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ABSTRACT

Low Mass X-ray binaries (LMXBs) are binary systems where one of the components
is either a black hole or a neutron star and the other is a less massive star. It is challenging
to unambiguously determine whether a LMXB hosts a black hole or a neutron star. In the
last few decades, multiple observational works have tried, with different levels of success,
to address this problem. In this paper, we explore the use of machine learning to tackle this
observational challenge. We train a random forest classifier to identify the type of compact
object using the energy spectrum in the energy range 5-25 keV obtained from the Rossi X-
ray Timing Explorer archive. We report an average accuracy of 87±13% in classifying the
spectra of LMXB sources. We further use the trained model for predicting the classes for
LMXB systems with unknown or ambiguous classification. With the ever-increasing volume
of astronomical data in the X-ray domain from present and upcoming missions (e.g., SWIFT,
XMM-Newton, XARM, ATHENA, NICER), such methods can be extremely useful for faster
and robust classification of X-ray sources and can also be deployed as part of the data reduc-
tion pipeline.
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1 INTRODUCTION

Low Mass X-ray binaries (LMXBs) are binary systems where one
of the components is a black hole (BH) or a neutron star (NS) and
the other component is a less massive star, usually a main sequence,
a white dwarf or an evolved star of M < 1M�. Some LMXBs com-
bine long periods of quiescence (from a few months to decades)
with short periods where the source is in outburst that last from
days to years. In quiescence, LMXBs are very faint (∼ 1030-1033

erg s−1), while during outbursts LMXBs increase several orders of
magnitude their fluxes (see, e.g. McClintock & Remillard 2006).

The energy spectra of LMXB systems are described by two
main components: a thermal component and a hard component.
The thermal component is usually described by a multi-colour disc
blackbody (Mitsuda et al. 1984) and it is thought to be produced
by an accretion disc (Shakura & Sunyaev 1973). The hard com-
ponent is thought to be produced by the so-called corona, which
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is a region of hot plasma around the compact object (e.g., Sun-
yaev & Titarchuk 1980). This component is usually described by a
thermal Comptonisation model (e.g., Titarchuk 1994; Done et al.
2007). The contribution of these components to the X-ray emis-
sion of LMXBs varies during an outburst, modifying its spectral
and timing properties (e.g., van der Klis 1989; Méndez & van der
Klis 1997; Homan & Belloni 2005; Remillard & McClintock 2006;
Belloni 2010; Tetarenko et al. 2016). LMXB show different spectral
states during an outburst based on its spectral and timing properties
(e.g., Homan & Belloni 2005; Remillard & McClintock 2006; Bel-
loni 2010). The two main states are the high/soft state (hereafter
HSS) and low/hard state (hereby LHS). In the HSS the accretion
disc is thought to extend down to the surface of the NS or the last
stable orbit (if the compact object is a BH). Because of that the
energy spectrum is dominated by the accretion disc, which is de-
scribed by the thermal component. In the LHS the disc is thought to
be truncated at larger radius than in HSS, so the spectrum is domi-
nated by the corona, usually described by the Comptonised compo-
nent. Between these two spectral states, the source can show differ-
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ent intermediate states with spectral and timing properties between
the properties of the LHS and HSS. The evolution along these states
can be well studied with the hardness-intensity diagram (HID, see,
e.g., Homan et al. 2001) and the colour-colour diagram (CCD, eg.,
Hasinger & van der Klis 1989; van der Klis 1989).

One of the fundamental questions when studying (LMXBs)
is whether the compact object in the binary is a NS or a BH. The
presence of one or the other can have a significant impact in the
physical interpretation of the phenomenology observed. With the
large scale sky surveys and transient search programs (e.g., IN-
TEGRAL/JEM-X (Lund et al. 2003), Swift/BAT Transient Moni-
tor (Krimm et al. 2013), MAXI (Matsuoka et al. 2009), eROSITA
(Merloni et al. 2012)), the sample of LMXBs is ever-increasing.
Such newly detected transient sources are usually characterised by
their fast variation (days) of luminosity by orders of magnitude.
The early identification of the nature of the compact object is very
important for the community to be able to trigger expensive (and
usually difficult to plan) observing campaigns (Middleton et al.
2017). These campaigns, in most cases, can only be triggered if the
nature of the compact object is known. There are only a few meth-
ods that allow the community to unambiguously identify the nature
of the compact object: coherent pulsations (Patruno & Watts 2012,
and references therein) and presence of thermonuclear bursts (for
reviews, e.g., Lewin et al. 1993; Cumming 2004; Galloway et al.
2008; Strohmayer et al. 2018), which determines unambiguously
that the compact object is a NS, and the estimation of the mass
based on the mass function of the system. Apart from that, one can
only estimate the nature of the compact object by comparing its X-
ray timing and spectral properties and X-ray-radio correlation with
those of other known sources.

As we mentioned above, the energy spectra of LMXB systems
are described by a thermal component and the Comptonised com-
ponent. In addition the NS also show emission from the surface
of the NS and the so-called "boundary layer"; this component is
generally described by a blackbody (e.g., Mitsuda et al. 1984; Di
Salvo et al. 2000; Gierliński & Done 2002b; Lin et al. 2007). It is
also possible to use the presence of this additional component on
NS the energy spectra to distinguish between BH and NS. Prob-
ably this is the most commonly used method when a new system
is discovered, and at the same time it is probably one of the most
unreliable methods. See, for example, the case of XTE J1812–182
(Markwardt et al. 2008; in’t Zand et al. 2017; Goodwin et al. 2019),
MAXI J1810–222 (Maruyama et al. 2018; Negoro et al. 2019) or
MAXI J1807+132 (Shidatsu et al. 2017). Following the detection
of a new transient LMXB, the individual spectra obtained typically
do not result in statistically significant deviations between the dif-
ferent spectral models in order to infer the nature of the correspond-
ing compact object.

The identification of the compact object can also be done
based on the X-ray timing properties of the system. As we men-
tioned earlier, if coherent pulsations are found, we can determine
unambiguously that the system hosts a NS (see Patruno & Watts
2012, and references therein). The presence of kilohertz quasi-
periodic oscillations (QPOs) at frequencies between 300 Hz and
1200 Hz (e.g., van der Klis 2006; van Doesburgh et al. 2018)
strongly suggests that the compact object is a NS, too. However,
the presence of the low-frequency QPOs in the mHz-50 Hz range
does not always unambiguously pinpoint the nature of the system
(Klein-Wolt & van der Klis 2008). Both BH and NS are also sim-
ilar in terms of broadband noise up to 500 Hz (Klein-Wolt & van
der Klis 2008). Above 500 Hz, the broadband noise of BH sys-
tems decreases while NS systems can show broadband noise up to

higher frequencies (Sunyaev & Revnivtsev 2000). In terms of ra-
dio emission, BH systems are generally brighter than NS systems
in the radio band, when observed at comparable X-ray luminosity
(Fender & Kuulkers 2001; Fender 2006; Migliari & Fender 2006;
Fender & Gallo 2014; Corbel et al. 2013).

