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AUTOMATED NEGOTIATION FOR OPPORTUNISTIC DIRECT COOPERATION

BETWEEN NEIGHBOURING WIRELESS SENSOR NETWORKS

by Andre Ortega Alban

As the Internet of Things grows, multiple wireless sensor networks (WSNs) are likely to coexist.

From wearable health monitors to smart cities, WSNs will play an increasingly key role in

most scenarios. In many of these applications, sensor nodes are likely to be battery-powered

and hence limited in energy supply. Energy harvesting technologies have gained widespread

attention to increase node lifetime. However, these exhibit spatio-temporal variations and expose

a discontinuous power supply.

Visioning a future with cooperative networks, this work proposes to extend network perfor-

mance optimisation to an inter-domain approach by opportunistic cooperation among WSNs

that share a common area. Since WSNs are highly heterogeneous and self-interested, cooper-

ation is not guaranteed. The cooperation problem has been addressed using a game-theoretic

approach. However, assumptions as full rationality or complete knowledge are not justified in

this domain. Instead, this work utilises multi-agent design methods to provide a new methodol-

ogy on negotiation-based cooperation that enables suitable agreements on energy sharing.

With the aim to optimise a network’s power management using the suggested approach, a node’s

own efficiency is computed. Thus, a self-organising algorithm capable of making optimal use of

harvested energy is proposed. This power management technique is tested during every simula-

tion presented. Such an algorithm enables self-organised nodes that can anticipate insufficient

energy allocation schemes and identify the opportunity to start an energy negotiation (OEN).

Experiments show the accomplishment of energy-neutrality when networks find energy flow

agreements and adopt conciliatory behaviours. The effect on the power consumption and latency

of establishing OEN is also quantified and proved to be insignificant (<0.01 J, <0.1 s).

A novel partner selection method based on multi-armed bandits is also introduced to facilitate

the estimation of successful negotiation agreements. The proposed model allows networks to

maximise their energy allocation in the long run, while adapting to a highly dynamic and un-

certain environment. The viability of the approach is measured through simulation, and results

show that networks may improve their energy allocation by over 40% in the most challenging

scenario considered in this thesis.
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Chapter 1

Introduction

A wireless sensor network (WSN) is formed by multiple sensor devices equipped with limited

memory, processing, power and communication capabilities. The typical application of WSNs

involves the collection of data from the environment, data processing, and routing of aggregated

data to a central node (or sink). For these features, WSNs are presently used in a wide range of

applications that include environmental monitoring and target tracking.

The ubiquitous nature of these networks is a key component in the Internet of Things (IoT),

where sensor devices are deployed to support the development of smart, dynamic and context-

aware IoT applications. With the increasing popularity of IoT, the idea of multiple overlapping

WSNs constructed in the same area becomes more feasible.

An example of sensor network applications deployed within small geographic vicinity is shown

in Figure 1.1.

Fire detection Smart lighting Smart building Surveillance system

SHMTraffic management Structural health monitoring

SHM

Figure 1.1: An IoT ecosystem with multiple co-located WSNs.

1
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The constrained nature of sensor nodes and the realization of IoT encourage research on cooper-

ation among co-located 1 devices. The cooperation among nearby sensor nodes is important to

exploit their inherent diversity. The gains of such cooperation will depend on the goal or utility

each device tries to maximise. Accordingly, the coordination of resources, as energy and data,

for cooperation between multi-domain sensor networks could lead to many benefits, e.g., longer

lifetime or higher data coverage.

In more detail, work in [2] presents the advantages of data sharing among WSNs. The operation

of a WSN measuring relative humidity is optimised using the data from an external WSN that

measures temperature. The mechanism may reduce the energy consumption of the network and

extend its lifetime by making predictions and adapting its operation.

The exchange of information can also be useful in expanding the data coverage of a WSN.

Specifically, Zia et al. [3] study the importance of data sharing between WSNs in co-located

farm fields. The goal in this domain is to have an effective water quality management at a

catchment scale (see Figure 1.2). Data sharing is expanded on in Section 2.2.1.

Figure 1.2: Collaborative catchment-scale monitoring of precision agricultural and wa-
ter quality control systems (taken from [4]).

In [5], several use cases are described to illustrate how cooperation among sensor networks

is useful for their performance optimization. The authors in [6] describe a paradigm referred

to as “Symbiotic networks” for supporting the integration of different wireless networks from

their design. Using symbiotic networks, they suggest many different forms of cooperation, from

sharing a resource as information, or nodes for processing and routing purposes, to offering

networking services to each other. For instance, work in [7] introduces a symbiotic software

platform, which enables the combination of data from distinct networks to construct service

composition relying on semantic web technology.

In effect, the idea of cooperation among multiple WSNs has been previously studied by sev-

eral works [8–13] including game-theoretic models to investigate the impact of cooperation,

cooperation strategies for packet forwarding to prolong the networks’ lifetime, resource trading

1The terms co-located, overlapped and neighbour are used interchangeably to denote nodes with overlapping
radio range.
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between neighbouring WSNs to control energy transfers, and a negotiation-based approach to

measure the benefits of different networks sharing network services. By exploiting cooperation,

networks can accomplish multiple benefits in terms of data-sharing or energy-sharing.

Since energy is scarce in sensor nodes, a clearly visible challenge of WSNs is the energy con-

sumption problem. Accordingly, the reduction of power consumption through energy sharing

by cooperative packet forwarding has been the most important incentive to enable cross-network

cooperation [9, 11–17].

Energy harvesting technologies have attracted a lot of attention to mitigate the energy scarcity

issue and become the solution for future ubiquitous smart environments. However, energy har-

vesting wireless sensor networks (EHWSNs) are conditioned to spatio-temporal variations of

energy availability providing intermittent power supply (e.g. negligible energy at nights in the

case of solar technology). An EHWSN is a WSN, but unlike battery-powered WSN, the har-

vested energy is used as the first source of energy for the system with the main objective of

achieving an endlessly long system lifetime. This mode of operation is called energy-neutral

operation: a harvesting node achieves it if the energy supply during a harvesting period is suffi-

cient to support the amount consumed during the same time [18].

Environmental factors such as weather conditions, physical obstructions or limited availability

of the ambient sources such as light or wind can have a significant impact on energy availabil-

ity. Due to the uncertainty of these sources, relying solely on them can provide only enough

energy to power the sensors sporadically and not continuously. Therefore, the need to develop

alternative energy management techniques arises in order to achieve efficient energy allocation

in rechargeable sensor networks.

By pursuing the cooperation approach, energy transfer across network boundaries can help in

the goal of energy-neutrality. In [8], Teng et al. propose a novel power management strategy

based on Opportunistic Energy Trading (OET) between two networks. The spatial variation

of harvestable energy allows energy-neutral systems to leverage an area wider than one single

network domain (see Figure 1.3). However, in this scenario, the improvement of performance

is exclusive for one network only. The proposal ignores the different energy profiles of the

networks and the conflicts that arise due to their heterogeneity. The work also assumes altruistic

behaviour for reasons of clarity and simplicity. More details on energy sharing are available in

Section 2.2.2.

This thesis adopts the idea of exploiting an area wider than the boundaries of the network, since

it may represent a potential solution to use the energy sources more efficiently through oppor-

tunistic cooperation. By opportunistic, this research refers to interactions between networks

that occur without having prior knowledge about the resources and characteristics of the other

part. Besides, the heterogeneous nature of WSNs in their power consumption, batteries and

energy harvesting profiles can be useful to complement the energy requirements of all networks

involved in opportunistic cooperation.
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Generally, the amount of solar energy harvested increases during morning time slots, declines

during afternoon slots, and is negligible during night slots. On the other hand, for the wind

source, the replenishment profile traces are very irregular. Let’s assume it is windy at night and

the afternoon has some periods of wind absence while it is calm at mornings. Wind energy can

be sufficient to power up sensor nodes and store some energy in their batteries. Consequently,

the combination of sun and wind energy may ensure every network node to exploit its source to

the fullest instead of marking the excess harvested energy as waste or satisfy only a subset of

load. This is the main idea of this research, to find a suitable framework so networks can share

harvested energy at some points in time in return for energy at other periods of time.

Figure 1.3: The motivation for Opportunistic Energy Trading (OET): existing power
management algorithms are limited to managing resources within their network bound-
ary, whereas OET enables the effective transfer of energy across multiple networks
(taken from [8]).

Even if multiple WSNs share the same area, the authorities associated with the networks and

their distinguished application-specific designs may make this sharing not straightforward. The

co-located networks can be considered independent and self-interested with different optimisa-

tion goals, which suggests that cooperation without a mutually acceptable agreement might not

be fair or guaranteed. Thus, networks need to decide first whether cooperation is beneficial or

not.

Accordingly, this thesis presents an overview of several different methods to study both the

cooperation problem and current solutions to ensure energy neutral operation. In this work, the

aim is to investigate how co-located and distinct WSNs can coordinate to jointly cooperate and

optimise the use of their harvested energy. If so, through what method can these networks instead

of operating in isolation, reach an agreement when each network authority is only interested in

its own utility? This is the question this thesis aims to address here. The research should be

oriented to define an opportunistic energy cooperation scheme to consider multiple nodes and

multiple networks, keeping the goal of achieving efficient energy management in the long run.
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1.1 Research Justification

Energy management schemes are designed to provide networks with efficient use of harvested

energy. Previous efforts have concentrated on two different perspectives on how to ensure

energy-neutral sensing systems: optimal energy allocation algorithms and adaptive parameter

strategies. Various algorithms have been proposed to search for optimal allocation of gathered

energy [19–24]. These proposals have the important limitation that the energy harvesting con-

sidered for allocation is limited to the scope of one network domain. In this direction, even when

additional energy can be harvested from an ambient energy source, the energy collected remains

a limited resource due to temporal and spatial variations [25]. Therefore, the energy output is

virtually insufficient during intermittent supply. Moreover, if the entire network is unable to har-

vest energy (due to ambient conditions or obstacles in the environment), none of these solutions

is enough. The energy allocation schemes of some approaches act over infinite battery storages

or ideal energy buffers [21, 23, 26–28]. These assumptions are unrealistic in practical scenarios

and are not required in the model described in this thesis.

A reasonable notion of limited energy buffers is presented by several allocation algorithms

[22, 29–31]. However, the models define complex optimisation problems involving Markov

decision processes (MDPs) or dynamic programming. These methods include increased com-

putational costs and significant running times, compared to linear or convex optimisation mod-

els. A distributed mechanism is desirable for the network to continue to operate properly. In

a centralised approach, obtaining the global information of nodes can be very expensive or im-

possible, since it leads to high communication overhead (bandwidth and energy consumption).

Moreover, a central processing unit can be a unique point of failure. A distributed approach pre-

vents network bottlenecks and provides scalability. Therefore, the solution algorithms need to

consider the resource-constrained nature of sensor nodes instead of assuming enhanced devices.

Other approaches such as adaptive duty cycling [32, 33] and adaptive sampling strategies [34–

37] have also been explored. These proposals include models that enable a harvesting sensor

node the use of future energy opportunities to adjust its network parameters accordingly to

operate perennially. The algorithms typically adapt parameters such as the transceiver’s duty-

cycle or sensing rate [38]. These works fall into the category of adaptive parameter strategies.

Other energy-neutral designs exploit the spatial variation of energy harvesters and distribute load

using adaptive opportunistic routing protocols [39, 40]. While these approaches work well with

the expected dynamic energy harvesting, they have the common feature that their performance

is limited to the boundary of one network domain. Besides, some existing algorithms require

the assistance of a centralised control station to distribute the adjustment of parameters. In

addition to these limitations, these algorithms may lead to deficient data collection. Since these

techniques dynamically manage a node’s operation to throttle its activity when energy supply is

scarce and increase it during periods of high availability, the adaptive algorithms may incur in

the collection of undesirable data or in the loss of collectable information. More details of the

presented approaches discussed in this section can be found in Section 2.5.
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Current research has not taken into account exploiting the heterogeneity of nodes or energy

harvesting technologies. The traditional view of sensor networks, where multiple sensor nodes

belong to one single domain neglects the potential of efficient power management from the

cooperation of distinct networks equipped with renewable energy generation and finite storage.

Recently, [8] evaluated the effect of cross-boundary energy transfer between two networks. In

effect, the excess energy transferred out of an energy-harvesting WSN to an energy-scarce WSN

optimises the energy management of the last one. The performance of the benevolent EHWSN

on packet delay and energy saving is not affected nor rewarded. However, the high heterogeneity

among these networks may have a relevant impact on the result of cooperation [41]. In these

situations, cooperation can incorporate artificial intelligence (AI) techniques in order to reach

mutually beneficial agreements.

In the cooperation literature, the most important and studied criterion for inter-network col-

laboration has been the incentive of networks’ lifetime maximisation [2, 8, 9, 11–17, 42, 43].

Existing approaches have addressed the cooperation problem using a game-theoretic framework

[9, 12, 13, 16, 17], where a WSN is assumed to be rational and selfish. These works have mod-

elled the behaviour of a network as a game to analyse the existence of strategies, looking for

equilibrium among rational players that negotiate with each other to maximise their own bene-

fit. Through simulations, they make an exhaustive search on the available space to find the best

strategy for each network’s authority (i.e., those that form a Nash equilibrium with the highest

possible lifetimes) under different simulated parameter sets. They have studied when coopera-

tion is feasible between networks of multiple domains without using incentives (eg. reputation,

pricing) [12, 13, 44] or enforcing it through punishment [15] and dynamic pricing [45]. The

feasible conditions of cooperation between heterogeneous networks have been also analysed us-

ing game theory [9, 12, 13, 16, 17]. However, energy harvesting sensor networks and efficient

power management have been left out of this context.

Despite the relevance of game theory for modelling cooperation among rational nodes in WSNs,

this approach in practice is usually highly complex and inefficient to implement. The most

obvious drawbacks are:

• An unbiased trustable mediator is implicit, that acts to find the agreement towards the

Pareto-optimal line by means of Nash axioms using complete information of the players.

• The computational complexity of this search increases significantly as the number of

nodes involved grows. The set of available actions for each node needs to be fully de-

fined as well as the possible states the system can reach.

In the absence of a powerful and central cognitive engine, a WSN would necessitate nodes mak-

ing a significant effort to calculate and store not only all their possible actions at each decision

point but also the ones corresponding to their counterpart. Thus, the use of game theory may

demand storage and computational capacities that are not suitable in this domain. Similarly, the

assumption of complete information is not accurate in opportunistic encounters between nodes.
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Before cooperation can be established, networks should be able to negotiate over the set of

feasible agreements. Related to this, work in [10] proposed an incentive-driven networking

methodology as the calculation of the optimal set of network services to optimize their incen-

tives. This work can be regarded as most related to the presented research, since it also aims to

devise a negotiation methodology to engage networks on efficient cooperation. However, their

approach uses a central trusted manager and networks integrated by an infrastructure platform

using the IDRA framework [46]. Thus, this approach requires a prior backbone network, which

is absent in open environments and opportunistic interconnections.

Furthermore, during the cooperation process, networks should be able to select a negotiation

partner from the set of co-located and external nodes to exchange offers and find a mutually-

acceptable agreement in favour of maximising their aims. The agreement in this domain will

consist of an energy flow exchange that supplies mutual demands for both participants to achieve

efficient energy management. Although partner selection has been previously investigated in

negotiation [47–50], the existing approaches rely on historical records, or information readily

available to the parties. The solution, however, must depend on the characteristics of the WSN

domain. Related work on partner selection is presented in more detail in Section 2.5.

Considering the autonomy desired in networks of IoT, a mechanism for self-controlling the

favours of cooperation is a requirement. Therefore, this thesis motivates the use of an automated

negotiation solution to facilitate the cooperation between EHWSNs and solve coordination prob-

lems that arise by a conflict of preferences. The solution must be distributed to consider the lack

of intervention of an intermediate mediator and deal with the limited capabilities of a sensor

node. The main advantage of cooperation based on negotiation is that it allows the establish-

ment of an opportunistic interaction between networks that cannot be conceived at design time

about the resources of their neighbours. A negotiation-based methodology leads to a more inte-

grated system of EHWSNs, with the goal of maximising the use of harvested energy. The term

OEN is adopted in this work to describe the domain studied here and refer to the developed

approach of Opportunistic Energy Negotiation.

Although the cooperation among networks can be enabled through the negotiation process in

order to optimise a system-wide goal, every single node involved in the negotiation has a limited

view about the state of the entire network. A node only knows how to perform its tasks and

has bounded knowledge of other nodes around, either due to its location or constrained nature.

Therefore, the impact that each energy flow offer will have in the performance of the entire

network is decided based on a suboptimal approach where a node’s local state and observations,

and those of its neighbouring nodes are taken into account. To optimise the network operability,

the nodes must coordinate their actions with those nodes in close proximity. In the same way,

the dynamic feature intrinsic in this domain must be taken into consideration, where nodes

need to adjust to topology changes, varying environmental conditions and multiple negotiation

behaviours. The solution must allow each node to adapt to these variances and achieve the

network objective of long-term energy allocation.
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A multi-agent approach is a natural fit for this setting, where each sensor is controlled by an

agent. The agent engages in communication with other agents in its area in order to achieve

system-wide goals in a distributed manner. Since the combination of WSNs and Multi-Agent

Systems (MAS) can bring a new generation of intelligent networks, this thesis follows the MAS

approach. The use of MAS technologies in the WSN domain has raised a high interest, mostly

due to their suitability for modelling autonomous self-aware sensors [51–53]. Therefore, this

thesis models a sensor network as a cooperative multi-agent system, i.e. nodes in the same

network coordinate their actions and act according to end-to-end goals. In this case, the main

task to be performed by the sensor nodes (agents) of different networks is to bargain among them

to define an effective transfer of energy that deals with the spatio-temporal profile of their energy

sources. From now on, to keep the terminology consistent with the multi-agent system based

WSN, the terms “sensor node”, “node”, “agent node” and “agent” may be used interchangeably.

1.2 Research Aims

The aims of the research presented in this thesis can be summarised as follows:

A1: Research and analyse existing energy allocation algorithms for rechargeable sensor net-

works which ensure energy neutrality to model the energy behaviour of a cooperative

network.

A2: Implement and evaluate a negotiation-based cooperation approach, using experimental

validation to quantify the benefits in terms of energy allocation on energy management

across network boundaries. Use a benchmark to provide a comparative analysis of the

technique.

A3: Measure the impact on a network’s performance of establishing an OEN through simula-

tions.

A4: Explore current partner selection models and assess their suitability to allow the iden-

tification of the best potential partner in the domain of automated negotiation between

WSNs.

1.3 Research Requirements

In order to provide a novel approach for the cooperation problem among co-located and distinct

WSNs, the following research requirements need to be fulfilled by any solution. Some require-

ments arise from the characteristics of the networks and the type of interconnection considered

in this work, while others are related to the interaction of the network managers (authorities that

administrate each network) in this domain.
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The following requirements for a solution to the problem of WSNs cooperation, emerge from

the characteristics of the networks and their interconnection. The first is the absence of a dedi-

cated reasoning engine, due to the inter-network communication scheme assumed in this work.

The traditional way to build cooperation between independent networks is to connect them via

the Internet, using additional facilities like gateways. While this design can support limited task

sharing, it is not flexible for co-located networks because it only enables data sharing and de-

pends on the availability of connectivity, which may not be possible in some situations (e.g. a

disaster scenario). In a disaster scene, backbone networks like the Internet may be unavailable

or unreliable. To overcome the limitations of a gateway-based interconnection architecture, the

conceptual framework to construct Opportunistic Direct Interconnection (ODI) was proposed

[54]. ODI allows multiple co-located networks to be discovered and identified among each

other and enables interconnection between them to help integrate WSNs with native protocols

in the IoT. Even if networks can communicate through wireless standards, the absence of an

intermediate entity should be considered to avoid unnecessary overhead.

Taking the example of a disaster scenario, one can derive as a consequence, node dropouts and

network partitions produced by degraded network lifetimes. Networks can be partitioned be-

cause some agents in a specific area can communicate with neither the base station nor any

other agents that can communicate with the base station. Fortunately, under these conditions,

ODI can be enabled as a contingency support towards the mitigation of the problem and to re-

duce the impact of failures. In such a situation, reliability can also be enhanced regarding the

opportunity for reconnection with disjoint partitions using neighbouring resources. However,

before networks can proceed, a negotiation process is essential to ensure effective cooperation.

To take full advantage of the ODI framework, in the absence of a centralised entity, the nego-

tiation must occur in a distributed manner where agents decide the energy flow (or services to

exchange) between them by themselves. Therefore, a decentralised solution is a fundamental

requirement for this problem, which leads to the following requirement.

Since the cooperation is envisaged over a finite period of time (e.g. a day), the issues over

which networks negotiate include the series of energy amounts that integrate an energy flow

over the corresponding time period. Therefore, this thesis assumes a vector of values negotiated

simultaneously. For example, if networks expect to cooperate for 6 hours, they need to negotiate

over an energy flow that must include 6 energy values, where the energy able to allocate by

each amount negotiated is affected by the energy received in earlier periods, due to the battery’s

dynamics. Therefore, this type of domain demands a feasible solution for interdependent multi-

issue negotiations, which is far more complex to manage [55], even more, when agents employ

strategies that require them to learn about the opponent’s model to solve the negotiation.

As a result of the interconnection architecture, the participants of the negotiation are the con-

strained sensor nodes controlled by agents, one agent at each group with overlapping radio

range. Since nodes are not powerful devices, the negotiation protocol must be simple, make

an efficient use of scarce computational resources and require a minimal amount of process-

ing and messages between negotiators. The reaching of an agreement or disagreement between
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agents must have a deadline in order to minimise the negotiation time and the communication

cost incurred by the submission of offers. Then the goal is to negotiate within a short period

of time for a reasonable cycle, by limiting the number of offers and the computation required

to calculate them. With the aim of avoiding transmission and energy overheads when multiple

agents are co-located, a novel partner selection method to estimate the success of a negotiation

must be included in the workflow of the proposed solution. The proposed model should allow

networks to maximise in this case, their energy allocation in the long run, while adapting to a

highly dynamic and uncertain environment.

Along with the need for a solution that should not depend on heavy computing and the Internet,

support for dynamism is also desirable. The topology of these networks is dynamic as sen-

sors work in different states, such as an active, sleep, or dead state, besides, new nodes may be

added to the network at any time. The dynamism of the environment where these networks are

deployed must also be taken into account. This dynamism may introduce uncertainty into the

negotiation process because the networks will not be static on their energy availability and nei-

ther about their preferred times to cooperate. Therefore, the variable environment and topology

must be considered in the system model.

The assumption of complete information is not possible in opportunistic interconnection. Since

networks are not known from their design; rather they are identified after deployment, the mod-

els used to evaluate offers and generate counter-offers are hidden from one another. Privacy of

information is a requirement to be treated by the negotiation model.

Besides the requirements based on the features of WSNs and the type of interconnection between

them, the characteristics assumed of the network’s administrators must be taken into account.

Because of their natural self-interested behaviour, each individual desires to maximise his own

benefit. Therefore, they will enable cooperation solely when it increases their own utility. That

is, the cooperation takes place when it is beneficial to all the participants, otherwise, it will not

be acceptable.

The conflict is then generated when each network prefers the offer which yields it the highest

utility. However, their interests are not completely mutually exclusive due to their energy avail-

ability and demand. There are time intervals where their preferences are aligned and there will

be a variety of energy flow agreements that can generate some utility to all participants. This

utility may not be their preferred highest utility (i.e. energy neutrality) but more than the ob-

tained when networks operate in isolation. Since WSNs are typically placed in remote or hostile

environments, they should operate with minimal human intervention. Then, input from network

administrators is not appropriate, which indicates to us that a need for automated negotiation for

the domain of cooperation between networks towards autonomous IoT is evident.

As the main motivation of this cooperation problem is to optimise the use of harvested energy

when networks take into account its availability and their heterogeneity in terms of resources,

a solution to the negotiation should be comparable with an efficient outcome, called a Pareto-

optimal solution. An outcome achieves a Pareto-optimal state when no participant can benefit
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from any action without reducing the utility of another. For example, if there is an available

amount of energy harvested that can be useful for only one agent, then it must be allocated for

its benefit (i.e. the owner of the unused energy cooperates with the tasks of the beneficiary),

otherwise, this solution will not be an efficient solution.

The following negotiation characteristics can be observed from the aforementioned description.

(i). Decentralised. The interconnection between networks is direct, so the agents are required

to negotiate directly with a selected negotiation partner from a group of agents. In this

setup, there is no central decision maker. Since each neighbourhood of agents will have a

negotiating agent, the protocol needs to be distributed.

(ii). A negotiation should be kept short. Time is a major constraint on an agent’s behaviour

in this domain. The negotiation rules must set a maximum number of rounds. As part of

this requirement, networks must minimise their interactions and negotiate for a reasonable

deadline. The more interactions it takes, the more processing, communication latency and

bandwidth usage it costs.

(iii). Multiple issues must be addressed simultaneously. Automated multi-attribute negoti-

ations must be supported by the solution. The negotiation framework needs to consider

the interdependency between the energy values and provide offer generation methods ac-

cordingly.

(iv). Adaptable. From the agent’s perspective and its environment, two major changes need to

be considered: environmental changes and the dynamic feature of network topology. If the

topology of the networks changes because of different nodes’ states, such as activeness,

sleepiness, and dead state, an agent must be able to adapt to the alterations. Moreover, the

agent’s different energy profiles in a neighbourhood of agents must be examined to select

the most prominent agent to negotiate at every opportunistic interaction.

(v). Privacy of information. Networks are self-interested and meet opportunistically, so the

disclosure of information is inappropriate. Thus, the models used to evaluate and generate

offers are one of the things that negotiators try to hide from each other. The negotiation

must consider incomplete information regarding the opponent’s utility preferences.

(vi). Beneficial to all. Since networks are self-interested they will only compromise if the

cooperation brings benefits [14, 16, 43].

(vii). Automated negotiation. The negotiation must occur without human intervation.

(viii). Outcome comparable with Pareto-optimal. The solution must be compared with a

centralised solution where agents reveal their reservation values at the first step of the

negotiation and get Pareto-efficient outcomes.
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1.4 Research Contributions

In order to solve the conflicts derived by the heterogeneity of networks in terms of resources,

nodes need to coordinate. Accordingly, the new methodology presented in this work incor-

porates a decentralised reasoning mechanism to the cooperative approach between co-located

networks with direct interconnection architecture. The research undertaken to design such a

mechanism and meet the requirements listed in the previous section has led to the following

novel contributions:

• A novel energy allocation scheme that provides a sensor node with the ability to detect

potential opportunistic energy cooperation.

This contribution is presented in Chapter 3 and addresses aim [A1].

• A novel cooperation model based on bilateral negotiation adopting existing negotiation

techniques: the alternating-offers protocol, time-dependent strategies and orthogonal coun-

teroffers to enable an agent in the WSN domain to exchange offers and share energy-

hungry services (e.g. data processing or packet routing).

This contribution is presented in Chapter 4 and addresses aim [A2]. This contribution led

to the publication of the following document:

– Ortega, A. P., Merrett, G. V., and Ramchurn, S. D. “Automated Negotiation for

Opportunistic Energy Trading Between Neighbouring Wireless Sensor Networks.”

2018 IEEE International Conference on Communications, Control, and Computing

Technologies for Smart Grids (SmartGridComm). IEEE, 2018.

• Results showing how negotiation can be delimited by a short-term deadline and end in

energy-neutral agreements with a reduced cost of establishment in energy and latency,

tested using a network simulator.

This contribution is presented in Chapter 4 and addresses aim [A3].

• A novel partner selection technique based on multi-armed bandit learning (MAB). With

this approach, an agent can learn the best-fixed strategy to achieve an efficient energy

allocation in the long run dealing with the dynamism of the domain.

This contribution is presented in Chapter 5 and addresses aim [A4].

In addition, the following paper has been submitted for publication:

• Ortega, A. P., Merrett, G. V., Ramchurn, S. D. and Tran-Thanh, L. ”Partner Selection

of Self-Organised Wireless Sensor Networks for Opportunistic Energy Negotiation: A

Multi-Armed Bandit based Approach.”
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1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• Chapter 2. This research studies a negotiation process for opportunistic and direct coop-

eration between independent and autonomous networks. To scope the viewpoint, Chapter

2 provides a literature of work relevant to the topic and identifies the state-of-the-art in the

domain of WSN cooperation and energy management. Pertinent negotiation techniques

are also reviewed and the existing work on partner selection is discussed. Related work

on reinforcement learning for WSNs is summarised as well.

• Chapter 3. The methodology to enable cooperation between networks is described in this

chapter. The energy allocation problem for node power management is presented here and

a new energy allocation algorithm is derived. The system model for efficient energy allo-

cation across network boundaries is also described. A game-theoretic approach is revised

and the optimisation results with and without the cooperation of nodes are analysed.

• Chapter 4. This chapter describes the network simulation and experimental setup to evalu-

ate the effects of establishing an OEN in the network. Key metrics are energy consumption

and latency. The heuristic negotiation approach modelled for OEN is also proposed and

evaluated here.

• Chapter 5. The MAB model for partner selection is introduced in this chapter. A com-

parison of the results obtained using three state-of-the-art MABs policies for adversarial

environments is performed.

• Chapter 6. Finally, this chapter concludes on the work and provides the potential future

directions of this research.





Chapter 2

Cooperation between Networks,
Energy Management and Automated
Negotiation

In this chapter, an overview of relevant research studies to this thesis is presented. At first,

the technology that enables cross-network interconnection to facilitate the interactions between

co-located WSNs (Section 2.1) is described. The communication between multi-domain net-

works is essential for cooperation between them and existing synergy is based on traditional

indirect interconnection that depends on the Internet connectivity. However, the proposed work

on Opportunistic and Direct Interconnection (ODI) allows co-located networks to discover and

interconnect directly in order to trade energy resources. The definition of ODI follows the

description of the principal resources that networks might share if they interact (Section 2.2).

Since the nodes are often battery-powered, the most studied criterion for their cooperation is the

reduction of their power consumption. In fact, the literature review in WSN cooperation is ex-

tended in the content of this incentive: the extension of network lifetime with cooperative packet

forwarding, and its game-theoretic modelling is emphasized in this chapter. Existing work on

bargaining (Section 2.3) as a technique that can be useful when networks want to cooperate but

have conflicting interests is then discussed. The work on a heuristic approach for bilateral nego-

tiations is described in Section 2.4. The optimisation of energy use has not been explored before

as an incentive for WSNs cooperation. Consequently, a detailed survey of existing approaches to

energy management are presented in Section 2.5, highlighting the existing challenges. Then, the

partner selection problem is introduced and current solutions found in different domains (Sec-

tion 2.6) are described. Since the problem of partner selection is addressed in this thesis using

a reinforcement learning based technique, related work of its application for WSNs is reported

in Section 2.7. In the final section, a summary and discussion are presented about the existing

negotiation mechanisms and their adoption in the domain of opportunistic energy negotiation

between distinct networks (Section 2.8).

15
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2.1 Opportunistic Direct Interconnection (ODI) between Neighbour-
ing WSNs

Since the application and monitored environment of a WSN have a determinant role in its design

and definition of protocols, a WSN is application-dependent. Due to the large set of WSN appli-

cations, high heterogeneity in the communication protocols is inevitable. Moreover, traditional

MAC protocols do not support opportunistic and direct interconnection because their design

principle is to avoid interference from neighbouring networks, which means that co-located

networks desist from communicating directly, even if they adopt the same communication pro-

tocols. However, the formation of interoperability among these heterogeneous technologies is

desirable to assert the concept of IoT and realize the Future Internet. Consequently, the ODI

framework was proposed [54, 56] to allow interconnection between independent and co-located

WSNs without the need of intermediate facilities (e.g. gateways) and thus integrate them with

native protocols in the IoT (see Figure 2.1).

Figure 2.1: The concept of OI-MAC, showing direct opportunistic interconnection be-
tween co-located WSNs (taken from [56]).

To solve these challenges, ODI is based on the assumption that co-located WSNs adopt a com-

mon physical protocol. While the adoption of IEEE 802.15.4 provides compatibility between

radio interfaces, ODI still needs to tackle the heterogeneity of higher-layers. The authors in

[54] proposed OI-MAC as the link-layer protocol capable to implement direct and opportunistic

interconnection. ODI solution makes the cross-domain protocol (OI-MAC) and the native MAC

protocol to co-exist simultaneously. With direct interconnection, networks are not only able

to share data but also network resources (packet forwarding, storage or processing) between

co-located sensors. Therefore, the proposal of the ODI framework is not to replace existing

WSN-Internet-WSN interconnection solutions but to behave as a complementary tool, support-

ing more beneficial cooperation applications among WSNs that share the same area.
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ODI supports the discovery of neighbouring networks in run-time after deployment, without

any previous knowledge in design. To help with this, the functions added by OI-MAC into

existing MAC protocols for ODI establishment can be defined as: (1) Network discovery and

(2) Cross-boundary transmission.

2.1.1 Network Discovery

OI-MAC is an asynchronous MAC protocol with multichannel communication capability. It

classifies all available channels into two categories: one as a Common CHannel (CCH) and the

rest as Data CHannels (DCHs). CCH is used to detect neighbouring networks and accomplish

a handshake process, while DCHs are used for normal data communication. In the discovery

process, the networks deployed in close proximity perform two modes of operation: active and

passive. In passive discovery, each node switches periodically (time is defined by the discovery

period) to the CCH to scan neighbouring networks at run-time with the broadcast of a discovery

beacon that contains the network ID and DCH. While this happens, sensor nodes from neigh-

bouring networks listen on the CCH for a discovery period (active discovery). If a discovery

beacon is received, the neighbour node replies and the handshake process starts. At the hand-

shake step, the networks exchange necessary information (e.g. network ID, the DCH frequency

and wakeup period) and become associated. The node pairs that become associated are called

Boundary Nodes (BNs), and constitute a bridge or gateway between neighbouring WSNs. The

discovery process is shown in Figure 2.2.

Figure 2.2: The discovery mechanism used in OI-MAC.

2.1.2 Cross-Boundary Transmission

Cross-boundary transmission is performed by nodes (i.e. sending packets into the neighbouring

network) once co-located networks become associated through BNs. A node in the boundary

must inform the others in its network about the discovery and interconnection. When nodes

in the network have packets to transmit to neighbours, they select a boundary node to route,

switch their transceivers to the corresponding DCH of the neighbouring network and transmit
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the packets. Thus, after successful discovery and cross-boundary transmission, ODI enables

inter-network traffic to occur through boundary nodes rather than via a dedicated backbone.

Results in [54] demonstrated that neighbour discovery function has a minimal effect on latency.

Energy consumption also increased insignificantly compared to normal operations of each node

that implemented ODI.

Since OI-MAC is a complete theoretical work that defines the details for ODI through the addi-

tion of neighbour detection and connection establishment into different types of MAC protocols,

further research has been carried out based on its concept. OI-MAC was chosen by [4] to imple-

ment it on real hardware and validate it experimentally. They presented the first practical proof

of ODI with two independent networks using the OI-MAC protocol, each one composed of 6

Texas Instruments eZ430-RF2500 sensors (see Figure 2.3). Evaluation results showed success-

ful opportunistic discovery and cross-boundary communication between co-located networks.

