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Langerhans cells (LC) maintain skin homeostasis through orchestrating immunogenic and
tolerogenic immune responses in steady-state epidermis and at local lymph nodes after migration.
While the mechanisms promoting activation of immune responses has been elucidated, little is
known about the molecular mechanisms underpinning LC induced tolerance. We hypothesised that
heterogeneous human LC populations existed in situ, which specialised in regulation of
immunogenic vs tolerogenic regulation in healthy skin. Within the transcriptome of tolerance
regulating LC, we sought to identify key molecular mediators of tolerogenic programming.

Previously published transcriptomic data containing a wide selection of DC subpopulations,
including LC was analysed. Here, core mechanisms of tolerogenic programming across DCs was
investigated. Overall, LC transcriptomic programming was largely distinct, although common
pathways of suppression of stimuli responsiveness were identified in steady-state LCs.

The Drop-seq scRNA-seq protocol was optimised and implemented on steady-state and
migrated LCs, to explore heterogeneity amongst populations and identify key molecular regulators
of tolerogenic programming. This identified tolerogenic programmes (including /IDO1) to be
upregulated in migrated LCs, alongside enhanced immunocompetent programming compared to
steady-state LCs. The latter populations were split into two subpopulations defined by immaturity
and immunocompetency. Transcription factors (TFs) that correlated with enhanced migrated LC
tolerogenic programmes included /RF4 and RELB.

Using in vitro experimentation, the importance of LC immunocompetency for mediation of
Treg induction was revealed in steady-state LC populations (Immunocompetent/CD86High and
Immature/CD86Low). Furthermore, immunocompetent migrated LCs displayed enhanced
induction of functionally suppressive Tregs. Inhibition of /IDO1 reduced migrated LC tolerogenic
potential, revealing the criticalness of tolerogenic programming for LC tolerogenicity.

Mathematical modelling using TFs identified from analyses thought to control
immunogenic (/RF1xIRF4) vs tolerogenic (IRF4, MAP3K14, RELB) programming reflected
observations from previous studies in which unstimulated migrated LC display both immunogenic
and tolerogenic potential whilst, inflammatory stimuli (TNFa) increases favouring of immunogenic
responses.

Overall, our analysis identified critical mechanisms which equip LCs with tolerogenic
function and revealed potential mechanisms by which immunogenic vs tolerogenic responses are
initiated.
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Chapter 1

Chapter 1 Introduction/Literature review

Our bodies constantly encounter foreign material and stimuli that can be either ‘safe’ or
‘dangerous’ for the maintenance of health. Peripheral locations of the body, such as the skin, which
are continuously challenged by diverse antigen and stimuli, are sites at which the body’s ability to
distinguish ‘safe’ from dangerous’ is essential (Nagl et al., 2002). The immune system has therefore
evolved mechanisms by which appropriate responses are induced. Key to distinguishing between
harmful and non-harmful stimuli are dendritic cells (DCs), professional antigen-presenting cells
(APCs) of the innate immune system which prime, mediate and augment immune responses
(Stockwin et al., 2000)(Lewis and Reizis, 2012). At the human epidermis, the most peripheral layer
of the skin, resides a unique subclass of DC called the Langerhans cell (LC). Interestingly, whilst the
role for LC immune regulation at the skin has been widely explored since their discovery in 1868,
definitive understanding of LC biological function and their vital role at the epidermis is an ongoing

area of research (Valladeau and Saeland, 2005).

1.1 Regulation of the innate and adaptive immune system

The human body’s immune system prevents the establishment of infection from pathogenic agents
such as bacteria, viruses and parasites (Chaplin, 2010). It can be split into two distinct divisions, the
innate and the adaptive immune system, which together provide complete immunological
protection (Figure 1). The innate immune system is characterised by its speed and widespread
activity to target many types of pathogen indiscriminately. The innate immune system includes
various physical, chemical and anatomical barriers, as well as professional innate leukocytes
(Chaplin, 2010)(Madigan et al.,, 2012). Professional innate leukocytes include monocytes,
macrophages, mast cells, neutrophils, eosinophils, basophils, NK cells and DCs. Present in both the
blood and peripheral tissues of the body, innate leukocytes are specialised in mediating rapid
counteractive measures against diverse immunological threats. This includes pathogen scavenging,
ingestion and destruction by phagocytic DCs, macrophages and neutrophils, as well as the
production of potent pathogen killing enzymes and toxins by granulocytes, such as mast cells,
basophils, eosinophils and neutrophils (Savina and Amigorena, 2007)(Madigan et al., 2012). Innate
immune cells also secrete a plethora of cytokines and chemokines, molecules fundamental for
orchestrating inflammation, cell communication and the directing of immune responses (Lacy and
Stow, 2011). Structural cells at the environmental interfaces of the body, such as skin epidermal
keratinocytes (KC) and gut epithelial cells, also provide innate immune function through the

production of antimicrobial peptides and inflammatory cytokines and chemokines (Bernard et al.,
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2012)(Dommett et al., 2005). Cross talk and interaction between innate immune cells and

structural barrier cells are therefore vital to provide efficient protection.

The speed of innate immune cell activity is achieved through the expression of a panel of receptors
which recognise molecular structures conserved across many different microbes (Turvey and
Broide, 2010). These receptors are called pattern recognition receptors (PRRs) and recognise highly
conserved pathogen associated molecular patterns (PAMPs). PRRs include Toll-like receptors
(TLRs), found on cell surface and endosomal membranes and NOD-like receptors, present within
the cell cytoplasm(Takeuchi and Akira, 2010). The most characterised class of PRRs are the TLRs,
consisting of ten different members (TLR1-TLR10). Each member recognises molecular structures
common across broad types of microorganism. TLR4 for example, recognise lipopolysaccharide
(LPS), a cell membrane structure present on all gram-negative bacteria, whilst TLR3 recognises
double stranded RNA, which is produced during viral replication and not usually found within
human cells (Akira, 2003). Once a PAMP has been recognised, innate immune cells initiate pathways

resulting in inflammation and ultimately destruction of the invading microorganism.

Whilst the innate immune system is effective at clearing infectious microorganisms indiscriminately
and rapidly, the adaptive immune response is required in order for the body to develop
microorganism-specific responses and memory. The body is therefore protected from repeated
infections from pathogens that have already been encountered. The adaptive immune response
consists of T and B cells, which differ in their mechanism to clear infection, but are similar in their
capacity to provide specificity and long-term immunological memory and protection. DCs are
critical important for the induction of both B cell and T cell activation and memory. Newly emergent
naive T cells from the thymus differentiate into effector T cell populations after encounter with
antigen presented on major histocompatibility complexes (MHC) by a DC (Pennock et al.,
2013)(Charles A Janeway et al., 2001). T cells can broadly be split into two main classes, CD4 helper
T cells and CD8 cytotoxic T cells. CD4 helper T cells, as their name suggests, assist in the activity and
coordination of the immune response to achieve full effectivity. They produce inflammatory
cytokines that assist in macrophage mediated microbial killing, cytotoxic T cell activity and antibody
production from B cells (Smith-Garvin, Koretzky and Jordan, 2009). CD4 helper T cells can come in
a variety of subtypes that have unique phenotypes and produce different immune response
outcomes. Th1 T cells produce IFNy and IL-2, contributing to intracellular pathogen destruction. Th2
cytokines include IL-4, IL-5 and IL-13, which induce protective responses against parasites. Th17
cells produce larger quantities of IL-17, which leads to the clearance of extracellular pathogens and
are therefore important for protecting areas of the body readily exposed to pathogens, including
the skin (Chakravarti et al., 2009)(Weaver et al., 2013). However, not all immune regulation

pathways induced by CD4 helper T cells results in immunogenic and inflammatory responses.
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Regulatory T cells (Tregs) for example, are critically responsible for dampening immune responses,
preventing uncontrolled inflammation and promoting tolerance to self (Broere et al., 2011). In a
more direct approach to alleviating infection, CD8 cytotoxic T cells actively mediate destruction of
infected or cancerous cells to prevent pathogen replication and the spread of infection or
malignancy. B cells, which emerge from the bone marrow, regulate immune protection through the
production of antibodies. Antibodies are protein complexes which bind specific antigen leading to
immobilisation of pathogens and mediating their inactivation and clearance (Alberts et al., 2002a).
Follicular DCs are fundamental to support germinal centre organisation, in which B cell proliferation
occurs and engage with B cells to prime responses and promote survival (Heesters, Myers and
Carroll, 2014). The trade-off for the specificity that is developed during adaptive immunity is the
amount of time in which it takes to develop. There is therefore a delay in which adaptive immune
responses are activated after the initial infection. Protection during this period is provided by the
rapid responses of the innate immune system. After the adaptive immune response develops, it
supports the innate immune response and ultimately leads to clearance of infection and long term
memory against particular pathogens to prevent reinfection (Alberts et al., 2002b). The combined
power that both divisions of the immune system provide in protecting our bodies form infection,
demonstrates why the ability to link the activation of both responses, through DC activity, is

fundamental for health.

Mast cells
B cells
Dendritic cells

- @
4

Macrophages S
'
V4
I
Granulocytes T cells
' NK cells
Innate Immune Response Adaptive Immune Res.

Figure 1. DCs bridge the gap between innate and adaptive immunity. Innate immune cells (left)
include macrophages, mast cells, NK cells, Granulocytes (Neutrophils, Basophils, Eosinophils) and
DCs. DCs are antigen presenting cells and can mediate the activation of adaptive immunity, which

induces the activation of B cells and T cells (right).
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1.2 DC regulation of immunity

DCs are unique components of the immune system, as they are critically responsible for linking
innate immune responses to the activation of adaptive immune responses (Figure 1). Whilst
macrophage and B cells are also classed as APCs, DC antigen presenting capabilities are the most
potent, providing unparalleled capacity to initiate adaptive immune responses (Steinman, 1991).
Furthermore, DCs appear to be the most equipped innate immune cell for PAMP recognition, as
the broadest range of PRRs are expressed on their surface (Kaisho and Akira, 2001). For antigen
presenting function, DCs must be able to engulf extracellular structures once recognised and are
therefore equipped with endocytic, phagocytic and macropinocytotic function (Savina and
Amigorena, 2007)(ten Broeke, Wubbolts and Stoorvogel, 2013). Within DCs, captured extracellular
complexes are transported within cytoplasmic endosomes and phagosomes (Banchereau and
Steinman, 1998). Inside the cytoplasmic compartments, proteases cleave the antigen into peptides,
which can then be incorporated onto MHC, which are transported to the cell surface via exocytosis
for presentation to T cells (ten Broeke, Wubbolts and Stoorvogel, 2013). MHC complexes are
essential for the activation of adaptive immune responses because T cells cannot recognise antigen

in its unprocessed and unpresented form (Banchereau and Steinman, 1998).

T cells interact with MHC complexes via surface T cell receptors (TCRs), which are fundamental for
their ability to recognise antigen and become activated. Individual naive T cells during development
in the thymus are equipped with TCRs specific for certain MHC and antigen complex structures.
After engagement of TCR and MHC complexes, T cell clonal amplification occurs leading to the
production of large numbers of T cells able to clear infection (Zhan et al., 2017). The diversity of
TCRs that allows them to recognise the huge array of different antigen and MHC complex structures
which can occur, is a result of V(D)J recombination (Clambey et al., 2014)(Charles A Janeway et al.,
2001)(Madigan et al., 2012). Here, the many non-contiguous gene segments which code for the
TCRo. and TCRP chains are genetically recombined in various ways, which along with editing of
individual nucleotides at joining regions, leads to the generation of an estimated 10% different

heterodimeric TCRs (Nikolich-Zugich, Slifka and Messaoudi, 2004).

MHC come in class | and class Il forms, which differ in their structure, presence on different cell
types, the origin of the peptide antigens they present and the class of T cell they interact with
(Wieczorek et al., 2017)(Madigan et al., 2012). MHC Il are heterodimeric structures composed of a
and B chains expressed form the MHC Il gene region. Whilst MHC | are also heterodimers, they are
composed of a single MHC gene region expressed protein, the class | a chain, which is attached to
B-microglobulin (Madigan et al., 2012). MHC | complexes classically interact with CD8 T cells, whilst

MHC Il complexes typically interact with CD4 T cells. MHC | present antigens from an intracellular
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origin and can be expressed by all nucleated cells in the human body. MHC | interaction with T cells
frequently occurs due to virally infected cells presenting viral antigen on cell surface MHC |, to
induce both cell and virus destruction. In contrast, MHC Il present antigen from an extracellular
origin and therefore its expression is predominantly restricted to professional APCs, such as DCs.
MHC Il interaction however can steer T cell immune responses to either an activated or inhibitory
state, as well as controlling the potency of these responses (Steinman, Hawiger and Nussenzweig,
2003). Efficient activation of T cells by DCs occurs via a combination of 3 signals (Figure 2). The first
signal occurs through initial MHC Il and TCR interaction. This alone however is not enough to prime
T cell activation. In response to PAMPs, DCs initiate a critical transition from immaturity to maturity,
with an increase in costimulatory molecules and cytokines being produced to prime them for
adaptive immune response activation (Banchereau and Steinman, 1998)(Lépez, Yount and Moran,
2006). The second signal of activation therefore comes through co stimulatory molecules expressed
on DC surfaces. Costimulatory molecules include CD80 and CD86, ligands for both CD28 and CTLA4
receptors on T cells. Costimulatory molecules are important for controlling both the strength and
outcome of T cell immune response. Interaction between CD80/CD86 and CD28 for example, leads
to T cell activation, whereas in contrast, interaction with CTLA4 leads to T cell inhibition (Hubo et
al., 2013). The increase in CD80/CD86 molecules induced by DC maturation is crucial for inducing
immunogenic T cell responses, as at low levels, overriding tolerogenic ICOS signalling induce stable
IL10R expression, the receptor for anti-inflammatory IL-10 (Hubo et al., 2013). The third signal
comes from cytokines, that influence cellular activity. In the context of T cell and DC interaction,
CD40L interaction with CD40 on DCs, induces the production of inflammatory cytokines, including
IL-12, that mediate Th1l and CD8 cytotoxic T cell immune responses, as well as promoting T cell
survival (Habib et al., 2007)(Lapteva et al., 2007)(Henry et al., 2008)(Banchereau and Steinman,
1998). In summary, the regulation of DC mediated adaptive T cell immune response activation is a

multi-step process which allows specificity and tight regulation.

Critical for interactions between DC and T cells to occur is DC ability to migrate out of peripheral
tissues to local lymph nodes. Progenitors or newly differentiated DCs circulate in the blood and can
be summoned to target peripheral tissues at which antigen acquisition can occur. After antigen
encounter and to initiate novel adaptive immune responses, DCs must the extricate back into the
bloodstream to carry the antigenic cargo to the lymph nodes for interaction with naive T cells
(Alvarez, Vollmann and von Andrian, 2008)(Figure 2). Fundamental to trafficking ability is the
detachment of cellular connections, cellular motility and the expression of CCR7, a chemokine
receptor for CCL19 and CCL21, which homes DCs to the lymph nodes (Alvarez, Vollmann and von
Andrian, 2008)(Hampton and Chtanova, 2019).
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The ability to tightly regulate the induction and outcome of MHC interaction with T cells is an
important feature of DCs, as not all extracellular antigens they process and present are from
harmful sources (Steinman, 2007). In the context of the skin for example, antigens encountered
here can be derived from both pathogenic and commensal microorganisms, as well as noxious
chemicals and inert materials, thus highlighting the requirement for diverse immune response
outcomes (Clayton et al., 2017)(Doebel, Voisin and Nagao, 2017). It is well established that in
response to self-antigens or antigens from ‘non-harmful’ sources, DCs downregulate inflammatory
immune responses in favour of promoting immunological tolerance (Steinman, Hawiger and
Nussenzweig, 2003)(Steinman et al., 2003). Maintenance of self-tolerance is fundamental for
immune homeostasis and the prevention of uncontrolled destructive autoimmunity. Thus,
mechanisms controlling self-tolerance in the body derive from two regulatory levels in which DCs
are indispensable: central tolerance and peripheral tolerance. Critical in mechanisms of DC induced
tolerance are Tregs, the immunosuppressive subclass of T cell. In central tolerance, DCs inspect the
pool of developing T cells within the thymus for self-reactivity (Banchereau and Steinman, 1998).
Here, along with medullary thymic epithelial cells (MTECs), migratory DCs can present a panel of
self-antigen to T cells. Any T cells possessing TCRs with high affinity to MHC self-antigen complexes
are induced to undergo apoptosis (Audiger et al., 2017)(Ardouin et al., 2016). The second layer of
protection, peripheral tolerance filters out any self-reactive T cells which escape deletion within the
thymus and also promotes tolerance to newly acquired antigen attained by DCs at the periphery of
the body (Ardouin et al., 2016). In cases when autoreactive T cell interact with self-antigen
presenting DCs, Treg differentiation or the induction of T cell apoptosis can occur. Tregs are
distinguished by CD25 expression and the activity of the FOXP3 transcription factor(Paust and
Cantor, 2005). Tregs are equipped to down regulate inflammatory immune responses through the
inactivation of inflammatory Th1, Th2 and Th17 T cell responses (Ohkura, Kitagawa and Sakaguchi,
2013). For example, the production of anti-inflammatory cytokines IL-10, IL-35 and TGFf3, can
induce tolerogenic conditions, whilst the release of perforin and granzyme can actively destroy
effector T cells. Furthermore, high CD25 expression leads to IL-2 consumption that starves other T
cells, preventing activation (Schmidt, Nino-Castro and Schultze, 2012). Without DC mediated
tolerogenic responses, the body loses its ability to distinguish between self and non-self, leading to
inflammatory responses and autoimmune disease. The importance of DC tolerogenic responses is
highlighted in mice studies, where induced DC depletion results in autoimmune disease and
uncontrolled Thl and Th17 responses (Audiger et al., 2017). Also, dysregulated DC immunogenic
responses in systemic lupus erythematosus (SLE), driven by augmented type 1 interferon signalling,
promotes autoreactive T cell proliferation and loss of tolerance (Mbongue et al., 2014).
Furthermore, the importance Treg induction for the prevention of autoimmunity is seen in

immunodysregulation polyendocrinopathy enteropathy X-linked (IPEX) syndrome, in which
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mutation of the FOXP3 gene leads to fatal systemic autoimmune disease (Paust and Cantor, 2005).
Tolerogenic responses are particularly critical at the mucosal surfaces and environmentally exposed
sites like the skin. In the gastrointestinal tract or lungs of children, tolerance to most food antigen
and aeroallergen develops through age, although lack of tolerance to these antigens can lead to
potentially lethal allergic responses (Kucuksezer et al., 2013). Allergen specific immunotherapies,
in which allergic patients are exposed to minor amounts of antigen that can be delivered
subcutaneously, sublingually or epicutaneously, have been utilised to train and tolerise the immune
system, with the role of Tregs in this process emphasised (Kucuksezer et al., 2013). However,
dysregulated tolerance which occurs in tumour microenvironments leads to enhanced disease and
metastases, due to the evasion of immune surveillance. Here, the release of immunomodulatory
molecules such as IL-10, TGF-[3 and IDO1, promotes tolerogenic DC differentiation and absent anti-
tumour responses (Fricke and Gabrilovich, 2006). Intriguingly, specific ‘immune privileged’ sites in
the body, such as the hair follicles, brain, corneal tissue and placenta, are characterised by increased
tolerogenicity, mediated partly through the restriction of APC function (Bertolini et al., 2020).
Additionally, ‘immune privilige’ in the gut lumen, promoted through the secretion of
immunomodulatory molecules that preferentially promote tolerogenic responses are critical to
mediate tolerance to hugely diverse luminal antigen and microbiotic flora (lweala and Nagler,

2006).
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Figure 2. DC migration to the lymph nodes mediates diverse T cell responses. During maturation,
DC migrate out of peripheral tissues towards the lymph nodes. Here, antigen in MHC complexes
expressed on DC surfaces interact with TCRs on T cells. Depending on the expression of co-
stimulatory molecules (CD80/CD86-CD28/CTLA4) and cytokines, T cells can be differentiation
towards immunogenic CD4 helper T cells (Thl, Th2 and Th17) and CD8 cytotoxic T cells or

immunosuppressive Tregs.

The ability of DC to induce both inflammatory and tolerogenic immune responses has created
speculation as to how immune response outcomes are decided. Currently there are varying theories
hypothesised and divergent results from functional studies as to what critically regulates DC
tolerogenicity. Initially proposed by Ralph Steinman, is the theory that the status of DC activation
is the most critical factor which determines DC immune responses. Here, immature DCs are
anticipated to be responsible for mediating tolerance and defining ‘self’, through steady-state
trafficking and self-antigen presentation to T cells to suppress their activation. They then lose
tolerogenic capacity and become immunogenic after maturation (Steinman et al,
2000)(Banchereau and Steinman, 1998)(Steinman et al., 2003)(Mellman and Steinman,
2001)(Audiger et al., 2017). However, the priming of tolerogenic immune responses by mature DC
has been demonstrated in numerous studies. Antigen loaded DC ability to stimulate CD4+CD25+ T
cells correlates with increased maturation (Yamazaki et al., 2003). Furthermore, CD83"8"CCR7+HLA-
DR"e" |L-10DC are phenotypically mature and can induce more highly suppressive Tregs than those

induced by phenotypically immature CD83'°"CCR7-HLA-DR"" IL-10DC (Kryczanowsky et al., 2016).
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Additionally, the expression of tolerogenic mediators (indoleamine 2,3-dioxygenase, IDO) by
phenotypically mature human CD123+ monocyte derived DCs (MoDCs), potently inhibit T cell
proliferation in vitro (Munn et al., 2002). Alternatively, Steinman also proposed that DC populations
are heterogenous with sub populations of DCs dedicated towards either immunogenic and
tolerogenic responses which could be influenced by residency or migratory capacity (Banchereau
and Steinman, 1998). Specific subpopulations of DC attributed to tolerance regulation have been
identified across different tissues. In the spleen, CD11c*°*"CD45RB"€" DCs display enhanced Treg
induction through IL-10 production, in comparison to CD11c"€"CD45RB" DCs, which are highly
primed for immunogenic Th1 responses through IFNy production (Wakkach et al., 2003). A specific
CD103" expressing DC population in the gut are also strongly associated with tolerance regulation
(Scott, Aumeunier and Mowat, 2011)(Coombes and Powrie, 2008). Furthermore, in the dermis,
specific CD141+CD14+ subpopulations of dermal DCs (DDCs) are attributed to tolerogenic
mechanisms, such as Treg induction and IL-10 production, which suppress pathology induced in
mouse models of allogenic induced inflammation (Haniffa, Gunawan and Jardine, 2015)(Chu et al.,

2012).

Skin, and in particular epidermis, its outermost layer, is a site critical for maintenance of peripheral
tolerance. However, it is not fully understood how the immune homeostasis is controlled in human
epidermis. LCs are a unique population of DCs residing in this compartment, capable of inducing
both immunogenic and tolerogenic responses. Therefore, we set to investigate what molecular

mechanisms allow human LCs to promote immune homeostasis.

1.3 LC characteristics and ontogeny

The DC family consists of conventional DCs, plasmacytoid DCs (pDCs), monocyte-like DCs and LCs
(Collin, McGovern and Haniffa, 2013). LCs are unique to other DC types in that they exclusively
colonise the skin epidermis, as well as the foreskin, oral and vaginal epithelium(Hussain, Lehner and
Thomas, 1995)(Zhou et al., 2011)(Lombardi, Hauser and Budtz-Jorgensen, 1993). LCs are widely
conserved across the skin of mammals, birds and reptiles(Doebel, Voisin and Nagao, 2017). Like
other DC types, LCs are characterised by their ability to process and present antigen for initiating
adaptive immunogenic T cell responses, as well as homeostatic regulation and tolerance. First
described by Paul Langerhans in 1868, LCs were initially believed to have a role in the nervous
system due to their long cellular projections (Kashem, Haniffa and Kaplan, 2017). In the 1970s, their
immunological role was first described, with the finding that they express immune receptors and
have the ability to activate T cell responses through antigen presentation (Katz, Tamaki and Sachs,
1979)(Rowden, Lewis and Sullivan, 1977). LCs are however distinguishable from other DC subtypes

through unique gene expression and developmental origin.
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LCs can typically be distinguished from other DC types due to high co-expression of CD1a and the
C-type lectin receptor CD207, or langerin (Romani, Clausen and Stoitzner, 2010)(Collin, McGovern
and Haniffa, 2013). In human LCs, CD207/langerin is specifically found on LCs, whilst dermal DC
subsets expressing CD207/langerin can also be observed in mice (Doebel, Voisin and Nagao, 2017).
Within the cytoplasm of LCs, CD207/langerin form tennis racket shaped organelles called Birbeck
granules, which are uniquely found in LCs. Although these organelles are believed to play a role in
antigen capture and the endosome pathway, their definite role and importance for LC function is
largely unknown (Kissenpfennig et al., 2005)(Mc Dermott et al., 2002). Like other DC types, LCs
express high levels of the MHC Il receptor HLA-DR, key to peptide antigen presentation function
(Collin, McGovern and Haniffa, 2013). The structurally similar CDla also conveys antigen
presentation function, although specifically for lipids (Amagai, 2016). LCs are therefore well

equipped to process and present antigen from a variety of sources they encounter at the epidermis.

Whilst conventional DCs arise from bone marrow precursors, the developmental origin of LCs is
debated with discrepancy between studies. Early studies on LC ontogeny propose a bone marrow
precursor is responsible for LC population maintenance, which is supported by in vitro studies
showing LC differentiation from the myeloid and lymphoid CD34+ haematopoietic progenitor cells
(Katz, Tamaki and Sachs, 1979)(Caux et al., 1999). However, influx of leukocytes is infrequently
observed in the steady state uninflamed epidermis (Chorro et al., 2009). Furthermore, LCs develop
entirely independently of the cytokine receptor FMS-like tyrosine kinase-3 (FIt3), supporting
evidence for a developmental origin different from conventional DCs (Deckers, Hommad and Hoste,
2018). Interestingly, clinical studies involving human monocytopenia patients, who lack
conventional DC populations, show no changes to LC or macrophage populations (Bigley et al.,
2011). Thus, other studies propose a LC progenitor residing in the epidermis that maintains the
population throughout life with self-replicating capabilities, a property similar to tissue resident
macrophages (Hoeffel et al., 2012)(Collin and Milne, 2016). Supportive of self-replicative capacity
is the observation that BrdU labelled human LCs transplanted onto mice increased by ~70% 5 days
post transplantation (Czernielewski and Demarchez, 1987). Also, after human hand transplantation,
LCs of donor origin have been shown to be maintained in the allograft four years post-
transplantation (Kanitakis, Petruzzo and Dubernard, 2004). Instead LCs are believed to follow a
similar ontogeny pathway to tissue resident macrophages (Ginhoux and Merad, 2010)(West and
Bennett, 2018)(Kaplan, 2017)(Doebel, Voisin and Nagao, 2017). During early embryonic
development it is proposed that an initial wave of myeloid progenitors from the yolk sac seed the
epidermis, establishing a population of resident LCs. Later on in embryonic development, LCs
derived from monocytes of the foetal liver become the dominant population at the epidermis

(Hoeffel et al., 2012)(Merad et al., 2013). Supporting murine studies of LCs during neonatal
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development show that LC seeding of the epidermis occurs prior to birth. Two days after birth, mass
expansion of the LC population is observed with LC turnover still occurring even one week after
birth (Chorro et al., 2009). Phenotypically and ontogenically, LCs therefore appear situated
somewhere in between classical DCs and macrophages, with potent antigen presentation and
migratory capacity similar DCs, but ontogeny, self-renewal and tissue residency features similar to
macrophages (Doebel, Voisin and Nagao, 2017)(Deckers, Hammad and Hoste, 2018)(Figure 3).
Environmental factors however also heavily influence LC origin and constitution. In severe
inflammatory settings for example, LCs can derive from blood monocytes to replenish and support
the tissue resident LC population (Seré et al., 2012). Murine graft versus host disease (GVHD)
models, in which the resident LC population has been destroyed, show reconstitution from
monocyte precursors that over time become indistinguishable to embryo derived LCs (Ferrer et al.,
2019). Overall, the unique features of LC gene expression, development and residence suggest they
have a niche role specifically required at the epidermal environmental interface, unparalleled by

other DC types and macrophages.

Macrophage

+ Ontogeny pathway Dendritic cell

from yolk sac and
foetal liver
progenitors

» Potent priming of
adaptive immunity

* Migration between
tissue and lymph
nodes

» Self-renewal
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Figure 3. LCs share similarities to both macrophages and DCs. LCs share several qualities similar
to macrophages, including ontogeny pathway, ability to self-renew themselves without relying on
bone marrow precursors and long-term residency within tissues. However, like DCs, they have
high capacity for antigen processing and presentation to prime adaptive immunity and can

migrate from the peripheral tissues to the lymph nodes.
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1.4 Skin biology and regulation of LCs

The skin is the largest organ of the human body, providing protection from damage and infection
as well as forming a sensory interface with the external environment. As discussed, the human
immune system consists of innate and adaptive arms of immunity. Immediate and non-specific
innate protection from pathogen infection is provided by the physical barriers of the body, such as
the skin (Turvey and Broide, 2010). Skin can be divided into 3 layers, each equipping the organ its
protective and sensory abilities. The cushioning subcutaneous layer of fat is covered by the dermis,
which is largely composed of connective tissue, with an array of interspersed immune cells,
including dermal DCs (DDCs), lymphocytes and macrophages (Di Meglio, Perera and Nestle, 2011).
The most superficial layer of the skin, the epidermis, is constituted by a thick epithelium of KCs with
interspersed LCs and melanocytes. The epidermis contains 4 distinguishable layers. From the most
basal layer outwards, the epidermis is constituted by the stratum basale, stratum spinosum,
stratum granulosum and the stratum corneum, with each layer comprising KCs in different stages
of differentiation (Di Meglio, Perera and Nestle, 2011)(Baroni et al., 2012). The most superficial
layer, the stratum corneum contains corneocytes, terminally differentiated KCs which provide a
thick barrier to the external environment. The dry acidic environment of the stratum corneum also
restricts microbe residence (Elias, 2007). Between the tightly packed KCs, LC protrude dendritic
extensions to increase their capacity for antigen capture (Heath and Carbone, 2013). Within the
epidermis, LC frequency is low, constituting just 2-5% of the total cell population (Deckers, Hammad
and Hoste, 2018)(Seré et al., 2012). In the steady-state, LC turnover in the skin is also incredibly
slow, with around 1-2% replicating at any given time (Ginhoux and Merad, 2010). Despite this, LCs
likely stand as the most peripheral sentinels of the body and are therefore responsible for initiating
the bodies first response to invading pathogens at the skin. Antigens encountered by LCs not only
originate from invading microbes, but also molecular structures from apoptotic cells (Mutyambizi,
Berger and Edelson, 2009). LCs are therefore important regulators of immunological self-tolerance

to suppress inflammatory responses.

The human skin is a very active immune organ due to its exposure to a diverse variety of both
harmful and non-harmful antigenic stimuli in the environment (Nestle et al., 2009). This includes
factors from both the external environment (UV radiation, microbes, chemicals and medicines) and
epidermal microenvironment (nutrients, cytokines, chemokines and danger signals), with the
resulting signalling environment therefore incredibly complex (Clayton et al., 2017)(Figure 4). After
encountering antigen, LCs must adopt the most appropriate response to its source, either
immunogenic or tolerogenic responses. The highly influential effects tissue microenvironments
have on cellular transcriptomes has been described in mouse macrophages, where macrophage

populations from different tissue compartments display distinct gene expression programmes
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(Lavin et al., 2014). The signalling context within epidermal tissue therefore likely profoundly

shapes LC behaviour and immunological outcomes.
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Figure 4. LC regulation of immune responses is determined by the external microenvironment and
epidermal microenvironment. In the epidermis, LCs transduce signalling from both the external
environment (e.g. UV radiations (UVR), microbes, chemicals, cosmetics and medicines) and epidermal
microenvironment (Danger signals, cytokines, chemokines and nutrients). Depending on the context
of the signalling they encounter (harmful or safe), LCs can mediate either immunogenic or tolerogenic

responses to maintain tissue homeostasis.

1.5 LC immune activation

Consistent with the initiation of immunity by conventional DCs, adaptive immune responses
initiated by LCs against pathogens begin after engagement of PRRs with PAMPs expressed by
epidermal microbes (Deckers, Hommad and Hoste, 2018). After antigen capture and maturation,
LC cease to phagocytose and instead upregulate expression of T cell stimulatory molecules (Reis e
Sousa, Stahl and Austyn, 1993)(Clayton et al., 2017). This primes LCs with the capacity to induce T
cell immune responses, before beginning the migration process to local lymph nodes (Banchereau

and Steinman, 1998). For migration to occur, connections to neighbouring KCs are broken through
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down regulation of the adhesion molecule E-cadherin (Cumberbatch, Dearman, Griffiths, et al.,
2000). The migration process out of the epidermis is indicated to be a critical process to induce full
LC activation. Meta-analysis performed by us (Clayton et al 2017.), of enzymatically digested LC at
the steady state and LCs left to migrate out of epidermis fragments in culture, identified distinct
gene expression programmes of each state. Migrated LCs were characterised by an increase in
antigen processing and presentation as compared to steady state LCs, demonstrating how the
migration process equips LCs with the capacity to prime T cell stimulation at the local lymph nodes.
The expression of T cell co-stimulatory molecules are also further enhanced during the migration

process (Cumberbatch, Dearman, Griffiths, et al., 2000).

Whilst the mechanisms of maturation between different DC cell types follows a similar series of
cellular events, the precise T cell responses that are induced can differ (Pulendran et al., 1997). For
example, LCs contrast from CD14+ dermal DCs (DDCs) through their heightened ability to induce
Th2 CD4 T cells and cytotoxic CD8 T cell activity (Klechevsky et al., 2008). LCs also mediate superior
antigen cross-presentation and CD8 T cell activation compared to CD11c+ DDC, which is dependent
on caveolin expression (Polak et al., 2014)(Polak et al., 2012). Interaction between LCs and T cells
direct diverse outcomes of immune responses and are highly specific to the context of the initiating
stimuli. LCs mediate these different responses through expression of cytokines and costimulatory
molecules. Cytokines produced by LCs, in response to bacterial and fungal pathogen at the
epidermis, induce Th17 T cell differentiation, which mediates killing of extracellular pathogens, such
as Candida Albicans and Porphyromonas ginigvalis (Igyartd et al., 2011)(Bittner-Eddy et al., 2016).
Staphylococcus aureus, a common coloniser of the skin, also triggers the release of Th1l and Th17
inducing cytokines from LCs during infection (van Dalen et al., 2017). The increased ability for LCs
to induce CD8 T cell activity, as compared to DDCs, is also attributed to increased expression of
CD70, giving example of how changes in costimulatory expression can effect LC mediated T cell
response outcomes (Polak et al., 2012). The unique balance of T cell responses induced by LCs are
likely to be specific to responses required for maintenance of human skin health and could explain
their biological niche at the epidermis. The unique collection of receptors expressed on LC cell
membrane surfaces also heavily influences LC capacity to respond to different antigenic stimuli.
High expression of CD1a for example, provides enhanced ability to activate lipid specific CD1a-
restricted T cells, which secrete large amounts of IL-22 and IL-17 (West and Bennett, 2018). Whilst
a negative role of CDla-restricted T cells involving contact dermatitis to poison ivy has been
identified, CD1a mediated presentation of Mycobacterium Leprae antigen to CD1a-restricted T cells
appears to be important for disease resolution (Kim et al., 2016)(Hunger et al., 2004). As leprosy
wounds manifest at the epidermis, high levels of LC CD1a expression would therefore be highly

protective to disease manifestation. CD207 is implicated in both the restriction and permissiveness
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to infection of HIV. Whilst some studies postulate that CD207 expression by LC mediates
transmission to T cells, others identify an important role of CD207 and birbeck granules in mediating
HIV degradation and infection prevention (de Witte et al., 2007)(Ribeiro et al., 2016). In summary,
the cell surface receptor profile of LCs and the array of cytokines they release, direct and define LC

mediated immune responses at the epidermis.

The close proximity between KCs and LCs in the epidermis leads to a convergence and intimate
relationship to their function and regulation of immune responses (Figure 5). Whilst LCs are the
signature antigen presenting immune cells of the epidermis, KCs themselves have antigen
presenting function and the ability to regulate T cell responses (Nickoloff et al., 1995). Like LCs, KCs
rapidly induce the secretion of inflammatory mediators during interaction with pathogens (Bourke
etal., 2015). These mediators are critical for optimal LCimmune function. KC detection of the PAMP
CpG through TLR9 for example, induces KC secretion of IL-1a, GM-CSF and TNFa, increasing the
activation of LC antigen presentation pathways(Sugita et al., 2007). TNFa is a powerful

immunomodulatory cytokine expressed by KCs which is widely known for its augmentative effects
on LC immune function (Clayton et al., 2017)(Théry and Amigorena, 2001)(Cumberbatch and

Kimber, 1992)(Polak et al., 2014)(Sirvent et al., 2020). TNFa. stimulated LCs for example, display
enhanced antigen cross presentation to potently activate CD8 cytotoxic T cells (Sirvent et al., 2020).
Furthermore, TNFa stimulation enhances LC mediation of Thl and Th2 T cell skin homing via
chemokine production. Also, KC secretion of TSLP, which is associated with atopic dermatitis, also
modulates LC function to more proallergic/atopic phenotypes and impairs CD8 T cell activation
(Ebneretal., 2007)(Polak et al., 2017). However, not all KC derived signalling leads to the activation
of inflammatory immune responses. In response to non-inflammatory signalling, or even
tolerogenic signalling such as TGFB, inflammatory CD4 and CD8 T cells are suppressed and instead
regulatory T cells (Treg) are induced (Shklovskaya et al., 2011)(Gorvel et al., 2014)(Schmidt, Nino-
Castro and Schultze, 2012). Through restricting inflammatory immune responses against harmful
sources only, LCs ensure the body is well protected from pathogens, whilst preventing uncontrolled
and widespread tissue damage. TGFp signalling is also crucial for maintaining integrin connections
between LC and KCs that prevent migration out of the epidermis (Mohammed et al., 2016). Models
of TGFf inhibition cause a depletion in the epidermal LC population (Kel et al., 2010). Furthermore,
BMP7, a TGFB superfamily member, has been demonstrated to be critical for LC population
maintenance at the epidermis in BMP7 knockout mice (Yasmin et al., 2013). LCs are therefore highly
dependent on KCs for inducing appropriate immune responses and for maintaining their presence

at the epidermis.
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Overall, LCs orchestrate the balance between immunity and tolerance and respond to all the milieu
of stimulatory signals in the epidermal environment before deciding on the most appropriate
direction of immune responses. However, despite the importance of their function for skin and
systemic homeostasis, the precise molecular mechanisms that determine whether LCs induce
either immunogenic or tolerogenic responses, although well studied, are not completely

understood.

Treg CD8 cytotoxic CD4 helper

Figure 5. LC immune responses are directed by KCs. Cytokines secreted by KCs produce differential
T cell responses and outcomes. TGFf3 secretion causes the retention of LC within the epidermis and
the induction of Tregs. Proinflammatory TNFa. induces potent LC antigen presentation function to
induce CD8 cytotoxic T cells responses and the promotion of Th1l and Th2 CD4 helper T cell homing
to the skin. Proallergic TSLP associated with atopic dermatitis, inhibits CD8 cytotoxic T cell induction

by LC.

1.6 LCs, homeostasis and tolerance

LCs in the steady-state are positioned at the epidermis ready for antigen encounter, extending and
retracting dendritic extensions between keratinocytes (Clausen and Stoitzner, 2015). The
environmental stimuli LCs encounter direct immune responses towards immunogenic or

tolerogenic pathways (Banchereau and Steinman, 1998). Whilst the ability of LCs to potently induce
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adaptive immune responses is well established, an emerging understanding of LC immunology is
that steady-state immune responses may in fact be preferentially sided towards tolerance and
immunoregulation over immunogenic responses (Lutz, Dohler and Azukizawa, 2010)(Figure 6).
Evidence for a reduced inflammatory capacity of LC is shown in studies demonstrating an absence
of LC mediated inflammatory responses to pathogenic stimuli. Studies on Leishmaniasis have found
LC function is redundant during infection, with LCs unable to induce Leishmania major specific T
cell responses (Ritter et al., 2004). Ablation of LCs in L. major infection also results in reduced
activation of Tregs and an increased ability to clear the disease (Kautz-Neu et al., 2011). Similarly,
LCs also fail to induce cytotoxic T cell responses to herpes simplex virus 1 (HSV) (Allan et al., 2003).
Investigations into antigen processing and presentation potential in certain contexts, similarly
reveal limitations in LC mediated immunity. Chimeric mouse models involving LC specific antigen
presentation fail to induce effector T cell responses and T cell survival (Shklovskaya et al., 2011). LC
co-culture with splenic DCs and ovalbumin (OVA) protein, inhibit T cell responses which are induced
by splenic DC culture alone (Imai et al., 2008). In some contexts, LCs therefore appear to actively

disrupt the development of immunogenic responses.

Studies directly comparing epidermal LCs to closely situated DDCs show reduced expression of
inflammatory cytokines by LCs. DDCs isolated from primary skin samples display greater expression
of IL-6 and IL-8 than LC counterparts after exposure to TNFa. (Polak et al., 2012). Through comparing
affinity to induce NK cell mediated cytotoxicity, LCs required supplementary IL-2 and IL-12 stimuli,
as non-supplemented LC were unable to produce adequate amounts of IL-12p70 and IL-15R-a for
direct NK cell stimulation (MU Nz et al., 2005). LCs also appear to have an increased capacity to
maintain tolerance to bacterial flora on the skin. In comparison to DDCs, LCs lack expression of
TLR2, TLR4 and TLR5, limiting their capacity to mature after bacterial encounter (van der Aar et al.,
2013). The different skin compartments in which these two skin DC types are found could explain
why they differ in their inflammatory properties. As LCs are positioned within the peripheral
epidermal barrier, high reactivity to all encountered stimuli could be unnecessary and lead to
unwarranted inflammation. Below the protective epidermal barrier in the dermis, DDCs may need
to react more effectively to pathogen invasion to prevent establishment of infection (van der Aar
et al., 2013). Overall this could emphasise the more highly regulated and context driven responses

established by LCs.

With evidence showing a reduced role of LCs for inducing inflammatory immune responses during
T-cell interaction, the principal role of LCs is believed to lie in their homeostatic potential. In the
steady state, LCs phagocytose nearby apoptotic cells, such as KCs and melanocytes, removing
environmental self-antigen to prevent the initiation of damage responses and the release of

inflammatory cytokines (West and Bennett, 2018)/(Larregina and Falo, 2005). The processing rate
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of self-antigen by LC has been tracked in murine studies by measuring the amount of melanin
protein transported to local skin draining lymph nodes (Hemmi et al., 2001). This processing rate
remains unchanged even during inflammation, indicating self-antigen processing and presentation
to T-cells is an integral LC process (Yoshino et al., 2006). Whilst antigen presentation to T cellsis a
fundamental LC process, which occurs in both inflammation and steady state homeostasis, the
context in which it occurs highly influences immune response outcomes. Antigen processing and
presentation provides the first signal for the induction of inflammatory T cell immune responses,
but the lack of PRR stimulation, in the context of self-antigen, prevents an increase in costimulatory
receptors and cytokines to pass a threshold of activation (Mutyambizi, Berger and Edelson,
2009)(Berger et al., 2006). Instead LC interaction with T cells results in skewed differentiation
pathways towards Tregs. In mouse models, LC mediated presentation of the keratinocyte
associated protein desmoglein 3 (Dsg3) leads to the proliferation of Dsg3 specific Treg cells that

suppress self-reactive immune responses (Kitashima et al., 2018).

The induction of Tregs by LC appears to be critical for both systemic and epidermal tolerance
regulation. Using human donor derived LCs, it was shown that steady state LCs expand functional
skin resident Treg populations in the epidermis to promote tolerance (Seneschal et al., 2012).
Furthermore, in the absence of maturation stimuli (IL-1 and TNFa), LCs highly induce the
differentiation of Staphylococcus aureus and Escherichia coli antigen specific autologous Tregs, as
compared to DDCs (van der Aar et al., 2013). A crucial role for LC induced Tregs for tolerance
regulation can be seen in epicutaneous immunotherapy desensitised OVA-sensitive mice, in which
the induction of Tregs prevents systemic immune activation (Dioszeghy et al., 2018). Interestingly,
LC induction of Tregs after ionising radiation treatment is implicated in the exacerbation of tumour
growth through tumour evasion of immunity (Price et al., 2015). Overall, this corroborates the

pivotal role of LCs for maintaining and inducing self-tolerance at the epidermis.

Like immunogenic responses, tolerogenic responses by LCs are influenced by signalling from the
external environment and epidermal microenvironment. As discussed above, KC are highly
regulatory towards LCs. Tolerogenic stimuli such as TGF-f and IL-10 are produced by epidermal KCs
(Enk and Katz, 1992), which prevent LC maturation and the migration out of the epidermis (Kel et
al., 2010), as well as inhibiting antigen presentation and the induction of pro-inflammatory Th1 T
cell responses (Cumberbatch et al., 2005). TGF-f is produced by LCs themselves, which can act in
an autocrine and paracrine fashion to support their own regulation (Deckers, Hammad and Hoste,
2018). Interestingly, UV-B exposure to the skin also drives LC towards tolerogenic function,

preventing Th1 T cell induction (Simon et al., 1991). Furthermore, exposure of LCs to supernatants
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from keratinocyte cultures exposed to UV-B restricts LC mediated inflammatory responses, with

high concentrations of IL-10 secreted by KCs shown to drive this effect (Beissert et al., 1995).
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Figure 6. LCs are equipped for a tolerogenic role at the epidermis. LCs exhibit several features
which are important for homeostasis and tolerogenic potential. This includes absent immune
responses to certain pathogens (L. major, HSV), along with low TLR expression and microbe sensing.
LC also display low cytokine production compared to DDCs. LC can also expand resident memory
Treg populations in the steady-state and phagocytose apoptotic cells for self-antigen tracking to

the lymph nodes to induce Tregs.

To further understand LC tolerogenic function, studies have amplified tolerogenic function through
immunosuppressive drugs or molecules. This includes dexamethasone and lactoferrin which inhibit
the migration process and therefore interfere with the activation of adaptive immune responses
(Cumberbatch, Dearman and Kimber, 1999)(Cumberbatch, Dearman, Uribe-Luna, et al., 2000).
TGF-B an important cytokine for development and maintenance of the LC population at the
epidermis also prevents LC migration out of the tissue, whilst 1,25-dihydroxyvitamin D3 (VitD3)
treatment of LCs results in suppression of antigen presentation capabilities (Dam et al., 1996)/(Bobr
et al., 2012)(Worthington et al., 2012). Cyclosporin A (CsA) is a strong immunosuppressant drug
used to prevent skin tissue transplant rejection. Human skin culture with CsA has been shown to
inhibit LC antigen presenting function (Dupuy et al., 1991). Whilst these studies focus on the cellular
phenotypes of LC tolerance, research into the transcriptomic programmes and gene regulatory

networks underlying tolerogenic function remains largely unexplored.
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1.7 Gene expression and transcriptional regulation underlying

tolerogenic LCs

In order to mediate tolerogenic responses DCs must differentially regulate gene expression to
express tolerance pathways genes (Vendelova et al., 2018). Mechanism of DC tolerance induction
include the production of anti-inflammatory cytokines (IL-10, IL-35 and TGF), T cell modulatory
surface ligands (PD-L1, Fas-L) and immunomodulatory enzymes (IDO and HMOX1) (Domogalla et
al., 2017)(Obregon et al., 2017)(Marin, Cuturi and Moreau, 2018). Some of these mechanisms have
been proven to be actively displayed by LCs. The expression of IDO, an enzyme involved in
tryptophan metabolism, which restricts T cell activation, is commonly induced during tolerance
across many DC subtypes, to inhibit inflammatory CD4 and CD8 T cell responses and induce Treg
differentiation (Munn and Mellor, 2013)(Manches et al., 2012). In LCs, IDO1 is rapidly induced in
response to IFNy to downregulate T cell activation (von Bubnoff et al., 2004). Upregulation of IDO
expression can also be triggered by UV-B radiation through the activation of aryl hydrocarbon
receptors on LC surfaces (Koch et al., 2017). The cell surface ligands PD-L1 and PD-L2 have also been
demonstrated to mediate T cell tolerance by DCs (Keir et al., 2008). In LC, PD-L1 and PD-L2
expression after migration is associated with the dampening of T cell activation (P&a-Cruz et al.,
2010). Glycan binding proteins, such as Galectin-1, also downregulate immunogenic DC activation
and the activation of cytotoxic CD8 T cells, instead favouring Treg induction (Martinez Allo et al.,

2020).

Changes in cellular gene expression are modulated by transcription factors (TFs). In DCs, key TFs
have been identified which influence both development and immune response regulation (Clayton
et al., 2017)(Lin et al., 2015)(Vander Lugt et al., 2014). The effects of external stimuli which drive
the differentiation of different LC responses, presumably including tolerance, are therefore
translated intracellularly through changes in TF regulation. For LC gene regulation, the interferon
regulatory factor (IRF) and NFxB family of TFs have been critically implicated in immunity, whilst
the TGFB-PU.1-RUNX3 transcription axis has implications for LC development and the steady-state
(Polak et al., 2017)(Clayton et al., 2017)(Chopin and Nutt, 2015)(Figure 7).

TF regulation of LC is important for development and population maintenance. As demonstrated
by Chopin et al., the effects of TGF3 on LCs is mediated through PU.1 activation, which subsequently
activates RUNX3 (Chopin et al., 2013). The importance of RUNX3 for LC development and the
steady-state at the epidermis is demonstrated in LCs that lack PU.1, but can maintain their
epidermal population through ectopic RUNX3 expression. The homeostatic effects and suppression
of immune activation induced by TGF[3 signalling therefore appears to be mediated by PU.1-RUNX3

TFs. Importantly, PU.1 also plays a role in the induction of LC maturation (Chopin and Nutt, 2015).
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The NFkB TF family is strongly associated with immune cell regulation of inflammatory responses,
including DCs (Oeckinghaus and Ghosh, 2009)(Amit et al., 2009)(Clayton et al., 2017). Furthermore,
its importance for the regulation of LC immune responses has been explored (Kraft et al., 2002).
Interestingly, a role of NFkB for tolerance regulation and homeostasis has also been identified.
Stimulation of LC expressed receptor activator of NFkB (RANK) by its ligand RANKL, presented by
KCs, is important for maintenance of the LC epidermal population and tolerogenic activity. Murine
studies of RANKL deletion show abrogated LC proliferation and therefore reduced numbers of
epidermal LCs (Barbaroux et al., 2008). RANKL stimulated LCs also upregulate IL-10 secretion and
have been demonstrated to increase CD4+ CD25+ Treg cells, which drive anti-inflammatory immune
responses (Yoshiki et al., 2010)(Schoppl et al., 2015). Similarly, NFkB is implicated in immunogenic
LC regulation (Peiser et al., 2008)(Mutyambizi, Berger and Edelson, 2009). TLR stimulation activates
NFxB and amplifies LC antigen presentation capacity through increased expression of costimulatory
molecules and MHC Il (Mutyambizi, Berger and Edelson, 2009). Furthermore, LC TLR ligation leads
to NFkB mediated CCR7, CD86, CD83, TNFa. and IL-6 production (Peiser et al., 2008). Interestingly
there is disparity in the activity of different NFkB pathways. NFkB is constituted by two divisions,
the canonical and non-canonical pathways (Oeckinghaus and Ghosh, 2009) and RelB,, the main TF
component of the non-canonical NFkB pathway, is not expressed in steady-state tissue residing
epidermal LC or trypsin extracted LC (Clark et al., 1999). Furthermore, RELB is not activated in LCs
in response to potent antigenic stimuli (Shklovskaya et al., 2011). Differential regulation of NFkB
components therefore appears to be critical for LC regulation of both immunogenic and tolerogenic

responses.

The importance of the IRF TF family for the regulation of LC function has also been shown in recent
years (Clayton et al., 2017)(Polak et al., 2017)(Sirvent et al., 2020). In LC, the interactions between
IRF1, IRF4 and IRF8 have been demonstrated to be important for the regulation of immunogenic LC
responses, such as phagocytosis, MHC | and Il regulation and Th1, Th2 and Th17 T cell induction
(Polak et al., 2017). Importantly, /RF4 has been demonstrated to be critical for the genomic
programming and gene regulation associated with antigen processing and presentation in LCs
(Polak et al., 2017)(Sirvent et al., 2020). Interestingly however, IRF4 has also been linked with the
restriction of inflammatory cytokine responsive genes in human /RF4 CRISPR-Cas9 knockout LCs,
suggesting an immunoregulatory role (Sirvent et al., 2020). Furthermore, in bone marrow DCs, IRF4
has been demonstrated to be central for the induction of both effector T cells and Tregs (Vander
Lugt, Riddell, Aly A Khan, et al., 2017). Therefore, similar to NFkB, IRF regulation of LC appear to

influence both tolerogenic and immunogenic responses.
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Figure 7. Transcriptional programs regulated by key TFs in LCs. The PU.1:RUNX3 transcription axis
isimportant in LC development and the maintenances of the steady-state. NFkB is implicated in the
regulation of both immunogenic and tolerogenic responses in LCs. Furthermore, the IRF TF family
is highly associated with LC activation and immunogenic responses, but are also implicated in the

regulation of immunotolerance. Figure adapted from Clayton et al. 2017.

1.8 LC transcriptomics

All cells in an individual organism possess the same DNA, yet each cell in an organism carries out a
specific function and can respond to unique biological context at any one time. These differences
are a result of changes in gene regulation, which create different expression patterns of mRNA
transcripts and therefore unique transcriptomic programmes. The development of high throughput
sequencing methods to measure cellular gene expression provides insight into the transcriptomic
programmes that define different cell types and cellular responses. These methods have therefore
greatly expanded the potential to understand cellular and molecular biology in steady state,

modulated and diseased cells and tissues.
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Methods of transcriptomic measurement converge with the basic principles of quantifying gene
transcript abundance, with the requirement to first extract mRNA from cell cultures or tissues,
before converting it into stable cDNA for measurement. The precise methods for measuring and
quantifying cDNA however can differ between techniques. The DNA microarray, one of the first
techniques which allowed large scale transcriptomic measurement, was developed in the mid
1990s (Cieslik and Chinnaiyan, 2017). Microarrays include a panel of DNA probes complimentary to
specific genes attached to their surface. DNA probes targeting a specific gene are localised together
on the microarray chip. Fluorescently labelled sample cDNA is applied to the chip and hybridisation
of the labelled sample to the probes allows the number of transcripts from a particular gene to be
quantified through detecting the level of fluorescence. The expression level of thousands of genes
can therefore be simultaneously measured on one microarray chip. A drawback of this method
however is the requirement for prior knowledge of the gene sequences printed on the chip and this
therefore limits the ability to detect novel transcripts and splice variants. More recently, in the mid
2000s, a sequencing by synthesis approach called RNA-seq was first published, allowing
guantitative measurements of gene transcripts with an unrestricted exploratory potential to
discover new transcripts and splice variants (Bainbridge et al., 2006)(Kukurba and Montgomery,
2015). mRNA is first reverse transcribed into cDNA before amplification and ligation of specific
adaptor sequences which enable sequencing (Kukurba and Montgomery, 2015). Biotechnology
companies have adapted the basics of RNA-seq, opting for different sequencing approaches of the
prepared cDNA libraries, producing different efficiencies and outputs (Buermans and den Dunnen,
2014). As an example, Illumina, one of the leading sequencing companies, adopt a bridge
amplification method in which single cDNA transcripts are clonally amplified on a flow cell, creating
transcript clusters. Terminating deoxynucleotide bases (A, C, T and G) with attached fluorophores,
are one by one hybridised to the sequence. After each hybridisation, the deoxynucleotide base that
was added is determined through laser excitation of the fluorophore (Bentley et al., 2008). The
whole sequence is therefore deduced after consequential base addition and fluorophore detection.
Using bioinformatictools, the base sequences are aligned to a reference genome in order to identify
the corresponding genes the sequences are derived from. The expression level of a gene transcript

is quantified by the number of sequences aligned to that gene.

