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The Internet of Things (IoT) is considered as the next stage of the evolution of the Internet. It 

promotes the concept of anytime, anywhere connectivity for anything. The IoT has the ability to 

connect billions of devices to share their information and create new services that improve our quality 

of life. Although the IoT provides countless benefits, it creates several security issues. One of the 

approaches to resolve these issues is to build an effective access control model. 

Due to the dynamic nature of the IoT, static access control approaches cannot provide an appropriate 

security solution, as they are static and context-insensitive. Therefore, this research proposes a novel 

adaptive risk-based access control model to determine access permissions dynamically. This model 

performs a security risk analysis on the access request by using IoT contextual and real-time 

information to make the access decision. The proposed model has four inputs: user context, resource 

sensitivity, action severity and risk history. These inputs are used to estimate the risk value associated 

with each access request to make the access decision. In addition, this research adds abnormality 

detection capability by using smart contracts to track and monitor user activities during the access 

session to detect and prevent malicious actions. 

One of the main problems to implement the proposed model was to determine the appropriate risk 

estimation technique that ensures flexibility and scalability of the IoT system. Hence, a review of 

most common risk estimation techniques was carried out and the fuzzy logic system with expert 

judgment was selected to implement the risk estimation process. In addition, to overcome scalability 

and learning issues of the proposed fuzzy risk estimation technique, Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and Neuro-Fuzzy System (NFS) were utilized to implement the risk estimation 

technique. The results demonstrated that it outperformed the results produced by the fuzzy logic 

system, increased the accuracy and can adapt to changes of various IoT applications. In addition, this 

research presented a solution for the cold start problem associated with risk-based models that use 

risk history as one of the risk factors. The results demonstrated that the proposed risk-based model 

can operate immediately when first used or connected without reconfiguration or adjustment. 



 

 

 

By using MATLAB Simulink, the operation of smart contracts was simulated to track and monitor 

user activities during the access session. The results demonstrated that it provides an effective way 

to detect and prevent malicious actions in a timely manner. To validate the applicability of the 

proposed adaptive risk-based model in real-world IoT scenarios, access control scenarios of three 

IoT applications including healthcare, smart home and network router were presented. The results 

demonstrated that the proposed risk-based model adds more advantages over existing access control 

models and can be applied to various and real-world IoT applications.
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Chapter 1:  Introduction  

During the past decade, the Internet of Things (IoT) has gained significant attention in academia as 

well as industry. The main reasons behind this massive interest are the unlimited capabilities that the 

IoT can provide (Perera et al., 2014). The IoT represents a revolutionary technology that enables 

almost everything everywhere to be connected over the Internet. It enables various devices and 

objects around us in the environment to be addressable, recognizable and locatable via cheap sensors. 

These devices can be connected and communicate with each other over the Internet using either 

wired or wireless communication networks (Leloglu, 2017). The IoT devices involve not only normal 

electronic devices or technological development products like vehicles, phones, etc, but also other 

objects such as food, animals, clothes, trees, etc. The key purpose of the IoT system is to allow 

various objects to be connected in anyplace anytime by anyone preferably using any path/network 

(Patel & Patel, 2016). 

Although the IoT brought several benefits, it also creates multiple challenges, especially in security 

(Iqbal et al., 2016). Achieving a high level of security is a challenge due to the heterogeneous and 

distributed nature of the IoT system. In addition, applying sophisticated security algorithms could 

affect usability and user satisfaction due to resource constraints in IoT devices (Habib & Leister, 

2015). One of the significant elements to handle security challenges in the IoT is the access control 

model. This model is used to control access to system resources by allowing only authorized users 

who have been successfully authenticated. An access control model consists of three main elements; 

subject, target and rules. Subjects are system users who make the access request to access system 

resources (targets). Rules are used to determine the access decision whether granting or denying the 

access (Dos Santos et al., 2014; Liu et al., 2016). The main purpose of the access control is to reject 

unauthorized users and limit operations of authorized users on a certain device. In addition, it 

prevents the activity that could cause a security breach (Dos Santos et al., 2014). A powerful access 

control model should fulfil security requirements of confidentiality, integrity, and availability 

(Suhendra, 2011). 
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There are two categories of access control approaches; static and dynamic. Static access control 

approaches use rigid and predefined policies to provide the access decision. These policies always 

give the same result in different situations. Hence, this rigid method cannot provide a reliable security 

solution for IoT systems, which are dynamic in nature (Chen et al., 2007). On the other hand, dynamic 

access control approaches use not only static policies but also real-time and dynamic features to 

determine access decisions. These dynamic features involve context, trust, history events, risk, and 

operational need (Shaikh et al., 2012). 

Risk-based access control model is one of the dynamic models. It uses the security risk associated 

with the access request as a criterion to determine access decisions. Although this model is still in its 

first stage of approval, there is an increasing demand to specify its essential elements and procedures 

(Dos Santos et al., 2014). A risk-based model has many advantages. For instance, it provides more 

flexibility in accessing system resources by using real-time and contextual information collected 

while making the access request to decide whether granting or denying access. In addition, it takes 

into consideration the exceptional access requests that are necessary for medical and military 

applications where providing access can save thousands of lives (Khambhammettu, Boulares, Adi, 

& Logrippo, 2013). Also, it provides an efficient solution to unexpected situations which require 

violating the policy, as policies are incomplete and imperfect. The ultimate goal of the risk-based 

access control model is to create a system that encourages information sharing to maximize 

organization’s benefits while keeping users accountable for their actions and stop the expected 

damage due to sensitive information disclosure (Chen et al., 2007). 

1.1 Research Objective  

The major goal of the IoT system is to increase information sharing and at the same time ensures that 

the highest possible security measures are applied to prevent sensitive information disclosure. 

However, current access control models are built using static and predefined policies that give the 

same result in different situations. This binary decision (grant/deny) cannot create an effective and 

efficient level of security in a dynamic, heterogeneous and distrusted environment like IoT systems 

(Castiglione et al., 2016; Shen et al., 2018). Therefore, the need to adopt dynamic access control 

approaches should be one of the essential priorities to provide an efficient and flexible access control 

model for the IoT. With billions of sensors in the IoT environment, several contextual and dynamic 

features can be collected to build a dynamic access control model. This, in turn, provides more 

flexibility to adapt to different situations and conditions while making access decisions in various 

IoT applications.  

The objective of this research is to develop a dynamic and adaptive risk-based access control model 

for the IoT. This model utilizes real-time and contextual features collected while making the access 

request to determine access decisions. The proposed risk-based model uses user attributes related to 
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the surrounding environment such as time and location, sensitivity of data to be accessed by the user, 

severity of actions that will be performed by the user, and user risk history as inputs for the risk 

estimation algorithm to estimate the risk value for each access request to determine the access 

decision. In contrast to current access control models, the proposed model provides adaptive features 

by using smart contracts to track and monitor user’s activities during access sessions to detect and 

prevent malicious actions.  

1.2 Research Challenges 

Risk-based access control model provides a flexible way to increase information sharing and at the 

same time ensures the security of information. After reviewing existing literature regarding 

risk-based access control models (see in Chapter 2 and 3), the literature failed to: 

• Provide a dynamic risk-based access control model that can utilize contextual and real-time 

features collected at the time of making access requests and be adopted in various IoT 

applications. 

• Present a clear risk estimation method to estimate the risk value associated with the access 

request quantitatively in a dynamic environment. 

• Provide a scalable risk estimation technique that can cope with the constant increase in the 

number of IoT devices and adapt to changes of various IoT applications. 

• Provide a plug and play risk-based access control model that intended to work perfectly when 

first used or connected, without reconfiguration or adjustment. 

• Consider a way to detect and prevent malicious actions during access sessions. 

• Provide a way to evaluate the accuracy and performance of the risk-based access control 

model in real-world IoT applications. 

1.3 Research Questions  

The major objective of this research is to provide a dynamic and adaptive risk-based access control 

model that uses real-time and contextual information to provide access decisions for various IoT 

applications. To achieve the research objective, the following research question and sub-questions 

need to be addressed: 

RQ: What is the appropriate adaptive risk-based access control model for the IoT system? 

This question is divided into six sub-questions: 
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SRQ1: What is the appropriate risk estimation technique to estimate the risk associated with 

the access request? 

SRQ2: What are acceptable risk values to make the access decision in IoT applications? 

SRQ3: How to provide plug and play risk-based model that can work when first used or 

connected to an IoT system? 

SRQ4: How to provide a fast and scalable risk estimation technique to handle the constant 

increase in the number of IoT devices? 

SRQ5: How will the user/agent activities be monitored during the access session? 

SRQ6: To what extent is the proposed risk-based model applicable to real-world IoT 

scenarios?  

1.4 Thesis Structure 

Chapter 2 provides the background and literature review of access control models in the IoT. It opens 

by providing an overview of the IoT and its related security challenges. This is followed 

by providing a discussion of IoT security and access control models. Then, chapter 2 

reviews the literature regarding risk-based access control models by highlighting risk 

factors and risk estimation approaches. This is followed by providing an overview of 

smart contracts by highlighting their structure and benefits and how smart contracts work. 

Chapter 3 provides a discussion of risk estimation techniques. It starts by providing an overview of 

quantitative risk estimation approaches discussed in related risk-based models by 

highlighting their advantages and weaknesses. Then, chapter 3 provides an overview of 

the fuzzy logic approach with expert judgment and how it can be used to implement the 

risk estimation process of the proposed risk-based model.   

Chapter 4 presents the proposed adaptive risk-based access control model for the IoT. It starts by 

discussing research problems the literature failed to address. Then, it introduces the 

proposed adaptive risk-based access control model by discussing its main elements and 

the process flow. This is followed by discussing how the proposed adaptive risk-based 

model will resolve research problems extracted from the literature. Then, chapter 4 

presents research methods used in this research to address research questions.  

Chapter 5 presents the implementation of the risk estimation process using the fuzzy logic system 

with expert judgment. It provides a step-by-step discussion of the implementation of the 

proposed risk estimation technique and how security experts have validated fuzzy rules 

and decided acceptable risk values of risk decision bands. This is followed by presenting 
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a solution for the cold start problem. Then, chapter 5 presents a set of experiments to 

evaluate the efficiency of the proposed fuzzy risk estimation technique to measure the 

response time with the different number of access requests and determine the most 

efficient MF, defuzzification method, and rule aggregation operator. 

Chapter 6 presents the implementation of the proposed risk estimation technique using the ANFIS. 

It starts by providing an overview of the ANFIS. Then, it presents the implementation of 

the risk estimation technique using the ANFIS by showing different experimental results 

of training the ANFIS model using both hybrid and backpropagation learning methods.  

Chapter 7 presents the implementation of the proposed risk estimation technique using the NFS. It 

starts by providing an overview of the NFS by highlighting its objectives and types of 

NFS methods. Then, chapter 7 presents the implementation of the risk estimation 

technique using the NFS by showing different experimental results of training the NFS 

model using four learning algorithms. Then, it compares the results of the NFS with the 

ANFIS and the fuzzy logic system.  

Chapter 8 provides a discussion of access monitoring and model evaluation. It starts by providing an 

overview of access monitoring. Then, it discusses simulating the operation of smart 

contracts to monitor user activities during the access session by using Simulink. Then, 

chapter 8 discusses the evaluation of the proposed risk-based access control model by 

presenting access control scenarios of three IoT applications including healthcare, smart 

home and network router. 

Chapter 9 summarises the main points of this research and presents the contribution and future work. 
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Chapter 2:  Background & Literature Review  

This chapter provides the background and literature review related to the research problem 

introduced in chapter 1. It opens by providing an overview of the IoT system by discussing IoT 

layered architecture, characteristics and common applications. Section 2.2 provides a discussion on 

IoT security by highlighting security requirements and challenges of the IoT system. Section 2.3 

provides an overview of access control involving access control architecture and different types of 

access control approaches. Section 2.4 introduces context-awareness in the IoT system. Section 2.5 

provides the literature review regarding risk-based access control models and its main elements. This 

review examines existing work regarding context-aware models, risk-based models and risk factors. 

Section 2.6 presents an overview of smart contracts by highlighting its main benefits and how it 

works. The chapter closes by providing a summary of the main points discussed through the chapter 

and introduces the next chapter.  

2.1 An Overview of IoT 

The IoT is considered as a universal presence that allows all objects/things in our environment to be 

connected over the Internet with the capability to interconnect with each other without human 

intervention. The IoT involves a variety of objects that can be connected using either wired or 

wireless networks. These objects have a unique addressing scheme that allows them to interact and 

cooperate with each other to create novel applications and services such as smart homes, smart 

transportation, connected cars, smart grids, smart cities, smart traffic control, etc., which improve 

our quality of life. 

The IoT concept is not new, it has passed through several phases before reaching what it is today. 

The IoT notion starts in 1982 when four students from Carnegie Mellon University invented the 

ARPANET-connected coke machine to indicate whether drinks contained in the coke machine are 

cold or not. Their main idea was to count how many coke bottles had remained in each row and for 

how long. So, if the loaded bottle is left for a long time in the machine, it is labelled “cold”. This 
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experiment has inspired a lot of inventors all over the world to create their own connected appliances 

(Farooq & Waseem, 2015). 

In the early 1990s, IBM scientists presented and patented an Ultra-High Frequency (UHF) Radio 

Frequency Identification (RFID) that covers wide distance and provides fast data transfer. Although 

IBM performed a few pilot experiments, it never commercialized this new technology. In the mid-

1990s, IBM suffered from tough financial problems which made them sell their patent to Intermec, 

a barcode system provider, which utilized this technology to build multiple applications. However, 

due to the high cost of this technology at this time and low capacities of sales, this technology did 

not spread as was expected (Roberto et al., 2015). 

In 1999, the Auto-IDentification Centre at the Massachusetts Institute of Technology (MIT) has 

received funds from various organizations to utilize RFID technology to link different objects 

together. This happened when two professors, David Brock and Sanjay Sarma, used RFID tags to 

track products through the supply chain. Their idea was to use RFID tag’s serial number to track the 

products to save costs, since producing a more advanced chip with large memory storage will be 

more expensive. Data linked with RFID tags were kept in a database that can be accessed over the 

Internet. 

Many researchers and organizations believe that the term “Internet of Things” was first introduced 

in 1999 by Kevin Ashton, who was the executive director of the MIT Auto-IDentification Centre 

(Ashton, 2009). Ashton has said, “The Internet of Things has the potential to change the world just 

as the Internet did. Maybe even more so” (Ashton, 2009). While others argue that Neil Gershenfeld 

is the first to speak about the idea of the IoT in his book entitled “When Things Start to Think” which 

published in 1999 (Gershenfeld,1999). The IoT was officially presented by the International 

Telecommunication Union (ITU) in 2005 (ITU, 2005).  

The IoT has been defined by many organizations and researchers. However, the definition provided 

by the ITU in 2012 is the most common. It stated: “a global infrastructure for the information society, 

enabling advanced services by interconnecting (physical and virtual) things based on existing and 

evolving, interoperable information and communication technologies” (ITU, 2012). In addition, 

Guillemin and Friess (2009) have suggested one of the simplest definitions of the IoT system, as 

shown in Figure 2.1. It stated: “The Internet of Things allows people and things to be connected 

anytime, anyplace, with anything and anyone, ideally using any path/network and any service”.  
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Figure 2.1: The IoT can connect anything anywhere using any path (Guillemin & Friess, 2009) 

2.1.1 IoT Expansion  

The IoT has the capability to modify business models and value chains in different organizations. It 

is not just a smart object connected to the Internet. In some stage, all objects will have the ability to 

connect and communicate over the Internet. The number of connected devices exceeds the population 

worldwide from 2008 (Statista, 2018). With unlimited capabilities and advantages of the IoT system, 

novel applications and services can be created every day. According to Statista (2018), the number 

of IoT devices is expected to reach about 31 billion worldwide by the end of 2020. This number is 

expected to increase significantly to reach about 75 billion devices by the end of 2025, as depicted 

in Figure 2.2.  

 

Figure 2.2: Expected IoT growth from 2015 to 2025 (Statista, 2018) 
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In addition, the IoT market is growing almost exponentially. According to Statista (2018), the 

estimated revenue of the IoT in 2015 was $ 743 billion. This number is expected to increase 

dramatically to reach $ 1710 billion by the end of 2019.  

2.1.2 Architecture of IoT  

The IoT World Forum (IWF) architecture committee released an IoT reference model in October 

2014 (Stallings, 2015). This reference model works as a common framework to help the industry to 

accelerate IoT deployments. Also, it is intended to consolidate and encourage the collaboration and 

development of IoT deployment models. The IoT reference model is designed as seven-layers so that 

each layer provides additional information for establishing a common terminology, as shown in 

Figure 2.3. It also classifies where various types of processing are operated through different layers 

of the IoT reference model. Further, this model enables various manufacturers to build IoT products 

that are compatible with each other, which ultimately convert the IoT from a conceptual model into 

a real and approachable system. 

 

Figure 2.3: The IoT reference architecture layers (Stallings, 2015). 

Layer 1 is the physical layer. It contains physical devices and controllers that manage various objects. 

These objects represent things in the IoT environment that involve various types of devices to collect, 

send and receive information. For instance, sensors that collect information about the surrounding 

environment (Cisco, 2014). Communications and connectivity are in layer 2. This layer is used to 

interconnect different IoT things with each other using interconnection devices such as switches, 
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gateway, router and firewalls. Layer 3 is the edge computing. This layer takes data coming from the 

connectivity layer and converts it into information appropriate for storage and higher-level 

processing. At this layer, the processing components work with a huge volume of data and it executes 

data transformation operations to reduce data size. 

Layer 4 is the data accumulation. This layer is concerned with storing data coming from different 

IoT devices. These data are filtered and processed by the edge computing layer that absorbs large 

quantities of data and placed them in storage to be accessible by the higher levels. Different types of 

data in various formats and from heterogeneous processors may come up from the edge computing 

layer for storage. Layer 4 is the data abstraction layer. This layer aggregates and formats stored data 

in a way that make them accessible to different applications in a more manageable and efficient way. 

Layer 6 is the application layer. This layer is concerned with the information interpretation for 

various IoT applications. This layer encompasses a variety of applications that use IoT input data or 

control IoT devices (Stallings, 2015). The collaboration and processes are in layer 7. This layer 

identifies individuals who can communicate and collaborate to make the IoT system more useful. 

2.1.3 Essential Characteristics of IoT 

The IoT represents a promising technology that aims to improve people’s quality of life by generating 

new applications and digitized services that facilitate people daily activities. There is a set of common 

features of the IoT system, which includes: 

• Large Scale: IoT devices are counted in billions. This large-scale network needs to be 

controlled to allow devices to communicate with each other. In addition, this large-scale 

network generates a huge amount of data which produce a critical issue regarding data 

interpretation and analysis. 

• Intelligence: Combining sophisticated software algorithms with hardware allow IoT devices 

to become smart. These abilities allow IoT devices to make intelligent decisions in various 

situations and interact intelligently with other communicating devices. 

• Sensing: Sensors are the main part of the IoT system. These sensors are used to perceive 

changes in the surrounding environment and generate data that reveal their status. With 

various sensing technologies, sensors provide a good understating of the surroundings which 

increase human awareness about the physical world. 

• Dynamic Environment: The IoT can connect almost all objects of our environment without 

being able to determine the IoT network boundaries which makes it a dynamic system in 

nature. Also, IoT devices can operate and be adjusted dynamically based on changing 

conditions and situations. 
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• Heterogeneity: The IoT system involves billions of devices with heterogeneous features 

such as operating systems, platforms, communication protocols and others. These 

heterogeneous features make the management operation a complex task to perform. 

• Lightweight: Most IoT devices are designed to be small and lightweight with limited 

capabilities of memory storage and computation power, so they are built to work with 

minimal energy consumption. 

• Connectivity: One of the main features of the IoT system is the ability to connect various 

devices with different characteristics and use their shared information to create novel 

applications and services. 

• Self-configuring: Devices need to be configured to perform a specific task. But for IoT 

devices, they have the capability of self-configuring which enable them to operate without 

the human intervention. These devices could configure themselves to the up-to-date software 

in association with the device manufacturer without user involvement (Stallings, 2015). For 

example, mobile phones now can be upgraded automatically to up-to-date software without 

user involvement. 

• Unique Identity: Within the IoT network, each IoT object is identified and recognized using 

a unique identifier such as the IP address. These identities are provided by IoT manufacturers 

to use it to upgrade devices to appropriate platforms. Further, these devices have interfaces 

that enable the users to collect the required information from devices, record their status and 

manage them remotely. 

• Context-awareness: In the IoT environment, there are multiple sensors that sense their 

surroundings, collect and store the required information. These sensors may take decisions 

based on the collected data which make it a context-aware. 

2.1.4 IoT Applications  

The IoT system can interconnect almost all physical and virtual objects in our environment that yield 

new services and applications. These applications can be adopted in different domains to increase 

our quality of life. This section provides a discussion on common IoT applications. 

2.1.4.1 Healthcare 

The IoT has proven it can provide several benefits for the healthcare domain by creating new services 

that help patients and keep the field innovative. There are multiple wearable devices developed to 

monitor and track the patient’s health conditions. These devices help older patients to live 

independently without fear. Also, these devices can be utilized to observe and store patients’ health 

conditions constantly and send warning messages in abnormal situations in which if the situation is 
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minor, the device itself can recommend a treatment for the patient. While if it is a major situation, 

the device can send urgent messages to the hospital or ambulances to be immediately dispatched 

(Akkaş & Sokullu, 2017).  

2.1.4.2 Smart Agriculture 

With the existence of multiple sensors within the IoT environment, farmers can use collected data to 

produce a better return on the investment. Using sensors, the soil parameters such as humidity, salt 

level and temperature can be collected and measured to increase productivity. Furthermore, with the 

existence of several wireless technologies such as geographical information system and remote 

sensing, there are many chances to collect relevant information about the soil quickly and efficiently 

which can help to substitute human effort with automatic machinery to increase agricultural 

production (Krishna et al., 2017). There is significant growth in the adoption of IoT devices in 

agriculture. It is predicted that the number of IoT devices in agriculture will reach about 75 million 

by the end of 2020 (Akkaş & Sokullu, 2017). 

2.1.4.3 Supply Chain and Logistics 

Using RFID and Near Field Communication (NFC), products can be tracked from the manufacturer 

to the distribution location. RFID tags attached to the products are used to identify each product 

uniquely and collect relevant information and convey it in real-time along with location information. 

These tags are used to transmit messages showing exactly what products, sizes and style variations 

as well as temperature and humidity of products. Moreover, automated data capture gives real-time 

visibility of stock and avoids manual counting and human errors. In simple words, the IoT is set to 

revolutionize the supply chain with both operational efficiencies and revenue opportunities (Guo et 

al., 2012). 

2.1.4.4 Smart Home  

Smart home is one of the most popular applications of the IoT system. Thanks to sensor and actuation 

technologies along with Wireless Sensor Networks (WSNs), people can connect a variety of smart 

appliances inside their homes to resolve their interests. Smart homes offer greater energy-efficiency 

in which smart appliances can be set to automatically run and then turn off when their job is done.  For 

example, lights can shut off automatically when no one is in the room. Also, the thermostat can be 

set to let the indoor temperature drop during the day before returning it to a more comfortable level 

just before residents arrive in the evening (Pǎtru et al., 2016). 

2.1.4.5 Smart City 

A smart city refers to the adoption of IoT devices such as sensors, meters, lights, etc. to monitor and 

collect information about the surrounding environment of a city to provide new digitized services to 

improve public services and city infrastructure. IoT solutions are involved in many areas of smart 
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cities such as smart street lighting, trash management, smart parking and traffic management (Zanella 

et al., 2014). 

For the smart traffic, collected sensor information about traffic can be sent to citizens’ phones to 

monitor traffic in real-time and allow drivers to choose the best roads to save driving efforts and 

time. Also, drivers can be warned in the case of accidents to redirect away from congestion. For trash 

management, IoT sensors can be deployed across trash bins to send messages to specific authorities 

to report bins that need to be emptied (Khatoun & Zeadally, 2017).  

2.1.4.6 Smart Grid  

IoT sensors can be utilized to collect relevant information about energy consumption in homes to use 

energy efficiently and save money. For example, suggesting better ways to save energy. Also, IoT 

sensors information can be used to deliver consumers all relevant information about various energy 

suppliers in an automated way for choosing the best for consumers.  

The concept of the smart grid adds intelligence at the power flow cycle from supplier to consumer. 

This type of intelligence can be used to help consumers to be aware of power consumption and 

dynamic pricing. Also, one of the main applications of the smart grid is the smart meter which 

collects, records and analyses power consumption at different times of the day. This information can 

be used by consumers to adjust their power consumption and change their lifestyles to reduce costs 

(Zanella et al., 2014). 

2.1.4.7 Connected Car 

Smart car or connected car started to be deployed into our community. This type of cars can access 

the Internet and share their data with other devices. The number of cars equipped with this facility is 

increasing every day, which will allow the appearance of several applications for connected cars in 

the near future (Kalmeshwar & Prasad, 2017). The connected car provides several advantages over 

the normal one. It can reduce car accidents and decrease car drivers’ errors by allowing the driver to 

operate the car remotely. These driverless cars also can save time and reduce driving stress. Several 

car manufacturers such as BMW, Ford and Volvo have confirmed that there will be fully autonomous 

cars by the end of 2021 (Xu et al., 2014). 

2.1.4.8 Wearables 

Wearables have a huge interest in markets all over the world. Many companies started to produce 

these devices in huge quantities to satisfy increased demands including Google and Samsung. 

According to Statista (2018), the number of connected wearable devices is expected to reach 830 

million at the end of 2020. Wearables devices are equipped with sensors and can connect to the 

Internet for data sharing. These sensors collect data about the user which is later processed to extract 
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meaningful information. Most common wearables devices are in fitness, health and entertainment 

(Cirani & Picone, 2015). 

2.2 IoT Security  

Security is one of the major challenges standing as a barrier in the way of successful adoption of IoT 

applications. The value of the IoT system comes from connecting all small and large systems together 

and allowing them to communicate with each other over the Internet. Securing IoT devices and data 

transmission and communication should be one of the fundamental priorities to consider (Elkhodr et 

al., 2013b). 

The IoT is a dynamic system in nature in which every poorly secured object can disturb the security 

and resilience of the entire system as IoT devices are connected like a chain. The ease of connection 

and access of IoT devices opens doors for severe security issues especially with the large-scale 

distribution of heterogeneous devices, their ability to connect to other devices without requesting 

permissions or even notifying their owners and probability of flooding these devices with severe 

security threats. 

Handling security challenges in the IoT context should be an essential priority to increase adoption 

of IoT applications. Users need to be fully confident about the security of their IoT devices and their 

related applications. They need to ensure that their devices are effectively secured from various 

known threats as IoT devices become more integrated into people daily life’s activities (Iqbal et al., 

2016).  

2.2.1 Security Requirements for IoT  

Security of the IoT system can be improved by employing classical security measures. Typical CIA 

(Confidentiality, Integrity, and Availability) security requirements should be employed to provide a 

secure IoT system. 

Confidentiality means exchanging messages between a sender and receiver should be protected 

against any malicious or unauthenticated user (Maple, 2017). For the IoT system, confidentiality 

need not only be guaranteed inside communication networks but also when transmitting messages 

between various IoT devices. While integrity is used to guarantee that the content of messages 

exchanged between the sender and receiver are protected against any manipulation or modification. 

In the IoT system, integrity checks can be carried out at each node involved in the message exchange 

between the sender and receiver. Availability is used to guarantee that a malicious user is not capable 

of disrupting or harmfully affecting communication or quality of service provided by IoT devices or 

communication networks (Yu et al., 2016). 



18                                                                         Chapter 2: Background and Literature Review  

 

Although CIA security measures are essential for the IoT, there are other security requirements that 

need to be implemented for each level of the IoT architecture, as shown in Figure 2.4. Node 

authentication is one of the main security issues in the IoT physical layer to avoid unauthenticated 

node access and keep the communication channel between IoT nodes secure from various types of 

attacks. So, a lightweight cryptographic algorithm is needed to encrypt transmitted data especially 

for resources-constrained IoT devices (Suo et al., 2012). 

 

Figure 2.4: Security requirements at each level of the IoT architecture  

For the connectivity layer, communication security measures are needed as well as identity 

authentication to prevent access of illegal nodes. Also, Distributed Denial of Service (DDoS) attack 

is common at this level, so there is a need to protect against this attack (Abdur et al., 2017). For data 

abstraction, accumulation and edge computing levels, many application security mechanisms are 

needed to secure data stored in Cloud computing. Strong encryption algorithms are needed besides 

up-to-date anti-virus. For the application and collaboration level, there is a need to adopt 

authentication and key agreement to protect user’s privacy. Moreover, security awareness and 

password management are essential for information security at this level (Suo et al., 2012).  

2.2.2 Security Challenges  

Like all new technologies, security is still the biggest issue that stands in the way of effective 

developments of the IoT system. There are several security challenges that need to be addressed to 
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increase peoples trust in adopting IoT devices. This section provides a brief discussion of common 

security challenges in the IoT system. 

2.2.2.1 Resource Limitations 

Most IoT devices have limited processing and storage capabilities due to small and lightweight 

features, which make them run on low energy consumption. Therefore, sophisticated security 

algorithms are not suitable for these resource-constrained devices as they are not able to execute 

complex processing operations in real-time. Instead, they can only employ fast and lightweight 

security algorithms (Musaddiq et al., 2018). 

2.2.2.2 Big Data 

The IoT system involves billions of devices which generate a huge amount of data. These data are 

variable in term of structure and often arrive in real-time. The volume, velocity, and variety 

characteristics of Big data raise issues regarding storage and analysis operations. The IoT system is 

considered one of the main sources of Big data. Although Cloud computing provides a good solution 

for data storage for a long time, processing this massive volume of data is a substantial challenge, as 

the entire performance of various applications is significantly dependent on the data management 

service. Moreover, one of the major issues of Big data is data integrity. Ensuring the security and 

integrity of this huge amount of data is becoming difficult as data sources massively increased in a 

way that more security measures need to be adopted (Waqas Aman, 2013). 

2.2.2.3 Secure Communication 

Securing IoT devices is not enough to ensure full security of the IoT system. Instead, the 

communication channel connecting various nodes such as IoT devices and cloud services need to be 

protected from various types of attacks. Most IoT devices transmit their data in a plaintext format 

without being encrypted which make it an easy target to various types of network attacks. Hence, a 

proper encryption technique should be employed (Maheshwari & Dagale, 2018). Also, using separate 

networks can increase security by isolating devices and creating private communication channels. 

2.2.2.4 System Resilience 

System resilience is one of the main challenges that need to be addressed in the IoT. Resilience refers 

to the ability of the system to respond to unpredicted situations without regressing (Kitchin & Dodge, 

2017). Hence, if an IoT device is compromised, the system should be able to protect other network 

nodes. However, in the normal case, if there is an infected device, resetting it or even replacing it can 

solve the issue, but the main problem in the IoT system is that there is a network of devices that make 

identifying the compromised device or fixing the issue to maintain the overall system security a very 

difficult task to achieve. So, there is a need for a systematic method to restore IoT devices from a 

known state as well as providing an efficient tool to isolate compromised devices (Kitchin & Dodge, 

2017). 
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2.2.2.5 Digital Forensics 

With billions of IoT devices, the IoT system has become a significant source of evidence which can 

provide vital information from the physical world to help investigators throughout the investigation 

process, however, there are issues. For example, it’s important to identify where data is generated 

and where it is stored, which is difficult to determine in the IoT context. Further, since IoT devices 

have limited storage, data sent to Cloud computing violates data persistence (Zhang et al., 2014). In 

addition, the dynamic and heterogeneous nature of the IoT system enables the integration of various 

domains such as computers, tablets, mobile devices, Cloud computing, various types of sensors and 

RFID technologies. So, investigating an incident in the IoT will involve all these domains which add 

more complication in the investigation process (Zia et al., 2017). 

2.2.2.6 Heterogeneity 

The IoT system is a heterogeneous system in nature. It comprises various devices with different 

hardware and software capabilities. These devices were built by different manufacturers with little 

security in mind, which makes them an easy target for attackers. Also, if these devices depend on 

open-source software with threats, updating their firmware will be hard (Alur et al., 2015). 

2.2.2.7 Authentication and Access Control  

Providing an efficient authorization and access control mechanism for the IoT system is one of the 

major fundamentals to provide a secure system. IoT devices should gain access to services or 

applications only after providing their identities correctly. However, there are many problems 

associated with device authentication such as the use of weak or default passwords that lead to giving 

access to attackers who can manipulate device data or even physically damage it. Adopting security 

by design in IoT devices, enabling two-factor authentications and enforcing the use of strong 

passwords can help to resolve these challenges (Habib & Leister, 2015). 

2.3 Access Control 

The main purpose of the access control is to deny operations performed by unauthorized users. Also, 

it tries to prohibit any activity that could cause a security breach (Dos Santos et al., 2014). A powerful 

access control model should satisfy the security requirements of confidentiality, integrity, and 

availability (Suhendra, 2011). It is essential to make a reasonable distinction between authentication, 

authorization and access control. Authentication is defined as the operation of seeking to verify the 

identity of a user (Hulsebosch et al., 2007). While allowing or denying access to an authenticated 

user to perform certain operations on certain resources is called authorization. Access control is the 

process of enforcing authorization policies. Once a user/agent is authenticated and the authorization 

level is identified, access control is used to enforce user permissions to prevent user/agent from 

accessing anything that he/she should not be allowed to (Suhendra, 2011). 
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The history of the phrase “Access Control” has started in transportation in the first half of the 

twentieth century. The concept of the limited-access road was suggested in 1907 to control fast-

growing motor traffic. Although early cars were not as fast as today’s standard, car’s drivers were 

enforced to control their speed on highways. They were enforced to enter and exit via one-way ramps 

to control the access to highways which lead to a reduction in the probability of cross-traffic accidents 

and increases the speed of traffic flows (Houlis, 2018).  

By the early of the 1960s, electronic solutions adopt access control to address the problem of lost 

keys to restrict access only for specific individuals. Early access control solutions utilized basic 

keypads with personal identification numbers to gain access; this was then updated to swipe cards 

and has since been developed into the key cards, which are still being used today. 

Currently, access control is implemented at different levels in many areas such as operating system 

and database management system to control resources and allow only legal users/agents to use 

system resources in an authorized way. An access control model consists of five main elements; 

subjects, objects, actions, privileges, and access policies.  

• Subjects: Active entities in the form of users and processes that request access to objects. 

• Objects: Passive entities containing information being accessed by subjects. 

• Actions: An operation to be performed on a certain object such as read, write, execute, etc. 

• Privileges: Authorizations permissions to perform certain actions on certain objects. 

• Access policies: The set of rules that determine the access decision whether granting or 

denying access. 

 

Figure 2.5: Flow of an access control operation 

The flow of an access control process is shown in Figure 2.5. It starts when a subject/user send an 

access request to the access control manager to access a certain object. Then, the access control 
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manager compares the subject’s credentials against access control policies to determine the access 

decision. The decision will be either granted or denied. If the access is granted, the access control 

manager will allow the user to access the object, while if the access is denied, the access control 

manager will terminate the session (after sending warning message regarding insufficient 

credentials).  

2.3.1 Access Control Architecture for IoT  

The main issue associated with building an access control model for the IoT is the lack of ability to 

process access request and make the required decision as IoT devices are resource-constrained with 

limited storage and computation capabilities. Typically, there are three ways to implement an access 

control model for the IoT system; centralized, centralized and contextual, and distributed 

(Hernández-Ramos & Jara, 2013). 

2.3.1.1 Centralized Approach 

In this approach, the access control logic is located at a central entity. This entity could be a server 

with a direct communication to IoT devices that it manages or another entity in a different location. 

Therefore, IoT devices send their collected data to the central entity that is responsible for making 

access control decisions, as depicted in Figure 2.6. The key advantage of this approach is that the 

access control logic is located in an external entity without constraints of resources, which enable the 

use of standard security and advanced access control technologies (Hernández-Ramos & Jara, 2013). 

 

Figure 2.6: Access control flow in the centralized approach (Hernández-Ramos & Jara, 2013) 

On the other hand, there are some major drawbacks associated with the centralized approach. Since 

IoT devices send their data to the central entity, access decisions are not based on the contextual 

information related to IoT devices itself. Also, end-to-end security is compromised since a central 
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entity is needed to determine access decisions. Therefore, this entity will need to view the content of 

the access query, which also compromises the privacy of the requester. Moreover, since a single 

entity stores and manages all data coming from different IoT devices, it becomes a single point of 

failure in which an attacker can compromise a huge volume of sensitive and confidential information. 

2.3.1.2 Distributed Approach 

In this approach, the access control logic is embedded into IoT devices. These devices are being 

provided with the necessary resources to obtain, process and send information to other services and 

entities. Therefore, IoT devices make access decisions without the need for a central entity. The flow 

process of an access control process using the distributed approach is shown in Figure 2.7. The use 

of the distributed approach provides some key advantages. For instance, IoT devices are no longer 

passive entities, they have the capability to manage their information. Also, the elimination of the 

central entity enables end-to-end security for the access request and eliminates the single point of 

failure (Roman et al., 2013).  

The most noticeable issue with this approach is the need to extend IoT devices with an access control 

logic. Also, the implementation of static access control models will be difficult in resource-

constrained IoT devices. Subsequently, this approach must be investigated in-depth by analysing the 

feasibility of different access control models or implementing new proposals that meet the demands 

of the distributed approach (Hernández-Ramos & Jara, 2013). 

 

Figure 2.7: Access control flow in the distributed approach (Hernández-Ramos & Jara, 2013) 

2.3.1.3 Centralized and Contextual Approach 

This is a hybrid approach in which IoT devices are not completely passive entities since they 

participate partially in access decisions. The access control logic is implemented at a central entity 

as in the centralized approach, but the contextual features from IoT devices are sent to the central 

entity. These features are used to make access decisions, as shown in Figure 2.8. This approach is 

not feasible without providing contextual information of IoT devices at the time of the access request 

in terms of location and environmental status. If there is a delay when IoT devices transmit data to 

the central entity, the value obtained by the IoT device will be different at the time of making the 

access decision. 
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Figure 2.8: Access control flow in the centralized and distributed approach (Hernández-Ramos & Jara, 2013) 

2.3.2 Access Control Models 

 

Providing an efficient access control mechanism for the IoT system is one of the major fundamentals 

to provide a secure system. IoT devices should gain access to services or applications only after 

providing their identities correctly (Lee, 2015). To ensure confidentiality and integrity of system 

resources, the access control is used to guarantee that authorized users granted appropriate access 

permissions (Langaliya & Aluvalu, 2015). There are many access control models, which can be 

divided into two classes: static and dynamic access control models.  

2.3.2.1 Static Access Control Models 

Static access control (also called classical/traditional access control) models are rigid in nature as 

they depend on predefined policies that always give the same outcome regardless of the situation. 

They are context insensitive.  

Although static access control approaches were successfully applied in different environments to 

solve various problems, these approaches are designed to provide a relationship between information 

associated with an access control rule logic and a resource for which access is requested. The 

implementation of an access control approach is subject to manipulation, which can range from an 

unexpected situation, including poorly written access policies to a number of malicious entities 

acquiring access to a set of existing accounts. Therefore, static access control approaches provide a 

set of advantages, but they also have drawbacks. One of these drawbacks is that it can not handle 

unpredicted situations as they are based on static and predefined policies (Metoui, 2018). 

The next section provides an overview of the main types of static access control models by 

highlighting benefits and drawbacks of each approach.  



Chapter 2: Background and Literature Review                                                                                25 

 

2.3.2.1.1 Access Control List 

Initially, access control was implemented as a table called Access Control Matrix (ACM), where 

each row and column is composed of a subject and object respectively. Each record represents a set 

of access rights for the corresponding subject (Mahalle et al., 2013). Then, the Access Control List 

(ACL) appeared. ACL is a list of certain objects which contains legitimate subjects along with their 

access rights. ACLs are the default representation of access rights on UNIX systems. Although ACL 

is efficient and effective, it is not scalable with a large number of subjects and objects. Also, it is 

difficult to modify multi-object rights for individual users (Hu et al., 2006). 

2.3.2.1.2 Discretionary Access Control  

Discretionary Access Control (DAC) is designed for multi-user databases and systems with few 

previously known users. All system resources are under full control from the user. DAC grants access 

depending on the user identity and authorization which are defined through open policies. The owner 

of the resource can grant access to any user. DAC mainly deals with the inheritance of permissions, 

user-based authorization, auditing of system events and administrative privileges (Langaliya & 

Aluvalu, 2015).  

The key advantage associated with the user of DAC is the capability to provide fine-grained control 

over system objects. Also, DAC is easy to implement and provides a flexible way to allow system 

owners or system administrators to create customized access policies for each user. For example, a 

user can be granted read and write access as well as read-only access to another user for the same 

resource.  

On the other hand, DAC introduces some issues. Enabling users to have full control over object 

access permissions opens the system to various vulnerabilities such as Trojan Horse. Also, 

maintenance of the system and verification of security principles are enormously hard for the DAC 

systems since users dominate access rights to owned objects. 

2.3.2.1.3 Mandatory Access Control  

In the Mandatory Access Control (MAC) model, each object is assigned a label which specifies 

security privileges of the object based on the sensitivity of information of the object. Also, each 

subject is assigned a label that specifies which object the requester can access (Bugiel et al., 2013; 

Hulsebosch et al., 2005). MAC model provides necessary security measures where a user can only 

perform tasks related to his/her privileges. In the MAC, the security policy is controlled by a security 

policy administrator and the user does not have the capability to override it. MAC is mainly 

concerned with the confidentiality and integrity of information, so it primarily implemented in 

military and government applications. (Zhu & Jin, 2007). 

Compared to DAC, MAC is not vulnerable to Trojan Horse since users do not have the ability to 

declassify information. Also, MAC is straightforward and is considered a good model for commercial 
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systems that operate in hostile environments, where the risk of attack is very high, confidentiality is 

a primary access control concern or the objects being protected are valuable (Vijayakumar et al., 

2012). 

MAC by far is the most secure access control environment but does not come without a price. MAC 

requires a considerable amount of planning before it can be effectively implemented. Once 

implemented, it imposes a high system management overhead due to the constant need to update 

object and account labels to accommodate new data, new users and changes in the categorization and 

classification of existing users (Jin et al., 2012). 

2.3.2.1.4 Role-based Access Control 

Role-Based Access Control (RBAC) is a widely accepted model in almost all large enterprises (Bijon 

et al., 2013). RBAC model consists of three elements: users (subjects requesting access), roles 

(collections of permissions) and operations (actions on target resources). Access permissions are 

related to roles and the appropriate role is granted to the user. A single user can be associated with 

one or more roles, and a single role can include one or more user. RBAC provides a classification of 

users based on their roles (Kumar et al., 2002). 

RBAC model restricts access to objects based on the subject’s role rather than their identifications. 

Roles are allocated to subjects according to their clearance, qualification, and responsibilities inside 

the organization. A set of permissions is grouped together to form a role. A user can be allocated to 

different roles and the role can be assigned to different users. RBAC model might have many users, 

each user will be assigned to a specific role or may be assigned to multiple roles and each role consists 

of a set of permissions/rights. An example of RBAC in a hospital, where doctors can both read and 

write prescriptions, whereas pharmacists are limited to read prescriptions only.  RBAC helps to 

ensure system integrity and availability by explicitly controlling not only which resources can be 

accessed but also how access can occur. Also, in large organizations, the consolidation of access 

control for many users into a single role entry allows for much easier management of the overall 

system and much more effective verification of security policies (Bijon et al., 2013). 

Although RBAC provides great advances in access control, the administrative issues of large systems 

still exist. In large systems, memberships, role inheritance, and the need for fine-grained customized 

privileges make the administration process potentially impractical. Additionally, RBAC cannot be 

used to ensure permissions on sequences of operations (Sandhu et al., 1996). 

2.3.2.2 Dynamic Access Control Models 

The core principle of dynamic access control models is that they take into consideration not only 

access policies to make access decisions, but also dynamic and contextual features which are 

estimated at the time of the access request (Wang & Jin, 2011). This provides more flexibility and 

can adapt to different situations and conditions while making the access decision.  
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The need to adopt dynamic access control approaches should be one of the essential priorities to 

provide efficient and flexible access control model. However, most existing access control 

approaches are relying on static and rigid access policies and manual processes. These approaches 

are unable to provide a roadmap to improve automation significantly. This lack of automation leads 

to a heavy involvement of human analysis, which is costly, error-prone, and vulnerable to various 

types of attacks based on social engineering. Additionally, current classical approaches have issues 

with resolving risks and threats in real-time, especially when handling a previously unidentified 

threat. This is because these approaches make their access decision based on a set of policies built 

by a security analyst, who cannot resolve different access control situations in real-time, but can deal 

only with problems that were recognized before (Brooks et al., 2012). 

In addition, existing access control approaches lack feedback and possible options for resolving 

access control situations when a legitimate user or agent is unable to continue its activity due to the 

necessity of access to a requested resource or service when access control refuses this access for 

some reason. One of the common messages regarding denied access attempt states, that ‘access was 

denied’ without providing any other details. Such a message causes the user to ask a system 

administrator to make an exception for his/her activity, which interrupts ongoing business processes 

and increases the load on system administrators. Moreover, static access control approaches suggest 

that there is a need for a system administrator role with wide access to services, data and unrestricted 

access with respect to time. However, compromised access to an account with the system 

administrator role leads to exposing the entire system to malicious actions, and if the account is 

widely used, it is not possible to limit the risk of such an account being compromised (Suhendra, 

2011; Zhou et al., 2013). 

Instead of static policies, dynamic access control approaches use real-time information and features 

to make access decisions. These real-time features can include trust, risk, context, history and 

operational need. These dynamic models adapt to different situations and conditions while making 

access decisions (Li et al., 2008; Shaikh et al., 2012).  

2.4 Context Awareness in IoT 

With great developments in the sensor technology, sensors are becoming an integral part to sense 

and collect relevant information about the environmental features. Sensors are getting more 

powerful, cheaper and smaller in size, which have stimulated large-scale deployments. With the 

massive increase in the number of sensors, huge amounts of data are generated. The data needs to be 

analysed and interpreted to extract meaningful information. Context-aware computing has played a 

vital role to resolve this issue. It facilitates storing context information linked to sensor data, so the 

interpretation can be done easily and more meaningfully. In addition, understanding context makes 

it easier to perform Machine-to-Machine (M2M) communication which is a core element in the IoT 

vision (Perera et al., 2014). 
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Context-awareness is an essential feature of ubiquitous and pervasive computing systems. It is the 

key technology that enables intelligent interactions between users and IoT systems (Perera et al., 

2014). Typically, context awareness describes devices that can sense their physical environment and 

change their behaviour accordingly (Elkhodr et al., 2013a). 

The term context is defined by Perera et al. (2014) as “any information that can be used to 

characterise the situation of an entity. An entity is a person, place, or object that is considered 

relevant to the interaction between a user and an application, including the user and applications 

themselves”. For instance, location, identity, time, history events and activity are representing the 

primary context types for characterizing the situation of a particular entity (Perera et al., 2014). 

2.4.1 Context Types and Categorization 

Different researchers have identified context types differently based on their perspectives. Abowd et 

al. (1999) introduced one of the leading mechanisms of defining context types. They identified the 

location, identity, time, and activity as the primary context types. Further, they divided various types 

of context into two main categories: primary and secondary context. 

• Primary Context: Any information retrieved without using existing context and without 

performing any kind of fusion operations on sensor data such as GPS sensor readings as 

location information. 

• Secondary Context: Any information that can be computed using the primary context. The 

secondary context can be computed by using sensor data fusion operations or data retrieval 

operations such as web service calls and identify the distance between two sensors by 

applying sensor data fusion operations on two raw GPS sensor values. Further, the retrieved 

context such as phone numbers, addresses, email addresses, birthdays, a list of friends from 

a contact information provider based on personal identity as the primary context can also be 

identified as secondary context. 

In addition, Perera et al. (2014) introduced a context categorisation scheme, primary and secondary, 

that can be used to classify a given data value. They acknowledged location, identity, time, and 

activity as the most important context information. Figure 2.9 shows the primary and secondary 

categorization of location, identity, time and activity.  
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Figure 2.9: Categorization of most common context information (Perera et al., 2014) 

2.4.2 Context-aware Features  

There are common features of a context-aware environment. Abowd et al. (1999) identified three 

main features that a context-aware application can support: presentation, execution, and tagging.  

• Presentation: Presenting the appropriate information regarding a certain context needs to be 

considered to define and decide what information and services need to be presented to the 

user. For instance, when a user enters a supermarket and takes their smartphone out. Context-

aware mobile application should support the ability to connect to kitchen appliances such as 

a smart refrigerator in the home to retrieve the shopping list and present it to the user. This 

supports the idea of presenting information based on context like time, location, etc.  

• Execution: The IoT system has the capability to use collected and analysed data to make an 

automatic decision based on context without human intervention. For example, in a smart 

home environment, when a user starts driving home from their work, the IoT application 

employed in the house might switch on the air condition system and switch on the coffee 

machine to be ready to use by the time the user steps into their house. These actions need to 

be taken automatically based on the context. M2M communication is also a significant part 

of the IoT that enable automation of IoT services using context information.  

• Tagging: In the IoT system, there are billions of sensors linked to almost everyday things. 

