the Gr(4, 7)
cluster algebra.

2.5.3 Neighbour-set functions

When constructing integrable cluster-adjacent functions, it is natural to introduce the
concept of neighbour-set functions. They are defined as polylogarithms which satisfy

df (k) =
∑
b∈ns[a]

f
(k−1)
[b] d log b (2.5.8)

for a given choice of A-coordinate a. The final entries of the symbols of such functions are
selected only from the neighbour set of a given A-coordinate. As can be seen from (2.5.6)
above, any cluster adjacent weight-k function only requires neighbour set functions in its
(k − 1, 1) coproduct. Hence, when constructing cluster adjacent functions of weight k one
can use a reduced ansatz for the (k − 1, 1) coproduct

f (k−1,1) =
∑
a∈A

d
(k−1)
[a]∑
i=1

cai
[
f

(k−1)
[a],i ⊗ a

]
, (2.5.9)

where f (k−1)
[a],i are elements of a basis for the space of homogeneous weight-(k− 1) functions

whose final entries are in the neighbour-set of a and d(k−1)
[a] is the dimension of this space. If

the A-coordinates a in (2.5.9) above cannot be chosen as unfrozen ones homogenised purely
in terms of frozen ones, then the coefficients cai are assumed to be constrained to ensure
homogeneity of the resulting expression. Eliminating any cluster-adjacency violation in the
ansatz reduces the size of the resulting linear algebra problem. The notion of a neighbour
set function is compatible with any possible choices of constraints in the initial entries, for
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Weight 2 3 4 5 6 7 8 9 10 11 12 13 14

hns[〈13〉] 3 6 11 21 39 73 132 237 415 717 1216 2036 3358
hns[〈14〉] 3 5 10 19 36 66 120 213 374 644 1096 1835 3041
Full A3 6 13 26 51 98 184 340 613 1085 1887 3224 5431 9014

Table 2.3: Dimensions of the spaces of integrable words in the hexagon alphabet with
hexagon initial entries {u, v, w} only and final entries drawn from the neighbour sets
hns[〈13〉], hns[〈14〉] or from the full nine-letter A3 alphabet.

Weight 2 3 4 5 6 7

hns[a1i] 10 29 83 229 612 1577
hns[a2i] 15 43 117 311 804 2025
hns[a4i] 6 14 34 87 224 570
hns[a6i] 4 11 29 76 193 476
Full E6 28 97 308 911 2555 6826

Table 2.4: Dimensions of the neighbour-set function spaces of the heptagon alphabet with
initial entries a1i and the dimensions of the full cluster-adjacent heptagon functions

example when constructing hexagon symbols to describe six-point amplitudes in planar
N = 4 super Yang-Mills theory.

We now illustrate neighbour set functions for Gr(4, 6). In this case, there are two types
of unfrozen A-coordinates with neighbour set functions: 〈13〉 & cyclic and 〈14〉 & cyclic.
The neighbour-set functions for the hexagon are then defined as homogeneous, cluster-
adjacent functions that obey the initial entry condition, i.e. begin with the three-cross
ratios of the hexagon (u, v or w from (2.2.14), and end with aforementioned homogeneous
combinations that are cluster-adjacent to 〈13〉 or 〈14〉. The dimensions of such spaces for
a few weights are compared to the full space of cluster-adjacent hexagon symbols is given
in Table 2.3.

We have also computed the neighbour-set functions of the heptagon letters up to weight
seven. The dimensions of the neighbour-set function spaces depend on the letter and they
are summarised in Table 2.4. For weights 2-7 we find the span of all a2i and a3i neighbour-
set function spaces covers the entire cluster-adjacent function space of the corresponding
weight.

2.5.4 Integrability

It is interesting to investigate in low weights the spaces of cluster adjacent functions without
any initial entry condition. At weight two we may split the space of integrable words
into those which are symmetric in the two entries of the symbol and those which are
antisymmetric. The symmetric ones are trivially integrable: any word of the form [a ⊗
b] + [b⊗ a] is the symbol of log a log b. Adjacency however constrains the possible choices
of a and b - they must come from a common cluster, i.e. they must not correspond
to distant faces on the polytope. The antisymmetric words on the other hand are not
trivially integrable. However, they do automatically obey the adjacency condition, in the

58



sense that all antisymmetric integrable weight two words are cluster adjacent, even if that
condition was not imposed in constructing them. Actually they obey a stronger condition,
namely that the A-coordinates appearing in the two slots can be found in some cluster
together where they are connected by an arrow. The antisymmetric words correspond to
combinations of dilogarithms.

The cluster adjacency criterion is therefore really a constraint on the symmetric and
trivially integrable part. It implies that, even though any symmetric pair [a⊗ b] + [b⊗ a]

is integrable, to be admissible a and b must still appear together in some cluster. More-
over admissible pairs which are never connected by an arrow in any cluster must appear
symetrically.

When we investigate weight three words we find that the associated triplets of A-
coordinates are of two possible types. Each term [a ⊗ b ⊗ c] is either of the form where
a, b and c can all be found together in the same cluster or we have c = a′ where a′ is the
result of mutating on a in some cluster. In fact there is an even stronger condition in this
latter case: if we find triplets of the form [a⊗ b⊗ a′] then they can always be combined so
that the intermediate letter becomes the X -coordinate associated with the mutation pair
(a, a′). Recall that X -coordinates are associated to one-dimensional edges of the polytope
which are also associated to mutations. Moreover if there is more than one edge between
the two faces labelled by a and a′ those edges are associated to the same X -coordinate.
In other words X -coordinates are associated to mutation pairs of A-coordinates, hence we
may denote them by x(a, a′). So we have triplets of the form [a⊗ x(a, a′)⊗ a′] or triplets
[a⊗ b⊗ c] where all three letters can be found together in some cluster. This implies that
some pairs of letters such as a11 and a61 which neither share a cluster nor mutate into
each other never appear together in a triplet - there must be at least two letters appearing
between them in an admissible symbol.
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Chapter 3

BCFW and NMHV

In this chapter we will develop the notion of cluster adjacency further. Since the mon-
odromies of analytic functions in general and amplitudes in particular are typically non-
abelian in nature, the cluster adjacency controlling their appearance has a non-abelian
character; the order in which A-coordinates appear in the symbol is important. Here we
also develop an abelian version of adjacency which controls the poles of individual terms in
tree-level amplitudes. We find that precisely the same notion of adjacency holds for individ-
ual BCFW terms, NMHV amplitudes and beyond. Since poles multiply in a commutative
fashion the adjacency constraints apply to all poles in a given term.

When considering NMHV loop amplitudes we have expressions which simultaneously
exhibit non-trivial poles and branch cuts. We find that the cluster structure also imposes
relations between the two. Specifically we find that the derivatives of individual terms in
NMHV loop amplitudes are constrained in such a way that they are compatible with the
poles of the multiplying rational function. The cluster adjacency we find actually comprises
a subset of the constraints which follow from dual superconformal symmetry [3]. At loop
level these constraints are expressed through the Q̄ equation of [121, 133]. So the cluster
adjacency structure simultaneously implies both branch cut relations, e.g. the Steinmann
relations, and derivative relations such as those following from dual superconformal sym-
metry.

As an example of the power and utility of the cluster adjacency principle we show here
how it can be used to construct the four-loop NMHV heptagon amplitude from a rather
minimal and manifestly cluster adjacent ansatz.

3.1 Cluster adjacency in hexagon and heptagon loop ampli-
tudes

We have confirmed that all the currently available results for hexagon and heptagon
functions appearing in the loop expansion of MHV and NMHV amplitudes are cluster
adjacent polylogarithms. That is, the functions EMHV,(L) and E(L)

ijklm are weight 2L poly-
logarithms whose symbols obey the cluster adjacency conditions and whose initial entries
are constrained to be compatible with the physical branch cut conditions. In the hexagon
case this means the initial entries are drawn from the set {u, v, w} from (2.2.14) and in the
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heptagon case that they are of the form a1i from the heptagon alphabet given in (2.2.16).

In the MHV case the (2L − 1, 1) coproduct of the polylogarithmic functions which
appear is constrained in the final entries which are drawn only from A-coordinates of the
form 〈i j − 1 j j + 1〉. This behaviour follows from an analysis of the Q̄-equation of [121,
133]. This has the consequence that the (n − 1, 1) coproduct of the MHV amplitudes is
heavily constrained,

E(2L−1,1) =
∑
i,j

[Eij ⊗ 〈i j − 1 j j + 1〉] , (3.1.1)

where Eij is a neighbour set function of the A-coordinate 〈i j− 1 j j+ 1〉, i.e. it is a weight
(2L − 1) polylogarithm whose symbol’s final entries are drawn from the neighbour set of
〈i j − 1 j j + 1〉.

In the NMHV case there is an interplay between the R-invariants and the final entries
of the symbols of the polylogarithms which appear. We will address this point in greater
detail in Section 3.3.

3.2 Cluster adjacency of tree-level BCFW recursion

It is clear from the above discussion that cluster adjacency of polylogarithms or symbols
has a non-abelian character. Two A-coordinates a and a′ which cannot appear next to
each other are allowed to appear in the same word if they are appropriately separated by
intermediate A-coordinates. For example, if they are separated by one step only the X -
coordinate associated to the relevant mutation appears between them, as discussed above.
This non-abelian behaviour is due to the fact that the symbol comes with an ordering
which ultimately reflects the fact that monodromies of the associated iterated integrals do
not commute with each other.

However we now discuss a setting where an abelian form of cluster adjacency holds.
It is in the context of the poles of rational functions contributing to tree-level amplitudes.
Here we will restrict our discussion to the cluster adjacency properties of BCFW tree-
amplitudes for NMHV and N2MHV helicity configurations. The superconformal and dual
superconformal symmetries are known to combine into a Yangian structure [100]. BCFW
expansions for tree amplitudes are solved in terms of Yangian invariants. These quantities
can be found as residues in the Grassmannian integral of [2, 5].

The pattern we find can be stated as follows: every Yangian invariant in the BCFW
expansion of tree amplitudes has poles given by A-coordinates which can be found together
in a common cluster.

Expressions for BCFW expansions may be generated directly in momentum twistor
variables using the bcfw.m package provided in [134]. We give explicit examples showing all
BCFW terms obey the cluster adjacency property up to eight points. As well as providing
another example in which the cluster algebra structure plays a role in controlling the
singularities of amplitudes, the discussion of R-invariants will be relevant later when we
consider NMHV loop amplitudes.
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〈1234〉 〈1235〉 〈1245〉 〈1345〉 〈2345〉

Figure 3.1: The single Conf5(P3) ∼ A0 cluster. All nodes are frozen.

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 3.2: The cluster containing the poles of [12345] in Conf6(P3).

3.2.1 NMHV

The BCFW expansion of the n-point NMHV tree amplitude of N = 4 SYM (divided by
the MHV tree) can be written as a linear combination of R-invariants

Atree
n,1 =

∑
1<i<j<n

[1ii+ 1jj + 1] (3.2.1)

We will now show that the A-coordinates which describe the poles of R-invariants obey
an abelian form of cluster adjacency: it is always possible to find a cluster where all the
poles of an R-invariant appear together. Since the poles multiply in a commutative fashion
there is no ordering to them and it is natural therefore that adjacency simply requires them
all to appear together in some cluster.

Five points

Five-points is a trivial example as there is just one R-invariant and hence the amplitude
is simply

A5,1 = [12345], (3.2.2)

also Conf5(P3) contains just one cluster containing all frozen nodes. The nodes in Fig. 3.1
are coloured blue to indicate that they are present as poles in the R-invariant [12345]. The
basic R-invariant (3.2.2) and its associated cluster will be the starting point for analysing
all other NMHV R-invariants.

Six points

At six-points there is only one type of R-invariant, [12345] and its cyclic rotations, which
make up the six-point, NMHV, tree given as

A6,1 = [12345] + [12356] + [13456] = [12346] + [12456] + [23456]. (3.2.3)

Since every R-invariant at six points is a rotation of (3.2.2) in Conf6(P3) we can identify
each one with a single cluster in the polytope, one of which is given in Fig. 3.2. One would
obtain the other five R-invariants and their associated clusters through cyclic rotations of
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

Figure 3.3: A cluster containing the poles of [12345] in Conf7(P3). The unfrozen nodes
highlighted in red generate an A3 subalgebra by repeated mutation.

this cluster. This can be achieved by applying the sequence of mutations illustrated in
Figure 2.3 which generates a cyclic rotation. The clusters associated to the R-invariants
are the six associated to the top and bottom corners of the square faces in Figure 2.3.

Note that while the full tree amplitude (3.2.3) only contains physical poles of the form
〈1245〉 ∼ 1/x2

25 = 1/(p2 + p3 + p4)2 and rotations, the adjacency property holds term by
term in the BCFW expansion. Hence it also constrains the way in which the spurious
poles at 〈1235〉 = 0 and its cyclic rotations may appear. A consequence of the adjacency
property is the well-known fact that the tree amplitude cannot have simultaneous poles in
two different factorisation channels. For example, there is no term with both 〈1245〉 and
〈2356〉 in the denominator. This statement is the analogue of the fact that the Steinmann
relations follow from cluster adjacency in the loop amplitudes.

Seven points and beyond

At seven points there are three types of R-invariant,

[12345] & cyclic, [12346] & cyclic, [12356] & cyclic. (3.2.4)

The tree amplitude takes the form

A7,1 = [12345] + [12356] + [12367] + [13456] + [13467] + [14567] . (3.2.5)

As with (3.2.3), the BCFW representation of this amplitude is not unique due to the
identity among the R-invariants (1.3.37). At seven points multiple clusters contain the
poles of a given R-invariant and hence R-invariants are associated to sub-algebras in the
full Conf7(P3) cluster algebra. For example, the initial cluster in Figure 2.7 contains all
the poles of [12345]. It also contains three more unfrozen nodes in the second column.
Performing all possible mutations in the second column generates an entire A3 subalgebra,
all of whose clusters contain the poles of [12345]. This is illustrated in Fig. 3.3. The other
two types of R-invariants in (3.2.4) appear respectively in A2 and A1 subalgebras.

One form of the eight-point NMHV tree amplitude is given by

A8,1 =[12345] + [12356] + [12367] + [12378] + [13456]

+[13467] + [13478] + [14567] + [14578] + [15678].
(3.2.6)
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n 5 6 7 8

[12345] A0 A0 A3 E6

[12356] − A0 A1 A4

[12346] − A0 A2 A5

[13467] − − A1 A2 ×A1 ×A1

[12357] − − A2 A4

Table 3.1: Various R-invariants and their subalgebras in Confn(P3) at different multiplic-
ities n.

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈1238〉

〈1278〉

〈1678〉

〈5678〉〈4567〉

Figure 3.4: A cluster containing the poles of [12345] in Conf8(P3).

As we can see, more types of R-invariants begin to appear at eight points so we have
presented their subalgebras in Table 3.1 below along with their subalgebras at lower points.
The notation A0 in Table 3.1 indicates that a single cluster is associated to that R-invariant.
The last R-invariant [12357] does not appear in the BCFW expansion of any tree in formula
(3.2.1) amplitude but we can nevertheless associate a sub-algebra to this Yangian invariant
object.

As described in Section 2.2.3 above, one can rotate the nodes in an initial-type cluster
by mutating up all consecutive columns. Using this we can show that one can obtain any
R-invariant by starting with the initial cluster, which we associate to [12345], and mutating
in different Confn(P3) sub-algebras. We illustrate this procedure with the following eight-
point example: we will find a cluster in Conf8(P3) which contains the poles of [13467].

Starting from [12345], the sequence of rotations to get [13467] is

[12345]
+4−−→ [12356]

+5−−→ [13467] (3.2.7)

where the rotations are in Conf6(P3) and Conf7(P3) respectively. To find a cluster in
Conf8(P3) with all the A-coordinates we need we start from the initial cluster (shown in
Fig. 3.4) and mutate in the Conf7(P3) subalgebra (the first two columns) such that its
nodes rotate by five to arrive at the cluster shown in Fig. 3.5. Then we mutate in the
Conf6(P3) subalgebra (the first column only) such that its nodes rotate by four. Beginning
with the Conf8(P3) initial cluster we employ our mutation prescription by mutating up
the first column, followed by the second column, repeating this another four times which
results in the cluster shown in Fig. 3.5 where the unchanged topology of the Conf7(P3)

subalgebra is given in green. We now mutate up the first column in the green section
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〈1236〉

〈2367〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

〈1236〉

〈2367〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

Figure 3.5: The cluster obtained after five cyclic mutations of Fig. 3.4 in the first two
columns.

〈1346〉

〈1347〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

〈1346〉

〈1347〉

〈1367〉

〈2346〉

〈3467〉

〈1467〉

〈1678〉 〈1567〉

〈1267〉

〈1237〉

〈1234〉 〈2345〉

〈1278〉

〈1238〉

〈3456〉

〈4567〉

〈5678〉

Figure 3.6: A cluster containing the poles of the R-invariant [13467].

four times, resulting in the final cluster shown in Fig. 3.6 where the poles of [13467] are
in blue and the A2 × A1 × A1 subalgebra is in red in agreement with Table 3.1. Using
this procedure one can locate a cluster which contains the poles of any R-invariant for an
arbitrary number of points.

3.2.2 Beyond NMHV

Beyond NMHV, terms in BCFW tree amplitudes are more complicated than simple R-
invariants so it is less obvious that one could associate subalgebras of Confn(P3) cluster
algebras to individual terms. We show, up to eight points, that one can do this in much
the same way as for NMHV.

Six points

At six points the N2MHV amplitude is equivalent to the MHV amplitude. It is given by

A6,2 =
〈〈123456〉〉

〈1234〉〈1236〉〈1256〉〈1456〉〈2345〉〈3456〉
(3.2.8)

where
〈〈ijklmn〉〉 =

〈〈ijkmn〉〉〈〈jklmn〉〉
〈jkmn〉4

(3.2.9)

is cyclically invariant and polynomial although not manifestly so in this form. The five-
index object is given by 〈〈ijklm〉〉 = δ0|4(χi〈jklm〉+ cyclic).

Identifying a cluster with (3.2.8) is trivial since every pole is an adjacent bracket and
hence appears in every cluster in Conf6(P3) i.e. one can associate this amplitude with the
entire A3 cluster algebra. The blue nodes correspond to poles in the amplitude and the
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〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

Figure 3.7: A cluster in A3 corresponding to the six-point N2MHV amplitude.

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

〈1234〉

〈1235〉 〈1236〉

〈1245〉 〈1256〉

〈1345〉 〈1456〉

〈2345〉 〈3456〉

〈1237〉

〈1267〉

〈1567〉

〈4567〉

Figure 3.8: A cluster containing the poles of A6,2 in Conf7(P3).

nodes highlighted in red correspond to the full A3 algebra in which the amplitude lives.

Seven points

The seven-point, N2MHV, tree-amplitude is equivalent to the NMHV amplitude

A7,2 = A6,2

+
〈〈134567〉〉

〈1345〉〈1347〉〈1367〉〈1567〉〈3456〉〈4567〉

+
〈〈123467〉〉

〈1234〉〈1237〉〈1267〉〈1467〉〈2346〉〈3467〉

+
〈〈12345〉〉〈〈14567〉〉

〈1234〉〈1245〉〈1345〉〈1456〉〈1457〉〈1567〉〈2345〉〈4567〉〈1(23)(45)(67)〉

+
〈〈12367〉〉〈〈23456〉〉

〈1236〉〈1237〉〈1267〉〈2345〉〈2346〉〈2356〉〈2367〉〈3456〉〈6(23)(45)(17)〉

+
〈〈12367〉〉〈〈14567〉〉

〈1237〉〈1267〉〈1367〉〈1467〉〈1567〉〈4567〉〈1(23)(45)(67)〉〈6(23)(45)(17)〉
.

(3.2.10)

The first term is equal to the expression (3.2.8) for the six-point amplitude. It is now
in Conf7(P3) ∼ E6 therefore some of the poles are now unfrozen and the A3 algebra is
now a subalgebra of the full E6 algebra, as shown in Fig. 3.8. As before, the blue nodes
correspond to poles in the term while the nodes highlighted in red correspond to an A3

subalgebra inside the full E6 algebra in which all the poles of (3.2.8) can be found. The
second and third terms of (3.2.10) can be obtained by rotating the momentum twistors
in (3.2.8) by two and five units respectively and hence one can obtain clusters containing
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〈3456〉〈4567〉 〈2345〉

〈1456〉 〈1345〉

〈1457〉 〈1245〉

〈1237〉 〈1267〉〈1(23)(45)(67)〉

〈1467〉〈1234〉 〈1567〉

Figure 3.9: A cluster corresponding to the 4th term in A7,2.

〈2367〉〈1237〉 〈4567〉

〈7(23)(45)(16)〉〈1567〉 〈1267〉

〈1467〉 〈1(23)(45)(67)〉 〈6(23)(45)(17)〉 〈1367〉

〈1234〉 〈2345〉 〈3456〉

Figure 3.10: A cluster corresponding to the 6th term in A7,2.

their poles by rotating Fig. 3.8 by the same amounts. We can associate the fourth term
of (3.2.10) with an A1 subalgebra as shown in Fig. 3.9. One can obtain the fifth term
by rotating the fourth term by five units hence it also lives in an A1 subalgebra found
by rotating Fig. 3.9 by five units. Finally, the sixth term can be associated to an A2

subalgebra as illustrated in Fig. 3.10.

Eight points

The eight-point N2MHV amplitude is the first true N2MHV amplitude in that it is not
equivalent to the parity conjugate of another Nk<2MHV amplitude. Explicitly it is given
by
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Term Sub-Algebra Term Sub-Algebra Term Sub-Algebra Term Sub-Algebra

1 A3 ×A3 6 A2 11 A3 ×A1 16 A1 ×A1

2 A3 ×A2 7 A3 ×A3 12 A1 ×A1 17 A2 ×A1

3 A3 ×A1 8 A3 13 A1 ×A1 18 A3 ×A2

4 A2 ×A1 9 A3 ×A3 14 A2 ×A1 19 A2 ×A1

5 A1 ×A1 10 A3 15 A1 ×A1 20 A2

Table 3.2: Subalgebras associated to terms in A8,2.

A8,2 = A7,2

+
〈〈123478〉〉

〈1234〉〈1238〉〈1278〉〈1478〉〈2347〉〈3478〉

+
〈〈134578〉〉

〈1345〉〈1348〉〈1378〉〈1578〉〈3457〉〈4578〉

+
〈〈145678〉〉

〈1456〉〈1458〉〈1478〉〈1678〉〈4567〉〈5678〉

+
〈〈12345〉〉〈〈15678〉〉

〈1234〉〈1235〉〈1245〉〈1345〉〈1567〉〈1568〉〈1578〉〈1678〉〈2345〉〈5678〉

− 〈〈12378〉〉〈〈23456〉〉
〈1237〉〈1238〉〈1278〉〈2345〉〈2346〉〈2356〉〈2378〉〈3456〉〈235̄ ∩ 8̄〉

+
〈〈12345〉〉〈〈14578〉〉

〈1234〉〈1245〉〈1345〉〈1457〉〈1458〉〈1578〉〈2345〉〈4578〉〈1(23)(45)(78)〉

+
〈〈12356〉〉〈〈15678〉〉

〈1235〉〈1256〉〈1356〉〈1567〉〈1568〉〈1678〉〈2356〉〈5678〉〈1(23)(56)(78)〉

+
〈〈13456〉〉〈〈15678〉〉

〈1345〉〈1356〉〈1456〉〈1567〉〈1568〉〈1678〉〈3456〉〈5678〉〈1(34)(56)(78)〉

+
〈〈12378〉〉〈〈23467〉〉

〈1237〉〈1238〉〈1278〉〈2346〉〈2347〉〈2367〉〈2378〉〈3467〉〈7(23)(46)(18)〉

+
〈〈13478〉〉〈〈34567〉〉

〈1347〉〈1348〉〈1378〉〈3456〉〈3457〉〈3467〉〈3478〉〈4567〉〈7(34)(56)(18)〉

+
〈〈12378〉〉〈〈14578〉〉

〈1238〉〈1278〉〈1378〉〈1478〉〈1578〉〈4578〉〈1(23)(45)(78)〉〈7(23)(45)(18)〉

+
〈〈12378〉〉〈〈15678〉〉

〈1238〉〈1278〉〈1378〉〈1578〉〈1678〉〈5678〉〈1(23)(56)(78)〉〈7(23)(56)(18)〉

+
〈〈13478〉〉〈〈15678〉〉

〈1348〉〈1378〉〈1478〉〈1578〉〈1678〉〈5678〉〈1(34)(56)(78)〉〈7(34)(56)(18)〉

+
〈〈12378〉〉∆0|4

〈1237〉〈1238〉〈1378〉〈2378〉〈4567〉〈235̄ ∩ 8̄〉〈7(23)(45)(18)〉〈7(23)(46)(18)〉〈7(23)(56)(18)〉 (3.2.11)

where in the last term we have the quantity ∆0|4 = δ0|4(χ2〈1378〉〈4567〉−χ3〈1278〉〈4567〉−
χ4〈7(23)(56)(18)〉+ χ5〈7(23)(46)(18)〉 − χ6〈7(23)(45)(18)〉 − χ7〈235̄ ∩ 8̄〉).

At eight points, Conf8(P3) is an infinite cluster algebra, however we can still associate
finite subalgebras to each of the 20 terms in the amplitude. These subalgebras are displayed
in Table 3.2 where terms 1-6 are those in (3.2.10). Although the subalgebras shown in Table
3.2 are all finite, at higher points they may become infinite. For example, the subalgebra
associated to (3.2.8) at ten points will be A3 ×Conf8(P3) which is infinite as Conf8(P3) is
infinite.

69



〈1234〉 〈1238〉 〈1278〉 〈1678〉
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Figure 3.11: A cluster containing the poles of [12345][56781] in Conf8(P3).

The tenth term is a new type of term of the form

[12345][56781] , (3.2.12)

to which we can associate an A3 subalgebra, a cluster belonging to which takes the form
shown in Fig. 3.11 below. The left and right columns of blue nodes in Fig. 3.11 correspond
to the poles of [12345] and [56781] respectively while the red column signifies the A3

subalgebra to which we associate this term.

3.2.3 Discussion

We have shown that all NMHV R-invariants obey the cluster adjacency property in that
their poles can all be found together in some cluster. We have also shown that the BCFW
terms in the expansion of N2MHV trees also obey cluster adjacency for six, seven, and eight
points. To each term is associated some subalgebra in the full polytope where every cluster
contains all of the poles. Similar structures have emerged in the study of the Grassmannian
integrals of [2, 5] and on-shell diagrams [23]. The difference here is that the properties we
observe between poles (both physical and spurious) are phrased in the same language that
we have found relates the branch cuts (symbol entries) of the integrated amplitudes.

