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The Internet of Things (loT) is considered as the next stage of the evolution of the Internet. It
promotes the concept of anytime, anywhere connectivity for anything. The 10T has the ability to
connect billions of devices to share their information and create new services that improve our quality
of life. Although the IoT provides countless benefits, it creates several security issues. One of the
approaches to resolve these issues is to build an effective access control model.

Due to the dynamic nature of the 10T, static access control approaches cannot provide an appropriate
security solution, as they are static and context-insensitive. Therefore, this research proposes a novel
adaptive risk-based access control model to determine access permissions dynamically. This model
performs a security risk analysis on the access request by using 10T contextual and real-time
information to make the access decision. The proposed model has four inputs: user context, resource
sensitivity, action severity and risk history. These inputs are used to estimate the risk value associated
with each access request to make the access decision. In addition, this research adds abnormality
detection capability by using smart contracts to track and monitor user activities during the access

session to detect and prevent malicious actions.

One of the main problems to implement the proposed model was to determine the appropriate risk
estimation technique that ensures flexibility and scalability of the 10T system. Hence, a review of
most common risk estimation techniques was carried out and the fuzzy logic system with expert
judgment was selected to implement the risk estimation process. In addition, to overcome scalability
and learning issues of the proposed fuzzy risk estimation technique, Adaptive Neuro-Fuzzy Inference
System (ANFIS) and Neuro-Fuzzy System (NFS) were utilized to implement the risk estimation
technique. The results demonstrated that it outperformed the results produced by the fuzzy logic
system, increased the accuracy and can adapt to changes of various 10T applications. In addition, this
research presented a solution for the cold start problem associated with risk-based models that use
risk history as one of the risk factors. The results demonstrated that the proposed risk-based model

can operate immediately when first used or connected without reconfiguration or adjustment.



By using MATLAB Simulink, the operation of smart contracts was simulated to track and monitor
user activities during the access session. The results demonstrated that it provides an effective way
to detect and prevent malicious actions in a timely manner. To validate the applicability of the
proposed adaptive risk-based model in real-world 10T scenarios, access control scenarios of three
10T applications including healthcare, smart home and network router were presented. The results
demonstrated that the proposed risk-based model adds more advantages over existing access control

models and can be applied to various and real-world lIoT applications.
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Chapter 1: Introduction

During the past decade, the Internet of Things (10T) has gained significant attention in academia as
well as industry. The main reasons behind this massive interest are the unlimited capabilities that the
0T can provide (Perera et al., 2014). The loT represents a revolutionary technology that enables
almost everything everywhere to be connected over the Internet. It enables various devices and
objects around us in the environment to be addressable, recognizable and locatable via cheap sensors.
These devices can be connected and communicate with each other over the Internet using either
wired or wireless communication networks (Leloglu, 2017). The 10T devices involve not only normal
electronic devices or technological development products like vehicles, phones, etc, but also other
objects such as food, animals, clothes, trees, etc. The key purpose of the 10T system is to allow
various objects to be connected in anyplace anytime by anyone preferably using any path/network
(Patel & Patel, 2016).

Although the 10T brought several benefits, it also creates multiple challenges, especially in security
(Igbal et al., 2016). Achieving a high level of security is a challenge due to the heterogeneous and
distributed nature of the 10T system. In addition, applying sophisticated security algorithms could
affect usability and user satisfaction due to resource constraints in l0T devices (Habib & Leister,
2015). One of the significant elements to handle security challenges in the 10T is the access control
model. This model is used to control access to system resources by allowing only authorized users
who have been successfully authenticated. An access control model consists of three main elements;
subject, target and rules. Subjects are system users who make the access request to access system
resources (targets). Rules are used to determine the access decision whether granting or denying the
access (Dos Santos et al., 2014; Liu et al., 2016). The main purpose of the access control is to reject
unauthorized users and limit operations of authorized users on a certain device. In addition, it
prevents the activity that could cause a security breach (Dos Santos et al., 2014). A powerful access
control model should fulfil security requirements of confidentiality, integrity, and availability
(Suhendra, 2011).
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There are two categories of access control approaches; static and dynamic. Static access control
approaches use rigid and predefined policies to provide the access decision. These policies always
give the same result in different situations. Hence, this rigid method cannot provide a reliable security
solution for loT systems, which are dynamic in nature (Chen et al., 2007). On the other hand, dynamic
access control approaches use not only static policies but also real-time and dynamic features to
determine access decisions. These dynamic features involve context, trust, history events, risk, and
operational need (Shaikh et al., 2012).

Risk-based access control model is one of the dynamic models. It uses the security risk associated
with the access request as a criterion to determine access decisions. Although this model is still in its
first stage of approval, there is an increasing demand to specify its essential elements and procedures
(Dos Santos et al., 2014). A risk-based model has many advantages. For instance, it provides more
flexibility in accessing system resources by using real-time and contextual information collected
while making the access request to decide whether granting or denying access. In addition, it takes
into consideration the exceptional access requests that are necessary for medical and military
applications where providing access can save thousands of lives (Khambhammettu, Boulares, Adi,
& Logrippo, 2013). Also, it provides an efficient solution to unexpected situations which require
violating the policy, as policies are incomplete and imperfect. The ultimate goal of the risk-based
access control model is to create a system that encourages information sharing to maximize
organization’s benefits while keeping users accountable for their actions and stop the expected

damage due to sensitive information disclosure (Chen et al., 2007).

1.1 Research Objective

The major goal of the 10T system is to increase information sharing and at the same time ensures that
the highest possible security measures are applied to prevent sensitive information disclosure.
However, current access control models are built using static and predefined policies that give the
same result in different situations. This binary decision (grant/deny) cannot create an effective and
efficient level of security in a dynamic, heterogeneous and distrusted environment like 10T systems
(Castiglione et al., 2016; Shen et al., 2018). Therefore, the need to adopt dynamic access control
approaches should be one of the essential priorities to provide an efficient and flexible access control
model for the loT. With billions of sensors in the 10T environment, several contextual and dynamic
features can be collected to build a dynamic access control model. This, in turn, provides more
flexibility to adapt to different situations and conditions while making access decisions in various

10T applications.

The objective of this research is to develop a dynamic and adaptive risk-based access control model
for the 10T. This model utilizes real-time and contextual features collected while making the access

request to determine access decisions. The proposed risk-based model uses user attributes related to
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the surrounding environment such as time and location, sensitivity of data to be accessed by the user,
severity of actions that will be performed by the user, and user risk history as inputs for the risk
estimation algorithm to estimate the risk value for each access request to determine the access
decision. In contrast to current access control models, the proposed model provides adaptive features
by using smart contracts to track and monitor user’s activities during access sessions to detect and

prevent malicious actions.

1.2 Research Challenges

Risk-based access control model provides a flexible way to increase information sharing and at the
same time ensures the security of information. After reviewing existing literature regarding

risk-based access control models (see in Chapter 2 and 3), the literature failed to:

e Provide a dynamic risk-based access control model that can utilize contextual and real-time
features collected at the time of making access requests and be adopted in various 10T

applications.

e Present a clear risk estimation method to estimate the risk value associated with the access

request quantitatively in a dynamic environment.

o Provide a scalable risk estimation technique that can cope with the constant increase in the

number of 10T devices and adapt to changes of various 10T applications.

e Provide a plug and play risk-based access control model that intended to work perfectly when

first used or connected, without reconfiguration or adjustment.
o Consider a way to detect and prevent malicious actions during access sessions.
e Provide a way to evaluate the accuracy and performance of the risk-based access control

model in real-world 10T applications.

1.3 Research Questions

The major objective of this research is to provide a dynamic and adaptive risk-based access control
model that uses real-time and contextual information to provide access decisions for various 10T
applications. To achieve the research objective, the following research question and sub-questions

need to be addressed:
RQ: What is the appropriate adaptive risk-based access control model for the 10T system?

This question is divided into six sub-questions:
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SRQ1: What is the appropriate risk estimation technique to estimate the risk associated with

the access request?
SRQ2: What are acceptable risk values to make the access decision in 10T applications?

SRQ3: How to provide plug and play risk-based model that can work when first used or

connected to an loT system?

SRQ4: How to provide a fast and scalable risk estimation technique to handle the constant

increase in the number of 10T devices?
SRQ5: How will the user/agent activities be monitored during the access session?

SRQ6: To what extent is the proposed risk-based model applicable to real-world loT

scenarios?

1.4 Thesis Structure

Chapter 2 provides the background and literature review of access control models in the 10T. It opens
by providing an overview of the 10T and its related security challenges. This is followed
by providing a discussion of 10T security and access control models. Then, chapter 2
reviews the literature regarding risk-based access control models by highlighting risk
factors and risk estimation approaches. This is followed by providing an overview of

smart contracts by highlighting their structure and benefits and how smart contracts work.

Chapter 3 provides a discussion of risk estimation techniques. It starts by providing an overview of
guantitative risk estimation approaches discussed in related risk-based models by
highlighting their advantages and weaknesses. Then, chapter 3 provides an overview of
the fuzzy logic approach with expert judgment and how it can be used to implement the

risk estimation process of the proposed risk-based model.

Chapter 4 presents the proposed adaptive risk-based access control model for the loT. It starts by
discussing research problems the literature failed to address. Then, it introduces the
proposed adaptive risk-based access control model by discussing its main elements and
the process flow. This is followed by discussing how the proposed adaptive risk-based
model will resolve research problems extracted from the literature. Then, chapter 4

presents research methods used in this research to address research questions.

Chapter 5 presents the implementation of the risk estimation process using the fuzzy logic system
with expert judgment. It provides a step-by-step discussion of the implementation of the
proposed risk estimation technique and how security experts have validated fuzzy rules

and decided acceptable risk values of risk decision bands. This is followed by presenting
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a solution for the cold start problem. Then, chapter 5 presents a set of experiments to
evaluate the efficiency of the proposed fuzzy risk estimation technique to measure the
response time with the different number of access requests and determine the most

efficient MF, defuzzification method, and rule aggregation operator.

Chapter 6 presents the implementation of the proposed risk estimation technique using the ANFIS.
It starts by providing an overview of the ANFIS. Then, it presents the implementation of
the risk estimation technique using the ANFIS by showing different experimental results

of training the ANFIS model using both hybrid and backpropagation learning methods.

Chapter 7 presents the implementation of the proposed risk estimation technique using the NFS. It
starts by providing an overview of the NFS by highlighting its objectives and types of
NFS methods. Then, chapter 7 presents the implementation of the risk estimation
technique using the NFS by showing different experimental results of training the NFS
model using four learning algorithms. Then, it compares the results of the NFS with the

ANFIS and the fuzzy logic system.

Chapter 8 provides a discussion of access monitoring and model evaluation. It starts by providing an
overview of access monitoring. Then, it discusses simulating the operation of smart
contracts to monitor user activities during the access session by using Simulink. Then,
chapter 8 discusses the evaluation of the proposed risk-based access control model by
presenting access control scenarios of three 10T applications including healthcare, smart

home and network router.

Chapter 9 summarises the main points of this research and presents the contribution and future work.
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Chapter 2. Background & Literature Review

This chapter provides the background and literature review related to the research problem
introduced in chapter 1. It opens by providing an overview of the 10T system by discussing 10T
layered architecture, characteristics and common applications. Section 2.2 provides a discussion on
0T security by highlighting security requirements and challenges of the loT system. Section 2.3
provides an overview of access control involving access control architecture and different types of
access control approaches. Section 2.4 introduces context-awareness in the 10T system. Section 2.5
provides the literature review regarding risk-based access control models and its main elements. This
review examines existing work regarding context-aware models, risk-based models and risk factors.
Section 2.6 presents an overview of smart contracts by highlighting its main benefits and how it
works. The chapter closes by providing a summary of the main points discussed through the chapter

and introduces the next chapter.

2.1 An Overview of loT

The 10T is considered as a universal presence that allows all objects/things in our environment to be
connected over the Internet with the capability to interconnect with each other without human
intervention. The loT involves a variety of objects that can be connected using either wired or
wireless networks. These objects have a unique addressing scheme that allows them to interact and
cooperate with each other to create novel applications and services such as smart homes, smart
transportation, connected cars, smart grids, smart cities, smart traffic control, etc., which improve

our quality of life.

The loT concept is not new, it has passed through several phases before reaching what it is today.
The 10T notion starts in 1982 when four students from Carnegie Mellon University invented the
ARPANET-connected coke machine to indicate whether drinks contained in the coke machine are
cold or not. Their main idea was to count how many coke bottles had remained in each row and for

how long. So, if the loaded bottle is left for a long time in the machine, it is labelled “cold”. This
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experiment has inspired a lot of inventors all over the world to create their own connected appliances
(Faroog & Waseem, 2015).

In the early 1990s, IBM scientists presented and patented an Ultra-High Frequency (UHF) Radio
Frequency ldentification (RFID) that covers wide distance and provides fast data transfer. Although
IBM performed a few pilot experiments, it never commercialized this new technology. In the mid-
1990s, IBM suffered from tough financial problems which made them sell their patent to Intermec,
a barcode system provider, which utilized this technology to build multiple applications. However,
due to the high cost of this technology at this time and low capacities of sales, this technology did

not spread as was expected (Roberto et al., 2015).

In 1999, the Auto-IDentification Centre at the Massachusetts Institute of Technology (MIT) has
received funds from various organizations to utilize RFID technology to link different objects
together. This happened when two professors, David Brock and Sanjay Sarma, used RFID tags to
track products through the supply chain. Their idea was to use RFID tag’s serial number to track the
products to save costs, since producing a more advanced chip with large memory storage will be
more expensive. Data linked with RFID tags were kept in a database that can be accessed over the

Internet.

Many researchers and organizations believe that the term “Internet of Things” was first introduced
in 1999 by Kevin Ashton, who was the executive director of the MIT Auto-IDentification Centre
(Ashton, 2009). Ashton has said, “The Internet of Things has the potential to change the world just
as the Internet did. Maybe even more so” (Ashton, 2009). While others argue that Neil Gershenfeld
is the first to speak about the idea of the [oT in his book entitled “When Things Start to Think” which
published in 1999 (Gershenfeld,1999). The IoT was officially presented by the International
Telecommunication Union (ITU) in 2005 (ITU, 2005).

The loT has been defined by many organizations and researchers. However, the definition provided
by the ITU in 2012 is the most common. It stated: “a global infrastructure for the information society,
enabling advanced services by interconnecting (physical and virtual) things based on existing and
evolving, interoperable information and communication technologies” (ITU, 2012). In addition,
Guillemin and Friess (2009) have suggested one of the simplest definitions of the loT system, as
shown in Figure 2.1. Tt stated: “The Internet of Things allows people and things to be connected

anytime, anyplace, with anything and anyone, ideally using any path/network and any service”.
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Anytime
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Things
Any Service

Any Business
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Any Network

Figure 2.1: The 10T can connect anything anywhere using any path (Guillemin & Friess, 2009)
2.1.1 loT Expansion

The 10T has the capability to modify business models and value chains in different organizations. It
is not just a smart object connected to the Internet. In some stage, all objects will have the ability to
connect and communicate over the Internet. The number of connected devices exceeds the population
worldwide from 2008 (Statista, 2018). With unlimited capabilities and advantages of the 10T system,
novel applications and services can be created every day. According to Statista (2018), the number
of 10T devices is expected to reach about 31 billion worldwide by the end of 2020. This number is
expected to increase significantly to reach about 75 billion devices by the end of 2025, as depicted
in Figure 2.2.
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Figure 2.2: Expected loT growth from 2015 to 2025 (Statista, 2018)
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In addition, the loT market is growing almost exponentially. According to Statista (2018), the
estimated revenue of the 10T in 2015 was $ 743 billion. This number is expected to increase
dramatically to reach $ 1710 billion by the end of 2019.

2.1.2 Architecture of loT

The loT World Forum (IWF) architecture committee released an 10T reference model in October
2014 (Stallings, 2015). This reference model works as a common framework to help the industry to
accelerate 10T deployments. Also, it is intended to consolidate and encourage the collaboration and
development of 10T deployment models. The 10T reference model is designed as seven-layers so that
each layer provides additional information for establishing a common terminology, as shown in
Figure 2.3. It also classifies where various types of processing are operated through different layers
of the 10T reference model. Further, this model enables various manufacturers to build 10T products
that are compatible with each other, which ultimately convert the 10T from a conceptual model into

a real and approachable system.

Collaboration & Processes

Layer 7 — Involving People & Business
Processes

Layer 6 — Reporting, Analysis and Control

Data Abstraction Layer 5 — Aggregation and Access

Layer 4 — Big data and Storage of Things
Data

Layer 3 — Data Elements Analysis &

Edge Computing Transformation

Layer 2- Communications & Processing
Connectivity Units, Protocols, Networks, M2M, etc.

Layer 1- Devices, Sensors, Controllers,
Physical Devices & Controllers etc.

Figure 2.3: The 0T reference architecture layers (Stallings, 2015).

Layer 1 is the physical layer. It contains physical devices and controllers that manage various objects.
These objects represent things in the 10T environment that involve various types of devices to collect,
send and receive information. For instance, sensors that collect information about the surrounding
environment (Cisco, 2014). Communications and connectivity are in layer 2. This layer is used to

interconnect different 10T things with each other using interconnection devices such as switches,
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gateway, router and firewalls. Layer 3 is the edge computing. This layer takes data coming from the
connectivity layer and converts it into information appropriate for storage and higher-level
processing. At this layer, the processing components work with a huge volume of data and it executes

data transformation operations to reduce data size.

Layer 4 is the data accumulation. This layer is concerned with storing data coming from different
IoT devices. These data are filtered and processed by the edge computing layer that absorbs large
guantities of data and placed them in storage to be accessible by the higher levels. Different types of
data in various formats and from heterogeneous processors may come up from the edge computing
layer for storage. Layer 4 is the data abstraction layer. This layer aggregates and formats stored data
in a way that make them accessible to different applications in a more manageable and efficient way.
Layer 6 is the application layer. This layer is concerned with the information interpretation for
various loT applications. This layer encompasses a variety of applications that use loT input data or
control 10T devices (Stallings, 2015). The collaboration and processes are in layer 7. This layer

identifies individuals who can communicate and collaborate to make the loT system more useful.

2.1.3 Essential Characteristics of 10T

The IoT represents a promising technology that aims to improve people’s quality of life by generating
new applications and digitized services that facilitate people daily activities. There is a set of common

features of the 10T system, which includes:

e Large Scale: 10T devices are counted in billions. This large-scale network needs to be
controlled to allow devices to communicate with each other. In addition, this large-scale
network generates a huge amount of data which produce a critical issue regarding data

interpretation and analysis.

¢ Intelligence: Combining sophisticated software algorithms with hardware allow loT devices
to become smart. These abilities allow 0T devices to make intelligent decisions in various

situations and interact intelligently with other communicating devices.

e Sensing: Sensors are the main part of the 10T system. These sensors are used to perceive
changes in the surrounding environment and generate data that reveal their status. With
various sensing technologies, sensors provide a good understating of the surroundings which

increase human awareness about the physical world.

e Dynamic Environment: The loT can connect almost all objects of our environment without
being able to determine the 10T network boundaries which makes it a dynamic system in
nature. Also, loT devices can operate and be adjusted dynamically based on changing

conditions and situations.
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e Heterogeneity: The IoT system involves billions of devices with heterogeneous features
such as operating systems, platforms, communication protocols and others. These

heterogeneous features make the management operation a complex task to perform.

e Lightweight: Most 10T devices are designed to be small and lightweight with limited
capabilities of memory storage and computation power, so they are built to work with

minimal energy consumption.

e Connectivity: One of the main features of the 10T system is the ability to connect various
devices with different characteristics and use their shared information to create novel

applications and services.

e Self-configuring: Devices need to be configured to perform a specific task. But for 1oT
devices, they have the capability of self-configuring which enable them to operate without
the human intervention. These devices could configure themselves to the up-to-date software
in association with the device manufacturer without user involvement (Stallings, 2015). For
example, mobile phones now can be upgraded automatically to up-to-date software without

user involvement.

e Unique Identity: Within the 10T network, each 10T object is identified and recognized using
a unique identifier such as the IP address. These identities are provided by 1oT manufacturers
to use it to upgrade devices to appropriate platforms. Further, these devices have interfaces
that enable the users to collect the required information from devices, record their status and

manage them remotely.

o Context-awareness: In the 10T environment, there are multiple sensors that sense their
surroundings, collect and store the required information. These sensors may take decisions

based on the collected data which make it a context-aware.

2.14 IoT Applications

The 10T system can interconnect almost all physical and virtual objects in our environment that yield
new services and applications. These applications can be adopted in different domains to increase

our quality of life. This section provides a discussion on common loT applications.

2141 Healthcare

The 10T has proven it can provide several benefits for the healthcare domain by creating new services
that help patients and keep the field innovative. There are multiple wearable devices developed to
monitor and track the patient’s health conditions. These devices help older patients to live
independently without fear. Also, these devices can be utilized to observe and store patients’ health

conditions constantly and send warning messages in abnormal situations in which if the situation is



Chapter 2: Background and Literature Review 15

minor, the device itself can recommend a treatment for the patient. While if it is a major situation,
the device can send urgent messages to the hospital or ambulances to be immediately dispatched
(Akkas & Sokullu, 2017).

2.1.4.2 Smart Agriculture

With the existence of multiple sensors within the 10T environment, farmers can use collected data to
produce a better return on the investment. Using sensors, the soil parameters such as humidity, salt
level and temperature can be collected and measured to increase productivity. Furthermore, with the
existence of several wireless technologies such as geographical information system and remote
sensing, there are many chances to collect relevant information about the soil quickly and efficiently
which can help to substitute human effort with automatic machinery to increase agricultural
production (Krishna et al., 2017). There is significant growth in the adoption of 10T devices in
agriculture. It is predicted that the number of 10T devices in agriculture will reach about 75 million
by the end of 2020 (Akkas & Sokullu, 2017).

2.1.4.3 Supply Chain and Logistics

Using RFID and Near Field Communication (NFC), products can be tracked from the manufacturer
to the distribution location. RFID tags attached to the products are used to identify each product
uniquely and collect relevant information and convey it in real-time along with location information.
These tags are used to transmit messages showing exactly what products, sizes and style variations
as well as temperature and humidity of products. Moreover, automated data capture gives real-time
visibility of stock and avoids manual counting and human errors. In simple words, the 10T is set to
revolutionize the supply chain with both operational efficiencies and revenue opportunities (Guo et
al., 2012).

2144 Smart Home

Smart home is one of the most popular applications of the 10T system. Thanks to sensor and actuation
technologies along with Wireless Sensor Networks (WSNSs), people can connect a variety of smart
appliances inside their homes to resolve their interests. Smart homes offer greater energy-efficiency
in which smart appliances can be set to automatically run and then turn off when their job is done. For
example, lights can shut off automatically when no one is in the room. Also, the thermostat can be
set to let the indoor temperature drop during the day before returning it to a more comfortable level

just before residents arrive in the evening (Pétru et al., 2016).

2.1.45 Smart City

A smart city refers to the adoption of 10T devices such as sensors, meters, lights, etc. to monitor and
collect information about the surrounding environment of a city to provide new digitized services to

improve public services and city infrastructure. 10T solutions are involved in many areas of smart
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cities such as smart street lighting, trash management, smart parking and traffic management (Zanella
etal., 2014).

For the smart traffic, collected sensor information about traffic can be sent to citizens’ phones to
monitor traffic in real-time and allow drivers to choose the best roads to save driving efforts and
time. Also, drivers can be warned in the case of accidents to redirect away from congestion. For trash
management, 10T sensors can be deployed across trash bins to send messages to specific authorities
to report bins that need to be emptied (Khatoun & Zeadally, 2017).

2.1.4.6 Smart Grid

10T sensors can be utilized to collect relevant information about energy consumption in homes to use
energy efficiently and save money. For example, suggesting better ways to save energy. Also, 10T
sensors information can be used to deliver consumers all relevant information about various energy

suppliers in an automated way for choosing the best for consumers.

The concept of the smart grid adds intelligence at the power flow cycle from supplier to consumer.
This type of intelligence can be used to help consumers to be aware of power consumption and
dynamic pricing. Also, one of the main applications of the smart grid is the smart meter which
collects, records and analyses power consumption at different times of the day. This information can
be used by consumers to adjust their power consumption and change their lifestyles to reduce costs
(Zanella et al., 2014).

2147 Connected Car

Smart car or connected car started to be deployed into our community. This type of cars can access
the Internet and share their data with other devices. The number of cars equipped with this facility is
increasing every day, which will allow the appearance of several applications for connected cars in
the near future (Kalmeshwar & Prasad, 2017). The connected car provides several advantages over
the normal one. It can reduce car accidents and decrease car drivers’ errors by allowing the driver to
operate the car remotely. These driverless cars also can save time and reduce driving stress. Several
car manufacturers such as BMW, Ford and VVolvo have confirmed that there will be fully autonomous
cars by the end of 2021 (Xu et al., 2014).

2.1.4.8 Wearables

Wearables have a huge interest in markets all over the world. Many companies started to produce
these devices in huge quantities to satisfy increased demands including Google and Samsung.
According to Statista (2018), the number of connected wearable devices is expected to reach 830
million at the end of 2020. Wearables devices are equipped with sensors and can connect to the

Internet for data sharing. These sensors collect data about the user which is later processed to extract



Chapter 2: Background and Literature Review 17

meaningful information. Most common wearables devices are in fitness, health and entertainment
(Cirani & Picone, 2015).

2.2 loT Security

Security is one of the major challenges standing as a barrier in the way of successful adoption of IoT
applications. The value of the loT system comes from connecting all small and large systems together
and allowing them to communicate with each other over the Internet. Securing 10T devices and data
transmission and communication should be one of the fundamental priorities to consider (Elkhodr et
al., 2013b).

The 10T is a dynamic system in nature in which every poorly secured object can disturb the security
and resilience of the entire system as IoT devices are connected like a chain. The ease of connection
and access of 10T devices opens doors for severe security issues especially with the large-scale
distribution of heterogeneous devices, their ability to connect to other devices without requesting
permissions or even notifying their owners and probability of flooding these devices with severe

security threats.

Handling security challenges in the 10T context should be an essential priority to increase adoption
of 10T applications. Users need to be fully confident about the security of their 10T devices and their
related applications. They need to ensure that their devices are effectively secured from various
known threats as 10T devices become more integrated into people daily life’s activities (Igbal et al.,
2016).

2.2.1 Security Requirements for 10T

Security of the 10T system can be improved by employing classical security measures. Typical CIA
(Confidentiality, Integrity, and Availability) security requirements should be employed to provide a

secure loT system.

Confidentiality means exchanging messages between a sender and receiver should be protected
against any malicious or unauthenticated user (Maple, 2017). For the IoT system, confidentiality
need not only be guaranteed inside communication networks but also when transmitting messages
between various 10T devices. While integrity is used to guarantee that the content of messages
exchanged between the sender and receiver are protected against any manipulation or modification.
In the 10T system, integrity checks can be carried out at each node involved in the message exchange
between the sender and receiver. Availability is used to guarantee that a malicious user is not capable
of disrupting or harmfully affecting communication or quality of service provided by 10T devices or

communication networks (Yu et al., 2016).
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Although CIA security measures are essential for the 10T, there are other security requirements that
need to be implemented for each level of the 10T architecture, as shown in Figure 2.4. Node
authentication is one of the main security issues in the 10T physical layer to avoid unauthenticated
node access and keep the communication channel between 10T nodes secure from various types of
attacks. So, a lightweight cryptographic algorithm is needed to encrypt transmitted data especially

for resources-constrained 10T devices (Suo et al., 2012).
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Figure 2.4: Security requirements at each level of the 10T architecture
For the connectivity layer, communication security measures are needed as well as identity
authentication to prevent access of illegal nodes. Also, Distributed Denial of Service (DDoS) attack
is common at this level, so there is a need to protect against this attack (Abdur et al., 2017). For data
abstraction, accumulation and edge computing levels, many application security mechanisms are
needed to secure data stored in Cloud computing. Strong encryption algorithms are needed besides
up-to-date anti-virus. For the application and collaboration level, there is a need to adopt
authentication and key agreement to protect user’s privacy. Moreover, security awareness and

password management are essential for information security at this level (Suo et al., 2012).

2.2.2 Security Challenges

Like all new technologies, security is still the biggest issue that stands in the way of effective

developments of the I0oT system. There are several security challenges that need to be addressed to
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increase peoples trust in adopting 10T devices. This section provides a brief discussion of common

security challenges in the I0T system.

2221 Resource Limitations

Most 0T devices have limited processing and storage capabilities due to small and lightweight
features, which make them run on low energy consumption. Therefore, sophisticated security
algorithms are not suitable for these resource-constrained devices as they are not able to execute
complex processing operations in real-time. Instead, they can only employ fast and lightweight

security algorithms (Musaddiq et al., 2018).

2.2.2.2 Big Data

The 10T system involves billions of devices which generate a huge amount of data. These data are
variable in term of structure and often arrive in real-time. The volume, velocity, and variety
characteristics of Big data raise issues regarding storage and analysis operations. The IoT system is
considered one of the main sources of Big data. Although Cloud computing provides a good solution
for data storage for a long time, processing this massive volume of data is a substantial challenge, as
the entire performance of various applications is significantly dependent on the data management
service. Moreover, one of the major issues of Big data is data integrity. Ensuring the security and
integrity of this huge amount of data is becoming difficult as data sources massively increased in a

way that more security measures need to be adopted (Wagas Aman, 2013).

2.2.2.3 Secure Communication

Securing 10T devices is not enough to ensure full security of the loT system. Instead, the
communication channel connecting various nodes such as 10T devices and cloud services need to be
protected from various types of attacks. Most 10T devices transmit their data in a plaintext format
without being encrypted which make it an easy target to various types of network attacks. Hence, a
proper encryption technique should be employed (Maheshwari & Dagale, 2018). Also, using separate

networks can increase security by isolating devices and creating private communication channels.

2224 System Resilience

System resilience is one of the main challenges that need to be addressed in the 10T. Resilience refers
to the ability of the system to respond to unpredicted situations without regressing (Kitchin & Dodge,
2017). Hence, if an 1oT device is compromised, the system should be able to protect other network
nodes. However, in the normal case, if there is an infected device, resetting it or even replacing it can
solve the issue, but the main problem in the 10T system is that there is a network of devices that make
identifying the compromised device or fixing the issue to maintain the overall system security a very
difficult task to achieve. So, there is a need for a systematic method to restore 10T devices from a
known state as well as providing an efficient tool to isolate compromised devices (Kitchin & Dodge,
2017).
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2.2.25 Digital Forensics

With billions of 10T devices, the 0T system has become a significant source of evidence which can
provide vital information from the physical world to help investigators throughout the investigation
process, however, there are issues. For example, it’s important to identify where data is generated
and where it is stored, which is difficult to determine in the 10T context. Further, since 10T devices
have limited storage, data sent to Cloud computing violates data persistence (Zhang et al., 2014). In
addition, the dynamic and heterogeneous nature of the 10T system enables the integration of various
domains such as computers, tablets, mobile devices, Cloud computing, various types of sensors and
RFID technologies. So, investigating an incident in the 10T will involve all these domains which add

more complication in the investigation process (Zia et al., 2017).

2.2.2.6 Heterogeneity

The 10T system is a heterogeneous system in nature. It comprises various devices with different
hardware and software capabilities. These devices were built by different manufacturers with little
security in mind, which makes them an easy target for attackers. Also, if these devices depend on

open-source software with threats, updating their firmware will be hard (Alur et al., 2015).

2227 Authentication and Access Control

Providing an efficient authorization and access control mechanism for the 10T system is one of the
major fundamentals to provide a secure system. loT devices should gain access to services or
applications only after providing their identities correctly. However, there are many problems
associated with device authentication such as the use of weak or default passwords that lead to giving
access to attackers who can manipulate device data or even physically damage it. Adopting security
by design in IoT devices, enabling two-factor authentications and enforcing the use of strong

passwords can help to resolve these challenges (Habib & Leister, 2015).

2.3 Access Control

The main purpose of the access control is to deny operations performed by unauthorized users. Also,
it tries to prohibit any activity that could cause a security breach (Dos Santos et al., 2014). A powerful
access control model should satisfy the security requirements of confidentiality, integrity, and
availability (Suhendra, 2011). It is essential to make a reasonable distinction between authentication,
authorization and access control. Authentication is defined as the operation of seeking to verify the
identity of a user (Hulsebosch et al., 2007). While allowing or denying access to an authenticated
user to perform certain operations on certain resources is called authorization. Access control is the
process of enforcing authorization policies. Once a user/agent is authenticated and the authorization
level is identified, access control is used to enforce user permissions to prevent user/agent from

accessing anything that he/she should not be allowed to (Suhendra, 2011).
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The history of the phrase “Access Control” has started in transportation in the first half of the
twentieth century. The concept of the limited-access road was suggested in 1907 to control fast-
growing motor traffic. Although early cars were not as fast as today’s standard, car’s drivers were
enforced to control their speed on highways. They were enforced to enter and exit via one-way ramps
to control the access to highways which lead to a reduction in the probability of cross-traffic accidents

and increases the speed of traffic flows (Houlis, 2018).

By the early of the 1960s, electronic solutions adopt access control to address the problem of lost
keys to restrict access only for specific individuals. Early access control solutions utilized basic
keypads with personal identification numbers to gain access; this was then updated to swipe cards

and has since been developed into the key cards, which are still being used today.

Currently, access control is implemented at different levels in many areas such as operating system
and database management system to control resources and allow only legal users/agents to use
system resources in an authorized way. An access control model consists of five main elements;

subjects, objects, actions, privileges, and access policies.

e Subjects: Active entities in the form of users and processes that request access to objects.
e Objects: Passive entities containing information being accessed by subjects.

e Actions: An operation to be performed on a certain object such as read, write, execute, etc.
e Privileges: Authorizations permissions to perform certain actions on certain objects.

e Access policies: The set of rules that determine the access decision whether granting or
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Figure 2.5: Flow of an access control operation

The flow of an access control process is shown in Figure 2.5. It starts when a subject/user send an

access request to the access control manager to access a certain object. Then, the access control



22 Chapter 2: Background and Literature Review

manager compares the subject’s credentials against access control policies to determine the access
decision. The decision will be either granted or denied. If the access is granted, the access control
manager will allow the user to access the object, while if the access is denied, the access control
manager will terminate the session (after sending warning message regarding insufficient

credentials).
2.3.1 Access Control Architecture for 1oT

The main issue associated with building an access control model for the 10T is the lack of ability to
process access request and make the required decision as 10T devices are resource-constrained with
limited storage and computation capabilities. Typically, there are three ways to implement an access
control model for the IoT system; centralized, centralized and contextual, and distributed
(Hernandez-Ramos & Jara, 2013).

23.1.1 Centralized Approach

In this approach, the access control logic is located at a central entity. This entity could be a server
with a direct communication to 10T devices that it manages or another entity in a different location.
Therefore, 10T devices send their collected data to the central entity that is responsible for making
access control decisions, as depicted in Figure 2.6. The key advantage of this approach is that the
access control logic is located in an external entity without constraints of resources, which enable the

use of standard security and advanced access control technologies (Hernandez-Ramos & Jara, 2013).

Access Control Logic
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access policies
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Figure 2.6: Access control flow in the centralized approach (Hernandez-Ramos & Jara, 2013)

On the other hand, there are some major drawbacks associated with the centralized approach. Since
10T devices send their data to the central entity, access decisions are not based on the contextual

information related to 10T devices itself. Also, end-to-end security is compromised since a central
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entity is needed to determine access decisions. Therefore, this entity will need to view the content of
the access query, which also compromises the privacy of the requester. Moreover, since a single
entity stores and manages all data coming from different 10T devices, it becomes a single point of

failure in which an attacker can compromise a huge volume of sensitive and confidential information.

2.3.1.2 Distributed Approach

In this approach, the access control logic is embedded into 10T devices. These devices are being
provided with the necessary resources to obtain, process and send information to other services and
entities. Therefore, 10T devices make access decisions without the need for a central entity. The flow
process of an access control process using the distributed approach is shown in Figure 2.7. The use
of the distributed approach provides some key advantages. For instance, 10T devices are no longer
passive entities, they have the capability to manage their information. Also, the elimination of the
central entity enables end-to-end security for the access request and eliminates the single point of
failure (Roman et al., 2013).

The most noticeable issue with this approach is the need to extend loT devices with an access control
logic. Also, the implementation of static access control models will be difficult in resource-
constrained 10T devices. Subsequently, this approach must be investigated in-depth by analysing the
feasibility of different access control models or implementing new proposals that meet the demands

of the distributed approach (Hernandez-Ramos & Jara, 2013).

3. Evaluation agaisnt

access policies
ﬁ (&
1. Access request 2. Get access decision .
0: ] 4. Access decision
User 5. Access is granted/denied Gateway Device

Figure 2.7: Access control flow in the distributed approach (Hernandez-Ramos & Jara, 2013)
2.3.1.3 Centralized and Contextual Approach

This is a hybrid approach in which 10T devices are not completely passive entities since they
participate partially in access decisions. The access control logic is implemented at a central entity
as in the centralized approach, but the contextual features from 10T devices are sent to the central
entity. These features are used to make access decisions, as shown in Figure 2.8. This approach is
not feasible without providing contextual information of 10T devices at the time of the access request
in terms of location and environmental status. If there is a delay when 10T devices transmit data to
the central entity, the value obtained by the 10T device will be different at the time of making the

access decision.



24 Chapter 2: Background and Literature Review
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Figure 2.8: Access control flow in the centralized and distributed approach (Hernandez-Ramos & Jara, 2013)

2.3.2 Access Control Models

Providing an efficient access control mechanism for the 10T system is one of the major fundamentals
to provide a secure system. 10T devices should gain access to services or applications only after
providing their identities correctly (Lee, 2015). To ensure confidentiality and integrity of system
resources, the access control is used to guarantee that authorized users granted appropriate access
permissions (Langaliya & Aluvalu, 2015). There are many access control models, which can be

divided into two classes: static and dynamic access control models.

2.3.21 Static Access Control Models

Static access control (also called classical/traditional access control) models are rigid in nature as
they depend on predefined policies that always give the same outcome regardless of the situation.

They are context insensitive.

Although static access control approaches were successfully applied in different environments to
solve various problems, these approaches are designed to provide a relationship between information
associated with an access control rule logic and a resource for which access is requested. The
implementation of an access control approach is subject to manipulation, which can range from an
unexpected situation, including poorly written access policies to a number of malicious entities
acquiring access to a set of existing accounts. Therefore, static access control approaches provide a
set of advantages, but they also have drawbacks. One of these drawbacks is that it can not handle

unpredicted situations as they are based on static and predefined policies (Metoui, 2018).

The next section provides an overview of the main types of static access control models by

highlighting benefits and drawbacks of each approach.
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2.3.2.1.1 Access Control List

Initially, access control was implemented as a table called Access Control Matrix (ACM), where
each row and column is composed of a subject and object respectively. Each record represents a set
of access rights for the corresponding subject (Mahalle et al., 2013). Then, the Access Control List
(ACL) appeared. ACL is a list of certain objects which contains legitimate subjects along with their
access rights. ACLs are the default representation of access rights on UNIX systems. Although ACL
is efficient and effective, it is not scalable with a large number of subjects and objects. Also, it is
difficult to modify multi-object rights for individual users (Hu et al., 2006).

2.3.2.1.2  Discretionary Access Control

Discretionary Access Control (DAC) is designed for multi-user databases and systems with few
previously known users. All system resources are under full control from the user. DAC grants access
depending on the user identity and authorization which are defined through open policies. The owner
of the resource can grant access to any user. DAC mainly deals with the inheritance of permissions,
user-based authorization, auditing of system events and administrative privileges (Langaliya &
Aluvalu, 2015).

The key advantage associated with the user of DAC is the capability to provide fine-grained control
over system objects. Also, DAC is easy to implement and provides a flexible way to allow system
owners or system administrators to create customized access policies for each user. For example, a
user can be granted read and write access as well as read-only access to another user for the same

resource.

On the other hand, DAC introduces some issues. Enabling users to have full control over object
access permissions opens the system to various vulnerabilities such as Trojan Horse. Also,
maintenance of the system and verification of security principles are enormously hard for the DAC

systems since users dominate access rights to owned objects.

2.3.2.1.3  Mandatory Access Control

In the Mandatory Access Control (MAC) model, each object is assigned a label which specifies
security privileges of the object based on the sensitivity of information of the object. Also, each
subject is assigned a label that specifies which object the requester can access (Bugiel et al., 2013;
Hulsebosch et al., 2005). MAC model provides necessary security measures where a user can only
perform tasks related to his/her privileges. In the MAC, the security policy is controlled by a security
policy administrator and the user does not have the capability to override it. MAC is mainly
concerned with the confidentiality and integrity of information, so it primarily implemented in

military and government applications. (Zhu & Jin, 2007).

Compared to DAC, MAC is not vulnerable to Trojan Horse since users do not have the ability to

declassify information. Also, MAC is straightforward and is considered a good model for commercial
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systems that operate in hostile environments, where the risk of attack is very high, confidentiality is
a primary access control concern or the objects being protected are valuable (Vijayakumar et al.,
2012).

MAC by far is the most secure access control environment but does not come without a price. MAC
requires a considerable amount of planning before it can be effectively implemented. Once
implemented, it imposes a high system management overhead due to the constant need to update
object and account labels to accommodate new data, new users and changes in the categorization and

classification of existing users (Jin et al., 2012).

23214 Role-based Access Control

Role-Based Access Control (RBAC) is a widely accepted model in almost all large enterprises (Bijon
et al.,, 2013). RBAC model consists of three elements: users (subjects requesting access), roles
(collections of permissions) and operations (actions on target resources). Access permissions are
related to roles and the appropriate role is granted to the user. A single user can be associated with
one or more roles, and a single role can include one or more user. RBAC provides a classification of

users based on their roles (Kumar et al., 2002).

RBAC model restricts access to objects based on the subject’s role rather than their identifications.
Roles are allocated to subjects according to their clearance, qualification, and responsibilities inside
the organization. A set of permissions is grouped together to form a role. A user can be allocated to
different roles and the role can be assigned to different users. RBAC model might have many users,
each user will be assigned to a specific role or may be assigned to multiple roles and each role consists
of a set of permissions/rights. An example of RBAC in a hospital, where doctors can both read and
write prescriptions, whereas pharmacists are limited to read prescriptions only. RBAC helps to
ensure system integrity and availability by explicitly controlling not only which resources can be
accessed but also how access can occur. Also, in large organizations, the consolidation of access
control for many users into a single role entry allows for much easier management of the overall

system and much more effective verification of security policies (Bijon et al., 2013).

Although RBAC provides great advances in access control, the administrative issues of large systems
still exist. In large systems, memberships, role inheritance, and the need for fine-grained customized
privileges make the administration process potentially impractical. Additionally, RBAC cannot be

used to ensure permissions on sequences of operations (Sandhu et al., 1996).

2.3.2.2 Dynamic Access Control Models

The core principle of dynamic access control models is that they take into consideration not only
access policies to make access decisions, but also dynamic and contextual features which are
estimated at the time of the access request (Wang & Jin, 2011). This provides more flexibility and

can adapt to different situations and conditions while making the access decision.
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The need to adopt dynamic access control approaches should be one of the essential priorities to
provide efficient and flexible access control model. However, most existing access control
approaches are relying on static and rigid access policies and manual processes. These approaches
are unable to provide a roadmap to improve automation significantly. This lack of automation leads
to a heavy involvement of human analysis, which is costly, error-prone, and vulnerable to various
types of attacks based on social engineering. Additionally, current classical approaches have issues
with resolving risks and threats in real-time, especially when handling a previously unidentified
threat. This is because these approaches make their access decision based on a set of policies built
by a security analyst, who cannot resolve different access control situations in real-time, but can deal

only with problems that were recognized before (Brooks et al., 2012).

In addition, existing access control approaches lack feedback and possible options for resolving
access control situations when a legitimate user or agent is unable to continue its activity due to the
necessity of access to a requested resource or service when access control refuses this access for
some reason. One of the common messages regarding denied access attempt states, that ‘access was
denied’ without providing any other details. Such a message causes the user to ask a system
administrator to make an exception for his/her activity, which interrupts ongoing business processes
and increases the load on system administrators. Moreover, static access control approaches suggest
that there is a need for a system administrator role with wide access to services, data and unrestricted
access with respect to time. However, compromised access to an account with the system
administrator role leads to exposing the entire system to malicious actions, and if the account is
widely used, it is not possible to limit the risk of such an account being compromised (Suhendra,
2011; Zhou et al., 2013).

Instead of static policies, dynamic access control approaches use real-time information and features
to make access decisions. These real-time features can include trust, risk, context, history and
operational need. These dynamic models adapt to different situations and conditions while making
access decisions (Li et al., 2008; Shaikh et al., 2012).

2.4 Context Awareness in 1oT

With great developments in the sensor technology, sensors are becoming an integral part to sense
and collect relevant information about the environmental features. Sensors are getting more
powerful, cheaper and smaller in size, which have stimulated large-scale deployments. With the
massive increase in the number of sensors, huge amounts of data are generated. The data needs to be
analysed and interpreted to extract meaningful information. Context-aware computing has played a
vital role to resolve this issue. It facilitates storing context information linked to sensor data, so the
interpretation can be done easily and more meaningfully. In addition, understanding context makes
it easier to perform Machine-to-Machine (M2M) communication which is a core element in the loT

vision (Perera et al., 2014).
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Context-awareness is an essential feature of ubiquitous and pervasive computing systems. It is the
key technology that enables intelligent interactions between users and 10T systems (Perera et al.,
2014). Typically, context awareness describes devices that can sense their physical environment and

change their behaviour accordingly (Elkhodr et al., 2013a).

The term context is defined by Perera et al. (2014) as “any information that can be used to
characterise the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and applications
themselves”. For instance, location, identity, time, history events and activity are representing the

primary context types for characterizing the situation of a particular entity (Perera et al., 2014).
2.4.1  Context Types and Categorization

Different researchers have identified context types differently based on their perspectives. Abowd et
al. (1999) introduced one of the leading mechanisms of defining context types. They identified the
location, identity, time, and activity as the primary context types. Further, they divided various types

of context into two main categories: primary and secondary context.

¢ Primary Context: Any information retrieved without using existing context and without
performing any kind of fusion operations on sensor data such as GPS sensor readings as
location information.

e Secondary Context: Any information that can be computed using the primary context. The
secondary context can be computed by using sensor data fusion operations or data retrieval
operations such as web service calls and identify the distance between two sensors by
applying sensor data fusion operations on two raw GPS sensor values. Further, the retrieved
context such as phone numbers, addresses, email addresses, birthdays, a list of friends from
a contact information provider based on personal identity as the primary context can also be

identified as secondary context.

In addition, Perera et al. (2014) introduced a context categorisation scheme, primary and secondary,
that can be used to classify a given data value. They acknowledged location, identity, time, and
activity as the most important context information. Figure 2.9 shows the primary and secondary

categorization of location, identity, time and activity.
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Figure 2.9: Categorization of most common context information (Perera et al., 2014)

24.2 Context-aware Features

There are common features of a context-aware environment. Abowd et al. (1999) identified three

main features that a context-aware application can support: presentation, execution, and tagging.

e Presentation: Presenting the appropriate information regarding a certain context needs to be
considered to define and decide what information and services need to be presented to the
user. For instance, when a user enters a supermarket and takes their smartphone out. Context-
aware mobile application should support the ability to connect to kitchen appliances such as
a smart refrigerator in the home to retrieve the shopping list and present it to the user. This

supports the idea of presenting information based on context like time, location, etc.

e Execution: The 10T system has the capability to use collected and analysed data to make an
automatic decision based on context without human intervention. For example, in a smart
home environment, when a user starts driving home from their work, the 10T application
employed in the house might switch on the air condition system and switch on the coffee
machine to be ready to use by the time the user steps into their house. These actions need to
be taken automatically based on the context. M2M communication is also a significant part

of the 10T that enable automation of 10T services using context information.

e Tagging: In the loT system, there are billions of sensors linked to almost everyday things.

