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Abstract 

This paper measures volatility spillovers between sectors of economic activity using network 
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1. Introduction 
 

Financial markets have recently witnessed periods of financial instability and crisis. 

These periods are characterised by extreme uncertainty that is reflected in significant 

increases in market volatility. Diebold and Yilmaz (2015) show that an increase in market 

volatility is a reflection of an increase in connectedness across different assets. The recent 

2008 global financial crisis, the Eurozone debt crisis in 2010–2012 and the COVID-19 

pandemic crisis have shown that interdependence between assets and financial markets is 

especially relevant during crises having the potential to trigger systemic risk episodes. 

The 2007-2009 global financial crisis is a clear example of such systemic events (Giglio 

et al, 2016). Another recent example is the reaction of global financial markets to the 

COVID-19 pandemic. The effects of this crisis are not fully revealed yet but have the 

potential to have serious negative consequences across industries and assets, see Goodell, 

(2020), Goodell and Huynh (2020), Conlon and McGee (2020), Conlon, Corbet, and 

McGee (2020) and Goodell and Goutte (2020), among many other recent contributions 

analysing the impact of COVID-19.  

The aim of this paper is to uncover the interdependencies between sectors of economic 

activity in periods of heightened uncertainty. According to past empirical evidence, 

financial crises are preceded by an increase in market volatility. Hence, it is important to 

understand the mechanisms through which volatility fuels across sectors of economic 

activity and is reflected in asset prices. Our working hypothesis is that volatility spillovers 

between economic sectors have ability to predict financial crises characterised by 

systemic risk events. We focus on recent crises such as the 2007-2009 global financial 

crisis, the 2011-2012 sovereign bond crisis and the ongoing crisis originated by the 

COVID-19 pandemic.  
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To do this, our first contribution is to evaluate seven sectors of economic activity (Health 

Care, Pharmaceuticals, Biotechnology, Banking&Insurance, Cyclical Sector, Technology 

and Energy) comprising the S&P 500 index from 2003 to the present. We measure 

volatility spillovers between shocks to these sectors paying special attention to their 

dynamics and relevance during financial crisis episodes. We apply the novel methods on 

network connectivity and volatility spillovers in vector autoregressive settings (VAR) 

introduced by Diebold and Yilmaz (2009, 2012, 2014).  

It is well documented that periods of increasing volatility are characterised by increasing 

connectedness (Diebold and Yilmaz 2009, 2012) across markets, but it is less understood 

whether there is information embedded in the connectedness measures that helps to 

predict future market volatility and, hence, financial crises. Thus, our second contribution 

is to assess whether increases in linkages across sectors, reflected in volatility spillovers, 

help to predict the likelihood of crises and systemic risk events. To do this, we apply 

novel techniques on machine learning, in particular, we fit random forests models for 

classification and prediction, see Breiman (2001) and Cutler et al (2011). This is a state-

of-the-art technique in machine learning that allows us to predict extreme events without 

the need of imposing a parametric model relating volatility spillovers and the occurrence 

of crises in the S&P 500 index. The random forest methodology uses a combination of 

nonparametric classification and regression trees obtained from random permutations of 

the regressors and number of lags to predict nonparametrically the occurrence of high 

volatility episodes in the S&P 500 index.  

In our setting, we interpret a financial crisis with a scenario in which the annualised S&P 

500 daily volatility is higher than a given threshold. In the empirical application, we 

consider 20% but the accuracy of the predictions holds for a range of threshold values 

between 15% and 20%.  
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Our results show that volatility connectedness between the different economic sectors is 

time varying and ranges between 40% and 85%. For example, during the COVID-19 

pandemic, we are witnessing increases in volatility spillovers about 40% compared to the 

levels reached at the beginning of 2020 that were around 60%, reaching a maximum of 

85.30% on March 3, 2020. During this period, Energy is the main sector through which 

volatility spills over to other sectors of economic activity. The main reason for this is the 

particular characteristics of the global lockdown that drained other types of economic 

activity. Energy prices suffered particularly during this period and these negative shocks 

propagated further to the rest of sectors in the economy. Interestingly, we find that this 

sector is not a main driver of systemic risk events in other crises. It is well known, for 

example, the role of the Banking&Insurance sector during the 2007–2009 global financial 

crisis as the main catalyser of systemic risk events. Nevertheless, we find that the net 

contribution of Banking&Insurance, Energy, Technology and Biotechnology to market 

volatility is usually larger than for the other economic sectors particularly so during crisis 

events.  

We use information on the magnitude and direction of volatility spillovers across sectors 

to predict the occurrence of extreme volatility regimes in the S&P 500 index. Despite the 

importance of assessing sector-specific volatilities for measuring market risk we find that 

it is the increase in interconnectivity between economic sectors what really drives the 

abnormal increases in market volatility. The choice of economic sectors rather than 

individual stocks is a compromise that allows us to use tractable time series econometric 

models such as vector autoregressive processes and work in small dimensions given by 

the number of sectors. Furthermore, by choosing sectors instead of stocks we assume 

away the effect of specific shocks on individual assets. 
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Shocks to economic sectors are shocks to the overall industry and hence their content is 

useful as a potential driver of market turmoil. The implementation of the random forest 

methodology allows us to assess the ability of the volatility spillovers on predicting 

extreme volatility for the S&P 500 index.  We find strong out-of-sample predictive ability 

of volatility spillovers for threshold values in the range 15% to 20% characterising 

extreme volatility regimes. Unsurprisingly, during the ongoing COVID-19 crisis, the 

probability of occurrence of extreme volatility predicted out of sample by the random 

forest is close to one for the S&P 500 index. 