The results for tree-level NMHV and N2MHV are highly suggestive that there should
exist a general relation between the singularities of the Yangian invariant leading singu-
larities and the cluster algebras associated to Confn(P3). A natural question is whether
an extension of the notion of cluster adjacency holds for all Yangian invariants. This
would lead us to consider quantities which go beyond A-coordinates for Confn(P3) such as
the four-mass box leading singularity which exhibits square root branch cuts in momentum
twistor variables. Studying such quantities should lead to insight on what cluster adjacency
has to say beyond rational A-coordinates and should have implications for understanding
the boundary structure of higher polytopes and the type of transcendental functions which
appear beyond seven-point amplitudes.

Certain operations can also be performed on Yangian invariants [86], e.g. the ‘fusing’ of
two Yangian invariants is also a Yangian invariant. Could one find a cluster interpretation
of such an operation? The cluster shown in Fig. 3.11 contains the poles of the product of
two Yangian invariants and could also be indicative of the amalgamation procedure [23]
whereby two clusters can be joined together to produce a cluster in a larger algebra.

70



3.3 NMHV loop amplitudes

Now we are in a position to relate the cluster adjacency properties described in the two
previous sections. The first amplitudes which exhibit both poles and cuts non-trivially are
the NMHV loop amplitudes.

3.3.1 Hexagons

The BDS-like subtracted NMHV hexagon is often written in terms of a parity even function
E(u, v, w) = E(Z1, . . . , Z6) and a parity odd function3 Ẽ(yu, yv, yw) = Ẽ(Z1, . . . , Z6),
where we have drawn attention to their dependence on the twistor variables. Here we will
adopt a shorthand notation which makes reference to the which of the cyclically ordered
twistors Zi sits in the first argument,

E1 = E(u, v, w) , E2 = E(v, w, u) , E3 = E(w, u, v) ,

Ẽ1 = E(yu, yv, yw) , Ẽ2 = −Ẽ(yv, yw, yu) , Ẽ3 = E(yw, yu, yv) .
(3.3.1)

The parity properties of E and Ẽ imply

E4 = E1 , Ẽ4 = −Ẽ1 . (3.3.2)

With this notation the hexagon NMHV amplitude takes the form

E6,NMHV =E1[(1) + (4)] + E2[(2) + (5)] + E3[(3) + (6)]

+Ẽ1[(1)− (4)] + Ẽ2[(2)− (5)] + Ẽ3[(3)− (6)] . (3.3.3)

Here we have adopted a common shorthand notation for the R-invariants: we write (1) =

[23456] and cyclically related formulae. The function Ẽ is taken to obey

Ẽ1 − Ẽ2 + Ẽ3 = 0 . (3.3.4)

We may equivalently write ENMHV
6 as follows,

E6,NMHV = (1)F1 + cyc. F1 = E1 + Ẽ1 . (3.3.5)

In (3.3.5) the notation ‘cyc’ refers to all cyclic rotations of the momentum twistors. At L
loops the functions E and Ẽ are weight 2L polylogarithms.

To discuss the cluster adjacency properties of the hexagon NMHV amplitudes we should
consider the (2L− 1, 1) coproduct of E6,NMHV,

E(2L−1,1)
6,NMHV = (1)

∑
i<j<k<l

[F
〈ijkl〉
1 ⊗ 〈ijkl〉] + cyc. (3.3.6)

Cluster adjacency manifest itself in two ways in the above expression. Firstly the F 〈ijkl〉

are neighbour set functions for 〈ijkl〉. This is the statement that F and hence E and Ẽ
cluster adjacent polylogarithms in the sense described in Section 2.5.2. Secondly we find
that the different functions F 〈ijkl〉1 appearing in (3.3.6) are constrained by the fact that F1

appears with the R-invariant (1) in (3.3.5).

3Sometimes Ẽ(yu, yv, yw) denoted simply as Ẽ(u, v, w), in which case one should in addition take care
to remember its odd parity.
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In order to reveal the additional constraints that cluster adjacency places on the form
of F we exploit the fact that the R-invariants obey the identity

(1)− (2) + (3)− (4) + (5)− (6) = 0 . (3.3.7)

This allows us to modify the presentation of E(2L−1,1)
6,NMHV by adding to it a vanishing term of

the form
[(1)− (2) + (3)− (4) + (5)− (6)]Z1 , (3.3.8)

where Z is given by
Z1 =

∑
i<j<k<l

[Z
〈ijkl〉
1 ⊗ 〈ijkl〉] . (3.3.9)

Here (by cyclically symmetrising (3.3.8) if necessary) we can require that Z is anti-cyclic,

Z2 = −Z1 . (3.3.10)

This means that the presentation of E(2L−1,1)
6,NMHV is still manifestly cyclic,

E(2L−1,1)
6,NMHV = (1)

∑
i<j<k<l

[(F
〈ijkl〉
1 + Z

〈ijkl〉
1 )⊗ 〈ijkl〉] + cyc. (3.3.11)

We find the following additional cluster adjacency property of all hexagon NMHV loop
amplitudes: there exists a Z such that the only A-coordinates 〈ijkl〉 appearing in (3.3.11)
are in the neighbour set of every A-coordinate in the denominator of the R-invariant (1).

As we have discussed in Section 3.2.1, the R-invariant (1) = [23456] is associated to a
single cluster in Conf6(P3) (in fact it is the one whose triangulation involves all the chords
of the form (1i)). It follows that the only unfrozen A-coordinates allowed in the final entries
are the ones of that cluster, namely 〈2346〉 = (15), 〈2356〉 = (14) and 〈2456〉 = (13). The
following unfrozen A-coordinates,

{〈1235〉, 〈1245〉, 〈1246〉, 〈1345〉, 〈1346〉, 〈1356〉} , (3.3.12)

are therefore forbidden in the sum in (3.3.11) above.

Note that since Z is multiplied by zero in (3.3.8) we do not need to require that it is
integrable, nor even that it is homogeneous. Nevertheless, the fact that it exists and obeys
(3.3.10) has the following implications for the final entries (or (n− 1, 1) coproduct) of F ,

F
〈1235〉
1 = −Z〈1235〉

1 ,

F
〈1246〉
1 = −Z〈1246〉

1 ,

F
〈1345〉
1 = −Z〈1345〉

1 ,

F
〈1356〉
1 = −Z〈1356〉

1 ,

F
〈1245〉
1 = −Z〈1245〉

1 ,

F
〈1346〉
1 = −Z〈1346〉

1 . (3.3.13)
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The anti-cyclicity of Z implies4

Z
〈1246〉
1 = −Z〈1235〉

6 ,

Z
〈1345〉
1 = +Z

〈1235〉
3 ,

Z
〈1356〉
1 = +Z

〈1235〉
5 ,

Z
〈1346〉
1 = +Z

〈1245〉
3 . (3.3.14)

Combining the above two sets of relations we deduce that adjacency implies the following
relations among the coproducts of F ,

F
〈1246〉
1 = −F 〈1235〉

6 ,

F
〈1345〉
1 = +F

〈1235〉
3 ,

F
〈1356〉
1 = +F

〈1235〉
5 ,

F
〈1346〉
1 = +F

〈1245〉
3 . (3.3.15)

The equations (3.3.15) are the consequences of cluster adjacency between the final entries
of the coproduct of F = E + Ẽ and the R-invariants.

As discussed in [46], similar coproduct relations follow from the Q̄-equation of [121,
133]. We may ask how the Q̄ conditions are related to the adjacency ones. To do this it
is simplest to count how many homogeneous (final entry)⊗(R-invariant) combinations are
allowed by cluster adjacency. To do this one may choose five independent R-invariants,
say (1), (2), (3), (4), (5), and nine d log’s of multiplicatively independent homogeneous let-
ters and make an arbitrary linear combination of all 45 possible products. We expand
the resulting expression into the d log〈ijkl〉 and eliminate all pairs (m) d log〈ijkl〉 which
obey adjacency (taking care to remember that some A-coordinates are compatible with
the R-invariant (6) = (1) − (2) + (3) − (4) + (5)) and require the resulting combination
to vanish. This yields 27 conditions, leaving 18 linearly independent homogeneous (final
entry)⊗(R-invariant) combinations. This is exactly the same number of linearly indepen-
dent combinations which are compatible with the Q̄ final entry conditions described in
[46].

We conclude that for the NMHV hexagon, the cluster adjacency property is equivalent
to the Q̄ final entry conditions. One should nevertheless stress that the Q̄ equation itself
is stronger than just the final entry conditions as it expresses the (2L − 1, 1) coproduct
entries in terms of and integral over a limit of certain heptagon amplitudes. We find
it remarkable that cluster adjacency property in its various forms encompasses both the
(extended) Steinmann conditions as well as some of the implications of dual superconformal
symmetry.

3.3.2 Heptagons

In the case of heptagons it is possible to write down 21 R-invariants,

(12) = [34567] , (13) = [24567] , (14) = [23567] & cyclic . (3.3.16)

4We remind the reader that the subscripts refer to the arguments of functions. For example, Z〈1235〉
6

means Z〈1235〉
1 |Zi→Zi−1 and not the 〈1235〉 coproduct element of Z6.
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They satisfy seven six-term identities of the form

(12)− (13) + (14)− (15) + (16)− (17) = 0 & cyclic . (3.3.17)

Only six of these identities are linearly independent and the number of independent R-
invariants is therefore 15, which can be chosen as [121]

E(0)
7,NMHV = (12) + (14) + (34) + (16) + (36) + (56) ,

(12) & cyclic ,

(14) & cyclic .

(3.3.18)

In this basis the BDS-like-normalised amplitude is expressed as follows:

E7,NHMV = A7,1E0 +
[
(12)E12 + cyclic + (14)E14 + cyclic

]
, (3.3.19)

where A7,1 is equal to the NMHV tree amplitude, given in (3.2.5).

The property of cluster adjacency again manifests itself in the heptagon NMHV am-
plitudes. It is possible to find a representation of the (2L− 1, 1) coproduct of the form

E(2L−1,1)
7,NMHV =

∑
a∈A

[
[(12)ea12 + (13)ea13 + (14)ea14]⊗ a

]
+ cyc. (3.3.20)

Here the sum is over the heptagon alphabet (2.2.16). As in the hexagon case, adjacency
manifests itself in two ways in (3.3.20). Firstly each of the eaij is a weight (2L−1) heptagon
neighbour set function for the letter a. This implies that the functions E0 andEij in (3.3.19)
are cluster adjacent polylogarithms. Secondly, only some of the eaij are non-zero: the ones
where the letter a is cluster adjacent to all of the poles of the R-invariant (ij). For example,
the R-invariant (12) contains three poles that are non-frozen cluster A coordinates, namely
〈3567〉 ∼ a34, 〈3467〉 ∼ a15, and 〈3457〉 ∼ a26:

(12) =
δ0|4(χ7〈3456〉+ cyclic

)
〈4567〉〈3567〉〈3467〉〈3457〉〈3456〉

. (3.3.21)

The intersection of the homogeneous neighbour sets of these coordinates defines the neigh-
bour set of the R-invariant (12), and similarly for the other R-invariants:

hns[(12)] = hns[a34] ∩ hns[a15] ∩ hns[a26]

= {a11, a12, a15, a21, a22, a26, a31, a32, a34, a53, a55, a57} ,

hns[(13)] = hns[a21] ∩ hns[a33] ∩ hns[a41] ∩ hns[a43]

= {a11, a13, a21, a23, a31, a33, a41, a43, a62} ,

hns[(14)] = hns[a11] ∩ hns[a14] ∩ hns[a21] ∩ hns[a34] ∩ hns[a46]

= {a11, a14, a21, a24, a31, a34, a46} .

(3.3.22)

Only the (final entry)⊗(R-invariant) combinations compatible with the above and their
cyclic rotations are allowed by cluster adjacency.

Note that the representation (3.3.20) employs the full redundant set of R-invariants.
Upon elimination of the redundant R-invariants, the coproducts of the functions E0 and
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Eij in (3.3.19) above are seen to be related to the quantities eij via

Ea0 =
∑
i

eai,i+2 , Ea12 = ea12 − ea16 − ea24 − ea46 , Ea14 = ea14 − ea16 − ea46 . (3.3.23)

As in the hexagon case, we do not require that the combinations
∑

a[e
a
ij⊗a] are integrable;

only
∑

a[E
a
0 ⊗a] and

∑
a[E

a
ij⊗a] are integrable. Nevertheless, just as in the hexagon case,

the existence and adjacency properties of the eaij imply relations on the coproducts of the
functions E0 and Eij .

Out of the 7 × (7 + 9 + 12) = 196 cluster adjacent (final entry)⊗(R-invariant) combi-
nations allowed by (3.3.22). The following linear combinations of cluster adjacent (final
entry)⊗(R-invariant) products vanish due to identities,

[(12)− (13) + (14)− (15) + (16)− (17)]⊗ {a11, a21, a31} (3.3.24)

as do their cyclic rotations. This allows us to eliminate 21 such combinations leaving 175
independent cluster adjacent combinations.

The 175 combinations form a larger set than the more restricted set of 147 NMHV
(final entry)⊗(R-invariant) combinations derived by Caron-Huot which are compatible
with the Q̄ equation. These 147 combinations are listed in [48]. Using the identities 1.3.37,
these NMHV final entries can be rewritten in the following manifestly cluster-adjacent way
in which the final entries of the function multiplying the R-invariant (ij) are in the set
hnsQ̄[(ij)] where:

hnsQ̄[(12)] = {a15, a21, a26, a32, a34, a53, a57} ⊂ hns[(12)]

hnsQ̄[(13)] = {a21, a23, a31, a33, a41, a43, a62} ⊂ hns[(13)]

hnsQ̄[(14)] = {a11, a14, a21, a24, a31, a34, a46} ⊂ hns[(14)] & cyclic . (3.3.25)

The above set of 7 × 3 × 7 = 147 (final entry)⊗(R-invariant) pairs are equivalent up to
using identities to the set presented in [48]. In contrast to the form presented in [48], the
Q̄-compatible final entries are monomials in the letters, which makes it trivial to verify
cluster adjacency properties. Note that the list of (final entry)⊗(R-invariant) pairs (3.3.2)
is not unique since it is possible to trade some combinations with others using the six-term
identities (1.3.37).

We will make use of the above cluster adjacent form for the NMHV heptagon amplitude
to allow for an efficient implementation of the bootstrap programme at four loops.

3.4 The four-loop NMHV heptagon

In Table 2.4, we reproduce the dimensions of the spaces in which various types of
heptagon neighbour-set functions with physical branch cuts live. The dimensions of these
spaces depend on the letter the neighbours of which are allowed in the final entry. The
neighbour-set functions will play a central role in parameterising the four-loop NMHV
amplitude.
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3.4.1 NMHV loop amplitudes and Q final entries

The observations above extend from individual symbols and R-invariants to NMHV am-
plitudes in a way in which poles and symbol final entries are related by cluster adjacency.
We use this to construct a simplified ansatz for the NMHV heptagon and comment in the
next section on how one can fix all its parameters using simple physical constraints at four
loops.

This means that the L-loop NMHV heptagon amplitude can be written in the following
form

E(L)
7,NMHV = E

(L)
0 E

(0)
7,NMHV +

(
E

(L)
12 (12) + E

(L)
14 (14) + cyclic

)
, (3.4.1)

where E0, E12 and E14 are all cluster adjacent polylogarithms built on the heptagon al-
phabet (2.2.16). Here we use

g2 =
a

2
=

λ

16π2
(3.4.2)

as a loop-counting parameter, where λ is the usual ’t Hooft coupling.

As mentioned above, there are 15 independent R-invariants however, to fully exploit the
cluster adjacency in the final entries, we are required to write an ansatz of a different form
from (3.4.1), employing all 21 invariants. We start with the following manifestly cluster
adjacent and Q satisfying ansatz for the L-loop BDS-like normalised NMHV amplitude,

E(L)
7,NMHV = e

(L)
12 (12) + e

(L)
13 (13) + e

(L)
14 (14) + cyclic. (3.4.3)

The eij are tensor products of the form

e
(L)
ij =

∑
φα ∈ hnsQ̄[(ij)]

∑
k

c
(ij)
k,α f

(2L−1)
hns[φα],k ⊗ φα , (3.4.4)

conforming to the coproduct structure of cluster-adjacent functions described in equation
(2.5.9) and with final entries φα are chosen from the set hnsQ̄[(ij)] defined in equation
(3.3.2).

Note that adjacency (and Q) helps in two ways in the above ansatz. It reduces the
possible final entries next to each R-invariant and it also reduces the possible next-to-final
entries for a given final entry. This means that we do not even need a full weight seven basis
of cluster adjacent functions, we only need the much smaller spaces whose final entries are
compatible with each φα in turn.

We stress that the form (3.4.3) is not unique due to the six-term identities that the
heptagon R-invariants satisfy and the amplitude E(L) needs to be integrable only on the
support of these identities. In order to obtain a manifestly integrable amplitude one should
express the 21 (ij) in terms of a non-redundant set of 15, e.g. those in equation (3.3.18).
In that basis, the integrable coefficient functions are expressed in terms of e(L)

ij as follows:

E
(L)
0 =

7∑
i=1

e
(L)
i i+2, E

(L)
14 = e

(L)
14 −e

(L)
16 −e

(L)
46 , E

(L)
12 = e

(L)
12 −e

(L)
16 −e

(L)
24 −e

(L)
46 . (3.4.5)

It is possible to remove some redundancies of this ansatz using the appropriate reflection
symmetries of the coproducts e(L)

ij . For example e(L)
12 is invariant under Zi 7→ Z3−i, which

76



relates the terms ending with a21, a26 and a53 to those ending with a32, a34 and a57,
respectively. Moreover, in e(L)

12 , a15 is preceded by a function which is invariant under the
reflections of the twistors that leave Z5 invariant.

In the following section we will focus on the technical details of the four-loop compu-
tation.

3.5 The four-loop computation

We will first give an account of the free parameters in the cluster-adjacent ansatz with
dihedral symmetry (3.4.3) at four loops. We then describe the steps we took to find the
values of these parameters to determine the NMHV amplitude. We also explain how one
can use the ancillary files to construct the symbol of the amplitude in explicit form.

Following the dimensions listed in Table 2.4, we can work out the dimensions of
weight-{7, 1} tensor-product spaces in which we are looking for the symbols eij . For exam-
ple, consider the neighbour-set functions associated with the seven final entries {a15, a21, a26,

a32, a34, a53, a57} of the symbol e12, as given in equation (3.3.2). The weight-7 neighbour
set functions that come before a15 live in a 1577-dimensional space, those that come before
a21,a26 a32 and a34 live in a 2025-dimensional space and those that come before a53 and
a57 live in a 570-dimensional one. This amounts to a total of 10,817 unknown coefficients
in the coproduct e(L)

12 but taking the reflection symmetry into account reduces this number
to 5426. With a similar counting, one has 4867 and 5919 unfixed coefficients for e(4)

13 and
e

(4)
14 , respectively, so that the undetermined coefficients in (3.4.3) number 16,212 in total.
Requiring that E(4)

7,NMHV is integrable, free of spurious poles and has the correct collinear
limits uniquely fixes all of these coefficients.

We have implemented these constraints in separate stages. One can start by requiring
the integrability of the symbol E14 = e14−e16−e46. This leaves 8,444 unfixed coefficients.
Then one can impose the integrability of E12 = e12 − e16 − e24 − e46 bringing this number
down to 56. Once the integrability of E12 and E14 is imposed, there are no new constraints
coming from the integrability of E0. In this 56-dimensional space, one can then look for
combinations for which the amplitude is free of spurious poles. These are poles that could
potentially appear in the limit where one of the 4-brackets in the denominator of the R-
invariants vanishes. However in physical amplitudes such poles are only allowed when the
4-bracket is of the form 〈i− 1ij− 1j〉, corresponding to an intermediate particle becoming
on shell. In all other cases, this potential pole must be cancelled by a vanishing of its
transcendental component, which, after also taking into account cyclic symmetry, implies
the following conditions:

Spurious I: E47|〈1356〉=0 = 0 , (3.5.1)

Spurious II: E23|〈1467〉=0 = E25|〈1467〉=0 , (3.5.2)

which have been worked out in [48, 135]. Imposing both conditions described in equation
(3.5.1), one is left with only five coefficients to be determined by imposing a kinematic
limit, such as the collinear limits.

In the collinear limit, two of the neighbouring particles in a colour-ordered amplitude
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become proportional to each other with an unspecified proportionality constant. We follow
[48] to describe the collinear limit in the momentum twistor. In a generic configuration, the
momentum twistor Z7 can be parametrised as a linear combination of four other momentum
twistors as follows:

Z7 = Z1 + ε
〈1456〉
〈2346〉

Z2 + τ
〈1245〉
〈2456〉

Z6 + η
〈1256〉
〈2456〉

Z4 . (3.5.3)

A collinear configuration is obtained when one sends first η → 0 followed by ε → 0. The
parameter τ then relates the momentum fraction.

Scattering amplitudes in planar N = 4 super Yang-Mills have a well-known collinear
behaviour and they can be related to the amplitude with one fewer particle. Usually
the BDS-normalised amplitude [101, 105] Bn is used to consider collinear kinematics, as
opposed to the BDS-like normalised one, because the former is finite in this limit and
directly reduces to the quantity of one fewer particle Bn−1. The two quantities are related
via

Bn = exp

(
−Γcusp

4
Yn

)
En, Yn ≡ −E(1)

n,MHV . (3.5.4)

In other words a BDS-like normalised quantity “E”, which may be the full superamplitude
(1.3.47), or a given MHV sector ENkMHV thereof (1.3.48), or a particular transcendental
component of the latter such as E0, Eij in (3.4.1), is related to the corresponding BDS-
normalised quantity “B” by an exponential factor involving the one-loop MHV amplitude
and the cusp anomalous dimension Γcusp.

Explicitly for n = 6, 7, the functions Yn are given by:

Y6 = −
3∑
i=1

[
Li2
(

1− 1

ui

)]
,

Y7 = −
7∑
i=1

[
Li2
(

1− 1

ui

)
+

1

2
log

(
ui+2ui−2

ui+3uiui−3

)
log ui

]
, (3.5.5)

where ui = ui,i+3 in terms of the cross-ratios defined in (1.3.51).

For seven particle scattering, there are two types of combinations of the NMHV super-
amplitude components that produce six-point amplitudes. The “k-decreasing” combina-
tion of BDS-normalised functions produces the six-point MHV superamplitude, whereas
the “k-preserving” ones produce the five independent components of the six-point NMHV
superamplitude [45].

For example, in the k-decreasing collinear limit, the MHV (ξ0) component of the six-
particle amplitude receives contribution from a number of functions multiplying different
R-invariants. More precisely, the combination

B0 +B23 +B34 = exp

(
−Γcusp

4
Y7

)(
E0 + E23 + E34

)
, (3.5.6)

where Γcusp is the cusp anomalous dimension, is what is expected to reproduce the BDS-
normalised six-point MHV amplitude B6,MHV.

Especially at four loops, it is cumbersome to compute the BDS-normalised functions,
which contain redundant information in that they involve a large number of known prod-
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ucts. However, with the knowledge of the MHV heptagon amplitude, it is not necessary to
convert between the different normalisations of the amplitude. Instead, one can consider
the difference

E0 + E23 + E34 − E7,MHV , (3.5.7)

where E7,MHV is the known BDS-like normalised heptagon amplitude. Since E7,MHV and
the combination E0 + E23 + E34 both reduce to the same quantity

E0 + E23 + E34 , E7,MHV →
[
exp

(
Γcusp

4
(Y6 − Y7)

)
E6,MHV

]∣∣∣∣
L

(3.5.8)

in the collinear limit, where E6,MHV is the six particle amplitude, one can impose the
vanishing of the difference (3.5.7) which only contains relatively simple, cluster-adjacenct
quantities.

While the vanishing of (3.5.7) in the collinear limit is a sufficient constraint to uniquely
fix the amplitude, constraints that relate E(4)

7,NMHV to another amplitude are not strictly
necessary. One can still explicitly construct the BDS-normalised amplitude in either k-
decreasing or k-preserving collinear limit and determine E(4)

7,NMHV only by requiring the

finiteness of the limit, without prior knowledge of E(4)
7 .

Integrability and the cancellation of spurious poles are linear constraints on the space
of coproducts and finding their solution spaces can be formulated as null-space problems
for integer-valued matrices encoding these constraints (see [48] for details). We found that
an efficient way of computing these kernels is to work modulo a prime number and feed
the constraint matrices into SpaSM [118], a sparse linear solver that employs modular
arithmetic. One can then compute these null-spaces modulo p for various prime numbers
p and reconstruct the exact amplitude using the Chinese Remainder Theorem. However,
it was possible to guess the answer that satisfies all constraints exactly by only repeating
the calculation mod 43051 and mod 46153.

3.5.1 Explicit results

The explicit tensor products e(4)
ij are too large to be included as supplementary material to

this thesis and therefore we provide them encoded as {6,1,1} coproducts. In this section
we describe how one can use the provided data to reconstruct the amplitude.

The file e74.m , provided in [10], contains a 4-index tensor of dimensions 3 × 2555 ×
42× 42 in Mathematica SparseArray format. The first index enumerates the tensors e(4)

12 ,
e

(4)
13 and e(4)

14 . Once the first index is specified, the remaining array contains the coefficients
ckαβij in the coproduct representation of e(4)

ij :

e
(4)
ij =

2555∑
k=1

42∑
α=1

42∑
β=1

ckαβij f
(6)
k ⊗ φα ⊗ φβ . (3.5.9)

We also provide bases spanning the spaces of weight-w f
(w)
k in terms of {w − 1,1}

coproducts:

f
(w)
k =

dimw−1∑
`

42∑
α

M
(w)
k`α f

(w−1)
` ⊗ φα , (3.5.10)
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using which one can recursively construct the symbols of functions f (w)
k in order to convert

the coproducts (3.5.9) to symbols. The coefficients M (w)
k`α are encoded in the files mw.m as

SparseArray objects for 2 ≤ w ≤ 6. These files can be found in [10].

Due to the cyclic symmetry of the superamplitude, the coefficients ckαβ1j for j = 2, 3, 4

are sufficient to describe the amplitude. The remaining symbols ckαβij with i 6= 1 can be

constructed by rotating the coproduct form (3.5.9). For example e(4)
23 can be constructed

as

e
(4)
23 =

2555∑
k=1

42∑
α=1

42∑
β=1

ckαβ12 C
[
f

(6)
k

]
⊗ C

[
φα
]
⊗ C

[
φβ
]
, (3.5.11)

where the cyclic rotation operator C acts on the letters as

C
[
ai j
]

= ai j+1 (3.5.12)

while its action on the functions is a linear transformation in the corresponding function
space:

C
[
f

(w)
k

]
=

dimw∑
`=1

C(w)
k` f

(w)
` . (3.5.13)

The matrices C(w)
k` are given as a Mathematica List in the file rotationmatrices.m for

2 ≤ w ≤ 6, found in [10].

Following this procedure one obtains three 8-dimensional Mathematica SparseArray

objects encoding the symbols of e(4)
ij which enter the coefficient functions E(4)

∗ . These
then can be used to perform various analyses of our result, such as the investigation of its
behaviour in the multi-Regge kinematics.