These sensors generate a huge volume of data that need to be collected, analysed, and 
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interpreted (Wan & Alagar, 2013). Data generated by a single sensor will not be able to 

provide the required information that can be used to fully understand the situation. Instead, 

data collected through multiple sensors should be fused together. To perform sensor data 

fusion, context information needs to be tagged together with the sensor data to be processed 

and understood later. Hence, context tagging plays a significant role in context-aware 

computing.  

2.5 Risk-based Access Control  

The risk can be defined as the possibility of loss or injury. Generally, the risk is about some event 

that may occur in the future and cause losses. According to Elky (2006), the risk is the possible 

damage that may arise from the existing operation or from some upcoming incident. The risk is found 

in many aspects of our life and used in different disciplines. From the information technology security 

perspective, the security risk is defined as the damage that undesirably impacts an operation and its 

related information. While the process of understanding and mitigating against issues that may result 

in a breach of confidentiality, integrity or availability of an information system is called risk 

management (Elky, 2006). 

Security risk in the context of access control can be defined as the possibility of information leakage 

and the value of this information that may occur from accessing system resources (Dos Santos et al., 

2014). A risk-based access control model uses security risk as a criterion to make the access decision 

of an access request. This model permits or denies access requests dynamically based on the 

estimated risk value (Chen et al., 2007). This model performs risk analysis on each user access 

request to make the access decision. Mathematically, the most common formula to formalize the risk 

in quantitative form is (Dos Santos et al., 2014): 

                               𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑅𝑖𝑠𝑘 =  𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ×  𝐼𝑚𝑝𝑎𝑐𝑡                                       (2.1) 

Where likelihood represents the probability of an incident to happen, while impact represents the 

estimation of the value of the damage regarding that incident.  

Risk-based access control models are divided into two types: Non-adaptive and adaptive. In the non-

adaptive approach, a risk value is estimated for each access request. Then, the estimated risk value 

is compared against the risk-threshold value to determine the access decision whether granting or 

denying access. Whereas in the adaptive approach subsequent to granting access, there is an 

additional activity monitoring process in order to detect any abnormal behaviour during the access 

session. On the successful detection, the risk-threshold should be automatically lowered to stop 

certain risky operations. The user can be warned otherwise, access session can be terminated (Abie 

& Balasingham, 2012). The fundamental distinction between adaptive and non-adaptive is that the 

adaptive model requires a system monitoring process in which the risk threshold value is adaptively 

adjusted based on users’ activities during access sessions. While the non-adaptive approach only 
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calculates the risk during the access session creation and does not have run-time monitoring or 

abnormality detection capability (Bijon et al., 2013).  

There are several methods to build a risk-based access control model. These methods share some 

general characteristics from diverse models. The main elements of a risk-based access control model 

are shown in Figure 2.10. 

 

Figure 2.10: Main elements of a risk-based access control model 

The risk-based access control model consists of three modules. The risk estimation is the main 

module. It receives requests from users, analyses them, collects context information and estimates 

the risk value associated with the access request. Then, the estimated risk value is compared against 

access policies to make the access decision (Diep et al., 2007). 

Several approaches have been recently proposed to address the limitations of static access control 

models in terms of lack of flexibility, inability to handle contextual information and unexpected 

situations in managing access control operations. The next section provides a review of the literature 

regarding context-aware and risk-based access control models.  

2.5.1 Context-aware Models 

Building a flexible and fine-grained access control model is one of the most important aspects to 

provide efficient and effective control over access to system resources. This can be achieved by 

enabling context-aware access control models that not only use access policies but also contextual 

information to provide the access decision.  

Context-aware access control models propose the use of contextual and environmental information 

to achieve fine-grained access control. Although these models do not evoke an explicit notion of 

access risk, the request’s context and environment can provide relevant information that could be 
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used to assess the access risk. This research considers contextual information when evaluating the 

access request, but instead of statically including the contextual condition in the policy, contextual 

information is used as a risk factor to estimate the security risk value associated with the access 

request. 

There are some context-aware models that extend the RBAC model with context attributes to provide 

a flexible access control model. Covington et al. (2000) have proposed a Generalized Role-Based 

Access Control (GRBAC) model. Their model extends the traditional RBAC by applying the roles 

to all the entities in the system (in RBAC, the role concept is only used for subjects). They defined 

three main roles; subject role, environment role, and object role. The GRBAC model uses context 

information as a factor to make access decisions. Also, Zhu and Xu (2008) have utilized context 

parameters in their dynamic RBAC model with two key ideas: 1) A user’s access privileges must 

change when the user’s context changes; 2) A resource must adjust its access permission when its 

system information (e.g., network bandwidth, CPU usage, memory usage) changes. However, the 

two papers do not consider security aspects in the decision-making process and the impact of security 

problems on the system. They also lacked adaptive control to prevent malicious attacks during access 

sessions.  

Context-aware models are also introduced to provide a dynamic access control model for healthcare. 

Garcia-Morchon and Wehrle (2010) have proposed an access control model for prompt responses to 

emergency situations in medical environments. This model makes it possible to cope with rapidly 

changing situations by analysing them step by step in accordance with priorities and by establishing 

the appropriate policies and permissions for different situations. Also, Peleg et al. (2008) presented 

a framework for situation-based access control for privacy management using the object-process 

methodology to structure the scenarios and conceive a situation-based model. Their main objective 

was to preserve the patient’s security and privacy. However, the two papers provided a qualitative 

method to provide the access decision, which is not applicable to provide a fine-grained access 

control model. Also, they did not provide an evaluation to prove the accuracy of their qualitative 

method. 

 In addition to context awareness, there are other works proposing using operational need to increase 

the flexibility of access control models. McGraw (2009) proposed a Risk-Adaptable Access Control 

(RAdAC) model which is based on estimating the security risk and operational needs to grant/deny 

the access. This model is implemented to first estimate the risk associated with the access request 

then compares the estimated risk with the access control policy. After that, the system verifies the 

operational needs, if the associated operational needs and the policy are met, then the access is 

granted. However, this model does not provide details about how to estimate risk and operational 

needs quantitatively. In addition, Kandala et al. (2011) utilized the RAdAC model to identify 



Chapter 2: Background and Literature Review                                                                                33 

 

different risk components with operational needs using their Attribute-Based Access Control 

(ABAC) model. 

Other works proposed integrating trust with risk to provide the access decision. Baracaldo and Joshi 

(2012) have proposed a framework that extends the RBAC model to incorporate trust with risk to 

provide the access decision. They argued that their framework adapts to suspicious changes in users' 

behaviour by removing privileges when users' trust falls below a certain threshold. This threshold is 

computed based on a risk assessment process that includes the risk due to the inference of 

unauthorized information. Moreover, Burnett et al. (2014) have proposed trust and risk-aware access 

control that provide policy coverage and dynamic access decisions. They defined a zone policy model 

that allows the data owner to have total control over his own data. Trust is used to define verification 

of whether the requester respected the obligations that are assigned to him/her or not. They utilized 

a probabilistic computational trust model called subjective logic to formulate their trust assessment. 

Their risk estimation was done by using a classic method of defining expected loss in term of 

unwanted disclosure.  

2.5.2 Risk-based Access Control Models 

Risk-based access control models are used primarily to provide the required flexibility and 

fine-grained to the access control process. There is a set of risk-based models proposed to address 

the limitations of static access control models in terms of lack of flexibility and inability to handle 

unexpected situations.  

The journey of implementing a risk-based access control model started when Jason (2004) suggested 

that there are three main elements to implement a risk-based model. These elements are estimating 

risk, identifying acceptance levels of risk, and controlling information sharing. This idea has been 

utilized by Diep et al. (2007) to build a dynamic and flexible risk-based model by collecting useful 

information from the environment, evaluates it from the security perspective, and make the access 

decision using a risk assessment. Similarly, Lee et al. (2007) have provided an access control model 

based on risk assessment and context. This model gathered useful information from the environment 

and evaluates it from the security perspective. Risk assessment with a MultiFactor Evaluation 

Process (MFEP) technique is applied to estimate the associated risk value using outcomes of actions 

in term of availability, confidentiality, and integrity. This model is tested to manage information 

access in a hospital. However, considering more risk factors from the access control environment 

will enhance system efficiency but it lacks adaptive features. In addition, Khambhammettu et al. 

(2013) have constructed a framework based on estimating object sensitivity, subject trustworthiness, 

and the difference between them using a risk assessment. However, neither model describes how to 

estimate the risk value for each situation of the environment. Besides, these models require a system 

administrator with broad experience to give a reasonable value for each input feature in the early 
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stage of the risk assessment process. Also, these models lack adaptive control to detect malicious 

users throughout access sessions. 

The idea of the risk-based access control model was the same for a long time, but various researchers 

proposed different risk factors and estimation techniques to produce an efficient and effective model. 

For example, Bertino and Lobo (2010) used the same elements of the risk-based model proposed by  

Diep et al. (2007) but with the use of a fuzzy logic system to estimates the risk value associated with 

the access request. They showed that fuzzy inference is a good approach for estimating access 

security risks. However, both models neglected the past behaviour of users in the risk estimation 

process and lacked adaptive features as well. Similarly, Li et al. (2013) have utilized the fuzzy logic 

system to estimate the risk associated with the access of healthcare information. A risk metric is 

associated with data sensitivity, action severity, and risk history to determine the appropriate control 

of healthcare information access. However, this model does not indicate how to estimate the risk 

quantitatively. In addition, it requires prior knowledge about environment situations outcomes and 

there is no way to prevent malicious actions during the access session. Additionally, Chen et al. 

(2007) utilized the fuzzy logic approach to design a Multi-Level Security (MLS) risk-based model. 

This model measures the risk using the difference between object and subject security levels. So, if 

the difference is large, the risk value associated with the access will be high. The resultant output 

risk is represented as a binary number where 0 permits the access and 1 denies the access.   

In addition, Wang and Jin (2011) have proposed a quantified risk-based access control model. The 

risk value is estimated based on the purpose of access to different data sensitivity levels. The risk 

estimation process is done by employing the concept of Shannon entropy from information theory. 

A prototype implementation and simulations on real-world medical history records were performed 

to demonstrate the effectiveness of their proposed approach. However, the purpose of access as a 

risk factor is not enough to estimate the risk value to make the correct access decision. It also lacked 

adaptive features and real-time user context features. Also, Rajbhandari and Snekkenes (2011) have 

presented a risk analysis approach based on preferences or values of benefit that subjects can provide, 

rather than subjective probability using the game theory. Moreover, a simple privacy scenario 

between a user and an online bookstore is introduced to provide an initial perception of the concept. 

However, using only benefits of the subject to determine the access decision is not enough to develop 

a flexible and scalable access control model. In addition, it lacked adaptive features and contextual 

features. 

Other researchers have suggested mathematical functions to formulate an algorithm to measure 

security risks of access control operations. For example, Sharma et al. (2012) have presented a task-

based access control model that estimates the risk value based on the action to be performed. The 

risk value is estimated in terms of different actions and corresponding outcomes. However, this 

model does not provide how to estimate the risk value quantitatively. In addition, it requires prior 
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knowledge about environment situations outcomes and there is no way to prevent malicious actions 

during the access session. Also, Namitha et al. (2015) implemented a risk-based access control model 

based on user features and estimate the risk value using a mathematical function. However, this 

model does not use any other input features such as resource sensitivity, action severity, and risk 

history. In addition, no risk prediction technique is involved, and it lacked adaptive features. 

In addition, Dos Santos et al. (2014) proposed a risk-based access control model that employs the 

notion of quantifying risk metrics and aggregating them. This model depends on the idea of risk 

policies, which allow service providers and resource owners to define their own metrics, allowing 

greater flexibility to the access control system. Further, a prototype of this model is created using the 

risk metrics and quantification of Sharma et al. (2012). In addition, they extended the work to develop 

an ontology-based method to estimate the risk value according to the context and adjusting the 

weights of each risk metric considering the actual number of risk metrics (Dos Santos et al. , 2016). 

Although this approach provides greater flexibility by allowing the resource owners to define their 

own metrics, it requires a security administrator to ensure the minimum security of the system. In 

addition, it lacked adaptive features. Also, Shaikh et al. (2012) proposed a dynamic risk-based 

decision method. This method uses the user’s past behaviour to identify good and bad users. It 

depends on granting reward and penalty points to users after the completion of transactions. 

However, the past user’s behaviour (reward/penalty) values are not enough to provide a dynamic 

access control model and it lacked adaptive features as well. 

Britton and Brown (2007) presented a quantification method for their RAdAC model. In their 

proposed model, 27 metrics divided into 6 categories which are evaluated for every access request 

and aggregated to achieve a measure of the total security risk. Their risk definition considers both 

probability and impact as high, medium or low. They employ a triangular probability distribution 

and a Monte Carlo simulation to find the probability of each event, which is then multiplied by a 

weight attributed by experts to each metric. This method is built for military applications, so some 

metrics are not suitable for a general IoT application.  Also, Zhang et al. (2006) have suggested a 

benefit and risk-based access control approach. This approach uses security risk and system benefits 

to determine the access decision. It assigns a risk and benefit vector for each action. The access to 

perform a certain action is permitted only if the system benefits are higher than the risk value of the 

access request. The system creates an action graph to describe permitted actions and methods for 

users to access system resources. However, this approach uses static and predetermined action graph 

to determine the access. Also, it is very difficult to update the action state in the action graph and it 

lacked adaptive features. 

In addition, Chen et al., (2016) presented a dynamic risk-based access control model for Cloud 

Computing. It combines the ABAC with the risk-trust assessment method. The model drives a 

threshold risk value from historical records to determine the access decision.  It utilizes the concept 

of data stream processing to evaluate risk values. However, this model lacked adaptive features and 
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real-time features while determining the access decision. Also, Choi et al., (2015) presented a 

framework for a context-sensitive risk-based model for medical information systems. This 

framework categorizes information to calculate the risk value and apply the risk through treatment-

based permission profiling and specifications. This framework provides the access decision based on 

the severity of the context and treatment. However, this model does not provide how to estimate the 

risk quantitatively. Also, the work is limited to medical information systems and lacked adaptive 

features. Moreover, Abomhara et al. (2018) proposed a work-based access control model that 

balances between collaboration and safeguarding sensitive patient information. It uses object security 

level and subject trust to provide the access decision. It decides the risk threshold based on situational 

conditions. However, this model does not provide how to estimate the risk value quantitatively or 

how to determine the risk threshold value in various situations. Also, this model is limited to medical 

information systems and lacked adaptive features. Table 2.1 provides a summary of the contribution 

and limitations of related risk-based access control models.  

Table 2.1: Contribution and limitations of related risk-based access control models 

Related 

model 

 

Summary of Contribution 
 

Limitations 

Diep et al. 

(2007) 

 

Built a dynamic and flexible risk-based model 

by collecting useful information from the 

environment and make the access decision 

using a risk assessment. 

Limited risk factors, no risk prediction 

technique was used, lacked adaptive 

and real-time features. 

Chen et al. 

(2007) 

 

Built a fuzzy MLS to build a risk-based access 

control model by measuring the difference 

between object and subject security level. 

The user past behaviour has not been 

used, lacked adaptive features and time 

overhead of the fuzzy inference system. 

Do not include real-time features in the 

risk estimation process. 

Li et al. 

(2013)   

 

They utilized the fuzzy logic approach to 

estimate the risk associated with data 

sensitivity, action severity, and risk history to 

determine the appropriate control of healthcare 

information access. 

It requires prior knowledge about 

environment situations outcomes. Do 

not include real-time features in the risk 

estimation process and lacked adaptive 

features. 

Bertino and 

Lobo (2010) 

 

Built a risk-based access control model that 

uses the fuzzy logic system for the risk 

estimation process. They showed that the fuzzy 

inference approach is a good approach for 

estimating access security risks. 

Time overhead of the fuzzy logic 

system is high, lacked adaptive features, 

and do not involve real-time features in 

the risk estimation process. 

Khambham

mettu et al. 

(2013) 

 

Conducted a framework based on estimating 

object sensitivity, subject trustworthiness, and 

the difference between them using a risk 

assessment. 

lacked adaptive features. No risk 

prediction was used. Do not involve 

real-time features in the risk estimation 

process. 

Shaikh et al. 

(2012) 

Proposed a dynamic risk model that utilizes 

user past behaviour to identify good and bad 

users. It depends on granting reward and 

penalty points to users after the completion of 

transactions. 

Past user behaviour (reward/penalty) 

values are not enough to provide a 

dynamic access control model and it 

lacked adaptive features as well. 
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Table 2.1: Contribution and limitations of related risk-based access control models (Cont.) 

 

Related 

model 

 

Summary of Contribution 
 

Limitations 

Rajbhandari 

and 

Snekkenes 

(2011) 

Presented a risk analysis approach based on 

preferences or values of benefit that subjects 

can provide, rather than subjective probability, 

using the game theory. 

Limited risk factors as the subject 

benefit is not enough to generate 

flexible access. No risk prediction was 

used and lacked adaptive features.  

Sharma et al. 

(2012) 

 

Presented a task-based access control model 

that estimates the risk value based on the action 

to be performed. The risk value is estimated in 

terms of different actions and corresponding 

outcomes. 

Does not provide how to estimate the 

risk quantitatively. It requires prior 

knowledge about environment 

situations outcomes and lacked adaptive 

features.  

Lee et al. 

(2007) 

 

Built a risk-based model by gathering all useful 

information from the environment and evaluate 

it from the security perspective using the MFEP 

technique. 

No risk prediction technique has been 

used, limited risk factors, and lacked 

adaptive and real-time features. 

Namitha et 

al. (2015) 

 

Implemented a risk-based model based on user 

features to estimate the risk value using a 

mathematical function. 

The model is static in nature. Only user 

risk factors are used and lacked adaptive 

features. 

Dos Santos 

et al. (2014) 

and Dos 

Santos et al., 

(2016). 

Proposed a risk-based model using risk policies 

by employing the notion of quantifying risk 

metrics and aggregating them. In addition, they 

presented an ontology-based method to 

estimate the risk value based on the context and 

adjusting the weights of each risk metric. 

Lacked adaptive features and require a 

security administrator to ensure the 

minimum security of the system. It also 

did not provide how to identify risk 

metrics quantitatively.  

Wang and 

Jin (2011) 

Proposed a quantified risk-based access control 

model for health IT systems based on the 

purpose of the access to different data 

sensitivity levels. 

Limited risk factors, no risk prediction 

technique and lacked adaptive and 

contextual features. 

Britton and 

Brown 

(2007) 

 

Presented a quantification method for the 

RAdAC model for military applications. They 

employed a triangular probability distribution 

and Monte Carlo simulation to estimate the risk 

value for each access request.  

Lacked adaptive features, no risk 

prediction technique, do not use real-

time and contextual information to 

make the access and it is not suitable for 

a general IoT application. 

Zhang et al. 

(2006) 

Presented a benefit and risk-based access 

control approach which uses security risk and 

system benefits to determine the access 

decision. It assigns a risk and benefit vector for 

each action. 

Uses static and predetermined action 

graph to determine access which is very 

hard to be updated. Also, it lacked 

adaptive and contextual features. 

Choi et al. 

(2015) 

Proposed a context-sensitive risk-based 

framework for medical information systems 

that uses the severity of the actions and 

treatment to provide access decision.  

Does not provide how to estimate the 

risk quantitatively. Also, the work is 

limited to medical information systems 

and lacked adaptive features. 

Chen et al., 

(2016) 

Presented a dynamic risk-based access control 

model for Cloud Computing by combining the 

ABAC with the risk-trust assessment method. 

Lacked adaptive features and real-time 

context features while determining the 

access decision. 

Abomhara et 

al., (2018) 

Proposed a work-based access control model 

that balances between collaboration and 

safeguarding sensitive patient information. It 

uses object security level and subject trust to 

provide access decision. 

Does not provide how to estimate the 

risk quantitatively or how to determine 

the risk threshold value in various 

situations. The model is limited to 

medical information system and lacked 

adaptive feature. 
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In conclusion, building a dynamic access control model for the IoT system is a fundamental priority 

as the IoT is dynamic and distributed system in nature. However, current risk-based access control 

models concentrate only on providing access decisions without providing any way to prevent 

abnormal data access from authorized users. In addition, they lacked real-time and contextual 

features, which can be extracted from the IoT environment easily to determine the access decision. 

Although the aforementioned risk approaches offered an important improvement in terms of 

flexibility compared to traditional systems, there is a need for more research in this area. 

2.5.3 Risk Factors  

One of the essential parts of a risk-based access control model is to choose the effective risk factors 

that determine access decisions efficiently. There are many risk factors that can be used to estimate 

the risk value associated with the access request to make the access decision in a dynamic and 

effective manner. In this section, an overview of different risk factors used in relation to risk-based 

access control models is provided. Common risk factors are as follows: 

• Subject Clearance: It represents the subject security level acquired from the system 

administrator. The most common clearances in the military are Top Secret, Secret, 

Confidential, and no clearance. Different access permissions are granted according to the 

subject role in the organization. Each role is associated with certain permissions (McGraw, 

2009). The higher the clearance granted, the lower the associated risk value. 

• Object Clearance: It represents the object classification level. The access is granted to a 

certain object depending on the classification level. Depending on the subject role, access to 

a certain object classification level can be granted or denied. 

• Resource Sensitivity:  It describes the sensitivity level of resources the user wants to access. 

Different sensitivity levels have different risk values. The higher the resource sensitivity, the 

higher the risk value if the access is granted to this resource (Li et al., 2013).  

• Action Severity: It represents the cost of a certain action on a certain resource in terms of 

confidentiality, integrity, and availability. An action if occurs might lead to a great loss, but 

another does just a little. So, different actions have different consequences and so have 

different risk values. 

• Risk History: It represents user previous risk values on a certain resource. It can be used to 

detect the future behaviour of the user toward a certain resource. 

• Trust: It is similar to risk history. It represents the subject trust toward a certain resource. 

Trust is classified into two categories: identity trust and behavioural trust. Identity trust is 

concerned with verifying the authenticity of an entity and focuses on objective credentials. 

While behavioural trust deals with the entity’s ‘trustworthiness, which depends on certain 
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contexts (Luo et al., 2009). In risk-based access control models, only behavioural trust is 

used. 

• Education Level: This risk factor is associated with the amount of security-related training 

or education the requester has received. Typically, the more security-related training the 

requester has received, the less likely that the requester is to commit a security violation. 

Therefore, the security risk would be lower. Conversely, if a requester has not received any 

security training, there is a higher possibility that a security violation could occur due to 

negligent action or inaction (Maw et al., 2012). 

Different risk factors were utilized in the aforementioned risk-based access control models. Table 

2.2 provides a summary of the risk factors used in related risk-based models. 

Table 2.2: Security risk factors in different risk-based access control models 

 

Related Model 
Subject 

clearance 

Object 

clearance 

Resource 

Sensitivity 

Action 

Severity 

Risk 

History 

Subject 

Trust 

Chen et al. (2007)       

Li, Bai and Zaman 

(2013) 

   

 

 

 

 

 
 

Bertino and Lobo 

(2010) 

 

 

 

 
    

Khambhammettu 

et al. (2013) 

   

 
   

 

Shaikh et al. 

(2012) 

     

 
 

Rajbhandari and 

Snekkenes (2011) 

 

 
   

 
  

Sharma et al. 

(2012) 
  

 

 
 

 
 

 
 

Lee et al. (2007)       

Namitha et 

al.(2015) 

 

 
     

Wang and Jin 

(2011) 

   

 
   

Britton and Brown 

(2007) 

 

 

 

 
   

 

 

 

Zhang et al. (2006)     

 
  

Chen et al., (2016)     
  

Choi et al. (2015)   
 

 

 

 

  

Abomhara et al., 

(2018) 
 

 

 
  

 
 

 

2.6 Smart Contracts 

The notion of smart contracts was first presented by Nick Szabo in 1994 (Szabo, 1994). However, it 

remained just an idea until the invention of the blockchain. Blockchain is a distributed and 

decentralized ledger of transactions used to manage a constantly increasing set of records. To store 
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a transaction in the ledger, the majority of participating nodes in the blockchain network should agree 

and record their consent. A set of transactions are grouped together and allocate a block in the ledger, 

which is chained of blocks. To link these blocks together, each block encompasses a timestamp and 

hash function to the previous block. The hash function validates the integrity and non-repudiation of 

the data inside the block. Moreover, to keep all participating nodes of the blockchain network 

updated, each user holds a copy of the original ledger and all nodes are synchronized and updated 

with newly change (Atlam & Wills, 2019). 

Blockchain delivers a high level of transparency by sharing transaction details between all 

participants’ nodes involved in those transactions. Using the blockchain technology, no need for a 

third party which improve business friendliness and guarantees a trusted workflow. Also, it 

eliminates the single point of failure which affects the entire system. Moreover, blockchain provides 

better security since it uses public key infrastructure that protects the system against malicious 

actions (Atlam & Wills, 2019; Sultan et al., 2018). 

A smart contract is defined as an executable code that runs on the blockchain to facilitate, execute 

and enforce the terms of an agreement. The key objective of a smart contract is to execute the terms 

of an agreement automatically once the specified conditions are met. Thus, smart contracts require 

low transaction fees compared to the conventional centralized systems that need a trusted third party 

to enforce and execute the terms of the contracts (Alharby & Moorsel, 2017). 

Typically, there are two types of smart contracts: deterministic and non-deterministic (Morabito, 

2017). The major distinction between the two types of smart contracts is the availability of data 

within the blockchain for the smart contract to run.  In other words, a deterministic smart contract 

does not need any data from an outside entity to run, in contrast to run a non-deterministic smart 

contract, data from an outside entity is needed. Figure 2.11 shows basic concepts of a smart contract.  

 

Figure 2.11: Basic concepts of smart contracts (Anand Narayan, 2017) 
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2.6.1 Structure of Smart Contracts 

Smart contracts are nothing, but programming scripts stored on the blockchain. These scripts can be 

executed automatically when conditions or terms are verified or met. The blockchain technology 

provides an excellent environment for smart contracts to evolve. It eliminates the need for a trusted 

third party and secures its contents against any manipulation or attack (Mohanta et al. , 2018).  

 

Figure 2.12: Basic structure of a smart contract (Bahga et al., 2016) 

Typically, a smart contract consists of four major parts: address, value, functions, and state (Bahga 

et al., 2016), as depicted in Figure 2.12. Functions are used to represent conditions and terms of the 

contract. These functions are executed when transactions are made to the smart contract containing 

these functions. The address is used to identify various smart contracts in the blockchain in which 

each contract is assigned a unique address of 20 bytes. Once the contract is deployed into the 

blockchain, the contract code cannot be changed. To run a contract, users can simply send a 

transaction to the address of the smart contract. This transaction will then be executed by every 

consensus node (also called miners) in the network to reach a consensus on its output. The contract’s 

state will then be updated accordingly. Then, the contract state will be uploaded to the blockchain 

network (Alharby & Moorsel, 2017).  

As the smart contract is a software code, several programming languages can be utilized to implement 

it. However, the Solidity is the most common programming language for implementing smart 

contracts in various blockchain platforms. Solidity is a high-level language that can work with 

different blockchain platforms such as Ethereum, ErisDB, Bitcoin, and NXT (Mohanta et al., 2018). 

2.6.2 Benefits of Smart Contracts 

The capability to use computerized contracts that are stored in the blockchain provides multiple 

benefits over traditional contracts. These benefits involve: 

• Autonomy: Smart contracts support automation in programming, so when a certain 

condition is verified, the actions are executed automatically. Although smart contracts can 

be built on centralized systems, the actions cannot be executed only if they approved by the 

central system, which can take a long time (Natarajan et al. , 2017). Since there is no third-

party in the blockchain, actions are executed automatically in a very short time. 
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• Redundancy: Since each user or node participating in the blockchain network have its own 

copy of the ledger, data is duplicated many times over on the blockchain. Therefore, the 

possibility of losing data is zero (Desjardins, 2017).  

• Security: Blockchain provides better security since it uses public key infrastructure that 

protects against attackers. The participating users of the blockchain network place their trust 

in the integrity and security features of the consensus mechanism. In addition, blockchain 

eliminates the single point of failure which affects the entire system (Sultan et al., 2018). 

Therefore, data of smart contracts are encrypted and secured against any tamper or 

manipulation. 

• Cost Reduction: Blockchain is based on a shared ledger which shares its contents with the 

participating nodes in the network in which each participating user holds a copy of the 

original ledger without the need for a central authority. This reduces costs associated with 

distributing and maintaining the ledger. For smart contracts, this can save the costs of 

third-parties that are used mainly to maintain the trust between participating users in the 

agreement (Atlam & Wills, 2019).  

• Accuracy: Typically, a smart contract is a software code that implements terms and 

conditions of the contract as programming conditions, when it verified, the corresponding 

actions are executed automatically. Therefore, building a correct software code to represent 

conditions of the contract will ensure nearly zero error.   

• Efficiency: Blockchain reduces the efforts needed to do reconciliation and handle disputes 

manually. The existing systems with separate ledgers can lead to inconsistent master and 

transaction data resulting in faulty and duplicated data. Also, identifying and correcting this 

data will take a long time. By using the distributed and immutability features of the 

blockchain, smart contracts provide efficient solutions over conventional contracts (Atlam 

& Wills, 2019). 

• Transparency: Smart contracts offers a high level of transparency by sharing transactions 

details between all participants’ nodes involved in those transactions. Also, there is no need 

for a central authority which improves business friendliness and guarantees a trusted 

workflow (Atlam & Wills, 2019). 

• Trust:  Smart contracts provide complete trust in their execution. The autonomous, 

transparent and security features in the smart contract eliminate any possibility of 

manipulation or error. Moreover, smart contracts and its related data are encrypted on the 

shared ledger and all parties can access them.  
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2.6.3 How Do Smart Contracts Work? 

Smart contracts are typically deployed on blockchain. According to Smart Contracts Alliance (2016), 

there are six stages to design and verify smart contracts within the blockchain environment, as shown 

in Figure 2.13. 

1. Identify Agreement: Smart contracts involve multiple communication nodes, so this phase 

is used to identify the desired outcomes of the agreement which include business processes, 

asset swaps, transfer of rights and other tasks. 

2. Set Conditions: Smart contracts could be initialized by the parties themselves or by 

satisfying certain conditions like financial market indices, natural disasters, or event via GPS 

location. In addition, temporal conditions could initiate smart contracts on holidays, 

birthdays and religious events. 

3. Code the Contract: A smart contract is written as a computer program in a way that the 

arrangement will be automatically executed when the conditional parameters are met. 

4. Apply Encryption: Encryption provides secure authentication and verification of 

messaging between the parties relating to the smart contract. 

5. Execution and Processing: In a blockchain iteration, when consensus is reached on 

authentication and verification, the smart contract is written to a block. The code is then 

executed, and the outcomes are memorialized for compliance and verification. 

6. Network Updates: After executing the smart contract, all nodes in the network update their 

ledgers to reflect the new state. Once the record is verified and posted to the blockchain, it 

cannot be changed.  

 

Figure 2.13: Major phases to build a smart contract 
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2.7 Summary  

Chapter 2 presented the background and literature review of access control in the IoT. It started by 

providing an overview of the IoT and related security challenges. This was followed by providing a 

discussion of IoT security and access control models. Although the IoT system provides countless 

benefits, it brings several challenges, especially in security. Building an effective access control 

model can solve this issue, however, existing access control models are static and give the same 

outcome in different situations. Hence, dynamic access control models are more appropriate for the 

IoT as they use not only static policies but also real-time and contextual information to make the 

access decision. Risk-based access control model is one of the dynamic models that uses the security 

risk as a criterion to make the access decision. This model provides a flexible way to increase 

information sharing and at the same time ensures the security of information. Chapter 2 then 

presented an overview of context-awareness models. This was followed by providing a discussion of 

existing risk-based access control models by highlighting risk factors utilized in related risk-based 

models. Chapter 2 also provided an overview of smart contracts by highlighting the structure of smart 

contracts and how smart contracts work. The next chapter presents an overview of risk estimation 

techniques and introduces the fuzzy logic system with expert judgment to be the appropriate risk 

estimation approach.
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Chapter 3: Risk Estimation Techniques for IoT  

One of the significant stages to implement a risk-based access control model is the risk estimation 

process. Therefore, this chapter aims to provide an overview of risk estimation techniques that can 

be utilized to build a risk-based model for the IoT. This chapter starts by providing an overview of 

the risk estimation process with presenting advantages and disadvantages of both quantitative and 

qualitative risk estimation methods. Section 3.2 provides a discussion of various risk estimation 

techniques discussed in related risk-based access control models by highlighting their advantages 

and weaknesses. Then, section 3.3 introduces the fuzzy logic system with expert judgment to be the 

suitable risk estimation approach to implement the risk-based access control model for the IoT. 

Section 3.4 provides a detailed discussion of the main stages required to build a fuzzy logic system. 

This is followed by providing an overview of expert judgment and different phases needed to obtain 

an expert judgment in section 3.5. The chapter closes by providing a summary of the main points 

discussed through the chapter and introduces the next chapter.  

3.1 Risk Estimation  

Security risk is one of the main features used in access control models. It is the building block of 

risk-based access control approaches. Using the security risk as a criterion to provide the access 

decision can increase the security to an appropriate level with ensuring flexibility and increase 

opportunities of information sharing between different applications (Dos Santos et al., 2014).   

The essential stage of implementing a risk-based access control model is the risk estimation process. 

This process is based on estimating the possibility of information leakage and the value of that 

information. The main objective of the risk estimation operation is to create a way of arranging risks 

in the order of importance and use risk numeric values to make access decisions in accordance with 

a specific context. 

The security risk can be estimated either by qualitative or quantitative approaches (Yin et al., 2006). 

Quantitative risk estimation approaches are concerned with attaching specific numerical values to 

security risks. These values are used to determine access decisions directly. Although quantitative 
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risk estimation approaches are ideal as they lead to numeric values for the risk, it is difficult to 

perform without having a proper dataset describing risk likelihood and its impact on a specific 

application (Ramona, 2011).  

Qualitative risk estimation approaches are used to calculate the risk early in the system. This is 

effective in categorising which risks should or should not be planned for and what is the appropriate 

action that should be taken for them. Qualitative risk estimation techniques cannot give accurate 

values for the risk. However, they are very powerful when we have little time to evaluate risks before 

they actually happen (Yin et al., 2006). Table 3.1 presents advantages and disadvantages of 

quantitative and qualitative risk estimation approaches. 

Table 3.1: Advantages and disadvantages of quantitative and qualitative risk estimation methods (Yin et al., 

2006 ; Ramona, 2011) 

Approach Quantitative Methods Qualitative Methods 

 

 

Advantages 

• Risks are arranged by their cost  

• Objective methods are used to 

evaluate and estimate risk values  

• Availability, integrity and 

confidentiality are used to determine 

the security level  

• Best-suited measures are selected 

based on implementing a cost-analysis 

• With more experience, data accuracy 

will be increased 

• Easy to understand 

• Easy to detect the risk level 

• Easy to implement 

• The risk analysis process is easier as the 

practical value of information is not used 

• Quantitative estimation of events 

probabilities and impact are not required 

• Estimated cost of the measure that should 

be implemented is not calculated 

 

 

 

Disadvantages 

• Calculation methods are complex 

• Very difficult to implement without an 

automatic tool 

• No standards for implementing this 

method 

• Need long time to handle the 

calculation process 

• The obtained results are introduced in 

the form of practical values which are 

hard to understand by the public 

without experience 

• Risk calculation and its results are 

subjective 

• The subjective calculation is not enough 

to generate real and correct values 

• Because of their subjectivity, the 

performance of risk management is 

difficult to follow 

• A cost-benefit analysis is not 

implemented, only a subjective 

calculation 

• The accuracy of the results depends on the 

quality of the risk management team 

3.2 Risk Estimation Techniques 

Risk estimation process faces many challenges for various reasons. For instance, the goal of the risk 

estimation process is to predict the future possibility of information disclosure that results from the 

current access. Determining such a possibility is not an easy task (Habib and Leister, 2015). 

Moreover, if the risk estimation has relied on incomplete or imprecise information and knowledge 

about relevant risk features, it will result in difficulties to determine the value of the risk (Ni et al., 

2010).  
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This section provides an overview of risk estimation techniques discussed in related risk-based access 

control models. Since the ultimate target of this research is to obtain a numeric value for the risk to 

determine the access decision whether granting or denying the access, only quantitative risk 

estimation techniques will be discussed.  

3.2.1 Fuzzy Logic System 

A fuzzy logic system is a computational approach which imitates how people think. It describes the 

world in imprecise terms such as if the temperature is hot, it responds with a precise action. 

Computers can work only on precise evaluations, while the human brain can provide reasoning with 

uncertainties and judgments (Bai & Wang, 1982). The fuzzy logic system is considered as a try to 

combine both techniques. Indeed, the fuzzy logic system is a precise problem-solving approach that 

has the ability to work with numerical data and linguistic knowledge simultaneously. It simplifies 

the management of complex systems without the need for its mathematical description (Kose, 2012). 

The fuzzy logic system has many advantages. It is flexible, robust, and based on natural language 

which makes it easy to understand. It is also tolerant to imprecise data in which it can work even 

when there is a lack of rules. On the other hand, it faces some challenges. For instance, it needs 

domain experts to determine the fuzzy variables of the system. Also, it requires more tests and 

simulations which take a long time especially when there is a large number of rules (Shapiro & 

Koissi, 2015).  

The computation process using the fuzzy logic system consists of three main phases: 

• Fuzzification – The majority of variables are crisp or classical variables. Fuzzification 

process is used to convert crisp variables of input and output into fuzzy variables to process 

it and produce the desired output. 

• Fuzzy Inference Process – Describing relationships between different inputs and output to 

drive the fuzzy output is done through building IF-THEN fuzzy rules. The fuzzy IF-THEN 

rule uses linguistic variables to describe the relationship between a certain condition and an 

output. The IF part is mainly used to represent the condition, and the THEN part is used to 

provide the output in a linguistic form. The IF-THEN rule is commonly used by the fuzzy 

logic system to represent how the input data matches the condition of a rule (Bai & Wang, 

1982). 

• Defuzzification – Since the output should be a crisp variable, this phase converts the fuzzy 

output back to the crisp output (Kose, 2012). 

Some researchers utilized the fuzzy logic system to estimate the security risk in access control 

models. Chen et al. (2007) used the fuzzy logic system to build an MLS access control model to 

access information of IBM systems. This fuzzy MLS model estimates the risk value associated with 

the access request based on the difference between the subject security level and the object security 
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level. For instance, the larger the difference, the higher is the risk. Also, Li et al. (2013) presented a 

fuzzy modelling-based approach for evaluating the risk associated with the access request to 

healthcare information. They represented data sensitivity, action severity and risk history as a fuzzy 

value to determine the access decision. Moreover, Bertino and Lobo (2010) introduced a fuzzy 

inference technique to estimate the risk. Their fuzzy approach was used to estimate access risks and 

develop an enforcement mechanism for the risk-based model.  

3.2.2 Expert Judgment 

When there is insufficient practical data to describe the probability and impact of a certain incident, 

expert judgment can be used to provide a subjective evaluation based on experience. Expert judgment 

is commonly utilized to measure uncertain parameters in a probabilistic form to evaluate different 

elements of a certain model. Expert judgement can be defined as “ the expression of inferential 

opinions based on knowledge and experience” (Leung & Verga, 2007).  

Expert judgment is a powerful tool in risk analysis. It provides various solutions and decisions in 

several domains, such as psychology, criminal justice, financial forecasting, political science, and 

decision analysis. The use of expert judgement has raised many questions regarding the accuracy of 

the results. However, there are many circumstances where expert judgement is the only source of 

accurate information (Leung & Verga, 2007). Measuring the probability of an incident in risk 

analysis with the uncertainty that surrounds it is a difficult task especially for rare and extreme events. 

This is true when trying to estimate the security risks of access control operations (Turisová et al., 

2012). 

3.2.3 Risk Assessment  

Risk assessment is used to avoid potential damages of a certain scenario. Risk assessment can be 

defined as the process of investigating possible losses using a combination of known information 

about the situation and judgment about the information that is not known (Shapiro & Koissi, 2015). 

The risk assessment is used to identify the risk context and acceptable risk values in each situation. 

This can be achieved by comparing it to similar risks of similar scenarios. In addition, it aims to 

provide substitute solutions to reduce the risk and calculate solutions effectiveness (Stoneburner et 

al., 2002).  

Determining an appropriate type of risk analysis depends on the available data that characterize the 

risk probability and its impact. An effective risk assessment has many benefits. For example, a 

well-established risk assessment can support a balanced basis to prevent the risk or at least reduce its 

impact. However, it is a subjective process influenced by experience and it is only valid at a certain 

point in time (Stoneburner et al., 2002). 



Chapter 3: Risk Estimation Techniques for IoT                                                                   49 

 

Risk assessment has been used in existing risk-based access control models. For instance, 

Khambhammettu et al. (2013) introduced three different approaches that conduct a risk assessment 

framework for a risk-based access control model. These approaches are based on the object 

sensitivity level, the subject trustworthiness level and the difference between them. Moreover, Diep 

et al. (2007) proposed a risk-based access control model based on risk assessment by using the 

outcomes of actions in terms of availability, confidentiality and integrity to estimate the risk value 

for each access request. 

3.2.4 Game Theory  

Game theory is considered as a division of applied mathematics that has been utilized in several 

domains like evolutionary biology, economics, artificial intelligence, political science, and 

information security. Game theory is used to describe multi-person decision scenarios in the form of 

games where each player selects appropriate actions that lead to the best possible payoff while 

expecting reasonable actions from opponent players  (Binmore & Vulkan, 1999). 

Game theory is the main tool for modelling and building automated decision-making operations in 

interactive environments. This is because it can provide consistent and mathematical platforms. The 

power of the game theory lies in the methodology it supports for analysing different problems of 

strategic choice. The process of modelling a condition as a game needs the decision-maker to interact 

with the players, their strategic decisions, and to observe their preferences and responses (Hamdi & 

Abie, 2014). 

A game theory comprises of four components; the players, their strategies, payoffs and the 

information they have. The players are the essential part of the game, they are the decision-makers 

within the game. While the strategy is the plan that the player uses regarding the movement of the 

opposite player. So, it is critical for the players to select the suitable tactics. The payoff is the rewards 

of the players in the game. For each player, the payoff is affected by both their own actions and those 

of the other player (Rajbhandari & Snekkenes, 2011). In the game theory, the risk analysis is done 

by using user benefits rather than the probability. Moreover, game theory is recommended in 

conditions where no practical data is available (Hamdi & Abie, 2014). However, it is very complex 

especially with more than two players. It also leads to random outcomes when using mixed strategies. 

Game theory has been utilized in risk-based access control models. For instance, Rajbhandari and 

Snekkenes (2011) presented a risk analysis approach based on preferences or values of benefit which 

the subjects can provide using the game theory.  

3.2.5 Decision Tree 

A decision tree is a common methodology for many operations in machine learning. It is used as a 

decision support instrument to provide decisions depending on a group of rules presented as a tree 
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(Shang & Hossen, 2013). Building a decision tree model requires dividing the data into training and 

validation sets. Training data are utilized to extract appropriate rules for the tree. While validating 

the tree and making the required modifications are done using the validation data. 

The decision tree is represented as a flow diagram where each node, represented by a rectangle, 

describes the risk probability and its impact. These rectangles are connected by arrows in which each 

arrow leads to another box representing the percentage probability (Shang & Hossen, 2013). 

Decision tree approaches are easy to comprehend. They can operate efficiently with inadequate data 

if experts provide all the required rules. They can show all possible alternatives and traces in a single 

view which provides a simple comparison with various alternatives. Whilst the decision tree model 

provides many advantages, it also has some limitations. For instance, its scalability is questionable 

such that when the scale of the tree increases, the obtained model will be hard to recognize, and it 

needs more supplementary data to validate the rules. Also, a decision tree model is based on 

expectations, so it may be impossible to plan for all contingencies that can arise as a result of a 

decision (Wang et al., 2016).  

Selecting the appropriate risk estimation technique that fits with the requirements of the IoT 

environment is not an easy task. Table 3.2 provides a summary of advantages and disadvantages of 

previously discussed risk estimation techniques to help providing a clear picture of each risk 

estimation approach. 
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Table 3.2: Advantages and disadvantages of risk estimation techniques 

Approach Advantages Disadvantages 

 

 

Fuzzy Logic 

System 

• Easy to understand, test and maintain 

• Flexible and based on natural language 

• Robust, it operates even when there is a 

lack of rules or wrong rules 

• Tolerant to imprecise data 

• Can be built on top of the judgment of 

experts 

• Ability to work with any set of input-

output data using the Neuro-Fuzzy System 

(NFS) 

• Use rules that express imprecision of the 

real world 

• Need more tests and simulation 

• Do not learn easily 

• Difficult to establish correct rules without 

using domain experts 

• Lack of precise mathematical model 

• Subjective 

• Time overhead especially when there are a 

large number of rules 

• Scalability seems to be questionable when 

there are a large number of rules 

 

Expert 

Judgment 

• Quick to produce 

• Requires little resources in terms of time 

and cost 

•  Can be as accurate as other expensive 

methods 

• With experienced experts, accurate results 

are guaranteed 

• Subjective  

• Not consistent 

• The estimate depends on the level of experts’ 

experience 

• Risky and prone to error 

• Need a large number of knowledgeable 

experts 

 

 

Decision 

Tree 

• Consider a large range of consequences 

• Easy to understand when there are few 

decisions and outcomes 

• Results improved by numerical values on 

decisions 

• Fast to build and test 

• Works well with non-linear data 

• Shows all possible alternatives and traces 

each alternative in a single view, allowing 

for easy comparison among various 

alternatives 

• Based on expectations, so it may be 

impossible to plan for all contingencies that 

can arise as a result of a decision 

• More complex and less accurate with large 

trees 

• Unstable, a small change in input data can 

cause large changes in the tree 

• Storage constraints, re-drawing decision trees 

manually require large spaces 

• Need advanced knowledge to create a large 

decision tree 

• Do not take into account the dynamic nature 

of the business 

Risk 

Assessment 

• An effective tool used in decision-making 

• Assess, communicate, organize the risks 

and expected benefits 

• Lead to optimal productivity  

• Enhance transparency 

• Subjective process influenced by experience  

• Valid at a certain point in time, but maybe 

different later on 

• Not consistent 

• Time and cost overhead 

 

Game 

Theory 

• No actuarial data is needed 

• Risk analysis is based on outcomes, which 

the subjects can provide rather than 

subjective probability 

• Risk analysis is in the form of a game with 

players and strategies 

• Ideal for strategic situations with 

individual behaviour 

• Complex and difficult with more than two 

players  

• Its application and assumptions are 

unrealistic 

• The use of mixed strategies generates random 

outcomes 

• Does not consider resource limitations 

• Assumes both players are smart and rational 
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In addition, the benefits and limitations of previously discussed risk estimation techniques are 

represented in a summarized form in Table 3.3.  

Table 3.3. Benefits and limitations of risk estimation approaches 

 

Risk Estimation 

Technique 

Benefits Limitations 

 

Usable 

 

Fast 

 

Scalable 

 

Dynamic 

Include 

expert 

experience 

Massive 

resources 

needed 

 

Time 

overhead 

 

Subjective 

Fuzzy Logic          

Expert Judgment         

Risk Assessment         

Game Theory         

Decision Tree         

  

It is clear that there is no straightforward approach that can be used without limitations. Also, a risk 

estimation approach without subjectivity will never exist in risk analysis. In addition, scalability 

seems to be a problem in most approaches. Therefore, choosing the optimal risk estimation approach 

should depend heavily on the context.  

3.3 Proposed Risk Estimation Approach 

There is no universal and best method for conducting risk analysis. However, it is important to 

understand strengths and weaknesses of various approaches to select the most appropriate approach 

to the context (Boc, 2012). There are many questions about the appropriate risk estimation technique 

to implement in a risk-based access control model for the IoT system. Understanding different 

advantages and disadvantages of previously discussed risk estimation approaches, as shown in Table 

3.2 and Table 3.3, can provide a good indicator to select an appropriate risk estimation technique for 

the IoT context. 

After investigating the literature regarding risk estimation techniques, the fuzzy logic approach with 

expert judgment was selected to be the suitable risk estimation technique to implement in a risk-

based access control model for the IoT. There are many reasons for this selection. Firstly, there are 

significant sources of knowledge to provide all the required information to evaluate security risks 

regarding access control operations. One of the main sources is the past experience. Security 

administrators generally have some security skills regarding different risk factors and applications of 

suitable rules and policies regarding each context. This type of knowledge can be converted easily 

into rules for the fuzzy logic system (Alberts and Dorofee, 2002).  

Secondly, one of the major problems in any research, especially in security, is the lack of datasets 

due to information protection laws. To correctly estimate the risk value associated with a specific 
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situation, the data describing the situation probability and its impact are required. Once data is 

available, it can be used to estimate a more precise risk value. Using a fuzzy logic system with expert 

judgment, there is no need for a dataset since the required data will be provided by the domain 

security experts. Expert judgment is a significant source of information in risk-based decision-

making operations. This is because correct numerical data describing incident probabilities and its 

impact do not exist in most risk models (Tversky & Kahneman, 1974). In some cases, quantifying 

the value of the risk using classical approaches is very complicated, but with expert judgment, a more 

accurate value for a certain situation can be defined especially when appropriate experts are selected 

(Pluess et al., 2013).  

Thirdly, the fuzzy logic system is flexible (Ruan, 2000), so, it will be suitable for the IoT system to 

adapt to its changing conditions and situations. Fourthly, although expert judgement adds subjectivity 

to the risk estimation process, the subjectivity can be reduced to an acceptable level in the fuzzy logic 

system, since subjectivity is moved to the process of creating rules which can be better controlled. 