The nature of the compact object can also be identified by esti-
mating the mass function of the system and measuring, estimating
or assuming the mass of the companion star. The mass function
only gives a lower limit of the mass of the compact object given
uncertainties in the inclination of the system. If the compact ob-
ject is > 4 − 5M�, then it is usually agreed that system contains a
black hole (e.g., Casares et al. 1992; McClintock et al. 2001; Orosz
2003; Casares 2007; Muñoz-Darias et al. 2008). If it is of the order
of 2M� or less, then it is most probably a neutron star (Lattimer &
Prakash 2004, 2007; Demorest et al. 2010; Lattimer 2012; Orosz
2003; Casares 2007; Ziółkowski 2008).

In some rare occasions, the mass estimate is in the 2M� <

M < 4M� range. In this case, it is not possible to determine unam-
biguously the nature of the compact object. GRO J0422+32 gives
a good example of the limitations of this method. Gelino & Harri-
son (2003) estimated the mass of GRO J0422+32 to be 3.97± 0.95
M�, and therefore a black hole identification. However, about 10
years later Kreidberg et al. (2012) explored possible systematic un-
derestimations of the inclination of X-ray binary systems, which
can increase the mass of the compact objects. They found this was
the case of GRO J0422+32 and, taking into account this under-
estimation, they obtained a mass of 2.1 M�, suggesting that GRS
J0422+32 was instead a NS system.

However, it is not always possible to have an estimation for the
mass of the companion star and, as a result, estimate the mass func-
tion of the system. Despite this fact, it is still possible to estimate
the mass function of the compact object. Casares (2015) found a
correlation between the full width half maximum (FWHM) of the
Hα line of the accretion disc and the velocity semi-amplitude of the
companion star that, combined with supplementary information on
orbital periods, can be used to estimate the mass function of the
compact object from single epoch spectroscopy. Another correla-
tion between the mass ratio of the binary system and the ratio of
the double-peak separation to the line width can be used to estimate
the mass function of the system (Casares 2016) and, from there, try
to determine the nature of the compact object.

All the methods of classifying LMXB sources that have been
employed so far have had their own drawbacks. One technique that
is yet to be explored to classify LMXBs is the use of machine learn-
ing algorithms. Machine Learning (ML) algorithms have been suc-
cessfully used to solve problems in various domains of astronomy.
They have been used to identify the furthest quasars in the universe
(Mortlock et al. 2011), classify galaxies based on their morphology
(Storrie-Lombardi et al. 1992; Bazell & Aha 2001; de la Calleja
& Fuentes 2004; Banerji et al. 2010), to detect small near-earth
asteroids (Waszczak et al. 2017) and even for hunting exoplan-
ets (Thompson et al. 2015; Pearson et al. 2018). Machine learning
has also been applied in the X-ray domain by Huppenkothen et al.
(2017) to classify light curves of the unusual BH X-ray binary GRS
1915+105. An effort to distinguish between different types of X-
ray binaries has been reported by Gopalan et al. (2015), where they
use a three-dimensional coordinate system comprising of colour-
colour-Intensity diagrams to find clusters of data which can distin-
guish between BH and NS.

In this work, we explore whether ML applied to the X-ray
energy spectra of LMXBs can be used to identify the nature of
the compact object. In order for ML algorithms to work, a large
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database of classified data is needed to develop a robust classi-
fication model. For this reason, we use the full archive from the
Rossi X-ray Timing Explorer (RXTE) mission (Bradt et al. 1993).
This is probably the largest database today of X-ray observations of
LMXBs, providing us with more than 8,500 observations from 33
NS systems and more than 6,000 observations from 28 BH systems.

The outline of the paper is as follows. Section 2 describes the
structure and composition of the data used in this work. In Sec-
tion 3, we explain the process of choosing a machine learning algo-
rithm for classifying LMXBs along with a small description of the
chosen algorithm - the random forest. This is followed by different
methods employed and their results in Section 4. In Section 5 we
analyze the results based on different factors which govern the clas-
sification and predict the classes for sources with unknown classi-
fication. Summary and future scope of this work is presented in
Section 6.

2 DATA REDUCTION AND PREPARATION

We used data from the Proportional Counter Array (PCA; Glasser
et al. 1994) instrument aboard the Rossi X-ray Timing Explorer
(RXTE). The PCA is an array of five proportional counters units
(PCUs) with a total collecting area of 6500 cm2; each PCU has an
energy range of 2-60 keV. We selected a total of 61 sources which
are classified as Black Hole (BH) or Neutron Star (NS) binaries,
depending on the nature of the compact object. We chose those
sources which have been extensively studied in the past and the
classification is well known and consistent across different stud-
ies and catalogues (see e.g., Corral-Santana et al. 2016; Tetarenko
et al. 2016, for BH). After source selection, we obtain all data from
pointed observations corresponding to these sources from RXTE
archive 1.

To calculate X-ray colours we use the 16-s time-resolution
Standard 2 mode data. For each of the five PCA detectors (PCUs)
we calculate a soft and a hard colour, which are defined as the ra-
tio between the count rate in the 6.0 − 16.0 and the 2.0 − 6.0 keV
band, and the ratio between the 16.0 − 20.0 and the 2.0 − 6.0 keV
band. We also calculate the intensity defined as the count rate in
the 2−20 keV band. To obtain the count rates in these exact energy
ranges, we make a linear interpolation between all the PCU chan-
nels. We then carry out deadtime corrections, we subtract the back-
ground contribution in each band using the standard bright source
background model for the PCA (version 2.1e1) and we remove in-
strumental drop-outs to obtain the colours and intensity for each
time interval of 16s. It is important to take into account that the
RXTE gain epoch changes with each new high voltage setting of
the PCUs (Jahoda et al. 2006). We normalized our data to the Crab
(method introduced by Kuulkers et al. 1994) in order to correct for
this effect and the differences in effective area between the PCUs.

For each observation we obtain the background, response and
the spectrum files from which we extract the count-rate values of
the desired energy spectrum range in a text file using the Xspec
software (Arnaud 1996). We then reject all observations that have
a net count-rate less than 5 counts per second in order to avoid low
signal-to-noise spectra.

For each observation, we used 43 channels within the energy

1 https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/
w3browse.pl

range of 5-25 keV. Machine learning algorithms require each obser-
vation to be of the same size hence we keep the number of channels
fixed to 43.

