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Acoustic Room Modelling
using 360 Stereo Cameras
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Abstract—In this paper we propose a pipeline for estimating
acoustic 3D room structure with geometry and attribute predic-
tion using spherical 360◦ cameras. Instead of setting microphone
arrays with loudspeakers to measure acoustic parameters for
specific rooms, a simple and practical single-shot capture of
the scene using a stereo pair of 360 cameras can be used to
simulate those acoustic parameters. We assume that the room
and objects can be represented as cuboids aligned to the main
axes of the room coordinate (Manhattan world). The scene is
captured as a stereo pair using off-the-shelf consumer spherical
360 cameras. A cuboid-based 3D room geometry model is esti-
mated by correspondence matching between captured images and
semantic labelling using a convolutional neural network (SegNet).
The estimated geometry is used to produce frequency-dependent
acoustic predictions of the scene. This is, to our knowledge, the
first attempt in the literature to use visual geometry estimation
and object classification algorithms to predict acoustic properties.
Results are compared to measurements through calculated rever-
berant spatial audio object parameters used for reverberation
reproduction customized to the given loudspeaker set up.

Index Terms—Indoor geometry reconstruction, Audio-visual
processing, Room acoustic modelling, Geometrical acoustics

I. INTRODUCTION

AUDIO-VISUAL data is the most familiar format of multi-
media information acquired in our daily life. most cases,

they are already paired as audio-video streams used in nu-
merous fields such as media production and reproduction [1],
games [2], and education [3]. Audio and image processing
have been investigated as separate research areas, typically
ignoring their synergy when they work together. Recently,
some works have been proposed to exploit their multimodal
information, for applications such as speaker tracking [4],
speech recognition [5], and event detection [6]. In this pa-
per, we apply computer vision techniques to support audio
reproduction adapted to the acoustics of a specific location.

The motivation here stems from spatial audio reproduction,
where knowledge of the acoustics of a space could allow for
more accurate reproduction of a captured environment, or for
reproduction room compensation techniques to be applied.
In the acoustic design of spaces, either existing or at the
planning stage, Room Impulse Responses (RIRs) can be used
to predict aspects such as strong echoes or Reverberation
Time (RT60) [7], which can improve the overall designed
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acoustic. Through application of spatial audio techniques these
environments can also be reproduced/auralized, allowing the
listener to experience a space without being there. Although
RIRs can provide accurate information about the acoustics of a
room at a specific location, they are inherently restricted to pre-
existing spaces, and the number of required measurements for
some applications can rapidly become impractical. Acoustic
measurements are sometimes difficult to obtain, especially,
considering our daily environments. For instance, recording
setups may be too invasive to be deployed at a listener’s home,
and typical techniques, such as the swept-sine [8], may be too
intrusive to be adopted by final users. Multiple set-up and
recordings are required to get RIRs at multiple points in the
room. If any RIRs in certain points are missing in the first
recordings or major reflective objects in the room are moved,
repeated setting and recordings in the room are inevitable.

Acoustic predictions from images offer an attractive alterna-
tive. In computer vision, estimating semantic room geometry
is a classic problem with a wide range of applications. There
have been many studies on room geometry estimation from
small and simple visual sensors [9], [10]. With the progress
of deep learning techniques, there has been good improve-
ment in semantic 3D scene reconstruction to identify known
objects in the scene together with the room geometry [11],
[12]. One area of interest is the application of vision-based
geometry estimation to compensation techniques for spatial
audio reproduction in rooms [13]. If the RIR at the listening
position for each loudspeaker is known, it is possible to
adjust the loudspeaker signals to compensate for alterations
in the frequency response, strong early reflections, or to some
extent the level of reverberation [14]. This is particularly
the case in the context of recent interest in object-based
audio, where more control is passed to a renderer at the
reproduction end [15]. For instance, recorded RIRs can be
parameterized to generate Reverberant Spatial Audio Objects
(RSAOs) [16]. However, by estimating the room geometry,
predictions can be made when acoustic measurements are not
available. This scenario also fits new research areas, such as
mixed reality [17].

For simulation of an acoustic environment a robust method
for obtaining room geometry is required. Recognition of
3D structure and material properties using Red-Green-Blue
(RGB) [18], [19] or RGB+Depth (RGB-D) [20] images have
been important problems. However, current approaches using
normal perspective or RGB-D cameras have the following
limitations for complete indoor semantic scene reconstruction.
First, indoor scenes generally include textureless and non-
Lambertian surfaces which result in errors in feature detection
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and matching causing incorrect 3D geometry estimation. Sec-
ond, normal or RGB-D cameras have limited field-of-views
(FOV) capturing only a part of the whole environment. For a
complete scene layout estimation, multiple input images from
different views and a fusion technique are required.

Cuboid-based simplified room geometry modelling using a
pair of spherical 360◦ cameras (hereafter referred to as 360
cameras) provides a potential solution for the above problems.
For cuboid model reconstruction, room interiors are assumed
to be composed of planar surfaces aligned to the main axes
(Manhattan world) as introduced in [21]. Although not always
the case, room layouts and larger objects in the room often
fit with this assumption. It is well-known that human auditory
perception is not sensitive enough to recognize differences of
sound from small changes of geometrical details [22]. It is
also known that visual information increases plausibility of
rendered audio for an environment [23]. Complex represen-
tations of the scene require a high computational cost and
run time, making acoustic simulation impractical in many
cases. In contrast, approximated geometry allows the use
of simple acoustic models to generate synthetic versions of
the environment’s acoustics in an efficient way. Therefore,
simplified geometric models have been commonly used for
room acoustics modeling [24].

In this paper, we propose a cuboid-based semantic room
layout modelling pipeline for room acoustics estimation using
a pair of off-the-shelf consumer 360 cameras. Two spherical
360 images captured by a pair of cameras are used to produce
a complete scene model with semantic object information.
The approach assumes that room interiors are composed of
planar surfaces aligned to the main axes (Manhattan world) as
proposed in [21]. Cuboid-based scene elements are detected
and aligned to the main axes using stereo matching, and their
object classes are predicted by a convolutional neural network
trained for semantic segmentation (SegNet) [25]. This pro-
duces a complete scene model with a compact representation
for acoustic predictions.