Transcriptomic data analysis has been applied to address many biological questions related to
LC/DC function and development, that would otherwise be difficult and extensive to explore in
vitro. This includes the deconvolution of lineage relationships between LCs and other immune cells,
including closely located DDCs (Figure 8). As discussed, the common ontogeny pathway between
LC and macrophage development and their self-renewal qualities has led to speculation that LCs

are a specialised subset of tissue resident macrophage that possess DC qualities, such as potent
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antigen presenting function. Transcriptomic analysis comparing LCs to both DDCs and dermal
macrophages through hierarchical clustering of whole transcriptome data, has revealed the highly
unique gene expression displayed by LCs (Clayton et al., 2017). Principle component analysis (PCA)
using skin DC whole transcriptome microarray data, shows the distinct gene expression
programmes displayed by LCs compared to CD14+ and CD141+ DDC subtypes, demonstrating the
divergent genomic programming influenced by habitancy in epidermal and dermal skin
compartments (Artyomov et al., 2015). Furthermore, using microarray, the distinct gene expression
programmes displayed by LCs and DDCs after TNFa. stimulation have been revealed (Polak et al.,
2014). Here, sample to sample clustering of whole transcriptomic data revealed that DDCs display
a more dramatic change in gene expression in response to stimuli, characterised by upregulation of
inflammatory cytokines and chemokines. In contrast, LC transcriptomic changes were more subtle
and included upregulation of genes encoding metabolic processes and antigen capture. The
phenotypic differences observed between LCs and DDCs are therefore underlined by unique
transcriptomic profiles. LCs extracted from different locations of the body have also been explored
to study tissue heterogeneity. Interestingly, skin LCs and vaginal epithelium LCs display
heterogenous gene regulation, but both show a convergence towards a more regulatory (/DO1
expression) and Th2 inducing transcriptomic programme compared to the more pro-inflammatory
Th1 associated expression profiles of CD14+ DDCs (Duluc et al., 2014). Furthermore, comparisons
between transcriptomes of multiple DC subtypes isolated from human blood and skin using
hierarchical clustering shows DCs cluster by location of residence, further highlighting the
importance of tissue microenvironments on DC programming (Harman et al., 2013). Gene
regulation underlying divergent immunogenic and tolerogenic DC function has also been explored
using transcriptomics. For examples, tailored responses to specific pathogens can be observed in
the transcriptomes of DCs (Huang et al., 2001). Inflammatory and non-inflammatory DCs can be
distinguished by their specific gene expression profiles (Torri et al., 2010). MoDCs stimulated with
tolerogenic stimuli dexamethasone and VitD3 show an increased metabolic capacity, with
increased expression of genes associated with mitochondrial and fatty acid oxidation pathways
(Malinarich et al., 2015). VitD3 stimulated DCs also show reduced expression of antigen presenting
HLA class Il and CD1 genes, whilst increasing the expression of inhibitory receptors, such as LILRB1

(ILT2) and immunosuppressive molecules, such as TGF[ (Széles et al., 2009).
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Epidermis

Dermis

Figure 8. Transcriptomic and functional in vitro have studies have together revealed the
different phenotypes exhibited by LCs and DDCs. Extensive studies investigating LCs and DDCs
have revealed differences between cellular phenotypes. Functionally, LCs are characterised by
increased CD8 cytotoxic T cell, CD4 Th2 T cell and bacterial-Ag specific Treg induction. At the
transcriptome level they exhibited elevated expression of metabolic and antigen acquisition
genes. DDCs, display increased inflammatory cytokine production at both the protein and
transcriptomic level, which are associated with CD4 Th1 T cell activation and NK cell priming. They

also display elevated expression of pathogen sensing molecules, such as TLRs.

From conducting analysis of transcriptomic data, the underlying gene expression patterns can infer
the interaction and relationship between cellular molecules. This can allow the identification of
molecular networks, constituted by multiple regulatory TFs and their targets. Therefore, not only
the specific expression profile certain cellular phenotypes can be understood, but also the
intracellular mechanisms that induce and regulate them. Complex regulatory networks are
increasingly being revealed to underlie cellular processes, such as immune regulation and
responses to stimuli (Loriaux and Hoffmann, 2012)(Hoffmann, 2016)(Xue et al., 2014)(Mabbott et
al., 2013). Regulatory networks controlling cellular gene expression programmes are termed ‘gene

regulatory networks’ (GRNs) (Singh, Khan and Dinner, 2014)(Clayton et al., 2017). GRNs can include
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interactions between DNA regulatory elements and transcription factors which mediate specific
transcriptomic profiles/programmes and cell functions (Macneil and Walhout, 2011)(Polak et al.,
2017). Due to the complexity of GRNs it is near impossible to achieve complete understanding of
their regulation under different conditions using in vitro procedures. To attain better knowledge of
GRN dynamics at the steady state and after network perturbation, translation of in vitro data into
computational modelling methodologies are necessary. Thus, TF GRNs can be constructed through
combining observations from cis-regulatory (predicted TF binding sites in target genes) and trans-
regulatory (correlation between TF and target gene expression) methods, as well as functional
perturbations of network components in vitro (Amit et al., 2009). GRN models have been applied
to DCs to identify convergent and divergent TF expression during DC differentiation and
development pathways (Lin et al., 2015). More specifically, insights into specific gene expression
profiles and GRNs regulating immunogenic LC function have been made. Immunostimulatory
cytokines such as TNFa and TSLP for example, modulate an interferon regulatory factor (IRF) GRN
(IRF-GRN) controlling LC antigen processing and activation (Polak et al., 2017). Using a signalling
Petri net framework, the LC IRF-GRN was reconstructed for modelling in silico. Containing
directional transitions between network components, the addition of in vitro derived TF expression
data into the model can produce in silico prediction of corresponding immune output genes. Using
this model, the predicted outcomes of TNFa and TSLP stimulation produced in silico correctly
matched outcomes of experimental in vitro data. This included an enhanced capability for LCs to
induce cross-presentation to CD8+ T cells in response to TNFa and reduced function in response to
TSLP, which has likely implications for reduced antiviral response capacity in atopic skin. With GRNs
underlying LC immunogenic responses, we hypothesised that similarly, a unique GRN regulates LC

tolerogenic responses.

Conventional RNA-seq and microarrays methods use bulk populations of cells and tissues to acquire
mMRNA for transcriptomic analysis. Therefore, mRNA expression measured is an average across the
whole cell population. The importance of cellular heterogeneity to mediating diverse phenotypic
functions in a cell population is becoming more and more recognised (Altschuler et al., 2010).
Heterogeneity may influence how cells respond to different stimuli and interact with other cells in
the environment. If we are to address differences between cell types in a tissue and heterogeneity
within cell populations, sequencing resolution at the single cell level is therefore required. Recently,
a number of methods have been developed to perform RNA-seq at the single cell level, including
Smart-seq, 10x, CEL-seq, MARS-seq and Seg-well (Picelli et al.,, 2014)(Zheng et al.,
2017)(Hashimshony et al., 2012)(Deng et al., 2014)(Gierahn et al., 2017). All single cell RNA-seq
(scRNA-seq) methods converge in the requirement for isolation of single cells, although this can be

achieved through various mechanism, such as fluorescence-activated cell sorting (FACS),
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microfluidics and equal distribution of precise cell concentrations through gravitational sorting.
Drop-seq, a novel approach of scRNA-seq, uses microfluidics to isolate single cells (Macosko et al.,
2015). In a high throughput and cost-efficient manner, a microfluidic device is flushed with primer
coated microparticle beads and cells in aqueous solution. The device is also flushed with oil creating
droplet encapsulation events at the aqueous phase and oil phase interface. Effective encapsulation
events crate droplets containing one single cell and microparticle bead. Each bead is coated with
uniquely barcoded poly(dT) oligo primers and when a cell and bead are encapsulated into the same
droplet, the cell is lysed and its mRNA is captured by its poly(A) tail to the beads surface. The unique
barcodes allow each transcript to be tracked back to its cell of origin and therefore whole
transcriptome data originating from single cells can be produced. The oligo primers also consist of
a unique molecular identifier (UMI), which is exclusive to each primer on each bead. UMlIs are
therefore distinct for each captured transcript and allow adjustment for amplification biases

induced during cDNA library preparation.

The resolution provided through single cell transcriptomic analysis has allowed identification of
previously undescribed cell subtypes. For example, scRNA-seq has been used to define
heterogeneity within the blood DC and monocyte compartment and resulted in the describing of
new subtype of blood DC and monocytes not previously recognised (Villani et al., 2017). Here, the
new DC subpopulation, termed DC5, can be identified through high expression of AXL, SIGLEC1 and
SIGLEC6 and expressed gene profiles comparable to both pDC and conventional DCs. Additionally,
the field of single cell analysis is constantly evolving with the appearance of updated and enhanced
methods. This includes targeted sequencing approaches (Constellation Drop-seq, BD Rhapsody,
DART-seq) and methods which integrate sequencing with cell surface protein expression profiling
(CITE-seq, REAP-seq), to overall improve the effectivity of single cell analysis for different
investigative contexts (Vallejo et al., 2019)(Shum et al., 2019)(Saikia et al., 2019)(Peterson et al.,
2017).

In the skin, scRNA-seq has been used to investigate the cell population present in the human
epidermis to characterise genomic programming during the steady state and during inflammation
(Cheng et al., 2018). Additionally, scRNA-seq has been utilised to characterise heterogeneity and
differentiation pathways in murine epidermal cell populations, including the hair follicles, in the
steady-state and during wound healing (Joost et al., 2016)(Joost et al., 2018). Furthermore, the
power of single cell analysis on skin has been demonstrated during its application on healthy and
lupus nephritis skin and renal tissue (Der et al., 2019). Here, disease biomarkers have been
identified that can be traced in the skin, with implications for personalised medicine. In human LCs,
Drop-seq single cell analysis on migrated populations has revealed cellular differentiation of

maturation, which involves transitional programming of oxidative phosphorylation and antigen
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processing and presentation pathways (Sirvent et al., 2020). Furthermore, applications of scRNA-
seq to CRISPR-Cas9 IRF4 knockout human LCs has allowed investigation and exploration of gene
editing at the single cell level (Sirvent et al., 2020). Thus far, only few studies have specifically
investigated the transcriptomes of human LC populations at the single cell level. Undoubtedly,
further application of scRNA-seq analysis on human LC will reveal the level of heterogeneity present
amongst different LC populations and provide insight into how different LC immune responses are

coordinated and regulated.

1.9 Therapeutics of tolerogenic LCs

It is well described that loss of tolerance can lead to inflammatory diseases and autoimmunity in
which our own immune system is unable to correctly distinguish between ‘self’ and ‘non-self’,
leading to disease, characterised by the self-destruction of tissues (Mackay, 2000). Here, the
inherent diversity of TCR generation can lead to the generation of lymphocytes which are reactive
to self-antigen or antigen from innocuous agents, that should in non-diseased circumstances be
removed during central and peripheral tolerance (Horton, Shanmugarajah and Fairchild, 2017). The
expansion in the understanding of tolerance and the characterisation of cells which mediate
tolerogenic responses, has therefore sparked interest into their application therapeutically.
Tolerogenic DCs and Tregs are well known for their tolerogenic properties and ability to regulate
and suppress inflammatory responses (Schmidt, Nino-Castro and Schultze, 2012). The ability to
harness DC tolerogenic ability however is particularly promising therapeutically due to their
multiple mechanisms of tolerance mediation, including T cell anergy induction, the stimulation of
multiple lymphocyte sub types, including Tregs and potent antigen acquisition and processing
function, which could have implications for targeted immunoregulation (Obregon et al.,
2017)(Domogalla et al., 2017)(Hasegawa and Matsumoto, 2018)(Horton, Shanmugarajah and
Fairchild, 2017). Reintroducing and maintaining long term tolerance using tolerogenic DCs would

therefore be the desired outcome.

In the study of tolerogenic DC capacity, several studies have utilised immunomodulatory stimuli,
including VitD3, dexamethasone, TGF, rapamycin and co-stimulatory molecule (CD80/CD86)
inhibitors, to amplify tolerogenic function for analysis in vitro (Marin, Cuturi and Moreau,
2018)(Domogalla et al., 2017). Signature phenotypes induced in tolerogenic DCs include
downregulation of costimulatory molecule (CD80, CD86) and MHC expression and the upregulation
of immunosuppressive surface markers (PD-L1, ILT3) and secretory molecules (IDO, IL-10, IL-6)
(Domogallaetal., 2017). The application of induced tolerogenic DCs to treat autoimmune disorders
has been tested, including for Type 1 diabetes, rheumatoid arthritis, Crohn’s disease and multiple

sclerosis (Phillips et al., 2017). Most treatments are currently in the early stages of clinical trials to
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assess their safety for therapeutic administration into patients. In a Phase | trial for Type 1 diabetes,
isolated monocytes from patients were differentiated into MoDCs, and cultured with inhibitors of
CD40, CD80 and CD86 costimulatory molecule expression (Giannoukakis et al., 2011)(Phillips et al.,
2017). Injection of these DCs in the skin near the anatomical site of the pancreas resulted in patients
displaying increased populations of B cells with potential regulatory properties and signs of
recovery of functional beta cell recovery, identified through the detection of C-peptide markers.
Similarly, a phase | clinical trial for rheumatoid arthritis therapy, involving MoDCs cultured with self-
antigen re-administration into inflamed knees of the patients, proved to be safe but had minor
effects in the alleviation of patient symptoms (Bell et al., 2017). However, the group has further
demonstrated in vitro, that VitD3 and dexamethasone stimulated MoDCs can dampen activation of
CD4+ T cells from rheumatoid arthritis patients (Anderson et al., 2017). Overall, the modest success
of tolerogenic DCs in clinical trials highlights the importance in continued expansion in our

understanding of DC tolerogenic responses.

The human skin is no different in its susceptibility for inflammatory and autoimmune disorders
which can develop in individuals who lose tolerogenic function. Such disorders, include atopic
dermatitis, psoriasis and contact allergies to antigen. The accessibility of the human skin to
treatment gives unprecedented opportunities for studying the effects of tolerogenic DC in the
alleviation of inflammatory and autoimmune disorders. With LC being the prime candidate for
regulating tolerance at the epidermis, understanding the key features of their regulation could be
pivotal in inducing long term disease alleviation of inflammatory skin disorders. In murine models
of SLE, LC ablation resulted in an increased number of self-reactive antibodies to skin antigen, but
no difference in the number of antibodies detected against systemic targets, suggesting LC
tolerance regulation may be more localised to the skin (King et al., 2015). In contact hypersensitivity
(CHS) responses, the depletion of LC populations, in LC ablated mice or as a result of epidermal
steroid exposure, leads to worsening of CHS, thus highlighting a regulatory role for LC (Kaplan et
al., 2005)(Grabbe et al., 1995). Furthermore, in murine models of CHS, antigen processing and
presentation by LCs downregulates local and systemic immune responses and promotes Treg
expansion (Dioszeghy et al., 2011)(Dioszeghy et al., 2018). Like conventional DCs, enhancement of
LC tolerogenic programmes, through immunomodulatory molecules such as steroids and VitD3, is
also implicated in enhancing tolerogenic LC function to resolve inflammatory skin conditions (Chu,
Di Meglio and Nestle, 2011). Whilst LC function is associated in the resolution of skin disease, it is
equally implicated to be dysregulated in disease settings. Dysregulation of LC immune responses
for example can contribute to disease and is caused by an unbalance in cytokines such as TSLP, in
the inflamed skin microenvironment (Dubrac, Schmuth and Ebner, 2010). LC function is also

abnormal in psoriasis, with surrounding KCs and immune cells stimulating inflammatory LC activity
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(Cumberbatch et al., 2006)(Eidsmo and Martini, 2018). Thus, this highlights the importance/key

role for correct LC tolerogenic regulation for the maintenance of skin health.

Overall, whilst LC are implicated in homeostatic and tolerogenic regulation at the epidermis, the
precise mechanisms and gene regulation (including GRNs) which underlie these responses are
currently unknown. As LCs are central coordinators of skin immune regulation, they are prime
targets for restoring tolerance in disease. The extensive and diverse mechanisms exhibited by DCs
in the regulation of both immunogenic and tolerogenic responses however, demonstrates the likely
complexity that underlies LC tolerance. However, successful identification of the distinct
immunological programmes exhibited by LCs mediating tolerance, could lead to the identification
of molecular targets for therapeutic intervention. Increased understanding of LC immune may
therefore provide unprecedented opportunity to alleviate inflammatory diseases effectively and

for long term, at the skin and beyond.
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Chapter2 Methods

2.1 Data analysis of DC microarray transcriptomic data

211 Processing of DC microarray datasets collected from GEO

Datasets were selected from the Gene Expression Omnibus (GEQ), a public repository for high-
throughput genomic and transcriptomic data (Table 1). Datasets selected for analysis included
microarray data of: MoDCs under different stimulatory conditions (GSE52894 (Malinarich et al.,
2015), GSE117946 (Comi et al., 2020)); trypsinised (GSE23618) (Széles et al., 2010) and migrated
(GSE49475 (Polak et al., 2014), GSE66355 (Artyomov et al., 2015) LC experiments with
accompanying data for other DC types (DDCs, MoDCs, CD1c DCs); placental DCs (PlaDC) with
accompanying MoDCs (GSE52850) (Gorvel et al., 2014) and a dataset containing dermal DC (DDC)
subpopulations (GSE35457) (Haniffa et al., 2012). All datasets were exported from GEO as either
normalised expression matrices (GSE117946, GSE23618, SE49475, GSE52850), or as raw files which
were then processed within R (GSE52894, GSE66355, GSE35457)(Table 1). For processing of raw
Illumina HumanHT-12 V4.0 expression beadchip files (GSE52894, GSE66355, GSE35457) were
background corrected with control probes and quantile normalised using the Linear models for

microarray data package(Limma) (Ritchie et al., 2015).

Normalised log2 transformed whole transcriptome data were analysed through multi-dimensional
scaling (MDS) on two-dimensional scatterplots representing the first 1-3 principle component
dimensions. Log2 normalised datasets were submitted for differentially expressed gene (DEGs)
analysis using R (version 3.6.1) package Limma (Ritchie et al., 2015). Unlogged expression data for
Limma identified DEGs with a Benjamini Hochberg (BH) adjusted p-value <0.05 and logFC>1 were
uploaded in Graphia Pro (Kajeka, Edinburgh UK) for transcript-to-transcript co-expression analysis
(Theocharidis et al., 2009). Pearson coefficient parameters were adjusted (r=0.93-0.95), setting a
transcript-to-transcript correlation threshold defining the number of probesets (genes) included in
the non-directional cluster graph. In the graph, nodes represent individual probesets (genes) and
edges between nodes represent Pearson correlation coefficients above the set threshold value. The
Markov clustering algorithm (MCL), within Graphia Pro, was utilised to identify probesets with
similar expression profiles across the sample data. The MCL inflation parameter, which controls
clustering granularity, was set to 1.7, defining the distance metric for probeset clustering. Gene
clusters were exported and associated ontologies were identified through gene ontology web-
based tools Toppgene (Chen et al., 2007) and DAVID (Huang, Sherman and Lempicki, 2008). A BH

adjusted p-value<0.05 threshold was selected for significance. Gene expression data and gene
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ontology analyses was plotted using Prism 8 software (GraphPad, California US). Gene ontology

data was summarized using -log10 BH adjusted p-values. T-test statistical analysis was performed

within Prism 8 software when comparing gene expression values (p-value<0.05). DEG lists were

compared using Venn diagrams in Venny 2.0 (Oliveros, 2007). Heatmaps were plotted within R,

using the gplots package (Canberra, ward.D cluster metrics).

Dataset Dataset composition Microarray Processing

GSE52894 |3 x biological replicates: Illumina Processed from raw files.

¢ Immature MoDC (iMoDC),  |HumanHT-12 V4.0 |Background corrected with

e LPS stimulated MoDC . ,

expression control probes and quantile
(LPSMoDC)

e Dexamethasone and beadchip normalised using
VitaminD3 stimulated MoDC Limma(Ritchie et al., 2015).
(TolMoDC)

e LPS and Dexamethasone
and VitaminD3 stimulated
MoDC (LPS-TolMoDC)

GSE117946 | 3 x biological replicates: Affymetrix Human |Robust multichip average

e Immature MoDC (iMoDC) |Gene 1.0 ST Array |(RMA) algorithm normalised

e LPS stimulated MoDC series matrix file was
(LPSMoDC) downloaded from GEO.

e |L-10 stimulated MoDC
(IL10MoDC)

e LPSandIL-10 stimulated
MoDC (LPS-I1L10MoDC)

GSE23618 |3 x biological replicates from Affymetrix Human | Robust multichip average
healthy breast and abdominal skin | Genome U133 Plus | (RMA) algorithm normalised
and blood donors: 2.0 Array series matrix file was

e Trypsinised steady-state LC downloaded from GEO.

e Trypsinised steady-state
CDla+ DDC

e MoDC

e CDilc+ blood DC

GSE49475 |3 x biological replicates, each with 2 | Affymetrix Human | Robust multichip average

x technical replicates from healthy

breast and abdominal skin donors:

Genome U219

Array

(RMA) algorithm normalised
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e migrated LC
e migrated CD11c+ DDC

series matrix file was

downloaded from GEO.

GSE66355 | Biological replicates from healthy Illumina Processed from raw files.
skin donors (body site not HumanHT-12 V4.0 |Background corrected with
specified). All samples are extracted |expression control probes and quantile
via migration: beadchip normalised using

e 6xLC Limma(Ritchie et al., 2015).
e 4xCD14+DDC
e 3xCD141+DDC
e 4x(CD14-CD141- DDC (DN-
DDC)
GSE52850 |Biological replicates from healthy at- | Agilent-014850 Agidx44PreProcess
term placentas and blood donors: Whole Human normalised series matrix file
e 5xPlacental DC (PlaDC) Genome was downloaded from GEO.
e 3xMoDC Microarray 4x44K
GSE35457 |4 x biological replicates from Illumina Processed from raw files.

healthy breast skin donors. All
samples are collagenase digested
steady-state:

e (CD14+DDC

e (CD141+DDC

e (CDlc+DDC

e (CDlc+CD141+DDC

HumanHT-12 V4.0
expression

beadchip

Background corrected with
control probes and quantile
normalised using

Limma(Ritchie et al., 2015).

Table 1. Microarray datasets of DCs used in transcriptomic analysis. Microarray GEO accession

numbers are listed with dataset constituents annotated. Microarray method is listed along with file

processing procedure.

2.1.2

Petri-net modelling

In silico gene regulatory network (GRN) modelling was performed using the framework of a

signalling Petri-net model representing the LC IRF-GRN, originally used to predict LC immunological

outcomes from gene expression data (Polak et al., 2017). The signalling Petri-net network diagram

has been assembled using mEPN network architecture (O’Hara et al., 2016)(Ruths et al., 2008). The
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model was constructed and edited within yED (yFiles, Germany). Here, the nodes represent
biological entities (genes, DNA sequences) and the edges represent biological interactions and
progressions through the model. The abundance of individual nodes is represented by the number
of ‘tokens’ passing through the node. The edges represent the direction in which ‘tokens’ ‘flow’
through the system. Black edges indicate positive edges, whilst red edges indicate inhibitory
interactions. The network is composed of TF nodes, in which tokens for the network enter, as well
as DNA binding region nodes and output gene nodes, which determine the prediction of
immunological pathways of activation. The signalling Petri-net (SPN) algorithm is modelled within
Graphia Pro. Here, the stochastic ‘flow’ of variable numbers of ‘tokens’ through the network is
modelled, based on network architecture and the number of initial ‘tokens’ only. More detailed

description of model construction can be found in original study (Polak et al., 2017).

For simulations of MoDC microarray data, means of TF expression values from triplicate
transcriptomic measurements for each MoDC condition were used as starting ‘tokens’ input into
network. Model parameters were set to 100-time blocks and 500 runs during SPN simulation within
Graphia Pro. Mean output ‘token’ values from triplicate simulations, in which the means of the final
10-time blocks were calculated, were used to display simulation outputs. For inclusion of MYC into

the IRF-GRN, model architecture was edited within yED and before SPN simulation in Graphia Pro.

2.2 In vitro processing of primary human skin tissue and LC

221 Extraction of steady-state and migrated LC from primary human skin

Human mastectomy and abdominoplasty skin samples were collected with written consent from
donor and ethical approval (study number: 16/L0/0999). Samples were washed in PBS before fat
was cut away and discarded. The remaining skin tissue was cut into small strips (~%cm width by
~1cm length) and added to 25ml 2U ml* dispase (Gibco, ThermoFisher, UK) for ~20 hours at 4°C.

The skin was washed in PBS, before the epidermis was mechanically separated from the dermis.

For the extraction of steady-state LC through digestion, the epidermis was finely chopped using a
scalpel and added to 13 U ml? liberase in R10 media (RPMI, 10% FBS and 1%
penicillin/streptomycin)(Roche, UK) for 2 hours at 37°C with agitation. Samples were suspended in
MACS buffer (0.5% BSA-PBS, Sigma, UK, 0.4% 0.5M EDTA, Gibco, UK) and filtered through a 70uM
filter. Cells were washed in R10 media (all centrifugations of LC performed at 300rcf, 10 minutes),
stained with trypan blue and subsequently counted using a haemocytometer to assess cell number
and viability. During extraction of migrated LC, epidermal sheets were cultured in R10 for 48 hours

at 37°C. The culture media containing migratory LCs was then collected, washed using R10 media
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and counted after trypan blue staining. Steady-state and Migratory LCs were then: processed and
stained for flow cytometry; purified using fluorescence-activated cell sorting (FACS) or
OptiPrep™(volumes 1:3, STEMCELL, UK and R10 media) for in vitro analyses or Drop-seq; or
cryopreserved in 90% FBS (Gibco, UK), 10% DMSO (Sigma, UK).

2.2.2 In vitro modulation of primary LC

OptiPrep™ purified migratory LC were utilised in unstimulated and TNFa stimulated LC processed
for Drop-seq. TNFa stimulated migrated LCs were incubated for 24 hours in R10 media with
25ng/ml TNFa. LCs were then collected, washed in R10 media and counted after trypan blue

staining. TNFa stimulated migrated LCs were processed through the Drop-seq pipeline.

Dexamethasone stimulated migratory LCs were extracted during 48-hour culture of epidermal
fragments in R10 media containing dexamethasone (1uM, Hameln, UK). Dexamethasone
stimulated migrated LC were washed thoroughly with R10 media prior to use in flow cytometry or

FACS purified for in vitro co-culture assays.

2.3 Human PBMC isolation

10ml aliquots of blood were isolated from healthy donors following informed written consent
(study number: 16/L0/0999). Collection tubes were washed out with 10ml PBS and overlaid onto
20ml lymphoprep™(Stemcell, UK), density gradient separation. Tubes were spun (600rcf, 30
minutes, 4°C, no brake or acceleration). The PBMCs mobilised at the interphase were then aspirated
and collected. PBMCs were washed with PBS and spun (300rcf, 10 minutes) to remove residual
lymphoprep. Cells were counted in trypan blue using a haemocytometer to assess cell numbers and

viability.

23.1 Naive T cell purification

Naive T cells were purified using the human naive CD4+ T cell isolation kit Il (Miltenyi, UK). Briefly,
PBMCs were counted with subsequent solution volumes in the protocol adjusted according to cell
numbers (10ul per 10’ PBMCs). PBMCs were pelleted and resuspended in 4x volume MACS buffer
(0.5% BSA-PBS, 0.4% 0.5M EDTA). 1x volume of cocktail 1 (biotinylated CD45RO, CD8, CD14, CD15,
CD16, CD19, CD25, CD34, CD36, CD56, CD123, anti-TCRy/§, anti-HLA-DR, and CD235a (glycophorin
A) antibodies) was added (5 minutes, 4°C). 3x volume of MACS buffer (0.5% BSA-PBS, 0.4% 0.5M
EDTA), 2x volume of cocktail 2 (anti-biotin microbeads) and 1x volume human CD14 microbeads
(Miltenyi, UK) were then added (10 minutes, 4°C). Magnetically labelled non-naive CD4+ T cell

populations were then depleted after running cell suspensions 2x through LS columns (Miltenyi,
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UK), using MACS buffer. Double LS column filtering was performed to ensure sufficient removal of
non-naive T cell populations. The negative fraction of naive CD4+ T cells was collected and washed

in PBS prior to in vitro experiments.

2.4 Skin resident memory T cell isolation

Skin resident memory T cells (TRMs) were extracted from epidermal sheets isolated from whole
skin after 2U ml™* dispase (Gibco, ThermoFisher, UK) for ~20 hours at 4°C. Epidermal sheets were
cultured in R10 media for 48 hours at 37°C. The culture media containing TRMs which had migrated
from the epidermal tissues was collected and cells washed in R10 media (300rcf, 10 minutes). TRMs
were purified using density gradient separation (volumes 1:3, Optiprep™, STEMCELL, UK and R10

media).

2.5 THP-1 monocyte cell line culture

The THP-1 monocyte cell line (gifted by Dr Tilman Sanchez-Elsner, University of Southampton, UK)
was utilised in optimisation of Drop-seq encapsulation and library preparation experiments. THP-1
cells were cultured in R10 media, 37°C. Cultures were passaged every 3-4 days, through removing
a fraction of culture volume and replacing with fresh warmed R10 media. Cells were washed in PBS

(300rcf, 10 minutes) prior to Drop-seq experiments.

2.6 Flow cytometry and FACS

2.6.1 Purification of LC

To enrich and purify samples of LC extracted from human epidermis, FACS was used. After isolation
from epidermis as describe above, LCs were pelleted (300rcf, 10 mins). For surface staining of live
cells, PBS buffer containing 0.5% BSA (Sigma, UK) was used for all antibody staining. LCs were
incubated with 10ul of FcR blocker (Miltenyi, UK) for 10 minutes at room temperature prior to
staining with fluorescently labelled antibodies, to prevent non-specific antibody binding to FcR
receptors on LC. Antibodies used for cell staining were pre-titrated and used at optimal
concentrations. LCs were stained for LC markers CD207 (anti-CD207, PeCy7, Miltenyi, UK), CD1a
(anti CD1a, VioBlue/V1, Miltenyi, UK) and HLA-DR (anti-HLA-DR, Viogreen/V2, Miltenyi, UK) and the
activation marker CD86 (anti-CD86, PerCP-Cy5.5, Miltenyi, UK) for 15 minutes, room temperature
and in darkness (Table 2). Cells were washed twice with 1 ml MACS buffer (0.5% BSA-PBS, Sigma,
UK, 0.4% 0.5M EDTA, Gibco, UK) before resuspending cells in ~300ul 0.5% BSA-PBS for flow

cytometry/FACS. FACS two-way sorting was performed on a FACS Aria flow cytometer (Becton
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Dickinson, USA), isolating LCs positively expressing CD207, CD1a and HLA-DR, or additionally
CD86high/low fractions in steady-state LC immunocompetency experiments. After cell sorting, cells
were washed in R10 media or PBS and recounted in trypan blue. Flow cytometry FACSDiva files

were analysed using FlowJo software (FlowJo, Oregon US).

Surface Marker Colour
CD207 PeCy7
CD1la VioBlue/V1
HLA-DR VioGreen/V2
CD86 PerCP-Cy5.5
Intracellular marker
IDO1 AlexaFluor647

Table 2. Surface and intracellular antibody staining panel used for FACS and flow cytometry

analysis of LCs.

2.6.2 LC intracellular staining for IDO1

IDO1 intracellular staining of LCs was performed using Intracellular Fixation & Permeabilization
Buffer Set (eBioscience, UK), following the kits protocol. Briefly, 300ul of Intracellular Fixation
Buffer (1x) was added (30 minutes, room temperature). Cells were subsequently washed with 1ml
Permeabilization Buffer (eBioscience, UK) and spun (350rcf, 10 minutes). Cell pellets were stained
using anti-IDO1 (AlexaFluor647, Biolegend, UK, 30 minutes, room temperature, darkness, Table 2),

washed with Permeabilisation Buffer and resuspended in 0.5% BSA PBS for flow cytometry.

2.6.3 T cell staining

For T cell flow cytometry analysis to identify Treg populations, pellets were surface stained for CD3
(anti-CD3, PerCP, Miltenyi, UK), CD4 (anti-CD4, Viogreen/V2, Miltenyi, UK) CD127 (anti-CD127,
Pe,Miltenyi, UK) and CD25 (anti-CD25, PeCy7, Invitrogen, UK, Table 3) for 15 minutes, room

temperature and in darkness, before washing in 0.5% BSA-PBS.
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For intranuclear FOXP3 staining, T cells were permeabilised using the FOXP3/Transcription Factor
Staining Buffer Set (eBiosciences, UK), following the manufacturers protocol. Briefly, 500ul of
Fixation/Permeabilisation solution was added to the T cells (30 minutes, RT, darkness). 1ml of
Permeabilisation Wash (1x) was added and spun (350rcf, 10 minutes). Cell pellets were stained
using anti-FOXP3 (FITC, eBiosciences, UK) or a FITC isotype control (eBiosciences, UK), washed with

Permeabilisation Wash (1x) and resuspended in 0.5% BSA PBS for flow cytometry.

For intracellular IL-10 staining, T cells were initially stained with LIVE/DEAD Fixable Violet Cell Stain
Kit (VioBlue/V1, Invitrogen, UK) to distinguish live cells, followed by anti-CD3 and anti-CD4 surface
staining as described above. Cells were then stimulated with Cell Stimulation Cocktail (eBioscience,
UK) for 6 hours, followed by incubation with Golgi Plug (BD Biosciencies, UK) for 5 hours, to prevent
intracellular protein transport (eBioscience, UK). Intracellular staining was performed in
Permeabilizing Solution 2 (BD Biosciencies, UK) with anti-IL-10 (Pe, Miltenyi, UK). IC was used to

distinguish true IL-10 positive staining.

Surface Marker Colour
CD3 PerCP
CD4 VioGreen/V2
CD127 Pe
CD25 PeCy7

Intranuclear marker

FOXP3 FITC

Intracellular marker

IL-10 Pe

Table 3. Surface, intranuclear and intracellular antibody staining panel used for FACS and flow

cytometry analysis of T cells to identify Treg populations.
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2.7 Co-culture and inhibition assays

2.7.1 LC and T cell co-culture assays

Purified LC and either purified naive CD4 T cells or TRMs were co-cultured in human serum
supplemented R10 media (RPMI, Gibco, UK, 10% human serum, Sigma, UK, 100 IU/ml penicillin and
100 mg/ml streptomycin, Sigma, UK) at a 1:50 ratio for 5-days at 37°C, in wells of a 48 well plate.
Plates were incubated at a tilt for the first 4 hours to ensure contact between LC and T cells. After
5-day co-culture cells were extracted, the wells washed out using PBS, before cells were washed in

RPMI media. T cells were then stained for Treg markers for flow cytometry/FACS (Table 3).

For IDO1 inhibition experiments, co-cultures were performed as described above, except NLG-919
(10uM, Cambridge Bioscience UK), an immune checkpoint inhibitor and epacadostat (EPAC, 1uM,
Cambridge Bioscience UK), a selective inhibitor of tryptophan catabolism were added to the media

during migrated LC and naive CD4+ T cell 5-day co-cultures.

2.7.2 PBMC suppression assays

Proliferation assays were set up through combining FACS-purified CD3+CD4+CD127-CD25+ Tregs,
induced after 5-day co-culture of naive CD4+ T cells with LC, with autologous CFSE labelled PBMCs.
PBMCs were labelled with CFSE using the CellTrace™ CFSE Cell Proliferation Kit (Invitrogen, UK),
following the kits protocol. Briefly, after cell counting, T cells were resuspended in ice-cold 0.5%
BSA-PBS (1ml per 10° cells). Cells were then stained with CSFE (1ul per 10° cells, 10 minutes, room
temperature). 25ml of ice cold R10 media was then added (10 minutes, on ice). Cells were washed
with ice cold R10 media (3x, 15ml, 300rcf, 10 minutes). Cells were recounted after CFSE labelling to
assess viability. Wells of a 96 well flat-bottomed plate were coated with 1ug/ml anti-CD3
monoclonal antibody (OKT3, eBioscience, UK) diluted PBS and incubated for 24 hours (4°C) and
washed 3x with PBS prior prior to co-culture set up. CD3+CD4+CD127-CD25+ Tregs and CFSE
labelled PBMCs were co-cultured for 3 days in human serum supplemented R10 media (RPMI,
Gibco, UK, 10% human serum, Sigma, UK, 100 IU/ml penicillin and 100 mg/ml streptomycin, Sigma,
UK), with 1ug/ml soluble anti-CD28, in wells of a 96 well flat-bottomed plate. Co-cultures were set
up in ratios of 1:1 and 1:3 Treg:PBMC. Co-cultures were incubated at a tilt for the first 24 hours to
ensure Treg/PBMC contact. After 3 days, cells were collected and washed in R10 media (300rcf, 10
minutes). T cells were stained for CD3 (anti-CD3, VioBlue/V1, Miltenyi, UK), CD4 (anti-CD4, APC,
Miltenyi, UK) and CD8 (anti-CD8, APC-Cy7, Miltenyi, UK)(15 minutes, room temperature, darkness,
Table 4) to assess proliferation rate (CFSE fluorescence diffusion) across CD4 and CD8 T cell

populations. Cells were resuspended in 0.5% BSA PBS for flow cytometry.
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Surface Marker Colour
CD3 VioBlue/V1
CD4 APC
CD8 APC-Cy7

Table 4. Antibody staining panel used for flow cytometry analysis to measure CD4 and CD8 T cell

proliferation in the CFSE-labelled PBMC proliferation assay.

2.8 Drop-seq

2.8.1 Producing microfluidic droplet devices

PDMS microfluidic devices were produced following the protocol developed by Dr Jonathan West
and Dr Patrick Stumpf at the University of Southampton (Figure 9). For a single device containing 6
microfluidic channels, 12g of PDMS pre-polymer and 1.2g of curing agent were mixed and degassed
in a vacuum desiccator before pouring into moulds. Devices were baked at 60°C for 90 minutes.
Inlet and outlet holes were created using a 1-mm biopsy punch. Devices were positioned onto a
glass microscope slide and the contact sealed using plasma activation in a Diener Femto SRS Plasma
System (Diener, Germany). 1% trichloro(1H,1H,2H,2H-perfluoro-octyl)silane (Sigma-Aldrich, UK)
was flushed through the device via inlet holes and left to incubate for 10 minutes. Contents of

device were then ejected using a N> gun before storage at room temperature.

Oil inlet

Figure 9. Microfluidic device used to create nanoliter sized droplets containing single cell and primer coated
bead. Fluid runs through the 1mm diameter channels in the device from inlets. At the interphase in which
aqueous cell and bead flow meet the oil, encapsulation events occur (arrow). Droplets exit the device at outlet

for collection and subsequent processing. Image edited from Macosko et al. 2015(Macosko et al., 2015).
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2.8.2 Production of single cell and bead loaded droplets

Drop-seq was performed following the Drop-seq protocol designed by the McCarrol Lab(Macosko
et al., 2015). Devices were positioned onto an inverted 10x microscope (Olympus, UK) to observe
droplet formation. Syringe contents for the 3 device inlets were prepared. A 5ml syringe (Henke-
Sass Wolf, HSW, Germany) was loaded with droplet generation oil (Bio-Rad, UK) for insertion into
the oil inlet. LCs suspensions were diluted to a concentration of 120 cells/ul in 0.02% BSA-PBS and
loaded into a 1ml syringe (HSW, Germany) for the cell inlet. Uniquely barcoded primer coated beads
produced through phosphoramidite synthesis (ChemGenes, USA) were suspended in 1ml lysis
buffer, which contained 50ul 1M DTT (Sigma-Aldrich, UK), 40ul 0.5M EDTA (Fisher Scientific, UK),
100ul 2M Tris pH 7.5 (Sigma-Aldrich, UK), 10ul 20% Sarkosyl, 300ul (Sigma-Aldrich, UK) 20% Ficoll
PM-400 (Sigma-Aldrich, UK) and 500ul nuclease free water (Fisher Scientific, UK). Beads were
diluted at a concentration of 120 beads/ul and loaded into a 3ml syringe (HSW, Germany) for the
bead inlet. A small stirrer magnet was added to cell and bead syringes and a magnetic plate placed
in close proximity ensured homogenous suspensions were maintained. Syringes were attached to
device inlets via 0.38mm diameter polyethylene tubing (Smiths Medical, Fisher Scientific). Tubing
was attached to device outlet to allow collection of droplet emulsion into a 50ml Falcon tube.
Syringes were placed onto the Drop-seq device in which rotating motors were primed at the top of
syringe plungers. Motors were activated at a flow rate of 14,000 pl/hr for the oil and 4000 pl/hr for
cell and bead suspensions, initiating droplet production. Outflow was collected and observed using

a light microscope to check uniformity of droplet emulsion

2.8.3 Extraction and purification of beads from emulsion

The oil layer at the bottom of droplet collections was first discarded. 30 ml of room temperature
6X SSC (Fisher Scientific, UK) and 1ml of perfluorooctanol (PFO, Sigma-Aldrich, UK) were added
before shaking (5 times). Tubes were spun at 1000rcf for 1 minute and the supernatant layer at the
top of the tubes was discarded. 30ml 6x SSC was ejected into tubes and supernatant containing
suspended beads was transferred into a new 50ml Falcon tube after allowing time (~3 seconds) for
the oil to sink. Tubes were spun again at 1000rcf for 1 minute to pellet the beads. The pellet was
then transferred into a 1.5ml| DNA low bind tube (Eppendorf, UK) and washed twice with 1ml 6X
SSC and once with 300ul 5X RT buffer.

2.8.4 Reverse transcription and endonuclease treatment

200ul reverse transcriptase mix (75ul water, 40ul Maxima 5x RT buffer, 40ul 20% Ficoll PM-400,
20ul 10mM dNTPs, 5ul RNase inhibitor, 10ul 50uM template switch oligo (TSO) and 10ul Maxima
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H- RTase) was added to each sample of beads. Samples were incubated with rotation at room
temperature for 30 minutes followed by 90 minutes at 42°C. Beads were washed with 1ml TE-SDS
(10mM Tris pH 8.0 1mM EDTA, 5% SDS) and twice with 1ml| TE-TW (10mM Tris pH 8.0 1mM EDTA,
0.01% Tween-20). Beads were washed with 1ml 10mM Tris pH 8.0. 200l of exonuclease mix (20l
10X Exo | Buffer, 10ul Exo |, 170ul water) was added before incubating with rotation at 37°C for 45

minutes. Beads were then washed with TE-SDS and twice with TE-TW.

2.8.5 PCR and cDNA library purification

2000 bead aliquots equivalent to 100 STAMPs were used in each PCR reaction. Beads were washed
with 200ul endonuclease free water before 50ul PCR mix was added (25ul 2X Kapa HiFi Hotstart
Readymix, 0.4ul 100uM SMART PCR Primer, 24.6ul water) and proceeding to PCR (Table 5). At the
second denaturing, annealing and extension stage different cycling parameters were tested. cDNA
libraries from 100 STAMPs were generated at a time, with different number of PCR cycles (12-16
cycles) initially tested to determine the lowest number of cycles required to produce sufficient
quantities of ¢cDNA (>100pg/ul). Lower cycling parameters reduces overamplification of high
abundant transcripts, resulting in higher quality cDNA libraries. Once optimal cycling parameters
were determined, the total required number of STAMPS were converted into cDNA libraries. cDNA
libraries were purified using AMPure XP magnetic beads (Beckman Coulter, UK). 30ul of AMPure
beads were added to PCR samples and vortexed for 5 minutes. Samples were incubated for 5
minutes at room temperature before being placed onto a 96 well magnetic plate. After 2 minutes
of magnetic separation the supernatant was removed, leaving the magnetic AMPure beads bound
with the cDNA. Tubes were washed twice with 200ul 70% ethanol. Tubes were dried before cDNA
was eluted and collected in 10ul of endonuclease free water, before AMPure beads were discarded.
Samples were run using a DNA hypersensitivity kit on an Agilent Bioanalyser (Agilent, UK) to test

for successful cDNA library production.

Phase Cycles Temperature Time
Denaturation | 1 95°C 3 minutes
Denaturation 98°C 20 seconds
Annealing 4 65°C 45 seconds
Extension 72°C 3 minutes
Denaturation 98°C 20 seconds
Annealing ;2;)166n(;yecr|](38 (Sample ['g7ec 20 seconds
Extension 72°C 3 minutes
Extension 1 72°C 5 minutes

Table 5. PCR parameter used for cDNA library amplification
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2.8.6 Tagmentation of cDNA

In preparation for next generation sequencing, cDNA libraries were labelled with a unique index
sequence and molecular handle through tagmentation (Nextera XT DNA library preparation kit,
Illumina), for compatibility with the lllumina Next-seq protocol. Volumes of purified cDNA libraries
containing 600pg of DNA were diluted in nuclease free water a total volume of 5ul. 10ul of Nextera
TD buffer and 5ul Amplicon Tagment Enzyme was added before incubating at 55°C for 5 minutes.
S5ul of Neutralisation buffer was added and sample was incubated at room temperature for 5
minutes. In chronological order, 15ul Nextera PCR mix (lllumina), 8ul water, 1ul 10uM New-P5-
SMART PCR hybrid oligo and 1ul 10uM Nextera N70X oligo (lllumina) was added before PCR
tagmentation (Table 6). DNA was purified using AMPure XP magnetic beads (Beckman Coulter, UK)

and eluted in 10ul water. DNA was quantified using a DNA hypersensitivity kit on an Agilent

Bioanalyser.

Phase Cycles Temperature Time
Denaturation 1 95°C 30 seconds
Denaturation 95°C 10 seconds
Annealing 12 55°C 30 seconds
Extension 72°C 30 seconds
Extension 1 72°C 5 minutes

Table 6. PCR parameters used for cDNA Nextera XT tagmentation

2.8.7 Sequencing

Custom read 1 primer was diluted to a working concentration of 0.3uM by adding 6ul 100uM
Custom read 1 primer stock to 1994l HT1 buffer (Next-Seq 500/550 v2.5 kit, lllumina). Tagmented
libraries were pooled together at a total concentration of 2nM. 10ul of 2nM pooled library was
added to 10ul 0.2N NaOH. Working on ice, 980ul ice-cold HT1 buffer was added. 130ul of the mix
was transferred into 1170ul HT1 buffer, diluting the concentration of library to 2pM. 2pM libraries
and 0.3uM custom read 1 primer were loaded onto a reagent cartridge from an lllumina Next-Seq
500/550 v2.5 kit (Illumina, California US). Flow cell, buffer cartridge reagent cartridges were loaded

onto an Illumina NextSeq sequencer (lllumina, Californa US), on NextSeq on a paired end run
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(1.5x10ES5 read per cell for maximal coverage, read1=20bp, read2=50bp, index1=8bp) at the Wessex

Investigational Sciences Hub laboratory, University of Southampton (Southampton, UK).

2.8.8 Read alignment

Sequencing output files were uploaded onto a user account in Iridis4 (University of Southampton).
Sequencing data was de-multiplexed to separate sequencing date derived from each sample,
followed by removal of UMIs from reads and captured transcripts inferred through using the
bcl2fasq software from Illumina. The resulting read 1 and read 2 fastq files for each sample were
aligned to the human_hg19 reference genome using STAR, creating a data matrix containing gene

transcript counts detected within each single cell.

2.8.9 Drop-seq primers

Sequences of all primer utilised in the regular Drop-seq procedures were consistent to those used

in Macosko et al. (Macosko et al., 2015). All primers were ordered from IDT (lowa, US) (Table 7).

Name Sequence

Barcoded Bead SeqB 5'—Bead—Linker-TTTTTTTAAGCAGTGGTATCAAC
GCAGAGTACJIJINIIIINNNNNNNN

TTTTTTTTITTITITITTTITITITITTITTT-3’

TSO AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG

SMART PCR primer AAGCAGTGGTATCAACGCAGAGT

New-P5-SMART PCR hybrid oligo | AATGATACGGCGACCACCGAGATCTACACGCCT
GTCCGCGGAAGCAGTGGTATCAACGCAGAGT* A*C

Custom Read 1 primer GCCTGTCCGCGGAAGCAGTGGTATCAACGCAG AGTAC

Table 7. Barcoded primer bead and primer sequences utilised in Drop-seq protocol.

2.8.10 Drop-seq data analysis

Analyses was performed using the python-based Scanpy pipeline(version 1.5.0) (Wolf, Angerer and
Theis, 2018) except where stated otherwise. High quality barcodes, discriminated from background
RNA barcodes, were selected based on the overall UMI distribution using EmptyDrops (Lun et al.,

2019). The filtering criteria (min and max counts) was adjusted to match estimated the number of
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true cells/STAMPs processed. Low quality cells, with a high fraction of counts from mitochondrial
genes (20% or more) indicating stressed or dying cells were removed. In addition, genes with
expression detected in less than 10 cells from an overall quantity of 680-972 cells, depending on
the dataset (breast, foreskin, abdominal skin LC), were excluded. Datasets were normalised using
Scran, using rpy2 within python (Lun, Bach and Marioni, 2016). Here, subclusters in the data are
first identified (Counts per ten thousand (CPTT) normalised, n_pcs=15, Leiden r=0.5 (Traag,
Waltman and van Eck, 2019)), before the Scran normalisation (computeSumFactors) is performed
on subcluster annotated raw data. Briefly, sums of expression values in annotated subclusters in
the raw data are identified. Pooled size factors are then calculated to deconvolute and produce
individual cell-based factors for normalisation. Highly variable genes (top 2000) were selected using
distribution criteria: min_mean=0, max_mean=4, min_disp=0.1. A single-cell neighbourhood graph
was computed on the first principal components that sufficiently explain the variation in the data
using 10 nearest neighbours. Uniform Manifold Approximation and Projection (UMAP) was
performed for dimensionality reduction. Leiden algorithm (Traag, Waltman and van Eck, 2019) was
used to identify clusters within cell populations (Leiden r = 0.5, n_pcs=25-50, n_neighbours=50).
Marker genes for clusters were identified using logistic regression. Differentially expressed genes
(DEGs) between cell clusters were identified using T-test or MAST (BH adj.p-value<0.05). Trajectory
inference analysis was performed using partition based graph abstraction (PAGA) (Wolf et al., 2019)
initialisation within Scanpy. Here, the Fruchterman Reingold (FR) force directed graph layout was
used to maintain data topology. Gene ontology analysis for marker genes and DEGS was performed
in Toppgene (BH adj.p-value<0.05) and gene ontology results summarised using Revigo. Gene
ontology data was summarized using -log10 BH adjusted P-Values with plotting performed using

Prism 8 software.

Regulatory network inference analysis was performed using single-cell regulatory network
inference and clustering (SCENIC) within python (Aibar et al., 2017). Briefly, gene and TF co-
expression networks are first calculated using the GENIE3 algorithm (Huynh-Thu et al., 2010),
before putative direct binding targets within co-expressed modules are discerned using RcisTarget
(Aibar et al., 2017) cis-regulatory motif analysis, to identify regulons. TF binding regions 500bp
upstream of starting sequence were searched. The most highly enriched regulons could be
identified between cell populations and regulon enrichment (Z-scores) in each single cell could be

traced and plotted within the Scanpy pipeline.
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2.8.11 Targeted Drop-seq

Drop-seq experiments were processed as normal from encapsulation through to extraction and
purification of beads from droplet emulsion. During reverse transcription however, TSO was absent
from the reaction. This resulted in cDNA fragments without SMART primer binding sites at the 3’

end of the Macosko bead primers, which are produced in regular drop-seq (Vallejo et al., 2019).

