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Langerhans cells (LC) maintain skin homeostasis through orchestrating immunogenic and 
tolerogenic immune responses in steady-state epidermis and at local lymph nodes after migration. 
While the mechanisms promoting activation of immune responses has been elucidated, little is 
known about the molecular mechanisms underpinning LC induced tolerance. We hypothesised that 
heterogeneous human LC populations existed in situ, which specialised in regulation of 
immunogenic vs tolerogenic regulation in healthy skin. Within the transcriptome of tolerance 
regulating LC, we sought to identify key molecular mediators of tolerogenic programming.  

Previously published transcriptomic data containing a wide selection of DC subpopulations, 
including LC was analysed. Here, core mechanisms of tolerogenic programming across DCs was 
investigated. Overall, LC transcriptomic programming was largely distinct, although common 
pathways of suppression of stimuli responsiveness were identified in steady-state LCs.  

The Drop-seq scRNA-seq protocol was optimised and implemented on steady-state and 
migrated LCs, to explore heterogeneity amongst populations and identify key molecular regulators 
of tolerogenic programming. This identified tolerogenic programmes (including IDO1) to be 
upregulated in migrated LCs, alongside enhanced immunocompetent programming compared to 
steady-state LCs. The latter populations were split into two subpopulations defined by immaturity 
and immunocompetency. Transcription factors (TFs) that correlated with enhanced migrated LC 
tolerogenic programmes included IRF4 and RELB.  

Using in vitro experimentation, the importance of LC immunocompetency for mediation of 
Treg induction was revealed in steady-state LC populations (Immunocompetent/CD86High and 
Immature/CD86Low). Furthermore, immunocompetent migrated LCs displayed enhanced 
induction of functionally suppressive Tregs. Inhibition of IDO1 reduced migrated LC tolerogenic 
potential, revealing the criticalness of tolerogenic programming for LC tolerogenicity. 

Mathematical modelling using TFs identified from analyses thought to control 
immunogenic (IRF1±IRF4) vs tolerogenic (IRF4, MAP3K14, RELB) programming reflected 
observations from previous studies in which unstimulated migrated LC display both immunogenic 
and tolerogenic potential whilst, inflammatory stimuli (TNFa) increases favouring of immunogenic 
responses.  

Overall, our analysis identified critical mechanisms which equip LCs with tolerogenic 
function and revealed potential mechanisms by which immunogenic vs tolerogenic responses are 
initiated.  
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Chapter 1 Introduction/Literature review 

Our bodies constantly encounter foreign material and stimuli that can be either ‘safe’ or 

‘dangerous’ for the maintenance of health. Peripheral locations of the body, such as the skin, which 

are continuously challenged by diverse antigen and stimuli, are sites at which the body’s ability to 

distinguish ‘safe’ from dangerous’ is essential (Nagl et al., 2002). The immune system has therefore 

evolved mechanisms by which appropriate responses are induced. Key to distinguishing between 

harmful and non-harmful stimuli are dendritic cells (DCs), professional antigen-presenting cells 

(APCs) of the innate immune system which prime, mediate and augment immune responses 

(Stockwin et al., 2000),(Lewis and Reizis, 2012). At the human epidermis, the most peripheral layer 

of the skin, resides a unique subclass of DC called the Langerhans cell (LC). Interestingly, whilst the 

role for LC immune regulation at the skin has been widely explored since their discovery in 1868, 

definitive understanding of LC biological function and their vital role at the epidermis is an ongoing 

area of research (Valladeau and Saeland, 2005).   

1.1 Regulation of the innate and adaptive immune system 

The human body’s immune system prevents the establishment of infection from pathogenic agents 

such as bacteria, viruses and parasites (Chaplin, 2010). It can be split into two distinct divisions, the 

innate and the adaptive immune system, which together provide complete immunological 

protection (Figure 1). The innate immune system is characterised by its speed and widespread 

activity to target many types of pathogen indiscriminately. The innate immune system includes 

various physical, chemical and anatomical barriers, as well as professional innate leukocytes 

(Chaplin, 2010)(Madigan et al., 2012). Professional innate leukocytes include monocytes, 

macrophages, mast cells, neutrophils, eosinophils, basophils, NK cells and DCs. Present in both the 

blood and peripheral tissues of the body, innate leukocytes are specialised in mediating rapid 

counteractive measures against diverse immunological threats. This includes pathogen scavenging, 

ingestion and destruction by phagocytic DCs, macrophages and neutrophils, as well as the 

production of potent pathogen killing enzymes and toxins by granulocytes, such as mast cells, 

basophils, eosinophils and neutrophils (Savina and Amigorena, 2007)(Madigan et al., 2012). Innate 

immune cells also secrete a plethora of cytokines and chemokines, molecules fundamental for 

orchestrating inflammation, cell communication and the directing of immune responses (Lacy and 

Stow, 2011). Structural cells at the environmental interfaces of the body, such as skin epidermal 

keratinocytes (KC) and gut epithelial cells, also provide innate immune function through the 

production of antimicrobial peptides and inflammatory cytokines and chemokines (Bernard et al., 
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2012),(Dommett et al., 2005). Cross talk and interaction between innate immune cells and 

structural barrier cells are therefore vital to provide efficient protection.  

The speed of innate immune cell activity is achieved through the expression of a panel of receptors 

which recognise molecular structures conserved across many different microbes (Turvey and 

Broide, 2010). These receptors are called pattern recognition receptors (PRRs) and recognise highly 

conserved pathogen associated molecular patterns (PAMPs). PRRs include Toll-like receptors 

(TLRs), found on cell surface and endosomal membranes and NOD-like receptors, present within 

the cell cytoplasm(Takeuchi and Akira, 2010). The most characterised class of PRRs are the TLRs, 

consisting of ten different members (TLR1-TLR10). Each member recognises molecular structures 

common across broad types of microorganism. TLR4 for example, recognise lipopolysaccharide 

(LPS), a cell membrane structure present on all gram-negative bacteria, whilst TLR3 recognises 

double stranded RNA, which is produced during viral replication and not usually found within 

human cells (Akira, 2003). Once a PAMP has been recognised, innate immune cells initiate pathways 

resulting in inflammation and ultimately destruction of the invading microorganism.  

Whilst the innate immune system is effective at clearing infectious microorganisms indiscriminately 

and rapidly, the adaptive immune response is required in order for the body to develop 

microorganism-specific responses and memory. The body is therefore protected from repeated 

infections from pathogens that have already been encountered. The adaptive immune response 

consists of T and B cells, which differ in their mechanism to clear infection, but are similar in their 

capacity to provide specificity and long-term immunological memory and protection. DCs are 

critical important for the induction of both B cell and T cell activation and memory. Newly emergent 

naïve T cells from the thymus differentiate into effector T cell populations after encounter with 

antigen presented on major histocompatibility complexes (MHC) by a DC (Pennock et al., 

2013)(Charles A Janeway et al., 2001). T cells can broadly be split into two main classes, CD4 helper 

T cells and CD8 cytotoxic T cells. CD4 helper T cells, as their name suggests, assist in the activity and 

coordination of the immune response to achieve full effectivity. They produce inflammatory 

cytokines that assist in macrophage mediated microbial killing, cytotoxic T cell activity and antibody 

production from B cells (Smith-Garvin, Koretzky and Jordan, 2009). CD4 helper T cells can come in 

a variety of subtypes that have unique phenotypes and produce different immune response 

outcomes. Th1 T cells produce IFNg and IL-2, contributing to intracellular pathogen destruction. Th2 

cytokines include IL-4, IL-5 and IL-13, which induce protective responses against parasites. Th17 

cells produce larger quantities of IL-17, which leads to the clearance of extracellular pathogens and 

are therefore important for protecting areas of the body readily exposed to pathogens, including 

the skin (Chakravarti et al., 2009),(Weaver et al., 2013). However, not all immune regulation 

pathways induced by CD4 helper T cells results in immunogenic and inflammatory responses. 
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Regulatory T cells (Tregs) for example, are critically responsible for dampening immune responses, 

preventing uncontrolled inflammation and promoting tolerance to self (Broere et al., 2011). In a 

more direct approach to alleviating infection, CD8 cytotoxic T cells actively mediate destruction of 

infected or cancerous cells to prevent pathogen replication and the spread of infection or 

malignancy. B cells, which emerge from the bone marrow, regulate immune protection through the 

production of antibodies. Antibodies are protein complexes which bind specific antigen leading to 

immobilisation of pathogens and mediating their inactivation and clearance (Alberts et al., 2002a). 

Follicular DCs are fundamental to support germinal centre organisation, in which B cell proliferation 

occurs and engage with B cells to prime responses and promote survival (Heesters, Myers and 

Carroll, 2014). The trade-off for the specificity that is developed during adaptive immunity is the 

amount of time in which it takes to develop. There is therefore a delay in which adaptive immune 

responses are activated after the initial infection. Protection during this period is provided by the 

rapid responses of the innate immune system. After the adaptive immune response develops, it 

supports the innate immune response and ultimately leads to clearance of infection and long term 

memory against particular pathogens to prevent reinfection (Alberts et al., 2002b). The combined 

power that both divisions of the immune system provide in protecting our bodies form infection, 

demonstrates why the ability to link the activation of both responses, through DC activity, is 

fundamental for health.  

Innate Immune Response Adaptive Immune Response

B cells

T cells

Mast cells

Macrophages

Granulocytes

NK cells

Dendritic cells

Figure 1. DCs bridge the gap between innate and adaptive immunity. Innate immune cells (left) 

include macrophages, mast cells, NK cells, Granulocytes (Neutrophils, Basophils, Eosinophils) and 

DCs. DCs are antigen presenting cells and can mediate the activation of adaptive immunity, which 

induces the activation of B cells and T cells (right). 
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1.2 DC regulation of immunity 

DCs are unique components of the immune system, as they are critically responsible for linking 

innate immune responses to the activation of adaptive immune responses (Figure 1). Whilst 

macrophage and B cells are also classed as APCs, DC antigen presenting capabilities are the most 

potent, providing unparalleled capacity to initiate adaptive immune responses (Steinman, 1991). 

Furthermore, DCs appear to be the most equipped innate immune cell for PAMP recognition, as 

the broadest range of PRRs are expressed on their surface (Kaisho and Akira, 2001). For antigen 

presenting function, DCs must be able to engulf extracellular structures once recognised and are 

therefore equipped with endocytic, phagocytic and macropinocytotic function (Savina and 

Amigorena, 2007),(ten Broeke, Wubbolts and Stoorvogel, 2013). Within DCs, captured extracellular 

complexes are transported within cytoplasmic endosomes and phagosomes (Banchereau and 

Steinman, 1998). Inside the cytoplasmic compartments, proteases cleave the antigen into peptides, 

which can then be incorporated onto MHC, which are transported to the cell surface via exocytosis 

for presentation to T cells (ten Broeke, Wubbolts and Stoorvogel, 2013). MHC complexes are 

essential for the activation of adaptive immune responses because T cells cannot recognise antigen 

in its unprocessed and unpresented form (Banchereau and Steinman, 1998). 

T cells interact with MHC complexes via surface T cell receptors (TCRs), which are fundamental for 

their ability to recognise antigen and become activated. Individual naïve T cells during development 

in the thymus are equipped with TCRs specific for certain MHC and antigen complex structures. 

After engagement of TCR and MHC complexes, T cell clonal amplification occurs leading to the 

production of large numbers of T cells able to clear infection (Zhan et al., 2017). The diversity of 

TCRs that allows them to recognise the huge array of different antigen and MHC complex structures 

which can occur, is a result of V(D)J recombination (Clambey et al., 2014)(Charles A Janeway et al., 

2001)(Madigan et al., 2012). Here, the many non-contiguous gene segments which code for the 

TCRa and TCRb chains are genetically recombined in various ways, which along with editing of 

individual nucleotides at joining regions, leads to the generation of an estimated 1015 different 

heterodimeric TCRs (Nikolich-Žugich, Slifka and Messaoudi, 2004). 

MHC come in class I and class II forms, which differ in their structure, presence on different cell 

types, the origin of the peptide antigens they present and the class of T cell they interact with 

(Wieczorek et al., 2017)(Madigan et al., 2012). MHC II are heterodimeric structures composed of a 

and b chains expressed form the MHC II gene region. Whilst MHC I are also heterodimers, they are 

composed of a single MHC gene region expressed protein, the class I a chain,  which is attached to 

b-microglobulin (Madigan et al., 2012). MHC I complexes classically interact with CD8 T cells, whilst 

MHC II complexes typically interact with CD4 T cells. MHC I present antigens from an intracellular 
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origin and can be expressed by all nucleated cells in the human body. MHC I interaction with T cells 

frequently occurs due to virally infected cells presenting viral antigen on cell surface MHC I, to 

induce both cell and virus destruction. In contrast, MHC II present antigen from an extracellular 

origin and therefore its expression is predominantly restricted to professional APCs, such as DCs. 

MHC II interaction however can steer T cell immune responses to either an activated or inhibitory 

state, as well as controlling the potency of these responses (Steinman, Hawiger and Nussenzweig, 

2003). Efficient activation of T cells by DCs occurs via a combination of 3 signals (Figure 2). The first 

signal occurs through initial MHC II and TCR interaction. This alone however is not enough to prime 

T cell activation. In response to PAMPs, DCs initiate a critical transition from immaturity to maturity, 

with an increase in costimulatory molecules and cytokines being produced to prime them for 

adaptive immune response activation (Banchereau and Steinman, 1998)(López, Yount and Moran, 

2006). The second signal of activation therefore comes through co stimulatory molecules expressed 

on DC surfaces. Costimulatory molecules include CD80 and CD86, ligands for both CD28 and CTLA4 

receptors on T cells. Costimulatory molecules are important for controlling both the strength and 

outcome of T cell immune response. Interaction between CD80/CD86 and CD28 for example,  leads 

to T cell activation, whereas in contrast, interaction with CTLA4 leads to T cell inhibition (Hubo et 

al., 2013). The increase in CD80/CD86 molecules induced by DC maturation is crucial for inducing 

immunogenic T cell responses, as at low levels, overriding tolerogenic ICOS signalling induce stable 

IL10R expression, the receptor for anti-inflammatory IL-10 (Hubo et al., 2013). The third signal 

comes from cytokines, that influence cellular activity. In the context of T cell and DC interaction, 

CD40L interaction with CD40 on DCs, induces the production of inflammatory cytokines, including 

IL-12, that mediate Th1 and CD8 cytotoxic T cell immune responses, as well as promoting T cell 

survival (Habib et al., 2007),(Lapteva et al., 2007)(Henry et al., 2008)(Banchereau and Steinman, 

1998). In summary, the regulation of DC mediated adaptive T cell immune response activation is a 

multi-step process which allows specificity and tight regulation.  

Critical for interactions between DC and T cells to occur is DC ability to migrate out of peripheral 

tissues to local lymph nodes. Progenitors or newly differentiated DCs circulate in the blood and can 

be summoned to target peripheral tissues at which antigen acquisition can occur. After antigen 

encounter and to initiate novel adaptive immune responses, DCs must the extricate back into the 

bloodstream to carry the antigenic cargo to the lymph nodes for interaction with naïve T cells 

(Alvarez, Vollmann and von Andrian, 2008)(Figure 2). Fundamental to trafficking ability is the 

detachment of cellular connections, cellular motility and the expression of CCR7, a chemokine 

receptor for CCL19 and CCL21, which homes DCs to the lymph nodes (Alvarez, Vollmann and von 

Andrian, 2008)(Hampton and Chtanova, 2019). 
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The ability to tightly regulate the induction and outcome of MHC interaction with T cells is an 

important feature of DCs, as not all extracellular antigens they process and present are from 

harmful sources (Steinman, 2007). In the context of the skin for example, antigens encountered 

here can be derived from both pathogenic and commensal microorganisms, as well as noxious 

chemicals and inert materials, thus highlighting the requirement for diverse immune response 

outcomes (Clayton et al., 2017)(Doebel, Voisin and Nagao, 2017). It is well established that in 

response to self-antigens or antigens from ‘non-harmful’ sources, DCs downregulate inflammatory 

immune responses in favour of promoting immunological tolerance (Steinman, Hawiger and 

Nussenzweig, 2003)(Steinman et al., 2003). Maintenance of self-tolerance is fundamental for 

immune homeostasis and the prevention of uncontrolled destructive autoimmunity. Thus, 

mechanisms controlling self-tolerance in the body derive from two regulatory levels in which DCs 

are indispensable: central tolerance and peripheral tolerance. Critical in mechanisms of DC induced 

tolerance are Tregs, the immunosuppressive subclass of T cell. In central tolerance, DCs inspect the 

pool of developing T cells within the thymus for self-reactivity (Banchereau and Steinman, 1998). 

Here, along with medullary thymic epithelial cells (MTECs), migratory DCs can present a panel of 

self-antigen to T cells. Any T cells possessing TCRs with high affinity to MHC self-antigen complexes 

are induced to undergo apoptosis (Audiger et al., 2017),(Ardouin et al., 2016). The second layer of 

protection, peripheral tolerance filters out any self-reactive T cells which escape deletion within the 

thymus and also promotes tolerance to newly acquired antigen attained by DCs at the periphery of 

the body (Ardouin et al., 2016). In cases when autoreactive T cell interact with self-antigen 

presenting DCs, Treg differentiation or the induction of T cell apoptosis can occur. Tregs are 

distinguished by CD25 expression and the activity of the FOXP3 transcription factor(Paust and 

Cantor, 2005). Tregs are equipped to down regulate inflammatory immune responses through the 

inactivation of inflammatory Th1, Th2 and Th17 T cell responses (Ohkura, Kitagawa and Sakaguchi, 

2013). For example, the production of anti-inflammatory cytokines IL-10, IL-35 and TGFb, can 

induce tolerogenic conditions, whilst the release of perforin and granzyme can actively destroy 

effector T cells. Furthermore, high CD25 expression leads to IL-2 consumption that starves other T 

cells, preventing activation (Schmidt, Nino-Castro and Schultze, 2012). Without DC mediated 

tolerogenic responses, the body loses its ability to distinguish between self and non-self, leading to 

inflammatory responses and autoimmune disease. The importance of DC tolerogenic responses is 

highlighted in mice studies, where induced DC depletion results in autoimmune disease and 

uncontrolled Th1 and Th17 responses (Audiger et al., 2017). Also, dysregulated DC immunogenic 

responses in systemic lupus erythematosus (SLE), driven by augmented type 1 interferon signalling, 

promotes autoreactive T cell proliferation and loss of tolerance (Mbongue et al., 2014). 

Furthermore, the importance Treg induction for the prevention of autoimmunity is seen in 

immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, in which 
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mutation of the FOXP3 gene leads to fatal systemic autoimmune disease (Paust and Cantor, 2005). 

Tolerogenic responses are particularly critical at the mucosal surfaces and environmentally exposed 

sites like the skin. In the gastrointestinal tract or lungs of children, tolerance to most food antigen 

and aeroallergen develops through age, although lack of tolerance to these antigens can lead to 

potentially lethal allergic responses (Kucuksezer et al., 2013). Allergen specific immunotherapies, 

in which allergic patients are exposed to minor amounts of antigen that can be delivered 

subcutaneously, sublingually or epicutaneously, have been utilised to train and tolerise the immune 

system, with the role of Tregs in this process emphasised (Kucuksezer et al., 2013). However, 

dysregulated tolerance which occurs in tumour microenvironments leads to enhanced disease and 

metastases, due to the evasion of immune surveillance. Here, the release of immunomodulatory 

molecules such as IL-10, TGF-b and IDO1, promotes tolerogenic DC differentiation and absent anti-

tumour responses (Fricke and Gabrilovich, 2006). Intriguingly, specific ‘immune privileged’ sites in 

the body, such as the hair follicles, brain, corneal tissue and placenta, are characterised by increased 

tolerogenicity, mediated partly through the restriction of APC function (Bertolini et al., 2020). 

Additionally, ‘immune privilige’ in the gut lumen, promoted through the secretion of 

immunomodulatory molecules that preferentially promote tolerogenic responses are critical to 

mediate tolerance to hugely diverse luminal antigen and microbiotic flora (Iweala and Nagler, 

2006). 
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The ability of DC to induce both inflammatory and tolerogenic immune responses has created 

speculation as to how immune response outcomes are decided. Currently there are varying theories 

hypothesised and divergent results from functional studies as to what critically regulates DC 

tolerogenicity. Initially proposed by Ralph Steinman, is the theory that the status of DC activation 

is the most critical factor which determines DC immune responses. Here, immature DCs are 

anticipated to be responsible for mediating tolerance and defining ‘self’, through steady-state 

trafficking and self-antigen presentation to T cells to suppress their activation. They then lose 

tolerogenic capacity and become immunogenic after maturation (Steinman et al., 

2000)(Banchereau and Steinman, 1998)(Steinman et al., 2003)(Mellman and Steinman, 

2001)(Audiger et al., 2017). However, the priming of tolerogenic immune responses by mature DC 

has been demonstrated in numerous studies. Antigen loaded DC ability to stimulate CD4+CD25+ T 

cells correlates with increased maturation (Yamazaki et al., 2003). Furthermore, CD83highCCR7+HLA-

DRhigh IL-10DC are phenotypically mature and can induce more highly suppressive Tregs than those 

induced by phenotypically immature CD83lowCCR7-HLA-DRlow IL-10DC (Kryczanowsky et al., 2016). 

DC

Lymph node

MHC:TCR
T

Costimulatory 
molecules

CytokinesMigration Th1 Th2

Th17

CD4 helper

CD8 cytotoxic
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Figure 2. DC migration to the lymph nodes mediates diverse T cell responses. During maturation, 

DC migrate out of peripheral tissues towards the lymph nodes. Here, antigen in MHC complexes 

expressed on DC surfaces interact with TCRs on T cells. Depending on the expression of co-

stimulatory molecules (CD80/CD86-CD28/CTLA4) and cytokines, T cells can be differentiation 

towards immunogenic CD4 helper T cells (Th1, Th2 and Th17) and CD8 cytotoxic T cells or 

immunosuppressive Tregs.
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Additionally, the expression of tolerogenic mediators (indoleamine 2,3-dioxygenase, IDO) by 

phenotypically mature human CD123+ monocyte derived DCs (MoDCs), potently inhibit T cell 

proliferation in vitro (Munn et al., 2002). Alternatively, Steinman also proposed that DC populations 

are heterogenous with sub populations of DCs dedicated towards either immunogenic and 

tolerogenic responses which could be influenced by residency or migratory capacity (Banchereau 

and Steinman, 1998). Specific subpopulations of DC attributed to tolerance regulation have been 

identified across different tissues. In the spleen, CD11cLowCD45RBHIgh DCs display enhanced Treg 

induction through IL-10 production, in comparison to CD11cHighCD45RB- DCs, which are highly 

primed for immunogenic Th1 responses through IFNg production (Wakkach et al., 2003). A specific 

CD103+  expressing DC population in the gut are also strongly associated with tolerance regulation 

(Scott, Aumeunier and Mowat, 2011)(Coombes and Powrie, 2008). Furthermore, in the dermis, 

specific CD141+CD14+ subpopulations of dermal DCs (DDCs) are attributed to tolerogenic 

mechanisms, such as Treg induction and IL-10 production, which suppress pathology induced in 

mouse models of allogenic induced inflammation (Haniffa, Gunawan and Jardine, 2015)(Chu et al., 

2012).  

Skin, and in particular epidermis, its outermost layer, is a site critical for maintenance of peripheral 

tolerance. However, it is not fully understood how the immune homeostasis is controlled in human 

epidermis. LCs are a unique population of DCs residing in this compartment, capable of inducing 

both immunogenic and tolerogenic responses. Therefore, we set to investigate what molecular 

mechanisms allow human LCs to promote immune homeostasis.   

1.3 LC characteristics and ontogeny 

The DC family consists of conventional DCs, plasmacytoid DCs (pDCs), monocyte-like DCs and LCs 

(Collin, McGovern and Haniffa, 2013). LCs are unique to other DC types in that they exclusively 

colonise the skin epidermis, as well as the foreskin, oral and vaginal epithelium(Hussain, Lehner and 

Thomas, 1995),(Zhou et al., 2011),(Lombardi, Hauser and Budtz-Jorgensen, 1993). LCs are widely 

conserved across the skin of mammals, birds and reptiles(Doebel, Voisin and Nagao, 2017). Like 

other DC types, LCs are characterised by their ability to process and present antigen for initiating 

adaptive immunogenic T cell responses, as well as homeostatic regulation and  tolerance. First 

described by Paul Langerhans in 1868, LCs were initially believed to have a role in the nervous 

system due to their long cellular projections (Kashem, Haniffa and Kaplan, 2017). In the 1970s, their 

immunological role was first described, with the finding that they express immune receptors and 

have the ability to activate T cell responses through antigen presentation (Katz, Tamaki and Sachs, 

1979),(Rowden, Lewis and Sullivan, 1977). LCs are however distinguishable from other DC subtypes 

through unique gene expression and developmental origin. 
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LCs can typically be distinguished from other DC types due to high co-expression of CD1a and the 

C-type lectin receptor CD207, or langerin (Romani, Clausen and Stoitzner, 2010),(Collin, McGovern 

and Haniffa, 2013). In human LCs, CD207/langerin is specifically found on LCs, whilst dermal DC 

subsets expressing CD207/langerin can also be observed in mice (Doebel, Voisin and Nagao, 2017). 

Within the cytoplasm of LCs, CD207/langerin form tennis racket shaped organelles called Birbeck 

granules, which are uniquely found in LCs. Although these organelles are believed to play a role in 

antigen capture and the endosome pathway, their definite role and importance for LC function is 

largely unknown (Kissenpfennig et al., 2005),(Mc Dermott et al., 2002). Like other DC types, LCs 

express high levels of the MHC II receptor HLA-DR, key to peptide antigen presentation function 

(Collin, McGovern and Haniffa, 2013). The structurally similar CD1a also conveys antigen 

presentation function, although specifically for lipids (Amagai, 2016). LCs are therefore well 

equipped to process and present antigen from a variety of sources they encounter at the epidermis.  

Whilst conventional DCs arise from bone marrow precursors, the developmental origin of LCs is 

debated with discrepancy between studies. Early studies on LC ontogeny propose a bone marrow 

precursor is responsible for LC population maintenance, which is supported by in vitro studies 

showing LC differentiation from the myeloid and lymphoid CD34+ haematopoietic progenitor cells 

(Katz, Tamaki and Sachs, 1979),(Caux et al., 1999). However, influx of leukocytes is infrequently 

observed in the steady state uninflamed epidermis (Chorro et al., 2009). Furthermore, LCs develop 

entirely independently of the cytokine receptor FMS-like tyrosine kinase-3 (Flt3), supporting 

evidence for a developmental origin different from conventional DCs (Deckers, Hammad and Hoste, 

2018). Interestingly, clinical studies involving human monocytopenia patients, who lack 

conventional DC populations, show no changes to LC or macrophage populations (Bigley et al., 

2011). Thus, other studies propose a LC progenitor residing in the epidermis that maintains the 

population throughout life with self-replicating capabilities, a property similar to tissue resident 

macrophages (Hoeffel et al., 2012),(Collin and Milne, 2016). Supportive of self-replicative capacity 

is the observation that BrdU labelled human LCs transplanted onto mice increased by ~70% 5 days 

post transplantation (Czernielewski and Demarchez, 1987). Also, after human hand transplantation, 

LCs of donor origin have been shown to be maintained in the allograft four years post-

transplantation (Kanitakis, Petruzzo and Dubernard, 2004). Instead LCs are believed to follow a 

similar ontogeny pathway to tissue resident macrophages (Ginhoux and Merad, 2010)(West and 

Bennett, 2018)(Kaplan, 2017)(Doebel, Voisin and Nagao, 2017). During early embryonic 

development it is proposed that an initial wave of myeloid progenitors from the yolk sac seed the 

epidermis, establishing a population of resident LCs. Later on in embryonic development, LCs 

derived from monocytes of the foetal liver become the dominant population at the epidermis 

(Hoeffel et al., 2012),(Merad et al., 2013). Supporting murine studies of LCs during neonatal 
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development show that LC seeding of the epidermis occurs prior to birth. Two days after birth, mass 

expansion of the LC population is observed with LC turnover still occurring even one week after 

birth (Chorro et al., 2009). Phenotypically and ontogenically, LCs therefore appear situated 

somewhere in between classical DCs and macrophages, with potent antigen presentation and 

migratory capacity similar DCs, but ontogeny, self-renewal and tissue residency features similar to 

macrophages (Doebel, Voisin and Nagao, 2017)(Deckers, Hammad and Hoste, 2018)(Figure 3). 

Environmental factors however also heavily influence LC origin and constitution. In severe 

inflammatory settings for example, LCs can derive from blood monocytes to replenish and support 

the tissue resident LC population (Seré et al., 2012). Murine graft versus host disease (GVHD) 

models, in which the resident LC population has been destroyed, show reconstitution from 

monocyte precursors that over time become indistinguishable to embryo derived LCs (Ferrer et al., 

2019). Overall, the unique features of LC gene expression, development and residence suggest they 

have a niche role specifically required at the epidermal environmental interface, unparalleled by 

other DC types and macrophages. 

• Potent priming of 
adaptive immunity

• Migration between 
tissue and lymph 
nodes

Dendritic cell• Ontogeny pathway
from yolk sac and
foetal liver
progenitors

• Self-renewal 
capacity

• Tissue residency

Macrophage

Figure 3. LCs share similarities to both macrophages and DCs. LCs share several qualities similar 

to macrophages, including ontogeny pathway, ability to self-renew themselves without relying on 

bone marrow precursors and long-term residency within tissues. However, like DCs, they have 

high capacity for antigen processing and presentation to prime adaptive immunity and can 

migrate from the peripheral tissues to the lymph nodes. 
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1.4 Skin biology and regulation of LCs 

The skin is the largest organ of the human body, providing protection from damage and infection 

as well as forming a sensory interface with the external environment. As discussed, the human 

immune system consists of innate and adaptive arms of immunity. Immediate and non-specific 

innate protection from pathogen infection is provided by the physical barriers of the body, such as 

the skin (Turvey and Broide, 2010). Skin can be divided into 3 layers, each equipping the organ its 

protective and sensory abilities. The cushioning subcutaneous layer of fat is covered by the dermis, 

which is largely composed of connective tissue, with an array of interspersed immune cells, 

including dermal DCs (DDCs), lymphocytes and macrophages (Di Meglio, Perera and Nestle, 2011). 

The most superficial layer of the skin, the epidermis, is constituted by a thick epithelium of KCs with 

interspersed LCs and melanocytes. The epidermis contains 4 distinguishable layers. From the most 

basal layer outwards, the epidermis is constituted by the stratum basale, stratum spinosum, 

stratum granulosum and the stratum corneum, with each layer comprising KCs in different stages 

of differentiation (Di Meglio, Perera and Nestle, 2011),(Baroni et al., 2012). The most superficial 

layer, the stratum corneum contains corneocytes, terminally differentiated KCs which provide a 

thick barrier to the external environment. The dry acidic environment of the stratum corneum also 

restricts microbe residence (Elias, 2007). Between the tightly packed KCs, LC protrude dendritic 

extensions to increase their capacity for antigen capture (Heath and Carbone, 2013). Within the 

epidermis, LC frequency is low, constituting just 2-5% of the total cell population (Deckers, Hammad 

and Hoste, 2018),(Seré et al., 2012). In the steady-state, LC turnover in the skin is also incredibly 

slow, with around 1-2% replicating at any given time (Ginhoux and Merad, 2010). Despite this, LCs 

likely stand as the most peripheral sentinels of the body and are therefore responsible for initiating 

the bodies first response to invading pathogens at the skin. Antigens encountered by LCs not only 

originate from invading microbes, but also molecular structures from apoptotic cells (Mutyambizi, 

Berger and Edelson, 2009). LCs are therefore important regulators of immunological self-tolerance 

to suppress inflammatory responses.  

The human skin is a very active immune organ due to its exposure to a diverse variety of both 

harmful and non-harmful antigenic stimuli in the environment (Nestle et al., 2009). This includes 

factors from both the external environment (UV radiation, microbes, chemicals and medicines) and 

epidermal microenvironment (nutrients, cytokines, chemokines and danger signals), with the 

resulting signalling environment therefore incredibly complex (Clayton et al., 2017)(Figure 4). After 

encountering antigen, LCs must adopt the most appropriate response to its source, either 

immunogenic or tolerogenic responses. The highly influential effects tissue microenvironments 

have on cellular transcriptomes has been described in mouse macrophages, where macrophage 

populations from different tissue compartments display distinct gene expression programmes 
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(Lavin et al., 2014). The signalling context within epidermal tissue therefore likely profoundly 

shapes LC behaviour and immunological outcomes.  

1.5 LC immune activation 

Consistent with the initiation of immunity by conventional DCs, adaptive immune responses 

initiated by LCs against pathogens begin after engagement of PRRs with PAMPs expressed by 

epidermal microbes (Deckers, Hammad and Hoste, 2018). After antigen capture and maturation, 

LC cease to phagocytose and instead upregulate expression of T cell stimulatory molecules (Reis e 

Sousa, Stahl and Austyn, 1993)(Clayton et al., 2017). This primes LCs with the capacity to induce T 

cell immune responses, before beginning the migration process to local lymph nodes (Banchereau 

and Steinman, 1998). For migration to occur, connections to neighbouring KCs are broken through 

External Environment

Epidermal Microenvironment

UVR Microbes Chemicals Cosmetics Medicines

NutrientsCytokines
ChemokinesDanger signals

Homeostasis

Immunogenic
Response

Tolerogenic
Response

Figure 4. LC regulation of immune responses is determined by the external microenvironment and 

epidermal microenvironment. In the epidermis, LCs transduce signalling from both the external 

environment (e.g. UV radiations (UVR), microbes, chemicals, cosmetics and medicines) and epidermal 

microenvironment (Danger signals, cytokines, chemokines and nutrients). Depending on the context 

of the signalling they encounter (harmful or safe), LCs can mediate either immunogenic or tolerogenic 

responses to maintain tissue homeostasis. 
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down regulation of the adhesion molecule E-cadherin (Cumberbatch, Dearman, Griffiths, et al., 

2000). The migration process out of the epidermis is indicated to be a critical process to induce full 

LC activation. Meta-analysis performed by us (Clayton et al 2017.), of enzymatically digested LC at 

the steady state and LCs left to migrate out of epidermis fragments in culture, identified distinct 

gene expression programmes of each state. Migrated LCs were characterised by an increase in 

antigen processing and presentation as compared to steady state LCs, demonstrating how the 

migration process equips LCs with the capacity to prime T cell stimulation at the local lymph nodes. 

The expression of T cell co-stimulatory molecules are also further enhanced during the migration 

process (Cumberbatch, Dearman, Griffiths, et al., 2000). 

Whilst the mechanisms of maturation between different DC cell types follows a similar series of 

cellular events, the precise T cell responses that are induced can differ (Pulendran et al., 1997). For 

example, LCs contrast from CD14+ dermal DCs (DDCs) through their heightened ability to induce 

Th2 CD4 T cells and cytotoxic CD8 T cell activity (Klechevsky et al., 2008). LCs also mediate superior 

antigen cross-presentation and CD8 T cell activation compared to CD11c+ DDC, which is dependent 

on caveolin expression (Polak et al., 2014)(Polak et al., 2012). Interaction between LCs and T cells 

direct diverse outcomes of immune responses and are highly specific to the context of the initiating 

stimuli. LCs mediate these different responses through expression of cytokines and costimulatory 

molecules. Cytokines produced by LCs, in response to bacterial and fungal pathogen at the 

epidermis, induce Th17 T cell differentiation, which mediates killing of extracellular pathogens, such 

as Candida Albicans and Porphyromonas ginigvalis (Igyártó et al., 2011),(Bittner-Eddy et al., 2016). 

Staphylococcus aureus, a common coloniser of the skin, also triggers the release of Th1 and Th17 

inducing cytokines from LCs during infection (van Dalen et al., 2017). The increased ability for LCs 

to induce CD8 T cell activity, as compared to DDCs, is also attributed to increased expression of 

CD70, giving example of how changes in costimulatory expression can effect LC mediated T cell 

response outcomes (Polak et al., 2012). The unique balance of T cell responses induced by LCs are 

likely to be specific to responses required for maintenance of human skin health and could explain 

their biological niche at the epidermis. The unique collection of receptors expressed on LC cell 

membrane surfaces also heavily influences LC capacity to respond to different antigenic stimuli. 

High expression of CD1a for example, provides enhanced ability to activate lipid specific CD1a-

restricted T cells, which secrete large amounts of IL-22 and IL-17 (West and Bennett, 2018). Whilst 

a negative role of CD1a-restricted T cells involving contact dermatitis to poison ivy has been 

identified, CD1a mediated presentation of Mycobacterium Leprae antigen to CD1a-restricted T cells 

appears to be important for disease resolution (Kim et al., 2016),(Hunger et al., 2004). As leprosy 

wounds manifest at the epidermis, high levels of LC CD1a expression would therefore be highly 

protective to disease manifestation. CD207 is implicated in both the restriction and permissiveness 
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to infection of HIV. Whilst some studies postulate that CD207 expression by LC mediates 

transmission to T cells, others identify an important role of CD207 and birbeck granules in mediating 

HIV degradation and infection prevention (de Witte et al., 2007)(Ribeiro et al., 2016).  In summary, 

the cell surface receptor profile of LCs and the array of cytokines they release, direct and define LC 

mediated immune responses at the epidermis.   

The close proximity between KCs and LCs in the epidermis leads to a convergence and intimate 

relationship to their function and regulation of immune responses (Figure 5). Whilst LCs are the 

signature antigen presenting immune cells of the epidermis, KCs themselves have antigen 

presenting function and the ability to regulate T cell responses (Nickoloff et al., 1995). Like LCs, KCs 

rapidly induce the secretion of inflammatory mediators during interaction with pathogens (Bourke 

et al., 2015). These mediators are critical for optimal LC immune function. KC detection of the PAMP 

CpG through TLR9 for example, induces KC secretion of IL-1a, GM-CSF and TNFa, increasing the 

activation of LC antigen presentation pathways(Sugita et al., 2007). TNFa is a powerful 

immunomodulatory cytokine expressed by KCs which is widely known for its augmentative effects 

on LC immune function (Clayton et al., 2017),(Théry and Amigorena, 2001),(Cumberbatch and 

Kimber, 1992),(Polak et al., 2014)(Sirvent et al., 2020). TNFa stimulated LCs for example, display 

enhanced antigen cross presentation to potently activate CD8 cytotoxic T cells (Sirvent et al., 2020). 

Furthermore, TNFa stimulation enhances LC mediation of Th1 and Th2 T cell skin homing via 

chemokine production. Also, KC secretion of TSLP, which is associated with atopic dermatitis, also 

modulates LC function to more proallergic/atopic phenotypes and impairs CD8 T cell activation 

(Ebner et al., 2007)(Polak et al., 2017). However, not all KC derived signalling leads to the activation 

of inflammatory immune responses. In response to non-inflammatory signalling, or even 

tolerogenic signalling such as TGFβ, inflammatory CD4 and CD8 T cells are suppressed and instead 

regulatory T cells (Treg) are induced (Shklovskaya et al., 2011),(Gorvel et al., 2014),(Schmidt, Nino-

Castro and Schultze, 2012). Through restricting inflammatory immune responses against harmful 

sources only, LCs ensure the body is well protected from pathogens, whilst preventing uncontrolled 

and widespread tissue damage. TGFb signalling is also crucial for maintaining integrin connections 

between LC and KCs that prevent migration out of the epidermis (Mohammed et al., 2016). Models 

of TGFb inhibition cause a depletion in the epidermal LC population (Kel et al., 2010). Furthermore, 

BMP7, a TGFb superfamily member, has been demonstrated to be critical for LC population 

maintenance at the epidermis in BMP7 knockout mice (Yasmin et al., 2013). LCs are therefore highly 

dependent on KCs for inducing appropriate immune responses and for maintaining their presence 

at the epidermis.   



Chapter 1 

42 

Overall, LCs orchestrate the balance between immunity and tolerance and respond to all the milieu 

of stimulatory signals in the epidermal environment before deciding on the most appropriate 

direction of immune responses. However, despite the importance of their function for skin and 

systemic homeostasis, the precise molecular mechanisms that determine whether LCs induce 

either immunogenic or tolerogenic responses, although well studied, are not completely 

understood. 

1.6 LCs, homeostasis and tolerance 

LCs in the steady-state are positioned at the epidermis ready for antigen encounter, extending and 

retracting dendritic extensions between keratinocytes (Clausen and Stoitzner, 2015). The 

environmental stimuli LCs encounter direct immune responses towards immunogenic or 

tolerogenic pathways (Banchereau and Steinman, 1998). Whilst the ability of LCs to potently induce 

Figure 5. LC immune responses are directed by KCs. Cytokines secreted by KCs produce differential 

T cell responses and outcomes. TGFb secretion causes the retention of LC within the epidermis and 

the induction of Tregs. Proinflammatory TNFa induces potent LC antigen presentation function to 

induce CD8 cytotoxic T cells responses and the promotion of Th1 and Th2 CD4 helper T cell homing 

to the skin. Proallergic TSLP associated with atopic dermatitis, inhibits CD8 cytotoxic T cell induction 

by LC. 
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adaptive immune responses is well established, an emerging understanding of LC immunology is 

that steady-state immune responses may in fact be preferentially sided towards tolerance and 

immunoregulation over immunogenic responses (Lutz, Döhler and Azukizawa, 2010)(Figure 6). 

Evidence for a reduced inflammatory capacity of LC is shown in studies demonstrating an absence 

of LC mediated inflammatory responses to pathogenic stimuli. Studies on Leishmaniasis have found 

LC function is redundant during infection, with LCs unable to induce Leishmania major specific T 

cell responses (Ritter et al., 2004). Ablation of LCs in L. major infection also results in reduced 

activation of Tregs and an increased ability to clear the disease (Kautz-Neu et al., 2011). Similarly, 

LCs also fail to induce cytotoxic T cell responses to herpes simplex virus 1 (HSV) (Allan et al., 2003). 

Investigations into antigen processing and presentation potential in certain contexts, similarly 

reveal limitations in LC mediated immunity. Chimeric mouse models involving LC specific antigen 

presentation fail to induce effector T cell responses and T cell survival (Shklovskaya et al., 2011). LC 

co-culture with splenic DCs and ovalbumin (OVA) protein, inhibit T cell responses which are induced 

by splenic DC culture alone (Imai et al., 2008). In some contexts, LCs therefore appear to actively 

disrupt the development of immunogenic responses.  

Studies directly comparing epidermal LCs to closely situated DDCs show reduced expression of 

inflammatory cytokines by LCs. DDCs isolated from primary skin samples display greater expression 

of IL-6 and IL-8 than LC counterparts after exposure to TNFa (Polak et al., 2012). Through comparing 

affinity to induce NK cell mediated cytotoxicity, LCs required supplementary IL-2 and IL-12 stimuli, 

as non-supplemented LC were unable to produce adequate amounts of IL-12p70 and IL-15R-α for 

direct NK cell stimulation (Mü Nz et al., 2005). LCs also appear to have an increased capacity to 

maintain tolerance to bacterial flora on the skin. In comparison to DDCs, LCs lack expression of 

TLR2, TLR4 and TLR5, limiting their capacity to mature after bacterial encounter (van der Aar et al., 

2013). The different skin compartments in which these two skin DC types are found could explain 

why they differ in their inflammatory properties. As LCs are positioned within the peripheral 

epidermal barrier, high reactivity to all encountered stimuli could be unnecessary and lead to 

unwarranted inflammation. Below the protective epidermal barrier in the dermis, DDCs may need 

to react more effectively to pathogen invasion to prevent establishment of infection (van der Aar 

et al., 2013). Overall this could emphasise the more highly regulated and context driven responses 

established by LCs.   

With evidence showing a reduced role of LCs for inducing inflammatory immune responses during 

T-cell interaction, the principal role of LCs is believed to lie in their homeostatic potential. In the 

steady state, LCs phagocytose nearby apoptotic cells, such as KCs and melanocytes, removing 

environmental self-antigen to prevent the initiation of damage responses and the release of 

inflammatory cytokines (West and Bennett, 2018),(Larregina and Falo, 2005). The processing rate 
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of self-antigen by LC has been tracked in murine studies by measuring the amount of melanin 

protein transported to local skin draining lymph nodes (Hemmi et al., 2001). This processing rate 

remains unchanged even during inflammation, indicating self-antigen processing and presentation 

to T-cells is an integral LC process (Yoshino et al., 2006).  Whilst antigen presentation to T cells is a 

fundamental LC process, which occurs in both inflammation and steady state homeostasis, the 

context in which it occurs highly influences immune response outcomes. Antigen processing and 

presentation provides the first signal for the induction of inflammatory T cell immune responses, 

but the lack of PRR stimulation, in the context of self-antigen, prevents an increase in costimulatory 

receptors and cytokines to pass a threshold of activation (Mutyambizi, Berger and Edelson, 

2009),(Berger et al., 2006). Instead LC interaction with T cells results in skewed differentiation 

pathways towards Tregs. In mouse models, LC mediated presentation of the keratinocyte 

associated protein desmoglein 3 (Dsg3) leads to the proliferation of Dsg3 specific Treg cells that 

suppress self-reactive immune responses (Kitashima et al., 2018).  

The induction of Tregs by LC appears to be critical for both systemic and epidermal tolerance 

regulation. Using human donor derived LCs, it was shown that steady state LCs expand functional 

skin resident Treg populations in the epidermis to promote tolerance (Seneschal et al., 2012). 

Furthermore, in the absence of maturation stimuli (IL-1b and TNFa), LCs highly induce the 

differentiation of Staphylococcus aureus and Escherichia coli antigen specific autologous Tregs, as 

compared to DDCs (van der Aar et al., 2013). A crucial role for LC induced Tregs for tolerance 

regulation can be seen in epicutaneous immunotherapy desensitised OVA-sensitive mice, in which 

the induction of Tregs prevents systemic immune activation (Dioszeghy et al., 2018). Interestingly, 

LC induction of Tregs after ionising radiation treatment is implicated in the exacerbation of tumour 

growth through tumour evasion of immunity (Price et al., 2015). Overall, this corroborates the 

pivotal role of LCs for maintaining and inducing self-tolerance at the epidermis. 

Like immunogenic responses, tolerogenic responses by LCs are influenced by signalling from the 

external environment and epidermal microenvironment. As discussed above, KC are highly 

regulatory towards LCs. Tolerogenic stimuli such as TGF-b and IL-10 are produced by epidermal KCs 

(Enk and Katz, 1992), which prevent LC maturation and the migration out of the epidermis (Kel et 

al., 2010), as well as inhibiting antigen presentation and the induction of pro-inflammatory Th1 T 

cell responses (Cumberbatch et al., 2005). TGF-b is produced by LCs themselves, which can act in 

an autocrine and paracrine fashion to support their own regulation (Deckers, Hammad and Hoste, 

2018). Interestingly, UV-B exposure to the skin also drives LC towards tolerogenic function, 

preventing Th1 T cell induction (Simon et al., 1991). Furthermore, exposure of LCs to supernatants 
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from keratinocyte cultures exposed to UV-B restricts LC mediated inflammatory responses, with 

high concentrations of IL-10 secreted by KCs shown to drive this effect (Beissert et al., 1995). 

To further understand LC tolerogenic function, studies have amplified tolerogenic function through 

immunosuppressive drugs or molecules. This includes dexamethasone and lactoferrin which inhibit 

the migration process and therefore interfere with the activation of adaptive immune responses 

(Cumberbatch, Dearman and Kimber, 1999),(Cumberbatch, Dearman, Uribe-Luna, et al., 2000). 

TGF-β an important cytokine for development and maintenance of the LC population at the 

epidermis also prevents LC migration out of the tissue, whilst 1,25-dihydroxyvitamin D3 (VitD3) 

treatment of LCs results in suppression of antigen presentation capabilities (Dam et al., 1996),(Bobr 

et al., 2012),(Worthington et al., 2012). Cyclosporin A (CsA) is a strong immunosuppressant drug 

used to prevent skin tissue transplant rejection. Human skin culture with CsA has been shown to 

inhibit LC antigen presenting function (Dupuy et al., 1991). Whilst these studies focus on the cellular 

phenotypes of LC tolerance, research into the transcriptomic programmes and gene regulatory 

networks underlying tolerogenic function remains largely unexplored.  
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Figure 6. LCs are equipped for a tolerogenic role at the epidermis. LCs exhibit several features 

which are important for homeostasis and tolerogenic potential. This includes absent immune 

responses to certain pathogens (L. major, HSV), along with low TLR expression and microbe sensing. 

LC also display low cytokine production compared to DDCs. LC can also expand resident memory 

Treg populations in the steady-state and phagocytose apoptotic cells for self-antigen tracking to 

the lymph nodes to induce Tregs. 
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1.7 Gene expression and transcriptional regulation underlying 

tolerogenic LCs  

In order to mediate tolerogenic responses DCs must differentially regulate gene expression to 

express tolerance pathways genes (Vendelova et al., 2018). Mechanism of DC tolerance induction 

include the production of anti-inflammatory cytokines (IL-10, IL-35 and TGFb), T cell modulatory 

surface ligands (PD-L1, Fas-L) and immunomodulatory enzymes (IDO and HMOX1) (Domogalla et 

al., 2017)(Obregon et al., 2017)(Marín, Cuturi and Moreau, 2018). Some of these mechanisms have 

been proven to be actively displayed by LCs. The expression of IDO, an enzyme involved in 

tryptophan metabolism, which restricts T cell activation, is commonly induced during tolerance 

across many DC subtypes, to inhibit inflammatory CD4 and CD8 T cell responses and induce Treg 

differentiation (Munn and Mellor, 2013)(Manches et al., 2012). In LCs, IDO1 is rapidly induced in 

response to IFNg to downregulate T cell activation (von Bubnoff et al., 2004). Upregulation of IDO 

expression can also be triggered by UV-B radiation through the activation of aryl hydrocarbon 

receptors on LC surfaces (Koch et al., 2017). The cell surface ligands PD-L1 and PD-L2 have also been 

demonstrated to mediate T cell tolerance by DCs (Keir et al., 2008). In LC, PD-L1 and PD-L2 

expression after migration is associated with the dampening of T cell activation (Pẽa-Cruz et al., 

2010). Glycan binding proteins, such as Galectin-1, also downregulate immunogenic DC activation 

and the activation of cytotoxic CD8 T cells, instead favouring Treg induction (Martínez Allo et al., 

2020). 

Changes in cellular gene expression are modulated by transcription factors (TFs). In DCs, key TFs 

have been identified which influence both development and immune response regulation (Clayton 

et al., 2017)(Lin et al., 2015)(Vander Lugt et al., 2014). The effects of external stimuli which drive 

the differentiation of different LC responses, presumably including tolerance, are therefore 

translated intracellularly through changes in TF regulation. For LC gene regulation, the interferon 

regulatory factor (IRF) and NFkB family of TFs have been critically implicated in immunity, whilst 

the TGFb-PU.1-RUNX3 transcription axis has implications for LC development and the steady-state 

(Polak et al., 2017)(Clayton et al., 2017)(Chopin and Nutt, 2015)(Figure 7). 

TF regulation of LC is important for development and population maintenance. As demonstrated 

by Chopin et al., the effects of TGFb on LCs is mediated through PU.1 activation, which subsequently 

activates RUNX3 (Chopin et al., 2013). The importance of RUNX3 for LC development and the 

steady-state at the epidermis is demonstrated in LCs that lack PU.1, but can maintain their 

epidermal population through ectopic RUNX3 expression. The homeostatic effects and suppression 

of immune activation induced by TGFb signalling therefore appears to be mediated by PU.1-RUNX3 

TFs. Importantly, PU.1 also plays a role in the induction of LC maturation (Chopin and Nutt, 2015). 
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The NFkB TF family is strongly associated with immune cell regulation of inflammatory responses, 

including DCs (Oeckinghaus and Ghosh, 2009)(Amit et al., 2009)(Clayton et al., 2017). Furthermore, 

its importance for the regulation of LC immune responses has been explored (Kraft et al., 2002). 

Interestingly, a role of NFkB for tolerance regulation and homeostasis has also been identified. 

Stimulation of LC expressed receptor activator of NFkB (RANK) by its ligand RANKL, presented by 

KCs, is important for maintenance of the LC epidermal population and tolerogenic activity. Murine 

studies of RANKL deletion show abrogated LC proliferation and therefore reduced numbers of 

epidermal LCs (Barbaroux et al., 2008). RANKL stimulated LCs also upregulate IL-10 secretion and 

have been demonstrated to increase CD4+ CD25+ Treg cells, which drive anti-inflammatory immune 

responses (Yoshiki et al., 2010)(Schöppl et al., 2015). Similarly, NFkB is implicated in immunogenic 

LC regulation (Peiser et al., 2008)(Mutyambizi, Berger and Edelson, 2009). TLR stimulation activates 

NFkB and amplifies LC antigen presentation capacity through increased expression of costimulatory 

molecules and MHC II (Mutyambizi, Berger and Edelson, 2009). Furthermore, LC TLR ligation leads 

to NFkB mediated CCR7, CD86, CD83, TNFa and IL-6 production (Peiser et al., 2008). Interestingly 

there is disparity in the activity of different NFkB pathways. NFkB is constituted by two divisions, 

the canonical and non-canonical pathways (Oeckinghaus and Ghosh, 2009) and RelB,, the main TF 

component of the non-canonical NFkB pathway, is not expressed in steady-state tissue residing 

epidermal LC or trypsin extracted LC (Clark et al., 1999). Furthermore, RELB is not activated in LCs 

in response to potent antigenic stimuli (Shklovskaya et al., 2011). Differential regulation of NFkB 

components therefore appears to be critical for LC regulation of both immunogenic and tolerogenic 

responses. 

The importance of the IRF TF family for the regulation of LC function has also been shown in recent 

years (Clayton et al., 2017)(Polak et al., 2017)(Sirvent et al., 2020). In LC, the interactions between 

IRF1, IRF4 and IRF8 have been demonstrated to be important for the regulation of immunogenic LC 

responses, such as phagocytosis, MHC I and II regulation and Th1, Th2 and Th17 T cell induction 

(Polak et al., 2017). Importantly, IRF4 has been demonstrated to be critical for the genomic 

programming and gene regulation associated with antigen processing and presentation in LCs 

(Polak et al., 2017)(Sirvent et al., 2020). Interestingly however, IRF4 has also been linked with the 

restriction of inflammatory cytokine responsive genes in human IRF4 CRISPR-Cas9 knockout LCs, 

suggesting an immunoregulatory role (Sirvent et al., 2020). Furthermore, in bone marrow DCs, IRF4 

has been demonstrated to be central for the induction of both effector T cells and Tregs (Vander 

Lugt, Riddell, Aly A Khan, et al., 2017). Therefore, similar to NFkB, IRF regulation of LC appear to 

influence both tolerogenic and immunogenic responses. 
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1.8 LC transcriptomics  

All cells in an individual organism possess the same DNA, yet each cell in an organism carries out a 

specific function and can respond to unique biological context at any one time. These differences 

are a result of changes in gene regulation, which create different expression patterns of mRNA 

transcripts and therefore unique transcriptomic programmes. The development of high throughput 

sequencing methods to measure cellular gene expression provides insight into the transcriptomic 

programmes that define different cell types and cellular responses. These methods have therefore 

greatly expanded the potential to understand cellular and molecular biology in steady state, 

modulated and diseased cells and tissues.  
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Figure 7. Transcriptional programs regulated by key TFs in LCs. The PU.1:RUNX3 transcription axis 

is important in LC development and the maintenances of the steady-state. NFkB is implicated in the 

regulation of both immunogenic and tolerogenic responses in LCs. Furthermore, the IRF TF family 

is highly associated with LC activation and immunogenic responses, but are also implicated in the 

regulation of immunotolerance. Figure adapted from Clayton et al. 2017. 
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Methods of transcriptomic measurement converge with the basic principles of quantifying gene 

transcript abundance, with the requirement to first extract mRNA from cell cultures or tissues, 

before converting it into stable cDNA for measurement. The precise methods for measuring and 

quantifying cDNA however can differ between techniques. The DNA microarray, one of the first 

techniques which allowed large scale transcriptomic measurement, was developed in the mid 

1990s (Cieślik and Chinnaiyan, 2017). Microarrays include a panel of DNA probes complimentary to 

specific genes attached to their surface. DNA probes targeting a specific gene are localised together 

on the microarray chip. Fluorescently labelled sample cDNA is applied to the chip and hybridisation 

of the labelled sample to the probes allows the number of transcripts from a particular gene to be 

quantified through detecting the level of fluorescence. The expression level of thousands of genes 

can therefore be simultaneously measured on one microarray chip. A drawback of this method 

however is the requirement for prior knowledge of the gene sequences printed on the chip and this 

therefore limits the ability to detect novel transcripts and splice variants. More recently, in the mid 

2000s, a sequencing by synthesis approach called RNA-seq was first published, allowing 

quantitative measurements of gene transcripts with an unrestricted exploratory potential to 

discover new transcripts and splice variants (Bainbridge et al., 2006),(Kukurba and Montgomery, 

2015). mRNA is first reverse transcribed into cDNA before amplification and ligation of specific 

adaptor sequences which enable sequencing (Kukurba and Montgomery, 2015). Biotechnology 

companies have adapted the basics of RNA-seq, opting for different sequencing approaches of the 

prepared cDNA libraries, producing different efficiencies and outputs (Buermans and den Dunnen, 

2014). As an example, Illumina, one of the leading sequencing companies, adopt a bridge 

amplification method in which single cDNA transcripts are clonally amplified on a flow cell, creating 

transcript clusters. Terminating deoxynucleotide bases (A, C, T and G) with attached fluorophores, 

are one by one hybridised to the sequence. After each hybridisation, the deoxynucleotide base that 

was added is determined through laser excitation of the fluorophore (Bentley et al., 2008). The 

whole sequence is therefore deduced after consequential base addition and fluorophore detection. 