Besides, their work showed that the discovery of neighbouring networks has an irrelevant im-

pact on energy consumption.

Figure 2.3: The network architecture used in the experimental evaluation of homoge-
neous interconnection (taken from [4]).

In [4], participating networks implemented ODI but its validation still required the adoption of

OI-MAC as the only MAC protocol within the networks. Accordingly, further research was

carried out in [57] to test ODI when distinct networks communicate directly using different

MAC protocols, which resulted in a successful application. In this scenario, two co-located

WSNs composed by the same sensor nodes from Texas Instruments use their own MAC protocol

for local packet transmission but in addition, use OI-MAC as the common MAC to add functions

of discovery and cross-boundary transmission (see Figure 2.4). The experimental results showed

that the energy cost to maintain ODI functionality is insignificant. Mentioned approaches are

known as homogeneous interconnection and heterogeneous interconnection, respectively.



Chapter 2 Cooperation between Networks, Energy Management and Automated Negotiation19

Figure 2.4: The network architecture used in the experimental evaluation of heteroge-
neous interconnection (taken from [57]).

Since the feasibility of ODI establishment was confirmed by previous research, further works

using the OI-MAC protocol logic to study interconnection and direct cooperation between net-

works can continue. Thus, this work assumes the ODI interconnection architecture. As the

trend towards IoT increases, more WSNs are deployed and cooperation between them is an op-

portunity. This can not only bring functional benefits to WSNs applications but also economic

profit to the network stakeholders. One crucial factor to establish cooperation between distinct

parties is the knowledge of the costs and benefits that cooperation will bring to the participat-

ing networks. Therefore, the inclusion and evaluation of a negotiation mechanism becomes an

important research topic towards cognitive networks and autonomic environments in IoT.

The following section describes the potential benefits of ODI-based cooperation if networks

agree to cooperate. A brief literature survey on wireless sensor network lifetime extension based

on cooperative packet forwarding and its modelling using game theory is also presented.

2.2 Resource Sharing between Networks and Related Work

Now that the principles of ODI have been detailed in Section 2.1, the potential benefits and

means of sharing and exchanging of resources between neighbouring networks will be covered

in this section.

The most visible challenge of WSNs is the energy consumption problem. As a result, the ex-

tension of network lifetime has been the main motivation for a great deal of research on WSN.

A section (Section 2.2.3) is dedicated to delving deeper into the cooperation problem in multi-

domain sensor networks and its modelling using game theory when networks aim to prolong

their lifetime. Indeed, the literature found about cooperation between distinct networks focuses

only on that aim. However, it is necessary to consider that other incentives may exist (see Fig-

ure 2.5). In this regard, a negotiation process can be included to ensure that the performance
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of none of the participating WSNs is degraded after cooperation. Moreover, negotiation may

facilitate their coordination or resolve conflicts derived from their heterogeneous characteristics

and self-interest.

*Extension
of network lifetime

**Optimisation of
 network metric/performance

Optimisation 
of energy use

***Access to additional
functionality

Higher
data coverage

Incentives 
for cooperation

Data
sharing

Data
sharing

Data
sharing

Energy
sharing

Energy
sharing

Data
sharing

Energy
sharing

Resources 
to share and 

achieve cooperation

* By trading energy-hungry services (such as packet forwarding or 
processing), by tolerating disjoint partitions, by coordinated sleeping 
schemes, by radio interferences avoidance.
** Optimisation of throughput, optimisation of packet delivery ratio, 
reduction of latency.
*** Additional functionality like Internet or Positioning access.

Direct cooperation between
co-located WSNs

Figure 2.5: Incentives and resources to start direct cooperation between WSNs.

With reference to Figure 2.5, a shared resource, is a mean accessed by the participant WSNs to

achieve a cooperation incentive. Supported by existing literature [2, 6, 8, 14, 16, 42, 43, 58], the

resources that can be shared directly between co-located WSNs are: data and energy.

2.2.1 Data Sharing

The most widely adopted interconnection architecture between WSNs is the use of backbone

networks like the Internet, which are originally designed for data sharing (see Figure 2.6).

Figure 2.6: Network architecture of integrating WSNs into the Internet (taken from
[54]).

The proposal of the ODI framework is not to replace existing WSN-Internet-WSN interconnec-

tion solutions but to behave as a complementary tool, based on which more beneficial cooper-

ation applications among co-located WSNs can be developed [54]. In [2], the authors consider

the architecture illustrated in Figure 2.6. Their research exploits the correlation between differ-

ent types of data that sensor nodes from different networks may be able to measure. Yet, direct
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interconnection can offer an alternative channel for data exchange in the absence of a backbone

network.

In the era of high availability of cloud data, the use of data from an external WSN can help in

reducing energy consumption and improving quality of measurements made by a target WSN.

A specific use-case is given in [2], where the operation of a WSN measuring relative humidity

is expanded using the data obtained from a WSN measuring temperature. Periodically, the data

retrieved by the nodes is transmitted to the sink and this consequently reports the values to a

centralised device with enhanced capabilities (EG). The EG uses the collected data from both

networks to predict changes in the future of the monitored target. Accordingly, it selects the

new configuration for the WSN, which has to be applied by the sink. The new configuration

includes the (de)activation of sensor nodes or changes in the sensing intervals. This application

can reduce the energy consumption of the network by turning off nodes during a certain period

of time. The study assumes networks are benevolent and are motivated to help each other. Such

an assumption is not valid when agents are considered self-interested.

A Body Sensor Network (BSN) is a wireless network of wearable computing devices applied

to the human body to monitor physiological signals. While a BSN fits under the category of a

WSN, there are several differences between them [59]. However, work in [60] is under the im-

portant trend towards pervasive computing and the IoT that motivates research on cooperation

between co-located networks. A framework called C-SPINE is proposed to allow data fusion

from different Collaborative BSNs (CBSNs). Specifically, C-SPINE supports cooperative sys-

tems destined to co-located groups of people. CBSNs enable interaction and synchronization

in collaborative applications for recognizing group activity, detecting events sensed by groups,

and monitoring multiple individuals. Data shared between distinct WSNs allows each network

to build a broader knowledge about its surroundings and cover wider areas to have many per-

spectives of the same monitored phenomena.

Data sharing can also be used between WSNs to expand data coverage. Zia et al. [3] pointed

out the importance of data sharing between the WSNs in co-located farm fields to have an ef-

fective water quality management at a catchment scale. The runoff generated by agricultural

irrigation in an upstream field is used by a neighbouring WSN to predict the repercussions in its

monitored farm located downstream. The coverage of this additional information can enhance

a control strategy by reducing irrigation water if farmers can predict the arrival of the runoff.

The authors denoted the importance of direct interconnection and cooperation schemes to share

network resources and assumed that good neighbours provide their data services for free. The

work in [61] describes the benefits of cross-domain data sharing as the extension of network

boundaries and enhancement of its scalability. However, this work is concerned with security

access control and efficient data analysis. They do not take into account the individual needs

of these networks, even though all these devices are very different in terms of application re-

quirements and capabilities. The introduction of negotiation may help control conflicts between

networks with different preferences.
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2.2.2 Energy Sharing

In [8], opportunistic energy trading between co-located energy-harvesting and battery-powered

WSNs is proposed. A EHWSN with excess energy transfers some to an energy-scarce WSN in

order to extend its lifetime. The sink node in the EHWSN identifies an excess of energy based

on the percentage of remaining energy informed by the nodes of its network and decides when

cooperation should take place.

While it is convenient to envisage opportunistic energy negotiation as physically transferring en-

ergy across a network boundary, energy is actually logically transferred through the acceptance

of energy-hungry services (i.e. in a form of accepting energy-consuming tasks such as data

processing or packet forwarding) [11–13]. Let us consider a scenario where two nodes from dif-

ferent networks negotiate and reach an agreement on an energy flow. If they decide to participate

in the energy transfer by cooperative packet forwarding, each participant node enables a path

between the distinct networks to forward packets opportunistically. The energy consumption

model of the networks defines the energy spent in transmissions. The nodes involved in such

cooperation control the agreed energy flow by asking for/providing routing favours. In this way,

nodes from different networks may participate in cross-boundary energy transfer by forwarding

each other’s packets. The cooperation is decided ahead of time, autonomously by negotiation,

but a control policy or mechanism is required to ensure that networks respect the agreement.

The following describes the literature related to energy sharing and the services employed for

its transfer.

2.2.2.1 Cooperative Data Processing

Data processing comprehends the analysis of extensive data generated in a WSN performed

by each node. Such analysis is necessary to extract information that is meaningful for its con-

sumers. Data aggregation and compression is part of this definition. Aggregation is a mechanism

of a WSN to preserve energy consumption by combining data packets and eliminating redun-

dancy from multiple sensor nodes in one data packet. In this respect, data aggregation is also

known as data fusion. As a result of the elimination of redundancy in the sensory samples, the

transmission cost and network overloading are also lower. Since nodes require low-energy com-

ponents given their limited batteries, cooperative data processing between distinct WSNs may

reduce the energy cost of this task.

In [8], Teng et al. proposed a novel power management strategy based on Opportunistic En-

ergy Trading (OET) between co-located WSNs, where one network was composed by solar-

harvesting sensor nodes and the other by battery-powered sensors. They consider a setup where

a solar EHWSN harvests energy at different times because of its dependence on the movement

of the sun. Since a WSN is constrained by an area, intra-network power management may be in-

efficient to control this spatial-variance. However, OET allows energy to be transferred through
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the boundaries and be used by multiple networks and applications. The design aim of the energy

transmission process is to use excess harvested energy by one network to extend the lifetime of

its neighbour (battery-powered network) by taking over consuming tasks (for example data pro-

cessing). The battery conditions are maintained as an energy map of the entire network by the

sink to identify whether or not there is an excess of energy when a threshold is reached. Once

the sink realises that all batteries are above the threshold, it initiates a broadcast to inform neigh-

bour WSNs to start the energy transfer process. Hence, the sink node decides when cooperation

should occur. This approach is the one this research employs, where the requirement for co-

operation is identified and established opportunistically after network deployment. However,

in Teng’s work, the provision of a negotiation process is excluded. Although there is currently

sufficient literature on cooperative data processing [62–65], no prior study that addresses multi-

domain cooperation of data processing exists.

2.2.2.2 Cooperative Packet Forwarding

Cooperative packet forwarding in multi-domain sensor networks becomes crucial for disjoint

sections, where partitions can be fixed or prevented by direct cooperation between co-located

WSNs [42]. Kinoshita et al. [14] proposed the introduction of shared nodes in WSNs, that can

use multiple channels to relay data packets between different networks. They considered the

cooperation of multiple WSNs that are deployed in the same area to address the energy hole

problem, which is one of the most important issues in WSNs. Such problem can be found in

nodes located around the sink, where usually many more packets are relaying than in other nodes

of the network. These nodes tend to suffer from battery drought faster than other nodes since

processing and communication tasks are more energy consuming than sensing [66]. Hence,

the lifetime of the whole network can be prolonged with cooperative packet forwarding, by

balancing the communication load at heavily loaded nodes around the sink.

The benefits of direct cooperation have also been studied by Nagata et al. [67]. Cross-network

routing in spontaneous cooperation without incentives is proposed to extend the lifetime of co-

located WSNs. Moreover, traffic load balancing is achieved by reducing the load on nodes

around sinks in a multiple-WSN environment (see Figure 2.7). The same idea is shared with

authors in [45]. However, they enforce cooperation using an incentive model based on a dynamic

pricing routing algorithm.

In addition, packet routing can be further optimised with cooperation. The authors in [68]

investigated the potential performance gains achieved by cooperative WSNs and concentrated

on the routing performance. By exploiting hybrid nodes that allow cross-network sharing of

resources, their simulation results and quantitative models showed how cooperation provides

better performance for the communication of two nodes than the local routes. They analysed

how the collaboration between distinct networks may reduce the average routing cost of the

shortest path.
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Figure 2.7: Load balancing based on the cooperation between co-located networks
interconnected directly: Two WSNs have cooperative packet forwarding. One WSN
uses free nodes to perform packet routing in order to reduce the traffic load around the
sink (taken from [67]).

From the incentives described in this section, the idea of cooperation seems simple and straight-

forward, however, there are several implications that obstruct it [41]. Because of that, the prob-

lem of cooperative packet forwarding in multi-domain sensor networks has been studied using

mathematical models of conflict from game theory. Previous works have searched for conditions

where cooperation between networks from different domains is possible using game theory as a

tool. The next section is dedicated to review the existing work in the field of energy sharing by

cooperative packet forwarding and its modelling using game theory.

2.2.3 Energy Sharing and Game Theory

Game theory (GT) [69] is well used to model the behaviour of a system as a game and analyse

the existence of strategies to achieve equilibrium among rational players that negotiate with

each other to maximise their own benefit. By using this approach, players are assumed to have

complete information about the game and also on the behaviour of opponents.

The works reviewed in this section assume networks as rational decision-makers with complete

knowledge of the game settings. In reality, such assumptions may devote time and unbounded

computational resources that are absent in these nodes. However, GT is an ideal platform to sys-

tematically study interactions in multi-agent systems, mathematically capturing the behaviour

of players in a strategic situation [70]. In particular, game theory provides solution concepts

(e.g. Nash equilibrium or dominant strategy) to predict the outcome from the correspondent

interactions between agents and to analyse its properties.

In the WSN cooperation domain, the normal form of GT is represented by G = (N,S,U),

where G is a particular game, N = {n1,n2, ...,nn} is a finite set of networks (players) and

S = {S1,S2, ...,Sn} is the strategy space of the network k, for each k ∈ N. A strategy deter-

mines each action that a player takes at any stage of the game, i.e. the complete algorithm to
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play the game. A decision maker in a game is called a player, but the term agent is also used in

the computational context.

GT in the WSN cooperation domain has been used to model strategic decision situations to find

an optimal set of actions for extending the lifetime of networks. The negotiation is carried out

by trading routing favours with cooperative packet forwarding [9, 13, 16, 71]. For example,

in [13], network authorities must decide between two situations. In particular, networks need

to define if they help each other to increase their lifetime or if they ignore potential help from

others and only rely on their own nodes to send packets. Their simulation results proved that

networks can have an important benefit by mutual service, using their sinks for other networks

in sparse and hostile conditions. In these works, the game-theoretic modelling of cooperation

shows how the objective of each player is to maximise its own payoff. This is what characterises

a rational decision-maker, where each individual network has its preferences, beliefs about the

context (including the other players) and looks for strategies that maximise its own gain.

Game theory is also used to determine the existence of strategies to reach a steady state; the

Nash equilibrium [72]. The Nash equilibrium is a solution concept that represents a state which

involves two or more players, where the participants can not benefit by changing their strategy

if the strategies of the other players remain constant. In this context, equilibrium is found when

the networks decide to not deviate from their selected strategy (e.g. providing routing favours

and asking for them or not cooperating at all); otherwise, they decrease their utility. To measure

an equilibrium in terms of how beneficial the resulting outcomes are to the group of players

as a whole, there is a property called Pareto-optimal. An outcome is Pareto-optimal when no

player can benefit from any action without reducing the utility of another. For example, in [16]

the creation of different cooperative pairs of edges from both networks involved, makes their

payoff increase. After creating all pairs of cooperative edges, the payoff of the networks is the

maximum that can be achieved with their strategy, being, a Pareto Optimal solution. In this

scenario, if there are nodes that are not part of cooperative edges, which are of no importance to

any network but one, then the edges must be created to the benefit of that network, otherwise,

this solution will not be Pareto-optimal.

Vaz de Melo et al. [16] used game theory to model the problem of cooperation between two

WSNs as a repeated Prisoner’s Dilemma game, where the only way to ensure cooperation is by

means of a protocol. Otherwise, the networks have good incentives to deviate from cooperation.

In contrast to other works, the effectiveness of cooperation to extend network lifetime is not only

proven but also supported by a distributed protocol called Virtual Cooperation Bond (VCB).

VCB makes different WSNs cooperate and work together to reduce the energy consumption

of their communication process by the creation of cooperative edges in both participants and

the control of routing favours. They use a cooperative game non-zero sum (rewards and losses

are less or more than zero) related to the Iterated Prisoner’s Dilemma, where the players or

co-located WSNs coordinate their actions to get better payoffs.
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Similar to [16], the authors in [9] propose an algorithm that enforces cooperation among dis-

tinct WSNs. The difference here is that their solution is adaptive and starts with generosity at

the beginning of the game. When nodes are aware of a decrease in their battery, this level of

cooperation is minimised. Their cooperation model is energy-aware based on the TIT-FOR-

TAT strategy and falls into the category of non-cooperative games. This strategy is behavioural,

which means that each action is based on a previous one. In their simulations, the cooperation

is evaluated considering hierarchical routing and heterogeneous network topologies. The results

showed that their algorithm based on TIT-FOR-TAT can increase the lifetime of a network in

competition with different types of opponents.

There are different kind of games to model strategic interactions between individuals in con-

flict situations. To solve any game, an appropriate mathematical representation for the situa-

tion in analysis must be created. A model can include the participants, strategies, decisions,

consequences, and utility functions. Then, the model is solved by computing the best/optimal

strategies for all participants or for some of them.

Game theory has been used to analyse conflict situations that are generated from multi-domain

networks, the strategies and conditions of their cooperation. However, to the best of our knowl-

edge, there is no work in the design of a distributed negotiation mechanism where agents (nodes)

bargain over the energy and times, which allows them to decide whether cooperation is feasible

or not, considering the properties and requirements of their owner nodes. The introduction of

a negotiation mechanism can help to resolve the different needs that each network may have

before deciding whether to cooperate or not. This thesis presents an alternative approach, where

instead of controlling how the cooperation among networks is performed, the proposal is to set

an encounter where agents decide how cooperation will proceed.

When the goal is to provide an automated negotiation model on energy sharing for WSNs,

computation complexity must be considered. If the techniques and results of game theory are

applied, the complexity increases when the number of participants too. In these encounters,

the outcome depends on the choices made by all networks and nodes in the scenario. This

implies that in order for an agent to make the choice that optimises its outcome, it must reason

strategically and take into account the decisions that other agents may make, plus the assumption

of full rationality that implies that the others will act so as to optimise their own outcome. For

WSNs, this would involve that nodes must make an effort beyond their means, considering that

these are devices with limited memory space, battery capacity and processing capability.

One approach to deal with this complexity is to simplify the settings in which agents interact

with each other and use heuristic methods. Game theory is only used in this work to examine

situations of bargaining. The following section explains related work on bargaining that can be

useful to address the problem of cooperation in the energy domain.
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2.3 Bargaining

From a commercial perspective, bargaining refers to the process where a buyer and a seller

debate over the price and conditions of a transaction to reach an agreement. In this setting, one

agent assumes the role of the seller, while many may play the role of the buyers. In contrast, in

the domain studied in this thesis, the agents are homogeneous in role. So there is not one buyer

and one seller but two agents trying to reach a mutually acceptable agreement on redistribution

of energy in order to optimise their power management.

Bargaining can help networks decide on whether to coordinate their actions while performing

their tasks or act independently. The amounts of energy over time represent the issues of this

negotiation. Each agent (together with the sensor node it controls) consumes resources such

as energy, time, bandwidth of the communication channel, and computational power, and each

agent endeavours are directed to utilise its resources efficiently. The full description of the

negotiation domain is given in Chapter 3.

The following defines the bargaining problem and discusses related concepts.

Definition 1: The Bargaining Problem
The bargaining problem refers to a situation where two parties need to agree on an appropriate

outcome from a set of possible solutions but their interests do not match. The solution set is

conformed by all feasible deals or agreements [73]. The problem studies how two agents share

a surplus that they can jointly generate. In the domain of WSNs, agents bargain on how to decide

the amount of energy over time they both share to optimise their use of energy and deal with the

spatio-temporal profile of their energy sources. The surplus is the energy and the means may be

the relaying/forwarding/processing of packets.

Bargaining is bilateral when it involves two players, which is the case studied in this work. Two

agents are considered for each pair of nodes (one-to-one), one from each network, that have a

common interest in cooperate but have conflicting interests regarding the particular times and

rates of doing so. The terms negotiation and bargaining are used indifferently in this work.

The overall order of actions during a negotiation is usually restrained by certain rules. According

to the alternating-offers game [73], all of the participants around the table get a turn for making

offers and counter-offers in a sequential order in rounds. The rules are set by the so-called

bargaining protocol.

Definition 2: Bargaining Protocol
A bargaining protocol (also called negotiation protocol) specifies the rules that govern the inter-

action among negotiating participants [74].

By using the word protocol in the negotiation context, it refers to high-level protocols, it is not

about communication. It determines the kinds of deals agents can make or restrictions, such as

deadlines, as well as the sequence of offers and counter-offers that are allowed.



28Chapter 2 Cooperation between Networks, Energy Management and Automated Negotiation

The structure of an offer is determined by the issues/attributes that are the subject of the negoti-

ation and are defined by the domain. In a WSN cooperation, there are many different domains

depending on the goals of each participant network. The cardinality of the negotiation is one of

the characteristics that classifies a bargaining problem [75]. A domain can contain a single issue

of conflict and require a single issue bargaining. Or involve multiple attributes and demand a

multi-issue bargaining. In the scenario assumed in this thesis, the bargaining process includes

an expected cooperation time that may involve different amounts of energy over time, which

suggests a multi-issue bargaining.

Since bargaining theory is a sub-field of game theory, it adopts its principle concepts as indi-

vidual rationality and Pareto-optimality, which define desirable properties in the outcomes of a

bargaining.

Definition 3: Individually Rational
A bargaining solution is individually rational if it gives each player at least as much utility as it

would get by himself in the event of no agreement [76].

Definition 4: Pareto-Optimality/Pareto-Efficient, Pareto Frontier
An outcome is Pareto efficient when no alternative outcome exists that is more preferable for at

least one player without making another player worse off. The Pareto frontier is the set of all

the points of Pareto-optimal outcomes, where each coordinate point corresponds to the utility of

a player.

In this sense, the bargaining game can be abstracted from the negotiation model and instead, a

set of properties (axioms) to be satisfied by a negotiation outcome can be specified. When the

parties involved ignore the strategic aspects of bargaining, the bargaining can be categorised as

cooperative or axiomatic. Axiomatic bargaining defines the criteria and axioms in the bargaining

process. In contrast, when the parties consider the strategic aspects of bargaining (such as rules

and opponent actions), bargaining is considered non-cooperative or strategic, which studies the

strategies of players.

The existing work on these two types of bargaining is discussed in the next sections.

2.3.1 Axiomatic Bargaining

Game-theoretic analysis of bargaining can be done using one of two approaches: axiomatic

or strategic. Axiomatic bargaining is focused on finding an appropriate bargaining solution

through a mathematical investigation of properties but not in the process [77]. It first sets the

axioms that reflect the desirable properties of the solutions and then tries to compute the out-

come subjected to those properties. Another key difference with strategic bargaining is that in

cooperative games there is a third-party mediator or arbitrator implicit, which is who controls

the binding of agreements. By this scheme, it is possible to enforce negotiation outcomes that

are mutually beneficial for the parties involved but may require reasonable compromises from

an individual player’s perspective [76].
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Axiomatic bargaining theory originated with Nash [78]. In his work, a set of bargainers N =

{a,b} tries to come to a solution over a set of feasible agreements A . A solution is a determi-

nation of how much each individual should gain from the situation. In case the agents fail to

reach an agreement, a disagreement outcome denoted by d occurs. Nash analysed the bargain-

ing problem and without modelling the negotiation process defined a result, which is the most

popular solution concept known as the Nash Bargaining Solution. He idealised the bargaining

problem under the assumption of perfect rationality, which means that the agents can compare

the payoff of their possible outcomes, have equal bargaining skills and full knowledge of the

preferences of each other. In this model, a utility function ui : A ∪{d} → R, for i ∈ {a,b} rep-

resents the preference relation or payoff of an agent over a set of outcomes. The set of all utility

pairs that result from an agreement is called the bargaining set S = (ua(z),ub(z)) ∈ R2
+ : z ∈A .

And the pair d = (ua(da),ub(db)) ∈ R2
+, corresponds to the utility values of the disagreement

events, represented as well as d = (da,db).

Nash assumes the bargaining set to be a compact 1 and convex 2 subplane of R2
+, where graphi-

cally the pair of disagreement values (da,db) are a vertex in this subset. Thus, if the agents agree

on z ∈ A , it means that agent a gets a utility of ua(z) and agent b gets ub(z). However, if the

agents do not reach an agreement, then the outcome of the negotiation is the disagreement point

d where agent a gets da and agent b gets utility db. Therefore, a point (ua,ub) represented in the

set S describes the individual shares of agents, and since agents will only cooperate if they get

more utility than their disagreement values, the following (ua,ub) ≥ (da,db) must hold. Nash

then defined the pair (S,d) to be a bargaining problem, where a complete theory of negotiation

would ideally allow us to find some solution f (S,d) in R2
+.

Let the set of all bargaining problems of the form (S,d) be denoted by B, Nash defines the

bargaining solution as a function f : B → R2
+ that computes, for every bargaining problem

(S,d), a unique solution f (S,d) ∈ S when S is a bargaining set convex and compact [79]. If x

and y are the shares of agents a and b respectively, then the Nash bargaining solution is calculated

by:

arg max
x,y

[ua(x)−da]× [ub(y)−db] (2.1)

The solution to this equation (i.e. the values of x and y) is the shares of agents a and b respec-

tively, i.e. the points that maximise the product of the individual utilities (see Figure 2.8).

In his work [78], Nash specifies a list of axioms that are satisfied by the Nash bargaining solution:

A1 Individual rationality. This axiom indicates that a reasonable solution must give each

player at least as much utility as they get when an agreement can not be reached.

1A set S is compact if it is bounded.
2A set S is convex if for all x and y in S and all θ in the interval [0,1], the point (1−θ)x+θy is in S.
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Figure 2.8: Nash Bargaining Solution. This figure shows the Pareto-efficient frontier
(the solid line), the disagreement point as (da,db) = (0,0) and the Nash bargaining
solution for a specific bargaining problem.

A2 Symmetry. This axiom refers that the solution should be independent of the identity of the

agents (be anonymous) and rely only on their utility functions.

A3 Strong efficiency. This axiom states that the solution should be feasible and Pareto optimal.

In a bargaining problem (S,d) with s, s′ ∈ S and s′i > si for i = a,b, then f (S,d) 6= s.

A4 Invariance. This axiom refers to the characteristic that the bargaining outcome should not

change as a result of the application of linear variations to the utility of the agents, i.e. rescaling

an agent’s utility should not change the result of the negotiation.

A5 Independence from irrelevant alternatives. This axiom states that if some outcomes s

(feasible choices which would not have been chosen) are removed from S, but s′ is not, then s′

is still the solution.

The unique solution concept that satisfies the above axioms is the Nash bargaining solution.

Some other important axiomatic bargaining solutions are the utilitarian solution, Egalitarian

solution and Kalai-Smorodinsky bargaining solution [80, 81]. The utilitarian solution is also

known as the social welfare solution [82]. It is any function that selects an allocation for two

bargainers as the maximum sum of their utilities. This solution, however, fails to be invariant

to the calibration of the players’ utility scales (axiom of invariance). When the utility functions

between agents have a great difference, the solution benefits the agent that values the goods

the most but the rest do not receive any share. From an individual’s point of view, it results in

agreements that are not satisfactory. On the contrary, in situations where all the agents have the

same owner, the utilitarian solution gives all the goods to the agent which has the highest valu-

ation for them and thus, it maximises the overall utility of the group. Likewise, the Egalitarian

solution uses a social welfare function but it attempts to provide a social solution in terms of the

utility of the individual who is worst off. The Egalitarian solution satisfies axioms 2,3,5 with

the exception of 4, which leads to the same problem discussed in utilitarianism [83]. Like Nash
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bargaining, Kalai-Smorodinsky function determines agreements that are fair in some sense. The

Kalai-Smorodinsky solution is the result of making proportional shares to the players. The

solution accomplishes the axioms listed above except for the independence of irrelevant alter-

natives, which is replaced by a monotonicity property [81]. For a set S of individually-rational

and Pareto-efficient points, let mi = max{ui} ∈ S,(for i = a,b) be the maximum utility that an

agent i could achieve individually. The Kalai-Smorodinsky solution corresponds to the point

where it intersects the Pareto-frontier; i.e. the point that joins the disagreement point (da,db)

with (ma,mb) (see Figure 2.9).

Figure 2.9: Kalai-Smorodinsky solution. The point k is the unique solution that satifies
the axioms proposed by Kalai and Smorondinsky [81].

The solution concepts described above enclose mathematical mechanisms to find a bargaining

solution characterised by desirable properties called axioms. The availability of information

in making social decisions is implicit in this approach. For example, to compute the Nash

bargaining solution, the utility functions of all the negotiating participants must be known by

the agents, or they must be under the control of a centralised entity (arbitrator/mediator) that can

enforce the outcome of the negotiation. In other words in a cooperative negotiation, a bargaining

situation is described only by the utility functions of the agents involved and the disagreement

point, which ensures the individual rationality characterisation. The approach, however, ignores

the process and its elements (such as time). On the other hand, the strategic bargaining focuses

on the process. More details are given in the next section.

2.3.2 Strategic Bargaining

In this game-theoretic approach, negotiation is modelled as a non-cooperative game. In contrast

to the axiomatic method, the analysis here is concerned with the strategies chosen separately

by the players, conducted for the best of their interests and given the strategies of the others.

All the strategies involved, rules and payoffs are known in advance by the players. Complete

knowledge among participants is a common assumption in these solutions.

The bargaining protocol is what sets the rules of an encounter. These protocols can be used by

two bargainers to reach an agreement over a single or multiple issues. There are many different

protocols in negotiation [73, 79, 84], but the most influential of these works is perhaps the

alternating-offers protocol defined in Rubinstein’s dividing pie problem [73]. In his work, the
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issue over which negotiation takes place is a unit-sized and continuously divisible pie, where the

bargaining situation is about the conflict that two players have in order to decide an agreement on

the partition of the pie. The model considers then a single-issue negotiation. Negotiation takes

place over a sequence of rounds, it initiates when Agent a makes an offer of its share (portion

of the pie) at time T=0. Agent b immediately accepts or rejects the offer. If the proposal is

rejected, then Agent b makes a counter-offer at round T=1. In [73], time is assumed to be

valuable for both players and this is represented by a discount factor or a fixed bargaining cost.

The discount factor model is most popular than the fixed-costs model. Discount factors are used

to model how impatient the player is [79] and the results agree with commonsense: patience in

negotiation pays dividends. In [73], there is no restriction on how long negotiation can last (no

deadline) and the game continues until an agreement is found (infinite-horizon bargaining) (see

Figure 2.10).

Start

Agent a makes proposal

Agent b rejects

Agent b makes proposal

Agent b 
accepts

End

Agent a 
accepts

Agent a rejects

Figure 2.10: The alternating offers protocol. A process of making offers and counter-
offers continues until an agreement is reached. (reproduced from [85]).

There are two main types of alternating offers protocols: infinite horizon and finite horizon. For

the latter, negotiation has a definite deadline. A strategy is then a sequence of offers and replies

for each stage of the game as a function of the negotiation history. Rubinstein assumes in [73]

that players have common knowledge and can exchange unlimited offers. In order to analyse the

protocol, he also assumes that disagreement is the worst outcome and agents pursue to maximise

their utility. Since the pie is an infinitely divisible good and the protocol allows infinite rounds,

any division is a Nash equilibrium and the alternating offers bargaining scheme can be an infinite

set of Nash equilibrium outcomes when players are patient. However, Rubinstein showed that

for an infinite game where offers are discounted, a unique solution is reachable in the first step of

the protocol. The basic technique used in this analysis involves considering the last negotiation
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round and what players could get from that last round. With this information, a backwards

induction is used to determine the optimal strategy of the player who makes the last move of

the game. In this way, it determines the Nash equilibrium of each subgame (each stage of the

original game). This is known as a subgame-perfect equilibrium (SPE), which is the concept

that Rubinstein applied to prove that a unique SPE exists in the alternating-offers bargaining

model.

Definition 5: Subgame-Perfect Equilibrium Strategies
An extensive form game is in SPE if the strategies constitute a Nash equilibrium at every deci-

sion point.

Rubinstein’s work has been very influential in bargaining theory on infinite-horizon games. His

analysis was further extended considering incomplete information [86]. A game with incom-

plete information involves players with limited knowledge. Information such as preferences,

discount factors or utility functions. The consideration of incomplete information is more re-

alistic in real-world negotiations. However, game theorists traditionally model incomplete in-

formation on other player’s preferences and beliefs by describing player types. Thus, common

knowledge for all players is still assumed, since the games require that participants know the

probability of a player’s type.

Considering that players may have bounded computational capacity, which is the case in this

research, even with the above assumptions, unbounded computational resources and perfect

memory are still required. These constraints limit the application of game-theoretic models in

this work. The setup differs from Rubinstein’s model, where the agents bargain over multiple

issues (multiple time periods where the amount of energy to be exchanged in each time period

can be different) instead of a single issue. For this reason, Rubinstein’s model as it was originally

designed, with an infinite exchange of offers is only applied in simple negotiations. In order to

be applied in the WSNs cooperation domain, it would require a deadline or involve additional

states and therefore, several experiments to investigate the effects of the deadline on the outcome

of the negotiation.

To address some of the aforementioned limitations of the game-theoretic analysis, heuristic

methods may be used to provide a reasoning mechanism that arises much less complexity.

2.4 Heuristic-Based Approaches for Automated Negotiation

Equilibrium solutions from cooperative game theory are difficult to apply in practice, especially

in negotiations with incomplete information or non-linear utilities. Nash equilibrium, for exam-

ple, does not consider computation cost and ignores cases where players are not aware of all

aspects of the game. In contrast, research work in AI on the problem of multi-issue negotiations

focuses on learning and heuristic methods to build automated negotiation models and tractable

negotiation strategies. Heuristic methods take into account agents with limited computational
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resources and relax the requirement of processing capacity to produce good instead of opti-

mal solutions [74, 87]. In the negotiation context, heuristics are useful for the design of agents

and their ability to generate initial offers, evaluate proposals and decide counter-offers, based

on computational approximations of game-theoretic techniques or computationally tractable as-

sumptions. One example of this approach is the work presented by Faratin et al. [88–90].

The model describes heuristic decision functions for evaluating and generating offers in multi-

attribute negotiation. Such heuristics have been widely used in several areas and complement

multiple frameworks for multi-issue negotiation. The heuristics and methods are described be-

low.

2.4.1 Negotiation Decision Functions

Faratin et al. [90] studied strategic negotiation between autonomous computational agents and

develop a formal model of reasoning to address the coordination problem. They defined a num-

ber of heuristic approaches for generating counter-offers in a two-party negotiation [88]. Such

heuristics receive the name of tactics and use a single criterion (time, resources, behaviour, etc.)

to generate new values for each issue in the negotiation set. The following families of tactics for

counter-offer generation were developed:

1. Time-dependent tactics. These decision functions use time to decide the value of a

counter-offer;

2. Resource-dependent tactics. These tactics generate counter-offers depending on re-

source levels of the agent;

3. Behaviour-dependent or Imitative tactics. These tactics consider the behaviour of the

negotiation opponent to compute counter-offers.

In a negotiation decision function, the domain is one of the criterion listed above and the range

is the set of values for the negotiation issue. But it is possible to model an offer using more

than one criterion with a weighted combination of different tactics covering the set of criteria.