Primers targeting genes of interest were designed using Beacon Designer primer design software
(PREMIER Biosoft, California US) (Table 8). The 55 gene panel was designed in order to identify LC,
determine LC activation or tolerogenic status, identify melanocytes (MC), identify PBMC
populations and detect general housekeeping genes to evaluate transcript detection. LC and MC
detection panel included known markers from literature and the top consistently expressed genes
detected from previously analysed single cell transcriptome data (ranked by expression, dropout
rate<5%). Markers of LC activation/tolerance were chosen from literature on DC activation and
tolerance and results from tolerogenic DC transcriptomic analysis. Using results from previously
processed PBMC single cell RNA-seq dataset, the top two markers of each cluster, identified using
k-means clustering were included for markers of PBMC populations. Housekeeping genes were
selected from genes highly expressed across previously experimented LC and PBMC datasets
(ranked by expression, dropout rate<5%). DNA sequences for genes were uploaded into the Beacon
Designer software for identifying optimal primers specific to gene of interest. The last 14 bases from
the SMART primer sequence (TATCAACGCAGAGT) were added to the 5’ end of the designed
primers. Desired features of primers included: a length between 32-38 base pairs, 40-60% GC
content, a primer melting temperature between 52-58°C with minimal chance of secondary
structures being produced. The panel of 55 primers were designed (IDT, lowa US). Primers were
pooled at 10uM. 50ul amplification mix was added (25ul 2X Kapa HiFi Hotstart Readymix, 0.4ul
10uM primer pool, 24.6ul water) to aliquots of 2000 beads (100 STAMPs). 20 rounds of linear
amplification were first performed (Table 9) before continuing the regular Drop-seq protocol for
library preparation with PCR amplification and tagmentation (Table 5 & Table 6). cDNA libraries
were purified using AMPure XP magnetic beads and libraries assessed using a bioanalyser before

tagmentation and Next-seq sequencing.
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Gene Population targetted (Gene |Population targetted
BIRC2 LC IRF1 LC activation/tolerance
CCL22 LC activation/tolerance IRF4 LC activation/tolerance
ccLs PBMC LDHB PBMC

CD1A LC LST1 PBMC

CD207 LC LYN LC

CD274 LC LYz PBMC

CD40 LC activation/tolerance MALT1 |LC

CD70 LC activation/tolerance MLANA |MC

CD74 LC MS4A1 |PBMC

CD79A PBMC MyYc LC activation/tolerance
CD80 LC activation/tolerance NFKB1 |LC activation/tolerance
CD86 LC NFKB2 |LC activation/tolerance
CFL1 Housekeeping NFKBIA |LC activation/tolerance
CLEC1I0A (PBMC NFKBIZ |LC

CLF1 PBMC PRF1 PBMC

CYBB LC activation/tolerance PSME1 |LC activation/tolerance
FCER1A PBMC RPL10 |Housekeeping

FCGR3A PBMC S100A9 |PBMC

GZMB PBMC SOCS1 |LC activation/tolerance
GZMK PBMC SOCS3 |LC activation/tolerance
HLA-DPA1 (LC SOCS5 |LC activation/tolerance
HLA-DQA1 |LC S0CS6 |LC activation/tolerance
HLA-DRB1 |LC 5QSTM1 |PBMC

HLA-E Housekeeping STAT3 |LC activation/tolerance
IDO1 LC activation/tolerance TNFAIP3 |LC activation/tolerance
IGFBP7 McC TYRP1 |MC

IL10RA LC activation/tolerance UBB Housekeeping

IL7R PBMC

Chapter 2

Table 8. Primer panel for investigating cell populations in the human epidermis. Panel

included 55 primers for genes that would identify LC, determine LC activation or tolerogenic

status, identify melanocytes (MC), identify PBMC populations and general housekeeping

genes to evaluate transcript detection. Primers were designed using Beacon Designer primer

design software.
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Phase Cycles Temperature Time
Denaturation 1 98°C 3 minutes
Denaturation 98°C 20 seconds
Annealing 20 62°C 45 seconds
Extension 72°C 2 minutes
Extension 1 72°C 5 minutes

Table 9. Linear amplification parameters for Constellation Drop-seq

2.9 gPCR

FACS purified migrated LC were added to RLT buffer (Qiagen, UK), 1% -mercaptoethanol. RNA was
extracted and purified using a Qiagen RNeasy micro kit (Qiagen, UK), following manufacturers
protocol. Using an Agilent RNA 600 pico kit, RNA concentrations and quality (RIN score >9 in all
samples) were assessed. Reverse transcription was performed using a Maxima First Strand cDNA
Synthesis Kit for RT-gPCR (ThermoFisher, UK) accordingly to the manufacturer’s protocol. Briefly,
volumes of RNA equivalent to 20ng were combine with 4pl 5x reaction mix and 2pl Maxima enzyme
mix, up to a volume of 20ul with nuclease free water, prior to incubation (25°C 10 minutes, 50°C
15 minutes). Primers targeting genes of interest were designed using Beacon Designer primer
design software (PREMIER Biosoft, California US). The SYBR green (iTag™ Universal SYBR® Green
Supermix, Bio-Rad, UK) quantitative PCR (gPCR) gene expression assay was utilised. Following the
kit protocol, 5ul of iTag Universal SYBR Green Supermix, 2.5ul nuclease free water, 0.5ul 10uM
primer mix (Forward and Reverse) and 2ul cDNA was distributed into wells of a 364 well plate.
Assays were run on a 7900HT Fast Real-Time PCR System (Table 10). Melting curve analysis was

performed to ensure specificity of product amplification by SYBR Green.

Step Phase Temperature Time

Step 1 Activation 95°C 10 minutes

Step 2 (x35 cycles) Denaturation 95°C 15 seconds
Extension 60°C 1 minute
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Table 10. qPCR cycling parameters

2.10 Mathematical modelling

The ‘toggle-switch’ ODE model used was adapted from Huang et al. (Huang et al., 2007), in which
the observed functional interactions are depicted in an ‘influence’ network, rather than molecular
mechanisms of interaction. The model is constructed from two first order ODEs which depict the
rate of change of TFs (x1 and x2) which define two phenotypical states, i.e. in the model by Huang
et al.,, GATAl=erythroid differentiation and PU.I=myeloid differentiation from progenitor
populations. Each ODE is composed of 3 terms, with the regulatory influences modelled using Hill
functions to describe sigmoidal associations. The first term represents the auto-amplification of TFs
that define each phenotype. In the model, the parameters al and a2 represent the relative
strength of the ‘influences’ promoting the auto-amplification of TFs which define the immunogenic
and tolerogenic phenotype, respectively. In the deficiency of x1 and x2, auto-amplification is
absent. The second term describes the cross inhibition between opposing TFs from each
phenotype. Here, bl and b2 explain the ‘influence’ of the cross-inhibition to each respective
phenotype’s activation. k1, k2 represent the rate of the first order deactivation. The constant 0
depicts the threshold or inflection point of the sigmoidal functions within the model, depicting the
relative strength of regulatory interactions. The constant n depicts the Hill coefficient, which

controls the steepness or ‘step like’ quality of the sigmoidal function.

The model was translated for LCs, with x1 defining immunogenic inducing TFs (/) and x2 defining
tolerogenic inducing TFs (T) (Equation 1). In line with the original model, in which the described
biochemistry captured by the parameters al, a2, bl, b2, k1, k2, nand 0 are unknown, a, b, k,
n and 6 were set to the same values across both equations (a,b,k=1, n=4 and 6=0.5) in accordance
with these parameters creating a stable attractor landscape containing 3 states as described in the

model by Huang et al.

Analysis and plotting of the ODE model was performed within MATLAB (Mathworks, Inc.). ODE
solving was performed using the ode45 solver (time interval 0-8) for trajectory plotting, whilst
phase portrait plotting was performed using quiver. TF expression values or Z-scores representing
expression of multiple TFs in each single cell were exported from Scanpy scRNA-seq analysis, scaled
within 0-2 to fit phase portrait boundaries and then utilised as time 0 starting points from which
trajectories were calculated and plotted. The total number of cells trajectories ending at each of
the 3 attractors after simulation was quantified and then plotted as pie charts in GraphPad Prism 8

software for comparison.
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Equation 1. ‘Toggle-switch’ ODE model describing the activation of Immunogenic and tolerogenic
LC states. First order ODEs representing the activation of immunogenic (/) and tolerogenic (T) states
in LCs. The dotted box represents terms describing the auto-amplification of each respective states.
The dashed box represents terms describing the cross-inhibition from opposing states, whilst the solid

box depicts the first-order decay rate (k) for TFs defining each state. (a,b,k=1, n=4 and 6=0.5).
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Chapter 3 Identifying a gene expression programme

encoding tolerogenic immune responses in human DCs

3.1 Introduction

The ability to induce tolerance is a key characteristic of DC function, accompanying their potency
to prime and induce immunogenic responses (Steinman, Hawiger and Nussenzweig, 2003)(Audiger
et al., 2017). Such tolerogenicity, as a fundamental property of DC, is likely to be encoded by a
conservative set of genes (a “transcriptomic programme”) universal across many different DC types

and regulated by a dedicated set of TFs, within a GRN.

TFs are capable of initiating the expression of specific target genes through sequence specific
binding to DNA promoter and enhancer regions, increasing the efficiency for RNA polymerase
binding and therefore initiating gene transcription (Spitz and Furlong, 2012). The expression level
of specific TFs can therefore indicate specific biological pathways or processes a cell is undertaking.
We aimed to identify specific TFs fundamental for both DC tolerogenic and immunogenicimmunity,

to uncover transcriptomic programmes present and absent during tolerogenic activity.

Importantly, multiple TFs can act in concert, forming complex GRNs controlling gene expression
(Singh, Khan and Dinner, 2014). The identification of GRNs offers unprecedented opportunity to
comprehensively investigate transcriptomic regulation under different cellular conditions. For
example, the assembly of the LC IRF-GRN, which comprises IRF family members, such as IRF1, IRF4
and /IRF8, as well as components of the ETS and AP-1 TF family (Polak et al., 2017), into a Petri-net
model has enabled in silico modelling to predict gene expression under different conditions. Model
input of TF transcriptomic expression values has led to predictions of gene expression changes of
genes associated with immunogenic LC immune pathways, including Thl and Th2 T-cell

differentiation and MHC | and Il antigen processing and presentation.

To define a universal transcriptional programme encoding tolerance in DCs, we sought to explore
the transcriptomes and elements of GRNs in DCs that are induced during diverse tolerogenic and
immunogenic states. We utilised two publicly available datasets (GSE52894, GSE117946)
comprising MoDCs that were unstimulated (iMoDC), conditioned with LPS (LPSMoDC), conditioned
with tolerogenic stimulus: dexamethasone and VitD3 (TolIMoDC) in GSE52894; or IL10 (ILLOMoDC)
in GSE117946, or a combination of both (LPS-TolIMoDC (GSE52894), LPS-IL10MoDC (GSE117946))
(Table 1, Table 11). MoDC provide a valuable source to investigate basic DC biology and immune

function in vitro. After isolation of monocytes from PBMCs, culture in the presence of IL-4 and GM-
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CSF can produce sufficient MoDC numbers for downstream in vitro analysis. The potential of
tolerogenic MoDC for inducing tolerogenic immunity has been demonstrated in numerous studies
and trials(Giannoukakis et al., 2011)(Phillips et al., 2017)(Anderson et al., 2017). Tolerogenic MoDCs
generated using dexamethasone, NFxB inhibitors and anti CD40/80/86 oligonucleotides are
currently being used in phase | clinical trials to treat autoimmune conditions such as type 1 diabetes,
rheumatoid arthritis and Crohn’s disease (Marin, Cuturi and Moreau, 2018). In some trials,
vaccination with TolMoDC resulted in the induction of Tregs in the blood and a decrease in IFNy
concentrations, proving the potential for these cells to mediate tolerogenic responses. Whilst
biologically different to LC, mostly due to the artificial origin of MoDCs through in vitro culture, the
converging function of all DCs for antigen presentation and priming adaptive immunity suggests
that homology between how DCs coordinate different immune responses, including tolerance,
might exist. We therefore hypothesised that the transcriptomes of MoDCs would reveal common
transcriptional programmes associated with different DC immune pathways, that were common in
LCs. Within the MoDC datasets identified from GEO, we aimed to identify specific gene expression
profiles associated with tolerogenic and immunogenic function and furthermore, specific TFs which
could be regulating these specific profiles. The identification of immunogenic and tolerogenic
pathway defining gene expression profiles and TFs within MoDCs could be then be assessed across

different DC types, including LCs.

To delineate the transcriptomic programme of tolerogenic DC, we performed whole transcriptome
analysis for MoDCs in tolerising vs immunogenic conditions, identifying sets of differentially
expressed genes (DEGs), specific co-regulated networks and the key transcriptomic regulators of
tolerance, such as TFs. Through identifying genes sets which co-express under unique biological
conditions, we revealed insights into specific biological pathways that define DC immunological
characteristics. We then investigated the accuracy of the LC IRF-GRN model for predicting MoDC
immune responses during tolerising vs immunogenic conditions. While the power of the model to
accurately predict LC immunogenic function after inflammatory TNFo. and TSLP stimulation has
been shown (Polak et al., 2017), the behaviour of the IRF-GRN using transcriptomic data from other
DC types, such as MoDCs, is currently unexplored, nor is it understood how the model would behave
using transcriptomic data from tolerised DCs. Additionally, the model was adapted to include TF
modules induced by MoDC during tolerogenic conditions, to evaluate the likelihood for their

association with the IRF-GRN and DC transcriptomic regulation during immune responses.

3.1.1 Hypothesis

Tolerogenic DCs exhibit a unique transcriptomic expression profile coordinated by specific TFs, as

compared to immature or immunogenic DCs.
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Chapter 3
Aims
Identify unique tolerogenic associated DC transcriptomic profiles.
Identify TFs which regulate the tolerogenic DC transcriptomic programme.

Validate the similarity between gene regulation of MoDCs and LCs using the IRF-GRN.

Modify the current IRF-GRN to include tolerogenic regulatory modules.
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3.2 Results

3.2.1 Transcriptomes programmes of MoDCs induced to promote tolerance are defined by
the suppression of inflammatory stimuli responsive genes, but lack universal

tolerogenic gene signature

MoDCs provide a good model to explore the phenotypes and transcriptomes of immature DCs,
whilst also being easily modulated by both immunogenic and tolerogenic stimuli to explore
different immunological phenotypes. Using publicly available datasets from GEO, the transcription
profiles associated with different states of MoDC activation were therefore investigated. Two
microarray datasets (GSE52894, GSE117946) were identified that comprised MoDCs in various
stimulatory conditions: (Table 11) unstimulated (iMoDC); conditioned with LPS (LPSMoDC);
conditioned with tolerogenic stimulus: dexamethasone and VitD3 (TolIMoDC) in GSE52894; or IL10
(IL10MoDC) in GSE117946; or both (LPS-TolMoDC (GSE52894), LPS-IL10MoDC (GSE117946)). All

MoDC conditions in each dataset were in triplicate.

GSE52894 GSE117946
Unstimulated iMoDC iMoDC
Immunogenic LPSMoDC LPSMoDC
TolMoDC
Tolerogenic | (dexamethasone and IL10MoDC
VitD3)
Immunogenic/
LPS-TolMoDC LPS-IL10MoDC
Tolerogenic

Table 11. Sample composition of MoDC datasets selected for analyses. Microarray datasets from
GEO (GSE52894, GSE117946) were selected for transcriptomic analyses of tolerogenic DC immune
responses. MoDCs were annotated according to experimental conditions, which could be
summarised as unstimulated, immunogenic, tolerogenic or immunogenic/tolerogenic. All MoDC

conditions in each dataset were in triplicate.
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GSE52894, an lllumina HumanHT-12 V4.0 expression beadchip dataset, was first background
corrected and quantile normalised and filtered, resulting in expression values for 22,216 gene
probes utilised in downstream analyses. GSE117946, an Affymetrix Human Gene 1.0 ST Array,
contained robust multichip average (RMA) algorithm normalised and filtered data, with 21,620
gene probes used for subsequent analyses. Due to the likelihood of batch effects between the data
processing and microarray platforms, datasets were analysed separately and the resulting

expression patterns identified between different stimulatory conditions were then compared.

An overall comparison of the differences between gene expression profiles within each dataset was
assessed using multi-dimensional scaling (MDS) plotting. This reduced the whole transcriptome
data into 2D format, for observing the first three principle components (PCs), which described the
sample-to-sample variation (Figure 10). In each dataset, all 4 MoDC conditions displayed unique
gene expression profiles with discreet isolated clusters being formed. The tight grouping of all
replicates from each condition showed that the different stimulants were consistent in the unique
expression profiles they induced. In GSE52894, PC1 clearly indicated the substantial effects of LPS
treatment on the MoDC transcriptome, with LPSMoDCs and LPS-TolMoDCs positioned separately
from the other MoDCs to the left of the MDS plot. PC2 however clearly displayed the distinct
transcriptomic changes induced by tolerogenic stimuli (dexamethasone and VitD3). Similarly, in
GSE117946, LPSMoDCs clearly separated from the other MoDC populations along PC1. However,
unlike GSE52894, GSE117946 tolerogenic IL1I0MoDCs were less distinct to both iMoDCs and
LPSMoDCs along PCs 1-3. This suggests that the use of diverse tolerogenic stimuli results in distinct

transcriptomic programming.
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Figure 10. Dimensionality reduction of whole MoDC transcriptomes revealed each stimulation

condition created distinct gene expression profiles. Visualisation of normalised, log transformed whole

transcriptome data (top GSE52894, bottom GSE117946), reduced into two-dimensional format via multi-

dimensional scaling (MDS) using Limma within R. The first 3 PCs are displayed, PC1 and PC2 (left) and

PC2 and PC3 (right), with distances between samples representing level of similarity in each PC.

Firstly, we focussed our analysis on dataset GSE52894. To gain insight into the transcriptomic profile

influencing tolerogenic function, differentially expressed gene (DEG) analysis comparing TolIMoDC

to all other MoDC conditions was performed using Limma (Ritchie et al., 2015), version 3.40.6)

within R. The model identified a list of 1171 probesets which were upregulated in TolMoDC
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compared to at least one of the 3 other MoDC conditions (adj.p-value<0.05, logFC>1). To identify
networks of co-expressed genes induced by different treatments, DEGs were uploaded into the
gene co-expression network tool Graphia Pro (Theocharidis et al., 2009). Transcript-to-transcript
clustering using Pearson correlation (r = 0.93) and Markov clustering algorithm (MCL=1.7),
identified 28 gene co-expression clusters (Figure 11A). Gene ontology analysis in Toppgene (Chen
et al., 2007) was performed to identify associated biological pathways for the gene lists and to
recognise gene profiles potentially key for mediating tolerogenic function (Table 12). Systematic
analysis of the cluster profiles, identified three profiles of interest for characterising specific gene
regulation mechanisms promoting tolerance. These could be broadly split into clusters upregulated
or downregulated by tolerogenic stimuli, with those upregulated by the latter being further split
into clusters unaffected or downregulated after LPS addition. Analysis of the largest cluster
exhibiting one of the profiles of interest was performed to identify the predominant transcriptomic
programme associated with each profile. This revealed differences in specific immune related
biological processes upregulated in profiles of interest (Figure 11B&C). Cluster 6, containing 20
genes, was upregulated in both ToIMoDC and LPS-TolMoDC and these genes were therefore
induced by tolerogenic stimuli and resistant to immunogenic stimulus. Gene ontology for this
cluster included immune-response activating signal transduction (adj.p-value=3.9E-2), activation of
immune response (adj.p-value=3.9E-2), cellular carbohydrate metabolic process (adj.p-value=3.9E-
2) and negative regulation of immune system process (adj.p-value=4.3E-2). Genes associated with
negative regulation of immune system process, included MYC, PIK3AP1, CD14 and PRNP. Gene
ontology terms for cluster 7, which contained 23 genes upregulated in TolMoDCs, but down
regulated in LPS-TolMoDCs included positive regulation of vasculature development (adj.p-
value=2.3E-2), regulation of cellular localisation (adj.p-value=2.3E-2), and regulation of secretion by
cell (adj.p-value=2.3E-2). Cluster 4, contained 69 genes and was upregulated in LPSMoDC only and
not in LPS-TolMoDC. Tolerogenic stimuli was therefore suppressing their activation after the
addition of LPS. Gene ontology for cluster 4 genes included response to cytokine (adj.p-value=3.9E-
6), immune response (adj.p-value=1.0E-5), positive regulation of defence response (adj.p-

value=3.9E-6) and positive regulation of innate immune response (adj.p-value=4.3E-5).

Clusters of interest were inspected for potential transcription factors (TFs) which could be
orchestrating gene co-expression (Figure 11D). Cluster 6, associated with tolerogenic responses,
included the TF MYC, which was highly upregulated in MoDCs exposed to tolerogenic stimuli.
Cluster 4 included IRF1 and IRF4, both known inducers of DC immune activation. These TFs followed

the expression pattern of cluster 4 with upregulated expression in LPSMoDC only.
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Cluster | No. of Genes Cluster Profile D Name FDR B&H
GO:0006614 [SRP-dependent cotranslational protein targeting to membrane 1.92E-19

G0:0006613 |cotranslational protein targeting to membrane 3.81E-19

1 292 i=High, T=High  [G0:0006413 |translational initiation 3.81E-19
G0:0045047 |protein targeting to ER 3.81E-19

G0:0000184 [nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 4.40E-19

G0:0045087 [innate immune response 4.20E-39

G0:0060337 [type | interferon signaling pathway 2.13E-38

2 196 L=High, LT=High |G0:0071357 |cellular response to type | interferon 2.19€-38
G0:0034340 response to type | interferon 8.60E-38

G0:0006955 |immune response 1.59€E-37

G0:0006955 |immune response 7.77E-11

GO:0006952 |defense response 7.77E-11

3 167 LT=High G0:0032101 |regulation of response to external stimulus 1.81E-08
G0:0080134 |[regulation of response to stress 1.81E-08

G0:0045087 |innate immune response 2.42E-08

G0:0034097 [response to cytokine 3.85E-06

G0:0031349 | positive regulation of defense response 3.85E-06

4 69 L=High, LT=Low |G0:0006955 |immune response 1.00E-05
G0:0050776 |regulation of immune response 3.42E-05

G0:0045088 |regulation of innate immune response 3.42E-05

G0:0048003 |antigen processing and presentation of lipid antigen via MHC class Ib 1.04E-03

G0:0048007 |antigen processing and presentation, exogenous lipid antigen via MHC class 1b 1.04E-03

5 68 i=High, T=Low  |G0:0001775 |cell activation 1.39E-03
G0:0002250 [adaptive immune response 2.32E-03

G0:0009611 [response to wounding 2.97E-03

G0:0002757 |immune response-activating signal transduction 3.86E-02

G0:0002253 |activation of immune response 3.86E-02

6 20 LT=High, T=High |G0:2000106 |regulation of leukocyte apoptotic process 3.86E-02
G0:0044262 |cellular carbohydrate metabolic process 3.86E-02

G0:0002683 [negative regulation of immune system process 4.32E-02

G0:1904018 | positive regulation of vasculature development 2.26E-02

G0:0060341 [regulation of cellular localization 2.33E-02

7 22 LT=Low, T=High |G0:0050708 regulation of protein secretion 2.33E-02
G0:0051049 |regulation of transport 2.33E-02

G0:1903530 |regulation of secretion by cell 2.33E-02

G0:0010638 | positive regulation of organelle organization 4.30E-02

[T=Low, G0:2000573 |positive regulation of DNA biosynthetic process 4.30E-02

9 11 T=Moderate G0:0044711 |single-organism biosynthetic process 4.30E-02
G0:0033979 |box H/ACA snoRNA metabolic process 4.30E-02

G0:0090669 |telomerase RNA stabilization 4.30E-02

G0:0030593 | neutrophil chemotaxis 2.31E-03

G0:1990266 | neutrophil migration 2.31E-03

10 9 LT=High G0:0071621 |granulocyte chemotaxis 2.31E-03
G0:0097530 [granulocyte migration 2.42E-03

G0:0097529 [ myeloid leukocyte migration 5.49E-03

G0:0051235 [ maintenance of location 4.62E-02

G0:0034120 |positive regulation of erythrocyte aggregation 4.62E-02

12 8 i=Moderate, L=High [ GO:0060627 |regulation of vesicle-mediated transport 4.62E-02
G0:0045185 [ maintenance of protein location 4.62E-02

G0:0051651 [ maintenance of location in cell 4.62E-02

84




Chapter 3

G0:0032612 |interleukin-1 production 1.12E-02

G0:0072682 |eosinophil extravasation 1.12E-02

13 LT=I\:I_0|-|die:‘ate, G0:1904458 |regulation of substance P secretion 1.12E-02

e G0:1904496 | positive regulation of substance P secretion, neurotransmission 1.12E-02

G0:1904335 |regulation of ductus arteriosus closure 1.12E-02

G0:0090505 |epiboly involved in wound healing 9.81E-03

G0:0044319 [wound healing, spreading of cells 9.81E-03

14 LT=High, T=High |G0:0090504 |epiboly 9.81E-03

G0:0002011 [ morphogenesis of an epithelial sheet 2.27E-02

G0:0060356 |leucine import 2.67E-02

15 i=Moderate, T=Low |GO:0071718 |sodium-independent icosanoid transport 2.13E-02

G0:0001676 |long-chain fatty acid metabolic process 1.75E-02

G0:0036111 |very long-chain fatty-acyl-CoA metabolic process 1.75E-02

17 i=High, T=High | G0:0033559 |unsaturated fatty acid metabolic process 1.75E-02

G0:0072330 | monocarboxylic acid biosynthetic process 3.36E-02

G0:0036112 [ medium-chain fatty-acyl-CoA metabolic process 3.36E-02

GO0:0006953 |acute-phase response 2.24E-02

18 LT=Moderate G0:1904445 [negative regulation of establishment of Sertoli cell barrier 3.05E-02

G0:1904444 |regulation of establishment of Sertoli cell barrier 3.05E-02

G0:0002526 |acute inflammatory response 4.53E-02

19 i=High, L=High, | - 1.0001885 | retina homeaostasis 2.56E-02
T=Moderate

G0:0001869 [negative regulation of complement activation, lectin pathway 2.46E-02

G0:0001868 |regulation of complement activation, lectin pathway 2.46E-02

20 Equalinall G0:0032489 |regulation of Cdc42 protein signal transduction 2.46E-02

G0:0051056 |regulation of small GTPase mediated signal transduction 2.46E-02

G0:0038027 |apolipoprotein A-I-mediated signaling pathway 2.46E-02

G0:0002687 |positive regulation of leukocyte migration 2.20E-02

X G0:0014739 | positive regulation of muscle hyperplasia 2.20E-02

21 = Low, LT=Low, G0:0002685 |regulation of leukocyte migration 2.20E-02
T=Moderate

G0:0002274 [ myeloid leukocyte activation 2.20E-02

G0:0014738 [regulation of muscle hyperplasia 2.20E-02

G0:0006744 |ubiquinone biosynthetic process 4.25E-02

G0:0006743 |ubiquinone metabolic process 4.25E-02

22 LT=Low G0:1901663 |quinone biosynthetic process 4.25E-02

G0:0034453 [ microtubule anchoring 4.25E-02

G0:0071294 |cellular response to zinc ion 4.25E-02

G0:0006656 |phosphatidylcholine biosynthetic process 2.41E-02

i=Low, L=High, G0:0019433 |triglyceride catabolic process 2.41E-02

25 T=Low G0:0046464 |acylglycerol catabolic process 2.41E-02

G0:0046461 |neutral lipid catabolic process 2.41E-02

G0:0046503 |glycerolipid catabolic process 2.63E-02

G0:0042986 | positive regulation of amyloid precursor protein biosynthetic process 1.80E-02

G0:0042983 [amyloid precursor protein biosynthetic process 1.80E-02

27 LT=High G0:0042984 | regulation of amyloid precursor protein biosynthetic process 1.80E-02

G0:0034379 |very-low-density lipoprotein particle assembly 1.80E-02

G0:0010878 |cholesterol storage 1.80E-02

Table 12. GSE52894 co-expressed cluster profiles with associated gene ontologies. Transcript-to-

transcript co-expression analysis of 1171 probesets differentially regulated in ToIMoDCs compared

to at least one other MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7),

identified 28 clusters. Table includes clusters which were associated with specific biological

processes identified in Toppgene (adj.p-value=<0.05), with the top 5 displayed. Clusters were

annotated with number of genes in each cluster and with their general expression profile across

MoDC conditions (i=iMoDC, L=LPSMoDC, LT=LPS-TolMoDC, T=TolMoDC).
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Figure 11. GSE52894 MoDC gene co-expression network analysis. A) Transcript-to-transcript co-
expression analysis of 1171 probesets differentially regulated in ToIMoDCs compared to atleast one other
MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7). 3 clusters were highlighted
as having an expression profile linked to the regulation of tolerance (Clusters 4,6 and 7, labelled on plot).
Lines (edges) represent the similarity between transcript expression; circles (nodes) represent genes. B)
Mean (£SD) cluster expression values across the different MoDC conditions. C) Cluster Toppgene gene
ontology analysis for the 69, 20 and 23 genes in clusters 4, 6 and 7, respectively (-logl10FDRPvalues). D)
Mean (£SD) expression of TFs MYC (Cluster 6), IRF1 and IRF4 (Cluster 4) across different MoDC conditions.
p-values = *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired T-test.
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Dataset GSE117946 was explored using the same analysis pipeline. After Limma DEG analysis
comparing ILIOMoDC to all other MoDC conditions, 8544 genes were subsequently submitted to
co-expression analysis in Graphia Pro (Pearson correlation r=0.93, MCL=1.7) (Figure 12A). Over 100
clusters were identified, leading to us to focus on clusters containing at least 20 genes (Table 13).
The largest clusters displaying one of the cluster profiles of interested identified during analysis of
GSE52894, included clusters 1, 3 and 6 (Figure 12B). Cluster 6 which contained 82 genes, was
upregulated in ILLOMoDCs only. However, its only associated ontology after Toppgene gene
ontology analysis, was G protein-coupled purinergic nucleotide receptor signalling pathway (adj.p-
value=4.3E-2). Cluster 3, containing 395 genes was significantly upregulated in ILLOMoDCs and LPS-
IL10MoDCs compared to iMoDCs and LPSMoDCs. Gene ontology analysis found associations with
myeloid leukocyte activation (adj.p-value=1.3E-12), neutrophil activation (adj.P-value=1.6E-12),
vesicle organisation (adj.P-value=1.8E-12) and the immune effector process (adj.p-value=6.7E-8).
Despite no specific associations with immune tolerance, this cluster which was specifically
upregulated in all IL10 exposed MoDC, contained the TF MYC (Figure 12C). Similar to GSE52894, a
large LPSMoDC upregulated cluster (cluster 1) was detected, which contained 1422 genes. This
cluster was associated with response to virus (adj.p-value=1.1E-17), protein ubiquitination (adj.p-
value=2.6E-16), response to cytokines (adj.p-value=7.5E-15) and innate immune response (adj.p-
value=7.6E-11). Included in cluster 1, was the TFs /RF1 and IRF4, again highlighting their association

with the regulation of DC immunogenic responses (Figure 12D).
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Cluster | No. of Genes Cluster Profile D Name FDR B&H
G0:0070647 | protein modification by small protein conjugation or removal 1.07E-17

G0:0009615 [response to virus 1.07E-17

1 1422 L=High G0:0016567 |protein ubiquitination 2.62E-16
G0:0032446 | protein modification by small protein conjugation 8.19E-16

G0:0045087 |innate immune response 7.64E-11

GO0:0048006 |antigen processing and presentation, endogenous lipid antigen via MHCclass Ib | 3.69E-02

G0:0048007 |antigen processing and presentation, exogenous lipid antigen via MHC class Ib 8.34E-02

2 426 i=High, IL10=High G0:0048003 |antigen processing and presentation of lipid antigen via MHC class 1b 8.34E-02
G0:0006629 |lipid metabolic process 1.46E-01

G0:1903463 [regulation of mitotic cell cycle DNA replication 2.90E-01

G0:0002274 | myeloid leukocyte activation 1.32E-12

G0:0042119 |neutrophil activation 1.64E-12

3 395 =Moderate/High, L-IL10=High, G0:0036230 |granulocyte activation 1.64E-12

1L10=High

G0:0016050 |vesicle organization 1.78E-12

G0:0002252 |immune effector process 6.71E-08

G0:0016050 |vesicle organization 1.83E-07

G0:0002274 | myeloid leukocyte activation 3.34E-05

i=High, L-IL10=Moderate/High,

4 227 1L10=High G0:0002446 |neutrophil mediated immunity 3.34E-05
G0:0090174 |organelle membrane fusion 3.34E-05

G0:0048284 |organelle fusion 4.47E-05

G0:0009607 [response to biotic stimulus 2.31E-06

G0:0098542 |defense response to other organism 2.31E-06

5 68 L=High, L-1L10=High G0:0051707 |response to other organism 2.31E-06
G0:0043207 [response to external biotic stimulus 2.31E-06

G0:0034097 [response to cytokine 7.56E-06

6 82 1L10=High G0:0002757 |immune response-activating signal transduction 4.27E-02
G0:0071216 |cellular response to biotic stimulus 7.44E-03

G0:0071222 |cellular response to lipopolysaccharide 1.53E-02

7 56 L-IL10=High G0:0071219 |cellular response to molecule of bacterial origin 1.53E-02
G0:0060907 |positive regulation of macrophage cytokine production 1.53E-02

G0:0002684 | positive regulation of immune system process 1.77E-02

G0:0010273 | detoxification of copperion 3.01E-05

G0:1990169 |[stress response to copper ion 3.01E-05

8 50 L-IL10=High G0:0061687 |detoxification of inorganic compound 3.01E-05
G0:0097501 |[stress response to metal ion 3.01E-05

G0:0046688 |response to copperion 3.01E-05

G0:1904351 | negative regulation of protein catabolic process in the vacuole 2.30E-02

G0:1905166 |negative regulation of lysosomal protein catabolic process 2.30E-02

9 46 L-IL10=Moderate, G0:0016050 |vesicle organization 3.13E-02

IL10=Moderate

G0:0001775 |cell activation 3.13E-02

G0:0001816 |cytokine production 3.13E-02

13 32 i=High, IL10=Moderate G0:0120032 [regulation of plasma membrane bounded cell projection assembly 9.07E-03
G0:0060491 [regulation of cell projection assembly 9.07E-03

G0:0019730 |antimicrobial humoral response 4.08E-06

G0:0042742 | defense response to bacterium 3.30E-05

21 22 LT=Moderate, L=High G0:0002274 | myeloid leukocyte activation 1.11E-04
G0:0045321 [leukocyte activation 1.11E-04

G0:0042119 | neutrophil activation 1.11E-04

2 21 LT=High, T=Moderate G0:0007040 |lysosome organization 1.82E-02
G0:0080171 |lytic vacuole organization 1.82E-02

Table 13. GSE117946 co-expressed cluster profiles with associated gene ontologies. Transcript-to-

transcript co-expression analysis of 8544 probesets differentially regulated in ILLOMoDCs compared

to at least one other MoDC condition, using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7),

identified over 100 clusters. Clusters with at least 20 genes and with specific associated ontologies

identified using Toppgene (adj.p-value=<0.05, top 5 ontologies displayed) were included in the

table. Clusters were annotated with number of genes in each cluster and with their general

expression profile across MoDC conditions (i=iMoDC, L=LPSMoDC, L-IL10=LPS-IL10MoDC,

IL10=IL10MoDC).
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Figure 12. GSE117946 MoDC gene co-expression network analysis. A) Transcript-to-transcript co-
expression analysis of 8544 probesets differentially regulated in ILLOMoDCs compared to at least one
other MoDC condition, using Graphia Pro (Pearson correlation r =0.93, MCL = 1.7). Clusters 1-100 are
displayed. 3 clusters were highlighted as having an expression profile linked to the regulation of
tolerance (Clusters 1, 3 and 6, labelled on plot). Lines (edges) represent the similarity between
transcript expression; circles (nodes) represent genes. B) Mean (£SD) cluster expression values for
cluster 1, 3 and 6 across the different MoDC conditions. C) Cluster Toppgene gene ontology analysis
for the 1422, 395 and 82 genes in clusters 1, 3 and 6, respectively (-log10FDRPvalues). D) Mean (+SD)
expression of TFs MYC (Cluster 3), IRF1 and IRF4 (Cluster 1) across different MoDC conditions. p-values
= *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired T-test.
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Having identified corresponding immunogenic clusters, 4 (GSE52894) and 1 (GSE117946) and
tolerogenic clusters, 6 (GSE52894) and 3 (GSE117946) from the two datasets, the cluster gene lists
were compared using Venn diagrams (Figure 13A). Additionally, tolerogenic MoDC cluster genes
were compared to 147 upregulated genes identified in published analyses (PMID:29109727)
comparing tolerogenic monophosphoryl lipid A (MPLA) and dexamethasone (MPLA-Dex) stimulated
MoDC to unstimulated MoDC. For immunogenic clusters, there was an overlap of 45 genes from
the 69 genes (cluster 4) and 1422 (cluster 1) genes contributed by GSE52894 and GSE117946,
respectively. As well as the TFs IRF1 and IRF4, common genes included NFKB1, CD80, CCR7, BIRC3,
STAT3, STAT5A and interestingly, the tolerogenic associated protein IDO1. Gene ontology analysis
for the 45 common genes again resulted in associations with response to cytokine (adj.p-
value=1.2E-6) and positive regulation of immune system process (adj.p-value=2.4E-6, Figure 13B).
Intriguingly, negative regulation of immune system process (adj.p-value=1.7E-5) was also identified
as an associated ontology, due to the presence of IRF1, IRF4, IDO1, CD80, STAT5A, CASP3, ID2,
TRAFD1, SAMSN1 and DHX58. Minimal overlap was identified in tolerogenic clusters with just 1
common gene, MYC, common between the 20 genes (cluster 6, ToIMoDC) from GSE52894, the 395
genes (cluster 3, ILLOMoDC) from GSE117946 and the 147 MPLA-Dex MoDC upregulated genes.
C0Q2 and PRNP were common between TolMoDCs and ILLOMoDCs only and CD14 was common
between TolIMoDCs and MPLA-Dex MoDCs only. 18 genes were common between IL10MoDCs and
MPLA-Dex MoDCs, including C1QA, C1QB, FCGR2A, FCGR2B and CCL13. Gene ontology analysis for
these 18 genes revealed associations with monocyte chemotaxis (adj.p-value=7.3E-5), positive
regulation of immune system process (adj.p-value=2.8E-4) and negative regulation of DC antigen
processing and presentation (adj.p-value=2.6E-2). Overall, whilst a common TF was identified in

both datasets, the overall transcriptomic programme of tolerance differed.

In summary, LPSMoDCs upregulate immunogenic and inflammatory associated genes, which
correlates with increased expression of IRF1 and IRF4. Interestingly, LPS also upregulated a
tolerogenic gene module, identified in both datasets. However, the transcriptomic modulation by
MoDCs exposed to tolerogenic factors appears to be largely specific to individual stimuli. Still,
upregulated expression of MYC was identified in TolIMoDCs, IL10MoDCs and MPLA-Dex MoDCs,

leading us to hypothesise its importance for regulating the tolerogenic programmes in DCs.
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Figure 13. Comparisons between LPSMoDC upregulated and tolerogenic MoDC upregulated clusters

in both MoDC datasets, reveals a tolerogenic gene module shared between LPS stimulated MoDCs.

A) Venn diagrams cross comparing gene lists for LPSMoDC cluster 4 (GSE52894) and cluster 1

(GSE117946) and tolerogenic MoDC cluster 6 (TolMoDCs, GSE52894), cluster 3 (IL10MoDCs,

GSE117946) and 147 MPLA-Dex stimulated MoDC upregulated genes compared to unstimulated MoDC

(PMID:29109727). B) Toppgene gene ontology analysis for the 45 genes commonly expressed in

LPSMoDC cluster 4 (GSE52894) and cluster 1 (GSE117946, -loglOFDRPvalues). C) Toppgene gene

ontology analysis for the 18 genes commonly expressed in ToIMoDC cluster 3 (GSE117946) and MPLA-

Dex MoDC (-log10FDRPvalues).
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3.2.2 In silico modelling of IRF-GRN confirms importance of IRF1 and IRF4 for DC

immunogenic function

Analysis of MoDC datasets identified /RF1 and IRF4 expression as a common feature for
immunogenic DC expression profiles. IRF1 and IRF4 are both key components of an IRF-GRN
mediating LC immune response, assembled by Polak et al. (Polak et al., 2017). The LC IRF-GRN has
been assembled as a Petri-net model amenable to dynamic in silico simulations which predicts
immune response outcomes from TF gene expression data (Figure 14A). Tokens run along the
network from TF inputs as expression data, through TF associated DNA binding motifs (ISRE, AICE,
EICE), to output genes associated with specific immunological processes. Whilst this model was
specifically developed for in silico modelling of LC immunological outcomes, the similar
characteristics between LCs and other DC populations suggest the predicted biological outcomes
could be similar. To test the uniformity between immunogenic transcriptional programmes of
MoDCs and LCs, gene expression values for interferon regulatory factor family TFs IRF1, IRF4, IRF8
and IRF binding partners; the AP-1 TF family (c/UN, cFOS, BATF, BATF3) and the ETS TF family (ELF1,
ELF2, ELF4, ELK1, ELK3, ETS1, ETS2, EHF, ETV3, ETV6, GABPa) from the MoDC microarray datasets,

was input into the model for in silico simulation.

For GSE52894, the model correctly predicted the gene expression profile displayed by the different
MoDCs conditions, for some genes (TAP1, TAP2, PSME1, PSME2, CD80, CD86, TAPBPL, PSMB10,
IL15 and HLA-A, B, C, E, F, G and H) included in the output from the ISRE and AICE network nodes,
termed ‘Programme A’ (Figure 14B). ‘Programme A’ genes were elevated in MoDC stimulated with
LPS and are associated with MHC | antigen processing and presentation and Th1 T-cell induction. In
silico modelling therefore linked the increased expression of IRF1 and IRF4 induced by inflammatory
LPS signalling to an increase in immunogenic DC biological processes. It also suggested that
immunogenic programmes were similarly regulated by the IRF-GRN between MoDCs and LCs. The
in silico model however, could not correctly predict gene expression for genes included in the
output from EICE, termed ‘Programme B’, associated with MHC Il antigen processing and
presentation and Th2 T-cell induction (Figure 14C). The regulation of ‘Programme B’ therefore

differed between MoDCs and LCs.

Unlike GSE52894, the GSE117946 MoDC dataset performed poorly at predicting gene expression
values for all genes in both ‘Programme A’ (Figure 14D) and ‘Programme B’ (Figure 14E). The same
genes that were correctly predicted in GSE52894 are displayed for comparison. In silico modelling
predicted high expression of ‘Programme A’ genes in LPSMoDC, IL10MoDC and LPS-IL10MoDC,

however expression followed a similar pattern to that seen in GSE52894, where expression was
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only elevated in LPS stimulated MoDCs. Only TAPBPL displayed some similarity in the pattern of

expression between model prediction and microarray data.

Overall our in silico simulations of MoDC gene expression data (GSE52894), could link high
expression of /IRF1 and IRF4 to the induction of some immunogenic DC output genes. It also
highlighted that at least some immunogenic pathways are similarly regulated between MoDCs and
LCs. However, the LC IRF-GRN model was unable to correctly predict MoDC gene expression after

stimulation with IL10 (GSE117946), indicating that GRN regulation was stimuli specific.
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Figure 14. IRF-GRN in silico simulation identifies /RF1 and IRF4 as important regulators of MoDC
immune activation. A) Structure of the LC IRF-GRN constructed by Polak et al.(Polak et al., 2017) with
the TF input nodes on the left. Means of TF expression values for triplicates of each MoDC condition
were used as starting tokens for the network. Tokens run along IRF-GRN, through TF associated DNA
binding motifs (ISRE, AICE, EICE), towards the resulting gene output and immune response nodes on
the right. Black edges indicate positive edges, whilst red edges indicate inhibitory interactions.
GSE52894 microarray data in silico predictions of ‘Programme A’ B) and ‘Programme B’ C) output
genes, with actual gene expression data from microarray displayed alongside. GSE117946 microarray
data in silico predictions of ‘Programme A’ D) and ‘Programme B’ E) output genes, with actual gene
expression data from microarray displayed alongside. Model parameters=100 time blocks, 500 runs.
Mean token values from triplicate simulations, in which the means of the final 10-time blocks were

calculated, are displayed.
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3.23 Inclusion of MYC-regulated module in IRF-GRN network allows simulation of

tolerogenic regulation in MoDCs

Having established the power of the IRF-GRN model to predict immunogenic ‘Programmed A’ in
GSE52894 MoDCs, the model was then edited to include input from MYC, to investigate potential
mechanisms of tolerogenic regulation. Due to the complete switch in IRF1 and IRF4 expression
compared to MYC between immunogenic and tolerogenic MoDCs, hypothetical mutually inhibitory
edges between MYC and either IRF1 and IRF4, or both, were modelled in silico (Figure 15, Figure
16A). First, the plausibility of such regulatory interactions was tested. For the regulatory interaction
to be deemed plausible, inclusion of MYC, into the already established GRNs of each MoDC
condition, using transcriptomic expression data from each respective MoDC condition, would result
in no change to the in silico predicted expression of ‘Programme A’ from Figure 14B. If MYC
inclusion detrimentally effected the in silico prediction then this would suggest that an interaction
with IRF1 and IRF4 was unlikely. For all 3 regulatory interactions tested (MYC-IRF1, MYC-IRF1, MYC-
IRF1/IRF4), the predicted expression profile of ‘Programme A’ remained relatively unchanged and
MYC inclusion therefore did not negatively alter the accuracy of the model. Whilst all simulations
were incredibly similar, the model with inhibitory edges between MYC and both IRF1 and IRF4 were
utilised for downstream analysis. The decision to use this model was based on the higher token
accumulation for LPS-TolMoDCs, which was more similar to the gene expression data of
‘Programme A’ genes. Also, IRF1 and IRF4 exhibit near identical profiles across MoDC conditions,
which highly opposes changes in MYC, further supporting their association with a shared regulatory

module.
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Figure 15. IRF-GRN Petri-net model with inclusion of MYC. Mutually inhibitory edges between
MYC and both /IRF1 and IRF4 were added to the model for in silico simulation of this hypothetical

regulatory interaction. Petri-net graph was edited within yED software.
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To test how fluctuations in MYC expression could alter MoDC expression profiles, in silico
simulations were performed of the LPSMoDC IRF-GRN with MYCinput values replaced with the high
expression value from TolMoDCs. Correspondingly, in silico simulations of the ToIMoDC IRF-GRN
with IRF1 and IRF4 input values replaced with the high expression values from LPSMoDCs were
performed (Figure 16B). These perturbations allowed investigation into how immunogenic
programmes could be switched to tolerogenic programmes and vice versa. In silico simulation of
the LPSMoDC IRF-GRN with TolMoDC MYC expression values resulted in a decrease in the token
accumulation at ‘Programme A’, resulting in a switch towards a more tolerogenic profile. Doubling
of the ToIMoDC MYC input was also modelled, to test how theoretical amplifications of inhibitory
signalling, not accounted for with just the inclusion of MYC expression values, could affect model
dynamics. As expected, doubling the input further enhanced the decrease in ‘Programme A’ token
accumulation. Similarly, in silico simulation of the ToIMoDC IRF-GRN with LPSMoDC /RF1 and IRF4
expression values resulted in an increase in token accumulations for ‘Programme A’, switching to a
more immunogenic profile (Figure 16C). Again, doubling of IRF1 and IRF4 expression values further
enhanced these changes to a profile resembling the unmodified LPSMoDC in silico prediction.
Overall, using IRF-GRN modelling a hypothetical inhibitory loop between MYC and IRF1 and IRF4
has been acknowledged that could describe how tolerogenic dexamethasone and VitD3 stimulated

MoDCs switch to an immunogenic LPS stimulated MoDC profile and vice versa.
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Figure 16. Integration of MYC into the IRF-GRN identifies a potential regulatory interaction with
both IRF1 and IRF4, which could explain the switch between tolerogenic and immunogenic states.
A) Inhibitory interactions between MYC-IRF1, MYC-IRF4 and MYC-IRF1/IRF4 were modelled in silico
and predicted expression profile of “Programme A” was assessed for comparison with unmodified
network (Figure 8B). Mean MYC expression values from respective MoDCs were utilised as token
input. Modification of B) the ToIMoDC IRG-GRN to include LPSMoDC /RF1 and IRF4 expression values
(1x and 2x) and C) the LPSMoDC IRF-GRN to included TolMoDC MYC expression values (1x and 2x).
Model parameters=100 time blocks, 500 runs. Mean token values from triplicate simulations, in

which the means of the final 10-time blocks were calculated, are displayed.
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3.3 Discussion

3.3.1 Transcriptomic programmes of MoDCs induced to promote tolerance are defined by
the suppression of inflammatory stimuli responsive genes, but lack universal

tolerogenic gene signature

Suppressive alterations of T cell state mediated by DC encounter can be actively tolerogenic,
whereby DC actively delete self-reactive T cell or mediate conversion into Tregs. This differs from
anergic responses, in which lack of DC co-stimulatory molecule expression leads to absent
activation of T cells, or exhaustion, in which chronic overactivation of T cells by DC leads to
functional hypo-responsiveness (Schietinger and Greenberg, 2014). To begin our investigation into
transcriptional programmes specifically encoding tolerance in LCs, we sought to identify a universal
mechanism by exploring model systems of DC tolerance. This was to identify potential
transcriptomic profiles key to DC tolerogenic immune function and understand how gene
expression was regulated under different stimulatory conditions and in particular, tolerogenic
stimuli. Also, if gene regulation between MoDC and LC was revealed to be similar, then the highly

versatile MoDC in vitro model could be utilised in downstream analyses.

Analysis of a microarray datasets (GSE52894, GSE117946) containing MoDCs unstimulated or after
treatment with LPS, tolerogenic stimuli (dexamethasone and VitD3, IL10) or a combination of both
LPS and tolerogenic stimuli, identified DC gene expression profiles associated with
immunotolerance. Through our initial MDS plot, it was seen that tolerogenic stimulated MoDC
(TolMoDC and IL10MoDC) transcriptomes were unique, clustering away from all other MoDCs in
their respective datasets. In both datasets the tolerogenic stimulated MoDCs were most similar to
iMoDCs, which may be expected due to evidence for tolerogenic inducing properties of DC when
immature and inactivated (Mahnke et al., 2002). The isolated clustering of TolMoDCs and
ILL0OMoDCs however, indicates that a specific gene expression profile is triggered by tolerogenic
stimuli, which endows the cells with enhanced tolerogenic characteristics. Within this gene
expression profile, we believed key molecular coordinators underpinning tolerogenic function

could be identified.

Using gene co-expression clustering analysis of the GSE52894 MoDC dataset, we identified a cluster
of 20 genes (cluster 6), which had increased expression in both ToIMoDC and LPS-TolMoDCs and
were associated with negative regulation of immune system process through gene ontology, due
to the presence of MYC, CEBPB, PIK3AP1, CD14 and PRNP. The upregulation of these genes in both
TolMoDCs and LPS-TolMoDCs showed the resistance of these genes to changes in gene expression

after stimulation by LPS and could therefore represent core tolerogenic genes. In the GSE117946
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MoDC dataset, a gene cluster upregulated in both ILLOMoDC and LPS-ILLOMoDC was identified
(cluster 3), which although was associated with regulation of immune responses, a specific
association with tolerogenic immunity was not identified. However, cluster 3 did contain MYC,
again linking the expression of MYC to the regulation of tolerance. Furthermore, MYC expression is
also upregulated in tolerogenic MoDCs stimulated with MPLA and dexamethasone (MPLA-Dex
MoDC). Interestingly MYC has been associated with the induction of immune suppression in the
context of cancer. MYC has been found to induce inhibitors of immunity, such PD-L1 (Casey, Baylot
and Felsher, 2017). High MYC expression in Burkitt lymphoma leads to suppression of type 1 IFN,
correlating with reduced expression of inflammatory NFkB targets (Schlee et al., 2007). Whilst the
importance for MYC in driving functionality of Tregs has been recognised, the association with MYC

expression and DC tolerance is unexplored (Saravia et al., 2020).

Tolerogenic clusters 7 (GSE52894) and cluster 6 (GSE117946) had a less obvious impact on MoDC
tolerance. Cluster 7 genes expression was suppressed after the addition of LPS in LPS-TolMoDCs, as
were cluster 6 genes after LPS addition in LPS-IL10MoDCs. Therapeutic targeting of these genes to
induce tolerance would therefore be ineffective, as their activation is not maintained in the
presence of immunogenic signalling. Gene ontology of cluster 7 genes was associated withimmune
responses, suggesting some contribution to DCimmune regulation. It is doubtful that immunogenic
DCs and tolerogenic DCs represent completely static states, which are unable to change function in
response to different environmental cues. The addition of danger signals such as LPS would shift
the requirement in favour of immunogenic DC responses in a bid to clear infection, therefore
requiring the suppression of tolerogenic DCs responses. Maintenance of tolerogenic function in
response to harmful stimuli, such as LPS, could have detrimental effects and therefore the ability
to down regulate tolerogenic genes may grant some fluidity, allowing DCs to change immune

responses to fit their current requirements.

Whilst it is understandable that certain genes are upregulated during tolerogenic immune
responses, it is also expected that certain inflammatory genes and pathways must be
downregulated and suppressed. Cluster 4 (GSE52894), a larger cluster of 68 genes associated with
inflammatory immune activation was upregulated in LPSMoDCs only. Although LPS-TolMoDCs
showed a slight increase in expression of this cluster compared to iMoDCs and TolMoDCs, the
tolerogenic stimuli was preventing the expression levels seen with LPS stimuli alone. This same
pattern in expression was identified in cluster 1 (GSE117946). The expression of these genes must
therefore be suppressed to maintain tolerance. A recurrent trait of genes upregulated by LPS
exposure included the upregulation of IRF and NFkB TF family members, known mediators of DC
development and maturation. Cluster 4 (GSE52894) genes included IRF1, IRF4 and NFKB1. Cluster
1 (GSE177946) genes included IRF1, IRF4, NFKB1, NKFB2, RELB and REL. The IRF and NFkB family
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were therefore highly associated with immunogenic DC activation which has been highlighted in
previous studies. IRF1 deletion in murine DC results in DC inability to adopt fully mature phenotypes
skewing responses in IL-10 production and Treg cell induction (Gabriele et al., 2006). IRF4 is
required for DC development and also mediates DC migration out of the skin (Bajana et al., 2012).
IRF4 expression also determines DC immune regulation. Murine CD11b+ and human CD1c+ DCs
which express IRF4 facilitate Th17 polarisation through IL-23 production (Schlitzer et al., 2013).
NFkB has diverse roles in coordinating the immune system. It controls the activity of diverse
proinflammatory cytokines and maintains the activation, differentiation and survival of immune cell
types, including DCs (Liu et al., 2017)(Rescigno et al., 1998). The activity of the IRF and NFkB family
is also interlinked, with NFkB known to regulate /RF4 expression (Gabriele and Ozato, 2007). Down
regulation of these immune regulators is therefore an understandable requirement for tolerance.
The key role for IRF1, IRF4 and NFkB TFs during inflammatory processes, could imply that their down
regulation is an observation seen across a variety of different dendritic cell types or even other
immune cell types during immunotolerance. However, when LPS-induced programmes of both
datasets were compared, a common tolerogenic gene module was identified through gene
ontology analysis. Contributing to the annotation was IRF1 and IRF4. In T cells, IRF1 modulation of
the chromatin landscape has been shown to enhance the induction of IL10-producing type | Tregs
in mice (Karwacz et al.,, 2017). Likewise IRF4-deficient murine bone marrow DCs are also
compromised in their affinity to induce Tregs (Vander Lugt, Riddell, Aly A. Khan, et al., 2017).
Interestingly, this suggests that both /RF1 and IRF4 are involved in mediating both immunogenic
and tolerogenicimmune responses and it therefore may not be as clear-cut for upregulation to only
occur during immunogenic and inflammatory conditions. It is therefore unclear how such

distinguishable responses by IRF1 and IRF4 are differentially regulated in DCs.

3.3.2 In silico modelling of IRF-GRN confirms importance of IRF1 and IRF4 for DC

immunogenic function

Having used MoDC datasets to establish how DC gene expression profiles are determined by their
immunological states or stimulatory conditions, we were able to identify /IRF1 and IRF4 expression
as a common feature for immunogenic DC expression profiles. To determine the involvement on
IRF1 and IRF4 in mediating immunogenic responses in MoDCs we used Petri-net in silico modelling
of the IRF-GRN, which was constructed to predict LC mediated immune regulation (Polak et al.,
2017). Using the IRF-GRN model, we could also observe differences in the accuracy of IRF-GRN in
silico modelling to predict immunogenic responses in MoDCs compared to LC. Simulations with the
LPSMoDC gene expression data from GSE52894 predicted increased expression of genes involved

in Th1 T cell induction and MHC | regulation, compared to simulations performed using gene
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expression data from the other MoDC types, which matched actual transcriptomic data. This data
therefore indicates that high /RF1 and IRF4 expression is pre-requisite for DC activation and the
ability to regulate immune responses. Whilst the accuracy of the model in predicting some outcome
genes was observed, the model was not able to correctly predict the pattern of expression of gene
associated with Th2 T cell induction and MHC Il regulation. This inaccuracy of the model was further
noted during in silico simulation of the GSE117946 MoDC data, in which the pattern of expression

across the different MoDC conditions for none of the output genes were correctly predicted.