Certainly, subjectivity is not completely eliminated. However, as depicted in Table 3.3, it is unlikely 

that a method with no subjectivity will ever exist for risk analysis (Boc, 2012). Finally, there are 

many successful applications that used the fuzzy logic system such as decision support, engineering, 

psychology, medicine, and home appliances (Zimmermann, 2000; Eldabi et al., 2002). 

 

Figure 3.1: Combining the fuzzy logic system with expert judgment for the risk estimation process  

Combining the fuzzy logic system with expert judgment could generate realistic risk values regarding 

certain scenarios. One of the essential steps to implement a fuzzy logic approach to estimate security 

risks is to set appropriate fuzzy rules. Determining appropriate fuzzy rules is one of the primary goals 

of combining the expertise of the domain experts with the fuzzy logic system. 

The next section provides an overview of the fuzzy logic system by discussing the main stages of 

building a fuzzy logic system. This is followed by providing an overview of expert judgment and 

different phases needed to obtain an expert judgment.  
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3.4 Fuzzy logic System  

The past few years have witnessed a rapid growth in the number and variety of fuzzy logic 

applications such as washing machines, camera autofocus, power supply regulation, aircraft engines, 

medical diagnosis systems, image processing and others. The fuzzy logic system has the ability to 

mimic how the human thinks. It employs modes of reasoning that are approximate rather than exact 

effectively. 

Fuzzy Logic is a problem-solving methodology that can be implemented in hardware, software, or a 

combination of both. It provides a simple method to output a definite conclusion based upon vague, 

ambiguous, imprecise, noisy, or missing input information. Moreover, the fuzzy logic system is 

based on the idea that all things in our environment are a matter of degrees. Temperature, height, 

speed, distance, beauty, etc., all can be defined with degrees (Rezaei et al., 2014).  

Fuzzy or multi-valued logic was introduced in 1930 by Jan Lukasiewicz, a Polish philosopher (Keller 

et al., 2016). He introduced the logic that extended the range of truth values to all real numbers in 

the interval between 0 and 1, while classical logic works only with two values 1 (true) and 0 (false). 

The difference between classical or Boolean logic and multi-valued logic can be shown in Figure 

3.2. 

 

Figure 3.2: Difference between Boolean logic and Multi-valued logic (Keller et al., 2016) 

Later in 1937, Max Black argued that a continuum implies degrees and published a paper called 

“Vagueness: an exercise in logical analysis” (Black, 1937). He said if a continuum is discrete, a 

number could be allocated to each element. He accepted vagueness as a matter of probability 

(Singhala et al., 2014). In 1965, Lotfi Zadeh published his paper “Fuzzy sets”. Zadeh extended the 

work on the possibility theory into a formal system of mathematical logic and introduced a new 

concept for applying natural language terms (Zadeh, 1965). This new logic for representing and 

manipulating fuzzy terms was called fuzzy logic, and Zadeh became the master of the fuzzy logic 

(Boc, 2012; Singhala et al., 2014). 

The fuzzy set theory provides a way to utilize imprecise and uncertain information made by a system 

and human judgments in a precise way. If the available data does not provide a suitable numeric 

result, the fuzzy logic system can resolve this problem by using linguistic expressions such as low, 

medium and high (Radionovs & Uzhga-rebrov, 2014).  
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Generally, implementing a fuzzy logic approach for an application requires five steps (Kose, 2012; 

Singhala et al., 2014), as depicted in Figure 3.3. 

1. Fuzzification: It is the process that converts classical data or crisp data into fuzzy variables 

using linguistic expressions. 

2. Membership Function (MF): It involves mapping each variable to a value between 0 and 

1. This value is called membership value or degree of membership. 

3. Fuzzy Inference Rules: It represents the relationship between input and output linguistic 

expressions using IF-THEN rules to derive the output. 

4. Rule Aggregation: It combines fuzzy sets that represent the output of each rule into a single 

fuzzy set. 

5. Defuzzification: It is the process that converts the fuzzy output back to the crisp or classical 

output. The fuzzy output is still a linguistic variable, and this linguistic variable needs to be 

converted to the crisp variable through the defuzzification process. 

 

 

Figure 3.3: Representation of the fuzzy logic approach (Kose, 2012) 

3.4.1 Fuzzification 

The first step to apply the fuzzy logic approach is fuzzification. Most variables existing in the real 

world are crisp or classical variables. One needs to convert these crisp variables (both input and 

output) into fuzzy variables, and then apply fuzzy inference to process these data to obtain the desired 

output (Singhala et al., 2014). The input and output linguistic variables are divided into fuzzy sets. 

A fuzzy set is a set containing elements with varying degrees of membership to this set. The idea of 

fuzzy sets is opposite to classical or crisp sets because members of a crisp set would not be members 

unless their membership is full or complete in that set. While in a fuzzy set, elements’ membership 

need not to be complete and they can also be members of other fuzzy sets on the same universe 

(Kose, 2012; Ross, 2010). 
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The difference between classical logic and fuzzy logic can be shown in Figure 3.4. A sentence in the 

classical logic universe can have only two possible values; small or large. While with the fuzzy logic 

theory, the sentence may have a large (maybe infinite) number of values. Therefore, fuzzy sets solve 

the problem of vague linguistic terms (Korol & Korodi, 2011).   

 

Figure 3.4: The difference between crisp sets and fuzzy sets (Korol & Korodi, 2011) 

3.4.2 Membership Functions 

Generally, fuzzification involves two processes: derive the MFs for input and output variables and 

represent them with suitable linguistic variables (Shapiro & Koissi, 2015). Linguistic variables are 

the building blocks of the fuzzy logic system. They are defined as variables whose values are 

expressed as words or sentences (Zadeh, 1965). For instance, linguistic variables associated with 

temperature can be set as cold, hot and very hot.  

Fuzzy MF is a curve that defines how each point in the input space is mapped to a membership value 

(or degree of membership) between 0 and 1. The input space is sometimes called the universe of 

discourse. The only condition MF must satisfy is that it must vary between 0 and 1 (Ross, 2010). 

MFs can have different types such as triangular, trapezoidal, Gaussian, and others. Selecting the 

appropriate MF depends on the actual application. For those systems that need significant dynamic 

variation in a short period of time, a triangular or trapezoidal waveform should be utilized. For those 

systems that need very high control accuracy, a Gaussian or S-curve waveform should be selected 

(Bai & Wang, 1982; Kose, 2012). 

In practice, MF for a fuzzy set “A” on the universe of discourse “X” is defined as µA:X → [0,1], 

where each element of X is mapped to a value between 0 and 1. This value, called membership value 

or degree of membership, quantifies the grade of membership of the element in “X” to the fuzzy set 

“A”. MFs allow us to graphically represent a fuzzy set. The x-axis represents the universe of 

discourse, whereas the y-axis represents the degrees of membership in the [0,1] interval (Wang, 

2015). 
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The next section provides a brief discussion on various MFs that can be implemented using 

MATLAB by providing the equation and representation of each MF.   

3.4.2.1 Triangular MF  

Triangular MF (Trimf) is a triangular-shaped function that used to represent the relationship between 

fuzzification inputs and fuzzified output. It is represented by a lower limit “a”, an upper limit “b”, 

and a value “m”, where a < m < b (Wang, 2015). The triangular function and its representation are 

shown in Figure 3.5. 

 

Figure 3.5: Function and representation of triangular MF (Mathworks, 2016) 

There are two types of triangular MF; symmetric and asymmetric. The only difference between 

symmetric and asymmetric MF, as shown in Figure 3.6, is the value of m which divides the MF into 

two equal halves in the symmetric MF.  

 

Figure 3.6: Difference between asymmetric and symmetric triangular MF (Mathworks, 2016). 

3.4.2.2 Trapezoidal MF 

Trapezoidal MF (Trapmf) is a trapezoidal-shaped function that is represented by a lower limit “a”, 

an upper limit “d”, a lower support limit “b”, and an upper support limit “c”, where a < b < c < d 

(Wang, 2015). Trapezoidal function and its representation are shown in Figure 3.7. 
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Figure 3.7: Function and representation of trapezoidal MF (Mathworks, 2016) 

3.4.2.3 Gaussian MF 

Gaussian MF (Gaussmf) is a gaussian curve function that is represented by a central/mean 

value “m” and a standard deviation k > 0. The smaller “k” is, the narrower the “bell” is (Mathworks, 

2016). Gaussian function, where “k” and “m” represent the standard deviation and the mean 

respectively, and its representation are shown in Figure 3.8. 

 

Figure 3.8: Function and representation of gaussian MF (Mathworks, 2016) 

3.4.2.4 Gaussian2 MF 

Gaussian2 MF (Gauss2mf) is a gaussian combination function that used to represent the relationship 

between fuzzification inputs and fuzzified output. The normal gaussian MF is represented using two 

parameters (sig, c), while gaussian2 MF is represented using a combination of two of these two 

parameters. The first function, specified by sig1 and c1, determines the shape of the left-most curve 

while the second function specified by sig2 and c2 determines the shape of the right-most curve. 

Whenever c1 < c2, the gaussian2 MF function reaches a maximum value of 1 (Mathworks, 2016). In 

Gaussian2 MF σ represents the standard deviation and “c” represents the mean, and its representation 

can be shown in Figure 3.9. 
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Figure 3.9: Function and representation of gaussian2 MF (Mathworks, 2016) 

3.4.2.5 Generalized bell-shaped MF 

Generalized bell-shaped MF (Gbellmf) depends on three parameters “a”, “b”, and “c” where the 

parameter b is usually positive. The parameter c locates the centre of the curve (Mathworks, 2016). 

Generalized bell-shaped MF and its representation can be shown in Figure 3.10. 

 

Figure 3.10: Function and representation of generalized bell-shaped MF (Mathworks, 2016) 

3.4.2.6 Sigmoid MF 

Sigmoid MF (Sigmf) is a sigmoid shaped function that depends on the parameter “a”. Generally, the 

sigmoidal MF is inherently open to the right or to the left, and thus it is appropriate to represent 

concepts such as “very large” or “very negative” (Mathworks, 2016). Sigmoid MF function and its 

representation are shown in Figure 3.11. 
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Figure 3.11: Function and representation of sigmoid MF (Mathworks, 2016) 

3.4.2.7 Difference between two sigmoidal MF 

Dsigmf is a function that used to represent the difference between two sigmoidal functions. It depends 

on four parameters a1, c1, a2, and c2. It is the difference between two of these sigmoidal functions 

“F1(x; a1, c1) - F2(x; a2, c2)” (Mathworks, 2016). Dsigmf function and its representation are shown 

in Figure 3.12. 

.  

Figure 3.12: Function and representation of Dsigmf (Mathworks, 2016) 

3.4.2.8 Product of two sigmoidal MF  

Psigmf is a function that is used to represent the product of two sigmoidal MFs. Similar to Dsigmf, 

it depends on four parameters a1, c1, a2, and c2, and it is the product of two of these sigmoidal 

functions such that F1(x; a1, c1) × F2(x; a2, c2). Psigmf function and its representation are shown in 

Figure 3.13. 
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Figure 3.13: Function and representation of Psigmf (Mathworks, 2016) 

3.4.2.9 S-shaped MF 

 S-shaped MF (smf) is an s-shaped function that represents a mapping on the vector x. It depends on 

two parameters a and b which locate the extremes of the sloped portion of the curve. S-shaped MF 

function and its representation are shown in Figure 3.14. 

 

Figure 3.14: Function and representation of S-shaped MF (Mathworks, 2016) 

3.4.2.10 Z-shaped MF 

Z-shaped MF (zmf) is a z-shaped function that is used to represent the relationship between 

fuzzification inputs and fuzzified output. This spline-based function of x is so named because of its 

Z-shape. The parameters “a” and “b” locate the extremes of the sloped portion of the curve. Z-shaped 

MF function and its representation are shown in Figure 3.15. 
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Figure 3.15: Function and representation of Z-shaped MF (Mathworks, 2016) 

3.4.2.11 Pi-shaped MF  

This spline-based curve is so named because of its Π shape. This MF is evaluated at the points 

determined by the vector x.  Pi-shaped MF is a product of S-shaped MF and Z-shaped MF.  Pi-shaped 

MF function and its representation are shown in Figure 3.16. 

 

Figure 3.16: Function and representation of Pi-shaped MF (Mathworks, 2016) 

3.4.3 Fuzzy Inference Rules 

Fuzzy inference rules are considered as the knowledge base that describes the relationship between 

input and output linguistic expressions. They are represented by a sequence of IF-THEN statements, 

leading to a set of procedures that define what actions or outputs should be taken in terms of currently 

observed input combinations. Fuzzy rules are constructed based on knowledge or experience, which 

is dependent on each application (Bai & Wang, 1982). 

The fuzzy IF-THEN rule uses linguistic variables to describe the relationship between a certain 

condition and an output or a conclusion. The IF part is mainly used to represent the condition, and 

the THEN part is used to provide the conclusion or output in a linguistic variable form. This IF-THEN 
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rule is commonly used by the fuzzy logic approach to represent the degree to which the input data 

match the condition of a rule (Bai & Wang, 1982). A fuzzy rule is represented in the following form: 

 IF X is A, THEN Y is B                                                               (3.1) 

Where X and Y are linguistic variables and A and B are linguistic values determined by fuzzy sets 

on the universe of discourses X and Y respectively. 

To build fuzzy inference rules, the type of Fuzzy Inference System (FIS) should be defined. There 

are two types of FISs: Mamdani and Sugeno. Mamdani FIS is the most commonly used fuzzy 

inference technique. This approach is introduced by Ebrahim Mamdani in 1975 to control a steam 

engine and boiler combination (Mamdani & Assilian, 1975). Mamdani FIS applied a set of fuzzy 

rules supplied by experienced human operators. Mamdani FIS is performed in four steps: 

fuzzification of the input variables, rule evaluation, aggregation of the rule outputs, and finally 

defuzzification (Negnevitsky, 2010). 

On the other hand, Sugeno FIS was first introduced by Michio Sugeno in 1985 (Takagi & Sugeno, 

1985). It is very similar to the Mamdani method. Instead of the fuzzy set; Sugeno used a mathematical 

function to represent the output variable. Sugeno FIS is based on generating fuzzy rules through a 

given input-output dataset (Negnevitsky, 2010). The main difference between the two methods lies 

in the consequent of the fuzzy rules. The format of the Sugeno fuzzy rule is represented as follows: 

IF X is A, AND Y is B, THEN Z is F (X, Y)                                   (3.2) 

Where X, Y and Z are linguistic variables; A and B are linguistic values determined by fuzzy sets on 

the universe of discourses X and Y respectively, and F (X, Y) is the mathematical function of the 

output variable. 

One of the important facts to notice about the two FISs is that Sugeno FIS cannot be used unless a 

given input-output dataset exists. Since most risk estimation processes suffer from the lack of 

appropriate datasets that characterise the risk, Mamdani FIS is the most commonly adopted fuzzy 

inference technique in risk estimation operations. 

3.4.4 Rule Aggregation 

Rule aggregation is the process used to combine fuzzy sets that represent the output of each rule into 

a single fuzzy set. It is used only once for each output variable, prior to the final step; defuzzification. 

Rule aggregation is one of the main stages in Mamdani FIS. This is because the fuzzy output depends 

on the evaluation of all fuzzy rules in the FIS; and hence, all rules should be combined to provide the 

fuzzy output.  
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Figure 3.17: Fuzzy rule aggregation with the max method (Mathworks, 2016) 

The input of the aggregation process is a list of truncated output functions returned by the inference 

process for each rule. The output of the aggregation process is one fuzzy set for each output variable 

(Mathworks, 2016). Most aggregation processes are commutative so, the order of the rule execution 

is not essential. Figure 3.17 shows the aggregation process by presenting how three fuzzy rules are 

combined and how the output of each rule is aggregated into a single fuzzy set using the max method. 

3.4.5 Defuzzification  

The last step for building a fuzzy logic approach is defuzzification. Basically, defuzzification is the 

process of mapping from a space of a fuzzy logic defined over an output universe of discourse into 

a space of a crisp logic. In other words, the defuzzification process is used to convert the fuzzy output 

back to the crisp or classical output. The fuzzy output is still a linguistic variable, and this linguistic 

variable needs to be converted to a crisp variable (Kose, 2012; Singhala et al., 2014).  

There are five common defuzzification methods that can be implemented using MATLAB. These 

methods include: 

1. Mean of Maximum Method (MOM): It works by calculating the average of fuzzy outputs 

that have the highest degrees. This method does not work with the entire shape of the output 

MF; instead, it only works with points that have the highest degrees in that function. For 

those MFs that have different shapes but the same highest degrees, this method will provide 

the same result (Kose, 2012; Ross, 2010). 
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2.  Centre of Gravity (COG): It is the most common defuzzification method that is widely 

used in several applications. It is also called the centroid method. This method is similar to 

the principle of calculating the centre of gravity in physics. The weighted average of the MF 

or the centre of the gravity of the area bounded by the MF curve is computed to be the most 

crisp value of the fuzzy quantity (Kose, 2012; Ross, 2010). 

3. Bisector of Area (BOA): The bisector is the vertical line that divides the region into two 

sub-regions of equal area. It is sometimes, but not always coincident with the centroid line 

(Kose, 2012). 

4. Smallest of Maximum (SOM): It determines the smallest of the maximum value of the area 

under the curve of the aggregated MFs (Tóth-laufer & Takács, 2012). 

5. Largest of Maximum (LOM): It determines the largest of the maximum value of the area 

under the curve of the aggregated MFs (Tóth-laufer & Takács, 2012). 

Figure 3.18 shows an example that uses x = -10:0.1:10, and trapezoidal MF to show different ways 

to calculate the defuzzified output for each method. There is no superior method, however, the 

centroid method is more common and recommended to start with in the absence of a dataset 

(Mathworks, 2016). 

 

Figure 3.18: An example to show the calculation of defuzzified value using centroid, bisector, LOM, MOM, 

and SOM defuzzification methods (Mathworks, 2016) 

3.4.6 Applications of Fuzzy Logic System 

There are numerous applications that utilized the fuzzy logic system in various aspects of industrial 

production or manufacture. The fuzzy logic system is an effective tool to help decision-making in 
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manufacturing reengineering, optimize the process parameters for drilling processes, realize a better 

batch process scheduling, and others (Singh et al., 2013). 

There are many applications for the fuzzy logic system. These are: 

• Aerospace (e.g. altitude control of spacecraft and satellite altitude control) 

• Automotive (e.g. intelligent highway systems, traffic control, and shift scheduling for 

automatic transmission) 

• Business (e.g. decision-making support systems and personnel evaluation in a large 

company) 

• Defence (e.g. underwater target recognition, control of a hypervelocity interceptor, and naval 

decision support aids) 

• Electronics (e.g. washing machine timing, microwave ovens, vacuum cleaners, and air 

conditioning systems) 

• Finance (e.g. stock market predictions, fund management, and banknote transfer control) 

• Marine (e.g. autopilot for ships, optimal route selection, and ship steering) 

• Healthcare (e.g. medical diagnostic support system, multivariable control of anaesthesia, 

and radiology diagnoses) 

• Security (e.g. decision systems for security trading and various security appliances) 

• Transportation (e.g. train schedule control, railway acceleration, automatic underground 

train operation, and braking and stopping) 

• Image processing (e.g. pattern recognition and classification, handwriting recognition, and 

command analysis) 

• Psychology (e.g. analysis of human behaviour and criminal investigation and prevention) 

3.5 Expert Judgement  

In the absence of sufficient practical data, uncertain variables and models can be computed using 

expert opinions. An expert is a person who is qualified with special knowledge and skills and with 

relevant experience in a specific domain (Leung & Verga, 2007). Expert judgements are the 

expression of inferential opinions, based on knowledge and experience. It is often used to quantify 

uncertain parameters in a probabilistic form (Otwayl & Winterfeldt, 1992). 

Expert judgement can be qualitative or quantitative. Quantitative forms can be expressed as 

numerical values of probabilities, ratings, odds, uncertainty estimates and weighting factors. While 

qualitative forms can be represented as textual descriptions to reach an estimate for certain scenarios 

(Leung & Verga, 2007). Expert judgement is used to support decision-making in many different 

areas such as financial forecasting and assessing risks of terrorist attacks in the national security 

domain. The use of expert judgement has induced questions related to the accuracy of the obtained 
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results. However, there are many situations where expert judgement is the only source of accurate 

information regarding certain scenarios (Leung & Verga, 2007). 

Expert judgment is a powerful tool in risk analysis. The uncertainty that surrounds the measure of 

probability in risk analysis is particularly hard to compute for rare and extreme events. This is the 

same when trying to estimate security risks for future and unknown events (Turisová et al., 2012). 

3.5.1 Expert’s Selection 

The identification of experts is a critical part of the expert judgement process. It requires that one 

develops some criteria by which expertise can be measured (Otwayl & Winterfeldt, 1992). These 

criteria can be such as: 

• Research in the related area as identified by publications and grants 

• Citations of work 

• Degrees, awards, or other types of recognition 

• Availability and willingness to participate 

• Recommendations and nominations from respected bodies and persons 

• Positions held 

• Membership or appointment to review boards, commissions, etc. 

3.5.2 Expert Interview  

Expert judgment can be realized using different techniques. One of the most common methods is the 

interview. An interview is carried out as a conversation between two individuals, the researcher and 

the interviewee. Experts are given a set of predetermined questions, whether using qualitative or 

quantitative methods. The interview questions may be related to the evaluation of a model, 

suggestions about some points linked to the study or different aspects of the area of the study 

(Tessmer, 1993). There are two ways of conducting an interview: structured and semi-structured 

(Britten, 1995; Rogers et al., 2011). A structured interview is usually used to provide more 

knowledge about the subject where the interviewees are asked a series of prepared questions. Semi-

structured interviews include set of predetermined open and closed questions, with other questions 

emerging from the dialogue during the interview, by either the interviewer or interviewee, in order 

to explain an idea in more details (DiCicco‐Bloom & Crabtree, 2006). Although the interviewer may 

face difficulties in finding participants, the interview is a flexible method that used to gain more 

knowledge in a certain area of study (Britten, 1995). 

3.5.3 Phases of Expert Judgment  

Regardless of the type of expert judgment, there are basic steps for obtaining an expert judgment 

(Benini et al., 2017), as depicted in Figure 3.19.  
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Figure 3.19: Phases of obtaining an expert judgment (Benini et al., 2017) 

The first phase is the background and preparation. The need to obtain an expert judgment can vary 

in different situations, however, the main target of employing an expert judgment should be clearly 

understood. The researcher should be fully prepared and understand the required background and 

questions that need to be answered about the study.  

Table 3.4: Methods of collecting expert judgment (Benini et al., 2017) 

Data collection method Features 

 

 

Individual 

• Best method for obtaining detailed data 

• Avoid potential bias from group dynamics 

• Data are easy to process and analyse 

• Limited collaboration between experts 

• Time-consuming 

 

 

 

Interactive group 

• Generate more accurate data, particularly for predictions 

• Appropriate for solving problems that require originality 

and insight 

• More appropriate for complex response modes, as 

participants can be collectively trained and guided 

• Potential for group-think bias  

• Heavy in preparation, administration and logistics  

• Strong moderator required, particularly if there are more 

than seven experts in a group 

 

 

 

Delphi 

• Experts individually make a prediction on a certain topic 

• Researcher aggregates all perspectives and shares the results 

with the contributing experts 

• Experts are then requested to update their predictions. 

• Over several rounds, the researcher tries to reach a 

consensus prediction 

• Limited bias between experts but time-consuming 
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The next phase is to select the appropriate experts to conduct the expert judgment according to the 

criteria discussed in the previous section. The logical next phase after selecting the experts is to 

record their responses using an audio recorder or by means of manual note-taking. There are three 

different ways to collect expert judgment: individual, interactive group, or Delphi (Benini et al., 

2017), as summarized in Table 3.4. The collected data are then aggregated and analysed to extract 

the meaningful findings that can be later used in decision-making processes. 

3.6 Summary  

Chapter 3 has provided a discussion of risk estimation techniques. It started by providing an overview 

of quantitative risk estimation approaches discussed in related risk-based access control models with 

presenting their advantages and weaknesses. Then, the fuzzy logic approach with expert judgment 

was selected to be the suitable risk estimation technique to implement the risk-based access control 

model for the IoT. There were several reasons for this selection. Firstly, the fuzzy logic system 

provides a flexible model that is built on top of the experience of experts. Secondly, the fuzzy logic 

system is tolerant to imprecise data, so the lack of dataset, as in our research, can be resolved. Thirdly, 

a risk analysis based on the fuzzy logic system with consistent expert knowledge can create an 

effective method to assess risks in access control operations. Finally, most risk estimation techniques 

are subjective, but with consistent expert judgment, the subjectivity of the fuzzy logic system can be 

reduced. In addition, chapter 3 provided a discussion of the main stages of building a fuzzy logic 

system. This is followed by providing an overview of expert judgment and different phases required 

to obtain an expert judgment. The next chapter presents the proposed adaptive risk-based access 

control model for the IoT.  
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Chapter 4: Adaptive Risk-based Model 

This chapter provides a discussion of the proposed adaptive risk-based access control model for the 

IoT system. It starts by discussing limitations of the existing static access control models and the 

need for a dynamic risk-based access control model for the IoT system. Section 4.2 provides a 

discussion of research problems that the literature fails to address. Then, section 4.3 presents the 

proposed adaptive risk-based access control model by highlighting its main elements and flow 

process. This is followed by discussing how the proposed model will address the research problems 

in section 4.4. Section 4.5 presents research methods that was utilized to achieve research targets. 

The chapter closes by providing a summary of the main points discussed through the chapter and 

introduces the next chapter.  

4.1 Dynamic IoT System  

The IoT is a dynamic system in nature where all environment and heterogeneous objects and things 

can be connected together to share their data and create new applications and services. Although the 

IoT brought unlimited benefits, it creates several challenges, especially in security. Achieving a 

higher level of security is a huge challenge due to the heterogeneous and distributed nature of the 

IoT system. In addition, applying sophisticated security algorithms could affect usability and user 

satisfaction. Hence, for the IoT system, the ultimate goal is to create an effective security system and 

at the same time consider the system usability (Habib & Leister, 2015).  

One of the significant elements to address security challenges in the IoT is the access control model. 

This model is used to control access to system resources by allowing only authorized users who have 

been successfully authenticated (Liu et al., 2016). The major goal of the IoT system is to increase 

information sharing to maximize organization benefits and at the same time ensure the highest 

possible security measures are applied to prevent sensitive information disclosure. However, static 

access control models are built using predefined policies that give the same result in different 

situations. This binary decision (grant/deny) cannot create an effective level of security in a dynamic, 

heterogeneous and distrusted environment like the IoT system (Castiglione et al., 2016; Shen et al., 

2018). 
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Static access control models cannot provide the required flexibility to diverse IoT applications. In 

addition, these models are associated with a system administrator who has access to all system 

resources. Compromising the administrator account can lead to the breach of almost all system 

confidential and sensitive data (Ye et al., 2014). Therefore, a dynamic access control model is 

required for the IoT system. 

Risk-based access control model is one of the dynamic models that uses security risk associated with 

the access request as a criterion to determine the access decision. It estimates a risk value associated 

with each access request. Then, the estimated risk value is compared against risk policies to make 

the access decision (Shaikh et al., 2012).  

4.2 Research Problems 

This research aims to provide a dynamic and adaptive risk-based access control model for the IoT 

system. The literature has been examined in term of the scope of the research, as presented in chapter 

2 and 3. After reviewing existing literature regarding risk-based access control models, the literature 

failed to: 

• Provide a dynamic risk-based access control model for the IoT system. Most presented 

risk-based models did not focus on the IoT context where billions of sensors can be used to 

collect real-time and contextual features to determine access decisions in a dynamic manner. 

Therefore, this issue has been presented as the main research question, as follows:  

RQ: What is the appropriate adaptive risk-based access control model for the IoT system? 

• Present a clear and effective risk estimation technique to estimate a risk value associated 

with each access request in a dynamic environment quantitatively. Providing a numeric value 

for the security risk is one of the biggest challenges the literature failed to address. Most 

presented risk estimation techniques did not provide a clear and precise method to provide a 

numeric value for the risk associated with each access request. This issue has been 

represented as one of the sub-research questions, as follows: 

SRQ1: What is the appropriate risk estimation technique to estimate the risk associated with 

the access request? 

• Provide acceptable risk values that can be used to make access decisions. Most presented 

risk-based models suggested using a threshold risk value to grant or deny the access without 

providing any details about how to decide this threshold risk value in different applications. 

This issue has been represented as one of the sub-research questions, as follows:  

SRQ2: What are acceptable risk values to make the access decision in IoT applications? 
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• Provide a plug and play risk-based access control model that works when first used or 

connected, without reconfiguration or adjustment by the system administrator. In the 

literature, some risk-based access control models such as Shaikh et al. (2012), Li et al. 

(2013), Namitha et al. (2015), and Britton and Brown (2007) utilized risk history as a factor 

to determine access decisions. However, values of risk history will not be available at the 

start of setting up a new risk-based model, which will make the system unusable until 

collecting risk history values. This issue has been represented as one of the sub-research 

questions, as follows: 

SRQ3: How to provide a plug and play risk-based model that can work when first used or 

connected to an IoT system? 

• Provide a scalable risk estimation technique that can cope with the constant increase of the 

number of IoT devices. Providing a clear risk estimation approach was not the only issue the 

literature failed to resolve, considering the growing rate of IoT devices that need fast and 

scalable risk estimation approach was not also addressed. There is no proof that the presented 

risk estimation techniques in the literature were tested to measure its scalability and response 

time, especially in the IoT context. This issue has been represented as one of the sub-research 

questions, as follows: 

SRQ4: How to provide fast and scalable risk estimation technique to handle the constant 

increase in the number of IoT devices? 

• Consider a way to detect and prevent malicious activity during access sessions. Most existing 

access control models do not employ a method to detect malicious actions after granting 

access. In addition, related risk-based access control models lack abnormality detection 

capabilities that allow the system to detect and prevent abnormal behaviour in a timely 

manner during access sessions. This issue has been represented as one of the sub-research 

questions, as follows: 

SRQ5: How will the user/agent behaviour be monitored during the access session? 

• Provide a way to evaluate related risk-based access control models using real-world 

scenarios. The ultimate target of any new approach is to guarantee that it is applicable in 

real-world scenarios. Related risk-based access control models discussed in the literature did 

not provide a way to validate and evaluate their risk models using real-world scenarios, 

especially in the IoT context. Therefore, this issue has been represented as one of the sub-

research questions, as follows: 

SRQ6: To what extent is the proposed risk-based model applicable to real-world IoT 

scenarios?  
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4.3 Proposed Adaptive Risk-based Model 

This work aims to address research problems discussed in the previous section by proposing a 

dynamic and adaptive risk-based access control model that uses real-time and contextual information 

collected from the IoT environment to provide access decisions. The next section provides a detailed 

discussion of the main components and flow process of the proposed risk-based model. 

4.3.1 Model Structure  

Unauthorized disclosure of information is one of the critical issues in the IoT system that need to be 

addressed. Current static access control models cannot resolve this challenge due to three reasons 

(Lee et al., 2007; Li et al., 2013). First, they are unable to handle exceptional situations in which the 

access policy itself should be overridden in order not to stop the system. Second, they do not meet 

the requirements of providing dynamic secure information and permission sharing in collaborative 

systems. Third, they are not flexible enough to handle the changing behaviour of users, especially in 

a dynamic environment like the IoT.  

A risk-based access control model is one of the dynamic models that performs risk analysis to 

estimate the security risk value associated with the access request to make the access decision. The 

main issue solved by this model is the flexibility in accessing system resources (Dos Santos et al., 

2014; Shaikh et al., 2012). 

An adaptive risk-based access control model for the IoT is proposed, as shown in Figure 4.1. The 

proposed model has four inputs: user/agent context, resource sensitivity, action severity and risk 

history. These inputs/risk factors are used to estimate the security risk value associated with the 

access request. Then, the estimated risk value is compared against risk policies to make the access 

decisions. In addition, the user behaviour will be monitored to detect and prevent malicious actions 

from authorized users during their access sessions. The main reason to select only four risk factors 

is to ensure that the proposed model is generic and can be applied in various IoT applications. In 

addition, adding more risk factors will add computational complexity on the proposed model. The 

eventual goal of the proposed risk-based model is to create a system that encourages information 

sharing to maximize organization benefits while keeping users responsible for their actions and 

stopping the expected damage that the organization could suffer due to sensitive information 

disclosure. Moreover, organizations will be able to control insecure information flows dynamically 

based on its risk tolerance and environment (Chen et al., 2007). 

The proposed risk-based model can work well in unexpected situations that often require the 

violation of security policies. This may occur because policies are incomplete or incoherent, 

sometimes even conflicting. The most usual examples of such needs are in medical and military 
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applications, where the need to take actions may save lives and the system immobility may cause 

serious harm (Dos Santos et al., 2014). 

 

Figure 4.1: Proposed adaptive risk-based access control model 

The main components of the proposed adaptive risk-based access control model involve risk factors, 

risk estimation module, risk policies, access decision and monitoring user activities. The following 

section provides an overview of each component. 

• User/Agent Context: It represents environmental and contextual features that embedded 

with the user/agent at the time of making the access request. These features are collected 

while making the access request to determine the security risk value associated with the 

requesting user. Location, identity, time, history events and activity are the most common 

user/agent contextual features (Perera et al., 2014). The agent is used to express the diversity 

of applications in the IoT system. An agent represents any system entity that has the ability 

to make an access request (Feitosa, 2014). For the rest of this thesis, the word user will be 

used to represent either a user or agent. 

• Resource Sensitivity: It describes how valuable the resource is to the owner or to the service 

provider. Data is assigned a level of sensitivity based on who should have access to it and 

how much damage would be done if it has been disclosed. A risk metric is assigned to each 

resource in the IoT system depending on how valuable the resource data is to the owner. 

Therefore, the higher the data sensitivity, the higher the risk metric associated with the 

resource. 
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• Action Severity: It represents the consequences of a certain action on a particular resource 

in terms of confidentiality, integrity, and availability. Different operations have different 

impacts and so have different risk values. For instance, the risk of a “view” operation is lower 

than the risk of a “delete” operation. 

• Risk History: It represents the previous risk values of a user regarding a particular resource. 

This is because the risk history reflects users’ behaviour patterns. Moreover, it is used to 

identify good and bad authorized users and predict their future behaviour (Li et al., 2013).  

• Risk Estimation Module: It is the heart of the risk-based access control model. It is 

responsible for taking the input features/ risk factors to quantify the security risk value 

associated with each access request. There are two ways to estimate the risk: quantitative 

and qualitative. However, the ultimate goal in the context of access control is to define a 

numeric value for the security risk associated with each access request to determine the 

access decision. 

• Risk Policies: They are mainly used by the risk estimation module to make access decisions. 

These policies are created by the resource owner or security system administrator to identify 

terms and conditions of granting or denying access to a particular resource. To determine the 

access decision, the estimated risk value resulted from the risk estimation module is 

compared against risk policies to determine the access decision. Defining a threshold risk 

value is one of the common ways to build a risk policy in risk-based access control models 

in which the access is granted only if the estimated risk value is lower than the threshold risk 

value.  

• Monitoring User Activities: In existing access control models, if the decision is to grant 

access to a user, then there is no way to detect or prevent any abnormal and unusual data 

access from the authorized user. So, a monitoring module is needed to adjust the risk value 

based on the user behaviour adaptively during the access session. The proposed risk-based 

model utilizes smart contracts to monitor user behaviour or user activities during the access 

session. Applying smart contracts to accomplish this process is a big challenge especially it 

will be the first time to use smart contracts in this context. Smart contracts are treated as 

software code to enforce a functional implementation of particular demands and confirm that 

certain conditions or terms were met or not (Watanabe et al., 2016). For each user, a smart 

contract will be built to reflect user permissions. Hence, for each user access session, the 

behaviour will be compared with the smart contract to ensure the user obeys the terms and 

conditions of the smart contract so as to prevent any potential security breach during access 

sessions. 
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• Access Decision: It is the judgment of whether to grant or deny access. The access decision 

is not associated with permissions. This is because the user will specify the resources to 

access and the actions to perform in the access request. Therefore, only requested 

permissions will be granted or denied. The access decision in risk-based access control 

models is decided based on the estimated risk value of each access request. Then, the 

estimated risk value is compared with risk policies to determine whether to grant or deny 

access. Since smart contracts are used as abnormality detection capability to detect and 

prevent malicious actions during access sessions, three risk decision bands were proposed to 

determine the access decision, as shown in Figure 4.2. 

 

Figure 4.2: Access decision bands 

− Allow band: This band is used to grant access without monitoring user’s activities 

during the access session to preserve the user’s privacy. This band is very narrow in term 

of the risk value. It is used mainly to allow access of users associated with very low risk 

value without being monitored such as device owner or system security administrator. 

− Allow with Risk Monitoring band: This band is used to grant access with monitoring 

all users’ behaviours and activities during the access session to detect and prevent any 

potential malicious activity. The ultimate target of the proposed risk-based access control 

model is to increase information sharing and at the same time guarantee security of 

system resources, so smart contracts are used to monitor user’s activities during the 

access session. Therefore, this band is very wide to include most of the access to system 

resources.  

− Deny band: Due to the high-risk value associated with the user requesting access to 

system resources, the access will be denied through this band. 
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4.3.2 Process Flow of Proposed Model 

The proposed risk-based access control model provides a dynamic method to authorize different 

types of users in the IoT system by estimating the security risk value associated with each access 

request. To understand the proposed risk-based model, Figure 4.3 provides a detailed description of 

the process flow of an access request.  

The flow starts when the access control manager receives an access request from a user/agent. The 

access control manager asks for values of risk factors (user/agent contextual features, resource 

sensitivity level, action severity and risk history) of the requesting user. The risk estimation module 

uses these values to estimate the overall risk value associated with the access request. Then, the 

estimated risk value is compared against risk policies to determine the access decision. At this point, 

there are two decisions: 

 

Figure 4.3: The process flow of the proposed adaptive risk-based access control model 

a) If the access is granted, then, there are two possible scenarios. The first scenario is if the 

estimated risk value of the access request lies within the Allow band, the access will be 

granted without monitoring user activities during the access session. The second scenario is 
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if the estimated risk value of the access request lies within the Allow with Risk Monitoring 

band, the monitoring module will track and record user behaviour and activities to detect and 

prevent potential malicious actions. The smart contract will use the monitored data to 

determine if the user follows the terms and conditions of the contract or not. If the user obeys 

the terms of the contract, the system will keep monitoring the user behaviour, while if not, 

then it will return to the risk estimation module to reduce user permissions or terminate the 

access session to stop any potential malicious activity. 

b) If the access is denied, the system will ask the user to provide additional proof of 

identifications so as not to block an authorized user and reduce the false-positive rate. If the 

user provided the required identifications, the access will be granted, and the flow continues 

as in decision (a). If the user does not provide the correct identifications, the system will 

deny access. 

4.4 Solutions for Research Problems  

There is a set of research questions that the literature failed to resolve regarding building a dynamic 

risk-based access control model for the IoT system, as discussed in section 4.2, The aim of this 

research is to provide best solutions to these questions. Table 4.1 provides a summary of the solutions 

provided by this research to address these questions. 

Table 4.1: How this research will address research questions  

Research Questions Proposed Solutions  In Thesis 

RQ: What is the 

appropriate adaptive 

risk-based access 

control model for an 

IoT system? 

 

This research proposed a dynamic and adaptive risk-based access 

control model that uses contextual and real-time information 

collected from the IoT environment to make the access decision. 

This model can be used in various IoT application to adapt to 

unexpected situations and provide a flexible way to determine access 

decisions. 

 

Chapter 4 

 

SRQ1: What is the 

appropriate risk 

estimation technique 

to estimate the risk 

associated with the 

access request? 

Providing a clear and accurate risk estimation technique to provide 

a quantitative risk value for each access request is one of the main 

targets of this research. After reviewing existing risk estimation 

techniques, the fuzzy logic system with expert judgment has been 

selected to implement the risk estimation process of the proposed 

model. A clear and detailed implementation of the risk estimation 

approach has been provided.  

 

Chapter 3 

& 

Chapter 5 

 

SRQ2: What are 

acceptable risk 

values to make the 

access decision in 

IoT applications? 

 

This research proposed three risk decision bands to grant or deny 

access. The first band grants access without monitoring, the second 

band grants access with monitoring, while the third band denies 

access. In this research, twenty security experts from inside and 

outside the UK were interviewed to provide acceptable risk values 

for each band.  

 

 

Chapter 5 
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Table 4.1: How this research will address research questions (Cont.) 

Research Questions Proposed Solutions In Thesis 

SRQ3: How to 

provide a plug and 

play risk-based 

model that can work 

when first used or 

connected to an IoT 

system? 

One of the issues associated with existing risk-based models that use 

risk history as one of the factors is that it couldn’t operate 

immediately until data regarding previous risk values have been 

collected. This research resolved this issue by implementing a 

solution for the cold start problem that allows the proposed risk-

based model to operate immediately when first used or connected. 

 

 

Chapter 5 

SRQ4: How to 

provide a fast and 

scalable risk 

estimation technique 

to handle the constant 

increase in the 

number of IoT 

devices? 

This research provides a risk-based model for the IoT system which 

is growing in billions. Therefore, the risk estimation technique 

should be able to cope with the constant increase of the number of 

IoT devices and provide access decisions in a timely manner. One 

of the issues associated with the fuzzy logic system is time overhead 

and scalability. Therefore, this research proposed the NFS and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) to resolve this 

issue.  

 
Chapter 6 

&  

Chapter 7 

 

SRQ5: How will the 

user/agent behaviour 

be monitored during 

the access session? 

 

The proposed risk-based model provides abnormality detection 

capability using smart contracts to track and monitor user behaviour 

during the access session to detect and prevent potential malicious 

actions. The operation of the smart contract was simulated using 

MATLAB Simulink and Stateflow diagrams to test system response 

for detecting abnormal and malicious activities. 

 

Chapter 8 

 

SRQ6: To what 

extent is the proposed 

risk-based model 

applicable to real-

world IoT scenarios?  

To evaluate and proof the applicability of the proposed risk-based 

model in real-world scenarios, three case studies of IoT applications 

were considered. Various access control scenarios of children 

hospital, network router and smart home were presented by 

discussing the access decision in each situation. 

 

Chapter 8 

 

 

4.5 Research Methodology 

Building an adaptive risk-based access control model for the IoT system includes a variety of 

research methods in order to reach its targets. This section provides a discussion of research methods 

utilized to reach research targets. 

Typically, there are two research methodologies to conduct research; qualitative and quantitative. 

Quantitative research methodology depends on measuring and analysing data to determine the 

relationship between one set of data with another to explain a certain phenomenon. The measurement 

of these variables might produce quantifiable conclusions. Thus, it places emphasis on methodology, 

procedure and statistical measures of validity (Eldabi et al., 2002). It uses fixed instruments that 

contain closed questions such as surveys (Creswell, 2003). Quantitative research is evaluated by 

either descriptive or inferential statistics (Taylor, 2005). Descriptive statistics are used to describe 

the characteristics of a specific sample of data, while inferential statistics are used to determine the 

likelihood of generalising the characteristics from small samples to larger ones (Taylor, 2005). 
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Qualitative research methodology is only concerned with identifying the meaning and understanding 

of a phenomenon. It is not concerned with the quantification of the phenomenon but providing an 

understanding of the phenomenon through observation (Berleant & Kuipers, 1997; Eldabi et al., 

2002; Pang & Coghill, 2015). Qualitative methods aim to answer the question of “what” and “how” 

(Taylor, 2005). These methods can be such as interviews, observations, documents, open-ended 

questions, and audio-visual data. To derive results and answer research questions, the analysis of 

texts and images could also be used (Creswell, 2003; Taylor, 2005).  

Table 4.2: Research methods used in this research for each research question 

Research Question Research Method  Description 

SRQ1: What is the 

appropriate risk estimation 

technique to estimate the 

risk associated with the 

access request? 

 

 

Expert interview 

After reviewing existing risk estimation 

techniques in related risk-based models, the fuzzy 

logic with expert judgment was selected as the 

suitable method. Twenty IoT security experts 

were interviewed to validate the proposed model 

and confirm the fuzzy rules.  

SRQ2: What are 

acceptable risk values to 

make the access decision 

for IoT applications? 

 

 

Expert interview 

Twenty IoT security experts were interviewed to 

provide acceptable risk values for the proposed 

three risk bands. 

SRQ3: How to provide a 

plug and play risk-based 

model that can work 

perfectly when first used or 

connected? 

 

 

Expert interview 

To implement a solution for the cold start problem, 

ten security research fellows at the University of 

Southampton were interviewed to validate fuzzy 

rules. 

SRQ4: How to provide a 

fast and scalable risk 

estimation technique to 

handle the constant 

increase of IoT devices? 

 
Experiments  

To resolve issues of time overhead and scalability 

associated with the fuzzy logic system, the ANFIS 

and NFS were employed. Several experiments 

were carried out to implement the risk estimation 

process using ANFIS and NFS approaches. 

SRQ5: How will the 

user/agent behaviour be 

monitored during the 

access session? 

 

 
Simulation  

In this research, smart contracts are used to 

monitor user behaviour during access sessions. 

MATLAB Simulink and Stateflow diagrams were 

adopted to simulate the operation of smart 

contracts to evaluate its response in detecting 

malicious actions. 

SRQ6: To what extent is 

the proposed risk-based 

model applicable to real 

IoT scenarios?  

 

 

Access scenarios  

To validate the applicability of the proposed 

risk-based access control model in real-world IoT 

applications, access control scenarios of three IoT 

applications including healthcare, smart home and 

network router were provided. 
 

Pure quantitative models require accurate numerical information about the system structure and its 

initial state that are represented quantitatively (Rochette et al., 2009). When such data is unavailable, 

quantitative models face many constraints that restrict the model’s value. In contrast, qualitative 

models display all possible behaviours but only in qualitative terms (Omar et al., 2015). The main 
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target of this research is to build a dynamic and adaptive risk-based access control model for the IoT 

that can work in unexpected situations by using not only access policies but also real-time and 

contextual features while making the access decision. There are multiple research methods utilized 

in this research to reach its target. Table 4.2 provides a summary of the research methods used to 

resolve research questions.  

A description of the research methods employed in this study is presented as follows: 

• Interviews are one of the common qualitative data collection methods. They can be 

structured, semi-structured, and unstructured (Gill et al., 2008). They are considered an 

informal validation method, as they are based on human subjectivity. The data resulting from 

these interviews can be both qualitative and quantitative, depending on the material 

presented in the interview (Balci, 1994). In this research, semi-structured interviews were 

employed. This type of interview provides the ability for both the interviewer and the 

interviewee to respond to questions with more detail. The questions within the 

semi-structured interviews elicit expected information alongside other unanticipated 

information (Gill et al., 2008). 

• Simulation allows researchers to assume the inherent complexity of organizational systems 

as a given. If other methods answer the questions “What happened, how, and why?”, 

simulation helps to answer the question “What if?”. Simulation enables studies of complex 

systems because it creates observations by “moving forward” into the future, whereas other 

research methods attempt to look back across history to determine what happened, and how 

(Dooley, 2002). In this research, simulation is used as a method to imitate the operation of 

smart contracts to monitor user activities during access sessions for the IoT system. 

• Experiments are a systematic and scientific approach which allows the researcher to 

manipulate one or more variables and measure any changes in other variables. True 

experimental research is considered to be successful only when the researcher confirms that 

a change in the dependent variable is solely due to the manipulation of the independent 

variable (Moore & McCabe, 1993). The results of experimental research once analysed, can 

be applied to various other similar aspects. In this research, experiments are used to build the 

risk estimation process using both ANFIS and NFS approaches. 

4.6 Summary  

Chapter 4 has presented the proposed adaptive risk-based access control model for the IoT. It started 

by discussing the need for a dynamic access control model for the IoT system. This is followed by 

discussing the research problems that the literature failed to address. One of the major issues 

extracted from the literature was the lack of a dynamic risk-based model that can adapt to different 
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and unexpected circumstances of the IoT system. Therefore, chapter 4 presented the proposed 

adaptive risk-based access control model for the IoT to address this issue. This model uses the 

security risk as a criterion to make the access decision. It estimates the risk value associated with 

each access request using four inputs: user contextual features, resource sensitivity, action severity 

and risk history. The estimated risk value is then compared against risk policies to determine the 

access decision. To prevent and detect abnormal misuse from authorized users during the access 

session, the proposed model uses smart contracts to monitor user’s activities and adjust their risk 

values adaptively based on their actions. In addition, a discussion of how the proposed adaptive 

risk-based model will resolve research problems extracted from the literature was also provided. 

Finally, the research methods used in this research were presented. The next chapter presents the 

implementation of the risk estimation process using the fuzzy logic system with expert judgment.  
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Chapter 5: Implementation of Risk Estimation using 

Fuzzy Logic 

This chapter provides a discussion of the implementation of the proposed risk estimation technique 

using the fuzzy logic system with expert judgment. It starts by discussing the integration of the fuzzy 

logic system with expert judgment. Then, section 5.2 provides a discussion of the expert interview 

by highlighting the interview design, sample size and experts’ attributes. Section 5.3 presents a 

discussion of validating the proposed risk-based access control model using IoT security experts. 