If an agent decides to propose an offer based on the remaining time of negotiation and how a

particular resource like bandwidth is being consumed, it can use two tactics: one from the time-

dependent family and one from the resource-dependent family. The information considered

belongs to the agent which is making the proposal. However, a tactic that takes into account the

behaviour of an opponent is only applicable when the agent has sufficiently information about

it. In particular, time-dependent tactics are a type of resource dependent tactics in which the

only resource considered is time. In this scenario, the final value for the issue under negotiation

will be the weighted combination of the two values generated by each tactic function.

The following gives a more complete description of each family of tactics.
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2.4.1.1 Time-Dependent Tactics

The time elapsed in the negotiation is what conducts the values of the negotiation issues. The

more time has passed, the more pressure is induced and faster concessions are possible [91].

Time-dependent functions consist of the Boulware, Linear, and Conceder tactics that determine

the amount of concession for the offer depending on the remaining negotiation time. Let j ∈
{1,2, ...,m} be an issue under negotiation, then the value proposed by agent a at time t is giving

by the following equation:

xt
a→b[ j] =





mina
j +αa

j (t)(maxa
j −mina

j) if a’s utility decreases with issue j

mina
j +(1−αa

j (t))(maxa
j −mina

j) if a’s utility increases with issue j
(2.2)

where mina
j and maxa

j define the interval of acceptable values for issue j of agent a. There are

many ways of defining the function that depends on time αa
j (t) such that 0≤αa

j (t)≤ 1, αa
j (0) =

ka
j and αa

j (t
a
max) = 1. Then, the offer will always be between the value range (mina

j ,maxa
j)

starting with the constant ka
j at t = 0 and ending with the reservation value when the deadline

ta
max is reached. From the equations above and range (mina

j ,maxa
j), it can be seen that if the utility

function is monotonically increasing then the reservation value is mina
j ; and if it is decreasing,

the reservation value is maxa
j . The function αa

j (t) can be defined to generate different types of

time-dependent tactics. For example, a polynomial function parameterised by β ∈ R+
n could be

used as follows:

α
a
j (t) = ka

j +(1− ka
j)(min(t, ta

max)/ta
max)

1/β . (2.3)

This function represents an infinite number of possible tactics by varying the value of β . β

determines the convexity degree (see Figure 2.11) of the curve. At a higher β , the agent is

characterised by a more conceder behaviour (such tactic is called Conceder) and the offer rapidly

changes to the reservation value, while at a lower β the agent maintains its initial proposal until

it almost approaches the deadline (such tactic is known as Boulware [91, 92]).

2.4.1.2 Resource-Dependent Tactics

These tactics are similar to time-dependent tactics, however, unlike time, other resources may

have different patterns of usage. Resource-dependent tactics are modelled by using the same

functions as in time-dependent ones, but they consider one of the following variations:

1. The value of the deadline ta
max is dynamic and represents a heuristic on how many re-

sources are in the negotiation set. There is an increasing urgent of agreement with di-

minishing levels of resource. In the application domain of this work, a resource might
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Figure 2.11: Polynomial function for the computation of α(t) (taken from [90]).

be energy or communication bandwidth. The greater the amount of bandwidth or energy,

the lower the pressure on the agent to reach an agreement. While the decrease of both

resources would add pressure to the bargaining. Then the value ta
max would vary according

to remaining bandwidth and energy.

2. Modelling the function α as an estimation of the amount of a particular resource. This can

be modelled in a way that the agent becomes more conciliatory as the quantity of resource

diminishes. The maximum value the concession can reach is the reservation value for

the issue(s) under negotiation with the scarcity of resource(s). When there are enough

resources, the agents assume a more Boulware behaviour. Formally, this can be modelled

by the following α function:

α
a
j (t) = ka

j +(1− ka
j)e
−resourcea(t) (2.4)

where the function resourcea(t) returns the quantity of the resource at time t for agent a.

2.4.1.3 Behaviour-Dependent Tactics

With this type of tactics, the agent behaviour adapts to that of its opponent. There are several

tactics in this type of family and the main difference between them is the type of imitation they

perform. Given a sequence of offers (...,xtn−2δ

b→a ,x
tn−2δ+1
a→b ,xtn−2δ+2

b→a , ...,xtn−2
b→a,x

tn−1
a→b,x

tn
b→a), with δ ≥ 1,

the following families of tactics are possible:

1. Relative Tit-For-Tat. The type of imitation these tactics perform is proportional. The

agent reproduces, in percentage terms, its opponent’s behaviour δ ≥ 1 steps ago. The

condition to apply this tactic is n ≥ 2δ . The following function calculates the counter-

offer:

xtn+1
a→b[ j] = min

(
max

(
xtn−2δ

b→a [ j]

xtn−2δ+2
b→a [ j]

xtn−1
a→b[ j],mina

j

)
,maxa

j

)
. (2.5)
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2. Random Absolute Tit-For-Tat. With these tactics, the agent reproduces the exact be-

haviour of its opponent. If an agent proposes an offer with an increment of 2, the opponent

counter-offers a value with the same increment. A component to add randomness to the

behaviour by increasing or decreasing (depending on the parameter s) the value of an of-

fer is also added. M is the maximum amount by which an agent can change its imitative

behaviour. The condition of applicability is also n≥ 2δ .

xtn+1
a→b[ j] = min

(
max

(
xtn−1

a→b[ j]+
(

xtn−2δ

b→a [ j]− xtn−2δ+2
b→a [ j]

)
+(−1)sR(M ),mina

j

)
,maxa

j

)
.

(2.6)

where

s =





0 if a’s utility decreases with issue j

1 if a’s utility increases with issue j.
(2.7)

and R(M ) is a function that returns a random integer from the interval [0,M ].

3. Averaged Tit-For-Tat. With this type of tactics, an agent computes the average of per-

centages of changes in a window of size γ ≥ 1 of its opponent’s history when computing

its counter-offer. When γ = 1, this is equivalent to relative Tit-For-Tat tactic with δ = 1.

The condition of applicability for this tactic is n≥ 2γ .

xtn+1
a→b[ j] = min

(
max

(
xtn−2γ

b→a[ j]
xtn

b→a[ j]
xtn−1

a→b[ j],mina
j

)
,maxa

j

)
. (2.8)

2.4.2 Heuristic Methods for Automated Multi-issue Negotiation

Although the majority of models on non-mediated negotiation consider agents with either full

information or probabilistic beliefs about the opponents, some existing approaches assume par-

tial knowledge of the opponent’s preference and avoid high computational demands through the

use of tractable heuristics. This section reviews the bilateral negotiation case and focuses on

existing techniques for automated multi-issue negotiation. Specifically, in a bargaining model,

heuristic methods are examined here for optimising the utility of self-interested agents in a dis-

tributive negotiation setting under incomplete information. Therefore, the strategies are based

on information such as the details of the domain and the opponent’s characteristics.

Besides research on negotiation decision functions, work by Faratin studies a tradeoff negotia-

tion approach as an alternative for offer generation [93]. This allows agents to exploit tradeoffs

among different issues, where “Win-Win” opportunities are feasible. The addition of multiple

criteria, however, may require complex computations to be performed involving multi-objective

optimisation problems [94, 95]. Figure 2.12 represents a description of tradeoff approaches.

Two indifferences curves I1 and I2 are depicted over a proposal of two issues for an agent and its
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opponent, respectively. Let offer P1 be the initial proposal of one agent to another, and proposal

P2 its counter-offer. When one agent makes a tradeoff, it keeps the same utility from offer P1 to

offer P2 but gets closer to the indifference curve of its opponent (d2 < d1). In other words, the

agent selects an offer in close proximity to the preferences of its opponent without modifying

its preferred utility.

Issue1

Issue2

I1

I2

P1

P2

d1

d2

Figure 2.12: Example of tradeoff strategy.

Work in [96, 97] introduces an alternative approach with fuzzy reasoning techniques to model

a framework for multi-issue negotiation. The main target in this solution is to achieve fairness

in a semi-competitive environment, where agents look to maximise their own payoff. With

fuzzy constraints, agents can relax their priority levels and accomplish appropriate trade-offs

between them. The negotiation model in [98] considers settings with incomplete information to

build concession strategies, but still assumes agents with partial knowledge about the opponent’s

preferences. Similarly, the strategic models in [99, 100] assume agents with prior knowledge

about the structure of the opponent’s utility function. The agents use bayesian rules and depth-

limited combinatorial search to generate offers that approximately optimise their expected utility

based on their current knowledge about the opponent’s type. The rules update the agent’s knowl-

edge according to the history of negotiations and opponent’s presumed strategic behaviour. The

computation, however, can be expensive when the search and reasoning depths are large [101].

Yushu [102] uses a heuristic approach to design agents aware of the competitiveness and time

pressure of the negotiation without any knowledge of the opponent’s model. The information

is employed to approximate the target utility using conservative concession strategies. Other

bidding strategies for multi-issue negotiation under incomplete information are described in

[103–105].

Work in [106, 107] proposes an offer generation technique for automated multi-issue negotiation

with no information about the opponent’s utility function using an alternating projection strat-

egy. In this regard, several works in different domains have employed the alternating projection

strategy to develop their offer generation mechanism [108–112].

The goal of this approach is to design strategies for generating offers for agents with no available

information about the others and lead the negotiation process to an acceptable agreement for all

the participants involved. Faratin et al. introduced the idea of choosing an offer similar to the

opponent’s preferences based on the existence of a fuzzy similarity function [93]. However, that

approach requires a similarity function that is defined for every issue of the negotiation, which
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makes the mechanism domain-dependent and useful only with additive scoring functions. In

contrast, works in [113–116] design an offer generation strategy, where an agent calculates offers

close to the opponent’s bids that match its own utility level without any additional similarity-

based mechanism or information on the opponent’s model. Basically, this type of strategies

defines the negotiation model between two agents as follows:

• Agents compute a target utility, which represents their desired payoff to reach an agree-

ment. A time-dependent concession strategy is usually used to determine the target utility

at each round of negotiation, for example:

uk = 1+(Vres−1)× (
k

kmax

α

) (2.9)

where k is the round of the negotiation, kmax is the deadline, Vres is the minimum accept-

able utility or reserved utility value and α is the concession rate.

• Suppose an agent receives an offer that does not meet its expectations. In generating a

counter-offer, the agent then has to accomplish two objectives: (1) an acceptable utility

for itself, as defined in the step above and (2) an acceptable utility for its opponent in order

to reach a final deal that satisfies both preferences. The agent computes the counter-offer

as follows:

ok+1 = arg max
o∈C

{sim{o,ob}} (2.10)

Where C is the iso-utility curve of the agent, that specifies all the offers that represent the same

utility uk. Then, the goal is to maximise the similarity between o and ob. In the negotiation,

the agents following this framework make compromises by moving their proposals towards

each other. In settings with private information about the parties, each agent’s proposal can be

directly used to lead its opponent’s counter-offer towards a final agreement. As it is described,

the only information used by the agent to compute a counter-offer for its opponent is a previously

received offer, ob. In many cases, this offer ob corresponds to the last offer made by the opponent

or the best proposal exchanged by the opponent registered during the negotiation process.

The generation of offers is an important mechanism in automated negotiation, where a negotiat-

ing agent needs to select deals close to the opponent preference within the desirable benefit an

agent wants to achieve. With this mechanism, agents increase their chance of reaching agree-

ments in a finite negotiation time. The simplicity and efficiency guaranteed by these strategies

are suitable for the domain of energy sharing in WSNs, where agents can have different pref-

erences regarding the amount of energy at each time of cooperation. Basically, the proposing

strategy is applicable to domains that have the following characteristics:

• There is no information available about the opponent’s utility function.
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• Multi-issue negotiations are considered and the domain is not limited to linearly additive

utility functions.

• The issues are simultaneously negotiated.

• The domain requires simple, tractable and good solutions.

A multi-issue negotiation is more complex and challenging than a single-issue negotiation be-

cause the agreement space is n-dimensional, which also allows agents to find win-win outcomes.

Every time an agent plans to concede, it needs to first decide the direction of concession. With

this offer generation approach, the decision on the concession direction follows the opponent’s

preference, addressing the possibility of finding an acceptable deal in finite time convergence.

At the same time, the agent determines how much utility to concede in each period accord-

ing to a determined tactic. Moreover, this strategy has proved to approximate Pareto-efficient

bargaining solutions [113–117].

All these heuristic methods make use of the opponent’s model (relying on partial informa-

tion), domain and offer information (independent of the opponent’s knowledge) available to

the agents to infer relative information that may lead to better negotiation agreements. In con-

clusion, heuristic mechanisms are a feasible approach for bilateral bargaining, where compu-

tationally tractable assumptions approximate the agents’ decision-making during negotiation.

These heuristics face the demands imposed by high computational resources and the complete

availability and quality of information required for optimal negotiation strategies. The main

drawback, however, of these methods is the consideration of extensive evaluation to measure

the performance and get conclusions of the heuristic in the domain context [74].

2.5 Energy Management in Energy Harvesting WSNs and Related
Work

An energy harvesting architecture can be classified into two types: (1) systems where energy

received from the harvesting device is directly converted into electric energy to power the sensor

nodes (no energy buffer is included), and (2) systems where the converted energy is managed to

supply a sensor node load and use the energy storage device to save the generated energy that

may not be used instantaneously. The last category is the one considered in this thesis. The

work in energy management studied here includes research from the perspective of optimisation

regarding energy use in rechargeable sensor networks. Figure 2.13 shows a general model for

energy management methods in a sensor node with energy harvesting capability.

While a deterministic metric such as residual energy level is good enough to monitor the energy

availability in the case of battery-powered WSNs, an additional source characterisation is re-

quired for a harvesting sensor node. Such characterisation corresponds to the energy input from

the environment, which must be controlled while the battery dynamics are also analysed.
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Figure 2.13: General system model for an energy harvesting wireless sensor node stud-
ied in this thesis.

Energy harvesting systems use ambient energy as the main source of power supply. With a po-

tentially infinite amount of energy available to the sensor nodes, an energy harvesting WSN can

remain powered for a long period of time. Hence, the power management objective of maximis-

ing node lifetime is not the central design issue in these systems. Instead, the optimisation of

energy use to allow the system to operate perennially is the main concern in energy harvesting

sensor networks. This target for energy optimisation is known as energy neutrality. For example,

if the expected energy harvested matches the amount of expected energy consumption during

the same time interval, it can be said that a sensor node satisfies the energy neutrality condition.

Energy harvesting devices can vary between solar cells, wind turbines and piezo-electric cells.

The energy source dictates the total energy provision available for use. With the aim of ensur-

ing energy neutrality sensing systems and control the spatio-temporal profile of energy sources,

researchers in the area have proposed two different energy management schemes: efficient en-

ergy allocation and adaptive network parameter algorithms. Energy management schemes are

designed to provide networks with efficient use of harvested energy. The energy management

mechanisms analysed in this thesis use three design elements; energy provision, energy storage

and energy consumption to harmonise a varying energy supply with a fixed demand (load).

The authors in [18] consider the problem of optimal power management for sensor nodes and

present a linear programming model for the adaptation of duty cycles to provide energy-neutral

networks. Similarly, work in [19] develops an energy allocation algorithm for the optimal use

of energy harvested in WSNs, but the objective here is to minimise the variation in allocated

energy over a period of time while satisfying the energy neutrality condition. Both algorithms

focus on the optimisation of power management when nodes are harvesting-aware but differ

greatly in their design. The former method adjusts a network parameter as the duty cycle to

satisfy the condition of continuous operation while the latter employs the maximum amount of

energy consumption to determine the amounts of energy to be allocated over a certain time span.
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Various algorithms have been proposed to perform optimal energy allocation [19–21, 23, 24].

The objective function of these models should satisfy the following requirement: the energy

harvested during a period of time should be fully utilised while meeting the energy-neutrality

constraint, and the variation in allocated energy over time should be minimised. However, these

proposals have the important limitation that the gathered energy considered for allocation is

limited to the surroundings of one network domain. Consequently, even when additional energy

can be harvested from an ambient energy source, the energy collected remains a limited resource

due to temporal and spatial variations [25]. Moreover, some energy allocation methods [21, 23,

26–28] consider infinite energy storage or ideal mechanisms to store harvested energy. An ideal

energy buffer is defined as a device that has unlimited capacity to save energy and does not have

any inefficiency in charging and discharging, or energy leak over time [18].

A reasonable notion of limited energy buffers is presented by several allocation algorithms

[22, 29–31]. However, these models include more complex operations based on dynamic pro-

gramming or Markov decision processes (MDPs). These solutions lead to increased computa-

tional costs and significant running times, compared to linear or convex optimisation models.

Such complexity requires the use of sophisticated devices to perform these techniques, therefore

a centralised solver with sufficient computational capability might need to be employed.

Several adaptive duty cycling schemes [32, 33, 118] have been proposed to adjust the activ-

ity of a sensor node according to its harvesting opportunity to balance its energy consumption.

Adaptive algorithms address the spatio-temporal variation of ambient energy sources by also

optimising data sampling and routing in order to deliver effective power management [34, 119].

Efficient utilisation of energy scavenging by optimal energy allocation and packet routing deci-

sion is proposed in [23, 24]. Other energy-neutral designs exploit the spatial variation of energy

harvesters and distribute load using adaptive opportunistic routing protocols [39]. Meanwhile,

the adjustment of parameters as the sampling rate is preferred in other solutions with the same

goal of modelling energy-neutral systems [34–37].

While these approaches work well with high temporal variability of ambient energy, they can

only optimise the network’s performance in terms of the energy collected by sensors under the

control of a single authority. Therefore, if the entire network is unable to harvest energy (due

to ambient conditions or obstacles in the environment), no solution is enough. Some adaptive

energy allocation schemes require a centralised controller (usually the sink node) to distribute

the adjustment of network parameters. In addition to these limitations, these algorithms may lead

to deficient data gathering. Duty cycling and sampling rate regulations are executed to control

the energy consumption of a node for efficient energy expenditure. With this aim, adaptive

techniques dynamically decide the node’s operation (a sampling rate or duty cycle) to increase

its activity when there is ample energy and speed it up when energy supply is scarce. These

adjustments may result in the collection of unnecessary data or in the loss of useful information.

The heterogeneity in the characteristics of each WSN such as battery capacity, energy consump-

tion, nodes locations and energy harvesting can be explored to jointly maximise the energy
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utilisation of the co-located networks. This heterogeneity should be clear to quantify the gains

from cooperation when participants are different. However, there are no previous studies for

this domain of cooperation. To implement the vision of WSN cooperation, this thesis needs

to include an interdependent multi-issue negotiation framework to determine the distribution of

gains from cooperation. With this, networks can evaluate whether or not cooperation can take

place.

The specific scenario of cooperation studied here is a novel setup in the area of WSNs. In this

scenario, nodes require to optimise their use of harvested energy to fulfil their energy require-

ments by collaboration as much as possible. From this perspective, the authors of [120] propose

an approach that facilitates the energy exchange between homes equipped with renewable en-

ergy technology and storage in remote communities to achieve efficient energy management.

The linear programming framework modelled in [120] for connecting agents is useful to model

the cooperation between networks. Therefore, the model presented in this thesis applies the

linear utility function designed in [121] to measure the bargainer’s preferences (the node’s pref-

erences) for the energy flow allocation in this domain.

2.6 Selection of Negotiation Partner

The partner selection problem is connected to the nature of the WSN. When multiple nodes

from different networks share the same neighbourhood, an agent seeks to provide an energy

allocation from a number of potential partners. Traditionally, an agent engages in multiple

concurrent bilateral negotiations for the acquisition of a good or service. In particular, the case in

which a node is looking for a single node from a number of available nodes in its environment is

considered here. By bargaining simultaneously with these agents and making partial agreements

with them, an agent can reach good deals in an efficient manner. However, due to the memory

and processing capability limitations of an agent in this domain, it cannot afford to evaluate

the proposals of too many counterparts. In relatively small environments, or those with more

powerful computing capabilities, a self-interested agent can reach its most preferred deal by

negotiating with all agents that offer cooperation. In this situation, an agent is also capable of

implementing robust negotiating strategies that result in efficient agreements even when there are

dynamic changes in the environment. However, this approach may not be reasonable in domains

with limited computation or restricted communication bandwidth. In an open dynamic domain,

a negotiation may lead to a communication overhead when coordinated over a large number

of agents, degrading a network’s performance. It is always preferable to start a negotiation

which is likely to succeed and reach a better agreement. Therefore, an agent should be able to

anticipate the best potential partner with which to start a negotiation for the practical realisation

of a solution in this domain. Indeed, the main goal for an agent is to find the most prospective

negotiation partner that maximises its energy allocation.
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In [47], a motivation-based mechanism maps goals and issues to motivations and uses the his-

tory of candidates’ performance to select those that have the most beneficial effects in terms of

current motivational needs. The selection problem of agents for negotiation has also been stud-

ied in [48]. The negotiation outcome and its equilibrium are analysed in terms of the amount

of information that is known about the opponent’s parameters. The results reported are useful

for decision making in situations where an agent has the option to select a partner on the basis

of the information state about its opponents. In [49] the authors propose a framework for au-

tomated negotiation based on negotiation profiles. Each agent gathers information during the

negotiations and stores it in the associated profile: the preference profile, keeps the agent ne-

gotiation strategy, the partner cooperation profile, records the agent interaction with the other

agents in the environment, and the group-of-partners negotiation profile, stores the profiles of

several negotiation partners. The agent is then able to construct a set of rules which allows it to

anticipate both the outcome and the best potential partner with which to start a negotiation. A

central facilitator is responsible for registering new agents and informing others about it. The

problem of partner selection in [50] is analysed using a possibilistic case-based decision model.

Their solution provides the decision theoretical basis to predict the possibility of successful ne-

gotiation with other agents using small historical data about past negotiation behaviour and the

derived qualitative expected utility for a specific situation. Accordingly, they keep a record of

past negotiations to model the negotiation behaviour of the opponents and be able to predict it

in the future.

As shown by previous research, the record of past negotiations is essential to choose the negoti-

ation partner among a set of candidates. These make sense in devices equipped with advanced

processors and large memory capacity. In fact, the design of automated negotiation is highly

sensitive to the domain in which the interactions take place. The networks of this work are re-

source constrained systems that discover each other opportunistically and have no information

about their neighbours. Moreover, the widespread use of WSNs predicted in the future and the

increasing likelihood of different WSNs deployed in the same place demand a proper policy to

aid an agent on the decision-making process of the most prospective partner. In this environ-

ment, the most promising partner for negotiation is evaluated in terms of agreements on energy

cooperation, where the position of the nodes and the orientation of their energy sources strongly

impact the energy harvested. For this reason, even if two nodes are geographically close, their

harvesting rates may vary significantly [40, 122].

Under complete uncertainty, with no prior information about the agents in the neighbourhood,

this research motivates the incorporation of some form of reinforcement learning (RL) into the

partner selection problem. RL deals with decision making via interaction and feedback, or in

other words, learning to achieve some goal by trial and error. Within these situations, an agent

is built to explore an unknown environment and take actions to interact with it. The following

section outlines relevant related work on the application of reinforcement learning in WSNs.
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2.7 Reinforcement Learning as an Optimization Solution for WSNs

Reinforcement learning is a technique of machine learning that involves the perception of learn-

ing using trial-and-error movements (see Figure 2.14). It is particularly suitable for dynamic

environments such as WSNs, where the state of current conditions can vary over time. RL is

used to build automated agents that learn through the interaction with the world. By perform-

ing actions and adapting future decision-making based on the observed consequences of those

actions, an agent can learn an optimal policy to optimise a particular objective.

Figure 2.14: A general scheme of a four stage cognition cycle: (1) gathering informa-
tion, (2) planning actions, (3) acting, (4) collecting feedback (reproduced from [123]).

Formally, the basic RL model consists of:

• a discrete set of environment states (S = s1,s2, ...,sm);

• a discrete set of actions (A = a1,a2, ...,an) that can be chosen at each state;

• rules of transitioning between states;

• transition probabilities; and

• rules that determine the reward of a transition;

An agent choosing an action a∈A causes a transition from state s to a different state s′ according

to a certain probability. The representation P(s′|s,a) indicates the probability of entering a state

s′ when an action a is taken in the state s. The agent receives a reward or punishment R(s,a,s′)

for chosing the action a in state s that lead to state s′. The rewards can be predefined values or

defined by rules. The goal of RL at some time t is to find a policy that maximizes the acquired

sum of rewards over time, what is called a state-action function (Q function). This is based on

Bellman’s principle of optimality, represented by the following equation:

Q(s,a) = R(s,a)+ γ×∑
s′

P(s′|s,a)×max
a′

Q(s′,a′) (2.11)
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The Q function designates a value to each state/action pair. R(s,a) is the reward gained for

executing action a at state s, and the argument to the right represents the maximum expected

future reward. The factor γ is the discount value used to penalise the repetition of a decision

(state/action pair) over time.

With knowledge of a Q value, the agent does not need a model (reward functions and transition

probabilities) to decide how to act: it can simply keep acting based on the action with the

maximum Q-value in the current state, i.e. an agent is able to take expectations of Q-values using

just experienced data. This is known as model-free RL. The most well-known model-free RL

technique is Q-learning. In the WSN context, Q-learning has been extensively used in routing

problems [124, 125]. In fact, most of the proposed reinforcement learning based approaches

solely focus on solving the WSN routing problem. Solving such a problem is found to be NP-

hard. However, similarly to this research, the application of reinforcement learning in routing

seeks to predict the full path quality between nodes by reducing the complexity of a routing

problem considering only neighbouring nodes’ information [126]. Each node independently

performs the routing procedures to decide the minimum cost path, which leads to near-optimal

routing decisions with a very low computational complexity. In [127] the authors apply swarm

intelligence-based algorithms to achieve distributed path decision making for adaptive routing.

The works in [58, 123] use RL to manage cross-network optimisation problems. The Least-

Squares Policy Iteration (LSPI) algorithm is used as the reasoning method to find the optimal

set of network services in each WSN node that would be beneficial for their performance when

they cooperate. A central and powerful negotiation engine is assumed to continuously collect

information about the system measurements and environmental states. The engine computes

the configurations for each participating network so that the activation of the corresponding

services positively influences the performance of each system. Along with the assumption of a

centralised decision maker, their paradigm referred to as symbiotic networking contemplates the

integration of different networks from their design. Similarly to their initial proposal [10], this

work motivates the use of an automated solution to enable cooperation between networks. How-

ever, the cooperation develops opportunistically and is assumed to occur directly between nodes,

without relying on a trusted authority. This requirement faces the challenge of dealing with con-

strained nodes instead of enhanced devices. Consequently, the methods require to be automated

but suitable for the limited capacity of typical devices in IoT. Besides, they need to consider the

rapid response required in some opportunistic cooperative domains (e.g. Emergency response).

The use of LSPI is reproduced in [128] to enable a node to learn an optimal routing scheme with

multiple optimisation goals among the maximisation of its network lifetime. Similarly, work

in [129] proposes a routing policy conditioned by the message importance that includes the

selection of paths with the highest delivery rate learned over the previous routing experiences.

The underlying approach in this case is based on Q-Learning. Although the space of options

is simplified in the routing domain, these techniques need to consider the set of state-action

pairs to find an optimal action-selection policy. As a result, the computational complexity of the
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algorithms increases as the dimensionality of the problem proportional to the state representation

grows.

The drawbacks of high computation complexity and large memory requirement in comparison

to more sophisticated learning algorithms are reduced with multi-armed bandit (MAB) learning.

The space of options in MABs is characterised only by the set of the agent’s actions. The

MAB model is commonly used in the online learning literature for solving resource allocation

problems. One solution in the context of WSNs is multi-armed bandit based energy management

(MAB/EM) [130]. MAB/EM is a power management technique that enables an agent to adapt

to the environmental changes while maximising the total amount of information collected over

a period of time. In MAB/EM, the energy of an agent is intelligently allocated to the tasks of

sampling, reception, and transmission of data, as the agent learns which combinations optimise

its performance in long-term information collection. The allocation problem is also solved in

[131] by using MAB algorithms to make efficient use of the radio spectrum and avoid collision

between cognitive nodes. In the model, the nodes are not aware of the communication medium

conditions, and they have to estimate the channel’s availability by exploring and learning.

To balance exploration with exploitation, the partner selection problem is modelled in Chapter

5 as an adversarial MAB problem. This thesis evaluates the performance of several algorithms

on partner selection through practical scenarios in WSNs. The goal is to have an accurate online

estimation method of whether a particular policy will work well in practice. In this regard, there

are no prior results for the reward maximisation on partner selection. The problem has been

studied from different perspectives as described in Section 2.6.

2.8 Summary and Discussion

Cooperation among IoT networks is an important research topic considering the vast deploy-

ment of WSNs envisaged with the progress of IoT. Previous research has shown the benefits of

having shared nodes between distinct networks and the means to enable it. A link-layer proto-

col called OI-MAC makes possible this sharing by supporting direct interconnection between

multiple network domains. The chapter began by describing the communication technology that

allows cross-boundary transmission. Along with the conceptual framework to construct ODI,

practical implementations have also been explored. Since the feasibility of ODI has been con-

firmed, the vision of multi-domain WSN cooperation is reachable. The cooperation will not

only bring benefits at the information-sharing level [3, 5] but may also be favourable in terms

of optimal energy use, QoS guarantees, load balancing, interference avoidance, low latency or

high reliability [6, 10, 14, 42].

Although the idea of cooperation seems straightforward, many open challenges remain, mostly

due to the independent behaviour and heterogeneity of a WSN. Even if the heterogeneity in

communication layers is already tackled, novel proposals in the coordination among distinct

WSNs are still left out. In many applications, the networks usually represent different entities or
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are managed by different owners. Thus, their rational action to decide whether to cooperate or

not depends on their conditions. In this scenario, on their own energy harvested, load and battery.

The purpose of the negotiation is to solve this kind of problem, where different techniques have

been studied to model the interactions among agents [74].

In this direction, previous research has modelled the cooperation problem using a game-theoretic

framework to identify possible equilibrium strategies. However, the studies in cooperative so-

lutions assign the control of these findings to network administrators, shared nodes with suffi-

ciently large power supply or centralised powerful devices. This is impractical with nodes of

limited bandwidth, memory and power capacities. Therefore, the objective of this thesis is to

bridge the gap between constrained nodes and how negotiation is performed in this domain. For

evaluation, the use of game theory is included to serve as a benchmark for the decentralised

negotiation approach. In this regard, Chapter 3 describes the system model and presents an

evaluation of the axiomatic solution for energy cooperation.

This thesis applies multi-agent negotiation techniques and the perspective of AI for the resolu-

tion of conflicts in WSNs. An alternative approach based on heuristics is capable of reducing

the complexity of the cooperation problem and represents a novel contribution in this domain

of cooperative WSNs. Moreover, the incentive for optimal energy use has not been explored

using a negotiation framework. This work has presented a wide range of approaches to en-

sure energy-neutral sensing systems, categorised in optimal energy allocation algorithms and

adaptive parameter strategies. However, none of the existing proposals allows energy-neutral

algorithms to leverage an area wider than its own network domain. Based on the analysis made

in this chapter, Chapter 4 describes the heuristic negotiation framework used to model the nego-

tiation process and its performance in comparison with the centralised solution.

Automated negotiation and specifically, the bargaining scheme presented in this work, is pro-

posed as part of a cooperation strategy among self-interest agents as an effort to solve two basic

problems, when to cooperate and how to cooperate. Conversely to a fixed set of rules to define

the offers made by an agent, the main idea of this proposal is to provide more flexibility in the

negotiation process, such as to allow a negotiator to adopt a behaviour in the face of a limited

resource. Later in Chapter 4 the limited resource is described as a number of rounds, but it can

be any resource engaged in the negotiation [90].

The scenario of negotiation-based cooperation describes nodes that discover co-located devices

with conflicting interests and a desire to cooperate in energy sharing. The problem of partner

selection becomes natural in this context where multiple nodes share the same location. Thus,

existing partner selection strategies were also discussed and analysed in this chapter. Current so-

lutions assume knowledge about the opponents, therefore existing methods map requirements to

motivations or consider the history of previous interactions to select the most promising partner

for negotiation. However, in situations under uncertainty as the ones presented in opportunistic

encounters, the problem is more likely to involve self-learning techniques. Chapter 5 presents

the research carried out in order to address this challenge.
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In conclusion, existing cooperative designs have not proposed solutions to enable energy sharing

between networks, capable of performing long-term efficient energy management and keeping

energy-neutrality operation. A heuristic approach attempts to overcome the limitations of the

game theory mechanisms. Instead of searching for the optimal solution, agents try to find a

sufficient, near-optimal outcome by reducing the search space to decrease the high computa-

tional complexity. In the absence of an optimal and central controller, results demonstrate the

efficiency of a heuristic negotiation solution. Therefore, automated negotiation models based

on heuristic approaches need an intensive evaluation, elaborated through comprehensive exper-

iments and empirical analysis. With this in mind, the following chapters present the optimal

solution and introduce the heuristic model to analyse the efficiency of cross-network power

management using the proposed bargaining approach.





Chapter 3

Opportunistic Energy Negotiation:
System Model and Cooperative
Approach

Previous research about resource sharing described in Section 2.2 certifies the benefits of es-

tablishing cooperation between co-located networks. However, energy-harvesting WSNs have

been left out of this context. As a result, the cooperation incentive for optimal energy use has not

been previously considered. The main motivation of this work is to conduct power management

by leveraging an area wider than the boundaries of one domain and enable opportunistic energy

transfer across multiple networks. Designing such systems requires efficient energy manage-

ment methods. To this end, first, an optimal energy allocation scheme is described in Section

3.2. Subsequently, a utility-based energy allocation algorithm is derived to address the problem

of utility maximisation for a node with energy replenishment (discussed in Section 3.3). The

cooperative approach is analysed in Section 3.4 by first describing the model to transfer energy

between two nodes. Then, the experimental setup and results based on this model are presented

in Section 3.5. Since networks are not known in design time because each is independent, a

negotiation approach is suggested to deal with their different energy profiles. Accordingly, this

chapter shows the system model to support cooperative energy allocation and results of the

adopted bargaining solution. Typically in game theory, a solution is characterised by desirable

properties like Pareto optimality or fairness. The bargaining solution used to compute the opti-

mal energy flow satisfies the efficiency axiom. This method is used as a benchmark to evaluate

the outcome obtained by the framework employed in the heuristic approach.

3.1 Opportunistic Direct Cooperation Methodology

As stated before, the negotiation-based cooperation approach aims to optimise a network’s

power management through negotiation based on cross-network optimisations and self-organising

51
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capabilities. Fig. 3.1 gives a general overview of the establishment of cooperation following the

proposed methodology. The methodology to support cooperation between distinct networks

consists of the following 5 phases, which are studied through these chapters in more detail:

1. First, a node envisages an insufficient energy allocation.

2. The node discovers nearby devices with the same interest to start a cooperation.

3. The node selects a negotiation partner to initiate a bilateral negotiation.

4. The negotiation proceeds between nodes to find a suitable agreement that best satisfies

their negotiation objectives.

5. Once the deal is reached, the cooperation proceeds.

Discovery of neighbouring
devices

Selection of 
negotiation partner

Bilateral negotiation

Network cooperation

Identification of insufficient 
resources

Figure 3.1: The 5 phases of the methodology proposed in this thesis to establish direct
cooperation between distinct networks.