We use these 43 count rate values directly as an input vector
for the ML algorithm. Due to variations in the sensitivity of partic-
ular channels with time, energy ranges tend to vary a little bit for
each spectrum (Jahoda et al. 1996; Jahoda et al. 2006)). The inter-
stellar absorption NH can vary from source to source, and therefore
adds another variable that the ML algorithm must take into account.
We found that in practice, ignoring data below the 5 keV range to
avoid the effect of NH produced higher accuracy in classification.
We chose the upper bound as above the energy value of 25 keV
the instrument efficiency begins to deteriorate and the correspond-
ing values contain minimal information about the spectrum. We
also choose to ignore other potential contributions or effects on the
spectra as otherwise it would result in further reduction of our al-
ready small sample of spectra. Furthermore the objective of using
machine learning is to identify intrinsic characteristics of the spec-
tra belonging to two classes and accounting for these effects would
add more human biases. Among the potential contributions and/or
effects, we ignored that from possible absorption/emission lines on
top of the X-ray continuum (i.e. the ∼ 6.5keV iron line). This is be-
cause such lines generally contribute only a few percentage of the
total flux, their strength varies differently between sources, between
states of a given source, and in most cases are not resolved given
the low-spectral resolution of the RXTE/PCA data. We also did
not take into account the effects of the different source inclination.
This is because little is known about the inclination, and generally
the uncertainties are very large (Muñoz-Darias et al. 2013; Motta
et al. 2015).

In the final dataset, we have a fairly balanced representation
of the two classes with 8669 observations from 33 sources identi-
fied as neutron-star LMXBs (58%) and 6216 observations from 28
sources identified as black-hole LMXBs (42%). In Fig. 1 we show
the number of observation per source for each class in the dataset.
As can be observed, a few sources have >1000 observations while
some have <20 observations.

3 ALGORITHM SELECTION AND DESCRIPTION

Machine learning is a branch of computer science that consists of
algorithms which can learn to identify patterns in the data with-
out any prior specification of a rule or model. By learning from
the information in the data, a machine learning algorithm tries to
approximate an underlying model that can define the data. Such
models are used for handling various problems like classification,
regression, clustering, etc. An algorithm tries to approximate these
models in its “training phase” and based on the process it uses to
approximate these models it is divided into two categories: super-
vised and unsupervised techniques.

For implementing a ML method, the dataset should contain
a specific number of features for each input object. In the super-
vised training method, each set of input features corresponds to a
label or a target value. The dataset is divided into train, validation
and test sets. The model is trained using the former, and then vali-
dated using the validation set. Multiple models with different initial
settings are trained on the first set, and the best one is selected us-
ing the validation set. Supervised machine learning problems can
further be divided into two types - Classification and Regression.
Simply put when the expected outcome is a real-valued number, it
is considered a regression problem (Firth et al. 2003; Ramírez et al.
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Figure 1. Source wise distribution of data on black hole (BH) and neutron star (NS) classes. The mean is approximately 244 observations with some sources
having 1000+ observations while others having less than 20. The list of individual sources along with their total number of observations and class labels can
be also found in Table A2

.

2001; Nesseris & García-Bellido 2012) whereas when the objec-
tive is to categorize data, it is known as a classification problem
(Bazell & Aha 2001; McGlynn et al. 2004; Ball et al. 2006; Zhao
et al. 2007). In the unsupervised type of ML techniques, there is
no requirement for a predefined label/class, and the algorithm tries
to understand the relation between the input features without the
help of the user. Some common examples of unsupervised learn-
ing include clustering tasks (Feitzinger & Galinski 1987; Wagstaff

& Laidler 2005; Rebbapragada et al. 2009), dimensionality reduc-
tion (Hojnacki et al. 2007), estimating the density function (Ferdosi
et al. 2011) and association.

In this work, we approach the problem of classifying an X-
ray spectrum into either a BH or a NS. This is a supervised binary
classification problem. There are several ML algorithms that can be
used for handling this type of binary classification problem. As per
the “no free lunch theorem for Optimization” (Wolpert & Macready
1997), there is no one particular algorithm that excels in all scenar-
ios. However, there are a few points the user should consider while
selecting the right machine learning algorithm. In our case, the first
criterion is accuracy. The algorithm which can provide the highest
percentage of correct classifications is usually the most favorable.

One of the weaknesses of using machine learning methods
is that they are a “black-box” when the user wants to understand
the decision-making process that lead to a given result. This prop-
erty of a machine learning algorithm is known as interpretability.
Sometimes the most accurate algorithms are the least interpretable,
or vice-versa. Therefore, there is usually a trade-off between the
two criteria for the selecting the best algorithm (Nakhaeizadeh &
Schnabl 1997). It is worth mentioning that it is possible to study
the decision-making process of an algorithm; however, the nature
of the data can make it very difficult (or virtually impossible) to
understand the process. In cases where the data have features (or
input vector to the machine learning algorithm) that have some di-
rect physical meaning (for example temperature, mass, etc.), it is
possible to draw correlations or understand which physical feature

has the most significant contribution to the decision-making pro-
cess. In the problem studied in this paper, data consist of count-rate
values corresponding to a certain energy range. Therefore it is very
difficult to visualize and/or understand the decision-making pro-
cess. Therefore, we decided that it was more favorable to choose
an algorithm that is more accurate, even if it compromised the in-
terpretability.

In this work we experimented with the following algorithms:

• Classification and Regression Trees (CART) or more commonly
known as Decision Trees (Breiman et al. 1984): use a tree like
structure to map the input vector to the target values. Based on the
target values they can be either classification trees or regression
trees.
• Random Forest (RF) (Breiman 2001): is an ensemble method that
combines the output of several decision trees to improve on the
prediction of a single tree. As we will see in sub-section 3.1 this
method has the highest accuracy compared to the other algorithms
and therefore is our algorithm of choice. We will talk about it in
more detail later in section 3.0.1.
• XGBoost (XGB) (Chen & Guestrin 2016): is another ensemble
method that implements machine learning algorithms in a gradient
boosting framework (Mason et al. 2000) to improve efficiency and
speed.
• Logistic Regression (LR) (Cox 1958): is a multivariate analy-
sis model that predicts the probability of membership to any class
based on the values of some predictor variables; these variables are
not constrained to follow a given (normal) distribution, not even be
continuous.
• k-Nearest Neighbors (KNN) (Cover & Hart 2006): is a nonpara-
metric classification technique that works on the following simple
principle: Given a query for prediction, it finds the k closest neigh-
bors to the data point in the training sample by calculating the eu-
clidean distance from every point and then assigns the class which
is the most common amongst its k nearest neighbours.

MNRAS 000, 1–15 (2020)
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• Support Vector Machines (SVM) (Cortes & Vapnik 1995): is a
type of kernel-based algorithm that builds a set of hyperplanes in
the high-dimensional feature space such that they have the maxi-
mum possible distance from the nearest data point of any class thus
optimizing the separation between the different classes in the data.

For further reference on the detailed workings of these algo-
rithms see Ivezic et al. (2014), an astronomy-oriented textbook for
Machine learning.

We chose these algorithms as they fall into the category of
traditional machine learning algorithms that are usually known to
show satisfactory performance even with a limited amount of data.
They also have significantly lower execution times as compared to
the widely popular deep learning methods (see, for e.g., Kotsiantis
et al. (2007)).