These sensors generate a huge volume of data that need to be collected, analysed, and
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interpreted (Wan & Alagar, 2013). Data generated by a single sensor will not be able to
provide the required information that can be used to fully understand the situation. Instead,
data collected through multiple sensors should be fused together. To perform sensor data
fusion, context information needs to be tagged together with the sensor data to be processed
and understood later. Hence, context tagging plays a significant role in context-aware

computing.

2.5 Risk-based Access Control

The risk can be defined as the possibility of loss or injury. Generally, the risk is about some event
that may occur in the future and cause losses. According to Elky (2006), the risk is the possible
damage that may arise from the existing operation or from some upcoming incident. The risk is found
in many aspects of our life and used in different disciplines. From the information technology security
perspective, the security risk is defined as the damage that undesirably impacts an operation and its
related information. While the process of understanding and mitigating against issues that may result
in a breach of confidentiality, integrity or availability of an information system is called risk

management (Elky, 2006).

Security risk in the context of access control can be defined as the possibility of information leakage
and the value of this information that may occur from accessing system resources (Dos Santos et al.,
2014). A risk-based access control model uses security risk as a criterion to make the access decision
of an access request. This model permits or denies access requests dynamically based on the
estimated risk value (Chen et al., 2007). This model performs risk analysis on each user access
request to make the access decision. Mathematically, the most common formula to formalize the risk

in quantitative form is (Dos Santos et al., 2014):

Quantified Risk = Likelihood X Impact (2.1)

Where likelihood represents the probability of an incident to happen, while impact represents the

estimation of the value of the damage regarding that incident.

Risk-based access control models are divided into two types: Non-adaptive and adaptive. In the non-
adaptive approach, a risk value is estimated for each access request. Then, the estimated risk value
is compared against the risk-threshold value to determine the access decision whether granting or
denying access. Whereas in the adaptive approach subsequent to granting access, there is an
additional activity monitoring process in order to detect any abnormal behaviour during the access
session. On the successful detection, the risk-threshold should be automatically lowered to stop
certain risky operations. The user can be warned otherwise, access session can be terminated (Abie
& Balasingham, 2012). The fundamental distinction between adaptive and non-adaptive is that the
adaptive model requires a system monitoring process in which the risk threshold value is adaptively

adjusted based on users’ activities during access sessions. While the non-adaptive approach only
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calculates the risk during the access session creation and does not have run-time monitoring or

abnormality detection capability (Bijon et al., 2013).

There are several methods to build a risk-based access control model. These methods share some
general characteristics from diverse models. The main elements of a risk-based access control model

are shown in Figure 2.10.
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Figure 2.10: Main elements of a risk-based access control model

The risk-based access control model consists of three modules. The risk estimation is the main
module. It receives requests from users, analyses them, collects context information and estimates
the risk value associated with the access request. Then, the estimated risk value is compared against

access policies to make the access decision (Diep et al., 2007).

Several approaches have been recently proposed to address the limitations of static access control
models in terms of lack of flexibility, inability to handle contextual information and unexpected
situations in managing access control operations. The next section provides a review of the literature

regarding context-aware and risk-based access control models.

25.1 Context-aware Models

Building a flexible and fine-grained access control model is one of the most important aspects to
provide efficient and effective control over access to system resources. This can be achieved by
enabling context-aware access control models that not only use access policies but also contextual

information to provide the access decision.

Context-aware access control models propose the use of contextual and environmental information
to achieve fine-grained access control. Although these models do not evoke an explicit notion of

access risk, the request’s context and environment can provide relevant information that could be
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used to assess the access risk. This research considers contextual information when evaluating the
access request, but instead of statically including the contextual condition in the policy, contextual
information is used as a risk factor to estimate the security risk value associated with the access

request.

There are some context-aware models that extend the RBAC model with context attributes to provide
a flexible access control model. Covington et al. (2000) have proposed a Generalized Role-Based
Access Control (GRBAC) model. Their model extends the traditional RBAC by applying the roles
to all the entities in the system (in RBAC, the role concept is only used for subjects). They defined
three main roles; subject role, environment role, and object role. The GRBAC model uses context
information as a factor to make access decisions. Also, Zhu and Xu (2008) have utilized context
parameters in their dynamic RBAC model with two key ideas: 1) A user’s access privileges must
change when the user’s context changes; 2) A resource must adjust its access permission when its
system information (e.g., network bandwidth, CPU usage, memory usage) changes. However, the
two papers do not consider security aspects in the decision-making process and the impact of security
problems on the system. They also lacked adaptive control to prevent malicious attacks during access

Sessions.

Context-aware models are also introduced to provide a dynamic access control model for healthcare.
Garcia-Morchon and Wehrle (2010) have proposed an access control model for prompt responses to
emergency situations in medical environments. This model makes it possible to cope with rapidly
changing situations by analysing them step by step in accordance with priorities and by establishing
the appropriate policies and permissions for different situations. Also, Peleg et al. (2008) presented
a framework for situation-based access control for privacy management using the object-process
methodology to structure the scenarios and conceive a situation-based model. Their main objective
was to preserve the patient’s security and privacy. However, the two papers provided a qualitative
method to provide the access decision, which is not applicable to provide a fine-grained access
control model. Also, they did not provide an evaluation to prove the accuracy of their qualitative

method.

In addition to context awareness, there are other works proposing using operational need to increase
the flexibility of access control models. McGraw (2009) proposed a Risk-Adaptable Access Control
(RAJAC) model which is based on estimating the security risk and operational needs to grant/deny
the access. This model is implemented to first estimate the risk associated with the access request
then compares the estimated risk with the access control policy. After that, the system verifies the
operational needs, if the associated operational needs and the policy are met, then the access is
granted. However, this model does not provide details about how to estimate risk and operational
needs quantitatively. In addition, Kandala et al. (2011) utilized the RAJAC model to identify



Chapter 2: Background and Literature Review 33

different risk components with operational needs using their Attribute-Based Access Control
(ABAC) model.

Other works proposed integrating trust with risk to provide the access decision. Baracaldo and Joshi
(2012) have proposed a framework that extends the RBAC model to incorporate trust with risk to
provide the access decision. They argued that their framework adapts to suspicious changes in users'
behaviour by removing privileges when users' trust falls below a certain threshold. This threshold is
computed based on a risk assessment process that includes the risk due to the inference of
unauthorized information. Moreover, Burnett et al. (2014) have proposed trust and risk-aware access
control that provide policy coverage and dynamic access decisions. They defined a zone policy model
that allows the data owner to have total control over his own data. Trust is used to define verification
of whether the requester respected the obligations that are assigned to him/her or not. They utilized
a probabilistic computational trust model called subjective logic to formulate their trust assessment.
Their risk estimation was done by using a classic method of defining expected loss in term of

unwanted disclosure.

2.5.2 Risk-based Access Control Models

Risk-based access control models are used primarily to provide the required flexibility and
fine-grained to the access control process. There is a set of risk-based models proposed to address
the limitations of static access control models in terms of lack of flexibility and inability to handle

unexpected situations.

The journey of implementing a risk-based access control model started when Jason (2004) suggested
that there are three main elements to implement a risk-based model. These elements are estimating
risk, identifying acceptance levels of risk, and controlling information sharing. This idea has been
utilized by Diep et al. (2007) to build a dynamic and flexible risk-based model by collecting useful
information from the environment, evaluates it from the security perspective, and make the access
decision using a risk assessment. Similarly, Lee et al. (2007) have provided an access control model
based on risk assessment and context. This model gathered useful information from the environment
and evaluates it from the security perspective. Risk assessment with a MultiFactor Evaluation
Process (MFEP) technique is applied to estimate the associated risk value using outcomes of actions
in term of availability, confidentiality, and integrity. This model is tested to manage information
access in a hospital. However, considering more risk factors from the access control environment
will enhance system efficiency but it lacks adaptive features. In addition, Khambhammettu et al.
(2013) have constructed a framework based on estimating object sensitivity, subject trustworthiness,
and the difference between them using a risk assessment. However, neither model describes how to
estimate the risk value for each situation of the environment. Besides, these models require a system

administrator with broad experience to give a reasonable value for each input feature in the early



34 Chapter 2: Background and Literature Review

stage of the risk assessment process. Also, these models lack adaptive control to detect malicious

users throughout access sessions.

The idea of the risk-based access control model was the same for a long time, but various researchers
proposed different risk factors and estimation techniques to produce an efficient and effective model.
For example, Bertino and Lobo (2010) used the same elements of the risk-based model proposed by
Diep et al. (2007) but with the use of a fuzzy logic system to estimates the risk value associated with
the access request. They showed that fuzzy inference is a good approach for estimating access
security risks. However, both models neglected the past behaviour of users in the risk estimation
process and lacked adaptive features as well. Similarly, Li et al. (2013) have utilized the fuzzy logic
system to estimate the risk associated with the access of healthcare information. A risk metric is
associated with data sensitivity, action severity, and risk history to determine the appropriate control
of healthcare information access. However, this model does not indicate how to estimate the risk
guantitatively. In addition, it requires prior knowledge about environment situations outcomes and
there is no way to prevent malicious actions during the access session. Additionally, Chen et al.
(2007) utilized the fuzzy logic approach to design a Multi-Level Security (MLS) risk-based model.
This model measures the risk using the difference between object and subject security levels. So, if
the difference is large, the risk value associated with the access will be high. The resultant output

risk is represented as a binary number where 0 permits the access and 1 denies the access.

In addition, Wang and Jin (2011) have proposed a quantified risk-based access control model. The
risk value is estimated based on the purpose of access to different data sensitivity levels. The risk
estimation process is done by employing the concept of Shannon entropy from information theory.
A prototype implementation and simulations on real-world medical history records were performed
to demonstrate the effectiveness of their proposed approach. However, the purpose of access as a
risk factor is not enough to estimate the risk value to make the correct access decision. It also lacked
adaptive features and real-time user context features. Also, Rajbhandari and Snekkenes (2011) have
presented a risk analysis approach based on preferences or values of benefit that subjects can provide,
rather than subjective probability using the game theory. Moreover, a simple privacy scenario
between a user and an online bookstore is introduced to provide an initial perception of the concept.
However, using only benefits of the subject to determine the access decision is not enough to develop
a flexible and scalable access control model. In addition, it lacked adaptive features and contextual

features.

Other researchers have suggested mathematical functions to formulate an algorithm to measure
security risks of access control operations. For example, Sharma et al. (2012) have presented a task-
based access control model that estimates the risk value based on the action to be performed. The
risk value is estimated in terms of different actions and corresponding outcomes. However, this

model does not provide how to estimate the risk value quantitatively. In addition, it requires prior
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knowledge about environment situations outcomes and there is no way to prevent malicious actions
during the access session. Also, Namitha et al. (2015) implemented a risk-based access control model
based on user features and estimate the risk value using a mathematical function. However, this
model does not use any other input features such as resource sensitivity, action severity, and risk

history. In addition, no risk prediction technique is involved, and it lacked adaptive features.

In addition, Dos Santos et al. (2014) proposed a risk-based access control model that employs the
notion of quantifying risk metrics and aggregating them. This model depends on the idea of risk
policies, which allow service providers and resource owners to define their own metrics, allowing
greater flexibility to the access control system. Further, a prototype of this model is created using the
risk metrics and quantification of Sharma et al. (2012). In addition, they extended the work to develop
an ontology-based method to estimate the risk value according to the context and adjusting the
weights of each risk metric considering the actual number of risk metrics (Dos Santos et al. , 2016).
Although this approach provides greater flexibility by allowing the resource owners to define their
own metrics, it requires a security administrator to ensure the minimum security of the system. In
addition, it lacked adaptive features. Also, Shaikh et al. (2012) proposed a dynamic risk-based
decision method. This method uses the user’s past behaviour to identify good and bad users. It
depends on granting reward and penalty points to users after the completion of transactions.
However, the past user’s behaviour (reward/penalty) values are not enough to provide a dynamic

access control model and it lacked adaptive features as well.

Britton and Brown (2007) presented a quantification method for their RAJAC model. In their
proposed model, 27 metrics divided into 6 categories which are evaluated for every access request
and aggregated to achieve a measure of the total security risk. Their risk definition considers both
probability and impact as high, medium or low. They employ a triangular probability distribution
and a Monte Carlo simulation to find the probability of each event, which is then multiplied by a
weight attributed by experts to each metric. This method is built for military applications, so some
metrics are not suitable for a general 10T application. Also, Zhang et al. (2006) have suggested a
benefit and risk-based access control approach. This approach uses security risk and system benefits
to determine the access decision. It assigns a risk and benefit vector for each action. The access to
perform a certain action is permitted only if the system benefits are higher than the risk value of the
access request. The system creates an action graph to describe permitted actions and methods for
users to access system resources. However, this approach uses static and predetermined action graph
to determine the access. Also, it is very difficult to update the action state in the action graph and it

lacked adaptive features.

In addition, Chen et al., (2016) presented a dynamic risk-based access control model for Cloud
Computing. It combines the ABAC with the risk-trust assessment method. The model drives a
threshold risk value from historical records to determine the access decision. It utilizes the concept

of data stream processing to evaluate risk values. However, this model lacked adaptive features and
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real-time features while determining the access decision. Also, Choi et al., (2015) presented a
framework for a context-sensitive risk-based model for medical information systems. This
framework categorizes information to calculate the risk value and apply the risk through treatment-
based permission profiling and specifications. This framework provides the access decision based on
the severity of the context and treatment. However, this model does not provide how to estimate the
risk quantitatively. Also, the work is limited to medical information systems and lacked adaptive
features. Moreover, Abomhara et al. (2018) proposed a work-based access control model that
balances between collaboration and safeguarding sensitive patient information. It uses object security
level and subject trust to provide the access decision. It decides the risk threshold based on situational
conditions. However, this model does not provide how to estimate the risk value quantitatively or
how to determine the risk threshold value in various situations. Also, this model is limited to medical
information systems and lacked adaptive features. Table 2.1 provides a summary of the contribution

and limitations of related risk-based access control models.

Table 2.1: Contribution and limitations of related risk-based access control models

Related Summary of Contribution Limitations
model

Diep et al. Built a dynamic and flexible risk-based model Limited risk factors, no risk prediction

(2007) by collecting useful information from the technique was used, lacked adaptive
environment and make the access decision and real-time features.
using a risk assessment.

Chen et al. Builtafuzzy MLS to build a risk-based access The user past behaviour has not been

(2007) control model by measuring the difference used, lacked adaptive features and time
between object and subject security level. overhead of the fuzzy inference system.

Do not include real-time features in the
risk estimation process.

Li et al. They utilized the fuzzy logic approach to It requires prior knowledge about

(2013) estimate the risk associated with data environment situations outcomes. Do
sensitivity, action severity, and risk history to  not include real-time features in the risk
determine the appropriate control of healthcare estimation process and lacked adaptive
information access. features.

Bertinoand  Built a risk-based access control model that Time overhead of the fuzzy logic

Lobo (2010) uses the fuzzy logic system for the risk system is high, lacked adaptive features,
estimation process. They showed that the fuzzy and do not involve real-time features in
inference approach is a good approach for the risk estimation process.
estimating access security risks.

Khambham  Conducted a framework based on estimating lacked adaptive features. No risk

mettu et al. object sensitivity, subject trustworthiness, and prediction was used. Do not involve

(2013) the difference between them using a risk real-time features in the risk estimation
assessment. process.

Shaikh et al. Proposed a dynamic risk model that utilizes Past user behaviour (reward/penalty)

(2012) user past behaviour to identify good and bad values are not enough to provide a

users. It depends on granting reward and
penalty points to users after the completion of
transactions.

dynamic access control model and it
lacked adaptive features as well.
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Table 2.1: Contribution and limitations of related risk-based access control models (Cont.)

Related

Summary of Contribution Limitations
model
Rajbhandari  Presented a risk analysis approach based on Limited risk factors as the subject
and preferences or values of benefit that subjects benefit is not enough to generate
Snekkenes can provide, rather than subjective probability, flexible access. No risk prediction was
(2011) using the game theory. used and lacked adaptive features.
Sharmaetal. Presented a task-based access control model Does not provide how to estimate the
(2012) that estimates the risk value based on the action  risk quantitatively. It requires prior
to be performed. The risk value is estimated in  knowledge about environment
terms of different actions and corresponding situations outcomes and lacked adaptive
outcomes. features.
Lee et al. Builtarisk-based model by gathering all useful No risk prediction technique has been
(2007) information from the environment and evaluate  used, limited risk factors, and lacked
it from the security perspective using the MFEP  adaptive and real-time features.
technique.
Namitha et Implemented a risk-based model based on user The model is static in nature. Only user
al. (2015) features to estimate the risk value using a risk factors are used and lacked adaptive
mathematical function. features.
Dos Santos Proposed a risk-based model using risk policies Lacked adaptive features and require a
et al. (2014) by employing the notion of quantifying risk security administrator to ensure the
and Dos metrics and aggregating them. In addition, they  minimum security of the system. It also
Santos et al., presented an ontology-based method to did not provide how to identify risk
(2016). estimate the risk value based on the contextand  metrics quantitatively.
adjusting the weights of each risk metric.
Wang and Proposed a quantified risk-based access control ~ Limited risk factors, no risk prediction
Jin (2011) model for health IT systems based on the technique and lacked adaptive and
purpose of the access to different data contextual features.
sensitivity levels.
Britton and Presented a quantification method for the Lacked adaptive features, no risk
Brown RAJAC model for military applications. They prediction technique, do not use real-
(2007) employed a triangular probability distribution time and contextual information to
and Monte Carlo simulation to estimate the risk  make the access and it is not suitable for
value for each access request. a general 10T application.
Zhang et al. Presented a benefit and risk-based access Uses static and predetermined action
(2006) control approach which uses security risk and  graph to determine access which is very
system benefits to determine the access hard to be updated. Also, it lacked
decision. It assigns a risk and benefit vector for adaptive and contextual features.
each action.
Choi et al. Proposed a context-sensitive risk-based Does not provide how to estimate the
(2015) framework for medical information systems risk quantitatively. Also, the work is
that uses the severity of the actions and limited to medical information systems
treatment to provide access decision. and lacked adaptive features.
Chen et al., Presented a dynamic risk-based access control Lacked adaptive features and real-time
(2016) model for Cloud Computing by combining the context features while determining the

ABAC with the risk-trust assessment method.

access decision.

Abombhara et
al., (2018)

Proposed a work-based access control model
that balances between collaboration and
safeguarding sensitive patient information. It
uses object security level and subject trust to
provide access decision.

Does not provide how to estimate the
risk quantitatively or how to determine
the risk threshold value in various
situations. The model is limited to
medical information system and lacked
adaptive feature.
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In conclusion, building a dynamic access control model for the 10T system is a fundamental priority
as the 10T is dynamic and distributed system in nature. However, current risk-based access control
models concentrate only on providing access decisions without providing any way to prevent
abnormal data access from authorized users. In addition, they lacked real-time and contextual
features, which can be extracted from the 10T environment easily to determine the access decision.
Although the aforementioned risk approaches offered an important improvement in terms of

flexibility compared to traditional systems, there is a need for more research in this area.

2.5.3 Risk Factors

One of the essential parts of a risk-based access control model is to choose the effective risk factors
that determine access decisions efficiently. There are many risk factors that can be used to estimate
the risk value associated with the access request to make the access decision in a dynamic and
effective manner. In this section, an overview of different risk factors used in relation to risk-based

access control models is provided. Common risk factors are as follows:

e Subject Clearance: It represents the subject security level acquired from the system
administrator. The most common clearances in the military are Top Secret, Secret,
Confidential, and no clearance. Different access permissions are granted according to the
subject role in the organization. Each role is associated with certain permissions (McGraw,

2009). The higher the clearance granted, the lower the associated risk value.

e Object Clearance: It represents the object classification level. The access is granted to a
certain object depending on the classification level. Depending on the subject role, access to

a certain object classification level can be granted or denied.

e Resource Sensitivity: It describes the sensitivity level of resources the user wants to access.
Different sensitivity levels have different risk values. The higher the resource sensitivity, the

higher the risk value if the access is granted to this resource (Li et al., 2013).

e Action Severity: It represents the cost of a certain action on a certain resource in terms of
confidentiality, integrity, and availability. An action if occurs might lead to a great loss, but
another does just a little. So, different actions have different consequences and so have

different risk values.

e Risk History: It represents user previous risk values on a certain resource. It can be used to

detect the future behaviour of the user toward a certain resource.

e Trust: It is similar to risk history. It represents the subject trust toward a certain resource.
Trust is classified into two categories: identity trust and behavioural trust. Identity trust is
concerned with verifying the authenticity of an entity and focuses on objective credentials.

While behavioural trust deals with the entity’s ‘trustworthiness, which depends on certain
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contexts (Luo et al., 2009). In risk-based access control models, only behavioural trust is

used.

e Education Level: This risk factor is associated with the amount of security-related training
or education the requester has received. Typically, the more security-related training the
requester has received, the less likely that the requester is to commit a security violation.
Therefore, the security risk would be lower. Conversely, if a requester has not received any
security training, there is a higher possibility that a security violation could occur due to
negligent action or inaction (Maw et al., 2012).

Different risk factors were utilized in the aforementioned risk-based access control models. Table
2.2 provides a summary of the risk factors used in related risk-based models.

Table 2.2: Security risk factors in different risk-based access control models

Subject Object Resource  Action Risk Subject
clearance clearance Sensitivity Severity History Trust
Chen et al. (2007) v v
Li, Bai and Zaman
(2013)

Bertino and Lobo
(2010)
Khambhammettu
et al. (2013)
Shaikh et al.
(2012)
Rajbhandari and
Snekkenes (2011)
Sharma et al.
(2012)

Lee et al. (2007) v

Namitha et
al.(2015)

Wang and Jin
(2011)

Britton and Brown
(2007)

Zhang et al. (2006)

Related Model

v v v

Chenetal., (2016) v v
Choi et al. (2015)

Abombhara et al.,
(2018)

2.6 Smart Contracts

The notion of smart contracts was first presented by Nick Szabo in 1994 (Szabo, 1994). However, it
remained just an idea until the invention of the blockchain. Blockchain is a distributed and

decentralized ledger of transactions used to manage a constantly increasing set of records. To store
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a transaction in the ledger, the majority of participating nodes in the blockchain network should agree
and record their consent. A set of transactions are grouped together and allocate a block in the ledger,
which is chained of blocks. To link these blocks together, each block encompasses a timestamp and
hash function to the previous block. The hash function validates the integrity and non-repudiation of
the data inside the block. Moreover, to keep all participating nodes of the blockchain network
updated, each user holds a copy of the original ledger and all nodes are synchronized and updated
with newly change (Atlam & Wills, 2019).

Blockchain delivers a high level of transparency by sharing transaction details between all
participants’ nodes involved in those transactions. Using the blockchain technology, no need for a
third party which improve business friendliness and guarantees a trusted workflow. Also, it
eliminates the single point of failure which affects the entire system. Moreover, blockchain provides
better security since it uses public key infrastructure that protects the system against malicious
actions (Atlam & Wills, 2019; Sultan et al., 2018).

A smart contract is defined as an executable code that runs on the blockchain to facilitate, execute
and enforce the terms of an agreement. The key objective of a smart contract is to execute the terms
of an agreement automatically once the specified conditions are met. Thus, smart contracts require
low transaction fees compared to the conventional centralized systems that need a trusted third party

to enforce and execute the terms of the contracts (Alharby & Moorsel, 2017).

Typically, there are two types of smart contracts: deterministic and non-deterministic (Morabito,
2017). The major distinction between the two types of smart contracts is the availability of data
within the blockchain for the smart contract to run. In other words, a deterministic smart contract
does not need any data from an outside entity to run, in contrast to run a non-deterministic smart

contract, data from an outside entity is needed. Figure 2.11 shows basic concepts of a smart contract.

= ¥

Option contract written as Contract is part of the Parties involved in the
code into a blockchain. public blockchain. contract are anonymous.

e :.Ij':

Contract executes itself Regulators use blockchain to
when the conditions are met. keep an eye on contracts.

Figure 2.11: Basic concepts of smart contracts (Anand Narayan, 2017)



Chapter 2: Background and Literature Review 41

2.6.1 Structure of Smart Contracts

Smart contracts are nothing, but programming scripts stored on the blockchain. These scripts can be
executed automatically when conditions or terms are verified or met. The blockchain technology
provides an excellent environment for smart contracts to evolve. It eliminates the need for a trusted

third party and secures its contents against any manipulation or attack (Mohanta et al. , 2018).

Messages to other
Smart Contract contracts
( Data, Value)
Transaction
Data, Val
Externally Owned | 2 Vo) Value Address
Account (EOA)
Events
. | E——
State Functions

Figure 2.12: Basic structure of a smart contract (Bahga et al., 2016)

Typically, a smart contract consists of four major parts: address, value, functions, and state (Bahga
et al., 2016), as depicted in Figure 2.12. Functions are used to represent conditions and terms of the
contract. These functions are executed when transactions are made to the smart contract containing
these functions. The address is used to identify various smart contracts in the blockchain in which
each contract is assigned a unique address of 20 bytes. Once the contract is deployed into the
blockchain, the contract code cannot be changed. To run a contract, users can simply send a
transaction to the address of the smart contract. This transaction will then be executed by every
consensus node (also called miners) in the network to reach a consensus on its output. The contract’s
state will then be updated accordingly. Then, the contract state will be uploaded to the blockchain
network (Alharby & Moorsel, 2017).

As the smart contract is a software code, several programming languages can be utilized to implement
it. However, the Solidity is the most common programming language for implementing smart
contracts in various blockchain platforms. Solidity is a high-level language that can work with
different blockchain platforms such as Ethereum, ErisDB, Bitcoin, and NXT (Mohanta et al., 2018).

2.6.2 Benefits of Smart Contracts

The capability to use computerized contracts that are stored in the blockchain provides multiple

benefits over traditional contracts. These benefits involve:

e Autonomy: Smart contracts support automation in programming, so when a certain
condition is verified, the actions are executed automatically. Although smart contracts can
be built on centralized systems, the actions cannot be executed only if they approved by the
central system, which can take a long time (Natarajan et al. , 2017). Since there is no third-

party in the blockchain, actions are executed automatically in a very short time.
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Redundancy: Since each user or node participating in the blockchain network have its own
copy of the ledger, data is duplicated many times over on the blockchain. Therefore, the

possibility of losing data is zero (Desjardins, 2017).

Security: Blockchain provides better security since it uses public key infrastructure that
protects against attackers. The participating users of the blockchain network place their trust
in the integrity and security features of the consensus mechanism. In addition, blockchain
eliminates the single point of failure which affects the entire system (Sultan et al., 2018).
Therefore, data of smart contracts are encrypted and secured against any tamper or

manipulation.

Cost Reduction: Blockchain is based on a shared ledger which shares its contents with the
participating nodes in the network in which each participating user holds a copy of the
original ledger without the need for a central authority. This reduces costs associated with
distributing and maintaining the ledger. For smart contracts, this can save the costs of
third-parties that are used mainly to maintain the trust between participating users in the
agreement (Atlam & Wills, 2019).

Accuracy: Typically, a smart contract is a software code that implements terms and
conditions of the contract as programming conditions, when it verified, the corresponding
actions are executed automatically. Therefore, building a correct software code to represent

conditions of the contract will ensure nearly zero error.

Efficiency: Blockchain reduces the efforts needed to do reconciliation and handle disputes
manually. The existing systems with separate ledgers can lead to inconsistent master and
transaction data resulting in faulty and duplicated data. Also, identifying and correcting this
data will take a long time. By using the distributed and immutability features of the
blockchain, smart contracts provide efficient solutions over conventional contracts (Atlam
& Wills, 2019).

Transparency: Smart contracts offers a high level of transparency by sharing transactions
details between all participants’ nodes involved in those transactions. Also, there is no need
for a central authority which improves business friendliness and guarantees a trusted
workflow (Atlam & Wills, 2019).

Trust: Smart contracts provide complete trust in their execution. The autonomous,
transparent and security features in the smart contract eliminate any possibility of
manipulation or error. Moreover, smart contracts and its related data are encrypted on the

shared ledger and all parties can access them.
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2.6.3

How Do Smart Contracts Work?

Smart contracts are typically deployed on blockchain. According to Smart Contracts Alliance (2016),

there are six stages to design and verify smart contracts within the blockchain environment, as shown
in Figure 2.13.

1.

Identify Agreement: Smart contracts involve multiple communication nodes, so this phase
is used to identify the desired outcomes of the agreement which include business processes,
asset swaps, transfer of rights and other tasks.

Set Conditions: Smart contracts could be initialized by the parties themselves or by
satisfying certain conditions like financial market indices, natural disasters, or event via GPS
location. In addition, temporal conditions could initiate smart contracts on holidays,
birthdays and religious events.

Code the Contract: A smart contract is written as a computer program in a way that the
arrangement will be automatically executed when the conditional parameters are met.
Apply Encryption: Encryption provides secure authentication and verification of
messaging between the parties relating to the smart contract.

Execution and Processing: In a blockchain iteration, when consensus is reached on
authentication and verification, the smart contract is written to a block. The code is then
executed, and the outcomes are memorialized for compliance and verification.

Network Updates: After executing the smart contract, all nodes in the network update their
ledgers to reflect the new state. Once the record is verified and posted to the blockchain, it

cannot be changed.

Identify Agreement
Set Conditions
Code the Contract
Apply Encryption
Execution and Processing
Build a smart
Contract
Network Updates

Figure 2.13: Major phases to build a smart contract
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2.7 Summary

Chapter 2 presented the background and literature review of access control in the 10T. It started by
providing an overview of the IoT and related security challenges. This was followed by providing a
discussion of 10T security and access control models. Although the 10T system provides countless
benefits, it brings several challenges, especially in security. Building an effective access control
model can solve this issue, however, existing access control models are static and give the same
outcome in different situations. Hence, dynamic access control models are more appropriate for the
10T as they use not only static policies but also real-time and contextual information to make the
access decision. Risk-based access control model is one of the dynamic models that uses the security
risk as a criterion to make the access decision. This model provides a flexible way to increase
information sharing and at the same time ensures the security of information. Chapter 2 then
presented an overview of context-awareness models. This was followed by providing a discussion of
existing risk-based access control models by highlighting risk factors utilized in related risk-based
models. Chapter 2 also provided an overview of smart contracts by highlighting the structure of smart
contracts and how smart contracts work. The next chapter presents an overview of risk estimation
techniques and introduces the fuzzy logic system with expert judgment to be the appropriate risk
estimation approach.



Chapter 3: Risk Estimation Techniques for IoT

One of the significant stages to implement a risk-based access control model is the risk estimation
process. Therefore, this chapter aims to provide an overview of risk estimation techniques that can
be utilized to build a risk-based model for the 10T. This chapter starts by providing an overview of
the risk estimation process with presenting advantages and disadvantages of both quantitative and
qualitative risk estimation methods. Section 3.2 provides a discussion of various risk estimation
techniques discussed in related risk-based access control models by highlighting their advantages
and weaknesses. Then, section 3.3 introduces the fuzzy logic system with expert judgment to be the
suitable risk estimation approach to implement the risk-based access control model for the 1oT.
Section 3.4 provides a detailed discussion of the main stages required to build a fuzzy logic system.
This is followed by providing an overview of expert judgment and different phases needed to obtain
an expert judgment in section 3.5. The chapter closes by providing a summary of the main points

discussed through the chapter and introduces the next chapter.

3.1 Risk Estimation

Security risk is one of the main features used in access control models. It is the building block of
risk-based access control approaches. Using the security risk as a criterion to provide the access
decision can increase the security to an appropriate level with ensuring flexibility and increase

opportunities of information sharing between different applications (Dos Santos et al., 2014).

The essential stage of implementing a risk-based access control model is the risk estimation process.
This process is based on estimating the possibility of information leakage and the value of that
information. The main objective of the risk estimation operation is to create a way of arranging risks
in the order of importance and use risk numeric values to make access decisions in accordance with

a specific context.

The security risk can be estimated either by qualitative or quantitative approaches (Yin et al., 2006).
Quantitative risk estimation approaches are concerned with attaching specific numerical values to

security risks. These values are used to determine access decisions directly. Although quantitative

45
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risk estimation approaches are ideal as they lead to numeric values for the risk, it is difficult to
perform without having a proper dataset describing risk likelihood and its impact on a specific

application (Ramona, 2011).

Qualitative risk estimation approaches are used to calculate the risk early in the system. This is
effective in categorising which risks should or should not be planned for and what is the appropriate
action that should be taken for them. Qualitative risk estimation techniques cannot give accurate
values for the risk. However, they are very powerful when we have little time to evaluate risks before
they actually happen (Yin et al., 2006). Table 3.1 presents advantages and disadvantages of

guantitative and qualitative risk estimation approaches.

Table 3.1: Advantages and disadvantages of quantitative and qualitative risk estimation methods (Yin et al.,
2006 ; Ramona, 2011)

Approach Quantitative Methods Qualitative Methods
o Risks are arranged by their cost o Easy to understand
e Objective methods are used to e Easy to detect the risk level
evaluate and estimate risk values o Easy to implement
o Availability, integrity and e The risk analysis process is easier as the
Advantages confidentiality are used to determine practical value of information is not used
the security level e Quantitative estimation of events

e Best-suited measures are selected  probabilities and impact are not required
based on implementing a cost-analysis e Estimated cost of the measure that should

» With more experience, data accuracy  be implemented is not calculated
will be increased

o Calculation methods are complex e Risk calculation and its results are
e Very difficult to implement withoutan ~ subjective

Disadvantages

automatic tool

¢ No standards for implementing this

method

e Need long time to handle

calculation process

o The obtained results are introduced in
the form of practical values which are
hard to understand by the public

without experience

The subjective calculation is not enough
to generate real and correct values
Because of their subjectivity, the
performance of risk management is
difficult to follow

A cost-benefit analysis is not
implemented, only a  subjective
calculation

The accuracy of the results depends on the

quality of the risk management team

3.2 Risk Estimation Techniques

Risk estimation process faces many challenges for various reasons. For instance, the goal of the risk
estimation process is to predict the future possibility of information disclosure that results from the
current access. Determining such a possibility is not an easy task (Habib and Leister, 2015).
Moreover, if the risk estimation has relied on incomplete or imprecise information and knowledge
about relevant risk features, it will result in difficulties to determine the value of the risk (Ni et al.,
2010).
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This section provides an overview of risk estimation techniques discussed in related risk-based access
control models. Since the ultimate target of this research is to obtain a numeric value for the risk to
determine the access decision whether granting or denying the access, only quantitative risk

estimation techniques will be discussed.
3.2.1 Fuzzy Logic System

A fuzzy logic system is a computational approach which imitates how people think. It describes the
world in imprecise terms such as if the temperature is hot, it responds with a precise action.
Computers can work only on precise evaluations, while the human brain can provide reasoning with
uncertainties and judgments (Bai & Wang, 1982). The fuzzy logic system is considered as a try to
combine both techniques. Indeed, the fuzzy logic system is a precise problem-solving approach that
has the ability to work with numerical data and linguistic knowledge simultaneously. It simplifies

the management of complex systems without the need for its mathematical description (Kose, 2012).

The fuzzy logic system has many advantages. It is flexible, robust, and based on natural language
which makes it easy to understand. It is also tolerant to imprecise data in which it can work even
when there is a lack of rules. On the other hand, it faces some challenges. For instance, it needs
domain experts to determine the fuzzy variables of the system. Also, it requires more tests and
simulations which take a long time especially when there is a large number of rules (Shapiro &
Koissi, 2015).

The computation process using the fuzzy logic system consists of three main phases:

o Fuzzification — The majority of variables are crisp or classical variables. Fuzzification
process is used to convert crisp variables of input and output into fuzzy variables to process
it and produce the desired output.

e Fuzzy Inference Process — Describing relationships between different inputs and output to
drive the fuzzy output is done through building IF-THEN fuzzy rules. The fuzzy IF-THEN
rule uses linguistic variables to describe the relationship between a certain condition and an
output. The IF part is mainly used to represent the condition, and the THEN part is used to
provide the output in a linguistic form. The IF-THEN rule is commonly used by the fuzzy
logic system to represent how the input data matches the condition of a rule (Bai & Wang,
1982).

o Defuzzification — Since the output should be a crisp variable, this phase converts the fuzzy

output back to the crisp output (Kose, 2012).

Some researchers utilized the fuzzy logic system to estimate the security risk in access control
models. Chen et al. (2007) used the fuzzy logic system to build an MLS access control model to
access information of IBM systems. This fuzzy MLS model estimates the risk value associated with

the access request based on the difference between the subject security level and the object security
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level. For instance, the larger the difference, the higher is the risk. Also, Li et al. (2013) presented a
fuzzy modelling-based approach for evaluating the risk associated with the access request to
healthcare information. They represented data sensitivity, action severity and risk history as a fuzzy
value to determine the access decision. Moreover, Bertino and Lobo (2010) introduced a fuzzy
inference technique to estimate the risk. Their fuzzy approach was used to estimate access risks and

develop an enforcement mechanism for the risk-based model.
3.2.2 Expert Judgment

When there is insufficient practical data to describe the probability and impact of a certain incident,
expert judgment can be used to provide a subjective evaluation based on experience. Expert judgment
is commonly utilized to measure uncertain parameters in a probabilistic form to evaluate different
elements of a certain model. Expert judgement can be defined as ““ the expression of inferential

opinions based on knowledge and experience” (Leung & Verga, 2007).

Expert judgment is a powerful tool in risk analysis. It provides various solutions and decisions in
several domains, such as psychology, criminal justice, financial forecasting, political science, and
decision analysis. The use of expert judgement has raised many questions regarding the accuracy of
the results. However, there are many circumstances where expert judgement is the only source of
accurate information (Leung & Verga, 2007). Measuring the probability of an incident in risk
analysis with the uncertainty that surrounds it is a difficult task especially for rare and extreme events.
This is true when trying to estimate the security risks of access control operations (Turisova et al.,
2012).

3.2.3 Risk Assessment

Risk assessment is used to avoid potential damages of a certain scenario. Risk assessment can be
defined as the process of investigating possible losses using a combination of known information
about the situation and judgment about the information that is not known (Shapiro & Koissi, 2015).
The risk assessment is used to identify the risk context and acceptable risk values in each situation.
This can be achieved by comparing it to similar risks of similar scenarios. In addition, it aims to
provide substitute solutions to reduce the risk and calculate solutions effectiveness (Stoneburner et
al., 2002).

Determining an appropriate type of risk analysis depends on the available data that characterize the
risk probability and its impact. An effective risk assessment has many benefits. For example, a
well-established risk assessment can support a balanced basis to prevent the risk or at least reduce its
impact. However, it is a subjective process influenced by experience and it is only valid at a certain
point in time (Stoneburner et al., 2002).
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Risk assessment has been used in existing risk-based access control models. For instance,
Khambhammettu et al. (2013) introduced three different approaches that conduct a risk assessment
framework for a risk-based access control model. These approaches are based on the object
sensitivity level, the subject trustworthiness level and the difference between them. Moreover, Diep
et al. (2007) proposed a risk-based access control model based on risk assessment by using the
outcomes of actions in terms of availability, confidentiality and integrity to estimate the risk value

for each access request.
3.24 Game Theory

Game theory is considered as a division of applied mathematics that has been utilized in several
domains like evolutionary biology, economics, artificial intelligence, political science, and
information security. Game theory is used to describe multi-person decision scenarios in the form of
games where each player selects appropriate actions that lead to the best possible payoff while

expecting reasonable actions from opponent players (Binmore & Vulkan, 1999).

Game theory is the main tool for modelling and building automated decision-making operations in
interactive environments. This is because it can provide consistent and mathematical platforms. The
power of the game theory lies in the methodology it supports for analysing different problems of
strategic choice. The process of modelling a condition as a game needs the decision-maker to interact
with the players, their strategic decisions, and to observe their preferences and responses (Hamdi &
Abie, 2014).

A game theory comprises of four components; the players, their strategies, payoffs and the
information they have. The players are the essential part of the game, they are the decision-makers
within the game. While the strategy is the plan that the player uses regarding the movement of the
opposite player. So, it is critical for the players to select the suitable tactics. The payoff is the rewards
of the players in the game. For each player, the payoff is affected by both their own actions and those
of the other player (Rajbhandari & Snekkenes, 2011). In the game theory, the risk analysis is done
by using user benefits rather than the probability. Moreover, game theory is recommended in
conditions where no practical data is available (Hamdi & Abie, 2014). However, it is very complex

especially with more than two players. It also leads to random outcomes when using mixed strategies.

Game theory has been utilized in risk-based access control models. For instance, Rajbhandari and
Snekkenes (2011) presented a risk analysis approach based on preferences or values of benefit which

the subjects can provide using the game theory.
3.25 Decision Tree

A decision tree is a common methodology for many operations in machine learning. It is used as a

decision support instrument to provide decisions depending on a group of rules presented as a tree
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(Shang & Hossen, 2013). Building a decision tree model requires dividing the data into training and
validation sets. Training data are utilized to extract appropriate rules for the tree. While validating

the tree and making the required modifications are done using the validation data.

The decision tree is represented as a flow diagram where each node, represented by a rectangle,
describes the risk probability and its impact. These rectangles are connected by arrows in which each

arrow leads to another box representing the percentage probability (Shang & Hossen, 2013).

Decision tree approaches are easy to comprehend. They can operate efficiently with inadequate data
if experts provide all the required rules. They can show all possible alternatives and traces in a single
view which provides a simple comparison with various alternatives. Whilst the decision tree model
provides many advantages, it also has some limitations. For instance, its scalability is questionable
such that when the scale of the tree increases, the obtained model will be hard to recognize, and it
needs more supplementary data to validate the rules. Also, a decision tree model is based on
expectations, so it may be impossible to plan for all contingencies that can arise as a result of a
decision (Wang et al., 2016).

Selecting the appropriate risk estimation technique that fits with the requirements of the loT
environment is not an easy task. Table 3.2 provides a summary of advantages and disadvantages of
previously discussed risk estimation techniques to help providing a clear picture of each risk

estimation approach.
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o1

Table 3.2: Advantages and disadvantages of risk estimation techniques

Approach Advantages Disadvantages
o Easy to understand, test and maintain o Need more tests and simulation
o Flexible and based on natural language e Do not learn easily
o Robust, it operates even when there is a e Difficult to establish correct rules without
lack of rules or wrong rules using domain experts
Fuzzy Logic e Tolerant to imprecise data o Lack of precise mathematical model
System e Can be built on top of the judgment of e Subjective
experts e Time overhead especially when there are a
o Ability to work with any set of input- large number of rules
output data using the Neuro-Fuzzy System e Scalability seems to be questionable when
(NFS) there are a large number of rules
o Use rules that express imprecision of the
real world
e Quick to produce e Subjective
e Requires little resources in terms of time e Not consistent
Expert and cost ¢ The estimate depends on the level of experts’
Judgment e Can be as accurate as other expensive  experience
methods ¢ Risky and prone to error
» With experienced experts, accurate results ¢ Need a large number of knowledgeable
are guaranteed experts
o Consider a large range of consequences e Based on expectations, so it may be
e Easy to understand when there are few  impossible to plan for all contingencies that
decisions and outcomes can arise as a result of a decision
e Results improved by numerical values on e More complex and less accurate with large
Decision decisions trees
Tree e Fast to build and test e Unstable, a small change in input data can
« Works well with non-linear data cause large changes in the tree
e Shows all possible alternatives and traces ® Storage constraints, re-drawing decision trees
each alternative in a single view, allowing ~ manually require large spaces
for easy comparison among various e Need advanced knowledge to create a large
alternatives decision tree
¢ Do not take into account the dynamic nature
of the business
) o An effective tool used in decision-making e Subjective process influenced by experience
Risk e Assess, communicate, organize the risks e Valid at a certain point in time, but maybe
Assessment and expected benefits different later on
o Lead to optimal productivity ¢ Not consistent
e Enhance transparency e Time and cost overhead
o No actuarial data is needed e Complex and difficult with more than two
¢ Risk analysis is based on outcomes, which  players
Game the subjects can provide rather than e Its application and assumptions are
Theory subjective probability unrealistic

e Risk analysis is in the form of a game with
players and strategies

e Ideal for strategic
individual behaviour

situations  with

e The use of mixed strategies generates random
outcomes

¢ Does not consider resource limitations

e Assumes both players are smart and rational
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In addition, the benefits and limitations of previously discussed risk estimation techniques are

represented in a summarized form in Table 3.3.

Table 3.3. Benefits and limitations of risk estimation approaches

Benefits Limitations
Risk Estimation _ Include Massive Time o
Technique Usable | Fast | Scalable | Dynamic ex(:))gr)iir;ce r?f;lgggs overhead Subjective
Fuzzy Logic v v v v v
Expert Judgment v v v v
Risk Assessment v v v v v
Game Theory v v v v
Decision Tree v v v v v v

It is clear that there is no straightforward approach that can be used without limitations. Also, a risk
estimation approach without subjectivity will never exist in risk analysis. In addition, scalability
seems to be a problem in most approaches. Therefore, choosing the optimal risk estimation approach
should depend heavily on the context.

3.3 Proposed Risk Estimation Approach

There is no universal and best method for conducting risk analysis. However, it is important to
understand strengths and weaknesses of various approaches to select the most appropriate approach
to the context (Boc, 2012). There are many questions about the appropriate risk estimation technique
to implement in a risk-based access control model for the I0T system. Understanding different
advantages and disadvantages of previously discussed risk estimation approaches, as shown in Table
3.2 and Table 3.3, can provide a good indicator to select an appropriate risk estimation technique for

the 10T context.

After investigating the literature regarding risk estimation techniques, the fuzzy logic approach with
expert judgment was selected to be the suitable risk estimation technique to implement in a risk-
based access control model for the 10T. There are many reasons for this selection. Firstly, there are
significant sources of knowledge to provide all the required information to evaluate security risks
regarding access control operations. One of the main sources is the past experience. Security
administrators generally have some security skills regarding different risk factors and applications of
suitable rules and policies regarding each context. This type of knowledge can be converted easily

into rules for the fuzzy logic system (Alberts and Dorofee, 2002).

Secondly, one of the major problems in any research, especially in security, is the lack of datasets

due to information protection laws. To correctly estimate the risk value associated with a specific
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situation, the data describing the situation probability and its impact are required. Once data is
available, it can be used to estimate a more precise risk value. Using a fuzzy logic system with expert
judgment, there is no need for a dataset since the required data will be provided by the domain
security experts. Expert judgment is a significant source of information in risk-based decision-
making operations. This is because correct numerical data describing incident probabilities and its
impact do not exist in most risk models (Tversky & Kahneman, 1974). In some cases, quantifying
the value of the risk using classical approaches is very complicated, but with expert judgment, a more
accurate value for a certain situation can be defined especially when appropriate experts are selected
(Pluess et al., 2013).

Thirdly, the fuzzy logic system is flexible (Ruan, 2000), so, it will be suitable for the 10T system to
adapt to its changing conditions and situations. Fourthly, although expert judgement adds subjectivity
to the risk estimation process, the subjectivity can be reduced to an acceptable level in the fuzzy logic
system, since subjectivity is moved to the process of creating rules which can be better controlled.
Certainly, subjectivity is not completely eliminated. However, as depicted in Table 3.3, it is unlikely
that a method with no subjectivity will ever exist for risk analysis (Boc, 2012). Finally, there are
many successful applications that used the fuzzy logic system such as decision support, engineering,
psychology, medicine, and home appliances (Zimmermann, 2000; Eldabi et al., 2002).

Fuzzy Logic System

Risk Factors :> +

Expert Judgment

Input

Output

— Risk Estimation Process |::>

Figure 3.1: Combining the fuzzy logic system with expert judgment for the risk estimation process

Combining the fuzzy logic system with expert judgment could generate realistic risk values regarding
certain scenarios. One of the essential steps to implement a fuzzy logic approach to estimate security
risks is to set appropriate fuzzy rules. Determining appropriate fuzzy rules is one of the primary goals

of combining the expertise of the domain experts with the fuzzy logic system.

