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APPLICATIONS OF MACHINE LEARNING IN CONSUMER CREDIT RISK
MODELLING

by Trevor Fitzpatrick

This thesis investigates three separate type of prediction problems, in differing contexts, with a common
theme of experimental comparison of standard methods with more advanced machine learning methods.
The objective is evaluation of the predictive power of machine learning methods through experiments on
real world data.

The first paper is an application of machine learning classification methods to predict mortgage arrears.
It finds that both machine learning and a flexible statistical model outperform standard approaches.
This can help identification of important predictive factors for the management of loan arrears within
banks and loan servicers.

The second paper applies both regression and classification methods to prediction of Peer to Peer (P2P)
loan returns and default using different types of information.The main findings are that linear meth-
ods perform well on several (but not all) criteria; whether machine learning ensemble methods perform
better than individual methods depends on the performance measure used to assess them. Use of alter-
native text-based information does not improve predictive outcomes. As a consequence, investors can be
more informed about investments in this market.

The third uses survival analysis to predict time to sale of property collateral used for mortgage loans.
When property sales occur, as separate set of statistical and machine-learning models are used to pre-
dict the haircut or discount between the indexed property valuation at the point of sale and the actual
transaction price. Random survival forests worked well to predict the time to sale; while deep learn-
ing, random forests, and neural network regression methods performed best predicting the discount.
Based on predictive models for these two parameters, a sensitivity analysis illustrated how predictive
modelling of these parameters produces more conservative (i.e., higher) loss estimates than one current
industry approach.
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Chapter 1

Introduction

Banks and providers of credit have been building credit risk models since the 1950s (Thomas, 2009). At
first, the purpose of these models was to automate decisions on credit applications - hence their name,
“application scorecards”. After this, in the 1980s, behavioural scoring (i.e., using customer payment
behaviour) was introduced to determine, among other things, whether credit limits could be extended or
renewed. As noted by Thomas (2009), the mid-2000s saw a third wave of credit risk models related to
optimising not just application or renewal decisions, but optimising several business criteria (acceptance,
interest rate, limits) in profitability scoring, including a component related to credit risk (Finlay, 2010).
Linear logistic regression or their variants have been the method of choice for these problems. The
potential for improvements in predictive performance, allied with increasingly affordable and scalable
computational power, availability of data of various types (structured, text, images), and the success
of machine learning in computer vision and language translation, has led to a deepening interest in
machine learning for credit risk modelling. This thesis, will therefore investigate its usefulness in three
different settings – mortgage default prediction, P2P loan profit scoring, and recovery modelling.

Machine learning methods (in particular, supervised learning methods) will be more precisely defined
in Section 1.1 but can be regarded as methods that learn prediction functions inductively from data.
The potential improved predictive performance from machine learning has to be balanced with choosing
the right algorithms for the task at hand, building the models appropriately, and comparing them to
existing methods in a suitable manner. Other challenges include the computational complexity of the
algorithm (how it scales with the number of observations, predictors, and the resulting run-time) and
their ability to deal with imbalanced data (i.e., data where observations of the event of interest (default)
are very small in comparison to observations with non-events (no default)).

Each of the papers in this three paper thesis investigates a separate type of credit risk prediction prob-
lem, the common theme being the experimental comparison of standard methods with more advanced
machine learning methods. The objective of the research in this thesis is the evaluation of the predic-
tive power of machine learning methods compared to standard statistical methods, through conducting
experiments that replicate the conditions that modellers face in applied work in industry.

This introductory chapter of this thesis provides some background and context to the three papers con-
tained in this thesis. Section 1.1 of this introduction provides an overview of the main types of machine
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2 Chapter 1. Introduction

learning. Section 1.2 explains why the evaluation of machine learning methods is experimental. To pro-
vide context for the application domains of the papers, a brief introduction to consumer credit risk is
provided in Section 1.3. This is followed by machine learning’s relevance for credit risk in Section 1.4.
This is followed by an overview of the three papers contained in the subsequent chapters. This final
section describes the layout of the rest of the thesis.

1.1 Overview of machine learning concepts

Machine learning is a form of inductive learning from data. A precise definition of machine learning is
given by Mitchell’s book (Mitchell (1997), p.2)

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by P,
improves with experience E.

These three components can be thought of as representing the class of tasks, evaluation of performance
through using a performance measure, and optimising to improve based on experience. These are what
Domingos (2012) terms the three components of learning: representation; evaluation; and optimisation.

There are a wide variety of machine learning methods and new ones are being created every day. There
are three main types of machine learning. These are supervised learning, unsupervised learning, and
reinforcement learning. In supervised learning, the goal of inductive learning is to learn a function or
mapping from an input to an output or target. More formally, the aim of the learning process is to
learn the relationship between a set of variables xxx that have an influence on the target y, given N in-
stances of labelled input-output pairs from the training data D =

∑N
i=1 (xixixi, yi) (Murphy, 2012).

Unsupervised learning refers to finding patterns or groupings of the data for a specific purpose. The key
difference compared with supervised learning is there are no labelled instances. Given D =

∑N
i=1 xixixi, the

task is to find patterns or groupings for a specific purpose. These types of techniques include clustering,
data summarisation, and density estimation (Rudin and Carlson, 2019).

The third type is reinforcement learning. The central idea of this method is that goal directed actions
to maximise a particular reward measure. Unlike supervised learning, the method or learner is not in-
structed on the actions to take. There is an indirect link to operations research, where a specific version
of this goal directed action can be framed as a Markov Decision Problem (MDP). In reinforcement
learning, rather than specify the theoretical model for complex systems required in an MDP formula-
tion, the learner discovers the actions leading to most reward by trying the actions and learning from
what was successful or unsuccessful. In some types of reinforcement learning, actions may affect both
the immediate reward, the next step including all subsequent rewards. These two characteristics - the
trial-and-error search and delayed reward - are the main distinguishing features of reinforcement learn-
ing (Bishop, 2006; Barto and Sutton, 2018).

This thesis is concerned with supervised learning. Within this type of learning, there are two main
types. These are classification - where is goal is predict a class/label or a ‘yes/no’ answer, that can out-
put a probability. For example, predicting the probability of a disease or whether a loan will default.
The second type is regression. These algorithms predict a real-valued output. Two examples are predict-
ing the expected loss or profit on a loan or prediction of the sale price of a house. The methods used in
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regression algorithms are similar to classification with differences in the loss function being minimised
and performance measures used to evaluate the models.

A type of supervised learning regression is survival analysis. This is concerned with predicting a contin-
uous variable where the outcome is the duration until the occurrence of an event. These time to event
data differ from normal regression outcomes as the survival time for certain observations are incomplete.
These are known as censored observations. For example, in a credit risk data set of 100 loans where
outcomes for 100 loans are recorded over twenty-four months, and 1 loan defaults per month, then 66
loans are censored at the end of the study period.

The three application areas in this thesis determine the type of supervised learning method used to
answer the research question. The first paper is an application of machine learning classification meth-
ods to predict mortgage arrears. The second paper applies both regression and classification methods
to predict Peer to Peer (P2P) loan returns. The third uses survival analysis to predict time to sale of
property collateral used for mortgage loans. When property sales occur, as separate set of statistical
and machine-learning models are used to predict the discount between the indexed property valuation
at the point of sale and the actual transaction price.

1.2 Why is machine learning evaluation experimental?

It was stated in Section 1 that machine learning is inductive learning from data. In a typical machine
learning process, a model is applied to training data and then predictions are made on unseen or test
data. The ability to categorise correctly or predict with a low degree of error based on new examples
separate from those used for training is known as generalisation.

To use a model in practice, at least three steps can be taken. First, some algorithms or methods must
be chosen from all of the possible methods. Second, once chosen, the methods performance can be opti-
mised given the data. Finally, an evaluation step involves a performance comparison of the algorithms
in the given domain on test or unseen data.

1.2.1 Choice of algorithm

Because learning is inductive, it is not clear how best to match algorithms to problems. One of the
implications of the past three decades of research in machine learning and optimisation theory, implies
that there is no one method that is universally the best given the context and problem at hand and the
data used to investigate such problems (Alpaydin, 2016).

The detailed reasoning behind this was developed in a series of papers known as the No Free Lunch
Theorems (NFL) by Wolpert (1996), Wolpert and Macready (1997), and Wolpert (2002). The Wolpert
and Macready (1997) paper (p.2) set out to formally analyse how algorithms could be matched to data
from various problem domains. The central point of these papers is that the average performance of
algorithms across problem domains is the same. When one algorithm performs better than others in one
domain, it may perform worse than comparators in other application domains. The implication is that
no method could, therefore, be expected to be uniformly successful across all problem domains.

The papers generated substantial follow-up work and discussion in the machine learning community.
Theorists and practitioners argued that the theorems were not relevant in practice as they did not for-
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mulate them based on the expected generalisation performance, i.e., how well the methods would per-
form on functions not yet seen. Giraud-Carrier and Provost (2005) argue some functions are in reality
more likely and there is some either explicit or implicit knowledge or assumptions that can be used
to build learning algorithms. With those assumptions, researchers develop and apply general purpose
algorithms that perform well.

However, it is a challenging problem to determine the properties of a dataset that makes one algorithm
more appropriate than another. Kalousis et al. (2004) try to link performance between algorithms and
datasets through the use of the dataset characteristics. They find that data size/dimensionality, class
distribution, and information content of the predictors mattered for algorithm performance, given the
data.

Indeed, in some important benchmark studies of classifiers like Fernández-Delgado et al. (2014) and
cost-sensitive boosting Nikolaou et al. (2016), comparing across domains using the UCI datasets (Dua
and Graff, 2019), a few algorithms (parallel random forest, cost-sensitive Ada-boosting) performed best
given the various criteria considered. However, the authors note that many methods did not perform
well across datasets from different domains. These studies are more focused versions of critiques by
Rudin and Carlson (2019), Hand (2006) on the concentration on algorithm development, over-emphasis
of specific methods, and whether the improvements are meaningful in practice. An extension of the
meaningful improvement point is their relevance to real world impact for specific domain problems
Wagstaff (2012).

Gómez and Rojas (2016) conducted a series of experiments to test the practical implications of the
NFL theorems. They argue, based on their findings, that some methods appear to work better than
others on a collection of real world datasets. They note the importance of how the learner forms its
representation, the structure of the data (if there are a few important or many noise predictors), and
preprocessing as all being important factors in having good average performance on the data they con-
sidered.

Instead of testing many different algorithms performance on datasets from several domains, another
perspective is to try to determine the datasets that may match a particular algorithms. This is the ap-
proach developed by Eugster et al. (2014). They used statistical and information-theoretic measures,
combined with recursive partitioning of preference ranking models (Bradley and Terry, 1952) to analyse
which data sets ‘prefer’ certain algorithms. Traditional Bradley-Terry models assume that the prefer-
ence of subjects (datasets) are the same across objects (classifiers). In this framework, if an algorithm
performs well on a dataset, the data set ‘prefers’ that algorithm. Recursive partitioning can be used to
group subjects with homogenous preference scalings in a consistent data-driven manner. A benefit of
this approach is it provides some insight into the impact of dataset characteristics on performance of
algorithms.

However, work by Montanez (2017a) and Montanez (2017b) suggest the favourable search space for al-
gorithms to perform well is limited and that matching of problems to algorithms is provably difficult.
Given algorithms can only perform well on a narrow subset of problems, novel algorithms are required
for problem domains not covered yet or flexible algorithms that can adapt through parameterisation
such as deep learning. Using external information (prior knowledge about the domain or the methods
performance on similar domains) improves the chances of useful matches between algorithms and prob-
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lems. Montanez (2017a) offers this as one explanation of the proliferation of algorithm development.

Because there is no universal method or master algorithm (Domingos, 2018), for a given domain data
set, one specific method may perform best, but other methods could perform better on a similar but
separate data sets from the same domain. As noted in Hastie et al. (2009) selecting the best approach
can be one of the most important and challenging parts of fitting statistical and machine learning meth-
ods in practice.

To see why this is the case, consider a simple regression problem where the goal is to find a method
approximating the function that minimises a loss function of the expected Mean Squared Error (MSE).1

In this simple regression problem, Y = f(X) + ε, with E(ε) = 0 and V ar(ε) = σ2. Here, the Expected
Prediction Error (EPE) using the MSE criterion is EPE(x) = E[Y − f(x))]2 it can be shown that the
prediction error on test data x0 is given by

(y0 − f̂(x0))2 = V ar(f̂(x0)) + [Bias(f̂(x0))]2 + V ar(ε) (1.1)

Variance is the amount by which f̂ changes if estimated using differing training data. Bias is the error
introduced by approximating the true unknown function by a simpler linear regression model. Equation
1.1 says that to minimise expected test error, one needs a low bias and low variance method (James
et al., 2014). If the model is flexible and can become more complex - for example a spline rather than
linear regression - it is more flexible in its use of the training data. This decreases bias but increases
variance. The cost of additional flexibility is increased risk of overfitting the data where the model is
reflecting random statistical noise rather than information from the predictors. This is known as the
bias-variance trade-off.

1.2.2 Optimisation given data domain and algorithms

The discussion in this section has focused on the selection of an algorithm or method. Once a method
or group of methods have been selected, the variables or parameters of the method are optimised with
respect to the selected loss function Bennett and Parrado-Hernández (2006). These are learned during
the training process.

Unless the model is a naïve benchmark, it will usually have tuning parameters. The role of these pa-
rameters is to limit overfitting. Depending on the model, this can be through influencing smoothness,
adding some bias, limiting the number of logical conditions, covariates, or the type of models that the
algorithms can use (Rudin and Carlson, 2019). Using the notation of Hastie et al. (2009) the model pre-
dictions depend on parameter(s) α with the best prediction f̂α(x) the one that maximises or minimises
the loss function and associated performance measure.

The performance of the method on a given domain or across domains is determined by the domain data
and any hyper-parameters (referred to above as α). Hyperparameters can be thought of as the range of
settings specific to the method that can be tuned to optimise performance. These parameter values or
range of values are fixed in advance.

1The expected MSE is mean test MSE that results from repeatedly estimated the function using large number of
training sets and calculated on a test observations.
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The various algorithms used in the applications are described in Chapters 2, 3, and 4. While an in-
depth taxonomy of machine learning methods is outside the scope of this thesis, there are various ways
to characterise types of learning algorithms. One taxonomy for various types of supervised learning
methods is by Rudin and Carlson (2019). They outline:

• Models based on logical conditions or rules like decision trees or rule based models

• Linear combination (i.e., a sum) of decision trees (boosting, random forests)

• Case-based reasoning (k-Nearest Neighbours) and kernel-based methods (Support Vector Ma-
chines)

• Iterative summarisation (neural networks including deep learning)

Methods like decision trees are based on logical conditions or rules that partition data based on “if-
then” conditions. This type of recursive partitioning of the predictors to predict the response results
in predictions from the tree that are the average of the terminal nodes in the decision tree. Splits or
partition points are determined by choosing the split point minimising some loss function condition such
as the greatest reduction in the sum of the squared errors.

Decision trees form the basis for more complex machine learning methods such as random forests or
boosting. In these methods, decision trees are used as the input or base learner, and many trees are
grown and combined in different ways. These are known as ensemble methods. For random forests,
many multi-level or deep trees are grown, on subsamples (i.e., rows) of the data and variables (columns),
and the result is an average prediction over many trees. In a boosted regression tree model, trees with
one or two splits are fit sequentially to the residuals of the previous tree, building up an additive model.

Case-based reasoning like k-Nearest Neighbours (kNN) predict the response by taking weighted average
of the k-Nearest Neighbours in the data, where proximity is measured using a distance function like
Euclidian distance. In a regression context, Support Vector Machines (SVMs) are based on minimising
a loss function that includes a cost term for minimising large residuals. This method can flexibly specify
how predictors enter the model either linearly or in a more general non-linear way using various types of
kernels such as a Radial Basis Function.

Finally, in the simplest type of neural network models, the output variable is based on the input vari-
ables after they have been processed through a set of unobserved variables called hidden units or nodes.
Each hidden unit is a linear combination of some or all of the input variables. These are transformed by
a nonlinear activation function such as the logistic function. Several of these units can make up a layer,
and neural network can have several layers, with the output from the first hidden layer being passed
to the next hidden layer and so on. In the final step, these hidden layers are related to the outcome
through another linear combination. In a regression setting, this is a non-linear regression model that
is optimised by using specialised algorithms such as back-propogation to iteratively converge to the
optimal fit.

Deep learning methods can be thought of as neural networks with much more elaborate architecture
(the layers, activation functions) and optimisation methods applied to train the networks. The types
of layers used depend on the data being represented. For example, Convolutional Neural Networks
(CNNs) are a popular choice if the inputs are imaging data. More layers leads to a richer but a more
complex representation of the data. Activation functions determine how the hidden layer transmits data
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to the next layer; in deep learning models two popular methods are rectified linear or tan-h and similar
to the types layers, the choice of activation function depends on the task at hand. The optimisation
methods are adapted or developed specifically for these networks. Two of the most prevalent types of
optimisation methods are Stochastic Gradient Descent based on small batches of training samples and
Adaptive Moments Algorithm (ADAM) (Kingma and Ba, 2014).

Inspired by a figure from Rudin and Carlson (2019), Figure 1.1 is a visualisation of intended to provide
an intuition of how these different types of methods work. This two-variable illustration of a non-linear
relationship suggests each group of supervised learning methods produces different predictions in differ-
ent ways. The data measure two aspects of air quality. Both the response variable (Temperature) and
the predictor variable (Ozone) are scaled to lie between 0 and 1.2 The top row of the figure shows a
decision tree, random forests, and gradient boosted trees as two types of ensemble methods. The second
row of the figure illustrates the two types of knn and a Radial Basis Function SVM. The third row in-
cludes a multi-layer perceptron with a logistic activation function and two deep learning methods with
two hidden layers using the rectified linear and tanh activation functions.

The predictions for decision trees suggest they approximate the non-linear nature of the relationship
by coarse steps where the predictions stay constant for a large range of the temperature variable. Ran-
dom forests average the predictions of many individual decision trees to approximate the relationship
and thus it is smoother than a single decision tree. The boosted regression trees produce predictions
that are similar to both at different points on the range of the x-axis. The knn1 is a prediction based
on one nearest neighbour which appears to overfit the data suggesting high variance; using 10 nearest
neighbours produces a smoother curve. The SVM produces a fit that is somewhere in between each of
the kNN predictions. Finally, the neural network and deep learning methods produce similar fits even
though they have differing activation functions. Overall, this figure gives the impression that differing
learners produce a range of different predictions depending the method. Some of these predictions are
similar, and, in other cases like k-NN, one changed hyper-parameter setting leads to significant differ-
ences in fitting the data.

This leads to the question of how to tune the hyper-parameters to optimise performance for each method?
The simplest approach to find the best set of hyper-parameters is to search over a grid of all possible
combinations. The size of the search space depends on the number of parameters and their range, with
each search taking place over every combination of values. With the development of methods with more
complex adaptable structures, an active area of research is to find useful search strategies for optimising
several hyper-parameters as the search space can be prohibitive or impossible given finite computing
resources. This is one of the motivations for other search strategies such as random search as developed
by Bergstra and Bengio (2012) and Bergstra et al. (2013). This has led to a variety of other approaches
such as learning curves (van Rijn et al., 2015), and those summarised in table 2 of Luo (2016).

Performance measures of learned models are evaluated by one or more criteria. The criteria chosen
to evaluate the model are informed by the purpose of the prediction and its type. For example, Area
Under Curve (AUC) measures are useful for binary classification tasks. However, they implicitly assume
that the costs of incorrect predictions (false positives and false negatives are the same). It is important

2The dataset is included in the R package datasets. It measures air quality in New York between May 1, 1973 and
September 30, 1973. The data consist of six variables Ozone, Solar Radiation, Wind,Temperature, Day, Month. Ozone is
measured in mean parts per million; Temperature is measured in Fahrenheit.
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Figure 1.1: Illustration of machine learning method predictions on the Ozone dataset
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to ensure that the performance measures is suitable for the overall experimental objective Flach (2019)
and the type of prediction the model produces (a continuous variable, binary, survival, or multi-class).
For example, in a regression context comparing predictions of continuous variable, Mean Squared Error
(MSE) may be appropriate.

Up until now in this review, optimisation of performance implicitly assumed one performance measure.
However, there are several measures that could be considered in applications. For example, optimising a
performance measure subject to training time and the computational resources available. This is a type
of multi-criteria optimisation and Dewancker et al. (2016) have suggested a method to combine several
performance criteria and a ranking optimisation method to evaluate optimisation performance. Con-
sidering several criteria can be important as these often reflect real world constrains on computational
resources, time, and possible trade-offs with accuracy. Caruana et al. (2008) note that some algorithms
can efficiently explore the tuning parameter space more comprehensively than an algorithm that could
be better but where fine-tuning would be computationally infeasible. Thus, the computational complex-
ity of the algorithms and their ability to scale to the data available in problem domain is an important
considering in algorithm selection.

This is one of the reasons why researchers such as Guyon et al. (2015) have invested effort in under-
standing if this process can be automated. One approach automating is an approach called Combined
Algorithm Selection and Hyper-parameter optimisation (CASH) (Feurer et al., 2015). This is used to
select the algorithm, then tune it. The results from this Automated Machine Learning (AutoML) re-
search suggest that this is possible but there are still gaps between automatic and human-tuned models
(Guyon et al., 2016). A recent book by Hutter et al. (2019) provides a useful review of the progress
being made in this field.

1.2.3 Evaluation of predictive performance

Evaluation is the final step in comparison of algorithms. The purpose of the evaluation may be to test
a new classifier or regression method against another group of methods on either domain data or bench-
mark datasets (Japkowicz and Shah, 2011). Other types of evaluation are testing multiple classifiers or
regression methods on one domain data set or multiple benchmark datasets. Depending on the question
being addressed and the experimental set-up to reflect that, appropriate use of statistical tests are set
out in Demsar (2006), Garcia and Herrera (2008), Japkowicz and Shah (2011), Boulesteix et al. (2015).
Examples of evaluation studies using some of these methods are contained in Section 1.4 and in the
three papers in this thesis.

1.2.4 Summary

The implications of the issues discussed in this section are that in applied work, understanding the na-
ture of the question to be answered, and how machine learning methods may help prediction is a first
step. There is no uniformly best method per domain but there may be some good candidate methods
that could be suitable if they have performed relatively well on similar data. However, this is not guar-
anteed and because of that, it is necessary to experimentally compare algorithms. In conducting this
comparison, there are a variety of approaches to train and tune methods, and appropriate statistical
tests to apply to the results to determine if differences in performance exist.
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1.3 Consumer credit risk modelling: context

This section provides context for the consumer credit risk modelling applications contained in this the-
sis. Credit risk is the risk that a borrower will fail to meet their obligations in accordance with agreed
terms (BCBS, 2000). For the purpose of this thesis, consumer credit risk refers to credit risk inherent in
providing loans to individuals. This includes unsecured lending such as personal or Peer-to-Peer (P2P)
loans and secured lending for mortgages. The next two subsections therefore provide an overview of the
importance of consumer credit risk and context on developments in the Irish mortgage market.

1.3.1 Consumer credit risk: comparative context

The consumer credit market is a significant market and a source of risk to financial institutions (banks
and non-bank lenders). In official statistics, loans to individuals is typically referred to as loans to
households. In the US, household borrowing from banks and non-banks accounts for about $15,699
billion compared to total business borrowing of $15,579 billion. Of household borrowing, $2,806 billion
was non-revolving consumer credit (i.e., non-mortgage) at Q1 2019.

In the euro area, the e5460 billion of loans to households was slightly larger than the amount of e5023
billion in loans to corporates, making mortgages one of the most important asset classes for banks. In
Ireland, although the actual stock amount is orders of magnitude smaller, household borrowing accounts
for proportionally more than corporate borrowing. In July 2019, household borrowing was e90 billion
compared to corporate borrowing of e41 billion.3

In the aftermath of the Global Financial Crisis (GFC), non-bank origination of loans has grown as new
business models such as Peer to Peer (P2P) models emerge. These are lending platforms intermediating
between borrowers and lenders, with lenders directly funding individual borrowers. These types of firms
use various types of application information as well as information generated by the applicants interac-
tion with their platform/app to inform credit risk grading decisions. At present, the two largest P2P
platforms in the US, Prosper and Lending Club, together lent over $ 63 billion by Q2 2019. The relative
size of the platforms is still small but this market is growing quickly in the US and elsewhere. In the
Asia-Pacific region including China, lending by alternative finance providers (including P2P lenders)
amounted to e221 billion at the end of 2016; in Europe, the total amount lent was just under e7.6 bil-
lion by end 2016.4 As noted by Claessens et al. (2018) China was the largest market. In this thesis data
from the Lending Club (LC) platform is used in chapter 3, as it is one of the largest P2P lenders cur-
rently operating in the US. The continued growth in consumer lending from banks and the increased
provision from non-banks illustrates the scale and continued importance of the consumer credit market
to financial institutions and consumers.

1.3.2 Consumer credit risk: Irish specific developments

Chapter 2 and Chapter 4 focus on the Irish mortgage market. The scale of the Irish banking crisis
from 2008-2012 and its aftermath are the motivation of two of the papers in this thesis. The applica-
tions demonstrate that improved predictive modelling can provide additional insight to manage mort-

3Euro area figures are from the table T02.03 of the SSM supervisory statistics. US figures are from page 7 of the Flow
of Funds release, Q1 2019.The Irish figures are from table A1 Summary of Irish Private Sector Credit and Deposits.

4Based on Lending Club and Prosper website data, SEC filings, and Ziegler et al. (2018).

https://www.bankingsupervision.europa.eu/ecb/pub/pdf/ssm.supervisorybankingstatistics_first_quarter_2019_201907~62c4b59f7c.en.pdf
https://www.federalreserve.gov/releases/z1/20190606/z1.pdf
https://www.federalreserve.gov/releases/z1/20190606/z1.pdf
https://www.centralbank.ie/statistics/data-and-analysis/credit-and-banking-statistics/bank-balance-sheets/bank-balance-sheets-data
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gage arrears and improve duration and loss severity modelling during workout of distressed mortgages.
This section therefore provides some specific context for the scale of the mortgage arrears and reposses-
sion/sale process.

Before the onset of the Irish and Global Financial Crisis (GFC), during the credit-driven economic ex-
pansion in Ireland from the early 2000’s, mortgage credit grew rapidly along with a dramatic increase in
property prices. The residential property market peaked during Q2 2007. Between 1999Q1 and 2007Q2
nominal residential property prices grew by 264%; average annual mortgage credit grew by 24% on aver-
age per annum between 1999Q1 and 2007Q2. This was both a very pronounced and lengthy expansion
of credit.

This was followed by a sharp economic contraction, a peak to trough fall of residential property prices
of just under 54% in the five years from the peak of the residential market in Q2 2007 to the trough in
Q2 2012. The unemployment rate more than tripled from just under 5% in July 2007 to just under 15%
about four years in later in September 2010. During this period, mortgage arrears more than tripled
from 3.9% in December 2009 to just under 13 % by the end of 2012 (figure 1.2). At a macroeconomic
level, the financial costs of recapitalising some banks and resolving others amounted to e68 billion.5

Valencia and Laeven (2018) estimate the fiscal cost to be 37 % of Irish GDP and overall lost output of
107% of GDP (comparing actual GDP growth to pre-crisis trend).

The scale of the long-term mortgages arrears meant that a Code of Conduct on Mortgage Arrears
(CCMA) i.e., a defined process to engage with borrowers in a restructuring process, came into force in
2009. This evolved in subsequent years, providing additional protections for the borrower and combined
with a supervisory focus to move banks away from short-term restructuring to longer term restructures
(Donnery et al., 2018). At the same time, there were political decisions not to progress repossessions
and legal issues surrounding change that had been made to conveyancing law (Phillips, 2013). The im-
plications of the dramatic changes in the environment and the scale of the problem meant the time to
repossession and sale of collateral became protracted. This has led to a two thirds of loss of ownership
occurring through a voluntary surrender/sale; and one third from the repossession legal process (Figure
1.3).

5See Comptroller and Auditor General 2017 Report, Chapter 3.

https://www.audit.gov.ie/en/Find-Report/Publications/2017/Chapter3-Cost-of-Banking-Stabilisation-Measures-as-at-end-2016.pdf
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1.4 Why is machine learning important for credit risk?