3.0.1 Random Forest

Random forest is an ensemble technique which is used to boost
the prediction made by an individual decision tree (Breiman 2001).
A decision tree is one of the most intuitive yet powerful machine
learning algorithms (Breiman et al. 1984). A decision tree is made
up of branches of nodes, where sets of if-this-then-that rules are
applied to the features of the input data, and based on the result,
lead down one of the branches of the tree. The final layer of nodes,
also known as leaf nodes, contains a predicted class label which
is compared to the expected class for a particular input vector. Al-
though the decision tree algorithm has proven to be very efficient
(see, for e.g., Vasconcellos et al. (2011)), a decision tree, if improp-
erly trained, can at times over-fit the data (Mitchell 1997, Chap-
ter 3). The idea behind random forest is to combine the decisions
of several such trees to improve upon the decision of a single over-
trained tree. Taking a majority-vote over the decision of all the trees
helps in reducing the variance of the predictions (Breiman 2001).
The probability of a source belonging to one class or the other is
also calculated in a similar way, i.e., by dividing the number of trees
that predicted the same class by the total number of trees. The basic
working of a random forest algorithm is explained below:

1. From a total number of K input features, the algorithm
chooses a number I such that I � K.
2. Using bootstrap sampling, the algorithm chooses a training
set for a tree by selecting a subset from the complete training
data. It keeps the remaining data for validating the predictions.
3. The algorithm chooses I random features at every node of
the tree and then calculates the most optimal split for the train-
ing set using these features.
4. The algorithm grows every tree to its maximum depth
without any pruning (unlike a solitary decision tree which is
pruned after growing fully to prevent overfitting (see Breiman
et al. 1984).
5. The algorithm then repeats the above step to generate many
such trees.
6. After the training is completed, the algorithm uses a major-
ity vote to predict the class of the input data. To calculate the
majority vote for a given input vector, the algorithm selects the
class which was predicted by the majority of individual trees.
To calculate the probability/confidence of the prediction the
algorithm uses the ratio of trees that predicted the particular
class to the total number of trees.

A decision tree algorithm works from top to bottom (see
Fig. 2) and usually chooses a variable at each step that optimally

Figure 2. Illustration of the decision making procedure in a Random forest
algorithm.

splits the set. Depending on the particular splitting algorithm used,
the selection process of the variable varies. Here we use the default
gini impurity method (Breiman et al. 1984) which is a measure of
the likelihood of an incorrect classification of a randomly chosen
element, if the element was randomly labeled according to the dis-
tribution of labels in the dataset.

We illustrate the decision making process of a random forest
algorithm in Fig. 2. We implement the random forest algorithm us-
ing the scikit-learn2 (Pedregosa et al. 2011) library of python.
We use grid search combined with cross-validation to find the best
hyper-parameters for the algorithm. Hyper-parameters are a set of
parameters defined prior to the training process that are used to
tune the performance of the ML algorithm. The optimal hyper-
parameters obtained were:

– Min_samples_leaf = 3 (The minimum number of samples
required to be at the leaf node)
– Min_samples_split = 8 (The minimum number of samples
required to split an internal node)
– Max_features = 2 (The number of features to consider when
looking for the best split)
– N_estimators = 1000 (The number of trees in the forest)

3.1 Comparison of algorithms

For selecting the best classification method, we train and test dif-
ferent algorithms and compare them using ‘accuracy’ as a metric,
which is defined as the ratio of the number of observations cor-
rectly classified to their class (NS or BH) to the total number of
observations.

To compare the algorithm, we first split the dataset consist-
ing of 14885 observations into training and test sets and use k-fold
cross-validation technique (Burman 1989), in which we divide the
dataset into k even samples. Then we use one sample as a test set
while training on the remaining k-1 samples. We repeat this pro-
cess for each of the k samples in the process covering the entire
dataset. We use 10-fold cross-validation (k=10) along with the de-
fault hyper parameters for each algorithm. Results of the 10-fold
cross-validation and comparison between the different algorithms

2 https://scikit-learn.org/stable/
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Figure 3. Comparison of the performance of different machine learning
algorithms using the 10-fold cross-validation process. The algorithms on
the x-axis (from left-to-right) are Random Forest, Decision Tree (CART),
Logistic Regression, XG-Boost, K-Nearest Neighbors and Support Vector
Machines. The Random Forest performs the best with an overall accuracy
of 91 ± 2%.

are presented in Fig. 3. We find that the random forest algorithm
performs the best among all the selected methods, giving the high-
est accuracy of 91 ± 2%. Therefore, in the following sections we
only report on the results of the classifications obtained using the
random forest algorithm.

4 METHODS AND INITIAL RESULTS

We apply the RF algorithm with the best combination of hyper-
parameters to the dataset described in Sec. 2. Since the dataset
contains 14885 observations for 61 individual X-ray sources, each
source is represented by multiple observations taken at different
times. Given that the LMXBs studied here are variable in nature,
different observations for the same source could be sampling a dif-
ferent physical spectral state (i.e. different geometrical configura-
tion). Therefore the classification of the energy spectra of LMXBs
can be treated as any other typical ML binary classification prob-
lem where each observation is considered independent of the oth-
ers. However, due to the nature of the problem and the limitations
of our data (e.g., time-variability factors in the data, correlations
between spectra of the same source taken at different times, and
unequal number of observations for different sources), we had to
use different strategies to train the model and evaluate its perfor-
mance. We used:

i Traditional train-test split (Observation-wise splitting): In this ap-
proach, the 14885 spectra are randomly split into a training and test
set consisting, respectively, of 90 percent and 10 percent of the ob-
servations. Here, we assume that each observation is independent
of the rest, meaning that there are no correlations between different
observations for the same source.

ii Source-wise splitting: Rather than splitting on the basis of obser-
vations, we split the dataset into training and test sets on the basis of
sources. We use spectra corresponding to 34 sources for the train-
ing and the testing is performed on the remaining 27 sources.

iii Leave-one source out: In this method, we train the RF model on
all observations corresponding to all sources except one. The ob-

Class No. of Correctly Misclassified Accuracy
test obs Classified (%)

NS 867 814 53 94
BH 622 545 77 88

Total 1489 1359 130 91

Table 1. Performance of the algorithm for the two classes using the tradi-
tional train-test split method.

servations corresponding to the excluded source are used for the
testing.

Detailed description of each of these approaches is provided
in the following subsections.

4.1 Method 1: Traditional train-test split

The orthodox way to perform any machine learning classification
experiment is to divide the complete dataset into train and test
sets. For this, we used the train_test_split function of the
scikit-learn (Pedregosa et al. 2011) python library. We keep 90
percent of the data (13396 observations) for the training and valida-
tion. The remaining 10 percent of the data (1500 observations) are
used for the testing. We train the RF algorithm with the best com-
bination of parameters described in Sec. 3.0.1. Testing the trained
RF model results in an overall accuracy of ∼ 91%. Table 1 shows
the performance of the classifier for observations of both classes.
The performance is equally good for the two classes.