Using bioinformatic tools, the base sequences are aligned to a reference genome in order to identify 

the corresponding genes the sequences are derived from. The expression level of a gene transcript 

is quantified by the number of sequences aligned to that gene.  

Transcriptomic data analysis has been applied to address many biological questions related to 

LC/DC function and development, that would otherwise be difficult and extensive to explore in 

vitro. This includes the deconvolution of lineage relationships between LCs and other immune cells, 

including closely located DDCs (Figure 8). As discussed, the common ontogeny pathway between 

LC and macrophage development and their self-renewal qualities has led to speculation that LCs 

are a specialised subset of tissue resident macrophage that possess DC qualities, such as potent 
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antigen presenting function. Transcriptomic analysis comparing LCs to both DDCs and dermal 

macrophages through hierarchical clustering of whole transcriptome data, has revealed the highly 

unique gene expression displayed by LCs (Clayton et al., 2017). Principle component analysis (PCA) 

using skin DC whole transcriptome microarray data, shows the distinct gene expression 

programmes displayed by LCs compared to CD14+ and CD141+ DDC subtypes, demonstrating the 

divergent genomic programming influenced by habitancy in epidermal and dermal skin 

compartments (Artyomov et al., 2015). Furthermore, using microarray, the distinct gene expression 

programmes displayed by LCs and DDCs after TNFa stimulation have been revealed (Polak et al., 

2014). Here, sample to sample clustering of whole transcriptomic data revealed that DDCs display 

a more dramatic change in gene expression in response to stimuli, characterised by upregulation of 

inflammatory cytokines and chemokines. In contrast, LC transcriptomic changes were more subtle 

and included upregulation of genes encoding metabolic processes and antigen capture. The 

phenotypic differences observed between LCs and DDCs are therefore underlined by unique 

transcriptomic profiles. LCs extracted from different locations of the body have also been explored 

to study tissue heterogeneity. Interestingly, skin LCs and vaginal epithelium LCs display 

heterogenous gene regulation, but both show a convergence towards a more regulatory (IDO1 

expression) and Th2 inducing transcriptomic programme compared to the more pro-inflammatory 

Th1 associated expression profiles of CD14+ DDCs (Duluc et al., 2014). Furthermore, comparisons 

between transcriptomes of multiple DC subtypes isolated from human blood and skin using 

hierarchical clustering shows DCs cluster by location of residence, further highlighting the 

importance of tissue microenvironments on DC programming (Harman et al., 2013). Gene 

regulation underlying divergent immunogenic and tolerogenic DC function has also been explored 

using transcriptomics. For examples, tailored responses to specific pathogens can be observed in 

the transcriptomes of DCs (Huang et al., 2001).  Inflammatory and non-inflammatory DCs can be 

distinguished by their specific gene expression profiles (Torri et al., 2010). MoDCs stimulated with 

tolerogenic stimuli dexamethasone and VitD3 show an increased metabolic capacity, with 

increased expression of genes associated with mitochondrial and fatty acid oxidation pathways 

(Malinarich et al., 2015). VitD3 stimulated DCs also show reduced expression of antigen presenting 

HLA class II and CD1 genes, whilst increasing the expression of inhibitory receptors, such as LILRB1 

(ILT2) and immunosuppressive molecules, such as TGFb (Széles et al., 2009). 
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From conducting analysis of transcriptomic data, the underlying gene expression patterns can infer 

the interaction and relationship between cellular molecules. This can allow the identification of 

molecular networks, constituted by multiple regulatory TFs and their targets. Therefore, not only 

the specific expression profile certain cellular phenotypes can be understood, but also the 

intracellular mechanisms that induce and regulate them. Complex regulatory networks are 

increasingly being revealed to underlie cellular processes, such as immune regulation and 

responses to stimuli (Loriaux and Hoffmann, 2012)(Hoffmann, 2016)(Xue et al., 2014)(Mabbott et 

al., 2013). Regulatory networks controlling cellular gene expression programmes are termed ‘gene 

regulatory networks’ (GRNs) (Singh, Khan and Dinner, 2014)(Clayton et al., 2017). GRNs can include 

Figure 8. Transcriptomic and functional in vitro have studies have together revealed the 

different phenotypes exhibited by LCs and DDCs. Extensive studies investigating LCs and DDCs 

have revealed differences between cellular phenotypes. Functionally, LCs are characterised by 

increased CD8 cytotoxic T cell, CD4 Th2 T cell and bacterial-Ag specific Treg induction. At the 

transcriptome level they exhibited elevated expression of metabolic and antigen acquisition 

genes. DDCs, display increased inflammatory cytokine production at both the protein and 

transcriptomic level, which are associated with CD4 Th1 T cell activation and NK cell priming. They 

also display elevated expression of pathogen sensing molecules, such as TLRs. 

DC

LC

Epidermis

Dermis 

DDCLC

↑ Cytotoxic CD8 T 
cell activation

↑ Th2 CD4 T cell 
activation ↑ inflammatory 

cytokine 
production

↑ NK cell priming

↑ Pathogen 
sensing (TLR 
expression)

↑ Bacterial-Ag 
specific Treg

induction

↑ Th1 CD4 T cell 
activation 

↑ Metabolic 
processes

↑ Antigen 
aquitsition



Chapter 1 

52 

interactions between DNA regulatory elements and transcription factors which mediate specific 

transcriptomic profiles/programmes and cell functions (Macneil and Walhout, 2011)(Polak et al., 

2017). Due to the complexity of GRNs it is near impossible to achieve complete understanding of 

their regulation under different conditions using in vitro procedures. To attain better knowledge of 

GRN dynamics at the steady state and after network perturbation, translation of in vitro data into 

computational modelling methodologies are necessary.  Thus, TF GRNs can be constructed through 

combining observations from cis-regulatory (predicted TF binding sites in target genes) and trans-

regulatory (correlation between TF and target gene expression) methods, as well as functional 

perturbations of network components in vitro (Amit et al., 2009). GRN models have been applied 

to DCs to identify convergent and divergent TF expression during DC differentiation and 

development pathways (Lin et al., 2015). More specifically, insights into specific gene expression 

profiles and GRNs regulating immunogenic LC function have been made. Immunostimulatory 

cytokines such as TNFα and TSLP for example, modulate an interferon regulatory factor (IRF) GRN 

(IRF-GRN) controlling LC antigen processing and activation (Polak et al., 2017). Using a signalling 

Petri net framework, the LC IRF-GRN was reconstructed for modelling in silico. Containing 

directional transitions between network components, the addition of in vitro derived TF expression 

data into the model can produce in silico prediction of corresponding immune output genes. Using 

this model, the predicted outcomes of TNFα and TSLP stimulation produced in silico correctly 

matched outcomes of experimental in vitro data. This included an enhanced capability for LCs to 

induce cross-presentation to CD8+ T cells in response to TNFα and reduced function in response to 

TSLP, which has likely implications for reduced antiviral response capacity in atopic skin. With GRNs 

underlying LC immunogenic responses, we hypothesised that similarly, a unique GRN regulates LC 

tolerogenic responses.  

Conventional RNA-seq and microarrays methods use bulk populations of cells and tissues to acquire 

mRNA for transcriptomic analysis. Therefore, mRNA expression measured is an average across the 

whole cell population. The importance of cellular heterogeneity to mediating diverse phenotypic 

functions in a cell population is becoming more and more recognised (Altschuler et al., 2010). 

Heterogeneity may influence how cells respond to different stimuli and interact with other cells in 

the environment. If we are to address differences between cell types in a tissue and heterogeneity 

within cell populations, sequencing resolution at the single cell level is therefore required. Recently, 

a number of methods have been developed to perform RNA-seq at the single cell level, including 

Smart-seq, 10x, CEL-seq, MARS-seq and Seq-well (Picelli et al., 2014),(Zheng et al., 

2017),(Hashimshony et al., 2012),(Deng et al., 2014),(Gierahn et al., 2017). All single cell RNA-seq 

(scRNA-seq) methods converge in the requirement for isolation of single cells, although this can be 

achieved through various mechanism, such as fluorescence-activated cell sorting (FACS), 
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microfluidics and equal distribution of precise cell concentrations through gravitational sorting. 

Drop-seq, a novel approach of scRNA-seq, uses microfluidics to isolate single cells (Macosko et al., 

2015). In a high throughput and cost-efficient manner, a microfluidic device is flushed with primer 

coated microparticle beads and cells in aqueous solution. The device is also flushed with oil creating 

droplet encapsulation events at the aqueous phase and oil phase interface. Effective encapsulation 

events crate droplets containing one single cell and microparticle bead. Each bead is coated with 

uniquely barcoded poly(dT) oligo primers and when a cell and bead are encapsulated into the same 

droplet, the cell is lysed and its mRNA is captured by its poly(A) tail to the beads surface. The unique 

barcodes allow each transcript to be tracked back to its cell of origin and therefore whole 

transcriptome data originating from single cells can be produced. The oligo primers also consist of 

a unique molecular identifier (UMI), which is exclusive to each primer on each bead. UMIs are 

therefore distinct for each captured transcript and allow adjustment for amplification biases 

induced during cDNA library preparation.  

The resolution provided through single cell transcriptomic analysis has allowed identification of 

previously undescribed cell subtypes. For example, scRNA-seq has been used to define 

heterogeneity within the blood DC and monocyte compartment and resulted in the describing of 

new subtype of blood DC and monocytes not previously recognised (Villani et al., 2017). Here, the 

new DC subpopulation, termed DC5, can be identified through high expression of AXL, SIGLEC1 and 

SIGLEC6 and expressed gene profiles comparable to both pDC and conventional DCs. Additionally, 

the field of single cell analysis is constantly evolving with the appearance of updated and enhanced 

methods. This includes targeted sequencing approaches (Constellation Drop-seq, BD Rhapsody, 

DART-seq) and methods which integrate sequencing with cell surface protein expression profiling 

(CITE-seq, REAP-seq), to overall improve the effectivity of single cell analysis for different 

investigative contexts (Vallejo et al., 2019)(Shum et al., 2019)(Saikia et al., 2019)(Peterson et al., 

2017). 

In the skin, scRNA-seq has been used to investigate the cell population present in the human 

epidermis to characterise genomic programming during the steady state and during inflammation 

(Cheng et al., 2018). Additionally, scRNA-seq has been utilised to characterise heterogeneity and 

differentiation pathways in murine epidermal cell populations, including the hair follicles, in the 

steady-state and during wound healing (Joost et al., 2016)(Joost et al., 2018). Furthermore, the 

power of single cell analysis on skin has been demonstrated during its application on healthy and 

lupus nephritis skin and renal tissue (Der et al., 2019). Here, disease biomarkers have been 

identified that can be traced in the skin, with implications for personalised medicine. In human LCs, 

Drop-seq single cell analysis on migrated populations has revealed cellular differentiation of 

maturation, which involves transitional programming of oxidative phosphorylation and antigen 



Chapter 1 

54 

processing and presentation pathways (Sirvent et al., 2020). Furthermore, applications of scRNA-

seq to CRISPR-Cas9 IRF4 knockout human LCs has allowed investigation and exploration of gene 

editing at the single cell level (Sirvent et al., 2020). Thus far, only few studies have specifically 

investigated the transcriptomes of human LC populations at the single cell level. Undoubtedly, 

further application of scRNA-seq analysis on human LC will reveal the level of heterogeneity present 

amongst different LC populations and provide insight into how different LC immune responses are 

coordinated and regulated.  

1.9 Therapeutics of tolerogenic LCs 

It is well described that loss of tolerance can lead to inflammatory diseases and autoimmunity in 

which our own immune system is unable to correctly distinguish between ‘self’ and ‘non-self’, 

leading to disease, characterised by the self-destruction of tissues (Mackay, 2000). Here, the 

inherent diversity of TCR generation can lead to the generation of lymphocytes which are reactive 

to self-antigen or antigen from innocuous agents, that should in non-diseased circumstances be 

removed during central and peripheral tolerance (Horton, Shanmugarajah and Fairchild, 2017). The 

expansion in the understanding of tolerance and the characterisation of cells which mediate 

tolerogenic responses, has therefore sparked interest into their application therapeutically. 

Tolerogenic DCs and Tregs are well known for their tolerogenic properties and ability to regulate 

and suppress inflammatory responses (Schmidt, Nino-Castro and Schultze, 2012). The ability to 

harness DC tolerogenic ability however is particularly promising therapeutically due to their 

multiple mechanisms of tolerance mediation, including T cell anergy induction, the stimulation of 

multiple lymphocyte sub types, including Tregs and potent antigen acquisition and processing 

function, which could have implications for targeted immunoregulation (Obregon et al., 

2017)(Domogalla et al., 2017)(Hasegawa and Matsumoto, 2018)(Horton, Shanmugarajah and 

Fairchild, 2017). Reintroducing and maintaining long term tolerance using tolerogenic DCs would 

therefore be the desired outcome.  

In the study of tolerogenic DC capacity, several studies have utilised immunomodulatory stimuli, 

including VitD3, dexamethasone, TGFb, rapamycin and co-stimulatory molecule (CD80/CD86) 

inhibitors, to amplify tolerogenic function for analysis in vitro (Marín, Cuturi and Moreau, 

2018)(Domogalla et al., 2017). Signature phenotypes induced in tolerogenic DCs include 

downregulation of costimulatory molecule  (CD80, CD86) and MHC expression and the upregulation 

of immunosuppressive surface markers (PD-L1, ILT3) and secretory molecules (IDO, IL-10, IL-6) 

(Domogalla et al., 2017). The application of induced tolerogenic DCs to treat autoimmune disorders 

has been tested, including for Type 1 diabetes, rheumatoid arthritis, Crohn’s disease and multiple 

sclerosis (Phillips et al., 2017). Most treatments are currently in the early stages of clinical trials to 
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assess their safety for therapeutic administration into patients. In a Phase I trial for Type 1 diabetes, 

isolated monocytes from patients were differentiated into MoDCs, and cultured with inhibitors of 

CD40, CD80 and CD86 costimulatory molecule expression (Giannoukakis et al., 2011)(Phillips et al., 

2017). Injection of these DCs in the skin near the anatomical site of the pancreas resulted in patients 

displaying increased populations of B cells with potential regulatory properties and signs of 

recovery of functional beta cell recovery, identified through the detection of C-peptide markers. 

Similarly, a phase I clinical trial for rheumatoid arthritis therapy, involving MoDCs cultured with self-

antigen re-administration into inflamed knees of the patients, proved to be safe but had minor 

effects in the alleviation of patient symptoms (Bell et al., 2017). However, the group has further 

demonstrated in vitro, that VitD3 and dexamethasone stimulated MoDCs can dampen activation of 

CD4+ T cells from rheumatoid arthritis patients (Anderson et al., 2017). Overall, the modest success 

of tolerogenic DCs in clinical trials highlights the importance in continued expansion in our 

understanding of DC tolerogenic responses. 

The human skin is no different in its susceptibility for inflammatory and autoimmune disorders 

which can develop in individuals who lose tolerogenic function. Such disorders, include atopic 

dermatitis, psoriasis and contact allergies to antigen. The accessibility of the human skin to 

treatment gives unprecedented opportunities for studying the effects of tolerogenic DC in the 

alleviation of inflammatory and autoimmune disorders. With LC being the prime candidate for 

regulating tolerance at the epidermis, understanding the key features of their regulation could be 

pivotal in inducing long term disease alleviation of inflammatory skin disorders. In murine models 

of SLE, LC ablation resulted in an increased number of self-reactive antibodies to skin antigen, but 

no difference in the number of antibodies detected against systemic targets, suggesting LC 

tolerance regulation may be more localised to the skin (King et al., 2015). In contact hypersensitivity 

(CHS) responses, the depletion of LC populations, in LC ablated mice or as a result of epidermal 

steroid exposure, leads to worsening of CHS, thus highlighting a regulatory role for LC (Kaplan et 

al., 2005)(Grabbe et al., 1995). Furthermore, in murine models of CHS, antigen processing and 

presentation by LCs downregulates local and systemic immune responses and promotes Treg 

expansion (Dioszeghy et al., 2011)(Dioszeghy et al., 2018).  Like conventional DCs, enhancement of 

LC tolerogenic programmes, through immunomodulatory molecules such as steroids and VitD3, is 

also implicated in enhancing tolerogenic LC function to resolve inflammatory skin conditions (Chu, 

Di Meglio and Nestle, 2011). Whilst LC function is associated in the resolution of skin disease, it is 

equally implicated to be dysregulated in disease settings. Dysregulation of LC immune responses 

for example can contribute to disease and is caused by an unbalance in cytokines such as TSLP, in 

the inflamed skin microenvironment (Dubrac, Schmuth and Ebner, 2010). LC function is also 

abnormal in psoriasis, with surrounding KCs and immune cells stimulating inflammatory LC activity 
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(Cumberbatch et al., 2006),(Eidsmo and Martini, 2018). Thus, this highlights the importance/key 

role for correct LC tolerogenic regulation for the maintenance of skin health.  

Overall, whilst LC are implicated in homeostatic and tolerogenic regulation at the epidermis, the 

precise mechanisms and gene regulation (including GRNs) which underlie these responses are 

currently unknown. As LCs are central coordinators of skin immune regulation, they are prime 

targets for restoring tolerance in disease. The extensive and diverse mechanisms exhibited by DCs 

in the regulation of both immunogenic and tolerogenic responses however, demonstrates the likely 

complexity that underlies LC tolerance. However, successful identification of the distinct 

immunological programmes exhibited by LCs mediating tolerance, could lead to the identification 

of molecular targets for therapeutic intervention. Increased understanding of LC immune may 

therefore provide unprecedented opportunity to alleviate inflammatory diseases effectively and 

for long term, at the skin and beyond.
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Chapter 2 Methods 

2.1 Data analysis of DC microarray transcriptomic data 

2.1.1 Processing of DC microarray datasets collected from GEO 

Datasets were selected from the Gene Expression Omnibus (GEO), a public repository for high-

throughput genomic and transcriptomic data (Table 1).  Datasets selected for analysis included 

microarray data of: MoDCs under different stimulatory conditions (GSE52894 (Malinarich et al., 

2015), GSE117946 (Comi et al., 2020)); trypsinised (GSE23618) (Széles et al., 2010) and migrated 

(GSE49475 (Polak et al., 2014), GSE66355 (Artyomov et al., 2015) LC experiments with 

accompanying data for other DC types (DDCs, MoDCs, CD1c DCs); placental DCs (PlaDC) with 

accompanying MoDCs (GSE52850) (Gorvel et al., 2014) and a dataset containing dermal DC (DDC) 

subpopulations (GSE35457) (Haniffa et al., 2012). All datasets were exported from GEO as either 

normalised expression matrices (GSE117946, GSE23618, SE49475, GSE52850), or as raw files which 

were then processed within R (GSE52894, GSE66355, GSE35457)(Table 1). For processing of raw 

Illumina HumanHT-12 V4.0 expression beadchip files (GSE52894, GSE66355, GSE35457) were 

background corrected with control probes and quantile normalised using the Linear models for 

microarray data package(Limma) (Ritchie et al., 2015).   

Normalised log2 transformed whole transcriptome data were analysed through multi-dimensional 

scaling (MDS) on two-dimensional scatterplots representing the first 1-3 principle component 

dimensions. Log2 normalised datasets were submitted for differentially expressed gene (DEGs) 

analysis using R (version 3.6.1) package Limma (Ritchie et al., 2015). Unlogged expression data for 

Limma identified DEGs with a Benjamini Hochberg (BH) adjusted p-value <0.05 and logFC>1 were 

uploaded in Graphia Pro (Kajeka, Edinburgh UK) for transcript-to-transcript co-expression analysis 

(Theocharidis et al., 2009). Pearson coefficient parameters were adjusted (r=0.93-0.95), setting a 

transcript-to-transcript correlation threshold defining the number of probesets (genes) included in 

the non-directional cluster graph. In the graph, nodes represent individual probesets (genes) and 

edges between nodes represent Pearson correlation coefficients above the set threshold value. The 

Markov clustering algorithm (MCL), within Graphia Pro, was utilised to identify probesets with 

similar expression profiles across the sample data. The MCL inflation parameter, which controls 

clustering granularity, was set to 1.7, defining the distance metric for probeset clustering. Gene 

clusters were exported and associated ontologies were identified through gene ontology web-

based tools Toppgene (Chen et al., 2007) and DAVID (Huang, Sherman and Lempicki, 2008). A BH 

adjusted p-value<0.05 threshold was selected for significance. Gene expression data and gene 
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ontology analyses was plotted using Prism 8 software (GraphPad, California US). Gene ontology 

data was summarized using -log10 BH adjusted p-values. T-test statistical analysis was performed 

within Prism 8 software when comparing gene expression values (p-value<0.05). DEG lists were 

compared using Venn diagrams in Venny 2.0 (Oliveros, 2007). Heatmaps were plotted within R, 

using the gplots package (Canberra, ward.D cluster metrics). 

 

Dataset Dataset composition Microarray Processing 

GSE52894 3 x biological replicates: 

• Immature MoDC (iMoDC), 
• LPS stimulated MoDC 

(LPSMoDC) 
• Dexamethasone and 

VitaminD3 stimulated MoDC 
(TolMoDC) 

• LPS and Dexamethasone 
and VitaminD3 stimulated 
MoDC (LPS-TolMoDC) 

Illumina 

HumanHT-12 V4.0 

expression 

beadchip 

 

Processed from raw files. 

Background corrected with 

control probes and quantile 

normalised using 

Limma(Ritchie et al., 2015). 

GSE117946 3 x biological replicates: 

• Immature MoDC (iMoDC) 

• LPS stimulated MoDC 
(LPSMoDC) 

• IL-10 stimulated MoDC 
(IL10MoDC) 

• LPS and IL-10 stimulated 

MoDC (LPS-IL10MoDC) 

Affymetrix Human 

Gene 1.0 ST Array 

 

Robust multichip average 

(RMA) algorithm normalised 

series matrix file was 

downloaded from GEO. 

GSE23618 3 x biological replicates from 

healthy breast and abdominal skin 

and blood donors: 

• Trypsinised steady-state LC  

• Trypsinised steady-state 

CD1a+ DDC 

• MoDC 

• CD1c+ blood DC 

Affymetrix Human 

Genome U133 Plus 

2.0 Array 

 

Robust multichip average 

(RMA) algorithm normalised 

series matrix file was 

downloaded from GEO. 

GSE49475 3 x biological replicates, each with 2 

x technical replicates from healthy 

breast and abdominal skin donors: 

Affymetrix Human 

Genome U219 

Array 

Robust multichip average 

(RMA) algorithm normalised 
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• migrated LC  

• migrated CD11c+ DDC  

 series matrix file was 

downloaded from GEO. 

GSE66355 Biological replicates from healthy 

skin donors (body site not 

specified). All samples are extracted 

via migration: 

• 6 x LC 

• 4 x CD14+ DDC 

• 3 x CD141+ DDC 

• 4 x CD14-CD141- DDC (DN-

DDC) 

Illumina 

HumanHT-12 V4.0 

expression 

beadchip 

 

Processed from raw files. 

Background corrected with 

control probes and quantile 

normalised using 

Limma(Ritchie et al., 2015). 

GSE52850 Biological replicates from healthy at-

term placentas and blood donors: 

• 5 x Placental DC (PlaDC) 

• 3 x MoDC 

Agilent-014850 

Whole Human 

Genome 

Microarray 4x44K 

 

Agi4x44PreProcess 

normalised series matrix file 

was downloaded from GEO. 

 

GSE35457 4 x biological replicates from 

healthy breast skin donors. All 

samples are collagenase digested 

steady-state: 

• CD14+ DDC 

• CD141+ DDC 

• CD1c+ DDC 

• CD1c+ CD141+ DDC 

Illumina 

HumanHT-12 V4.0 

expression 

beadchip 

 

Processed from raw files. 

Background corrected with 

control probes and quantile 

normalised using 

Limma(Ritchie et al., 2015). 

Table 1. Microarray datasets of DCs used in transcriptomic analysis. Microarray GEO accession 

numbers are listed with dataset constituents annotated. Microarray method is listed along with file 

processing procedure. 

2.1.2 Petri-net modelling  

In silico gene regulatory network (GRN) modelling was performed using the framework of a 

signalling Petri-net model representing the LC IRF-GRN, originally used to predict LC immunological 

outcomes from gene expression data (Polak et al., 2017). The signalling Petri-net network diagram 

has been assembled using mEPN network architecture (O’Hara et al., 2016)(Ruths et al., 2008). The 
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model was constructed and edited within yED (yFiles, Germany). Here, the nodes represent 

biological entities (genes, DNA sequences) and the edges represent biological interactions and 

progressions through the model. The abundance of individual nodes is represented by the number 

of ‘tokens’ passing through the node. The edges represent the direction in which ‘tokens’ ‘flow’ 

through the system. Black edges indicate positive edges, whilst red edges indicate inhibitory 

interactions. The network is composed of TF nodes, in which tokens for the network enter, as well 

as DNA binding region nodes and output gene nodes, which determine the prediction of 

immunological pathways of activation. The signalling Petri-net (SPN) algorithm is modelled within 

Graphia Pro. Here, the stochastic ‘flow’ of variable numbers of ‘tokens’ through the network is 

modelled, based on network architecture and the number of initial ‘tokens’ only. More detailed 

description of model construction can be found in original study (Polak et al., 2017). 

For simulations of MoDC microarray data, means of TF expression values from triplicate 

transcriptomic measurements for each MoDC condition were used as starting ‘tokens’ input into 

network. Model parameters were set to 100-time blocks and 500 runs during SPN simulation within 

Graphia Pro. Mean output ‘token’ values from triplicate simulations, in which the means of the final 

10-time blocks were calculated, were used to display simulation outputs. For inclusion of MYC into 

the IRF-GRN, model architecture was edited within yED and before SPN simulation in Graphia Pro. 

2.2 In vitro processing of primary human skin tissue and LC  

2.2.1 Extraction of steady-state and migrated LC from primary human skin 

Human mastectomy and abdominoplasty skin samples were collected with written consent from 

donor and ethical approval (study number: 16/LO/0999). Samples were washed in PBS before fat 

was cut away and discarded. The remaining skin tissue was cut into small strips (~½cm width by 

~1cm length) and added to 25ml 2U ml-1 dispase (Gibco, ThermoFisher, UK) for ~20 hours at 4°C. 

The skin was washed in PBS, before the epidermis was mechanically separated from the dermis.  

For the extraction of steady-state LC through digestion, the epidermis was finely chopped using a 

scalpel and added to 13 U ml-1 liberase in R10 media (RPMI, 10% FBS and 1% 

penicillin/streptomycin)(Roche, UK) for 2 hours at 37°C with agitation. Samples were suspended in 

MACS buffer (0.5% BSA-PBS, Sigma, UK, 0.4% 0.5M EDTA, Gibco, UK) and filtered through a 70μM 

filter. Cells were washed in R10 media (all centrifugations of LC performed at 300rcf, 10 minutes), 

stained with trypan blue and subsequently counted using a haemocytometer to assess cell number 

and viability. During extraction of migrated LC, epidermal sheets were cultured in R10 for 48 hours 

at 37°C. The culture media containing migratory LCs was then collected, washed using R10 media 
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and counted after trypan blue staining. Steady-state and Migratory LCs were then: processed and 

stained for flow cytometry; purified using fluorescence-activated cell sorting (FACS) or 

OptiPrepä(volumes 1:3, STEMCELL, UK and R10 media) for in vitro analyses or Drop-seq; or 

cryopreserved in 90% FBS (Gibco, UK), 10% DMSO (Sigma, UK).  

2.2.2 In vitro modulation of primary LC  

OptiPrepä purified migratory LC were utilised in unstimulated and TNFα stimulated LC processed 

for Drop-seq. TNFα stimulated migrated LCs were incubated for 24 hours in R10 media with 

25ng/ml TNFα. LCs were then collected, washed in R10 media and counted after trypan blue 

staining. TNFα stimulated migrated LCs were processed through the Drop-seq pipeline. 

Dexamethasone stimulated migratory LCs were extracted during 48-hour culture of epidermal 

fragments in R10 media containing dexamethasone (1μM, Hameln, UK). Dexamethasone 

stimulated migrated LC were washed thoroughly with R10 media prior to use in flow cytometry or 

FACS purified for in vitro co-culture assays. 

2.3 Human PBMC isolation 

10ml aliquots of blood were isolated from healthy donors following informed written consent 

(study number: 16/LO/0999). Collection tubes were washed out with 10ml PBS and overlaid onto 

20ml lymphoprepä(Stemcell, UK), density gradient separation. Tubes were spun (600rcf, 30 

minutes, 4°C, no brake or acceleration). The PBMCs mobilised at the interphase were then aspirated 

and collected. PBMCs were washed with PBS and spun (300rcf, 10 minutes) to remove residual 

lymphoprep. Cells were counted in trypan blue using a haemocytometer to assess cell numbers and 

viability. 

2.3.1 Naïve T cell purification 

Naïve T cells were purified using the human naïve CD4+ T cell isolation kit II (Miltenyi, UK). Briefly, 

PBMCs were counted with subsequent solution volumes in the protocol adjusted according to cell 

numbers (10µl per 107  PBMCs). PBMCs were pelleted and resuspended in 4x volume MACS buffer 

(0.5% BSA-PBS, 0.4% 0.5M EDTA). 1x volume of cocktail 1 (biotinylated CD45RO, CD8, CD14, CD15, 

CD16, CD19, CD25, CD34, CD36, CD56, CD123, anti-TCRγ/δ, anti-HLA-DR, and CD235a (glycophorin 

A) antibodies) was added (5 minutes, 4°C). 3x volume of MACS buffer (0.5% BSA-PBS, 0.4% 0.5M 

EDTA), 2x volume of cocktail 2 (anti-biotin microbeads) and 1x volume human CD14 microbeads 

(Miltenyi, UK) were then added (10 minutes, 4°C). Magnetically labelled non-naïve CD4+ T cell 

populations were then depleted after running cell suspensions 2x through LS columns (Miltenyi, 
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UK), using MACS buffer. Double LS column filtering was performed to ensure sufficient removal of 

non-naïve T cell populations. The negative fraction of naïve CD4+ T cells was collected and washed 

in PBS prior to in vitro experiments. 

2.4 Skin resident memory T cell isolation 

Skin resident memory T cells (TRMs) were extracted from epidermal sheets isolated from whole 

skin after 2U ml-1 dispase (Gibco, ThermoFisher, UK) for ~20 hours at 4°C. Epidermal sheets were 

cultured in R10 media for 48 hours at 37°C. The culture media containing TRMs which had migrated 

from the epidermal tissues was collected and cells washed in R10 media (300rcf, 10 minutes). TRMs 

were purified using density gradient separation (volumes 1:3, Optiprepä, STEMCELL, UK and R10 

media). 

2.5 THP-1 monocyte cell line culture 

The THP-1 monocyte cell line (gifted by Dr Tilman Sanchez-Elsner, University of Southampton, UK) 

was utilised in optimisation of Drop-seq encapsulation and library preparation experiments. THP-1 

cells were cultured in R10 media, 37°C. Cultures were passaged every 3-4 days, through removing 

a fraction of culture volume and replacing with fresh warmed R10 media. Cells were washed in PBS 

(300rcf, 10 minutes) prior to Drop-seq experiments. 

2.6 Flow cytometry and FACS 

2.6.1 Purification of LC 

To enrich and purify samples of LC extracted from human epidermis, FACS was used. After isolation 

from epidermis as describe above, LCs were pelleted (300rcf, 10 mins). For surface staining of live 

cells, PBS buffer containing 0.5% BSA (Sigma, UK) was used for all antibody staining. LCs were 

incubated with 10μl of FcR blocker (Miltenyi, UK) for 10 minutes at room temperature prior to 

staining with fluorescently labelled antibodies, to prevent non-specific antibody binding to FcR 

receptors on LC. Antibodies used for cell staining were pre-titrated and used at optimal 

concentrations. LCs were stained for LC markers CD207 (anti-CD207, PeCy7, Miltenyi, UK), CD1a 

(anti CD1a, VioBlue/V1, Miltenyi, UK) and HLA-DR (anti-HLA-DR, Viogreen/V2, Miltenyi, UK) and the 

activation marker CD86 (anti-CD86, PerCP-Cy5.5, Miltenyi, UK) for 15 minutes, room temperature 

and in darkness (Table 2). Cells were washed twice with 1 ml MACS buffer (0.5% BSA-PBS, Sigma, 

UK, 0.4% 0.5M EDTA, Gibco, UK) before resuspending cells in ~300μl 0.5% BSA-PBS for flow 

cytometry/FACS. FACS two-way sorting was performed on a FACS Aria flow cytometer (Becton 
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Dickinson, USA), isolating LCs positively expressing CD207, CD1a and HLA-DR, or additionally 

CD86high/low fractions in steady-state LC immunocompetency experiments. After cell sorting, cells 

were washed in R10 media or PBS and recounted in trypan blue. Flow cytometry FACSDiva files 

were analysed using FlowJo software (FlowJo, Oregon US). 

 

Surface Marker Colour 

CD207 PeCy7 

CD1a VioBlue/V1 

HLA-DR VioGreen/V2 

CD86 PerCP-Cy5.5 

Intracellular marker  

IDO1 AlexaFluor647 

Table 2. Surface and intracellular antibody staining panel used for FACS and flow cytometry 

analysis of LCs. 

2.6.2 LC intracellular staining for IDO1  

IDO1 intracellular staining of LCs was performed using Intracellular Fixation & Permeabilization 

Buffer Set (eBioscience, UK), following the kits protocol. Briefly, 300µl of Intracellular Fixation 

Buffer (1x) was added (30 minutes, room temperature). Cells were subsequently washed with 1ml 

Permeabilization Buffer (eBioscience, UK) and spun (350rcf, 10 minutes). Cell pellets were stained 

using anti-IDO1 (AlexaFluor647, Biolegend, UK, 30 minutes, room temperature, darkness, Table 2), 

washed with Permeabilisation Buffer and resuspended in 0.5% BSA PBS for flow cytometry. 

2.6.3 T cell staining  

For T cell flow cytometry analysis to identify Treg populations, pellets were surface stained for CD3 

(anti-CD3, PerCP, Miltenyi, UK), CD4 (anti-CD4, Viogreen/V2, Miltenyi, UK) CD127 (anti-CD127, 

Pe,Miltenyi, UK) and CD25 (anti-CD25, PeCy7, Invitrogen, UK, Table 3) for 15 minutes, room 

temperature and in darkness, before washing in 0.5% BSA-PBS.  
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For intranuclear FOXP3 staining, T cells were permeabilised using the FOXP3/Transcription Factor 

Staining Buffer Set (eBiosciences, UK), following the manufacturers protocol. Briefly, 500µl of 

Fixation/Permeabilisation solution was added to the T cells (30 minutes, RT, darkness). 1ml of 

Permeabilisation Wash (1x) was added and spun (350rcf, 10 minutes). Cell pellets were stained 

using anti-FOXP3 (FITC, eBiosciences, UK) or a FITC isotype control (eBiosciences, UK), washed with 

Permeabilisation Wash (1x) and resuspended in 0.5% BSA PBS for flow cytometry. 

For intracellular IL-10 staining, T cells were initially stained with LIVE/DEAD Fixable Violet Cell Stain 

Kit  (VioBlue/V1, Invitrogen, UK) to distinguish live cells, followed by anti-CD3 and anti-CD4 surface 

staining as described above. Cells were then stimulated with Cell Stimulation Cocktail (eBioscience, 

UK) for 6 hours, followed by incubation with Golgi Plug (BD Biosciencies, UK) for 5 hours, to prevent 

intracellular protein transport (eBioscience, UK). Intracellular staining was performed in 

Permeabilizing Solution 2 (BD Biosciencies, UK) with anti-IL-10 (Pe, Miltenyi, UK). IC was used to 

distinguish true IL-10 positive staining. 

 

Surface Marker Colour 

CD3 PerCP 

CD4 VioGreen/V2 

CD127 Pe 

CD25 PeCy7 

Intranuclear marker  

FOXP3 FITC 

Intracellular  marker  

IL-10 Pe 

Table 3. Surface, intranuclear and intracellular antibody staining panel used for FACS and flow 

cytometry analysis of T cells to identify Treg populations. 
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2.7 Co-culture and inhibition assays 

2.7.1 LC and T cell co-culture assays 

Purified LC and either purified naïve CD4 T cells or TRMs were co-cultured in human serum 

supplemented R10 media (RPMI, Gibco, UK, 10% human serum, Sigma, UK, 100 IU/ml penicillin and 

100 mg/ml streptomycin, Sigma, UK) at a 1:50 ratio for 5-days at 37°C, in wells of a 48 well plate. 

Plates were incubated at a tilt for the first 4 hours to ensure contact between LC and T cells. After 

5-day co-culture cells were extracted, the wells washed out using PBS, before cells were washed in 

RPMI media. T cells were then stained for Treg markers for flow cytometry/FACS (Table 3).  

For IDO1 inhibition experiments, co-cultures were performed as described above, except NLG-919 

(10μM, Cambridge Bioscience UK), an immune checkpoint inhibitor and epacadostat (EPAC, 1μM, 

Cambridge Bioscience UK), a selective inhibitor of tryptophan catabolism were added to the media 

during migrated LC and naïve CD4+ T cell 5-day co-cultures. 

2.7.2 PBMC suppression assays 

Proliferation assays were set up through combining FACS-purified CD3+CD4+CD127-CD25+ Tregs, 

induced after 5-day co-culture of naïve CD4+ T cells with LC, with autologous CFSE labelled PBMCs. 

PBMCs were labelled with CFSE using the CellTrace™ CFSE Cell Proliferation Kit (Invitrogen, UK), 

following the kits protocol. Briefly, after cell counting, T cells were resuspended in ice-cold 0.5% 

BSA-PBS (1ml per 106 cells). Cells were then stained with CSFE (1μl per 106 cells, 10 minutes, room 

temperature). 25ml of ice cold R10 media was then added (10 minutes, on ice). Cells were washed 

with ice cold R10 media (3x, 15ml, 300rcf, 10 minutes). Cells were recounted after CFSE labelling to 

assess viability. Wells of a 96 well flat-bottomed plate were coated with 1µg/ml anti-CD3 

monoclonal antibody (OKT3, eBioscience, UK) diluted PBS and incubated for 24 hours (4°C) and 

washed 3x with PBS prior prior to co-culture set up. CD3+CD4+CD127-CD25+ Tregs and CFSE 

labelled PBMCs were co-cultured for 3 days in human serum supplemented R10 media (RPMI, 

Gibco, UK, 10% human serum, Sigma, UK, 100 IU/ml penicillin and 100 mg/ml streptomycin, Sigma, 

UK), with 1µg/ml soluble anti-CD28, in wells of a 96 well flat-bottomed plate. Co-cultures were set 

up in ratios of 1:1 and 1:3 Treg:PBMC. Co-cultures were incubated at a tilt for the first 24 hours to 

ensure Treg/PBMC contact. After 3 days, cells were collected and washed in R10 media (300rcf, 10 

minutes). T cells were stained for CD3 (anti-CD3, VioBlue/V1, Miltenyi, UK), CD4 (anti-CD4, APC, 

Miltenyi, UK) and CD8 (anti-CD8, APC-Cy7, Miltenyi, UK)(15 minutes, room temperature, darkness, 

Table 4) to assess proliferation rate (CFSE fluorescence diffusion) across CD4 and CD8 T cell 

populations. Cells were resuspended in 0.5% BSA PBS for flow cytometry. 
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Table 4. Antibody staining panel used for flow cytometry analysis to measure CD4 and CD8 T cell 

proliferation in the CFSE-labelled PBMC proliferation assay. 

2.8 Drop-seq 

2.8.1 Producing microfluidic droplet devices 

PDMS microfluidic devices were produced following the protocol developed by Dr Jonathan West 

and Dr Patrick Stumpf at the University of Southampton (Figure 9). For a single device containing 6 

microfluidic channels, 12g of PDMS pre-polymer and 1.2g of curing agent were mixed and degassed 

in a vacuum desiccator before pouring into moulds. Devices were baked at 60°C for 90 minutes. 

Inlet and outlet holes were created using a 1-mm biopsy punch. Devices were positioned onto a 

glass microscope slide and the contact sealed using plasma activation in a Diener Femto SRS Plasma 

System (Diener, Germany). 1% trichloro(1H,1H,2H,2H-perfluoro-octyl)silane (Sigma-Aldrich, UK) 

was flushed through the device via inlet holes and left to incubate for 10 minutes. Contents of 

device were then ejected using a N2 gun before storage at room temperature. 

Surface Marker Colour 

CD3 VioBlue/V1 

CD4 APC 

CD8 APC-Cy7 

Oil inlet Cell inlet Bead/lysis 

buffer inlet 
Droplet outlet 

Figure 9. Microfluidic device used to create nanoliter sized droplets containing single cell and primer coated 

bead. Fluid runs through the 1mm diameter channels in the device from inlets. At the interphase in which 

aqueous cell and bead flow meet the oil, encapsulation events occur (arrow). Droplets exit the device at outlet 

for collection and subsequent processing. Image edited from Macosko et al. 2015(Macosko et al., 2015). 
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2.8.2 Production of single cell and bead loaded droplets 

Drop-seq was performed following the Drop-seq protocol designed by the McCarrol Lab(Macosko 

et al., 2015). Devices were positioned onto an inverted 10x microscope (Olympus, UK) to observe 

droplet formation. Syringe contents for the 3 device inlets were prepared. A 5ml syringe (Henke-

Sass Wolf, HSW, Germany) was loaded with droplet generation oil (Bio-Rad, UK) for insertion into 

the oil inlet. LCs suspensions were diluted to a concentration of 120 cells/μl in 0.02% BSA-PBS and 

loaded into a 1ml syringe (HSW, Germany) for the cell inlet. Uniquely barcoded primer coated beads 

produced through phosphoramidite synthesis (ChemGenes, USA) were suspended in 1ml lysis 

buffer, which contained 50μl 1M DTT (Sigma-Aldrich, UK), 40μl 0.5M EDTA (Fisher Scientific, UK), 

100μl 2M Tris pH 7.5 (Sigma-Aldrich, UK), 10μl 20% Sarkosyl, 300μl (Sigma-Aldrich, UK) 20% Ficoll 

PM-400 (Sigma-Aldrich, UK) and 500μl nuclease free water (Fisher Scientific, UK). Beads were 

diluted at a concentration of 120 beads/μl and loaded into a 3ml syringe (HSW, Germany) for the 

bead inlet. A small stirrer magnet was added to cell and bead syringes and a magnetic plate placed 

in close proximity ensured homogenous suspensions were maintained. Syringes were attached to 

device inlets via 0.38mm diameter polyethylene tubing (Smiths Medical, Fisher Scientific). Tubing 

was attached to device outlet to allow collection of droplet emulsion into a 50ml Falcon tube. 

Syringes were placed onto the Drop-seq device in which rotating motors were primed at the top of 

syringe plungers. Motors were activated at a flow rate of 14,000 µl/hr for the oil and 4000 µl/hr for 

cell and bead suspensions, initiating droplet production. Outflow was collected and observed using 

a light microscope to check uniformity of droplet emulsion 

2.8.3 Extraction and purification of beads from emulsion 

The oil layer at the bottom of droplet collections was first discarded. 30 ml of room temperature 

6X SSC (Fisher Scientific, UK) and 1ml of perfluorooctanol (PFO, Sigma-Aldrich, UK) were added 

before shaking (5 times). Tubes were spun at 1000rcf for 1 minute and the supernatant layer at the 

top of the tubes was discarded. 30ml 6x SSC was ejected into tubes and supernatant containing 

suspended beads was transferred into a new 50ml Falcon tube after allowing time (~3 seconds) for 

the oil to sink. Tubes were spun again at 1000rcf for 1 minute to pellet the beads. The pellet was 

then transferred into a 1.5ml DNA low bind tube (Eppendorf, UK) and washed twice with 1ml 6X 

SSC and once with 300μl 5X RT buffer. 

2.8.4 Reverse transcription and endonuclease treatment 

200μl reverse transcriptase mix (75μl water, 40μl Maxima 5x RT buffer, 40μl 20% Ficoll PM-400, 

20μl 10mM dNTPs, 5μl RNase inhibitor, 10μl 50μM template switch oligo (TSO) and 10μl Maxima 
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H- RTase) was added to each sample of beads. Samples were incubated with rotation at room 

temperature for 30 minutes followed by 90 minutes at 42°C. Beads were washed with 1ml TE-SDS 

(10mM Tris pH 8.0 1mM EDTA, 5% SDS) and twice with 1ml TE-TW (10mM Tris pH 8.0 1mM EDTA, 

0.01% Tween-20). Beads were washed with 1ml 10mM Tris pH 8.0. 200μl of exonuclease mix (20μl 

10X Exo I Buffer, 10μl Exo I, 170μl water) was added before incubating with rotation at 37°C for 45 

minutes. Beads were then washed with TE-SDS and twice with TE-TW.  

2.8.5 PCR and cDNA library purification 

2000 bead aliquots equivalent to 100 STAMPs were used in each PCR reaction. Beads were washed 

with 200μl endonuclease free water before 50μl PCR mix was added (25μl 2X Kapa HiFi Hotstart 

Readymix, 0.4μl 100μM SMART PCR Primer, 24.6μl water) and proceeding to PCR (Table 5). At the 

second denaturing, annealing and extension stage different cycling parameters were tested. cDNA 

libraries from 100 STAMPs were generated at a time, with different number of PCR cycles (12-16 

cycles) initially tested to determine the lowest number of cycles required to produce sufficient 

quantities of cDNA (>100pg/µl). Lower cycling parameters reduces overamplification of high 

abundant transcripts, resulting in higher quality cDNA libraries. Once optimal cycling parameters 

were determined, the total required number of STAMPS were converted into cDNA libraries. cDNA 

libraries were purified using AMPure XP magnetic beads (Beckman Coulter, UK). 30μl of AMPure 

beads were added to PCR samples and vortexed for 5 minutes. Samples were incubated for 5 

minutes at room temperature before being placed onto a 96 well magnetic plate. After 2 minutes 

of magnetic separation the supernatant was removed, leaving the magnetic AMPure beads bound 

with the cDNA. Tubes were washed twice with 200μl 70% ethanol. Tubes were dried before cDNA 

was eluted and collected in 10μl of endonuclease free water, before AMPure beads were discarded. 

Samples were run using a DNA hypersensitivity kit on an Agilent Bioanalyser (Agilent, UK) to test 

for successful cDNA library production. 

 

 

 

Phase Cycles Temperature Time 

Denaturation 1 95°C 3 minutes 

Denaturation 

4 

98°C 20 seconds 

Annealing 65°C 45 seconds 

Extension 72°C 3 minutes 

Denaturation 
12-16 cycles (Sample 
dependent) 

98°C 20 seconds 

Annealing 67°C 20 seconds 

Extension 72°C 3 minutes 

Extension 1 72°C 5 minutes 

Table 1. PCR parameters used for cDNA library amplification Table 5. PCR parameter used for cDNA library amplification 
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2.8.6 Tagmentation of cDNA 

In preparation for next generation sequencing, cDNA libraries were labelled with a unique index 

sequence and molecular handle through tagmentation (Nextera XT DNA library preparation kit, 

Illumina), for compatibility with the Illumina Next-seq protocol. Volumes of purified cDNA libraries 

containing 600pg of DNA were diluted in nuclease free water a total volume of 5μl. 10μl of Nextera 

TD buffer and 5μl Amplicon Tagment Enzyme was added before incubating at 55°C for 5 minutes. 

5μl of Neutralisation buffer was added and sample was incubated at room temperature for 5 

minutes. In chronological order, 15μl Nextera PCR mix (Illumina), 8μl water, 1μl 10μM New-P5-

SMART PCR hybrid oligo and 1μl 10μM Nextera N70X oligo (Illumina) was added before PCR 

tagmentation (Table 6). DNA was purified using AMPure XP magnetic beads (Beckman Coulter, UK) 

and eluted in 10μl water. DNA was quantified using a DNA hypersensitivity kit on an Agilent 

Bioanalyser.  

 

 

2.8.7 Sequencing 

Custom read 1 primer was diluted to a working concentration of 0.3μM by adding 6μl 100μM 

Custom read 1 primer stock to 1994μl HT1 buffer (Next-Seq 500/550 v2.5 kit, Illumina). Tagmented 

libraries were pooled together at a total concentration of 2nM. 10μl of 2nM pooled library was 

added to 10μl 0.2N NaOH. Working on ice, 980μl ice-cold HT1 buffer was added. 130μl of the mix 

was transferred into 1170μl HT1 buffer, diluting the concentration of library to 2pM. 2pM libraries 

and 0.3μM custom read 1 primer were loaded onto a reagent cartridge from an Illumina Next-Seq 

500/550 v2.5 kit (Illumina, California US). Flow cell, buffer cartridge reagent cartridges were loaded 

onto an Illumina NextSeq sequencer (Illumina, Californa US), on  NextSeq on a paired end run 

Phase Cycles Temperature Time 

Denaturation 1 95°C 30 seconds 

Denaturation 

12 

95°C 10 seconds 

Annealing 55°C 30 seconds 

Extension 72°C 30 seconds 

Extension 1 72°C 5 minutes 

Table 6. PCR parameters used for cDNA Nextera XT tagmentation 
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(1.5x10E5 read per cell for maximal coverage, read1=20bp, read2=50bp, index1=8bp) at the Wessex 

Investigational Sciences Hub laboratory, University of Southampton (Southampton, UK).  

2.8.8 Read alignment 

Sequencing output files were uploaded onto a user account in Iridis4 (University of Southampton). 

Sequencing data was de-multiplexed to separate sequencing date derived from each sample, 

followed by removal of UMIs from reads and captured transcripts inferred through using the 

bcl2fasq software from Illumina. The resulting read 1 and read 2 fastq files for each sample were 

aligned to the human_hg19 reference genome using STAR, creating a data matrix containing gene 

transcript counts detected within each single cell.   

2.8.9 Drop-seq primers  

Sequences of all primer utilised in the regular Drop-seq procedures were consistent to those used 

in Macosko et al. (Macosko et al., 2015). All primers were ordered from IDT (Iowa, US) (Table 7). 

 

Name Sequence 

Barcoded Bead SeqB 5’–Bead–Linker-TTTTTTTAAGCAGTGGTATCAAC 

GCAGAGTACJJJJJJJJJJJJNNNNNNNN 

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT-3’ 

TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG 

SMART PCR primer AAGCAGTGGTATCAACGCAGAGT 

New-P5-SMART PCR hybrid oligo AATGATACGGCGACCACCGAGATCTACACGCCT 

GTCCGCGGAAGCAGTGGTATCAACGCAGAGT* A*C 

Custom Read 1 primer GCCTGTCCGCGGAAGCAGTGGTATCAACGCAG AGTAC 

Table 7. Barcoded primer bead and primer sequences utilised in Drop-seq protocol. 

2.8.10 Drop-seq data analysis  

Analyses was performed using the python-based Scanpy pipeline(version 1.5.0) (Wolf, Angerer and 

Theis, 2018) except where stated otherwise. High quality barcodes, discriminated from background 

RNA barcodes, were selected based on the overall UMI distribution using EmptyDrops (Lun et al., 

2019). The filtering criteria (min and max counts) was adjusted to match estimated the number of 
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true cells/STAMPs processed. Low quality cells, with a high fraction of counts from mitochondrial 

genes (20% or more) indicating stressed or dying cells were removed. In addition, genes with 

expression detected in less than 10 cells from an overall quantity of 680-972 cells, depending on 

the dataset (breast, foreskin, abdominal skin LC), were excluded. Datasets were normalised using 

Scran, using rpy2 within python (Lun, Bach and Marioni, 2016). Here, subclusters in the data are 

first identified (Counts per ten thousand (CPTT) normalised, n_pcs=15, Leiden r=0.5 (Traag, 

Waltman and van Eck, 2019)), before the Scran normalisation (computeSumFactors) is performed 

on subcluster annotated raw data. Briefly, sums of expression values in annotated subclusters in 

the raw data are identified. Pooled size factors are then calculated to deconvolute and produce 

individual cell-based factors for normalisation. Highly variable genes (top 2000) were selected using 

distribution criteria: min_mean=0, max_mean=4, min_disp=0.1. A single-cell neighbourhood graph 

was computed on the first principal components that sufficiently explain the variation in the data 

using 10 nearest neighbours. Uniform Manifold Approximation and Projection (UMAP) was 

performed for dimensionality reduction. Leiden algorithm (Traag, Waltman and van Eck, 2019) was 

used to identify clusters within cell populations (Leiden r = 0.5, n_pcs=25-50, n_neighbours=50). 

Marker genes for clusters were identified using logistic regression. Differentially expressed genes 

(DEGs) between cell clusters were identified using T-test or MAST (BH adj.p-value<0.05). Trajectory 

inference analysis was performed using partition based graph abstraction (PAGA) (Wolf et al., 2019) 

initialisation within Scanpy. Here, the Fruchterman Reingold (FR) force directed graph layout was 

used to maintain data topology. Gene ontology analysis for marker genes and DEGS was performed 

in Toppgene (BH adj.p-value<0.05) and gene ontology results summarised using Revigo. Gene 

ontology data was summarized using -log10 BH adjusted P-Values with plotting performed using 

Prism 8 software. 

 

Regulatory network inference analysis was performed using single-cell regulatory network 

inference and clustering (SCENIC) within python (Aibar et al., 2017). Briefly, gene and TF co-

expression networks are first calculated using the GENIE3 algorithm (Huynh-Thu et al., 2010), 

before putative direct binding targets within co-expressed modules are discerned using RcisTarget 

(Aibar et al., 2017) cis-regulatory motif analysis, to identify regulons. TF binding regions 500bp 

upstream of starting sequence were searched. The most highly enriched regulons could be 

identified between cell populations and regulon enrichment (Z-scores) in each single cell could be 

traced and plotted within the Scanpy pipeline. 
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2.8.11 Targeted Drop-seq 

Drop-seq experiments were processed as normal from encapsulation through to extraction and 

purification of beads from droplet emulsion. During reverse transcription however, TSO was absent 

from the reaction. This resulted in cDNA fragments without SMART primer binding sites at the 3’ 

end of the Macosko bead primers, which are produced in regular drop-seq (Vallejo et al., 2019).  

Primers targeting genes of interest were designed using Beacon Designer primer design software 

(PREMIER Biosoft, California US) (Table 8). The 55 gene panel was designed in order to identify LC, 

determine LC activation or tolerogenic status, identify melanocytes (MC), identify PBMC 

populations and detect general housekeeping genes to evaluate transcript detection. LC and MC 

detection panel included known markers from literature and the top consistently expressed genes 

detected from previously analysed single cell transcriptome data (ranked by expression, dropout 

rate<5%). Markers of LC activation/tolerance were chosen from literature on DC activation and 

tolerance and results from tolerogenic DC transcriptomic analysis. Using results from previously 

processed PBMC single cell RNA-seq dataset, the top two markers of each cluster, identified using 

k-means clustering were included for markers of PBMC populations. Housekeeping genes were 

selected from genes highly expressed across previously experimented LC and PBMC datasets 

(ranked by expression, dropout rate<5%). DNA sequences for genes were uploaded into the Beacon 

Designer software for identifying optimal primers specific to gene of interest. The last 14 bases from 

the SMART primer sequence (TATCAACGCAGAGT) were added to the 5’ end of the designed 

primers. Desired features of primers included: a length between 32-38 base pairs, 40-60% GC 

content, a primer melting temperature between 52-58°C with minimal chance of secondary 

structures being produced. The panel of 55 primers were designed (IDT, Iowa US). Primers were 

pooled at 10µM. 50μl amplification mix was added (25μl 2X Kapa HiFi Hotstart Readymix, 0.4μl 

10μM primer pool, 24.6μl water) to aliquots of 2000 beads (100 STAMPs). 20 rounds of linear 

amplification were first performed (Table 9) before continuing the regular Drop-seq protocol for 

library preparation with PCR amplification and tagmentation (Table 5 & Table 6). cDNA libraries 

were purified using AMPure XP magnetic beads and libraries assessed using a bioanalyser before 

tagmentation and Next-seq sequencing. 
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Table 8. Primer panel for investigating cell populations in the human epidermis. Panel 

included 55 primers for genes that would identify LC, determine LC activation or tolerogenic 

status, identify melanocytes (MC), identify PBMC populations and general housekeeping 

genes to evaluate transcript detection. Primers were designed using Beacon Designer primer 

design software. 