Preliminary versions of the methods presented in this paper
have been previously published. In [26], indoor scene mod-
elling with object and material attribute information using a
multi-scale Convolutional Neural Network (CNN) has been
proposed. In [27], a frequency-dependent acoustic prediction
technique based on geometrical room modelling has been
introduced. This is, to our knowledge, the first attempt in
the literature to use visual geometry estimation and object
classification algorithms to predict acoustic properties. How-
ever, cuboids are inferred from planar surface detection and
materials are manually assigned in [27]. The main novelties
of this paper distinguished from our preliminary works are:
• Cross-disciplinary integration of computer vision and

audio processing to enable plausible acoustic simulation
and adaptation of audio reproduction to the environment.

• Complete end-to-end system architecture proposed for
acoustic room modelling using off-the-shelf consumer
360 cameras.

• Method proposed for acoustic room modelling using
visual semantic segmentation and recognition (Section
III-C and E)

• Method proposed for cuboid-based room layout and ob-
ject geometry reconstruction using point-cloud occupancy
(Section III-D)

• Objective evaluation of visually-estimated room acoustics
conducted in terms of RSAO parameters.

• Public audio-visual data sets released with visual captures
and ground-truth RIRs

The rest of this paper is organised as follows: Section II
provides survey of recent works in relevant research fields
and Section III overviews the proposed system and describes
details of the proposed methods. Section IV introduces the sys-
tem set up and data sets used for the evaluation. Experimental
results and discussion are given in Section V, and Section VI
makes conclusions of this paper.

II. RELATED WORK

A. Approximated room geometry reconstruction

Indoor 3D scene reconstruction has been a long-standing
area of research. Multi-view stereo and structure from motion
methods using multiple photos or videos have been widely
investigated [9], [28]. As low-cost RGB-D cameras have
become readily available, various 3D reconstruction methods
have been proposed using colour and range data. KinectFusion
[29] made a great impact on real-time dense scene recon-
struction with a RGB-D camera and has been extended for
large scale scene modelling. Public RGB-D indoor datasets for
the benchmark assessment have also been presented including
ICL-NUIM [30], SUN3D [31], NYU [32], [33]. However,
the limited FOV presents a challenging problem to ensure
complete scene coverage for reconstruction as mentioned. In
order to cover the occlusion and FOV problems, 3D scene
completion was proposed by Song et al. [34]. From a given
single RGB-D image, they build a semantically labelled 3D
voxel structure including occluded and non-surface regions.
This was extended to extrapolate 360 structure beyond the
FOV [35]. However, the performance is strongly dependant
on the training sets. Recently Dai et al. [36] proposed a self-
supervised scene completion of RGB-D scans but this requires
RGB-D video input.

Spherical imaging provides a solution to overcome this cov-
erage problem. Schoenbein et al. [37] proposed a high-quality
omnidirectional 3D reconstruction of Manhattan worlds from
catadioptric stereo video cameras. However, these catadioptric
omnidirectional cameras have a large number of systematic
parameters including the camera and mirror calibration. In
order to get high resolution spherical images with simple and
accurate calibration and matching, Point Grey developed an
omnidirectional multi-camera system, the Ladybug1. Spheron
developed a line-scan camera, Spheron VR2, with a fish-
eye lens to capture the full environment as an accurate high
resolution / high dynamic range latitude-longitude image. We
used this Spheron VR for simplified scene modelling in our
preliminary works [26], [38]. Li [39] has proposed a spherical

1Ladybug, https://www.flir.com/iis/machine-vision/
spherical-vision-systems

2Spheron, https://www.spheron.com/products.html
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image acquisition method using two video cameras with fish-
eye lenses pointing in opposite directions. The biggest problem
of the spherical stereo imaging from fish-eye lenses is large
errors around epipoles and complex search along conic curves
for stereo matching. This problem has been solved with
accurate calibration and rectification. Various inexpensive off-
the-shelf 360 cameras with two fish-eye lenses have recently
become popular3,4,5.

Dense depth map estimation pipeline using a narrow-
baseline video clip captured by a 360 camera was proposed
by Im et al. [40], but the reconstructed scenes have large
incomplete regions due to the occlusion from the camera.
Acoustic rendering requires an air-tight structure so that the
sound does not escape from the space. One shortcoming of
learning-based scene completion and recognition using 360
cameras is the lack of ground-truth 360 scene data. Recently,
a few 3D 360 datasets have been released such as Stanford
2D-3D-Semantics dataset [41] and Matterport 3D [42], but
the Stanford 2D-3D-Semantics comprises only 6 academic
buildings and Matterport 3D covers only 90 private homes.
Moreover, they are not directly captured from 360 cameras
but rendered from 3D point clouds. Therefore, we propose to
build an approximated complete geometry with cuboids and
estimate object materials using 360 semantic segmentation by
cubic projection and image decomposition to utilise existing
RGBD datasets.

B. Semantic segmentation

Semantic segmentation aims to label every pixel in the
image into a set of known classes. Zhu et al. [43] provide
a good survey of semantic segmentation methods using RGB
images. After the breakthrough results on ImageNet [44], the
traditional pipeline of semantic object classification has been
replaced by CNN [45]. Semantic segmentation CNN archi-
tectures continue to evolve, improving segmentation accuracy
whilst shortening training times, reducing complexity and
providing real-time performance. Modern CNNs for semantic
segmentation often use an encoder-decoder architecture to
exploit features learnt in object classification architectures
[46] which internally encode input images into low resolu-
tion feature maps. After pre-training on large datasets [47]
the produced feature maps provide strong representations of
scene objects. Semantic segmentation networks [25], [48]–
[50] implement decoder components that learn to map these
low resolution feature maps to input resolution predictions for
classification.

CNNs have been used for semantic object detection and
segmentation in various ways [51]–[53]. Eigen and Fergus [19]
proposed an hierarchical fully convolutional networks (FCN)
architecture composed of three scales. The first scale is VGG-
FCN [52], and its output is up-sampled, concatenated with
a higher resolution version of the input images at the next
scale. The same process occurs at the interface between the

3Insta360, https://www.insta360.com/
4Go Pro MAX, https://gopro.com/en/gb/shop/cameras/max/

CHDHZ-201-master.html
5Ricoh Theta, https://theta360.com/en/

second and third scales. Noh et al. [48] build deconvolutional
and unpooling layers on top of VGG 16 [46], utilising the
pooling indices of encoded feature maps during upsampling.
SegNet [25] follows a similar scheme but reduces the number
of training parameters by discarding the fully connected layers
of VGG 16. This proves to lower memory consumption and
improve training and inference times whilst maintaining state-
of-the-art performance.