The major drawback with the traditional train-test split
method for our case is that it does not take into account poten-
tial correlations between different spectra of a given source. As a
result, some observations from the same source might be used in
both the training as well as test set. Testing the classifier on dif-
ferent observations of a source which also had some of its data
in the training set could lead to a biased and overestimated value
of the accuracy as the classifier would be able to identify spectra
belonging to the same source very easily. However in the real-life
scenario we would have data from a newly discovered X-ray source
that needs to be classified. Since it is not possible to determine the
expected accuracy for the real-life scenario with this method, we
only use it for comparing the performance of different algorithms
and choosing the best amongst them (Sec. 3).

4.2 Method 2: Source-wise train-test split

To avoid the shortcomings of the traditional observation-wise train
test split, we split our data source-wise, i.e., we select some sources
to be used for training, while testing on the remaining sources.
In order to maximize the usage of data available for training, we
choose all the sources with less than 100 observations as the test
sources while the remaining are used for training. With this crite-
rion, we had a training set of 34 sources with a total of 13,601 ob-
servations (∼ 90% of the data) and a test set set of 27 sources with
a total of 1284 observations (∼ 10% of the data). The training set
consists of 7950 BH LMXB observations from 21 sources (58%)
and 5651 NS LMXB observations from 13 sources (41%). The test
set consists of 719 BH LMXB observations from 15 sources (56%)
and 565 NS LMXB observations from 12 sources (44%). These
details are also represented in a graphical form in Fig. 4.

As can be observed from the figure, a satisfactory ratio be-
tween BH and NS observations is maintained in the train and test
sets. The complete list of 27 sources used in the test set, actual class
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Figure 4. Distribution of the data for the source-wise train-test split method.
Both the train and test datasets have a good ratio of data for the two classes.

Class No. of Sources Avg. % Accuracy σ

NS 12 88 11
BH 15 80 25

Total 27 88 12

Table 2. Performance of the RF classification model for NS-BH classifica-
tion using the source wise train-test split method.

of each source from the literature and total number of observations
for each source are listed in Table A1. For each source, we provide
all observations corresponding to that source to the classifier and
each observation is assigned to ‘BH’ or ‘NS’ class. The percentage
accuracy is computed by dividing the number of observations as-
signed to the actual class by the total number of observations for
that source. We provide the percentage accuracy for each source in
the test set in the last column of the table.

The results obtained with this approach are also presented in
Fig. 5 where most of the sources have above 60% accuracy and only
two sources have less than 50% accuracy. For a quantitative analy-
sis of the algorithm’s performance, we calculate the sigma-clipped
average source-wise accuracy using sigma_clipped_stats func-
tion of the astropy python library (Astropy Collaboration et al.
2013). The sigma-clipped average accuracy gives an outlier resis-
tant estimate of the algorithm’s performance where the points ly-
ing beyond 3σ from the mean value are iteratively removed while
computing the statistic. Sigma-clipped mean percentage accuracy
for the test set comes out to be 88% with a standard deviation of
12%. Further class-wise performance is detailed in Table 2.

4.3 Method 3: Leave-one source out

The source-wise train-test split method discussed in Sec. 4.2
closely mirrors the scenario we may have in terms of the avail-
able number of observations for a new source (which is not likely
to exceed 100). However, the major drawback with the source-wise
train-test split approach is that the test set remains unutilized for
the training of the model. Although the test set contains only ∼10%
of the observations, these observations might occupy a region in
the model space crucial for identifying the classification boundary
(the boundary in the model space that separates the data of the two
classes) which might not be represented by the observations in the

Class No. of Sources Avg. Accuracy σ

NS 33 89 11
BH 28 85 14

Combined 61 86.63 13.08

Table 3. Performance of the RF classifier for NS-BH classification using the
leave-one source out method. Average accuracies and standard deviations
are computed using 3σ clipping to get a robust estimate of the statistics.

training set. Therefore, in order to optimize the usage of available
data, we use the leave-one source out method, where we keep all
observations from one source as our test data while using all the
remaining sources for training. We repeat this experiment for each
source, so that we have the results for all the observations from each
of the 61 sources.

In the leave-one-source-out method, the size of the training
and test sets vary in each run. Our final model would be trained
on the entire dataset whereas in this method, each model is using
one source less than what the final model would use. Therefore, the
coverage of the model in the feature space through this approach
is closest to the final model. This can also be seen as a type of
cross-validation method tailored for our data. We present the re-
sulting accuracy for each source calculated through this method in
Table A2 and in Fig. 6.

There are four sources that lie below the 50% average accu-
racy mark. The sigma-clipped average accuracy using this method
comes out to be 87± 13%, which gives a lower bound proxy on the
performance of our final model. We present the class-wise perfor-
mance in Table 3.

5 RESULTS AND INTERPRETATION

The average accuracies of the sources for both method 2 and
method 3 are similar but less than that of method 1 (91%). This
is expected because of the bias in method 1 discussed earlier in
section 4.1. While the average accuracy decreases for methods 2
and 3 when compared to method 1, it is safe to say that the machine
learning algorithm seems to do a satisfactory job in the overall clas-
sification of low mass X-ray binary sources. The lower bound of the
accuracy (87 ± 13%) indicates that the Random Forest (RF) algo-
rithm is able to identify the classification boundary between the two
types of X-ray sources in the 43-dimensional space of their energy
spectra. However, we note that there are a few sources for which the
accuracy is very low and most of the observations of those sources
are misclassified. In particular there are four sources, namely XTE
J1118+480 (BH), XTE J1748–288 (BH), IGR J00291+5934 (NS),
and 1A 1246–588 (NS), which have less than 50% accuracy out
of which the observations of XTE J1118+480 and XTE J1748–288
are consistently misclassified with overall accuracy percentage of ∼
10% and ∼30%, respectively, in methods 2 and 3. This motivates us
to study these sources in more detail and probe the possible reasons
for the misclassification of their spectra. It is difficult to determine
the reasons for the misclassifications directly from the RF algo-
rithm. Therefore we study the correlations between predictions of
the RF algorithm and the factors that can influence them. Two such
factors that can influence the energy spectra are the Signal-to-Noise
Ratio (SNR) and the physical states of LMXB systems.

MNRAS 000, 1–15 (2020)



8 R. Pattnaik et al.
4U

15
43

-4
7

GR
S1

73
7-
31

GR
S1

73
9-
27

8

GS
13

54
-6
4

M
AX

IJ1
83

6-
19

4

SA
XJ
18

19
.3
-2
52

5

SW
IF
TJ
13

57
.2
-0
93

3

SW
IF
TJ
17

13
.4
-4
21

9

V4
64

1S
GR

XT
EJ
11

18
+4

80

XT
EJ
16

52
-4
53

XT
EJ
17

48
-2
88

XT
EJ
17

55
-3
24

XT
EJ
18

18
-2
45

XT
EJ
20

12
+3

81

1A
17

44
-3
61

4U
12

54
-6
90

4U
17

46
-3
71

IG
RJ
17

49
7-
28

21

KS
17

31
-2
60

M
XB

16
58

-2
98

NG
C6

44
0

SA
XJ
18

06
.5
-2
21

5

SA
XJ
18

10
.8
-2
60

9

SL
X1

73
5-
26

9

SW
IF
TJ
17

56
.9
-2
50

8

XT
EJ
17

59
-2
20

Sources

20

40

60

80

100

Ac
cu
ra
cy

 (p
er

ce
nt

ag
e)

Class
BH
NS

Total Obsevations
7
30
54
77
100

Figure 5. Plot showing individual source wise accuracies for sources in the test set of the source-wise train test split method. The points are coloured based on
the classes and the size of the points correspond to the number of observations in each source.
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Figure 6. Plot showing individual source wise accuracies using the leave-one source out method of cross-validation. The points are coloured based on the
classes and the area of the points corresponds to the number of observations in each source.