 

Gene Population targetted Gene Population targetted 
BIRC2 LC IRF1 LC activation/tolerance
CCL22 LC activation/tolerance IRF4 LC activation/tolerance
CCL5 PBMC LDHB PBMC 
CD1A LC LST1 PBMC 
CD207 LC LYN LC 
CD274 LC LYZ PBMC 
CD40 LC activation/tolerance MALT1 LC 
CD70 LC activation/tolerance MLANA MC
CD74 LC MS4A1 PBMC 
CD79A PBMC MYC LC activation/tolerance
CD80 LC activation/tolerance NFKB1 LC activation/tolerance
CD86 LC NFKB2 LC activation/tolerance
CFL1 Housekeeping NFKBIA LC activation/tolerance
CLEC10A PBMC NFKBIZ LC 
CLF1 PBMC PRF1 PBMC 
CYBB LC activation/tolerance PSME1 LC activation/tolerance
FCER1A PBMC RPL10 Housekeeping
FCGR3A PBMC S100A9 PBMC 
GZMB PBMC SOCS1 LC activation/tolerance
GZMK PBMC SOCS3 LC activation/tolerance
HLA-DPA1 LC SOCS5 LC activation/tolerance
HLA-DQA1 LC SOCS6 LC activation/tolerance
HLA-DRB1 LC SQSTM1 PBMC 
HLA-E Housekeeping STAT3 LC activation/tolerance
IDO1 LC activation/tolerance TNFAIP3 LC activation/tolerance
IGFBP7 MC TYRP1 MC
IL10RA LC activation/tolerance UBB Housekeeping
IL7R PBMC 
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2.9 qPCR 

FACS purified migrated LC were added to RLT buffer (Qiagen, UK), 1% b-mercaptoethanol. RNA was 

extracted and purified using a Qiagen RNeasy micro kit (Qiagen, UK), following manufacturers 

protocol. Using an Agilent RNA 600 pico kit, RNA concentrations and quality (RIN score >9 in all 

samples) were assessed. Reverse transcription was performed using a Maxima First Strand cDNA 

Synthesis Kit for RT-qPCR (ThermoFisher, UK) accordingly to the manufacturer’s protocol. Briefly, 

volumes of RNA equivalent to 20ng were combine with 4µl 5x reaction mix and 2µl Maxima enzyme 

mix, up to a volume of 20µl with nuclease free water, prior to incubation (25°C 10 minutes, 50°C 

15 minutes). Primers targeting genes of interest were designed using Beacon Designer primer 

design software (PREMIER Biosoft, California US). The SYBR green (iTaq™ Universal SYBR® Green 

Supermix, Bio-Rad, UK) quantitative PCR (qPCR) gene expression assay was utilised. Following the 

kit protocol, 5µl of iTaq Universal SYBR Green Supermix, 2.5µl nuclease free water, 0.5µl 10µM 

primer mix (Forward and Reverse) and 2µl cDNA was distributed into wells of a 364 well plate. 

Assays were run on a 7900HT Fast Real-Time PCR System (Table 10). Melting curve analysis was 

performed to ensure specificity of product amplification by SYBR Green. 

 

Step Phase Temperature Time 

Step 1 Activation 95°C 10 minutes 

Step 2 (x35 cycles) Denaturation 95°C 15 seconds 

Extension 60°C 1 minute 

Phase Cycles Temperature Time 

Denaturation 1 98°C 3 minutes 

Denaturation 

20 

98°C 20 seconds 

Annealing 62°C 45 seconds 

Extension 72°C 2 minutes 

Extension 1 72°C 5 minutes 

Table 9. Linear amplification parameters for Constellation Drop-seq 
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Table 10. qPCR cycling parameters 

2.10 Mathematical modelling 

The ‘toggle-switch’ ODE model used was adapted from Huang et al. (Huang et al., 2007), in which 

the observed functional interactions are depicted in an ‘influence’ network, rather than molecular 

mechanisms of interaction. The model is constructed from two first order ODEs which depict the 

rate of change of TFs (𝑥1 and 𝑥2) which define two phenotypical states, i.e. in the model by Huang 

et al., GATA1=erythroid differentiation and PU.1=myeloid differentiation from progenitor 

populations. Each ODE is composed of 3 terms, with the regulatory influences modelled using Hill 

functions to describe sigmoidal associations. The first term represents the auto-amplification of TFs 

that define each phenotype. In the model, the parameters a1 and a2 represent the relative 

strength of the ‘influences’ promoting the auto-amplification of TFs which define the immunogenic 

and tolerogenic phenotype, respectively. In the deficiency of 𝑥1 and 𝑥2, auto-amplification is 

absent. The second term describes the cross inhibition between opposing TFs from each 

phenotype. Here, b1 and b2 explain the ‘influence’ of the cross-inhibition to each respective 

phenotype’s activation. k1, k2 represent the rate of the first order deactivation. The constant q 

depicts the threshold or inflection point of the sigmoidal functions within the model, depicting the 

relative strength of regulatory interactions. The constant n depicts the Hill coefficient, which 

controls the steepness or ‘step like’ quality of the sigmoidal function.  

 

The model was translated for LCs, with 𝑥1 defining immunogenic inducing TFs (I) and 𝑥2 defining 

tolerogenic inducing TFs (T) (Equation 1). In line with the original model, in which the described 

biochemistry captured by the parameters a1, a2, b1, b2, k1, k2, n and q are unknown, a, b, k, 

n and q were set to the same values across both equations (a,b,k=1, n=4 and q=0.5) in accordance 

with these parameters creating a stable attractor landscape containing 3 states as described in the 

model by Huang et al. 

 

Analysis and plotting of the ODE model was performed within MATLAB (Mathworks, Inc.). ODE 

solving was performed using the ode45 solver (time interval 0-8) for trajectory plotting, whilst 

phase portrait plotting was performed using quiver. TF expression values or Z-scores representing 

expression of multiple TFs in each single cell were exported from Scanpy scRNA-seq analysis, scaled 

within 0-2 to fit phase portrait boundaries and then utilised as time 0 starting points from which 

trajectories were calculated and plotted. The total number of cells trajectories ending at each of 

the 3 attractors after simulation was quantified and then plotted as pie charts in GraphPad Prism 8 

software for comparison. 



Chapter 2 

76 

 

 

 

 

 

 

 

 

 

 

 

Equation 1. ‘Toggle-switch’ ODE model describing the activation of Immunogenic and tolerogenic 

LC states. First order ODEs representing the activation of immunogenic (I) and tolerogenic (T) states 

in LCs. The dotted box represents terms describing the auto-amplification of each respective states. 

The dashed box represents terms describing the cross-inhibition from opposing states, whilst the solid 

box depicts the first-order decay rate (k) for TFs defining each state. (a,b,k=1, n=4 and q=0.5). 
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Chapter 3 Identifying a gene expression programme 

encoding tolerogenic immune responses in human DCs 

3.1 Introduction 

The ability to induce tolerance is a key characteristic of DC function, accompanying their potency 

to prime and induce immunogenic responses (Steinman, Hawiger and Nussenzweig, 2003)(Audiger 

et al., 2017). Such tolerogenicity, as a fundamental property of DC, is likely to be encoded by a 

conservative set of genes (a “transcriptomic programme”) universal across many different DC types 

and regulated by a dedicated set of TFs, within a GRN. 

TFs are capable of initiating the expression of specific target genes through sequence specific 

binding to DNA promoter and enhancer regions, increasing the efficiency for RNA polymerase 

binding and therefore initiating gene transcription (Spitz and Furlong, 2012). The expression level 

of specific TFs can therefore indicate specific biological pathways or processes a cell is undertaking. 

We aimed to identify specific TFs fundamental for both DC tolerogenic and immunogenic immunity, 

to uncover transcriptomic programmes present and absent during tolerogenic activity.  

Importantly, multiple TFs can act in concert, forming complex GRNs controlling gene expression 

(Singh, Khan and Dinner, 2014). The identification of GRNs offers unprecedented opportunity to 

comprehensively investigate transcriptomic regulation under different cellular conditions. For 

example, the assembly of the LC IRF-GRN, which comprises IRF family members, such as IRF1, IRF4 

and IRF8, as well as components of the ETS and AP-1 TF family (Polak et al., 2017), into a Petri-net 

model has enabled in silico modelling to predict gene expression under different conditions. Model 

input of TF transcriptomic expression values has led to predictions of gene expression changes of 

genes associated with immunogenic LC immune pathways, including Th1 and Th2 T-cell 

differentiation and MHC I and II antigen processing and presentation.    

To define a universal transcriptional programme encoding tolerance in DCs, we sought to explore 

the transcriptomes and elements of GRNs in DCs that are induced during diverse tolerogenic and 

immunogenic states. We utilised two publicly available datasets (GSE52894, GSE117946) 

comprising MoDCs that were unstimulated (iMoDC), conditioned with LPS (LPSMoDC), conditioned 

with tolerogenic stimulus:  dexamethasone and VitD3 (TolMoDC) in GSE52894; or IL10 (IL10MoDC) 

in GSE117946, or  a combination of both (LPS-TolMoDC (GSE52894), LPS-IL10MoDC (GSE117946)) 

(Table 1, Table 11). MoDC provide a valuable source to investigate basic DC biology and immune 

function in vitro. After isolation of monocytes from PBMCs, culture in the presence of IL-4 and GM-
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CSF can produce sufficient MoDC numbers for downstream in vitro analysis. The potential of 

tolerogenic MoDC for inducing tolerogenic immunity has been demonstrated in numerous studies 

and trials(Giannoukakis et al., 2011)(Phillips et al., 2017)(Anderson et al., 2017). Tolerogenic MoDCs 

generated using dexamethasone, NFkB inhibitors and anti CD40/80/86 oligonucleotides are 

currently being used in phase I clinical trials to treat autoimmune conditions such as type 1 diabetes, 

rheumatoid arthritis and Crohn’s disease (Marín, Cuturi and Moreau, 2018). In some trials, 

vaccination with TolMoDC resulted in the induction of Tregs in the blood and a decrease in IFNg 

concentrations, proving the potential for these cells to mediate tolerogenic responses. Whilst 

biologically different to LC, mostly due to the artificial origin of MoDCs through in vitro culture, the 

converging function of all DCs for antigen presentation and priming adaptive immunity suggests 

that homology between how DCs coordinate different immune responses, including tolerance, 

might exist. We therefore hypothesised that the transcriptomes of MoDCs would reveal common 

transcriptional programmes associated with different DC immune pathways, that were common in 

LCs. Within the MoDC datasets identified from GEO, we aimed to identify specific gene expression 

profiles associated with tolerogenic and immunogenic function and furthermore, specific TFs which 

could be regulating these specific profiles. The identification of immunogenic and tolerogenic 

pathway defining gene expression profiles and TFs within MoDCs could be then be assessed across 

different DC types, including LCs.  

To delineate the transcriptomic programme of tolerogenic DC, we performed whole transcriptome 

analysis for MoDCs in tolerising vs immunogenic conditions, identifying sets of differentially 

expressed genes (DEGs), specific co-regulated networks and the key transcriptomic regulators of 

tolerance, such as TFs. Through identifying genes sets which co-express under unique biological 

conditions, we revealed insights into specific biological pathways that define DC immunological 

characteristics. We then investigated the accuracy of the LC IRF-GRN model for predicting MoDC 

immune responses during tolerising vs immunogenic conditions. While the power of the model to 

accurately predict LC immunogenic function after inflammatory TNFa and TSLP stimulation has 

been shown (Polak et al., 2017), the behaviour of the IRF-GRN using transcriptomic data from other 

DC types, such as MoDCs, is currently unexplored, nor is it understood how the model would behave 

using transcriptomic data from tolerised DCs. Additionally, the model was adapted to include TF 

modules induced by MoDC during tolerogenic conditions, to evaluate the likelihood for their 

association with the IRF-GRN and DC transcriptomic regulation during immune responses.  

3.1.1 Hypothesis 

Tolerogenic DCs exhibit a unique transcriptomic expression profile coordinated by specific TFs, as 

compared to immature or immunogenic DCs. 
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3.1.2 Aims 

• Identify unique tolerogenic associated DC transcriptomic profiles. 

• Identify TFs which regulate the tolerogenic DC transcriptomic programme. 

• Validate the similarity between gene regulation of MoDCs and LCs using the IRF-GRN. 

• Modify the current IRF-GRN to include tolerogenic regulatory modules. 

 

 

 

 

 

 

 

 

 

  



Chapter 3 

80 

3.2 Results  

3.2.1 Transcriptomes programmes of MoDCs induced to promote tolerance are defined by 

the suppression of inflammatory stimuli responsive genes, but lack universal 

tolerogenic gene signature 

MoDCs provide a good model to explore the phenotypes and transcriptomes of immature DCs, 

whilst also being easily modulated by both immunogenic and tolerogenic stimuli to explore 

different immunological phenotypes. Using publicly available datasets from GEO, the transcription 

profiles associated with different states of MoDC activation were therefore investigated. Two 

microarray datasets (GSE52894, GSE117946) were identified that comprised MoDCs in various 

stimulatory conditions: (Table 11) unstimulated (iMoDC); conditioned with LPS (LPSMoDC); 

conditioned with tolerogenic stimulus:  dexamethasone and VitD3 (TolMoDC) in GSE52894; or IL10 

(IL10MoDC) in GSE117946; or both (LPS-TolMoDC (GSE52894), LPS-IL10MoDC (GSE117946)). All 

MoDC conditions in each dataset were in triplicate. 

 

 

 

 

 

 

 

 

Table 11. Sample composition of MoDC datasets selected for analyses. Microarray datasets from 

GEO (GSE52894, GSE117946) were selected for transcriptomic analyses of tolerogenic DC immune 

responses. MoDCs were annotated according to experimental conditions, which could be 

summarised as unstimulated, immunogenic, tolerogenic or immunogenic/tolerogenic. All MoDC 

conditions in each dataset were in triplicate.  

 

 

 GSE52894 GSE117946 

Unstimulated iMoDC iMoDC 

Immunogenic LPSMoDC LPSMoDC 

Tolerogenic 
TolMoDC 

(dexamethasone and 

VitD3) 
IL10MoDC 

Immunogenic/ 
Tolerogenic 

LPS-TolMoDC LPS-IL10MoDC 
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GSE52894, an Illumina HumanHT-12 V4.0 expression beadchip dataset, was first background 

corrected and quantile normalised and filtered, resulting in expression values for 22,216 gene 

probes utilised in downstream analyses. GSE117946, an Affymetrix Human Gene 1.0 ST Array, 

contained robust multichip average (RMA) algorithm normalised and filtered data, with 21,620 

gene probes used for subsequent analyses. Due to the likelihood of batch effects between the data 

processing and microarray platforms, datasets were analysed separately and the resulting 

expression patterns identified between different stimulatory conditions were then compared.  

An overall comparison of the differences between gene expression profiles within each dataset was 

assessed using multi-dimensional scaling (MDS) plotting. This reduced the whole transcriptome 

data into 2D format, for observing the first three principle components (PCs), which described the 

sample-to-sample variation (Figure 10). In each dataset, all 4 MoDC conditions displayed unique 

gene expression profiles with discreet isolated clusters being formed. The tight grouping of all 

replicates from each condition showed that the different stimulants were consistent in the unique 

expression profiles they induced. In GSE52894, PC1 clearly indicated the substantial effects of LPS 

treatment on the MoDC transcriptome, with LPSMoDCs and LPS-TolMoDCs positioned separately 

from the other MoDCs to the left of the MDS plot. PC2 however clearly displayed the distinct 

transcriptomic changes induced by tolerogenic stimuli (dexamethasone and VitD3). Similarly, in 

GSE117946, LPSMoDCs clearly separated from the other MoDC populations along PC1. However, 

unlike GSE52894, GSE117946 tolerogenic IL10MoDCs were less distinct to both iMoDCs and 

LPSMoDCs along PCs 1-3. This suggests that the use of diverse tolerogenic stimuli results in distinct 

transcriptomic programming.   



Chapter 3 

82 

 

Firstly, we focussed our analysis on dataset GSE52894. To gain insight into the transcriptomic profile 

influencing tolerogenic function, differentially expressed gene (DEG) analysis comparing TolMoDC 

to all other MoDC conditions was performed using Limma (Ritchie et al., 2015), version 3.40.6) 

within R. The model identified a list of 1171 probesets which were upregulated in TolMoDC 
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Figure 10. Dimensionality reduction of whole MoDC transcriptomes revealed each stimulation 

condition created distinct gene expression profiles. Visualisation of normalised, log transformed whole 

transcriptome data (top GSE52894, bottom GSE117946), reduced into two-dimensional format via multi-

dimensional scaling (MDS) using Limma within R. The first 3 PCs are displayed, PC1 and PC2 (left) and 

PC2 and PC3 (right), with distances between samples representing level of similarity in each PC.   
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compared to at least one of the 3 other MoDC conditions (adj.p-value<0.05, logFC>1). To identify 

networks of co-expressed genes induced by different treatments, DEGs were uploaded into the 

gene co-expression network tool Graphia Pro (Theocharidis et al., 2009). Transcript-to-transcript 

clustering using Pearson correlation (r = 0.93) and Markov clustering algorithm (MCL=1.7), 

identified 28 gene co-expression clusters (Figure 11A). Gene ontology analysis in Toppgene (Chen 

et al., 2007) was performed to identify associated biological pathways for the gene lists and to 

recognise gene profiles potentially key for mediating tolerogenic function (Table 12). Systematic 

analysis of the cluster profiles, identified three profiles of interest for characterising specific gene 

regulation mechanisms promoting tolerance. These could be broadly split into clusters upregulated 

or downregulated by tolerogenic stimuli, with those upregulated by the latter being further split 

into clusters unaffected or downregulated after LPS addition. Analysis of the largest cluster 

exhibiting one of the profiles of interest was performed to identify the predominant transcriptomic 

programme associated with each profile. This revealed differences in specific immune related 

biological processes upregulated in profiles of interest (Figure 11B&C). Cluster 6, containing 20 

genes, was upregulated in both TolMoDC and LPS-TolMoDC and these genes were therefore 

induced by tolerogenic stimuli and resistant to immunogenic stimulus. Gene ontology for this 

cluster included immune-response activating signal transduction (adj.p-value=3.9E-2), activation of 

immune response (adj.p-value=3.9E-2), cellular carbohydrate metabolic process (adj.p-value=3.9E-

2) and negative regulation of immune system process (adj.p-value=4.3E-2). Genes associated with 

negative regulation of immune system process, included MYC, PIK3AP1, CD14 and PRNP. Gene 

ontology terms for cluster 7, which contained 23 genes upregulated in TolMoDCs, but down 

regulated in LPS-TolMoDCs included positive regulation of vasculature development (adj.p-

value=2.3E-2), regulation of cellular localisation (adj.p-value=2.3E-2), and regulation of secretion by 

cell (adj.p-value=2.3E-2). Cluster 4, contained 69 genes and was upregulated in LPSMoDC only and 

not in LPS-TolMoDC. Tolerogenic stimuli was therefore suppressing their activation after the 

addition of LPS. Gene ontology for cluster 4 genes included response to cytokine (adj.p-value=3.9E-

6), immune response (adj.p-value=1.0E-5), positive regulation of defence response (adj.p-

value=3.9E-6) and positive regulation of innate immune response (adj.p-value=4.3E-5). 

Clusters of interest were inspected for potential transcription factors (TFs) which could be 

orchestrating gene co-expression (Figure 11D). Cluster 6, associated with tolerogenic responses, 

included the TF MYC, which was highly upregulated in MoDCs exposed to tolerogenic stimuli. 

Cluster 4 included IRF1 and IRF4, both known inducers of DC immune activation. These TFs followed 

the expression pattern of cluster 4 with upregulated expression in LPSMoDC only. 
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Cluster No. of Genes Cluster Profile ID Name FDR B&H
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 1.92E-19

GO:0006613 cotranslational protein targeting to membrane 3.81E-19

GO:0006413 translational initiation 3.81E-19

GO:0045047 protein targeting to ER 3.81E-19

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 4.40E-19

GO:0045087 innate immune response 4.20E-39

GO:0060337 type I interferon signaling pathway 2.13E-38

GO:0071357 cellular response to type I interferon 2.19E-38

GO:0034340 response to type I interferon 8.60E-38

GO:0006955 immune response 1.59E-37

GO:0006955 immune response 7.77E-11

GO:0006952 defense response 7.77E-11

GO:0032101 regulation of response to external stimulus 1.81E-08

GO:0080134 regulation of response to stress 1.81E-08

GO:0045087 innate immune response 2.42E-08

GO:0034097 response to cytokine 3.85E-06

GO:0031349 positive regulation of defense response 3.85E-06

GO:0006955 immune response 1.00E-05

GO:0050776 regulation of immune response 3.42E-05

GO:0045088 regulation of innate immune response 3.42E-05

GO:0048003 antigen processing and presentation of lipid antigen via MHC class Ib 1.04E-03

GO:0048007 antigen processing and presentation, exogenous lipid antigen via MHC class Ib 1.04E-03

GO:0001775 cell activation 1.39E-03

GO:0002250 adaptive immune response 2.32E-03

GO:0009611 response to wounding 2.97E-03

GO:0002757 immune response-activating signal transduction 3.86E-02

GO:0002253 activation of immune response 3.86E-02

GO:2000106 regulation of leukocyte apoptotic process 3.86E-02

GO:0044262 cellular carbohydrate metabolic process 3.86E-02

GO:0002683 negative regulation of immune system process 4.32E-02

GO:1904018 positive regulation of vasculature development 2.26E-02

GO:0060341 regulation of cellular localization 2.33E-02

GO:0050708 regulation of protein secretion 2.33E-02

GO:0051049 regulation of transport 2.33E-02

GO:1903530 regulation of secretion by cell 2.33E-02

GO:0010638 positive regulation of organelle organization 4.30E-02

GO:2000573 positive regulation of DNA biosynthetic process 4.30E-02

GO:0044711 single-organism biosynthetic process 4.30E-02

GO:0033979 box H/ACA snoRNA metabolic process 4.30E-02

GO:0090669 telomerase RNA stabilization 4.30E-02

GO:0030593 neutrophil chemotaxis 2.31E-03

GO:1990266 neutrophil migration 2.31E-03

GO:0071621 granulocyte chemotaxis 2.31E-03

GO:0097530 granulocyte migration 2.42E-03

GO:0097529 myeloid leukocyte migration 5.49E-03

GO:0051235 maintenance of location 4.62E-02

GO:0034120 positive regulation of erythrocyte aggregation 4.62E-02

GO:0060627 regulation of vesicle-mediated transport 4.62E-02

GO:0045185 maintenance of protein location 4.62E-02

GO:0051651 maintenance of location in cell 4.62E-02

20

22

11

9

8

292

196

167

69

68

i=Moderate, L=High

i=High, T=High

L=High, LT=High

LT=High

L=High, LT=Low

i=High, T=Low

LT=High, T=High

LT=Low, T=High

LT=Low, 
T=Moderate

LT=High

1

2

3

4

5

6

7

9

10

12
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Table 12. GSE52894 co-expressed cluster profiles with associated gene ontologies. Transcript-to-

transcript co-expression analysis of 1171 probesets differentially regulated in TolMoDCs compared 

to at least one other MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7), 

identified 28 clusters. Table includes clusters which were associated with specific biological 

processes identified in Toppgene (adj.p-value=<0.05), with the top 5 displayed. Clusters were 

annotated with number of genes in each cluster and with their general expression profile across 

MoDC conditions (i=iMoDC, L=LPSMoDC, LT=LPS-TolMoDC, T=TolMoDC). 

 

GO:0032612 interleukin-1 production 1.12E-02

GO:0072682 eosinophil extravasation 1.12E-02

GO:1904458 regulation of substance P secretion 1.12E-02

GO:1904496 positive regulation of substance P secretion, neurotransmission 1.12E-02

GO:1904335 regulation of ductus arteriosus closure 1.12E-02

GO:0090505 epiboly involved in wound healing 9.81E-03

GO:0044319 wound healing, spreading of cells 9.81E-03

GO:0090504 epiboly 9.81E-03

GO:0002011 morphogenesis of an epithelial sheet 2.27E-02

GO:0060356 leucine import 2.67E-02

15 7 i=Moderate, T=Low GO:0071718 sodium-independent icosanoid transport 2.13E-02

GO:0001676 long-chain fatty acid metabolic process 1.75E-02

GO:0036111 very long-chain fatty-acyl-CoA metabolic process 1.75E-02

GO:0033559 unsaturated fatty acid metabolic process 1.75E-02

GO:0072330 monocarboxylic acid biosynthetic process 3.36E-02

GO:0036112 medium-chain fatty-acyl-CoA metabolic process 3.36E-02

GO:0006953 acute-phase response 2.24E-02

GO:1904445 negative regulation of establishment of Sertoli cell barrier 3.05E-02

GO:1904444 regulation of establishment of Sertoli cell barrier 3.05E-02

GO:0002526 acute inflammatory response 4.53E-02

19 5
i=High, L=High, 

T=Moderate
GO:0001895 retina homeostasis 2.56E-02

GO:0001869 negative regulation of complement activation, lectin pathway 2.46E-02

GO:0001868 regulation of complement activation, lectin pathway 2.46E-02

GO:0032489 regulation of Cdc42 protein signal transduction 2.46E-02

GO:0051056 regulation of small GTPase mediated signal transduction 2.46E-02

GO:0038027 apolipoprotein A-I-mediated signaling pathway 2.46E-02

GO:0002687 positive regulation of leukocyte migration 2.20E-02

GO:0014739 positive regulation of muscle hyperplasia 2.20E-02

GO:0002685 regulation of leukocyte migration 2.20E-02

GO:0002274 myeloid leukocyte activation 2.20E-02

GO:0014738 regulation of muscle hyperplasia 2.20E-02

GO:0006744 ubiquinone biosynthetic process 4.25E-02

GO:0006743 ubiquinone metabolic process 4.25E-02

GO:1901663 quinone biosynthetic process 4.25E-02

GO:0034453 microtubule anchoring 4.25E-02

GO:0071294 cellular response to zinc ion 4.25E-02

GO:0006656 phosphatidylcholine biosynthetic process 2.41E-02

GO:0019433 triglyceride catabolic process 2.41E-02

GO:0046464 acylglycerol catabolic process 2.41E-02

GO:0046461 neutral lipid catabolic process 2.41E-02

GO:0046503 glycerolipid catabolic process 2.63E-02

GO:0042986 positive regulation of amyloid precursor protein biosynthetic process 1.80E-02

GO:0042983 amyloid precursor protein biosynthetic process 1.80E-02

GO:0042984 regulation of amyloid precursor protein biosynthetic process 1.80E-02

GO:0034379 very-low-density lipoprotein particle assembly 1.80E-02

GO:0010878 cholesterol storage 1.80E-02

4

4

4

4

7

7

6

5

4

i= Low, LT=Low, 
T=Moderate

LT=Low

i=Low, L=High, 
T=Low

LT=High

LT=Moderate, 
L=High

LT=High, T=High

i=High, T=High

LT=Moderate

Equal in all

27

17

18

20

21

22

25

14

13
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Figure 11. GSE52894 MoDC gene co-expression network analysis. A) Transcript-to-transcript co-

expression analysis of 1171 probesets differentially regulated in TolMoDCs compared to atleast one other 

MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7). 3 clusters were highlighted 

as having an expression profile linked to the regulation of tolerance (Clusters 4,6 and 7, labelled on plot). 

Lines (edges) represent the similarity between transcript expression; circles (nodes) represent genes. B) 

Mean (±SD) cluster expression values across the different MoDC conditions. C) Cluster Toppgene gene 

ontology analysis for the 69, 20 and 23 genes in clusters 4, 6 and 7, respectively (-log10FDRPvalues). D) 

Mean (±SD) expression of TFs MYC (Cluster 6), IRF1 and IRF4 (Cluster 4) across different MoDC conditions. 

p-values = *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired T-test. 
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Dataset GSE117946 was explored using the same analysis pipeline. After Limma DEG analysis 

comparing IL10MoDC to all other MoDC conditions, 8544 genes were subsequently submitted to 

co-expression analysis in Graphia Pro (Pearson correlation r=0.93, MCL=1.7) (Figure 12A). Over 100 

clusters were identified, leading to us to focus on clusters containing at least 20 genes (Table 13). 

The largest clusters displaying one of the cluster profiles of interested identified during analysis of 

GSE52894, included clusters 1, 3 and 6 (Figure 12B). Cluster 6 which contained 82 genes, was 

upregulated in IL10MoDCs only. However, its only associated ontology after Toppgene gene 

ontology analysis, was G protein-coupled purinergic nucleotide receptor signalling pathway (adj.p-

value=4.3E-2). Cluster 3, containing 395 genes was significantly upregulated in IL10MoDCs and LPS-

IL10MoDCs compared to iMoDCs and LPSMoDCs. Gene ontology analysis found associations with 

myeloid leukocyte activation (adj.p-value=1.3E-12), neutrophil activation (adj.P-value=1.6E-12), 

vesicle organisation (adj.P-value=1.8E-12) and the immune effector process (adj.p-value=6.7E-8). 

Despite no specific associations with immune tolerance, this cluster which was specifically 

upregulated in all IL10 exposed MoDC, contained the TF MYC (Figure 12C). Similar to GSE52894, a 

large LPSMoDC upregulated cluster (cluster 1) was detected, which contained 1422 genes. This 

cluster was associated with response to virus (adj.p-value=1.1E-17), protein ubiquitination (adj.p-

value=2.6E-16), response to cytokines (adj.p-value=7.5E-15) and innate immune response (adj.p-

value=7.6E-11). Included in cluster 1, was the TFs IRF1 and IRF4, again highlighting their association 

with the regulation of DC immunogenic responses (Figure 12D).  
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Table 13. GSE117946 co-expressed cluster profiles with associated gene ontologies. Transcript-to-

transcript co-expression analysis of 8544 probesets differentially regulated in IL10MoDCs compared 

to at least one other MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7), 

identified over 100 clusters. Clusters with at least 20 genes and with specific associated ontologies 

identified using Toppgene (adj.p-value=<0.05, top 5 ontologies displayed) were included in the 

table. Clusters were annotated with number of genes in each cluster and with their general 

expression profile across MoDC conditions (i=iMoDC, L=LPSMoDC, L-IL10=LPS-IL10MoDC, 

IL10=IL10MoDC). 

Cluster No. of Genes Cluster Profile ID Name FDR B&H
GO:0070647 protein modification by small protein conjugation or removal 1.07E-17

GO:0009615 response to virus 1.07E-17

GO:0016567 protein ubiquitination 2.62E-16

GO:0032446 protein modification by small protein conjugation 8.19E-16

GO:0045087 innate immune response 7.64E-11

GO:0048006 antigen processing and presentation, endogenous lipid antigen via MHC class Ib 3.69E-02

GO:0048007 antigen processing and presentation, exogenous lipid antigen via MHC class Ib 8.34E-02

GO:0048003 antigen processing and presentation of lipid antigen via MHC class Ib 8.34E-02

GO:0006629 lipid metabolic process 1.46E-01

GO:1903463 regulation of mitotic cell cycle DNA replication 2.90E-01

GO:0002274 myeloid leukocyte activation 1.32E-12

GO:0042119 neutrophil activation 1.64E-12

GO:0036230 granulocyte activation 1.64E-12

GO:0016050 vesicle organization 1.78E-12

GO:0002252 immune effector process 6.71E-08

GO:0016050 vesicle organization 1.83E-07

GO:0002274 myeloid leukocyte activation 3.34E-05

GO:0002446 neutrophil mediated immunity 3.34E-05

GO:0090174 organelle membrane fusion 3.34E-05

GO:0048284 organelle fusion 4.47E-05

GO:0009607 response to biotic stimulus 2.31E-06

GO:0098542 defense response to other organism 2.31E-06

GO:0051707 response to other organism 2.31E-06

GO:0043207 response to external biotic stimulus 2.31E-06

GO:0034097 response to cytokine 7.56E-06

6 82 IL10=High GO:0002757 immune response-activating signal transduction 4.27E-02

GO:0071216 cellular response to biotic stimulus 7.44E-03

GO:0071222 cellular response to lipopolysaccharide 1.53E-02

GO:0071219 cellular response to molecule of bacterial origin 1.53E-02

GO:0060907 positive regulation of macrophage cytokine production 1.53E-02

GO:0002684 positive regulation of immune system process 1.77E-02

GO:0010273 detoxification of copper ion 3.01E-05

GO:1990169 stress response to copper ion 3.01E-05

GO:0061687 detoxification of inorganic compound 3.01E-05

GO:0097501 stress response to metal ion 3.01E-05

GO:0046688 response to copper ion 3.01E-05

GO:1904351 negative regulation of protein catabolic process in the vacuole 2.30E-02

GO:1905166 negative regulation of lysosomal protein catabolic process 2.30E-02

GO:0016050 vesicle organization 3.13E-02

GO:0001775 cell activation 3.13E-02

GO:0001816 cytokine production 3.13E-02

GO:0120032 regulation of plasma membrane bounded cell projection assembly 9.07E-03

GO:0060491 regulation of cell projection assembly 9.07E-03

GO:0019730 antimicrobial humoral response 4.08E-06

GO:0042742 defense response to bacterium 3.30E-05

GO:0002274 myeloid leukocyte activation 1.11E-04

GO:0045321 leukocyte activation 1.11E-04

GO:0042119 neutrophil activation 1.11E-04

GO:0007040 lysosome organization 1.82E-02

GO:0080171 lytic vacuole organization 1.82E-02
21

2221

22

L=High

i=High, IL10=High

i=Moderate/High, L-IL10=High, 
IL10=High

i=High, L-IL10=Moderate/High,  
IL10=High

L=High, L-IL10=High

L-IL10=High

L-IL10=High

L-IL10=Moderate,  
IL10=Moderate

LT=Moderate, L=High

LT=High, T=Moderate

1422

426

395

227

13 32 i=High, IL10=Moderate

1

2

3

4

5

7

8

9

68

56

50

46
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Figure 12. GSE117946 MoDC gene co-expression network analysis. A) Transcript-to-transcript co-

expression analysis of 8544 probesets differentially regulated in IL10MoDCs compared to at least one 

other MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7). Clusters 1-100 are 

displayed. 3 clusters were highlighted as having an expression profile linked to the regulation of 

tolerance (Clusters 1, 3 and 6, labelled on plot). Lines (edges) represent the similarity between 

transcript expression; circles (nodes) represent genes. B) Mean (±SD) cluster expression values for 

cluster 1, 3 and 6 across the different MoDC conditions. C) Cluster Toppgene gene ontology analysis 

for the 1422, 395 and 82 genes in clusters 1, 3 and 6, respectively (-log10FDRPvalues). D) Mean (±SD) 

expression of TFs MYC (Cluster 3), IRF1 and IRF4 (Cluster 1) across different MoDC conditions. p-values 

= *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired T-test. 
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Having identified corresponding immunogenic clusters, 4 (GSE52894) and 1 (GSE117946) and 

tolerogenic clusters, 6 (GSE52894) and 3 (GSE117946) from the two datasets, the cluster gene lists 

were compared using Venn diagrams (Figure 13A). Additionally, tolerogenic MoDC cluster genes 

were compared to 147 upregulated genes identified in published analyses (PMID:29109727) 

comparing tolerogenic monophosphoryl lipid A (MPLA) and dexamethasone (MPLA-Dex) stimulated 

MoDC to unstimulated MoDC. For immunogenic clusters, there was an overlap of 45 genes from 

the 69 genes (cluster 4) and 1422 (cluster 1) genes contributed by GSE52894 and GSE117946, 

respectively. As well as the TFs IRF1 and IRF4, common genes included NFKB1, CD80, CCR7, BIRC3, 

STAT3,  STAT5A and interestingly, the tolerogenic associated protein IDO1. Gene ontology analysis 

for the 45 common genes again resulted in associations with response to cytokine (adj.p-

value=1.2E-6) and positive regulation of immune system process (adj.p-value=2.4E-6, Figure 13B). 

Intriguingly, negative regulation of immune system process (adj.p-value=1.7E-5) was also identified 

as an associated ontology, due to the presence of IRF1, IRF4, IDO1, CD80, STAT5A, CASP3, ID2, 

TRAFD1, SAMSN1 and DHX58. Minimal overlap was identified in tolerogenic clusters with just 1 

common gene, MYC, common between the 20 genes (cluster 6, TolMoDC) from GSE52894, the 395 

genes (cluster 3, IL10MoDC) from GSE117946 and the 147 MPLA-Dex MoDC upregulated genes. 

COQ2 and PRNP were common between TolMoDCs and IL10MoDCs only and CD14 was common 

between TolMoDCs and MPLA-Dex MoDCs only. 18 genes were common between IL10MoDCs and 

MPLA-Dex MoDCs, including C1QA, C1QB, FCGR2A, FCGR2B and CCL13. Gene ontology analysis for 

these 18 genes revealed associations with monocyte chemotaxis (adj.p-value=7.3E-5), positive 

regulation of immune system process (adj.p-value=2.8E-4) and negative regulation of DC antigen 

processing and presentation (adj.p-value=2.6E-2). Overall, whilst a common TF was identified in 

both datasets, the overall transcriptomic programme of tolerance differed.  

In summary, LPSMoDCs upregulate immunogenic and inflammatory associated genes, which 

correlates with increased expression of IRF1 and IRF4. Interestingly, LPS also upregulated a 

tolerogenic gene module, identified in both datasets. However, the transcriptomic modulation by 

MoDCs exposed to tolerogenic factors appears to be largely specific to individual stimuli. Still, 

upregulated expression of MYC was identified in TolMoDCs, IL10MoDCs and MPLA-Dex MoDCs, 

leading us to hypothesise its importance for regulating the tolerogenic programmes in DCs.  
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Figure 13. Comparisons between LPSMoDC upregulated and tolerogenic MoDC upregulated clusters 

in both MoDC datasets, reveals a tolerogenic gene module shared between LPS stimulated MoDCs. 

A) Venn diagrams cross comparing gene lists for LPSMoDC cluster 4 (GSE52894) and cluster 1 

(GSE117946) and tolerogenic MoDC cluster 6 (TolMoDCs, GSE52894), cluster 3 (IL10MoDCs, 

GSE117946) and 147 MPLA-Dex stimulated MoDC upregulated genes compared to unstimulated MoDC 

(PMID:29109727). B) Toppgene gene ontology analysis for the 45 genes commonly expressed in 

LPSMoDC cluster 4 (GSE52894) and cluster 1 (GSE117946, -log10FDRPvalues). C) Toppgene gene 

ontology analysis for the 18 genes commonly expressed in TolMoDC cluster 3 (GSE117946) and MPLA-

Dex MoDC (-log10FDRPvalues). 
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3.2.2 In silico modelling of IRF-GRN confirms importance of IRF1 and IRF4 for DC 

immunogenic function 

Analysis of MoDC datasets identified IRF1 and IRF4 expression as a common feature for 

immunogenic DC expression profiles. IRF1 and IRF4 are both key components of an IRF-GRN 

mediating LC immune response, assembled by Polak et al. (Polak et al., 2017). The LC IRF-GRN has 

been assembled as a Petri-net model amenable to dynamic in silico simulations which predicts 

immune response outcomes from TF gene expression data (Figure 14A). Tokens run along the 

network from TF inputs as expression data, through TF associated DNA binding motifs (ISRE, AICE, 

EICE), to output genes associated with specific immunological processes. Whilst this model was 

specifically developed for in silico modelling of LC immunological outcomes, the similar 

characteristics between LCs and other DC populations suggest the predicted biological outcomes 

could be similar. To test the uniformity between immunogenic transcriptional programmes of 

MoDCs and LCs, gene expression values for interferon regulatory factor family TFs IRF1, IRF4, IRF8 

and IRF binding partners; the AP-1 TF family (cJUN, cFOS, BATF, BATF3) and the ETS TF family (ELF1, 

ELF2, ELF4, ELK1, ELK3, ETS1, ETS2, EHF, ETV3, ETV6, GABPα) from the MoDC microarray datasets, 

was input into the model for in silico simulation.  

For GSE52894, the model correctly predicted the gene expression profile displayed by the different 

MoDCs conditions, for some genes (TAP1, TAP2, PSME1, PSME2, CD80, CD86, TAPBPL, PSMB10, 

IL15 and HLA-A, B, C, E, F, G and H) included in the output from the ISRE and AICE network nodes, 

termed ‘Programme A’ (Figure 14B).  ‘Programme A’ genes were elevated in MoDC stimulated with 

LPS and are associated with MHC I antigen processing and presentation and Th1 T-cell induction. In 

silico modelling therefore linked the increased expression of IRF1 and IRF4 induced by inflammatory 

LPS signalling to an increase in immunogenic DC biological processes. It also suggested that 

immunogenic programmes were similarly regulated by the IRF-GRN between MoDCs and LCs. The 

in silico model however, could not correctly predict gene expression for genes included in the 

output from EICE, termed ‘Programme B’, associated with MHC II antigen processing and 

presentation and Th2 T-cell induction (Figure 14C). The regulation of ‘Programme B’ therefore 

differed between MoDCs and LCs.  

Unlike GSE52894, the GSE117946 MoDC dataset performed poorly at predicting gene expression 

values for all genes in both ‘Programme A’ (Figure 14D) and ‘Programme B’ (Figure 14E). The same 

genes that were correctly predicted in GSE52894 are displayed for comparison. In silico modelling 

predicted high expression of ‘Programme A’ genes in LPSMoDC, IL10MoDC and LPS-IL10MoDC, 

however expression followed a similar pattern to that seen in GSE52894, where expression was 
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only elevated in LPS stimulated MoDCs. Only TAPBPL displayed some similarity in the pattern of 

expression between model prediction and microarray data.  

Overall our in silico simulations of MoDC gene expression data (GSE52894), could link high 

expression of IRF1 and IRF4 to the induction of some immunogenic DC output genes. It also 

highlighted that at least some immunogenic pathways are similarly regulated between MoDCs and 

LCs. However, the LC IRF-GRN model was unable to correctly predict MoDC gene expression after 

stimulation with IL10 (GSE117946), indicating that GRN regulation was stimuli specific.  
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Figure 14. IRF-GRN in silico simulation identifies IRF1 and IRF4 as important regulators of MoDC 

immune activation. A) Structure of the LC IRF-GRN constructed by Polak et al.(Polak et al., 2017) with 

the TF input nodes on the left. Means of TF expression values for triplicates of each MoDC condition 

were used as starting tokens for the network. Tokens run along IRF-GRN, through TF associated DNA 

binding motifs (ISRE, AICE, EICE), towards the resulting gene output and immune response nodes on 

the right. Black edges indicate positive edges, whilst red edges indicate inhibitory interactions. 

GSE52894 microarray data in silico predictions of ‘Programme A’ B) and ‘Programme B’ C) output 

genes, with actual gene expression data from microarray displayed alongside. GSE117946 microarray 

data in silico predictions of ‘Programme A’ D) and ‘Programme B’ E) output genes, with actual gene 

expression data from microarray displayed alongside. Model parameters=100 time blocks, 500 runs. 

Mean token values from triplicate simulations, in which the means of the final 10-time blocks were 

calculated, are displayed. 
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3.2.3 Inclusion of MYC-regulated module in IRF-GRN network allows simulation of 

tolerogenic regulation in MoDCs 

Having established the power of the IRF-GRN model to predict immunogenic ‘Programmed A’ in 

GSE52894 MoDCs, the model was then edited to include input from MYC, to investigate potential 

mechanisms of tolerogenic regulation. Due to the complete switch in IRF1 and IRF4 expression 

compared to MYC between immunogenic and tolerogenic MoDCs, hypothetical mutually inhibitory 

edges between MYC and either IRF1 and IRF4, or both, were modelled in silico (Figure 15, Figure 

16A). First, the plausibility of such regulatory interactions was tested. For the regulatory interaction 

to be deemed plausible, inclusion of MYC, into the already established GRNs of each MoDC 

condition, using transcriptomic expression data from each respective MoDC condition, would result 

in no change to the in silico predicted expression of ‘Programme A’ from Figure 14B. If MYC 

inclusion detrimentally effected the in silico prediction then this would suggest that an interaction 

with IRF1 and IRF4 was unlikely. For all 3 regulatory interactions tested (MYC-IRF1, MYC-IRF1, MYC-

IRF1/IRF4), the predicted expression profile of ‘Programme A’ remained relatively unchanged and 

MYC inclusion therefore did not negatively alter the accuracy of the model. Whilst all simulations 

were incredibly similar, the model with inhibitory edges between MYC and both IRF1 and IRF4 were 

utilised for downstream analysis. The decision to use this model was based on the higher token 

accumulation for LPS-TolMoDCs, which was more similar to the gene expression data of 

‘Programme A’ genes. Also, IRF1 and IRF4 exhibit near identical profiles across MoDC conditions, 

which highly opposes changes in MYC, further supporting their association with a shared regulatory 

module.  
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The linked image cannot be displayed.  The file may have been moved, renamed, or deleted. Verify that the link points to the correct file and location.

Figure 15. IRF-GRN Petri-net model with inclusion of MYC. Mutually inhibitory edges between 

MYC and both IRF1 and IRF4  were added to the model for in silico simulation of this hypothetical 

regulatory interaction. Petri-net graph was edited within yED software. 
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To test how fluctuations in MYC expression could alter MoDC expression profiles, in silico 

simulations were performed of the LPSMoDC IRF-GRN with MYC input values replaced with the high 

expression value from TolMoDCs. Correspondingly, in silico simulations of the TolMoDC IRF-GRN 

with IRF1 and IRF4 input values replaced with the high expression values from LPSMoDCs were 

performed (Figure 16B). These perturbations allowed investigation into how immunogenic 

programmes could be switched to tolerogenic programmes and vice versa. In silico simulation of 

the LPSMoDC IRF-GRN with TolMoDC MYC expression values resulted in a decrease in the token 

accumulation at ‘Programme A’, resulting in a switch towards a more tolerogenic profile. Doubling 

of the TolMoDC MYC input was also modelled, to test how theoretical amplifications of inhibitory 

signalling, not accounted for with just the inclusion of MYC expression values, could affect model 

dynamics. As expected, doubling the input further enhanced the decrease in ‘Programme A’ token 

accumulation. Similarly, in silico simulation of the TolMoDC IRF-GRN with LPSMoDC IRF1 and IRF4 

expression values resulted in an increase in token accumulations for ‘Programme A’, switching to a 

more immunogenic profile (Figure 16C). Again, doubling of IRF1 and IRF4 expression values further 

enhanced these changes to a profile resembling the unmodified LPSMoDC in silico prediction. 

Overall, using IRF-GRN modelling a hypothetical inhibitory loop between MYC and IRF1 and IRF4 

has been acknowledged that could describe how tolerogenic dexamethasone and VitD3 stimulated 

MoDCs switch to an immunogenic LPS stimulated MoDC profile and vice versa.  
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Figure 16. Integration of MYC into the IRF-GRN identifies a potential regulatory interaction with 

both IRF1 and IRF4, which could explain the switch between tolerogenic and immunogenic states. 

A) Inhibitory interactions between MYC-IRF1, MYC-IRF4 and MYC-IRF1/IRF4 were modelled in silico 

and predicted expression profile of “Programme A” was assessed for comparison with unmodified 

network (Figure 8B). Mean MYC expression values from respective MoDCs were utilised as token 

input. Modification of B) the TolMoDC IRG-GRN to include LPSMoDC IRF1 and IRF4  expression values 

(1x and 2x) and C) the LPSMoDC IRF-GRN to included TolMoDC MYC expression values (1x and 2x). 

Model parameters=100 time blocks, 500 runs. Mean token values from triplicate simulations, in 

which the means of the final 10-time blocks were calculated, are displayed. 
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3.3 Discussion 

3.3.1 Transcriptomic programmes of MoDCs induced to promote tolerance are defined by 

the suppression of inflammatory stimuli responsive genes, but lack universal 

tolerogenic gene signature 

Suppressive alterations of T cell state mediated by DC encounter can be actively tolerogenic, 

whereby DC actively delete self-reactive T cell or mediate conversion into Tregs. This differs from 

anergic responses, in which lack of DC co-stimulatory molecule expression leads to absent 

activation of T cells, or exhaustion, in which chronic overactivation of T cells by DC leads to 

functional hypo-responsiveness (Schietinger and Greenberg, 2014). To begin our investigation into 

transcriptional programmes specifically encoding tolerance in LCs, we sought to identify a universal 

mechanism by exploring model systems of DC tolerance. This was to identify potential 

transcriptomic profiles key to DC tolerogenic immune function and understand how gene 

expression was regulated under different stimulatory conditions and in particular, tolerogenic 

stimuli. Also, if gene regulation between MoDC and LC was revealed to be similar, then the highly 

versatile MoDC in vitro model could be utilised in downstream analyses.  

Analysis of a microarray datasets (GSE52894, GSE117946) containing MoDCs unstimulated or after 

treatment with LPS, tolerogenic stimuli (dexamethasone and VitD3, IL10) or a combination of both 

LPS and tolerogenic stimuli, identified DC gene expression profiles associated with 

immunotolerance. Through our initial MDS plot, it was seen that tolerogenic stimulated MoDC 

(TolMoDC and IL10MoDC) transcriptomes were unique, clustering away from all other MoDCs in 

their respective datasets. In both datasets the tolerogenic stimulated MoDCs were most similar to 

iMoDCs, which may be expected due to evidence for tolerogenic inducing properties of DC when 

immature and inactivated (Mahnke et al., 2002). The isolated clustering of TolMoDCs and 

IL10MoDCs however, indicates that a specific gene expression profile is triggered by tolerogenic 

stimuli, which endows the cells with enhanced tolerogenic characteristics. Within this gene 

expression profile, we believed key molecular coordinators underpinning tolerogenic function 

could be identified.  

Using gene co-expression clustering analysis of the GSE52894 MoDC dataset, we identified a cluster 

of 20 genes (cluster 6), which had increased expression in both TolMoDC and LPS-TolMoDCs and 

were associated with negative regulation of immune system process through gene ontology, due 

to the presence of MYC, CEBPB, PIK3AP1, CD14 and PRNP. The upregulation of these genes in both 

TolMoDCs and LPS-TolMoDCs showed the resistance of these genes to changes in gene expression 

after stimulation by LPS and could therefore represent core tolerogenic genes. In the GSE117946 
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MoDC dataset, a gene cluster upregulated in both IL10MoDC and LPS-IL10MoDC was identified 

(cluster 3), which although was associated with regulation of immune responses, a specific 

association with tolerogenic immunity was not identified. However, cluster 3 did contain MYC, 

again linking the expression of MYC to the regulation of tolerance. Furthermore, MYC expression is 

also upregulated in tolerogenic MoDCs stimulated with MPLA and dexamethasone (MPLA-Dex 

MoDC). Interestingly MYC has been associated with the induction of immune suppression in the 

context of cancer. MYC has been found to induce inhibitors of immunity, such PD-L1 (Casey, Baylot 

and Felsher, 2017). High MYC expression in Burkitt lymphoma leads to suppression of type 1 IFN, 

correlating with reduced expression of inflammatory NFkB targets (Schlee et al., 2007). Whilst the 

importance for MYC in driving functionality of Tregs has been recognised, the association with MYC 

expression and DC tolerance is unexplored (Saravia et al., 2020).  

Tolerogenic clusters 7 (GSE52894) and cluster 6 (GSE117946) had a less obvious impact on MoDC 

tolerance. Cluster 7 genes expression was suppressed after the addition of LPS in LPS-TolMoDCs, as 

were cluster 6 genes after LPS addition in LPS-IL10MoDCs. Therapeutic targeting of these genes to 

induce tolerance would therefore be ineffective, as their activation is not maintained in the 

presence of immunogenic signalling. Gene ontology of cluster 7 genes was associated with immune 

responses, suggesting some contribution to DC immune regulation. It is doubtful that immunogenic 

DCs and tolerogenic DCs represent completely static states, which are unable to change function in 

response to different environmental cues. The addition of danger signals such as LPS would shift 

the requirement in favour of immunogenic DC responses in a bid to clear infection, therefore 

requiring the suppression of tolerogenic DCs responses. Maintenance of tolerogenic function in 

response to harmful stimuli, such as LPS, could have detrimental effects and therefore the ability 

to down regulate tolerogenic genes may grant some fluidity, allowing DCs to change immune 

responses to fit their current requirements.  

Whilst it is understandable that certain genes are upregulated during tolerogenic immune 

responses, it is also expected that certain inflammatory genes and pathways must be 

downregulated and suppressed. Cluster 4 (GSE52894), a larger cluster of 68 genes associated with 

inflammatory immune activation was upregulated in LPSMoDCs only. Although LPS-TolMoDCs 

showed a slight increase in expression of this cluster compared to iMoDCs and TolMoDCs, the 

tolerogenic stimuli was preventing the expression levels seen with LPS stimuli alone. This same 

pattern in expression was identified in cluster 1 (GSE117946). The expression of these genes must 

therefore be suppressed to maintain tolerance. A recurrent trait of genes upregulated by LPS 

exposure included the upregulation of IRF and NFκB TF family members, known mediators of DC 

development and maturation. Cluster 4 (GSE52894) genes included IRF1, IRF4 and NFKB1. Cluster 

1 (GSE177946) genes included IRF1, IRF4, NFKB1, NKFB2, RELB and REL. The IRF and NFκB family 
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were therefore highly associated with immunogenic DC activation which has been highlighted in 

previous studies. IRF1 deletion in murine DC results in DC inability to adopt fully mature phenotypes 

skewing responses in IL-10 production and Treg cell induction (Gabriele et al., 2006). IRF4 is 

required for DC development and also mediates DC migration out of the skin (Bajana et al., 2012). 

IRF4 expression also determines DC immune regulation. Murine CD11b+ and human CD1c+ DCs 

which express IRF4 facilitate Th17 polarisation through IL-23 production (Schlitzer et al., 2013). 

NFκB has diverse roles in coordinating the immune system. It controls the activity of diverse 

proinflammatory cytokines and maintains the activation, differentiation and survival of immune cell 

types, including DCs (Liu et al., 2017),(Rescigno et al., 1998). The activity of the IRF and NFκB family 

is also interlinked, with NFκB known to regulate IRF4 expression (Gabriele and Ozato, 2007). Down 

regulation of these immune regulators is therefore an understandable requirement for tolerance. 

The key role for IRF1, IRF4 and NFκB TFs during inflammatory processes, could imply that their down 

regulation is an observation seen across a variety of different dendritic cell types or even other 

immune cell types during immunotolerance. However, when LPS-induced programmes of both 

datasets were compared, a common tolerogenic gene module was identified through gene 

ontology analysis. Contributing to the annotation was IRF1 and IRF4. In T cells, IRF1 modulation of 

the chromatin landscape has been shown to enhance the induction of IL10-producing type I Tregs 

in mice (Karwacz et al., 2017). Likewise IRF4-deficient murine bone marrow DCs are also 

compromised in their affinity to induce Tregs (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). 

Interestingly, this suggests that both IRF1 and IRF4 are involved in mediating both immunogenic 

and tolerogenic immune responses and it therefore may not be as clear-cut for upregulation to only 

occur during immunogenic and inflammatory conditions. It is therefore unclear how such 

distinguishable responses by IRF1 and IRF4 are differentially regulated in DCs.  