The methodology is applied here to establish opportunistic energy negotiation between co-

located networks, also identified as OEN through this thesis. The next section describes the

system model and considerations made for this domain. In this chapter, it is assumed that net-

works can reach cooperative agreements by the intervention of a mediator. The mediator finds

an energy agreement that maximises the product of the participants’ utilities. In order to de-

velop all the phases, this chapter starts with the energy allocation algorithm to accomplish the
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first step of the methodology. Chapter 4 describes the protocols used to discover neighbouring

devices and realise the negotiation process for OEN, while Chapter 5 addresses the uncertainty,

dynamism and diversity intrinsic to the domain for the selection of a negotiation partner.

3.2 System Model and Problem Formulation

This section describes the model and assumptions made concerning the characteristics of the

sensor networks. The network model, the energy consumption model, the energy management

model for the energy source and the formulation of the optimisation problem of energy allocation

are presented here. Although there are several possible WSN deployment scenarios, this chap-

ter addresses the problem of opportunistic energy negotiation with an initial simplified setting.

The empirical evaluation assumes two sensor networks sharing the same physical location, and

direct interconnection can be established between any pair of sensor nodes. Thus, this chapter

studies the cooperation strategy between a pair of nodes. The main motivation in investigating

negotiation applied in this domain is to observe the effects of cross-boundary energy transfer for

the node’s power management and this setting is suitable for that purpose.

3.2.1 Network Model

A set N of m energy-harvesting wireless sensor networks N = {N1,N2...,Nm} that are under the

administration of distinct authorities and deployed in the same area is considered (see Figure

3.2). Each independent network Ni, 1 ≤ i ≤ m has a different type of harvesting source (e.g.

wind turbine or solar panel) and is formed by a set of unique sensor nodes Ii = {1, ..., j, ...,z}
and a sink.

The networks that are studied attempt to achieve energy-neutral operation. Thus, the nodes

need to satisfy as much as possible their energy allocation scheme, considering their load and

expectation of energy harvested. This thesis considers that sensor nodes can forecast this last

information from historical data with high certainty. This assumption is reasonable according

to the experimental studies reported in [52] to forecast sub-glacial movement directly affected

by climatic changes. The study considers previously forecasted data to continuously reduce the

uncertainty about this data and reach zero. The hardware features of the sensor device include a

32bit ARM Processor and 2GB microSD card for storing readings [132]. As for energy sources

and its availability, models for its seasonal cycles are known and can be used to predict future

energy opportunities [18].

Time is divided into discrete time slots T = {1, ...,n} of equal duration L. Each time slot t is long

enough to deliver all packets to the collector and take a decision about inter-network cooperation.

A node is able to perform cross-network packet transmission through direct interconnection to

nodes with overlapping radio range. The scenario consists of general WSN applications with
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Transmission range

Negotiator agent

Sink node
Sink node

Intra-network communication
Inter-network communication

N1

N2

Figure 3.2: Two different WSNs (N1 and N2) deployed at the same area. A feasible
scenario to execute Opportunistic Energy Negotiation.

randomly deployed nodes that periodically collect data from the environment and report these

measurements to the sink, using multiple hops to traffic the packets.

Each network Ni is examined as a cooperative multi-agent system. Then, each node j in Ni is

controlled by an agent denoted as i j, 1 ≤ i ≤ m, j ∈ N. The agent has complete knowledge of

all the relevant node’s information, such as its neighbours, its energy profile variables: energy

availability from the harvested source in each time slot t, including the availability in the future,

and its energy consumption, its battery capacity and residual energy. In general, a node is an

autonomous agent with advanced situational awareness of itself and its local neighbours (nodes

in its own network).

3.2.2 Energy Consumption Model

The nodes in Ni usually operate unattended in a collaborative manner to perform some tasks.

Such tasks include sampling, reception, processing and transmission. Although the execution

of these tasks consumes a measurable amount of energy, the power used up in processing and

sampling can be ignored since the communication energy for reception and transmission is a

dominant factor in most sensor platforms [133]. Thus, the total energy consumed by an agent is

in terms of its radio transceiver’s duty cycle. Furthermore, each agent i j consists of an energy

harvester unit and a rechargeable battery. The energy management model used to derive an

agent’s energy profile is described in the next subsection.

In this work, a simplified model of average power consumption is adopted as it is used in [134],

where a sensor node’s power consumption is determined by its duty cycle. Let Ec
i, j(t) denote

the energy consumed by radio communication of agent i j in time slot t. The vector EEEccc
i, j =

(Ec
i, j(1), ...,E

c
i, j(n)) : EEEccc

i, j ∈ R+ denotes the energy consumed by agent i j in n time slots. At
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any given time slot t of length L, the total energy Ec
i, j that an agent i j consumes can be calculated

as:

Ec
i, j(t) =V ×

[
D× Iactive +(1−D)× Isleep

]
×L (3.1)

Then, the maximum energy an agent can spend at each time slot t is dependent on the average

power consumption ruled by the duty cycle D, supplied voltage V , active mode current Iactive,

and sleep mode current Isleep. D is set by the node’s application, while Iactive,Isleep and V can be

known in advance using datasheet information.

3.2.3 Energy Management Model

The energy management model is built on the proposal made by [18]. The power management

characterisation described for a sensor node considers a harvesting system with a non-ideal

energy buffer, i.e. an energy buffer is not ideal when its capacity is fixed and its charging

efficiency is strictly less than 1. Figure 3.3 illustrates an agent’s model for a sensor node with

energy harvesting capability and limited storage.

Energy harvester

Sensor load

Energy buffer

Energy source: solar, vibration, 
wind, motion, etc

Figure 3.3: An agent-based model of a sensor node with energy harvesting capability
and limited storage.

A rechargeable agent can harvest energy and reserve it in its battery for future use. However,

as typically assumed, while the sink node has an unlimited power supply, each sensor node

is conditioned to spatio-temporal variations of energy availability [18, 135]. Without loss of

generality, it is assumed that the replenishment of energy occurs at the beginning of each time

slot t and the agent stores the unused harvested energy in the battery immediately.

According to the time domain mentioned in 3.2.1, each period of energy harvesting can be

divided into slots T = (1, ...,n) of equal duration L. The expected energy input during each slot

t can be forecast from historical information with a high level of accuracy. Energy can then be

allocated to each slot t. Ec
i, j(t) and Ehrv

i, j (t) are used to denote the energy profile variables for

each time period. Ec
i, j(t) is the maximum energy spent by a node to relay data or transmit it at



56 Chapter 3 Opportunistic Energy Negotiation: System Model and Cooperative Approach

time slot t defined in 3.2.2. While the amount of energy that can be generated by the harvesting

unit in n time slots is defined as EEEhhhrrrvvv
i, j = (Ehrv

i, j (1), ...,E
hrv
i, j (n)) : EEEhhhrrrvvv

i, j ∈ R+. For example, if

the harvesting period starts at 00:00 a.m and L is 1 hour, then Ehrv
i, j (1) is the expectation for

the amount of energy harvested during slot 1 (from 00:00 a.m. to 01:00 a.m.), Ehrv
i, j (2) is the

expectation of energy during slot 2 (01:00 a.m. to 02:00 a.m.), etc.

Bi, j(t) is used to represent the residual battery energy at the beginning of slot t in agent i j.

Therefore, the battery energy left after the last slot of the energy harvesting period is defined

as Bi, j(n+ 1). Then BBBi, j = (Bi, j(1), ...,Bi, j(n)) : BBBi, j ∈ R+ denotes the battery level in n time

periods. The cycle of the battery is represented as Bi, j(n+ 1) = Bi, j(1). The battery is char-

acterised by a limited energy capacity Bmax
i, j and charging efficiency e. The battery enables an

agent to save and use energy over the entire period of n slots, which helps the agent to com-

pute an energy allocation for each t. The energy allocation for each time slot t is denoted as

EEEaaalllllloooccc
i, j = (Ealloc

i, j (1), ...,Ealloc
i, j (n)) : EEEaaalllllloooccc

i, j ∈ R+, which is the amount of energy allocated from

the source (harvester or battery) to the energy consumed Ec
i, j by the load of the sensor node.

The battery allows the agent to use the harvested energy efficiently by storing energy temporar-

ily. When Ehrv
i, j (t) is lower than Ec

i, j(t), some of the energy used by the sensor node is discharged

from the battery. ddd = (d(1), ...,d(n)) : ddd ∈ R+ represents the discharged energy amount of

the battery. When Ehrv
i, j (t) is higher than Ec

i, j(t), all the energy used in the node is provided

by the harvested source and the battery is charged with the excess as required, up to its maxi-

mum capacity. ccc = (c(1), ...,c(n)) : ccc ∈ R+ denotes the charge of the battery in n time slots.

There are no discharge and charge amounts at the same time t. Any excess energy received

at times when the energy buffer is full is discarded by the node. In other words, the energy

that the node is unable to use or store at time slot t is wasted. This energy is denoted by

wwwi, j = (wi, j(1), ...,wi, j(n)) : wwwi, j ∈ R+. Then, the energy used from the battery in any slot

t can be calculated as:

Bi, j(t)−Bi, j(t +1) = d(t)− e× c(t) (3.2)

An opportunistic energy negotiation process is initiated when an agent’s estimated energy level

is not enough to maintain the next period. As a result, an agent foresees an insufficient energy

allocation scheme given the expected energy and remaining battery level. Thus, at each period

T the initial battery status Bi, j(1) is equal to e×b where b is the energy level at t = 1.

A summary of notations used in this work is given in Table 3.1.
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Symbol Definition

T The total period of energy harvesting process

t The t-th slot, t = 1,2,...,n

n The total number of time slots, t = 1,2,...,n

L Duration of a time slot

i j Agent of node j in network i

Bi, j(t) The battery level of agent i j at the beginning of slot t

Bmax
i, j The maximum battery level of agent i j

e Battery efficiency

d(t) The amount of energy that is discharged from the battery at time slot t

c(t) The amount of energy that is charged to the battery at time slot t

Ehrv
i, j (t) The amount of energy harvested by agent i j at slot t

Ealloc
i, j (t) The energy allocation for agent i j at slot t

wi, j(t) The surplus energy of agent i j

V Voltage supplied to agent i j

D The duty cycle of agent i j

Iactive Current consumed in active mode by agent i j

Isleep Current consumed in sleep mode by agent i j

Ec
i, j(t) The total energy consumed by agent i j at slot t

Table 3.1: Notations used in network model, energy consumption model and energy
management model.

3.2.4 Optimal Energy Allocation Problem

The energy allocation model is based on the model developed by [121]. A linear function is

modelled as [121] to design the objective function of each agent i j. The agent first identifies its

best performance given the constraints of its domain to determine the need for cooperation. If

an insufficient energy allocation scheme is expected, an opportunity to initiate an opportunistic

energy negotiation arises. Thus, to determine the agent’s utility space, the following problem

needs to be solved.

Since the current battery status only depends on the amount of energy harvested and consumed

during previous slots, as shown in Equation 3.2, the energy allocation problem can be formulated

as a linear program (LP). Then, the objective function is described as the total amount of energy

consumption that is satisfied (i.e., energy allocation Ealloc
i, j ) at period T . In other words, the

overall utility for an agent is the sum of all satisfied loads in n time slots. Suppose the utility of

an agent is represented by u, the following gives its definition:

Ob jective maxui, j =
n

∑
t=1

Ealloc
i, j (t) (3.3)
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That is, the aim is to maximise the total amount of energy allocated by the agent over the time

interval [1, n], subjected to the following constraints:

Constraint 1: The allocated energy at time slot t, Ealloc
i, j (t), is defined by the harvested energy,

the charged and discharged energy from the battery and waste:

Ealloc
i, j (t) = Ehrv

i, j (t)− c(t)+d(t)−wi, j(t) (c1)

Constraint 2: The following equation represents the energy balancing condition, which states

that the allocated energy Ealloc
i, j (t) must not exceed the maximum amount of energy Ec

i, j(t) that

a node can consume at time t:

Ealloc
i, j (t)≤ Ec

i, j(t) (c2)

Constraint 3: The energy used from the battery at any time t depends on the discharged d(t) and

charged c(t) energy plus its efficiency e :

Bi, j(t)−Bi, j(t +1) = d(t)− e× c(t) (c3)

Constraint 4: The battery level at time t = 1 is equal to an initial residual energy b:

Bi, j(1) = e×b (c4)

Constraint 5: The cycle of the battery is represented as:

Bi, j(n+1) = Bi, j(1) (c5)

Constraint 6: The energy stored into the battery at each time t, c(t), cannot be negative and must

not exceed the maximum battery capacity:

0≤ c(t)≤ Bmax
i, j (c6)

Constraint 7: The energy drawn from the battery at each time t, d(t), when Ehrv
i, j (t) < Ec

i, j(t)

starts from Ec
i, j(t)−Ehrv

i, j (t). This amount must also not exceed the residual energy of the battery:

Ec
i, j(t)−Ehrv

i, j (t)≤ d(t)≤ Bi, j(t) (c7)

Constraint 8: At each time t, the battery must not store more energy than its capacity, also it

cannot have negative values:

0≤ Bi, j(t)≤ Bmax
i, j (c8)

Constraint 9: Any wasted energy in t is positive and cannot exceed the energy harvested Ehrv
i, j (t):

0≤ wi, j(t)≤ Ehrv
i, j (t) (c9)
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The use of an LP framework allows us to characterize the energy allocation of a sensor node. The

solution to the optimisation problem yields the optimal amount of energy that can be allocated

to an agent in every slot t at the beginning of the harvesting period T , Ealloc
i, j , the evolution of

residual energy in the battery over the period of n slots, described by the variables Bi, j, c and

d and the energy discarded wi, j. The model is extended in Section 3.4 to allow energy sharing

between agents. Once the model considers the amount of energy offered by the agents, it can

also be used to find the energy offer that maximises the agents’ utilities product.

3.3 Optimal Energy Allocation Algorithm

At the stage where the agent has access to the node’s information about its initial battery status

Bi, j(1), battery efficiency e, battery capacity Bmax
k,i , detailed energy profile describing the max-

imum node’s load Ec
i, j and energy harvested Ehrv

i, j available for the respective time horizon T

going through from time slot 1 to n, an agent can compute the node’s utility using Algorithm 1.

The algorithm meets the conditions listed in 3.2.4 that must be satisfied to optimise the objective

function of energy allocation. At every time slot t, the algorithm evaluates two cases depending

on the data of Ehrv and Ec: when there is enough energy harvesting supply to complete a load

(Step 4) and, in the second case, when the energy availability is attempt to be supplied with the

help of the battery (Step 13). The values of Ealloc, B, c, d, w are derived from 3.2.4 given the

data of Ehrv, Ec, B(1), e and Bmax. Then, the problem can be solved for any t if B(t − 1) is

known. Therefore, if the starting battery level B(1) is given, then the algorithm works to find

the agent’s reserved utilities for t = 1, and so on.

In more detail, when there is excess energy and it goes above the battery capacity (Step 6), the

battery is charged with the excess as required taking into account its greatest capacity and the

rest is discarded. Otherwise (Step 8), the battery is only charged with the excess. Step 14 depicts

the scenario when there is not enough ambient energy to power a load. There are two cases to

evaluate in this statement: when the battery cannot supply the missing energy (Step 16), and the

opposite (Step 18). In every case, the values for energy allocation and discharge are depicted.

At the end of the algorithm run, the resulting energy allocation scheme describes the situations

(Step 16) that can be considered by agent i j to decide if an OEN with a co-located network

must be performed, i.e when an agent can not harvest enough energy for its consumption, and

the difference can not be covered with the residual capacity of its battery.

The algorithm described above can be used to automatically alert the agent if a deficient en-

ergy allocation scheme is expected. Agent i j keeps a table of its immediate surroundings or

neighbourhood (the nodes that are 1-hop from the agent), which entries correspond to its local

neighbours and their energy condition. Each agent piggybacks its information in broadcasting

packets via routing updates. Then, agent i j uses the information from its table to guide a co-

operative OEN among its local nodes with the co-located networks. The priority assignment
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Algorithm 1: Agent’s utility without Opportunistic Energy Negotiation

Input : Ehrv
i, j ∈ Rn

+, Ec
i, j ∈ Rn

+, Bi, j(1) ∈ R+, e ∈ [0,1], Bmax
i, j ∈ R+, n ∈ Z+;

Output: Ealloc
i, j ∈ Rn

+, c ∈ Rn
+, d ∈ Rn

+, Bi, j ∈ Rn
+, wi, j ∈ Rn

+

1 Initialisation (Ealloc
i, j ,c,d,B,w) ;

2 Ealloc
i, j (1) = Ec

i, j(1); c(1) = Bmax
i, j − (Ehrv

i, j (1)−Ealloc
i, j (1)); d(1) = 0;

wi, j(1) = Ehrv
i, j (1)−Ec

i, j(1)− c(1);
3 for t← 2 to n do
4 if Ehrv

i, j (t)≥ Ec
i, j(t) then

5 Ealloc
i, j (t) = Ec

i, j(t); d(t) = 0;
6 if Ehrv

i, j (t)−Ec
i, j(t)>

1
e × (Bmax

i, j −Bi, j(t−1)) then
7 c(t) = 1

e × (Bmax
i, j −Bi, j(t−1)); wi, j(t) = Ehrv

i, j (t)−Ec
i, j(t)− c(t);

8 else
9 if Ehrv

i, j (t)−Ec
i, j(t)≤ 1

e × (Bmax
i, j −Bi, j(t−1)) then

10 c(t) = Ehrv
i, j (t)−Ec

i, j(t); wi, j(t) = 0;
11 end
12 end
13 else
14 if Ehrv

i, j (t)< Ec
i, j(t) then

15 c(t) = 0; wi, j(t) = 0;
16 if Ec

i, j(t)> Ehrv
i, j (t)+Bi, j(t−1) then

17 Ealloc
i, j (t) = Ehrv

i, j (t)+Bi, j(t−1); d(t) = Bi, j(t−1);
18 else
19 if Ec

i, j(t)≤ Ehrv
i, j (t)+Bi, j(t−1) then

20 Ealloc
i, j (t) = Ec

i, j(t); d(t) = Ec
i, j(t)−Ehrv

i, j (t);
21 end
22 end
23 end
24 end
25 Bi, j(t) = Bi, j(t−1)−d(t−1)+ e× c(t−1);
26 end

of agents with the same constraints is out of the scope of this thesis. The model to allow the

consideration of external energy is described in the next section.

3.4 Opportunistic Energy Negotiation Between Two Agents

The idea of WSN cooperation, in general, is attractive in IoT environments, where WSNs usu-

ally have limited energy resources and heterogeneous characteristics, such as battery capacity,

number of nodes, nodes locations, energy consumption. From interference avoidance to an ap-

propriate use of energy, the variety of benefits and scenarios is wide. In order to examine each

of these cooperative scenarios using a cooperative game-theoretic approach, the above problems

are formulated as a two-person game. In this direction, cooperation is not straightforward since

networks’ authorities are independent of each other and selfish behaviour is inevitable from a
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rational perspective. Problems such as node’s power consumption, interference avoidance for a

communication medium and packet routing in cognitive Ad Hoc wireless networks have already

been analysed in the form of a game. In the same manner, the majority of research in WSNs has

explored the problem of networks’ cooperation from a game-theoretic angle [9, 12, 13, 16, 136].

This section describes the system model to enable the study of cooperative energy management.

The solution based on a game-theoretic technique described here is then used to benchmark the

heuristic proposal in the next chapter.

3.4.1 System Model Supporting Opportunistic Energy Negotiation

Algorithm 1 is simple, decentralised and has a time complexity of O(n), where n is the total

number of time slots involved in the period of analysis. This energy management method forms

the basic scheme needed for energy allocation and gives the sensor network self-organising abil-

ity. Following the allocation algorithm, an agent can identify if a cooperative effort is required.

Such cooperation effort can increase the agent’s utility if the agents find a suitable agreement

during negotiation. This thesis considers self-interested agents which prefer the energy flow that

maximises their own utility. The additional variable of energy flow must be evaluated in the pro-

posed LP model in Subsection 3.2.4 to realise the vision and analyse the benefits of opportunistic

energy negotiation.

An opportunistic energy negotiation is triggered when a node’s energy level Bi, j(1) has dropped

below a threshold, and the foreseen energy Ehrv
i, j is not enough to maintain the next period. Dur-

ing negotiation, agent i j considers the amount of energy to receive/give from the cooperation

at each time t, which is defined by ooo = (o(1), ...,o(n)) : ooo ∈ R. o represents the offer of en-

ergy at each time slot, i.e. The issues over which the negotiation takes place. These offers

are called energy flow offers. A valid energy flow offer must include the energy values for the

predetermined time of cooperation, e.g. If the networks expect to cooperate for 24 hours, then

the energy flow must include 24 values. ooo = (o(1), ...,o(n)) can be also referred to as the value

vector of the negotiation’s attributes. As soon as the offers o(t) appear in the model, this is no

longer an LP with a straightforwardly predictable outcome as a solution. Offers make agents

commit some energy outside of the case described in Step 16 (see Algorithm 1), in order to gain

energy at such stage, overall leading to a possible surplus. Moreover, agents can have excess

energy during intervals of less activity and share this benefit with their opponents.

The direction of the energy flow is denoted by a positive or negative sign. If positive, the amount

is an offer of energy from the agent to its opponent, otherwise, it represents the energy to be

received from the opponent. For example, if two agents are willing to cooperate with each other

for a period of 2 hours and L is set to 30 minutes, then an offer of energy from agent i j to the

opponent can be o=(−1.88,−0.7,18,−4); where -1.88 mWh, -0.7 mWh and -4 mWh represent

the energy savings of agent i j from the opponent’s cooperation (e.g. by packet routing) at time

slots 1,2 and 4 respectively. While value 18 indicates that agent i j is willing to compromise 18

mWh of energy through a collaborative effort to its opponent at time slot 3. Thus, the energy
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flow offer affects the utility value of the agent, i.e. the amount of energy allocated for a sensor

node. By this condition, an agent has to evaluate this additional variable at every time slot since

the energy available in the cooperative scenario is affected now by the energy flow offered at

each time. The constraint (c1) can now be replaced in the original optimisation problem with

(c10) to include the energy flow offer as follows:

Ealloc
i, j (t) = Ehrv

i, j (t)− c(t)+d(t)−wi, j(t)−o(t) (c10)

Basically, when o is null the problem describes the energy allocation for an agent without coop-

eration.

In this cooperative model of energy allocation, an additional condition must be addressed. Since

energy is logically transferred between networks by accepting energy-consuming tasks as data

processing or packet forwarding [8, 12, 13], a change is required in constraint (c6) when there

are offers involved:

0≤ c(t)≤ Ehrv
k,i (t) (c6)

The result is that the battery will be charged immediately with the energy harvested by the agent

while the energy supply received from the opponent’s offer will be used to satisfy the agent’s

load.

Following the model described, an agent can compute the optimal energy flow that benefits

both agents (i.e. all energy flows that give a higher utility to each agent than those provided

without cooperation) but this requires complete information (energy profiles of both agents and

battery information) and high computation capabilities since the set of all feasible agreements is

exponential in the number of time slots. Cooperative approaches must ideally result in Pareto-

efficient outcomes. By this, the resulting energy flow across inter-network nodes must be on

the boundary of the feasible solutions. On this boundary, one agent cannot be better off without

making the other agent worse off. As described in Section 2.3.1, a cooperation strategy based on

Nash Bargaining Solution (NBS) is the solution that maximises the product of agents’ payoffs

over the set of all feasible agreements. With NBS, the agents will cooperatively work and each

will share a certain fraction of its energy surplus for optimal energy management. The next

section presents the cooperative solution that finds an agreed energy flow between agents and

satisfies the property of efficiency.

3.4.2 A Cooperative Bargaining Solution for Opportunistic Energy Negotiation

Referring to the cooperative game theory approach, the problem of cooperative energy man-

agement for multi-domain rechargeable nodes is formulated as a two-agent bargaining game.

Then, a cooperative energy allocation strategy based on the Nash Bargaining Solution (NBS) is
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presented, where each agent can share a certain amount of its energy generated for performing

node’s tasks (processing, sensing, transmission) in a collaborative form. This section shows how

NBS (described in Section 2.3.1) can be used as an axiomatic method to compute an energy flow

offer between agents. Experimental results show the NBS energy sharing is fair for both agents

in a way that a node will only cooperate with a node from a different domain if this cooperation

contributes to solve its energy deficiency caused by the spatio-temporal pattern of its energy

source. The degree of cooperation of a node depends on how much contribution its opponent

can make to its continuous operation.

In the domain of EHWSNs and energy negotiation, the set of all feasible agreements is the set

of all possible energy flows which give both agents more utility than their reservation values

(energy allocation when there is no negotiation). Let S denote the set of all feasible energy

agreements that the players can get if they work together. Considering two negotiation agents

1 1 and 2 1 with disagreement/reserved utilities d1,1 and d2,1, respectively, which correspond to

the maximum utilities that agents can achieve when they do not agree on an energy flow offer

(o = {}), and oNBS as the axiomatic solution. A point (u1,1,u2,1) represented in the bargaining

set S describes the utility of the agents on energy allocation. Since agents will only cooperate

if they get more utility than their disagreement values or load satisfied without cooperation, the

following must hold: (u1,1,u2,1)≥ (d1,1,d2,1). Then, a possible solution oNBS to the cooperation

problem between EHWSNs nodes’ can be computed as:

oNBS = arg max
o∈S

[u1,1(o)−d1,1]× [u2,1(o)−d2,1] (3.4)

The product of the two excess utilities is referred to as the Nash product. The equation 3.4 is

subjected to the conditions defined in Subsection 3.2.4 and the respective constraints modifica-

tions of Subsection 3.4.1 for both agents. Normally if S is convex and compact, oNBS is unique.

However, since there are multiple interdependent issues involved, there are several possible so-

lutions for oNBS and any of them defines the cooperative agreement that maximises the product

of the individual utilities. This is reported below.

Table 3.2 shows the reserved utilities from agents 1 1 and 2 1 with the parameters of energy

harvesting Ehrv, load Ec, initial battery level B(1), battery efficiency e set to 0.7 and NiMH

battery capacity Bmax of 708 mWh. The corresponding values for agent 1 1 are [0;0;4], [2;2;2]

and 0 mWh. The initial battery status represents any range or threshold identified by the agent

that supports an envisioned insufficient energy allocation. For agent 2 1, the values are [8;0;0],

[4;4;4] and 0 mWh, respectively. The values of Ealloc, c, d, w and consecutive B are returned by

Algorithm 1.

Tables 3.3 indicates the allocations based on NBS. The solution is computed using equation

3.4 and conditions listed in Subsection 3.2.4 with the respective constraints changed in Subsec-

tion 3.4.1 for both agents. This work uses a nonlinear bound-constrained optimisation solver
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in MATLAB for the computation of NBS. From agent’s 1 1 perspective, the energy values ac-

companied by a positive sign represent an offer of energy from 1 1 to its opponent 2 1, while

negative values represent the energy to be received from the agent node 2 1. The results give an

illustration of the multiple potential cooperative flows explained above. Both NBS offers oNBS

represent the same agent’s utilities.

Agent 1 1 Agent 2 1

t Ehrv
1,1 Ec

1,1 Ealloc
1,1 c/d B1,1 w1,1 Ehrv

2,1 Ec
2,1 Ealloc

2,1 c/d B2,1 w2,1

1 0.00 2.00 0.00 0.00 0.00 0.00 8.00 4.00 4.00 4.00 0.00 0.00

2 0.00 2.00 0.00 0.00 0.00 0.00 0.00 4.00 3.60 -3.60 4.00 0.00

3 4.00 2.00 2.00 2.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00

Reserved utility (d): 2 Reserved utility (d): 7.6

Table 3.2: Agent’s reserved utilities.

Agent 1 1 Agent 2 1

t Ehrv
1,1 Ec

1,1 Ealloc
1,1 c/d B1,1 w1,1 oNBS Ehrv

2,1 Ec
2,1 Ealloc

2,1 c/d B2,1 w2,1

1 0.00 2.00 2.00 0.00 0.00 0.00 -2 8.00 4.00 4.00 2.00 0.00 0.00

2 0.00 2.00 0.38 0.00 0.00 0.00 -0.38 0.00 4.00 1.42 -1.80 2.00 0.00

3 4.00 2.00 0.72 0.00 0.00 0 3.28 0.00 4.00 3.28 0.00 0.00 0.00

Utility with NBS: 3.10 Utility with NBS: 8.7

Agent 1 1 Agent 2 1

t Ehrv
1,1 Ec

1,1 Ealloc
1,1 c/d B1,1 w1,1 oNBS Ehrv

2,1 Ec
2,1 Ealloc

2,1 c/d B2,1 w2,1

1 0.00 2.00 2.00 0.00 0.00 0.00 -2 8.00 4.00 4.00 2.00 0.00 0.00

2 0.00 2.00 0.55 0.00 0.00 0.00 -0.55 0.00 4.00 1.25 -1.80 2.00 0.00

3 4.00 2.00 0.55 0.00 0.00 0.00 3.45 0.00 4.00 3.45 0.00 0.00 0.00

Utility with NBS: 3.10 Utility with NBS: 8.7

Table 3.3: Agent’s utilities with NBS.

The resulting energy allocation is referred to as social optimal, or Pareto optimal, which means

that one agent can not improve its own utility without disadvantaging the other node’s perfor-

mance. The interest of game theory is to model interactions between selfish nodes and determine

the cooperation strategies that could lead to socially optimal resource allocation. However, the

computation of a solution as NBS implies some considerations that are infeasible in the oppor-

tunistic and direct node-to-node negotiation setup. Such considerations include the knowledge

of complete information (reservation values, energy consumption models, and battery informa-

tion) at the first step of the negotiation or the presence of a central and trustable mediator that

collects the information about the agents and computes the solution.
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The performance of the heuristic method is compared in terms of Pareto optimality with this

axiomatic solution where agents declare their true reservation values and utility function. The

next section presents the simulation setup and datasets used to analyse the utilities of two agents

with and without energy sharing.

3.5 Experimental Validation

This section provides a detailed scenario to evaluate the performance of the optimisation algo-

rithm based on LP and its use in the domain of cooperative energy management. All the results

are obtained using MATLAB.

The problem of cooperation is studied in a simplified scenario with a pair of nodes (each from

a different network); negotiating agents 1 1 and 2 1 of N1 and N2, respectively. It is assumed

that the agents observe that their residual energy level has dropped below the threshold set, e.g.

B(1) has reached a value in the range [0,1]. Besides, the energy supply from the environment

is not enough to feed the agent’s load. Agents have appropriately synchronised times and plan

to cooperate for the next 24 hours. The time period starts at 00:00 and ends at 23:00 local time

with L=1 hr, i.e. Agents will have to negotiate an energy flow of 24 values. Then T corresponds

to the same period and time slots T = (1, ...,24). The nodes’ specification and energy profiles:

available energy (harvested energy) plus load required to make power management decisions

are described below.

3.5.1 Nodes

In this simulation model, the agents’ parameters are set using empirical measurements and in-

formation presented by MEMSIC datasheets [137].

The energy generation profile is simulated with two different types of renewable energy: solar

and wind. Agent 1 1 controls a sensor node with a solar panel while agent 2 1 manipulates a

sensor node with wind turbines.

Agent 1 1 controls a Memsic eKo mote, which contains a 3.3 cm × 6.35 cm photovoltaic solar

panel assumed to be 10% efficient to recharge a 600 mAh NiMH battery [138]. The efficiency

e = 0.7 is considered for the simulations, which is a typical value for NiMH batteries [139].

Agent 2 1 controls a Memsic MICAz node, with a micro-wind turbine to recharge a 600 mAh

NiMH battery.

Table 3.4 presents a summary of the simulation parameters.
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Agent 1 1 Agent 2 1

Active current 20 mA 19 mA

Sleep current 5 µA 5 µA

Voltage 3 V 3 V

Duty cycle 1% 5%

Battery capacity 600 mAh 600 mAh

Battery efficiency 0.7 0.7

Table 3.4: Agent’s parameter values for power usage and battery storage model.

3.5.2 Energy Profiles

The energy model in 3.2.2 is used to evaluate the energy consumption of both agents, using

parameters obtained from empirical measurements and datasheets [137].

A realistic scenario is considered where an eKo node normally operates at a 1% duty cycle, and

its average power consumption is 0.615 mW. For the MICAz mote, an average load of 2.86 mW

at 5% duty cycle of operation is desired. Thus, agent 1 1 and agent 2 1 demand 0.615 mWh and

2.86 mWh of energy in each time slot, respectively.

This thesis uses hourly wind speed collected at Weather Underground [140] and solar radiation

from PVGIS [141] for a period of one year (2017) corresponding to the area of Southampton,

in the United Kingdom (50.8997◦N, -1.3955◦W , Elevation 35m). These datasets are used to

compute the energy generation profiles of the nodes.

The solar power harvesting profile is obtained from the solar radiation data of April 2017. The

values of direct solar irradiance are used to estimate the hourly power output of a photovoltaic

system for a day. The solar power is directly proportional to the value of solar radiation (Gb)

[W/m2], the panel dimension (0.033 m × 0.0635 m) and its efficiency (0.1) [25]:

Ehrv
1,1 = Gb×0.033×0.0635×0.1×1000 [mW] (3.5)

Hence, the hourly power generation of a 3.3 cm× 6.35 cm photovoltaic solar panel for a regular

spring day in the area of Southampton city centre can be estimated. The estimated hourly energy

output for a day is shown in Figure 3.4. As can be seen from the figure, the energy generation

exhibits a temporal variation that favours time slots 6-19 which corresponds to times 05:00-

18:00, where most of the energy is produced between time slots 10-15 (from 9:00 to 14:00).

The total energy generated in a day is 451.5 mWh.

Raw daily data for April 2017 collected at Weather Underground is used. The API call is found

in the references [142]. These records are employed to estimate the hourly average wind speed

for a day.
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Figure 3.4: Solar (agent 1 1) and wind energy (agent 2 1) harvested throughout a day.

The power from the wind source can be calculated from the measured wind speed v [m/s] as in

[27, 143]:

Ehrv
2,1 = 0.5×ρ×A× v3× f (3.6)

where ρ is equal to the air density (1.22 kg/m3), A is the swept area of the wind turbine set to

0.0025 m2 in this scenario and f is the efficiency of the windmill ( f = 1). From April data, April

1st is chosen. In order to find a feasible solution with NBS, there must be a feasible space of

agreements. Thus, the diversity between generation times in solar and wind is suitable to create

an opportunity for energy negotiation. The values found with the equation are scaled to get the

hourly power output of a highly efficient micro-turbine [144] (Figure 3.4). In contrast to solar

energy, it can be observed from the graphic how the wind energy has a very irregular pattern

over a day. There are peaks in the early morning and initially in the afternoon (time periods 1-4

and 13-15) while some intervals exhibit very low or no energy (e.g. time periods 16-24). The

total energy generated in a day is 41.4 mWh.

3.5.3 Energy Allocation Without Opportunistic Energy Negotiation

With the node’s information and energy profiles described above, agents can compute their

utilities (without cooperation) using Algorithm 1 presented in Section 3.3 when the offer o is

null.