This is followed by providing a step-by-step discussion of the implementation of the risk estimation 

process using the fuzzy logic system with expert judgment in section 5.4. Section 5.5 provides a 

discussion of experts’ responses to determine acceptable risk values for risk decision bands. Section 

5.6 introduces the cold start problem and the proposed solution to address it. Section 5.7 presents a 

set of experiments to evaluate the efficiency of the proposed risk estimation technique when 

increasing the number of access requests and determine the most efficient MF, defuzzification 

method, and rule aggregation operator. The chapter closes by providing a summary of the main points 

discussed through the chapter and introduces the next chapter.  

5.1 Proposed Risk Estimation Approach 

Risk-based access control model is one of the dynamic models that provides an efficient way to 

provide access decisions. It uses the security risk value associated with the access request as a 

criterion to make the access decision. Building a risk-based access control model to decide whether 

to grant or deny access for each access request needs providing a quantitative value for the security 

risk associated with each access request. This process is complicated as it is based on the possibility 

of information leakage and the value of this information for various incidents that will occur in the 

future. So, the objective of the risk estimation process in the access control context is to provide an 

accurate and realistic numeric value for the security risk associated with the access request to 

determine the access decision. 
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After reviewing related risk estimation techniques in the literature in section 3.2, the fuzzy logic 

approach with expert judgement was selected as the appropriate technique to implement the risk 

estimation process of the proposed risk-based model, as shown in Figure 5.1. The fuzzy logic system 

has the ability to convert linguistic expressions and human reasoning into quantitative values. 

Combining expert judgment gives more weights to human reasoning as it comes from experts in the 

domain. Typically, the fuzzy logic system ensures that we do not neglect human common sense, and 

experiences. It allows the use of degrees of truth to calculate risk values (Li et al., 2013). Using 

security experts, fuzzy variables can be identified to build the fuzzy model to estimate security risks 

of access control operations.  

 

Figure 5.1: Proposed risk estimation approach using the fuzzy logic with expert judgment 

One of the most effective ways to collect knowledge of experts and get an expert judgment regarding 

certain research is through an interview. For this research, the interview was conducted to get more 

information about the proposed risk-based access control model from highly experienced persons. 

The next section provides a detailed discussion of the interview including interview design, sample 

size, expert attributes and ethical approval. 

5.2 Expert Interview  

For this research, the objective of the interview was to validate fuzzy rules of the proposed risk 

estimation technique to ensure correct and appropriate fuzzy rules were built. In addition, getting 

valuable feedback about the proposed risk-based access control model and determine acceptable risk 

values of risk decision bands. The interview involved four sections, as follows:  

• Section 1 was designed to collect background information of participating experts. 

• Section 2 was designed to validate the proposed risk-based access control model. 

• Section 3 was built to validate fuzzy rules of the proposed risk estimation technique by 

IoT security experts. 

• Section 4 was designed to determine acceptable risk values of risk decision bands.  
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5.2.1 Interview Design 

The interview was built as a semi-structured, which include a set of predetermined open and closed 

questions with other questions emerging from the dialogue during the interview, by either the 

interviewer or interviewee (DiCicco‐Bloom & Crabtree, 2006).  

The interview questions consisted of four sections. The first section has involved open questions to 

get the background information of the participants. The second section was used to get experts’ 

feedback about the proposed risk-based model. This section was carried out through open questions. 

The third section was used to validate fuzzy rules that previously created using the information 

collected from literature with the researcher experience. This section was carried out using closed 

questions using five choices to be the expected output for each rule. The final section discussed 

different IoT security experts’ view of acceptable risk values of risk decision bands. This section was 

carried out through open questions.  

The interview questions were pilot-tested by seven security research fellows at the University of 

Southampton. To interact directly with the interviewees and provide further questions based on the 

interviewees’ answerers, face-to-face interviews were used. Some interviews were conducted on the 

campus of the University of Southampton in the expert’s office. Other interviews were conducted 

online using video conferencing on Skype (Iacono et al., 2016) and were recorded by an audio 

recorder or taking notes manually. 

All interviews were conducted in the English language. Appendix A provides the participant 

information sheet, consent form and interview questions.  

5.2.2 Ethics Approval  

Before starting the interview, each expert was asked to sign a consent form after reading the 

participant information sheet that included all the necessary information, terms and conditions about 

the study. The University of Southampton Ethics Committee granted approval for this study under 

their reference number ERGO/FPSE/25091. 

5.2.3 Sample Size 

When conducting interviews, it is important to find the appropriate number of experts, as this will 

help to produce accurate results. According to this point, determining the minimum sample size is 

essential when it comes to producing consistent results (Bhattacherjee, 2012). In terms of the number 

of experts, according to Guest et  al. (2006), there is no agreed-upon number of experts for an 

interview in a content validity study. However, most researchers recommend a panel consisting of 3 

to 15 experts (Bhattacherjee, 2012). The main criterion the researcher used to determine the number 
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of experts to validate the research is reaching saturation in which more interviews will not add new 

ideas for the research. 

Table 5.1: Attributes of IoT security experts who have interviewed in this study 

 

Expert 

No 

Job 

Description 

Experience 

(Years) 

Know 

Fuzzy 

logic 

 

Knowledge of IoT 

Applications 

 

UK/Non

-UK 

E 1 IoT Security 

researcher 

 

6 – 10 Yes Connected industry, smart city, 

connected car, and connected 

healthcare 

UK 

E 2 Senior 

Cybersecurity 

Engineer 

More than 

10 

Yes 

 

Connected industry, smart city, 

smart energy, connected car, and 

connected healthcare 

UK 

E 3 IoT Security 

researcher 

More than 

10 

No Smart city, smart energy, and 

smart home 

UK 

E 4 IoT Security 

researcher 

6 – 10 Yes Smart energy, connected car, and 

smart home 

India 

E 5 Security 

Administrator 

 

2 – 5 No 

 

Connected industry, smart 

energy, smart home, and 

connected healthcare 

Egypt 

E 6 IoT Security 

researcher 

2 – 5 Yes Smart city UK 

E 7 Risk analysis 

professor 

2 – 5 Yes Smart city, smart energy, and 

smart home 

UK 

E 8 IoT Security 

researcher 

2 – 5 No Smart energy and connected 

healthcare 

India 

E 9 Security 

Administrator 

2 – 5 No Smart city and smart home Egypt 

E 10 Senior 

Cybersecurity 

Engineer 

2 – 5 Yes Smart city, smart home, and 

connected healthcare 

UK 

E 11 Security 

Specialist 

6 – 10 Yes Connected healthcare Italy 

E 12 Security 

Administrator 

6 – 10 Yes Smart home Egypt 

E 13 Security 

Specialist 

6 – 10 No Connected industry and smart 

home 

UK 

E 14 IoT Security 

researcher 

2 – 5 Yes Connected industry, smart city, 

smart energy, and connected car 

UK 

E 15 Security 

Specialist 

2 – 5 Yes Smart city, smart energy, and 

smart home 

UK 

E 16 Security 

Administrator 

2 – 5 Yes Smart city KSA 

E 17 IoT Security 

researcher 

2 – 5 No Smart city and Smart energy Romania 

E 18 Security 

Administrator 

6 – 10 Yes Smart city, smart energy, and 

smart home 

Egypt 

E 19 Security 

Administrator 

6-10 Yes Connected industry, smart city, 

connected car, and connected 

healthcare 

Egypt 

E 20 IoT Security 

researcher 

2 – 5 Yes Smart city, smart energy, and 

smart home 

UK 

 

The interviews were conducted with twenty IoT security experts from inside and outside the UK. 

The criteria used to select experts were years of experience in security and familiarity with IoT 

applications. The IoT security researchers who have been interviewed in this study were selected 

after investigating and reading their works and making sure that there is a relevancy between their 



Chapter 5: Implementation of Risk Estimation using Fuzzy Logic                                                  89 

 

work and this study. While other experts were selected depending on their current jobs that require a 

great experience in security and IoT applications. Information of experts who have involved in this 

study can be shown in  Table 5.1. 

Most interviewed experts had large experiences in security and IoT applications. Most experts had 

at least 2- 5 years of experience. In addition, although validating fuzzy rules of the proposed risk 

estimation technique does not require extensive knowledge about the fuzzy logic approach and how 

it works as it only requires human reasoning, 70% of interviewed experts had adequate knowledge 

about the fuzzy logic approach. Typically, fuzzy rules are constructed using linguistic expressions of 

the English language, which are easy to understand and interpret. For experts who did not have 

knowledge about the fuzzy logic approach, the researcher spent about 10 minutes to make sure the 

participant understands essential information about the fuzzy logic approach and how a fuzzy rule 

can be built using linguistic expressions. 

5.3 Implementation of Fuzzy Logic Technique  

The proposed risk-based access control model has four risk factors: user context, resource sensitivity, 

action severity and risk history which are used as input to determine the security risk value associated 

with the access request to make the access decision for various IoT applications. MATLAB fuzzy 

logic toolbox was used to implement the risk estimation process using the fuzzy logic system with 

expert judgment. MATLAB provides an efficient framework and easy-to-use graphical user 

interfaces that can generate surfaces and plots to analyse the system performance (Mathworks, 2016). 

 

Figure 5.2: Risk estimation implementation in MATLAB fuzzy logic toolbox 

To implement the proposed risk estimation technique using the fuzzy logic toolbox, there are two 

built-in FISs; Mamdani and Sugeno, as discussed earlier in section 3.4.3. Since no available dataset 

exists in this research, Mamdani FIS will be used to implement the risk estimation process. It is 

intuitive, has widespread acceptance, and is well suited to human input. The structure of input and 

output of Mamdani FIS to implement the proposed risk estimation technique can be shown in Figure 

5.2. 
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Implementing the Mamdani FIS to estimate security risks of access control operations requires five 

stages; fuzzification, MF, fuzzy inference rules, rule aggregation, and defuzzification. In the next 

section, each stage will be discussed in detail by showing corresponding MATLAB images. 

5.3.1 Fuzzification 

The first step to implement the proposed fuzzy risk estimation technique is to define input and output 

variables and their corresponding linguistic expressions. These linguistic expressions are called fuzzy 

sets. The proposed risk-based model has four inputs: user context, resource sensitivity, action 

severity and risk history, which will be used to produce the output risk. Input risk factors and output 

risk are divided into fuzzy sets. The user context, action severity, and risk history are represented 

using three fuzzy sets; “Low”, “Moderate”, and “High”.  Also, the resource sensitivity is represented 

using three fuzzy sets; “Not Sensitive”, “Sensitive”, and “Highly Sensitive”. While the output risk is 

represented using five fuzzy sets; “Negligible”, “Low”, “Moderate”, “High”, and “Unacceptable 

High”. Since the degree to which a value is a member of a certain fuzzy set can be any value between 

0 and 1 (Li et al., 2013), the range of each fuzzy set should be determined accurately. Using related 

fuzzy logic models in the literature (Li et al., 2013; Ni et al., 2010), ranges of fuzzy sets of both input 

and output were determined. Table 5.2 shows linguistics variables for both input and output and their 

fuzzy ranges. 

Table 5.2: Input and output linguistic variables and their range 

Linguistic Expression Notation Range 

Input Variable: User Context  

Low L 0.0 – 0.4 

Moderate M 0.3 – 0.7  

High H 0.6 –1.0  

Input Variable: Resource Sensitivity  

Not Sensitive NS 0.0 – 0.35 

Sensitive S 0.2 – 0.5 

Highly Sensitive HS 0.45 – 1.0  

Input Variable: Action Severity  

Low L 0.0 – 0.4 

Moderate M 0.35 – 0.7 

High H 0.6 – 1.0 

Input Variable: Risk History  

Low L 0.0 – 0.4 

Moderate M 0.3 – 0.7 

High H 0.6 – 1.0 

Output Variable: Risk  

Negligible N 0.0 – 0.3 

Low L 0.1 – 0.4 

Moderate M 0.2 – 0.6 

High H 0.4 – 0.8 

Unacceptable High UH 0.7 – 1.0 
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5.3.2 Membership Function 

The main purpose of this step is to choose the appropriate MF for input and output fuzzy sets. Each 

fuzzy set should have a corresponding MF that returns the degree of membership for a given value 

within the fuzzy set. Fuzzy sets can be represented using a variety of MFs, as discussed earlier in 

section 3.4.2. Choosing the appropriate MF depends on the available dataset. Comparing the results 

of the training data with the real data and calculate error values using Mean Average Percentage 

Error (MAPE) guarantee choosing the appropriate MF. However, when there is no available dataset, 

it is recommended to select the triangular MF (Li et al., 2013). This is because it provides an adequate 

representation of the expert knowledge, and at the same time simplifies the process of computation. 

Since there is no available dataset to show different combinations of input and their output for a set 

of scenarios, the triangular MF is used to represent input and output fuzzy sets of the proposed the 

risk estimation technique. Figures 5.3 – 5.7 show the representation of triangular MF for the input 

risk factors and the output risk. 

 

Figure 5.3: Triangular MF of the action severity  

 

Figure 5.4: Triangular MF of the resource sensitivity  
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Figure 5.5: Triangular MF of the user context  

 

Figure 5.6: Triangular MF of the risk history  

 

Figure 5.7: Triangular MF of the output risk 

5.3.3 Fuzzy Inference Rules  

One of the most significant stages to implement the proposed fuzzy risk estimation technique is to 

build appropriate and correct fuzzy inference rules that represent relationships between input and 

output linguistic expressions (Li et al., 2013). Having specified the risk and its factors, the logical 

next step is to specify how the output risk varies as a function of the four risk factors. Fuzzy rules 

are the brain of the fuzzy logic system that need to be specified accurately.  

Fuzzy inference rules are built using IF-THEN statements, which are used to specify how the output 

risk varies as a function of the input. The IF-THEN rule uses linguistic expressions to describe the 
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relationship between input conditions and output. The IF part is used to represent the condition while 

the THEN part is used to provide the output in a linguistic form (Bai & Wang, 1982). For example, 

IF (the action severity is low) THEN (the output risk will be negligible). So, in this example, if the 

condition (action severity is low) is verified, then the output will be negligible. The IF part can 

involve multiple conditions but the THEN part includes only one output. For example, IF (action 

severity is Low & resource sensitivity is Not Sensitive & user context is Moderate & risk history is 

High) THEN (the output risk will be Moderate). 

For this research, building fuzzy rules was the most intensive aspect that took a long time to complete. 

Fuzzy rules were created in two stages; the first stage involved building fuzzy rules using the 

information collected from related fuzzy models that have been reviewed in the literature with the 

researcher experience. The second stage was utilized to validate fuzzy rules through IoT security 

experts. Therefore, fuzzy rules were created by the researcher and then IoT security experts were 

interviewed to validate these rules either by accepting it or by suggesting different output.  

5.3.3.1 Building Fuzzy Rules  

Fuzzy rules are used to define the relationship between the output risk and input risk factors. It builds 

input combinations with the corresponding output in the form of IF-THEN statements. Since the 

proposed model has four inputs/risk factors, each input has three fuzzy sets, as depicted in Table 5.2. 

Therefore, the total number of input combinations will be 3*3*3*3=81. So, the total number of fuzzy 

rules is 81. All input combinations were built, and the output was decided using the information 

collected from the literature with the researcher experience. Some of the important information used 

to create fuzzy rules was the relation between action severity and resource sensitivity (Li et al., 2013), 

as shown in Figure 5.8.  

 

Figure 5.8: Fuzzy matrix of resource sensitivity with action severity (Li et al., 2013). 

In addition, a set of logical rules between input and output were utilized to facilitate extracting 

appropriate output for fuzzy rules. These logical rules include: 
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▪ If the risk history increased, the output risk will not decrease. 

▪ If the resource sensitivity increased, the output risk will not decrease. 

▪ If the action severity increased, the output risk will not decrease. 

▪ If any two risk factors are high, the lowest output will be Moderate. 

▪ If the resource sensitivity is Highly Sensitive (HS) or Sensitive (S), the output risk cannot be 

Negligible (N). 

Fuzzy rules were divided into five groups based on the output to facilitate analysing each group. The 

rules are given numbers to easily refer to them especially at the time of making comparisons after 

being validated by IoT security experts. Table 5.3 shows fuzzy rules when the output risk was N. 

Notations of input and output risk linguistic expressions can be shown in Table 5.2. 

Table 5.3: Fuzzy rules when the output was N 

 

Rule 

No 

Risk Factors  

Output 

Risk 
Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

1 L NS L L N 

2 M NS L L N 

3 H NS L L N 

4 L NS M L N 

5 M NS M L N 

6 H NS M L N 

7 L NS H L N 

8 L S L L N 

9 M S L L N 

10 L NS L M N 

11 M NS L M N 

12 L NS M M N 

13 M NS M M N 

 

As illustrated in Table 5.3, the resource sensitivity was the dominant risk factor to determine the 

output of these fuzzy rules in which the lower the resource sensitivity, the lower the output risk. For 

instance, when the resource sensitivity was NS, the rule output became N regardless of the values of 

other risk factors. This was the same scenario for all these set of fuzzy rules except rule 8 and 9 where 

resource sensitivity was S. Based on the logical rule that stated, “If the resource sensitivity increased, 

the output risk will not decrease”, the output risk should be at least L, however, the output risk is 

assumed to be N, since both user context and risk history were L. This implies that the access comes 

from a trusted user with low risk regarding contextual features. 

Table 5.4 shows fuzzy rules when the output risk was L. There is no dominant risk factor affecting 

the output risk directly, but the combination of the four risk factors led to L in the output risk. For 

the first four rules; 14, 15, 16 and 17, although the resource sensitivity was S and HS, both user 

context and risk history were L which led to L in the output risk.  
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Table 5.4: Fuzzy rules when the output was L 

 

Rule 

No 

Risk Factors  

Output 

Risk 
Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

14 H S L L L 

15 L HS L L L 

16 M HS L L L 

17 H HS L L L 

18 L S M L L 

19 M S M L L 

20 M NS H L L 

21 H NS L M L 

22 L S L M L 

23 H NS M M L 

24 L NS H M L 

25 L NS L H L 

26 M NS L H L 

27 L NS M H L 

28 M NS M H L 
 

The same scenario was in rules 18, 19, and 22. Although the resource sensitivity was S which lead 

to increasing the output risk, having L in two of the risk factors led to L in the output risk. For rules 

25, 26, 27 and 28, although the risk history was H, having NS in the resource sensitivity and either 

L or M in both action severity and user context led to L in the output risk. For rules 20, 21, 23, and 

24, the resource sensitivity was the dominant risk factors in which having NS led to L in the output 

risk. 

Table 5.5: Fuzzy rules when the output was M 

 

Rule 

No 

Risk Factors  

Output 

Risk 
Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

29 H S M L M 

30 L HS M L M 

31 M HS M L M 

32 H HS M L M 

33 H NS H L M 

34 L S H L M 

35 M S H L M 

36 M S L M M 

37 H S L M M 

38 L HS L M M 

39 M HS L M M 

40 L S M M M 

41 M S M M M 

42 M NS H M M 

43 H NS H M M 

44 H NS L H M 

45 L S L H M 

46 H NS M H M 

47 L NS H H M 
 

Table 5.5 shows fuzzy rules when the output was M. There is no dominant risk factor in this set of 

fuzzy rules. For rules 29, 30, 31, and 32, although the resource sensitivity was S and HS, both user 
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context and risk history were M and L respectively which led to M in the output risk. The same 

scenario was for rules 33, 34, and 35 where having H in the user context and S in the resource 

sensitivity led to M in the output risk. The output of eleven of these set of fuzzy rules was derived 

based on the logical rule that stated, “if two risk factors were H, the lowest output will be M”. These 

rules include 29, 32, 33, 34, 35, 37, 43, 44, 45, 46, and 47. For rules 36, 38, 39, 40, 41, and 42, the 

output risk was decided to be M since risk history and resource sensitivity were M and S/HS 

respectively.  

Table 5.6 shows fuzzy rules when the output was H. The resource sensitivity was the dominant risk 

factor for these set of rules in which the output risk was decided to be H if the resource sensitivity 

was S or HS. In addition, if the resource sensitivity was S and the risk history was H; the output risk 

became H regardless of values of other risk factors. This is because the user who wants to access 

confidential data and had a bad risk history score should be characterized as a malicious user. The 

output of most of these set of fuzzy rules was derived based on the logical rule that stated, “If the 

resource sensitivity increased, the output risk will not decrease”. 

Table 5.6: Fuzzy rules when the output was H 

 

Rule 

No 

Risk Factors  

Output 

Risk Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

48 H S H L H 

49 L HS H L H 

50 H HS L M H 

51 H S M M H 

52 L HS M M H 

53 M HS M M H 

54 H HS M M H 

55 L S H M H 

56 M S H M H 

57 L HS H M H 

58 M S L H H 

59 L S M H H 

60 M S M H H 

 

Table 5.7 shows fuzzy rules when the output was UH. These rules represent the highest output risk 

that used particularly to deny access requests to protect system resources. For these set of rules, at 

least two risk factors should be H with S or HS in resource sensitivity to have UH in the output risk. 

For instance, if the user context was H, the resource sensitivity was S or HS, and the risk history was 

H, the output risk will be UH. In addition, as the risk history indicates the past behaviour, having H 

in the risk history and S or HS in the resource sensitivity demonstrates a malicious activity that needs 

to be denied. 
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Table 5.7: Fuzzy rules when the output was UH 

 

Rule 

No 

Risk Factors  

Output 

Risk Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

61 M HS H L UH 

62 H HS H L UH 

63 H S H M UH 

64 M HS H M UH 

65 H HS H M UH 

66 H S L H UH 

67 L HS L H UH 

68 M HS L H UH 

69 H HS L H UH 

70 H S M H UH 

71 L HS M H UH 

72 M HS M H UH 

73 H HS M H UH 

74 M NS H H UH 

75 H NS H H UH 

76 L S H H UH 

77 M S H H UH 

78 H S H H UH 

79 L HS H H UH 

80 M HS H H UH 

81 H HS H H UH 
 

5.3.3.2 Validation of Fuzzy Rules by Experts 

One of the problems associated with fuzzy logic models is the lack of appropriate data to create 

correct and appropriate fuzzy rules. If a dataset is available, fuzzy rules can be built dynamically and 

efficiently. In this research, there is no dataset, so there is no way to ensure correct and precise fuzzy 

rules were created. One solution to resolve this issue is to create fuzzy rules based on the knowledge 

and expertise of experts. Therefore, twenty IoT security experts were interviewed to validate fuzzy 

rules that are previously created using the information collected from the literature with the 

researcher experience to increase the accuracy of the fuzzy model. 

Twenty IoT security experts from inside and outside the UK were interviewed to ensure suitable 

fuzzy rules were created. Experts’ responses were analysed using the SPSS software program. The 

mean function was utilized to determine the final decision regarding the output risk of each rule. 

The mean, also called average, is the most common function used to measure the spread of values in 

statistics. It is used to ensure all responses of experts involved in the study were considered and have 

the same weight (Phinyomark et al., 2012). 

To implement experts’ responses in the SPSS program, responses were given ratings in which 

Negligible =1, Low =2, Moderate =3, High =4, and Unacceptable High =5. Therefore, the output of 

each fuzzy rule should be mapped to one of these five categories. An assumption was made in which 

any mean value lower than 0.5 will be mapped to the lower category and any mean value higher than 

or equal 0.5 will be mapped to the higher category. For instance, if the mean value is 1.25, the fuzzy 
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rule output will be mapped to 1 (Negligible), while if the mean value is 1.6, the fuzzy rule output 

will be mapped to 2 (Low). So, any mean value lies between 0 to 1.49, the rule output will be mapped 

to Negligible, while if the mean value lies between 1.5 to 2.49, the rule will be mapped to Low, and 

so on. Mapping the mean value to the linguistic expression of output risk can be illustrated in Figure 

5.9. 

 

Figure 5.9: Mapping the mean value to output risk linguistic expression 

Table 5.8 shows validation of fuzzy rules by IoT security experts when the output was N. Expert’s 

responses were different from the output derived using the information collected from the literature 

with the researcher experience in which the output of only five rules was classified as N. Examining 

these rules indicates that experts decided to classify the output of a certain rule as N either if there 

were three risk factors with L or two risk factors with L and one NS and the fourth risk factor was M 

or L. On the other hand, experts decided to classify the output of six rules as L. These rules involve 

rule 3, 5, 6, 8, 11, and 12. Investigating these rules demonstrates that experts decided to classify the 

output of a fuzzy rule as L when one risk factor was H or S even when the other three risk factors 

were L or NS. They decided to be more careful when one of the risk factors was H or S and at least 

the fuzzy output should be L. For instance, in rule 3, although user context, risk history and resource 

sensitivity were L, L and NS respectively, having H in the action severity made experts to classify 

the output of this rule as L.  

Table 5.8: Validation of fuzzy rules when the output was N  

Rule 

No 

Number of Experts  

Mean 
Experts Responses Mapped 

Category 

Rule 

Output Valid Missing N L M H UH 

1 20 0 1 20 0 0 0 0 1 N 

2 20 0 1.25 15 5 0 0 0 1 N 

3 20 0 2.15 6 5 9 0 0 2 L 

4 20 0 1.10 18 2 0 0 0 1 N 

5 20 0 1.75 11 3 6 0 0 2 L 

6 20 0 2.25 7 1 12 0 0 2 L 

7 20 0 1.25 17 1 2 0 0 1 N 

8 20 0 1.70 11 6 1 2 0 2 L 

9 20 0 2.75 1 5 12 2 0 3 M 

10 20 0 1.4 15 3 1 1 0 1 N 

11 20 0 1.9 7 8 5 0 0 2 L 

12 20 0 1.6 12 5 2 1 0 2 L 

13 20 0 2.5 2 9 6 3 0 3 M 
 

Expert’s responses were distributed between N, L, and M in rule 5. Although eleven experts have 

decided that the output should be N, the mean value of all experts mapped the output to be L. 

Examining this rule demonstrates that having M in both action severity and user context should at 

least make the output as L. This scenario was the same for both rule 8 and rule 12. Although the 
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majority of experts decided to classify the rule as N, the mean value of all experts mapped the output 

to be L. however, examining this rule indicates that having S in the resource sensitivity should make 

the output to be L even if all other risk factors were L. For rule 12, since values of user context and 

risk history were M, so the appropriate output should be L. Rule 11 with similar to rule 12 in which 

values of risk history and user context were M, so experts decided to classify the output to be L.  

In addition, experts decided to classify both rule 9 and rule 13 as M. For rule 9, although both user 

context and risk history were L, having S in the resource sensitivity and M in the action severity 

made experts to classify the output of this rule as M. Moreover, for rule 13, having M in three risk 

factors made experts classify the output of this rule as M. 

Table 5.9 represents validation of fuzzy rules when the output was L. The output of only six rules 

were the same before and after expert validation. These rules involve rule 15, 20, 22, 24, 25, and 27. 

Examining these rules indicates that experts decided to classify the output of these rules as L due to 

having L in two risk factors regardless of values of other risk factors. On the other hand, the majority 

of experts have classified the output of nine rules as M. These rules include rule 14, 16, 17, 18, 19, 

21, 23, 26, and 28. For rule 14, ten experts have decided to classify the output of this rule as M, while 

the responses of other ten experts were distributed equally between L and H. Investigating this rule 

demonstrates that M will be the appropriate output due to having H in the action severity and S in 

the resource sensitivity. 

Table 5.9: Validation of fuzzy rules when the output was L 

Rule 

No 

Number of Experts  

Mean 
Experts Responses Mapped 

Category 

Rule 

Output Valid Missing N L M H UH 

14 20 0 3 0 5 10 5 0 3 M 

15 20 0 2.45 1 11 6 2 0 2 L 

16 20 0 3 0 4 13 2 1 3 M 

17 20 0 3.25 0 5 6 8 1 3 M 

18 20 0 2.5 1 9 9 1 0 3 M 

19 20 0 2.75 0 7 11 2 0 3 M 

20 20 0 2.35 1 13 4 2 0 2 L 

21 20 0 2.6 0 11 6 3 0 3 M 

22 20 0 2.3 1 13 5 1 0 2 L 

23 20 0 2.75 0 10 5 5 0 3 M 

24 20 0 2.25 1 16 0 3 0 2 L 

25 20 0 2.1 1 17 1 1 0 2 L  

26 20 0 2.7 0 8 10 2 0 3 M 

27 20 0 2.25 0 17 1 2 0 2 L 

28 20 0 2.75 0 7 11 2 0 3 M 

 

For rule 16 and 17, having HS in the resource sensitivity made most experts to classify the output of 

these rules as M especially with M and H in the action severity respectively, so the access will be to 

highly sensitive data with a sever action which makes M is appropriate output specifically with 

having L in both risk history and user context. This scenario was the same for rule 18 and 19 in which 

the resource sensitivity was S and the user context was M which demonstrates why M is the 

appropriate output in this situation. For rule 21 and 23, although the majority of experts have decided 
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to classify the output of these rules to be L due to having NS in the resource sensitivity, the mean 

value of all expert mapped the output to be M. For rules 26 and 28, most experts have decided that 

M is the appropriate output for these rules. Examining these rules demonstrates that even if the data 

is insensitive, having H in the risk history should be considered since the malicious user always 

comes with malicious actions. 

Table 5.10 represents validation of fuzzy rules when the output was M. The output of thirteen rules 

was identical before and after expert validation. The majority of experts have decided that M is the 

appropriate output for these set of rules as well as the mean value of all experts mapped the output 

to be M. Investigating these rules demonstrates that the resource sensitivity and risk history were the 

dominant risk factors for most experts to make their decision for these set of rules. Having HS or S 

in the resource sensitivity and H or M in the risk history made most experts to classify the output of 

these rules to be M. 

On the other hand, security experts classified the output of six rules to be H. These rules involve rule 

29, 31, 32, 37, 39 and 43. For rule 29, fourteen experts have decided that H is the appropriate output 

for this rule. This is due to having H in the action severity and S in the resource sensitivity which 

should be characterized as high risk especially with having M in the user context. For rule 31 and 32, 

most experts have decided that the suitable output for these rules is H. This is due to having HS in 

the resource sensitivity and M and H in the action severity respectively.  

Table 5.10: Validation of fuzzy rules when the output was M 

Rule 

No 

Number of Experts  

Mean 
Experts Responses Mapped 

Category 

Rule 

Output Valid Missing N L M H UH 

29 20 0 3.7 0 0 6 14 0 4 H 

30 20 0 3.3 0 0 14 6 0 3 M 

31 20 0 3.75 0 0 6 13 1 4  H 

32 20 0 3.8 0 0 6 12 2 4 H 

33 20 0 3.25 0 0 15 5 0 3 M 

34 20 0 3.05 0 0 19 1 0 3 M 

35 20 0 3.4 0 0 12 8 0 3 M 

36 20 0 3.1 0 0 18 2 0 3 M 

37 20 0 3.65 0 0 8 11 1 4 H 

38 20 0 3.25 0 1 13 6 0 3 M 

39 20 0 3.8 0 0 4 16 0 4 H 

40 20 0 2.9 0 2 18 0 0 3 M 

41 20 0 3.25 0 0 15 5 0 3 M 

42 20 0 3.2 0 0 16 4 0 3 M 

43 20 0 3.5 0 0 10 10 0 4 H 

44 20 0 3.4 0 1 10 9 0 3 M 

45 20 0 3.05 0 2 15 3 0 3 M 

46 20 0 3.45 0 1 11 6 2 3 M 

47 20 0 3 0 1 18 1 0 3 M 
 

Similarly, in rule 37 and 39, the majority of experts have classified the output of these rules to be H. 

This is because of having S and HS in the resource sensitivity, and M and H in the action severity 

respectively. In rule 43, half of the IoT security experts have classified the output of this rule to be 
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M, while the other half have decided that H is the appropriate output for this rule. However, the mean 

value of all experts mapped the output to be H. 

Table 5.11 shows validation of fuzzy rules when the output was H. The output of twelve rules was 

identical before and after expert validation. Almost all experts have decided that H is the appropriate 

output for these twelve rules as well as the mean value of all experts mapped the output to the same 

result. In some rules, all twenty experts have decided that H is the appropriate output as in rule 48 

and 56. Examining these rules demonstrates that experts have decided to classify the output of a rule 

to be H only if two risk factors were H or H and S and with at least M in other risk factors.  

On the other hand, there was only one rule (rule 54) that most experts have decided that UH is the 

appropriate output for this rule. This is due to having H in the action severity and HS in the resource 

sensitivity. So, the system will be in real danger especially the values of the user context and risk 

history associated with this rule were M which indicates that the requesting user intends to perform 

malicious actions on highly sensitive data. 

Table 5.11: Validation of fuzzy rules when the output was H 

Rule 

No 

Number of Experts  

Mean 
Experts Responses Mapped 

Category 

Rule 

Output Valid Missing N L M H UH 

48 20 0 4 0 0 0 20 0 4 H 

49 20 0 3.65 0 0 7 13 0 4 H 

50 20 0 4.25 0 0 0 15 5 4 H 

51 20 0 3.9 0 0 2 18 0 4 H 

52 20 0 3.95 0 0 1 19 0 4 H 

53 20 0 4.05 0 0 0 19 1 4 H 

54 20 0 4.6 0 0 0 8 12 5 UH 

55 20 0 3.75 0 0 6 13 1 4 H 

56 20 0 4 0 0 0 20 0 4 H 

57 20 0 4.15 0 0 1 15 4 4 H 

58 20 0 3.6 0 0 8 12 0 4 H 

59 20 0 3.8 0 0 4 16 0 4 H 

60 20 0 3.95 0 0 1 19 0 4 H 
 

Table 5.12 represents validation of fuzzy rules when the output was UH. The output of seventeen 

rules was identical before and after expert validation. Also, the mean value of all experts mapped the 

output to the same result. In rules 63, 64, 65, 72, 73, 78, 80 and 81, all twenty experts have decided 

that UH is the appropriate output. Examining these set of rules demonstrates that experts classified 

the output to be UH if three risk factors were H regardless of the value of the fourth risk factor.  
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Table 5.12: Validation of fuzzy rules when the output was UH 

Rule 

No 

Number of Experts  

Mean 
Experts Responses Mapped 

Category 

Rule 

Output Valid Missing N L M H UH 

61 20 0 4.8 0 0 0 4 16 5 UH 

62 20 0 4.7 0 0 0 6 14 5 UH 

63 20 0 5 0 0 0 0 20 5 UH 

64 20 0 5 0 0 0 0 20 5 UH 

65 20 0 5 0 0 0 0 20 5 UH 

66 20 0 4.7 0 0 1 4 15 5 UH 

67 20 0 4.25 0 0 3 9 8 4 H 

68 20 0 4.75 0 0 0 5 15 5 UH 

69 20 0 4.9 0 0 0 2 18 5 UH 

70 20 0 4.9 0 0 0 2 18 5 UH 

71 20 0 4.75 0 0 0 5 15 5 UH 

72 20 0 5 0 0 0 0 20 5 UH 

73 20 0 5 0 0 0 0 20 5 UH 

74 20 0 4.3 0 0 2 10 8 4 H 

75 20 0 4.3 0 0 1 12 7 4 H 

76 20 0 4.45 0 0 1 9 10 4 H 

77 20 0 4.9 0 0 0 2 18 5 UH 

78 20 0 5 0 0 0 0 20 5 UH 

79 20 0 4.85 0 0 0 3 17 5 UH 

80 20 0 5 0 0 0 0 20 5 UH 

81 20 0 5 0 0 0 0 20 5 UH 
 

On the other hand, experts decided to classify the output of four rules to be H. These rules involve 

rule 67, 74, 75, and 76. For rule 67, although only nine experts have decided to classify the output of 

this rule to be H, the mean value of all experts mapped the output to be H. Experts have decided that 

H is the appropriate output due to having L in both action severity and user context. For rule 74 and 

75, the majority of experts have decided that H is the suitable output for these rules. This is because 

the resource sensitivity value associated with these rules was NS. So, if the data is not sensitive, then 

the appropriate risk output should be H even if all the other three risk factors were H. For rule 76, 

although ten experts have decided that UH is the appropriate output for this rule, the mean value for 

all experts mapped the output to H. Having L in the action severity should make H to be the 

appropriate output for this rule. 

5.3.3.3 Implementation of Fuzzy Rules Using MATLAB 

After all fuzzy rules were validated by twenty IoT security experts, fuzzy rules were implemented 

using the rule editor of the MATLAB fuzzy logic toolbox, as shown in Figure 5.10. The rule editor 

is used to construct fuzzy rules statements automatically. It is flexible, in which a rule can be added, 

edited, or deleted easily (MathWorks, 2016). All the rules had the same weight and the connection 

type was logical AND. Some studies have suggested deleting the rules that are covered by other rules 

to improve performance. However, the main target of the proposed risk estimation technique is to 

provide a precise and accurate risk value for each access request. Indeed, deleting some rules can 

improve the performance but the accuracy is the main concern in which removing some fuzzy rules 

will decrease the accuracy of resultant risk values. There are many studies referring that reducing the 
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number of rules will lower the system accuracy (Maksimovic et al., 2013; Seguí et al., 2013). In 

addition, the proposed risk estimation technique uses 81 rules which is not large compared to large 

systems involving multiple inputs with hundreds of fuzzy rules. Therefore, all 81 rules are used to 

implement the proposed fuzzy risk estimation technique. 

 

Figure 5.10: MATLAB rule editor to build fuzzy rules 

In addition, the rule viewer shows a roadmap of the fuzzy inference process, as shown in Figure 5.11. 

It uses fuzzy rules that have been implemented using the rule editor. The first four columns of the 

rule viewer show MFs referenced by the IF-part of each rule of the four risk factors. The fifth column 

shows the MF of the output risk referenced by the THEN-part of each rule (Mathworks, 2016). Each 

rule is a row and each column represents risk input factors and output risk in the rule viewer. Rule 

numbers are displayed on the left of each row. In addition, when values of action severity, resource 

sensitivity, user context, and risk history were 0.5, the value of the output risk was 0.6 as shown in 

Figure 5.11. 
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Figure 5.11: MATLAB rule viewer to show the fuzzy inference process 

5.3.4 Aggregation of Output Rules 

Rule aggregation is the process of combining outputs of all fuzzy rules. In other words, MFs of all 

fuzzy rules are combined into a single fuzzy set via rule aggregation (Li et al., 2013). MATLAB has 

three built-in rule aggregation operators; max, probor, and sum (Mathworks, 2016). 

 

Figure 5.12:  MATLAB rule viewer to show aggregation of rules using the max operator 
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In this research, the max (maximum) aggregation operator is used to combine the output of 81 rules 

into one fuzzy set. There is no superior operator than others. However, with the availability of a 

dataset, the try-and-error method can be used to select the appropriate aggregation operator. In 

MATLAB rule viewer, as shown in Figure 5.12, the aggregation occurs down the fifth column, and 

the resultant aggregate plot is shown in the single plot appearing in the lower right corner of the plot 

field. 

5.3.5 Defuzzification 

The final step of implementing the proposed fuzzy risk estimation technique is the defuzzification. 

The risk output has to be a crisp number. The most popular defuzzification method; the centroid 

method, was selected to be the appropriate defuzzification method since it provides a unique decision 

value between zero and one (Fernández et al., 2014). The defuzzified output value can be shown in 

Figure 5.12. It is represented by the thick red line passing through the aggregated fuzzy set, which 

indicate the defuzzied value that resulted from the aggregation of fuzzy sets. 

5.3.6 GUI for Risk Estimation Process 

The proposed risk estimation technique was implemented using MATLAB fuzzy logic toolbox. 

However, to provide the output risk value with an easy-to-use user interface, a Graphical User 

Interface (GUI) was created to show the estimated risk value and the access decision for a certain 

input combination. Therefore, when the values of risk input factors are known, the output risk value 

can be estimated, and the access decision can be determined. 

 

Figure 5.13: Using GUI to show input and output of the proposed risk estimation technique 

For example, if there is an access request that involves an action severity rated as 37%, data 

sensitivity rated as 47%, the risk from user context features rated as 25%, and the requester risk 

history rated as 33%. Then, the estimated risk value associated with this access request is rated as 
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about 40%, which will grant access with monitoring user activities during the access session. The 

input and output risk values of this scenario can be shown in Figure 5.13. 

5.4 Validation of Acceptable Risk by Experts 

After estimating the security risk value associated with the access request, the next step is to compare 

the estimated risk value with acceptable risk values to determine whether to grant or deny access. 

Providing acceptable risk values for each application is very difficult to determine. Although most 

related risk-based access control models suggested using a threshold risk value to determine the 

access decision, they did not provide any details about how to determine this threshold risk value for 

different applications, especially in the IoT context. 

As discussed earlier in section 4.3.1, this research proposed three risk decision bands to provide the 

access decision for each access request: allow, allow with risk monitoring and deny. However, 

determining the appropriate values for each band is very difficult. Therefore, twenty IoT security 

experts from inside and outside the UK were asked to determine the best values for each risk decision 

band using four open-ended questions. The researcher suggested certain values for each risk decision 

band and asked IoT security experts either to confirm these values or suggest new values for each 

risk decision band. The researcher suggested to use values 0.0 – 0.25 for the allow band, 0.26 – 0.7 

for the allow with risk monitoring band, and 0.71 – 1.0 for the deny band. In addition, experts were 

asked to suggest any other decision bands regarding their expertise. Experts’ responses were 

summarized as shown in Table 5.13. 

Many of the experts have acknowledged that three bands are applicable for the IoT system. While 

others have recommended using a fourth risk decision band. Eight experts (E3, E5, E11, E12, E14, 

E15, E16, and E20) have confirmed values suggested by the researcher for each risk decision band 

and decided that no other decision bands are required. They decided that these values reflect the fact 

that most access to system resources will be done through the allow with risk monitoring band, which 

will be realized by having such large range of risk values from 0.26 – 0.7.  

The other experts, specifically E2 and E13, recommended using different values for risk decision 

bands. Although expert E2 confirmed values of the deny band, he/she suggested to use values 0.0 – 

0.1 and 0.11 – 0.7 for the allow and allow with risk monitoring band respectively. He/she added that 

values of allow band should be narrow to grant only the device owner or the user with very small 

risk value through this band. For expert E13, although he/she has confirmed values of the allow band 

that are suggested by the researcher, he/she recommend extending the allow with risk monitoring 

band to involves values from 0.26 – 0.8.  
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Table 5.13: Experts’ responses to determine the best values for risk decision bands 

Expert 

No 

 

Allow Band 
Allow with Risk 

Monitoring Band 

 

Deny Band 

 

Other Suggested Bands 

E1 0.0 – 0.25 0.26 – 0.5 0.76 – 1.0 Use a fourth band from 0.51 – 0.75 

E2 0.0 – 0.1 0.11 – 0.7 0.71 – 1.0 No other bands are required  

E3 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands required  

E4 0.0 – 0.25 0.26 – 0.5 0.71 – 1.0 Use a fourth band from 0.51 – 0.7 

E5 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands required  

E6 0.0 – 0.25 0.26 – 0.5 0.71 – 1.0 Use a fourth band from 0.51 – 0.7 

E7 0.0 – 0.15 0.16 – 0.5 0.71– 1.0 Use a fourth band from 0.5 – 0.7     

E8 0.0 – 0.25 0.26 – 0.5 0.76 – 1.0 Use a fourth band from 0.51– 0.75 

E9 0.0 – 0.25 0.26 – 0.5 0.71 – 1.0 Use a fourth band from 0.51– 0.7 

E10 0.0 – 0.25 0.26 – 0.5 0.71 – 1.0 Use a fourth band from 0.5 – 0.7 

E11 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands are required  

E12 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands are required  

E13 0.0 – 0.25 0.26 – 0.8 0.8 – 1.0 No other bands are required  

E14 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands are required  

E15 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands are required  

E16 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands are required  

E17 0.0 – 0.25 0.26 – 0.5 0.71 – 1.0 Use a fourth band from 0.51 – 0.7 

E18 0.0 – 0.25 0.26 – 0.5 0.71 – 1.0 Use a fourth band from 0.51 – 0.7 

E19 0.0 – 0.25 0.26 – 0.5 0.81– 1.0 Use a fourth band from 0.51 – 0.8 

E20 0.0 – 0.25 0.26 – 0.7 0.71 – 1.0 No other bands are required  
 

On the other hand, ten security experts (E1, E4, E6, E7, E8, E9, E10, E17, E18, and E19) 

recommended new changes to the suggested values made by the researcher. They confirmed values 

of the allow band suggested by the researcher except for expert E7 who suggested to use values 

0.0 - 0.15 for the allow band. For the deny band, the majority of ten experts confirmed values 

suggested by the researcher. There were suggestions from experts E1, E8, and E19 in which experts 

E1 and E8 have suggested assigning values 0.76 – 1.0 for the deny band, whereas expert E19 

suggested using values from 0.81–1.0 for the deny band. For the allow with risk monitoring band, 

ten experts recommended using values 0.26 – 0.5 for this band. They added although most access 

will be through this band; this band should be divided into two bands with different monitoring 

measures. They suggested using values 0.51 – 0.7 as the fourth band with more restrictions on the 

access. 

5.5 Validation of Proposed Risk Model by Experts 

The need for access control models that provide more flexibility than static approaches has been 

pointed out repeatedly in recent years especially after the IoT appearance. The risk-based access 

control model provides a dynamic way to make the access decision. It uses the risk associated with 

the access request as a criterion to determine the access decision. This research provided a dynamic 
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and adaptive risk-based access control model that uses real-time and contextual information to 

provide the access decision.  

Twenty IoT security experts from inside and outside the UK were asked to validate the proposed 

risk-based access control model using open questions through an interview. The interview questions 

can be shown in Appendix A. The first question was about experts’ feedback regarding the proposed 

risk-based access control model. Most experts have shown their interest regarding the proposed 

risk-based model. They confirmed it will be valuable as various IoT applications require such 

dynamic access control models. For example, Expert E2 stated, “using contextual data from the IoT 

environment will be a good way to provide dynamic access”. Also, Expert E5 said, “the idea of 

making a dynamic access control model is very interesting”. Moreover, Expert E14 stated, “it will 

be very attractive for commercial”. Similarly, Expert E7 added “being able to determine risk value 

of contextual features will be interesting and difficult as well”. 

In addition, experts have confirmed that the proposed risk factors are appropriate for the IoT context. 

For instance, Expert E5 stated “risk factors depend on the environment, I think these factors are 

appropriate for the IoT, but they are more generalized”. Also, Expert E17 stated “they are appropriate 

but what if I do not have a risk history. You need to take this in your mind”.  Similarly, Expert E9 

and Expert E12 have mentioned the issue associated with the risk history. In addition, Expert E16 

added, “they appropriate but how contextual features will be collected from the environment, as it 

depends on which features you are able to collect”. Although the majority of experts confirmed that 

the proposed risk factors are appropriate for various IoT applications, some experts suggested that 

more risk factors can be extracted depending on the IoT application context. In other words, they 

advised to work on a single IoT application and identify different features and factors for this 

application. However, the main objective of this research is to provide a dynamic risk-based access 

control model that can work with various IoT applications.  

When experts were asked about the ranking of four risk factors in term of the importance in the IoT 

system, the majority of experts expressed that all risk factors used in the proposed model are 

important. They considered the resource sensitivity and the risk history are the most effective risk 

factors, then the action severity and the user context. For example, Expert E7 stated, “definitely, 

resource sensitivity is the most important, then user context, action severity and risk history”. Also, 

Expert E1 considered action severity is most important, then resource sensitivity, user context and 

risk history. On the other hand, some experts such as Expert E3, E4, E9, E19, and E20 suggested that 

the ranking of risk factors should be regarding a specific application. For instance, for sensitive 

applications, the resource sensitivity and action severity would be the most effective. After 

implementing the proposed risk estimation approach using the fuzzy logic system with expert 

judgment, results demonstrated that resource sensitivity is the dominant risk factor that decides most 

access in which the higher the resource sensitivity, the higher the output risk. 
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5.6 Cold Start Problem 

Cold start is one of the major issues in computer-based information systems. It refers to the problem 

of obtaining sufficient information about users or items to draw inferences or results (Quijano-Sánche 

et al., 2012). For this research, the proposed risk-based access control model has four risk factors; 

user context, resource sensitivity, action severity and risk history. Each risk factor is used to estimate 

the overall risk value associated with the access request to make the access decision. The cold start 

problem appears when a user makes an access request for the first time, so there is no risk history to 

estimate the security risk value associated with the access request. Therefore, the proposed risk-based 

model cannot operate until collecting sufficient risk history values for system users, which will be 

very difficult in a dynamic environment such as IoT systems which accept new users almost every 

day. 

Fuzzy rules of the proposed fuzzy risk estimation technique were implemented using four inputs/risk 

factors to estimate the risk value for each access request, so how the risk estimation technique can 

provide a result without having a risk history value. To resolve this issue, one can say, if there is no 

risk history value, then suppose the risk history value is the minimum fuzzy value, which is zero. 

However, if the risk history value is assumed to be zero, this means that the requesting user is a 

trusted one with very low-risk history value. Indeed, the malicious user might be the first time to 

access the system, and if the risk history value is assumed to be zero, the system will consider the 

malicious user as a trusted one. Therefore, this solution will not work.  

Another one can say, if there is no risk history value, then suppose that the risk history value to be 

the maximum fuzzy value, which is one. However, if the risk history is assumed to be one, this means 

that the requesting user is definitely a malicious user with very high-risk history. Therefore, the 

owner of an IoT device who will access the system for the first time will be considered as a malicious 

user. Consequently, this solution will not work either. 