Overall this indicates that the IRF-GRN model, constructed for modelling LC data, may be missing
certain TF regulators pivotal to MoDC immune regulation. Thus, this highlights the diverse
regulatory networks which underpin the regulation of immune responses between different
subgroups of DC. Regulation of tolerogenic responses in MoDCs may therefore greatly differ to
regulation in LCs, with in vitro DC models therefore of limited use to observe the true mechanisms

of LC tolerogenic immune regulation.

3.33 Inclusion of a MYC-regulated module in the IRF-GRN identified a potential mechanism

by which DCs regulate immunogenic vs tolerogenic responses

After identifying MYC as a potential candidate for regulating tolerogenic immune responses in
MoDCs, it was included in the IRF-GRN model via a mutually inhibitory loop with both /RF1 and IRF4
due to opposing expression patterns across the MoDC conditions. In silico modelling of GSE52894
data showed that MYC could potentially modulate gene expression via such interaction as it could
be integrated into the established models with no effect on the accurate in silico predictions of
‘Programme A’. We could further model how upregulation of MYC expression could perturb an
immunogenic IRF-GRN to become tolerogenic. The same modulation could be modelled for
conversion of a tolerogenic IRF-GRN to an immunogenic one via upregulation of IRF1 and IRF4. This
overall supported our hypothesis that MYC and both /RF1 and IRF4 are constituents of a mutually
inhibitory network that could control the switch between immunogenic and tolerogenic DC
activation. However, the inability of the IRF-GRN to accurately predict IL10MoDC immunogenic
gene expression and therefore explore and test for a MYC-IRF1/IRF4 regulatory interaction in
IL10MoDCs, hinders the credibility of this hypothetical switch. To be able to test this, the IRF-GRN
would need to be specifically altered to more accurately reflect MoDC regulation, as compared to

LCs.

Whilst an inhibitory mechanism of gene regulation was hypothesised for MYC, it is important to
consider biological processes it can upregulate. Included in the annotation for the co-expressed

genes in GSE52894 cluster 6 genes, which comprises MYC, was an association with metabolic
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processes. There is growing evidence highly linking the regulation of metabolism and immune
responses. In immature DCs, catabolic metabolic processes are favoured, such as oxidative
phosphorylation (OXPHOS), whilst activated DCs utilise more anabolic processes and favour
glycolysis over OXPHOS (Wculek et al., 2019)(Kelly and O’Neill, 2015). Published analysis on the
GSE52894 dataset by Malinarich et al. 2015 demonstrated that whilst ToIMoDCs and LPSMoDCs
displayed similarities in glycolytic rate, ToIMoDCs displayed enhanced OXPHOS and a dependence
on the fatty acid oxidation (FAQO) pathway (Malinarich et al., 2015). Similarly, VitD3 only stimulated
MoDCs also display enhanced glycolytic metabolism and OXPHOS compared to unstimulated
MoDCs, along with inhibition of T-cell IFNy production, when co-cultured (Ferreira et al., 2015).
MYC is a known modulator of metabolism, particularly in the context of cancer, in which
enhancement of metabolic pathways such as glycolysis, can enhance tumour growth (Stine et al.,
2015). The upregulation of MYC in TolIMoDCs therefore indicates that enhancement of immune

tolerance may be modulated via changes to cellular metabolism.

334 Evaluation of tolerised MoDCs as a model to investigate LC tolerogenic immune

regulation

In summary, our analyses have shown that DC transcriptomes display distinct gene expression
programmes, dependent on immunological conditions such as immunogenic and tolerogenic
states. We have also identified key transcriptional regulators specifically expressed in each
programme. However, the transferability of these findings to the immunological expression

programmes within LC is unknown.

All DCs are hallmarked by the ability to process and present antigen and migrate to secondary
lymphoid tissues to promote adaptive immunity. Nonetheless, there are many unique subtypes of
DC, distinguishable by lineage pathway, location in the body and preference for different immune
responses (Collin, McGovern and Haniffa, 2013). MoDCs are artificially generated in vitro from
blood monocytes, whilst LC are unique to other DC through their unique developmental pathway,
which is similar to tissue resident macrophages and they specifically reside within epidermal tissue
(Hoeffel et al., 2012). At the level of surface marker expression MoDCs and LCs differ. Markers of
LCs include CD207, CD1a and E-cadherin, whilst MoDCs express high levels of CD1a, CD11c and
CD1c (Collin, McGovern and Haniffa, 2013)(Collin and Bigley, 2018). Nevertheless, how significant
such differences in development and surface marker expression are reflected at the level of the
whole transcriptome is not completely understood. Our analyses identified some similarities
between MoDCs and LCs, including the modulation of /IRF1 and IRF4 during inflammatory
conditions, which are key components of the LC IRF-GRN and orchestrate immunogenic responses

(Polak et al., 2017). However, the overall success of in silico modelling using MoDC expression data
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to predict immunogenic programmes was limited, suggested that whilst common immune
associated transcriptional regulators were identified between MoDCs and LCs, the composition or
activity of the GRN differed between subtypes. Our analysis did confirm that in silico modelling of
transcriptomic programmes using GRN models could be a useful tool for investigations of DC
immune biology. However, the application of MoDCs to accurately explore the mechanisms of

tolerance exhibited by LCs requires further investigation and evaluation.
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Chapter 4 Transcriptomes of human primary LCs encode a

unique tolerogenic programme

4.1 Introduction

The epidermis is continuously exposed to a broad variety of antigen stimuli, which are detected by
immune sentinel LCs. The induction of tolerance by LCs is therefore believed to be critical for
maintaining homeostasis at the skin (Clayton et al., 2017)(West and Bennett, 2018) (Seneschal et
al., 2012)(Deckers, Hammad and Hoste, 2018). Current mechanisms identified by which LCs
mediate tolerance include clearance of apoptotic KCs, epidermal barrier maintenance and the
induction of epidermal Tregs (Hatakeyama et al., 2017),(Kubo et al., 2009),(Seneschal et al., 2012).
The expression of tolerogenic mediators such as IL-10, IDO1 and PD-L1 have been demonstrated to
be important for LC tolerogenic function (Yoshiki et al., 2010) (von Bubnoff et al., 2004)(P&a-Cruz
et al., 2010). The residence of LCs within the highly exposed epidermis likely modulates the
immunological role of LCs and alters their function and transcriptomic networks. This
microenvironment-specific biology could therefore highly contrast with other DC subtypes, which
reside in other tissue compartments. Indeed, earlier work from our group and others demonstrated
that transcriptional network of human LCs dramatically differs from other skin resident DCs (Polak
etal., 2014)(Artyomov et al., 2015). However, the extent to which LCs differ to other DCs inimmune

regulation of tolerogenicity at the transcriptomic level, is not completely understood.

LCs mediate induction of tolerance both locally in situ (Seneschal et al., 2012) and after trafficking
self-antigen to the local lymph nodes through migration (King et al., 2015)(Hemmi et al.,
2001)(Yoshino et al., 2006)(Ghigo et al., 2013). Both of these states need to be analysed carefully
to determine the molecular networks regulating LC-dependent immune tolerance. Therefore, to
comprehensively assess mechanisms of immunotolerance in LCs, datasets containing digested and
migrated LCs, extracted from healthy donors undergoing corrective breast or abdominal surgeries,

along with other DC subtypes, also extracted from healthy donors, were selected for analyses.

Whilst the tolerogenic potential of LCs is key for epidermal homeostasis, tolerogenic function of
other DC subtypes critically orchestrate immunotolerance in other tissues. CD11c"**CD45RB"e"
spleen DCs display enhanced ability to induce IL-10 producing Tregs, contrasting the superior ability
of CD11c"e"CD45RB™ spleen DCs to induce IFNy producing Th1 T cells (Wakkach et al., 2003). In the
gut, tolerance induced by DC is paramount to prevent unwarranted immune responses to

microflora and food antigens (Steimle and Frick, 2016). CD103* expressing DCs are strongly
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associated with tolerogenic regulation in the gut (Scott, Aumeunier and Mowat, 2011)(Coombes
and Powrie, 2008). CD103" DCs express higher levels of IDO and TGFf, resulting in reduced Th1 and
Th17 differentiation, whilst enhancing the differentiation of Tregs (Matteoli et al., 2010)(Coombes
et al., 2007). pDC antigen presentation of myelin to CD4+ T cells results in antigen specific Treg
induction, with loss of pDC antigen presentation resulting in experimental autoimmune encephalitis
(EAE) (Irla et al., 2010). A CCR9+ subset of pDCs has been specifically associated with elevated
tolerogenic function, inducing Tregs and thus preventing graft versus host disease (GVHD) in
allogenic T cell transplanted mice (Hadeiba et al., 2008). Interestingly, specific subpopulations of
dermal DCs (DDCs) are attributed to tolerogenic mechanisms (Haniffa, Gunawan and Jardine, 2015).
CD141+CD14+ DDCs can produce high levels of IL-10 and can induce the differentiation of Tregs
which potently suppress pathology induced in mouse models of allogenicinduce inflammation (Chu
etal.,2012). CD14+ DDCs also display decreased T cell stimulatory capacity compared to CD1a+and
CD14-CD1a- DDC populations (Nestle et al., 1993). A further example of a DC subset highly
attributed to tolerogenic function include DCs that reside at the foeto-maternal interface. Here,
tolerance must be maintained to ensure the foetus is tolerated by the maternal immune system
and DCs from the placenta (PlaDC) are key to mediating such tolerance via the secretion of IL-10
(Gorvel et al., 2014). Whilst several mechanisms of tolerance regulation therefore do appear to be

common across DC subpopulations, including LCs, the extent of commonality is unknown.

To identify a molecular signature encoding tolerance in tissue residing DC for comparison with LCs,
we identified a GEO dataset containing primary PlaDCs, that were extracted from healthy at term
birth placentas, as well as MoDCs, which allowed us to investigate tolerogenic responses mediated
within the placenta. Whilst a potential gender bias could be induced by analysing female PlaDC and
LC that could have been extracted from both male and female donors, the use of these datasets,
along with datasets of artificially induced TolIMoDCs and IL10MoDCs, allowed comprehensive
investigations of the transcriptomic programmes expressed by DCs that are associated with
tolerogenic immune function in situ, in order to identify commonalities. Furthermore, in depth
comparison between LC and DDCs, from healthy donors, was performed to ascertain similarities in
tolerance regulation between different skin DC subsets. Cross-comparisons between tolerogenic
DC subtypes highlighted specific pathways commonly associated with tolerance regulation by DCs,

whilst also emphasising the largely unique transcriptomes exhibited by each subtype.

Overall, our analyses could characterise the unique nature of LC transcriptomes to other DC
populations, including tolerogenic programmes. Whilst our earlier analyses on MoDCs stimulated
with tolerogenic stimuli provided a good model of tolerogenic DC transcriptomic programming, our
analyses of transcriptomic programmes from tissue derived LC and DC, further expand our

understanding of how DC tolerance is regulated in vivo.
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41.1 Hypothesis

LCs transcriptional networks contain a unique module/programme specifically associated with the

regulation of tolerogenic immune responses.

4.1.2 Aims

e Define the unique transcriptomic programme of LCs.
e Identify molecular signature encoding tolerance across tolerogenic DC.

e Explore the similarities in mechanisms of skin tolerance regulation between LCs and DDCs
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4.2 Results

4.2.1 Transcriptomic analysis reveals gene expression programmes unique and

characteristic to LCs

LC tolerogenic function in situ has been reported in human and murine studies and is believed to
be their key cellular characteristic (Shklovskaya et al., 2011)(Kitashima et al., 2018)/(Seneschal et
al., 2012). LCs therefore appear to be more regulatory in contrast to blood CD1c DCs, DDCs and
MoDCs, i.e. reduced production of proinflammatory cytokines (TNFa., IL13) (Collin, McGovern and
Haniffa, 2013)(Haniffa et al., 2012). To investigate was underlies heightened tolerogenic potential
in LCs, LC and cross-DC type transcriptomic analysis was performed. The transcriptomes were

obtained from GEO repository (dataset (GSE23618)).

Using an RMA normalised Affymetrix Human Genome U133 Plus 2.0 microarray reads,
enzymatically digested steady-state LC, enzymatically digested dermal DC (DDC), MoDC and CD1c
blood DC triplicate transcriptomic data was analysed. Steady-state LCs and DDCs were
enzymatically digested from respective epidermal and dermal compartments, before purification
using CD1a microbeads was performed. MDS plotting revealed each DC population had unique
transcriptomes, suggesting preferences for unique biological pathways and processes (Figure 17A).
The close grouping of LCs and CD1a+ DDCs, suggested some similarity between transcriptomes
could originate due to residence at skin, in contrast to blood CD1c DCs and MoDCs. 10,446 DEGs
identified through comparison of LCs to all the other DC types were identified using Limma,
emphasising the uniqueness of LC transcriptomes. The DEG list was uploaded into gene co-
expression analysis tool Graphia Pro (Pearson correlation r=0.93, MCL=1.7, Figure 17B). Over 250
clusters were identified leading us to focus on the 25 clusters containing 30 or more genes. Of these

25 clusters, 20 were associated with specific biological processes (Table 14),
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Cluster | No. of Genes Cluster Profile D Biological Process FDR P-Val
G0:0002274 | myeloid leukocyte activation 7.00E-20
G0:0016050 |vesicle organization 1.92E-19
1 1672 MoDC=High G0:0048284 |organelle fusion 9.97E-19
G0:0006906 |vesicle fusion 1.01E-18
G0:0002252 |immune effector process 2.03E-12
G0:0016071 | mRNA metabolic process 1.12E-12
G0:0042254 |ribosome biogenesis 3.37E-10
2 1047 CD1c=High G0:0002479 |antigen processing and presentation of exogenous peptide antigen via MHC class | 1.42E-05
G0:0050852 |T cell receptor signaling pathway 1.29E-03
G0:0007049 |cell cycle 1.52E-03
G0:0045333 |cellular respiration 2.39E-14
i G0:0006091 |generation of precursor metabolites and energy 1.59E-12
3 719 “zglisf:ilg:' G0:0015980 |energy derivation by oxidation of organic compounds 3.52E-12
e G0:0042775 | mitochondrial ATP synthesis coupled electron transport 3.89E-10
GO0:0006119 |oxidative phosphorylation 3.89E-10
G0:0140014 [ mitotic nuclear division 1.95E-09
G0:0000278 | mitotic cell cycle 1.95E-09
4 391 LC=High G0:0000819 |sister chromatid segregation 1.32E-08
G0:0022402 |cell cycle process 2.13E-07
G0:0070925 |organelle assembly 3.01E-07
G0:0006954 |inflammatory response 3.14E-16
GO0:0034097 |response to cytokine 4.16E-15
5 377 DDC=High G0:0019221 |cytokine-mediated signaling pathway 4.16E-15
G0:0032101 |regulation of response to external stimulus 5.75E-15
G0:0006952 |defense response 2.14E-14
G0:0060429 | epithelium development 6.77E-13
G0:0008544 | epidermis development 2.28E-12
6 198 DDC=Moderate, G0:0043588 (skin development 2.69E-11
LC=Moderate
GO0:0050673 |epithelial cell proliferation 3.17E-11
G0:0030855 |epithelial cell differentiation 5.60E-11
G0:0002682 |regulation of immune system process 6.34E-06
G0:0071674 | mononuclear cell migration 6.34E-06
7 168 CD1c=High G0:0071621 |granulocyte chemotaxis 7.92E-06
G0:0006952 |defense response 7.92E-06
G0:0048245 |eosinophil chemotaxis 7.92E-06
G0:0030198 |extracellular matrix organization 5.03E-07
G0:0043062 |extracellular structure organization 1.27E-05
8 149 DDC=Moderate |G0:0001501 |skeletal system development 4.78E-05
G0:0070848 |response to growth factor 4.78E-05
G0:0072359 |circulatory system development 8.36E-05
G0:0006397 | mRNA processing 2.05E-11
DDC=Moderate, |GO:0016071 | mRNA metabolic process 2.05E-11
9 120 LC=Moderate, |G0:0000398 | mRNA splicing, via spliccosome 1.16E-06
CD1c=High G0:0000377 | RNA splicing, via transesterification reactions with bulged adenosine as nucleophile |1.16E-06
G0:0000375 | RNA splicing, via transesterification reactions 1.16E-06
G0:2000113 | negative regulation of cellular macromolecule biosynthetic process 3.06E-03
DDC=Moderate, |G0:0010558 |negative regulation of macromolecule biosynthetic process 4.09E-03
10 104 LC=High, G0:0031327 [negative regulation of cellular biosynthetic process 4.27€-03
CD1c=Moderate |G0:0009890 | negative regulation of biosynthetic process 4.27€-03
G0:0006997 | nucleus organization 4.27E-03
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G0:0060816 |random inactivation of X chromosome 4.41E-02

GO0:0000079 |regulation of cyclin-dependent protein serine/threonine kinase activity 4.41E-02

1 96 DDC=High, LC=High | G0:0030951 establishment or maintenance of microtubule cytoskeleton polarity 4.41E-02

G0:0061470 |T follicular helper cell differentiation 4.41E-02

G0:1904029 |regulation of cyclin-dependent protein kinase activity 4.41E-02

G0:1902494 | catalytic complex 8.67E-05

12 77 LC=High, CD1c=High|G0:0071013 |catalytic step 2 spliccosome 3.54E-02

G0:0000974 [Prp19 complex 3.54E-02

G0:0051250 | negative regulation of lymphocyte activation 1.15E-03

GO0:0050868 | negative regulation of T cell activation 1.15E-03

13 65 DDC=High, LC=High [ G0:0032088 | negative regulation of NF-kappaB transcription factor activity 2.03E-03

G0:0010648 | negative regulation of cell communication 2.52E-03

G0:0023057 |negative regulation of signaling 2.52E-03

G0:0062023 | collagen-containing extracellular matrix 1.49E-02

14 54 DDC=Moderate |G0:0005604 |basement membrane 1.49E-02

G0:0031012 |extracellular matrix 3.63E-02

G0:0008544 | epidermis development 2.77E-05

G0:0043588 |skin development 5.52E-04

15 51 DDC=Moderate, G0:0009913 |epidermal cell differentiation 1.22E-03

LC=Moderate

G0:0070268 | cornification 1.70E-03

G0:1903575 | comified envelope assembly 1.70E-03

G0:0009887 |animal organ morphogenesis 9.33E-03

G0:0006941 |striated muscle contraction 1.42E-02

16 38 DDC=Moderate, G0:0006942 |regulation of striated muscle contraction 1.42E-02

LC=Moderate

G0:0043010 |camera-type eye development 1.42E-02

G0:0001654 |eye development 1.74E-02

G0:0070488 [neutrophil aggregation 2.41E-03

G0:0050729 |positive regulation of inflammatory response 3.62E-03

17 37 CD1c=Moderate |G0:0030593 |neutrophil chemotaxis 6.70E-03

G0:0050832 |defense response to fungus 6.70E-03

G0:0050727 |regulation of inflammatory response 6.70E-03

G0:0035455 [response to interferon-alpha 3.98E-03

G0:0071345 |cellular response to cytokine stimulus 3.98E-03

19 34 DDC=Modc?rate, G0:0035456 |response to interferon-beta 4.02E-03
CD1c=High

G0:0019221 |cytokine-mediated signaling pathway 5.42E-03

G0:1903265 |positive regulation of tumor necrosis factor-mediated signaling pathway 1.92E-02

G0:0006260 | DNA replication 1.28E-05

G0:0071897 | DNA biosynthetic process 1.41E-05

20 33 LC=Mode|:ate, G0:0033260 |nuclear DNA replication 9.19E-04
CD1c=High

G0:0006259 | DNA metabolic process 1.03E-03

G0:0044786 |cell cycle DNA replication 1.06E-03

G0:0006614 |SRP-dependent cotranslational protein targeting to membrane 1.61E-09

DDC=Moderate, |G0O:0006613 |cotranslational protein targeting to membrane 1.61E-09

23 31 LC=Moderate, G0:0045047 | protein targeting to ER 1.76E-09

CD1c=High G0:0000184 | nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 1.76E-09

G0:0072599 |establishment of protein localization to endoplasmic reticulum 1.84E-09

Table 14. GSE23618 co-expressed cluster profiles with associated gene ontologies. Transcript-

transcript co-expression analysis of 10,446 probesets differentially regulated in steady-state LC (LC)

compared to steady-state CD1a+ DDCs (DDC) , MoDC and blood CD1c DC (CD1c), using Graphia Pro

(Pearson correlation r = 0.93, MCL = 1.7), identified 25 clusters (>30 genes). Clusters with associated

ontologies identified using Toppgene (adj.p-value=<0.05, top 5 ontologies displayed) were included in

the table. Clusters were annotated with number of genes in each cluster and with their general

expression profile across the DCs.
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4 gene clusters that had elevated expression in LCs compared to immunogenic DC types were
identified (Clusters 4, 10, 18 and 22). The largest of these clusters, cluster 4, which contained 391
genes, was highly enriched in genes encoding cell cycle and cell division processes (gene ontology
analysis, ToppGene, adj.p-value=2.7E-7). Cluster 10 was associated with negative regulation of
cellular macromolecule biosynthetic process (adj.p-value=3.1-3). Gene ontology analysis for other
gene clusters however did not expose specific associated biological processes or pathways.
Consistent with their reported immunogenic function, the 3 largest gene clusters upregulated in
each of the other DC types were found to be strongly enriched in genes involved in immune and
inflammatory processes. Cluster 2 which contained 1047 genes highly expressed in CD1c blood DCs
comprised genes associated with mRNA metabolism (adj.p-value=3.8E-11), MHC | antigen
processing and presentation (adj.p-value=1.2E-4), as well as the T cell receptor signalling pathway
(adj.p-value=1.3E-3). Cluster 5, which contained 377 genes upregulated in CDla+ DDCs were
associated with the inflammatory response (adj.p-value=3.1E-16) and response to cytokine (adj.p-
value=4.1E-15), whilst cluster 1 containing 1672 genes highly expressed in MoDCs were associated
with myeloid leukocyte activation (adj.p-value=7.0E-20) and the immune effector process (adj.p-
value=2.0E-12)(Figure 17C). Interestingly, cluster 13 which included 65 genes, was highly expressed
in both CD1a+ DDC and LC and appeared associated with mechanisms of immune tolerance (Figure
17D). Gene ontology found associations with negative regulation of T cell activation (adj.p-value=
1.2E-3), due to the expression of RUNX3, TNFAIP3, NFKBID, CD74, PELI1, SDC and ZC3H12A. An
association with negative regulation of NFkB transcription factor activity (adj.p-value= 2.0E-3) was
also identified due to the expression of NFKBIA, NFKBIB, TNFAIP3, PELI1 and ZC3H12A. The common
expression of these genes amongst LC and CD1a+ DDC signified the importance of these tolerogenic

processes at the skin.

As our MoDC analysis identified MYC as a potential regulator of tolerogenic function, we
interrogated its expression in the steady state LC population. Whilst a large and significant increase
in MYC expression was identified in LCs compared to CD1c DCs, only a non-significant trend for
increased MYC expression was seen in LCs compared to MoDCs and CD1a+ DDCs (Figure 17E).
Intriguingly, despite the low inflammatory profile of LC, IRF1 expression in LCs was comparable with
DDCs and CD1c+ DCs and IRF4 expression was only significantly decreased compared to DDCs, yet

still displayed relatively high expression (Figure 17E).
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Figure 17. Transcriptomes of steady state LCs are distinct from other DC types and are distinguished
by low expression of immunogenic genes. A) MDS plot of normalised, log transformed whole
transcriptome data of MoDCs, steady-state CD1a+ DDCs, steady-state LCs and CD1c DCs (GSE23618).
The first 3 PCs are displayed, PC1 and PC2 (left) and PC2 and PC3 (right). B) Transcript-transcript co-
expression analysis of 10,446 probesets differentially regulated in LC compared to DDCs, MoDCs and
CD1c DCs (Graphia Pro, Pearson=0.93, MCL=1.7). Cluster 1-100 are displayed. The largest clusters
with a predominant upregulation in each of the 4 DCs are highlighted (clusters 1, 2, 4 and 5). C) Mean
(£SD) cluster expression profiles for the largest clusters with a predominant upregulation in each of
the 4 DCs (clusters 1, 2, 4 and 5). Toppgene gene ontology analyses is displayed alongside each cluster
(-log10FDRp-values). D) Mean (+SD) cluster 13 expression profile with Toppgene gene ontology
analysis (-log10FDRp-values). E) Mean (£SD) normalised expression of TFs MYC /IRF1 and IRF4 across
the four DC subtypes. Unpaired T-test p-values = ¥<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired

T-test.
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To expand the analysis of differences and similarities between LCs and DDCs, suggested as the
closest LC counterparts, we analysed an RMA normalised Affymetrix Human Genome U219
microarray dataset containing migrated LCs (mLCs) and CD1llc+ migrated DDCs (mDDCs,
GSE49475). Migratory LCs were purified using CD1a microbeads, whilst migratory DDC were
purified using CD11c microbeads, to extract whole epidermal and dermal populations, respectively.
Each subtype was isolated from three biological donors (paired samples for LCs and DDCs from each
donor), and the microarray experiment was performed with technical duplicates. MDS plotting
revealed the unique gene expression displayed by both mLCs and CD11c+ mDDCs along PC1 (Figure
18A). 5,687 DEGs were identified with 8 gene clusters containing 30 or more genes, produced using
Graphia Pro (Pearson= 0.94, MCL=1.7, Figure 18B). Five clusters (clusters 1, 4, 6, 7 and 8) had
increased expression in LCs, whilst three clusters (clusters 2, 3 and 5) had increased expression in

DDCs. Clusters with associated ontologies were summarised (Table 15).

Cluster | No. of Genes Cluster Profile D Biological Process FDR P-Val
G0:0140053 | mitochondrial gene expression 7.94E-31
G0:0006091 |generation of precursor metabolites and energy 2.35E-25
1 1693 mLC=High G0:0009117 |nucleotide metabolic process 3.19E-20
G0:0006119 |oxidative phosphorylation 1.18E-18
G0:0010389 |regulation of G2/M transition of mitotic cell cycle 2.20E-11
G0:0002274 [ myeloid leukocyte activation 2.44E-40
G0:0045321 |leukocyte activation 6.25E-34
2 928 mDDC=High G0:0001775 |cell activation 2.86E-32
G0:0042119 [neutrophil activation 8.41E-31
G0:0002444 | myeloid leukocyte mediated immunity 1.06E-30
G0:0001775 |cell activation 1.13E-16
G0:0002252 [immune effector process 9.61E-15
3 228 mDDC=High G0:0006952 |defense response 9.61E-15
G0:0045321 |leukocyte activation 3.71E-14
G0:0002682 |regulation of immune system process 9.92E-13
4 o8 mLC=High G0:0003712 |transcription coregulator activity 6.75E-03
G0:0003713 [transcription coactivator activity 6.75E-03
5 91 mDDC=Moderate |GO:0016791 |phosphatase activity 1.91E-02

Table 15. GSE49475 co-expressed cluster profiles with associated gene ontologies. Transcript-
transcript co-expression analysis of 5,687 probesets differentially regulated in migrated LC (mLC)
compared to CD11c+ migrated DDCs (mDDC) using Graphia Pro (Pearson correlation r = 0.94, MCL =
1.7), identified 8 clusters (>30 genes). Clusters with associated ontologies identified using Toppgene
(adj.p-value=<0.05, top 5 ontologies displayed) were included in the table. Clusters were annotated

with number of genes in each cluster and with their general expression profile across the DCs.
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Cluster 1, upregulated in mLCs, contained 1693 genes and was associated with the generation of
precursor metabolites and energy (adj. p-value=2.4E-25) and regulation of G2/M transition of
mitotic cell cycle (adj. p-value=2.2E-11). Cluster 4 containing 98 genes, was also upregulated in
mLCs and was associated with transcription coregulator activity (adj. p-value= 6.8-3). No associated
ontologies were identified for clusters 6, 7 and 8 when analysed alone. Due to the overall similarity
between the cluster expression profiles and to further summarise the general upregulated
pathways in mLCs compared to CD11c+ mDDCs, the combined total of 1926 genes in clusters 1, 4,
6, 7 and 8 were submitted into Toppgene together. Overall this summarised mLC upregulated
pathways as being associated with mitochondrial processes, oxidative phosphorylation and the cell
cycle (Figure 18C). In contrast gene clusters upregulated in DDCs (clusters 2, 3 and 5) were involved
with immune and inflammatory responses when the combined 1247 genes were submitted to
Toppgene together. Individually, cluster 2, containing 928 genes, was associated with myeloid
leukocyte activation (adj. p-value=2.4E-40) and cluster 3, containing 228 genes, was associated with
the immune effector process(adj. p-value=9.6E-15). Cluster 5 containing 91 genes was associated

with phosphatase activity (adj. p-value=1.9E-2) (Figure 18C).

Genes within the tolerogenic module, which was shared between steady-state LCs and DDCs and
associated with negative regulation of T cell activation and NFkB activation (RUNX3, TNFAIP3,
NFKBIA, NFKBIB, NFKBID, CD74, PELI1, SDC and ZC3H12A, Figure 17D), was inspected amongst
migrated mLCs and mDDCs (Figure 18D). Some of these genes were differentially regulated (RUNX3,
NFKBIA, NFKBID and ZC3H12A) or lowly expressed in both LC and DDC (NFKBIB and SDC). The shared

tolerogenic module was therefore lost in LC and DDC upon migration.

We next inspected the expression of MYC, IRF1 and IRF4 in the mLC and mDDC gene expression
data (Figure 18E). Interestingly, MYC expression was significantly increased in mDDCs compared to
mLCs. Furthermore, whilst the expression of IRF1 was similar between mLC and mDDC, the
expression of IRF4 was significantly increased in mLCs. This contrasted the expression of IRF4 in
MoDCs, in which increased IRF4 expression correlated with increased inflammatory gene

expression.
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Figure 18. Transcriptomes of LCs isolated through migration are distinct from migrated DDCs. A)
MDS plot of normalised, log transformed whole transcriptome data migrated LC (mLC) and CD11c+
migrated DDC (mDDC, GSE49475). The first 3 PCs are displayed, PC1 and PC2 (left) and PC2 and PC3
(right). B) Transcript-transcript co-expression analysis of 5,687 probesets differentially regulated
between migrated LCs and DDCs (Graphia Pro, Pearson=0.94, MCL=1.7). Clusters with greater than
30 genes (Clusters 1-8) are highlighted. C) Mean (£SD) expression profiles of clusters upregulated in
migrated LC (Clusters 1, 4 and 6, 7 and 8, containing ) and migrated DDC (Clusters 2, 3 and 5) with
associated gene ontology analysis (Toppgene, p-value<0.05). D) Mean (£SD) normalised expression
of genes associated with negative regulation of T cell activation and NFkB activation identified as a
shared tolerogenic module in steady-state LC and DDC (Figure 11D) E) Mean (£SD) normalised
expression of TFs MYC IRF1 and IRF4. Unpaired T-test p-values = *<0.05, **<0.01, ***<0.001,
**%%<0.0001, unpaired T-test.
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Overall, DEG gene co-expression cluster analysis revealed that LCs displayed reduced expression of
inflammatory immune pathways as compared to other DC subtypes, regardless of LC activation
state. This overall suggests less involvement of LCs in immunogenic immune pathways and
therefore a potential preferential association with immunoregulatory processes. In the steady-state
LCs, an immunosuppressive gene module was identified, which was common with steady-state
DDCs (Cluster 13) and marked by upregulation of genes mediating inhibition of NFkB and T cell
activation. In contrast, migratory LCs were discernible by high expression of genes encoding

metabolic processes.

To identify a specific molecular signature of tissue-derived DC types associated with predominantly
tolerogenic responses, we chose to analyse transcriptomes of placental derived DCs (plaDC),
available in GEO (GSE52850). The dataset comprised of plaDCs with MoDCs, which were used as a
suitable molecular reference for our analyses. MDS plotting revealed PlaDCs and MoDCs to be to
greatly different (Figure 19A). 3,040 genes were identified after DEG analysis and filtering. Gene co-
expression analysis was performed, identifying 7 gene clusters in total (Pearson=0.95, MCL=1.7)
(Figure 19B). Of these 7 clusters, cluster 1 and 6 was elevated in MoDCs and clusters 2-5 and 7 were
upregulated in PlaDCs. 5 clusters (clusters 1, 2, 3, 4 and 5) were associated with specific biological

processes and pathways after gene ontology analysis (Table 16).

Cluster 1 was upregulated in MoDCs and included 1467 genes. Genes were associated with
metabolic pathways (adj.p-value=2.9E-16), leukocyte activation (adj.p-value=1.8E-11) and T-cell
activation (adj.p-value=2.1E-7). High expression of MHC Il molecules also resulted with an
association with antigen processing and presentation (adj.p-value=3.3E-5). The remaining 3 clusters
were all upregulated in plaDCs. Cluster 2 included 387 genes and was associated with response to
endogenous stimulus (adj.p-value=2.1E-6) and the reproduction process (adj.p-value=1.0E-7).
Cluster 3 included 279 genes and was associated with the defence response (adj.p-value=5.9E-6)
and positive regulation of signal transduction (adj.p-value=5.9E-6). Genes were also associated with
the murine phenotype, decreased inflammatory response (adj.p-value=7.3E-5), annotated due to
the expression of NFkB inhbitors, such as TNFAIP3, NFKBIA, NFKBIB and PELI1. Cluster 4 with 258
genes was associated with negative regulation of gene expression (adj.p-value=2.4E-4) and
biosynthetic processes (adj.p-value=2.4E-4). Cluster 5 with 242 genes was associated with the
nuclear chromatin (adj.p-value=4.4E-3) The combined gene list from all PlaDC upregulated clusters
(2-5 and 7) and all MoDC upregulated clusters (1 and 6) were subjected to gene ontology analysis
together to capture overall profiles of both PlaDC and MoDC upregulated gene expression (Figure

19C).
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Consistent with our analysis in MoDCs and LCs we inspected the expression of MYC, IRF1 and IRFA4.

No difference in MYC or IRF1 expression was identified between PlaDCs and MoDCs (Figure 19D).

However, IRF4 was significantly decreased in PlaDCs compared to MoDCs.

Cluster | No. of Genes Cluster Profile ID Biological Process EDR P-Val
G0:0019637 |organophosphate metabolic process 2.92E-16
G0:1901135 |carbohydrate derivative metabolic process 2.92E-16
1 1467 MoDC=High G0:0009260 |ribonucleotide biosynthetic process 7.84E-14
G0:0045321 [leukocyte activation 1.75E-11
G0:0042110 (T cell activation 2.03E-07
G0:0040007 |growth 7.94E-08
G0:0022414 |reproductive process 1.02E-07
2 387 PlaDC=High G0:0007565 |female pregnancy 1.25E-07
G0:0009719 |response to endogenous stimulus 2.12E-06
G0:0016477 |cell migration 6.14E-06
G0:0080134 |regulation of response to stress 1.29€-07
G0:0006952 |defense response 5.92E-06
3 279 PlaDC=High G0:0010942 | positive regulation of cell death 5.92E-06
G0:0009967 |positive regulation of signal transduction 5.92E-06
G0:0006954 |inflammatory response 3.17E-05
G0:1903507 |negative regulation of nucleic acid-templated transcription 2.41E-04
G0:1902679 | negative regulation of RNA biosynthetic process 2.41E-04
4 258 PlaDC=High G0:0051253 | negative regulation of RNA metabolic process 2.54E-04
G0:0045892 | negative regulation of transcription, DNA-templated 4.62E-04
G0:0010558 |negative regulation of macromolecule biosynthetic process 6.16E-04
G0:0000790 |nuclear chromatin 4.35E-03
G0:0017146 | NMDA selective glutamate receptor complex 6.09E-03
5 242 PlaDC=High G0:0045211 | postsynaptic membrane 9.46E-03
G0:0097060 |synaptic membrane 1.61E-02
G0:0008328 |ionotropic glutamate receptor complex 1.61E-02

Table 16. GSE52850 co-expressed cluster profiles with associated gene ontologies. Transcript-

transcript co-expression analysis of 3,040 probesets differentially regulated in placental derived DCs

(PlaDCs) compared to MoDCs using Graphia Pro (Pearson correlation r =0.95, MCL = 1.7), identified

7 clusters in total. Clusters with associated ontologies identified using Toppgene (adj.p-value=<0.05,

top 5 ontologies displayed) were included in the table. Clusters were annotated with number of

genes in each cluster and with their general expression profile across the DCs.
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Figure 19. PlaDCs and MoDCs display unique transcriptomic profiles. A) MDS plot of normalised, log
transformed whole transcriptome PlaDC and MoDC data (GSE52850). The first 3 PCs are displayed,
PC1and PC2 (left) and PC2 and PC3 (right). B) Transcript-to-transcript co-expression analysis of 3,040
differentially regulated probesets between PlaDCs and MoDCs, identified 7 co-expressed clusters
(Graphia Pro, Pearson correlation r=0.95, MCL=1.7). C) Mean (£SD) expression profiles of clusters
upregulated in PlaDC (Clusters 2, 3, 4, 5 and 7) and MoDC (Cluster 1 and 6), with associated gene
ontology analysis for combined gene lists for PlaDC and MoDC upregulated clusters (Toppgene, p-
value<0.05). D) Mean (£SD) normalised gene expression of the TF MYC IRF1 and IRF4. Unpaired T-test
p-values = *<0.05, **<0.01, ***<0.001, ****<0.0001, unpaired T-test.

4.2.2 Comparative analysis between tolerogenic DC transcriptomes indicates some
overlapping tolerogenic programmes, whilst highlighting the overall unique

transcriptomic programmes expressed by LCs

LCs, PlaDCs, TolMoDCs and IL10OMoDCs have all been reported to exert tolerogenic function.
Therefore, we sought to delineate common and unique transcriptomic programmes underpinning
their biology. To perform cross comparison between tolerogenic DC transcriptomes, immature
MoDCs from respective datasets were used as a common reference to identify genes consistently
associated with tolerogenic function across the four DC populations, through using DEG analysis.
The results of DEGs analysis were compared and visualised using a Venn diagram (Figure 20A). 1622
genes, 1012 genes, 160 genes and 306 genes were identified from steady-state LC-MoDC analysis,
PlaDC-MoDC analysis, TolIMoDC-MoDC analysis and ILLOMoDC-MoDC analysis, respectively.
Interestingly, there was little convergence of the DEG lists, suggesting the tolerogenic programmes
are cell subset specific, rather than a common immunotolerant DC programme. 0 genes were
commonly upregulated in all four comparisons. It is however of note, that significantly bigger
overlap was observed between tissue derived tolerogenic DCs than their counterparts
differentiated in vitro (120 common genes between LCs and PlaDCs), suggesting that the artificial

nature of ToIMoDC and IL10MoDC induction may cause a significant difference in tolerogenic
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function, or state of immunosuppression to that seen in vivo. Gene ontology analysis for the 120
genes common between LCs and PlaDCs were associated with response to lipopolysaccharide
(adj.p-value=5.9E-7), regulation of the response to stress (adj.p-value=5.9E-7), negative regulation
of response to stimulus (adj.p-value=3.4E-6) (Figure 20B). Interestingly, an association with
response to steroid hormone (adj.p-value=4.6E-5) and therefore immunosuppressive stimuli was
also identified, due to the expression of CLDN1, DNAJA1, DUSP1, ERRFI1, FHL2, HMGB2, KRAS, LBH,
PGRMC2, PLPP1. PMEPA1, PTGS2, SIRT1 and ZFP36. Similarly, gene ontology analysis was
performed for the 217 genes (Appendix 1 A.2) which were commonly upregulated in two or more
of the four DC conditions to assess common upregulated pathways (Figure 20C), revealing
associations with response to lipopolysaccharide (adj.p-value= 2.9E-11), cell migration (adj.p-
value= 2.3E-8), negative regulation of response to stimulus (adj.p-value=4.6E-8) and negative
regulation of signal transduction (adj.p-value=6.4E-7) (Figure 20C). An association with the NFkB
signalling pathway (adj.p-value=3.1E-2) was also identified, partly due to the upregulated
expression of NFKBIA and TNFAIP3, both inhibitors of NFkB activation. Similarly, the 154 genes
upregulated in LCs and at least one other DC condition were subjected to gene ontology analysis,
in order to specifically investigate the DC tolerogenic genes mutual expressed with LCs (Figure 20D).
Again, the gene list was associated with response to lipopolysaccharide (adj.p-value=3.0E-6),
negative regulation of response to stimulus (adj.p-value=7.4E-6) and negative regulation of cell
communication (adj.p-value=2.1E-4). Consistent with previous analysis of the DEGs uniquely
upregulated in steady-state LCs compared to DDCs, CD1c DCs and MoDCs, the 1468 genes
upregulated in LCs compared to MoDCs only, were associated with the cell cycle (adj.p-value=2.1E-
14) (Figure 20E). Overall, despite a small overlap in tolerogenic gene expression between different
tolerogenic DC types, a common downregulation in pathways responsive to stimulus and signalling,
including NFkB signalling, was observed. The upregulated pathways therefore suggest a connection

with a state of immunosuppression and non-responsiveness.
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Figure 20. Cross comparison of LCs, PlaDCs, TolMoDCs and IL10MoDCs upregulated DEGs compared

to immature MoDCs A) Venn Diagram displaying the overlap in upregulated DEGs, identified during

comparison between steady-state LC-MoDC (1622 genes), PlaDC-MoDC (1012 genes), ToIMoDC-MoDC

(160 genes) and ILLOMoDC-MoDC (306 genes). B) Gene ontology analysis (Toppgene) for the 120 genes

which were co-upregulated in LC and PlaDC (-log10adj.p-values). C) Gene ontology analysis (Toppgene)

for the 217 genes which were co-upregulated in two or more of the tolerogenic DC conditions (-

log10adj.p-values). D) Gene ontology analysis (Toppgene) for the 154 genes upregulated in LC and at

least one other DC condition (-logl0adj.p-values). E) Gene ontology analysis (Toppgene) for the 1468

genes upregulated in LC only (-log10adj.p-values).
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The expression of the common tolerogenic DC associated gene signatures was then tracked across
the different LC and DC datasets analysed above to assess variation in signature expression across
DC subtypes. A heatmap displaying the expression of 217 genes commonly upregulated in two or
more of the tolerogenic DC conditions (Figure 20C, Appendix 1 A.2) was displayed for LCs and DCs
in the GSE23618 and GSE49475 datasets (Figure 21). In GSE23618, containing steady-state LC,
steady-state DDC, blood CD1c+ DC and MoDC, the elevated expression of the tolerogenic signature
appeared to be shared between both LC and DDC. The immunosuppressive associated pathways
therefore appear to be active in DC populations of both the epidermis and dermis at the steady-
state. In GSE49475, containing migrated mLC and mDDC, the expression of the tolerogenic
signature became more divergent. Here, a large proportion of the genes appeared to be lowly

expressed in mLC, but highly expressed in mDDC.
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Figure 21. Tracking the tolerogenic DC signature across LC and DC subpopulations. The 217
genes commonly upregulated in at least 2 of the DC conditions (Figure 20A&C) were tracked in
heatmaps (canberra, ward.D) of log2 normalised expression data for GSE23618 (steady-state

LC and DDC, CD1c+ blood DC and MoDC) and GSE49475 (migrated mLC and mDDC) datasets.
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423 LC regulation of tolerogenic transcriptomic programmes differs to DDCs

Investigations into the expression of the 217 genes upregulated in tolerance associated DC and LC
across GSE23618 and GSE49475 datasets revealed elevated expression of this module in both
steady-state and migrated DDCs. As DDC populations have been linked to tolerance regulation in
the dermis (Haniffa, Gunawan and Jardine, 2015)(Chu et al., 2012)(Chu, Di Meglio and Nestle, 2011)
we sought to further inspect the presence of the tolerance associated expression profile amongst
DDC subpopulations. While a comprehensive study including all tolerogenic skin DC types isolated
in consistent manner yet need to be done, datasets from individual populations are available. DDCs
in GSE23618 (steady-state CD1a DDCs) and GSE49475 (migrated CD11c DDCs) account for all known
DC subpopulations present in the dermis. To explore whether heterogeneity in the tolerogenic gene
module could be identify amongst DDC subpopulations, a background corrected and quantile
normalised Illumina HumanHT-12 V4.0 expression beadchip microarray dataset (GSE35457)
containing collagenase digested steady-state CD14+, CD141"&" CD1c+ and CD1c+CD141"e" DDC
populations was analysed. The heterogeneity amongst the DDC subpopulations was confirmed by
MDS plotting of whole transcriptome data (Figure 22). Here, separation of CD14+ and CD141"en
DDCs along PC1 was observed, whilst CD1c+ and CD1c+CD141"e" DDCs clustered together.
Interestingly, along PC2 CD14+ and CD141"&" DDCs clustered together and again, CD1c+ and
CD1c+CD141"8"DDCs were localised.
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Figure 22. Dimensionality reduction analysis of whole transcriptome data reveals variation amongst

DDC subpopulations. A) MDS plot of normalised, log transformed whole transcriptome data of

collagenase digested steady-state CD14+, CD141"&" CD1c+ and CD1c+CD141"&" DDC populations

(GSE35457). The first 3 PCs are displayed, PC1 and PC2 (left) and PC2 and PC3 (right).
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The expression of the 217 genes in the tolerance associated module (Figure 20C, Appendix 1 A.2)
was then explored in the DDC populations through heatmap plotting (Figure 23A). Sample
hierarchical clustering of the heatmap displayed the same population similarities as displayed in
PC1 from MDS plots. Overall, the appearance of large distinct gene clusters amongst the DDC
populations was more infrequent than observed in Figure 21. However, some small gene clusters,
as defined by the hierarchical clustering parameters, could be identified in both CD14+ DDCs and
CD141"e" DDCs, which were polarised between the two populations. CD14+ and CD141"e" DDC
subpopulations therefore expressed some pathways of the tolerogenic gene module, although the
pathways that DDCs did express were specific to either CD14+ or CD141"8" DDC subpopulations
(highlighted on heatmap, 57 genes in CD141"&"DDCs and 41 genes in CD14+ DDCs). Genes clusters
from the tolerogenic gene module which were more preferentially expressed in either CD141"e" (57
genes) or CD14+ (41 genes) DDCs were submitted to gene ontology analysis in Toppgene (Figure
23B). Results for CD141"&" DDCs revealed associations with response to LPS (adj.p-value=4.6E-4),
response to cytokine (adj.p-value=7.4E-3) and response to steroid hormone (adj.p-value=1.6E-2).
Negative regulation of immune effector process (adj.p-value=3.4E-2) was also associated due to the
expression of CD55, DUSP1, NFKBIA, PAF1, PELI1, TNFAIP3 and ZFP36. Results for CD14+ DDCs
revealed associations with regulation of response to external stimulus (adj.p-value=1.4E-7), cell
chemotaxis (adj.p-value=7.2E-2), negative regulation of response to stimulus (adj.p-value=4.3E-5)
and negative regulation of response to cell communication (adj.p-value=5.5E-3). An association
with regulation of homeostasis (adj.p-value=6.8E-6) was found due to the expression of ADRB2,
S100A9, SERPINB2, SERPING1, TFPI and THBD. Furthermore, an association with negative regulation
of humoral immune response (adj.p-value=6.7E-3) was also identified due to the expression of
FCGR2B and SERPING1. Therefore, despite few distinct clusters being expressed in CD14+ and
CD141"e" DDCs, the clusters that were highly expressed revealed associations with tolerogenic

processes.

134



A)

e e T e T

m%ﬂh

ﬁﬁmm'n—nﬁwmmr'ﬁ:‘n_f&n

Py

RS T AT

Chapter 4

CD14 DDC
[l CD141 DDC
M CD1cDDC
M CD1cCD141DDC

135



Chapter 4
B)

CD141High pDC

response to LPSH

regulation of response to stress-

response to cytokine{ ]
negative regulation of protein kinase activity{ |
response to steroid hormone-{ |
cytokine production{ ]

negative regulation of immune system process-

innate immune response-|

0

1 2

-log10(FDRpvalue)

CD14+ DDC

regulation of response to external stimulus-

cell chemotaxisH

regulation of hemostasis-
myeloid leukocyte migration
wound healing-

negative regulation of response to stimulus{—— ]
regulation of defense response{_________|
cytokine production{_—______]
negative regulation of cell communication4_ ]
negative regulation of humoral immune response{—____|

0

-log10(FDRpvalue)

Figure 23. Tracking the tolerogenic DC signature across DDC subpopulations. A) The 217 genes

commonly upregulated in at least 2 of the DC conditions (Figure 20A&C) were tracked in heatmaps

(complete, ward.D) of log2 normalised expression data for GSE35457 containing steady-state

CD14+, CD141"e" CD1c+ and CD1c+CD141"e" DDC subpopulations. CD14+ and CD141"e" DDC

associated gene module clusters are highlighted. B) Gene ontology analysis (Toppgene) for the 57

genes upregulated in CD141"&"DDCs (Top) and 41 genes upregulated in CD14+ DDCs (Bottom) as

highlighted on heatmap in A) (-log10adj.p-values).
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Having identified specific modules of tolerogenic signature in different DDC subpopulations, we
sought to compare and contrast it with LCs. A background corrected and quantile normalised
Illumina HumanHT-12 V4.0 expression beadchip dataset (GSE66355) containing migrated mLC,
migrated CD14+ mDDC, migrated CD141+ mDDC, and CD14 and CD141 double negative migrated
DDC (DN-mDDC) was used to track the modules across all tolerogenic skin DC populations. MDS
plotting revealed the heterogeneity amongst the skin DC populations across PC1 and PC2, with
mLCs and DN-mDDCs clustering on the right and CD14+ and CD141+ mDDCs clustering on the left
(Figure 24). 6218 DEGs were identified through Limma DEG analysis comparing LCs to each of the
DDC subpopulations and submitted to gene co-expression analysis tool Graphia Pro (Figure 25),
Pearson correlation r=0.93, MCL=1.7). Over 250 clusters were identified leading us to focus on the
20 clusters containing 25 or more genes. Of these 20 clusters, 9 were associated with specific

biological processes (Table 17), containing the top 5 biological processes associated with each

cluster).
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Figure 24. Dimensionality reduction analysis of whole transcriptome data reveals variation
amongst migrated LC and DDC subpopulations. A) MDS plot of normalised, log transformed whole
transcriptome data of migrated mLC, CD14+ mDDC, CD141+ mDDC and double negative CD14-
CD141- mDDC (DN mDDC) populations (GSE66355). The first 3 PCs are displayed, PC1 and PC2 (left)
and PC2 and PC3 (right).
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Cluster | No. of Genes Cluster Profile D Biological Process FDR P-Val
G0:0002274 [ myeloid leukocyte activation 2.49E-49
G0:0042119 | neutrophil activation 7.19E-40
2 481 CD14+DDC = High [G0:0002252 immune effector process 2.11E-36
G0:0045055 |regulated exocytosis 2.66E-36
G0:0002682 [regulation of immune system process 1.02E-24
G0:0006695 |cholesterol biosynthetic process 2.48E-05
G0:1902653 [secondary alcohol biosynthetic process 2.48E-05
3 163 LC=High G0:0030043 |actin filament fragmentation 1.58E-03
G0:0071470 |cellular response to osmotic stress 6.45E-03
GO:0007049 |cell cycle 3.54E-02
G0:0045321 |leukocyte activation 1.36E-06
G0:0002446 | neutrophil mediated immunity 1.36E-06
6 79 CD14+DDC = High |G0:0006952 |defense response 5.85E-06
G0:0002252 [immune effector process 6.99E-06
G0:0006954 [inflammatory response 5.38E-05
G0:0006614 | SRP-dependent cotranslational protein targeting to membrane 1.15E-60
5 G0:0006613 |cotranslational protein targeting to membrane 2.48E-60
7 54 DN-DD_c:i Tgh' L G0:0000184 [nuclear-transcribed mRNA catabolic process, nonsense-mediated decay 5.09E-59
e G0:0045047 | protein targeting to ER 5.09E-59
G0:0072599 |establishment of protein localization to endoplasmic reticulum 1.42E-58
G0:0045859 [regulation of protein kinase activity 5.21E-04
G0:0051338 |regulation of transferase activity 1.59E-03
8 52 DN-DD_C:i l::gh' ke G0:0071850 | mitotic cell cycle arrest 3.07E-03
e GO0:0071900 |regulation of protein serine/threonine kinase activity 3.07E-03
G0:1902533 | positive regulation of intracellular signal transduction 1.57E-02
G0:0030097 [hemopoiesis 2.40E-03
G0:0006000 |fructose metabolic process 2.40E-03
9 41 €b14+DDC= G0:0002682 |regulation of immune system process 2.40E-03
Moderate
G0:0048534 [ hematopoietic or lymphoid organ development 2.40E-03
G0:0046903 [secretion 2.40E-03
G0:0046903 |secretion 2.21E-07
G0:1901700 |response to oxygen-containing compound 9.95E-07
12 28 €D141+DDC= H.igh' G0:0002274 | myeloid leukocyte activation 5.40E-06
CD14+DDC = High
G0:0071222 |cellular response to lipopolysaccharide 5.40E-06
G0:0006954 |inflammatory response 1.18E-05
G0:0001731 [formation of translation preinitiation complex 5.74E-04
G0:0002183 |cytoplasmic translational initiation 7.02E-03
DN-DDC = High, LC
14 26 = High G0:0022618 |ribonucleoprotein complex assembly 8.28E-03
G0:0045047 | protein targeting to ER 3.67E-02
G0:0016032 |viral process 4.17E-02
G0:0019441 (tryptophan catabolic process to kynurenine 1.17E-02
G0:0034627 |'de novo' NAD biosynthetic process 1.17E-02
DN-DDC = High, LC
18 26 = High G0:0034354 |'de novo' NAD biosynthetic process from tryptophan 1.17E-02
G0:0046218 |indolalkylamine catabolic process 1.25E-02
G0:0006569 [tryptophan catabolic process 1.25E-02

Table 17. GSE66355 co-expressed cluster profiles with associated gene ontologies. Transcript-
transcript co-expression analysis of 6,218 probesets differentially regulated in migrated mLCs
compared to migrated CD14+ mDDCs, CD141+ mDDCs and double negative CD14- CD141- mDDCs
(DN-DDC) using Graphia Pro (Pearson correlation r = 0.93, MCL = 1.7), identified 20 clusters (>25
genes). Clusters with associated ontologies identified using Toppgene (adj.p-value=<0.05, top 5
ontologies displayed) were included in the table. Clusters were annotated with number of genes in

each cluster and with their general expression profile across the DC subpopulations.
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Annotatable clusters that were upregulated in LCs, revealed predominant associations with
metabolic processes, including nuclear transcribed mRNA catabolic process (Cluster 7, adj.p-
value=5.1E-59), cholesterol biosynthetic process (Cluster 3, adj.p-value=2.5E-5), the cell cycle
(Cluster 3, adj.p-value=2.5E-2) and protein targeting to the ER (Cluster 7, adj.p-value=5.1E-59). In
contrast, DDCs upregulated clusters were heavily associated with immunogenic and inflammatory
immune pathways. For CD14+ DDCs this included the immune effector process (Clusters 2 and 6,
adj.p-value=2.1E-36 and 7.0E-6) and the inflammatory response (Clusters 6 and 12, adj.p-
value=5.4E-12 and 1.2E-12). For CD141+ DDCs this included myeloid leukocyte activation (Cluster
12, adj.p-value=5.4E-6) and the inflammatory response (Cluster 12, adj.p-value=1.2E-12). Clusters
upregulated in DN-DDC were parallel with LC upregulated clusters, consistent with their localisation
together along PC1 and PC2 in MDS plotting (Figure 24), suggesting this population could be in situ

migrating LCs from the dermis.