“Consumer lending is the sleeping giant of the financial sector. . . . Slowly over the years,
with much more momentum since the millennium lenders have recognised that they need
to extend the range of decisions that consumer credit risk assessment should be used in.
This will mean changing the methodology used to build the assessment systems, changing
the business measures used to assess the borrowers, and most of all, developing models to
address the new decisions that credit scoring can be used for.”

This prescient thought from Lyn Thomas (Thomas (2009), p.vii) encapsulates why more advanced
methods such as machine learning are important for credit risk assessment. As noted earlier in Section
1.3, given the magnitude of the market improved tools for predicting consumer credit risk are of interest
to both bank and non-bank loan originators, as well as borrowers and regulators.6

Because of the changes in the regulatory capital regime for banks with the Basel accords, banks can
choose to develop their own credit risk models subject to certain conditions and regulatory approval.
They can model Probability of Default (PD) which is the likelihood that a borrower cannot meet their
debt obligation in defined time period. Banks typically use a variety of these types of credit risk models
at origination (application scoring, PD models). Banks can also model the Exposure at Default (EAD)
which is the gross amount of a facility owed by a borrower at the point of default. Models for these may
be required as facilities can be granted up to a limit and then subsequently drawn on (i.e., overdrafts or
credit lines). Credit risk models can also be used to make predictions of the Loss Given Default (LGD),
that is the loss after default, collateral, and the time over which recovery cash-flows has been received
by the bank.

While machine learning models are not yet in widespread use for this type of regulatory capital mod-
elling, their predictive performance and ability to discover features, and in some cases, robustness to
class imbalance is part of their appeal. Because of this, and the growing ability to interpret prediction
and automation of tuning mean they could be used more widely in future.

1.4.1 Credit risk and benchmarking studies: a brief review

A central issue is their predictive performance. A comprehensive early benchmark study was by Bae-
sens et al. (2003a). They compared 17 classifiers on 8 data sets and find that least squares-Support
Vector Machines (SVM) and Neural Network (NN) classifiers performed best, but the margin of im-
provement was not much greater than logistic regression and linear discriminant analysis, both of which
also performed well. One of the reasons that they say can explain this is their data sets are only weakly
non-linear.

Lo et al. (2010) used Boosted Regression Trees (BRTs) to score credit card borrowers and comparison
by Bastos (2008) found that BRT performed well compared to Neural Networks (multilayer perceptrons)
and Support Vector Machines on two credit scoring tasks. Feature discovery as well as predictive per-
formance of Support Vector Machines (SVMs) was assessed by Bellotti and Crook (2009) in predicting
credit card default. They find SVMs competitive and useful in discovering features to predict default.

6Loan originator refers to the entity originating the loan. In the past, this was primarily banks or credit card compa-
nies. Since the Global Financial Crisis (GFC), non-bank originators such as Peer to Peer (P2P) platforms have become
more prominent. In this thesis, the term refers to both types of entity unless specified otherwise.
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Brown and Mues (2012) found that gradient boosted trees and random forests performed better than
8 other algorithms in the presence of pronounced class imbalance across 5 data sets. Kennedy et al.
(2013b) had similar results; both papers did find that Logistic Regression (LR) performed relatively well,
while not being the top classifier.

The most recent comprehensive benchmarking study was carried out by Lessmann et al. (2015). They
compared single classifiers and ensemble classifiers that were all of the same base-learner type (homoge-
nous ensemble) or composed of different types (heterogenous ensembles). In this study, the authors
also considered how base classifiers in ensembles were selected and how the results were combined.
The experiments were run on 8 separate datasets including some with large number of observations
(c. 150,000) as well other data previously used in benchmarking. They used six performance measures,
the AUC, H-measure, Brier score, the percentage correctly classified (PCC), a partial Gini index (PG),
and the Kolmogorov–Smirnov statistic (KS).

There were several relevant findings. First, Logistic Regression (LR) is less accurate than other clas-
sifiers. Second, a selective ensemble developed by Caruana et al. (2006) (HCES-Bag) that was signifi-
cantly better than any of the other classifiers. Finally, of the other top performing classifiers, Random
Forests (RF) and Artificial Neural Networks (ANNs), there was no statistically significant difference.

As more transaction data becomes available due to changes in payment methods, this potentially is
a useful source of information to manage credit risk. A recent paper by Tobback and Martens (2019)
illustrate how payment transaction data, transformed using network analysis approaches, can be used
to predict default and improve on an existing ratings system with a bank. They found that when the
payments data are transformed using network methods, and a linear SVM is used to combined these
outputs, the resulting model outperforms the rating system.

Apart from credit scoring or Probability of Default (PD) modelling, there are other uses for machine
learning methods in credit risk measurement and management. Under the Internal Ratings Based
(IRB) approach, banks may also model the Loss Given Default (LGD) to produce predictions for the
loss given default for a specific account. To do so, they must comply with a range of regulatory re-
quirements.7 In one way, these requirements may limit the incentive to invest in more advanced mod-
elling techniques that require more involved explanations of their risk drivers for a PD or LGD model.
However, they could be used to improve predictions of more standard models. This is the so-called
‘challenger-model’ concept.8 For example, this could be through using a different loss function or identi-
fying important features or interactions that may not have been previously identified.

Work by Bastos (2010), Loterman et al. (2012), and Sheng Sun and Jin (2016) indicates that machine
learning methods like SVMs and neural networks, and ensembles like Random Forests and Boosted Re-
gression Trees (BRT) can perform better across a range of data sets. However, the work by Loterman
et al. (2012) suggests that much of the variance in LGD is unexplained across their data, indicating fur-
ther improvements in modelling and predictors are needed. Zhao et al. (2018) use a simulation study to
benchmark linear regression models with more sophisticated parametric models (inverse gaussian, frac-
tional response, gamma, beta and inflated beta regression. They find little difference between models
when evaluated using mean predictions and squared error loss. When they extend their evaluation to

7See the SSM TRIM manual, page 4.
8Some of these ideas are explored in this blog post; other examples are included in Bellini (2019)

https://www.bankingsupervision.europa.eu/ecb/pub/pdf/trim_guide.en.pdf
https://medium.com/@PavelMironchyk/credit-risk-challenger-models-a-road-towards-innovation-2de2c885feb4
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predicted distributions (i.e., conditional on the simulated predictor variables), they find large differences
with some of the more sophisticated parametric models performing better.9

1.4.2 Summary

Later in the loan life cycle, banks may also use models to manage accounts or provide behavioural
scores based on the history of the account. Should the account go into arrears or default, they can use
models to provide insight into their arrears management process, and this could be used to help manage
the process increasing efficiency of collections and reducing arrears. This is not yet as common in the lit-
erature, most likely because only a few European countries experienced the scale of distress experienced
in Ireland. The relevance of the problem in the Irish case was one of the motivations behind Chapter 2

The growth of P2P lending and the potential change in how credit is intermediated between borrower
and lenders means that performant predictive methods may help with managing default risk, but could
provide new ways to measure return or profitability on P2P loans in a scaleable manner to different
type of investors. Better loan selection could avoid defaults and increase returns. In large P2P markets,
this could be significant. This is the motivation behind Chapter 3.

Another reason to consider machine learning methods for modelling collateral recovery is the legacy of
the crisis is still being addressed at the same time as the introduction of the IFRS 9 expected credit loss
standard. As the first generation of IFRS 9 models have been implemented, there is a lack of published
research on methodological aspects of IFRS9 implementation. This is an appropriate time to assess
whether machine learning methods can estimate more accurate and conservative impairment model
parameters. This is one of the motivations behind Chapter 4.

1.5 Summary of papers and main contributions

This section summarises the main findings of the papers and outlines the main contributions of this
research.

1.5.1 Summary of papers

One of the main themes in this research is whether machine learning algorithms can improve on more
standard approaches when applied in different contexts. Three different aspects are considered.

The first paper focuses on mortgage credit risk management. The main research question is whether
machine learning models have a better predictive performance than logistic regression. This paper evalu-
ates the performance of a number of modelling approaches for future mortgage default status. Boosted
regression trees, random forests, penalised linear and semi-parametric logistic regression models are
applied to four portfolios of Irish owner-occupier mortgages. The main findings are that the selected
approaches have varying degrees of predictive power and that boosted regression trees significantly
outperform logistic regression. This suggests that boosted regression trees can be a useful addition to
the current toolkit for mortgage credit risk assessment by banks and regulators. This paper has been
published in the European Journal of Operational Research as Fitzpatrick and Mues (2016).

9They way they evaluate this is effectively using a two sample Kolmogorov-Smirnov (KS) comparing the conditional
predictive distribution with that from the assumed data generating process, with the KS statistic measuring the largest
divergence between the cumulative density functions of the two distributions.
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The second paper topic is profit scoring of Peer-to-Peer (P2P) loans. Successful Peer-to-Peer (P2P)
lending requires an evaluation of loan profitability from a large universe of loans. Predictions of loan
profitability may be useful to rank potential investments. The paper investigates whether various types
of prediction methods and the types of information contained in loan listing features matter for prof-
itable investment. A range of methods and performance metrics are used to benchmark predictive per-
formance, based on a large dataset of P2P loans issued on Lending Club. Robust linear mixed models
are used to investigate performance differences between models, according to whether they assume lin-
earity, whether they build ensembles, and which types of predictors they use. The main findings are
that: linear methods perform surprisingly well on several (but not all) criteria; whether ensemble meth-
ods perform better than individual methods is measure dependent; the use of alternative text-based
information does not improve profit scoring outcomes. This paper is under review at the European
Journal of Operational Research.

The topic of the third paper is mortgage collateral recoveries. This paper focuses on collateral recov-
ery vale for defaulted mortgages through modelling two important parameters determining this value:
the time to sale (TTS) and Forced Sale Discount (FSD). Both of these parameters affect the loss on
liquidation of collateral and are important for IFRS9 modelling of impairments as well as valuation of
securitised loan portfolios. This paper is one of the first to assess the impact of estimation method for
both the resolution times for mortgages that are in a loss of ownership process and the forced sale dis-
count from credit risk perspective. Using a variety of survival modelling approaches to estimate time
to sale, this paper evaluates their predictive performance and finds that Random Survival Forests and
parametric survival models perform best. For the FSD, random forests, xgboost, and a deep learning
neural network produce reasonable estimates. Using the predictions from these to steps, a sensitivity
analysis of model outputs for estimated resolution time and FSD illustrating how predictive modelling
of these parameters produce more conservative, ie, higher loss estimates than one current industry ap-
proach.

1.5.2 Main contributions

The main contributions of this thesis are briefly summarised below:

• Paper 3 (Chapter 4) in this thesis makes a contribution to the methodology of modelling collateral
recoveries and comparing the impact of the methods chosen on two important parameters for that
affect mortgage collateral recovery or loss severity: Time To Sale and the Forced Sale Discount.
The research is one of the first to examine the impact of estimation method on both the TTS and
the FSD as these are critical for determining the realised Loss Given Default (LGD). In particular,
the predictive accuracy of three groups of methods for TTS are assessed as well as the important
factors identified by those methods for time to resolution. In forced sale models, the type of forced
sale (legal or bi-lateral agreement) is key determinants of the haircut. One of the implications
of the results is modelling the parameters directly results in higher loss severities compared to
assigning fixed average to a cohort, which is a common approach used within industry (Eder and
Bank, 2019; Chawla et al., 2016).

• Within the application domain, a significant amount of research in the consumer credit risk lit-
erature deals solely with consumer credit (i.e., personal loans, overdrafts, credit cards) and not
mortgages. This is surprising because retail mortgages are a significant share of the lending to
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consumers. The work in this thesis extends the understanding of both prediction of mortgage ar-
rears in Paper 1 (Chapter 2) and mortgage collateral recovery parameters in Paper 3 (Chapter 4).
These findings may be relevant to financial institutions with mortgage lending businesses and in
countries that have not recently experienced severe downturns or housing market crises and thus
have limited data available to fit robust models under such scenarios.

• The results in this thesis provide a distinct contribution to the research literature comparing ma-
chine learning methods for classification, regression, and survival analysis methods. This includes
comparison of classifiers such as BRTs and GAMs in Paper 1 (Chapter 2 of this work), various
types linear and non-linear methods including ensembles in Paper 2 (Chapter 3), and survival and
regression methods in Paper 3 (Chapter 4) using real world data.

• Chapter 3 contributes to the experimental evaluation literature in machine learning through using
an robust linear mixed model to testing three experimental factors related to the various types of
machine learning methods (linear/non-linear; individual/ensemble) methods and types of informa-
tion included in the models. This contributes to understanding for investors of what may be useful
modelling approaches in Peer to Peer (P2P) lending.

1.6 Outline of this thesis

The next three chapters contain the three papers making up the main body of this work. Chapter 2
focuses on predictive models of mortgage arrears. Chapter 3 contains a profit scoring application of
Peer to Peer (P2P) lending. Chapter 4 analyses collateral recovery timing and loss severity. Chapter 5
concludes this thesis.
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Chapter 2

An empirical comparison of
classification algorithms for mortgage
default prediction: evidence from a
distressed mortgage market

2.1 Abstract

This paper evaluates the performance of a number of modelling approaches for future mortgage default
status. Boosted regression trees, random forests, penalised linear and semi-parametric logistic regression
models are applied to four portfolios of over 300,000 Irish owner-occupier mortgages. The main findings
are that the selected approaches have varying degrees of predictive power and that boosted regression
trees significantly outperform logistic regression. This suggests that boosted regression trees can be a
useful addition to the current toolkit for mortgage credit risk assessment by banks and regulators.

Keywords: boosting, random forests, semi-parametric models, mortgages, credit scoring

2.2 Introduction

2.2.1 Background: mortgage default prediction and its applications

Credit default (i.e., failure to keep up with loan repayments) has cost implications for creditors in terms
of losses or profits forgone and to other debtors in terms of higher prices (i.e., interest rates) and pos-
sible rationing of credit. Residential mortgages are one of the main types of lending and therefore a
major potential source of credit risk for banks. Credit risk and credit scoring models to predict mort-
gage default are used by financial institutions and regulators to measure, assess, and inform decisions
to mitigate various aspects of mortgage credit risk. A widely established techniques for this type of
modelling is Logistic Regression (LR).

19
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Chapter 2. An empirical comparison of classification algorithms for mortgage default prediction:

evidence from a distressed mortgage market

In recent years, there has been an increased research interest in a number of alternatives to LR and
whether those could produce more accurate credit risk models. Particularly, with the development of
new predictive modelling techniques in machine learning and the statistical literature, various studies
have assessed how these newer approaches perform compared to more established methods with regards
to scoring unsecured consumer loans such as personal loans and credit cards (Lessmann et al., 2015;
Kennedy et al., 2013b; Baesens et al., 2003a). However, when it comes to secured lending, research
findings regarding credit risk assessment of mortgage loans are much more scarce, despite the fact that
they are among the largest class of assets on European banks’ balance sheets. This paper attempts
to assess, using real-world mortgage loan-level data, whether a selection of these newer methods can
provide improved predictive performance over more established methods such as Logistic Regression
(LR).

Mortgage credit differs from consumer credit as it is secured by property collateral and absorbs a sig-
nificant amount of borrowers income-based repayment capacity. The fact that the loan is secured on
property may reduce the probability of default and the loss given default. As property prices can fluc-
tuate, this can reduce or increase the value of the collateral compared to the outstanding balance of
the loan. Therefore, changes in the value of the collateral compared to the outstanding amount of the
loan at a particular time may change the probability of default and loss in the event of default. Given
the cost of buying a property means the loan obtained by a borrower may be a sizeable in relation to
their annual income, and in turn, the monthly payments may be a substantial fraction of the monthly
income. Both of these factors make the default rate on mortgage lending lower and sensitive to differ-
ent macroeconomic variables like house prices and unemployment compared to some other types of
consumer lending like credit card or unsecured personal loans.

Evaluating and comparing how various techniques perform with regards to mortgage default prediction
serves a number of goals. First, for profitability and credit risk management purposes, financial insti-
tutions are interested in determining borrower creditworthiness through separation into good and bad
categories. This is the central objective of credit scoring (Thomas, 2009). The outputs of these credit
scoring methods can also contribute to the implementation of risk-adjusted loan pricing systems. Even a
small improvement in the predictive power of such models could thus have a substantial impact on the
quality of a bank’s loan book and pricing strategy.

Second, adequate regulatory capital buffers are required so that banks would be able to cope with un-
foreseen losses in excess of expected loss. Accurate assessment of the risk or probability of mortgage
loan default is critical for determining regulatory capital requirements. For retail credit risk classes such
as mortgages, the Probability of Default (PD) models developed for this purpose are usually fixed in
horizon (one year) and have so far been typically modelled using logistic regression; being to able to
build more accurate models would enable more appropriate capital levels being set.

Third, the systemic banking crisis in Ireland and elsewhere in Europe has, in several of these countries,
intensified the use of predictive models for operational management of credit arrears (Matthews, 2011).
In this context, predictive models estimating the probability of a loan experiencing arrears in the near
future are used to drive various decision-making strategies. This probability may depend on borrower
attributes at application, borrower repayment behaviour such as past arrears or loan modifications, the
presence of negative equity (i.e., the value of the property dropping below that of the loan), as well as
regional economic conditions. Given that financial and operational resources are limited for financial
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institutions and regulators, improvements to these models and their estimates could assist in better
segmenting borrowers and targeting scarce resources to where they are needed most in early-prevention
initiatives and active arrears management.

2.2.2 Research question; choice of techniques

Developments in statistical and machine learning approaches to classification (i.e., prediction problems
where the target variable of interest is discrete, e.g. default or no default) have led to a variety of ap-
plications in credit risk. Previous reviews of various modelling approaches and empirical evaluations
have been carried out by Lessmann et al. (2015), Kennedy et al. (2013b), Baesens et al. (2003a), Brown
and Mues (2012), Crook and Bellotti (2009), and Crook et al. (2007). Some of their results suggest that
newer approaches such as ensemble classifiers offer some improvement in predictive ability over logistic
regression which could prove valuable for managing credit risk. However, the suggested performance
boost is not guaranteed; on some datasets, newer techniques may not substantially improve predictive
performance (Hand, 2006). This implies that empirical work is needed to determine if and where this is
the case.

The main research question in this paper therefore is whether these alternative modelling approaches
from the statistical/machine learning literature indeed offer improved predictive performance for mort-
gage credit risk compared to Logistic Regression (LR). LR is chosen as the baseline as it performs rela-
tively well as a classifier in other credit scoring settings, and because of its relative ease of interpretation
and widespread use in the financial services sector.

LR has been found to perform reasonably even in the case of imbalanced classes. While there is not a
great deal of literature on this specific problem, some research suggests this is dependent on the data
structure from the given domain. Owen (2007) found that LR has some drawbacks in the cases of ex-
treme class imbalance. This can occur when the predictor values (X | y=1) are linearly separable from
those for the cases when(X | y=0). In particular, Owen (2007) produced a result indicating when there
is extreme class imbalance, the minority class (i.e., defaulters) only contribute to the logistic regres-
sion estimation through being collapsed to their sample mean vector. This result is built upon by Li
et al. (2019) and they extend this result to penalised regression, which is not sufficient to address this
problem. They suggest a clustering procedure to discover structure in minority class to improve the
predictive performance of the model. Therefore, it is an open question whether LR is affected by class
imbalance for the data considered in this paper.

To answer the question of whether alternative approaches can perform better, a number of alterna-
tive approaches were selected. The modelling approaches included in the empirical comparison are:
semi-parametric Generalised Additive Models (GAMs), Boosted Regression Trees (BRT), and Random
Forests (RF). These approaches each enable a flexible approach to modelling data with a complex struc-
ture (Hastie et al., 2009).

There are several reasons to choose these types of models among alternatives. First, there may be non-
linear effects of predictors on the response variable. For example, using option pricing theory, Das and
Meadows (2013) and Deng et al. (2000) argue that mortgage borrowers may hold an option to default
if their home is in negative equity, i.e., the current loan to value is greater than 100 percent. Empirical
work for various mortgage markets confirms that negative equity is an important predictor for default
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and that loan to value does not have a simple linear relationship with the log odds of defaulting (Haugh-
wout et al., 2008; Foote et al., 2008; Kelly, 2011).1 Similarly, other variables such as loan vintage or
borrower age are sometimes found to be non-linearly related to default risk. In contrast, one of the as-
sumptions underpinning LR is that predictors are assumed to have a linear and monotonic effect. This
may thus not hold in practice. Moreover, categorising or binning continuous variables, in an attempt to
approximate this non-linearity, may result in mis-specification and loss of information. GAMs, BRT and
RF on the other hand can all, to some extent, approximate non-linear functions of continuous predic-
tors. This may allow identification of these effects and, if needed, the introduction of additional terms in
a logistic regression model to approximate them.

Second, although arguably harder to interpret than LR, all three alternative approaches are not simply
black-box models as they provide some degree of model explanation and insight into risk drivers. For
example, GAMs can be assessed through statistical significance tests and spline plots. Variable impor-
tance measures and important interactions can be identified in BRT and RF (Hastie et al., 2009; Elith
et al., 2008; Liu et al., 2009; Caruana et al., 2012). This may reduce the risk of model mis-specification
and help make these models acceptable to practitioners. In addition, their use can potentially lead to
improved predictive performance – i.e., the default predictions produced by these more recent tech-
niques may be more accurate.

In the present application, a third justification for choosing LR, GAMs, BRT and RF is that their train-
ing algorithms tend to scale relatively well with the size of the data. All four techniques can cope with
the large datasets analysed in the study within a reasonable amount of computation time. Although we
experimented with Support Vector Machines (Vapnik, 1998), which have previously been found to be
competitive for credit scoring (Bellotti and Crook, 2009) and bankruptcy prediction (Van Gestel et al.,
2010), we did not include them in the final study due to the weaker scalability of available implementa-
tions.2 The algorithmic complexity involved in solving the general SVM quadratic programming prob-
lem is between O(N2) and O(N3), where N is the number of training observations (Bordes et al., 2005).
The complexity of Radial Basis Function SVMs may even be higher, i.e. between O(dN2) or O(dN3)
(where d is the data dimensionality) (Sreekanth et al., 2010), which proved prohibitive for several of the
training samples used in this study.

2.2.3 Related literature and main contributions

This paper extends the existing credit scoring literature in four main ways. First, it specifically focuses
on mortgages. Detailed accounts of the various modelling approaches to credit scoring are included
in Crook et al. (2007), Crook and Bellotti (2009), Hand (2009b), Martin (2013), and Thomas (2009).
Lo et al. (2010) found Boosted Regression Trees (BRTs) were useful for scoring credit card borrowers.
A comparison study by Bastos (2008) found that BRT performed well compared to Neural Networks
(multilayer perceptrons) and Support Vector Machines on two credit scoring tasks. Feature discovery
as well as predictive performance of Support Vector Machines (SVMs) was assessed by Bellotti and
Crook (2009) in predicting credit card default. They find SVMs competitive and useful in discovering

1Negative equity is of course not the sole reason for default. As noted by Foote et al. (2008) and Van Order (2008),
borrowers may default for a multitude of reasons which also include trigger events such as illness, unemployment, divorce,
or a lack of financial resources to overcome the trigger event.

2Another partial reason for not considering SVMs (or Neural Networks) is that it is challenging to directly interpret
the resulting model, which is considered a drawback in a highly regulated practical setting. However, in the case of SVMs,
Martens et al. (2007) demonstrate that it is possible to extract understandable rules that approximate an SVM classifier.
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features to predict default. Brown and Mues (2012) found that gradient boosted trees and random
forests performed better than 8 other algorithms in the presence of pronounced class imbalance across
5 data sets. Kennedy et al. (2013b) had similar results; both papers did find that Logistic Regression
(LR) performed relatively well, while not being the top classifier.

However, with the exceptions of Kennedy et al. (2013a), Galindo and Tamayo (2000), or Feldman
and Gross (2005), most of the literature concentrates on credit card or personal lending only. This
is somewhat surprising given the importance of mortgage lending as a business line to banks in ad-
vanced economies, but may be due to a lack of publicly available information from credit registers or
third-party data providers in Europe, as well as commercial considerations by financial institutions (see
Section 1.3).

Second, this paper adds to the findings on classifier comparison by making a focused comparison of four
techniques on four portfolios of recently collected real-world data. Specifically, BRT, with the exceptions
of Lessmann et al. (2015), Brown and Mues (2012), and Lo et al. (2010), have received relatively little
attention to date in the credit scoring literature. Although Lo et al. (2010) used BRT to score credit
card borrowers, they did not compare their performance to other classifiers. A comparison by Bastos
(2008) found that BRT performed well compared to Neural Networks (multilayer perceptrons) and Sup-
port Vector Machines on two credit scoring tasks. GAMs were used by Berg (2007) to assess corporate
credit risk, but they do not appear to be applied widely in mortgage credit risk modelling. In addition,
several of the comparative studies of classifiers use datasets that may no longer be representative of the
much larger scale of data available for predictive modelling within today’s retail banks.

Third, the imbalanced nature of the portfolios considered in this paper, i.e., the large difference in the
relative proportion of non-defaulters and defaulters, forms another topic of interest within the credit
scoring literature. The impact that such imbalanced datasets have on the quality of the resulting mod-
els was studied by Kennedy et al. (2013b), Brown and Mues (2012), and Burez and Van den Poel
(2009). Both Kennedy et al. (2013b) and Brown and Mues (2012) found that LR nonetheless holds up
relatively well, along with other classifiers. However, the experiments set up in Brown and Mues (2012)
indicated that BRT and RF started to outperform other classifiers when the level of class imbalance was
further increased in their datasets – none of which were mortgage data. This paper thus contributes to
these findings by applying the selected classifiers to four real-world mortgage datasets with a natural
class imbalance so as to test whether BRT and RF offer a similar performance advantage in this setting.

Fourth and finally, the context for our study is a distressed European mortgage market within a reces-
sionary economic environment, which sets it apart from other studies, as most of the published research
is not informed by the current crisis or is based on the US mortgage market (Haughwout et al., 2008).
Also, our findings may be relevant to financial institutions in other parts of the world that have not
recently experienced severe downturns or housing market crises and thus have limited data available to
fit robust models under such scenarios.

The remainder of this paper is structured in the following manner. The next section describes the spe-
cific modelling techniques or classification algorithms used in the paper. This is followed with a descrip-
tion of the parameter tuning and data. After that, the main results are presented and discussed; the
final section concludes.
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2.3 Statistical and classification models

The aim of each model is to produce a loan-level prediction for a binary variable where Y = 1 signifies
default and Y=0 indicates no default. This prediction is made using n observations of training data
with p predictor variables. Each observation (xi, yi), i = 1, . . . , n, consists of a predictor vector (xi) and
an associated response (yi = 0 or 1). The predictor variables are a mix of continuous and categorical
variables. We define default as 90 days arrears or greater.

This section describes the methods used. Based on the review of the literature contained in Section
2.2.3, BRT and GAMs do not appear to have been widely used in the credit risk literature nor for mort-
gage credit risk prediction. Random Forests are included because they performed well in various ben-
marking studies (Lessmann et al., 2015; Brown and Mues, 2012)

2.3.1 Logistic regression

Logistic Regression (LR) is known as a classifier that performs reasonably well across many application
settings and data types, including credit scoring (Lessmann et al., 2015; Kennedy et al., 2013b; Brown
and Mues, 2012). To avoid the problems associated with stepwise regression, and to make the model
comparison as fair as possible, Regularised Logistic Regression (RLR) is used in this paper, with the fi-
nal model chosen on the basis of the H-measure (see Section 2.5.1).3 This type of logistic regression uses
penalisation to improve the model fit. These penalties can include `1 (the lasso), `2 (ridge regression) or
mixtures of the two (elastic-net) (Friedman et al., 2010). The best-fitting penalisation method is chosen
by cross-validation.