3.3.2 In silico modelling of IRF-GRN confirms importance of IRF1 and IRF4 for DC 

immunogenic function 

Having used MoDC datasets to establish how DC gene expression profiles are determined by their 

immunological states or stimulatory conditions, we were able to identify IRF1 and IRF4 expression 

as a common feature for immunogenic DC expression profiles. To determine the involvement on 

IRF1 and IRF4 in mediating immunogenic responses in MoDCs we used Petri-net in silico modelling 

of the IRF-GRN, which was constructed to predict LC mediated immune regulation (Polak et al., 

2017). Using the IRF-GRN model, we could also observe differences in the accuracy of IRF-GRN in 

silico modelling to predict immunogenic responses in MoDCs compared to LC. Simulations with the 

LPSMoDC gene expression data from GSE52894 predicted increased expression of genes involved 

in Th1 T cell induction and MHC I regulation, compared to simulations performed using gene 
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expression data from the other MoDC types, which matched actual transcriptomic data. This data 

therefore indicates that high IRF1 and IRF4 expression is pre-requisite for DC activation and the 

ability to regulate immune responses. Whilst the accuracy of the model in predicting some outcome 

genes was observed, the model was not able to correctly predict the pattern of expression of gene 

associated with Th2 T cell induction and MHC II regulation. This inaccuracy of the model was further 

noted during in silico simulation of the GSE117946 MoDC data, in which the pattern of expression 

across the different MoDC conditions for none of the output genes were correctly predicted.  

Overall this indicates that the IRF-GRN model, constructed for modelling LC data, may be missing 

certain TF regulators pivotal to MoDC immune regulation. Thus, this highlights the diverse 

regulatory networks which underpin the regulation of immune responses between different 

subgroups of DC. Regulation of tolerogenic responses in MoDCs may therefore greatly differ to 

regulation in LCs, with in vitro DC models therefore of limited use to observe the true mechanisms 

of LC tolerogenic immune regulation.  

3.3.3 Inclusion of a MYC-regulated module in the IRF-GRN identified a potential mechanism 

by which DCs regulate immunogenic vs tolerogenic responses 

After identifying MYC as a potential candidate for regulating tolerogenic immune responses in 

MoDCs, it was included in the IRF-GRN model via a mutually inhibitory loop with both IRF1 and IRF4 

due to opposing expression patterns across the MoDC conditions. In silico modelling of GSE52894 

data showed that MYC could potentially modulate gene expression via such interaction as it could 

be integrated into the established models with no effect on the accurate in silico predictions of 

‘Programme A’. We could further model how upregulation of MYC expression could perturb an 

immunogenic IRF-GRN to become tolerogenic. The same modulation could be modelled for 

conversion of a tolerogenic IRF-GRN to an immunogenic one via upregulation of IRF1 and IRF4. This 

overall supported our hypothesis that MYC and both IRF1 and IRF4 are constituents of a mutually 

inhibitory network that could control the switch between immunogenic and tolerogenic DC 

activation. However, the inability of the IRF-GRN to accurately predict IL10MoDC immunogenic 

gene expression and therefore explore and test for a MYC-IRF1/IRF4 regulatory interaction in 

IL10MoDCs, hinders the credibility of this hypothetical switch. To be able to test this, the IRF-GRN 

would need to be specifically altered to more accurately reflect MoDC regulation, as compared to 

LCs. 

Whilst an inhibitory mechanism of gene regulation was hypothesised for MYC, it is important to 

consider biological processes it can upregulate. Included in the annotation for the co-expressed 

genes in GSE52894 cluster 6 genes, which comprises MYC, was an association with metabolic 
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processes. There is growing evidence highly linking the regulation of metabolism and immune 

responses. In immature DCs, catabolic metabolic processes are favoured, such as oxidative 

phosphorylation (OXPHOS), whilst activated DCs utilise more anabolic processes and favour 

glycolysis over OXPHOS (Wculek et al., 2019)(Kelly and O’Neill, 2015). Published analysis on the 

GSE52894 dataset by Malinarich et al. 2015 demonstrated that whilst TolMoDCs and LPSMoDCs 

displayed similarities in glycolytic rate, TolMoDCs displayed enhanced OXPHOS and a dependence 

on the fatty acid oxidation (FAO) pathway (Malinarich et al., 2015). Similarly, VitD3 only stimulated 

MoDCs also display enhanced glycolytic metabolism and OXPHOS compared to unstimulated 

MoDCs, along with inhibition of T-cell IFNg production, when co-cultured (Ferreira et al., 2015). 

MYC is a known modulator of metabolism, particularly in the context of cancer, in which 

enhancement of metabolic pathways such as glycolysis, can enhance tumour growth (Stine et al., 

2015). The upregulation of MYC in TolMoDCs therefore indicates that enhancement of immune 

tolerance may be modulated via changes to cellular metabolism. 

3.3.4 Evaluation of tolerised MoDCs as a model to investigate LC tolerogenic immune 

regulation 

In summary, our analyses have shown that DC transcriptomes display distinct gene expression 

programmes, dependent on immunological conditions such as immunogenic and tolerogenic 

states. We have also identified key transcriptional regulators specifically expressed in each 

programme. However, the transferability of these findings to the immunological expression 

programmes within LC is unknown.  

All DCs are hallmarked by the ability to process and present antigen and migrate to secondary 

lymphoid tissues to promote adaptive immunity. Nonetheless, there are many unique subtypes of 

DC, distinguishable by lineage pathway, location in the body and preference for different immune 

responses (Collin, McGovern and Haniffa, 2013). MoDCs are artificially generated in vitro from 

blood monocytes, whilst LC are unique to other DC through their unique developmental pathway, 

which is similar to tissue resident macrophages and they specifically reside within epidermal tissue 

(Hoeffel et al., 2012). At the level of surface marker expression MoDCs and LCs differ. Markers of 

LCs include CD207, CD1a and E-cadherin, whilst MoDCs express high levels of CD1a, CD11c and 

CD1c (Collin, McGovern and Haniffa, 2013)(Collin and Bigley, 2018). Nevertheless, how significant 

such differences in development and surface marker expression are reflected at the level of the 

whole transcriptome is not completely understood. Our analyses identified some similarities 

between MoDCs and LCs, including the modulation of IRF1 and IRF4 during inflammatory 

conditions, which are key components of the LC IRF-GRN and orchestrate immunogenic responses 

(Polak et al., 2017). However, the overall success of in silico modelling using MoDC expression data 
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to predict immunogenic programmes was limited, suggested that whilst common immune 

associated transcriptional regulators were identified between MoDCs and LCs, the composition or 

activity of the GRN differed between subtypes. Our analysis did confirm that in silico modelling of 

transcriptomic programmes using GRN models could be a useful tool for investigations of DC 

immune biology. However, the application of MoDCs to accurately explore the mechanisms of 

tolerance exhibited by LCs requires further investigation and evaluation. 
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Chapter 4 Transcriptomes of human primary LCs encode a 

unique tolerogenic programme 

4.1 Introduction 

The epidermis is continuously exposed to a broad variety of antigen stimuli, which are detected by 

immune sentinel LCs. The induction of tolerance by LCs is therefore believed to be critical for 

maintaining homeostasis at the skin (Clayton et al., 2017)(West and Bennett, 2018) (Seneschal et 

al., 2012)(Deckers, Hammad and Hoste, 2018). Current mechanisms identified by which LCs 

mediate tolerance include clearance of apoptotic KCs, epidermal barrier maintenance and the 

induction of epidermal Tregs (Hatakeyama et al., 2017),(Kubo et al., 2009),(Seneschal et al., 2012). 

The expression of tolerogenic mediators such as IL-10, IDO1 and PD-L1 have been demonstrated to 

be important for LC tolerogenic function (Yoshiki et al., 2010) (von Bubnoff et al., 2004)(Pẽa-Cruz 

et al., 2010). The residence of LCs within the highly exposed epidermis likely modulates the 

immunological role of LCs and alters their function and transcriptomic networks. This 

microenvironment-specific biology could therefore highly contrast with other DC subtypes, which 

reside in other tissue compartments. Indeed, earlier work from our group and others demonstrated 

that transcriptional network of human LCs dramatically differs from other skin resident DCs (Polak 

et al., 2014)(Artyomov et al., 2015). However, the extent to which LCs differ to other DCs in immune 

regulation of tolerogenicity at the transcriptomic level, is not completely understood.  

LCs mediate induction of tolerance both locally in situ (Seneschal et al., 2012) and after trafficking 

self-antigen to the local lymph nodes through migration (King et al., 2015)(Hemmi et al., 

2001)(Yoshino et al., 2006)(Ghigo et al., 2013). Both of these states need to be analysed carefully 

to determine the molecular networks regulating LC-dependent immune tolerance. Therefore, to 

comprehensively assess mechanisms of immunotolerance in LCs, datasets containing digested and 

migrated LCs, extracted from healthy donors undergoing corrective breast or abdominal surgeries, 

along with other DC subtypes, also extracted from healthy donors, were selected for analyses.  

Whilst the tolerogenic potential of LCs is key for epidermal homeostasis, tolerogenic function of 

other DC subtypes critically orchestrate immunotolerance in other tissues. CD11cLowCD45RBHIgh 

spleen DCs display enhanced ability to induce IL-10 producing Tregs, contrasting the superior ability 

of CD11cHighCD45RB- spleen DCs to induce IFNg producing Th1 T cells (Wakkach et al., 2003). In the 

gut, tolerance induced by DC is paramount to prevent unwarranted immune responses to 

microflora and food antigens (Steimle and Frick, 2016). CD103+  expressing DCs are strongly 
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associated with tolerogenic regulation in the gut (Scott, Aumeunier and Mowat, 2011)(Coombes 

and Powrie, 2008). CD103+ DCs express higher levels of IDO and TGFb, resulting in reduced Th1 and 

Th17 differentiation, whilst enhancing the differentiation of Tregs (Matteoli et al., 2010)(Coombes 

et al., 2007). pDC antigen presentation of myelin to CD4+ T cells results in antigen specific Treg 

induction, with loss of pDC antigen presentation resulting in experimental autoimmune encephalitis 

(EAE) (Irla et al., 2010). A CCR9+ subset of pDCs has been specifically associated with elevated 

tolerogenic function, inducing Tregs and thus preventing graft versus host disease (GVHD) in 

allogenic T cell transplanted mice (Hadeiba et al., 2008). Interestingly, specific subpopulations of 

dermal DCs (DDCs) are attributed to tolerogenic mechanisms (Haniffa, Gunawan and Jardine, 2015). 

CD141+CD14+ DDCs can produce high levels of IL-10 and can induce the differentiation of Tregs 

which potently suppress pathology induced in mouse models of allogenic induce inflammation (Chu 

et al., 2012). CD14+ DDCs also display decreased T cell stimulatory capacity compared to CD1a+ and 

CD14-CD1a- DDC populations (Nestle et al., 1993). A further example of a DC subset highly 

attributed to tolerogenic function include DCs that reside at the foeto-maternal interface. Here, 

tolerance must be maintained to ensure the foetus is tolerated by the maternal immune system 

and DCs from the placenta (PlaDC) are key to mediating such tolerance via the secretion of IL-10 

(Gorvel et al., 2014). Whilst several mechanisms of tolerance regulation therefore do appear to be 

common across DC subpopulations, including LCs, the extent of commonality is unknown. 

To identify a molecular signature encoding tolerance in tissue residing DC for comparison with LCs, 

we identified a GEO dataset containing primary PlaDCs, that were extracted from healthy at term 

birth placentas, as well as MoDCs, which allowed us to investigate tolerogenic responses mediated 

within the placenta. Whilst a potential gender bias could be induced by analysing female PlaDC and 

LC that could have been extracted from both male and female donors, the use of these datasets, 

along with datasets of artificially induced TolMoDCs and IL10MoDCs, allowed comprehensive 

investigations of the transcriptomic programmes expressed by DCs that are associated with 

tolerogenic immune function in situ, in order to identify commonalities. Furthermore, in depth 

comparison between LC and DDCs, from healthy donors, was performed to ascertain similarities in 

tolerance regulation between different skin DC subsets. Cross-comparisons between tolerogenic 

DC subtypes highlighted specific pathways commonly associated with tolerance regulation by DCs, 

whilst also emphasising the largely unique transcriptomes exhibited by each subtype.  

Overall, our analyses could characterise the unique nature of LC transcriptomes to other DC 

populations, including tolerogenic programmes. Whilst our earlier analyses on MoDCs stimulated 

with tolerogenic stimuli provided a good model of tolerogenic DC transcriptomic programming, our 

analyses of transcriptomic programmes from tissue derived LC and DC, further expand our 

understanding of how DC tolerance is regulated in vivo. 
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4.1.1 Hypothesis 

LCs transcriptional networks contain a unique module/programme specifically associated with the 

regulation of tolerogenic immune responses. 

4.1.2 Aims 

• Define the unique transcriptomic programme of LCs. 

• Identify molecular signature encoding tolerance across tolerogenic DC. 

• Explore the similarities in mechanisms of skin tolerance regulation between LCs and DDCs 
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4.2 Results  

4.2.1 Transcriptomic analysis reveals gene expression programmes unique and 

characteristic to LCs 

LC tolerogenic function in situ has been reported in human and murine studies and is believed to 

be their key cellular characteristic (Shklovskaya et al., 2011),(Kitashima et al., 2018),(Seneschal et 

al., 2012). LCs therefore appear to be more regulatory in contrast to blood CD1c DCs, DDCs and 

MoDCs, i.e. reduced production of proinflammatory cytokines (TNFa, IL1b) (Collin, McGovern and 

Haniffa, 2013)(Haniffa et al., 2012). To investigate was underlies heightened tolerogenic potential 

in LCs, LC and cross-DC type transcriptomic analysis was performed. The transcriptomes were 

obtained from GEO repository (dataset (GSE23618)).  

Using an RMA normalised Affymetrix Human Genome U133 Plus 2.0 microarray reads, 

enzymatically digested steady-state LC, enzymatically digested dermal DC (DDC), MoDC and CD1c 

blood DC triplicate transcriptomic data was analysed. Steady-state LCs and DDCs were 

enzymatically digested from respective epidermal and dermal compartments, before purification 

using CD1a microbeads was performed. MDS plotting revealed each DC population had unique 

transcriptomes, suggesting preferences for unique biological pathways and processes (Figure 17A). 

The close grouping of LCs and CD1a+ DDCs, suggested some similarity between transcriptomes 

could originate due to residence at skin, in contrast to blood CD1c DCs and MoDCs. 10,446 DEGs 

identified through comparison of LCs to all the other DC types were identified using Limma, 

emphasising the uniqueness of LC transcriptomes. The DEG list was uploaded into gene co-

expression analysis tool Graphia Pro (Pearson correlation r=0.93, MCL=1.7, Figure 17B). Over 250 

clusters were identified leading us to focus on the 25 clusters containing 30 or more genes. Of these 

25 clusters, 20 were associated with specific biological processes (Table 14),  
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Cluster No. of Genes Cluster Profile ID Biological Process FDR P-Val
GO:0002274 myeloid leukocyte activation 7.00E-20

GO:0016050 vesicle organization 1.92E-19

GO:0048284 organelle fusion 9.97E-19

GO:0006906 vesicle fusion 1.01E-18

GO:0002252 immune effector process 2.03E-12

GO:0016071 mRNA metabolic process 1.12E-12

GO:0042254 ribosome biogenesis 3.37E-10

GO:0002479 antigen processing and presentation of exogenous peptide antigen via MHC class I 1.42E-05

GO:0050852 T cell receptor signaling pathway 1.29E-03

GO:0007049 cell cycle 1.52E-03

GO:0045333 cellular respiration 2.39E-14

GO:0006091 generation of precursor metabolites and energy 1.59E-12

GO:0015980 energy derivation by oxidation of organic compounds 3.52E-12

GO:0042775 mitochondrial ATP synthesis coupled electron transport 3.89E-10

GO:0006119 oxidative phosphorylation 3.89E-10

GO:0140014 mitotic nuclear division 1.95E-09

GO:0000278 mitotic cell cycle 1.95E-09

GO:0000819 sister chromatid segregation 1.32E-08

GO:0022402 cell cycle process 2.13E-07

GO:0070925 organelle assembly 3.01E-07

GO:0006954 inflammatory response 3.14E-16

GO:0034097 response to cytokine 4.16E-15

GO:0019221 cytokine-mediated signaling pathway 4.16E-15

GO:0032101 regulation of response to external stimulus 5.75E-15

GO:0006952 defense response 2.14E-14

GO:0060429 epithelium development 6.77E-13

GO:0008544 epidermis development 2.28E-12

GO:0043588 skin development 2.69E-11

GO:0050673 epithelial cell proliferation 3.17E-11

GO:0030855 epithelial cell differentiation 5.60E-11

GO:0002682 regulation of immune system process 6.34E-06

GO:0071674 mononuclear cell migration 6.34E-06

GO:0071621 granulocyte chemotaxis 7.92E-06

GO:0006952 defense response 7.92E-06

GO:0048245 eosinophil chemotaxis 7.92E-06

GO:0030198 extracellular matrix organization 5.03E-07

GO:0043062 extracellular structure organization 1.27E-05

GO:0001501 skeletal system development 4.78E-05

GO:0070848 response to growth factor 4.78E-05

GO:0072359 circulatory system development 8.36E-05

GO:0006397 mRNA processing 2.05E-11

GO:0016071 mRNA metabolic process 2.05E-11

GO:0000398 mRNA splicing, via spliceosome 1.16E-06

GO:0000377 RNA splicing, via transesterification reactions with bulged adenosine as nucleophile 1.16E-06

GO:0000375 RNA splicing, via transesterification reactions 1.16E-06

GO:2000113 negative regulation of cellular macromolecule biosynthetic process 3.06E-03

GO:0010558 negative regulation of macromolecule biosynthetic process 4.09E-03

GO:0031327 negative regulation of cellular biosynthetic process 4.27E-03

GO:0009890 negative regulation of biosynthetic process 4.27E-03

GO:0006997 nucleus organization 4.27E-03

120

10 104
DDC=Moderate, 

LC=High, 
CD1c=Moderate

9

MoDC=High

CD1c=High

MoDC=High, 
CD1c=High

LC=High

DDC=High

DDC=Moderate, 
LC=Moderate

CD1c=High

DDC=Moderate

DDC=Moderate, 
LC=Moderate, 

CD1c=High

1672

1047

719

391

1

2

3

4

5

6

7

8

377

198

168

149
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GO:0060816 random inactivation of X chromosome 4.41E-02

GO:0000079 regulation of cyclin-dependent protein serine/threonine kinase activity 4.41E-02

GO:0030951 establishment or maintenance of microtubule cytoskeleton polarity 4.41E-02

GO:0061470 T follicular helper cell differentiation 4.41E-02

GO:1904029 regulation of cyclin-dependent protein kinase activity 4.41E-02

GO:1902494 catalytic complex 8.67E-05

GO:0071013 catalytic step 2 spliceosome 3.54E-02

GO:0000974 Prp19 complex 3.54E-02

GO:0051250 negative regulation of lymphocyte activation 1.15E-03

GO:0050868 negative regulation of T cell activation 1.15E-03

GO:0032088 negative regulation of NF-kappaB transcription factor activity 2.03E-03

GO:0010648 negative regulation of cell communication 2.52E-03

GO:0023057 negative regulation of signaling 2.52E-03

GO:0062023 collagen-containing extracellular matrix 1.49E-02

GO:0005604 basement membrane 1.49E-02

GO:0031012 extracellular matrix 3.63E-02

GO:0008544 epidermis development 2.77E-05

GO:0043588 skin development 5.52E-04

GO:0009913 epidermal cell differentiation 1.22E-03

GO:0070268 cornification 1.70E-03

GO:1903575 cornified envelope assembly 1.70E-03

GO:0009887 animal organ morphogenesis 9.33E-03

GO:0006941 striated muscle contraction 1.42E-02

GO:0006942 regulation of striated muscle contraction 1.42E-02

GO:0043010 camera-type eye development 1.42E-02

GO:0001654 eye development 1.74E-02

GO:0070488 neutrophil aggregation 2.41E-03

GO:0050729 positive regulation of inflammatory response 3.62E-03

GO:0030593 neutrophil chemotaxis 6.70E-03

GO:0050832 defense response to fungus 6.70E-03

GO:0050727 regulation of inflammatory response 6.70E-03

GO:0035455 response to interferon-alpha 3.98E-03

GO:0071345 cellular response to cytokine stimulus 3.98E-03

GO:0035456 response to interferon-beta 4.02E-03

GO:0019221 cytokine-mediated signaling pathway 5.42E-03

GO:1903265 positive regulation of tumor necrosis factor-mediated signaling pathway 1.92E-02

GO:0006260 DNA replication 1.28E-05

GO:0071897 DNA biosynthetic process 1.41E-05

GO:0033260 nuclear DNA replication 9.19E-04

GO:0006259 DNA metabolic process 1.03E-03

GO:0044786 cell cycle DNA replication 1.06E-03

GO:0006614 SRP-dependent cotranslational protein targeting to membrane 1.61E-09

GO:0006613 cotranslational protein targeting to membrane 1.61E-09

GO:0045047 protein targeting to ER 1.76E-09

GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.76E-09

GO:0072599 establishment of protein localization to endoplasmic reticulum 1.84E-09

20 33
LC=Moderate, 

CD1c=High

23 31
DDC=Moderate, 
LC=Moderate, 

CD1c=High

17 37 CD1c=Moderate

19 34
DDC=Moderate, 

CD1c=High

15 51
DDC=Moderate, 

LC=Moderate

16 38
DDC=Moderate, 

LC=Moderate

13 65 DDC=High, LC=High

14 54 DDC=Moderate

11 96 DDC=High, LC=High

12 77 LC=High, CD1c=High

Table 14. GSE23618 co-expressed cluster profiles with associated gene ontologies. Transcript-

transcript co-expression analysis of 10,446 probesets differentially regulated in steady-state LC (LC) 

compared to steady-state CD1a+ DDCs (DDC) , MoDC and blood CD1c DC (CD1c), using Graphia Pro 

(Pearson correlation r = 0.93, MCL = 1.7), identified 25 clusters (>30 genes). Clusters with associated 

ontologies identified using Toppgene (adj.p-value=<0.05, top 5 ontologies displayed) were included in 

the table. Clusters were annotated with number of genes in each cluster and with their general 

expression profile across the DCs. 
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4 gene clusters that had elevated expression in LCs compared to immunogenic DC types were 

identified (Clusters 4, 10, 18 and 22). The largest of these clusters, cluster 4, which contained 391 

genes, was highly enriched in genes encoding cell cycle and cell division processes (gene ontology 

analysis, ToppGene, adj.p-value=2.7E-7). Cluster 10 was associated with negative regulation of 

cellular macromolecule biosynthetic process (adj.p-value=3.1-3). Gene ontology analysis for other 

gene clusters however did not expose specific associated biological processes or pathways. 

Consistent with their reported immunogenic function, the 3 largest gene clusters upregulated in 

each of the other DC types were found to be strongly enriched in genes involved in immune and 

inflammatory processes. Cluster 2 which contained 1047 genes highly expressed in CD1c blood DCs 

comprised genes associated with mRNA metabolism (adj.p-value=3.8E-11), MHC I antigen 

processing and presentation (adj.p-value=1.2E-4), as well as the T cell receptor signalling pathway  

(adj.p-value=1.3E-3). Cluster 5, which contained 377 genes upregulated in CD1a+ DDCs were 

associated with the inflammatory response (adj.p-value=3.1E-16) and response to cytokine (adj.p-

value=4.1E-15), whilst cluster 1 containing 1672 genes highly expressed in MoDCs were associated 

with myeloid leukocyte activation (adj.p-value=7.0E-20) and the immune effector process (adj.p-

value= 2.0E-12)(Figure 17C). Interestingly, cluster 13 which included 65 genes, was highly expressed 

in both CD1a+ DDC and LC and appeared associated with mechanisms of immune tolerance (Figure 

17D). Gene ontology found associations with negative regulation of T cell activation (adj.p-value= 

1.2E-3), due to the expression of RUNX3, TNFAIP3, NFKBID, CD74, PELI1, SDC and ZC3H12A. An 

association with negative regulation of NFkB transcription factor activity (adj.p-value= 2.0E-3) was 

also identified due to the expression of NFKBIA, NFKBIB, TNFAIP3, PELI1 and ZC3H12A. The common 

expression of these genes amongst LC and CD1a+ DDC signified the importance of these tolerogenic 

processes at the skin. 

As our MoDC analysis identified MYC as a potential regulator of tolerogenic function, we 

interrogated its expression in the steady state LC population. Whilst a large and significant increase 

in MYC expression was identified in LCs compared to CD1c DCs, only a non-significant trend for 

increased MYC expression was seen in LCs compared to MoDCs and CD1a+ DDCs (Figure 17E). 

Intriguingly, despite the low inflammatory profile of LC, IRF1 expression in LCs was comparable with 

DDCs and CD1c+ DCs and IRF4 expression was only significantly decreased compared to DDCs, yet 

still displayed relatively high expression (Figure 17E). 
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Figure 17. Transcriptomes of steady state LCs are distinct from other DC types and are distinguished 

by low expression of immunogenic genes. A) MDS plot of normalised, log transformed whole 

transcriptome data of MoDCs, steady-state CD1a+ DDCs, steady-state LCs and CD1c DCs (GSE23618). 

The first 3 PCs are displayed, PC1 and PC2 (left) and PC2 and PC3 (right). B) Transcript-transcript co-

expression analysis  of 10,446 probesets differentially regulated in LC compared to DDCs, MoDCs and 

CD1c DCs (Graphia Pro, Pearson=0.93, MCL=1.7). Cluster 1-100 are displayed. The largest clusters 

with a predominant upregulation in each of the 4 DCs are highlighted (clusters 1, 2, 4 and 5). C) Mean 

(±SD) cluster expression profiles for the largest clusters with a predominant upregulation in each of 

the 4 DCs (clusters 1, 2, 4 and 5). Toppgene gene ontology analyses is displayed alongside each cluster 

(-log10FDRp-values). D) Mean (±SD) cluster 13 expression profile with Toppgene gene ontology 

analysis (-log10FDRp-values). E) Mean (±SD) normalised expression of TFs MYC IRF1 and IRF4 across 

the four DC subtypes. Unpaired T-test p-values = *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired 

T-test. 
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To expand the analysis of differences and similarities between LCs and DDCs, suggested as the 

closest LC counterparts, we analysed an RMA normalised Affymetrix Human Genome U219 

microarray dataset containing migrated LCs (mLCs) and CD11c+ migrated DDCs (mDDCs, 

GSE49475). Migratory LCs were purified using CD1a microbeads, whilst migratory DDC were 

purified using CD11c microbeads, to extract whole epidermal and dermal populations, respectively. 

Each subtype was isolated from three biological donors (paired samples for LCs and DDCs from each 

donor), and the microarray experiment was performed with technical duplicates. MDS plotting 

revealed the unique gene expression displayed by both mLCs and CD11c+ mDDCs along PC1 (Figure 

18A). 5,687 DEGs were identified with 8 gene clusters containing 30 or more genes, produced using 

Graphia Pro (Pearson= 0.94, MCL=1.7, Figure 18B). Five clusters (clusters 1, 4, 6, 7 and 8) had 

increased expression in LCs, whilst three clusters (clusters 2, 3 and 5) had increased expression in 

DDCs. Clusters with associated ontologies were summarised (Table 15).  

 

Cluster No. of Genes Cluster Profile ID Biological Process FDR P-Val
GO:0140053 mitochondrial gene expression 7.94E-31

GO:0006091 generation of precursor metabolites and energy 2.35E-25
GO:0009117 nucleotide metabolic process 3.19E-20
GO:0006119 oxidative phosphorylation 1.18E-18
GO:0010389 regulation of G2/M transition of mitotic cell cycle 2.20E-11
GO:0002274 myeloid leukocyte activation 2.44E-40
GO:0045321 leukocyte activation 6.25E-34
GO:0001775 cell activation 2.86E-32
GO:0042119 neutrophil activation 8.41E-31
GO:0002444 myeloid leukocyte mediated immunity 1.06E-30
GO:0001775 cell activation 1.13E-16
GO:0002252 immune effector process 9.61E-15
GO:0006952 defense response 9.61E-15
GO:0045321 leukocyte activation 3.71E-14
GO:0002682 regulation of immune system process 9.92E-13
GO:0003712 transcription coregulator activity 6.75E-03
GO:0003713 transcription coactivator activity 6.75E-03

5 91 mDDC=Moderate GO:0016791 phosphatase activity 1.91E-02

1

2

3

4

1693

928

228

98

mLC=High

mDDC=High

mDDC=High

mLC=High

Table 15. GSE49475 co-expressed cluster profiles with associated gene ontologies. Transcript-

transcript co-expression analysis of 5,687 probesets differentially regulated in migrated LC (mLC) 

compared to CD11c+ migrated DDCs (mDDC) using Graphia Pro (Pearson correlation r = 0.94, MCL = 

1.7), identified 8 clusters (>30 genes). Clusters with associated ontologies identified using Toppgene 

(adj.p-value=<0.05, top 5 ontologies displayed) were included in the table. Clusters were annotated 

with number of genes in each cluster and with their general expression profile across the DCs. 
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Cluster 1, upregulated in mLCs, contained 1693 genes and was associated with the generation of 

precursor metabolites and energy (adj. p-value=2.4E-25) and regulation of G2/M transition of 

mitotic cell cycle (adj. p-value=2.2E-11). Cluster 4 containing 98 genes, was also upregulated in 

mLCs and was associated with transcription coregulator activity (adj. p-value= 6.8-3). No associated 

ontologies were identified for clusters 6, 7 and 8 when analysed alone. Due to the overall similarity 

between the cluster expression profiles and to further summarise the general upregulated 

pathways in mLCs compared to CD11c+ mDDCs, the combined total of 1926 genes in clusters 1, 4, 

6, 7 and 8 were submitted into Toppgene together. Overall this summarised mLC upregulated 

pathways as being associated with mitochondrial processes, oxidative phosphorylation and the cell 

cycle (Figure 18C). In contrast gene clusters upregulated in DDCs (clusters 2, 3 and 5) were involved 

with immune and inflammatory responses when the combined 1247 genes were submitted to 

Toppgene together. Individually, cluster 2, containing 928 genes, was associated with myeloid 

leukocyte activation (adj. p-value=2.4E-40) and cluster 3, containing 228 genes, was associated with 

the immune effector process(adj. p-value=9.6E-15). Cluster 5 containing 91 genes was associated 

with phosphatase activity (adj. p-value=1.9E-2) (Figure 18C).  

Genes within the tolerogenic module, which was shared between steady-state LCs and DDCs and 

associated with negative regulation of T cell activation and NFkB activation (RUNX3, TNFAIP3, 

NFKBIA, NFKBIB, NFKBID, CD74, PELI1, SDC and ZC3H12A, Figure 17D), was inspected amongst 

migrated mLCs and mDDCs (Figure 18D). Some of these genes were differentially regulated (RUNX3, 

NFKBIA, NFKBID and ZC3H12A) or lowly expressed in both LC and DDC (NFKBIB and SDC). The shared 

tolerogenic module was therefore lost in LC and DDC upon migration. 

We next inspected the expression of MYC, IRF1 and IRF4 in the mLC and mDDC gene expression 

data (Figure 18E). Interestingly, MYC expression was significantly increased in mDDCs compared to 

mLCs. Furthermore, whilst the expression of IRF1 was similar between mLC and mDDC, the 

expression of IRF4 was significantly increased in mLCs. This contrasted the expression of IRF4 in 

MoDCs, in which increased IRF4 expression correlated with increased inflammatory gene 

expression.  
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Figure 18. Transcriptomes of LCs isolated through migration are distinct from migrated DDCs. A) 

MDS plot of normalised, log transformed whole transcriptome data migrated LC (mLC) and CD11c+ 

migrated DDC (mDDC, GSE49475). The first 3 PCs are displayed, PC1 and PC2 (left) and PC2 and PC3 

(right). B) Transcript-transcript co-expression analysis of 5,687 probesets differentially regulated 

between migrated LCs and DDCs (Graphia Pro, Pearson=0.94, MCL=1.7). Clusters with greater than 

30 genes (Clusters 1-8) are highlighted. C) Mean (±SD) expression profiles of clusters upregulated in 

migrated LC (Clusters 1, 4 and 6, 7 and 8, containing ) and migrated DDC (Clusters 2, 3 and 5) with 

associated gene ontology analysis (Toppgene, p-value<0.05). D) Mean (±SD) normalised expression 

of genes associated with negative regulation of T cell activation and NFkB activation identified as a 

shared tolerogenic module in steady-state LC and DDC (Figure 11D) E) Mean (±SD) normalised 

expression of TFs MYC IRF1 and IRF4. Unpaired T-test p-values = *<0.05, **<0.01, ***<0.001, 

****<0.0001, unpaired T-test. 
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Overall, DEG gene co-expression cluster analysis revealed that LCs displayed reduced expression of 

inflammatory immune pathways as compared to other DC subtypes, regardless of LC activation 

state. This overall suggests less involvement of LCs in immunogenic immune pathways and 

therefore a potential preferential association with immunoregulatory processes. In the steady-state 

LCs, an immunosuppressive gene module was identified, which was common with steady-state 

DDCs (Cluster 13) and marked by upregulation of genes mediating inhibition of NFkB and T cell 

activation. In contrast, migratory LCs were discernible by high expression of genes encoding 

metabolic processes. 

To identify a specific molecular signature of tissue-derived DC types associated with predominantly 

tolerogenic responses, we chose to analyse transcriptomes of placental derived DCs (plaDC), 

available in GEO (GSE52850). The dataset comprised of plaDCs with MoDCs, which were used as a 

suitable molecular reference for our analyses. MDS plotting revealed PlaDCs and MoDCs to be to 

greatly different (Figure 19A). 3,040 genes were identified after DEG analysis and filtering. Gene co-

expression analysis was performed, identifying 7 gene clusters in total (Pearson=0.95, MCL=1.7) 

(Figure 19B). Of these 7 clusters, cluster 1 and 6 was elevated in MoDCs and clusters 2-5 and 7 were 

upregulated in PlaDCs. 5 clusters (clusters 1, 2, 3, 4 and 5) were associated with specific biological 

processes and pathways after gene ontology analysis (Table 16).  

Cluster 1 was upregulated in MoDCs and included 1467 genes. Genes were associated with 

metabolic pathways (adj.p-value=2.9E-16), leukocyte activation (adj.p-value=1.8E-11) and T-cell 

activation (adj.p-value=2.1E-7). High expression of MHC II molecules also resulted with an 

association with antigen processing and presentation (adj.p-value=3.3E-5). The remaining 3 clusters 

were all upregulated in plaDCs. Cluster 2 included 387 genes and was associated with response to 

endogenous stimulus (adj.p-value=2.1E-6) and the reproduction process (adj.p-value=1.0E-7). 

Cluster 3 included 279 genes and was associated with the defence response (adj.p-value=5.9E-6) 

and positive regulation of signal transduction (adj.p-value=5.9E-6). Genes were also associated with 

the murine phenotype, decreased inflammatory response (adj.p-value=7.3E-5), annotated due to 

the expression of NFkB inhbitors, such as TNFAIP3, NFKBIA, NFKBIB and PELI1. Cluster 4 with 258 

genes was associated with negative regulation of gene expression (adj.p-value=2.4E-4) and 

biosynthetic processes (adj.p-value=2.4E-4). Cluster 5 with 242 genes was associated with the 

nuclear chromatin (adj.p-value=4.4E-3) The combined gene list from all PlaDC upregulated clusters 

(2-5 and 7) and all MoDC upregulated clusters (1 and 6) were subjected to gene ontology analysis 

together to capture overall profiles of both PlaDC and MoDC upregulated gene expression (Figure 

19C).   
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Consistent with our analysis in MoDCs and LCs we inspected the expression of MYC, IRF1 and IRF4. 

No difference in MYC or IRF1 expression was identified between PlaDCs and MoDCs (Figure 19D). 

However, IRF4 was significantly decreased in PlaDCs compared to MoDCs. 

 

  

 

Cluster No. of Genes Cluster Profile ID Biological Process FDR P-Val
GO:0019637 organophosphate metabolic process 2.92E-16

GO:1901135 carbohydrate derivative metabolic process 2.92E-16

GO:0009260 ribonucleotide biosynthetic process 7.84E-14

GO:0045321 leukocyte activation 1.75E-11

GO:0042110 T cell activation 2.03E-07

GO:0040007 growth 7.94E-08

GO:0022414 reproductive process 1.02E-07

GO:0007565 female pregnancy 1.25E-07

GO:0009719 response to endogenous stimulus 2.12E-06

GO:0016477 cell migration 6.14E-06

GO:0080134 regulation of response to stress 1.29E-07

GO:0006952 defense response 5.92E-06

GO:0010942 positive regulation of cell death 5.92E-06

GO:0009967 positive regulation of signal transduction 5.92E-06

GO:0006954 inflammatory response 3.17E-05

GO:1903507 negative regulation of nucleic acid-templated transcription 2.41E-04

GO:1902679 negative regulation of RNA biosynthetic process 2.41E-04

GO:0051253 negative regulation of RNA metabolic process 2.54E-04

GO:0045892 negative regulation of transcription, DNA-templated 4.62E-04

GO:0010558 negative regulation of macromolecule biosynthetic process 6.16E-04

GO:0000790 nuclear chromatin 4.35E-03

GO:0017146 NMDA selective glutamate receptor complex 6.09E-03

GO:0045211 postsynaptic membrane 9.46E-03

GO:0097060 synaptic membrane 1.61E-02

GO:0008328 ionotropic glutamate receptor complex 1.61E-02

242

1

2

3

4

5

1467

387

279

258

MoDC=High

PlaDC=High

PlaDC=High

PlaDC=High

PlaDC=High

Table 16. GSE52850 co-expressed cluster profiles with associated gene ontologies. Transcript-

transcript co-expression analysis of 3,040 probesets differentially regulated in placental derived DCs 

(PlaDCs) compared to MoDCs using Graphia Pro (Pearson correlation r = 0.95, MCL = 1.7), identified 

7 clusters in total. Clusters with associated ontologies identified using Toppgene (adj.p-value=<0.05, 

top 5 ontologies displayed) were included in the table. Clusters were annotated with number of 

genes in each cluster and with their general expression profile across the DCs. 
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4.2.2 Comparative analysis between tolerogenic DC transcriptomes indicates some 

overlapping tolerogenic programmes, whilst highlighting the overall unique 

transcriptomic programmes expressed by LCs 

LCs, PlaDCs, TolMoDCs and IL10MoDCs have all been reported to exert tolerogenic function. 

Therefore, we sought to delineate common and unique transcriptomic programmes underpinning 

their biology. To perform cross comparison between tolerogenic DC transcriptomes, immature 

MoDCs from respective datasets were used as a common reference to identify genes consistently 

associated with tolerogenic function across the four DC populations, through using DEG analysis. 

The results of DEGs analysis were compared and visualised using a Venn diagram (Figure 20A). 1622 

genes, 1012 genes, 160 genes and 306 genes were identified from steady-state LC-MoDC analysis, 

PlaDC-MoDC analysis, TolMoDC-MoDC analysis and IL10MoDC-MoDC analysis, respectively. 

Interestingly, there was little convergence of the DEG lists, suggesting the tolerogenic programmes 

are cell subset specific, rather than a common immunotolerant DC programme. 0 genes were 

commonly upregulated in all four comparisons. It is however of note, that significantly bigger 

overlap was observed between tissue derived tolerogenic DCs than their counterparts 

differentiated in vitro (120 common genes between LCs and PlaDCs), suggesting that the artificial 

nature of TolMoDC and IL10MoDC induction may cause a significant difference in tolerogenic 
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Figure 19. PlaDCs and MoDCs display unique transcriptomic profiles. A) MDS plot of normalised, log 

transformed whole transcriptome PlaDC and MoDC data (GSE52850). The first 3 PCs are displayed, 

PC1 and PC2 (left) and PC2 and PC3 (right).  B) Transcript-to-transcript co-expression analysis of 3,040 

differentially regulated probesets between PlaDCs and MoDCs, identified 7 co-expressed clusters 

(Graphia Pro, Pearson correlation r=0.95, MCL=1.7). C) Mean (±SD) expression profiles of clusters 

upregulated in PlaDC (Clusters 2, 3, 4, 5 and 7) and MoDC (Cluster 1 and 6), with associated gene 

ontology analysis for combined gene lists for PlaDC and MoDC upregulated clusters (Toppgene, p-

value<0.05). D) Mean (±SD) normalised gene expression of the TF MYC IRF1 and IRF4. Unpaired T-test 

p-values = *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired T-test. 
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function, or state of immunosuppression to that seen in vivo. Gene ontology analysis for the 120 

genes common between LCs and PlaDCs were associated with response to lipopolysaccharide 

(adj.p-value=5.9E-7), regulation of the response to stress (adj.p-value=5.9E-7), negative regulation 

of response to stimulus (adj.p-value=3.4E-6) (Figure 20B). Interestingly, an association with 

response to steroid hormone (adj.p-value=4.6E-5) and therefore immunosuppressive stimuli was 

also identified, due to the expression of CLDN1, DNAJA1, DUSP1, ERRFI1, FHL2, HMGB2, KRAS, LBH, 

PGRMC2, PLPP1. PMEPA1, PTGS2, SIRT1 and ZFP36. Similarly, gene ontology analysis was 

performed for the 217 genes (Appendix 1 A.2) which were commonly upregulated in two or more 

of the four DC conditions to assess common upregulated pathways (Figure 20C), revealing 

associations with response to lipopolysaccharide (adj.p-value= 2.9E-11), cell migration (adj.p-

value= 2.3E-8), negative regulation of response to stimulus (adj.p-value=4.6E-8) and negative 

regulation of signal transduction (adj.p-value=6.4E-7) (Figure 20C). An association with the NFkB 

signalling pathway (adj.p-value=3.1E-2) was also identified, partly due to the upregulated 

expression of NFKBIA and TNFAIP3, both inhibitors of NFkB activation. Similarly, the 154 genes 

upregulated in LCs and at least one other DC condition were subjected to gene ontology analysis, 

in order to specifically investigate the DC tolerogenic genes mutual expressed with LCs (Figure 20D). 

Again, the gene list was associated with response to lipopolysaccharide (adj.p-value=3.0E-6), 

negative regulation of response to stimulus (adj.p-value=7.4E-6) and negative regulation of cell 

communication (adj.p-value=2.1E-4). Consistent with previous analysis of the DEGs uniquely 

upregulated in steady-state LCs compared to DDCs, CD1c DCs and MoDCs, the 1468 genes 

upregulated in LCs compared to MoDCs only, were associated with the cell cycle (adj.p-value=2.1E-

14) (Figure 20E). Overall, despite a small overlap in tolerogenic gene expression between different 

tolerogenic DC types, a common downregulation in pathways responsive to stimulus and signalling, 

including NFkB signalling, was observed. The upregulated pathways therefore suggest a connection 

with a state of immunosuppression and non-responsiveness. 
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Figure 20. Cross comparison of LCs, PlaDCs, TolMoDCs and IL10MoDCs upregulated DEGs compared 

to immature MoDCs A) Venn Diagram displaying the overlap in upregulated DEGs, identified during 

comparison between steady-state LC-MoDC (1622 genes), PlaDC-MoDC (1012 genes), TolMoDC-MoDC 

(160 genes) and IL10MoDC-MoDC (306 genes). B) Gene ontology analysis (Toppgene) for the 120 genes 

which were co-upregulated in LC and PlaDC (-log10adj.p-values). C)  Gene ontology analysis (Toppgene) 

for the 217 genes which were co-upregulated in two or more of the tolerogenic DC conditions (-

log10adj.p-values). D) Gene ontology analysis (Toppgene) for the 154 genes upregulated in LC and at 

least one other DC condition (-log10adj.p-values). E) Gene ontology analysis (Toppgene) for the 1468 

genes upregulated in LC only (-log10adj.p-values). 
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The expression of the common tolerogenic DC associated gene signatures was then tracked across 

the different LC and DC datasets analysed above to assess variation in signature expression across 

DC subtypes. A heatmap displaying the expression of 217 genes commonly upregulated in two or 

more of the tolerogenic DC conditions (Figure 20C, Appendix 1 A.2) was displayed for LCs and DCs 

in the GSE23618 and GSE49475 datasets (Figure 21). In GSE23618, containing steady-state LC, 

steady-state DDC, blood CD1c+ DC and MoDC, the elevated expression of the tolerogenic signature 

appeared to be shared between both LC and DDC. The immunosuppressive associated pathways 

therefore appear to be active in DC populations of both the epidermis and dermis at the steady-

state. In GSE49475, containing migrated mLC and mDDC, the expression of the tolerogenic 

signature became more divergent. Here, a large proportion of the genes appeared to be lowly 

expressed in mLC, but highly expressed in mDDC.  
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Figure 21. Tracking the tolerogenic DC signature across LC and DC subpopulations. The 217 

genes commonly upregulated in at least 2 of the DC conditions (Figure 20A&C) were tracked in 

heatmaps (canberra, ward.D) of log2 normalised expression data for GSE23618 (steady-state 

LC and DDC, CD1c+ blood DC and MoDC) and GSE49475 (migrated mLC and mDDC) datasets.   
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4.2.3 LC regulation of tolerogenic transcriptomic programmes differs to DDCs 

Investigations into the expression of the 217 genes upregulated in tolerance associated DC and LC 

across GSE23618 and GSE49475 datasets revealed elevated expression of this module in both 

steady-state and migrated DDCs. As DDC populations have been linked to tolerance regulation in 

the dermis (Haniffa, Gunawan and Jardine, 2015)(Chu et al., 2012)(Chu, Di Meglio and Nestle, 2011) 

we sought to further inspect the presence of the tolerance associated expression profile amongst 

DDC subpopulations. While a comprehensive study including all tolerogenic skin DC types isolated 

in consistent manner yet need to be done, datasets from individual populations are available. DDCs 

in GSE23618 (steady-state CD1a DDCs) and GSE49475 (migrated CD11c DDCs) account for all known 

DC subpopulations present in the dermis. To explore whether heterogeneity in the tolerogenic gene 

module could be identify amongst DDC subpopulations, a background corrected and quantile 

normalised Illumina HumanHT-12 V4.0 expression beadchip microarray dataset (GSE35457) 

containing collagenase digested steady-state CD14+, CD141high, CD1c+ and CD1c+CD141high DDC 

populations was analysed. The heterogeneity amongst the DDC subpopulations was confirmed by 

MDS plotting of whole transcriptome data (Figure 22). Here, separation of CD14+ and CD141high 

DDCs along PC1 was observed, whilst CD1c+ and CD1c+CD141high DDCs clustered together. 

Interestingly, along PC2 CD14+ and CD141high DDCs clustered together and again, CD1c+ and 

CD1c+CD141high DDCs were localised. 
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Figure 22. Dimensionality reduction analysis of whole transcriptome data reveals variation amongst 

DDC subpopulations. A) MDS plot of normalised, log transformed whole transcriptome data of 

collagenase digested steady-state CD14+, CD141high, CD1c+ and CD1c+CD141high DDC populations 

(GSE35457). The first 3 PCs are displayed, PC1 and PC2 (left) and PC2 and PC3 (right). 
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The expression of the 217 genes in the tolerance associated module (Figure 20C, Appendix 1 A.2) 

was then explored in the DDC populations through heatmap plotting (Figure 23A). Sample 

hierarchical clustering of the heatmap displayed the same population similarities as displayed in 

PC1 from MDS plots. Overall, the appearance of large distinct gene clusters amongst the DDC 

populations was more infrequent than observed in Figure 21. However, some small gene clusters, 

as defined by the hierarchical clustering parameters, could be identified in both CD14+ DDCs and 

CD141high DDCs, which were polarised between the two populations. CD14+ and CD141high DDC 

subpopulations therefore expressed some pathways of the tolerogenic gene module, although the 

pathways that DDCs did express were specific to either CD14+ or CD141high DDC subpopulations 

(highlighted on heatmap, 57 genes in CD141high DDCs and 41 genes in CD14+ DDCs). Genes clusters 

from the tolerogenic gene module which were more preferentially expressed in either CD141high (57 

genes) or CD14+ (41 genes) DDCs were submitted to gene ontology analysis in Toppgene (Figure 

23B). Results for CD141high DDCs revealed associations with response to LPS (adj.p-value=4.6E-4), 

response to cytokine (adj.p-value=7.4E-3) and response to steroid hormone (adj.p-value=1.6E-2). 

Negative regulation of immune effector process (adj.p-value=3.4E-2) was also associated due to the 

expression of CD55, DUSP1, NFKBIA, PAF1, PELI1, TNFAIP3 and ZFP36. Results for CD14+ DDCs 

revealed associations with regulation of response to external stimulus (adj.p-value=1.4E-7), cell 

chemotaxis (adj.p-value=7.2E-2), negative regulation of response to stimulus (adj.p-value=4.3E-5) 

and negative regulation of response to cell communication (adj.p-value=5.5E-3). An association 

with regulation of homeostasis (adj.p-value=6.8E-6) was found due to the expression of ADRB2, 

S100A9, SERPINB2, SERPING1, TFPI and THBD. Furthermore, an association with negative regulation 

of humoral immune response (adj.p-value=6.7E-3) was also identified due to the expression of 

FCGR2B and SERPING1. Therefore, despite few distinct clusters being expressed in CD14+ and 

CD141high DDCs, the clusters that were highly expressed revealed associations with tolerogenic 

processes. 
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Figure 23. Tracking the tolerogenic DC signature across DDC subpopulations. A) The 217 genes 

commonly upregulated in at least 2 of the DC conditions (Figure 20A&C) were tracked in heatmaps 

(complete, ward.D) of log2 normalised expression data for GSE35457 containing steady-state 

CD14+, CD141high, CD1c+ and CD1c+CD141high DDC subpopulations. CD14+ and CD141high DDC 

associated gene module clusters are highlighted. B) Gene ontology analysis (Toppgene) for the 57 

genes upregulated in CD141high DDCs (Top) and 41 genes upregulated in CD14+ DDCs (Bottom) as 

highlighted on heatmap in A) (-log10adj.p-values). 
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Having identified specific modules of tolerogenic signature in different DDC subpopulations, we 

sought to compare and contrast it with LCs. A background corrected and quantile normalised 

Illumina HumanHT-12 V4.0 expression beadchip dataset (GSE66355) containing migrated mLC, 

migrated CD14+ mDDC, migrated CD141+ mDDC, and CD14 and CD141 double negative migrated 

DDC (DN-mDDC) was used to track the modules across all tolerogenic skin DC populations. MDS 

plotting revealed the heterogeneity amongst the skin DC populations across PC1 and PC2, with 

mLCs and DN-mDDCs clustering on the right and CD14+ and CD141+ mDDCs clustering on the left 

(Figure 24). 6218 DEGs were identified through Limma DEG analysis comparing LCs to each of the 

DDC subpopulations and submitted to gene co-expression analysis tool Graphia Pro (Figure 25), 

Pearson correlation r=0.93, MCL=1.7). Over 250 clusters were identified leading us to focus on the 

20 clusters containing 25 or more genes. Of these 20 clusters, 9 were associated with specific 

biological processes (Table 17), containing the top 5 biological processes associated with each 

cluster).  
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Figure 24. Dimensionality reduction analysis of whole transcriptome data reveals variation 

amongst migrated LC and DDC subpopulations. A) MDS plot of normalised, log transformed whole 

transcriptome data of migrated mLC, CD14+ mDDC, CD141+ mDDC and double negative CD14- 

CD141- mDDC (DN mDDC) populations (GSE66355). The first 3 PCs are displayed, PC1 and PC2 (left) 

and PC2 and PC3 (right). 
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Cluster No. of Genes Cluster Profile ID Biological Process FDR P-Val
GO:0002274 myeloid leukocyte activation 2.49E-49

GO:0042119 neutrophil activation 7.19E-40

GO:0002252 immune effector process 2.11E-36

GO:0045055 regulated exocytosis 2.66E-36

GO:0002682 regulation of immune system process 1.02E-24

GO:0006695 cholesterol biosynthetic process 2.48E-05
GO:1902653 secondary alcohol biosynthetic process 2.48E-05
GO:0030043 actin filament fragmentation 1.58E-03
GO:0071470 cellular response to osmotic stress 6.45E-03
GO:0007049 cell cycle 3.54E-02

GO:0045321 leukocyte activation 1.36E-06

GO:0002446 neutrophil mediated immunity 1.36E-06
GO:0006952 defense response 5.85E-06
GO:0002252 immune effector process 6.99E-06

GO:0006954 inflammatory response 5.38E-05
GO:0006614 SRP-dependent cotranslational protein targeting to membrane 1.15E-60
GO:0006613 cotranslational protein targeting to membrane 2.48E-60
GO:0000184 nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 5.09E-59
GO:0045047 protein targeting to ER 5.09E-59
GO:0072599 establishment of protein localization to endoplasmic reticulum 1.42E-58
GO:0045859 regulation of protein kinase activity 5.21E-04
GO:0051338 regulation of transferase activity 1.59E-03
GO:0071850 mitotic cell cycle arrest 3.07E-03
GO:0071900 regulation of protein serine/threonine kinase activity 3.07E-03
GO:1902533 positive regulation of intracellular signal transduction 1.57E-02
GO:0030097 hemopoiesis 2.40E-03
GO:0006000 fructose metabolic process 2.40E-03
GO:0002682 regulation of immune system process 2.40E-03
GO:0048534 hematopoietic or lymphoid organ development 2.40E-03
GO:0046903 secretion 2.40E-03
GO:0046903 secretion 2.21E-07
GO:1901700 response to oxygen-containing compound 9.95E-07
GO:0002274 myeloid leukocyte activation 5.40E-06
GO:0071222 cellular response to lipopolysaccharide 5.40E-06
GO:0006954 inflammatory response 1.18E-05
GO:0001731 formation of translation preinitiation complex 5.74E-04
GO:0002183 cytoplasmic translational initiation 7.02E-03
GO:0022618 ribonucleoprotein complex assembly 8.28E-03
GO:0045047 protein targeting to ER 3.67E-02
GO:0016032 viral process 4.17E-02
GO:0019441 tryptophan catabolic process to kynurenine 1.17E-02
GO:0034627 'de novo' NAD biosynthetic process 1.17E-02
GO:0034354 'de novo' NAD biosynthetic process from tryptophan 1.17E-02
GO:0046218 indolalkylamine catabolic process 1.25E-02
GO:0006569 tryptophan catabolic process 1.25E-02

9

12

14

52

41

28

26

2

3

6

7

8

CD14+DDC = 
Moderate

CD141+DDC = High, 
CD14+DDC = High

DN-DDC = High, LC 
= High

DN-DDC = High, LC 
= High

481

163

79

54

CD14+DDC = High

LC = High

CD14+DDC = High

DN-DDC = High, LC 
= High

DN-DDC = High, LC 
= High

2618

Table 17. GSE66355 co-expressed cluster profiles with associated gene ontologies. Transcript-

transcript co-expression analysis of 6,218 probesets differentially regulated in migrated mLCs 

compared to migrated CD14+ mDDCs,  CD141+ mDDCs and double negative CD14- CD141- mDDCs 

(DN-DDC) using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7), identified 20 clusters (>25 

genes). Clusters with associated ontologies identified using Toppgene (adj.p-value=<0.05, top 5 

ontologies displayed) were included in the table. Clusters were annotated with number of genes in 

each cluster and with their general expression profile across the DC subpopulations. 
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Annotatable clusters that were upregulated in LCs, revealed predominant associations with 

metabolic processes, including nuclear transcribed mRNA catabolic process (Cluster 7, adj.p-

value=5.1E-59), cholesterol biosynthetic process (Cluster 3, adj.p-value=2.5E-5), the cell cycle 

(Cluster 3, adj.p-value=2.5E-2) and protein targeting to the ER (Cluster 7, adj.p-value=5.1E-59). In 

contrast, DDCs upregulated clusters were heavily associated with immunogenic and inflammatory 

immune pathways. For CD14+ DDCs this included the immune effector process (Clusters 2 and 6, 

adj.p-value=2.1E-36 and 7.0E-6) and the inflammatory response (Clusters 6 and 12, adj.p-

value=5.4E-12 and 1.2E-12). For CD141+ DDCs this included myeloid leukocyte activation (Cluster 

12, adj.p-value=5.4E-6) and the inflammatory response (Cluster 12, adj.p-value=1.2E-12). Clusters 

upregulated in DN-DDC were parallel with LC upregulated clusters, consistent with their localisation 

together along PC1 and PC2 in MDS plotting (Figure 24), suggesting this population could be in situ 

migrating LCs from the dermis.  