The proposed solution to overcome the cold start problem is to allow the risk estimation approach to 

estimate the security risk value when there is no risk history. In other words, when there is no risk 

history value associated with the requesting user, the proposed risk estimation approach should use 

only three risk factors (user context, resource sensitivity, and action severity) to estimate the overall 

risk value associated with the access request. However, fuzzy rules are built using four risk factors. 

Therefore, the proposed fuzzy risk estimation technique should be modified by adding another 27 

fuzzy rules to include input combinations of only three risk factors. These fuzzy rules are created in 

the same way as discussed earlier in which fuzzy rules are first created using the information 

collected from the literature with the researcher experience. Then, fuzzy rules are validated using IoT 

security experts. 
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5.6.1 Building Fuzzy Rules of Cold Start 

When there is no risk history value, new fuzzy rules need to be added to represent relationships 

between only three risk factors (user context, resource sensitivity, and action severity) to resolve the 

cold start issue and provide an output risk value for each access request. Since three risk factors have 

three MFs each, the number of fuzzy rules that need to be added will be 3*3*3=27 rules. Hence, the 

total number of fuzzy rules of the proposed fuzzy risk estimation technique will be 81+27=108. The 

output of 27 fuzzy rules has been created using the information collected from the literature with the 

researcher experience, as shown in Table 5.14. Notations of input and output risk linguistic 

expressions can be shown in Table 5.2. As discussed earlier in section 5.3.3.1, there were some 

logical rules and information from the literature that helped the researcher to build fuzzy rules.  

Table 5.14: Fuzzy rules of cold start 

 

Rule 

No 

Risk Factors  

Output 

Risk Action 

Severity 

Resource 

Sensitivity 

User 

context 

82 L NS L N 

83 M NS L N 

84 H NS L N 

85 L S L L 

86 M S L L 

87 H S L L 

88 L HS L M 

89 M HS L M 

90 H HS L M 

91 L NS M N 

92 M NS M L 

93 H NS M L 

94 L S M M 

95 M S M M 

96 H S M H 

97 L HS M H 

98 M HS M UH 

99 H HS M UH 

100 L NS H L 

101 M NS H M 

102 H NS H H 

103 L S H UH 

104 M S H UH 

105 H S H UH 

106 L HS H UH 

107 M HS H UH 

108 H HS H UH 
 

 

The output of four rules was classified to be N. These rules include rule 82, 83, 84, and 91. The 

resource sensitivity was the dominant risk factor in which having NS in resource sensitivity helped 

to classify the output as N especially with having L in user context regardless of values of action 

severity. In addition, six fuzzy rules were classified to be L. These rules include rule 85, 86, 87, 

92,93, and 100.  
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Further, the output of six rules was classified to be M. These rules include rule 88, 89, 90, 94, 95, 

and 101. For this set of rules, the resource sensitivity was the dominant risk factor in which when its 

value increased to S and HS, the output became M regardless of values of both user context and 

action severity. This scenario changed for rule 101 as the resource sensitivity was NS. However, the 

output became M due to having H and M in the user context and action severity respectively. In 

addition, the output of three fuzzy rules including rule 96, 97, and 102 was classified to be H. Having 

H or H and S in two risk factors were the main reason to classify the output of these rules to be H. 

While the output of eight fuzzy rules was classified to be UH. These rules involve rule 98, 99, 103, 

104, 105, 106, 107, and 108. The output of a fuzzy rule was classified to be UH if the resource 

sensitivity was S or HS and the other risk factor was H.  

5.6.2 Validation of Cold Start Fuzzy Rules by Experts 

As discussed earlier, there is no dataset in this research, so the best way to obtain accurate and precise 

fuzzy rules is by IoT security experts. Hence, experts were interviewed to validate fuzzy rules of cold 

start which were previously built using the information collected from the literature with the 

researcher experience. In this section, validating fuzzy rules by experts through the interview will be 

discussed. Initially, the interview design, experts sample size, and expert’s information will be 

provided, then the results of the interview will be discussed. 

5.6.2.1 Expert Interview Design 

Since the main target of the interview is to validate fuzzy rules of the cold start problem, the interview 

was structured using closed questions in which the participant was given five choices to be the 

expected output for each rule as the following: Negligible; Low; Moderate; High and Unacceptable 

High. All the interviews were conducted on the campus of the University of Southampton in the 

expert’s office and others in cafes. All interviews were conducted in the English language. 

Appendix B provides the interview questions. Before starting the interview, each participant was 

asked to sign a consent form after reading the participant information sheet that included all the 

necessary information, terms and conditions about the study. The University of Southampton Ethics 

Committee granted approval for this study under their reference number ERGO/FPSE/25091.  

5.6.2.2 Interview Sample Size 

Due to the problem of reaching a large number of experts, interviews have conducted with ten 

security experts at the University of Southampton. Attributes of experts who have involved in this 

study can be shown in Table 5.15. Most experts had at least 2- 5 years of experience. For experts 

who did not have knowledge about the fuzzy logic approach, the researcher has spent about 10 

minutes to make sure the participant understood essential information about the fuzzy logic system.  



112                                                   Chapter 5: Implmentation of Risk Estimation using Fuzzy Logic   

 

Table 5.15: Attributes of security experts used to validate fuzzy rules of the cold start problem 

 

Expert 

No 

 

Job Description 

Experience 

(Years) 

Knowledge 

of Fuzzy 

logic 

 

Knowledge of IoT Applications 

E 1 Cybersecurity Lecturer 6 – 10 No Smart city, smart home, and 

connected healthcare 

E 2 Security Research Follow 2– 5 Yes Smart city, connected car, and 

connected healthcare 

E 3 Cybersecurity Lecturer 6 – 10 No Connected industry, smart city, 

smart home, and smart agriculture 

E 4 Security Research Follow 2– 5 Yes Smart city and connected car 

E 5 Security Research Follow 2 – 5 No Smart city and connected 

healthcare 

E 6 Security Research Follow 2 – 5 Yes Smart city, connected car, smart 

home, and connected healthcare 

E 7 Security Research Follow Less than 2 Yes Smart home and smart supply 

chain 

E 8 Security Research Follow 6 – 10 Yes Smart energy, smart city, and 

smart home 

E 9 Security Research Follow 2 – 5 No Connected car and smart home 

E 10 Security Research Follow 2 – 5 Yes Smart city, smart energy and smart 

home 

 

5.6.2.3 Results of the Interview 

As discussed earlier in section 5.3.3.2, the mean function was utilized to determine the output of each 

rule. To use expert’s responses in the SPSS program, expert’s responses have given ratings such that 

Negligible =1, Low=2, Moderate=3, High=4, and Unacceptable High=5. Therefore, the output of 

each fuzzy rule should be mapped to one of these five categories. An assumption was made such that 

any mean value lower than 0.5 will be mapped to the lower category and any mean value higher than 

or equal 0.5 will be mapped to the higher category. 

As shown in Table 5.16, experts have confirmed the output of fuzzy rules that were built using the 

information collected from the literature with the researcher experience. The output of seventeen 

fuzzy rules was identical in both expert validation and literature review with the researcher 

experience. In these rules, all experts confirmed the same output for ten fuzzy rules. These fuzzy 

rules include rule 82, 88, 94, 95, 96, 97, 99, 105, 106, 107, and 108. On the other hand, the output of 

ten fuzzy rules was different from the one derived using the literature review with the researcher 

experience. These rules involve rule 83, 84, 87, 89, 90, 92, 93, 98, 100, and 103. For rule 83, the 

majority of experts decided to classify the output of this rule to be L especially with having M in the 

action severity. The same scenario was for rule 84 in which having H in the action severity made 

experts’ responses to distribute between N, L and M, however, the mean value of all experts made 

the output to be L. 

For rule 87, some experts suggested that having L in the user context should make M to be the 

appropriate output for this rule, while other experts decided to classify the output of this rule to be H 

due to having H in the action severity and S in the resource sensitivity. However, the mean value of 
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all experts made the output to be M. Similarly, in rule 89 and 90, most experts decided that H is the 

appropriate output for these rules. Examining these rules demonstrates that experts decided to 

classify the output to be H due to having HS in the resource sensitivity. 

Table 5.16: Validation of fuzzy rules of the cold start by security experts 

Rule 

No 

Number of Experts  

Mean 
Experts Responses Mapped 

Category 

Rule 

Output Valid Missing N L M H UH 

82 10 0 1 10 0 0 0 0 1 N 

83 10 0 1.6 4 6 0 0 0 2 L 

84 10 0 2 4 2 4 0 0 2 L 

85 10 0 2.2 0 8 2 0 0 2 L 

86 10 0 2.3 0 7 3 0 0 2 L 

87 10 0 3.2 0 3 2 5 0 3 M 

88 10 0 3 0 0 10 0 0 3 M 

89 10 0 3.6 0 0 4 6 0 4 H 

90 10 0 3.7 0 0 4 5 1 4 H 

91 10 0 1.4 6 4 0 0 0 1 N 

92 10 0 2.5 0 5 5 0 0 3 M 

93 10 0 2.9 0 1 9 0 0 3 M 

94 10 0 3 0 0 10 0 0 3 M 

95 10 0 3 0 0 10 0 0 3 M 

96 10 0 4 0 0 0 10 0 4 H 

97 10 0 4 0 0 0 10 0 4 H 

98 10 0 4.4 0 0 0 6 4 4 H 

99 10 0 5 0 0 0 0 10 5 UH 

100 10 0 2.6 0 4 6 0 0 3 M 

101 10 0 3.3 0 0 7 3 0 3 M 

102 10 0 4.2 0 0 0 8 2 4 H 

103 10 0 4.4 0 0 0 6 4 4 H 

104 10 0 4.9 0 0 0 1 9 5 UH 

105 10 0 5 0 0 0 0 10 5 UH 

106 10 0 5 0 0 0 0 10 5 UH 

107 10 0 5 0 0 0 0 10 5 UH 

108 10 0 5 0 0 0 0 10 5 UH 

 

For rule 92, half of the experts decided to classify the output of this rule to be L, while the other half 

decided to classify it to be M. However, the mean value of all experts made the output to be M. While 

for rule 93 and 100, the majority of experts decided that M is the appropriate output for these rules. 

For rule 98 and 103, most experts decided that H is the appropriate output for these rules due to 

having HS and S in the resource sensitivity respectively.  

5.6.3 Implementing Fuzzy Rules of Cold Start 

After validating fuzzy rules of the cold start problem by IoT security experts, the rule editor of 

MATLAB fuzzy logic toolbox was utilized to add these rules to the fuzzy model that implemented 

earlier, as shown in Figure 5.14. All the rules had the same weight and the connection type was 

logical AND.  
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Figure 5.14: Adding validated fuzzy rules using MATLAB rule editor  

After adding new fuzzy rules, the proposed risk estimation technique can work well now when there 

is no risk history associated with the requesting user. So, the output risk will be estimated using three 

risk factors: user context, resource sensitivity, and action severity. Then, the estimated risk value will 

be compared against risk decision bands to determine the access decision whether to grant or deny 

the access. For example, if there is an access request that involves an action severity rated as 25%, 

data sensitivity rated as 56%, the risk from user context features rated as 77%, and no risk history 

value. As shown in Figure 5.15, the proposed risk estimation approach provides an output risk of 

0.85, which will reject access based on proposed risk decision bands. Therefore, the proposed risk 

estimation technique has overcome the cold start problem associated with the proposed risk-based 

access control model. This makes the proposed risk-based model productive and ready to provide the 

required functionality immediately and effectively without any prior adjustments. 
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Figure 5.15: Providing access decision without having a risk history value 

5.7 Efficiency of The Fuzzy Model 

The fuzzy logic system has demonstrated it can generate accurate and realistic values in assessing 

security risks in access control operations. As discussed in section 3.3, there are many advantages to 

use the fuzzy logic system with expert judgment to conduct the risk estimation process of the 

proposed risk-based access control model. However, it is not straight forward, it raises some issues.  

First, there are multiple methods in each fuzzy stage such as MFs, defuzzification methods, and rule 

aggregation operators (Dubois & Yager, 1992). So, determining the most appropriate method 

regarding the IoT context is a major issue especially when there is no available dataset. Second, the 

scalability of the fuzzy logic system seems to be questionable. Fuzzy logic systems need a long period 

of time to estimate security risks especially when there is a large number of input parameters and 

hundreds of fuzzy rules. In addition, an access control system may need to serve hundreds or 

thousands of users. Therefore, a fuzzy inference-based access control system might be too 

computationally expensive (Ni et al., 2010). In the research due to the lack of datasets, fuzzy logic is 

the appropriate approach. 

In this section, several experiments were carried out to evaluate the efficiency of the proposed fuzzy 

risk estimation technique to demonstrate the effect of changing fuzzy parameters such as MF, 

defuzzification method, and rule aggregation. In addition, the efficiency will be evaluated when 

increasing the number of access requests.  

5.7.1 Experiment Setting 

The objective of this set of experiments is to evaluate the efficiency of the proposed fuzzy risk 

estimation technique with different numbers of access requests. In addition, the efficiency of the 

proposed risk estimation technique will be evaluated while changing fuzzy parameters to decide the 
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best and efficient parameters. All experiments and measurements are coded using MATLAB on 

Intel(R) Core (TM) i7-2600, 3.40 GHz CPU with 16 GB RAM running Windows 10. 

5.7.2 Experimental Results 

This section provides experimental results of different experiments carried out to evaluate the 

efficiency of the proposed fuzzy risk estimation approach with different number of access requests 

and when changing fuzzy parameters including MF, defuzzification method, and rule aggregation 

operator.   

5.7.2.1 Scale of Access Requests  

The first experiment evaluates the response time of the proposed fuzzy risk estimation approach 

when changing the number of access requests. This experiment was carried out using the triangular 

MF as the appropriate MF and the centroid method as the suitable defuzzification method. The 

response time of the proposed risk estimation technique was estimated when increasing the number 

of access requests from 1000 to 250000, as shown in Figure 5.16. To provide a consistent response 

time, this experiment was carried out five times and the mean value was utilized to represent the 

mean response time with each number of access requests. 

 

Figure 5.16: Response time when increasing number of access requests 

This chart represents a linear relationship between the response time and the number of access 

requests in which the larger the number of access requests, the higher the response time. It is a 

privilege for the proposed fuzzy risk estimation technique to estimate the security risk value for 1000 

access requests in only 57.385 seconds. This demonstrates that the proposed risk estimation approach 

provides an efficient way to estimate security risks of access control operations in a timely manner. 
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In addition, the response time per access request of the proposed risk estimation technique was 

estimated with different number of access requests, as shown in Figure 5.17. Generally, the response 

time per access request for the proposed risk estimation technique is about 0.057 second, which 

demonstrates it can provide the estimated risk value for each access request in a very short time. As 

depicted in Figure 5.17, the time per access request at the start was quite large, then it started to 

decrease until reaching its lowest value at 20000 access requests. This decrease occurred due to the 

fact that the system became familiar with the process until a certain stage. Then, it follows a straight 

line in which increasing number of access requests lead to increasing the response time per request. 

 

Figure 5.17: Response time per request when increasing number of access requests 

5.7.2.2 Complexity of MFs 

One of the important parameters to build an effective fuzzy logic system is to select the appropriate 

MF to represent the degree of membership of a certain value in a fuzzy set. When there is no available 

dataset to determine the best MF, the alternative way is to use the try-and-error method to determine 

the most efficient MF in term of the response time. The aim of this experiment is to verify the impact 

of different MFs. As discussed earlier in section 3.4.2, there are eleven MFs that can be used to define 

how each value is mapped to a membership value for the proposed fuzzy risk estimation technique.  

In this experiment, the proposed risk estimation technique was implemented using eleven MFs to 

test the response time for each MF. All remaining fuzzy parameters of the proposed risk estimation 

technique held fixed such as defuzzification method, aggregation method, and fuzzy rules. To test 

the response time of different MFs, a fixed number of access requests (1000) was used. To provide 

a consistent response time for each MF, this experiment was carried out five times and the mean 

value was utilized to represent the mean response time for each MF. 
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Figure 5.18: Response time of different fuzzification methods when applying 1000 access requests 

The results of this experiment can be shown in Figure 5.18. As expected, there were different 

response time for each MF. TriMF produced the lowest response time, while SMF produced the 

highest response time. The difference in response time between various MFs was quite small, but 

with increasing number of access requests, this difference will be much higher.  

To compare and determine if the mean values of various MFs are different, one-way repeated 

measure ANOVA test was carried out. Analysis of Variance (ANOVA) is a common and robust 

statistical test that is used to compare the mean scores collected from different conditions or groups 

in an experiment (Singh et al., 2013). Since the main target is to examine processing time (one group) 

of different MFs, one-way repeated measure ANOVA test is suitable in this situation.  

The mean values of different MFs were tested to determine if there is a difference between them. 

The response time for each MF was measured five times. Mauchly's Test of Sphericity tests the null 

hypothesis that the variances of the differences are equal. Hence, if Mauchly's Test of Sphericity is 

statistically significant (p < 0.05), the null hypothesis will be rejected, and the alternative hypothesis 

will be accepted in which the variances of the differences are not equal (Haverkamp & Beauducel, 

2017). 

Table 5.17: Mauchly's Test of Sphericity of fuzzification method 

Within-Subjects 

Effect 

Mauchly'

s W 

Approx. 

Chi-Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

MF .014 10.353 9 .432 .444 .775 .250 
 

As the main objective is to determine if mean values of various MFs are different, five MFs including 

TriMF, PsegMF, GbellMf, SigMF, and SMF were used to analyse their mean using one-way repeated 

measure ANOVA test. These MFs were selected based on changes in mean values, as depicted in 

Figure 5.18. Five measurements for each MF were entered in the SPSS software and the result was 
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as shown in Table 5.17. Mauchly’s test indicated that the assumption of sphericity had not been 

violated, X2(9) =10.353, p= 0.432>0.05.  

The results demonstrated that using one-way repeated measure ANOVA, the mean scores of different 

MFs were statistically significant different (F (4, 16) = 27.401, p =0.0001), as depicted in Table 5.18. 

In addition, looking at the pairwise comparisons between five MFs shows that there was a statistical 

significance difference in the response time between TriMF and PsegMF (p=0.04<0.05), TriMF and 

SigMF (p=0.017<0.05), TriMF and SMF (p=0.002<0.05), PsegMF and SMF (p=0.004<0.05), and 

GbellMF and SMF (p=0.037<0.05). In addition, there was no statistical significance difference 

between SigMF and SMF (p=0.732>0.05). 

Table 5.18: Tests of within-subjects’ effects of fuzzification method 

 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

MF Sphericity Assumed 3.408 4 .852 27.401 .000 0.873 

Error (MF) Sphericity Assumed .497 16 .031    
 

The results demonstrated that the TriMF produced the lowest processing time among other MFs, so 

it can provide better system performance. Therefore, it has been selected as the appropriate MF to 

implement the proposed fuzzy risk estimation technique. 

5.7.2.3 Complexity of Defuzzification Methods 

Defuzzification is a mapping from a space of fuzzy control actions defined over an output universe 

of discourse into a space of non-fuzzy control actions. The defuzzification technique is aimed to 

produce a non-fuzzy control action that best represents the possibility distribution of an inferred 

fuzzy control action (Liaw, 1994). As discussed earlier in section 3.4.5, MATLAB has five built-in 

defuzzification methods: centroid, bisector, MOM, LOM, and SOM. 

The purpose of this experiment is to verify the impact of various defuzzification methods by 

estimating the response time. The response time of 1000 access request was estimated for each 

defuzzification method while other fuzzy parameters such as fuzzy rules, rule aggregation operator, 

and fuzzification method were kept fixed. This experiment was performed five times and the mean 

value was utilized to represent the mean response time for each defuzzification method to provide 

more consistent results, as depicted in Figure 5.19. 
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Figure 5.19: Response time of different defuzzification methods when applying 1000 access requests 

In addition, a one-way repeated measure ANOVA test was utilized to determine if the mean values 

of various defuzzification methods are different. Mauchly’s test indicated that the assumption of 

sphericity had not been violated, X2(9) =9.641, p= 0.489>0.05, as depicted in Table 5.19.  

Table 5.19: Mauchly's Test of Sphericity of defuzzification methods 

Within-Subjects 

Effect 

Mauchly's 

W 

Approx. 

Chi-Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Defuzzification .019 9.641 9 .489 .538 1.000 .250 
 

Using one-way repeated measure ANOVA, the results demonstrated that mean scores of different 

defuzzification methods were statistically significant different (F (4, 8.608) = 15.923, p =0.00002), 

as depicted in Table 5.20. In addition, looking at the pairwise comparisons between different 

defuzzification methods shows that there was a statistical significance difference in the response time 

between SOM and Centroid (p =0.044<0.05), Centroid and MOM (p =0.008<0.05), and Centroid 

and Bisector (p =0.048<0.05). In addition, there was no statistical significance between Centroid and 

LOM (p=0.216>0.05). 

Table 5.20: Tests of within-subjects’ effects of defuzzification methods 

 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Defuzzification Sphericity Assumed 1.880 4 .470 15.923 .000 .799 

Error 

(Defuzzification) 

Sphericity Assumed .472 16 .030 
  

 

 

The results demonstrated that the centroid is the most efficient defuzzification method as it produced 

the lowest processing time among other defuzzification methods, so it can provide better system 

performance. Therefore, it has been selected as the appropriate defuzzification method to implement 

the proposed fuzzy risk estimation technique. 
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5.7.2.4 Complexity of Rule Aggregation Operator  

Rule aggregation is used to combine outputs of all fuzzy rules. In other words, MFs of all fuzzy rules 

are combined into a single fuzzy set via rule aggregation (Li et al., 2013). As discussed earlier in 

section 3.4.4, there are three main aggregation operators in MATLAB: max, probor, and sum. This 

experiment aims to determine the most efficient rule aggregation operator that can be utilized to 

implement the proposed fuzzy risk estimation technique. 

 

Figure 5.20: Response time of different rule aggregation operators when applying 1000 access requests 

The response time of 1000 access request was estimated for each rule aggregation operator while 

other fuzzy parameters such as fuzzy rules, defuzzification method, and fuzzification method were 

kept fixed. This experiment was performed five times and the mean value was utilized to represent 

the mean response time for each rule aggregation operator to provide more consistent results, as 

shown in Figure 5.20. The results of this experiment demonstrated that the max operator produced 

the lowest response time, while the sum operator produced the highest response time.  

In addition, a one-way repeated measure ANOVA test was utilized to determine if the mean values 

of various rule aggregation operators are different. Mauchly’s test indicated that the assumption of 

sphericity had not been violated, X2(2) =5.824, p= 0.054>0.05. The results of one-way repeated 

measures ANOVA demonstrated that there was a statistically significant difference between mean 

scores of rule aggregator operators, (F (2,8) =31.151, p=.054), as depicted in Table 5.21.  

Table 5.21: Mauchly's Test of Sphericity of rule aggregator operators 

Within-Subjects 

Effect 

Mauchly'

s W 

Approx. 

Chi-Square df Sig. 

Epsilonb 

Greenhouse-

Geisser 

Huynh-

Feldt 

Lower-

bound 

Aggregator .143 5.824 2 .054 .539 .579 .500 
 

In addition, looking at the pairwise comparisons between different rule aggregator operators shows 

that there was a statistically significant difference in the response time between Max and Prob 

(p=0.0005<0.05) and Max and Sum (p=0.011<0.05). Also, there was no statistical significance 
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between Prob and Sum (p=1.00>0.05). Using one-way repeated measure ANOVA, the results 

demonstrated that mean scores of different defuzzification methods were statistically significant 

different (F (4, 8.608) = 15.923, p =0.00002), as depicted in Table 5.22. 

Table 5. 22: Tests of within-subjects’ effects of rule aggregator operators 

 

Type III Sum 

of Squares df 

Mean 

Square F Sig. 

Partial Eta 

Squared 

Aggregator Sphericity Assumed 1.243 2 .621 31.151 .000 .886 

Error 

(Aggregator) 

Sphericity Assumed .160 8 .020 
  

 

 

The results demonstrated that the max operator produced the lowest processing time among other 

rule aggregator operators, so it can provide better performance. Therefore, it has been selected as the 

appropriate rule aggregator operator to implement the proposed fuzzy risk estimation technique. 

5.7.3 Scalability Challenge in IoT 

The number of IoT devices is growing rapidly. Predictions are made that by 2020, the number of IoT 

devices will reach or even exceed 50 billion (Evans, 2011). One of the major issues of the IoT system 

is scalability. It means the ability of the system to handle needs as they arise. It helps the system to 

work efficiently without performance issues due to system expansion. The main purpose of ensuring 

the scalability of the IoT system is to meet changing demands as the interest of people changes with 

time as well as environmental conditions (Gupta et al., 2017). 

For this research, a risk-based access control model was proposed to handle flexibility issues in 

current access control models for the IoT system. To implement the proposed risk-based model, the 

fuzzy logic system with expert judgment was selected as the suitable risk estimation technique. 

However, the scalability of the fuzzy logic system seems to be doubtful since it requires a long period 

of time to estimate security risks of access control operations. An access control model for the IoT 

system is intended to serve hundreds or thousands of users. Based on the experimental results 

discussed earlier, the proposed risk estimation technique requires 57.385 seconds to estimate security 

risks of 1000 access request. This response time is very efficient for a small network of devices, but 

with the IoT system, there are thousands of devices per network. This number of IoT devices is 

constantly increasing which require to take the scalability of the proposed risk estimation technique 

into accounts and provide the required solution to resolve this issue. In addition, the proposed risk 

estimation technique lacks the ability to learn and cannot adjust themselves to a new environment. 

Providing a scalable and able to learn risk estimation technique is one of the main objectives of this 

research. To achieve this target, the Artificial Neural Network (ANN) is proposed to be integrated 

with the fuzzy logic system. ANN is a low-level computational structure that performs well when 

dealing with raw data (Rezaei et al., 2014). It can learn to produce output even with incomplete 
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information, after being trained. In addition, it provides parallel processing capabilities that improve 

overall system efficiency (Cheng et al., 2016).  

One of the solutions that integrate ANN with the fuzzy logic system is the NFS and ANFIS. NFS is 

an ANN technique, which is functionally equivalent to the fuzzy logic system. It combines the 

parallel computation and learning capabilities of ANN with the human-like knowledge representation 

and explanation abilities of the fuzzy logic system. As a result, ANN becomes more transparent, 

while fuzzy systems become capable of learning. In addition, the NFS can be trained to develop IF-

THEN fuzzy rules and determine MFs for input and output variables of the system (Asogbon et al., 

2016; Iranmanesh et al., 2009). In addition, the ANFIS is similar to neuro-fuzzy technique but works 

only with Sugeno FIS (Asogbon et al., 2016). For this research, to apply the neuro-fuzzy and ANFIS 

techniques, a dataset representing different risk factors values with corresponding output is required. 

This dataset can be created using the proposed fuzzy risk estimation technique that was implemented 

earlier.  

The next two chapters will discuss the implementation of the proposed risk estimation technique 

using ANFIS and NFS to show how these solutions can solve learning and scalability issues 

associated with the proposed fuzzy model. 

5.8 Summary  

Chapter 5 has presented the implementation of the risk estimation process using the fuzzy logic 

system with expert judgment. It started by discussing the integration of the fuzzy logic system with 

expert judgment as the appropriate solution to provide accurate risk values of access control 

operations in the IoT system. One of the most effective ways to collect knowledge and expertise of 

experts is through the interview. Therefore, twenty IoT security experts were interviewed to validate 

the proposed risk-based access control model, validate fuzzy rules and determine acceptable risk 

values for proposed risk decision bands. This was followed by providing a step-by-step discussion 

of the implementation of the proposed risk estimation technique and how security experts have 

validated fuzzy rules and decided acceptable risk values of risk decision bands. In addition, one of 

the problems that may face the proposed risk-based model is the lack of information about the risk 

history of system users. This problem is called cold start. Therefore, a solution for the cold start 

problem was introduced by adding another 27 fuzzy rules using only three risk factors. To validate 

these rules, ten IoT security experts were interviewed. This was followed by providing a set of 

experiments to evaluate the efficiency of the proposed fuzzy risk estimation technique. These 

experiments were utilized to measure the response time with different number of access requests and 

to determine the most efficient MF, defuzzification method, and rule aggregation operator. This was 

followed by discussing scalability and learning issues of the proposed fuzzy risk estimation technique 
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and how adopting ANFIS and NFS can provide a good solution to these issues. The next chapter 

presents the implementation of the risk estimation process using the ANFIS technique. 
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Chapter 6: Implementation of Risk Estimation using 

ANFIS 

This chapter provides a discussion of the implementation of the proposed risk estimation technique 

using the ANFIS. It starts by providing an overview of the ANFIS by highlighting the main objectives 

of the ANFIS in risk estimation techniques, ANFIS architecture, and ANFIS learning methods. Then, 

section 6.2 presents the implementation of the risk estimation technique using the ANFIS by showing 

different experimental results of training the ANFIS model using both hybrid and backpropagation 

learning methods at different number of epochs. Section 6.3 shows the effect of the training process 

on the MFs of the fuzzy logic system. The chapter closes by providing a summary of the main points 

discussed through the chapter and introduces the next chapter. 

6.1 An Overview of ANFIS  

ANFIS is a multilayer feed-forward network which utilizes ANN techniques and fuzzy reasoning to 

map inputs into an output. It is a FIS implemented in a framework of adaptive neural networks (Wang 

& Elhag, 2008). The ANFIS is considered the first integrated hybrid neuro-fuzzy model that uses the 

decomposition approach to extract rules at individual nodes within the ANN (Zanchettin et al., 2010). 

Then, the extracted rules are combined to construct global behaviour descriptions. According to Jang 

(1993), ANFIS is a type of adaptive networks that is equivalent to a FIS functionally. It uses training 

data to produce fuzzy rules and MF automatically. Typically, the ANFIS network comprises of 

connected nodes that depend on parameters that change constantly using the learning techniques to 

minimize possible errors. The most common learning techniques in the ANFIS are the 

backpropagation and hybrid learning methods (Jang, 1993). 

The main objective of the ANFIS is to optimize parameters of the fuzzy logic system by applying a 

learning algorithm using input-output datasets. The parameter optimization is done in such a way 

that the error measured between the target and the actual output is minimized (Guney, 2008). The 

ANFIS has a high capability to adapt to its environment in the learning process. Therefore, it can be 
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used to adjust the MFs and reduce the error rate automatically to determine fuzzy rules of the fuzzy 

logic system. 

The ANFIS combines the benefits of the fuzzy logic system and ANN into a single technique (Jang, 

1993). It provides better results for applications where performance is more important than 

interpretation since the learning results may be difficult to interpret (Wu et al., 2011). According to 

Al-Hmouz et al., (2012), there are multiple advantages for the ANFIS, which include: 

• Optimizes fuzzy rules to describe the behaviour of a complex system;  

• Does not require prior human expertise;  

• Easy to implement;  

• Enables fast and accurate learning;  

• Generates greater choice of MFs to use;  

• Strong generalization abilities;  

• Excellent explanation facilities through fuzzy rules; and  

• Easy to incorporate both linguistic and numeric knowledge for problem-solving. 

6.1.1 Architecture of ANFIS 

The ANFIS consists of five layers: fuzzy layer, product layer, normalized layer, defuzzification layer, 

and summation layer (Wu et al., 2011), as shown in Figure 6.1. Layer 1 is the input layer. The crisp 

input values are transformed into fuzzy values by the MFs in this layer. The output from each node 

is a degree of membership value that is given by the input of MFs (Suparta & Alhasa, 2016). 

 

Figure 6.1: Architecture of ANFIS (Wu et al., 2011) 

Layer 2 is the fuzzification layer. Neurons in this layer represent fuzzy sets used in the antecedents 

of the fuzzy rules. A fuzzification neuron receives a crisp input and determines the degree to which 

this input belongs to the neuron’s fuzzy set. Every node in this layer is fixed and the node is labelled 
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as ∏. The output node is the result of multiplying the value coming into the node and delivered to 

the next node. Each node in this layer determines the weighting factor of each rule (Gao, Xue, Lu, & 

Dong, 2015). 

Layer 3 is the fuzzy rule layer. Each fuzzy rule is represented by a neuron in this layer. This neuron 

receives inputs from the fuzzification neurons that represent fuzzy sets in the rule antecedents.  Every 

node in this layer is fixed and the node is labelled as N. Layer 4 is the output membership layer. 

Neurons in this layer represent the fuzzy sets used in the consequent of fuzzy rules. An output 

membership neuron combines all its inputs by using the fuzzy operation union (Vieira, Dias, & Mota, 

2004). 

Layer 5 is the defuzzification layer. Each neuron in this layer represents a single output of the ANFIS. 

It takes the output fuzzy sets with different weights of fuzzy rules and combines them into a single 

fuzzy set. The single node in this layer provides the overall output as the summation of all incoming 

values from the previous node. In this layer, the node is labelled as ∑ (Wu et al., 2011). 

6.1.2 ANFIS Learning Methods 

Learning is one of the significant features provided by the ANFIS to modify the parameters and 

decrease the error rate to adapt to new environments. The ANFIS has two common learning methods; 

hybrid and backpropagation. This section provides an overview of these learning methods. 

6.1.2.1   Hybrid Learning Method 

The main purpose of the learning process is to update the system parameters to adapt to its 

environment. In the ANFIS architecture, the first layer and the fourth layer contain parameters that 

are updated using the learning method. The hybrid learning method is one of the common ANFIS 

learning methods proposed by Jang (1993). It consists of two main parts, namely forward and 

backward pass. In the forward pass, the parameters of the premises in the first layer should be in a 

steady-state. A Recursive Least Square Estimator (RLSE) method is applied to repair the consequent 

parameter in the fourth layer. Then, after the consequent parameters are obtained, input data are 

passed back to the adaptive network input, and the produced output is compared against the actual 

output (Suparta & Alhasa, 2016).  

While in the backward pass, the consequent parameters should be in a steady-state. The error 

occurred during the comparison between the produced output and the actual output is propagated 

back to the first layer. At the same time, the parameter premises in the first layer are updated using 

gradient descent or backpropagation learning methods. With the use of the hybrid learning method 

that combines RSLE and gradient descent methods, it can ensure the convergence rate is faster 

because it reduces the dimensional search space in the original method of backpropagation (Pramanik 

& Panda, 2009). 
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The RLSE method is used to optimize the consequent parameters in the forward pass, while the 

gradient descent method is used to optimize the premise parameters in the backward pass, as depicted 

in Figure 6.2. The output of the ANFIS is calculated by employing the consequent parameters found 

in the forward pass. The output error is used to adapt the premise parameters by means of a standard 

backpropagation method. Several studies demonstrated that the hybrid method is highly efficient in 

training ANFIS systems (Jang et al., 1997).  

 

Figure 6.2: Flow chart of the hybrid learning algorithm (Ramesh et al., 2013) 

6.1.2.2  Backpropagation Learning Method  

Backpropagation is a common learning method in the ANN. It is a method of training multilayer 

ANNs by using the process of supervised learning. Supervised algorithms are based on errors in 

which the external reference signal is used to produce an error signal by comparing the produced 

output with the reference signal. Using the generated error signal, the ANFIS updates its parameters 

to improve the system performance (Saduf & Wani, 2013). The backpropagation method learns by 

evaluating the output layer to extract errors in the hidden layers. Due to its flexibility and learning 

capabilities, it has been implemented successfully in multiple applications (Haykin, 2004). 

The backpropagation learning process can be described as follows: 

• Forward propagation of operating signal: The input signal is propagated from the input 

layer to the output layer via the hidden layer. During the forward propagation of the operating 

signal, the weight and offset values of the network are maintained constant and the status of 

each layer of the neuron will only extend an effect on the next layer of the neuron. In case 
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that the expected output cannot be achieved in the output layer, it can be switched into the 

backpropagation of the error signal (Jing et al., 2012). 

• Backpropagation of error signal: The difference between the desired output and obtained 

output of the network is defined as the error signal. In the backpropagation learning method, 

the error signal is propagated from the output layer to the input layer in a layer-by-layer 

manner. During the backpropagation of error signals, the weight value of the network is 

regulated by the error feedback. The continuous modification of weight and offset values are 

applied to make the obtained output of the network more closer to the desired output (Jing 

et al., 2012). 

 

Figure 6.3: Flowchart of the backpropagation algorithm (Shaf et al., 2016) 

The main objective of the backpropagation learning method is to adjust the values of weights in the 

training dataset to get the same value as the correct output value of the network using the validation 

dataset. The flow chart of the backpropagation method is shown in Figure 6.3. In the forward pass, 

input weights are injected to the subsequent layer. The activation function is implemented to generate 

the weights for the next layer (Shaf et al., 2016). Finally, the output layer is ready to generate the 

output value. The generated and original values of the output are utilized to derive the error which is 

propagated further back to the input layer. This process will continue until the error becomes less 

than a pre-defined error tolerance and the network is ready to be used or training will be terminated 

when reaching the maximum number of epochs (Okut, 2016; Shaf et al., 2016). 
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6.2 Implementation of ANFIS 

ANFIS is a Sugeno-type FIS in which the parameters associated with MFs are computed using either 

a backpropagation learning method alone or in combination with a least square method (hybrid). It 

has been widely applied to random data sequences with highly irregular dynamics (Gao et al., 2015). 

Implementing the ANFIS requires building a fuzzy logic system with defining linguistic expressions 

for both input and output, defining fuzzy sets for input and output, specifying MFs, building the fuzzy 

rules, and train the neural network. Since the proposed risk estimation technique was implemented 

using the fuzzy logic system previously, as discussed in Chapter 5, so this chapter focuses only on 

training the ANFIS to achieve the best accuracy for the proposed risk estimation process.   

The ANFIS model of the proposed risk estimation technique was trained to determine the appropriate 

number of epochs, MF, and learning method that produce the lowest error and the best fit with the 

learning process. Figure 6.4 shows the structure of the ANFIS model of the proposed risk estimation 

technique.  

 

Figure 6.4: ANFIS model of the proposed risk estimation technique 

As discussed earlier, the ANFIS model has five layers. The input layer contains four risk factors of 

the proposed risk-based access control model involving user context, resource sensitivity, action 

severity, and risk history. The second layer contains fuzzy sets of each input in which each risk factor 

is represented by three fuzzy sets. The third layer represents the fuzzy rules of the risk estimation 

technique, which are 81 rules. The fourth layer represents the output MF, which was represented by 

five fuzzy sets. The fifth layer represents the output layer which is the estimated risk value of the risk 

estimation process. 

The main objective of training the ANFIS model of the proposed risk estimation technique is to tune 

different MFs and determine the appropriate MF that produces the lowest error and the best fit with 

the learning process. In addition, adding the learning capability to the risk estimation process to adapt 
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to new changes of various IoT applications and increase the accuracy of resultant risk values for 

future access requests.  

6.2.1  Data collection  

Implementing the ANFIS model requires having a dataset or examples for training. After 

implementing the proposed risk estimation technique using the fuzzy logic system with expert 

judgment, as discussed in Chapter 5, a dataset containing 160,000 records was created to train the 

ANFIS. To avoid possible bias in the sample data to the ANFIS model, the dataset was randomized 

and divided into two sets using the cross-validation method. 

• Training set: This set contains 112,000 data records (70% of the dataset) to train the ANFIS 

model. 

• Checking set: This set contains 48,000 data records (30% of the dataset) to test the ANFIS 

model. 

6.2.2  Experimental Results 

Several experiments were carried out to train the ANFIS model of the proposed risk estimation 

technique to increase the accuracy of the output risk, tune different MFs and identify the appropriate 

MF that lead to the lowest error and the best fit with the learning process at different number of 

training epochs. All training functions and experiments were coded and executed using MATLAB 

software. 

6.2.2.1 Performance Evaluation  

The ANFIS model was trained and the performance was evaluated using Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), correlation coefficient (R), and coefficient of determination 

(R-square or R2) as recommended in related ANFIS models (Ghorbanzadeh et al., 2018; Tiwari et 

al., 2018). The performance of the ANFIS model of the proposed risk estimation technique was tested 

at three different epochs; 20, 100, and 300 to observe error rates at different epochs and observe the 

performance when increasing the number of epochs. 

1. Root Mean Squared Error (RMSE) 

RMSE is a quadratic scoring rule that measures the average magnitude of the error. It’s the square 

root of the average of squared differences between the predicted and actual output (Konaté et al., 

2015). The mathematical representation of RMSE is as follows: 
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Where n is the total number of data, Oi is the observed (target) value, and Pi is the predicted value. 

2. Mean Absolute Error (MAE) 

MAE had been cited in several ANFIS models as the primary measure of performance (Ahmed & 

Shah, 2017; De Myttenaere et al., 2015; Rahbari et al., 2018). MAE directly calculates the arithmetic 

mean of absolute errors. Hence, it is very easy to compute and understand. However, it may produce 

biased results when extremely large outliers exist in datasets (Konaté et al., 2015). The mathematical 

representation of MAE is as follows: 
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Where n is the total number of data, Oi is the observed (target) value, and Pi is the predicted value. 

3. Correlation Coefficient (R) 

Correlation Coefficient (R) is used to measure the correlation between the observed value and the 

predicted value. It measures the strength of a linear relationship between the observed value and 

predicted variables (Shaf et al., 2016). In other words, it is an indicator of the scatters around the fit 

line. If R is close to 1, it means that the relationship between the observed and predicted variables is 

positive and thereby indicating that the data points fall nearly along a fit line with a positive slope. 

Whereas, when R is close to -1, the relationship between the observed and predicted variables is 

negative and the data points fall nearly along a fit line with a negative slope. When R is close to zero, 

it implies a weak relationship between the observed and predicted variables and the data points are 

scattered around the fit line and most of the data points are not in good agreement with the fit line 

(Konaté et al., 2015). The mathematical representation of R is as follows: 
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Where n is the total number of data, Oi is the observed (target) value, and Pi is the predicted value. 

4. Coefficient of Determination (R2) 

The coefficient of determination is a measure of how well the regression line represents the data. If 

the regression line passes exactly through every point on the scatter plot, it would be able to explain 

all the variation (Tiwari et al., 2018). This coefficient is a statistical index that expresses the quality 

of fit of the regression equation and the intensity of the linear relationship. It helps to have a general 

idea of the model fit. Its value varies between 0 and 1, and if R2 is close to 1, it will be sufficient to 

say that the fit is good (Konaté et al., 2015). The mathematical representation of R2 is as follows: 



Chapter 6: Implementation of Risk Estimation using ANFIS                                                              133 

 

2

2 1

2 2

0 0

( ) ( )

1

( ) ( )

n

i i

i

n n

i i

i i

O O P P

R

O O P P

=

= =

 
 −  −
 

= − 
 

−  − 
 



 
         

                      (6.4)

 

Where n is the total number of data, Oi is the observed (target) value, and Pi is the predicted value, 

O  is the mean observed value, and P  is the mean predicted value. 

6.2.2.2 Training ANFIS Model 

The performance of most machine learning techniques is improved by training. This section 

discusses the training of the ANFIS model. The training process begins by dividing the dataset into 

a training dataset and checking dataset. The training dataset is a set of input and output vectors. Two 

vectors are used to train the ANFIS system: the input vector and the output vector. The training 

dataset is used to find the premise parameters for the MFs. A threshold value for the error between 

the observed and predicted output is determined to be 0.05 (Al-Hmouz et al., 2012). The consequent 

parameters are decided using the least-squares method. If this error is larger than the threshold value, 

then the premise parameters are updated using the gradient descent method. The process is terminated 

when the error becomes less than the threshold value. The checking dataset is then used to test the 

ANFIS model with the actual data (Jang, 1993). 

The ANFIS model of the proposed risk estimation technique was trained using both hybrid and 

backpropagation learning methods. Eight MFs were used in the training process to determine the 

appropriate learning method as well as the appropriate MF to implement the risk estimation process 

of the proposed risk-based model. These MFs include TriMF, TrapMF, GbellMF, GaussMF, 

Gauss2MF, PimF, DsigMF, and PsigMF.  

Figure 6.5 shows the ANFIS training process. The first step is to prepare the training data to work 

with ANFIS model in MATLAB. The dataset used as the input for the anfis function must be in a 

matrix form, where the last column in the matrix represents the output, and the matrix contains as 

many columns as needed to represent the inputs of the system. The rows represent all the existing 

data combinations. The GUI method of the fuzzy logic toolbox in MATLAB was utilized to 

determine the type of MF for fuzzy sets before starting the training process. Then, the ANFIS model 

was trained using eight MFs to determine the suitable MF with the lowest error and the best fit. When 

the training process finished, the final MFs and training errors from the training dataset were 

recorded. In addition, the checking dataset was used in conjunction with the training dataset to 

enhance the performance (Al-Hmouz et al., 2012). When the checking process finished, the trained 

FIS is utilized to evaluate the performance of the system. 
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Figure 6.5: ANFIS training process (Al-Hmouz et al., 2012) 

After the training completed, the performances of the ANFIS model was evaluated to determine the 

best fuzzy parameters with the lowest error and the best fit. The trained FIS of each MF was utilized 

to produce the predicted output. Then, the predicted output was compared with the observed output 

to determine the error using MAE and RMSE and determine the best fit with the learning process 

using R and R2. Several experiments were carried out to train the ANFIS model and evaluate the 

performance of the trained FIS. This process took more than four months working on three PCs 

simultaneously to train and evaluate the performance of the ANFIS model.  

One of the common problems that may occur during the training of the ANFIS model is Overfitting. 

It occurs when the data are overtrained. Generally, every trained dataset has its maximum number of 

epochs before overfitting occurs. Overfitting causes the predicted output to be over its accuracy 

(Al-Hmouz et al., 2012). Therefore, each dataset should be trained using an optimal number of 

epochs, which can be decided by conducting numerous experiments. Overfitting is analysed by 

plotting the training and checking errors from the ANFIS simulation. To avoid the overfitting 

problem, the ANFIS model should be trained for a different number of epochs. 

6.2.2.3 Training Results 

Various experiments were carried out using two separate datasets: training dataset (112,000 records) 

and checking dataset (48,000 records). The training dataset was used to train the ANFIS, whereas 
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the checking data set was used to verify the accuracy of the trained ANFIS model. To produce the 

lowest error and the best fit with the learning process, the ANFIS model was trained at three different 

epochs; 20, 100, and 300. In the next section, the results of training the ANFIS model at 20, 100, and 

300 epochs will be discussed. 

6.2.2.3.1  Training at 20 Epochs 

The optimal setting of the ANFIS model depends on different MFs, learning method and the number 

of epochs for each training. Several experiments were carried out to train the ANFIS model using 

both hybrid and backpropagation training algorithms at 20 epochs with eight MFs to determine the 

best MF that produces the lowest error and the best fit with the learning process.  

Table 6.1: Performance evaluation of the ANFIS model at 20 epochs 

Learning 

algorithm 

 

MF 

Training 

Error 

Checking 

Error 

Performance Evaluation 

RMSE MAE R R2 

 

 

 

Hybrid 

TriMF 5.3507 5.4031 5.3784 4.2339 0.9641 0.9294 

TrapMF 4.6438 4.6552 4.6647 3.5611 0.9731 0.9469 

GbellMF 5.1626 5.1762 5.2392 4.0783 0.9659 0.9330 

GaussMF 5.2102 5.2341 5.1913 4.0109 0.9666 0.9342 

Gauss2MF 4.6611 4.6706 4.6810 3.5720 0.9729 0.9465 

PiMF 4.8445 4.8525 4.8678 3.7118 0.9707 0.9422 

DsigMF 4.6974 4.7069 4.7184 3.5982 0.9725 0.9457 

PsigMF 4.6975 4.7068 4.7184 3.5984 0.9725 0.9457 

 
 

 

 

Backpropagation 

TriMF 51.5436 51.5447 51.5337 48.2481 0.8317 -5.4804 

TrapMF 51.3364 51.3235 51.3188 48.1093 0.7262 -5.4264 

GbellMF 52.0326 52.0314 52.0209 48.6320 0.8700 -5.6035 

GaussMF 51.7004 51.6991 51.6893 48.3604 0.8710 -5.5195 

Gauss2MF 51.3429 51.3335 51.3266 48.1076 0.7379 -5.4284 

PiMF 51.3242 51.3098 51.3064 48.0995 0.7106 -5.4233 

DsigMF 51.3346 51.3242 51.3180 48.0988 0.7339 -5.4262 

PsigMF 51.3346 51.3242 51.3180 48.0988 0.7339 -5.4262 
 

In addition, after the ANFIS model has been trained, the entire dataset was utilized to check the 

performance and the accuracy of the ANFIS model. RMSE, MAE values were used to indicate the 

error value between the predicted values obtained from the trained ANFIS model against the original 

values. In addition, R and R2 were used to show the model fitness with the training process. Results 

of training the ANFIS model at 20 epochs can be shown in Table 6.1.  
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Figure 6.6: Training and checking error when applying TrapMF with the hybrid learning at 20 epochs 

With the hybrid learning method, the training and checking errors were very small for all eight MFs. 

The combination of backpropagation and descent algorithms in the hybrid learning method has 

demonstrated it can reach small error values only after 20 epochs. In addition, the results have 

demonstrated that four MFs including TrapMF, PiMF, DsigMF, and Gauss2MF produced the same 

training and checking errors during all 20 epochs, which illustrates that no error enhancement occurs 

with these MFs when increasing the number of epochs. Figure 6.6 shows training and checking errors 

when applying TrapMF with the hybrid learning method at 20 epochs, which illustrates that no 

improvements occur when increasing the number of epochs. While another four MFs including 

TriMF, GbellMF, PiMF, and GaussMF show a slight decrease in training and checking errors when 

increasing the number of epochs from 1 to 20, as depicted in Figure 6.7.  