The penalised negative binomial log-likelihood is given by equation 2.1. The β coefficients are chosen
to minimise this objective function. The term on the left of the equation is the negative binomial log-
likelihood. The additional term on the right (λ onwards) penalises the coefficients using two types of
penalty terms, with ||β||1 and ||β||22 denoting the `1 and the squared `2 norms of the β coefficients.4

min
(β0,β)

−

[
1
n

n∑
i=1

yi · (β0 + xTi β)− log(1 + e(β0+xT
i β))

]
+ λ
[
(1− α)1

2 ||β||
2
2 + α||β||1

]
(2.1)

The effect of the ||β||1 term (also known as a lasso penalty) is to perform variable selection when λ
is sufficiently large by setting their coefficients exactly equal to zero. The role of the ||β||22 term (also
known as a ridge penalty) is to shrink coefficients towards zero as λ becomes larger. There are some
drawbacks with the individual penalties. First, a model trained with a ridge penalty only will include
all predictors, even if they are irrelevant, with the degree of coefficient shrinkage increasing with λ.
Second, a lasso-based model may only select one predictor from a group of correlated variables and
ignore the others. As it is usually difficult to determine before a model is estimated which predictors are
truly important, a mixture of both penalties can be useful. The α parameter in equation 2.1 controls
the degree of mixing between the lasso penalty (α=1) and ridge regression (α=0). Both λ and α are
determined by cross-validation based on the training data. The advantages of this approach are that

3We are grateful to one of the reviewers of the published version of this paper for the suggested use of alternatives to
stepwise regression. Note that stepwise regression was also tried, which produced similar performance ranks for LR.

4The coefficient β0 is a scalar and is not typically penalised; β is a vector. This formulation is based on the implemen-
tation in the R package glmnet.
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coefficient shrinkage and variable selection can be carried out simultaneously in a numerically stable
manner through this penalty structure. This may improve predictive performance and avoid some of the
problems with stepwise regression (Derksen and Keselmanl, 1992).

2.3.2 Generalised Additive Models (GAMs)

Generalised Additive Models (GAMs) retain many of the features of LR and are statistically inter-
pretable. They are a useful alternative when the log-odds of default may be a non-linear function of
some of the predictors as their output can be based on a sum of smoothed functions of predictor vari-
ables (Hastie et al., 2009). As the response data are binary, the logistic link function is used in the
GAM. When linear terms and/or categorical variables are included alongside variables that are smooth
terms, like in this application, the resulting model is termed as a semi-parametric GAM. Equation 2.2
shows the model that is estimated. The terms, xj , j = 1, . . . , q, represent variables from the training
dataset that are smoothed, while xj , j = q + 1, . . . , p, are variables assumed to have a linear effect on the
log-odds of defaulting and are fit parametrically and are interpretable as in a LR. This approach retains
a significant degree of interpretability and offers flexibility to incorporate potentially non-linear effects.

logit(P (y = 1|x)) = β0 +
q∑
j=1

sj(xj) +
p∑

j=q+1
βjxj (2.2)

The smooth functions in the GAM, sj(xj), are estimated using penalised regression splines. An individ-
ual smooth term can use cubic splines as a building block.5 This involves individual cubic polynomial
regressions being run for different intervals of a given input variable, the results of which are combined
at certain points (knots) to create a continuous curve or smooth function for that predictor. A penalty
term for each smooth function of the covariates is included in the model. This is to ensure the smooth
functions do not overfit the data. A parameter for each smoothed variable (λ) controls the trade-off
between goodness of fit and smoothness.

Tuning of this smoothing parameter is critical: if the λ values are too high, the data will be over-smoothed;
if they are too low, then the data will be under-smoothed (Wood, 2006). In both cases, the spline esti-
mate will not closely approximate the true function, which will affect predictive performance. A tech-
nique called Generalised Cross Validation (GCV) is used to select the optimal smoothing parameter
value given the data (Wood, 2006). This technique is similar to estimating prediction error based on a
leave-one-out cross-validation estimation but using a more computationally efficient procedure (Wood,
2006).6

2.3.3 Decision tree-based methods

The tree-based models in this paper draw on Classification and Regression Trees (CART) (Breiman
et al., 1984). This is a classification technique based on two central ideas: recursive partitioning and
pruning. Recursive partitioning involves repeatedly splitting or dividing and then sub-dividing the pre-
dictor space into a series of smaller segments that are more homogeneous; i.e., each segment is ideally

5A cubic spline is a piecewise cubic function with continuous first and second derivatives.
6An alternative approach is to use a backfitting algorithm based on a scatterplot smoother or by other variants of

penalised splines. The back-fitting algorithm is described in detail in Hastie et al. (2009).
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composed of observations belonging to a single class. The resulting model assumes the structure of a
tree. In CART, pruning is used to reduce the size of trees based on various measures of predictive error
such as misclassification rate, Gini index, or deviance. This is necessary to avoid fitting every minor
variation in the input data. The overall goal is to have a tree that explains relevant patterns and gener-
alises well to unseen data. However, because CART is recursive, current splits depend on previous splits,
making the resulting model outputs sensitive to small changes in the input data, such as when unseen
data is applied to the model. Two subsequent algorithms – boosted regression trees and random forests
– sought to improve upon CART.

Boosted Regression Trees (BRT)

Boosted regression trees combine tree-based recursive partitioning with the concept of boosting devel-
oped by Freund and Schaipre (1997) and extended with a statistical interpretation by Friedman et al.
(2000), Friedman (2001), and Friedman (2002).7

Because the present application (mortgage default prediction) is a binary classification problem, the
loss function used is binomial deviance. The algorithm used is called stochastic gradient boosting and
is based on Friedman (2001) and Friedman (2002).8 After initialisation, the algorithm minimises this
loss function in each step by the stage-wise addition of a new tree that leads to the best reduction in
the loss function, given the chosen tree size.

The procedure starts by choosing initial values such as the log odds of default based on the training
data. A random sample of observations is drawn without replacement, and the difference between the
response and the starting value is calculated. These are known as the vector of negative gradients.9

Based on this data, a tree is constructed by choosing the variables and split points giving the maximum
reduction in the loss function at this step. The algorithm updates by first calculating the predicted
probability of defaulting based on the current tree and the random subset of data. These are then
added to the existing fitted values up to that step and subtracted from the response to obtain a new
set of negative gradients. A new random sample of observations is drawn from these and a new tree fit.
This proceeds until the material improvement in the overall model fit is less than some small tolerance.
Each time a tree is added to the model, its contribution is multiplied by a parameter termed the learn-
ing rate. The effect is to limit or shrink the contribution of any one tree to the overall model prediction.
A final BRT model is the sum of several hundreds or thousands of trees multiplied by the learning rate.

Boosting has not been without its critics. In particular, Mease and Wyner (2008) have been critical
regarding the reasons for the algorithm’s resistance to overfitting and the way it has been interpreted in
the statistical literature.

7These papers interpreted the algorithm in a likelihood framework and developed boosted logistic and other regression-
based approaches. The papers also led to additions of shrinkage and bagging to the algorithm. Shrinkage refers to limiting
the contribution of each sub-component of the model, through taking small increments in each forward stage-wise itera-
tion. Bagging refers to only a random subset of data being used in each iteration. This random sampling is thought to
reduce the variance, and thus improve predictive performance of the final model. A comprehensive overview of boosting is
given in Hastie et al. (2009) and Bühlmann and Hothorn (2007).

8This section draws on the descriptions given in Elith et al. (2008), Berk (2008), Hastie et al. (2009), and Ridgeway
(2013)

9The components of the negative gradient vector are sometimes referred to as pseudo-residuals, see Hastie et al. (2009),
page 360-61, or Berk (2008), page 270. The use of a random subset of the data, known as the bag fraction, to construct a
tree at each iteration in the algorithm has been found to improve predictive ability (Friedman, 2002).
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Random Forests (RF)

Random Forests (RF) are another tree-ensemble classifier developed by Breiman (2001). There are
three important differences between RF and the tree-based approaches outlined earlier. The first differ-
ence between RF and CART is that in a RF many trees are grown based on bootstrapped sub-samples
of the training data. The second difference is that each time a split variable is chosen within an individ-
ual tree in a RF, the algorithm only chooses from a small random subset of predictors of size mtry. This
is in contrast to CART or BRT where all of the predictors are evaluated to produce the best split. This
process is repeated over many trees to create a ‘forest’ or ensemble of trees the predictions of which are
averaged to produce an output. Randomly selecting a subset of predictors rather than trying all has
the effect of reducing correlation among the trees in the random forest. Averaging predictions over all
trees in the forest reduces variance, resulting in improved predictive ability compared to CART. A third
difference is that random forests can be grown in parallel, as each tree can be grown independently,
whereas the BRT algorithm proceeds sequentially depending on the output from the previous iteration.
Random forests have been applied to a variety of domains such as bioinformatics, image recognition,
as well as in financial applications such as customer attrition and credit scoring (Lessmann et al., 2015;
Kruppa et al., 2013; Malley et al., 2012).

2.4 Model building and data sets

This section specifies how the various models were estimated and tuned, as well as describing the datasets.

2.4.1 Parameter settings and tuning

The penalised LR models include the main effects and pairwise interactions between predictors. The
models are estimated using the R packages glmnet and caret (Friedman et al., 2010; Kuhn, 2008). The
performance criterion for selecting the final model is the H-measure (to be further discussed in Section
2.5.1). The grid search considered a value range for the parameter α from 0 to 1, in 0.1 increments, and
for λ, a sequence of 20 values from 0.005 to 1. The best combination was chosen using 10-fold cross-
validation.

The semi-parametric GAM models are estimated using the R package mgcv (Wood, 2013). The degree
of smoothing of the spline functions is chosen by Generalised Cross Validation (GCV).

Two parameters are key for BRT tuning. The learning rate (lr) or shrinkage parameter determines
the contribution of each tree. A lower learning rate means that each tree has a lower weight in the
final model. Tree complexity (tc) determines the degree of interaction between predictor variables. For
example, a tc of 1 fits an additive model (each tree having a root and two leaves); a tc of 2 fits a model
with up to two-way interactions. This paper uses the R package gbm and a modified version of the code
from Elith et al. (2008). A grid search over these two parameters, i.e. learning rate [0.01, 0.005, 0.0025,
0.001], tree complexity [2-6], and a third parameter, bag fraction [0.5, 0.625, 0.75], was conducted to
find the combination with the highest H-measure on the validation data. The number of trees (nt) is
determined automatically by the function gbm.step using 10-fold cross-validation, for a given learning
rate and tree complexity.

Finally, when tuning the RF, the number of predictors from which to select at each split (the mtry
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parameter) was varied over the range [1-4, 6, 8]. The number of trees in the forest was fixed at 1000.
The version of the algorithm used here is based on Breiman (2001) and implemented in the R package
randomforest (Liaw and Wiener, 2002).

Initial results suggested that the class imbalance was affecting RF performance for some of the port-
folios. Therefore, undersampling of non-arrears cases was carried out by taking balanced bootstrap
samples from the original data. For example, if there were 1000 default cases in the training data, each
time a tree is induced, this would be done on a different bootstrap sample containing all 1000 default
cases and a random selection of 1000 non-default cases. This methodology is outlined in Breiman et al.
(2004) and Kuhn and Johnson (2013). Compared to conventional undersampling, it has the advantage
of making better use of all available training data, by not eliminating some majority class observations
altogether but drawing a different sample at each step of the algorithm. The best parameter values
are determined through 10-fold cross-validation using the R package caret; the optimal model is again
selected based on the H-measure.

2.4.2 Data sets

This section describes the data collected by the Central Bank of Ireland on which our analysis was
conducted. The data are composed of four separate portfolios of owner-occupier mortgage loans of
Irish lenders. The sample represented 55 percent of the Republic of Ireland’s mortgage market as of
December 2010. For predictive modelling purposes, only those loans that were not yet in default at the
observation point of December 2010 were retained; the target variable of interest is whether those loans
moved to default status by December 2011. The predictor variables (i.e. the potential inputs to each
model) are all measured either at December 2010 or prior to that.

The results presented in this paper are based on a combined training, validation, and test sample of
322,915 cases across the four portfolios.10 The minimum training set size is over 31,000 and the max-
imum is just under 50,000 observations. The minimum test set size is approximately 18,000, the max-
imum just over 28,000. The proportion of default outcomes in the training data ranged from 3 to 9
percent.11

Split-sample setup

The data for each portfolio was divided randomly into training, validation, and test set, with a 50/20/30
split. The class distribution in the training, validation and test data was preserved to match the im-
balance observed in each portfolio. The models are estimated or trained on the training data, where
necessary tuned on the validation data, and performance is assessed using the test data. LR and GAMs
are trained on a combined training plus validation sample as they do not require a separate validation
sample for tuning. In the case of BRT and RF, only the training data are used for model fitting whilst
the validation set is used to tune further the parameters and select the best performing model.

10Because of confidentiality restrictions, details for individual portfolios cannot be given.
11The training and test set sizes and class distribution is given for all portfolios and not for individual portfolios to

preserve data confidentiality.
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Data description

The dataset variables are described in Table 2.1.12 The selected observations each relate to the main
loan associated with a given property serving as collateral. The dependent variable is a binary variable
defined as the equivalent of a borrower being 90 days past due or more (e.g. by missing three consecu-
tive monthly payments) on their mortgage at some point over the outcome window. This is a standard
measure of default used in capital requirement regulations in Ireland.

Table 2.1: Description of variables

Variable Description Type
Default Dependent variable: 1 if borrower is reported at least 90 days past

due on monthly instalments over the period Jan 2011 - Dec 2011; 0
otherwise

Categorical

Repayment to income Monthly instalment amount in Dec 2010 over annual borrower in-
come at origination in percent

Continuous

Loan to income Ratio of origination loan balance over annual borrower income at
origination

Continuous

Loan age Time since origination in years (Dec 2010) Continuous
Current LTV Indexed loan-to-value (Dec 2010) in percent Continuous
Number of loans Number of loans (including current loan) registered against primary

residence collateral
Continuous

Unemployment change 12-month change in NUTS 3 regional unemployment rates from Dec
2009 to Dec 2010

Continuous

Current interest rate Mortgage interest rate in Dec 2010 in percent Continuous
Interest rate type Interest rate type: fixed, standard variable, or tracker Categorical
Loan purpose Mover, first-time buyer, or equity release switcher Categorical
Property type House type: detached, semi-detached, terraced, apartment/flat Categorical
Borrower location Borrower location at origination (8 NUTS 3 levels) Categorical
Borrower gender Borrower gender at origination Categorical
Borrower marital status Borrower marital status at origination: single, married, di-

vorced/separated/widowed
Categorical

Number of borrowers Number of borrowers servicing the mortgage: single or joint Categorical
Modification status Borrower received loan modification over Dec 2009 - Dec 2010: yes

or no
Categorical

Recent default Borrower was 90 days in arrears in Dec 2009 (i.e., one year prior to
the observation point): yes or no

Categorical

Early arrears Borrower has a material positive arrears balance of less than 30 days
in Dec 2010: yes or no

Categorical

Bubble origination Loan originated during 2004-2009: yes or no Categorical

The predictor variables are a mix of continuous and categorical data and include a range of application
and behavioural information. The updated loan-to-value ratio for December 2010 (variable Current
LTV) is calculated by dividing the loan balance at that time by the indexed market value of the prop-
erty (i.e., applying the December 2010 index to the original property value).13

Early arrears is a binary variable indicating whether the borrower had a non-zero arrears balance that
was greater than 10 percent of but less than one month’s full mortgage instalment in December 2010.14

Due to data limitations, this variable is not available for Portfolio 3. Past arrears status (variable Re-
12For a more detailed description of a larger dataset from which these data were drawn, we refer the reader to Kennedy

and McIndoe-Calder (2012).
13The house price index used to estimate market values in December 2010 is composed of Dublin and Non-Dublin

property prices as well as house or apartment property types.
14The rationale for a floor of 10 percent of a one-month payment is to exclude borrowers that have a very small arrears

amount, as this may be due to the loan nearly curing or technical reasons such as an incorrect standing order.
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cent Default) may indicate that some borrowers could be at higher risk of defaulting in future. Finally,
borrowers may have previously received a loan modification from their bank. This can occur while re-
maining current or after entering arrears and may be part of short-term forbearance.

There are some limitations to the data used in this study. First, some borrower-specific features are
observed at origination (marital status, income) but not subsequently updated. Individual borrow-
ers’ personal and economic circumstances in December 2010 are likely to be important for prediction
but remain unobserved after origination. Economic conditions such as the unemployment rate of the
geographical region in which the borrower is located can only approximate the individual borrower’s
economic circumstances.

Second, additional unobserved features of borrower behaviour may also be relevant for default predic-
tion. For example, borrowers could use the information advantage concerning their own economic and
life circumstances that they have compared to their bank. They may be able to conceal their true abil-
ity to repay and default strategically (Das, 2012). These features are never observed and cannot be
approximated using the data available for this study. Therefore, while the literature suggests several
types of potential predictors of default, the predictors in this empirical study cannot be expected to
explain all the idiosyncratic causes of default.

Third, after being checked for outliers and other errors, the data included missing values. Four categori-
cal variables had missing values: property type, borrower’s marital status and gender, and loan interest
rate type. The percentage of cases with missing values for these variables ranged from 0-24% across the
four portfolios. These were recoded as unknown rather than excluding the observation. The reason for
this is that the alternative of imputation is a difficult problem which imposes a structure on the data,
and if mis-specified, may itself lead to bias (Horton and Kleinman, 2007). Apart from these categor-
ical variables, income at origination also contained some missing values with the percentage of cases
with missing values for these variables ranged from 0-27% across the four portfolios. This is because of
two reasons. A first cause were general data quality problems relating to banks inconsistently record-
ing application information including income. Second, in some cases where a mortgage was topped up,
extended, or refinanced, the institutions reported only the latest value for these income-related vari-
ables, as collected at the point of origination of those subsequent loans; the relevant values at the point
of origination of the main mortgage were thus lost. Rather than proceeding by case-wise deletion or
mean/median imputation, and thus potentially biasing the sample by excluding these cases, we imputed
missing values using the k-Nearest Neighbour (kNN) algorithm.15 A value of 50 for the number of near-
est neighbours (k) was chosen for the imputation.16

15Replicating the same analysis on a smaller dataset following case-wise deletion gave results similar to those discussed
in the remainder of this paper. The statistical performance tests showed BRT outperforming LR at a 5-percent signifi-
cance level. The results for this robustness check are shown in Appendix 2.

16This was derived through empirical testing on two of the portfolios that either had no missing income or a very low
number of missing income observations. After random deletion of a proportion of non-missing values in those datasets,
using 50 nearest neighbours (k=50) in the imputation procedure led to the lowest estimation error for the income variable.
Inclusion of a binary missing value indicator for income did not turn out to be a significant predictor of future default
status.
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2.5 Performance measures and statistical comparison

2.5.1 Model performance metrics

A commonly used measure for assessing the performance of a score-based classifier is the Area Under
the Curve (AUC). This refers to the area under the Receiver Operating Characteristic (ROC) curve,
which is a pairwise plot of the true positive rate against the false positive rate, as the classification
threshold is varied over its entire range.17 An AUC value closer to 1 suggests better discrimination abil-
ity between defaults and non-defaults; a value of 0.5 implies that the classifier performs no better than
chance. Using the AUC as a performance measure is standard practice in credit scoring but not without
its problems. Hand (2009a) argued that, when interpreted in terms of costs, the AUC measure treats
the relative severities of misclassifications differently when multiple classifiers with different respective
score distributions are compared, implying that the AUC is intrinsically incoherent.18

As a coherent alternative to the AUC, Hand (2009a) therefore proposed the H-measure. The advantage
of using the H-measure as a classification performance measure is that it allows one to specify a distri-
bution of likely misclassification costs (c) that is independent of the classifier; this choice is discussed
in detail by Adams et al. (2012). Because of the class imbalance between defaulters and non-defaulters,
this paper uses the default setting suggested there (corresponding to a Beta distribution with its mode
set at c = π1, i.e. the proportion of defaults in the dataset). This means that the reported H-measures
put relatively greater weight on correctly classifying default cases than on incorrectly classifying non-
default cases. As with the AUC, a higher H-measure is associated with better performance.

In this paper, unless otherwise stated, model comparisons are carried out using the H-measure. The
AUC is nonetheless included as it is still widely used in practice. Where classifiers are compared based
on the AUC, model selection/tuning for LR, BRT and RF has been done on the AUC instead.

2.5.2 Statistical comparison of performance differences

Statistical tests can indicate whether there is a significant difference between how well different classi-
fiers perform over a set of available datasets. Friedman’s test (Friedman, 1940) can be used to compare
the various models based on their performance rankings for a chosen performance metric such as the
H-measure (Demsar, 2006). The test statistic is χ2 distributed with k − 1 degrees of freedom, where
k is the number of classifiers. Its null hypothesis is that there is no difference between the classifiers’
performance ranks. A less conservative variant of the Friedman statistic, also reported in this paper, is
the Iman-Davenport test (Iman and Davenport, 1980).

In the event that there are significant differences according to either of these tests, various post-hoc
tests can be used to compare pairs of individual classifiers. These tests adjust p-values to control for
error propagation in multiple pairwise comparisons. Comparing the best-performing classifier with every
other classifier requires the use of a particular approach which accounts for this family-wise error using
what is known as Holm’s procedure (Holm, 1979; Garcia and Herrera, 2008).

Holm’s procedure starts by evaluating the performance rank differences between the best performer and
17In this application, the true positive rate, also known as the sensitivity, is the fraction of defaulters that are cor-

rectly classified using a given threshold value (i.e. having a score greater than the threshold). The false positive rate
(1-specificity) is the fraction of non-defaulters classified incorrectly as defaulters, using the same threshold value.

18This point is debated by Flach et al. (2011).
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each other model and, for each such pair, calculates the test statistic outlined in Garcia and Herrera
(2008); each of these values is then compared against a normal distribution table to produce a signifi-
cance value (p-value). Next, the procedure sorts these p-values in ascending order, comparing each pi in
the resulting sequence, p1, ..., pk−1, with an adjusted p-value, α

k−i , where α is the required significance
level. If pi is less than the adjusted p-value, the relevant null hypothesis is rejected, in which case the
corresponding model is considered significantly worse than the best performer. This proceeds until a
null hypothesis cannot be rejected; any remaining performance differences can thus be ignored. The
Java code by Garcia and Herrera (2008) is used to calculate the Friedman, Iman-Davenport statistics,
and Holm’s post-hoc tests.

2.6 Results and discussion

2.6.1 Results

The model performance results for the H-measure and AUC (both of which measured on an indepen-
dent test set) are shown in Table 2.2. The results vary across portfolios and by classifier. In the upper-
half of the table, the four classifiers can be ranked from 1 (best) to 4 (worst) on each portfolio, based on
their H-measures; the resulting average ranks over the four portfolios are put in the rightmost column.
BRT thus receive the highest average performance ranking of 1.25 (underlined in Table 2.2), followed
by GAMs (2.25), RF (2.75), and, ranked lowest, LR (3.75). The null hypothesis that there are no dif-
ferences in average rank between classifiers is rejected by both the Friedman (at the 10 % level) and
Iman-Davenport tests (5% level) reported in Table 2.3.

Table 2.2: Performance summary of classifiers
Technique Port 1 Port 2 Port 3 Port 4 Avg. Rank
H-measure

LR 0.2302 0.2344 0.2825 0.2776 3.75
GAM 0.2579 0.2591 0.2928 0.2824 2.25
BRT 0.2776 0.2626 0.2909 0.2948 1.25
RF 0.2719 0.2411 0.2800 0.2854 2.75

AUC
LR 0.7448 0.7466 0.7700 0.7737 4.0

GAM 0.7653 0.7617 0.7768 0.7816 2.0
BRT 0.7806 0.7630 0.7759 0.7878 1.25
RF 0.7781 0.7527 0.7701 0.7814 2.75

Table 2.3: Statistical comparison of classifiers using H-measures

Test statistic Value p-value
Friedman 7.8 0.0503

Iman-Davenport 5.6 0.0194

Next, the best-performing technique, BRT, is compared with the three other classifiers. As shown in
Table 2.4, the results from the post-hoc procedure indicate that, only BRT and LR differ significantly
(at the 5% level), whereas the other null hypotheses cannot be rejected, at either the 5% or 10% level.
On the basis of these results, it can be concluded that BRT perform significantly better than LR, but
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that no statistically significant difference in performance is evident between BRT and the other two
classifiers, GAMs and RF.

Table 2.4: Holm’s step down procedure for H-measure ranks; α = 0.05 and α = 0.1 (BRT is control
classifier)

Classifier z = (R0 −Ri)/SE pi Holm’s adjusted p-value
5 % significance

LR 2.7386 0.0062 0.0166
RF 1.6432 0.1003 0.025

GAM 1.0954 0.2733 0.05
10 % significance

LR 2.7386 0.0062 0.0333
RF 1.6432 0.1003 0.05

GAM 1.0954 0.2733 0.1

The results are generally unchanged if the models/algorithms are tuned and compared using the AUC.
The performance ranks according to the AUC (displayed in the lower-half of Table 2.2) are very similar
to those observed for the H-measure. The results of the corresponding statistical tests show that BRT
are again significantly better than LR, whereas no significant difference between BRT and GAMs or RF
is found (see Tables A.2 and A.3 in Appendix A).

The classifiers used in this chapter are scoring classifiers that produce a rank ordering of cases based
on their likelihood of being greater than 90 day arrears in 12 months. If these predictive models were
to be used in implementing various actions such as differing types of borrower contact (letters, calls,
meetings) to changing the type of restructure or taking legal action, then how well their probabilities
are calibrated becomes important. This is because the cost of potential actions and the decision to carry
them out are different across actions (So et al., 2020). While a detailed analysis of this topic is outside
the scope of this thesis, it is relevant to consider how well the estimated class probabilities match the
empirical default rates in the test sets.

One intuitive method to do so is through a calibration plot. These plots have been used in bioinfor-
matics and in credit risk (Malley et al., 2012; Medema et al., 2009). They plot the class probability
produced by the model (x-axis) against a non-parametric regression of the empirical proportion of de-
faulters with the same predicted probability (y-axis). The intuition is that if the smoothed curve runs
along the 45-degree axis, a model is perfectly calibrated; either side of this and it is either under- or
over-predicting default rates.

To construct the plots, a non-parametric loess regression of actual outcomes against predicted values
was used.19 Two sets of representative plots are shown for portfolios 1 and 4, in Figure 2.1 and Figure
2.2, respectively. For each of these portfolios, the figures show that the models are, for the most part,
reasonably well calibrated, except at the less densely populated highest-risk segments on the right-hand
side of each figure. Elsewhere the fitted loess curve (solid line) generally does not depart much from
the 45-degree reference line (dashed line), for most of the models. The plots for the RF models however
suggest that they are not as well calibrated as some of the other models, despite the class probabilities

19The optimal bandwidth for the smoothing window was chosen using the AIC and the polynomial is of degree 1. This
is based on the AIC method outlined in Hurvich et al. (1998).
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Figure 2.1: Calibration plots: portfolio 1

having been rescaled to reflect the original class priors.20 In both portfolios 1 and 4, RF appear to
underestimate default outcomes over a wider prediction range than the other models. The other three
models also exhibit some minor divergences from the reference diagonal at lower levels, but the larger
divergences are for predicted probabilities of default from 0.4 upwards: for those, in contrast to RF,
predictions over-estimate rather than under-estimate the actual default risk.

In summary, this visual inspection suggests that, for the most part, the majority of the approaches
produce reasonable class probability estimates, but that further work on calibration for high predicted
class probabilities would be beneficial before these models could be used in practice.

2.6.2 Discussion

Overall, the results indicate that BRT significantly outperformed the conventional method, LR. That
said, there was no uniform winner amongst the newer approaches, BRT, GAMs, and RF. While there
appears to be particular promise in the BRT and GAM approaches based on our results, the extent of
the performance improvement varies across portfolios.

When trying to relate these findings to the existing credit scoring literature, a direct comparison is less
straightforward as that literature has tended to concentrate more on unsecured consumer credit (credit
cards, personal loans) than on secured lending products such as residential mortgage loans. However, we
can make several observations. First, the reasonably good predictive performance of the BRT algorithm,
even with a very pronounced class imbalance, is in line with the findings of Brown and Mues (2012), Bu-
rez and Van den Poel (2009), and Bastos (2008). Second, unlike in Brown and Mues (2012), Lessmann

20Note that the probabilities are rescaled using a method outlined in Elkan (2001) as they were produced using an
undersampled RF.
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Figure 2.2: Calibration plots: portfolio 4

et al. (2015), and Burez and Van den Poel (2009), RF have a lower average ranking compared to BRT
over the four loan portfolios (although the difference is not statistically significant).