Specific interrogation of clusters with annotations linked to immune tolerance, identified 

tolerogenic pathways upregulated in CD14+ DDC and LC (Highlighted in Figure 25). Interestingly, 

whilst CD14+ DDC upregulated clusters were highly associated with immunogenic and 

inflammatory mechanisms, upregulated programmes also included genes associated with 

18     

2     

9     

Figure 25. Gene coexpression analysis identifies gene cluster linked to tolerogenic processes in 

CD14+ DDCs and LCs. Transcript-to-transcript co-expression analysis of 6,218 probesets 

differentially regulated in migrated mLCs compared to migrated CD14+ mDDCs,  CD141+ mDDC 

and double negative CD14- CD141- mDDC (DN DDC) using Graphia Pro (Pearson correlation r = 

0.93, MCL = 1.7). Gene clusters 2 and 9 linked the negative regulation of immune system process 

(adj.p-value=1.1E-9 and 4.2E-2) in CD14+ DDC s are highlighted, as well as LC upregulated cluster 

18, which was associated with the tolerogenic tryptophan catabolism to kynurenine process (adj.p-

value=1.2E-2). 
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tolerogenic immune pathways. CD14+ DDC cluster 2 was associated with negative regulation of the 

immune system process (adj.p-value=1.1E-9), due the elevated expression of ATM, BST2, C1QC, 

CCL2, CD14, CD200R1, CD37, CD68, CEBPB, CR1, FCER1G, FCGR2B, GPNMB, GPX1, GRAMD4, GRN, 

HAVCR2, IL4R, IL7R, INPP5D, IRAK3, LMO2, LPXN, LST1, LY96, MAFB, MILR1, NOTCH1, PAG1, 

PIK3AP1, PRNP, PTPN6, SAMHD1, SLAMF8, SPN, THBS1, TLR4, TLR6, TYROBP, VSIG4 and VSIR. CD14+ 

DDC cluster 9 was also associated with negative regulation of immune systems process (adj.p-

value=4.2E-2) due to elevated expression of CD300LF, LILRB4, MMP12, MNDA and MYC. For LC, an 

association with tolerogenic mechanisms was identified for cluster 18, which due to elevated 

expression of IDO1 and IDO2, was linked to tryptophan catabolism to kynurenine (adj.p-value=1.2E-

2). Interestingly, cluster 18 also included the TF IRF4.  

The expression of the common tolerogenic DC associated gene signature (Figure 20A&C) was 

tracked across the migrated LC and DDC subpopulations through heatmap plotting (Figure 26). 

Interestingly, distinct gene clusters, predominantly expressed in either CD14+ and CD141+ DDC or 

LC and DN-DDC, could be identified. The similarities in expression observed between each pair 

reflected the overall similarities in transcriptomes seen in MDS plotting and gene co-expression 

analysis (Figure 24, Table 17). Importantly,  tolerogenic networks detected in CD14+ and CD141+ 

mDDC differed from those expressed by mLC. Heterogeneity however could be identified between 

CD14+ and CD141+ mDDCs, with CD14+ mDDCs displaying elevated expression of a greater number 

of gene clusters amongst the tolerogenic programme.  

In summary, we have revealed the heterogeneity amongst DDC subpopulations and highlighted 

mechanisms by which they regulate tolerance at the dermis. CD14+ mDDC appear more heavily 

associated with the expression of tolerogenic pathways than other DDC subpopulations. 

Interestingly, CD14+ mDDCs and mLCs appear distinct in the tolerogenic mechanisms they express.   
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Figure 26. Tracking the tolerogenic DC signature across migrated LC and DDC subpopulations. The 

217 genes commonly upregulated in at least 2 of the DC conditions (Figure 20A&C) were tracked in 

heatmaps (complete, ward.D) of log2 normalised expression data (GSE66355) of mLC, CD14+ mDDC, 

CD141+ mDDC, and CD14 and CD141 double negative mDDC (DN-DDC). 
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4.3 Discussion 

4.3.1 LC transcriptomes are highly unique to other DCs 

Comparative analysis of LCs to other DC types was performed to identify the unique features of the 

LC transcriptome and find evidence for how they mediate tolerance at the epidermis. 

Transcriptomic analysis inferred that steady-state LCs expressed a highly unique transcriptomic 

profile compared to other DCs (MoDC, DDC, CD1c DC). Similarly, migrated LC transcriptomes highly 

differed from migrated DDCs. The high level of dissimilarity between the transcriptomes of DCs 

subtypes analysed indicated profound differences in their biology and function. Factors we consider 

that likely contribute to the differences in LC transcriptomes, include their unique developmental 

pathway, originating from yolk sac and foetal liver monocytes and their localisation in the 

epidermis, in which LC are in close contact with the external environment and signalling from other 

epidermal cells (Hoeffel et al., 2012)(Ginhoux and Merad, 2010). Indeed, when LCs and DDCs were 

contrasted with other DC types, steady-state LC and DDC transcriptomes were most similar and this 

could in part be due to their residence in similar tissue compartments, as compared to blood 

derived CD1c DC and artificially developed in vitro MoDC (Santegoets et al., 2008)(Széles et al., 

2010). The profound differences in the transcriptomes of LCs and MoDC indicated that MoDCs are 

likely not a good model for studying the biology of primary tissue residing LC. 

Intriguingly, our analyses revealed that cell cycle processes were common upregulated pathways in 

LCs. Maintenance of the LC network within the epidermis is dependent on self-amplification within 

the tissue, rather than depending on bone marrow derived precursors like conventional DC (Collin 

and Milne, 2016)(Doebel, Voisin and Nagao, 2017). It may therefore be unsurprising that cell cycle 

processes are significantly upregulated in epidermal residing steady-state LCs compared to 

conventional DCs. Through our comparisons between migrated LCs and migrated CD11c+ DDCs 

(GSE49475), a specific association with metabolic processes was observed during ontology analysis 

of migrated LC upregulated genes. This pulled similarities from our analysis on TolMoDCs, in which 

upregulation of metabolic processes was observed, therefore further implicating the importance of 

metabolic programming for immune regulation (Wculek et al., 2019)(Kelly and O’Neill, 2015). 

Additionally, during comparison between migrated LC and CD14+, CD141+ and DN-DDC 

(GSE66355), high IDO1 and IDO2 expression in LC was associated with tryptophan catabolism, which 

is a potent mechanism for T cell tolerance induction by DC (Mellor and Munn, 2004)(Li et al., 2016). 

Whilst digested steady-state LC displayed no uniquely upregulated immune-related biological 

pathways, a common association with negative regulation of immune system processes was shared 

with steady-state DDCs. Interestingly this suggests that in the steady-state, the prevention of 
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immune activation is an important process within both the epidermal and dermal skin 

compartments. Like LCs, DDCs also display tolerogenic function. CD141+ DDCs have been shown to 

produce IL-10 and expand functional Treg populations, whilst murine migratory RELB+ DDCs have 

been shown to induce skin antigen specific Treg induction in the lymph nodes (Chu et al., 

2012)(Azukizawa et al., 2011). Furthermore, genes upregulated in both digested steady-state LC 

and DDC were involved in negative regulation of NFkB activity. This coincided with our observations 

in MoDCs, in which immunogenic LPSMoDCs displayed elevated expression of NFkB family 

members, which were however downregulated in tolerogenic TolMoDCs and IL10MoDCs. 

Interestingly, this shared tolerogenic module was absent between migrated LC and migrated 

CD11c+ DDC (GSE49475), in which heterogeneous gene expression, or low expression of module 

constituents was identified. Therefore, it appears that the migration process further diverges the 

transcriptomic differences displayed between LCs and DDCs. Direct comparison in the 

transcriptomic programmes induced in steady-state and migrated LCs could therefore be important 

for comprehensive understanding of LC tolerogenic regulation.  

Analysis of TolMoDCs and IL10MoDCs identified an association between MYC upregulation and the 

induction of tolerogenic DC transcriptomes. We therefore inspected MYC expression amongst LC 

and the other DC subtypes. Interestingly, a highly significant increase in MYC expression was 

observed in steady-state LC compared to CD1c DC and an increasing trend was observed compared 

to both MoDC and DDC. The expression of MYC in LC and DDC was most similar, linking with the 

identification of a mutual tolerogenic cluster 13 module in both subtypes, albeit the programme of 

expression of MYC compared to cluster 13 differed. In migrated LC, MYC was significantly 

downregulated compared to migrated CD11c+ DDCs and the expression of MYC visually correlated 

with inflammatory associated DDC clusters 2, 3 and 5.  Furthermore, no significant difference in 

MYC expression was identified between tolerogenic PlaDCs and MoDCs. Overall, contradicting 

evidence for MYC involvement in DC tolerogenic transcriptomes limits the universality of an 

association of MYC regulation with DC tolerance induction. MYC interaction with mTOR1 in the 

mTORC1-MYC pathway is critical for DC development and differentiation, including LC (He et al., 

2019). MYC also heavily interlinks with cell cycle regulation, the predominant programme exhibited 

by steady-state LC (Gnanaprakasam and Wang, 2017). Its high expression in steady-state LCs may 

therefore be involved in the population maintenance of LCs, linking with the high level of cell cycles 

associated processes, rather than specific mediation of tolerogenic programmes.  

Highlighted as being critical for LC immune regulation (Polak et al., 2017)(Sirvent et al., 2020) and 

having been linked with both immunogenic and tolerogenic immune regulation in LPSMoDCs, the 

expression of IRF1 and IRF4 was investigated in each dataset. At the steady-state, no significant 

difference in IRF1 expression was identified and a small significant decrease in IRF4 expression was 
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identified through comparison to DDCs. Interestingly however, whilst comparisons between 

migrated LC and DDC revealed a slight trend for IRF1 decrease, IRF4 was significantly upregulated. 

IRF4 induction during LC migration is well documented, with its critical role in genomic 

programming of LC to enhance their ability to coordinate T cell response explored (Sirvent et al., 

2020)(Polak et al., 2017)(Bajana et al., 2012). However as revealed from analysis of migrated LC and 

DDC, increased IRF4 expression does not necessarily correlate with increase in inflammatory 

transcriptomic modules. In murine studies, IRF4-deficient DCs are impaired for the induction of 

Tregs in vivo (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). Furthermore, CRISPR-Cas9 knockout 

of IRF4 in migratory LC leads upregulated expression of genes associated with inflammatory 

cytokine and oxidative stress signalling, indicating a role of IRF4 in immune homeostasis (Sirvent et 

al., 2020). Thus, a dual role of IRF4 in priming both immunogenic and tolerogenic DC activation 

requires consideration. 

4.3.2 Tolerogenic DC transcriptomes largely differ, although common features of gene 

include inhibition of NFkB activation and responsiveness to stimuli 

To assess how common or unique transcriptomic networks underpinning DC immunotolerance are, 

we further analysed PlaDC, a DC subset which mediates tolerance at the foetal-maternal interface. 

The PlaDC population was selected for investigation due their critical tolerogenic role during the 

prevention of immune responses to foetal alloantigen during the long term growth and residence 

of the ‘allograft’ foetus (Tagliani and Erlebacher, 2011)(Blois et al., 2007). Results from PlaDCs 

analysis highly correlated with those seen in the tolerogenic MoDC datasets, with IRF4 being lowly 

expressed in PlaDCs, thus again highlighting IRF4 as a key regulator of immunogenic responses. 

Similar to trypsisnised steady-state LCs, associations with NFkB inhibition were identified. To more 

thoroughly cross compare the tolerogenic profiles of tolerance associated DC sub populations (LC, 

PlaDC, TolMoDC and IL10MoDC), their transcriptomes were compared to immature MoDCs, which 

acted as a consistent reference within each dataset. Whilst minimal convergence was overall 

identified, common modules were revealed. This included the upregulation NFkB inhibitors, such 

as NFKBIA and TNFAIP3 and the association with negative regulation of signal and stimuli 

responsiveness. Inhibition of NFkB  is therefore highlighted as an important aspect for the induction 

of DC tolerance. During the steady-state, DCs remain unchanged in response to low levels  of 

inflammatory stimuli (Audiger et al., 2017)(Hasegawa and Matsumoto, 2018). Suppression of 

signalling may therefore be a mechanism by which DC prevent uncontrolled and unwarranted 

immune activation at the steady-state and could reflect a state of immunosuppression.  

Also, of note in our analyses was the discovery that tissue derived DCs (LC and PlaDC) displayed 

more homologous gene expression as compared to tolerogenic DCs induced in vitro (TolMoDC, 



Chapter 4 

145 

IL10MoDC), suggesting innate tolerance found in specific tissue microenvironments differs from 

artificial states of tolerance induced in vitro. Again, these results question the applicability of in vitro 

DC models to specifically investigate LC tolerance. Overall the cross comparison suggested that 

different subtypes of DC regulate tolerance via distinct mechanisms. Consistent with this idea was 

our analysis on IRF1, IRF4 and MYC expression in each of the datasets, in which the expression of 

each TF highly differed within each dataset, therefore concluding that gene regulation pathways 

involving these TFs differed across different DC subtypes.  

4.3.3 DDCs and LCs are distinct in the tolerogenic mechanisms they exhibit, highlighting 

the unique nature of LC tolerance regulation at the epidermis 

Tracking the common tolerogenic DC signature across the datasets of LC and other DC again 

revealed similarities in the expression of tolerance associated genes between steady-state LC and 

DDC. Interestingly, tracking the expression of the tolerogenic module in migrated LC and the whole 

CD11c+ migrated DDC population revealed a divergence in module expression. This observation 

was similar to the dissolution of the tolerogenic gene cluster which was identified in gene co-

expression analysis of steady-state LC and DDC. LCs and DDCs are both implicated in immune 

tolerance regulation and we therefore wanted to compare and contrast how these DC regulate 

tolerance in the closely located, yet unique, epidermal and dermal skin compartments. The DDC 

population is comprised of different subpopulations characterised by different immune functions 

and associations with tolerance (Haniffa, Gunawan and Jardine, 2015)(Nestle et al., 1993). To 

therefore fully comprehend the differences between tolerance regulation between LCs and DDCs, 

analysis comprising all DDC subpopulations was required. Our analysis using a dataset (GSE35457), 

containing different DDC subpopulations, revealed that CD14+ and CD141High DDCs specifically, 

expressed some genes within our identified tolerogenic gene module that were associated with 

specific tolerogenic ontologies. This was consistent with in vivo and vitro studies, which identified 

potent tolerogenic mechanisms for CD14+ and CD141+ DDCs in mice and reduced immunogenic  

capacity of the CD14+ DDC subpopulation (Chu et al., 2012)(Nestle et al., 1993). Furthermore, when 

migrated CD141+ and CD14+ DDCs and migrated LCs were directly compared, further differences 

in overall gene expression were identified, including differential expression of gene programmes 

linked to tolerance, as identified in gene co-expression analyses and through inspecting the 

expression of our identified tolerogenic DC gene panel. Overall, our comparisons between LC and 

DDC populations has revealed that at the steady-state, LCs and DDCs appear to share some gene 

expression programmes linked with tolerance regulation. However, LCs and DDCs extracted via 

migration acquire unique tolerogenic programmes. This emphasises the difference in immune 

regulation orchestrated by the closely located, yet biologically dissimilar epidermal LC and DDC and 
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further highlights the biological differences driven by the migration extraction process on LC 

genomic programming. 

4.3.4 Further investigations are required into the differences between steady-state and 

migrated LC transcriptomic programming and tolerogenic capacity 

In summary, we have confirmed the unique properties of LC transcriptomes compared to other DC 

subtypes, which display reduced expression of inflammatory immune genes. The largescale 

differences observed between LCs and other DC subtypes supported out conclusion that further 

transcriptomic and in vitro experiments on LC tolerance required primary tissue extracted human 

LC and not in vitro DC models. Our analyses suggest that inhibition of the NFkB pathway is 

prerequisite during DC tolerance regulation, but TFs of the IRF family (IRF4, IRF1) may be required 

for regulation of both immunogenic and tolerogenic responses.  

Importantly, different transcriptomic programming could be identified in steady-state LC and 

migrated LC when compared to other DCs, which supports current understanding that the two 

states are phenotypically different (Sirvent et al., 2020). However, complete comprehension of how 

these phenotypic differences impact capacity to induce tolerogenic responses is unknown. Further 

analyses comparing the role of differentially activated steady-state and migrated LC in mediating 

tolerogenic immunity is therefore required.
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Chapter 5 Analysing heterogeneity of LC 

populations 

5.1 Introduction 

Transcriptomic analysis of bulk DC populations highlighted the unique qualities of LC 

transcriptomics, but the precise mechanisms by which LCs mediate tolerogenic immune responses 

remained unclear. Factors likely influencing the uniqueness of LC immunology is their specific 

developmental origin from the yolk-sac and foetal monocyte precursors, as well as their life-long 

residency in the epidermal compartment (Hoeffel et al., 2012),(Merad et al., 2013). The latter in 

particular appears critical for determining LC immune responses. Skin, and especially its outermost 

layer, the epidermis, is constantly exposed to numerous varying stimuli from the external 

environment (Clayton et al., 2017). As immune sentinels resident in the epidermis, LCs react to 

environmental stimuli, whilst also responding to changes in the tissue microenvironment. 

Considering the possible non-uniform distribution of immune stimuli throughout the epidermis and 

with LCs known to express both immunogenic and tolerogenic capabilities, it is conceivable that the 

LC population at the epidermis is heterogeneous. The differences between LCs exposed to different 

stimuli/performing different biological functions would likely be reflected within the transcriptomic 

expression profiles, or programmes, they exhibit. However, analysis of bulk transcriptome data, 

using either bulk RNA-seq or microarray methods, does not allow investigating of heterogeneity in 

cell populations, as gene expression data is averaged across all cells within the sample. We 

hypothesised that this was the reason why molecular signals encoding tolerance was not clearly 

discernible in LC populations. We therefore optimised a scRNA-seq protocol called Drop-seq 

(Macosko et al., 2015), in order to produce single cell transcriptomic data of LCs to analyse cell 

heterogeneity. 

Two methodologies, enzymatic digestion and migration of LCs from epidermal sheets are widely 

used for isolation of human LCs to examine their function in vitro (Sirvent et al., 2020)(Polak et al., 

2012)(Polak et al., 2014)(Klechevsky et al., 2008)(Seneschal et al., 2012). These two methods yield 

LCs in two contrasting functional states. Due to the rapid process of enzymatically extracting LCs 

from epidermal tissue, LCs isolated in this method are considered to be at the steady-state and 

display an immature phenotype. At the steady-state murine LCs in situ display tolerogenic 

functions, mediating removal of apoptotic cells and the induction of Tregs to promote tolerance 

and homeostasis (West and Bennett, 2018),(Seneschal et al., 2012)(Hatakeyama et al., 2017). 

Analysis of the gene expression profile of digested LC would therefore provide insights into how 
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homeostasis and tolerance is regulated at the steady-state. In contrast, migrated LCs are extracted 

though culture of epidermal sheets in media, allowing LCs to crawl out of the tissue, mimicking to 

some degree, the initial stages of LC migration out of the epidermis as they begin their journey from 

the epidermis to the local lymph nodes. The migration process entails reduction of cell-to-cell 

contact with keratinocytes and induces LCs to upregulate T cell costimulatory molecules and 

antigen processing molecules. They therefore display a more immune activated phenotype 

compared to steady-state LCs (Sirvent et al., 2020)(Clayton et al., 2017). This is further translated 

into increased ability to induce adaptive immune responses, including efficient antigen processing 

and presentation, resulting in augmented CD4 and CD8 T cell stimulation (Sirvent et al., 2020)(Polak 

et al., 2014),(Polak et al., 2012),(Klechevsky et al., 2008). Therefore, in comparison to steady-state 

LCs, migration induces significant maturation of LCs. Classically, the immature state of a DC is 

associated with induction of tolerance and the mature, activated state with immunogenicity 

(Steinman 2003, Lutz and Schuler 2002). In LCs, the state of LC activation has been shown to have 

a profound effect on immune response mediation, with murine steady-state LC facilitating cytotoxic 

T cell tolerance, whilst mature LCs induce effector cytotoxic T cell response (Strandt et al., 2017). 

Thus, we hypothesised that single cell analysis of the steady-state LC population, isolated through 

enzymatic digestion, would reveal specific LC populations undergoing biological processes 

associated with tolerance, in comparison to more immunogenic migrated LCs. 

Using scRNA-seq we sought to investigate if steady-state and migrated LC populations contain 

unique subpopulations driving distinct immunological pathways, such as tolerogenic and 

immunogenic responses and reveal how differences in activation may affect immunological 

outcomes. Furthermore, taking into account that specific cellular phenotypes are underpinned by 

unique transcriptional programmes controlled by networks of TFs, proteins that control and 

modulate gene expression (Spitz and Furlong, 2012)(Xue et al., 2014), we aimed to elucidate the TF 

networks controlling human LC biology. 

Skin is the largest organ of the human body (1.5-2 m2 surface area). It is therefore unsurprising that 

areas of skin can differ in their morphology and function. Transcriptomic analysis of skin tissue 

fibroblasts taken from multiple different anatomical sites (arm, leg, hand, foot, chest), from the 

same donor, for comparison across different donors, revealed sample clustering was determined 

by anatomical site in cross-donor analysis (Rinn et al., 2006). In foreskin tissues, increased 

keratinisation of the inner foreskin is characterised by increasing age and history of tissue infection 

(Qin et al., 2009). Heterogeneity in LCs from different skin tissues is also observed. For example, 

LCs from the inner foreskin display augmented antigen sampling and environmental sensing 

compared to outer foreskin LCs, which has implications in HIV infection or immunity (Fahrbach et 

al., 2010). Heterogeneity in CD4 expression, the main receptor for HIV entry,  is also observed in 
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LCs from the foreskin, oral and vaginal epithelium (Hussain, Lehner and Thomas, 1995). Using 

scRNA-seq the heterogeneity in the expression of immune programmes has been identified in 

structural and immune cell components of foreskin, scalp, trunk and psoriatic skin (Cheng et al., 

2018). Diversity in the skin is also mediated by the microbes which colonise it and also its exposure 

to chemicals and cosmetics/toiletries (Bouslimani et al., 2015). The inner foreskin for example, 

display increased colonisation by anaerobic bacteria which is believed to effect the inflammatory 

environment (Esra et al., 2016)(Price et al., 2010). To investigate location specific diversity and the 

effects of tissue microenvironment conditioning, LCs isolated from human foreskin epidermis at the 

steady-state and through migration were processed through Drop-seq and compared with LCs 

isolated from breast skin tissue.  

One of LCs key functions is to respond to signals from the microenvironment and external 

environment in situ. Therefore, to investigate LC transcriptomes in situ, protocols allowing the least 

experimental manipulation are preferable. However, investigations of the “in situ” state pose a 

significant experimental challenge at two levels; low frequency of LCs in the epidermis, and their 

responsiveness to manipulation. Purification protocols are likely to affect LC biology, which as a 

type of DC, are very sensitive to manipulation. Common methods required for purification such as 

FACS or bead-based purification may activate LCs and thus alter cell transcriptomes, obscuring true 

biology. However, the relatively low frequency of LCs within the epidermal population means large 

numbers of epidermal cells would need to be sequenced to acquire sufficient numbers of LCs, 

without further purification, to ascertain any meaningful biology. Sequencing large numbers of cells 

comes at great financial cost, therefore restricting the size of single cell datasets that can feasibly 

be produced. To counter these problems, an extension to the Drop-seq protocol was developed 

(Constellation Drop-seq). Constellation Drop-Seq includes a step of linear amplification using gene 

specific primers, prior to PCR amplification, which allows targeted amplification of genes of interest 

(Vallejo et al., 2019). This allows the focussing of the sequencing depth onto specific cell types of 

interest. LC heterogeneity could therefore be investigated in large numbers at the steady-state, in 

the context of other cell types from the epidermis, thus demonstrating the power of the 

Constellation Drop-seq protocol. 

5.1.1 Hypothesis 

Steady-state LC and migrated LC transcriptomes are distinct, with steady-state LCs containing 

subpopulations of cells with elevated genes linked to tolerogenic pathways. 
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5.1.2 Aims 

• Optimise the scRNA-seq method Drop-seq for creation of LC single cell transcriptomic 

data 

• Compare and contrast the heterogeneity and gene expression of steady-state and 

migrated LC transcriptomes. 

• Identify tolerance encoding programmes differentially regulated between LC states. 

• Elucidate TF networks controlling differences in genes expression between LC states. 

• Investigate the effect of tissue microenvironments at different body sites on LC 

programming (breast skin vs foreskin). 

• Utilise Constellation Drop-seq to investigate unperturbed LC in the context of whole 

epidermal tissue. 
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5.2 Results 

5.2.1 Optimisation of the Drop-seq encapsulation protocol and the creation of primary 

human LC single cell transcriptomic data  

To enable the production of single cell LC transcriptomic data, in house Drop-seq set-up was 

optimised for LC encapsulation and analysis. Single LCs were co-encapsulated into nanolitre-sized 

droplets with a single barcoded primer coated bead (barcodeseqB, ChemGenes), using Drop-seq 

microfluidic devices (Figure 27A). Efficient Drop-seq runs occurred when encapsulation at 

interphase remained constant, with minimum disturbance at the point of droplet formation. 

Speeds of aqueous bead and cell inlets (4000µl/hr) and oil inlets (14000µl/hr) created a co-

encapsulation efficiency of 5%, consistent with efficiency of the published Drop-seq protocol. 

Droplets were visually inspected to assess consistency in size and shape and the occurrence of 

single bead occupancy within them (Figure 27B). Homogeneity of droplet sizes reduced the 

occurrence of bead and cell doublets, whilst also creating the optimal sized special environment to 

maximise mRNA capture to the barcoded bead primers. After post-encapsulation processing, 

aliquots of 100 STAMPs (single transcriptomes attached to microparticles) were initially processed 

for cDNA library amplification using PCR at an array of different cycling parameters. The quality and 

quantity of the cDNA libraries was assessed using a DNA high sensitivity kit run on an Agilent 

Bioanalyser. The minimum cycling parameters that created sufficient concentrations of cDNA 

(>100pg/µl) required for tagmentation were used to amplify the overall desired number of STAMPs 

for each sample.  
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The Drop-seq pipeline was first optimised using the THP-1 monocyte cell line before proceeding to 

processing of primary LC samples. Single cell suspensions were created in both 0.02% BSA-PBS 

solution, as used in the Drop-seq protocol, and also in 10% OptiPrepTM 0.02% BSA-PBS solution. The 

inclusion of OptiPrepTM was investigated to assess whether it improved the buoyancy of cells whilst 

loaded on the Drop-seq pumps, reducing the adverse effects of cell sedimentation and therefore 

increasing the frequency of encapsulation events including the cells. After encapsulation, 100 

STAMPs from each sample were processed into cDNA libraries and quantified using a DNA high 

sensitivity kit on an Agilent Bioanalyser (Figure 28). Overall libraries prepared without OptiPrepTM 

had higher concentration of cDNA. The concentration of cDNA library prepared without OptiPrepTM 

was 212 pg/µl, whilst the concentration of the OptiPrepTM prepared sample was 59 pg/µl. Whilst 

OptiPrepTM may be countering the effects of cell sedimentation it appeared to be disrupting the 

efficiency of mRNA capture or reverse transcription. OptiPrepTM was therefore not included in 

subsequent Drop-seq experiments.  

  

B) A) 

Figure 27. Optimisation of Drop-seq encapsulation. A) Magnification of microfluidic drop-seq 

device at encapsulation site. nl sized droplets containing single cell and bead flow out of device for 

collection. Aqueous cell (solid black arrows) and aqueous bead (dashed black arrow) and oil (white 

arrows) flow is highlighted. B) Droplet emulsions produced by Drop-seq encapsulation visualised 

under a light microscope (10x) were analysed to assess the uniformity of droplet sizes and the 

occurrence of single bead occupancy. 
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THP-1 

THP-1 OptiPrepTM 

Figure 28. Optimisation of cDNA library preparation using THP-1 cells. DNA high sensitivity kit 

Agilent Bioanalyser analysis of THP-1 monocyte cell line cDNA libraries after processing through 

Drop-seq with and without OptiPrepTM solution. Upper (10380bp) and lower (35bp) marker DNA 

was included for reference. Vertical dotted lines depict area in which cDNA library 

concentrations were quantified. cDNA libraries without OptiPrepTM = 212 pg/µl and with 

OptiPrepTM = 59 pg/µl.  
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To produce our own LC Drop-seq datasets to investigate heterogeneity, LCs were first extracted 

from primary human skin tissue using enzymatic digestion and migration methods. In the digestion 

protocol, steady-state LC are dissociated from healthy skin using the dispase/liberase protocol 

(Sirvent et al., 2020). In migration, 48 hour culture of epidermal fragments, allows LC to migrate out 

of the tissue for collection, a process resulting in LC maturation (Polak et al., 2014),(Klechevsky et 

al., 2008),(Sirvent et al., 2020). Isolated cells were subsequently purified using fluorescence-

activated cell sorting (FACS) of cells positively stained for CD207, CD1a and HLA-DR (Figure 29). High 

quality and pure LC population was isolated through gating on singlets, removing debris and strictly 

selecting the LC population (CD207+, CD1a+ and HLA-DR+). Purified cells were next processed 

through the Drop-seq encapsulation protocol producing STAMPs (Figure 30). From these STAMPS, 

cDNA libraries were prepared using Kapa HiFi Hotstart enzyme mix, as described in the Drop-seq 

protocol(Macosko et al., 2015), before being quantified using an Agilent Bioanlayser (Figure 31). 

Using optimised cycling parameters for each sample, the total number of STAMP cDNA libraries 

required were produced. cDNA libraries were then tagmented in preparation for sequencing, with 

the quality and quantity of tagmented cDNA libraries assessed on an Agilent Bioanlayser, before 

sequencing on an Illumina NextSeq sequencer (Figure 32). In total, roughly 800 steady-state and 

400 migrated breast skin (both extracted from same donor) derived LC STAMPs were processed, as 

well 500 steady-state (pool of 2 donors) and 500 migrated (pool of 3 donors) foreskin derived LC 

STAMPs. 
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Figure 29. FACS gating strategy for purifying steady-state and migrated LCs. High quality and pure LC 

populations were isolated using FACS. Cells were gated for singlets (FSC-A, FSC-H) and removing small 

particulate debris (SSC-A, FSC-A) through forward scatter and side scatter gating. Pure LCs were 

selected for through strict gating of CD207+, CD1a+ and HLA-DR+ populations. Steady-state and 

migrated LCs were isolated through sorting and subsequently processed for Drop-seq. 
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Figure 30. Protocol for extraction of human LCs from primary skin tissue for processing through 

Drop-seq. Primary human skin samples were digested in dispase (1U/ml, 24 hours, 4°C). Epidermal 

fragments were then mechanically separated from the dermis. To extract steady-state LCs, epidermal  

fragments were chopped and digested in Liberase Tm for 2 hours, 37°C. Migrated LCs were extracted 

from epidermal sheets cultures in media for 48hours, allowing LCs to crawl out of epidermal tissue. 

FACS purification of steady-state and migrated LC populations was performed through staining for 

CD207, CD1a and HLA-DR. Single cell suspensions of purified cells were processing through Drop-seq 

scRNA-sequencing. 
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LC Migrated LC Digested  

LC Foreskin Digested  LC Foreskin Migrated  

Figure 31. LC cDNA was amplified from STAMPs through PCR, with optimised cycling parameters 

utilised that produced sufficient concentrations. Prepared cDNA libraries were quantified using a DNA 

high sensitivity kit run on an Agilent Bioanalyser. Concentrations were required to be >100 pg/µl to 

proceed to tagmentation. All prepared libraries exceeded this threshold when measured. LC digested 

= 226 pg/µl, LC Migrated = 234 pg/µl, LC Foreskin Digested = 526 pg/µl, LC Foreskin Migrated = 110 

pg/µl. Upper (10380bp) and lower (35bp) marker DNA was included for reference. Vertical dotted lines 

depict area in which cDNA library concentrations were quantified. 
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LC Migrated LC Digested 

LC Foreskin Digested LC Foreskin Migrated 

Figure 32. LC cDNA was tagmented in preparation for sequencing. The quality and concentration of 

tagmented libraries was assessed using a DNA hypersensitivity kit run on an Agilent Bioanlayser. 600 pg/µl 

of cDNA libraries was used in the tagmentation reaction. LC Digested = 2 nM, LC Migrated = 4.2 nM, LC 

Foreskin Digested = 2.1 nM, LC Foreskin Migrated = 2.1 nM. Libraries were pooled at 2 nM for sequencing. 

Upper (10380bp) and lower (35bp) marker DNA was included for reference. Vertical dotted lines depict 

area in which cDNA library concentrations were quantified. 
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5.2.2 Migrated LCs display a more immune activated and immunocompetent expression 

profile compared to steady-state LC. 

To explore the gene expression profiles underlying healthy LC tolerogenic function and to evaluate 

population heterogeneity in situ we performed single cell RNAseq on “steady-state LC” dissociated 

from healthy skin using the dispase/liberase digestion protocol and on “migrated LC”, in which LCs 

are extracted through self-extraction from epidermal sheets during 48 hour culture, as published 

previously (Sirvent et al., 2020).  

After gene (expression detected in <10 cells) and cell filtering (EmptyDrops (Lun et al., 2019), count 

threshold filtering), expression data for 5864 genes from 585 steady-state LCs and 387 migrated 

LCs remained. UMAP dimensionality reduction analysis (Scanpy, Version=1.5.0) revealed steady-

state and migratory LCs to exhibit distinct transcriptomes with separate localisation of either state 

(Figure 33A).  The vast difference in gene expression was further observed during heatmap plotting 

of the top 100 DEGs (T-test, adj.p-value<0.05) defining each state (Figure 33B). Gene ontology 

analysis for the top 100 DEGs (Figure 33C) of each state revealed that steady-state upregulated 

genes were associated with protein targeting to the ER (adj.p-value=5.8E-47), nuclear transcribed 

mRNA catabolic process (adj.p-value=2.6E-46), cellular amide metabolic process (adj.p-value=2.2E-

21) and response to cytokine (adj.p-value=1.0E-10). In contrast, migrated LC upregulated genes 

were associated with the immune effector process (adj.p-value=4.2E-8), response to cytokine 

(adj.p-value=1.5E-7), myeloid leukocyte activation (adj.p-value=1.1E-6) and the innate immune 

response (adj.p-value=1.4E-5). Migrated LC gene expression therefore appeared to present an 

enhanced state of immune activation compared to steady-state LC (Figure 33D). Included in this 

expression programme were antigen presenting genes (B2M, CD74, HLA-B) and genes from both 

the IRF (IRF4) and NFkB (RELB, MAP3K14) TF pathways. To further investigate the changes in gene 

expression linked with immune regulation, the expression of antigen presentation, co-stimulatory 

molecules and activation markers were inspected across the two populations (Figure 33E). This 

revealed that whilst many MHC II genes were relatively homogenous across both states (HLA-DRA, 

HLA-DRB1, HLA-DMA, HLA-DPA1, HLA-DPB1), steady-state preferentially expressed some genes 

involved in this pathway (HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2). However migrated LC 

clearly displayed increase expression of MHC I (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F) and activation 

markers (CD83, CCR7). 
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Figure 33. Migrated LCs display a more immune activated and immunocompetent expression profile 

compared to steady-state LC. A) UMAP dimensionality reduction analysis of Scran normalised single cell 

data from steady-state and migrated breast derived skin LCs. B) Heatmap displaying the top 100 DEGs 

upregulated in both steady-state and migrated LCs. C) Gene ontology analysis (Toppgene) for the 100 

DEGs (T-Test, BH adj.p-value<0.05) upregulated in both steady-state and migrated LCs, as shown in B). -

log10adj.p-values are displayed. D) Trackplot of the genes included in the ontology ‘immune effector 

process, highlighted as one of the top enriched ontologies in migrated LC.  Each line represents the level 

of gene expression from a single cell. E) Violin plots displaying the expression of classic DC activation 

markers (MHC I, MHC II, co-stimulatory molecules) in steady-state and migrated LCs. 
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5.2.3 Migrated LCs have upregulated expression of genes associated with DC tolerance. 

To investigate the presence of genes associated with tolerogenic function across the two LC states, 

the expression of the tolerogenic DC genes signature containing 40 genes, curated from literature 

which explore genes associated with DC tolerogenic function were investigated (Tolerogenic DC 

signature 1, Appendix A.1). Furthermore, the tolerogenic DC gene signature, identified in Chapter 

4, Figure 20A&C which contained 217 genes commonly upregulated in steady-state LC, PlaDC, 

TolMoDC and IL10MoDC (Tolerogenic DC signature 2, Appendix A.2), was assessed amongst the 

scRNAseq steady-state and migrated LC data. The presence of genes within these two signatures 

was first assessed in the single cell LC transcriptomes (Figure 34A). From the 40 genes from 

signature 1, 19 genes were identified and from the 217 genes in signature 1, 112 genes were 

identified. 2 genes were common to both signatures 1 and 2 (VEGFA, CD86). To compare the 

enrichment of the two signatures across steady-state and migrated LCs, Gene Set Variation Analysis 

(GSVA) was performed (Figure 34B). GSVA analysis identified a moderate enrichment of both 

tolerogenic DC signatures in migrated LCs, with genes from signature 1 (logFC=0.21, adj.p-

value=9.7E-22) being more enriched than signature 2 (logFC=0.12, adj.p-value=2.8E-9). Tolerogenic 

gene regulation therefore appears to be enhanced during the migration process. The expression of 

each signature was plotted using trackplots across the steady-state and migrated LCs to assess the 

overall expression of the DC tolerance associated genes (Figure 34C&D). The presence of genes 

from the top 100 migrated LC DEGs was then assessed amongst the two tolerogenic signatures to 

identify the most highly expressed tolerogenic genes. 4 genes (HMOX1, IDO1, LGALS1, RELB) from 

signature 1 and 3 genes from signature 2 (ALDH2, IER5, S100A9) were in the top 100 migrated LC 

DEG list. The detection of these genes was observed amongst the LC populations, with IDO1, LGALS1 

and RELB expression by migrated LC also validated by qPCR (Figure 34E&F).  
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E) 

Figure 34. Migrated LCs display elevated expression of tolerance associated genes. A) Venn diagram 

displaying the number of genes from tolerogenic gene signature 1 (curated from papers reviewing 

molecular mechanism of DC tolerance induction, Appendix A.1) and tolerogenic genes signature 2 

(identified in Chapter 4, Figure 20A&C, Appendix A.2) that were identified in the whole single cell 

transcriptomes of breast skin derived LCs. B) Gene Set Variation Analysis (GSVA) displaying enrichment 

of the two tolerogenic signatures in LC populations. BH adjusted p-values and logFC are displayed. C) 

Trackplot displaying the expression of genes from tolerogenic gene signature 1 across steady-state and 

migrated LCs. D) Trackplot displaying the expression of genes from tolerogenic gene signature 2 across 

steady-state and migrated LCs. E)  Violin plots and UMAP marker plots displaying the expression of the 

7 genes from tolerogenic genes signatures 1 and 2 which were in the top 100 DEGs upregulated in 

migrated LCs. F) qPCR validation of IDO1, LAGLS1 and RELB expression in migrated LC (Ct). 

Housekeeping gene (YWHAZ) and no template control (NTC) Ct values are displayed.  
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5.2.4 The tolerogenic genomic programme of migrated LCs is underlined by unique TF 

networks 

After identifying the unique expression profile exhibited by steady-state and migrated LC, the 

underlying TFs responsible for genomic programming were investigated using single cell regulatory 

network and inference clustering (SCENIC)(Aibar et al., 2017). Using a reference database of TF 

binding sites, co-expressed genes were inspected for TF binding regions 500bp upstream of starting 

sequence. SCENIC therefore identified genes within regulons of TFs expressed within the dataset 

and therefore under their control.  

SCENIC analysis revealed that the regulons identified in steady-state and migrated LC highly differed 

(Figure 35A). For steady-state LC, the MYC, ETS2 and ETV3 regulons were the most highly enriched. 

In contrast, migrated LC exhibited a greater number of enriched regulons, including ELK1, RELA, 

KLF6, MXI1, JUND, RELB and IRF4. The diverse transcriptomes observed between steady-state and 

migrated LC were therefore underlined by unique TF networks.    

To ascertain the key programme promoting TFs, the expression level of TFs themselves and their 

regulon enrichment score was interrogated (Figure 35B). TFs with both highly differential 

expression levels in migrated LC, and with high regulon enrichment scores included IRF4, JUND, 

RELA, RELB, ELK1, HMGN3, KLF6 and KLF13. To further inspect the importance of each regulon for 

migrated LC gene regulation, the TFs with regulons enriched in migrated  were investigated 

amongst the top 100 DEGs. IRF4, RELB, ELK1, HMGN3 and KLF6 were identified.  

In order to trace whether the 7 tolerogenic associated genes within the top 100 upregulated DEGs 

in migrated LCs  (ALDH2, HMOX1, IDO1, IER5, LGALS1, RELB and S100A9) could be under the control 

of the upregulated TFs, their presence within the TF regulons was inspected (Figure 35C). Here, 

tolerogenic genes were found to be in the regulons of RELA, RELB, HMGN3, ELK1, JUND, KLF6 and 

KLF13. Additionally, the co-expression scores of tolerogenic genes with each TF were analysed to 

apprehend the level of co-regulation (Figure 35D). Highly co-expressed TFs and genes included IRF4-

LGALS1, RELB-IDO1, JUND-IER5, ELK1-IDO1/LGALS1, HMGN3-LGALS1/S100A9 and KLF6-IER5.  

Overall, the enhanced tolerogenic programming of migrated LCs has been recognised, with 

tolerogenic genes ALDH2, HMOX1, IDO1, IER5, LGALS1, RELB and S100A9 identified as being 

differentially expressed. Furthermore, the unique programming of migrated LCs is underlined by 

the differential induction of specific TF regulons, which we can link to the regulation of some 

tolerogenic genes. 
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Figure 35. The tolerogenic gene expression programme in migrated LCs is underlined by a unique 

TF network. A) SCENIC regulatory network and inference clustering analysis revealed TF regulons 

which were enriched in steady-state and migrated LCs. Z-score heatmap of enriched regulons are 

displayed. B) Violin plots displaying the TFs enriched in migrated LCs with UMAP marker plots 

displaying TF regulon enrichment Z-scores in each cell, across the two LC populations. C) Binary 

heatmap displaying the presence/absence of the 7 tolerogenic associated genes, identified in the 

top 100 DEGs upregulated in migrated LCs, within the regulons enriched in migrated LCs. D) 

Heatmap displaying the SCENIC correlation Z-scores for each of the 7 tolerogenic associated genes 

with the TFs from the migrated LC enriched regulons. Crosses indicate absent correlation scores. 
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5.2.5 Steady-state LCs are divided into two populations distinguished by state of 

immunocompetency 

Leiden clustering (r=0.5) of the steady-state and migrated LC populations could distinguish two 

separate clusters within the steady-state LC population, labelled steady-state 1 (S1) and 2 

(S2)(Figure 36A). To identify the unique qualities of each population, DEG analysis was performed 

(T-test, BH adj.p-value<0.05) and the top 100 DEGs for each cluster analysed. Interestingly for S1, 

only 2 significantly upregulated genes compared to S2 were identified (SERPINB2, MT-ND2). Gene 

ontology analysis was performed for the 100 most DEGs for S2, revealing associations with protein 

targeting to the ER (adj.p-value=1.4E-66), response to cytokine (adj.p-value=5.5E-13), antigen 

processing and presentation (adj.p-value=3.1E-9), the T cell receptor signalling pathway (adj.p-

value=2.9E-8) and positive regulation of the immune response (adj.p-value=2.1E-7)(Figure 36B). S2 

therefore represented LCs in an increased state of immunocompetency, which could further be 

shown through comparing the expression of DC immunocompetency markers across the two 

populations(Figure 36C).  
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Figure 36. Steady-state LCs can be divided into two subpopulations, distinct through level of 

immunocompetency. A) Leiden (r=0.5) clustering analysis revealed 3 clusters amongst the steady-

state and migrated LCs populations – labelled steady-state 1 (S1), steady-state 2 (S2) and migrated. 

B) Gene ontology analysis for the 100 DEGs (T-test) upregulated in steady-state 2 compared to 

steady-state 1 LCs. -log10adj.p-values are displayed. C) Violin plots displaying the expression of 

classic DC activation markers (MHC I, MHC II, co-stimulatory molecules) in S1 and S2 populations. 

C) 
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5.2.6 The foreskin microenvironment alters transcriptional networks in human LCs 

To assess the divergences in the biology of LCs extracted from skin at different body sites, digested 

steady-state and migrated LCs obtained from foreskins were processed through Drop-seq for single 

cell transcriptomic analysis. After cell (EmptyDrop, count threshold filtering) filtering a total of 680 

foreskin LCs (424 steady-state, 256 migrated) were used for comparison to the breast skin LCs. To 

directly compare the steady-state and migrated LC populations from breast and foreskin tissue, 

data was integrated using BBKNN and embedded together using UMAP dimensionality reduction 

(Figure 37A). Interestingly, steady-state LC from each tissue localised together on the left of the 

UMAP whilst migrated LC tissue localised together on the right. However, each state from 

respective tissues still clustered separately, showing the heterogeneity between LCs extracted from 

different body sites. Trackplots of the top 10 markers genes (Logistic regression) of each state from 

each tissue also revealed the level of heterogeneity present(Figure 37B). 

To understand the differences in gene expression between each tissue, steady-state LCs from 

breast and foreskin and migrated LCs from breast and foreskin were compared via DEG analysis (T-

test, BH adj.p-value<0.05). Gene ontology analysis for the top 100 DEGs upregulated in steady-state 

LC from each tissue compared to the other, revealed differences in genomic programming (Figure 

37C). Breast steady-state LCs upregulated DEGs were associated with ribosome biogenesis (adj.p-

value=1.7E-16), rRNA metabolic process (adj.p-value=1.4E-11), response to cytokine stimulus 

(adj.p-value=3.6E-5) and oxidative phosphorylation (adj.p-value=7.6E-5). Foreskin steady-state 

upregulated DEGs were associated with neutrophil activation (adj.p-value=2.4E-7), cell activation 

involved in the immune response (adj.p-value=4.7E-7), the immune effector process (adj.p-

value=3.1E-5) and cytokine production (adj.p-value=2.3E-4). Foreskin steady-state LC gene 

expression therefore reflected an increase state of immune activation and inflammation. 

Gene ontology analysis for the top 100 DEGs upregulated in migrated LCs from breast compared to 

foreskin migrated LCs revealed associations with response to biotic stimulus (adj.p-value=1.3E-5), 

defence response to other organism (adj.p-value=8.4E-4), response to cytokine (adj.p-value=9.3E-

5) and the immune effector process (adj.p-value=1.1E-3)(Figure 37D). Similar annotations of 

response to cytokine (adj.p-value=1.3E-6), defense response (adj.p-value=2.2E-5) and immune 

effector process (adj.p-value=1.2E-4) were identified in the analysis of the top 100 DEGs 

upregulated in foreskin LCs compared to breast. However, interestingly an additional ontology of 

an association with the inflammatory response (adj.p-value=1.5E-4) was revealed in foreskin 

upregulated DEGs. 

Full top 100 DEG lists for each LC state in each tissue were plotted for comparison, further revealing 

the extent of differentially expressed programmes(Figure 37E&F). 
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For further investigation into the transcriptomic differences between steady-state and migrated 

foreskin LCs, separate analysis was performed. UMAP dimensionality reduction analysis identified 

a similar population structure as observed in breast skin extracted LCs and from combined analyses, 

with steady-state and migrated LCs separating away from each other (Figure 38A). Gene ontology 

analysis and heatmap plotting of the top 100 DEGs (T-test) defining steady-state and migrated 

foreskin LCs was performed (Figure 38B&C). Steady-state DEGs were associated with protein 

targeting to the ER (adj.p-value=8.2E-49), mRNA catabolic process (adj.p-value=1.6E-37), response 

to cytokine (adj.p-value=1.5E-7), the innate immune response (adj.p-value=1.3E-4) and antigen 

processing and presentation (adj.p-value=2.3E-2). Migrated LC DEGs were associated with oxidative 

phosphorylation (adj.p-value=5.5E-5), immune effector process (adj.p-value=1.7E-4), response to 

cytokine (adj.p-value=8.8E-4), T cell mediated immunity (adj.p-value=2.1E-3) and a defence 

response (adj.p-value=2.3E-3). Interestingly, an association with negative regulation of the immune 

system process (adj.p-value=1.5E-2) was also identified, due to the expression of IDO1, CD86, IL74, 

A2M, ARRB2, CST7, GCSAM, SAMSN1 and VIMP. The expression of classical DC activation markers 

was also investigated(Figure 38D). Interestingly, steady-state LCs displayed elevated expression the 

maturation marker CD83. However, foreskin migrated LCs displayed increase expression of MHC I 

(HLA-A, HLA-B, HLA-C, HLA-E, HLA-F) and CCR7, with the addition of substantial CD86 upregulation. 

Overall, the immunocompetent profile of migrated foreskins LCs, similarly reflected the profile of 

migrated breast LCs. However steady-state foreskin LCs appeared more mature then their 

counterparts from the breast. 

Figure 37. Steady-state and migrated LCs derived from breast skin and foreskin display differences 

in gene expression. *figure finishes on previous page A) UMAP dimensionality reduction analysis of 

Scran normalised, BBKNN integrated, single cell data from steady-state and migrated foreskin LCs 

extracted from breast skin and foreskin. B) Trackplots displaying the top 10 markers genes (Logistic 

regression) for each of the LC populations. C) Gene ontology analysis (Toppgene) for the 100 DEGs 

(T-Test, BH adj.p-value<0.05) upregulated in steady-state breast vs foreskin LC (top) and foreskin vs 

breast LC (bottom). -log10adj.p-values are displayed. D) Gene ontology analysis (Toppgene) for the 

100 DEGs (T-Test, BH adj.p-value<0.05) upregulated in migrated breast vs foreskin LC (top) and 

foreskin vs breast LC(bottom). -log10adj.p-values are displayed. E) Heatmap displaying the top 100 

DEGs upregulated in comparisons of steady-state breast vs foreskin LC. F) Heatmap displaying the 

top 100 DEGs upregulated in comparisons of migrated breast vs foreskin LCs. 
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Figure 38. Steady-state and migrated foreskin derived LCs differ in state of immunocompetency. A) 

UMAP dimensionality reduction analysis of Scran normalised single cell data from steady-state and 

migrated foreskin derived skin LCs. B) Gene ontology analysis (Toppgene) for the 100 DEGs (T-Test, BH 

adj.p-value<0.05) upregulated in both steady-state and migrated LCs. -log10adj.p-values are displayed. 

C) *On next page. Heatmap displaying the top 100 DEGs upregulated in both steady-state and migrated 

foreskin LCs. D) On next page. Violin plots displaying the expression of classic DC activation markers 

(MHC I, MHC II, co-stimulatory molecules) in steady-state and migrated foreskin LCs. 
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UMAP dimensionality reduction and Leiden (r=0.5) clustering of steady state foreskin LCs alone 

identified a similar population structure to breast LCs, with steady-state LCs forming 2 clusters (S1 

and S2) and migrated LCs forming 1 (Figure 39A). To identify the unique qualities of each 

population, DEG analysis was performed (T-test, BH adj.p-value<0.05) and the top 100 DEGs for 

each cluster analysed. Gene ontology analysis for the top 100 DEGs in S1 LCs revealed associations 

with antigen processing and presentation (adj.p-value=1.9E-5), response to cytokine (adj.p-

value=2.4E-5), appositive regulation of the ATP metabolic process (adj.p-value=2.1E-3) and the 

innate immune response (adj.p-value=6.1E-3)(Figure 39B). Gene ontology analysis for the top 100 

DEGs in S2 LCs revealed associations with protein folding (adj.p-value=3.5E-15), response to 

temperature stimulus (adj.p-value=7.0E-11), leukocyte activation involved in the immune response 

(adj.p-value=3.6E-6) and response to cytokine (adj.p-value=2.2E-4)(Figure 39C). Unlike breast skin 

derived steady-state LCs, steady-state foreskin populations were much more defined by distinct 

biological pathways rather than a spectrum of immunocompetency. However, the expression of 

classical DC activation markers was also investigated, revealing foreskin S1 LCs to have increased 

expression of most genes within the panel, reflecting increased immunocompetency (Figure 39D).  
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Figure 39. Steady-state LCs can be divided into two subpopulations, distinct through expression of 

unique biological pathways and level of immunocompetency. A) Leiden (r=0.5) clustering analysis 

revealed 3 clusters amongst the steady-state and migrated LCs populations – labelled steady-state 1 

(S1), steady-state 2 (S2) and migrated. B) Gene ontology analysis for the 100 DEGs (T-test) upregulated 

in S1 LC compared to S2 LCs. -log10adj.p-values are displayed. C) Gene ontology analysis for the 100 

DEGs (T-test) upregulated in steady-state 2 compared to steady-state 1 LCs. -log10adj.p-values are 

displayed. D) Violin plots displaying the expression of classic DC activation markers (MHC I, MHC II, co-

stimulatory molecules) in S1 and S2 populations. 
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5.2.7 The foreskin microenvironment increases the expression of tolerogenic gene 

signature 1 in LCs 

For comparison with breast LCs, the two tolerogenic signatures were inspected amongst the steady-

state and migrated foreskin LC populations(Figure 40A). 19 genes from signature 1 and 110 genes 

from signature 2, were identified amongst the whole single cell transcriptome. 2 genes were 

common to both signatures 1 and 2 (VEGFA, CD86). Similar to breast LCs, GSVA analysis revealed 

that signature 1 was enriched in migrated LCs (logFC=0.19, adj.p-value=3.9E-12). However, 

signature 2 was more enriched in steady-state foreskin LC. (logFC=0.1, adj.p-value=2.3E-10) (Figure 

40B). The genes within each signature were observed in both populations using trackplots (Figure 

40C&D). The presence of signature 1 genes amongst the top 100 migrated LC DEGs was 

investigated, revealing CD86 and IDO1 to be amongst the list. ALDH2 from signature 2 was also 

present in the top 100 migrated LC DEGs. In steady-state LCs signature 2 genes, CD83, CDC42EP3, 

IFRD1, MCL1, NAMPT, NFKBIA, NINJ1, RGS2 and ZFP36 were found amongst the steady-state LC top 

100 DEG list (Figure 40E&F).  
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Figure 40. Steady-state and Migrated foreskin LCs display differential expression of tolerance associated 

genes. A) Venn diagram displaying the number of genes from tolerogenic gene signature 1 (curated from 

papers reviewing molecular mechanism of DC tolerance induction, Appendix 1 A.1) and tolerogenic genes 

signature 2 (identified in Chapter 4, (Figure 20A&C, Appendix 1 A.2) that were identified in the whole single 

cell transcriptomes of foreskin skin derived LCs. B) GSVA displaying enrichment of the two tolerogenic 

signatures in foreskin LC populations. BH adjusted p-values and logFC are displayed. C) Trackplot displaying 

the expression of genes from tolerogenic gene signature 1. D) Trackplots displaying the expression of genes 

from tolerogenic gene signature 2. E) Violin plots and UMAP marker plots displaying the expression of the 

9 genes from tolerogenic genes signatures 1 which were in the top 100 DEGs upregulated in steady-state 

foreskin LCs. F) Violin plots and UMAP marker plots displaying the expression of the 3 genes from 

tolerogenic genes signatures 1 and 2 which were in the top 100 DEGs upregulated in migrated foreskin LCs. 
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5.2.8 Foreskin LCs display differential regulon enhancement compares to breast skin LCs 

SCENIC regulatory network and inference was performed and revealed that the regulons enriched 

highly differed between the two foreskin LC populations (Figure 41A). Common TF regulons 

identified in both steady-state breast skin and foreskin LCs included MYC, ETS2, FOSL2 and SPI1. 

Common TFs identified in both migrated breast skin and foreskin LCs included IRF4, ETS1, KLF13, 

SREBF2, CTCF and REST. However, unique regulons in foreskin steady-state LCs (FOSB, JUN, HIF1A) 

and migrated foreskin LCs (IRF2, RUNX3) could be identified. Overall, the diverse transcriptomes 

observed between steady-state and migrated foreskin LC were therefore underlined by unique TF 

networks - similar to what was observed in breast skin LCs.  

To ascertain the most highly influential TFs that could be inducing tolerogenic genomic 

programming, the expression level of TFs themselves and their regulon enrichment score was 

interrogated. TFs with both highly differential expression levels and with high regulon enrichment 

scores in each population were identified. For steady-state LC, this included BHLHE40, ETS2, FOSB, 

JUN and MYC TFs (Figure 41B). For migrated LC, this included CREM, IRF2, IRF4, KLF13, REST and 

SREBF2 (Figure 41C). 