C. Acoustic room modelling

Accurate models of a RIR characterizing an acoustic en-
vironment provide acoustic attributes that allow to reproduce
the acoustics of the space under investigation [7]. Classical
state-of-the-art methods to approximate RIRs are the image
source [54] and the ray tracing [55] methods. Although these
methods can accurately model the early reflections, they are
not able to correctly approximate the late reverberation, due
to their point-based representation of the reflections. Further-
more, they do not consider phenomena like diffraction, thus
a small surface at low frequency will be wrongly modeled
with pure classical methods [56]. During the last decades new
approaches have been proposed to better model RIRs, with a
particular attention on approximate the low frequency modal
propagation. With this purpose, popular approaches are the
finite difference time domain (FDTD) [57], [58] and the dig-
ital waveguide (DWG) [59]–[61]. Other approaches focus on
mainly modeling the late reverberation, by approximating its
Gaussian statistics [62]. The power spectrum that is indicative
of the size of the space and absorbing power of the materials is
also typically considered using the Sabine’s equation [63]. In
this article, we employ an acoustic room model that joins the
strengths of state-of-the-art approaches, by forming a standard
hybrid approach [56]: the early reflections are modeled by
using the image source method [54], the later reflections
by using the ray tracing [55], and the late reverberation by
following a statistical approach [63].

III. PROPOSED METHOD

A. System overview

In this research, we propose a simple and efficient method
to estimate acoustic RIRs from visual capture. The examples
presented in the block diagram of Fig. 1 show the process
for acoustic room modelling in a normal room environment.
A full surrounding scene is captured by spherical 360 cam-
eras at two different heights. Each image is mapped to a
latitude-longitude (equirectangular) image and they are aligned
to the room coordinate axes by cubic projection and line
alignment. Then the process is split into two processes: 3D
reconstruction and semantic object segmentation. Depth of the
scene is estimated by stereo matching between two images.
For semantic scene segmentation and object recognition, the
spherical 360 image is projected onto a cube centred on the
camera giving perspective images. Object regions are detected
with SegNet from each projected perspective image, and
the labels are back-projected to the original equirectangular
format. Labelled cuboid structure is reconstructed from the
depth information and semantic segmentation. This geometry
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Fig. 1. Block diagram of the proposed system

and object information is used as an input to the acoustic room
modelling pipeline. Frequency dependent acoustic simulations
are broken down into three sections: early reflections derived
from an image source model (ISM) (providing a deterministic
early temporal response); later reflections and onset of the
reverberant decay follow a ray tracing approach; and the late
reverberant tail using Gaussian shaped and filtered white noise,
with an envelope based on the decay of the preceding solution.

B. Visual capture system and Manhattan-world alignment

To recover 3D scene information, the scene is captured
as a vertical stereo image pair. It can be captured by one
camera at two different heights for a static scene or by a
vertically aligned camera pair at the same time as shown
in Fig. 2 (a). Two Theta S cameras by Ricoh are used in
our experiments because it provides well-aligned seamless
stitching with minimal distortion in mapping to the Spherical
coordinates among the 360 cameras introduced in Section II-A.
Photos acquired from two pre-calibrated fish-eye lenses are
stitched to each other to generate an equirectangular projection
image as illustrated in Fig. 2 (b).

A vertical stereo set up is used rather than typical horizontal
stereo. There are several advantages in using vertical stereo for
360 captures:

1) Depth can be estimated by simple 1D stereo matching
along the vertical longitude line, while horizontal stereo
requires a complex search along conic curves [64]

2) The other paired camera is visible and occlude large
portion of the scene in the horizontal stereo set up.

3) Depth errors resulting from incorrect stereo matching
increase as the elevation angle to the baseline decreases

(a) Camera set up (b) Equirectangular projection image

Fig. 2. Visual capture system

Fig. 3. Cubic projection and projected side images

as reported in [65]. This error diverges to infinity at
the poles (blind spot). The vertical stereo system makes
these blind spots on the ceiling and floor which are less
important and can be easily concealed by neighbouring
information, while the horizontal stereo system makes
the blind spots on the side which may include important
scene information.

Even though the baseline of the vertical stereo camera
system is perpendicularly aligned to the ground, the spherical
coordinate of each 360 camera can be misaligned either to
each other or to the world (room) coordinate system. For
image alignment to the room coordinate (Manhattan-world)
system, cubic projection and Hough-line based optimisation
as proposed in [26] are utilised. A Manhattan-world cubic
projection image gives good advantages in piece-wise planar
scene reconstruction as it generates central-point perspective
projection images in which horizontal and vertical lines in
the scene are aligned to horizontal and vertical directions in
each projection image, respectively, and the lines aligned to
the depth direction converges to the image centre as observed
in Fig. 3. The optimal α (X-axis), β (Y-axis) and γ (Z-axis)
rotation angles to align the image to the Manhattan-world are
found by Eq. (1), where k represents the k-th face image
in the cubic projection, H the lines detected by the Hough
line detection, and C the cubic projection of the image I.
The Hough lines are categorised into general Hough lines H,
horizontal Hough lines Hh, and vertical Hough lines Hv, where
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horizontal and vertical Hough lines represent those detected
parallel and perpendicular to the horizon within 1◦ of angle
tolerance. The optimal rotations are detected by maximising
the following term. We use a greedy search with multi-scale
sampling within the range of -45◦ < (α ,β ,γ) < 45◦ as the
alignment is repeated every 90◦.

(αopt ,βopt ,γopt) = argmax
α,β ,γ

6

∑
k=1

|Hh
k (α,β ,γ)∪Hv

k (α,β ,γ)|
|Hk(α,β ,γ)|

(1)
Hk(α,β ,γ) = H(Ck(R(α,β ,γ)I(x,y,z)))

C. Semantic scene segmentation and object labelling

Semantic segmentation of the scene is performed with
SegNet [25] to provide pixel-wise object labels of the scene.
SegNet is a deep fully convolutional neural network archi-
tecture for semantic segmentation, designed to be efficient
during training and inference whilst maintaining state-of-the-
art performance. The network employs an encoder-decoder
architecture, applying the first 13 convolutional layers of
VGG16 [46] to encode an input image into low resolution
feature maps before upsampling (decoding) them into sparse
feature maps. SegNet’s novel decoder utilises max-pooling
indices memorised during encoding to upsample, reducing the
memory required during inference significantly. Per-pixel class
probabilities are the final output of the system after a multi-
class soft-max classifier is applied to the decoder’s final output.