5.1 Effect of Signal-to-Noise Ratio (SNR)

For each observation SNR is calculated by dividing the net count
rate by the error in the net count rate. This information is obtained
from the header of the spectra.pha file of the observations retrieved
from the RXTE archive for each source. The SNR ranges from as
low as 4 to more than 5800. To investigate the influence of SNR on
the classification, we divide all observations in three SNR ranges,
<100, 100-1000, >1000, and analyze the predicted probability of
classification using Method 3 (Sec 4.3). The predicted probabilities
are obtained using the predict_proba function of the Random
Forest model and serve as a measure of classification confidence.

The distribution of predicted probabilities of correct identification
for all observations in different SNR ranges is shown in Fig.7. For
observations with SNR <100, the distribution of predicted proba-
bilities peaks at 0.58. For the other two SNR ranges, 100 - 1000 and
>1000, the distribution peaks at 0.87 and 0.91, respectively. These
results are also presented in Table 4. This analysis indicates that the
performance of the classification model increases with the increase
in SNR.

We further investigated the misclassified sources by checking
their average SNR. Among all the sources, only 1A1246-588 had
an average SNR less than 100 (avg. SNR = 48). This analysis indi-
cates that, while the accuracy of the prediction increases in general
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SNR Range Mode of Predicted Total Obs. Data (%)
Probabilities

<100 0.58 2706 18.2
100-1000 0.87 10348 69.5

>1000 0.91 1831 12.3

Table 4. Predicted probability and distribution of observations for different
ranges of SNR.

with increasing SNR, a low SNR alone is the main reason behind
the poor classification of the spectra for some sources.

5.2 Correlation between predicted probability of correct
identifications and state transitions

In Fig.8a we plot the CCD diagrams of two atoll-NS LMXBs (top
panel) and HID diagrams of two BH LMXBs (bottom panel). The
two atoll-NS sources are 4U 1728–34 (423 observations) and 4U
1636–53 (1563 observations) and the two BH sources are H 1743–
32 (558 observations) and GRO J1655–40 (546 observations). We
chose these systems as they have observations sampling all the typ-
ical spectral states.

We colour each observation based on the predicted probability
of correct identification obtained from Method 3 (leave-one source
out) as shown in the colour bar plotted on the right side. Most of
the misclassified observations (darker coloured circles) belong to
the LHS or intermediate states while the HSS observations are very
well classified (lighter coloured points).

In Fig. 8b we show the HID and CCD diagrams for the 4
sources for which our algorithm performs the worst. While the
state transitions for these sources are not as pronounced as for the
sources shown in fig. 8a, we can still observe that the misclassifi-
cations (dark points) are predominantly in the hard region of the
spectra.

In Fig. 9 we further investigate the correlation between hard
color and predicted probability of correct identification of NS and
BH LMXB observations for the different SNR ranges mentioned in
section 5.1. It follows the results shown in Fig. 7 and Fig. 8. For
the case of NS LMXBs we find that most of the observations in the
low SNR range have predicted probability peaking around 0.5 and

hard color value of 1.0. In the case of low SNR observations in BH
LMXBs the predicted probabilities of most observations decreases
as we increase the hard color value and then increases back again
at hard color values >2. The same trend follows for BH LMXBs
with SNR between 100 and 1000 although most observations this
time have low hard color values and higher predicted probabili-
ties. For BH LMXBs with SNR >1000 most observations have low
hard color values and high predicted probabilities. In the case of
the higher SNR ranges (>100) for NS LMXBs most observations
have predicted probability around 1.0 and hard color values <1.0.
These plots again indicate that the algorithm can classify observa-
tions with low hard color values, i.e., HSS observations the best and
the prediction accuracy increases with SNR.

5.3 Prediction for sample sources with unknown
classification

We use the final RF model trained on all 61 sources to predict the
classification of a sample of 13 systems where the nature of the
compact object is still unknown or under debate. These 13 sources
were sampled with a total of 766 RXTE/PCA observations. Our
results and predictions are summarized in table 5.

If >50% of the observations of a source were predicted to be-
long to a particular class, that class was assigned to the source.
Among the 13 sources, 5 sources (XTE J1901+014, XTE J1719–
291, XTE J1727–476, IGR J17285–2922, XTE J1856+053) have
very few observations (<10) that meet our criteria for good data
(i.e. net count-rate >5 counts per second) and thus it is difficult
for us to make any comments on the predicted classes for these
sources. The remaining 8 sources (4U 1822–371, 4U 1957+11,
IGR J17494–3030, SAX J1711.6–3808, SLX 1746–331, SWIFT
J1842.5–1124, XTE J1637–498, XTE J1752–223) all have more
than 30 observations each. Based on our criteria for classification
mentioned earlier, 6 sources (4U 1822–371, 4U 1957+11, SLX
1746–331, SWIFT J1842.5–1124, XTE J1637–498, XTE J1752–
223) were classified as BH LMXBs while 2 sources (IGR J17494–
3030, SAX J1711.6–3808) were classified as NS LMXBs.

Amongst the 8 sources with >30 observations, 5 sources have
prediction percentage >60%. Our model predicts that the source
SAX J1711.6–3808 is a NS LMXB for 94% of its observations,
however Sánchez-Fernández et al. (2006) claim that SAX J1711.6–
3808 might contain a black hole with a high spin parameter based
on their fit of the X-ray spectra. For 88% of its observations, the
source SLX 1746–331 is predicted to have a BH, as speculated by
White & Van Paradijs (1996) in their paper. Multiple works have
argued that the compact object in 4U 1957+11 is a BH (Nowak
et al. (2011), Gomez et al. (2015)) and our algorithm predicts the
same for 72% of its 121 observations. XTE J1752–223 is consid-
ered a BH LMXB candidate by Shaposhnikov et al. (2010) in their
paper and our algorithm classified 67% of its observations as a BH
LMXB. The nature of the compact object in XTE J1637–498 is un-
certain, but Tetarenko et al. (2016) consider it as a BHC in their
database. 66% of the observations of XTE J1637–498 is classified
as BH LMXB by our algorithm.