The remainder of the paper is structured as follows. Section 2 discusses the importance 

of considering sectoral economic interdependencies for modelling financial crises and 

systemic risk events. Section 3 describes the dataset and reviews the methodology 

introduced by Diebold and Yilmaz (2012) to measure volatility spillovers between 

economic sectors. Section 4 presents the empirical results for the connectedness analysis. 

Section 5 reports the predictive exercise for the volatility of the S&P 500 index over 

different crisis episodes. Section 6 sets out the conclusions of our empirical study. 

 
2. Interdependence between economic sectors and financial crises 

There are different economic specifications that motivate the relevance of sector shocks 

and their propagation to other sectors as factors contributing to the overall aggregate 

volatility.  

Acemoglu et al. (2012) show how idiosyncratic shocks can lead to aggregate fluctuations 

in the presence of intersectoral input-output linkages, depending on the importance of 

different sectors that act as suppliers to their immediate customers as well as their role as 

indirect suppliers to chains of downstream sectors. Acemoglu et al. (2015) also show how 

the financial network architecture can affect the likelihood of systemic failures related to 
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contagion and counterparty risk. This financial architecture is shaped by the contribution 

of the different sectors to the overall economic activity. For example, in 

Banking&Insurance, these authors find that the larger the interdependencies between 

banks the higher the likelihood that a large negative idiosyncratic shock can propagate 

through the financial system affecting the overall risk-taking behaviour. Consequently, 

the interbank market acts as an amplifier of idiosyncratic shocks. Systemic risk and 

financial market distress are economically important as they affect the skewness of the 

distribution of subsequent shocks to macroeconomic variables (Giglio et al., 2016).  

Although the importance of the financial sector contribution to systemic risk is well 

documented, other sectors such as Energy or Industrials can be also considered as risk 

contributors (Collet and Ielpo, 2018; Wu, 2019). The Energy sector arises as a potential 

shock multiplier due to the links between oil prices and the rest of economic sectors, see 

Hamilton (1983). The impact of shocks to this sector on other areas of economic activity 

varies across sectors depending on their reliance on energy consumption. For example, a 

positive oil supply shock that is likely to increase production costs and reduce the demand 

of products is likely to impact negatively on sectors that are more dependent on oil as an 

essential input such as the Transportation sector, Airlines, etc. Conversely, industries that 

obtain a significant part of their revenue from oil related products such as Oil and Gas 

usually exhibit a positive oil price exposure. There is also ample evidence of the time-

varying relationship between oil price changes and stock returns (Filis et al., 2011). More 

recently, Aloui et al. (2020) have shown the impact of the COVID-19 pandemic on crude 

oil and natural gas S&P GS Indexes. 

Another consequence of the interconnection between economic sectors is in equity 

valuation. Large idiosyncratic shocks from one leading sector reflecting unexpected and 

relevant information are likely to affect not only the volatility of the equity valuation in 
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that sector but also other sectors’ equity valuation volatilities through the spillover 

mechanism. The linkages between economic sectors also influence portfolio allocation 

due to the presence of asymmetric propagation structures, which affect the effectiveness 

of portfolio diversification (Zareii, 2019). Related to this is the presence of slow diffusion 

of information among economically linked firms. The limited information-processing 

capacity of investors to shock transmissions implies predictable returns (Cohen and 

Frazzini, 2008). This finding explains the cross-predictability among firms due to 

investors’ late response to the occurrence of shocks. Moreover, the gradual diffusion of 

information across markets also explains that industry returns are able to predict market 

movements (Hong et al., 2007).  

3. Data and Methodology 

This section describes the data used in our empirical analysis, and provides a summary of 

the econometric methodology introduced in Diebold and Yilmaz (2012) to measure 

network dependence and, in particular, volatility spillovers.  

3.1. Data 

We examine annualised S&P 500 daily sectoral return volatilities according to the S&P 

sector classification system. We compute the logarithmic daily percentage sector returns 

using closing prices from Bloomberg. Data cover the period from July 20, 2003 through 

December 31, 2020, comprising 4546 daily observations. The choice of July 20, 2003 is 

motivated by data availability. This is the first period we have access to data on all 

subsectors of economic activity. 

Table 1 reports the sectors under study and the subsectors included in each sector. We 

compute the volatility of each sector as the average volatility across sub-sectors. The 

following sectors are considered as they are the most relevant and representative of 
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economic activity: Health Care, Pharmaceuticals, Biotechnology, Banking&Insurance, 

Cyclical Sector, Technology and Energy. 

[Insert Table 1 about here] 

We plot the seven sectors’ annualised daily volatility in Figure 1 and provide summary 

statistics of log annualised volatilities in Table 2. The following insights emerge from 

these figures: first, Banking&Insurance and Energy are the most volatile, especially 

throughout the global financial crisis of 2007–2009 and the recent COVID-19 crisis, 

respectively. During the global financial crisis of 2007–2009, the volatility of the Cyclical 

Sector spiked remarkably. A similar observation is noted for the Technology sector 

during the ongoing COVID-19 pandemic. Second, the Health Care and Pharmaceuticals 

sectors exhibit volatilities that are, on average, lower than for the other sectors. This result 

is expected as these sectors are usually considered as counter-cyclical defensive sectors 

and, consequently, more stable under market turmoil. Third, the volatility dynamics of 

the Biotechnology sector do not appear to be dependent on the state of the market and are 

similar across bear and bull markets. Nevertheless, this volatility remains high throughout 

the evaluation sample, in contrast to Health Care and Pharmaceuticals, providing 

empirical evidence of the presence of significant sectoral idiosyncratic risks. 