3.6 Multi-Regge limit

In this section, we will consider the multi-Regge limit of our n = 7, 4-loop NMHV
symbol, with a two-fold aim: First, to check our calculation against independent results
available for the amplitude in this limit up to NLLA [76, 78]. And second, to obtain new
predictions up to N3LLA, which we hope will play an important role in further elucidating
the perturbative structure of the heptagon in the limit, and guide its finite-coupling de-
termination, similarly to the hexagon case. We start by briefly reviewing the kinematics
and the most natural amplitude normalisation for our purposes in subsections 3.6.1 and
3.6.2, before describing the evaluation of the amplitude in subsection 3.6.3. The reader
interested in the final result and comparison may just skip directly to subsection 3.6.4.

3.6.1 Kinematics

We will focus on 2→ 5 scattering, for which multi-Regge kinematics (MRK) is defined as
the limit where the produced particles are strongly ordered in rapidity. For N = 4 SYM,
the nontrivial kinematic dependence is encoded in dual conformal cross ratios, and in [125,
126] it was shown that in the following convenient choice of six algebraically independent
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cross ratios, the limit becomes5

v1i ≡ ui+2i+5 → 1 , v2i ≡ u1i+3 → 0 , v3i ≡ u2i+4 → 0 , (3.6.1)

with
v2i

1− v1i
≡ 1

|1− zi|2
,

v3i

1− v1i
≡ |zi|2

|1− zi|2
, i = 1, 2 , (3.6.2)

held fixed. The right hand-side defines the four real, or two complex, finite cross ratios z1,
z2 that parametrise the limit, whereas the two cross ratios that become infinitesimal may
be chosen as

τi ≡
√
v2iv3i , i = 1, 2 . (3.6.3)

From the above equations, we may also deduce the behaviour of all heptagon symbol
letters, (2.2.16), in MRK, which is a necessary step before evaluating the corresponding
amplitude. Let us therefore record it here before closing this subsection,

a14 →
1

a12
a15 → a11a12 a16 →

1

a11
a24 →

a13

a23
a27 →

a17

a21

a32 →
a12a13

a23
a33 →

a23

a12
a36 →

a21

a11
a37 →

a11a17

a21
a41 →

a23a26

a12

a42 →
a17a34

a21
a43 → a11a23 a44 →

a34

a11
a45 →

a11a17a23

a21
a46 →

a26

a12

a47 →
a11a12a17

a21
a51 →

a13a35

a23
a52 →

a21a25

a11
a53 →

a11a12a13

a23
a54 →

a25

a11

a55 →
a12a13a21

a23
a56 →

a35

a12
a57 → a12a21 a61 → a12a17 a62 → a11a13

a63 →
a25a34

a11
a64 → a11a12a13 a65 →

1

a11a12
a66 → a11a12a17 a67 →

a26a35

a12
,

(3.6.4)

where we see that only 12 out of the 42 letters remain multiplicatively independent in the
limit. These 12 letters may in turn be expressed in terms of the variables (3.6.1)-(3.6.3)
as

a11 →
τ1

z2z̄2

√
z1z̄1

a12 → τ2z1z̄1

√
z2z̄2 a13 →

√
z2z̄2

τ2
1 τ2

a17 →
1

τ1τ2
2

√
z1z̄1

a21 → −
1

τ2z1

√
z2z̄2

a22 →
τ1τ2 (z̄2 − z̄1z̄2 − 1)√

z2z̄2

√
z1

z̄1

a23 → −
z2

√
z1z̄1

τ1
a25 → −

τ1 (1− z1)

z̄2

√
z1z̄1

a26 → τ2z̄1 (1− z2)

√
z̄2

z2

a31 →
τ1τ2 (z2 − z1z2 − 1)√

z2z̄2

√
z̄1

z1
a34 → −

τ1 (1− z̄1)

z2

√
z1z̄1

a35 → τ2z1 (1− z̄2)

√
z2

z̄2
.

(3.6.5)

3.6.2 BDS normalisation and analytic continuation

While in the previous sections we determined the heptagon superamplitude in the BDS-like
normalisation6 ENMHV, in MRK it is most conveniently described in the BDS normalisation,
introduced in (3.5.4). Here we are exclusively dealing with symbols, and since S(Γcusp) =

4g2, we may write each term in the weak coupling expansion of (3.5.4) at symbol level as

E(L) =
L∑
k=0

B(k) (−Y )L−k

(L− k)!
. (3.6.6)

Given the conformal equivalence of MRK with the double soft limit for the heptagon, all
loop corrections to the corresponding BDS-normalised superamplitude will vanish in the

5In the notations of [76, 78], ui+1,j1 = Uij , due to different numbering of momentum twistors.
6In what follows, we will drop the particle multiplicity index n, since we will be focusing on n = 7.
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Euclidean region. In order to obtain a nontrivial result, we therefore need to analytically
continue the latter amplitude to different kinematic regions, and here we will chose the
region where we analytically continue the energy components of all produced particles to
opposite sign. In terms of the conformally invariant cross ratios, this amounts to

u73
C→ e−2πiu73 , (3.6.7)

and given the relation of the latter to the a1i letters,

a11 =
u14u51

u36u62u73
+ cyclic , (3.6.8)

it is evident that the amplitude in this region will differ from its value in the Euclidean
region by

∆B ≡ BC − B =− 2πiDiscu73B (3.6.9)

=− 2πi (−Disca11B −Disca12B + Disca13B −Disca15B + Disca17B) .

Note that the above equation also holds for each component of the superamplitude sep-
arately, since the R-invariants (1.3.36) are rational functions of the kinematics, and thus
they will remain unchanged under the analytic continuation.

3.6.3 Evaluating the gluon amplitude in the limit

So far our discussion was at the level of the entire superamplitude, however in MRK the
natural object to consider are its gluon amplitude components, since the theoretical frame-
work for describing the limit was born out of the study of strong interactions. Focusing
on 1 + 2 → 3 + . . . + 7 scattering in all-outgoing momenta conventions, and denoting the
helicities of the produced gluons as h1, h2, h3, without loss of generality can define the
relevant BDS-normalised gluon amplitudes as

Rh1,h2,h3 ≡
A(−,−,+, h1, h2, h3,+)

ABDS(−,−,+, h1, h2, h3,+)

∣∣∣
MRK

, (3.6.10)

since the high energy of the incoming gluons implies that helicity is preserved along their
lines in the limit. Particularly for the NMHV case, which is our focus here, there exist
two inequivalent helicity configurations, R−++ and R+−+, since R++− may be obtained
from the former by a discrete parity and target-projectile (a particular dihedral flip that
commutes with the limit) transformation.

The gluon amplitudes (3.6.10) can be extracted from the superamplitude, as coefficients
of particular monomials of the fermionic variables χIi entering in the R-invariants (1.3.36),
with the latter being polynomials in these variables due to the fermionic delta function. We
will not demonstrate the details of this calculation here and just quote the final answer7,

R−++ = B̂0 + B̂67 + B̂71 +R234

(
B̂51 − B̂71

)
+R235

(
B̂56 − B̂51

)
,

R+−+ = B̂0 + B̂14 + B̂47 + B̂73 +R234

(
B̂12 − B̂14 − B̂47

)
+R345

(
B̂36 − B̂14

)
+R234R345

(
B̂14 + B̂62 − B̂12

)
, (3.6.11)

7The result of this calculation was also reported in [76], but with the B̂ij components cyclically permuted
up by two compared to here, as a result of inconsistent conventions for momentum twistors.
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expressing the gluon amplitude as a linear combination of the independent, integrable
components of the BDS-normalised NMHV superamplitude B̂∗ with index ∗ equal to 0 or
ij, after we analytically continue it and take its multi-Regge limit, times the independent
rational factors coming from the R-invariants in the limit,

R234 = − z1

1− z1
, R235 =

z1z2

1− z2 + z1z2
, R345 = − z2

1− z2
, (3.6.12)

with the corresponding barred quantities being their complex conjugates.

In principle we now have everything laid out for extracting the symbol of the 4-loop
NMHV gluon amplitudes in MRK from the corresponding superamplitude in general kine-
matics, however in the current order the computation requires the tedious step of converting
from the BDS-like to BDS normalisation in general kinematics, eq. (3.6.6). Instead, we
have found it significantly more efficient to obtain the final result directly from the discon-
tinuity of E as follows: From the definition in the first line of (3.6.9), it is evident that the
discontinuity of a product of symbols F,G obeys the Leibniz rule,

∆(F ·G) = (F + ∆F ) · (G+ ∆G)− (F ·G) = ∆F ·G+ F ·∆G , (3.6.13)

since the ∆F ·∆G term has an additional factor of π, and is thus beyond the symbol. With
the help of this property, and eq. (3.6.6), is is straightforward to relate the discontinuities
of the symbols of the BDS and BDS-like amplitudes in MRK,

∆Ê(L) =
L∑
k=1

(
B̂(k) − δk1∆Ŷ

) (−Ŷ )L−k

(L− k)!
, (3.6.14)

where also we also used the fact that in MRK B(k) → δk0 before analytic continuation, and
thus ∆B̂(k) = B̂(k) for k ≥ 1. In the above relation, the function Y and its discontinuity
evaluate in the limit to

Ŷ =2(log2 τ1 + log2 τ2 + log τ1 log τ2) + log τ2 log |z1|2 − log τ1 log |z2|2

+
1

2
(log2 |z1|2 + log2 |z2|2 + log |z1|2 log |z2|2)

∆Ŷ =− 2πi
[
−2 log τ1 − 2 log τ2 + log |z2|2 − log |1− z2 + z1z2|2

]
,

(3.6.15)

and |z|2 = zz̄ etc.

This completes our method for obtaining the BDS-normalised gluon amplitudes (3.6.10),
focusing on the NMHV configurations R−++ and R+−+. To summarise, starting with the
symbol of E(L)

NMHV, eq. (3.4.3), we take the linear combinations of its transcendental compo-
nents, eq. (3.4.5), that appear in the right-hand side of (3.6.11) upon replacing B̂∗ → E∗.
For each such component, we take its discontinuity as in the second line of (3.6.9), and
then its multi-Regge limit as in (3.6.4) and (3.6.5), sequentially. Finally, we plug the result
on the left-hand side of (3.6.14), which is valid not only for the entire superamplitude, but
also for its components separately, and solve for B̂(L) recursively, starting from L = 1. For
example, at 4 loops we will have

B̂(4) = ∆Ê(4) +
1

6
Ŷ 3
(
B̂(1) −∆Ŷ

)
− Ŷ 2

2
B̂(2) + Ŷ B̂(3) . (3.6.16)
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3.6.4 Comparison with BFKL approach and new predictions

In this final subsection, we will compare our findings for the 4-loop NMHV heptagon in
MRK with independent results obtained for the latter to LLA [76] and NLLA [78], based
on the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approach [136–138]. We will also discuss
our new predictions for the amplitude in question up to N3LLA.

Let us start by reviewing what has been previously known for the heptagon in the
limit. Building on earlier work at LLA, in [78] an all-loop dispersion integral was presented,
yielding the 2→ 5 amplitude in MRK to arbitrary logarithmic accuracy. It reads,

Rh1h2h3e
iδ7(z1,z2) = 2πifh1h2h3 , (3.6.17)

where the right-hand side has the form of a Fourier-Mellin transform,

fh1h2h3 =
a

2

∞∑
n1,n2=−∞

(
z1

z̄1

)n1
2
(
z2

z̄2

)n2
2
∫
dν1dν2

(2π)2
|z1|2iν1 |z2|2iν2Φ̃(ν1, n1)Φ̃(ν2, n2)

× e−L1ω(ν1,n1)−L2ω(ν2,n2)Ih1(ν1, n1)C̃h2(ν1, n1, ν2, n2)Īh3(ν2, n2) , (3.6.18)

with

Li = log τi + iπ , δ7(z1, z2) =
πΓcusp

4
log

|z1z2|2

|1− z2 + z1z2|4
, (3.6.19)

which we see evidently depends on the variables (3.6.1)-(3.6.3) that naturally describe the
limit. Following the conventions of the relevant literature, in this section we have also
switched our coupling normalisation to

a = 2g2 . (3.6.20)

The remaining quantities in the integral (3.6.18) are associated to the effective particle
whose exchange governs the multi-Regge limit, known as the reggeised gluon or reggeon. In
the kinematic region characterised by the analytic continuation (3.6.7), we have in partic-
ular a two-reggeon bound state, whose energy is the BFKL eigenvalue ω(ν, n), and whose
creation (annihilation) with a simultaneous emission a new final-state gluon of helicity h1

(h3) is encoded in the combined quantity Φ̃Ih1 (Φ̃Īh2) known as the BFKL impact factor.
These building blocks also appear in the hexagon amplitude, and they can be determined
from first principles at weak coupling [128, 139], or even to all loops with the help of
integrability [77].

Finally, the genuinely heptagonal quantity C̃h2 , known as the central emission vertex,
describes the emission of a gluon of helicity h2 from the reggeon bound state in the middle
of the ladder8. It was originally determined at leading order in [136], whereas its next-to-
leading order correction was extracted from the 2-loop MHV heptagon, after promoting
its known symbol [140] to a function, in [78]. Plugging this correction back to the integral
(3.6.18) it is then possible to compute the amplitude at higher loops to NLLA, and this
was indeed carried out for R(4)

−++. In more detail, at weak coupling the amplitude in MRK
also has a natural expansion in large logarithms in the infinitesimal τi variables, whose

8In (3.6.18), the impact factor and central emission block have been rescaled compared to their original
definition, so as to better expose their analytic properties, but this does not alter their physical interpre-
tation.
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perturbative coefficients may be defined as

Rh1,h2,h3 (τ1, z1, τ2, z2) eiδ7(z1,z2) = 1 + 2πi

∞∑
`=1

`−1∑
i1,i2=0

a`

(
2∏

k=1

1

ik!
logik τk

)
(3.6.21)

×
(
g̃

(`;i1,i2)
h1,h2,h3

(z1, z2) + 2πi h̃
(`;i1,i2)
h1,h2,h3

(z1, z2)
)
.

The maximal logarithmic order amounts to i1 + i2 = ` − 1, as a consequence of the fact
that all building blocks of the integrand (3.6.18) start at O(1), except for ω(ν, n), which
starts at O(a). These coefficients have already been determined in [76], in the notation

g̃
(`;i1,i2)
h1,h2,h3

→ g
(i1,i2)
h1,h2,h3

= LL[{i1,i2},{h1,h2,h3}] , (3.6.22)

where the naming is provided in the ancillary files NMHVLL7.m and NMHVLL6.m accompanying
the paper [10]. The latter file is needed because of the interesting factorisation property

g
(i1,0)
−++ (ρ1, ρ2) = g

(i1)
−+ (ρ1) , (3.6.23)

reducing heptagon perturbative coefficients to hexagon ones, after one first expresses them
in so-called simplicial MRK coordinates,

ρ1 = − z1z2

1− z2
, ρ2 = (1− z1) z2 . (3.6.24)

Similarly, NLLA corresponds to i1 + i2 = `−2, and the relevant coefficients that are visible
at the level of the symbol (imaginary part) may be found in the file gTilde.m attached
to [78]. Note that since both R and δ7 are proportional to π, beyond one loop we can
completely neglect the contribution of the phase in the left-hand side of (3.6.21) to the
symbol, so that

S
(

1
2πiR

(`)
h1,h2,h3

)
=

`−1∑
i1=0

`−1−i1∑
i2=0

(
2∏

k=1

1

ik!
logik τk

)
S
(
g̃

(`;i1,i2)
h1,h2,h3

)
, ` ≥ 2 . (3.6.25)

The perturbative coefficients belong to the class of single-valued multiple polylogarithms
(SVMPL) [76, 141, 142], which enjoy the important property that they can be uniquely
determined from the knowledge of their holomorphic part, defined as their z̄i → 0 limit,
also with any divergent log z̄i terms removed. Thus, in order to simplify our comparison
even further, we may consider the holomorphic part of (3.6.25), which for the left-hand
side amounts to setting all z̄-dependent factors to one in the limit (3.6.5).

In this manner, we observe perfect agreement between the previously known results for
the NMHV heptagon, up to (N)LLA for the R(4)

+−+ (R(4)
−++) helicity configuration, and the

corresponding multi-Regge limit of our 4-loop symbol with general kinematic dependence.
We view this as strong evidence for the correctness of our result for the latter, as well as
of the all-loop dispersion integral (3.6.17)-(3.6.18).

Perhaps more importantly, from our calculation we have obtained new predictions for
the symbols of the remaining perturbative coefficients in (3.6.21) or (3.6.25), namely up to
N3LLA at 4 loops. These predictions are included as the computer-readable file gTilde4L.m
in [10]. These predictions will be useful for determining the central emission block beyond
NLO, and may provide significant insight towards its structure to all loops.
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Part II

Tropical Geometry
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Chapter 4

Tropical Geometry

In this chapter we will review the recent connection between scattering amplitudes and
tropical geometry [7, 143]. Namely how tree-level biadjoint φ3 amplitudes can be calculated
as volumes of the positive region of tropical Grassmannians. We describe here the tropical
formulation of the Grassmannian spaces and how to select the positive region. We will see
that this coincides with the criteria recently used in [7, 143] to determine the generalised
φ3 amplitudes for Gr(3, 6) and Gr(3, 7). These amplitudes also have a formulation in terms
of a set of scattering equations which generalise the usual scattering equations of [79–81].

Once the positive region is obtained, the generalised biadjoint φ3 amplitudes can be
constructed as its volume in a direct generalisation of the picture described in [82]. Such a
volume can be obtained additively via a triangulation of the region into simplexes. One such
triangulation is provided by the (dual of the) associated cluster polytope. For the Gr(2, n)

cases these polytopes are the An−3 associahedra. In the Gr(3, 6) case this corresponds to
the D4 polytope while in the Gr(3, 7) case it is the E6 polytope discussed above. For the
Gr(3, 8) case we can obtain a triangulation from the E8 cluster polytope. The above cases
exhaust the list of finite Grassmannian cluster algebras.

A feature of the polytopes arising as positive tropical Grassmannians is that in general
their facets are not all simplexes. This means that there is a redundancy in parametrising
their volumes since they may be triangulated (or cut into simplexes) in multiple ways,
each yielding a seemingly different but actually equivalent way of obtaining the volume.
In physical language this means there are multiple ways of writing the amplitude which
are in fact equivalent due to non-trivial identities between different contributions.

We will demonstrate how the corresponding cluster algebra provides one such trian-
gulation as well as other powerful tools to calculate these amplitudes. We will then use
these methods to reproduce the results in [7, 143] for Gr(3, 6) and Gr(3, 7), extending to
the case of Gr(3, 8).

Since all these cluster algebras are finite, the triangulation procedure works in exactly
the same way for all of them. Nevertheless the correspondence between the cluster algebra
and the fan for each case contains intricacies of different nature with valuable lessons and
we elaborate on these in sections dedicated to different Grassmannians.

Before this we review the interpretation of the biadjoint φ amplitude as the volume of
the dual to a kinematic realisation of the associahedron. We then illustrate all the main
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principles of the tropical Grassmannian, its positive part and the connection to cluster
algebras in the example of Gr(2, 5).

4.1 Amplitudes from volumes of dual associahedra

In [82] a connection between biadjoint scalar amplitudes and volumes was made. The
main idea is to introduce a kinematic realisation of the associahedron. This is done as
follows. Given an ordered set of light-like momenta p1, . . . , pn satisfying momentum con-
servation one introduces dual coordinates,

xi+1 − xi = pi , (4.1.1)

as defined in (1.3.31), with all indices treated modulo n. The 1
2n(n − 3) square distances

(xi − xj)2 = Xij can be related to Mandelstam invariants via

Xij = si,i+1,...,j−1 = (pi + pi+1 + . . . pj−1)2 . (4.1.2)

Note that the momenta being null implies Xi,i+1 = 0. The two-particle Mandelstam
invariants sij = (pi + pj)

2 can be related to the dual variables via

sij = Xi,j+1 +Xi+1,j −Xij −Xi+1,j+1 . (4.1.3)

To define the kinematic associahedron we take all Xij positive and choose (n − 3) coor-
dinates, e.g. the X1,i for i = 3, . . . , (n − 1). The remaining 1

2(n − 2)(n − 3) independent
variables need to be constrained in order to obtain a space of dimension (n − 3). To do
this we impose 1

2(n− 2)(n− 3) conditions which we take to be of the form

sij = −cij , 2 ≤ i < j ≤ n , i ≤ j − 2 , (4.1.4)

for positive constants cij . The coordinates X1,i are then constrained to run only over a
certain region: the kinematic associahedron.

For the n = 5 example the conditions (4.1.4) become

X35 = c35 +X13 −X14 ,

X25 = c25 + c35 −X14

X24 = c24 + c25 −X13 . (4.1.5)

The coordinates (X13, X14) then run over a region with the shape of a pentagon as shown
in Fig. 4.1.

To obtain the dual of the kinematic associahedron it is helpful to embed it into pro-
jective space Pn−3. We introduce the auxiliary point Y = (1, X13, X14, . . . , X1,n−1). The
boundary conditions Xij = 0 of the kinematic associahedron become Y ·Wij = 0 with Wij

given by projective dual vectors determined by the conditions (4.1.4).
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X14

X13

X14 = 0

X13 = 0

X35 = 0

X25 = 0

X24 = 0

Figure 4.1: The shaded area is the kinematic associahedron for n = 5.

In the case n = 5 we have Y = (1, X13, X14) and

W13 = (0, 1, 0) ,

W14 = (0, 0, 1) ,

W24 = (c24 + c25,−1, 0) ,

W25 = (c25 + c35, 0,−1) ,

W35 = (c35, 1,−1) . (4.1.6)

These dual vectors define the dual to the Gr(2, 5) kinematic associahedron. Its volume may
be computed by first triangulating it, e.g. by picking the reference point W∗ = (1, 0, 0)

and adding the volume of the five triangles formed by W∗ and two adjacent dual vectors
according to

Vol(W1,W2,W3) =
〈W1W2W3〉

(Y ·W1)(Y ·W2)(Y ·W3)
. (4.1.7)

In this way we obtain the sum of five terms,

Vol(A∗) =
1

X13X14
+

1

X14X24
+

1

X24X25
+

1

X25X35
+

1

X35X13
,

=
1

s12s45
+

1

s45s23
+

1

s23s15
+

1

s15s34
+

1

s34s12
(4.1.8)

and we recognise the obtained representation as the Feynman diagram expansion for the
canonically ordered biadjoint φ3 amplitude.

4.2 Tropical Grassmannians and amplitudes

In Chapter 2 we defined the Grassmannian in terms of the minors of the matrix that
paramatrises it. There exists a tropical version of the above construction. In tropical
geometry one takes the generating relations of the ideal and replaces multiplication with
addition and addition with minimum. For example the generating quadratic polynomials
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of the Gr(2, n) Plücker relations (2.1.2) become the tropical polynomials

min(wij + wkl, wik + wjl, wil + wjk) , (4.2.1)

which are piecewise linear maps on the space of
(
n
2

)
variables wij ∈ R.

Piecewise linear maps have special surfaces between one region of linearity and another.
Such surfaces are called tropical hypersurfaces and are attained when at least two of the
terms of the tropical polynomial simultaneously attain the minimum. In other words the
tropical polynomial (4.2.1) defines the following tropical hypersurfaces,

wij + wkl = wik + wjl ≤ wil + wjk

or wij + wkl = wil + wjk ≤ wik + wjl

or wik + wjl = wil + wjk ≤ wij + wkl .

(4.2.2)

When we have many polynomial relations we must simultaneously satisfy the conditions
arising from each polynomial relation. In the case of Gr(2, n) we must simultaneously
satisfy the hypersurface relations coming from every Plücker relation, i.e. for every choice
of {i, j, k, l} in (2.1.2).

Note that for any solution {wij}, any global positive rescaling of the wij will also
obey the conditions. Solutions therefore form rays emanating from the origin and can be
represented by an

(
n
2

)
-component vector, or more generally for Gr(k, n) an

(
n
k

)
-component

vector. Note also that if {wij} are solutions of the above conditions then so are {wij +

ai +aj} for any set of n constants ai ∈ R. Such a shift symmetry is referred to as lineality.
In the context of generalised biadjoint scattering amplitudes it corresponds to momentum
conservation.

Quotienting the space of solutions of the tropical hypersurface conditions (4.2.2) by a
single global shift with ai = a corresponds to the tropical version of the Grassmannian.
Quotienting by all shifts corresponds to the tropical version of the space Confn(Pk−1). Here
we are interested in the latter case where we quotient by all shifts. Despite this we will
refer to the space obtained simply as the tropical Grassmannian and we use the notation
Tr(k, n) to denote it.

The sign of the individual terms of the Plücker relations (2.1.2) is lost through tropi-
calisation. We can recover the information by identifying positive hypersurfaces as those
whose defining terms in (2.1.2) have opposite signs [144]. This prescription defines the
positive tropical Grassmannian. The positive part of Tr(2, n) (denoted Tr+(2, n)) is closely
related to the dual of the kinematic associahedron that we described above and hence can
be identified with the canonically ordered amplitude of the bi-adjoint φ3 theory. This fact
is at the heart of the recent generalisation of the biadjoint amplitudes to general Tr(k, n)

[7]. In Sect. 4.3 we give a more detailed introduction to the positive tropical Grassmannian
following [83].

Such generalised biadjoint amplitudes can also be related to a generalisation of the
scattering equations [7, 79, 80] to CPk−1 and through them to amplitudes of a generalised
scalar bi-adjoint theory [81]. Focusing for simplicity to k = 3, we consider homogenous
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coordinates of n particles on CP2 and form the 3× n matrix

m =

 1 1 · · · 1

x1 x2 · · · xn

y1 y2 · · · yn

 . (4.2.3)

We then define the potential function

S3 =
∑

1≤i<j<k≤n
sijk log[ijk], (4.2.4)

where [ijk] represent minors of m and sijk are generalized Mandelstam variables that
satisfy

∑
j 6=k sijk = 0, ∀i. We can now write down the amplitude of a generalised scalar

theory as

A(3)
n (α|β) =

1

vol(SL(3,C))

∫ ∏
i

dxidyiδ(S3,xi)δ(S3,yi)PT(α)PT(β), (4.2.5)

where S3, i denotes derivative with respect to i and the generalized Parke-Taylor factors
involve two orderings α and β and are given by

PT(I) =
1

[123][234] · · · [n12]
. (4.2.6)

The positive region of the tropical computation should then equal (4.2.5) for the canonical
ordering α = β = I.