The SegNet implementation [25] provides a model trained
on the SUN RGB-D indoor scenes dataset [66] to semantically
segment structure and objects in images of indoor scenes (only
the RGB colour channels are used in the architecture). To
determine object labels, a captured spherical (equirectangular)
image is projected onto planes on a unit cube in the Cartesian
domain to provide six perspective images of the scene. Each
plane is set to 4:3 aspect to match to the trained SUN RGB-
D dataset format, and to compensate recognition error at the
image boundaries. Due to cuboid alignment, two of the images
are directed towards the ceiling and floor and are classified
as such. The other images are individually inferred using
the trained model to provide four semantically segmented
images. Figure 3 shows the extended cubic projection and an
example of projected side face images for the equirectangular
image in Fig. 2 (b). All six output labelled images are back-
projected to provide a fully labelled equirectangular image the
same dimensions as the captured spherical image. Utilising
this backprojection technique permits the use of segmentation
models trained on standard indoor scene datasets without
requiring currently unavailable large scale labelled spherical
image datasets. Finally, the labelled image is refined by mor-
phological opening process [67] to separate partially connect
objects with the same label and smooth object boundaries.
Small regions are eliminated to generate simplified scene
structure. Each labelled region is indexed to be considered
as independent object reconstruction in Section III-D.

(a) Spherical stereo geometry (b) Disparity (depth) map

Fig. 4. Depth estimation using a pair of spherical stereo images

D. 3D Geometry Reconstruction

3D geometry of the scene is reconstructed using dense
stereo matching with spherical stereo geometry illustrated in
Fig. 4 (a). If we assume the angles of the projection of the
point P onto the spherical 360 image pair displaced along
the Z-axis are θt and θb respectively, then the angle disparity
d of point pt(xt ,yt) can be calculated as d(θ) = θt −θb. The
distance of the scene point P from the top camera is calculated
by triangulation as Eq. (2), where B is the baseline distance
between the camera’s center of projection.

rt = B/
(

sinθt

tan(θt +d)
− cosθt

)
(2)

Stereo matching can be carried out along the epipolar lines
which are vertical column lines in the equirectangular vertical
stereo images. Recently deep learning based stereo matching
algorithms have made a good progress in depth estimation
from image pairs [68]–[70] as well as classical matching
algorithms [71]. Deep learning-based methods require a large
training dataset and long processing time for equirectangular
image pairs. As only an approximated geometry is required
in the proposed pipeline, we use a classic dense stereo
matching method [65] incorporating a region-diving technique
[72] which quickly produces reliable disparity fields for the
complete scene by detecting occluded and ambiguous regions
based on bi-directional consistency and the ordering constraint.
Figure 4 (b) shows the disparity map estimated from Fig.
2 (b). Black regions indicate occlusion or unmatched areas.
0◦ ≤ θ < 5◦ and 165◦ < θ ≤ 180◦ regions have been cropped
because depth from disparity near the epipole areas (blind
spots) is unreliable.

All image points on the equirectangular image are projected
to the 3D space using the spherical stereo geometry and form
a 3D point cloud. This point cloud is segmented into object
clusters based on the labels assigned in Section III-C. Kwon et
al. [73] proposed cuboid fitting algorithm for 3D point clouds
using least squares optimisation. Nguatem et al. [74] and Li
et al. [75] used plane detection as primitives of cuboids for
outdoor LiDAR scans. However, plane-based approaches do
not work well for the proposed pipeline because: 1) indoor
objects have more arbitrary shapes than outdoor structures;
2) reconstruction using stereo matching has more errors on
surface reconstruction than LiDAR scans. We propose an
occupancy based cuboid reconstruction method. Instead of
detecting planes or major axes, cuboid primitives aligned to
a Manhattan world are fitted to the point cloud clusters. The
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volume of the cuboid is decided by the 3D point occupancy in
the cluster. In order to eliminate outliers from depth estimation
and segmentation errors in the cluster, we exclude 10% of the
farthest points from the centre of cluster. Finally the volume of
the reconstructed cuboids are refined by the physical stability
[21]. For example, floating cuboids above the ground violate
the law of gravity. Any cuboid which is not supported by
another stable object is extended to the ground to retain the
physical stability. Cuboids near the wall are also extended to
the wall because objects commonly abut the wall and these
objects increase the complexity of the scene and may cause
resonance in the sound field rendering.

E. Acoustic room modelling

The acoustic RIR modelling was achieved using a geomet-
rical acoustic approach [7]. Whilst this method is generally
more accurate for medium to large scale spaces, the technique
is suited to medium to high frequencies and provides a useful
estimate of time and direction of arrival of predicted reflec-
tions [7]. The implementation of this model was introduced
in [27], and allows the generation of synthetic RIRs assuming
omnidirectional microphones.

For each source and microphone pair, the model was broken
down into 3 sections for efficiency. The first early reflections
were modelled using an image source method technique [76],
which provides a more deterministic estimation of the early
temporal response than stochastic methods. The later re-
flections were modelled stochastically using a ray tracing
approach [77], with the scattering coefficient used to determine
the probability of specular and non-specular reflections. The
temporal threshold separating early and late reflections was
calculated as the median of the second order reflection times
of arrival (TOAs). This was done to model most of the first
order early reflections by employing the image source method.
On the other hand, the late reverberation was modelled as
Gaussian white noise, with an exponential decay defined by
the ray-traced solution. The response was calculated in octave
bands from 63 Hz to 8.0 kHz, with a summation providing the
wideband result. The reverberation onset time (also known as
the mixing time) was calculated from the visually estimated
room geometry. The estimated room volume V and total
reflective surface area S were combined to calculate a model-
based perceptual mixing time [15], [78]:

Tmix = 20 · V
S
+12, (3)

in milliseconds. An example of a simulated RIR is reported
in Figure 5.

The acoustic properties of the materials are selected indi-
rectly, based on output from visual classification algorithms,
such as the one we propose in Section III-C. The classification
labels each surface’s object class, for which a corresponding
material is defined. However, even the same material can
have slightly different acoustic coefficients according to the
density or surface condition. A list of acoustic absorption and
scattering coefficients per material are given in [79]. Median
values of the coefficients per material are taken for the acoustic
absorption and scattering coefficients in our experiments.
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Fig. 5. RIR simulated by joint techniques.