The next section provides an overview of the fuzzy logic system by discussing the main stages of
building a fuzzy logic system. This is followed by providing an overview of expert judgment and

different phases needed to obtain an expert judgment.
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3.4  Fuzzy logic System

The past few years have witnessed a rapid growth in the number and variety of fuzzy logic
applications such as washing machines, camera autofocus, power supply regulation, aircraft engines,
medical diagnosis systems, image processing and others. The fuzzy logic system has the ability to
mimic how the human thinks. It employs modes of reasoning that are approximate rather than exact

effectively.

Fuzzy Logic is a problem-solving methodology that can be implemented in hardware, software, or a
combination of both. It provides a simple method to output a definite conclusion based upon vague,
ambiguous, imprecise, noisy, or missing input information. Moreover, the fuzzy logic system is
based on the idea that all things in our environment are a matter of degrees. Temperature, height,

speed, distance, beauty, etc., all can be defined with degrees (Rezaei et al., 2014).

Fuzzy or multi-valued logic was introduced in 1930 by Jan Lukasiewicz, a Polish philosopher (Keller
et al., 2016). He introduced the logic that extended the range of truth values to all real numbers in
the interval between 0 and 1, while classical logic works only with two values 1 (true) and 0 (false).
The difference between classical or Boolean logic and multi-valued logic can be shown in Figure
3.2.

| | |
0 01 1 0 02 04 06 08 1

(a) Boolean Logic. (b) Multi-valued Logic

Figure 3.2: Difference between Boolean logic and Multi-valued logic (Keller et al., 2016)

Later in 1937, Max Black argued that a continuum implies degrees and published a paper called
“Vagueness: an exercise in logical analysis” (Black, 1937). He said if a continuum is discrete, a
number could be allocated to each element. He accepted vagueness as a matter of probability
(Singhala et al., 2014). In 1965, Lotfi Zadeh published his paper “Fuzzy sets ”. Zadeh extended the
work on the possibility theory into a formal system of mathematical logic and introduced a new
concept for applying natural language terms (Zadeh, 1965). This new logic for representing and
manipulating fuzzy terms was called fuzzy logic, and Zadeh became the master of the fuzzy logic
(Boc, 2012; Singhala et al., 2014).

The fuzzy set theory provides a way to utilize imprecise and uncertain information made by a system
and human judgments in a precise way. If the available data does not provide a suitable numeric
result, the fuzzy logic system can resolve this problem by using linguistic expressions such as low,

medium and high (Radionovs & Uzhga-rebrov, 2014).
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Generally, implementing a fuzzy logic approach for an application requires five steps (Kose, 2012;

Singhala et al., 2014), as depicted in Figure 3.3.

1. Fuzzification: It is the process that converts classical data or crisp data into fuzzy variables
using linguistic expressions.

2. Membership Function (MF): It involves mapping each variable to a value between 0 and
1. This value is called membership value or degree of membership.

3. Fuzzy Inference Rules: It represents the relationship between input and output linguistic
expressions using IF-THEN rules to derive the output.

4. Rule Aggregation: It combines fuzzy sets that represent the output of each rule into a single
fuzzy set.

5. Defuzzification: It is the process that converts the fuzzy output back to the crisp or classical
output. The fuzzy output is still a linguistic variable, and this linguistic variable needs to be

converted to the crisp variable through the defuzzification process.

INPUT DATA OUTPUT DATA
Fuzzification <:|[ Fuzzy sets and ] Defuzzification
Membership function

Fuzzy Input ::> Rules Inference ::> Fuzzy Output

Figure 3.3: Representation of the fuzzy logic approach (Kose, 2012)

3.4.1 Fuzzification

The first step to apply the fuzzy logic approach is fuzzification. Most variables existing in the real
world are crisp or classical variables. One needs to convert these crisp variables (both input and
output) into fuzzy variables, and then apply fuzzy inference to process these data to obtain the desired
output (Singhala et al., 2014). The input and output linguistic variables are divided into fuzzy sets.
A fuzzy set is a set containing elements with varying degrees of membership to this set. The idea of
fuzzy sets is opposite to classical or crisp sets because members of a crisp set would not be members
unless their membership is full or complete in that set. While in a fuzzy set, elements’ membership
need not to be complete and they can also be members of other fuzzy sets on the same universe
(Kose, 2012; Ross, 2010).
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The difference between classical logic and fuzzy logic can be shown in Figure 3.4. A sentence in the
classical logic universe can have only two possible values; small or large. While with the fuzzy logic
theory, the sentence may have a large (maybe infinite) number of values. Therefore, fuzzy sets solve

the problem of vague linguistic terms (Korol & Korodi, 2011).

1 1 S—
‘ large | large
18 s 08 :
16} 06
14 04
1.2 1 02
small ‘small ‘
0 , i
> 10 5 20 25 30 % 5 10 15 20 25 30
Classical Logic Fuzzy Logic

Figure 3.4: The difference between crisp sets and fuzzy sets (Korol & Korodi, 2011)
3.4.2 Membership Functions

Generally, fuzzification involves two processes: derive the MFs for input and output variables and
represent them with suitable linguistic variables (Shapiro & Kaoissi, 2015). Linguistic variables are
the building blocks of the fuzzy logic system. They are defined as variables whose values are
expressed as words or sentences (Zadeh, 1965). For instance, linguistic variables associated with

temperature can be set as cold, hot and very hot.

Fuzzy MF is a curve that defines how each point in the input space is mapped to a membership value
(or degree of membership) between 0 and 1. The input space is sometimes called the universe of
discourse. The only condition MF must satisfy is that it must vary between 0 and 1 (Ross, 2010).
MFs can have different types such as triangular, trapezoidal, Gaussian, and others. Selecting the
appropriate MF depends on the actual application. For those systems that need significant dynamic
variation in a short period of time, a triangular or trapezoidal waveform should be utilized. For those
systems that need very high control accuracy, a Gaussian or S-curve waveform should be selected
(Bai & Wang, 1982; Kose, 2012).

In practice, MF for a fuzzy set “A” on the universe of discourse “X” is defined as pA:X — [0,1],
where each element of X is mapped to a value between 0 and 1. This value, called membership value
or degree of membership, quantifies the grade of membership of the element in “X” to the fuzzy set
“A”. MFs allow us to graphically represent a fuzzy set. The x-axis represents the universe of
discourse, whereas the y-axis represents the degrees of membership in the [0,1] interval (Wang,
2015).
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The next section provides a brief discussion on various MFs that can be implemented using

MATLARB by providing the equation and representation of each MF.
3421 Triangular MF

Triangular MF (Trimf) is a triangular-shaped function that used to represent the relationship between
fuzzification inputs and fuzzified output. It is represented by a lower limit “a”, an upper limit “b”,
and a value “m”, where a < m < b (Wang, 2015). The triangular function and its representation are

shown in Figure 3.5.
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Figure 3.5: Function and representation of triangular MF (Mathworks, 2016)

There are two types of triangular MF; symmetric and asymmetric. The only difference between
symmetric and asymmetric MF, as shown in Figure 3.6, is the value of m which divides the MF into

two equal halves in the symmetric MF.

Figure 3.6: Difference between asymmetric and symmetric triangular MF (Mathworks, 2016).
34.2.2 Trapezoidal MF

Trapezoidal MF (Trapmf) is a trapezoidal-shaped function that is represented by a lower limit “a”,
an upper limit “d”, a lower support limit “b”, and an upper support limit “c”, wherea<b <c<d

(Wang, 2015). Trapezoidal function and its representation are shown in Figure 3.7.
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Figure 3.7: Function and representation of trapezoidal MF (Mathworks, 2016)

3.4.2.3 Gaussian MF

Gaussian MF (Gaussmf) is a gaussian curve function that is represented by a central/mean
value “m” and a standard deviation k > 0. The smaller “k” is, the narrower the “bell” is (Mathworks,
2016). Gaussian function, where “k” and “m” represent the standard deviation and the mean

respectively, and its representation are shown in Figure 3.8.
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Figure 3.8: Function and representation of gaussian MF (Mathworks, 2016)

34.24 Gaussian2 MF

Gaussian2 MF (Gauss2mf) is a gaussian combination function that used to represent the relationship
between fuzzification inputs and fuzzified output. The normal gaussian MF is represented using two
parameters (sig, c), while gaussian2 MF is represented using a combination of two of these two
parameters. The first function, specified by sigl and c1, determines the shape of the left-most curve
while the second function specified by sig2 and c2 determines the shape of the right-most curve.
Whenever cl < c2, the gaussian2 MF function reaches a maximum value of 1 (Mathworks, 2016). In
Gaussian2 MF o represents the standard deviation and “c” represents the mean, and its representation
can be shown in Figure 3.9.
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Figure 3.9: Function and representation of gaussian2 MF (Mathworks, 2016)

3.4.25 Generalized bell-shaped MF

Generalized bell-shaped MF (Gbellmf) depends on three parameters “a”, “b”, and “c” where the

parameter b is usually positive. The parameter ¢ locates the centre of the curve (Mathworks, 2016).

Generalized bell-shaped MF and its representation can be shown in Figure 3.10.
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Figure 3.10: Function and representation of generalized bell-shaped MF (Mathworks, 2016)

3.4.2.6 Sigmoid MF

Sigmoid MF (Sigmf) is a sigmoid shaped function that depends on the parameter “a”. Generally, the

sigmoidal MF is inherently open to the right or to the left, and thus it is appropriate to represent

concepts such as “very large” or “very negative” (Mathworks, 2016). Sigmoid MF function and its

representation are shown in Figure 3.11.
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Figure 3.11: Function and representation of sigmoid MF (Mathworks, 2016)

3.4.2.7 Difference between two sigmoidal MF

Dsigmf is a function that used to represent the difference between two sigmoidal functions. It depends
on four parameters al, c1, a2, and c2. It is the difference between two of these sigmoidal functions
“F1(x; al, c1) - F2(x; a2, c2)” (Mathworks, 2016). Dsigmf function and its representation are shown

in Figure 3.12.
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Figure 3.12: Function and representation of Dsigmf (Mathworks, 2016)

3.4.2.8 Product of two sigmoidal MF

Psigmf is a function that is used to represent the product of two sigmoidal MFs. Similar to Dsigmf,
it depends on four parameters al, c1, a2, and c2, and it is the product of two of these sigmoidal
functions such that F1(x; al, c1) x F2(x; a2, c2). Psigmf function and its representation are shown in
Figure 3.13.
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Figure 3.13: Function and representation of Psigmf (Mathworks, 2016)
3.4.2.9 S-shaped MF

S-shaped MF (smf) is an s-shaped function that represents a mapping on the vector X. It depends on
two parameters a and b which locate the extremes of the sloped portion of the curve. S-shaped MF

function and its representation are shown in Figure 3.14.
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Figure 3.14: Function and representation of S-shaped MF (Mathworks, 2016)

3.4.2.10 Z-shaped MF

Z-shaped MF (zmf) is a z-shaped function that is used to represent the relationship between
fuzzification inputs and fuzzified output. This spline-based function of X is so named because of its
Z-shape. The parameters “a” and “b” locate the extremes of the sloped portion of the curve. Z-shaped

MF function and its representation are shown in Figure 3.15.
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Figure 3.15: Function and representation of Z-shaped MF (Mathworks, 2016)
3.4.2.11 Pi-shaped MF

This spline-based curve is so named because of its IT shape. This MF is evaluated at the points
determined by the vector x. Pi-shaped MF is a product of S-shaped MF and Z-shaped MF. Pi-shaped

MF function and its representation are shown in Figure 3.16.
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Figure 3.16: Function and representation of Pi-shaped MF (Mathworks, 2016)
3.4.3 Fuzzy Inference Rules

Fuzzy inference rules are considered as the knowledge base that describes the relationship between
input and output linguistic expressions. They are represented by a sequence of IF-THEN statements,
leading to a set of procedures that define what actions or outputs should be taken in terms of currently
observed input combinations. Fuzzy rules are constructed based on knowledge or experience, which

is dependent on each application (Bai & Wang, 1982).

The fuzzy IF-THEN rule uses linguistic variables to describe the relationship between a certain
condition and an output or a conclusion. The IF part is mainly used to represent the condition, and

the THEN part is used to provide the conclusion or output in a linguistic variable form. This IF-THEN
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rule is commonly used by the fuzzy logic approach to represent the degree to which the input data

match the condition of a rule (Bai & Wang, 1982). A fuzzy rule is represented in the following form:

IF Xis A, THEN Y is B (3.1)

Where X and Y are linguistic variables and A and B are linguistic values determined by fuzzy sets

on the universe of discourses X and Y respectively.

To build fuzzy inference rules, the type of Fuzzy Inference System (FIS) should be defined. There
are two types of FISs: Mamdani and Sugeno. Mamdani FIS is the most commonly used fuzzy
inference technique. This approach is introduced by Ebrahim Mamdani in 1975 to control a steam
engine and boiler combination (Mamdani & Assilian, 1975). Mamdani FIS applied a set of fuzzy
rules supplied by experienced human operators. Mamdani FIS is performed in four steps:
fuzzification of the input variables, rule evaluation, aggregation of the rule outputs, and finally

defuzzification (Negnevitsky, 2010).

On the other hand, Sugeno FIS was first introduced by Michio Sugeno in 1985 (Takagi & Sugeno,
1985). Itis very similar to the Mamdani method. Instead of the fuzzy set; Sugeno used a mathematical
function to represent the output variable. Sugeno FIS is based on generating fuzzy rules through a
given input-output dataset (Negnevitsky, 2010). The main difference between the two methods lies

in the consequent of the fuzzy rules. The format of the Sugeno fuzzy rule is represented as follows:
IF XisA,AND Y isB, THEN ZisF (X, Y) (3.2)

Where X, Y and Z are linguistic variables; A and B are linguistic values determined by fuzzy sets on
the universe of discourses X and Y respectively, and F (X, Y) is the mathematical function of the

output variable.

One of the important facts to notice about the two FISs is that Sugeno FIS cannot be used unless a
given input-output dataset exists. Since most risk estimation processes suffer from the lack of
appropriate datasets that characterise the risk, Mamdani FIS is the most commonly adopted fuzzy

inference technique in risk estimation operations.
3.4.4 Rule Aggregation

Rule aggregation is the process used to combine fuzzy sets that represent the output of each rule into
asingle fuzzy set. It is used only once for each output variable, prior to the final step; defuzzification.
Rule aggregation is one of the main stages in Mamdani FIS. This is because the fuzzy output depends
on the evaluation of all fuzzy rules in the FIS; and hence, all rules should be combined to provide the

fuzzy output.
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Figure 3.17: Fuzzy rule aggregation with the max method (Mathworks, 2016)

The input of the aggregation process is a list of truncated output functions returned by the inference
process for each rule. The output of the aggregation process is one fuzzy set for each output variable
(Mathworks, 2016). Most aggregation processes are commutative so, the order of the rule execution
is not essential. Figure 3.17 shows the aggregation process by presenting how three fuzzy rules are

combined and how the output of each rule is aggregated into a single fuzzy set using the max method.

345 Defuzzification

The last step for building a fuzzy logic approach is defuzzification. Basically, defuzzification is the
process of mapping from a space of a fuzzy logic defined over an output universe of discourse into
a space of a crisp logic. In other words, the defuzzification process is used to convert the fuzzy output
back to the crisp or classical output. The fuzzy output is still a linguistic variable, and this linguistic

variable needs to be converted to a crisp variable (Kose, 2012; Singhala et al., 2014).

There are five common defuzzification methods that can be implemented using MATLAB. These

methods include:

1. Mean of Maximum Method (MOM): It works by calculating the average of fuzzy outputs
that have the highest degrees. This method does not work with the entire shape of the output
MF; instead, it only works with points that have the highest degrees in that function. For
those MFs that have different shapes but the same highest degrees, this method will provide
the same result (Kose, 2012; Ross, 2010).
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2. Centre of Gravity (COG): It is the most common defuzzification method that is widely
used in several applications. It is also called the centroid method. This method is similar to
the principle of calculating the centre of gravity in physics. The weighted average of the MF
or the centre of the gravity of the area bounded by the MF curve is computed to be the most

crisp value of the fuzzy quantity (Kose, 2012; Ross, 2010).

3. Bisector of Area (BOA): The bisector is the vertical line that divides the region into two
sub-regions of equal area. It is sometimes, but not always coincident with the centroid line
(Kose, 2012).

4. Smallest of Maximum (SOM): It determines the smallest of the maximum value of the area
under the curve of the aggregated MFs (Téth-laufer & Takacs, 2012).

5. Largest of Maximum (LOM): It determines the largest of the maximum value of the area
under the curve of the aggregated MFs (T6th-laufer & Takacs, 2012).

Figure 3.18 shows an example that uses x = -10:0.1:10, and trapezoidal MF to show different ways
to calculate the defuzzified output for each method. There is no superior method, however, the
centroid method is more common and recommended to start with in the absence of a dataset
(Mathworks, 2016).

06

centroid

-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 3.18: An example to show the calculation of defuzzified value using centroid, bisector, LOM, MOM,
and SOM defuzzification methods (Mathworks, 2016)

3.4.6 Applications of Fuzzy Logic System

There are numerous applications that utilized the fuzzy logic system in various aspects of industrial

production or manufacture. The fuzzy logic system is an effective tool to help decision-making in
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manufacturing reengineering, optimize the process parameters for drilling processes, realize a better

batch process scheduling, and others (Singh et al., 2013).
There are many applications for the fuzzy logic system. These are:

e Aerospace (e.g. altitude control of spacecraft and satellite altitude control)

e Automotive (e.g. intelligent highway systems, traffic control, and shift scheduling for
automatic transmission)

e Business (e.g. decision-making support systems and personnel evaluation in a large
company)

o Defence (e.g. underwater target recognition, control of a hypervelocity interceptor, and naval
decision support aids)

e Electronics (e.g. washing machine timing, microwave ovens, vacuum cleaners, and air
conditioning systems)

e Finance (e.g. stock market predictions, fund management, and banknote transfer control)

e Marine (e.g. autopilot for ships, optimal route selection, and ship steering)

e Healthcare (e.g. medical diagnostic support system, multivariable control of anaesthesia,
and radiology diagnoses)

e Security (e.g. decision systems for security trading and various security appliances)

e Transportation (e.g. train schedule control, railway acceleration, automatic underground
train operation, and braking and stopping)

e Image processing (e.g. pattern recognition and classification, handwriting recognition, and
command analysis)

e Psychology (e.g. analysis of human behaviour and criminal investigation and prevention)

35 Expert Judgement

In the absence of sufficient practical data, uncertain variables and models can be computed using
expert opinions. An expert is a person who is qualified with special knowledge and skills and with
relevant experience in a specific domain (Leung & Verga, 2007). Expert judgements are the
expression of inferential opinions, based on knowledge and experience. It is often used to quantify

uncertain parameters in a probabilistic form (Otwayl & Winterfeldt, 1992).

Expert judgement can be qualitative or quantitative. Quantitative forms can be expressed as
numerical values of probabilities, ratings, odds, uncertainty estimates and weighting factors. While
qualitative forms can be represented as textual descriptions to reach an estimate for certain scenarios
(Leung & Verga, 2007). Expert judgement is used to support decision-making in many different
areas such as financial forecasting and assessing risks of terrorist attacks in the national security

domain. The use of expert judgement has induced questions related to the accuracy of the obtained
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results. However, there are many situations where expert judgement is the only source of accurate

information regarding certain scenarios (Leung & Verga, 2007).

Expert judgment is a powerful tool in risk analysis. The uncertainty that surrounds the measure of
probability in risk analysis is particularly hard to compute for rare and extreme events. This is the

same when trying to estimate security risks for future and unknown events (Turisové et al., 2012).
3.5.1 Expert’s Selection

The identification of experts is a critical part of the expert judgement process. It requires that one
develops some criteria by which expertise can be measured (Otwayl & Winterfeldt, 1992). These

criteria can be such as:

e Research in the related area as identified by publications and grants

¢ Citations of work

e Degrees, awards, or other types of recognition

e Auvailability and willingness to participate

¢ Recommendations and nominations from respected bodies and persons
e Positions held

e Membership or appointment to review boards, commissions, etc.
3.5.2 Expert Interview

Expert judgment can be realized using different techniques. One of the most common methods is the
interview. An interview is carried out as a conversation between two individuals, the researcher and
the interviewee. Experts are given a set of predetermined questions, whether using qualitative or
guantitative methods. The interview questions may be related to the evaluation of a model,
suggestions about some points linked to the study or different aspects of the area of the study
(Tessmer, 1993). There are two ways of conducting an interview: structured and semi-structured
(Britten, 1995; Rogers et al., 2011). A structured interview is usually used to provide more
knowledge about the subject where the interviewees are asked a series of prepared questions. Semi-
structured interviews include set of predetermined open and closed questions, with other questions
emerging from the dialogue during the interview, by either the interviewer or interviewee, in order
to explain an idea in more details (DiCicco-Bloom & Crabtree, 2006). Although the interviewer may
face difficulties in finding participants, the interview is a flexible method that used to gain more

knowledge in a certain area of study (Britten, 1995).
3.5.3 Phases of Expert Judgment

Regardless of the type of expert judgment, there are basic steps for obtaining an expert judgment
(Benini et al., 2017), as depicted in Figure 3.19.
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Figure 3.19: Phases of obtaining an expert judgment (Benini et al., 2017)

The first phase is the background and preparation. The need to obtain an expert judgment can vary

in different situations, however, the main target of employing an expert judgment should be clearly

understood. The researcher should be fully prepared and understand the required background and

guestions that need to be answered about the study.

Table 3.4: Methods of collecting expert judgment (Benini et al., 2017)

Data collection method

Features

Individual

Best method for obtaining detailed data
Avoid potential bias from group dynamics
Data are easy to process and analyse
Limited collaboration between experts
Time-consuming

Interactive group

Generate more accurate data, particularly for predictions
Appropriate for solving problems that require originality
and insight

More appropriate for complex response modes, as
participants can be collectively trained and guided
Potential for group-think bias

Heavy in preparation, administration and logistics

Strong moderator required, particularly if there are more
than seven experts in a group

Delphi

Experts individually make a prediction on a certain topic
Researcher aggregates all perspectives and shares the results
with the contributing experts

Experts are then requested to update their predictions.
Over several rounds, the researcher tries to reach a
consensus prediction

Limited bias between experts but time-consuming
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The next phase is to select the appropriate experts to conduct the expert judgment according to the
criteria discussed in the previous section. The logical next phase after selecting the experts is to
record their responses using an audio recorder or by means of manual note-taking. There are three
different ways to collect expert judgment: individual, interactive group, or Delphi (Benini et al.,
2017), as summarized in Table 3.4. The collected data are then aggregated and analysed to extract

the meaningful findings that can be later used in decision-making processes.

3.6 Summary

Chapter 3 has provided a discussion of risk estimation techniques. It started by providing an overview
of quantitative risk estimation approaches discussed in related risk-based access control models with
presenting their advantages and weaknesses. Then, the fuzzy logic approach with expert judgment
was selected to be the suitable risk estimation technique to implement the risk-based access control
model for the 10T. There were several reasons for this selection. Firstly, the fuzzy logic system
provides a flexible model that is built on top of the experience of experts. Secondly, the fuzzy logic
system is tolerant to imprecise data, so the lack of dataset, as in our research, can be resolved. Thirdly,
a risk analysis based on the fuzzy logic system with consistent expert knowledge can create an
effective method to assess risks in access control operations. Finally, most risk estimation techniques
are subjective, but with consistent expert judgment, the subjectivity of the fuzzy logic system can be
reduced. In addition, chapter 3 provided a discussion of the main stages of building a fuzzy logic
system. This is followed by providing an overview of expert judgment and different phases required
to obtain an expert judgment. The next chapter presents the proposed adaptive risk-based access

control model for the IoT.






Chapter 4: Adaptive Risk-based Model

This chapter provides a discussion of the proposed adaptive risk-based access control model for the
loT system. It starts by discussing limitations of the existing static access control models and the
need for a dynamic risk-based access control model for the I0oT system. Section 4.2 provides a
discussion of research problems that the literature fails to address. Then, section 4.3 presents the
proposed adaptive risk-based access control model by highlighting its main elements and flow
process. This is followed by discussing how the proposed model will address the research problems
in section 4.4. Section 4.5 presents research methods that was utilized to achieve research targets.
The chapter closes by providing a summary of the main points discussed through the chapter and

introduces the next chapter.

4.1 Dynamic 10T System

The 10T is a dynamic system in nature where all environment and heterogeneous objects and things
can be connected together to share their data and create new applications and services. Although the
loT brought unlimited benefits, it creates several challenges, especially in security. Achieving a
higher level of security is a huge challenge due to the heterogeneous and distributed nature of the
loT system. In addition, applying sophisticated security algorithms could affect usability and user
satisfaction. Hence, for the 10T system, the ultimate goal is to create an effective security system and

at the same time consider the system usability (Habib & Leister, 2015).

One of the significant elements to address security challenges in the 10T is the access control model.
This model is used to control access to system resources by allowing only authorized users who have
been successfully authenticated (Liu et al., 2016). The major goal of the 10T system is to increase
information sharing to maximize organization benefits and at the same time ensure the highest
possible security measures are applied to prevent sensitive information disclosure. However, static
access control models are built using predefined policies that give the same result in different
situations. This binary decision (grant/deny) cannot create an effective level of security in a dynamic,
heterogeneous and distrusted environment like the 10T system (Castiglione et al., 2016; Shen et al.,
2018).

71
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Static access control models cannot provide the required flexibility to diverse 10T applications. In
addition, these models are associated with a system administrator who has access to all system
resources. Compromising the administrator account can lead to the breach of almost all system
confidential and sensitive data (Ye et al., 2014). Therefore, a dynamic access control model is

required for the I0T system.

Risk-based access control model is one of the dynamic models that uses security risk associated with
the access request as a criterion to determine the access decision. It estimates a risk value associated
with each access request. Then, the estimated risk value is compared against risk policies to make
the access decision (Shaikh et al., 2012).

4.2 Research Problems

This research aims to provide a dynamic and adaptive risk-based access control model for the 10T
system. The literature has been examined in term of the scope of the research, as presented in chapter
2 and 3. After reviewing existing literature regarding risk-based access control models, the literature
failed to:

e Provide a dynamic risk-based access control model for the IoT system. Most presented
risk-based models did not focus on the 10T context where billions of sensors can be used to
collect real-time and contextual features to determine access decisions in a dynamic manner.

Therefore, this issue has been presented as the main research question, as follows:
RQ: What is the appropriate adaptive risk-based access control model for the 10T system?

e Present a clear and effective risk estimation technique to estimate a risk value associated
with each access request in a dynamic environment quantitatively. Providing a numeric value
for the security risk is one of the biggest challenges the literature failed to address. Most
presented risk estimation techniques did not provide a clear and precise method to provide a
numeric value for the risk associated with each access request. This issue has been

represented as one of the sub-research questions, as follows:

SRQ1: What is the appropriate risk estimation technique to estimate the risk associated with

the access request?

e Provide acceptable risk values that can be used to make access decisions. Most presented
risk-based models suggested using a threshold risk value to grant or deny the access without
providing any details about how to decide this threshold risk value in different applications.

This issue has been represented as one of the sub-research questions, as follows:

SRQ2: What are acceptable risk values to make the access decision in loT applications?
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Provide a plug and play risk-based access control model that works when first used or
connected, without reconfiguration or adjustment by the system administrator. In the
literature, some risk-based access control models such as Shaikh et al. (2012), Li et al.
(2013), Namitha et al. (2015), and Britton and Brown (2007) utilized risk history as a factor
to determine access decisions. However, values of risk history will not be available at the
start of setting up a new risk-based model, which will make the system unusable until
collecting risk history values. This issue has been represented as one of the sub-research

questions, as follows:

SRQ3: How to provide a plug and play risk-based model that can work when first used or
connected to an 10T system?

Provide a scalable risk estimation technique that can cope with the constant increase of the
number of 10T devices. Providing a clear risk estimation approach was not the only issue the
literature failed to resolve, considering the growing rate of 10T devices that need fast and
scalable risk estimation approach was not also addressed. There is no proof that the presented
risk estimation techniques in the literature were tested to measure its scalability and response
time, especially in the 10T context. This issue has been represented as one of the sub-research

questions, as follows:

SRQ4: How to provide fast and scalable risk estimation technique to handle the constant

increase in the number of 10T devices?

Consider a way to detect and prevent malicious activity during access sessions. Most existing
access control models do not employ a method to detect malicious actions after granting
access. In addition, related risk-based access control models lack abnormality detection
capabilities that allow the system to detect and prevent abnormal behaviour in a timely
manner during access sessions. This issue has been represented as one of the sub-research

questions, as follows:
SRQ5: How will the user/agent behaviour be monitored during the access session?

Provide a way to evaluate related risk-based access control models using real-world
scenarios. The ultimate target of any new approach is to guarantee that it is applicable in
real-world scenarios. Related risk-based access control models discussed in the literature did
not provide a way to validate and evaluate their risk models using real-world scenarios,
especially in the 10T context. Therefore, this issue has been represented as one of the sub-

research questions, as follows:

SRQ6: To what extent is the proposed risk-based model applicable to real-world loT

scenarios?
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4.3 Proposed Adaptive Risk-based Model

This work aims to address research problems discussed in the previous section by proposing a
dynamic and adaptive risk-based access control model that uses real-time and contextual information
collected from the 10T environment to provide access decisions. The next section provides a detailed

discussion of the main components and flow process of the proposed risk-based model.
431 Model Structure

Unauthorized disclosure of information is one of the critical issues in the 10T system that need to be
addressed. Current static access control models cannot resolve this challenge due to three reasons
(Lee et al., 2007; Li et al., 2013). First, they are unable to handle exceptional situations in which the
access policy itself should be overridden in order not to stop the system. Second, they do not meet
the requirements of providing dynamic secure information and permission sharing in collaborative
systems. Third, they are not flexible enough to handle the changing behaviour of users, especially in

a dynamic environment like the 10T.

A risk-based access control model is one of the dynamic models that performs risk analysis to
estimate the security risk value associated with the access request to make the access decision. The
main issue solved by this model is the flexibility in accessing system resources (Dos Santos et al.,
2014; Shaikh et al., 2012).

An adaptive risk-based access control model for the 10T is proposed, as shown in Figure 4.1. The
proposed model has four inputs: user/agent context, resource sensitivity, action severity and risk
history. These inputs/risk factors are used to estimate the security risk value associated with the
access request. Then, the estimated risk value is compared against risk policies to make the access
decisions. In addition, the user behaviour will be monitored to detect and prevent malicious actions
from authorized users during their access sessions. The main reason to select only four risk factors
is to ensure that the proposed model is generic and can be applied in various lIoT applications. In
addition, adding more risk factors will add computational complexity on the proposed model. The
eventual goal of the proposed risk-based model is to create a system that encourages information
sharing to maximize organization benefits while keeping users responsible for their actions and
stopping the expected damage that the organization could suffer due to sensitive information
disclosure. Moreover, organizations will be able to control insecure information flows dynamically

based on its risk tolerance and environment (Chen et al., 2007).

The proposed risk-based model can work well in unexpected situations that often require the
violation of security policies. This may occur because policies are incomplete or incoherent,

sometimes even conflicting. The most usual examples of such needs are in medical and military
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applications, where the need to take actions may save lives and the system immobility may cause

serious harm (Dos Santos et al., 2014).
e
User Resource Action Risk
Context Sensitivity Severity History

Risk Monitoring

Estimation
l A
Risk Access
Policies Decision

Figure 4.1: Proposed adaptive risk-based access control model

The main components of the proposed adaptive risk-based access control model involve risk factors,
risk estimation module, risk policies, access decision and monitoring user activities. The following

section provides an overview of each component.

e User/Agent Context: It represents environmental and contextual features that embedded
with the user/agent at the time of making the access request. These features are collected
while making the access request to determine the security risk value associated with the
requesting user. Location, identity, time, history events and activity are the most common
user/agent contextual features (Perera et al., 2014). The agent is used to express the diversity
of applications in the 10T system. An agent represents any system entity that has the ability
to make an access request (Feitosa, 2014). For the rest of this thesis, the word user will be

used to represent either a user or agent.

e Resource Sensitivity: It describes how valuable the resource is to the owner or to the service
provider. Data is assigned a level of sensitivity based on who should have access to it and
how much damage would be done if it has been disclosed. A risk metric is assigned to each
resource in the 10T system depending on how valuable the resource data is to the owner.
Therefore, the higher the data sensitivity, the higher the risk metric associated with the

resource.
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Action Severity: It represents the consequences of a certain action on a particular resource
in terms of confidentiality, integrity, and availability. Different operations have different
impacts and so have different risk values. For instance, the risk of a “view” operation is lower

than the risk of a “delete” operation.

Risk History: It represents the previous risk values of a user regarding a particular resource.
This is because the risk history reflects users’ behaviour patterns. Moreover, it is used to

identify good and bad authorized users and predict their future behaviour (Li et al., 2013).

Risk Estimation Module: It is the heart of the risk-based access control model. It is
responsible for taking the input features/ risk factors to quantify the security risk value
associated with each access request. There are two ways to estimate the risk: quantitative
and qualitative. However, the ultimate goal in the context of access control is to define a
numeric value for the security risk associated with each access request to determine the

access decision.

Risk Policies: They are mainly used by the risk estimation module to make access decisions.
These policies are created by the resource owner or security system administrator to identify
terms and conditions of granting or denying access to a particular resource. To determine the
access decision, the estimated risk value resulted from the risk estimation module is
compared against risk policies to determine the access decision. Defining a threshold risk
value is one of the common ways to build a risk policy in risk-based access control models
in which the access is granted only if the estimated risk value is lower than the threshold risk

value.

Monitoring User Activities: In existing access control models, if the decision is to grant
access to a user, then there is no way to detect or prevent any abnormal and unusual data
access from the authorized user. So, a monitoring module is needed to adjust the risk value
based on the user behaviour adaptively during the access session. The proposed risk-based
model utilizes smart contracts to monitor user behaviour or user activities during the access
session. Applying smart contracts to accomplish this process is a big challenge especially it
will be the first time to use smart contracts in this context. Smart contracts are treated as
software code to enforce a functional implementation of particular demands and confirm that
certain conditions or terms were met or not (Watanabe et al., 2016). For each user, a smart
contract will be built to reflect user permissions. Hence, for each user access session, the
behaviour will be compared with the smart contract to ensure the user obeys the terms and
conditions of the smart contract so as to prevent any potential security breach during access

Sessions.
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Access Decision: It is the judgment of whether to grant or deny access. The access decision

is not associated with permissions. This is because the user will specify the resources to

access and the actions to perform in the access request. Therefore, only requested

permissions will be granted or denied. The access decision in risk-based access control

models is decided based on the estimated risk value of each access request. Then, the

estimated risk value is compared with risk policies to determine whether to grant or deny

access. Since smart contracts are used as abnormality detection capability to detect and

prevent malicious actions during access sessions, three risk decision bands were proposed to

determine the access decision, as shown in Figure 4.2.

RISK SCALE

Allow with
Risk Monitoring

Allow

Figure 4.2: Access decision bands

Allow band: This band is used to grant access without monitoring user’s activities
during the access session to preserve the user’s privacy. This band is very narrow in term
of the risk value. It is used mainly to allow access of users associated with very low risk

value without being monitored such as device owner or system security administrator.

Allow with Risk Monitoring band: This band is used to grant access with monitoring
all users’ behaviours and activities during the access session to detect and prevent any
potential malicious activity. The ultimate target of the proposed risk-based access control
model is to increase information sharing and at the same time guarantee security of
system resources, so smart contracts are used to monitor user’s activities during the
access session. Therefore, this band is very wide to include most of the access to system

resources.

Deny band: Due to the high-risk value associated with the user requesting access to

system resources, the access will be denied through this band.
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4.3.2 Process Flow of Proposed Model

The proposed risk-based access control model provides a dynamic method to authorize different
types of users in the 10T system by estimating the security risk value associated with each access
request. To understand the proposed risk-based model, Figure 4.3 provides a detailed description of
the process flow of an access request.

The flow starts when the access control manager receives an access request from a user/agent. The
access control manager asks for values of risk factors (user/agent contextual features, resource
sensitivity level, action severity and risk history) of the requesting user. The risk estimation module
uses these values to estimate the overall risk value associated with the access request. Then, the
estimated risk value is compared against risk policies to determine the access decision. At this point,

there are two decisions:
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Figure 4.3: The process flow of the proposed adaptive risk-based access control model

a) If the access is granted, then, there are two possible scenarios. The first scenario is if the
estimated risk value of the access request lies within the Allow band, the access will be

granted without monitoring user activities during the access session. The second scenario is
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4.4

b)

if the estimated risk value of the access request lies within the Allow with Risk Monitoring
band, the monitoring module will track and record user behaviour and activities to detect and
prevent potential malicious actions. The smart contract will use the monitored data to
determine if the user follows the terms and conditions of the contract or not. If the user obeys
the terms of the contract, the system will keep monitoring the user behaviour, while if not,
then it will return to the risk estimation module to reduce user permissions or terminate the

access session to stop any potential malicious activity.

If the access is denied, the system will ask the user to provide additional proof of
identifications so as not to block an authorized user and reduce the false-positive rate. If the
user provided the required identifications, the access will be granted, and the flow continues
as in decision (a). If the user does not provide the correct identifications, the system will

deny access.

Solutions for Research Problems

There is a set of research questions that the literature failed to resolve regarding building a dynamic

risk-based access control model for the 10T system, as discussed in section 4.2, The aim of this

research is to provide best solutions to these questions. Table 4.1 provides a summary of the solutions

provided by this research to address these questions.

Table 4.1: How this research will address research questions

Research Questions

Proposed Solutions

In Thesis

RQ: What is the
appropriate adaptive
risk-based access
control model for an
10T system?

This research proposed a dynamic and adaptive risk-based access
control model that uses contextual and real-time information
collected from the 10T environment to make the access decision.
This model can be used in various 10T application to adapt to
unexpected situations and provide a flexible way to determine access
decisions.

Chapter 4

SRQ1: What is the
appropriate risk
estimation technique
to estimate the risk
associated with the
access request?

Providing a clear and accurate risk estimation technique to provide
a quantitative risk value for each access request is one of the main
targets of this research. After reviewing existing risk estimation
techniques, the fuzzy logic system with expert judgment has been
selected to implement the risk estimation process of the proposed
model. A clear and detailed implementation of the risk estimation
approach has been provided.

Chapter 3
&

Chapter 5

SRQ2: What are
acceptable risk
values to make the
access decision in
10T applications?

This research proposed three risk decision bands to grant or deny
access. The first band grants access without monitoring, the second
band grants access with monitoring, while the third band denies
access. In this research, twenty security experts from inside and
outside the UK were interviewed to provide acceptable risk values
for each band.

Chapter 5
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Table 4.1: How this research will address research questions (Cont.)

Research Questions

Proposed Solutions

In Thesis

SRQ3: How to
provide a plug and
play risk-based
model that can work
when first used or
connected to an loT
system?

One of the issues associated with existing risk-based models that use
risk history as one of the factors is that it couldn’t operate
immediately until data regarding previous risk values have been
collected. This research resolved this issue by implementing a
solution for the cold start problem that allows the proposed risk-
based model to operate immediately when first used or connected.

Chapter 5

SRQ4: How to
provide a fast and
scalable risk
estimation technique
to handle the constant
increase  in  the
number of loT
devices?

This research provides a risk-based model for the 10T system which
is growing in billions. Therefore, the risk estimation technique
should be able to cope with the constant increase of the number of
10T devices and provide access decisions in a timely manner. One
of the issues associated with the fuzzy logic system is time overhead
and scalability. Therefore, this research proposed the NFS and
Adaptive Neuro-Fuzzy Inference System (ANFIS) to resolve this
issue.

Chapter 6
&

Chapter 7

SRQ5: How will the
user/agent behaviour
be monitored during
the access session?

The proposed risk-based model provides abnormality detection
capability using smart contracts to track and monitor user behaviour
during the access session to detect and prevent potential malicious
actions. The operation of the smart contract was simulated using
MATLAB Simulink and Stateflow diagrams to test system response
for detecting abnormal and malicious activities.

Chapter 8

SRQ6: To what
extent is the proposed
risk-based model
applicable to real-
world 10T scenarios?

To evaluate and proof the applicability of the proposed risk-based
model in real-world scenarios, three case studies of 10T applications
were considered. Various access control scenarios of children
hospital, network router and smart home were presented by
discussing the access decision in each situation.

Chapter 8

4.5

Research Methodology

Building an adaptive risk-based access control model for the 10T system includes a variety of
research methods in order to reach its targets. This section provides a discussion of research methods

utilized to reach research targets.

Typically, there are two research methodologies to conduct research; qualitative and quantitative.
Quantitative research methodology depends on measuring and analysing data to determine the
relationship between one set of data with another to explain a certain phenomenon. The measurement
of these variables might produce quantifiable conclusions. Thus, it places emphasis on methodology,
procedure and statistical measures of validity (Eldabi et al., 2002). It uses fixed instruments that
contain closed questions such as surveys (Creswell, 2003). Quantitative research is evaluated by
either descriptive or inferential statistics (Taylor, 2005). Descriptive statistics are used to describe
the characteristics of a specific sample of data, while inferential statistics are used to determine the

likelihood of generalising the characteristics from small samples to larger ones (Taylor, 2005).
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Qualitative research methodology is only concerned with identifying the meaning and understanding
of a phenomenon. It is not concerned with the quantification of the phenomenon but providing an
understanding of the phenomenon through observation (Berleant & Kuipers, 1997; Eldabi et al.,
2002; Pang & Coghill, 2015). Qualitative methods aim to answer the question of “what” and “how”
(Taylor, 2005). These methods can be such as interviews, observations, documents, open-ended
guestions, and audio-visual data. To derive results and answer research questions, the analysis of

texts and images could also be used (Creswell, 2003; Taylor, 2005).

Table 4.2: Research methods used in this research for each research question

Research Question

Research Method

Description

SRQ1: What is the
appropriate risk estimation
technique to estimate the
risk associated with the
access request?

Expert interview

After reviewing existing risk estimation
techniques in related risk-based models, the fuzzy
logic with expert judgment was selected as the
suitable method. Twenty loT security experts
were interviewed to validate the proposed model
and confirm the fuzzy rules.

SRQ2: What are
acceptable risk values to
make the access decision
for 10T applications?

Expert interview

Twenty 0T security experts were interviewed to
provide acceptable risk values for the proposed
three risk bands.

SRQ3: How to provide a
plug and play risk-based
model that can work
perfectly when first used or
connected?

Expert interview

To implement a solution for the cold start problem,
ten security research fellows at the University of
Southampton were interviewed to validate fuzzy
rules.

SRQ4: How to provide a
fast and scalable risk
estimation technique to
handle the constant
increase of 10T devices?

Experiments

To resolve issues of time overhead and scalability
associated with the fuzzy logic system, the ANFIS
and NFS were employed. Several experiments
were carried out to implement the risk estimation
process using ANFIS and NFS approaches.

SRQ5: How will the
userfagent behaviour be
monitored  during the
access session?

Simulation

In this research, smart contracts are used to
monitor user behaviour during access sessions.
MATLAB Simulink and Stateflow diagrams were
adopted to simulate the operation of smart
contracts to evaluate its response in detecting
malicious actions.

SRQ6: To what extent is
the proposed risk-based
model applicable to real
10T scenarios?

Access scenarios

To validate the applicability of the proposed
risk-based access control model in real-world 10T
applications, access control scenarios of three 10T
applications including healthcare, smart home and
network router were provided.

Pure guantitative models require accurate numerical information about the system structure and its
initial state that are represented quantitatively (Rochette et al., 2009). When such data is unavailable,
quantitative models face many constraints that restrict the model’s value. In contrast, qualitative

models display all possible behaviours but only in qualitative terms (Omar et al., 2015). The main
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target of this research is to build a dynamic and adaptive risk-based access control model for the loT
that can work in unexpected situations by using not only access policies but also real-time and
contextual features while making the access decision. There are multiple research methods utilized
in this research to reach its target. Table 4.2 provides a summary of the research methods used to

resolve research questions.
A description of the research methods employed in this study is presented as follows:

e Interviews are one of the common qualitative data collection methods. They can be
structured, semi-structured, and unstructured (Gill et al., 2008). They are considered an
informal validation method, as they are based on human subjectivity. The data resulting from
these interviews can be both qualitative and quantitative, depending on the material
presented in the interview (Balci, 1994). In this research, semi-structured interviews were
employed. This type of interview provides the ability for both the interviewer and the
interviewee to respond to questions with more detail. The questions within the
semi-structured interviews elicit expected information alongside other unanticipated
information (Gill et al., 2008).

e Simulation allows researchers to assume the inherent complexity of organizational systems
as a given. If other methods answer the questions “What happened, how, and why?”,
simulation helps to answer the question “What if?””. Simulation enables studies of complex
systems because it creates observations by “moving forward” into the future, whereas other
research methods attempt to look back across history to determine what happened, and how
(Dooley, 2002). In this research, simulation is used as a method to imitate the operation of

smart contracts to monitor user activities during access sessions for the 10T system.

e Experiments are a systematic and scientific approach which allows the researcher to
manipulate one or more variables and measure any changes in other variables. True
experimental research is considered to be successful only when the researcher confirms that
a change in the dependent variable is solely due to the manipulation of the independent
variable (Moore & McCabe, 1993). The results of experimental research once analysed, can
be applied to various other similar aspects. In this research, experiments are used to build the

risk estimation process using both ANFIS and NFS approaches.

4.6 Summary

Chapter 4 has presented the proposed adaptive risk-based access control model for the 10T. It started
by discussing the need for a dynamic access control model for the 10T system. This is followed by
discussing the research problems that the literature failed to address. One of the major issues

extracted from the literature was the lack of a dynamic risk-based model that can adapt to different
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and unexpected circumstances of the 10T system. Therefore, chapter 4 presented the proposed
adaptive risk-based access control model for the IoT to address this issue. This model uses the
security risk as a criterion to make the access decision. It estimates the risk value associated with
each access request using four inputs: user contextual features, resource sensitivity, action severity
and risk history. The estimated risk value is then compared against risk policies to determine the
access decision. To prevent and detect abnormal misuse from authorized users during the access
session, the proposed model uses smart contracts to monitor user’s activities and adjust their risk
values adaptively based on their actions. In addition, a discussion of how the proposed adaptive
risk-based model will resolve research problems extracted from the literature was also provided.
Finally, the research methods used in this research were presented. The next chapter presents the
implementation of the risk estimation process using the fuzzy logic system with expert judgment.






Chapter 5. Implementation of Risk Estimation using

Fuzzy Logic

This chapter provides a discussion of the implementation of the proposed risk estimation technique
using the fuzzy logic system with expert judgment. It starts by discussing the integration of the fuzzy
logic system with expert judgment. Then, section 5.2 provides a discussion of the expert interview
by highlighting the interview design, sample size and experts’ attributes. Section 5.3 presents a
discussion of validating the proposed risk-based access control model using 0T security experts.
This is followed by providing a step-by-step discussion of the implementation of the risk estimation
process using the fuzzy logic system with expert judgment in section 5.4. Section 5.5 provides a
discussion of experts’ responses to determine acceptable risk values for risk decision bands. Section
5.6 introduces the cold start problem and the proposed solution to address it. Section 5.7 presents a
set of experiments to evaluate the efficiency of the proposed risk estimation technique when
increasing the number of access requests and determine the most efficient MF, defuzzification
method, and rule aggregation operator. The chapter closes by providing a summary of the main points

discussed through the chapter and introduces the next chapter.

5.1 Proposed Risk Estimation Approach

Risk-based access control model is one of the dynamic models that provides an efficient way to
provide access decisions. It uses the security risk value associated with the access request as a
criterion to make the access decision. Building a risk-based access control model to decide whether
to grant or deny access for each access request needs providing a quantitative value for the security
risk associated with each access request. This process is complicated as it is based on the possibility
of information leakage and the value of this information for various incidents that will occur in the
future. So, the objective of the risk estimation process in the access control context is to provide an
accurate and realistic numeric value for the security risk associated with the access request to

determine the access decision.