The result for agent 1 1 is illustrated in Figure 3.5. Figure 3.5(a) shows how the energy allo-

cation (Ealloc) which maximises the utility of agent 1 1 is insufficient to power the sensor node

and its demanded load at each time slot (0.615 mWh). This optimal allocation employs 2.6% of

the energy supplied by the energy source (11.68 mWh out of 451.5 mWh) when the sensor node
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Figure 3.5: Agent 1 1: Results of utility maximisation without energy negotiation.

controlled by the agent 1 1 has a fixed duty cycle of 1%. Therefore, there exists a high energy

waste (Figure 3.5(b)) due to the irregular pattern of the energy harvested from the environment,

which is sufficiently large at every time interval except during time slots 1-5 (00:00 - 04:00).

The waste corresponds to the excess of energy generated that is not utilized by the sensor node

during time slots 6-19. Figures 3.5(c) and 3.5(d) show the dynamic of the battery during the day

with charging and discharging amounts and its residual state, respectively. The residual energy

at each point in time matches the dynamics of the charging and discharging flows and it does

not exceed the maximum battery capacity. The positive values in Figure 3.5(c) represent the

amount of energy charged to the battery, while the negative values correspond to the amount of

energy discharged from the battery. It can be seen in Figure 3.5(c) that the initial battery state as

well as the available energy in time slots 1-5, indicates a null level of energy. Without energy,

a sensor node is useless and cannot add utility to the network as a whole. Consequently, this is

anticipated by the sensor node when its resources are still enough to participate in the bargaining

process and is able to seek the cooperation of a neighbour sensor node.

As observed, the battery is charged while the harvester source provides energy (time slots 6-19).

This is charged with small amounts of energy, as required (e.g 0.46 mWh at time slot 6). Figure

3.5(c) shows the energy flows into the battery until time slot 20, then it starts to flow out of the

battery since the energy generated by the harvester source is null. The energy discharged from

the battery matches the energy requirements of the sensor node during the time when the energy

generation is null. This is the reason why the charging/discharging amount is very low.

Figure 3.5(d) shows the residual energy level or battery status of the sensor node over a day. It

shows how the battery level matches the energy flow of figure 3.5(c), The battery level increases
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until time slot 20, when it starts to decrease its level since all the energy used to feed the node

during time slots 19-24 come from the battery. It can be seen how the battery level drops when

the battery is discharged (time slots 19-24). The largest amount of energy stored in the battery

at any time is 3.19 mWh which is far below its maximum capacity of 708 mWh. This confirms

the storage capacity is sufficiently large for the demanding load.

As a result, the ratio of satisfied load to the total energy consumption of the node is 0.8 (i.e.

11.68/14.76) via optimisation without cooperation, i.e. the agent can allocate a maximum of

11.68 mWh from its harvested energy over 14.76 mWh desired using its bounded energy allo-

cation scheme. Then, agent 1 1 can achieve a utility of 0.8 when it depends only on itself.

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
0 . 0

0 . 5

1 . 0

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
- 3
- 2
- 1
0
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3 2 4
0
2
4
6
8

1 0
1 2

Eallo
c  (m

Wh
)

T i m e  S l o t

( a )  E n e r g y  A l l o c a t i o n

w (
mW

h)

T i m e  S l o t

( b )  W a s t e d  E n e r g y

c/d
 (m

Wh
)

T i m e  S l o t

( c )  B a t t e r y :  C h a r g e / D i s c h a r g e

B (
mW

h)

T i m e  S l o t

( d )  B a t t e r y  L e v e l

Figure 3.6: Agent 2 1: Results of utility maximisation without energy negotiation.

Figure 3.6 presents the results without energy negotiation for agent 2 1. Figure 3.6(a) shows

the energy allocation (Ealloc) which maximises the utility of agent 2 1. Again, the allocation in

this scenario is scarce and it does not supply the load of 2.86 mWh at several time slots (10-

13, 17-24). This optimal allocation utilizes 98% of the energy generated by the energy source

(40.56 mWh out of 41.43 mWh) when the sensor node controlled by the agent 2 1 has a fixed

duty cycle of 5%. In this case, it is observed that there is no waste (see Figure 3.6(b)). This

means that the energy generated by the micro-wind turbine was entirely used and the battery

capacity is large enough for the dynamics generated by the allocation algorithm. Thus, the 2%

of the energy that is missing from the total 41.43 mWh, is entirely associated with the loss of

the battery efficiency (30% loss of e = 70%). Figures 3.6(c) and 3.6(d) show the energy flow

that goes into and out of the battery and the resulting battery level over a period of 24 hours.

As illustrated, the battery is charged while there exists a provision of energy from the harvester

source that exceeds the load (time slots 1-3 and 14-15). The battery is discharged during the time
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when the energy generation is null or deficient to power the load and it can be seen that there is

enough energy in the buffer (time slots 4-10, 16-17). Figure 3.6(d) of the residual energy at each

time slot, matches the dynamics of the charging and discharging flows and it never exceeds the

maximum battery capacity. An increment in the battery level during time slots 1-4 and 14-16

that corresponds to the charging amounts of energy is given. In the same way, the discharging

amounts of time slots 4-10 and 16-17 reflect the agent’s battery level during time slots 5-11

and 16-18. It is also important to note that similar to the case of agent 1 1, the charging and

discharging amounts as well as the battery state are very low and respect the limit of the battery

capacity, which confirms that energy is not wasted due to insufficient storage space.

Consequently, the ratio of satisfied energy consumption to the total load of the node is 0.6 (i.e.

40.56/68.64) via optimisation without cooperation. Therefore, agent 2 1 reaches a utility of 0.6

when the energy allocation algorithm is limited to its local domain.

In summary, the maximum utilities that both agents expect to achieve without cooperation are

0.8 and 0.6, for agent 1 1 and 2 1 respectively. In the next section, an energy flow is calculated

using the cooperative solution NBS and compared with these results.

3.5.4 Optimisation Results With Opportunistic Energy Negotiation using NBS

The simulation setup described at the beginning of this Section 3.5 was used to obtain the opti-

misation results presented here.

Figures 3.7 and 3.8 illustrate the utility maximisation of agents 1 1 and 2 1, respectively. These

results are obtained when agents start the process to enable the transfer of energy and use the

Nash bargaining solution to compute a cooperative energy flow. The most prominent outcome

in this scenario is the achievement of energy neutrality by both agents. The utility of agent

1 1 is increased from 0.8 to 1 while agent 2 1 is able to increase it from 0.6 to 1. As can be

observed from Figures 3.7(a) and 3.8(a), both agents are continuously powered for the period of

24 hours by logically sharing energy resources with each other. There is a minimum amount of

load that is not satisfied by agent 2 1 during time slots 4 and 5 but it corresponds only to 1.8%

of its power consumption. In contrast to the results found without energy negotiation, where the

energy harvested by a node of one domain is not enough to satisfy its load, the agents under this

strategy improve their energy management. With these results, complex adaptive algorithms are

avoided and the application performance is maintained at the same rate at all times, i.e. the duty

cycle is not affected.

Thus, compared to existing power management strategies, the energy negotiation between net-

works permit cross-boundary transfer of energy resources. The transfer can be done by allowing

a node to forward or process packets on behalf of its neighbouring counterpart. As a result, a

EHWSN can manage its energy not only using resources within its own network but also among

a group of networks that have a wider coverage area and resource capacity.
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Figure 3.7: Agent 1 1: Optimal energy allocation that utilises NBS from cooperative
game theory.

Figure 3.7(b) shows the energy wasted in each time slot. The optimal energy allocation for agent

1 1 which maximises its energy via cooperation increases the utilisation of energy harvested

from 2.6% to 12.71% for one day of energy sharing. A total of 394.09 mWh of energy is not

used in contrast to 439.31 mWh when the node simulated controlled by agent 1 1 manages

its energy resources across multiple networks. With respect to this result, 87% of the energy

harvested is wasted, which is less than the 97.3% without cooperation.

Figure 3.7(c) shows an energy flow between agent 1 1 and agent 2 1 with NBS for this setup.

The positive amounts represent the value of energy that agent 1 1 compromises and provides

to agent 2 1 through a collaborative effort, while the negative flows indicate the energy savings

that agent 1 1 is able to obtain from the opponent’s cooperation. This is illustrated by the fact

that agent 2 1 cooperates with agent 1 1 in the early morning over time periods 1-5 by providing

a service (either sensing, processing, forwarding, etc) to benefit agent 1 1 with energy savings

of 3.05 mWh. This represents the incentive for agent 1 1 to cooperate with agent 2 1 over the

next periods (6-19).

Figures 3.7(d) and 3.7(e) illustrate the battery life. The battery status showed in Figure 3.5(d)

and the residual energy level achieved with energy transfer in Figure 3.7(e) are very similar.

Such similarity is conceived by the constraint to charge only the amount of energy harvested

even in the existing of a cooperative energy flow. The cooperative energy flow represents the

amount of work each agent compromises to its negotiation partner. Once the agents start to

cooperate, a watchdog can identify misbehaving agents and enforce the agreement reached. As
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can be seen from the graphics, the residual energy at each point in time matches the dynamics of

the charging and discharging flows and it does not exceed the maximum battery level. Rather, it

is far below the battery capacity.
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Figure 3.8: Agent 2 1: Optimal energy allocation that utilizes NBS from cooperative
game theory.

Figure 3.8 shows the utility maximisation of agent 2 1, when agents logically share energy with

each other through a cooperative energy allocation based on NBS. Figure 3.8(a) presents the

realisation of energy-neutral operation by agent 2 1 when there is energy negotiation. A margin

up to 90% load satisfied is considered. Thus, the proposed cross-network negotiation approach

can enable heterogeneous co-located nodes to cooperate and optimise their network performance

by selecting the optimal resources so that all involved participants gain from cooperation.

Unlike Figure 3.6(b), Figure 3.8(b) presents a waste of energy over the period of cooperation.

The excess is generated by the offer of energy agreed between agents, which corresponds to a

total amount of 14 mWh of energy unused. Thus, network nodes must be responsible to locally

control nodes providing cooperation favours.

Figure 3.8(c) shows the energy flow from agent 2 1 to agent 1 1. As can be seen from the

graphic, agent 2 1 receives the collaborative effort from agent 1 1 over periods 6-19, which

is equivalent to 50.19 mWh of energy. Then, the energy transfer process between networks is

fair in the way that nodes cooperate with each other when this provides benefits that justify the

cooperation.
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Figures 3.8(d) and 3.8(e) illustrate the dynamics of the battery. In contrast to Figure 3.6(d), the

battery level of the agent in Figure 3.8(e) is never depleted. Instead, there is always a reserve

available to power the node. The maximum level achieved by the battery at any time corresponds

to 16 mWh, which use remains within the bounds of the battery’s capacity.

In this section, a new interdomain energy allocation approach that is Pareto-efficient and fair

from the perspective that both agents share an amount of energy for the realisation of cooper-

ation was presented. Two major drawbacks of this solution are the need of a mediator and the

assumption of complete information. This approach was simulated with real node’s specifica-

tions and energy profiles. The experiments found that the solution based on cooperative game

theory can provide a significant improvement over the utilities of each node involved. Moreover,

the agreement guarantees that each network will benefit from the cooperation. The next chapter

presents a solution that considers the decision-making process and not only the properties of the

negotiation outcome. The cooperative approach and the heuristic model are also compared over

a series of experiments.

3.6 Summary and Discussion

The main advantage of energy-harvesting WSNs compared to traditional battery-based WSNs,

is that they have an unlimited power supply provided by their renewable energy sources with

the capability to recharge and enhance the performance of the network as a whole. However,

due to the dynamics of ambient sources such as solar light or wind that lead to low recharging

rates or uneven energy distribution, this energy provision becomes virtually insufficient. Since

even energy harvesting systems are not able to operate continuously, it is necessary to analyse

alternative power management schemes that incorporate self-organised approaches associated

with efficient operation.

Consequently, as discussed in Section 2.5, several research efforts have been made in the field

of power management to model and adapt the network behaviour to the energy variation and

achieve energy-neutral operation. But, these solutions are limited to a single domain, and co-

existence between networks have not been considered. Moreover, these algorithms typically

adjust parameters such as the duty-cycle or sampling rate. However, in addition to energy neutral

operation, certain applications require the duty cycling behaviour of a node to be as stable as

possible, meaning that it should have minimum variance over time [145, 146].

The cooperation problem among different WSNs has only been studied using a game-theoretical

framework to model the interactions between battery-powered WSNs, while EHWSNs have

been left out of this context. However, in this chapter, a novel energy allocation algorithm

(Algorithm 3.3) with linear complexity that enables self-organising capabilities to nodes in a

rechargeable WSN was proposed. This solution has been developed to maximise the total utility

of an agent and alert it of scarce energy resources. Moreover, the energy allocation scheme can

be used to start a joint strategy change by co-located nodes.
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By means of the system model to support opportunistic energy negotiation described in 3.4.1,

two agents can look for energy sharing agreements that optimise their energy allocation. The

negotiation approach is used to address individual node preferences related to their battery in-

formation, energy consumption and energy generation profile. Using the cooperative model,

an approach based on opportunistic energy negotiation where nodes from distinct networks can

cooperate to optimise their use of energy was proposed. The use of negotiation in this con-

text has two major benefits: (i) heterogeneity in terms of network resources can be solved in

a decentralised manner and (ii) nodes can devise a cooperation that provides mutual benefit by

communicating and compromising.

This chapter introduced a realistic scenario with real node’s specifications and energy profiles

that allows nodes to find an optimal solution to the cooperation problem. The presented example

probes the achievement of energy neutrality by both agents, enabling energy management across

network boundaries through an energy flow computed using NBS. As pointed out, the calcula-

tion of this solution has some implications in conflict with the characteristics and requirements

of the domain. Thus, in the following section a strategic model of negotiation that considers the

limitations of this scenario and realises intra-network power management is described.

Although the advantage of the proposed negotiation approach on opportunistic and direct coop-

eration have been identified, there are some limitations in its practical implementation. A WSN

may be formed by hundreds of nodes and concurrent negotiation processes may share the same

compromised resources. Thus, the next chapter starts by describing the establishment of OEN

and how agents identify the set of available opponents.



Chapter 4

Opportunistic Energy Negotiation: A
Heuristic Approach

According to the system model to support OEN introduced in Chapter 3, a heuristic approach

to address the negotiation problem is presented in this chapter. Since networks are formed by

multiple nodes, the first section of this chapter describes the initiation of OEN and how nodes

organise to start a negotiation process. The protocol to discover negotiating agents with the

desire to engage in cooperation is illustrated in Section 4.1. Along with this, network perfor-

mance metrics are evaluated accordingly. A negotiation framework for automated multi-issue

negotiation is presented in Section 4.2. To evaluate the effectiveness of this approach, exten-

sive simulations based on the remaining available negotiation rounds and the agent’s behaviour

are conducted (Section 4.3). Results show that the model can be suitable for practical use in

automatic energy re-allocation.

4.1 Establishing the Opportunistic Energy Negotiation

Before the agents face the challenge of selecting a negotiation partner, they need to discover the

negotiation agents in the neighbourhood, i.e. the agents that want to cooperate and establish an

OEN. This section evaluates the cost associated with the overhead of the discovery protocol in

the network’s performance.

4.1.1 Discovery of Neighbouring Devices

OEN adopts a publish-subscribe approach in which the agents conserve energy by sending a lim-

ited number of messages. Three types of messages are exchanged between agents: OEN ADV,

OEN REQUEST and OEN ACCEPT. Initially, the agents are deployed with a cross-domain
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link-layer protocol such as OI-MAC [147] and a standard routing protocol. OEN is imple-

mented between the link and network layers. In this way, it takes advantage of both layers’

functionalities. The agents can communicate directly with co-located agents using the capabili-

ties of the link layer protocol. Moreover, they are still able to inform the network layer about the

cooperative agreements reached with their counterparts. This approach is known as cross-layer

design.

In the WSN cooperation literature, the networks increase their performance by cooperative

packet forwarding. In fact, this is one of the tasks that networks can service in order to share

energy. This specific type of cooperation is used to guide the decision process of being part of

an OEN.

Once the agents are deployed, the first step in OEN for a negotiator is to broadcast through

its immediate neighbours on all available radio frequencies, the desire to start a negotiation by

sending an OEN ADV message. From that moment, the agent becomes the main agent: the

agent that will choose a negotiation partner from a set of opponents. OEN ADV includes the

list of agents in the main agent’s range (nodes from its own network and from the external net-

work domain) and a query to find the neighbours of the neighbouring agent contacted. This

information is then used by an agent to decide if a cooperative packet forwarding can be estab-

lished with the external neighbour. Figure 4.1 illustrates the discovery protocol in a sequence

diagram and the OEN header format.

At this point, there are two possible situations per neighbouring agent reached. The main agent

(call this 1 1) with another agent (call this 2 1) may have no interaction. The information pro-

vided about the nodes in range by agent 1 1 may not be ideal for agent 2 1 and it can simply

ignore the main agent’s request. Thus, agent 1 1, after waiting for a certain interval of time,

drops the communication with agent 2 1 and stays in the initial state while the number of nodes

discarded is different from the total number of its neighbours. On the other hand, agent 2 1 may

accept the main agent’s proposal. In this situation, agent 2 1 sends an OEN REQUEST using

the radio frequency that is associated with the main agent 1 1 to ask for participation in OEN.

In this message, agent 2 1 informs agent 1 1 about the agents that are in its range.

Again, there are two possible scenarios. First, agent 1 1 may ignore agent 2 1’s request. This

may happen due to two reasons: agent 1 1 is already part of an OEN with another set of agents

or agent 1 1 is now unreachable. Agent 2 1 then waits for a grace period before discarding

the proposal of agent 1 1. The second possible scenario includes a response. Agent 1 1 may

accept the agent’s request and send an OEN ACCEPT message to add agent 2 1 to the pool

of opponents. This leads agent 1 1 to a selection state if the number of agents in the set of

opponents is bigger than one, if not, the agent moves to a final state, the state of negotiation. In

the state of negotiation, both agents can directly establish a bilateral negotiation. Conversely, in

the selection state, agent 1 1 chooses a negotiation partner from the pool of agents and move to

the final state of negotiation. For the purposes of this chapter, a negotiation partner is randomly
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Agent 1_1

OEN_REQUEST

Evaluation of OEN
requests

Evaluation of OEN 
advertisement

OEN_ACCEPT

Broadcast OEN_ADV

Wait for
requests

 Agent 2_1 

OEN message{
   message_type
   main_agent_addr 
   src_addr
   dest_addr
   local_neighbours_list[]
   ext_neighbours_list[]
}

Figure 4.1: Sequence diagram of OEN establishment.

selected. However, Chapter 5 shows how appropriate action-selection policies can be introduced

to improve the partner selection phase.

4.1.2 Simulation Setup in OMNeT++

The discovery protocol was implemented using OMNeT++ [148] and the INET framework

[149]. OMNeT++ is a discrete event simulator primarily for building network simulations. The

tool includes a graphical runtime environment with event logs, a Eclipse-based IDE to code C++

modules, and well-structured documentation. Once the components of the simulation (ned def-

inition, computation of scalars, ini, anf and sca files) and the parameter studies are understood,

OMNeT++ offers a complete simulation tool to develop network protocols or any parallel and

distributed algorithm. The tool was selected for its compatibility with Linux-based systems and

its easy integration with INET, an open source library that contains the implementation of wire-

less networks standards such as IEEE 802.15.4. IEEE 802.15.4 was designed to specify the

physical layer and medium access control for low rate WSNs.

The modules and models used of INET are used to reproduce sensor nodes with the following

characteristics. The 802.15.4 MAC is based on collision avoidance via CSMA/CA with ACK
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support. The radio interface included in the simulation is Ieee802154NarrowbandInterface. The

energy storage model SimpleEpEnergyStorage simulates the residual energy capacity and initial

battery level of the node. The energy storage capacity is set to 5 J. SimpleEpEnergyManagement

allows describing the energy consumption model. The OEN discovery protocol is implemented

as a component of the sensor node between the link and network modules following the descrip-

tion given in Subsection 4.1.1.

The power consumption model used in the simulation follows the one described in Subsection

3.2.2, a transceiver energy consumer model based on the radio mode, voltage, current and time.

The transmission/reception states determine in these experiments the value of respective current

(Tx current, Idle listen current, Rx current, Rx-Tx current). PHY and MAC layers are defined

by the IEEE 802.15.4 standard, while the rest of the parameters used in the simulations are

summarised in Table 4.1.

Parameter Definition

Standard IEEE 802.15.4

Simulation time 6 s

Tx current 17.4 mA

Idle listen current 0.02 mA

Rx current 18.8 mA

Rx-Tx current 0.02 mA

Voltage 3 V

Table 4.1: Simulation parameters for node power usage in OMNeT++.

The effects of OEN’s discovery protocol are evaluated on energy consumption and latency. The

simulation setup includes 5, 10, 15, 20 and 25 overlapped sensor nodes randomly deployed in an

area of 100 m × 100 m. Each density represents the minimum number of deployed nodes in the

defined area to have a communication between one node against 2, 3, 4, 5, 6 and 7 opponents

respectively. 25 nodes in 100 m × 100 m cover one main agent against 6 or 7 opponents.

Results show the average energy consumption and subscription time of 50 simulation runs for

each density with random node deployments. The error bar denotes the standard deviation of

the samples.

4.1.3 Results on Average Energy Consumption

Figure 4.2 shows the average energy cost of transmission of an agent against 2 to 7 opponents

during the simulation period. As can be seen, the OEN discovery protocol consistently consumes

more energy when the pool of opponents is increased.

The discovery protocol, however, has an insignificant impact on energy consumption (<0.01

J), and is a result of the continuous reception required for negotiation agents discovery. Once
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Figure 4.2: Average energy spent by one agent at the end of 6 seconds plotted against
the number of opponents reached.

the agent broadcasts an advertisement message, it listens to receive the request messages of the

neighbouring networks. During this process, the agents share details to decide whether they

should associate with a possibility of cooperation, depending on the contribution each could

give to the opponent network (by exchanging only context information). This step aligns the

goals of the individual agents to find compatibility, thus ensuring that the networks can self-

organise into one-to-one sets deciding how to cooperate, through a negotiation mechanism. The

negotiation-based cooperation approach proposed in this thesis can facilitate the interaction and

collaborative management in a wide range of applications and can lead to efficient coexistence of

multiple co-located networks. For instance, the relatively minor increase in energy consumption

is likely to be outweighed by the 41% increase in energy allocation that an agent may achieve

when it reaches an agreement with a negotiation partner from a different network domain. The

value of 41% corresponds to the amount of additional energy allocated by agent 2 1 using NBS

in Subsection 3.5.4 (the agent increases its utility from 0.59 to 1).

4.1.4 Results on Average Subscription Time

The average subscription time measures the time elapsed from the broadcasting of the first

OEN ADV message to the time of the last OEN ACCEPT message received in the network

of the main agent. Figure 4.3 shows the average time spent in receiving/ transmitting mode

from a neighbourhood of agents where 2 to 7 opponents subscribe to a main agent’s cooper-

ation initiative. Accordingly, every value indicates the latency introduced to a node’s regular

operation.
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Figure 4.3: Average time spent by a neighbourhood of nodes where 3 to 8 agents form
a set of agents with a cooperation incentive.

The execution time of the discovery protocol increases as the number of participants grows,

however, the maximum increment corresponds to 60 ms even if the number of subscribed agents

is almost four times higher (from 2 to 7 agents). The error bar length increments since the

probability of collision increases in the medium where 5, 10, 15, 20 and 25 nodes share the

same area.

These results describe the overhead of the discovery protocol to the methodology for estab-

lishing direct cooperation between networks. This step gives the agents the ability to detect

devices with similar incentives to cooperate. The type of neighbour discovery is known as ac-

tive discovery (i.e.: by broadcasting advertisement messages over different radio frequencies

containing useful information about the node’s properties that should be considered to interact

with the advertiser). The result of this step is the identification of co-located devices or agents

within 1-hop (1-hop neighbourhood) reach of the advertiser that have similar interests and are

able to coordinate their tasks jointly. Such agents, however, do not know yet how their pref-

erences will influence their need for cooperation. To cooperate with each other, the networks

need to find an agreement through a negotiation process that gives them a mutual advantage but

which also the agent improves its own performance. The energy negotiation model is described

in the next section.
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4.2 Energy Negotiation Model

In this section, bilateral, multi-issue negotiations, with an emphasis on the protocol and nego-

tiation strategies are introduced. In bilateral negotiations, there are two agents with a desire

to cooperate, but with conflicting interests regarding each given incentive for doing so. When

the object in dispute is a single issue, the negotiation is referred to as single-issue negotiation.

Otherwise, it is a multi-issue negotiation. A multi-issue negotiation is more common as well

as challenging and complex in real-world domains. In such multi-issue negotiations, the agents

should be able to negotiate agreements that are mutually beneficial for both parties. In contrast

to single-issue negotiations, the complexity of the negotiation process increases as the number

of issues increments, because of complex preferences over multiple attributes and the dimen-

sionality of the solution space. For multi-issue bilateral negotiations in the domain of this work

in EHWSNs cooperation, the protocol and strategies are the dominant concern.

An agent can adopt multiple strategies to create a proposal. This section describes the protocol

and strategies used in this work following a generic framework for automated multi-issue ne-

gotiation [115]. The model is empirically evaluated in the next section to show a comparison

with the results obtained by applying NBS. Following this, extensive simulations using multi-

ple energy profiles and negotiation behaviours demonstrate how effective the mechanism is in

comparison to NBS.

4.2.1 Notation and Assumptions

In this section, the basic concepts and notations related to the cooperation problem and the

heuristic model that will be used throughout this chapter are presented. This includes the defi-

nition of networks, set of nodes, and agents of Subsection 3.2.1.

There are four fundamental parts in a negotiation model described by a heuristic approach: 1)

the negotiation protocol or rules of interaction for the negotiating agents, 2) the definition of

issues or objects in contention, 3) the utility function or agents’ preference model, and 4) the

negotiation tactics or offer generator functions that are applied during the bargaining process,

which along with the utility function comprise the decision making apparatus the participants

employ to act according to the negotiation protocol and reach their desired goals [74, 90].

As defined in 3.4.1, o = (o(1), ...,o(n)) represents the vector of issues (amounts of energy over

each time slot of expected cooperation) to be negotiated in each negotiation round r, i.e. o is

the energy flow offer. The agents in this domain only propose one offer in each round. Thus,

or
1,1→2,1 is a vector of values proposed by agent 1 1 to agent 2 1 at round r, where or

1,1→2,1(t) is

the value of energy proposed from agent 1 1 to agent 2 1 for time slot t.

The issues in this domain maintain interdependencies between each other due to the use of the

battery. For a time slot t, the energy flow (energy going out/into the agent) depends on how much



82 Chapter 4 Opportunistic Energy Negotiation: A Heuristic Approach

energy an agent harvest or how much energy had been stored/withdrawn in previous time slots.

The addition of such interdependencies increases the complexity of making a decision, even

more, if nodes employ strategies that require them to learn about the opponent’s model in order

to solve the negotiation. The negotiation context (issues, deadline and initial negotiating agent)

is known by both agents beforehand, and it remains unchanged during the whole encounter.

This work focuses on two-party, many-issue negotiations with a domain of limited resources

(time, communication and processing among them). The number of messages exchanged be-

tween nodes is important, hence this work limits the negotiation to a short-term deadline. Little

intervention by the process is required to minimise the effect of negotiation on sensor nodes’

normal operations. Thus, a predefined maximum negotiation round rmax is used to model the

deadline.

In OEN, then, the negotiation proceeds in a sequence of rounds R= {1, ...,r, ...rmax} for a limited

number of rounds rmax. In each negotiation round, an offer contains multiple issues that are

negotiated simultaneously. Specifically, in this scenario, automated negotiation can complete

in seconds, which makes time inappropriate to model the deadline. This is the main reason to

select a discrete series of rounds for the negotiation mechanism.

The cooperation is envisaged over a finite period of time (e.g. 6 hours), which is divided into

time slots of equal duration. The networks are able to pre-agree this criteria, e.g. If networks

expect to cooperate for 4 hours, then they need to negotiate over an energy flow that must include

4 energy values.

Once the agents have determined the timing information (start time, duration of each slot t,

and end time that the expected cooperation will last) over which they will negotiate energy

resources, under the assumption they have synchronised clocks, the negotiation process between

two agents 1 1 and 2 1 consists of an alternate succession of offers and counter-offers of values

for the energy flow amounts. A complete description of the negotiation protocol and strategy

employed in this thesis is given in the next section.

4.2.2 Negotiation Protocol

The protocol for the negotiation of energy is based on Rubinstein’s alternating-offers protocol

[73]. Such protocol is commonly adopted in a broad range of domains as part of their nego-

tiation mechanism [150–152]. In this case, the protocol is used for bargaining between two

neighbouring rechargeable nodes.

In a bilateral negotiation, both agents are willing to cooperate but have conflicting interests

regarding their preferences (in this domain due to distinct batteries, power consumption and

energy harvesting profiles). Then, agents have to negotiate and determine the most beneficial

setup before cooperation. They need to agree on an energy flow that maximises their utilities.
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The order of who begins the negotiation process is randomly selected during the pre-agreement

phase. Usually, the buyer in other bargaining contexts is the one that starts the negotiation.

However, since here the roles of the agents are the same, such order definition is proper of the

domain. Then, the agent who was selected is the first to make a proposal. The agents can take

actions only at certain times in the set of rounds R = {1,2,3, ...,rmax}. The agents involved have

one turn per round r to respond to the current state of the negotiation. The following are the

possible actions that an agent can perform:

• offer[o]. This action is executed from the start of the negotiation and whenever an agent

rejects and offers counter proposals. An offer o = (o(1), ...,o(n)) is an offer of en-

ergy for each slot of time t. Its dimension depends on the expected cooperation time

and length L of each time slot. An offer is valid if it respects the conventions agreed

by the agents during the pre-agreement phase about time. If the expected cooperation

time agreed by both agents is 3 hours starting at 06:00, and they set 15 minutes long

for each time slot (L = 15min), then a valid energy offer would have 12 issues, o =

(o(1),o(2),o(3),o(4),o(5),o(6),o(7),o(8),o(9),o(10),o(11),o(12)). where each issue

corresponds to an amount of energy. For example, with the following o = (5,2.4,6,8,9,

10,−4,5,6.7,−10,−5,−5) an agent is offering to contribute with 5 mWh at 06:00 while

it expects to save 4 mWh at 12:00 from collaborative effort.

• accept[o]. When an agent i j receives an offer o, it is able to accept the offer and reach a

provisional agreement with the other party.

• reject[o]. When an agent i j receives an offer o, it is able to reject it and opt out of the

negotiation without any agreement.

• confirm[o]. When an agent i j accepts an offer o, to confirm the provisional agreement,

its opponent sends him a confirmation message which in turn must receive a confirm-

acceptance reply to reach a final agreement. Otherwise, the negotiation fails and ends

without a deal.

Figure 4.4 shows the alternating offers-based protocol for energy negotiation. One of the ne-

gotiating agents i j starts the negotiation with an offer o to its opponent. Whenever an offer o

is made, the opponent can accept it or reject it. If the offer o is accepted, then the bargaining

ends and a final agreement is reached once the provisional offer is confirmed by the parties. If

the offer is rejected, the agent with the turn can opt out of the negotiation and finish it without

agreement, or it can propose a counter-offer, which again the opponent may accept or reject in

the next round. The negotiation continues until a final negotiation round rmax. When one nego-

tiating agent reaches a final round without a favourable response, or an agent rejects and opts

out of the negotiation, or an agreement is found, the negotiation ends. In the first two cases, the

negotiation fails and terminates with no deal possible.
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[reply=accept]

[reply=reject]
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Figure 4.4: Sequence diagram of the negotiation process.

4.2.3 Negotiation Strategy in Opportunistic Energy Cooperation

As described in Section 2.4, negotiation heuristics are useful for the design of agents and the

incorporation of a reasoning model. The reasoning model is based on computational approxi-

mations that produce outcomes close to Pareto-efficient solutions. A series of heuristics based

on a single criterion such as time, resources and behaviour were defined by Faratin et al. [90].

Such heuristic functions, called tactics, can be combined to define a formal model of reasoning

for negotiation strategy selection.

The main advantage of using heuristics in this domain is to model encounters between multi-

domain nodes that are discovered opportunistically and have no information about the resources

and preferences of each other. The heuristic functions allow delimitation of the search space

of the solution and reduce required computation. Such heuristics, especially time-dependent

concession strategies have been broadly used in several areas such as Grid environments and

Cloud Computing [153–156]. The following components are part of the negotiation strategy

evaluated in this domain.
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4.2.3.1 The Conceding Strategy

Agents adopt time-dependent strategies [90] to determine the amount of concession required for

each offer. The tactic indicates how rapidly the agent is likely to concede during the negotiation

time. In the first round, the agents propose deals that give the highest utility to themselves.

Afterwards, different agents may have different attitudes towards deadlines.

Rounds conduct the values of the negotiation issues, and the more rounds has passed the more

pressure is induced and faster concessions are possible. The agent can adopt two behaviours:

it may be impatient to reach a deal, so it concedes quickly and the offer rapidly changes to

the reservation value (Conceder agent), or it may adopt a tougher strategy and maintain its

initial proposal until it almost approaches the deadline (Boulware agent). Let ur
i, j denote the

minimum utility value acceptable for agent i j at round r. In the experiments, the following

time-dependent function is employed as the concession strategy to model the target utility value

(the amount of energy allocation desired for the period T ) of an agent i j at each round r of the

negotiation:

ur
i, j = mini, j +(1−α

r)× (
n

∑
t=1

Ec
i, j(t)−mini, j) (4.1)

where mini, j denotes the reserved value of agent i j over T i.e., the minimal amount of energy

an agent i j can allocate for its consumption when o is null, found by Algorithm 1 in Section

3.3. The sum ∑
n
t=1 Ec

i, j(t) is the maximum amount of energy an agent can allocate to power its

load over T .

Then, the target utility at each round is within the range [mini, j, ∑
n
t=1 Ec

i, j(t)]. A wide range

of time dependent functions can be defined simply by varying the way in which α function is

computed. In the experiments, αr function is parameterised by the concession rate β , round of

negotiation r and deadline rmax as follows:

α
r =





(
1−r

1−rmax

)β

, if β <1
(

1−r
1−rmax

) 1
2−β

, if 1 ≤ β <2.
(4.2)

The concession will depend on the strategy, which can be defined simply by varying the value

of the parameter β in αr. Following this function, the shape of the concession curve represents

a human’s negotiation behaviour. If β <1, agent i j adopts a Conceder behaviour; if 1 <β <2,

the agent uses a Boulware tactic. Therefore, the function αr as defined above is used to compute

a target utility according to the round of negotiation and agent’s behaviour. This information is

then used to find the corresponding offer’s values at each instant of time. The tactic is used to

limit the search space of the solution and control the concession characteristic.
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Along with the application of time-dependent tactics, the generation of the counter-offers con-

siders the opponent’s behaviour and compute the next offer based on the previous offer of the

opponent. The offer generation strategy is modelled in subsequent Subsections.