In order to trace whether the tolerogenic upregulated in steady-state (CD83, CDC42EP3, IFRD1, 

MCL1, NAMPT, NFKBIA, NINJ1, RGS2 and ZFP36) and migratory (ALDH2, CD86 and IDO1) foreskin 

LC could be under the control of the upregulated TFs in each state, their presence within the 

regulons of the TFs was inspected (Figure 41D&E). Here, tolerogenic genes could be found in all the 

enriched regulons of steady-state LCs and in the regulons of IRF2 and IRF4 in migrated LC. The 

SCENIC co-expression scores from the tolerogenic genes within each TF regulon were analysed to 

apprehend the level of co-regulation (Figure 41F&G). Highly co-expressed TFs and genes for steady-

state LCs included BHL3HE40-CD83/NFKBIA/ZFP36, FOSB-IFRD1/MCL1/NFKBIA and JUN-

MCL1/NAMPT. Highly co-expressed TFs and genes for migrated LCs included CREM-ALDH2/IDO1,  

IRF2-IDO1  and IRF4-IDO. 
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Figure 41. The tolerogenic gene expression programme in migrated LCs is underlined by a unique TF 

network. A) SCENIC regulatory network and inference clustering analysis revealed TF regulons which 

were enriched in steady-state and migrated foreskin LCs. Z-scores for enriched regulons are displayed. B) 

Violin plots displaying gene expression of foreskin steady-state LC enriched TFs with accompanying UMAP 

marker plots displaying TF regulon enrichment Z-scores across the two LC populations. C) Violin plots 

displaying gene expression of foreskin migrated LC enriched TFs with accompanying UMAP marker plots 

displaying TF regulon enrichment Z-scores, across the two LC populations. D) Binary heatmap displaying 

the presence of the 9 tolerogenic associated genes, identified in the top 100 steady-state LC DEGs, in the 

regulons enriched in steady-state LCs. E) Binary heatmap displaying the presence of the 3 tolerogenic 

associated genes, identified in the top 100 migrated LC DEGS, in the regulons enriched in migrated LCs. 

F) Heatmap displaying the SCENIC correlation Z-scores for each of the 9 tolerogenic associated genes in 

foreskin steady-state LCs, with the TFs from the steady-state LC enriched regulons. G) Heatmap displaying 

the SCENIC correlation Z-scores for each of the 3 tolerogenic associated genes in foreskin migrated LCs, 

with the TFs from the migrated LC enriched regulons. Crosses indicate absent correlation scores. 
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5.2.9 Constellation Drop-seq validates LC transcriptomic programmes and enhances 

investigations into LCs in the context of whole epidermis 

Drop-seq scRNA-seq analysis of LC is limited to the acquisition of sufficient skin tissue for LC 

extraction and for effective purification of LC from whole epidermal tissue. Alternatively, without 

purification, LCs could be sequenced and analysed in the context of whole epidermal tissue. 

However, low frequency of LCs in the epidermis limits the level of meaningful data which could be 

analysed without the need to process hundreds of thousands of cells. To counter this problem and 

to investigate LCs in situ in the epidermis and without any manipulation that occurs during normal 

extraction procedures via FACS, whole epidermis samples were processed using our own developed 

targeted Drop-seq protocol (Constellation Drop-seq) (Vallejo et al., 2019). Using Constellation Drop-

seq, genes of interest are specifically targeted for using a panel of designed primers, allowing 

investigation into transcripts of interest amongst cell populations. The regular Drop-seq protocol 

was also performed on whole epidermis tissue for direct comparison. After encapsulation and post-

processing, cDNA library concentrations for both the regular Drop-seq and Constellation Drop-seq 

experiments were analysed to ensure sufficient cDNA concentrations and quality (Figure 42A). 

Clearly observable was the more ‘spiked’ quality of the cDNA library in Constellation Drop-seq, 

showing the preferentially expansion of transcripts from targets of interest. Libraries were 

subsequently processed through tagmentation before sequencing (Figure 42B).  
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Using the regular Drop-seq protocol, 100 STAMPs from steady-state digested primary human 

epidermis were processed through to sequencing. The cellular composition was analysed to 

investigate whether LCs could be detected in the context of the whole epidermal population. Prior 

to analysis the data frame was filtered, resulting in expression data for 2212 genes and 80 cells. 

UMAP dimensionality reduction analysis on the scran normalised data revealed one overall cluster 

(Figure 43). Inspecting the population for CD207 expression revealed just 5 cells (6.25%) expressed 

some level of expression, although expression level was variable. MLANA, a marker of melanocytes 

was observed in 7 cells (8.75%). Keratinocyte markers KRT10 (74 cells, 92.5%), KRT1 (65 cells, 

81.25%), KRT5 (17 cells, 21.25%) and KRT14 (12 cells, 15%) were detected in the majority of cells. 

Using standard Drop-seq on whole epidermal different cell types of the epidermis could be 

distinguished. However, as expected LCs were observed at low frequencies amongst the whole 

population. 

Epidermis Epidermis Constellation  

Epidermis Epidermis Constellation  

A) 

B) 

Figure 42. cDNA libraries of whole epidermis were prepared for sequencing. A) cDNA libraries for whole 

epidermis processed using regular Drop-seq and Constellation drop-seq were quantified using a DNA 

high sensitivity kit, run on an Agilent Bioanalyser. Epidermis = 234 pg/µl and Epidermis Constellation = 

165 pg/µl. B) 600 pg of cDNA library was tagmented with libraries quantified using a DNA high sensitivity 

kit, run on an Agilent Bioanalyser. Libraries were pooled at 2 nM ready for sequencing. Epidermis = 7.7 

nM and Epidermis Constellation = 4.8 nM. Upper (10380bp) and lower (35bp) marker DNA was included 

for reference. Vertical dotted lines depict area in which cDNA library concentrations were quantified. 
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Figure 43. Drop-seq of whole epidermal tissue with limited cell numbers cannot distinguish clear 

subpopulations of LC. UMAP dimensionality reduction analysis displaying marker genes for LC 

(CD207), melanocytes (MLANA) and keratinocytes (KRT10, KRT1, KRT5 and KRT14). 

 

In order to investigate the LC population in greater numbers, whilst still in the context of whole 

epidermis, our targeted Constellation Drop-seq approach was implemented. In this approach gene 

expression of LC markers and genes corresponding to their state of activation (inflammatory and 

tolerogenic), as well as PBMC population markers, were amplified using 55 gene specific primers 

(Table 8) incorporated into the cDNA library preparation protocol. Using this method, sequencing 

data from 1000 STAMPS were sequenced whilst still using the same capacity and space on an 

Illumina Next-seq run as 100 STAMPs processed in the regular Drop-seq protocol, due to the 

restriction of sequencing depth to a limited number of transcripts. After filtering 286 cells with 

expression for 376 genes remained for analysis. The 714 cells removed after filtering from the initial 

1000 STAMPs processed likely included KCs. No KC marker genes were included in the primer panel 

and so whilst they will have been encapsulated during the Drop-seq procedure, KC specific 

transcripts will not have been detected and therefore will have been removed after filtering.  

From initial UMAP dimensionality reduction analysis and clustering (leiden r=0.5), 4 populations 

(labelled 1-4) could be identified (Figure 44A). Investigating the marker genes for each population 

revealed that cluster 1 (140 cells) and 2 (108 cells) contained high to low expression of CD207, CD1A 
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and HLA-DRB5. Interestingly cluster 3 (21 cells) was marked by high expression of LYZ, a marker of 

monocytes and cluster 4 (17 cells) displayed high expression of GZMB and CCL5, markers of CD8+ T 

cells(Figure 44B). Through a targeted Constellation Drop-seq approach, using the same sequencing 

space as 100 standard Drop-seq STAMPs, populations of LCs in greater numbers could be identified, 

as well as monocytes and CD8+ T cells populations which were not detected at all in regular Drop-

seq. 
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Figure 44. Constellation Drop-seq allows identification of large populations of LCs amongst 

whole epidermal tissue. A) UMAP dimensionality reduction analysis and leiden clustering (r=0.5) 

identified 4 distinct populations (labelled 1-4). B) Populations could be identified as LCs (1,2) 

displaying low-high expression of LC markers (CD207, CD1A, HLA-DRB1), as well as monocytes (3, 

LYZ) and T cells (4, GZMB, CCL5). 
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Having identified LCs were present in the dataset, analysis was performed on the LC population 

only, through sub-setting the data to cells filtered by CD207 expression (Scran normalised 

CD207>0). Clustering (leiden=0.4) of the LC population identified 3 distinct clusters (labelled 1-3) 

which displayed unique genes expression (Figure 45A). Marker genes for each population were 

investigated, but cluster 3 displayed no unique markers genes compared to the other two 

populations. Cluster 2 marker genes included CD1A, LIMS1, HLA-DRB1, FCER1A and NFKB1 and 

cluster 1 markers genes included NFKBIA, NFBKIZ, TNFAIP3, HLA-DQA2 and UBB. Interestingly, the 

expression of NFkB (NFKB1) and its inhibitors (NFKBIA, NFKBIZ and TNFAIP) therefore appeared to 

be differentially regulated (Figure 45B). Constellation Drop-seq therefore confirmed heterogeneity 

in the steady-state LC populations, especially in the context of NFkB regulation. 

To assess the comparability between unsorted steady-state LCs in Constellation Drop-seq to FACS 

sorted steady-state LCs in regular Drop-seq, the expression level of genes within the Constellation 

Drop-seq primer panel were compared across both datasets. Heatmap plots showed comparable 

levels of expression of most panel genes, including high expression of CD74, NFKBIA, CCL22, HLA-

DBRB1 and HLA-DQA1, as well as absent/low expression of IRF4, IDO1 (not detected in Constellation 

Drop-seq), IRF1, CD40 and CCL5 (Figure 45C). Overall, this suggests that changes induced during the 

FACS purification process of LCs in regular Drop-seq are minimal and that Constellation Drop-seq 

results were in line with previous observations of steady-state LCs. 
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123A) B) 

C) Steady-state LC Constellation Drop-seq

Steady-state LC Drop-seq

Figure 45. Constellation Drop-seq reveals heterogeneity in the regulation of NFkB activation in LCs 

and reveals comparability in gene expression to steady-state LCs processed through regular Drop-

seq. A) UMAP dimensionality reduction analysis and leiden clustering (r=0.5) of the LCs (CD207+) 

identified through constellation Drop-seq revealed 3 distinct populations. B) Heatmap displaying 

marker genes (Logistic regression) for clusters 1 and 2. White dashed box highlights the heterogeneity 

between NFKB1, which was highly expressed in cluster 2 LC and NFkB inhibitors (NFKBIA, NFKBIZ, 

TNFAIP3), which were upregulated in cluster 1 LC. C) Heatmaps displaying the comparable levels of 

expression between steady-state LCs identified using the Constellation Drop-seq protocol on digested 

whole epidermis (Top), compared to steady-state LCs processed through regular Drop-seq after FACS 

purification (Bottom). Values in both datasets were both scaled between  0-2 for direct comparison. 
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5.3 Discussion 

Utilising the scRNA-seq method Drop-seq has allowed in depth analysis into LC heterogeneity in 

both steady-state and migrated LC populations. Steady-state LCs and migrated LCs have been 

shown to be phenotypically distinct and to display differences in capacity to induce immune 

responses (Sirvent et al., 2020). However, until now, the level of transcriptomic heterogeneity in LC 

populations extracted in the steady-state or through migration at the single cell level was 

unexplored. Thus, we have revealed the unique gene expression exhibited by steady-state and 

migrated LCs and highlighted the distinct expression of tolerogenic associated genes across the two 

states. 

5.3.1 Optimisation of Drop-seq allowed effective investigations into LC heterogeneity 

In order to investigate high quality single cell transcriptomic data using Drop-seq, we first ensured 

that the protocol was fully optimised and that tissue of high quality was used. Successful single cell 

and bead encapsulation events are heavily reliant on ensuring that cell and microparticle bead 

suspensions are at the correct concentrations and run through the Drop-seq device at a constant 

flow rate. Utilising THP-1 cell lines, optimal pump speeds, buffer (+/- optiprep) and cell 

concentrations were optimised prior to the use of cells derived from primary tissue. Post-

encapsulation, the amplification of cDNA libraries during sample preparation for sequencing was 

also optimised. Multiple PCR cycling parameters were first utilised, to identify a minimum number 

of PCR cycles required to produce sufficient cDNA, whilst reducing the overamplification of high 

abundance transcripts. PCR cycling parameters have been shown to be highly variable between cell 

types, therefore highlighting the importance of initial cycling parameter testing (Macosko et al., 

2015).  

Similar to the experimental Drop-seq procedure, the bioinformatic analysis pipeline of single cell 

data also required optimisation. An important first step during bioinformatic analysis of the single 

cell transcriptomic data is the filtering of low-quality cells and lowly expressed genes, to increase 

the likelihood for identifying meaningful biological discoveries amongst the cell populations 

(Luecken and Theis, 2019). One of the challenges with Drop-seq is the presence of contaminating 

mRNA which can become encapsulated into droplets and occlude true cell information. To counter 

this, the EmptyDrop bioinformatic analysis package was included in the analysis pipeline to filter 

out empty droplets and identify ‘ambient’ genes, which represent contamination across the single 

cells captured (Lun et al., 2019). Furthermore, the process of extracting single cell suspensions and 

processing them through Drop-seq can put the cells processed under stress and lead to the 

induction of apoptosis, in which mitochondrial genes are upregulated (AlJanahi, Danielsen and 
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Dunbar, 2018). Cells displaying an elevated abundance (>20% mitochondrial fraction of whole 

transcriptome) of mitochondrial genes were therefore removed.  

5.3.2 Steady-state and Migrated LCs are distinct with migrated LCs displaying  upregulated 

expression of immunocompetency genes and tolerogenic programmes 

We first analysed the transcriptomic profiles of steady-state and migrated LCs extracted from 

human breast skin tissue. Strikingly, UMAP plotting of steady-state and migrated LC transcriptomes 

revealed significant differences between the different states. Investigations into the genes 

differentially regulated between each state revealed migrated LC transcriptomes contained 

elevated expression of genes associated with immunocompetency and immune activation. This 

observation is consistent with in vitro studies demonstrating migrated LCs increased activation 

status and an enhanced ability to mediate immunogenic CD4 and CD8 T cell responses, as well as 

the low level of co-stimulatory protein expression on steady-state LCs (Sirvent et al., 2020)(Polak et 

al., 2012),(Polak et al., 2014),(Klechevsky et al., 2008). Additionally, consistent with previous 

analysis of migrated LCs, we observed that the increase in immunocompetency markers correlated 

with increased expression of IRF4, which orchestrates genomic programming of LC activation 

(Sirvent et al., 2020)(Polak et al., 2017).  

Using single cell transcriptomic analysis, we aimed to explore unique subpopulations of LCs which 

could be responsible for the induction of immune tolerance. However, our analysis revealed that 

few subpopulations promoting unique biological pathways were identified, with steady-state LCs 

consisting of just two subpopulations defined by immunocompetency and migrated LCs consisting 

of just one population. Comparative analysis of steady-state and migrated LC single cell 

transcriptomes was therefore performed to identify whether changes in state reflected different 

tolerogenic gene programming. To investigate this, two panels of tolerogenic associated genes 

were utilised. One compiled from literature reviews of DC tolerogenic function and the other from 

our tolerogenic profile identified as common between LCs and tolerogenic associated DCs explored 

in transcriptomic analysis from Chapter 4. Our analysis therefore combined ‘known’ and ‘novel’ 

signatures of DC tolerance for robust analysis into tolerogenic genes expression. Our previous 

transcriptomic analysis of microarray data investigating LC tolerogenic signatures revealed that in 

comparison to other DC types, both steady-state and migrated LCs were similarly defined by low 

expression of inflammatory immune associated genes. Interestingly, despite evidence of steady-

state LC coordinating the activation of epidermal Tregs to mediate immune tolerance and 

homeostasis (Seneschal et al., 2012), GSVA analysis of our two defined tolerogenic signatures were 

both revealed to be enriched in migrated LC. The most highly expressed tolerogenic genes identified 

in migrated LC included IDO1, HMOX1, LGALS1, RELB, ALDH2 and S100A9.  
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IDO1 is a classical tolerogenic mediator, which catabolises tryptophan resulting in skewing of T cell 

differentiation towards Tregs (Curti et al., 2009). Identified as an interferon stimulated gene (ISG), 

IDO1 has been previously associated with DC activation by IFNs and TNF-α and has been implicated 

in a number of regulatory feedback loops in cross-talk with other cell types – e.g. activation of CTLA4 

receptors on T cells in turn induces IDO1 expression in DCs (Obregon et al., 2017)(Mellor, Lemos 

and Huang, 2017)(Braun, Longman and Albert, 2005). Two studies involving human LCs previously 

demonstrated induction of IDO1 in steady-state LCs and demonstrated its importance for inhibition 

of effector T cell proliferation (von Bubnoff et al., 2004)(Koch et al., 2017). The identification of 

IDO1 augmentation in migrated LCs, similarly reflected our observations during comparison to 

CD14+ and CD141+ DDCs explored in Chapter 4 using microarray data. Galectin-1 encoded by the 

LGALS1 gene has been shown to promote the generation of tolerogenic DCs and to enable Tr1 type 

Tregs to supress Th1- and Th17-mediated inflammation (Sundblad et al., 2017)(Martínez Allo et al., 

2020). HMOX1 encodes an enzyme which degrades haem to produce carbon monoxide and is 

implicated in the suppression of immune activation through Treg induction and the inhibition of T 

cell proliferation (Riquelme et al., 2016)(Domogalla et al., 2017). ALDH2 activity induces tolerance 

through induction of retinoic acid, which promotes Treg induction (Bazewicz et al., 2019).  

Intriguingly, whilst S100A9 was included in the list of tolerogenic genes and can be implicated in 

the induction of self-tolerance, it is more commonly associated with pro-inflammatory conditions, 

promoting the recruitment of immune cells and cytokine production and as such, is widely used as 

a biomarker for inflammatory disorders, such as inflammatory bowel disease (Wang et al., 2018). 

Interestingly, RELB, the main TF subunit of the non-canonical NFkB pathway was in the curated 

tolerogenic signature and highly upregulated in migrated LC. Importantly, our observation of absent 

RELB expression in steady-state is consistent with previous studies (Clark et al., 1999). IDO 

upregulation in DCs, as a results of CD40 ligation, is dependent of the activation of the non-

canonical NFkB pathway (Tas et al., 2007). Additionally, the non-canonical NFkB pathway in pDCs 

is fundamental for IDO1 induction and the induction of Tregs (Manches et al., 2012). Further 

supporting the importance of non-canonical NFkB pathway activation was the presence of 

MAP3K14 (NIK), which is a critical inducer of RELB activation and is restricted specifically to the non-

canonical NFkB pathway (Sun, 2017), within the top upregulated DEGs in migrated LCs.  

The population structure of steady-state LCs revealed the presence of two distinct populations 

within unstimulated epidermis, differentiated by state of immunocompetency. Here, we revealed 

the heterogeneity to be driven by the overall frequency of transcript expression, with S1 LCs 

displaying just 2 upregulated genes in comparison to S2. The strikingly different gene expression 

observed in the S2 cluster reflected an increased state of immunocompetency, with upregulated 

genes enriched for antigen processing and presentation, T cell receptor signalling, and induction of 
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immune response pathways. Consistent with these observations, all classic DC activation markers 

such as MHC I, MHC II and co-stimulatory molecules, as well as CD207, were upregulated in S2 LCs. 

In the steady-state, LCs therefore appeared to be present in a spectrum of activation from 

immaturity (steady-state 1) to immunocompetency (steady-state2). With consideration to current 

paradigms, which suggest state of DC immune activation and maturation reflect ability to promote 

tolerogenic immune response (Steinman, Hawiger and Nussenzweig, 2003), it would be interesting 

to investigate how the two steady-state populations differ in their ability to mediate tolerogenic 

responses. 

In summary, scRNA-seq analysis has revealed the diverse genes expression exhibited by LCs at the 

steady-state and after migration. Critically, this included heterogeneous expression of 

immunocompetency markers in breast skin steady-state LCs and a marked induction of gene 

associated with immune effector process in migrated LCs. Differences in genes expression between 

steady-state and migrated LC were revealed to be governed by the regulation of unique TF 

networks that could be linked to the induction of tolerogenic genes. In our search to reveal genes 

linked with tolerance regulation by LCs, we consistently observed a dramatic increase of IDO1 

expression in migrated LC from both breast skin and foreskin. IDO1 induction therefore appears to 

be a hallmark of migrated LC gene expression and could be a critical mechanism by which LCs 

regulate tolerogenic immunity.  Our results highlight features of LC gene expression that would be 

interesting to investigate phenotypically in vitro. Foremost, how the state of immunocompetency 

and activation of LCs influences ability to induce tolerogenic responses. Secondly, to discern the 

influence of tolerance associated genes, such as IDO1, for functional LC tolerogenic responses.  

5.3.3 Steady-state and migrated LC display remarkable differences in TF programming  

Regulatory network and inference analysis using SCENIC revealed the vast differences in TF 

regulation in steady-state and migrated LCs. We expected the different regulons may reveal how 

the gene expression of tolerogenic associated genes is orchestrated. Migrated LC from both breast 

skin and foreskin were marked by the upregulation of the IRF4 regulon, which was expected due to 

the association with IRF4 and genomic programming of LC immune activation (Polak et al., 

2017)(Sirvent et al., 2020). IRF4 has also been linked with the restriction of inflammatory cytokine 

responsive genes and consistent with our finding that IRF4 highly correlated with LGALS1 

expression in SCENIC analysis, is the observation that CRISPR knockouts of IRF4 in human LC, leads 

to LGALS1 downregulation (Sirvent et al., 2020). IRF4 expression by bone marrow derived DCs in 

the context of the steady-state is also fundamental for the regulation of tolerance, with bone 

marrow derived DCs from IRF4 knockout mice displaying diminished ability to induce Tregs and 

display increased expression of inflammatory cytokines (TNFa, IL-12) (Vander Lugt, Riddell, Aly A. 
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Khan, et al., 2017). IRF4 may therefore have a dual role in both LC maturation/immunocompetency 

and tolerance regulation. Regulons upregulated in migrated LCs also included NFkB TFs, RELA and 

RELB. In the steady-state, canonical NFkB activation involving RELA, governs the regulation of 

tolerance and the prevention of spontaneous autoimmunity (Baratin et al., 2015) and as discussed 

above, RELB and the non-canonical NFkB pathway in DCs is implicated in the induction of IDO and 

T cell tolerance induction (Tas et al., 2007)(Manches et al., 2012). However, whilst the correlation 

of RELB and IDO1 was identified, IDO1 was not identified in the regulon of RELB. Positive regulation 

of IDO1 expression by RELB may therefore be through an intermediate TF. Interestingly, in T cells, 

a positive regulatory interaction between RELB and IRF4 has been identified (Boddicker et al., 

2015). Furthermore, binding of RELB to IRF4 promoters has been identified in DC, suggesting a 

regulatory interaction (Lehtonen et al., 2005). KLF6, which correlated with all of the tolerogenic 

genes has previously been shown to be upregulated in migratory DCs, correlating with the increased 

expression of tolerance associated genes (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). 

Additionally, regulons for components of the ETS TF family (ELK1) and AP-1 TF family (JUND), which 

have also been implicated in LC genomic programming during activation, were also upregulated in 

migrated LC (Polak et al., 2017). Potential interactions with IRF4 at AP-1-IRF composite elements 

(AICE) and Ets-IRF composite elements (EICE), may have implications on the induction of tolerogenic 

genes (Vander Lugt, Riddell, Aly A. Khan, et al., 2017).  

5.3.4 The foreskin microenvironment leads to significant changes in LC transcriptomic 

programming   

It has previously been shown that cells of the same type, isolated from skin at different body sites, 

display significant heterogeneity. Single cell RNA-seq for example, has revealed heterogeneity 

between human trunk, scalp and neonatal foreskin epidermal keratinocyte populations, with 

neonatal KCs containing a unique subpopulation expressing ligands for epidermal growth factor 

receptor (EGFR), which induce KC proliferation (Cheng et al., 2018). Transcriptomic differences 

between fibroblast from different body sites has also been identified (Rinn et al., 2006). LCs from 

the oral mucosa are also known to display lower levels of CD4 expression as compared to LCs from 

the vaginal epithelium and foreskin, influencing their capacity for HIV infection (Hussain, Lehner 

and Thomas, 1995). LCs from the oral mucosa also display more spherical morphologies as 

compared to LCs from the penis and conjunctiva epithelium, which may reflect more inactive status 

(Omine et al., 2015). Furthermore, heterogeneity in skin due to ethnicity has also been explored, 

with reconstructed epidermal models from Caucasian and African keratinocytes and fibroblasts, 

displaying unique histology and transcriptomes (Girardeau-Hubert et al., 2019). In depth single cell 

transcriptomic analysis comparing LCs derived from breast/trunk skin tissue and foreskin LCs has 



Chapter 5 

198 

until now been unexplored. Interestingly, despite differences in sex, ethnicity, and body site, adult 

foreskin and breast skin epidermal steady-state and migrated LCs appeared largely analogous. Here, 

steady-state LCs from both sites could be divided into two populations, whilst migrated LC consisted 

of one distinct cluster.  

In comparison to steady-state LC from each respective tissue, both breast derived and foreskin 

migrated LCs displayed elevated expression of gene associated with immune effector processes and 

activation in comparison to LCs at the steady-state. Also, consistent between migrated LCs from 

both sites was the upregulation of tolerogenic associated IDO1 and ALDH2 expression, suggesting 

overlapping mechanisms of tolerance regulation. Common upregulated TFs and regulons were also 

identified, including IRF4 and ELK1. However, DEG analysis directly comparing migrated LCs from 

each tissue compartment revealed diverse gene expression. Whilst common associated pathways 

such as response to cytokine and the immune effector process could be identified, a unique 

association of foreskin migrated LCs with the inflammatory response was identified.  

The comparison between steady-state LCs from each site identified heterogeneity in gene 

expression. We also observed enrichment for tolerogenic gene signature 2 in steady state foreskin 

LCs, revealing differences in tolerogenic programming between steady-state LC from the two sites. 

In our regulatory network and inference analysis common steady-state LC TFs were identified 

including MYC, ETS2, FOSL2 and SPI1. The expression pattern of MYC was consistent with 

microarray analysis of steady-state and migrated LC (Chapter 4) in which high MYC expression was 

observed in steady-state LC, with low expression in migrated LC. Similar to observations in migrated 

LCs, comparison between steady-state LCs from each site revealed marked differences in gene 

expression. Whilst breast derived steady-state LC were enriched for genes associated with 

metabolism, steady-state foreskin LC were enriched for genes associated with immune activation 

and effector processes, as well as cytokine production. Thus, foreskin LCs were consistently 

associated with increased expression of inflammatory pathway. Studies comparing blood T cells 

and foreskin T cells have revealed the elevated cytokine production in foreskin CD4+ (IL-17 and IL-

22) and CD8+ (TNFa and IFNg) populations, with foreskin CD4+ T cells displaying a predominant 

effector memory phenotype (Prodger et al., 2012). The inner foreskin has also been shown to 

display a pro-inflammatory environment marked by increased expression of IFNg, RANTES, GM-CSF 

and IP-10 (Lemos et al., 2014). The foreskin has also been shown to accommodate greater 

microbiota diversity compared to post-circumcision, especially species of anaerobic bacteria, which 

likely have implications on the inflammatory environment (Price et al., 2010)(Esra et al., 2016). The 

foreskin therefore appears to be a pro-inflammatory site, which may explain the differences in 

inflammatory programming observed between breast skin and foreskin LC. Consistent with the idea 

that the foreskin may represent a more inflamed tissue were the differences in gene expression 
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profiles exhibited by steady-state subpopulations from each skin tissue. Whilst two distinct 

populations could be observed in steady-state LCs from both sites, foreskin LC populations 

appeared more distinct, instead of simply being differentiated by immunocompetency like breast 

skin steady-state LC. Foreskin S1 and S2 LCs DEGs were associated with common pathways of 

response to cytokine and immune activation, suggesting core enhancement of immune activation 

which could be programmed by the more inflammatory foreskin microenvironment.  

Whilst differences in inflammatory signalling environments in foreskin tissue could explain some of 

the observations, it is also important to consider that differences in sex, ethnicity and age could 

also be influencing the results. Here, in our analyses we compared breast skin derived LC from a 

Caucasian female to foreskin derived LCs from black males. Interestingly, in murine studies, gender 

biasis have been observed in the expression of IRF5 in total splenic cells and pDC from females 

(Shen et al., 2010)(Griesbeck et al., 2015). Phenotypic differences have also identified during 

comparison of fibroblast cultures from African and Caucasian skin (Girardeau et al., 2009). Here, 

increased keratinocyte growth factor (KGF) and matrix metalloprotease 1 (MMP1) expression is 

observed in the former. The exact contribution of sex and ethnicity on LC biology are currently 

unexplored and we therefore cannot discard their potential influence on our observations. Also 

unadjusted for in our analysis was the age of the donors. Defective immunity in DCs from aged-

patients is explored, with aged DCs displaying overall increased activation status and increased pro-

inflammatory cytokine production, which leads to increased susceptibility of autoimmunity 

(Agrawal et al., 2012). Interestingly, bullous pemphigoid, an autoimmune skin condition in which 

tolerance to Dsg1 and Dsg3 is lost, increases in prevalence with age, suggesting that LC tolerogenic 

responses may decline over time (Hammers and Stanley, 2016).  

5.3.5 Constellation Drop-seq validates LC transcriptomic programmes and enhances 

investigations into LCs in the context of whole epidermis 

The low frequency of LCs amongst the epidermal population limits large scale investigation into LC 

transcriptomics. The purification of LCs from the epidermis through FACS before Drop-seq could 

also induce changes to LC transcriptomes, impeding our ability to investigate true LC biology. To 

bypass this problem and in order to analyse large numbers of LCs in the context of the whole 

epidermis, we developed a targeted Drop-seq approach, called Constellation Drop-seq. We 

designed a panel of primers targeting genes of interest, including markers of PBMC populations, 

markers of LC activation and transcription factors important for LC immune function. Using 

Constellation Drop-seq we restricted the sequencing potential to a small selection of genes, 

therefore maximising the number of cells we could sequence by 10-fold for the same read-depth 

utilisation. Using Constellation Drop-seq we were able to produce single cell sequencing data for a 
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significantly large number of LCs, in the context of the whole epidermal tissue. This revealed that 

observations in steady-state LC purified by FACS and processed through normal Drop-seq, such as 

absent IRF4 and IDO1 expression, were true to the steady-state LC epidermal population and not 

an artefact of the purification process. However, this still does not negate the potential for the 

enzymatic digestion process to alter steady-state LC gene expression. As we demonstrated  ability 

to identify additional cell populations within the epidermis, such as CD8 T cells (GZMB) and 

monocytes (LYZ), also provided additional information as to the state of inflammation in the tissue, 

whilst also highlighting the increased power for cell subset specific investigations using 

Constellation Drop-seq instead of regular Drop-seq. 

 

Using Constellation Drop-seq we were also able to identify heterogeneity in gene expression not 

previously identified using regular Drop-seq, such as divergent expression of canonical NFkB 

(NFKB1) and NFkB inhibitors (NFKBIA, NFKBIZ and TNFAIP3). NFkB is a widespread mediator 

indispensable for immune cell function, survival and differentiation (Grumont and Gerondakis, 

2000). Its activity has also been associated with augmented DC inflammatory responses (Hayden, 

West and Ghosh, 2006)(Hayden and Ghosh, 2011) as well as tolerance (Baratin et al., 2015). As 

discussed above, elevated RELA, a C-terminal transactivation domain component of the canonical 

NFkB TF family, was upregulated in migrated LCs derived from breast skin compared to steady-

state LCs. However, during SCENIC regulatory network inference analysis its expression lowly 

correlated with genes within the tolerogenic programme. In migrated LCs, canonical NFkB may 

therefore have a predominant role in general immunocompetency programming or additionally, 

could even influence LCs immunogenic capacity. Therefore, steady-state LCs with elevated 

canonical NFkB  expression and decreased NFkB inhibitor expression may be in a state conditioned 

for immunocompetent programming, whilst those with the opposite expression may favour 

immunosuppression. To mediate its extensive regulation of the immune system NFkB can induce 

the activation of other TFs. Interestingly, NFkB heterodimer binding to the IRF4 promoter has been 

demonstrated (Shaffer et al., 2009),(Boddicker et al., 2015). Upstream activation of NFkB to induce 

IRF4 expression therefore appears a plausible pathway to induce LC activation and migration. 

Interestingly, IRF4 has been demonstrated to inhibit NFkB expression in CRISP-Cas9 IRF4 knockouts 

in human LCs, suggesting feedback interactions are important for LC regulation, with both TFs 

tightly interlinked (Sirvent et al., 2020). 
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Chapter 6 In vitro investigations into the 

determinants of LC mediated tolerogenic 

responses 

6.1 Introduction 

Our single cell transcriptomic analysis of steady-state and migrated LCs identified profound 

differences in the state of activation, consistent with phenotypic analysis of cell surface markers 

(Chapter 5)(Davies et al., 2019)(Sirvent et al., 2020) and identified 3 distinct populations of LCs: 

steady-state S1, steady-state S2 and migratory LCs. The analyses revealed that steady-state LCs 

exist in a spectrum of immune activation from immaturity to immunocompetency, placing cells in 

a trajectory from inactive/immature cells to full maturity. Interestingly, the increase in 

immunocompetent programming of migrated LC was coupled with the expression of a tolerogenic 

gene module, suggesting programming of tolerogenic function in migrated mature LCs. We 

therefore sought to understand whether the expression of tolerogenic genes exhibited by steady-

state and migrated LC, translates into their functional capacity to induce tolerogenic T cell 

responses.  

The relation between maturation and tolerance has been previously discussed in the context of 

other DC populations, with many studies implying DC maturation as regulatory for tolerance. 

Maturation of DCs is a central process in DC immunity that switches the antigen capturing 

phenotype of immature DC into a highly mature phenotype, in which DC are primed for T 

interaction, through elevated expression of MHC and costimulatory molecules (Mellman and 

Steinman, 2001)(Audiger et al., 2017). In contrast, immature DCs, marked by low expression of 

maturation markers, have been shown to induce T cell anergy or Treg differentiation (Steinman et 

al., 2000)(Banchereau and Steinman, 1998)(Steinman, Hawiger and Nussenzweig, 2003)(Lutz and 

Schuler, 2002)(Audiger et al., 2017)(Fucikova et al., 2019). Steady-state immature DC processing 

and presenting self-antigens in the context of low level costimulatory molecules and cytokines can 

tolerise the immune system, through defining self from non-self (Mellman and Steinman, 

2001)(Steinman et al., 2003). This tolerising process induced by steady-state DC suppresses the 

induction of autoimmunity to self-antigen, even when inflammation and infection disrupt 

homeostasis. Therefore, the immature S1 steady-state population of LCs, identified by single cell 

transcriptomics, are likely key to tolerance induction during uninflamed conditions, with tolerance 
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diminishing and immunogenic responses becoming dominant during increased 

immunocompetency in S2 steady-state LCs and migratory LCs.  

However, mature DCs have also been shown to display plasticity in immune responses, with the 

potential to induce tolerogenic T cell responses. Phenotypically mature  CD83highCCR7+HLA-DRhigh 

IL-10DC induced Tregs are much more potent than Tregs that are induced by phenotypically 

immature CD83lowCCR7-HLA-DRlow IL-10DC (Kryczanowsky et al., 2016). Furthermore, mature 

human CD123+ MoDCs expressing IDO, potently inhibit T cell proliferation in vitro (Munn et al., 

2002). Coupled with DC maturation is migration, which we observed in our LC single cell RNA-

sequencing. Interestingly, DCs in non-inflamed conditions migrate to the lymph nodes and can 

promote tolerance through cross-presentation tolerization of CD8 T cells (Albert, Jegathesan and 

Darnell, 2001). Overall this implies that DC maturation may not be limited to the induction of 

immunogenic responses and could suggest a tolerogenic role for immunocompetent migratory LC.  

In addition to maturation status, tolerogenic DC potential is mediated by expression and secretion 

of specific tolerogenic signals. Functionally tolerogenic DCs have been associated with high levels 

of immune inhibitory molecules such as IDO1, galectins, PD-L1 and HLA-G (Obregon et al., 

2017)(Munn et al., 1998)(Pẽa-Cruz et al., 2010)(Martínez Allo et al., 2020). Furthermore, IDO1+ DCs 

preferentially promote FOXP3+ Treg induction over immunogenic CD8+ T cells (Harden et al., 

2011)(Fallarino et al., 2006). Indeed, our Drop-seq analysis revealed marked upregulation of IDO1 

expression in migratory LCs, amongst other genes implicated in tolerance. Therefore, we sought to 

investigated the importance of IDO1 expression for LC ability to induce Tregs in an in vitro 

experimental system. 

While steady-state tolerance is key to immune homeostasis, therapeutic interventions often rely 

on modulation of inflammation through induction of tolerogenic responses. The 

immunomodulatory drug dexamethasone is widely utilised in medicine for its immunosuppressive 

capacity. The effects of dexamethasone can be observed at the molecular level. As explored in 

Chapter 3, dexamethasone stimulation of MoDC, in conjunction with VitD3, induced the expression 

of tolerogenic gene modules. The specific tolerogenic capacity of dexamethasone for modulating 

DC function is shown in clinical trials utilising dexamethasone stimulated MoDCs to treat 

rheumatoid arthritis and furthermore, the inhibition of anti-tumour CD4+ and CD8+ T cell responses 

to melanoma by dexamethasone stimulated MoDCs (Nikolic and Roep, 2013)(Falcón-Beas et al., 

2019). Additionally, dexamethasone stimulation in MoDCs is associated with upregulated IDO1 

expression (García-González et al., 2019). We therefore explored how dexamethasone stimulation 

modulated LC ability to induce Tregs and investigated whether any changes could be the result of 

modulation of tolerance associated genes. 



Chapter 6 

203 

6.1.1 Hypothesis 

LC tolerogenic capacity is determined by the state of immunocompetency and dependent on the 

expression of mediators encoded in tolerogenic transcriptional programme. 

6.1.2 Aims 

• Determine the capacity of immature and immunocompetent steady-state LC populations 

for inducing Tregs. 

• Compare the capacity of steady-state LCs and migratory LCs to induce Tregs. 

• Investigate the functionality of LCs induced Tregs. 

• Explore how dependent LC tolerogenic responses are on IDO1 expression. 

• Investigate how LC tolerogenic immune responses can be modulated by tolerogenic 

dexamethasone stimuli. 
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6.2 Results 

6.2.1 Immunocompetency of steady-state LCs is critical for their ability to induce Tregs 

As activation status defined LC subpopulations in the steady-state, the expression of classical DC 

activation markers and LC markers including CD86, CD83, CD40 and MHC II (HLA-DRA) was assessed 

across LC populations to identify markers which could distinguish immature and immunocompetent 

steady-state LC populations (Figure 46). CD40 was lowly detected in all steady-state LCs, whilst high 

HLA-DRA expression was detected in LCs from both clusters. CD83 displayed elevated expression in 

S2, however its expression spilled over highly into the S1 population. The most distinguishable 

marker, CD86 was more frequently expressed in the S2 immunocompetent population only.  
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Figure 46. Steady state immunocompetent LC can be distinguished through increased CD86 

expression. UMAP visualisation of the 2 breast skin steady-state LC populations, with 

accompanying UMAP marker plots displaying the expression of DC activation markers CD86, CD40, 

CD83 and HLA-DRA. 
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Single cell RNA-seq analysis revealed CD86 to be an effective marker to distinguish 

immunocompetent and immature LCs. Thus, CD86 expression at the protein level was analysed 

using flow cytometry, using the same gating strategies as shown in Figure 29 to identify steady state 

LC populations (Figure 47A). Consistent to RNA expression levels, a spectrum from low to high CD86 

expression could be observed in steady-state LC at the protein level. Whilst donor to donor 

variation in the spectrum of CD86 expression could be seen, LCs falling into either CD86High or 

CD86Low expression could be distinguished in all 3 donors studied. To explore the tolerogenic 

potential of both immunocompetent and immature LCs, CD86High and CD86Low steady-state LC 

populations were FACS sorted for in vitro analyses. The boundary for gating CD86High and 

CD86Low, was based around the central density of cells in the FACS plot in each of the 3 donors. 

 

After FACS isolation of steady-state LC CD86High and CD86Low populations, LCs were co-cultured 

with CD4+ naïve T cells for 5-days, after which the expansion of CD25+FOXP3+ Tregs was quantified. 

High purity of CD4+ naïve T cells was ensured using double column filtering during magnetic column 

isolation, ensuring sufficient depletion of memory T cell populations. Treg differentiation from pure 

naïve CD4+ T cells therefore tests the potential of LCs to prime Treg differentiation rather than 

expanding existing Tregs. Percentages of Tregs induced after co-culture were identified through 

gating of CD3+CD4+CD127-CD25+FOXP3+ T cells (Figure 47B). Interestingly, CD86Low immature LCs 

did not increase the number of CD25+FOXP3+ Tregs compared to control (CD4+ naïve T cells 

cultured alone). In contrast, CD86High immunocompetent LC significantly expanded the number of 

CD25+FOXP3+ Tregs compared to both control (p=0.0143) and CD86Low LC (p=0.0129, n=3 

independent skin donors), revealing that the state of immunocompetency associates with LC ability 

to promote T cell-mediated immune tolerance (Figure 47C).  
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A) 

B) 

C) 

Figure 47. Steady state immunocompetent LCs are superior at inducing FOXP3+ Tregs. A) Flow 

cytometry analysis of steady-state LCs identified as CD207/CD1a high cells (Left panel). LC populations 

were separated into CD1a+ CD86Low and CD86High by FACS (Right panel). Representative example from 

n=3 independent LC donors. B) Gating strategy for investigating the quantity of CD3+CD4+CD127-

CD25+FOXP3+ Tregs after co-culture of CD4 naïve T cells with LC for 5-days. Representative example 

from n=3 independent LC donors C) Co-culture of CD4+ naive T cells with either CD86Low or CD86High 

steady-state LCs. Control cultures involved CD4+ naïve T cells in the absence of LCs. After 5 days of co-

culture Tregs were quantified by FACS as CD3+CD4+CD127-CD25+FOXP3+ cells. n=3 independent LC 

donor paired experiments. *p<0.05. 
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6.2.2 Highly immunocompetent migrated LCs are more effective at inducing Tregs than 

steady-state LCs  

To test the observation that LC immunocompetency enhances tolerance induction, we sought to 

investigate the effect of in vitro migration from epidermal sheets on LCs tolerogenic potential. 

Following 5 days co-culture with naive CD4+ T cells, both steady-state and migrated LC significantly 

expanded the population of CD3+CD4+CD127-CD25+FOXP3+ Tregs compared to control (n=6 

independent skin donors, steady-state LCs p=0.0101, migrated LCs p=<0.0001). However, LCs ability 

to amplify Tregs was significantly augmented by migration, with increased percentages of 

CD25+FOXP3+ Tregs induced compared to steady-state LCs (p=<0.0001, MeanFC=3, Figure 48A). 

The increased immunocompetency of migrated LC therefore correlated with increased potential to 

prime Tregs from naïve CD4+ T cells. Additionally, the efficiency of migrated LC to induce Tregs from 

autologous resident memory T cells TRMs isolated from healthy epidermal tissue was assessed in 

our lab by Dr Sofia Sirvent (Figure 48B). Co-culture of migrated LCs with TRMs significantly increased 

the number of CD25+FOXP3+ Tregs compared to control TRMs cultured alone (n=5 independent 

skin donors, p=0.0025, Figure 48C). Furthermore, co-culture of migrated LCs with autologous TRMs 

also drove expansion of IL-10 producing CD4+ T cells (n=8 independent skin donors, p=0.0451, 

Figure 48D). In the context of autologous cells from skin tissue, immunocompetent migratory LCs 

demonstrated their highly tolerogenic potential. Overall these results further demonstrate the link 

between increasing LC immunocompetency and increased ability to induce tolerogenic T cell 

responses.  
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A) 

B) 

C) D) 

Figure 48. Migration enhances the tolerogenic potential of LCs. A) Flow cytometry analysis of Tregs 

induced after co-culture of steady-state and migrated LC with CD4+ naïve T cells as in Figure 47C,  n=8 

control, n=5 steady-state LCs, n=6 migrated LCs from independent donors. B) Gating strategy for 

investigating the quantitiy of Tregs induced during 5-day co-culture of autologous TRMs with migrated 

LC. Representative figure from  C) Flow cytometry assessment of the percentage of Tregs induced after 

5-day co-culture of migrated LC with autologous TRMs extracted from human epidermis. 5-day cultures 

of TRMs alone were used as control. Tregs were identified as CD3+CD4+CD127-CD25+FOXP3+ cells. n=5 

independent LC donors. **p<0.01. D) Percentage of IL-10 producing CD4+ cells after co-culture of TRMs 

in the presence or absence of migrated LC. n=8. *p<0.05. Figure 48C&D experiments were performed 

by Dr Sofia Sirvent.  
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6.2.3 Migrated LCs induce functionally suppressive Tregs 

Having established the enhanced capacity of LC to induce Tregs upon migration, driven by 

increasing immunocompetency, we next sought to test the functionality of LC induced Tregs and 

determine if they are functionally suppressive. After 5-day co-culture of CD4+ naïve T cells with 

migrated LC, populations of CD3+CD4+CD127-CD25+ expressing Tregs were FACS purified (Figure 

49A). Purified Tregs were co-cultured with antiCD3/CD28-stimulated PBMCs at 1:1 and 1:3 ratios 

(Treg:PBMC), to test Treg immunosuppressive capacity in the context of proliferative signalling. 

Different ratios were tested to assess the potencies of suppression of the purified Tregs. Cultures 

of PBMCs unstimulated or with antiCD3/CD28 were used as negative and positive controls. Tregs 

expanded with migratory LCs potently inhibited both activated CD4+ and CD8+ T cell proliferation 

at both 1:1 and 1:3 ratios Treg:PBMC, with increased quantities of Treg in 1:1 ratio amplifying the 

suppressive effect (CD4 1:1 p=0.0088, CD4 1:3 p=0.0277, CD8 1:1 p=0.0007, CD8 1:3 p=0.0111, n=5 

from Tregs differentiated by 3 independent LC donors, Figure 49B&C). Overall this highlighted the 

highly immunosuppressive capabilities of Tregs that are induced by LCs. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 6 

210 
 

A)  

B) 

C) 

Figure 49. LC induced Tregs are functionally immunosuppressive. A) Gating strategy for investigating 

the inhibition of CD4+ and CD8+ Teff proliferation by Tregs induced in co-culture with migrated LC for 5 

days. Proliferation analysis of CD4+ and CD8+ T cells using CFSE labelled PBMCs after 3-day co-culture 

with purified CD3+CD4+CD127- CD25+ Tregs. Proliferation analysis of B) CD4+ T cells and C) CD8+ T cells 

using CFSE labelled PBMCs after 3-day co-culture with autologous purified CD3+CD4+CD127-CD25+ 

Tregs. The percentages of proliferating CD4+ cells stimulated with plate bound anti-CD3 and soluble 

anti-CD28 are displayed at ratios of 1:1 and 1:3 Treg:PBMC (n=5 from 3 independent LC donors). 

*p<0.05, **p<0.01, , ***p<0.001. Normalised to mode expression is displayed, which adjusts for 

heterogeneous sample sizes across samples, allowing direct comparison of CFSE diffusion. 
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6.2.4 IDO1 expression is required to exhibit full tolerogenic potential of migrated LCs and 

can be modulated through tolerogenic dexamethasone stimuli.  

Single cell RNA-seq analysis highlighted IDO1 amongst the potential mediators of immunotolerance 

in immunocompetent LCs, as being uniquely induced after migration. The homogenous upregulated 

expression of IDO1 in migratory LC compared to steady-state LC indicated the importance of this 

molecule for enhanced LC potential to induce Tregs. To test whether the IDO1 transcript was 

translated into a protein, IDO1 levels were measured intracellularly in steady-state and migratory 

LCs using flow cytometry (Figure 50A&B). Additionally, to assess whether the IDO1 expression level 

could be altered by therapeutic interventions, protein levels were measured when LCs were 

migrated from epidermal sheets in the media supplemented with Dexamethasone (1µM). 

Consistent with the single cell RNA-seq data, the level of IDO1 protein expression was considerably 

and significantly higher in migrated LCs compared to steady-state LC (n=5 independent skin donors, 

p=0.0002, Figure 50B). Furthermore, IDO1 concentration was significantly higher when LCs were 

migrated in the presence of dexamethasone, enhancing the tolerogenic phenotype (Figure 50B, 

p=0.0142, n=5 independent skin donors) 
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With the increase in IDO1 expression migratory LC validated at the protein level we next explored 

the importance of IDO1 signalling for LC tolerogenic function. IDO1 signalling was blocked during 

co-culture of migrated LC and naïve CD4+ T cells (n=4 paired experiments), using two molecular 

compounds NLG-919 and epacadostat (EPAC). NLG-919, an immune checkpoint inhibitor, 

significantly impaired LCs ability to expand Tregs (p=0.0354, Figure 51). Interestingly, interference 

with IDO1 using EPAC, a selective inhibitor of tryptophan catabolism was less potent and although 

a trend for reduced Treg induction could be observed, this was not statistically significant 

(p=0.0583, Figure 51). IDO1 expression by LCs therefore appears important for full tolerogenic 

potential of LC to prime Tregs.  

Figure 50. LC expression of IDO1 is enhanced by migration and immunotherapeutic 

intervention. A) Gating strategy to define the percentage of IDO1 expression in steady-state LC, 

migrated, and dexamethasone migrated LC. n=5 steady-state and migrated LC experiments, n=4 

migrated dexamethasone experiments. B) Flow cytometry assessment of the percentage of IDO1 

expression in steady-state LC and migrated LCs extracted by 48-hour culture of epidermal sheets 

with and without 1M dexamethasone. n=5 steady-state and migrated independent LCs, n=4 

migrated dexamethasone independent LCs. *p<0.05, ***p<0.001, ****p<0.0001. 

A)  

B)  
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LCs ability to prime and expand tolerogenic T cells creates an exciting opportunity for therapeutic 

interventions. Since steady-state LCs exist in a spectrum of immunocompetence, with a 

subpopulation of LCs already poised for tolerance induction, we hypothesised that in situ treatment 

can further potentiate their tolerogenic behaviour upon migration. To test this, we treated LCs with 

the immunosuppressive drug dexamethasone, during migration from epidermal fragments in cell 

culture. Indeed, dexamethasone migrated LCs were significantly more potent in expanding 

CD25+FOXP3+ Tregs (n=4 independent skin donors, p=0.0271, Figure 52A) in comparison to their 

untreated migrated LC counterparts. Additionally, CD4+ T cells expanded by migratory LCs 

stimulated with dexamethasone (n=5 independent skin donors, p=0.0061) produced more IL10 

than untreated migrated LC (p=0.028, Figure 52B), consistent with their tolerogenic phenotype. As 

shown above, importantly, the presence of dexamethasone during LC migration further increased 

the expression of IDO1 protein (n=4 independent skin donors, p=0.0142, Figure 50B), supporting 

the importance of IDO1 for LC tolerogenic function. Overall these results demonstrate that the 

potential of migratory LC to induce tolerogenic T cell responses could be enhanced by 

immunosuppressive dexamethasone signalling and correlated with increased expression of IDO1. 

Furthermore, our analyses suggest that LC exposure to immunomodulatory stimuli during LC 

migration and prior to the huge shift genomic programming it induces, could be key for 

predisposing LC immune responses towards tolerance.   

Figure 51. Inhibition of IDO1 downregulates LC tolerogenic function. Flow cytometry analysis of 

the percentage of Tregs induced after 5-day co-culture of migrated LC with CD4+ naïve T cells in 

the presence of IDO1 inhibitors NLG-919 (NLG) and epacadostat (EPAC). 5-day cultures of CD4+ 

naïve T cells alone were used as control. Tregs were identified as CD3+CD4+CD127-CD25+FOXP3+ 

cells. n=4 independent LC donors. *p<0.05. 
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A)  B)  

Figure 52. Inhibition of IDO1 downregulates LC tolerogenic function. A) Flow cytometry assessment 

of the percentage of Tregs induced after 5-day co-culture of migrated LC with and without 

dexamethasone stimulation, with CD4+ naive T cells. Tregs were identified as CD3+CD4+CD127-

CD25+FOXP3+ cells. n=4 independent LC donors. *p<0.05. B) Flow cytometry analysis of the percentage 

of CD4+IL10+ T cells after 5-day co-culture of migrated LC with and without dexamethasone 

stimulation, with CD4+ naïve T cells. 5-day cultures of CD4+ naïve T cells alone were used as control. 

n=5 independent LC donors. *p<0.05, **p<0.01. 
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6.3 Discussion 

6.3.1 The state of LC immunocompetency, which increases from steady-state to migrated 

LCs, is critical for tolerance regulation 

Investigations into the genomic programs and molecular pathways that allow human LC to promote 

tolerogenic immune responses has been hindered by the lack of available technologies and suitable 

experimental systems. Drop-seq single-cell RNA sequencing analysis of steady-state and migrated 

LC populations revealed differences between states of immunocompetency and the expression of 

tolerogenic markers (Chapter 5). We therefore performed functional in vitro analyses to assess how 

our transcriptomic observations translated into LC tolerogenic capacity. Our analysis revealed that 

LC tolerogenic potential is indeed coupled with immunocompetency, with increasing tolerogenic 

capacity exhibited from immature to immunocompetent steady-state LCs, which is further 

enhanced upon migration.  

Tolerance induction by DCs can be coordinated by the induction of central and peripheral tolerance. 

In central tolerance, the majority of self-reactive T cells are depleted, whilst peripheral tolerance 

ensures any remaining/emergent self-reactive T cells are controlled (Banchereau and Steinman, 

1998)(Ardouin et al., 2016)(Audiger et al., 2017)(Oh and Shin, 2015). Typically, DC ability to induce 

tolerogenic immune responses in the periphery has been associated with an immature or semi-

mature state (Steinman et al., 2003)(Steinman, Hawiger and Nussenzweig, 2003)(Hasegawa and 

Matsumoto, 2018). Indeed, DCs expressing low levels of co-stimulatory and antigen presenting 

molecules can promote T cell anergy or Treg differentiation (Hasegawa and Matsumoto, 2018) 

(Mahnke et al., 2002). In contrast, our in vitro analyses demonstrate that immature steady-state 

LCs do not induce Tregs, while a subpopulation of immunocompetent CD86 expressing steady-state 

LCs are able to do so. Furthermore, LC migration, which enhances LC immunocompetency, 

promotes increased ability to induce Tregs, as compared to immunocompetent steady-state LC. 

Tregs that were induced by migratory LCs were shown to be functionally tolerogenic, suppressing 

both CD4 and CD8 T cell proliferation in co-culture. 

Co-stimulatory molecules expressed by DCs are critical for modulating T cell signalling pathways 

during engagement of the TCR and MHC within the immune synapse. Here, engagement of DC 

CD80/86 with CD28 on T cells, results in the activation of signalling kinases which highly amplify T 

cell modulation (Lanzavecchia and Sallusto, 2001). The increased expression of T cell co-stimulatory 

genes, such as CD86, in immunocompetent steady-state and migrated LCs, are suggestive of their 

importance for Treg induction. Indeed, increased CD86 expression is not always linked to 

immunogenic immunity. Increased expression of CD80 and CD86 is observed in migratory LC as a 
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result of epicutaneous immunisation, but does not result in efficient generation of effector memory 

CD4 T cells (Shklovskaya et al., 2011). CD86 is also implicated in DC-mediated tolerance induction 

through interaction with CTLA4 on T cells (Mellor et al., 2004)(Obregon et al., 2017). Also, consistent 

with our findings, a study by Yamazaki et al. demonstrated that mature CD86High DCs were able to 

expand CD4+CD25+ T cells more effectively than CD86Low immature DCs (Yamazaki et al., 2003). 

The importance for high levels of co-stimulatory molecules for tolerance induction could also be 

seen in our observation that LCs can prime naïve CD4+ T cells into functional Tregs. Here, this 

demonstrates a high level of signalling occurring at the LC/T cell immune synapse, as enhanced 

signalling is required to re-programme naïve T cell intracellular signalling pathways and promote 

differentiation (Lanzavecchia and Sallusto, 2001). Induction of tolerance by LCs therefore requires 

delivering of efficient signal 2 through co-stimulation. However, since LC ability to induce 

tolerogenic responses is substantially enhanced upon their migration out of the epidermis, and as 

Drop-seq showed CD86 expression is relatively high in both steady-state immunocompetent and 

migratory LC at the mRNA level, tolerance is likely governed by additional factors beyond the 

capacity to antigen present and co-stimulate. As both steady-state LCs and migratory LCs were 

extracted from unstimulated/non-diseased tissue, the antigen presentation exhibited between LCs 

and T cells would likely involve mostly self-antigen rather than strongly agonistic foreign antigens. 