[Insert Table 2 and Figure 1 about here] 

 

3.2 Measuring sectoral spillover effects 

 

We follow the methodology introduced in Diebold and Yilmaz (2012) to examine the 

spillover effects between U.S. sectoral volatility market returns. These authors develop a 

connectedness index that is based on a decomposition of the forecast error variance from 

a VAR process that is invariant to the ordering of the variables in the model specification.  
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The procedure is as follows; first, a standard VAR model is fitted to the vector of time 

series. We establish an H period-ahead forecast evaluation period using data up to time t, 

and decompose the error variance of each forecast with respect to shocks from the same 

or other components at time t. Diebold and Yilmaz (2012) propose several connectedness 

measures based on assessing shares of forecat error variation in various locations due to 

shocks arising elsewhere. More formally, let 

Yt=[𝜎𝜎Health Care,𝜎𝜎Pharmaceuticals,𝜎𝜎Biotechnology,𝜎𝜎Banking&Insurance,𝜎𝜎Cyclical sectors,𝜎𝜎Technology,𝜎𝜎Energy  ] 

denote a 7-dimensional time-series vector following a VAR(p) as 

𝑌𝑌𝑡𝑡 =  ∑ 𝛷𝛷𝑖𝑖
𝑝𝑝
𝑖𝑖=1 𝑌𝑌𝑡𝑡−𝑖𝑖 + 𝜀𝜀𝑡𝑡 ,                                                                            (1) 

where 𝛷𝛷𝑖𝑖 denote the slope matrices associated to the vector of variables, and 𝜀𝜀~(0,Σ) is a vector 

of independent and identically distributed disturbances with variance-covariance matrix 

given by Σ. Assuming that the VAR process is covariance stationary, the moving-average 

representation exists and is given by 

𝑌𝑌𝑡𝑡 =  ∑ 𝐴𝐴𝑖𝑖∞
𝑖𝑖=0 𝜀𝜀𝑡𝑡−𝑖𝑖                                                                       (2) 

where the N×N coefficient matrices obey the folowing recursive relations: 

 𝐴𝐴𝑖𝑖 =  𝛷𝛷1𝐴𝐴𝑖𝑖−1 + 𝛷𝛷2𝐴𝐴𝑖𝑖−2 + ⋯+ 𝛷𝛷𝑝𝑝𝐴𝐴𝑖𝑖−𝑝𝑝                                                (3) 

with 𝐴𝐴0 = 𝐼𝐼𝑁𝑁 and 𝐴𝐴𝑖𝑖 = 0 for 𝑖𝑖 < 0.  To make the VAR model operational, we follow 

Diebold and Yilmaz (2012) and replace the standard deviations 𝜎𝜎 in 𝑌𝑌𝑡𝑡 by estimates of the 

annualized volatility, computed as 𝜎𝜎� =(0.361)0.5 [ln Pt,h - ln Pt,l], with Pt,h and Pt,l the high 

and low daily prices, respectively. 
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Diebold and Yilmaz (2012) identify financial and macroeconomic connectedness based 

on the H-step-ahead forecast error variance decomposition3. Let 𝑑𝑑𝑖𝑖𝑖𝑖 denote the share of 

own variance obtained from the H-step ahead forecast error variance decomposition in 

forecasting 𝑌𝑌𝑖𝑖,𝑡𝑡+𝐻𝐻 due to shocks to 𝑌𝑌𝑖𝑖𝑖𝑖, for Ni ,....2,1= . Similarly, 𝑑𝑑𝑖𝑖𝑖𝑖 denote the share of 

the overall variance that is due to spillover effects obtained from the H-step-ahead 

forecast error variance decomposition in forecasting 𝑌𝑌𝑖𝑖,𝑡𝑡+𝐻𝐻 due to shocks to 𝑌𝑌𝑗𝑗𝑗𝑗, for 

Nji ,....2,1, = and .ji ≠ The different contributions obtained from the H-step-ahead error 

variance decomposition denoted as 𝜃𝜃(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔  for Nji ,....2,1, = can be calculated as: 

𝜃𝜃(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔  =  

𝜎𝜎𝑗𝑗𝑗𝑗
−1 ∑ (𝑒𝑒𝑖𝑖

′𝐴𝐴ℎΣ𝑒𝑒𝑗𝑗)2𝐻𝐻−1
ℎ=0

∑ (𝑒𝑒𝑖𝑖
′𝐴𝐴ℎΣ𝐴𝐴ℎ

′ 𝑒𝑒𝑖𝑖)𝐻𝐻−1
ℎ=0

,                                                            (4) 

where Σ is the variance-covariance matrix for the error term vector 𝜀𝜀 in the non-

orthogonalized VAR model; 𝜎𝜎𝑗𝑗𝑗𝑗 is the thj diagonal element of Σ, and 𝑒𝑒𝑖𝑖 is the selector 

vector with unity at its ith element, and zero elsewhere. As the shocks are not necessarily 

orthogonal in the generalized variance decomposition, sums of the forecast error variance 

contributions are not necessarily unity, therefore, ∑ 𝜃𝜃(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔  ≠ 1𝑁𝑁

𝑗𝑗=1 . Diebold and Yilmaz 

(2012) normalize each entry of the variance decompostion matrix by the row sum: 

𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔  =  

𝜃𝜃(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔

∑ 𝜃𝜃(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔𝑁𝑁

𝑗𝑗=1
= 𝑑𝑑𝑖𝑖𝑖𝑖 ,                                                                   (5) 

and, consequently, ∑ 𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔𝑁𝑁

𝑗𝑗=1 = 1 and ∑ 𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔 = 𝑁𝑁𝑁𝑁

𝑖𝑖,𝑗𝑗=1 . 