We suggest that BRT performed very well in this context thanks to their ability to select important
predictors and model higher-order interactions through the tree complexity parameter. BRT identified
a small group of important predictors alongside a larger group of relatively less importance. This can
be seen in Figures 2.3 and 2.4, where 4-5 features (early arrears, repayment to income, loan to income,
current LTV, and, in portfolio 2, recent default) account for a substantial portion of the variable im-
portance in the BRT for portfolios 1 and 2.21 In portfolios 3 and 4, a single predictor (early arrears)
provides most of the predictive power. Second, higher tree complexity can be thought of as modelling
higher-order interaction effects than the two-way terms included in our penalised logistic regression
models (Hastie et al., 2009); this may also partially explain the observed predictive performance differ-
ence between BRT and LR.

The observation that much of the predictive power of the models is down to a relatively small subset
of dominant predictors could partially explain why RF did not perform better. They have been shown
to perform especially well on high-dimensional data (Breiman, 2001), in which there may be a large
number of variables that each can contribute to the model predictions. With a small number of strong
predictors, there is the risk that those may often end up being overlooked by the random selection of
mtry variables considered at each tree split, particularly if mtry is set to a small value. Furthermore,
because of the imbalanced nature of the data, RF also required the introduction of undersampling into
the algorithm (Breiman et al., 2004), which may have been a further factor.

21For BRT, this measure is based on the number of times a variable is selected for splitting, weighted by the squared
reduction in deviance averaged over all the trees in the model.
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As past/recent delinquency is usually a powerful predictor in any behavioural scoring system, the fact
that this variable has a strong but varying influence in all of the portfolios is not surprising. It is inter-
esting to see that, while current LTV ratios, repayment ratios, and loan to income multiples at origina-
tion are important in BRT, their relative importance ranking differs across the portfolios. This suggests
that, even with a relatively homogenous mortgage product in the same geographical market, each of
the portfolios still benefits from a custom-built default prediction model that makes different use of
available characteristics.

Semi-parametric GAMs performed almost as well as BRT in terms of H-measure performance. Unlike
BRT, they required minimal tuning. Another attractive feature of GAMs, which has likely contributed
to their performance, is their ability to handle situations where some of the continuous predictors may
have a non-linear effect on the response. For example, a series of plots showing how smooth terms vary
with a selection of predictors are included in Figure 2.5, for portfolio 4. They indicate that, keeping all
other predictors fixed, higher current LTV or loan to income, and lower loan age, tend to increase the
log odds of default, but not linearly. Also, near the lower end of its value range, a smaller repayment-to-
income ratio could actually be associated with higher log odds of default; this may be due to modifica-
tion/forbearance policies which reduce monthly repayments for borrowers in difficulty. Clearly, with a
linear classifier, one would struggle correctly specifying such non-linearities.

Note that in the results presented here, no interactions have been included in the GAM specification.
Extending the GAM-based approaches to include interactions identified by BRT could help reduce
the search space for important interactions. It is possible to go one step further and use GAMs as the
base classifier in ensembles, combined with various ways of augmenting the input data such as bagging
(DeBock et al., 2010) and boosting (Caruana et al., 2012).

The portfolios all exhibited class imbalance. In the empirical experiments, this did not affect most clas-
sifiers. However, as noted earlier in sub-section 2.4.1, the class imbalance was affecting RF performance
for one portfolio (portfolio 3). This required under-sampling for this portfolio. Note this would not have
altered the conclusions of the statistical tests as this was the lowest ranked under the H-measure; for
the AUC, this would change the slightly the t-statistic and p-values by the not its significance.

2.7 Conclusions and future research

This paper compared four techniques for the purpose of predicting mortgage defaults. Two of these tech-
niques have their roots in the machine learning: Boosted Regression Trees (BRT) and Random Forests
(RF). The other two are statistical models: penalised Logistic Regression (LR) and semi-parametric
Generalised Additive Models (GAMs). The predictive performance of these approaches was assessed
using the H-measure and performance differences on four large real-life datasets were evaluated using an
appropriate statistical testing procedure.

The results of the empirical study showed that BRT performed significantly better than LR. Although
BRT and GAMs were first and second in the overall ranking, there were no statistically significant dif-
ferences between BRT and GAMs or RF. The ability of BRT and RF to capture variable interactions
and the handling of non-linear effects in a GAM may have contributed to their performance in this
setting. The study thus suggests that the tree-based methods and semi-parametric GAMs could be
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Figure 2.3: BRT variable importance plot: portfolios 1 and 2
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Figure 2.4: BRT variable importance plot: portfolios 3 and 4
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Figure 2.5: GAM estimated smooth functions for portfolio 4

more widely used in credit risk applications, particularly in exploratory modelling where it is not known
ex-ante which predictors are important. Even if the end product is not a BRT model or GAM, these
models may help to identify suitable interaction or non-linear terms to add to more conventional logistic
regression models. This may be particularly relevant if linear classifiers such as logistic regression are
still preferred for business or regulatory reasons. While the overall differences in performance between
some of the methods may appear small, even small improvements may mean significant revenue savings
depending on the application Baesens et al. (2003a).

The practical relevance of these results for a bank are GAMS or BRTs could be incorporated into a
collections system such as that outlined in So et al. (2020); for a regulator they can help identify arrears
cases with a high likelihood of being in arrears and the factors associated with them. This could be
useful in off-site and on-site supervision.

Care should be taken when generalising these findings to other jurisdictions or other types of (unse-
cured) lending, as the context and drivers of arrears and default are likely to be different. Furthermore,
the models in this paper are based on data observed during a time of severe economic distress, during
which the distribution of good and bad borrowers may have shifted (Hand, 2006). It is also unclear, due
to data limitations, whether changes in borrower behaviour and financial sector policies such as forbear-
ance have had an impact on arrears incidence. Therefore, it is up to practitioners to test empirically
whether these techniques produce similar results for their particular portfolios.

Several directions for future research could be considered. First, boosting could be carried out on the
semi-parametric GAM to see if this produces further performance gains (Bühlmann and Hothorn, 2007;
Tutz and Binder, 2008). Second, using a different type of GAM may offer alternative ways to handle
class imbalance (Calabrese and Osmetti, 2013).
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A third extension could be to consider the use of misclassification costs for ensemble-based approaches.
This may be important in applications where the costs of misclassifying arrears cases vary between the
two types of errors, i.e. false positives and false negatives. For example, arrears management teams or
regulatory authorities may view the costs of incorrectly classifying an arrears case as a non-arrears case
as higher than the converse. Incorporating this into a boosting algorithm in a manner similar to Berk
and Kriegler (2010) may lead to improved performance.

Finally, exploring how to model population drift and how that may affect model performance would
also be an interesting area of research (Krempl and Hofer, 2011). More practically, testing over various
prediction horizons (18, 24 months) and perhaps fitting models to a longer time span than the one used
in this study would be beneficial before deployment either within financial institutions or by regulatory
authorities.
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Chapter 3

Do lenders prosper? Assessing
returns in peer-to-peer (P2P)
lending using machine learning

3.1 Abstract

Successful Peer-to-Peer (P2P) lending requires an evaluation of loan profitability from a large universe
of loans. Predictions of loan profitability may be useful to rank potential investments. In this paper, we
investigate whether various types of prediction methods and the types of information contained in loan
listing features matter for profitable investment. A range of methods and performance metrics are used
to benchmark predictive performance, based on a large dataset of P2P loans issued on Lending Club.
Robust linear mixed models are used to investigate performance differences between models, according
to whether they assume linearity, whether they build ensembles, and which types of predictors they use.
The main findings are that: linear methods perform surprisingly well on several (but not all) criteria;
whether ensemble methods perform better than individual methods is measure dependent; the use of
alternative text-based information does not improve profit scoring outcomes.

Keywords: risk analysis, investment analysis,P2P lending, predictive modelling, ensemble learning

3.2 Introduction

Peer-to-Peer (P2P) lending is a type of crowdfunding in which an online platform enables borrowers
to obtain credit from a large number of individual lenders. Unlike other types of crowdfunding, which
may be for altruistic motives, in P2P lending the lender has a financial return motive. The growth
in this type of lending has been spurred by technological advances, changing consumer habits, higher
costs of and lower access to bank finance for borrowers, and lower returns for investors from traditional
investments (Vallee and Zeng, 2018). At present, the two largest P2P platforms in the US, Prosper and
Lending Club, together lent over $42 billion by the end of 2017. In the Asia-Pacific region including
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China, lending by alternative finance providers (including P2P lenders) amounted to e221 billion at the
end of 2016; in Europe, the total amount lent was just under e7.6 billion by end 2016.1 In this paper,
data from the Lending Club (LC) platform is used, as it is one of the largest P2P lenders currently
operating in the US.

Similarly to traditional retail credit scoring, P2P loan platforms screen potential borrowers against
their own acceptance criteria. For example, borrower identity verification, a minimum credit bureau
score, and other criteria may need to be met. After acceptance, borrowers are scored and allocated to
a certain grade, based on their characteristics, the requested loan amount, and their credit history. The
loan is then listed on the platform. At this point, the decision whether to lend lies with the investors,
as do the associated return and credit risk – if the borrower defaults on their payment obligations, the
investor takes a loss. This is in contrast to bank lending, where once a borrower is accepted, credit is
advanced by the bank and it is the bank itself that bears the risk and makes the return. To make this
investment decision, P2P investors must weigh the importance of various attributes in determining
whether a loan may present a profitable investment. However, it is not feasible for an investor to manu-
ally assess the large volume of listings. Nonetheless, the potential gains of a systematic assessment could
be significant as, in recent years, realised returns for this type of investment are comparable to those
earned on high-yield bond portfolios.

This prospect has attracted various types of investors. In the early years of P2P investments, they
mostly consisted of retail investors funding individual loans. In recent years, institutional investors
have become important in this market as well.2 For some platforms, recent research has suggested that
active or “loan-picking” strategies may yield more than passive institutional strategies (Balyuk and
Davydenko, 2018). Therefore, an algorithmic approach that can produce loan-level predictions of (risk-
adjusted) loan returns could be useful to rank potential investments. A comprehensive assessment is
both timely and relevant because there are a wide range of prediction models and algorithms to choose
from, various types of predictors, and different experimental settings to judge the effectiveness of such
methods. The main goal of this paper is to provide this assessment.

In so doing, the paper makes three main contributions. First, we contribute to the emerging P2P liter-
ature (Vallee and Zeng, 2018; Jagtiani and Lemieux, 2018) and profit-scoring literature (Garrido et al.,
2018; Verbraken et al., 2014), by assessing whether a profit-scoring approach is more useful to investors
than one solely focused on avoiding default. We examine three differing alternative performance metrics
from classification, ranking, and regression. This may help investors assess a suitable approach for loan
selection.

Second, we contribute to the empirical assessment literature of machine learning models through us-
ing a variety of performance measures and a specific experimental framework to compare profit scoring
methods. Given the relative success of non-linear and ensemble prediction methods in other application
settings, we augment the standard testing framework to test the importance of these factors for perfor-
mance. This broadens the literature to include factors associated with the variability of performance
across methods, rather than solely identifying differences using the standard methods of omnibus tests
for differences across methods.

1Based on Lending Club and Prosper website data, SEC filings, and Ziegler et al. (2018).
2On the Prosper platform, over 90% of loans were provided through institutional channels (Balyuk and Davydenko,

2018)
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Third, we investigate whether alternative text-based information provided along with the loan listing
has predictive value in this setting. This adds to the emerging research area of the use of alternative
data for scoring in this alternative form of financial intermediation. If additional sources of information
have predictive content, then it may provide more profitable investment opportunities.

The paper is organised as follows. The next section reviews related work and formulates the research
questions. Sections 3 and 4 describe the data and methods, respectively. Section 5 then outlines the ex-
perimental design. The results of the experiments are reported in Section 6. Section 7 provides further
discussion and elaborates on some of the robustness checks carried out. Section 8 concludes.

3.3 Related work and research questions

Against the backdrop of an evolving P2P lending market, a body of literature on P2P loan profit scor-
ing is emerging. This work cuts across two different research communities – the Operations Research
(OR) community, which tends to focus on P2P loan scoring methods, and finance, which studies the
specific properties of this new form of financial intermediation and its implications for risk and profit.

A first perspective in the OR literature on credit scoring for P2P lending is provided by Malekipirbazari
and Aksakalli (2015); Emekter et al. (2014). Using the Random Forests algorithm, Malekipirbazari and
Aksakalli (2015) find that credit history variables and score/grade application information are the most
important determinants for Lending Club (LC) loans that default. The paper by Emekter et al. (2014)
uses a logistic and a Cox proportional hazards model to investigate determinants of default. They find
that credit grade, the borrower’s debt-to-income ratio, FICO credit score band, and revolving credit
utilisation rate are significant predictors of default.

Although default risk is indeed a concern for investors, they are primarily interested in identifying high-
return loans, i.e. those loans that present a good trade-off between default risk and interest returns.
Hence, a profit scoring perspective may be more appealing to them. In the P2P context, loan selection
based on estimated profitability is particularly important, since a P2P investor, unlike a traditional
bank, cannot benefit from the risk diversification of taking on large portfolios of loans and, on most
platforms, they cannot set risk-adjusted prices.

The current P2P literature on profit scoring methods, however, is limited. Both Serrano-Cinca and
Gutiérrez-Nieto (2016) and Guo et al. (2016) find that various profit scoring approaches are useful to
generate returns for investors. They considered a limited selection of regression and non-parametric
methods such as CART, logistic and kernel-based regressions, respectively. These are valid approaches.
However, other methods such as deep learning (Kim et al., 2019; Sirignano et al., 2016) and ensemble
methods such as random forests (which build not just one model but combine multiple estimates) have
been found to be competitive in various related tasks. These include profit scoring applications (Ver-
braken et al., 2014), credit scoring (Lessmann et al., 2015), and in other related applications (Fuster
et al., 2018; Lessmann and Voß, 2017; Kim et al., 2019). This suggests a need for a more systematic
comparison, in particular one that comprises both non-linear and ensemble methods and assesses their
ability to improve predictive performance in the P2P profit scoring setting.

A second perspective on P2P lending is provided by the finance community. Their research considers
various aspects of P2P financial intermediation. These include how investors adapt to specific changes
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in platform operation and available information (Miller, 2015), as well as broader considerations of how
this type of lending could change financial intermediation mechanisms (Balyuk and Davydenko, 2018;
Vallee and Zeng, 2018; Jagtiani and Lemieux, 2017). As well as assessing the impact of more traditional
factors linked to creditworthiness (e.g. credit score, grades, debt ratios), this body of literature has also
focused on alternative or “soft” information available in the P2P context, such as appearance and text
descriptions (Duarte et al., 2012; Hertzberg et al., 2016; Jagtiani and Lemieux, 2018).

Whereas “hard” information can be easily compressed to numerical values or attributes (Liberti and
Petersen, 2017), alternative information may be unverifiable/costly to verify, or based on some non-
standard format like images or free text. Emerging research points towards some role for alternative or
soft information, once processed appropriately, in predicting the probability of attracting P2P funding
and subsequent credit risk performance (Duarte et al., 2012; Lin, 2016; Dorfleitner et al., 2016; Jagtiani
and Lemieux, 2018). However, it is unclear whether this finding is platform-specific as most of this
research, with the exception of Dorfleitner et al. (2016), is based on the Prosper platform. Analysing
data collected from German P2P platforms, Dorfleitner et al. (2016) instead find that the list text may
influence the funding probability but does not appear to be informative for default prediction. In any
event, further work is needed to establish whether soft information has any added value for profitability
scoring.

Based on these gaps in the literature, the main goal of this paper is to empirically investigate which
types of methods and sources of data are able to provide investors with more accurate predictions of
P2P loan profitability. This is a broad objective; hence, it is useful to distinguish three specific research
questions.

The first question relates to how different methods characterise the relationship between the profitabil-
ity measure and the predictors. Linear methods, such as penalised linear regression approaches, may
suffice if the underlying relationship between loan profitability and its predictors is linear. However,
if the underlying relationship is non-linear, then methods originating from the machine learning com-
munity could provide a significant edge over linear regression based methods. Given that there is little
theory to guide the selection of either approaches in this application setting, this forms the basis of
the first research question: Are non-linear models better at predicting P2P loan profitability than linear
models?

Second, having seen some evidence in the credit scoring and related literature that ensemble meth-
ods tend to perform better than single models (Lessmann et al., 2015; Lessmann and Voß, 2017), it is
natural to ask whether this finding extends to P2P profit scoring as well. Hence, the second research
question is: Do ensemble methods predict P2P loan profitability better than individual models?

Third, and finally, while certain forms of soft (e.g. free text based) information appear to matter for
the likelihood of being funded or for default prediction, the predictive power of alternative information
remains to be assessed for profit scoring. Given that this source of information is becoming more preva-
lent as platforms grow, understanding its relevance for investment decisions is also becoming more im-
portant. The third research question therefore is: Does including alternative information into predictive
models lead to more accurate and more profitable P2P investments than solely using hard information?
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3.4 Data

The data are from Lending Club’s statistical information on application and subsequent payment data
for loans originated from its platform. The application data all relate to loans with a 36-month matu-
rity, originated between October 2008 and January 2014. The payment data for these loans start in
October 2008 and end in March 2017. All of the loans are closed – they have either been paid off early
(i.e., prepaid), paid off at maturity, or the borrower defaulted. The loan-level predictors are a combi-
nation of loan, borrower, credit risk and text-derived characteristics; we further added macroeconomic
variables to this dataset.

The loan characteristics include loan amount and purpose. Credit risk attributes include the sub-grade
assigned by Lending Club at issuance and the FICO credit score band. Borrower characteristics include
previous inquiries in the past six months, adverse public records, and delinquencies within the past two
years. They also include months of credit history, total open accounts, revolving balance on other credit
lines, utilisation of revolving lines, monthly loan instalment to total income, annual income after bor-
rower incomes below/above the 0.01% and 99.99% quantiles are given these quantile value, and overall
debt-to-income for the borrower. The categorical variables indicate whether: the borrower’s length of
employment is unknown; their employment title is missing in the listing; their income is verified; and
the borrower is a home owner.

The listing text for each loan is included as a series of features. The text is a concatenation of two free
text fields: the listing title and the description provided by the borrower. The text per listing is rela-
tively short with two sentences on average and an average sentence length of 6 words. While there are a
variety of possible approaches to including the text as features including word-embeddings, this may not
be productive here as these short-texts suffer from sparsity, i.e., limited word co-occurrence in each list-
ing. We use a method adapted to short-texts called a Bit-Term Topic Model (BTTM) Yan et al. (2013)
utilising the word co-occurences in all of the training listing texts rather than individual listings. Be-
cause this is based on terms in all of the training listing texts, it can overcome the sparsity problem in a
single listing document. The BTTM is fit with a total of 18 topics. These topic probabilities were then
included as features in the models and the resulting performance differences tested between including
this set of features and not. Additional detail on the feature construction and topic model are included
in Appendix B.

Two controls for prevailing macroeconomic conditions are the state-wide unemployment rate, lagged
two quarters before issuance of the loan and the year-on-year change in the OFHEO house price index,
lagged two quarters prior to the issuance quarter of the loan.

The profitability measure is the Internal Rate of Return (IRR). This is the discount rate that equates
the present value of a loan’s monthly cash inflow to the face value of the loan. Formally, the IRR is
defined as the value δ for which:

Amountt0 =
36∑
t=1

CFt
(1 + δ/12)t (3.1)

The cash flows, CFt, are positive as a borrower pays back the loan. If the borrower fails to pay back a
loan for four periods, the loan is charged-off/defaulted, and the cash flows are terminated at that point.
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The IRR is chosen as a dependent variable because loan-level cash flow data are readily available and,
as the IRR incorporates the actual payments made by borrowers, it is a direct measure of return for
investors. This helps with comparisons to the literature, where IRR has been one of the main ways of
measuring returns. P2P IRRs can be easily benchmarked against returns on alternative investment
assets such as consumer credit card Asset-Backed Securities (ABS). To solve for the IRR, a root-finding
algorithm is used. Note that, for this problem, the solution of this numerical procedure is unique as
there are no irregular repayment cash-flows.3

3.5 Methods

Based on the literature, a representative set of regression methods of varying complexity were selected
to predict profitability. They can be grouped into two main classes: individual and ensemble. Individual
methods or models produce IRR estimates based on a single model. Ensemble methods use multiple
instances of a base estimator, e.g. regression trees, combined in different ways.

Using Figure 3.1 as a guide, there are six individual methods specifying a linear relationship between
the response variable and predictors. These individual methods are an implementation of a regularised
glm based on the elastic net (Zou and Hastie, 2005; Friedman et al., 2010), lasso regression (Tibshi-
rani, 1996); ridge regression (Hoerl and Kennard, 1970), partial least squares (Mevik and Wehrens,
2007), and linear Support Vector Machines (SVM). The L2 linear regression is from (Fan et al., 2008;
Helleputte, 2017).

The glmnet is a generalisation of lasso and ridge regression, combining regularisation via the ridge
penalty and feature selection via the Lasso penalty. The relative weighting between the two penalties
is determined adaptively from the data. Lasso and ridge are special cases of this. Partial least squares
forms a linear combination of predictors, chosen in a way to summarise the variation in the predictors
themselves and correlated with the response. The linear SVM was chosen to reduce computational com-
plexity (Karatzoglou et al., 2004).

In Figure 3.1, the schematic indicates that a second group of individual non-linear methods including
Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991), a simple neural network, and a
deep learning model (Candel et al., 2020). The neural network is a very simple single layer feed-forward
neural network, with weight regularisation. The deep learning method is a multi-layer feed-forward
neural network with two hidden layers of 40 units each with drop out, input drop out, and regularisa-
tion. The effect of the hidden layer/input drop out and regularisation is help constrain overfitting. Deep
learning has been successfully applied in several finance applications, such as bond return forecasting
(Bianchi et al., 2018).4 MARS is a non-linear regression method that uses an additive piecewise linear
representation of the original predictors to approximate a non-linear relationship with the dependent
variable (Friedman, 1991).

The ensemble methods selected for the experiments are: random forests, bagged trees, gradient boosted
trees, and five stacked models, as illustrated in the lower right-hand side of Figure 3.1. Random Forests

3We removed 504 loans that were repaid over a period of more than 36 months, that defaulted but were not charged
off, or that were recorded as in default but were actually fully paid. A further 184 loans with zero payments were set to a
-100% IRR. This means that cash flows after origination are always positive or zero.

4We are grateful to a reviewer of the submitted paper based on this chapter who suggested the inclusion of additional
methods.
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(RF) are an ensemble method developed by Breiman (2001) which uses the Classification and Regres-
sion Trees (CART) recursive partitioning algorithm as a base learner. Many such trees are grown from
bootstrapped training samples of the data, the predictions of which are averaged. Each time a split vari-
able is chosen for an individual tree node, the RF algorithm only chooses from a small subset of mtry
predictors instead of trying all available predictors. This process is repeated over many trees to create
a forest. This has the effect of reducing correlation among the trees in the RF, thus reducing variance
when averaging the trees; this typically results in improved predictive ability compared to CART or
bagged trees. The latter can be thought of as a special case of random forests where the number of pre-
dictors is set equal to mtry. RFs have been applied successfully in a variety of domains including credit
scoring (Lessmann et al., 2015).

Gradient boosted trees use a sequence of base learners that minimise a chosen loss function by the
stage-wise addition of a new tree that leads to the largest reduction in loss, given the tree size. With
a squared loss function, the focus at each of these steps is on the residuals, i.e. the variation in the
response not yet explained by the terms in the ensemble up to that step.

Finally, stacked ensembles use a library or set of first-level models to make a combined prediction. The
first-level base models are meant to be a reasonably diverse group. A second-level model, referred to as
a “metalearner”, learns the optimal combination of these base learners. In this paper, the meta-learners
that were tried were a simple average of the first level models, linear (stacked ridge, stacked L2liblinear)
or non-linear (stacked gbm, stacked mars).

All of the methods have tuning parameters to optimise their predictive performance. The range of set-
tings considered for each of the methods are summarised in Table 4.2

The software used for all experiments is R. The following packages were used to implement the methods:
mlr (Bischl et al., 2016); an implementation of MARS in a package called Earth (Millborrow, 2018);
random forests/bagged trees using the Ranger package (Wright and Ziegler, 2017); partial least squares
using the pls package (Mevik and Wehrens, 2007); h2o (Aiello et al., 2019) for the regularised glm,
neural network, and deep learning; glmnet for ridge and lasso (Friedman et al., 2010); LiblineaR for
the L2 linear regression (Fan et al., 2008; Helleputte, 2017) kernlab linear SVMs (Karatzoglou et al.,
2004); XGBoost for the gradient boosted trees (Chen and Guestrin, 2016), and gbm (Ridgeway, 2012).
Finally, the robust linear mixed models were estimated using rlmer (Koller, 2016).

3.6 Experimental design

This section describes the overall process flow for the experiments, outlining the choices made at each
step of the setup. The prediction problem is to estimate a chosen profitability measure, yi, for each
P2P loan, i, from a vector of selected predictors, xi

>. A range of individual models/algorithms and
ensembles are trained to produce these estimates. As the form of this regression function is unknown,
model tuning/selection is guided by optimising a suitable performance measure on the training data.

The various steps and choices in the experimental design are summarised in Figure 3.1. Details are
described in the following subsections.
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Figure 3.1: Experiment workflow

3.6.1 Predictor selection

The first step involves making a selection from the two groups of predictors outlined in Section 3.4 – i.e.,
hard and soft. Either all data (including alternative/soft information, such as text-based predictors)
or only hard information (excluding the text-based predictors) are selected. The added value of soft
predictors can be tested later on in the workflow.

3.6.2 Moving-window and out-of-time tests

In the next step, a series of training/test samples are taken, either using a moving window or out-of-
time test framework. Moving window experiments can be useful to investigate how changes in time
periods/sample size may affect performance and allow more robust answers to the research questions.
Note that in previous work (Serrano-Cinca and Gutiérrez-Nieto, 2016), calendar periods were used
instead, which has the disadvantage that results could be specific to one period or may not generalise to
other periods, even if careful selection of calendar periods is carried out (Butaru et al., 2016).

Second, for advanced prediction methods to be useful to investors, and as part of a comprehensive em-
pirical approach, an out-of-time test design is added. Using only data on completed loans available at
the time of the investment decision, this can provide a more realistic assessment of the performance of
various methods.

Both approaches are illustrated in Figure 3.2. For the moving window approach, a window size, n, is
selected. The first n observations (according to origination time) are then used as training data; the
next n are test data. In the subsequent step, the previous test data now become the training data and
a new test set is selected. This continues until the full data set is exhausted. The same window size for
train and test is chosen for simplicity and to not introduce another experimental variable. The window
size is set to 12,000. In earlier versions of this chapter, window sizes of 6,000-30,000 were used and the
results did not differ markedly. For the out-of-time test, the training data used consist of loans with
an origination date from October 2008 to November 2010. Given that a 36-month gap is required to
observe the returns for the most recent of these training loans, the test data are loans that originated
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Figure 3.2: Experiment data structure schematic

Table 3.1: Types of models and respective evaluation metrics

Dependent variable Performance metric
IRR MAE

Rank-transformed IRR NDCG
Default (y|n) AUC

between December 2013 to January 2014. In the out-of-time framework, the training set has 12,799
observations; the test set has 10,658 observations.

3.6.3 Choice of dependent variable and performance evaluation metrics

The next step is to choose the type of dependent variable and appropriate performance measure for
model tuning and evaluation. Previous work on P2P profit scoring focused on just one error metric
and a limited range of models. However, in most profit scoring settings, the loans are ranked according
to predicted profitability and a decision is made to invest in some proportion of the top ranked loans.
There are particular challenges in such an application setting to pick one single metric. Therefore, three
different evaluation measures are used – the Mean Absolute Error (MAE), the Normalised Discounted
Cumulative Gain (NDCG), and the Area Under the ROC Curve (AUC) (see Table 3.1).