Factors that may differentiate the induction of immunogenic or tolerogenic responses could 

therefore be dependent on the specific interactions between DC MHC complexes and T cell TCRs, 

in which weakly agonistic self-antigen may prime tolerogenic T cell responses over immunogenic 

ones(Lewis and Reizis, 2012). Additionally, DCs that spontaneously mature in the steady-state may 

have a shorter lifespan to DC that mature in the context of immunogenic signalling, failing to induce 

sufficient T cell proliferation and differentiation(Lanzavecchia and Sallusto, 2001). However, 

prolonged 5-day co-culture of LCs and T cells promoted considerable proliferation over the whole 

time period. 

6.3.2 IDO1 is important for LC tolerogenic function, but is likely part of a wider tolerogenic 

programme  

The signalling context in which engagement of the immune synapse occurs also modulates T cell 

immunological outcomes. In our Drop-seq analysis, a tolerogenic gene module consisting of IDO1,  

HMOX1, ALDH2, IER5, S100A9, RELB and LGALS1 was observed in migratory LCs. Due the marked 

upregulation in IDO1 expression between steady-state LCs and migratory LCs and the vast evidence 

linking IDO1 with DC immune tolerance, we focussed our attention on validating its role in LC 

tolerance regulation, hypothesising that it was critical for tolerance induction. Our investigations of 

IDO1 protein expression confirmed that upregulated expression did indeed occur after LC 
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migration. Furthermore, the importance of IDO1 for full LC tolerogenic was displayed in IDO1 

inhibition experiments, in which the ability of LC to prime Tregs was diminished. In vitro models of 

human LCs, such as CD34+ LCs, have demonstrated LC IDO1 expression and speculated its 

importance for tolerogenic function (Koch et al., 2017). Furthermore, in human LCs, functional IDO1 

expression can be detected in response to IFNg stimulation, as well as the observation that the 

inhibition of T cell proliferation by supernatants from stimulated LCs, is dependent on functional 

IDO1 (von Bubnoff et al., 2004). However, to our knowledge this is the first-time functional 

importance of IDO1 has been demonstrated for the induction of Treg differentiation during co-

culture between primary human LCs and T cells. From our single cell analysis and previous studies, 

migration appears to be a critical step in which dramatic genomic programming occurs (Sirvent et 

al., 2020). We therefore hypothesised that immunomodulatory dexamethasone stimulation during 

migration could enhance the tolerogenic phenotype of LCs. Dexamethasone stimulated migratory 

LCs displayed enhanced IDO1 expression, and furthermore confirmed that these LCs displayed 

enhanced ability to induce Tregs as compared to unstimulated migratory LCs.  

Despite the reduction in Tregs after IDO1 inhibition, LCs still retained the ability to induce some 

Tregs. This is consistent with our observations that immunocompetent steady-state LC can prime 

Tregs despite low IDO1 expression. It is therefore likely, that IDO1 is an important part of a wider 

transcriptional programme and that additional molecular factors govern LC tolerogenic capacity. To 

explore the importance of each of the constituents of the tolerogenic module identified in Chapter 

5,  similar functional inhibition experiments could therefore be performed. Induction of T cell 

anergy and apoptosis are also mechanisms by which tolerance is induced/maintained by DC and it 

is therefore important to consider other mechanisms by which tolerance associated genes mediate 

tolerance induction. For example, whilst IDO1 activity is associated with induction T cell apoptosis 

and Tregs, functional studies of galectins reveal a principal involvement in T cell anergy and 

apoptosis induction, as well as inhibition of DC cytokine production (Hasegawa and Matsumoto, 

2018)(Obregon et al., 2017). Further in vitro studies that measure T cell anergy (proliferation assays) 

and apoptosis (annexin V staining) could therefore be explored to investigate all arms of T cell 

tolerance. Overall, a large quantity of different genes have been associated with immune tolerance 

induction by DCs, in accordance with the extensive tolerogenic DC associated gene panels explored 

in our analyses, thus highlighting that it is unlikely for one gene to be the sole mediator of tolerance 

in LCs. Interestingly some well characterised DC tolerance associated genes, including the cytokines 

TGF-b and IL-10, as well as the stimulatory molecules PD-L1 and PD-L2, were either not detected, 

or detected a low levels through Drop-seq transcriptomic analysis (Hasegawa and Matsumoto, 

2018)(Obregon et al., 2017). The absent/low expression of these genes could therefore be 

confirmed at the protein level in vitro using flow cytometry. 
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Our analyses have shown that LC tolerogenic function is paralleled by increasing 

immunocompetency, which differs between steady-state and migrated LC populations. It is 

therefore interesting to consider whether the state of immunocompetency is an indication of the 

underlying biology and specific role each subpopulation plays in immune regulation. For instance, 

previous analyses of steady-state LCs has revealed their importance for amplifying Tregs within the 

epidermis (Seneschal et al., 2012). In non-inflamed conditions, immunocompetency of steady-state 

LC in the absence of tolerogenic factors that are induced during migration, may be sufficient to 

effectively expand resident epidermal Tregs, but with moderate ability to prime. In contrast, 

migratory LCs may further amplify tolerogenic potential to enhance efficiency for priming naïve T 

cells into Tregs, as well as maintaining the ability to efficiently expand Tregs. The same 

predominance of each LC population to either expand or prime may also be seen in regards to 

immunogenic T cell activation. It is also interesting to consider the composition of the LC population 

in the steady state. LCs have the ability to self-replicate in the epidermis to maintain the epidermal 

population (Ginhoux and Merad, 2010). Immature steady-state LCs could therefore be LCs that have 

recently replicated in the epidermis, before going on to progress to an immunocompetent state 

later in their life cycle. However, as only 1-2% of LCs replicate at any one time and we observe a 

spectrum of activation in steady-state LCs, this would suggest the transition to maturity at the 

steady-state is slow (Ginhoux and Merad, 2010).
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Chapter 7 Utilising mathematical modelling to 

determine gene regulatory networks underlying LC 

tolerogenic responses 

7.1 Introduction 

Single cell RNA-seq analysis comparing steady-state LCs to migrated LCs revealed dramatic changes 

in LC genomic programming. Migratory LC were marked with enhanced expression of 

immunocompetency genes and we identified several transcription factors (TFs), which significantly 

induced expression levels upon migration, including IRF4 and RELB. Furthermore, we identified 

rearrangement of TF regulons upon migration, further demonstrating their activity underlined the 

transformation of transcriptomic expression. However, whilst the association of migrated LC TFs 

with enhancement of maturation programmes was identified from gene ontology analysis, the 

specific role of these TFs in regulating immunogenic vs tolerogenic programmes was unknown.  

Our in vitro analysis demonstrated the efficiency of migratory LCs to induce Tregs and tolerogenic 

T cell responses. However, previous in vitro experimentation documented that migration enhances 

the ability of LC to promote immunogenic CD8+ and CD4+ T cell activation (Sirvent et al., 

2020)(Klechevsky et al., 2008). Therefore, while seemingly mature LCs can both tolerise and 

activate immune responses, the decision-making process within LCs which determines the outcome 

of T cell immunity remains unclear. Here we sought to delineate the underlying regulatory networks 

orchestrating activation of human LCs. 

We hypothesised that while spontaneous migration in the absence of pro-inflammatory signalling 

reflects the scenario in which LCs mediate peripheral immune homeostasis and tolerance, LC driven 

immunity is determined by the context of the signalling environment. TNFα is an epidermal 

proinflammatory cytokine, which is produced by neighbouring keratinocytes in response to 

immunogenic stimuli and which enhances LC immunity (Barker et al., 1991). TNFα stimulation of 

migratory LC heightens their ability to drive CD8 T cell activity through antigen cross-presentation 

(Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012). Consistent with enhanced T cell 

activation, TNFα stimulation promotes the upregulation of costimulatory molecules and maturation 

markers in LC, as well as promoting migration (Berthier-Vergnes et al., 2005)(Cumberbatch et al., 

1999)(Epaulard et al., 2014). Furthermore, TNFα signalling augments LC mediated anti-viral 

immunity to HIV and Influenza antigen (Epaulard et al., 2014). However, in the steady-state, DC 

migration and maturation is associated with immune tolerance and the differentiation of Tregs 
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(Baratin et al., 2015). Importantly, a unique programme of genes is observed in DCs migrating in 

the steady-state, compared to those which migrate in the context of immunogenic signalling 

(Baratin et al., 2015). Additionally, mature DC also tolerise CD8+ T cells during processing and 

presentation of self-antigen from apoptotic cells in the steady-state(Albert, Jegathesan and Darnell, 

2001).  

Based on these considerations, we assumed that in the context of immunogenic TNFα signalling, 

LCs favour immunogenic responses, whilst in the steady-state, LCs favour tolerogenic ones. Thus, 

in order to identify key molecular changes in genomic programming during transition from 

tolerogenic LCs to immunogenic LCs, we generated and contrasted single cell transcriptome data 

of human migratory LCs unstimulated and exposed to TNFα post-migration. 

Immune cell function and behaviour are encoded by unique transcriptomic expression profiles – 

transcriptional programmes (Xue et al., 2014). Changes in the transcriptional programmes, which 

reflect status of health or disease or environmental signalling, are coordinated by GRNs in which 

TFs play an essential role (Singh, Khan and Dinner, 2014)(Lin et al., 2015). However, large scale 

investigations into the activity of individual GRN components and interactions between specific 

modules which underlie different transcriptomic programmes, and in particular the kinetics in 

which those programmes are executed, are difficult to investigate using functional in vitro methods 

(Ay and Arnosti, 2011). Therefore, mathematical modelling techniques are increasingly being 

utilised to counter this problem and include methods such as ordinary differential equation (ODE) 

modelling and Petri net modelling (Loriaux and Hoffmann, 2012)(Livigni et al., 2018). Mathematical 

modelling can permit investigations of dynamic biological systems in silico to assess how different 

molecular signals can alter regulatory network behaviour. For example, Petri net modelling has 

revealed the LC IRF-GRN underlying immunogenic immune activation in response to different 

stimuli (Chapter 3)(Polak et al., 2017). However, Signalling Petri Net (SPN) and similar methods 

allow only qualitative assessment of network behaviour, and limit the strength of predictions. In 

contrast, ODE modelling has allowed exploration into small TF networks and specific network 

elements, such as feedback loops and ‘toggle switch’ behaviours, which can define cell lineage 

determination and operon activation (Huang et al., 2007)(Gardner, Cantor and Collins, 2000).  

In GRNs, TFs act in concert with each other to coordinate different expression programmes. 

However, specific cellular phenotypes are determined by the increased expression of specific 

phenotype defining TFs. For example, in macrophages, whilst NFKB1, JUNB and CREB1 define core 

programmes of activation, STAT4 is specifically upregulated in the context of chronic inflammation, 

which correlates with increased expression of a specific gene programme containing IL1a, CXCL5, 

CD25 and CD14 (Xue et al., 2014). We sought to identify specific TFs defining immunogenic and 
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tolerogenic states of LCs and to determine the regulatory interactions between the phenotype 

defining TFs. Combining single cell transcriptome analyses with a published ‘toggle switch’ ODE 

model defining self-amplification and mutual inhibition between two programmes of TF expression 

(Huang et al., 2007), we identified regulatory modules defining immunogenic (IRF1 +/-IRF4) and 

tolerogenic (IRF4, RELB, MAP3K14) LC phenotypes. The model was used to predict LC phenotypes 

across steady-state and migrated LC from breast skin and foreskin datasets. 

7.1.1 Hypothesis 

In silico modelling of GRNs can predict phenotypic state and transcriptional programmes 

expressed by human LCs. 

7.1.2 Aims 

• Investigate the effects of inflammatory signalling (TNFα) on migrated LC gene expression. 

• Identify the key TFs which define tolerogenic and immunogenic LC activation. 

• Utilise mathematical modelling to understand the regulatory interactions between 

phenotype defining TFs. 

• Evaluate the performance of the GRN to predict LC phenotypes across different datasets. 
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7.2 Results 

7.2.1 TNFα stimulation of migratory LCs enhances transcriptomic programmes related to T 

cell immunogenic activation 

To investigate the effect of TNFα signalling on LCs, STAMPs for 400 migrated and 400 migrated 

TNFα stimulated abdominal skin derived LCs were encapsulated using Drop-seq followed by cDNA 

library  preparation, tagmentation and then sequencing (Figure 53A&B).  

 
LC Migrated LC Migrated TNFa 

A) B) 

Figure 53. cDNA library amplification and tagmentation of unstimulated and TNFa stimulated 

migrated LCs. A) Unstimulated abdominal skin migrated LCs were processed through Drop-seq with 

cDNA libraries (Top, 163 pg/µl) amplified, prior to tagmentation (Bottom, 4.2nM) and sequencing. B) 

TNFa stimulated abdominal skin migrated LCs were processed through Drop-seq with cDNA libraries 

(Top, 141 pg/µl) amplified, prior to tagmentation (Bottom, 4.1nM) and sequencing. Concentrations 

were measured using a DNA high sensitivity kit run on an Agilent Bioanalyser. cDNA library 

concentrations were required to be >100 pg/µl with 600 pg/µl of cDNA librariy required for 

tagmentation. Libraries were pooled at 2 nM for sequencing. Upper (10380bp) and lower (35bp) marker 

DNA was included for reference. Vertical dotted lines depict area in which cDNA library concentrations 

were quantified. 
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After cell (EmptyDrops (Lun et al., 2019), count threshold filtering) and gene (expression detected 

in <10 cells) filtering, a matrix of 775 cells and 7319 genes remained for analysis. UMAP 

dimensionality reduction analysis (ScanPy, version=1.5.0) revealed that both abdominal skin 

derived migrated LC and migrated TNF-a stimulated LC contained a predominant large cluster (1), 

confirmed to be LCs through high expression of MHC II genes which were in the top 10 cluster 

markers genes (e.g. HLA-DRB1, HLA-DRB5)(Logistic regression, ScanPy pipeline, version=1.5.0, 

Figure 54A,B&C). Additionally, two small populations of cells (2 and 3), contributed by cells from 

both conditions, clustered away from the LC population (Figure 54A). Included in the top 10 marker 

genes for cluster 2 was TYRP1, a gene which characterises melanocytes (Figure 54B&C). In the top 

10 marker genes for cluster 3 was CD3D, a marker of T cells (Figure 54B&C). To focus our analysis 

on the transcriptomes of LC, the melanocyte and T cell populations were removed. 
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The heterogeneity of the 737 migrated LCs stimulated with or without TNFa (unstimulated = 375, 

TNFα stimulated = 362) were then analysed in UMAP space. Overall the cells appeared relatively 

homogenous consisting of one overall large population of LCs, consisting of separating sub clusters 

of unstimulated and TNFa stimulated LCs (Figure 55A). DEG analysis comparing migrated and 

migrated TNFa LCs identified 87 genes upregulated in migrated TNFa LCs and 61 genes upregulated 

in migrated LCs (MAST, adj.p-value<0.05). Gene ontology analysis for the 87 genes upregulated in 

migrated TNFa LCs was associated with cytokine mediated signalling pathways (adj. P-Value=2.2E-

7) and positive regulation of alpha-beta T cell activation (adj. P-Value=1.5E-4, Figure 55B). TNFa 

stimulation therefore enhanced transcriptomic programmes associated with T cell immunogenic 

activation. Gene ontology analysis for the 61 genes upregulated in migrated LCs were associated 

with secretion by cell (adj. P-Value=5.3E-3) and regulation of the immune response (adj. P-

Value=5.3E-3, (Figure 55B). Interestingly, an association with negative regulation of immune system 

process was identified from both sets of DEGs. Contributing to this ontology in migrated TNFa LCs 

was CD86, DUSP1, IRF1, NFKBIA, PTK2B, SAMSN1 and SOCS1 (adj. P-Value=2.3E-2). In unstimulated 

migrated LC A2M, CST7, EZR, LGALS3, LY96, PTPRC and VIMP (SELENOS) contributed to the ontology 

(adj. P-Value=2.5E-2). 

 

 

Figure 54. T cells and melanocytes could be identified amongst unstimulated and TNFα 

stimulated migrated LCs. *On previous page A) UMAP dimensionality reduction analysis of 775 

unstimulated and TNFα stimulated abdominal skin derived migrated LCs. B) Top 10 markers genes 

for clusters 1-3 (t-test, ScanPy pipeline, version=1.5.0), revealed populations to be LCs (cluster 1), 

melanocytes (cluster 2) and T cells (cluster 3) C) UMAP marker plots displaying the expression of 

the LC marker HLA-DRB1, the T cell marker CD3D and the melanocyte marker TYRP1.  
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7.2.2 Subpopulations of migrated LCs appear primed for tolerogenic immune function, 

whilst TNFα stimulated migrated LCs appear predominantly immunogenic 

The population of LC was then investigated to identify sub-clusters defined by unique biological 

pathways. Leiden clustering (ScanPy, r=0.5) identified 4 subpopulations (Figure 56A), defined by 

distinctive transcriptome expression in gene ontology analysis of marker genes (ScanPy, Logistic 

regression, 50 marker genes, Figure 56B). Cluster 1 was associated with positive regulation of alpha-

beta T cell activation (adj. P-Value=4.4E-3) and cytokine mediated signalling pathway (adj. P-

Value=2.6E-2). The association with alpha-beta T cell activation arose from elevated expression of 

CCR7, CD83, EBI3, HLA-E and IRF1. Cluster 2 was associated with cytokine production (adj. P-

Value=7.0E-6) and negative regulation of immune system process (adj. P-Value=2.6E-3). Negative 

regulation of immune system process was contributed by the expression of ARRB2, CD74, CIB1, 
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Figure 55. Unstimulated and TNFα stimulated migrated LCs display differential gene expression. A) 

UMAP dimensionality reduction analysis of 737 unstimulated and TNFα stimulated LCs. (unstimulated 

= 375, TNFα stimulated = 362). B) Gene ontology analysis (Toppgene) for the 61 DEGs identified in 

unstimulated migrated LC vs TNFα stimulated migrated LC and for the 87 DEGs identified in TNFα 

stimulated migrated LC vs unstimulated migrated LC using MAST DEG analysis (BH adj.p-value<0.05). 

-log10adj.p-values are displayed. 
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CST7, HMOX1, IDO1, IL7R, IRF4, RUNX3. Cluster 3 was associated with ATP biosynthetic process 

(adj. P-Value=1.4E-7) and antigen processing and presentation of peptide antigen (adj. P-

Value=4.4E-7), due to elevated expression of MHC II genes (HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-

DQA2 and HLA-DMA). Cluster 4 was associated with I-kappaB kinase/NF-kappaB signalling (adj. P-

Value=1.2E-5) and response to external biotic stimulus. (adj. P-Value=2.2E-5).  
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Figure 56. The population of unstimulated and TNFα stimulated LCs could be divided into 4 distinct 

clusters. A) Leiden clustering (r=0.5) identified 4 clusters amongst the population of unstimulated and 

TNFα stimulated migrated LC. B) Gene ontology analysis (Toppgene) for the top 50 marker genes 

(ScanPy, logistic regression) for each cluster identified during Scanpy analysis -log10adj.p-values are 

displayed. 
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Overall the mixed population of migratory unstimulated or TNFa stimulated LCs appeared to 

constitute of 3 main subpopulations (clusters 1-3). The proportion of unstimulated or TNFa 

stimulated LCs in each subpopulation also varied with the majority of cells in cluster 2 being 

unstimulated LCs, the majority of cells in cluster 1 being TNFa stimulated LCs and cells in cluster 3 

being an equal proportion of both. Based on gene ontology for the top 50 markers genes, which 

displayed predominant cluster phenotypes, we labelled cluster 1 and 2 as immunogenic and 

tolerogenic LC, respectively. Labelling of cluster 3 was less obvious due to general association with 

antigen processing and presentation and ATP metabolism, signature features of mature LC (Romani 

et al., 2003). To further explore the relationships between the 3 clusters, pseudotime trajectory 

analysis (PAGA, Partition based graph abstraction, within Scanpy) was performed to discern 

significant routes of connectivity which could represent pathways of differentiation(Figure 57A). 

Pseudotime pathways (DPT, Diffusion pseuodotime) originating from the centre of cluster 3 

reached endpoints in both clusters 1 and 2, suggesting cluster 3 LCs could readily follow pathways 

to cluster 1 and 2 LC states. Alternative pseudotime pathway analysis originating at the centre of 

cluster 2 did not reach cluster 1 and similarly, pseudotrajectories originating at the centre of cluster 

1 and ending at cluster 2 were relatively weak (Figure 57B). Analysis suggested cluster 3 were a 

transient population of mature LCs, which would differentiate into immunogenic or tolerogenic LCs 

depending on signalling. Cluster 3 LCs were therefore labelled as being ‘primed’ LCs. 
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Figure 57. Pseudotime trajectory analysis reveals a transitional pathway from primed LCs to both 

tolerogenic and immunogenic LCs. A) Clusters 1-3 (Immunogenic, tolerogenic and primed LCs) were 

processed through PAGA analysis to assess cluster connectivity and embedded in geodesic space to 

maintain data topology (FR, Fruchterman Reingold force directed graph). B) Estimated pseudotime 

trajectories calculated using DPT (diffusion pseuodotime) were plotted with starting points 

originating at the centre of cluster 3 (primed), cluster 2 (tolerogenic) and cluster 1 (immunogenic). 
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To gain a greater understanding of the differentiating pathways between immunogenic cluster 1 

and tolerogenic cluster 2, MAST DEG analysis was performed (adj. P-Value<0.05). Gene ontologies 

identified from Toppgene were summarised using Revigo to display a greater overview of the 

general pathways upregulated in each cluster. The 65 DEGs upregulated in immunogenic cluster 1 

were strongly associated with positive regulation of alpha-beta T cell activation and response to 

cytokine (Figure 58A). 51 DEGs upregulated in tolerogenic cluster 2, were summarised into antigen 

processing and presentation via MHC II, response to cytokine, cell-cell adhesion and cell activation 

(Figure 58B). Interestingly associations with negative regulation of immune system processes could 

be identified in upregulated DEGs for each cluster. This was contributed by A2M, HLA-DQA1, CD74, 

CST7, HMOX1, IL7R  in tolerogenic cluster 2 (adj. P-Value=3.0E-2) and CD80, CD86, IRF1, DUSP1, 

NFKBIA, HLA-E, SOCS1, SAMSN1 and PTK2B in immunogenic cluster 2 (adj. P-Value=1.0E-3). 

However, the majority of immune associated annotations for cluster 1 were associated with 

activation of T cell effector processes.  
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Figure 58. Immunogenic LCs upregulate gene expression programmes associated with T cell 

activation. MAST DEG analysis was performed comparing cluster 1 immunogenic LCs to cluster 2 

tolerogenic LCs. A) Revigo Treemap summarising the top 200 biological pathways identified in 

Toppgene gene ontology analysis (BH adj.p-value<0.05) using the 65 genes upregulated in cluster 1 

immunogenic LCs. B) Revigo Treemap summarising the top 200 biological pathways identified in 

Toppgene gene ontology analysis using the 51 genes upregulated in cluster 2 tolerogenic LCs. 
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With cluster 3 LCs labelled as baseline mature primed LC, gene expression was compared to clusters 

1 and 2 through MAST DEG analysis to identity immunogenic and tolerogenic pathway defining 

genes. DEG analysis between cluster 2 and 3 identified 105 upregulated genes in cluster 2 and 86 

upregulated genes in cluster 3. Cluster 2 genes were generally associated with regulation of the 

immune system process and response to cytokine (Figure 59A). Again, an association with negative 

regulation of immune system process was identified due to the upregulated expression of IDO1, 

IRF4, IL7R, HLA-E, HLA-F, ID2, GRN, SAMSN1, ARRB2, TRAFD1, ZFP36L1, FER, TMEM176A and 

TMEM176B (adj. P-Value=4.2E-4). Cluster 3 ontologies were grouped into leukocyte activation and 

response to ER stress (Figure 59B). Interestingly, an association with negative regulation of immune 

effector process was identified due to the expression of ANXA1, CD59, LGALS3, NDFIP1 and 

SERPINB9 (adj. P-Value=6.1E-3). DEG analysis between cluster 1 and 3 identified 178 genes 

upregulated in cluster 1 and 145 genes upregulated in cluster 3. Cluster 1 DEGs were generally 

associated with regulation of the immune system, response to cytokine, nuclear transcribed mRNA 

catabolism and SRP dependent co-translational targeting to membrane and therefore the overall 

profiles appeared similar to those identified in cluster 2 LCs (Figure 59C). However, genes 

upregulated in cluster 1 could again be associated with alpha-beta T cell activation (adj. P-

Value=1.5E-5), as well as negative regulation of immune system process due to upregulated 

expression of IDO1, IRF1, CD86, ID2, HLA-E, HLA-F, GBP1, SOCS1, NFKBIA, TRAFD1, ZFP36L1, PTK2B, 

CD84, GCSAM, SAMSN1, GPX1, DUSP1 and TMEM176B (adj. P-Value=3.2E-5). In contrast cluster 3 

upregulated genes were associated with ATP metabolism, antigen processing and presentation, 

energy coupled protein transport down electrochemical gradient, response to ER stress and 

organelle fusion (Figure 59D). No association with tolerogenic immune regulation were identified.  
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 C) 

D) 

Figure 59. Tolerogenic and Immunogenic LCs upregulate genes associate with similar biological 

processes compared to mature primed LCs. MAST DEG analysis was performed comparing cluster 

2 tolerogenic LCs to cluster 3 primed LCs and cluster 1 immunogenic LCs to cluster 3 primed LCs. 

Revigo Treemaps were used to summarise the top 200 biological pathways identified in Toppgene 

gene ontology analysis (BH adj.p-value<0.05) using the A) 105 genes upregulated in cluster 2 

tolerogenic LCs vs cluster 3 primed LCs, B) 86 genes upregulated in cluster 3 mature LCs vs cluster 

2 tolerogenic LCs, C) 178 genes upregulated in cluster 1 immunogenic LCs vs cluster 3 primed LCs 

and D) 145 genes upregulated in cluster 3 primed LCs vs cluster 1 immunogenic LCs. 
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The upregulated genes in comparisons of clusters 1 and 2 with cluster 3 were contrasted to identify 

how programs differed during differentiation from primed (cluster 3) to immunogenic (cluster 1) or 

tolerogenic (cluster 2) LCs. Of the 178 genes upregulated in cluster 1 and the 105 genes upregulated 

in cluster 2, 64 were common (Figure 60A). Gene ontology analysis and summarisation using Revigo 

of the 64 commonly upregulated genes revealed associations with antigen processing and 

presentation, response to cytokine, regulations of cell death and nuclear transcribed mRNA 

catabolism (Figure 60B). These pathways therefore appeared core to both tolerogenic and 

immunogenic LC differentiation from primed LCs. Interestingly this core programme included an 

association with negative regulation of immune system process (adj. P-Value=1.2E-2) due to 

elevated expression of IDO1, SAMSN1, HLA-E, HLA-F, ZFP36L1, TMEM176B and TRAFD1. The 114 

uniquely upregulated genes in immunogenic cluster 1 LCs were associated with negative regulation 

of cell communication, nuclear transcribed mRNA catabolism, response to cytokine and SRP-

dependent cotranslational targeting to membrane (Figure 60C). Again, many associations with 

alpha-beta T cell activation (adj. P-Value=1.9E-2) were identified, as well as negative regulation of 

immune system process  (adj. P-Value=1.2E-2), due to the presence of IRF1, CD86, CD84, SOCS1, 

NFKBIA, PTK2B, GCSAM, GBP1, GOX1 and DUSP1. Minimal associated gene ontologies were 

identified for the 41 uniquely upregulated genes in tolerogenic cluster 2, although importantly an 

association with negative regulation of immune effector process was observed (adj. P-Value=4.5E-

2), due to the expression of IL7R, ARRB2, GRN and FER (Figure 60D).  

Overall, the expression of tolerogenic gene modules appears to be core to mature LC in each cluster. 

However, in immunogenic LCs, tolerogenic gene modules are expressed in association with genes 

regulating immunogenic pathways. We sought to investigate how the balance of tolerogenic and 

immunogenic pathway defining genes may alter the balance of immune regulation leading to the 

predominant activity and expression of either phenotype.  
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Figure 60. Common upregulated pathways can be identified in tolerogenic and immunogenic LCs. 

A) Venn Diagram displaying the overlap between cluster 1 immunogenic LCs upregulated genes 

compared to cluster 3 primed LCs and the genes upregulated in cluster 2 tolerogenic LCs compared 

to cluster 3 primed LCs. Revigo summarisation of the top 200 (if identified) biological pathways 

identified during Toppgene gene ontology analysis (BH adj.p-value<0.05), associated with the B) 64 

genes commonly upregulated in cluster 1 immunogenic and cluster 2 tolerogenic LCs, C) 114 genes 

uniquely upregulated in cluster 1 immunogenic LCs and D) the 41 genes uniquely upregulated in 

cluster 2 tolerogenic LCs. 
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7.2.3 IRF1 and IRF4 regulons distinguish gene regulation in immunogenic and tolerogenic 

LCs 

To identify the key TF regulators of the migrated LC programme, SCENIC (Aibar et al., 2017) single 

cell regulatory network inference analysis was performed. Analysis identified IRF1 and IRF4 

regulons as the most distinct upregulated regulons in immunogenic and tolerogenic LCs, 

respectively (cluster 1 immunogenic LC IRF1 z-score = 0.4, cluster 2 tolerogenic LC, IRF4 z-score = 

0.2)(Figure 61). IRF1 and IRF4 were therefore identified as being core modulators of the gene 

regulatory changes necessary for either phenotype. 

 

 

Figure 61. Immunogenic LCs are enriched for IRF1 regulon activity, whilst tolerogenic LC are 

enriched for the IRF4 regulon. A) UMAP plots displaying SCENIC regulatory network and inference 

clustering analysis enrichment scores for IRF1 and IRF4 regulons, identified as being the most 

enriched TF regulons in immunogenic and tolerogenic LCs, respectively. Z-scores for enriched 

regulons are displayed. B) UMAP marker plot displaying normalised IRF1 and IRF4 expression. 

 

  

 

 

UMAP1

U
M

AP
2

Cluster 1/Imm LC
Z-score = 0.4

Cluster 2/Tol LC
Z-score = 0.2

UMAP1

U
M

AP
2

 

A) B) 



Chapter 7 

238 

7.2.4 Utilising an ODE ‘toggle switch’ model to construct a decision-making circuit for LC 

immunogenic or tolerogenic responses 

Based on published in vitro investigations displaying both immunogenic and tolerogenic T cell 

activation by migrated LCs (Sirvent et al., 2020)(Polak et al., 2012)(Klechevsky et al., 

2008)(Seneschal et al., 2012) and the discoveries from our in vitro data exploring migrated LC 

tolerogenic potential, we postulated that migrated LCs represent an activation state under non-

inflammatory conditions capable of priming both immunogenic and tolerogenic responses. 

However, in line with the importance of self-antigen transport by LCs migrating in steady-state 

contexts for mediating self-tolerance (Hemmi et al., 2001)(Yoshino et al., 2006), we also assumed 

that tolerogenic responses are preferential in unstimulated migrated LCs. From single cell RNA-seq 

observations we further assumed that the transcriptional programme of LCs can be altered in the 

context of inflammatory signalling, such as TNFa, to be more predominantly immunogenic. This 

proposal is consistent with discoveries from bulk RNA-seq and functional in vitro studies of TNFa 

stimulated LCs, which enhances immunogenic T cell activation (Sirvent et al., 2020)(Polak et al., 

2014)(Polak et al., 2012). From UMAP analysis, LCs appeared part of a single overall large 

population, in which subpopulations of phenotype specific (immunogenic, tolerogenic, primed) LCs 

could be identified. The subpopulations of immunogenic cluster 1 and tolerogenic cluster 2 LCs, 

which appeared to be end states compared to transient cluster 3 primed LCs, were in close 

proximity to each other in UMAP space. This suggested that some LCs were not in a distinct 

immunogenic and tolerogenic states, but were on the border between both, in which activation of 

immunogenic and tolerogenic pathways was equal. Overall, we therefore hypothesised that 

unstimulated and TNFa stimulated migrated LCs could follow pathways to 3 general states of 

activation - immunogenic, tolerogenic or a dual “mature” state (equal immunogenic and 

tolerogenic pathways)(Figure 62). 
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Figure 62. Migrated LCs are hypothesised to be capable of displaying 3 states of activation 

depending on the signalling context. Unstimulated migrated LC are hypothesised to predominantly 

represent states of tolerogenic and dual potential, in line with in vitro observations demonstrating 

both immunogenic and tolerogenic T cell induction. TNFa stimulated LC are hypothesised to display 

favouring of dual and immunogenic states, in accordance with in vitro observations of enhanced 

immunogenic function.  

 

To explore how the balance in LC state is controlled, we utilised a tristable ‘toggle switch’ ODE 

model in which different activation states can be described based on the expression of a selected 

number of state/phenotype (immunogenic vs tolerogenic) defining TFs (Huang et al., 2007). The 

ODE model contains 2 equations which each represent the activation of immunogenic (I) and 

tolerogenic (T) states, respectively. Each equation contains 3 terms, which represent auto-

amplification (dotted box), cross-inhibition of opposing state TFs (dashed box) and first order decay 

of TF activity (solid box)(Figure 63A, Equation 1). The model therefore assumes that TFs that define 

each state auto-amplify their own expression, whilst inhibiting the expression of the opposite 

pathway/state. The tristable model describes a phenotypic ‘attractor landscape’ in which LCs can 

fall into an immunogenic (A), a tolerogenic (B) or a dual (C, equal ability to stimulate tolerogenic 

and immunogenic responses) state/phenotype (Figure 63B). In the phase portrait, A and B 

therefore represent states in which the expression of TFs from either pathway is dominant over the 

Tolerogenic ImmunogenicDual

Migrated LC TNF! Migrated LC
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other, whilst C represents a state in which there is equal expression of both immunogenic and 

tolerogenic pathways. The model can therefore be utilised on single cell data to predict the 

phenotypic state of individual LCs by plotting LC trajectories in state space using single cell 

expression data.  

 

 

 

 

 

Figure 63. Application of a toggle-switch ODE model to predict LC phenotypes from single cell 

transcriptomic data. A) First order ODEs representing the activation of immunogenic (I) and 

tolerogenic (T) states in LCs. The dotted box represents terms describing the auto-amplification of 

each respective states. The dashed box represents terms describing the cross-inhibition from 

opposing states, whilst the solid box depicts the first-order decay rate (k) for TFs defining each state. 

B) Phase portrait of the toggle switch model in which two phenotype defining TFs/TF modules 

(immunogenic and tolerogenic) auto-amplify their own expression and are mutually repressive. 

Phase plane plots for toggle-switch model ODEs were plotted using quiver within Matlab. Black 

circles (A, B and C) represent end points for trajectories at stable attractors representing an 

immunogenic state (A), tolerogenic state (B) or a dual state (C).  

 

A) 
B) 
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The selection of TFs definitive for either immunogenic or tolerogenic responses was next required 

to construct the model. Based on our single cell transcriptomic analysis of migrated LC and migrated 

TNFa stimulated LCs, IRF1 was a clear candidate for driving the immunogenic pathway, due its 

association as a marker gene for cluster 1 immunogenic LCs and enrichment of the IRF1 regulon in 

SCENIC analysis. IRF1 was also present within its own regulon, suggesting IRF1 can self-amplify its 

expression, in line with the toggle-switch model assumptions. Similarly, IRF4, a top marker for 

cluster 2 tolerogenic LC, which also displayed enrichment for the IRF4 regulon, was the most 

defining candidate for the tolerogenic pathway. Furthermore, IRF4 is also present within its own 

regulon, satisfying the self-amplification requirements of the model.  

To be consistent with observations of LC regulation of T cell responses, the model would be deemed 

to be correctly predictive, based on satisfying 3 criteria: 

1. Unstimulated migrated LCs are predominantly in a tolerogenic or dual state. 

2. TNFa stimulated migrated LCs display an attractor landscape more preferentially sided for 

immunogenic responses. 

3. The number of LCs at the immunogenic attractor is increased in the cluster 1 immunogenic 

LC population and the number of LCs at the tolerogenic attractor is increased in cluster 2 

tolerogenic population. 

Normalised single cell RNA-seq TF expression values (scaled to 2) in each LC were utilised as starting 

points in the phaseplane. Trajectories of each LC in the phaseplane were plotted accordingly to the 

equation in Equation 1/Figure 63A. Here, depending on where trajectories started and on the phase 

plane landscape, LCs could be categorised as being in an immunogenic (A), tolerogenic (B) or dual 

(C) state, depending on what attractor the trajectories ended at. After in silico simulation, the 

number of trajectories finishing at each attractor were quantified and compared. Trajectories for 

all stimulated and unstimulated migrated LCs as a whole and the clusters defined from Scanpy 

leiden clustering (Clusters 1-4) were compared.  

Plotting the trajectories for model 1, in which IRF1 defined immunogenic states and IRF4 defined 

tolerogenic states, revealed that the majority of both migrated (66.67%) and migrated TNFa 

(61.88%) LCs, regardless of cluster (Cluster 1-4), followed trajectories towards immunogenic 

phenotypes, going against our criteria that the majority of unstimulated migrated LCs would be in 

a tolerogenic or dual state (Figure 64A). However, a moderate reduction in the frequency of 

tolerogenic state LCs was observed in migrated TNFa LCs (18.51%) compared to migrated LCs (24%). 

There was also as a moderate increase in dual state LCs in migrated TNFa LC (19.61%) compared to 

unstimulated (9.33%). Observations were overall similar during comparison between cluster 1 

(immunogenic) and cluster 2 (tolerogenic) LCs and in line with model criteria, the number of 
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tolerogenic LCs in cluster 2 increased (28.94%) compared to cluster 1 (15.25%)(Figure 64B). Overall 

whilst some criteria were met (change in frequency of immunogenic and tolerogenic LCs in 

stimulated and unstimulated LCs) the over prediction of LCs to be in an immunogenic state 

suggested the model needed further optimisation.  
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66.67%  250 Immunogenic (A)
24.00%  90 Tolerogenic (B)
9.33%  35 Dual (C)

Migrated TNFα

61.88%  224 Immunogenic (A)
18.51%  67 Tolerogenic (B)
19.61%  71 Dual (C)

Cluster 1

68.09%  192 Immunogenic (A)
15.25%  43 Tolerogenic (B)
16.67%  47 Dual (C)

Cluster 3

72.55%  111 Immunogenic (A)
18.30%  28 Tolerogenic (B)
9.15%  14 Dual (C)

Cluster 2

57.14%  156 Immunogenic (A)
28.94%  79 Tolerogenic (B)
13.92%  38 Dual (C)

Cluster 4

51.72%  15 Immunogenic (A)
24.14%  7 Tolerogenic (B)
24.14%  7 Dual (C)

Figure 64. Model 1: In silico predictions of the toggle-switch model using IRF1 and IRF4 alone does 

not accurately represent the phenotypes observed in LCs. A) Phase portrait plot with single LC 

trajectories plotted from unstimulated and TNFa stimulated migrated LC. B)  State space phase plane 

plot with single LC trajectories plotted as labelled from Scanpy leiden clustering.  For each cell (starting 

point for line in the phaseplane) X-axis = normalised IRF1 expression values scaled between 0-2, Y-axis 

– normalised IRF4 expression values scaled between 0-2. Pie charts alongside display numbers and 

percentages of cells ending at each attractor and therefore assigned to each phenotype. 
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Inclusion of just IRF1 and IRF4 in the model was therefore insufficient for model predictions to 

match LC phenotypic observations. To finetune the model, so that its output could reflect in vitro 

and transcriptomic observations, we further queried what additional TF regulators could be 

determining LC phenotypes. We reviewed the expression of all TFs which were enriched in migrated 

LC compared to steady-state LC, from both breast skin and foreskin (Chapter 5). However, in 

unstimulated and TNFa stimulated migrated LC, none of these TFs (besides IRF4) were differentially 

regulated and therefore their importance for immunogenic vs tolerogenic responses seemed 

unlikely. However, inspection of genes within the top 50 marker genes for cluster 2 tolerogenic LCs 

revealed the presence of MAP3K14 (NIK), the critical inducer of the non-canonical NFkB pathway 

involving RELB. Therefore, whilst RELB expression was homogenous across all populations, RELB 

activation was dependent on MAP3K14 activity and increased non-canonical NFkB activation would 

only occur in cells that co-express high MAP3K14 and RELB (Figure 65A).  

IRF4 along with MAP3K14 and RELB expression (Z-scores scaled to 2) were therefore used together 

to define the tolerogenic phenotype in model 2. The optimised model increased the number of 

unstimulated migrated LCs in a dual state (21.33%) and tolerogenic state (59.73%)(Figure 65B). The 

model also predicted that the majority of LCs in the tolerogenic cluster 2 (62.64%) were of a 

tolerogenic phenotype, whilst an increased proportion of immunogenic cluster 1 LCs were in an 

immunogenic (23.05%) and dual state (42.91%) in comparison (Figure 65C). However, the number 

of LCs predicted to be in an immunogenic state was near identical between unstimulated (18.93%) 

and TNFa stimulated (18.23%) LCs, although a reduction in tolerogenic state LCs (38.12%) and an 

increase in dual state LCs (43.65%) was observed in stimulated LCs. Overall, the model therefore 

improved the predictions in line with the model criteria. However, the lack of increased 

immunogenic state LCs in TNFa stimulated LC suggested a potential underestimation of TFs defining 

the immunogenic phenotype. 
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Migrated

18.93%  71 Immunogenic (A)
59.73%  224 Tolerogenic (B)
21.33%  80 Dual (C)

Migrated TNFα

18.23%  66 Immunogenic (A)
38.12%  138 Tolerogenic (B)
43.65%  158 Dual (C)

Cluster 1

23.05%  65 Immunogenic (A)
34.04%  96 Tolerogenic (B)
42.91%  121 Dual (C)

Cluster 3

22.88%  35 Immunogenic (A)
54.90%  84 Tolerogenic (B)
22.22%  34 Dual (C)

Cluster 2

11.72%  32 Immunogenic (A)
62.64%  171 Tolerogenic (B)
25.64%  70 Dual (C)

Cluster 4

17.24%  5 Immunogenic (A)
37.93%  11 Tolerogenic (B)
44.83%  13 Dual (C)

Figure 65. Model 2: The inclusion of non-canonical NFkB pathway components RELB and MAP3K14 

improved the toggle switch model. A) UMAP marker plots displaying MAP3K14 and RELB expression. B) 

State space phase plane plot with single LC trajectories plotted from unstimulated and TNFa stimulated 

migrated LC. C) State space phase plane plot with single LC trajectories plotted as labelled from Scanpy leiden 

clustering. For each cell (starting point for line in the phaseplane) X-axis = normalised IRF1 expression values 

scaled between 0-2, Y-axis – Z-scores combining IRF4, RELB and MAP3K14 expression values scaled between 

0-2. Pie charts alongside display numbers and percentages of cells assigned to each state/phenotype. 
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Previous studies investigating IRF4 in DCs have revealed its importance in regulating both 

immunogenic and tolerogenic T cell responses, as well as LC activation and immune homeostasis 

(Vander Lugt, Riddell, Aly A. Khan, et al., 2017)(Williams et al., 2013)(Ainsua-Enrich et al., 

2019)(Sirvent et al., 2020). Consistent with this idea was the observation that whilst IRF4 was 

included as a marker gene for tolerogenic cluster 2 LCs, its expression was still relatively high in all 

unstimulated and TNFa stimulated LCs (Figure 61B). We therefore postulated that IRF4 influenced 

both immunogenic and tolerogenic LC responses and its expression level (moderate/high) and 

interaction with co-regulators, influenced immunogenic vs tolerogenic output. In model 3, IRF1 and 

IRF4 (Z-scores scaled to 2) were used to define the immunogenic pathway and IRF4, MAP3K14 and 

RELB  (Z-scores scaled to 2) were used to define the tolerogenic pathway. Assessment of model 

predictions revealed that a large proportion of migrated LC now appeared in either a dual state 

(58.93%) or tolerogenic state (38.4%)(Figure 66A). This was therefore aligned with observations 

that unstimulated migrated LC can induce both immunogenic and tolerogenic immunity. 

Additionally, the minimal numbers of immunogenic state LCs (2.67%) revealed preference for 

tolerogenic activation in unstimulated migrated LC. In TNFa stimulated migrated LCs, there was an 

increased proportion of immunogenic state LCs (9.67%). Furthermore, TNFa stimulated migrated 

LCs had reduced frequency of tolerogenic state LCs (24.31%) and an increase in dual state LCs 

(66.02%). The proportion of tolerogenic LCs is therefore reduced in TNFa stimulated migrated LCs 

to accommodate an increase in dual and immunogenic state LCs. Similar observations were seen in 

cluster 1 and cluster 2 LC, with LCs exhibiting preferential immunogenic and tolerogenic states, 

respectively(Figure 66B). Overall, the optimised model 3 led to the satisfaction of increased 

immunogenic state LCs in the TNFa stimulated population, which was absent in model 2.  
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2.67%  10 Immunogenic (A)
38.40%  144 Tolerogenic (B)
58.93%  221 Dual (C)

Migrated TNFα

9.67%  35 Immunogenic (A)
24.31%  88 Tolerogenic (B)
66.02%  239 Dual (C)

Cluster 1

12.41%  35 Immunogenic (A)
22.34%  63 Tolerogenic (B)
65.25%  184 Dual (C)

Cluster 3

1.96%  3 Immunogenic (A)
41.83%  64 Tolerogenic (B)
56.21%  86 Dual (C)

Cluster 2

1.83%  5 Immunogenic (A)
36.26%  99 Tolerogenic (B)
61.90%  169 Dual (C)

Cluster 4

6.90%  2 Immunogenic (A)
20.69%  6 Tolerogenic (B)
72.41%  21 Dual (C)

Figure 66. Model 3: Inclusion of IRF4 as a regulator of both immunogenic and tolerogenic pathways 

further improves the in silico model predictions to match phenotypic data of LCs. A) State space 

phase plane plot with single LC trajectories plotted from unstimulated and TNFa stimulated 

migrated LC. B)  State space phase plane plot with single LC trajectories plotted as labelled from 

Scanpy leiden clustering. For each cell (starting point for line in the phaseplane) X-axis = Z-scores 

combining IRF1 and IRF4 expression scaled between 0-2, Y-axis – Z-scores combining IRF4, RELB and 

MAP3K14 expression scaled between 0-2. Pie charts alongside display numbers and percentages of 

cells assigned to each state/phenotype. 
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To assess how appropriate the TFs selected for models 2 and 3 were in correctly predicting LC 

phenotypes, we created a control model, choosing TFs not differentially expressed across the LC 

states. Here, the immunogenic pathway was defined by canonical NFkB components RELA, REL and 

NFKB1, whilst the tolerogenic pathway was defined by the expression of ELK1, KLF6 and JUND. 

Canonical NFkB components were used as immunogenic components of the test model due to their 

association with enhancing DC immunogenic and inflammatory responses (Hayden, West and 

Ghosh, 2006)(Hayden and Ghosh, 2011). ELK1, KLF6, and JUND were selected for the tolerogenic 

pathway due to their association with the regulation of the migrated LC tolerogenic programme 

explored in Chapter 5. However, unlike models 2 and 3, none of the model criteria were met in the 

control model. Here the proportions of immunogenic, tolerogenic and dual state LCs was overall 

homogenous across both unstimulated and TNFa stimulated migrated LCs and clusters 1-4 (Figure 

67A, Figure 67B). Overall, this highlighted that the TFs selected in models 2 and 3 were appropriate 

in distinguishing the divergent LC states and satisfying at least some, if not all of the criteria 

specified for creating a successful immunogenic vs tolerogenic LC model.  
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Figure 67. Control model: Using other TFs associated with immunogenic vs tolerogenic responses 

does not satisfy model criteria. A) State space phase plane plot with single LC trajectories plotted 

from unstimulated and TNFa stimulated migrated LC. B)  State space phase plane plot with single LC 

trajectories plotted as labelled from Scanpy leiden clustering. For each cell (starting point for line in 

the phaseplane) X-axis = Z-scores combining canonical NFkB pathway RELA, REL and NFKB1 

expression scaled between 0-2, Y-axis – Z-scores combining ELK1, KLF6 and JUND expression scaled 

between 0-2. Pie charts alongside display numbers and percentages of cells assigned to each 

state/phenotype. 
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7.2.5 The LC toggle-switch model can be used to predict LC phenotypes from 

transcriptomic data, in concordance with gene expression data. 

Optimisation of the immunogenic vs tolerogenic toggle switch ODE model using data from 

abdominal skin derived unstimulated and TNFa stimulated migrated LC led to the generation of 

model predictions that were concordant with in vitro and transcriptomic observations of LC 

immunity. We therefore hypothesised that the model could be used to predict cell states across 

other LC transcriptomic datasets. The single cell transcriptomic data of steady-state and migrated 

breast skin and foreskin derived LCs explored in Chapter 5 was utilised to validate the toggle-switch 

model’s ability to predict LC phenotypes. Whilst model 3 appeared to perform best at satisfying our 

model criteria we tested both models 2 and 3 for a more comprehensive analysis of model 

performance. Here, we investigated the correspondence of the model in silico predictions to match 

observations from scRNA-seq data, in which DEG analysis comparing steady-state breast skin and 

foreskin LC revealed foreskin LC to be an increased state of immunogenic and inflammatory 

response activation (Figure 68A&B).  

Using model 3, the majority of steady-state breast skin LCs, were identified to be in the dual state 

(68.95%), as well as the tolerogenic state (28.64%)(Figure 68B). Steady-state LCs therefore appear 

primed ready for both immunogenic and tolerogenic responses, with a favouring for the tolerogenic 

state. In contrast to breast skin, foreskin steady-state LC followed trajectories to all 3 states, with a 

great increase in the number of tolerogenic state (57.87%) and immunogenic state LCs (15.2%). This 

observation of increased immunogenic state LCs was consistent with the increased 

immunocompetent and activated transcriptomic profile of foreskin steady-state LCs compared to 

their parallels from the breast observed during DEG analysis in Chapter 5. Breast skin migrated LCs 

displayed similar state profiles to abdominal skin migrated LCs in the unstimulated/TNFa 

stimulated dataset, with the majority of LCs in a dual (59.71%) and tolerogenic (39.42%) state. This 

therefore validates the consistency of model predictions across datasets with similar constituents. 

DEG analysis from Chapter 5 revealed that increased immunocompetency and an association with 

immune effector processes were central to migrated LCs from both skin tissues. However, similar 

to observations in foreskin steady-state LCs, foreskin migrated LCs were specifically associated with 

inflammatory responses. Consistent with these findings were our observations that migrated 

foreskin LCs followed trajectories to all 3 states, with an increased proportion of LCs in an 

immunogenic state (11.76%), similar to what was observed in steady-state foreskin LC. Comparable 

between breast skin and foreskin LCs was the observation that steady-state LC state profiles reflect 

those observed in migrated LC, suggesting that the phenotypes LC exhibit maybe predisposed prior 

to migration.  
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Using model 2, despite the expression of IRF1, IRF4, RELB and MAP3K14 being relatively low in 

steady-state breast skin LCs, the majority of trajectories in model 2 ended in the dual state (52.32%) 

and tolerogenic state attractors (45.28%)(Figure 68C). Predominant tolerogenic (59.13%) and dual 

(40.0%) state were also exhibited by migrated breast skin LCs, similarly suggesting the pre-

disposition of cell states prior to migration like in model 3. However, in comparisons to model 

predictions for unstimulated abdominal skin migrated LCs in which a significant proportion of LCs 

were labelled as being immunogenic, there was absence of a significant population of immunogenic 

state LC in migrated breast skin LCs. Therefore, unlike model 3, the predictions for unstimulated 

migrated LC from breast skin and abdominal skin were not comparable despite the relative 

similarities between tissues and processing. Still, trajectories for foreskin steady-state (14.13%) and 

migrated (9.8%) LC could be observed in the immunogenic state, in line with transcriptomic 

observations that foreskin LC are more immunogenic and inflammatory.  

Overall, application of the toggle-switch model 3, to other LC datasets revealed consistencies in 

model predictions and produced model predictions that were concordant to observations from DEG 

and gene ontology analysis. The toggle-switch model therefore appears to be an effective tool for 

predicting the proportion of LCs displaying immunogenic, tolerogenic or dual phenotypes from 

transcriptomic data. 
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Steady-state breast

2.40%  14 Immunogenic (A)

68.95%  402 Dual (C)
28.64%  167 Tolerogenic (B)

Steady-state foreskin

15.20%  57 Immunogenic (A)
57.87%  217 Tolerogenic (B)
26.93%  101 Dual (C)

Migrated breast

0.87%  3 Immunogenic (A)
39.42%  136 Tolerogenic (B)
59.71%  206 Dual (C)

Migrated foreskin

11.76%  24 Immunogenic (A)
56.86%  116 Tolerogenic (B)
31.37%  64 Dual (C)
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2.40%  14 Immunogenic (A)
45.28%  264 Tolerogenic (B)
52.32%  305 Dual (C)

Steady-state breast

14.13%  53 Immunogenic (A)
46.13%  173 Tolerogenic (B)
39.73%  149 Dual (C)

Steady-state foreskin

0.87%  3 Immunogenic (A)
59.13%  204 Tolerogenic (B)
40.00%  138 Dual (C)

Migrated breast

9.80%  20 Immunogenic (A)
54.90%  112 Tolerogenic (B)
35.29%  72 Dual (C)

Migrated foreskin

A) 

B) 

Figure 68. The optimised LC toggle-switch model can be applied to other single cell datasets of LCs 

to predict LC phenotypes. State space phase plane plot with single LC trajectories plotted from 

steady-state and migrated  breast skin and foreskin derived LCs using models 2 (A) and 3 (B). For each 

LC (line in the phaseplane) X-axis = Z-scores combining IRF1 (and IRF4 in model 3) expression scaled 

between 0-2, Y-axis – Z-scores combining IRF4, RELB and MAP3K14 expression scaled between 0-2.  

Pie charts alongside display numbers and percentages of cells assigned to each state/phenotype. 
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7.3 Discussion 

Single cell transcriptomic analysis and the results from in vitro experimentation, measuring LC 

ability to induce tolerogenic T cell immunity, revealed that LCs extracted through migration were 

better primed for tolerance induction than steady-state LC. However from other studies measuring 

LC immunity, migrated LCs have also been shown to potently induce immunogenic T cell responses 

(Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012)(Klechevsky et al., 2008), indicating 

plasticity of LC function. Such plasticity can potentially be affected by signals from pathogens, 

dangers, and microenvironment. E.g. cytokines within the epidermal compartment are key 

regulators of LC immunological function and determine immune response outcomes. TNFa is a 

powerful proinflammatory cytokine produced by KCs, the structural cells of the epidermis, which 

enhances LC activation and cellular migration (Stoitzner et al., 1999),(Théry and Amigorena, 2001). 

TNF-a also enhances LC capacity to cross-present antigen and prime immunogenic CD8 T cells 

(Sirvent et al., 2020). The conflicting observations using migrated LC in vitro have therefore revealed 

the complexity in discerning the decision-making process of LCs to drive either immunogenic or 

tolerogenic responses. Overall, from published data and our own observations, unstimulated 

migrated LC appear to be primed for the induction of both immunogenic and tolerogenic T cell 

responses. The association of LC migration, during homeostatic conditions, in driving immune 

tolerance to self-antigen, suggests tolerance induction may even be favoured(Hemmi et al., 

2001)(Yoshino et al., 2006). However, under different conditions, such as inflammatory cytokine 

signalling (TNFa), it would be expected that the propensity of LCs to drive either response will 

change. Here, we applied mathematical modelling using a ‘toggle-switch’ system, to a GRN 

depicting the immunogenic vs tolerogenic decision making process in LCs. 

7.3.1 The unstimulated and TNFa stimulated migrated LC population is predominantly 

composed of 3 clusters, defined as being mature, immunogenic and tolerogenic  

Drop-seq analysis of migratory LC compared to steady-state LC in Chapter 3, revealed the migrated 

LC population to be homogenous. Whilst migrated LC have enhanced immunogenic and tolerogenic 

capacity it was therefore unlikely that highly distinct populations promote either immunogenic or 

tolerogenic immune responses. The decision-making process of LC to direct either tolerogenic or 

immunogenic immune response was therefore unclear. Using scRNA-seq we explored whether 

immunogenic stimuli (TNFa) would induce changes in transcriptome expression that would reveal 

divergent programming of tolerogenic and immunogenic states. UMAP dimensionality reduction 

analysis revealed the TNFa stimulated population to be differential to unstimulated migrated LC. 