Specific interrogation of clusters with annotations linked to immune tolerance, identified
tolerogenic pathways upregulated in CD14+ DDC and LC (Highlighted in Figure 25). Interestingly,
whilst CD14+ DDC upregulated clusters were highly associated with immunogenic and

inflammatory mechanisms, upregulated programmes also included genes associated with

Figure 25. Gene coexpression analysis identifies gene cluster linked to tolerogenic processes in
CD14+ DDCs and LCs. Transcript-to-transcript co-expression analysis of 6,218 probesets
differentially regulated in migrated mLCs compared to migrated CD14+ mDDCs, CD141+ mDDC
and double negative CD14- CD141- mDDC (DN DDC) using Graphia Pro (Pearson correlation r =
0.93, MCL = 1.7). Gene clusters 2 and 9 linked the negative regulation of immune system process
(adj.p-value=1.1E-9 and 4.2E-2) in CD14+ DDC s are highlighted, as well as LC upregulated cluster
18, which was associated with the tolerogenic tryptophan catabolism to kynurenine process (adj.p-

value=1.2E-2).
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tolerogenic immune pathways. CD14+ DDC cluster 2 was associated with negative regulation of the
immune system process (adj.p-value=1.1E-9), due the elevated expression of ATM, BST2, C1QC,
CCL2, CD14, CD200R1, CD37, CD68, CEBPB, CR1, FCER1G, FCGR2B, GPNMB, GPX1, GRAMD4, GRN,
HAVCR2, IL4R, IL7R, INPP5D, IRAK3, LMO2, LPXN, LST1, LY96, MAFB, MILR1, NOTCH1, PAGI,
PIK3AP1, PRNP, PTPN6, SAMHD1, SLAMF8, SPN, THBS1, TLR4, TLR6, TYROBP, V5IG4 and VSIR. CD14+
DDC cluster 9 was also associated with negative regulation of immune systems process (adj.p-
value=4.2E-2) due to elevated expression of CD300LF, LILRB4, MMP12, MNDA and MYC. For LC, an
association with tolerogenic mechanisms was identified for cluster 18, which due to elevated
expression of IDO1 and IDO2, was linked to tryptophan catabolism to kynurenine (adj.p-value=1.2E-
2). Interestingly, cluster 18 also included the TF IRF4.

The expression of the common tolerogenic DC associated gene signature (Figure 20A&C) was
tracked across the migrated LC and DDC subpopulations through heatmap plotting (Figure 26).
Interestingly, distinct gene clusters, predominantly expressed in either CD14+ and CD141+ DDC or
LC and DN-DDC, could be identified. The similarities in expression observed between each pair
reflected the overall similarities in transcriptomes seen in MDS plotting and gene co-expression
analysis (Figure 24, Table 17). Importantly, tolerogenic networks detected in CD14+ and CD141+
mDDC differed from those expressed by mLC. Heterogeneity however could be identified between
CD14+ and CD141+ mDDCs, with CD14+ mDDCs displaying elevated expression of a greater number

of gene clusters amongst the tolerogenic programme.

In summary, we have revealed the heterogeneity amongst DDC subpopulations and highlighted
mechanisms by which they regulate tolerance at the dermis. CD14+ mDDC appear more heavily
associated with the expression of tolerogenic pathways than other DDC subpopulations.

Interestingly, CD14+ mDDCs and mLCs appear distinct in the tolerogenic mechanisms they express.
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Figure 26. Tracking the tolerogenic DC signature across migrated LC and DDC subpopulations. The
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217 genes commonly upregulated in at least 2 of the DC conditions (Figure 20A&C) were tracked in
heatmaps (complete, ward.D) of log2 normalised expression data (GSE66355) of mLC, CD14+ mDDC,
CD141+ mDDC, and CD14 and CD141 double negative mDDC (DN-DDC).
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4.3 Discussion

43.1 LC transcriptomes are highly unique to other DCs

Comparative analysis of LCs to other DC types was performed to identify the unique features of the
LC transcriptome and find evidence for how they mediate tolerance at the epidermis.
Transcriptomic analysis inferred that steady-state LCs expressed a highly unique transcriptomic
profile compared to other DCs (MoDC, DDC, CD1c DC). Similarly, migrated LC transcriptomes highly
differed from migrated DDCs. The high level of dissimilarity between the transcriptomes of DCs
subtypes analysed indicated profound differences in their biology and function. Factors we consider
that likely contribute to the differences in LC transcriptomes, include their unique developmental
pathway, originating from yolk sac and foetal liver monocytes and their localisation in the
epidermis, in which LC are in close contact with the external environment and signalling from other
epidermal cells (Hoeffel et al., 2012)(Ginhoux and Merad, 2010). Indeed, when LCs and DDCs were
contrasted with other DC types, steady-state LC and DDC transcriptomes were most similar and this
could in part be due to their residence in similar tissue compartments, as compared to blood
derived CD1c DC and artificially developed in vitro MoDC (Santegoets et al., 2008)(Széles et al.,
2010). The profound differences in the transcriptomes of LCs and MoDC indicated that MoDCs are

likely not a good model for studying the biology of primary tissue residing LC.

Intriguingly, our analyses revealed that cell cycle processes were common upregulated pathways in
LCs. Maintenance of the LC network within the epidermis is dependent on self-amplification within
the tissue, rather than depending on bone marrow derived precursors like conventional DC (Collin
and Milne, 2016)(Doebel, Voisin and Nagao, 2017). It may therefore be unsurprising that cell cycle
processes are significantly upregulated in epidermal residing steady-state LCs compared to
conventional DCs. Through our comparisons between migrated LCs and migrated CD11c+ DDCs
(GSE49475), a specific association with metabolic processes was observed during ontology analysis
of migrated LC upregulated genes. This pulled similarities from our analysis on ToIMoDCs, in which
upregulation of metabolic processes was observed, therefore further implicating the importance of
metabolic programming for immune regulation (Wculek et al., 2019)(Kelly and O’Neill, 2015).
Additionally, during comparison between migrated LC and CD14+, CD141+ and DN-DDC
(GSE66355), high IDO1 and IDO2 expression in LC was associated with tryptophan catabolism, which

is a potent mechanism for T cell tolerance induction by DC (Mellor and Munn, 2004)(Li et al., 2016).

Whilst digested steady-state LC displayed no uniquely upregulated immune-related biological
pathways, a common association with negative regulation of immune system processes was shared

with steady-state DDCs. Interestingly this suggests that in the steady-state, the prevention of
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immune activation is an important process within both the epidermal and dermal skin
compartments. Like LCs, DDCs also display tolerogenic function. CD141+ DDCs have been shown to
produce IL-10 and expand functional Treg populations, whilst murine migratory RELB+ DDCs have
been shown to induce skin antigen specific Treg induction in the lymph nodes (Chu et al.,
2012)(Azukizawa et al., 2011). Furthermore, genes upregulated in both digested steady-state LC
and DDC were involved in negative regulation of NFkB activity. This coincided with our observations
in MoDCs, in which immunogenic LPSMoDCs displayed elevated expression of NFkB family
members, which were however downregulated in tolerogenic TolMoDCs and IL10MoDCs.
Interestingly, this shared tolerogenic module was absent between migrated LC and migrated
CD11c+ DDC (GSE49475), in which heterogeneous gene expression, or low expression of module
constituents was identified. Therefore, it appears that the migration process further diverges the
transcriptomic differences displayed between LCs and DDCs. Direct comparison in the
transcriptomic programmes induced in steady-state and migrated LCs could therefore be important

for comprehensive understanding of LC tolerogenic regulation.

Analysis of ToIMoDCs and ILLOMoDCs identified an association between MYC upregulation and the
induction of tolerogenic DC transcriptomes. We therefore inspected MYC expression amongst LC
and the other DC subtypes. Interestingly, a highly significant increase in MYC expression was
observed in steady-state LC compared to CD1c DC and an increasing trend was observed compared
to both MoDC and DDC. The expression of MYC in LC and DDC was most similar, linking with the
identification of a mutual tolerogenic cluster 13 module in both subtypes, albeit the programme of
expression of MYC compared to cluster 13 differed. In migrated LC, MYC was significantly
downregulated compared to migrated CD11c+ DDCs and the expression of MYC visually correlated
with inflammatory associated DDC clusters 2, 3 and 5. Furthermore, no significant difference in
MYC expression was identified between tolerogenic PlaDCs and MoDCs. Overall, contradicting
evidence for MYC involvement in DC tolerogenic transcriptomes limits the universality of an
association of MYC regulation with DC tolerance induction. MYC interaction with mTOR1 in the
mTORCI1-MYC pathway is critical for DC development and differentiation, including LC (He et al.,
2019). MYC also heavily interlinks with cell cycle regulation, the predominant programme exhibited
by steady-state LC (Gnanaprakasam and Wang, 2017). Its high expression in steady-state LCs may
therefore be involved in the population maintenance of LCs, linking with the high level of cell cycles

associated processes, rather than specific mediation of tolerogenic programmes.

Highlighted as being critical for LC immune regulation (Polak et al., 2017)(Sirvent et al., 2020) and
having been linked with both immunogenic and tolerogenic immune regulation in LPSMoDCs, the
expression of IRF1 and IRF4 was investigated in each dataset. At the steady-state, no significant

difference in IRF1 expression was identified and a small significant decrease in IRF4 expression was
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identified through comparison to DDCs. Interestingly however, whilst comparisons between
migrated LC and DDC revealed a slight trend for IRF1 decrease, IRF4 was significantly upregulated.
IRF4 induction during LC migration is well documented, with its critical role in genomic
programming of LC to enhance their ability to coordinate T cell response explored (Sirvent et al.,
2020)(Polak et al., 2017)(Bajana et al., 2012). However as revealed from analysis of migrated LC and
DDC, increased IRF4 expression does not necessarily correlate with increase in inflammatory
transcriptomic modules. In murine studies, IRF4-deficient DCs are impaired for the induction of
Tregs in vivo (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). Furthermore, CRISPR-Cas9 knockout
of IRF4 in migratory LC leads upregulated expression of genes associated with inflammatory
cytokine and oxidative stress signalling, indicating a role of IRF4 in immune homeostasis (Sirvent et
al., 2020). Thus, a dual role of IRF4 in priming both immunogenic and tolerogenic DC activation

requires consideration.

43.2 Tolerogenic DC transcriptomes largely differ, although common features of gene

include inhibition of NFkB activation and responsiveness to stimuli

To assess how common or unique transcriptomic networks underpinning DC immunotolerance are,
we further analysed PlaDC, a DC subset which mediates tolerance at the foetal-maternal interface.
The PlaDC population was selected for investigation due their critical tolerogenic role during the
prevention of immune responses to foetal alloantigen during the long term growth and residence
of the ‘allograft’ foetus (Tagliani and Erlebacher, 2011)(Blois et al., 2007). Results from PlaDCs
analysis highly correlated with those seen in the tolerogenic MoDC datasets, with /RF4 being lowly
expressed in PlaDCs, thus again highlighting /IRF4 as a key regulator of immunogenic responses.
Similar to trypsisnised steady-state LCs, associations with NFkB inhibition were identified. To more
thoroughly cross compare the tolerogenic profiles of tolerance associated DC sub populations (LC,
PlaDC, TolMoDC and ILLOMoDC), their transcriptomes were compared to immature MoDCs, which
acted as a consistent reference within each dataset. Whilst minimal convergence was overall
identified, common modules were revealed. This included the upregulation NFkB inhibitors, such
as NFKBIA and TNFAIP3 and the association with negative regulation of signal and stimuli
responsiveness. Inhibition of NFkB is therefore highlighted as an important aspect for the induction
of DC tolerance. During the steady-state, DCs remain unchanged in response to low levels of
inflammatory stimuli (Audiger et al., 2017)(Hasegawa and Matsumoto, 2018). Suppression of
signalling may therefore be a mechanism by which DC prevent uncontrolled and unwarranted

immune activation at the steady-state and could reflect a state of immunosuppression.

Also, of note in our analyses was the discovery that tissue derived DCs (LC and PlaDC) displayed

more homologous gene expression as compared to tolerogenic DCs induced in vitro (TolMoDC,
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IL10MoDC), suggesting innate tolerance found in specific tissue microenvironments differs from
artificial states of tolerance induced in vitro. Again, these results question the applicability of in vitro
DC models to specifically investigate LC tolerance. Overall the cross comparison suggested that
different subtypes of DC regulate tolerance via distinct mechanisms. Consistent with this idea was
our analysis on IRF1, IRF4 and MYC expression in each of the datasets, in which the expression of
each TF highly differed within each dataset, therefore concluding that gene regulation pathways

involving these TFs differed across different DC subtypes.

433 DDCs and LCs are distinct in the tolerogenic mechanisms they exhibit, highlighting

the unique nature of LC tolerance regulation at the epidermis

Tracking the common tolerogenic DC signature across the datasets of LC and other DC again
revealed similarities in the expression of tolerance associated genes between steady-state LC and
DDC. Interestingly, tracking the expression of the tolerogenic module in migrated LC and the whole
CD11c+ migrated DDC population revealed a divergence in module expression. This observation
was similar to the dissolution of the tolerogenic gene cluster which was identified in gene co-
expression analysis of steady-state LC and DDC. LCs and DDCs are both implicated in immune
tolerance regulation and we therefore wanted to compare and contrast how these DC regulate
tolerance in the closely located, yet unique, epidermal and dermal skin compartments. The DDC
population is comprised of different subpopulations characterised by different immune functions
and associations with tolerance (Haniffa, Gunawan and Jardine, 2015)(Nestle et al., 1993). To
therefore fully comprehend the differences between tolerance regulation between LCs and DDCs,
analysis comprising all DDC subpopulations was required. Our analysis using a dataset (GSE35457),
containing different DDC subpopulations, revealed that CD14+ and CD141"&" DDCs specifically,
expressed some genes within our identified tolerogenic gene module that were associated with
specific tolerogenic ontologies. This was consistent with in vivo and vitro studies, which identified
potent tolerogenic mechanisms for CD14+ and CD141+ DDCs in mice and reduced immunogenic
capacity of the CD14+ DDC subpopulation (Chu et al., 2012)(Nestle et al., 1993). Furthermore, when
migrated CD141+ and CD14+ DDCs and migrated LCs were directly compared, further differences
in overall gene expression were identified, including differential expression of gene programmes
linked to tolerance, as identified in gene co-expression analyses and through inspecting the
expression of our identified tolerogenic DC gene panel. Overall, our comparisons between LC and
DDC populations has revealed that at the steady-state, LCs and DDCs appear to share some gene
expression programmes linked with tolerance regulation. However, LCs and DDCs extracted via
migration acquire unique tolerogenic programmes. This emphasises the difference in immune

regulation orchestrated by the closely located, yet biologically dissimilar epidermal LC and DDC and
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further highlights the biological differences driven by the migration extraction process on LC

genomic programming.

43.4 Further investigations are required into the differences between steady-state and

migrated LC transcriptomic programming and tolerogenic capacity

In summary, we have confirmed the unique properties of LC transcriptomes compared to other DC
subtypes, which display reduced expression of inflammatory immune genes. The largescale
differences observed between LCs and other DC subtypes supported out conclusion that further
transcriptomic and in vitro experiments on LC tolerance required primary tissue extracted human
LC and not in vitro DC models. Our analyses suggest that inhibition of the NFxB pathway is
prerequisite during DC tolerance regulation, but TFs of the IRF family (/RF4, IRF1) may be required

for regulation of both immunogenic and tolerogenic responses.

Importantly, different transcriptomic programming could be identified in steady-state LC and
migrated LC when compared to other DCs, which supports current understanding that the two
states are phenotypically different (Sirvent et al., 2020). However, complete comprehension of how
these phenotypic differences impact capacity to induce tolerogenic responses is unknown. Further
analyses comparing the role of differentially activated steady-state and migrated LC in mediating

tolerogenic immunity is therefore required.
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Chapter 5 Analysing heterogeneity of LC

populations

5.1 Introduction

Transcriptomic analysis of bulk DC populations highlighted the unique qualities of LC
transcriptomics, but the precise mechanisms by which LCs mediate tolerogenic immune responses
remained unclear. Factors likely influencing the uniqueness of LC immunology is their specific
developmental origin from the yolk-sac and foetal monocyte precursors, as well as their life-long
residency in the epidermal compartment (Hoeffel et al., 2012)(Merad et al., 2013). The latter in
particular appears critical for determining LC immune responses. Skin, and especially its outermost
layer, the epidermis, is constantly exposed to numerous varying stimuli from the external
environment (Clayton et al., 2017). As immune sentinels resident in the epidermis, LCs react to
environmental stimuli, whilst also responding to changes in the tissue microenvironment.
Considering the possible non-uniform distribution of immune stimuli throughout the epidermis and
with LCs known to express both immunogenic and tolerogenic capabilities, it is conceivable that the
LC population at the epidermis is heterogeneous. The differences between LCs exposed to different
stimuli/performing different biological functions would likely be reflected within the transcriptomic
expression profiles, or programmes, they exhibit. However, analysis of bulk transcriptome data,
using either bulk RNA-seq or microarray methods, does not allow investigating of heterogeneity in
cell populations, as gene expression data is averaged across all cells within the sample. We
hypothesised that this was the reason why molecular signals encoding tolerance was not clearly
discernible in LC populations. We therefore optimised a scRNA-seq protocol called Drop-seq
(Macosko et al., 2015), in order to produce single cell transcriptomic data of LCs to analyse cell

heterogeneity.

Two methodologies, enzymatic digestion and migration of LCs from epidermal sheets are widely
used for isolation of human LCs to examine their function in vitro (Sirvent et al., 2020)(Polak et al.,
2012)(Polak et al., 2014)(Klechevsky et al., 2008)(Seneschal et al., 2012). These two methods yield
LCs in two contrasting functional states. Due to the rapid process of enzymatically extracting LCs
from epidermal tissue, LCs isolated in this method are considered to be at the steady-state and
display an immature phenotype. At the steady-state murine LCs in situ display tolerogenic
functions, mediating removal of apoptotic cells and the induction of Tregs to promote tolerance
and homeostasis (West and Bennett, 2018)(Seneschal et al., 2012)(Hatakeyama et al., 2017).

Analysis of the gene expression profile of digested LC would therefore provide insights into how
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homeostasis and tolerance is regulated at the steady-state. In contrast, migrated LCs are extracted
though culture of epidermal sheets in media, allowing LCs to crawl out of the tissue, mimicking to
some degree, the initial stages of LC migration out of the epidermis as they begin their journey from
the epidermis to the local lymph nodes. The migration process entails reduction of cell-to-cell
contact with keratinocytes and induces LCs to upregulate T cell costimulatory molecules and
antigen processing molecules. They therefore display a more immune activated phenotype
compared to steady-state LCs (Sirvent et al., 2020)(Clayton et al., 2017). This is further translated
into increased ability to induce adaptive immune responses, including efficient antigen processing
and presentation, resulting in augmented CD4 and CD8 T cell stimulation (Sirvent et al., 2020)(Polak
et al., 2014)(Polak et al., 2012)(Klechevsky et al., 2008). Therefore, in comparison to steady-state
LCs, migration induces significant maturation of LCs. Classically, the immature state of a DC is
associated with induction of tolerance and the mature, activated state with immunogenicity
(Steinman 2003, Lutz and Schuler 2002). In LCs, the state of LC activation has been shown to have
a profound effect on immune response mediation, with murine steady-state LC facilitating cytotoxic
T cell tolerance, whilst mature LCs induce effector cytotoxic T cell response (Strandt et al., 2017).
Thus, we hypothesised that single cell analysis of the steady-state LC population, isolated through
enzymatic digestion, would reveal specific LC populations undergoing biological processes

associated with tolerance, in comparison to more immunogenic migrated LCs.

Using scRNA-seq we sought to investigate if steady-state and migrated LC populations contain
unique subpopulations driving distinct immunological pathways, such as tolerogenic and
immunogenic responses and reveal how differences in activation may affect immunological
outcomes. Furthermore, taking into account that specific cellular phenotypes are underpinned by
unique transcriptional programmes controlled by networks of TFs, proteins that control and
modulate gene expression (Spitz and Furlong, 2012)(Xue et al., 2014), we aimed to elucidate the TF

networks controlling human LC biology.

Skin is the largest organ of the human body (1.5-2 m? surface area). It is therefore unsurprising that
areas of skin can differ in their morphology and function. Transcriptomic analysis of skin tissue
fibroblasts taken from multiple different anatomical sites (arm, leg, hand, foot, chest), from the
same donor, for comparison across different donors, revealed sample clustering was determined
by anatomical site in cross-donor analysis (Rinn et al., 2006). In foreskin tissues, increased
keratinisation of the inner foreskin is characterised by increasing age and history of tissue infection
(Qin et al., 2009). Heterogeneity in LCs from different skin tissues is also observed. For example,
LCs from the inner foreskin display augmented antigen sampling and environmental sensing
compared to outer foreskin LCs, which has implications in HIV infection or immunity (Fahrbach et

al., 2010). Heterogeneity in CD4 expression, the main receptor for HIV entry, is also observed in
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LCs from the foreskin, oral and vaginal epithelium (Hussain, Lehner and Thomas, 1995). Using
scRNA-seq the heterogeneity in the expression of immune programmes has been identified in
structural and immune cell components of foreskin, scalp, trunk and psoriatic skin (Cheng et al.,
2018). Diversity in the skin is also mediated by the microbes which colonise it and also its exposure
to chemicals and cosmetics/toiletries (Bouslimani et al., 2015). The inner foreskin for example,
display increased colonisation by anaerobic bacteria which is believed to effect the inflammatory
environment (Esra et al., 2016)(Price et al., 2010). To investigate location specific diversity and the
effects of tissue microenvironment conditioning, LCs isolated from human foreskin epidermis at the
steady-state and through migration were processed through Drop-seq and compared with LCs

isolated from breast skin tissue.

One of LCs key functions is to respond to signals from the microenvironment and external
environment in situ. Therefore, to investigate LC transcriptomes in situ, protocols allowing the least
experimental manipulation are preferable. However, investigations of the “in situ” state pose a
significant experimental challenge at two levels; low frequency of LCs in the epidermis, and their
responsiveness to manipulation. Purification protocols are likely to affect LC biology, which as a
type of DC, are very sensitive to manipulation. Common methods required for purification such as
FACS or bead-based purification may activate LCs and thus alter cell transcriptomes, obscuring true
biology. However, the relatively low frequency of LCs within the epidermal population means large
numbers of epidermal cells would need to be sequenced to acquire sufficient numbers of LCs,
without further purification, to ascertain any meaningful biology. Sequencing large numbers of cells
comes at great financial cost, therefore restricting the size of single cell datasets that can feasibly
be produced. To counter these problems, an extension to the Drop-seq protocol was developed
(Constellation Drop-seq). Constellation Drop-Seq includes a step of linear amplification using gene
specific primers, prior to PCR amplification, which allows targeted amplification of genes of interest
(Vallejo et al., 2019). This allows the focussing of the sequencing depth onto specific cell types of
interest. LC heterogeneity could therefore be investigated in large numbers at the steady-state, in
the context of other cell types from the epidermis, thus demonstrating the power of the

Constellation Drop-seq protocol.

5.1.1 Hypothesis

Steady-state LC and migrated LC transcriptomes are distinct, with steady-state LCs containing

subpopulations of cells with elevated genes linked to tolerogenic pathways.
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5.1.2 Aims

e Optimise the scRNA-seq method Drop-seq for creation of LC single cell transcriptomic
data

e Compare and contrast the heterogeneity and gene expression of steady-state and
migrated LC transcriptomes.

e |dentify tolerance encoding programmes differentially regulated between LC states.

e Elucidate TF networks controlling differences in genes expression between LC states.

e Investigate the effect of tissue microenvironments at different body sites on LC
programming (breast skin vs foreskin).

e Utilise Constellation Drop-seq to investigate unperturbed LC in the context of whole

epidermal tissue.
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5.2 Results

5.2.1 Optimisation of the Drop-seq encapsulation protocol and the creation of primary

human LC single cell transcriptomic data

To enable the production of single cell LC transcriptomic data, in house Drop-seq set-up was
optimised for LC encapsulation and analysis. Single LCs were co-encapsulated into nanolitre-sized
droplets with a single barcoded primer coated bead (barcodeseqB, ChemGenes), using Drop-seq
microfluidic devices (Figure 27A). Efficient Drop-seq runs occurred when encapsulation at
interphase remained constant, with minimum disturbance at the point of droplet formation.
Speeds of aqueous bead and cell inlets (4000ul/hr) and oil inlets (14000ul/hr) created a co-
encapsulation efficiency of 5%, consistent with efficiency of the published Drop-seq protocol.
Droplets were visually inspected to assess consistency in size and shape and the occurrence of
single bead occupancy within them (Figure 27B). Homogeneity of droplet sizes reduced the
occurrence of bead and cell doublets, whilst also creating the optimal sized special environment to
maximise mRNA capture to the barcoded bead primers. After post-encapsulation processing,
aliquots of 100 STAMPs (single transcriptomes attached to microparticles) were initially processed
for cDNA library amplification using PCR at an array of different cycling parameters. The quality and
quantity of the cDNA libraries was assessed using a DNA high sensitivity kit run on an Agilent
Bioanalyser. The minimum cycling parameters that created sufficient concentrations of cDNA
(>100pg/pl) required for tagmentation were used to amplify the overall desired number of STAMPs

for each sample.
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A)

Figure 27. Optimisation of Drop-seq encapsulation. A) Magnification of microfluidic drop-seq
device at encapsulation site. nl sized droplets containing single cell and bead flow out of device for
collection. Aqueous cell (solid black arrows) and aqueous bead (dashed black arrow) and oil (white
arrows) flow is highlighted. B) Droplet emulsions produced by Drop-seq encapsulation visualised
under a light microscope (10x) were analysed to assess the uniformity of droplet sizes and the

occurrence of single bead occupancy.

The Drop-seq pipeline was first optimised using the THP-1 monocyte cell line before proceeding to
processing of primary LC samples. Single cell suspensions were created in both 0.02% BSA-PBS
solution, as used in the Drop-seq protocol, and also in 10% OptiPrep™ 0.02% BSA-PBS solution. The
inclusion of OptiPrep™ was investigated to assess whether it improved the buoyancy of cells whilst
loaded on the Drop-seq pumps, reducing the adverse effects of cell sedimentation and therefore
increasing the frequency of encapsulation events including the cells. After encapsulation, 100
STAMPs from each sample were processed into cDNA libraries and quantified using a DNA high
sensitivity kit on an Agilent Bioanalyser (Figure 28). Overall libraries prepared without OptiPrep™
had higher concentration of cDNA. The concentration of cDNA library prepared without OptiPrep™
was 212 pg/ul, whilst the concentration of the OptiPrep™ prepared sample was 59 pg/ul. Whilst
OptiPrep™ may be countering the effects of cell sedimentation it appeared to be disrupting the
efficiency of mRNA capture or reverse transcription. OptiPrep™ was therefore not included in

subsequent Drop-seq experiments.
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Figure 28. Optimisation of cDNA library preparation using THP-1 cells. DNA high sensitivity kit
Agilent Bioanalyser analysis of THP-1 monocyte cell line cDNA libraries after processing through
Drop-seq with and without OptiPrep™ solution. Upper (10380bp) and lower (35bp) marker DNA
was included for reference. Vertical dotted lines depict area in which cDNA library
concentrations were quantified. cDNA libraries without OptiPrep™ = 212 pg/ul and with

OptiPrep™ =59 pg/ul.
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To produce our own LC Drop-seq datasets to investigate heterogeneity, LCs were first extracted
from primary human skin tissue using enzymatic digestion and migration methods. In the digestion
protocol, steady-state LC are dissociated from healthy skin using the dispase/liberase protocol
(Sirvent et al., 2020). In migration, 48 hour culture of epidermal fragments, allows LC to migrate out
of the tissue for collection, a process resulting in LC maturation (Polak et al., 2014)(Klechevsky et
al., 2008)(Sirvent et al., 2020). Isolated cells were subsequently purified using fluorescence-
activated cell sorting (FACS) of cells positively stained for CD207, CD1a and HLA-DR (Figure 29). High
quality and pure LC population was isolated through gating on singlets, removing debris and strictly
selecting the LC population (CD207+, CDla+ and HLA-DR+). Purified cells were next processed
through the Drop-seq encapsulation protocol producing STAMPs (Figure 30). From these STAMPS,
cDNA libraries were prepared using Kapa HiFi Hotstart enzyme mix, as described in the Drop-seq
protocol(Macosko et al., 2015), before being quantified using an Agilent Bioanlayser (Figure 31).
Using optimised cycling parameters for each sample, the total number of STAMP cDNA libraries
required were produced. cDNA libraries were then tagmented in preparation for sequencing, with
the quality and quantity of tagmented cDNA libraries assessed on an Agilent Bioanlayser, before
sequencing on an lllumina NextSeq sequencer (Figure 32). In total, roughly 800 steady-state and
400 migrated breast skin (both extracted from same donor) derived LC STAMPs were processed, as
well 500 steady-state (pool of 2 donors) and 500 migrated (pool of 3 donors) foreskin derived LC
STAMPs.
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Figure 29. FACS gating strategy for purifying steady-state and migrated LCs. High quality and pure LC
populations were isolated using FACS. Cells were gated for singlets (FSC-A, FSC-H) and removing small
particulate debris (SSC-A, FSC-A) through forward scatter and side scatter gating. Pure LCs were
selected for through strict gating of CD207+, CDla+ and HLA-DR+ populations. Steady-state and

migrated LCs were isolated through sorting and subsequently processed for Drop-seq.
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Figure 30. Protocol for extraction of human LCs from primary skin tissue for processing through
Drop-seq. Primary human skin samples were digested in dispase (1U/ml, 24 hours, 4°C). Epidermal
fragments were then mechanically separated from the dermis. To extract steady-state LCs, epidermal
fragments were chopped and digested in Liberase Tm for 2 hours, 37°C. Migrated LCs were extracted
from epidermal sheets cultures in media for 48hours, allowing LCs to crawl out of epidermal tissue.
FACS purification of steady-state and migrated LC populations was performed through staining for
CD207, CD1a and HLA-DR. Single cell suspensions of purified cells were processing through Drop-seq

scRNA-sequencing.
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Figure 31. LC cDNA was amplified from STAMPs through PCR, with optimised cycling parameters
utilised that produced sufficient concentrations. Prepared cDNA libraries were quantified using a DNA
high sensitivity kit run on an Agilent Bioanalyser. Concentrations were required to be >100 pg/ul to
proceed to tagmentation. All prepared libraries exceeded this threshold when measured. LC digested
=226 pg/ul, LC Migrated = 234 pg/ul, LC Foreskin Digested = 526 pg/ul, LC Foreskin Migrated = 110
pg/ul. Upper (10380bp) and lower (35bp) marker DNA was included for reference. Vertical dotted lines

depict area in which cDNA library concentrations were quantified.
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Figure 32. LC cDNA was tagmented in preparation for sequencing. The quality and concentration of

tagmented libraries was assessed using a DNA hypersensitivity kit run on an Agilent Bioanlayser. 600 pg/pl

of cDNA libraries was used in the tagmentation reaction. LC Digested = 2 nM, LC Migrated = 4.2 nM, LC

Foreskin Digested = 2.1 nM, LC Foreskin Migrated = 2.1 nM. Libraries were pooled at 2 nM for sequencing.

Upper (10380bp) and lower (35bp) marker DNA was included for reference. Vertical dotted lines depict

area in which cDNA library concentrations were quantified.
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5.2.2 Migrated LCs display a more immune activated and immunocompetent expression

profile compared to steady-state LC.

To explore the gene expression profiles underlying healthy LC tolerogenic function and to evaluate
population heterogeneity in situ we performed single cell RNAseq on “steady-state LC” dissociated
from healthy skin using the dispase/liberase digestion protocol and on “migrated LC”, in which LCs
are extracted through self-extraction from epidermal sheets during 48 hour culture, as published

previously (Sirvent et al., 2020).

After gene (expression detected in <10 cells) and cell filtering (EmptyDrops (Lun et al., 2019), count
threshold filtering), expression data for 5864 genes from 585 steady-state LCs and 387 migrated
LCs remained. UMAP dimensionality reduction analysis (Scanpy, Version=1.5.0) revealed steady-
state and migratory LCs to exhibit distinct transcriptomes with separate localisation of either state
(Figure 33A). The vast difference in gene expression was further observed during heatmap plotting
of the top 100 DEGs (T-test, adj.p-value<0.05) defining each state (Figure 33B). Gene ontology
analysis for the top 100 DEGs (Figure 33C) of each state revealed that steady-state upregulated
genes were associated with protein targeting to the ER (adj.p-value=5.8E-47), nuclear transcribed
mMRNA catabolic process (adj.p-value=2.6E-46), cellular amide metabolic process (adj.p-value=2.2E-
21) and response to cytokine (adj.p-value=1.0E-10). In contrast, migrated LC upregulated genes
were associated with the immune effector process (adj.p-value=4.2E-8), response to cytokine
(adj.p-value=1.5E-7), myeloid leukocyte activation (adj.p-value=1.1E-6) and the innate immune
response (adj.p-value=1.4E-5). Migrated LC gene expression therefore appeared to present an
enhanced state of immune activation compared to steady-state LC (Figure 33D). Included in this
expression programme were antigen presenting genes (B2M, CD74, HLA-B) and genes from both
the IRF (/RF4) and NFxB (RELB, MAP3K14) TF pathways. To further investigate the changes in gene
expression linked with immune regulation, the expression of antigen presentation, co-stimulatory
molecules and activation markers were inspected across the two populations (Figure 33E). This
revealed that whilst many MHC Il genes were relatively homogenous across both states (HLA-DRA,
HLA-DRB1, HLA-DMA, HLA-DPA1, HLA-DPB1), steady-state preferentially expressed some genes
involved in this pathway (HLA-DQA1, HLA-DQA2, HLA-DQB1, HLA-DQB2). However migrated LC
clearly displayed increase expression of MHC | (HLA-A, HLA-B, HLA-C, HLA-E, HLA-F) and activation
markers (CD83, CCR7).
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Figure 33. Migrated LCs display a more immune activated and immunocompetent expression profile
compared to steady-state LC. A) UMAP dimensionality reduction analysis of Scran normalised single cell
data from steady-state and migrated breast derived skin LCs. B) Heatmap displaying the top 100 DEGs
upregulated in both steady-state and migrated LCs. C) Gene ontology analysis (Toppgene) for the 100
DEGs (T-Test, BH adj.p-value<0.05) upregulated in both steady-state and migrated LCs, as shown in B). -
log10adj.p-values are displayed. D) Trackplot of the genes included in the ontology ‘immune effector
process, highlighted as one of the top enriched ontologies in migrated LC. Each line represents the level
of gene expression from a single cell. E) Violin plots displaying the expression of classic DC activation

markers (MHC I, MHC Il, co-stimulatory molecules) in steady-state and migrated LCs.
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5.2.3 Migrated LCs have upregulated expression of genes associated with DC tolerance.

To investigate the presence of genes associated with tolerogenic function across the two LC states,
the expression of the tolerogenic DC genes signature containing 40 genes, curated from literature
which explore genes associated with DC tolerogenic function were investigated (Tolerogenic DC
signature 1, Appendix A.1). Furthermore, the tolerogenic DC gene signature, identified in Chapter
4, Figure 20A&C which contained 217 genes commonly upregulated in steady-state LC, PlaDC,
TolMoDC and IL10MoDC (Tolerogenic DC signature 2, Appendix A.2), was assessed amongst the
scRNAseq steady-state and migrated LC data. The presence of genes within these two signatures
was first assessed in the single cell LC transcriptomes (Figure 34A). From the 40 genes from
signature 1, 19 genes were identified and from the 217 genes in signature 1, 112 genes were
identified. 2 genes were common to both signatures 1 and 2 (VEGFA, CD86). To compare the
enrichment of the two signatures across steady-state and migrated LCs, Gene Set Variation Analysis
(GSVA) was performed (Figure 34B). GSVA analysis identified a moderate enrichment of both
tolerogenic DC signatures in migrated LCs, with genes from signature 1 (logFC=0.21, adj.p-
value=9.7E-22) being more enriched than signature 2 (logFC=0.12, adj.p-value=2.8E-9). Tolerogenic
gene regulation therefore appears to be enhanced during the migration process. The expression of
each signature was plotted using trackplots across the steady-state and migrated LCs to assess the
overall expression of the DC tolerance associated genes (Figure 34C&D). The presence of genes
from the top 100 migrated LC DEGs was then assessed amongst the two tolerogenic signatures to
identify the most highly expressed tolerogenic genes. 4 genes (HMOX1, IDO1, LGALS1, RELB) from
signature 1 and 3 genes from signature 2 (ALDH2, IER5, S100A9) were in the top 100 migrated LC
DEG list. The detection of these genes was observed amongst the LC populations, with IDO1, LGALS1
and RELB expression by migrated LC also validated by qPCR (Figure 34E&F).
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Figure 34. Migrated LCs display elevated expression of tolerance associated genes. A) Venn diagram
displaying the number of genes from tolerogenic gene signature 1 (curated from papers reviewing
molecular mechanism of DC tolerance induction, Appendix A.1) and tolerogenic genes signature 2
(identified in Chapter 4, Figure 20A&C, Appendix A.2) that were identified in the whole single cell
transcriptomes of breast skin derived LCs. B) Gene Set Variation Analysis (GSVA) displaying enrichment
of the two tolerogenic signatures in LC populations. BH adjusted p-values and logFC are displayed. C)
Trackplot displaying the expression of genes from tolerogenic gene signature 1 across steady-state and
migrated LCs. D) Trackplot displaying the expression of genes from tolerogenic gene signature 2 across
steady-state and migrated LCs. E) Violin plots and UMAP marker plots displaying the expression of the
7 genes from tolerogenic genes signatures 1 and 2 which were in the top 100 DEGs upregulated in
migrated LCs. F) gPCR validation of /IDO1, LAGLS1 and RELB expression in migrated LC (Ct).
Housekeeping gene (YWHAZ) and no template control (NTC) Ct values are displayed.
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5.2.4 The tolerogenic genomic programme of migrated LCs is underlined by unique TF

networks

After identifying the unique expression profile exhibited by steady-state and migrated LC, the
underlying TFs responsible for genomic programming were investigated using single cell regulatory
network and inference clustering (SCENIC)(Aibar et al., 2017). Using a reference database of TF
binding sites, co-expressed genes were inspected for TF binding regions 500bp upstream of starting
sequence. SCENIC therefore identified genes within regulons of TFs expressed within the dataset

and therefore under their control.

SCENIC analysis revealed that the regulons identified in steady-state and migrated LC highly differed
(Figure 35A). For steady-state LC, the MYC, ETS2 and ETV3 regulons were the most highly enriched.
In contrast, migrated LC exhibited a greater number of enriched regulons, including ELK1, RELA,
KLF6, MXI1, JUND, RELB and IRF4. The diverse transcriptomes observed between steady-state and

migrated LC were therefore underlined by unique TF networks.

To ascertain the key programme promoting TFs, the expression level of TFs themselves and their
regulon enrichment score was interrogated (Figure 35B). TFs with both highly differential
expression levels in migrated LC, and with high regulon enrichment scores included IRF4, JUND,
RELA, RELB, ELK1, HMGN3, KLF6 and KLF13. To further inspect the importance of each regulon for
migrated LC gene regulation, the TFs with regulons enriched in migrated were investigated

amongst the top 100 DEGs. IRF4, RELB, ELK1, HMGN3 and KLF6 were identified.

In order to trace whether the 7 tolerogenic associated genes within the top 100 upregulated DEGs
in migrated LCs (ALDH2, HMOX1, IDO1, IER5, LGALS1, RELB and S100A9) could be under the control
of the upregulated TFs, their presence within the TF regulons was inspected (Figure 35C). Here,
tolerogenic genes were found to be in the regulons of RELA, RELB, HMIGN3, ELK1, JUND, KLF6 and
KLF13. Additionally, the co-expression scores of tolerogenic genes with each TF were analysed to
apprehend the level of co-regulation (Figure 35D). Highly co-expressed TFs and genes included /RF4-
LGALS1, RELB-IDO1, JUND-IER5, ELK1-IDO1/LGALS1, HMGN3-LGALS1/S100A9 and KLF6-IER5.

Overall, the enhanced tolerogenic programming of migrated LCs has been recognised, with
tolerogenic genes ALDH2, HMOX1, IDO1, IER5, LGALS1, RELB and S100A9 identified as being
differentially expressed. Furthermore, the unique programming of migrated LCs is underlined by
the differential induction of specific TF regulons, which we can link to the regulation of some

tolerogenic genes.
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Figure 35. The tolerogenic gene expression programme in migrated LCs is underlined by a unique
TF network. A) SCENIC regulatory network and inference clustering analysis revealed TF regulons
which were enriched in steady-state and migrated LCs. Z-score heatmap of enriched regulons are
displayed. B) Violin plots displaying the TFs enriched in migrated LCs with UMAP marker plots
displaying TF regulon enrichment Z-scores in each cell, across the two LC populations. C) Binary
heatmap displaying the presence/absence of the 7 tolerogenic associated genes, identified in the
top 100 DEGs upregulated in migrated LCs, within the regulons enriched in migrated LCs. D)
Heatmap displaying the SCENIC correlation Z-scores for each of the 7 tolerogenic associated genes

with the TFs from the migrated LC enriched regulons. Crosses indicate absent correlation scores.
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5.2.5 Steady-state LCs are divided into two populations distinguished by state of

immunocompetency

Leiden clustering (r=0.5) of the steady-state and migrated LC populations could distinguish two
separate clusters within the steady-state LC population, labelled steady-state 1 (S1) and 2
(S2)(Figure 36A). To identify the unique qualities of each population, DEG analysis was performed
(T-test, BH adj.p-value<0.05) and the top 100 DEGs for each cluster analysed. Interestingly for S1,
only 2 significantly upregulated genes compared to S2 were identified (SERPINB2, MT-ND2). Gene
ontology analysis was performed for the 100 most DEGs for S2, revealing associations with protein
targeting to the ER (adj.p-value=1.4E-66), response to cytokine (adj.p-value=5.5E-13), antigen
processing and presentation (adj.p-value=3.1E-9), the T cell receptor signalling pathway (adj.p-
value=2.9E-8) and positive regulation of the immune response (adj.p-value=2.1E-7)(Figure 36B). S2
therefore represented LCs in an increased state of immunocompetency, which could further be
shown through comparing the expression of DC immunocompetency markers across the two
populations(Figure 36C).
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Figure 36. Steady-state LCs can be divided into two subpopulations, distinct through level of

immunocompetency. A) Leiden (r=0.5) clustering analysis revealed 3 clusters amongst the steady-

state and migrated LCs populations — labelled steady-state 1 (S1), steady-state 2 (S2) and migrated.

B) Gene ontology analysis for the 100 DEGs (T-test) upregulated in steady-state 2 compared to

steady-state 1 LCs. -logl0adj.p-values are displayed. C) Violin plots displaying the expression of

classic DC activation markers (MHC I, MHC Il, co-stimulatory molecules) in S1 and S2 populations.
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5.2.6 The foreskin microenvironment alters transcriptional networks in human LCs

To assess the divergences in the biology of LCs extracted from skin at different body sites, digested
steady-state and migrated LCs obtained from foreskins were processed through Drop-seq for single
cell transcriptomic analysis. After cell (EmptyDrop, count threshold filtering) filtering a total of 680
foreskin LCs (424 steady-state, 256 migrated) were used for comparison to the breast skin LCs. To
directly compare the steady-state and migrated LC populations from breast and foreskin tissue,
data was integrated using BBKNN and embedded together using UMAP dimensionality reduction
(Figure 37A). Interestingly, steady-state LC from each tissue localised together on the left of the
UMAP whilst migrated LC tissue localised together on the right. However, each state from
respective tissues still clustered separately, showing the heterogeneity between LCs extracted from
different body sites. Trackplots of the top 10 markers genes (Logistic regression) of each state from

each tissue also revealed the level of heterogeneity present(Figure 37B).

To understand the differences in gene expression between each tissue, steady-state LCs from
breast and foreskin and migrated LCs from breast and foreskin were compared via DEG analysis (T-
test, BH adj.p-value<0.05). Gene ontology analysis for the top 100 DEGs upregulated in steady-state
LC from each tissue compared to the other, revealed differences in genomic programming (Figure
37C). Breast steady-state LCs upregulated DEGs were associated with ribosome biogenesis (adj.p-
value=1.7E-16), rRNA metabolic process (adj.p-value=1.4E-11), response to cytokine stimulus
(adj.p-value=3.6E-5) and oxidative phosphorylation (adj.p-value=7.6E-5). Foreskin steady-state
upregulated DEGs were associated with neutrophil activation (adj.p-value=2.4E-7), cell activation
involved in the immune response (adj.p-value=4.7E-7), the immune effector process (adj.p-
value=3.1E-5) and cytokine production (adj.p-value=2.3E-4). Foreskin steady-state LC gene

expression therefore reflected an increase state of immune activation and inflammation.

Gene ontology analysis for the top 100 DEGs upregulated in migrated LCs from breast compared to
foreskin migrated LCs revealed associations with response to biotic stimulus (adj.p-value=1.3E-5),
defence response to other organism (adj.p-value=8.4E-4), response to cytokine (adj.p-value=9.3E-
5) and the immune effector process (adj.p-value=1.1E-3)(Figure 37D). Similar annotations of
response to cytokine (adj.p-value=1.3E-6), defense response (adj.p-value=2.2E-5) and immune
effector process (adj.p-value=1.2E-4) were identified in the analysis of the top 100 DEGs
upregulated in foreskin LCs compared to breast. However, interestingly an additional ontology of
an association with the inflammatory response (adj.p-value=1.5E-4) was revealed in foreskin

upregulated DEGs.

Full top 100 DEG lists for each LC state in each tissue were plotted for comparison, further revealing

the extent of differentially expressed programmes(Figure 37E&F).
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Figure 37. Steady-state and migrated LCs derived from breast skin and foreskin display differences
in gene expression. *figure finishes on previous page A) UMAP dimensionality reduction analysis of
Scran normalised, BBKNN integrated, single cell data from steady-state and migrated foreskin LCs
extracted from breast skin and foreskin. B) Trackplots displaying the top 10 markers genes (Logistic
regression) for each of the LC populations. C) Gene ontology analysis (Toppgene) for the 100 DEGs
(T-Test, BH adj.p-value<0.05) upregulated in steady-state breast vs foreskin LC (top) and foreskin vs
breast LC (bottom). -log10adj.p-values are displayed. D) Gene ontology analysis (Toppgene) for the
100 DEGs (T-Test, BH adj.p-value<0.05) upregulated in migrated breast vs foreskin LC (top) and
foreskin vs breast LC(bottom). -log10adj.p-values are displayed. E) Heatmap displaying the top 100
DEGs upregulated in comparisons of steady-state breast vs foreskin LC. F) Heatmap displaying the

top 100 DEGs upregulated in comparisons of migrated breast vs foreskin LCs.

For further investigation into the transcriptomic differences between steady-state and migrated
foreskin LCs, separate analysis was performed. UMAP dimensionality reduction analysis identified
a similar population structure as observed in breast skin extracted LCs and from combined analyses,
with steady-state and migrated LCs separating away from each other (Figure 38A). Gene ontology
analysis and heatmap plotting of the top 100 DEGs (T-test) defining steady-state and migrated
foreskin LCs was performed (Figure 38B&C). Steady-state DEGs were associated with protein
targeting to the ER (adj.p-value=8.2E-49), mRNA catabolic process (adj.p-value=1.6E-37), response
to cytokine (adj.p-value=1.5E-7), the innate immune response (adj.p-value=1.3E-4) and antigen
processing and presentation (adj.p-value=2.3E-2). Migrated LC DEGs were associated with oxidative
phosphorylation (adj.p-value=5.5E-5), immune effector process (adj.p-value=1.7E-4), response to
cytokine (adj.p-value=8.8E-4), T cell mediated immunity (adj.p-value=2.1E-3) and a defence
response (adj.p-value=2.3E-3). Interestingly, an association with negative regulation of the immune
system process (adj.p-value=1.5E-2) was also identified, due to the expression of IDO1, CD86, IL74,
A2M, ARRB2, CST7, GCSAM, SAMSN1 and VIMP. The expression of classical DC activation markers
was also investigated(Figure 38D). Interestingly, steady-state LCs displayed elevated expression the
maturation marker CD83. However, foreskin migrated LCs displayed increase expression of MHC |
(HLA-A, HLA-B, HLA-C, HLA-E, HLA-F) and CCR7, with the addition of substantial CD86 upregulation.
Overall, the immunocompetent profile of migrated foreskins LCs, similarly reflected the profile of
migrated breast LCs. However steady-state foreskin LCs appeared more mature then their

counterparts from the breast.
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Figure 38. Steady-state and migrated foreskin derived LCs differ in state of immunocompetency. A)
UMAP dimensionality reduction analysis of Scran normalised single cell data from steady-state and
migrated foreskin derived skin LCs. B) Gene ontology analysis (Toppgene) for the 100 DEGs (T-Test, BH
adj.p-value<0.05) upregulated in both steady-state and migrated LCs. -log10adj.p-values are displayed.
C) *On next page. Heatmap displaying the top 100 DEGs upregulated in both steady-state and migrated
foreskin LCs. D) On next page. Violin plots displaying the expression of classic DC activation markers

(MHC I, MHC ll, co-stimulatory molecules) in steady-state and migrated foreskin LCs.
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Chapter 5

UMAP dimensionality reduction and Leiden (r=0.5) clustering of steady state foreskin LCs alone
identified a similar population structure to breast LCs, with steady-state LCs forming 2 clusters (S1
and S2) and migrated LCs forming 1 (Figure 39A). To identify the unique qualities of each
population, DEG analysis was performed (T-test, BH adj.p-value<0.05) and the top 100 DEGs for
each cluster analysed. Gene ontology analysis for the top 100 DEGs in S1 LCs revealed associations
with antigen processing and presentation (adj.p-value=1.9E-5), response to cytokine (adj.p-
value=2.4E-5), appositive regulation of the ATP metabolic process (adj.p-value=2.1E-3) and the
innate immune response (adj.p-value=6.1E-3)(Figure 39B). Gene ontology analysis for the top 100
DEGs in S2 LCs revealed associations with protein folding (adj.p-value=3.5E-15), response to
temperature stimulus (adj.p-value=7.0E-11), leukocyte activation involved in the immune response
(adj.p-value=3.6E-6) and response to cytokine (adj.p-value=2.2E-4)(Figure 39C). Unlike breast skin
derived steady-state LCs, steady-state foreskin populations were much more defined by distinct
biological pathways rather than a spectrum of immunocompetency. However, the expression of
classical DC activation markers was also investigated, revealing foreskin S1 LCs to have increased

expression of most genes within the panel, reflecting increased immunocompetency (Figure 39D).
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Figure 39. Steady-state LCs can be divided into two subpopulations, distinct through expression of
unique biological pathways and level of immunocompetency. A) Leiden (r=0.5) clustering analysis
revealed 3 clusters amongst the steady-state and migrated LCs populations — labelled steady-state 1
(S1), steady-state 2 (S2) and migrated. B) Gene ontology analysis for the 100 DEGs (T-test) upregulated
in S1 LC compared to S2 LCs. -logl0adj.p-values are displayed. C) Gene ontology analysis for the 100
DEGs (T-test) upregulated in steady-state 2 compared to steady-state 1 LCs. -logl0adj.p-values are

displayed. D) Violin plots displaying the expression of classic DC activation markers (MHC I, MHC II, co-
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5.2.7 The foreskin microenvironment increases the expression of tolerogenic gene

signature 1in LCs

For comparison with breast LCs, the two tolerogenic signatures were inspected amongst the steady-
state and migrated foreskin LC populations(Figure 40A). 19 genes from signature 1 and 110 genes
from signature 2, were identified amongst the whole single cell transcriptome. 2 genes were
common to both signatures 1 and 2 (VEGFA, CD86). Similar to breast LCs, GSVA analysis revealed
that signature 1 was enriched in migrated LCs (logFC=0.19, adj.p-value=3.9E-12). However,
signature 2 was more enriched in steady-state foreskin LC. (logFC=0.1, adj.p-value=2.3E-10) (Figure
40B). The genes within each signature were observed in both populations using trackplots (Figure
40C&D). The presence of signature 1 genes amongst the top 100 migrated LC DEGs was
investigated, revealing CD86 and IDO1 to be amongst the list. ALDH2 from signature 2 was also
present in the top 100 migrated LC DEGs. In steady-state LCs signature 2 genes, CD83, CDC42EP3,
IFRD1, MCL1, NAMPT, NFKBIA, NINJ1, RGS2 and ZFP36 were found amongst the steady-state LC top
100 DEG list (Figure 40E&F).
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Figure 40. Steady-state and Migrated foreskin LCs display differential expression of tolerance associated
genes. A) Venn diagram displaying the number of genes from tolerogenic gene signature 1 (curated from
papers reviewing molecular mechanism of DC tolerance induction, Appendix 1 A.1) and tolerogenic genes
signature 2 (identified in Chapter 4, (Figure 20A&C, Appendix 1 A.2) that were identified in the whole single
cell transcriptomes of foreskin skin derived LCs. B) GSVA displaying enrichment of the two tolerogenic
signatures in foreskin LC populations. BH adjusted p-values and logFC are displayed. C) Trackplot displaying
the expression of genes from tolerogenic gene signature 1. D) Trackplots displaying the expression of genes
from tolerogenic gene signature 2. E) Violin plots and UMAP marker plots displaying the expression of the
9 genes from tolerogenic genes signatures 1 which were in the top 100 DEGs upregulated in steady-state
foreskin LCs. F) Violin plots and UMAP marker plots displaying the expression of the 3 genes from

tolerogenic genes signatures 1 and 2 which were in the top 100 DEGs upregulated in migrated foreskin LCs.
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5.2.8 Foreskin LCs display differential regulon enhancement compares to breast skin LCs

SCENIC regulatory network and inference was performed and revealed that the regulons enriched
highly differed between the two foreskin LC populations (Figure 41A). Common TF regulons
identified in both steady-state breast skin and foreskin LCs included MYC, ETS2, FOSL2 and SPI1.
Common TFs identified in both migrated breast skin and foreskin LCs included IRF4, ETS1, KLF13,
SREBF2, CTCF and REST. However, unique regulons in foreskin steady-state LCs (FOSB, JUN, HIF1A)
and migrated foreskin LCs (IRF2, RUNX3) could be identified. Overall, the diverse transcriptomes
observed between steady-state and migrated foreskin LC were therefore underlined by unique TF

networks - similar to what was observed in breast skin LCs.