The examinations are limited to these negotiation tactics, while the design of learning-based

negotiation strategies would be more convenient in a dynamic environment of WSNs. However,

this type of techniques is more feasible to implement in the presence of a robust and reliable

intermediate entity. In the context of tactics, more complex behavioural tactics may be more

appropriate, but they are less successful with short-term deadlines [90] and demand powerful

devices to deal with the complexity of the negotiations [157]. In the proposing strategy below,

the type of imitation tactic an agent can handle in this domain is described.

4.2.3.2 The Responding Strategy

Given an agent’s utility value at round r, an agent can define its response for an opponent’s offer

in a way that there is no reduction in the amount of energy allocation the agent is expected to

negotiate during its turn. Thus, if agent 1 1 receives an offer or
2,1→1,1 from agent 2 1 at round

r < r′, the interpretation of agent 1 1 defined as H at round r′ for the opponent’s offer is given

by:

Hr′
1,1(o

r
2,1→1,1) =





accept, if ur
1,1(o

r
2,1→1,1)≥ ur′

1,1(o
r′
1,1→2,1)

re ject, otherwise.
(4.3)

Therefore, the agent 1 1 accepts the current offer made by agent 2 1 if the utility of this proposal

is higher or equal to the amount of the utility that agent 1 1 will concede to in the next round.

If the offer is rejected, the agent in turn proposes a new agreement, which again the opponent

may accept or reject in the next round. The negotiation will continue until an offer is accepted,

a final negotiation round is reached, or the process is terminated by any of the participants

(ending it with no deal possible). The strategy to generate offers in this domain of multiple

issues is described next.

4.2.3.3 The Proposing Strategy

The agents’ strategy for generating offers is implemented using the orthogonal strategy [113].

The reason to employ this strategy is its approximation of a Pareto-optimal bargaining solution

over a multi-issue negotiation problem. Moreover, this offer projection strategy has a formal

proof of convergence. Therefore, the heuristic guarantees the achievement of a final agreement

in general automated multi-attribute negotiation, where the agents have no information about

the utility function of their opponents and nonlinear utility spaces may be possible [107, 117].
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The main idea behind the orthogonal strategy is to always select the point which is the closest

(measured in the Euclidean distance) to its opponent’s last offer on its indifference curve (i.e.,

the points that give the same utility for the agent). Let or−1
2,1→1,1 be the last offer from agent 2 1

to agent 1 1 at round r− 1. If agent 1 1 needs to generate a counter proposal that lies on the

indifference curve C according to its target utility ur
1,1 (obtained in Equation 4.1), then agent

1 1’s offer at round r with the shortest distance to or−1
2,1→1,1 can be calculated by

or
1,1→2,1 = argmin

o∈C
‖o−or−1

2,1→1,1‖ (4.4)

where ‖.‖ denotes Euclidean distance. A nonlinear bound-constrained optimisation solver (fmin-

con) is used to return the offer at which the distance is minimized subject to the constraints

described in Subsection 3.4.1.

A similar strategy is proposed in [112, 115]. The shortest-distance proposing mechanism is

also classified under the category of alternating projection strategies. This is a feasible offer

generation procedure to solve multi-issue negotiations with incomplete information. Similar to

the orthogonal strategy of [113], the agent’s offer at round r with the shortest distance to or−1
2,1→1,1

can be calculated using equation 4.4. However, in this case, or−1
2,1→1,1 represents the best offer

for agent 1 1 among all the offers proposed by agent 2 1 in the past rounds, i.e. the offer made

in previous rounds by agent 2 1 that yields the highest utility to agent 1 1. This strategy is also

evaluated in the OEN framework.

In summary, the negotiation mechanism presented in this section allows an agent to represent its

preferences and determine the desired utility level to generate a counter-offer accordingly. An

agent makes use of the described negotiation model in order to fulfil the network objective of

efficient energy allocation in a cooperative manner.

The outcome of the heuristic approach and the different behaviours an agent can adopt is com-

pared with NBS. With NBS, agents declare to a trusted mediator their reservation utilities and

utility functions to compute their agreement. The next section presents the experimental vali-

dation of the heuristic negotiation model by selecting some scenarios to show the agents’ per-

formance with multiple behaviours (Subsection 4.3.1). Further experiments are carried out to

validate an observation in the results (Subsection 4.3.2). Finally, the comparison between OEN,

the shortest-distance proposing mechanism and NBS performance is also analysed with exten-

sive simulations (Subsection 4.3.3).

4.3 Experimental Validation

The first experiments in Subsection 4.3.1 are based on the node information and energy profiles

described in Section 3.5. According to these results, a hypotheses is described and validated in
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Subsection 4.3.2 with a larger dataset. Following this, extensive simulations are used to compare

the performance of OEN with NBS (Subsection 4.3.3) and a similar proposing strategy.

As described earlier, the co-located nodes expect an insufficient energy level to trigger the need

for OEN. This threshold anticipates an insufficient amount of energy in the battery and the

absence or scarcity of energy harvested during the same period. However, the intermittent supply

and different energy consumption profiles of nodes include periods where nodes can supply

energy to each other. Thus, agents can share their harvested energy at some points in return for

energy at other points in time. To clarify, if there is no feasible space of agreement, there is

no cooperation. Given this set of possible cooperation deals, there are two agents, 1 1 and 2 1

trying to reach an agreement about the amounts of energy that can be logically shared.

Agents use the alternating-offers protocol and linear utility function described in Subsection

4.2.3.1 to compute the target value of energy allocation they want to achieve at each round of

the negotiation. This target utility is used to find an offer o accordingly using the orthogonal

search method described in Subsection 4.2.3.3 along with the constraints of Subsection 3.4.1.

4.3.1 Cooperative Scenarios

The first evaluation is used to compare the results obtained with NBS and reserved utilities from

Chapter 3. This is tested to show the parameter model and their dynamics.

In this setup, the agents contemplate a period of cooperation that will last 24-time slots, each

slot with a duration of 1 hour. At the beginning of the negotiation, the agents make offers that

give the highest utility to themselves. For the analysis, a negotiation deadline of 10 rounds is

set (rmax = 10). In the negotiation, an agent may adopt different negotiation behaviours with

respect to different negotiation opponents: for the tough behaviour, β value is tested in 1.4, and

the conceding negotiator is simulated with a β value of 0.05. The utilities for both agents are

then computed for the next cases:

• Case 1: Both agents employ a Conceder tactic (β = 0.05 for agent 1 1 and agent 2 1).

• Case 2: Both agents employ a Boulware tactic (β = 1.4 for agent 1 1 and agent 2 1).

• Case 3: Agent 1 1 is tough (β = 1.4) while agent 2 1 concedes rapidly at the beginning of

the negotiation (β = 0.05).

• Case 4: Agent 1 1 concedes rapidly at the beginning of the negotiation (β = 0.05) while

agent 2 1 is tough (β = 1.4).

Figures 4.5 and 4.6 show the comparison of the utilities that the agents get without negotia-

tion, by NBS and by the alternating-offers protocol and strategies described for energy sharing

(OEN). For every case listed above (Case 1 - Case 4), agent 1 1 initiates with the first offer.
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Figure 4.5: Agent 1 1: Results of utility maximisation without OEN, with NBS and
with OEN.

Only two figures are shown for all the cases considered. This is due to the fact that no matter

how low or high the concession shape β is varied (0.05 or 1.4), and which agent adopts any

behaviour, the negotiation process ends with the same results when agent 1 1 offers the energy

flow that maximises its utility and it starts the negotiation process. This scenario is an example

of the cases where the energy availability between agents matches each other’s need.

In this case, agent 1 1 has a distribution of energy that satisfies agent 2 1’s need and 2 1 is also

able to assist agent 1 1 in its lack of energy during periods 1-5. As a result, the utilisation of

energy is maximised from 52.2 mWh (harvested energy used by agents 1 1 and 2 1 without co-

operation) to 83.4 mWh by OEN while maintaining the application performance of both agents

at the same rate at all times, i.e. their duty cycle is not affected. Then, the total energy saved via

cooperation can be up to 7% for one day of the energy generated. The energy saved corresponds
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to the energy reallocated with OEN which would otherwise go to waste without negotiation.

The reduction of energy waste is illustrated in Figures 4.5(b) Without OEN and Figure 4.6(b)

with OEN.

Similarly to the results obtained by NBS in Chapter 3, the offer given by agent 1 1 to agent

2 1 in the first round of OEN assigns the maximum utility to both agents. Figures 4.5(a) and

4.6(a) illustrate the achievement of energy-neutrality for both nodes. This means that the nodes

enable continuous operation when they decide to cooperate with each other. In this scenario,

negotiation is successful because the interests of the nodes discovered opportunistically are not

completely opposed. By cooperating, both of them optimise their power management through

the extension of their networks’ boundaries.

The efficiency and capacity values of the battery for agents 1 1 and 2 1 have no effect on the

results. A fixed value is set for both during all the experiments in this section (70% and 708

mWh respectively). This assumption is reasonable according to the opportunistic cases dealt

with in this thesis. The scenarios where nodes opportunistically enable the negotiation process

to fulfil their energy allocation scheme are based on insufficient energy supply. Such a state can

be either caused by low battery efficiency, ambient conditions, affected solar panel and wind

turbines, or any obstacles in the environment. Besides, even if the battery efficiency of both

nodes is modified in this scenario and set it to the maximum of 100%, the energy allocation

of agent 1 1 remains the same while agent 2 1 slowly increases it from 40.56 mWh to 41.43

mWh without satisfying the full load of 68.64 mWh. Basically, the differences between ambient

energy sources and heterogeneous energy profiles are the incentives of potential cooperation.

Figures 4.5(c), 4.5(d), 4.6(c) and 4.6(d) show the state of the battery during the day for each

agent, where the battery level matches the dynamics of the charging and discharging flows and

none exceeds the maximum battery capacity. The difference in the battery dynamic between

NBS and the implementation of OEN depends on the negotiation’s final outcome, i.e. the offer.

The agreement represents the 24 energy values (in mWh) agreed for a day of cooperation and it

is the energy flow from agent 1 1 to agent 2 1. The offer made using both solutions is shown in

Figure 4.7.

The analysed results correspond to the negotiation outcome achieved by OEN when agent 1 1

starts the negotiation. The results vary if agent 2 1 initiates OEN. In this scenario, agent 2 1

starts the negotiation at round 1, the offer is then rejected by agent 1 1 who computes a new

agreement to satisfy its target utility u2
1,1 with the closest offer to the last offer made by agent 1 1.

Such agreement is computed with the strategy described in Subsection 4.2.3.3. The negotiation

ends at round 2, when agent 2 1 accepts the deal.

Table 4.2 shows the utility values of energy allocated over energy required, achieved when

agents 1 1 and 2 1 reach an agreement on cooperative energy allocation. As noted, the order

of alternating offers is important in this domain. Thus, the initiator of the negotiation must be

defined randomly by the agents during the pre-negotiation phase.
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Figure 4.6: Agent 2 1: Results of utility maximisation without OEN, with NBS and
with OEN.

Case u2
1,1 u2

2,1

1 0.81 1

2 0.99 1

3 0.99 1

4 0.81 1

Table 4.2: Agent’s utilities when agent 2 1 starts OEN.

Social welfare (u1,1+u2,1) is maximised whenever agent 1 1 adopts a tough behaviour. Without

knowing agent 2 1’s strategy, the best strategy of agent 1 1 is to concede less rapidly since it

has a significant amount of energy to negotiate. Figures 4.8 and 4.9 show the utilities that both

agents reach in case 3.
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Figure 4.7: Offer made during OEN and offer found with NBS.

Both figures show the energy flow agreement reached with OEN and the effect on the model’s

parameters. The battery status matches the depletion and charge of the battery for the period

analysed. As can be seen from the figures, the energy flow offer made by agent 1 1 exceeds

the total load of agent 2 1, which lead to a waste of energy. This means that agent 2 1 will

have to control the cooperative tasks, e.g. if they cooperate by relaying packets for each other,

agent 2 1 will limit its traffic to agent 2 1’s network and ask only for its packet forwarding

capacity. To overcome this and minimise the wasted energy, nearest agents can benefit based on

the percentage of remaining excess and decide how cooperation proceeds.

Now, to measure the performance of the heuristic solution when both agents have the same

power consumption to satisfy, a slight change is made to match the load of agent 1 1 to agent

2 1 (both agents have a power consumption of 2.86 mW). The same energy harvesting profiles

are used. This is evaluated by varying the negotiation behaviour of the agents. The concession

shape β is set to 0.05 (Conceding agent) and 1.4 for tough behaviour. The deadline set for this

negotiation is 10 rounds of alternating offers. The results for the same cases listed above (Case

1 to 4) are shown in Table 4.3 as the agent that starts the negotiation, who finishes it, behaviours,

utilities and final round.

In these situations, the maximum achievable performance (energy neutrality) is only accom-

plished when the opponent is benevolent (Simulation 1 and 5) and agent 1 1 starts the negotia-

tion process. In those cases, the behaviour of agent 1 1 is independent of the result, as long as

agent 2 1 concedes, otherwise, the result is as simulations 3,4,7 or 8. Thus, in any case (Case

2 and 4) where agent 2 1 adopts a tough behaviour, it receives the lowest utilities. With such

results, it can be seen that agents receive less utility when they remain reluctant to change its
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Figure 4.8: Agent 1 1: Results of utility maximisation when agent 2 1 starts OEN.
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Figure 4.9: Agent 2 1: Results of utility maximisation when agent 2 1 starts OEN.
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Simulation First turn Final turn Case u1,1 u2,1 Final round
1 1 1 2 1 1 1 0.92 1
2 2 1 2 1 1 0.81 0.94 2
3 1 1 1 1 2 0.91 0.73 8
4 2 1 1 1 2 0.92 0.66 9
5 1 1 2 1 3 1 0.92 1
6 2 1 1 1 3 0.92 0.61 5
7 1 1 1 1 4 0.91 0.73 8
8 2 1 1 1 4 0.92 0.66 9

Table 4.3: Comparison between different negotiation cases: Conceder vs Conceder,
Boulware vs Boulware, Boulware vs Conceder, Conceder vs Boulware.

proposal and have less to offer (agent 1 1 has higher energy peaks than agent 2 1). The hypoth-

esis is then, that agents should achieve better agreements when they adopt a Conceder behaviour

and mimic the opponent’s behaviour. The next section validates the hypothesis using a larger

dataset for the experiments.

The required number of rounds is low (less than 10) in every simulation. The highest energy

utilisation is given whenever agent 2 1 concedes faster at the beginning of the negotiation and

agent 1 1 has the first turn. Since most of the parameters are the same for both agents (except

the energy harvested), the available energy is a decisive factor in the establishment of cooper-

ation. When sensors are energy-aware, spontaneous cooperation cannot take place and thus,

negotiation is required to stimulate cooperation among directly interconnected nodes.

The presented results provide some insight on cooperation initiated by OEN. More simulations

have to be conducted to benchmark the heuristic approach. The following subsection validates

the hypothesis of cooperative behaviour. Next, a comparison with NBS tests a greater diversity

of cooperative scenarios and the utilities reached by both solutions (NBS and OEN).

4.3.2 Hypothesis and Results

Based on the analysis of the initial results, the following observation is presented for evaluation:

Hypothesis 1. The best behaviour is to adopt a Conceder strategy when agents negotiate and

have less to offer. While it is best to adopt a Boulware strategy when agents negotiate and have

major peaks in their energy availability.

In order to run the experiments to validate the hypothesis, weather data of 2017 from Weather

Underground about wind speed (v) and solar radiation (Gb) from PVGIS is selected for an av-

erage day of April, November and December to meet the requirement of diversity in energy

generation. The corresponding measurements for solar irradiance and wind speed are shown in

Figure 4.10.
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Figure 4.10: Solar irradiance and wind speed used to compute energy harvesting val-
ues.

This hypothesis is validated through 1000 simulations with 1000 records of 24-time slots each

to negotiate at each run. Thus, the agents negotiate 24 energy issues for a day of cooperation

at every encounter. For each simulation, the initiator is selected randomly. The deadline for

every negotiation is set to 10 rounds. Each agent simulates an energy source type: Agent 1 1

is a node with a load of 5% duty cycle (3.0143 mWh) and a solar panel, while its opponent

agent 2 1 has a wind turbine and consumes the same load. Thus, the energy availability is

determined by the energy harvested by each. As can be seen from the figure, agent 1 1 has a

higher amount of ambient energy. The parameters to compute each energy harvesting profile are

described in Table 4.4. At each simulation, a weather dataset (Gb and v) is randomly selected

from April, November and December to compute an energy harvesting profile using values

drawn from Table 4.4. The maximum battery capacity and efficiency are set as 708 mWh and

0.7, respectively for both agents.

Agent 1 1 Agent 2 1

Parameter Value Parameter Value

Solar panel dimension (A) ∼U(4,25) cm2 Swept area (A) 25 cm2

Solar panel efficiency ( f ) ∼U(0.6,1) Wind turbine efficiency ( f ) ∼U(0.6,1)

Perturbation (p) ∼U(0.8,1) Perturbation (p) ∼U(0.8,1)

Ehrv
1,1 = Gb×A× f ×1000× p [mW] Ehrv

2,1 = 0.5×ρ×A× v3× f ×1000× p [mW]
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Table 4.4: Parameters to generate multiple energy harvesting profiles using irradiance
(Gb) and wind speed (v) from April, November and December.

Table 4.5 shows the average utility of the deals reached when agents act with the following

negotiation behaviours:

• Case 1: Both agents employ a Conceder tactic (β = 0.05 for agent 1 1 and agent 2 1).

• Case 2: Both agents employ a Boulware tactic (β = 1.4 for agent 1 1 and agent 2 1).

• Case 3: Agent 1 1 is tough (β = 1.4) while agent 2 1 concedes rapidly at the beginning of

the negotiation (β = 0.05).

• Case 4: Agent 1 1 concedes rapidly at the beginning of the negotiation (β = 0.05) while

agent 2 1 is tough (β = 1.4).

Case u1,1 u2,1

1 0.82 (± 0.09) 0.36 (± 0.16)

2 0.74 (± 0.06) 0.33 (± 0.14)

3 0.8 (± 0.11) 0.32 (± 0.18)

4 0.74 (± 0.05) 0.35 (± 0.15)

Table 4.5: Average agent’s utilities when agent 1 1 has higher peaks of energy than
agent 2 1 and both adopt multiple behaviours. Standard deviations are indicated in
parenthesis.

Although on average, the agent utilities show similarities, Case 1 is the most successful scenario

for both agents. The similarity is due to the fact that both negotiators employ the orthogonal

strategy, which mimics the behaviour of the opponent at every counteroffer. The difference,

however, is observed in the percentage of agreements made at every case. Figure 4.11 illustrates

the percentage of agreements achieved at every scenario.

From the figure, it is clear that the choice to apply conciliatory tactics seems to have a significant

influence on the agents’ resolution of conflicts. Conversely, the adoption of tough behaviour by

both parties makes significantly fewer deals than Case 1. In fact, this approach leads to lower

commitments than all the other cases. Having this performance measure, the final utility value

achieved by the agents for every case is detailed in Figure 4.12.

For agent 1 1, which has more major peaks of energy availability than agent 2 1 the best strategy

is to adopt a Conceder behaviour even if its preferences aim to a lower cooperation effort from

the opponent. The second-best scenario for agent 1 1 is to be tough against a Conceder. Boul-

wares get high individual utilities when they manage to make deals. The average gain is up to

14.5% when agents do not give ground easily during negotiation against a Conceder negotiator.
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Figure 4.11: Percentage of agreements reached at every case: Conceder vs Conceder,
Boulware vs Boulware, Boulware vs Conceder, Conceder vs Boulware.
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Figure 4.12: Final utility value for varying negotiation behaviours.

Thus, the results invalidate the hypothesis. According to the negotiations using real weather

data, the adoption of a Conceder tactic can improve the allocation of energy for agents when

they decide to cooperate regardless of the energy availability.

4.3.3 Performance Evaluation of OEN

In order to obtain the following results and compare OEN to NBS, a feasible space of energy

flow agreements must exist between the agents. From this set of agreements, OEN and NBS

find an energy flow agreement to satisfy the preferences of each part. Then, the optimality of

the agents implementing OEN is evaluated with the average distance to NBS agreement.

Thus, the same datasets from Weather Underground and PVGIS about solar radiation and wind

speed for an average day of April, November and December employed in 4.3.2 are used here
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to meet the requirement of feasible intersection points. The energy harvesting profiles for each

agent are computed using the parameters from Table 4.4.

The performance evaluation of OEN is conducted over 1000 negotiations with agents under real-

istic load conditions, which duty cycles vary between 1% to 5%. Using the power consumption

model described in Subsection 3.2.2 with the following parameters for agent 1 1 and agent 2 1:

Parameter Value

Active current 20 mA

Sleep current 5 µA

Voltage 3 V

Duty cycle 1% - 5%

Battery capacity 600 mAh

Battery efficiency 0.7

Slot length 1 hr

Table 4.6: Agent’s parameter values for power usage and battery storage model.

The energy consumption of each agent varies between 0.6149 mWh to 3.0143 mWh. For the

OEN approach, the agent that starts the negotiation is randomly assigned between agent 1 1

and agent 2 1 at each simulation run. Each negotiation involves 24 issues in contention. The

behaviour of the agents is selected randomly by choosing the concession rate β between 0.05

and 1.4. The maximum number of rounds for each negotiation is set to 10.

The efficiency of OEN is also compared with the shortest-distance proposing mechanism de-

scribed in Subsection 4.2.3.3. Thus, the main goal of the simulations is to compare the perfor-

mance of the agents in the following situations: without cooperation, with near-optimal energy

allocation after negotiation using the OEN heuristic approach, results with the shortest-distance

proposing mechanism, and finally when the agreement is computed using NBS. The error bars

denote the standard error to the mean.

Figure 4.13 shows the average utilities achieved by the agents during 1000 simulations and the

percentage of deals made by each negotiation mechanism.

As depicted in the figure, OEN with the orthogonal strategy performs much better than the

shortest-strategy: OEN achieves 20% average increase in conflict resolution (% Deals made).

From these results, the maximum utilities that each agent 1 1 and 2 1 can make are computed

using NBS. These utilities are 0.87 and 0.5217 for each agent respectively, while OEN and

shortest-distance exhibit 77% on average of the utilities reached by NBS (0.77 and 0.34 for

agents 1 1 and 2 1 respectively). The centralised approach also increases the number of agree-

ments, by reaching a 100% of deals made.

Considering the efficiency of OEN in the percentage of deals made, the agents can increase their

utility on average up to 14.12%. While shortest-distance optimises up to 10% on average the

utility of the agents that applied this solution.
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Figure 4.13: Comparison of agents’ utilities without cooperation, implementing OEN,
using the shortest-distance proposing mechanism and NBS.

Although the performance of the orthogonal strategy in OEN and the achieved with shortest-

distance are very similar, the implementation of the last strategy demands the storage of all

previous offers and identification of the best offer among this group of deals. The identification

may include sorting or computation of the maximum utility associated with each offer stored in

the agent’s memory. Thus, the simplicity and efficiency of OEN using the orthogonal strategy

are promising and its design makes it more feasible to implement cross-network cooperation in

the domain of WSNs than NBS or shortest-distance.

In terms of energy neutrality conditions, OEN does not enforce the achievement of energy neu-

trality agreements by the agent. Instead, it relaxes this requirement to measure the utility of an

agent given the power management strategy of OEN and study the potential of cross-boundary

energy transfer. In order to accomplish this condition, the cooperative model of energy alloca-

tion described in 3.4.1 should include the following constraint:

Bi, j(t)≥ Ec
i, j(t) (4.5)

The constraint (4.5) enforces that the residual battery level Bi, j(t) at the beginning of each t

must be bigger than the energy consumption Ec
i, j(t) of the agent i j at time slot t. With this, the

negotiation strategy of an agent will remain in a high aspiration level every time an offer is made

on a round. As proved earlier, a tough behaviour may result in less energy allocation agreements.



100 Chapter 4 Opportunistic Energy Negotiation: A Heuristic Approach

Thus, the proposed model with the conceding strategy without considering the constraint 4.5 is

evaluated to measure the number of energy neutrality agreements reached by the solutions.

Figure 4.14 illustrates the percentage of energy neutrality agreements achieved by an agent

during the simulations run in this section. As observed, although energy neutrality is not con-

ditioned in the offers proposed in OEN, the mechanism is capable to reach this most desirable

outcome. The percentage of energy neutrality deals are 20%, 19% and 34% for OEN, shortest-

distance and NBS respectively. This metric is used to show that nodes are capable of satisfying

continuous operation during a day using OEN.
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Figure 4.14: Comparison of energy neutrality agreements without cooperation, imple-
menting OEN, using the shortest-distance proposing mechanism and NBS.

As indicated above, OEN manages to improve the utilities of an agent by up to 14% compared

to its energy allocation when it does not share energy. This performance can be increased by ex-

ploiting co-located nodes that allow better energy allocation agreements to the agent. Therefore,

an agent should be able to anticipate the best potential partner with which to start the negotiation

process at every opportunistic encounter. Instead of choosing randomly an opponent between

the co-located nodes, an agent should implement a better decision making policy for the selec-

tion of the most suitable opponent.

The next chapter presents a solution that considers relevant policies when the partner selection

is modelled as a bandit problem. The performance of partner selection using different bandit

policies against the best-fixed selection strategy and random selection strategy are compared

over a series of experiments and scenarios.
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4.4 Summary and Discussion

At the beginning of this chapter, the establishment of OEN was described. The results demon-

strated the increment of energy cost and average subscription time when an agent initiates OEN

with 2 to 7 opponents. Even with 7 agents reached to start an opportunistic energy negotiation,

the measures of these attributes are minimum (<0.01 J and <0.1 s).

Optimising multiple co-located networks, each with a variable number of energy preferences,

is a complex problem that has received little attention in the WSN research community. Using

existing negotiation frameworks, this thesis proposes a heuristic model to solve the cooperation

problem, with the goal being to optimise the use of harvested energy by the agents and enable

cross-network power management.

The negotiation protocol and tactics are described in this chapter, followed by an analysis of the

first results, which are also contrasted with the ones obtained with NBS. Then, a hypothesis is

formulated to express the intuition from these results. The goal of the analysis is to compare

the utility of agents in cases where they adopt two strategies: Conceder and Boulware, and

the importance of energy availability in their behaviour. The results of the analysis show that

the adoption of a Conceder strategy for generating offers achieves the deals with the highest

utility regardless of the energy availability. Finally, the efficiency of OEN in comparison with

shortest-distance and NBS is also presented.

According to the results, from the listed requirements in Section 1.3, the negotiation-based co-

operation approach proposed in this chapter includes the development of a decentralised, short-

term deadline multi-issue negotiation model under incomplete information. The orthogonal

strategy guarantees conversion and near-optimal energy allocation solutions. Specifically, an

agent can reach on average 77% of the utility achieved by NBS. The percentage of deals, how-

ever, reached by OEN is of 70% in contrast to 100% of NBS, and 50% of shortest-distance.

Once considered this metric, the improvement of an agent’s utility can be up to 14.12% for a

day of cooperation with a co-located agent.

This difference is low. Thus, agents need to estimate the negotiation outcome or best negotiation

partner to start an OEN. With these estimations, an agent is able to decide if negotiation is

convenient. Then, the requirement of adaptability from Section 1.3 can be covered to provide a

negotiation approach that addresses the unpredicted environment where the agents of WSNs are

deployed. Using a reinforcement learning technique, the next chapter describes the policies that

can be useful in the context of partner selection.





Chapter 5

Partner Selection: A Multi-Armed
Bandit Based Approach

Previous results were found assuming an agent selects randomly an opponent from a co-located

network. However, this process can be improved. Consulting every opponent found during

the discovery of neighbouring devices about their offers for cooperation is also not efficient

in this domain. This results in a waste of resources, as the exchange of proposals might be

performed unnecessarily when considered the high heterogeneity of nodes in terms of energy

profiles. The dynamism of the environment where: new agents may join a network, others

may leave, the environment may change, is also a factor to consider in such an open domain

as WSNs. Furthermore, the constant exchange of information between multiple agents leads to

communication overhead. Thus, the selection of the opponent with the highest possibility for

reaching a good agreement is very important in this context. To cope with such dynamism the

agents must be able to adapt their behaviour according to the changing circumstances. Given

this, this work relies on reinforcement learning, and more specifically on Multi-Armed Bandits,

to allow networks to learn their best partner in multi-agent negotiation. Section 5.1 describes

the partner selection problem in negotiation for efficient long-term energy allocation. Section

5.2 addresses the problem formally using bandits. Then, Section 5.3 introduces the proposed

learning policies and their practical implementation for the partner selection problem in WSNs.

Finally, Section 5.4 provides the experimental setup and empirical evaluation of the developed

model using MAB learning.

5.1 Partner Selection Problem for Long-term Energy Allocation

Suppose a neighbourhood of agent i j is defined as Ωi, j, such that Ωi, j ⊆ Ii, and that the agent

i j knows about all other agents in its 1-hop neighbourhood. Thus, a neighbourhood is a subset

of agents in Ni that control sensors with overlapping radio range. A link or edge between two

103
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agents (i u, l v) represented by ei(i u, l v), can communicate offers and traffic directly from

agent i u to an agent in a different network l v, where 1≤ i, l ≤ m and u ∈ Ii,v ∈ Il .

Each agent i j can maintain a map of energy conditions across its neighbourhood Ωi, j employing

broadcast messages used by the routing protocol. Consensus via local communication with their

neighbours is only required when more than one agent discover a lack of energy at the same

time in the same neighbourhood. If that is the case, agents must decide the order in which

negotiations take place. In that regard, the following assumptions about the neighbourhoods,

the pre-negotiation communication phase and the transmission properties are made:

(a) Neighbourhoods do not necessarily have the same number of members, and each agent

i j belongs to only one neighbourhood Ωi, j.

(b) OEN is proactive: each agent i j periodically broadcasts HELLO messages that contain

its energy status and the list of its current neighbours along with their status. In this way,

each agent i j can maintain a map of energy conditions across its neighbourhood Ωi, j. To

eliminate OEN overhead, HELLO information is introduced onto the broadcast updates

required by the used routing protocol.

(c) If multiple agents discover a lack of energy at the same time in the same neighbourhood,

this work assumes that agents are assigned a priority level and rotate with time, but how

such assignment will be performed is out of the scope of this work.

(d) No packet loss occurs during cross-network communication, which is relevant for the

delivery performance of offers during the negotiation process. This is a valid assumption

since no loss is observed under the introduction of ODI architectures [147].

(e) The cost of negotiation is negligible as compared to the energy aimed by a node to win

after negotiation (e.g. collected data is valuable to communicate). This assumption is

reasonable in negotiations with pre-established short deadlines [158]. Moreover, [57]

shows that the energy cost to maintain ODI functionality is also insignificant.

Given the agent’s utility function for period T of cooperation, defined in equation (3.3):

ui, j =
n

∑
t=1

Ealloc
i, j (t) (5.1)

where Ealloc
i, j (t) is equal to:

Ealloc
i, j (t) = Ehrv

i, j (t)− c(t)+d(t)−wi, j(t)−o(t) (c10)

Since the global objective is to maximise the total energy allocation in the WSN over a period of

cooperation T , the network utility function is maximised when the sum of all agent’s functions
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for the energy allocation in the network is maximised. Then, the utility function for the whole

network Ni is:

ui = ∑
j∈Ii

ui, j (5.2)

where Ii as defined before denotes the set of agents in network Ni. Thus, the global objective is to

maximise the total energy allocation in the WSN over T . This may imply that the communica-

tion between all agents in the network is required. However, this is not the case for OEN, which

considers the suboptimal approach where interactions between agents are performed only with

the agents in the same neighbourhood Ω. Each agent i j can maintain a map of energy condi-

tions across its neighbourhood Ωi, j employing broadcast messages used by the routing protocol

and avoiding the possible communication overhead. Given this, the objective of network Ni is

to maximise the total energy allocation over the negotiator agents on each neighbourhood Ωi, j.

Ultimately, the goal of each agent at every opportunistic encounter is to decide and choose a

partner among the alternative nodes it has discovered in its immediate neighbour networks so

as to maximise its energy allocation in the long term. Thus, such an opponent must be selected

as the most prospective negotiation partner with whom the expectation of successful negotiation

and the achievement of the best agreement are the highest. In order to realise this approach,

the agent seeking a partner first needs to learn the performance of all the neighbouring agents

expected to cooperate. Then, the decision of the negotiation partner involves a trade-off: the

negotiation with an opponent provides feedback about its effectiveness (exploration), but the

collection of that feedback ignores the immediate benefit of selecting a partner that is already

known to be effective (exploitation).

The selection method of an appropriate partner must be able to learn the dynamism of the en-

vironment and adversarial setting introduced by the negotiation behaviour of the opponents. To

solve the partner selection problem, a MAB model for each agent within the network is pro-

posed. In probability theory, MAB learning provides a theoretical framework for sequential

learning and decision-making to address the trade-offs between exploration and exploitation un-

der uncertainty. Unlike traditional partner selection methods, which require historical data to

calculate the outcomes of negotiation and predict the possibility of successful negotiation, this

work uses MAB to estimate the profitability of each agent and develop an online (or adaptive)

scheme able to tolerate dynamically changing environments and adversarial conditions without

prior knowledge.

5.2 Multi-Armed Bandits for Partner Selection in WSNs

In this section, the K-armed bandit problem is defined formally. The following shows how the

bandit problem can model the partner selection in negotiation for an efficient long-term energy
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allocation in WSNs. In doing so, existing policies are discussed and later their comparison is

reported.

5.2.1 The Multi-Armed Bandit Problem

The multi-armed bandit problem originally proposed by Robbins [159] refers to the gambler’s

dilemma. Correspondingly, the goal of a gambler is to maximise the total rewards earned

through a sequence of lever pulls over a row of slot machines. Specifically, a set of K ma-

chines (arms) is available to the decision maker. At each trial, a gambler must choose which of

these arms to play. To keep the terminology of MAS consistent, from here onwards the term

gambler is replaced by agent, and the lever pulling action of the gambler is specified as an ac-

tion of that particular agent. Without any prior knowledge on the machines’ profitability, the

agent can still collect partial information while it observes the reward of each chosen arm. Such

information can be used to estimate the revenue of the machines. It thus becomes a dilemma,

between exploiting the machine that has the highest expected reward or exploring the set of dif-

ferent machines to gain more information and learn about their reward density. The fundamental

challenge in bandit problems is to define the pulling strategies (also referred to as policies) for

decision making in situations under uncertainty to trade-off between exploration and exploita-

tion. A MAB learning model is particularly useful to model agents that learn a hidden reward

distribution while maximising their gains.

Formally, let Tr = {1,2, ...,Tr} be a set of sequential trials and a(tr) the action of an agent

at trial tr, which raises the reward ra(tr). An agent’s objective is to maximise the sum of its

observed rewards as follows:

max
Tr

∑
tr=1

ra(tr) (5.3)

As such, it is clear that the agent has to choose a policy (i.e. a sequence of actions) that maximise

the total rewards earned through a sequence of trials.

The performance of the policy applied by an agent at a given trial is measured in terms of regret,

defined as the expected loss of applying the policy with respect to the maximal expected reward

by a policy assumed to be optimal. Given the stochastic nature on the reward processes, this

notion of expected regret is often considered. However, in this domain, a different concept

of regret is incorporated, suitable for the adversarial MAB problem of our environment. This

notion of regret, known as weak regret, is described in the next subsection.