IV. SYSTEM SET UP AND DATASETS

To support research into audio-visual data processing and
demonstrate the performance of the proposed room acoustics
estimation method, we made a dataset web page publicly avail-
able with our 360 image and corresponding ground-truth RIR
data acquired in various indoor environments. Captured data,
source code, and music and speech samples convolved with
recorded (groundtruth) and estimated RIRs are all available at:
http://cvssp.org/data/s3a/public/AV-Analysis2/.

A. Datasets

The proposed pipeline was evaluated over different spaces:
Spatial audio listening room (hereafter referred to as LR,
Fig. 6 (a)), Usability lab (hereafter UL, Fig. 1), Meeting
room (hereafter MR, Fig. 2 (b)), and Studio hall (hereafter
ST, Fig. 6 (b)). These four datasets were recorded with a
bi-circular array of 48 omnidirectional microphones, to en-
able spatial analysis and RSAO parameterization as described
in [16]. For comparison, our pipeline’s acoustic modelling
tool (described in Section III-E) synthesized RIRs to a virtual
array of omnidirectional microphones at matching locations.
The LR is an acoustically controlled listening environment
with loudspeakers surrounding a central listening position, and
reverberation time (RT60) of about 220 ms, averaged over the
octave bands between 250 Hz and 8 kHz. The UL (RT60 about
280 ms) and MR (RT60 about 270ms) are by design more
representative of typical domestic living room environments.
ST is a large hall with a RT60 of about 910 ms.

Two additional datasets, Kitchen (hereafter KT, Fig. 6 (c))
and Courtyard (hereafter CY, Fig. 6 (d)), were employed to
test our pipeline across a broader variety of spaces. For the
acoustic captures a First-order Ambisonics microphone was
utilized to yield B-Format RIRs. The KT is a narrow and
long room which has different acoustics, and the CY is an
outdoor space surrounded by walls. As these signals require an
alternative pipeline for the parameterization [80], these results
are excluded from the acoustic evaluation that follows, for the
sake of consistency.

B. Ground-truth acoustic measurements

For each test environment a series of RIR measurements
was taken using the swept sine method [8]. These RIRs were
utilized to then generate RSAOs [15], that were employed as
ground-truth for our vision-based RSAO production.

RIR recording was performed using 48 microphones, evenly
spaced around two concentric circles of radii 8.5 cm and
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(a) Listening room (LR) (b) Studio (ST)

(c) Kitchen (KT) (d) Courtyard (CY)

Fig. 6. Four 360 capture datasets (For each dataset, Top: Upper camera image;
Bottom: Estimated disparity). Black regions in the estimated disparity maps
are unknown regions due to ambiguous matching or stereo occlusion.

(a) Microphone array (b) Recording with loudspeakers

Fig. 7. Ground-truth acoustic measurement for UL

10.6 cm, respectively, to form a custom array [81] as shown
in Fig. 7 (a). Furthermore, at the center of the circular
array, a soundfield microphone was placed. This recorded
additional RIRs that were used to avoid the up-down ambiguity
produced by the planar circular array. Both living room style
environments had loudspeaker setups based on an ITU 5.0
surround sound setup [82], whereas the LR included a high
channel count setup, formed by 32 loudspeakers [83]. Figure
7 (b) shows a snapshot of ground-truth recording for UL. In
ST, four loudspeakers were deployed for the measurements,
at a height of 1.50 m. Three of them were 2 m away from the
microphone array and azimuth of 0 and ±45 degrees, whereas
the fourth one was at 0 degrees azimuth and 3 m distance.

V. EXPERIMENTAL EVALUATION

The test scenes have been captured by two Theta S cam-
eras which have their own built-in fisheye cameras internally

(a) Object colour index

(b) Meeting room (MR) (c) Usability lab (UL)

Fig. 8. Object Labelling results (in (b) and (c), Top: Original image, Middle:
Result by Eigen-based method [19], Bottom: Result by SegNet-based method)

calibrated. The baseline distance between two cameras has
been set as 11cm and the image resolution is 3000× 1500.
RIRs generated from the room geometry are parameterised
following the RSAO concept [15]. These parameters were
compared with the ground-truth extracted from the recorded
RIRs, to evaluate the room geometry estimation accuracy.

The 3D reconstruction and recognition process ran on a
PC with an Intel Core i7 3.40 GHz CPU and 32G RAM. It
took less than 5 mins for the whole geometry reconstruction
process including pre-processing, depth estimation and cuboid
reconstruction for any data set. The semantic segmentation
took around 3 mins on an NVIDIA Tesla M2090 GPU with
5GB memory run in parallel. In a real environment, the
whole process from camera setting to the final model output
can be done within half an hour. Considering the real RIR
measurements in Section IV-B takes about a half day per room
including system set-up, recording and tidy-up, the proposed
approach is much simpler and faster than current audio-based
approaches.

A. Object Labelling

For the evaluation of semantic scene and object labelling,
we compared the results of SegNet for spherical imaging in
Section III-C (SegNet) with the results of Eigen and Fergus
[19] (Eigen) trained for NYUDepth v2 dataset. The objects
were labelled with the 15 classes indexed in Fig. 8 (a). We
mapped the object labels to material properties as shown in
Table I, and assigned frequency-dependent absorption coeffi-
cients in the material list given in [79].

Fig. 8 (b) and (c) show the original images and estimated
object class labels for the MR and UL. We can clearly observe
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TABLE I
MATERIAL MATCHING TO OBJECT LABELS

Object Material Object Material
None Transparent Chair Wood panel
Bed Heavy fabric Floor Heavy fabric

Books Paper Furniture Wood panel
Ceiling Wood panel Object Plastic
Picture Wood panel Loud Speaker Plastic

Sofa Heavy fabric Wall Smooth plaster
Table Wood panel Window Thick glass
TV Metal

that the proposed SegNet-based method produced more accu-
rate and meaningful segmentation than Eigen. Most objects
have been correctly classified including windows and mirrors.
However some small objects were missing due to the post-
processing of the SegNet. Figure 9 shows a 13× 13 confusion
matrix (“None” and “Bed” were not considered) for object
recognition results. Underline items are objects consisting the
room boundaries and other items are objects in the room. The
Blue-Yellow colour map represents the ratio of recognised
items. We manually generated the ground-truth segmentation
label map, and we considered the estimated semantic labels
are correct for a certain ground-truth region if over 70% of
pixels are correctly labeled in the region. For the MR scene,
some Wall, Window and Pictures were recognised as Furniture
with Eigen but most of them were correctly labeled with the
proposed SegNet-based method. In the MR scene, 29 of 34
objects (85.3%) were correctly recognised with the proposed
method while only 17 objects (50%) were correctly recognised
with Eigen. The UL scene was more challenging because the
lighting condition was bad and the scene was captured not at
the centre but at the side of the room. Some false labels are
observed between Furniture, Table, Chair and Sofa with Eigen.
Some sofas were mislabelled as Chair with SegNet because
only the side or back of those sofas were visible in the scene.
In manual ground-truth generation, curtains were annotated as
Objects because they are not listed in the index. However,
they were predicted as Window with both methods. In the
UL scene, 18 of 24 objects (75%) were correctly recognised
with the proposed method while only 13 objects (54.2%) were
correctly recognised with Eigen.