                                                           
3Diebold and Yilmaz (2012) use the generalized variance decomposition frmaework of Koop et al. (1996) and Pesaran 

and Shin (1998) that allows one to compute variance decompositions invariant to ordering. Therefore, the generalized 

variance decomposition does not require orthogonalized shocks being able to work with reduced form VAR models. 
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The full set of variance decompositions is a NxN matrix, D=[dij] that produces a 

connectedness table as illustrated in Table 3, allowing us to compute the main measures 

of connectedness between the different variables in the VAR system.  

[Insert table 3 about here] 

There are N-1 pairwise directional connectedness from j to i, for each i=1...N, defined as  

𝐶𝐶𝑖𝑖←𝑗𝑗𝐻𝐻 = 𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔 =dij                                                               (6) 

𝐶𝐶𝑖𝑖←𝑗𝑗 denotes the fraction of the H-step-ahead forecast error variance in variable i that is       

due to shocks arising from variable j. Hence there are N2-N separate pairwise directional 

connectedness measures. Given that, in general, 𝐶𝐶𝑖𝑖←𝑗𝑗𝐻𝐻  ≠ 𝐶𝐶𝑗𝑗←𝑖𝑖𝐻𝐻 ; it is sometimes convenient 

to define the 𝑁𝑁(𝑁𝑁 − 1)/2 net pairwise directional connectedness measures, for all 

i,j=1...N, as  

𝐶𝐶𝑖𝑖𝑖𝑖𝐻𝐻 = 𝐶𝐶𝑗𝑗←𝑖𝑖𝐻𝐻 − 𝐶𝐶𝑖𝑖←𝑗𝑗𝐻𝐻 .                                                                     (7) 

 The off-diagonal row and column sums, labeled “from” and “to”, are the 2N total 

directional connectedness measures, N “from others” and N “to others”. The total 

directional connectedness from the other components to i is  

𝐶𝐶𝑖𝑖←⦁𝐻𝐻 =  ∑ 𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔𝑁𝑁

𝑗𝑗≠𝑖𝑖,𝑗𝑗=1                                                           (8) 

The total directional connectedness from j to others is  

𝐶𝐶⦁←𝑗𝑗𝐻𝐻 =  ∑ 𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗
𝑔𝑔𝑁𝑁

𝑗𝑗≠𝑖𝑖,𝑖𝑖=1 .                                                           (9) 

The net total directional connectedness is 

𝐶𝐶𝑖𝑖 = 𝐶𝐶⦁←𝑖𝑖𝐻𝐻 −  𝐶𝐶𝑖𝑖←⦁𝐻𝐻                                                              (10) 

 



12 
 

The grand total of the off-diagonal entries in matrix D, see Table 3, which sums the 

“from” column or the “to” row, provides a measure of total connectedness. The 

connectedness table simply augments D with a rightmost column containing row sums, a 

bottom row containing column sums, and a bottom-right element containing the grand 

average, in all cases for i≠j. This measure corresponds to the lower right cell of the 

connectedness table, as a percent of total variation 

𝐶𝐶𝐻𝐻 =  1
𝑁𝑁
∑ 𝜃𝜃�(𝐻𝐻)𝑖𝑖,𝑗𝑗

𝑔𝑔𝑁𝑁
𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

= 1
𝑁𝑁
∑ 𝑑𝑑𝑖𝑖,𝑗𝑗
𝑁𝑁
𝑖𝑖,𝑗𝑗=1
𝑖𝑖≠𝑗𝑗

                                                        (11) 

 

4. Empirical results on sectoral volatility connectedness 

This section reports the empirical results for the connectedness analysis discussed above 

for the economic sectors comprising the S&P 500 index. The variables of interest are the 

volatilities of each sector implying that the study of connectedness captures volatility 

spillovers. First, we show the static connectedness measures across economic sectors. 

This exercise offers a photo of the unconditional interdependencies across sectors of 

economic activity. The second exercise introduces the presence of dynamics in the 

connectedness measures via rolling window estimation. 

4.1. Unconditional patterns: full-sample volatility connectedness 

Table 4 shows the unconditional full-sample volatility connectedness measures, which 

are obtained through the generalised variance decomposition. Each of the ij entries in 

Table 4 is the estimated contribution to the forecast error variance of sector i coming from 

innovations to sector j. The table shows pairwise and the “from” and “to” total directional 

connectedness measures. The estimate of total volatility connectedness is based on a VAR 

model of order three and generalised variance decompositions of 12-day-ahead forecast 

errors (Diebold and Yilmaz, 2015). The choice of twelve days is to be consistent with 
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Diebold and Yilmaz (2015). Results for 6-day-ahead forecast errors are available from 

the authors upon request. The results are robust across specifications of the forecasting 

horizon. 

[Insert Table 4 about here] 

The first important result that emerges from Table 4 is that about 72% of the volatility 

forecast error variance in all the variables is due to connectedness between the variables, 

which highlights the importance of the volatility spillovers. The results in Table 4 show 

that Pharmaceuticals, Health Care, Technology and Cyclical Sectors have a “from” 

connectedness statistic larger than the total connectedness, due mainly to the impact of 

volatility shocks to the Energy sector, and to a lesser extent to shocks to the 

Banking&Insurance and Biotechnology sectors. The Biotechnology sector is closely 

connected to the Pharmaceuticals and Health Care sectors and the Banking&Insurance 

sector is interconnected to the Cyclical Sectors, with the latter two sectors being very 

dependent on the overall financing conditions. In contrast, the Energy sector has the 

lowest “from” connectedness reaching a value about 50%. 