Let us consider explicit examples of the tropical Grassmannian [145]. The simplest
case is Gr(2, 4), defined by the single Plücker relation,

p12p34 − p13p24 + p14p23 = 0 . (4.2.7)

In this case the tropical hypersurface conditions have three solutions (modulo lineality),
given by the three possibilities in (4.2.2) with {i, j, k, l} = {1, 2, 3, 4}. They are represented
by the following six component vectors corresponding to the canonical ordering of the
{w12, w13, w14, w23, w24, w34},

e12 = (1, 0, 0, 0, 0, 0) ,

e13 = (0, 1, 0, 0, 0, 0) ,

e14 = (0, 0, 1, 0, 0, 0) . (4.2.8)

Of these only the first and third are positive. Note that one may not generally add solutions
to obtain other solutions, the above vectors represent three distinct solutions. Note also
that because of the shift symmetry wij 7→ wij + ai + aj the following vectors

e34 = (0, 0, 0, 0, 0, 1) ,

e24 = (0, 0, 0, 0, 1, 0) ,

e23 = (0, 0, 0, 1, 0, 0) (4.2.9)

are equivalent to the original three. This shift symmetry has the interpretation of momen-
tum conservation once the solution vectors eij are contracted with a canonically ordered
vector of Mandelstam invariants y = (s12, . . . , s34) entering the massless biadjoint scatter-
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ing amplitudes.

Let us now describe the Gr(2, 5) case. In this case we have ten Plücker coordinates pij
and the Plücker relations are given by (4.2.7) and four more relations obtained from cyclic
rotation of the labels. These relations give rise to the tropical hypersurface conditions
(4.2.2) for {i, j, k, l} given by {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5} and {2, 3, 4, 5}.
Each of these five cases must be simultaneously satisfied.

We arrange the coordinates in the standard, lexicographical order,

{w12, w13, w14, w15, w23, w24, w25, w34, w35, w45} (4.2.10)

and define ray vectors as

e12 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

e13 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

...

e45 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (4.2.11)

and so on. The vectors eij so defined are simultaneously solutions to all five of the tropical
hypersurface conditions.

In this case we can also combine certain solutions. For example we find that any positive
linear combination ae12 + be34 with a, b > 0 is also a solution. However no positive linear
combination ae12 + be13 is a solution. We thus obtain a notion of connectivity of solutions:
two solutions are connected if any positive linear combination of them is a solution. We say
that there is an edge between such solutions. In the case of Gr(2, 5) we can never combine
three or more solutions to obtain another solution. In higher dimensional examples one
can obtain triangles of solutions and higher dimensional faces.

Performing permutations on the indices leads us to find 15 edges between the 10 vertices
given by the eij . The full set of solutions corresponding to the tropical Grassmannian
Tr(2, 5) can be depicted by the Petersen graph shown in Fig. 4.2.

The positive part Tr+(2, 5) is identified with those solutions where only the first and
third possibilities in (4.2.2) are allowed in each of the five cases. This picks out the solutions
{e12, e23, e34, e45, e15}. The positive part is then given by the positive rays and the edges
between them (any positive linear combination of connected positive solutions is a positive
solution). The positive part is highlighted in Fig. 4.2.

4.3 The positive tropical Grassmannian from webs

In [83] an alternative way of describing just the positive part Tr+(k, n) was given. In
this approach one introduces a grid called a web diagram with labels {1, . . . , k} on the
horizontal edge and labels {(k + 1), . . . , n} on the vertical edge. The squares of the grid
are populated with variables xi. In Fig. 4.3 we illustrate the general procedure in the case
of Tr(3, 7).

A Plücker coordinate is indexed by a set K of k distinct labels chosen from {1, . . . , n}.
We denote the set {1, . . . , k} by [k]. We may then associate a Plücker coordinate pK to
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s12

s45

s23s15

s34

s35

s13

s14s24

s25

Figure 4.2: The 10 vertices and 15 edges of the full Tr(2, 5) space. The highlighted star is
the positive region. It corresponds to the canonical order amplitude of the scalar bi-adjoint
φ3 theory.

1

2

3

4 5 6 7

x1 x3 x5

x2 x4 x6

Figure 4.3: Example web diagram for Gr(3, 7).
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1

4 5 6 7

x1 x3 x5

x2 x4 x6

Figure 4.4: Possible sets of non-intersecting paths from {1, 2} to {6, 7} describing the
representation (4.3.1) of the Plücker coordinate p367 in Gr(3, 7).

a set of paths on the web diagram as follows. Consider sets S of non-intersecting paths
consistent with the arrows which go from [k]\ ([k]∩K) to K \ ([k]∩K). We denote the set
of all such sets as Path(K). For each path in a given set S we record the product of the
variables in the squares above the path (if there are no squares above the path we record
the value 1). For a set S of paths we take the product over all paths in the set which we
denote by ProdS(x) (if the set is empty we record the value 1). Finally we sum over all
possible choices of sets S of such non-intersecting paths, i.e. we sum over S ∈ Path(K),

pK =
∑

S∈Path(K)

ProdS(x) . (4.3.1)

The procedure is best illustrated with an example: consider the Plücker coordinate p367

in the case illustrated in Fig. 4.3. We need to consider sets of non-intersecting paths from
{1, 2} to {6, 7}. We find the possible choices illustrated in Fig. 4.4. The final result for
the Plücker coordinate is therefore,

p367 = x1x2x3x5 + x1x2x3x4x5 + x1x2x3x4x5x6

+ x2
1x2x3x4x5 + x2

1x2x3x4x5x6 + x2
1x2x

2
3x4x5x6 . (4.3.2)

To consider the tropical Grassmannian we tropicalise the resulting polynomial, replacing
multiplication with addition and addition with minimum to obtain wK .

Following exactly the same logic for the simpler example of Gr(2, 5) we obtain (as in [83])

p1i = p23 = 1 , w1i = w23 = 0 ,

p24 = 1 + x1, w24 = min(0, x̃1) ,

p25 = 1 + x1 + x1x2 , w25 = min(0, x̃1, x̃1 + x̃2) ,

p34 = x1 , w34 = x̃1 ,

p35 = x1 + x1x2 , w35 = min(x̃1, x̃1 + x̃2) ,

p45 = x1x2 , w45 = x̃1 + x̃2 .
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The resulting tropical minors are piecewise linear functions in the space parametrised by
(x̃1, x̃2). Each such function defines tropical hypersurfaces in exactly the same way as
before. Taking the union over the tropical hypersurfaces gives rise to a fan with five
domains of linearity separated by five rays as illustrated in Fig. 4.5a. We may label the
five rays by

{e1, e2,−e1,−e2, e1 − e2} (4.3.3)

where e1 and e2 are the two-component vectors,

e1 = (1, 0) , e2 = (0, 1) . (4.3.4)

More generally, the tropical minors in Tr+(k, n) define a polyhedral fan in the
(k−1)(n−k−1)-dimensional space of x̃i variables with many domains of linearity separated
by walls of codimension one. The walls intersect in surfaces of codimension two and so on
all the way down to individual rays of dimension one defined by the multiple intersection
of (at least) ((k − 1)(n − k − 1) − 1) walls. We illustrate the fan obtained in the case of
Tr+(2, 6) in Fig. 4.5b.

x̃1

x̃2

(a) The Tr+(2, 5) polyhedral fan

x̃2

x̃1

x̃3

(b) The Tr+(2, 6) polyhedral fan

Figure 4.5: The intersection of the Tr+(2, n) fan with the unit sphere Sn−4 gives the dual of
the Gr(2, n) associahedron. Notice the Tr+(2, 5) subfan on the (x̃1, x̃2) plane of Tr+(2, 6).

The five rays we have obtained correspond to the five positive rays among the set
(4.2.11). We may verify this by evaluating the tropical minors wij in (4.3.3) on the five
rays {e1, e2,−e1,−e2, e1 − e2}. For example if we evaluate the ten-component vector of
the wij on e1 we obtain the vector

e1 7→ ev(e1) = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) ∼ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) = e12 . (4.3.5)

where the equivalence corresponds to the lineality shift wij → wij+ai+aj with (a1, a2, a3, a4, a5) =
1
2(1, 1,−1,−1,−1). Doing the same for each of the five rays in (4.3.3) we indeed obtain the
ten-component vectors {e12, e45, e23, e15, e34}, precisely the five positive rays in the list of
ten solutions given in (4.2.11). The regions between the rays in Fig. 4.5a then correspond
to the edges between the positive rays in Fig. 4.2.
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We may also recover the rays (4.3.3) from {e12, e45, e23, e15, e34} by tropically evaluating
the coordinates x1 and x2 which are given by

x1 =
p12p34

p14p23
, −→ x̃1 = w12 + w34 − w14 − w23 ,

x2 =
p13p45

p15p34
, −→ x̃2 = w13 + w45 − w15 − w34 . (4.3.6)

So for example the vector e12 evaluates to (1, 0) = e1 and the vector e34 evaluates to
(1,−1) = e1 − e2.

Note that the rays (4.3.3) we have obtained from the tropical minors (4.3.3) correspond
to the dual vectors (4.1.6) after dropping their first components. For example we have

W24 = (c24 + c25,−1, 0) ∼ −e1 . (4.3.7)

The first component of the dual vector W24 may be recovered by demanding for example

Y ·W24 = y · ev(−e1) = s23 = X24 , (4.3.8)

where we recall Y = (1, X13, X14) and y = (s12, . . . , s45). Since the dual vectors are
equivalent to the defining constraints of the kinematic associahedron, this gives us a way
to recover the kinematic associahedron from the tropical minors.

The expressions of the web variables xi in terms of Plücker coordinates in fact identifies
them with the cluster X -variables of [63, 64] for the initial cluster of the Gr(2, 5) cluster
algebra. Indeed more generally the web variables are identified with the X -coordinates of
the initial cluster for any Gr(k, n). As we now outline, we can use the algebraic machin-
ery of the cluster algebra to generate all the ray vectors describing the positive tropical
Grassmannian Tr+(k, n).

4.4 The tropical Grassmannian and cluster algebras

As mentioned above, we can identify cluster X -coordinates with web variables. As we
shall see we can also identify the ray vectors with cluster A-coordinates. This allows us
to generalise the notion of mutation to these rays such that we can generate all rays in
the fan in a cluster algebraic way [146]. For a description of the relation between cluster
algebras and polyhedral fans, see also [147].

When we described cluster algebras in Chapter 2, one piece of information that each
cluster is equipped with is the exchange matrix B. Generalising mutations to rays re-
quires additional information, namely an additional matrix C (the coefficient matrix), its
mutation given by 9

c′ij =

−cij if j = k.

cij − [cik]+bkj + cik[bkj ]+ otherwise.
(4.4.1)

To each unfrozen A-coordinate we associate a ray vector g. We start by constructing the
initial cluster such that the m unfrozen nodes are the m basis vectors for Rm and C is the

9Note that we have modified slightly the mutation rule of the coefficient matrix of [146] so that the g
vectors defined by (4.4.2,4.4.3) match precisely the ray vectors for Tr+(k, n) as defined in Sect. 4.3.
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(0, 1)

(−1, 0)

(0,−1)

(1,−1)

(1, 0)

(a) The Tr+(2, 5) polytope labelled by
rays.

(0, 0, 1) (1,−1, 0)

(0, 0,−1)(−1, 0, 0)

(0,1,0) (1, 0,−1)

(1, 0, 0)

(0, 1,−1)

(0,−1, 0)

(b) The Tr+(2, 6) polytope with the
faces labelled by rays.

Figure 4.6: The cluster polytopes pictured here are the dual polyhedra of those arising
from the fans shown in Fig. 4.5.

identity
gl = el, l = (1, . . . ,m), C = Im. (4.4.2)

We then select a node k to mutate on, following the mutation rule

g′l = gl, for l 6= k

g′k = −gk +
n∑
i=1

[−bik]+gi +
n∑
j=1

[cjk]+b
0
j (4.4.3)

where b0
j , j ∈ {1, . . . ,m} corresponds to the jth column of B0, the exchange matrix for

the initial cluster. We can then repeat this process as many times as required to generate
a vector for each unfrozen A-coordinate. In the cases where the cluster algebra is of finite
type (in this context the cases are Gr(2, n), Gr(3, 6), Gr(3, 7) and Gr(3, 8)) we obtain a
finite cluster polytope by performing all mutations where each vertex is associated to a
cluster. Each face of the polytope is associated to an unfrozen A-coordinate a and also by
the above procedure a vector g.

The advantage of having the relation of the positive tropical fan to the cluster algebra
is that it gives us a very easy algebraic way to generate the relevant ray vectors to describe
the fan. Once we have the fan we can embed it into the original Plücker space using the
tropical minors and compute its volume to obtain the generalised scattering amplitude.

The resulting polytope in the simplest case is given in Figure 4.6a. It has five clusters
connected in the shape of a pentagon. This pentagon is the dual of the pentagon obtained
from intersecting the fan illustrated in Fig. 4.5a with the unit circle; its edges are labelled
with ray vectors (4.3.3).

In fact for Gr(2, n) the polytope obtained by intersecting the positive tropical fan
with the unit sphere is always the dual polytope of the Gr(2, n) associahedron or Stasheff
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polytope. For example in Fig. 4.6b we show the vectors associated to the faces of the A3

associahedron. The dual polytope coincides with the intersection of the Gr(2, 6) positive
tropical fan with the unit sphere given in Fig. 4.5b.

For the other finite cases the tropical positive fan gives polytopes that are closely related
to the duals of the cluster polytopes as we now describe.

4.5 Tr+(3, 6)

Let us now consider the first case of the generalised biadjoint amplitudes which was
addressed in [7]. In analogy to the Gr (2, n) cases of the previous section, the generalised
amplitude for higher k and n can be interpreted as the volume of the computed by trian-
gulating the relevant Tr+(3, 6) fan.

Following [145] we start by considering by the Plücker relations of Gr(3, 6), of which
there are two kinds, three-term relations and four-term relations,

p123p145 + p125p134 − p124p135 = 0, . . .

p123p456 − p156p234 + p146p235 − p145p236 = 0, . . . (4.5.1)

While one can combinatorially generate many relations, only 35 of them are linearly inde-
pendent.

We then tropicalise these polynomials in Plückers to obtain

min(w123 + w145, w125 + w134, w124 + w135), . . .

min(w123 + w456, w156 + w234, w146 + w235, w145 + w236), . . . . (4.5.2)

As before the tropical polynomials define regions of linearity in the tropical Plücker space
R20 separated by hypersurfaces defined as the set of points at which the two smallest argu-
ments of the min functions are equal. Consider for instance, the first tropical polynomial
in (4.5.2). It gives rise to a boundary between two cones if one of the following is satisfied:

w123 + w145 = w125 + w134 ≤ w124 + w135 (4.5.3a)

or w123 + w145 = w124 + w135 ≤ w125 + w134 (4.5.3b)

or w124 + w135 = w125 + w134 ≤ w123 + w145. (4.5.3c)

This polytope contains 65 vertices [145]. As above we denote the unit vectors in the wijk
directions by eijk. These vectors give 20 of the vertices. A further 15 are of the form

fijkl = eijk + ejil + eikl + ejkl . (4.5.4)

The remaining 30 are of the form (for {i, j, k, l,m, n} distinct)

gij,kl,mn = fijkl + eklm + ekln . (4.5.5)

The part of the polytope that is relevant for a planar ordering is its positive part
Tr+(3, 6). In [7] the positive vertices were determined by requiring compatibility with
a planar ordering for the scattering amplitude. Here we identify the positive rays by
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Figure 4.7: The web diagram for Gr(3, 6).

requiring that they satisfy the hypersurface conditions generated by monomials in the
Plücker coordinates with opposite signs as we described in Sect. 4.2. This leaves us with
16 rays out of 65, coinciding precisely with the set of [7]. They are e123 and cyclic, f1234

and cyclic and g12,34,56, g23,45,61, g34,12,56 and g45,23,61.

The Gr+(3, 6) web diagram shown in Fig. 4.7 produces a matrix with following piece-
wise linear tropical minors [83, 144],

w12i = w134 = w234 = 0 ,

w135 = min(0, x̃1),

w136 = min(0, x̃1, x̃1 + x̃3),

w145 = x̃1 ,

w146 = min(x̃1, x̃1 + x̃3) ,

w156 = x̃1 + x̃3 ,

w235 = min(0, x̃1, x̃1 + x̃2) ,

w236 = min(0, x̃1, x̃1 + x̃2, x̃1 + x̃3, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w245 = min(x̃1, x̃1 + x̃2) ,

w246 = min(x̃1, x̃1 + x̃2, x̃1 + x̃3, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w256 = min(x̃1 + x̃3, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w345 = x̃1 + x̃2 ,

w346 = min(x̃1 + x̃2, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w356 = min(x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4, 2x̃1 + x̃2 + x̃3 + x̃4) ,

w456 = 2x̃1 + x̃2 + x̃3 + x̃4 . (4.5.6)

The regions of linearity of the tropical minors (4.5.6) define the fan for Tr+(3, 6) and its
intersection with the unit sphere S3 is a polytope with 16 vertices, 66 edges, 98 triangles
and 48 three-dimensional facets. The tropical X -coordinates are given by

x̃1 = w123 + w145 − w125 − w134 , x̃3 = w124 + w156 − w126 − w145 , (4.5.7)

x̃2 = w124 + w345 − w145 − w234 , x̃4 = w134 + w125 + w456 − w124 − w156 − w345 .

With the above relations (4.5.6) and (4.5.7) we can go back and forth between the repre-
sentation of the 16 positive vertices in terms of the eijk and in terms of a four-component
representation which we can also obtain from cluster mutations as we now describe.
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4.5.1 Triangulating Tr+(3, 6) with clusters

Unlike in Gr(2, 5), the Tr+(3, 6) fan contains facets that are not simplicial. In particular, it
contains 46 simplicial facets and two bipyramids defined by five vertices. This is a common
feature of k > 2 (tropical) Grassmannians.

To see this, first recall that (k−1)(n−k+1) rays define a facet of the fan if an arbitrary
positive linear combination of them solves the positive versions of inequalities derived from
the Plücker relations. In particular Tr+(3, 6) has 2 such facets with five vertices that
form bipyramids. These non-simplicial bipyramids are arranged inside the fan Tr+(3, 6) as
sketched in Figure 4.8.

g12,34,56

g45,16,23

g16,45,23

g34,12,56

Figure 4.8: The arrangement of bipyramids inside Tr+(3, 6). The vertices represent the
intersections of the rays ri with the unit sphere S4. Two triangles are shaded to emphasize
that they are actual 2-faces of the polytope.

The fan Tr+(3, 6) is closely related to the dual of the Gr+(3, 6) associahedron in that
the latter provides a natural triangulation of the former [144]. The vertices of the dual
of the associahedron correspond to cluster A-coordinates. Two vertices are connected by
an edge when the corresponding pair of A-coordinates appear together in a cluster, i.e.
are cluster-adjacent. By definition, a pairwise connected quadruplet of vertices of the dual
Gr+(3, 6) associahedron corresponds to a cluster, which in turn can be identified as a
simplex triangulating Tr+(3, 6).

We begin with the initial cluster

(124) (125)

(134) (145)

and associate its unfrozen A-coordinates with the unit vectors e1, . . . , e4 in the tropical x̃i
coordinates,

(124)↔ e1 = (1, 0, 0, 0), (125)↔ e2 = (0, 1, 0, 0), (4.5.8)

(134)↔ e3 = (0, 0, 1, 0), (145)↔ e4 = (0, 0, 0, 1) . (4.5.9)

Performing all possible mutations generates the full set of 16 ray vectors which arise from
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50 distinct clusters.

Among the 16 rays we find the following five,

e3 7→ ( 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 ) ∼ f1234

−e1 7→ ( 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -2 -2 ) ∼ f1256

e2 7→ ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ) ∼ f3456

e2 + e3 − e4 7→ ( 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 ) ∼ g12,34,56

e4 − e1 7→ ( 0 0 0 0 0 -1 -1 -1 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 ) ∼ g34,12,56

where we have also given their evaluations through the tropical minors (4.5.6) and the
corresponding positive solutions given above. The fact that these five vertices form a
single bipyramid rather than two tetrahedral facets can be seen from the linear relation,

f1234 + f1256 + f3456 = g12,34,56 + g34,12,56 . (4.5.10)

Note that the cluster algebra provides a canonical way of determining a triangulation.
In particular the bipyramid formed by the five rays described above is triangulated by two
clusters whose vertices are given by {f1234, f1256, f3456, g12,34,56} and
{f1234, f1256, f3456, g34,12,56}.

Equipped with the cluster triangulation, we can express the scattering amplitude as a
sum over clusters,

m6
3(I|I) =

∑
c∈ clusters of

Gr+(3, 6)

∏
a∈ A-coords of c

1

y · ev(ra)
, (4.5.11)

where as before y = (s123, . . . , s456) is the lexicographically ordered vector of Mandelstam
invariants, ra is the representation of the A-coordinate a as a ray in x̃ coordinates and ev

means the evaluation using the tropical minors in (4.5.6).

Using this identification, we can read off the two terms in the amplitude directly from
the two clusters as10

1

t1234t1256t3456

[
1

R12,34,56
+

1

R34,12,56

]
. (4.5.12)

Note that using the identity between kinematic invariants

R12,34,56 +R34,12,56 = t1234 + t3456 + t5612 (4.5.13)

we can write these two terms as

(4.5.12) =
1

R12,34,56R34,12,56

[
1

t1256t3456
+

1

t1234t3456
+

1

t1234t1256

]
(4.5.14)

which was noted in [7] to correspond to a different triangulation of the bipyramid. However
the cluster algebra prefers a particular one of these triangulations.

10Here we use the notation tijkl = sijk + sijl + sikl + sjkl and Rij,kl,mn = tijkl + sklm + skln.
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4.6 Tr(3, 7): the amplitude from E6 clusters

In this section we explicitly demonstrate how the triangulation of the fan associated to
the positive tropical Grassmannian Tr+(3, 7) can be worked out from the Gr(3, 7) cluster
algebra.

As in the previous section, one can either compute F3,7 from the web Web3,7 or run
the cluster-algebra machinery to obtain the generalised amplitude without even referring
to Tr(3, 7). Nevertheless let us first describe Tr+(3, 7) starting from Tr(3, 7) and elaborate
on a situation that is not encountered in Grassmannians of lower dimension.

The tropical Grassmannian Tr(3, 7) has 721 rays which come in six types,11

b1,1234567 = e123, (4.6.1a)

b2,1234567 = e123 + e124 + e134 + e234, (4.6.1b)

b3,1234567 = e123 + e124 + e125 + e126 + e127, (4.6.1c)

b4,1234567 = e123 + e124 + e125 + e126 + e127 + e134 + e234, (4.6.1d)

b5,1234567 = e123 + e124 + e125 + e126 + e127 + e134 + e156 + e234 + e256 (4.6.1e)

b6,1234567 = b3,1234567 + b3,3456712 + b3,6712345 , (4.6.1f)

where as before the lexicographically-ordered eijk are identified with unit vectors in R(7
3).

Other rays are obtained by the permutations of those that are written out above. For the
types b1, . . . , b5 and b6, the permutations generate the six symmetry classes of respective
sizes 35, 35, 21, 210, 315 and 105. These rays have also been tabulated in [148] with their
explicit Plücker coordinates. Henceforth we will drop the labels in bi,1234567 and just write
bi unless the order of the indices is not canonical.

To compute positive Grassmannian Tr+(3, 7), we select out of the 721 rays above those
which solve the positive versions of tropicalised Plücker relations. One finds that 49 of
them satisfy such relations. This seems incompatible with the fact that the cluster algebra
has 42 distinct unfrozen A-coordinates.

The resolution to this discrepancy is that seven positive rays of the type b6 are linear
combinations of three mutually-connected rays of type b3, any positive linear combination
of which is a solution. In other words, b6,1234567 is in the middle of a triangular 2-face of
Tr+(3, 7) and is not necessary to define a cone of the fan.

As explained by Speyer and Williams [83], the Tr+(3, 7) fan has 693 facets. While 595
of these facets are simplicial, there are also 63 facets with 7 vertices, 28 with 8 vertices
and 7 with with 9 vertices. These non-simplicial facets are the Gr(3, 7) analogues of the
bipyramids of Tr+(3, 6).

We again resort to the relevant cluster algebra E6 to obtain a triangulation on which
we evaluate the amplitude. The E6 cluster algebra has 833 clusters that give the vertices
of the associahedron. These 833 clusters make up the simplexes of the triangulation each
of which contain six vertices.

If we employ the duality between Gr(3, 7) and Gr(4, 7) and work in terms of the latter,

11This form was also given in [143].
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we can relate the positive vertices above to the established notation for A-coordinates
in the literature on N = 4 amplitudes [8, 45]. The different types of rays classified in
(4.6.1a)-(4.6.1f) nicely match the conventional cluster A-coordinates:

a11 ↔ b2,7123456 a41 ↔ b4,7156234

a21 ↔ b1,7123456 a51 ↔ b4,2345671

a31 ↔ b3,5671234 a61 ↔ b5,1234675 , (4.6.2)

where the rest of the correspondence can be worked out by cyclic rotations of the second
indices of the aij and the arguments of the bi. With this correspondence, we find that the
E6 initial cluster

a24 a37

a13 a17

a32 a27 (4.6.3)

produces the following term in the amplitude

1

(y · b1,1234567)(y · b3,1234567)(y · b2,1234567)(y · b2,4567123)(y · b3,6712345)(y · b1,5671234)
,

(4.6.4)
with y = (s123, . . . , s567). We then mutate these rays iteratively according to (4.4.3) un-
til we cover all 833 clusters of the E6 polytope. Recovering the corresponding kinematic
invariants using (4.6.2), we can construct the Gr(3, 7) amplitude as the volume of the pos-
itive tropical Grassmannian. An expression for this amplitude is provided in the ancillary
file Gr37amp.m provided with [11].

4.7 Gr(3, 8): redundant triangulations

In this section we will run the same construction in Gr(3, 8) to provide a conjecture for
the canonically-ordered part of the generalised biadjoint amplitude that one would obtain
by solving the scattering equations for this Grassmannian.

We start with the initial cluster of Gr(3, 8)

(124) (125) (126) (127)

(134) (145) (156) (167)
(4.7.1)

and identify its A-coordinates with the rays (124) ↔ e1, (134),↔ e2, (125)↔ e3, . . . ,
(167) ↔ e8 in R8. Using the map explained in Sect. 4.3.3 we recover the Plücker coordi-
nates for the Speyer-Williams rays e1, . . . , e8 and deduce that the initial cluster produces
the following for the first term in the amplitude

1/
(
(y · b1,12345678)(y · b3,12345678)(y · b2,12345678)(y · b5,67548123)

× (y · b5,34215678)(y · b2,56781234)(y · b3,78123456)(y · b1,67812345)
)
, (4.7.2)
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where the b vertices are given below in (4.7.4) and as before y = (s123, . . . , s678).
We then generate all 25,080 clusters using the mutation rules of [146] which we have

adapted in equation (4.4.3). These clusters contain 128 distinct vectors in R8, identified
with the 128 A-coordinates of Gr(3, 8). As usual, the Plücker coordinates of these vectors
provides us the factors in the denominator of every term in the amplitude. All 25080 terms
are provided in the ancillary file Gr38amp.m in [11].