B. Geometry Reconstruction

The 3D geometry of each test scene was reconstructed with
the spherical stereo geometry in Eq. (2) from the estimated
disparity map in Fig. 6. The region-diving technique [72] ef-
ficiently produced accurate depth maps for reliable regions by
masking out ambiguous areas, such as texture-less regions. The
erroneous regions most visible in the equi-rectangular depth
maps in Fig. 6 are ceilings and floors near the poles in the
spherical coordinate system, where the areas are stretched and
exaggerated when they are converted into longitude-latitude
images. Those ceiling and floor regions near the poles are not
very important in scene understanding (both semantically and
geometrically) as stated in Section III-B.

(a) MR with Eigen (b) MR with SegNet

(c) UL with Eigen (d) UL with SegNet

Fig. 9. Comparison of confusion matrices with Eigen-based method and
SegNet-based method for Meeting Room (MR) and Usability Lab (UL)

Figure 10 shows the reconstructed cuboid-based models
with colour-coded object labels. The ceilings and floors were
coloured with the wall label in order to represent the room
layout as one cuboid. For efficient geometry representation,
Picture and Window labels were merged to Wall, and Book
labels are merged into Furniture in the final scene recon-
struction. Table II shows the manually measured ground-truth
room layouts and comparative evaluation of estimated errors
in room diagonal against the ground-truth (Err) and number of
reconstructed objects(# Obj). The layout estimation errors by
the proposed method are smaller than those by our previous
plane-based method (Kim16 [26]). Kim16 shows equivalent
estimation for the LR dataset, which has four large, clean
walls (2 % of room diagonal error for both methods) but poor
estimation for ST (14.8 % diagonal error) and KT (23.6 %
diagonal error) because it failed to detect one side wall due
to a featureless wall and transparent door. In MR, it falsely
recognized a side face of another object in the middle of the
room as the boundary. Otherwise, the estimated room dimen-
sions are very close to the ground-truth (0.2 % error). The
errors of the wall positions in the ST scene (0.55m in width
and 0.32m in length) are not large considering the room size,
but the height of the room was estimated incorrectly (0.8 m
error) due to the uneven ceiling with rails and air-conditioning
ducts. The depth estimation accuracy for spherical stereo is
inversely-proportional to distance and decreases with elevation
angle as shown in [65]. The Err for CY is not based on volume
error but area error (width × length), as the CY scene does
not have a ceiling. It is difficult to quantitatively evaluate
the detection and reconstruction performance for individual
objects in the rooms because ground-truth models of the
objects are unavailable, but the proposed method could retrieve
more objects in the scenes compared with Kim16. The cuboid
primitives represent the approximate structure of the rooms
well though some small or thin objects are missing.
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TABLE II
EVALUATION OF ROOM LAYOUT AND OBJECT RECONSTRUCTION

Data Ground-truth Kim16 [26] Proposed
Dim (m3) Dim (m3) Err (Diag, %) # Obj Dim (m3) Err (Diag, %) # Obj

MR 5.61×4.28×2.33 6.15×4.71×2.88 11.21 9 5.52×4.35×2.36 0.23 16
UL 5.57×5.20×2.91 6.12×4.96×2.90 2.91 9 5.92×4.95×2.95 1.28 11
LR 5.64×5.05×2.90 5.85×5.11×2.92 2.36 3 5.77×5.17×2.98 2.39 3
ST 17.08×14.55×6.50 5.96×17.70×6.85 14.84 3 16.53×14.87×5.70 1.74 4
KT 6.64×3.46×2.67 4.12×3.55×2.71 23.56 11 6.95×3.41×2.70 3.14 15
CY 19.00×10.10×– 18.25×9.72×– (3.91) 12 18.51×9.61×– (3.08) 13

C. Reverberant Spatial Audio Object (RSAO) Parameters

The RSAO representation of RIRs [15] is exploited to
evaluate the room geometry reconstruction algorithm, in terms
of acoustic property estimation. In fact, RSAOs represent the
scene acoustics in a way that was proved to be coherent
with the human perception of spatial sound [15]. The RIRs
estimated through the pipeline proposed in Section III were
thus parameterized. These parameters were also calculated, for
comparison, from the acoustically measured RIRs. The RSAO
representation of the room’s acoustic response [15] is exploited
to evaluate the room geometry reconstruction algorithm, in
terms of estimated acoustic properties. The RSAO represents
the scene acoustics in a way that has been shown to be
coherent with human perception of spatial sound [15]. The
RIRs generated through our pipeline in Section III were thus
parameterized. For reference, RSAO parameters were also cal-
culated from the RIRs recorded at the array of omnidirectional
microphones, i.e., for datasets MR, UL, LR and ST.

Different RSAO parameters describe different parts of the
RIR [16]: the RIR direct sound and the early reflections are
described by parameters defined as their TOAs and Directions
Of Arrival (DOAs); the reverberation parameters are defined
as octave band late energy decays. To calculate the TOAs
from the recorded RIRs, the clustered-dynamic programming
projected phase-slope algorithm (C-DYPSA) [81] was em-
ployed. It is based on the DYPSA algorithm [86], which
was used to locate peaks on each of the 48 microphone
RIRs. A clustering technique was then employed to eliminate
outliers, considering every k-th reflection, over the 48 DYPSA
outputs. The mean of the inlier TOAs corresponds to the
TOA parameter τk,l , with l being the loudspeaker index. Both
azimuth and elevation DOAs were calculated by applying
a delay-and-sum beamformer (DSB) to the RIRs [87]. To
avoid the up-down ambiguity given by the planar microphone
array, a Soundfield microphone was placed at the center of
it, to record B-Format signals. From the B-Format Z-channel,
the up-down information was thus recovered. To apply the
DSB, the RIRs were first segmented, by applying a Hamming
window (heuristically obtained length of 2.5 ms for UL, LR
and ST, 0.8 ms for MR), for each RIR, centered at τk,l . The
simulated RIRs were generated by placing a single virtual
microphone at the room position where the center of the
microphone array was placed for the recordings. In this case,
TOAs and DOAs were calculated directly from the image
source positions.