85
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After reviewing related risk estimation techniques in the literature in section 3.2, the fuzzy logic
approach with expert judgement was selected as the appropriate technique to implement the risk
estimation process of the proposed risk-based model, as shown in Figure 5.1. The fuzzy logic system
has the ability to convert linguistic expressions and human reasoning into quantitative values.
Combining expert judgment gives more weights to human reasoning as it comes from experts in the
domain. Typically, the fuzzy logic system ensures that we do not neglect human common sense, and
experiences. It allows the use of degrees of truth to calculate risk values (Li et al., 2013). Using
security experts, fuzzy variables can be identified to build the fuzzy model to estimate security risks

of access control operations.

User Context Fuzzy Logic
System
Resource
Sensitivity 1

Action Severity Risk Estimation [ . ]
| > | > 1S dlue
Risk History Process

K

Risk Factors

. )

Figure 5.1: Proposed risk estimation approach using the fuzzy logic with expert judgment

l Expert Judgement I

One of the most effective ways to collect knowledge of experts and get an expert judgment regarding
certain research is through an interview. For this research, the interview was conducted to get more
information about the proposed risk-based access control model from highly experienced persons.
The next section provides a detailed discussion of the interview including interview design, sample

size, expert attributes and ethical approval.

5.2 Expert Interview

For this research, the objective of the interview was to validate fuzzy rules of the proposed risk
estimation technique to ensure correct and appropriate fuzzy rules were built. In addition, getting
valuable feedback about the proposed risk-based access control model and determine acceptable risk

values of risk decision bands. The interview involved four sections, as follows:

e Section 1 was designed to collect background information of participating experts.

e Section 2 was designed to validate the proposed risk-based access control model.

e Section 3 was built to validate fuzzy rules of the proposed risk estimation technique by
10T security experts.

e Section 4 was designed to determine acceptable risk values of risk decision bands.
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521 Interview Design

The interview was built as a semi-structured, which include a set of predetermined open and closed
questions with other questions emerging from the dialogue during the interview, by either the

interviewer or interviewee (DiCicco-Bloom & Crabtree, 2006).

The interview questions consisted of four sections. The first section has involved open questions to
get the background information of the participants. The second section was used to get experts’
feedback about the proposed risk-based model. This section was carried out through open questions.
The third section was used to validate fuzzy rules that previously created using the information
collected from literature with the researcher experience. This section was carried out using closed
questions using five choices to be the expected output for each rule. The final section discussed
different IoT security experts’ view of acceptable risk values of risk decision bands. This section was
carried out through open questions.

The interview questions were pilot-tested by seven security research fellows at the University of
Southampton. To interact directly with the interviewees and provide further questions based on the
interviewees’ answerers, face-to-face interviews were used. Some interviews were conducted on the
campus of the University of Southampton in the expert’s office. Other interviews were conducted
online using video conferencing on Skype (lacono et al., 2016) and were recorded by an audio

recorder or taking notes manually.

All interviews were conducted in the English language. Appendix A provides the participant

information sheet, consent form and interview questions.
5.2.2 Ethics Approval

Before starting the interview, each expert was asked to sign a consent form after reading the
participant information sheet that included all the necessary information, terms and conditions about
the study. The University of Southampton Ethics Committee granted approval for this study under
their reference number ERGO/FPSE/25091.

523 Sample Size

When conducting interviews, it is important to find the appropriate number of experts, as this will
help to produce accurate results. According to this point, determining the minimum sample size is
essential when it comes to producing consistent results (Bhattacherjee, 2012). In terms of the number
of experts, according to Guest et al. (2006), there is no agreed-upon number of experts for an
interview in a content validity study. However, most researchers recommend a panel consisting of 3

to 15 experts (Bhattacherjee, 2012). The main criterion the researcher used to determine the number
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of experts to validate the research is reaching saturation in which more interviews will not add new

ideas for the research.

Table 5.1: Attributes of 10T security experts who have interviewed in this study

Expert _ J_ob Experience Know K ledue of 10T
No Description (Years) Fuzzy nowledge of 1o UK/Non
logic Applications UK
E1l IoT  Security 6-10 Yes Connected industry, smart city, UK
researcher connected car, and connected
healthcare
E?2 Senior More than Yes Connected industry, smart city, UK
Cybersecurity 10 smart energy, connected car, and
Engineer connected healthcare
E3 loT  Security  More than No Smart city, smart energy, and UK
researcher 10 smart home
E4 IoT  Security 6-10 Yes Smart energy, connected car, and India
researcher smart home
E5 Security 2-5 No Connected  industry,  smart Egypt
Administrator energy, smart home, and
connected healthcare
E6 IoT  Security 2-5 Yes Smart city UK
researcher
E7 Risk analysis 2-5 Yes Smart city, smart energy, and UK
professor smart home
ES8 IoT  Security 2-5 No Smart energy and connected India
researcher healthcare
E9 Security 2-5 No Smart city and smart home Egypt
Administrator
E 10  Senior 2-5 Yes Smart city, smart home, and UK
Cybersecurity connected healthcare
Engineer
E11  Security 6-10 Yes Connected healthcare Italy
Specialist
E12  Security 6-10 Yes Smart home Egypt
Administrator
E 13  Security 6-10 No Connected industry and smart UK
Specialist home
E14 loT Security 2-5 Yes Connected industry, smart city, UK
researcher smart energy, and connected car
E15  Security 2-5 Yes Smart city, smart energy, and UK
Specialist smart home
E16  Security 2-5 Yes Smart city KSA
Administrator
E17 loT Security 2-5 No Smart city and Smart energy Romania
researcher
E 18  Security 6-10 Yes Smart city, smart energy, and Egypt
Administrator smart home
E19  Security 6-10 Yes Connected industry, smart city, Egypt
Administrator connected car, and connected
healthcare
E20 loT Security 2-5 Yes Smart city, smart energy, and UK
researcher smart home

The interviews were conducted with twenty 10T security experts from inside and outside the UK.

The criteria used to select experts were years of experience in security and familiarity with loT

applications. The loT security researchers who have been interviewed in this study were selected

after investigating and reading their works and making sure that there is a relevancy between their
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work and this study. While other experts were selected depending on their current jobs that require a
great experience in security and 10T applications. Information of experts who have involved in this

study can be shown in Table 5.1.

Most interviewed experts had large experiences in security and IoT applications. Most experts had
at least 2- 5 years of experience. In addition, although validating fuzzy rules of the proposed risk
estimation technique does not require extensive knowledge about the fuzzy logic approach and how
it works as it only requires human reasoning, 70% of interviewed experts had adequate knowledge
about the fuzzy logic approach. Typically, fuzzy rules are constructed using linguistic expressions of
the English language, which are easy to understand and interpret. For experts who did not have
knowledge about the fuzzy logic approach, the researcher spent about 10 minutes to make sure the
participant understands essential information about the fuzzy logic approach and how a fuzzy rule

can be built using linguistic expressions.

5.3 Implementation of Fuzzy Logic Technique

The proposed risk-based access control model has four risk factors: user context, resource sensitivity,
action severity and risk history which are used as input to determine the security risk value associated
with the access request to make the access decision for various 10T applications. MATLAB fuzzy
logic toolbox was used to implement the risk estimation process using the fuzzy logic system with
expert judgment. MATLAB provides an efficient framework and easy-to-use graphical user

interfaces that can generate surfaces and plots to analyse the system performance (Mathworks, 2016).

User-Context \

E 5 \ Risk-Estimation

Resource-Sensitivity

Action-Severity /

Risk-History

(mamdani)

Figure 5.2: Risk estimation implementation in MATLAB fuzzy logic toolbox

To implement the proposed risk estimation technique using the fuzzy logic toolbox, there are two
built-in FISs; Mamdani and Sugeno, as discussed earlier in section 3.4.3. Since no available dataset
exists in this research, Mamdani FIS will be used to implement the risk estimation process. It is
intuitive, has widespread acceptance, and is well suited to human input. The structure of input and
output of Mamdani FIS to implement the proposed risk estimation technique can be shown in Figure
5.2.
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Implementing the Mamdani FIS to estimate security risks of access control operations requires five
stages; fuzzification, MF, fuzzy inference rules, rule aggregation, and defuzzification. In the next

section, each stage will be discussed in detail by showing corresponding MATLAB images.

5.3.1 Fuzzification

The first step to implement the proposed fuzzy risk estimation technique is to define input and output
variables and their corresponding linguistic expressions. These linguistic expressions are called fuzzy
sets. The proposed risk-based model has four inputs: user context, resource sensitivity, action
severity and risk history, which will be used to produce the output risk. Input risk factors and output
risk are divided into fuzzy sets. The user context, action severity, and risk history are represented
using three fuzzy sets; “Low”, “Moderate”, and “High”. Also, the resource sensitivity is represented
using three fuzzy sets; “Not Sensitive”, “Sensitive”, and “Highly Sensitive”. While the output risk is
represented using five fuzzy sets; “Negligible”, “Low”, “Moderate”, “High”, and “Unacceptable
High”. Since the degree to which a value is a member of a certain fuzzy set can be any value between
0 and 1 (Li et al., 2013), the range of each fuzzy set should be determined accurately. Using related
fuzzy logic models in the literature (Li et al., 2013; Ni et al., 2010), ranges of fuzzy sets of both input
and output were determined. Table 5.2 shows linguistics variables for both input and output and their

fuzzy ranges.

Table 5.2: Input and output linguistic variables and their range

Linguistic Expression Notation Range
Input Variable: User Context
Low L 0.0-04
Moderate M 0.3-0.7
High H 0.6-1.0
Input Variable: Resource Sensitivity
Not Sensitive NS 0.0-0.35
Sensitive S 0.2-05
Highly Sensitive HS 045-1.0
Input Variable: Action Severity
Low L 0.0-04
Moderate M 0.35-0.7
High H 06-1.0
Input Variable: Risk History
Low L 0.0-04
Moderate M 0.3-0.7
High H 06-1.0
Output Variable: Risk
Negligible N 0.0-0.3
Low L 0.1-04
Moderate M 0.2-0.6
High H 04-0.8

Unacceptable High UH 0.7-10
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5.3.2 Membership Function

The main purpose of this step is to choose the appropriate MF for input and output fuzzy sets. Each
fuzzy set should have a corresponding MF that returns the degree of membership for a given value
within the fuzzy set. Fuzzy sets can be represented using a variety of MFs, as discussed earlier in
section 3.4.2. Choosing the appropriate MF depends on the available dataset. Comparing the results
of the training data with the real data and calculate error values using Mean Average Percentage
Error (MAPE) guarantee choosing the appropriate MF. However, when there is no available dataset,
it is recommended to select the triangular MF (Li et al., 2013). This is because it provides an adequate
representation of the expert knowledge, and at the same time simplifies the process of computation.
Since there is no available dataset to show different combinations of input and their output for a set
of scenarios, the triangular MF is used to represent input and output fuzzy sets of the proposed the
risk estimation technique. Figures 5.3 — 5.7 show the representation of triangular MF for the input

risk factors and the output risk.

Membership function plots
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Figure 5.3: Triangular MF of the action severity
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Figure 5.4: Triangular MF of the resource sensitivity
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Figure 5.7: Triangular MF of the output risk

5.3.3 Fuzzy Inference Rules

One of the most significant stages to implement the proposed fuzzy risk estimation technique is to
build appropriate and correct fuzzy inference rules that represent relationships between input and
output linguistic expressions (Li et al., 2013). Having specified the risk and its factors, the logical
next step is to specify how the output risk varies as a function of the four risk factors. Fuzzy rules

are the brain of the fuzzy logic system that need to be specified accurately.

Fuzzy inference rules are built using IF-THEN statements, which are used to specify how the output

risk varies as a function of the input. The IF-THEN rule uses linguistic expressions to describe the
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relationship between input conditions and output. The IF part is used to represent the condition while
the THEN part is used to provide the output in a linguistic form (Bai & Wang, 1982). For example,
IF (the action severity is low) THEN (the output risk will be negligible). So, in this example, if the
condition (action severity is low) is verified, then the output will be negligible. The IF part can
involve multiple conditions but the THEN part includes only one output. For example, IF (action
severity is Low & resource sensitivity is Not Sensitive & user context is Moderate & risk history is
High) THEN (the output risk will be Moderate).

For this research, building fuzzy rules was the most intensive aspect that took a long time to complete.
Fuzzy rules were created in two stages; the first stage involved building fuzzy rules using the
information collected from related fuzzy models that have been reviewed in the literature with the
researcher experience. The second stage was utilized to validate fuzzy rules through loT security
experts. Therefore, fuzzy rules were created by the researcher and then 10T security experts were

interviewed to validate these rules either by accepting it or by suggesting different output.

5331 Building Fuzzy Rules

Fuzzy rules are used to define the relationship between the output risk and input risk factors. It builds
input combinations with the corresponding output in the form of IF-THEN statements. Since the
proposed model has four inputs/risk factors, each input has three fuzzy sets, as depicted in Table 5.2.
Therefore, the total number of input combinations will be 3*3*3*3=81. So, the total number of fuzzy
rules is 81. All input combinations were built, and the output was decided using the information
collected from the literature with the researcher experience. Some of the important information used
to create fuzzy rules was the relation between action severity and resource sensitivity (Li et al., 2013),

as shown in Figure 5.8.

A

Resource Sensitivity
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NS| N N L

L M =

Action Severity

Figure 5.8: Fuzzy matrix of resource sensitivity with action severity (Li et al., 2013).

In addition, a set of logical rules between input and output were utilized to facilitate extracting

appropriate output for fuzzy rules. These logical rules include:
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= |f the risk history increased, the output risk will not decrease.

= |f the resource sensitivity increased, the output risk will not decrease.
= If the action severity increased, the output risk will not decrease.

= If any two risk factors are high, the lowest output will be Moderate.

= |f the resource sensitivity is Highly Sensitive (HS) or Sensitive (S), the output risk cannot be
Negligible (N).

Fuzzy rules were divided into five groups based on the output to facilitate analysing each group. The
rules are given numbers to easily refer to them especially at the time of making comparisons after
being validated by 10T security experts. Table 5.3 shows fuzzy rules when the output risk was N.

Notations of input and output risk linguistic expressions can be shown in Table 5.2.

Table 5.3: Fuzzy rules when the output was N

Rule Risk Factors

No Action Resource User Risk Ogltsplgt
Severity  Sensitivity context  History
1 L NS L L N
2 M NS L L N
3 H NS L L N
4 L NS M L N
5 M NS M L N
6 H NS M L N
7 L NS H L N
8 L S L L N
9 M S L L N
10 L NS L M N
11 M NS L M N
12 L NS M M N
13 M NS M M N

As illustrated in Table 5.3, the resource sensitivity was the dominant risk factor to determine the
output of these fuzzy rules in which the lower the resource sensitivity, the lower the output risk. For
instance, when the resource sensitivity was NS, the rule output became N regardless of the values of
other risk factors. This was the same scenario for all these set of fuzzy rules except rule 8 and 9 where
resource sensitivity was S. Based on the logical rule that stated, “If the resource sensitivity increased,
the output risk will not decrease”, the output risk should be at least L, however, the output risk is
assumed to be N, since both user context and risk history were L. This implies that the access comes

from a trusted user with low risk regarding contextual features.

Table 5.4 shows fuzzy rules when the output risk was L. There is no dominant risk factor affecting
the output risk directly, but the combination of the four risk factors led to L in the output risk. For
the first four rules; 14, 15, 16 and 17, although the resource sensitivity was S and HS, both user

context and risk history were L which led to L in the output risk.
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Table 5.4: Fuzzy rules when the output was L

Risk Factors
R|\T(|,e Action Resource User Risk OFliltsgt
Severity  Sensitivity  context  History
14 H S L L L
15 L HS L L L
16 M HS L L L
17 H HS L L L
18 L S M L L
19 M S M L L
20 M NS H L L
21 H NS L M L
22 L S L M L
23 H NS M M L
24 L NS H M L
25 L NS L H L
26 M NS L H L
27 L NS M H L
28 M NS M H L

The same scenario was in rules 18, 19, and 22. Although the resource sensitivity was S which lead
to increasing the output risk, having L in two of the risk factors led to L in the output risk. For rules
25, 26, 27 and 28, although the risk history was H, having NS in the resource sensitivity and either
L or M in both action severity and user context led to L in the output risk. For rules 20, 21, 23, and
24, the resource sensitivity was the dominant risk factors in which having NS led to L in the output

risk.

Table 5.5: Fuzzy rules when the output was M

Rule Risk Factors
- - Output
No Action Resource User Risk Risk
Severity  Sensitivity  context  History
29 H S M L M
30 L HS M L M
31 M HS M L M
32 H HS M L M
33 H NS H L M
34 L S H L M
35 M S H L M
36 M S L M M
37 H S L M M
38 L HS L M M
39 M HS L M M
40 L S M M M
41 M S M M M
42 M NS H M M
43 H NS H M M
44 H NS L H M
45 L S L H M
46 H NS M H M
47 L NS H H M

Table 5.5 shows fuzzy rules when the output was M. There is no dominant risk factor in this set of

fuzzy rules. For rules 29, 30, 31, and 32, although the resource sensitivity was S and HS, both user
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context and risk history were M and L respectively which led to M in the output risk. The same
scenario was for rules 33, 34, and 35 where having H in the user context and S in the resource
sensitivity led to M in the output risk. The output of eleven of these set of fuzzy rules was derived
based on the logical rule that stated, ““if two risk factors were H, the lowest output will be M”. These
rules include 29, 32, 33, 34, 35, 37, 43, 44, 45, 46, and 47. For rules 36, 38, 39, 40, 41, and 42, the
output risk was decided to be M since risk history and resource sensitivity were M and S/HS

respectively.

Table 5.6 shows fuzzy rules when the output was H. The resource sensitivity was the dominant risk
factor for these set of rules in which the output risk was decided to be H if the resource sensitivity
was S or HS. In addition, if the resource sensitivity was S and the risk history was H; the output risk
became H regardless of values of other risk factors. This is because the user who wants to access
confidential data and had a bad risk history score should be characterized as a malicious user. The
output of most of these set of fuzzy rules was derived based on the logical rule that stated, “If the

resource sensitivity increased, the output risk will not decrease”.

Table 5.6: Fuzzy rules when the output was H

Rule Risk Factors o
- - utput
No Action Resource User Risk Risk
Severity  Sensitivity context  History
48 H S H L H
49 L HS H L H
50 H HS L M H
51 H S M M H
52 L HS M M H
53 M HS M M H
54 H HS M M H
55 L S H M H
56 M S H M H
57 L HS H M H
58 M S L H H
59 L S M H H
60 M S M H H

Table 5.7 shows fuzzy rules when the output was UH. These rules represent the highest output risk
that used particularly to deny access requests to protect system resources. For these set of rules, at
least two risk factors should be H with S or HS in resource sensitivity to have UH in the output risk.
For instance, if the user context was H, the resource sensitivity was S or HS, and the risk history was
H, the output risk will be UH. In addition, as the risk history indicates the past behaviour, having H
in the risk history and S or HS in the resource sensitivity demonstrates a malicious activity that needs

to be denied.
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Table 5.7: Fuzzy rules when the output was UH

Rule _ Risk Factors _ Output
No Action Resource User Risk Risk
Severity  Sensitivity context History
61 M HS H L UH
62 H HS H L UH
63 H S H M UH
64 M HS H M UH
65 H HS H M UH
66 H S L H UH
67 L HS L H UH
68 M HS L H UH
69 H HS L H UH
70 H S M H UH
71 L HS M H UH
72 M HS M H UH
73 H HS M H UH
74 M NS H H UH
75 H NS H H UH
76 L S H H UH
77 M S H H UH
78 H S H H UH
79 L HS H H UH
80 M HS H H UH
81 H HS H H UH

5.3.3.2 Validation of Fuzzy Rules by Experts

One of the problems associated with fuzzy logic models is the lack of appropriate data to create
correct and appropriate fuzzy rules. If a dataset is available, fuzzy rules can be built dynamically and
efficiently. In this research, there is no dataset, so there is no way to ensure correct and precise fuzzy
rules were created. One solution to resolve this issue is to create fuzzy rules based on the knowledge
and expertise of experts. Therefore, twenty 10T security experts were interviewed to validate fuzzy
rules that are previously created using the information collected from the literature with the

researcher experience to increase the accuracy of the fuzzy model.

Twenty loT security experts from inside and outside the UK were interviewed to ensure suitable
fuzzy rules were created. Experts’ responses were analysed using the SPSS software program. The
mean function was utilized to determine the final decision regarding the output risk of each rule.
The mean, also called average, is the most common function used to measure the spread of values in
statistics. It is used to ensure all responses of experts involved in the study were considered and have

the same weight (Phinyomark et al., 2012).

To implement experts’ responses in the SPSS program, responses were given ratings in which
Negligible =1, Low =2, Moderate =3, High =4, and Unacceptable High =5. Therefore, the output of
each fuzzy rule should be mapped to one of these five categories. An assumption was made in which
any mean value lower than 0.5 will be mapped to the lower category and any mean value higher than

or equal 0.5 will be mapped to the higher category. For instance, if the mean value is 1.25, the fuzzy
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rule output will be mapped to 1 (Negligible), while if the mean value is 1.6, the fuzzy rule output
will be mapped to 2 (Low). So, any mean value lies between 0 to 1.49, the rule output will be mapped
to Negligible, while if the mean value lies between 1.5 to 2.49, the rule will be mapped to Low, and
S0 on. Mapping the mean value to the linguistic expression of output risk can be illustrated in Figure
5.9.

5 45 35 25 15 0

Figure 5.9: Mapping the mean value to output risk linguistic expression

Table 5.8 shows validation of fuzzy rules by 10T security experts when the output was N. Expert’s
responses were different from the output derived using the information collected from the literature
with the researcher experience in which the output of only five rules was classified as N. Examining
these rules indicates that experts decided to classify the output of a certain rule as N either if there
were three risk factors with L or two risk factors with L and one NS and the fourth risk factor was M
or L. On the other hand, experts decided to classify the output of six rules as L. These rules involve
rule 3,5, 6, 8, 11, and 12. Investigating these rules demonstrates that experts decided to classify the
output of a fuzzy rule as L when one risk factor was H or S even when the other three risk factors
were L or NS. They decided to be more careful when one of the risk factors was H or S and at least
the fuzzy output should be L. For instance, in rule 3, although user context, risk history and resource
sensitivity were L, L and NS respectively, having H in the action severity made experts to classify

the output of this rule as L.

Table 5.8: Validation of fuzzy rules when the output was N

Rule  Number of Experts M Experts Responses Mapped Rule
No “valid Missing ® 7N L M H_UH_ Category Output
1 20 0 1 20 0 0 0 0 1 N
2 20 0 1.25 15 5 0 0 0 1 N
3 20 0 2.15 6 5 9 0 0 2 L
4 20 0 1.10 18 2 0 0 0 1 N
5 20 0 1.75 11 3 6 0 0 2 L
6 20 0 2.25 7 1 12 0 0 2 L
7 20 0 1.25 17 1 2 0 0 1 N
8 20 0 1.70 11 6 1 2 0 2 L
9 20 0 2.75 1 5 12 2 0 3 M
10 20 0 14 15 3 1 1 0 1 N
11 20 0 1.9 7 8 5 0 0 2 L
12 20 0 1.6 12 5 2 1 0 2 L
13 20 0 2.5 2 9 6 3 0 3 M

Expert’s responses were distributed between N, L, and M in rule 5. Although eleven experts have
decided that the output should be N, the mean value of all experts mapped the output to be L.
Examining this rule demonstrates that having M in both action severity and user context should at

least make the output as L. This scenario was the same for both rule 8 and rule 12. Although the
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majority of experts decided to classify the rule as N, the mean value of all experts mapped the output
to be L. however, examining this rule indicates that having S in the resource sensitivity should make
the output to be L even if all other risk factors were L. For rule 12, since values of user context and
risk history were M, so the appropriate output should be L. Rule 11 with similar to rule 12 in which

values of risk history and user context were M, so experts decided to classify the output to be L.

In addition, experts decided to classify both rule 9 and rule 13 as M. For rule 9, although both user
context and risk history were L, having S in the resource sensitivity and M in the action severity
made experts to classify the output of this rule as M. Moreover, for rule 13, having M in three risk

factors made experts classify the output of this rule as M.

Table 5.9 represents validation of fuzzy rules when the output was L. The output of only six rules
were the same before and after expert validation. These rules involve rule 15, 20, 22, 24, 25, and 27.
Examining these rules indicates that experts decided to classify the output of these rules as L due to
having L in two risk factors regardless of values of other risk factors. On the other hand, the majority
of experts have classified the output of nine rules as M. These rules include rule 14, 16, 17, 18, 19,
21, 23, 26, and 28. For rule 14, ten experts have decided to classify the output of this rule as M, while
the responses of other ten experts were distributed equally between L and H. Investigating this rule
demonstrates that M will be the appropriate output due to having H in the action severity and S in

the resource sensitivity.

Table 5.9: Validation of fuzzy rules when the output was L

Rule  Number of Experts M Experts Responses Mapped Rule
No "Valid Missing ¥ "N L M H_UH_ Category Output
14 20 0 3 0 5 10 5 0 3 M
15 20 0 245 1 11 6 2 0 2 L
16 20 0 3 0 4 13 2 1 3 M
17 20 0 3.25 0 5 6 8 1 3 M
18 20 0 2.5 1 9 9 1 0 3 M
19 20 0 2.75 0 7 11 2 0 3 M
20 20 0 2.35 1 13 4 2 0 2 L
21 20 0 2.6 0 11 6 3 0 3 M
22 20 0 2.3 1 13 5 1 0 2 L
23 20 0 2.75 0 10 5 5 0 3 M
24 20 0 2.25 1 16 0 3 0 2 L
25 20 0 2.1 1 17 1 1 0 2 L
26 20 0 2.7 0 8 10 2 0 3 M
27 20 0 2.25 0 17 1 2 0 2 L
28 20 0 2.75 0 7 11 2 0 3 M

For rule 16 and 17, having HS in the resource sensitivity made most experts to classify the output of
these rules as M especially with M and H in the action severity respectively, so the access will be to
highly sensitive data with a sever action which makes M is appropriate output specifically with
having L in both risk history and user context. This scenario was the same for rule 18 and 19 in which
the resource sensitivity was S and the user context was M which demonstrates why M is the

appropriate output in this situation. For rule 21 and 23, although the majority of experts have decided
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to classify the output of these rules to be L due to having NS in the resource sensitivity, the mean
value of all expert mapped the output to be M. For rules 26 and 28, most experts have decided that
M is the appropriate output for these rules. Examining these rules demonstrates that even if the data
is insensitive, having H in the risk history should be considered since the malicious user always

comes with malicious actions.

Table 5.10 represents validation of fuzzy rules when the output was M. The output of thirteen rules
was identical before and after expert validation. The majority of experts have decided that M is the
appropriate output for these set of rules as well as the mean value of all experts mapped the output
to be M. Investigating these rules demonstrates that the resource sensitivity and risk history were the
dominant risk factors for most experts to make their decision for these set of rules. Having HS or S
in the resource sensitivity and H or M in the risk history made most experts to classify the output of

these rules to be M.

On the other hand, security experts classified the output of six rules to be H. These rules involve rule
29, 31, 32, 37, 39 and 43. For rule 29, fourteen experts have decided that H is the appropriate output
for this rule. This is due to having H in the action severity and S in the resource sensitivity which
should be characterized as high risk especially with having M in the user context. For rule 31 and 32,
most experts have decided that the suitable output for these rules is H. This is due to having HS in

the resource sensitivity and M and H in the action severity respectively.

Table 5.10: Validation of fuzzy rules when the output was M

Rule  Number of Experts M Experts Responses Mapped Rule
No “valid Missing ¥ "N L M H_UH_ Category Output
29 20 0 3.7 0 0 6 14 0 4 H
30 20 0 3.3 0 0 14 6 0 3 M
31 20 0 3.75 0 0 6 13 1 4 H
32 20 0 3.8 0 0 6 12 2 4 H
33 20 0 3.25 0 0 15 5 0 3 M
34 20 0 3.05 0 0 19 1 0 3 M
35 20 0 3.4 0 0 12 8 0 3 M
36 20 0 3.1 0 0 18 2 0 3 M
37 20 0 3.65 0 0 8 11 1 4 H
38 20 0 3.25 0 1 13 6 0 3 M
39 20 0 3.8 0 0 4 16 0 4 H
40 20 0 2.9 0 2 18 0 0 3 M
41 20 0 3.25 0 0 15 5 0 3 M
42 20 0 3.2 0 0 16 4 0 3 M
43 20 0 3.5 0 0 10 10 0 4 H
44 20 0 3.4 0 1 10 9 0 3 M
45 20 0 3.05 0 2 15 3 0 3 M
46 20 0 3.45 0 1 11 6 2 3 M
47 20 0 3 0 1 18 1 0 3 M

Similarly, in rule 37 and 39, the majority of experts have classified the output of these rules to be H.
This is because of having S and HS in the resource sensitivity, and M and H in the action severity

respectively. In rule 43, half of the 10T security experts have classified the output of this rule to be
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M, while the other half have decided that H is the appropriate output for this rule. However, the mean

value of all experts mapped the output to be H.

Table 5.11 shows validation of fuzzy rules when the output was H. The output of twelve rules was
identical before and after expert validation. Almost all experts have decided that H is the appropriate
output for these twelve rules as well as the mean value of all experts mapped the output to the same
result. In some rules, all twenty experts have decided that H is the appropriate output as in rule 48
and 56. Examining these rules demonstrates that experts have decided to classify the output of a rule

to be H only if two risk factors were H or H and S and with at least M in other risk factors.

On the other hand, there was only one rule (rule 54) that most experts have decided that UH is the
appropriate output for this rule. This is due to having H in the action severity and HS in the resource
sensitivity. So, the system will be in real danger especially the values of the user context and risk
history associated with this rule were M which indicates that the requesting user intends to perform

malicious actions on highly sensitive data.

Table 5.11: Validation of fuzzy rules when the output was H

Rule  Number of Experts M Experts Responses Mapped Rule
No “Valid Missing N V"L M H UH Category Output
48 20 0 4 0 0 0 20 0 4 H
49 20 0 3.65 0 0 7 13 0 4 H
50 20 0 4.25 0 0 0 15 5 4 H
51 20 0 3.9 0 0 2 18 0 4 H
52 20 0 3.95 0 0 1 19 0 4 H
53 20 0 4.05 0 0 0 19 1 4 H
54 20 0 4.6 0 0 0 8 12 5 UH
55 20 0 3.75 0 0 6 13 1 4 H
56 20 0 4 0 0 0 20 0 4 H
57 20 0 4.15 0 0 1 15 4 4 H
58 20 0 3.6 0 0 8 12 0 4 H
59 20 0 3.8 0 0 4 16 0 4 H
60 20 0 3.95 0 0 1 19 0 4 H

Table 5.12 represents validation of fuzzy rules when the output was UH. The output of seventeen
rules was identical before and after expert validation. Also, the mean value of all experts mapped the
output to the same result. In rules 63, 64, 65, 72, 73, 78, 80 and 81, all twenty experts have decided
that UH is the appropriate output. Examining these set of rules demonstrates that experts classified

the output to be UH if three risk factors were H regardless of the value of the fourth risk factor.
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Table 5.12: Validation of fuzzy rules when the output was UH

Rule  Number of Experts M Experts Responses Mapped Rule
No "Valid Missing ® 7N L M __H_UH_ Category Output
61 20 0 4.8 0 0 0 4 16 5 UH
62 20 0 4.7 0 0 0 6 14 5 UH
63 20 0 5 0 0 0 0 20 5 UH
64 20 0 5 0 0 0 0 20 5 UH
65 20 0 5 0 0 0 0 20 5 UH
66 20 0 4.7 0 0 1 4 15 5 UH
67 20 0 4.25 0 0 3 9 8 4 H
68 20 0 4.75 0 0 0 5 15 5 UH
69 20 0 49 0 0 0 2 18 5 UH
70 20 0 49 0 0 0 2 18 5 UH
71 20 0 4.75 0 0 0 5 15 5 UH
72 20 0 5 0 0 0 0 20 5 UH
73 20 0 5 0 0 0 0 20 5 UH
74 20 0 4.3 0 0 2 10 8 4 H
75 20 0 4.3 0 0 1 12 7 4 H
76 20 0 4.45 0 0 1 9 10 4 H
77 20 0 49 0 0 0 2 18 5 UH
78 20 0 5 0 0 0 0 20 5 UH
79 20 0 4.85 0 0 0 3 17 5 UH
80 20 0 5 0 0 0 0 20 5 UH
81 20 0 5 0 0 0 0 20 5 UH

On the other hand, experts decided to classify the output of four rules to be H. These rules involve
rule 67, 74, 75, and 76. For rule 67, although only nine experts have decided to classify the output of
this rule to be H, the mean value of all experts mapped the output to be H. Experts have decided that
H is the appropriate output due to having L in both action severity and user context. For rule 74 and
75, the majority of experts have decided that H is the suitable output for these rules. This is because
the resource sensitivity value associated with these rules was NS. So, if the data is not sensitive, then
the appropriate risk output should be H even if all the other three risk factors were H. For rule 76,
although ten experts have decided that UH is the appropriate output for this rule, the mean value for
all experts mapped the output to H. Having L in the action severity should make H to be the

appropriate output for this rule.
5.3.3.3 Implementation of Fuzzy Rules Using MATLAB

After all fuzzy rules were validated by twenty loT security experts, fuzzy rules were implemented
using the rule editor of the MATLAB fuzzy logic toolbox, as shown in Figure 5.10. The rule editor
is used to construct fuzzy rules statements automatically. It is flexible, in which a rule can be added,
edited, or deleted easily (MathWorks, 2016). All the rules had the same weight and the connection
type was logical AND. Some studies have suggested deleting the rules that are covered by other rules
to improve performance. However, the main target of the proposed risk estimation technique is to
provide a precise and accurate risk value for each access request. Indeed, deleting some rules can
improve the performance but the accuracy is the main concern in which removing some fuzzy rules

will decrease the accuracy of resultant risk values. There are many studies referring that reducing the
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number of rules will lower the system accuracy (Maksimovic et al., 2013; Segui et al., 2013). In
addition, the proposed risk estimation technique uses 81 rules which is not large compared to large
systems involving multiple inputs with hundreds of fuzzy rules. Therefore, all 81 rules are used to

implement the proposed fuzzy risk estimation technique.
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Figure 5.10: MATLAB rule editor to build fuzzy rules

In addition, the rule viewer shows a roadmap of the fuzzy inference process, as shown in Figure 5.11.
It uses fuzzy rules that have been implemented using the rule editor. The first four columns of the
rule viewer show MFs referenced by the IF-part of each rule of the four risk factors. The fifth column
shows the MF of the output risk referenced by the THEN-part of each rule (Mathworks, 2016). Each
rule is a row and each column represents risk input factors and output risk in the rule viewer. Rule
numbers are displayed on the left of each row. In addition, when values of action severity, resource

sensitivity, user context, and risk history were 0.5, the value of the output risk was 0.6 as shown in
Figure 5.11.
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Figure 5.11: MATLAB rule viewer to show the fuzzy inference process
534 Aggregation of Output Rules

Rule aggregation is the process of combining outputs of all fuzzy rules. In other words, MFs of all
fuzzy rules are combined into a single fuzzy set via rule aggregation (Li et al., 2013). MATLAB has

three built-in rule aggregation operators; max, probor, and sum (Mathworks, 2016).
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In this research, the max (maximum) aggregation operator is used to combine the output of 81 rules
into one fuzzy set. There is no superior operator than others. However, with the availability of a
dataset, the try-and-error method can be used to select the appropriate aggregation operator. In
MATLARB rule viewer, as shown in Figure 5.12, the aggregation occurs down the fifth column, and
the resultant aggregate plot is shown in the single plot appearing in the lower right corner of the plot
field.

5.35 Defuzzification

The final step of implementing the proposed fuzzy risk estimation technique is the defuzzification.
The risk output has to be a crisp humber. The most popular defuzzification method; the centroid
method, was selected to be the appropriate defuzzification method since it provides a unique decision
value between zero and one (Ferndndez et al., 2014). The defuzzified output value can be shown in
Figure 5.12. It is represented by the thick red line passing through the aggregated fuzzy set, which

indicate the defuzzied value that resulted from the aggregation of fuzzy sets.

5.3.6 GUI for Risk Estimation Process

The proposed risk estimation technique was implemented using MATLAB fuzzy logic toolbox.
However, to provide the output risk value with an easy-to-use user interface, a Graphical User
Interface (GUI) was created to show the estimated risk value and the access decision for a certain
input combination. Therefore, when the values of risk input factors are known, the output risk value

can be estimated, and the access decision can be determined.

4 ModelGui = X

Developing An Adaptive Risk-based Access Control Model for the loT

Input Risk Factors

Note: Risk factors values should be within 0.0 - 1.0
Estimated Risk Value

Action Severity 0.37
Output Risk 0.4005
Resource Sensitivity 0.47
{Eer Eontoxt 0.25 Access Decision Access Approved with Monitoring
Risk History 0.33
Close Reset

© Hany Atlam

Figure 5.13: Using GUI to show input and output of the proposed risk estimation technique

For example, if there is an access request that involves an action severity rated as 37%, data
sensitivity rated as 47%, the risk from user context features rated as 25%, and the requester risk

history rated as 33%. Then, the estimated risk value associated with this access request is rated as
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about 40%, which will grant access with monitoring user activities during the access session. The

input and output risk values of this scenario can be shown in Figure 5.13.

5.4  Validation of Acceptable Risk by Experts

After estimating the security risk value associated with the access request, the next step is to compare
the estimated risk value with acceptable risk values to determine whether to grant or deny access.
Providing acceptable risk values for each application is very difficult to determine. Although most
related risk-based access control models suggested using a threshold risk value to determine the
access decision, they did not provide any details about how to determine this threshold risk value for

different applications, especially in the 10T context.

As discussed earlier in section 4.3.1, this research proposed three risk decision bands to provide the
access decision for each access request: allow, allow with risk monitoring and deny. However,
determining the appropriate values for each band is very difficult. Therefore, twenty 10T security
experts from inside and outside the UK were asked to determine the best values for each risk decision
band using four open-ended questions. The researcher suggested certain values for each risk decision
band and asked 10T security experts either to confirm these values or suggest new values for each
risk decision band. The researcher suggested to use values 0.0 — 0.25 for the allow band, 0.26 — 0.7
for the allow with risk monitoring band, and 0.71 — 1.0 for the deny band. In addition, experts were
asked to suggest any other decision bands regarding their expertise. Experts’ responses were

summarized as shown in Table 5.13.

Many of the experts have acknowledged that three bands are applicable for the loT system. While
others have recommended using a fourth risk decision band. Eight experts (E3, E5, E11, E12, E14,
E15, E16, and E20) have confirmed values suggested by the researcher for each risk decision band
and decided that no other decision bands are required. They decided that these values reflect the fact
that most access to system resources will be done through the allow with risk monitoring band, which

will be realized by having such large range of risk values from 0.26 — 0.7.

The other experts, specifically E2 and E13, recommended using different values for risk decision
bands. Although expert E2 confirmed values of the deny band, he/she suggested to use values 0.0 —
0.1 and 0.11 - 0.7 for the allow and allow with risk monitoring band respectively. He/she added that
values of allow band should be narrow to grant only the device owner or the user with very small
risk value through this band. For expert E13, although he/she has confirmed values of the allow band
that are suggested by the researcher, he/she recommend extending the allow with risk monitoring

band to involves values from 0.26 — 0.8.
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Table 5.13: Experts’ responses to determine the best values for risk decision bands

Expert Allow with Risk

No Allow Band Monitoring Band Deny Band Other Suggested Bands

El 0.0-0.25 0.26-0.5 0.76 —1.0 Use a fourth band from 0.51 —0.75
E2 0.0-0.1 0.11-0.7 0.71-1.0 No other bands are required

E3 0.0-0.25 0.26 - 0.7 0.71-1.0 No other bands required

E4 0.0-0.25 0.26 - 0.5 0.71-1.0 Use a fourth band from 0.51 — 0.7
E5 0.0-0.25 0.26 -0.7 0.71-1.0 No other bands required

E6 0.0-0.25 0.26 -0.5 0.71-1.0 Use afourth band from 0.51 - 0.7
E7 0.0-0.15 0.16 - 0.5 0.71-1.0 Use a fourth band from 0.5 - 0.7
E8 0.0-0.25 0.26 - 0.5 0.76 —1.0  Use a fourth band from 0.51- 0.75
E9 0.0-0.25 0.26-0.5 0.71-1.0 Use a fourth band from 0.51- 0.7
E10 0.0-0.25 0.26 -0.5 0.71-1.0 Use a fourth band from 0.5-0.7
Ell 0.0-0.25 0.26 - 0.7 0.71-1.0 No other bands are required

E12 0.0-0.25 0.26 -0.7 0.71-1.0 No other bands are required

E13 0.0-0.25 0.26 -0.8 0.8—1.0 No other bands are required

El4 0.0-0.25 0.26 -0.7 0.71-1.0 No other bands are required

E15 0.0-0.25 0.26 - 0.7 0.71-1.0 No other bands are required

E16 0.0-0.25 0.26 - 0.7 0.71-1.0 No other bands are required

E17 0.0-0.25 0.26 -0.5 0.71-1.0 Use a fourth band from 0.51 - 0.7
E18 0.0-0.25 0.26 - 0.5 0.71-1.0 Use a fourth band from 0.51 - 0.7
E19 0.0-0.25 0.26-0.5 0.81-1.0 Use a fourth band from 0.51 - 0.8
E20 0.0-0.25 0.26 - 0.7 0.71-1.0 No other bands are required

On the other hand, ten security experts (E1, E4, E6, E7, E8, E9, E10, E17, E18, and E19)
recommended new changes to the suggested values made by the researcher. They confirmed values
of the allow band suggested by the researcher except for expert E7 who suggested to use values
0.0 - 0.15 for the allow band. For the deny band, the majority of ten experts confirmed values
suggested by the researcher. There were suggestions from experts E1, E8, and E19 in which experts
E1l and E8 have suggested assigning values 0.76 — 1.0 for the deny band, whereas expert E19
suggested using values from 0.81-1.0 for the deny band. For the allow with risk monitoring band,
ten experts recommended using values 0.26 — 0.5 for this band. They added although most access
will be through this band; this band should be divided into two bands with different monitoring
measures. They suggested using values 0.51 — 0.7 as the fourth band with more restrictions on the

access.

5.5  Validation of Proposed Risk Model by Experts

The need for access control models that provide more flexibility than static approaches has been
pointed out repeatedly in recent years especially after the 10T appearance. The risk-based access
control model provides a dynamic way to make the access decision. It uses the risk associated with

the access request as a criterion to determine the access decision. This research provided a dynamic
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and adaptive risk-based access control model that uses real-time and contextual information to

provide the access decision.

Twenty loT security experts from inside and outside the UK were asked to validate the proposed
risk-based access control model using open questions through an interview. The interview questions
can be shown in Appendix A. The first question was about experts’ feedback regarding the proposed
risk-based access control model. Most experts have shown their interest regarding the proposed
risk-based model. They confirmed it will be valuable as various 0T applications require such
dynamic access control models. For example, Expert E2 stated, “using contextual data from the 10T
environment will be a good way to provide dynamic access”. Also, Expert E5 said, “the idea of
making a dynamic access control model is very interesting”. Moreover, Expert E14 stated, ““it will
be very attractive for commercial”. Similarly, Expert E7 added “being able to determine risk value

of contextual features will be interesting and difficult as well”.

In addition, experts have confirmed that the proposed risk factors are appropriate for the 10T context.
For instance, Expert E5 stated “risk factors depend on the environment, I think these factors are
appropriate for the 10T, but they are more generalized”. Also, Expert E17 stated “they are appropriate
but what if I do not have a risk history. You need to take this in your mind”. Similarly, Expert E9
and Expert E12 have mentioned the issue associated with the risk history. In addition, Expert E16
added, “they appropriate but how contextual features will be collected from the environment, as it
depends on which features you are able to collect”. Although the majority of experts confirmed that
the proposed risk factors are appropriate for various 10T applications, some experts suggested that
more risk factors can be extracted depending on the 10T application context. In other words, they
advised to work on a single l1oT application and identify different features and factors for this
application. However, the main objective of this research is to provide a dynamic risk-based access

control model that can work with various loT applications.

When experts were asked about the ranking of four risk factors in term of the importance in the loT
system, the majority of experts expressed that all risk factors used in the proposed model are
important. They considered the resource sensitivity and the risk history are the most effective risk
factors, then the action severity and the user context. For example, Expert E7 stated, “definitely,
resource sensitivity is the most important, then user context, action severity and risk history”. Also,
Expert E1 considered action severity is most important, then resource sensitivity, user context and
risk history. On the other hand, some experts such as Expert E3, E4, E9, E19, and E20 suggested that
the ranking of risk factors should be regarding a specific application. For instance, for sensitive
applications, the resource sensitivity and action severity would be the most effective. After
implementing the proposed risk estimation approach using the fuzzy logic system with expert
judgment, results demonstrated that resource sensitivity is the dominant risk factor that decides most

access in which the higher the resource sensitivity, the higher the output risk.
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5.6 Cold Start Problem

Cold start is one of the major issues in computer-based information systems. It refers to the problem
of obtaining sufficient information about users or items to draw inferences or results (Quijano-Sanche
et al., 2012). For this research, the proposed risk-based access control model has four risk factors;
user context, resource sensitivity, action severity and risk history. Each risk factor is used to estimate
the overall risk value associated with the access request to make the access decision. The cold start
problem appears when a user makes an access request for the first time, so there is no risk history to
estimate the security risk value associated with the access request. Therefore, the proposed risk-based
model cannot operate until collecting sufficient risk history values for system users, which will be
very difficult in a dynamic environment such as 10T systems which accept new users almost every

day.

Fuzzy rules of the proposed fuzzy risk estimation technique were implemented using four inputs/risk
factors to estimate the risk value for each access request, so how the risk estimation technique can
provide a result without having a risk history value. To resolve this issue, one can say, if there is no
risk history value, then suppose the risk history value is the minimum fuzzy value, which is zero.
However, if the risk history value is assumed to be zero, this means that the requesting user is a
trusted one with very low-risk history value. Indeed, the malicious user might be the first time to
access the system, and if the risk history value is assumed to be zero, the system will consider the

malicious user as a trusted one. Therefore, this solution will not work.

Another one can say, if there is no risk history value, then suppose that the risk history value to be
the maximum fuzzy value, which is one. However, if the risk history is assumed to be one, this means
that the requesting user is definitely a malicious user with very high-risk history. Therefore, the
owner of an loT device who will access the system for the first time will be considered as a malicious

user. Consequently, this solution will not work either.

The proposed solution to overcome the cold start problem is to allow the risk estimation approach to
estimate the security risk value when there is no risk history. In other words, when there is no risk
history value associated with the requesting user, the proposed risk estimation approach should use
only three risk factors (user context, resource sensitivity, and action severity) to estimate the overall
risk value associated with the access request. However, fuzzy rules are built using four risk factors.
Therefore, the proposed fuzzy risk estimation technique should be modified by adding another 27
fuzzy rules to include input combinations of only three risk factors. These fuzzy rules are created in
the same way as discussed earlier in which fuzzy rules are first created using the information
collected from the literature with the researcher experience. Then, fuzzy rules are validated using 10T

security experts.
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56.1 Building Fuzzy Rules of Cold Start

When there is no risk history value, new fuzzy rules need to be added to represent relationships
between only three risk factors (user context, resource sensitivity, and action severity) to resolve the
cold start issue and provide an output risk value for each access request. Since three risk factors have
three MFs each, the number of fuzzy rules that need to be added will be 3*3*3=27 rules. Hence, the
total number of fuzzy rules of the proposed fuzzy risk estimation technique will be 81+27=108. The
output of 27 fuzzy rules has been created using the information collected from the literature with the
researcher experience, as shown in Table 5.14. Notations of input and output risk linguistic
expressions can be shown in Table 5.2. As discussed earlier in section 5.3.3.1, there were some

logical rules and information from the literature that helped the researcher to build fuzzy rules.