Let us comment further on the correspondence between the Tr+(3, 8) fan and the
Gr(3, 8) cluster algebra. We find that, out of the 128 vectors generated by the cluster
algebra, only 120 are rays of the corresponding fan. The extra 8 vectors have the form

be = b8,12345678 + b8,78564123 (4.7.3)

and cyclic rotations thereof. These too are positive vectors but being linear combinations
of two genuine rays they lie on an edge of the fan. In other words, they separate only 7
regions of piecewise linearity for the tropical minors instead of 8. This can be interpreted as
the Gr(3, 7) cluster algebra producing redundant triangulation of the fan which decomposes
already simplicial facets into even smaller simplexes.

We can compare the Plücker coordinates of the vectors we obtain to the rays of another
object called the Dressian Dr(3, 8), studied in [149]. Dr(3, 8) is a non-simplicial fan that
consists of 15470 rays which split into 12 symmetry classes of size (56, 70, 28, 420, 56, 1260,
420, 560, 1680, 840, 5040, 5040). These define facets in groups of sizes ranging from 8 to
12. While all rays of Dr(k, n) are expected to be rays of Gr(k, n), the converse is not true.
Indeed the Dressian Dr(3, 8) does not capture the rays b8 which give rise to “superfluous”
triangulations.
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The rays of Dr(3, 8), positive and non-positive, are explicitly given as:

b1 = e123,

b2 = e123 + e124 + e134 + e234,

b3 = e123 + e124 + e125 + e126 + e127 + e128,

b4 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e234,

b5 = e123 + e124 + e125 + e134 + e135 + e145 + e234 + e235 + e245 + e345,

b6 = e123 + e124 + e125 + e126 + e127 + e128 + e136 + e145 + e236 + e245,

b7 = e123 + e124 + e125 + e126 + e127 + e128 + e138 + e147 + e156 + e238

+ e247 + e256,

b8 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e135 + e145 + e234

+ e235 + e245 + e345,

b9 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e135 + e145 + e167

+ e234 + e235 + e245 + e267 + e345,

b10 = e123 + e124 + e125 + e134 + e135 + e145 + e146 + e147 + e148 + e234

+ e235 + e236 + e237 + e238 + e245 + e345,

b11 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e137 + e147 + e156

+ e234 + e237 + e247 + e256 + e345 + e346 + e347 + e348,

b12 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e138 + e148 + e157

+ e234 + e238 + e248 + e257 + e345 + e346 + e347 + e348 + e356 + e456.

(4.7.4)

Out of these, the 120 vectors defined by

{b1,12345678, b2,12345678, b3,12345678, b4,12345678, b4,23184567, b5,23184567,

b6,12378456, b8,12345678, b8,34128567, b9,12345786, b9,23178456, b10,13482567,

b11,34185627, b11,12457836, b12,12457683}

(4.7.5)

and their cyclic copies lie in the positive region in the sense that they satisfy the positive
version of the inequalities (4.2.2). These vectors are in one-to-one correspondence with the
120 non-redundant rays generated by the cluster algebra.

Note that the redundant vectors be that we encountered in Gr(3, 8) are of different
nature to the b6 of Gr(3, 7). While both types of vectors are not rays of the relevant fan,
unlike the be, the b6 are not generated by the cluster algebra.

It is clear that tropical geometry offers significant information regarding scattering
amplitudes. We will expand on the interplay explored here in the following chapters.
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Chapter 5

Finite Fans

In this chapter we will study further the connection between cluster algebras and the posi-
tive tropical Grassmannian, a link already partly explored in [83]. We will identify a whole
range of tropical fans which can be associated with the positive tropical Grassmannian,
one of which is the fan of [83] and another is the g-vector fan of the cluster algebra. In the
finite cases the g-vector fan (which we refer to as the ‘cluster’ fan) is the most refined fan
and other fans we consider, including the fan of [83], can be obtained as projections of it.

These considerations lead us to propose new scattering equations which are more gen-
eral than those of [7] and involve a more general set of Mandelstam invariants. We can
obtain generalised amplitudes which depend on the generalised Mandelstam invariants in
a similar fashion by considering volumes of facets of the corresponding tropical fan. This
construction can also be used to describe the dual cluster polytope by providing a direct
route to determining the face variables, which define the codimension-one boundaries of
these polytopes. In this regard the tropical fans we study and their associated generalised
φ3 ampliutudes are very closely related to the notion of stringy canonical forms introduced
in [150–152]. Indeed the integrals considered there provide in principle a deformation of
the φ3 amplitude in the same way that tree-level superstring amplitudes are effectively
derived from the α′ deformation of biadjoint φ3 amplitudes. In fact a range of techniques
explored in recent papers are effectively different languages to describe the same (or closely
related) underlying mathematics, namely the tropical Grassmannians discussed in [7], the
cluster algebras, mutations and g-vector fans as studied in Chapter 4 and in [153], the
Minkowski sums of Newton polytopes [150, 154, 155] (which are dual to tropical fans), the
planar arrangements of [156, 157] and matroid subdivisions, as studied in [158, 159].

With a selection of different tropical fans to hand we discuss how such differences
may show up in the singularities of loop amplitudes in N = 4 super Yang-Mills theory.
This leads us to a generalisation of cluster adjacency. Here we define a natural set of
polylogarithms satisfying adjacency criteria (not only pairs but also triplets, and in general
longer consecutive sequences). The cluster adjacent polylogarithms discussed in Chapter
2 correspond to the cluster fan, while less refined fans lead to stronger sets of adjacency
criteria. We examine the known loop amplitudes and compare them at the level of pairs
and triplets to establish a tentative correspondence between amplitudes of different MHV
degree and classes of tropical fans.
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Figure 5.1: The initial cluster of the Grassmannian cluster algebra Gr(3, n).

5.1 Grassmannian cluster algebras and tropical fans

Let us begin by recalling the construction of Speyer and Williams [83] to describe
the positive part of the tropical Grassmannian Gr(k, n). We will focus on Gr(3, 6) as
our motivating example and later consider also Gr(3, 7) and Gr(3, 8). Apart from the
Grassmannians Gr(2, n) these cases (and their duals) exhaust the list of finite cluster
Grassmannian cluster algebras. Of particular relevance to planar amplitudes in N = 4

super Yang-Mills theory is the case Gr(3, 7) which is dual to Gr(4, 7).

We recall the structure of the initial cluster of the Grassmannian cluster algebra
Gr(k, n). The example of Gr(3, n) is shown in Fig. 5.1. From the initial cluster we
obtain a (k − 1)× (n− k − 1) array of cluster X -coordinates xrs given by the product of
incoming A-coordinates over the product of outgoing ones to the node in row r and column
s.

Given the X -coordinates we can form the (k × n) web matrix

W = (1k|M) , (5.1.1)

where M is the k × (n− k) matrix with entries

mij = (−1)i+k
∑
λ∈Yij

k−i∏
r=1

λr∏
s=1

xrs . (5.1.2)

The sum in (5.1.2) is over the range Yij given by 0 ≤ λk−i ≤ . . . ≤ λ1 ≤ j − 1 which is
equivalent to a sum over Young tableaux of at most (k − i) rows λ = {λ1, . . . , λk−i} with
at most (j−1) columns. We can then evaluate all the A-coordinates as polynomials in the
X -coordinates with positive coefficients by identifying the Plücker coordinates 〈i1 . . . ik〉
with the maximal minors formed by taking the columns i1, . . . , ik of the web matrix W .

In the case of Gr(3, 6) we have the initial cluster shown in Fig 5.2. For this cluster we
have the following cluster X -coordinates,

x11 =
〈123〉〈145〉
〈125〉〈134〉

, x12 =
〈124〉〈156〉
〈126〉〈145〉

,

x21 =
〈124〉〈345〉
〈234〉〈145〉

, x22 =
〈134〉〈456〉〈125〉
〈124〉〈345〉〈156〉

. (5.1.3)
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Figure 5.2: The initial cluster of the Grassmannian cluster algebra Gr(3, 6).

The web matrix then takes the form W = (113|M) with

M=

 1 1 + x11 + x11x21 1 + x11 + x11x21 + x11x12 + x11x12x21 + x11x12x21x22

−1 −1− x11 −1− x11 − x11x12
1 1 1


(5.1.4)

If we identify the Plücker coordinate 〈ijk〉 with the minor formed by taking columns i, j
and k of the web matrix then we find that all the A coordinates of the Gr(3, 6) cluster
algebra are expressed as polynomials in the X -coordinates. To emphasise this point we
also use the notation pijk = 〈ijk〉. The frozen A-coordinates are in fact monomials,

p123 = 1 , p234 = 1 , p345 = x11x21 ,

p456 = x2
11x21x12x22 , p156 = x11x12 , p126 = 1 . (5.1.5)

The remaining A-coordinates of the initial cluster and their cyclic images are

p124 = 1 , p235 = 1 + x11 + x11x21 , p346 = x11x21(1 + x12 + x12x22) ,

p145 = x11 , p256 = x11x12(1 + x21 + x21x22) , p136 = 1 + x11 + x11x12 , (5.1.6)

and

p134 = 1 , p245 = x11(1 + x21) , p356 = x11x21x12(1 + x22 + x11x22) ,

p146 = x11(1 + x12) , p125 = 1 ,

p236 = 1 + x11 + x11x12 + x11x21 + x11x21x12 + x11x21x12x22 . (5.1.7)

There are two remaining minors which appear as the central nodes of D4-shaped clusters

p135 = 1 + x11 ,

p246 = x11(1 + x12 + x21 + x12x21 + x12x21x22) . (5.1.8)

In addition we have the two quadratic A-coordinates (which also appear in the central
node of D4-shaped clusters),

q1 = 〈12[34]56〉 = x11x12x21(1 + x22) ,

q2 = 〈23[45]61〉 = x11(1 + x11 + x11x12 + x11x21 + x11x12x21) , (5.1.9)

where 〈ab[cd]ef〉 = 〈abd〉〈cef〉 − 〈abc〉〈def〉 obeys the symmetry properties 〈ab[cd]ef〉 =
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〈cd[ef ]ab〉 = −〈cd[ab]ef〉. Under a cyclic transformation q1 → q2 and q2 → q1.

With the expressions of the A-coordinates to hand we may now define a number of
different tropical fans. The fan defined by Speyer and Williams to describe the positive
part of the tropical Grassmannian is obtained by replacing the polynomial expressions for
the Plücker coordinates pijk = 〈ijk〉 by their tropical counterparts p̃ijk. For example, the
tropical versions of the minors (5.1.8) are

p̃135 = min(0, x̃11) ,

p̃246 = min(x̃11, x̃11 + x̃12, x̃11 + x̃21, x̃11 + x̃12 + x̃21, x̃11 + x̃12 + x̃21 + x̃22) , (5.1.10)

where we have used the notation x̃ to remind the reader that these are tropical counterparts
to the original polynomials. Each tropically evaluated minor defines distinct regions of
piecewise linearity. For example, the regions of piecewise linearity of the tropical minor

p̃346 = min(x̃11 + x̃21, x̃11 + x̃21 + x̃12, x̃11 + x̃21 + x̃12 + x̃22) , (5.1.11)

are separated by the following tropical hypersurfaces,

x̃12 = 0 ≤ x̃22 ,

or x̃12 + x̃22 = 0 ≤ x̃12 ,

or x̃12 + x̃22 = x̃12 ≤ 0 . (5.1.12)

Note that the tropically evaluated frozen variables are simply linear (instead of piece-
wise linear) as the frozen minors are expressed as monomials in terms of the X -coordinates.
Taking all minors together defines the fan of Speyer and Williams [83]. More precisely,
each tropical minor defines a fan via the boundaries of its distinct regions of piecewise
linearity. The Speyer-Williams fan is then the common refinement of all the fans defined
by the set of tropical minors. The maximal cones of the fan are four-dimensional regions
in the x̃ space in which all minors are linear. The intersection of each maximal cone with
the unit sphere is a three-dimensional facet of some polyhedral complex. As described in
[83] there are 48 facets of which 46 are tetrahedra and 2 are bipyramids. The facets have
boundaries where some minor is between two different regions of linearity. Such boundaries
are of dimension two and in this case there are 98 of them and they are all triangles. The
triangles themselves are bounded by edges of dimension one, with 66 edges in total. The
edges are then bounded by points (corresponding to intersections of rays of the fan with
the unit sphere). The Gr(3, 6) Speyer-Williams fan has the following 16 rays (with the
coordinates ordered as (x̃11, x̃21, x̃12, x̃22)),

(1, 0, 0, 0), (−1, 0, 0, 0), (1,−1, 0, 0), (0, 0, 1,−1),

(0, 1, 0, 0), (0,−1, 0, 0), (1, 0,−1, 0), (−1, 0, 0, 1),

(0, 0, 1, 0), (0, 0,−1, 0), (1, 0, 0,−1), (0, 1, 1,−1),

(0, 0, 0, 1), (0, 0, 0,−1), (0, 1, 0,−1), (1,−1,−1, 0) . (5.1.13)

In fact one may generalise the above discussion and consider multiple different tropical
fans associated to a given Grassmannian. We could consider a fan defined by only a subset
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of minors, for example only those minors of the form 〈i i+ 1 j〉. Or we could refine the fan
further by including tropical evaluations of cluster A-coordinates which are polynomials in
minors, as well as the minors themselves. More generally we will define a fan by choosing
some subset S of tropically evaluated A-coordinates and we denote the fan by F (S).

It is important to emphasise that for any given choice of the set S, the resulting fan
is finite and in particular has a finite number of rays. One may systematically solve the
tropical hypersurface conditions to find all the rays of some fan F (S). In Chapter 4 we
described another approach which makes use of the associated cluster algebra. In the case
of finite cluster algebras the cluster algebra also defines a fan by means of its g-vectors. In
fact the g-vector fan coincides with the fan obtained by considering S to be given by the
set of all A-coordinates (not just all minors). It is therefore in general a refinement of the
Speyer-Williams fan. In the case of Gr(2, n) the A-coordinates are all minors 〈ij〉 and the
g-vector fan coincides with the Speyer-Williams fan.

In the case of Gr(3, 6) we may refine the fan by tropically evaluating also the quadratic
A-coordinates (5.1.9),

q̃1 = min(x̃11 + x̃12 + x̃21, x̃11 + x̃12 + x̃21 + x̃22) ,

q̃2 = min(x̃11, 2x̃11, 2x̃11 + x̃12, 2x̃11 + x̃21, 2x̃11 + x̃12 + x̃21) . (5.1.14)

Alternatively we can make a less refined fan by not considering the minors 〈135〉 and 〈246〉.
One motivation for considering these different fans is that the fan of Speyer and Williams
breaks a discrete symmetry of the Gr(3, 6) (or D4) cluster algebra while both the more
refined one and the less refined one manifest it.

As we have seen only unfrozen A-coordinates are relevant in defining the fan since
the frozen coordinates are all monomials in the X -coordinates and therefore they do not
produce tropical hypersurfaces. The three fans we consider in the context of Gr(3, 6), from
least refined to most refined are recorded in Table 5.1 along with their f -vectors. As we
will describe in more detail below, the most refined fan (the third in the Table 5.1) is the
dual of the D4 cluster polytope and it is simplicial. For this reason we sometimes refer
to it as the ‘cluster fan’. The Speyer-Williams fan is not simplicial in that two pairs of
tetrahedra from the cluster fan have been combined into bipyramids. The least refined fan
then has two more pairs of tetrahedra combined into bipyramids. When two tetrahedra
are combined into a bipyramid, the triangle at the interface is removed.

S f -vector tetrahedra bipyramids

{〈i i+ 1 j〉} (16, 66, 96, 46) 42 4
{〈ijk〉} (16, 66, 98, 48) 46 2

{〈ijk〉} ∪ {q1, q2} (16, 66, 100, 50) 50 0

Table 5.1: Different possible fans for Gr(3, 6) with their f -vectors as well as a characteri-
sation of the dimension two faces.

Another way of encoding all the data listed in Table 5.1 is to split up the f -vectors for
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the three fans as follows,
{161, 662, 963, 424 + 45},

{161, 662, 983, 464 + 25},

{161, 662, 1003, 504}.

Here the subscript notation refers to the number of vertices of each component, i.e. the 25

in the final entry of the middle vector refers to the two five-vertex bipyramids, while the
464 refers to the 46 tetrahedra.

All three fans described above share the same set of 16 rays (and also the same set of 66
edges between rays). As we described in Chapter 4, the rays may be obtained as g-vectors
from the associated cluster algebra. Each g-vector is associated to a cluster A-coordinate,
which in turn is associated to a codimension one subalgebra and hence a codimension one
boundary of the cluster polytope, as mentioned above and in [6]. This implies that the
above fans should all be interpreted as duals of polytopes related to the cluster polytope.
In the final case (the cluster fan) the corresponding polytope is exactly the D4 cluster
polytope whose codimension one (i.e dimension three) boundary components correspond
to the vertices arising from the rays of the fan. The codimension one boundary components
are either 14-vertex Stasheff polytopes or 8-vertex cubes. The edges of the fan correspond
to intersections of the polytope boundary components and are either 5-vertex pentagons
or 4-vertex squares. The triangles of the fan correspond to edges in the polytope and the
facets correspond to vertices of the polytope which correspond to individual clusters of the
D4 cluster algebra. The fact that the facets of the cluster fan are all tetrahedra corresponds
to the fact that the clusters of the D4 cluster algebra all have four active nodes.

In Fig. 5.3 we illustrate relevant parts of the cluster fan and its dualD4 cluster polytope.
The left figure shows all sixteen rays but only eight of the tetrahedal facets. The facets
shown come in pairs in which the two tetrahedra intersect on a common triangle. The right
figure shows the connectivity of the subset of clusters in the D4 cluster polytope which
have the topology of the D4 Dynkin diagram. Only the four codimension one boundaries
with the topology of cubes are therefore shown fully. The cubes are dual to the rays at the
four marked corners of the left figure. Each cube is connected to its two neighbours by a
single edge, dual to the corresponding shaded triangle in the left figure.

The polytope dual to the Speyer-Williams fan can be obtained from the D4 cluster
polytope by shrinking the two vertical grey edges connecting the cubes in the right half of
Figure 5.3 so that two pairs of vertices become six-valent. These then correspond to the two
bipyramidal facets of the Speyer-Williams fan. To obtain the polytope dual to the first fan
listed in Table 5.1 one should also shrink the two horizontal grey edges connecting corners
of distinct cubes. The edges which are shrunk in this procedure therefore do not belong to
the cubes but only the Stasheff polytopes and moreover only belong to pentagonal faces,
not square faces. When an edge is shrunk the corresponding dual triangle is deleted from
the fan and the associated pair of tetrahedra combine into a bipyramid. The triangles
that can be removed in this way have a special property: the vertices are all disconnected
neighbours in the sense discussed in Chapter 2. That is the A-coordinates associated to
any pair do appear in clusters together, but never connected by an arrow of the quiver
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(0, 1, 1,−1)

(1,−1,−1, 0)

(1, 0, 0,−1)

(−1, 0, 0, 1)

q1 〈246〉

q2〈135〉

Figure 5.3: Left: a subset of the cluster fan (or more precisely its intersection with the unit
sphere) showing eight tetrahedral facets and four highlighted triangles. The highlighted vertices
correspond to the four rays given. Right: the subgraph of the D4 cluster polytope formed by
keeping only the clusters whose active nodes are connected in the shape of a D4 Dynkin diagram.
The cubes correspond to the A-coordinates shown and are dual to the four highlighted vertices of
the left figure. The grey edges connecting the four cubes are dual to the highlighted triangles of
the left figure. The highlighted vertices (clusters) are dual to the eight tetrahedra of the left figure.

diagram.

Finally let us point out that there is also a fan, topologically equivalent to the Speyer-
Williams fan, which can be obtained by taking S to be the set of all A-coordinates, except
〈135〉 and 〈246〉. The dual polytope to this fan would the simply be obtained from the
cluster polytope by shrinking only the horizontal grey edges of Fig. 5.3 and not the vertical
ones.

The above statements can also be encoded in the splitting of the f -vectors of the dual
polytopes as follows,

{461, 962, 424 + 245, 48 + 1213},

{481, 982, 364 + 305, 48 + 613 + 614},

{501, 1002, 304 + 365, 48 + 1214}.

Here the final line again corresponds to the cluster polytope with the 1214 in the final
line referring to the twelve Stasheff polytope codimension-one boundaries and the 48 the
four cubes. After shrinking the first pair of edges we obtain the middle line (dual to the
Speyer-Williams fan) where the 50 vertices have become 48, the two shrunk edges are
missing leaving only 98 of the original 100, 6 of the 36 pentagons have become squares and
6 of the Stasheff polytopes have been shrunk to 13-vertex objects.

It is clear that the relation between Grassmannian cluster algebras and tropical Grass-
mannians is really related to a whole family of possible fans and their dual polytopes with
the cluster fan being the most refined and the dual of the cluster polytope. The other fans,
including that of Speyer and Williams describing the positive part of the tropical Grass-
mannian are obtained by shrinking edges in the cluster polytope or equivalently removing
data from the corresponding tropical fan. As we will see in the next section, this will lead
to a generalised set of scattering equations associated to each fan.

We may similarly describe different fans in the case of Gr(3, 7). The fans and their
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dual polytopes are harder to picture but we can describe the relevant features by means
of the notation introduced above. Let us first introduce a notation for the 42 unfrozen
A-coordinates of the Gr(3, 7) cluster algebra which come in six cyclic classes,

a11 = 〈347〉, a21 = 〈134〉, a31 = 〈156〉,

a41 = 〈257〉, a51 = 〈12[34]56〉, a61 = 〈61[23]45〉 . (5.1.15)

The remaining aij are obtained by cyclic rotations of the above.12

The fans we wish to consider in this case are given by choosing four possibilities for the
set S of A-coordinates as described in Table 5.2. The second fan in Table 5.2 corresponds
to the Speyer-Williams fan since the set {a1i, a2i, a3i, a4i} corresponds to taking all minors
to define the fan. There is one less refined fan where we omit the a4i from S. There are
two more refined fans, one where we include also the a5i and a final one where we take all
A-coordinates, which we will again refer to as the cluster fan.

Once again the cluster fan ({a1i, . . . , a6i}) is simplicial. To obtain the {a1i, . . . , a5i}
fan, seven triangles are removed, indicating the presence of seven bipyramids in dimension
three. To then obtain the Speyer-Williams fan ({a1i, . . . , a4i}) seven edges are removed
indicating that seven pairs of triangles combine into squares. The remaining triangles (49 of
them) including these missing edges are then removed as well as 21 further triangles which
do not involve the removed edges, leaving 1456 triangles and 7 squares in dimension two.
To obtain the least refined fan ({a1i, . . . , a3i}) one then removes a further 7 edges meaning
another seven pairs of triangles combine into squares and another 42 triangles involving
the removed edges are lost. In addition a further 21 triangles are removed leaving 1379
triangles and 14 squares in dimension two.

S f -vector triangles squares

{a1i, a2i, a3i} (42, 385, 1393, 2373, 1918, 595) 1379 14
{a1i, a2i, a3i, a4i} (42, 392, 1463, 2583, 2163, 693) 1456 7
{a1i, a2i, a3i, a4i, a5i} (42, 399, 1540, 2821, 2443, 805) 1540 0
{a1i, a2i, a3i, a4i, a5i, a6i} (42, 399, 1547, 2856, 2499, 833) 1547 0

Table 5.2: Different possible fans for Gr(3, 7) with their f -vectors as well as a characteri-
sation of the dimension two faces.

Using the same notation introduced in Gr(3, 6) we can compactly include the above
information and more into refined f -vectors which split up repsectively as,

{421, 3852, 13793 + 144, 22404 + 1335, 16595 + 1966 + 637, 4556 + 847 + 288 + 289},

{421, 3922, 14563 + 74, 25064 + 775, 19955 + 1406 + 287, 5956 + 637 + 288 + 79},

{421, 3992, 15403, 28144 + 75, 24155 + 286, 7776 + 287},

{421, 3992, 15473, 28564, 24995, 8336}.
(5.1.16)

Here we remind the reader that the notation nm means n faces, each one consisting of m

12The notation has been chosen to match existing notation on A-coordinates for Gr(4, 7) which we will
study further in Sect. 5.4.
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vertices (rays), with the dimension of the face increasing from zero to five as we proceed
from left to right along the f -vector.

Also as in the Gr(3, 6) case we can think of all of the fans as being dual to polytopes.
The cluster fan is dual to the Gr(3, 7) (or E6) cluster polytope. The other polytopes are
then successively obtained by shrinking edges in this polytope. We can capture a lot of
information about the shrinking by splitting the f -vectors of the dual polytopes which are
respectively,

{5951, 19182, 18484 + 5255, 6518 + 44810 + 1412 + 25213 + 2814,

9116 + 7020 + 725 + 9826 + 1433 + 4234 + 2837 + 2138 + 1446,

732 + 1468 + 798 + 14138},

{6931, 21632, 18414 + 7425, 5258 + 57410 + 712 + 16113 + 19614,

4216 + 11220 + 725 + 4926 + 4928 + 733 + 734 + 5637 + 1440 + 2842 + 1448 + 749,

740 + 1474 + 7112 + 7144 + 7170},

{8051, 24432, 18344 + 9875, 4068 + 65810 + 2812 + 8413 + 36414,

716 + 11220 + 1424 + 2125 + 2826 + 7028 + 5640 + 5642 + 748 + 1449 + 1450,

750 + 1480 + 7128 + 14178},

{8331, 24992, 17854 + 10715, 3578 + 71410 + 47614,

11920 + 2125 + 11228 + 11242 + 3550, 750 + 1484 + 7132 + 14182}.

As an example of the information captured in the above splittings, we see in the final entry
of the final line the codimension one subalgebras of the E6 polytope: with 750 corresponding
to the 7 A2 ×A2 ×A1 subalgebras, 1484 to the 14 A4 ×A1, 7132 to the 7 A5 and 14182 to
the 14 D5.

In the above computations, the computer package polymake [160] was used.

5.2 Generalised scattering equations

In [7] Cachazo, Early, Guevara and Mizera proposed a relation between the tropical
Grassmannians Gr(k, n) and a set of scattering equations which generalise the scattering
equations introduced in [79–81] for Gr(2, n). Here we would like to emphasise the point
that there is a set of generalised scattering equations for each choice of tropical fan F (S)

described in the previous section, with the equations of [7] corresponding to the Speyer-
Williams fans. In the finite cases, the most refined fan (the cluster fan) is associated to
the most general set of scattering equations.

Let us first review the scattering equations of [7] before introducing their generalisa-
tions. One starts with the potential function

F =
∑

i1<i2<...<ik

si1i2...ik log〈i1i2 . . . ik〉 . (5.2.1)

Here 〈i1i2 . . . ik〉 are minors of the Grassmannian (k, n) matrix which depend on (k−1)(n−
k − 1) variables13, and si1i2...ik are generalised Mandelstam variables, totally symmetric

13For example by choosing coordinates via the web matrix W defined in (5.1.4).
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in their k indices. The generalised Mandelstam variables satisfy generalised momentum
conservation relations ∑

i2<...<ik

si1i2...ik = 0, ∀ i1. (5.2.2)

The generalised momentum conservation relations guarantee the homogeneity of the poten-
tial F under the rescalings of the n columns of the k×n matrix. The scattering equations
are then defined to be

dF = 0 . (5.2.3)

These equations are to be interpreted as equations for the coordinates parametrising the
matrix (e.g. the cluster X coordinates) in terms of the generalised Mandelstam variables
si1...ik . The φ3 amplitude is then evaluated as a localised integral of Parke-Taylor factors
(see [7]).