To ascertain the most highly influential TFs that could be inducing tolerogenic genomic
programming, the expression level of TFs themselves and their regulon enrichment score was
interrogated. TFs with both highly differential expression levels and with high regulon enrichment
scores in each population were identified. For steady-state LC, this included BHLHE40, ETS2, FOSB,
JUN and MYC TFs (Figure 41B). For migrated LC, this included CREM, IRF2, IRF4, KLF13, REST and
SREBF2 (Figure 41C).

In order to trace whether the tolerogenic upregulated in steady-state (CD83, CDC42EP3, IFRD1,
MCL1, NAMPT, NFKBIA, NINJ1, RGS2 and ZFP36) and migratory (ALDH2, CD86 and IDO1) foreskin
LC could be under the control of the upregulated TFs in each state, their presence within the
regulons of the TFs was inspected (Figure 41D&E). Here, tolerogenic genes could be found in all the
enriched regulons of steady-state LCs and in the regulons of IRF2 and IRF4 in migrated LC. The
SCENIC co-expression scores from the tolerogenic genes within each TF regulon were analysed to
apprehend the level of co-regulation (Figure 41F&G). Highly co-expressed TFs and genes for steady-
state LCs included BHL3HE40-CD83/NFKBIA/ZFP36, FOSB-IFRD1/MCL1/NFKBIA and JUN-
MCL1/NAMPT. Highly co-expressed TFs and genes for migrated LCs included CREM-ALDH2/IDO1,
IRF2-IDO1 and IRF4-IDO.
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Figure 41. The tolerogenic gene expression programme in migrated LCs is underlined by a unique TF
network. A) SCENIC regulatory network and inference clustering analysis revealed TF regulons which
were enriched in steady-state and migrated foreskin LCs. Z-scores for enriched regulons are displayed. B)
Violin plots displaying gene expression of foreskin steady-state LC enriched TFs with accompanying UMAP
marker plots displaying TF regulon enrichment Z-scores across the two LC populations. C) Violin plots
displaying gene expression of foreskin migrated LC enriched TFs with accompanying UMAP marker plots
displaying TF regulon enrichment Z-scores, across the two LC populations. D) Binary heatmap displaying
the presence of the 9 tolerogenic associated genes, identified in the top 100 steady-state LC DEGs, in the
regulons enriched in steady-state LCs. E) Binary heatmap displaying the presence of the 3 tolerogenic
associated genes, identified in the top 100 migrated LC DEGS, in the regulons enriched in migrated LCs.
F) Heatmap displaying the SCENIC correlation Z-scores for each of the 9 tolerogenic associated genes in
foreskin steady-state LCs, with the TFs from the steady-state LC enriched regulons. G) Heatmap displaying
the SCENIC correlation Z-scores for each of the 3 tolerogenic associated genes in foreskin migrated LCs,

with the TFs from the migrated LC enriched regulons. Crosses indicate absent correlation scores.
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5.2.9 Constellation Drop-seq validates LC transcriptomic programmes and enhances

investigations into LCs in the context of whole epidermis

Drop-seq scRNA-seq analysis of LC is limited to the acquisition of sufficient skin tissue for LC
extraction and for effective purification of LC from whole epidermal tissue. Alternatively, without
purification, LCs could be sequenced and analysed in the context of whole epidermal tissue.
However, low frequency of LCs in the epidermis limits the level of meaningful data which could be
analysed without the need to process hundreds of thousands of cells. To counter this problem and
to investigate LCs in situ in the epidermis and without any manipulation that occurs during normal
extraction procedures via FACS, whole epidermis samples were processed using our own developed
targeted Drop-seq protocol (Constellation Drop-seq) (Vallejo et al., 2019). Using Constellation Drop-
seq, genes of interest are specifically targeted for using a panel of designed primers, allowing
investigation into transcripts of interest amongst cell populations. The regular Drop-seq protocol
was also performed on whole epidermis tissue for direct comparison. After encapsulation and post-
processing, cDNA library concentrations for both the regular Drop-seq and Constellation Drop-seq
experiments were analysed to ensure sufficient cDNA concentrations and quality (Figure 42A).
Clearly observable was the more ‘spiked’ quality of the cDNA library in Constellation Drop-seq,
showing the preferentially expansion of transcripts from targets of interest. Libraries were

subsequently processed through tagmentation before sequencing (Figure 42B).
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Figure 42. cDNA libraries of whole epidermis were prepared for sequencing. A) cDNA libraries for whole

epidermis processed using regular Drop-seq and Constellation drop-seq were quantified using a DNA

high sensitivity kit, run on an Agilent Bioanalyser. Epidermis = 234 pg/ul and Epidermis Constellation =

165 pg/pl. B) 600 pg of cDNA library was tagmented with libraries quantified using a DNA high sensitivity

kit, run on an Agilent Bioanalyser. Libraries were pooled at 2 nM ready for sequencing. Epidermis = 7.7

nM and Epidermis Constellation = 4.8 nM. Upper (10380bp) and lower (35bp) marker DNA was included

for reference. Vertical dotted lines depict area in which cDNA library concentrations were quantified.

Using the regular Drop-seq protocol, 100 STAMPs from steady-state digested primary human

epidermis were processed through to sequencing. The cellular composition was analysed to

investigate whether LCs could be detected in the context of the whole epidermal population. Prior

to analysis the data frame was filtered, resulting in expression data for 2212 genes and 80 cells.

UMAP dimensionality reduction analysis on the scran normalised data revealed one overall cluster

(Figure 43). Inspecting the population for CD207 expression revealed just 5 cells (6.25%) expressed

some level of expression, although expression level was variable. MLANA, a marker of melanocytes

was observed in 7 cells (8.75%). Keratinocyte markers KRT10 (74 cells, 92.5%), KRT1 (65 cells,

81.25%), KRT5 (17 cells, 21.25%) and KRT14 (12 cells, 15%) were detected in the majority of cells.

Using standard Drop-seq on whole epidermal different cell types of the epidermis could be

distinguished. However, as expected LCs were observed at low frequencies amongst the whole

population.
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Figure 43. Drop-seq of whole epidermal tissue with limited cell numbers cannot distinguish clear
subpopulations of LC. UMAP dimensionality reduction analysis displaying marker genes for LC

(CD207), melanocytes (MLANA) and keratinocytes (KRT10, KRT1, KRT5 and KRT14).

In order to investigate the LC population in greater numbers, whilst still in the context of whole
epidermis, our targeted Constellation Drop-seq approach was implemented. In this approach gene
expression of LC markers and genes corresponding to their state of activation (inflammatory and
tolerogenic), as well as PBMC population markers, were amplified using 55 gene specific primers
(Table 8) incorporated into the cDNA library preparation protocol. Using this method, sequencing
data from 1000 STAMPS were sequenced whilst still using the same capacity and space on an
Illumina Next-seq run as 100 STAMPs processed in the regular Drop-seq protocol, due to the
restriction of sequencing depth to a limited number of transcripts. After filtering 286 cells with
expression for 376 genes remained for analysis. The 714 cells removed after filtering from the initial
1000 STAMPs processed likely included KCs. No KC marker genes were included in the primer panel
and so whilst they will have been encapsulated during the Drop-seq procedure, KC specific

transcripts will not have been detected and therefore will have been removed after filtering.

From initial UMAP dimensionality reduction analysis and clustering (leiden r=0.5), 4 populations
(labelled 1-4) could be identified (Figure 44A). Investigating the marker genes for each population

revealed that cluster 1 (140 cells) and 2 (108 cells) contained high to low expression of CD207, CD1A
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and HLA-DRBS. Interestingly cluster 3 (21 cells) was marked by high expression of LYZ, a marker of
monocytes and cluster 4 (17 cells) displayed high expression of GZMB and CCL5, markers of CD8+ T
cells(Figure 44B). Through a targeted Constellation Drop-seq approach, using the same sequencing
space as 100 standard Drop-seq STAMPs, populations of LCs in greater numbers could be identified,

as well as monocytes and CD8+ T cells populations which were not detected at all in regular Drop-

seq.
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Figure 44. Constellation Drop-seq allows identification of large populations of LCs amongst
whole epidermal tissue. A) UMAP dimensionality reduction analysis and leiden clustering (r=0.5)
identified 4 distinct populations (labelled 1-4). B) Populations could be identified as LCs (1,2)
displaying low-high expression of LC markers (CD207, CD1A, HLA-DRB1), as well as monocytes (3,
LYZ) and T cells (4, GZMB, CCL5).
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Having identified LCs were present in the dataset, analysis was performed on the LC population
only, through sub-setting the data to cells filtered by CD207 expression (Scran normalised
CD207>0). Clustering (leiden=0.4) of the LC population identified 3 distinct clusters (labelled 1-3)
which displayed unique genes expression (Figure 45A). Marker genes for each population were
investigated, but cluster 3 displayed no unique markers genes compared to the other two
populations. Cluster 2 marker genes included CD1A, LIMS1, HLA-DRB1, FCERIA and NFKB1 and
cluster 1 markers genes included NFKBIA, NFBKIZ, TNFAIP3, HLA-DQA2 and UBB. Interestingly, the
expression of NFkB (NFKB1) and its inhibitors (NFKBIA, NFKBIZ and TNFAIP) therefore appeared to
be differentially regulated (Figure 45B). Constellation Drop-seq therefore confirmed heterogeneity

in the steady-state LC populations, especially in the context of NFkB regulation.

To assess the comparability between unsorted steady-state LCs in Constellation Drop-seq to FACS
sorted steady-state LCs in regular Drop-seq, the expression level of genes within the Constellation
Drop-seq primer panel were compared across both datasets. Heatmap plots showed comparable
levels of expression of most panel genes, including high expression of CD74, NFKBIA, CCL22, HLA-
DBRB1 and HLA-DQA1, as well as absent/low expression of IRF4, IDO1 (not detected in Constellation
Drop-seq), IRF1, CD40 and CCL5 (Figure 45C). Overall, this suggests that changes induced during the
FACS purification process of LCs in regular Drop-seq are minimal and that Constellation Drop-seq

results were in line with previous observations of steady-state LCs.
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Figure 45. Constellation Drop-seq reveals heterogeneity in the regulation of NFkB activation in LCs

and reveals comparability in gene expression to steady-state LCs processed through regular Drop-

seq. A) UMAP dimensionality reduction analysis and leiden clustering (r=0.5) of the LCs (CD207+)

identified through constellation Drop-seq revealed 3 distinct populations. B) Heatmap displaying
marker genes (Logistic regression) for clusters 1 and 2. White dashed box highlights the heterogeneity
between NFKB1, which was highly expressed in cluster 2 LC and NFkB inhibitors (NFKBIA, NFKBIZ,

TNFAIP3), which were upregulated in cluster 1 LC. C) Heatmaps displaying the comparable levels of

expression between steady-state LCs identified using the Constellation Drop-seq protocol on digested

whole epidermis (Top), compared to steady-state LCs processed through regular Drop-seq after FACS

purification (Bottom). Values in both datasets were both scaled between 0-2 for direct comparison.
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53 Discussion

Utilising the scRNA-seq method Drop-seq has allowed in depth analysis into LC heterogeneity in
both steady-state and migrated LC populations. Steady-state LCs and migrated LCs have been
shown to be phenotypically distinct and to display differences in capacity to induce immune
responses (Sirvent et al., 2020). However, until now, the level of transcriptomic heterogeneity in LC
populations extracted in the steady-state or through migration at the single cell level was
unexplored. Thus, we have revealed the unique gene expression exhibited by steady-state and
migrated LCs and highlighted the distinct expression of tolerogenic associated genes across the two

states.

5.3.1 Optimisation of Drop-seq allowed effective investigations into LC heterogeneity

In order to investigate high quality single cell transcriptomic data using Drop-seq, we first ensured
that the protocol was fully optimised and that tissue of high quality was used. Successful single cell
and bead encapsulation events are heavily reliant on ensuring that cell and microparticle bead
suspensions are at the correct concentrations and run through the Drop-seq device at a constant
flow rate. Utilising THP-1 cell lines, optimal pump speeds, buffer (+/- optiprep) and cell
concentrations were optimised prior to the use of cells derived from primary tissue. Post-
encapsulation, the amplification of cDNA libraries during sample preparation for sequencing was
also optimised. Multiple PCR cycling parameters were first utilised, to identify a minimum number
of PCR cycles required to produce sufficient cDNA, whilst reducing the overamplification of high
abundance transcripts. PCR cycling parameters have been shown to be highly variable between cell
types, therefore highlighting the importance of initial cycling parameter testing (Macosko et al.,

2015).

Similar to the experimental Drop-seq procedure, the bioinformatic analysis pipeline of single cell
data also required optimisation. An important first step during bioinformatic analysis of the single
cell transcriptomic data is the filtering of low-quality cells and lowly expressed genes, to increase
the likelihood for identifying meaningful biological discoveries amongst the cell populations
(Luecken and Theis, 2019). One of the challenges with Drop-seq is the presence of contaminating
mRNA which can become encapsulated into droplets and occlude true cell information. To counter
this, the EmptyDrop bioinformatic analysis package was included in the analysis pipeline to filter
out empty droplets and identify ‘ambient’ genes, which represent contamination across the single
cells captured (Lun et al., 2019). Furthermore, the process of extracting single cell suspensions and
processing them through Drop-seq can put the cells processed under stress and lead to the

induction of apoptosis, in which mitochondrial genes are upregulated (AlJanahi, Danielsen and
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Dunbar, 2018). Cells displaying an elevated abundance (>20% mitochondrial fraction of whole

transcriptome) of mitochondrial genes were therefore removed.

5.3.2 Steady-state and Migrated LCs are distinct with migrated LCs displaying upregulated

expression of immunocompetency genes and tolerogenic programmes

We first analysed the transcriptomic profiles of steady-state and migrated LCs extracted from
human breast skin tissue. Strikingly, UMAP plotting of steady-state and migrated LC transcriptomes
revealed significant differences between the different states. Investigations into the genes
differentially regulated between each state revealed migrated LC transcriptomes contained
elevated expression of genes associated with immunocompetency and immune activation. This
observation is consistent with in vitro studies demonstrating migrated LCs increased activation
status and an enhanced ability to mediate immunogenic CD4 and CD8 T cell responses, as well as
the low level of co-stimulatory protein expression on steady-state LCs (Sirvent et al., 2020)(Polak et
al., 2012)(Polak et al., 2014)(Klechevsky et al., 2008). Additionally, consistent with previous
analysis of migrated LCs, we observed that the increase in immunocompetency markers correlated
with increased expression of IRF4, which orchestrates genomic programming of LC activation

(Sirvent et al., 2020)(Polak et al., 2017).

Using single cell transcriptomic analysis, we aimed to explore unique subpopulations of LCs which
could be responsible for the induction of immune tolerance. However, our analysis revealed that
few subpopulations promoting unique biological pathways were identified, with steady-state LCs
consisting of just two subpopulations defined by immunocompetency and migrated LCs consisting
of just one population. Comparative analysis of steady-state and migrated LC single cell
transcriptomes was therefore performed to identify whether changes in state reflected different
tolerogenic gene programming. To investigate this, two panels of tolerogenic associated genes
were utilised. One compiled from literature reviews of DC tolerogenic function and the other from
our tolerogenic profile identified as common between LCs and tolerogenic associated DCs explored
in transcriptomic analysis from Chapter 4. Our analysis therefore combined ‘known’ and ‘novel’
signatures of DC tolerance for robust analysis into tolerogenic genes expression. Our previous
transcriptomic analysis of microarray data investigating LC tolerogenic signatures revealed that in
comparison to other DC types, both steady-state and migrated LCs were similarly defined by low
expression of inflammatory immune associated genes. Interestingly, despite evidence of steady-
state LC coordinating the activation of epidermal Tregs to mediate immune tolerance and
homeostasis (Seneschal et al., 2012), GSVA analysis of our two defined tolerogenic signatures were
both revealed to be enriched in migrated LC. The most highly expressed tolerogenic genes identified

in migrated LC included /IDO1, HMOX1, LGALS1, RELB, ALDH2 and S100A9.
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IDO1 is a classical tolerogenic mediator, which catabolises tryptophan resulting in skewing of T cell
differentiation towards Tregs (Curti et al., 2009). Identified as an interferon stimulated gene (ISG),
IDO1 has been previously associated with DC activation by IFNs and TNF-a and has been implicated
ina number of regulatory feedback loops in cross-talk with other cell types —e.g. activation of CTLA4
receptors on T cells in turn induces IDO1 expression in DCs (Obregon et al., 2017)(Mellor, Lemos
and Huang, 2017)(Braun, Longman and Albert, 2005). Two studies involving human LCs previously
demonstrated induction of IDO1 in steady-state LCs and demonstrated its importance for inhibition
of effector T cell proliferation (von Bubnoff et al., 2004)(Koch et al., 2017). The identification of
IDO1 augmentation in migrated LCs, similarly reflected our observations during comparison to
CD14+ and CD141+ DDCs explored in Chapter 4 using microarray data. Galectin-1 encoded by the
LGALS1 gene has been shown to promote the generation of tolerogenic DCs and to enable Trl type
Tregs to supress Thl- and Th17-mediated inflammation (Sundblad et al., 2017)(Martinez Allo et al.,
2020). HMOX1 encodes an enzyme which degrades haem to produce carbon monoxide and is
implicated in the suppression of immune activation through Treg induction and the inhibition of T
cell proliferation (Riquelme et al., 2016)(Domogalla et al., 2017). ALDH2 activity induces tolerance
through induction of retinoic acid, which promotes Treg induction (Bazewicz et al., 2019).
Intriguingly, whilst SI0O0A9 was included in the list of tolerogenic genes and can be implicated in
the induction of self-tolerance, it is more commonly associated with pro-inflammatory conditions,
promoting the recruitment of immune cells and cytokine production and as such, is widely used as
a biomarker for inflammatory disorders, such as inflammatory bowel disease (Wang et al., 2018).
Interestingly, RELB, the main TF subunit of the non-canonical NFkB pathway was in the curated
tolerogenic signature and highly upregulated in migrated LC. Importantly, our observation of absent
RELB expression in steady-state is consistent with previous studies (Clark et al., 1999). IDO
upregulation in DCs, as a results of CD40 ligation, is dependent of the activation of the non-
canonical NFkB pathway (Tas et al., 2007). Additionally, the non-canonical NFkB pathway in pDCs
is fundamental for IDO1 induction and the induction of Tregs (Manches et al., 2012). Further
supporting the importance of non-canonical NFkB pathway activation was the presence of
MAP3K14 (NIK), which is a critical inducer of RELB activation and is restricted specifically to the non-

canonical NFkB pathway (Sun, 2017), within the top upregulated DEGs in migrated LCs.

The population structure of steady-state LCs revealed the presence of two distinct populations
within unstimulated epidermis, differentiated by state of immunocompetency. Here, we revealed
the heterogeneity to be driven by the overall frequency of transcript expression, with S1 LCs
displaying just 2 upregulated genes in comparison to S2. The strikingly different gene expression
observed in the S2 cluster reflected an increased state of immunocompetency, with upregulated

genes enriched for antigen processing and presentation, T cell receptor signalling, and induction of
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immune response pathways. Consistent with these observations, all classic DC activation markers
such as MHC I, MHC Il and co-stimulatory molecules, as well as CD207, were upregulated in S2 LCs.
In the steady-state, LCs therefore appeared to be present in a spectrum of activation from
immaturity (steady-state 1) to immunocompetency (steady-state2). With consideration to current
paradigms, which suggest state of DC immune activation and maturation reflect ability to promote
tolerogenic immune response (Steinman, Hawiger and Nussenzweig, 2003), it would be interesting
to investigate how the two steady-state populations differ in their ability to mediate tolerogenic

responses.

In summary, scRNA-seq analysis has revealed the diverse genes expression exhibited by LCs at the
steady-state and after migration. Critically, this included heterogeneous expression of
immunocompetency markers in breast skin steady-state LCs and a marked induction of gene
associated with immune effector process in migrated LCs. Differences in genes expression between
steady-state and migrated LC were revealed to be governed by the regulation of unique TF
networks that could be linked to the induction of tolerogenic genes. In our search to reveal genes
linked with tolerance regulation by LCs, we consistently observed a dramatic increase of /DO1
expression in migrated LC from both breast skin and foreskin. IDO1 induction therefore appears to
be a hallmark of migrated LC gene expression and could be a critical mechanism by which LCs
regulate tolerogenic immunity. Our results highlight features of LC gene expression that would be
interesting to investigate phenotypically in vitro. Foremost, how the state of immunocompetency
and activation of LCs influences ability to induce tolerogenic responses. Secondly, to discern the

influence of tolerance associated genes, such as IDO1, for functional LC tolerogenic responses.

5.3.3 Steady-state and migrated LC display remarkable differences in TF programming

Regulatory network and inference analysis using SCENIC revealed the vast differences in TF
regulation in steady-state and migrated LCs. We expected the different regulons may reveal how
the gene expression of tolerogenic associated genes is orchestrated. Migrated LC from both breast
skin and foreskin were marked by the upregulation of the IRF4 regulon, which was expected due to
the association with /RF4 and genomic programming of LC immune activation (Polak et al.,
2017)(Sirvent et al., 2020). IRF4 has also been linked with the restriction of inflammatory cytokine
responsive genes and consistent with our finding that /RF4 highly correlated with LGALS1
expression in SCENIC analysis, is the observation that CRISPR knockouts of /RF4 in human LC, leads
to LGALS1 downregulation (Sirvent et al., 2020). IRF4 expression by bone marrow derived DCs in
the context of the steady-state is also fundamental for the regulation of tolerance, with bone
marrow derived DCs from IRF4 knockout mice displaying diminished ability to induce Tregs and

display increased expression of inflammatory cytokines (TNFa, IL-12) (Vander Lugt, Riddell, Aly A.
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Khan, et al., 2017). IRF4 may therefore have a dual role in both LC maturation/immunocompetency
and tolerance regulation. Regulons upregulated in migrated LCs also included NFxB TFs, RELA and
RELB. In the steady-state, canonical NFkB activation involving RELA, governs the regulation of
tolerance and the prevention of spontaneous autoimmunity (Baratin et al., 2015) and as discussed
above, RELB and the non-canonical NFkB pathway in DCs is implicated in the induction of IDO and
T cell tolerance induction (Tas et al., 2007)(Manches et al., 2012). However, whilst the correlation
of RELB and IDO1 was identified, IDO1 was not identified in the regulon of RELB. Positive regulation
of IDO1 expression by RELB may therefore be through an intermediate TF. Interestingly, in T cells,
a positive regulatory interaction between RELB and IRF4 has been identified (Boddicker et al.,
2015). Furthermore, binding of RELB to IRF4 promoters has been identified in DC, suggesting a
regulatory interaction (Lehtonen et al., 2005). KLF6, which correlated with all of the tolerogenic
genes has previously been shown to be upregulated in migratory DCs, correlating with the increased
expression of tolerance associated genes (Vander Lugt, Riddell, Aly A. Khan, et al., 2017).
Additionally, regulons for components of the ETS TF family (ELK1) and AP-1 TF family (JUND), which
have also been implicated in LC genomic programming during activation, were also upregulated in
migrated LC (Polak et al., 2017). Potential interactions with IRF4 at AP-1-IRF composite elements
(AICE) and Ets-IRF composite elements (EICE), may have implications on the induction of tolerogenic

genes (Vander Lugt, Riddell, Aly A. Khan, et al., 2017).

5.3.4 The foreskin microenvironment leads to significant changes in LC transcriptomic

programming

It has previously been shown that cells of the same type, isolated from skin at different body sites,
display significant heterogeneity. Single cell RNA-seq for example, has revealed heterogeneity
between human trunk, scalp and neonatal foreskin epidermal keratinocyte populations, with
neonatal KCs containing a unique subpopulation expressing ligands for epidermal growth factor
receptor (EGFR), which induce KC proliferation (Cheng et al., 2018). Transcriptomic differences
between fibroblast from different body sites has also been identified (Rinn et al., 2006). LCs from
the oral mucosa are also known to display lower levels of CD4 expression as compared to LCs from
the vaginal epithelium and foreskin, influencing their capacity for HIV infection (Hussain, Lehner
and Thomas, 1995). LCs from the oral mucosa also display more spherical morphologies as
compared to LCs from the penis and conjunctiva epithelium, which may reflect more inactive status
(Omine et al., 2015). Furthermore, heterogeneity in skin due to ethnicity has also been explored,
with reconstructed epidermal models from Caucasian and African keratinocytes and fibroblasts,
displaying unique histology and transcriptomes (Girardeau-Hubert et al., 2019). In depth single cell

transcriptomic analysis comparing LCs derived from breast/trunk skin tissue and foreskin LCs has
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until now been unexplored. Interestingly, despite differences in sex, ethnicity, and body site, adult
foreskin and breast skin epidermal steady-state and migrated LCs appeared largely analogous. Here,
steady-state LCs from both sites could be divided into two populations, whilst migrated LC consisted

of one distinct cluster.

In comparison to steady-state LC from each respective tissue, both breast derived and foreskin
migrated LCs displayed elevated expression of gene associated with immune effector processes and
activation in comparison to LCs at the steady-state. Also, consistent between migrated LCs from
both sites was the upregulation of tolerogenic associated /DO1 and ALDH?2 expression, suggesting
overlapping mechanisms of tolerance regulation. Common upregulated TFs and regulons were also
identified, including IRF4 and ELK1. However, DEG analysis directly comparing migrated LCs from
each tissue compartment revealed diverse gene expression. Whilst common associated pathways
such as response to cytokine and the immune effector process could be identified, a unique

association of foreskin migrated LCs with the inflammatory response was identified.

The comparison between steady-state LCs from each site identified heterogeneity in gene
expression. We also observed enrichment for tolerogenic gene signature 2 in steady state foreskin
LCs, revealing differences in tolerogenic programming between steady-state LC from the two sites.
In our regulatory network and inference analysis common steady-state LC TFs were identified
including MYC, ETS2, FOSL2 and SPI1. The expression pattern of MYC was consistent with
microarray analysis of steady-state and migrated LC (Chapter 4) in which high MYC expression was
observed in steady-state LC, with low expression in migrated LC. Similar to observations in migrated
LCs, comparison between steady-state LCs from each site revealed marked differences in gene
expression. Whilst breast derived steady-state LC were enriched for genes associated with
metabolism, steady-state foreskin LC were enriched for genes associated with immune activation
and effector processes, as well as cytokine production. Thus, foreskin LCs were consistently
associated with increased expression of inflammatory pathway. Studies comparing blood T cells
and foreskin T cells have revealed the elevated cytokine production in foreskin CD4+ (IL-17 and IL-
22) and CD8+ (TNFa and IFNYy) populations, with foreskin CD4+ T cells displaying a predominant
effector memory phenotype (Prodger et al., 2012). The inner foreskin has also been shown to
display a pro-inflammatory environment marked by increased expression of IFNy, RANTES, GM-CSF
and IP-10 (Lemos et al., 2014). The foreskin has also been shown to accommodate greater
microbiota diversity compared to post-circumcision, especially species of anaerobic bacteria, which
likely have implications on the inflammatory environment (Price et al., 2010)(Esra et al., 2016). The
foreskin therefore appears to be a pro-inflammatory site, which may explain the differences in
inflammatory programming observed between breast skin and foreskin LC. Consistent with the idea

that the foreskin may represent a more inflamed tissue were the differences in gene expression
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profiles exhibited by steady-state subpopulations from each skin tissue. Whilst two distinct
populations could be observed in steady-state LCs from both sites, foreskin LC populations
appeared more distinct, instead of simply being differentiated by immunocompetency like breast
skin steady-state LC. Foreskin S1 and S2 LCs DEGs were associated with common pathways of
response to cytokine and immune activation, suggesting core enhancement of immune activation

which could be programmed by the more inflammatory foreskin microenvironment.

Whilst differences in inflammatory signalling environments in foreskin tissue could explain some of
the observations, it is also important to consider that differences in sex, ethnicity and age could
also be influencing the results. Here, in our analyses we compared breast skin derived LC from a
Caucasian female to foreskin derived LCs from black males. Interestingly, in murine studies, gender
biasis have been observed in the expression of /IRF5 in total splenic cells and pDC from females
(Shen et al., 2010)(Griesbeck et al., 2015). Phenotypic differences have also identified during
comparison of fibroblast cultures from African and Caucasian skin (Girardeau et al., 2009). Here,
increased keratinocyte growth factor (KGF) and matrix metalloprotease 1 (MMP1) expression is
observed in the former. The exact contribution of sex and ethnicity on LC biology are currently
unexplored and we therefore cannot discard their potential influence on our observations. Also
unadjusted for in our analysis was the age of the donors. Defective immunity in DCs from aged-
patients is explored, with aged DCs displaying overall increased activation status and increased pro-
inflammatory cytokine production, which leads to increased susceptibility of autoimmunity
(Agrawal et al., 2012). Interestingly, bullous pemphigoid, an autoimmune skin condition in which
tolerance to Dsgl and Dsg3 is lost, increases in prevalence with age, suggesting that LC tolerogenic

responses may decline over time (Hammers and Stanley, 2016).

5.3.5 Constellation Drop-seq validates LC transcriptomic programmes and enhances

investigations into LCs in the context of whole epidermis

The low frequency of LCs amongst the epidermal population limits large scale investigation into LC
transcriptomics. The purification of LCs from the epidermis through FACS before Drop-seq could
also induce changes to LC transcriptomes, impeding our ability to investigate true LC biology. To
bypass this problem and in order to analyse large numbers of LCs in the context of the whole
epidermis, we developed a targeted Drop-seq approach, called Constellation Drop-seq. We
designed a panel of primers targeting genes of interest, including markers of PBMC populations,
markers of LC activation and transcription factors important for LC immune function. Using
Constellation Drop-seq we restricted the sequencing potential to a small selection of genes,
therefore maximising the number of cells we could sequence by 10-fold for the same read-depth

utilisation. Using Constellation Drop-seq we were able to produce single cell sequencing data for a
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significantly large number of LCs, in the context of the whole epidermal tissue. This revealed that
observations in steady-state LC purified by FACS and processed through normal Drop-seq, such as
absent IRF4 and IDO1 expression, were true to the steady-state LC epidermal population and not
an artefact of the purification process. However, this still does not negate the potential for the
enzymatic digestion process to alter steady-state LC gene expression. As we demonstrated ability
to identify additional cell populations within the epidermis, such as CD8 T cells (GZMB) and
monocytes (LYZ), also provided additional information as to the state of inflammation in the tissue,
whilst also highlighting the increased power for cell subset specific investigations using

Constellation Drop-seq instead of regular Drop-seq.

Using Constellation Drop-seq we were also able to identify heterogeneity in gene expression not
previously identified using regular Drop-seq, such as divergent expression of canonical NFkB
(NFKB1) and NFkB inhibitors (NFKBIA, NFKBIZ and TNFAIP3). NFkB is a widespread mediator
indispensable for immune cell function, survival and differentiation (Grumont and Gerondakis,
2000). Its activity has also been associated with augmented DC inflammatory responses (Hayden,
West and Ghosh, 2006)(Hayden and Ghosh, 2011) as well as tolerance (Baratin et al., 2015). As
discussed above, elevated RELA, a C-terminal transactivation domain component of the canonical
NFxB TF family, was upregulated in migrated LCs derived from breast skin compared to steady-
state LCs. However, during SCENIC regulatory network inference analysis its expression lowly
correlated with genes within the tolerogenic programme. In migrated LCs, canonical NFkB may
therefore have a predominant role in general immunocompetency programming or additionally,
could even influence LCs immunogenic capacity. Therefore, steady-state LCs with elevated
canonical NFkB expression and decreased NFkB inhibitor expression may be in a state conditioned
for immunocompetent programming, whilst those with the opposite expression may favour
immunosuppression. To mediate its extensive regulation of the immune system NFkB can induce
the activation of other TFs. Interestingly, NFxB heterodimer binding to the IRF4 promoter has been
demonstrated (Shaffer et al., 2009) (Boddicker et al., 2015). Upstream activation of NFxB to induce
IRF4 expression therefore appears a plausible pathway to induce LC activation and migration.
Interestingly, IRF4 has been demonstrated to inhibit NFxB expression in CRISP-Cas9 IRF4 knockouts
in human LCs, suggesting feedback interactions are important for LC regulation, with both TFs

tightly interlinked (Sirvent et al., 2020).
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Chapter 6 In vitro investigations into the
determinants of LC mediated tolerogenic

responses

6.1 Introduction

Our single cell transcriptomic analysis of steady-state and migrated LCs identified profound
differences in the state of activation, consistent with phenotypic analysis of cell surface markers
(Chapter 5)(Davies et al., 2019)(Sirvent et al., 2020) and identified 3 distinct populations of LCs:
steady-state S1, steady-state S2 and migratory LCs. The analyses revealed that steady-state LCs
exist in a spectrum of immune activation from immaturity to immunocompetency, placing cells in
a trajectory from inactive/immature cells to full maturity. Interestingly, the increase in
immunocompetent programming of migrated LC was coupled with the expression of a tolerogenic
gene module, suggesting programming of tolerogenic function in migrated mature LCs. We
therefore sought to understand whether the expression of tolerogenic genes exhibited by steady-
state and migrated LC, translates into their functional capacity to induce tolerogenic T cell

responses.

The relation between maturation and tolerance has been previously discussed in the context of
other DC populations, with many studies implying DC maturation as regulatory for tolerance.
Maturation of DCs is a central process in DC immunity that switches the antigen capturing
phenotype of immature DC into a highly mature phenotype, in which DC are primed for T
interaction, through elevated expression of MHC and costimulatory molecules (Mellman and
Steinman, 2001)(Audiger et al., 2017). In contrast, immature DCs, marked by low expression of
maturation markers, have been shown to induce T cell anergy or Treg differentiation (Steinman et
al., 2000)(Banchereau and Steinman, 1998)(Steinman, Hawiger and Nussenzweig, 2003)(Lutz and
Schuler, 2002)(Audiger et al., 2017)(Fucikova et al., 2019). Steady-state immature DC processing
and presenting self-antigens in the context of low level costimulatory molecules and cytokines can
tolerise the immune system, through defining self from non-self (Mellman and Steinman,
2001)(Steinman et al., 2003). This tolerising process induced by steady-state DC suppresses the
induction of autoimmunity to self-antigen, even when inflammation and infection disrupt
homeostasis. Therefore, the immature S1 steady-state population of LCs, identified by single cell

transcriptomics, are likely key to tolerance induction during uninflamed conditions, with tolerance
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diminishing and immunogenic responses becoming dominant during increased

immunocompetency in S2 steady-state LCs and migratory LCs.

However, mature DCs have also been shown to display plasticity in immune responses, with the
potential to induce tolerogenic T cell responses. Phenotypically mature CD83"€"CCR7+HLA-DR"e"
IL-10DC induced Tregs are much more potent than Tregs that are induced by phenotypically
immature CD83'°“CCR7-HLA-DR¥ [L-10DC (Kryczanowsky et al., 2016). Furthermore, mature
human CD123+ MoDCs expressing IDO, potently inhibit T cell proliferation in vitro (Munn et al.,
2002). Coupled with DC maturation is migration, which we observed in our LC single cell RNA-
sequencing. Interestingly, DCs in non-inflamed conditions migrate to the lymph nodes and can
promote tolerance through cross-presentation tolerization of CD8 T cells (Albert, Jegathesan and
Darnell, 2001). Overall this implies that DC maturation may not be limited to the induction of

immunogenic responses and could suggest a tolerogenic role for immunocompetent migratory LC.

In addition to maturation status, tolerogenic DC potential is mediated by expression and secretion
of specific tolerogenic signals. Functionally tolerogenic DCs have been associated with high levels
of immune inhibitory molecules such as IDO1, galectins, PD-L1 and HLA-G (Obregon et al.,
2017)(Munn et al., 1998)(Péa-Cruz et al., 2010)(Martinez Allo et al., 2020). Furthermore, IDO1+ DCs
preferentially promote FOXP3+ Treg induction over immunogenic CD8+ T cells (Harden et al.,
2011)(Fallarino et al., 2006). Indeed, our Drop-seq analysis revealed marked upregulation of IDO1
expression in migratory LCs, amongst other genes implicated in tolerance. Therefore, we sought to
investigated the importance of IDO1 expression for LC ability to induce Tregs in an in vitro

experimental system.

While steady-state tolerance is key to immune homeostasis, therapeutic interventions often rely
on modulation of inflammation through induction of tolerogenic responses. The
immunomodulatory drug dexamethasone is widely utilised in medicine for its immunosuppressive
capacity. The effects of dexamethasone can be observed at the molecular level. As explored in
Chapter 3, dexamethasone stimulation of MoDC, in conjunction with VitD3, induced the expression
of tolerogenic gene modules. The specific tolerogenic capacity of dexamethasone for modulating
DC function is shown in clinical trials utilising dexamethasone stimulated MoDCs to treat
rheumatoid arthritis and furthermore, the inhibition of anti-tumour CD4+ and CD8+ T cell responses
to melanoma by dexamethasone stimulated MoDCs (Nikolic and Roep, 2013)(Falcén-Beas et al.,
2019). Additionally, dexamethasone stimulation in MoDCs is associated with upregulated /DO1
expression (Garcia-Gonzélez et al., 2019). We therefore explored how dexamethasone stimulation
modulated LC ability to induce Tregs and investigated whether any changes could be the result of

modulation of tolerance associated genes.
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Chapter 6

Hypothesis

LC tolerogenic capacity is determined by the state of immunocompetency and dependent on the

expression of mediators encoded in tolerogenic transcriptional programme.

6.1.2

Aims

Determine the capacity of immature and immunocompetent steady-state LC populations
for inducing Tregs.

Compare the capacity of steady-state LCs and migratory LCs to induce Tregs.

Investigate the functionality of LCs induced Tregs.

Explore how dependent LC tolerogenic responses are on IDO1 expression.

Investigate how LC tolerogenic immune responses can be modulated by tolerogenic

dexamethasone stimuli.
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6.2 Results

6.2.1 Immunocompetency of steady-state LCs is critical for their ability to induce Tregs

As activation status defined LC subpopulations in the steady-state, the expression of classical DC
activation markers and LC markers including CD86, CD83, CD40 and MHC Il (HLA-DRA) was assessed
across LC populations to identify markers which could distinguish immature and immunocompetent
steady-state LC populations (Figure 46). CD40 was lowly detected in all steady-state LCs, whilst high
HLA-DRA expression was detected in LCs from both clusters. CD83 displayed elevated expression in
S2, however its expression spilled over highly into the S1 population. The most distinguishable

marker, CD86 was more frequently expressed in the S2 immunocompetent population only.
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Figure 46. Steady state immunocompetent LC can be distinguished through increased CD86
expression. UMAP visualisation of the 2 breast skin steady-state LC populations, with
accompanying UMAP marker plots displaying the expression of DC activation markers CD86, CD40,
CD83 and HLA-DRA.
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Single cell RNA-seq analysis revealed CD86 to be an effective marker to distinguish
immunocompetent and immature LCs. Thus, CD86 expression at the protein level was analysed
using flow cytometry, using the same gating strategies as shown in Figure 29 to identify steady state
LC populations (Figure 47A). Consistent to RNA expression levels, a spectrum from low to high CD86
expression could be observed in steady-state LC at the protein level. Whilst donor to donor
variation in the spectrum of CD86 expression could be seen, LCs falling into either CD86High or
CD86Low expression could be distinguished in all 3 donors studied. To explore the tolerogenic
potential of both immunocompetent and immature LCs, CD86High and CD86Low steady-state LC
populations were FACS sorted for in vitro analyses. The boundary for gating CD86High and

CD86Low, was based around the central density of cells in the FACS plot in each of the 3 donors.

After FACS isolation of steady-state LC CD86High and CD86Low populations, LCs were co-cultured
with CD4+ naive T cells for 5-days, after which the expansion of CD25+FOXP3+ Tregs was quantified.
High purity of CD4+ naive T cells was ensured using double column filtering during magnetic column
isolation, ensuring sufficient depletion of memory T cell populations. Treg differentiation from pure
naive CD4+ T cells therefore tests the potential of LCs to prime Treg differentiation rather than
expanding existing Tregs. Percentages of Tregs induced after co-culture were identified through
gating of CD3+CD4+CD127-CD25+FOXP3+ T cells (Figure 47B). Interestingly, CD86Low immature LCs
did not increase the number of CD25+FOXP3+ Tregs compared to control (CD4+ naive T cells
cultured alone). In contrast, CD86High immunocompetent LC significantly expanded the number of
CD25+FOXP3+ Tregs compared to both control (p=0.0143) and CD86Low LC (p=0.0129, n=3
independent skin donors), revealing that the state of immunocompetency associates with LC ability

to promote T cell-mediated immune tolerance (Figure 47C).
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Figure 47. Steady state immunocompetent LCs are superior at inducing FOXP3+ Tregs. A) Flow
cytometry analysis of steady-state LCs identified as CD207/CD1a high cells (Left panel). LC populations
were separated into CD1a+ CD86Low and CD86High by FACS (Right panel). Representative example from
n=3 independent LC donors. B) Gating strategy for investigating the quantity of CD3+CD4+CD127-
CD25+FOXP3+ Tregs after co-culture of CD4 naive T cells with LC for 5-days. Representative example
from n=3 independent LC donors C) Co-culture of CD4+ naive T cells with either CD86Low or CD86High
steady-state LCs. Control cultures involved CD4+ naive T cells in the absence of LCs. After 5 days of co-
culture Tregs were quantified by FACS as CD3+CD4+CD127-CD25+FOXP3+ cells. n=3 independent LC

donor paired experiments. *p<0.05.
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6.2.2 Highly immunocompetent migrated LCs are more effective at inducing Tregs than

steady-state LCs

To test the observation that LC immunocompetency enhances tolerance induction, we sought to
investigate the effect of in vitro migration from epidermal sheets on LCs tolerogenic potential.
Following 5 days co-culture with naive CD4+ T cells, both steady-state and migrated LC significantly
expanded the population of CD3+CD4+CD127-CD25+FOXP3+ Tregs compared to control (n=6
independent skin donors, steady-state LCs p=0.0101, migrated LCs p=<0.0001). However, LCs ability
to amplify Tregs was significantly augmented by migration, with increased percentages of
CD25+FOXP3+ Tregs induced compared to steady-state LCs (p=<0.0001, MeanFC=3, Figure 48A).
The increased immunocompetency of migrated LC therefore correlated with increased potential to
prime Tregs from naive CD4+ T cells. Additionally, the efficiency of migrated LC to induce Tregs from
autologous resident memory T cells TRMs isolated from healthy epidermal tissue was assessed in
our lab by Dr Sofia Sirvent (Figure 48B). Co-culture of migrated LCs with TRMs significantly increased
the number of CD25+FOXP3+ Tregs compared to control TRMs cultured alone (n=5 independent
skin donors, p=0.0025, Figure 48C). Furthermore, co-culture of migrated LCs with autologous TRMs
also drove expansion of IL-10 producing CD4+ T cells (n=8 independent skin donors, p=0.0451,
Figure 48D). In the context of autologous cells from skin tissue, immunocompetent migratory LCs
demonstrated their highly tolerogenic potential. Overall these results further demonstrate the link
between increasing LC immunocompetency and increased ability to induce tolerogenic T cell

responses.
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Figure 48. Migration enhances the tolerogenic potential of LCs. A) Flow cytometry analysis of Tregs
induced after co-culture of steady-state and migrated LC with CD4+ naive T cells as in Figure 47C, n=8
control, n=5 steady-state LCs, n=6 migrated LCs from independent donors. B) Gating strategy for
investigating the quantitiy of Tregs induced during 5-day co-culture of autologous TRMs with migrated
LC. Representative figure from C) Flow cytometry assessment of the percentage of Tregs induced after
5-day co-culture of migrated LC with autologous TRMs extracted from human epidermis. 5-day cultures
of TRMs alone were used as control. Tregs were identified as CD3+CD4+CD127-CD25+FOXP3+ cells. n=5
independent LC donors. **p<0.01. D) Percentage of IL-10 producing CD4+ cells after co-culture of TRMs
in the presence or absence of migrated LC. n=8. *p<0.05. Figure 48C&D experiments were performed

by Dr Sofia Sirvent.
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6.2.3 Migrated LCs induce functionally suppressive Tregs

Having established the enhanced capacity of LC to induce Tregs upon migration, driven by
increasing immunocompetency, we next sought to test the functionality of LC induced Tregs and
determine if they are functionally suppressive. After 5-day co-culture of CD4+ naive T cells with
migrated LC, populations of CD3+CD4+CD127-CD25+ expressing Tregs were FACS purified (Figure
49A). Purified Tregs were co-cultured with antiCD3/CD28-stimulated PBMCs at 1:1 and 1:3 ratios
(Treg:PBMC), to test Treg immunosuppressive capacity in the context of proliferative signalling.
Different ratios were tested to assess the potencies of suppression of the purified Tregs. Cultures
of PBMCs unstimulated or with antiCD3/CD28 were used as negative and positive controls. Tregs
expanded with migratory LCs potently inhibited both activated CD4+ and CD8+ T cell proliferation
at both 1:1 and 1:3 ratios Treg:PBMC, with increased quantities of Treg in 1:1 ratio amplifying the
suppressive effect (CD4 1:1 p=0.0088, CD4 1:3 p=0.0277, CD8 1:1 p=0.0007, CD8 1:3 p=0.0111, n=5
from Tregs differentiated by 3 independent LC donors, Figure 49B&C). Overall this highlighted the

highly immunosuppressive capabilities of Tregs that are induced by LCs.
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Figure 49. LC induced Tregs are functionally immunosuppressive. A) Gating strategy for investigating
the inhibition of CD4+ and CD8+ Teff proliferation by Tregs induced in co-culture with migrated LC for 5
days. Proliferation analysis of CD4+ and CD8+ T cells using CFSE labelled PBMCs after 3-day co-culture
with purified CD3+CD4+CD127- CD25+ Tregs. Proliferation analysis of B) CD4+ T cells and C) CD8+ T cells
using CFSE labelled PBMCs after 3-day co-culture with autologous purified CD3+CD4+CD127-CD25+
Tregs. The percentages of proliferating CD4+ cells stimulated with plate bound anti-CD3 and soluble
anti-CD28 are displayed at ratios of 1:1 and 1:3 Treg:PBMC (n=5 from 3 independent LC donors).
*p<0.05, **p<0.01, , ***p<0.001. Normalised to mode expression is displayed, which adjusts for

heterogeneous sample sizes across samples, allowing direct comparison of CFSE diffusion.
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6.2.4 IDO1 expression is required to exhibit full tolerogenic potential of migrated LCs and

can be modulated through tolerogenic dexamethasone stimuli.

Single cell RNA-seq analysis highlighted IDO1 amongst the potential mediators of immunotolerance
inimmunocompetent LCs, as being uniquely induced after migration. The homogenous upregulated
expression of IDO1 in migratory LC compared to steady-state LC indicated the importance of this
molecule for enhanced LC potential to induce Tregs. To test whether the IDO1 transcript was
translated into a protein, IDO1 levels were measured intracellularly in steady-state and migratory
LCs using flow cytometry (Figure 50A&B). Additionally, to assess whether the IDO1 expression level
could be altered by therapeutic interventions, protein levels were measured when LCs were
migrated from epidermal sheets in the media supplemented with Dexamethasone (1uM).
Consistent with the single cell RNA-seq data, the level of IDO1 protein expression was considerably
and significantly higher in migrated LCs compared to steady-state LC (n=5 independent skin donors,
p=0.0002, Figure 50B). Furthermore, IDO1 concentration was significantly higher when LCs were
migrated in the presence of dexamethasone, enhancing the tolerogenic phenotype (Figure 50B,

p=0.0142, n=5 independent skin donors)
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Figure 50. LC expression of IDO1 is enhanced by migration and immunotherapeutic
intervention. A) Gating strategy to define the percentage of IDO1 expression in steady-state LC,
migrated, and dexamethasone migrated LC. n=5 steady-state and migrated LC experiments, n=4
migrated dexamethasone experiments. B) Flow cytometry assessment of the percentage of IDO1
expression in steady-state LC and migrated LCs extracted by 48-hour culture of epidermal sheets
with and without 1M dexamethasone. n=5 steady-state and migrated independent LCs, n=4

migrated dexamethasone independent LCs. *p<0.05, ***p<0.001, ****p<0.0001.

With the increase in IDO1 expression migratory LC validated at the protein level we next explored
the importance of IDO1 signalling for LC tolerogenic function. IDO1 signalling was blocked during
co-culture of migrated LC and naive CD4+ T cells (n=4 paired experiments), using two molecular
compounds NLG-919 and epacadostat (EPAC). NLG-919, an immune checkpoint inhibitor,
significantly impaired LCs ability to expand Tregs (p=0.0354, Figure 51). Interestingly, interference
with IDO1 using EPAC, a selective inhibitor of tryptophan catabolism was less potent and although
a trend for reduced Treg induction could be observed, this was not statistically significant
(p=0.0583, Figure 51). IDO1 expression by LCs therefore appears important for full tolerogenic

potential of LC to prime Tregs.
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Figure 51. Inhibition of IDO1 downregulates LC tolerogenic function. Flow cytometry analysis of
the percentage of Tregs induced after 5-day co-culture of migrated LC with CD4+ naive T cells in
the presence of IDO1 inhibitors NLG-919 (NLG) and epacadostat (EPAC). 5-day cultures of CD4+
naive T cells alone were used as control. Tregs were identified as CD3+CD4+CD127-CD25+FOXP3+

cells. n=4 independent LC donors. *p<0.05.

LCs ability to prime and expand tolerogenic T cells creates an exciting opportunity for therapeutic
interventions. Since steady-state LCs exist in a spectrum of immunocompetence, with a
subpopulation of LCs already poised for tolerance induction, we hypothesised that in situ treatment
can further potentiate their tolerogenic behaviour upon migration. To test this, we treated LCs with
the immunosuppressive drug dexamethasone, during migration from epidermal fragments in cell
culture. Indeed, dexamethasone migrated LCs were significantly more potent in expanding
CD25+FOXP3+ Tregs (n=4 independent skin donors, p=0.0271, Figure 52A) in comparison to their
untreated migrated LC counterparts. Additionally, CD4+ T cells expanded by migratory LCs
stimulated with dexamethasone (n=5 independent skin donors, p=0.0061) produced more IL10
than untreated migrated LC (p=0.028, Figure 52B), consistent with their tolerogenic phenotype. As
shown above, importantly, the presence of dexamethasone during LC migration further increased
the expression of IDO1 protein (n=4 independent skin donors, p=0.0142, Figure 50B), supporting
the importance of IDO1 for LC tolerogenic function. Overall these results demonstrate that the
potential of migratory LC to induce tolerogenic T cell responses could be enhanced by
immunosuppressive dexamethasone signalling and correlated with increased expression of IDO1.
Furthermore, our analyses suggest that LC exposure to immunomodulatory stimuli during LC
migration and prior to the huge shift genomic programming it induces, could be key for

predisposing LC immune responses towards tolerance.
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Figure 52. Inhibition of IDO1 downregulates LC tolerogenic function. A) Flow cytometry assessment

of the percentage of Tregs induced after 5-day co-culture of migrated LC with and without

dexamethasone stimulation, with CD4+ naive T cells. Tregs were identified as CD3+CD4+CD127-

CD25+FOXP3+ cells. n=4 independent LC donors. *p<0.05. B) Flow cytometry analysis of the percentage

of CD4+IL10+ T cells after 5-day co-culture of migrated LC with and without dexamethasone

stimulation, with CD4+ naive T cells. 5-day cultures of CD4+ naive T cells alone were used as control.

n=5 independent LC donors. *p<0.05, **p<0.01.
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6.3 Discussion

6.3.1 The state of LC immunocompetency, which increases from steady-state to migrated

LCs, is critical for tolerance regulation

Investigations into the genomic programs and molecular pathways that allow human LC to promote
tolerogenicimmune responses has been hindered by the lack of available technologies and suitable
experimental systems. Drop-seq single-cell RNA sequencing analysis of steady-state and migrated
LC populations revealed differences between states of immunocompetency and the expression of
tolerogenic markers (Chapter 5). We therefore performed functional in vitro analyses to assess how
our transcriptomic observations translated into LC tolerogenic capacity. Our analysis revealed that
LC tolerogenic potential is indeed coupled with immunocompetency, with increasing tolerogenic
capacity exhibited from immature to immunocompetent steady-state LCs, which is further

enhanced upon migration.

Tolerance induction by DCs can be coordinated by the induction of central and peripheral tolerance.
In central tolerance, the majority of self-reactive T cells are depleted, whilst peripheral tolerance
ensures any remaining/emergent self-reactive T cells are controlled (Banchereau and Steinman,
1998)(Ardouin et al., 2016)(Audiger et al., 2017)(Oh and Shin, 2015). Typically, DC ability to induce
tolerogenic immune responses in the periphery has been associated with an immature or semi-
mature state (Steinman et al., 2003)(Steinman, Hawiger and Nussenzweig, 2003)(Hasegawa and
Matsumoto, 2018). Indeed, DCs expressing low levels of co-stimulatory and antigen presenting
molecules can promote T cell anergy or Treg differentiation (Hasegawa and Matsumoto, 2018)
(Mahnke et al., 2002). In contrast, our in vitro analyses demonstrate that immature steady-state
LCs do notinduce Tregs, while a subpopulation of immunocompetent CD86 expressing steady-state
LCs are able to do so. Furthermore, LC migration, which enhances LC immunocompetency,
promotes increased ability to induce Tregs, as compared to immunocompetent steady-state LC.
Tregs that were induced by migratory LCs were shown to be functionally tolerogenic, suppressing

both CD4 and CD8 T cell proliferation in co-culture.