For the remaining 3 sources out of the aforementioned 8, the
prediction percentage is <60%, but still >50%. For these sources
we consider that the algorithm is confused about the nature of the
compact object in the LMXBs. The source 4U 1822–371 is pre-
dicted to be a BH LMXB for 55% of its observations but Jonker &
van der Klis (2001) detected pulsations from this source indicating
that it most certainly is a NS LMXB. Armas Padilla et al. (2013)
have suggested that the source IGR J17494–3030 might be a NS
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(b) Sample sources with <50 % accuracy

Figure 8. Colour-Colour Diagrams (CCD) and Hardness Intensity Diagrams (HID) for NS and BH LMXB systems respectively. Left panel shows the CCDs
and HIDs for two NS (top) and two BH (bottom) sources with good classification accuracy. Right panels show the same diagrams for poorly classified NS and
BH systems using the RF classifier. Probability of correct identification for each observation using Method 3 is colour coded as shown in the adjacent colour
bars. The source identifiers and their original classes are indicated on top of each diagram with their accuracy percentage from Table A2.

Source name Total obs. Class Prediction (%) Avg. SNR
(Predicted)

4U1822-371 97 BH 55.67 67.0
4U1957+11 121 BH 72.73 22.38
IGRJ17285-2922 5 BH 60.0 10.03
IGRJ17494-3030 97 NS 54.64 25.84
SAXJ1711.6-3808 34 NS 94.12 34.35
SLX1746-331 65 BH 87.69 26.82
SWIFTJ1842.5-1124 49 BH 51.02 25.71
XTEJ1637-498 76 BH 65.79 8.41
XTEJ1719-291 2 NS/BH 50.0 2.82
XTEJ1727-476 4 BH 100.0 6.3
XTEJ1752-223 210 BH 67.14 56.0
XTEJ1856+053 5 BH 100.0 10.75
XTEJ1901+014 1 BH 100.0 1.1

Table 5. Classification results for sources in the prediction set. A class was
assigned to a source if the majority of its observations were predicted to
belong to that class. In cases where the ratio was 50-50 (XTE J1719-291) it
is indicated that the source can belong to either class.

LMXB and our trained model also predicts the same for 54% of
its 97 observations. SWIFT J1842.5–1124 was classified by Zhao
et al. (2016) as a BH LMXB candidate and our trained model pre-
dicts it is a black hole for 51% of its observations. Apart from that
it is also important to note that all the 13 sources in our prediction
sample have an average SNR <100 which is the region where the
algorithm has the worst performance as shown in Fig. 7.

6 SUMMARY AND DISCUSSION

We used archival data from the PCA instrument aboard the RXTE
mission (now decommissioned) to train a Random Forest algorithm
that we subsequently use to classify a groups of Low Mass X-ray
Binary (LMXB) systems into black-hole or neutron-star LMXB
just by using their energy spectra as input. The data consist of 43
count rate values corresponding to the energy range of 5–25 keV for

each observation of a source. The dataset consists of 14885 obser-
vations from 61 individual sources: 6216 observations from 28 BH
systems and 8669 observations corresponding to 33 NS systems.
We perform the training and testing using three different methods
for a robust assessment of the performance of the RF algorithm for
NS-BH classification. We obtain the outlier-resistant average model
accuracy of 87 ± 13% at one sigma confidence level in classifying
these systems. The final trained model is used to predict the classes
of X-ray sources of unknown nature.

We also analyze the results of the classification by looking at
the effect that signal-to-noise ratio and state transitions have on the
predicted probabilities of correct identification. As expected it is
observed that with better SNR the mean predicted probability of
correct identification for observations increases. It is also observed
that most of the observations (especially in the high SNR ranges)
with a higher predicted probability have low hard color values and
lie in the HSS.The higher predicted probability values of observa-
tions in the HSS can be attributed to their high SNR values. Another
possible explanation to justify the better classification of observa-
tions in the HSS is the presence of a NS surface in the spectra of the
HSS, which would be absent in the HSS spectra of BH LMXBs.

To further investigate this, in Figure. 10 we plot the feature
importance for the input spectra. The feature importance represents
the relative importance that the ML algorithm gives to the given
input data (in this case, flux at a given energy bin). Figure. 10
shows that both the lower-end and the higher-end of the spectra
appear to be the most important parts of the energy spectra in order
to differentiate between BH and NS. The least important part of
the spectrum is around 18–19 keV, and around 12 keV there is a
small bump suggesting that there might be weak features at this
energy which also play an important role in the classification. The
fact that Figure. 10 does not show a flat distribution is important,
as it indicates that the algorithm is taking into account underlying
differences in the energy spectra, which probably relate to subtle
intrinsic physical differences between BH and NS (e.g. the presence

MNRAS 000, 1–15 (2020)



A Machine Learning Approach For Classifying Low-mass X-ray Binaries 11

(a) NS

(b) BH

Figure 9. Bi-variate density plots of Hard color and predicted probability of correct identification for NS and BH LMXB observations in different SNR ranges.
The color bar shows the number of observations in each region. We have 1518, 3650 and 813 observations in the SNR less than 100, between 100 and 1000
and greater than 1000 ranges respectively for BH LMXBs. Similarly for NS LMXBs we have 1188, 6698 and 1018 observations in the SNR less than 100,
between 100 and 1000 and greater than 1000 ranges respectively. The light-colored regions of the plots have the most number of observations. The individual
uni-variate histogram plots for hard color and predicted probability are also shown on their respective axes. As can be observed, all the plots indicate that it’s
easier to classify observations with low hard color values and high SNR values.

of a surface and a boundary layer in the NS, potential differences
in the size of the corona, contribution of the Jet to the X-rays, etc).

This, in turn, is pivotal to argue that if future works can use
more interpretable class of algorithms (see, for e.g., Villaescusa-
Navarro et al. 2020; Udrescu & Tegmark 2020, and references
therein) for this type of classification, then there is potential to use
ML-techniques to learn more about the differences between BHs
and NSs from their spectral characteristics.

The main objective of this work was to probe whether ma-
chine learning techniques can be employed to determine the class
of a newly observed LMXB source just by using the information
contained in its energy spectra. Our results show that despite below
average performance for a few sources, the random forest algorithm
does a reasonably good job in classifying the NS-BH LMXBs over-
all. The most important aspect of this method is the speed of the
classifications. Given an energy spectrum of a LMXB source, the
algorithm is able to assign a class label to it in a fraction of a sec-
ond. The algorithm also gives a probability of the predicted class
for the spectrum that can be used as a confidence measure for the
prediction. This algorithm has the potential of being used as a tool
to very quickly flag the spectra of a newly identified source that
can be helpful for scheduling follow-ups on particular objects of

interest. It is also important to note that in most cases the net con-
fidence of the predictions increases for a source as we add more
observations.

One issue that we face currently in our work is that our classifi-
cation model cannot be used directly to classify the energy spectra
from other X-ray missions. The main reason for this is that most
of the other currently active X-ray missions have instruments with
effective areas that are different to RXTE’s PCA. The first idea to-
wards tackling this issue is to train a classification model for each
instrument using their data. The problem that may arise while try-
ing to do this is that there may not be enough data to train a ma-
chine learning algorithm for each instrument. That was one of the
main reasons why we chose to work with data from RXTE even
though it is now decommissioned. However the concept of transfer
learning could be employed to train an algorithm for another instru-
ment with limited data using our pre-trained classification model
for RXTE data. More details on the idea behind transfer learning
can be found in Pan & Yang (2009).