The φ3 amplitude thus obtained can also be identified with the volume of the fan
(or its intersection with the unit sphere), which itself can be computed by triangulating
and adding the volume of all simplicial facets. This picture generalises the kinematic
associahedron picture of [82] which computes the volume of the Gr(2, n) fan, in which the
volume of each facet is simply a tree-level φ3 Feynman diagram. As we stressed in Chapter
4, in the cases where the Grassmannian cluster algebra is finite, the cluster algebra provides
a useful way to immediately obtain a triangulation of the Speyer-Williams fan and thus
obtain the amplitude as a function of the generalised Mandelstam invariants si1i2...ik via
its volume.

Also discussed in Chapter 4 was the fact that we can recover the rays in the positive
part of the tropical Grassmannian of Speyer and Sturmfels [145] by simply evaluating all
the tropical minors on the rays of the Speyer-Williams fan. Such rays can be expressed in
terms of the generalised Mandelstam invariants if we form the scalar product of the vector
of generalised Mandelstam invariants with the vector of tropical minors. For example, in
the case of Gr(3, 6) we have

(x̃11, x̃21, x̃12, x̃22) 7→
∑

si1i2i3 p̃i1i2i3(x̃11, x̃21, x̃12, x̃22) . (5.2.4)

More explicitly, if we take the rays describing the vertices of the bipyramid on the left side
of the left figure in Fig. 5.3 and evaluate the quantity (5.2.4) we find

(0, 0, 1, 0) 7→ t1234 ,

(−1, 0, 0, 0) 7→ t1256 ,

(0, 1, 0, 0) 7→ t3456 ,

(0, 1, 1,−1) 7→ r123456 ,

(−1, 0, 0, 1) 7→ r341256 . (5.2.5)

Here we use the notation

tijkl = sijk + sijl + sikl + sjkl ,

rijklmn = tijkl + sklm + skln . (5.2.6)
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The full set of sixteen rays becomes the set of s123 (and its five cyclic cousins), t1234 (and
its five cyclic cousins), r123456 (and one cyclic cousin), r341256 (and one cyclic cousin). The
fact that these five rays form a bipyramid is reflected in the fact that the Mandelstam form
of the rays obeys

t1234 + t1256 + t3456 = r123456 + r341256 . (5.2.7)

The reverse map from the kinematic expression to the Speyer-Williams ray consists of
tropically evaluating the X -coordinates in terms of minors [83].

The above description corresponds to the choice of the Speyer-Williams fan. To obtain
the less refined Gr(3, 6) fan described in Sect. 5.1 we simply set s135 = s246 = 0 in the
above discussion. This suggests that there should also be a further generalisation of the
scattering equations which corresponds the more refined cluster fan. Indeed we propose a
further generalisation of the potential function,

F =
∑

i1<i2<i3

si1i2i3 log〈i1i2i3〉+ sq1 log q1 + sq2 log q2 . (5.2.8)

Here we have added two more terms corresponding to the two quadratic A-coordinates
(5.1.9) and introduced new generalised Mandelstam variables sq1 and sq2 . The momentum
conservation relation now reads∑

i2<i3

si1i2i3 + sq1 + sq2 = 0, ∀ i1. (5.2.9)

The relation (5.2.9) again guarantees the homogeneity of the potential function (5.2.8).
The scattering equations are the same as in (5.2.3). To return to the system corresponding
to the Speyer-Williams fan we simply set sq1 = sq2 = 0 in the new system. If we do not set
sq1 and sq2 to zero then the expressions for the sixteen rays become modified as follows,

s123 7→ s123 ,

t1234 7→ t1234 + sq1 ,

r123456 7→ r123456 + sq1 ,

r341256 7→ r341256 + sq1 . (5.2.10)

As before the rays above generated cyclic classes of size six, six, two and two respectively
(where sq1 → sq2 and sq2 → sq1 under a cyclic transformation).

If we perform the above replacements we see that the relation (5.2.7) will no longer
hold since the LHS acquires an additional 3sq1 while the RHS only acquires 2sq1 . This is
in accordance with the fact that these five rays no longer form a bipyramid in the cluster
fan but rather two tetrahedra separated by a triangle.

We can then form a generalised φ3 amplitude computed from the volume of each facet,
just as in the Speyer-Williams case. We obtain a sum over 50 terms (one for each facet -
now all tetrahedra) which now depend also on sq1 and sq2 . For example, the two tetrahedra
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described above contribute two of the 50 terms:

1

(t1234 + sq1)(t1234 + sq1)(t1234 + sq1)(r123456 + sq1)

+
1

(t1234 + sq1)(t1234 + sq1)(t1234 + sq1)(r341256 + sq1)
. (5.2.11)

By construction the amplitude obtained this way reduces to the amplitude of [7] upon
setting sq1 = sq2 = 0. The amplitude described above should be equivalent to the lowest
order contribution to the integrals over the stringy canonical forms discussed in [150].

In order to justify the equivalence of the generalised scattering equations and tropical
fans beyond the Speyer-Williams case considered in [7], we consider an example. We focus
on the cluster fan of Gr(3, 6) and choose the special kinematics where sijk = sij +sik+sjk,
si,i+1 = 1, si,i+2 = −1. Analogous kinematics was also considered for the (2, n) case in [81],
where it was shown that each term of the amplitude (each Feynman diagram) contributes
1, thus the scattering amplitude equals the number of all possible diagrams which is the
Catalan number. In Gr(3, 6) our special kinematics does not have the effect that each of
the 50 terms of the amplitude contributes 1, but it does simplify the scattering equations
obtained from the potential (5.2.8).

Let us choose coordinates for the (3× 6) matrix as follows

m36 =

 1 0 0 1 1 1

0 1 0 1 x5 x6

0 0 1 1 y5 y6

 , (5.2.12)

with 〈ijk〉 now being the minors of m36. The scattering equations to be solved are

∂F

∂x5
=
∂F

∂x6
=
∂F

∂y5
=
∂F

∂y6
= 0 , (5.2.13)

with F given in (5.2.8). For our chosen kinematics, the generalised momentum conservation
relations imply sq1 = −sq2 ≡ t. The expected amplitude evaluated from adding up the
volume of the 50 facets is

A36 = −2(3t4 − 68t2 + 288)

(t2 − 4)3
. (5.2.14)

Choosing numerical values for t we are able to solve the scattering equations. Generically,
we find 8 solutions. Then we consider the sum over the solutions of the scattering equations

A36 =
∑
slns

1

det′Φ′
1∏6

i=1〈i i+ 1 i+ 2〉
, (5.2.15)

where

Φ =

(
φ1 φ3

φT
3 φ2

)
, φ1 =

∂2F

∂xa∂xb
, φ2 =

∂2F

∂ya∂yb
, φ3 =

∂2F

∂xa∂yb
, (5.2.16)

and Φ′ the matrix Φ after the removal of rows and columns 1,2,3,4,7,8,9,10. Explicitly

det′Φ′ =
det Φ′

(〈123〉〈234〉〈341〉〈412〉)2
. (5.2.17)

We have solved the scattering equations for various values of t and found agreement with
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the expected answer.

The extension of the generalised φ3 amplitude to more refined fans clearly also gener-
alises to higher Gr(k, n). For Gr(3, 7) one can introduce a new set of Mandelstam variables
sq5i corresponding to the a5-type quadratic A-coordinates and also sq6i for the a6 type.
The potential F now reads

F =
∑
i<j<k

sijk log〈ijk〉+
[
(sq51〈23[45]67〉+ sq61〈56[72]34〉) + cyc.

]
. (5.2.18)

The generalised momentum conservation relation reads,∑
j<k

sijk +
∑
j 6=i

(sq5j + sq6j ) = 0 . (5.2.19)

The above system corresponds to the {a1i, . . . , a6i} fan described in Sect. 5.1. To obtain
the {a1i, . . . , a5i} fan one simply imposes sq6i = 0. To obtain the Speyer-Williams fan
one imposes also sq5i = 0. To then obtain the {a1i, . . . , a3i} fan one imposes further that
s135 = 0 and the cyclically related relations.

One can similarly make a generalisation of the scattering equations corresponding to
the Gr(3, 8) cluster fan (or E8 cluster fan). To do so one needs new Mandelstam variables
corresponding to the quadratic and cubic A-coordinates. We will return to this case later.
For k = 3 and n > 8 there does not exist an analogue of the cluster fan but there
are certainly fans which are more refined than the Speyer-Williams fans which therefore
introduce new Mandelstam variables beyond the si1...ik .

5.3 Cluster polytopes and face variables

The cluster polytopes can be defined in terms of face variables. We discussed such
variables in Chapter 3 and they have also been discussed in many recent papers [150, 152]
and generalise the dihedral coordinates of Gr(2, n) (see e.g. [28]) to more general cluster
polytopes. Face variables have the property that they are valued between 0 and 1 in the
positive region (which is also the region where all cluster X -coordinates are positive. Each
codimension one boundary a of the cluster polytope has an associated face variable ua and
ua = 0 defines the boundary. Furthermore on every other codimension one boundary b
that does not intersect the defining boundary a the variables ua takes the value 1.

In Chapter 3, a method to systematically construct the face variables from a cluster
quiver diagram was described and given explicitly in the E6 (or Gr(3, 7)) case. First, one
has to find a Dynkin diagram shaped quiver. There are many quivers of this shape. In figure
(5.4a) we show an example from the Gr(3, 7) case. If we denote by xi the X -coordinates
in node i of the quiver, then the corresponding u-coordinates take the form

ui =
xifi

1 + xifi
, (5.3.1)

where
f1 = 1, f2 = 1 + x1, f3 = f4 = 1 + x2(1 + x1),

f5 = 1 + x3(1 + x2(1 + x1)), f6 = 1 + x4(1 + x2(1 + x1)).
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x3x5 x2 x4 x6

x1

(a) Dynkin diagram shaped quiver in
Gr(3, 7).

x3x5 x2 x4 x6

x1

(b) Tree shaped quiver.

x3x5 x2 x4 x6

x1

(c) Quiver with bifurcations.

Figure 5.4: Examples of cluster quivers.

In fact, we can generalise the method described in Chapter 3 to include any tree shaped
cluster. Then, the u-coordinate of node i can be found by following the path of the arrow
that starts from node i and follow the recursive formula fi = 1 + xjfj , where j is the first
node we land by following the path of the arrow. As an example, we have for figure (5.4b)

f1 = f3 = f4 = 1 + x2, f2 = 1, f5 = 1 + x3(1 + x2), f6 = 1 + x4(1 + x2).

When there is a bifurcation we consider the product of paths. For example, for figure
(5.4c) we have

f1 = f6 = 1, f2 = (1 + x1)(1 + x4(1 + x6)), f4 = 1 + x6,

f3 = 1 + x2(1 + x1)(1 + x4(1 + x6)), f5 = 1 + x3(1 + x2(1 + x1)(1 + x4(1 + x6))).

The method is valid when the quiver contains loops, if the chosen node does not contain
any path that forms a loop.

We would now like to outline a different method for finding the face variables which is
more directly related to the tropical fans and their associated scattering equations discussed
in the preceding sections. Let us recall that the general form for the potential function is

F =
∑
a

sa log a , (5.3.2)

where we have used a very compact notation, with the sum being over all the A-coordinates
a of the cluster algebra (including the frozen ones) and sa the corresponding generalised
Mandelstam variable. For the minors 〈i1 . . . ik〉 the associated Mandelstams are the si1...ik
but the sa also include the Mandelstams associated to e.g. the quadratic A-coordinates
(5.1.9).

We claim that the potential can also be written

F =
∑
a

va log ua , (5.3.3)

where the sum is over only the unfrozen A-coordinates a, va is the ray (evaluated in
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terms of Mandelstam variables) and ua is the corresponding face variable. Note that,
due to the generalised momentum conservation relations, (5.3.2) is homogeneous, even
if each term individually is not. The expression (5.3.3) is manifestly homogeneous since
the ua are homogeneous combinations of A-coordinates. Once one has solved the tropical
problem and found the rays, equating (5.3.2) and (5.3.3) gives a simple linear system to
solve for the log ua in terms of the log a. The solution is exactly the face variables. Thus
the tropical geometry provides a simple map from A-coordinates to face variables. The
method described above is closely related to the discussion of face variables in [150] based
on Minkowski sums of Newton polytopes arising from considering generalisations of string
worldsheet integrals to Gr(k, n).

5.3.1 Gr(3, 6)

As described above, the Gr(3, 6) cluster fan consists of 16 rays which are divided into four
cyclic classes of size 6,6,2 and 2. Written in terms of generalised Mandelstam invariants,
the generators of these four classes are

{va} = {s123, t1234 + sq1 , r341256 + sq1 , r123456 + sq1}. (5.3.4)

For each of the 16 rays va we can associate the A-coordinate a, which can be found
from mutations as described in Chapter 4. For the rays in (5.3.4) we associate

{〈124〉 , 〈125〉 , 〈135〉 , 〈12[34]56〉}, (5.3.5)

where we recall 〈12[34]56〉 ≡ 〈124〉 〈356〉 − 〈123〉 〈456〉.

In addition, to each ray va we can associate the face variable ua. As described above
we may derive them from the equality of the two ways of writing the potential F in (5.2.8),

∑
i<j<k

sijk log〈ijk〉+

2∑
i=1

sqi log qi =
∑
a

va log ua . (5.3.6)

All 22 A-coordinates appear in (5.3.6), including the frozen ones, however the generalised
momentum conservation relations (5.2.9) imply the LHS can be written as a combination
of 16 homogeneous combinations of A-coordinates. Equation (5.3.6) therefore reduces to a
linear system for of the 16 unknowns log ua with a unique solution. For the rays in (5.3.4)
we find the corresponding u-coordinates,{

〈123〉 〈246〉
〈124〉 〈236〉

,
〈12[34]56〉
〈125〉 〈346〉

,
〈125〉 〈134〉 〈356〉
〈135〉 〈12[34]56〉

,
〈124〉 〈256〉 〈346〉
〈246〉 〈12[34]56〉

}
, (5.3.7)

in agreement with the restriction of the E6 u-coordinates described in Chapter 3 to D4 and
also in agreement with the u-coordinates given in [150]. We observe that the A-coordinates
appear in the denominators of the corresponding u-coordinates.

Labelling the 16 u-coordinates generated by the cyclic classes of (5.3.7) as {u1, . . . , u6},
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{u7, . . . , u12}, {u13, u14} and {u15, u16}, we find that they satisfy the identities

1 = u1 + u2u6u8u11u13u16

= u7 + u3u6u8u12u14u16

= u13 + u1u3u5u8u10u12u
2
14u15u16

= u15 + u2u4u6u8u10u12u13u14u
2
16 , (5.3.8)

which respect the boundary structure of the cluster polytope.

5.3.2 Gr(3, 7)

The Gr(3, 7) cluster fan posesses 42 rays, divided into 6 cyclic classes, each of size 7.
Written in terms of Mandelstam variables introduced in (5.2.18) the classes are generated
by

s123,

t1234 + sq55 + sq66 + sq57 ,

t1234567 + sq53 + sq64 + sq55 + sq66 + sq57 ,

t1234567 + s134 + s234 + sq53 + sq64 + sq55 + sq66 + sq57 ,

t1234567 + s167 + s267 + sq53 + sq64 + sq55 + sq66 + sq57 ,

t1234 + t1267 + s125 + sq53 + sq64 + 2sq55 + sq66 + sq57 , (5.3.9)

where t1234567 = s123 + s124 + s125 + s126 + s127. Setting the sq5i and sq6i to zero in the
above we recover the form of the rays given in Chapter 4 and [7]. The corresponding
A-coordinates are

{〈124〉 , 〈125〉 , 〈134〉 , 〈135〉 , 〈12[34]67〉 , 〈12[35]67〉}. (5.3.10)

The equality of the two forms of the potential (5.3.2) and (5.3.3) becomes∑
i<j<k

sijk log〈ijk〉+
[
(sq51 log〈23[45]67〉+ sq61 log〈56[72]34〉) + cyc.

]
=
∑
a

va log ua . (5.3.11)

Due to the generalised momentum conservation relation (5.2.19) both sides are homoge-
neous and we obtain a linear system for the log ua. They are found to be{

〈123〉 〈247〉
〈124〉 〈237〉

,
〈12[34]57〉
〈125〉 〈347〉

,
〈12[34]67〉
〈134〉 〈267〉

,
〈134〉 〈12[35]67〉
〈135〉 〈12[34]67〉

,

〈267〉 〈12[34]57〉
〈257〉 〈12[34]67〉

,
〈125〉 〈357〉 〈12[34]67〉
〈12[35]67〉 〈12[34]57〉

}
, (5.3.12)

in agreement with the u-coordinates found in Chapter 3. As in the Gr(3, 6) case, the
A-coordinates appear in the denominators of the corresponding u-coordinates.
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The 42 u-coordinates of (5.3.12) obey the cluster connectivity and satisfy the identities

1 = u1 + u2u7u9u13u17u21u22u24u27u30u32u35u36u37u39u41

= u8 + u3u7u9u10u13u14u18u21u23u25u27u28u30u32u33u35u
2
37u39u40u41u42

= u15 + u2u6u9u12u16u21u23u26u28u30u32u35u37u39u40u42

= u22 + u1u3u6u9u10u12u14u16u18u21u
2
23u25u26u

2
28u29u30u31u32u33u35u

2
37u38u39u

2
40u

2
42

= u29 + u2u5u7u9u11u12u14u16u19u21u22u23u25u26u27u28u
2
30u32u33u

2
35u

2
37u

2
39u40u41u

2
42

= u36 + u1u3u5u7u9u10u11u12u
2
14u16u18u19u21u

2
23u

2
25u26u27u

2
28u

2
30u31u32u

2
33u

2
35u

3
37u38

× u2
39u

2
40u41u

3
42.

(5.3.13)
Powers of 3 appear for the first time.

5.3.3 Gr(3, 8)

The Gr(3, 8) cluster fan consists of 128 rays divided into 16 cyclic classes of size 8. Explic-
itly, in terms of the x̃ variables, the 128 rays (or g-vectors) are

g1 = (1, 0, 0, 0, 0, 0, 0, 0), g9 = (0, 0, 1, 0, 0, 0, 0, 0),

g17 = (0, 0, 0, 0, 1, 0, 0, 0), g25 = (0, 1, 0, 0, 0, 0, 0, 0),

g33 = (−1, 0, 0, 1, 0, 0, 0, 0), g41 = (0, 0,−1, 0, 0, 1, 0, 0),

g49 = (0, 1, 1,−1, 0, 0, 0, 0), g57 = (0, 1, 1, 0, 0,−1, 0, 0),

g65 = (0, 1, 1, 0, 0, 0, 0,−1), g73 = (0, 1, 0, 0, 1,−1, 0, 0),

g81 = (0, 1, 0, 0, 1, 0, 0,−1), g89 = (−1, 0, 0, 1, 1,−1, 0, 0),

g97 = (−1, 0, 0, 1, 1, 0, 0,−1), g105 = (0, 1, 0, 1, 1,−1, 0,−1),

g113 = (−1, 0, 0, 2, 1,−1, 0,−1), g121 = (−1, 1, 0, 1, 1,−1, 0,−1)

(5.3.14)

and their cyclic rotations in the Mandelstam space. We recall that it is straightforward
to map any g-vector to the Mandelstam space by evaluating all the A-coordinates as
tropical polynomials. The list of all 128 vertices in the Mandelstam space corresponding
to the Speyer-Williams fan was given in Chapter 4. In fact, if we only include the sijk
Mandelstam variables, eight of the vectors are redundant in that they are not true vertices
of the fan. By extending the kinematics to include also 80 generalised Mandelstam variables
corresponding to the 56 quadratic and 24 cubic A-coordinates, we obtain the 128 rays of
the cluster fan with no redundancies. The expressions are cumbersome so we omit them
here.

The A-coordinates are generated by cyclic rotations of the following,

{ 〈124〉 , 〈125〉 , 〈126〉 , 〈134〉 , 〈135〉 , 〈136〉 ,

〈12[34]56〉 , 〈12[34]57〉 , 〈12[34]58〉 , 〈12[34]67〉 , 〈12[34]68〉 , 〈12[35]67〉 , 〈12[35]68〉 ,

〈12[34]8[67]45〉 , 〈12[35]8[67]45〉 , 〈12[34]8[67]35〉}, (5.3.15)

where in the final line we have defined the cubic coordinates via

〈12[34]5[67]89〉 ≡ 〈124〉 〈35[67]89〉 − 〈123〉 〈45[67]89〉

= 〈12[34]57〉 〈689〉 − 〈12[34]56〉 〈789〉 = −〈67[89]5[12]34〉 .
(5.3.16)
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In each of the 24 cubic A-coordinates 7 indices appear once and 1 index appears twice.
Denoting the quadratic A-coordinates by q and the cubic ones by c, the generalised mo-
mentum conservation reads schematically∑

j<k

sijk +
∑
q|i∈q

sq +
∑
c|i∈c

sc + 2
∑
c|i2∈c

sc = 0 , i = 1, . . . , 8 , (5.3.17)

where the factor of two in the final term accounts for the double appearance of i in the
associated cubic coordinate.

As above we determine the u-coordinates from the equality of the two forms of the
potential, ∑

i<j<k

sijk log〈ijk〉+
∑
q

sq log q +
∑
c

sc log c =
∑
a

va log ua . (5.3.18)

The u-coordinates are found to be{
〈123〉〈248〉
〈124〉〈238〉

,
〈12[34]58〉
〈125〉〈348〉

,
〈12[45]68〉
〈126〉〈458〉

,
〈12[34]78〉
〈134〉〈278〉

,
〈134〉〈12[35]78〉
〈135〉〈12[34]78〉

,
〈13[45]6[78]12〉
〈136〉〈12[45]78〉

,

〈124〉〈34[56]28〉
〈248〉〈12[56]34〉

,
〈12[56]34〉〈34[57]28〉
〈12[57]34〉〈34[56]28〉

,
〈348〉〈12[34]5[67]82〉
〈12[58]34〉〈34[67]28〉

,
〈12[34]5[67]82〉
〈258〉〈12[34]67〉

,

〈268〉〈12[34]8[67]45〉
〈12[68]34〉〈45[67]28〉

,
〈125〉〈12[34]8[35]67〉
〈12[34]58〉〈12[67]35〉

,
〈12[68]34〉〈12[35]8[67]45〉
〈12[68]35〉〈12[34]8[67]45〉

,

〈45[67]28〉〈12[34]8[67]35〉
〈35[67]28〉〈12[34]8[67]45〉

,
〈358〉〈12[35]67〉〈12[34]8[67]45〉
〈12[34]8[67]35〉〈12[35]8[67]45〉

,

〈12[34]67〉〈35[67]82〉〈12[34]58〉
〈12[34]5[67]82〉〈12[34]8[67]35〉

}
(5.3.19)

and satisfy identities reflecting the cluster connectivity. The highest power appearing in
the identities is 6.

In the generalised φ3 amplitude corresponding to the Speyer-Williams fan, the last
8 g-vectors in (5.3.14) correspond to spurious poles. The facets containing them always
combine together into bigger facets without them. When we introduce the generalised
Mandelstam variables for each A-coordinate (not just the minors) then this is no longer
the case. The fan is simplicial and every vertex contributes on an equal footing. In the
interpretation where the volume of each facet is thought of as a generalised Feynman
diagram, each diagram now has the same number of poles.

It is possible to define u-coordinates for the polytope dual to the Speyer-Williams
fan formed from only the first 120 g-vectors. Only 16 of the u-coordinates are affected.
These are u(120)

57 = u
(128)
57 u

(128)
121 and u(120)

65 = u
(128)
65 u

(128)
125 and their cyclic rotations. Then

the corresponding u-identities obey the connectivity of the resulting polytope after the
removal of the last 8 g-vectors.

5.4 Tropically adjacent polylogarithms

The notion of cluster adjacency gives rise to an interesting class of polylogarithmic
functions, associated to a given cluster algebra. Here we would like to generalise this
notion to different possible choices of fan F (S). The cluster adjacent polylogs in the sense
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of [8] will correspond to the cluster fans. Those corresponding to less refined fans will obey
additional constraints beyond the fact that adjacent pairs of letters must appear together
in a cluster.

In Section 5.1 we discussed different tropical fans related to Gr(3, 7) ∼= Gr(4, 7), gener-
ated by different sets of tropical A-coordinates. Here we will discuss this further and the
implications these different fans have for cluster adjacency and scattering amplitudes in
SYM.

Edges

If two rays are connected by an edge in the cluster fan this means their corresponding
A-coordinates appear together in a cluster in the cluster algebra and hence are cluster
adjacent. The {a1, . . . , a6} fan in Table 5.2 is the most refined fan one could construct and
is dual to the Gr(4, 7) cluster polytope. This fan consists of 399 edges which correspond
to all of the cluster adjacent pairs of different A-coordinates. The {a1, . . . , a5} fan also
contains all 399 edges and so offers no alteration to cluster adjacency at the level of edges.
However, we will see that this fan does differ from the cluster fan at the level of triangles.
The {a1, . . . , a4} fan also called the Speyer-Williams (SW) fan was the original tropical
fan for Gr(3, 7) discussed in [83]. This fan has 392 edges and is the first instance where we
have a differing number of edges from that of the cluster fan as this fan has 392 edges. The
{a1, . . . , a3} fan has 385 edges, 14 fewer than the cluster fan. These 14 edges correspond
to the pairs

{a21, a64} + dihedral (5.4.1)

which are the pairs observed to be missing from certain integrals and MHV amplitudes
in Chapter 2. We note that the missing pairs are neighbours of ‘disconnected’ type in
the language of Chapter 2. This can be seen in Table 2.1 in the row labelled by a21 and
the fourth column in the a6i block where the symbol appears. That is, they appear
together in the same cluster, but never connected by an arrow. As noted in Chapter 2,
this has the consequence that, if the pair were to appear consecutively in a symbol, the
integrability conditions would impose that they do so in a symmetric way. In other words,
the corresponding weight-two function is simply a product of logarithms, log a21 log a64.
Therefore there is no distinction between the ordering shown in (5.4.1) and the reverse.

Triangles

Much like with edges mentioned above, if three rays are all connected to each other to
form a triangle in the cluster fan then all three corresponding A-coordinates can be found
in a cluster together and hence are cluster adjacent. When considering the less refined
fans, if we find that an edge is missing it follows that any triangles containing that edge
are also missing. However, it is also possible for further triangles to be absent, even if all
three edges of the triangle are still present. We have seen this phenomenon in the Gr(3, 6)

example discussed in Sect. 5.1. When any pair of connected tetrahedra in Fig. 5.3 becomes
a bipyramid, the triangle at the interface is removed. The same phenomenon can happen
in the Gr(3, 7) ∼= Gr(4, 7) case.