Although TrapMF does not show any improvement when increasing the number of epochs, the 

results demonstrated that it is the best MF that provided the lowest RMSE and MAE error values 

among other MFs and the best fit with the learning process with values of R and R2 as 0.9731 and 

0.9469 respectively. Figure 6.8 shows the regression plot of the entire dataset used to evaluate the 

performance when applying TrapMF with the hybrid learning method. It shows that the predicted 

values are very close to the ideal linear line and the proposed ANFIS model is well fit as well. 
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Figure 6.7: RMSE training error when applying TriMF with the hybrid learning method. It shows a slight 

decrease in the error when increasing the number of epochs. 

 

Figure 6.8: Regression after applying TrapMF with the hybrid learning method 

In addition, the backpropagation learning method was utilized to train the ANFIS model at 20 epochs. 

The results showed that the backpropagation learning method produced a large decrease in both 

training and checking errors. All eight MFs showed a large decrease in both training and checking 

errors. However, the results showed that the backpropagation learning method produces large RMSE 

and MAE error values and small R and R2 values. This, in turn, reflects the fact that the relationship 

between the predicted and observed data is less efficient and need more training. In addition, the R2 

values were negative which implies there is an inverse relationship between the predicted and 

observed data such that the increase in the predicted data will cause a decrease in the observed data.  

5.3518

5.352

5.3522

5.3524

5.3526

5.3528

5.353

5.3532

5.3534

0 2 4 6 8 10 12 14 16 18 20 22

R
M

S
E

 V
a

lu
e

Number of epochs



138                                                            Chapter 6: Implmentation of Risk Estimation using ANFIS 

 

The significant aspect observed from applying the backpropagation learning method at 20 epochs is 

that the training and checking errors were decreased dramatically when increasing the number of 

epochs with all eight MFs. Figure 6.9 shows a dramatic decrease in both training and checking RMSE 

errors when applying TrapMF with backpropagation learning method at 20 epochs. It also shows that 

there is no overfitting. 

 

Figure 6.9: RMSE of training and checking errors when applying TrapMF with backpropagation learning 

method at 20 epochs 

After training the ANFIS model of the proposed risk estimation technique with both hybrid and 

backpropagation learning methods at 20 epochs, the results demonstrated that increasing the number 

of epochs have a slight effect on training and checking errors when applying the hybrid learning 

method, while it has a significant effect on training and checking errors when applying the 

backpropagation learning method. In addition, the TrapMF with the hybrid learning approach is the 

optimal MF that produces the lowest error and the best fit with the learning process 

6.2.2.3.2 Training at 100 Epochs 

Defining the best settings for the proposed ANFIS model to train it and produce the highest accuracy 

depend on MFs, learning method and the number of epochs for each training. After the ANFIS model 

was trained at 20 epochs, it was trained at 100 epochs to observe the performance when increasing 

the number of epochs. The reason to train the ANFIS model at 100 epochs in this experiment is that 

the training at 20 epochs demonstrated a slight effect on decreasing training and checking errors with 

the hybrid learning method and a significant decrease in training and checking errors with the 

backpropagation learning method. So, increasing the number of epochs may produce more 

improvements, especially with the backpropagation learning method. Hence, the target is to train the 

ANFIS model at 100 epochs and observe training and checking errors to reach the best fit and the 

lowest error. 

Several experiments were carried out at 100 epochs with eight MFs to determine the best MF that 

produces the lowest error and the best fit with the learning process using both hybrid and 
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backpropagation training methods. Training and checking errors and performance evaluation metrics 

resulted from the training can be shown in Table 6.2. 

Table 6.2: Performance evaluation of the ANFIS model at 100 epochs 

Learning 

algorithm 

 

MF 

Training 

Error 

Checking 

Error 

Performance Evaluation 

RMSE MAE R R2 

 

 

 

Hybrid 

TriMF 5.3473 5.3998 5.3748 4.2320 0.9641 0.9295 

TrapMF 4.6438 4.6552 4.6647 3.5611 0.9731 0.9469 

GbellMF 5.1084 5.1298 5.1370 3.9757 0.9673 0.9356 

GaussMF 5.1928 5.2197 5.2222 4.0634 0.9662 0.9335 

Gauss2MF 4.6611 4.6706 4.6810 3.5720 0.9729 0.9465 

PimF 4.8392 4.8467 4.8623 3.7075 0.9707 0.9423 

DsigMF 4.6974 4.7069 4.7184 3.5982 0.9725 0.9457 

PsigMF 4.6975 4.7068 4.7184 3.5984 0.9725 0.9457 

 
 

 

 

Backpropagation 

TriMF 29.5731 29.5992 29.5857 27.1901 0.8436 -1.1359 

TrapMF 29.4777 29.4701 29.4643 26.7725 0.7857 -1.1184 

GbellMF 31.3456 31.3513 31.3471 28.8931 0.8770 -1.3978 

GaussMF 30.0580 30.0639 30.0624 27.7479 0.8781 -1.2053 

Gauss2MF 29.3942 29.3970 29.3847 26.7108 0.7888 -1.1070 

PimF 29.5411 29.5357 29.5294 26.7731 0.7794 -1.1278 

DsigMF 28.3863 28.3875 28.3793 25.5234 0.7763 -0.9653 

PsigMF 28.3862 28.3874 28.3792 25.5233 0.7763 -0.9652 

 

The results demonstrated that the ANFIS behaviour at 100 epochs was similar to the one at 20 epochs. 

For the hybrid learning method, the training and checking errors showed a very slight decrease 

compared to error values produced at 20 epochs. In other words, a group of MFs including TrapMF, 

Gauss2MF, DsigMF, PsigMF did not show any differences in training and checking errors as well 

as performance evaluation metrics when increasing the number of epochs from 20 to 100. While 

another group of MFs including TriMF, GbellMF, GaussMF, and PiMF have shown a very small 

decrease in training and checking errors when increasing the number of epochs to 100. Figure 6.10 

shows training and checking errors when applying GbellMF with the hybrid learning method at 100 

epochs. It showed a slight decrease in training and checking errors when increasing the number of 

epochs.  

Again, although the TrapMF does not show any improvements when increasing the number of epochs 

to 100, the results demonstrated that it is still the best MF that provided the lowest RMSE and MAE 

error values among other MFs and the best fit with the learning process with values of R and R2 as 

0.9731 and 0.9469 respectively. 
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Figure 6.10: Training and checking errors when applying the GbellMF with the hybrid learning method at 100 

epochs 

For the backpropagation learning method, increasing the number of epochs to 100 demonstrated a 

dramatic decrease in training and checking errors for all MFs. The training error decreased from 51.3 

at 20 epochs to reach 28.3 at 100 epochs for both DsigMF and PsigMF, which demonstrates the effect 

of increasing the number of epochs. Figure 6.11 shows training and checking errors at 100 epochs 

when applying the TriMF with the backpropagation learning method. It also shows that there is no 

overfitting as training and checking values have the same behaviour. 

Although both training and checking errors were decreased dramatically when applying the 

backpropagation learning method, it still quite high which reflects on the performance evaluation 

metrics where it produced high RMSE and MAE values and small R and R2 values. This 

demonstrates that the relationship between the predicted and observed data is less efficient and need 

more training. In addition, R2 values are negative which implies there is an inverse relationship 

between the predicted and observed data.  

After training the ANFIS model of the proposed risk estimation technique with both hybrid and 

backpropagation learning methods at 100 epochs, the results demonstrated that increasing the number 

of epochs have a slight decrease in training and checking errors with the hybrid learning method and 

a significant effect on decreasing training and checking errors with the backpropagation learning 

method.  In addition, the TrapMF with the hybrid learning approach is still the optimal MF that 

produces the lowest error and the best fit with the learning process. 
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Figure 6.11: Training and checking errors when applying the TriMF with the backpropagation learning method 

at 100 epochs 

6.2.2.3.3  Training at 300 Epochs 

Training the ANFIS model with the hybrid learning method provides adequate results but it also 

showed that it needs more training with the backpropagation learning method. Therefore, the ANFIS 

model was trained at 300 epochs to observe the performance when increasing the number of epochs 

to 300. Several experiments were carried out at 300 epochs with eight MFs using both hybrid and 

backpropagation training methods to determine the best MF that produces the lowest error and the 

best fit with the learning process. Results of training the ANFIS model at 300 epochs can be shown 

in Table 6.3. 

The results demonstrated that the ANFIS behaviour at 300 epochs was similar to the one at 20 and 

100 epochs. For the hybrid learning method, the training and checking errors showed a very slight 

decrease compared to error values produced at 20 or 100 epochs. In other words, a group of MFs 

including TrapMF, Gauss2MF, DsigMF, PsigMF did not show any differences in training and 

checking errors as well as performance evaluation metrics when increasing the number of epochs to 

300.   



142                                                            Chapter 6: Implmentation of Risk Estimation using ANFIS 

 

Table 6.3: Performance evaluation of the ANFIS system with 300 epochs 

Learning 

algorithm 

 

MF 

Training 

Error 

Checking 

Error 

Performance Evaluation 

RMSE MAE R R2 

 

 

 

Hybrid 

TriMF 5.3392 5.3919     5.3660     4.2282  0.9642  0.9297 

TrapMF 4.6438 4.6552     4.6647     3.5611  0.9731  0.9469 

GbellMF 4.9888 5.0047     5.0127     3.8696  0.9689  0.9387 

GaussMF 5.1389 5.1714     5.1681     4.0091  0.9669  0.9348 

Gauss2MF 4.6611 4.6706     4.6810     3.5720  0.9729  0.9465 

PiMF 4.8294 4.8357     4.8521     3.6985  0.9709  0.9426 

DsigMF 4.6974 4.7069     4.7184     3.5982  0.9725  0.9457 

PsigMF 4.6975 4.7068     4.7184     3.5984  0.9725  0.9457 

 
 

 

 

Backpropagation 

TriMF 6.3084 6.3647     6.3402     5.0299  0.9497  0.9019 

TrapMF 5.9086 5.9446     5.9357     4.6255  0.9561  0.9140 

GbellMF 6.2915 6.3496     6.3289     4.9915  0.9500  0.9023 

GaussMF 6.4113 6.4639     6.4493     5.0978  0.9480  0.8985 

Gauss2MF 5.8614 5.8983     5.8884     4.5774  0.9568  0.9154 

PiMF 6.0306 6.0661     6.0598     4.7266  0.9542  0.9104 

DsigMF 9.9248 10.0127     9.9500     7.8745  0.8949  0.7584 

PsigMF 7.5377 7.5890     7.5597     6.0057  0.9317  0.8605 

 

While another group of MFs including TriMF, GbellMF, GaussMF, and PiMF have shown a very 

small decrease in training and checking errors when increasing the number of epochs to 300. Figure 

6.12 shows training and checking errors when applying the GbellMF with the hybrid learning method 

at 300 epochs. It showed a slight decrease in training and checking errors when increasing the number 

of epochs. It also showed that at about 275 epochs, the error improvement has stopped, which implies 

that there is no need for more training, as increasing the number of epochs will not produce any 

changes. Also, it indicates that there is no overfitting. Also, the results demonstrated that the TrapMF 

is still the best MF that provided the lowest RMSE and MAE errors among other MFs and the best 

fit with the learning process with values of R and R2 as 0.9731 and 0.9469 respectively. 

 

Figure 6.12: Training and checking errors when applying the GbellMF with the hybrid learning method at 300 

epochs 
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For the backpropagation learning method, increasing the number of epochs to 300 demonstrated a 

dramatic decrease in training and checking errors for all MFs. The training error decreased from 29.3 

at 100 epochs to 5.8 at 300 epochs for the Gauss2MF, which demonstrates the effect of increasing 

the number of epochs. Figure 6.13 shows training and checking errors when applying the TriMF with 

the backpropagation learning method at 300 epochs. It showed that at about 280 epochs, the error 

decrease has almost stopped, which implies that there is no need for more training. It also shows that 

there is no overfitting.  

 

Figure 6.13: Training and checking errors with epoch number when applying TriMF with the backpropagation 

learning method 

The performance evaluation of the backpropagation learning method at 300 epochs showed different 

results. TriMF and Gauss2MF have produced the lowest RMSE and MAE errors as well as the 

highest R and R2 values. On the other hand, DsigMF has produced the highest RMSE and MAE 

errors and the lowest R and R2 values. In addition, although the backpropagation learning approach 

showed a dramatic decrease in both training and checking errors when increasing the number of 

epochs as it reaches its lowest error (5.86) after about 280 epochs, the hybrid learning approach 

reaches to its lowest error value (4.64) only after one epoch with the TrapMF.  

6.2.2.4 Comparison of Learning Methods at different Epochs 

The ANFIS model of the proposed risk estimation technique was trained using both hybrid and 

backpropagation learning techniques at three different epochs numbers 20, 100, and 300 to 

investigate the learning rate of the ANFIS model with different epochs and determine the best MF 

that produces the lowest error and the best fit with the learning process.  

The results of the hybrid learning method at 20, 100, and 300 epochs have demonstrated that a group 

of MFs including TrapMF, Gauss2MF, DsigMF, and PsigMF did not show any changes in RMSE, 

MAE errors as well as R and R2 values when increasing the number of epochs from 1 to 300, as 

depicted in Table 6.4. While another group of MFs including TriMF, GbellMF, GaussMF, and PiMF 
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have shown a very slight decrease in RMSE and MAE errors values and a very small increase in R 

and R2 values when increasing the number of epochs. For instance, the RMSE value of the TriMF is 

decreased from 5.378 to 5.375 when increasing the number of epochs from 20 to 100 and further 

decreased to 5.366 when increasing the number of epochs to 300. The same behaviour continued for 

this group of MFs except for GaussMF which showed a different behaviour, in which the RMSE 

value increased from 5.191 at 20 epochs to 5.222 when increasing the number of epochs to 100, but 

it decreased again to reach 5.168 when increasing the number of epochs to 300. In addition, the 

GbellMF produced the largest amount of error decrease among other MFs in which its RMSE value 

decreased from 5.239 at 20 epochs to 5.013 at 300 epochs.  

Table 6.4: Performance evaluation of the ANFIS model with the hybrid learning method at different epochs 

 

MF 

At 20 epochs At 100 epochs At 300 epochs 

RMSE MAE R R2 RMSE MAE R R2 RMSE MAE R R2 

TriMF 5.378 4.234 0.964 0.929 5.375 4.232 0.964 0.930  5.366  4.228  0.964 0.930 

TrapMF 4.665 3.561 0.973 0.947 4.665 3.561 0.973 0.947  4.665  3.561  0.973 0.947 

GbellMF 5.239 4.078 0.966 0.933 5.137 3.976 0.967 0.936  5.013  3.870  0.969 0.939 

GaussMF 5.191 4.011 0.967 0.934 5.222 4.063 0.966 0.934  5.168  4.009  0.967 0.935 

Gass2MF 4.681 3.572 0.973 0.947 4.681 3.572 0.973 0.947  4.681  3.572  0.973 0.947 

PiMF 4.868 3.712 0.971 0.942 4.862 3.708 0.971 0.942  4.852  3.699  0.971 0.943 

DsigMF 4.718 3.598 0.973 0.946 4.718 3.598 0.973 0.946  4.718  3.598  0.973 0.946 

PsigMF 4.718 3.598 0.973 0.946 4.718 3.598 0.973 0.946  4.718  3.598  0.973 0.946 

 

The results of the backpropagation learning method at 20, 100, and 300 epochs have demonstrated 

that all MFs have shown a significant decrease in both RMSE and MAE values and a significant 

increase in R and R2 values when increasing the number of epochs, as shown in Table 6.5. For 

example, the RMSE value of the TriMF is decreased from 51.53 to 29.59 when increasing the number 

of epochs from 20 to 100 and further decreased to 6.34 when increasing the number of epochs to 

300. There was a negative sign of R2 values at 20 and 100 epochs which implies there was an inverse 

relationship between the predicted and observed data. This negative sign disappeared when 

increasing the number of epochs to 300. After applying the backpropagation learning method with 

different number of epochs, the results demonstrated that the Gauss2MF is the best MF as it produced 

the lowest RMSE (5.888) and MAE (4.577) values and the highest R (0.957) and R2 (0.915) values. 

In conclusion, increasing the number of epochs was having a significant effect on MFs with the 

backpropagation learning method in which the learning process took about 280 epochs to reach its 

lowest RMSE and MAE values. Although the RMSE error values of MFs with the backpropagation 

learning method decreased significantly when increasing the number of epochs, it could not reach 

the lowest error value produced by the hybrid learning method only after one epoch.  
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Table 6.5: Performance evaluation of the ANFIS model with the backpropagation learning methods at different 

epochs 

 

MF 

With 20 epochs With 100 epochs With 300 epochs 

RMSE MAE R R2 RMSE MAE R R2 RMSE MAE R R2 

TriMF 51.53 48.25 0.832 -5.480 29.59 27.19 0.844 -1.136  6.340  5.030  0.950 0.902 

TrapMF 51.32 48.11 0.726 -5.426 29.46 26.77 0.786 -1.118  5.936  4.626  0.956 0.914 

GbellMF 52.02 48.63 0.870 -5.604 31.35 28.89 0.877 -1.398  6.329  4.992  0.950 0.902 

GaussMF 51.69 48.36 0.871 -5.520 30.06 27.75 0.878 -1.205  6.449  5.098  0.948 0.899 

Gass2MF 51.33 48.11 0.738 -5.428  29.39  26.71  0.789 -1.107  5.888  4.577  0.957 0.915 

PiMF 51.31 48.10 0.711 -5.423  29.53  26.77  0.779 -1.128  6.060  4.727  0.954 0.910 

DsigMF 51.32 48.10 0.734 -5.426  28.38  25.52  0.776 -0.965  9.950  7.875  0.895 0.758 

PsigMF 51.32 48.10 0.734 -5.426  28.38  25.52  0.776 -0.965  7.560  6.006  0.932 0.861 

 

Investigating the results with both hybrid and backpropagation learning methods demonstrates that 

the TrapMF with the hybrid learning method at 20 epochs is the optimal combination to implement 

the ANFIS model of the proposed risk estimation technique. It produced the lowest RMSE, MAE 

values as well as the highest R and R2 values among all other MFs at different number of epochs only 

after one epoch, as shown in Figure 6.14. It reached the best fit with the learning process with a 

correlation of 0.9731, which shows that the predicted values are very close to the ideal linear line 

and the proposed ANFIS model is well trained. 

 

Figure 6.14: Training and checking errors when applying the TrapMF with the hybrid learning method. It 

reached the lowest training and checking error only after one epoch and still the same with increasing the 

number of epochs 
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6.3  Fuzzy System and ANFIS  

The proposed risk estimation technique was first implemented using the fuzzy logic system through 

Mamdani FIS. One of the challenges that stands as a barrier for adopting the Mamdani FIS in the 

risk estimation is choosing the appropriate MF that provides the best accuracy for the output risk. 

Therefore, the ANFIS was adopted to provide a good way to tune different MFs to select the optimal 

method that results in increasing the accuracy of the output as well as adding the learning capability 

to the proposed risk estimation technique to increase accuracy. 

 

Figure 6.15: Shape of fuzzy sets of the TrapMF before and after the training for action severity and resource 

sensitivity  

After several experiments, the TrapMF with hybrid learning method at 20 epochs was selected as the 

optimal MF to implement the proposed risk estimation technique, as illustrated in Table 6.4. Figure 

6.15 shows the effect of the training on the shape of the MF. It shows the TrapMF of the action 

severity and resource sensitivity before and after 20 epochs of training using the hybrid learning 

method. It is clear that significant modifications have been done in the shapes of MFs through the 

learning process. The same scenario can be seen in Figure 6.16, which represents the TrapMF of the 

user context and risk history before and after the training process. In addition, Figure 6.17 shows the 

effect of the training on fuzzy rules and the output risk value in which the output risk was 60 before 

the training and become 55.2 after the training for the same input combinations. 
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Figure 6.16: Shape of fuzzy sets of the TrapMF of the user context and risk history before and after the training 

process 

 

Figure 6.17: Fuzzy rules of the TrapMF before and after the training process 

6.4 Summary 

Chapter 6 has presented the implementation of the risk estimation process using the ANFIS. The 

ANFIS is considered the first integrated hybrid neuro-fuzzy model that integrates the benefits of the 

ANN and the fuzzy logic system. The key objective of the ANFIS is to optimize the parameters of 

the fuzzy logic system by applying a learning algorithm using input-output datasets. This 

optimization is done in a way that the error measure between the target and the actual output is 

minimized. To tune different MFs and add the learning capability, the ANFIS has been adopted to 

implement the risk estimation technique of the proposed risk-based model. Several experiments were 

carried out using two separate datasets: training dataset (112,000 records) and checking dataset 
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(48,000 records) to train and verify the accuracy of the trained ANFIS model. Both hybrid and 

backpropagation learning methods were utilized to train the ANFIS model with different MFs at 

three different number of epochs; 20, 100, and 300. The results have demonstrated that the TrapMF 

with the hybrid learning method at 20 epochs is the optimal combination to implement the ANFIS 

model of the proposed risk estimation technique as it produced the lowest RMSE and MAE values 

and the best fit with the learning process with a correlation of 0.9731, which shows that the ANFIS 

model is well trained. The next chapter presents the implementation of the risk estimation process 

using the NFS technique. 
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Chapter 7: Implementation of Risk Estimation using 

NFS  

This chapter provides a discussion of the implementation of the proposed risk estimation technique 

using the NFS. It starts by providing an overview of the NFS by highlighting the main objectives and 

types of NFS methods. Then, section 7.2 presents the implementation of the risk estimation technique 

using the NFS by showing different experimental results of training the NFS model using four 

learning algorithms to determine the learning method with the lowest error and the best fit with the 

learning process. Section 7.3 compares the results of the NFS with the fuzzy logic system. Then, 

section 7.4 compares the results of the NFS with the ANFIS. The chapter closes by providing a 

summary of the main points discussed through the chapter and introduces the next chapter. 

7.1 An Overview of NFS 

NFS is the result of integrating the ANN with the fuzzy logic system. It integrates the human-like 

reasoning of fuzzy logic systems with the learning and connectionist of the ANN (Jang, 1993). 

Several NFS models were implemented successfully in various social and technological applications. 

The NFS provides powerful and flexible universal approximations with the capability to recognize 

interpretable IF-THEN rules (Kar et al., 2014). 

The NFS is simply a fuzzy logic system that is trained by a learning algorithm derived from the ANN 

theory. Although the ANN and the fuzzy logic system have advantages and strengths as independent 

systems, their drawbacks motivated several researchers to develop a hybrid NFS that reduces these 

drawbacks. One of the most important advantages of the ANN is the capability to learn from 

examples, however, it is hard to prove that the ANN is working as expected. In addition, it is like a 

“black box” to the user in which the method for obtaining the output is not revealed (Jang et al., 

1997). 

On the other hand, the fuzzy logic system is easy to build and understand by using linguistic 

expressions to resolve imprecise information (Gray & MacDonell, 1997; Jang et al., 1997). However, 
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it is not easy to guarantee that a fuzzy logic system with a number of complex rules will provide an 

appropriate degree of meaningfulness. Also, the fuzzy logic system uses static fuzzy rules that lack 

the adaptability to resolve unpredicted changes in the environment (Gray & MacDonell, 1997).  

The integration of the ANN with the fuzzy logic system resolved some of these issues. The resultant 

hybrid NFS combines parallel computation and learning abilities of the ANN with the human 

reasoning of fuzzy systems and clarity of systems representation. Therefore, the ANN becomes more 

transparent and the fuzzy logic system becomes capable of learning (Shaf et al., 2016). 

7.1.1 Multilayer Perceptron Model  

MuliLayer Perceptron (MLP) model is a feed-forward ANN. It is the most common and widely used 

ANN model in various applications (Okut, 2016). The MLP is used to explore complex and nonlinear 

models. It is based on a supervised learning technique that needs the desired output for each input to 

be known to calculate the error (Werbos, 1974). 

Typically, the MLP model consists of three layers; input layer, hidden layer, and output layer, as 

depicted in Figure 7.1. The input layer represents input variables of the system by a circle (neuron) 

for each variable. While the output variable is represented by a single circle in the output layer. The 

middle layer is the hidden layer that is not visible to the outside. This layer is responsible for carrying 

out intermediate computations. Deciding the number of hidden layers, hidden neurons and type of 

transfer function plays an important role in implementing an efficient MLP model (White, 1992). 

 

Figure 7.1: Layers of the MTP model (Okut, 2016) 

The supervised learning is used repeatedly to adjust the weight of each connection to produce 

accurate output (Kohonen, 1982). This is achieved by using the backpropagation learning algorithm 

that estimates the derivatives of the network’s error with respect to all of its weights and adjust the 

weights to yield a small error, where the error is the difference between the network’s output and the 

target output for the same input (Viharos & Kis, 2015). 
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Building an NFS model require employing one of the common models of the ANN. This research 

selected MLP model to implement the NFS model of the risk estimation technique, as this feed-

forward model is efficient and commonly used in various applications.  

7.1.2 Types of NFS 

Generally, the term NFS refers to all systems that resulted from the integration of the ANN with the 

fuzzy logic system. This integration can be done in three different ways; cooperative, concurrent, 

and hybrid. This section provides a brief discussion of each type. 

7.1.2.1   Cooperative NFS 

Cooperative NFS is used to describe the integration of the ANN with the fuzzy logic system in which 

the ANN is used to tune the fuzzy logic system without changing the functionality of the variables. 

In other words, the ANN is used as a pre-processing stage in which the ANN learning algorithm is 

used to determine some of the fuzzy logic variables. For example, clustering algorithms can be used 

to determine fuzzy sets and fuzzy rules. After determining variables of the fuzzy logic system through 

the learning algorithm, the ANN is removed and the fuzzy logic system works on its own (Vieira et 

al., 2004). Hence, the ANN is used only in the initial stage of the fuzzy logic system (Abraham, 

2001). The architecture of the cooperative NFS is shown in Figure 7.2. 

 

Figure 7.2: Cooperative NFS  (Vieira et al., 2004) 

7.1.2.2   Concurrent NFS 

Concurrent NFS refers to the system where the ANN and the fuzzy logic system work together in 

which the inputs entered the fuzzy logic system are pre-processed and then the ANN processes the 

outputs of the concurrent system or in a reverse way, as depicted in Figure 7.3. One of the 

disadvantages associated with the concurrent NFS is that the results cannot be interpreted completely 

(Vieira et al., 2004). Moreover, the weights are substituted by MFs in which the result of each 
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weighting process is a membership value of the corresponding input in the fuzzy set (Naidu & Sun, 

1997). 

 

Figure 7.3: Concurrent NFS  (Vieira et al., 2004) 

7.1.2.3   Hybrid NFS 

Nauck et al. (1997) defined the hybrid NFS as: “A fuzzy system that uses a learning algorithm based 

on gradients or inspired by neural networks theory (heuristic learning strategies) to determine its 

parameters (fuzzy sets and fuzzy rules) through the patterns processing (input and output)”. 

In the hybrid NFS, both fuzzy logic and ANN models are used independently, in which each model 

is used to perform a certain task in the system to reach a common target. The concept of the hybrid 

NFS refers to the explanation of the fuzzy logic system with respect to the ANN. Hence, fuzzy sets 

can be interpreted as weights, and fuzzy rules, input and output variables can be interpreted as 

neurons. In other words, one of the advantages of hybrid NFS is its architecture since both fuzzy 

system and neural network do not have to communicate any more with each other. They are one fully 

fused entity (Abraham, 2001).  

There are several different ways to develop hybrid neuro fuzzy systems, therefore, there are various 

models which are built based on context. These models are similar in its essence, but they present 

basic differences. Many types of NFS are represented by neural networks that implement logical 

functions. This is not necessary for the application of a learning algorithm into a fuzzy system, 

however, the representation truth a neural network is more convenient because it allows to visualise 

the flow of data through the system and the error signals that are used to update its parameters. 

Although hybrid NFS models are different, they are similar in their core (Vieira et al., 2004).  

7.2 Implementation of NFS  

The hybrid NFS was utilized to implement the risk estimation technique of the proposed risk-based 

access control model. The fuzzy logic system with expert judgment was utilized to implement the 

risk estimation technique. The information collected from IoT security experts was utilized to 

confirm and build accurate fuzzy rules, as discussed in section 5.3.3.2. The results demonstrated that 
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combining the fuzzy logic system with expert judgment can provide accurate and realistic results in 

assessing security risks of access control operation. However, an access control model for the IoT 

system serves thousands of users. In addition, the scalability of the fuzzy logic system seems to be 

questionable. Therefore, the NFS was utilized to reduce the processing time for each access request 

by using the parallel computation of the ANN and add the learning capability to the proposed risk 

estimation technique to adapt to changes of the IoT environment. 

Implementing a hybrid NFS is performed in two separate stages. The fuzzy logic system is first 

implemented, and the database built. Then, the ANN will use this dataset to train the system and 

improve the performance. Since the proposed risk estimation technique using the fuzzy logic system 

was implemented previously, as discussed in chapter 5, this chapter focuses only on using the dataset 

created from the fuzzy logic system for training the NFS model. 

Implementing the NFS model of the proposed risk estimation technique consists of three layers; input 

layer, hidden layer, and output layer. The input layer involves input risk factors; user context, 

resource sensitivity, action severity, and risk history, as depicted in Figure 7.4. The output layer 

represents the output risk value resulted from the risk estimation process. The middle layer is the 

hidden layer that is responsible for carrying out computations and updating weights between different 

connections. 

 

Figure 7.4: Implementation of the NFS model of the proposed risk estimation technique 

One of the challenges associated with implementing the NFS model of the risk estimation technique 

is to determine the appropriate number of hidden layers and the appropriate number of neurons for 

each hidden layer. The number of hidden layers needed for the NFS model depends on the complexity 

of the relationship between the input and the target parameters. It represents a major impact on the 

learning process. However, a Feed-Forward Back Propagation (FFBP) network encompassing of 

more than one hidden layer is very rare (Konaté et al., 2015). Hornik, Stinchcombe and White (1989) 

have proved that an FFBP network with one hidden layer is enough for most problems in various 

applications. 

In addition, determining the optimal number of neurons in the hidden layer plays a significant role 

in the implementation of the NFS model. If an insufficient number of neurons are used, the NFS 

model will be unable to model complicated data, and the resulting fit will be poor. While using a 

large number of neurons in the hidden layer affects its performance on new data and its ability to 
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provide a generalized model will be compromised (Abraham, 2005). Indeed, increasing the number 

of neurons ensures correct training, but it also affects the NFS performance. Therefore, a compromise 

needs to be reached between too many and too few neurons in the hidden layer.  

7.2.1  Data Collection 

Implementing the NFS model of the proposed risk estimation technique requires having a dataset or 

examples for training. After implementing the fuzzy logic system with the help of IoT security 

experts, a dataset consisting of 160,000 records was created. To avoid possible bias in the sample 

data to the NFS, the dataset was randomized and divided into three sets using the cross−validation 

method. 

• Training set: This set contains 96,000 records (60% of the dataset) to train the NFS model. 

• Testing set: This set contains 32,000 records (20% of the dataset) to test the NFS model. 

• Validation set: This set contains 32,000 records (20% of the dataset) to validate the NFS 

model. 

7.2.2  Experimental Results 

Implementing the NFS model of the proposed risk estimation technique require determining the 

number of hidden layers and the number of neurons in the hidden layers. Based on the literature, one 

hidden layer is sufficient for most problems (Al-Hmouz et al., 2012; Hornik et al., 1989). Therefore, 

one hidden layer was utilized to implement the NFS model of the risk estimation technique. To 

determine the appropriate number of neurons in the hidden layer, the NFS model was trained using 

four learning algorithms. Several experiments were carried out and Mean Square Error (MSE), 

RMSE, and R values of training, testing, and validation were utilized to determine the appropriate 

number of neurons and the best learning algorithm. After determining the appropriate number of 

neurons in the hidden layer, the NFS model of the risk estimation technique was trained, and then 

the trained model was tested with different numbers of access requests in term of processing time. 

All experiments were carried out on Windows 7 (64-bit) operating system with an i7 processor and 

16 GB RAM. All training functions and experiments were coded and executed using MATLAB and 

ANN toolbox. 

7.2.2.1 Performance Evaluation  

The commonly used performance evaluation measures in forecasting problems were utilized to 

compare and evaluate the accuracy of the NFS model (Cerezuela-Escudero et al., 2016). The NFS 

model was trained, and the performance was observed using MSE, RMSE, and R. The number of 
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neurons in the hidden layer with the lowest MSE and RMSE and the highest R was selected to 

implement the NFS model of the risk estimation technique. Since the RMSE and R were introduced 

in the previous chapter in section 6.2.2.1, this section discusses only the MSE.  

MSE measures the average of the squares of the errors which help to understand and interpret the 

difference between the observed and predicted values. It acts as an indicator to measure how near a 

fit line is to data points. The smaller the MSE, the nearer the fit is with the data points (Konaté et al., 

2015). 

2
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( )

n

i i

i

MSE O P
n =

= −                                                                    (7.1) 

Where n is the total number of data, Oi is the observed (target) value, and Pi is the predicted value. 

7.2.2.2 Training Algorithms  

To reach network generalization and good fit with all the data points, the NFS model of the risk 

estimation technique was trained using four learning algorithms; Levenberg-Marquardt (trainlm), 

Bayesian Regulation (trainbr), Conjugate Gradient with Fletcher-Reeves Resrarts (traincgf), and 

Scaled Conjugate Gradient (trainscg) to determine the optimal learning algorithm that guarantees 

network generalization with the minimum error (lowest RMSE and MSE) and the maximum fit 

(highest R). These training algorithms are decided based on the literature that assure that these 

algorithms are the most common and can work with different context  (Al-Hmouz et al., 2012; Hornik 

et al., 1989).  

This section discusses the results of each learning algorithm. It starts by providing an overview of 

each learning algorithm, then presents the results with increasing number of neurons. 

7.2.2.2.1 Levenberg-Marquardt 

Levenberg-Marquardt (LM) algorithm is an iterative method that locates a local minimum of a 

multivariate function. It is expressed as the sum of squares of several non-linear and real-valued 

functions. The LM algorithm is widely adopted in various disciplines to deal with data-fitting 

applications. It has also become a standard method for nonlinear least-squares problems. The LM 

learning algorithm can be considered as a combination of steepest descent and the Gauss-Newton 

method (Lourakis & Argyros, 2005). It also considered the fastest learning algorithm. The only 

limitation associated with this algorithm is that it consumes more memory (Demuth & Beale, 1998; 

Pramanik & Panda, 2009). 

The LM algorithm with one hidden layer was utilized to train the NFS model of the proposed risk 

estimation technique. Several experiments were carried out to determine the appropriate number of 

neurons that produces the lowest error and the best fit with the learning process. The NFS model was 
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trained using the LM learning algorithm with increasing the number of neurons in the hidden layer 

from 20 to 1000 and MSE and RMSE values were observed, as depicted in Figure 7.5 and Figure 

7.6. The three lines representing training, testing, and validation data are almost identical and have 

the same behaviour. The MSE and RMSE values dramatically decreased when increasing the number 

of neurons from 20 to 100. The decrease in the MSE continued to reach its lowest value with 0.977 

for training, 1.22 for validation, and 1.19 for testing data at 1000 neurons. Similarly, the RMSE 

reached its lowest value at 1000 neurons with 0.989 for training, 1.10 for validation, and 1.09 for 

testing data. 

 

Figure 7.5: MSE of training, validation, and testing data of the NFS model with the LM learning algorithm 

when increasing the number of neurons in the hidden layer 

 

Figure 7.6: RMSE of training, validation, and testing data of the NFS model using the LM learning algorithm 

when increasing the number of neurons in the hidden layer 
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Figure 7.7: Value of R when increasing the number of neurons in the hidden layer with the LM learning 

algorithm 

In addition, Figure 7.7 shows the value of R when increasing the number of neurons in the hidden 

layer from 20 to 1000 neurons. It increased dramatically from 0.973 at 20 neurons to reach 0.995 at 

200 neurons. This increase continued to reach its maximum value, 0.999, at 1000 neurons.  

 

Figure 7.8:  Training the NFS model with 1000 neurons in the hidden layer using the LM learning algorithm 

With the LM learning algorithm, the results demonstrated that increasing the number of neurons in 

the hidden layer led to decreasing both MSE and RMSE values for training, testing, and validation 
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data. It also showed that increasing the number of neurons led to increasing the value of R. However, 

training the NFS model of the proposed risk estimation technique with a large number of neurons 

takes a long time. The last experiment with 1000 neurons took more than 77 hours. Therefore, 1000 

neurons in the hidden layer were considered as the appropriate number of neurons to implement the 

NFS model of the proposed risk estimation technique. The results demonstrated that the NFS model 

has the lowest MSE and RMSE values for training, testing, and validation at 1000 neurons. Also, the 

NFS model has the highest value of R, 0.999, at 1000 neurons, which is an adequate correlation that 

indicates the NFS model is well trained and fit with the learning process as the value of R is very 

close to 1. 

The NFS model of the proposed risk estimation technique was implemented using the LM learning 

algorithm with 1000 neurons in the hidden layer, as shown in Figure 7.8. After the NFS model was 

trained, the performance graph represented MSE values of training, testing, and validation data, as 

shown in Figure 7.9. The result is reasonable, and the NFS model is a good fit with the learning 

process with the value of R is 0.999, which is very close to 1. In addition, no overfitting has occurred 

as training, validation, and testing data have the same behaviour.  

 

Figure 7.9: Performance of training, validation, and testing data at different number of epochs with the LM 

learning algorithm at 1000 neurons in the hidden layer. 

In addition, Figure 7.10 shows regression plots of the NFS model of the proposed risk estimation 

technique with respect to targets for training, validation, and testing data. For a perfect fit, the data 

should fall along a 45-degree line, where the network outputs are equal to the targets. For the NFS 

model of the proposed risk estimation technique, the fit is reasonably good for all training, validation 

and testing data with the value of R is 0.999, which is very close to the ideal case. 
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Figure 7.10: Regression plots of training, testing, and validation when applying LM learning algorithm with 

1000 neurons in the hidden layer.  

7.2.2.2.2 Bayesian Regularization 

Generally, regularization techniques are employed with the backpropagation learning method to 

produce a small error. However, the major problem associated with this mixture is that its 

convergence is very slow, which can cause overfitting issues (Saini, 2008). Therefore, new 

backpropagation learning techniques were developed by researchers to overcome the slow 

convergence issue. In the same way, some regularization techniques were established to resolve the 

overfitting issue. The LM and Bayesian Regularization (BR) learning methods are examples of these 

new techniques that are used to produce lower mean squared errors than other techniques especially 

with functioning approximation problems (Sorich et al., 2003).  

The main target of the BR learning algorithm is to utilize the sum of squares and the sum of squared 

weights to minimize errors and achieve a good generalized model. It updates the weight and bias 

values using the same optimization method used in the LM learning method (Bishop & Tipping, 

1998). 

The BR learning algorithm with one hidden layer was utilized to train the NFS model of the proposed 

risk estimation technique. Several experiments were carried out to determine the appropriate number 
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of neurons that produces the lowest error and the best fit with the learning process. The NFS model 

was trained with increasing the number of neurons in the hidden layer from 50 to 900 with observing 

MSE and RMSE values. One of the important features of the BR learning algorithm is that it does 

not require a validation dataset separate from the training dataset. Therefore, only values of training 

and testing error were observed in these experiments, as shown in Figure 7.11 and Figure 7.12. The 

two lines representing training and testing data are almost identical and have the same behaviour. So, 

there is no overfitting. The results of training the NFS model using the BR learning method showed 

unstable behaviour when increasing the number of neurons in the hidden layer. The MSE error of 

training data dramatically decreased from 9.46 at 50 neurons to reach 6.23 at 100 neurons. This 

decrease continued to reach 4.86 at 200 neurons. Then, the MSE error of training data increased to 

reach 5.61 at 300 neurons. The same unstable behaviour continued until reaching the lowest MSE 

and RMSE values for both training and testing data at 600 neurons. The MSE values were 2.01 and 

2.16 for training and testing respectively. Similarly, the RMSE reached its lowest values at 600 

neurons with 1.42 for training, 1.47 for testing data. 

 

Figure 7.11: MSE of training and testing data of the NFS model when increasing the number of neurons in the 

hidden layer with the BR learning algorithm 

 

Figure 7.12:  RMSE of training and testing data of the NFS model when increasing the number of neurons in 

the hidden layer with the BR learning algorithm 
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Figure 7.13: Value of R when increasing the number of neurons in the hidden layer with the BR learning 

algorithm 

In addition, Figure 7.13 shows the value of R when increasing the number of neurons in the hidden 

layer from 50 to 900 neurons. The results demonstrated that the value of R showed unstable 

behaviour. It increased from 0.989 at 20 neurons to 0.994 at 200 neurons. Then, it decreased at 300, 

400, and 500 neurons. But at 600 neurons, the value of R reached its highest value which is 0.997. 

 

Figure 7.14: Training the NFS model at 600 neurons in the hidden layer using the BR learning algorithm 

With the BR learning algorithm, the results demonstrated that increasing the number of neurons in 

the hidden layer led to unstable behaviour for both training and testing error values. It showed that 
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the appropriate number of neurons in the hidden layer to implement the NFS model of the proposed 

risk estimation technique is 600 where it produced the lowest MSE and RMSE values for both 

training and testing data. It also produced the highest value of R (0.997) at 600 neurons, which 

indicates that the NFS model is well trained as the value of R is very close to 1. 

The NFS model of the proposed risk estimation technique was implemented using the BR learning 

algorithm with 600 neurons in the hidden layer, as shown in Figure 7.14. After the NFS model was 

trained, the performance graph showed MSE values of training and testing data, as shown in Figure 

7.15. The NFS model is a good fit with the learning process as the value of R is very close to 1. In 

addition, no overfitting has occurred as training and testing data have the same behaviour.  

 

Figure 7.15: Performance of training and testing data at different number of epochs with the BR learning 

algorithm at 600 neurons in the hidden layer. 

In addition, Figure 7.16 shows regression plots of the NFS model of the proposed risk estimation 

technique with respect to targets for training and testing data. The fit with the learning process is 

reasonably good for all training and testing data with 0.997 in the value of R, which is very close to 

the ideal case.  
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Figure 7.16: Regression plots of training and testing data when applying the BR learning algorithm with 600 

neurons in the hidden layer 

7.2.2.2.3 Conjugate Gradient with Fletcher-Reeves 

Gradient-based learning algorithm is one of the most commonly used error minimization techniques. 

It is a gradient descent local optimization algorithm that includes the backward error correction of 

the network weights (Nawi et al., 2010). Conjugate gradient algorithm is one of the backpropagation 

techniques used to train multilayer ANN in a supervised way. It updates weight and bias values based 

on the conjugate gradient backpropagation with Fletcher-Reeves updates (Fletcher & Reeves, 1964). 

Therefore, it is called Conjugate Gradient with Fletcher-Reeves (CGF) learning method. The 

conjugate gradient algorithms are usually much faster than variable learning rate backpropagation. 

However, they require more storage than simple algorithms, so they are often a good choice for 

networks with a large number of weights (Ellah et al., 2015). 

The CGF learning algorithm with one hidden layer was utilized to train the NFS model of the 

proposed risk estimation technique. Several experiments were carried out to determine the 

appropriate number of neurons that produces the lowest error and the best fit with the learning 

process. The NFS model was trained with increasing the number of neurons in the hidden layer from 

50 to 1200 with observing MSE and RMSE values, as shown in Figure 7.17 and Figure 7.18. The 

three lines representing training, validation, and testing data are almost identical and have the same 
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behaviour. So, there is no overfitting. The results of training the NFS model using the CGF learning 

method showed unstable behaviour when increasing the number of neurons in the hidden layer. The 

MSE value of the training data decreased from 25.27 at 50 neurons to reach 21.04 at 100 neurons. 

This decrease continued to reach 20.59 at 200 neurons. Then, the MSE value of the training data 

increased to reach 26.75 at 300 neurons. Then, the MSE reached its lowest value at 400 neurons with 

19.25, 19.54 and 19.14 for training, validation, and testing data respectively. Increasing the number 

of neurons in the hidden layer from 400 to 1200 showed the same inconsistent behaviour. However, 

the MSE value at 400 neurons produced the lowest error. This was the same scenario for the RMSE 

value for training, validation, and testing data where it produced the lowest RMSE values at 400 

neurons with 4.39 for training, 4.42 for validation, and 4.37 for testing data. 

 

Figure 7.17: MSE of training, validation, and testing data of the NFS model when increasing the number of 

neurons in the hidden layer with the CGF learning algorithm 

 

Figure 7.18: RMSE of training, validation, and testing data of the NFS model when increasing the number of 

neurons in the hidden layer with the CGF learning algorithm 
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Figure 7.19: Value of R when increasing the number of neurons in the hidden layer with the CGF learning 

algorithm 

In addition, Figure 7.19 shows the value of R when increasing the number of neurons in the hidden 

layer from 50 to 1200 neurons. The chart has the same behaviour of MSE and RMSE values in which 

the lower the error, the higher the correlation. The value of R is increased from 0.968 at 50 neurons 

to reach 0.975 at 200 neurons. Then, it reached its lowest value at 300 neurons. The highest 

correlation for the NFS model with the CGF learning algorithm was realized when applying 400 

neurons in the hidden layer.  

With the CGF learning algorithm, the results demonstrated that increasing the number of neurons in 

the hidden layer led to inconsistent behaviour of training, validation and testing error values. It 

showed that the appropriate number of neurons in the hidden layer to implement the NFS model of 

the proposed risk estimation technique is 400 neurons where it produced the lowest MSE and RMSE 

error for training, validation, and testing data. It also produced the highest value of R, 0.976, which 

indicates that the NFS model is well trained. 

The NFS model of the proposed risk estimation technique was implemented using the CGF learning 

algorithm with 400 neurons in the hidden layer, as shown in Figure 7.20. After the NFS model was 

trained, the performance graph showed MSE values of training, validation, and testing data, as shown 

in Figure 7.21. The NFS model is a good fit as R value is close to 1. In addition, no overfitting has 

occurred as training, validation, and testing data have the same behaviour. However, the lowest error 

produced with the CGF learning algorithm is quite high. 
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Figure 7.20: Training the NFS model with 400 neurons in the hidden layer using the CGF learning algorithm 

 

Figure 7.21: Performance of training, validation, and testing data at different number of epochs using the CGF 

learning algorithm with 400 neurons in the hidden layer  
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Figure 7.22: Regression plots of training, validation, and testing data when applying the CGF learning 

algorithm with 400 neurons in the hidden layer 

In addition, Figure 7.22 shows regression plots of the NFS model of the proposed risk estimation 

technique with respect to targets for training, validation, and testing data. For the NFS model, the fit 

is good for all training, validation and testing data with the value of R is 0.976, which is close to 1. 

7.2.2.2.4   Scaled Conjugate Gradient 

Conjugate gradient methods need a line search at each iteration, which is computationally expensive 

as it requires that the network respond to all training inputs and estimate multiple times for each 

search. Scaled Conjugate Gradient (SCG) learning algorithm was developed by Moller in 1993 

(Moller, 1993). It primarily built to overcome the time-consuming line search associated with 

conjugate gradient learning methods. The SCG algorithm utilizes the second order information from 

the ANN to reach faster convergence. It is also fully automated so there are no user-dependent 

parameters and it avoids time-consuming line-search in each iteration to determine appropriate step 

size (Moller, 1993). 

The SCG learning algorithm with one hidden layer was utilized to train the NFS model of the 

proposed risk estimation technique. Several experiments were carried out to determine the 

appropriate number of neurons that produces the lowest error and the best fit with the learning 



168                                                               Chapter 7: Implmentation of Risk Estimation using NFS 

 

process. The NFS model was trained with increasing the number of neurons in the hidden layer from 

50 to 1200 with observing MSE and RMSE values, as shown in Figure 7.23 and Figure 7.24. The 

three lines representing training, validation and testing data are almost identical and have the same 

behaviour. So, there is no overfitting. The results of training the NFS model using the SCG learning 

method showed unstable behaviour when increasing the number of neurons in the hidden layer. The 

MSE value of the training data increased from 19.99 at 50 neurons to 23.77 at 100 neurons. Then, 

the unstable behaviour continued until the MSE reached its lowest value at 1000 neurons. The MSE 

values were 14.75, 15.17 and 15.01 for training, validation, and testing data respectively. This was 

the same scenario for the RMSE for training, validation, and testing data where it produced the lowest 

values at 1000 neurons with 3.84 for training, 3.89 for validation, and 3.87 for testing data. 

 

Figure 7.23: MSE of training, validation, and testing data of the NFS model when increasing the number of 

neurons in the hidden layer with the SCG learning algorithm 

 

Figure 7.24: RMSE of training, validation, and testing data of the NFS model when increasing the number of 

neurons in the hidden layer with the SCG learning algorithm 
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Figure 7.25: Value of R when increasing the number of neurons in the hidden layer with the SCG learning 

algorithm 

In addition, Figure 7.25 shows the value of R when increasing the number of neurons in the hidden 

layer from 50 to 1200 neurons. The value of R decreased from 0.975 at 50 neurons to reach 0.970 at 

200 neurons. The highest correlation for the NFS model using the SCG learning algorithm was 

realized when applying 1000 neurons in the hidden layer. The value of R was 0.982, which indicates 

that the NFS model is well trained.  