It is also important to emphasise that the “to” connectedness of the Energy, 

Banking&Insurance and Biotechnology sectors (101.35%, 99.36% and 69.51%) exceed 

their “from” connectedness by 51.21%, 35.52% and 6.16%, respectively. These sectors 

are clear net transmitters of shocks to the system. On the other hand, Pharmaceuticals, 

Health Care, Technology and Cyclical Sectors have negative net connectedness 

(−25.99%, −36.63%, −15.71% and −14.56%), indicating that these sectors are net 

receivers of shocks from other sectors.  
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4.2. Dynamics of total sectoral volatility connectedness 

In this section we focus on the dynamics of the sectoral volatility connectedness over time 

as the above unconditional analysis may overlook important interactions across different 

volatility regimes. Therefore, the dynamic analysis allows us to capture cyclical and 

secular movements in connectedness. In our context, we are especially interested in the 

sectoral volatility connectedness behaviour around the global financial crisis and the 

COVID-19 pandemic crisis. To accomplish our objective, we carry out a dynamic 

analysis using 200-day rolling-sample windows (Diebold and Yilmaz, 2015) over the 

evaluation period, and examine graphically the connectedness plots. The choice of 200 

days is for consistency with the original work of Diebold and Yilmaz (2015). 

Figure 2 shows the dynamics of the total connectedness measure. This figure shows that 

total sectoral volatility connectedness ranges between 40% and 85% as shocks propagate 

across the system with different impact over time. During the calm 2004–2006 period, 

the index reached levels below the average conditional connectedness and then starts to 

increase steadily due to the tightening in monetary policy deployed by the U.S. Federal 

Reserve from mid-2006 onwards. Around the global financial crisis, the index reached a 

maximum of 78.55% on June 15, 2009, which is lower than the value subsequently 

attained during the Eurozone debt crisis of 2010–2012. In the latter period, sectoral 

volatility connectedness achieved values larger than 80%. In contrast, the period from 

August 2012 onwards is characterised by a decrease in the average total connectedness 

of the sectoral volatilities, reaching a low of 40% at the end of 2017 as equity markets 

entered a bullish period given by a low volatility regime.  

The analysis of volatility spillovers shows a spike during the COVID-19 pandemic crisis 

as it increases sharply from the levels reached at the beginning of 2020 (around 60%) 

until reaching a maximum of 85.30% on March 3, 2020. From this day onwards, the total 
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sectoral volatility connectedness is always above 74% even after the recovery of equity 

valuations, as the gloomy outlook for the real economy still remains. However, despite 

the sectoral volatility connectedness remains high the index dropped below 80% after 

Pfizer and Biotech announce publication of positive results from landmark phase three 

trial of their vaccine candidate, on December 10th.4 Consequently, the sectoral volatility 

connectedness varies over time and is especially relevant during periods of high 

uncertainty.  

 

[Insert Figure 2 about here] 

 

4.3. Dynamics of directional sectoral volatility connectedness 

More informative is the analysis of spillover effects from a directional perspective. In this 

case, we study the information contained in the net connectedness, measured as the 

difference between the “to” and “from” connectedness, using the directional 

connectedness plots discussed above. By doing so, we analyse the directional information 

that is masked under the total connectedness plot.  

Figure 3 plots the net directional volatility connectedness measure for each sector as the 

difference between its “to” and “from” connectedness. 

[Insert Figure 3 about here] 

 

The net contribution of the directional volatility of each sector varies greatly over time. 

During volatile times the net directional contribution usually increases. However, there is 

a large variability across sectors. The Banking&Insurance sector net directional 

                                                           
Data from 43,448 participants, half of whom received BNT162b62 and half of whom received placebo, showed that 
the vaccine candidate was well tolerated and demonstrated 95% efficacy in preventing COVID19 in those without prior 
infection 7 days or more after the second dose. 
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connectedness is especially relevant during the 2007-2009 crisis as its origin was in the 

financial sector. During this period volatility shocks coming from the Banking&Insurance 

sector spread across other sectors of the S&P 500 index as financial conditions deteriorate 

having a subsequent adverse effect on the real economy. In contrast, during the COVID-

19 crisis, this sector exhibited significantly lower levels of net directional connectedness 

reaching negative values after May 2020.  

Figure 3 also shows that the Cyclical Sector’s net directional connectedness is mainly 

positive during the U.S. Federal Reserve tightening of monetary policy from the mid-

2006 onwards and the 2007–2009 global financial crisis. However, the net directional 

connectedness of this sector mainly turns into negative territory starting from the 

Eurozone debt crisis in 2010–2012 onwards, coinciding with a long and steady period of 

low interest rates. Interestingly, the COVID-19 crisis has had a negligible effect on the 

dynamics of this sector. The December run up of equity prices and the positive results 

about the efficacy of different vaccine candidates made the net directional connectedness 

of this sector be above zero. In contrast, the Energy sector is very sensitive to the 

occurrence of crisis episodes. Figure 3 shows that the net directional connectedness of 

this sector is especially positive throughout all the crises, but also during the 2004–2006 

calm period and the period of tightening in monetary policy following from mid-2006 

onwards. Therefore, the Energy sector is a net transmitter of volatility shocks to other 

sectors comprising the S&P 500 index. The dynamics of the net connectedness of the 

Energy sector during the COVID-19 crisis are particularly relevant. We observe a jump 

from a negative value on December 31, 2020 (−4.98%) to a maximum of 312% reached 

on May 6, 2020, providing an average level of net connectedness of 88% for the Energy 

sector during 2020. This behaviour can be partly explained by the plunge of oil prices, 

reaching $30 a barrel, as the coronavirus has undermined energy demand worldwide, 

http://edition.cnn.com/2020/03/04/business/oil-prices-opec/index.html
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triggering a war price among worldwide oil producers that pursued increasing shares of 

the market.  