The MAE is the absolute residual between the predicted IRR and the actual IRR of each loan, averaged
over all n observations.

MAE = 1
n

n∑
i=1
|yi − f(xi)| (3.2)

Although MAE has an intuitive interpretation and is a robust measure of prediction accuracy, its use
may not necessarily lead to higher returns. Investors have limited budgets and may only be interested
in the top-k loans. Hence, an alternative approach is to focus on the relative loan return, i.e., using
a rank-transformed IRR as the dependent variable. An additional rationale for transforming IRRs is
given by the non-normality of the distribution of IRR which may lead to non-normal residuals in a
standard regression model. In this setting, it is natural to turn to an Information Retrieval (IR) metric.
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One such metric, which is widely used in the learning to rank literature (Liu, 2011), is the Normalised
Discounted Cumulative Gain (NDCG). This metric is useful when there are non-binary relevance scores
in a complete ranked order, such as ranked IRRs. In this paper, loans are evaluated over the top k
results; e.g. with k=100, the accuracy of each method is evaluated by how well the predicted rank of
the top 100 loans compares to their actual ranking. The value chosen for k= 100 reflects one way of
comparing to the profit scoring literature.

NDCG is calculated by using the predicted relevance score R(m) for item m – here the predicted rank
(equation 3.3). In this paper, a loan with a higher IRR receives a lower numerical rank. This is divided
by a discount factor to reward better predictions of the rank of items at the top of the list compared to
further down the list. In the literature, the discount typically is log(1 +m) or log2(1 +m). This results in
the Discounted Cumulative Gain (DCG). The term Zk is a normalisation term to scale the ranking from
0 to 1.5 A higher value indicates a better ranking; i.e., a value of 90% or 0.9 deviates by 10% from the
ideal ranking.

NDCG(k) = Zk

k∑
m=1

R(m)
log2(1 +m) (3.3)

Since borrower default would be a key event turning any potential profit into a loss, and given that
default prediction is the standard scoring practice in consumer lending, we also build models to predict
default. In this case, the dependent variable is binary with 1 indicating a default event, and 0 indicating
no default. To measure the predictive ability of this third series of models, we use a widely used metric
– the AUC, which is short for the Area Under the Receiver Operating Characteristic Curve (ROC). The
ROC curve is created by evaluating event probabilities produced by the model across a range of cut-off
or threshold values. For each threshold value, the true positive rate (sensitivity) and the false positive
rate (1 - specificity) are plotted against each other.6 The AUC is the area underneath this curve; the
higher the AUC, the better the model is able to discriminate between default and non-default.

Other measures such as Expected Maximum Profit (Verbraken et al., 2014) or the H-measure (Anag-
nostopoulos and Hand, 2012) could be used. EMP is a useful measure but would likely need further
adaption to the present setting, and we have left this for further research. We used the H-measure but
the results were very similar to the AUC results and are therefore not included.

In summary, we built models for three different choices of dependent variable – IRR, rank-transformed
IRR, and a binary variable representing whether the loan defaulted. To train and evaluate those models,
we used the following three performance metrics – MAE, NDCG, and AUC, respectively.

3.6.4 Model training

The meta parameters are shown in Table 4.2. Each method or model is trained using random search
and three-fold Cross Validation (CV). For the moving window test, three-fold CV is carried out for each

5It is calculated by assuming that Rperf is the perfect relevance or ranking order score, and discounting by the same
discount term. Dividing the calculated DCG by the ideal DCG leads to the Normalised Discounted Cumulative Gain
(NDCG).

6Sensitivity or the true positive rate is the proportion of all events of interest (i.e. defaults) that are correctly pre-
dicted by classifying all instances with an event probability greater than the threshold as events. Specificity is the propor-
tion of actual non-events correctly predicted as non-events.
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Table 3.2: Regression method training parameters

Name Meta parameters Values
h2o glm alpha alpha =(0.0001,. . . ,0.5)
lasso alpha, lamba lamba =(0,. . . ,1); alpha=1
ridge alpha, lamba lamba =(0.0625,. . . ,4,); alpha=0
l2liblin cost cost = (0.0001,. . . ,10)
pls num principal components number=(1,. . . ,10)
svm cost cost=2(-5,. . . ,2.2)

mars degree, nprune, nk degree=(1,2); nprune=(15,. . . ,40); nk=(10,. . . ,30)
bagged trees ntrees ntrees =(100,500,1000); min node size=5
rf mtry ntrees=1000; min node size=3; mtry=(3,. . . ,9)
xgboost eta, max depth, sub-sample, lambda nrounds=1000; min.child.weight=3; eta=(0.0075,0.01); max depth=(3,4,5,6); sub-sample=(0.5,0.632,0.75); lambda = 2(-10,. . . , -1)

neural net size, l2 size =3; l2= (0.0001,. . . ,0.5)
h2o deep learning l1, l2, epochs epochs =(10,20,30); l1=l2= (0.00001,. . . ,0.001); input dropout =0.05; hidden layers =(40,40,40); hidden drop out =(0.5,0.5,0.5)
sl.avg none none
sl.ridge lambda lambda=0.0625
sl.liblin cost cost=0.1
sl.mars degree, nprune, nk degree=2; nprune=5; nk=10
sl.gbm ntrees, shrinkage, train fraction ntree=500; shrinkage=0.01; train fraction=0.75

window. For the out-of-time test, we take five bootstrap samples (0.632 fraction) of the training data
to train the methods also using three-fold CV. The same tuning parameter ranges are applied when the
methods are trained and evaluated using the three performance measures.

3.6.5 Statistical testing framework

To answer the three research questions outlined in Section 3.3, a suitable statistical framework must
be chosen. This is a different type of exercise than conventional model benchmarking, where the goal
is to identify which methods significantly outperform which others; there, a common methodology is
to apply a Friedman test to the observed differences in rank performance, followed by post-hoc tests
controlling for multiple comparisons (see e.g. Lessmann et al. (2015)). The Friedman test, however, is
single factor and tests if there are differences between methods; in this paper, we want to determine if
there are differences between predictive performance of the methods and what role the three specific
factors play associated with the research questions:

1. whether a linear or nonlinear method is used;

2. whether an individual model or ensemble is used;

3. whether soft information is added to the predictors used in the model.

The experimental factors are approximately balanced for linear vs non-linear (9 vs 8 models) and en-
semble vs individual (9 vs 8 models) and balanced for including or excluding soft information. One
option to address the questions above is a repeated measures ANOVA in which the model performance
metric is the dependent variable and the three experimental factors are the between (linear/non-linear,
individual/ensemble) and within (no soft/with soft information) variables.

However, in the current application, some of the assumptions required for ANOVA may not hold. These
include that the performance measures be drawn from a normally distributed population and that the
variances in performance across methods are assumed to be equal (sphericity assumption). A second
challenge to non-normality lies in the nature of the performance measures themselves. The MAE is left-
bounded at zero; both NDCG and AUC are bounded between zero and one, with the AUC typically
between 0.5 and 1. The first challenge is likely to be more relevant than the second, as models rarely
produce an AUC/NDCG of 0 or 1, or an MAE of 0 or a large positive real number.

To deal with these challenges, a Robust Linear Mixed Model (RLMM) is used to produce the results
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presented in the main text (Koller, 2016). This approach has two advantages in this experimental de-
sign. First, the method can cope with non-normality and outlier observations, allows for differences
in error variance and incorporates random effects to account for repeated measures. Second, it allows
testing of the experimental factors of interest.

There are some downsides: inference using RLMMs is not yet well developed. Therefore, t-statistics are
referred to in the text only.

The results for the first two research questions are presented in one set of regression tables. For the
third research question addressing the effect of adding soft information predictors, the result on the
information coefficient from these regressions are contained in a separate set of tables. This question
requires treating both the model and information type as within factors; i.e., each model experiences
both levels of the information factor excluding/including the soft information.7

3.7 Results

Because of the two types of experiments conducted, the moving window and out-of-time results are dis-
cussed in separate sub-sections. Each sub-section presents the results in three ways. First, results are
presented in a table summarising the performance of each method averaged over all model runs. Second,
a graph in which the methods are ranked according to their mean performance on each individual met-
ric (note that ranks are used here as the performance metrics are on different scales). Third, each set of
results is then subjected to the statistical procedure outlined in section 3.6 to determine whether there
are significant differences in performance related to the research questions.

3.7.1 Moving window

To help compare their predictive performance on the moving window experiments, the slopegraph in
Figure 3.3 shows the performance ranking of the different methods, across each of the metrics used. A
lower numerical rank (lower on the y-axis) reflects better performance. In other words, a lower numeri-
cal rank for AUC and NDCG corresponds to a larger AUC or NDCG (see bottom-left and bottom-right
sections of the figure, respectively); a lower numerical rank for MAE means a lower absolute error value
(see bottom-middle section). The performance values used to produce these rankings are listed in Ta-
ble 3.3. Each value represents the average test sample performance over the moving window of 12,000
observations.

Overall, three stacked ensembles (stacked ridge, stacked average, stacked liblinear) have the best average
rank across the three performance metrics. These are followed by stacked mars and ridge regression. For
the (binary) default prediction models evaluated using AUC, stacked methods (ridge, average, liblinear)
are top three best performing methods; using NDCG, stacked ridge, linear individual methods such
as lasso, ridge are the top three. For both AUC and NDCG, there is very little difference between the
top three models.8 For the MAE measure, svm, l2liblinear, and stacked l2liblinear are the top three
methods, followed by average stacked ensemble and h2o.glm.

7The linear mixed model fit is a two factor within-subjects repeated-measures model. The first factor is info with two
levels (hard information only, both types); the second factor is modname - the seventeen different model types.

8The AUC values are in the range reported by Malekipirbazari and Aksakalli (2015) but lower than the best per-
forming random forest found by those authors. This is likely because the results in Table 3.3 are averages over moving
windows, and unlike Malekipirbazari and Aksakalli (2015) are not based on static samples.
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Figure 3.3: Performance ranked over metrics: moving window

A closer look at the results reveals that the performance ranking of some of the methods varies exten-
sively depending on the performance measure. For example, svm is ranked as the top performer when
using the MAE criterion, but ranked 17th for AUC and NDCG, respectively. Stacked ridge is the best
method using the AUC and NDCG criteria, yet has a much lower ranking when trained using the MAE.
This variability could potentially be linked to the chosen tuning strategy, as the parameter range used
to optimise the performance metric is not varied across MAE, NDCG, or AUC. However, we believe
that the added complexity of further varying the tuning strategies for each performance measure is not
required to answer the chosen research questions.

Robust LMM: moving window

Table 3.4 contains the test results for the moving window approach. The variables representing the
research questions are categorical. Following the discussion in sub-section 3.6.5, the reference category
for the two-level factor lin.nonlin (non-linear/linear) is non-linear; the reference category for the two-
level factor ensemble (ensemble/individual) is ensemble. Dividing the lin.nonlin variable coefficient
estimates by their standard error gives t-statistics of -8.34, 0.96,-6.57, respectively, for the MAE, NDCG,
and AUC criteria; For the ensemble variable, there is a small t-statistic for MAE (-0.2) and larger values
for NDCG (-4.75), and AUC (-5.51); i.e., the effect of using individual to ensemble methods is apparent
for two of the three criteria.

In the MAE column, the negative coefficient for the lin.nonlin variable means that, surprisingly, linear
methods tend to have a lower MAE than non-linear methods; similarly, in the AUC column, the pos-
itive coefficients indicate that linear methods are associated with increased performance compared to
non-linear methods. For NDCG, the effect is negative with a low t-statistic. On the other hand, com-
pared to ensembles, individual methods are negatively associated with performance when using the
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Table 3.3: Rolling window: mean performance by metric

method MAE NDCG AUC
h2o.glm 14.45 0.74 0.66
ridge 14.48 0.83 0.66
lasso 14.55 0.84 0.64
svm 9.10 0.69 0.54
pls 14.47 0.82 0.66
l2liblin 9.11 0.71 0.66
mars 14.50 0.76 0.64
nnet 14.54 0.82 0.64
h2o.dl 14.55 0.80 0.64
rf 14.75 0.81 0.66
bag 15.59 0.81 0.63
xgb 14.50 0.81 0.65
sl.avg 13.59 0.82 0.67
sl.liblin 9.12 0.82 0.67
sl.ridge 14.45 0.84 0.67
sl.mars 14.46 0.82 0.66
sl.gbm 14.54 0.82 0.67

Table 3.4: Robust linear mixed effect model: rolling window

MAE NDCG AUC
Intercept 14.6955 0.8214 0.6533

(0.2049) (0.0055) (0.0015)
lin.non = linear −1.9465 −0.0060 0.0111

(0.2332) (0.0063) (0.0017)
ensemble = individual −0.0474 −0.0300 −0.0095

(0.2365) (0.0063) (0.0017)
Num. obs. 442 442 442
Standard errors in parentheses

NDCG and AUC measures, indicating that ensemble methods produce better performance than indi-
vidual methods with regards to those two criteria. Finally, to test the role of information on model
performance, Table 3.5 summarises the relevant coefficient for the information variable from the within
subjects regression of model and information. The magnitude of the coefficient on the info: both vari-
able has a t-statistic for MAE of 0.24 and 0.17 for NDCG, i.e. the effect of adding soft information
on MAE and NDCG is likely insignificant. For AUC, the coefficient is -0.0069; the t-statistic is 3.45
suggesting a small negative effect to adding text-based information predictors on AUC compared to
excluding it.

Table 3.5: Rolling: coefficients for information variable in within-subjects regression

metric Estimate Std. Error t value
MAE 0.0207 0.0875 0.2365
NDCG 0.0025 0.0146 0.1684
AUC -0.0069 0.0020 -3.4598
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Figure 3.4: Performance ranked over metrics: out of time test

3.7.2 Out of time

The out-of-time setting is a sterner test of each method’s predictive ability, in which we expect some
deterioration in predictive performance. This is because, at a minimum, at least 37 months have elapsed
between the origination dates in the training and test samples (see Figure 3.2). This setting may be
more informative to investors who would only use data on closed loans to build their predictive models.

Figure 3.4 and Table 3.6 indicate that performance is more variable compared to the rolling window. In
the out-of-time setting, individual models (l2liblin, h2o.glm) and stacked liblin are the best performers
averaged over the three measures. For the MAE performance measure, svm, l2liblin, and stacked liblin
are the top three; for AUC, l2liblin, h2o.glm, and average of stacked models perform best. Finally for
NDCG, the stacked ridge, bagged trees, and stacked liblin are the top three, although there is little
difference between mars and the next best: xgboost. However, in some instances, there is a substantial
variability in performance; e.g., svm performs well on one of the three measures (MAE) but is one of
the worst performers on the NDCG and AUC criteria.

Robust LMM: out of time

This sub-section reports the results of the robust LMM applied in the out-of-time setting. The results
in Table 3.7 indicate differences across performance measures between linear and non-linear methods for
MAE, NDCG, and AUC. For the coefficient on the factor lin.nonlin, the t-statistics are -7.36, 2.49, -4.74
respectively. When the MAE is used as a performance measure, the average reduction in MAE from
using linear methods instead of non-linear methods is -2.94, other factors unchanged. When NDCG and
AUC are used, linear methods are associated with a somewhat increased performance.

The t-statistics suggest differences between ensemble and individual methods for the MAE and NDCG
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Table 3.6: Out of time: mean performance by metric

method MAE NDCG AUC
h2o.glm 13.92 0.77 0.64
ridge 13.73 0.75 0.63
lasso 14.09 0.76 0.58
svm 9.15 0.70 0.56
pls 13.76 0.75 0.62
l2liblin 9.16 0.77 0.64
mars 22.28 0.73 0.59
nnet 14.82 0.73 0.63
h2o.dl 14.46 0.73 0.63
rf 17.26 0.74 0.60
bag 22.49 0.78 0.58
xgb 16.66 0.69 0.61
sl.avg 14.81 0.74 0.64
sl.liblin 9.30 0.78 0.63
sl.ridge 15.70 0.79 0.63
sl.mars 15.52 0.76 0.62
sl.gbm 15.29 0.74 0.63

performance measures (with t-statistics of -4.35 and -4.29, respectively), with ensemble methods outper-
forming individual methods on NDCG and the opposite for MAE. There are no detectable differences
for the AUC. Finally, as shown in Table 3.8 and in the appendix, including soft information has an ad-
verse effect on MAE (with t-statistics of -1.41) on info : both, respectively), with some difference for
NDCG (t-statistic = 2.79), and none apparent for AUC.

Table 3.7: Robust linear mixed effect model : out of time

MAE NDCG AUC
Intercept 16.7943 0.7622 0.6123

(0.3513) (0.0158) (0.0052)
lin.non = linear −2.9468 0.0137 0.0139

(0.4000) (0.0055) (0.0029)
ensemble = individual −1.7671 −0.0240 0.0014

(0.4057) (0.0056) (0.0030)
Num. obs. 170 170 170
Standard errors in parentheses

Table 3.8: Out of time: coefficients for information variable in within-subjects regression

metric Estimate Std. Error t value
MAE -0.5561 0.3951 -1.4074
NDCG 0.0452 0.0162 2.7977
AUC 0.0021 0.0054 0.3941
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3.8 Robustness checks and discussion

3.8.1 Robustness checks

Several robustness checks have been carried out. The first is a consistency check on the moving window
and out-of-time results by rank-transforming the dependent variable in the robust LMM to check that
any non-normality in the residuals does not lead to invalid inference. The results for this alternative test
are shown in Appendix C (see Table C.5 and Table C.6, for the moving window and out-of-time setting,
respectively). Comparing these results with Table 3.4 and Table 3.7 leads to similar conclusions.

A second analysis considers the extent to which, in the out-of-time set, superior performance with re-
gards to an evaluation metric is also linked to greater returns. Each method’s excess returns is calcu-
lated by selecting the top 100 most attractive loans based on that method’s predictions and comparing
their average IRR return against the mean return rate in the whole test set. Higher such excess returns
suggest that an active loan picking strategy using that method produces greater returns than random
loan selection. We then rank the methods from largest excess returns (rank 1) to smallest excess returns
(rank 17). This IRR rank can now be compared against the same method’s performance rank according
to MAE, NDCG or AUC (lower rank numbers again indicating better performance).

For each method, Figure 3.5 plots the mean rank based on the performance measure against the return-
based measure (IRR rank), for each performance measure and the mean averaged over the three per-
formance measures. The most appealing methods are those that perform consistently well on both cri-
teria (both have a low numerical rank) and thus appear on the lower left-hand side of each panel. The
bottom-right corner is where good performance on the metric does not correspond to good performance
on IRR rank.

A large difference between performance measure and IRR rank suggests inconsistent performance; i.e.,
in those cases, better/worse performance on the evaluation metrics may not translate to larger/smaller
excess returns, relative to the other methods. For example, in the figure, linear regularised methods
(h2o.glm, stacked liblin) have a reasonably good ranking compared to xgb for the mean ranks across per-
formance measures. The figure illustrates the point that a method that minimises MAE or maximises
AUC/NDCG for all loans does not necessarily correspond to an investment strategy that deliver excess
returns (over the test mean) of the top 100 loans.

Real-world investors may be interested in those methods and strategies linked to greater excess returns,
we examine the relationship between excess returns and two sets of variables – the experimental factors
(i.e. lin.nonlin and ensemble) and the choice of dependent variable and tuning strategy (i.e. whether we
build models to predict IRR, rank-transformed IRR or default Y/N, using MAE, NDCG and AUC as
respective training metrics). To do so, we again estimated a robust linear mixed model with a random
effect for inclusion of soft information.9 The results are shown in the first column (‘ALL’) of Table 3.9.
The respective reference categories for the factors lin.nonlin and ensemble are non-linear and ensemble;
the reference category for metric is MAE. Next to these pooled results, the other three columns in the
table assess the impact of the experimental factors separately for each choice of dependent variable and
corresponding tuning metric.

The results for the column ALL show a t-statistic for the categorical variable linear and non-linear
9Information is treated as a within factor with two levels: both and hard.only.
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Figure 3.5: Out-of-time difference in rank performance (metric vs. excess returns)

methods (t-statistic = 0.76), suggesting little evidence that either leads to meaningful differences in
excess returns. However, looking at the breakdown for the individual performance metrics (columns
2-4), this result is largely down to linear methods performing worse for AUC and NDCG; for the IRR
models trained with MAE, the coefficient is 0.84, with a t-statistic for 2.5, whilst for AUC and NDCG,
the signs are reversed. This means linear methods are associated with larger excess returns when loans
are ranked using the methods trained using the MAE as the performance criterion. Overall, ensemble
methods do not have a large t-statistic compared to individual methods (t-statistic =-1.42). Another
important finding relates to the choice of dependent variable and tuning strategy: relative to MAE,
NDCG and AUC are associated with significantly reduced excess returns (t-statistics = -6.95; -8.99). In
other words, the best modelling strategy from an average profit perspective is to predict IRR directly,
with MAE as the tuning metric. Controlling for the other factors, this strategy produces larger excess
returns than focusing on the IRR ranking (NDCG) or the traditional scoring approach of picking loans
based on the risk of default (AUC). In terms of relative magnitude, this effect outweighs that of the
other two factors.

3.8.2 Discussion

The variable nature of performance across the three evaluation measures and the test setting used, and
its non-trivial relationship with returns suggest that findings recommending specific methods in the
existing profit scoring literature may not be generalised easily. The results may be dependent on these
factors, in addition to the usual considerations such as the application domain and data used.

In this paper, a successful profit scoring approach is associated with positive excess returns (Table 3.9).
The findings suggest that while it pays to model using profitability directly (i.e. using IRR as the depen-
dent variable), performance depends on the methods adopted, the performance measure itself, and the
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Table 3.9: Robust linear mixed effect model: excess returns

ALL MAE NDCG AUC
Intercept 1.6897 0.8540 0.2228 0.1525

(0.2415) (0.2940) (0.2699) (0.4128)
lin.non = linear 0.1508 0.8390 −0.0797 −0.3067

(0.1964) (0.3347) (0.3073) (0.3643)
ensemble = individual −0.2832 0.4978 −0.3883 −0.9453

(0.1991) (0.3395) (0.3116) (0.3695)
metric = NDCG −1.6450

(0.2366)
metric = AUC −2.1283

(0.2366)
Num. obs. 510 170 170 170
Standard errors in parentheses

type of information used. This first finding is in line with Serrano-Cinca and Gutiérrez-Nieto (2016) for
P2P lending and other profit scoring literature (Garrido et al. (2018), Verbraken et al. (2014)).

Given the range of methods, and prediction problems, it is not straightforward to identify one set of
reasons or features that is associated with better predictive performance. Each of the individual mod-
els represent the data in different ways, depending on the type of prediction (continuous, ranking, or
binary) and performance measure. For MAE, some models like ridge regression identify credit risk fo-
cused variables like utilisation, balance, unemployment and debt to income ratios, as well as categorical
information like fico score and LC sub grade; linear SVMs for MAE identify grades as some of the most
important factors, whereas using AUC as the performance measure, they identify a range of very differ-
ent factors. Ensemble methods outperformance of individual methods is metric dependent (e.g. NDCG
vs MAE). This suggests that while ensembles can demonstrate good predictive performance as found in
Lessmann et al. (2015) credit scoring benchmarking study, in our profit scoring setting, this finding is
dependent on the measure used.

Our ability to produce positive excess returns suggests that the predictors may contain information
not directly incorporated into Lending Club’s grading system during the sample period in this paper.
Studying a different research question, Jagtiani and Lemieux (2018) come to similar conclusions for a
sample period covering much of the same period as in this paper.

The implications for platform pricing and investing are more nuanced. The information and methods
in this study are public and the returns are ex-post, based on closed loans. Therefore, one cannot be
overly optimistic about excess returns in future. Platforms like Lending Club do not bear the credit risk;
their main income comes from receiving a small fraction of the monthly repayments on all loans. Adjust-
ments to pricing models are one of several considerations for this type of business model, in addition to
platform growth due to the supply of new listings.

The negligible to negative impact of soft information may give pause for thought. There may be limita-
tions in this study in the sense that text data has been represented through using a type of topic model
adapted for short text. In an earlier version of this paper, we represented the text as certain features
such as the fraction complex words and measures of lexical diversity, and obtained similar results. It
is likely that the result is negative because the listing text was sparse. The finding that these features
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do not help improve predictive performance for profit scoring contrasts with other studies that were
based on the Prosper platform, where the text is richer. Instead, our results concur with Dorfleitner
et al. (2016) who modelled default in German P2P loans. This provides further indication that results
in the literature could be platform-dependent.

3.9 Conclusions

This study explored three research questions motivated by a P2P investment setting. First, we com-
pared whether non-linear methods could provide improved profitability predictions compared with linear
methods. Second, drawing on findings in Lessmann et al. (2015), we investigated whether ensemble
methods gave better performance than individual methods. Third, as new types of data including soft
information in the form of text become available through these platforms, we also assessed their rele-
vance for P2P investment.

In our experiments, we find empirical evidence supporting a profit-scoring instead of modelling default
risk. Specifically, we find that linear methods were actually often associated with improved predictive
performance, although the magnitude of the effect varied with the performance measure and, in a ro-
bustness test, they did not produce greater excess returns on the top-100 loans than non-linear methods.
Ensemble methods outperformed individual methods on some metrics (e.g. NDCG) but not all (e.g.
MAE). In general, we did not find significantly better performance by including soft information in the
predictor set.

The results add to the findings on P2P lending in general, and specifically contribute to the empirical
assessment of P2P profit scoring. Considering the research findings, the results suggest that relatively
straightforward approaches such as MAE and linear models provide good performance as well as po-
tentially positive out-of-time excess returns, at least for this sample period. A binary classification
approach that models default and uses a performance criterion such as AUC results in some excess re-
turns out-of-time, though not as much as using the MAE. Using a ranking performance measure such as
NDCG is a reasonable approach on paper but results in lower excess returns on average than using the
MAE or AUC.

A relatively consistent result regardless of the performance criterion is that the inclusion of soft infor-
mation either makes little difference or makes the model perform slightly worse than when trained with
only hard information. However, incorporating unstructured data from text and other sources and its
utilisation in predictive modelling contexts is an evolving area of research and other representations
could provide better predictive ability. Specifically, soft information from P2P platforms with more
abundant sources of text-based information could be incorporated using other methods than those con-
sidered in this paper. Finally, alternative sources of information such as digital footprint information
could be explored further for predictive modelling of P2P loans (Berg et al., 2018).



Chapter 4

Modelling mortgage collateral
recoveries

4.1 Abstract

This chapter addresses the problem of predicting the collateral recovery value of defaulted mortgages,
by modelling two important parameters determining this value: time to sale (i.e. the length of time
before the default is resolved through sale) and forced sale discount (i.e., the percentage loss in sales
proceeds relative to the indexed valuation). The predictive performance of a variety of survival analysis
approaches to estimate time to sale and regression approaches for the forced sale discount are empir-
ically evaluated. For time to sale prediction, random survival forests and parametric survival models
perform best. For forced sale discount prediction, random forests, xgboost, and deep learning methods
produce the lowest errors. A sensitivity analysis illustrates how predictive modelling of these parameters
produces higher loss estimates than a current industry approach.

Keywords: survival analysis, resolution time, mortgages, non-performing loans, forced sale discount

4.2 Introduction

Mortgage lending is one of the most important types of lending for retail banks in the euro area and
Ireland. This chapter focuses on the estimation of resolution times for defaulted mortgages, the value of
the collateral upon resolution, and the implications that resolution duration and sale value have for loss
severity estimates.

Recoveries on mortgage loans are typically worked-out with cash flows coming from either repayment
by the borrower or repossession/sale of the property collateral discounted over the Time To Sale (TTS)
of the collateral. The Time to Sale (TTS) is an estimated future time point at which sale of collateral
would occur. In distressed mortgage and housing markets, this can mean that loss severities can be
higher due to longer sale times. This is a particular problem in some European banking sectors recov-
ering from the Global Financial Crisis (GFC) including Ireland (see Chapter 1, sub-section 1.3.2). This
topic is a central focus in Europe (Baudino et al., 2018; European Commission, 2019) and underpins the
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introduction of new regulatory requirements such as the prudential backstop for NPLs by the European
Commission.1

Loss severities at the time of sale can be higher post-GFC due to decreased property prices following a
property bubble, illiquidity in property market segments, buyer expectations, and various other effects
(Campbell et al., 2011; Donner et al., 2016). For these reasons, and the fact that property sales can
be forced through repossessions/surrender of property, there can be a divergence in the sales value
compared to the indexed value at the point of sale. This is known as the Forced Sale Discount (FSD). It
is the discount on the sale price achieved for distressed assets compared to the indexed valuation at the
sale date.