The perception of optimality and bandit policies vary according to the environment. The fol-

lowing subsection presents a description of the practical application of MAB and the existing

policies applied to the specific problem of partner selection.
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5.2.2 Multi-Armed Bandits Formulation for Partner Selection in OEN

In this domain, the environment is adversarial. Unlike classical stochastic MAB problems

whereby the rewards are independently drawn following a fixed but unknown distribution, for

the adversarial MAB problem, no statistical assumption about the generation of rewards is made.

Instead, the rewards are chosen by an adversary. The applicability of the solution also depends

on the type of adversary. If the adversary chooses the reward ahead of the actual selection pro-

cess, it is known as an oblivious adversary. Whereas, if the reward is simultaneously chosen

by the opponent with the agent’s choice, an adversary is called a non-oblivious adversary. The

second category describes our case.

An adversarial MAB formulation is a natural fit for modelling the research problem of this the-

sis, where an agent and opponent interact to solve their conflicts and the opponent is adaptive.

More precisely, in this context, the outcome of a negotiation between one agent and its oppo-

nent forms the reward value that the MAB model gets by selecting a partner for opportunistic

energy negotiation. In OEN, an agent has an incentive to negotiate but may adopt different

behaviours based on its preferences and observations at any time. The preferences of the net-

works vary according to their energy availability which is influenced by the amount of energy

harvested during each time slot. The networks can then adopt a responsive attitude towards their

environment using conceding strategies during the negotiation.

Since agents have to negotiate with incomplete knowledge of the opponents and have no con-

trol of the environmental factors affecting the outcomes of the negotiation, it is very difficult to

estimate a distribution for the rewards. This thesis focuses on environmental changes such as

varying energy availability, which influences the different patterns of the agent’s negotiation be-

haviour. Furthermore, the topology of the networks is also intrinsically dynamic as sensors may

fail, move, or enter in sleep/active state. An agent can also reject a negotiation encounter or be

added opportunistically at any time. Thus, this variant of the MAB problems is considered here,

where the stochastic assumption about the processes of rewards is removed and their realisation

rely on the agents involved, their status, preferences and negotiation behaviours.

Repeated bilateral negotiation encounters are considered over a finite number of trials Tr where

three or four WSNs overlap within a geographical area. In each trial tr, there are two or three

agents that belong to different networks in the immediate neighbourhood of the main agent. The

main agent needs to select one opponent between these two or three agents, as the most preferred

negotiation partner to reach energy cooperation agreements that maximise its energy allocation.

The action is easy to identify then, for each agent i j in a wireless sensor network Ni that needs

to start an OEN, an action of agent i j at trial tr denoted as ai, j(tr), corresponds to the election of

a negotiation partner (e.g. a1,1(1) = {negotiation partner : 2 1}) among a set of K opponents.

The action is constant over time since this work only contemplates bilateral negotiations (“one-

to-one”) as a decentralised decision-making process to not require a mediator. The negotiation

also includes short-term deadlines to avoid transmission overhead.
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Given this, let ri, j(tr) be the linear reward function of agent i j for each trial tr, defined as the

amount of energy allocation reached on agreement at the OEN encounter tr (Equation (5.1) with

a selected partner ai, j(tr) from a set of K opponents, the objective of network Ni to maximise

the total energy allocation over a number of trials Tr, can be formulated as follows:

max
Tr

∑
tr=1

∑
Ω∈Ii

∑
j∈Ω

ri, j(tr) (5.4)

Therefore, the network objective is to maximise the sum of reward functions of all agents on each

neighbourhood Ω, from the OEN encounter 1 to the trial Tr. Thus, each agent i j’s chosen action

(i.e. the chosen negotiation partner) will determine the value of the global network objective.

Once the action an agent can perform is defined, and the reward function associated with each

action is clear, the partner selection problem in OEN of each agent i j can be reduced to a MAB

problem. The agent’s goal then is to efficiently maximise the expected total rewards against the

adaptive environment and the adversarial opponent or equivalently, to minimise the cumulated

loss over time, i.e. the energy that an agent doesn’t get when it misses the chance to cooperate

with the best partner.

In the setting where agents have no prior knowledge about the preferences of their opponents,

and the outcomes are affected by unexpected environmental factors, the achievement of low-

regret bounds (i.e. high performance) is not possible with any deterministic policy (especially

for the non-oblivious adversary case). Alternatively, state-of-the-art policies in an adversarial

setting are assessed, which aim to minimise a regret with respect to the best-fixed strategy in

hindsight, i.e., by having access to the history of negotiation’s outcome against every opponent.

This weak regret is common in similar situations in which it is impossible to learn the opti-

mal (adaptive) strategy [160, 161], mostly because the payoffs are adversarially decided by the

opponent. Thus, although the optimal strategy cannot be learned, the best-fixed strategy in hind-

sight becomes feasible to analyse from the history of previous negotiations. Consequently, the

cumulative expected regret over Tr represented by RTr with respect to the optimal fixed strategy

is:

RTr = max
Tr

∑
tr=1

ri, j(tr)−E

[
Tr

∑
tr=1

ri, j(tr)

]
(5.5)

Where the first term describes the cumulative reward by the best-fixed strategy over trials Tr

and the second part corresponds to the total expected reward achieved by the policy applied in

the system.

The next section describes three well-known policies for this problem. Following this, the ex-

periment scenarios are defined and the performance results for these algorithms are analysed.
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5.3 Mixed Policies

In order to handle the partner selection problem, this thesis makes use of adversarial bandit

algorithms. The contribution of this chapter consists of adopting these policies to the domain of

WSNs and compare them in three practical settings to study their performance.

The policies ε-Greedy, EXP3, and FPL-UE are selected as the bandit strategies for the experi-

ments. These three bandit algorithms explicitly make use of an exploration parameter, they are

widely used in the MAB literature and have proven to obtain sub-linear upper regret bounds

with an appropriate choice of the exploration factor.

5.3.1 ε-Greedy Action Selection Strategy

A well-known and low-complexity heuristic policy for the bandit problem is the ε-greedy action

selection strategy. The ε-greedy strategy is sketched in Algorithm 2. The policy selects at each

trial tr an action with uniform random probability for a fraction ε of the trials (exploration),

and choose the best arm (exploitation) with a probability 1− ε (Steps 4 and 6 respectively).

The specification of the exploration factor ε is made based on the experiment, i.e. there is no

standard value that fit-for-all scenarios.

Algorithm 2: Algorithm ε-greedy for each agent i j
Input : ε ∈ [0,1], opponents 1, ...,K;
Output: Negotiation partner ai, j(tr)

1 Initialisation: r̂k = 1, pullsk = 0,rewardsk = 0 for k = 1,2, ...,K;
2 for tr← 1 to Tr do
3 if ∼U(0,1)≤ ε then
4 ai, j(tr)∼U{1,K};
5 else
6 ai, j(tr) = arg max

k∈{1,...,K}
{r̂k};

7 end
8 Receive reward ri, j(tr) as Ealloc

i, j (t) for all t in negotiation against selected partner
ai, j(tr);

9 pullsk = pullsk +1 where k = ai, j(tr);
10 rewardsk = rewardsk + ri, j(tr) where k = ai, j(tr);
11 r̂k =

rewardsk
pullsk

where k = ai, j(tr);
12 end

Given this, it can be seen that the estimated reward (r̂k) of a selected action is updated using its

cumulative reward (rewardsk) and the number of times the action k has been executed (pullsk).

ε-Greedy adds some randomness when deciding between negotiation partners: instead of relying

always on the best partner, it randomly explores other opponents with a probability ε .
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5.3.2 Follow the Perturbed Leader with Uniform Exploration (FPL-UE) Algo-
rithm

The policy considered here is based on the online prediction scheme Following-the-Perturbed-

Leader (FPL) [162], which has efficient treatment of problems with a linear cost function by

following the perturbed leader. The original algorithm only works for oblivious adversaries

and focuses on choosing the action of minimal cost by observing the loss incurred of each

selected action. The goal of this work, instead, is to efficiently maximise the total rewards an

agent can successively achieve against an adaptive and adversarial opponent. To address this

problem, a novel strategy for repeated interactions called Follow the Perturbed Leader with

Uniform Exploration (FPL-UE) [160] is employed. In this approach, the learning algorithm

proposed by Neu and Bartok [163] is extended by introducing uniform random exploration

for the reward maximisation scenario (Algorithm 4). Similar to ε-Greedy, the selection of a

probability (ε in ε-Greedy, λ in FPL-UE) determines the exploration rate of the pulling strategy.

That is, the agent will uniformly randomly choose a negotiation partner with a probability λ

(Step 8) and select the partner that reaches the maximum estimated reward perturbed by the

noise factor zk (Step 5) every 1−λ of the cases. The efficiency of the mixed strategy FPL-UE

on finding the best partner from a set of opponents within the repeated opportunistic encounters

between networks is measured.

FPL-UE makes use of Geometric Resampling (GR) (Algorithm 3) in order to compute the es-

timated reward for the chosen action at every trial (Algorithm 4, Steps 11-12). The application

of GR in our setting is shown in Algorithm 3. Basically, GR measures the reoccurrence where

simulated a, denoted as ã, may appear. Thus, K valk represents the reciprocal of the probability

of action k (p−1
k ), i.e. K val provides a 1-in-M scale for probabilities, where M is a finite value

that bounds the number of samples. For example, the reciprocal of 0.01 is 100, so an event with

probability 0.01 has a 1 in 100 chance of happening.

Algorithm 3: Algorithm GR
Input : M ∈ Z+, ai, j(tr);
Output: K valk ∈ Z+

1 for i← 1 to M do
2 Repeat steps 3 ∼ 9 in Algorithm FPL-UE once to sample ã;
3 if i < M and ã = ai, j(tr) then
4 K valk = i;
5 else
6 K valk = M;
7 end
8 if K valk > 0 then
9 break;

10 end
11 end
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Algorithm 4: Algorithm FPL-UE for each agent i j
Input : λ ∈ [0,1], η ∈ R+, M ∈ Z+, opponents 1, ...,K;
Output: Negotiation partner ai, j(tr)

1 Initialisation: r̂k = 0 for k = 1,2, ...,K;
2 for tr← 1 to Tr do
3 Set flag ∈ {0,1} such that f lag = 0 with prob. λ ;
4 if f lag then
5 ai, j(tr) = arg max

k∈{1,...,K}
(r̂k + zk);

6 where zk ∼ exp(η) independently for k = 1,2, ...,K;
7 else
8 ai, j(tr)∼U{1,K};
9 end

10 Receive reward ri, j(tr) as Ealloc
i, j (t) for all t in negotiation against selected

partner ai, j(tr);
11 Run GR(M,ai, j(tr)) to estimate p−1

k as K valk;
12 r̂k = r̂k +K valk · ri, j(tr) where k = ai, j(tr);
13 end

5.3.3 Exponential-weight Algorithm for Exploration and Exploitation (EXP3)

Unlike FPL-UE, EXP3 employs the value of the probabilities for each action more explicitly.

The partner selection strategy using EXP3 is described in Algorithm 5. At each trial, EXP3

chooses a partner ai, j(tr) according to the distribution p (Step 4) learned from the iterations.

EXP3 as FPL and ε-Greedy is a mixed strategy that introduces uniform randomisation into the

action selection process. Once the action has been determined, the received reward is used to

update the weight value of the chosen action (Steps 5-7), which affects proportionally to the

probability of each action in the next trial (Step 3) (i.e. the higher the current estimate is, the

higher the probability an agent chooses that action). Thus, at each trial, EXP3 updates the

value of the distribution p, and it defines the action with higher probability and vice versa.

Although EXP3 is classified under the category of MAB algorithms with partial information,

that is, only the reward of the selected action can be observed, the update of its weight affects

proportionally the weights of each respective arm. According to this, EXP3 selects at each trial

the best-estimated action and provides an updated probability as the learning process continues,

i.e. it guarantees that an agent can efficiently adapt to different environmental situations. The

exploration rate, as in FPL-UE and ε-Greedy is given parametrically and affects the efficiency

of the algorithm as well (γ in EXP3). It is important then, to analyse first the definition of this

parameter before any comparison is executed.

5.4 Experimental Validation

This section describes the goal of the experiments, the description of the scenarios and their

implementation, followed by the evaluation of the policies.



112 Chapter 5 Partner Selection: A Multi-Armed Bandit Based Approach

Algorithm 5: Algorithm EXP3 for each agent i j
Input : γ ∈ [0,1], opponents 1, ...,K;
Output: Negotiation partner ai, j(tr)

1 Initialisation: wk = 1 for k = 1,2, ...,K;
2 for tr← 1 to Tr do
3 Set pk = (1− γ) · wk

∑
K
k=1 wk

+ γ

K for k = 1,2, ...,K;

4 Draw ai, j(tr) randomly according to the probabilities p1, p2, ..., pK ;
5 Receive reward ri, j(tr) as Ealloc

i, j (t) for all t in negotiation against selected
partner ai, j(tr);

6 r̂k =
ri, j(tr)

pk
where k = ai, j(tr);

7 wk = wk · exp
(

γ·r̂k
K

)
where k = ai, j(tr);

8 end

5.4.1 Goal of the Experiments

The goal of the experiments are:

• Apply MAB learning to the setting of partner selection between multiple sensor networks

for an efficient energy allocation in the long term.

• Compare three state-of-the-art policies for the adversarial MAB problem presented here,

using as a baseline the best-fixed strategy in hindsight and the uniform random selection

of a partner in each OEN encounter.

• Evaluate through extensive simulations the performance and validate the theoretical prop-

erties of the online prediction policies in a practical case study under different circum-

stances.

5.4.2 Experiment Scenarios

These simulations assume four authorities that deploy their sensor network in the same ge-

ographic area, in such a way that there may be between three to four distinct agents within

overlapping radio coverage, i.e. for each agent, there is a pool of K parties formed by 2 or 3

opponent agents from which an agent can choose one partner to initiate a bilateral negotiation.

As already mentioned, in the context of partner selection for OEN, agents in the pool may be

viewed as arms. An agent must decide between these 2 or 3 agents which arm is expected to

provide the best payoff. This setup is suitable for the experiments conducted; however, the pool

of arms can be formed with any number of nodes, greater than two (depending on the memory

limitations) to evaluate the MAB algorithms.

As previously described, the networks of this study periodically report readings to the sink.

These networks are typically deployed for long-term operation, and their design constraints are
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application-dependent, also based on the monitored environment. This implies that if there is

a pool of agents (arms) from which to select a negotiation partner, each arm will have unique

characteristics that will determine its reward. This reward will depend on the negotiation out-

come, which is directly affected by the negotiation strategy used by each party and their mutual

zone of agreement. A mutual agreement relies on the energy availability of the arms and their

ability to meet the current aspirational demand of the other agent.

Regarding the dynamic nature of these networks, besides taking into account their varying status

(due to node failures, time-delays, active/sleep modes) that define their network topology, this

work considers changes in their attitude towards negotiation (Conceder/Boulware tactics) and

environmental conditions that modify the energy availability of the agents involved.

Thus, the following possible situations where the MAB model is applicable are examined. These

scenarios define the changes that characterise the dynamic and heterogeneous domain of WSNs.

This thesis focuses on environmental changes such as varying energy availability, which influ-

ences the different patterns of the agent’s negotiation behaviour, and also instances of network

topology variation.

Cooperative scenario. All the agents are Conceder negotiators. In proposed approaches to

enable cooperation in multi-domain sensor networks [12, 13, 43], sensor nodes are assumed to

be spontaneously cooperative on routing tasks in order to fulfil their application requirement.

The utility function in these studies is characterised by the effective gain of minimising node

energy consumption. The battery-powered networks represented in these works find that the

equilibrium state with the highest payoff (where the lifetime of the sensors is the highest) con-

sists of cooperative strategies. Similarly, this first scenario assumes the Conceder strategy for

the generation of offers, as a cooperative effort. Thus, the cooperative behaviour of an agent is

represented here as concessions quickly performed at the beginning of the negotiation.

Multiple behaviours. The opponents adapt their negotiation behaviour according to their en-

ergy availability, which is determined by the weather conditions. In these experiments, if the

agent requires more energy than the amount it can provide to its opponent, it adopts a tough

behaviour, otherwise, it employs a Conceder strategy. The functions in Subsection 4.2.3.1 are

used to model the concessions. In multi-authority WSNs, a resource-constrained node may be

reluctant to forward packets received from other network domain, or to do any other task on

behalf of an external network to save its own resources. When an agent is aware of its power

level [9, 14, 164, 165], it adapts its strategy to avoid being exploited by selfish decisions.

Dynamic topology. The networks change their topology. This thesis seeks for an efficient

learning method that finds a trade-off between exploring and exploiting the available options

of opponents by jointly considering the dynamically changing environment and varying net-

work topology. The changing environmental characteristics are depicted by the ambient energy

sources and their wide temporal variation that may also control the agents’ behaviour (as in the

previous case), while the varying network topology is taking into account as well. Some of the

existing works on multi-domain cooperation either assume a static network topology [16] or
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consider dynamic node operation and topology independently [11, 42, 43]. In practice, topol-

ogy changes are more frequent in a sensor network and can be attributed either to node mobility,

failure or status. The networks that this thesis is studying are not mobile networks. However, a

dynamic topology is considered in terms of node failures, the new addition of nodes, as well as

nodes in different states such as active and sleep.

In each scenario, the energy availability of an agent is determined by its energy harvested. Each

agent in the pool of arms may have an associated reward, which corresponds to the outcome

of the negotiation. To show the dynamism of the domain the simulation time period is divided

into intervals called epochs, and each epoch lasts a number of trials Tr. Each trial involves an

OEN interaction between two agents. The characteristics of each party are constant along with

a fixed number of trials, or epoch. At the end of an epoch, the features amongst arms change

to set a different optimal partner (which is unknown by the agent during the selection). In this

work, a preferred opponent is one that has more energy availability and a Conceder behaviour.

The feature of energy availability changes per epoch in all situations, and the behaviour varies

in the situations of multiple behaviours and dynamic topology. All runs in all scenarios involve

5000 trials. Four cases are considered: long epochs or static environment (Tr = 5000 iterations),

moderately dynamic epochs (Tr = 1000), dynamic epochs (Tr = 500) and extremely dynamic

epochs (Tr = 200). The length of epochs is obviously not known by the agents. The goal

of an agent is to maximise its total reward over these trials, by finding the partner with the

highest expected payoff. This determination is accomplished by observing the reward to know

the efficiency of the chosen opponent, and thus, learn which opponents are the most efficient

ones.

5.4.3 Design of Experiments

Now the conditions used to alter the environment and describe the values set for the energy

availability and behaviour of the agents in every situation are formulated. The simulation of

topology changes is also described below.

5.4.3.1 Energy Harvesting Profiles

In all three scenarios, the weather data collected from PVIGIS and Weather Underground from

the year 2017 is used to generate the energy harvesting values for each agent. For the main

agent, energy harvesting values from solar radiance were computed, while the set of opponents

are simulated with energy values from wind speed. Similar to Subsection 4.3.3, from Table 4.4

the values of solar panel dimension, its efficiency and wind turbine efficiency are selected over

the given ranges. There is no perturbation value set for these records, (p=1). Every energy

value corresponds to the same day, same period. The records are used for 5000 trials, where

negotiations of 6 issues each are considered, i.e. At every trial, the agents exchange offers to

reach an agreement of cooperation for 6 hours.
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5.4.3.2 Energy Consumption Profiles

The duty cycle of each agent is set uniformly random between 1% to 5%, which defines its

load using the power consumption model from Subsection (3.2.2). The following parameters

are used to compute the energy consumption profile of each agent, voltage = 3 V, sleep current

= 5 µ A, active current = 20 mA. Each time slot is equal to 1 hr. Thus, the load for each agent is

randomly selected from the following set {0.61, 1.21, 1.81, 2.41, 3} [mWh].

As previously mentioned, a fixed value for the battery maximum capacity and its efficiency is

set for all the simulated agents (708 mWh and 70% respectively).

5.4.3.3 Negotiation Parameters

Each negotiation includes a deadline of 5 rounds. For every interaction, the first to generate an

offer is randomly selected. The number of negotiation issues in every trial is 6. The agents use

the heuristic framework described in 4.2 to generate offers, evaluate them and make concessions.

5.4.3.4 Simulation of Environmental Changes

In every scenario, the energy harvested by the agents in the pool is modified in order to simulate

environmental changes 1 that affect the performance of the energy source and affect the energy

availability of every agent in the pool. These conditions determine a setting where one opponent

is the best choice in every possible negotiation. Any setting with different conditions also shows

the same broad patterns in the result of the simulations. The information about the characteristics

of the opponents (how quickly they change per epoch and how they differ) is unknown to the

agents. If there are three agents in the pool of arms, three different environmental conditions are

simulated:

• Condition 1. First opponent is the best option.

– First opponent: Ehrv
i, j is not affected (p = 1).

– Second opponent: Ehrv
i, j is reduced to 40% (p = 0.4).

– Third opponent: Ehrv
i, j is reduced to 10% (p = 0.1).

• Condition 2. Third opponent is the best option.

– First opponent: Ehrv
i, j is reduced to 10% (p = 0.1).

– Second opponent: Ehrv
i, j is reduced to 40% (p = 0.4).

– Third opponent: Ehrv
i, j is not affected (p = 1).

1Energy harvested can be affected by multiple causes as obstruction of power source, weather conditions, solar
panel and wind turbine efficiency. [8, 144, 166]
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• Condition 3. Second opponent is the best option.

– First opponent: Ehrv
i, j is reduced to 40% (p = 0.4).

– Second opponent: Ehrv
i, j is not affected (p = 1).

– Third opponent: Ehrv
i, j is reduced to 10% (p = 0.1).

The experiments consider pools with two or three opponents. The agents that have two options

in the set of arms will have only two situations where the first or second opponent is the best

option, respectively.

The cooperative scenario follows the conditions described above, and the strategic behaviour

of each agent in the set of opponents is not affected no matter how low its energy availability is.

All the agents concede more rapidly at the beginning of the negotiation with a 0.05 concession

shape value.

For the multiple behaviours scenario, the tactic of an agent is modelled using three concession

shape values (β ): 0.05 for a Conceder agent, while 1.4 and 1.9 model a Boulware strategy. In

this case, the same conditions described above accompanied by the varying tactics are followed:

the best option has a Conceder behaviour 0.05, while the rest of the set will have 1.4 and 1.9

respectively.

The third dynamic topology scenario exhibits the conditions of the multiple behaviours sce-

nario plus the assumptions made on the networks’ topology. Every 20 trials, this simulation

assigns a probability of 0.4 to allow the absence of any opponent chosen uniformly random.

This represents the dynamic behaviour of the network topology, where the absence can be seen

as an agent’s rejection of being part of an OEN, an agent’s failure, or an agent in the sleep state.

As a result, every 20 opportunistic encounters, any node from the pool of opponents may be

unavailable.

Finally, in order to capture the dynamic nature of the environment, the four cases described in

subsection 5.4.2 are simulated: static characteristics over time (1 epoch), moderately dynamic

changes (5 epochs), dynamic (10 epochs) and extremely dynamic case (25 epochs). When

the environment changes its epoch, it uniformly randomly chooses one of the three conditions

specified above (Condition 1 - Condition 3). If there are two agents in the pool, then only two

conditions are swapped.

5.4.4 Comparison of the MAB Algorithms

5.4.4.1 Selection of Exploration Factor

The algorithms used in this study condition their performance on the election of an exploration

rate. In order to make a comparison between them, it is important to carefully choose the
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exploration factor, ε in ε-Greedy, λ in FPL-UE and γ in EXP3. Thus, this work first evaluates

the policies over 25 epochs with 200 trials each, where one agent is assigned randomly between

2 and 3 opponents. The negotiation is excluded from these tests, instead, the three conditions

rewards are sampled from a Bernoulli distribution with probability 1/K: 1 represents a succesfull

negotiation and maximum payoff, while 0 indicates no agreement between the parties. Then, in

every trial an agent will have 2 or 3 opponents, where at least one of them will give the agent a

reward. This condition is maintained over the epoch. The results shown in Figure 5.1 average

the payoff over 100 simulations for each exploration factor, between 0 and 1 in 0.1 steps. The

figure illustrates the effect of the exploration rate at which an agent can operate using every

algorithm. The standard deviation is also shown.
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Figure 5.1: Reward for each exploration factor in EXP3, ε-Greedy and FPL-UE.

As can be seen from the figure, the average reward achieved by FPL-UE during 25 epochs

slightly changes through the different exploration factors, except for the case where its rate is

of 0.3. It can be observed that in the ε-Greedy case as the exploration factor increases, the

performance of the algorithm gets more scarce. Whereas the average cumulative reward with

EXP3 is significantly larger than the reported with the other two policies. Particularly, when the

exploration rate is 0.2. In conclusion, the exploration rates are defined as ε = 0.1 in ε-Greedy, λ

= 0.3 in FPL-UE and γ = 0.2 in EXP3 for the rest of simulations, since these factors provide in

average the highest cumulative reward among 100 runs.

5.4.4.2 Performance Comparison

For the results presented here, 10 simulations are run and each simulation consists of a network

where 5 agents need to select a partner among a set of opponents reached by opportunistic and

direct interconnection (each opponent belongs to a different network). Every simulation run in

all scenarios involves 5000 OEN encounters. All simulation results correspond to the arithmetic
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mean of these 10 simulation runs for every main agent (5 agents, 10 runs: 50 simulations per

trial), with differences in the agents’ energy profiles (as described in 5.4.3.2 and 5.4.3.1), number

of opponents (between 2 and 3), and environmental conditions (Condition 1 - Condition 3).

Each environmental condition varies over time according to the static (1 epoch, 5000 trials),

moderately dynamic (5 epochs, 1000 trials each), dynamic (10 epochs, 500 trials each) and

extremely dynamic case (25 epochs, 200 trials each). The experiments use as a baseline the

best-fixed strategy and random selection of opponent to measure the performance of the MAB

algorithms.

Cooperative Scenario

Figure 5.2 illustrates how the agents perform when they use every policy described in this work

in a static, moderately dynamic, dynamic, and extremely dynamic environment when the topol-

ogy is static and all agents behave in a cooperative way. Figure 5.2(a) shows ε-Greedy as the best

algorithm to select a negotiation partner. During 5000 opportunistic encounters in constant com-

petitiveness between the opponents, the most appropriate policy is a simple greedy approach. It

enforces only 10% of randomness in its strategy to explore sub-optimal options, but also to con-

sider environmental changes. Although the exploration factor is higher in FPL-UE with respect

to EXP3, the second best choice in this configuration is the first algorithm. An explanation for

these results is that in FPL-UE the best partner is the one that generates the maximum estimated

reward over time, which in this case, is fixed for the entire epoch. While EXP3 uses the explo-

ration factor to maintain a list of weights for each of the opponents, to further support its mixed

strategy on deciding which action to take next. However, EXP3 may benefit of its methodology

if the environment changes over time, since it will use these weights to adapt to such condi-

tions. In any case, the algorithms learn to play actions that enhance the overall performance

of the agents and need to be applied in the specific scenario to know which strategy is the best

against the corresponding problem. For instance, in the context of adversarial online learning

in defender-attacker encounters, FPL-UE has proved to achieve efficient results against the best

fixed strategy on hindsight [160]. The hypothesis, in fact, was that negotiating agents using the

FPL-UE policy can tackle better the adaptive behaviour of the opponents. Although FPL-UE

has certainly improved the performance of the agents, in general, EXP3 technique has shown to

efficiently deal with the partner selection problem in highly dynamic settings. The non-learning

approach or random selection of the agents consistently shows a poor performance. The random

selection is the worst of the benchmarks but it is implicitly suggested in the existing literature. In

this case, the random selection strategy in the experiments achieves up to 63% of the energy that

can be allocated when the selection of a partner is performed intelligently. From the scenario

covered in Figure 5.2(a) ε-Greedy is efficient with an average efficiency of 93%, followed by

FPL-UE with 87% and EXP3 with 84%, respectively. The performance of the action-selection

strategies compared to that of the best fixed strategy is degraded when changes appear in the

environment. Their efficiency is affected even more when environmental transitions take place

more frequently (see Figure 5.2(b-d)). Temporal changes in the reward distribution structure

are an intrinsic characteristic of this domain. These changes at every decision epoch vary the
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expectation of the rewards and motivate the agents to dismiss information gathered about the

opponents, which in turn encourages exploration. However, the less time the agents have to

adapt to these variations, the less they are able to characterise the reward distributions. In this

regard, EXP3 implements the best approach. In particular, EXP3 is almost consistent with 84%,

84%, 83% and 82% of efficiency among respective environments: static, moderately dynamic,

dynamic and extremely dynamic. The sensitivity to disturbance is more notorious in ε-Greedy,

which efficiency decreases up to 16% when changes occur. Similarly, FPL-UE on average loses

its ability to opportunistically select a negotiation partner up to 15%. Thus, EXP3 is better in

all three conditions. In conclusion, in this first scenario, the ε-Greedy policy is enough when

temporal changes can be avoided over time in a partner selection problem. EXP3, however, out-

performs the other two policies for a broad range of temporal uncertainties in the environment.
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Figure 5.2: Cooperative scenario. Energy allocation in a 5-agent network with static
network topology and Conceder agents (β = 0.05), in static, moderately dynamic, dy-
namic, and extremely dynamic environments.

Multiple Behaviours Scenario

The second scenario where agents are simulated with multiple negotiation behaviours is evalu-

ated in Figure 5.3. The negotiation behaviours, in this case, determine the target energy alloca-

tion value an agent desires in each round of the negotiation encounter. Similarly to Figure 5.2,

the results are shown under four degrees of environmental dynamism with respect to the energy

availability that directly affects the negotiation behaviour of the agents: in static, moderately

dynamic, dynamic, and extremely dynamic environments. As can be observed in the figure, the

energy allocation on average has changed in comparison to the energy allocation achieved when

all the agents are Conceder. Following the results from the random selection strategy, there is a

slight reduction. Specifically, the results obtained when all agents behave “cooperatively” report
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11% more than the amount of energy allocated in this scenario (52%). In any case, even if the

agents offer concessions rapidly at the beginning of the encounters, the selection of the most

appropriate partner by intelligently choosing the opponent, makes a difference in this model.
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Figure 5.3: Multiple behaviours scenario. Energy allocation in a 5-agent network with
static network topology and agents with β between 0.05, 1.4 and 1.9 in static, moder-
ately dynamic, dynamic, and extremely dynamic environments.

Now, from Figure 5.3(a) is noted that the performance of every approach is decreased, compared

to that of the case of cooperative networks. This is, however, due to the fact that the average

energy allocation amount that the agent’s best strategy achieves in this scenario has increased.

The main reason behind this difference is that there are fewer concessions among the agents

and the desired utility levels are higher. In the cases where there are agents with a Conceder

behaviour against an opponent with a Boulware behaviour, if the first one has enough energy to

power itself and share or requires a minimum amount of cooperation (less than the opponent),

the agent playing a Boulware tactic gets a better agreement. This meets the following statement,

when Boulwares make deals, they receive a higher individual utility [90]. The second reason for

this variation in the policies’ performance is the dynamism introduced by the multiple negotia-

tion’s behaviours. In this scenario, the set of opponents offer different amounts of energy values

and the diversity of potential agreements is increased between the agents. The environment is

then more dynamic from an agent’s perspective since the agent’s behaviours change according

to the amount of energy they harvest. Consequently, the variability of the opponent’s negotiation

tactics directly impacts the learning curve of the agents. The adaptation to these variations is

however best approached by EXP3, as shown in the figures. Specifically, in the static environ-

ment, EXP3 technique achieves up to 82% on average, of the total energy that can be allocated

with the best fixed strategy. That in comparison with the first scenario is only 2% less of its
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original capacity. Such level remains stable, as seen in Figure 5.3(b-d), where the efficiency of

EXP3 is of 82%, 82%, and 80% for the moderately dynamic, dynamic and extremely dynamic

environment, respectively. The other two policies reduce their performance as more dynamicity

is considered in the agent’s behaviours. ε-Greedy reduces its performance, on average, up to

9% in every environment, while FPL-UE policy reports a decrement up to 10% of the amount

obtained in the cooperative scenario. This indicates that EXP3 is less sensitive to the negotiation

strategy changes than the rest of the policies. Most important, the EXP3 estimation method is

not affected by the introduction of negotiation in the system. Overall, the learning approaches

achieve better results compared to the random selection of the negotiation partner over time.

Dynamic Topologies Scenario

The results for the last scenario are depicted in Figure 5.4. The changes in the networks’ topol-

ogy are taken into account while the environmental changes on weather conditions are also

studied. In this regard, the energy availability determined by the ambient energy sources af-

fects the negotiation strategy of the agents. Thus, the agents have to deal with the challenges of

environmental changes and the varying operational status of the opponents. The figure shows

how the performance of the policies is again decreased by the introduction of the agent’s move-

ments (because of failure, rejection to be part of OEN, activity commute between active/sleep

status). For instance, the energy amount allocated by the agent using EXP3 is reduced up to

9% in comparison to the amount allocated in the first scenario and decreased up to 7% of the

average energy amount allocated when there are no topology changes but multiple negotiation

behaviours. The same occurs with the rest of the policies on a different level. For both FPL-

UE policy and ε-Greedy, the efficiency is reduced up to 12% from the results obtained in the

cooperative scenario to these of the last scenario, and up to 3% from the values reported in the

multiple behaviours scenario without topology changes to these values of multiple behaviours

with topology changes. Although these policies are affected in less proportion than EXP3, this

algorithm presents the best results as the environmental changes become more frequent (see

Figure 5.4(b-d), respectively). In fact, an agent deciding a partner using the EXP3 algorithm

achieves 74% efficiency while the use of ε-Greedy supply 60% efficiency and FPL-UE learning

approach obtains 55% in the most challenging case i.e. in extremely dynamic environments with

environmental and topology changes.

Despite the fact that the agents’ performance using EXP3 is affected by the topology changes,

this policy achieves the best results with respect to the best fixed strategy and random selec-

tion. EXP3 approach is consistent through the performance evaluation in each scenario and its

reward estimation method proved to handle more realistic domains of complex and dynamic

environments. This is supported by the results depicted in the variety of scenarios studied here.

Moreover, EXP3 is not sensitive to the negotiation strategies incorporated in the decision pro-

cess. Thus, the adaptive learning feature provided by EXP3 is the most suitable solution for the

problem of partner selection. Furthermore, the EXP3 policy can be applied in a broader range of

negotiation agents interactions where computationally-lightweight solutions are required. The

results of this research are quite useful for designing agents in open environments that need to
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Figure 5.4: Dynamic topology scenario. Energy allocation in a 5-agent network with
dynamic network topology and β between 0.05, 1.4 and 1.9 in static, moderately dy-
namic, dynamic, and extremely dynamic environments.

cope with the uncertainty of the adversarial setting and network conditions. In this case, the

MAB learning model presented in this work allows an agent to select the most prospective part-

ner from a set of opponents and reach efficient energy allocation agreements in the long term.