The cluster fan contains 1547 triangles but the {a1, . . . , a5} fan only has 1540 triangles,
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7 fewer than the cluster fan. These missing triangles are

{a11, a41, a51} + cyclic. (5.4.2)

As mentioned above the {a1, . . . , a3} fan has 14 fewer edges than the cluster fan. These
edges appear in (8×14)+7 = 119 triangles, corresponding to 8 triangles and their dihedral
copies along with 7 triangles which contain 2 of the 14 missing edges. The other missing
triangles are

{a22, a24, a16} + dihedral , (5.4.3)

{a21, a13, a53} + dihedral + parity . (5.4.4)

The triangles (5.4.2), (5.4.3) and (5.4.4) are fully disconnected in the sense that all
three edges correspond to disconnected neighbours. For example, we see in Table 2.1 the
symbol corresponding to the pairs {a11, a41}, {a11, a51} and {a41, a51}. There are a total
of 70 disconnected triangles in the cluster fan, 56 of which are missing from the {a1, . . . , a3}
fan (the 49 in (5.4.2), (5.4.3) and (5.4.4) and the 7 which contain two missing edges of the
form (5.4.1)). The remaining 14 disconnected triangles are of the form

{a11, a24, a33} + dihedral (5.4.5)

and these ones are present in the {a1, . . . , a3} fan.

Comparison to amplitudes

The variation in the number of edges and triangles in the above fans is interesting in the
context of N = 4 SYM loop amplitudes. At the level of edges all currently known MHV
heptagon amplitudes are consistent with the edges from the {a1, . . . , a3} fan. The NMHV
heptagon amplitude at four loops discussed above requires all 399 pairs (edges) [153] and
so is consistent with either the {a1, . . . , a5} fan or the {a1, . . . , a6} fan.

We have also observed that the triangles missing from the {a1, . . . , a3} fan are also
missing from all available MHV and NMHV amplitudes. Thus at the level of triangles
there is no distinction between the currently known MHV and NMHV amplitudes, though,
as we have stated above, there is at the level of edges. The disconnected triangles (5.4.5)
which are present in the {a1, . . . , a3} fan do appear as consecutive triples of letters in
known MHV and NMHV amplitudes.

The cluster adjacency conditions in heptagon functions seem to follow from the ex-
tended Steinmann conditions [70] and the physical initial entry condition (and integrabil-
ity of the symbol), at least up to weight seven. It is interesting to note therefore that the
conditions obtained by imposing the absence of the triples (5.4.2), (5.4.3) and (5.4.4) do
not follow only from physical initial entry conditions and cluster adjacency, there being
examples of functions in weight seven which do have the missing triangles in their symbols.
Therefore, forbidding above the triangles is an extra condition that goes beyond cluster
adjacency.

In summary, the known seven-point MHV amplitudes in planar N = 4 SYM are con-
sistent with the structure of the {a1, . . . , a3} tropical fan although there is limited data to
verify this. One potential test would be to bootstrap the five-loop, MHV heptagon using
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the restrictions following from the {a1, . . . , a3} and investigate whether a solution could be
found. For NMHV seven-point amplitudes, the edge structure suggests that the minimal
fan compatible with their singularities would be the {a1, . . . , a5} fan. This fan has all
possible edges but seven missing triangles. It would be interesting to investigate whether
such triangles indeed continue to be absent at higher orders.

Beyond seven points the Gr(4, n) cluster algebras become infinite. For n = 8 this
infinity is of affine type and we will consider tropical fans in this case in the next chapter.
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Chapter 6

Infinite to Finite and Algebraic
Singularities

Although the original connection to cluster algebras was inspired by the all-multiplicity
result for two-loop MHV amplitudes in [120], it has been clear for some time that addi-
tional ingredients are needed when going beyond seven points. In the first instance the
cluster algebras are finite type only for Gr(4, 6) and Gr(4, 7). For Gr(4, 8) and beyond
there are infinitely many cluster A-coordinates, so some truncation to a finite set needs to
be specified, as happens for the two-loop MHV amplitudes. Moreover at eight points and
beyond there is an additional problem which is present already at one loop for N2MHV
amplitudes. Four-mass box configurations appear which have letters which are not rational
when expressed in terms of the Plücker coordinates for the Grassmannian spaces (i.e. in
terms of momentum twistors [99]). Algebraic letters were also predicted for the two-loop
NMHV amplitude [161, 162] by means of a Landau analysis (as initiated in this context in
[163]) of the integrand provided by the amplituhedron [24, 164]. Letters containing square
roots appear in the eight-point integrals considered in [132, 165]. Recently, a two-loop
NMHV calculation [166] based on solving the Q-equation of [121, 133] for the dual octag-
onal (super) Wilson loop [50–52, 97, 98] has revealed a specific set of 18 multiplicatively
independent algebraic letters in addition to 180 rational ones. In this chapter we propose
that an answer to both problems may be provided by tropical geometry.

6.1 Review of positive tropical Gr(4, 8)

Following the methods described by Speyer and Williams [83], in Chapter 4 we initiated
a study of the fan describing the positive part of the tropical Grassmannian Gr(4, 8). Here
we will describe further features of the positive tropical Grassmannian Gr(4, 8) which lead
to the emergence of non-rational letters. Specifically, the Gr(4, 8) cluster algebra is not
finite, but of affine type E(1,1)

7 [167]. This feature means that although the algebra is
infinite, the infinity is controlled in a particular way and it makes Gr(4, 8) a very natural
example to consider in going beyond the finite cases. The affine nature of the cluster
algebra leads us to natural infinite sequences of clusters which play a role in fully defining
the Speyer-Williams fan (and related fans). Remarkably, the simplest infinite sequences
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〈1 2 3 4〉

〈1 2 3 5〉

〈1 2 4 5〉

〈1 3 4 5〉

〈2 3 4 5〉

〈1 2 3 6〉

〈1 2 5 6〉

〈1 4 5 6〉

〈3 4 5 6〉

〈1 2 3 7〉

〈1 2 6 7〉

〈1 5 6 7〉

〈4 5 6 7〉

〈1 2 3 8〉

〈1 2 7 8〉

〈1 6 7 8〉

〈5 6 7 8〉

Figure 6.1: The initial cluster of the Grassmannian cluster algebra Gr(4, 8).

lead to exactly the set of non-rational letters recently discovered in the two-loop eight-point
NMHV amplitude [166].

A general introduction to cluster algebras is given in Chapter 2 but here we will describe
the Gr(4, 8) cluster algebra explicitly. The Gr(4, 8) cluster algebra has an initial cluster of
the form shown in Fig. 6.1 with A-coordinates given by Plücker variables 〈ijkl〉. It has
nine active nodes ai (labelled 1, . . . , 9 from the top left and descending column by column)
and eight frozen nodes fi indicated by boxes making 17 nodes in total,

{a1, ..., a9} = {〈1235〉, 〈1245〉, 〈1345〉, 〈1236〉, 〈1256〉, 〈1456〉, 〈1237〉, 〈1267〉, 〈1567〉},

{f1, ..., f8} = {〈1234〉, 〈2345〉, 〈3456〉, 〈4567〉, 〈5678〉, 〈1678〉, 〈1278〉, 〈1238〉} . (6.1.1)

When we need to consider all 17A-coordinates together we order them as follows: {a1, ..., a9, f1, ..., f8}.

The arrows of the quiver diagram can be described by a square matrix b (the exchange
matrix ) with entries

bij = (no. of arrows i→ j)− (no. of arrows j → i) . (6.1.2)

Here the matrix b is skew-symmetric14 with indices running over all nodes (active and
frozen) and in the case of Gr(4, 8) therefore has dimension (17 × 17). We do not need to
record arrows between frozen nodes so the bottom right (8×8) submatrix of b is irrelevant
in what follows.

In addition to the A-coordinates and the b matrix we have more data associated to the
initial cluster. We also have a coefficient matrix, taken to be the (9 × 9) identity matrix.
Additionally, to each active node ai we associate the g-vector ei, the unit vector in the ith
direction.

Given the data for the initial cluster we may obtain the data for every other cluster
by repeated mutation on active nodes. If we follow the mutation rules given by (2.2.2,
2.2.3, 4.4.1, 4.4.3) one may obtain every cluster in the cluster algebra. In particular to
each A-coordinate generated there will be an associated g-vector. For this reason we also

14More generally in the study of cluster algebras it need only be skew-symmetrisable.
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use the notation g(a) for the g-vector associated to the A-coordinate a. As we described
above the g-vectors play a role in describing a tropical fan associated with the positive
part of the tropical Grassmannian.

To describe the tropical fan of [83] we first introduce the cluster X -coordinates. These
may be obtained from the A-coordinates of some cluster by writing for each active node j,

xj =

17∏
i=1

a
bij
i , (6.1.3)

where the product ranges over all A coordinates (active and frozen). From the initial
cluster we obtain a set of cluster X -coordinates,

x11 =
〈1234〉〈1256〉
〈1236〉〈1245〉

x12 =
〈1235〉〈1267〉
〈1237〉〈1256〉

x13 =
〈1236〉〈1278〉
〈1238〉〈1267〉

x21 =
〈1235〉〈1456〉
〈1256〉〈1345〉

x22 =
〈1236〉〈1245〉〈1567〉
〈1235〉〈1456〉〈1267〉

x23 =
〈1237〉〈1256〉〈1678〉
〈1236〉〈1567〉〈1278〉

x31 =
〈1245〉〈3456〉
〈1456〉〈2345〉

x32 =
〈1256〉〈1345〉〈4567〉
〈1245〉〈3456〉〈1567〉

x33 =
〈1267〉〈1456〉〈5678〉
〈1256〉〈4567〉〈1678〉

, (6.1.4)

where we have chosen a labelling using a pair of indices for future convenience. This
labelling is related to the usual labelling as follows

{x1, . . . , x9} = {x11, x21, x31, x12, x22, x32, x13, x23, x33} . (6.1.5)

We may use the X -coordinates (6.1.4) to parametrise a (4×8) matrix W (the web matrix)
of the form

W = (14|M) , (6.1.6)

where the (4× 4) matrix M has entries

mij = (−1)i
∑
λ∈Yij

4−i∏
k=1

λk∏
l=1

xkl , (6.1.7)

where Yij means the range 0 ≤ λ4−i ≤ . . . ≤ λ1 ≤ j − 1. The above formula is equivalent
to the sum over paths of the web diagram described in [83].

The minors 〈ijkl〉, formed from the columns i, j, k, l of the web matrix W evaluate to
polynomials in the cluster X -coordinates (6.1.4). They do so in such a way that the ratios
of products of minors in (6.1.4) correctly evaluate to the X -coordinates themselves. As
examples of minors we find for instance

〈1247〉 = 1 + x11 + x11x12 ,

〈2346〉 = 1 + x11 + x11x21 + x11x21x31 . (6.1.8)

To describe the positive tropical Grassmannian following [83] we evaluate these minors
tropically. That is, we replace addition with minimum and multiplication with addition,

Trop〈1247〉 = min(0, x̃11, x̃11 + x̃12) ,

Trop〈2346〉 = min(0, x̃11, x̃11 + x̃21, x̃11 + x̃21 + x̃31) , (6.1.9)

where we remind the reader that these are tropical polynomials by using x̃ instead of x.
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Each tropical minor defines a number of regions (each one a cone) of piecewise linearity in
the x̃ space. Taking all tropical minors together we get many such regions whose overlap
defines a fan. Each maximal cone of the fan is a region in which all tropical minors are
linear functions. If we intersect the fan with the unit sphere in the (nine-dimensional) space
of the x̃, each maximal cone becomes an eight-dimensional facet of a polyhedral complex.

The boundaries of the facets are locations where at least one minor is between two
different regions of piecewise linearity. For example, the minor Trop〈1247〉 in (6.1.9) has
boundaries between regions of piecewise linearity if one of the following tropical hypersur-
face conditions holds,

x̃11 = 0 ≤ x̃11 + x̃12

or x̃11 + x̃21 = 0 ≤ x̃11

or x̃11 = x̃11 + x̃22 ≤ 0 . (6.1.10)

Each eight-dimensional facet has seven-dimensional boundaries where one such condition
is obeyed. The boundaries themselves have six-dimensional boundaries where two linearly
independent equalities and the associated inequalities are obeyed. Proceeding in this way
we arrive at zero-dimensional boundaries, called rays, where eight linearly independent
tropical hypersurface conditions are obeyed.

In Chapter 5 we introduced tropical fans generated by different sets of cluster A-
coordinates, the most refined of these fans, generated by the set of all A-coordinates,
called the ‘cluster’ fan. In the case of the Grassmannian Gr(4, 8) we cannot immediately
do this since there are infinitely many A-coordinates. We can nevertheless use the g-vectors
of the cluster algebra as candidate rays of any fan F (S) defined by tropical evaluation of
a finite set S of cluster A-coordinates. If we restrict ourselves to looking for rays, this
approach is very effective. Systematically constructing the rays of the fan can be quite
cumbersome for large fans but, given a candidate ray, it is trivial to check if it is truly a
ray. As we already outlined in Chapter 4, if we consider the Speyer-Williams fan where
we take S to be the set of all minors then we find that 356 g-vectors of the cluster algebra
are also rays of the fan.

We can similarly determine that for S = {〈i i + 1 j j + 1〉 , 〈i − 1 , i , i + 1 , j〉} (the
maximal parity-invariant subset of minors) we find that 272 g-vectors are rays. For S =

{〈ijkl〉 , 〈ijkl〉} (the parity completion of all minors) we find that 544 g-vectors are rays.
Passing from the cluster algebra to a choice of fan defined by a set S of A-coordinates
is therefore a natural way to obtain a finite truncation of the infinite set of cluster A
coordinates.

Most interestingly, in none of the above cases do the g-vectors provide a complete set
of rays. In fact we find additional rays which complete the above sets of g-vectors as shown
in Table 6.1. As we will describe in the next section, the cluster algebra can also be used
to find the extra rays which are not g-vectors. In fact they arise as limits of special infinite
sequences of g-vectors so we refer to them as limit rays.

In Chapter 5 we also gave the f -vectors of the various fans considered and how their
maximal cones split. Here we give some information on the structure of the various fans
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S g-vector rays limit rays

{〈i i+ 1 j j + 1〉 , 〈i− 1 i i+ 1 j〉} 272 2
{〈ijkl〉} 356 4

{〈ijkl〉 , 〈ijkl〉} 544 4

Table 6.1: Number of rays of the fans F (S) for different choices of S.

in the infinite case Gr(4, 8) studied in recent papers [11, 12, 153, 154]. We find for their
f -vectors,

f48,red = (274, 5782, 46312, 189564, 447284, 635176, 536960, 249306, 49000),

f48,SW = (360, 7984, 66740, 285948, 706042, 1047200, 922314, 444930, 90608),

f48,aug = (548, 12748, 111104, 492548, 1251188, 1900152, 1706592, 836570, 172588).

The maximal cones of the three fans split as

49000 = 226369 + 787210 + 472811 + 452812 + 204813 + 254414 + 96015 + 67216

+ 148817 + 66418 + 23219 + 12820 + 12821 + 12822 + 3223 + 6424 + 4825

+ 6428 + 3234 + 445,

90608 = 503569 + 1232010 + 911611 + 606412 + 444813 + 233214 + 217615 + 87216

+ 97617 + 67618 + 38419 + 33620 + 20021 + 4822 + 823 + 8024 + 7225 + 2426

+ 4827 + 1629 + 2033 + 1634 + 1636 + 449,

172588 = 1127089 + 2100810 + 1308811 + 1001612 + 448013 + 344014 + 227215

+ 118416 + 188817 + 116818 + 33619 + 16020 + 25621 + 19222 + 4823 + 12824

+ 8025 + 6428 + 3232 + 3234 + 845.

To each g-vector is associated a cluster A-coordinate. We will conclude this section
by explicitly listing the A-coordinates corresponding to the 272 g-vector rays in the least
refined fan described in Table 6.1. If we also include the eight frozen A-coordinates then the
resulting 280 A coordinates contain the 196 rational letters found in [162] as an alphabet
predicted by Landau analysis for the two-loop NMHV amplitude. In fact the explicit
result for the two-loop octagon found recently in [166] contains only 180 of these rational
letters. In addition the two-loop NMHV octagon contains 18 multiplicatively independent
algebraic letters involving square roots, only four of which (corresponding to the letters of
the possible four-mass box integral topologies) are contained in the list in [162].

We begin the list of 280 letters (including 8 frozen) by recalling the 196 rational letters
of [162],

• 68 four-brackets of the form 〈a a+ 1 b c〉,

• 8 cyclic images of 〈124̄ ∩ 7̄〉,

• 40 cyclic images of 〈1(23)(45)(78)〉, 〈1(23)(56)(78)〉, 〈1(28)(34)(56)〉, 〈1(28)(34)(67)〉,
〈1(28)(45)(67)〉,

• 48 dihedral images of 〈1(23)(45)(67)〉, 〈1(23)(45)(68)〉, 〈1(28)(34)(57)〉,
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• 8 cyclic images of 〈2̄ ∩ (245) ∩ 8̄ ∩ (856)〉,

• 8 distinct images of 〈2̄ ∩ (245) ∩ 6̄ ∩ (681)〉,

• 16 dihedral images of ⟪12345678⟫.

In addition, we have the following 84 rational letters,

• 2 letters, 〈1357〉 and 〈2468〉,

• 8 cyclic images of 〈1(23)(46)(78)〉 (this set is closed under reflections),

• 16 dihedral images of 〈1(27)(34)(56)〉,

• 2 cyclic images of 〈2̄ ∩ 4̄ ∩ 6̄ ∩ 8̄〉 (this set returns to itself under two rotations and it
is closed under reflections),

• 8 cyclic images of 〈2̄ ∩ (246) ∩ 6̄ ∩ 8̄〉 (this set is closed under reflections),

• 32 dihedral images of ⟪12435678⟫, ⟪12436578⟫,

• 16 dihedral images of 〈1234〉〈1678〉〈2456〉−〈1267〉〈1348〉〈2456〉+〈1248〉〈1267〉〈3456〉.

In the above we have defined ⟪abcdefgh⟫ = 〈abcd〉〈abef〉〈degh〉 − 〈abde〉〈abef〉〈cdgh〉 +

〈abde〉〈abgh〉〈cdef〉.
In an ancillary file we list the g-vectors and their corresponding letters for the first two

cases of Table 1.
We now turn to describing the extra rays obtained by limits of infinite sequences and

the resulting algebraic letters.

6.2 Infinite paths in Gr(4, 8) and algebraic letters

As we have seen in the previous discussion, the relation between amplitude singularities
and cluster algebra data requires some refinement when going beyond seven points. In the
first instance, the two-loop NMHV octagon has algebraic letters which do not correspond
to any cluster A-coordinate. In addition, in truncating the infinite set of A-coordinates
by considering some tropical fan F (S) as described above, the rays of F (S) are not all
described by g-vectors of the cluster algebra.

We may address both of the above difficulties by realising that the infinite number of
clusters can usefully be organised into infinite sequences, each of which can be related to an
infinite rank two cluster algebra with two nodes and a doubled arrow between them. Such
algebras were considered in e.g. [168] and it was already noted there that under repeated
mutation the g-vectors asymptote to a limiting vector. In fact, in the affine case which is
relevant here, the same limiting vector can be obtained by repeated mutation with either
choice of initial node (i.e. both directions asymptote to the same limit vector).

If we ignore the frozen nodes (and ignore the values of the A-coordinates on the active
nodes) there are 506 distinct quiver diagrams that arise in the Gr(4, 8) cluster algebra.
The fact that there are only finitely many is a feature of the affine cases of Grassmannian
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w0

z0

b1 b2 b3a1a2 a3 a4

Figure 6.2: The E
(1,1)
7 shaped clusters with a doubled arrow between two cluster A-

coordinates, w0 and z0. By mutation on the ai nodes we generate an A2 × A2 subalgebra
of clusters containing the same w0, z0 and bi nodes. Frozen nodes are omitted here.

cluster algebras Gr(4, 8) and Gr(3, 9) and these algebras are referred to as finite mutation
type. Out of the 506 quivers, 491 have only single arrows while 15 have a doubled arrow.
These latter type have the shape of the E(1,1)

7 quiver diagram shown in Fig. 6.2, or one
related to it by mutation in the A2×A2 subalgebra generated by mutations on the ai type
nodes [167].

Each diagram of the form of Fig. 6.2 forms part of a doubly infinite rank-two affine
sequence, generated by alternating mutations on the w0 and z0 nodes. In each such se-
quence we can find some cluster (actually an A2 ×A2 subalgebra of clusters) in which the
frozen nodes are all outgoing from w0 and incoming to z0. We illustrate this by a simplified
diagram which we refer to as an origin cluster where we ignore the ai nodes, combine the
three bi nodes into a single node,

b = b1b2b3 , (6.2.1)

and combine all frozen nodes outgoing from w0 into fw and those incoming to z0 into fz,

fw =
8∏
i=1

fmii , fz =
8∏
i=1

fnii , mi, ni ∈ N0 . (6.2.2)

Such a simplified diagram is illustrated at the top of Fig. 6.3.

The initial mutations to generate the infinite double sequence take the form

z1w0 = b+ fwz
2
0 ,

w1z0 = b+ fzw
2
0 . (6.2.3)

Thereafter the mutations in the z-direction and w-direction take the uniform form for
n ≥ 0,

zn+2zn = CFn + z2
n+1 ,

wn+2wn = C̃Fn + w2
n+1 . (6.2.4)

The coefficients C and C̃ are given by

C = bfz ,

C̃ = bfw , (6.2.5)
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w0 z0

b

fw fz

z1 z0

b

fw fz

w0 w1

b

fw fz

z1 z2

b

fw fz

w2 w1

b

fw fz

zn+2zn = CFn + z2
n+1 wn+2wn = C̃Fn + w2

n+1

Figure 6.3: The doubly infinite sequence corresponding to the embeddings of the affine A2

cluster algebra into the Gr(4, 8) cluster algebra. After mutating one step from the origin
cluster on either node, the repeated mutations give rise to a regular recurrence relation.
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while the factor F is the product over the frozen nodes,

F = fwfz . (6.2.6)

The transformations of the g-vectors while performing the doubly infinite sequence of
mutations are very simple. After a few initial mutations the differences in consecutive
g-vectors stabilise and we arrive at the form

g(zn+1)− g(zn) = g(w0)− g(z0) = g(wn+1)− g(wn) . (6.2.7)

This shows that in either direction the g-vectors will asymptote to the limit ray

g∞ = g(w0)− g(z0) . (6.2.8)

In fact we find many different origin clusters of the form shown at the top of Fig. 6.3, with
different w0 and z0 (and hence different g(w0) and g(z0)) but with the same limit ray g∞.

We may recast the quadratic recurrence relations (6.2.4) in a matrix form,(
zn+2 zn+1

zn+1 zn

)
=

(
zn+1 zn

zn zn−1

)(
P 1

−F 0

)
=

(
z2 z1

z1 z0

)(
P 1

−F 0

)n
, (6.2.9)

and similarly for z → w. Taking the determinant of the matrix relations (6.2.9) yields the
original quadratic relations (6.2.4) since

z2z0 = C + z2
1 . (6.2.10)

We may verify that the matrix recursion (6.2.9) consistently generates the same sequence
zn as the quadratic recursion (6.2.4) provided that P obeys

z2 = z1P − z0F . (6.2.11)

Hence we require that P is related to C via

C + z2
1 + z2

0F = z0z1P . (6.2.12)

Remarkably, P can be shown to be a polynomial, that is we can find a factor of z0z1

within the combination on the LHS of (6.2.12). If we write C and F in terms of the cluster
A-coordinates of the origin cluster we find

C + z2
1 + z2

0F = bfz + z2
1 + z2

0fwfz ,

= z1(fzw0 + z1) , (6.2.13)

where the second step is achieved by using the first relation in (6.2.3) to eliminate b. We
have made the factor of z1 manifest and it remains to show that there is also a factor of
z0 in the remaining combination (fzw0 + z1). To show this we consider instead the square
of this combination,

(fzw0 + z1)2 = f2
zw

2
0 + 2fzw0z1 + z2

1 ,

= fz(w1z0 − b) + 2fz(b+ fwz
2
0) + (z2z0 − bfz) ,

= z0(fzw1 + 2fzfwz0 + z2) . (6.2.14)
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In the second step we have used the relations (6.2.3) and the quadratic recurrence formula
(6.2.4) for z in the case n = 2. We have succeeded in finding a factor of z0 in the square
factor, but since all quantities involved are polynomials in Plücker coordinates, it must be
that the original factor without the square also has a factor of z0. Hence we conclude that

P =
fzw0 + z1

z0
(6.2.15)

is a polynomial even if this property is not manifest from the above equation. By consid-
ering the wn sequence instead we arrive at an equivalent formula for P,

P =
fwz0 + w1

w0
. (6.2.16)

Note that both P and F are invariant under swapping the z sequence and the w sequence
(along with swapping fz with fw). Note also that P is manifestly positive in the region
where all A-coordinates are positive.

Returning to the matrix recursion we see that it is equivalent to a linear recursion
formula

zn+2 = zn+1P − znF , (6.2.17)

of which (6.2.11) is just the first case. Of course we also have the same recursion formula for
the wn. Once a polynomial form for P is obtained, this linear recursion formula provides
a manifestly polynomial form for all the zn cluster coordinates (and similarly the wn).
Note that the linear recursion would just be the Fibonacci recursion relation if we had
P = −F = 1. The linear recursion formula is neatly solved by the following generating
function

Gz(x) =
z1 − z0Fx

1− Px+ Fx2
=

∞∑
n=0

zn+1x
n , (6.2.18)

and similarly for w ↔ z. It follows immediately that the asymptotic limit of the ratios of
the zn is controlled by the roots of the quadratic in the denominator,

limn→∞
zn
zn−1

= P +
√

∆ , ∆ = P2 − 4F . (6.2.19)

Using this fact we can write an explicit form for the zn,

zn =
1

2n+1

[
(z0 +Bz

√
∆)(P +

√
∆)n + (z0 −Bz

√
∆)(P −

√
∆)n

]
(6.2.20)

with Bz defined by

Bz =
2z1 − z0P

∆
. (6.2.21)

We have a similar formula for the wn sequence obtained by swapping z ↔ w everywhere.
For a sequence of mutations generating g-vectors which asymptote to a given limit ray g∞,
we find that P and F (and hence the limit of the ratio (6.2.19)) depend only on the limit
ray. The actual path towards the limit (and therefore the zn or wn) is distinguished by
the values of z0 and z1 (or w0 and w1).