Table 5.14: Fuzzy rules of cold start

Rule . Risk Factors Output
No Action Resource User Risk
Severity Sensitivity context

82 L NS L N
83 M NS L N
84 H NS L N
85 L S L L
86 M S L L
87 H S L L
88 L HS L M
89 M HS L M
90 H HS L M
91 L NS M N
92 M NS M L
93 H NS M L
94 L S M M
95 M S M M
96 H S M H
97 L HS M H
98 M HS M UH
99 H HS M UH
100 L NS H L
101 M NS H M
102 H NS H H
103 L S H UH
104 M S H UH
105 H S H UH
106 L HS H UH
107 M HS H UH
108 H HS H UH

The output of four rules was classified to be N. These rules include rule 82, 83, 84, and 91. The
resource sensitivity was the dominant risk factor in which having NS in resource sensitivity helped
to classify the output as N especially with having L in user context regardless of values of action
severity. In addition, six fuzzy rules were classified to be L. These rules include rule 85, 86, 87,
92,93, and 100.
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Further, the output of six rules was classified to be M. These rules include rule 88, 89, 90, 94, 95,
and 101. For this set of rules, the resource sensitivity was the dominant risk factor in which when its
value increased to S and HS, the output became M regardless of values of both user context and
action severity. This scenario changed for rule 101 as the resource sensitivity was NS. However, the
output became M due to having H and M in the user context and action severity respectively. In
addition, the output of three fuzzy rules including rule 96, 97, and 102 was classified to be H. Having
H or H and S in two risk factors were the main reason to classify the output of these rules to be H.
While the output of eight fuzzy rules was classified to be UH. These rules involve rule 98, 99, 103,
104, 105, 106, 107, and 108. The output of a fuzzy rule was classified to be UH if the resource

sensitivity was S or HS and the other risk factor was H.

5.6.2 Validation of Cold Start Fuzzy Rules by Experts

As discussed earlier, there is no dataset in this research, so the best way to obtain accurate and precise
fuzzy rules is by 10T security experts. Hence, experts were interviewed to validate fuzzy rules of cold
start which were previously built using the information collected from the literature with the
researcher experience. In this section, validating fuzzy rules by experts through the interview will be
discussed. Initially, the interview design, experts sample size, and expert’s information will be

provided, then the results of the interview will be discussed.

5.6.2.1 Expert Interview Design

Since the main target of the interview is to validate fuzzy rules of the cold start problem, the interview
was structured using closed questions in which the participant was given five choices to be the
expected output for each rule as the following: Negligible; Low; Moderate; High and Unacceptable
High. All the interviews were conducted on the campus of the University of Southampton in the
expert’s office and others in cafes. All interviews were conducted in the English language.
Appendix B provides the interview questions. Before starting the interview, each participant was
asked to sign a consent form after reading the participant information sheet that included all the
necessary information, terms and conditions about the study. The University of Southampton Ethics

Committee granted approval for this study under their reference number ERGO/FPSE/25091.

5.6.2.2 Interview Sample Size

Due to the problem of reaching a large number of experts, interviews have conducted with ten
security experts at the University of Southampton. Attributes of experts who have involved in this
study can be shown in Table 5.15. Most experts had at least 2- 5 years of experience. For experts
who did not have knowledge about the fuzzy logic approach, the researcher has spent about 10

minutes to make sure the participant understood essential information about the fuzzy logic system.
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Table 5.15: Attributes of security experts used to validate fuzzy rules of the cold start problem

Experience  Knowledge

E);\ﬁ)g "t Job Description (Years) of Fuzzy ~ Knowledge of 10T Applications
logic

E1l Cybersecurity Lecturer 6-10 No Smart city, smart home, and
connected healthcare

E?2 Security Research Follow 2-5 Yes Smart city, connected car, and
connected healthcare

E3 Cybersecurity Lecturer 6-10 No Connected industry, smart city,
smart home, and smart agriculture

E4 Security Research Follow 2-5 Yes Smart city and connected car

E5 Security Research Follow 2-5 No Smart city and connected
healthcare

E 6 Security Research Follow 2-5 Yes Smart city, connected car, smart
home, and connected healthcare

E7 Security Research Follow Less than 2 Yes Smart home and smart supply
chain

E8 Security Research Follow 6-10 Yes Smart energy, smart city, and
smart home

E9 Security Research Follow 2-5 No Connected car and smart home

E 10  Security Research Follow 2-5 Yes Smart city, smart energy and smart
home

5.6.2.3 Results of the Interview

As discussed earlier in section 5.3.3.2, the mean function was utilized to determine the output of each
rule. To use expert’s responses in the SPSS program, expert’s responses have given ratings such that
Negligible =1, Low=2, Moderate=3, High=4, and Unacceptable High=5. Therefore, the output of
each fuzzy rule should be mapped to one of these five categories. An assumption was made such that
any mean value lower than 0.5 will be mapped to the lower category and any mean value higher than

or equal 0.5 will be mapped to the higher category.

As shown in Table 5.16, experts have confirmed the output of fuzzy rules that were built using the
information collected from the literature with the researcher experience. The output of seventeen
fuzzy rules was identical in both expert validation and literature review with the researcher
experience. In these rules, all experts confirmed the same output for ten fuzzy rules. These fuzzy
rules include rule 82, 88, 94, 95, 96, 97, 99, 105, 106, 107, and 108. On the other hand, the output of
ten fuzzy rules was different from the one derived using the literature review with the researcher
experience. These rules involve rule 83, 84, 87, 89, 90, 92, 93, 98, 100, and 103. For rule 83, the
majority of experts decided to classify the output of this rule to be L especially with having M in the
action severity. The same scenario was for rule 84 in which having H in the action severity made
experts’ responses to distribute between N, L and M, however, the mean value of all experts made
the output to be L.

For rule 87, some experts suggested that having L in the user context should make M to be the
appropriate output for this rule, while other experts decided to classify the output of this rule to be H

due to having H in the action severity and S in the resource sensitivity. However, the mean value of



Chapter 5: Implementation of Risk Estimation using Fuzzy Logic 113

all experts made the output to be M. Similarly, in rule 89 and 90, most experts decided that H is the
appropriate output for these rules. Examining these rules demonstrates that experts decided to

classify the output to be H due to having HS in the resource sensitivity.

Table 5.16: Validation of fuzzy rules of the cold start by security experts

Rule  Number of Experts M Experts Responses Mapped Rule
No “Valid  Missing ® N L M H_UH_ Category Output
82 10 0 1 10 0 0 0 0 1 N
83 10 0 1.6 4 6 0 0 0 2 L
84 10 0 2 4 2 4 0 0 2 L
85 10 0 2.2 0 8 2 0 0 2 L
86 10 0 2.3 0 7 3 0 0 2 L
87 10 0 3.2 0 3 2 5 0 3 M
88 10 0 3 0 0 10 0 0 3 M
89 10 0 3.6 0 0 4 6 0 4 H
90 10 0 3.7 0 0 4 5 1 4 H
91 10 0 14 6 4 0 0 0 1 N
92 10 0 2.5 0 5 5 0 0 3 M
93 10 0 2.9 0 1 9 0 0 3 M
94 10 0 3 0 0 10 0 0 3 M
95 10 0 3 0 0 10 0 0 3 M
96 10 0 4 0 0 0 10 0 4 H
97 10 0 4 0 0 0 10 0 4 H
98 10 0 4.4 0 0 0 6 4 4 H
99 10 0 5 0 0 0 0 10 5 UH
100 10 0 2.6 0 4 6 0 0 3 M
101 10 0 3.3 0 0 7 3 0 3 M
102 10 0 4.2 0 0 0 8 2 4 H
103 10 0 4.4 0 0 0 6 4 4 H
104 10 0 4.9 0 0 0 1 9 5 UH
105 10 0 5 0 0 0 0 10 5 UH
106 10 0 5 0 0 0 0 10 5 UH
107 10 0 5 0 0 0 0 10 5 UH
108 10 0 5 0 0 0 0 10 5 UH

For rule 92, half of the experts decided to classify the output of this rule to be L, while the other half
decided to classify it to be M. However, the mean value of all experts made the output to be M. While
for rule 93 and 100, the majority of experts decided that M is the appropriate output for these rules.
For rule 98 and 103, most experts decided that H is the appropriate output for these rules due to

having HS and S in the resource sensitivity respectively.

5.6.3 Implementing Fuzzy Rules of Cold Start

After validating fuzzy rules of the cold start problem by 10T security experts, the rule editor of
MATLARB fuzzy logic toolbox was utilized to add these rules to the fuzzy model that implemented
earlier, as shown in Figure 5.14. All the rules had the same weight and the connection type was
logical AND.
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Figure 5.14: Adding validated fuzzy rules using MATLAB rule editor

After adding new fuzzy rules, the proposed risk estimation technique can work well now when there

is no risk history associated with the requesting user. So, the output risk will be estimated using three

risk factors: user context, resource sensitivity, and action severity. Then, the estimated risk value will

be compared against risk decision bands to determine the access decision whether to grant or deny

the access. For example, if there is an access request that involves an action severity rated as 25%,

data sensitivity rated as 56%, the risk from user context features rated as 77%, and no risk history

value. As shown in Figure 5.15, the proposed risk estimation approach provides an output risk of

0.85, which will reject access based on proposed risk decision bands. Therefore, the proposed risk

estimation technique has overcome the cold start problem associated with the proposed risk-based

access control model. This makes the proposed risk-based model productive and ready to provide the

required functionality immediately and effectively without any prior adjustments.
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Figure 5.15: Providing access decision without having a risk history value

5.7 Efficiency of The Fuzzy Model

The fuzzy logic system has demonstrated it can generate accurate and realistic values in assessing
security risks in access control operations. As discussed in section 3.3, there are many advantages to
use the fuzzy logic system with expert judgment to conduct the risk estimation process of the

proposed risk-based access control model. However, it is not straight forward, it raises some issues.

First, there are multiple methods in each fuzzy stage such as MFs, defuzzification methods, and rule
aggregation operators (Dubois & Yager, 1992). So, determining the most appropriate method
regarding the 10T context is a major issue especially when there is no available dataset. Second, the
scalability of the fuzzy logic system seems to be questionable. Fuzzy logic systems need a long period
of time to estimate security risks especially when there is a large number of input parameters and
hundreds of fuzzy rules. In addition, an access control system may need to serve hundreds or
thousands of users. Therefore, a fuzzy inference-based access control system might be too
computationally expensive (Ni et al., 2010). In the research due to the lack of datasets, fuzzy logic is

the appropriate approach.

In this section, several experiments were carried out to evaluate the efficiency of the proposed fuzzy
risk estimation technique to demonstrate the effect of changing fuzzy parameters such as MF,
defuzzification method, and rule aggregation. In addition, the efficiency will be evaluated when

increasing the number of access requests.

57.1 Experiment Setting

The objective of this set of experiments is to evaluate the efficiency of the proposed fuzzy risk
estimation technique with different numbers of access requests. In addition, the efficiency of the

proposed risk estimation technique will be evaluated while changing fuzzy parameters to decide the
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best and efficient parameters. All experiments and measurements are coded using MATLAB on
Intel(R) Core (TM) i7-2600, 3.40 GHz CPU with 16 GB RAM running Windows 10.

5.7.2 Experimental Results

This section provides experimental results of different experiments carried out to evaluate the
efficiency of the proposed fuzzy risk estimation approach with different number of access requests
and when changing fuzzy parameters including MF, defuzzification method, and rule aggregation
operator.

5.7.2.1 Scale of Access Requests

The first experiment evaluates the response time of the proposed fuzzy risk estimation approach
when changing the number of access requests. This experiment was carried out using the triangular
MF as the appropriate MF and the centroid method as the suitable defuzzification method. The
response time of the proposed risk estimation technique was estimated when increasing the number
of access requests from 1000 to 250000, as shown in Figure 5.16. To provide a consistent response
time, this experiment was carried out five times and the mean value was utilized to represent the

mean response time with each number of access requests.
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Figure 5.16: Response time when increasing number of access requests

This chart represents a linear relationship between the response time and the number of access
requests in which the larger the number of access requests, the higher the response time. It is a
privilege for the proposed fuzzy risk estimation technique to estimate the security risk value for 1000
access requests in only 57.385 seconds. This demonstrates that the proposed risk estimation approach

provides an efficient way to estimate security risks of access control operations in a timely manner.
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In addition, the response time per access request of the proposed risk estimation technique was
estimated with different number of access requests, as shown in Figure 5.17. Generally, the response
time per access request for the proposed risk estimation technique is about 0.057 second, which
demonstrates it can provide the estimated risk value for each access request in a very short time. As
depicted in Figure 5.17, the time per access request at the start was quite large, then it started to
decrease until reaching its lowest value at 20000 access requests. This decrease occurred due to the
fact that the system became familiar with the process until a certain stage. Then, it follows a straight

line in which increasing number of access requests lead to increasing the response time per request.
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Figure 5.17: Response time per request when increasing number of access requests

5.7.2.2 Complexity of MFs

One of the important parameters to build an effective fuzzy logic system is to select the appropriate
MF to represent the degree of membership of a certain value in a fuzzy set. When there is no available
dataset to determine the best MF, the alternative way is to use the try-and-error method to determine
the most efficient MF in term of the response time. The aim of this experiment is to verify the impact
of different MFs. As discussed earlier in section 3.4.2, there are eleven MFs that can be used to define

how each value is mapped to a membership value for the proposed fuzzy risk estimation technique.

In this experiment, the proposed risk estimation technique was implemented using eleven MFs to
test the response time for each MF. All remaining fuzzy parameters of the proposed risk estimation
technique held fixed such as defuzzification method, aggregation method, and fuzzy rules. To test
the response time of different MFs, a fixed number of access requests (1000) was used. To provide
a consistent response time for each MF, this experiment was carried out five times and the mean

value was utilized to represent the mean response time for each MF.
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Figure 5.18: Response time of different fuzzification methods when applying 1000 access requests

The results of this experiment can be shown in Figure 5.18. As expected, there were different
response time for each MF. TriMF produced the lowest response time, while SMF produced the
highest response time. The difference in response time between various MFs was quite small, but

with increasing number of access requests, this difference will be much higher.

To compare and determine if the mean values of various MFs are different, one-way repeated
measure ANOVA test was carried out. Analysis of Variance (ANOVA) is a common and robust
statistical test that is used to compare the mean scores collected from different conditions or groups
in an experiment (Singh et al., 2013). Since the main target is to examine processing time (one group)

of different MFs, one-way repeated measure ANOVA test is suitable in this situation.

The mean values of different MFs were tested to determine if there is a difference between them.
The response time for each MF was measured five times. Mauchly's Test of Sphericity tests the null
hypothesis that the variances of the differences are equal. Hence, if Mauchly's Test of Sphericity is
statistically significant (p < 0.05), the null hypothesis will be rejected, and the alternative hypothesis
will be accepted in which the variances of the differences are not equal (Haverkamp & Beauducel,
2017).

Table 5.17: Mauchly's Test of Sphericity of fuzzification method

Epsilon®
Within-Subjects | Mauchly' | Approx. Greenhouse- | Huynh- Lower-
Effect sW Chi-Square | df [ Sig. Geisser Feldt bound
MF .014 10.353 9 |[.432 444 775 .250

As the main objective is to determine if mean values of various MFs are different, five MFs including
TriMF, PsegMF, GbellMf, SigMF, and SMF were used to analyse their mean using one-way repeated
measure ANOVA test. These MFs were selected based on changes in mean values, as depicted in

Figure 5.18. Five measurements for each MF were entered in the SPSS software and the result was
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as shown in Table 5.17. Mauchly’s test indicated that the assumption of sphericity had not been
violated, X?(9) =10.353, p= 0.432>0.05.

The results demonstrated that using one-way repeated measure ANOVA, the mean scores of different
MFs were statistically significant different (F (4, 16) = 27.401, p =0.0001), as depicted in Table 5.18.
In addition, looking at the pairwise comparisons between five MFs shows that there was a statistical
significance difference in the response time between TriMF and PsegMF (p=0.04<0.05), TriMF and
SigMF (p=0.017<0.05), TriMF and SMF (p=0.002<0.05), PsegMF and SMF (p=0.004<0.05), and
GbellMF and SMF (p=0.037<0.05). In addition, there was no statistical significance difference
between SigMF and SMF (p=0.732>0.05).

Table 5.18: Tests of within-subjects’ effects of fuzzification method

Type 111 Sum Mean Partial Eta
of Squares df Square F Sig. Squared
MF Sphericity Assumed 3.408 4 .852 | 27.401| .000 0.873
Error (MF) | Sphericity Assumed 497 16 .031

The results demonstrated that the TriMF produced the lowest processing time among other MFs, so
it can provide better system performance. Therefore, it has been selected as the appropriate MF to

implement the proposed fuzzy risk estimation technique.
5723 Complexity of Defuzzification Methods

Defuzzification is a mapping from a space of fuzzy control actions defined over an output universe
of discourse into a space of non-fuzzy control actions. The defuzzification technique is aimed to
produce a non-fuzzy control action that best represents the possibility distribution of an inferred
fuzzy control action (Liaw, 1994). As discussed earlier in section 3.4.5, MATLAB has five built-in
defuzzification methods: centroid, bisector, MOM, LOM, and SOM.

The purpose of this experiment is to verify the impact of various defuzzification methods by
estimating the response time. The response time of 1000 access request was estimated for each
defuzzification method while other fuzzy parameters such as fuzzy rules, rule aggregation operator,
and fuzzification method were kept fixed. This experiment was performed five times and the mean
value was utilized to represent the mean response time for each defuzzification method to provide

more consistent results, as depicted in Figure 5.19.
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Figure 5.19: Response time of different defuzzification methods when applying 1000 access requests

In addition, a one-way repeated measure ANOVA test was utilized to determine if the mean values
of various defuzzification methods are different. Mauchly’s test indicated that the assumption of
sphericity had not been violated, X?(9) =9.641, p= 0.489>0.05, as depicted in Table 5.19.

Table 5.19: Mauchly's Test of Sphericity of defuzzification methods

Epsilon®
Within-Subjects | Mauchly's | Approx. Greenhouse- | Huynh- Lower-
Effect W Chi-Square | df Sig. Geisser Feldt bound
Defuzzification .019 9.641 9 489 .538 1.000 .250

Using one-way repeated measure ANOVA, the results demonstrated that mean scores of different
defuzzification methods were statistically significant different (F (4, 8.608) = 15.923, p =0.00002),
as depicted in Table 5.20. In addition, looking at the pairwise comparisons between different
defuzzification methods shows that there was a statistical significance difference in the response time
between SOM and Centroid (p =0.044<0.05), Centroid and MOM (p =0.008<0.05), and Centroid
and Bisector (p =0.048<0.05). In addition, there was no statistical significance between Centroid and
LOM (p=0.216>0.05).

Table 5.20: Tests of within-subjects’ effects of defuzzification methods

Type 111 Sum Mean Partial Eta
of Squares df Square F Sig. | Squared
Defuzzification | Sphericity Assumed 1.880 4 470 | 15.923| .000 799
Error Sphericity Assumed 472 16 .030
(Defuzzification)

The results demonstrated that the centroid is the most efficient defuzzification method as it produced
the lowest processing time among other defuzzification methods, so it can provide better system
performance. Therefore, it has been selected as the appropriate defuzzification method to implement

the proposed fuzzy risk estimation technique.
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5724 Complexity of Rule Aggregation Operator

Rule aggregation is used to combine outputs of all fuzzy rules. In other words, MFs of all fuzzy rules
are combined into a single fuzzy set via rule aggregation (Li et al., 2013). As discussed earlier in
section 3.4.4, there are three main aggregation operators in MATLAB: max, probor, and sum. This
experiment aims to determine the most efficient rule aggregation operator that can be utilized to

implement the proposed fuzzy risk estimation technique.
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Figure 5.20: Response time of different rule aggregation operators when applying 1000 access requests

The response time of 1000 access request was estimated for each rule aggregation operator while
other fuzzy parameters such as fuzzy rules, defuzzification method, and fuzzification method were
kept fixed. This experiment was performed five times and the mean value was utilized to represent
the mean response time for each rule aggregation operator to provide more consistent results, as
shown in Figure 5.20. The results of this experiment demonstrated that the max operator produced

the lowest response time, while the sum operator produced the highest response time.

In addition, a one-way repeated measure ANOVA test was utilized to determine if the mean values
of various rule aggregation operators are different. Mauchly’s test indicated that the assumption of
sphericity had not been violated, X?(2) =5.824, p= 0.054>0.05. The results of one-way repeated
measures ANOVA demonstrated that there was a statistically significant difference between mean

scores of rule aggregator operators, (F (2,8) =31.151, p=.054), as depicted in Table 5.21.

Table 5.21: Mauchly's Test of Sphericity of rule aggregator operators

Epsilon®
Within-Subjects | Mauchly' |  Approx. Greenhouse- | Huynh- Lower-
Effect sW Chi-Square | df | Sig. Geisser Feldt bound
Aggregator 143 5.824 2 |.054 .539 579 .500

In addition, looking at the pairwise comparisons between different rule aggregator operators shows
that there was a statistically significant difference in the response time between Max and Prob
(p=0.0005<0.05) and Max and Sum (p=0.011<0.05). Also, there was no statistical significance
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between Prob and Sum (p=1.00>0.05). Using one-way repeated measure ANOVA, the results
demonstrated that mean scores of different defuzzification methods were statistically significant
different (F (4, 8.608) = 15.923, p =0.00002), as depicted in Table 5.22.

Table 5. 22: Tests of within-subjects’ effects of rule aggregator operators

Type 111 Sum Mean Partial Eta
of Squares df Square F Sig. | Squared
Aggregator Sphericity Assumed 1.243 2 .621 | 31.151| .000 .886
Error Sphericity Assumed .160 8 .020
(Aggregator)

The results demonstrated that the max operator produced the lowest processing time among other
rule aggregator operators, so it can provide better performance. Therefore, it has been selected as the
appropriate rule aggregator operator to implement the proposed fuzzy risk estimation technique.

5.7.3 Scalability Challenge in 10T

The number of 10T devices is growing rapidly. Predictions are made that by 2020, the number of 10T
devices will reach or even exceed 50 billion (Evans, 2011). One of the major issues of the 10T system
is scalability. It means the ability of the system to handle needs as they arise. It helps the system to
work efficiently without performance issues due to system expansion. The main purpose of ensuring
the scalability of the 10T system is to meet changing demands as the interest of people changes with

time as well as environmental conditions (Gupta et al., 2017).

For this research, a risk-based access control model was proposed to handle flexibility issues in
current access control models for the 10T system. To implement the proposed risk-based model, the
fuzzy logic system with expert judgment was selected as the suitable risk estimation technique.
However, the scalability of the fuzzy logic system seems to be doubtful since it requires a long period
of time to estimate security risks of access control operations. An access control model for the l1oT
system is intended to serve hundreds or thousands of users. Based on the experimental results
discussed earlier, the proposed risk estimation technique requires 57.385 seconds to estimate security
risks of 1000 access request. This response time is very efficient for a small network of devices, but
with the 10T system, there are thousands of devices per network. This number of loT devices is
constantly increasing which require to take the scalability of the proposed risk estimation technique
into accounts and provide the required solution to resolve this issue. In addition, the proposed risk

estimation technique lacks the ability to learn and cannot adjust themselves to a new environment.

Providing a scalable and able to learn risk estimation technique is one of the main objectives of this
research. To achieve this target, the Artificial Neural Network (ANN) is proposed to be integrated
with the fuzzy logic system. ANN is a low-level computational structure that performs well when

dealing with raw data (Rezaei et al., 2014). It can learn to produce output even with incomplete
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information, after being trained. In addition, it provides parallel processing capabilities that improve

overall system efficiency (Cheng et al., 2016).

One of the solutions that integrate ANN with the fuzzy logic system is the NFS and ANFIS. NFS is
an ANN technique, which is functionally equivalent to the fuzzy logic system. It combines the
parallel computation and learning capabilities of ANN with the human-like knowledge representation
and explanation abilities of the fuzzy logic system. As a result, ANN becomes more transparent,
while fuzzy systems become capable of learning. In addition, the NFS can be trained to develop IF-
THEN fuzzy rules and determine MFs for input and output variables of the system (Asogbon et al.,
2016; Iranmanesh et al., 2009). In addition, the ANFIS is similar to neuro-fuzzy technique but works
only with Sugeno FIS (Asogbon et al., 2016). For this research, to apply the neuro-fuzzy and ANFIS
techniques, a dataset representing different risk factors values with corresponding output is required.
This dataset can be created using the proposed fuzzy risk estimation technique that was implemented

earlier.

The next two chapters will discuss the implementation of the proposed risk estimation technique
using ANFIS and NFS to show how these solutions can solve learning and scalability issues

associated with the proposed fuzzy model.

5.8 Summary

Chapter 5 has presented the implementation of the risk estimation process using the fuzzy logic
system with expert judgment. It started by discussing the integration of the fuzzy logic system with
expert judgment as the appropriate solution to provide accurate risk values of access control
operations in the 10T system. One of the most effective ways to collect knowledge and expertise of
experts is through the interview. Therefore, twenty 10T security experts were interviewed to validate
the proposed risk-based access control model, validate fuzzy rules and determine acceptable risk
values for proposed risk decision bands. This was followed by providing a step-by-step discussion
of the implementation of the proposed risk estimation technique and how security experts have
validated fuzzy rules and decided acceptable risk values of risk decision bands. In addition, one of
the problems that may face the proposed risk-based model is the lack of information about the risk
history of system users. This problem is called cold start. Therefore, a solution for the cold start
problem was introduced by adding another 27 fuzzy rules using only three risk factors. To validate
these rules, ten 10T security experts were interviewed. This was followed by providing a set of
experiments to evaluate the efficiency of the proposed fuzzy risk estimation technique. These
experiments were utilized to measure the response time with different number of access requests and
to determine the most efficient MF, defuzzification method, and rule aggregation operator. This was

followed by discussing scalability and learning issues of the proposed fuzzy risk estimation technique
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and how adopting ANFIS and NFS can provide a good solution to these issues. The next chapter

presents the implementation of the risk estimation process using the ANFIS technique.



Chapter 6: Implementation of Risk Estimation using
ANFIS

This chapter provides a discussion of the implementation of the proposed risk estimation technique
using the ANFIS. It starts by providing an overview of the ANFIS by highlighting the main objectives
of the ANFIS in risk estimation techniques, ANFIS architecture, and ANFIS learning methods. Then,
section 6.2 presents the implementation of the risk estimation technique using the ANFIS by showing
different experimental results of training the ANFIS model using both hybrid and backpropagation
learning methods at different number of epochs. Section 6.3 shows the effect of the training process
on the MFs of the fuzzy logic system. The chapter closes by providing a summary of the main points

discussed through the chapter and introduces the next chapter.

6.1 An Overview of ANFIS

ANFIS is a multilayer feed-forward network which utilizes ANN techniques and fuzzy reasoning to
map inputs into an output. It is a FIS implemented in a framework of adaptive neural networks (Wang
& Elhag, 2008). The ANFIS is considered the first integrated hybrid neuro-fuzzy model that uses the
decomposition approach to extract rules at individual nodes within the ANN (Zanchettin et al., 2010).
Then, the extracted rules are combined to construct global behaviour descriptions. According to Jang
(1993), ANFIS is a type of adaptive networks that is equivalent to a FIS functionally. It uses training
data to produce fuzzy rules and MF automatically. Typically, the ANFIS network comprises of
connected nodes that depend on parameters that change constantly using the learning techniques to
minimize possible errors. The most common learning techniques in the ANFIS are the

backpropagation and hybrid learning methods (Jang, 1993).

The main objective of the ANFIS is to optimize parameters of the fuzzy logic system by applying a
learning algorithm using input-output datasets. The parameter optimization is done in such a way
that the error measured between the target and the actual output is minimized (Guney, 2008). The

ANFIS has a high capability to adapt to its environment in the learning process. Therefore, it can be

125



126 Chapter 6: Implmentation of Risk Estimation using ANFIS

used to adjust the MFs and reduce the error rate automatically to determine fuzzy rules of the fuzzy

logic system.

The ANFIS combines the benefits of the fuzzy logic system and ANN into a single technique (Jang,
1993). It provides better results for applications where performance is more important than
interpretation since the learning results may be difficult to interpret (Wu et al., 2011). According to

Al-Hmouz et al., (2012), there are multiple advantages for the ANFIS, which include:

e Optimizes fuzzy rules to describe the behaviour of a complex system;
e Does not require prior human expertise;

e Easy to implement;

e Enables fast and accurate learning;

e Generates greater choice of MFs to use;

e Strong generalization abilities;

e Excellent explanation facilities through fuzzy rules; and

o Easy to incorporate both linguistic and numeric knowledge for problem-solving.

6.1.1 Architecture of ANFIS

The ANFIS consists of five layers: fuzzy layer, product layer, normalized layer, defuzzification layer,
and summation layer (Wu et al., 2011), as shown in Figure 6.1. Layer 1 is the input layer. The crisp
input values are transformed into fuzzy values by the MFs in this layer. The output from each node

is a degree of membership value that is given by the input of MFs (Suparta & Alhasa, 2016).

Figure 6.1: Architecture of ANFIS (Wu et al., 2011)

Layer 2 is the fuzzification layer. Neurons in this layer represent fuzzy sets used in the antecedents
of the fuzzy rules. A fuzzification neuron receives a crisp input and determines the degree to which

this input belongs to the neuron’s fuzzy set. Every node in this layer is fixed and the node is labelled
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as []. The output node is the result of multiplying the value coming into the node and delivered to
the next node. Each node in this layer determines the weighting factor of each rule (Gao, Xue, Lu, &
Dong, 2015).

Layer 3 is the fuzzy rule layer. Each fuzzy rule is represented by a neuron in this layer. This neuron
receives inputs from the fuzzification neurons that represent fuzzy sets in the rule antecedents. Every
node in this layer is fixed and the node is labelled as N. Layer 4 is the output membership layer.
Neurons in this layer represent the fuzzy sets used in the consequent of fuzzy rules. An output
membership neuron combines all its inputs by using the fuzzy operation union (Vieira, Dias, & Mota,
2004).

Layer 5 is the defuzzification layer. Each neuron in this layer represents a single output of the ANFIS.
It takes the output fuzzy sets with different weights of fuzzy rules and combines them into a single
fuzzy set. The single node in this layer provides the overall output as the summation of all incoming

values from the previous node. In this layer, the node is labelled as 3 (Wu et al., 2011).

6.1.2 ANFIS Learning Methods

Learning is one of the significant features provided by the ANFIS to modify the parameters and
decrease the error rate to adapt to new environments. The ANFIS has two common learning methods;

hybrid and backpropagation. This section provides an overview of these learning methods.

6.1.2.1 Hybrid Learning Method

The main purpose of the learning process is to update the system parameters to adapt to its
environment. In the ANFIS architecture, the first layer and the fourth layer contain parameters that
are updated using the learning method. The hybrid learning method is one of the common ANFIS
learning methods proposed by Jang (1993). It consists of two main parts, namely forward and
backward pass. In the forward pass, the parameters of the premises in the first layer should be in a
steady-state. A Recursive Least Square Estimator (RLSE) method is applied to repair the consequent
parameter in the fourth layer. Then, after the consequent parameters are obtained, input data are
passed back to the adaptive network input, and the produced output is compared against the actual
output (Suparta & Alhasa, 2016).

While in the backward pass, the consequent parameters should be in a steady-state. The error
occurred during the comparison between the produced output and the actual output is propagated
back to the first layer. At the same time, the parameter premises in the first layer are updated using
gradient descent or backpropagation learning methods. With the use of the hybrid learning method
that combines RSLE and gradient descent methods, it can ensure the convergence rate is faster
because it reduces the dimensional search space in the original method of backpropagation (Pramanik
& Panda, 2009).
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The RLSE method is used to optimize the consequent parameters in the forward pass, while the
gradient descent method is used to optimize the premise parameters in the backward pass, as depicted
in Figure 6.2. The output of the ANFIS is calculated by employing the consequent parameters found
in the forward pass. The output error is used to adapt the premise parameters by means of a standard
backpropagation method. Several studies demonstrated that the hybrid method is highly efficient in
training ANFIS systems (Jang et al., 1997).

—> Backward Pass e— > Forward Pass e—
Error Rates Node Output
b
No No
Layer 1 Layer 4
Yes Yes
Gradient Descent Least Squares Estimate
E A 4
Premise Parameters Consequent Parameters

Figure 6.2: Flow chart of the hybrid learning algorithm (Ramesh et al., 2013)

6.1.2.2 Backpropagation Learning Method

Backpropagation is a common learning method in the ANN. It is a method of training multilayer
ANNs by using the process of supervised learning. Supervised algorithms are based on errors in
which the external reference signal is used to produce an error signal by comparing the produced
output with the reference signal. Using the generated error signal, the ANFIS updates its parameters
to improve the system performance (Saduf & Wani, 2013). The backpropagation method learns by
evaluating the output layer to extract errors in the hidden layers. Due to its flexibility and learning

capabilities, it has been implemented successfully in multiple applications (Haykin, 2004).
The backpropagation learning process can be described as follows:

e Forward propagation of operating signal: The input signal is propagated from the input
layer to the output layer via the hidden layer. During the forward propagation of the operating
signal, the weight and offset values of the network are maintained constant and the status of

each layer of the neuron will only extend an effect on the next layer of the neuron. In case
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that the expected output cannot be achieved in the output layer, it can be switched into the

backpropagation of the error signal (Jing et al., 2012).

e Backpropagation of error signal: The difference between the desired output and obtained

output of the network is defined as the error signal. In the backpropagation learning method,

the error signal is propagated from the output layer to the input layer in a layer-by-layer

manner. During the backpropagation of error signals, the weight value of the network is

regulated by the error feedback. The continuous modification of weight and offset values are

applied to make the obtained output of the network more closer to the desired output (Jing

etal., 2012).
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Figure 6.3: Flowchart of the backpropagation algorithm (Shaf et al., 2016)

The main objective of the backpropagation learning method is to adjust the values of weights in the

training dataset to get the same value as the correct output value of the network using the validation

dataset. The flow chart of the backpropagation method is shown in Figure 6.3. In the forward pass,

input weights are injected to the subsequent layer. The activation function is implemented to generate

the weights for the next layer (Shaf et al., 2016). Finally, the output layer is ready to generate the

output value. The generated and original values of the output are utilized to derive the error which is

propagated further back to the input layer. This process will continue until the error becomes less

than a pre-defined error tolerance and the network is ready to be used or training will be terminated

when reaching the maximum number of epochs (Okut, 2016; Shaf et al., 2016).
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6.2 Implementation of ANFIS

ANFIS is a Sugeno-type FIS in which the parameters associated with MFs are computed using either
a backpropagation learning method alone or in combination with a least square method (hybrid). It
has been widely applied to random data sequences with highly irregular dynamics (Gao et al., 2015).
Implementing the ANFIS requires building a fuzzy logic system with defining linguistic expressions
for both input and output, defining fuzzy sets for input and output, specifying MFs, building the fuzzy
rules, and train the neural network. Since the proposed risk estimation technique was implemented
using the fuzzy logic system previously, as discussed in Chapter 5, so this chapter focuses only on

training the ANFIS to achieve the best accuracy for the proposed risk estimation process.

The ANFIS model of the proposed risk estimation technique was trained to determine the appropriate
number of epochs, MF, and learning method that produce the lowest error and the best fit with the
learning process. Figure 6.4 shows the structure of the ANFIS model of the proposed risk estimation

technique.

Input InputMF = Output

=

Figure 6.4: ANFIS model of the proposed risk estimation technique

As discussed earlier, the ANFIS model has five layers. The input layer contains four risk factors of
the proposed risk-based access control model involving user context, resource sensitivity, action
severity, and risk history. The second layer contains fuzzy sets of each input in which each risk factor
is represented by three fuzzy sets. The third layer represents the fuzzy rules of the risk estimation
technique, which are 81 rules. The fourth layer represents the output MF, which was represented by
five fuzzy sets. The fifth layer represents the output layer which is the estimated risk value of the risk

estimation process.

The main objective of training the ANFIS model of the proposed risk estimation technique is to tune
different MFs and determine the appropriate MF that produces the lowest error and the best fit with

the learning process. In addition, adding the learning capability to the risk estimation process to adapt
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to new changes of various 0T applications and increase the accuracy of resultant risk values for

future access requests.
6.2.1 Data collection

Implementing the ANFIS model requires having a dataset or examples for training. After
implementing the proposed risk estimation technique using the fuzzy logic system with expert
judgment, as discussed in Chapter 5, a dataset containing 160,000 records was created to train the
ANFIS. To avoid possible bias in the sample data to the ANFIS model, the dataset was randomized
and divided into two sets using the cross-validation method.

e Training set: This set contains 112,000 data records (70% of the dataset) to train the ANFIS

model.

e Checking set: This set contains 48,000 data records (30% of the dataset) to test the ANFIS

model.
6.2.2 Experimental Results

Several experiments were carried out to train the ANFIS model of the proposed risk estimation
technique to increase the accuracy of the output risk, tune different MFs and identify the appropriate
MF that lead to the lowest error and the best fit with the learning process at different number of
training epochs. All training functions and experiments were coded and executed using MATLAB

software.
6.2.2.1 Performance Evaluation

The ANFIS model was trained and the performance was evaluated using Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and coefficient of determination
(R-square or R?) as recommended in related ANFIS models (Ghorbanzadeh et al., 2018; Tiwari et
al., 2018). The performance of the ANFIS model of the proposed risk estimation technique was tested
at three different epochs; 20, 100, and 300 to observe error rates at different epochs and observe the

performance when increasing the number of epochs.

1. Root Mean Squared Error (RMSE)

RMSE is a quadratic scoring rule that measures the average magnitude of the error. It’s the square
root of the average of squared differences between the predicted and actual output (Konaté et al.,

2015). The mathematical representation of RMSE is as follows:

RMSE = /%i(oi -P)? (6.1)
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Where n is the total number of data, O is the observed (target) value, and P; is the predicted value.

2. Mean Absolute Error (MAE)

MAE had been cited in several ANFIS models as the primary measure of performance (Ahmed &
Shah, 2017; De Myttenaere et al., 2015; Rahbari et al., 2018). MAE directly calculates the arithmetic
mean of absolute errors. Hence, it is very easy to compute and understand. However, it may produce
biased results when extremely large outliers exist in datasets (Konaté et al., 2015). The mathematical

representation of MAE is as follows:

MAE :%Zn:(oi ~P) (6.2)

Where n is the total number of data, O; is the observed (target) value, and P; is the predicted value.

3. Correlation Coefficient (R)

Correlation Coefficient (R) is used to measure the correlation between the observed value and the
predicted value. It measures the strength of a linear relationship between the observed value and
predicted variables (Shaf et al., 2016). In other words, it is an indicator of the scatters around the fit
line. If R is close to 1, it means that the relationship between the observed and predicted variables is
positive and thereby indicating that the data points fall nearly along a fit line with a positive slope.
Whereas, when R is close to -1, the relationship between the observed and predicted variables is
negative and the data points fall nearly along a fit line with a negative slope. When R is close to zero,
it implies a weak relationship between the observed and predicted variables and the data points are
scattered around the fit line and most of the data points are not in good agreement with the fit line

(Konaté et al., 2015). The mathematical representation of R is as follows:

n n

nz iPi_ZOi n P|
R = i=1 i=1 =l

J(nioiZ—(ioi)Z)(nZ R - R))

i=1 i

(6.3)

Where n is the total number of data, O; is the observed (target) value, and P; is the predicted value.

4. Coefficient of Determination (R?)

The coefficient of determination is a measure of how well the regression line represents the data. If
the regression line passes exactly through every point on the scatter plot, it would be able to explain
all the variation (Tiwari et al., 2018). This coefficient is a statistical index that expresses the quality
of fit of the regression equation and the intensity of the linear relationship. It helps to have a general
idea of the model fit. Its value varies between 0 and 1, and if R? is close to 1, it will be sufficient to

say that the fit is good (Konaté et al., 2015). The mathematical representation of R? is as follows:
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Where n is the total number of data, O; is the observed (target) value, and P; is the predicted value,

R?=1- (6.4)

O s the mean observed value, and P is the mean predicted value.

6.2.2.2 Training ANFIS Model

The performance of most machine learning techniques is improved by training. This section
discusses the training of the ANFIS model. The training process begins by dividing the dataset into
a training dataset and checking dataset. The training dataset is a set of input and output vectors. Two
vectors are used to train the ANFIS system: the input vector and the output vector. The training
dataset is used to find the premise parameters for the MFs. A threshold value for the error between
the observed and predicted output is determined to be 0.05 (Al-Hmouz et al., 2012). The consequent
parameters are decided using the least-squares method. If this error is larger than the threshold value,
then the premise parameters are updated using the gradient descent method. The process is terminated
when the error becomes less than the threshold value. The checking dataset is then used to test the
ANFIS model with the actual data (Jang, 1993).

The ANFIS model of the proposed risk estimation technique was trained using both hybrid and
backpropagation learning methods. Eight MFs were used in the training process to determine the
appropriate learning method as well as the appropriate MF to implement the risk estimation process
of the proposed risk-based model. These MFs include TriMF, TrapMF, GbellMF, GaussMF,
Gauss2MF, PimF, DsigMF, and PsigMF.

Figure 6.5 shows the ANFIS training process. The first step is to prepare the training data to work
with ANFIS model in MATLAB. The dataset used as the input for the anfis function must be in a

matrix form, where the last column in the matrix represents the output, and the matrix contains as
many columns as needed to represent the inputs of the system. The rows represent all the existing
data combinations. The GUI method of the fuzzy logic toolbox in MATLAB was utilized to
determine the type of MF for fuzzy sets before starting the training process. Then, the ANFIS model
was trained using eight MFs to determine the suitable MF with the lowest error and the best fit. When
the training process finished, the final MFs and training errors from the training dataset were
recorded. In addition, the checking dataset was used in conjunction with the training dataset to
enhance the performance (Al-Hmouz et al., 2012). When the checking process finished, the trained

FIS is utilized to evaluate the performance of the system.
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Figure 6.5: ANFIS training process (Al-Hmouz et al., 2012)

After the training completed, the performances of the ANFIS model was evaluated to determine the
best fuzzy parameters with the lowest error and the best fit. The trained FIS of each MF was utilized
to produce the predicted output. Then, the predicted output was compared with the observed output
to determine the error using MAE and RMSE and determine the best fit with the learning process
using R and R?. Several experiments were carried out to train the ANFIS model and evaluate the
performance of the trained FIS. This process took more than four months working on three PCs

simultaneously to train and evaluate the performance of the ANFIS model.

One of the common problems that may occur during the training of the ANFIS model is Overfitting.
It occurs when the data are overtrained. Generally, every trained dataset has its maximum number of
epochs before overfitting occurs. Overfitting causes the predicted output to be over its accuracy
(Al-Hmouz et al., 2012). Therefore, each dataset should be trained using an optimal number of
epochs, which can be decided by conducting numerous experiments. Overfitting is analysed by
plotting the training and checking errors from the ANFIS simulation. To avoid the overfitting

problem, the ANFIS model should be trained for a different number of epochs.

6.2.2.3 Training Results

Various experiments were carried out using two separate datasets: training dataset (112,000 records)

and checking dataset (48,000 records). The training dataset was used to train the ANFIS, whereas
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the checking data set was used to verify the accuracy of the trained ANFIS model. To produce the
lowest error and the best fit with the learning process, the ANFIS model was trained at three different
epochs; 20, 100, and 300. In the next section, the results of training the ANFIS model at 20, 100, and

300 epochs will be discussed.

6.2.2.3.1 Training at 20 Epochs

The optimal setting of the ANFIS model depends on different MFs, learning method and the number
of epochs for each training. Several experiments were carried out to train the ANFIS model using
both hybrid and backpropagation training algorithms at 20 epochs with eight MFs to determine the

best MF that produces the lowest error and the best fit with the learning process.

Table 6.1: Performance evaluation of the ANFIS model at 20 epochs

Learning Training  Checking Performance Evaluation
algorithm MF Error Error RMSE MAE R R?
TriMF 5.3507 5.4031 5.3784 4.2339 0.9641 0.9294
TrapMF 4.6438 4.6552 4.6647 3.5611 0.9731 0.9469
GbhellMF 5.1626 5.1762 5.2392 4.0783 0.9659  0.9330
Hybrid GaussMF 5.2102 5.2341 5.1913 40109  0.9666  0.9342
Gauss2MF 4.6611 4.6706 4.6810 3.5720 0.9729  0.9465
PiMF 4,8445 4.8525 4.8678 3.7118 0.9707 0.9422
DsigMF 4.6974 4.7069 4,7184 3.5982 0.9725 0.9457
PsigMF 4.6975 4.7068 4,7184 3.5984 0.9725 0.9457
TriMF 51.5436 51.5447 51.5337 48.2481 0.8317 -5.4804

TrapMF 51.3364 51.3235 51.3188  48.1093  0.7262  -5.4264
GbelIMF 52.0326 52.0314 52.0209  48.6320  0.8700 -5.6035
GaussMF 51.7004 51.6991 51.6893  48.3604 0.8710 -5.5195

Backpropagation
GaussZMF  51.3429 51.3335 51.3266  48.1076  0.7379 -5.4284
PiMF 51.3242 51.3098 51.3064  48.0995 0.7106 -5.4233
DsigMF 51.3346 51.3242 51.3180  48.0988  0.7339 -5.4262
PsigMF 51.3346 51.3242 51.3180  48.0988  0.7339 -5.4262

In addition, after the ANFIS model has been trained, the entire dataset was utilized to check the
performance and the accuracy of the ANFIS model. RMSE, MAE values were used to indicate the
error value between the predicted values obtained from the trained ANFIS model against the original
values. In addition, R and R? were used to show the model fitness with the training process. Results

of training the ANFIS model at 20 epochs can be shown in Table 6.1.
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Figure 6.6: Training and checking error when applying TrapMF with the hybrid learning at 20 epochs

With the hybrid learning method, the training and checking errors were very small for all eight MFs.
The combination of backpropagation and descent algorithms in the hybrid learning method has
demonstrated it can reach small error values only after 20 epochs. In addition, the results have
demonstrated that four MFs including TrapMF, PiMF, DsigMF, and Gauss2MF produced the same
training and checking errors during all 20 epochs, which illustrates that no error enhancement occurs
with these MFs when increasing the number of epochs. Figure 6.6 shows training and checking errors
when applying TrapMF with the hybrid learning method at 20 epochs, which illustrates that no
improvements occur when increasing the number of epochs. While another four MFs including
TriMF, GbellMF, PiMF, and GaussMF show a slight decrease in training and checking errors when

increasing the number of epochs from 1 to 20, as depicted in Figure 6.7.