Figure 3 also reveals that the Biotechnology sector is a clear transmitter of shocks from 

2012 onwards. However, the Biotechnology net directional connectedness is negative 

during the COVID-19 crisis as the Energy sector has become the unique transmitter of 

volatility shocks through the system. Nevertheless, there is an increasing trend of the 

Biotechnology net directional connectedness as the news about the availability of 

potential vaccines and treatments is monitored by investors. Levels of Pharmaceuticals 

and Health Care net directional connectedness during the COVID-19 crisis have behaved 

similarly to Biotechnology net directional connectedness as their businesses are closely 

related. The stark difference is that both sectors, Pharmaceuticals and Health Care, display 

mainly negative net directional connectedness during the entire evaluation sample and, 

consequently, these sectors are net receivers of volatility shocks. The analysis of the 

Technology sector also shows evidence of dynamics in the net connectedness measure 

across the sample, displaying negative values during both crises, the 2007–2009 global 

financial crisis and the COVID-19 pandemic crisis. 

Overall, our analysis of volatility spillovers across U.S. economic sectors shows that 

Banking&Insurance, Energy, Technology and Biotechnology are the main trasnmitters of 

volatility spillovers over the evaluation period, with the intensity of the spillovers varying 

over time.  

5. Predicting extreme market volatility using sectoral volatility connectedness 

In this section, we report empirical evidence on the ability of sectoral volatility 

connectedness for predicting financial crises. We identify a crisis as a period in which 

market volatility exceeds 20%. Our empirical study focuses on the S&P 500 index and 
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carries out an out-of-example exercise to predict the daily volatility of the S&P 500 index 

using random forests, see Breiman (2001) and Cutler et al. (2011) for a review of random 

forests, and Hastie et al. (2017) for an overview of machine learning methods. This novel 

methodology is nonparametric and allows to aggregate/ensemble the predictions of 

individual decision trees to reduce uncertainty in the model predictions.  

5.1. Prediction using random forests  

We study the ability of binary classifiers or tree-structured classification to predict out of 

sample the annualised S&P 500 daily volatility using S&P 500 sectoral volatility 

connectedness measures. As connectedness jumps whenever financial market volatility 

rises, we expect that the whole set of sectoral connectedness measures, which provides 

information about how the shocks propagate through the sectors, conveys information 

about future volatility. We focus on two volatility states: the high volatility state that is 

characterised by a volatility higher than 20% and a low volatility state below this level. 

The high complexity of financial markets makes the use of tree-structured classifiers very 

suitable as they can handle problems characterised by high dimensionality, nonnormality 

and nonhomogeneity, that is, different relationships between variables in different parts 

of the measurement space (Breiman et al., 1984). Thus, the tree-structured classification 

is used not only to produce an accurate classifier, but it is also helpful if there are many 

variables as covariates. It can be also used to identify those variables with stronger 

predictive ability and their interactions. Our aim is to exploit the connectedness measures 

to predict out of sample extreme volatility episodes for the S&P 500 index.  

A binary classifier is a rule that assigns a predicted class membership in C = {0,1}, which 

represents the set of classes, based on a measurement vector x in the measurement space 

X. Given any x in X, the rule assigns one of the classes {0,1} to x. In our setting, we want 
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to predict a binary variable Y (= 1 if annualised S&P 500 daily volatility is higher than 

20% and 0 otherwise) from the observed vector of state variables [X1, …, Xn] given by 

the set of estimated volatility spillovers among the different economic sectors. More 

formally, the set of state variables is comprised by the following variables: the total 

volatility connectedness measure, 21 total directional volatility connectedness variables 

and 21 total net pairwise directional volatility connectedness variables. Therefore, our 

state variable vector is comprised of n=43 variables. The tree-structured classifiers are 

constructed by repeated splits of subsets of X into two descendant subsets, beginning with 

X itself. The tree is made of nodes and branches: internal nodes split into two children 

and terminal nodes, which do not have any children. A terminal node has a class label 

associated with it according to the highest posterior probability such that observations 

that fall into the particular final node are assigned to that class. The splitting condition at 

each node is expressed as an “if-then-else” rule that is determined by a specific splitting 

criterion so that the data in each of the descendant subsets are purer.  

In what follows, we briefly discuss the steps needed to create a tree classifier (Breiman et 

al., 1984). First, growing an overly large tree that gives us optimal splits for the tree (to 

grow a tree at a given node, we search for the best split in terms of decreasing the node 

impurity using the Gini diversity measure searching through all the state variables). 

Second, pruning the large tree using minimal cost complexity criteria to create a sequence 

of sub-trees that avoid the overfitting of the large tree. Third, choosing the ‘right tree’ 

using cross-validation methods or an independent tree. We choose the best tree based on 

the misclassification rate estimated by cross-validation using ten cross-validation 

subsamples. Once we have the right tree, the class labels are assigned and we compute 

the corresponding misclassification rate.  
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In order to improve the stability and predictive power of classification and regression 

trees, several methods that involve different ways of combining ensembles of classifiers 

are developed. We build on the work of Breiman (1996a, 1996b, 1996c, 2001); these 

methods result from growing an ensemble of trees and letting them vote for the most 

popular class in our classification setting. Random forest methods are a combination of 

tree predictors such that each tree depends on the values of a vector of state variables 

randomly sampled and with all the trees in the forest having the same distribution. To 

classify a new observation x, we use the majority vote from the random forest. In our 

context, at day t we consider n1/2 variables to predict the volatility state (high or low) at 

time t+1, and consider a total of 200 trees. 

5.2. Empirical prediction exercise using sectoral volatility spillovers 

The data used to train the random forest decision tree cover the period from July 20, 2003 

through December 19, 2017. The remaining data constitutes the out-of-sample period and 

cover the period January 1, 2018 through August 31, 2020, a total of 695 observations. 