Another alternative approach could be to use some sort of
transformation to convert the data from a different instrument
into the RXTE-PCA format. The transformed data can then
be directly plugged into the pre-trained model. It is important,
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Figure 10. Feature importance plot for the input features. The y axis shows
approximate energy values corresponding to each element in the input to the
algorithm. The energy values increase from top to bottom. The x-axis has
the feature importance of each element in the input vector to the algorithm.
The sum of all importance values is equal to 1.

however, to realize that such a transformation is only possible for
data obtained from instruments that have overlapping operational
energy range (i.e. at least 5-25 keV). This rules out data obtained
from instruments that operate specifically at lower energy ranges
(e.g. the SWIFT’s X-Ray Telescope) as we do not use data below
5 keV to avoid any effect of interstellar absorption.

Adding more information as input to the algorithm can also
be explored as a means of improving the current level of accuracy
reached for all the sources in our dataset. One way of doing that
would be to combine the energy spectra with the power spectra
of all observations for each source. There are many more potential
directions that can be explored in the future for solving the problem
of Low-Mass X-ray Binary spectral classification. We believe that
our experiment can serve as a starting point for the application of
machine learning methods to solve this and other problems in the
domain of X-ray astronomy.
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APPENDIX A: COMPLETE TABLES OF SOURCE WISE ACCURACIES FOR METHOD 2 AND METHOD 3

Table A1: Source wise performance of algorithm in method 2 (source-wise train-test split).

Source Names Class Total test obs. Correctly Classified Misclassified Accuracy percentage

XTEJ1118+480 BH 80 11 69 13.75
XTEJ1748-288 BH 91 31 60 34.07
XTEJ1652-453 BH 55 35 20 63.64
XTEJ1759-220 NS 45 29 16 64.44
SWIFTJ1756.9-2508 NS 47 33 14 70.21
MAXIJ1836-194 BH 74 52 22 70.27
SWIFTJ1713.4-4219 BH 31 24 7 77.42
SLX1735-269 NS 83 65 18 78.31
GRS1737-31 BH 14 11 3 78.57
NGC6440 NS 87 74 13 85.06
4U1543-47 BH 67 57 10 85.07
SAXJ1819.3-2525 BH 9 8 1 88.89
4U1746-371 NS 61 55 6 90.16
SWIFTJ1357.2-0933 BH 23 21 2 91.3
SAXJ1810.8-2609 NS 36 33 3 91.67
SAXJ1806.5-2215 NS 50 46 4 92.0
IGRJ17497-2821 NS 13 12 1 92.31
KS1731-260 NS 75 72 3 96.0
MXB1658-298 NS 73 71 2 97.26
1A1744-361 NS 49 48 1 97.96
XTEJ1755-324 BH 10 10 0 100.0
XTEJ2012+381 BH 26 26 0 100.0
4U1254-690 NS 100 100 0 100.0
GS1354-64 BH 11 11 0 100.0
GRS1739-278 BH 11 11 0 100.0
V4641SGR BH 7 7 0 100.0
XTEJ1818-245 BH 56 56 0 100.0

Table A2: Source wise performance of algorithm in method 3 (leave-one source out).

Source Names Class Total test obs. Correctly Classified Misclassified Accuracy percentage

XTEJ1118+480 BH 80 6 74 7.5
IGRJ00291+5934 NS 180 14 166 7.78
1A1246-588 NS 166 36 130 21.69
XTEJ1748-288 BH 91 27 64 29.67
IGRJ17379-3747 BH 784 415 369 52.93
XTEJ1812-182 NS 233 129 104 55.36
XTEJ1908+094 BH 213 121 92 56.81
4U1728-34 NS 423 264 159 62.41
XTEJ1652-453 BH 55 35 20 63.64
H1743-32 BH 558 361 197 64.7
XTEJ1759-220 NS 45 30 15 66.67
SAXJ1808.4-3658 NS 295 206 89 69.83
SWIFTJ1756.9-2508 NS 47 33 14 70.21
MAXIJ1836-194 BH 74 52 22 70.27
SWIFTJ1539.2-6227 BH 145 103 42 71.03
SWIFTJ1713.4-4219 BH 31 24 7 77.42
GRS1737-31 BH 14 11 3 78.57
GRS1747-312 NS 215 170 45 79.07
TERZAN5 NS 125 99 26 79.2
LMCX-2 NS 141 112 29 79.43
4U1630-47 BH 1102 877 225 79.58
XTEJ1720-318 BH 101 82 19 81.19
MAXIJ10556-332 NS 262 217 45 82.82
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Table A2: Source wise performance of algorithm in method 3 (leave-one source out).

Source Names Class Total test obs. Correctly Classified Misclassified Accuracy percentage

4U1608-52 NS 1041 876 165 84.15
4U1543-47 BH 67 58 9 86.57
SLX1735-269 NS 83 72 11 86.75
CYGX-2 NS 583 514 69 88.16
NGC6440 NS 87 77 10 88.51
SAXJ1819.3-2525 BH 9 8 1 88.89
4U1746-371 NS 61 55 6 90.16
GX339-4 BH 1163 1055 108 90.71
XTEJ1650-500 BH 121 110 11 90.91
XTEJ1550-564 BH 368 335 33 91.03
SWIFTJ1357.2-0933 BH 23 21 2 91.3
AQLX1 NS 555 507 48 91.35
MAXIJ1543-564 BH 268 245 23 91.42
SAXJ1806.5-2215 NS 50 46 4 92.0
XTEJ1859+226 BH 125 115 10 92.0
IGRJ17497-2821 NS 13 12 1 92.31
4U0614+091 NS 498 464 34 93.17
SAXJ1810.8-2609 NS 36 34 2 94.44
XTEJ1817-330 BH 157 149 8 94.9
HETEJ1900.1-2455 NS 351 336 15 95.73
GROJ1655-40 BH 546 524 22 95.97
4U1705-44 NS 512 492 20 96.09
MXB1658-298 NS 73 71 2 97.26
1A1744-361 NS 49 48 1 97.96
4U1724-307 NS 127 125 2 98.43
SAXJ1750.8-2900 NS 131 129 2 98.47
KS1731-260 NS 75 74 1 98.67
4U1636-53 NS 1563 1555 8 99.49
4U1254-690 NS 100 100 0 100.0
V4641SGR BH 7 7 0 100.0
XTEJ1755-324 BH 10 10 0 100.0
XTEJ2012+381 BH 26 26 0 100.0
GS1354-64 BH 11 11 0 100.0
XTEJ1818-245 BH 56 56 0 100.0
SERX-1 NS 102 102 0 100.0
4U1702-429 NS 225 225 0 100.0
GRS1739-278 BH 11 11 0 100.0
4U1735-44 NS 222 222 0 100.0
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