Although TrapMF does not show any improvement when increasing the number of epochs, the
results demonstrated that it is the best MF that provided the lowest RMSE and MAE error values
among other MFs and the best fit with the learning process with values of R and R? as 0.9731 and
0.9469 respectively. Figure 6.8 shows the regression plot of the entire dataset used to evaluate the
performance when applying TrapMF with the hybrid learning method. It shows that the predicted

values are very close to the ideal linear line and the proposed ANFIS model is well fit as well.
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Figure 6.8: Regression after applying TrapMF with the hybrid learning method

In addition, the backpropagation learning method was utilized to train the ANFIS model at 20 epochs.
The results showed that the backpropagation learning method produced a large decrease in both
training and checking errors. All eight MFs showed a large decrease in both training and checking
errors. However, the results showed that the backpropagation learning method produces large RMSE
and MAE error values and small R and R? values. This, in turn, reflects the fact that the relationship
between the predicted and observed data is less efficient and need more training. In addition, the R?
values were negative which implies there is an inverse relationship between the predicted and

observed data such that the increase in the predicted data will cause a decrease in the observed data.
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The significant aspect observed from applying the backpropagation learning method at 20 epochs is
that the training and checking errors were decreased dramatically when increasing the number of
epochs with all eight MFs. Figure 6.9 shows a dramatic decrease in both training and checking RMSE
errors when applying TrapMF with backpropagation learning method at 20 epochs. It also shows that

there is no overfitting.
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Figure 6.9: RMSE of training and checking errors when applying TrapMF with backpropagation learning
method at 20 epochs

After training the ANFIS model of the proposed risk estimation technique with both hybrid and
backpropagation learning methods at 20 epochs, the results demonstrated that increasing the number
of epochs have a slight effect on training and checking errors when applying the hybrid learning
method, while it has a significant effect on training and checking errors when applying the
backpropagation learning method. In addition, the TrapMF with the hybrid learning approach is the

optimal MF that produces the lowest error and the best fit with the learning process

6.2.2.3.2  Training at 100 Epochs

Defining the best settings for the proposed ANFIS model to train it and produce the highest accuracy
depend on MFs, learning method and the number of epochs for each training. After the ANFIS model
was trained at 20 epochs, it was trained at 100 epochs to observe the performance when increasing
the number of epochs. The reason to train the ANFIS model at 100 epochs in this experiment is that
the training at 20 epochs demonstrated a slight effect on decreasing training and checking errors with
the hybrid learning method and a significant decrease in training and checking errors with the
backpropagation learning method. So, increasing the number of epochs may produce more
improvements, especially with the backpropagation learning method. Hence, the target is to train the
ANFIS model at 100 epochs and observe training and checking errors to reach the best fit and the

lowest error.

Several experiments were carried out at 100 epochs with eight MFs to determine the best MF that

produces the lowest error and the best fit with the learning process using both hybrid and
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backpropagation training methods. Training and checking errors and performance evaluation metrics

resulted from the training can be shown in Table 6.2.

Table 6.2: Performance evaluation of the ANFIS model at 100 epochs

Learning Training  Checking Performance Evaluation
algorithm MF Error Error RMSE MAE R R?
TriMF 5.3473 5.3998 5.3748 4.2320 0.9641  0.9295
TrapMF 4.6438 4.6552 4.6647 3.5611 0.9731  0.9469
GbellMF 5.1084 5.1298 5.1370 3.9757 0.9673  0.9356
Hybrid GaussMF 5.1928 5.2197 5.2222 4.0634 0.9662  0.9335
Gauss2MF 4.6611 4.6706 4.6810 3.5720 0.9729  0.9465
PimF 4.8392 4.8467 4.8623 3.7075 0.9707  0.9423
DsigMF 4.6974 4.7069 4.7184 3.5982 0.9725  0.9457
PsigMF 4.6975 4.7068 4.7184 3.5984 0.9725  0.9457
TriMF 29.5731 29.5992 29.5857  27.1901 0.8436 -1.1359

TrapMF 294777 29.4701 29.4643  26.7725 0.7857 -1.1184
GhellIMF 31.3456 31.3513 31.3471  28.8931 0.8770 -1.3978
GaussMF 30.0580 30.0639 30.0624  27.7479  0.8781 -1.2053
Gauss2MF  29.3942 29.3970 29.3847  26.7108  0.7888 -1.1070

Backpropagation

PimF 29.5411 29.5357 29.5294  26.7731  0.7794 -1.1278
DsigMF 28.3863 28.3875 28.3793 25,5234  0.7763  -0.9653
PsigMF 28.3862 28.3874 28.3792 255233  0.7763  -0.9652

The results demonstrated that the ANFIS behaviour at 100 epochs was similar to the one at 20 epochs.
For the hybrid learning method, the training and checking errors showed a very slight decrease
compared to error values produced at 20 epochs. In other words, a group of MFs including TrapMF,
Gauss2MF, DsigMF, PsigMF did not show any differences in training and checking errors as well
as performance evaluation metrics when increasing the number of epochs from 20 to 100. While
another group of MFs including TriMF, GbellMF, GaussMF, and PiMF have shown a very small
decrease in training and checking errors when increasing the number of epochs to 100. Figure 6.10
shows training and checking errors when applying GbellMF with the hybrid learning method at 100
epochs. It showed a slight decrease in training and checking errors when increasing the number of

epochs.

Again, although the TrapMF does not show any improvements when increasing the number of epochs
to 100, the results demonstrated that it is still the best MF that provided the lowest RMSE and MAE
error values among other MFs and the best fit with the learning process with values of R and R? as
0.9731 and 0.9469 respectively.
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Figure 6.10: Training and checking errors when applying the GbellMF with the hybrid learning method at 100

epochs

For the backpropagation learning method, increasing the number of epochs to 100 demonstrated a
dramatic decrease in training and checking errors for all MFs. The training error decreased from 51.3
at 20 epochs to reach 28.3 at 100 epochs for both DsigMF and PsigMF, which demonstrates the effect
of increasing the number of epochs. Figure 6.11 shows training and checking errors at 100 epochs
when applying the TriMF with the backpropagation learning method. It also shows that there is no

overfitting as training and checking values have the same behaviour.

Although both training and checking errors were decreased dramatically when applying the
backpropagation learning method, it still quite high which reflects on the performance evaluation
metrics where it produced high RMSE and MAE values and small R and R? values. This
demonstrates that the relationship between the predicted and observed data is less efficient and need
more training. In addition, R? values are negative which implies there is an inverse relationship

between the predicted and observed data.

After training the ANFIS model of the proposed risk estimation technique with both hybrid and
backpropagation learning methods at 100 epochs, the results demonstrated that increasing the number
of epochs have a slight decrease in training and checking errors with the hybrid learning method and
a significant effect on decreasing training and checking errors with the backpropagation learning
method. In addition, the TrapMF with the hybrid learning approach is still the optimal MF that

produces the lowest error and the best fit with the learning process.
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Figure 6.11: Training and checking errors when applying the TriMF with the backpropagation learning method
at 100 epochs

6.2.2.3.3 Training at 300 Epochs

Training the ANFIS model with the hybrid learning method provides adequate results but it also
showed that it needs more training with the backpropagation learning method. Therefore, the ANFIS
model was trained at 300 epochs to observe the performance when increasing the number of epochs
to 300. Several experiments were carried out at 300 epochs with eight MFs using both hybrid and
backpropagation training methods to determine the best MF that produces the lowest error and the
best fit with the learning process. Results of training the ANFIS model at 300 epochs can be shown
in Table 6.3.

The results demonstrated that the ANFIS behaviour at 300 epochs was similar to the one at 20 and
100 epochs. For the hybrid learning method, the training and checking errors showed a very slight
decrease compared to error values produced at 20 or 100 epochs. In other words, a group of MFs
including TrapMF, Gauss2MF, DsigMF, PsigMF did not show any differences in training and
checking errors as well as performance evaluation metrics when increasing the number of epochs to
300.
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Table 6.3: Performance evaluation of the ANFIS system with 300 epochs

Learning Training  Checking Performance Evaluation
algorithm MF Error Error RMSE MAE = R?
TriMF 5.3392 5.3919 5.3660 42282 0.9642  0.9297
TrapMF 4.6438 4.6552 4.6647 35611 0.9731 0.9469
GbellMF 4,9888 5.0047 5.0127 3.8696 0.9689 0.9387
Hybrid GaussMF 5.1389 5.1714 5.1681 40091 0.9669  0.9348
Gauss2MF 4.6611 4.6706 4.6810 3.5720 0.9729 0.9465
PiMF 4.8294 4.8357 4.8521 3.6985 0.9709 0.9426
DsigMF 4.6974 4.7069 47184 3.5982 0.9725 0.9457
PsigMF 4.6975 4.7068 47184 3.5984 0.9725 0.9457
TriMF 6.3084 6.3647 6.3402 5.0299 0.9497 0.9019
TrapMF 5.9086 5.9446 5.9357 4.6255 0.9561 0.9140
GbellMF 6.2915 6.3496 6.3289 49915 0.9500 0.9023
Backpropagation GaussMF 6.4113 6.4639 6.4493 5.0978 0.9480 0.8985
Gauss2MF 5.8614 5.8983 5.8884 45774 0.9568 0.9154
PiMF 6.0306 6.0661 6.0598 47266 0.9542 0.9104
DsigMF 9.9248 10.0127 9.9500 7.8745 0.8949 0.7584
PsigMF 7.5377 7.5890 7.5597 6.0057 0.9317 0.8605

While another group of MFs including TriMF, GbellMF, GaussMF, and PiMF have shown a very
small decrease in training and checking errors when increasing the number of epochs to 300. Figure
6.12 shows training and checking errors when applying the GbellMF with the hybrid learning method
at 300 epochs. It showed a slight decrease in training and checking errors when increasing the number
of epochs. It also showed that at about 275 epochs, the error improvement has stopped, which implies
that there is no need for more training, as increasing the number of epochs will not produce any
changes. Also, it indicates that there is no overfitting. Also, the results demonstrated that the TrapMF
is still the best MF that provided the lowest RMSE and MAE errors among other MFs and the best
fit with the learning process with values of R and R? as 0.9731 and 0.9469 respectively.
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For the backpropagation learning method, increasing the number of epochs to 300 demonstrated a
dramatic decrease in training and checking errors for all MFs. The training error decreased from 29.3
at 100 epochs to 5.8 at 300 epochs for the Gauss2MF, which demonstrates the effect of increasing
the number of epochs. Figure 6.13 shows training and checking errors when applying the TriMF with
the backpropagation learning method at 300 epochs. It showed that at about 280 epochs, the error
decrease has almost stopped, which implies that there is no need for more training. It also shows that

there is no overfitting.
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Figure 6.13: Training and checking errors with epoch number when applying TriMF with the backpropagation

learning method

The performance evaluation of the backpropagation learning method at 300 epochs showed different
results. TriMF and Gauss2MF have produced the lowest RMSE and MAE errors as well as the
highest R and R? values. On the other hand, DsigMF has produced the highest RMSE and MAE
errors and the lowest R and R? values. In addition, although the backpropagation learning approach
showed a dramatic decrease in both training and checking errors when increasing the number of
epochs as it reaches its lowest error (5.86) after about 280 epochs, the hybrid learning approach

reaches to its lowest error value (4.64) only after one epoch with the TrapMF.

6.2.2.4 Comparison of Learning Methods at different Epochs

The ANFIS model of the proposed risk estimation technique was trained using both hybrid and
backpropagation learning techniques at three different epochs numbers 20, 100, and 300 to
investigate the learning rate of the ANFIS model with different epochs and determine the best MF

that produces the lowest error and the best fit with the learning process.

The results of the hybrid learning method at 20, 100, and 300 epochs have demonstrated that a group
of MFs including TrapMF, Gauss2MF, DsigMF, and PsigMF did not show any changes in RMSE,
MAE errors as well as R and R? values when increasing the number of epochs from 1 to 300, as
depicted in Table 6.4. While another group of MFs including TriMF, GbellMF, GaussMF, and PiMF
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have shown a very slight decrease in RMSE and MAE errors values and a very small increase in R
and R? values when increasing the number of epochs. For instance, the RMSE value of the TriMF is
decreased from 5.378 to 5.375 when increasing the number of epochs from 20 to 100 and further
decreased to 5.366 when increasing the number of epochs to 300. The same behaviour continued for
this group of MFs except for GaussMF which showed a different behaviour, in which the RMSE
value increased from 5.191 at 20 epochs to 5.222 when increasing the number of epochs to 100, but
it decreased again to reach 5.168 when increasing the number of epochs to 300. In addition, the
GbellMF produced the largest amount of error decrease among other MFs in which its RMSE value
decreased from 5.239 at 20 epochs to 5.013 at 300 epochs.

Table 6.4: Performance evaluation of the ANFIS model with the hybrid learning method at different epochs

At 20 epochs At 100 epochs At 300 epochs
MF |RMSE MAE R R? |[RMSE MAE R R? |[RMSE MAE R R?

TriMF 5378 4.234 0.964 0.929| 5375 4.232 0.964 0.930| 5.366 4.228 0.964 0.930
TrapMF 4.665 3.561 0.973 0.947 | 4.665 3.561 0.973 0.947 | 4.665 3.561 0.973 0.947
GbellMF | 5.239 4.078 0.966 0.933| 5137 3.976 0.967 0.936| 5.013 3.870 0.969 0.939
GaussMF | 5191 4.011 0.967 0.934 | 5222 4.063 0966 0.934 | 5168 4.009 0.967 0.935
Gass2MF | 4.681 3,572 0973 0947 | 4.681 3.572 0973 0947 | 4681 3.572 0.973 0.947
PiIMF 4868 3.712 0971 0942 | 4862 3.708 0.971 0.942 | 4.852 3.699 0.971 0.943
DsigMF 4718 3598 0.973 0.946 | 4.718 3.598 0.973 0.946 | 4.718 3.598 0.973 0.946
PsigMF 4718 3598 0.973 0.946 | 4.718 3598 0.973 0.946 | 4.718 3.598 0.973 0.946

The results of the backpropagation learning method at 20, 100, and 300 epochs have demonstrated
that all MFs have shown a significant decrease in both RMSE and MAE values and a significant
increase in R and R? values when increasing the number of epochs, as shown in Table 6.5. For
example, the RMSE value of the TriMF is decreased from 51.53 to 29.59 when increasing the number
of epochs from 20 to 100 and further decreased to 6.34 when increasing the number of epochs to
300. There was a negative sign of R? values at 20 and 100 epochs which implies there was an inverse
relationship between the predicted and observed data. This negative sign disappeared when
increasing the number of epochs to 300. After applying the backpropagation learning method with
different number of epochs, the results demonstrated that the Gauss2MF is the best MF as it produced
the lowest RMSE (5.888) and MAE (4.577) values and the highest R (0.957) and R? (0.915) values.

In conclusion, increasing the number of epochs was having a significant effect on MFs with the
backpropagation learning method in which the learning process took about 280 epochs to reach its
lowest RMSE and MAE values. Although the RMSE error values of MFs with the backpropagation
learning method decreased significantly when increasing the number of epochs, it could not reach

the lowest error value produced by the hybrid learning method only after one epoch.
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Table 6.5: Performance evaluation of the ANFIS model with the backpropagation learning methods at different

epochs
With 20 epochs With 100 epochs With 300 epochs

MF
RMSE MAE R R? RMSE MAE R R? RMSE MAE R R?
TriMF 5153 4825 0.832 -5.480 | 29.59 27.19 0.844 -1.136 | 6.340 5.030 0.950 0.902
TrapMF 51.32 4811 0.726 -5.426 | 29.46 26.77 0.786 -1.118 | 5936 4.626 0.956 0.914
GbellMF | 52.02 48.63 0.870 -5.604 | 31.35 28.89 0.877 -1.398 | 6.329 4.992 0.950 0.902
GaussMF | 51.69 48.36 0.871 -5520 | 30.06 27.75 0.878 -1.205 | 6.449 5.098 0.948 0.899
Gass2MF | 51.33 4811 0.738 -5428 | 29.39 26.71 0.789 -1.107 | 5888 4.577 0.957 0.915
PIMF 5131 48.10 0.711 -5.423 | 29.53 26.77 0.779 -1.128 | 6.060 4.727 0.954 0.910
DsigMF 5132 48.10 0.734 -5.426 | 28.38 2552 0.776 -0.965 | 9.950 7.875 0.895 0.758
PsigMF 51.32 48.10 0.734 -5.426 | 2838 2552 0.776 -0.965 | 7.560 6.006 0.932 0.861

Investigating the results with both hybrid and backpropagation learning methods demonstrates that

the TrapMF with the hybrid learning method at 20 epochs is the optimal combination to implement

the ANFIS model of the proposed risk estimation technique. It produced the lowest RMSE, MAE

values as well as the highest R and R?values among all other MFs at different number of epochs only

after one epoch, as shown in Figure 6.14. It reached the best fit with the learning process with a

correlation of 0.9731, which shows that the predicted values are very close to the ideal linear line

and the proposed ANFIS model is well trained.
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Figure 6.14: Training and checking errors when applying the TrapMF with the hybrid learning method. It

reached the lowest training and checking error only after one epoch and still the same with increasing the

number of epochs
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6.3 Fuzzy System and ANFIS

The proposed risk estimation technique was first implemented using the fuzzy logic system through
Mamdani FIS. One of the challenges that stands as a barrier for adopting the Mamdani FIS in the
risk estimation is choosing the appropriate MF that provides the best accuracy for the output risk.
Therefore, the ANFIS was adopted to provide a good way to tune different MFs to select the optimal
method that results in increasing the accuracy of the output as well as adding the learning capability

to the proposed risk estimation technique to increase accuracy.

mf1 mf2 mi3 in1mf1 in1mf2 in1mf3
I I 4>< ><
: ; : . . . : : ; : . . :
Input: Action Severity Input: Action Severity
mfl miz mi3 in2mmf1 in2mf2 inZmf3
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1 1 1 2 3 : L :
Input: Resource Sensitivity Input: Resource Sensitivity

Before Training After Training

Figure 6.15: Shape of fuzzy sets of the TrapMF before and after the training for action severity and resource
sensitivity

After several experiments, the TrapMF with hybrid learning method at 20 epochs was selected as the
optimal MF to implement the proposed risk estimation technique, as illustrated in Table 6.4. Figure
6.15 shows the effect of the training on the shape of the MF. It shows the TrapMF of the action
severity and resource sensitivity before and after 20 epochs of training using the hybrid learning
method. It is clear that significant modifications have been done in the shapes of MFs through the
learning process. The same scenario can be seen in Figure 6.16, which represents the TrapMF of the
user context and risk history before and after the training process. In addition, Figure 6.17 shows the
effect of the training on fuzzy rules and the output risk value in which the output risk was 60 before

the training and become 55.2 after the training for the same input combinations.
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Figure 6.16: Shape of fuzzy sets of the TrapMF of the user context and risk history before and after the training

process
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Figure 6.17: Fuzzy rules of the TrapMF before and after the training process

Chapter 6 has presented the implementation of the risk estimation process using the ANFIS. The
ANFIS is considered the first integrated hybrid neuro-fuzzy model that integrates the benefits of the
ANN and the fuzzy logic system. The key objective of the ANFIS is to optimize the parameters of
the fuzzy logic system by applying a learning algorithm using input-output datasets. This
optimization is done in a way that the error measure between the target and the actual output is
minimized. To tune different MFs and add the learning capability, the ANFIS has been adopted to
implement the risk estimation technique of the proposed risk-based model. Several experiments were

carried out using two separate datasets: training dataset (112,000 records) and checking dataset
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(48,000 records) to train and verify the accuracy of the trained ANFIS model. Both hybrid and
backpropagation learning methods were utilized to train the ANFIS model with different MFs at
three different number of epochs; 20, 100, and 300. The results have demonstrated that the TrapMF
with the hybrid learning method at 20 epochs is the optimal combination to implement the ANFIS
model of the proposed risk estimation technique as it produced the lowest RMSE and MAE values
and the best fit with the learning process with a correlation of 0.9731, which shows that the ANFIS
model is well trained. The next chapter presents the implementation of the risk estimation process
using the NFS technique.



Chapter 7: Implementation of Risk Estimation using
NFS

This chapter provides a discussion of the implementation of the proposed risk estimation technique
using the NFS. It starts by providing an overview of the NFS by highlighting the main objectives and
types of NFS methods. Then, section 7.2 presents the implementation of the risk estimation technique
using the NFS by showing different experimental results of training the NFS model using four
learning algorithms to determine the learning method with the lowest error and the best fit with the
learning process. Section 7.3 compares the results of the NFS with the fuzzy logic system. Then,
section 7.4 compares the results of the NFS with the ANFIS. The chapter closes by providing a

summary of the main points discussed through the chapter and introduces the next chapter.

7.1 An Overview of NFS

NFS is the result of integrating the ANN with the fuzzy logic system. It integrates the human-like
reasoning of fuzzy logic systems with the learning and connectionist of the ANN (Jang, 1993).
Several NFS models were implemented successfully in various social and technological applications.
The NFS provides powerful and flexible universal approximations with the capability to recognize
interpretable IF-THEN rules (Kar et al., 2014).

The NFS is simply a fuzzy logic system that is trained by a learning algorithm derived from the ANN
theory. Although the ANN and the fuzzy logic system have advantages and strengths as independent
systems, their drawbacks motivated several researchers to develop a hybrid NFS that reduces these
drawbacks. One of the most important advantages of the ANN is the capability to learn from
examples, however, it is hard to prove that the ANN is working as expected. In addition, it is like a
“black box” to the user in which the method for obtaining the output is not revealed (Jang et al.,
1997).

On the other hand, the fuzzy logic system is easy to build and understand by using linguistic

expressions to resolve imprecise information (Gray & MacDonell, 1997; Jang et al., 1997). However,

149
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it is not easy to guarantee that a fuzzy logic system with a number of complex rules will provide an
appropriate degree of meaningfulness. Also, the fuzzy logic system uses static fuzzy rules that lack

the adaptability to resolve unpredicted changes in the environment (Gray & MacDonell, 1997).

The integration of the ANN with the fuzzy logic system resolved some of these issues. The resultant
hybrid NFS combines parallel computation and learning abilities of the ANN with the human
reasoning of fuzzy systems and clarity of systems representation. Therefore, the ANN becomes more

transparent and the fuzzy logic system becomes capable of learning (Shaf et al., 2016).
7.1.1 Multilayer Perceptron Model

MuliLayer Perceptron (MLP) model is a feed-forward ANN. It is the most common and widely used
ANN model in various applications (Okut, 2016). The MLP is used to explore complex and nonlinear
models. It is based on a supervised learning technique that needs the desired output for each input to
be known to calculate the error (Werbos, 1974).

Typically, the MLP model consists of three layers; input layer, hidden layer, and output layer, as
depicted in Figure 7.1. The input layer represents input variables of the system by a circle (neuron)
for each variable. While the output variable is represented by a single circle in the output layer. The
middle layer is the hidden layer that is not visible to the outside. This layer is responsible for carrying
out intermediate computations. Deciding the number of hidden layers, hidden neurons and type of

transfer function plays an important role in implementing an efficient MLP model (White, 1992).

Input Layer Hidden Layer Output Layer

Xi

X2

X3

Figure 7.1: Layers of the MTP model (Okut, 2016)

The supervised learning is used repeatedly to adjust the weight of each connection to produce
accurate output (Kohonen, 1982). This is achieved by using the backpropagation learning algorithm
that estimates the derivatives of the network’s error with respect to all of its weights and adjust the
weights to yield a small error, where the error is the difference between the network’s output and the

target output for the same input (Viharos & Kis, 2015).
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Building an NFS model require employing one of the common models of the ANN. This research
selected MLP model to implement the NFS model of the risk estimation technique, as this feed-

forward model is efficient and commonly used in various applications.
7.1.2 Types of NFS

Generally, the term NFS refers to all systems that resulted from the integration of the ANN with the
fuzzy logic system. This integration can be done in three different ways; cooperative, concurrent,
and hybrid. This section provides a brief discussion of each type.

7121 Cooperative NFS

Cooperative NFS is used to describe the integration of the ANN with the fuzzy logic system in which
the ANN is used to tune the fuzzy logic system without changing the functionality of the variables.
In other words, the ANN is used as a pre-processing stage in which the ANN learning algorithm is
used to determine some of the fuzzy logic variables. For example, clustering algorithms can be used
to determine fuzzy sets and fuzzy rules. After determining variables of the fuzzy logic system through
the learning algorithm, the ANN is removed and the fuzzy logic system works on its own (Vieira et
al., 2004). Hence, the ANN is used only in the initial stage of the fuzzy logic system (Abraham,
2001). The architecture of the cooperative NFS is shown in Figure 7.2.
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Figure 7.2: Cooperative NFS (Vieira et al., 2004)

7.1.2.2 Concurrent NFS

Concurrent NFS refers to the system where the ANN and the fuzzy logic system work together in
which the inputs entered the fuzzy logic system are pre-processed and then the ANN processes the
outputs of the concurrent system or in a reverse way, as depicted in Figure 7.3. One of the
disadvantages associated with the concurrent NFS is that the results cannot be interpreted completely

(Vieira et al., 2004). Moreover, the weights are substituted by MFs in which the result of each
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weighting process is a membership value of the corresponding input in the fuzzy set (Naidu & Sun,
1997).

Linguistic
statements Fuzzy

Decisions

Inference

1 ( Neural
>

J Perception as L Network

neural input -

) ,

il
J Neural
Outputs

[ Learning Algorithms ]4—

Figure 7.3: Concurrent NFS (Vieira et al., 2004)
7.1.2.3 Hybrid NFS

Nauck et al. (1997) defined the hybrid NFS as: “A fuzzy system that uses a learning algorithm based
on gradients or inspired by neural networks theory (heuristic learning strategies) to determine its

parameters (fuzzy sets and fuzzy rules) through the patterns processing (input and output)”.

In the hybrid NFS, both fuzzy logic and ANN models are used independently, in which each model
is used to perform a certain task in the system to reach a common target. The concept of the hybrid
NFS refers to the explanation of the fuzzy logic system with respect to the ANN. Hence, fuzzy sets
can be interpreted as weights, and fuzzy rules, input and output variables can be interpreted as
neurons. In other words, one of the advantages of hybrid NFS is its architecture since both fuzzy
system and neural network do not have to communicate any more with each other. They are one fully
fused entity (Abraham, 2001).

There are several different ways to develop hybrid neuro fuzzy systems, therefore, there are various
models which are built based on context. These models are similar in its essence, but they present
basic differences. Many types of NFS are represented by neural networks that implement logical
functions. This is not necessary for the application of a learning algorithm into a fuzzy system,
however, the representation truth a neural network is more convenient because it allows to visualise
the flow of data through the system and the error signals that are used to update its parameters.

Although hybrid NFS models are different, they are similar in their core (Vieira et al., 2004).

7.2 Implementation of NFS

The hybrid NFS was utilized to implement the risk estimation technique of the proposed risk-based
access control model. The fuzzy logic system with expert judgment was utilized to implement the
risk estimation technique. The information collected from loT security experts was utilized to

confirm and build accurate fuzzy rules, as discussed in section 5.3.3.2. The results demonstrated that



Chapter 7: Implementation of Risk Estimation using NFS 153

combining the fuzzy logic system with expert judgment can provide accurate and realistic results in
assessing security risks of access control operation. However, an access control model for the l1oT
system serves thousands of users. In addition, the scalability of the fuzzy logic system seems to be
questionable. Therefore, the NFS was utilized to reduce the processing time for each access request
by using the parallel computation of the ANN and add the learning capability to the proposed risk

estimation technique to adapt to changes of the loT environment.

Implementing a hybrid NFS is performed in two separate stages. The fuzzy logic system is first
implemented, and the database built. Then, the ANN will use this dataset to train the system and
improve the performance. Since the proposed risk estimation technique using the fuzzy logic system
was implemented previously, as discussed in chapter 5, this chapter focuses only on using the dataset

created from the fuzzy logic system for training the NFS model.

Implementing the NFS model of the proposed risk estimation technique consists of three layers; input
layer, hidden layer, and output layer. The input layer involves input risk factors; user context,
resource sensitivity, action severity, and risk history, as depicted in Figure 7.4. The output layer
represents the output risk value resulted from the risk estimation process. The middle layer is the
hidden layer that is responsible for carrying out computations and updating weights between different

connections.

Hidden Output

2] JaHts I8

Figure 7.4: Implementation of the NFS model of the proposed risk estimation technique
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One of the challenges associated with implementing the NFS model of the risk estimation technique
is to determine the appropriate number of hidden layers and the appropriate number of neurons for
each hidden layer. The number of hidden layers needed for the NFS model depends on the complexity
of the relationship between the input and the target parameters. It represents a major impact on the
learning process. However, a Feed-Forward Back Propagation (FFBP) network encompassing of
more than one hidden layer is very rare (Konaté et al., 2015). Hornik, Stinchcombe and White (1989)
have proved that an FFBP network with one hidden layer is enough for most problems in various

applications.

In addition, determining the optimal number of neurons in the hidden layer plays a significant role
in the implementation of the NFS model. If an insufficient number of neurons are used, the NFS
model will be unable to model complicated data, and the resulting fit will be poor. While using a

large number of neurons in the hidden layer affects its performance on new data and its ability to
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provide a generalized model will be compromised (Abraham, 2005). Indeed, increasing the number
of neurons ensures correct training, but it also affects the NFS performance. Therefore, a compromise

needs to be reached between too many and too few neurons in the hidden layer.

721 Data Collection

Implementing the NFS model of the proposed risk estimation technique requires having a dataset or
examples for training. After implementing the fuzzy logic system with the help of 10T security
experts, a dataset consisting of 160,000 records was created. To avoid possible bias in the sample
data to the NFS, the dataset was randomized and divided into three sets using the cross—validation

method.
e Training set: This set contains 96,000 records (60% of the dataset) to train the NFS model.
e Testing set: This set contains 32,000 records (20% of the dataset) to test the NFS model.

e Validation set: This set contains 32,000 records (20% of the dataset) to validate the NFS

model.

7.2.2 Experimental Results

Implementing the NFS model of the proposed risk estimation technigque require determining the
number of hidden layers and the number of neurons in the hidden layers. Based on the literature, one
hidden layer is sufficient for most problems (Al-Hmouz et al., 2012; Hornik et al., 1989). Therefore,
one hidden layer was utilized to implement the NFS model of the risk estimation technique. To
determine the appropriate number of neurons in the hidden layer, the NFS model was trained using
four learning algorithms. Several experiments were carried out and Mean Square Error (MSE),
RMSE, and R values of training, testing, and validation were utilized to determine the appropriate
number of neurons and the best learning algorithm. After determining the appropriate number of
neurons in the hidden layer, the NFS model of the risk estimation technique was trained, and then

the trained model was tested with different numbers of access requests in term of processing time.

All experiments were carried out on Windows 7 (64-bit) operating system with an i7 processor and
16 GB RAM. All training functions and experiments were coded and executed using MATLAB and
ANN toolbox.

7221 Performance Evaluation

The commonly used performance evaluation measures in forecasting problems were utilized to
compare and evaluate the accuracy of the NFS model (Cerezuela-Escudero et al., 2016). The NFS

model was trained, and the performance was observed using MSE, RMSE, and R. The number of
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neurons in the hidden layer with the lowest MSE and RMSE and the highest R was selected to
implement the NFS model of the risk estimation technique. Since the RMSE and R were introduced

in the previous chapter in section 6.2.2.1, this section discusses only the MSE.

MSE measures the average of the squares of the errors which help to understand and interpret the
difference between the observed and predicted values. It acts as an indicator to measure how near a
fit line is to data points. The smaller the MSE, the nearer the fit is with the data points (Konaté et al.,
2015).

1 n
MSE = HZ(oi -P)’ (7.1)
i=1

Where n is the total number of data, O; is the observed (target) value, and P; is the predicted value.

7.2.2.2 Training Algorithms

To reach network generalization and good fit with all the data points, the NFS model of the risk
estimation technique was trained using four learning algorithms; Levenberg-Marquardt (trainlm),
Bayesian Regulation (trainbr), Conjugate Gradient with Fletcher-Reeves Resrarts (traincgf), and
Scaled Conjugate Gradient (trainscg) to determine the optimal learning algorithm that guarantees
network generalization with the minimum error (lowest RMSE and MSE) and the maximum fit
(highest R). These training algorithms are decided based on the literature that assure that these
algorithms are the most common and can work with different context (Al-Hmouz etal., 2012; Hornik
etal., 1989).

This section discusses the results of each learning algorithm. It starts by providing an overview of

each learning algorithm, then presents the results with increasing number of neurons.

7.2.2.2.1  Levenberg-Marquardt

Levenberg-Marquardt (LM) algorithm is an iterative method that locates a local minimum of a
multivariate function. It is expressed as the sum of squares of several non-linear and real-valued
functions. The LM algorithm is widely adopted in various disciplines to deal with data-fitting
applications. It has also become a standard method for nonlinear least-squares problems. The LM
learning algorithm can be considered as a combination of steepest descent and the Gauss-Newton
method (Lourakis & Argyros, 2005). It also considered the fastest learning algorithm. The only
limitation associated with this algorithm is that it consumes more memory (Demuth & Beale, 1998;
Pramanik & Panda, 2009).

The LM algorithm with one hidden layer was utilized to train the NFS model of the proposed risk
estimation technique. Several experiments were carried out to determine the appropriate number of

neurons that produces the lowest error and the best fit with the learning process. The NFS model was
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trained using the LM learning algorithm with increasing the number of neurons in the hidden layer
from 20 to 1000 and MSE and RMSE values were observed, as depicted in Figure 7.5 and Figure
7.6. The three lines representing training, testing, and validation data are almost identical and have
the same behaviour. The MSE and RMSE values dramatically decreased when increasing the number
of neurons from 20 to 100. The decrease in the MSE continued to reach its lowest value with 0.977
for training, 1.22 for validation, and 1.19 for testing data at 1000 neurons. Similarly, the RMSE
reached its lowest value at 1000 neurons with 0.989 for training, 1.10 for validation, and 1.09 for
testing data.
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Figure 7.5: MSE of training, validation, and testing data of the NFS model with the LM learning algorithm

when increasing the number of neurons in the hidden layer
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Figure 7.6: RMSE of training, validation, and testing data of the NFS model using the LM learning algorithm

when increasing the number of neurons in the hidden layer
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Figure 7.7: Value of R when increasing the number of neurons in the hidden layer with the LM learning
algorithm

In addition, Figure 7.7 shows the value of R when increasing the number of neurons in the hidden
layer from 20 to 1000 neurons. It increased dramatically from 0.973 at 20 neurons to reach 0.995 at

200 neurons. This increase continued to reach its maximum value, 0.999, at 1000 neurons.
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Figure 7.8: Training the NFS model with 1000 neurons in the hidden layer using the LM learning algorithm

With the LM learning algorithm, the results demonstrated that increasing the number of neurons in

the hidden layer led to decreasing both MSE and RMSE values for training, testing, and validation
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data. It also showed that increasing the number of neurons led to increasing the value of R. However,
training the NFS model of the proposed risk estimation technique with a large number of neurons
takes a long time. The last experiment with 1000 neurons took more than 77 hours. Therefore, 1000
neurons in the hidden layer were considered as the appropriate number of neurons to implement the
NFS model of the proposed risk estimation technique. The results demonstrated that the NFS model
has the lowest MSE and RMSE values for training, testing, and validation at 1000 neurons. Also, the
NFS model has the highest value of R, 0.999, at 1000 neurons, which is an adequate correlation that
indicates the NFS model is well trained and fit with the learning process as the value of R is very

close to 1.

The NFS model of the proposed risk estimation technique was implemented using the LM learning
algorithm with 1000 neurons in the hidden layer, as shown in Figure 7.8. After the NFS model was
trained, the performance graph represented MSE values of training, testing, and validation data, as
shown in Figure 7.9. The result is reasonable, and the NFS model is a good fit with the learning
process with the value of R is 0.999, which is very close to 1. In addition, no overfitting has occurred

as training, validation, and testing data have the same behaviour.
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Figure 7.9: Performance of training, validation, and testing data at different number of epochs with the LM

learning algorithm at 1000 neurons in the hidden layer.

In addition, Figure 7.10 shows regression plots of the NFS model of the proposed risk estimation
technique with respect to targets for training, validation, and testing data. For a perfect fit, the data
should fall along a 45-degree line, where the network outputs are equal to the targets. For the NFS
model of the proposed risk estimation technique, the fit is reasonably good for all training, validation

and testing data with the value of R is 0.999, which is very close to the ideal case.
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Figure 7.10: Regression plots of training, testing, and validation when applying LM learning algorithm with

1000 neurons in the hidden layer.

7.2.2.2.2  Bayesian Regularization

Generally, regularization techniques are employed with the backpropagation learning method to
produce a small error. However, the major problem associated with this mixture is that its
convergence is very slow, which can cause overfitting issues (Saini, 2008). Therefore, new
backpropagation learning techniques were developed by researchers to overcome the slow
convergence issue. In the same way, some regularization techniques were established to resolve the
overfitting issue. The LM and Bayesian Regularization (BR) learning methods are examples of these
new techniques that are used to produce lower mean squared errors than other techniques especially

with functioning approximation problems (Sorich et al., 2003).

The main target of the BR learning algorithm is to utilize the sum of squares and the sum of squared
weights to minimize errors and achieve a good generalized model. It updates the weight and bias
values using the same optimization method used in the LM learning method (Bishop & Tipping,
1998).

The BR learning algorithm with one hidden layer was utilized to train the NFS model of the proposed

risk estimation technique. Several experiments were carried out to determine the appropriate number
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of neurons that produces the lowest error and the best fit with the learning process. The NFS model
was trained with increasing the number of neurons in the hidden layer from 50 to 900 with observing
MSE and RMSE values. One of the important features of the BR learning algorithm is that it does
not require a validation dataset separate from the training dataset. Therefore, only values of training
and testing error were observed in these experiments, as shown in Figure 7.11 and Figure 7.12. The
two lines representing training and testing data are almost identical and have the same behaviour. So,
there is no overfitting. The results of training the NFS model using the BR learning method showed
unstable behaviour when increasing the number of neurons in the hidden layer. The MSE error of
training data dramatically decreased from 9.46 at 50 neurons to reach 6.23 at 100 neurons. This
decrease continued to reach 4.86 at 200 neurons. Then, the MSE error of training data increased to
reach 5.61 at 300 neurons. The same unstable behaviour continued until reaching the lowest MSE
and RMSE values for both training and testing data at 600 neurons. The MSE values were 2.01 and
2.16 for training and testing respectively. Similarly, the RMSE reached its lowest values at 600
neurons with 1.42 for training, 1.47 for testing data.
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Figure 7.11: MSE of training and testing data of the NFS model when increasing the number of neurons in the

hidden layer with the BR learning algorithm
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Figure 7.12: RMSE of training and testing data of the NFS model when increasing the number of neurons in

the hidden layer with the BR learning algorithm
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Figure 7.13: Value of R when increasing the number of neurons in the hidden layer with the BR learning

algorithm

In addition, Figure 7.13 shows the value of R when increasing the number of neurons in the hidden

layer from 50 to 900 neurons. The results demonstrated that the value of R showed unstable

behaviour. It increased from 0.989 at 20 neurons to 0.994 at 200 neurons. Then, it decreased at 300,

400, and 500 neurons. But at 600 neurons, the value of R reached its highest value which is 0.997.
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Figure 7.14: Training the NFS model at 600 neurons in the hidden layer using the BR learning algorithm

With the BR learning algorithm, the results demonstrated that increasing the number of neurons in

the hidden layer led to unstable behaviour for both training and testing error values. It showed that
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the appropriate number of neurons in the hidden layer to implement the NFS model of the proposed
risk estimation technique is 600 where it produced the lowest MSE and RMSE values for both
training and testing data. It also produced the highest value of R (0.997) at 600 neurons, which

indicates that the NFS model is well trained as the value of R is very close to 1.

The NFS model of the proposed risk estimation technique was implemented using the BR learning
algorithm with 600 neurons in the hidden layer, as shown in Figure 7.14. After the NFS model was
trained, the performance graph showed MSE values of training and testing data, as shown in Figure
7.15. The NFS model is a good fit with the learning process as the value of R is very close to 1. In

addition, no overfitting has occurred as training and testing data have the same behaviour.

Best Training Performance is 2.0083 at epoch 1000
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Figure 7.15: Performance of training and testing data at different number of epochs with the BR learning

algorithm at 600 neurons in the hidden layer.

In addition, Figure 7.16 shows regression plots of the NFS model of the proposed risk estimation
technique with respect to targets for training and testing data. The fit with the learning process is
reasonably good for all training and testing data with 0.997 in the value of R, which is very close to

the ideal case.
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Figure 7.16: Regression plots of training and testing data when applying the BR learning algorithm with 600

neurons in the hidden layer

7.2.2.2.3  Conjugate Gradient with Fletcher-Reeves

Gradient-based learning algorithm is one of the most commonly used error minimization techniques.
It is a gradient descent local optimization algorithm that includes the backward error correction of
the network weights (Nawi et al., 2010). Conjugate gradient algorithm is one of the backpropagation
techniques used to train multilayer ANN in a supervised way. It updates weight and bias values based
on the conjugate gradient backpropagation with Fletcher-Reeves updates (Fletcher & Reeves, 1964).
Therefore, it is called Conjugate Gradient with Fletcher-Reeves (CGF) learning method. The
conjugate gradient algorithms are usually much faster than variable learning rate backpropagation.
However, they require more storage than simple algorithms, so they are often a good choice for

networks with a large number of weights (Ellah et al., 2015).

The CGF learning algorithm with one hidden layer was utilized to train the NFS model of the
proposed risk estimation technique. Several experiments were carried out to determine the
appropriate number of neurons that produces the lowest error and the best fit with the learning
process. The NFS model was trained with increasing the number of neurons in the hidden layer from
50 to 1200 with observing MSE and RMSE values, as shown in Figure 7.17 and Figure 7.18. The

three lines representing training, validation, and testing data are almost identical and have the same
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behaviour. So, there is no overfitting. The results of training the NFS model using the CGF learning
method showed unstable behaviour when increasing the number of neurons in the hidden layer. The
MSE value of the training data decreased from 25.27 at 50 neurons to reach 21.04 at 100 neurons.
This decrease continued to reach 20.59 at 200 neurons. Then, the MSE value of the training data
increased to reach 26.75 at 300 neurons. Then, the MSE reached its lowest value at 400 neurons with
19.25, 19.54 and 19.14 for training, validation, and testing data respectively. Increasing the number
of neurons in the hidden layer from 400 to 1200 showed the same inconsistent behaviour. However,
the MSE value at 400 neurons produced the lowest error. This was the same scenario for the RMSE
value for training, validation, and testing data where it produced the lowest RMSE values at 400

neurons with 4.39 for training, 4.42 for validation, and 4.37 for testing data.
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Figure 7.17: MSE of training, validation, and testing data of the NFS model when increasing the number of

neurons in the hidden layer with the CGF learning algorithm
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Figure 7.18: RMSE of training, validation, and testing data of the NFS model when increasing the number of

neurons in the hidden layer with the CGF learning algorithm
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Figure 7.19: Value of R when increasing the number of neurons in the hidden layer with the CGF learning
algorithm

In addition, Figure 7.19 shows the value of R when increasing the number of neurons in the hidden
layer from 50 to 1200 neurons. The chart has the same behaviour of MSE and RMSE values in which
the lower the error, the higher the correlation. The value of R is increased from 0.968 at 50 neurons
to reach 0.975 at 200 neurons. Then, it reached its lowest value at 300 neurons. The highest
correlation for the NFS model with the CGF learning algorithm was realized when applying 400

neurons in the hidden layer.

With the CGF learning algorithm, the results demonstrated that increasing the number of neurons in
the hidden layer led to inconsistent behaviour of training, validation and testing error values. It
showed that the appropriate number of neurons in the hidden layer to implement the NFS model of
the proposed risk estimation technique is 400 neurons where it produced the lowest MSE and RMSE
error for training, validation, and testing data. It also produced the highest value of R, 0.976, which

indicates that the NFS model is well trained.

The NFS model of the proposed risk estimation technique was implemented using the CGF learning
algorithm with 400 neurons in the hidden layer, as shown in Figure 7.20. After the NFS model was
trained, the performance graph showed MSE values of training, validation, and testing data, as shown
in Figure 7.21. The NFS model is a good fit as R value is close to 1. In addition, no overfitting has
occurred as training, validation, and testing data have the same behaviour. However, the lowest error

produced with the CGF learning algorithm is quite high.



166

Chapter 7: Implmentation of Risk Estimation using NFS

Neural Network

Hidden Output

Input

Algorithms

Data Division: Random (dividerand)

Training: Conjugate Gradient Backpropagation with Fletcher-Reeves Restarts (traincgf)
Performance: Mean Squared Error  (mse)

Calculations:  MEX

Progress
Epoch: 0 1000 iterations | 1000
Time: 1:0d:23

Performance: 231e+05 [0 | 0.00
Gradient: 351e+05 [ s | 1.00e-10

Validation Checks: 0 [0 16

Step Size: 100 [E 0004258 | 1.00e-06

Plots

) ermance ) (plotperform)
Training State (plottrainstate)
Error Histogram . (ploterrhist)
Regression . (plotregression)
Fit . (plotfit)
Plot Interval: ' 1 epochs

Figure 7.20: Training the NFS model with 400 neurons in the hidden layer using the CGF learning algorithm
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Figure 7.21: Performance of training, validation, and testing data at different number of epochs using the CGF

learning algorithm with 400 neurons in the hidden layer
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Figure 7.22: Regression plots of training, validation, and testing data when applying the CGF learning

algorithm with 400 neurons in the hidden layer

In addition, Figure 7.22 shows regression plots of the NFS model of the proposed risk estimation
technique with respect to targets for training, validation, and testing data. For the NFS model, the fit

is good for all training, validation and testing data with the value of R is 0.976, which is close to 1.

7.2.2.2.4 Scaled Conjugate Gradient

Conjugate gradient methods need a line search at each iteration, which is computationally expensive
as it requires that the network respond to all training inputs and estimate multiple times for each
search. Scaled Conjugate Gradient (SCG) learning algorithm was developed by Moller in 1993
(Moller, 1993). It primarily built to overcome the time-consuming line search associated with
conjugate gradient learning methods. The SCG algorithm utilizes the second order information from
the ANN to reach faster convergence. It is also fully automated so there are no user-dependent
parameters and it avoids time-consuming line-search in each iteration to determine appropriate step
size (Moller, 1993).

The SCG learning algorithm with one hidden layer was utilized to train the NFS model of the
proposed risk estimation technique. Several experiments were carried out to determine the

appropriate number of neurons that produces the lowest error and the best fit with the learning
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process. The NFS model was trained with increasing the number of neurons in the hidden layer from
50 to 1200 with observing MSE and RMSE values, as shown in Figure 7.23 and Figure 7.24. The
three lines representing training, validation and testing data are almost identical and have the same
behaviour. So, there is no overfitting. The results of training the NFS model using the SCG learning
method showed unstable behaviour when increasing the number of neurons in the hidden layer. The
MSE value of the training data increased from 19.99 at 50 neurons to 23.77 at 100 neurons. Then,
the unstable behaviour continued until the MSE reached its lowest value at 1000 neurons. The MSE
values were 14.75, 15.17 and 15.01 for training, validation, and testing data respectively. This was
the same scenario for the RMSE for training, validation, and testing data where it produced the lowest

values at 1000 neurons with 3.84 for training, 3.89 for validation, and 3.87 for testing data.
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Figure 7.23: MSE of training, validation, and testing data of the NFS model when increasing the number of

neurons in the hidden layer with the SCG learning algorithm
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Figure 7.24: RMSE of training, validation, and testing data of the NFS model when increasing the number of

neurons in the hidden layer with the SCG learning algorithm
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Figure 7.25: Value of R when increasing the number of neurons in the hidden layer with the SCG learning

algorithm

In addition, Figure 7.25 shows the value of R when increasing the number of neurons in the hidden
layer from 50 to 1200 neurons. The value of R decreased from 0.975 at 50 neurons to reach 0.970 at
200 neurons. The highest correlation for the NFS model using the SCG learning algorithm was
realized when applying 1000 neurons in the hidden layer. The value of R was 0.982, which indicates
that the NFS model is well trained.

With the SCG training algorithm, the results demonstrated that increasing the number of neurons in
the hidden layer led to unstable behaviour of training, validation and testing error values. It showed
that the appropriate number of neurons in the hidden layer to implement the NFS model of the
proposed risk estimation technique is 1000 where it produced the lowest MSE and RMSE error for
training, validation, and testing data. It also produced the highest value of R, 0.982, which indicates
that the NFS model is well trained.