In this chapter, the FSD refers to residential property mortgage sales as a result of repossessions or
other bilateral agreements with the bank to sell the collateral (i.e., property) following substantial mort-
gage arrears and with no other restructuring solution being found. The type of sales considered in this
chapter arise from borrower’s inability to service their mortgage resulting in a substantial time in de-
fault with significant arrears. The borrower will lose ownership either through legal proceedings or a
borrower/bank agreed sale or surrender of the property. Understanding these aspects of the work-out
process is important for Non Performing Loan (NPL) resolution and related polices. This is a particu-
larly important consideration in the EU and euro area because of the high concentration of NPLs within
certain banking sectors and banks.

It is critical for banks, investors, and regulators that loans are correctly valued and credit risk is ap-
propriately understood and managed. In the aftermath of the financial crisis and following criticism of
the slow pace of loss recognition for credit risk, a new accounting standard - IFRS 9 - defined Expected
Credit Losses (ECL) for a financial instrument as the difference between contractual cash-flows due
and the expected cash flows to be received. Credit losses are the present value of all cash shortfalls, i.e.,
the difference between contractual cash-flows due and the cash flows expected to be received. Expected
credit losses are an estimate of credit losses over the lifetime of the financial instrument, i.e., loan. Ac-
cording to the standard, ECLs should reflect an unbiased estimate based on several possible outcomes
weighted by their probabilities of occurrence. The critical change in IFRS 9 compared to the previous
backward-looking standard (IAS 39) is that now there is a requirement to incorporate forward-looking
information to estimate losses.

The three main components of an ECL calculation are: Probability of Default (PD), Exposure at De-
fault (EAD), and Loss Given Default (LGD). In this chapter, we are concerned with the LGD compo-
nent of the ECL calculation. Within this, the TTS and FSD parameters are important for calculating
mortgage ECLs. These parameters link the recovery period to house price index projections that form
part of the forward-looking information for lifetime-loss estimation of impairments.

This accounting standard is a principles-based standard with only a high-level definition of ECL and
does not require a specific methodology to calculate it in practice. Regardless of the chosen method-
ology, one reason for modelling these parameters is that part of their variation may be predictable by
covariates available at the time of default in the case of TTS and at the time of sale for the FSD. It is
an open question, however, whether estimating these parameters through various types of modelling
provides a more appropriate approach to credit risk management than assigning a simple average to a

1See the EU Commission statement here.

https://ec.europa.eu/finance/docs/policy/190612-non-performing-loans-communication_en.pdf
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cohort, which is a common approach used within industry (Eder and Bank, 2019; Chawla et al., 2016).
Adoption of differing approaches may lead to different loss severity and Expected Credit Loss (ECL)
estimates across banks with similar business models.

There are four particular challenges in modelling these parameters. For TTS, recovery data are incom-
plete in the sense that some loans do not have a completed workout process (sale or full cash repayment
by the borrower). Therefore, the possible workout time is unknown. This type of right censoring can
occur at the end of the follow-up period. Even though some of the loans do not have an end point, the
information on both the closed and censored loans can be combined to produce an estimate of time to
sale for all loans in a portfolio. This has the advantage of not downward biasing estimates of TTS by
using only loans with a completed sales process.

The second challenge relates to the choice of approach to estimate TTS. Because of the censored nature
of the data, a range of methods from survival analysis are considered. It is not apparent which method
is to be preferred ex-ante. The methods can range from a basic Kaplan-Meier (KM) (Kaplan et al.,
1958) estimator to parametric, semi-parametric, and fully non-parametric machine learning approaches.
The implications for the estimation of TTS means that impairments for the same cohort of loans or in-
dividual loans themselves could be very different depending on the method chosen to estimate the TTS.
Therefore, an understanding of the estimation of TTS based on a variety of model/method selections is
an important consideration.

The third challenge is that Forced Sale Discounts (FSD) or haircuts on sale are only available for collat-
eral that has been sold through a bilateral agreement (between borrower and bank) or at the conclusion
of a legal process.2 One approach to estimating the FSD is calculating an average for certain groups of
disposals similar to the segmentation approach for TTS as mentioned earlier in this section. Whether
those groups or cohorts are the most appropriate could be based on what are the important predictive
factors for the FSD.

The fourth and final challenge for estimating TTS and the FSD is as a result of the GFC in several
euro area and EU countries, there were significant macroeconomic volatility and policy changes oc-
curring throughout the recovery period (Dendramis et al., 2018). Combined with depressed collateral
values during a volatile economic environment, this may affect resolution times and loss severity. Un-
derstanding the effects of both the policy and macroeconomic developments on the estimation of these
parameters is important to ensure models are sufficiently robust.

4.3 Related Literature

4.3.1 Default resolution time

Because of the focus of the research questions, this paper draws on two strands of the LGD modelling
literature. The first strand of the literature adapts survival analysis to investigating the work-out LGD
of SME loans in Dermine and de Carvalho (2006) or mortgage loans in Chen (2018), and recovery times
of SME loans in Betz et al. (2016, 2017).

In this literature, rather than directly regressing LGD against its relevant drivers, there is a focus on
2The term forced sale is used in this chapter includes both legal repossession/receivership and properties sold as a

result of a bilateral voluntary sale or surrender agreement.
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Default Resolution Time (DRT) for two reasons. First, Dermine and de Carvalho (2006) and Betz et al.
(2016, 2017) suggest that for SME loans, longer resolution times are associated with higher LGDs and
increased costs. Betz et al. (2016) provide an interesting illustration of the impact of different speci-
fications of a Cox survival model on inference for SME/Corporate loans and the resulting portfolio’s
unexpected losses. An improved understanding of TTS drivers may lead to a better understanding of
these issues. Second, adaptation of survival analysis methods has practical advantages for prediction
of estimated work-out time for incomplete workouts. Incomplete workouts are a feature of the data
considered in this paper, in common with many other recoveries data sets.

Various proposals for the estimation of resolution times have been made in Rapisarda and Echeverry
(2013) and Betz et al. (2016, 2017), along with an analysis of how factors included in these models
can affect recovery time. The latter find that loan and collateral-specific features are important for
explaining default resolution times of SME loans in the US, UK, Canada, and Germany. Based on this
useful cross-country perspective, they find mixed evidence for macroeconomic effects in recovery time
modelling, as this tends to be country-specific.

The possibility of using survival analysis for mortgages was mentioned in Leow and Mues (2011), and
applied in Leow et al. (2011) in the context of a two-stage LGD model. Elsewhere in the literature, how-
ever, there is limited consideration of the impact of resolution time modelling approaches on estimating
mortgage losses.

The second strand of the literature deals with various drivers of LGD (Loterman et al., 2012; Gurtler
and Hibbeln, 2013; Tong et al., 2014; Krüger and Rösch, 2017). One related challenge in LGD mod-
elling is that having only short model development samples (c.5 years) available compared to the longer
work-out time necessary for completed recoveries means incomplete observation for some loans. While
the type of credit portfolio being modelled is varied, the quality of LGD predictions depend on the mod-
elling approach followed (Bade et al., 2011; Loterman et al., 2012; Krüger and Rösch, 2017) and on the
groups of covariates used. These include transaction-related factors such as Loan to Value (LTV), se-
niority, collateral types, product features, and obligor characteristics (Qi and Yang, 2009; Zhang and
Thomas, 2014; Bellotti and Crook, 2013; Tobback et al., 2014; Andersson and Mayock, 2014). For US
mortgage LGDs, higher LTVs, and borrower liquidity constraints have been found to be important pre-
dictors of non-zero LGDs by Xuan et al. (2019). Betz et al. (2016) found that both macroeconomic
variables and the inclusion of frailty terms improved inference for SME resolution times.

4.3.2 Forced sale discount

The Forced Sale Discount (FSD) parameter has received somewhat less attention in the credit risk mod-
elling literature. In the economics literature Campbell et al. (2011) and Donner et al. (2016), explored a
range of factors explaining the existence and magnitude of the this discount. These included the nature
of the sale itself being forced as well as the illiquidity of property markets in downturn or distressed con-
ditions, seller incentives, the holding cost of the property, and legal frameworks. Two relevant findings
are that the process of foreclosure itself is associated with substantial discounts compared with normal
sales transactions; its magnitude varies by geographical area and the nature of the property being sold
(Lee, 2010). This literature does not consider a wide range of models to predict the discount.

In the credit risk literature, Park and Bang (2014) find for Korean mortgages that current LTV matters
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the most for loss severity estimation, and the foreclosure auction process is an important determinant
of LGD variability. This suggests a role for institutional factors that may influence the recovery process
(Park and Bang, 2014; Zhao et al., 2019).

There are two particularly relevant studies in the credit risk literature for prediction of mortgage default
haircuts. The first of these, Somers and Whittaker (2007) use quantile regression to model the haircut
on a European mortgage data set for LGD modelling. They use this technique to understand variation
around the median discount as well as its dispersion. Using data on defaulted loans from a UK bank,
Leow and Mues (2011) modelled a post-default process where the outcome could be no repossession or
repossession and sale. Leow and Mues (2011) find that inclusion of variables such as previous defaults
and the type of security improved LGD predictions for a two-stage mortgage model, compared to a
single-stage approach.

The latter paper is related to the present work but there are important differences. First, in this chap-
ter, the data are from the final stage of the collateral recovery process where loss of ownership has oc-
curred or will occur via repossession or borrower agreed sale/surrender. Second, in this research, the dis-
tinction between legal (forced) and borrower agreed (voluntary) sale/surrender is particularly important.
Because of the scale of the crisis in Ireland, public policy, and legal issues surrounding repossession,
approximately two thirds of loss of ownership take place through bilateral voluntary sales/surrenders
and one-third through court ordered repossession. As noted in Section 4.2, this type of forced sale is an
important feature of collateral recovery in Ireland and some other euro area countries that has not yet
been explored in the post-GFC recoveries modelling literature.

4.4 Research objectives and contributions

The two previous sections suggest two specific gaps in the research literature. First, there is a limited
body of work concerning mortgages and no evaluation of the performance of a range of methods to
predict mortgage resolution times. This is somewhat surprising given that models are used to produce
mortgage loss estimates within industry. This gap is particularly relevant when there are substantial
amounts of NPLs yet to be worked out, post-GFC, and just after the introduction of IFRS 9 in Europe
where lifetime ECL losses have to calculated.

Second, there is a relatively sparse literature on modelling the forced sale discount from an IFRS 9
credit risk perspective. This is an important parameter for estimation of loss severity and understanding
its driving factors is important for both accurate impairment forecasting and prudent estimation of
capital requirements through appropriate collateral haircuts in LGD models.

This leads to the three main questions addressed by this research:

• Which modelling approaches for defaulted mortgages produce the most accurate TTS and FSD
predictions?

• What are the important predictive factors identified for TTS and FSD in this context?

• What are the real world impacts of assuming fixed parameter values versus those based on predic-
tive models in loss severity calculations?

This research makes three contributions. To the author’s knowledge, it is one of the first papers to
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examine the impact of estimation method on both the TTS and the FSD as these are critical for de-
termining the realised LGD. In particular, the predictive accuracy of three groups of methods for TTS
are assessed as well as the important factors identified by those methods for time to resolution. This
an area of active policy concern in the EU to understand the time to recovery and recovery rates on
Non-Performing Loans.3 It is relevant also in Ireland and other countries where mortgage arrears are
still significant a decade after the GFC (Figure 1.2).

This work contributes to understanding the drivers of the FSD by considering three modelling ap-
proaches and the importance of the type of sale (i.e., forced or voluntary) for the estimation of the FSD.
This is an aspect that has not yet been focused on in the FSD literature. This is an important aspect
of Irish mortgage loss experience where two-thirds of loss of ownership occurring through a voluntary
surrender/sale; and one third from the repossession legal process (Figure 1.3). Analysing both TTS and
FSD together provides a more complete understanding of NPLs resolution process.

This paper makes a second contribution to understanding how the roles of two key individual model
parameters matter for calculating life-time losses for an important asset class under IFRS 9 standards
used in the EU and Asia. For practitioners and regulators concerned with IFRS 9 impairment models,
estimation of life-time losses for collective impairment calculations requires appropriate estimation of
these parameters.

This accounting standard is still relatively new compared to Basel Internal Rating Based (IRB) ap-
proaches to LGD modelling. Therefore, this work improves understanding the suitability of various
approaches (cohort-based averaging or modelling), as well as the performance of different types of pre-
dictive models. Furthermore, estimation of these parameters and their validation through using multiple
approaches provides a sensitivity analysis of model risk.

This work may be of interest for LGD estimation by practitioners and regulators as banks may group
collateral into homogenous groups based on recovery processes and duration, taking into account the
potential biases arising from incomplete recoveries.4 The findings are relevant for the repossession stage
in multi-stage modelling of Loss Given Default (LGD) (Leow and Mues, 2011; Tanoue et al., 2017; Xuan
et al., 2019) through improved understanding of factors associated with the FSD.

The paper’s third contribution broadens the scope of retail asset classes considered in the default reso-
lution time modelling literature. Thus far, a significant amount of the emerging literature on resolution
time focuses on Small and Medium-sized Enterprises (SME) and corporate credit, in part, because of
availability of data from various sources including the Global Credit Data consortium.5 As discussed
in Section 4.2, mortgages are one of the most substantial asset classes for European banks and are the
subject of this paper.

Both the first and second questions address the gaps in the research literature. The third question
assesses if the insights gained from improved TTS and FSD predictive modelling are meaningfully differ-
ent from one current industry approach of using fixed parameter values.

3See European Commission request for advice to the European Banking Authority on the efficacy of judicial enforce-
ment frameworks in the EU.

4See EBA 2017, paragraphs 128 and 159(c)
5This is voluntary private sector initiative to collect/pool historical loss information.

https://ec.europa.eu/info/publications/190107-eba-call-for-advice_en
https://ec.europa.eu/info/publications/190107-eba-call-for-advice_en
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4.5 Data

The data used in this study are confidential mortgage recoveries data collected by the Central Bank of
Ireland as part of their supervisory analysis of mortgage models. They are residential mortgage recover-
ies from two banks. The data are for loans in long-term mortgage arrears where legal proceedings have
been undertaken by the banks to enforce their security on the collateral or from a bilateral borrower
and bank agreed sale/surrender to settle the mortgage debt including arrears. Because of limitations of
the data, there is no information on cash recoveries (i.e., payments made by the borrower prior to the
sale of the property). As these are loans already within a loss of ownership process (i.e., bilateral sale or
legal process), there are no cures. The data cover loans originated between 1998 and 2015 and recovery
period between 2009 and 2017.

Time To Sale (TTS) is defined as the minimum of the time to sale date or (censored at) the end of fol-
low up time minus the date of default. The unit of measurement is months. A loan has a resolution
event if a sale has concluded with a sale date. An unresolved loan is one that has not been sold (i.e.,
resolved) by the end of the follow-up date. As an example, a TTS of 60 and a resolution event means it
took 60 months, i.e., five years, between the date of default and sale. Because of confidentiality restric-
tions, the exact proportion of events and censoring for each bank cannot be disclosed.

The FSD is the haircut on sale of the property: FSD = (1 − sale proceeds
indexed valuation at sale ) × 100. The ratio in

parentheses is the sales to index ratio (also known as the sales ratio).

A table of summary statistics is shown in Table 4.1. The available categorical information includes the
type of loan collateral, i.e. Primary Dwelling Home (PDH) (owner-occupier) vs. Buy to Let (BTL), and
the type of property (house, apartment or other). Dublin flag is a location indicator for the collateral
location in Dublin or non-Dublin. For the FSD model, additional location data by county is used for
the 26 counties in the Republic of Ireland. This replaces the collateral location variable Dublin flag for
the FSD modelling.6

The default LTV is the ratio of the facility balance at the point of default divided by the indexed valua-
tion of the collateral at the date of default. The facility balance is the unpaid principal balance on the
facility. The continuous variable loan age at default is the time (in months) since origination to the date
of default.

Unemployment was chosen on the basis of previous research (Kelly, 2011; Kelly and McCann, 2016)
which found that the unemployment rate and changes in employment status have been found to be
the most important economic predictor for arrears and transition into later arrears states, such as the
long-term arrears cases in this paper. The unemployment rate used is the year-on-year change in the
unemployment rate lagged one month prior to the date of default. Note that house price developments
are taken into account through their effect on the indexed valuation at default as the denominator in
the default LTV variable.

Due to data limitations regarding the exact date of initiation of the legal or bilateral process, a categor-
ical variable indicating the type of process (forced via legal proceeding or bilateral) cannot be used as

6This categorical variable (26 categories representing the county-level regions in Ireland) could be used in the TTS
for most models, except the Aalen model where it is not possible to estimate the model using these data beyond a fixed
time point that is shorter than the end of the sample period. This is discussed later in more detail later in this chapter. In
summary, it is because the least-squares type-estimator of the cumulative regression functions become singular if there are
fewer than number of predictors+1 subjects remaining at risk.
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Table 4.1: Data Summary

Concept Characteristic Value
N Number of observations 18079
Time Median (Range) 64.63 (0.23, 175.2)
Event Resolved 5861 (32.42%)

Non Resolved 12218 (67.58%)
Bank Bank name 18079
Property House 14652 (81.04%)

Apt or other 3427 (18.96%)
Collateral PDH 9914 (54.84%)

BTL 8165 (45.16%)
Dublin flag Dublin 4237 (23.44%)

Non Dublin 13842 (76.56%)
Default LTV Median (Range) 94.3 (5.18, 350.54)
Loan age (at default) Median (Range) 61.28 (0.1, 214.6)
Resolution type (FSD) Voluntary 4745 (81%)

Forced 1116 (19%)
Unemployment rate (y/y change, 1 month lag) Median (Range) 0.8 (-2.3, 6.7)

a predictor for TTS. For the FSD model, this feature can be used and may be important because legal
proceedings may take much longer to conclude than a consensual bilateral agreement and may thus be
associated with a larger discount.

The distribution of the haircut on sale by resolution time bucket are shown in Figure 4.1.7 This figure
shows that voluntary haircuts tend to be smaller than forced sale haircuts. Longer default resolution
durations are associated with increased haircut magnitudes for both forced and voluntary processes.

4.6 Methods

This section describes the methods and the empirical approach used to model both Time to Sale (TTS)
and the Forced Sale Discount (FSD).

4.6.1 Time to sale modelling

Three types of methods are considered for modelling TTS. The first are Accelerated Failure Time (AFT)
parametric survival models. In these models, the explanatory variables can accelerate, decelerate, or
have no effect on the survival process compared to the baseline survival function. Three types of dis-
tributions are chosen to parameterise these models - Lognormal, Weibull, and Log-logistic. They have
the advantages of straightforward interpretation and estimation. Their main disadvantage is that the
distributional assumptions underpinning the models may not be sufficient descriptions of the data.

The second group of methods are semi-parametric survival models. These are the Cox proportional
hazards model (Cox, 1972) and the Aalen semi-parametric model (Aalen, 1989). The Cox model is

7The box plots show for each time bucket that shows the median (black line), the first (Q1) and third quartiles (Q3)
(the box). The length of the box corresponds to the Inter Quartile Range (IQR) of a variable x and the whiskers are
defined as: upper whisker = min(max(x), Q3 + 1.5 * IQR); lower whisker = max(min(x), Q1 – 1.5 * IQR).
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Figure 4.1: Haircut distribution and time to resolution

a standard model in the credit risk and resolution time literature (Betz et al., 2016, 2017). Its main
advantages are it is computationally quick to estimate and interpretation is straightforward. The main
disadvantage is that the proportional hazard assumption may not be met. The R package rms (Harrell
Jr, 2019) is used to estimate both the parametric and Cox survival models.

The Aalen model can be thought of as generalising the Nelson-Aalen estimator (Nelson, 1972; Aalen,
1978). This model is not as widespread in credit risk modelling, though Lando et al. (2013) used this to
model corporate defaults data. The appeal of this method is that it does not assume proportional haz-
ards, and can treat some of the predictor effects as changing through time and others as time constant.
Part of the price of this flexibility is that as the approach is additive, the hazard is not constrained to
be positive. This can result in a cumulative hazard that is non-monotonic and survival functions that
are outside of [0, 1] when covariates take extreme values. The R package timereg (Scheike and Zhang,
2011) is used to fit the Aalen model.

The third group are non-parametric estimators from the machine learning literature. These include a k-
Nearest Neighbour (kNN) survival method, (Lowsky et al., 2013) and Random Survival Forests (Wright
and Ziegler, 2017). The kNN survival method generates survival functions by using a weighted average
Kaplan-Meier estimator based on the k most similar observations from the training data. This can be
combined with data augmentation methods such as bootstrap sampling of training data and a random
selection of fixed number of predictors to produce an average ensemble estimate over n base learners.

Random Survival Forests (RSF) were introduced by Ishwaran et al. (2008) to deal with right-censored
survival data. The underlying principles are similar to the original algorithm of Brieman (2001). Their
adaptation to survival analysis requires changes to the split criterion and tree prediction. In a survival
forest setting, an individual survival tree is grown by selecting predictors split points that maximise
the log-rank statistic in each node. This is repeated for all trees in the forest. Ensemble predictions
are produced by averaging the cumulative hazard estimates in the terminal nodes of each tree. The
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cumulative hazards are estimated using the Nelson-Aalen estimator.

The advantages of both of these approaches is that they are non-parametric and this may suit certain
types of data. The disadvantages are interpretability and for kNN, that the nearest neighbours parame-
ter and number of base learners can substantially affect computational time given the training dataset
size. The R packages bnnSurvival, Ranger (Wright, 2017; Wright and Ziegler, 2017) are used to fit these
algorithms. The parameters for these methods were as follows:

• A random forest (RF) with mtry=3 and 750 trees.

• A kNN survival method with the number of neighbours (k) = 40; number of base learners =20;
the number of features randomly selected in each base learner = 2.

Finally, in addition to benchmarking the methods against each other, a null model is included. This is a
an estimate with no covariates produced by the Kaplan Meier estimator (Kaplan et al., 1958).

Empirical approach and evaluation for TTS

The purpose of the empirical work in this section is twofold: to understand the important drivers of
resolution time across methods and to assess how these approaches perform on unseen data. The data
are divided (80%/20%) into a training and test sample. In industry, the TTS parameter is typically
an average per cohort group, usually calculated from completed sales only, and updated infrequently
(i.e., every two or three years) and are not forecast. Therefore, the testing approach used here is out of
sample, not out of time.

Several measures are available for assessing the predictive power of survival models at various time
points (Gneiting and Raftery, 2007; Harrell et al., 1996; Gerds and Schumacher, 2006; Gerds et al.,
2008). In this paper, a measure based on the Brier score is used (Brier, 1950). For a given observa-
tion of a subject at a certain time point, the Brier score is defined as the squared error between the
observed survival status (alive/dead) and a model based prediction of survival at a chosen timepoint
t. The observed event time yi = min(ti, ci) is the minimum of the event time (ti) for the ith loan and
the censoring time for that observation (ci). Because of this, the status variable for observations will
be undefined when yi is less than t. Therefore, they need to be weighted to account for censoring bias.
This weight can be calculated using the Inverse Probability of Censoring Weights (IPCW) method in
Gerds and Schumacher (2006).

The TTS predictive models should be evaluated over the time horizon for a workout process, and as the
overall prediction error and the error at specific time points are of interest, the time-dependent expected
Brier score is used. On an independent test data set D with n observations, the expected Brier score
can be estimated by:

B̂S(t, Ŝ) = 1
n

∑
i∈D

Ŵi(t){Ỹi − Ŝ(t|Xi)}2 (4.1)

The status variable for subject i in the test data is given by Ỹi. The predicted probability of survival by
time t, for subject i, based on the training data predictor variables Xi, is given by Ŝ(t|Xi). The IPCW
are Ŵi(t).
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These can be summarised graphically in Prediction Error Curves (PEC) (Mogensen et al., 2012). Pre-
diction Error (PE) is the prediction error from any method generating predicted survival times. τ > 0
is a value smaller than the maximum time for which prediction errors for each method are estimated.
The curve plots the PE versus the time point for that prediction. The PE curve for each method can
be summarised with the Integrated Brier Score (IBS) also known as the Integrated Prediction Error
Curve (IPEC, Lowsky et al. (2013)).The IBS is the integral over the relevant evaluation time period as
per equation 4.2.

IBS(PE, τ) = 1
τ

∫ τ

0
PE(u, S)du (4.2)

In this study, 127 months or approximately 10.5 years is the maximum time for evaluation.8 A lower
value for the Brier score at defined time points and a lower overall IBS indicate better predictive perfor-
mance. The R package pec and additional code is used to calculate the prediction error curves for the
relevant prediction horizon.

4.6.2 Forced sale discount modelling

This section describes the approach to the forced sale discount predictive modelling. The FSD reflects
the difference between the indexed valuation at the point of sale and the actual sale price. The main
objective is to produce a prediction of the FSD given that a sale has occurred, conditioning on the
covariates included in the model.

Eight types of methods are used for the prediction of the FSD. To start, a simple OLS model is used
with the haircut as the untransformed dependent variable. Next, a more flexible beta-regression mod-
elling is used. This approach is described in Ferrari and Cribari-Neto (2004); Smithson and Verkuilen
(2006) and Cribari-Neto and Zeileis (2010). This beta regression approach can model bounded and
skewed distributions through modelling the mean and the variance (precision).9 A linear Quantile Re-
gression (QR) model is used to estimate median quantile (τ = 0.5) (Koenker and Hallock, 2001) as a
robust estimator of the response. This type of approach has been applied to a similar haircut estimation
for LGD modelling in Somers and Whittaker (2007).

Several machine learning methods are chosen as non-parametric alternatives based, in part, on previous
benchmarking studies such as Loterman et al. (2012). The methods are:

• A single layer Neural Network (NN )

• A linear Support Vector Machine (SVM )

• A Random Forest (RF)

• Gradient boosted trees (XGB)
8This is chosen because it is the maximum time over which the semi-parametric Aalen model can be estimated. This is

because the estimator of the cumulative regression functions in the model is a least-squares type estimator. This requires
X′X to be invertible. One condition for singularity in the Aalen model is if there are fewer than number of predictors+1
subjects remaining at risk. In the data used in this study, this corresponds to a survival time of greater than 127 months.

9The logit link is used to map the linear predictor to the sample space of the observations. The logit link is used to
map the open unit interval, i.e., (0,1) of a beta distributed dependent variable to a real line. A log link is used for the
precision parameter.
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Table 4.2: Regression method training parameters

Name Meta parameters Values
OLS none none
Beta none none
Quantile quantile τ = 0.5
Neural Net size, decay size =(3,. . . ,10); decay= (0.0,. . . ,0.3)
SVM cost cost=(0.01,. . . ,10)
RF mtry, ntrees, sample fraction ntrees=(250,. . . ,1000); mtry=(1,. . . ,20); sample fraction =(0.5,0.632)

XGB eta, max depth, min child weight, sub sample, lambda, nrounds nrounds=(250,500,. . . ,1000); min.child.weight=(1,3,. . . ,7,9); eta=(0.0075,. . . ,0.3);
max depth=(1,2,. . . ,9); sub-sample=(0.5,0.632,0.75); lambda = 2(-10,. . . , -1)

DL1 epochs epochs =(1,. . . ,30); hidden layers =(200,200)
DL2 epochs,hidden epochs =(1,. . . ,30); hidden layers =(280,100),(320,120);(280,120);(300,120)

• A deep learning feed-forward network with two hidden layers of fixed size (DL1 )

• A deep learning feed-forward network with two hidden layers of varying size (DL2 )

The regression methods are not optimised or tuned as there is no regularisation or tuning of parametric
models. The machine learning method tuned over 5-fold cross-validation using the parameter settings in
Table 4.2. 10

All of the modelling was carried out in R. The R function lm is used to fit the OLS model. The R pack-
age Betareg (Cribari-Neto and Zeileis, 2010) is used to fit the Beta regression. Quantile regressions were
estimated using quantreg (Koenker, 2019). All of the machine learning methods were implemented in
the R package mlr by Bischl et al. (2016).