Co-stimulatory molecules expressed by DCs are critical for modulating T cell signalling pathways
during engagement of the TCR and MHC within the immune synapse. Here, engagement of DC
CD80/86 with CD28 on T cells, results in the activation of signalling kinases which highly amplify T
cell modulation (Lanzavecchia and Sallusto, 2001). The increased expression of T cell co-stimulatory
genes, such as CD86, in immunocompetent steady-state and migrated LCs, are suggestive of their
importance for Treg induction. Indeed, increased CD86 expression is not always linked to

immunogenic immunity. Increased expression of CD80 and CD86 is observed in migratory LC as a
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result of epicutaneous immunisation, but does not result in efficient generation of effector memory
CD4 T cells (Shklovskaya et al., 2011). CD86 is also implicated in DC-mediated tolerance induction
throughinteraction with CTLA4 on T cells (Mellor et al., 2004)(Obregon et al., 2017). Also, consistent
with our findings, a study by Yamazaki et al. demonstrated that mature CD86High DCs were able to
expand CD4+CD25+ T cells more effectively than CD86Low immature DCs (Yamazaki et al., 2003).
The importance for high levels of co-stimulatory molecules for tolerance induction could also be
seen in our observation that LCs can prime naive CD4+ T cells into functional Tregs. Here, this
demonstrates a high level of signalling occurring at the LC/T cell immune synapse, as enhanced
signalling is required to re-programme naive T cell intracellular signalling pathways and promote
differentiation (Lanzavecchia and Sallusto, 2001). Induction of tolerance by LCs therefore requires
delivering of efficient signal 2 through co-stimulation. However, since LC ability to induce
tolerogenic responses is substantially enhanced upon their migration out of the epidermis, and as
Drop-seq showed CD86 expression is relatively high in both steady-state immunocompetent and
migratory LC at the mRNA level, tolerance is likely governed by additional factors beyond the
capacity to antigen present and co-stimulate. As both steady-state LCs and migratory LCs were
extracted from unstimulated/non-diseased tissue, the antigen presentation exhibited between LCs
and T cells would likely involve mostly self-antigen rather than strongly agonistic foreign antigens.
Factors that may differentiate the induction of immunogenic or tolerogenic responses could
therefore be dependent on the specific interactions between DC MHC complexes and T cell TCRs,
in which weakly agonistic self-antigen may prime tolerogenic T cell responses over immunogenic
ones(Lewis and Reizis, 2012). Additionally, DCs that spontaneously mature in the steady-state may
have a shorter lifespan to DC that mature in the context of immunogenic signalling, failing to induce
sufficient T cell proliferation and differentiation(Lanzavecchia and Sallusto, 2001). However,
prolonged 5-day co-culture of LCs and T cells promoted considerable proliferation over the whole

time period.

6.3.2 IDO1 is important for LC tolerogenic function, but is likely part of a wider tolerogenic

programme

The signalling context in which engagement of the immune synapse occurs also modulates T cell
immunological outcomes. In our Drop-seq analysis, a tolerogenic gene module consisting of /DO,
HMOX1, ALDH2, IER5, S100A9, RELB and LGALS1 was observed in migratory LCs. Due the marked
upregulation in IDO1 expression between steady-state LCs and migratory LCs and the vast evidence
linking /IDO1 with DC immune tolerance, we focussed our attention on validating its role in LC
tolerance regulation, hypothesising that it was critical for tolerance induction. Our investigations of

IDO1 protein expression confirmed that upregulated expression did indeed occur after LC
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migration. Furthermore, the importance of IDO1 for full LC tolerogenic was displayed in IDO1
inhibition experiments, in which the ability of LC to prime Tregs was diminished. In vitro models of
human LCs, such as CD34+ LCs, have demonstrated LC /DO1 expression and speculated its
importance for tolerogenic function (Koch et al., 2017). Furthermore, in human LCs, functional IDO1
expression can be detected in response to IFNy stimulation, as well as the observation that the
inhibition of T cell proliferation by supernatants from stimulated LCs, is dependent on functional
IDO1 (von Bubnoff et al., 2004). However, to our knowledge this is the first-time functional
importance of IDO1 has been demonstrated for the induction of Treg differentiation during co-
culture between primary human LCs and T cells. From our single cell analysis and previous studies,
migration appears to be a critical step in which dramatic genomic programming occurs (Sirvent et
al., 2020). We therefore hypothesised that immunomodulatory dexamethasone stimulation during
migration could enhance the tolerogenic phenotype of LCs. Dexamethasone stimulated migratory
LCs displayed enhanced IDO1 expression, and furthermore confirmed that these LCs displayed

enhanced ability to induce Tregs as compared to unstimulated migratory LCs.

Despite the reduction in Tregs after IDO1 inhibition, LCs still retained the ability to induce some
Tregs. This is consistent with our observations that immunocompetent steady-state LC can prime
Tregs despite low IDO1 expression. It is therefore likely, that IDO1 is an important part of a wider
transcriptional programme and that additional molecular factors govern LC tolerogenic capacity. To
explore the importance of each of the constituents of the tolerogenic module identified in Chapter
5, similar functional inhibition experiments could therefore be performed. Induction of T cell
anergy and apoptosis are also mechanisms by which tolerance is induced/maintained by DC and it
is therefore important to consider other mechanisms by which tolerance associated genes mediate
tolerance induction. For example, whilst IDO1 activity is associated with induction T cell apoptosis
and Tregs, functional studies of galectins reveal a principal involvement in T cell anergy and
apoptosis induction, as well as inhibition of DC cytokine production (Hasegawa and Matsumoto,
2018)(Obregon et al., 2017). Further in vitro studies that measure T cell anergy (proliferation assays)
and apoptosis (annexin V staining) could therefore be explored to investigate all arms of T cell
tolerance. Overall, a large quantity of different genes have been associated with immune tolerance
induction by DCs, in accordance with the extensive tolerogenic DC associated gene panels explored
in our analyses, thus highlighting that it is unlikely for one gene to be the sole mediator of tolerance
in LCs. Interestingly some well characterised DC tolerance associated genes, including the cytokines
TGF-B and IL-10, as well as the stimulatory molecules PD-L1 and PD-L2, were either not detected,
or detected a low levels through Drop-seq transcriptomic analysis (Hasegawa and Matsumoto,
2018)(Obregon et al., 2017). The absent/low expression of these genes could therefore be

confirmed at the protein level in vitro using flow cytometry.
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Our analyses have shown that LC tolerogenic function is paralleled by increasing
immunocompetency, which differs between steady-state and migrated LC populations. It is
therefore interesting to consider whether the state of immunocompetency is an indication of the
underlying biology and specific role each subpopulation plays in immune regulation. For instance,
previous analyses of steady-state LCs has revealed their importance for amplifying Tregs within the
epidermis (Seneschal et al., 2012). In non-inflamed conditions, immunocompetency of steady-state
LC in the absence of tolerogenic factors that are induced during migration, may be sufficient to
effectively expand resident epidermal Tregs, but with moderate ability to prime. In contrast,
migratory LCs may further amplify tolerogenic potential to enhance efficiency for priming naive T
cells into Tregs, as well as maintaining the ability to efficiently expand Tregs. The same
predominance of each LC population to either expand or prime may also be seen in regards to
immunogenic T cell activation. It is also interesting to consider the composition of the LC population
in the steady state. LCs have the ability to self-replicate in the epidermis to maintain the epidermal
population (Ginhoux and Merad, 2010). Immature steady-state LCs could therefore be LCs that have
recently replicated in the epidermis, before going on to progress to an immunocompetent state
later in their life cycle. However, as only 1-2% of LCs replicate at any one time and we observe a
spectrum of activation in steady-state LCs, this would suggest the transition to maturity at the

steady-state is slow (Ginhoux and Merad, 2010).
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Chapter 7  Utilising mathematical modelling to
determine gene regulatory networks underlying LC

tolerogenic responses

7.1 Introduction

Single cell RNA-seq analysis comparing steady-state LCs to migrated LCs revealed dramatic changes
in LC genomic programming. Migratory LC were marked with enhanced expression of
immunocompetency genes and we identified several transcription factors (TFs), which significantly
induced expression levels upon migration, including IRF4 and RELB. Furthermore, we identified
rearrangement of TF regulons upon migration, further demonstrating their activity underlined the
transformation of transcriptomic expression. However, whilst the association of migrated LC TFs
with enhancement of maturation programmes was identified from gene ontology analysis, the

specific role of these TFs in regulating immunogenic vs tolerogenic programmes was unknown.

Our in vitro analysis demonstrated the efficiency of migratory LCs to induce Tregs and tolerogenic
T cell responses. However, previous in vitro experimentation documented that migration enhances
the ability of LC to promote immunogenic CD8+ and CD4+ T cell activation (Sirvent et al.,
2020)(Klechevsky et al., 2008). Therefore, while seemingly mature LCs can both tolerise and
activate immune responses, the decision-making process within LCs which determines the outcome
of T cell immunity remains unclear. Here we sought to delineate the underlying regulatory networks

orchestrating activation of human LCs.

We hypothesised that while spontaneous migration in the absence of pro-inflammatory signalling
reflects the scenario in which LCs mediate peripheral immune homeostasis and tolerance, LC driven
immunity is determined by the context of the signalling environment. TNFa is an epidermal
proinflammatory cytokine, which is produced by neighbouring keratinocytes in response to
immunogenic stimuli and which enhances LC immunity (Barker et al., 1991). TNFa stimulation of
migratory LC heightens their ability to drive CD8 T cell activity through antigen cross-presentation
(Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012). Consistent with enhanced T cell
activation, TNFa stimulation promotes the upregulation of costimulatory molecules and maturation
markers in LC, as well as promoting migration (Berthier-Vergnes et al., 2005)(Cumberbatch et al.,
1999)(Epaulard et al., 2014). Furthermore, TNFa signalling augments LC mediated anti-viral
immunity to HIV and Influenza antigen (Epaulard et al., 2014). However, in the steady-state, DC

migration and maturation is associated with immune tolerance and the differentiation of Tregs
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(Baratin et al., 2015). Importantly, a unique programme of genes is observed in DCs migrating in
the steady-state, compared to those which migrate in the context of immunogenic signalling
(Baratin et al., 2015). Additionally, mature DC also tolerise CD8+ T cells during processing and
presentation of self-antigen from apoptotic cells in the steady-state(Albert, Jegathesan and Darnell,

2001).

Based on these considerations, we assumed that in the context of immunogenic TNFa signalling,
LCs favour immunogenic responses, whilst in the steady-state, LCs favour tolerogenic ones. Thus,
in order to identify key molecular changes in genomic programming during transition from
tolerogenic LCs to immunogenic LCs, we generated and contrasted single cell transcriptome data

of human migratory LCs unstimulated and exposed to TNFa post-migration.

Immune cell function and behaviour are encoded by unique transcriptomic expression profiles —
transcriptional programmes (Xue et al., 2014). Changes in the transcriptional programmes, which
reflect status of health or disease or environmental signalling, are coordinated by GRNs in which
TFs play an essential role (Singh, Khan and Dinner, 2014)(Lin et al., 2015). However, large scale
investigations into the activity of individual GRN components and interactions between specific
modules which underlie different transcriptomic programmes, and in particular the kinetics in
which those programmes are executed, are difficult to investigate using functional in vitro methods
(Ay and Arnosti, 2011). Therefore, mathematical modelling techniques are increasingly being
utilised to counter this problem and include methods such as ordinary differential equation (ODE)
modelling and Petri net modelling (Loriaux and Hoffmann, 2012)(Livigni et al., 2018). Mathematical
modelling can permit investigations of dynamic biological systems in silico to assess how different
molecular signals can alter regulatory network behaviour. For example, Petri net modelling has
revealed the LC IRF-GRN underlying immunogenic immune activation in response to different
stimuli (Chapter 3)(Polak et al., 2017). However, Signalling Petri Net (SPN) and similar methods
allow only qualitative assessment of network behaviour, and limit the strength of predictions. In
contrast, ODE modelling has allowed exploration into small TF networks and specific network
elements, such as feedback loops and ‘toggle switch’ behaviours, which can define cell lineage

determination and operon activation (Huang et al., 2007)(Gardner, Cantor and Collins, 2000).

In GRNs, TFs act in concert with each other to coordinate different expression programmes.
However, specific cellular phenotypes are determined by the increased expression of specific
phenotype defining TFs. For example, in macrophages, whilst NFKB1, JUNB and CREB1 define core
programmes of activation, STAT4 is specifically upregulated in the context of chronic inflammation,
which correlates with increased expression of a specific gene programme containing IL1¢, CXCL5,

CD25 and CD14 (Xue et al., 2014). We sought to identify specific TFs defining immunogenic and
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tolerogenic states of LCs and to determine the regulatory interactions between the phenotype
defining TFs. Combining single cell transcriptome analyses with a published ‘toggle switch” ODE
model defining self-amplification and mutual inhibition between two programmes of TF expression
(Huang et al., 2007), we identified regulatory modules defining immunogenic (/IRF1 +/-IRF4) and
tolerogenic (IRF4, RELB, MAP3K14) LC phenotypes. The model was used to predict LC phenotypes

across steady-state and migrated LC from breast skin and foreskin datasets.

7.1.1 Hypothesis

In silico modelling of GRNs can predict phenotypic state and transcriptional programmes

expressed by human LCs.

7.1.2 Aims

e Investigate the effects of inflammatory signalling (TNFa) on migrated LC gene expression.

e |dentify the key TFs which define tolerogenic and immunogenic LC activation.

e Utilise mathematical modelling to understand the regulatory interactions between
phenotype defining TFs.

e Evaluate the performance of the GRN to predict LC phenotypes across different datasets.
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7.2 Results

7.2.1 TNFa stimulation of migratory LCs enhances transcriptomic programmes related to T

cell immunogenic activation

To investigate the effect of TNFa signalling on LCs, STAMPs for 400 migrated and 400 migrated
TNFa stimulated abdominal skin derived LCs were encapsulated using Drop-seq followed by cDNA

library preparation, tagmentation and then sequencing (Figure 53A&B).
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Figure 53. cDNA library amplification and tagmentation of unstimulated and TNFa stimulated
migrated LCs. A) Unstimulated abdominal skin migrated LCs were processed through Drop-seq with
cDNA libraries (Top, 163 pg/ul) amplified, prior to tagmentation (Bottom, 4.2nM) and sequencing. B)
TNFa stimulated abdominal skin migrated LCs were processed through Drop-seq with cDNA libraries
(Top, 141 pg/ul) amplified, prior to tagmentation (Bottom, 4.1nM) and sequencing. Concentrations
were measured using a DNA high sensitivity kit run on an Agilent Bioanalyser. cDNA library
concentrations were required to be >100 pg/ul with 600 pg/ul of cDNA librariy required for
tagmentation. Libraries were pooled at 2 nM for sequencing. Upper (10380bp) and lower (35bp) marker

DNA was included for reference. Vertical dotted lines depict area in which cDNA library concentrations

were quantified.
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After cell (EmptyDrops (Lun et al., 2019), count threshold filtering) and gene (expression detected
in <10 cells) filtering, a matrix of 775 cells and 7319 genes remained for analysis. UMAP
dimensionality reduction analysis (ScanPy, version=1.5.0) revealed that both abdominal skin
derived migrated LC and migrated TNF-a stimulated LC contained a predominant large cluster (1),
confirmed to be LCs through high expression of MHC Il genes which were in the top 10 cluster
markers genes (e.g. HLA-DRB1, HLA-DRB5)(Logistic regression, ScanPy pipeline, version=1.5.0,
Figure 54A,B&C). Additionally, two small populations of cells (2 and 3), contributed by cells from
both conditions, clustered away from the LC population (Figure 54A). Included in the top 10 marker
genes for cluster 2 was TYRP1, a gene which characterises melanocytes (Figure 54B&C). In the top
10 marker genes for cluster 3 was CD3D, a marker of T cells (Figure 54B&C). To focus our analysis

on the transcriptomes of LC, the melanocyte and T cell populations were removed.

A)
AN
o
<
=
)
2 B Migrated
Migrated TNFa
UMAP1
B) 1-LCs 2 - Melanocytes 3—Tcells
. . . 10
0.5
0.0

rT r T 1T T 1T 1T 1T 1T T T T T TTTTTTd
— M < <INdNddd0OMMANEN oo AN < X mnm
mUr\gmm<m<QO§©n.n.u<8tmm<%<$<ro—ll—
rrxQasToxooca JdJnEoxcnAXEFFOZ2U0NOSSo>axn
BORI0005080E0rE 20 O 50502K3"
1 _II 1 |< — >
S 5:555—'5 < v F 9
T IrxTT n
C) CD3D TYRP1
2.5 35
s
4 3.0
2.0
2.5
3
1.5 2.0
2 1.5
1.0
1.0
E ' 03 0.5
<§( 24
2 0.0 .0
UMAP1

223



Chapter 7

Figure 54. T cells and melanocytes could be identified amongst unstimulated and TNFa
stimulated migrated LCs. *On previous page A) UMAP dimensionality reduction analysis of 775
unstimulated and TNFa stimulated abdominal skin derived migrated LCs. B) Top 10 markers genes
for clusters 1-3 (t-test, ScanPy pipeline, version=1.5.0), revealed populations to be LCs (cluster 1),
melanocytes (cluster 2) and T cells (cluster 3) C) UMAP marker plots displaying the expression of

the LC marker HLA-DRB1, the T cell marker CD3D and the melanocyte marker TYRP1.

The heterogeneity of the 737 migrated LCs stimulated with or without TNFa (unstimulated = 375,
TNFa stimulated = 362) were then analysed in UMAP space. Overall the cells appeared relatively
homogenous consisting of one overall large population of LCs, consisting of separating sub clusters
of unstimulated and TNFa stimulated LCs (Figure 55A). DEG analysis comparing migrated and
migrated TNFa LCs identified 87 genes upregulated in migrated TNFa. LCs and 61 genes upregulated
in migrated LCs (MAST, adj.p-value<0.05). Gene ontology analysis for the 87 genes upregulated in
migrated TNFa LCs was associated with cytokine mediated signalling pathways (adj. P-Value=2.2E-
7) and positive regulation of alpha-beta T cell activation (adj. P-Value=1.5E-4, Figure 55B). TNFa
stimulation therefore enhanced transcriptomic programmes associated with T cell immunogenic
activation. Gene ontology analysis for the 61 genes upregulated in migrated LCs were associated
with secretion by cell (adj. P-Value=5.3E-3) and regulation of the immune response (adj. P-
Value=5.3E-3, (Figure 55B). Interestingly, an association with negative regulation of immune system
process was identified from both sets of DEGs. Contributing to this ontology in migrated TNFa LCs
was CD86, DUSP1, IRF1, NFKBIA, PTK2B, SAMSN1 and SOCS1 (adj. P-Value=2.3E-2). In unstimulated
migrated LCA2M, CST7, EZR, LGALS3, LY96, PTPRC and VIMP (SELENOS) contributed to the ontology
(adj. P-Value=2.5E-2).
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Figure 55. Unstimulated and TNFa stimulated migrated LCs display differential gene expression. A)
UMAP dimensionality reduction analysis of 737 unstimulated and TNFa stimulated LCs. (unstimulated
= 375, TNFa stimulated = 362). B) Gene ontology analysis (Toppgene) for the 61 DEGs identified in
unstimulated migrated LC vs TNFa stimulated migrated LC and for the 87 DEGs identified in TNFa
stimulated migrated LC vs unstimulated migrated LC using MAST DEG analysis (BH adj.p-value<0.05).

-log10adj.p-values are displayed.

7.2.2 Subpopulations of migrated LCs appear primed for tolerogenic immune function,

whilst TNFa stimulated migrated LCs appear predominantly immunogenic

The population of LC was then investigated to identify sub-clusters defined by unique biological
pathways. Leiden clustering (ScanPy, r=0.5) identified 4 subpopulations (Figure 56A), defined by
distinctive transcriptome expression in gene ontology analysis of marker genes (ScanPy, Logistic
regression, 50 marker genes, Figure 56B). Cluster 1 was associated with positive regulation of alpha-
beta T cell activation (adj. P-Value=4.4E-3) and cytokine mediated signalling pathway (adj. P-
Value=2.6E-2). The association with alpha-beta T cell activation arose from elevated expression of
CCR7, CD83, EBI3, HLA-E and IRF1. Cluster 2 was associated with cytokine production (adj. P-
Value=7.0E-6) and negative regulation of immune system process (adj. P-Value=2.6E-3). Negative

regulation of immune system process was contributed by the expression of ARRB2, CD74, CIB1,
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CST7, HMOX1, IDO1, IL7R, IRF4, RUNX3. Cluster 3 was associated with ATP biosynthetic process

(adj. P-Value=1.4E-7) and antigen processing and presentation of peptide antigen (adj. P-

Value=4.4E-7), due to elevated expression of MHC |l genes (HLA-DRB1, HLA-DRB5, HLA-DQA1, HLA-

DQA2 and HLA-DMA). Cluster 4 was associated with |-kappaB kinase/NF-kappaB signalling (adj. P-

Value=1.2E-5) and response to external biotic stimulus. (adj. P-Value=2.2E-5).
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Figure 56. The population of unstimulated and TNFa stimulated LCs could be divided into 4 distinct

clusters. A) Leiden clustering (r=0.5) identified 4 clusters amongst the population of unstimulated and

TNFa stimulated migrated LC. B) Gene ontology analysis (Toppgene) for the top 50 marker genes

(ScanPy, logistic regression) for each cluster identified during Scanpy analysis -log10adj.p-values are

displayed.
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Overall the mixed population of migratory unstimulated or TNFo stimulated LCs appeared to
constitute of 3 main subpopulations (clusters 1-3). The proportion of unstimulated or TNFa
stimulated LCs in each subpopulation also varied with the majority of cells in cluster 2 being
unstimulated LCs, the majority of cells in cluster 1 being TNFa. stimulated LCs and cells in cluster 3
being an equal proportion of both. Based on gene ontology for the top 50 markers genes, which
displayed predominant cluster phenotypes, we labelled cluster 1 and 2 as immunogenic and
tolerogenic LC, respectively. Labelling of cluster 3 was less obvious due to general association with
antigen processing and presentation and ATP metabolism, signature features of mature LC (Romani
et al., 2003). To further explore the relationships between the 3 clusters, pseudotime trajectory
analysis (PAGA, Partition based graph abstraction, within Scanpy) was performed to discern
significant routes of connectivity which could represent pathways of differentiation(Figure 57A).
Pseudotime pathways (DPT, Diffusion pseuodotime) originating from the centre of cluster 3
reached endpoints in both clusters 1 and 2, suggesting cluster 3 LCs could readily follow pathways
to cluster 1 and 2 LC states. Alternative pseudotime pathway analysis originating at the centre of
cluster 2 did not reach cluster 1 and similarly, pseudotrajectories originating at the centre of cluster
1 and ending at cluster 2 were relatively weak (Figure 57B). Analysis suggested cluster 3 were a
transient population of mature LCs, which would differentiate into immunogenic or tolerogenic LCs

depending on signalling. Cluster 3 LCs were therefore labelled as being ‘primed’ LCs.
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Figure 57. Pseudotime trajectory analysis reveals a transitional pathway from primed LCs to both
tolerogenic and immunogenic LCs. A) Clusters 1-3 (Immunogenic, tolerogenic and primed LCs) were
processed through PAGA analysis to assess cluster connectivity and embedded in geodesic space to
maintain data topology (FR, Fruchterman Reingold force directed graph). B) Estimated pseudotime
trajectories calculated using DPT (diffusion pseuodotime) were plotted with starting points

originating at the centre of cluster 3 (primed), cluster 2 (tolerogenic) and cluster 1 (immunogenic).
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To gain a greater understanding of the differentiating pathways between immunogenic cluster 1
and tolerogenic cluster 2, MAST DEG analysis was performed (adj. P-Value<0.05). Gene ontologies
identified from Toppgene were summarised using Revigo to display a greater overview of the
general pathways upregulated in each cluster. The 65 DEGs upregulated in immunogenic cluster 1
were strongly associated with positive regulation of alpha-beta T cell activation and response to
cytokine (Figure 58A). 51 DEGs upregulated in tolerogenic cluster 2, were summarised into antigen
processing and presentation via MHC Il, response to cytokine, cell-cell adhesion and cell activation
(Figure 58B). Interestingly associations with negative regulation of immune system processes could
be identified in upregulated DEGs for each cluster. This was contributed by A2M, HLA-DQA1, CD74,
CST7, HMOX1, IL7R in tolerogenic cluster 2 (adj. P-Value=3.0E-2) and CD80, CD86, IRF1, DUSP1,
NFKBIA, HLA-E, SOCS1, SAMSN1 and PTK2B in immunogenic cluster 2 (adj. P-Value=1.0E-3).
However, the majority of immune associated annotations for cluster 1 were associated with

activation of T cell effector processes.
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A)

Cluster 1 (Immunogenic) vs Cluster 2 (Tolerogenic)

B
) Cluster 2 (Tolerogenic) vs Cluster 1 (Immunogenic)

Figure 58. Immunogenic LCs upregulate gene expression programmes associated with T cell
activation. MAST DEG analysis was performed comparing cluster 1 immunogenic LCs to cluster 2
tolerogenic LCs. A) Revigo Treemap summarising the top 200 biological pathways identified in
Toppgene gene ontology analysis (BH adj.p-value<0.05) using the 65 genes upregulated in cluster 1
immunogenic LCs. B) Revigo Treemap summarising the top 200 biological pathways identified in

Toppgene gene ontology analysis using the 51 genes upregulated in cluster 2 tolerogenic LCs.
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With cluster 3 LCs labelled as baseline mature primed LC, gene expression was compared to clusters
1 and 2 through MAST DEG analysis to identity immunogenic and tolerogenic pathway defining
genes. DEG analysis between cluster 2 and 3 identified 105 upregulated genes in cluster 2 and 86
upregulated genes in cluster 3. Cluster 2 genes were generally associated with regulation of the
immune system process and response to cytokine (Figure 59A). Again, an association with negative
regulation of immune system process was identified due to the upregulated expression of /D01,
IRF4, IL7R, HLA-E, HLA-F, ID2, GRN, SAMSN1, ARRB2, TRAFD1, ZFP36L1, FER, TMEM176A and
TMEM176B (adj. P-Value=4.2E-4). Cluster 3 ontologies were grouped into leukocyte activation and
response to ER stress (Figure 59B). Interestingly, an association with negative regulation of immune
effector process was identified due to the expression of ANXA1, CD59, LGALS3, NDFIP1 and
SERPINBY (adj. P-Value=6.1E-3). DEG analysis between cluster 1 and 3 identified 178 genes
upregulated in cluster 1 and 145 genes upregulated in cluster 3. Cluster 1 DEGs were generally
associated with regulation of the immune system, response to cytokine, nuclear transcribed mRNA
catabolism and SRP dependent co-translational targeting to membrane and therefore the overall
profiles appeared similar to those identified in cluster 2 LCs (Figure 59C). However, genes
upregulated in cluster 1 could again be associated with alpha-beta T cell activation (adj. P-
Value=1.5E-5), as well as negative regulation of immune system process due to upregulated
expression of IDO1, IRF1, CD86, ID2, HLA-E, HLA-F, GBP1, SOCS1, NFKBIA, TRAFD1, ZFP36L1, PTK2B,
CD84, GCSAM, SAMSN1, GPX1, DUSP1 and TMEM176B (adj. P-Value=3.2E-5). In contrast cluster 3
upregulated genes were associated with ATP metabolism, antigen processing and presentation,
energy coupled protein transport down electrochemical gradient, response to ER stress and

organelle fusion (Figure 59D). No association with tolerogenic immune regulation were identified.
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A)

Cluster 2 (Tolerogenic) vs Cluster 3 (Primed)

B)

Cluster 3 (Primed) vs Cluster 2 (Tolerogenic)
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Cluster 1 (Immunogenic) vs Cluster 3 (Primed)

Cluster 3 (Primed) vs Cluster 1 (Immunogenic)

Figure 59. Tolerogenic and Immunogenic LCs upregulate genes associate with similar biological
processes compared to mature primed LCs. MAST DEG analysis was performed comparing cluster
2 tolerogenic LCs to cluster 3 primed LCs and cluster 1 immunogenic LCs to cluster 3 primed LCs.
Revigo Treemaps were used to summarise the top 200 biological pathways identified in Toppgene
gene ontology analysis (BH adj.p-value<0.05) using the A) 105 genes upregulated in cluster 2
tolerogenic LCs vs cluster 3 primed LCs, B) 86 genes upregulated in cluster 3 mature LCs vs cluster
2 tolerogenic LCs, C) 178 genes upregulated in cluster 1 immunogenic LCs vs cluster 3 primed LCs

and D) 145 genes upregulated in cluster 3 primed LCs vs cluster 1 immunogenic LCs.
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The upregulated genes in comparisons of clusters 1 and 2 with cluster 3 were contrasted to identify
how programs differed during differentiation from primed (cluster 3) to immunogenic (cluster 1) or
tolerogenic (cluster 2) LCs. Of the 178 genes upregulated in cluster 1 and the 105 genes upregulated
in cluster 2, 64 were common (Figure 60A). Gene ontology analysis and summarisation using Revigo
of the 64 commonly upregulated genes revealed associations with antigen processing and
presentation, response to cytokine, regulations of cell death and nuclear transcribed mRNA
catabolism (Figure 60B). These pathways therefore appeared core to both tolerogenic and
immunogenic LC differentiation from primed LCs. Interestingly this core programme included an
association with negative regulation of immune system process (adj. P-Value=1.2E-2) due to
elevated expression of IDO1, SAMSN1, HLA-E, HLA-F, ZFP36L1, TMEM176B and TRAFD1. The 114
uniquely upregulated genes in immunogenic cluster 1 LCs were associated with negative regulation
of cell communication, nuclear transcribed mRNA catabolism, response to cytokine and SRP-
dependent cotranslational targeting to membrane (Figure 60C). Again, many associations with
alpha-beta T cell activation (adj. P-Value=1.9E-2) were identified, as well as negative regulation of
immune system process (adj. P-Value=1.2E-2), due to the presence of IRF1, CD86, CD84, SOCS1,
NFKBIA, PTK2B, GCSAM, GBP1, GOX1 and DUSP1. Minimal associated gene ontologies were
identified for the 41 uniquely upregulated genes in tolerogenic cluster 2, although importantly an
association with negative regulation of immune effector process was observed (adj. P-Value=4.5E-

2), due to the expression of IL7R, ARRB2, GRN and FER (Figure 60D).

Overall, the expression of tolerogenic gene modules appears to be core to mature LCin each cluster.
However, in immunogenic LCs, tolerogenic gene modules are expressed in association with genes
regulating immunogenic pathways. We sought to investigate how the balance of tolerogenic and
immunogenic pathway defining genes may alter the balance of immune regulation leading to the

predominant activity and expression of either phenotype.

Cluster 1 Cluster 2
Immunogenic Tolerogenic
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B)

Mutually upregulated (Cluster 1 and 2)

C)

Uniquely upregulated Cluster 1 (Immunogenic)
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D)

Uniquely upregulated Cluster 2 (Tolerogenic)

Figure 60. Common upregulated pathways can be identified in tolerogenic and immunogenic LCs.
A) Venn Diagram displaying the overlap between cluster 1 immunogenic LCs upregulated genes
compared to cluster 3 primed LCs and the genes upregulated in cluster 2 tolerogenic LCs compared
to cluster 3 primed LCs. Revigo summarisation of the top 200 (if identified) biological pathways
identified during Toppgene gene ontology analysis (BH adj.p-value<0.05), associated with the B) 64
genes commonly upregulated in cluster 1 immunogenic and cluster 2 tolerogenic LCs, C) 114 genes
uniquely upregulated in cluster 1 immunogenic LCs and D) the 41 genes uniquely upregulated in

cluster 2 tolerogenic LCs.
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7.2.3 IRF1 and IRF4 regulons distinguish gene regulation in immunogenic and tolerogenic

LCs

To identify the key TF regulators of the migrated LC programme, SCENIC (Aibar et al., 2017) single
cell regulatory network inference analysis was performed. Analysis identified IRF1 and IRF4
regulons as the most distinct upregulated regulons in immunogenic and tolerogenic LCs,
respectively (cluster 1 immunogenic LC IRF1 z-score = 0.4, cluster 2 tolerogenic LC, IRF4 z-score =
0.2)(Figure 61). IRF1 and IRF4 were therefore identified as being core modulators of the gene

regulatory changes necessary for either phenotype.
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Figure 61. Immunogenic LCs are enriched for IRF1 regulon activity, whilst tolerogenic LC are
enriched for the IRF4 regulon. A) UMAP plots displaying SCENIC regulatory network and inference
clustering analysis enrichment scores for IRF1 and IRF4 regulons, identified as being the most
enriched TF regulons in immunogenic and tolerogenic LCs, respectively. Z-scores for enriched

regulons are displayed. B) UMAP marker plot displaying normalised /RF1 and IRF4 expression.
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7.2.4 Utilising an ODE ‘toggle switch’ model to construct a decision-making circuit for LC

immunogenic or tolerogenic responses

Based on published in vitro investigations displaying both immunogenic and tolerogenic T cell
activation by migrated LCs (Sirvent et al., 2020)(Polak et al., 2012)(Klechevsky et al.,
2008)(Seneschal et al., 2012) and the discoveries from our in vitro data exploring migrated LC
tolerogenic potential, we postulated that migrated LCs represent an activation state under non-
inflammatory conditions capable of priming both immunogenic and tolerogenic responses.
However, in line with the importance of self-antigen transport by LCs migrating in steady-state
contexts for mediating self-tolerance (Hemmi et al., 2001)(Yoshino et al., 2006), we also assumed
that tolerogenic responses are preferential in unstimulated migrated LCs. From single cell RNA-seq
observations we further assumed that the transcriptional programme of LCs can be altered in the
context of inflammatory signalling, such as TNFa, to be more predominantly immunogenic. This
proposal is consistent with discoveries from bulk RNA-seq and functional in vitro studies of TNFa.
stimulated LCs, which enhances immunogenic T cell activation (Sirvent et al., 2020)(Polak et al.,
2014)(Polak et al., 2012). From UMAP analysis, LCs appeared part of a single overall large
population, in which subpopulations of phenotype specific (immunogenic, tolerogenic, primed) LCs
could be identified. The subpopulations of immunogenic cluster 1 and tolerogenic cluster 2 LCs,
which appeared to be end states compared to transient cluster 3 primed LCs, were in close
proximity to each other in UMAP space. This suggested that some LCs were not in a distinct
immunogenic and tolerogenic states, but were on the border between both, in which activation of
immunogenic and tolerogenic pathways was equal. Overall, we therefore hypothesised that
unstimulated and TNFa stimulated migrated LCs could follow pathways to 3 general states of

I “

activation - immunogenic, tolerogenic or a dual “mature” state (equal immunogenic and

tolerogenic pathways)(Figure 62).
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Migrated LC TNFa Migrated LC

Tolerogenic Dual Immunogenic

Figure 62. Migrated LCs are hypothesised to be capable of displaying 3 states of activation

depending on the signalling context. Unstimulated migrated LC are hypothesised to predominantly
represent states of tolerogenic and dual potential, in line with in vitro observations demonstrating
both immunogenic and tolerogenic T cell induction. TNFa stimulated LC are hypothesised to display
favouring of dual and immunogenic states, in accordance with in vitro observations of enhanced

immunogenic function.

To explore how the balance in LC state is controlled, we utilised a tristable ‘toggle switch’ ODE
model in which different activation states can be described based on the expression of a selected
number of state/phenotype (immunogenic vs tolerogenic) defining TFs (Huang et al., 2007). The
ODE model contains 2 equations which each represent the activation of immunogenic (/) and
tolerogenic (7) states, respectively. Each equation contains 3 terms, which represent auto-
amplification (dotted box), cross-inhibition of opposing state TFs (dashed box) and first order decay
of TF activity (solid box)(Figure 63A, Equation 1). The model therefore assumes that TFs that define
each state auto-amplify their own expression, whilst inhibiting the expression of the opposite
pathway/state. The tristable model describes a phenotypic ‘attractor landscape’ in which LCs can
fall into an immunogenic (A), a tolerogenic (B) or a dual (C, equal ability to stimulate tolerogenic
and immunogenic responses) state/phenotype (Figure 63B). In the phase portrait, A and B

therefore represent states in which the expression of TFs from either pathway is dominant over the
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other, whilst C represents a state in which there is equal expression of both immunogenic and
tolerogenic pathways. The model can therefore be utilised on single cell data to predict the
phenotypic state of individual LCs by plotting LC trajectories in state space using single cell

expression data.
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Figure 63. Application of a toggle-switch ODE model to predict LC phenotypes from single cell
transcriptomic data. A) First order ODEs representing the activation of immunogenic (/) and
tolerogenic (T) states in LCs. The dotted box represents terms describing the auto-amplification of
each respective states. The dashed box represents terms describing the cross-inhibition from
opposing states, whilst the solid box depicts the first-order decay rate (k) for TFs defining each state.
B) Phase portrait of the toggle switch model in which two phenotype defining TFs/TF modules
(immunogenic and tolerogenic) auto-amplify their own expression and are mutually repressive.
Phase plane plots for toggle-switch model ODEs were plotted using quiver within Matlab. Black
circles (A, B and C) represent end points for trajectories at stable attractors representing an

immunogenic state (A), tolerogenic state (B) or a dual state (C).
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The selection of TFs definitive for either immunogenic or tolerogenic responses was next required
to construct the model. Based on our single cell transcriptomic analysis of migrated LC and migrated
TNFa stimulated LCs, IRF1 was a clear candidate for driving the immunogenic pathway, due its
association as a marker gene for cluster 1 immunogenic LCs and enrichment of the /IRF1 regulon in
SCENIC analysis. IRF1 was also present within its own regulon, suggesting IRF1 can self-amplify its
expression, in line with the toggle-switch model assumptions. Similarly, /RF4, a top marker for
cluster 2 tolerogenic LC, which also displayed enrichment for the /IRF4 regulon, was the most
defining candidate for the tolerogenic pathway. Furthermore, IRF4 is also present within its own

regulon, satisfying the self-amplification requirements of the model.

To be consistent with observations of LC regulation of T cell responses, the model would be deemed

to be correctly predictive, based on satisfying 3 criteria:

1. Unstimulated migrated LCs are predominantly in a tolerogenic or dual state.

2. TNFa stimulated migrated LCs display an attractor landscape more preferentially sided for
immunogenic responses.

3. The number of LCs at the immunogenic attractor is increased in the cluster 1 immunogenic
LC population and the number of LCs at the tolerogenic attractor is increased in cluster 2

tolerogenic population.

Normalised single cell RNA-seq TF expression values (scaled to 2) in each LC were utilised as starting
points in the phaseplane. Trajectories of each LC in the phaseplane were plotted accordingly to the
equation in Equation 1/Figure 63A. Here, depending on where trajectories started and on the phase
plane landscape, LCs could be categorised as being in an immunogenic (A), tolerogenic (B) or dual
(C) state, depending on what attractor the trajectories ended at. After in silico simulation, the
number of trajectories finishing at each attractor were quantified and compared. Trajectories for
all stimulated and unstimulated migrated LCs as a whole and the clusters defined from Scanpy

leiden clustering (Clusters 1-4) were compared.

Plotting the trajectories for model 1, in which IRF1 defined immunogenic states and /RF4 defined
tolerogenic states, revealed that the majority of both migrated (66.67%) and migrated TNFa
(61.88%) LCs, regardless of cluster (Cluster 1-4), followed trajectories towards immunogenic
phenotypes, going against our criteria that the majority of unstimulated migrated LCs would be in
a tolerogenic or dual state (Figure 64A). However, a moderate reduction in the frequency of
tolerogenic state LCs was observed in migrated TNFa. LCs (18.51%) compared to migrated LCs (24%).
There was also as a moderate increase in dual state LCs in migrated TNFo LC (19.61%) compared to
unstimulated (9.33%). Observations were overall similar during comparison between cluster 1

(immunogenic) and cluster 2 (tolerogenic) LCs and in line with model criteria, the number of
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tolerogenic LCs in cluster 2 increased (28.94%) compared to cluster 1 (15.25%)(Figure 64B). Overall
whilst some criteria were met (change in frequency of immunogenic and tolerogenic LCs in
stimulated and unstimulated LCs) the over prediction of LCs to be in an immunogenic state

suggested the model needed further optimisation.
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Figure 64. Model 1: In silico predictions of the toggle-switch model using IRF1 and IRF4 alone does
not accurately represent the phenotypes observed in LCs. A) Phase portrait plot with single LC
trajectories plotted from unstimulated and TNFa stimulated migrated LC. B) State space phase plane
plot with single LC trajectories plotted as labelled from Scanpy leiden clustering. For each cell (starting
point for line in the phaseplane) X-axis = normalised /IRF1 expression values scaled between 0-2, Y-axis
— normalised IRF4 expression values scaled between 0-2. Pie charts alongside display numbers and

percentages of cells ending at each attractor and therefore assigned to each phenotype.
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Inclusion of just /RF1 and IRF4 in the model was therefore insufficient for model predictions to
match LC phenotypic observations. To finetune the model, so that its output could reflect in vitro
and transcriptomic observations, we further queried what additional TF regulators could be
determining LC phenotypes. We reviewed the expression of all TFs which were enriched in migrated
LC compared to steady-state LC, from both breast skin and foreskin (Chapter 5). However, in
unstimulated and TNFa stimulated migrated LC, none of these TFs (besides IRF4) were differentially
regulated and therefore their importance for immunogenic vs tolerogenic responses seemed
unlikely. However, inspection of genes within the top 50 marker genes for cluster 2 tolerogenic LCs
revealed the presence of MAP3K14 (NIK), the critical inducer of the non-canonical NFkB pathway
involving RELB. Therefore, whilst RELB expression was homogenous across all populations, RELB
activation was dependent on MAP3K14 activity and increased non-canonical NFkB activation would

only occur in cells that co-express high MAP3K14 and RELB (Figure 65A).

IRF4 along with MAP3K14 and RELB expression (Z-scores scaled to 2) were therefore used together
to define the tolerogenic phenotype in model 2. The optimised model increased the number of
unstimulated migrated LCs in a dual state (21.33%) and tolerogenic state (59.73%)(Figure 65B). The
model also predicted that the majority of LCs in the tolerogenic cluster 2 (62.64%) were of a
tolerogenic phenotype, whilst an increased proportion of immunogenic cluster 1 LCs were in an
immunogenic (23.05%) and dual state (42.91%) in comparison (Figure 65C). However, the number
of LCs predicted to be in an immunogenic state was near identical between unstimulated (18.93%)
and TNFa stimulated (18.23%) LCs, although a reduction in tolerogenic state LCs (38.12%) and an
increase in dual state LCs (43.65%) was observed in stimulated LCs. Overall, the model therefore
improved the predictions in line with the model criteria. However, the lack of increased
immunogenic state LCs in TNFo stimulated LC suggested a potential underestimation of TFs defining

the immunogenic phenotype.
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Figure 65. Model 2: The inclusion of non-canonical NFkB pathway components RELB and MAP3K14
improved the toggle switch model. A) UMAP marker plots displaying MAP3K14 and RELB expression. B)
State space phase plane plot with single LC trajectories plotted from unstimulated and TNFa stimulated
migrated LC. C) State space phase plane plot with single LC trajectories plotted as labelled from Scanpy leiden
clustering. For each cell (starting point for line in the phaseplane) X-axis = normalised IRF1 expression values
scaled between 0-2, Y-axis — Z-scores combining IRF4, RELB and MAP3K14 expression values scaled between

0-2. Pie charts alongside display numbers and percentages of cells assigned to each state/phenotype.
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Previous studies investigating IRF4 in DCs have revealed its importance in regulating both
immunogenic and tolerogenic T cell responses, as well as LC activation and immune homeostasis
(Vander Lugt, Riddell, Aly A. Khan, et al., 2017)(Williams et al., 2013)(Ainsua-Enrich et al.,
2019)(Sirvent et al., 2020). Consistent with this idea was the observation that whilst /RF4 was
included as a marker gene for tolerogenic cluster 2 LCs, its expression was still relatively high in all
unstimulated and TNFa stimulated LCs (Figure 61B). We therefore postulated that /RF4 influenced
both immunogenic and tolerogenic LC responses and its expression level (moderate/high) and
interaction with co-regulators, influenced immunogenic vs tolerogenic output. In model 3, IRF1 and
IRF4 (Z-scores scaled to 2) were used to define the immunogenic pathway and IRF4, MAP3K14 and
RELB (Z-scores scaled to 2) were used to define the tolerogenic pathway. Assessment of model
predictions revealed that a large proportion of migrated LC now appeared in either a dual state
(58.93%) or tolerogenic state (38.4%)(Figure 66A). This was therefore alighed with observations
that unstimulated migrated LC can induce both immunogenic and tolerogenic immunity.
Additionally, the minimal numbers of immunogenic state LCs (2.67%) revealed preference for
tolerogenic activation in unstimulated migrated LC. In TNFa stimulated migrated LCs, there was an
increased proportion of immunogenic state LCs (9.67%). Furthermore, TNFa stimulated migrated
LCs had reduced frequency of tolerogenic state LCs (24.31%) and an increase in dual state LCs
(66.02%). The proportion of tolerogenic LCs is therefore reduced in TNFa stimulated migrated LCs
to accommodate an increase in dual and immunogenic state LCs. Similar observations were seen in
cluster 1 and cluster 2 LC, with LCs exhibiting preferential immunogenic and tolerogenic states,
respectively(Figure 66B). Overall, the optimised model 3 led to the satisfaction of increased

immunogenic state LCs in the TNFa stimulated population, which was absent in model 2.
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Figure 66. Model 3: Inclusion of IRF4 as a regulator of both immunogenic and tolerogenic pathways
further improves the in silico model predictions to match phenotypic data of LCs. A) State space
phase plane plot with single LC trajectories plotted from unstimulated and TNFa stimulated
migrated LC. B) State space phase plane plot with single LC trajectories plotted as labelled from
Scanpy leiden clustering. For each cell (starting point for line in the phaseplane) X-axis = Z-scores
combining IRF1 and IRF4 expression scaled between 0-2, Y-axis — Z-scores combining IRF4, RELB and
MAP3K14 expression scaled between 0-2. Pie charts alongside display numbers and percentages of

cells assigned to each state/phenotype.
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To assess how appropriate the TFs selected for models 2 and 3 were in correctly predicting LC
phenotypes, we created a control model, choosing TFs not differentially expressed across the LC
states. Here, the immunogenic pathway was defined by canonical NFkB components RELA, REL and
NFKB1, whilst the tolerogenic pathway was defined by the expression of ELK1, KLF6 and JUND.
Canonical NFkB components were used as immunogenic components of the test model due to their
association with enhancing DC immunogenic and inflammatory responses (Hayden, West and
Ghosh, 2006)(Hayden and Ghosh, 2011). ELK1, KLF6, and JUND were selected for the tolerogenic
pathway due to their association with the regulation of the migrated LC tolerogenic programme
explored in Chapter 5. However, unlike models 2 and 3, none of the model criteria were met in the
control model. Here the proportions of immunogenic, tolerogenic and dual state LCs was overall
homogenous across both unstimulated and TNFa stimulated migrated LCs and clusters 1-4 (Figure
67A, Figure 67B). Overall, this highlighted that the TFs selected in models 2 and 3 were appropriate
in distinguishing the divergent LC states and satisfying at least some, if not all of the criteria

specified for creating a successful immunogenic vs tolerogenic LC model.
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Figure 67. Control model: Using other TFs associated with immunogenic vs tolerogenic responses
does not satisfy model criteria. A) State space phase plane plot with single LC trajectories plotted
from unstimulated and TNFa stimulated migrated LC. B) State space phase plane plot with single LC
trajectories plotted as labelled from Scanpy leiden clustering. For each cell (starting point for line in
the phaseplane) X-axis = Z-scores combining canonical NFkB pathway RELA, REL and NFKBI
expression scaled between 0-2, Y-axis — Z-scores combining ELK1, KLF6 and JUND expression scaled
between 0-2. Pie charts alongside display numbers and percentages of cells assigned to each

state/phenotype.
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7.2.5 The LC toggle-switch model can be used to predict LC phenotypes from

transcriptomic data, in concordance with gene expression data.

Optimisation of the immunogenic vs tolerogenic toggle switch ODE model using data from
abdominal skin derived unstimulated and TNFa stimulated migrated LC led to the generation of
model predictions that were concordant with in vitro and transcriptomic observations of LC
immunity. We therefore hypothesised that the model could be used to predict cell states across
other LC transcriptomic datasets. The single cell transcriptomic data of steady-state and migrated
breast skin and foreskin derived LCs explored in Chapter 5 was utilised to validate the toggle-switch
model’s ability to predict LC phenotypes. Whilst model 3 appeared to perform best at satisfying our
model criteria we tested both models 2 and 3 for a more comprehensive analysis of model
performance. Here, we investigated the correspondence of the model in silico predictions to match
observations from scRNA-seq data, in which DEG analysis comparing steady-state breast skin and
foreskin LC revealed foreskin LC to be an increased state of immunogenic and inflammatory

response activation (Figure 68A&B).

Using model 3, the majority of steady-state breast skin LCs, were identified to be in the dual state
(68.95%), as well as the tolerogenic state (28.64%)(Figure 68B). Steady-state LCs therefore appear
primed ready for both immunogenic and tolerogenic responses, with a favouring for the tolerogenic
state. In contrast to breast skin, foreskin steady-state LC followed trajectories to all 3 states, with a
greatincrease in the number of tolerogenic state (57.87%) and immunogenic state LCs (15.2%). This
observation of increased immunogenic state LCs was consistent with the increased
immunocompetent and activated transcriptomic profile of foreskin steady-state LCs compared to
their parallels from the breast observed during DEG analysis in Chapter 5. Breast skin migrated LCs
displayed similar state profiles to abdominal skin migrated LCs in the unstimulated/TNFa
stimulated dataset, with the majority of LCs in a dual (59.71%) and tolerogenic (39.42%) state. This
therefore validates the consistency of model predictions across datasets with similar constituents.
DEG analysis from Chapter 5 revealed that increased immunocompetency and an association with
immune effector processes were central to migrated LCs from both skin tissues. However, similar
to observations in foreskin steady-state LCs, foreskin migrated LCs were specifically associated with
inflammatory responses. Consistent with these findings were our observations that migrated
foreskin LCs followed trajectories to all 3 states, with an increased proportion of LCs in an
immunogenic state (11.76%), similar to what was observed in steady-state foreskin LC. Comparable
between breast skin and foreskin LCs was the observation that steady-state LC state profiles reflect
those observed in migrated LC, suggesting that the phenotypes LC exhibit maybe predisposed prior

to migration.
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Using model 2, despite the expression of IRF1, IRF4, RELB and MAP3K14 being relatively low in
steady-state breast skin LCs, the majority of trajectories in model 2 ended in the dual state (52.32%)
and tolerogenic state attractors (45.28%)(Figure 68C). Predominant tolerogenic (59.13%) and dual
(40.0%) state were also exhibited by migrated breast skin LCs, similarly suggesting the pre-
disposition of cell states prior to migration like in model 3. However, in comparisons to model
predictions for unstimulated abdominal skin migrated LCs in which a significant proportion of LCs
were labelled as being immunogenic, there was absence of a significant population of immunogenic
state LC in migrated breast skin LCs. Therefore, unlike model 3, the predictions for unstimulated
migrated LC from breast skin and abdominal skin were not comparable despite the relative
similarities between tissues and processing. Still, trajectories for foreskin steady-state (14.13%) and
migrated (9.8%) LC could be observed in the immunogenic state, in line with transcriptomic

observations that foreskin LC are more immunogenic and inflammatory.

Overall, application of the toggle-switch model 3, to other LC datasets revealed consistencies in
model predictions and produced model predictions that were concordant to observations from DEG
and gene ontology analysis. The toggle-switch model therefore appears to be an effective tool for
predicting the proportion of LCs displaying immunogenic, tolerogenic or dual phenotypes from

transcriptomic data.
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Figure 68. The optimised LC toggle-switch model can be applied to other single cell datasets of LCs

to predict LC phenotypes. State space phase plane plot with single LC trajectories plotted from

steady-state and migrated breast skin and foreskin derived LCs using models 2 (A) and 3 (B). For each

LC (line in the phaseplane) X-axis = Z-scores combining IRF1 (and IRF4 in model 3) expression scaled

between 0-2, Y-axis — Z-scores combining IRF4, RELB and MAP3K14 expression scaled between 0-2.

Pie charts alongside display numbers and percentages of cells assigned to each state/phenotype.
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7.3 Discussion

Single cell transcriptomic analysis and the results from in vitro experimentation, measuring LC
ability to induce tolerogenic T cell immunity, revealed that LCs extracted through migration were
better primed for tolerance induction than steady-state LC. However from other studies measuring
LC immunity, migrated LCs have also been shown to potently induce immunogenic T cell responses
(Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012)(Klechevsky et al., 2008), indicating
plasticity of LC function. Such plasticity can potentially be affected by signals from pathogens,
dangers, and microenvironment. E.g. cytokines within the epidermal compartment are key
regulators of LC immunological function and determine immune response outcomes. TNFa is a
powerful proinflammatory cytokine produced by KCs, the structural cells of the epidermis, which
enhances LC activation and cellular migration (Stoitzner et al., 1999)(Théry and Amigorena, 2001).
TNF-a. also enhances LC capacity to cross-present antigen and prime immunogenic CD8 T cells
(Sirvent et al., 2020). The conflicting observations using migrated LC in vitro have therefore revealed
the complexity in discerning the decision-making process of LCs to drive either immunogenic or
tolerogenic responses. Overall, from published data and our own observations, unstimulated
migrated LC appear to be primed for the induction of both immunogenic and tolerogenic T cell
responses. The association of LC migration, during homeostatic conditions, in driving immune
tolerance to self-antigen, suggests tolerance induction may even be favoured(Hemmi et al.,
2001)(Yoshino et al., 2006). However, under different conditions, such as inflammatory cytokine
signalling (TNFa), it would be expected that the propensity of LCs to drive either response will
change. Here, we applied mathematical modelling using a ‘toggle-switch’ system, to a GRN

depicting the immunogenic vs tolerogenic decision making process in LCs.

7.3.1 The unstimulated and TNFa stimulated migrated LC population is predominantly

composed of 3 clusters, defined as being mature, immunogenic and tolerogenic

Drop-seq analysis of migratory LC compared to steady-state LC in Chapter 3, revealed the migrated
LC population to be homogenous. Whilst migrated LC have enhanced immunogenic and tolerogenic
capacity it was therefore unlikely that highly distinct populations promote either immunogenic or
tolerogenic immune responses. The decision-making process of LC to direct either tolerogenic or
immunogenic immune response was therefore unclear. Using scRNA-seq we explored whether
immunogenic stimuli (TNFa) would induce changes in transcriptome expression that would reveal
divergent programming of tolerogenic and immunogenic states. UMAP dimensionality reduction
analysis revealed the TNFa stimulated population to be differential to unstimulated migrated LC.

However, whilst a subpopulation of TNFa stimulated LC could be identified, both unstimulated and
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TNFa stimulated LC were part of one overall cluster. The genomic programming induced by
migration was therefore predominant over any changes induced by stimuli. This is consistent with
our observations that the dramatic changes in genomic programming of LCs that occur during
migration are fundamental for an enhanced activation state and LC immune potential (Sirvent et
al., 2020). In this instance, LCs were stimulated post migration and therefore after the migration
induced genomic programming. Whilst TNFa. did modulate LC transcriptomes post-migration, it
would also be interesting to observe the transcriptomic changes induce when LCs are stimulated

during the migration process.