With the SCG training algorithm, the results demonstrated that increasing the number of neurons in 

the hidden layer led to unstable behaviour of training, validation and testing error values. It showed 

that the appropriate number of neurons in the hidden layer to implement the NFS model of the 

proposed risk estimation technique is 1000 where it produced the lowest MSE and RMSE error for 

training, validation, and testing data. It also produced the highest value of R, 0.982, which indicates 

that the NFS model is well trained. 

The NFS model of the proposed risk estimation technique was implemented using the SCG training 

algorithm with 1000 neurons in the hidden layer, as shown in Figure 7.26. After the NFS model was 

trained, the performance graph showed MSE values for training, validation, and testing data, as 

shown in Figure 7.27. The NFS model is a good fit as the value of R is close to 1. In addition, no 

overfitting has occurred as training, validation, and testing data have the same behaviour. However, 

the lowest error produced with the SCG learning algorithm is quite high. 
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Figure 7.26: Training the NFS model with 1000 neurons in the hidden layer using the SCG learning algorithm 

 

Figure 7.27: Performance of training, validation, and testing data at different number of epochs using the SCG 

learning algorithm with 1000 neurons in the hidden layer 
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In addition, the regression plots of the NFS model of the proposed risk estimation technique with 

respect to targets for training, validation, and testing data show that the fit of the NFS model is 

reasonably good for all training, validation and testing data with the value of R is close to 1, as 

depicted in Figure 7.28. 

 

Figure 7.28: Regression plots of training, validation, and testing data when applying the SCG learning 

algorithm with 1000 neurons in the hidden layer 

7.2.2.3   Comparison of Training Algorithms 

The NFS model of the proposed risk estimation technique was trained using four different learning 

algorithms. Firstly, several experiments were carried out to determine the appropriate number of 

neurons in the hidden layer for each learning algorithm. Then, the learning algorithms were utilized 

to train the NFS model of the proposed risk estimation technique with the appropriate number of 

neurons that were previously determined.  

A comparison between the four learning algorithms that were utilized to train the NFS model can be 

seen in Table 7.1. The results demonstrated that there is no optimal number of neurons for the hidden 

layer that can be used to produce the lowest error and the highest correlation with different learning 

algorithms. This was proved by having different number of neurons for each learning algorithm. In 

addition, although the LM and SCG learning algorithms use the same number of neurons in the 

hidden layer, the LM learning algorithm produced the best results. 
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Table 7.1: Comparison between learning algorithms used to train the NFS model of the proposed risk 

estimation technique  

 

Item 
Training algorithms 

LM  BR CGF SCG 

Appropriate number of neurons 

in the hidden layer 

 

1000 

 

600 

 

400 

 

1000 

Number of epochs 1000 1000 1000 1000 

MSE of training  0.978 2.008 19.253 14.750 

MSE of validation 1.219 N/A 19.543 15.168 

MSE of testing 1.190 2.157 19.136 15.011 

RMSE of training 0.989 1.417 4.388 3.841 

RMSE of validation 1.104 N/A 4.421 3.895 

RMSE of testing 1.091 1.469 4.375 3.874 

Correlation Coefficient (R) 0.999 0.997 0.976 0.982 
 

In terms of MSE and RMSE values, the LM learning algorithm produced the lowest error for training, 

validation, and testing data among other learning algorithms. In addition, the LM learning algorithm 

produced the highest correlation with 0.999 in the value of R, which indicates that the NFS model is 

well trained and fit with the learning process. Therefore, the LM learning algorithm was selected as 

the best learning algorithm to be utilized to implement the NFS model of the proposed risk estimation 

technique in IoT applications. 

7.3 NFS and Fuzzy System 

The proposed risk estimation technique was first implemented with the fuzzy logic system using the 

Mamdani FIS and tested with different number of access requests. One of the challenges that faced 

adopting the proposed fuzzy risk estimation technique in real-world IoT applications is that it 

requires large processing time and its scalability seems to be questionable. To overcome this 

problem, the proposed risk estimation technique was implemented using the NFS with the LM 

learning method. The parallel computation and learning abilities of the NFS model added more 

improvements to the risk estimation technique.  

The results demonstrated that utilizing the NFS with the LM learning algorithm to implement the 

proposed risk estimation technique provides less processing time as it uses only one-sixth the time 

used by the Mamdani FIS, as depicted in Table 7.2. Both methods followed a linear relationship in 

which increasing the number of access requests led to increasing the processing time.  

In addition, the results demonstrated that the time per access request for the NFS model using the 

LM learning algorithm produced a very short time compared to the time per access request produced 

by the Mamdani FIS, as depicted in Figure 7.29. The trained NFS model with the LM learning 

algorithm has proved it provides more efficient processing time which can provide timeliness risk 
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estimation technique for various IoT applications. Besides adding the learning capability to the risk 

estimation technique will make it able to adapt to changes of the IoT environment.  

Table 7.2: Processing time of the NFS model using the LM learning algorithm and Mamdani FIS 

Number of 

access requests 
NFS using LM Algorithm Mamdani FIS 

Time (sec) Time per request (sec) Time (sec) Time per request (sec) 

1000 10.8750 0.01088 57.385 0.0574 

10,000 81.5469 0.00815 572.125 0.0572 

20,000 146.5625 0.00733 1140.4 0.05702 

30,000 211.4216 0.00705 1713.6 0.05712 

40,000 277.6094 0.00694 2286.4 0.05716 

50,000 341.7656 0.00684 2860.5 0.05721 

60,000 407.1875 0.00679 3436.2 0.05727 

70,000 472.1250 0.00674 4012.4 0.05732 

80,000 537.2345 0.00672 4588.8 0.05736 

90,000 602.2314 0.00669 5166.9 0.05741 

100,000 667.1286 0.00667 5746.23 0.05746 

150,000 995.4688 0.00664 8625.32 0.0575 

200,000 1325.3124 0.00663 11506.14 0.05753 

250,000 1634.8213 0.00654 14390.1 0.05756 
 

 

Figure 7.29: Time per access request of the NFS model using the LM learning algorithm and Mamdani FIS 

7.4 NFS and ANFIS  

The ANFIS model of the proposed risk estimation technique was implemented to tune different MFs 

and determine the appropriate MF that provides the lowest error and the best fit with the learning 

process to increase the performance of the risk estimation process. After training the ANFIS model 

with both hybrid and backpropagation learning techniques at three different epoch numbers (20, 100, 
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and 300), the results demonstrated that the TrapMF with the hybrid learning approach at 20 epochs 

is the best MF that produced the lowest error and the best fit with the learning process. 

In addition, the NFS model of the proposed risk estimation technique was trained using four learning 

algorithms to overcome the time overhead associated with the fuzzy logic system and add the 

learning capability to the risk estimation technique to increase the accuracy and efficiency of the risk 

estimation process. Several experiments were carried out to determine the appropriate number of 

neurons in the hidden layer for each training algorithm. After comparing training, testing, and 

validation errors and correlation of four learning algorithms, the results showed that the LM learning 

algorithm produced the lowest error and the best fit with the learning process.  

The results obtained from implementing the ANFIS and NFS models of the proposed risk estimation 

technique were compared, as depicted in Table 7.3. The results showed that the performance of the 

NFS model is better than the ANFIS model. The NFS model provides lower RMSE values in both 

training and testing data, which indicates how close the relationship between the observed and 

predicted data. In addition, the NFS model provides higher correlation with 0.999 and 0.997 in R and 

R2 respectively, which demonstrates it is the best fit with the learning process as values of R and R2 

are very close to 1. 

Table 7.3: Performances of ANFIS and NFS models of the proposed risk estimation technique 

Model Training 

RMSE  

Testing 

RMSE  

R R2 

NFS with LM  0.9888 1.1040 0.9985     0.9974 

ANFIS with TrapMF 4.6438 4.6552 0.9731     0.9469 

 

Based on these results, the NFS model with the LM learning method is the best approach to 

implement the proposed risk estimation technique to increase the accuracy, reduce the processing 

time needed to provide access decisions and adapt to changes of various real-world IoT applications.  

7.5 Summary  

Chapter 7 has presented the implementation of the risk estimation process using the NFS. The NFS 

system which integrates the human reasoning of the fuzzy logic system with the ANN to increase 

accuracy and performance. The NFS was utilized to reduce the processing time by using the parallel 

computation of the ANN and add the learning capability to the proposed risk estimation technique to 

adapt to new changes of the IoT environment. To implement the NFS model, several experiments 

were carried out using three separate datasets: training dataset (96,000 records), validation dataset 

(32,000 records), and testing dataset (32,000 records) to train and verify the accuracy of the trained 

NFS model. To determine the appropriate number of neurons in the hidden layer, the NFS model 

was trained using four learning algorithms including LM, BR, CGF, and SCG. Several experiments 

were carried out and MSE, RMSE, and R values of training, testing, and validation were utilized to 
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determine the appropriate number of neurons and the best learning algorithm for the NFS model. The 

results demonstrated that the LM learning algorithm produced the lowest error for training, 

validation, and testing data and the highest correlation with 0.999, which indicates that the NFS 

model is well trained and fit with the learning process. In addition, the NFS model with the LM 

learning algorithm has proved it provides efficient processing time, as it uses only one-sixth the time 

used by the fuzzy logic system. Therefore, the NFS with the LM learning method is the best 

combination to implement the proposed risk estimation technique to increase the accuracy, reduce 

the processing time needed to provide access decisions and adapt to new changes of various IoT 

applications. The next chapter presents the access monitoring and evaluation of the proposed 

risk-based access control model.  
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Chapter 8: Access Monitoring and Model Evaluation 

This chapter provides a discussion of access monitoring and model evaluation. It starts by providing 

an overview of access monitoring. Then, section 8.2 discusses utilizing smart contracts to monitor 

user activities during the access session. This includes simulating the operation of smart contracts 

using Simulink and presenting various access scenarios. Section 8.3 discusses the evaluation of the 

proposed risk-based access control model by presenting access control scenarios of three IoT 

applications including healthcare, smart home and network router. The chapter closes by providing 

a summary of the main points discussed through the chapter and introduces the next chapter. 

8.1 Access Monitoring 

The key objective of an access control model is to allow only authorized users to access system 

resources in an authorized way. Typically, access control models can be divided into two classes: 

stateless and stateful. Stateless access control is only concerned with the current state of the system 

to provide access decisions, while stateful access control integrates past and current accesses to 

determine the access decision. Although most existing access control systems are stateless, building 

a stateful access control model should be one of the fundamental priorities to guarantee security and 

privacy of system resources (Gomez & Trabelsi, 2014).  

Since existing access control approaches do not provide a way to detect and prevent malicious actions 

after granting the access, the proposed risk-based model adds abnormality detection capability by 

utilizing smart contracts to track and monitor user activities during access sessions. Hence, the risk 

estimation module adjusts user’s permission adaptively depending on their behaviour in the access 

session in which if an abnormal action is observed, user privileges will be reduced, or the access 

session will be terminated. 

The next section provides a detailed discussion of using smart contracts to monitor access sessions 

in IoT systems. 
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8.2 Smart Contracts for Monitoring  

Smart contracts are so powerful because of their flexibility. They can encrypt and store data securely, 

restrict access to data only to desired parties and then be programmed to utilize the data within a 

self-executing logical workflow of operations between parties (Watanabe et al., 2016). Smart 

contracts translate the business process into a computational process to improve operational 

efficiency (Watanabe et al., 2016). The key purpose of a smart contract is to execute terms or 

conditions of the contract automatically when certain conditions are verified or met.  

An overview of smart contracts involving definitions of smart contracts, benefits, and how a smart 

contract works was presented previously in chapter 2 in section 2.6. Therefore, this chapter focuses 

only on discussing how smart contracts can be utilized to monitor access sessions in IoT systems. 

In the proposed risk-based model, the smart contract is used as a mean to track and monitor user 

behaviour during access sessions. After granting the access, a smart contract will be created for each 

access request. The access permissions will be implemented as conditions or terms in the smart 

contract. Then, the monitoring module will compare the user behaviour with the terms and conditions 

of the contract to detect abnormal actions throughout access sessions. As depicted in Figure 8.1, the 

requesting user first defines the data or resource to be accessed and action to be performed in the 

access request. Then, if the access is granted, a smart contract will be created to implement user’s 

permissions as conditions or terms to guarantee that the user has the ability to access only resources 

and perform actions that were requested. Then, resources and actions will be monitored to detect 

violations. if a violation is detected, the system will issue a warning, or the session will be terminated. 

If no violations are detected, the system will keep monitoring the user behaviour throughout the 

access session. 

As discussed earlier, smart contracts are software code that runs using the blockchain technology. 

Due to the difficulty of implementing smart contracts and interfacing it with the risk estimation 

process of the proposed risk-based access control model, MATLAB Simulink was utilized to 

simulate the operation of smart contracts to validate its efficiency and effectiveness to monitor access 

sessions to detect and prevent malicious actions. 
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Figure 8.1: Flowchart of monitoring user activities using smart contracts 

8.2.1  Simulation of Smart Contracts  

Simulink is a graphical environment to model, simulate, and analyse multi-domain dynamic systems. 

It is primarily based on hierarchical data flow diagrams. A Simulink diagram consists of functional 

blocks connected by signals (wires). These blocks represent transformations of data, while the signals 

represent the flow of data between blocks. Each block contains input and output ports to connect 

with other blocks and transfer signals between blocks. The input ports provide data to the block, 

while the output ports provide the results computed by the blocks (Aung, 2007; Boström et al., 2010). 

Stateflow is one of the main elements of the Simulink environment that was utilized to simulate the 

operation of smart contracts. Stateflow is an environment for modelling and simulating sequential 

decision logic based on state machines and flow charts. It combines graphical and tabular 

representations, including state transition diagrams, flow charts, state transition tables, and truth 

tables to model how the system reacts to events, time-based conditions, and external input signals 

(Mathworks, 2016). 
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Figure 8.2: Simulation of the proposed risk-based access control model with monitoring user activities 

Simulink was utilized to build a simulation model for the proposed risk-based access control model, 

as shown in Figure 8.2. The first block from the left represents the access request. The requesting 

user has to specify the data/resource to be accessed and the action to be performed on the system. In 

the simulation model, five different data and actions were assumed, and the requester has to choose 

one resource and one action for each access request. The second block represents input risk factors 

of the proposed risk-based model, which include user context, resource sensitivity, action severity, 

and risk history. Estimating the output risk value for each access request is based on these values.  

 

Figure 8.3: First part of the simulation of the proposed risk-based access control model 

The third block represents the risk estimation technique using the fuzzy logic system with expert 

judgment. As discussed earlier in Chapter 5, 6 and 7, the risk estimation process was implemented 

using the fuzzy logic system with expert judgment, NFS and ANFIS. However, the fuzzy logic 

system with expert judgment was utilized in this simulation since the main target is to monitor the 

access session not to estimate the risk. Also, it is easier to implement with the Simulink. The main 
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objective of the third block is to estimate the risk value associated with the access request and display 

it on the display screen, which located under the third block. The first three blocks of the simulation 

model of the proposed risk-based model can be seen clearer in Figure 8.3. 

The fourth block represents the access decision, as depicted in Figure 8.4. After estimating the risk 

value, the access decision should be determined. As discussed previously in section 5.4, three access 

decision bands were proposed for each access request including Grant, Grant with monitoring and 

Deny. The access decision and monitoring status depend on the output risk value as assumed in Table 

8.1. 

 

Figure 8.4: Second part of the simulation of the proposed risk-based access control model 

Table 8.1: Output mapping of access decision and monitoring blocks 

Access Decision Block Monitoring Block 

Estimated 

Risk Value 

 

 

Output  
Monitoring 

Status 

State 
 

Description 
Monitoring 

Output  

1 < Risk ≤ 15  Grant without 

monitoring 

0 Normal Monitoring in progress 0 

15 < Risk < 70  Grant with 

monitoring 

1 Detect Malicious action 

detected 

1 

Risk ≥70 Deny 0 No_monitroing No monitoring needed 2 
 

To implement these three access decision bands in the simulation, four states including Decision, 

Granted_without_monitroing, Granted_with_monitroing, and Denied were utilized, as shown in 

Figure 8.5. The transition from states depends on the estimated risk value. The Decision state takes 

the estimated risk value from the risk estimation technique (third block). Then, this value is compared 

against risk decision bands in which if the estimated risk value is higher than 1 and less than or equal 
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15, the state will be changed, and the control will be moved to Granted_without_monitroing state, 

and the monitoring status will be 0 to indicate that no monitoring is needed. During this state, the 

system will check the estimated risk value every second to reflect any changes in input risk factors 

on the output risk value. So, the decision module will be updated with the output risk value every 

second. While if the estimated risk value is higher than 15 and less than 70, the state will be changed, 

and the control will be moved to Granted_with_monitroing state, and the monitoring status will be 

1 to indicate the need for monitoring user activities. During this state, the system will also check the 

estimated risk value every second to keep updated with the output risk value during the access 

session. If the estimated risk value is higher than or equal to 70, the state will be changed, and the 

control will be moved to Denied state and the monitoring status will be 0 to indicate that no 

monitoring is needed as the access request was rejected.  

 

Figure 8.5: Stateflow charts to determine the access decision based on the estimated risk value 

The fifth block represents the simulation of monitoring access session using smart contracts, as 

shown in Figure 8.4. As discussed earlier, smart contracts are software code that implements terms 

or conditions of the contract and executes it automatically when conditions are met. The key objective 

of simulating the operation of smart contracts is to ensure that the system is aware of actions and 

changes occurred during the access session. In addition, the response of the monitoring module 

should be fast enough to detect and prevent malicious actions in a very short time to stop the attacker 

from affecting system resources improperly.  
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The operation of smart contracts was simulated using four states including Decision, No_monitroing, 

Normal and Detect, as depicted in Figure 8.6. The Decision state takes the decision value from the 

access decision module. If the decision value was 0, this means that the access is either granted 

without monitoring or denied. Hence, the control will be moved to No_ monitoring state, and the 

monitoring output will be 2 to indicate that no monitoring is needed, as summarized in Table 8.1. 

While if the decision value was 1, the control will be moved to Normal state to indicate that the 

system is monitoring the user activities and no malicious action was detected. The Normal state 

represents the operation of the smart contract in which the user permissions will be coded as 

conditions or terms. For example, if the user decided in his/her access request to access Data1, and 

perform Action3, then the conditions or terms that allow the user to only access Data1 and perform 

Action3 will be implemented in the contract. Therefore, if the user tried to access other data or 

perform another action, this will be detected as a malicious action.  

 

Figure 8.6: Stateflow charts of simulating the operation of smart contracts. 

To simulate this scenario, the monitoring block was linked to another block that has two input 

variables x and y, where x refers to the data to be accessed and y refers to the action to be performed, 

as shown in Figure 8.4. These variables are identical and have the same values of input variables of 

the access request of the first block. These variables will be used to simulate creating malicious 

actions. In other words, after defining the type of data to be accessed and type of action to be 

performed in the access request and after granting the access, a smart contract will be created to 

ensure the user has the eligibility only to access data and perform the action specified in the access 

request. The variables x and y will be used to reflect the behaviour of the user during the access 

session. Hence, if values of x and y are the same as input variables of the access request that were 

implemented in the contract as conditions, then no malicious actions will be detected. While if values 
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of x and y are different from input variables implemented in the contract, then this will be classified 

as a malicious action that needs to be prevented.  

If the user tried to perform a malicious action during the access session, then the control will be 

moved to Detect state, and the output value will be 1 to indicate that a malicious action was detected. 

Then, a warning message will be issued to guide the user to access only permitted data and perform 

permitted actions, if the user stops the malicious action, then the system will return to Normal state. 

Otherwise, the system will terminate the access session to stop malicious actions. Figure 8.7 

summarizes the process flow of the monitoring module. 

 

Figure 8.7: Process flow of the monitoring module 

The last block of the simulation model of the proposed risk-based model represents two displays to 

show access decision and monitoring status, as shown in Figure 8.8. The first display shows two 

values of access decision in which 0 represents that the access is denied, whereas 1 represents that 

the access is granted, as shown in Figure 8.8 (a). The second display shows the monitoring status in 

which 2 represents no monitoring is needed, 0 represents that monitoring user activities is in progress, 

whereas 1 represents that a malicious action was detected, as shown in Figure 8.8 (b). 
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(a) This display shows the access decision                            (b) This display shows the monitoring status 

Figure 8.8: Two displays to show access decision and monitoring status 

8.2.2 Access Scenarios   

To show the effectiveness of monitoring user activities using smart contracts during the access 

session and the response of the proposed risk-based model in different situations, this section presents 

various access scenarios that can occur. In addition, the access decision and monitoring status will 

be discussed for each scenario.  

8.2.2.1 Scenario 1: Access was granted without monitoring 

The proposed risk-based access control model protects the user’s privacy by allowing the user to 

access the system without monitoring user activities during the access session if the estimated risk 

value associated with the access request was very small. This access decision band is very narrow to 

reflect only IoT devices’ owners. Therefore, if the estimated risk value associated with the access 

request was less than or equal 15, the access will be granted, and no monitoring will be needed.  

 

              (a) Access was granted                                                    (b) No monitoring  

Figure 8.9: Access control scenario when the access was granted without monitoring 
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As depicted in Figure 8.9, the access was granted without monitoring as the estimated risk value 

associated with the access request was 15. This indicated by having 1 on the access decision display 

(the first display from left) to indicate that the access was granted, as shown in Figure 8.9 (a). Also, 

having 2 on the monitoring status display to indicate that no monitoring is needed, as shown in Figure 

8.9 (b).  

8.2.2.2 Scenario 2: Access was granted, and monitoring is in progress 

If the estimated risk value associated with the access request was higher than 15 and less than 70, the 

access will be granted with monitoring user activities during the access session. As shown in Figure 

8.10, the estimated risk value was 60, which implies that the access was granted with monitoring. 

This indicated by having 1 on the access decision display to indicate that the access was granted, as 

shown in Figure 8.10 (a). Also, having 0 on the monitoring status display to indicate that monitoring 

user activities is in progress, as shown in Figure 8.10 (b). 

 

            (a) Access was granted                                               (b) Monitoring is in progress  

Figure 8.10: Access control scenario when the access was granted and monitoring is in progress 

8.2.2.3 Scenario 3: Access was granted, and a violation was detected  

This scenario is similar to the previous scenario in which if the estimated risk value associated with 

the access request was higher than 15 and less than 70, then the access will be granted with 

monitoring user activities during the access session. Since the estimated risk value was 60, the access 

was granted with monitoring. This indicated by having 1 and 0 in the access decision display and the 

monitoring display respectively, as depicted in Figure 8.11.  
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            (a) Access was granted                                               (b) A violation was detected  

Figure 8.11: Access scenario when the access was granted with monitoring and a violation was detected  

After granting the access, the monitoring module will track the user behaviour during the access 

session by comparing values of x and y with input values of the access request. When a violation is 

detected, the output of the monitoring display will change from 0 to 1 to indicate that there is a 

violation. Then, a warning message will be issued. If the user obeys the advice of the warning 

message, the monitoring module will return to tracking user behaviour and the output of the 

monitoring display will return to 0, as shown in Figure 8.11 (b). In the same way, if another violation 

is detected, the system will issue a warning message. Warning messages were not implemented in 

the simulation model, but it will be presented in the next section of simulating the proposed risk-

based model on the web. 

One of the most important features of a monitoring technique is the ability to detect and prevent 

malicious actions in a very short time. As depicted in Figure 8.11 (b), the response of the monitoring 

module was very good in which when one of the contract conditions was not verified, the monitoring 

module detects it immediately. This shows that the use of smart contracts and implementing user 

permissions as software code can detect and prevent malicious actions in a very short time. 

8.2.2.4 Scenario 4: Make another access request  

If the estimated risk value associated with the access request was higher than 15 and less than 70, 

the access will be granted with monitoring user activities during the access session. This indicated 

by having 1 and 0 in the access decision display and the monitoring display respectively, as shown 

in Figure 8.12.  
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 (a) Access was granted then denied for second request        (b) Access was monitored when it granted only 

Figure 8.12: The access control scenario when the access is granted with monitoring, and the second access 

request was denied 

During the access session, if the user wants to access other data or perform another action rather than 

those implemented in the smart contract, the user has to make another access request. The access 

request can be accepted or rejected based on values of risk factors associated with the access request. 

If the access is granted, another contract will be created with new conditions that allow the user to 

access the new requested data and action and the monitoring module will continue tracking the user 

behaviour during the access session. While if the action is rejected, then the output of the decision 

display will be 0, as shown in Figure 8.12 (a). Also, the output of the monitoring module will be 2 to 

indicate that no monitoring is needed, as shown in Figure 8.12 (b).  This scenario will be presented 

clearly in the next section while simulating the proposed risk-based model on the web. 

8.2.2.5 Scenario 5: Access denied  

If the estimated risk value associated with the access request is higher than 70, the access will be 

denied. As depicted in Figure 8.13, the estimated risk value was 85, so the access was denied. This 

indicated by having 0 on the access decision display to indicate the access was denied. Also, having 

2 on the monitoring status display to indicate that no monitoring is needed as the access was denied. 
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            (a) Access was denied                                              (b) No monitoring   

Figure 8.13: Access control scenario when access was denied 

8.2.3 Simulation on the Web 

The use of smart contracts to detect and prevent malicious actions during the access session adds 

another dimension to this research by integrating the existing centralized IoT system with the 

decentralized blockchain technology. However, the major issue in this research was how to prove 

the effectiveness of using smart contracts in monitoring user activities. To solve this issue, Simulink 

Stateflow charts were utilized to simulate the operation of smart contracts. The results of various 

access scenarios discussed earlier demonstrated that smart contracts can provide an effective solution 

to detect and prevent malicious actions in a timely manner.  

To show how the proposed risk-based access control model works on the web, a simple web 

application was created to show various stages of the access control process. This section provides a 

detailed discussion starting from sending the access request and getting the response from the system. 

It also validates the operation of smart contracts in monitoring user activities during the access 

session. 

The journey starts when a certain user wants to access one of the system resources. The first stage is 

to verify the user identity through the common authentication method by using username and 

password, as depicted in Figure 8.14 (a). If the requesting user is successfully authenticated, then the 

system will ask the user to create an access request by specifying the data to be accessed and the 

action to be performed using the provided dropdown lists, as shown in Figure 8.14 (b). In this 

application, five types of data or resources and five actions can be selected. 
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       (a) Verify the identity of the user      (b) Specifying data and action for the access request 

Figure 8.14: Login information and creating an access request  

After submitting the access request, the system collects contextual information associated with the 

access request, sensitivity metric of the data to be accessed, severity metric of the action to be 

performed, and previous risk values of the user to estimate the risk value associated with the access 

request and make the access decision.  

 

                    (a) Access was denied                                          (b) Access was granted  

Figure 8.15: Access decision based on the estimated risk value 

If the access is denied, the system will notify the user to either make another access request or 

terminate the access session, as shown in Figure 8.15 (a). While if the access is granted, the system 

will notify the user that he/she is only allowed to access data and actions specified in the access 

request, as shown in Figure 8.15 (b). If the estimated risk value is less than or equal 15, no monitoring 

is needed. While if the estimated risk value is higher than 15 and less than 70, then the user activities 

will be monitored.  
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If the access is granted with monitoring user activities, then a smart contract will be created to 

implement terms and conditions that allow the user to access only data and actions specified in the 

access request. Then, the system will track user activities during the access session to make sure that 

the user obeys terms and conditions of the contract. If a violation is detected, the system will issue a 

warning message and terminate the access session, as shown in Figure 8.16. 

 

Figure 8.16: The system response when a violation was detected 

8.3 Evaluation of Proposed Model  

Evaluation is an essential phase to ensure the effectiveness of a research idea on real-world 

applications. One of the important aspects of the proposed risk-based access control model is to check 

its applicability in real-world IoT applications. Therefore, access control scenarios of three IoT 

applications including healthcare, smart home and network router were presented to show the 

effectiveness of implementing the proposed risk-based access control model on these applications. 

In addition, the proposed risk-based model was compared with existing risk-based access control 

models utilizing the fuzzy logic system for the risk estimation process to show major improvements 

in the proposed risk-based model. 

In addition, one of the major issues associated with IoT devices is limited processing and storage 

capabilities. For the proposed risk-based model, the processing and storage capabilities of existing 

IoT devices cannot handle the requirements of the risk estimation technique and access monitoring 

using smart contracts. To solve this issue, there are three ways to implement access control models 

in the IoT including centralized, distributed and centralized and contextual approach, as discussed in 

section 2.3.1. Therefore, the centralized and contextual approach was adopted in this research to 

implement the proposed risk-based access control model where there is a central server connected to 
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IoT devices with the required processing and storage capabilities which allow IoT devices to 

participate in making the access decision.  

The next section provides a detailed discussion of access control scenarios of three IoT applications 

to show access decisions based on risk values in various situations. 

8.3.1 Access Scenario 1: Healthcare  

Access control is a key element in healthcare information systems. Its main objective is to enforce 

access rules to guarantee that only authorized users can access system resources. Protecting patients’ 

data is not the only concern in healthcare systems but providing access in unexpected situations. In 

crisis or emergency situations, the availability of information takes precedence over privacy and 

security concerns. Therefore, providing a dynamic access control model for healthcare is a significant 

aspect to ensure data security and adapt to unexpected situations. 

This section presents applying the proposed risk-based access control model that uses contextual and 

real-time information to provide access decisions in a children hospital. Different access control 

scenarios will be presented to show the access decision with various input states. 

8.3.1.1 Scenario Description 

A closed world scenario involving a healthcare provider such as Mount Cedar (MC) children hospital 

(Ardagna et al., 2010) was utilized to show various access control scenarios. Typically, patients’ 

information in hospitals is stored as datasets. Each dataset is characterized by a unique object 

identifier. Datasets can be organized in classes that can be collectively referred with a given name 

and associated with an object profile (metadata) that provides additional information about the 

dataset.  

Consider the MC hospital has now received a four-years-old child called Harry, who was brought 

into the MC’s first aid clinic by his mother, Eva, late Wednesday evening. The admitting staff 

observed that Harry suffered from several bruises all over his body, a fractured rib, and a distorted 

shoulder (Ardagna et al., 2010). Let us walk through the events that would occur in this situation. 

Initially, Harry’s doctor in the first aid clinic, Dr Chris made an access request to the system to view 

or read Harry’s history fills in the Electronic Patient Record (EPR). He also assigned Harry to a care 

team involving a set of nurses and ordered a series of examinations. The leader nurse of the care team 

made an access request to the system to read Harry’s fills in the patient’s EPR.   

When the examination results are returned, Dr Chris wrote the diagnosis and the required medication 

for Harry and called social workers and policemen to investigate the incident as he suspected that 

child abuse occurred. Therefore, one of the social workers who are responsible for helping the 
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children in case of abuses and a police officer requested to access Harry’s medical information for 

investigation purposes.  

8.3.1.2 Scenario Actors 

The MC is a children hospital. Actors involved in this scenario include:  

• The child who needs treatment; 

• Doctors who are responsible for providing care to the child; 

• Nurses who are responsible for helping the doctors; 

• Social workers who are responsible for helping the children in case of trauma or abuses; 

• Policemen who are responsible for investigating and establishing possible criminal charges 

and responsibilities in cases of trauma or abuses. 

8.3.1.3 Scenario Assumption  

Applying the proposed risk-based access control model on the healthcare access control scenario 

requires defining values of the four risk factors for each access request. For the action severity, three 

actions were assumed involving; read/view, write and delete. The delete operation is not permitted 

for all actors involved in this scenario as the hospital keeps track of all medical history of patients, 

so no need to delete any data. As discussed earlier, there are various actors involved in this scenario 

in which each actor has a different role in the hospital. The proposed risk-based model should validate 

its applicability on this scenario by allowing or denying tasks for each role. Generally, only doctors 

have the ability to perform both read and write operations on the EPR, while other actors including 

nurses, social workers and policemen have the ability to only read/view the EPR. For the resource 

sensitivity, two sensitivity levels were assumed; sensitive and not sensitive. However, all 

data/resources involved in this scenario was assumed sensitive. 

To define the value of the action severity, Sharma et al. (2012) formula was utilized. This formula is 

used to estimate the risk score of action severity in terms of various actions, risk probability, and cost 

regarding data availability, integrity, and confidentiality. The formula is represented as: 

Risk= (C x P) + (I x P) + (A x P)                                                         (8.1)                           

Where C, I and A represents confidentiality, integrity, and availability respectively and P represents 

the probability. In addition, Sharma et al. (2012) have suggested some actions and corresponding 

values of the CIA, as shown in Table 8.2. Therefore, values of action severity of the proposed risk-

based model will be estimated using this table.  
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Table 8.2: Risk values associated with action and data sensitivity (Sharma et al., 2012) 

Action Sensitivity C I A 

Create Sensitive/Not-Sensitive 0 1 1 

View Sensitive 1 0 0 

View Not-Sensitive 0 0 1 

Modify Sensitive/Not-Sensitive 0 1 1 

Delete Sensitive/Not-Sensitive 0 1 1 
 

For instance, if a user needs to perform a “view” operation on sensitive data and the probability of 

this incident was 0.4. Therefore, only confidentiality will be affected, and the risk value of the action 

severity will be 0.4. Healthcare data have serious importance in almost all hospitals. Several security 

solutions are employed to ensure the security and privacy of patients’ data. Therefore, all data or 

resources involved in this scenario were assumed to be sensitive, and with the probability of 0.4, the 

value of the resource sensitivity will be 0.8. 

Table 8.3: The risk value of user context of various actors involved in this scenario 

Actor  On duty 

(Time)  

Location (In 

Hospital) 

User Context 

Risk level 

Proposed UC 

value  

 

Doctor  

Yes  Yes  Low  0.25  

No  Yes  Moderate  0.5 

No  No  High 0.75 

 

Nurse  

Yes  Yes  Low  0.25  

No  Yes  Moderate  0.5 

No  No  High 0.75 

 

Social Worker  
Yes  Yes  Low  0.25  

No  Yes  Moderate  0.5 

No  No  High 0.75 

 

Policeman 

Yes  Yes  Low  0.25  

No  Yes  Moderate  0.5 

No  No  High 0.75 

For the contextual and real-time attributes (user context) that are collected at the time of making the 

access request, the time and location features were utilized. The time refers to the time of duty for 

the hospital staff whether doctor or nurse in which if the doctor requested access to data during his/her 

time of duty (time allocation), the risk associated with the time context feature will be low otherwise 

it will be high. Also, the location was utilized to determine the risk associated with contextual 

attributes in which if the actor requested access to data from inside the hospital, the risk will be low, 

otherwise, the risk will be high. 

The value of user context was assumed, as shown in Table 8.3. In addition, since actors involved in 

this scenario involving doctor, nurse, social worker and policeman are officially employed in the 

hospital, they are trusted users and hence their risk history was assumed to be low. Therefore, the 

value of the risk history will be 0.25.  
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8.3.1.4 Scenario Results  

Determining the access decision depends on the estimated risk value associated with each access 

request. The estimated risk value is compared against output risk bands to decide whether granting 

or denying access. Access decisions bands were assumed, as depicted in Table 8.4. 

Table 8.4: Proposed output risk bands for the scenarios 

Risk Band Access Decision 
 

0.1 – 0.25 

 

Access Granted  
 

0.26 – 0.7 

 

Access Granted with Monitoring 
 

0.7 – 1.0 
 

Access Denied  
 

All access control scenarios of the MC children hospital were implemented and the access decision 

for each scenario was decided, as shown in Table 8.5. The risk value for each access request was 

estimated using the NFS model with the LM learning algorithm. For doctors, all their access requests 

to read/view patients’ EPR were granted as soon as they are located inside the hospital even though 

they were not on duty. This is because some emergency cases came to the hospital with no available 

doctors, so the system should allow the doctor to read patient’s EPR to help the patient until available 

on duty doctor be allocated for the patient.  

Table 8.5: Access decisions of various scenarios of the MC children hospital 

 

Actor 

 

On 

Duty 

 

In 

Hospital 

 

Action 
Risk Factors Output 

Risk 

 

Access Decision 
UC RS AS RH 

 

 

 

Doctor 

Yes Yes    Read  0.25  0.8 0.4 0.25 0. 498 Access Granted with Monitoring 

No  Yes  Read  0.5 0.8 0.4 0.25 0. 637 Access Granted with Monitoring 

No  No  Read  0.75 0.8 0.4 0.25 0. 749 Access Denied  

Yes Yes    Write 0.25  0.8 0.8 0.25 0. 600 Access Granted with Monitoring 

No Yes  Write   0.5 0.8 0.8 0.25 0. 721 Access Denied 

No No  Write 0.75 0.8 0.8 0.25 0. 822 Access Denied 

 

Nurse 

Yes Yes    Read  0.25  0.8 0.4 0.25 0. 498 Access Granted with Monitoring 

No  Yes  Read 0.5 0.8 0.4 0.25 0. 637 Access Granted with Monitoring 

No  No  Read  0.75 0.8 0.4 0.25 0. 749 Access Denied 

 

Social Wo. 
Yes Yes    Read  0.25  0.8 0.4 0.25 0. 498 Access Granted with Monitoring 

No  Yes  Read  0.5 0.8 0.4 0.25 0. 637 Access Granted with Monitoring 

No  No  Read 0.75 0.8 0.4 0.25 0. 750 Access Denied 

 

Policeman 

Yes Yes    Read  0.25  0.8 0.4 0.25 0. 498 Access Granted with Monitoring 

No  Yes  Read 0.5 0.8 0.4 0.25 0. 637 Access Granted with Monitoring 

No  No  Read  0.75 0.8 0.4 0.25 0. 749 Access Denied 
 

The read operation is denied for doctors only if they were not on duty time and outside the hospital. 

Since the write operation involves writing medication and ordering examinations, doctors are granted 
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to perform the write operation only if there are on their duty time and inside the hospital, so the risk 

value associated with their contextual attributes should be low.  

For nurses, social workers and policemen, as they are only allowed to view/read patient’s EPR based 

on their role, only the read scenario was discussed. They are able to read the patient’s EPR whether 

they are on duty time or not. This gives more flexibility as they already inside the hospital and their 

action will not cause serious harm. Also, it can take some time until they allocate on duty person who 

can deal with the current case. Their access to the read operation is denied only if they were not on 

duty time and outside the hospital. 

 

8.3.1.5 Scenario Discussion  

Applying the proposed risk-based access control model demonstrated it can provide several 

advantages to the healthcare domain. Using contextual and real-time features involving time and 

location demonstrated it can provide dynamic and flexible access decisions that can adapt to 

unpredicted situations. Allowing the doctors to access the patient’s EPR even after finishing their 

duty time allow them to help the patient until an available on duty doctor is allocated. In addition, 

one of the important aspects of applying the proposed risk-based model in the healthcare domain is 

denying access whether read or write operation for all actors involved in this scenario when they are 

not on duty and outside the location of the hospital. This adds more security to the healthcare system 

compared to the existing systems in which if one actor lost his/her credentials (for example password) 

through social engineering or any other type of attack, this can lead to information disclosure. Using 

the proposed risk-based model with contextual and real-time features, no one can access the data 

only if they are inside the hospital and within their duty time besides other credentials. A comparison 

between existing access control models and the proposed risk-based model in the healthcare scenario 

is shown in Table 8.6. 

Applying the proposed risk-based model on access control scenarios of the MC children hospital 

demonstrated it can provide flexible and effective access control model that can use contextual and 

real-time features to provide access decisions. It solves issues associated with static policies that 

always give the same result in different situations. For example, it allows access if the actor located 

in the hospital location. It also solves issues associated with misuse and credential loss by allowing 

access by actors in person. In addition, using smart contracts to monitor and track the access session 

add another layer of security to detect and prevent malicious actions in a timely manner. In 

conclusion, the proposed risk-based access control model is applicable in the healthcare IoT 

application and it provides efficient and effective security solution.  
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Table 8.6: Comparison between existing access control and the proposed risk-based model in the healthcare  

Item  Existing Access Control  Proposed Model 

 

 

 

 

 

Expected 

behaviour 

 

The actor is granted access to system 

resources only with credential information 

such as a password. This access is not limited 

by a certain operation. For example, the 

doctor can perform all tasks such as read and 

write.  

The actor is granted access to system resources 

when he/she is located inside the hospital which 

provides more security. The access to the write 

operation for a doctor, for example, is allowed 

only if the doctor is inside the hospital and 

during his/her duty time. 

Having a website or web interface for the 

hospital make the actor able to access it from 

any location which may cause serious issues 

regarding data protection and privacy 

preservation, especially if credential 

information was lost or stolen. 

Using location and time features allow actors to 

access system resources only if there are located 

inside the hospital. Being outside the hospital 

deny all access to system resources for all actors 

which is an advantage to prevent misuse of 

credentials. 

 

 

 

Misuse 

One of the serious issues to secure a system 

is the misuse of employees. For example, one 

of the actor credentials can be used to access 

system resources and perform malicious 

actions while the actor is on a vacation. Also, 

one can use a social engineering attack to get 

credential information and use it maliciously. 

The use of contextual features prevents most of 

misuse scenarios as actors are allowed to access 

system resources only if they are personally 

existing in the hospital location. Therefore, if 

the credential information was lost, the actor 

must be in person and during his/her duty time 

to access system resources.  

 

Monitoring 

access  

Granting access without tracking the 

behaviour of the actor can lead to serious 

insider attacks. For example, a doctor can use 

patients’ information for marketing or 

research purposes. 

Using smart contracts to monitor actors’ 

behaviour can prevent insider attacks. So, if an 

actor deceives the system, the monitoring 

module will detect and prevent such kinds of 

malicious attacks. 
 

8.3.2 Access Scenario 2: Smart Home  

Smart home has become one of the popular IoT applications that provides new digitized services to 

improve our quality of life. Providing an efficient and effective access control model is one of the 

top priorities of a smart home. With the capability of home appliances to connect and communicate 

together over the Internet, protecting these devices has become essential. 

This section discusses applying the proposed risk-based access control model on various access 

control scenarios of the smart home IoT application. 

 

8.3.2.1 Scenario Description 

The IoT has the capability to connect almost all environment objects over the Internet to share their 

data and create new applications and services. Using a software application can control smart home 

appliances to enable or disable them. For example, smart thermostats can be controlled remotely to 

control the home temperature. This allows the device’s owner to control the home’s temperature for 

more comfortable when back home. In addition, food can be cooked while you are on your way to 
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home with the capability to control the Oven or Microwave remotely to turn it on or off and control 

the temperature.  

In this scenario, some smart appliances, which are part of the smart home, were utilized to validate 

the applicability of the proposed risk-based model in smart home applications. These appliances were 

divided into two groups based on actions that can be performed on these appliances.  

• The first group of appliances can be controlled using three actions: enable (ON), disable 

(OFF), and adjust (to set a value for a certain feature). This group of devices includes Oven, 

Microwave, Washing Machine, TV control, Temperature Control, and others.  

• The second group of appliances can be controlled using two actions: open and close such as 

door and window locks, etc. 

8.3.2.2 Scenario Assumption 

Applying the proposed risk-based access control model on a smart home access control scenario 

needs specifying the four risk factors for each access request. For contextual and real-time attributes 

(user context), time and location were utilized. The time refers to the time of accessing a certain 

device. If the access was done, for example, between 9:00 AM- 17:00 PM, the risk will be high, since 

the owner will be at work at this time. While if the access was done outside this time, the risk will be 

low, since the device’s owner will be at home at this time. The selected time interval can be set 

dynamically using the system owner. The location refers to the location of the requesting user while 

making the access request to access home devices. If the access was made from inside the home, then 

the risk will be low, while if the access was made from outside the home, the risk will be high.  

The value of user context was assumed, as shown in Table 8.7. Only two risk levels were used; low 

and high to represent all combinations of location and time features. The risk of contextual features 

will be low if the device owner is accessing the device from inside the home whether within permitted 

time or not, as this should be the case in real-life scenarios. Also, the risk will be low, if the device 

owner is accessing system within permitted time whether inside or outside the home, since one of 

the significant features of smart devices is to operate and control it remotely. While the risk will be 

high if the access was made outside the permitted time and from outside the home. 

Table 8.7: The value of user context for smart home access control scenario 

Permitted Time  Location 

(In-Home) 

User Context 

Risk level 

Proposed 

Value 
17:00 PM – 08:59 AM 

Yes  Yes  Low  0.25  

No Yes Low 0.25 

Yes  No  Low  0.25 

No  No  High 0.75 
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For the resource sensitivity and action severity, since ON, OFF, and Adjust actions for the first group 

and Open and Close for the second group of appliances are simple actions for most devices, hence, 

the action severity was assumed to be low. In addition, since all smart home appliances are closely 

related to human life and can be used in a malicious way to literally cause people to lose their lives, 

all appliances/ data in this scenario were assumed to be sensitive. Values of action severity and 

resource sensitivity are shown in Table 8.8. Values of resource sensitivity and action severity were 

decided based on Sharma et al. (2012) formula that was discussed earlier in section 8.3.1.3. 

Table 8.8: Values of resource sensitivity and action severity 

 

Group 

 

Smart home appliance  
Resource 

Sensitivity 

 

Action 

 

Action Severity 

 

First 

Oven, Microwave, 

washing machine, TV 

and Temperature Control 

0.8 ON 0.4 

0.8 OFF 0.4 

0.8 Adjust 0.4 

 

Second 

 

Door and window lock 
0.8 Open 0.4 

0.8 Close 0.4 

 

For the risk history, two values; low (0.25) and high (0.75), were assumed since the smart home 

device can be accessed by either the device owner who has a low-risk history or a malicious attacker 

who wants to perform malicious actions to gain access or steal sensitive information. Therefore, two 

risk history values were utilized with all smart home access control scenarios. 

8.3.2.3 Scenario Results  

Deciding the access decision depends on the estimated risk value associated with each access request. 

The estimated risk value is compared against output risk bands to decide whether granting or denying 

access. Access decisions bands were assumed, as depicted in Table 8.9. 

Table 8.9: Access decision bands for smart home access scenarios 

Risk Band Access Decision 
 

0.1 – 0.25 

 

Access Granted  
 

0.26 – 0.75 

 

Access Granted with Monitoring 
 

0.75 – 1.0 
 

Access Denied  
 

After specifying values of the four risk factors of the proposed risk-based model, the output risk 

value for each scenario was estimated using the NFS with the LM learning algorithm, as depicted in 

Table 8.10. For the first group of appliances, most access requests were granted. With 0.4 in the 

action severity and 0.8 in the resource sensitivity, all access requests were granted if the value of user 

context or the risk history was low. This is logical and reflects real-life scenarios, in which if the 

owner is inside the home and requesting to access the device in the permitted time interval (low 

contextual), the access should be permitted. Also, since one of the main features of smart devices is 
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the ability to access it remotely, the proposed model allows the device’s owner to access various 

devices remotely. The device’s owner can perform ON, OFF and Adjust actions if the value of user 

context or risk history was low. 

Table 8.10: Applying the proposed model on access control scenarios of a smart home 

Smart home 

appliance  

 

Context 

Features 

Risk 

History 

 

Action 
Risk Factors Output 

Risk  
 

Access Decision UC RS AS RH 

 

 

Oven, 

Microwave, 

washing 

machine, 

TV 

Control, 

Temperatur

e Control 

and other 

Low Low ON 0.25 0.8 0.4 0.25 0.498 Access Granted with monitoring 

High Low ON 0.75 0.8 0.4 0.25 0.749 Access Granted with monitoring 

Low Low OFF  0.25 0.8 0.4 0.25 0.498 Access Granted with monitoring 

High Low OFF 0.75 0.8 0.4 0.25 0.749 Access Granted with monitoring 

Low Low Adjust  0.25 0.8 0.4 0.25 0.498 Access Granted with monitoring 

High Low Adjust  0.75 0.8 0.4 0.25 0.749 Access Granted with monitoring 

Low High ON 0.25 0.8 0.4 0.75 0.582 Access Granted with monitoring 

High High ON 0.75 0.8 0.4 0.75 0.808 Access Denied  

Low High OFF  0.25 0.8 0.4 0.75 0.582 Access Granted with monitoring 

High High OFF 0.75 0.8 0.4 0.75 0.808 Access Denied  

Low High Adjust  0.25 0.8 0.4 0.75 0.582 Access Granted with monitoring 

High High Adjust  0.75 0.8 0.4 0.75 0.808 Access Denied  

 

 

Door and 

window 

lock 

Low Low Open  0.25 0.8 0.4 0.25 0.498 Access Granted with monitoring 

High Low Open  0.75 0.8 0.4 0.25 0.582 Access Granted with monitoring 

Low Low Close 0.25 0.8 0.4 0.25 0.498 Access Granted with monitoring 

High Low Close 0.75 0.8 0.4 0.25 0.749 Access Granted with monitoring 

Low High Open  0.25 0.8 0.4 0.75 0.582 Access Granted with monitoring 

High High Open  0.75 0.8 0.4 0.75 0.808 Access Denied  

Low High Close 0.25 0.8 0.4 0.75 0.582 Access Granted with monitoring 

High High Close 0.75 0.8 0.4 0.75 0.808 Access Denied  
 

On the other hand, the access was denied for this group of devices only if values of both user context 

and risk history were high. This is also logical as it reflects the fact that the malicious user with a 

high risk history who requested to access the device from outside the home and outside the permitted 

time interval should not able to access the device.  

For the second group of devices, in the same way, most access requests were granted. The access 

was granted for Open and Close actions if the value of user context or risk history was low. This 

allows the device’s owner to access various devices either from inside or outside the home easily and 

securely. In addition, the access was denied to perform Open and Close actions only if values of both 

user context and risk history were high. 