The NFS model of the proposed risk estimation technique was implemented using the SCG training
algorithm with 1000 neurons in the hidden layer, as shown in Figure 7.26. After the NFS model was
trained, the performance graph showed MSE values for training, validation, and testing data, as
shown in Figure 7.27. The NFS model is a good fit as the value of R is close to 1. In addition, no
overfitting has occurred as training, validation, and testing data have the same behaviour. However,

the lowest error produced with the SCG learning algorithm is quite high.
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Figure 7.26: Training the NFS model with 1000 neurons in the hidden layer using the SCG learning algorithm
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In addition, the regression plots of the NFS model of the proposed risk estimation technique with
respect to targets for training, validation, and testing data show that the fit of the NFS model is
reasonably good for all training, validation and testing data with the value of R is close to 1, as

depicted in Figure 7.28.
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Figure 7.28: Regression plots of training, validation, and testing data when applying the SCG learning

algorithm with 1000 neurons in the hidden layer

7.2.2.3 Comparison of Training Algorithms

The NFS model of the proposed risk estimation technique was trained using four different learning
algorithms. Firstly, several experiments were carried out to determine the appropriate humber of
neurons in the hidden layer for each learning algorithm. Then, the learning algorithms were utilized
to train the NFS model of the proposed risk estimation technique with the appropriate number of

neurons that were previously determined.

A comparison between the four learning algorithms that were utilized to train the NFS model can be
seen in Table 7.1. The results demonstrated that there is no optimal number of neurons for the hidden
layer that can be used to produce the lowest error and the highest correlation with different learning
algorithms. This was proved by having different number of neurons for each learning algorithm. In
addition, although the LM and SCG learning algorithms use the same number of neurons in the

hidden layer, the LM learning algorithm produced the best results.
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Table 7.1: Comparison between learning algorithms used to train the NFS model of the proposed risk
estimation technique

Training algorithms
Item

LM BR CGF SCG
Appropriate number of neurons
in the hidden layer 1000 600 400 1000
Number of epochs 1000 1000 1000 1000
MSE of training 0.978 2.008 19.253 14.750
MSE of validation 1.219 N/A 19.543 15.168
MSE of testing 1.190 2.157 19.136 15.011
RMSE of training 0.989 1.417 4.388 3.841
RMSE of validation 1.104 N/A 4.421 3.895
RMSE of testing 1.091 1.469 4.375 3.874
Correlation Coefficient (R) 0.999 0.997 0.976 0.982

In terms of MSE and RMSE values, the LM learning algorithm produced the lowest error for training,
validation, and testing data among other learning algorithms. In addition, the LM learning algorithm
produced the highest correlation with 0.999 in the value of R, which indicates that the NFS model is
well trained and fit with the learning process. Therefore, the LM learning algorithm was selected as
the best learning algorithm to be utilized to implement the NFS model of the proposed risk estimation

technique in 10T applications.

7.3 NFS and Fuzzy System

The proposed risk estimation technique was first implemented with the fuzzy logic system using the
Mamdani FIS and tested with different number of access requests. One of the challenges that faced
adopting the proposed fuzzy risk estimation technique in real-world 10T applications is that it
requires large processing time and its scalability seems to be questionable. To overcome this
problem, the proposed risk estimation technique was implemented using the NFS with the LM
learning method. The parallel computation and learning abilities of the NFS model added more

improvements to the risk estimation technique.

The results demonstrated that utilizing the NFS with the LM learning algorithm to implement the
proposed risk estimation technique provides less processing time as it uses only one-sixth the time
used by the Mamdani FIS, as depicted in Table 7.2. Both methods followed a linear relationship in

which increasing the number of access requests led to increasing the processing time.

In addition, the results demonstrated that the time per access request for the NFS model using the
LM learning algorithm produced a very short time compared to the time per access request produced
by the Mamdani FIS, as depicted in Figure 7.29. The trained NFS model with the LM learning

algorithm has proved it provides more efficient processing time which can provide timeliness risk
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estimation technique for various loT applications. Besides adding the learning capability to the risk

estimation technique will make it able to adapt to changes of the IoT environment.

Table 7.2: Processing time of the NFS model using the LM learning algorithm and Mamdani FIS

Number of NFS using LM Algorithm Mamdani FIS
access requests Time (sec) | Time per request (sec) | Time (sec) | Time per request (sec)
1000 10.8750 0.01088 57.385 0.0574
10,000 81.5469 0.00815 572.125 0.0572
20,000 146.5625 0.00733 1140.4 0.05702
30,000 211.4216 0.00705 1713.6 0.05712
40,000 277.6094 0.00694 2286.4 0.05716
50,000 341.7656 0.00684 2860.5 0.05721
60,000 407.1875 0.00679 3436.2 0.05727
70,000 472.1250 0.00674 4012.4 0.05732
80,000 537.2345 0.00672 4588.8 0.05736
90,000 602.2314 0.00669 5166.9 0.05741
100,000 667.1286 0.00667 5746.23 0.05746
150,000 995.4688 0.00664 8625.32 0.0575
200,000 1325.3124 0.00663 11506.14 0.05753
250,000 1634.8213 0.00654 14390.1 0.05756
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Figure 7.29: Time per access request of the NFS model using the LM learning algorithm and Mamdani FIS

7.4 NFS and ANFIS

The ANFIS model of the proposed risk estimation technique was implemented to tune different MFs
and determine the appropriate MF that provides the lowest error and the best fit with the learning
process to increase the performance of the risk estimation process. After training the ANFIS model

with both hybrid and backpropagation learning techniques at three different epoch numbers (20, 100,
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and 300), the results demonstrated that the TrapMF with the hybrid learning approach at 20 epochs

is the best MF that produced the lowest error and the best fit with the learning process.

In addition, the NFS model of the proposed risk estimation technique was trained using four learning
algorithms to overcome the time overhead associated with the fuzzy logic system and add the
learning capability to the risk estimation technique to increase the accuracy and efficiency of the risk
estimation process. Several experiments were carried out to determine the appropriate number of
neurons in the hidden layer for each training algorithm. After comparing training, testing, and
validation errors and correlation of four learning algorithms, the results showed that the LM learning

algorithm produced the lowest error and the best fit with the learning process.

The results obtained from implementing the ANFIS and NFS models of the proposed risk estimation
technique were compared, as depicted in Table 7.3. The results showed that the performance of the
NFS model is better than the ANFIS model. The NFS model provides lower RMSE values in both
training and testing data, which indicates how close the relationship between the observed and
predicted data. In addition, the NFS model provides higher correlation with 0.999 and 0.997 in R and
R? respectively, which demonstrates it is the best fit with the learning process as values of R and R?

are very close to 1.

Table 7.3: Performances of ANFIS and NFS models of the proposed risk estimation technique

Model Training Testing R R?
RMSE RMSE

NFS with LM 0.9888 1.1040 0.9985 0.9974

ANFIS with TrapMF 4.6438 4.6552 0.9731 0.9469

Based on these results, the NFS model with the LM learning method is the best approach to
implement the proposed risk estimation technique to increase the accuracy, reduce the processing

time needed to provide access decisions and adapt to changes of various real-world 10T applications.

7.5 Summary

Chapter 7 has presented the implementation of the risk estimation process using the NFS. The NFS
system which integrates the human reasoning of the fuzzy logic system with the ANN to increase
accuracy and performance. The NFS was utilized to reduce the processing time by using the parallel
computation of the ANN and add the learning capability to the proposed risk estimation technique to
adapt to new changes of the 10T environment. To implement the NFS model, several experiments
were carried out using three separate datasets: training dataset (96,000 records), validation dataset
(32,000 records), and testing dataset (32,000 records) to train and verify the accuracy of the trained
NFS model. To determine the appropriate number of neurons in the hidden layer, the NFS model
was trained using four learning algorithms including LM, BR, CGF, and SCG. Several experiments

were carried out and MSE, RMSE, and R values of training, testing, and validation were utilized to
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determine the appropriate number of neurons and the best learning algorithm for the NFS model. The
results demonstrated that the LM learning algorithm produced the lowest error for training,
validation, and testing data and the highest correlation with 0.999, which indicates that the NFS
model is well trained and fit with the learning process. In addition, the NFS model with the LM
learning algorithm has proved it provides efficient processing time, as it uses only one-sixth the time
used by the fuzzy logic system. Therefore, the NFS with the LM learning method is the best
combination to implement the proposed risk estimation technique to increase the accuracy, reduce
the processing time needed to provide access decisions and adapt to new changes of various 0T
applications. The next chapter presents the access monitoring and evaluation of the proposed

risk-based access control model.






Chapter 8: Access Monitoring and Model Evaluation

This chapter provides a discussion of access monitoring and model evaluation. It starts by providing
an overview of access monitoring. Then, section 8.2 discusses utilizing smart contracts to monitor
user activities during the access session. This includes simulating the operation of smart contracts
using Simulink and presenting various access scenarios. Section 8.3 discusses the evaluation of the
proposed risk-based access control model by presenting access control scenarios of three loT
applications including healthcare, smart home and network router. The chapter closes by providing

a summary of the main points discussed through the chapter and introduces the next chapter.

8.1  Access Monitoring

The key objective of an access control model is to allow only authorized users to access system
resources in an authorized way. Typically, access control models can be divided into two classes:
stateless and stateful. Stateless access control is only concerned with the current state of the system
to provide access decisions, while stateful access control integrates past and current accesses to
determine the access decision. Although most existing access control systems are stateless, building
a stateful access control model should be one of the fundamental priorities to guarantee security and

privacy of system resources (Gomez & Trabelsi, 2014).

Since existing access control approaches do not provide a way to detect and prevent malicious actions
after granting the access, the proposed risk-based model adds abnormality detection capability by
utilizing smart contracts to track and monitor user activities during access sessions. Hence, the risk
estimation module adjusts user’s permission adaptively depending on their behaviour in the access
session in which if an abnormal action is observed, user privileges will be reduced, or the access

session will be terminated.

The next section provides a detailed discussion of using smart contracts to monitor access sessions

in 10T systems.

177
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8.2 Smart Contracts for Monitoring

Smart contracts are so powerful because of their flexibility. They can encrypt and store data securely,
restrict access to data only to desired parties and then be programmed to utilize the data within a
self-executing logical workflow of operations between parties (Watanabe et al., 2016). Smart
contracts translate the business process into a computational process to improve operational
efficiency (Watanabe et al., 2016). The key purpose of a smart contract is to execute terms or

conditions of the contract automatically when certain conditions are verified or met.

An overview of smart contracts involving definitions of smart contracts, benefits, and how a smart
contract works was presented previously in chapter 2 in section 2.6. Therefore, this chapter focuses

only on discussing how smart contracts can be utilized to monitor access sessions in 10T systems.

In the proposed risk-based model, the smart contract is used as a mean to track and monitor user
behaviour during access sessions. After granting the access, a smart contract will be created for each
access request. The access permissions will be implemented as conditions or terms in the smart
contract. Then, the monitoring module will compare the user behaviour with the terms and conditions
of the contract to detect abnormal actions throughout access sessions. As depicted in Figure 8.1, the
requesting user first defines the data or resource to be accessed and action to be performed in the
access request. Then, if the access is granted, a smart contract will be created to implement user’s
permissions as conditions or terms to guarantee that the user has the ability to access only resources
and perform actions that were requested. Then, resources and actions will be monitored to detect
violations. if a violation is detected, the system will issue a warning, or the session will be terminated.
If no violations are detected, the system will keep monitoring the user behaviour throughout the

access session.

As discussed earlier, smart contracts are software code that runs using the blockchain technology.
Due to the difficulty of implementing smart contracts and interfacing it with the risk estimation
process of the proposed risk-based access control model, MATLAB Simulink was utilized to
simulate the operation of smart contracts to validate its efficiency and effectiveness to monitor access

sessions to detect and prevent malicious actions.
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Figure 8.1: Flowchart of monitoring user activities using smart contracts

8.2.1 Simulation of Smart Contracts

Simulink is a graphical environment to model, simulate, and analyse multi-domain dynamic systems.
It is primarily based on hierarchical data flow diagrams. A Simulink diagram consists of functional
blocks connected by signals (wires). These blocks represent transformations of data, while the signals
represent the flow of data between blocks. Each block contains input and output ports to connect
with other blocks and transfer signals between blocks. The input ports provide data to the block,

while the output ports provide the results computed by the blocks (Aung, 2007; Bostrém et al., 2010).

Stateflow is one of the main elements of the Simulink environment that was utilized to simulate the
operation of smart contracts. Stateflow is an environment for modelling and simulating sequential
decision logic based on state machines and flow charts. It combines graphical and tabular
representations, including state transition diagrams, flow charts, state transition tables, and truth
tables to model how the system reacts to events, time-based conditions, and external input signals
(Mathworks, 2016).
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Figure 8.2: Simulation of the proposed risk-based access control model with monitoring user activities

Simulink was utilized to build a simulation model for the proposed risk-based access control model,
as shown in Figure 8.2. The first block from the left represents the access request. The requesting
user has to specify the data/resource to be accessed and the action to be performed on the system. In
the simulation model, five different data and actions were assumed, and the requester has to choose
one resource and one action for each access request. The second block represents input risk factors
of the proposed risk-based model, which include user context, resource sensitivity, action severity,

and risk history. Estimating the output risk value for each access request is based on these values.

Values of Risk Factors Risk Estimation

Access Request user_context

Data3 -

Choose Data to be Accessed

in out

Data resource_sensitivity iH

Actiond -

4

Choose Action to be Performed action_severity

Action

Risk_Estimation_Using_Fuzzy Logic

risk_history

57.43

Display_Risk_Output_value

Figure 8.3: First part of the simulation of the proposed risk-based access control model

The third block represents the risk estimation technique using the fuzzy logic system with expert
judgment. As discussed earlier in Chapter 5, 6 and 7, the risk estimation process was implemented
using the fuzzy logic system with expert judgment, NFS and ANFIS. However, the fuzzy logic
system with expert judgment was utilized in this simulation since the main target is to monitor the

access session not to estimate the risk. Also, it is easier to implement with the Simulink. The main
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objective of the third block is to estimate the risk value associated with the access request and display
it on the display screen, which located under the third block. The first three blocks of the simulation

model of the proposed risk-based model can be seen clearer in Figure 8.3.

The fourth block represents the access decision, as depicted in Figure 8.4. After estimating the risk
value, the access decision should be determined. As discussed previously in section 5.4, three access
decision bands were proposed for each access request including Grant, Grant with monitoring and
Deny. The access decision and monitoring status depend on the output risk value as assumed in Table
8.1.

Fseee s Monitroing Access Session

]

)y

Dispaly_Monitoring

out LD Dec »|x t
-
»\ADec
Access Decision Monitroing >
Dispaly_Decision_of_Monitroing
Malicious agtion creation
Data| 3 action 4

Figure 8.4: Second part of the simulation of the proposed risk-based access control model

Table 8.1: Output mapping of access decision and monitoring blocks

Access Decision Block Monitoring Block
Estimated Monitoring State . Monitoring
Risk Value Output Status Description Output
1 <Risk <15 | Grant without 0 Normal Monitoring in progress 0
monitoring
15<Risk <70 | Grantwith 1 Detect Malicious action 1
monitoring detected
Risk >70 Deny 0 No_monitroing | No monitoring needed 2

To implement these three access decision bands in the simulation, four states including Decision,
Granted_without_monitroing, Granted_with_monitroing, and Denied were utilized, as shown in
Figure 8.5. The transition from states depends on the estimated risk value. The Decision state takes
the estimated risk value from the risk estimation technique (third block). Then, this value is compared

against risk decision bands in which if the estimated risk value is higher than 1 and less than or equal
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15, the state will be changed, and the control will be moved to Granted_without_monitroing state,
and the monitoring status will be 0 to indicate that no monitoring is needed. During this state, the
system will check the estimated risk value every second to reflect any changes in input risk factors
on the output risk value. So, the decision module will be updated with the output risk value every
second. While if the estimated risk value is higher than 15 and less than 70, the state will be changed,
and the control will be moved to Granted with_monitroing state, and the monitoring status will be
1 to indicate the need for monitoring user activities. During this state, the system will also check the
estimated risk value every second to keep updated with the output risk value during the access
session. If the estimated risk value is higher than or equal to 70, the state will be changed, and the
control will be moved to Denied state and the monitoring status will be 0 to indicate that no

monitoring is needed as the access request was rejected.
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Figure 8.5: Stateflow charts to determine the access decision based on the estimated risk value

The fifth block represents the simulation of monitoring access session using smart contracts, as
shown in Figure 8.4. As discussed earlier, smart contracts are software code that implements terms
or conditions of the contract and executes it automatically when conditions are met. The key objective
of simulating the operation of smart contracts is to ensure that the system is aware of actions and
changes occurred during the access session. In addition, the response of the monitoring module
should be fast enough to detect and prevent malicious actions in a very short time to stop the attacker

from affecting system resources improperly.
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The operation of smart contracts was simulated using four states including Decision, No_monitroing,
Normal and Detect, as depicted in Figure 8.6. The Decision state takes the decision value from the
access decision module. If the decision value was 0, this means that the access is either granted
without monitoring or denied. Hence, the control will be moved to No_ monitoring state, and the
monitoring output will be 2 to indicate that no monitoring is needed, as summarized in Table 8.1.
While if the decision value was 1, the control will be moved to Normal state to indicate that the
system is monitoring the user activities and no malicious action was detected. The Normal state
represents the operation of the smart contract in which the user permissions will be coded as
conditions or terms. For example, if the user decided in his/her access request to access Datal, and
perform Action3, then the conditions or terms that allow the user to only access Datal and perform
Action3 will be implemented in the contract. Therefore, if the user tried to access other data or

perform another action, this will be detected as a malicious action.
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Figure 8.6: Stateflow charts of simulating the operation of smart contracts.

To simulate this scenario, the monitoring block was linked to another block that has two input
variables x and y, where x refers to the data to be accessed and y refers to the action to be performed,
as shown in Figure 8.4. These variables are identical and have the same values of input variables of
the access request of the first block. These variables will be used to simulate creating malicious
actions. In other words, after defining the type of data to be accessed and type of action to be
performed in the access request and after granting the access, a smart contract will be created to
ensure the user has the eligibility only to access data and perform the action specified in the access
request. The variables x and y will be used to reflect the behaviour of the user during the access
session. Hence, if values of x and y are the same as input variables of the access request that were

implemented in the contract as conditions, then no malicious actions will be detected. While if values
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of x and y are different from input variables implemented in the contract, then this will be classified

as a malicious action that needs to be prevented.

If the user tried to perform a malicious action during the access session, then the control will be
moved to Detect state, and the output value will be 1 to indicate that a malicious action was detected.
Then, a warning message will be issued to guide the user to access only permitted data and perform
permitted actions, if the user stops the malicious action, then the system will return to Normal state.
Otherwise, the system will terminate the access session to stop malicious actions. Figure 8.7

summarizes the process flow of the monitoring module.
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detected?
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Figure 8.7: Process flow of the monitoring module

The last block of the simulation model of the proposed risk-based model represents two displays to
show access decision and monitoring status, as shown in Figure 8.8. The first display shows two
values of access decision in which 0 represents that the access is denied, whereas 1 represents that
the access is granted, as shown in Figure 8.8 (a). The second display shows the monitoring status in
which 2 represents no monitoring is needed, O represents that monitoring user activities is in progress,

whereas 1 represents that a malicious action was detected, as shown in Figure 8.8 (b).
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Figure 8.8: Two displays to show access decision and monitoring status

8.2.2 Access Scenarios

To show the effectiveness of monitoring user activities using smart contracts during the access
session and the response of the proposed risk-based model in different situations, this section presents
various access scenarios that can occur. In addition, the access decision and monitoring status will

be discussed for each scenario.

8.2.2.1 Scenario 1: Access was granted without monitoring

The proposed risk-based access control model protects the user’s privacy by allowing the user to
access the system without monitoring user activities during the access session if the estimated risk
value associated with the access request was very small. This access decision band is very narrow to
reflect only 10T devices’ owners. Therefore, if the estimated risk value associated with the access

request was less than or equal 15, the access will be granted, and no monitoring will be needed.
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Figure 8.9: Access control scenario when the access was granted without monitoring
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As depicted in Figure 8.9, the access was granted without monitoring as the estimated risk value
associated with the access request was 15. This indicated by having 1 on the access decision display
(the first display from left) to indicate that the access was granted, as shown in Figure 8.9 (a). Also,
having 2 on the monitoring status display to indicate that no monitoring is needed, as shown in Figure
8.9 (b).

8.2.2.2 Scenario 2: Access was granted, and monitoring is in progress

If the estimated risk value associated with the access request was higher than 15 and less than 70, the
access will be granted with monitoring user activities during the access session. As shown in Figure
8.10, the estimated risk value was 60, which implies that the access was granted with monitoring.
This indicated by having 1 on the access decision display to indicate that the access was granted, as
shown in Figure 8.10 (a). Also, having 0 on the monitoring status display to indicate that monitoring

user activities is in progress, as shown in Figure 8.10 (b).
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Figure 8.10: Access control scenario when the access was granted and monitoring is in progress

8.2.2.3 Scenario 3: Access was granted, and a violation was detected

This scenario is similar to the previous scenario in which if the estimated risk value associated with
the access request was higher than 15 and less than 70, then the access will be granted with
monitoring user activities during the access session. Since the estimated risk value was 60, the access
was granted with monitoring. This indicated by having 1 and 0 in the access decision display and the

monitoring display respectively, as depicted in Figure 8.11.
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Figure 8.11: Access scenario when the access was granted with monitoring and a violation was detected

After granting the access, the monitoring module will track the user behaviour during the access
session by comparing values of x and y with input values of the access request. When a violation is
detected, the output of the monitoring display will change from 0 to 1 to indicate that there is a
violation. Then, a warning message will be issued. If the user obeys the advice of the warning
message, the monitoring module will return to tracking user behaviour and the output of the
monitoring display will return to 0, as shown in Figure 8.11 (b). In the same way, if another violation
is detected, the system will issue a warning message. Warning messages were not implemented in
the simulation model, but it will be presented in the next section of simulating the proposed risk-

based model on the web.

One of the most important features of a monitoring technique is the ability to detect and prevent
malicious actions in a very short time. As depicted in Figure 8.11 (b), the response of the monitoring
module was very good in which when one of the contract conditions was not verified, the monitoring
module detects it immediately. This shows that the use of smart contracts and implementing user

permissions as software code can detect and prevent malicious actions in a very short time.

8.2.2.4 Scenario 4. Make another access request

If the estimated risk value associated with the access request was higher than 15 and less than 70,
the access will be granted with monitoring user activities during the access session. This indicated
by having 1 and 0 in the access decision display and the monitoring display respectively, as shown
in Figure 8.12.
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Figure 8.12: The access control scenario when the access is granted with monitoring, and the second access

request was denied

During the access session, if the user wants to access other data or perform another action rather than
those implemented in the smart contract, the user has to make another access request. The access
request can be accepted or rejected based on values of risk factors associated with the access request.
If the access is granted, another contract will be created with new conditions that allow the user to
access the new requested data and action and the monitoring module will continue tracking the user
behaviour during the access session. While if the action is rejected, then the output of the decision
display will be 0, as shown in Figure 8.12 (a). Also, the output of the monitoring module will be 2 to
indicate that no monitoring is needed, as shown in Figure 8.12 (b). This scenario will be presented

clearly in the next section while simulating the proposed risk-based model on the web.

8.2.25 Scenario 5: Access denied

If the estimated risk value associated with the access request is higher than 70, the access will be
denied. As depicted in Figure 8.13, the estimated risk value was 85, so the access was denied. This
indicated by having 0 on the access decision display to indicate the access was denied. Also, having

2 on the monitoring status display to indicate that no monitoring is needed as the access was denied.
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Figure 8.13: Access control scenario when access was denied

8.2.3 Simulation on the Web

The use of smart contracts to detect and prevent malicious actions during the access session adds
another dimension to this research by integrating the existing centralized 10T system with the
decentralized blockchain technology. However, the major issue in this research was how to prove
the effectiveness of using smart contracts in monitoring user activities. To solve this issue, Simulink
Stateflow charts were utilized to simulate the operation of smart contracts. The results of various
access scenarios discussed earlier demonstrated that smart contracts can provide an effective solution

to detect and prevent malicious actions in a timely manner.

To show how the proposed risk-based access control model works on the web, a simple web
application was created to show various stages of the access control process. This section provides a
detailed discussion starting from sending the access request and getting the response from the system.
It also validates the operation of smart contracts in monitoring user activities during the access

session.

The journey starts when a certain user wants to access one of the system resources. The first stage is
to verify the user identity through the common authentication method by using username and
password, as depicted in Figure 8.14 (). If the requesting user is successfully authenticated, then the
system will ask the user to create an access request by specifying the data to be accessed and the
action to be performed using the provided dropdown lists, as shown in Figure 8.14 (b). In this

application, five types of data or resources and five actions can be selected.
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Figure 8.14: Login information and creating an access request

After submitting the access request, the system collects contextual information associated with the
access request, sensitivity metric of the data to be accessed, severity metric of the action to be
performed, and previous risk values of the user to estimate the risk value associated with the access

request and make the access decision.
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Figure 8.15: Access decision based on the estimated risk value

If the access is denied, the system will notify the user to either make another access request or
terminate the access session, as shown in Figure 8.15 (a). While if the access is granted, the system
will notify the user that he/she is only allowed to access data and actions specified in the access
request, as shown in Figure 8.15 (b). If the estimated risk value is less than or equal 15, no monitoring
is needed. While if the estimated risk value is higher than 15 and less than 70, then the user activities

will be monitored.
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If the access is granted with monitoring user activities, then a smart contract will be created to
implement terms and conditions that allow the user to access only data and actions specified in the
access request. Then, the system will track user activities during the access session to make sure that
the user obeys terms and conditions of the contract. If a violation is detected, the system will issue a

warning message and terminate the access session, as shown in Figure 8.16.

System Administration
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."' "‘. You are only authorized to access data and

"M actions specified in the access request. If you
want to make another access request, please
login? if not, the session will be terminated
within 3 seconds.

Figure 8.16: The system response when a violation was detected

8.3 Evaluation of Proposed Model

Evaluation is an essential phase to ensure the effectiveness of a research idea on real-world
applications. One of the important aspects of the proposed risk-based access control model is to check
its applicability in real-world 10T applications. Therefore, access control scenarios of three 10T
applications including healthcare, smart home and network router were presented to show the
effectiveness of implementing the proposed risk-based access control model on these applications.
In addition, the proposed risk-based model was compared with existing risk-based access control
models utilizing the fuzzy logic system for the risk estimation process to show major improvements

in the proposed risk-based model.

In addition, one of the major issues associated with 10T devices is limited processing and storage
capabilities. For the proposed risk-based model, the processing and storage capabilities of existing
10T devices cannot handle the requirements of the risk estimation technique and access monitoring
using smart contracts. To solve this issue, there are three ways to implement access control models
in the 10T including centralized, distributed and centralized and contextual approach, as discussed in
section 2.3.1. Therefore, the centralized and contextual approach was adopted in this research to

implement the proposed risk-based access control model where there is a central server connected to
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10T devices with the required processing and storage capabilities which allow 10T devices to

participate in making the access decision.

The next section provides a detailed discussion of access control scenarios of three 10T applications

to show access decisions based on risk values in various situations.

8.3.1 Access Scenario 1: Healthcare

Access control is a key element in healthcare information systems. Its main objective is to enforce
access rules to guarantee that only authorized users can access system resources. Protecting patients’
data is not the only concern in healthcare systems but providing access in unexpected situations. In
crisis or emergency situations, the availability of information takes precedence over privacy and
security concerns. Therefore, providing a dynamic access control model for healthcare is a significant

aspect to ensure data security and adapt to unexpected situations.

This section presents applying the proposed risk-based access control model that uses contextual and
real-time information to provide access decisions in a children hospital. Different access control

scenarios will be presented to show the access decision with various input states.
8.3.1.1 Scenario Description

A closed world scenario involving a healthcare provider such as Mount Cedar (MC) children hospital
(Ardagna et al., 2010) was utilized to show various access control scenarios. Typically, patients’
information in hospitals is stored as datasets. Each dataset is characterized by a unique object
identifier. Datasets can be organized in classes that can be collectively referred with a given name
and associated with an object profile (metadata) that provides additional information about the

dataset.

Consider the MC hospital has now received a four-years-old child called Harry, who was brought
into the MC’s first aid clinic by his mother, Eva, late Wednesday evening. The admitting staff
observed that Harry suffered from several bruises all over his body, a fractured rib, and a distorted
shoulder (Ardagna et al., 2010). Let us walk through the events that would occur in this situation.
Initially, Harry’s doctor in the first aid clinic, Dr Chris made an access request to the system to view
or read Harry’s history fills in the Electronic Patient Record (EPR). He also assigned Harry to a care
team involving a set of nurses and ordered a series of examinations. The leader nurse of the care team

made an access request to the system to read Harry’s fills in the patient’s EPR.

When the examination results are returned, Dr Chris wrote the diagnosis and the required medication
for Harry and called social workers and policemen to investigate the incident as he suspected that

child abuse occurred. Therefore, one of the social workers who are responsible for helping the
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children in case of abuses and a police officer requested to access Harry’s medical information for

investigation purposes.

8.3.1.2 Scenario Actors

The MC is a children hospital. Actors involved in this scenario include:

e The child who needs treatment;

e Doctors who are responsible for providing care to the child;

¢ Nurses who are responsible for helping the doctors;

e Social workers who are responsible for helping the children in case of trauma or abuses;

e Policemen who are responsible for investigating and establishing possible criminal charges

and responsibilities in cases of trauma or abuses.

8.3.1.3 Scenario Assumption

Applying the proposed risk-based access control model on the healthcare access control scenario
requires defining values of the four risk factors for each access request. For the action severity, three
actions were assumed involving; read/view, write and delete. The delete operation is not permitted
for all actors involved in this scenario as the hospital keeps track of all medical history of patients,
so no need to delete any data. As discussed earlier, there are various actors involved in this scenario
in which each actor has a different role in the hospital. The proposed risk-based model should validate
its applicability on this scenario by allowing or denying tasks for each role. Generally, only doctors
have the ability to perform both read and write operations on the EPR, while other actors including
nurses, social workers and policemen have the ability to only read/view the EPR. For the resource
sensitivity, two sensitivity levels were assumed; sensitive and not sensitive. However, all

data/resources involved in this scenario was assumed sensitive.

To define the value of the action severity, Sharma et al. (2012) formula was utilized. This formula is
used to estimate the risk score of action severity in terms of various actions, risk probability, and cost

regarding data availability, integrity, and confidentiality. The formula is represented as:
Risk= (CxP) + (I xP) + (Ax P) (8.1)

Where C, | and A represents confidentiality, integrity, and availability respectively and P represents
the probability. In addition, Sharma et al. (2012) have suggested some actions and corresponding
values of the CIA, as shown in Table 8.2. Therefore, values of action severity of the proposed risk-

based model will be estimated using this table.
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Table 8.2: Risk values associated with action and data sensitivity (Sharma et al., 2012)

Action Sensitivity C | A
Create Sensitive/Not-Sensitive 0 1 1
View Sensitive 1 0 0
View Not-Sensitive 0 0 1
Modify Sensitive/Not-Sensitive 0 1 1
Delete Sensitive/Not-Sensitive 0 1 1

For instance, if a user needs to perform a “view” operation on sensitive data and the probability of
this incident was 0.4. Therefore, only confidentiality will be affected, and the risk value of the action
severity will be 0.4. Healthcare data have serious importance in almost all hospitals. Several security
solutions are employed to ensure the security and privacy of patients’ data. Therefore, all data or
resources involved in this scenario were assumed to be sensitive, and with the probability of 0.4, the

value of the resource sensitivity will be 0.8.

Table 8.3: The risk value of user context of various actors involved in this scenario

Actor On duty Location (In User Context |Proposed UC
(Time) Hospital) Risk level |value

Yes Yes Low 0.25
Doctor No Yes Moderate 0.5
No No High 0.75
Yes Yes Low 0.25
Nurse No Yes Moderate 0.5
No No High 0.75
Social Worker Yes Yes Low 0.25
No Yes Moderate 0.5
No No High 0.75
Yes Yes Low 0.25
Policeman No Yes Moderate 0.5
No No High 0.75

For the contextual and real-time attributes (user context) that are collected at the time of making the
access request, the time and location features were utilized. The time refers to the time of duty for
the hospital staff whether doctor or nurse in which if the doctor requested access to data during his/her
time of duty (time allocation), the risk associated with the time context feature will be low otherwise
it will be high. Also, the location was utilized to determine the risk associated with contextual
attributes in which if the actor requested access to data from inside the hospital, the risk will be low,

otherwise, the risk will be high.

The value of user context was assumed, as shown in Table 8.3. In addition, since actors involved in
this scenario involving doctor, nurse, social worker and policeman are officially employed in the
hospital, they are trusted users and hence their risk history was assumed to be low. Therefore, the

value of the risk history will be 0.25.
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8314 Scenario Results

Determining the access decision depends on the estimated risk value associated with each access
request. The estimated risk value is compared against output risk bands to decide whether granting

or denying access. Access decisions bands were assumed, as depicted in Table 8.4.

Table 8.4: Proposed output risk bands for the scenarios

Risk Band Access Decision
0.1-0.25 Access Granted

0.26 - 0.7 Access Granted with Monitoring
0.7-1.0 Access Denied

All access control scenarios of the MC children hospital were implemented and the access decision
for each scenario was decided, as shown in Table 8.5. The risk value for each access request was
estimated using the NFS model with the LM learning algorithm. For doctors, all their access requests
to read/view patients’ EPR were granted as soon as they are located inside the hospital even though
they were not on duty. This is because some emergency cases came to the hospital with no available
doctors, so the system should allow the doctor to read patient’s EPR to help the patient until available
on duty doctor be allocated for the patient.

Table 8.5: Access decisions of various scenarios of the MC children hospital

on In Risk Factors Output
.. | Actio Risk .

Actor Duty | Hospita UC RS | AS | RH IS Access Decision
Yes Yes | Read | 0.25 | 0.8 | 0.4 | 0.25 | 0.498 | Access Granted with Monitoring
No Yes |Read | 0.5 | 0.8 |04 | 0.25 | 0.637 | Access Granted with Monitoring

No No Read | 0.75 | 0.8 | 0.4 | 0.25 | 0.749 Access Denied

Doctor

Yes Yes |Write| 0.25 | 0.8 | 0.8 | 0.25 | 0.600 | Access Granted with Monitoring

No Yes |Write| 05 |08 |08 | 025 | 0.721 Access Denied

No No | Write| 0.75 | 0.8 | 0.8 | 0.25 | 0.822 Access Denied
Yes Yes | Read | 0.25 | 0.8 | 0.4 | 0.25 | 0.498 | Access Granted with Monitoring
Nurse No | Yes |Read| 05 | 0.8 |04 | 0.25 | 0.637 | Access Granted with Monitoring

No No Read | 0.75 | 0.8 | 0.4 | 0.25 | 0.749 Access Denied
. Yes Yes | Read | 0.25 | 0.8 | 0.4 | 0.25 | 0.498 | Access Granted with Monitoring

Social Wo. - —

No Yes |Read | 05 | 0.8 |04 | 025 | 0.637 | Access Granted with Monitoring

No No Read | 0.75 | 0.8 | 0.4 | 0.25 | 0.750 Access Denied
Yes Yes | Read | 0.25 | 0.8 | 0.4 | 0.25 | 0.498 | Access Granted with Monitoring
Policeman | nNo | ves | Read | 05 |08 0.4 | 025 | 0.637 | Access Granted with Monitoring

No No Read | 0.75 | 0.8 | 0.4 | 0.25 | 0.749 Access Denied

The read operation is denied for doctors only if they were not on duty time and outside the hospital.

Since the write operation involves writing medication and ordering examinations, doctors are granted
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to perform the write operation only if there are on their duty time and inside the hospital, so the risk

value associated with their contextual attributes should be low.

For nurses, social workers and policemen, as they are only allowed to view/read patient’s EPR based
on their role, only the read scenario was discussed. They are able to read the patient’s EPR whether
they are on duty time or not. This gives more flexibility as they already inside the hospital and their
action will not cause serious harm. Also, it can take some time until they allocate on duty person who
can deal with the current case. Their access to the read operation is denied only if they were not on

duty time and outside the hospital.

8.3.1.5 Scenario Discussion

Applying the proposed risk-based access control model demonstrated it can provide several
advantages to the healthcare domain. Using contextual and real-time features involving time and
location demonstrated it can provide dynamic and flexible access decisions that can adapt to
unpredicted situations. Allowing the doctors to access the patient’s EPR even after finishing their
duty time allow them to help the patient until an available on duty doctor is allocated. In addition,
one of the important aspects of applying the proposed risk-based model in the healthcare domain is
denying access whether read or write operation for all actors involved in this scenario when they are
not on duty and outside the location of the hospital. This adds more security to the healthcare system
compared to the existing systems in which if one actor lost his/her credentials (for example password)
through social engineering or any other type of attack, this can lead to information disclosure. Using
the proposed risk-based model with contextual and real-time features, no one can access the data
only if they are inside the hospital and within their duty time besides other credentials. A comparison
between existing access control models and the proposed risk-based model in the healthcare scenario

is shown in Table 8.6.

Applying the proposed risk-based model on access control scenarios of the MC children hospital
demonstrated it can provide flexible and effective access control model that can use contextual and
real-time features to provide access decisions. It solves issues associated with static policies that
always give the same result in different situations. For example, it allows access if the actor located
in the hospital location. It also solves issues associated with misuse and credential loss by allowing
access by actors in person. In addition, using smart contracts to monitor and track the access session
add another layer of security to detect and prevent malicious actions in a timely manner. In
conclusion, the proposed risk-based access control model is applicable in the healthcare 10T

application and it provides efficient and effective security solution.
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Table 8.6: Comparison between existing access control and the proposed risk-based model in the healthcare

Item Existing Access Control Proposed Model

The actor is granted access to system|The actor is granted access to system resources
resources only with credential information | when he/she is located inside the hospital which
such as a password. This access is not limited | provides more security. The access to the write
by a certain operation. For example, the|operation for a doctor, for example, is allowed
doctor can perform all tasks such as read and | only if the doctor is inside the hospital and

write. during his/her duty time.
Expected

behaviour

Having a website or web interface for the | Using location and time features allow actors to
hospital make the actor able to access it from | access system resources only if there are located
any location which may cause serious issues | inside the hospital. Being outside the hospital
regarding data protection and privacy | deny all access to system resources for all actors
preservation, especially if credential |which is an advantage to prevent misuse of
information was lost or stolen. credentials.

One of the serious issues to secure a system | The use of contextual features prevents most of
is the misuse of employees. For example, one | misuse scenarios as actors are allowed to access
of the actor credentials can be used to access | system resources only if they are personally
system resources and perform malicious|existing in the hospital location. Therefore, if
actions while the actor is on a vacation. Also, | the credential information was lost, the actor
one can use a social engineering attack to get| must be in person and during his/her duty time
credential information and use it maliciously. | to access system resources.

Misuse

Granting access without tracking the|Using smart contracts to monitor actors’
Monitoring | behaviour of the actor can lead to serious | behaviour can prevent insider attacks. So, if an

access insider attacks. For example, a doctor can use | actor deceives the system, the monitoring
patients’ information for marketing or|module will detect and prevent such kinds of
research purposes. malicious attacks.

8.3.2 Access Scenario 2: Smart Home

Smart home has become one of the popular 10T applications that provides new digitized services to
improve our quality of life. Providing an efficient and effective access control model is one of the
top priorities of a smart home. With the capability of home appliances to connect and communicate

together over the Internet, protecting these devices has become essential.

This section discusses applying the proposed risk-based access control model on various access

control scenarios of the smart home 10T application.

8.3.2.1 Scenario Description

The 10T has the capability to connect almost all environment objects over the Internet to share their
data and create new applications and services. Using a software application can control smart home
appliances to enable or disable them. For example, smart thermostats can be controlled remotely to
control the home temperature. This allows the device’s owner to control the home’s temperature for

more comfortable when back home. In addition, food can be cooked while you are on your way to
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home with the capability to control the Oven or Microwave remotely to turn it on or off and control

the temperature.

In this scenario, some smart appliances, which are part of the smart home, were utilized to validate
the applicability of the proposed risk-based model in smart home applications. These appliances were

divided into two groups based on actions that can be performed on these appliances.

e The first group of appliances can be controlled using three actions: enable (ON), disable
(OFF), and adjust (to set a value for a certain feature). This group of devices includes Oven,
Microwave, Washing Machine, TV control, Temperature Control, and others.

e The second group of appliances can be controlled using two actions: open and close such as

door and window locks, etc.

8.3.2.2 Scenario Assumption

Applying the proposed risk-based access control model on a smart home access control scenario
needs specifying the four risk factors for each access request. For contextual and real-time attributes
(user context), time and location were utilized. The time refers to the time of accessing a certain
device. If the access was done, for example, between 9:00 AM- 17:00 PM, the risk will be high, since
the owner will be at work at this time. While if the access was done outside this time, the risk will be
low, since the device’s owner will be at home at this time. The selected time interval can be set
dynamically using the system owner. The location refers to the location of the requesting user while
making the access request to access home devices. If the access was made from inside the home, then

the risk will be low, while if the access was made from outside the home, the risk will be high.

The value of user context was assumed, as shown in Table 8.7. Only two risk levels were used; low
and high to represent all combinations of location and time features. The risk of contextual features
will be low if the device owner is accessing the device from inside the home whether within permitted
time or not, as this should be the case in real-life scenarios. Also, the risk will be low, if the device
owner is accessing system within permitted time whether inside or outside the home, since one of
the significant features of smart devices is to operate and control it remotely. While the risk will be

high if the access was made outside the permitted time and from outside the home.

Table 8.7: The value of user context for smart home access control scenario

Permitted Time Location | User Context | Proposed
17:00 PM — 08:59 AM (In-Home) Risk level Value
Yes Yes Low 0.25
No Yes Low 0.25
Yes No Low 0.25

No No High 0.75
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For the resource sensitivity and action severity, since ON, OFF, and Adjust actions for the first group
and Open and Close for the second group of appliances are simple actions for most devices, hence,
the action severity was assumed to be low. In addition, since all smart home appliances are closely
related to human life and can be used in a malicious way to literally cause people to lose their lives,
all appliances/ data in this scenario were assumed to be sensitive. Values of action severity and
resource sensitivity are shown in Table 8.8. Values of resource sensitivity and action severity were

decided based on Sharma et al. (2012) formula that was discussed earlier in section 8.3.1.3.

Table 8.8: Values of resource sensitivity and action severity

Group |Smart home appliance SF:izci)tui\z(i:tey Action | Action Severity
Oven, Microwave, 0.8 ON 0.4
First washing machine, TV
and Temperature Control 08 OFF 0.4
0.8 Adjust 0.4
) 0.8 Open 0.4
Second Door and window lock
0.8 Close 0.4

For the risk history, two values; low (0.25) and high (0.75), were assumed since the smart home
device can be accessed by either the device owner who has a low-risk history or a malicious attacker
who wants to perform malicious actions to gain access or steal sensitive information. Therefore, two

risk history values were utilized with all smart home access control scenarios.
8.3.2.3 Scenario Results

Deciding the access decision depends on the estimated risk value associated with each access request.
The estimated risk value is compared against output risk bands to decide whether granting or denying

access. Access decisions bands were assumed, as depicted in Table 8.9.

Table 8.9: Access decision bands for smart home access scenarios

Risk Band Access Decision
0.1-0.25 Access Granted
0.26-0.75 Access Granted with Monitoring
0.75-1.0 Access Denied

After specifying values of the four risk factors of the proposed risk-based model, the output risk
value for each scenario was estimated using the NFS with the LM learning algorithm, as depicted in
Table 8.10. For the first group of appliances, most access requests were granted. With 0.4 in the
action severity and 0.8 in the resource sensitivity, all access requests were granted if the value of user
context or the risk history was low. This is logical and reflects real-life scenarios, in which if the
owner is inside the home and requesting to access the device in the permitted time interval (low

contextual), the access should be permitted. Also, since one of the main features of smart devices is
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the ability to access it remotely, the proposed model allows the device’s owner to access various
devices remotely. The device’s owner can perform ON, OFF and Adjust actions if the value of user

context or risk history was low.

Table 8.10: Applying the proposed model on access control scenarios of a smart home

Smart home
appliance

Risk Risk Factors Output

i Action i isi
History uc T Rs | As | RH Risk Access Decision

Context
Features

Low Low ON 025 | 08|04 |025| 0.498 Access Granted with monitoring
Oven. High Low ON 0.75 | 08|04 |025| 0.749 Access Granted with monitoring
Microwave, | Low Low OFF | 025 | 0.8 |04 |0.25| 0.498 Access Granted with monitoring
r‘}’q":ﬂ}‘mg High | Low | OFF | 0.75 | 0.8 |04 |025| 0.749 | Access Granted with monitoring
TV Low Low | Adjust | 0.25 | 0.8 | 0.4 | 0.25 | 0.498 Access Granted with monitoring
Control, High Low | Adjust | 0.75 | 0.8 | 0.4 | 0.25 | 0.749 Access Granted with monitoring

Temperatur
e Control Low High ON 025 (08 |04]|075| 0.582 Access Granted with monitoring

andother it High | ON | 075 | 0.8 | 0.4 | 0.75 | 0.808 Access Denied
Low High OFF | 025 |08 |04 |075| 0.582 Access Granted with monitoring

High High OFF | 075|108 | 0.4 |0.75| 0.808 Access Denied
Low High | Adjust | 0.25 | 0.8 | 0.4 | 0.75 | 0.582 Access Granted with monitoring

High High | Adjust | 0.75 | 0.8 | 0.4 | 0.75 | 0.808 Access Denied
Low Low Open | 0.25 | 0.8 | 0.4 | 0.25| 0.498 Access Granted with monitoring
Door and High Low Open | 0.75 | 0.8 | 0.4 | 0.25| 0.582 Access Granted with monitoring
window Low Low Close | 0.25 | 0.8 |04 | 0.25| 0.498 Access Granted with monitoring
lock High | Low | Close | 0.75 | 0.8 | 0.4 | 0.25 | 0.749 Access Granted with monitoring
Low High Open | 0.25 | 0.8 | 0.4 | 0.75| 0.582 Access Granted with monitoring

High High Open | 0.75 | 0.8 | 0.4 | 0.75 | 0.808 Access Denied
Low High | Close | 0.25 | 0.8 | 0.4 | 0.75 | 0.582 Access Granted with monitoring

High High Close | 0.75 | 0.8 | 0.4 | 0.75 | 0.808 Access Denied

On the other hand, the access was denied for this group of devices only if values of both user context
and risk history were high. This is also logical as it reflects the fact that the malicious user with a
high risk history who requested to access the device from outside the home and outside the permitted

time interval should not able to access the device.

For the second group of devices, in the same way, most access requests were granted. The access
was granted for Open and Close actions if the value of user context or risk history was low. This
allows the device’s owner to access various devices either from inside or outside the home easily and
securely. In addition, the access was denied to perform Open and Close actions only if values of both

user context and risk history were high.

8.3.2.4 Scenario Discussion

Applying the proposed risk-based model on smart home access scenarios demonstrated it can provide
several advantages over existing access control models. Using the contextual and real-time features

involving time and location demonstrated it can provide dynamic and flexible access decisions.
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The proposed risk-based model provides the expected functionality like existing access control
models in which it allows the owners to perform all actions on various devices as soon as they are at
the home. In addition, it allows the device’s owner to access various appliances and perform various

actions on different appliances remotely and securely.

For both groups of appliances, the access was granted with monitoring access sessions to detect and
prevent malicious actions. Monitoring access sessions using smart contracts to detect and prevent
malicious actions in the smart home provides an effective solution to control access to smart
appliances. In addition, one of the important features of the proposed risk-model is the flexibility of
selecting risk decision bands, which make the device’ owner has full control of granting or denying
access. As a conclusion, the results of the access control scenarios in the smart home demonstrated
that the proposed risk-based access control can be applied efficiently and effectively in smart home

applications.