5.5 Summary and Discussion

The topic of negotiation has been widely studied to solve cooperation problems in complex

systems. In the domain of WSNs, the limited resources along with the dynamism, distribution

and heterogeneity of the networks present key considerations for the design of an effective au-

tomated negotiation technique. Subject to the requirements, the problem lies in the fact that

multiple nodes report the same desire to cooperate. In this regard, the potentially resource-

consuming negotiation with a large number of agents, especially in open dynamically changing

environments, can be impractical. Therefore, the OEN methodology includes the partner selec-

tion step to propose a new model tested under different scenarios. The challenge is to enable an

agent to adaptively adjust its partner selection depending on the characteristics of such scenarios

with the possibility of maximising its energy allocation in the long term.

Three scenarios are designed for the experiments, which vary three characteristics: the nego-

tiation behaviour of the agents, the energy availability of the ambient energy sources and the

network topology. Accordingly, the following situations are simulated. A cooperative scenario,

where the environment varies the energy availability and the agents adopt a conceder behaviour
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during all the negotiation interactions. A multiple behaviours scenario, which covers both envi-

ronmental conditions variations and different concession strategies. Finally, a dynamic topology

scenario, with the conditions of the multiple behaviours scenario and the movement of agents.

Consequently, for the partner selection problem, a MAB based approach is proposed to address

the decision of choosing a partner under uncertainty of the opponents and the dynamism of the

environment. The setup of negotiation fits naturally with an adversarial MAB problem, where

the reward obtained by an agent in every opportunistic interaction not only depends on the

actions taken by the agent but also on the adversaries behaviour. Against this background, state-

of-the-art MAB policies are applied in the negotiation context of non-oblivious adversaries:

ε-greedy, EXP3, and FPL-UE. The algorithms are adapted as the strategies for efficiently select

a partner and repeatedly re-learn the current best partner for cooperation.

The efficiency of the MAB policies is then compared against the random selection of a partner

and the best strategy in hindsight. The results show that even in a cooperative scenario, where

agents offer concessions rapidly at the beginning of the encounters, the agents improve their

benefit by choosing a partner strategically instead of select it randomly. Every simulated setup

establishes stationary events in the duration of epochs. The length of such epochs defines the

four cases considered: long epochs or static environment (5000 iterations), moderately dynamic

epochs (1000), dynamic epochs (500) and extremely dynamic epochs (200). In every scenario,

the ε-greedy algorithm reaches the best performance for the static environment. Therefore, the

application of a simple heuristic as selecting a 10% of exploration and exploit the best opponent

the rest of the time is enough to handle the partner selection problem in a stable scenario.

The problem becomes even more challenging with setups where agents employ tougher ne-

gotiation strategies and the presence of them is unstable. In any case, the bandit strategies

achieve improved energy allocation agreements by adjusting to dynamic environments. In this

direction, the EXP3 policy produces better results at a large number of unexpected events as

the environment becomes more dynamic. Moreover, the EXP3 policy consistently shows the

best performance despite wide variations. Thus, EXP3 policy increases the adaptability of the

negotiation-based cooperation.

Furthermore, the partner selection step may support the decision to start a negotiation based on

the estimations of the profitability of the opponents. The partner selection policy can also reduce

the complexity of addressing reasoning to negotiate. For instance, instead of selecting a partner

based on the reward associated with it, the negotiation may involve strategies to model the nego-

tiation behaviour of its opponent. In particular, some strategies include regression techniques to

estimate the concessions of the opponents and predict possible agreements. Since this thesis is

interested in resource-constrained WSNs, it concentrates on low complexity solutions that don’t

require learning mechanisms that predict the opponent’s future offers. The prediction techniques

require a sufficient number of the opponent’s offers to apply the learning approach and start the

estimation of the counterpart’s information (such as its deadline or reservation values) in order
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to obtain better deals. In fact, the complexity of the utility space increases with the interdepen-

dent issues and the number of time slots involved in the energy cooperation domain. Thus, the

MAB partner selection strategy can serve as an alternative to maximise an agent’s utility in the

long-term.



Chapter 6

Conclusions and Future Work

In this chapter, the conclusions and future work are presented. The first section consolidates

the contributions of this research. The following section highlights some research opportunities

towards the realisation of a negotiation-based cooperation between WSNs.

6.1 Conclusions

Based on the literature review on Chapter 2, this work investigates a feasible approach to enable

cooperation between co-located WSNs that meet opportunistically. Such a problem had not

been addressed before. Although networks can have multiple cooperation incentives, this work

focuses on the optimisation of energy use. Negotiation-based networking to enable cooperation

across heterogeneous co-located networks has been previously studied using a solution that

incorporates a central and powerful monitoring application. Game-theoretic models have also

been proposed to analyse the cooperation problem. However, due to the characteristics of WSNs,

the proposed methods are not practically feasible. The availability of complete information, the

presence of a mediator with high computational power and the conception of full rationality are

not suitable in this domain.

To address this challenge, a new methodology to enable negotiation-based cooperation between

co-located WSNs was proposed in Chapter 3. The steps of the methodology were developed

in every chapter to accomplish the specific goal of this work: opportunistic energy negotiation,

called OEN. As mentioned above, networks can have different or multiple optimisation goals.

In that case, the proposed methodology can be custom-tailored towards a specific objective.

With the aim to optimise a network’s power management using the suggested approach, the

first step for an agent is to identify its own efficiency. In the domain of OEN, it corresponds to

the energy allocation scheme that a node can employ to power its load. Thus, the first contri-

bution of this thesis is the optimal energy allocation algorithm described in Section 3.3. This

power management technique is tested during every simulation presented in this work. Such
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algorithm enables self-organised agents that can anticipate insufficient energy allocation and the

opportunity to start an OEN.

The establishment of OEN is described in Chapter 4. Using a discrete event simulator as OM-

NeT++, the discovery protocol to reach the negotiation agents in a 1-hop neighbourhood is

implemented using a publish-subscribe protocol. The results shown on maximum energy cost

and latency introduced by the protocol, assuming up to 7 opponents subscribed to the OEN

process, have a negligible impact in the agent’s performance (<0.01 J and <0.1 s). Thus, the

obtained results demonstrate that a node can engage in OEN with a minimum cost even in the

emergence of seven co-located and distinct WSNs.

In Chapter 4, a heuristic approach which employs existing negotiation methods is proposed to

model the cooperation problem between networks. The negotiation framework is tested through

extensive simulations using real energy profiles: load with regular duty cycles, and energy har-

vesting from weather data. The heuristic approach is used to reallocate the renewable energy of

the agents’ sources and enhance the power management of the networks extending their bound-

aries. The heuristic model is validated using time-dependent concession strategies. Results

found that independently of the agent’s energy availability, a conciliatory behaviour is the best

strategy in this domain.

The negotiation strategies of OEN were compared against NBS and the shortest-distance propos-

ing mechanism. The results have shown how an agent using OEN can reach on average 77%

of the utility reached by NBS. OEN mechanisms lead to the maximisation of an agent’s energy

allocation in a 14%. The percentage of deals reached was of 70% for the OEN’s approach,

against 50% and 100% for shortest-distance and NBS respectively. OEN also proved to reach

59% of the energy neutrality agreements reached by the optimal solution. Although this last

result is promising, the agreements reached with OEN were later improved with the inclusion of

a partner selection policy.

Chapter 5 presented a partner selection model based on bandits. State-of-the-art policies on

adversarial bandits were compared to find the most appropriate for OEN’s domain and its dy-

namism. The multi-armed bandit approach enables an agent to reach efficient energy allocation

in the long term. In every of the studied scenarios, the bandit strategies achieved improved

energy allocation agreements compared with the random selection mechanism. Using these es-

timations, an agent is also able to decide if envisaged negotiation is in fact helpful. The results

improved up to 39% against a random selection strategy in static conditions and up to 30%, 29%

and 27% in moderately dynamic, dynamic and extremely dynamic environments respectively.

Such improvement represents the maximisation of an agent’s energy allocation up to 53% in

static environments and up to 41% in an extremely dynamic condition.

The EXP3 policy achieved better results than FPL-UE and ε-Greedy at a large number of unex-

pected events as the environment tested became more dynamic. EXP3 can reach an efficiency

of 74% against the best selection strategy in the most challenging scenario studied in this thesis.

Thus, the introduction of reinforcement learning techniques feasible in the domain of WSNs, can
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bring more efficient energy agreements than the random selection strategy implicit in previous

studies.

Some negotiation techniques were reviewed and the heuristic approach was selected as the most

appropriate for this domain. The list of specifications for the domain of WSNs (Section 1.3) was

covered in all aspects, but further investigations can be derived to improve this first attempt of

negotiation-based cooperation model for the WSN domain.

The vision of WSNs cooperation demands mechanisms to enable an agent with self-configuration,

self-optimisation and self-management capabilities. The inclusion of negotiation in a highly het-

erogeneous environment helps to resolve conflicts and permit optimisation of network perfor-

mance by taking into account a wider geographical coverage and resource capacity. Therefore,

the design and evaluation of a negotiation process between WSNs become an important research

topic towards autonomic environments in IoT.

6.2 Future Work

The research developed in this thesis has successfully addressed the cooperation problem be-

tween co-located and independent WSNs. However, there are still interesting research opportu-

nities to realise the full potential of cooperative networks:

• Management of security. For the safe flow of offers and authenticity of the agreements,

new approaches are needed for addressing security in bilateral negotiation between sensor

nodes. Additionally, these privacy controls can protect the data exchanged autonomously

by the agents when cooperation proceeds and create a trust relationship between networks.

Security, in general, is a major concern in WSNs. The inclusion of security schemes has

a significant impact on energy consumption and memory usage [167]. Although there are

security controls for the E-commerce context [168], its nature is totally different, which

make these approaches incompatible with this domain. Thus, ensuring holistic security in

automated negotiation between agents in OEN represents a key research challenge for its

realisation.

• New cooperative routing protocols. Once the cooperation is agreed between networks,

the cooperation may proceed. As described in Chapter 2, energy sharing can take place

through the acceptance of energy-hungry services as data processing or packet forwarding.

In case agents implement cooperative packet forwarding, cross-network routing needs to

be possible. In the same way as cross-boundary data transmission at MAC level is already

feasible with ODI. Having different networks, there might be different network-layer pro-

tocols and multiple addressing schemes. Thus, there should be support for address transla-

tion, address mapping between the networks involved, or common identification of nodes.
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Additionally, new negotiation approaches can be developed. A scenario where multiple nodes

share the same area may consist of multi-lateral negotiations modelled as auctions. One-to-

many models in which multiple agents negotiate with a single agent can be proposed for the

multi-issue problem. In a single auction, agents place bids (buyers) on the energy resource

offered by an agent experiencing a surplus of energy and acting as a seller. As noted, in this

type of negotiation the roles are different and there is no way to perform communication of

offers and counteroffers. Moreover, auctions may require a mediator. However, new negotiation

approaches can be implemented based on single or double auction to study their impact and

feasibility.
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Abstract—As the Internet of Things grows, the number of wire-
less sensor networks deployed in close proximity will continue to
increase. By nature, these networks are limited by the battery
supply that determines their lifetime and system utility. To
counter such a shortcoming, energy harvesting technologies have
become increasingly investigated to provide a perpetual energy
source; however, new problems arise as a result of their wide
spatio-temporal variation. In this paper, we propose opportunistic
energy trading, which enables otherwise independent networks to
be sustained by sharing resources. Our goal is to provide a novel
cooperation model based on negotiation to solve coordination
conflicts between energy harvesting wireless sensor networks.
Results show that networks are able to satisfy their loads when
they agree to cooperate.

I. INTRODUCTION

Internet of Things (IoT) deployments in industries, cities,
healthcare and home automation are spread all over the
world. A core technology required for IoT are wireless sensor
networks (WSNs), which gather information from the envi-
ronment, analyse it, make decisions and act accordingly. In
many of these applications, sensor nodes are battery-powered
and limited in energy supply. Thus, one proposed solution is to
extend performance optimisation to the inter-network approach
by enabling cooperation among networks that co-exist in a
physical location [1]–[4].

Energy harvesting technologies have also gained widespread
attention to enhance node lifetime. Moreover, ways to capture
green energy from regenerative sources for self-sustainable
operation is a key driver in today’s low-power devices for
smart applications. However, energy harvesting wireless sensor
networks (EHWSNs) are conditioned to spatio-temporal vari-
ations of energy availability. The main objective of EHWSNs,
because of their unlimited power supply, is the optimisation
of their energy use to operate continuously. This mode of
operation is called energy-neutral operation: a harvesting node
achieves it if the energy supply during a harvesting period is
sufficient to replace the amount consumed during the same
time [5].

Adaptive algorithms have been developed to address the
spatio-temporal variation of ambient energy sources and scale
a node’s performance appropriately, in order to deliver energy-
neutrality. These algorithms typically adjust parameters such
as the duty-cycle or sampling rate [6], [7]. Other energy-

neutral algorithms exploit the spatial variation and distribute
load according to energy reserves [8]. However, these algo-
rithms are limited by the bounds of one network domain; i.e.
if one node is expecting insufficient energy and the rest has a
scarce energy input, no solution exists.

The cooperation problem among distinct WSNs has been
studied in a game theoretic setting [1], [2]. These works model
the behaviour of a network as a game to analyse the existence
of strategies, looking for equilibrium among rational players
that negotiate with each other to maximise their own benefit.
They focus on the conditions under which cooperation is the
best strategy in multi-domain WSNs, and make an exhaustive
search on the available space to find a solution for each
network’s authority (i.e. those that form a Nash equilibrium
with the highest possible lifetimes). For a WSN, this would
necessitate nodes making a significant effort to calculate and
store not only all their possible actions at each decision point,
but also the ones corresponding to the other nodes. This
is not feasible for devices with limited memory and power.
One approach to deal with this complexity is to simplify

Intra-network communication

Solar power

Wind power

Sink node

Sink node

Inter-network communication
Negotiating agents

Fig. 1: Direct interconnection between co-located EHWSNs.

the settings in which nodes interact with each other and
use heuristic methods. Before cooperation can be established,
networks should be able to interact and find a mutually-
acceptable agreement in favour of maximising their utilities.
In the domain of EHWSNs, they must find an energy flow that
deals with the spatio-temporal profile of their energy sources
and satisfies as much as possible their energy consumption
profile from collaborative effort. A multi-agent approach is a
natural fit to this setting as individual sensor nodes need to
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autonomously negotiate and form an agreement as to how to
share their resources [9], [10].

Against this background, we motivate the use of a solution
based on automated negotiation and propose a novel approach
to model cooperation between nodes with a direct intercon-
nection architecture, i.e. without an intermediary (Figure 1).
The contributions of the work reported in this paper are:
• An alternating offers protocol for the nodes to exchange

offers to trade energy-hungry services.
• An optimisation algorithm based on Linear Programming

(LP) to optimise the allocation of energy to maximise
individual actors’ preferences.

• An analysis of time-dependent negotiation strategies in
EHWSNs for energy re-allocation of distinct energy
harvesting sources.

• Results showing how negotiation can be delimited by a
short-term deadline and end in social-welfare maximising
deals.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We assume an initial simplified setting where two distinct
EHWSNs with a different type of energy harvesting source
(e.g. solar and wind) share the same location and direct
interconnection is possible between each pair of nodes with
overlapping radio range [11]. Our main motivation in inves-
tigating negotiation applied in this domain is to observe the
effects of cross-boundary energy transfer for sensor’s power
management and this setting is suitable for that purpose.

While it is convenient to envisage opportunistic energy
trading as physically transferring energy across a network
boundary, energy is actually logically transferred by accepting
energy-consuming tasks as data processing or packet forward-
ing [1]–[3]. For example, each network involved may control
the agreed energy flow by asking for/providing routing favours.

A. Model Assumptions

Each network Nk, k ∈ {1, 2} is formed by a set of unique
sensor nodes and a sink. Each node is controlled by an agent,
which is denoted as αk,i, i ∈ N. The agent has complete
knowledge of all the relevant node’s information, such as its
energy profile variables, battery capacity and residual energy.

We assume that the period at which energy is harvested by
a node is T (e.g. 24 hours for solar energy) and it is divided
into discrete time slots T = (1, ..., n) of equal duration L.

B. Energy Consumption Model

Each node controlled by αk,i consists of an energy harvester
unit, a rechargeable battery and several loads: a radio, CPU
and sensors. We use the energy model introduced in [12] and
define Ec

k,i = (Eck,i(1), ..., E
c
k,i(n)) : E

c
k,i ε R+ as the energy

consumed by αk,i over n time slots. At any given slot t, we
can calculate the total energy Eck,i that an agent αk,i consumes
as:

Eck,i(t) = V ·
[
D · Iactive + (1−D) · Isleep

]
· L (1)

Then, the energy is dependent on the duty cycle D, supplied
voltage V , active mode current Iactive and sleep mode current

Isleep. D is chosen by the application, while Iactive, Isleep

and V can be known in advance using datasheet information.

C. Energy Management Model

Our model is built on the models proposed by [5] and
[13]. We assume that all nodes can harvest energy and store
it in their battery for future use. Without loss of generality,
we assume that the replenishment of energy occurs at the
beginning of each time slot t.

The expected energy input during each slot t can be forecast
from historical information with a high level of accuracy.
Energy can then be allocated to each slot t. We use Eck,i(t)
and Ehrvk,i (t) to denote the energy profile variables for each
time slot. The amount of energy that can be generated by
the harvesting unit in n time slots is defined as Ehrv

k,i =

(Ehrvk,i (1), ..., E
hrv
k,i (n)) : Ehrv

k,i ε R+. For example, if the
harvesting period starts at 00:00 and L is 1 hour, then Ehrvk,i (1)
is the expectation for the energy harvested during slot 1 (from
00:00 to 01:00), Ehrvk,i (2) is the expectation of energy during
slot 2 (01:00 to 02:00), etc.
Bk,i(t) is used to represent the residual battery energy

at the beginning of slot t in agent αk,i. Then Bk,i =
(Bk,i(1), ..., Bk,i(n)) : Bk,i ε R+ denotes the battery level
in n time slots. The battery is characterised by a limited
capacity Bmaxk,i and charging efficiency η. The battery enables
an agent to save and use energy throughout a day, which
helps the agent to compute an energy allocation, Ealloc

k,i =

(Eallock,i (1), ..., Eallock,i (n)) : Ealloc
k,i ε R+, to assign the har-

vested energy Ehrvk,i to the energy consumed Eck,i by the load
of the node.

When Ehrvk,i (t) is lower than Eck,i(t), some of the energy
used by the sensor node is discharged from the battery. We use
d = (d(1), ..., d(n)) : d ε R+ to represent this amount. When
Ehrvk,i (t) is higher than Eck,i(t), all the energy used in the node
is provided by the energy source and the battery is charged
with the excess, as required. We use c = (c(1), ..., c(n)) :
c ε R+ to denote this amount in n time slots. Any excess
energy received at times when the battery is full is discarded by
the node. The energy that the agent is unable to use or store is
waste, denoted by wk,i = (wk,i(1), ..., wk,i(n)) : wk,i ε R+.
Then we can calculate the energy used from the battery in any
slot t as:

Bk,i(t)−Bk,i(t+ 1) = d(t)− η · c(t) (2)

In our domain, an opportunistic energy trade is triggered
when a node’s energy level has dropped below a threshold.
Then, the initial battery status Bk,i(1) is equal to η ·b where b
is the energy level at t = 1. At each time t, αk,i also considers
the amount of energy to receive/give from the negotiation,
which is defined by o = (o(1), ..., o(n)) : o ε R+. o represents
the offer of energy at each time slot, i.e. The issues of this
negotiation domain. We call these offers energy flow offers.
A valid energy flow offer must include the energy values
for the predetermined time of cooperation, e.g. If networks
expect to cooperate for 24 hours, then the energy flow must
include 24 values. The direction of the energy flow is denoted
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by a positive or negative sign. If positive, the amount is an
offer of energy from the agent to its opponent, otherwise, it
represents the energy to be received from the opponent. For
example, if two agents are willing to cooperate with each
other for a period of 2 hours and L is set to 30 minutes,
then an offer of energy from agent αk,i to the other party can
be o = [−1.88,−0.7, 18,−4]; where -1.88 mWh, -0.7 mWh
and -4 mWh represent the energy savings of αk,i from the
opponent’s cooperation (e.g. by packet routing) at time slots
1, 2 and 4 respectively, while αk,i compromises to provide 18
mWh through collaborative effort to its opponent at time slot
3.
D. Utility Function

The objective function of this model is described as the
total energy consumption that is satisfied (i.e. energy allocation
Eallock,i ) at period T . Then the utility of an agent represented
by u is defined as follows:

Objective maxu =
n∑

t=1

Eallock,i (t) (3)

Subjected to the following constraints:

Eallock,i (t) = Ehrvk,i (t)− c(t) + d(t) + o(t)− w(t) (c1)

Eallock,i (t) ≤ Eck,i(t) (c2)

Bk,i(t)−Bk,i(t+ 1) = d(t)− η · c(t) (c3)

Bk,i(1) = η · b (c4)

0 ≤ c(t) ≤ Bmaxk,i (c5)

Eck,i(t)− Ehrvk,i (t) ≤ d(t) ≤ Bmaxk,i (c6)

0 ≤ Bk,i(t) ≤ Bmaxk,i (c7)

0 ≤ w(t) ≤ Ehrvk,i (t) (c8)

Equations (c1) and (c2) represent the energy balancing con-
dition. The allocated energy to a node defined by the harvested
energy, battery flow, the energy offer and waste is equal or
smaller than the node’s load at time slot t. Equations (c3)-
(c7) define the battery status and flows constraints regarding
its capacity. Equation (c8) is used to guarantee that the energy
waste is an excess of the energy harvested.

The solution to the optimisation problem yields the amount
of energy that must be allocated to a sensor node in every t
and the evolution of residual energy in its battery over period
T . Following the model described, an agent can compute the
optimal energy flow that benefits both agents, but this requires
complete information and high computation capabilities since
the set of all possible agreements is exponential in the number
of time slots. Cooperative approaches must ideally result in
Pareto-efficient outcomes, which means that one agent cannot
be better off without making the other agent worse off. In
section IV, we present a cooperative solution that satisfies this
property of efficiency known as the Nash Bargaining Solution
(NBS) [14] to find an agreed energy flow between agents, but
first, we describe the heuristic model used for the bargaining
process of this domain.

III. HEURISTIC APPROACH FOR OPPORTUNISTIC ENERGY
TRADING

There are four fundamental parts in a negotiation model
described by a heuristic approach: 1) the negotiation protocol
or rules of interaction for the agents, 2) the definition of issues
or objects in contention (see II-C), 3) the utility function or
agents’ preference model (see II-D), and 4) the tactics or
offers’ generator functions that are applied during the bargain-
ing process, which along with the utility function comprise
the decision making apparatus the participants employ to act
according to the negotiation protocol and reach their desired
goals [15], [16]. The protocol and tactic employed are defined
below.

A. Multi-issue Bilateral Negotiation Protocol

We adopt Rubinstein’s alternating-offers protocol [17] for
the negotiation of energy among neighbouring EHWSNs. In
a bilateral negotiation, both agents desire to cooperate but
have conflicting interests regarding their preferences (in this
domain due to distinct batteries, power consumption and
energy harvesting profiles).

According to the protocol, all the agents involved have
one turn per round to respond to the current state of the
negotiation. One of the negotiating agents starts with an offer
to its opponent. Whenever an offer is made, the opponent
can accept or reject the offer. If the offer is accepted, then
the bargaining ends and an agreement is reached. If the offer
is rejected, the agent in turn proposes an agreement, which
again the opponent may accept or reject in the next round.
We continue the negotiation until a final negotiation round.
When one negotiating agent reaches a final round without a
favorable response or an agreement is found, the negotiation
ends. In the first case, the negotiation fails and terminates with
no deal possible.

In our domain, we must consider the number of messages
exchanged between nodes and limit the negotiation to a short-
term deadline. Thus, a predefined maximum negotiation round
is set. Specifically, in our scenario, automated negotiation
can complete in seconds, which makes time inappropriate
to model the deadline. In each negotiation round, an offer
contains multiple issues that are negotiated simultaneously. We
assume that the knowledge of the negotiation domain (issues,
deadline, initial negotiating agent) is known by both agents
beforehand, and is not changed during the whole negotiation
process. As defined in II-C, o represents the offer of energy.
Thus, or1,1→2,1 is a vector of values proposed by agent α1,1

to agent α2,1 at round r, where or1,1→2,1(t) is the value of
energy proposed from α1,1 to α2,1 for time t. Each issue o(t)
has an acceptable range of values represented as the interval
[mink,io(t),maxk,io(t)].

B. Negotiation tactic

In the negotiation context, heuristics are useful for the
generation of initial offers, evaluation of proposals and de-
cision of counter offers, based on computational approxima-
tions that produce good close to Pareto-efficient outcomes.
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The main advantage of using heuristics in this domain is
to model encounters between networks that are discovered
opportunistically and have no information about the resources
and preferences of each other.

Faratin et al. [15] studied strategic negotiation between
autonomous computational agents and develop a formal model
of reasoning to address the coordination problem. They defined
a number of heuristic functions, which receive the name of tac-
tics and use a single criterion (time, resources, behaviour, etc.)
to generate new values for each issue in the negotiation set.
The following family of tactics for counter-offer generation
were applied in this domain.

1) Time-dependent tactics (TDT): The time elapsed in the
negotiation is what conducts the values of the negotiation is-
sues. It is the same for rounds, the more rounds has passed the
more pressure is induced and faster concessions are possible.
Then the value of o(t) proposed by agent α1,1 to agent α2,1

at round r is giving by the following equation:
If α1,1’s utility decreases with issue o(t):

or1,1→2,1(t) = min1,1o(t) + γro(t)(max1,1o(t)−min1,1o(t))
(4)

If a’s utility increases with issue o(t):

or1,1→2,1(t) = min1,1o(t) + (1− γr
o(t))(max1,1o(t)−min1,1o(t))

(5)
We define γro(t) as a polynomial function parameterised by

β ∈ R+
n as follows:

γro(t) = k1,1o(t)+(1−k1,1o(t))(min(r, rmax1,1)/rmax1,1)1/β

(6)
The constant k at t = 1 represents the initial bargaining

value of o(t) while rmax is the deadline. β>0 defines the
convexity degree of the curve. When β > 1, the agent is
benevolent and characterised by a conceder behaviour (such
tactic is called Conceder) and the offer rapidly changes to the
reservation value. At 0 < β < 1, the agent is tough and main-
tains its initial offer until it almost approaches the deadline
(such tactic is known as Boulware). We limit our examinations
to these negotiation tactics, while behavioural heuristics would
be more appropriate in a dynamic environment as EHWSNs.
But, these are less successful in short-term deadlines [15].

IV. NUMERICAL ANALYSIS

We assume agents observe that their residual energy level
has dropped below the threshold set, they are appropriately
synchronised and plan to cooperate for the next 24 hours,
which start at 00:00 and end at 23:00 local time with L=1
hr, i.e. agents negotiate an energy flow of 24 values. Then T
corresponds to the same period and time slots T = (1, ..., 24).
Numerical results are shown to demonstrate the performance
of the agents with trading over the individualistic approach.
All the results are obtained using MATLAB.

A. Simulation Setup

In this section, we study the problem of cooperation in a
simplified scenario with a pair of nodes (each from a different

network); negotiating agents α1,1 and α2,1 of N1 and N2,
respectively.

Agent α1,1 is simulated as controlling a Memsic eKo mote,
containing a 3.3 cm × 6.35 cm photovoltaic cell (assumed to
be 10% efficient) to recharge a 600 mAh battery. We consider
η = 0.7, which is typical of NiMH batteries. Agent α2,1

is simulated as controlling a Memsic MICAz node, with a
micro-wind turbine to recharge a 600 mAh battery. The energy
model in II-B is used to evaluate the energy consumption
of both agents, using parameters obtained from empirical
measurements and datasheets [18]. We consider a realistic
scenario where an eKo node operates at 1% duty cycle, and
the average power consumption is 0.615 mW. For the MICAz
mote, an average load of 2.86 mW at 5% duty cycle of
operation is expected. Thus, agent α1,1 and α2,1 demand 0.615
mWh and 2.86 mWh of energy in each time slot, respectively.
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Fig. 2: Solar (agent α1,1) and wind energy (agent α2,1) harvested
throughout a day.

The meteorological information used to compute the en-
ergy generation corresponds to the area of Southampton, UK
(50.8997◦N , -1.3955◦W , Elevation 32 m) [19], [20].

The values of solar irradiance from April 2017 are used to
estimate the hourly power output of a photovoltaic system for
a day, which is proportional to the solar radiation, the panel
dimension, and its efficiency. The estimated hourly energy
output is shown in Figure 2. The energy exhibits a temporal
variation that favours time slots 6-19 which correspond to
times 05:00-18:00. The total energy generated is 452 mWh.

We adopt daily data from April 2017 to estimate the hourly
average wind speed for a day. The power from the wind source
can be calculated from its speed as in [21] considering a swept
area of 5 cm × 5 cm for the wind turbine. From April data,
we chose April 1st. The diversity between generation times in
solar and wind creates an opportunity for energy trading. Then
we scale this data to get the hourly power output of a highly
efficient micro-turbine (Figure 2). The total energy generated
in a day is 41.4 mWh.

B. Results

With the nodes’ information and energy profiles described
above, agents can compute their utilities (without trading)
using the LP model described in Section II-D when the offer o
is null. We compare the utility achieved by the agents without
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Fig. 3: Agent α1,1: Results of utility maximisation without trade,
with NBS and with TDT.

trade, by NBS and by the bilateral negotiation protocol using
TDT. Figures 3 and 4 for agents α1,1 and α2,1 respectively,
show how agents can increase their utilities via cooperation
and reduce the waste of energy excess. As presented in
Figures 3.(a) and 4.(a), the energy allocation without trade
is insufficient at time slots 1-5 for agent α1,1 and 10-13, 17-
24 for α2,1, while it is equal to the load when there is energy
trading. Thus, u for α1,1 increases from 0.79 to 1 and 0.59 to 1
for agent α2,1 when they reach an agreement to cooperate. The
achievement of energy-neutrality in both scenarios depends in
this case on the amount of unused energy from both agents
and their matching requirements.

The results shown of TDT are obtained for a negotiation
deadline set to 10 rounds. At the beginning of the negotiation,
the agents make the offers that give the highest utility
to themselves. No matter how low or high we vary the
concession shape β (0.5 or 1.8) for any agent, the negotiation
process with TDT ends with these results. If agent α1,1

starts, the process ends in the first round, otherwise it ends
in the second round after α2,1 agrees with the counter offer
of agent α1,1. Agent α1,1 has a large excess of energy to
offer that satisfies agent α2,1 requirements (Figure 3.(b)
Without Trade) and α2,1 is also able to assist α2,1 in its
lack of energy during periods 1-5. In result, the utilisation
of energy is maximised from 52.2 mWh to 83.3 mWh by
negotiation while maintaining the application performance at
the same rate at all times, i.e. the duty cycle is not affected.
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Fig. 4: Agent α2,1: Results of utility maximisation without trade,
with NBS and with TDT.

Then, the total energy saved via cooperation can be up to
7.08% for one day of the energy generated. The energy saved
corresponds to the energy reallocated in cooperation which
would otherwise go to waste without trade. The reduction of
energy waste is illustrated in Figures 4.(b) Without Trade and
Figure 4.(b) with TDT. Figures 3.(c), 3.(d), 4.(c) and 4.(d)
show the state of the battery during the day for each agent,
where the battery level matches the dynamics of the charging
and discharging flows and none exceeds the maximum battery
capacity. The difference in the battery dynamic between
NBS and TDT depends on the negotiation’s final outcome.
For NBS, the solution corresponds to the offer o1,1→2,1 =
[−1.88,−0.96,−0.62, 0, 0, 2.75, 1.78, 3.57, 1.23, 14.77, 1.07,
1.37, 2.7, 2.88, 5.33, 1.94, 3.25, 4.91, 2.64, 0, 0, 0, 0, 0]
while TDT finishes in o1,1→2,1 =
[−0.61,−0.61,−0.61,−0.61,−0.61, 3.54, 17.61, 28.49, 36.59
, 41.75, 44.59, 45.91, 45.92, 44.63, 41.8, 36.63, 28.63, 17.86,
5.39, 0, 0, 0, 0, 0], which represent the 24 energy values (in
mWh) agreed for a day of cooperation.

To evaluate the proposed cooperation model and compare
the different agent behaviours, we make a slight change and
match the load of agent α1,1 to agent α2,1. The results are
shown in Table I as the agent that starts the negotiation, who
finishes it, behaviours, utilities and final round. The following
cases are considered:
• Case 1: Both agents employ a Conceder tactic.
• Case 2: Both agents employ a Boulware tactic.
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• Case 3: α1,1 is tough while α2,1 concedes.
• Case 4: α1,1 concedes while α2,1 is tough.

TABLE I: Comparison between different negotiation cases

First turn Final turn Case u α1,1 u α2,1 Final round
α1,1 α2,1 1 0.93 1 2
α2,1 α2,1 1 1 0.94 2
α1,1 α2,1 2 0.97 0.96 7
α2,1 α2,1 2 0.97 0.96 8
α1,1 α2,1 3 1 0.93 2
α2,1 α2,1 3 1 0.94 2
α1,1 α1,1 4 0.91 1 3
α2,1 α1,1 4 0.91 1 3

In those situations, energy-neutrality is only accomplished
by one agent at a time and only when the opponent is
benevolent. We can see that it is not possible to satisfy
any energy consumption profile if both agents adopt a tough
negotiation strategy. Similar to our simulation result before,
the required number of rounds is low. The highest energy
utilisation is given whenever agent α2,1 concedes faster at the
beginning of the negotiation and while it has the first turn. In
both cases, agent α1,1 reaches energy-neutrality. The second
result of the table matches the utility levels reached by the
optimal solution if a central and trustable authority is available
to collect the information about the agents and calculate NBS.
Since most of the parameters are the same for both agents
(except the energy harvested), the available energy is a decisive
factor in the establishment of cooperation. When sensors are
energy-aware, spontaneous cooperation cannot take place and
thus, a negotiation is required.

The presented results provide some insight on cooperation
initiated by a negotiation, but more simulations have to be
conducted to evaluate the model. For example, in our sce-
narios, additional costs for energy re-allocation, e.g. due to
offers exchange, are not yet considered. Such issues, as well
as further investigation in the effect of the network’s dynamism
on the negotiation model, is required.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a model of EHWSNs
and also applied a negotiation heuristic based on a TDT to
optimally allocate the harvested energy by the nodes involved
at each time slot. The main advantage of this cooperation
initiated by a negotiation is that it allows to establish an oppor-
tunistic interaction between networks that cannot be conceived
at design time about the resources of their neighbours, leading
to a more integrated system of EHWSNs, while at the same
time the use of the energy harvested is maximised.

The vision of WSNs cooperation brings many implications
(from protocol diversity to security concerns), where several
steps must be taken in order to ensure an effective interaction.
One of the main challenges in extending power management to
an area wider than the boundaries of one domain is the hetero-
geneity in terms of resources, which is the problem addressed
in this work. An essential factor to establish cooperation is to
know the costs and benefits that will incur to the parties. Here,

a negotiation approach has been evaluated as a mechanism for
networks to communicate and compromise to reach mutually
beneficial results. In the future, we expect to extend the model
to consider multiple nodes and the uncertainty generated by
the energy availability and unexpected weather conditions.
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