In the limit of large n, the term with (P +
√

∆)n dominates over the term (P −
√

∆)n.
Its coefficient (z0+Bz

√
∆) depends on the path of approach to the limit. Since the product
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(z0 +Bz
√

∆)(z0 −Bz
√

∆) is rational15 we identify the ratio

φz =
z0 +Bz

√
∆

z0 −Bz
√

∆
=
z0P − 2fzw0 + z0

√
∆

z0P − 2fzw0 − z0

√
∆

(6.2.22)

with a new algebraic letter associated to the path. We also have a letter obtained from the
limit of the w sequence whose formula is the same except for swapping z ↔ w everywhere,

φw =
w0 +Bw

√
∆

w0 −Bw
√

∆
=
w0P − 2fwz0 + w0

√
∆

w0P − 2fwz0 − w0

√
∆
. (6.2.23)

Note that we have many origin clusters, each of which provides two paths (the z branch
and the w branch) towards the same limit ray g∞. The square root

√
∆ which appears will

be common for all algebraic letters coming from a given limit. Only the rational coefficients
(determined by the data of the origin cluster) will depend on the actual path.

Let us recall that the smallest fan from those listed in Table 6.1 has two limit rays in
addition to the 272 g-vector rays. For the case of a path that asymptotes to the first limit
ray we find

g(1)
∞ = (1,−1, 0,−1, 0, 1, 0, 1,−1) ,

P = 〈1256〉〈3478〉 − 〈1278〉〈3456〉 − 〈1234〉〈5678〉 ,

F = 〈1234〉〈3456〉〈5678〉〈1278〉 . (6.2.24)

while the second limit ray

g(2)
∞ = (0, 1, 0, 1, 0,−1, 0,−1, 0) , (6.2.25)

has P and F related to those in (6.2.24) by a cyclic rotation by one unit. The precise
values of z0 and z1 (or w0 and w1) depend on the path of approach.

We find 64 origin clusters whose associated limit rays are either g(1)
∞ or g(2)

∞ described
above. Among them are four clusters with the nodes w0 and z0 connected by the doubled
arrow given by

〈j(12)(ik)(78)〉 〈12ij〉 (6.2.26)

where i ∈ {3, 4} and (j, k) is a permutation of (5, 6). Each origin cluster with the rank two
affine subalgebras of the form (6.2.26) has the limit ray g

(1)
∞ and frozen nodes given by

fz = f1 = 〈1234〉, fw = f3f5f7 = 〈3456〉〈5678〉〈1278〉 , (6.2.27)

in agreement with eq. (6.2.24). The four origin clusters are listed in Table 6.2 along with
the data from the original cluster diagram that they come from, including the b nodes and
the A2 × A2 subalgebra generated by the ai type nodes of Fig. 6.2. The full set of 64
origin clusters whose limit rays are g

(1)
∞ or g(2)

∞ are then obtained from the four described
in (6.2.26) by dihedral transformations.

Each origin cluster produces two algebraic letters φz and φw defined by eqs. (6.2.22)
and (6.2.23). Thus we have a set of 128 algebraic letters associated to the two limit rays
g

(1)
∞ and g

(2)
∞ . Each limit ray is therefore associated with significantly more data than

15For the cases we consider shortly, it is always a multiplicative combination of the 280 rational letters
given in at the end of Sect. 6.1.
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Sub affine A2: w0 z0 b = b1b2b3 Residual A2 ×A2

〈5(12)(36)(87)〉 〈1235〉
〈1256〉
×〈3(12)(56)(78)〉
×〈5(12)(34)(78)〉

〈1345〉 〈1346〉
〈1237〉 〈1247〉

〈6(12)(35)(78)〉 〈1236〉
〈1256〉
×〈3(12)(56)(78)〉
×〈6(12)(34)(78)〉

〈1345〉 〈1346〉
〈1237〉 〈3567〉

〈5(12)(46)(87)〉 〈1245〉
〈1256〉
×〈4(12)(56)(78)〉
×〈5(12)(34)(78)〉

〈1237〉 〈1247〉
〈1237〉 〈1247〉

〈6(12)(45)(78)〉 〈1246〉
〈1256〉
×〈4(12)(56)(78)〉
×〈6(12)(34)(78)〉

〈1237〉 〈3567〉
〈1237〉 〈3567〉

Table 6.2: Four types of clusters that act as origins of doubly-infinite sequences.

any g-vector ray, each of which is associated to a single rational letter. The 128 letters
associated to g

(1)
∞ and g

(2)
∞ are not all multiplicatively independent and remarkably they

generate the same space as the 18 multiplicatively independent algebraic letters found in
[166]! The two-loop NHMV eight-point amplitude is therefore consistent with the data
obtained from the smallest fan in Table 6.1 in that the associated alphabet is covered by
the rays of the fan.

The set of 128 algebraic letters described above is closed under parity, as the doubly
infinite sequences themselves map to each other under parity. The origin clusters them-
selves do not necessarily map to origin clusters but sometimes map to an adjacent cluster
in the infinite sequence. In an ancillary file we explicitly list the 128 algebraic letters.

The other fans in Table 6.1 have four limit rays. These are similarly associated to their
own set of origin clusters, again 64 such clusters, each generating two algebraic letters
according to (6.2.22) and (6.2.23). In this case the P and F associated to g

(3)
∞ are as

follows,

g(3)
∞ = (−1, 0, 1, 0, 2,−1, 1,−1,−1) ,

P = 〈1237〉〈1458〉〈2468〉〈3567〉 − 〈1238〉〈1567〉〈2468〉〈3457〉

−〈1238〉〈1678〉〈2345〉〈4567〉 − 〈1237〉〈1358〉〈2468〉〈4567〉

−〈1234〉〈1278〉〈3456〉〈5678〉 ,

F = 〈1234〉〈2345〉〈3456〉〈4567〉〈5678〉〈1678〉〈1278〉〈1238〉 . (6.2.28)

The P associated to the other limit ray

g(4)
∞ = (1, 1,−1, 1,−2, 0,−1, 0, 1) , (6.2.29)

is related to that in (6.2.28) by a cyclic rotation by one unit while the F is the same
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(note that F in (6.2.28) is the product of all frozen A-coordinates and therefore is cyclic
invariant). The algebraic letters associated to the limit rays g

(3)
∞ and g

(4)
∞ are therefore

of a different nature with different square roots. So far we do not have any example of
an amplitude where they appear. They might appear at higher loop orders in eight-point
amplitudes than are currently known explicitly.

We should also stress that there are more origin clusters (infinitely many) each of which
has its own limit vector associated to it and its own type of square roots. However the
limit vectors obtained are not rays of any of the fans listed in Table 6.1. One could imagine
making yet more refined fans F (S) by taking yet larger sets S of A-coordinates to define
them. It is possible that the other limit vectors beyond the four described above become
rays of such fans.
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Chapter 7

Conclusions

This thesis consists of two main parts. In the first part, we introduced the notion of cluster
adjacency, demonstrating how cluster algebras not only provide the list of singularities of
alphabets for scattering amplitudes in N = 4 SYM, but also how the geometry of the
cluster polytope dictates which consecutive discontinuities or residues of an amplitude one
is allowed to take. We then demonstrated cluster adjacency’s power to reduce the free
parameters of a bootstrap calculation, thus allowing us to calculate a previously unknown
result - the seven-point, four-loop NMHV amplitude.

The second part of this thesis was focussed on the recently discovered connection be-
tween tropical geometry and the generalised biadjoint φ3 theory, as well as a more gener-
alised and systematic formulation of cluster adjacency. We expanded on the relationship
between volumes of the positive region of tropical Grassmannians and tree-level biadjoint
φ3 amplitudes, demonstrating how the cluster algebra provides a straightforward algorithm
for calculating these volumes. We then explored different classes of finite tropical fans be-
ing generated by different sets of cluster A-coordinates, how these different fans give rise
to a more generalised form of cluster adjacency, and the functions built on these fans. We
also proposed a generalised form of the scattering equations. Finally tropical geometry
allowed us to begin exploring an infinite cluster algebra Gr(4, 8), using our tropical geom-
etry tools to truncate the infinite set of cluster A-coordinates, again providing different
finite fans, and conjecturing an alphabet for eight-point scattering in SYM. We also used
our understanding of g-vectors and their mutation properties to generate algebraic letters
known to appear in eight-point scattering, but previously not extractable from the cluster
algebra.

In this final chapter, we will present a short summary of our findings, concluding
remarks, and an outlook of possible future research.

In Chapter 2 we first reviewed cluster algebras and their link to the singularities of
scattering amplitudes in N = 4 SYM. We discussed how the cluster A-coordinates of
the Gr(4, 6) and Gr(4, 7) cluster algebras provide the alphabets for six and seven particle
scattering respectively.

We then introduced cluster adjacency as the rule by which only cluster A-coordinates
which appear in a cluster together can appear in adjacent slots of the symbol. We also
used the bootstrap program, with cluster adjacency built in, to calculate the symbols of
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certain seven-point, three-loop integrals demonstrating that our conjecture held not only
for existing results but could also be used to simplify calculations. Confirmation of the
cluster adjacency of existing one and two-loop amplitudes in SYM was provided in [169]
through use of the Sklyanin bracket.

Lastly, we analysed the consequences of the adjacency rules, producing dimensions of
cluster adjacent functions spaces for increasing weights and comparing these to Steinmann
function spaces. We also introduced the notion of neighbour set functions and comparing
the dimensions of these function spaces to that of the full function space. Cluster adja-
cency also has implications for integrability of general functions built on Grassmannians,
even without any initial entry conditions. At weight two, cluster adjacency only imposes
constraints on the symmetric words [a⊗b]+ [b⊗a], forcing the entries a and b to appear in
a cluster together. At weight three, two interesting features arise. Either all three entries
must appear together in a cluster or we have triplets of the form [a ⊗ b ⊗ a′], where a′

is the result of mutating on a in some cluster and therefore b is the cluster X -coordinate
corresponding to that mutation.

In Chapter 3, we explored and extended the role of cluster algebras and their relation to
the appearance of singularities in scattering amplitudes in SYM. The picture which emerges
is very geometric in nature, the boundary structure of the cluster polytope controls the way
in which both poles and branch cuts appear. Codimension-one faces of the cluster polytope
correspond to unfrozen A-coordinates which appear in the symbol alphabet. The branch
cuts exhibit a non-abelian structure, with sequential cuts forbidden when corresponding to
non-intersecting faces. Poles in BCFW terms for tree amplitudes (and more conjecturally
Yangian invariants) exhibit an abelianised version of adjacency; they all correspond to
A-coordinates from the same cluster. The same adjacency structure also relates the poles
of R-invariants and the final entries (i.e. derivatives) of the polylogarithms which appear
in the NMHV amplitudes.

We also presented the computation of the symbol of the four-loop correction to the
NMHV superamplitude of seven particles in SYM. This is the unique combination of
weight-8 symbols whose letters are given by the Gr(4, 7) cluster algebra, exhibit clus-
ter adjacency in its iterated discontinuities, and has a well-behaved collinear limit. We
then analysed the multi-Regge limit of our answer for the amplitude, confirming that it
agrees with results derived for the latter up to next-to-leading logarithmic accuracy [76,
78] based on the BFKL approach, and also obtaining new predictions for an additional two
logarithmic orders.

The a priori knowledge of cluster adjacency was key in our computation in two ways.
Firstly, it allowed us to construct an ansatz for the polylogarithmic components of the
amplitude with definite, monomial (final entry)⊗(R-invariant) pairs. Secondly, it restricts
the possible next-to-final entries for each of these pairs, drastically reducing the size of the
original ansatz.

A peculiar feature of our ansatz for the heptagon amplitude is that it requires the
inclusion of the entire set of 21 R-invariants to manifestly exhibit cluster adjacency. As a
result, integrability of the symbol is verifiable only on the six identities that these invariants
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satisfy. This creates a trade-off between two natural ways of presenting the symbol of the
amplitude: one that manifestly corresponds to a function and one that reveals its cluster
adjacent structure.

In this calculation, we only exploited the cluster adjacency of neighbouring symbol
letters. However, as noted in Chapter 3, integrability of the symbols in a sense “propa-
gates” the adjacency of adjacent letters to longer words. One particular example of this
phenomenon is the triplets rule which predicts the combination of letters that come be-
tween a mutation pair separated by one site as the corresponding X coordinate. It would
be interesting to investigate by how much the a priori implementation of this rule, and
possible extensions thereof, facilitate the calculation of higher-loop amplitudes using the
bootstrap approach.

Although we have conjectured finite alphabets for eight-point scattering, it would be
very interesting to tackle more amplitudes beyond six and seven-points in SYM. For in-
stance, the applicability of cluster adjacency, or extended Steinmann relations, to indi-
vidual Feynman integrals [8, 170] strongly suggests that this is a general feature of local
quantum field theories. Furthermore, cluster adjacency has an imprint on the amplitude
also in special kinematics, such as the multi-Regge limit we studied, implying relations
even between functions of different logarithmic order. Studying more amplitudes in the
light of cluster adjacency may prove useful in developing a more general picture of their
analytic structure.

The structures we have uncovered naturally lead to many further questions.

• Can we use adjacency to construct integrable words without having to apply the
bootstrap techniques? This question is even of interest if we do not insist on the
physical initial entry conditions, and indeed one can ask it for all finite cluster alge-
bras, not just the cases of physical interest described here. A hint that this might
be possible comes from the observation that mutation pairs {a, a′} appearing in a
triple always appear in the form [a⊗ x(a, a′)⊗ a′] where x(a, a′) is the X -coordinate
associated to any mutation which takes a to a′.

• Can we extend our results to general NkMHV BCFW terms or more generally Yan-
gian invariants? Going beyond BCFW terms will lead to expressions which involve
quantities more complicated that A-coordinates. Perhaps we will learn something
about how such singularities interact with the known ones and how they relate to ad-
jacency. Recent work [171–174] has already shed some light on the cluster adjacency
of Yangian invariants in SYM.

• In this thesis, we have only discussed cluster adjacency in the context on polylogarith-
mic functions. Despite their applicability to large classes of problems in high-energy
physics, already at two-loops, polylogarithms are known not to exhaust the whole
space of special functions required for the computation of Feynman integrals. A nat-
ural question is whether adjacency can be extended beyond the polylogarithmic case
to include the elliptic functions appearing in e.g. the ten-point, two-loop N3MHV
amplitude.
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• To what extent do adjacency constraints arise beyond planar N = 4 amplitudes? For
sufficiently many external legs there will always be Steinmann constraints on scat-
tering amplitudes. A natural question is whether these extend to further constraints
between pairs of singularities which are not both simple unitarity cuts of amplitudes.
The geometrical picture of the relations between singularities described here suggests
that it is important to understand the relevant geometry and its boundary structure
in the more general setting. This geometry is necessarily more complicated in the
general case of massless scattering where dual conformal symmetry is broken.

It will be fascinating to explore the above questions. Ultimately we might hope to be
able to give a simple geometric or algebraic construction of physical scattering amplitudes.

In Chapter 4, we utilised cluster algebra technology to construct tree-level biadjoint
amplitudes on Gr(3, n) for n = 6, 7, 8. These amplitudes arise from scattering equations
on the corresponding Grassmannians [7, 143] and the relevance of cluster algebras for
these amplitudes arises from the interpretation of these amplitudes as volumes of certain
geometric objects. In the cases we studied in this thesis, these objects are polyhedra in
(k − 1)(n− k − 1)− 1 dimensions, where k = 3.

Cluster algebras provide a natural triangulation of the polyhedra whose volumes cor-
respond to the scattering amplitudes. Therefore we were able to employ mutation rules
to “bootstrap” the amplitude starting from a single term only. In particular, we provided
a prescription for the volume of the simplex that corresponds to the initial cluster and
obtained the volumes of the remaining simplexes through consecutive cluster mutations.

Each of the cases we considered has new features that provide important lessons. In
n = 6 we saw that the clusters triangulate the bipyramids of Tr+(3, 6) into two simplexes.
In n = 7 we identified that positive rays that define cones of Tr+(3, 7) are not rays of the
Tr+(3, 7) fan and are also not detected by the cluster algebra. When we studied the n = 8

case, we found that the cluster algebra generates redundant triangulations of the Tr+(3, 8)

fan.
In Chapter 5, expanded on the relationship between tropical geometry and scattering

amplitudes by introducing different types of tropical fans which are generated by corre-
sponding sets of cluster A-coordinates. The first tropical Grassmannian where it is possible
to have fans other than the cluster fan is Tr(3, 6) and we provide the geometric data as-
sociated to the three different fans one can construct. We also provide the geometric data
for the four different fans one can generate for the tropical Grassmannian Tr(4, 7).

The link between the scattering equations and the tropical Grassmannian allowed for a
generalisation of the scattering equations for Gr(2, n) [7]. We proposed a set of generalised
scattering equations for each choice of tropical fan where the equations associated to the
cluster fan are the most generalised form of the scattering equations. We then solve these
generalised scattering equations numerically and check that the result for the amplitude
obtained by summing over the solutions indeed matches the expected answer.

In Chapter 2, we introduced a method for calculating cluster face variables in terms
of the cluster X -coordinates of a cluster with the topology of the algebra’s corresponding
Dynkin diagram. In Chapter 5, we use the potential function defined in [7] to generalise the
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original method to include any tree-shaped cluster. This allows us to define face variables
for any cluster algebra which contains a tree-shaped cluster, but which may not have a
Dynkin classification associated to it.

We also discussed polylogarithms built on different tropical fans and the singularity
structure of these so-called tropically adjacent polylogarithms. We looked specifically at
polylogarithms built on fans of Gr(4, 7) and how the edges and triangles of particular fans
are indicative of their relevance for different helicity configurations. In particular, the fans
generated by the sets {a1, . . . , a3} and {a1 . . . , a6} corresponding to MHV and NMHV
amplitudes respectively. It remains to be seen if the fans we present do correspond to
particular helicity amplitudes, and it would be interesting to see if one could compute
the seven-point, five-loop MHV amplitude using the conjectured MHV tropically adjacent
polylogarithms.

In Chapter 6, we continued our discussion of tropical geometry and its relationship
with cluster adjacency. We utilised the g-vector mutation properties to conjecture finite
sets of cluster A-coordinates, which could possibly be alphabets for scattering amplitudes
in SYM. These finite sets of A-coordinates originate from different finite tropical fans.
The fact that we find exactly the same letters appearing in [166] from tropical geometry
and cluster algebras is very exciting. Ultimately, we must remember that the tropical
problems we have been considering here arise purely from kinematics. Momentum twistors
provide a natural, unconstrained set of coordinates for the kinematical space of colour-
ordered amplitudes in the planar limit, and dual conformal symmetry [3] dictates that we
should consider sl4 invariant combinations of them. This leads directly to the association
of the Grassmannian Gr(4, n), or more precisely Confn(P3) = Gr(4, n)/(C∗)n−1, to the
kinematic space of massless scattering in planar SYM. The dual conformally invariant (or
sl4 invariant) quantities are the Plücker coordinates 〈ijkl〉 and they obey quadratic Plücker
relations, for example the following,

〈ijk[l〉〈mnpq]〉 = 0 . (7.0.1)

Tropicalising such polynomial relations gives the tropical Grassmannian as considered by
Speyer and Sturmfels [145]. Considering its positive part leads to the tropical fans of
Speyer and Williams [83]. As we have discussed, these have a direct connection to the
Grassmannian cluster algebras. The g-vectors of the cluster algebras provide rays for the
tropical fans, even in the case where the algebra is not finite, such as the case studied
here Gr(4, 8). To these rays are associated rational A-coordinates which play the role of
symbol letters characterising the singularities of the polylogarithmic functions describing
the scattering amplitudes. Moreover, the additional rays of the fan arise as limits of natural
infinite sequences of g-vectors. To these are associated sets of algebraic letters involving
square roots.

Clarification is necessary in order to see which fans correspond to which amplitudes. We
have seen that the letters of the two-loop NMHV octagon are included in the smallest fan
we considered in Table 6.1. However, it could be that beyond two loops the MHV amplitude
will also need recourse to the same set of algebraic letters. It could also be beyond two loops
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the NMHV amplitude will require a bigger set of letters, say those arising in the largest fan
considered in Table 6.1. Moreover, the N2MHV amplitude requires algebraic letters (the
four-mass box letters) at one loop already. These four algebraic letters are included in the
set of 18 multiplicatively algebraic letters found in [166]. It would be very interesting to
explore all of these amplitudes at higher loop orders than are currently known explicitly,
to understand the general structure better.

It would also be enlightening to attempt bootstrapping eight-point integrals built on
the alphabets we conjecture. Due to the lack of a BDS-like subtracted amplitude for
n = 0 mod 4, eight-point amplitudes do not obey the Steinmann conditions and hence
cluster adjacency. However, IR finite eight-point integrals should obey cluster adjacency.
Therefore, once the rules for eight-point cluster adjacency can be determined, one could
construct symbols of integrals and examine their properties. For example, an eight-point,
two-loop massive double pentagon integral was presented in [132]. If this integral is as-
sumed to be cluster adjacent, certain cluster adjacency rules could be deduced from its
symbol. Moreover, in recent work, the cluster adjacency of all one-loop amplitudes has
been checked up to nine-points [174], as well as that of the n-point one-loop NMHV ratio
function [173].

We have only scratched the surface of the role tropical geometry plays in the analytic
structure of amplitudes in SYM. We have reproduced the algebraic letters present in the
two-loop NMHV octagon along with a second set of algebraic letters which do not appear in
any known amplitudes. Do these letters appear in amplitudes at all, and if so at what loop
order and helicity configuration? Can we understand the eight-point analytic structure in
more detail from the tropical fan? These questions would be interesting to pursue in the
future.
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Appendix A

Spinor Conventions

In Chapter 1 we reviewed spinor-helicity variables, here we show the conventions used
when manipulating those variables.

The vectors of the Pauli matrices take the form

(σµ)αα̇ = (1, ~σ)αα̇, (σ̄µ)α̇α = (1,−~σ)α̇α, (A.0.1)

where the Pauli matrices are

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.0.2)

In this notation the SU(2) invariant tensors and their inverses are

εαβ = εα̇β̇ = iσ2 =

(
0 1

−1 0

)
, εαβ = εα̇β̇ = −iσ2 =

(
0 −1

1 0

)
(A.0.3)

hence
εαβε

βγ = δγα, εα̇β̇ε
β̇γ̇ = δγ̇α̇. (A.0.4)

The indices of the spinors λα, λ̃α̇ are raised and lowered according to

λα = εαβλ
β, λα = εαβλβ,

λ̃α̇ = εα̇β̇λ̃
β̇, λ̃α̇ = εα̇β̇λ̃β̇,

(A.0.5)

and the Pauli vectors σ, σ̄ are related to each other by

(σµ)αα̇ = εαβσµ
ββ̇
εα̇β̇, σµαβ = εα̇β̇(σ̄µ)β̇βεαβ. (A.0.6)

The spinor brackets are given by

〈ij〉 := 〈λiλj〉 = εαβλ
α
i λ

β
j =: −〈ji〉 (A.0.7)

[ij] := [λ̃iλ̃j ] = εα̇β̇λ̃iα̇λ̃jβ̇ =: −[ji]. (A.0.8)

where, in our conventions
εαβλ

α
i λ

β
j = λαi λjα = −λiαλαj , (A.0.9)

therefore
2(pi · pj) = (p̄i)

α̇αpjαα̇ = λαi λ̃
α̇
i λjαλ̃α̇j = 〈ij〉[ji]. (A.0.10)
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Appendix B

Superconformal Algebra

As mentioned above, N = 4 SYM is a superconformal theory, the algebra of which we
shall review here, following the conventions of [175]. The Poincaré algebra is generated
by spacetime translations Pµ and Lorentz transformations (rotations and boosts) Mµν =

−Mνµ, µ, ν = 0, 1, 2, 3. These satisfy the following commutation relations

[Mµν , Pρ] = −i (ηµρPν − ηνρPµ) ,

[Mµν ,Mρσ] = −i (ηµσMνρ + ηνρMµσ − ηνσMµρ − ηµρMνσ) ,
(B.0.1)

where ηµν = diag(1,−1,−1,−1) is the Minkowski metric. The Poincaré algebra can be
extended to the conformal algebra by adding special conformal transformations Kµ and
spacetime dilatations D. The additional commutation relations are

[D,Pµ] = iPµ, [D,Mµν ] = 0, [D,Kµ] = −iKµ,

[Mµν ,Kρ] = −i (ηµνKν − ηνρKµ) ,

[Pµ,Kν ] = 2i (Mµν + ηµνD) .

(B.0.2)

We have already introduced one extension of the Poincaré algebra, the supersymmetry
algebra (1.3.2), the generators of which obey the following commutation relations

[Mα
β, QAρ ] = δρ

βQAα −
1

2
δα
βQAρ , [M̄ α̇

β̇, Q̄ρ̇A] = −δα̇ρ̇Q̄β̇A +
1

2
δα̇β̇Q̄ρ̇A. (B.0.3)

where
Mα

β = − i
4
σµαα̇(σ̄ν)α̇βMµν , M̄ β̇

α̇ = − i
4

(σ̄µ)β̇ασναα̇Mµν . (B.0.4)

Demanding closure of the algebra requires the existence of a second set of supercharges -
superconformal supercharges - SαA/S̄

α̇A which can be obtained by the action of Kµ on the
supercharges Q/Q̄

[Kµ, QAα ] = −σµαα̇S̄
α̇A, [Kµ, Q̄α̇A] = SαAσ

µ
αα̇, {S̄α̇A, SαB} = 2δABK̄

α̇α (B.0.5)

as well as the SU(4) ∼= SO(6) R-symmetry generators RAB, A,B = 1, . . . , 4. The commu-
tation relations between the supercharges Q, Q̄/S, S̄ and the dilatation operator D are

[D,QAα ] =
i

2
QAα , [D, Q̄α̇A] =

i

2
Q̄α̇A, [D,SαA] = − i

2
SαA, [D, S̄α̇A] = − i

2
S̄α̇A. (B.0.6)
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Finally the commutation relations between the supercharges are

{QAα , S
β
B} = 4[δAB(Mα

β − i

2
δα
βD)− δαβRAB],

{S̄α̇A, Q̄β̇B} = 4[δAB(M̄ α̇
β̇

+
i

2
δα̇β̇D)− δα̇β̇R

A
B].

(B.0.7)

The superconformal group of N = 4 SYM is PSU(2, 2|4) which corresponds to the Lorentz
group SU(2)L × SU(2)R times the R-symmetry group SU(4).

Here we provide some of the multi-particle generators in the dual superspace (xαα̇i , λαi , θ
Aα
i )

relevant for the discussions in this thesis. For a comprehensive list we direct the reader to
[3]. The generators are

Pαα̇ =
n∑
i=1

∂

∂xαα̇i
, (B.0.8)

QAα =
n∑
i=1

∂

∂θAαi
, (B.0.9)

Q̄Aα̇ =
n∑
i=1

θAαi
∂

∂xαα̇i
, (B.0.10)

SAα =

n∑
i=1

[
θBiαθ

βA
i

∂

∂θβBi
− xβ̇iαθ

βA
i

∂

∂xββ̇i

− λiαθγAi
∂

∂λγi

]
, (B.0.11)

S̄α̇A =
n∑
i=1

xαα̇i
∂

∂θAαi
. (B.0.12)
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