However, whilst a subpopulation of TNFa stimulated LC could be identified, both unstimulated and 
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TNFa stimulated LC were part of one overall cluster. The genomic programming induced by 

migration was therefore predominant over any changes induced by stimuli. This is consistent with 

our observations that the dramatic changes in genomic programming of LCs that occur during 

migration are fundamental for an enhanced activation state and LC immune potential (Sirvent et 

al., 2020). In this instance, LCs were stimulated post migration and therefore after the migration 

induced genomic programming. Whilst TNFa did modulate LC transcriptomes post-migration, it 

would also be interesting to observe the transcriptomic changes induce when LCs are stimulated 

during the migration process. 

Unsupervised clustering analysis identified 4 subpopulations amongst the combined unstimulated 

and TNFa stimulated population, with the majority of cells categorised into 3 of these clusters. 

Based on marker gene analysis these 3 clusters were categorised as immunogenic, tolerogenic and 

primed LCs. Here, immunogenic LCs were composed of predominantly TNFa stimulated LCs, 

tolerogenic LC were composed of predominantly unstimulated LCs and primed LCs contained a 

relatively equal proportion of both. Consistent with functional studies of TNFa stimulated migrated 

LCs, in which enhanced antigen cross presentation is observed (Sirvent et al., 2020), DEGs 

upregulated in LCs stimulated with TNFa were associated with alpha-beta T cell activation (CD8+) 

and Th1 differentiation, highlighting their increased immunocompetency. Interestingly, a 

consistent observation in TNFa stimulated LCs and immunogenic cluster 1 was the identification of 

genes associated with tolerogenic regulation alongside immunogenic pathways. The simultaneous 

upregulation of both tolerogenic and immunogenic pathways, overall appears counterproductive if 

during the context of inflammatory signalling, immunogenic responses are required. However, 

some tolerogenic associated genes upregulated in TNFa stimulated/immunogenic LC are 

implicated in feedback mechanisms in response to inflammatory pathway activation. SOCS1 for 

example, is implicated in the restriction of TLR signalling, as well as TNFa and IL-1 cytokine signalling 

in immune activated DCs (Gilboa, 2004), whilst DUSP1 functional studies in murine macrophages 

have demonstrated its importance for preventing endotoxin induced shock in response to LPS 

(Hammer et al., 2006). Furthermore, NFKBIA, a component of the IkB complex, is induced by NFkB 

activation and sequesters NFkB induced cytokine production and immune activation (Dorrington 

and Fraser, 2019). During inflammatory signalling the tolerance associated genes upregulated could 

therefore be required for finetuning immunogenicity and preventing overactivation, rather than 

inducing functional tolerance. Furthermore, whilst CD80 and CD86, were included in the tolerance 

associated gene list, equally there association with immunogenic activation in DC is well recognised 

(Lenschow, Walunas and Bluestone, 1996). 

Tolerogenic cluster 2 LC marker genes were specifically associated with negative regulation of 

immune system process, contributed by elevated IDO1 expression, which we have validated as 
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being an important inducer of LC tolerogenic function in vitro. Furthermore cluster 2 LC and all 

unstimulated migrated LCs were absent for the induction of immunogenic (CD8+ and Th1) 

programmes. This overall may lead to dominating tolerogenic responses.  

Immunogenic and tolerogenic LCs appeared to represent LC states primed for opposing immune 

regulation. Cluster 3 primed LCs however were marked by the expression of fundamental LC 

programmes such antigen presentation and ATP metabolism (Romani et al., 2003), which during 

pseudotime analysis, appeared to be capable of following trajectories to both immunogenic and 

tolerogenic LC states. Interestingly, when comparing both cluster 1 immunogenic and cluster 2 

tolerogenic LCs to baseline cluster 3 primed LCs, the predominant upregulated biological pathways 

appeared very similar (regulation of immune system process and response to cytokine). This 

suggested that similar biological pathways are activated during the transition from a primed state 

to an activated immunogenic/tolerogenic state. The overall differences driving the uniqueness of 

immunogenic and tolerogenic clusters may therefore be fairly subtle in the context of the whole 

transcriptome. Of note however were the pathways upregulated in cluster 3 primed LCs in 

comparison to cluster 1 immunogenic and cluster 2 tolerogenic clusters. In comparison to 

tolerogenic cluster 2 LCs, cluster 3 LC DEGs were associated with leukocyte activation processes. 

This difference however was not associated with the DEGs upregulated in primed cluster 3 LCs 

compared to immunogenic cluster 1 LCs. These biological processes were therefore specifically 

downregulated in the transition from primed LCs to the tolerogenic LCs, suggesting finetuning of 

the tolerogenic LC transcriptome for activation of immune pathways that specifically promote 

tolerance. In contrast the biological pathways upregulated in primed cluster 3 LC and 

downregulated in immunogenic cluster 1 LC included ATP metabolism. This again highlights the 

association of metabolic processes with immunological programming of DCs towards tolerogenic 

responses (He et al., 2019)(Wculek et al., 2019).  

During analysis of the genes upregulated in cluster 1 immunogenic and cluster 2 tolerogenic, when 

compared to cluster 3 primed LCs, a significant proportion of genes mutually upregulated were 

identified. This again indicates the presence of a core upregulated programme during the transition 

from a primed state towards tolerogenic and immunogenic LCs. Intriguingly, included in the core 

programme was IDO1. However, similar to the tolerogenic associated genes upregulated in TNFa 

stimulated LC, even IDO1 is induced by inflammatory signalling such as IFNg and LPS, suggesting 

that it is also implicated in feedback mechanism to sequester overactivation (Harden and Egilmez, 

2012)(Curti et al., 2009). Interestingly however, fewer upregulated DEGs were identified during 

comparison of cluster 2 tolerogenic LCs with cluster 3 primed LCs, suggesting that primed LCs are 

more similar and therefore more predisposed to becoming tolerogenic. We therefore postulate 

that without inflammatory stimuli in the steady-state, primed LCs favour trajectories towards 
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tolerogenic states, whilst during inflammatory conditions primed LCs must induce more dramatic 

changes in genomic programming to follow trajectories to a more immunogenic state. 

7.3.2 Utilising a toggle-switch ODE model permitted in silico exploration of the key 

regulators of tolerogenic and immunogenic LC programming  

We utilised an ODE toggle-switch model, in which two TF mediated pathways display auto 

amplification  of their own activity and cross inhibition of the other (Huang et al., 2007). Huang et 

al. previously used this model to investigate the lineage potential of a stable population of bipotent 

cells towards either erythroid and myeloid differentiation pathways, with an intermediate stable 

state. We hypothesised that the model reflected the landscape of LC immune responses, in which 

cells could be categorised into distinct immunogenic and tolerogenic pathway phenotypes/states, 

as well as an intermediate dual phenotype/state, in which both pathways were equally active. We 

set criteria in order to test the model’s accuracy. Firstly, that unstimulated migrated LCs were 

mostly classified to be in a tolerogenic or dual state of activation. This would therefore reflect: our 

observations of tolerogenic T cell responses induced by migrated LC; observations from other in 

vitro studies displaying the induction of both immunogenic (CD8+ and Th2 CD4+) and tolerogenic 

(Treg) T cell responses, and the potential preference for inducing self-tolerance through self-

antigen trafficking in non-inflammatory conditions (Sirvent et al., 2020)(Polak et al., 2014)(Polak et 

al., 2012)(Klechevsky et al., 2008)(Seneschal et al., 2012)(Hemmi et al., 2001)(Yoshino et al., 2006). 

Secondly, an observed increase in immunogenic state LCs after TNFa stimulation, to reflect the 

enhanced transcriptomic profile associated with alpha-beta CD8+ T cell activation identified in 

single cell analysis and observations in vitro, in which improved antigen cross-presentation and 

antiviral immunity is seen (Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012). Finally, the 

proportions of the 3 states in cluster 1 immunogenic and cluster 2 tolerogenic LC, would reflect 

their transcriptomic profiles from gene ontology analysis, which identified preferences for 

immunogenic and tolerogenic responses, respectively. 

Our investigations into the unstimulated and TNFa stimulated migrated LC populations revealed 

that the transcriptomic changes induced by inflammatory signalling were subtle in the context of 

the whole transcriptome. However, unique mechanisms of gene regulation in immunogenic and 

tolerogenic LC clusters could be identified and were therefore underlined by unique TF regulators. 

Exploration of key pathway defining TFs through assessing cluster marker genes, DEG analysis and 

SCENIC regulatory network inference analysis, highlighted IRF1 and IRF4 as being preferentially 

activated in immunogenic and tolerogenic LCs, respectively. In DCs, TLR-9 induced IRF1 induction 

leads to the induction of IFNb and interferon stimulated genes, driving efficient anti-viral immune 

responses (Schmitz et al., 2007). IRF1 activation in macrophages is associated with the polarisation 
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of macrophages towards the pro-inflammatory M1 phenotype (Chistiakov et al., 2018). In fibroblast 

like synoviocytes (FLS), which are implicated in the inflammation in rheumatoid arthritis, TNFa 

mediated induction of IRF1 leads to induction of inflammatory mediators, such as IFNb (Bonelli et 

al., 2019). IRF1 upregulation in TNFa stimulated LCs is therefore in accordance with its association 

with pro-inflammatory and immunogenic activation. In contrast, IRF4 was associated with the 

expression of tolerogenic genes during analysis of migrated breast derived and foreskin LCs, 

including IDO1. Moreover, IRF4 activity has been associated with tolerance and homeostasis 

regulation in LCs, DCs and macrophages. CRISPR-Cas9 knockout of IRF4 in human LCs has associated 

its expression with the suppression of cytokine response and oxidative stress signalling pathways 

(Sirvent et al., 2020). Furthermore, in murine bone marrow DCs from IRF4 knockouts, impaired Treg 

induction, reduced expression of RALDH2 and PD-L2 and increased expression of pro-inflammatory 

cytokines (TNFa and IL-12) are observed in vitro, as well as in vivo observations of impaired priming 

of peripheral tissue Tregs (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). In murine macrophages, 

IRF4 is responsible for downregulating hyperresponsiveness to TLR signalling, with IRF4 knockout 

mice displaying increased IL-12 and TNFa expression, resulting in death by uncontrolled 

inflammation (Honma et al., 2005). In the context of Leishmania major infection, murine IRF4 

knockout DCs displayed increased induction of Th1 cells and the proinflammatory cytokine IL-12 

(Akbari et al., 2014). In silico modelling of the toggle-switch model using just IRF1 and IRF4 to define 

immunogenic and tolerogenic LC however, was insufficient to recapture the immunological 

landscape of LCs that reflects observed phenotypic migrated LC data, as it overproduced the 

number of LCs defined be in an immunogenic state.  

The results from model 1 suggested an imbalance in the model, implying that factors critical for the 

induction of tolerogenic responses were missing. During the optimisation process we considered 

other TFs which could influence immunogenic vs tolerogenic regulation. Interestingly, the majority 

of TFs identified as potential regulators of tolerogenic programming in migrated LCs from Chapter 

5 were not differentially regulated between unstimulated and TNFa stimulated LC, suggesting they 

were core to migrated LC genomic programming and immunocompetency, rather than 

immunotolerance specifically. This assumption was further supported in our control model, in 

which homogenous output of model predictions was observed. However, MAP3K14, otherwise 

known as NIK, the critical inducer of the non-canonical NFkB pathway, was identified as being 

upregulated in cluster 2 tolerogenic LCs. Additionally, in Chapter 5, the functional TF component of 

the non-canonical NFkB pathway RELB, was identified as one of the upregulated TFs associated 

with the tolerogenic programming of migrated LCs, correlating with the expression of several 

tolerogenic genes, especially IDO1. RELB and the non-canonical NFkB pathway are implicated in DC 

tolerance. In steady-state migratory murine langerin+ DDCs, RELB expression is required for self-
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antigen transport and Treg induction(Azukizawa et al., 2011) and in human MoDCs and pDCs, RELB 

is implicated in the induction of IDO1 expression and Tregs (Tas et al., 2007)(Manches et al., 2012). 

Transfer of RELB+ DCs into RELB knockout mice, which have spontaneous allergic airway 

inflammation, also leads to a reduction in chemokines and Th2 cytokines, to prevent lung tissue 

inflammation and damage (Nair et al., 2018). Furthermore, RELB+ DCs, can alleviate systemic 

inflammation in RELB knockout mice, through augmenting Tregs, in an IDO-dependent manner 

(O’Sullivan et al., 2011). Interestingly, the relatively homogenous expression of RELB across both 

unstimulated and  TNFa stimulated LC suggest all LC may be primed ready for activation of 

tolerogenic pathways dependent upon increased MAP3K14 expression. In the context of resolving 

of inflammation, rapid induction of MAP3K14 to activate pre-existing RELB, may swiftly redirect LC 

responses towards tolerance. Inclusion of MAP3K14 and RELB in model 2 reduced the 

overestimation of immunogenic state LCs to be more in line with the model criteria. However, the 

predicted quantities of immunogenic LCs were equal between unstimulated and TNFa stimulated 

LC, with stimulated LCs just displaying an increase of LCs in a dual state and therefore reduction of 

tolerogenic state LCs. Whilst this could imply that the model is unbalanced in immunogenic defining 

TFs, it could also suggest that the determining of increased immunogenic responses is not simply 

mediated by increasing the quantity of LCs in a uniquely immunogenic state, but is induced by 

decreased activity of potently immunosuppressive tolerogenic state LCs. 

When we reviewed the current understanding of LC genomic programming during immune 

regulation, we questioned the exclusivity of IRF4 activation for tolerogenic responses only. 

Observations from human LC single cell RNA-sequencing implicate IRF4 expression with 

immunogenic regulation. Here, IRF4 expression coincides with the programming of antigen 

presentation and cross-presentation pathway genes, as well as the observation that LC maturation 

and immune activation genes are downregulated in IRF4 CRISPR-Cas9 knockouts (Sirvent et al., 

2020). IRF4 expressing DCs, in the context of influenza infection, are required for effective CD8+ T 

cell activation and the alleviation of disease pathology (Ainsua-Enrich et al., 2019). Murine studies 

have also revealed a dependence for DC IRF4 expression in mediating Th2 differentiation (Williams 

et al., 2013). IRF4 therefore appears core to both immunogenic and tolerogenic LC states, which is 

supported by the observation that IRF4 knockout mice are diminished in ability to induce both 

effector T cells and Tregs (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). Additionally, whilst IRF4 

expression was increased in tolerogenic cluster 2 LCs, its expression was well distributed across 

both unstimulated and TNFa stimulated LCs. This could infer that modulation of IRF4 expression 

levels is important in regulating immunogenic vs tolerogenic LC responses. Here, moderate IRF4 

expression in the context of high IRF1 expression would favour immunogenic responses, whilst high 

expression of IRF4 in the context of high non-canonical NFkB activation would favour tolerogenic 
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responses. The inclusion of IRF4 in both immunogenic and tolerogenic arms of the model in model 

3, led to the satisfaction of the model criteria, with a predominance for unstimulated migrated LCs 

to be in a tolerogenic or dual state and an increase in immunogenic state LCs after TNFa 

stimulation. Interestingly, model 3 predicted the majority of both unstimulated and TNFa 

stimulated LCs to be in a dual state. However, in accordance with the close localisation of cluster 2 

tolerogenic LCs and cluster 1 immunogenic LCs in UMAP space, we believe model 3 predictions may 

reflect the overall spectrum of immunogenic to tolerogenic states, in which only the very few cells 

at the extreme ends of the spectrum are classified as uniquely immunogenic or tolerogenic LC. 

Here, the majority of cells are somewhere in the middle, perhaps as stable intermediate states, or 

as LCs at earlier timepoints in their transition to specifically tolerogenic or immunogenic LCs. The 

near absent proportion of LCs in an immunogenic state in migrated LC, was also in line with UMAP 

plotting, in which the immunogenic cluster 1 population was mostly composed of migrated TNFa 

stimulated LCs, especially at the periphery of the cluster, which may reflect LCs in the most potent 

immunogenic states. Furthermore, in line with the more similar expression profiles of cluster 3 

primed and cluster 2 tolerogenic LCs was the observation of comparable predicted trajectories. 

Whilst primed cluster 3 were phenotypically not defined as immunogenic or tolerogenic and may 

be expected to be in a dual state, the model predictions may reflect the end points for the pathways 

primed LCs are undertaking. 

Overall, utilisation of scRNA-seq data for mathematical modelling permitted analyses of the 

immunogenic vs tolerogenic governing GRNs, allowing detailed investigations into LC population 

dynamics, which to our knowledge is previously unexplored. Whilst scRNA-seq allowed single cell 

resolution into exploration of LC phenotypes, it also important to consider how limitations in 

scRNA-seq technologies may affect results. Thus, random drop-outs of transcript detection may 

hinder the accurate identification of LC phenotypes, through absent detection of TFs included in 

the models which define the different states, as well as the detection of other key phenotype 

defining TFs, which were not identified in our analysis. To further validate the accuracy of model 

predictions, the identification of specific markers distinguishing immunogenic, tolerogenic and dual 

state LCs in unstimulated and TNFa stimulated populations could allow each state to analysed in 

vitro. Here, the expression of the immunogenic vs tolerogenic state defining TFs, could be 

confirmed at the protein level. 

7.3.3 Application of the toggle switch model to steady-state and migrated LC datasets. 

captured the same observations from single cell transcriptomic analysis 

To test and validate models 2 and 3, we applied them to the breast skin and foreskin steady-state 

and migrated LC datasets to see if the model predictions matched observations from single cell 



Chapter 7 

259 

transcriptomic analysis. In model 3 we found that the unstimulated migrated LCs from both 

abdominal and breast skin datasets displayed the same profile of the 3 states, demonstrating the 

consistency of the model’s predictions. However, comparison between abdominal and breast skin 

migrated LCs for model 2 predictions however revealed differences in output. Whilst, this suggests 

lack of translatability of model 2 to other datasets, we must also consider that this may be a result 

of heterogeneity between samples and tissues. Interestingly, in both models, steady-state LCs were 

observed to have very similar profiles to migrated LC, which suggested that the preference of LCs 

to be in each state may be predetermined prior to migration. However, we acknowledge that the 

low expression of the model’s TFs in steady-state LCs, may influence the accuracy of these 

predictions. Consistent with our observations during comparison between steady-state and 

migrated breast skin and foreskin LC transcriptomes (Chapter 5), in which foreskin LCs display 

enhanced inflammatory profiles, was the fact that both models revealed an increase in the number 

of immunogenic state LCs in foreskin data simulations. This increased number of LCs assigned to an 

immunogenic state in foreskin LC simulations similarly reflected the increase observed in TNFa 

stimulated LCs, thus supporting the reporting of the foreskin to be a pro-inflammatory tissue 

marked by elevated pro-inflammatory cytokines (Prodger et al., 2012). Interestingly, in both 

foreskin LC populations, both models predicted that a larger proportion of LCs were in a tolerogenic 

state compared to breast skin LCs. This difference may reflect the finding that IDO1 expression was 

increased in foreskin populations compared to breast skin populations, respectively (Chapter 5). 

Foreskin LCs therefore represent a population more defined by uniquely immunogenic and 

tolerogenic states compared to breast and abdominal skin, which may reflect a distinct 

immunological role at the foreskin not required in other skin tissues.  

Overall, we have highlighted the complex transcriptomic regulation that underlines the LC decision 

making process to initiate either immunogenic or tolerogenic immunity. Through single cell 

transcriptomic analysis and mathematical modelling, we have revealed that subtle changes in 

genomic programming may be sufficient to alter LC immunological responses. Here, we have shown 

that external signalling, such as pro-inflammatory TNFa, can modulate the proportion of LCs in 

different immunological states. This may therefore reflect how LCs balance the need for different 

immunological responses to diverse biological stimuli. Furthermore, we have highlighted specific 

TF regulators critical for the modulation of both immunogenic and tolerogenic LCs states, which 

when translated into a mathematical model, we have demonstrated has the potential to predict LC 

phenotypes across different LC transcriptomic datasets.





Chapter 8 

261 

Chapter 8 Final discussion/future work 

8.1 The requirements for systems immunology methods to understand 

LC tolerance regulation 

Despite LCs being the most studied antigen presenting cell populations, since their discovery by 

Paul Langerhans in 1868, their biological role in the immune system is still obscure (Valladeau and 

Saeland, 2005). LCs can be classified somewhere in-between classical DCs and macrophages, due 

to powerful antigen presenting capacity and distinct ontology, respectively (Doebel, Voisin and 

Nagao, 2017). Their specific residence at the epidermis, in the context of the skin, suggests a 

fundamental role for LCs here, which cannot be replaced by conventional DCs or macrophages. 

Increasingly, LCs have been critically associated with homeostatic regulation and tolerance (West 

and Bennett, 2018)(Clayton et al., 2017) (Berger et al., 2006)(Mutyambizi, Berger and Edelson, 

2009)(Seneschal et al., 2012)(Hemmi et al., 2001)(Yoshino et al., 2006). However, like tolerance 

regulation in conventional DCs, the precise molecular mechanisms central for tolerance regulation 

in LCs are overall elusive. In this project we therefore sought to expand understanding of LC 

tolerance regulation.  

The challenges that have opposed the unveiling of LCs fundamental role in immunity, are the 

paucity of in vitro models, difficulties in obtaining sufficient cell numbers from tissues for functional 

studies and the discrepancies between human and murine immunology (Mestas and Hughes, 2004). 

These same scientific boundaries have therefore also hampered investigations into DC/LC tolerance 

regulation, specifically. The current theories for how the regulation of DC tolerance is determined 

include the concepts that immaturity equips tolerogenic function, as well as the idea that tolerance 

is promoted by unique subpopulations of DCs within tissues (Banchereau and Steinman, 

1998)(Steinman et al., 2000)(Mellman and Steinman, 2001)(Steinman, Hawiger and Nussenzweig, 

2003). The transcriptomes of cells contain information regarding cell state and function. However, 

classical bulk RNA sequencing methods are unable to evaluate population heterogeneity and 

therefore incapable of assess whether such subpopulations of LCs exist in situ which promote 

diverse immune response outcomes. Furthermore, methods such as flow cytometry in which the 

phenotypes of individual cells can be assessed, are restricted to the investigation of only a select 

number of molecules. In recent years however, the rapidly advancing field of scRNA-seq has given 

unprecedented opportunity for scientists to broadly investigate whole transcriptome expression in 

individual cells across cell populations (Shapiro, Biezuner and Linnarsson, 2013)(Hwang, Lee and 

Bang, 2018). We therefore utilised the open-source system Drop-seq, a highly utilised scRNA-seq 
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protocol due to its speed, reliability and cost effectiveness ($0.10 per cell), with the additional 

advantage of being open to adaption, such as targeted approaches(Constellation Drop-seq, BD 

Rhapsody)(Macosko et al., 2015)(Zhang et al., 2019)(Vallejo et al., 2019)(Shum et al., 2019). 

Alongside the development of scRNA-seq methods, is the expansion of impressive bioinformatic 

methods, including optimised normalisation, dimensionality reduction and clustering pipelines, 

which greatly improve molecular and cellular biological discoveries (Chen, Ning and Shi, 2019). In 

our analyses, we adopted optimised procedures and cutting-edge bioinformatic methodologies to 

comprehensively investigate our research questions. Studies investigating cell states and 

population heterogeneity using scRNA-seq are now widely documented across broad 

immunological fields, including the skin (Villani et al., 2017)(Cheng et al., 2018)(Joost et al., 2018). 

However, to our knowledge this study is the first time detailed scRNA-seq exploration into the 

determinants of LC tolerogenicity have been performed and until now the heterogeneity present 

within human LC populations at both the steady-state and after migration was unknown.  

One of the key advancements transcriptomic analyses has permitted, is the investigations of 

complex GRNs which govern the regulation of specific cellular responses and phenotypes. 

Transcriptomic studies by Ido Amit et al. have demonstrated how dynamic interplay between TFs 

in DC GRNs direct diverse immunological outcomes in the context of pathogen specific responses 

(Amit et al., 2009). Furthermore, from exploring GRN regulation during haematopoiesis, Olsson et 

al. have revealed the hierarchical transition from haematopoietic progenitor cells to monocytic and 

granulocytic lineages (Olsson et al., 2016). Discerning such discoveries on GRN dynamics using 

classic functional in vitro methods would be incredibly challenging, if not impossible, due to the 

sheer number of molecules that would need to be experimentally measured and validated. GRN 

discoveries are therefore critical for informing on transitional cell states and pathways of cellular 

differentiation, at the steady state and under different biological conditions. Additionally, the 

utilisation of single cell transcriptomic data allows investigations into how GRNs are differentially 

regulated amongst cell populations. Hence, in our analysis the exploration of GRNs governing LC 

tolerance appeared fundamental to not only comprehend the distinct feature of LC tolerogenic 

transcriptomes, but also understand how they are regulated amongst the whole population. 

Significant for scientific developments into the interpretation of transcriptomic data, especially 

single cell, are the applications of computational in silico modelling methods. The use of 

mathematical modelling techniques with transcriptomic data has undoubtedly expanded the 

capacity to understand previously obscure biological phenomenon in diverse research fields 

(Eftimie, Gillard and Cantrell, 2016). For example, in studies of GRNs in stem cell biology, the 

capacity to test multiple scenarios/versions of ODE models in silico has informed on the transitional 

pathway dynamics which underpin differentiation of embryonic stem cells to neuroprogenitor 
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cells(Stumpf et al., 2017). In murine bone marrow derived macrophages and fibroblasts, the use of 

ODE modelling and model iteration has also revealed how the regulation of diverse pathogen 

response programmes by TFs (NFkB, IRFs, AP-1) is coordinated, as well as stimulus specific 

durational responses during NFkB activation (Cheng et al., 2017)(Sen et al., 2019). Mathematical 

modelling therefore allows unprecedented opportunity to test diverse hypotheses and unrestricted 

reiterative analyses. In LCs, the power of Petri-net modelling of GRNs for investigating immunogenic 

responses in response to divergent stimuli (TNFa and TSLP) has been shown (Polak et al., 2017). 

ODE modelling has also been used to predict the pathway of LC repopulation from progenitor cells 

in murine models of GVHD (Ferrer et al., 2019). However, until now the utilisation of ODE 

mathematical modelling, to investigate the GRNs mediating the decision-making process between 

immunogenic vs tolerogenic LC regulation, was unexplored.  

Overall, in this project the application of broad cutting-edge scientific methods, such as bulk and 

single cell transcriptomic analysis, functional in vitro experimentation using primary tissues and 

mathematical modelling, allowed wide-spectrum, comprehensive analyses. This allowed us to 

discern the unique transcriptomic programmes underlying DC/LC tolerance; the immunological 

differences between LCs and other DC subtypes; identify critical mediators of human LC tolerance 

and determine the underlying TF regulatory networks which govern the propensity for the 

activation of different LC immune activation pathways.  

8.2 Key findings and main conclusions: 

1. LC tolerogenic transcriptomic programmes are largely distinct compared to other 

DC subtypes 

• MoDC model systems of DC tolerance revealed a lack of a uniform tolerogenic signature is 

induced in the context of tolerogenic stimuli/conditions, other than downregulation of 

inflammatory signalling.  

• LC transcriptomes are largely unique to other tolerogenic associated MoDC and tissue 

derived DC (DDC, PlaDC), with few common tolerogenic associated pathways identified. 

2. Migration and immunocompetency enhance LC tolerogenic function 

• Steady-state LC and migrated LC transcriptomes are distinct, with enhanced tolerogenic 

programming observed in migrated LCs.  

• The heterogeneity exhibited between steady-state and migrated LC populations from 

breast skin derived LCs and foreskin LCs revealed the importance of the tissue 

microenvironment in regulating LC phenotypes.  

• Immunocompetency of LC is critical for the capacity to induce Tregs. 
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• LC induction of Tregs is enhanced in migrated LCs compared to steady-state LCs. 

3. A GRN underpins immunogenic vs tolerogenic LC activation  

• IRF4, RELB (non-canonical NFkB) and IRF1 seem to be the key TF regulating LC 

tolerogenicity vs immunogenicity 

• Subtle changes in genomic programming, determined by an immunogenic (IRF1± IRF4) vs 

tolerogenic (IRF4/MAP3K14/RELB) TF regulatory axis, may alter LC phenotypes to favour 

immunogenic vs tolerogenic responses.  

8.3 The distinct transcriptomics underlying LC immune regulation were 

revealed 

Analysis of MoDC transcriptomes revealed that distinct tolerogenic gene regulation are induced 

under tolerogenic conditions, which we initially postulated could be common across different DC 

subtypes. Whilst tolerogenic MoDC signatures were overall unique, we discovered MYC to be 

consistently upregulated across different tolerogenic conditions (Dex/VitD3, IL-10, MPLA-Dex), 

highlighting it as potential key regulator of DC tolerogenic function. Using the LC IRF-GRN we 

identified a hypothetical co-repressive interaction between MYC and IRF1/IRF4, which when 

incorporated into the model could be shown to control a switch between immunogenic and 

tolerogenic MoDC profiles. Interestingly, in both breast skin and foreskin steady-state LCs, we 

observed an increase in MYC expression and enhancement of the MYC regulon, which contrasted 

migrated LCs that showed increased IRF4 expression and enhancement of the IRF4 regulon. 

Furthermore, MYC and IRF4 were differentially regulated between steady-state and migrated LC, 

respectively. This could therefore suggest that the co-repressive interaction between these TFs is 

present in LCs. However, in CRISPR-Cas9 IRF4 knockout in human LC, changes in MYC expression 

were not detected (Sirvent et al., 2020). Furthermore, our analysis has highlighted a possible role 

of IRF4 in tolerogenic regulation, which has also been demonstrated by others (Vander Lugt, Riddell, 

Aly A Khan, et al., 2017)(Honma et al., 2005)(Akbari et al., 2014)(Sirvent et al., 2020), therefore 

disputing MYC repression of IRF4 expression as a mechanism for tolerance induction in LC. 

Investigations into the presence of this possible co-repression mechanism in MoDCs, through 

CRISPR-Ca9 knockouts, siRNAs or small molecular inhibitors of MYC and IRF4, could reveal if this is 

a mechanism utilised in other DC subtypes. With consideration of our transcriptomic and 

mathematical modelling results, displaying the vast differences between LCs and MoDC 

programming and our understanding of their differing ontologies and in vitro generation, we must 

appreciate that mechanisms of immune regulation in different DC subsets could greatly differ. Our 

analysis overall allowed us to conclude that MoDCs would not be the most applicable model for 

understanding true LC biology, leading us to focus our analysis in the project and in future studies 
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on using primary human LCs. Due to the distinctness of MoDC transcriptomes compared to tissue 

derived DCs, and the distinctness between tissue derived DCs themselves, we would furthermore 

advise caution when universally reflecting MoDC tolerogenic function to conventional DCs. 

Tolerogenic programming of DC is elusive and despite our extensive explorations comparing 

different DC subtype transcriptomic programmes, a consistent tolerogenic signature was not 

identified, thus highlighting the overall complexity of DC tolerance regulation. Strikingly revealed 

from comparative analysis between LCs to other DC subtypes however, were their unique 

transcriptomic profiles, in which LCs displayed preferentially decreased expression of inflammatory 

associated genes. This overall highlighted that the regulation of LC tolerance was likely distinct to 

other DCs. The specific requirements for LC tolerogenic regulation has been speculated to be due 

to their residence in the epidermal skin compartment, which is highly exposed to diverse antigenic 

stimuli and must be responded to appropriately to prevent harmful inflammation (Nestle et al., 

2009)(Clayton et al., 2017). LCs are not the only APCs found within skin however, with DDCs situated 

in the underlying dermis. Confusingly, in substantial studies, LCs seem dispensable for immunity to 

antigen and infectious agents, suggesting that the presence of DDCs in skin is sufficient for 

protecting immune responses (Shklovskaya et al., 2011)(Ritter et al., 2004)(Allan et al., 2003). 

Whilst this may suggest a predominant role for LC tolerogenic responses, skin residing DDCs are 

also linked with tolerogenic function (Haniffa, Gunawan and Jardine, 2015)(Chu et al., 2012). 

However, we revealed that alongside the diverse regulation of the whole transcriptome, the 

expression of tolerogenic programmes varied between LCs and DDC populations, including the 

regulation of IDO1 expression. This therefore implies that whilst tolerance regulation is associated 

with populations from both epidermal and dermal skin compartments, the mechanisms and 

pathways differ, reflecting the divergent homeostatic requirements of each respective tissue. We 

propose that the reasons for different programmes induced in LCs and DDCs from epidermal and 

dermal tissues, respectively, could be due to the extent that they are exposed to external stimuli. 

In the steady-state and when skin barriers are only partially obstructed at the epidermis, the threat 

of pathogenic invasion is minimal and a more regulatory approach coordinated by LCs may be 

required (Doebel, Voisin and Nagao, 2017). Furthermore, the epidermal tissue is more highly 

exposed to abundant and ubiquitous stimuli, highlighting the importance for precise regulatory 

instructions. When both the epidermal and dermal barriers are breached and the threat of 

pathogen invasion is increased, DDCs may need to more extensively switch from a tolerogenic 

steady-state programme to an effective inflammatory programme to prevent establishment of 

infection (van der Aar et al., 2013). This difference in programming is likely influenced by the lifelong 

residence of LCs within the epidermal microenvironment and distinct ontogeny, which conditions 

LCs for certain immunological pathways. Thus, LC tolerance is likely unique and specifically required 
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at epidermal tissues, whilst the mechanisms of DDC tolerance regulation may be more consistently 

observed across conventional DC subtypes. However, similar comparative analysis between DDCs 

and other conventional DC types would need to be performed to validate this. To more 

comprehensively confer the difference between skin DCs at different states to discern key biological 

functions, single transcriptomic datasets containing all known DDC populations and LCs could be 

analysed together, at the steady-state and post-migration. 

8.4 Understanding the roles of steady-state and migrated LC in 

tolerance regulation 

We had originally hypothesised that LCs in the steady-state would be more associated with 

tolerance and would therefore exhibit tolerogenic associated genes within their transcriptomes. 

Reduced inflammatory cytokine expression was consistently observed in LC compared to 

conventional DC subpopulations. Common pathways identified across tolerogenic in vitro DCs,  

tissue derived DCs and steady-state LCs, included negative regulation of response to stimulus, signal 

transduction and cell communication. These pathways therefore reflect a state of active 

immunosuppression to inflammatory or immune activating stimuli in steady-state LC, that could be 

a mechanism for restricting inflammatory signalling pathways at the highly exposed epidermis. 

Current concepts in DC biology include the theory that immaturity and inertia to activation are key 

to DC tolerance (Banchereau and Steinman, 1998)(Steinman et al., 2000)(Mellman and Steinman, 

2001). However, from our in vitro experiments on steady-state LCs, we strikingly revealed that 

immunocompetency is fundamental for LCs ability to induce Tregs. This revelation was more in line 

with several studies of DC tolerance, which highlight the importance of DC maturity (Yamazaki et 

al., 2003)(Kryczanowsky et al., 2016)(Munn et al., 2002). Thus, this implies that for Treg induction 

to occur, LCs must be immunologically active and equipped to physically interact with T cells, whilst 

mediating immunosuppressive processes to downregulate inflammatory signalling. Whilst we 

cannot disagree that in some contexts, DC immaturity is important for T cell tolerance induction, 

the assumption that this is the most defined mechanism for tolerance induction could be opposed 

from our understanding of circumstances in which inflammatory T cells are activated when not 

regulated appropriately by DC. For example, in contexts where DCs are dysregulated and T cells 

response are inappropriately initiated, inflammatory autoimmune conditions, such as psoriasis, can 

occur (Cruz et al., 2018). Furthermore, ablation of LC in mice exacerbates Th2 cytokine production 

in house dust mice allergen (HDM) stimulated T cells, in models of epicutaneous sensitisation 

(Deckers et al., 2017). In the skin, CD103+ resident memory T cells also reside within epidermis 

tissue, primed for responsiveness to reencountered pathogens (Cruz et al., 2018). As epidermal T 

cells are positioned to quickly and actively respond to antigen and mediate inflammation, the ability 
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for LCs to actively modulate T cell activity at the steady-state through immunosuppressive 

influences, suggests the vitalness of this function to prevent unwarranted inflammatory T cell 

activation and thus maintain homeostasis in non-inflammatory conditions. Skin T cells have also 

been shown to support keratinocyte growth and development through insulin like growth factor 1 

(IGF1) production and IL-22 production (Toulon et al., 2009)(Wolk and Sabat, 2006). Active cross 

talk with LC to suppress unwarranted T cell activation may therefore also be critical for upholding 

the epidermal barrier.  

The enrichment of our defined tolerogenic gene programmes was minimal in steady-state LCs and 

as discussed, immunocompetency appeared to be the critical influencer for tolerance induction. To 

further validate the criticalness of immunocompetency and even specific molecules for Treg 

induction, we could perform co-cultures in the presence of co-stimulatory molecule inhibitors. 

Interestingly, inhibition of CD86 or CD80 in human MoDC, can enhance or inhibit Treg activity, 

respectively (Zheng et al., 2004)(Perez et al., 2008). Therefore, inhibition of CD86 expression in LCs 

would determine if it is utilised in a more tolerogenic mechanism, or similarly dispensable for 

tolerogenic function. In comparison to steady-state LCs, migrated LC from breast, abdominal and 

foreskin tissues were consistently observed to be enriched for tolerogenic gene modules, which 

included IDO1, coupled with immunocompetency. We further validated the importance of IDO1 

expression for Treg induction in vitro, in which inhibition of IDO1 decreased tolerogenic potential. 

Performing costimulatory molecule inhibition experiments on migrated LC would therefore reveal 

the dependence of immunocompetency in the context of tolerogenic gene activation (IDO1) for  

effective tolerogenic function. Like the 3-step induction process (MHC, co-stimulation, cytokines) 

(Banchereau and Steinman, 1998)(Cruz et al., 2018) which determines the potency of immunogenic 

activation, we suspect a similar induction process may orchestrate tolerance. Here, co-stimulatory 

molecules CD80 and CD86 may preferentially bind to suppressive CTLA4, instead of CD28, whilst 

the plethora of other tolerogenic ligands and enzymes (e.g. IDO1, HMOX1, LGALS1) may induce a 

dominantly tolerogenic context during interaction between LCs and T cells. Whilst IDO1 was the 

most obvious candidate for tolerogenic regulation from our analysis, we identified several other 

genes upregulated in migrated LC that would be interesting to validate. This included LGALS1, 

HMOX1, ALDH2 and S100A9. Our finding that IDO1 inhibition does not completely aberrate LC 

tolerogenic function suggest these factors are also influential and the identification of similar 

molecular inhibitors or silencers of these molecules would therefore validate this. Overall, a 

resistance to overstimulation alongside an ability to communicate with T cells and promote Tregs 

through immunocompetency appears key for LCs to coordinate tolerance at the steady-state. 

However, whilst tolerogenic function of immunocompetent steady-state LCs was revealed, this was 



Chapter 8 

268 

modest compared to the tolerogenic potential of migrated LC which highly upregulated tolerogenic 

gene programmes, going against our initial hypothesis.  

Our analysis suggests different immunological roles for steady-state LC residing in epidermal tissue 

and LC that have migrated from the epidermis. In line with our observations, we speculate that 

steady-state LCs may be responsible for the maintenance of local tissue homeostasis by inducing 

moderate turnover of Tregs, whilst resisting over activation and the generation of a 

hyperinflammatory state within epidermal tissue. Other key homeostatic functions identified to be 

coordinated by steady-state LC in the epidermis, include clearance of apoptotic cells and 

maintaining barrier integrity during antigen sampling, similar to the functions of tissue resident 

macrophages (West and Bennett, 2018). Hence, this may explain the reduced activity of immune 

effector programmes compared to migrated LC, whose main immunological role is to prime T cell 

responses at the lymph nodes, like classical DCs. Here, migrated LC phenotypical maturity and 

elevated immunocompetency, coupled with the induction of tolerogenic gene modules, may be 

required for priming more powerful tolerogenic T cell responses from naivety in the lymph nodes 

that are sufficient to induce systemic antigen tolerance. To address and validate some of these 

theories, we could perform comparative analysis into the functional tolerance of the LC induced 

Tregs to suppress T cell activation in co-culture. This would therefore reveal if Tregs induced in the 

context of high immunocompetency and tolerogenic stimuli (IDO1) by migrated LC are more potent 

than Tregs induced by immunocompetency alone in steady-state LC. Furthermore, whilst the ability 

of steady-state LC to prime Treg differentiation has been demonstrated, the ability to expand 

epidermal resident memory Tregs was only explored in migrated LC. Resident memory T cells are 

already differentiated towards Tregs and it would therefore be interesting to investigate how 

immunocompetency and tolerogenic factors influence expansion. If the former is the most 

influential on expansion, then steady-state and migrated LC expansion of resident memory Tregs 

could be comparable. This could therefore expose whether Treg expansion by steady-state LCs is 

one of their key roles in maintaining homeostasis at the epidermis. Whilst we have critically 

evaluated the regulation of Treg induction, other divisions of T cell tolerance induction include the 

promotion of T cell apoptosis and anergy (Obregon et al., 2017)(Hasegawa and Matsumoto, 2018). 

T cell anergy and apoptosis of effector populations could therefore be measured after co-culture 

with LCs, through proliferation assays and annexin V staining, respectively.  

Whilst immunocompetency of steady-state LC is critical for Treg induction, how responses are 

deviated away from immunogenic T cell activation without the tolerogenic programming seen in 

migrated LC is unclear. A plausible explanation could be that T cells resident in the epidermis are 

already primed for either regulatory or immunogenic programming. T cells have been observed to 

lose plasticity for polarisation into different phenotypes after a threshold of division, which is 
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believed to be regulated by epigenetic modifications (Grogan et al., 2001)(Kaiko et al., 2008). Thus, 

resident memory T cells in the skin would be expected to be already committed to a specific 

phenotype. Therefore, immunocompetent LCs could simply permit the expansion of T cells already 

primed to a particular state. Instead, the promotion of different T cell response could be overall 

conditioned by the tissue microenvironment, in which most cellular components of skin are capable 

of inducing cytokines and chemokines to modulate immune responses (Ho and Kupper, 2019). Here 

in steady-state contexts, Tregs could be preferentially active and expanded, whilst in inflammatory 

settings, resident immunogenic helper T cell and cytotoxic T cell populations are expanded. In this 

model, steady-state LCs therefore have a role for licensing and propagating already primed T cell 

immunological pathway, rather than actively determining them. 

Our analysis of LC states incorporated investigations at opposite ends of a transitional spectrum – 

steady-state and migration. However, in future studies it would be informative to observe the 

phenotypes of LCs which remain resident within epidermal tissues after the 48-hour tissue culture, 

in which migrated LCs are harvested. Here, we could investigate whether LCs that do not migrate 

and are permanently resident in the epidermis have a distinct transcriptome with unique regulatory 

features. This would also allow us to discern the possibility that the two steady-state epidermal 

populations reflect LCs either primed for residency or migration.  From UMAP plotting, steady-state 

1/ immature LCs were spatially situated closer to migrated LCs. It could therefore be speculated 

that in an immature state, some steady-state LCs are primed for migration, whilst others follow 

separate trajectories to immunocompetent resident steady-state populations. 

Additionally, we revealed that the tolerogenic stimuli dexamethasone augmented LC tolerogenic 

function to induce Tregs, which included enhanced IDO1 expression. Our analysis could therefore 

highlight a specific mechanism by which corticosteroid treatment of skin disease leads to alleviation 

of inflammation. The characterisation of tolerogenic function from human LCs extracted from 

patients with inflammatory skin disease, such as atopic dermatitis, could highlight whether such 

LCs have dysregulated tolerance. The level of IDO1 expression in these cells could furthermore 

highlight the importance of this molecule for tolerance regulation in diseased tissues.  

8.5 The discovery of phenotype specific TFs that coordinate LC 

immunogenic vs tolerogenic responses is critical to understanding 

how LCs regulate immunity 

A key ambition for the project was to discern the logic behind the LC immunogenic vs tolerogenic 

decision making process at the TF GRN level. In vivo analysis of human LC behaviour is unfeasible 
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and as discussed, in vitro methods are constrained. The utilisation of mathematical modelling is 

therefore fundamental to providing the ability to comprehend phenotypic states of LC in situ.  

During unbiased and extensive analyses, we explored the expression of TFs across multiple datasets 

(LC vs other DCs) and utilised scRNA-seq in conjunction with innovative bioinformatic pipelines 

(ScanPy, SCENIC) to uncover phenotype specific TFs. From our scRNA-seq analysis we discovered 

that immunogenic gene regulation correlated with IRF1 induction, whilst tolerogenic gene 

regulation correlated with upregulated IRF4, as well as MAP3K14, the activator of RELB and the 

non-canonical NFkB pathway. IRF1 upregulation by inflammatory TNFa signalling in LC was parallel 

with LPS stimulated MoDCs, clearly associating its expression with immunogenic programming. It 

would therefore be interesting to see if IRF1 expression is upregulated by other inflammatory 

mediators in LCs, to assess its universality of expression during inflammatory activation. Similar to 

CRISPR-Cas9 IRF4 knockout studies in human LC (Sirvent et al., 2020), knockout of IRF1 expression 

in TNFa stimulated LC could therefore reveal which genes are specifically under its control, to reveal 

a core inflammatory LC genomic programme. Inhibition of IRF1 and the inflammatory programme 

it regulates could potentially be a mechanism by which LCs could be reprogrammed for tolerance 

within inflamed skin tissues.  

The interpretation of how IRF4 regulates immunogenic vs tolerogenic phenotypes expression 

across our analyses was less defined, with it clearly being expressed across migrated LC which have 

immunogenic and tolerogenic properties, yet we identified a tolerogenic subcluster which had 

increased IRF4 expression. Our analysis pulled similarities to the results of others who have 

identified immunogenic and tolerogenic response orchestration by IRF4 in DC (Vander Lugt, Riddell, 

Aly A Khan, et al., 2017)(Honma et al., 2005)(Akbari et al., 2014)(Ainsua-Enrich et al., 2019)(Williams 

et al., 2013). Mathematical modelling using the ‘toggle switch’ system model supported a potential 

dual role for IRF4 in both immunogenic vs tolerogenic regulation and we suggest that its expression 

level and context with other TFs is responsible for the switch between the two phenotypes. In 

analysis of MoDCs, both IRF1 and IRF4 were included in the same upregulated programme post LPS 

stimulation. Thus, we propose that when IRF4 is expressed in conjunction with IRF1, 

immunogenicity is favoured. However, other studies have revealed that IRF4 can repress the 

activation of interferon-inducible genes at promoter interferon stimulated response element (ISRE) 

sequences through competitive binding with IRF1 (Shaffer et al., 2009). Therefore, in the steady-

state, with absence of inflammatory stimuli which drive IRF1 upregulation, elevated IRF4 may 

suppress IRF1 activity to promote tolerance. In tolerogenic LC, IRF4 expression correlated with 

MAP3K14 expression and therefore RELB and non-canonical NFkB activation. RELB has been 

observed to bind to IRF4 promoter sequences in DCs (Lehtonen et al., 2005), with evidence for a 

IRF4-non-canonical NFkB positive feedback loop in T cells (Boddicker et al., 2015). Whilst RELB may 
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therefore simply enhance IRF4 mediated tolerogenic programme, the non-canonical NFkB pathway 

is also implicated in DC tolerogenic programming (Tas et al., 2007)(Manches et al., 2012). CRISPR-

Cas9 RELB/MAP3K14 KO in human LC could therefore be performed for comparison with CRISPR-

Cas9 IRF4 Kos (Sirvent et al., 2020) to discern the influence of each factor for LC tolerogenic 

programming.  

With evidence of the critical role for IRF4 in LC genomic programming during migration and 

maturation (Sirvent et al., 2020), the increased expression of IRF4 in tolerogenic LC further supports 

that maturation/immunocompetency is critical for tolerance. However, in steady-state LC the 

expression of IRF4, MAP3K14 and RELB is sufficiently lower, yet immunocompetent LCs exist in the 

population. Whilst in immunocompetent steady-state LCs the expression of IRF4 may be below a 

threshold of detection, it could suggest that there are differing programmes coordinating steady-

state and migrated LC phenotypes, which again would reflect their differing potencies in tolerance 

activation. Whilst conclusions from the ‘toggle switch’ model propose similarities between the 

trajectories of steady-state and migrated LCs, independent steady-state and migrated models could 

be considered and tested in the future.  

Mathematical modelling has been utilised extensively in the study of dynamical systems in 

immunology, including DCs, with variations in model complexity (Eftimie, Gillard and Cantrell, 

2016). A system of 8 differential equations has been used in DCs to explore hypothetical scenarios 

of tumour treatments (e.g. dose timing, site of injections) in a multicompartment system (e.g. 

spleen, blood and tumour), with simulation matching observations from experimental data 

(DePillis, Gallegos and Radunskaya, 2013). Furthermore, the balance between DC regulation of 

immunogenic vs tolerogenic responses has also previously been explored using intricate stochastic 

modelling. However, unlike our ‘toggle switch’ ODE model, this stochastic model does not consider 

different phenotypes of DC, but instead postulates that the balance of effector and regulatory T 

cells in the system, which are homogenously activated by DC, determines immunological outcomes. 

In this model, the initial state of T cells within the system is therefore proposed to be more 

important than the phenotype of DC. Our analysis however identified the versatile nature of LC 

phenotypes which appear undeniably important for immunogenic vs tolerogenic regulation of T cell 

activation. Therefore, whilst the toggle switch ODE model is relatively simple in comparison, we 

believe that consideration of LC states is critically important for determining outcomes of immune 

activation. Future optimisations and expansions of the model to include hypothetical scenarios of 

LC immunogenic vs tolerogenic regulation in the context of T cells in different states could be 

explored. 
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Appendix A Tolerogenic DC gene signatures 

A.1 Tolerogenic DC gene signature 1 

 

 

 

 

 

 

 

 

 

 

 

 

  

PubMed ID 29541071 29375543 29520275 29250057 29535726 28521905 29158348

Author Vendelova et al. 2018 Domogalla et al. 2017 Marin et al. 2018 Obregon et al. 2017 Hasegawa et al. 2018 Horton et al. 2017 Sundblad et al. 2017
ADORA2A CD80 FASL (FASLG) FASL (FASLG) BTLA CD80 LGALS1
ALDH1A2 CD86 HLA-G HLA-G CD80 CD86 LGALS3 

CCL5 FASL (FASLG) HMOX-1 HMOX1 CD86 FASL (FASLG) LGALS9
CD200 HMOX-1 ICOSLG IDO1 FASL (FASLG) IDO1

PD-L1 (CD274) IDO1 IDO1 ILT2 (LILRB1) ICOSL IL-10
CD83 IL-12 IL-10 ILT4 (LILRB2) IDO1 PD-L1 (CD274)

HLA-G IL-6 IL-27 LGALS1 IL-27 TGFB1/TGFB2
IDO1 ILT3 (LILRB4) IL-35 PD-L1 (CD274) ILT3 TRAIL (TNFSF10)
IL2B ILT4 (LILRB2) ILT2 (LILRB1) PD-L2 (PDCD1LG2) ILT4

INHBA PD-L1 (CD274) ILT3 (LILRB4) LGALS9
ITGB8 PD-L2 (PDCD1LG2) ILT4 (LILRB2) PD-L1 (CD274)
OPTN TRAIL (TNFSF10) NOS2 (iNOS) PD-L2 (PDCD1LG2)
RELB PD-L1 (CD274) THBS1

SLAMF1 TGF-beta TRAIL (TNFSF10)
SLAMF7
SOCS2
TGFB2
THBS1
VEGFA

Gene list

1 ADORA2A 21 INHBA

2 ALDH1A2 22 ITGB8

3 BTLA 23 LGALS1

4 CCL5 24 LGALS3

5 CD200 25 LGALS9

6 CD274 26 LILRB1

7 CD80 27 LILRB2

8 CD83 28 LILRB4

9 CD86 29 NOS2

10 EBI3 30 OPTN

11 FASLG 31 PDCD1LG2

12 HLA-G 32 RELB

13 HMOX1 33 SLAMF1

14 ICOSLG 34 SLAMF7

15 IDO1 35 SOCS2

16 IL10 36 TGFB1

17 IL12A 37 TGFB2

18 IL27p28 38 THBS1

19 IL2B 39 TNFSF10

20 IL6 40 VEGFA

Tolerogenic DC signature 1

Table 18. Tolerogenic DC signature 1 compilation from literature reviews.  

Table 19. Tolerogenic DC gene signature 1 gene list. 
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A.2 Tolerogenic DC gene signature 2 

1 ABLIM3 51 EHD1 101 LGMN 151 PTPRM 201 TNFAIP3

2 ACVRL1 52 EMP2 102 LILRB4 152 RAB24 202 TNFRSF21

3 ADI1 53 EPT1 103 LIMK2 153 RASD1 203 TNS3

4 ADRB2 54 ERRFI1 104 LMCD1 154 RASGEF1B 204 TPBG

5 AHCY 55 ETS2 105 LPAR1 155 RBP4 205 TREM1

6 AHI1 56 FAM107B 106 LYRM1 156 RCN3 206 TSC22D1

7 AKR1B1 57 FBLN5 107 LYSMD3 157 RGS16 207 TSPYL2

8 ALDH2 58 FCGR2B 108 MAP3K8 158 RGS2 208 UBE2D1

9 ALOX5 59 FCGR3A 109 MAPK13 159 RIOK1 209 UBE2Q2

10 ANGPTL4 60 FHL2 110 MCL1 160 RND3 210 UGCG

11 ANKRD28 61 FN1 111 MCTP1 161 RNF103 211 VEGFA

12 ARL4A 62 FOLR2 112 ME1 162 RRAD 212 ZBTB5

13 ARRDC3 63 FPR1 113 MERTK 163 RYBP 213 ZFP36

14 BBX 64 FUT8 114 MET 164 S100A16 214 ZFX

15 BCLAF1 65 GADD45A 115 MMP19 165 S100A8 215 ZNF24

16 BNC2 66 GADD45B 116 MPP1 166 S100A9 216 ZNF354B

17 BRD2 67 GCH1 117 MS4A4A 167 SACM1L 217 ZNF462

18 C12orf57 68 GCNT3 118 MSRB2 168 SAR1A

19 C1QA 69 GGH 119 MST4 169 SASH1

20 C9orf72 70 GJA1 120 MTSS1 170 SAT1

21 CCDC59 71 GLRX 121 MYO10 171 SEL1L3

22 CCL8 72 GNG11 122 NAMPT 172 SEMA4B

23 CD14 73 GRAMD3 123 NCF1 173 SEPP1

24 CD163 74 GTF2IRD2 124 NFAT5 174 SERPINB2

25 CD2AP 75 HACE1 125 NFKBIA 175 SERPING1

26 CD55 76 HBEGF 126 NFKBIZ 176 SETD2

27 CD86 77 HDGFRP3 127 NINJ1 177 SH3RF1

28 CDC42EP3 78 HMGB2 128 NLRP3 178 SHE

29 CDS1 79 HPSE 129 NPC1 179 SIRT1

30 CDYL 80 IER5 130 NPL 180 SKIL

31 CLDN1 81 IFITM1 131 NRN1 181 SLC18B1

32 CLDND1 82 IFRD1 132 NUCB2 182 SLPI

33 CLIP1 83 IFT57 133 NUPR1 183 SMPDL3A

34 CTBS 84 IGFBP2 134 ORMDL3 184 SNCA

35 CXCL14 85 IGFBP3 135 P2RY14 185 SNX7

36 CXCL2 86 IGFBP7 136 PAF1 186 SOD2

37 DCN 87 IL6 137 PAPSS2 187 STARD3NL

38 DCUN1D3 88 IMPDH2 138 PDE4B 188 STK17A

39 DDX21 89 IRF8 139 PELI1 189 STOM

40 DHRS9 90 IRX3 140 PGRMC2 190 STX11

41 DNAJA1 91 ITPKC 141 PLK3 191 TAF5L

42 DNASE2 92 JAM2 142 PLXNA2 192 TBPL1

43 DRAM1 93 KANK1 143 PLXNC1 193 TCHH

44 DTNB 94 KCNJ15 144 PMEPA1 194 TFAP2C

45 DUSP1 95 KCTD12 145 PPA1 195 TFCP2L1

46 DUSP10 96 KLF10 146 PPAP2A 196 TFPI

47 DUSP6 97 KRAS 147 PPP1R15A 197 THBD

48 DYNLT3 98 LBH 148 PRKAR2B 198 TIPARP

49 EFNB3 99 LEPREL1 149 PRKCB 199 TMEM2

50 EGR3 100 LFNG 150 PTGS2 200 TMEM45A

Tolerogenic DC signature 2

Table 20. Tolerogenic DC signature 2 gene list. Gene list was composed of the 217 genes which 

were co-upregulated in two or more of the tolerogenic DC conditions (Steady-state LC, PlaDC, 

TolMoDC, IL10MoDC) when each compared to unstimulated MoDC, as explored in Figure 20C, 

Chapter 4. 
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