Unsupervised clustering analysis identified 4 subpopulations amongst the combined unstimulated
and TNFa stimulated population, with the majority of cells categorised into 3 of these clusters.
Based on marker gene analysis these 3 clusters were categorised as immunogenic, tolerogenic and
primed LCs. Here, immunogenic LCs were composed of predominantly TNFa stimulated LCs,
tolerogenic LC were composed of predominantly unstimulated LCs and primed LCs contained a
relatively equal proportion of both. Consistent with functional studies of TNFa stimulated migrated
LCs, in which enhanced antigen cross presentation is observed (Sirvent et al., 2020), DEGs
upregulated in LCs stimulated with TNFo were associated with alpha-beta T cell activation (CD8+)
and Thl differentiation, highlighting their increased immunocompetency. Interestingly, a
consistent observation in TNFa stimulated LCs and immunogenic cluster 1 was the identification of
genes associated with tolerogenic regulation alongside immunogenic pathways. The simultaneous
upregulation of both tolerogenic and immunogenic pathways, overall appears counterproductive if
during the context of inflammatory signalling, immunogenic responses are required. However,
some tolerogenic associated genes upregulated in TNFa stimulated/immunogenic LC are
implicated in feedback mechanisms in response to inflammatory pathway activation. SOCS1 for
example, isimplicated in the restriction of TLR signalling, as well as TNFa. and IL-1 cytokine signalling
in immune activated DCs (Gilboa, 2004), whilst DUSP1 functional studies in murine macrophages
have demonstrated its importance for preventing endotoxin induced shock in response to LPS
(Hammer et al., 2006). Furthermore, NFKBIA, a component of the 1kB complex, is induced by NFkB
activation and sequesters NFkB induced cytokine production and immune activation (Dorrington
and Fraser, 2019). During inflammatory signalling the tolerance associated genes upregulated could
therefore be required for finetuning immunogenicity and preventing overactivation, rather than
inducing functional tolerance. Furthermore, whilst CD80 and CD86, were included in the tolerance
associated gene list, equally there association with immunogenic activation in DCis well recognised

(Lenschow, Walunas and Bluestone, 1996).

Tolerogenic cluster 2 LC marker genes were specifically associated with negative regulation of

immune system process, contributed by elevated IDO1 expression, which we have validated as
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being an important inducer of LC tolerogenic function in vitro. Furthermore cluster 2 LC and all
unstimulated migrated LCs were absent for the induction of immunogenic (CD8+ and Thl)

programmes. This overall may lead to dominating tolerogenic responses.

Immunogenic and tolerogenic LCs appeared to represent LC states primed for opposing immune
regulation. Cluster 3 primed LCs however were marked by the expression of fundamental LC
programmes such antigen presentation and ATP metabolism (Romani et al., 2003), which during
pseudotime analysis, appeared to be capable of following trajectories to both immunogenic and
tolerogenic LC states. Interestingly, when comparing both cluster 1 immunogenic and cluster 2
tolerogenic LCs to baseline cluster 3 primed LCs, the predominant upregulated biological pathways
appeared very similar (regulation of immune system process and response to cytokine). This
suggested that similar biological pathways are activated during the transition from a primed state
to an activated immunogenic/tolerogenic state. The overall differences driving the uniqueness of
immunogenic and tolerogenic clusters may therefore be fairly subtle in the context of the whole
transcriptome. Of note however were the pathways upregulated in cluster 3 primed LCs in
comparison to cluster 1 immunogenic and cluster 2 tolerogenic clusters. In comparison to
tolerogenic cluster 2 LCs, cluster 3 LC DEGs were associated with leukocyte activation processes.
This difference however was not associated with the DEGs upregulated in primed cluster 3 LCs
compared to immunogenic cluster 1 LCs. These biological processes were therefore specifically
downregulated in the transition from primed LCs to the tolerogenic LCs, suggesting finetuning of
the tolerogenic LC transcriptome for activation of immune pathways that specifically promote
tolerance. In contrast the biological pathways upregulated in primed cluster 3 LC and
downregulated in immunogenic cluster 1 LC included ATP metabolism. This again highlights the
association of metabolic processes with immunological programming of DCs towards tolerogenic

responses (He et al., 2019)(Wculek et al., 2019).

During analysis of the genes upregulated in cluster 1 immunogenic and cluster 2 tolerogenic, when
compared to cluster 3 primed LCs, a significant proportion of genes mutually upregulated were
identified. This again indicates the presence of a core upregulated programme during the transition
from a primed state towards tolerogenic and immunogenic LCs. Intriguingly, included in the core
programme was /DO1. However, similar to the tolerogenic associated genes upregulated in TNFa
stimulated LC, even /IDO1 is induced by inflammatory signalling such as IFNy and LPS, suggesting
that it is also implicated in feedback mechanism to sequester overactivation (Harden and Egilmez,
2012)(Curti et al., 2009). Interestingly however, fewer upregulated DEGs were identified during
comparison of cluster 2 tolerogenic LCs with cluster 3 primed LCs, suggesting that primed LCs are
more similar and therefore more predisposed to becoming tolerogenic. We therefore postulate

that without inflammatory stimuli in the steady-state, primed LCs favour trajectories towards
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tolerogenic states, whilst during inflammatory conditions primed LCs must induce more dramatic

changes in genomic programming to follow trajectories to a more immunogenic state.

7.3.2 Utilising a toggle-switch ODE model permitted in silico exploration of the key

regulators of tolerogenic and immunogenic LC programming

We utilised an ODE toggle-switch model, in which two TF mediated pathways display auto
amplification of their own activity and cross inhibition of the other (Huang et al., 2007). Huang et
al. previously used this model to investigate the lineage potential of a stable population of bipotent
cells towards either erythroid and myeloid differentiation pathways, with an intermediate stable
state. We hypothesised that the model reflected the landscape of LC immune responses, in which
cells could be categorised into distinct immunogenic and tolerogenic pathway phenotypes/states,
as well as an intermediate dual phenotype/state, in which both pathways were equally active. We
set criteria in order to test the model’s accuracy. Firstly, that unstimulated migrated LCs were
mostly classified to be in a tolerogenic or dual state of activation. This would therefore reflect: our
observations of tolerogenic T cell responses induced by migrated LC; observations from other in
vitro studies displaying the induction of both immunogenic (CD8+ and Th2 CD4+) and tolerogenic
(Treg) T cell responses, and the potential preference for inducing self-tolerance through self-
antigen trafficking in non-inflammatory conditions (Sirvent et al., 2020)(Polak et al., 2014)(Polak et
al., 2012)(Klechevsky et al., 2008)(Seneschal et al., 2012)(Hemmi et al., 2001)(Yoshino et al., 2006).
Secondly, an observed increase in immunogenic state LCs after TNFa stimulation, to reflect the
enhanced transcriptomic profile associated with alpha-beta CD8+ T cell activation identified in
single cell analysis and observations in vitro, in which improved antigen cross-presentation and
antiviral immunity is seen (Sirvent et al., 2020)(Polak et al., 2014)(Polak et al., 2012). Finally, the
proportions of the 3 states in cluster 1 immunogenic and cluster 2 tolerogenic LC, would reflect
their transcriptomic profiles from gene ontology analysis, which identified preferences for

immunogenic and tolerogenic responses, respectively.

Our investigations into the unstimulated and TNFa stimulated migrated LC populations revealed
that the transcriptomic changes induced by inflammatory signalling were subtle in the context of
the whole transcriptome. However, unique mechanisms of gene regulation in immunogenic and
tolerogenic LC clusters could be identified and were therefore underlined by unique TF regulators.
Exploration of key pathway defining TFs through assessing cluster marker genes, DEG analysis and
SCENIC regulatory network inference analysis, highlighted /RF1 and IRF4 as being preferentially
activated in immunogenic and tolerogenic LCs, respectively. In DCs, TLR-9 induced /RF1 induction
leads to the induction of IFN[3 and interferon stimulated genes, driving efficient anti-viral immune

responses (Schmitz et al., 2007). IRF1 activation in macrophages is associated with the polarisation
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of macrophages towards the pro-inflammatory M1 phenotype (Chistiakov et al., 2018). In fibroblast
like synoviocytes (FLS), which are implicated in the inflammation in rheumatoid arthritis, TNFa
mediated induction of IRF1 leads to induction of inflammatory mediators, such as IFN3 (Bonelli et
al., 2019). IRF1 upregulation in TNFa stimulated LCs is therefore in accordance with its association
with pro-inflammatory and immunogenic activation. In contrast, IRF4 was associated with the
expression of tolerogenic genes during analysis of migrated breast derived and foreskin LCs,
including IDO1. Moreover, IRF4 activity has been associated with tolerance and homeostasis
regulation in LCs, DCs and macrophages. CRISPR-Cas9 knockout of IRF4 in human LCs has associated
its expression with the suppression of cytokine response and oxidative stress signalling pathways
(Sirvent et al., 2020). Furthermore, in murine bone marrow DCs from /RF4 knockouts, impaired Treg
induction, reduced expression of RALDH2 and PD-L2 and increased expression of pro-inflammatory
cytokines (TNFa. and IL-12) are observed in vitro, as well as in vivo observations of impaired priming
of peripheral tissue Tregs (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). In murine macrophages,
IRF4 is responsible for downregulating hyperresponsiveness to TLR signalling, with /RF4 knockout
mice displaying increased IL-12 and TNFa expression, resulting in death by uncontrolled
inflammation (Honma et al., 2005). In the context of Leishmania major infection, murine IRF4
knockout DCs displayed increased induction of Thl cells and the proinflammatory cytokine IL-12
(Akbari et al., 2014). In silico modelling of the toggle-switch model using just IRF1 and IRF4 to define
immunogenic and tolerogenic LC however, was insufficient to recapture the immunological
landscape of LCs that reflects observed phenotypic migrated LC data, as it overproduced the

number of LCs defined be in an immunogenic state.

The results from model 1 suggested an imbalance in the model, implying that factors critical for the
induction of tolerogenic responses were missing. During the optimisation process we considered
other TFs which could influence immunogenic vs tolerogenic regulation. Interestingly, the majority
of TFs identified as potential regulators of tolerogenic programming in migrated LCs from Chapter
5 were not differentially regulated between unstimulated and TNFa stimulated LC, suggesting they
were core to migrated LC genomic programming and immunocompetency, rather than
immunotolerance specifically. This assumption was further supported in our control model, in
which homogenous output of model predictions was observed. However, MAP3K14, otherwise
known as NIK, the critical inducer of the non-canonical NFkB pathway, was identified as being
upregulated in cluster 2 tolerogenic LCs. Additionally, in Chapter 5, the functional TF component of
the non-canonical NFkB pathway RELB, was identified as one of the upregulated TFs associated
with the tolerogenic programming of migrated LCs, correlating with the expression of several
tolerogenic genes, especially IDO1. RELB and the non-canonical NFkB pathway are implicated in DC

tolerance. In steady-state migratory murine langerin+ DDCs, RELB expression is required for self-
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antigen transport and Treg induction(Azukizawa et al., 2011) and in human MoDCs and pDCs, RELB
is implicated in the induction of IDO1 expression and Tregs (Tas et al., 2007)(Manches et al., 2012).
Transfer of RELB+ DCs into RELB knockout mice, which have spontaneous allergic airway
inflammation, also leads to a reduction in chemokines and Th2 cytokines, to prevent lung tissue
inflammation and damage (Nair et al., 2018). Furthermore, RELB+ DCs, can alleviate systemic
inflammation in RELB knockout mice, through augmenting Tregs, in an IDO-dependent manner
(O’Sullivan et al., 2011). Interestingly, the relatively homogenous expression of RELB across both
unstimulated and TNFa stimulated LC suggest all LC may be primed ready for activation of
tolerogenic pathways dependent upon increased MAP3K14 expression. In the context of resolving
of inflammation, rapid induction of MAP3K14 to activate pre-existing RELB, may swiftly redirect LC
responses towards tolerance. Inclusion of MAP3K14 and RELB in model 2 reduced the
overestimation of immunogenic state LCs to be more in line with the model criteria. However, the
predicted quantities of immunogenic LCs were equal between unstimulated and TNFa. stimulated
LC, with stimulated LCs just displaying an increase of LCs in a dual state and therefore reduction of
tolerogenic state LCs. Whilst this could imply that the model is unbalanced in immunogenic defining
TFs, it could also suggest that the determining of increased immunogenic responses is not simply
mediated by increasing the quantity of LCs in a uniquely immunogenic state, but is induced by

decreased activity of potently immunosuppressive tolerogenic state LCs.

When we reviewed the current understanding of LC genomic programming during immune
regulation, we questioned the exclusivity of /IRF4 activation for tolerogenic responses only.
Observations from human LC single cell RNA-sequencing implicate IRF4 expression with
immunogenic regulation. Here, IRF4 expression coincides with the programming of antigen
presentation and cross-presentation pathway genes, as well as the observation that LC maturation
and immune activation genes are downregulated in IRF4 CRISPR-Cas9 knockouts (Sirvent et al.,
2020). IRF4 expressing DCs, in the context of influenza infection, are required for effective CD8+ T
cell activation and the alleviation of disease pathology (Ainsua-Enrich et al., 2019). Murine studies
have also revealed a dependence for DC IRF4 expression in mediating Th2 differentiation (Williams
et al., 2013). IRF4 therefore appears core to both immunogenic and tolerogenic LC states, which is
supported by the observation that IRF4 knockout mice are diminished in ability to induce both
effector T cells and Tregs (Vander Lugt, Riddell, Aly A. Khan, et al., 2017). Additionally, whilst IRF4
expression was increased in tolerogenic cluster 2 LCs, its expression was well distributed across
both unstimulated and TNFa stimulated LCs. This could infer that modulation of /RF4 expression
levels is important in regulating immunogenic vs tolerogenic LC responses. Here, moderate /RF4
expression in the context of high IRF1 expression would favour immunogenic responses, whilst high

expression of IRF4 in the context of high non-canonical NFkB activation would favour tolerogenic
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responses. The inclusion of IRF4 in both immunogenic and tolerogenic arms of the model in model
3, led to the satisfaction of the model criteria, with a predominance for unstimulated migrated LCs
to be in a tolerogenic or dual state and an increase in immunogenic state LCs after TNFa
stimulation. Interestingly, model 3 predicted the majority of both unstimulated and TNFa
stimulated LCs to be in a dual state. However, in accordance with the close localisation of cluster 2
tolerogenic LCs and cluster 1 immunogenic LCs in UMAP space, we believe model 3 predictions may
reflect the overall spectrum of immunogenic to tolerogenic states, in which only the very few cells
at the extreme ends of the spectrum are classified as uniquely immunogenic or tolerogenic LC.
Here, the majority of cells are somewhere in the middle, perhaps as stable intermediate states, or
as LCs at earlier timepoints in their transition to specifically tolerogenic or immunogenic LCs. The
near absent proportion of LCs in an immunogenic state in migrated LC, was also in line with UMAP
plotting, in which the immunogenic cluster 1 population was mostly composed of migrated TNFa
stimulated LCs, especially at the periphery of the cluster, which may reflect LCs in the most potent
immunogenic states. Furthermore, in line with the more similar expression profiles of cluster 3
primed and cluster 2 tolerogenic LCs was the observation of comparable predicted trajectories.
Whilst primed cluster 3 were phenotypically not defined as immunogenic or tolerogenic and may
be expected to be in a dual state, the model predictions may reflect the end points for the pathways

primed LCs are undertaking.

Overall, utilisation of scRNA-seq data for mathematical modelling permitted analyses of the
immunogenic vs tolerogenic governing GRNs, allowing detailed investigations into LC population
dynamics, which to our knowledge is previously unexplored. Whilst scRNA-seq allowed single cell
resolution into exploration of LC phenotypes, it also important to consider how limitations in
scRNA-seq technologies may affect results. Thus, random drop-outs of transcript detection may
hinder the accurate identification of LC phenotypes, through absent detection of TFs included in
the models which define the different states, as well as the detection of other key phenotype
defining TFs, which were not identified in our analysis. To further validate the accuracy of model
predictions, the identification of specific markers distinguishing immunogenic, tolerogenic and dual
state LCs in unstimulated and TNFa stimulated populations could allow each state to analysed in
vitro. Here, the expression of the immunogenic vs tolerogenic state defining TFs, could be

confirmed at the protein level.

733 Application of the toggle switch model to steady-state and migrated LC datasets.

captured the same observations from single cell transcriptomic analysis

To test and validate models 2 and 3, we applied them to the breast skin and foreskin steady-state

and migrated LC datasets to see if the model predictions matched observations from single cell
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transcriptomic analysis. In model 3 we found that the unstimulated migrated LCs from both
abdominal and breast skin datasets displayed the same profile of the 3 states, demonstrating the
consistency of the model’s predictions. However, comparison between abdominal and breast skin
migrated LCs for model 2 predictions however revealed differences in output. Whilst, this suggests
lack of translatability of model 2 to other datasets, we must also consider that this may be a result
of heterogeneity between samples and tissues. Interestingly, in both models, steady-state LCs were
observed to have very similar profiles to migrated LC, which suggested that the preference of LCs
to be in each state may be predetermined prior to migration. However, we acknowledge that the
low expression of the model’s TFs in steady-state LCs, may influence the accuracy of these
predictions. Consistent with our observations during comparison between steady-state and
migrated breast skin and foreskin LC transcriptomes (Chapter 5), in which foreskin LCs display
enhanced inflammatory profiles, was the fact that both models revealed an increase in the number
of immunogenic state LCs in foreskin data simulations. This increased number of LCs assigned to an
immunogenic state in foreskin LC simulations similarly reflected the increase observed in TNFa
stimulated LCs, thus supporting the reporting of the foreskin to be a pro-inflammatory tissue
marked by elevated pro-inflammatory cytokines (Prodger et al., 2012). Interestingly, in both
foreskin LC populations, both models predicted that a larger proportion of LCs were in a tolerogenic
state compared to breast skin LCs. This difference may reflect the finding that /IDO1 expression was
increased in foreskin populations compared to breast skin populations, respectively (Chapter 5).
Foreskin LCs therefore represent a population more defined by uniquely immunogenic and
tolerogenic states compared to breast and abdominal skin, which may reflect a distinct

immunological role at the foreskin not required in other skin tissues.

Overall, we have highlighted the complex transcriptomic regulation that underlines the LC decision
making process to initiate either immunogenic or tolerogenic immunity. Through single cell
transcriptomic analysis and mathematical modelling, we have revealed that subtle changes in
genomic programming may be sufficient to alter LCimmunological responses. Here, we have shown
that external signalling, such as pro-inflammatory TNFa, can modulate the proportion of LCs in
different immunological states. This may therefore reflect how LCs balance the need for different
immunological responses to diverse biological stimuli. Furthermore, we have highlighted specific
TF regulators critical for the modulation of both immunogenic and tolerogenic LCs states, which
when translated into a mathematical model, we have demonstrated has the potential to predict LC

phenotypes across different LC transcriptomic datasets.
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Chapter 8 Final discussion/future work

8.1 The requirements for systems immunology methods to understand

LC tolerance regulation

Despite LCs being the most studied antigen presenting cell populations, since their discovery by
Paul Langerhans in 1868, their biological role in the immune system is still obscure (Valladeau and
Saeland, 2005). LCs can be classified somewhere in-between classical DCs and macrophages, due
to powerful antigen presenting capacity and distinct ontology, respectively (Doebel, Voisin and
Nagao, 2017). Their specific residence at the epidermis, in the context of the skin, suggests a
fundamental role for LCs here, which cannot be replaced by conventional DCs or macrophages.
Increasingly, LCs have been critically associated with homeostatic regulation and tolerance (West
and Bennett, 2018)(Clayton et al., 2017) (Berger et al., 2006)(Mutyambizi, Berger and Edelson,
2009)(Seneschal et al., 2012)(Hemmi et al., 2001)(Yoshino et al., 2006). However, like tolerance
regulation in conventional DCs, the precise molecular mechanisms central for tolerance regulation
in LCs are overall elusive. In this project we therefore sought to expand understanding of LC

tolerance regulation.

The challenges that have opposed the unveiling of LCs fundamental role in immunity, are the
paucity of in vitro models, difficulties in obtaining sufficient cell numbers from tissues for functional
studies and the discrepancies between human and murine immunology (Mestas and Hughes, 2004).
These same scientific boundaries have therefore also hampered investigations into DC/LC tolerance
regulation, specifically. The current theories for how the regulation of DC tolerance is determined
include the concepts that immaturity equips tolerogenic function, as well as the idea that tolerance
is promoted by unique subpopulations of DCs within tissues (Banchereau and Steinman,
1998)(Steinman et al., 2000)(Mellman and Steinman, 2001)(Steinman, Hawiger and Nussenzweig,
2003). The transcriptomes of cells contain information regarding cell state and function. However,
classical bulk RNA sequencing methods are unable to evaluate population heterogeneity and
therefore incapable of assess whether such subpopulations of LCs exist in situ which promote
diverse immune response outcomes. Furthermore, methods such as flow cytometry in which the
phenotypes of individual cells can be assessed, are restricted to the investigation of only a select
number of molecules. In recent years however, the rapidly advancing field of scRNA-seq has given
unprecedented opportunity for scientists to broadly investigate whole transcriptome expression in
individual cells across cell populations (Shapiro, Biezuner and Linnarsson, 2013)(Hwang, Lee and

Bang, 2018). We therefore utilised the open-source system Drop-seq, a highly utilised scRNA-seq
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protocol due to its speed, reliability and cost effectiveness ($0.10 per cell), with the additional
advantage of being open to adaption, such as targeted approaches(Constellation Drop-seq, BD
Rhapsody)(Macosko et al., 2015)(Zhang et al., 2019)(Vallejo et al., 2019)(Shum et al., 2019).
Alongside the development of scRNA-seq methods, is the expansion of impressive bioinformatic
methods, including optimised normalisation, dimensionality reduction and clustering pipelines,
which greatly improve molecular and cellular biological discoveries (Chen, Ning and Shi, 2019). In
our analyses, we adopted optimised procedures and cutting-edge bioinformatic methodologies to
comprehensively investigate our research questions. Studies investigating cell states and
population heterogeneity using scRNA-seq are now widely documented across broad
immunological fields, including the skin (Villani et al., 2017)(Cheng et al., 2018)(Joost et al., 2018).
However, to our knowledge this study is the first time detailed scRNA-seq exploration into the
determinants of LC tolerogenicity have been performed and until now the heterogeneity present

within human LC populations at both the steady-state and after migration was unknown.

One of the key advancements transcriptomic analyses has permitted, is the investigations of
complex GRNs which govern the regulation of specific cellular responses and phenotypes.
Transcriptomic studies by Ido Amit et al. have demonstrated how dynamic interplay between TFs
in DC GRNs direct diverse immunological outcomes in the context of pathogen specific responses
(Amit et al., 2009). Furthermore, from exploring GRN regulation during haematopoiesis, Olsson et
al. have revealed the hierarchical transition from haematopoietic progenitor cells to monocytic and
granulocytic lineages (Olsson et al., 2016). Discerning such discoveries on GRN dynamics using
classic functional in vitro methods would be incredibly challenging, if not impossible, due to the
sheer number of molecules that would need to be experimentally measured and validated. GRN
discoveries are therefore critical for informing on transitional cell states and pathways of cellular
differentiation, at the steady state and under different biological conditions. Additionally, the
utilisation of single cell transcriptomic data allows investigations into how GRNs are differentially
regulated amongst cell populations. Hence, in our analysis the exploration of GRNs governing LC
tolerance appeared fundamental to not only comprehend the distinct feature of LC tolerogenic

transcriptomes, but also understand how they are regulated amongst the whole population.

Significant for scientific developments into the interpretation of transcriptomic data, especially
single cell, are the applications of computational in silico modelling methods. The use of
mathematical modelling techniques with transcriptomic data has undoubtedly expanded the
capacity to understand previously obscure biological phenomenon in diverse research fields
(Eftimie, Gillard and Cantrell, 2016). For example, in studies of GRNs in stem cell biology, the
capacity to test multiple scenarios/versions of ODE models in silico has informed on the transitional

pathway dynamics which underpin differentiation of embryonic stem cells to neuroprogenitor
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cells(Stumpf et al., 2017). In murine bone marrow derived macrophages and fibroblasts, the use of
ODE modelling and model iteration has also revealed how the regulation of diverse pathogen
response programmes by TFs (NFkB, IRFs, AP-1) is coordinated, as well as stimulus specific
durational responses during NFkB activation (Cheng et al., 2017)(Sen et al., 2019). Mathematical
modelling therefore allows unprecedented opportunity to test diverse hypotheses and unrestricted
reiterative analyses. In LCs, the power of Petri-net modelling of GRNs for investigating immunogenic
responses in response to divergent stimuli (TNFa and TSLP) has been shown (Polak et al., 2017).
ODE modelling has also been used to predict the pathway of LC repopulation from progenitor cells
in murine models of GVHD (Ferrer et al., 2019). However, until now the utilisation of ODE
mathematical modelling, to investigate the GRNs mediating the decision-making process between

immunogenic vs tolerogenic LC regulation, was unexplored.

Overall, in this project the application of broad cutting-edge scientific methods, such as bulk and
single cell transcriptomic analysis, functional in vitro experimentation using primary tissues and
mathematical modelling, allowed wide-spectrum, comprehensive analyses. This allowed us to
discern the unique transcriptomic programmes underlying DC/LC tolerance; the immunological
differences between LCs and other DC subtypes; identify critical mediators of human LC tolerance
and determine the underlying TF regulatory networks which govern the propensity for the

activation of different LC immune activation pathways.

8.2 Key findings and main conclusions:

1. LC tolerogenic transcriptomic programmes are largely distinct compared to other
DC subtypes

e MoDC model systems of DC tolerance revealed a lack of a uniform tolerogenic signature is
induced in the context of tolerogenic stimuli/conditions, other than downregulation of
inflammatory signalling.

e LC transcriptomes are largely unique to other tolerogenic associated MoDC and tissue
derived DC (DDC, PlaDC), with few common tolerogenic associated pathways identified.

2. Migration and immunocompetency enhance LC tolerogenic function

e Steady-state LC and migrated LC transcriptomes are distinct, with enhanced tolerogenic
programming observed in migrated LCs.

e The heterogeneity exhibited between steady-state and migrated LC populations from
breast skin derived LCs and foreskin LCs revealed the importance of the tissue
microenvironment in regulating LC phenotypes.

e Immunocompetency of LC is critical for the capacity to induce Tregs.
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e LCinduction of Tregs is enhanced in migrated LCs compared to steady-state LCs.

3. A GRN underpins immunogenic vs tolerogenic LC activation

e |RF4, RELB (non-canonical NFkB) and /RF1 seem to be the key TF regulating LC
tolerogenicity vs immunogenicity

e Subtle changes in genomic programming, determined by an immunogenic (/IRF1#IRF4) vs
tolerogenic (IRF4/MAP3K14/RELB) TF regulatory axis, may alter LC phenotypes to favour

immunogenic vs tolerogenic responses.

8.3 The distinct transcriptomics underlying LC immune regulation were

revealed

Analysis of MoDC transcriptomes revealed that distinct tolerogenic gene regulation are induced
under tolerogenic conditions, which we initially postulated could be common across different DC
subtypes. Whilst tolerogenic MoDC signatures were overall unique, we discovered MYC to be
consistently upregulated across different tolerogenic conditions (Dex/VitD3, IL-10, MPLA-Dex),
highlighting it as potential key regulator of DC tolerogenic function. Using the LC IRF-GRN we
identified a hypothetical co-repressive interaction between MYC and IRF1/IRF4, which when
incorporated into the model could be shown to control a switch between immunogenic and
tolerogenic MoDC profiles. Interestingly, in both breast skin and foreskin steady-state LCs, we
observed an increase in MYC expression and enhancement of the MYC regulon, which contrasted
migrated LCs that showed increased IRF4 expression and enhancement of the /IRF4 regulon.
Furthermore, MYC and IRF4 were differentially regulated between steady-state and migrated LC,
respectively. This could therefore suggest that the co-repressive interaction between these TFs is
present in LCs. However, in CRISPR-Cas9 /IRF4 knockout in human LC, changes in MYC expression
were not detected (Sirvent et al., 2020). Furthermore, our analysis has highlighted a possible role
of IRF4 in tolerogenic regulation, which has also been demonstrated by others (Vander Lugt, Riddell,
Aly A Khan, et al., 2017)(Honma et al., 2005)(Akbari et al., 2014)(Sirvent et al., 2020), therefore
disputing MYC repression of IRF4 expression as a mechanism for tolerance induction in LC.
Investigations into the presence of this possible co-repression mechanism in MoDCs, through
CRISPR-Ca9 knockouts, siRNAs or small molecular inhibitors of MYC and IRF4, could reveal if this is
a mechanism utilised in other DC subtypes. With consideration of our transcriptomic and
mathematical modelling results, displaying the vast differences between LCs and MoDC
programming and our understanding of their differing ontologies and in vitro generation, we must
appreciate that mechanisms of immune regulation in different DC subsets could greatly differ. Our
analysis overall allowed us to conclude that MoDCs would not be the most applicable model for

understanding true LC biology, leading us to focus our analysis in the project and in future studies
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on using primary human LCs. Due to the distinctness of MoDC transcriptomes compared to tissue
derived DCs, and the distinctness between tissue derived DCs themselves, we would furthermore

advise caution when universally reflecting MoDC tolerogenic function to conventional DCs.

Tolerogenic programming of DC is elusive and despite our extensive explorations comparing
different DC subtype transcriptomic programmes, a consistent tolerogenic signature was not
identified, thus highlighting the overall complexity of DC tolerance regulation. Strikingly revealed
from comparative analysis between LCs to other DC subtypes however, were their unique
transcriptomic profiles, in which LCs displayed preferentially decreased expression of inflammatory
associated genes. This overall highlighted that the regulation of LC tolerance was likely distinct to
other DCs. The specific requirements for LC tolerogenic regulation has been speculated to be due
to their residence in the epidermal skin compartment, which is highly exposed to diverse antigenic
stimuli and must be responded to appropriately to prevent harmful inflammation (Nestle et al.,
2009)(Clayton et al., 2017). LCs are not the only APCs found within skin however, with DDCs situated
in the underlying dermis. Confusingly, in substantial studies, LCs seem dispensable for immunity to
antigen and infectious agents, suggesting that the presence of DDCs in skin is sufficient for
protecting immune responses (Shklovskaya et al., 2011)(Ritter et al., 2004)(Allan et al., 2003).
Whilst this may suggest a predominant role for LC tolerogenic responses, skin residing DDCs are
also linked with tolerogenic function (Haniffa, Gunawan and Jardine, 2015)(Chu et al., 2012).
However, we revealed that alongside the diverse regulation of the whole transcriptome, the
expression of tolerogenic programmes varied between LCs and DDC populations, including the
regulation of IDO1 expression. This therefore implies that whilst tolerance regulation is associated
with populations from both epidermal and dermal skin compartments, the mechanisms and
pathways differ, reflecting the divergent homeostatic requirements of each respective tissue. We
propose that the reasons for different programmes induced in LCs and DDCs from epidermal and
dermal tissues, respectively, could be due to the extent that they are exposed to external stimuli.
In the steady-state and when skin barriers are only partially obstructed at the epidermis, the threat
of pathogenic invasion is minimal and a more regulatory approach coordinated by LCs may be
required (Doebel, Voisin and Nagao, 2017). Furthermore, the epidermal tissue is more highly
exposed to abundant and ubiquitous stimuli, highlighting the importance for precise regulatory
instructions. When both the epidermal and dermal barriers are breached and the threat of
pathogen invasion is increased, DDCs may need to more extensively switch from a tolerogenic
steady-state programme to an effective inflammatory programme to prevent establishment of
infection (van der Aar et al., 2013). This difference in programming is likely influenced by the lifelong
residence of LCs within the epidermal microenvironment and distinct ontogeny, which conditions

LCs for certain immunological pathways. Thus, LC tolerance is likely unique and specifically required
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at epidermal tissues, whilst the mechanisms of DDC tolerance regulation may be more consistently
observed across conventional DC subtypes. However, similar comparative analysis between DDCs
and other conventional DC types would need to be performed to validate this. To more
comprehensively confer the difference between skin DCs at different states to discern key biological
functions, single transcriptomic datasets containing all known DDC populations and LCs could be

analysed together, at the steady-state and post-migration.

8.4 Understanding the roles of steady-state and migrated LC in

tolerance regulation

We had originally hypothesised that LCs in the steady-state would be more associated with
tolerance and would therefore exhibit tolerogenic associated genes within their transcriptomes.
Reduced inflammatory cytokine expression was consistently observed in LC compared to
conventional DC subpopulations. Common pathways identified across tolerogenic in vitro DCs,
tissue derived DCs and steady-state LCs, included negative regulation of response to stimulus, signal
transduction and cell communication. These pathways therefore reflect a state of active
immunosuppression to inflammatory or immune activating stimuli in steady-state LC, that could be
a mechanism for restricting inflammatory signalling pathways at the highly exposed epidermis.
Current concepts in DC biology include the theory that immaturity and inertia to activation are key
to DC tolerance (Banchereau and Steinman, 1998)(Steinman et al., 2000)(Mellman and Steinman,
2001). However, from our in vitro experiments on steady-state LCs, we strikingly revealed that
immunocompetency is fundamental for LCs ability to induce Tregs. This revelation was more in line
with several studies of DC tolerance, which highlight the importance of DC maturity (Yamazaki et
al., 2003)(Kryczanowsky et al., 2016)(Munn et al., 2002). Thus, this implies that for Treg induction
to occur, LCs must be immunologically active and equipped to physically interact with T cells, whilst
mediating immunosuppressive processes to downregulate inflammatory signalling. Whilst we
cannot disagree that in some contexts, DC immaturity is important for T cell tolerance induction,
the assumption that this is the most defined mechanism for tolerance induction could be opposed
from our understanding of circumstances in which inflammatory T cells are activated when not
regulated appropriately by DC. For example, in contexts where DCs are dysregulated and T cells
response are inappropriately initiated, inflammatory autoimmune conditions, such as psoriasis, can
occur (Cruz et al., 2018). Furthermore, ablation of LC in mice exacerbates Th2 cytokine production
in house dust mice allergen (HDM) stimulated T cells, in models of epicutaneous sensitisation
(Deckers et al., 2017). In the skin, CD103+ resident memory T cells also reside within epidermis
tissue, primed for responsiveness to reencountered pathogens (Cruz et al., 2018). As epidermal T

cells are positioned to quickly and actively respond to antigen and mediate inflammation, the ability
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for LCs to actively modulate T cell activity at the steady-state through immunosuppressive
influences, suggests the vitalness of this function to prevent unwarranted inflammatory T cell
activation and thus maintain homeostasis in non-inflammatory conditions. Skin T cells have also
been shown to support keratinocyte growth and development through insulin like growth factor 1
(IGF1) production and IL-22 production (Toulon et al., 2009)(Wolk and Sabat, 2006). Active cross
talk with LC to suppress unwarranted T cell activation may therefore also be critical for upholding

the epidermal barrier.

The enrichment of our defined tolerogenic gene programmes was minimal in steady-state LCs and
as discussed, immunocompetency appeared to be the critical influencer for tolerance induction. To
further validate the criticalness of immunocompetency and even specific molecules for Treg
induction, we could perform co-cultures in the presence of co-stimulatory molecule inhibitors.
Interestingly, inhibition of CD86 or CD80 in human MoDC, can enhance or inhibit Treg activity,
respectively (Zheng et al., 2004)(Perez et al., 2008). Therefore, inhibition of CD86 expression in LCs
would determine if it is utilised in a more tolerogenic mechanism, or similarly dispensable for
tolerogenic function. In comparison to steady-state LCs, migrated LC from breast, abdominal and
foreskin tissues were consistently observed to be enriched for tolerogenic gene modules, which
included IDO1, coupled with immunocompetency. We further validated the importance of /IDO1
expression for Treg induction in vitro, in which inhibition of IDO1 decreased tolerogenic potential.
Performing costimulatory molecule inhibition experiments on migrated LC would therefore reveal
the dependence of immunocompetency in the context of tolerogenic gene activation (/DO1) for
effective tolerogenic function. Like the 3-step induction process (MHC, co-stimulation, cytokines)
(Banchereau and Steinman, 1998)(Cruz et al., 2018) which determines the potency of immunogenic
activation, we suspect a similar induction process may orchestrate tolerance. Here, co-stimulatory
molecules CD80 and CD86 may preferentially bind to suppressive CTLA4, instead of CD28, whilst
the plethora of other tolerogenic ligands and enzymes (e.g. IDO1, HMOX1, LGALS1) may induce a
dominantly tolerogenic context during interaction between LCs and T cells. Whilst IDO1 was the
most obvious candidate for tolerogenic regulation from our analysis, we identified several other
genes upregulated in migrated LC that would be interesting to validate. This included LGALS],
HMOX1, ALDH2 and S100A9. Our finding that /DO1 inhibition does not completely aberrate LC
tolerogenic function suggest these factors are also influential and the identification of similar
molecular inhibitors or silencers of these molecules would therefore validate this. Overall, a
resistance to overstimulation alongside an ability to communicate with T cells and promote Tregs
through immunocompetency appears key for LCs to coordinate tolerance at the steady-state.

However, whilst tolerogenic function of immunocompetent steady-state LCs was revealed, this was
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modest compared to the tolerogenic potential of migrated LC which highly upregulated tolerogenic

gene programmes, going against our initial hypothesis.

Our analysis suggests different immunological roles for steady-state LC residing in epidermal tissue
and LC that have migrated from the epidermis. In line with our observations, we speculate that
steady-state LCs may be responsible for the maintenance of local tissue homeostasis by inducing
moderate turnover of Tregs, whilst resisting over activation and the generation of a
hyperinflammatory state within epidermal tissue. Other key homeostatic functions identified to be
coordinated by steady-state LC in the epidermis, include clearance of apoptotic cells and
maintaining barrier integrity during antigen sampling, similar to the functions of tissue resident
macrophages (West and Bennett, 2018). Hence, this may explain the reduced activity of immune
effector programmes compared to migrated LC, whose main immunological role is to prime T cell
responses at the lymph nodes, like classical DCs. Here, migrated LC phenotypical maturity and
elevated immunocompetency, coupled with the induction of tolerogenic gene modules, may be
required for priming more powerful tolerogenic T cell responses from naivety in the lymph nodes
that are sufficient to induce systemic antigen tolerance. To address and validate some of these
theories, we could perform comparative analysis into the functional tolerance of the LC induced
Tregs to suppress T cell activation in co-culture. This would therefore reveal if Tregs induced in the
context of high immunocompetency and tolerogenic stimuli (/DO1) by migrated LC are more potent
than Tregs induced by immunocompetency alone in steady-state LC. Furthermore, whilst the ability
of steady-state LC to prime Treg differentiation has been demonstrated, the ability to expand
epidermal resident memory Tregs was only explored in migrated LC. Resident memory T cells are
already differentiated towards Tregs and it would therefore be interesting to investigate how
immunocompetency and tolerogenic factors influence expansion. If the former is the most
influential on expansion, then steady-state and migrated LC expansion of resident memory Tregs
could be comparable. This could therefore expose whether Treg expansion by steady-state LCs is
one of their key roles in maintaining homeostasis at the epidermis. Whilst we have critically
evaluated the regulation of Treg induction, other divisions of T cell tolerance induction include the
promotion of T cell apoptosis and anergy (Obregon et al., 2017)(Hasegawa and Matsumoto, 2018).
T cell anergy and apoptosis of effector populations could therefore be measured after co-culture

with LCs, through proliferation assays and annexin V staining, respectively.

Whilst immunocompetency of steady-state LC is critical for Treg induction, how responses are
deviated away from immunogenic T cell activation without the tolerogenic programming seen in
migrated LC is unclear. A plausible explanation could be that T cells resident in the epidermis are
already primed for either regulatory or immunogenic programming. T cells have been observed to

lose plasticity for polarisation into different phenotypes after a threshold of division, which is
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believed to be regulated by epigenetic modifications (Grogan et al., 2001)(Kaiko et al., 2008). Thus,
resident memory T cells in the skin would be expected to be already committed to a specific
phenotype. Therefore, immunocompetent LCs could simply permit the expansion of T cells already
primed to a particular state. Instead, the promotion of different T cell response could be overall
conditioned by the tissue microenvironment, in which most cellular components of skin are capable
of inducing cytokines and chemokines to modulate immune responses (Ho and Kupper, 2019). Here
in steady-state contexts, Tregs could be preferentially active and expanded, whilst in inflammatory
settings, resident immunogenic helper T cell and cytotoxic T cell populations are expanded. In this
model, steady-state LCs therefore have a role for licensing and propagating already primed T cell

immunological pathway, rather than actively determining them.

Our analysis of LC states incorporated investigations at opposite ends of a transitional spectrum —
steady-state and migration. However, in future studies it would be informative to observe the
phenotypes of LCs which remain resident within epidermal tissues after the 48-hour tissue culture,
in which migrated LCs are harvested. Here, we could investigate whether LCs that do not migrate
and are permanently resident in the epidermis have a distinct transcriptome with unique regulatory
features. This would also allow us to discern the possibility that the two steady-state epidermal
populations reflect LCs either primed for residency or migration. From UMAP plotting, steady-state
1/ immature LCs were spatially situated closer to migrated LCs. It could therefore be speculated
that in an immature state, some steady-state LCs are primed for migration, whilst others follow

separate trajectories to immunocompetent resident steady-state populations.

Additionally, we revealed that the tolerogenic stimuli dexamethasone augmented LC tolerogenic
function to induce Tregs, which included enhanced IDO1 expression. Our analysis could therefore
highlight a specific mechanism by which corticosteroid treatment of skin disease leads to alleviation
of inflammation. The characterisation of tolerogenic function from human LCs extracted from
patients with inflammatory skin disease, such as atopic dermatitis, could highlight whether such
LCs have dysregulated tolerance. The level of IDO1 expression in these cells could furthermore

highlight the importance of this molecule for tolerance regulation in diseased tissues.

8.5 The discovery of phenotype specific TFs that coordinate LC
immunogenic vs tolerogenic responses is critical to understanding

how LCs regulate immunity

A key ambition for the project was to discern the logic behind the LC immunogenic vs tolerogenic

decision making process at the TF GRN level. In vivo analysis of human LC behaviour is unfeasible
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and as discussed, in vitro methods are constrained. The utilisation of mathematical modelling is

therefore fundamental to providing the ability to comprehend phenotypic states of LC in situ.

During unbiased and extensive analyses, we explored the expression of TFs across multiple datasets
(LC vs other DCs) and utilised scRNA-seq in conjunction with innovative bioinformatic pipelines
(ScanPy, SCENIC) to uncover phenotype specific TFs. From our scRNA-seq analysis we discovered
that immunogenic gene regulation correlated with /RF1 induction, whilst tolerogenic gene
regulation correlated with upregulated /IRF4, as well as MAP3K14, the activator of RELB and the
non-canonical NFkB pathway. IRF1 upregulation by inflammatory TNFa signalling in LC was parallel
with LPS stimulated MoDCs, clearly associating its expression with immunogenic programming. It
would therefore be interesting to see if IRF1 expression is upregulated by other inflammatory
mediators in LCs, to assess its universality of expression during inflammatory activation. Similar to
CRISPR-Cas9 IRF4 knockout studies in human LC (Sirvent et al., 2020), knockout of /IRF1 expression
in TNFa. stimulated LC could therefore reveal which genes are specifically under its control, to reveal
a core inflammatory LC genomic programme. Inhibition of IRF1 and the inflammatory programme
it regulates could potentially be a mechanism by which LCs could be reprogrammed for tolerance

within inflamed skin tissues.

The interpretation of how /RF4 regulates immunogenic vs tolerogenic phenotypes expression
across our analyses was less defined, with it clearly being expressed across migrated LC which have
immunogenic and tolerogenic properties, yet we identified a tolerogenic subcluster which had
increased IRF4 expression. Our analysis pulled similarities to the results of others who have
identified immunogenic and tolerogenic response orchestration by /RF4 in DC (Vander Lugt, Riddell,
Aly AKhan, et al., 2017)(Honma et al., 2005)(Akbari et al., 2014)(Ainsua-Enrich et al., 2019)(Williams
et al., 2013). Mathematical modelling using the ‘toggle switch’ system model supported a potential
dual role for IRF4 in both immunogenic vs tolerogenic regulation and we suggest that its expression
level and context with other TFs is responsible for the switch between the two phenotypes. In
analysis of MoDCs, both IRF1 and IRF4 were included in the same upregulated programme post LPS
stimulation. Thus, we propose that when /RF4 is expressed in conjunction with IRFI,
immunogenicity is favoured. However, other studies have revealed that /RF4 can repress the
activation of interferon-inducible genes at promoter interferon stimulated response element (ISRE)
sequences through competitive binding with IRF1 (Shaffer et al., 2009). Therefore, in the steady-
state, with absence of inflammatory stimuli which drive IRF1 upregulation, elevated IRF4 may
suppress IRF1 activity to promote tolerance. In tolerogenic LC, IRF4 expression correlated with
MAP3K14 expression and therefore RELB and non-canonical NFkB activation. RELB has been
observed to bind to IRF4 promoter sequences in DCs (Lehtonen et al., 2005), with evidence for a

IRF4-non-canonical NFkB positive feedback loop in T cells (Boddicker et al., 2015). Whilst RELB may
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therefore simply enhance /RF4 mediated tolerogenic programme, the non-canonical NFkB pathway
is also implicated in DC tolerogenic programming (Tas et al., 2007)(Manches et al., 2012). CRISPR-
Cas9 RELB/MAP3K14 KO in human LC could therefore be performed for comparison with CRISPR-
Cas9 IRF4 Kos (Sirvent et al., 2020) to discern the influence of each factor for LC tolerogenic

programming.

With evidence of the critical role for IRF4 in LC genomic programming during migration and
maturation (Sirvent et al., 2020), the increased expression of IRF4 in tolerogenic LC further supports
that maturation/immunocompetency is critical for tolerance. However, in steady-state LC the
expression of IRF4, MAP3K14 and RELB is sufficiently lower, yet immunocompetent LCs exist in the
population. Whilst in immunocompetent steady-state LCs the expression of IRF4 may be below a
threshold of detection, it could suggest that there are differing programmes coordinating steady-
state and migrated LC phenotypes, which again would reflect their differing potencies in tolerance
activation. Whilst conclusions from the ‘toggle switch’ model propose similarities between the
trajectories of steady-state and migrated LCs, independent steady-state and migrated models could

be considered and tested in the future.

Mathematical modelling has been utilised extensively in the study of dynamical systems in
immunology, including DCs, with variations in model complexity (Eftimie, Gillard and Cantrell,
2016). A system of 8 differential equations has been used in DCs to explore hypothetical scenarios
of tumour treatments (e.g. dose timing, site of injections) in a multicompartment system (e.g.
spleen, blood and tumour), with simulation matching observations from experimental data
(DePillis, Gallegos and Radunskaya, 2013). Furthermore, the balance between DC regulation of
immunogenic vs tolerogenic responses has also previously been explored using intricate stochastic
modelling. However, unlike our ‘toggle switch” ODE model, this stochastic model does not consider
different phenotypes of DC, but instead postulates that the balance of effector and regulatory T
cells in the system, which are homogenously activated by DC, determines immunological outcomes.
In this model, the initial state of T cells within the system is therefore proposed to be more
important than the phenotype of DC. Our analysis however identified the versatile nature of LC
phenotypes which appear undeniably important forimmunogenic vs tolerogenic regulation of T cell
activation. Therefore, whilst the toggle switch ODE model is relatively simple in comparison, we
believe that consideration of LC states is critically important for determining outcomes of immune
activation. Future optimisations and expansions of the model to include hypothetical scenarios of
LC immunogenic vs tolerogenic regulation in the context of T cells in different states could be

explored.
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Appendix A  Tolerogenic DC gene signatures

A.1 Tolerogenic DC gene signature 1

PubMed ID 29541071 29375543 29520275 29250057 29535726 28521905 29158348
Author Vendelova et al. 2018 | Domogalla et al. 2017| Marin et al. 2018 | Obregon et al. 2017 | Hasegawa et al. 2018 | Horton et al. 2017 |Sundblad et al. 2017
ADORA2A CD80 FASL (FASLG) FASL (FASLG) BTLA CD80 LGALS1
ALDH1A2 CD86 HLA-G HLA-G CD80 CD86 LGALS3
cCLS FASL (FASLG) HMOX-1 HMOX1 CD86 FASL (FASLG) LGALS9
CD200 HMOX-1 ICOSLG IDO1 FASL (FASLG) IDO1
PD-L1 (CD274) IDO1 IDO1 ILT2 (LILRB1) ICOSL IL-10
cD83 IL-12 IL-10 ILT4 (LILRB2) IDO1 PD-L1 (CD274)
HLA-G IL-6 IL-27 LGALS1 IL-27 TGFB1/TGFB2
IDO1 ILT3 (LILRB4) IL-35 PD-L1 (CD274) ILT3 TRAIL (TNFSF10)
IL2B ILT4 (LILRB2) ILT2 (LILRB1) PD-L2 (PDCD1LG2) ILT4
Gene list INHBA PD-L1 (CD274) ILT3 (LILRB4) LGALS9
ITGBS PD-L2 (PDCD1LG2) | ILT4 (LILRB2) PD-L1 (CD274)
OPTN TRAIL (TNFSF10) NOS2 (iNOS) PD-L2 (PDCD1LG2)
RELB PD-L1 (CD274) THBS1
SLAMF1 TGF-beta TRAIL (TNFSF10)
SLAMF7
SOCS2
TGFB2
THBS1
VEGFA

Table 18. Tolerogenic DC signature 1 compilation from literature reviews.

Tolerogenic DCsignature 1
1 ADORA2A 21 INHBA
2 ALDH1A2 22 ITGBS
3 BTLA 23 LGALS1
4 CCL5 24 LGALS3
5 CD200 25 LGALS9
6 CD274 26 LILRB1
7 CD80 27 LILRB2
8 CD83 28 LILRB4
9 CD86 29 NOS2
10 EBI3 30 OPTN
11 FASLG 31 PDCD1LG2
12 HLA-G 32 RELB
13 HMOX1 33 SLAMF1
14 ICOSLG 34 SLAMF?
15 IDO1 35 SOCS2
16 IL10 36 TGFB1
17 IL12A 37 TGFB2
18 IL27p28 38 THBS1
19 IL2B 39 TNFSF10
20 IL6 40 VEGFA

Table 19. Tolerogenic DC gene signature 1 gene list.
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A.2 Tolerogenic DC gene signature 2

Tolerogenic DC signature 2
1 ABLIM3 51 EHD1 101 LGMN 151 PTPRM 201 TNFAIP3
2 ACVRL1 52 EMP2 102 LILRB4 152 RAB24 202 TNFRSF21
3 ADI1 53 EPT1 103 LIMK2 153 RASD1 203 TNS3
4 ADRB2 54 ERRFI1 104 LMCD1 154 RASGEF1B 204 TPBG
5 AHCY 55 ETS2 105 LPAR1 155 RBP4 205 TREM1
6 AHI1 56 FAM107B 106 LYRM1 156 RCN3 206 TSC22D1
7 AKR1B1 57 FBLN5S 107 LYSMD3 157 RGS16 207 TSPYL2
8 ALDH2 58 FCGR2B 108 MAP3K8 158 RGS2 208 UBE2D1
9 ALOX5 59 FCGR3A 109 MAPK13 159 RIOK1 209 UBE2Q2
10 ANGPTL4 60 FHL2 110 MCL1 160 RND3 210 UGCG
11 ANKRD28 61 FN1 111 MCTP1 161 RNF103 211 VEGFA
12 ARL4A 62 FOLR2 112 ME1 162 RRAD 212 ZBTB5
13 ARRDC3 63 FPR1 113 MERTK 163 RYBP 213 ZFP36
14 BBX 64 FUTS 114 MET 164 S100A16 214 ZFX
15 BCLAF1 65 GADDA45A 115 MMP19 165 S100A8 215 ZNF24
16 BNC2 66 GADDA45B 116 MPP1 166 S100A9 216 ZNF354B
17 BRD2 67 GCH1 117 MS4A4A 167 SACMIL 217 ZNF462
18 C120rf57 68 GCNT3 118 MSRB2 168 SAR1A
19 C10A 69 GGH 119 MST4 169 SASH1
20 C90rf72 70 GJA1 120 MTSS1 170 SAT1
21 CCDC59 71 GLRX 121 MYO10 171 SEL1L3
22 CCL8 72 GNG11 122 NAMPT 172 SEMA4B
23 CcD14 73 GRAMD3 123 NCF1 173 SEPP1
24 CD163 74 GTF2IRD2 124 NFATS 174 SERPINB2
25 CD2AP 75 HACE1 125 NFKBIA 175 SERPING1
26 CD55 76 HBEGF 126 NFKBIZ 176 SETD2
27 CD86 77 HDGFRP3 127 NINJ1 177 SH3RF1
28 CDC42EP3 78 HMGB2 128 NLRP3 178 SHE
29 CcDS1 79 HPSE 129 NPC1 179 SIRT1
30 CDYL 80 IERS 130 NPL 180 SKIL
31 CLDN1 81 IFITM1 131 NRN1 181 SLC18B1
32 CLDND1 82 IFRD1 132 NUCB2 182 SLPI
33 CLIP1 83 IFT57 133 NUPR1 183 SMPDL3A
34 CTBS 84 IGFBP2 134 ORMDL3 184 SNCA
35 CXCL14 85 IGFBP3 135 P2RY14 185 SNX7
36 CXCL2 86 IGFBP7 136 PAF1 186 SOD2
37 DCN 87 IL6 137 PAPSS2 187 STARD3NL
38 DCUN1D3 88 IMPDH2 138 PDE4B 188 STK17A
39 DDX21 89 IRF8 139 PELI1 189 STOM
40 DHRS9 90 IRX3 140 PGRMC2 190 STX11
41 DNAJA1 91 ITPKC 141 PLK3 191 TAF5L
42 DNASE2 92 JAM2 142 PLXNA2 192 TBPL1
43 DRAM1 93 KANK1 143 PLXNC1 193 TCHH
44 DTNB 94 KCNJ15 144 PMEPA1 194 TFAP2C
45 DUSP1 95 KCTD12 145 PPA1 195 TFCP2L1
46 DUSP10 96 KLF10 146 PPAP2A 196 TEPI
47 DUSP6 97 KRAS 147 PPP1R15A 197 THBD
48 DYNLT3 98 LBH 148 PRKAR2B 198 TIPARP
49 EFNB3 99 LEPREL1 149 PRKCB 199 TMEM2
50 EGR3 100 LFNG 150 PTGS2 200 TMEMA45A

Table 20. Tolerogenic DC signature 2 gene list. Gene list was composed of the 217 genes which
were co-upregulated in two or more of the tolerogenic DC conditions (Steady-state LC, PlaDC,
TolMoDC, IL10MoDC) when each compared to unstimulated MoDC, as explored in Figure 20C,
Chapter 4.
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