The University of Southampton
University of Southampton Institutional Repository

Gas-phase and heat-exchange effects on the ignition of high- and low-exothermicity porous solids subject to constant heating

Shah, A.A., Brindley, J., McIntosh, A. and Griffiths, J. (2006) Gas-phase and heat-exchange effects on the ignition of high- and low-exothermicity porous solids subject to constant heating Journal of Engineering Mathematics, 56, (2), pp. 161-177. (doi:10.1007/s10665-006-9053-2).

Record type: Article


This article investigates the ignition of low-exothermicity reactive porous solids exposed to a maintained source of heat (hotspot), without oxygen limitation. The gas flow within the solid, particularly in response to pressure gradients (Darcy’s law), is accounted for. Numerical experiments related to the ignition of low-exothermicity porous materials are presented. Gas and solid products of reaction are included. The first stage of the paper examines the (pseudo-homogeneous) assumption of a single temperature for both phases, amounting to an infinite rate of heat exchange between the two. Isolating the effect of gas production and flow in this manner, the effect of each on the ignition time is studied. In such cases, ignition is conveniently defined by the birth of a self-sustained combustion wave. It is found that gas production decreases the ignition time, compared to equivalent systems in which the gas-dynamic problem is effectively neglected. The reason for this is quite simple; the smaller heat capacity of the gas allows the overall temperature to attain a higher value in a similar time, and so speeds up the ignition process. Next, numerical results using a two-temperature (heterogeneous) model, allowing for local heat exchange between the phases, are presented. The pseudo-homogeneous results are recovered in the limit of infinite heat exchange. For a finite value of heat exchange, the ignition time is lower when compared to the single-temperature limit, decreasing as the rate of heat exchange decreases. However, the decrease is only mild, of the order of a few percent, indicating that the pseudo-homogeneous model is in fact a rather good approximation, at least for a constant heat-exchange rate. The relationships between the ignition time and a number of physico-chemical parameters of the system are also investigated.

PDF gasphase.pdf - Other
Download (361kB)

More information

Published date: October 2006


Local EPrints ID: 44775
ISSN: 0022-0833
PURE UUID: a7b17921-79de-42c8-b685-7d60ec48b9d9

Catalogue record

Date deposited: 15 Mar 2007
Last modified: 17 Jul 2017 15:13

Export record



Author: A.A. Shah
Author: J. Brindley
Author: A. McIntosh
Author: J. Griffiths

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton:

ePrints Soton supports OAI 2.0 with a base URL of

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.