Finally regarding the late reverberation part of the RIR, the
RT60 was calculated for each octave band between 250 Hz

and 8 kHz, by analyzing the first 20 dB of decaying late energy
after the mixing time [15]. This approach was used for both
recorded and simulated RIRs.

D. Acoustic Results and Discussion

For comparison, the RSAO parameters were calculated for
both simulated and recorded RIRs. This comparison was made
by employing two groups of objective evaluation metrics. The
first one (i.e. composed of TOA and DOA) investigates the
early reflection estimation accuracy. The second one evaluates
the estimated late reverberation, by calculating RT60 errors.

1) Evaluation Metrics: Coherent with the evaluation we did
for our preliminary work [27], the TOA parameter errors εTOA

k,l
are calculated as the absolute value of the difference between
the TOA obtained from the simulated and the recorded RIRs,
considering the direct sound (k = 0) and each k-th early reflec-
tion, separately. The evaluated error ETOA

k is then calculated
as the median over the L available loudspeakers and averaged
over all the reflections to obtain ETOA. Similarly, the DOA
errors εDOA

k,l are obtained as the absolute value of the difference
between the DOA calculated from the simulated and recorded
RIRs. This is done for both azimuth and elevation, separately.
As for ETOA

k , also the evaluated error EDOA
k is obtained as

the median over the L loudspeakers, and the provided results
EDOA is the mean over all the early reflections. Finally, the
RT60s for both simulated and recorded RIRs are estimated,
and averaged over the octave bands between 250 Hz and 8 kHz.
The median of the averaged RT60s is then calculated over the
L loudspeakers, to obtain RT60.

To understand how perceptually similar the estimated RIR
is from the related recorded one, we define the just noticeable
differences (JNDs) for the evaluation metrics. For ETOA, this
is considered to be 2.2 ms, corresponding to 75 cm [84]. For
the azimuth EDOA the JND is set to 15◦, i.e. an average angle
calculated for audio-visual spatial coherence [85]. Regarding
the elevation EDOA, the JND is set to 35◦ [84]. Finally, the
JND for the RT60 was chosen to be the 20 % [88].

2) Early Reflection Results: The evaluation of the estimated
early reflections is performed by employing the TOA and
DOA errors ETOA and EDOA, both in terms of azimuth and
elevation, as described in Section V-D1. In Fig. 11, the results
are reported, by comparing the method that we propose in this
article with our previous approach that we presented in [27].
To our knowledge, there is no other method yet that generates
RIRs from visual captures.

In general, both the proposed method and our previous
approach generate errors that are below the related JNDs.
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(a) Meeting Room (MR)

(b) Usability Lab (UL)

(c) Listening Room (LR)

(d) Studio hall (ST)

(e) Kitchen (KT)

(f) Courtyard (CY)

Fig. 10. Semantic room geometry estimation results (Left: Looking front,
Right: Looking back, the color indicates object class, as per Fig. 8 (a).)

This means that humans cannot perceive, in terms of early
reflection TOAs and DOAs, any difference with respect to a
RIR recorded at the same rendering position. Regarding UL,
although the novel approach produces a slightly higher error
in terms of rendered reflection TOAs, though still within the
JND limit, it greatly improves the elevation DOA, with the
error median that is equal to zero. Finally, for the ST dataset,
as reported in Table II, our previous approach in [27] failed

Fig. 11. Median and standard errors for the estimated RIR reflections’ TOAs,
azimuth (Az.) DOAs and elevation (El.) DOAs. The LR’s dataset results are
reported in orange, in blue the UL’s, in green the MR’s, and in grey the ST’s.
The lighter color bars refer to our old method [27], whereas the darker bars
to the method proposed here. The dashed lines show the JNDs [84], [85].

Fig. 12. Spectrograms of a estimated (top) and recorded (bottom) RIR.

to estimate the room boundary. The generated space is much
narrower than the groundtruth, which results in wrong TOA
and DOA Az. The new proposed method, instead, succeed
to estimate the ST geometry. To understand the improvement
given by the new method estimation, we also calculate the
errors for the previous method estimated geometry. There,
errors were 0.25 ms and 11◦ greater than the JNDs for TOAs
and azimuth DOAs, respectively. Instead, the new proposed
approach produces errors that are now lower than the respec-
tive JNDs.

The only error that is 1◦ over the JND limit, also for the
new proposed method, is the azimuth DOA error related to
the LR dataset. This is due to the fact that LR was an empty
listening environment, with thirty loudspeakers clumped on
a metal structure around the perimeter. The microphone array
captured reflections produced by the sound encountering these
loudspeakers during its propagation. However, a choice was
made, and to improve the accuracy in localizing large planes,
loudspeakers were not modeled with the proposed method. In
fact, they were small and too close to the room boundaries.
Therefore, they were not considered during the estimated RIR
generation.

3) Late Reverberation Results: The late reverberation is
analyzed by observing the reverberation time error RT60,
obtained by comparing a recorded RIR to the estimated one,
as it was described in Section V-D1. Furthermore, as general
indication of the quality of estimation that can be reached,
the spectrogram of an estimated RIR, together with its related
recorded version, reported in Fig. 12. There, it can be observed
that, a part from some artifacts, the overall decay is similar at
almost all the frequencies.

In Fig. 13, results related to all the datasets are reported.
There, it is evident the error decrease (of about 71 % for LR,
81 % for UL, 44 % for ST, and 37 % for MR) given by the new
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Fig. 13. Comparison between the RT60s obtained from recorded RIRs and
the ones estimated from 360 images. The dashed lines show the JND [88].
Circles refer to the ST dataset, diamonds to UL, crosses to LR, and pluses to
MR. The color legend is defined as in Fig. 11.
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Fig. 14. Relationship between room volumes and estimated RT60s. In black,
the groundtruths are reported.

proposed method with respect to our previous one [27]. This
improvement is given by the fact that the RT60 depends on the
room volume [89]. The new method takes into account this,
by modeling the furniture by predicting its overall volume.
Instead, in [27], we estimated the furniture by analyzing the
related cuboid spatial boundaries. In UL the estimated RT60
is now inside the JND band. This means that, for UL, humans
would not notice the difference from a recorded RIR, in terms
of RT60. Also considering LR, MR and ST, the estimated
RT60s are now much closer to the JND band (i.e. about
100 ms away from the JND limits), when compared to our
previous method’s results [27]. The estimated RT60 errors are
mainly given by the material recognition algorithm that, being
based only on vision, cannot evaluate the acoustical properties
of the modeled geometry with high accuracy (see Fig. 9).
This is also the reason why, as described in Section III-E,
the acoustic reflector materials were selected among those
types that could more realistically be identified by visual
classification algorithms. However, it is important to note that
this is, to our knowledge, the first attempt in the literature to
use a visual object classification algorithm to predict acoustic
properties.

