The University of Southampton
University of Southampton Institutional Repository

AI3SD Video: Accelerating structure prediction models for materials discovery

AI3SD Video: Accelerating structure prediction models for materials discovery
AI3SD Video: Accelerating structure prediction models for materials discovery
The discovery of new functional materials can be guided by computational screening, particularly if the structure of a material can be reliably predicted from its chemical composition. For this application, we have been developing the use energy-structure-function maps [1], which summarise the crystal structures available to a given molecule and the relevant properties that are predicted for these structures. The use of these methods is still limited by the computational cost of crystal structure prediction (CSP). Most of the cost of CSP is associated with the calculation of the relative energies of predicted crystal structures using energy models that are sufficiently accurate to provide reliable energetic rankings. To speed up these methods, we have been developing machine learning approaches to predict high quality energies (e.g. from solid state density functional theory) from structures that have been generated with computationally efficient energy models [2-4]. The talk will discuss the performance of these methods, which use Gaussian Process Regression based on descriptors of local environments of atoms within crystal structures. I will also describe how these descriptors can be used to more quickly navigate the structure-property landscapes of molecular crystals [5] and how fast CSP can be applied to screen chemical space for the most promising molecules for a given application [6].
[1] Functional materials discovery using energy–structure–function maps, A. Pulido et al, Nature 2017, 543, 657.
[2] Machine learning for the structure–energy–property landscapes of molecular crystals, F. Musil, S. De, J. Yang, J. E. Campbell, G. M. Day and M Ceriotti, Chem. Sci. 2018, 9, 1289-1300.
[3] Machine-Learned Fragment-Based Energies for Crystal Structure Prediction, D. McDonagh, C.-K. Skylaris and G. M. Day, J. Chem. Theory Comput. 2019, 15, 2743–2758
[4] Multi-fidelity Statistical Machine Learning for Molecular Crystal Structure Prediction, O. Egorova, R. Hafizi, D. C. Woods and G. M. Day, J. Phys. Chem. A 2020, 124, 39, 8065–8078.
[5] Distributed Multi-Objective Bayesian Optimization for the Intelligent Navigation of Energy Structure Function Maps For Efficient Property Discovery, E. Pyzer-Knapp, G. M. Day, L. Chen, A. I. Cooper, ChemRxiv 2020, https://doi.org/10.26434/chemrxiv.13019960.v1
[6] Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery, C. Y. Cheng, J. E. Campbell and G. M. Day, Chem. Sci. 2020, 11, 4922-4933.
AI, AI3SD Event, Artificial Intelligence, Chemical Discovery, Chemistry, Machine Intelligence, Machine Learning, Materials Discovery, ML, Molecules Discovery, Quantum Chemistry
Day, Graeme M.
e3be79ba-ad12-4461-b735-74d5c4355636
Kanza, Samantha
b73bcf34-3ff8-4691-bd09-aa657dcff420
Frey, Jeremy G.
ba60c559-c4af-44f1-87e6-ce69819bf23f
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
Hooper, Victoria
af1a99f1-7848-4d5c-a4b5-615888838d84
Day, Graeme M.
e3be79ba-ad12-4461-b735-74d5c4355636
Kanza, Samantha
b73bcf34-3ff8-4691-bd09-aa657dcff420
Frey, Jeremy G.
ba60c559-c4af-44f1-87e6-ce69819bf23f
Niranjan, Mahesan
5cbaeea8-7288-4b55-a89c-c43d212ddd4f
Hooper, Victoria
af1a99f1-7848-4d5c-a4b5-615888838d84

Day, Graeme M. (2021) AI3SD Video: Accelerating structure prediction models for materials discovery. Kanza, Samantha, Frey, Jeremy G., Niranjan, Mahesan and Hooper, Victoria (eds.) AI3SD Winter Seminar Series, , Online. 18 Nov 2020 - 21 Apr 2021 . (doi:10.5258/SOTON/P0074).