8.3.2.4 Scenario Discussion  

Applying the proposed risk-based model on smart home access scenarios demonstrated it can provide 

several advantages over existing access control models. Using the contextual and real-time features 

involving time and location demonstrated it can provide dynamic and flexible access decisions.  
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The proposed risk-based model provides the expected functionality like existing access control 

models in which it allows the owners to perform all actions on various devices as soon as they are at 

the home. In addition, it allows the device’s owner to access various appliances and perform various 

actions on different appliances remotely and securely. 

For both groups of appliances, the access was granted with monitoring access sessions to detect and 

prevent malicious actions. Monitoring access sessions using smart contracts to detect and prevent 

malicious actions in the smart home provides an effective solution to control access to smart 

appliances. In addition, one of the important features of the proposed risk-model is the flexibility of 

selecting risk decision bands, which make the device’ owner has full control of granting or denying 

access. As a conclusion, the results of the access control scenarios in the smart home demonstrated 

that the proposed risk-based access control can be applied efficiently and effectively in smart home 

applications.  

8.3.3 Access Scenario 3: Network Router  

To validate the applicability of the proposed risk-based access control model in real-world access 

applications, access control scenarios of the network router will be presented to show different access 

decisions in various situations based on the estimated risk value for each access request. The network 

router is an electronic device designed to connect at least two networks and forwards packets among 

them based on the information existed in the packet header and the routing table. The router is a 

fundamental element to the operation of the Internet and other complex networks (Kim et al., 2014; 

Shuzhao & Zhaohui, 2014). 

8.3.3.1 Scenario Description 

The network router is one of the significant elements to set up a network. There are two methods to 

access a network router; console and telnet connection. Router console connection is used to connect 

end devices, such as PC to the router to manage its configurations using a rollover cable connection. 

While telnet connection is used to configure the router remotely through a router virtual terminal.  

To provide access control scenarios of the network router, three parameters need to be specified: 

• Router data to be accessed: a user will access the router only to perform certain operations 

on certain data. Therefore, different router data and operations should be specified. 

• Values of four risk factors of the proposed risk model: to calculate the risk value for each 

access request, values of user context, resource sensitivity, action severity and risk history 

need be specified. 

• Router acceptable risk values: after estimating the risk value associated with the access 

request, the access decision should be decided to either grant or deny the access. 
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8.3.3.2 Scenario Assumption 

To determine values of resource sensitivity and action severity of the network router, different types 

of data of the router need to be specified. Data that can be accessed through the router can be 

categorized as follows: 

• Non-Volatile Random-Access Memory (NVRAM): is used to store start-up configuration 

files of the router. 

• Dynamic Host Configuration Protocol (DHCP): allocates IP address information to 

various devices in the network dynamically. 

• Flash Memory: is used to store the router internetworking operating system. 

• Configuration Passwords: are router passwords that are required to enter different router 

configuration modes to add or edit configuration commands. 

• Routing Table: is used by the router to determine the best path to forward packets to its 

destination. Without routing table, all router packets will be discarded. 

The router data were classified in terms of actions severity and data sensitivity, as shown in Table 

8.11. The data sensitivity level is based on the action to be performed. For instance, “View” operation 

is not sensitive while “Delete” operation is sensitive on the same NVRAM data. 

Table 8.11: Data sensitivity with different actions regarding router data 

Router Data Action Sensitivity 

 

NVRAM data 

 

View Not Sensitive 

Delete Sensitive 

Modify Sensitive 

 

DHCP data 

View Not Sensitive 

Modify Sensitive 

Create Sensitive 

Flash Data Delete  Not Sensitive 
 

Configuration passwords 
View Sensitive 

Modify Sensitive 
 

Routing table  
View  Not Sensitive 

Delete  Sensitive 

 

The values of action severity and data sensitivity were decided using Sharma et al. (2012) formula 

and Table 8.2 that were discussed earlier in section 8.3.1.3. For the user context, the location of the 

requester was utilized to estimate the risk value associated with the user context. Only two values; 

low and high, was used to indicate whether the requester is at the router location or not at the time of 

making the access request. So, if the requesting user is at the physical location of the router, the risk 

of user context will be 0.25, otherwise, the risk of the user context will be 0.75. 
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8.3.3.3 Scenario Results  

Deciding the access decision depends on the estimated risk value associated with each access request. 

The estimated risk value is compared against output risk bands to decide whether granting or denying 

access. The same risk decision bands employed in the healthcare scenario was utilized in this 

scenario, as depicted in Table 8.4. After specifying values of the four risk factors of the proposed 

risk-based model, the output risk value for each access scenario was estimated using the NFS with 

the LM learning algorithm. 

8.3.3.3.1 Console Connection 

Suppose a user wants to manage configurations of the router through the console connection. The 

router was initially configured but the user wants to access the router to perform other operations. 

Since the user has the ability to reach the physical location of the router and attach the rollover cable 

to connect the router to his/her end device, so he/she will be considered as a trusted user with low 

risk history and low user context value. Therefore, values of risk history and user context were 

assumed 0.25. In addition, values of resource sensitivity and action severity were calculated using 

Sharma et al. (2012) formula with a risk probability of  0.4. Table 8.12 shows different access control 

scenarios of the router through the console connection. 

Table 8.12: Access control scenarios of the network router through the console connection  

 

Router Data 

 

Action 
Risk Factors 

 

Output 

Risk  

 

Access Decision 
UC RS AS RH 

 

NVRAM data 

View 0.25 0.4 0.4 0.25 0.358 Access Granted with Monitoring 

Delete 0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 

Modify 0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 

 

DHCP data 

View 0.25 0.4 0.4 0.25 0.358 Access Granted with Monitoring 

Modify 0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 

Create 0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 

Flash Data Delete  0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 

Configuration 

passwords 

View 0.25 0.4 0.4 0.25 0.358 Access Granted with Monitoring 

Modify 0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 

 

Routing table 
View  0.25 0.4 0.4 0.25 0.358 Access Granted with Monitoring 

Delete 0.25 0.8 0.8 0.25 0.600 Access Granted with Monitoring 
 

The estimated risk value for different scenarios to access the router through the console connection 

was small, so all access requests were granted with monitoring. This seems logical to the real-world 

scenarios as if the user has the ability to reach the router location and attach the cross over cable to 

the router, the user should be able to perform all various actions on various data whether sensitive or 

not sensitive. 
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8.3.3.3.2 Telnet Connection 

Consider a user who wants to manage configurations of the router remotely. The router was initially 

configured but the user wants to access the router to perform other operations. Since the user is 

accessing the router from a remote location, the user context will be high. Also, the user risk history 

was assumed to have two values (high and low) as the router owner can access the router remotely 

and the malicious user as well. Therefore, the risk history has two values 0.25 and 0.75. The access 

to the router via the telnet connection will be similar to console connection in terms of values of 

actions severity and data sensitivity on the router data. Also, the risk probability was assumed to be 

0.4. 

Table 8.13: Access control scenarios of the network router through the telnet connection  

 

Router Data 

 

Action 

Risk Factors  
 

Output 

Risk  

 

Access Decision UC RS AS RH 

 

 

NVRAM data 

View 0.75 0.4 0.4 0.25 0.609 Access Granted with Monitoring 

0.75 0.4 0.4 0.75 0.668 Access Granted with Monitoring 

Delete 0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  

Modify 

 

0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  

 

 

DHCP data 

View 0.75 0.4 0.4 0.25 0.609 Access Granted with Monitoring 

0.75 0.4 0.4 0.75 0.668 Access Granted with Monitoring 

Modify 

 

0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  

Create 

 

0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  

Flash Data Delete 0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  

 

Configuration 

passwords 

View 

 

0.75 0.4 0.4 0.25 0.609 Access Granted with Monitoring 

0.75 0.4 0.4 0.75 0.668 Access Granted with Monitoring 

Modify 

 

0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  

 

Routing table 

View 0.75 0.4 0.4 0.25 0.609 Access Granted with Monitoring 

0.75 0.4 0.4 0.75 0.668 Access Granted with Monitoring 

Delete 0.75 0.8 0.8 0.25 0.822 Access Denied  

0.75 0.8 0.8 0.75 0.880 Access Denied  
 

Table 8.13 shows access control scenarios of the network router through the telnet connection. Most 

access requests were denied. This is because values of user context and risk history were assumed to 

be high. Only view action was granted for different router data when the risk history either high or 

low except configuration passwords. This seems to be fine in terms of security as it is a view/read 

operation, which will not cause any harm especially these data have been categorized as not sensitive. 
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For configuration password, since viewing these passwords will allow the user to access most system 

resources, it has been categorized as sensitive, so the resource sensitivity and action severity were 

assumed to be 0.8. This makes the output risk to be high, and the access was denied.  

The access was granted only when values of risk history, action severity, and resource sensitivity 

were low. In other words, the access was granted only when the value of the risk history was 0.25 

and values of both action severity and resource sensitivity were 0.4. Most access via the telnet 

connection was denied. This is due to the fact that Telnet as a protocol has several drawbacks in term 

of security. For instance, it uses a plaintext to send or receive data without any encryption. This leads 

to several security attacks such as eavesdropping and snooping which are easier to employed by 

malicious attackers. 

8.3.3.4 Scenario Discussion 

Applying the proposed risk-based model on the network router access scenarios demonstrated it can 

provide the expected functionality like other access control system with adding new advantages. One 

of these advantages is the use of contextual and real-time features to provide access decisions. The 

contextual information plays a significant role to decide access decisions. For example, when the 

user requested to perform “Delete” action on the NVRAM data and the risk metric of contextual 

features was 0.25, the output risk value was 0.6 and the access was granted. While when the user 

requested to perform the same action on the same data but with a high risk metric for contextual 

features, which was assumed 0.75, the output risk value was 0.8217, and the access was denied. 

The proposed risk-based model provided the expected functionality that allows the owner of the 

router to perform all actions on various data as soon as he/she can reach to the location of the router 

and attach the rollover cable to it. In addition, all access was granted with monitoring access sessions 

to detect and prevent malicious actions. This monitoring feature adds another layer of security to 

secure access to various data of the network router. In conclusion, the results demonstrated that 

proposed risk-based access control is applicable to the access control scenarios of the network router 

and it provides efficient and effective security solution 

8.3.4 Comparison with Current Risk Models  

Current access control models are based on static and predetermined policies that cannot satisfy the 

required flexibility needed in various IoT applications. While the proposed risk-based access control 

model provides a dynamic approach by using real-time and contextual features collected from the 

IoT environment while making the access request to make the access decision. Reviewing the 

existing and related risk-based access control models demonstrated that no previous research has 

employed real-time features collected from the IoT environment while making the access request in 

IoT applications, as depicted in Table 8.14. 
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Table 8.14: Risk factors utilized to build risk-based access control models 

 

Related Model 

Subject 

clearance 

Object 

clearance 

Resource 

Sensitivity 

Action 

Severity 

Risk 

History 

Subject 

Trust 

Risk 

Policies 

Real-time 

Features 

Zhang et al. 

(2006) 

    

 

    

Britton & 

Brown (2007) 

 

 

 

 
   

 

 

 
  

Chen et al. 

(2007) 

 

 

 

 
      

Lee et al. (2007)         

Bertino & Lobo 

(2010) 

 

 

 

 
      

Rajbhandari & 

Snekkenes 

(2011) 

 

 

   

 

    

Wang & Jin 

(2011) 

   

 
     

Shaikh et al. 

(2012) 

     

 
   

Sharma et al. 

(2012) 

   

 

 

 

 

 
   

Khambhammett

u et al. (2013) 

   

 
   

 
  

Li et al. (2013)    

 

 

 

 

 
   

Namitha et al. 

(2015) 

 

 
       

Choi et al. 

(2015) 

    

 
    

Chen et al., 

(2016) 

     

 

 

 
  

Dos Santos et 

al., (2016) 

       

 
 

Abomhara et 

al., (2018) 

  

 
    

 
  

Proposed 

Model  

   

 

 

 

 

 
   

 
 

In addition, the proposed risk-based access control model was compared with related risk-based 

access control models that utilized the fuzzy logic system in the risk estimation process, as depicted 

in Table 8.15. The proposed risk-based model provides a dynamic and context-aware approach by 

using real-time and contextual features associated with the user at the time of making the access 

request as a risk factor besides resource sensitivity, action severity and risk history to estimate the 

risk value associated with each access request to decide the access decision.  

In addition, fuzzy rules are the core of the fuzzy logic system which need to be built accurately to 

yield a precise risk value for each access request. Although fuzzy rules are built on expert knowledge, 

there is no evidence or any details about using security experts to build fuzzy rules in related fuzzy 

risk-based access control models discussed in the literature. In this research, Twenty IoT security 

experts from inside and outside the UK were interviewed to build fuzzy rules. This number of experts 

adds more robustness and accuracy to the research. In addition, interviewing IoT security experts 
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reduced the subjectivity of the risk estimation process. Indeed, the subjectivity was not completely 

eliminated. However, it is unlikely that a method with no subjectivity will ever exist for risk analysis. 

Table 8.15: Comparison between the proposed model with existing fuzzy-based risk models 

Items Chen et al. (2007) Ni et al. (2010) Li et al. (2013) Proposed Model 

 

Risk factors 

Difference between 

subject security level 

and object security 

level  

Object security 

level and subject 

security level  

 

Data sensitivity, 

action severity, and 

user risk history  

Contextual features of the 

user, resource sensitivity, 

action severity and risk 

history 

Context-

awareness 

Not Context-aware Not Context-aware Not Context-aware Context-aware 

Fuzzy rules  Fuzzy rules were 

built by authors 

Fuzzy rules were 

built by authors 

Fuzzy rules were 

built by authors 

Twenty IoT security experts 

were interviewed to build 

fuzzy rules  

Subjectivity  High subjectivity  High subjectivity  High subjectivity  Less subjectivity 

Validation No proof of 

validation  

No proof of 

validation  

No proof of 

validation  

Validated by Twenty IoT 

security experts 

Scalability Not Tested Not Tested Not Tested Tested with a large number 

of access requests 

Solution to 

cold start  

N/A N/A Not Exist  Exist, a solution to cold start 

was provided 

Learning 

Capability 

Not Exist  Not Exist  Not Exist  Exist as ANFIS and NFS 

were applied 

Monitoring 

Capability 

Not Exist  Not Exist  Not Exist  Smart contracts were 

utilized to monitor access 

sessions 
 

In addition, to overcome the time overhead of the fuzzy logic system, the proposed risk estimation 

technique was implemented using ANFIS and NFS. After comparing processing time with a large 

number of access requests, the resultant NFS model demonstrated it provides fast and scalable risk 

estimation technique. Also, the use of ANFIS and NFS with the proposed risk-based model adds the 

learning capability that allows the proposed risk-based model to adapt to new changes of various IoT 

applications.  

Lastly, utilizing smart contracts to monitor access sessions provided significant improvements over 

existing access control models. Reviewing related risk-based access control models demonstrated 

that no previous research has employed smart contracts in this context. The ability to detect and 

prevent malicious attacks in a timely manner provided another layer of security. In addition, smart 

contracts added a new dimension to the next research about integrating the blockchain technology 

with existing centralized models to provide better and effective security solutions. 
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8.4 Summary  

This chapter has presented the simulation of smart contracts and the evaluation of the proposed risk-

based model. The chapter was divided into two main parts. The first part discussed smart contracts 

in access monitoring. Existing access control models do not provide a way to detect malicious actions 

and protect system resources after granting access. While the proposed risk-based model added 

abnormality detection capability by utilizing smart contracts to track and monitor user’s activities 

during access sessions to detect and prevent malicious actions. MATLAB Simulink was utilized to 

simulate the operation of smart contracts to validate its efficiency and effectiveness to monitor access 

sessions. After discussing different scenarios, the results demonstrated that smart contracts can 

provide an effective and efficient way to monitor user activities and prevent malicious actions in a 

timely manner. The second part of the chapter discussed the evaluation of the proposed risk-based 

model using access control scenarios of three IoT applications including healthcare, smart home and 

network router. The results demonstrated that the proposed risk-based model is applicable to various 

IoT application and it provides efficient and effective security solution. The next chapter concludes 

the thesis and present future work. 
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Chapter 9: Conclusion and Future Work 

This chapter summarises the results and findings reached to answer the research questions. It also 

discusses the contributions made by this research. Future research directions are also explored. 

9.1 Conclusion  

Currently, the IoT becomes a broadly examined subject among researchers, specialists and experts. 

It is considered as the next stage of the evolution of the Internet. Although the Internet has passed 

several stages since it was invented, as it switched from a couple of PCs communicating with each 

other to billions of computational devices and billions of cell phones over time. With the IoT, we are 

moving towards a phase where almost all items in our environment will be connected and 

communicate together with minimum human efforts. The IoT is considered as a universal presence 

in the environment that contains a variety of things that can be connected whether using wireless and 

wired connections. These things have a unique addressing scheme that allow them to interact and 

cooperate with others to create new IoT applications and services such as smart homes, smart cities, 

smart energy and the smart grids, smart transportation and traffic management and control and others. 

The IoT has several benefits in various domains, but it also creates multiple issues that need to be 

addressed to continue adopting IoT applications. One of these issues is security that has a major 

impact literally on people lives. This is due to the fact that the IoT is a dynamic system in nature in 

which every poorly secured object can disturb the security and resilience of the entire system, as they 

are connected like a chain. The ease of connection and access of IoT devices open doors for severe 

security issues especially with the large-scale distribution of heterogamous devices, their ability to 

connect to other devices without requesting permissions or even notifying their owners and 

probability of flooding these devices with severe security threats. 

One of the solutions to address security issues in the IoT system is to build an efficient and effective 

access control model. This model not only limits access to authorised users but also prevents 

authorised users from accessing system resources in an unauthorised way. However, the existing 

access control models are rigid and use static policies to provide access decisions. This static 
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approach gives the same result in different situations, which cannot provide an adequate level of 

security in a dynamic system like the IoT. Therefore, there is a need to adopt dynamic access control 

models for the IoT. These models use not only access policies but also real-time information to 

provide access decisions. One of the dynamic models is risk-based access control. This model uses 

the security risk value associated with the access request to determine the access decision. This model 

solves the issue regarding the flexibility in accessing system resources. In addition, it provides a 

dynamic and efficient solution to unpredicted situations, especially in healthcare and military 

applications, where granting access can save thousands of lives. 

The research questions were addressed through this research study. The findings for each research 

question are briefly presented as follows: 

The main research question was: 

RQ: What is the appropriate adaptive risk-based access control model for the IoT system? 

The major target of this research was to develop a dynamic and adaptive risk-based access control 

model that can provide an effective security solution for various IoT applications. Therefore, a 

dynamic and adaptive risk-based access control model was proposed, as discussed in section 4.3. 

This model utilizes contextual and real-time features collected from the IoT environment while 

making the access request to determine access decisions. It has four inputs; user contextual features, 

resource sensitivity, action severity and risk history. In addition, to detect and prevent abnormal 

misuse from authorized users during the access session, the proposed model utilized smart contracts 

to monitor user’s activities and adjust their risk values adaptively based on their actions. 

The main research question was divided into six sub-questions as follows: 

SRQ1: What is the appropriate risk estimation technique to estimate the risk associated with the 

access request? 

Specifying the optimal risk estimation technique to assess security risks of access control operations 

in IoT systems faces several issues. For example, the core drive of the risk estimation process is to 

expect the future likelihood of information disclosure that is corresponded to the current access. 

Identifying this likelihood in the absence of a dataset is a very difficult task. In addition, the IoT 

system requires a flexible and scalable risk estimation technique that can adapt to growing rates of 

the number of IoT devices and changing conditions during making access decisions. After reviewing 

related risk estimation techniques in the literature, the fuzzy logic approach with expert judgment 

was selected as the appropriate risk estimation technique, as discussed in chapter 3. In addition, 

Twenty IoT security experts from inside and outside the UK were interviewed to validate the 

proposed risk-based access control model and build fuzzy rules. The proposed risk estimation 

technique was implemented using MATLAB, as discussed in chapter 5. The results demonstrated 
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that the fuzzy logic system with expert judgment generates accurate and realistic risk values for 

access control operations.  

SRQ2: What are acceptable risk values to make the access decision in IoT applications? 

The risk-based access control model works by estimating the security risk value associated with each 

access request. Then, the estimated risk value is compared with a threshold risk value to decide the 

access decision. After reviewing the literature, most presented risk-based access control models 

suggested using a threshold risk value to grant or deny access without providing any details about 

how to decide this threshold risk value in different applications. Therefore, in this research, three risk 

decision bands were proposed involving allow, allow with risk monitoring, and deny. Then, twenty 

IoT security experts were interviewed to decide acceptable risk values for risk decisions bands, as 

discussed in section 5.4. 

SRQ3: How to provide plug and play risk-based model that can work when first used or connected? 

As discussed earlier in section 4.2, some related risk-based access control models used the risk 

history as a risk factor to determine access decisions. However, values of risk history will not be 

available at the start of setting up the new risk-based model, which will make the system unusable 

until collecting these values. To overcome this cold start problem, a solution was provided by adding 

additional twenty-seven fuzzy rules that use only three risk factors (user context, resource sensitivity 

and action severity). To validate these rules, ten IoT security research fellow from the University of 

Southampton were interviewed, as discussed in section 5.6. The results demonstrated that the 

proposed risk-based model can work properly when first used or connected without reconfiguration 

or adjustment. 

SRQ4: How to provide fast and scalable risk estimation technique to handle the constant increase in 

the number of IoT devices? 

The IoT system grows significantly. So, the risk estimation technique should be able to handle the 

growing rate of the number of IoT devices. As discussed in section 5.7, a set of experiments was 

introduced to evaluate the efficiency of the proposed fuzzy risk estimation technique. These 

experiments were utilized to measure the response time with different number of access requests and 

determine the most efficient MF, defuzzification method, and rule aggregation operator. The results 

of these experiments demonstrated that the scalability of the proposed risk estimation technique is 

questionable. In addition, it lacks the ability to learn and cannot be adjusted to new IoT environments. 

To solve this issue, ANFIS and NFS were utilized to implement the risk estimation technique, as 

discussed in chapter 6 and chapter 7 respectively. Several experiments were carried out to train the 

ANFIS model using hybrid and backpropagation learning methods at three different number of 

epochs; 20, 100, and 300. The results demonstrated that the TrapMF with the hybrid learning method 

at 20 epochs is the optimal combination to implement the ANFIS model of the proposed risk 
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estimation technique. In addition, several experiments were carried out to train the NFS model of the 

proposed risk estimation technique using four different learning methods. The results demonstrated 

that the NFS model with the LM learning method is the best approach to implement the proposed 

risk estimation technique to increase the accuracy, reduce the processing time needed to provide 

access decisions in IoT applications and adapt to new changes of various real-world IoT applications. 

SRQ5: How will the user/agent activities be monitored during the access session? 

Most existing access control models did not employ a method to detect malicious actions after 

granting access. Therefore, the proposed risk-based model added abnormality detection capability 

by utilizing smart contracts to track and monitor user’s activities to detect and prevent malicious 

actions during access sessions. MATLAB Simulink was utilized to simulate the operation of smart 

contracts to validate its efficiency and effectiveness to monitor access sessions, as discussed in 

section 8.2. After discussing different scenarios, the results demonstrated that smart contracts provide 

an effective and efficient way to monitor user activities and prevent malicious actions in a timely 

manner. 

SRQ6: To what extent is the proposed risk-based model applicable to real IoT scenarios? 

The ultimate target of any new approach is to guarantee that it is applicable in real-world scenarios. 

Hence, the proposed risk-based model was evaluated using access control scenarios of three IoT 

applications including healthcare, smart home and network router, as discussed in section 8.3. The 

results demonstrated that the proposed risk-based model is applicable to various IoT application and 

it provides efficient and effective security solution. 

9.2 Contributions  

This research made the following contributions that can be beneficial to the research community: 

• This research provided a novel dynamic and adaptive risk-based access control model that 

uses contextual and real-time information collected from the IoT environment while making 

the access request to estimate the risk and determine the access decision. This model can be 

adapted to unexpected situations and provide a flexible way to determine access decisions in 

various IoT application.  

• Providing a clear and accurate risk estimation technique for obtaining a quantitative risk 

value for each access request is one of the main contributions of this research. Integrating 

the fuzzy logic system with expert judgment has demonstrated that it can provide accurate 

and realistic risk values for access control operations. In the absence of a dataset that 

represents risk probabilities of access control scenarios and its impact, IoT security domain 

experts were interviewed to provide predicted measures of risk values according to their 
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knowledge and experience in the form of linguistic variables. A clear and detailed 

implementation of the risk estimation technique using the fuzzy logic system with expert 

judgment was presented in this research. 

• This research proposed three risk decision bands to grant or deny access. The first band 

grants access without monitoring, the second band grants access with monitoring, while the 

third band denies access. In this research, twenty IoT security experts from inside and outside 

the UK were interviewed to provide acceptable risk values for the three risk decision bands. 

• Providing a risk-based model that can work when first used or connected without 

adjustments was one of the contributions of this research. One of the issues associated with 

existing risk-based access control models was the use of risk history as one of the risk factors. 

So, the risk-based model cannot operate immediately as previous risk values are needed. This 

research resolved this issue by presenting a solution that is based on running the proposed 

risk-based model immediately before collecting previous risk values. 

• This research integrated the ANN with the fuzzy logic system to tune fuzzy variables and 

use parallel computation and learning abilities of the ANN to provide a scalable and fast risk 

estimation technique that can cope with the constant increase of the number of IoT devices 

and provide access decisions in a timely manner. The ANFIS and NFS were utilized to 

implement the risk estimation technique. The results demonstrated that combining ANN with 

the fuzzy logic system have outperformed results produced by the fuzzy logic system in 

which it takes only one-sixth of the time taken by the fuzzy logic system to process an access 

request. It also added the learning capability that allows the risk estimation technique to adapt 

to new changes of various IoT applications. 

• This research provided abnormality detection capability by using smart contracts to track 

and monitor user activities during the access session to detect and prevent malicious actions. 

MATLAB Simulink was utilized to simulate the operation of smart contracts to validate its 

efficiency and effectiveness to monitor access sessions. The results demonstrated that smart 

contracts can be used to provide an effective monitoring technique.   

9.3 Future Work  

The work provided by this research can be used as a foundation for future research to develop 

dynamic and adaptive risk-based access control models. Below are some of the proposed research 

directions. 
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9.3.1 Deep Learning Techniques  

One of the major stages to build a risk-based access control model for the IoT is the risk estimation 

process. This process is based on estimating the possibility of information leakage and the value of 

that information. For the access control context, quantitative risk estimation approaches are only 

needed to provide a numeric value to determine the access decision. Typically, there is no universal 

and best method for conducting risk analysis. In addition, providing an accurate and realistic risk 

value for each access request for the dynamic IoT system is a very difficult process. Although 

combining the ANN with the fuzzy logic system has provided an efficient and fast way to estimate 

security risks in the IoT, deep learning techniques can be utilized to provide more improvements in 

terms of accuracy and performance. Deep learning provides a scalable and efficient way to teach the 

system by example to perform automatic feature extraction from raw data (Aziz & Dowling, 2019). 

It is the main technology for enabling a variety of applications such as speech recognition, social 

network filtering, driverless cars, bioinformatics, and audio recognition. 

Like all learning approaches, deep learning techniques provide better results with large datasets. With 

the availability of a dataset containing more than two million data records in this research, deep 

learning algorithms are expected to provide better results in terms of accuracy, performance and 

scalability. 

9.3.2 Comparative Study of Risk Estimation Techniques  

Determining a suitable risk estimation technique to implement an efficient and scalable risk-based 

access control model for the IoT system is not easy. In this research, the fuzzy logic system with 

expert judgment, ANFIS and NFS were utilized to implement the risk estimation process. However, 

there are other machine learning techniques that can be adopted. Also, there are several deep learning 

algorithms that can provide better results. With the availability of a dataset in this research, a 

comparative study between different approaches can be utilized to determine the best approach for 

each context of various IoT applications in terms of accuracy, performance and scalability.   

9.3.3 Integration with Standard Access Model  

Integrating the proposed adaptive risk-based access control model with existing standards is one of 

the main objectives of future work. One of the popular standard access control frameworks is the 

eXtensible Access Control Markup Language (XACML) (OASIS, 2003). It is considered as one of 

the most promising policy languages dealing with dynamic and complex systems. It is broadly 

accepted by the majority of experts, communities and organizations since it is compatible with most 

access control models such as ACL, RBAC, and ABAC (Chen et al., 2013). Implementing the 

proposed risk-based access control model with attribute-based XACML model will add more 

advantages by utilizing both risk values associated with access request and user attributes to make 
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the access decision, as shown in Figure 9.1. It will also facilitate the integration of the proposed 

risk-based model with existing access control approaches such as ABAC and RBAC.  

 

Figure 9.1: Flow of the XACML model of the proposed risk-based access control model 

9.3.4 IoT Testbed for Practical Scenarios 

The testbed is one of the best ways to test the applicability of new and innovative solutions on 

real-world operating conditions. It provides a good tool to perform various experiments to discover 

new technologies for generating ground-breaking products or techniques with the potential to 

produce new international standards (Adjih et al., 2015). Although twenty IoT security experts 

validated the proposed risk-based access control model, IoT testbed can provide an additional tool to 

carry out practical experiments on how the proposed risk-based model can provide access decisions 

dynamically based on contextual and real-time features collected from the IoT environment. 

9.3.5 Formal Methods for Smart Contracts  

This research introduced smart contracts to monitor user activities during the access session to detect 

and prevent malicious actions. To the best of the researcher’s knowledge, no study has been used 

smart contracts in this context. Although MATLAB Simulink provided a simulation of the smart 

contract to test the system response needed to detect abnormal and malicious activities, more 

evaluation metrics to test the applicability of smart contracts in this context are needed. Therefore, 

formal methods can be utilized to evaluate the effectiveness of smart contracts in monitoring user 

activities in the IoT context. Formal methods are used to model complex systems, software or 

hardware, as mathematical entities and provide a mathematical proof to evaluate the system 

performance (Gaudel, 2017).  
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9.3.6 Privacy-aware Risk and Trust Model 

Risk-based access control model provides a dynamic way to determine access decisions by utilizing 

the security risk value associated with each access request as the primary criterion. However, very 

little attention was given to privacy, which is very essential especially in the IoT context. A 

privacy-aware risk and trust model can be used to utilize the privacy risk value and the user trust to 

decide access decisions. The privacy risk refers to the impact of violating the privacy of data to be 

accessed by the requester. There are two main approaches to estimate data privacy: differential 

privacy and syntactic approaches. So, the goal is to determine the suitable approaches to estimate the 

privacy risk value for each access request. On the other hand, trust plays an important role to grant 

or deny access. In this access control model, contextual and real-time features associated with the 

access request will be used to estimate a trust value for each user. Then, the privacy risk value will 

be compared against the trust value to determine the access decision for each access request. 
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Appendix A  Validation of Proposed Model and Fuzzy 

Rules 

This appendix contains all material of the expert interview that was carried out to validate the 

proposed risk-based access control model, create fuzzy rules and determine values of access decision 

bands. It involves contacting experts, information sheet of the interview, and consent form. This 

followed by presenting interview questions.  

A.1 Contacting Experts 

 

 

 

 

 

 

 

 

 

  

 

 

Dear xxx. 

My name is Hany Atlam; I am a PhD student in Computer Science at the University of 

Southampton. I am working on developing an adaptive risk-based access control model for 

the Internet of Things (IoT). I am writing to invite you to participate in an expert interview 

to validate the proposed risk-based model and confirm a set of fuzzy rules based on your 

experience and knowledge of security and IoT applications. The interview will be via 

Skype and it will be about 40 minutes and it can be arranged at your convenient time. The 

results will help in building a dynamic risk-based access control model that can adapt to 

unpredicted situations. I sincerely hope that you will consider participating in this 

interview. I will be contacting you in the near future to confirm your interest in being 

interviewed. Please feel free to contact me with any questions. Please find the attached 

information sheet about the interview for your reference. 

Sincerely, 
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Participant Information Sheet 

 

Ethics reference number:  ERGO/FPSE/25091 Version: 1 Date: 27/06/2017 

Study Title: Developing an Adaptive Model for Security Risk-based Access Control in the 

Internet of Things   

Investigator: Hany Atlam 

Please read this information carefully before deciding to take part in this research. If you are happy 

to participate, you will be asked to sign a consent form. Your participation is completely voluntary. 

What is the research about?   

This research is for my PhD. I have created a risk-based access control model for the Internet of 

Things (IoT) system. Risk estimation process is one of the major tasks to implement this model. I 

will use the fuzzy logic system to estimate the risk value associated with each access request. By the 

means of this interview, I wish to validate the proposed risk-based model and confirm fuzzy rules 

that will be used to implement the risk estimation process. 

Why have I been chosen?   

You have been chosen because of your knowledge and experience in cyber security and IoT 

applications.   

What will happen to me if I take part?   

If you decided to take part in this research, you will spend about 40 minutes for completing the 

questionnaire or answering the questions in an interview format. 

Are there any benefits in my taking part?  

There are no benefits for you to take part in this work. Your participation is completely voluntary 

Are there any risks involved?   

No risks are involved in this research. 

Will my data be confidential?  

All data collected will be anonymous and will be used only for the purposes of research. Data will 

be held on a password-protected computer so nobody except the researcher has access to it. The 

collection of data complies with the University of Southampton policy under the data protection Act. 

What happens if I change my mind?   

You may withdraw at any time and for any reason. You may access, change, or withdraw your data 

at any time and for any reason prior to its destruction.   

What happens if something goes wrong? Should you have any concern or complaint, contact me 

(Hany Atlam, hfa1g15@soton.ac.uk), otherwise please contact my supervisor prof. Gary Wills 

(gbw@ecs.soton.ac.uk). Otherwise please contact the FPSE Office (ergopse@soton.ac.uk) or any 

other authoritative body such as the Research Integrity & Governance Team (rgoinfo@soton.ac.uk). 

mailto:hfa1g15@soton.ac.uk
mailto:gbw@ecs.soton.ac.uk)
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Consent Form  

 

Ethics reference number:  ERGO/FPSE/25091 Version: 1 Date: 27/06/2017 

Study Title: Developing an Adaptive Model for Security Risk-based Access Control in the 

Internet of Things   

Investigator: Hany Atlam 

 

Please initial each statement if you agree: 

I have read and understood the Participant Information (version 1 dated 

12/01/2017) and have had the opportunity to ask questions about the study. 

 

I agree to take part in this study.  

I understand my participation is voluntary and I may withdraw at any time and 

for any reason. 

 

 

Data Protection 

I understand that information collected during my participation in this study is completely 

anonymous / will be stored on a password protected computer/secure University server 

and that this information will only be used in accordance with the Data Protection Act 

(1998).  The DPA (1998) requires data to be processed fairly and lawfully in accordance 

with the rights of participants and protected by appropriate security.  In addition, the DPA 

(1998) makes provision for an appropriate authority, such as the Police, to access data 

held by the study for the purpose of… 

 

Name of participant (print name)…………………………………………………… 

Signature of participant……………………………………………………………… 

Date…………………………………………………………………………………… 
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A.2 Interview Questions  

The main purpose of this research is to develop a risk-based access control model for the Internet of 

Things (IoT) applications. This model has the ability to permit or deny access requests dynamically 

based on the estimated risk value of each access request. One of the major tasks of implementing our 

model is the risk estimation process. We decided to utilize the fuzzy logic system with expert 

judgment as the appropriate risk estimation technique. One of the essential steps to implement fuzzy 

logic is to set the appropriate fuzzy rules. Your response and expertise will help us to validate the 

proposed model, confirm fuzzy rules and decide acceptable risk values to provide the access decision. 

All provided information will be used for research purposes only. Your participation is greatly 

appreciated.  

Part1: Background Questions 

1.1 What is your level of education? 

 

☐ Bachelor degree 

☐ Master degree 

☐ Doctoral degree 

☐ Others, please specify…………………………… 

1.2 Which of the following describe your job role? 

☐ Security Administrator 

☐ Security Analyst 

☐ Security Specialist 

☐ Senior Cybersecurity Engineer 

☐ Security researcher 

☐ Others, please specify…………………………… 

 

1.3 Which of the following IoT applications are you familiar with? 

☐ Connected industry 

☐ Smart city 

☐ Smart energy 

☐ Connected car 
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☐ Smart home 

☐ Smart agriculture 

☐ Healthcare 

☐ Smart retail 

☐ Smart supply chain 

☐ Others, please specify…………………………… 

1.4 How long have you been working in the field of cyber security? 

☐ Less than 2 years 

☐ 2 – 5 years 

☐ 6 – 10 years 

☐ More than 10 years 

1.5 Do you have background knowledge about the fuzzy logic system? 

☐ Yes 

☐ No 

☐ Other, please specify ………………………… 

 Part 2: Validation of Proposed Model  

We proposed a dynamic risk-based access control model. This model uses real-time and contextual 

features associated with the user while making the access request with resource sensitivity, action 

severity, and risk history as inputs/risk factors to estimate the security risk value associated with each 

access request. Then, the estimated risk value is compared against risk policies to provide the access 

decision, as shown in Figure A.1.  

 

Figure A.1: Proposed risk-based access control model 
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We provide a summary of components of the proposed risk-based model as follow: 

• User Context: It represents the environmental attributes collected from the IoT environment 

at the time of making the access request like user location, current time, user profile, etc. 

• Resource Sensitivity: It represents how valuable the resource/data is to the owner or to the 

service provider. Each resource or data have a different sensitivity level. So, the higher the 

data sensitivity, the higher the risk associated with the data. 

• Action Severity: It represents the consequences of a certain action on a particular resource 

in terms of security requirements of confidentiality, integrity and availability. For example, 

the risk of a view operation is lower than the risk of a delete operation. 

• Risk History: It represents user previous risk values. It used to identify good and bad 

authorized users and predict the user future behaviour. 

• Risk Policies: They are mainly used by the risk estimation module to make access decisions. 

These policies are created by the resource owner or security system administrator to identify 

terms and conditions of granting or denying access to a particular resource. 

• Risk Estimation Module: It is responsible for taking the input features/ risk factors to 

quantify the risk value associated with each access request. 

Please, use your knowledge and experience to answer these questions. 

2.1 What is your feedback about the proposed risk-based access control model? 

 

 

 

2.2 Are the proposed risk factors appropriate for different IoT applications?  

 

 

 

2.3 In term of importance for IoT applications, what is the ranking of the proposed four risk factors? 
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Part 3: Validation of Fuzzy Rules  

One of the major tasks to build a risk-based access control model is the risk estimation process. We 

decided to use the fuzzy logic system to estimate the risk value. However, to build an efficient fuzzy 

model, fuzzy rules should be specified by domain experts. We decided to use three fuzzy sets for 

each risk factors/input and five fuzzy sets for the output risk, as shown in Table A.1. 

Table A.1: Linguistic variables of input and output 

Linguistic value Notation Range 

Input variable: User Context (UC) 

Low L 0 - 0.4  

Moderate M 0.3 - 0.7  

High H 0.6 - 1 

Input variable: Resource Sensitivity (RS) 

Not Sensitive NS 0 - 0.35 

Sensitive S 0.2 - 0.5 

Highly Sensitive HS 0.45 - 1 

Input variable: Action Severity (AS) 

Low L 0 - 0.4 

Moderate M 0.35 - 0.7 

High H 0.6 - 1 

Input variable: Risk History (RH) 

Low L 0 - 0.4 

Moderate M 0.3 - 0.7 

High H 0.6 - 1 

Output variable: Risk (R) 

Negligible N 0 - 0.3 

Low L 0.1 - 0.4 

Moderate M 0.2 - 0.6 

High H 0.4 - 0.8 

Unacceptable High UH 0.7 - 1 
 

Fuzzy rules are built as IF-THEN statements to describe how the output risk varies as a function of 

the four risk factors. For example, if (action severity is Low & resource sensitivity is Not Sensitive 

& user context is Low & risk history is Low) then (the output risk will be Negligible). Fuzzy rules 

were built using information collected from the literature with researcher experience. The relation 

between action severity and resource sensitivity that is shown in Figure A.2 was utilized with the 

following logical rules: 

• If the risk history increased, the output risk will not decrease. 

• If the resource sensitivity increased, the output risk will not decrease. 

• If the Action severity increased, the output risk will not decrease. 

• If any two inputs are high, the lowest output will be high. 
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• If the resource sensitivity is Highly Sensitive (HS) or Sensitive (S), the output risk cannot be 

Negligible (N). 

 

Figure A.2: Risk value regarding resource sensitivity and action severity 

Please, confirm these fuzzy rules using your knowledge and experience. 

Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive 

Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High 

Table A.2: Fuzzy rules when output is Negligible 

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

Yes No Output if No 

1 L NS L L N    

2 M NS L L N    

3 H NS L L N    

4 L NS M L N    

5 M NS M L N    

6 H NS M L N    

7 L NS H L N    

8 L S L L N    

9 M S L L N    

10 L NS L M N    

11 M NS L M N    

12 L NS M M N    

13 M NS M M N    
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Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive 

Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High 

Table A.3: Fuzzy rules when output is Low 

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

Yes No Output if No 

14 H S L L L    

15 L HS L L L    

16 M HS L L L    

17 H HS L L L    

18 L S M L L    

19 M S M L L    

20 M NS H L L    

21 H NS L M L    

22 L S L M L    

23 H NS M M L    

24 L NS H M L    

25 L NS L H L    

26 M NS L H L    

27 L NS M H L    

28 M NS M H L    
 

Table A.4: Fuzzy rules when output is Moderate 

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

 

Yes 

 

No 

 

Output if No 

29 H S M L M    

30 L HS M L M    

31 M HS M L M    

32 H HS M L M    

33 H NS H L M    

34 L S H L M    

35 M S H L M    

36 M S L M M    

37 H S L M M    

38 L HS L M M    

39 M HS L M M    

40 L S M M M    

41 M S M M M    

42 M NS H M M    

43 H NS H M M    

44 H NS L H M    

45 L S L H M    

46 H NS M H M    

47 L NS H H M    



240                                                        Appendix A: Validation of Proposed Model and Fuzzy Rules  

 

Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive 

Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High 

Table A.5: Fuzzy rules when output is High 

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

Yes No Output if No 

48 H S H L H    

49 L HS H L H    

50 H HS L M H    

51 H S M M H    

52 L HS M M H    

53 M HS M M H    

54 H HS M M H    

55 L S H M H    

56 M S H M H    

57 L HS H M H    

58 M S L H H    

59 L S M H H    

60 M S M H H    
 

Table A.6: Fuzzy rules when output is Unacceptable High 

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

Risk 

History 

 

Yes 

 

No 

 

Output if No 

61 M HS H L UH    

62 H HS H L UH    

63 H S H M UH    

64 M HS H M UH    

65 H HS H M UH    

66 H S L H UH    

67 L HS L H UH    

68 M HS L H UH    

69 H HS L H UH    

70 H S M H UH    

71 L HS M H UH    

72 M HS M H UH    

73 H HS M H UH    

74 M NS H H UH    

75 H NS H H UH    

76 L S H H UH    

77 M S H H UH    

78 H S H H UH    

79 L HS H H UH    

80 M HS H H UH    

81 H HS H H UH    
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Part 4: Acceptable Risk Bands   

To determine the access decision, the estimated risk value is 

compared against acceptable risk values, which are specified in 

risk policies, to determine access decisions. This research 

proposed three risk decision bands, as follow: 

− Allow band: This band is used to grant access without 

monitoring user activities during access sessions to keep 

the user’s privacy.  

− Allow with Risk Monitoring band: This band is used to 

grant access with monitoring all users’ behaviours and 

activities during the access session to detect any 

malicious behaviour. 

− Deny band: Due to the high-risk value associated with the user requesting the access, the 

access will be denied through this band. 

Please use your knowledge and experience to decide the best values for each risk decision band.  

these risk bands. Please use Yes to confirm the suggested values by the researcher for each band, and 

No to suggest other values.  

4.1 Do you think the range from 0.0 – 0.25 is appropriate for the allow band? 

☐ Yes 

☐ No, please specify ………………………………...  

4.2 Do you think the range from 0.26 – 0.7 is appropriate for the allow with risk monitoring 

band? 

☐ Yes 

☐ No, please specify ………………………………...  

 

4.3 Do you think the range from 0.71 – 1.0 is appropriate for the deny band? 

☐ Yes 

☐ No, please specify ………………………………...  

 

4.4 Do you suggest any other decision bands?  

 

 

 

 

 

Figure A.3: Proposed access decision bands 





 

243 

 

Appendix B Validating Fuzzy Rules of Cold Start 

This appendix contains all material of the expert interview that was carried out to validate fuzzy rules 

of the cold start problem. Since the information sheet and consent form are the same as in Appendix 

A, this section will only present interview questions.  
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B.1 Interview Question   

The main purpose of this research is to develop a risk-based access control model for IoT 

applications. This model has the ability to permit or deny access requests dynamically based on the 

estimated risk value of each access request. All provided information would be used for research 

purposes only. Your participation is greatly appreciated.  

Part 1: Background Questions 

1.1 Which of the following describe your job role? 

☐ Security Administrator 

☐ Security Analyst 

☐ Security Specialist 

☐ Senior Cybersecurity Engineer 

☐ Security researcher 

☐ Others, please specify…………………………… 

1.2 Which of the following IoT applications are you familiar with? 

☐ Connected industry 

☐ Smart city 

☐ Smart energy 

☐ Connected car 

☐ Smart home 

☐ Smart agriculture 

☐ Healthcare 

☐ Smart retail 

☐ Smart supply chain 

☐ Others, please specify…………………………… 

1.3 How long have you been working in the field of IoT security? 

☐ Less than 2 years 

☐ 2 – 5 years 

☐ 6 – 10 years 
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☐ More than 10 years 

1.4 Do you have background knowledge about the fuzzy logic system? 

☐ Yes 

☐ No 

☐ Other, please specify ………………………… 

Part 2: Validation of Fuzzy Rules  

The proposed risk-based access control model uses real-time user context, resource sensitivity, action 

severity, and risk history as inputs to estimate the security risk value for each access request, as 

shown in Figure B.1. 

• User Context: it represents the environmental attributes associated with the user at the time 

of making the access request such as user location, current time, and user profile.  

• Resource Sensitivity: It represents how valuable the resource/data is to the owner or to the 

service provider. For instance, the higher the data sensitivity, the higher the risk associated 

with the data.  

• Action Severity: It represents the consequences of a certain action on a particular resource 

in terms of security requirements of confidentiality, integrity, and availability. For example, 

the risk of a view operation is lower than the risk of a delete operation. 

• Risk History: It represents user previous risk values. It used to identify good and bad 

authorized users and predict the user future behaviour. 

 

Figure B.1: Proposed risk-based access control model 
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• Cold Start 

The proposed risk-based access control model has four risk factors; user context, resource sensitivity, 

action severity and risk history. Each risk factor is used to estimate the overall risk score associated 

with the access request to make the access decision. However, the user requesting access for the first 

time will not have a risk history value. Therefore, the risk estimation module of the proposed risk-

based model can not estimate the overall risk value without the risk history value. To solve this issue, 

we have to add new fuzzy rules containing only three risk factors including user context, resource 

sensitivity and action severity without risk history. So, if there is no risk history, the other three risk 

factors will be used to estimate the risk value to make the access decision 

• Fuzzy Rules 

Fuzzy rules are built as IF-THEN statements to describe how the output risk varies as a function of 

the three risk factors. Fuzzy rules were built using information collected from the literature with 

researcher experience. The relation between action severity and resource sensitivity that is shown in 

Figure B. was utilized with the following logical rules:  

• If the resource sensitivity increased, the output risk will not decrease. 

• If the Action severity increased, the output risk will not decrease. 

• If any two inputs are high, the lowest output will be high. 

• If the resource sensitivity is Highly Sensitive (HS) or Sensitive (S), the output risk cannot be 

Negligible (N). 

 

Figure B.2: Risk value regarding resource sensitivity and action severity 

In addition, three fuzzy sets for each risk factors/input and five fuzzy sets for the output risk were 

proposed, as shown in Figure B.3.  

 



Appendix B:Validating Fuzzy Rules of Cold Start                                                                          247 

 

 

Figure B.3: Risk value regarding resource sensitivity and action severity 

Please, use your knowledge and experience to validate these rules. 

Input Notations: L: Low; M: Moderate; H: High; NS: Not Sensitive; S: Sensitive; HS: Highly Sensitive 

Output Notations: N: Negligible; L: Low; M: Moderate; H: High; UH: Unacceptable High 

Table B.1: Fuzzy rules with the output of cold start  

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

 

Yes 

 

No 

 

Output if No 

82 L NS L N    

83 M NS L N    

84 H NS L N    

85 L S L L    

86 M S L L    

87 H S L L    

88 L HS L M    

89 M HS L M    

90 H HS L M    

91 L NS M N    

92 M NS M L    

93 H NS M L    

94 L S M M    

95 M S M M    
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Table B.1: Fuzzy rules with the output of cold start (Cont.) 

Rule 

No 
Risk Factors 

 

Output 

Risk 

Expert Validation  

Action 

Severity 

Resource 

Sensitivity 

User 

context 

 

Yes 

 

No 

 

Output if No 

96 H S M H    

97 L HS M H    

98 M HS M UH    

99 H HS M UH    

100 L NS H L    

101 M NS H M    

102 H NS H H    

103 L S H UH    

104 M S H UH    

105 H S H UH    

106 L HS H UH    

107 M HS H UH    

108 H HS H UH    

 

 

 