Empirical approach and evaluation for FSD

There are 5861 loans with a resolution resulting in the sale of collateral (a resolution event). To un-
derstand the generalisation performance of the methods, these data are divided into a 80% training
sample and a 20% test sample. Similar to the TTS parameter, for FSD this is typically an average per
cohort group from completed sales only is updated infrequently and not forecast. Therefore, the testing
approach used here is also out of sample, not out of time.

The data are range normalised to lie between zero and one as this is needed for the SVM and deep
learning methods. The response variable, the haircut, is transformed so that the endpoints lie strictly
between (0,1) so the beta-regression method can be used.11

Two performance measures are used: the Mean Absolute Error (MAE) and Mean Squared Error (MSE).
These are used chosen as we are interested in the assessment of the mean predictive ability of the meth-
ods, as well as being simple to understand and used in previous work (Leow et al., 2011; Loterman
et al., 2012).

4.7 Results

The results of the TTS and FSD modelling and their predictive performance are summarised in sub-
sections 4.7.1 and 4.7.2. Detailed results for TTS and FSD regression models are contained in Appendix
D.

10To check whether this would otherwise bias the results towards the machine learning methods, the same analysis was
carried out using the default settings with no hyper-parameter optimisation. The results were similar to those presented in
this section.

11The transformation is the one used Smithson and Verkuilen (2006) in y = [y(N − 1) + s]/N , where y is the haircut, N is
the sample size, and s=0.5 is a constant added to restrict the range to the (0,1) interval.
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4.7.1 TTS results summary

Overall, the variable effects summarised in Table 4.3 are broadly consistent across the parametric and
semi-parametric models.12 For TTS, the most important predictive variables are the bank indicator,
collateral/property types, the unemployment rate, and location.

Table 4.3: Summary of variable effects on resolution time: parametric/semi-parametric regression
models

Variable Log Normal Weibull Log Logistic Cox Aalen Explanation

Bank: B (A) - - - - -
Bank B resolves
collateral quicker

than A.

Default LTV - - - - -
Loans with higher

default LTV resolved
faster.

Loan age default - - - - -
Older loans at
default resolved

faster.

Property type:
Apt.other (House) + + + + +

Apartments have
longer resolution
times compared to

Houses.

Collateral type:
BTL (PDH) - - - - -

BTL loans have
longer resolution
times compared to

PDH.

Dublin Flag: Non
Dublin (Dublin) + + + + +

Non Dublin
collateral has a
longer resolution
time compared to
Dublin location.

Unemployment rate + + + + +

Positive changes in
unemployment rate

level increase
resolution time.

1The effects for the Cox model are based on reversing the coefficient signs in Table D.1.

The detailed parametric survival model results are shown in Table D.1. All of the variables are statis-
tically significant for the three parametric models. It is important to note the difference in coefficient
signs between AFT and Cox models. In an AFT model, the covariates act multiplicatively on time. The
coefficients are logarithms of ratios of survival times, a positive coefficient meaning that the covariate’s
effect is to increase resolution time, a negative coefficient means the covariate effect is to reduce resolu-
tion time. In the Cox model, the covariates act multiplicatively on the hazard. A negative coefficient
refers to decreased risk of resolution and a longer resolution time; conversely, a positive coefficient indi-
cates a higher resolution intensity and a shorter resolution time. Therefore, for our purposes, a positive
coefficient in an AFT model has a similar effect as a negative coefficient in the Cox model.

Across all three AFT models in Table D.1, bank-specific differences play an important role in resolution
times. For example, according to the lognormal model, bank B accelerates resolution times (log TTS)
by 0.287 (exp(−1.25)) compared to bank A. Increased default LTV, loan age at default, and collateral

12The Aalen model time varying cumulative regression function plot for loan age suggests that loan age additively
increases the hazard of sale up to about 60 months, after which is remains relatively constant.
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type BTL all reduce log TTS. Properties that are apartments (versus houses) and collateral being in
a non-Dublin location (versus Dublin) act to increase log TTS, compared to their reference categories.
An increase in the lagged change in the unemployment rate increases log TTS. Overall, the coefficient
estimates are relatively similar despite the different distributional assumptions in the three parametric
models.

The results from the Cox PH model in Table D.1 indicate that all of the predictor variables are signif-
icant. Bank B compared to bank A (the reference level) has a much higher resolution intensity, and
therefore a shorter TTS. Default LTV, loan age at default, and collateral type BTL are associated with
an increased hazard of resolution and a shorter resolution time. Properties that are apartments (versus
houses) and collateral in a non-Dublin location (versus Dublin) have a decreased hazard of resolution
compared to their reference categories. An increase in the lagged change in the unemployment rate de-
creases the hazard of resolution, increasing TTS. The results are similar to the AFT models in Table
D.1.

While default LTV and loan age are significant, they do not have a large effect size on resolution time.
This is illustrated in plots of the exponentiated coefficients from the AFTs and Cox model are shown in
Figures D.2 and D.3.13

Unlike the AFT or Cox models, for the Aalen model, there are two sets of hypotheses tested. The first
one is whether a covariate can be modelled as time-invariant. The null hypothesis is that the covariate
effect is time-invariant. The second is whether a coefficient is significant; the null hypothesis is that the
effect not different from zero.

The time-invariance test statistics are described in detail in Martinussen and Scheike (2006), Lando
et al. (2013). This hypothesis can be tested using two test statistics - the first is a Kolmogorov-Smirnov
(KS) test statistic, sensitive to large deviations from the null hypothesis of time constancy; the second
is a Cramer-von Mises (CvM) statistic sensitive to small but persistent deviations from the null. The
second set of tests are coefficient significance tests. These involve computing the maximal deviation
of the estimated cumulative regression coefficient βj(t) from zero divided by a robust estimate of its
variance.

Based on the aforementioned tests, the intercept and loan age at default were found to be time-varying,
whilst the remainder of the covariates could be treated as time-constant effects and modelled as para-
metric terms (see Table D.2). All of the variables are significant at the 5% level (last column; Table
D.3). Similarly to the parametric survival models, in this model, default LTV is relatively less impor-
tant than the other factors.

What are the important factors for TTS?

One of the most important factors for resolution time prediction is the bank specific indicator. Bank-
specific differences may reflect differing resolution strategies for individual banks and therefore resolu-
tion time. The results suggest that whereas previous studies have pooled data from several institutions,
explicitly taking these factors into account may be important where it is feasible to do so. The impor-
tance of loan age at default suggests loan seasoning is a statistically relevant factor to consider in reso-

13It is important to note that these are exponentiated coefficients and the continuous variables have been normalised to
have a mean of zero to facilitate interpretation of the Aalen model.



4.7. Results 75

property.type.rc

dublin.flag

collateral.type

loan.age.def

default_ltv.win

unrdyyl1

banka

0 25 50 75 100
Variable Importance

Figure 4.2: Survival forest impurity corrected variable importance

lution time models based on this data. However, the effect size is limited in the regression models (see
Figures D.2 and D.3). Conditioning mortgage resolution time estimates on variables like unemployment
appears to be important in most models.

As survival forests are a non-parametric technique, they do not have coefficients that can be compared
to the regression methods. However, it is possible to produce a relative variable importance ranking for
them. This variable importance measure shown in Figure 4.2 is the impurity importance measure. For a
variable xi, impurity importance is calculated by summing the decrease in the impurity measure for all
the nodes in the forest where xi has been split and divided by the number of trees. In a survival forest
context, the specific impurity measure is the maximum of the log rank statistic over all the possible
split points for the covariates consider for splitting. In this paper, the unbiased split variable selection
method outlined in Wright et al. (2017) is used.

The most important variables according to this measure are the bank factor, the lagged change in the
unemployment rate, default LTV, loan age at default, and collateral type. It is interesting that the sur-
vival forest indicates that unemployment is more important than some of the other variables identified
by the parametric and semi-parametric survival models.

Default LTV, while significant in the parametric survival models, did not have a large effect on reso-
lution time. By contrast, it was identified as important in the survival forest. This may suggest that
this covariate may have non-linear effects. However, inclusion of interactions for default LTV in the
AFT/Cox models did not markedly improve predictive performance.
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4.7.2 FSD results summary

The results for the FSD regression models are contained in Table D.4. The variables bank, forced vs.
voluntary, time in default, property/collateral types, and the unemployment rate are significant in the
three models. Default LTV is only marginally significant in the OLS regression, and loan age at default
is not significant in any regression.

The factor variable for 26 counties in the Republic of Ireland, (i.e., region-specific differences) is omitted
from the table due to space requirements. The intercept in the OLS method estimates a mean haircut
of 17% unadjusted for any covariates. Bank B has a 7% smaller discount compared to bank A. The
impact of forced sale through the legal process is approximately 12% higher compared to voluntary.
BTL collateral has about a 5% higher forced sale discount than owner occupier. Apartments have a 4%
lower FSD than houses based on this data. An extra 12 months resolution time increases the FSD by
1.8% with other covariates remaining unchanged.

The beta regression has broadly similar results with much smaller standard errors. Because the response
is on the logit scale, the coefficient interpretation is not as intuitive as for OLS or QR. For resolution
type, the coefficient 0.57 is the log of the ratio between the chance of a predicted haircut for a forced
sale compared to the reference category of voluntary sale. The QR model intercept is smaller than the
OLS (0.09 vs 0.17), but has a slightly larger value for the resolution type (0.136 vs 0.126). The other
coefficients are similar in magnitude to the OLS estimates.

What are the important factors for FSD?

Bank-specific differences, the mechanism that leads to the sale, the type of collateral/property, and the
duration of the work-out are all important determinants of the FSD for mortgages. This adds to the
findings of Rapisarda and Echeverry (2013) and Betz et al. (2018) who included TTS and collateral
types in their LGD modelling approaches for SME/Corporate loans. In terms of how these compare
to other results available for FSD magnitude, they are larger than the range reported in Donner et al.
(2016) and Lee (2010), with a mean of about 18%. However, given the scale of the property bubble and
subsequent decline in Ireland, this is not surprising.

For the ML methods, the feature importance can be approximated using permutation importance. The
relative importance of a feature can be approximated by the change in prediction error after permuting
the feature. A feature is important if permuting its values increases the error as the model relies on
the feature for prediction. A feature is not important if, after it is permuted, its values leave the error
unchanged. A negative permutation importance for a feature indicates predictive value worse than
random noise. Figure 4.3 suggests that a few variables are important in terms of the MAE for forced
sale discount prediction. These are the default LTV, time in default, and bank-specific differences as
well as the voluntary versus forced mechanism. It is interesting that the ML methods identify default
LTV as being an important predictors when regression models suggest a more limited role in terms of
importance. This is similar to what is found for TTS.

4.7.3 Predictive performance of TTS and FSD models

The predictive performance for TTS were evaluated using the measures outlined in Section 4.6.1. This
can be seen in Figure 4.4 which shows the prediction error for each of the methods over 120 months
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Figure 4.3: Machine learning predictive models of FSD: MAE permutation importance

and the Integrated Brier Score (IBS). Overall, the RSF is the most accurate evaluated on the test data.
Parametric AFT models like the log-logistic and lognormal model are second and third respectively as
measured by the IBS. The Cox proportional hazards and Weibull model have little between them. The
log-logistic and other parametric models perform relatively similarly until after about 90 months, when
the log-logistic performs slightly better. Finally, the bagged kNN survival method and the Aalen semi-
parametric method have a higher prediction error than the other methods, but lower than the KM null
method. Table 4.4 shows the Brier scores for selected time points and methods.

Table 4.4: Brier score for select times (months)

modname 12 36 60 72 120
1 aalensemi 0.03 0.10 0.18 0.20 0.23
2 bnn 0.03 0.10 0.17 0.19 0.24
3 cox 0.03 0.09 0.15 0.16 0.21
4 km 0.03 0.11 0.19 0.22 0.25
5 llog 0.03 0.09 0.15 0.16 0.21
6 ln 0.03 0.09 0.15 0.16 0.21
7 ranger 0.03 0.08 0.15 0.16 0.20
8 wei 0.03 0.09 0.15 0.16 0.21
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Figure 4.4: Prediction error comparison

For FSD prediction, all of the methods perform better than the median or mean as the no-information
benchmark. Table 4.5 shows the predictive performance measures. The performance of the parametric
methods is similar, with QR performing slightly better on the MAE, and OLS on the MSE criterion
respectively, compared to Beta-regression. The parametric models are mostly out-performed to a small
extent by some of the machine learning methods. SVM perform worse than QR on the MAE criterion,
and only slightly better on the MSE criterion. The remainder of the machine learning methods have
similar results across the two performance measures. Deep Learning methods, Neural Networks, and
Random Forests and perform the best, with only slight differences between them.

Given the modest differences between most methods and that a single data set is used for the ten meth-
ods (nine models plus a no-information benchmark), typical post-hoc tests of differences adjusted for
multiple comparisons suggest that there were no statistically significant differences between methods.
In a practical setting, further investigation of practically significant performance differences on a larger
samples (Benavoli et al., 2017), and if available, differing datasets would be required before it could be
concluded that the predictive performance of advanced machine learning methods offer a significant
improvement in FSD modelling.

Table 4.5: Forced sale discount model performance

Metric Mean OLS QR Beta NN SVM RF XGB DL1 DL2
MAE 0.2106 0.1793 0.1772 0.1809 0.1716 0.1782 0.1725 0.1730 0.1712 0.1728
MSE 0.0622 0.0473 0.0486 0.0495 0.0445 0.0481 0.0445 0.0452 0.0443 0.0444



4.8. Implications for loss severity estimation 79

4.8 Implications for loss severity estimation

This section combines the results for TTS/FSD predictive models through illustrating the implications
of model-predictions of these parameters compared to assuming fixed values for TTS/FSD. In some
industry implementations, the TTS may be estimated from completed sales only and not from sales that
were progressing but not yet completed, i.e., censored. As noted in Section 4.2, this implementation of
a loss severity models use TTS and FSD parameters that are average values for certain groups of loans.
For example, different fixed values of TTS and FSD could be looked-up based on whether the collat-
eral is an owner-occupied property (PDH) or Buy To Let (BTL); property type is house or apartment;
regional location and so on. Model predictions for individual property collaterals may be both lower
and/or higher than these constant TTS/FSD values per cohort as they do not account for other factors.

To illustrate the implications of the differences of this industry approach compared to that informed
by the approach in this paper on loss severity, a simple simulation is carried out. There are four main
steps:

• Assume 5000 loans with the same origination balance (e450,000) and an initial valuation of
e500,000 representing an 88% origination LTV. Each loan has an annual interest rate of 3% and
a 25 year term with monthly repayment frequency. The loans default with the timing of default
governed by a Weibull distribution with a shape parameter of 1.2 and a scale parameter of 35.
The EAD at default is the outstanding balance at the default time. A lognormal distribution is
assumed for simulating HPI index changes with a drift of -2.5% and a volatility of 13% per year.

• Three groups of TTS and FSD values are calculated. The first are random samples based on the
range of average TTS excluding non-closed loans and average for the FSD based on the grouping
or cohorts typically used in an IFRS 9 model such as collateral type and location. The second
group has two differences. The TTS are now based on the mean predicted TTS including censored
(non-closed) properties; the FSD are calculated in a similar fashion. The third are similar to the
second (i.e., mean of model predictions), but for FSD, the grouping is based on an additional
factor identified as important - time in resolution.

– assumed TTS: these are generated by draws from a uniform distribution between 15 and
47 months. The assumed FSD is drawn from a uniform distribution between 17-37%. The
TTS is the naïve estimate excluding non-closed loans; the FSD is based on the range of aver-
ages by cohort groups (resolution type (voluntary vs forced); collateral type (PDH vs BTL);
location (Dublin/Non-Dublin)).

– predicted TTS and FSD: TTS is based on the range (36 to 120 months) of median TTS
across methods with continuous covariates at their median values and for each categorical
variable, each category is represented. The FSD range (12 to 55%) is based on mean model
predicted FSD for the same cohort groups as above but including resolution type (voluntary
vs forced); collateral type (PDH vs BTL); Dublin/Non-Dublin location.

– modelled stratified FSD: FSD are cohort groups based on the top three models based on the
MAE/MSE criteria.14 For TTS the range is the same as above - 36 to 120 months. The FSD

14The purpose of the exercise is to make a general observation about the impact of modelling the TTS and FSD param-
eters, not specifically to discuss individual bank loss severity estimates.
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Figure 4.5: Time to sale, forced sale discounts, and loss severity.

range (13 to 63 %) is the mean model predicted FSD for the same cohort groups as above
and each quartile of the time in resolution.

• For each loan, its default time and TTS are added to give the sales time. This combined with the
property price index paths and FSD determines the collateral value at sale. A maximum time
period for the simulation is set at 175 months or nearly 15 years to limit implausibly long sale
periods. The Discounted Collateral Recovery (DCR) is calculated using equation 4.3.

• Assuming no repayments since default, LossAmount = EAD−DCR; Loss Severity = LossAmount/EAD.
This is repeated for each loan and the resulting density is plotted in figure 4.5.

DCR = 1
(1 +R)TTS (FSD −Disposal Costs) (4.3)

Two points are apparent from Figure 4.5 in this stylised example. The first is assuming constant pa-
rameters results in a lower average loss severity of 26% versus 44%-48% modelling these parameters;
a relative increase in loss severity of 69%. Second, using a modelled approach results in more variable
loss severity with increased mass at the right tail. Stratifying the groups by the model factors does not
substantially change the mean loss severity (44 vs 48%) but it increases loss severities in the right tail
the green-coloured density somewhat compared to the red-coloured. While this is quite a simple stylised
example, one implication is that assuming fixed parameter values for TTS and FSD may result in less
conservative estimates of loss severities.
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4.9 Conclusions

This chapter has compared various approaches to estimating two important parameters determining
mortgage collateral recoveries: the Time to Sale (TTS) and Forced Sale Discount (FSD). The first re-
search question in this chapter focused on what approaches can produce accurate predictions of each
of the two parameters. For TTS, Random Survival Forests (RSF) were found to be the most accurate,
but parametric survival models performed reasonably. For the FSD modelling, from the range of the
methods considered, machine learning methods performed better than parametric methods, with Deep
Learning, Random Forests, and Neural Networks performing best, with minor differences in perfor-
mance.

Regarding the second research question, the important factors identified for TTS were bank-specific
differences, loan seasoning, and the change in the unemployment rate prior to default. RSF identified
default LTV as being important, but this was not identified by other models as being equally important.
This may reflect some non-linear effects and as well as a feature of the Irish crisis when negative equity
was pronounced among all defaulted loans, and not only properties in a collateral liquidation process.
The finding that unemployment is an important predictive feature may mean that conditioning TTS
estimates on macroeconomic factors should be considered further by model builders.

In terms of important factors for FSD prediction, default LTV, bank-specific differences, and the nature
of the resolution process itself were the most important features identified by machine learning methods.
Default LTV importance concurs with previous empirical results in this area. Bank-specific differences
may reflect varying resolution strategies that in turn affect the type and timing of resolutions. The
results suggest that previous work using pooled data from several institutions, may need to take this
factor into account. Sales concluded through bilateral agreement between bank and borrower reduced
the forced sale discount significantly compared to sales as a result of a legal process to enforce security.
This could be an important consideration for jurisdictions where work-out through a legal process takes
much longer, and bilateral agreements become an important method of Non-Performing Loan (NPL)
resolution. Time in resolution is also important for FSD prediction. This empirical finding supports
recent LGD research that includes time to resolution as a covariate.

Finally, in Section 4.8, a simple simulation, informed by the predictive models built in Sections 4.6.1
and 4.6.2, revealed underestimation of loss severity arising from two sources. First, ignoring censored
loans and apply a TTS calculated based on completed sales only. Incorporating censored loans using
survival analysis results in longer TTS durations in this study. Second, from assuming parameters as
fixed group means within certain grouping variables such as collateral type (i.e., PDH vs BTL). This
grouping could be carried out based on the most important factors for TTS or FSD predictive models.
Compared to a limited number of group means - one approach currently used within industry - the sim-
ulation suggests there are practically significant differences in loss severities between both approaches.
This suggests that more conservative, i.e., higher loss severities are produced as a result of modelling
these parameters directly.

As the study is country-specific, it would be interesting to compare the results for other markets and
approaches to estimating both the TTS and FSD parameters. The FSD model approach in this study
is somewhat limited by the available data, and having a richer set of predictors could be exploited by
more advanced statistical or machine learning approaches.
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Chapter 5

Conclusions

5.1 Introduction

This chapter outlines the general conclusions of this thesis, some of the limitations of the work, and
potential for further work on some related aspects of the three papers that make up this thesis.

5.2 Mortgage arrears prediction

5.2.1 Main findings and conclusions

Chapter 2 was a study comparing whether machine learning methods could outperform standard meth-
ods like logistic regression to predict mortgage arrears. The main findings are that some methods like
Boosted Regression Trees (BRTs) can. However, there are other non-machine learning methods, such
as Generalised Additive Models (GAMs), that can be usefully applied in this context. A frequent criti-
cism of machine learning prediction methods is that they are “black boxes” regarding the variables that
are important for their prediction. In both GAMs and BRTs allow for (at least partial) explanations
through variable importance plots and partial dependence or plots of the smoothing terms (which is
important in this context). They could also be useful as an input to the building of white-box models
through identifying where there are non-linearities or interactions.

5.2.2 Limitations and further research

The research reflected the financial conditions at a point in time in 2010-2012, and like all results from
inductive learning these findings may not readily be generalised to other times and places as the crisis
context and drivers of arrears and default are likely to be different. It is also unclear, due to data limita-
tions, whether changes in borrower behaviour and financial sector policies such as forbearance have had
an impact on arrears incidence, as well as the severe economic distress, during which the distribution of
good and bad borrowers may have shifted (Hand, 2006).

This topic could be tackled by using approaches to model concept drift (i.e., the change in joint dis-
tribution of the data) (Krempl and Hofer, 2011), and drawing on some of the advancements in on-line
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learning since the paper was published could be an interesting area of research. This could be investi-
gated along with the issue of class imbalance, as this was a feature of the data in this paper, and the
distribution of classes changed significantly over time. This is a challenging problem no doubt, but there
are examples of arguably more acute versions of this problem in different domains. For example, in
cybersecurity applications such as spam prevention, intrusion detection, vulnerabilities exist and are
exploited/found or are found and patched before being used. This can lead to a time changing distribu-
tion as adversaries try new techniques to defeat the security system (Sethi and Kantardzic, 2017).

5.3 P2P loan return prediction

5.3.1 Main findings and conclusions

Chapter 3 investigated whether various types of prediction methods and the types of information con-
tained in loan listing features matter for profitable investment in Peer to Peer (P2P) loans. The main
findings are that: linear methods perform surprisingly well on several (but not all) criteria; whether
ensemble methods perform better than individual methods is measure dependent; the use of alternative
text-based information does not improve profit scoring outcomes.

5.3.2 Limitations and further research

A key finding is that it may pay (in terms of returns) to model profitability directly; however, the per-
formance depends on the methods adopted and the type of information used. Similar to Chapter 2,
there are data limitations related to the specific time window when the P2P platform published text
information. The findings regarding the efficacy of more advanced machine learning techniques may be
a result of the methods chosen and/or the separability of the data. Focusing on more recent periods,
i.e., not using text data, and assessing the information content of the Lending Club grade versus the
other covariates (Fico score, application information) could be interesting to explore. It is likely that
the platform have been through many iterations of their grading model since they first launched, and it
may provide investors with further insights into the rating process.

A second interesting area is the portfolio allocation of investors given their investment budget and risk
tolerance. Over time, the P2P platform investor base has changed from being small investors to a mix
of smaller investors and large professional investors. An interesting research question is given two sizes
of investment budgets and risk preferences reflecting a small investor and a professional investor, how
big does a portfolio have to be and of what grade to minimise the value of large tail losses? This is a
variant of a mixed integer linear programming problem, and these methods, subject to the constraints
being formulated appropriately, may a useful avenue for further work from a portfolio perspective.

5.4 Mortgage collateral recovery prediction

5.4.1 Main findings and conclusions

Chapter 4 addresses the problem of predicting the collateral recovery value of defaulted mortgages, by
modelling two important parameters determining this value: time to sale (i.e., the length of time before
the default is resolved through sale) and forced sale discount (i.e., the percentage loss in sales proceeds
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relative to the indexed valuation). Using data from two Irish banks, the predictive performance of a va-
riety of survival analysis approaches to estimate time to sale is evaluated. The main finding of this part
of the work is that Random Survival Forests and parametric survival models perform best. For forced
sale discount, Deep Learning, Random Forests, Neural Networks, and XGBoost methods produced the
lowest errors. Using these two parameters (TTS and FSD), a sensitivity analysis illustrated how pre-
dictive modelling of these parameters produces higher (i.e., more conservative ) loss estimates than a
current industry approach consisting of average values per cohort of loans.

5.4.2 Limitations and further research

Similar to the research in Chapter 2, one limitation of the study is that it may not be directly gener-
alised to some other European countries because of the extreme nature of the crisis in Ireland. However,
while the context may be different, there are parallels to other crisis hit countries. This is an area of
continuing policy focus in Europe for several other euro area and two EU countries. A related limitation
is the data available for this study were from two banks only. A larger sample of banks and a richer pre-
dictor dataset could provide additional insight. As the Forced Sale Discount (FSD) literature in credit
risk modelling is somewhat limited, future research in this area could focus on using alternative data
sources that including additional property level features.

5.5 General conclusions of this thesis

In this research, three types of prediction problems in three application domains have been explored.
The following conclusions can be made. Learning theory and evidence of the widespread adoption of ma-
chine learning into our daily lives as users of technologies based on these methods tells us that machine
learning works. Learning theory and empirical research, including some of the results in this thesis,
also tells us that no one algorithm will perform best in many contexts. It follows that applying more
advanced methods can be useful, given a good understanding of the problem domain, the context, and
awareness of the limitations of these methods.

In a credit risk context, some of the performance improvements were significant. However, even where
there were smaller improvements, scaled to large portfolios or more accurate predictions of defaults/impairment
parameters can matter substantially in a business context.

Given the results in this thesis, improved predictive performance combined with appropriate use and
model risk management, suggests that machine learning methods could be more widely used in both
banks and non-banks for consumer credit risk management as well as within the supervisory community
assessing these types of risks within regulated firms. Three developments make this more likely. The
first is the growing awareness of policy makers of how this type of modelling could be beneficial, as well
as how the associated risks need to be managed as various industries including financial services adopt
this technology (Brainard, 2018). The second is the emerging research topic of explainable machine
learning (Rudin and Shaposhnik, 2019). This field is related to rule extraction methods (de Fortuny
and Martens, 2012; Martens et al., 2007; Baesens et al., 2003b) to create summary explanations of
predictions that are consistent with the underlying model. This could reduce the perception of a ‘black-
box’ barrier to explanation of model predictions.
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In this thesis, the methods chosen, their performance optimisation, and experimental evaluation were
undertaken with domain experience, understanding of some of the prior research literature, and based
on current standards for optimising performance in the contexts they were applied. The third factor
in making adoption of machine learning more probable is the emerging research on what is termed
“AutoML”. This automates the search for a best performing algorithm given the problem domain. These
methods may produce better predictions for the problems of today - considered in this thesis - and the
problems of tomorrow.



Appendix A

Additional statistical testing results
for chapter 2

A.1 Classifier performance using only complete observations
for income-based variables

These results are based on a smaller sample than those used in the main part of the paper. After ex-
cluding cases with missing income, a sample size of approximately 280,000 observations remained. The
model training, validation and testing was carried out as in the main part of the paper. For portfolio
3, the values are the same as in Table 2.2 as this portfolio was not missing any income data. Overall,
the results indicate that the performance ranking remains similar regardless of our treatment of missing
income variable values.