This period reflects both a calm and a very turbulent period around the COVID-19 

pandemic. During this period, daily volatility is higher than 20% a total of 27.6% of the 

days.  

Figure 4 plots the S&P 500 annualised daily volatility together with the probability 

assigned by the random forest to the high volatility regime over the out-of-sample 

evaluation period. The blue line plots the probability predicted by the random forest using 

the connectedness measures as inputs of the model. The correlation between both series 

is 92.31%, suggesting that the volatility connectedness measures are useful for predicting 

the future volatility of the S&P 500 index in the high volatility regime. Throughout the 
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COVID-19 crisis, the predicted probability is close to one suggesting that the occurrence 

of a crisis is almost certain. 

Figure 5 plots the receiver operating curve or ROC curve, see Fawcett (2006), that 

illustrates the diagnostic ability of the random forest model as its discrimination threshold 

is varied. The ROC curve is created by plotting the true positive rate (TPR) against the 

false positive rate (FPR) at various threshold settings. The true positive rate is also known 

as sensitivity. The false positive rate can be calculated as (1 - specificity).5 In our example, 

the curve illustrates the ability of the probability of the random forest model to predict 

the high volatility regime for the S&P 500 index. The area under the curve is 0.98, which 

shows how useful the sectoral volatility connectedness is to predict the volatility of the 

S&P 500 index out of sample. 

[Insert Figures 4 and 5 about here] 

 

Finally, we also compute a measure of the marginal importance of the covariates in the 

prediction model. To do this, we compute the variable importance (VI) statistic, see 

Ellies-Oury et al. (2019). These authors construct a measure of importance for each 

covariate Xj by estimating the response variable introducing perturbations to the covariate 

and computing the error due to these perturbations. The variable importance (VI) of the 

covariate Xj is computed as 𝑉𝑉𝑉𝑉𝑗𝑗 = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤𝚥𝚥��𝑛𝑛
𝑖𝑖=1 , where 𝑦𝑦𝑖𝑖  is the predicted value when 

the observations of the jth covariate are randomly permuted in the sample and 𝑦𝑦𝚤𝚤𝚥𝚥�  is the 

new estimated link function. If the covariate Xj has an effect on Y, the random permutation 

of its observations will affect the prediction of Y by increasing the error measured in 𝑉𝑉𝑉𝑉𝑗𝑗. 

                                                           

5 Sensitivity measures the proportion of positives that are correctly identified. Specificity measures the proportion of 
negatives that are correctly identified. 
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The covariates with the highest VI statistic are considered the most important to predict 

the response variable. The VI measure is computed for every tree and the average over 

the entire ensemble is divided by the corresponding sample standard deviation to obtain 

values that are comparable across variables.  

 

Figure 6 plots the ordered average of the variable importance measure over the out-of-

sample evaluation period for each connectedness measure. This figure shows that shocks 

related to Technology are especially relevant for predicting the volatility of the S&P 500 

index in the high volatility regime. This is so because the measures for the Technology 

“from”, Technology “To” and Technology “net” connectedness are the first, fourth and 

sixth more important variables with respect to the prediction error. It is also relevant that 

net pairwise connectedness between Pharmaceuticals vs. Health Care and 

Pharmaceuticals vs. Biotechnology are the second and third more important variables in 

the out-of-sample analysis.  

 [Insert Figure 6 about here] 

6. Conclusions 

This paper measures volatility spillovers between sectors of economic activity using 

network connectivity measures. To do this, we apply the novel methodology proposed in 

Diebold and Yilmaz (2012) to seven economic sectors of economic activity in the U.S. 

Our empirical results show that Banking&Insurance, Energy, Technology and 

Biotechnology are the main channels through which shocks are transmitted to the rest of 

the economy. Banking&Insurance is especially relevant during 2007-2009 global 

financial crisis, while the Energy sector is especially relevant during the COVID-19 crisis. 

Health Care and Pharmaceuticals are, on the other hand, net receivers of shocks. Volatility 
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spillovers are usually regime-dependent, increasing their intensity during turmoil periods. 

The Biotechnology sector is, however, the exception.   

Volatility spillover effects are also useful for predicting crises. Using random forests 

algorithms and decision trees, we find that sectoral volatility spillovers help to predict the 

occurrence of extreme volatility regimes for the S&P 500 index.  These results are 

particularly revealing for the recent period around the spread of the COVID-19 pandemic. 

During this period, using out-of-sample data, we find that the probability of observing 

extreme volatility in the S&P 500 index is close to one.  

The results of this study can be extended in different directions. Our findings reveal the 

importance of measures of volatility spillovers as early indicators of financial distress, 

however, the predictive ability of these measures should be explored in more detail and 

using other prediction models as robustness exercises. We believe this is beyond the scope 

of this paper. A second extension is to use these measures of connectiveness to predict 

the dynamics of macroeconomic and financial variables. Preliminary results show the 

presence of cointegration between our connectivity measures and the nominal short-term 

interest rates. This finding suggests that volatility spillovers can be used as state variables 

for volatility prediction, portfolio allocation and other relevant areas in empirical finance 

models.  
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Table 1. S&P 500 Sectors. 