8.3.3 Access Scenario 3: Network Router

To validate the applicability of the proposed risk-based access control model in real-world access
applications, access control scenarios of the network router will be presented to show different access
decisions in various situations based on the estimated risk value for each access request. The network
router is an electronic device designed to connect at least two networks and forwards packets among
them based on the information existed in the packet header and the routing table. The router is a
fundamental element to the operation of the Internet and other complex networks (Kim et al., 2014;
Shuzhao & Zhaohui, 2014).

8.3.3.1 Scenario Description

The network router is one of the significant elements to set up a network. There are two methods to
access a network router; console and telnet connection. Router console connection is used to connect
end devices, such as PC to the router to manage its configurations using a rollover cable connection.

While telnet connection is used to configure the router remotely through a router virtual terminal.
To provide access control scenarios of the network router, three parameters need to be specified:

e Router data to be accessed: a user will access the router only to perform certain operations
on certain data. Therefore, different router data and operations should be specified.

e Values of four risk factors of the proposed risk model: to calculate the risk value for each
access request, values of user context, resource sensitivity, action severity and risk history
need be specified.

e Router acceptable risk values: after estimating the risk value associated with the access

request, the access decision should be decided to either grant or deny the access.
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8.3.3.2 Scenario Assumption

To determine values of resource sensitivity and action severity of the network router, different types
of data of the router need to be specified. Data that can be accessed through the router can be

categorized as follows:

e Non-Volatile Random-Access Memory (NVRAM): is used to store start-up configuration
files of the router.

e Dynamic Host Configuration Protocol (DHCP): allocates IP address information to
various devices in the network dynamically.

e Flash Memory: is used to store the router internetworking operating system.

e Configuration Passwords: are router passwords that are required to enter different router
configuration modes to add or edit configuration commands.

e Routing Table: is used by the router to determine the best path to forward packets to its

destination. Without routing table, all router packets will be discarded.

The router data were classified in terms of actions severity and data sensitivity, as shown in Table
8.11. The data sensitivity level is based on the action to be performed. For instance, “View” operation

is not sensitive while “Delete” operation is sensitive on the same NVRAM data.

Table 8.11: Data sensitivity with different actions regarding router data

Router Data Action Sensitivity

View Not Sensitive
NVRAM data Delete Sensitive
Modify Sensitive

View Not Sensitive
DHCP data Modify Sensitive
Create Sensitive

Flash Data Delete Not Sensitive
Configuration passwords View Sensitive
Modify Sensitive

Routing table View Not Sensitive
Delete Sensitive

The values of action severity and data sensitivity were decided using Sharma et al. (2012) formula
and Table 8.2 that were discussed earlier in section 8.3.1.3. For the user context, the location of the
requester was utilized to estimate the risk value associated with the user context. Only two values;
low and high, was used to indicate whether the requester is at the router location or not at the time of
making the access request. So, if the requesting user is at the physical location of the router, the risk

of user context will be 0.25, otherwise, the risk of the user context will be 0.75.
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8.3.3.3 Scenario Results

Deciding the access decision depends on the estimated risk value associated with each access request.
The estimated risk value is compared against output risk bands to decide whether granting or denying
access. The same risk decision bands employed in the healthcare scenario was utilized in this
scenario, as depicted in Table 8.4. After specifying values of the four risk factors of the proposed
risk-based model, the output risk value for each access scenario was estimated using the NFS with

the LM learning algorithm.

8.3.3.3.1 Console Connection

Suppose a user wants to manage configurations of the router through the console connection. The
router was initially configured but the user wants to access the router to perform other operations.
Since the user has the ability to reach the physical location of the router and attach the rollover cable
to connect the router to his/her end device, so he/she will be considered as a trusted user with low
risk history and low user context value. Therefore, values of risk history and user context were
assumed 0.25. In addition, values of resource sensitivity and action severity were calculated using
Sharma et al. (2012) formula with a risk probability of 0.4. Table 8.12 shows different access control
scenarios of the router through the console connection.

Table 8.12: Access control scenarios of the network router through the console connection

Risk Factors
Action Output

Router Data Uc | RS | As | RH Risk Access Decision

View |[025| 04 | 04 | 0.25| 0.358 Access Granted with Monitoring
NVRAM data | pelete | 0.25 | 0.8 | 0.8 | 0.25| 0.600 | AccessGranted with Monitoring
Modify | 0.25 | 0.8 | 0.8 | 0.25 | 0.600 Access Granted with Monitoring
View |[025| 04 | 04 |0.25| 0.358 Access Granted with Monitoring
DHCP data | wodify [ 0.25 | 08 | 0.8 | 0.25| 0.600 | Access Granted with Monitoring
Create | 0.25| 0.8 | 0.8 | 0.25 | 0.600 Access Granted with Monitoring
Flash Data | Delete | 0.25 | 0.8 | 0.8 | 0.25 | 0.600 | Access Granted with Monitoring
Configuration| View | 0.25| 04 | 0.4 | 0.25| 0.358 | Access Granted with Monitoring
passwords "\ i 1025 | 0.8 | 0.8 | 0.25 | 0.600 | Access Granted with Monitoring
View [025| 04 | 04 | 0.25| 0.358 Access Granted with Monitoring
Delete | 0.25| 0.8 | 0.8 | 0.25 | 0.600 Access Granted with Monitoring

Routing table

The estimated risk value for different scenarios to access the router through the console connection
was small, so all access requests were granted with monitoring. This seems logical to the real-world
scenarios as if the user has the ability to reach the router location and attach the cross over cable to
the router, the user should be able to perform all various actions on various data whether sensitive or

not sensitive.
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8.3.3.3.2 Telnet Connection

Consider a user who wants to manage configurations of the router remotely. The router was initially
configured but the user wants to access the router to perform other operations. Since the user is
accessing the router from a remote location, the user context will be high. Also, the user risk history
was assumed to have two values (high and low) as the router owner can access the router remotely
and the malicious user as well. Therefore, the risk history has two values 0.25 and 0.75. The access
to the router via the telnet connection will be similar to console connection in terms of values of
actions severity and data sensitivity on the router data. Also, the risk probability was assumed to be
0.4.

Table 8.13: Access control scenarios of the network router through the telnet connection

Risk Factors
Router Data | Action | yc | Rs | AS | RH O;;cspku t Access Decision
View | 0.75| 04 04 | 025 | 0.609 Access Granted with Monitoring
0.75| 04 04 | 0.75| 0.668 Access Granted with Monitoring
NVRAM data Delete | 0.75 | 0.8 0.8 | 0.25| 0.822 Access Denied
075 | 0.8 0.8 | 0.75 | 0.880 Access Denied
Modify | 0.75 | 0.8 0.8 | 0.25| 0.822 Access Denied
075 | 0.8 0.8 | 0.75 | 0.880 Access Denied
View |0.75| 04 0.4 | 025 | 0.609 Access Granted with Monitoring
075 | 04 0.4 | 0.75| 0.668 | Access Granted with Monitoring
DHCPdata 0 ity (075 | 0.8 | 08 | 025 | 0822 Access Denied
075 | 0.8 0.8 | 0.75| 0.880 Access Denied
Create | 0.75| 0.8 0.8 | 0.25| 0.822 Access Denied
0.75| 0.8 0.8 | 0.75| 0.880 Access Denied
Flash Data Delete | 0.75 | 0.8 0.8 | 0.25| 0.822 Access Denied
0.75| 0.8 0.8 | 0.75| 0.880 Access Denied
View | 0.75| 04 04 | 025 | 0.609 Access Granted with Monitoring
Configuration 075| 04 | 04 |075| 0.668 | Access Granted with Monitoring
passwords
Modify | 0.75 | 0.8 0.8 | 0.25| 0.822 Access Denied
075 | 0.8 0.8 | 0.75| 0.880 Access Denied
View |0.75| 04 0.4 | 025 | 0.609 Access Granted with Monitoring
Routing table 075| 04 | 04 |075| 0668 | Access Granted with Monitoring
Delete | 0.75 | 0.8 0.8 | 0.25| 0.822 Access Denied
075 | 0.8 0.8 | 0.75| 0.880 Access Denied

Table 8.13 shows access control scenarios of the network router through the telnet connection. Most
access requests were denied. This is because values of user context and risk history were assumed to
be high. Only view action was granted for different router data when the risk history either high or
low except configuration passwords. This seems to be fine in terms of security as it is a view/read

operation, which will not cause any harm especially these data have been categorized as not sensitive.
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For configuration password, since viewing these passwords will allow the user to access most system
resources, it has been categorized as sensitive, so the resource sensitivity and action severity were

assumed to be 0.8. This makes the output risk to be high, and the access was denied.

The access was granted only when values of risk history, action severity, and resource sensitivity
were low. In other words, the access was granted only when the value of the risk history was 0.25
and values of both action severity and resource sensitivity were 0.4. Most access via the telnet
connection was denied. This is due to the fact that Telnet as a protocol has several drawbacks in term
of security. For instance, it uses a plaintext to send or receive data without any encryption. This leads
to several security attacks such as eavesdropping and snooping which are easier to employed by

malicious attackers.

8.3.34 Scenario Discussion

Applying the proposed risk-based model on the network router access scenarios demonstrated it can
provide the expected functionality like other access control system with adding new advantages. One
of these advantages is the use of contextual and real-time features to provide access decisions. The
contextual information plays a significant role to decide access decisions. For example, when the
user requested to perform “Delete” action on the NVRAM data and the risk metric of contextual
features was 0.25, the output risk value was 0.6 and the access was granted. While when the user
requested to perform the same action on the same data but with a high risk metric for contextual

features, which was assumed 0.75, the output risk value was 0.8217, and the access was denied.

The proposed risk-based model provided the expected functionality that allows the owner of the
router to perform all actions on various data as soon as he/she can reach to the location of the router
and attach the rollover cable to it. In addition, all access was granted with monitoring access sessions
to detect and prevent malicious actions. This monitoring feature adds another layer of security to
secure access to various data of the network router. In conclusion, the results demonstrated that
proposed risk-based access control is applicable to the access control scenarios of the network router

and it provides efficient and effective security solution

8.3.4 Comparison with Current Risk Models

Current access control models are based on static and predetermined policies that cannot satisfy the
required flexibility needed in various 10T applications. While the proposed risk-based access control
model provides a dynamic approach by using real-time and contextual features collected from the
10T environment while making the access request to make the access decision. Reviewing the
existing and related risk-based access control models demonstrated that no previous research has
employed real-time features collected from the loT environment while making the access request in

loT applications, as depicted in Table 8.14.
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Table 8.14: Risk factors utilized to build risk-based access control models

Subject Object Resource Action Risk Subject Risk Real-time
Related Model  clearance clearance  Sensitivity  Severity History  Trust Policies Features

Zhang et al.
(2006) v

Britton &
Brown (2007)

Chen et al.
(2007)

Lee et al. (2007) v

Bertino & Lobo
(2010)

Rajbhandari &
Snekkenes v v
(2011)

Wang & Jin
(2011)

Shaikh et al.
(2012)

Sharma et al.
(2012)

Khambhammett
uetal. (2013)

Lietal. (2013)

Namitha et al.
(2015)

Choi et al.
(2015)

Chenetal.,
(2016)

Dos Santos et v
al., (2016)

Abombhara et
al., (2018)

Proposed

Model \ v v v

In addition, the proposed risk-based access control model was compared with related risk-based
access control models that utilized the fuzzy logic system in the risk estimation process, as depicted
in Table 8.15. The proposed risk-based model provides a dynamic and context-aware approach by
using real-time and contextual features associated with the user at the time of making the access
request as a risk factor besides resource sensitivity, action severity and risk history to estimate the

risk value associated with each access request to decide the access decision.

In addition, fuzzy rules are the core of the fuzzy logic system which need to be built accurately to
yield a precise risk value for each access request. Although fuzzy rules are built on expert knowledge,
there is no evidence or any details about using security experts to build fuzzy rules in related fuzzy
risk-based access control models discussed in the literature. In this research, Twenty IoT security
experts from inside and outside the UK were interviewed to build fuzzy rules. This number of experts

adds more robustness and accuracy to the research. In addition, interviewing loT security experts
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reduced the subjectivity of the risk estimation process. Indeed, the subjectivity was not completely

eliminated. However, it is unlikely that a method with no subjectivity will ever exist for risk analysis.

Table 8.15: Comparison between the proposed model with existing fuzzy-based risk models

Items Chen et al. (2007) Ni et al. (2010) Lietal. (2013) Proposed Model
Difference between | Object security | Data  sensitivity, | Contextual features of the
Risk factors | Subject security level | level and subject|action severity, and |user, resource sensitivity,
and object security | security level user risk history action severity and risk
level history
Context- Not Context-aware | Not Context-aware | Not Context-aware | Context-aware
awareness
Fuzzy rules |Fuzzy rules were Fuzzy rules were | Fuzzy rules were | Twenty loT security experts
built by authors built by authors built by authors were interviewed to build
fuzzy rules
Subjectivity |High subjectivity High subjectivity | High subjectivity | Less subjectivity
Validation |No proof of No proof of No proof  of|Validated by Twenty loT
validation validation validation security experts
Scalability | Not Tested Not Tested Not Tested Tested with a large humber
of access requests
Solution to|N/A N/A Not Exist Exist, a solution to cold start
cold start was provided
Learning Not Exist Not Exist Not Exist Exist as ANFIS and NFS
Capability were applied
Monitoring | Not Exist Not Exist Not Exist Smart  contracts  were
Capability utilized to monitor access
sessions

In addition, to overcome the time overhead of the fuzzy logic system, the proposed risk estimation
technique was implemented using ANFIS and NFS. After comparing processing time with a large
number of access requests, the resultant NFS model demonstrated it provides fast and scalable risk
estimation technique. Also, the use of ANFIS and NFS with the proposed risk-based model adds the
learning capability that allows the proposed risk-based model to adapt to new changes of various loT

applications.

Lastly, utilizing smart contracts to monitor access sessions provided significant improvements over
existing access control models. Reviewing related risk-based access control models demonstrated
that no previous research has employed smart contracts in this context. The ability to detect and
prevent malicious attacks in a timely manner provided another layer of security. In addition, smart
contracts added a new dimension to the next research about integrating the blockchain technology

with existing centralized models to provide better and effective security solutions.
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8.4 Summary

This chapter has presented the simulation of smart contracts and the evaluation of the proposed risk-
based model. The chapter was divided into two main parts. The first part discussed smart contracts
in access monitoring. Existing access control models do not provide a way to detect malicious actions
and protect system resources after granting access. While the proposed risk-based model added
abnormality detection capability by utilizing smart contracts to track and monitor user’s activities
during access sessions to detect and prevent malicious actions. MATLAB Simulink was utilized to
simulate the operation of smart contracts to validate its efficiency and effectiveness to monitor access
sessions. After discussing different scenarios, the results demonstrated that smart contracts can
provide an effective and efficient way to monitor user activities and prevent malicious actions in a
timely manner. The second part of the chapter discussed the evaluation of the proposed risk-based
model using access control scenarios of three 10T applications including healthcare, smart home and
network router. The results demonstrated that the proposed risk-based model is applicable to various
10T application and it provides efficient and effective security solution. The next chapter concludes

the thesis and present future work.



Chapter 9: Conclusion and Future Work

This chapter summarises the results and findings reached to answer the research questions. It also

discusses the contributions made by this research. Future research directions are also explored.

9.1 Conclusion

Currently, the 10T becomes a broadly examined subject among researchers, specialists and experts.
It is considered as the next stage of the evolution of the Internet. Although the Internet has passed
several stages since it was invented, as it switched from a couple of PCs communicating with each
other to billions of computational devices and billions of cell phones over time. With the 10T, we are
moving towards a phase where almost all items in our environment will be connected and
communicate together with minimum human efforts. The 10T is considered as a universal presence
in the environment that contains a variety of things that can be connected whether using wireless and
wired connections. These things have a unique addressing scheme that allow them to interact and
cooperate with others to create new loT applications and services such as smart homes, smart cities,

smart energy and the smart grids, smart transportation and traffic management and control and others.

The 10T has several benefits in various domains, but it also creates multiple issues that need to be
addressed to continue adopting 10T applications. One of these issues is security that has a major
impact literally on people lives. This is due to the fact that the 10T is a dynamic system in nature in
which every poorly secured object can disturb the security and resilience of the entire system, as they
are connected like a chain. The ease of connection and access of 10T devices open doors for severe
security issues especially with the large-scale distribution of heterogamous devices, their ability to
connect to other devices without requesting permissions or even notifying their owners and

probability of flooding these devices with severe security threats.

One of the solutions to address security issues in the 10T system is to build an efficient and effective
access control model. This model not only limits access to authorised users but also prevents
authorised users from accessing system resources in an unauthorised way. However, the existing

access control models are rigid and use static policies to provide access decisions. This static
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approach gives the same result in different situations, which cannot provide an adequate level of
security in a dynamic system like the 10T. Therefore, there is a need to adopt dynamic access control
models for the 10T. These models use not only access policies but also real-time information to
provide access decisions. One of the dynamic models is risk-based access control. This model uses
the security risk value associated with the access request to determine the access decision. This model
solves the issue regarding the flexibility in accessing system resources. In addition, it provides a
dynamic and efficient solution to unpredicted situations, especially in healthcare and military

applications, where granting access can save thousands of lives.

The research questions were addressed through this research study. The findings for each research

question are briefly presented as follows:
The main research question was:
RQ: What is the appropriate adaptive risk-based access control model for the IoT system?

The major target of this research was to develop a dynamic and adaptive risk-based access control
model that can provide an effective security solution for various loT applications. Therefore, a
dynamic and adaptive risk-based access control model was proposed, as discussed in section 4.3.
This model utilizes contextual and real-time features collected from the IoT environment while
making the access request to determine access decisions. It has four inputs; user contextual features,
resource sensitivity, action severity and risk history. In addition, to detect and prevent abnormal
misuse from authorized users during the access session, the proposed model utilized smart contracts

to monitor user’s activities and adjust their risk values adaptively based on their actions.
The main research question was divided into six sub-questions as follows:

SRQ1: What is the appropriate risk estimation technique to estimate the risk associated with the

access request?

Specifying the optimal risk estimation technique to assess security risks of access control operations
in 10T systems faces several issues. For example, the core drive of the risk estimation process is to
expect the future likelihood of information disclosure that is corresponded to the current access.
Identifying this likelihood in the absence of a dataset is a very difficult task. In addition, the loT
system requires a flexible and scalable risk estimation technique that can adapt to growing rates of
the number of 10T devices and changing conditions during making access decisions. After reviewing
related risk estimation techniques in the literature, the fuzzy logic approach with expert judgment
was selected as the appropriate risk estimation technique, as discussed in chapter 3. In addition,
Twenty loT security experts from inside and outside the UK were interviewed to validate the
proposed risk-based access control model and build fuzzy rules. The proposed risk estimation

technique was implemented using MATLAB, as discussed in chapter 5. The results demonstrated
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that the fuzzy logic system with expert judgment generates accurate and realistic risk values for

access control operations.
SRQ?2: What are acceptable risk values to make the access decision in 10T applications?

The risk-based access control model works by estimating the security risk value associated with each
access request. Then, the estimated risk value is compared with a threshold risk value to decide the
access decision. After reviewing the literature, most presented risk-based access control models
suggested using a threshold risk value to grant or deny access without providing any details about
how to decide this threshold risk value in different applications. Therefore, in this research, three risk
decision bands were proposed involving allow, allow with risk monitoring, and deny. Then, twenty
loT security experts were interviewed to decide acceptable risk values for risk decisions bands, as

discussed in section 5.4.
SRQ3: How to provide plug and play risk-based model that can work when first used or connected?

As discussed earlier in section 4.2, some related risk-based access control models used the risk
history as a risk factor to determine access decisions. However, values of risk history will not be
available at the start of setting up the new risk-based model, which will make the system unusable
until collecting these values. To overcome this cold start problem, a solution was provided by adding
additional twenty-seven fuzzy rules that use only three risk factors (user context, resource sensitivity
and action severity). To validate these rules, ten 10T security research fellow from the University of
Southampton were interviewed, as discussed in section 5.6. The results demonstrated that the
proposed risk-based model can work properly when first used or connected without reconfiguration

or adjustment.

SRQ4: How to provide fast and scalable risk estimation technique to handle the constant increase in

the number of 10T devices?

The 10T system grows significantly. So, the risk estimation technique should be able to handle the
growing rate of the number of 10T devices. As discussed in section 5.7, a set of experiments was
introduced to evaluate the efficiency of the proposed fuzzy risk estimation technique. These
experiments were utilized to measure the response time with different number of access requests and
determine the most efficient MF, defuzzification method, and rule aggregation operator. The results
of these experiments demonstrated that the scalability of the proposed risk estimation technique is
questionable. In addition, it lacks the ability to learn and cannot be adjusted to new 10T environments.
To solve this issue, ANFIS and NFS were utilized to implement the risk estimation technique, as
discussed in chapter 6 and chapter 7 respectively. Several experiments were carried out to train the
ANFIS model using hybrid and backpropagation learning methods at three different number of
epochs; 20, 100, and 300. The results demonstrated that the TrapMF with the hybrid learning method

at 20 epochs is the optimal combination to implement the ANFIS model of the proposed risk
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estimation technique. In addition, several experiments were carried out to train the NFS model of the
proposed risk estimation technique using four different learning methods. The results demonstrated
that the NFS model with the LM learning method is the best approach to implement the proposed
risk estimation technique to increase the accuracy, reduce the processing time needed to provide

access decisions in 10T applications and adapt to new changes of various real-world 10T applications.
SRQ5: How will the user/agent activities be monitored during the access session?

Most existing access control models did not employ a method to detect malicious actions after
granting access. Therefore, the proposed risk-based model added abnormality detection capability
by utilizing smart contracts to track and monitor user’s activities to detect and prevent malicious
actions during access sessions. MATLAB Simulink was utilized to simulate the operation of smart
contracts to validate its efficiency and effectiveness to monitor access sessions, as discussed in
section 8.2. After discussing different scenarios, the results demonstrated that smart contracts provide
an effective and efficient way to monitor user activities and prevent malicious actions in a timely

manner.
SRQ6: To what extent is the proposed risk-based model applicable to real 10T scenarios?

The ultimate target of any new approach is to guarantee that it is applicable in real-world scenarios.
Hence, the proposed risk-based model was evaluated using access control scenarios of three 10T
applications including healthcare, smart home and network router, as discussed in section 8.3. The
results demonstrated that the proposed risk-based model is applicable to various loT application and

it provides efficient and effective security solution.

9.2 Contributions

This research made the following contributions that can be beneficial to the research community:

e This research provided a novel dynamic and adaptive risk-based access control model that
uses contextual and real-time information collected from the loT environment while making
the access request to estimate the risk and determine the access decision. This model can be
adapted to unexpected situations and provide a flexible way to determine access decisions in

various loT application.

e Providing a clear and accurate risk estimation technique for obtaining a quantitative risk
value for each access request is one of the main contributions of this research. Integrating
the fuzzy logic system with expert judgment has demonstrated that it can provide accurate
and realistic risk values for access control operations. In the absence of a dataset that
represents risk probabilities of access control scenarios and its impact, 10T security domain

experts were interviewed to provide predicted measures of risk values according to their
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9.3

knowledge and experience in the form of linguistic variables. A clear and detailed
implementation of the risk estimation technique using the fuzzy logic system with expert

judgment was presented in this research.

This research proposed three risk decision bands to grant or deny access. The first band
grants access without monitoring, the second band grants access with monitoring, while the
third band denies access. In this research, twenty loT security experts from inside and outside

the UK were interviewed to provide acceptable risk values for the three risk decision bands.

Providing a risk-based model that can work when first used or connected without
adjustments was one of the contributions of this research. One of the issues associated with
existing risk-based access control models was the use of risk history as one of the risk factors.
So, the risk-based model cannot operate immediately as previous risk values are needed. This
research resolved this issue by presenting a solution that is based on running the proposed

risk-based model immediately before collecting previous risk values.

This research integrated the ANN with the fuzzy logic system to tune fuzzy variables and
use parallel computation and learning abilities of the ANN to provide a scalable and fast risk
estimation technique that can cope with the constant increase of the number of I0T devices
and provide access decisions in a timely manner. The ANFIS and NFS were utilized to
implement the risk estimation technique. The results demonstrated that combining ANN with
the fuzzy logic system have outperformed results produced by the fuzzy logic system in
which it takes only one-sixth of the time taken by the fuzzy logic system to process an access
request. It also added the learning capability that allows the risk estimation technique to adapt

to new changes of various 10T applications.

This research provided abnormality detection capability by using smart contracts to track
and monitor user activities during the access session to detect and prevent malicious actions.
MATLAB Simulink was utilized to simulate the operation of smart contracts to validate its
efficiency and effectiveness to monitor access sessions. The results demonstrated that smart

contracts can be used to provide an effective monitoring technique.

Future Work

The work provided by this research can be used as a foundation for future research to develop

dynamic and adaptive risk-based access control models. Below are some of the proposed research

directions.
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9.3.1 Deep Learning Techniques

One of the major stages to build a risk-based access control model for the 10T is the risk estimation
process. This process is based on estimating the possibility of information leakage and the value of
that information. For the access control context, quantitative risk estimation approaches are only
needed to provide a numeric value to determine the access decision. Typically, there is no universal
and best method for conducting risk analysis. In addition, providing an accurate and realistic risk
value for each access request for the dynamic 10T system is a very difficult process. Although
combining the ANN with the fuzzy logic system has provided an efficient and fast way to estimate
security risks in the 10T, deep learning techniques can be utilized to provide more improvements in
terms of accuracy and performance. Deep learning provides a scalable and efficient way to teach the
system by example to perform automatic feature extraction from raw data (Aziz & Dowling, 2019).
It is the main technology for enabling a variety of applications such as speech recognition, social

network filtering, driverless cars, bioinformatics, and audio recognition.

Like all learning approaches, deep learning techniques provide better results with large datasets. With
the availability of a dataset containing more than two million data records in this research, deep
learning algorithms are expected to provide better results in terms of accuracy, performance and
scalability.

9.3.2 Comparative Study of Risk Estimation Techniques

Determining a suitable risk estimation technique to implement an efficient and scalable risk-based
access control model for the 10T system is not easy. In this research, the fuzzy logic system with
expert judgment, ANFIS and NFS were utilized to implement the risk estimation process. However,
there are other machine learning techniques that can be adopted. Also, there are several deep learning
algorithms that can provide better results. With the availability of a dataset in this research, a
comparative study between different approaches can be utilized to determine the best approach for

each context of various 10T applications in terms of accuracy, performance and scalability.

9.3.3 Integration with Standard Access Model

Integrating the proposed adaptive risk-based access control model with existing standards is one of
the main objectives of future work. One of the popular standard access control frameworks is the
eXtensible Access Control Markup Language (XACML) (OASIS, 2003). It is considered as one of
the most promising policy languages dealing with dynamic and complex systems. It is broadly
accepted by the majority of experts, communities and organizations since it is compatible with most
access control models such as ACL, RBAC, and ABAC (Chen et al., 2013). Implementing the
proposed risk-based access control model with attribute-based XACML model will add more

advantages by utilizing both risk values associated with access request and user attributes to make
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the access decision, as shown in Figure 9.1. It will also facilitate the integration of the proposed

risk-based model with existing access control approaches such as ABAC and RBAC.
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Figure 9.1: Flow of the XACML model of the proposed risk-based access control model

9.34 10T Testbed for Practical Scenarios

The testbed is one of the best ways to test the applicability of new and innovative solutions on
real-world operating conditions. It provides a good tool to perform various experiments to discover
new technologies for generating ground-breaking products or techniques with the potential to
produce new international standards (Adjih et al., 2015). Although twenty 10T security experts
validated the proposed risk-based access control model, 10T testbed can provide an additional tool to
carry out practical experiments on how the proposed risk-based model can provide access decisions

dynamically based on contextual and real-time features collected from the lIoT environment.

9.3.5 Formal Methods for Smart Contracts

This research introduced smart contracts to monitor user activities during the access session to detect
and prevent malicious actions. To the best of the researcher’s knowledge, no study has been used
smart contracts in this context. Although MATLAB Simulink provided a simulation of the smart
contract to test the system response needed to detect abnormal and malicious activities, more
evaluation metrics to test the applicability of smart contracts in this context are needed. Therefore,
formal methods can be utilized to evaluate the effectiveness of smart contracts in monitoring user
activities in the 10T context. Formal methods are used to model complex systems, software or
hardware, as mathematical entities and provide a mathematical proof to evaluate the system

performance (Gaudel, 2017).
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9.3.6 Privacy-aware Risk and Trust Model

Risk-based access control model provides a dynamic way to determine access decisions by utilizing
the security risk value associated with each access request as the primary criterion. However, very
little attention was given to privacy, which is very essential especially in the 10T context. A
privacy-aware risk and trust model can be used to utilize the privacy risk value and the user trust to
decide access decisions. The privacy risk refers to the impact of violating the privacy of data to be
accessed by the requester. There are two main approaches to estimate data privacy: differential
privacy and syntactic approaches. So, the goal is to determine the suitable approaches to estimate the
privacy risk value for each access request. On the other hand, trust plays an important role to grant
or deny access. In this access control model, contextual and real-time features associated with the
access request will be used to estimate a trust value for each user. Then, the privacy risk value will

be compared against the trust value to determine the access decision for each access request.
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Appendix A Validation of Proposed Model and Fuzzy
Rules

This appendix contains all material of the expert interview that was carried out to validate the
proposed risk-based access control model, create fuzzy rules and determine values of access decision
bands. It involves contacting experts, information sheet of the interview, and consent form. This

followed by presenting interview questions.

A.1 Contacting Experts

Dear xxx.

My name is Hany Atlam; | am a PhD student in Computer Science at the University of
Southampton. | am working on developing an adaptive risk-based access control model for
the Internet of Things (1oT). | am writing to invite you to participate in an expert interview
to validate the proposed risk-based model and confirm a set of fuzzy rules based on your
experience and knowledge of security and loT applications. The interview will be via
Skype and it will be about 40 minutes and it can be arranged at your convenient time. The
results will help in building a dynamic risk-based access control model that can adapt to
unpredicted situations. | sincerely hope that you will consider participating in this
interview. | will be contacting you in the near future to confirm your interest in being
interviewed. Please feel free to contact me with any questions. Please find the attached

information sheet about the interview for your reference.

Sincerely,

231
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Participant Information Sheet

Ethics reference number: ERGO/FPSE/25091 Version: 1 Date: 27/06/2017

Study Title: Developing an Adaptive Model for Security Risk-based Access Control in the
Internet of Things

Investigator: Hany Atlam

Please read this information carefully before deciding to take part in this research. If you are happy
to participate, you will be asked to sign a consent form. Your participation is completely voluntary.

What is the research about?

This research is for my PhD. | have created a risk-based access control model for the Internet of
Things (10T) system. Risk estimation process is one of the major tasks to implement this model. |
will use the fuzzy logic system to estimate the risk value associated with each access request. By the
means of this interview, | wish to validate the proposed risk-based model and confirm fuzzy rules
that will be used to implement the risk estimation process.

Why have | been chosen?

You have been chosen because of your knowledge and experience in cyber security and loT
applications.

What will happen to me if | take part?

If you decided to take part in this research, you will spend about 40 minutes for completing the
guestionnaire or answering the questions in an interview format.

Are there any benefits in my taking part?

There are no benefits for you to take part in this work. Your participation is completely voluntary
Are there any risks involved?

No risks are involved in this research.

Will my data be confidential?

All data collected will be anonymous and will be used only for the purposes of research. Data will
be held on a password-protected computer so nobody except the researcher has access to it. The
collection of data complies with the University of Southampton policy under the data protection Act.

What happens if I change my mind?

You may withdraw at any time and for any reason. You may access, change, or withdraw your data
at any time and for any reason prior to its destruction.

What happens if something goes wrong? Should you have any concern or complaint, contact me
(Hany Atlam, hfalgl5@soton.ac.uk), otherwise please contact my supervisor prof. Gary Wills
(abw@ecs.soton.ac.uk). Otherwise please contact the FPSE Office (ergopse@soton.ac.uk) or any
other authoritative body such as the Research Integrity & Governance Team (rgoinfo@soton.ac.uk).
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Consent Form

Ethics reference number: ERGO/FPSE/25091 Version: 1

Date: 27/06/2017

Internet of Things

Study Title: Developing an Adaptive Model for Security Risk-based Access Control in the

Investigator: Hany Atlam

Please initial each statement if you agree:

I have read and understood the Participant Information (version 1 dated
12/01/2017) and have had the opportunity to ask questions about the study.

| agree to take part in this study.

| understand my participation is voluntary and | may withdraw at any time
for any reason.

Data Protection

and

I understand that information collected during my participation in this study is completely

anonymous / will be stored on a password protected computer/secure University server

and that this information will only be used in accordance with the Data Protection Act

(1998). The DPA (1998) requires data to be processed fairly and lawfully in accordance

with the rights of participants and protected by appropriate security. In addition, the DPA

(1998) makes provision for an appropriate authority, such as the Police, to access data

held by the study for the purpose of...

Name of participant (Print NAME).........covveirieeeereiiteieeieeieenreannanns.

Signature of PartiCiPant..........c.oveieiitiitiiit it
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A.2 Interview Questions

The main purpose of this research is to develop a risk-based access control model for the Internet of
Things (1oT) applications. This model has the ability to permit or deny access requests dynamically
based on the estimated risk value of each access request. One of the major tasks of implementing our
model is the risk estimation process. We decided to utilize the fuzzy logic system with expert
judgment as the appropriate risk estimation technique. One of the essential steps to implement fuzzy
logic is to set the appropriate fuzzy rules. Your response and expertise will help us to validate the
proposed model, confirm fuzzy rules and decide acceptable risk values to provide the access decision.
All provided information will be used for research purposes only. Your participation is greatly

appreciated.
Partl: Background Questions
1.1 What is your level of education?

Bachelor degree

Master degree

o 0O O

Doctoral degree

O Others, please specify..........ccovvvviiiiniinnnnn...

1.2 Which of the following describe your job role?
O Security Administrator

Security Analyst
Security Specialist
Senior Cybersecurity Engineer

Security researcher

o 0o o o O

Others, please specify.........c.covveviiiiiiiiiinnnn.

1.3 Which of the following 10T applications are you familiar with?
Connected industry
Smart city

Smart energy

o 0O 0O 0O

Connected car
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Smart home
Smart agriculture
Healthcare

Smart retail

Smart supply chain

o o o o o o

1.4 How long have you been working in the field of cyber security?

O Less than 2 years
O 2 —5years
O 6 — 10 years
O

More than 10 years

1.5 Do you have background knowledge about the fuzzy logic system?

O Yes
O No

O Other, please specify ...................o..e.

Part 2: Validation of Proposed Model

Others, please specify..........ccoveviiiiiiiiin.

We proposed a dynamic risk-based access control model. This model uses real-time and contextual

features associated with the user while making the access request with resource sensitivity, action

severity, and risk history as inputs/risk factors to estimate the security risk value associated with each

access request. Then, the estimated risk value is compared against risk policies to provide the access

decision, as shown in Figure A.1.

User Resource Action Risk
Context Sensitivity Severity History

!

Estimation

4

i 4

Risk Access
Policies Decision

Risk Monitoring
¢ User Activities

N

- e —

Figure A.1: Proposed risk-based access control

model
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We provide a summary of components of the proposed risk-based model as follow:

User Context: It represents the environmental attributes collected from the loT environment
at the time of making the access request like user location, current time, user profile, etc.
Resource Sensitivity: It represents how valuable the resource/data is to the owner or to the
service provider. Each resource or data have a different sensitivity level. So, the higher the
data sensitivity, the higher the risk associated with the data.

Action Severity: It represents the consequences of a certain action on a particular resource
in terms of security requirements of confidentiality, integrity and availability. For example,
the risk of a view operation is lower than the risk of a delete operation.

Risk History: It represents user previous risk values. It used to identify good and bad
authorized users and predict the user future behaviour.

Risk Policies: They are mainly used by the risk estimation module to make access decisions.
These policies are created by the resource owner or security system administrator to identify
terms and conditions of granting or denying access to a particular resource.

Risk Estimation Module: It is responsible for taking the input features/ risk factors to

quantify the risk value associated with each access request.

Please, use your knowledge and experience to answer these questions.

2.1 What is your feedback about the proposed risk-based access control model?

2.2 Are the proposed risk factors appropriate for different loT applications?

2.3 In term of importance for 10T applications, what is the ranking of the proposed four risk factors?




Appendix A: Validation of Proposed Model and Fuzzy Rules 237

Part 3: Validation of Fuzzy Rules

One of the major tasks to build a risk-based access control model is the risk estimation process. We
decided to use the fuzzy logic system to estimate the risk value. However, to build an efficient fuzzy
model, fuzzy rules should be specified by domain experts. We decided to use three fuzzy sets for

each risk factors/input and five fuzzy sets for the output risk, as shown in Table A.1.

Table A.1: Linguistic variables of input and output

Linguistic value Notation | Range
Input variable: User Context (UC)

Low L 0-04
Moderate M 0.3-0.7

High H 06-1

Input variable: Resource Sensitivity (RS)

Not Sensitive NS 0-0.35
Sensitive S 0.2-0.5
Highly Sensitive HS 045-1

Input variable: Action Severity (AS)

Low L 0-04
Moderate M 0.35-0.7

High H 06-1

Input variable: Risk History (RH)

Low L 0-0.4
Moderate M 0.3-0.7

High H 06-1

Output variable: Risk (R)

Negligible N 0-0.3
Low L 01-04
Moderate M 0.2-0.6
High H 0.4-0.8

Unacceptable High UH 0.7-1

Fuzzy rules are built as IF-THEN statements to describe how the output risk varies as a function of
the four risk factors. For example, if (action severity is Low & resource sensitivity is Not Sensitive
& user context is Low & risk history is Low) then (the output risk will be Negligible). Fuzzy rules
were built using information collected from the literature with researcher experience. The relation
between action severity and resource sensitivity that is shown in Figure A.2 was utilized with the

following logical rules:

e If the risk history increased, the output risk will not decrease.
e If the resource sensitivity increased, the output risk will not decrease.
o If the Action severity increased, the output risk will not decrease.

e If any two inputs are high, the lowest output will be high.
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o If the resource sensitivity is Highly Sensitive (HS) or Sensitive (S), the output risk cannot be
Negligible (N).

A

Resource Sensitivity

HS| H UH UH

NS| N N L

Lo

Action Severity
Figure A.2: Risk value regarding resource sensitivity and action severity

Please, confirm these fuzzy rules using your knowledge and experience.
Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive
Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High

Table A.2: Fuzzy rules when output is Negligible

Rule Risk Factors Expert Validation

No : : Output :
Action Resource User Risk Risk Yes No Output if No
Severity | Sensitivity | context | History

1 L NS L L N

2 M NS L L N

3 H NS L L N

4 L NS M L N

5 M NS M L N

6 H NS M L N

7 L NS H L N

8 L S L L N

9 M S L L N

10 L NS L M N

11 M NS L M N

12 L NS M M N

13 M NS M M N
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Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive
Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High

Table A.3: Fuzzy rules when output is Low

Rule Risk Factors Expert Validation

No : : Output :
Action | Resource User Risk Risk Yes No Output if No
Severity | Sensitivity | context | History

14 H S L L L

15 L HS L L L

16 M HS L L L

17 H HS L L L

18 L M L L

19 M M L L

20 M NS H L L

21 H NS L M L

22 L S L M L

23 H NS M M L

24 L NS H M L

25 L NS L H L

26 M NS L H L

27 L NS M H L

28 M NS M H L

Table A.4: Fuzzy rules when output is Moderate
Rule Risk Factors Expert Validation

No Action | Resource User Risk O;_tp; ‘ 8
Severity | Sensitivity | context | History ® Yes | No CTgTIsll e

29 H S M L M

30 L HS M L M

31 M HS M L M

32 H HS M L M

33 H NS H L M

34 L S H L M

35 M S H L M

36 M S L M M

37 H S L M M

38 L HS L M M

39 M HS L M M

40 L S M M M

41 M S M M M

42 M NS H M M

43 H NS H M M

44 H NS L H M

45 L S L H M

46 H NS M H M

47 L NS H H M
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Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive
Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High

Table A.5: Fuzzy rules when output is High

Rule Risk Factors Expert Validation

No : : Output :
Action | Resource User Risk Risk Yes No Output if No
Severity |Sensitivity | context | History

48 H S H L H

49 L HS H L H

50 H HS L M H

51 H S M M H

52 L HS M M H

53 M HS M M H

54 H HS M M H

55 L H M H

56 M H M H

57 L HS H M H

58 M L H H

59 L M H H

60 M M H H

Table A.6: Fuzzy rules when output is Unacceptable High
Rule Risk Factors Expert Validation

No Action | Resource User Risk O|IQJ'tp|(u ‘ -
Severity | Sensitivity | context | History ® Yes | No CUIUETING

61 M HS H L UH

62 H HS H L UH

63 H S H M UH

64 M HS H M UH

65 H HS H M UH

66 H S L H UH

67 L HS L H UH

68 M HS L H UH

69 H HS L H UH

70 H S M H UH

71 L HS M H UH

72 M HS M H UH

73 H HS M H UH

74 M NS H H UH

75 H NS H H UH

76 L S H H UH

77 M S H H UH

78 H S H H UH

79 L HS H H UH

80 M HS H H UH

81 H HS H H UH
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Part 4: Acceptable Risk Bands

To determine the access decision, the estimated risk value is

) ] ) - RISK SCALE
compared against acceptable risk values, which are specified in
risk policies, to determine access decisions. This research 10
proposed three risk decision bands, as follow:
— Allow band: This band is used to grant access without
ALLOW with
monitoring user activities during access sessions to keep Risk-Monitoring

the user’s privacy.

— Allow with Risk Monitoring band: This band is used to

grant access with monitoring all users’ behaviours and i

activities during the access session to detect any Figure A.3: Proposed access decision bands
malicious behaviour.
— Deny band: Due to the high-risk value associated with the user requesting the access, the
access will be denied through this band.
Please use your knowledge and experience to decide the best values for each risk decision band.
these risk bands. Please use Yes to confirm the suggested values by the researcher for each band, and

No to suggest other values.

4.1 Do you think the range from 0.0 — 0.25 is appropriate for the allow band?
O Yes

O No, please specify ......coovviiiviiiiiiiiiiiiiii
4.2 Do you think the range from 0.26 — 0.7 is appropriate for the allow with risk monitoring
band?

0 Yes
O No, please specify ......coovvviiiiiiiiiiiiiiiiiiie

4.3 Do you think the range from 0.71 — 1.0 is appropriate for the deny band?
O Yes
O No, please specify ......covvviiiiiiiiiiiiiiiiie

4.4 Do you suggest any other decision bands?







Appendix B Validating Fuzzy Rules of Cold Start

This appendix contains all material of the expert interview that was carried out to validate fuzzy rules
of the cold start problem. Since the information sheet and consent form are the same as in Appendix

A, this section will only present interview questions.
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B.1 Interview Question

The main purpose of this research is to develop a risk-based access control model for loT
applications. This model has the ability to permit or deny access requests dynamically based on the
estimated risk value of each access request. All provided information would be used for research
purposes only. Your participation is greatly appreciated.

Part 1: Background Questions

1.1 Which of the following describe your job role?
O Security Administrator

Security Analyst
Security Specialist

Senior Cybersecurity Engineer

o 0o o 0Od

Security researcher

O Others, please specify........ccooevviiiiiiiiiinnnnnnn.

1.2 Which of the following IoT applications are you familiar with?
Connected industry

Smart city

Smart energy

Connected car

Smart home

Smart agriculture

Healthcare

Smart retail

Smart supply chain

o 0o 0o o o o o o o O

Others, please specify.........c.coeveviiiiiiiiiinen.

1.3 How long have you been working in the field of 10T security?

O Less than 2 years
O 2 — 5 years

O 6 — 10 years
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O More than 10 years

1.4 Do you have background knowledge about the fuzzy logic system?

O Yes
O No

O Other, please specify .........cccvveiiiiiininne.

Part 2: Validation of Fuzzy Rules

The proposed risk-based access control model uses real-time user context, resource sensitivity, action
severity, and risk history as inputs to estimate the security risk value for each access request, as
shown in Figure B.1.

e User Context: it represents the environmental attributes associated with the user at the time
of making the access request such as user location, current time, and user profile.

o Resource Sensitivity: It represents how valuable the resource/data is to the owner or to the
service provider. For instance, the higher the data sensitivity, the higher the risk associated
with the data.

e Action Severity: It represents the consequences of a certain action on a particular resource
in terms of security requirements of confidentiality, integrity, and availability. For example,
the risk of a view operation is lower than the risk of a delete operation.

e Risk History: It represents user previous risk values. It used to identify good and bad

authorized users and predict the user future behaviour.
] .
User Resource Action
Context Sensitivity Severity

Risk Monitoring
< User Activities

Estimation
l A
Risk Access
Policies Decision

- o=

Figure B.1: Proposed risk-based access control model
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e Cold Start

The proposed risk-based access control model has four risk factors; user context, resource sensitivity,
action severity and risk history. Each risk factor is used to estimate the overall risk score associated
with the access request to make the access decision. However, the user requesting access for the first
time will not have a risk history value. Therefore, the risk estimation module of the proposed risk-
based model can not estimate the overall risk value without the risk history value. To solve this issue,
we have to add new fuzzy rules containing only three risk factors including user context, resource
sensitivity and action severity without risk history. So, if there is no risk history, the other three risk

factors will be used to estimate the risk value to make the access decision

e Fuzzy Rules

Fuzzy rules are built as IF-THEN statements to describe how the output risk varies as a function of
the three risk factors. Fuzzy rules were built using information collected from the literature with
researcher experience. The relation between action severity and resource sensitivity that is shown in

Figure B. was utilized with the following logical rules:

o If the resource sensitivity increased, the output risk will not decrease.

e [f the Action severity increased, the output risk will not decrease.

e If any two inputs are high, the lowest output will be high.

o |f the resource sensitivity is Highly Sensitive (HS) or Sensitive (S), the output risk cannot be
Negligible (N).

Resource Sensitivity

HS H | UH | UH

NS| N N L

.
L

Action Severity

Figure B.2: Risk value regarding resource sensitivity and action severity

In addition, three fuzzy sets for each risk factors/input and five fuzzy sets for the output risk were

proposed, as shown in Figure B.3.
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Input variable: User Context (UC)

Linguistic value Notation Range
Low L 0-04
Moderate M 0.3-0.7
High H 0.6-1
Input variable: Resource Sensitivity (RS)
Linguistic value Notation Range
Not Sensitive NS 0-0.35
Sensitive S 0.2-0.5
Highly Sensitive HS 0.45-1
Input variable: Action Severity (AS)
Linguistic value Notation Range
Low L 0-04
Moderate M 0.35-0.7
High H 06-1
Output variable: Risk (R)
Linguistic value Notation Range
Negligible N 0-0.3
Low L 0.1-04
Moderate M 0.2-0.6
High H 04-08
Unacceptable High UH 0.7-1

Figure B.3: Risk value regarding resource sensitivity and action severity

Please, use your knowledge and experience to validate these rules.

Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive

Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High

Table B.1: Fuzzy rules with the output of cold start

Rule Risk Factors Expert Validation
No Action | Resource User O;rgg ‘ .
Severity |Sensitivity | context Yes No CUgELE e
82 L NS L N
83 M NS L N
84 H NS L N
85 L L L
86 M L L
87 H L L
88 L HS L M
89 M HS L M
90 H HS L M
91 L NS M N
92 M NS M L
93 H NS M L
94 L M M
95 M M M
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Table B.1: Fuzzy rules with the output of cold start (Cont.)

Rule Risk Factors Expert Validation
No Action | Resource User O;:Sﬁf ‘ .
Severity |Sensitivity | context Yes No CUELL e

96 H S M H

97 L HS M H

98 M HS M UH

99 H HS M UH

100 L NS H L

101 M NS H M

102 H NS H H

103 L H UH

104 M H UH

105 H H UH

106 L HS H UH

107 M HS H UH

108 H HS H UH