Table A.1: Summary performance of classifiers: complete cases income variables

Technique Port 1 Port 2 Port 3 Port 4 Avg. Rank
H-measure

LR 0.2256 0.2354 0.2900 0.2578 3.75
GAM 0.2467 0.2619 0.2928 0.2607 1.875
BRT 0.2599 0.2647 0.2909 0.2711 1.5
RF 0.2586 0.2475 0.2814 0.2607 2.875

Table A.2: Complete cases income: statistical comparison of classifiers using H-measures

Test Statistic Calculated Calculated p value
Friedman 7.425 0.0595

Iman-Davenport 4.869 0.028
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Table A.3: Complete case income: Holm’s step down procedure for H-measure ranks

(α = 0.05 and α = 0.1; BRT is control classifier)

Classifier z = (R0 −Ri)/SE pi Holm’s adjusted p-value
LR 2.4648 0.0137 0.0166
RF 1.5062 0.1320 0.025

GAM 0.4108 0.6812 0.05
LR 2.4648 0.0137 0.0333
RF 1.5062 0.1320 0.05

GAM 0.4108 0.6812 0.1



Appendix B

Text mining feature construction for
chapter 3

B.1 Overview of text features

This appendix summarises the text based features and the approach used to fit the topic model.

The text comprises of the title of the listing text and the listing text itself. The text is a concatena-
tion of two free text fields. There are no specific requirements to follow for the listing title or text. The
provision of this text is voluntary, not mandatory. This text description was discontinued on Wednes-
day, March 19th, 2014. Compared to other P2P platforms like Prosper, the text on Lending Club is
relatively short.

B.1.1 Preprocessing and summary statistics

The main steps in pre-processing removing whitespace, non-ASCII characters, removing HTML tags,
and other artifacts related to the platform such as “Borrower added on <Date>”. This is applied to the
title and description text of the listing. The text is concatenated. This is because some borrowers pro-
vide short listing titles like card or move, and longer listing text text. Other borrowers do the opposite
providing long titles with details that other borrowers have provided in the listing text, and short or no
listing text.

• Following merged with the payment and application information, selection of loans issued from
October 2008 - March 2014.

• Town/city and state fields are concatenated to a string and geo-coded to longitude and latitude.

• Listing with title or description texts with less than 4 characters in length were removed (474
loans)

• Convert numbers to words, remove punctuation, alphanumeric characters, trims strings, encode
strings as UTF-8-MAC, remove any remaining non-ASCII characters, convert to lower case, re-
move stop words.

89



90 Appendix B. Text mining feature construction for chapter 3

The summary of the text information indicates that it is short - on average two sentences, and each
sentence is on average just over six words long.

Table B.1: Summary statistics for text features

var min median mean max sd
number of words 1.00 4.00 20.55 819.00 38.98
number of sentences 1.00 1.00 2.18 97.00 2.26
sentence length 1.00 3.00 6.13 141.00 5.82
number frequency 0.00 0.00 0.45 11.00 1.44
complex.words 0.00 1.00 2.34 148.00 4.23

B.1.2 Bit-term topic model

The short listing texts presented a challenge to construct representations of the text as feature vectors
as there are a limited number of words per listing. One way to deal with this is to use topic modelling.
However, topic models designed for standard length text (i.e., full web-pages, multiple page lengths of
text) still face a problem of the sparsity of text within individual listings in this data.

One solution to this is a bit-term topic model. A bit-term is an unordered pair of words from a text
string. A bit-term topic model is a short-text topic model that is based on global word co-occurrence
(i.e., across texts) to overcome text sparsity within individual documents (Yan et al., 2013). Bit-terms
can be extracted using local word co-occurrence so that words that are within a window size are used,
and words that occur outside of this window (i.e., too far apart) are not.

The main steps in fitting the topic model are to prepare the text input into tokens or one word per row,
per listing. The key parameters are the window size (2 words), the default priors alpha and beta for
the Bayesian estimation of the model (beta=0.01; alpha=50/k where k is the number of topics), and
1000 iterations of the Gibbs sampling procedure. The number of topics k was chosen by searching over
1-20 topics, recording the resulting log-likelihood as well as assessing the top 5 words within each topic
for each set of iterations to ensure there were distinct topics. This resulted in 18 topics being chosen.
This means we now have 18 additional feature vectors reflecting probabilities that a given listing has a
certain topic.

For the out of time setting, feature generation involved using the text from the training data and scor-
ing both the train and test data with the resulting model. For the rolling window, it is necessary to
carry out the tokenisation process for each iteration of the moving window of 12000 observations to
ensure that only bit-terms present in those texts were used. This is to prevent data leakage among win-
dows and involved fitting the bit-term model separately for each slice of the moving window data. For
simplicity, we kept k=18 topics as searching for different numbers of topics within each window slice
would be computationally expensive and introduce additional variability within this part of the experi-
ments.



Appendix C

Additional statistical testing results
for chapter 3

Testing information type as a within factor

This section includes the detailed results for testing the role of differing types of information referred to
in the main text. This is a robust linear mixed model with two within-subject factors. The first is a two
level variable information type info (hard only; both) and model (17 levels, bagged trees is the reference
category). The coefficients of interest are those for info:both (underlined in the tables). In Table C.1
the coefficient on info is negative for AUC in the rolling experimental set-up, with a t-statistic of 3.45
indicating negative predictive value. There are no large t-statistics for the other performance measures.
In the out of time setting in Table C.2, the effect on MAE is negative, with a t-statistic of 1.40, and
NDCG is positive (t-statistic -2.8), indicating a degree of predictive value for NDCG. There are no large
t-statistics for AUC.

Alternative Testing Approaches for Research Questions

This section contains an alternative approach considered in exploring the research questions. The re-
sponse was rank transformed and then used as a dependent variable in a linear mixed model. The
results broadly confirm those of the main text. The exception is the inclusion of hard and soft infor-
mation. This now has no detectable effect on the rank performance.

In Table C.3 across the three criteria (MAE, AUC, and NDCG) there are statistically significant differ-
ences for the factors lin.nonlin. For ensemble, there are significant differences MAE, NDCG, and AUC.
This is similar to Table 3.4 in the main text. The results contained in Table C.5 are similar to those in
Table 3.5 except the t-statistic for information is no longer large for AUC.

For the out of time setting, the results in Table C.4 are similar to those in the main text in Table 3.7.
The results in Table C.6 as similar to Table 3.8 except the t-statistic on information NDCG is now
much lower, and similar to MAE and AUC indicating additional text information is not important for
performance.
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Table C.1: Robust linear mixed effect model: rolling window within-subjects

MAE NDCG AUC
(Intercept) 15.5639 0.8118 0.6313

(0.3370) (0.0144) (0.0029)
infoboth 0.0207 0.0025 −0.0069

(0.0875) (0.0146) (0.0020)
modnameh2o.dl −1.1015 −0.0204 0.0104

(0.0875) (0.0146) (0.0020)
modnameh2o.glm −1.1796 −0.0747 0.0320

(0.0875) (0.0146) (0.0020)
modnamel2liblin −6.5217 −0.1026 0.0311

(0.0875) (0.0146) (0.0020)
modnamelasso −1.0745 0.0212 0.0162

(0.0875) (0.0146) (0.0020)
modnamemars −1.1194 −0.0527 0.0071

(0.0875) (0.0146) (0.0020)
modnamennet −1.2490 0.0160 0.0083

(0.0875) (0.0146) (0.0020)
modnamepls −1.1645 0.0068 0.0288

(0.0875) (0.0146) (0.0020)
modnamerf −0.9048 −0.0088 0.0310

(0.0875) (0.0146) (0.0020)
modnameridge −1.1438 0.0248 0.0308

(0.0875) (0.0146) (0.0020)
modnamesl.avg −2.0293 0.0068 0.0355

(0.0875) (0.0146) (0.0020)
modnamesl.gbm −1.0589 0.0046 0.0341

(0.0875) (0.0146) (0.0020)
modnamesl.liblin −6.5399 0.0032 0.0354

(0.0875) (0.0146) (0.0020)
modnamesl.mars −1.1696 0.0106 0.0344

(0.0875) (0.0146) (0.0020)
modnamesl.ridge −1.2161 0.0252 0.0356

(0.0875) (0.0146) (0.0020)
modnamesvm −6.5511 −0.1228 −0.0911

(0.0875) (0.0146) (0.0020)
modnamexgb −1.1690 −0.0037 0.0219

(0.0875) (0.0146) (0.0020)
infoboth:modnameh2o.dl −0.0177 0.0105 0.0080

(0.1237) (0.0206) (0.0028)
infoboth:modnameh2o.glm 0.0110 0.0002 0.0066

(0.1237) (0.0206) (0.0028)
infoboth:modnamel2liblin −0.0528 0.0033 0.0068

(0.1237) (0.0206) (0.0028)
infoboth:modnamelasso −0.0148 0.0043 0.0051

(0.1237) (0.0206) (0.0028)
infoboth:modnamemars 0.0029 −0.0073 0.0076

(0.1237) (0.0206) (0.0028)
infoboth:modnamennet 0.3444 −0.0215 0.0070

(0.1237) (0.0206) (0.0028)
infoboth:modnamepls 0.0230 0.0020 0.0061

(0.1237) (0.0206) (0.0028)
infoboth:modnamerf 0.0434 0.0130 −0.0006

(0.1237) (0.0206) (0.0028)
infoboth:modnameridge 0.0021 −0.0052 0.0061

(0.1237) (0.0206) (0.0028)
infoboth:modnamesl.avg 0.0071 −0.0028 0.0062

(0.1237) (0.0206) (0.0028)
infoboth:modnamesl.gbm −0.1907 0.0067 0.0067

(0.1237) (0.0206) (0.0028)
infoboth:modnamesl.liblin −0.0362 0.0166 0.0060

(0.1237) (0.0206) (0.0028)
infoboth:modnamesl.mars 0.0195 0.0041 0.0047

(0.1237) (0.0206) (0.0028)
infoboth:modnamesl.ridge 0.0229 −0.0021 0.0061

(0.1237) (0.0206) (0.0028)
infoboth:modnamesvm −0.0219 −0.0097 0.0144

(0.1237) (0.0206) (0.0028)
infoboth:modnamexgb 0.0345 −0.0057 0.0035

(0.1237) (0.0206) (0.0028)
Num. obs. 442 442 442
Standard errors in parentheses
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Table C.2: Robust linear mixed effect model: out of time within-subjects

Coefficient MAE NDCG AUC
(Intercept) 21.2311 0.7741 0.5818

(0.3335) (0.0136) (0.0042)
infoboth −0.5561 0.0452 0.0021

(0.3951) (0.0162) (0.0054)
modnameh2o.dl −7.0175 −0.0599 0.0469

(0.3951) (0.0162) (0.0054)
modnameh2o.glm −7.3669 0.0042 0.0573

(0.3951) (0.0162) (0.0054)
modnamel2liblin −12.1443 −0.0139 0.0592

(0.3951) (0.0162) (0.0054)
modnamelasso −7.5554 −0.0236 −0.0727

(0.3951) (0.0162) (0.0054)
modnamemars −6.4677 −0.0401 0.0144

(0.3951) (0.0162) (0.0054)
modnamennet −6.2857 −0.0449 0.0473

(0.3951) (0.0162) (0.0054)
modnamepls −7.5055 −0.0338 0.0416

(0.3951) (0.0162) (0.0054)
modnamerf −4.0386 −0.0258 0.0322

(0.3951) (0.0162) (0.0054)
modnameridge −7.5182 −0.0291 0.0520

(0.3951) (0.0162) (0.0054)
modnamesl.avg −6.5127 −0.0418 0.0575

(0.3951) (0.0162) (0.0054)
modnamesl.gbm −5.9853 −0.0361 0.0502

(0.3951) (0.0162) (0.0054)
modnamesl.liblin −12.0191 −0.0150 0.0505

(0.3951) (0.0162) (0.0054)
modnamesl.mars −5.5899 −0.0336 0.0486

(0.3951) (0.0162) (0.0054)
modnamesl.ridge −5.7505 −0.0071 0.0531

(0.3951) (0.0162) (0.0054)
modnamesvm −12.1779 −0.0746 −0.0159

(0.3951) (0.0162) (0.0054)
modnamexgb −4.7460 −0.0509 0.0416

(0.3951) (0.0162) (0.0054)
infoboth:modnameh2o.dl 0.6875 −0.0384 −0.0098

(0.5587) (0.0229) (0.0076)
infoboth:modnameh2o.glm 0.4040 −0.0492 −0.0090

(0.5587) (0.0229) (0.0076)
infoboth:modnamel2liblin 0.6526 −0.0277 −0.0088

(0.5587) (0.0229) (0.0076)
infoboth:modnamelasso 1.4568 −0.0303 0.1056

(0.5587) (0.0229) (0.0076)
infoboth:modnamemars −0.1388 −0.0545 −0.0022

(0.5587) (0.0229) (0.0076)
infoboth:modnamennet −0.3583 −0.0476 0.0024

(0.5587) (0.0229) (0.0076)
infoboth:modnamepls 0.4351 −0.0197 −0.0087

(0.5587) (0.0229) (0.0076)
infoboth:modnamerf 0.1013 −0.0414 −0.0300

(0.5587) (0.0229) (0.0076)
infoboth:modnameridge 0.5192 −0.0242 −0.0046

(0.5587) (0.0229) (0.0076)
infoboth:modnamesl.avg −0.0749 −0.0078 −0.0094

(0.5587) (0.0229) (0.0076)
infoboth:modnamesl.gbm 0.3532 0.0061 −0.0136

(0.5587) (0.0229) (0.0076)
infoboth:modnamesl.liblin 0.5894 −0.0028 −0.0086

(0.5587) (0.0229) (0.0076)
infoboth:modnamesl.mars −0.4500 −0.0080 −0.0126

(0.5587) (0.0229) (0.0076)
infoboth:modnamesl.ridge −0.4233 −0.0129 −0.0082

(0.5587) (0.0229) (0.0076)
infoboth:modnamesvm 0.6704 −0.0155 −0.0167

(0.5587) (0.0229) (0.0076)
infoboth:modnamexgb −0.6312 0.0044 −0.0266

(0.5587) (0.0229) (0.0076)
Num. obs. 170 170 170
Standard errors in parentheses
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Table C.3: Robust linear mixed effect model: rolling window (rank transformation)

MAE NDCG AUC
(Intercept) 11.6013 7.7179 8.6139

(0.4244) (0.4725) (0.3355)
lin.nonlinlinear −4.9632 −0.2587 −4.4475

(0.4832) (0.5379) (0.3819)
ensembleindividual −0.0397 2.5336 4.5629

(0.4901) (0.5456) (0.3874)
Num. obs. 442 442 442
Standard errors in parentheses

Table C.4: Robust linear mixed effect model: out of time (rank transformation)

MAE NDCG AUC
(Intercept) 14.5563 9.6189 11.4084

(0.4407) (0.7065) (0.6355)
lin.nonlinlinear −5.9760 −3.4869 −4.4505

(0.5017) (0.8044) (0.7236)
ensembleindividual −4.0198 2.0930 −0.3984

(0.5088) (0.8158) (0.7339)
Num. obs. 170 170 170
Standard errors in parentheses



95

Table C.5: Robust linear mixed effect model: rolling window within-subjects (rank transformation)

MAE NDCG AUC
(Intercept) 16.8462 8.9219 15.1618

(0.6928) (1.0571) (0.4355)
infoboth −0.0769 −0.3515 0.3766

(0.9798) (1.4950) (0.6158)
modnameh2o.dl −6.7794 2.4948 −1.6666

(0.9798) (1.4950) (0.6158)
modnameh2o.glm −8.3470 4.8358 −8.8334

(0.9798) (1.4950) (0.6158)
modnamel2liblin −14.3077 5.9949 −7.4920

(0.9798) (1.4950) (0.6158)
modnamelasso −5.3797 −3.5054 −2.4444

(0.9798) (1.4950) (0.6158)
modnamemars −5.5393 4.1813 −1.1711

(0.9798) (1.4950) (0.6158)
modnamennet −9.7977 −2.8885 −1.0867

(0.9798) (1.4950) (0.6158)
modnamepls −6.6166 −1.4175 −5.7501

(0.9798) (1.4950) (0.6158)
modnamerf −2.0769 1.2538 −7.5669

(0.9798) (1.4950) (0.6158)
modnameridge −6.0037 −4.8298 −7.1764

(0.9798) (1.4950) (0.6158)
modnamesl.avg −12.6154 −1.4591 −12.4265

(0.9798) (1.4950) (0.6158)
modnamesl.gbm −4.7580 −1.2219 −10.9358

(0.9798) (1.4950) (0.6158)
modnamesl.liblin −15.0000 −1.3740 −11.8867

(0.9798) (1.4950) (0.6158)
modnamesl.mars −7.8170 −2.4169 −11.6682

(0.9798) (1.4950) (0.6158)
modnamesl.ridge −8.0057 −4.3834 −12.6081

(0.9798) (1.4950) (0.6158)
modnamesvm −15.2308 6.6296 1.8382

(0.9798) (1.4950) (0.6158)
modnamexgb −7.4166 −0.2031 −3.7772

(0.9798) (1.4950) (0.6158)
modnameh2o.dl:infoboth 0.8962 −1.4275 −1.0731

(1.3857) (2.1142) (0.8709)
modnameh2o.glm:infoboth 1.1162 0.7607 −0.8906

(1.3857) (2.1142) (0.8709)
modnamel2liblin:infoboth −0.3846 0.7424 −1.2280

(1.3857) (2.1142) (0.8709)
modnamelasso:infoboth −0.0360 −0.7028 0.0436

(1.3857) (2.1142) (0.8709)
modnamemars:infoboth 0.1236 0.3527 −0.6839

(1.3857) (2.1142) (0.8709)
modnamennet:infoboth 6.6917 4.1189 −0.7890

(1.3857) (2.1142) (0.8709)
modnamepls:infoboth 0.6638 0.0278 −1.0335

(1.3857) (2.1142) (0.8709)
modnamerf:infoboth 0.2308 −2.3063 2.2336

(1.3857) (2.1142) (0.8709)
modnameridge:infoboth −0.6547 1.8429 −1.0705

(1.3857) (2.1142) (0.8709)
modnamesl.avg:infoboth −0.0769 0.8754 −0.7274

(1.3857) (2.1142) (0.8709)
modnamesl.gbm:infoboth −4.8221 0.3734 −0.3735

(1.3857) (2.1142) (0.8709)
modnamesl.liblin:infoboth 0.2308 −1.6581 −0.8382

(1.3857) (2.1142) (0.8709)
modnamesl.mars:infoboth 0.2490 0.2180 1.6166

(1.3857) (2.1142) (0.8709)
modnamesl.ridge:infoboth −0.0323 1.3515 −0.3422

(1.3857) (2.1142) (0.8709)
modnamesvm:infoboth 0.3846 0.8026 −0.3766

(1.3857) (2.1142) (0.8709)
modnamexgb:infoboth 0.3639 0.8641 −0.6653

(1.3857) (2.1142) (0.8709)
Num. obs. 442 442 442
Standard errors in parentheses
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Table C.6: Robust linear mixed effect model: out of time within-subjects (rank transformation)

MAE NDCG AUC
(Intercept) 16.4000 4.4228 15.4000

(0.8803) (1.6003) (0.8071)
infoboth 0.4000 −2.0228 −0.2000

(1.2449) (2.2632) (1.1414)
modnameh2o.dl −8.7945 9.9062 −6.2000

(1.2449) (2.2632) (1.1414)
modnameh2o.glm −10.0041 −1.4996 −12.0000

(1.2449) (2.2632) (1.1414)
modnamel2liblin −14.4000 2.9062 −12.8089

(1.2449) (2.2632) (1.1414)
modnamelasso −11.2000 1.7503 0.0223

(1.2449) (2.2632) (1.1414)
modnamemars −5.1094 7.9041 −1.0000

(1.2449) (2.2632) (1.1414)
modnamennet −5.7547 7.7772 −8.4000

(1.2449) (2.2632) (1.1414)
modnamepls −10.2000 5.5541 −3.9916

(1.2449) (2.2632) (1.1414)
modnamerf −1.4000 3.7456 −2.4000

(1.2449) (2.2632) (1.1414)
modnameridge −10.4000 3.2503 −8.5584

(1.2449) (2.2632) (1.1414)
modnamesl.avg −5.5998 7.2019 −13.0000

(1.2449) (2.2632) (1.1414)
modnamesl.gbm −4.8000 6.1555 −7.4000

(1.2449) (2.2632) (1.1414)
modnamesl.liblin −14.0000 0.9772 −7.7536

(1.2449) (2.2632) (1.1414)
modnamesl.mars −4.2000 4.9560 −6.9911

(1.2449) (2.2632) (1.1414)
modnamesl.ridge −3.4063 −0.8228 −10.0000

(1.2449) (2.2632) (1.1414)
modnamesvm −14.8000 10.2019 0.6000

(1.2449) (2.2632) (1.1414)
modnamexgb −2.6000 6.3877 −4.4000

(1.2449) (2.2632) (1.1414)
modnameh2o.dl:infoboth 2.0008 1.7709 −0.0000

(1.7606) (3.2006) (1.6141)
modnameh2o.glm:infoboth 0.9119 6.0196 0.4648

(1.7606) (3.2006) (1.6141)
modnamel2liblin:infoboth −0.2000 1.7890 −0.5911

(1.7606) (3.2006) (1.6141)
modnamelasso:infoboth 6.1066 5.0365 −5.3807

(1.7606) (3.2006) (1.6141)
modnamemars:infoboth −3.4009 4.6959 −0.2000

(1.7606) (3.2006) (1.6141)
modnamennet:infoboth −3.7519 5.2228 −4.4584

(1.7606) (3.2006) (1.6141)
modnamepls:infoboth −0.8000 2.0459 −0.2973

(1.7606) (3.2006) (1.6141)
modnamerf:infoboth −0.0436 6.2297 2.4012

(1.7606) (3.2006) (1.6141)
modnameridge:infoboth −0.0235 3.9339 −2.4036

(1.7606) (3.2006) (1.6141)
modnamesl.avg:infoboth −3.5549 −2.9275 1.8000

(1.7606) (3.2006) (1.6141)
modnamesl.gbm:infoboth 0.8000 −3.1555 1.6427

(1.7606) (3.2006) (1.6141)
modnamesl.liblin:infoboth −1.0000 0.4228 0.1288

(1.7606) (3.2006) (1.6141)
modnamesl.mars:infoboth −1.2235 −0.2560 0.9669

(1.7606) (3.2006) (1.6141)
modnamesl.ridge:infoboth −3.2565 3.0844 0.4000

(1.7606) (3.2006) (1.6141)
modnamesvm:infoboth 0.0000 1.9981 0.8000

(1.7606) (3.2006) (1.6141)
modnamexgb:infoboth −0.3372 0.0401 2.4000

(1.7606) (3.2006) (1.6141)
Num. obs. 170 170 170
Standard errors in parentheses



Appendix D

Regression results and
supplementary graphs for chapter 4

D.1 TTS regression model results

D.1.1 Parametric and Cox model results

Table D.1: Survival model results estimating TTS

Model
lognormal Weibull log-logistic cox

(1) (2) (3) (4)
bank =B −1.2501∗∗∗ −0.9739∗∗∗ −1.0732∗∗∗ 1.4679∗∗∗

(0.0278) (0.0241) (0.0255) (0.0316)
default ltv −0.0013∗∗∗ −0.0007∗∗∗ −0.0014∗∗∗ 0.0009∗∗∗

(0.0002) (0.0002) (0.0002) (0.0002)
loan.age.def −0.0082∗∗∗ −0.0074∗∗∗ −0.0074∗∗∗ 0.0108∗∗∗

(0.0004) (0.0003) (0.0003) (0.0005)
property.type=Apt.other 0.2862∗∗∗ 0.2627∗∗∗ 0.2825∗∗∗ −0.3952∗∗∗

(0.0326) (0.0294) (0.0304) (0.0436)
collateral.type=BTL −0.2395∗∗∗ −0.1928∗∗∗ −0.2568∗∗∗ 0.2721∗∗∗

(0.0242) (0.0209) (0.0221) (0.0311)
dublin.flag=Non.Dublin 0.0868∗∗∗ 0.0773∗∗∗ 0.0674∗∗∗ −0.1185∗∗∗

(0.0273) (0.0236) (0.0249) (0.0352)
unrdyyl1 0.1230∗∗∗ 0.0875∗∗∗ 0.1009∗∗∗ −0.1448∗∗∗

(0.0060) (0.0055) (0.0056) (0.0085)
Constant 4.9111∗∗∗ 5.0411∗∗∗ 4.8246∗∗∗

(0.0310) (0.0271) (0.0278)
Observations 14,463 14,463 14,463 14,463
R2 0.2138 0.1928 0.2024 0.1906
χ2 (df = 7) 3,413.1550∗∗∗ 3,037.1620∗∗∗ 3,207.0500∗∗∗ 3,048.8390∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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D.1.2 Aalen semi-parametric survival model results

Table D.2: Aalen semi-parametric: cumulative regression functions

Supremum-test p-value KS test p-value CvM test p-value
(Intercept) 14.9311 0.0000 0.0763 0.0260 0.1925 0.0330
loan.age.def 13.4026 0.0000 0.0020 0.0000 0.0001 0.0010

Table D.3: Aalen semi-parametric: time constant variables

Coef. SE Robust SE z P-val
bank = B 0.0106 0.0003 0.0006 17.5000 0.0000
default ltv 0.0000 0.0000 0.0000 2.4400 0.0145

property.type = Apt.other -0.0020 0.0002 0.0002 -8.5000 0.0000
collateral.type = BTL 0.0014 0.0002 0.0002 6.3000 0.0000

dublin.flag = Non.Dublin -0.0006 0.0002 0.0002 -3.2000 0.0014
unrdyyl1 -0.0006 0.0000 0.0001 -7.4000 0.0000

The panels in Figure D.1 thus illustrate the cumulative baseline hazard and the estimated cumulative
coefficients for loan age at default. The baseline cumulative hazard, β0(t), is the estimated cumulative
hazard for with the categorical variables at their reference levels (bank = A, property type = house,
collateral type = PDH, Dublin flag = Dublin) and the continuous variables at their median (Default
LTV (99.31 %), Loan age at default (64.5 months), unemployment rate changes lagged (1.08 %)). The
figure on the right suggests that the effect of loan age at default initially increases strongly over time,
then then at approximately 60 months remains relatively flat, then decreases slightly.

The plots for the time-changing cumulative regression function are contained in Figure D.1. These types
of plots illustrate the change in hazard at time t, from the baseline hazard function, β0(t), for a one-unit
change in the particular covariate, holding all other covariates constant.
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Figure D.1: Semi-parametric Aalen model
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D.1.3 Effect sizes for survival regression models
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D.2 FSD regression model results

Table D.4: FSD parametric methods results

OLS (untransformed) Beta regression Quantile regression (tau=0.5)
(Intercept) 0.1720∗∗∗ −1.6418∗∗∗ 0.0933∗∗∗

(0.0179) (0.0920) (0.0213)
bank=B −0.0662∗∗∗ −0.3248∗∗∗ −0.0679∗∗∗

(0.0074) (0.0388) (0.0097)
res.force.vol=FORCED 0.1223∗∗∗ 0.5741∗∗∗ 0.1364∗∗∗

(0.0091) (0.0476) (0.0120)
time 0.0015∗∗∗ 0.0063∗∗∗ 0.0019∗∗∗

(0.0002) (0.0008) (0.0002)
default ltv −0.0001 0.0005 0.0002∗∗

(0.0001) (0.0003) (0.0001)
loan.age.def −0.0000 −0.0012∗ −0.0001

(0.0001) (0.0006) (0.0002)
property.type=Apt.other −0.0382∗∗∗ −0.2699∗∗∗ −0.0506∗∗∗

(0.0096) (0.0495) (0.0119)
collateral.type=BTL 0.0471∗∗∗ 0.2440∗∗∗ 0.0514∗∗∗

(0.0073) (0.0420) (0.0093)
unrdyyl1 0.0069∗∗∗ 0.0299∗∗∗ 0.0085∗∗∗

(0.0017) (0.0086) (0.0023)
Precision: (Intercept) 0.5991∗∗∗

(0.0290)
Precision: res.force.vol=FORCED 0.2561∗∗∗

(0.0477)
Precision: collateral.type=BTL −0.1528∗∗∗

(0.0397)
R2 0.2298
Adj. R2 0.2245
Num. obs. 4689 4689 4689
RMSE 0.2188
Pseudo R2 0.1635
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05
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