Sector Sub-sectors Bloomberg RIC 
Health Care Healthcare Equipment .SPSIHE 
  Health Care Services .SPSIHP 
Pharmaceuticals Pharmaceuticals .SPSIPH 
Biotechnology Biotechnology .SPBIO 
Bank&Insurance Banks .SPSIBK 
  Insurance .SPSIINS 
  Regional Banks .SPSIRBK 
  Capital Markets .SPSICM 
Cyclical sectors Retail .SPSIRE 
  Transportation .SPSITN 
  Homebuilders .SPHOME 
Technology Semiconductors .SPSEMI 
  Software & Services .SPSISS 
  Technology Hardware .SPSICH 
  Telecom .SPSITE 
Energy Metals and Mining .SPSIMM 
  Oil & Gas Equipment .SPSIOS 

  
Oil & Gas Exploration & 
Production .SPSIOP 

Table 1 reports the sectors under study and their components according to the S&P sector classification. 
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Table 2. Summary statistics: Log of annualized asset return volatilities by sector of economic 

activity. 

 
Health 
Care Pharmaceuticals Biotechnology Banking & 

Insurance 
Cyclical 
sectors 

 
Technology 

 

Energy 
 

Mean 1.20 1.24 1.40 1.29 1.33 1.31 1.49 
Median 1.17 1.23 1.39 1.23 1.28 1.28 1.45 
Maximum 1.98 1.93 1.99 2.09 2.05 2.01 2.20 
Minimum 0.73 0.67 1.05 0.85 0.96 0.95 1.09 
Standard 
Deviation 0.17 0.18 0.16 0.24 0.18 0.17 0.18 
Skewness 1.36 0.53 0.42 1.21 1.20 1.04 1.09 
Kurtosis 2.72 0.87 0.20 1.20 1.32 1.57 1.93 
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Table 3. Connectedness table using Diebold and Yilmaz (2012) methodology. 
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The table reports the schematic connectedness table that proves central for understanding the various 

connectedness measures and their relationships. The elements of the matrix contain the variance 

decompositions, called the “variance decomposition matrix”, ( )







==

≈

HdD g
jiij ,θ . The connectedness 

table augments the matrix D with a rightmost column containing row sums, a bottom row containing 

column sums, and a bottom-right element containing the grand average, in all cases for i different from j.  

 

  



31 
 

Table 4. Sectoral volatility connectedness. 

 

Pharmaceuticals 

Health 

Care Technology Banking&Insurance Cyclical Biotechnology Energy 

 

From 

Others 

Pharmaceuticals 22.59 10.13 10.18 13.72 9.06 18.95 15.38 77.41 

Health Care 11.83 15.17 12.66 16.34 11.65 14.08 18.28 84.83 

Technology 7.99 9.01 19.43 18.92 13.48 11.86 19.30 80.57 

Banking&Insurance 6.55 6.61 10.66 36.16 13.08 8.05 18.88 63.84 

Cyclical 6.83 8.19 12.99 23.87 21.79 9.50 16.83 78.21 

Biotechnology 12.61 8.33 9.56 11.95 8.22 36.65 12.68 63.35 

Energy 5.61 5.93 8.82 14.56 8.16 7.06 49.86 50.14 

To Others 51.42 48.21 64.86 99.36 63.65 69.51 101.35  

Net -25.99 -36.6 -15.71 35.52 -14.56 6.16 51.21 71.19 

 

Sectoral volatility connectedness obtained through the generalized variance decomposition. The sectoral volatility 

connectedness is based on a vector autoregression of order 3 and generalized variance decompositions of 12-day ahead 

forecast errors. Each cell in the 7x7 matrix section of the table reports the relative (in percent terms) contribution of the 

“column” variable shocks to the variance of the forecast error for the “row” variable. Each cell in the directional “from 

Others” column reports the total variance of the forecast error share attribuitable to the other variables. Each cell in the 

directional “To Others” row reports the sum of the contributions of each variable to all other variables’s variance of 

forecast errors. The “net” directional connectedness row reports the difference between the corresponding cells in the 

“To Others” and the “From Others” column. The total connectedness index is the number in the lower right corner and 

is equal to the average of the elements of the “From Others column” and the “To Others row”. 
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Figure 1. Annualized S&P 500 volatility for the daily returns on each sector of economic activity. We 

consider sectors according to S&P sector classification system: Health Care, Pharmaceutical, 

Biotechnology, Banking&Insurance, Cyclical sectors, Technology and Energy. The logarithmic daily 

percent sector returns are computed using closing prices from Bloomberg. The data consider 4486 daily 

observations covering the period from July 20, 2003 through December 31, 2020.   
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Figure 2. Sectoral volatility connectedness (200-day rolling-sample windows) over the period July 20, 

2003 through December 31, 2020. 
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Figure 3. Net connectedness Index (200-day rolling-sample windows) for the seven sectors of U.S. economic activity 

comprising the S&P 500 index. Net directional volatility connectedness is the difference between its “to” and “from” 

connectedness. 

 

 

Figure 4. S&P 500 volatility is represented in red. The blue line plots the probability predicted by the random forest 

using the connectedness measures as inputs of the model. The model is trained using data from July 20, 2003 through 

December 19, 2017. The remaining data constitutes the out-of-sample period and spans from January 1, 2018 to 

December t 31, 2020.  
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Figure 5. The ROC curve illustrates the ability of the probability of the random forest model to predict the high 

volatility regime for the S&P 500 index. The model is trained using data from July 20, 2003 through December 19, 

2017. The remaining data constitutes the out-of-sample period and cover the period January 1, 2018 through December 

31, 2020. 

 

 

Figure 6. Average of the variable importance (IV) obtained from the prediction errors of the random forest model 

fitted to the data. The model is trained using data from July 20, 2003 through December 19, 2017. The remaining data 

constitutes the out-of-sample period and cover the period January 1, 2018 through December 31, 2020. The VI 

measure is computed for every tree and the average over the entire ensemble is divided by the corresponding sample 

standard deviation. The random forest is comprised by 200 decision trees. 
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