Record type: Conference or Workshop Item (Other)

Abstract

The discovery of new functional materials can be guided by computational screening, particularly if the structure of a material can be reliably predicted from its chemical composition. For this application, we have been developing the use energy-structure-function maps [1], which summarise the crystal structures available to a given molecule and the relevant properties that are predicted for these structures. The use of these methods is still limited by the computational cost of crystal structure prediction (CSP). Most of the cost of CSP is associated with the calculation of the relative energies of predicted crystal structures using energy models that are sufficiently accurate to provide reliable energetic rankings. To speed up these methods, we have been developing machine learning approaches to predict high quality energies (e.g. from solid state density functional theory) from structures that have been generated with computationally efficient energy models [2-4]. The talk will discuss the performance of these methods, which use Gaussian Process Regression based on descriptors of local environments of atoms within crystal structures. I will also describe how these descriptors can be used to more quickly navigate the structure-property landscapes of molecular crystals [5] and how fast CSP can be applied to screen chemical space for the most promising molecules for a given application [6].
[1] Functional materials discovery using energy–structure–function maps, A. Pulido et al, Nature 2017, 543, 657.
[2] Machine learning for the structure–energy–property landscapes of molecular crystals, F. Musil, S. De, J. Yang, J. E. Campbell, G. M. Day and M Ceriotti, Chem. Sci. 2018, 9, 1289-1300.
[3] Machine-Learned Fragment-Based Energies for Crystal Structure Prediction, D. McDonagh, C.-K. Skylaris and G. M. Day, J. Chem. Theory Comput. 2019, 15, 2743–2758
[4] Multi-fidelity Statistical Machine Learning for Molecular Crystal Structure Prediction, O. Egorova, R. Hafizi, D. C. Woods and G. M. Day, J. Phys. Chem. A 2020, 124, 39, 8065–8078.
[5] Distributed Multi-Objective Bayesian Optimization for the Intelligent Navigation of Energy Structure Function Maps For Efficient Property Discovery, E. Pyzer-Knapp, G. M. Day, L. Chen, A. I. Cooper, ChemRxiv 2020, https://doi.org/10.26434/chemrxiv.13019960.v1
[6] Evolutionary chemical space exploration for functional materials: computational organic semiconductor discovery, C. Y. Cheng, J. E. Campbell and G. M. Day, Chem. Sci. 2020, 11, 4922-4933.

Video
AI3SD-Winter-Seminar-Series-MML-GraemeDay - Version of Record
Download (573MB)

More information

Published date: 24 February 2021
Additional Information: Graeme Day is Professor of Chemical Modelling at the University of Southampton. His research concerns the development of computational methods for modelling the organic molecular solid state. A key focus of this work is the prediction of crystal structures from first principles; his research group applies these methods in a range of applications, including pharmaceutical solid form screening, NMR crystallography and computer-guided discovery of functional materials. After a PhD in computational chemistry at University College London, he spent 10 years at the University of Cambridge, where he held a Royal Society University Research Fellowship working mainly on modelling pharmaceutical materials and computational interpretation of terahertz spectroscopy. He moved to the University of Southampton in 2012, at which time he was awarded a European Research Council Starting Grant for the 'Accelerated design and discovery of novel molecular materials via global lattice energy minimisation' (ANGLE). This grant shifted the focus of his research to functional materials, including porous crystals and organic electronics. In 2020, he was awarded an ERC Synergy grant 'Autonomous Discovery of Advanced Materials' (ADAM) with Andrew Cooper (Liverpool) and Kerstin Thurow (Rostock) to integrate computational predictions, chemical space exploration with automation in the materials discovery lab. Graeme has served on the editorial boards of CrystEngComm, Faraday Discussions and on the advisory board of Molecular Systems Design & Engineering (MSDE).
Venue - Dates: AI3SD Winter Seminar Series, , Online, 2020-11-18 - 2021-04-21
Keywords: AI, AI3SD Event, Artificial Intelligence, Chemical Discovery, Chemistry, Machine Intelligence, Machine Learning, Materials Discovery, ML, Molecules Discovery, Quantum Chemistry

Identifiers

Local EPrints ID: 447673
URI: http://eprints.soton.ac.uk/id/eprint/447673
PURE UUID: 130e64c8-fa39-45c9-918c-875b033db09b
ORCID for Graeme M. Day: ORCID iD orcid.org/0000-0001-8396-2771
ORCID for Samantha Kanza: ORCID iD orcid.org/0000-0002-4831-9489
ORCID for Jeremy G. Frey: ORCID iD orcid.org/0000-0003-0842-4302
ORCID for Mahesan Niranjan: ORCID iD orcid.org/0000-0001-7021-140X

Catalogue record

Date deposited: 18 Mar 2021 17:36
Last modified: 17 Mar 2024 03:51

Export record

Altmetrics

Contributors

Author: Graeme M. Day ORCID iD
Editor: Samantha Kanza ORCID iD
Editor: Jeremy G. Frey ORCID iD
Editor: Mahesan Niranjan ORCID iD
Editor: Victoria Hooper

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×