Nevertheless, an authentic, indistinguishable reproduction
is often not required and, for many applications, such as
virtual reality (VR), the creation of a plausible scene is
sufficient [90] (i.e. authenticity is described by the JNDs).
Lindau et al. described plausibility of a virtual environment
as “a simulation in agreement with the listener’s expectation
towards a corresponding real event” [91]. Several studies about
reproduction of virtual room acoustics are nowadays targeting

plausibility rather than authenticity [15], [92], [93]. Since the
late reverberation provides the listener with the impression
of the room size [62], here, similar to [15], we evaluate the
plausibility by observing the coherence between estimated RIR
RT60s and related room sizes. Fig. 14 shows the estimated
RT60s plausibility, since RIRs in the three rooms (i.e. UL,
MR and LR) having similar (small) sizes are generated with
similar (short) RT60s. On the other hand, RIRs related to ST,
that is a large room, are estimated by having longer RT60s.

4) Ablation Experiment Result: Finally, we provide a better
insight of the effect that the geometry estimation and material
recognition accuracy have on the room acoustic estimation
through ablation studies on the MR and UL datasets. We
compare the results of the proposed pipeline (we will refer
to it as “Full”) to the results with errors manually introduced
in individual components in the pipeline. To analyse the
importance of objects within the scene for sound rendering,
an empty room model which represents only room boundaries
without any object in the scene is tested (referred as “Empty”).
To analyse the impact of the scene scale accuracy, we include
results with the models which have been 1.2 times scaled up
(“E-Scale”). To analyse the influence of the detected object
shape and locations, the model with major objects shrunk by
30% in scale and location in the given coordinate system while
keeping the original room boundary (“E-Obj”) is also tested.
Finally, the estimated room model has been manually modified
by assigning wrong materials (Plastic for MR and Glass for
UL) to the three largest objects in the scene (“E-Mat”) to
analyse the error produced by wrong material estimation.

The results are reported in Table III. For MR, The result
clearly shows the importance of objects in the scene as the
“Empty” model generates large errors, both in terms of early
reflections (TOAs and DOAs) and reverberation. The scaling
error does not affect the early reflections for MR, since the
early reflections are produced by furniture that has been kept at
the similar distances from the listener, but it has a large impact
on the reverberation. The main effect on the reverberation,
however, is given by the use of wrong materials.

For UL, the “Empty” model only affects the late reverber-
ation because the early reflections come from the floor, wall
and ceiling in the tested source-microphone location. This is
confirmed by the results related to the wrong-scale model (“E-
Scale”) because there is an increase of the early reflection
errors as the room boundaries are moved away from the
listener position. Errors in object size and location (“E-Obj”)
also influence the early reflections as objects block some early
reflection on the room boundary. Finally, as expected, wrong
materials generate the largest error in terms of reverberation.

The results of this ablation study provide a quantitative
context in terms of the present evaluation metrics that is
coherent with the findings established in the room acoustics
literature [79], [94]. The geometrical factors are important
for the estimation of early reflection, but sound rendering is
relatively insensitive to small errors in the shape and size of
objects as found in previous research [22], [24]. Errors in
material attribute have a significant impact on the reverberation
RT60 error [95].
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TABLE III
EVALUATION OF THE EFFECT OF GEOMETRY ESTIMATION AND MATERIAL RECOGNITION ACCURACY ON THE ROOM ACOUSTIC PROPERTIES.

Meeting Room Usability Lab
Empty E-Scale E-Obj E-Mat Full Empty E-Scale E-Obj E-Mat Full

TOA Error (ms) 1.7 0.1 0.2 0.1 0.1 0.1 0.2 1.2 0.1 0.1
DOA Az. Error (Deg) 142 7 7 7 7 8 157 49 8 8
DOA El. Error (Deg) 10 10 10 10 10 4 21 23 4 4

RT60 Error (ms) 146 125 117 139 89 92 90 82 97 56

VI. CONCLUSIONS

In this work, we have proposed a practical audio-visual
approach to room acoustic estimation for audio rendering in
novel scenes. A practical single-shot 360 stereo imaging is pro-
posed to estimate the approximate large scale room and object
geometry as a cuboid approximation together with estimates
of surface material properties. This avoids the requirement
for measurement of room acoustic RIRs at multiple locations
with the room. The estimated model of room geometry and
material properties is demonstrated to allow plausible audio
augmentation of the scene by adaptation and rendering of
audio sources.

Room geometry is estimated through vertical stereo systems
using commercial off-the-shelf speherical 360 cameras. The
captured images are aligned to the principal axes of the room
coordinate, and semantic objects in the scene are detected by
a convolutional encoder-decoder network. The final semantic
cuboid-based room structure with object labels is reconstructed
from the point cloud with object attribute. The acoustic RIR is
simulated using a geometrical acoustic approach. Experiments
were conducted by comparing the RSAO parameters of the
simulated RIRs with the ones extracted from recordings.
Results show that the proposed method outperforms our pre-
vious one, presented in [27], by confining the simulated early
reflections’ errors within their JNDs, and reducing the late
reverberation error of 46 % (averaged over the four tested
datasets). It was also found that the RT60s are now estimated
coherently with the room size. Through the ablation study, it
was observed that the geometry estimation is important for
early reflection while material attribute has more impact on
reverberation. This allows perceptually plausible acoustic re-
productions, with the listener being able to correctly associate
a listened sound with the respective room size.

Future extension of this research will include robust material
identification in the room geometry modelling to replace the
current surface-to-material mapping. This work provides a step
change to acoustic room model reconstruction using audio-
visual data. This, in the future, could be applied to several
application areas, such as music broadcast, games, VR, and
augmented reality. Furthermore, the proposed method may be
used for research applications, such as source separation and
localization.
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